xref: /openbmc/linux/kernel/events/core.c (revision a77e393c)
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11 
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 
50 #include "internal.h"
51 
52 #include <asm/irq_regs.h>
53 
54 typedef int (*remote_function_f)(void *);
55 
56 struct remote_function_call {
57 	struct task_struct	*p;
58 	remote_function_f	func;
59 	void			*info;
60 	int			ret;
61 };
62 
63 static void remote_function(void *data)
64 {
65 	struct remote_function_call *tfc = data;
66 	struct task_struct *p = tfc->p;
67 
68 	if (p) {
69 		/* -EAGAIN */
70 		if (task_cpu(p) != smp_processor_id())
71 			return;
72 
73 		/*
74 		 * Now that we're on right CPU with IRQs disabled, we can test
75 		 * if we hit the right task without races.
76 		 */
77 
78 		tfc->ret = -ESRCH; /* No such (running) process */
79 		if (p != current)
80 			return;
81 	}
82 
83 	tfc->ret = tfc->func(tfc->info);
84 }
85 
86 /**
87  * task_function_call - call a function on the cpu on which a task runs
88  * @p:		the task to evaluate
89  * @func:	the function to be called
90  * @info:	the function call argument
91  *
92  * Calls the function @func when the task is currently running. This might
93  * be on the current CPU, which just calls the function directly
94  *
95  * returns: @func return value, or
96  *	    -ESRCH  - when the process isn't running
97  *	    -EAGAIN - when the process moved away
98  */
99 static int
100 task_function_call(struct task_struct *p, remote_function_f func, void *info)
101 {
102 	struct remote_function_call data = {
103 		.p	= p,
104 		.func	= func,
105 		.info	= info,
106 		.ret	= -EAGAIN,
107 	};
108 	int ret;
109 
110 	do {
111 		ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
112 		if (!ret)
113 			ret = data.ret;
114 	} while (ret == -EAGAIN);
115 
116 	return ret;
117 }
118 
119 /**
120  * cpu_function_call - call a function on the cpu
121  * @func:	the function to be called
122  * @info:	the function call argument
123  *
124  * Calls the function @func on the remote cpu.
125  *
126  * returns: @func return value or -ENXIO when the cpu is offline
127  */
128 static int cpu_function_call(int cpu, remote_function_f func, void *info)
129 {
130 	struct remote_function_call data = {
131 		.p	= NULL,
132 		.func	= func,
133 		.info	= info,
134 		.ret	= -ENXIO, /* No such CPU */
135 	};
136 
137 	smp_call_function_single(cpu, remote_function, &data, 1);
138 
139 	return data.ret;
140 }
141 
142 static inline struct perf_cpu_context *
143 __get_cpu_context(struct perf_event_context *ctx)
144 {
145 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
146 }
147 
148 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
149 			  struct perf_event_context *ctx)
150 {
151 	raw_spin_lock(&cpuctx->ctx.lock);
152 	if (ctx)
153 		raw_spin_lock(&ctx->lock);
154 }
155 
156 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
157 			    struct perf_event_context *ctx)
158 {
159 	if (ctx)
160 		raw_spin_unlock(&ctx->lock);
161 	raw_spin_unlock(&cpuctx->ctx.lock);
162 }
163 
164 #define TASK_TOMBSTONE ((void *)-1L)
165 
166 static bool is_kernel_event(struct perf_event *event)
167 {
168 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
169 }
170 
171 /*
172  * On task ctx scheduling...
173  *
174  * When !ctx->nr_events a task context will not be scheduled. This means
175  * we can disable the scheduler hooks (for performance) without leaving
176  * pending task ctx state.
177  *
178  * This however results in two special cases:
179  *
180  *  - removing the last event from a task ctx; this is relatively straight
181  *    forward and is done in __perf_remove_from_context.
182  *
183  *  - adding the first event to a task ctx; this is tricky because we cannot
184  *    rely on ctx->is_active and therefore cannot use event_function_call().
185  *    See perf_install_in_context().
186  *
187  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
188  */
189 
190 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
191 			struct perf_event_context *, void *);
192 
193 struct event_function_struct {
194 	struct perf_event *event;
195 	event_f func;
196 	void *data;
197 };
198 
199 static int event_function(void *info)
200 {
201 	struct event_function_struct *efs = info;
202 	struct perf_event *event = efs->event;
203 	struct perf_event_context *ctx = event->ctx;
204 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
205 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
206 	int ret = 0;
207 
208 	WARN_ON_ONCE(!irqs_disabled());
209 
210 	perf_ctx_lock(cpuctx, task_ctx);
211 	/*
212 	 * Since we do the IPI call without holding ctx->lock things can have
213 	 * changed, double check we hit the task we set out to hit.
214 	 */
215 	if (ctx->task) {
216 		if (ctx->task != current) {
217 			ret = -ESRCH;
218 			goto unlock;
219 		}
220 
221 		/*
222 		 * We only use event_function_call() on established contexts,
223 		 * and event_function() is only ever called when active (or
224 		 * rather, we'll have bailed in task_function_call() or the
225 		 * above ctx->task != current test), therefore we must have
226 		 * ctx->is_active here.
227 		 */
228 		WARN_ON_ONCE(!ctx->is_active);
229 		/*
230 		 * And since we have ctx->is_active, cpuctx->task_ctx must
231 		 * match.
232 		 */
233 		WARN_ON_ONCE(task_ctx != ctx);
234 	} else {
235 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
236 	}
237 
238 	efs->func(event, cpuctx, ctx, efs->data);
239 unlock:
240 	perf_ctx_unlock(cpuctx, task_ctx);
241 
242 	return ret;
243 }
244 
245 static void event_function_call(struct perf_event *event, event_f func, void *data)
246 {
247 	struct perf_event_context *ctx = event->ctx;
248 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
249 	struct event_function_struct efs = {
250 		.event = event,
251 		.func = func,
252 		.data = data,
253 	};
254 
255 	if (!event->parent) {
256 		/*
257 		 * If this is a !child event, we must hold ctx::mutex to
258 		 * stabilize the the event->ctx relation. See
259 		 * perf_event_ctx_lock().
260 		 */
261 		lockdep_assert_held(&ctx->mutex);
262 	}
263 
264 	if (!task) {
265 		cpu_function_call(event->cpu, event_function, &efs);
266 		return;
267 	}
268 
269 	if (task == TASK_TOMBSTONE)
270 		return;
271 
272 again:
273 	if (!task_function_call(task, event_function, &efs))
274 		return;
275 
276 	raw_spin_lock_irq(&ctx->lock);
277 	/*
278 	 * Reload the task pointer, it might have been changed by
279 	 * a concurrent perf_event_context_sched_out().
280 	 */
281 	task = ctx->task;
282 	if (task == TASK_TOMBSTONE) {
283 		raw_spin_unlock_irq(&ctx->lock);
284 		return;
285 	}
286 	if (ctx->is_active) {
287 		raw_spin_unlock_irq(&ctx->lock);
288 		goto again;
289 	}
290 	func(event, NULL, ctx, data);
291 	raw_spin_unlock_irq(&ctx->lock);
292 }
293 
294 /*
295  * Similar to event_function_call() + event_function(), but hard assumes IRQs
296  * are already disabled and we're on the right CPU.
297  */
298 static void event_function_local(struct perf_event *event, event_f func, void *data)
299 {
300 	struct perf_event_context *ctx = event->ctx;
301 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
302 	struct task_struct *task = READ_ONCE(ctx->task);
303 	struct perf_event_context *task_ctx = NULL;
304 
305 	WARN_ON_ONCE(!irqs_disabled());
306 
307 	if (task) {
308 		if (task == TASK_TOMBSTONE)
309 			return;
310 
311 		task_ctx = ctx;
312 	}
313 
314 	perf_ctx_lock(cpuctx, task_ctx);
315 
316 	task = ctx->task;
317 	if (task == TASK_TOMBSTONE)
318 		goto unlock;
319 
320 	if (task) {
321 		/*
322 		 * We must be either inactive or active and the right task,
323 		 * otherwise we're screwed, since we cannot IPI to somewhere
324 		 * else.
325 		 */
326 		if (ctx->is_active) {
327 			if (WARN_ON_ONCE(task != current))
328 				goto unlock;
329 
330 			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
331 				goto unlock;
332 		}
333 	} else {
334 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
335 	}
336 
337 	func(event, cpuctx, ctx, data);
338 unlock:
339 	perf_ctx_unlock(cpuctx, task_ctx);
340 }
341 
342 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
343 		       PERF_FLAG_FD_OUTPUT  |\
344 		       PERF_FLAG_PID_CGROUP |\
345 		       PERF_FLAG_FD_CLOEXEC)
346 
347 /*
348  * branch priv levels that need permission checks
349  */
350 #define PERF_SAMPLE_BRANCH_PERM_PLM \
351 	(PERF_SAMPLE_BRANCH_KERNEL |\
352 	 PERF_SAMPLE_BRANCH_HV)
353 
354 enum event_type_t {
355 	EVENT_FLEXIBLE = 0x1,
356 	EVENT_PINNED = 0x2,
357 	EVENT_TIME = 0x4,
358 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
359 };
360 
361 /*
362  * perf_sched_events : >0 events exist
363  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
364  */
365 
366 static void perf_sched_delayed(struct work_struct *work);
367 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
368 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
369 static DEFINE_MUTEX(perf_sched_mutex);
370 static atomic_t perf_sched_count;
371 
372 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
373 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
374 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
375 
376 static atomic_t nr_mmap_events __read_mostly;
377 static atomic_t nr_comm_events __read_mostly;
378 static atomic_t nr_task_events __read_mostly;
379 static atomic_t nr_freq_events __read_mostly;
380 static atomic_t nr_switch_events __read_mostly;
381 
382 static LIST_HEAD(pmus);
383 static DEFINE_MUTEX(pmus_lock);
384 static struct srcu_struct pmus_srcu;
385 
386 /*
387  * perf event paranoia level:
388  *  -1 - not paranoid at all
389  *   0 - disallow raw tracepoint access for unpriv
390  *   1 - disallow cpu events for unpriv
391  *   2 - disallow kernel profiling for unpriv
392  */
393 int sysctl_perf_event_paranoid __read_mostly = 2;
394 
395 /* Minimum for 512 kiB + 1 user control page */
396 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
397 
398 /*
399  * max perf event sample rate
400  */
401 #define DEFAULT_MAX_SAMPLE_RATE		100000
402 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
403 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
404 
405 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
406 
407 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
408 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
409 
410 static int perf_sample_allowed_ns __read_mostly =
411 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
412 
413 static void update_perf_cpu_limits(void)
414 {
415 	u64 tmp = perf_sample_period_ns;
416 
417 	tmp *= sysctl_perf_cpu_time_max_percent;
418 	tmp = div_u64(tmp, 100);
419 	if (!tmp)
420 		tmp = 1;
421 
422 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
423 }
424 
425 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
426 
427 int perf_proc_update_handler(struct ctl_table *table, int write,
428 		void __user *buffer, size_t *lenp,
429 		loff_t *ppos)
430 {
431 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
432 
433 	if (ret || !write)
434 		return ret;
435 
436 	/*
437 	 * If throttling is disabled don't allow the write:
438 	 */
439 	if (sysctl_perf_cpu_time_max_percent == 100 ||
440 	    sysctl_perf_cpu_time_max_percent == 0)
441 		return -EINVAL;
442 
443 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
444 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
445 	update_perf_cpu_limits();
446 
447 	return 0;
448 }
449 
450 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
451 
452 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
453 				void __user *buffer, size_t *lenp,
454 				loff_t *ppos)
455 {
456 	int ret = proc_dointvec(table, write, buffer, lenp, ppos);
457 
458 	if (ret || !write)
459 		return ret;
460 
461 	if (sysctl_perf_cpu_time_max_percent == 100 ||
462 	    sysctl_perf_cpu_time_max_percent == 0) {
463 		printk(KERN_WARNING
464 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
465 		WRITE_ONCE(perf_sample_allowed_ns, 0);
466 	} else {
467 		update_perf_cpu_limits();
468 	}
469 
470 	return 0;
471 }
472 
473 /*
474  * perf samples are done in some very critical code paths (NMIs).
475  * If they take too much CPU time, the system can lock up and not
476  * get any real work done.  This will drop the sample rate when
477  * we detect that events are taking too long.
478  */
479 #define NR_ACCUMULATED_SAMPLES 128
480 static DEFINE_PER_CPU(u64, running_sample_length);
481 
482 static u64 __report_avg;
483 static u64 __report_allowed;
484 
485 static void perf_duration_warn(struct irq_work *w)
486 {
487 	printk_ratelimited(KERN_INFO
488 		"perf: interrupt took too long (%lld > %lld), lowering "
489 		"kernel.perf_event_max_sample_rate to %d\n",
490 		__report_avg, __report_allowed,
491 		sysctl_perf_event_sample_rate);
492 }
493 
494 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
495 
496 void perf_sample_event_took(u64 sample_len_ns)
497 {
498 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
499 	u64 running_len;
500 	u64 avg_len;
501 	u32 max;
502 
503 	if (max_len == 0)
504 		return;
505 
506 	/* Decay the counter by 1 average sample. */
507 	running_len = __this_cpu_read(running_sample_length);
508 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
509 	running_len += sample_len_ns;
510 	__this_cpu_write(running_sample_length, running_len);
511 
512 	/*
513 	 * Note: this will be biased artifically low until we have
514 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
515 	 * from having to maintain a count.
516 	 */
517 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
518 	if (avg_len <= max_len)
519 		return;
520 
521 	__report_avg = avg_len;
522 	__report_allowed = max_len;
523 
524 	/*
525 	 * Compute a throttle threshold 25% below the current duration.
526 	 */
527 	avg_len += avg_len / 4;
528 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
529 	if (avg_len < max)
530 		max /= (u32)avg_len;
531 	else
532 		max = 1;
533 
534 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
535 	WRITE_ONCE(max_samples_per_tick, max);
536 
537 	sysctl_perf_event_sample_rate = max * HZ;
538 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
539 
540 	if (!irq_work_queue(&perf_duration_work)) {
541 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
542 			     "kernel.perf_event_max_sample_rate to %d\n",
543 			     __report_avg, __report_allowed,
544 			     sysctl_perf_event_sample_rate);
545 	}
546 }
547 
548 static atomic64_t perf_event_id;
549 
550 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
551 			      enum event_type_t event_type);
552 
553 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
554 			     enum event_type_t event_type,
555 			     struct task_struct *task);
556 
557 static void update_context_time(struct perf_event_context *ctx);
558 static u64 perf_event_time(struct perf_event *event);
559 
560 void __weak perf_event_print_debug(void)	{ }
561 
562 extern __weak const char *perf_pmu_name(void)
563 {
564 	return "pmu";
565 }
566 
567 static inline u64 perf_clock(void)
568 {
569 	return local_clock();
570 }
571 
572 static inline u64 perf_event_clock(struct perf_event *event)
573 {
574 	return event->clock();
575 }
576 
577 #ifdef CONFIG_CGROUP_PERF
578 
579 static inline bool
580 perf_cgroup_match(struct perf_event *event)
581 {
582 	struct perf_event_context *ctx = event->ctx;
583 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
584 
585 	/* @event doesn't care about cgroup */
586 	if (!event->cgrp)
587 		return true;
588 
589 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
590 	if (!cpuctx->cgrp)
591 		return false;
592 
593 	/*
594 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
595 	 * also enabled for all its descendant cgroups.  If @cpuctx's
596 	 * cgroup is a descendant of @event's (the test covers identity
597 	 * case), it's a match.
598 	 */
599 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
600 				    event->cgrp->css.cgroup);
601 }
602 
603 static inline void perf_detach_cgroup(struct perf_event *event)
604 {
605 	css_put(&event->cgrp->css);
606 	event->cgrp = NULL;
607 }
608 
609 static inline int is_cgroup_event(struct perf_event *event)
610 {
611 	return event->cgrp != NULL;
612 }
613 
614 static inline u64 perf_cgroup_event_time(struct perf_event *event)
615 {
616 	struct perf_cgroup_info *t;
617 
618 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
619 	return t->time;
620 }
621 
622 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
623 {
624 	struct perf_cgroup_info *info;
625 	u64 now;
626 
627 	now = perf_clock();
628 
629 	info = this_cpu_ptr(cgrp->info);
630 
631 	info->time += now - info->timestamp;
632 	info->timestamp = now;
633 }
634 
635 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
636 {
637 	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
638 	if (cgrp_out)
639 		__update_cgrp_time(cgrp_out);
640 }
641 
642 static inline void update_cgrp_time_from_event(struct perf_event *event)
643 {
644 	struct perf_cgroup *cgrp;
645 
646 	/*
647 	 * ensure we access cgroup data only when needed and
648 	 * when we know the cgroup is pinned (css_get)
649 	 */
650 	if (!is_cgroup_event(event))
651 		return;
652 
653 	cgrp = perf_cgroup_from_task(current, event->ctx);
654 	/*
655 	 * Do not update time when cgroup is not active
656 	 */
657 	if (cgrp == event->cgrp)
658 		__update_cgrp_time(event->cgrp);
659 }
660 
661 static inline void
662 perf_cgroup_set_timestamp(struct task_struct *task,
663 			  struct perf_event_context *ctx)
664 {
665 	struct perf_cgroup *cgrp;
666 	struct perf_cgroup_info *info;
667 
668 	/*
669 	 * ctx->lock held by caller
670 	 * ensure we do not access cgroup data
671 	 * unless we have the cgroup pinned (css_get)
672 	 */
673 	if (!task || !ctx->nr_cgroups)
674 		return;
675 
676 	cgrp = perf_cgroup_from_task(task, ctx);
677 	info = this_cpu_ptr(cgrp->info);
678 	info->timestamp = ctx->timestamp;
679 }
680 
681 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
682 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
683 
684 /*
685  * reschedule events based on the cgroup constraint of task.
686  *
687  * mode SWOUT : schedule out everything
688  * mode SWIN : schedule in based on cgroup for next
689  */
690 static void perf_cgroup_switch(struct task_struct *task, int mode)
691 {
692 	struct perf_cpu_context *cpuctx;
693 	struct pmu *pmu;
694 	unsigned long flags;
695 
696 	/*
697 	 * disable interrupts to avoid geting nr_cgroup
698 	 * changes via __perf_event_disable(). Also
699 	 * avoids preemption.
700 	 */
701 	local_irq_save(flags);
702 
703 	/*
704 	 * we reschedule only in the presence of cgroup
705 	 * constrained events.
706 	 */
707 
708 	list_for_each_entry_rcu(pmu, &pmus, entry) {
709 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
710 		if (cpuctx->unique_pmu != pmu)
711 			continue; /* ensure we process each cpuctx once */
712 
713 		/*
714 		 * perf_cgroup_events says at least one
715 		 * context on this CPU has cgroup events.
716 		 *
717 		 * ctx->nr_cgroups reports the number of cgroup
718 		 * events for a context.
719 		 */
720 		if (cpuctx->ctx.nr_cgroups > 0) {
721 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
722 			perf_pmu_disable(cpuctx->ctx.pmu);
723 
724 			if (mode & PERF_CGROUP_SWOUT) {
725 				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
726 				/*
727 				 * must not be done before ctxswout due
728 				 * to event_filter_match() in event_sched_out()
729 				 */
730 				cpuctx->cgrp = NULL;
731 			}
732 
733 			if (mode & PERF_CGROUP_SWIN) {
734 				WARN_ON_ONCE(cpuctx->cgrp);
735 				/*
736 				 * set cgrp before ctxsw in to allow
737 				 * event_filter_match() to not have to pass
738 				 * task around
739 				 * we pass the cpuctx->ctx to perf_cgroup_from_task()
740 				 * because cgorup events are only per-cpu
741 				 */
742 				cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
743 				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
744 			}
745 			perf_pmu_enable(cpuctx->ctx.pmu);
746 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
747 		}
748 	}
749 
750 	local_irq_restore(flags);
751 }
752 
753 static inline void perf_cgroup_sched_out(struct task_struct *task,
754 					 struct task_struct *next)
755 {
756 	struct perf_cgroup *cgrp1;
757 	struct perf_cgroup *cgrp2 = NULL;
758 
759 	rcu_read_lock();
760 	/*
761 	 * we come here when we know perf_cgroup_events > 0
762 	 * we do not need to pass the ctx here because we know
763 	 * we are holding the rcu lock
764 	 */
765 	cgrp1 = perf_cgroup_from_task(task, NULL);
766 	cgrp2 = perf_cgroup_from_task(next, NULL);
767 
768 	/*
769 	 * only schedule out current cgroup events if we know
770 	 * that we are switching to a different cgroup. Otherwise,
771 	 * do no touch the cgroup events.
772 	 */
773 	if (cgrp1 != cgrp2)
774 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
775 
776 	rcu_read_unlock();
777 }
778 
779 static inline void perf_cgroup_sched_in(struct task_struct *prev,
780 					struct task_struct *task)
781 {
782 	struct perf_cgroup *cgrp1;
783 	struct perf_cgroup *cgrp2 = NULL;
784 
785 	rcu_read_lock();
786 	/*
787 	 * we come here when we know perf_cgroup_events > 0
788 	 * we do not need to pass the ctx here because we know
789 	 * we are holding the rcu lock
790 	 */
791 	cgrp1 = perf_cgroup_from_task(task, NULL);
792 	cgrp2 = perf_cgroup_from_task(prev, NULL);
793 
794 	/*
795 	 * only need to schedule in cgroup events if we are changing
796 	 * cgroup during ctxsw. Cgroup events were not scheduled
797 	 * out of ctxsw out if that was not the case.
798 	 */
799 	if (cgrp1 != cgrp2)
800 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
801 
802 	rcu_read_unlock();
803 }
804 
805 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
806 				      struct perf_event_attr *attr,
807 				      struct perf_event *group_leader)
808 {
809 	struct perf_cgroup *cgrp;
810 	struct cgroup_subsys_state *css;
811 	struct fd f = fdget(fd);
812 	int ret = 0;
813 
814 	if (!f.file)
815 		return -EBADF;
816 
817 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
818 					 &perf_event_cgrp_subsys);
819 	if (IS_ERR(css)) {
820 		ret = PTR_ERR(css);
821 		goto out;
822 	}
823 
824 	cgrp = container_of(css, struct perf_cgroup, css);
825 	event->cgrp = cgrp;
826 
827 	/*
828 	 * all events in a group must monitor
829 	 * the same cgroup because a task belongs
830 	 * to only one perf cgroup at a time
831 	 */
832 	if (group_leader && group_leader->cgrp != cgrp) {
833 		perf_detach_cgroup(event);
834 		ret = -EINVAL;
835 	}
836 out:
837 	fdput(f);
838 	return ret;
839 }
840 
841 static inline void
842 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
843 {
844 	struct perf_cgroup_info *t;
845 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
846 	event->shadow_ctx_time = now - t->timestamp;
847 }
848 
849 static inline void
850 perf_cgroup_defer_enabled(struct perf_event *event)
851 {
852 	/*
853 	 * when the current task's perf cgroup does not match
854 	 * the event's, we need to remember to call the
855 	 * perf_mark_enable() function the first time a task with
856 	 * a matching perf cgroup is scheduled in.
857 	 */
858 	if (is_cgroup_event(event) && !perf_cgroup_match(event))
859 		event->cgrp_defer_enabled = 1;
860 }
861 
862 static inline void
863 perf_cgroup_mark_enabled(struct perf_event *event,
864 			 struct perf_event_context *ctx)
865 {
866 	struct perf_event *sub;
867 	u64 tstamp = perf_event_time(event);
868 
869 	if (!event->cgrp_defer_enabled)
870 		return;
871 
872 	event->cgrp_defer_enabled = 0;
873 
874 	event->tstamp_enabled = tstamp - event->total_time_enabled;
875 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
876 		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
877 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
878 			sub->cgrp_defer_enabled = 0;
879 		}
880 	}
881 }
882 
883 /*
884  * Update cpuctx->cgrp so that it is set when first cgroup event is added and
885  * cleared when last cgroup event is removed.
886  */
887 static inline void
888 list_update_cgroup_event(struct perf_event *event,
889 			 struct perf_event_context *ctx, bool add)
890 {
891 	struct perf_cpu_context *cpuctx;
892 
893 	if (!is_cgroup_event(event))
894 		return;
895 
896 	if (add && ctx->nr_cgroups++)
897 		return;
898 	else if (!add && --ctx->nr_cgroups)
899 		return;
900 	/*
901 	 * Because cgroup events are always per-cpu events,
902 	 * this will always be called from the right CPU.
903 	 */
904 	cpuctx = __get_cpu_context(ctx);
905 	cpuctx->cgrp = add ? event->cgrp : NULL;
906 }
907 
908 #else /* !CONFIG_CGROUP_PERF */
909 
910 static inline bool
911 perf_cgroup_match(struct perf_event *event)
912 {
913 	return true;
914 }
915 
916 static inline void perf_detach_cgroup(struct perf_event *event)
917 {}
918 
919 static inline int is_cgroup_event(struct perf_event *event)
920 {
921 	return 0;
922 }
923 
924 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
925 {
926 	return 0;
927 }
928 
929 static inline void update_cgrp_time_from_event(struct perf_event *event)
930 {
931 }
932 
933 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
934 {
935 }
936 
937 static inline void perf_cgroup_sched_out(struct task_struct *task,
938 					 struct task_struct *next)
939 {
940 }
941 
942 static inline void perf_cgroup_sched_in(struct task_struct *prev,
943 					struct task_struct *task)
944 {
945 }
946 
947 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
948 				      struct perf_event_attr *attr,
949 				      struct perf_event *group_leader)
950 {
951 	return -EINVAL;
952 }
953 
954 static inline void
955 perf_cgroup_set_timestamp(struct task_struct *task,
956 			  struct perf_event_context *ctx)
957 {
958 }
959 
960 void
961 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
962 {
963 }
964 
965 static inline void
966 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
967 {
968 }
969 
970 static inline u64 perf_cgroup_event_time(struct perf_event *event)
971 {
972 	return 0;
973 }
974 
975 static inline void
976 perf_cgroup_defer_enabled(struct perf_event *event)
977 {
978 }
979 
980 static inline void
981 perf_cgroup_mark_enabled(struct perf_event *event,
982 			 struct perf_event_context *ctx)
983 {
984 }
985 
986 static inline void
987 list_update_cgroup_event(struct perf_event *event,
988 			 struct perf_event_context *ctx, bool add)
989 {
990 }
991 
992 #endif
993 
994 /*
995  * set default to be dependent on timer tick just
996  * like original code
997  */
998 #define PERF_CPU_HRTIMER (1000 / HZ)
999 /*
1000  * function must be called with interrupts disbled
1001  */
1002 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1003 {
1004 	struct perf_cpu_context *cpuctx;
1005 	int rotations = 0;
1006 
1007 	WARN_ON(!irqs_disabled());
1008 
1009 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1010 	rotations = perf_rotate_context(cpuctx);
1011 
1012 	raw_spin_lock(&cpuctx->hrtimer_lock);
1013 	if (rotations)
1014 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1015 	else
1016 		cpuctx->hrtimer_active = 0;
1017 	raw_spin_unlock(&cpuctx->hrtimer_lock);
1018 
1019 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1020 }
1021 
1022 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1023 {
1024 	struct hrtimer *timer = &cpuctx->hrtimer;
1025 	struct pmu *pmu = cpuctx->ctx.pmu;
1026 	u64 interval;
1027 
1028 	/* no multiplexing needed for SW PMU */
1029 	if (pmu->task_ctx_nr == perf_sw_context)
1030 		return;
1031 
1032 	/*
1033 	 * check default is sane, if not set then force to
1034 	 * default interval (1/tick)
1035 	 */
1036 	interval = pmu->hrtimer_interval_ms;
1037 	if (interval < 1)
1038 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1039 
1040 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1041 
1042 	raw_spin_lock_init(&cpuctx->hrtimer_lock);
1043 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1044 	timer->function = perf_mux_hrtimer_handler;
1045 }
1046 
1047 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1048 {
1049 	struct hrtimer *timer = &cpuctx->hrtimer;
1050 	struct pmu *pmu = cpuctx->ctx.pmu;
1051 	unsigned long flags;
1052 
1053 	/* not for SW PMU */
1054 	if (pmu->task_ctx_nr == perf_sw_context)
1055 		return 0;
1056 
1057 	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1058 	if (!cpuctx->hrtimer_active) {
1059 		cpuctx->hrtimer_active = 1;
1060 		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1061 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1062 	}
1063 	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1064 
1065 	return 0;
1066 }
1067 
1068 void perf_pmu_disable(struct pmu *pmu)
1069 {
1070 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1071 	if (!(*count)++)
1072 		pmu->pmu_disable(pmu);
1073 }
1074 
1075 void perf_pmu_enable(struct pmu *pmu)
1076 {
1077 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1078 	if (!--(*count))
1079 		pmu->pmu_enable(pmu);
1080 }
1081 
1082 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1083 
1084 /*
1085  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1086  * perf_event_task_tick() are fully serialized because they're strictly cpu
1087  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1088  * disabled, while perf_event_task_tick is called from IRQ context.
1089  */
1090 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1091 {
1092 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
1093 
1094 	WARN_ON(!irqs_disabled());
1095 
1096 	WARN_ON(!list_empty(&ctx->active_ctx_list));
1097 
1098 	list_add(&ctx->active_ctx_list, head);
1099 }
1100 
1101 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1102 {
1103 	WARN_ON(!irqs_disabled());
1104 
1105 	WARN_ON(list_empty(&ctx->active_ctx_list));
1106 
1107 	list_del_init(&ctx->active_ctx_list);
1108 }
1109 
1110 static void get_ctx(struct perf_event_context *ctx)
1111 {
1112 	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1113 }
1114 
1115 static void free_ctx(struct rcu_head *head)
1116 {
1117 	struct perf_event_context *ctx;
1118 
1119 	ctx = container_of(head, struct perf_event_context, rcu_head);
1120 	kfree(ctx->task_ctx_data);
1121 	kfree(ctx);
1122 }
1123 
1124 static void put_ctx(struct perf_event_context *ctx)
1125 {
1126 	if (atomic_dec_and_test(&ctx->refcount)) {
1127 		if (ctx->parent_ctx)
1128 			put_ctx(ctx->parent_ctx);
1129 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1130 			put_task_struct(ctx->task);
1131 		call_rcu(&ctx->rcu_head, free_ctx);
1132 	}
1133 }
1134 
1135 /*
1136  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1137  * perf_pmu_migrate_context() we need some magic.
1138  *
1139  * Those places that change perf_event::ctx will hold both
1140  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1141  *
1142  * Lock ordering is by mutex address. There are two other sites where
1143  * perf_event_context::mutex nests and those are:
1144  *
1145  *  - perf_event_exit_task_context()	[ child , 0 ]
1146  *      perf_event_exit_event()
1147  *        put_event()			[ parent, 1 ]
1148  *
1149  *  - perf_event_init_context()		[ parent, 0 ]
1150  *      inherit_task_group()
1151  *        inherit_group()
1152  *          inherit_event()
1153  *            perf_event_alloc()
1154  *              perf_init_event()
1155  *                perf_try_init_event()	[ child , 1 ]
1156  *
1157  * While it appears there is an obvious deadlock here -- the parent and child
1158  * nesting levels are inverted between the two. This is in fact safe because
1159  * life-time rules separate them. That is an exiting task cannot fork, and a
1160  * spawning task cannot (yet) exit.
1161  *
1162  * But remember that that these are parent<->child context relations, and
1163  * migration does not affect children, therefore these two orderings should not
1164  * interact.
1165  *
1166  * The change in perf_event::ctx does not affect children (as claimed above)
1167  * because the sys_perf_event_open() case will install a new event and break
1168  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1169  * concerned with cpuctx and that doesn't have children.
1170  *
1171  * The places that change perf_event::ctx will issue:
1172  *
1173  *   perf_remove_from_context();
1174  *   synchronize_rcu();
1175  *   perf_install_in_context();
1176  *
1177  * to affect the change. The remove_from_context() + synchronize_rcu() should
1178  * quiesce the event, after which we can install it in the new location. This
1179  * means that only external vectors (perf_fops, prctl) can perturb the event
1180  * while in transit. Therefore all such accessors should also acquire
1181  * perf_event_context::mutex to serialize against this.
1182  *
1183  * However; because event->ctx can change while we're waiting to acquire
1184  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1185  * function.
1186  *
1187  * Lock order:
1188  *    cred_guard_mutex
1189  *	task_struct::perf_event_mutex
1190  *	  perf_event_context::mutex
1191  *	    perf_event::child_mutex;
1192  *	      perf_event_context::lock
1193  *	    perf_event::mmap_mutex
1194  *	    mmap_sem
1195  */
1196 static struct perf_event_context *
1197 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1198 {
1199 	struct perf_event_context *ctx;
1200 
1201 again:
1202 	rcu_read_lock();
1203 	ctx = ACCESS_ONCE(event->ctx);
1204 	if (!atomic_inc_not_zero(&ctx->refcount)) {
1205 		rcu_read_unlock();
1206 		goto again;
1207 	}
1208 	rcu_read_unlock();
1209 
1210 	mutex_lock_nested(&ctx->mutex, nesting);
1211 	if (event->ctx != ctx) {
1212 		mutex_unlock(&ctx->mutex);
1213 		put_ctx(ctx);
1214 		goto again;
1215 	}
1216 
1217 	return ctx;
1218 }
1219 
1220 static inline struct perf_event_context *
1221 perf_event_ctx_lock(struct perf_event *event)
1222 {
1223 	return perf_event_ctx_lock_nested(event, 0);
1224 }
1225 
1226 static void perf_event_ctx_unlock(struct perf_event *event,
1227 				  struct perf_event_context *ctx)
1228 {
1229 	mutex_unlock(&ctx->mutex);
1230 	put_ctx(ctx);
1231 }
1232 
1233 /*
1234  * This must be done under the ctx->lock, such as to serialize against
1235  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1236  * calling scheduler related locks and ctx->lock nests inside those.
1237  */
1238 static __must_check struct perf_event_context *
1239 unclone_ctx(struct perf_event_context *ctx)
1240 {
1241 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1242 
1243 	lockdep_assert_held(&ctx->lock);
1244 
1245 	if (parent_ctx)
1246 		ctx->parent_ctx = NULL;
1247 	ctx->generation++;
1248 
1249 	return parent_ctx;
1250 }
1251 
1252 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1253 {
1254 	/*
1255 	 * only top level events have the pid namespace they were created in
1256 	 */
1257 	if (event->parent)
1258 		event = event->parent;
1259 
1260 	return task_tgid_nr_ns(p, event->ns);
1261 }
1262 
1263 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1264 {
1265 	/*
1266 	 * only top level events have the pid namespace they were created in
1267 	 */
1268 	if (event->parent)
1269 		event = event->parent;
1270 
1271 	return task_pid_nr_ns(p, event->ns);
1272 }
1273 
1274 /*
1275  * If we inherit events we want to return the parent event id
1276  * to userspace.
1277  */
1278 static u64 primary_event_id(struct perf_event *event)
1279 {
1280 	u64 id = event->id;
1281 
1282 	if (event->parent)
1283 		id = event->parent->id;
1284 
1285 	return id;
1286 }
1287 
1288 /*
1289  * Get the perf_event_context for a task and lock it.
1290  *
1291  * This has to cope with with the fact that until it is locked,
1292  * the context could get moved to another task.
1293  */
1294 static struct perf_event_context *
1295 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1296 {
1297 	struct perf_event_context *ctx;
1298 
1299 retry:
1300 	/*
1301 	 * One of the few rules of preemptible RCU is that one cannot do
1302 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1303 	 * part of the read side critical section was irqs-enabled -- see
1304 	 * rcu_read_unlock_special().
1305 	 *
1306 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1307 	 * side critical section has interrupts disabled.
1308 	 */
1309 	local_irq_save(*flags);
1310 	rcu_read_lock();
1311 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1312 	if (ctx) {
1313 		/*
1314 		 * If this context is a clone of another, it might
1315 		 * get swapped for another underneath us by
1316 		 * perf_event_task_sched_out, though the
1317 		 * rcu_read_lock() protects us from any context
1318 		 * getting freed.  Lock the context and check if it
1319 		 * got swapped before we could get the lock, and retry
1320 		 * if so.  If we locked the right context, then it
1321 		 * can't get swapped on us any more.
1322 		 */
1323 		raw_spin_lock(&ctx->lock);
1324 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1325 			raw_spin_unlock(&ctx->lock);
1326 			rcu_read_unlock();
1327 			local_irq_restore(*flags);
1328 			goto retry;
1329 		}
1330 
1331 		if (ctx->task == TASK_TOMBSTONE ||
1332 		    !atomic_inc_not_zero(&ctx->refcount)) {
1333 			raw_spin_unlock(&ctx->lock);
1334 			ctx = NULL;
1335 		} else {
1336 			WARN_ON_ONCE(ctx->task != task);
1337 		}
1338 	}
1339 	rcu_read_unlock();
1340 	if (!ctx)
1341 		local_irq_restore(*flags);
1342 	return ctx;
1343 }
1344 
1345 /*
1346  * Get the context for a task and increment its pin_count so it
1347  * can't get swapped to another task.  This also increments its
1348  * reference count so that the context can't get freed.
1349  */
1350 static struct perf_event_context *
1351 perf_pin_task_context(struct task_struct *task, int ctxn)
1352 {
1353 	struct perf_event_context *ctx;
1354 	unsigned long flags;
1355 
1356 	ctx = perf_lock_task_context(task, ctxn, &flags);
1357 	if (ctx) {
1358 		++ctx->pin_count;
1359 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1360 	}
1361 	return ctx;
1362 }
1363 
1364 static void perf_unpin_context(struct perf_event_context *ctx)
1365 {
1366 	unsigned long flags;
1367 
1368 	raw_spin_lock_irqsave(&ctx->lock, flags);
1369 	--ctx->pin_count;
1370 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1371 }
1372 
1373 /*
1374  * Update the record of the current time in a context.
1375  */
1376 static void update_context_time(struct perf_event_context *ctx)
1377 {
1378 	u64 now = perf_clock();
1379 
1380 	ctx->time += now - ctx->timestamp;
1381 	ctx->timestamp = now;
1382 }
1383 
1384 static u64 perf_event_time(struct perf_event *event)
1385 {
1386 	struct perf_event_context *ctx = event->ctx;
1387 
1388 	if (is_cgroup_event(event))
1389 		return perf_cgroup_event_time(event);
1390 
1391 	return ctx ? ctx->time : 0;
1392 }
1393 
1394 /*
1395  * Update the total_time_enabled and total_time_running fields for a event.
1396  */
1397 static void update_event_times(struct perf_event *event)
1398 {
1399 	struct perf_event_context *ctx = event->ctx;
1400 	u64 run_end;
1401 
1402 	lockdep_assert_held(&ctx->lock);
1403 
1404 	if (event->state < PERF_EVENT_STATE_INACTIVE ||
1405 	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1406 		return;
1407 
1408 	/*
1409 	 * in cgroup mode, time_enabled represents
1410 	 * the time the event was enabled AND active
1411 	 * tasks were in the monitored cgroup. This is
1412 	 * independent of the activity of the context as
1413 	 * there may be a mix of cgroup and non-cgroup events.
1414 	 *
1415 	 * That is why we treat cgroup events differently
1416 	 * here.
1417 	 */
1418 	if (is_cgroup_event(event))
1419 		run_end = perf_cgroup_event_time(event);
1420 	else if (ctx->is_active)
1421 		run_end = ctx->time;
1422 	else
1423 		run_end = event->tstamp_stopped;
1424 
1425 	event->total_time_enabled = run_end - event->tstamp_enabled;
1426 
1427 	if (event->state == PERF_EVENT_STATE_INACTIVE)
1428 		run_end = event->tstamp_stopped;
1429 	else
1430 		run_end = perf_event_time(event);
1431 
1432 	event->total_time_running = run_end - event->tstamp_running;
1433 
1434 }
1435 
1436 /*
1437  * Update total_time_enabled and total_time_running for all events in a group.
1438  */
1439 static void update_group_times(struct perf_event *leader)
1440 {
1441 	struct perf_event *event;
1442 
1443 	update_event_times(leader);
1444 	list_for_each_entry(event, &leader->sibling_list, group_entry)
1445 		update_event_times(event);
1446 }
1447 
1448 static struct list_head *
1449 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1450 {
1451 	if (event->attr.pinned)
1452 		return &ctx->pinned_groups;
1453 	else
1454 		return &ctx->flexible_groups;
1455 }
1456 
1457 /*
1458  * Add a event from the lists for its context.
1459  * Must be called with ctx->mutex and ctx->lock held.
1460  */
1461 static void
1462 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1463 {
1464 
1465 	lockdep_assert_held(&ctx->lock);
1466 
1467 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1468 	event->attach_state |= PERF_ATTACH_CONTEXT;
1469 
1470 	/*
1471 	 * If we're a stand alone event or group leader, we go to the context
1472 	 * list, group events are kept attached to the group so that
1473 	 * perf_group_detach can, at all times, locate all siblings.
1474 	 */
1475 	if (event->group_leader == event) {
1476 		struct list_head *list;
1477 
1478 		event->group_caps = event->event_caps;
1479 
1480 		list = ctx_group_list(event, ctx);
1481 		list_add_tail(&event->group_entry, list);
1482 	}
1483 
1484 	list_update_cgroup_event(event, ctx, true);
1485 
1486 	list_add_rcu(&event->event_entry, &ctx->event_list);
1487 	ctx->nr_events++;
1488 	if (event->attr.inherit_stat)
1489 		ctx->nr_stat++;
1490 
1491 	ctx->generation++;
1492 }
1493 
1494 /*
1495  * Initialize event state based on the perf_event_attr::disabled.
1496  */
1497 static inline void perf_event__state_init(struct perf_event *event)
1498 {
1499 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1500 					      PERF_EVENT_STATE_INACTIVE;
1501 }
1502 
1503 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1504 {
1505 	int entry = sizeof(u64); /* value */
1506 	int size = 0;
1507 	int nr = 1;
1508 
1509 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1510 		size += sizeof(u64);
1511 
1512 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1513 		size += sizeof(u64);
1514 
1515 	if (event->attr.read_format & PERF_FORMAT_ID)
1516 		entry += sizeof(u64);
1517 
1518 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1519 		nr += nr_siblings;
1520 		size += sizeof(u64);
1521 	}
1522 
1523 	size += entry * nr;
1524 	event->read_size = size;
1525 }
1526 
1527 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1528 {
1529 	struct perf_sample_data *data;
1530 	u16 size = 0;
1531 
1532 	if (sample_type & PERF_SAMPLE_IP)
1533 		size += sizeof(data->ip);
1534 
1535 	if (sample_type & PERF_SAMPLE_ADDR)
1536 		size += sizeof(data->addr);
1537 
1538 	if (sample_type & PERF_SAMPLE_PERIOD)
1539 		size += sizeof(data->period);
1540 
1541 	if (sample_type & PERF_SAMPLE_WEIGHT)
1542 		size += sizeof(data->weight);
1543 
1544 	if (sample_type & PERF_SAMPLE_READ)
1545 		size += event->read_size;
1546 
1547 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1548 		size += sizeof(data->data_src.val);
1549 
1550 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1551 		size += sizeof(data->txn);
1552 
1553 	event->header_size = size;
1554 }
1555 
1556 /*
1557  * Called at perf_event creation and when events are attached/detached from a
1558  * group.
1559  */
1560 static void perf_event__header_size(struct perf_event *event)
1561 {
1562 	__perf_event_read_size(event,
1563 			       event->group_leader->nr_siblings);
1564 	__perf_event_header_size(event, event->attr.sample_type);
1565 }
1566 
1567 static void perf_event__id_header_size(struct perf_event *event)
1568 {
1569 	struct perf_sample_data *data;
1570 	u64 sample_type = event->attr.sample_type;
1571 	u16 size = 0;
1572 
1573 	if (sample_type & PERF_SAMPLE_TID)
1574 		size += sizeof(data->tid_entry);
1575 
1576 	if (sample_type & PERF_SAMPLE_TIME)
1577 		size += sizeof(data->time);
1578 
1579 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1580 		size += sizeof(data->id);
1581 
1582 	if (sample_type & PERF_SAMPLE_ID)
1583 		size += sizeof(data->id);
1584 
1585 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1586 		size += sizeof(data->stream_id);
1587 
1588 	if (sample_type & PERF_SAMPLE_CPU)
1589 		size += sizeof(data->cpu_entry);
1590 
1591 	event->id_header_size = size;
1592 }
1593 
1594 static bool perf_event_validate_size(struct perf_event *event)
1595 {
1596 	/*
1597 	 * The values computed here will be over-written when we actually
1598 	 * attach the event.
1599 	 */
1600 	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1601 	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1602 	perf_event__id_header_size(event);
1603 
1604 	/*
1605 	 * Sum the lot; should not exceed the 64k limit we have on records.
1606 	 * Conservative limit to allow for callchains and other variable fields.
1607 	 */
1608 	if (event->read_size + event->header_size +
1609 	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1610 		return false;
1611 
1612 	return true;
1613 }
1614 
1615 static void perf_group_attach(struct perf_event *event)
1616 {
1617 	struct perf_event *group_leader = event->group_leader, *pos;
1618 
1619 	/*
1620 	 * We can have double attach due to group movement in perf_event_open.
1621 	 */
1622 	if (event->attach_state & PERF_ATTACH_GROUP)
1623 		return;
1624 
1625 	event->attach_state |= PERF_ATTACH_GROUP;
1626 
1627 	if (group_leader == event)
1628 		return;
1629 
1630 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1631 
1632 	group_leader->group_caps &= event->event_caps;
1633 
1634 	list_add_tail(&event->group_entry, &group_leader->sibling_list);
1635 	group_leader->nr_siblings++;
1636 
1637 	perf_event__header_size(group_leader);
1638 
1639 	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1640 		perf_event__header_size(pos);
1641 }
1642 
1643 /*
1644  * Remove a event from the lists for its context.
1645  * Must be called with ctx->mutex and ctx->lock held.
1646  */
1647 static void
1648 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1649 {
1650 	WARN_ON_ONCE(event->ctx != ctx);
1651 	lockdep_assert_held(&ctx->lock);
1652 
1653 	/*
1654 	 * We can have double detach due to exit/hot-unplug + close.
1655 	 */
1656 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1657 		return;
1658 
1659 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1660 
1661 	list_update_cgroup_event(event, ctx, false);
1662 
1663 	ctx->nr_events--;
1664 	if (event->attr.inherit_stat)
1665 		ctx->nr_stat--;
1666 
1667 	list_del_rcu(&event->event_entry);
1668 
1669 	if (event->group_leader == event)
1670 		list_del_init(&event->group_entry);
1671 
1672 	update_group_times(event);
1673 
1674 	/*
1675 	 * If event was in error state, then keep it
1676 	 * that way, otherwise bogus counts will be
1677 	 * returned on read(). The only way to get out
1678 	 * of error state is by explicit re-enabling
1679 	 * of the event
1680 	 */
1681 	if (event->state > PERF_EVENT_STATE_OFF)
1682 		event->state = PERF_EVENT_STATE_OFF;
1683 
1684 	ctx->generation++;
1685 }
1686 
1687 static void perf_group_detach(struct perf_event *event)
1688 {
1689 	struct perf_event *sibling, *tmp;
1690 	struct list_head *list = NULL;
1691 
1692 	/*
1693 	 * We can have double detach due to exit/hot-unplug + close.
1694 	 */
1695 	if (!(event->attach_state & PERF_ATTACH_GROUP))
1696 		return;
1697 
1698 	event->attach_state &= ~PERF_ATTACH_GROUP;
1699 
1700 	/*
1701 	 * If this is a sibling, remove it from its group.
1702 	 */
1703 	if (event->group_leader != event) {
1704 		list_del_init(&event->group_entry);
1705 		event->group_leader->nr_siblings--;
1706 		goto out;
1707 	}
1708 
1709 	if (!list_empty(&event->group_entry))
1710 		list = &event->group_entry;
1711 
1712 	/*
1713 	 * If this was a group event with sibling events then
1714 	 * upgrade the siblings to singleton events by adding them
1715 	 * to whatever list we are on.
1716 	 */
1717 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1718 		if (list)
1719 			list_move_tail(&sibling->group_entry, list);
1720 		sibling->group_leader = sibling;
1721 
1722 		/* Inherit group flags from the previous leader */
1723 		sibling->group_caps = event->group_caps;
1724 
1725 		WARN_ON_ONCE(sibling->ctx != event->ctx);
1726 	}
1727 
1728 out:
1729 	perf_event__header_size(event->group_leader);
1730 
1731 	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1732 		perf_event__header_size(tmp);
1733 }
1734 
1735 static bool is_orphaned_event(struct perf_event *event)
1736 {
1737 	return event->state == PERF_EVENT_STATE_DEAD;
1738 }
1739 
1740 static inline int __pmu_filter_match(struct perf_event *event)
1741 {
1742 	struct pmu *pmu = event->pmu;
1743 	return pmu->filter_match ? pmu->filter_match(event) : 1;
1744 }
1745 
1746 /*
1747  * Check whether we should attempt to schedule an event group based on
1748  * PMU-specific filtering. An event group can consist of HW and SW events,
1749  * potentially with a SW leader, so we must check all the filters, to
1750  * determine whether a group is schedulable:
1751  */
1752 static inline int pmu_filter_match(struct perf_event *event)
1753 {
1754 	struct perf_event *child;
1755 
1756 	if (!__pmu_filter_match(event))
1757 		return 0;
1758 
1759 	list_for_each_entry(child, &event->sibling_list, group_entry) {
1760 		if (!__pmu_filter_match(child))
1761 			return 0;
1762 	}
1763 
1764 	return 1;
1765 }
1766 
1767 static inline int
1768 event_filter_match(struct perf_event *event)
1769 {
1770 	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1771 	       perf_cgroup_match(event) && pmu_filter_match(event);
1772 }
1773 
1774 static void
1775 event_sched_out(struct perf_event *event,
1776 		  struct perf_cpu_context *cpuctx,
1777 		  struct perf_event_context *ctx)
1778 {
1779 	u64 tstamp = perf_event_time(event);
1780 	u64 delta;
1781 
1782 	WARN_ON_ONCE(event->ctx != ctx);
1783 	lockdep_assert_held(&ctx->lock);
1784 
1785 	/*
1786 	 * An event which could not be activated because of
1787 	 * filter mismatch still needs to have its timings
1788 	 * maintained, otherwise bogus information is return
1789 	 * via read() for time_enabled, time_running:
1790 	 */
1791 	if (event->state == PERF_EVENT_STATE_INACTIVE &&
1792 	    !event_filter_match(event)) {
1793 		delta = tstamp - event->tstamp_stopped;
1794 		event->tstamp_running += delta;
1795 		event->tstamp_stopped = tstamp;
1796 	}
1797 
1798 	if (event->state != PERF_EVENT_STATE_ACTIVE)
1799 		return;
1800 
1801 	perf_pmu_disable(event->pmu);
1802 
1803 	event->tstamp_stopped = tstamp;
1804 	event->pmu->del(event, 0);
1805 	event->oncpu = -1;
1806 	event->state = PERF_EVENT_STATE_INACTIVE;
1807 	if (event->pending_disable) {
1808 		event->pending_disable = 0;
1809 		event->state = PERF_EVENT_STATE_OFF;
1810 	}
1811 
1812 	if (!is_software_event(event))
1813 		cpuctx->active_oncpu--;
1814 	if (!--ctx->nr_active)
1815 		perf_event_ctx_deactivate(ctx);
1816 	if (event->attr.freq && event->attr.sample_freq)
1817 		ctx->nr_freq--;
1818 	if (event->attr.exclusive || !cpuctx->active_oncpu)
1819 		cpuctx->exclusive = 0;
1820 
1821 	perf_pmu_enable(event->pmu);
1822 }
1823 
1824 static void
1825 group_sched_out(struct perf_event *group_event,
1826 		struct perf_cpu_context *cpuctx,
1827 		struct perf_event_context *ctx)
1828 {
1829 	struct perf_event *event;
1830 	int state = group_event->state;
1831 
1832 	perf_pmu_disable(ctx->pmu);
1833 
1834 	event_sched_out(group_event, cpuctx, ctx);
1835 
1836 	/*
1837 	 * Schedule out siblings (if any):
1838 	 */
1839 	list_for_each_entry(event, &group_event->sibling_list, group_entry)
1840 		event_sched_out(event, cpuctx, ctx);
1841 
1842 	perf_pmu_enable(ctx->pmu);
1843 
1844 	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1845 		cpuctx->exclusive = 0;
1846 }
1847 
1848 #define DETACH_GROUP	0x01UL
1849 
1850 /*
1851  * Cross CPU call to remove a performance event
1852  *
1853  * We disable the event on the hardware level first. After that we
1854  * remove it from the context list.
1855  */
1856 static void
1857 __perf_remove_from_context(struct perf_event *event,
1858 			   struct perf_cpu_context *cpuctx,
1859 			   struct perf_event_context *ctx,
1860 			   void *info)
1861 {
1862 	unsigned long flags = (unsigned long)info;
1863 
1864 	event_sched_out(event, cpuctx, ctx);
1865 	if (flags & DETACH_GROUP)
1866 		perf_group_detach(event);
1867 	list_del_event(event, ctx);
1868 
1869 	if (!ctx->nr_events && ctx->is_active) {
1870 		ctx->is_active = 0;
1871 		if (ctx->task) {
1872 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1873 			cpuctx->task_ctx = NULL;
1874 		}
1875 	}
1876 }
1877 
1878 /*
1879  * Remove the event from a task's (or a CPU's) list of events.
1880  *
1881  * If event->ctx is a cloned context, callers must make sure that
1882  * every task struct that event->ctx->task could possibly point to
1883  * remains valid.  This is OK when called from perf_release since
1884  * that only calls us on the top-level context, which can't be a clone.
1885  * When called from perf_event_exit_task, it's OK because the
1886  * context has been detached from its task.
1887  */
1888 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
1889 {
1890 	lockdep_assert_held(&event->ctx->mutex);
1891 
1892 	event_function_call(event, __perf_remove_from_context, (void *)flags);
1893 }
1894 
1895 /*
1896  * Cross CPU call to disable a performance event
1897  */
1898 static void __perf_event_disable(struct perf_event *event,
1899 				 struct perf_cpu_context *cpuctx,
1900 				 struct perf_event_context *ctx,
1901 				 void *info)
1902 {
1903 	if (event->state < PERF_EVENT_STATE_INACTIVE)
1904 		return;
1905 
1906 	update_context_time(ctx);
1907 	update_cgrp_time_from_event(event);
1908 	update_group_times(event);
1909 	if (event == event->group_leader)
1910 		group_sched_out(event, cpuctx, ctx);
1911 	else
1912 		event_sched_out(event, cpuctx, ctx);
1913 	event->state = PERF_EVENT_STATE_OFF;
1914 }
1915 
1916 /*
1917  * Disable a event.
1918  *
1919  * If event->ctx is a cloned context, callers must make sure that
1920  * every task struct that event->ctx->task could possibly point to
1921  * remains valid.  This condition is satisifed when called through
1922  * perf_event_for_each_child or perf_event_for_each because they
1923  * hold the top-level event's child_mutex, so any descendant that
1924  * goes to exit will block in perf_event_exit_event().
1925  *
1926  * When called from perf_pending_event it's OK because event->ctx
1927  * is the current context on this CPU and preemption is disabled,
1928  * hence we can't get into perf_event_task_sched_out for this context.
1929  */
1930 static void _perf_event_disable(struct perf_event *event)
1931 {
1932 	struct perf_event_context *ctx = event->ctx;
1933 
1934 	raw_spin_lock_irq(&ctx->lock);
1935 	if (event->state <= PERF_EVENT_STATE_OFF) {
1936 		raw_spin_unlock_irq(&ctx->lock);
1937 		return;
1938 	}
1939 	raw_spin_unlock_irq(&ctx->lock);
1940 
1941 	event_function_call(event, __perf_event_disable, NULL);
1942 }
1943 
1944 void perf_event_disable_local(struct perf_event *event)
1945 {
1946 	event_function_local(event, __perf_event_disable, NULL);
1947 }
1948 
1949 /*
1950  * Strictly speaking kernel users cannot create groups and therefore this
1951  * interface does not need the perf_event_ctx_lock() magic.
1952  */
1953 void perf_event_disable(struct perf_event *event)
1954 {
1955 	struct perf_event_context *ctx;
1956 
1957 	ctx = perf_event_ctx_lock(event);
1958 	_perf_event_disable(event);
1959 	perf_event_ctx_unlock(event, ctx);
1960 }
1961 EXPORT_SYMBOL_GPL(perf_event_disable);
1962 
1963 static void perf_set_shadow_time(struct perf_event *event,
1964 				 struct perf_event_context *ctx,
1965 				 u64 tstamp)
1966 {
1967 	/*
1968 	 * use the correct time source for the time snapshot
1969 	 *
1970 	 * We could get by without this by leveraging the
1971 	 * fact that to get to this function, the caller
1972 	 * has most likely already called update_context_time()
1973 	 * and update_cgrp_time_xx() and thus both timestamp
1974 	 * are identical (or very close). Given that tstamp is,
1975 	 * already adjusted for cgroup, we could say that:
1976 	 *    tstamp - ctx->timestamp
1977 	 * is equivalent to
1978 	 *    tstamp - cgrp->timestamp.
1979 	 *
1980 	 * Then, in perf_output_read(), the calculation would
1981 	 * work with no changes because:
1982 	 * - event is guaranteed scheduled in
1983 	 * - no scheduled out in between
1984 	 * - thus the timestamp would be the same
1985 	 *
1986 	 * But this is a bit hairy.
1987 	 *
1988 	 * So instead, we have an explicit cgroup call to remain
1989 	 * within the time time source all along. We believe it
1990 	 * is cleaner and simpler to understand.
1991 	 */
1992 	if (is_cgroup_event(event))
1993 		perf_cgroup_set_shadow_time(event, tstamp);
1994 	else
1995 		event->shadow_ctx_time = tstamp - ctx->timestamp;
1996 }
1997 
1998 #define MAX_INTERRUPTS (~0ULL)
1999 
2000 static void perf_log_throttle(struct perf_event *event, int enable);
2001 static void perf_log_itrace_start(struct perf_event *event);
2002 
2003 static int
2004 event_sched_in(struct perf_event *event,
2005 		 struct perf_cpu_context *cpuctx,
2006 		 struct perf_event_context *ctx)
2007 {
2008 	u64 tstamp = perf_event_time(event);
2009 	int ret = 0;
2010 
2011 	lockdep_assert_held(&ctx->lock);
2012 
2013 	if (event->state <= PERF_EVENT_STATE_OFF)
2014 		return 0;
2015 
2016 	WRITE_ONCE(event->oncpu, smp_processor_id());
2017 	/*
2018 	 * Order event::oncpu write to happen before the ACTIVE state
2019 	 * is visible.
2020 	 */
2021 	smp_wmb();
2022 	WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
2023 
2024 	/*
2025 	 * Unthrottle events, since we scheduled we might have missed several
2026 	 * ticks already, also for a heavily scheduling task there is little
2027 	 * guarantee it'll get a tick in a timely manner.
2028 	 */
2029 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2030 		perf_log_throttle(event, 1);
2031 		event->hw.interrupts = 0;
2032 	}
2033 
2034 	/*
2035 	 * The new state must be visible before we turn it on in the hardware:
2036 	 */
2037 	smp_wmb();
2038 
2039 	perf_pmu_disable(event->pmu);
2040 
2041 	perf_set_shadow_time(event, ctx, tstamp);
2042 
2043 	perf_log_itrace_start(event);
2044 
2045 	if (event->pmu->add(event, PERF_EF_START)) {
2046 		event->state = PERF_EVENT_STATE_INACTIVE;
2047 		event->oncpu = -1;
2048 		ret = -EAGAIN;
2049 		goto out;
2050 	}
2051 
2052 	event->tstamp_running += tstamp - event->tstamp_stopped;
2053 
2054 	if (!is_software_event(event))
2055 		cpuctx->active_oncpu++;
2056 	if (!ctx->nr_active++)
2057 		perf_event_ctx_activate(ctx);
2058 	if (event->attr.freq && event->attr.sample_freq)
2059 		ctx->nr_freq++;
2060 
2061 	if (event->attr.exclusive)
2062 		cpuctx->exclusive = 1;
2063 
2064 out:
2065 	perf_pmu_enable(event->pmu);
2066 
2067 	return ret;
2068 }
2069 
2070 static int
2071 group_sched_in(struct perf_event *group_event,
2072 	       struct perf_cpu_context *cpuctx,
2073 	       struct perf_event_context *ctx)
2074 {
2075 	struct perf_event *event, *partial_group = NULL;
2076 	struct pmu *pmu = ctx->pmu;
2077 	u64 now = ctx->time;
2078 	bool simulate = false;
2079 
2080 	if (group_event->state == PERF_EVENT_STATE_OFF)
2081 		return 0;
2082 
2083 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2084 
2085 	if (event_sched_in(group_event, cpuctx, ctx)) {
2086 		pmu->cancel_txn(pmu);
2087 		perf_mux_hrtimer_restart(cpuctx);
2088 		return -EAGAIN;
2089 	}
2090 
2091 	/*
2092 	 * Schedule in siblings as one group (if any):
2093 	 */
2094 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2095 		if (event_sched_in(event, cpuctx, ctx)) {
2096 			partial_group = event;
2097 			goto group_error;
2098 		}
2099 	}
2100 
2101 	if (!pmu->commit_txn(pmu))
2102 		return 0;
2103 
2104 group_error:
2105 	/*
2106 	 * Groups can be scheduled in as one unit only, so undo any
2107 	 * partial group before returning:
2108 	 * The events up to the failed event are scheduled out normally,
2109 	 * tstamp_stopped will be updated.
2110 	 *
2111 	 * The failed events and the remaining siblings need to have
2112 	 * their timings updated as if they had gone thru event_sched_in()
2113 	 * and event_sched_out(). This is required to get consistent timings
2114 	 * across the group. This also takes care of the case where the group
2115 	 * could never be scheduled by ensuring tstamp_stopped is set to mark
2116 	 * the time the event was actually stopped, such that time delta
2117 	 * calculation in update_event_times() is correct.
2118 	 */
2119 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2120 		if (event == partial_group)
2121 			simulate = true;
2122 
2123 		if (simulate) {
2124 			event->tstamp_running += now - event->tstamp_stopped;
2125 			event->tstamp_stopped = now;
2126 		} else {
2127 			event_sched_out(event, cpuctx, ctx);
2128 		}
2129 	}
2130 	event_sched_out(group_event, cpuctx, ctx);
2131 
2132 	pmu->cancel_txn(pmu);
2133 
2134 	perf_mux_hrtimer_restart(cpuctx);
2135 
2136 	return -EAGAIN;
2137 }
2138 
2139 /*
2140  * Work out whether we can put this event group on the CPU now.
2141  */
2142 static int group_can_go_on(struct perf_event *event,
2143 			   struct perf_cpu_context *cpuctx,
2144 			   int can_add_hw)
2145 {
2146 	/*
2147 	 * Groups consisting entirely of software events can always go on.
2148 	 */
2149 	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2150 		return 1;
2151 	/*
2152 	 * If an exclusive group is already on, no other hardware
2153 	 * events can go on.
2154 	 */
2155 	if (cpuctx->exclusive)
2156 		return 0;
2157 	/*
2158 	 * If this group is exclusive and there are already
2159 	 * events on the CPU, it can't go on.
2160 	 */
2161 	if (event->attr.exclusive && cpuctx->active_oncpu)
2162 		return 0;
2163 	/*
2164 	 * Otherwise, try to add it if all previous groups were able
2165 	 * to go on.
2166 	 */
2167 	return can_add_hw;
2168 }
2169 
2170 static void add_event_to_ctx(struct perf_event *event,
2171 			       struct perf_event_context *ctx)
2172 {
2173 	u64 tstamp = perf_event_time(event);
2174 
2175 	list_add_event(event, ctx);
2176 	perf_group_attach(event);
2177 	event->tstamp_enabled = tstamp;
2178 	event->tstamp_running = tstamp;
2179 	event->tstamp_stopped = tstamp;
2180 }
2181 
2182 static void ctx_sched_out(struct perf_event_context *ctx,
2183 			  struct perf_cpu_context *cpuctx,
2184 			  enum event_type_t event_type);
2185 static void
2186 ctx_sched_in(struct perf_event_context *ctx,
2187 	     struct perf_cpu_context *cpuctx,
2188 	     enum event_type_t event_type,
2189 	     struct task_struct *task);
2190 
2191 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2192 			       struct perf_event_context *ctx)
2193 {
2194 	if (!cpuctx->task_ctx)
2195 		return;
2196 
2197 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2198 		return;
2199 
2200 	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2201 }
2202 
2203 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2204 				struct perf_event_context *ctx,
2205 				struct task_struct *task)
2206 {
2207 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2208 	if (ctx)
2209 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2210 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2211 	if (ctx)
2212 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2213 }
2214 
2215 static void ctx_resched(struct perf_cpu_context *cpuctx,
2216 			struct perf_event_context *task_ctx)
2217 {
2218 	perf_pmu_disable(cpuctx->ctx.pmu);
2219 	if (task_ctx)
2220 		task_ctx_sched_out(cpuctx, task_ctx);
2221 	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2222 	perf_event_sched_in(cpuctx, task_ctx, current);
2223 	perf_pmu_enable(cpuctx->ctx.pmu);
2224 }
2225 
2226 /*
2227  * Cross CPU call to install and enable a performance event
2228  *
2229  * Very similar to remote_function() + event_function() but cannot assume that
2230  * things like ctx->is_active and cpuctx->task_ctx are set.
2231  */
2232 static int  __perf_install_in_context(void *info)
2233 {
2234 	struct perf_event *event = info;
2235 	struct perf_event_context *ctx = event->ctx;
2236 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2237 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2238 	bool activate = true;
2239 	int ret = 0;
2240 
2241 	raw_spin_lock(&cpuctx->ctx.lock);
2242 	if (ctx->task) {
2243 		raw_spin_lock(&ctx->lock);
2244 		task_ctx = ctx;
2245 
2246 		/* If we're on the wrong CPU, try again */
2247 		if (task_cpu(ctx->task) != smp_processor_id()) {
2248 			ret = -ESRCH;
2249 			goto unlock;
2250 		}
2251 
2252 		/*
2253 		 * If we're on the right CPU, see if the task we target is
2254 		 * current, if not we don't have to activate the ctx, a future
2255 		 * context switch will do that for us.
2256 		 */
2257 		if (ctx->task != current)
2258 			activate = false;
2259 		else
2260 			WARN_ON_ONCE(cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2261 
2262 	} else if (task_ctx) {
2263 		raw_spin_lock(&task_ctx->lock);
2264 	}
2265 
2266 	if (activate) {
2267 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2268 		add_event_to_ctx(event, ctx);
2269 		ctx_resched(cpuctx, task_ctx);
2270 	} else {
2271 		add_event_to_ctx(event, ctx);
2272 	}
2273 
2274 unlock:
2275 	perf_ctx_unlock(cpuctx, task_ctx);
2276 
2277 	return ret;
2278 }
2279 
2280 /*
2281  * Attach a performance event to a context.
2282  *
2283  * Very similar to event_function_call, see comment there.
2284  */
2285 static void
2286 perf_install_in_context(struct perf_event_context *ctx,
2287 			struct perf_event *event,
2288 			int cpu)
2289 {
2290 	struct task_struct *task = READ_ONCE(ctx->task);
2291 
2292 	lockdep_assert_held(&ctx->mutex);
2293 
2294 	if (event->cpu != -1)
2295 		event->cpu = cpu;
2296 
2297 	/*
2298 	 * Ensures that if we can observe event->ctx, both the event and ctx
2299 	 * will be 'complete'. See perf_iterate_sb_cpu().
2300 	 */
2301 	smp_store_release(&event->ctx, ctx);
2302 
2303 	if (!task) {
2304 		cpu_function_call(cpu, __perf_install_in_context, event);
2305 		return;
2306 	}
2307 
2308 	/*
2309 	 * Should not happen, we validate the ctx is still alive before calling.
2310 	 */
2311 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2312 		return;
2313 
2314 	/*
2315 	 * Installing events is tricky because we cannot rely on ctx->is_active
2316 	 * to be set in case this is the nr_events 0 -> 1 transition.
2317 	 */
2318 again:
2319 	/*
2320 	 * Cannot use task_function_call() because we need to run on the task's
2321 	 * CPU regardless of whether its current or not.
2322 	 */
2323 	if (!cpu_function_call(task_cpu(task), __perf_install_in_context, event))
2324 		return;
2325 
2326 	raw_spin_lock_irq(&ctx->lock);
2327 	task = ctx->task;
2328 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2329 		/*
2330 		 * Cannot happen because we already checked above (which also
2331 		 * cannot happen), and we hold ctx->mutex, which serializes us
2332 		 * against perf_event_exit_task_context().
2333 		 */
2334 		raw_spin_unlock_irq(&ctx->lock);
2335 		return;
2336 	}
2337 	raw_spin_unlock_irq(&ctx->lock);
2338 	/*
2339 	 * Since !ctx->is_active doesn't mean anything, we must IPI
2340 	 * unconditionally.
2341 	 */
2342 	goto again;
2343 }
2344 
2345 /*
2346  * Put a event into inactive state and update time fields.
2347  * Enabling the leader of a group effectively enables all
2348  * the group members that aren't explicitly disabled, so we
2349  * have to update their ->tstamp_enabled also.
2350  * Note: this works for group members as well as group leaders
2351  * since the non-leader members' sibling_lists will be empty.
2352  */
2353 static void __perf_event_mark_enabled(struct perf_event *event)
2354 {
2355 	struct perf_event *sub;
2356 	u64 tstamp = perf_event_time(event);
2357 
2358 	event->state = PERF_EVENT_STATE_INACTIVE;
2359 	event->tstamp_enabled = tstamp - event->total_time_enabled;
2360 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2361 		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2362 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2363 	}
2364 }
2365 
2366 /*
2367  * Cross CPU call to enable a performance event
2368  */
2369 static void __perf_event_enable(struct perf_event *event,
2370 				struct perf_cpu_context *cpuctx,
2371 				struct perf_event_context *ctx,
2372 				void *info)
2373 {
2374 	struct perf_event *leader = event->group_leader;
2375 	struct perf_event_context *task_ctx;
2376 
2377 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2378 	    event->state <= PERF_EVENT_STATE_ERROR)
2379 		return;
2380 
2381 	if (ctx->is_active)
2382 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2383 
2384 	__perf_event_mark_enabled(event);
2385 
2386 	if (!ctx->is_active)
2387 		return;
2388 
2389 	if (!event_filter_match(event)) {
2390 		if (is_cgroup_event(event))
2391 			perf_cgroup_defer_enabled(event);
2392 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2393 		return;
2394 	}
2395 
2396 	/*
2397 	 * If the event is in a group and isn't the group leader,
2398 	 * then don't put it on unless the group is on.
2399 	 */
2400 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2401 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2402 		return;
2403 	}
2404 
2405 	task_ctx = cpuctx->task_ctx;
2406 	if (ctx->task)
2407 		WARN_ON_ONCE(task_ctx != ctx);
2408 
2409 	ctx_resched(cpuctx, task_ctx);
2410 }
2411 
2412 /*
2413  * Enable a event.
2414  *
2415  * If event->ctx is a cloned context, callers must make sure that
2416  * every task struct that event->ctx->task could possibly point to
2417  * remains valid.  This condition is satisfied when called through
2418  * perf_event_for_each_child or perf_event_for_each as described
2419  * for perf_event_disable.
2420  */
2421 static void _perf_event_enable(struct perf_event *event)
2422 {
2423 	struct perf_event_context *ctx = event->ctx;
2424 
2425 	raw_spin_lock_irq(&ctx->lock);
2426 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2427 	    event->state <  PERF_EVENT_STATE_ERROR) {
2428 		raw_spin_unlock_irq(&ctx->lock);
2429 		return;
2430 	}
2431 
2432 	/*
2433 	 * If the event is in error state, clear that first.
2434 	 *
2435 	 * That way, if we see the event in error state below, we know that it
2436 	 * has gone back into error state, as distinct from the task having
2437 	 * been scheduled away before the cross-call arrived.
2438 	 */
2439 	if (event->state == PERF_EVENT_STATE_ERROR)
2440 		event->state = PERF_EVENT_STATE_OFF;
2441 	raw_spin_unlock_irq(&ctx->lock);
2442 
2443 	event_function_call(event, __perf_event_enable, NULL);
2444 }
2445 
2446 /*
2447  * See perf_event_disable();
2448  */
2449 void perf_event_enable(struct perf_event *event)
2450 {
2451 	struct perf_event_context *ctx;
2452 
2453 	ctx = perf_event_ctx_lock(event);
2454 	_perf_event_enable(event);
2455 	perf_event_ctx_unlock(event, ctx);
2456 }
2457 EXPORT_SYMBOL_GPL(perf_event_enable);
2458 
2459 struct stop_event_data {
2460 	struct perf_event	*event;
2461 	unsigned int		restart;
2462 };
2463 
2464 static int __perf_event_stop(void *info)
2465 {
2466 	struct stop_event_data *sd = info;
2467 	struct perf_event *event = sd->event;
2468 
2469 	/* if it's already INACTIVE, do nothing */
2470 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2471 		return 0;
2472 
2473 	/* matches smp_wmb() in event_sched_in() */
2474 	smp_rmb();
2475 
2476 	/*
2477 	 * There is a window with interrupts enabled before we get here,
2478 	 * so we need to check again lest we try to stop another CPU's event.
2479 	 */
2480 	if (READ_ONCE(event->oncpu) != smp_processor_id())
2481 		return -EAGAIN;
2482 
2483 	event->pmu->stop(event, PERF_EF_UPDATE);
2484 
2485 	/*
2486 	 * May race with the actual stop (through perf_pmu_output_stop()),
2487 	 * but it is only used for events with AUX ring buffer, and such
2488 	 * events will refuse to restart because of rb::aux_mmap_count==0,
2489 	 * see comments in perf_aux_output_begin().
2490 	 *
2491 	 * Since this is happening on a event-local CPU, no trace is lost
2492 	 * while restarting.
2493 	 */
2494 	if (sd->restart)
2495 		event->pmu->start(event, 0);
2496 
2497 	return 0;
2498 }
2499 
2500 static int perf_event_stop(struct perf_event *event, int restart)
2501 {
2502 	struct stop_event_data sd = {
2503 		.event		= event,
2504 		.restart	= restart,
2505 	};
2506 	int ret = 0;
2507 
2508 	do {
2509 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2510 			return 0;
2511 
2512 		/* matches smp_wmb() in event_sched_in() */
2513 		smp_rmb();
2514 
2515 		/*
2516 		 * We only want to restart ACTIVE events, so if the event goes
2517 		 * inactive here (event->oncpu==-1), there's nothing more to do;
2518 		 * fall through with ret==-ENXIO.
2519 		 */
2520 		ret = cpu_function_call(READ_ONCE(event->oncpu),
2521 					__perf_event_stop, &sd);
2522 	} while (ret == -EAGAIN);
2523 
2524 	return ret;
2525 }
2526 
2527 /*
2528  * In order to contain the amount of racy and tricky in the address filter
2529  * configuration management, it is a two part process:
2530  *
2531  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2532  *      we update the addresses of corresponding vmas in
2533  *	event::addr_filters_offs array and bump the event::addr_filters_gen;
2534  * (p2) when an event is scheduled in (pmu::add), it calls
2535  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2536  *      if the generation has changed since the previous call.
2537  *
2538  * If (p1) happens while the event is active, we restart it to force (p2).
2539  *
2540  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2541  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2542  *     ioctl;
2543  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2544  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2545  *     for reading;
2546  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2547  *     of exec.
2548  */
2549 void perf_event_addr_filters_sync(struct perf_event *event)
2550 {
2551 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2552 
2553 	if (!has_addr_filter(event))
2554 		return;
2555 
2556 	raw_spin_lock(&ifh->lock);
2557 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2558 		event->pmu->addr_filters_sync(event);
2559 		event->hw.addr_filters_gen = event->addr_filters_gen;
2560 	}
2561 	raw_spin_unlock(&ifh->lock);
2562 }
2563 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2564 
2565 static int _perf_event_refresh(struct perf_event *event, int refresh)
2566 {
2567 	/*
2568 	 * not supported on inherited events
2569 	 */
2570 	if (event->attr.inherit || !is_sampling_event(event))
2571 		return -EINVAL;
2572 
2573 	atomic_add(refresh, &event->event_limit);
2574 	_perf_event_enable(event);
2575 
2576 	return 0;
2577 }
2578 
2579 /*
2580  * See perf_event_disable()
2581  */
2582 int perf_event_refresh(struct perf_event *event, int refresh)
2583 {
2584 	struct perf_event_context *ctx;
2585 	int ret;
2586 
2587 	ctx = perf_event_ctx_lock(event);
2588 	ret = _perf_event_refresh(event, refresh);
2589 	perf_event_ctx_unlock(event, ctx);
2590 
2591 	return ret;
2592 }
2593 EXPORT_SYMBOL_GPL(perf_event_refresh);
2594 
2595 static void ctx_sched_out(struct perf_event_context *ctx,
2596 			  struct perf_cpu_context *cpuctx,
2597 			  enum event_type_t event_type)
2598 {
2599 	int is_active = ctx->is_active;
2600 	struct perf_event *event;
2601 
2602 	lockdep_assert_held(&ctx->lock);
2603 
2604 	if (likely(!ctx->nr_events)) {
2605 		/*
2606 		 * See __perf_remove_from_context().
2607 		 */
2608 		WARN_ON_ONCE(ctx->is_active);
2609 		if (ctx->task)
2610 			WARN_ON_ONCE(cpuctx->task_ctx);
2611 		return;
2612 	}
2613 
2614 	ctx->is_active &= ~event_type;
2615 	if (!(ctx->is_active & EVENT_ALL))
2616 		ctx->is_active = 0;
2617 
2618 	if (ctx->task) {
2619 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2620 		if (!ctx->is_active)
2621 			cpuctx->task_ctx = NULL;
2622 	}
2623 
2624 	/*
2625 	 * Always update time if it was set; not only when it changes.
2626 	 * Otherwise we can 'forget' to update time for any but the last
2627 	 * context we sched out. For example:
2628 	 *
2629 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2630 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
2631 	 *
2632 	 * would only update time for the pinned events.
2633 	 */
2634 	if (is_active & EVENT_TIME) {
2635 		/* update (and stop) ctx time */
2636 		update_context_time(ctx);
2637 		update_cgrp_time_from_cpuctx(cpuctx);
2638 	}
2639 
2640 	is_active ^= ctx->is_active; /* changed bits */
2641 
2642 	if (!ctx->nr_active || !(is_active & EVENT_ALL))
2643 		return;
2644 
2645 	perf_pmu_disable(ctx->pmu);
2646 	if (is_active & EVENT_PINNED) {
2647 		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2648 			group_sched_out(event, cpuctx, ctx);
2649 	}
2650 
2651 	if (is_active & EVENT_FLEXIBLE) {
2652 		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2653 			group_sched_out(event, cpuctx, ctx);
2654 	}
2655 	perf_pmu_enable(ctx->pmu);
2656 }
2657 
2658 /*
2659  * Test whether two contexts are equivalent, i.e. whether they have both been
2660  * cloned from the same version of the same context.
2661  *
2662  * Equivalence is measured using a generation number in the context that is
2663  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2664  * and list_del_event().
2665  */
2666 static int context_equiv(struct perf_event_context *ctx1,
2667 			 struct perf_event_context *ctx2)
2668 {
2669 	lockdep_assert_held(&ctx1->lock);
2670 	lockdep_assert_held(&ctx2->lock);
2671 
2672 	/* Pinning disables the swap optimization */
2673 	if (ctx1->pin_count || ctx2->pin_count)
2674 		return 0;
2675 
2676 	/* If ctx1 is the parent of ctx2 */
2677 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2678 		return 1;
2679 
2680 	/* If ctx2 is the parent of ctx1 */
2681 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2682 		return 1;
2683 
2684 	/*
2685 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
2686 	 * hierarchy, see perf_event_init_context().
2687 	 */
2688 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2689 			ctx1->parent_gen == ctx2->parent_gen)
2690 		return 1;
2691 
2692 	/* Unmatched */
2693 	return 0;
2694 }
2695 
2696 static void __perf_event_sync_stat(struct perf_event *event,
2697 				     struct perf_event *next_event)
2698 {
2699 	u64 value;
2700 
2701 	if (!event->attr.inherit_stat)
2702 		return;
2703 
2704 	/*
2705 	 * Update the event value, we cannot use perf_event_read()
2706 	 * because we're in the middle of a context switch and have IRQs
2707 	 * disabled, which upsets smp_call_function_single(), however
2708 	 * we know the event must be on the current CPU, therefore we
2709 	 * don't need to use it.
2710 	 */
2711 	switch (event->state) {
2712 	case PERF_EVENT_STATE_ACTIVE:
2713 		event->pmu->read(event);
2714 		/* fall-through */
2715 
2716 	case PERF_EVENT_STATE_INACTIVE:
2717 		update_event_times(event);
2718 		break;
2719 
2720 	default:
2721 		break;
2722 	}
2723 
2724 	/*
2725 	 * In order to keep per-task stats reliable we need to flip the event
2726 	 * values when we flip the contexts.
2727 	 */
2728 	value = local64_read(&next_event->count);
2729 	value = local64_xchg(&event->count, value);
2730 	local64_set(&next_event->count, value);
2731 
2732 	swap(event->total_time_enabled, next_event->total_time_enabled);
2733 	swap(event->total_time_running, next_event->total_time_running);
2734 
2735 	/*
2736 	 * Since we swizzled the values, update the user visible data too.
2737 	 */
2738 	perf_event_update_userpage(event);
2739 	perf_event_update_userpage(next_event);
2740 }
2741 
2742 static void perf_event_sync_stat(struct perf_event_context *ctx,
2743 				   struct perf_event_context *next_ctx)
2744 {
2745 	struct perf_event *event, *next_event;
2746 
2747 	if (!ctx->nr_stat)
2748 		return;
2749 
2750 	update_context_time(ctx);
2751 
2752 	event = list_first_entry(&ctx->event_list,
2753 				   struct perf_event, event_entry);
2754 
2755 	next_event = list_first_entry(&next_ctx->event_list,
2756 					struct perf_event, event_entry);
2757 
2758 	while (&event->event_entry != &ctx->event_list &&
2759 	       &next_event->event_entry != &next_ctx->event_list) {
2760 
2761 		__perf_event_sync_stat(event, next_event);
2762 
2763 		event = list_next_entry(event, event_entry);
2764 		next_event = list_next_entry(next_event, event_entry);
2765 	}
2766 }
2767 
2768 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2769 					 struct task_struct *next)
2770 {
2771 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2772 	struct perf_event_context *next_ctx;
2773 	struct perf_event_context *parent, *next_parent;
2774 	struct perf_cpu_context *cpuctx;
2775 	int do_switch = 1;
2776 
2777 	if (likely(!ctx))
2778 		return;
2779 
2780 	cpuctx = __get_cpu_context(ctx);
2781 	if (!cpuctx->task_ctx)
2782 		return;
2783 
2784 	rcu_read_lock();
2785 	next_ctx = next->perf_event_ctxp[ctxn];
2786 	if (!next_ctx)
2787 		goto unlock;
2788 
2789 	parent = rcu_dereference(ctx->parent_ctx);
2790 	next_parent = rcu_dereference(next_ctx->parent_ctx);
2791 
2792 	/* If neither context have a parent context; they cannot be clones. */
2793 	if (!parent && !next_parent)
2794 		goto unlock;
2795 
2796 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2797 		/*
2798 		 * Looks like the two contexts are clones, so we might be
2799 		 * able to optimize the context switch.  We lock both
2800 		 * contexts and check that they are clones under the
2801 		 * lock (including re-checking that neither has been
2802 		 * uncloned in the meantime).  It doesn't matter which
2803 		 * order we take the locks because no other cpu could
2804 		 * be trying to lock both of these tasks.
2805 		 */
2806 		raw_spin_lock(&ctx->lock);
2807 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2808 		if (context_equiv(ctx, next_ctx)) {
2809 			WRITE_ONCE(ctx->task, next);
2810 			WRITE_ONCE(next_ctx->task, task);
2811 
2812 			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2813 
2814 			/*
2815 			 * RCU_INIT_POINTER here is safe because we've not
2816 			 * modified the ctx and the above modification of
2817 			 * ctx->task and ctx->task_ctx_data are immaterial
2818 			 * since those values are always verified under
2819 			 * ctx->lock which we're now holding.
2820 			 */
2821 			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2822 			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2823 
2824 			do_switch = 0;
2825 
2826 			perf_event_sync_stat(ctx, next_ctx);
2827 		}
2828 		raw_spin_unlock(&next_ctx->lock);
2829 		raw_spin_unlock(&ctx->lock);
2830 	}
2831 unlock:
2832 	rcu_read_unlock();
2833 
2834 	if (do_switch) {
2835 		raw_spin_lock(&ctx->lock);
2836 		task_ctx_sched_out(cpuctx, ctx);
2837 		raw_spin_unlock(&ctx->lock);
2838 	}
2839 }
2840 
2841 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
2842 
2843 void perf_sched_cb_dec(struct pmu *pmu)
2844 {
2845 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2846 
2847 	this_cpu_dec(perf_sched_cb_usages);
2848 
2849 	if (!--cpuctx->sched_cb_usage)
2850 		list_del(&cpuctx->sched_cb_entry);
2851 }
2852 
2853 
2854 void perf_sched_cb_inc(struct pmu *pmu)
2855 {
2856 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2857 
2858 	if (!cpuctx->sched_cb_usage++)
2859 		list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
2860 
2861 	this_cpu_inc(perf_sched_cb_usages);
2862 }
2863 
2864 /*
2865  * This function provides the context switch callback to the lower code
2866  * layer. It is invoked ONLY when the context switch callback is enabled.
2867  *
2868  * This callback is relevant even to per-cpu events; for example multi event
2869  * PEBS requires this to provide PID/TID information. This requires we flush
2870  * all queued PEBS records before we context switch to a new task.
2871  */
2872 static void perf_pmu_sched_task(struct task_struct *prev,
2873 				struct task_struct *next,
2874 				bool sched_in)
2875 {
2876 	struct perf_cpu_context *cpuctx;
2877 	struct pmu *pmu;
2878 
2879 	if (prev == next)
2880 		return;
2881 
2882 	list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
2883 		pmu = cpuctx->unique_pmu; /* software PMUs will not have sched_task */
2884 
2885 		if (WARN_ON_ONCE(!pmu->sched_task))
2886 			continue;
2887 
2888 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2889 		perf_pmu_disable(pmu);
2890 
2891 		pmu->sched_task(cpuctx->task_ctx, sched_in);
2892 
2893 		perf_pmu_enable(pmu);
2894 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2895 	}
2896 }
2897 
2898 static void perf_event_switch(struct task_struct *task,
2899 			      struct task_struct *next_prev, bool sched_in);
2900 
2901 #define for_each_task_context_nr(ctxn)					\
2902 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2903 
2904 /*
2905  * Called from scheduler to remove the events of the current task,
2906  * with interrupts disabled.
2907  *
2908  * We stop each event and update the event value in event->count.
2909  *
2910  * This does not protect us against NMI, but disable()
2911  * sets the disabled bit in the control field of event _before_
2912  * accessing the event control register. If a NMI hits, then it will
2913  * not restart the event.
2914  */
2915 void __perf_event_task_sched_out(struct task_struct *task,
2916 				 struct task_struct *next)
2917 {
2918 	int ctxn;
2919 
2920 	if (__this_cpu_read(perf_sched_cb_usages))
2921 		perf_pmu_sched_task(task, next, false);
2922 
2923 	if (atomic_read(&nr_switch_events))
2924 		perf_event_switch(task, next, false);
2925 
2926 	for_each_task_context_nr(ctxn)
2927 		perf_event_context_sched_out(task, ctxn, next);
2928 
2929 	/*
2930 	 * if cgroup events exist on this CPU, then we need
2931 	 * to check if we have to switch out PMU state.
2932 	 * cgroup event are system-wide mode only
2933 	 */
2934 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2935 		perf_cgroup_sched_out(task, next);
2936 }
2937 
2938 /*
2939  * Called with IRQs disabled
2940  */
2941 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2942 			      enum event_type_t event_type)
2943 {
2944 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2945 }
2946 
2947 static void
2948 ctx_pinned_sched_in(struct perf_event_context *ctx,
2949 		    struct perf_cpu_context *cpuctx)
2950 {
2951 	struct perf_event *event;
2952 
2953 	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2954 		if (event->state <= PERF_EVENT_STATE_OFF)
2955 			continue;
2956 		if (!event_filter_match(event))
2957 			continue;
2958 
2959 		/* may need to reset tstamp_enabled */
2960 		if (is_cgroup_event(event))
2961 			perf_cgroup_mark_enabled(event, ctx);
2962 
2963 		if (group_can_go_on(event, cpuctx, 1))
2964 			group_sched_in(event, cpuctx, ctx);
2965 
2966 		/*
2967 		 * If this pinned group hasn't been scheduled,
2968 		 * put it in error state.
2969 		 */
2970 		if (event->state == PERF_EVENT_STATE_INACTIVE) {
2971 			update_group_times(event);
2972 			event->state = PERF_EVENT_STATE_ERROR;
2973 		}
2974 	}
2975 }
2976 
2977 static void
2978 ctx_flexible_sched_in(struct perf_event_context *ctx,
2979 		      struct perf_cpu_context *cpuctx)
2980 {
2981 	struct perf_event *event;
2982 	int can_add_hw = 1;
2983 
2984 	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2985 		/* Ignore events in OFF or ERROR state */
2986 		if (event->state <= PERF_EVENT_STATE_OFF)
2987 			continue;
2988 		/*
2989 		 * Listen to the 'cpu' scheduling filter constraint
2990 		 * of events:
2991 		 */
2992 		if (!event_filter_match(event))
2993 			continue;
2994 
2995 		/* may need to reset tstamp_enabled */
2996 		if (is_cgroup_event(event))
2997 			perf_cgroup_mark_enabled(event, ctx);
2998 
2999 		if (group_can_go_on(event, cpuctx, can_add_hw)) {
3000 			if (group_sched_in(event, cpuctx, ctx))
3001 				can_add_hw = 0;
3002 		}
3003 	}
3004 }
3005 
3006 static void
3007 ctx_sched_in(struct perf_event_context *ctx,
3008 	     struct perf_cpu_context *cpuctx,
3009 	     enum event_type_t event_type,
3010 	     struct task_struct *task)
3011 {
3012 	int is_active = ctx->is_active;
3013 	u64 now;
3014 
3015 	lockdep_assert_held(&ctx->lock);
3016 
3017 	if (likely(!ctx->nr_events))
3018 		return;
3019 
3020 	ctx->is_active |= (event_type | EVENT_TIME);
3021 	if (ctx->task) {
3022 		if (!is_active)
3023 			cpuctx->task_ctx = ctx;
3024 		else
3025 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3026 	}
3027 
3028 	is_active ^= ctx->is_active; /* changed bits */
3029 
3030 	if (is_active & EVENT_TIME) {
3031 		/* start ctx time */
3032 		now = perf_clock();
3033 		ctx->timestamp = now;
3034 		perf_cgroup_set_timestamp(task, ctx);
3035 	}
3036 
3037 	/*
3038 	 * First go through the list and put on any pinned groups
3039 	 * in order to give them the best chance of going on.
3040 	 */
3041 	if (is_active & EVENT_PINNED)
3042 		ctx_pinned_sched_in(ctx, cpuctx);
3043 
3044 	/* Then walk through the lower prio flexible groups */
3045 	if (is_active & EVENT_FLEXIBLE)
3046 		ctx_flexible_sched_in(ctx, cpuctx);
3047 }
3048 
3049 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3050 			     enum event_type_t event_type,
3051 			     struct task_struct *task)
3052 {
3053 	struct perf_event_context *ctx = &cpuctx->ctx;
3054 
3055 	ctx_sched_in(ctx, cpuctx, event_type, task);
3056 }
3057 
3058 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3059 					struct task_struct *task)
3060 {
3061 	struct perf_cpu_context *cpuctx;
3062 
3063 	cpuctx = __get_cpu_context(ctx);
3064 	if (cpuctx->task_ctx == ctx)
3065 		return;
3066 
3067 	perf_ctx_lock(cpuctx, ctx);
3068 	perf_pmu_disable(ctx->pmu);
3069 	/*
3070 	 * We want to keep the following priority order:
3071 	 * cpu pinned (that don't need to move), task pinned,
3072 	 * cpu flexible, task flexible.
3073 	 */
3074 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3075 	perf_event_sched_in(cpuctx, ctx, task);
3076 	perf_pmu_enable(ctx->pmu);
3077 	perf_ctx_unlock(cpuctx, ctx);
3078 }
3079 
3080 /*
3081  * Called from scheduler to add the events of the current task
3082  * with interrupts disabled.
3083  *
3084  * We restore the event value and then enable it.
3085  *
3086  * This does not protect us against NMI, but enable()
3087  * sets the enabled bit in the control field of event _before_
3088  * accessing the event control register. If a NMI hits, then it will
3089  * keep the event running.
3090  */
3091 void __perf_event_task_sched_in(struct task_struct *prev,
3092 				struct task_struct *task)
3093 {
3094 	struct perf_event_context *ctx;
3095 	int ctxn;
3096 
3097 	/*
3098 	 * If cgroup events exist on this CPU, then we need to check if we have
3099 	 * to switch in PMU state; cgroup event are system-wide mode only.
3100 	 *
3101 	 * Since cgroup events are CPU events, we must schedule these in before
3102 	 * we schedule in the task events.
3103 	 */
3104 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3105 		perf_cgroup_sched_in(prev, task);
3106 
3107 	for_each_task_context_nr(ctxn) {
3108 		ctx = task->perf_event_ctxp[ctxn];
3109 		if (likely(!ctx))
3110 			continue;
3111 
3112 		perf_event_context_sched_in(ctx, task);
3113 	}
3114 
3115 	if (atomic_read(&nr_switch_events))
3116 		perf_event_switch(task, prev, true);
3117 
3118 	if (__this_cpu_read(perf_sched_cb_usages))
3119 		perf_pmu_sched_task(prev, task, true);
3120 }
3121 
3122 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3123 {
3124 	u64 frequency = event->attr.sample_freq;
3125 	u64 sec = NSEC_PER_SEC;
3126 	u64 divisor, dividend;
3127 
3128 	int count_fls, nsec_fls, frequency_fls, sec_fls;
3129 
3130 	count_fls = fls64(count);
3131 	nsec_fls = fls64(nsec);
3132 	frequency_fls = fls64(frequency);
3133 	sec_fls = 30;
3134 
3135 	/*
3136 	 * We got @count in @nsec, with a target of sample_freq HZ
3137 	 * the target period becomes:
3138 	 *
3139 	 *             @count * 10^9
3140 	 * period = -------------------
3141 	 *          @nsec * sample_freq
3142 	 *
3143 	 */
3144 
3145 	/*
3146 	 * Reduce accuracy by one bit such that @a and @b converge
3147 	 * to a similar magnitude.
3148 	 */
3149 #define REDUCE_FLS(a, b)		\
3150 do {					\
3151 	if (a##_fls > b##_fls) {	\
3152 		a >>= 1;		\
3153 		a##_fls--;		\
3154 	} else {			\
3155 		b >>= 1;		\
3156 		b##_fls--;		\
3157 	}				\
3158 } while (0)
3159 
3160 	/*
3161 	 * Reduce accuracy until either term fits in a u64, then proceed with
3162 	 * the other, so that finally we can do a u64/u64 division.
3163 	 */
3164 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3165 		REDUCE_FLS(nsec, frequency);
3166 		REDUCE_FLS(sec, count);
3167 	}
3168 
3169 	if (count_fls + sec_fls > 64) {
3170 		divisor = nsec * frequency;
3171 
3172 		while (count_fls + sec_fls > 64) {
3173 			REDUCE_FLS(count, sec);
3174 			divisor >>= 1;
3175 		}
3176 
3177 		dividend = count * sec;
3178 	} else {
3179 		dividend = count * sec;
3180 
3181 		while (nsec_fls + frequency_fls > 64) {
3182 			REDUCE_FLS(nsec, frequency);
3183 			dividend >>= 1;
3184 		}
3185 
3186 		divisor = nsec * frequency;
3187 	}
3188 
3189 	if (!divisor)
3190 		return dividend;
3191 
3192 	return div64_u64(dividend, divisor);
3193 }
3194 
3195 static DEFINE_PER_CPU(int, perf_throttled_count);
3196 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3197 
3198 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3199 {
3200 	struct hw_perf_event *hwc = &event->hw;
3201 	s64 period, sample_period;
3202 	s64 delta;
3203 
3204 	period = perf_calculate_period(event, nsec, count);
3205 
3206 	delta = (s64)(period - hwc->sample_period);
3207 	delta = (delta + 7) / 8; /* low pass filter */
3208 
3209 	sample_period = hwc->sample_period + delta;
3210 
3211 	if (!sample_period)
3212 		sample_period = 1;
3213 
3214 	hwc->sample_period = sample_period;
3215 
3216 	if (local64_read(&hwc->period_left) > 8*sample_period) {
3217 		if (disable)
3218 			event->pmu->stop(event, PERF_EF_UPDATE);
3219 
3220 		local64_set(&hwc->period_left, 0);
3221 
3222 		if (disable)
3223 			event->pmu->start(event, PERF_EF_RELOAD);
3224 	}
3225 }
3226 
3227 /*
3228  * combine freq adjustment with unthrottling to avoid two passes over the
3229  * events. At the same time, make sure, having freq events does not change
3230  * the rate of unthrottling as that would introduce bias.
3231  */
3232 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3233 					   int needs_unthr)
3234 {
3235 	struct perf_event *event;
3236 	struct hw_perf_event *hwc;
3237 	u64 now, period = TICK_NSEC;
3238 	s64 delta;
3239 
3240 	/*
3241 	 * only need to iterate over all events iff:
3242 	 * - context have events in frequency mode (needs freq adjust)
3243 	 * - there are events to unthrottle on this cpu
3244 	 */
3245 	if (!(ctx->nr_freq || needs_unthr))
3246 		return;
3247 
3248 	raw_spin_lock(&ctx->lock);
3249 	perf_pmu_disable(ctx->pmu);
3250 
3251 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3252 		if (event->state != PERF_EVENT_STATE_ACTIVE)
3253 			continue;
3254 
3255 		if (!event_filter_match(event))
3256 			continue;
3257 
3258 		perf_pmu_disable(event->pmu);
3259 
3260 		hwc = &event->hw;
3261 
3262 		if (hwc->interrupts == MAX_INTERRUPTS) {
3263 			hwc->interrupts = 0;
3264 			perf_log_throttle(event, 1);
3265 			event->pmu->start(event, 0);
3266 		}
3267 
3268 		if (!event->attr.freq || !event->attr.sample_freq)
3269 			goto next;
3270 
3271 		/*
3272 		 * stop the event and update event->count
3273 		 */
3274 		event->pmu->stop(event, PERF_EF_UPDATE);
3275 
3276 		now = local64_read(&event->count);
3277 		delta = now - hwc->freq_count_stamp;
3278 		hwc->freq_count_stamp = now;
3279 
3280 		/*
3281 		 * restart the event
3282 		 * reload only if value has changed
3283 		 * we have stopped the event so tell that
3284 		 * to perf_adjust_period() to avoid stopping it
3285 		 * twice.
3286 		 */
3287 		if (delta > 0)
3288 			perf_adjust_period(event, period, delta, false);
3289 
3290 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3291 	next:
3292 		perf_pmu_enable(event->pmu);
3293 	}
3294 
3295 	perf_pmu_enable(ctx->pmu);
3296 	raw_spin_unlock(&ctx->lock);
3297 }
3298 
3299 /*
3300  * Round-robin a context's events:
3301  */
3302 static void rotate_ctx(struct perf_event_context *ctx)
3303 {
3304 	/*
3305 	 * Rotate the first entry last of non-pinned groups. Rotation might be
3306 	 * disabled by the inheritance code.
3307 	 */
3308 	if (!ctx->rotate_disable)
3309 		list_rotate_left(&ctx->flexible_groups);
3310 }
3311 
3312 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3313 {
3314 	struct perf_event_context *ctx = NULL;
3315 	int rotate = 0;
3316 
3317 	if (cpuctx->ctx.nr_events) {
3318 		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3319 			rotate = 1;
3320 	}
3321 
3322 	ctx = cpuctx->task_ctx;
3323 	if (ctx && ctx->nr_events) {
3324 		if (ctx->nr_events != ctx->nr_active)
3325 			rotate = 1;
3326 	}
3327 
3328 	if (!rotate)
3329 		goto done;
3330 
3331 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3332 	perf_pmu_disable(cpuctx->ctx.pmu);
3333 
3334 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3335 	if (ctx)
3336 		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3337 
3338 	rotate_ctx(&cpuctx->ctx);
3339 	if (ctx)
3340 		rotate_ctx(ctx);
3341 
3342 	perf_event_sched_in(cpuctx, ctx, current);
3343 
3344 	perf_pmu_enable(cpuctx->ctx.pmu);
3345 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3346 done:
3347 
3348 	return rotate;
3349 }
3350 
3351 void perf_event_task_tick(void)
3352 {
3353 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
3354 	struct perf_event_context *ctx, *tmp;
3355 	int throttled;
3356 
3357 	WARN_ON(!irqs_disabled());
3358 
3359 	__this_cpu_inc(perf_throttled_seq);
3360 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
3361 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3362 
3363 	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3364 		perf_adjust_freq_unthr_context(ctx, throttled);
3365 }
3366 
3367 static int event_enable_on_exec(struct perf_event *event,
3368 				struct perf_event_context *ctx)
3369 {
3370 	if (!event->attr.enable_on_exec)
3371 		return 0;
3372 
3373 	event->attr.enable_on_exec = 0;
3374 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
3375 		return 0;
3376 
3377 	__perf_event_mark_enabled(event);
3378 
3379 	return 1;
3380 }
3381 
3382 /*
3383  * Enable all of a task's events that have been marked enable-on-exec.
3384  * This expects task == current.
3385  */
3386 static void perf_event_enable_on_exec(int ctxn)
3387 {
3388 	struct perf_event_context *ctx, *clone_ctx = NULL;
3389 	struct perf_cpu_context *cpuctx;
3390 	struct perf_event *event;
3391 	unsigned long flags;
3392 	int enabled = 0;
3393 
3394 	local_irq_save(flags);
3395 	ctx = current->perf_event_ctxp[ctxn];
3396 	if (!ctx || !ctx->nr_events)
3397 		goto out;
3398 
3399 	cpuctx = __get_cpu_context(ctx);
3400 	perf_ctx_lock(cpuctx, ctx);
3401 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3402 	list_for_each_entry(event, &ctx->event_list, event_entry)
3403 		enabled |= event_enable_on_exec(event, ctx);
3404 
3405 	/*
3406 	 * Unclone and reschedule this context if we enabled any event.
3407 	 */
3408 	if (enabled) {
3409 		clone_ctx = unclone_ctx(ctx);
3410 		ctx_resched(cpuctx, ctx);
3411 	}
3412 	perf_ctx_unlock(cpuctx, ctx);
3413 
3414 out:
3415 	local_irq_restore(flags);
3416 
3417 	if (clone_ctx)
3418 		put_ctx(clone_ctx);
3419 }
3420 
3421 struct perf_read_data {
3422 	struct perf_event *event;
3423 	bool group;
3424 	int ret;
3425 };
3426 
3427 static int find_cpu_to_read(struct perf_event *event, int local_cpu)
3428 {
3429 	int event_cpu = event->oncpu;
3430 	u16 local_pkg, event_pkg;
3431 
3432 	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3433 		event_pkg =  topology_physical_package_id(event_cpu);
3434 		local_pkg =  topology_physical_package_id(local_cpu);
3435 
3436 		if (event_pkg == local_pkg)
3437 			return local_cpu;
3438 	}
3439 
3440 	return event_cpu;
3441 }
3442 
3443 /*
3444  * Cross CPU call to read the hardware event
3445  */
3446 static void __perf_event_read(void *info)
3447 {
3448 	struct perf_read_data *data = info;
3449 	struct perf_event *sub, *event = data->event;
3450 	struct perf_event_context *ctx = event->ctx;
3451 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3452 	struct pmu *pmu = event->pmu;
3453 
3454 	/*
3455 	 * If this is a task context, we need to check whether it is
3456 	 * the current task context of this cpu.  If not it has been
3457 	 * scheduled out before the smp call arrived.  In that case
3458 	 * event->count would have been updated to a recent sample
3459 	 * when the event was scheduled out.
3460 	 */
3461 	if (ctx->task && cpuctx->task_ctx != ctx)
3462 		return;
3463 
3464 	raw_spin_lock(&ctx->lock);
3465 	if (ctx->is_active) {
3466 		update_context_time(ctx);
3467 		update_cgrp_time_from_event(event);
3468 	}
3469 
3470 	update_event_times(event);
3471 	if (event->state != PERF_EVENT_STATE_ACTIVE)
3472 		goto unlock;
3473 
3474 	if (!data->group) {
3475 		pmu->read(event);
3476 		data->ret = 0;
3477 		goto unlock;
3478 	}
3479 
3480 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3481 
3482 	pmu->read(event);
3483 
3484 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
3485 		update_event_times(sub);
3486 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3487 			/*
3488 			 * Use sibling's PMU rather than @event's since
3489 			 * sibling could be on different (eg: software) PMU.
3490 			 */
3491 			sub->pmu->read(sub);
3492 		}
3493 	}
3494 
3495 	data->ret = pmu->commit_txn(pmu);
3496 
3497 unlock:
3498 	raw_spin_unlock(&ctx->lock);
3499 }
3500 
3501 static inline u64 perf_event_count(struct perf_event *event)
3502 {
3503 	if (event->pmu->count)
3504 		return event->pmu->count(event);
3505 
3506 	return __perf_event_count(event);
3507 }
3508 
3509 /*
3510  * NMI-safe method to read a local event, that is an event that
3511  * is:
3512  *   - either for the current task, or for this CPU
3513  *   - does not have inherit set, for inherited task events
3514  *     will not be local and we cannot read them atomically
3515  *   - must not have a pmu::count method
3516  */
3517 u64 perf_event_read_local(struct perf_event *event)
3518 {
3519 	unsigned long flags;
3520 	u64 val;
3521 
3522 	/*
3523 	 * Disabling interrupts avoids all counter scheduling (context
3524 	 * switches, timer based rotation and IPIs).
3525 	 */
3526 	local_irq_save(flags);
3527 
3528 	/* If this is a per-task event, it must be for current */
3529 	WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3530 		     event->hw.target != current);
3531 
3532 	/* If this is a per-CPU event, it must be for this CPU */
3533 	WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3534 		     event->cpu != smp_processor_id());
3535 
3536 	/*
3537 	 * It must not be an event with inherit set, we cannot read
3538 	 * all child counters from atomic context.
3539 	 */
3540 	WARN_ON_ONCE(event->attr.inherit);
3541 
3542 	/*
3543 	 * It must not have a pmu::count method, those are not
3544 	 * NMI safe.
3545 	 */
3546 	WARN_ON_ONCE(event->pmu->count);
3547 
3548 	/*
3549 	 * If the event is currently on this CPU, its either a per-task event,
3550 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3551 	 * oncpu == -1).
3552 	 */
3553 	if (event->oncpu == smp_processor_id())
3554 		event->pmu->read(event);
3555 
3556 	val = local64_read(&event->count);
3557 	local_irq_restore(flags);
3558 
3559 	return val;
3560 }
3561 
3562 static int perf_event_read(struct perf_event *event, bool group)
3563 {
3564 	int ret = 0, cpu_to_read, local_cpu;
3565 
3566 	/*
3567 	 * If event is enabled and currently active on a CPU, update the
3568 	 * value in the event structure:
3569 	 */
3570 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
3571 		struct perf_read_data data = {
3572 			.event = event,
3573 			.group = group,
3574 			.ret = 0,
3575 		};
3576 
3577 		local_cpu = get_cpu();
3578 		cpu_to_read = find_cpu_to_read(event, local_cpu);
3579 		put_cpu();
3580 
3581 		/*
3582 		 * Purposely ignore the smp_call_function_single() return
3583 		 * value.
3584 		 *
3585 		 * If event->oncpu isn't a valid CPU it means the event got
3586 		 * scheduled out and that will have updated the event count.
3587 		 *
3588 		 * Therefore, either way, we'll have an up-to-date event count
3589 		 * after this.
3590 		 */
3591 		(void)smp_call_function_single(cpu_to_read, __perf_event_read, &data, 1);
3592 		ret = data.ret;
3593 	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3594 		struct perf_event_context *ctx = event->ctx;
3595 		unsigned long flags;
3596 
3597 		raw_spin_lock_irqsave(&ctx->lock, flags);
3598 		/*
3599 		 * may read while context is not active
3600 		 * (e.g., thread is blocked), in that case
3601 		 * we cannot update context time
3602 		 */
3603 		if (ctx->is_active) {
3604 			update_context_time(ctx);
3605 			update_cgrp_time_from_event(event);
3606 		}
3607 		if (group)
3608 			update_group_times(event);
3609 		else
3610 			update_event_times(event);
3611 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3612 	}
3613 
3614 	return ret;
3615 }
3616 
3617 /*
3618  * Initialize the perf_event context in a task_struct:
3619  */
3620 static void __perf_event_init_context(struct perf_event_context *ctx)
3621 {
3622 	raw_spin_lock_init(&ctx->lock);
3623 	mutex_init(&ctx->mutex);
3624 	INIT_LIST_HEAD(&ctx->active_ctx_list);
3625 	INIT_LIST_HEAD(&ctx->pinned_groups);
3626 	INIT_LIST_HEAD(&ctx->flexible_groups);
3627 	INIT_LIST_HEAD(&ctx->event_list);
3628 	atomic_set(&ctx->refcount, 1);
3629 }
3630 
3631 static struct perf_event_context *
3632 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3633 {
3634 	struct perf_event_context *ctx;
3635 
3636 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3637 	if (!ctx)
3638 		return NULL;
3639 
3640 	__perf_event_init_context(ctx);
3641 	if (task) {
3642 		ctx->task = task;
3643 		get_task_struct(task);
3644 	}
3645 	ctx->pmu = pmu;
3646 
3647 	return ctx;
3648 }
3649 
3650 static struct task_struct *
3651 find_lively_task_by_vpid(pid_t vpid)
3652 {
3653 	struct task_struct *task;
3654 
3655 	rcu_read_lock();
3656 	if (!vpid)
3657 		task = current;
3658 	else
3659 		task = find_task_by_vpid(vpid);
3660 	if (task)
3661 		get_task_struct(task);
3662 	rcu_read_unlock();
3663 
3664 	if (!task)
3665 		return ERR_PTR(-ESRCH);
3666 
3667 	return task;
3668 }
3669 
3670 /*
3671  * Returns a matching context with refcount and pincount.
3672  */
3673 static struct perf_event_context *
3674 find_get_context(struct pmu *pmu, struct task_struct *task,
3675 		struct perf_event *event)
3676 {
3677 	struct perf_event_context *ctx, *clone_ctx = NULL;
3678 	struct perf_cpu_context *cpuctx;
3679 	void *task_ctx_data = NULL;
3680 	unsigned long flags;
3681 	int ctxn, err;
3682 	int cpu = event->cpu;
3683 
3684 	if (!task) {
3685 		/* Must be root to operate on a CPU event: */
3686 		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3687 			return ERR_PTR(-EACCES);
3688 
3689 		/*
3690 		 * We could be clever and allow to attach a event to an
3691 		 * offline CPU and activate it when the CPU comes up, but
3692 		 * that's for later.
3693 		 */
3694 		if (!cpu_online(cpu))
3695 			return ERR_PTR(-ENODEV);
3696 
3697 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3698 		ctx = &cpuctx->ctx;
3699 		get_ctx(ctx);
3700 		++ctx->pin_count;
3701 
3702 		return ctx;
3703 	}
3704 
3705 	err = -EINVAL;
3706 	ctxn = pmu->task_ctx_nr;
3707 	if (ctxn < 0)
3708 		goto errout;
3709 
3710 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3711 		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3712 		if (!task_ctx_data) {
3713 			err = -ENOMEM;
3714 			goto errout;
3715 		}
3716 	}
3717 
3718 retry:
3719 	ctx = perf_lock_task_context(task, ctxn, &flags);
3720 	if (ctx) {
3721 		clone_ctx = unclone_ctx(ctx);
3722 		++ctx->pin_count;
3723 
3724 		if (task_ctx_data && !ctx->task_ctx_data) {
3725 			ctx->task_ctx_data = task_ctx_data;
3726 			task_ctx_data = NULL;
3727 		}
3728 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3729 
3730 		if (clone_ctx)
3731 			put_ctx(clone_ctx);
3732 	} else {
3733 		ctx = alloc_perf_context(pmu, task);
3734 		err = -ENOMEM;
3735 		if (!ctx)
3736 			goto errout;
3737 
3738 		if (task_ctx_data) {
3739 			ctx->task_ctx_data = task_ctx_data;
3740 			task_ctx_data = NULL;
3741 		}
3742 
3743 		err = 0;
3744 		mutex_lock(&task->perf_event_mutex);
3745 		/*
3746 		 * If it has already passed perf_event_exit_task().
3747 		 * we must see PF_EXITING, it takes this mutex too.
3748 		 */
3749 		if (task->flags & PF_EXITING)
3750 			err = -ESRCH;
3751 		else if (task->perf_event_ctxp[ctxn])
3752 			err = -EAGAIN;
3753 		else {
3754 			get_ctx(ctx);
3755 			++ctx->pin_count;
3756 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3757 		}
3758 		mutex_unlock(&task->perf_event_mutex);
3759 
3760 		if (unlikely(err)) {
3761 			put_ctx(ctx);
3762 
3763 			if (err == -EAGAIN)
3764 				goto retry;
3765 			goto errout;
3766 		}
3767 	}
3768 
3769 	kfree(task_ctx_data);
3770 	return ctx;
3771 
3772 errout:
3773 	kfree(task_ctx_data);
3774 	return ERR_PTR(err);
3775 }
3776 
3777 static void perf_event_free_filter(struct perf_event *event);
3778 static void perf_event_free_bpf_prog(struct perf_event *event);
3779 
3780 static void free_event_rcu(struct rcu_head *head)
3781 {
3782 	struct perf_event *event;
3783 
3784 	event = container_of(head, struct perf_event, rcu_head);
3785 	if (event->ns)
3786 		put_pid_ns(event->ns);
3787 	perf_event_free_filter(event);
3788 	kfree(event);
3789 }
3790 
3791 static void ring_buffer_attach(struct perf_event *event,
3792 			       struct ring_buffer *rb);
3793 
3794 static void detach_sb_event(struct perf_event *event)
3795 {
3796 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3797 
3798 	raw_spin_lock(&pel->lock);
3799 	list_del_rcu(&event->sb_list);
3800 	raw_spin_unlock(&pel->lock);
3801 }
3802 
3803 static bool is_sb_event(struct perf_event *event)
3804 {
3805 	struct perf_event_attr *attr = &event->attr;
3806 
3807 	if (event->parent)
3808 		return false;
3809 
3810 	if (event->attach_state & PERF_ATTACH_TASK)
3811 		return false;
3812 
3813 	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
3814 	    attr->comm || attr->comm_exec ||
3815 	    attr->task ||
3816 	    attr->context_switch)
3817 		return true;
3818 	return false;
3819 }
3820 
3821 static void unaccount_pmu_sb_event(struct perf_event *event)
3822 {
3823 	if (is_sb_event(event))
3824 		detach_sb_event(event);
3825 }
3826 
3827 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3828 {
3829 	if (event->parent)
3830 		return;
3831 
3832 	if (is_cgroup_event(event))
3833 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3834 }
3835 
3836 #ifdef CONFIG_NO_HZ_FULL
3837 static DEFINE_SPINLOCK(nr_freq_lock);
3838 #endif
3839 
3840 static void unaccount_freq_event_nohz(void)
3841 {
3842 #ifdef CONFIG_NO_HZ_FULL
3843 	spin_lock(&nr_freq_lock);
3844 	if (atomic_dec_and_test(&nr_freq_events))
3845 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3846 	spin_unlock(&nr_freq_lock);
3847 #endif
3848 }
3849 
3850 static void unaccount_freq_event(void)
3851 {
3852 	if (tick_nohz_full_enabled())
3853 		unaccount_freq_event_nohz();
3854 	else
3855 		atomic_dec(&nr_freq_events);
3856 }
3857 
3858 static void unaccount_event(struct perf_event *event)
3859 {
3860 	bool dec = false;
3861 
3862 	if (event->parent)
3863 		return;
3864 
3865 	if (event->attach_state & PERF_ATTACH_TASK)
3866 		dec = true;
3867 	if (event->attr.mmap || event->attr.mmap_data)
3868 		atomic_dec(&nr_mmap_events);
3869 	if (event->attr.comm)
3870 		atomic_dec(&nr_comm_events);
3871 	if (event->attr.task)
3872 		atomic_dec(&nr_task_events);
3873 	if (event->attr.freq)
3874 		unaccount_freq_event();
3875 	if (event->attr.context_switch) {
3876 		dec = true;
3877 		atomic_dec(&nr_switch_events);
3878 	}
3879 	if (is_cgroup_event(event))
3880 		dec = true;
3881 	if (has_branch_stack(event))
3882 		dec = true;
3883 
3884 	if (dec) {
3885 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
3886 			schedule_delayed_work(&perf_sched_work, HZ);
3887 	}
3888 
3889 	unaccount_event_cpu(event, event->cpu);
3890 
3891 	unaccount_pmu_sb_event(event);
3892 }
3893 
3894 static void perf_sched_delayed(struct work_struct *work)
3895 {
3896 	mutex_lock(&perf_sched_mutex);
3897 	if (atomic_dec_and_test(&perf_sched_count))
3898 		static_branch_disable(&perf_sched_events);
3899 	mutex_unlock(&perf_sched_mutex);
3900 }
3901 
3902 /*
3903  * The following implement mutual exclusion of events on "exclusive" pmus
3904  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3905  * at a time, so we disallow creating events that might conflict, namely:
3906  *
3907  *  1) cpu-wide events in the presence of per-task events,
3908  *  2) per-task events in the presence of cpu-wide events,
3909  *  3) two matching events on the same context.
3910  *
3911  * The former two cases are handled in the allocation path (perf_event_alloc(),
3912  * _free_event()), the latter -- before the first perf_install_in_context().
3913  */
3914 static int exclusive_event_init(struct perf_event *event)
3915 {
3916 	struct pmu *pmu = event->pmu;
3917 
3918 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3919 		return 0;
3920 
3921 	/*
3922 	 * Prevent co-existence of per-task and cpu-wide events on the
3923 	 * same exclusive pmu.
3924 	 *
3925 	 * Negative pmu::exclusive_cnt means there are cpu-wide
3926 	 * events on this "exclusive" pmu, positive means there are
3927 	 * per-task events.
3928 	 *
3929 	 * Since this is called in perf_event_alloc() path, event::ctx
3930 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3931 	 * to mean "per-task event", because unlike other attach states it
3932 	 * never gets cleared.
3933 	 */
3934 	if (event->attach_state & PERF_ATTACH_TASK) {
3935 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3936 			return -EBUSY;
3937 	} else {
3938 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3939 			return -EBUSY;
3940 	}
3941 
3942 	return 0;
3943 }
3944 
3945 static void exclusive_event_destroy(struct perf_event *event)
3946 {
3947 	struct pmu *pmu = event->pmu;
3948 
3949 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3950 		return;
3951 
3952 	/* see comment in exclusive_event_init() */
3953 	if (event->attach_state & PERF_ATTACH_TASK)
3954 		atomic_dec(&pmu->exclusive_cnt);
3955 	else
3956 		atomic_inc(&pmu->exclusive_cnt);
3957 }
3958 
3959 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3960 {
3961 	if ((e1->pmu == e2->pmu) &&
3962 	    (e1->cpu == e2->cpu ||
3963 	     e1->cpu == -1 ||
3964 	     e2->cpu == -1))
3965 		return true;
3966 	return false;
3967 }
3968 
3969 /* Called under the same ctx::mutex as perf_install_in_context() */
3970 static bool exclusive_event_installable(struct perf_event *event,
3971 					struct perf_event_context *ctx)
3972 {
3973 	struct perf_event *iter_event;
3974 	struct pmu *pmu = event->pmu;
3975 
3976 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3977 		return true;
3978 
3979 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3980 		if (exclusive_event_match(iter_event, event))
3981 			return false;
3982 	}
3983 
3984 	return true;
3985 }
3986 
3987 static void perf_addr_filters_splice(struct perf_event *event,
3988 				       struct list_head *head);
3989 
3990 static void _free_event(struct perf_event *event)
3991 {
3992 	irq_work_sync(&event->pending);
3993 
3994 	unaccount_event(event);
3995 
3996 	if (event->rb) {
3997 		/*
3998 		 * Can happen when we close an event with re-directed output.
3999 		 *
4000 		 * Since we have a 0 refcount, perf_mmap_close() will skip
4001 		 * over us; possibly making our ring_buffer_put() the last.
4002 		 */
4003 		mutex_lock(&event->mmap_mutex);
4004 		ring_buffer_attach(event, NULL);
4005 		mutex_unlock(&event->mmap_mutex);
4006 	}
4007 
4008 	if (is_cgroup_event(event))
4009 		perf_detach_cgroup(event);
4010 
4011 	if (!event->parent) {
4012 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4013 			put_callchain_buffers();
4014 	}
4015 
4016 	perf_event_free_bpf_prog(event);
4017 	perf_addr_filters_splice(event, NULL);
4018 	kfree(event->addr_filters_offs);
4019 
4020 	if (event->destroy)
4021 		event->destroy(event);
4022 
4023 	if (event->ctx)
4024 		put_ctx(event->ctx);
4025 
4026 	exclusive_event_destroy(event);
4027 	module_put(event->pmu->module);
4028 
4029 	call_rcu(&event->rcu_head, free_event_rcu);
4030 }
4031 
4032 /*
4033  * Used to free events which have a known refcount of 1, such as in error paths
4034  * where the event isn't exposed yet and inherited events.
4035  */
4036 static void free_event(struct perf_event *event)
4037 {
4038 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4039 				"unexpected event refcount: %ld; ptr=%p\n",
4040 				atomic_long_read(&event->refcount), event)) {
4041 		/* leak to avoid use-after-free */
4042 		return;
4043 	}
4044 
4045 	_free_event(event);
4046 }
4047 
4048 /*
4049  * Remove user event from the owner task.
4050  */
4051 static void perf_remove_from_owner(struct perf_event *event)
4052 {
4053 	struct task_struct *owner;
4054 
4055 	rcu_read_lock();
4056 	/*
4057 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
4058 	 * observe !owner it means the list deletion is complete and we can
4059 	 * indeed free this event, otherwise we need to serialize on
4060 	 * owner->perf_event_mutex.
4061 	 */
4062 	owner = lockless_dereference(event->owner);
4063 	if (owner) {
4064 		/*
4065 		 * Since delayed_put_task_struct() also drops the last
4066 		 * task reference we can safely take a new reference
4067 		 * while holding the rcu_read_lock().
4068 		 */
4069 		get_task_struct(owner);
4070 	}
4071 	rcu_read_unlock();
4072 
4073 	if (owner) {
4074 		/*
4075 		 * If we're here through perf_event_exit_task() we're already
4076 		 * holding ctx->mutex which would be an inversion wrt. the
4077 		 * normal lock order.
4078 		 *
4079 		 * However we can safely take this lock because its the child
4080 		 * ctx->mutex.
4081 		 */
4082 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4083 
4084 		/*
4085 		 * We have to re-check the event->owner field, if it is cleared
4086 		 * we raced with perf_event_exit_task(), acquiring the mutex
4087 		 * ensured they're done, and we can proceed with freeing the
4088 		 * event.
4089 		 */
4090 		if (event->owner) {
4091 			list_del_init(&event->owner_entry);
4092 			smp_store_release(&event->owner, NULL);
4093 		}
4094 		mutex_unlock(&owner->perf_event_mutex);
4095 		put_task_struct(owner);
4096 	}
4097 }
4098 
4099 static void put_event(struct perf_event *event)
4100 {
4101 	if (!atomic_long_dec_and_test(&event->refcount))
4102 		return;
4103 
4104 	_free_event(event);
4105 }
4106 
4107 /*
4108  * Kill an event dead; while event:refcount will preserve the event
4109  * object, it will not preserve its functionality. Once the last 'user'
4110  * gives up the object, we'll destroy the thing.
4111  */
4112 int perf_event_release_kernel(struct perf_event *event)
4113 {
4114 	struct perf_event_context *ctx = event->ctx;
4115 	struct perf_event *child, *tmp;
4116 
4117 	/*
4118 	 * If we got here through err_file: fput(event_file); we will not have
4119 	 * attached to a context yet.
4120 	 */
4121 	if (!ctx) {
4122 		WARN_ON_ONCE(event->attach_state &
4123 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4124 		goto no_ctx;
4125 	}
4126 
4127 	if (!is_kernel_event(event))
4128 		perf_remove_from_owner(event);
4129 
4130 	ctx = perf_event_ctx_lock(event);
4131 	WARN_ON_ONCE(ctx->parent_ctx);
4132 	perf_remove_from_context(event, DETACH_GROUP);
4133 
4134 	raw_spin_lock_irq(&ctx->lock);
4135 	/*
4136 	 * Mark this even as STATE_DEAD, there is no external reference to it
4137 	 * anymore.
4138 	 *
4139 	 * Anybody acquiring event->child_mutex after the below loop _must_
4140 	 * also see this, most importantly inherit_event() which will avoid
4141 	 * placing more children on the list.
4142 	 *
4143 	 * Thus this guarantees that we will in fact observe and kill _ALL_
4144 	 * child events.
4145 	 */
4146 	event->state = PERF_EVENT_STATE_DEAD;
4147 	raw_spin_unlock_irq(&ctx->lock);
4148 
4149 	perf_event_ctx_unlock(event, ctx);
4150 
4151 again:
4152 	mutex_lock(&event->child_mutex);
4153 	list_for_each_entry(child, &event->child_list, child_list) {
4154 
4155 		/*
4156 		 * Cannot change, child events are not migrated, see the
4157 		 * comment with perf_event_ctx_lock_nested().
4158 		 */
4159 		ctx = lockless_dereference(child->ctx);
4160 		/*
4161 		 * Since child_mutex nests inside ctx::mutex, we must jump
4162 		 * through hoops. We start by grabbing a reference on the ctx.
4163 		 *
4164 		 * Since the event cannot get freed while we hold the
4165 		 * child_mutex, the context must also exist and have a !0
4166 		 * reference count.
4167 		 */
4168 		get_ctx(ctx);
4169 
4170 		/*
4171 		 * Now that we have a ctx ref, we can drop child_mutex, and
4172 		 * acquire ctx::mutex without fear of it going away. Then we
4173 		 * can re-acquire child_mutex.
4174 		 */
4175 		mutex_unlock(&event->child_mutex);
4176 		mutex_lock(&ctx->mutex);
4177 		mutex_lock(&event->child_mutex);
4178 
4179 		/*
4180 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
4181 		 * state, if child is still the first entry, it didn't get freed
4182 		 * and we can continue doing so.
4183 		 */
4184 		tmp = list_first_entry_or_null(&event->child_list,
4185 					       struct perf_event, child_list);
4186 		if (tmp == child) {
4187 			perf_remove_from_context(child, DETACH_GROUP);
4188 			list_del(&child->child_list);
4189 			free_event(child);
4190 			/*
4191 			 * This matches the refcount bump in inherit_event();
4192 			 * this can't be the last reference.
4193 			 */
4194 			put_event(event);
4195 		}
4196 
4197 		mutex_unlock(&event->child_mutex);
4198 		mutex_unlock(&ctx->mutex);
4199 		put_ctx(ctx);
4200 		goto again;
4201 	}
4202 	mutex_unlock(&event->child_mutex);
4203 
4204 no_ctx:
4205 	put_event(event); /* Must be the 'last' reference */
4206 	return 0;
4207 }
4208 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4209 
4210 /*
4211  * Called when the last reference to the file is gone.
4212  */
4213 static int perf_release(struct inode *inode, struct file *file)
4214 {
4215 	perf_event_release_kernel(file->private_data);
4216 	return 0;
4217 }
4218 
4219 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4220 {
4221 	struct perf_event *child;
4222 	u64 total = 0;
4223 
4224 	*enabled = 0;
4225 	*running = 0;
4226 
4227 	mutex_lock(&event->child_mutex);
4228 
4229 	(void)perf_event_read(event, false);
4230 	total += perf_event_count(event);
4231 
4232 	*enabled += event->total_time_enabled +
4233 			atomic64_read(&event->child_total_time_enabled);
4234 	*running += event->total_time_running +
4235 			atomic64_read(&event->child_total_time_running);
4236 
4237 	list_for_each_entry(child, &event->child_list, child_list) {
4238 		(void)perf_event_read(child, false);
4239 		total += perf_event_count(child);
4240 		*enabled += child->total_time_enabled;
4241 		*running += child->total_time_running;
4242 	}
4243 	mutex_unlock(&event->child_mutex);
4244 
4245 	return total;
4246 }
4247 EXPORT_SYMBOL_GPL(perf_event_read_value);
4248 
4249 static int __perf_read_group_add(struct perf_event *leader,
4250 					u64 read_format, u64 *values)
4251 {
4252 	struct perf_event *sub;
4253 	int n = 1; /* skip @nr */
4254 	int ret;
4255 
4256 	ret = perf_event_read(leader, true);
4257 	if (ret)
4258 		return ret;
4259 
4260 	/*
4261 	 * Since we co-schedule groups, {enabled,running} times of siblings
4262 	 * will be identical to those of the leader, so we only publish one
4263 	 * set.
4264 	 */
4265 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4266 		values[n++] += leader->total_time_enabled +
4267 			atomic64_read(&leader->child_total_time_enabled);
4268 	}
4269 
4270 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4271 		values[n++] += leader->total_time_running +
4272 			atomic64_read(&leader->child_total_time_running);
4273 	}
4274 
4275 	/*
4276 	 * Write {count,id} tuples for every sibling.
4277 	 */
4278 	values[n++] += perf_event_count(leader);
4279 	if (read_format & PERF_FORMAT_ID)
4280 		values[n++] = primary_event_id(leader);
4281 
4282 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4283 		values[n++] += perf_event_count(sub);
4284 		if (read_format & PERF_FORMAT_ID)
4285 			values[n++] = primary_event_id(sub);
4286 	}
4287 
4288 	return 0;
4289 }
4290 
4291 static int perf_read_group(struct perf_event *event,
4292 				   u64 read_format, char __user *buf)
4293 {
4294 	struct perf_event *leader = event->group_leader, *child;
4295 	struct perf_event_context *ctx = leader->ctx;
4296 	int ret;
4297 	u64 *values;
4298 
4299 	lockdep_assert_held(&ctx->mutex);
4300 
4301 	values = kzalloc(event->read_size, GFP_KERNEL);
4302 	if (!values)
4303 		return -ENOMEM;
4304 
4305 	values[0] = 1 + leader->nr_siblings;
4306 
4307 	/*
4308 	 * By locking the child_mutex of the leader we effectively
4309 	 * lock the child list of all siblings.. XXX explain how.
4310 	 */
4311 	mutex_lock(&leader->child_mutex);
4312 
4313 	ret = __perf_read_group_add(leader, read_format, values);
4314 	if (ret)
4315 		goto unlock;
4316 
4317 	list_for_each_entry(child, &leader->child_list, child_list) {
4318 		ret = __perf_read_group_add(child, read_format, values);
4319 		if (ret)
4320 			goto unlock;
4321 	}
4322 
4323 	mutex_unlock(&leader->child_mutex);
4324 
4325 	ret = event->read_size;
4326 	if (copy_to_user(buf, values, event->read_size))
4327 		ret = -EFAULT;
4328 	goto out;
4329 
4330 unlock:
4331 	mutex_unlock(&leader->child_mutex);
4332 out:
4333 	kfree(values);
4334 	return ret;
4335 }
4336 
4337 static int perf_read_one(struct perf_event *event,
4338 				 u64 read_format, char __user *buf)
4339 {
4340 	u64 enabled, running;
4341 	u64 values[4];
4342 	int n = 0;
4343 
4344 	values[n++] = perf_event_read_value(event, &enabled, &running);
4345 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4346 		values[n++] = enabled;
4347 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4348 		values[n++] = running;
4349 	if (read_format & PERF_FORMAT_ID)
4350 		values[n++] = primary_event_id(event);
4351 
4352 	if (copy_to_user(buf, values, n * sizeof(u64)))
4353 		return -EFAULT;
4354 
4355 	return n * sizeof(u64);
4356 }
4357 
4358 static bool is_event_hup(struct perf_event *event)
4359 {
4360 	bool no_children;
4361 
4362 	if (event->state > PERF_EVENT_STATE_EXIT)
4363 		return false;
4364 
4365 	mutex_lock(&event->child_mutex);
4366 	no_children = list_empty(&event->child_list);
4367 	mutex_unlock(&event->child_mutex);
4368 	return no_children;
4369 }
4370 
4371 /*
4372  * Read the performance event - simple non blocking version for now
4373  */
4374 static ssize_t
4375 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4376 {
4377 	u64 read_format = event->attr.read_format;
4378 	int ret;
4379 
4380 	/*
4381 	 * Return end-of-file for a read on a event that is in
4382 	 * error state (i.e. because it was pinned but it couldn't be
4383 	 * scheduled on to the CPU at some point).
4384 	 */
4385 	if (event->state == PERF_EVENT_STATE_ERROR)
4386 		return 0;
4387 
4388 	if (count < event->read_size)
4389 		return -ENOSPC;
4390 
4391 	WARN_ON_ONCE(event->ctx->parent_ctx);
4392 	if (read_format & PERF_FORMAT_GROUP)
4393 		ret = perf_read_group(event, read_format, buf);
4394 	else
4395 		ret = perf_read_one(event, read_format, buf);
4396 
4397 	return ret;
4398 }
4399 
4400 static ssize_t
4401 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4402 {
4403 	struct perf_event *event = file->private_data;
4404 	struct perf_event_context *ctx;
4405 	int ret;
4406 
4407 	ctx = perf_event_ctx_lock(event);
4408 	ret = __perf_read(event, buf, count);
4409 	perf_event_ctx_unlock(event, ctx);
4410 
4411 	return ret;
4412 }
4413 
4414 static unsigned int perf_poll(struct file *file, poll_table *wait)
4415 {
4416 	struct perf_event *event = file->private_data;
4417 	struct ring_buffer *rb;
4418 	unsigned int events = POLLHUP;
4419 
4420 	poll_wait(file, &event->waitq, wait);
4421 
4422 	if (is_event_hup(event))
4423 		return events;
4424 
4425 	/*
4426 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
4427 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4428 	 */
4429 	mutex_lock(&event->mmap_mutex);
4430 	rb = event->rb;
4431 	if (rb)
4432 		events = atomic_xchg(&rb->poll, 0);
4433 	mutex_unlock(&event->mmap_mutex);
4434 	return events;
4435 }
4436 
4437 static void _perf_event_reset(struct perf_event *event)
4438 {
4439 	(void)perf_event_read(event, false);
4440 	local64_set(&event->count, 0);
4441 	perf_event_update_userpage(event);
4442 }
4443 
4444 /*
4445  * Holding the top-level event's child_mutex means that any
4446  * descendant process that has inherited this event will block
4447  * in perf_event_exit_event() if it goes to exit, thus satisfying the
4448  * task existence requirements of perf_event_enable/disable.
4449  */
4450 static void perf_event_for_each_child(struct perf_event *event,
4451 					void (*func)(struct perf_event *))
4452 {
4453 	struct perf_event *child;
4454 
4455 	WARN_ON_ONCE(event->ctx->parent_ctx);
4456 
4457 	mutex_lock(&event->child_mutex);
4458 	func(event);
4459 	list_for_each_entry(child, &event->child_list, child_list)
4460 		func(child);
4461 	mutex_unlock(&event->child_mutex);
4462 }
4463 
4464 static void perf_event_for_each(struct perf_event *event,
4465 				  void (*func)(struct perf_event *))
4466 {
4467 	struct perf_event_context *ctx = event->ctx;
4468 	struct perf_event *sibling;
4469 
4470 	lockdep_assert_held(&ctx->mutex);
4471 
4472 	event = event->group_leader;
4473 
4474 	perf_event_for_each_child(event, func);
4475 	list_for_each_entry(sibling, &event->sibling_list, group_entry)
4476 		perf_event_for_each_child(sibling, func);
4477 }
4478 
4479 static void __perf_event_period(struct perf_event *event,
4480 				struct perf_cpu_context *cpuctx,
4481 				struct perf_event_context *ctx,
4482 				void *info)
4483 {
4484 	u64 value = *((u64 *)info);
4485 	bool active;
4486 
4487 	if (event->attr.freq) {
4488 		event->attr.sample_freq = value;
4489 	} else {
4490 		event->attr.sample_period = value;
4491 		event->hw.sample_period = value;
4492 	}
4493 
4494 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
4495 	if (active) {
4496 		perf_pmu_disable(ctx->pmu);
4497 		/*
4498 		 * We could be throttled; unthrottle now to avoid the tick
4499 		 * trying to unthrottle while we already re-started the event.
4500 		 */
4501 		if (event->hw.interrupts == MAX_INTERRUPTS) {
4502 			event->hw.interrupts = 0;
4503 			perf_log_throttle(event, 1);
4504 		}
4505 		event->pmu->stop(event, PERF_EF_UPDATE);
4506 	}
4507 
4508 	local64_set(&event->hw.period_left, 0);
4509 
4510 	if (active) {
4511 		event->pmu->start(event, PERF_EF_RELOAD);
4512 		perf_pmu_enable(ctx->pmu);
4513 	}
4514 }
4515 
4516 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4517 {
4518 	u64 value;
4519 
4520 	if (!is_sampling_event(event))
4521 		return -EINVAL;
4522 
4523 	if (copy_from_user(&value, arg, sizeof(value)))
4524 		return -EFAULT;
4525 
4526 	if (!value)
4527 		return -EINVAL;
4528 
4529 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4530 		return -EINVAL;
4531 
4532 	event_function_call(event, __perf_event_period, &value);
4533 
4534 	return 0;
4535 }
4536 
4537 static const struct file_operations perf_fops;
4538 
4539 static inline int perf_fget_light(int fd, struct fd *p)
4540 {
4541 	struct fd f = fdget(fd);
4542 	if (!f.file)
4543 		return -EBADF;
4544 
4545 	if (f.file->f_op != &perf_fops) {
4546 		fdput(f);
4547 		return -EBADF;
4548 	}
4549 	*p = f;
4550 	return 0;
4551 }
4552 
4553 static int perf_event_set_output(struct perf_event *event,
4554 				 struct perf_event *output_event);
4555 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4556 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4557 
4558 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4559 {
4560 	void (*func)(struct perf_event *);
4561 	u32 flags = arg;
4562 
4563 	switch (cmd) {
4564 	case PERF_EVENT_IOC_ENABLE:
4565 		func = _perf_event_enable;
4566 		break;
4567 	case PERF_EVENT_IOC_DISABLE:
4568 		func = _perf_event_disable;
4569 		break;
4570 	case PERF_EVENT_IOC_RESET:
4571 		func = _perf_event_reset;
4572 		break;
4573 
4574 	case PERF_EVENT_IOC_REFRESH:
4575 		return _perf_event_refresh(event, arg);
4576 
4577 	case PERF_EVENT_IOC_PERIOD:
4578 		return perf_event_period(event, (u64 __user *)arg);
4579 
4580 	case PERF_EVENT_IOC_ID:
4581 	{
4582 		u64 id = primary_event_id(event);
4583 
4584 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4585 			return -EFAULT;
4586 		return 0;
4587 	}
4588 
4589 	case PERF_EVENT_IOC_SET_OUTPUT:
4590 	{
4591 		int ret;
4592 		if (arg != -1) {
4593 			struct perf_event *output_event;
4594 			struct fd output;
4595 			ret = perf_fget_light(arg, &output);
4596 			if (ret)
4597 				return ret;
4598 			output_event = output.file->private_data;
4599 			ret = perf_event_set_output(event, output_event);
4600 			fdput(output);
4601 		} else {
4602 			ret = perf_event_set_output(event, NULL);
4603 		}
4604 		return ret;
4605 	}
4606 
4607 	case PERF_EVENT_IOC_SET_FILTER:
4608 		return perf_event_set_filter(event, (void __user *)arg);
4609 
4610 	case PERF_EVENT_IOC_SET_BPF:
4611 		return perf_event_set_bpf_prog(event, arg);
4612 
4613 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4614 		struct ring_buffer *rb;
4615 
4616 		rcu_read_lock();
4617 		rb = rcu_dereference(event->rb);
4618 		if (!rb || !rb->nr_pages) {
4619 			rcu_read_unlock();
4620 			return -EINVAL;
4621 		}
4622 		rb_toggle_paused(rb, !!arg);
4623 		rcu_read_unlock();
4624 		return 0;
4625 	}
4626 	default:
4627 		return -ENOTTY;
4628 	}
4629 
4630 	if (flags & PERF_IOC_FLAG_GROUP)
4631 		perf_event_for_each(event, func);
4632 	else
4633 		perf_event_for_each_child(event, func);
4634 
4635 	return 0;
4636 }
4637 
4638 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4639 {
4640 	struct perf_event *event = file->private_data;
4641 	struct perf_event_context *ctx;
4642 	long ret;
4643 
4644 	ctx = perf_event_ctx_lock(event);
4645 	ret = _perf_ioctl(event, cmd, arg);
4646 	perf_event_ctx_unlock(event, ctx);
4647 
4648 	return ret;
4649 }
4650 
4651 #ifdef CONFIG_COMPAT
4652 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4653 				unsigned long arg)
4654 {
4655 	switch (_IOC_NR(cmd)) {
4656 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4657 	case _IOC_NR(PERF_EVENT_IOC_ID):
4658 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4659 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4660 			cmd &= ~IOCSIZE_MASK;
4661 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4662 		}
4663 		break;
4664 	}
4665 	return perf_ioctl(file, cmd, arg);
4666 }
4667 #else
4668 # define perf_compat_ioctl NULL
4669 #endif
4670 
4671 int perf_event_task_enable(void)
4672 {
4673 	struct perf_event_context *ctx;
4674 	struct perf_event *event;
4675 
4676 	mutex_lock(&current->perf_event_mutex);
4677 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4678 		ctx = perf_event_ctx_lock(event);
4679 		perf_event_for_each_child(event, _perf_event_enable);
4680 		perf_event_ctx_unlock(event, ctx);
4681 	}
4682 	mutex_unlock(&current->perf_event_mutex);
4683 
4684 	return 0;
4685 }
4686 
4687 int perf_event_task_disable(void)
4688 {
4689 	struct perf_event_context *ctx;
4690 	struct perf_event *event;
4691 
4692 	mutex_lock(&current->perf_event_mutex);
4693 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4694 		ctx = perf_event_ctx_lock(event);
4695 		perf_event_for_each_child(event, _perf_event_disable);
4696 		perf_event_ctx_unlock(event, ctx);
4697 	}
4698 	mutex_unlock(&current->perf_event_mutex);
4699 
4700 	return 0;
4701 }
4702 
4703 static int perf_event_index(struct perf_event *event)
4704 {
4705 	if (event->hw.state & PERF_HES_STOPPED)
4706 		return 0;
4707 
4708 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4709 		return 0;
4710 
4711 	return event->pmu->event_idx(event);
4712 }
4713 
4714 static void calc_timer_values(struct perf_event *event,
4715 				u64 *now,
4716 				u64 *enabled,
4717 				u64 *running)
4718 {
4719 	u64 ctx_time;
4720 
4721 	*now = perf_clock();
4722 	ctx_time = event->shadow_ctx_time + *now;
4723 	*enabled = ctx_time - event->tstamp_enabled;
4724 	*running = ctx_time - event->tstamp_running;
4725 }
4726 
4727 static void perf_event_init_userpage(struct perf_event *event)
4728 {
4729 	struct perf_event_mmap_page *userpg;
4730 	struct ring_buffer *rb;
4731 
4732 	rcu_read_lock();
4733 	rb = rcu_dereference(event->rb);
4734 	if (!rb)
4735 		goto unlock;
4736 
4737 	userpg = rb->user_page;
4738 
4739 	/* Allow new userspace to detect that bit 0 is deprecated */
4740 	userpg->cap_bit0_is_deprecated = 1;
4741 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4742 	userpg->data_offset = PAGE_SIZE;
4743 	userpg->data_size = perf_data_size(rb);
4744 
4745 unlock:
4746 	rcu_read_unlock();
4747 }
4748 
4749 void __weak arch_perf_update_userpage(
4750 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4751 {
4752 }
4753 
4754 /*
4755  * Callers need to ensure there can be no nesting of this function, otherwise
4756  * the seqlock logic goes bad. We can not serialize this because the arch
4757  * code calls this from NMI context.
4758  */
4759 void perf_event_update_userpage(struct perf_event *event)
4760 {
4761 	struct perf_event_mmap_page *userpg;
4762 	struct ring_buffer *rb;
4763 	u64 enabled, running, now;
4764 
4765 	rcu_read_lock();
4766 	rb = rcu_dereference(event->rb);
4767 	if (!rb)
4768 		goto unlock;
4769 
4770 	/*
4771 	 * compute total_time_enabled, total_time_running
4772 	 * based on snapshot values taken when the event
4773 	 * was last scheduled in.
4774 	 *
4775 	 * we cannot simply called update_context_time()
4776 	 * because of locking issue as we can be called in
4777 	 * NMI context
4778 	 */
4779 	calc_timer_values(event, &now, &enabled, &running);
4780 
4781 	userpg = rb->user_page;
4782 	/*
4783 	 * Disable preemption so as to not let the corresponding user-space
4784 	 * spin too long if we get preempted.
4785 	 */
4786 	preempt_disable();
4787 	++userpg->lock;
4788 	barrier();
4789 	userpg->index = perf_event_index(event);
4790 	userpg->offset = perf_event_count(event);
4791 	if (userpg->index)
4792 		userpg->offset -= local64_read(&event->hw.prev_count);
4793 
4794 	userpg->time_enabled = enabled +
4795 			atomic64_read(&event->child_total_time_enabled);
4796 
4797 	userpg->time_running = running +
4798 			atomic64_read(&event->child_total_time_running);
4799 
4800 	arch_perf_update_userpage(event, userpg, now);
4801 
4802 	barrier();
4803 	++userpg->lock;
4804 	preempt_enable();
4805 unlock:
4806 	rcu_read_unlock();
4807 }
4808 
4809 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4810 {
4811 	struct perf_event *event = vma->vm_file->private_data;
4812 	struct ring_buffer *rb;
4813 	int ret = VM_FAULT_SIGBUS;
4814 
4815 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
4816 		if (vmf->pgoff == 0)
4817 			ret = 0;
4818 		return ret;
4819 	}
4820 
4821 	rcu_read_lock();
4822 	rb = rcu_dereference(event->rb);
4823 	if (!rb)
4824 		goto unlock;
4825 
4826 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4827 		goto unlock;
4828 
4829 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4830 	if (!vmf->page)
4831 		goto unlock;
4832 
4833 	get_page(vmf->page);
4834 	vmf->page->mapping = vma->vm_file->f_mapping;
4835 	vmf->page->index   = vmf->pgoff;
4836 
4837 	ret = 0;
4838 unlock:
4839 	rcu_read_unlock();
4840 
4841 	return ret;
4842 }
4843 
4844 static void ring_buffer_attach(struct perf_event *event,
4845 			       struct ring_buffer *rb)
4846 {
4847 	struct ring_buffer *old_rb = NULL;
4848 	unsigned long flags;
4849 
4850 	if (event->rb) {
4851 		/*
4852 		 * Should be impossible, we set this when removing
4853 		 * event->rb_entry and wait/clear when adding event->rb_entry.
4854 		 */
4855 		WARN_ON_ONCE(event->rcu_pending);
4856 
4857 		old_rb = event->rb;
4858 		spin_lock_irqsave(&old_rb->event_lock, flags);
4859 		list_del_rcu(&event->rb_entry);
4860 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
4861 
4862 		event->rcu_batches = get_state_synchronize_rcu();
4863 		event->rcu_pending = 1;
4864 	}
4865 
4866 	if (rb) {
4867 		if (event->rcu_pending) {
4868 			cond_synchronize_rcu(event->rcu_batches);
4869 			event->rcu_pending = 0;
4870 		}
4871 
4872 		spin_lock_irqsave(&rb->event_lock, flags);
4873 		list_add_rcu(&event->rb_entry, &rb->event_list);
4874 		spin_unlock_irqrestore(&rb->event_lock, flags);
4875 	}
4876 
4877 	/*
4878 	 * Avoid racing with perf_mmap_close(AUX): stop the event
4879 	 * before swizzling the event::rb pointer; if it's getting
4880 	 * unmapped, its aux_mmap_count will be 0 and it won't
4881 	 * restart. See the comment in __perf_pmu_output_stop().
4882 	 *
4883 	 * Data will inevitably be lost when set_output is done in
4884 	 * mid-air, but then again, whoever does it like this is
4885 	 * not in for the data anyway.
4886 	 */
4887 	if (has_aux(event))
4888 		perf_event_stop(event, 0);
4889 
4890 	rcu_assign_pointer(event->rb, rb);
4891 
4892 	if (old_rb) {
4893 		ring_buffer_put(old_rb);
4894 		/*
4895 		 * Since we detached before setting the new rb, so that we
4896 		 * could attach the new rb, we could have missed a wakeup.
4897 		 * Provide it now.
4898 		 */
4899 		wake_up_all(&event->waitq);
4900 	}
4901 }
4902 
4903 static void ring_buffer_wakeup(struct perf_event *event)
4904 {
4905 	struct ring_buffer *rb;
4906 
4907 	rcu_read_lock();
4908 	rb = rcu_dereference(event->rb);
4909 	if (rb) {
4910 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4911 			wake_up_all(&event->waitq);
4912 	}
4913 	rcu_read_unlock();
4914 }
4915 
4916 struct ring_buffer *ring_buffer_get(struct perf_event *event)
4917 {
4918 	struct ring_buffer *rb;
4919 
4920 	rcu_read_lock();
4921 	rb = rcu_dereference(event->rb);
4922 	if (rb) {
4923 		if (!atomic_inc_not_zero(&rb->refcount))
4924 			rb = NULL;
4925 	}
4926 	rcu_read_unlock();
4927 
4928 	return rb;
4929 }
4930 
4931 void ring_buffer_put(struct ring_buffer *rb)
4932 {
4933 	if (!atomic_dec_and_test(&rb->refcount))
4934 		return;
4935 
4936 	WARN_ON_ONCE(!list_empty(&rb->event_list));
4937 
4938 	call_rcu(&rb->rcu_head, rb_free_rcu);
4939 }
4940 
4941 static void perf_mmap_open(struct vm_area_struct *vma)
4942 {
4943 	struct perf_event *event = vma->vm_file->private_data;
4944 
4945 	atomic_inc(&event->mmap_count);
4946 	atomic_inc(&event->rb->mmap_count);
4947 
4948 	if (vma->vm_pgoff)
4949 		atomic_inc(&event->rb->aux_mmap_count);
4950 
4951 	if (event->pmu->event_mapped)
4952 		event->pmu->event_mapped(event);
4953 }
4954 
4955 static void perf_pmu_output_stop(struct perf_event *event);
4956 
4957 /*
4958  * A buffer can be mmap()ed multiple times; either directly through the same
4959  * event, or through other events by use of perf_event_set_output().
4960  *
4961  * In order to undo the VM accounting done by perf_mmap() we need to destroy
4962  * the buffer here, where we still have a VM context. This means we need
4963  * to detach all events redirecting to us.
4964  */
4965 static void perf_mmap_close(struct vm_area_struct *vma)
4966 {
4967 	struct perf_event *event = vma->vm_file->private_data;
4968 
4969 	struct ring_buffer *rb = ring_buffer_get(event);
4970 	struct user_struct *mmap_user = rb->mmap_user;
4971 	int mmap_locked = rb->mmap_locked;
4972 	unsigned long size = perf_data_size(rb);
4973 
4974 	if (event->pmu->event_unmapped)
4975 		event->pmu->event_unmapped(event);
4976 
4977 	/*
4978 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
4979 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
4980 	 * serialize with perf_mmap here.
4981 	 */
4982 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4983 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4984 		/*
4985 		 * Stop all AUX events that are writing to this buffer,
4986 		 * so that we can free its AUX pages and corresponding PMU
4987 		 * data. Note that after rb::aux_mmap_count dropped to zero,
4988 		 * they won't start any more (see perf_aux_output_begin()).
4989 		 */
4990 		perf_pmu_output_stop(event);
4991 
4992 		/* now it's safe to free the pages */
4993 		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4994 		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4995 
4996 		/* this has to be the last one */
4997 		rb_free_aux(rb);
4998 		WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
4999 
5000 		mutex_unlock(&event->mmap_mutex);
5001 	}
5002 
5003 	atomic_dec(&rb->mmap_count);
5004 
5005 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5006 		goto out_put;
5007 
5008 	ring_buffer_attach(event, NULL);
5009 	mutex_unlock(&event->mmap_mutex);
5010 
5011 	/* If there's still other mmap()s of this buffer, we're done. */
5012 	if (atomic_read(&rb->mmap_count))
5013 		goto out_put;
5014 
5015 	/*
5016 	 * No other mmap()s, detach from all other events that might redirect
5017 	 * into the now unreachable buffer. Somewhat complicated by the
5018 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5019 	 */
5020 again:
5021 	rcu_read_lock();
5022 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5023 		if (!atomic_long_inc_not_zero(&event->refcount)) {
5024 			/*
5025 			 * This event is en-route to free_event() which will
5026 			 * detach it and remove it from the list.
5027 			 */
5028 			continue;
5029 		}
5030 		rcu_read_unlock();
5031 
5032 		mutex_lock(&event->mmap_mutex);
5033 		/*
5034 		 * Check we didn't race with perf_event_set_output() which can
5035 		 * swizzle the rb from under us while we were waiting to
5036 		 * acquire mmap_mutex.
5037 		 *
5038 		 * If we find a different rb; ignore this event, a next
5039 		 * iteration will no longer find it on the list. We have to
5040 		 * still restart the iteration to make sure we're not now
5041 		 * iterating the wrong list.
5042 		 */
5043 		if (event->rb == rb)
5044 			ring_buffer_attach(event, NULL);
5045 
5046 		mutex_unlock(&event->mmap_mutex);
5047 		put_event(event);
5048 
5049 		/*
5050 		 * Restart the iteration; either we're on the wrong list or
5051 		 * destroyed its integrity by doing a deletion.
5052 		 */
5053 		goto again;
5054 	}
5055 	rcu_read_unlock();
5056 
5057 	/*
5058 	 * It could be there's still a few 0-ref events on the list; they'll
5059 	 * get cleaned up by free_event() -- they'll also still have their
5060 	 * ref on the rb and will free it whenever they are done with it.
5061 	 *
5062 	 * Aside from that, this buffer is 'fully' detached and unmapped,
5063 	 * undo the VM accounting.
5064 	 */
5065 
5066 	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5067 	vma->vm_mm->pinned_vm -= mmap_locked;
5068 	free_uid(mmap_user);
5069 
5070 out_put:
5071 	ring_buffer_put(rb); /* could be last */
5072 }
5073 
5074 static const struct vm_operations_struct perf_mmap_vmops = {
5075 	.open		= perf_mmap_open,
5076 	.close		= perf_mmap_close, /* non mergable */
5077 	.fault		= perf_mmap_fault,
5078 	.page_mkwrite	= perf_mmap_fault,
5079 };
5080 
5081 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5082 {
5083 	struct perf_event *event = file->private_data;
5084 	unsigned long user_locked, user_lock_limit;
5085 	struct user_struct *user = current_user();
5086 	unsigned long locked, lock_limit;
5087 	struct ring_buffer *rb = NULL;
5088 	unsigned long vma_size;
5089 	unsigned long nr_pages;
5090 	long user_extra = 0, extra = 0;
5091 	int ret = 0, flags = 0;
5092 
5093 	/*
5094 	 * Don't allow mmap() of inherited per-task counters. This would
5095 	 * create a performance issue due to all children writing to the
5096 	 * same rb.
5097 	 */
5098 	if (event->cpu == -1 && event->attr.inherit)
5099 		return -EINVAL;
5100 
5101 	if (!(vma->vm_flags & VM_SHARED))
5102 		return -EINVAL;
5103 
5104 	vma_size = vma->vm_end - vma->vm_start;
5105 
5106 	if (vma->vm_pgoff == 0) {
5107 		nr_pages = (vma_size / PAGE_SIZE) - 1;
5108 	} else {
5109 		/*
5110 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5111 		 * mapped, all subsequent mappings should have the same size
5112 		 * and offset. Must be above the normal perf buffer.
5113 		 */
5114 		u64 aux_offset, aux_size;
5115 
5116 		if (!event->rb)
5117 			return -EINVAL;
5118 
5119 		nr_pages = vma_size / PAGE_SIZE;
5120 
5121 		mutex_lock(&event->mmap_mutex);
5122 		ret = -EINVAL;
5123 
5124 		rb = event->rb;
5125 		if (!rb)
5126 			goto aux_unlock;
5127 
5128 		aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
5129 		aux_size = ACCESS_ONCE(rb->user_page->aux_size);
5130 
5131 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5132 			goto aux_unlock;
5133 
5134 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5135 			goto aux_unlock;
5136 
5137 		/* already mapped with a different offset */
5138 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5139 			goto aux_unlock;
5140 
5141 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5142 			goto aux_unlock;
5143 
5144 		/* already mapped with a different size */
5145 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5146 			goto aux_unlock;
5147 
5148 		if (!is_power_of_2(nr_pages))
5149 			goto aux_unlock;
5150 
5151 		if (!atomic_inc_not_zero(&rb->mmap_count))
5152 			goto aux_unlock;
5153 
5154 		if (rb_has_aux(rb)) {
5155 			atomic_inc(&rb->aux_mmap_count);
5156 			ret = 0;
5157 			goto unlock;
5158 		}
5159 
5160 		atomic_set(&rb->aux_mmap_count, 1);
5161 		user_extra = nr_pages;
5162 
5163 		goto accounting;
5164 	}
5165 
5166 	/*
5167 	 * If we have rb pages ensure they're a power-of-two number, so we
5168 	 * can do bitmasks instead of modulo.
5169 	 */
5170 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
5171 		return -EINVAL;
5172 
5173 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
5174 		return -EINVAL;
5175 
5176 	WARN_ON_ONCE(event->ctx->parent_ctx);
5177 again:
5178 	mutex_lock(&event->mmap_mutex);
5179 	if (event->rb) {
5180 		if (event->rb->nr_pages != nr_pages) {
5181 			ret = -EINVAL;
5182 			goto unlock;
5183 		}
5184 
5185 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5186 			/*
5187 			 * Raced against perf_mmap_close() through
5188 			 * perf_event_set_output(). Try again, hope for better
5189 			 * luck.
5190 			 */
5191 			mutex_unlock(&event->mmap_mutex);
5192 			goto again;
5193 		}
5194 
5195 		goto unlock;
5196 	}
5197 
5198 	user_extra = nr_pages + 1;
5199 
5200 accounting:
5201 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5202 
5203 	/*
5204 	 * Increase the limit linearly with more CPUs:
5205 	 */
5206 	user_lock_limit *= num_online_cpus();
5207 
5208 	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5209 
5210 	if (user_locked > user_lock_limit)
5211 		extra = user_locked - user_lock_limit;
5212 
5213 	lock_limit = rlimit(RLIMIT_MEMLOCK);
5214 	lock_limit >>= PAGE_SHIFT;
5215 	locked = vma->vm_mm->pinned_vm + extra;
5216 
5217 	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5218 		!capable(CAP_IPC_LOCK)) {
5219 		ret = -EPERM;
5220 		goto unlock;
5221 	}
5222 
5223 	WARN_ON(!rb && event->rb);
5224 
5225 	if (vma->vm_flags & VM_WRITE)
5226 		flags |= RING_BUFFER_WRITABLE;
5227 
5228 	if (!rb) {
5229 		rb = rb_alloc(nr_pages,
5230 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
5231 			      event->cpu, flags);
5232 
5233 		if (!rb) {
5234 			ret = -ENOMEM;
5235 			goto unlock;
5236 		}
5237 
5238 		atomic_set(&rb->mmap_count, 1);
5239 		rb->mmap_user = get_current_user();
5240 		rb->mmap_locked = extra;
5241 
5242 		ring_buffer_attach(event, rb);
5243 
5244 		perf_event_init_userpage(event);
5245 		perf_event_update_userpage(event);
5246 	} else {
5247 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5248 				   event->attr.aux_watermark, flags);
5249 		if (!ret)
5250 			rb->aux_mmap_locked = extra;
5251 	}
5252 
5253 unlock:
5254 	if (!ret) {
5255 		atomic_long_add(user_extra, &user->locked_vm);
5256 		vma->vm_mm->pinned_vm += extra;
5257 
5258 		atomic_inc(&event->mmap_count);
5259 	} else if (rb) {
5260 		atomic_dec(&rb->mmap_count);
5261 	}
5262 aux_unlock:
5263 	mutex_unlock(&event->mmap_mutex);
5264 
5265 	/*
5266 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
5267 	 * vma.
5268 	 */
5269 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5270 	vma->vm_ops = &perf_mmap_vmops;
5271 
5272 	if (event->pmu->event_mapped)
5273 		event->pmu->event_mapped(event);
5274 
5275 	return ret;
5276 }
5277 
5278 static int perf_fasync(int fd, struct file *filp, int on)
5279 {
5280 	struct inode *inode = file_inode(filp);
5281 	struct perf_event *event = filp->private_data;
5282 	int retval;
5283 
5284 	inode_lock(inode);
5285 	retval = fasync_helper(fd, filp, on, &event->fasync);
5286 	inode_unlock(inode);
5287 
5288 	if (retval < 0)
5289 		return retval;
5290 
5291 	return 0;
5292 }
5293 
5294 static const struct file_operations perf_fops = {
5295 	.llseek			= no_llseek,
5296 	.release		= perf_release,
5297 	.read			= perf_read,
5298 	.poll			= perf_poll,
5299 	.unlocked_ioctl		= perf_ioctl,
5300 	.compat_ioctl		= perf_compat_ioctl,
5301 	.mmap			= perf_mmap,
5302 	.fasync			= perf_fasync,
5303 };
5304 
5305 /*
5306  * Perf event wakeup
5307  *
5308  * If there's data, ensure we set the poll() state and publish everything
5309  * to user-space before waking everybody up.
5310  */
5311 
5312 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5313 {
5314 	/* only the parent has fasync state */
5315 	if (event->parent)
5316 		event = event->parent;
5317 	return &event->fasync;
5318 }
5319 
5320 void perf_event_wakeup(struct perf_event *event)
5321 {
5322 	ring_buffer_wakeup(event);
5323 
5324 	if (event->pending_kill) {
5325 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5326 		event->pending_kill = 0;
5327 	}
5328 }
5329 
5330 static void perf_pending_event(struct irq_work *entry)
5331 {
5332 	struct perf_event *event = container_of(entry,
5333 			struct perf_event, pending);
5334 	int rctx;
5335 
5336 	rctx = perf_swevent_get_recursion_context();
5337 	/*
5338 	 * If we 'fail' here, that's OK, it means recursion is already disabled
5339 	 * and we won't recurse 'further'.
5340 	 */
5341 
5342 	if (event->pending_disable) {
5343 		event->pending_disable = 0;
5344 		perf_event_disable_local(event);
5345 	}
5346 
5347 	if (event->pending_wakeup) {
5348 		event->pending_wakeup = 0;
5349 		perf_event_wakeup(event);
5350 	}
5351 
5352 	if (rctx >= 0)
5353 		perf_swevent_put_recursion_context(rctx);
5354 }
5355 
5356 /*
5357  * We assume there is only KVM supporting the callbacks.
5358  * Later on, we might change it to a list if there is
5359  * another virtualization implementation supporting the callbacks.
5360  */
5361 struct perf_guest_info_callbacks *perf_guest_cbs;
5362 
5363 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5364 {
5365 	perf_guest_cbs = cbs;
5366 	return 0;
5367 }
5368 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5369 
5370 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5371 {
5372 	perf_guest_cbs = NULL;
5373 	return 0;
5374 }
5375 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5376 
5377 static void
5378 perf_output_sample_regs(struct perf_output_handle *handle,
5379 			struct pt_regs *regs, u64 mask)
5380 {
5381 	int bit;
5382 	DECLARE_BITMAP(_mask, 64);
5383 
5384 	bitmap_from_u64(_mask, mask);
5385 	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5386 		u64 val;
5387 
5388 		val = perf_reg_value(regs, bit);
5389 		perf_output_put(handle, val);
5390 	}
5391 }
5392 
5393 static void perf_sample_regs_user(struct perf_regs *regs_user,
5394 				  struct pt_regs *regs,
5395 				  struct pt_regs *regs_user_copy)
5396 {
5397 	if (user_mode(regs)) {
5398 		regs_user->abi = perf_reg_abi(current);
5399 		regs_user->regs = regs;
5400 	} else if (current->mm) {
5401 		perf_get_regs_user(regs_user, regs, regs_user_copy);
5402 	} else {
5403 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5404 		regs_user->regs = NULL;
5405 	}
5406 }
5407 
5408 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5409 				  struct pt_regs *regs)
5410 {
5411 	regs_intr->regs = regs;
5412 	regs_intr->abi  = perf_reg_abi(current);
5413 }
5414 
5415 
5416 /*
5417  * Get remaining task size from user stack pointer.
5418  *
5419  * It'd be better to take stack vma map and limit this more
5420  * precisly, but there's no way to get it safely under interrupt,
5421  * so using TASK_SIZE as limit.
5422  */
5423 static u64 perf_ustack_task_size(struct pt_regs *regs)
5424 {
5425 	unsigned long addr = perf_user_stack_pointer(regs);
5426 
5427 	if (!addr || addr >= TASK_SIZE)
5428 		return 0;
5429 
5430 	return TASK_SIZE - addr;
5431 }
5432 
5433 static u16
5434 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5435 			struct pt_regs *regs)
5436 {
5437 	u64 task_size;
5438 
5439 	/* No regs, no stack pointer, no dump. */
5440 	if (!regs)
5441 		return 0;
5442 
5443 	/*
5444 	 * Check if we fit in with the requested stack size into the:
5445 	 * - TASK_SIZE
5446 	 *   If we don't, we limit the size to the TASK_SIZE.
5447 	 *
5448 	 * - remaining sample size
5449 	 *   If we don't, we customize the stack size to
5450 	 *   fit in to the remaining sample size.
5451 	 */
5452 
5453 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5454 	stack_size = min(stack_size, (u16) task_size);
5455 
5456 	/* Current header size plus static size and dynamic size. */
5457 	header_size += 2 * sizeof(u64);
5458 
5459 	/* Do we fit in with the current stack dump size? */
5460 	if ((u16) (header_size + stack_size) < header_size) {
5461 		/*
5462 		 * If we overflow the maximum size for the sample,
5463 		 * we customize the stack dump size to fit in.
5464 		 */
5465 		stack_size = USHRT_MAX - header_size - sizeof(u64);
5466 		stack_size = round_up(stack_size, sizeof(u64));
5467 	}
5468 
5469 	return stack_size;
5470 }
5471 
5472 static void
5473 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5474 			  struct pt_regs *regs)
5475 {
5476 	/* Case of a kernel thread, nothing to dump */
5477 	if (!regs) {
5478 		u64 size = 0;
5479 		perf_output_put(handle, size);
5480 	} else {
5481 		unsigned long sp;
5482 		unsigned int rem;
5483 		u64 dyn_size;
5484 
5485 		/*
5486 		 * We dump:
5487 		 * static size
5488 		 *   - the size requested by user or the best one we can fit
5489 		 *     in to the sample max size
5490 		 * data
5491 		 *   - user stack dump data
5492 		 * dynamic size
5493 		 *   - the actual dumped size
5494 		 */
5495 
5496 		/* Static size. */
5497 		perf_output_put(handle, dump_size);
5498 
5499 		/* Data. */
5500 		sp = perf_user_stack_pointer(regs);
5501 		rem = __output_copy_user(handle, (void *) sp, dump_size);
5502 		dyn_size = dump_size - rem;
5503 
5504 		perf_output_skip(handle, rem);
5505 
5506 		/* Dynamic size. */
5507 		perf_output_put(handle, dyn_size);
5508 	}
5509 }
5510 
5511 static void __perf_event_header__init_id(struct perf_event_header *header,
5512 					 struct perf_sample_data *data,
5513 					 struct perf_event *event)
5514 {
5515 	u64 sample_type = event->attr.sample_type;
5516 
5517 	data->type = sample_type;
5518 	header->size += event->id_header_size;
5519 
5520 	if (sample_type & PERF_SAMPLE_TID) {
5521 		/* namespace issues */
5522 		data->tid_entry.pid = perf_event_pid(event, current);
5523 		data->tid_entry.tid = perf_event_tid(event, current);
5524 	}
5525 
5526 	if (sample_type & PERF_SAMPLE_TIME)
5527 		data->time = perf_event_clock(event);
5528 
5529 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5530 		data->id = primary_event_id(event);
5531 
5532 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5533 		data->stream_id = event->id;
5534 
5535 	if (sample_type & PERF_SAMPLE_CPU) {
5536 		data->cpu_entry.cpu	 = raw_smp_processor_id();
5537 		data->cpu_entry.reserved = 0;
5538 	}
5539 }
5540 
5541 void perf_event_header__init_id(struct perf_event_header *header,
5542 				struct perf_sample_data *data,
5543 				struct perf_event *event)
5544 {
5545 	if (event->attr.sample_id_all)
5546 		__perf_event_header__init_id(header, data, event);
5547 }
5548 
5549 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5550 					   struct perf_sample_data *data)
5551 {
5552 	u64 sample_type = data->type;
5553 
5554 	if (sample_type & PERF_SAMPLE_TID)
5555 		perf_output_put(handle, data->tid_entry);
5556 
5557 	if (sample_type & PERF_SAMPLE_TIME)
5558 		perf_output_put(handle, data->time);
5559 
5560 	if (sample_type & PERF_SAMPLE_ID)
5561 		perf_output_put(handle, data->id);
5562 
5563 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5564 		perf_output_put(handle, data->stream_id);
5565 
5566 	if (sample_type & PERF_SAMPLE_CPU)
5567 		perf_output_put(handle, data->cpu_entry);
5568 
5569 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
5570 		perf_output_put(handle, data->id);
5571 }
5572 
5573 void perf_event__output_id_sample(struct perf_event *event,
5574 				  struct perf_output_handle *handle,
5575 				  struct perf_sample_data *sample)
5576 {
5577 	if (event->attr.sample_id_all)
5578 		__perf_event__output_id_sample(handle, sample);
5579 }
5580 
5581 static void perf_output_read_one(struct perf_output_handle *handle,
5582 				 struct perf_event *event,
5583 				 u64 enabled, u64 running)
5584 {
5585 	u64 read_format = event->attr.read_format;
5586 	u64 values[4];
5587 	int n = 0;
5588 
5589 	values[n++] = perf_event_count(event);
5590 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5591 		values[n++] = enabled +
5592 			atomic64_read(&event->child_total_time_enabled);
5593 	}
5594 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5595 		values[n++] = running +
5596 			atomic64_read(&event->child_total_time_running);
5597 	}
5598 	if (read_format & PERF_FORMAT_ID)
5599 		values[n++] = primary_event_id(event);
5600 
5601 	__output_copy(handle, values, n * sizeof(u64));
5602 }
5603 
5604 /*
5605  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5606  */
5607 static void perf_output_read_group(struct perf_output_handle *handle,
5608 			    struct perf_event *event,
5609 			    u64 enabled, u64 running)
5610 {
5611 	struct perf_event *leader = event->group_leader, *sub;
5612 	u64 read_format = event->attr.read_format;
5613 	u64 values[5];
5614 	int n = 0;
5615 
5616 	values[n++] = 1 + leader->nr_siblings;
5617 
5618 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5619 		values[n++] = enabled;
5620 
5621 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5622 		values[n++] = running;
5623 
5624 	if (leader != event)
5625 		leader->pmu->read(leader);
5626 
5627 	values[n++] = perf_event_count(leader);
5628 	if (read_format & PERF_FORMAT_ID)
5629 		values[n++] = primary_event_id(leader);
5630 
5631 	__output_copy(handle, values, n * sizeof(u64));
5632 
5633 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5634 		n = 0;
5635 
5636 		if ((sub != event) &&
5637 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
5638 			sub->pmu->read(sub);
5639 
5640 		values[n++] = perf_event_count(sub);
5641 		if (read_format & PERF_FORMAT_ID)
5642 			values[n++] = primary_event_id(sub);
5643 
5644 		__output_copy(handle, values, n * sizeof(u64));
5645 	}
5646 }
5647 
5648 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5649 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
5650 
5651 static void perf_output_read(struct perf_output_handle *handle,
5652 			     struct perf_event *event)
5653 {
5654 	u64 enabled = 0, running = 0, now;
5655 	u64 read_format = event->attr.read_format;
5656 
5657 	/*
5658 	 * compute total_time_enabled, total_time_running
5659 	 * based on snapshot values taken when the event
5660 	 * was last scheduled in.
5661 	 *
5662 	 * we cannot simply called update_context_time()
5663 	 * because of locking issue as we are called in
5664 	 * NMI context
5665 	 */
5666 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
5667 		calc_timer_values(event, &now, &enabled, &running);
5668 
5669 	if (event->attr.read_format & PERF_FORMAT_GROUP)
5670 		perf_output_read_group(handle, event, enabled, running);
5671 	else
5672 		perf_output_read_one(handle, event, enabled, running);
5673 }
5674 
5675 void perf_output_sample(struct perf_output_handle *handle,
5676 			struct perf_event_header *header,
5677 			struct perf_sample_data *data,
5678 			struct perf_event *event)
5679 {
5680 	u64 sample_type = data->type;
5681 
5682 	perf_output_put(handle, *header);
5683 
5684 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
5685 		perf_output_put(handle, data->id);
5686 
5687 	if (sample_type & PERF_SAMPLE_IP)
5688 		perf_output_put(handle, data->ip);
5689 
5690 	if (sample_type & PERF_SAMPLE_TID)
5691 		perf_output_put(handle, data->tid_entry);
5692 
5693 	if (sample_type & PERF_SAMPLE_TIME)
5694 		perf_output_put(handle, data->time);
5695 
5696 	if (sample_type & PERF_SAMPLE_ADDR)
5697 		perf_output_put(handle, data->addr);
5698 
5699 	if (sample_type & PERF_SAMPLE_ID)
5700 		perf_output_put(handle, data->id);
5701 
5702 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5703 		perf_output_put(handle, data->stream_id);
5704 
5705 	if (sample_type & PERF_SAMPLE_CPU)
5706 		perf_output_put(handle, data->cpu_entry);
5707 
5708 	if (sample_type & PERF_SAMPLE_PERIOD)
5709 		perf_output_put(handle, data->period);
5710 
5711 	if (sample_type & PERF_SAMPLE_READ)
5712 		perf_output_read(handle, event);
5713 
5714 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5715 		if (data->callchain) {
5716 			int size = 1;
5717 
5718 			if (data->callchain)
5719 				size += data->callchain->nr;
5720 
5721 			size *= sizeof(u64);
5722 
5723 			__output_copy(handle, data->callchain, size);
5724 		} else {
5725 			u64 nr = 0;
5726 			perf_output_put(handle, nr);
5727 		}
5728 	}
5729 
5730 	if (sample_type & PERF_SAMPLE_RAW) {
5731 		struct perf_raw_record *raw = data->raw;
5732 
5733 		if (raw) {
5734 			struct perf_raw_frag *frag = &raw->frag;
5735 
5736 			perf_output_put(handle, raw->size);
5737 			do {
5738 				if (frag->copy) {
5739 					__output_custom(handle, frag->copy,
5740 							frag->data, frag->size);
5741 				} else {
5742 					__output_copy(handle, frag->data,
5743 						      frag->size);
5744 				}
5745 				if (perf_raw_frag_last(frag))
5746 					break;
5747 				frag = frag->next;
5748 			} while (1);
5749 			if (frag->pad)
5750 				__output_skip(handle, NULL, frag->pad);
5751 		} else {
5752 			struct {
5753 				u32	size;
5754 				u32	data;
5755 			} raw = {
5756 				.size = sizeof(u32),
5757 				.data = 0,
5758 			};
5759 			perf_output_put(handle, raw);
5760 		}
5761 	}
5762 
5763 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5764 		if (data->br_stack) {
5765 			size_t size;
5766 
5767 			size = data->br_stack->nr
5768 			     * sizeof(struct perf_branch_entry);
5769 
5770 			perf_output_put(handle, data->br_stack->nr);
5771 			perf_output_copy(handle, data->br_stack->entries, size);
5772 		} else {
5773 			/*
5774 			 * we always store at least the value of nr
5775 			 */
5776 			u64 nr = 0;
5777 			perf_output_put(handle, nr);
5778 		}
5779 	}
5780 
5781 	if (sample_type & PERF_SAMPLE_REGS_USER) {
5782 		u64 abi = data->regs_user.abi;
5783 
5784 		/*
5785 		 * If there are no regs to dump, notice it through
5786 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5787 		 */
5788 		perf_output_put(handle, abi);
5789 
5790 		if (abi) {
5791 			u64 mask = event->attr.sample_regs_user;
5792 			perf_output_sample_regs(handle,
5793 						data->regs_user.regs,
5794 						mask);
5795 		}
5796 	}
5797 
5798 	if (sample_type & PERF_SAMPLE_STACK_USER) {
5799 		perf_output_sample_ustack(handle,
5800 					  data->stack_user_size,
5801 					  data->regs_user.regs);
5802 	}
5803 
5804 	if (sample_type & PERF_SAMPLE_WEIGHT)
5805 		perf_output_put(handle, data->weight);
5806 
5807 	if (sample_type & PERF_SAMPLE_DATA_SRC)
5808 		perf_output_put(handle, data->data_src.val);
5809 
5810 	if (sample_type & PERF_SAMPLE_TRANSACTION)
5811 		perf_output_put(handle, data->txn);
5812 
5813 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
5814 		u64 abi = data->regs_intr.abi;
5815 		/*
5816 		 * If there are no regs to dump, notice it through
5817 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5818 		 */
5819 		perf_output_put(handle, abi);
5820 
5821 		if (abi) {
5822 			u64 mask = event->attr.sample_regs_intr;
5823 
5824 			perf_output_sample_regs(handle,
5825 						data->regs_intr.regs,
5826 						mask);
5827 		}
5828 	}
5829 
5830 	if (!event->attr.watermark) {
5831 		int wakeup_events = event->attr.wakeup_events;
5832 
5833 		if (wakeup_events) {
5834 			struct ring_buffer *rb = handle->rb;
5835 			int events = local_inc_return(&rb->events);
5836 
5837 			if (events >= wakeup_events) {
5838 				local_sub(wakeup_events, &rb->events);
5839 				local_inc(&rb->wakeup);
5840 			}
5841 		}
5842 	}
5843 }
5844 
5845 void perf_prepare_sample(struct perf_event_header *header,
5846 			 struct perf_sample_data *data,
5847 			 struct perf_event *event,
5848 			 struct pt_regs *regs)
5849 {
5850 	u64 sample_type = event->attr.sample_type;
5851 
5852 	header->type = PERF_RECORD_SAMPLE;
5853 	header->size = sizeof(*header) + event->header_size;
5854 
5855 	header->misc = 0;
5856 	header->misc |= perf_misc_flags(regs);
5857 
5858 	__perf_event_header__init_id(header, data, event);
5859 
5860 	if (sample_type & PERF_SAMPLE_IP)
5861 		data->ip = perf_instruction_pointer(regs);
5862 
5863 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5864 		int size = 1;
5865 
5866 		data->callchain = perf_callchain(event, regs);
5867 
5868 		if (data->callchain)
5869 			size += data->callchain->nr;
5870 
5871 		header->size += size * sizeof(u64);
5872 	}
5873 
5874 	if (sample_type & PERF_SAMPLE_RAW) {
5875 		struct perf_raw_record *raw = data->raw;
5876 		int size;
5877 
5878 		if (raw) {
5879 			struct perf_raw_frag *frag = &raw->frag;
5880 			u32 sum = 0;
5881 
5882 			do {
5883 				sum += frag->size;
5884 				if (perf_raw_frag_last(frag))
5885 					break;
5886 				frag = frag->next;
5887 			} while (1);
5888 
5889 			size = round_up(sum + sizeof(u32), sizeof(u64));
5890 			raw->size = size - sizeof(u32);
5891 			frag->pad = raw->size - sum;
5892 		} else {
5893 			size = sizeof(u64);
5894 		}
5895 
5896 		header->size += size;
5897 	}
5898 
5899 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5900 		int size = sizeof(u64); /* nr */
5901 		if (data->br_stack) {
5902 			size += data->br_stack->nr
5903 			      * sizeof(struct perf_branch_entry);
5904 		}
5905 		header->size += size;
5906 	}
5907 
5908 	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5909 		perf_sample_regs_user(&data->regs_user, regs,
5910 				      &data->regs_user_copy);
5911 
5912 	if (sample_type & PERF_SAMPLE_REGS_USER) {
5913 		/* regs dump ABI info */
5914 		int size = sizeof(u64);
5915 
5916 		if (data->regs_user.regs) {
5917 			u64 mask = event->attr.sample_regs_user;
5918 			size += hweight64(mask) * sizeof(u64);
5919 		}
5920 
5921 		header->size += size;
5922 	}
5923 
5924 	if (sample_type & PERF_SAMPLE_STACK_USER) {
5925 		/*
5926 		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5927 		 * processed as the last one or have additional check added
5928 		 * in case new sample type is added, because we could eat
5929 		 * up the rest of the sample size.
5930 		 */
5931 		u16 stack_size = event->attr.sample_stack_user;
5932 		u16 size = sizeof(u64);
5933 
5934 		stack_size = perf_sample_ustack_size(stack_size, header->size,
5935 						     data->regs_user.regs);
5936 
5937 		/*
5938 		 * If there is something to dump, add space for the dump
5939 		 * itself and for the field that tells the dynamic size,
5940 		 * which is how many have been actually dumped.
5941 		 */
5942 		if (stack_size)
5943 			size += sizeof(u64) + stack_size;
5944 
5945 		data->stack_user_size = stack_size;
5946 		header->size += size;
5947 	}
5948 
5949 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
5950 		/* regs dump ABI info */
5951 		int size = sizeof(u64);
5952 
5953 		perf_sample_regs_intr(&data->regs_intr, regs);
5954 
5955 		if (data->regs_intr.regs) {
5956 			u64 mask = event->attr.sample_regs_intr;
5957 
5958 			size += hweight64(mask) * sizeof(u64);
5959 		}
5960 
5961 		header->size += size;
5962 	}
5963 }
5964 
5965 static void __always_inline
5966 __perf_event_output(struct perf_event *event,
5967 		    struct perf_sample_data *data,
5968 		    struct pt_regs *regs,
5969 		    int (*output_begin)(struct perf_output_handle *,
5970 					struct perf_event *,
5971 					unsigned int))
5972 {
5973 	struct perf_output_handle handle;
5974 	struct perf_event_header header;
5975 
5976 	/* protect the callchain buffers */
5977 	rcu_read_lock();
5978 
5979 	perf_prepare_sample(&header, data, event, regs);
5980 
5981 	if (output_begin(&handle, event, header.size))
5982 		goto exit;
5983 
5984 	perf_output_sample(&handle, &header, data, event);
5985 
5986 	perf_output_end(&handle);
5987 
5988 exit:
5989 	rcu_read_unlock();
5990 }
5991 
5992 void
5993 perf_event_output_forward(struct perf_event *event,
5994 			 struct perf_sample_data *data,
5995 			 struct pt_regs *regs)
5996 {
5997 	__perf_event_output(event, data, regs, perf_output_begin_forward);
5998 }
5999 
6000 void
6001 perf_event_output_backward(struct perf_event *event,
6002 			   struct perf_sample_data *data,
6003 			   struct pt_regs *regs)
6004 {
6005 	__perf_event_output(event, data, regs, perf_output_begin_backward);
6006 }
6007 
6008 void
6009 perf_event_output(struct perf_event *event,
6010 		  struct perf_sample_data *data,
6011 		  struct pt_regs *regs)
6012 {
6013 	__perf_event_output(event, data, regs, perf_output_begin);
6014 }
6015 
6016 /*
6017  * read event_id
6018  */
6019 
6020 struct perf_read_event {
6021 	struct perf_event_header	header;
6022 
6023 	u32				pid;
6024 	u32				tid;
6025 };
6026 
6027 static void
6028 perf_event_read_event(struct perf_event *event,
6029 			struct task_struct *task)
6030 {
6031 	struct perf_output_handle handle;
6032 	struct perf_sample_data sample;
6033 	struct perf_read_event read_event = {
6034 		.header = {
6035 			.type = PERF_RECORD_READ,
6036 			.misc = 0,
6037 			.size = sizeof(read_event) + event->read_size,
6038 		},
6039 		.pid = perf_event_pid(event, task),
6040 		.tid = perf_event_tid(event, task),
6041 	};
6042 	int ret;
6043 
6044 	perf_event_header__init_id(&read_event.header, &sample, event);
6045 	ret = perf_output_begin(&handle, event, read_event.header.size);
6046 	if (ret)
6047 		return;
6048 
6049 	perf_output_put(&handle, read_event);
6050 	perf_output_read(&handle, event);
6051 	perf_event__output_id_sample(event, &handle, &sample);
6052 
6053 	perf_output_end(&handle);
6054 }
6055 
6056 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6057 
6058 static void
6059 perf_iterate_ctx(struct perf_event_context *ctx,
6060 		   perf_iterate_f output,
6061 		   void *data, bool all)
6062 {
6063 	struct perf_event *event;
6064 
6065 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6066 		if (!all) {
6067 			if (event->state < PERF_EVENT_STATE_INACTIVE)
6068 				continue;
6069 			if (!event_filter_match(event))
6070 				continue;
6071 		}
6072 
6073 		output(event, data);
6074 	}
6075 }
6076 
6077 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6078 {
6079 	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6080 	struct perf_event *event;
6081 
6082 	list_for_each_entry_rcu(event, &pel->list, sb_list) {
6083 		/*
6084 		 * Skip events that are not fully formed yet; ensure that
6085 		 * if we observe event->ctx, both event and ctx will be
6086 		 * complete enough. See perf_install_in_context().
6087 		 */
6088 		if (!smp_load_acquire(&event->ctx))
6089 			continue;
6090 
6091 		if (event->state < PERF_EVENT_STATE_INACTIVE)
6092 			continue;
6093 		if (!event_filter_match(event))
6094 			continue;
6095 		output(event, data);
6096 	}
6097 }
6098 
6099 /*
6100  * Iterate all events that need to receive side-band events.
6101  *
6102  * For new callers; ensure that account_pmu_sb_event() includes
6103  * your event, otherwise it might not get delivered.
6104  */
6105 static void
6106 perf_iterate_sb(perf_iterate_f output, void *data,
6107 	       struct perf_event_context *task_ctx)
6108 {
6109 	struct perf_event_context *ctx;
6110 	int ctxn;
6111 
6112 	rcu_read_lock();
6113 	preempt_disable();
6114 
6115 	/*
6116 	 * If we have task_ctx != NULL we only notify the task context itself.
6117 	 * The task_ctx is set only for EXIT events before releasing task
6118 	 * context.
6119 	 */
6120 	if (task_ctx) {
6121 		perf_iterate_ctx(task_ctx, output, data, false);
6122 		goto done;
6123 	}
6124 
6125 	perf_iterate_sb_cpu(output, data);
6126 
6127 	for_each_task_context_nr(ctxn) {
6128 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6129 		if (ctx)
6130 			perf_iterate_ctx(ctx, output, data, false);
6131 	}
6132 done:
6133 	preempt_enable();
6134 	rcu_read_unlock();
6135 }
6136 
6137 /*
6138  * Clear all file-based filters at exec, they'll have to be
6139  * re-instated when/if these objects are mmapped again.
6140  */
6141 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6142 {
6143 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6144 	struct perf_addr_filter *filter;
6145 	unsigned int restart = 0, count = 0;
6146 	unsigned long flags;
6147 
6148 	if (!has_addr_filter(event))
6149 		return;
6150 
6151 	raw_spin_lock_irqsave(&ifh->lock, flags);
6152 	list_for_each_entry(filter, &ifh->list, entry) {
6153 		if (filter->inode) {
6154 			event->addr_filters_offs[count] = 0;
6155 			restart++;
6156 		}
6157 
6158 		count++;
6159 	}
6160 
6161 	if (restart)
6162 		event->addr_filters_gen++;
6163 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
6164 
6165 	if (restart)
6166 		perf_event_stop(event, 1);
6167 }
6168 
6169 void perf_event_exec(void)
6170 {
6171 	struct perf_event_context *ctx;
6172 	int ctxn;
6173 
6174 	rcu_read_lock();
6175 	for_each_task_context_nr(ctxn) {
6176 		ctx = current->perf_event_ctxp[ctxn];
6177 		if (!ctx)
6178 			continue;
6179 
6180 		perf_event_enable_on_exec(ctxn);
6181 
6182 		perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6183 				   true);
6184 	}
6185 	rcu_read_unlock();
6186 }
6187 
6188 struct remote_output {
6189 	struct ring_buffer	*rb;
6190 	int			err;
6191 };
6192 
6193 static void __perf_event_output_stop(struct perf_event *event, void *data)
6194 {
6195 	struct perf_event *parent = event->parent;
6196 	struct remote_output *ro = data;
6197 	struct ring_buffer *rb = ro->rb;
6198 	struct stop_event_data sd = {
6199 		.event	= event,
6200 	};
6201 
6202 	if (!has_aux(event))
6203 		return;
6204 
6205 	if (!parent)
6206 		parent = event;
6207 
6208 	/*
6209 	 * In case of inheritance, it will be the parent that links to the
6210 	 * ring-buffer, but it will be the child that's actually using it.
6211 	 *
6212 	 * We are using event::rb to determine if the event should be stopped,
6213 	 * however this may race with ring_buffer_attach() (through set_output),
6214 	 * which will make us skip the event that actually needs to be stopped.
6215 	 * So ring_buffer_attach() has to stop an aux event before re-assigning
6216 	 * its rb pointer.
6217 	 */
6218 	if (rcu_dereference(parent->rb) == rb)
6219 		ro->err = __perf_event_stop(&sd);
6220 }
6221 
6222 static int __perf_pmu_output_stop(void *info)
6223 {
6224 	struct perf_event *event = info;
6225 	struct pmu *pmu = event->pmu;
6226 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6227 	struct remote_output ro = {
6228 		.rb	= event->rb,
6229 	};
6230 
6231 	rcu_read_lock();
6232 	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6233 	if (cpuctx->task_ctx)
6234 		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6235 				   &ro, false);
6236 	rcu_read_unlock();
6237 
6238 	return ro.err;
6239 }
6240 
6241 static void perf_pmu_output_stop(struct perf_event *event)
6242 {
6243 	struct perf_event *iter;
6244 	int err, cpu;
6245 
6246 restart:
6247 	rcu_read_lock();
6248 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6249 		/*
6250 		 * For per-CPU events, we need to make sure that neither they
6251 		 * nor their children are running; for cpu==-1 events it's
6252 		 * sufficient to stop the event itself if it's active, since
6253 		 * it can't have children.
6254 		 */
6255 		cpu = iter->cpu;
6256 		if (cpu == -1)
6257 			cpu = READ_ONCE(iter->oncpu);
6258 
6259 		if (cpu == -1)
6260 			continue;
6261 
6262 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6263 		if (err == -EAGAIN) {
6264 			rcu_read_unlock();
6265 			goto restart;
6266 		}
6267 	}
6268 	rcu_read_unlock();
6269 }
6270 
6271 /*
6272  * task tracking -- fork/exit
6273  *
6274  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6275  */
6276 
6277 struct perf_task_event {
6278 	struct task_struct		*task;
6279 	struct perf_event_context	*task_ctx;
6280 
6281 	struct {
6282 		struct perf_event_header	header;
6283 
6284 		u32				pid;
6285 		u32				ppid;
6286 		u32				tid;
6287 		u32				ptid;
6288 		u64				time;
6289 	} event_id;
6290 };
6291 
6292 static int perf_event_task_match(struct perf_event *event)
6293 {
6294 	return event->attr.comm  || event->attr.mmap ||
6295 	       event->attr.mmap2 || event->attr.mmap_data ||
6296 	       event->attr.task;
6297 }
6298 
6299 static void perf_event_task_output(struct perf_event *event,
6300 				   void *data)
6301 {
6302 	struct perf_task_event *task_event = data;
6303 	struct perf_output_handle handle;
6304 	struct perf_sample_data	sample;
6305 	struct task_struct *task = task_event->task;
6306 	int ret, size = task_event->event_id.header.size;
6307 
6308 	if (!perf_event_task_match(event))
6309 		return;
6310 
6311 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6312 
6313 	ret = perf_output_begin(&handle, event,
6314 				task_event->event_id.header.size);
6315 	if (ret)
6316 		goto out;
6317 
6318 	task_event->event_id.pid = perf_event_pid(event, task);
6319 	task_event->event_id.ppid = perf_event_pid(event, current);
6320 
6321 	task_event->event_id.tid = perf_event_tid(event, task);
6322 	task_event->event_id.ptid = perf_event_tid(event, current);
6323 
6324 	task_event->event_id.time = perf_event_clock(event);
6325 
6326 	perf_output_put(&handle, task_event->event_id);
6327 
6328 	perf_event__output_id_sample(event, &handle, &sample);
6329 
6330 	perf_output_end(&handle);
6331 out:
6332 	task_event->event_id.header.size = size;
6333 }
6334 
6335 static void perf_event_task(struct task_struct *task,
6336 			      struct perf_event_context *task_ctx,
6337 			      int new)
6338 {
6339 	struct perf_task_event task_event;
6340 
6341 	if (!atomic_read(&nr_comm_events) &&
6342 	    !atomic_read(&nr_mmap_events) &&
6343 	    !atomic_read(&nr_task_events))
6344 		return;
6345 
6346 	task_event = (struct perf_task_event){
6347 		.task	  = task,
6348 		.task_ctx = task_ctx,
6349 		.event_id    = {
6350 			.header = {
6351 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6352 				.misc = 0,
6353 				.size = sizeof(task_event.event_id),
6354 			},
6355 			/* .pid  */
6356 			/* .ppid */
6357 			/* .tid  */
6358 			/* .ptid */
6359 			/* .time */
6360 		},
6361 	};
6362 
6363 	perf_iterate_sb(perf_event_task_output,
6364 		       &task_event,
6365 		       task_ctx);
6366 }
6367 
6368 void perf_event_fork(struct task_struct *task)
6369 {
6370 	perf_event_task(task, NULL, 1);
6371 }
6372 
6373 /*
6374  * comm tracking
6375  */
6376 
6377 struct perf_comm_event {
6378 	struct task_struct	*task;
6379 	char			*comm;
6380 	int			comm_size;
6381 
6382 	struct {
6383 		struct perf_event_header	header;
6384 
6385 		u32				pid;
6386 		u32				tid;
6387 	} event_id;
6388 };
6389 
6390 static int perf_event_comm_match(struct perf_event *event)
6391 {
6392 	return event->attr.comm;
6393 }
6394 
6395 static void perf_event_comm_output(struct perf_event *event,
6396 				   void *data)
6397 {
6398 	struct perf_comm_event *comm_event = data;
6399 	struct perf_output_handle handle;
6400 	struct perf_sample_data sample;
6401 	int size = comm_event->event_id.header.size;
6402 	int ret;
6403 
6404 	if (!perf_event_comm_match(event))
6405 		return;
6406 
6407 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6408 	ret = perf_output_begin(&handle, event,
6409 				comm_event->event_id.header.size);
6410 
6411 	if (ret)
6412 		goto out;
6413 
6414 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6415 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6416 
6417 	perf_output_put(&handle, comm_event->event_id);
6418 	__output_copy(&handle, comm_event->comm,
6419 				   comm_event->comm_size);
6420 
6421 	perf_event__output_id_sample(event, &handle, &sample);
6422 
6423 	perf_output_end(&handle);
6424 out:
6425 	comm_event->event_id.header.size = size;
6426 }
6427 
6428 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6429 {
6430 	char comm[TASK_COMM_LEN];
6431 	unsigned int size;
6432 
6433 	memset(comm, 0, sizeof(comm));
6434 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
6435 	size = ALIGN(strlen(comm)+1, sizeof(u64));
6436 
6437 	comm_event->comm = comm;
6438 	comm_event->comm_size = size;
6439 
6440 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6441 
6442 	perf_iterate_sb(perf_event_comm_output,
6443 		       comm_event,
6444 		       NULL);
6445 }
6446 
6447 void perf_event_comm(struct task_struct *task, bool exec)
6448 {
6449 	struct perf_comm_event comm_event;
6450 
6451 	if (!atomic_read(&nr_comm_events))
6452 		return;
6453 
6454 	comm_event = (struct perf_comm_event){
6455 		.task	= task,
6456 		/* .comm      */
6457 		/* .comm_size */
6458 		.event_id  = {
6459 			.header = {
6460 				.type = PERF_RECORD_COMM,
6461 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6462 				/* .size */
6463 			},
6464 			/* .pid */
6465 			/* .tid */
6466 		},
6467 	};
6468 
6469 	perf_event_comm_event(&comm_event);
6470 }
6471 
6472 /*
6473  * mmap tracking
6474  */
6475 
6476 struct perf_mmap_event {
6477 	struct vm_area_struct	*vma;
6478 
6479 	const char		*file_name;
6480 	int			file_size;
6481 	int			maj, min;
6482 	u64			ino;
6483 	u64			ino_generation;
6484 	u32			prot, flags;
6485 
6486 	struct {
6487 		struct perf_event_header	header;
6488 
6489 		u32				pid;
6490 		u32				tid;
6491 		u64				start;
6492 		u64				len;
6493 		u64				pgoff;
6494 	} event_id;
6495 };
6496 
6497 static int perf_event_mmap_match(struct perf_event *event,
6498 				 void *data)
6499 {
6500 	struct perf_mmap_event *mmap_event = data;
6501 	struct vm_area_struct *vma = mmap_event->vma;
6502 	int executable = vma->vm_flags & VM_EXEC;
6503 
6504 	return (!executable && event->attr.mmap_data) ||
6505 	       (executable && (event->attr.mmap || event->attr.mmap2));
6506 }
6507 
6508 static void perf_event_mmap_output(struct perf_event *event,
6509 				   void *data)
6510 {
6511 	struct perf_mmap_event *mmap_event = data;
6512 	struct perf_output_handle handle;
6513 	struct perf_sample_data sample;
6514 	int size = mmap_event->event_id.header.size;
6515 	int ret;
6516 
6517 	if (!perf_event_mmap_match(event, data))
6518 		return;
6519 
6520 	if (event->attr.mmap2) {
6521 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6522 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6523 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
6524 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6525 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6526 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6527 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6528 	}
6529 
6530 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6531 	ret = perf_output_begin(&handle, event,
6532 				mmap_event->event_id.header.size);
6533 	if (ret)
6534 		goto out;
6535 
6536 	mmap_event->event_id.pid = perf_event_pid(event, current);
6537 	mmap_event->event_id.tid = perf_event_tid(event, current);
6538 
6539 	perf_output_put(&handle, mmap_event->event_id);
6540 
6541 	if (event->attr.mmap2) {
6542 		perf_output_put(&handle, mmap_event->maj);
6543 		perf_output_put(&handle, mmap_event->min);
6544 		perf_output_put(&handle, mmap_event->ino);
6545 		perf_output_put(&handle, mmap_event->ino_generation);
6546 		perf_output_put(&handle, mmap_event->prot);
6547 		perf_output_put(&handle, mmap_event->flags);
6548 	}
6549 
6550 	__output_copy(&handle, mmap_event->file_name,
6551 				   mmap_event->file_size);
6552 
6553 	perf_event__output_id_sample(event, &handle, &sample);
6554 
6555 	perf_output_end(&handle);
6556 out:
6557 	mmap_event->event_id.header.size = size;
6558 }
6559 
6560 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6561 {
6562 	struct vm_area_struct *vma = mmap_event->vma;
6563 	struct file *file = vma->vm_file;
6564 	int maj = 0, min = 0;
6565 	u64 ino = 0, gen = 0;
6566 	u32 prot = 0, flags = 0;
6567 	unsigned int size;
6568 	char tmp[16];
6569 	char *buf = NULL;
6570 	char *name;
6571 
6572 	if (file) {
6573 		struct inode *inode;
6574 		dev_t dev;
6575 
6576 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
6577 		if (!buf) {
6578 			name = "//enomem";
6579 			goto cpy_name;
6580 		}
6581 		/*
6582 		 * d_path() works from the end of the rb backwards, so we
6583 		 * need to add enough zero bytes after the string to handle
6584 		 * the 64bit alignment we do later.
6585 		 */
6586 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
6587 		if (IS_ERR(name)) {
6588 			name = "//toolong";
6589 			goto cpy_name;
6590 		}
6591 		inode = file_inode(vma->vm_file);
6592 		dev = inode->i_sb->s_dev;
6593 		ino = inode->i_ino;
6594 		gen = inode->i_generation;
6595 		maj = MAJOR(dev);
6596 		min = MINOR(dev);
6597 
6598 		if (vma->vm_flags & VM_READ)
6599 			prot |= PROT_READ;
6600 		if (vma->vm_flags & VM_WRITE)
6601 			prot |= PROT_WRITE;
6602 		if (vma->vm_flags & VM_EXEC)
6603 			prot |= PROT_EXEC;
6604 
6605 		if (vma->vm_flags & VM_MAYSHARE)
6606 			flags = MAP_SHARED;
6607 		else
6608 			flags = MAP_PRIVATE;
6609 
6610 		if (vma->vm_flags & VM_DENYWRITE)
6611 			flags |= MAP_DENYWRITE;
6612 		if (vma->vm_flags & VM_MAYEXEC)
6613 			flags |= MAP_EXECUTABLE;
6614 		if (vma->vm_flags & VM_LOCKED)
6615 			flags |= MAP_LOCKED;
6616 		if (vma->vm_flags & VM_HUGETLB)
6617 			flags |= MAP_HUGETLB;
6618 
6619 		goto got_name;
6620 	} else {
6621 		if (vma->vm_ops && vma->vm_ops->name) {
6622 			name = (char *) vma->vm_ops->name(vma);
6623 			if (name)
6624 				goto cpy_name;
6625 		}
6626 
6627 		name = (char *)arch_vma_name(vma);
6628 		if (name)
6629 			goto cpy_name;
6630 
6631 		if (vma->vm_start <= vma->vm_mm->start_brk &&
6632 				vma->vm_end >= vma->vm_mm->brk) {
6633 			name = "[heap]";
6634 			goto cpy_name;
6635 		}
6636 		if (vma->vm_start <= vma->vm_mm->start_stack &&
6637 				vma->vm_end >= vma->vm_mm->start_stack) {
6638 			name = "[stack]";
6639 			goto cpy_name;
6640 		}
6641 
6642 		name = "//anon";
6643 		goto cpy_name;
6644 	}
6645 
6646 cpy_name:
6647 	strlcpy(tmp, name, sizeof(tmp));
6648 	name = tmp;
6649 got_name:
6650 	/*
6651 	 * Since our buffer works in 8 byte units we need to align our string
6652 	 * size to a multiple of 8. However, we must guarantee the tail end is
6653 	 * zero'd out to avoid leaking random bits to userspace.
6654 	 */
6655 	size = strlen(name)+1;
6656 	while (!IS_ALIGNED(size, sizeof(u64)))
6657 		name[size++] = '\0';
6658 
6659 	mmap_event->file_name = name;
6660 	mmap_event->file_size = size;
6661 	mmap_event->maj = maj;
6662 	mmap_event->min = min;
6663 	mmap_event->ino = ino;
6664 	mmap_event->ino_generation = gen;
6665 	mmap_event->prot = prot;
6666 	mmap_event->flags = flags;
6667 
6668 	if (!(vma->vm_flags & VM_EXEC))
6669 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6670 
6671 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6672 
6673 	perf_iterate_sb(perf_event_mmap_output,
6674 		       mmap_event,
6675 		       NULL);
6676 
6677 	kfree(buf);
6678 }
6679 
6680 /*
6681  * Check whether inode and address range match filter criteria.
6682  */
6683 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
6684 				     struct file *file, unsigned long offset,
6685 				     unsigned long size)
6686 {
6687 	if (filter->inode != file->f_inode)
6688 		return false;
6689 
6690 	if (filter->offset > offset + size)
6691 		return false;
6692 
6693 	if (filter->offset + filter->size < offset)
6694 		return false;
6695 
6696 	return true;
6697 }
6698 
6699 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
6700 {
6701 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6702 	struct vm_area_struct *vma = data;
6703 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
6704 	struct file *file = vma->vm_file;
6705 	struct perf_addr_filter *filter;
6706 	unsigned int restart = 0, count = 0;
6707 
6708 	if (!has_addr_filter(event))
6709 		return;
6710 
6711 	if (!file)
6712 		return;
6713 
6714 	raw_spin_lock_irqsave(&ifh->lock, flags);
6715 	list_for_each_entry(filter, &ifh->list, entry) {
6716 		if (perf_addr_filter_match(filter, file, off,
6717 					     vma->vm_end - vma->vm_start)) {
6718 			event->addr_filters_offs[count] = vma->vm_start;
6719 			restart++;
6720 		}
6721 
6722 		count++;
6723 	}
6724 
6725 	if (restart)
6726 		event->addr_filters_gen++;
6727 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
6728 
6729 	if (restart)
6730 		perf_event_stop(event, 1);
6731 }
6732 
6733 /*
6734  * Adjust all task's events' filters to the new vma
6735  */
6736 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
6737 {
6738 	struct perf_event_context *ctx;
6739 	int ctxn;
6740 
6741 	/*
6742 	 * Data tracing isn't supported yet and as such there is no need
6743 	 * to keep track of anything that isn't related to executable code:
6744 	 */
6745 	if (!(vma->vm_flags & VM_EXEC))
6746 		return;
6747 
6748 	rcu_read_lock();
6749 	for_each_task_context_nr(ctxn) {
6750 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6751 		if (!ctx)
6752 			continue;
6753 
6754 		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
6755 	}
6756 	rcu_read_unlock();
6757 }
6758 
6759 void perf_event_mmap(struct vm_area_struct *vma)
6760 {
6761 	struct perf_mmap_event mmap_event;
6762 
6763 	if (!atomic_read(&nr_mmap_events))
6764 		return;
6765 
6766 	mmap_event = (struct perf_mmap_event){
6767 		.vma	= vma,
6768 		/* .file_name */
6769 		/* .file_size */
6770 		.event_id  = {
6771 			.header = {
6772 				.type = PERF_RECORD_MMAP,
6773 				.misc = PERF_RECORD_MISC_USER,
6774 				/* .size */
6775 			},
6776 			/* .pid */
6777 			/* .tid */
6778 			.start  = vma->vm_start,
6779 			.len    = vma->vm_end - vma->vm_start,
6780 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
6781 		},
6782 		/* .maj (attr_mmap2 only) */
6783 		/* .min (attr_mmap2 only) */
6784 		/* .ino (attr_mmap2 only) */
6785 		/* .ino_generation (attr_mmap2 only) */
6786 		/* .prot (attr_mmap2 only) */
6787 		/* .flags (attr_mmap2 only) */
6788 	};
6789 
6790 	perf_addr_filters_adjust(vma);
6791 	perf_event_mmap_event(&mmap_event);
6792 }
6793 
6794 void perf_event_aux_event(struct perf_event *event, unsigned long head,
6795 			  unsigned long size, u64 flags)
6796 {
6797 	struct perf_output_handle handle;
6798 	struct perf_sample_data sample;
6799 	struct perf_aux_event {
6800 		struct perf_event_header	header;
6801 		u64				offset;
6802 		u64				size;
6803 		u64				flags;
6804 	} rec = {
6805 		.header = {
6806 			.type = PERF_RECORD_AUX,
6807 			.misc = 0,
6808 			.size = sizeof(rec),
6809 		},
6810 		.offset		= head,
6811 		.size		= size,
6812 		.flags		= flags,
6813 	};
6814 	int ret;
6815 
6816 	perf_event_header__init_id(&rec.header, &sample, event);
6817 	ret = perf_output_begin(&handle, event, rec.header.size);
6818 
6819 	if (ret)
6820 		return;
6821 
6822 	perf_output_put(&handle, rec);
6823 	perf_event__output_id_sample(event, &handle, &sample);
6824 
6825 	perf_output_end(&handle);
6826 }
6827 
6828 /*
6829  * Lost/dropped samples logging
6830  */
6831 void perf_log_lost_samples(struct perf_event *event, u64 lost)
6832 {
6833 	struct perf_output_handle handle;
6834 	struct perf_sample_data sample;
6835 	int ret;
6836 
6837 	struct {
6838 		struct perf_event_header	header;
6839 		u64				lost;
6840 	} lost_samples_event = {
6841 		.header = {
6842 			.type = PERF_RECORD_LOST_SAMPLES,
6843 			.misc = 0,
6844 			.size = sizeof(lost_samples_event),
6845 		},
6846 		.lost		= lost,
6847 	};
6848 
6849 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6850 
6851 	ret = perf_output_begin(&handle, event,
6852 				lost_samples_event.header.size);
6853 	if (ret)
6854 		return;
6855 
6856 	perf_output_put(&handle, lost_samples_event);
6857 	perf_event__output_id_sample(event, &handle, &sample);
6858 	perf_output_end(&handle);
6859 }
6860 
6861 /*
6862  * context_switch tracking
6863  */
6864 
6865 struct perf_switch_event {
6866 	struct task_struct	*task;
6867 	struct task_struct	*next_prev;
6868 
6869 	struct {
6870 		struct perf_event_header	header;
6871 		u32				next_prev_pid;
6872 		u32				next_prev_tid;
6873 	} event_id;
6874 };
6875 
6876 static int perf_event_switch_match(struct perf_event *event)
6877 {
6878 	return event->attr.context_switch;
6879 }
6880 
6881 static void perf_event_switch_output(struct perf_event *event, void *data)
6882 {
6883 	struct perf_switch_event *se = data;
6884 	struct perf_output_handle handle;
6885 	struct perf_sample_data sample;
6886 	int ret;
6887 
6888 	if (!perf_event_switch_match(event))
6889 		return;
6890 
6891 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
6892 	if (event->ctx->task) {
6893 		se->event_id.header.type = PERF_RECORD_SWITCH;
6894 		se->event_id.header.size = sizeof(se->event_id.header);
6895 	} else {
6896 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6897 		se->event_id.header.size = sizeof(se->event_id);
6898 		se->event_id.next_prev_pid =
6899 					perf_event_pid(event, se->next_prev);
6900 		se->event_id.next_prev_tid =
6901 					perf_event_tid(event, se->next_prev);
6902 	}
6903 
6904 	perf_event_header__init_id(&se->event_id.header, &sample, event);
6905 
6906 	ret = perf_output_begin(&handle, event, se->event_id.header.size);
6907 	if (ret)
6908 		return;
6909 
6910 	if (event->ctx->task)
6911 		perf_output_put(&handle, se->event_id.header);
6912 	else
6913 		perf_output_put(&handle, se->event_id);
6914 
6915 	perf_event__output_id_sample(event, &handle, &sample);
6916 
6917 	perf_output_end(&handle);
6918 }
6919 
6920 static void perf_event_switch(struct task_struct *task,
6921 			      struct task_struct *next_prev, bool sched_in)
6922 {
6923 	struct perf_switch_event switch_event;
6924 
6925 	/* N.B. caller checks nr_switch_events != 0 */
6926 
6927 	switch_event = (struct perf_switch_event){
6928 		.task		= task,
6929 		.next_prev	= next_prev,
6930 		.event_id	= {
6931 			.header = {
6932 				/* .type */
6933 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6934 				/* .size */
6935 			},
6936 			/* .next_prev_pid */
6937 			/* .next_prev_tid */
6938 		},
6939 	};
6940 
6941 	perf_iterate_sb(perf_event_switch_output,
6942 		       &switch_event,
6943 		       NULL);
6944 }
6945 
6946 /*
6947  * IRQ throttle logging
6948  */
6949 
6950 static void perf_log_throttle(struct perf_event *event, int enable)
6951 {
6952 	struct perf_output_handle handle;
6953 	struct perf_sample_data sample;
6954 	int ret;
6955 
6956 	struct {
6957 		struct perf_event_header	header;
6958 		u64				time;
6959 		u64				id;
6960 		u64				stream_id;
6961 	} throttle_event = {
6962 		.header = {
6963 			.type = PERF_RECORD_THROTTLE,
6964 			.misc = 0,
6965 			.size = sizeof(throttle_event),
6966 		},
6967 		.time		= perf_event_clock(event),
6968 		.id		= primary_event_id(event),
6969 		.stream_id	= event->id,
6970 	};
6971 
6972 	if (enable)
6973 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6974 
6975 	perf_event_header__init_id(&throttle_event.header, &sample, event);
6976 
6977 	ret = perf_output_begin(&handle, event,
6978 				throttle_event.header.size);
6979 	if (ret)
6980 		return;
6981 
6982 	perf_output_put(&handle, throttle_event);
6983 	perf_event__output_id_sample(event, &handle, &sample);
6984 	perf_output_end(&handle);
6985 }
6986 
6987 static void perf_log_itrace_start(struct perf_event *event)
6988 {
6989 	struct perf_output_handle handle;
6990 	struct perf_sample_data sample;
6991 	struct perf_aux_event {
6992 		struct perf_event_header        header;
6993 		u32				pid;
6994 		u32				tid;
6995 	} rec;
6996 	int ret;
6997 
6998 	if (event->parent)
6999 		event = event->parent;
7000 
7001 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7002 	    event->hw.itrace_started)
7003 		return;
7004 
7005 	rec.header.type	= PERF_RECORD_ITRACE_START;
7006 	rec.header.misc	= 0;
7007 	rec.header.size	= sizeof(rec);
7008 	rec.pid	= perf_event_pid(event, current);
7009 	rec.tid	= perf_event_tid(event, current);
7010 
7011 	perf_event_header__init_id(&rec.header, &sample, event);
7012 	ret = perf_output_begin(&handle, event, rec.header.size);
7013 
7014 	if (ret)
7015 		return;
7016 
7017 	perf_output_put(&handle, rec);
7018 	perf_event__output_id_sample(event, &handle, &sample);
7019 
7020 	perf_output_end(&handle);
7021 }
7022 
7023 /*
7024  * Generic event overflow handling, sampling.
7025  */
7026 
7027 static int __perf_event_overflow(struct perf_event *event,
7028 				   int throttle, struct perf_sample_data *data,
7029 				   struct pt_regs *regs)
7030 {
7031 	int events = atomic_read(&event->event_limit);
7032 	struct hw_perf_event *hwc = &event->hw;
7033 	u64 seq;
7034 	int ret = 0;
7035 
7036 	/*
7037 	 * Non-sampling counters might still use the PMI to fold short
7038 	 * hardware counters, ignore those.
7039 	 */
7040 	if (unlikely(!is_sampling_event(event)))
7041 		return 0;
7042 
7043 	seq = __this_cpu_read(perf_throttled_seq);
7044 	if (seq != hwc->interrupts_seq) {
7045 		hwc->interrupts_seq = seq;
7046 		hwc->interrupts = 1;
7047 	} else {
7048 		hwc->interrupts++;
7049 		if (unlikely(throttle
7050 			     && hwc->interrupts >= max_samples_per_tick)) {
7051 			__this_cpu_inc(perf_throttled_count);
7052 			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
7053 			hwc->interrupts = MAX_INTERRUPTS;
7054 			perf_log_throttle(event, 0);
7055 			ret = 1;
7056 		}
7057 	}
7058 
7059 	if (event->attr.freq) {
7060 		u64 now = perf_clock();
7061 		s64 delta = now - hwc->freq_time_stamp;
7062 
7063 		hwc->freq_time_stamp = now;
7064 
7065 		if (delta > 0 && delta < 2*TICK_NSEC)
7066 			perf_adjust_period(event, delta, hwc->last_period, true);
7067 	}
7068 
7069 	/*
7070 	 * XXX event_limit might not quite work as expected on inherited
7071 	 * events
7072 	 */
7073 
7074 	event->pending_kill = POLL_IN;
7075 	if (events && atomic_dec_and_test(&event->event_limit)) {
7076 		ret = 1;
7077 		event->pending_kill = POLL_HUP;
7078 		event->pending_disable = 1;
7079 		irq_work_queue(&event->pending);
7080 	}
7081 
7082 	READ_ONCE(event->overflow_handler)(event, data, regs);
7083 
7084 	if (*perf_event_fasync(event) && event->pending_kill) {
7085 		event->pending_wakeup = 1;
7086 		irq_work_queue(&event->pending);
7087 	}
7088 
7089 	return ret;
7090 }
7091 
7092 int perf_event_overflow(struct perf_event *event,
7093 			  struct perf_sample_data *data,
7094 			  struct pt_regs *regs)
7095 {
7096 	return __perf_event_overflow(event, 1, data, regs);
7097 }
7098 
7099 /*
7100  * Generic software event infrastructure
7101  */
7102 
7103 struct swevent_htable {
7104 	struct swevent_hlist		*swevent_hlist;
7105 	struct mutex			hlist_mutex;
7106 	int				hlist_refcount;
7107 
7108 	/* Recursion avoidance in each contexts */
7109 	int				recursion[PERF_NR_CONTEXTS];
7110 };
7111 
7112 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7113 
7114 /*
7115  * We directly increment event->count and keep a second value in
7116  * event->hw.period_left to count intervals. This period event
7117  * is kept in the range [-sample_period, 0] so that we can use the
7118  * sign as trigger.
7119  */
7120 
7121 u64 perf_swevent_set_period(struct perf_event *event)
7122 {
7123 	struct hw_perf_event *hwc = &event->hw;
7124 	u64 period = hwc->last_period;
7125 	u64 nr, offset;
7126 	s64 old, val;
7127 
7128 	hwc->last_period = hwc->sample_period;
7129 
7130 again:
7131 	old = val = local64_read(&hwc->period_left);
7132 	if (val < 0)
7133 		return 0;
7134 
7135 	nr = div64_u64(period + val, period);
7136 	offset = nr * period;
7137 	val -= offset;
7138 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7139 		goto again;
7140 
7141 	return nr;
7142 }
7143 
7144 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7145 				    struct perf_sample_data *data,
7146 				    struct pt_regs *regs)
7147 {
7148 	struct hw_perf_event *hwc = &event->hw;
7149 	int throttle = 0;
7150 
7151 	if (!overflow)
7152 		overflow = perf_swevent_set_period(event);
7153 
7154 	if (hwc->interrupts == MAX_INTERRUPTS)
7155 		return;
7156 
7157 	for (; overflow; overflow--) {
7158 		if (__perf_event_overflow(event, throttle,
7159 					    data, regs)) {
7160 			/*
7161 			 * We inhibit the overflow from happening when
7162 			 * hwc->interrupts == MAX_INTERRUPTS.
7163 			 */
7164 			break;
7165 		}
7166 		throttle = 1;
7167 	}
7168 }
7169 
7170 static void perf_swevent_event(struct perf_event *event, u64 nr,
7171 			       struct perf_sample_data *data,
7172 			       struct pt_regs *regs)
7173 {
7174 	struct hw_perf_event *hwc = &event->hw;
7175 
7176 	local64_add(nr, &event->count);
7177 
7178 	if (!regs)
7179 		return;
7180 
7181 	if (!is_sampling_event(event))
7182 		return;
7183 
7184 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7185 		data->period = nr;
7186 		return perf_swevent_overflow(event, 1, data, regs);
7187 	} else
7188 		data->period = event->hw.last_period;
7189 
7190 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7191 		return perf_swevent_overflow(event, 1, data, regs);
7192 
7193 	if (local64_add_negative(nr, &hwc->period_left))
7194 		return;
7195 
7196 	perf_swevent_overflow(event, 0, data, regs);
7197 }
7198 
7199 static int perf_exclude_event(struct perf_event *event,
7200 			      struct pt_regs *regs)
7201 {
7202 	if (event->hw.state & PERF_HES_STOPPED)
7203 		return 1;
7204 
7205 	if (regs) {
7206 		if (event->attr.exclude_user && user_mode(regs))
7207 			return 1;
7208 
7209 		if (event->attr.exclude_kernel && !user_mode(regs))
7210 			return 1;
7211 	}
7212 
7213 	return 0;
7214 }
7215 
7216 static int perf_swevent_match(struct perf_event *event,
7217 				enum perf_type_id type,
7218 				u32 event_id,
7219 				struct perf_sample_data *data,
7220 				struct pt_regs *regs)
7221 {
7222 	if (event->attr.type != type)
7223 		return 0;
7224 
7225 	if (event->attr.config != event_id)
7226 		return 0;
7227 
7228 	if (perf_exclude_event(event, regs))
7229 		return 0;
7230 
7231 	return 1;
7232 }
7233 
7234 static inline u64 swevent_hash(u64 type, u32 event_id)
7235 {
7236 	u64 val = event_id | (type << 32);
7237 
7238 	return hash_64(val, SWEVENT_HLIST_BITS);
7239 }
7240 
7241 static inline struct hlist_head *
7242 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7243 {
7244 	u64 hash = swevent_hash(type, event_id);
7245 
7246 	return &hlist->heads[hash];
7247 }
7248 
7249 /* For the read side: events when they trigger */
7250 static inline struct hlist_head *
7251 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7252 {
7253 	struct swevent_hlist *hlist;
7254 
7255 	hlist = rcu_dereference(swhash->swevent_hlist);
7256 	if (!hlist)
7257 		return NULL;
7258 
7259 	return __find_swevent_head(hlist, type, event_id);
7260 }
7261 
7262 /* For the event head insertion and removal in the hlist */
7263 static inline struct hlist_head *
7264 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7265 {
7266 	struct swevent_hlist *hlist;
7267 	u32 event_id = event->attr.config;
7268 	u64 type = event->attr.type;
7269 
7270 	/*
7271 	 * Event scheduling is always serialized against hlist allocation
7272 	 * and release. Which makes the protected version suitable here.
7273 	 * The context lock guarantees that.
7274 	 */
7275 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
7276 					  lockdep_is_held(&event->ctx->lock));
7277 	if (!hlist)
7278 		return NULL;
7279 
7280 	return __find_swevent_head(hlist, type, event_id);
7281 }
7282 
7283 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7284 				    u64 nr,
7285 				    struct perf_sample_data *data,
7286 				    struct pt_regs *regs)
7287 {
7288 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7289 	struct perf_event *event;
7290 	struct hlist_head *head;
7291 
7292 	rcu_read_lock();
7293 	head = find_swevent_head_rcu(swhash, type, event_id);
7294 	if (!head)
7295 		goto end;
7296 
7297 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
7298 		if (perf_swevent_match(event, type, event_id, data, regs))
7299 			perf_swevent_event(event, nr, data, regs);
7300 	}
7301 end:
7302 	rcu_read_unlock();
7303 }
7304 
7305 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7306 
7307 int perf_swevent_get_recursion_context(void)
7308 {
7309 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7310 
7311 	return get_recursion_context(swhash->recursion);
7312 }
7313 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
7314 
7315 void perf_swevent_put_recursion_context(int rctx)
7316 {
7317 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7318 
7319 	put_recursion_context(swhash->recursion, rctx);
7320 }
7321 
7322 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7323 {
7324 	struct perf_sample_data data;
7325 
7326 	if (WARN_ON_ONCE(!regs))
7327 		return;
7328 
7329 	perf_sample_data_init(&data, addr, 0);
7330 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7331 }
7332 
7333 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7334 {
7335 	int rctx;
7336 
7337 	preempt_disable_notrace();
7338 	rctx = perf_swevent_get_recursion_context();
7339 	if (unlikely(rctx < 0))
7340 		goto fail;
7341 
7342 	___perf_sw_event(event_id, nr, regs, addr);
7343 
7344 	perf_swevent_put_recursion_context(rctx);
7345 fail:
7346 	preempt_enable_notrace();
7347 }
7348 
7349 static void perf_swevent_read(struct perf_event *event)
7350 {
7351 }
7352 
7353 static int perf_swevent_add(struct perf_event *event, int flags)
7354 {
7355 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7356 	struct hw_perf_event *hwc = &event->hw;
7357 	struct hlist_head *head;
7358 
7359 	if (is_sampling_event(event)) {
7360 		hwc->last_period = hwc->sample_period;
7361 		perf_swevent_set_period(event);
7362 	}
7363 
7364 	hwc->state = !(flags & PERF_EF_START);
7365 
7366 	head = find_swevent_head(swhash, event);
7367 	if (WARN_ON_ONCE(!head))
7368 		return -EINVAL;
7369 
7370 	hlist_add_head_rcu(&event->hlist_entry, head);
7371 	perf_event_update_userpage(event);
7372 
7373 	return 0;
7374 }
7375 
7376 static void perf_swevent_del(struct perf_event *event, int flags)
7377 {
7378 	hlist_del_rcu(&event->hlist_entry);
7379 }
7380 
7381 static void perf_swevent_start(struct perf_event *event, int flags)
7382 {
7383 	event->hw.state = 0;
7384 }
7385 
7386 static void perf_swevent_stop(struct perf_event *event, int flags)
7387 {
7388 	event->hw.state = PERF_HES_STOPPED;
7389 }
7390 
7391 /* Deref the hlist from the update side */
7392 static inline struct swevent_hlist *
7393 swevent_hlist_deref(struct swevent_htable *swhash)
7394 {
7395 	return rcu_dereference_protected(swhash->swevent_hlist,
7396 					 lockdep_is_held(&swhash->hlist_mutex));
7397 }
7398 
7399 static void swevent_hlist_release(struct swevent_htable *swhash)
7400 {
7401 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7402 
7403 	if (!hlist)
7404 		return;
7405 
7406 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7407 	kfree_rcu(hlist, rcu_head);
7408 }
7409 
7410 static void swevent_hlist_put_cpu(int cpu)
7411 {
7412 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7413 
7414 	mutex_lock(&swhash->hlist_mutex);
7415 
7416 	if (!--swhash->hlist_refcount)
7417 		swevent_hlist_release(swhash);
7418 
7419 	mutex_unlock(&swhash->hlist_mutex);
7420 }
7421 
7422 static void swevent_hlist_put(void)
7423 {
7424 	int cpu;
7425 
7426 	for_each_possible_cpu(cpu)
7427 		swevent_hlist_put_cpu(cpu);
7428 }
7429 
7430 static int swevent_hlist_get_cpu(int cpu)
7431 {
7432 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7433 	int err = 0;
7434 
7435 	mutex_lock(&swhash->hlist_mutex);
7436 	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
7437 		struct swevent_hlist *hlist;
7438 
7439 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7440 		if (!hlist) {
7441 			err = -ENOMEM;
7442 			goto exit;
7443 		}
7444 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7445 	}
7446 	swhash->hlist_refcount++;
7447 exit:
7448 	mutex_unlock(&swhash->hlist_mutex);
7449 
7450 	return err;
7451 }
7452 
7453 static int swevent_hlist_get(void)
7454 {
7455 	int err, cpu, failed_cpu;
7456 
7457 	get_online_cpus();
7458 	for_each_possible_cpu(cpu) {
7459 		err = swevent_hlist_get_cpu(cpu);
7460 		if (err) {
7461 			failed_cpu = cpu;
7462 			goto fail;
7463 		}
7464 	}
7465 	put_online_cpus();
7466 
7467 	return 0;
7468 fail:
7469 	for_each_possible_cpu(cpu) {
7470 		if (cpu == failed_cpu)
7471 			break;
7472 		swevent_hlist_put_cpu(cpu);
7473 	}
7474 
7475 	put_online_cpus();
7476 	return err;
7477 }
7478 
7479 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7480 
7481 static void sw_perf_event_destroy(struct perf_event *event)
7482 {
7483 	u64 event_id = event->attr.config;
7484 
7485 	WARN_ON(event->parent);
7486 
7487 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
7488 	swevent_hlist_put();
7489 }
7490 
7491 static int perf_swevent_init(struct perf_event *event)
7492 {
7493 	u64 event_id = event->attr.config;
7494 
7495 	if (event->attr.type != PERF_TYPE_SOFTWARE)
7496 		return -ENOENT;
7497 
7498 	/*
7499 	 * no branch sampling for software events
7500 	 */
7501 	if (has_branch_stack(event))
7502 		return -EOPNOTSUPP;
7503 
7504 	switch (event_id) {
7505 	case PERF_COUNT_SW_CPU_CLOCK:
7506 	case PERF_COUNT_SW_TASK_CLOCK:
7507 		return -ENOENT;
7508 
7509 	default:
7510 		break;
7511 	}
7512 
7513 	if (event_id >= PERF_COUNT_SW_MAX)
7514 		return -ENOENT;
7515 
7516 	if (!event->parent) {
7517 		int err;
7518 
7519 		err = swevent_hlist_get();
7520 		if (err)
7521 			return err;
7522 
7523 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
7524 		event->destroy = sw_perf_event_destroy;
7525 	}
7526 
7527 	return 0;
7528 }
7529 
7530 static struct pmu perf_swevent = {
7531 	.task_ctx_nr	= perf_sw_context,
7532 
7533 	.capabilities	= PERF_PMU_CAP_NO_NMI,
7534 
7535 	.event_init	= perf_swevent_init,
7536 	.add		= perf_swevent_add,
7537 	.del		= perf_swevent_del,
7538 	.start		= perf_swevent_start,
7539 	.stop		= perf_swevent_stop,
7540 	.read		= perf_swevent_read,
7541 };
7542 
7543 #ifdef CONFIG_EVENT_TRACING
7544 
7545 static int perf_tp_filter_match(struct perf_event *event,
7546 				struct perf_sample_data *data)
7547 {
7548 	void *record = data->raw->frag.data;
7549 
7550 	/* only top level events have filters set */
7551 	if (event->parent)
7552 		event = event->parent;
7553 
7554 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
7555 		return 1;
7556 	return 0;
7557 }
7558 
7559 static int perf_tp_event_match(struct perf_event *event,
7560 				struct perf_sample_data *data,
7561 				struct pt_regs *regs)
7562 {
7563 	if (event->hw.state & PERF_HES_STOPPED)
7564 		return 0;
7565 	/*
7566 	 * All tracepoints are from kernel-space.
7567 	 */
7568 	if (event->attr.exclude_kernel)
7569 		return 0;
7570 
7571 	if (!perf_tp_filter_match(event, data))
7572 		return 0;
7573 
7574 	return 1;
7575 }
7576 
7577 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7578 			       struct trace_event_call *call, u64 count,
7579 			       struct pt_regs *regs, struct hlist_head *head,
7580 			       struct task_struct *task)
7581 {
7582 	struct bpf_prog *prog = call->prog;
7583 
7584 	if (prog) {
7585 		*(struct pt_regs **)raw_data = regs;
7586 		if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
7587 			perf_swevent_put_recursion_context(rctx);
7588 			return;
7589 		}
7590 	}
7591 	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
7592 		      rctx, task);
7593 }
7594 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7595 
7596 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
7597 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
7598 		   struct task_struct *task)
7599 {
7600 	struct perf_sample_data data;
7601 	struct perf_event *event;
7602 
7603 	struct perf_raw_record raw = {
7604 		.frag = {
7605 			.size = entry_size,
7606 			.data = record,
7607 		},
7608 	};
7609 
7610 	perf_sample_data_init(&data, 0, 0);
7611 	data.raw = &raw;
7612 
7613 	perf_trace_buf_update(record, event_type);
7614 
7615 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
7616 		if (perf_tp_event_match(event, &data, regs))
7617 			perf_swevent_event(event, count, &data, regs);
7618 	}
7619 
7620 	/*
7621 	 * If we got specified a target task, also iterate its context and
7622 	 * deliver this event there too.
7623 	 */
7624 	if (task && task != current) {
7625 		struct perf_event_context *ctx;
7626 		struct trace_entry *entry = record;
7627 
7628 		rcu_read_lock();
7629 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7630 		if (!ctx)
7631 			goto unlock;
7632 
7633 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7634 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
7635 				continue;
7636 			if (event->attr.config != entry->type)
7637 				continue;
7638 			if (perf_tp_event_match(event, &data, regs))
7639 				perf_swevent_event(event, count, &data, regs);
7640 		}
7641 unlock:
7642 		rcu_read_unlock();
7643 	}
7644 
7645 	perf_swevent_put_recursion_context(rctx);
7646 }
7647 EXPORT_SYMBOL_GPL(perf_tp_event);
7648 
7649 static void tp_perf_event_destroy(struct perf_event *event)
7650 {
7651 	perf_trace_destroy(event);
7652 }
7653 
7654 static int perf_tp_event_init(struct perf_event *event)
7655 {
7656 	int err;
7657 
7658 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
7659 		return -ENOENT;
7660 
7661 	/*
7662 	 * no branch sampling for tracepoint events
7663 	 */
7664 	if (has_branch_stack(event))
7665 		return -EOPNOTSUPP;
7666 
7667 	err = perf_trace_init(event);
7668 	if (err)
7669 		return err;
7670 
7671 	event->destroy = tp_perf_event_destroy;
7672 
7673 	return 0;
7674 }
7675 
7676 static struct pmu perf_tracepoint = {
7677 	.task_ctx_nr	= perf_sw_context,
7678 
7679 	.event_init	= perf_tp_event_init,
7680 	.add		= perf_trace_add,
7681 	.del		= perf_trace_del,
7682 	.start		= perf_swevent_start,
7683 	.stop		= perf_swevent_stop,
7684 	.read		= perf_swevent_read,
7685 };
7686 
7687 static inline void perf_tp_register(void)
7688 {
7689 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7690 }
7691 
7692 static void perf_event_free_filter(struct perf_event *event)
7693 {
7694 	ftrace_profile_free_filter(event);
7695 }
7696 
7697 #ifdef CONFIG_BPF_SYSCALL
7698 static void bpf_overflow_handler(struct perf_event *event,
7699 				 struct perf_sample_data *data,
7700 				 struct pt_regs *regs)
7701 {
7702 	struct bpf_perf_event_data_kern ctx = {
7703 		.data = data,
7704 		.regs = regs,
7705 	};
7706 	int ret = 0;
7707 
7708 	preempt_disable();
7709 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
7710 		goto out;
7711 	rcu_read_lock();
7712 	ret = BPF_PROG_RUN(event->prog, (void *)&ctx);
7713 	rcu_read_unlock();
7714 out:
7715 	__this_cpu_dec(bpf_prog_active);
7716 	preempt_enable();
7717 	if (!ret)
7718 		return;
7719 
7720 	event->orig_overflow_handler(event, data, regs);
7721 }
7722 
7723 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
7724 {
7725 	struct bpf_prog *prog;
7726 
7727 	if (event->overflow_handler_context)
7728 		/* hw breakpoint or kernel counter */
7729 		return -EINVAL;
7730 
7731 	if (event->prog)
7732 		return -EEXIST;
7733 
7734 	prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
7735 	if (IS_ERR(prog))
7736 		return PTR_ERR(prog);
7737 
7738 	event->prog = prog;
7739 	event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
7740 	WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
7741 	return 0;
7742 }
7743 
7744 static void perf_event_free_bpf_handler(struct perf_event *event)
7745 {
7746 	struct bpf_prog *prog = event->prog;
7747 
7748 	if (!prog)
7749 		return;
7750 
7751 	WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
7752 	event->prog = NULL;
7753 	bpf_prog_put(prog);
7754 }
7755 #else
7756 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
7757 {
7758 	return -EOPNOTSUPP;
7759 }
7760 static void perf_event_free_bpf_handler(struct perf_event *event)
7761 {
7762 }
7763 #endif
7764 
7765 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7766 {
7767 	bool is_kprobe, is_tracepoint;
7768 	struct bpf_prog *prog;
7769 
7770 	if (event->attr.type == PERF_TYPE_HARDWARE ||
7771 	    event->attr.type == PERF_TYPE_SOFTWARE)
7772 		return perf_event_set_bpf_handler(event, prog_fd);
7773 
7774 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
7775 		return -EINVAL;
7776 
7777 	if (event->tp_event->prog)
7778 		return -EEXIST;
7779 
7780 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
7781 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
7782 	if (!is_kprobe && !is_tracepoint)
7783 		/* bpf programs can only be attached to u/kprobe or tracepoint */
7784 		return -EINVAL;
7785 
7786 	prog = bpf_prog_get(prog_fd);
7787 	if (IS_ERR(prog))
7788 		return PTR_ERR(prog);
7789 
7790 	if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
7791 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
7792 		/* valid fd, but invalid bpf program type */
7793 		bpf_prog_put(prog);
7794 		return -EINVAL;
7795 	}
7796 
7797 	if (is_tracepoint) {
7798 		int off = trace_event_get_offsets(event->tp_event);
7799 
7800 		if (prog->aux->max_ctx_offset > off) {
7801 			bpf_prog_put(prog);
7802 			return -EACCES;
7803 		}
7804 	}
7805 	event->tp_event->prog = prog;
7806 
7807 	return 0;
7808 }
7809 
7810 static void perf_event_free_bpf_prog(struct perf_event *event)
7811 {
7812 	struct bpf_prog *prog;
7813 
7814 	perf_event_free_bpf_handler(event);
7815 
7816 	if (!event->tp_event)
7817 		return;
7818 
7819 	prog = event->tp_event->prog;
7820 	if (prog) {
7821 		event->tp_event->prog = NULL;
7822 		bpf_prog_put(prog);
7823 	}
7824 }
7825 
7826 #else
7827 
7828 static inline void perf_tp_register(void)
7829 {
7830 }
7831 
7832 static void perf_event_free_filter(struct perf_event *event)
7833 {
7834 }
7835 
7836 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7837 {
7838 	return -ENOENT;
7839 }
7840 
7841 static void perf_event_free_bpf_prog(struct perf_event *event)
7842 {
7843 }
7844 #endif /* CONFIG_EVENT_TRACING */
7845 
7846 #ifdef CONFIG_HAVE_HW_BREAKPOINT
7847 void perf_bp_event(struct perf_event *bp, void *data)
7848 {
7849 	struct perf_sample_data sample;
7850 	struct pt_regs *regs = data;
7851 
7852 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7853 
7854 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
7855 		perf_swevent_event(bp, 1, &sample, regs);
7856 }
7857 #endif
7858 
7859 /*
7860  * Allocate a new address filter
7861  */
7862 static struct perf_addr_filter *
7863 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
7864 {
7865 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
7866 	struct perf_addr_filter *filter;
7867 
7868 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
7869 	if (!filter)
7870 		return NULL;
7871 
7872 	INIT_LIST_HEAD(&filter->entry);
7873 	list_add_tail(&filter->entry, filters);
7874 
7875 	return filter;
7876 }
7877 
7878 static void free_filters_list(struct list_head *filters)
7879 {
7880 	struct perf_addr_filter *filter, *iter;
7881 
7882 	list_for_each_entry_safe(filter, iter, filters, entry) {
7883 		if (filter->inode)
7884 			iput(filter->inode);
7885 		list_del(&filter->entry);
7886 		kfree(filter);
7887 	}
7888 }
7889 
7890 /*
7891  * Free existing address filters and optionally install new ones
7892  */
7893 static void perf_addr_filters_splice(struct perf_event *event,
7894 				     struct list_head *head)
7895 {
7896 	unsigned long flags;
7897 	LIST_HEAD(list);
7898 
7899 	if (!has_addr_filter(event))
7900 		return;
7901 
7902 	/* don't bother with children, they don't have their own filters */
7903 	if (event->parent)
7904 		return;
7905 
7906 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
7907 
7908 	list_splice_init(&event->addr_filters.list, &list);
7909 	if (head)
7910 		list_splice(head, &event->addr_filters.list);
7911 
7912 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
7913 
7914 	free_filters_list(&list);
7915 }
7916 
7917 /*
7918  * Scan through mm's vmas and see if one of them matches the
7919  * @filter; if so, adjust filter's address range.
7920  * Called with mm::mmap_sem down for reading.
7921  */
7922 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
7923 					    struct mm_struct *mm)
7924 {
7925 	struct vm_area_struct *vma;
7926 
7927 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
7928 		struct file *file = vma->vm_file;
7929 		unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
7930 		unsigned long vma_size = vma->vm_end - vma->vm_start;
7931 
7932 		if (!file)
7933 			continue;
7934 
7935 		if (!perf_addr_filter_match(filter, file, off, vma_size))
7936 			continue;
7937 
7938 		return vma->vm_start;
7939 	}
7940 
7941 	return 0;
7942 }
7943 
7944 /*
7945  * Update event's address range filters based on the
7946  * task's existing mappings, if any.
7947  */
7948 static void perf_event_addr_filters_apply(struct perf_event *event)
7949 {
7950 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7951 	struct task_struct *task = READ_ONCE(event->ctx->task);
7952 	struct perf_addr_filter *filter;
7953 	struct mm_struct *mm = NULL;
7954 	unsigned int count = 0;
7955 	unsigned long flags;
7956 
7957 	/*
7958 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
7959 	 * will stop on the parent's child_mutex that our caller is also holding
7960 	 */
7961 	if (task == TASK_TOMBSTONE)
7962 		return;
7963 
7964 	mm = get_task_mm(event->ctx->task);
7965 	if (!mm)
7966 		goto restart;
7967 
7968 	down_read(&mm->mmap_sem);
7969 
7970 	raw_spin_lock_irqsave(&ifh->lock, flags);
7971 	list_for_each_entry(filter, &ifh->list, entry) {
7972 		event->addr_filters_offs[count] = 0;
7973 
7974 		/*
7975 		 * Adjust base offset if the filter is associated to a binary
7976 		 * that needs to be mapped:
7977 		 */
7978 		if (filter->inode)
7979 			event->addr_filters_offs[count] =
7980 				perf_addr_filter_apply(filter, mm);
7981 
7982 		count++;
7983 	}
7984 
7985 	event->addr_filters_gen++;
7986 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
7987 
7988 	up_read(&mm->mmap_sem);
7989 
7990 	mmput(mm);
7991 
7992 restart:
7993 	perf_event_stop(event, 1);
7994 }
7995 
7996 /*
7997  * Address range filtering: limiting the data to certain
7998  * instruction address ranges. Filters are ioctl()ed to us from
7999  * userspace as ascii strings.
8000  *
8001  * Filter string format:
8002  *
8003  * ACTION RANGE_SPEC
8004  * where ACTION is one of the
8005  *  * "filter": limit the trace to this region
8006  *  * "start": start tracing from this address
8007  *  * "stop": stop tracing at this address/region;
8008  * RANGE_SPEC is
8009  *  * for kernel addresses: <start address>[/<size>]
8010  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
8011  *
8012  * if <size> is not specified, the range is treated as a single address.
8013  */
8014 enum {
8015 	IF_ACT_FILTER,
8016 	IF_ACT_START,
8017 	IF_ACT_STOP,
8018 	IF_SRC_FILE,
8019 	IF_SRC_KERNEL,
8020 	IF_SRC_FILEADDR,
8021 	IF_SRC_KERNELADDR,
8022 };
8023 
8024 enum {
8025 	IF_STATE_ACTION = 0,
8026 	IF_STATE_SOURCE,
8027 	IF_STATE_END,
8028 };
8029 
8030 static const match_table_t if_tokens = {
8031 	{ IF_ACT_FILTER,	"filter" },
8032 	{ IF_ACT_START,		"start" },
8033 	{ IF_ACT_STOP,		"stop" },
8034 	{ IF_SRC_FILE,		"%u/%u@%s" },
8035 	{ IF_SRC_KERNEL,	"%u/%u" },
8036 	{ IF_SRC_FILEADDR,	"%u@%s" },
8037 	{ IF_SRC_KERNELADDR,	"%u" },
8038 };
8039 
8040 /*
8041  * Address filter string parser
8042  */
8043 static int
8044 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8045 			     struct list_head *filters)
8046 {
8047 	struct perf_addr_filter *filter = NULL;
8048 	char *start, *orig, *filename = NULL;
8049 	struct path path;
8050 	substring_t args[MAX_OPT_ARGS];
8051 	int state = IF_STATE_ACTION, token;
8052 	unsigned int kernel = 0;
8053 	int ret = -EINVAL;
8054 
8055 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
8056 	if (!fstr)
8057 		return -ENOMEM;
8058 
8059 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
8060 		ret = -EINVAL;
8061 
8062 		if (!*start)
8063 			continue;
8064 
8065 		/* filter definition begins */
8066 		if (state == IF_STATE_ACTION) {
8067 			filter = perf_addr_filter_new(event, filters);
8068 			if (!filter)
8069 				goto fail;
8070 		}
8071 
8072 		token = match_token(start, if_tokens, args);
8073 		switch (token) {
8074 		case IF_ACT_FILTER:
8075 		case IF_ACT_START:
8076 			filter->filter = 1;
8077 
8078 		case IF_ACT_STOP:
8079 			if (state != IF_STATE_ACTION)
8080 				goto fail;
8081 
8082 			state = IF_STATE_SOURCE;
8083 			break;
8084 
8085 		case IF_SRC_KERNELADDR:
8086 		case IF_SRC_KERNEL:
8087 			kernel = 1;
8088 
8089 		case IF_SRC_FILEADDR:
8090 		case IF_SRC_FILE:
8091 			if (state != IF_STATE_SOURCE)
8092 				goto fail;
8093 
8094 			if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
8095 				filter->range = 1;
8096 
8097 			*args[0].to = 0;
8098 			ret = kstrtoul(args[0].from, 0, &filter->offset);
8099 			if (ret)
8100 				goto fail;
8101 
8102 			if (filter->range) {
8103 				*args[1].to = 0;
8104 				ret = kstrtoul(args[1].from, 0, &filter->size);
8105 				if (ret)
8106 					goto fail;
8107 			}
8108 
8109 			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8110 				int fpos = filter->range ? 2 : 1;
8111 
8112 				filename = match_strdup(&args[fpos]);
8113 				if (!filename) {
8114 					ret = -ENOMEM;
8115 					goto fail;
8116 				}
8117 			}
8118 
8119 			state = IF_STATE_END;
8120 			break;
8121 
8122 		default:
8123 			goto fail;
8124 		}
8125 
8126 		/*
8127 		 * Filter definition is fully parsed, validate and install it.
8128 		 * Make sure that it doesn't contradict itself or the event's
8129 		 * attribute.
8130 		 */
8131 		if (state == IF_STATE_END) {
8132 			if (kernel && event->attr.exclude_kernel)
8133 				goto fail;
8134 
8135 			if (!kernel) {
8136 				if (!filename)
8137 					goto fail;
8138 
8139 				/* look up the path and grab its inode */
8140 				ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8141 				if (ret)
8142 					goto fail_free_name;
8143 
8144 				filter->inode = igrab(d_inode(path.dentry));
8145 				path_put(&path);
8146 				kfree(filename);
8147 				filename = NULL;
8148 
8149 				ret = -EINVAL;
8150 				if (!filter->inode ||
8151 				    !S_ISREG(filter->inode->i_mode))
8152 					/* free_filters_list() will iput() */
8153 					goto fail;
8154 			}
8155 
8156 			/* ready to consume more filters */
8157 			state = IF_STATE_ACTION;
8158 			filter = NULL;
8159 		}
8160 	}
8161 
8162 	if (state != IF_STATE_ACTION)
8163 		goto fail;
8164 
8165 	kfree(orig);
8166 
8167 	return 0;
8168 
8169 fail_free_name:
8170 	kfree(filename);
8171 fail:
8172 	free_filters_list(filters);
8173 	kfree(orig);
8174 
8175 	return ret;
8176 }
8177 
8178 static int
8179 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8180 {
8181 	LIST_HEAD(filters);
8182 	int ret;
8183 
8184 	/*
8185 	 * Since this is called in perf_ioctl() path, we're already holding
8186 	 * ctx::mutex.
8187 	 */
8188 	lockdep_assert_held(&event->ctx->mutex);
8189 
8190 	if (WARN_ON_ONCE(event->parent))
8191 		return -EINVAL;
8192 
8193 	/*
8194 	 * For now, we only support filtering in per-task events; doing so
8195 	 * for CPU-wide events requires additional context switching trickery,
8196 	 * since same object code will be mapped at different virtual
8197 	 * addresses in different processes.
8198 	 */
8199 	if (!event->ctx->task)
8200 		return -EOPNOTSUPP;
8201 
8202 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8203 	if (ret)
8204 		return ret;
8205 
8206 	ret = event->pmu->addr_filters_validate(&filters);
8207 	if (ret) {
8208 		free_filters_list(&filters);
8209 		return ret;
8210 	}
8211 
8212 	/* remove existing filters, if any */
8213 	perf_addr_filters_splice(event, &filters);
8214 
8215 	/* install new filters */
8216 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
8217 
8218 	return ret;
8219 }
8220 
8221 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8222 {
8223 	char *filter_str;
8224 	int ret = -EINVAL;
8225 
8226 	if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8227 	    !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8228 	    !has_addr_filter(event))
8229 		return -EINVAL;
8230 
8231 	filter_str = strndup_user(arg, PAGE_SIZE);
8232 	if (IS_ERR(filter_str))
8233 		return PTR_ERR(filter_str);
8234 
8235 	if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8236 	    event->attr.type == PERF_TYPE_TRACEPOINT)
8237 		ret = ftrace_profile_set_filter(event, event->attr.config,
8238 						filter_str);
8239 	else if (has_addr_filter(event))
8240 		ret = perf_event_set_addr_filter(event, filter_str);
8241 
8242 	kfree(filter_str);
8243 	return ret;
8244 }
8245 
8246 /*
8247  * hrtimer based swevent callback
8248  */
8249 
8250 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
8251 {
8252 	enum hrtimer_restart ret = HRTIMER_RESTART;
8253 	struct perf_sample_data data;
8254 	struct pt_regs *regs;
8255 	struct perf_event *event;
8256 	u64 period;
8257 
8258 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
8259 
8260 	if (event->state != PERF_EVENT_STATE_ACTIVE)
8261 		return HRTIMER_NORESTART;
8262 
8263 	event->pmu->read(event);
8264 
8265 	perf_sample_data_init(&data, 0, event->hw.last_period);
8266 	regs = get_irq_regs();
8267 
8268 	if (regs && !perf_exclude_event(event, regs)) {
8269 		if (!(event->attr.exclude_idle && is_idle_task(current)))
8270 			if (__perf_event_overflow(event, 1, &data, regs))
8271 				ret = HRTIMER_NORESTART;
8272 	}
8273 
8274 	period = max_t(u64, 10000, event->hw.sample_period);
8275 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
8276 
8277 	return ret;
8278 }
8279 
8280 static void perf_swevent_start_hrtimer(struct perf_event *event)
8281 {
8282 	struct hw_perf_event *hwc = &event->hw;
8283 	s64 period;
8284 
8285 	if (!is_sampling_event(event))
8286 		return;
8287 
8288 	period = local64_read(&hwc->period_left);
8289 	if (period) {
8290 		if (period < 0)
8291 			period = 10000;
8292 
8293 		local64_set(&hwc->period_left, 0);
8294 	} else {
8295 		period = max_t(u64, 10000, hwc->sample_period);
8296 	}
8297 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8298 		      HRTIMER_MODE_REL_PINNED);
8299 }
8300 
8301 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8302 {
8303 	struct hw_perf_event *hwc = &event->hw;
8304 
8305 	if (is_sampling_event(event)) {
8306 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
8307 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
8308 
8309 		hrtimer_cancel(&hwc->hrtimer);
8310 	}
8311 }
8312 
8313 static void perf_swevent_init_hrtimer(struct perf_event *event)
8314 {
8315 	struct hw_perf_event *hwc = &event->hw;
8316 
8317 	if (!is_sampling_event(event))
8318 		return;
8319 
8320 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8321 	hwc->hrtimer.function = perf_swevent_hrtimer;
8322 
8323 	/*
8324 	 * Since hrtimers have a fixed rate, we can do a static freq->period
8325 	 * mapping and avoid the whole period adjust feedback stuff.
8326 	 */
8327 	if (event->attr.freq) {
8328 		long freq = event->attr.sample_freq;
8329 
8330 		event->attr.sample_period = NSEC_PER_SEC / freq;
8331 		hwc->sample_period = event->attr.sample_period;
8332 		local64_set(&hwc->period_left, hwc->sample_period);
8333 		hwc->last_period = hwc->sample_period;
8334 		event->attr.freq = 0;
8335 	}
8336 }
8337 
8338 /*
8339  * Software event: cpu wall time clock
8340  */
8341 
8342 static void cpu_clock_event_update(struct perf_event *event)
8343 {
8344 	s64 prev;
8345 	u64 now;
8346 
8347 	now = local_clock();
8348 	prev = local64_xchg(&event->hw.prev_count, now);
8349 	local64_add(now - prev, &event->count);
8350 }
8351 
8352 static void cpu_clock_event_start(struct perf_event *event, int flags)
8353 {
8354 	local64_set(&event->hw.prev_count, local_clock());
8355 	perf_swevent_start_hrtimer(event);
8356 }
8357 
8358 static void cpu_clock_event_stop(struct perf_event *event, int flags)
8359 {
8360 	perf_swevent_cancel_hrtimer(event);
8361 	cpu_clock_event_update(event);
8362 }
8363 
8364 static int cpu_clock_event_add(struct perf_event *event, int flags)
8365 {
8366 	if (flags & PERF_EF_START)
8367 		cpu_clock_event_start(event, flags);
8368 	perf_event_update_userpage(event);
8369 
8370 	return 0;
8371 }
8372 
8373 static void cpu_clock_event_del(struct perf_event *event, int flags)
8374 {
8375 	cpu_clock_event_stop(event, flags);
8376 }
8377 
8378 static void cpu_clock_event_read(struct perf_event *event)
8379 {
8380 	cpu_clock_event_update(event);
8381 }
8382 
8383 static int cpu_clock_event_init(struct perf_event *event)
8384 {
8385 	if (event->attr.type != PERF_TYPE_SOFTWARE)
8386 		return -ENOENT;
8387 
8388 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8389 		return -ENOENT;
8390 
8391 	/*
8392 	 * no branch sampling for software events
8393 	 */
8394 	if (has_branch_stack(event))
8395 		return -EOPNOTSUPP;
8396 
8397 	perf_swevent_init_hrtimer(event);
8398 
8399 	return 0;
8400 }
8401 
8402 static struct pmu perf_cpu_clock = {
8403 	.task_ctx_nr	= perf_sw_context,
8404 
8405 	.capabilities	= PERF_PMU_CAP_NO_NMI,
8406 
8407 	.event_init	= cpu_clock_event_init,
8408 	.add		= cpu_clock_event_add,
8409 	.del		= cpu_clock_event_del,
8410 	.start		= cpu_clock_event_start,
8411 	.stop		= cpu_clock_event_stop,
8412 	.read		= cpu_clock_event_read,
8413 };
8414 
8415 /*
8416  * Software event: task time clock
8417  */
8418 
8419 static void task_clock_event_update(struct perf_event *event, u64 now)
8420 {
8421 	u64 prev;
8422 	s64 delta;
8423 
8424 	prev = local64_xchg(&event->hw.prev_count, now);
8425 	delta = now - prev;
8426 	local64_add(delta, &event->count);
8427 }
8428 
8429 static void task_clock_event_start(struct perf_event *event, int flags)
8430 {
8431 	local64_set(&event->hw.prev_count, event->ctx->time);
8432 	perf_swevent_start_hrtimer(event);
8433 }
8434 
8435 static void task_clock_event_stop(struct perf_event *event, int flags)
8436 {
8437 	perf_swevent_cancel_hrtimer(event);
8438 	task_clock_event_update(event, event->ctx->time);
8439 }
8440 
8441 static int task_clock_event_add(struct perf_event *event, int flags)
8442 {
8443 	if (flags & PERF_EF_START)
8444 		task_clock_event_start(event, flags);
8445 	perf_event_update_userpage(event);
8446 
8447 	return 0;
8448 }
8449 
8450 static void task_clock_event_del(struct perf_event *event, int flags)
8451 {
8452 	task_clock_event_stop(event, PERF_EF_UPDATE);
8453 }
8454 
8455 static void task_clock_event_read(struct perf_event *event)
8456 {
8457 	u64 now = perf_clock();
8458 	u64 delta = now - event->ctx->timestamp;
8459 	u64 time = event->ctx->time + delta;
8460 
8461 	task_clock_event_update(event, time);
8462 }
8463 
8464 static int task_clock_event_init(struct perf_event *event)
8465 {
8466 	if (event->attr.type != PERF_TYPE_SOFTWARE)
8467 		return -ENOENT;
8468 
8469 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8470 		return -ENOENT;
8471 
8472 	/*
8473 	 * no branch sampling for software events
8474 	 */
8475 	if (has_branch_stack(event))
8476 		return -EOPNOTSUPP;
8477 
8478 	perf_swevent_init_hrtimer(event);
8479 
8480 	return 0;
8481 }
8482 
8483 static struct pmu perf_task_clock = {
8484 	.task_ctx_nr	= perf_sw_context,
8485 
8486 	.capabilities	= PERF_PMU_CAP_NO_NMI,
8487 
8488 	.event_init	= task_clock_event_init,
8489 	.add		= task_clock_event_add,
8490 	.del		= task_clock_event_del,
8491 	.start		= task_clock_event_start,
8492 	.stop		= task_clock_event_stop,
8493 	.read		= task_clock_event_read,
8494 };
8495 
8496 static void perf_pmu_nop_void(struct pmu *pmu)
8497 {
8498 }
8499 
8500 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8501 {
8502 }
8503 
8504 static int perf_pmu_nop_int(struct pmu *pmu)
8505 {
8506 	return 0;
8507 }
8508 
8509 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8510 
8511 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
8512 {
8513 	__this_cpu_write(nop_txn_flags, flags);
8514 
8515 	if (flags & ~PERF_PMU_TXN_ADD)
8516 		return;
8517 
8518 	perf_pmu_disable(pmu);
8519 }
8520 
8521 static int perf_pmu_commit_txn(struct pmu *pmu)
8522 {
8523 	unsigned int flags = __this_cpu_read(nop_txn_flags);
8524 
8525 	__this_cpu_write(nop_txn_flags, 0);
8526 
8527 	if (flags & ~PERF_PMU_TXN_ADD)
8528 		return 0;
8529 
8530 	perf_pmu_enable(pmu);
8531 	return 0;
8532 }
8533 
8534 static void perf_pmu_cancel_txn(struct pmu *pmu)
8535 {
8536 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
8537 
8538 	__this_cpu_write(nop_txn_flags, 0);
8539 
8540 	if (flags & ~PERF_PMU_TXN_ADD)
8541 		return;
8542 
8543 	perf_pmu_enable(pmu);
8544 }
8545 
8546 static int perf_event_idx_default(struct perf_event *event)
8547 {
8548 	return 0;
8549 }
8550 
8551 /*
8552  * Ensures all contexts with the same task_ctx_nr have the same
8553  * pmu_cpu_context too.
8554  */
8555 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
8556 {
8557 	struct pmu *pmu;
8558 
8559 	if (ctxn < 0)
8560 		return NULL;
8561 
8562 	list_for_each_entry(pmu, &pmus, entry) {
8563 		if (pmu->task_ctx_nr == ctxn)
8564 			return pmu->pmu_cpu_context;
8565 	}
8566 
8567 	return NULL;
8568 }
8569 
8570 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
8571 {
8572 	int cpu;
8573 
8574 	for_each_possible_cpu(cpu) {
8575 		struct perf_cpu_context *cpuctx;
8576 
8577 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8578 
8579 		if (cpuctx->unique_pmu == old_pmu)
8580 			cpuctx->unique_pmu = pmu;
8581 	}
8582 }
8583 
8584 static void free_pmu_context(struct pmu *pmu)
8585 {
8586 	struct pmu *i;
8587 
8588 	mutex_lock(&pmus_lock);
8589 	/*
8590 	 * Like a real lame refcount.
8591 	 */
8592 	list_for_each_entry(i, &pmus, entry) {
8593 		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
8594 			update_pmu_context(i, pmu);
8595 			goto out;
8596 		}
8597 	}
8598 
8599 	free_percpu(pmu->pmu_cpu_context);
8600 out:
8601 	mutex_unlock(&pmus_lock);
8602 }
8603 
8604 /*
8605  * Let userspace know that this PMU supports address range filtering:
8606  */
8607 static ssize_t nr_addr_filters_show(struct device *dev,
8608 				    struct device_attribute *attr,
8609 				    char *page)
8610 {
8611 	struct pmu *pmu = dev_get_drvdata(dev);
8612 
8613 	return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8614 }
8615 DEVICE_ATTR_RO(nr_addr_filters);
8616 
8617 static struct idr pmu_idr;
8618 
8619 static ssize_t
8620 type_show(struct device *dev, struct device_attribute *attr, char *page)
8621 {
8622 	struct pmu *pmu = dev_get_drvdata(dev);
8623 
8624 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8625 }
8626 static DEVICE_ATTR_RO(type);
8627 
8628 static ssize_t
8629 perf_event_mux_interval_ms_show(struct device *dev,
8630 				struct device_attribute *attr,
8631 				char *page)
8632 {
8633 	struct pmu *pmu = dev_get_drvdata(dev);
8634 
8635 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
8636 }
8637 
8638 static DEFINE_MUTEX(mux_interval_mutex);
8639 
8640 static ssize_t
8641 perf_event_mux_interval_ms_store(struct device *dev,
8642 				 struct device_attribute *attr,
8643 				 const char *buf, size_t count)
8644 {
8645 	struct pmu *pmu = dev_get_drvdata(dev);
8646 	int timer, cpu, ret;
8647 
8648 	ret = kstrtoint(buf, 0, &timer);
8649 	if (ret)
8650 		return ret;
8651 
8652 	if (timer < 1)
8653 		return -EINVAL;
8654 
8655 	/* same value, noting to do */
8656 	if (timer == pmu->hrtimer_interval_ms)
8657 		return count;
8658 
8659 	mutex_lock(&mux_interval_mutex);
8660 	pmu->hrtimer_interval_ms = timer;
8661 
8662 	/* update all cpuctx for this PMU */
8663 	get_online_cpus();
8664 	for_each_online_cpu(cpu) {
8665 		struct perf_cpu_context *cpuctx;
8666 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8667 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
8668 
8669 		cpu_function_call(cpu,
8670 			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
8671 	}
8672 	put_online_cpus();
8673 	mutex_unlock(&mux_interval_mutex);
8674 
8675 	return count;
8676 }
8677 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
8678 
8679 static struct attribute *pmu_dev_attrs[] = {
8680 	&dev_attr_type.attr,
8681 	&dev_attr_perf_event_mux_interval_ms.attr,
8682 	NULL,
8683 };
8684 ATTRIBUTE_GROUPS(pmu_dev);
8685 
8686 static int pmu_bus_running;
8687 static struct bus_type pmu_bus = {
8688 	.name		= "event_source",
8689 	.dev_groups	= pmu_dev_groups,
8690 };
8691 
8692 static void pmu_dev_release(struct device *dev)
8693 {
8694 	kfree(dev);
8695 }
8696 
8697 static int pmu_dev_alloc(struct pmu *pmu)
8698 {
8699 	int ret = -ENOMEM;
8700 
8701 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
8702 	if (!pmu->dev)
8703 		goto out;
8704 
8705 	pmu->dev->groups = pmu->attr_groups;
8706 	device_initialize(pmu->dev);
8707 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
8708 	if (ret)
8709 		goto free_dev;
8710 
8711 	dev_set_drvdata(pmu->dev, pmu);
8712 	pmu->dev->bus = &pmu_bus;
8713 	pmu->dev->release = pmu_dev_release;
8714 	ret = device_add(pmu->dev);
8715 	if (ret)
8716 		goto free_dev;
8717 
8718 	/* For PMUs with address filters, throw in an extra attribute: */
8719 	if (pmu->nr_addr_filters)
8720 		ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
8721 
8722 	if (ret)
8723 		goto del_dev;
8724 
8725 out:
8726 	return ret;
8727 
8728 del_dev:
8729 	device_del(pmu->dev);
8730 
8731 free_dev:
8732 	put_device(pmu->dev);
8733 	goto out;
8734 }
8735 
8736 static struct lock_class_key cpuctx_mutex;
8737 static struct lock_class_key cpuctx_lock;
8738 
8739 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
8740 {
8741 	int cpu, ret;
8742 
8743 	mutex_lock(&pmus_lock);
8744 	ret = -ENOMEM;
8745 	pmu->pmu_disable_count = alloc_percpu(int);
8746 	if (!pmu->pmu_disable_count)
8747 		goto unlock;
8748 
8749 	pmu->type = -1;
8750 	if (!name)
8751 		goto skip_type;
8752 	pmu->name = name;
8753 
8754 	if (type < 0) {
8755 		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
8756 		if (type < 0) {
8757 			ret = type;
8758 			goto free_pdc;
8759 		}
8760 	}
8761 	pmu->type = type;
8762 
8763 	if (pmu_bus_running) {
8764 		ret = pmu_dev_alloc(pmu);
8765 		if (ret)
8766 			goto free_idr;
8767 	}
8768 
8769 skip_type:
8770 	if (pmu->task_ctx_nr == perf_hw_context) {
8771 		static int hw_context_taken = 0;
8772 
8773 		/*
8774 		 * Other than systems with heterogeneous CPUs, it never makes
8775 		 * sense for two PMUs to share perf_hw_context. PMUs which are
8776 		 * uncore must use perf_invalid_context.
8777 		 */
8778 		if (WARN_ON_ONCE(hw_context_taken &&
8779 		    !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
8780 			pmu->task_ctx_nr = perf_invalid_context;
8781 
8782 		hw_context_taken = 1;
8783 	}
8784 
8785 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
8786 	if (pmu->pmu_cpu_context)
8787 		goto got_cpu_context;
8788 
8789 	ret = -ENOMEM;
8790 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
8791 	if (!pmu->pmu_cpu_context)
8792 		goto free_dev;
8793 
8794 	for_each_possible_cpu(cpu) {
8795 		struct perf_cpu_context *cpuctx;
8796 
8797 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8798 		__perf_event_init_context(&cpuctx->ctx);
8799 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
8800 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
8801 		cpuctx->ctx.pmu = pmu;
8802 
8803 		__perf_mux_hrtimer_init(cpuctx, cpu);
8804 
8805 		cpuctx->unique_pmu = pmu;
8806 	}
8807 
8808 got_cpu_context:
8809 	if (!pmu->start_txn) {
8810 		if (pmu->pmu_enable) {
8811 			/*
8812 			 * If we have pmu_enable/pmu_disable calls, install
8813 			 * transaction stubs that use that to try and batch
8814 			 * hardware accesses.
8815 			 */
8816 			pmu->start_txn  = perf_pmu_start_txn;
8817 			pmu->commit_txn = perf_pmu_commit_txn;
8818 			pmu->cancel_txn = perf_pmu_cancel_txn;
8819 		} else {
8820 			pmu->start_txn  = perf_pmu_nop_txn;
8821 			pmu->commit_txn = perf_pmu_nop_int;
8822 			pmu->cancel_txn = perf_pmu_nop_void;
8823 		}
8824 	}
8825 
8826 	if (!pmu->pmu_enable) {
8827 		pmu->pmu_enable  = perf_pmu_nop_void;
8828 		pmu->pmu_disable = perf_pmu_nop_void;
8829 	}
8830 
8831 	if (!pmu->event_idx)
8832 		pmu->event_idx = perf_event_idx_default;
8833 
8834 	list_add_rcu(&pmu->entry, &pmus);
8835 	atomic_set(&pmu->exclusive_cnt, 0);
8836 	ret = 0;
8837 unlock:
8838 	mutex_unlock(&pmus_lock);
8839 
8840 	return ret;
8841 
8842 free_dev:
8843 	device_del(pmu->dev);
8844 	put_device(pmu->dev);
8845 
8846 free_idr:
8847 	if (pmu->type >= PERF_TYPE_MAX)
8848 		idr_remove(&pmu_idr, pmu->type);
8849 
8850 free_pdc:
8851 	free_percpu(pmu->pmu_disable_count);
8852 	goto unlock;
8853 }
8854 EXPORT_SYMBOL_GPL(perf_pmu_register);
8855 
8856 void perf_pmu_unregister(struct pmu *pmu)
8857 {
8858 	mutex_lock(&pmus_lock);
8859 	list_del_rcu(&pmu->entry);
8860 	mutex_unlock(&pmus_lock);
8861 
8862 	/*
8863 	 * We dereference the pmu list under both SRCU and regular RCU, so
8864 	 * synchronize against both of those.
8865 	 */
8866 	synchronize_srcu(&pmus_srcu);
8867 	synchronize_rcu();
8868 
8869 	free_percpu(pmu->pmu_disable_count);
8870 	if (pmu->type >= PERF_TYPE_MAX)
8871 		idr_remove(&pmu_idr, pmu->type);
8872 	if (pmu->nr_addr_filters)
8873 		device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
8874 	device_del(pmu->dev);
8875 	put_device(pmu->dev);
8876 	free_pmu_context(pmu);
8877 }
8878 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
8879 
8880 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
8881 {
8882 	struct perf_event_context *ctx = NULL;
8883 	int ret;
8884 
8885 	if (!try_module_get(pmu->module))
8886 		return -ENODEV;
8887 
8888 	if (event->group_leader != event) {
8889 		/*
8890 		 * This ctx->mutex can nest when we're called through
8891 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
8892 		 */
8893 		ctx = perf_event_ctx_lock_nested(event->group_leader,
8894 						 SINGLE_DEPTH_NESTING);
8895 		BUG_ON(!ctx);
8896 	}
8897 
8898 	event->pmu = pmu;
8899 	ret = pmu->event_init(event);
8900 
8901 	if (ctx)
8902 		perf_event_ctx_unlock(event->group_leader, ctx);
8903 
8904 	if (ret)
8905 		module_put(pmu->module);
8906 
8907 	return ret;
8908 }
8909 
8910 static struct pmu *perf_init_event(struct perf_event *event)
8911 {
8912 	struct pmu *pmu = NULL;
8913 	int idx;
8914 	int ret;
8915 
8916 	idx = srcu_read_lock(&pmus_srcu);
8917 
8918 	rcu_read_lock();
8919 	pmu = idr_find(&pmu_idr, event->attr.type);
8920 	rcu_read_unlock();
8921 	if (pmu) {
8922 		ret = perf_try_init_event(pmu, event);
8923 		if (ret)
8924 			pmu = ERR_PTR(ret);
8925 		goto unlock;
8926 	}
8927 
8928 	list_for_each_entry_rcu(pmu, &pmus, entry) {
8929 		ret = perf_try_init_event(pmu, event);
8930 		if (!ret)
8931 			goto unlock;
8932 
8933 		if (ret != -ENOENT) {
8934 			pmu = ERR_PTR(ret);
8935 			goto unlock;
8936 		}
8937 	}
8938 	pmu = ERR_PTR(-ENOENT);
8939 unlock:
8940 	srcu_read_unlock(&pmus_srcu, idx);
8941 
8942 	return pmu;
8943 }
8944 
8945 static void attach_sb_event(struct perf_event *event)
8946 {
8947 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
8948 
8949 	raw_spin_lock(&pel->lock);
8950 	list_add_rcu(&event->sb_list, &pel->list);
8951 	raw_spin_unlock(&pel->lock);
8952 }
8953 
8954 /*
8955  * We keep a list of all !task (and therefore per-cpu) events
8956  * that need to receive side-band records.
8957  *
8958  * This avoids having to scan all the various PMU per-cpu contexts
8959  * looking for them.
8960  */
8961 static void account_pmu_sb_event(struct perf_event *event)
8962 {
8963 	if (is_sb_event(event))
8964 		attach_sb_event(event);
8965 }
8966 
8967 static void account_event_cpu(struct perf_event *event, int cpu)
8968 {
8969 	if (event->parent)
8970 		return;
8971 
8972 	if (is_cgroup_event(event))
8973 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
8974 }
8975 
8976 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
8977 static void account_freq_event_nohz(void)
8978 {
8979 #ifdef CONFIG_NO_HZ_FULL
8980 	/* Lock so we don't race with concurrent unaccount */
8981 	spin_lock(&nr_freq_lock);
8982 	if (atomic_inc_return(&nr_freq_events) == 1)
8983 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
8984 	spin_unlock(&nr_freq_lock);
8985 #endif
8986 }
8987 
8988 static void account_freq_event(void)
8989 {
8990 	if (tick_nohz_full_enabled())
8991 		account_freq_event_nohz();
8992 	else
8993 		atomic_inc(&nr_freq_events);
8994 }
8995 
8996 
8997 static void account_event(struct perf_event *event)
8998 {
8999 	bool inc = false;
9000 
9001 	if (event->parent)
9002 		return;
9003 
9004 	if (event->attach_state & PERF_ATTACH_TASK)
9005 		inc = true;
9006 	if (event->attr.mmap || event->attr.mmap_data)
9007 		atomic_inc(&nr_mmap_events);
9008 	if (event->attr.comm)
9009 		atomic_inc(&nr_comm_events);
9010 	if (event->attr.task)
9011 		atomic_inc(&nr_task_events);
9012 	if (event->attr.freq)
9013 		account_freq_event();
9014 	if (event->attr.context_switch) {
9015 		atomic_inc(&nr_switch_events);
9016 		inc = true;
9017 	}
9018 	if (has_branch_stack(event))
9019 		inc = true;
9020 	if (is_cgroup_event(event))
9021 		inc = true;
9022 
9023 	if (inc) {
9024 		if (atomic_inc_not_zero(&perf_sched_count))
9025 			goto enabled;
9026 
9027 		mutex_lock(&perf_sched_mutex);
9028 		if (!atomic_read(&perf_sched_count)) {
9029 			static_branch_enable(&perf_sched_events);
9030 			/*
9031 			 * Guarantee that all CPUs observe they key change and
9032 			 * call the perf scheduling hooks before proceeding to
9033 			 * install events that need them.
9034 			 */
9035 			synchronize_sched();
9036 		}
9037 		/*
9038 		 * Now that we have waited for the sync_sched(), allow further
9039 		 * increments to by-pass the mutex.
9040 		 */
9041 		atomic_inc(&perf_sched_count);
9042 		mutex_unlock(&perf_sched_mutex);
9043 	}
9044 enabled:
9045 
9046 	account_event_cpu(event, event->cpu);
9047 
9048 	account_pmu_sb_event(event);
9049 }
9050 
9051 /*
9052  * Allocate and initialize a event structure
9053  */
9054 static struct perf_event *
9055 perf_event_alloc(struct perf_event_attr *attr, int cpu,
9056 		 struct task_struct *task,
9057 		 struct perf_event *group_leader,
9058 		 struct perf_event *parent_event,
9059 		 perf_overflow_handler_t overflow_handler,
9060 		 void *context, int cgroup_fd)
9061 {
9062 	struct pmu *pmu;
9063 	struct perf_event *event;
9064 	struct hw_perf_event *hwc;
9065 	long err = -EINVAL;
9066 
9067 	if ((unsigned)cpu >= nr_cpu_ids) {
9068 		if (!task || cpu != -1)
9069 			return ERR_PTR(-EINVAL);
9070 	}
9071 
9072 	event = kzalloc(sizeof(*event), GFP_KERNEL);
9073 	if (!event)
9074 		return ERR_PTR(-ENOMEM);
9075 
9076 	/*
9077 	 * Single events are their own group leaders, with an
9078 	 * empty sibling list:
9079 	 */
9080 	if (!group_leader)
9081 		group_leader = event;
9082 
9083 	mutex_init(&event->child_mutex);
9084 	INIT_LIST_HEAD(&event->child_list);
9085 
9086 	INIT_LIST_HEAD(&event->group_entry);
9087 	INIT_LIST_HEAD(&event->event_entry);
9088 	INIT_LIST_HEAD(&event->sibling_list);
9089 	INIT_LIST_HEAD(&event->rb_entry);
9090 	INIT_LIST_HEAD(&event->active_entry);
9091 	INIT_LIST_HEAD(&event->addr_filters.list);
9092 	INIT_HLIST_NODE(&event->hlist_entry);
9093 
9094 
9095 	init_waitqueue_head(&event->waitq);
9096 	init_irq_work(&event->pending, perf_pending_event);
9097 
9098 	mutex_init(&event->mmap_mutex);
9099 	raw_spin_lock_init(&event->addr_filters.lock);
9100 
9101 	atomic_long_set(&event->refcount, 1);
9102 	event->cpu		= cpu;
9103 	event->attr		= *attr;
9104 	event->group_leader	= group_leader;
9105 	event->pmu		= NULL;
9106 	event->oncpu		= -1;
9107 
9108 	event->parent		= parent_event;
9109 
9110 	event->ns		= get_pid_ns(task_active_pid_ns(current));
9111 	event->id		= atomic64_inc_return(&perf_event_id);
9112 
9113 	event->state		= PERF_EVENT_STATE_INACTIVE;
9114 
9115 	if (task) {
9116 		event->attach_state = PERF_ATTACH_TASK;
9117 		/*
9118 		 * XXX pmu::event_init needs to know what task to account to
9119 		 * and we cannot use the ctx information because we need the
9120 		 * pmu before we get a ctx.
9121 		 */
9122 		event->hw.target = task;
9123 	}
9124 
9125 	event->clock = &local_clock;
9126 	if (parent_event)
9127 		event->clock = parent_event->clock;
9128 
9129 	if (!overflow_handler && parent_event) {
9130 		overflow_handler = parent_event->overflow_handler;
9131 		context = parent_event->overflow_handler_context;
9132 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9133 		if (overflow_handler == bpf_overflow_handler) {
9134 			struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9135 
9136 			if (IS_ERR(prog)) {
9137 				err = PTR_ERR(prog);
9138 				goto err_ns;
9139 			}
9140 			event->prog = prog;
9141 			event->orig_overflow_handler =
9142 				parent_event->orig_overflow_handler;
9143 		}
9144 #endif
9145 	}
9146 
9147 	if (overflow_handler) {
9148 		event->overflow_handler	= overflow_handler;
9149 		event->overflow_handler_context = context;
9150 	} else if (is_write_backward(event)){
9151 		event->overflow_handler = perf_event_output_backward;
9152 		event->overflow_handler_context = NULL;
9153 	} else {
9154 		event->overflow_handler = perf_event_output_forward;
9155 		event->overflow_handler_context = NULL;
9156 	}
9157 
9158 	perf_event__state_init(event);
9159 
9160 	pmu = NULL;
9161 
9162 	hwc = &event->hw;
9163 	hwc->sample_period = attr->sample_period;
9164 	if (attr->freq && attr->sample_freq)
9165 		hwc->sample_period = 1;
9166 	hwc->last_period = hwc->sample_period;
9167 
9168 	local64_set(&hwc->period_left, hwc->sample_period);
9169 
9170 	/*
9171 	 * we currently do not support PERF_FORMAT_GROUP on inherited events
9172 	 */
9173 	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
9174 		goto err_ns;
9175 
9176 	if (!has_branch_stack(event))
9177 		event->attr.branch_sample_type = 0;
9178 
9179 	if (cgroup_fd != -1) {
9180 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9181 		if (err)
9182 			goto err_ns;
9183 	}
9184 
9185 	pmu = perf_init_event(event);
9186 	if (!pmu)
9187 		goto err_ns;
9188 	else if (IS_ERR(pmu)) {
9189 		err = PTR_ERR(pmu);
9190 		goto err_ns;
9191 	}
9192 
9193 	err = exclusive_event_init(event);
9194 	if (err)
9195 		goto err_pmu;
9196 
9197 	if (has_addr_filter(event)) {
9198 		event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9199 						   sizeof(unsigned long),
9200 						   GFP_KERNEL);
9201 		if (!event->addr_filters_offs)
9202 			goto err_per_task;
9203 
9204 		/* force hw sync on the address filters */
9205 		event->addr_filters_gen = 1;
9206 	}
9207 
9208 	if (!event->parent) {
9209 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
9210 			err = get_callchain_buffers(attr->sample_max_stack);
9211 			if (err)
9212 				goto err_addr_filters;
9213 		}
9214 	}
9215 
9216 	/* symmetric to unaccount_event() in _free_event() */
9217 	account_event(event);
9218 
9219 	return event;
9220 
9221 err_addr_filters:
9222 	kfree(event->addr_filters_offs);
9223 
9224 err_per_task:
9225 	exclusive_event_destroy(event);
9226 
9227 err_pmu:
9228 	if (event->destroy)
9229 		event->destroy(event);
9230 	module_put(pmu->module);
9231 err_ns:
9232 	if (is_cgroup_event(event))
9233 		perf_detach_cgroup(event);
9234 	if (event->ns)
9235 		put_pid_ns(event->ns);
9236 	kfree(event);
9237 
9238 	return ERR_PTR(err);
9239 }
9240 
9241 static int perf_copy_attr(struct perf_event_attr __user *uattr,
9242 			  struct perf_event_attr *attr)
9243 {
9244 	u32 size;
9245 	int ret;
9246 
9247 	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9248 		return -EFAULT;
9249 
9250 	/*
9251 	 * zero the full structure, so that a short copy will be nice.
9252 	 */
9253 	memset(attr, 0, sizeof(*attr));
9254 
9255 	ret = get_user(size, &uattr->size);
9256 	if (ret)
9257 		return ret;
9258 
9259 	if (size > PAGE_SIZE)	/* silly large */
9260 		goto err_size;
9261 
9262 	if (!size)		/* abi compat */
9263 		size = PERF_ATTR_SIZE_VER0;
9264 
9265 	if (size < PERF_ATTR_SIZE_VER0)
9266 		goto err_size;
9267 
9268 	/*
9269 	 * If we're handed a bigger struct than we know of,
9270 	 * ensure all the unknown bits are 0 - i.e. new
9271 	 * user-space does not rely on any kernel feature
9272 	 * extensions we dont know about yet.
9273 	 */
9274 	if (size > sizeof(*attr)) {
9275 		unsigned char __user *addr;
9276 		unsigned char __user *end;
9277 		unsigned char val;
9278 
9279 		addr = (void __user *)uattr + sizeof(*attr);
9280 		end  = (void __user *)uattr + size;
9281 
9282 		for (; addr < end; addr++) {
9283 			ret = get_user(val, addr);
9284 			if (ret)
9285 				return ret;
9286 			if (val)
9287 				goto err_size;
9288 		}
9289 		size = sizeof(*attr);
9290 	}
9291 
9292 	ret = copy_from_user(attr, uattr, size);
9293 	if (ret)
9294 		return -EFAULT;
9295 
9296 	if (attr->__reserved_1)
9297 		return -EINVAL;
9298 
9299 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9300 		return -EINVAL;
9301 
9302 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9303 		return -EINVAL;
9304 
9305 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9306 		u64 mask = attr->branch_sample_type;
9307 
9308 		/* only using defined bits */
9309 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9310 			return -EINVAL;
9311 
9312 		/* at least one branch bit must be set */
9313 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9314 			return -EINVAL;
9315 
9316 		/* propagate priv level, when not set for branch */
9317 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9318 
9319 			/* exclude_kernel checked on syscall entry */
9320 			if (!attr->exclude_kernel)
9321 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
9322 
9323 			if (!attr->exclude_user)
9324 				mask |= PERF_SAMPLE_BRANCH_USER;
9325 
9326 			if (!attr->exclude_hv)
9327 				mask |= PERF_SAMPLE_BRANCH_HV;
9328 			/*
9329 			 * adjust user setting (for HW filter setup)
9330 			 */
9331 			attr->branch_sample_type = mask;
9332 		}
9333 		/* privileged levels capture (kernel, hv): check permissions */
9334 		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9335 		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9336 			return -EACCES;
9337 	}
9338 
9339 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9340 		ret = perf_reg_validate(attr->sample_regs_user);
9341 		if (ret)
9342 			return ret;
9343 	}
9344 
9345 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9346 		if (!arch_perf_have_user_stack_dump())
9347 			return -ENOSYS;
9348 
9349 		/*
9350 		 * We have __u32 type for the size, but so far
9351 		 * we can only use __u16 as maximum due to the
9352 		 * __u16 sample size limit.
9353 		 */
9354 		if (attr->sample_stack_user >= USHRT_MAX)
9355 			ret = -EINVAL;
9356 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9357 			ret = -EINVAL;
9358 	}
9359 
9360 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9361 		ret = perf_reg_validate(attr->sample_regs_intr);
9362 out:
9363 	return ret;
9364 
9365 err_size:
9366 	put_user(sizeof(*attr), &uattr->size);
9367 	ret = -E2BIG;
9368 	goto out;
9369 }
9370 
9371 static int
9372 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9373 {
9374 	struct ring_buffer *rb = NULL;
9375 	int ret = -EINVAL;
9376 
9377 	if (!output_event)
9378 		goto set;
9379 
9380 	/* don't allow circular references */
9381 	if (event == output_event)
9382 		goto out;
9383 
9384 	/*
9385 	 * Don't allow cross-cpu buffers
9386 	 */
9387 	if (output_event->cpu != event->cpu)
9388 		goto out;
9389 
9390 	/*
9391 	 * If its not a per-cpu rb, it must be the same task.
9392 	 */
9393 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9394 		goto out;
9395 
9396 	/*
9397 	 * Mixing clocks in the same buffer is trouble you don't need.
9398 	 */
9399 	if (output_event->clock != event->clock)
9400 		goto out;
9401 
9402 	/*
9403 	 * Either writing ring buffer from beginning or from end.
9404 	 * Mixing is not allowed.
9405 	 */
9406 	if (is_write_backward(output_event) != is_write_backward(event))
9407 		goto out;
9408 
9409 	/*
9410 	 * If both events generate aux data, they must be on the same PMU
9411 	 */
9412 	if (has_aux(event) && has_aux(output_event) &&
9413 	    event->pmu != output_event->pmu)
9414 		goto out;
9415 
9416 set:
9417 	mutex_lock(&event->mmap_mutex);
9418 	/* Can't redirect output if we've got an active mmap() */
9419 	if (atomic_read(&event->mmap_count))
9420 		goto unlock;
9421 
9422 	if (output_event) {
9423 		/* get the rb we want to redirect to */
9424 		rb = ring_buffer_get(output_event);
9425 		if (!rb)
9426 			goto unlock;
9427 	}
9428 
9429 	ring_buffer_attach(event, rb);
9430 
9431 	ret = 0;
9432 unlock:
9433 	mutex_unlock(&event->mmap_mutex);
9434 
9435 out:
9436 	return ret;
9437 }
9438 
9439 static void mutex_lock_double(struct mutex *a, struct mutex *b)
9440 {
9441 	if (b < a)
9442 		swap(a, b);
9443 
9444 	mutex_lock(a);
9445 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9446 }
9447 
9448 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9449 {
9450 	bool nmi_safe = false;
9451 
9452 	switch (clk_id) {
9453 	case CLOCK_MONOTONIC:
9454 		event->clock = &ktime_get_mono_fast_ns;
9455 		nmi_safe = true;
9456 		break;
9457 
9458 	case CLOCK_MONOTONIC_RAW:
9459 		event->clock = &ktime_get_raw_fast_ns;
9460 		nmi_safe = true;
9461 		break;
9462 
9463 	case CLOCK_REALTIME:
9464 		event->clock = &ktime_get_real_ns;
9465 		break;
9466 
9467 	case CLOCK_BOOTTIME:
9468 		event->clock = &ktime_get_boot_ns;
9469 		break;
9470 
9471 	case CLOCK_TAI:
9472 		event->clock = &ktime_get_tai_ns;
9473 		break;
9474 
9475 	default:
9476 		return -EINVAL;
9477 	}
9478 
9479 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9480 		return -EINVAL;
9481 
9482 	return 0;
9483 }
9484 
9485 /**
9486  * sys_perf_event_open - open a performance event, associate it to a task/cpu
9487  *
9488  * @attr_uptr:	event_id type attributes for monitoring/sampling
9489  * @pid:		target pid
9490  * @cpu:		target cpu
9491  * @group_fd:		group leader event fd
9492  */
9493 SYSCALL_DEFINE5(perf_event_open,
9494 		struct perf_event_attr __user *, attr_uptr,
9495 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
9496 {
9497 	struct perf_event *group_leader = NULL, *output_event = NULL;
9498 	struct perf_event *event, *sibling;
9499 	struct perf_event_attr attr;
9500 	struct perf_event_context *ctx, *uninitialized_var(gctx);
9501 	struct file *event_file = NULL;
9502 	struct fd group = {NULL, 0};
9503 	struct task_struct *task = NULL;
9504 	struct pmu *pmu;
9505 	int event_fd;
9506 	int move_group = 0;
9507 	int err;
9508 	int f_flags = O_RDWR;
9509 	int cgroup_fd = -1;
9510 
9511 	/* for future expandability... */
9512 	if (flags & ~PERF_FLAG_ALL)
9513 		return -EINVAL;
9514 
9515 	err = perf_copy_attr(attr_uptr, &attr);
9516 	if (err)
9517 		return err;
9518 
9519 	if (!attr.exclude_kernel) {
9520 		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9521 			return -EACCES;
9522 	}
9523 
9524 	if (attr.freq) {
9525 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
9526 			return -EINVAL;
9527 	} else {
9528 		if (attr.sample_period & (1ULL << 63))
9529 			return -EINVAL;
9530 	}
9531 
9532 	if (!attr.sample_max_stack)
9533 		attr.sample_max_stack = sysctl_perf_event_max_stack;
9534 
9535 	/*
9536 	 * In cgroup mode, the pid argument is used to pass the fd
9537 	 * opened to the cgroup directory in cgroupfs. The cpu argument
9538 	 * designates the cpu on which to monitor threads from that
9539 	 * cgroup.
9540 	 */
9541 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9542 		return -EINVAL;
9543 
9544 	if (flags & PERF_FLAG_FD_CLOEXEC)
9545 		f_flags |= O_CLOEXEC;
9546 
9547 	event_fd = get_unused_fd_flags(f_flags);
9548 	if (event_fd < 0)
9549 		return event_fd;
9550 
9551 	if (group_fd != -1) {
9552 		err = perf_fget_light(group_fd, &group);
9553 		if (err)
9554 			goto err_fd;
9555 		group_leader = group.file->private_data;
9556 		if (flags & PERF_FLAG_FD_OUTPUT)
9557 			output_event = group_leader;
9558 		if (flags & PERF_FLAG_FD_NO_GROUP)
9559 			group_leader = NULL;
9560 	}
9561 
9562 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
9563 		task = find_lively_task_by_vpid(pid);
9564 		if (IS_ERR(task)) {
9565 			err = PTR_ERR(task);
9566 			goto err_group_fd;
9567 		}
9568 	}
9569 
9570 	if (task && group_leader &&
9571 	    group_leader->attr.inherit != attr.inherit) {
9572 		err = -EINVAL;
9573 		goto err_task;
9574 	}
9575 
9576 	get_online_cpus();
9577 
9578 	if (task) {
9579 		err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
9580 		if (err)
9581 			goto err_cpus;
9582 
9583 		/*
9584 		 * Reuse ptrace permission checks for now.
9585 		 *
9586 		 * We must hold cred_guard_mutex across this and any potential
9587 		 * perf_install_in_context() call for this new event to
9588 		 * serialize against exec() altering our credentials (and the
9589 		 * perf_event_exit_task() that could imply).
9590 		 */
9591 		err = -EACCES;
9592 		if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
9593 			goto err_cred;
9594 	}
9595 
9596 	if (flags & PERF_FLAG_PID_CGROUP)
9597 		cgroup_fd = pid;
9598 
9599 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
9600 				 NULL, NULL, cgroup_fd);
9601 	if (IS_ERR(event)) {
9602 		err = PTR_ERR(event);
9603 		goto err_cred;
9604 	}
9605 
9606 	if (is_sampling_event(event)) {
9607 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
9608 			err = -EOPNOTSUPP;
9609 			goto err_alloc;
9610 		}
9611 	}
9612 
9613 	/*
9614 	 * Special case software events and allow them to be part of
9615 	 * any hardware group.
9616 	 */
9617 	pmu = event->pmu;
9618 
9619 	if (attr.use_clockid) {
9620 		err = perf_event_set_clock(event, attr.clockid);
9621 		if (err)
9622 			goto err_alloc;
9623 	}
9624 
9625 	if (pmu->task_ctx_nr == perf_sw_context)
9626 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
9627 
9628 	if (group_leader &&
9629 	    (is_software_event(event) != is_software_event(group_leader))) {
9630 		if (is_software_event(event)) {
9631 			/*
9632 			 * If event and group_leader are not both a software
9633 			 * event, and event is, then group leader is not.
9634 			 *
9635 			 * Allow the addition of software events to !software
9636 			 * groups, this is safe because software events never
9637 			 * fail to schedule.
9638 			 */
9639 			pmu = group_leader->pmu;
9640 		} else if (is_software_event(group_leader) &&
9641 			   (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
9642 			/*
9643 			 * In case the group is a pure software group, and we
9644 			 * try to add a hardware event, move the whole group to
9645 			 * the hardware context.
9646 			 */
9647 			move_group = 1;
9648 		}
9649 	}
9650 
9651 	/*
9652 	 * Get the target context (task or percpu):
9653 	 */
9654 	ctx = find_get_context(pmu, task, event);
9655 	if (IS_ERR(ctx)) {
9656 		err = PTR_ERR(ctx);
9657 		goto err_alloc;
9658 	}
9659 
9660 	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
9661 		err = -EBUSY;
9662 		goto err_context;
9663 	}
9664 
9665 	/*
9666 	 * Look up the group leader (we will attach this event to it):
9667 	 */
9668 	if (group_leader) {
9669 		err = -EINVAL;
9670 
9671 		/*
9672 		 * Do not allow a recursive hierarchy (this new sibling
9673 		 * becoming part of another group-sibling):
9674 		 */
9675 		if (group_leader->group_leader != group_leader)
9676 			goto err_context;
9677 
9678 		/* All events in a group should have the same clock */
9679 		if (group_leader->clock != event->clock)
9680 			goto err_context;
9681 
9682 		/*
9683 		 * Do not allow to attach to a group in a different
9684 		 * task or CPU context:
9685 		 */
9686 		if (move_group) {
9687 			/*
9688 			 * Make sure we're both on the same task, or both
9689 			 * per-cpu events.
9690 			 */
9691 			if (group_leader->ctx->task != ctx->task)
9692 				goto err_context;
9693 
9694 			/*
9695 			 * Make sure we're both events for the same CPU;
9696 			 * grouping events for different CPUs is broken; since
9697 			 * you can never concurrently schedule them anyhow.
9698 			 */
9699 			if (group_leader->cpu != event->cpu)
9700 				goto err_context;
9701 		} else {
9702 			if (group_leader->ctx != ctx)
9703 				goto err_context;
9704 		}
9705 
9706 		/*
9707 		 * Only a group leader can be exclusive or pinned
9708 		 */
9709 		if (attr.exclusive || attr.pinned)
9710 			goto err_context;
9711 	}
9712 
9713 	if (output_event) {
9714 		err = perf_event_set_output(event, output_event);
9715 		if (err)
9716 			goto err_context;
9717 	}
9718 
9719 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
9720 					f_flags);
9721 	if (IS_ERR(event_file)) {
9722 		err = PTR_ERR(event_file);
9723 		event_file = NULL;
9724 		goto err_context;
9725 	}
9726 
9727 	if (move_group) {
9728 		gctx = group_leader->ctx;
9729 		mutex_lock_double(&gctx->mutex, &ctx->mutex);
9730 		if (gctx->task == TASK_TOMBSTONE) {
9731 			err = -ESRCH;
9732 			goto err_locked;
9733 		}
9734 	} else {
9735 		mutex_lock(&ctx->mutex);
9736 	}
9737 
9738 	if (ctx->task == TASK_TOMBSTONE) {
9739 		err = -ESRCH;
9740 		goto err_locked;
9741 	}
9742 
9743 	if (!perf_event_validate_size(event)) {
9744 		err = -E2BIG;
9745 		goto err_locked;
9746 	}
9747 
9748 	/*
9749 	 * Must be under the same ctx::mutex as perf_install_in_context(),
9750 	 * because we need to serialize with concurrent event creation.
9751 	 */
9752 	if (!exclusive_event_installable(event, ctx)) {
9753 		/* exclusive and group stuff are assumed mutually exclusive */
9754 		WARN_ON_ONCE(move_group);
9755 
9756 		err = -EBUSY;
9757 		goto err_locked;
9758 	}
9759 
9760 	WARN_ON_ONCE(ctx->parent_ctx);
9761 
9762 	/*
9763 	 * This is the point on no return; we cannot fail hereafter. This is
9764 	 * where we start modifying current state.
9765 	 */
9766 
9767 	if (move_group) {
9768 		/*
9769 		 * See perf_event_ctx_lock() for comments on the details
9770 		 * of swizzling perf_event::ctx.
9771 		 */
9772 		perf_remove_from_context(group_leader, 0);
9773 
9774 		list_for_each_entry(sibling, &group_leader->sibling_list,
9775 				    group_entry) {
9776 			perf_remove_from_context(sibling, 0);
9777 			put_ctx(gctx);
9778 		}
9779 
9780 		/*
9781 		 * Wait for everybody to stop referencing the events through
9782 		 * the old lists, before installing it on new lists.
9783 		 */
9784 		synchronize_rcu();
9785 
9786 		/*
9787 		 * Install the group siblings before the group leader.
9788 		 *
9789 		 * Because a group leader will try and install the entire group
9790 		 * (through the sibling list, which is still in-tact), we can
9791 		 * end up with siblings installed in the wrong context.
9792 		 *
9793 		 * By installing siblings first we NO-OP because they're not
9794 		 * reachable through the group lists.
9795 		 */
9796 		list_for_each_entry(sibling, &group_leader->sibling_list,
9797 				    group_entry) {
9798 			perf_event__state_init(sibling);
9799 			perf_install_in_context(ctx, sibling, sibling->cpu);
9800 			get_ctx(ctx);
9801 		}
9802 
9803 		/*
9804 		 * Removing from the context ends up with disabled
9805 		 * event. What we want here is event in the initial
9806 		 * startup state, ready to be add into new context.
9807 		 */
9808 		perf_event__state_init(group_leader);
9809 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
9810 		get_ctx(ctx);
9811 
9812 		/*
9813 		 * Now that all events are installed in @ctx, nothing
9814 		 * references @gctx anymore, so drop the last reference we have
9815 		 * on it.
9816 		 */
9817 		put_ctx(gctx);
9818 	}
9819 
9820 	/*
9821 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
9822 	 * that we're serialized against further additions and before
9823 	 * perf_install_in_context() which is the point the event is active and
9824 	 * can use these values.
9825 	 */
9826 	perf_event__header_size(event);
9827 	perf_event__id_header_size(event);
9828 
9829 	event->owner = current;
9830 
9831 	perf_install_in_context(ctx, event, event->cpu);
9832 	perf_unpin_context(ctx);
9833 
9834 	if (move_group)
9835 		mutex_unlock(&gctx->mutex);
9836 	mutex_unlock(&ctx->mutex);
9837 
9838 	if (task) {
9839 		mutex_unlock(&task->signal->cred_guard_mutex);
9840 		put_task_struct(task);
9841 	}
9842 
9843 	put_online_cpus();
9844 
9845 	mutex_lock(&current->perf_event_mutex);
9846 	list_add_tail(&event->owner_entry, &current->perf_event_list);
9847 	mutex_unlock(&current->perf_event_mutex);
9848 
9849 	/*
9850 	 * Drop the reference on the group_event after placing the
9851 	 * new event on the sibling_list. This ensures destruction
9852 	 * of the group leader will find the pointer to itself in
9853 	 * perf_group_detach().
9854 	 */
9855 	fdput(group);
9856 	fd_install(event_fd, event_file);
9857 	return event_fd;
9858 
9859 err_locked:
9860 	if (move_group)
9861 		mutex_unlock(&gctx->mutex);
9862 	mutex_unlock(&ctx->mutex);
9863 /* err_file: */
9864 	fput(event_file);
9865 err_context:
9866 	perf_unpin_context(ctx);
9867 	put_ctx(ctx);
9868 err_alloc:
9869 	/*
9870 	 * If event_file is set, the fput() above will have called ->release()
9871 	 * and that will take care of freeing the event.
9872 	 */
9873 	if (!event_file)
9874 		free_event(event);
9875 err_cred:
9876 	if (task)
9877 		mutex_unlock(&task->signal->cred_guard_mutex);
9878 err_cpus:
9879 	put_online_cpus();
9880 err_task:
9881 	if (task)
9882 		put_task_struct(task);
9883 err_group_fd:
9884 	fdput(group);
9885 err_fd:
9886 	put_unused_fd(event_fd);
9887 	return err;
9888 }
9889 
9890 /**
9891  * perf_event_create_kernel_counter
9892  *
9893  * @attr: attributes of the counter to create
9894  * @cpu: cpu in which the counter is bound
9895  * @task: task to profile (NULL for percpu)
9896  */
9897 struct perf_event *
9898 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
9899 				 struct task_struct *task,
9900 				 perf_overflow_handler_t overflow_handler,
9901 				 void *context)
9902 {
9903 	struct perf_event_context *ctx;
9904 	struct perf_event *event;
9905 	int err;
9906 
9907 	/*
9908 	 * Get the target context (task or percpu):
9909 	 */
9910 
9911 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
9912 				 overflow_handler, context, -1);
9913 	if (IS_ERR(event)) {
9914 		err = PTR_ERR(event);
9915 		goto err;
9916 	}
9917 
9918 	/* Mark owner so we could distinguish it from user events. */
9919 	event->owner = TASK_TOMBSTONE;
9920 
9921 	ctx = find_get_context(event->pmu, task, event);
9922 	if (IS_ERR(ctx)) {
9923 		err = PTR_ERR(ctx);
9924 		goto err_free;
9925 	}
9926 
9927 	WARN_ON_ONCE(ctx->parent_ctx);
9928 	mutex_lock(&ctx->mutex);
9929 	if (ctx->task == TASK_TOMBSTONE) {
9930 		err = -ESRCH;
9931 		goto err_unlock;
9932 	}
9933 
9934 	if (!exclusive_event_installable(event, ctx)) {
9935 		err = -EBUSY;
9936 		goto err_unlock;
9937 	}
9938 
9939 	perf_install_in_context(ctx, event, cpu);
9940 	perf_unpin_context(ctx);
9941 	mutex_unlock(&ctx->mutex);
9942 
9943 	return event;
9944 
9945 err_unlock:
9946 	mutex_unlock(&ctx->mutex);
9947 	perf_unpin_context(ctx);
9948 	put_ctx(ctx);
9949 err_free:
9950 	free_event(event);
9951 err:
9952 	return ERR_PTR(err);
9953 }
9954 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9955 
9956 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
9957 {
9958 	struct perf_event_context *src_ctx;
9959 	struct perf_event_context *dst_ctx;
9960 	struct perf_event *event, *tmp;
9961 	LIST_HEAD(events);
9962 
9963 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
9964 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
9965 
9966 	/*
9967 	 * See perf_event_ctx_lock() for comments on the details
9968 	 * of swizzling perf_event::ctx.
9969 	 */
9970 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
9971 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
9972 				 event_entry) {
9973 		perf_remove_from_context(event, 0);
9974 		unaccount_event_cpu(event, src_cpu);
9975 		put_ctx(src_ctx);
9976 		list_add(&event->migrate_entry, &events);
9977 	}
9978 
9979 	/*
9980 	 * Wait for the events to quiesce before re-instating them.
9981 	 */
9982 	synchronize_rcu();
9983 
9984 	/*
9985 	 * Re-instate events in 2 passes.
9986 	 *
9987 	 * Skip over group leaders and only install siblings on this first
9988 	 * pass, siblings will not get enabled without a leader, however a
9989 	 * leader will enable its siblings, even if those are still on the old
9990 	 * context.
9991 	 */
9992 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
9993 		if (event->group_leader == event)
9994 			continue;
9995 
9996 		list_del(&event->migrate_entry);
9997 		if (event->state >= PERF_EVENT_STATE_OFF)
9998 			event->state = PERF_EVENT_STATE_INACTIVE;
9999 		account_event_cpu(event, dst_cpu);
10000 		perf_install_in_context(dst_ctx, event, dst_cpu);
10001 		get_ctx(dst_ctx);
10002 	}
10003 
10004 	/*
10005 	 * Once all the siblings are setup properly, install the group leaders
10006 	 * to make it go.
10007 	 */
10008 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10009 		list_del(&event->migrate_entry);
10010 		if (event->state >= PERF_EVENT_STATE_OFF)
10011 			event->state = PERF_EVENT_STATE_INACTIVE;
10012 		account_event_cpu(event, dst_cpu);
10013 		perf_install_in_context(dst_ctx, event, dst_cpu);
10014 		get_ctx(dst_ctx);
10015 	}
10016 	mutex_unlock(&dst_ctx->mutex);
10017 	mutex_unlock(&src_ctx->mutex);
10018 }
10019 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10020 
10021 static void sync_child_event(struct perf_event *child_event,
10022 			       struct task_struct *child)
10023 {
10024 	struct perf_event *parent_event = child_event->parent;
10025 	u64 child_val;
10026 
10027 	if (child_event->attr.inherit_stat)
10028 		perf_event_read_event(child_event, child);
10029 
10030 	child_val = perf_event_count(child_event);
10031 
10032 	/*
10033 	 * Add back the child's count to the parent's count:
10034 	 */
10035 	atomic64_add(child_val, &parent_event->child_count);
10036 	atomic64_add(child_event->total_time_enabled,
10037 		     &parent_event->child_total_time_enabled);
10038 	atomic64_add(child_event->total_time_running,
10039 		     &parent_event->child_total_time_running);
10040 }
10041 
10042 static void
10043 perf_event_exit_event(struct perf_event *child_event,
10044 		      struct perf_event_context *child_ctx,
10045 		      struct task_struct *child)
10046 {
10047 	struct perf_event *parent_event = child_event->parent;
10048 
10049 	/*
10050 	 * Do not destroy the 'original' grouping; because of the context
10051 	 * switch optimization the original events could've ended up in a
10052 	 * random child task.
10053 	 *
10054 	 * If we were to destroy the original group, all group related
10055 	 * operations would cease to function properly after this random
10056 	 * child dies.
10057 	 *
10058 	 * Do destroy all inherited groups, we don't care about those
10059 	 * and being thorough is better.
10060 	 */
10061 	raw_spin_lock_irq(&child_ctx->lock);
10062 	WARN_ON_ONCE(child_ctx->is_active);
10063 
10064 	if (parent_event)
10065 		perf_group_detach(child_event);
10066 	list_del_event(child_event, child_ctx);
10067 	child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
10068 	raw_spin_unlock_irq(&child_ctx->lock);
10069 
10070 	/*
10071 	 * Parent events are governed by their filedesc, retain them.
10072 	 */
10073 	if (!parent_event) {
10074 		perf_event_wakeup(child_event);
10075 		return;
10076 	}
10077 	/*
10078 	 * Child events can be cleaned up.
10079 	 */
10080 
10081 	sync_child_event(child_event, child);
10082 
10083 	/*
10084 	 * Remove this event from the parent's list
10085 	 */
10086 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
10087 	mutex_lock(&parent_event->child_mutex);
10088 	list_del_init(&child_event->child_list);
10089 	mutex_unlock(&parent_event->child_mutex);
10090 
10091 	/*
10092 	 * Kick perf_poll() for is_event_hup().
10093 	 */
10094 	perf_event_wakeup(parent_event);
10095 	free_event(child_event);
10096 	put_event(parent_event);
10097 }
10098 
10099 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
10100 {
10101 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
10102 	struct perf_event *child_event, *next;
10103 
10104 	WARN_ON_ONCE(child != current);
10105 
10106 	child_ctx = perf_pin_task_context(child, ctxn);
10107 	if (!child_ctx)
10108 		return;
10109 
10110 	/*
10111 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
10112 	 * ctx::mutex over the entire thing. This serializes against almost
10113 	 * everything that wants to access the ctx.
10114 	 *
10115 	 * The exception is sys_perf_event_open() /
10116 	 * perf_event_create_kernel_count() which does find_get_context()
10117 	 * without ctx::mutex (it cannot because of the move_group double mutex
10118 	 * lock thing). See the comments in perf_install_in_context().
10119 	 */
10120 	mutex_lock(&child_ctx->mutex);
10121 
10122 	/*
10123 	 * In a single ctx::lock section, de-schedule the events and detach the
10124 	 * context from the task such that we cannot ever get it scheduled back
10125 	 * in.
10126 	 */
10127 	raw_spin_lock_irq(&child_ctx->lock);
10128 	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
10129 
10130 	/*
10131 	 * Now that the context is inactive, destroy the task <-> ctx relation
10132 	 * and mark the context dead.
10133 	 */
10134 	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
10135 	put_ctx(child_ctx); /* cannot be last */
10136 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
10137 	put_task_struct(current); /* cannot be last */
10138 
10139 	clone_ctx = unclone_ctx(child_ctx);
10140 	raw_spin_unlock_irq(&child_ctx->lock);
10141 
10142 	if (clone_ctx)
10143 		put_ctx(clone_ctx);
10144 
10145 	/*
10146 	 * Report the task dead after unscheduling the events so that we
10147 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
10148 	 * get a few PERF_RECORD_READ events.
10149 	 */
10150 	perf_event_task(child, child_ctx, 0);
10151 
10152 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
10153 		perf_event_exit_event(child_event, child_ctx, child);
10154 
10155 	mutex_unlock(&child_ctx->mutex);
10156 
10157 	put_ctx(child_ctx);
10158 }
10159 
10160 /*
10161  * When a child task exits, feed back event values to parent events.
10162  *
10163  * Can be called with cred_guard_mutex held when called from
10164  * install_exec_creds().
10165  */
10166 void perf_event_exit_task(struct task_struct *child)
10167 {
10168 	struct perf_event *event, *tmp;
10169 	int ctxn;
10170 
10171 	mutex_lock(&child->perf_event_mutex);
10172 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
10173 				 owner_entry) {
10174 		list_del_init(&event->owner_entry);
10175 
10176 		/*
10177 		 * Ensure the list deletion is visible before we clear
10178 		 * the owner, closes a race against perf_release() where
10179 		 * we need to serialize on the owner->perf_event_mutex.
10180 		 */
10181 		smp_store_release(&event->owner, NULL);
10182 	}
10183 	mutex_unlock(&child->perf_event_mutex);
10184 
10185 	for_each_task_context_nr(ctxn)
10186 		perf_event_exit_task_context(child, ctxn);
10187 
10188 	/*
10189 	 * The perf_event_exit_task_context calls perf_event_task
10190 	 * with child's task_ctx, which generates EXIT events for
10191 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
10192 	 * At this point we need to send EXIT events to cpu contexts.
10193 	 */
10194 	perf_event_task(child, NULL, 0);
10195 }
10196 
10197 static void perf_free_event(struct perf_event *event,
10198 			    struct perf_event_context *ctx)
10199 {
10200 	struct perf_event *parent = event->parent;
10201 
10202 	if (WARN_ON_ONCE(!parent))
10203 		return;
10204 
10205 	mutex_lock(&parent->child_mutex);
10206 	list_del_init(&event->child_list);
10207 	mutex_unlock(&parent->child_mutex);
10208 
10209 	put_event(parent);
10210 
10211 	raw_spin_lock_irq(&ctx->lock);
10212 	perf_group_detach(event);
10213 	list_del_event(event, ctx);
10214 	raw_spin_unlock_irq(&ctx->lock);
10215 	free_event(event);
10216 }
10217 
10218 /*
10219  * Free an unexposed, unused context as created by inheritance by
10220  * perf_event_init_task below, used by fork() in case of fail.
10221  *
10222  * Not all locks are strictly required, but take them anyway to be nice and
10223  * help out with the lockdep assertions.
10224  */
10225 void perf_event_free_task(struct task_struct *task)
10226 {
10227 	struct perf_event_context *ctx;
10228 	struct perf_event *event, *tmp;
10229 	int ctxn;
10230 
10231 	for_each_task_context_nr(ctxn) {
10232 		ctx = task->perf_event_ctxp[ctxn];
10233 		if (!ctx)
10234 			continue;
10235 
10236 		mutex_lock(&ctx->mutex);
10237 again:
10238 		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
10239 				group_entry)
10240 			perf_free_event(event, ctx);
10241 
10242 		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
10243 				group_entry)
10244 			perf_free_event(event, ctx);
10245 
10246 		if (!list_empty(&ctx->pinned_groups) ||
10247 				!list_empty(&ctx->flexible_groups))
10248 			goto again;
10249 
10250 		mutex_unlock(&ctx->mutex);
10251 
10252 		put_ctx(ctx);
10253 	}
10254 }
10255 
10256 void perf_event_delayed_put(struct task_struct *task)
10257 {
10258 	int ctxn;
10259 
10260 	for_each_task_context_nr(ctxn)
10261 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10262 }
10263 
10264 struct file *perf_event_get(unsigned int fd)
10265 {
10266 	struct file *file;
10267 
10268 	file = fget_raw(fd);
10269 	if (!file)
10270 		return ERR_PTR(-EBADF);
10271 
10272 	if (file->f_op != &perf_fops) {
10273 		fput(file);
10274 		return ERR_PTR(-EBADF);
10275 	}
10276 
10277 	return file;
10278 }
10279 
10280 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10281 {
10282 	if (!event)
10283 		return ERR_PTR(-EINVAL);
10284 
10285 	return &event->attr;
10286 }
10287 
10288 /*
10289  * inherit a event from parent task to child task:
10290  */
10291 static struct perf_event *
10292 inherit_event(struct perf_event *parent_event,
10293 	      struct task_struct *parent,
10294 	      struct perf_event_context *parent_ctx,
10295 	      struct task_struct *child,
10296 	      struct perf_event *group_leader,
10297 	      struct perf_event_context *child_ctx)
10298 {
10299 	enum perf_event_active_state parent_state = parent_event->state;
10300 	struct perf_event *child_event;
10301 	unsigned long flags;
10302 
10303 	/*
10304 	 * Instead of creating recursive hierarchies of events,
10305 	 * we link inherited events back to the original parent,
10306 	 * which has a filp for sure, which we use as the reference
10307 	 * count:
10308 	 */
10309 	if (parent_event->parent)
10310 		parent_event = parent_event->parent;
10311 
10312 	child_event = perf_event_alloc(&parent_event->attr,
10313 					   parent_event->cpu,
10314 					   child,
10315 					   group_leader, parent_event,
10316 					   NULL, NULL, -1);
10317 	if (IS_ERR(child_event))
10318 		return child_event;
10319 
10320 	/*
10321 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10322 	 * must be under the same lock in order to serialize against
10323 	 * perf_event_release_kernel(), such that either we must observe
10324 	 * is_orphaned_event() or they will observe us on the child_list.
10325 	 */
10326 	mutex_lock(&parent_event->child_mutex);
10327 	if (is_orphaned_event(parent_event) ||
10328 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
10329 		mutex_unlock(&parent_event->child_mutex);
10330 		free_event(child_event);
10331 		return NULL;
10332 	}
10333 
10334 	get_ctx(child_ctx);
10335 
10336 	/*
10337 	 * Make the child state follow the state of the parent event,
10338 	 * not its attr.disabled bit.  We hold the parent's mutex,
10339 	 * so we won't race with perf_event_{en, dis}able_family.
10340 	 */
10341 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
10342 		child_event->state = PERF_EVENT_STATE_INACTIVE;
10343 	else
10344 		child_event->state = PERF_EVENT_STATE_OFF;
10345 
10346 	if (parent_event->attr.freq) {
10347 		u64 sample_period = parent_event->hw.sample_period;
10348 		struct hw_perf_event *hwc = &child_event->hw;
10349 
10350 		hwc->sample_period = sample_period;
10351 		hwc->last_period   = sample_period;
10352 
10353 		local64_set(&hwc->period_left, sample_period);
10354 	}
10355 
10356 	child_event->ctx = child_ctx;
10357 	child_event->overflow_handler = parent_event->overflow_handler;
10358 	child_event->overflow_handler_context
10359 		= parent_event->overflow_handler_context;
10360 
10361 	/*
10362 	 * Precalculate sample_data sizes
10363 	 */
10364 	perf_event__header_size(child_event);
10365 	perf_event__id_header_size(child_event);
10366 
10367 	/*
10368 	 * Link it up in the child's context:
10369 	 */
10370 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
10371 	add_event_to_ctx(child_event, child_ctx);
10372 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
10373 
10374 	/*
10375 	 * Link this into the parent event's child list
10376 	 */
10377 	list_add_tail(&child_event->child_list, &parent_event->child_list);
10378 	mutex_unlock(&parent_event->child_mutex);
10379 
10380 	return child_event;
10381 }
10382 
10383 static int inherit_group(struct perf_event *parent_event,
10384 	      struct task_struct *parent,
10385 	      struct perf_event_context *parent_ctx,
10386 	      struct task_struct *child,
10387 	      struct perf_event_context *child_ctx)
10388 {
10389 	struct perf_event *leader;
10390 	struct perf_event *sub;
10391 	struct perf_event *child_ctr;
10392 
10393 	leader = inherit_event(parent_event, parent, parent_ctx,
10394 				 child, NULL, child_ctx);
10395 	if (IS_ERR(leader))
10396 		return PTR_ERR(leader);
10397 	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10398 		child_ctr = inherit_event(sub, parent, parent_ctx,
10399 					    child, leader, child_ctx);
10400 		if (IS_ERR(child_ctr))
10401 			return PTR_ERR(child_ctr);
10402 	}
10403 	return 0;
10404 }
10405 
10406 static int
10407 inherit_task_group(struct perf_event *event, struct task_struct *parent,
10408 		   struct perf_event_context *parent_ctx,
10409 		   struct task_struct *child, int ctxn,
10410 		   int *inherited_all)
10411 {
10412 	int ret;
10413 	struct perf_event_context *child_ctx;
10414 
10415 	if (!event->attr.inherit) {
10416 		*inherited_all = 0;
10417 		return 0;
10418 	}
10419 
10420 	child_ctx = child->perf_event_ctxp[ctxn];
10421 	if (!child_ctx) {
10422 		/*
10423 		 * This is executed from the parent task context, so
10424 		 * inherit events that have been marked for cloning.
10425 		 * First allocate and initialize a context for the
10426 		 * child.
10427 		 */
10428 
10429 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
10430 		if (!child_ctx)
10431 			return -ENOMEM;
10432 
10433 		child->perf_event_ctxp[ctxn] = child_ctx;
10434 	}
10435 
10436 	ret = inherit_group(event, parent, parent_ctx,
10437 			    child, child_ctx);
10438 
10439 	if (ret)
10440 		*inherited_all = 0;
10441 
10442 	return ret;
10443 }
10444 
10445 /*
10446  * Initialize the perf_event context in task_struct
10447  */
10448 static int perf_event_init_context(struct task_struct *child, int ctxn)
10449 {
10450 	struct perf_event_context *child_ctx, *parent_ctx;
10451 	struct perf_event_context *cloned_ctx;
10452 	struct perf_event *event;
10453 	struct task_struct *parent = current;
10454 	int inherited_all = 1;
10455 	unsigned long flags;
10456 	int ret = 0;
10457 
10458 	if (likely(!parent->perf_event_ctxp[ctxn]))
10459 		return 0;
10460 
10461 	/*
10462 	 * If the parent's context is a clone, pin it so it won't get
10463 	 * swapped under us.
10464 	 */
10465 	parent_ctx = perf_pin_task_context(parent, ctxn);
10466 	if (!parent_ctx)
10467 		return 0;
10468 
10469 	/*
10470 	 * No need to check if parent_ctx != NULL here; since we saw
10471 	 * it non-NULL earlier, the only reason for it to become NULL
10472 	 * is if we exit, and since we're currently in the middle of
10473 	 * a fork we can't be exiting at the same time.
10474 	 */
10475 
10476 	/*
10477 	 * Lock the parent list. No need to lock the child - not PID
10478 	 * hashed yet and not running, so nobody can access it.
10479 	 */
10480 	mutex_lock(&parent_ctx->mutex);
10481 
10482 	/*
10483 	 * We dont have to disable NMIs - we are only looking at
10484 	 * the list, not manipulating it:
10485 	 */
10486 	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
10487 		ret = inherit_task_group(event, parent, parent_ctx,
10488 					 child, ctxn, &inherited_all);
10489 		if (ret)
10490 			break;
10491 	}
10492 
10493 	/*
10494 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
10495 	 * to allocations, but we need to prevent rotation because
10496 	 * rotate_ctx() will change the list from interrupt context.
10497 	 */
10498 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10499 	parent_ctx->rotate_disable = 1;
10500 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10501 
10502 	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
10503 		ret = inherit_task_group(event, parent, parent_ctx,
10504 					 child, ctxn, &inherited_all);
10505 		if (ret)
10506 			break;
10507 	}
10508 
10509 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10510 	parent_ctx->rotate_disable = 0;
10511 
10512 	child_ctx = child->perf_event_ctxp[ctxn];
10513 
10514 	if (child_ctx && inherited_all) {
10515 		/*
10516 		 * Mark the child context as a clone of the parent
10517 		 * context, or of whatever the parent is a clone of.
10518 		 *
10519 		 * Note that if the parent is a clone, the holding of
10520 		 * parent_ctx->lock avoids it from being uncloned.
10521 		 */
10522 		cloned_ctx = parent_ctx->parent_ctx;
10523 		if (cloned_ctx) {
10524 			child_ctx->parent_ctx = cloned_ctx;
10525 			child_ctx->parent_gen = parent_ctx->parent_gen;
10526 		} else {
10527 			child_ctx->parent_ctx = parent_ctx;
10528 			child_ctx->parent_gen = parent_ctx->generation;
10529 		}
10530 		get_ctx(child_ctx->parent_ctx);
10531 	}
10532 
10533 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10534 	mutex_unlock(&parent_ctx->mutex);
10535 
10536 	perf_unpin_context(parent_ctx);
10537 	put_ctx(parent_ctx);
10538 
10539 	return ret;
10540 }
10541 
10542 /*
10543  * Initialize the perf_event context in task_struct
10544  */
10545 int perf_event_init_task(struct task_struct *child)
10546 {
10547 	int ctxn, ret;
10548 
10549 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
10550 	mutex_init(&child->perf_event_mutex);
10551 	INIT_LIST_HEAD(&child->perf_event_list);
10552 
10553 	for_each_task_context_nr(ctxn) {
10554 		ret = perf_event_init_context(child, ctxn);
10555 		if (ret) {
10556 			perf_event_free_task(child);
10557 			return ret;
10558 		}
10559 	}
10560 
10561 	return 0;
10562 }
10563 
10564 static void __init perf_event_init_all_cpus(void)
10565 {
10566 	struct swevent_htable *swhash;
10567 	int cpu;
10568 
10569 	for_each_possible_cpu(cpu) {
10570 		swhash = &per_cpu(swevent_htable, cpu);
10571 		mutex_init(&swhash->hlist_mutex);
10572 		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
10573 
10574 		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
10575 		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
10576 
10577 		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
10578 	}
10579 }
10580 
10581 int perf_event_init_cpu(unsigned int cpu)
10582 {
10583 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10584 
10585 	mutex_lock(&swhash->hlist_mutex);
10586 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
10587 		struct swevent_hlist *hlist;
10588 
10589 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
10590 		WARN_ON(!hlist);
10591 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
10592 	}
10593 	mutex_unlock(&swhash->hlist_mutex);
10594 	return 0;
10595 }
10596 
10597 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
10598 static void __perf_event_exit_context(void *__info)
10599 {
10600 	struct perf_event_context *ctx = __info;
10601 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
10602 	struct perf_event *event;
10603 
10604 	raw_spin_lock(&ctx->lock);
10605 	list_for_each_entry(event, &ctx->event_list, event_entry)
10606 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
10607 	raw_spin_unlock(&ctx->lock);
10608 }
10609 
10610 static void perf_event_exit_cpu_context(int cpu)
10611 {
10612 	struct perf_event_context *ctx;
10613 	struct pmu *pmu;
10614 	int idx;
10615 
10616 	idx = srcu_read_lock(&pmus_srcu);
10617 	list_for_each_entry_rcu(pmu, &pmus, entry) {
10618 		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
10619 
10620 		mutex_lock(&ctx->mutex);
10621 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
10622 		mutex_unlock(&ctx->mutex);
10623 	}
10624 	srcu_read_unlock(&pmus_srcu, idx);
10625 }
10626 #else
10627 
10628 static void perf_event_exit_cpu_context(int cpu) { }
10629 
10630 #endif
10631 
10632 int perf_event_exit_cpu(unsigned int cpu)
10633 {
10634 	perf_event_exit_cpu_context(cpu);
10635 	return 0;
10636 }
10637 
10638 static int
10639 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
10640 {
10641 	int cpu;
10642 
10643 	for_each_online_cpu(cpu)
10644 		perf_event_exit_cpu(cpu);
10645 
10646 	return NOTIFY_OK;
10647 }
10648 
10649 /*
10650  * Run the perf reboot notifier at the very last possible moment so that
10651  * the generic watchdog code runs as long as possible.
10652  */
10653 static struct notifier_block perf_reboot_notifier = {
10654 	.notifier_call = perf_reboot,
10655 	.priority = INT_MIN,
10656 };
10657 
10658 void __init perf_event_init(void)
10659 {
10660 	int ret;
10661 
10662 	idr_init(&pmu_idr);
10663 
10664 	perf_event_init_all_cpus();
10665 	init_srcu_struct(&pmus_srcu);
10666 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
10667 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
10668 	perf_pmu_register(&perf_task_clock, NULL, -1);
10669 	perf_tp_register();
10670 	perf_event_init_cpu(smp_processor_id());
10671 	register_reboot_notifier(&perf_reboot_notifier);
10672 
10673 	ret = init_hw_breakpoint();
10674 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
10675 
10676 	/*
10677 	 * Build time assertion that we keep the data_head at the intended
10678 	 * location.  IOW, validation we got the __reserved[] size right.
10679 	 */
10680 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
10681 		     != 1024);
10682 }
10683 
10684 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
10685 			      char *page)
10686 {
10687 	struct perf_pmu_events_attr *pmu_attr =
10688 		container_of(attr, struct perf_pmu_events_attr, attr);
10689 
10690 	if (pmu_attr->event_str)
10691 		return sprintf(page, "%s\n", pmu_attr->event_str);
10692 
10693 	return 0;
10694 }
10695 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
10696 
10697 static int __init perf_event_sysfs_init(void)
10698 {
10699 	struct pmu *pmu;
10700 	int ret;
10701 
10702 	mutex_lock(&pmus_lock);
10703 
10704 	ret = bus_register(&pmu_bus);
10705 	if (ret)
10706 		goto unlock;
10707 
10708 	list_for_each_entry(pmu, &pmus, entry) {
10709 		if (!pmu->name || pmu->type < 0)
10710 			continue;
10711 
10712 		ret = pmu_dev_alloc(pmu);
10713 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
10714 	}
10715 	pmu_bus_running = 1;
10716 	ret = 0;
10717 
10718 unlock:
10719 	mutex_unlock(&pmus_lock);
10720 
10721 	return ret;
10722 }
10723 device_initcall(perf_event_sysfs_init);
10724 
10725 #ifdef CONFIG_CGROUP_PERF
10726 static struct cgroup_subsys_state *
10727 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
10728 {
10729 	struct perf_cgroup *jc;
10730 
10731 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
10732 	if (!jc)
10733 		return ERR_PTR(-ENOMEM);
10734 
10735 	jc->info = alloc_percpu(struct perf_cgroup_info);
10736 	if (!jc->info) {
10737 		kfree(jc);
10738 		return ERR_PTR(-ENOMEM);
10739 	}
10740 
10741 	return &jc->css;
10742 }
10743 
10744 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
10745 {
10746 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
10747 
10748 	free_percpu(jc->info);
10749 	kfree(jc);
10750 }
10751 
10752 static int __perf_cgroup_move(void *info)
10753 {
10754 	struct task_struct *task = info;
10755 	rcu_read_lock();
10756 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
10757 	rcu_read_unlock();
10758 	return 0;
10759 }
10760 
10761 static void perf_cgroup_attach(struct cgroup_taskset *tset)
10762 {
10763 	struct task_struct *task;
10764 	struct cgroup_subsys_state *css;
10765 
10766 	cgroup_taskset_for_each(task, css, tset)
10767 		task_function_call(task, __perf_cgroup_move, task);
10768 }
10769 
10770 struct cgroup_subsys perf_event_cgrp_subsys = {
10771 	.css_alloc	= perf_cgroup_css_alloc,
10772 	.css_free	= perf_cgroup_css_free,
10773 	.attach		= perf_cgroup_attach,
10774 };
10775 #endif /* CONFIG_CGROUP_PERF */
10776