1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Performance events core code: 4 * 5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 9 */ 10 11 #include <linux/fs.h> 12 #include <linux/mm.h> 13 #include <linux/cpu.h> 14 #include <linux/smp.h> 15 #include <linux/idr.h> 16 #include <linux/file.h> 17 #include <linux/poll.h> 18 #include <linux/slab.h> 19 #include <linux/hash.h> 20 #include <linux/tick.h> 21 #include <linux/sysfs.h> 22 #include <linux/dcache.h> 23 #include <linux/percpu.h> 24 #include <linux/ptrace.h> 25 #include <linux/reboot.h> 26 #include <linux/vmstat.h> 27 #include <linux/device.h> 28 #include <linux/export.h> 29 #include <linux/vmalloc.h> 30 #include <linux/hardirq.h> 31 #include <linux/hugetlb.h> 32 #include <linux/rculist.h> 33 #include <linux/uaccess.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/cgroup.h> 38 #include <linux/perf_event.h> 39 #include <linux/trace_events.h> 40 #include <linux/hw_breakpoint.h> 41 #include <linux/mm_types.h> 42 #include <linux/module.h> 43 #include <linux/mman.h> 44 #include <linux/compat.h> 45 #include <linux/bpf.h> 46 #include <linux/filter.h> 47 #include <linux/namei.h> 48 #include <linux/parser.h> 49 #include <linux/sched/clock.h> 50 #include <linux/sched/mm.h> 51 #include <linux/proc_ns.h> 52 #include <linux/mount.h> 53 #include <linux/min_heap.h> 54 #include <linux/highmem.h> 55 #include <linux/pgtable.h> 56 #include <linux/buildid.h> 57 58 #include "internal.h" 59 60 #include <asm/irq_regs.h> 61 62 typedef int (*remote_function_f)(void *); 63 64 struct remote_function_call { 65 struct task_struct *p; 66 remote_function_f func; 67 void *info; 68 int ret; 69 }; 70 71 static void remote_function(void *data) 72 { 73 struct remote_function_call *tfc = data; 74 struct task_struct *p = tfc->p; 75 76 if (p) { 77 /* -EAGAIN */ 78 if (task_cpu(p) != smp_processor_id()) 79 return; 80 81 /* 82 * Now that we're on right CPU with IRQs disabled, we can test 83 * if we hit the right task without races. 84 */ 85 86 tfc->ret = -ESRCH; /* No such (running) process */ 87 if (p != current) 88 return; 89 } 90 91 tfc->ret = tfc->func(tfc->info); 92 } 93 94 /** 95 * task_function_call - call a function on the cpu on which a task runs 96 * @p: the task to evaluate 97 * @func: the function to be called 98 * @info: the function call argument 99 * 100 * Calls the function @func when the task is currently running. This might 101 * be on the current CPU, which just calls the function directly. This will 102 * retry due to any failures in smp_call_function_single(), such as if the 103 * task_cpu() goes offline concurrently. 104 * 105 * returns @func return value or -ESRCH or -ENXIO when the process isn't running 106 */ 107 static int 108 task_function_call(struct task_struct *p, remote_function_f func, void *info) 109 { 110 struct remote_function_call data = { 111 .p = p, 112 .func = func, 113 .info = info, 114 .ret = -EAGAIN, 115 }; 116 int ret; 117 118 for (;;) { 119 ret = smp_call_function_single(task_cpu(p), remote_function, 120 &data, 1); 121 if (!ret) 122 ret = data.ret; 123 124 if (ret != -EAGAIN) 125 break; 126 127 cond_resched(); 128 } 129 130 return ret; 131 } 132 133 /** 134 * cpu_function_call - call a function on the cpu 135 * @cpu: target cpu to queue this function 136 * @func: the function to be called 137 * @info: the function call argument 138 * 139 * Calls the function @func on the remote cpu. 140 * 141 * returns: @func return value or -ENXIO when the cpu is offline 142 */ 143 static int cpu_function_call(int cpu, remote_function_f func, void *info) 144 { 145 struct remote_function_call data = { 146 .p = NULL, 147 .func = func, 148 .info = info, 149 .ret = -ENXIO, /* No such CPU */ 150 }; 151 152 smp_call_function_single(cpu, remote_function, &data, 1); 153 154 return data.ret; 155 } 156 157 static inline struct perf_cpu_context * 158 __get_cpu_context(struct perf_event_context *ctx) 159 { 160 return this_cpu_ptr(ctx->pmu->pmu_cpu_context); 161 } 162 163 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 164 struct perf_event_context *ctx) 165 { 166 raw_spin_lock(&cpuctx->ctx.lock); 167 if (ctx) 168 raw_spin_lock(&ctx->lock); 169 } 170 171 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 172 struct perf_event_context *ctx) 173 { 174 if (ctx) 175 raw_spin_unlock(&ctx->lock); 176 raw_spin_unlock(&cpuctx->ctx.lock); 177 } 178 179 #define TASK_TOMBSTONE ((void *)-1L) 180 181 static bool is_kernel_event(struct perf_event *event) 182 { 183 return READ_ONCE(event->owner) == TASK_TOMBSTONE; 184 } 185 186 /* 187 * On task ctx scheduling... 188 * 189 * When !ctx->nr_events a task context will not be scheduled. This means 190 * we can disable the scheduler hooks (for performance) without leaving 191 * pending task ctx state. 192 * 193 * This however results in two special cases: 194 * 195 * - removing the last event from a task ctx; this is relatively straight 196 * forward and is done in __perf_remove_from_context. 197 * 198 * - adding the first event to a task ctx; this is tricky because we cannot 199 * rely on ctx->is_active and therefore cannot use event_function_call(). 200 * See perf_install_in_context(). 201 * 202 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set. 203 */ 204 205 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *, 206 struct perf_event_context *, void *); 207 208 struct event_function_struct { 209 struct perf_event *event; 210 event_f func; 211 void *data; 212 }; 213 214 static int event_function(void *info) 215 { 216 struct event_function_struct *efs = info; 217 struct perf_event *event = efs->event; 218 struct perf_event_context *ctx = event->ctx; 219 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 220 struct perf_event_context *task_ctx = cpuctx->task_ctx; 221 int ret = 0; 222 223 lockdep_assert_irqs_disabled(); 224 225 perf_ctx_lock(cpuctx, task_ctx); 226 /* 227 * Since we do the IPI call without holding ctx->lock things can have 228 * changed, double check we hit the task we set out to hit. 229 */ 230 if (ctx->task) { 231 if (ctx->task != current) { 232 ret = -ESRCH; 233 goto unlock; 234 } 235 236 /* 237 * We only use event_function_call() on established contexts, 238 * and event_function() is only ever called when active (or 239 * rather, we'll have bailed in task_function_call() or the 240 * above ctx->task != current test), therefore we must have 241 * ctx->is_active here. 242 */ 243 WARN_ON_ONCE(!ctx->is_active); 244 /* 245 * And since we have ctx->is_active, cpuctx->task_ctx must 246 * match. 247 */ 248 WARN_ON_ONCE(task_ctx != ctx); 249 } else { 250 WARN_ON_ONCE(&cpuctx->ctx != ctx); 251 } 252 253 efs->func(event, cpuctx, ctx, efs->data); 254 unlock: 255 perf_ctx_unlock(cpuctx, task_ctx); 256 257 return ret; 258 } 259 260 static void event_function_call(struct perf_event *event, event_f func, void *data) 261 { 262 struct perf_event_context *ctx = event->ctx; 263 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */ 264 struct event_function_struct efs = { 265 .event = event, 266 .func = func, 267 .data = data, 268 }; 269 270 if (!event->parent) { 271 /* 272 * If this is a !child event, we must hold ctx::mutex to 273 * stabilize the event->ctx relation. See 274 * perf_event_ctx_lock(). 275 */ 276 lockdep_assert_held(&ctx->mutex); 277 } 278 279 if (!task) { 280 cpu_function_call(event->cpu, event_function, &efs); 281 return; 282 } 283 284 if (task == TASK_TOMBSTONE) 285 return; 286 287 again: 288 if (!task_function_call(task, event_function, &efs)) 289 return; 290 291 raw_spin_lock_irq(&ctx->lock); 292 /* 293 * Reload the task pointer, it might have been changed by 294 * a concurrent perf_event_context_sched_out(). 295 */ 296 task = ctx->task; 297 if (task == TASK_TOMBSTONE) { 298 raw_spin_unlock_irq(&ctx->lock); 299 return; 300 } 301 if (ctx->is_active) { 302 raw_spin_unlock_irq(&ctx->lock); 303 goto again; 304 } 305 func(event, NULL, ctx, data); 306 raw_spin_unlock_irq(&ctx->lock); 307 } 308 309 /* 310 * Similar to event_function_call() + event_function(), but hard assumes IRQs 311 * are already disabled and we're on the right CPU. 312 */ 313 static void event_function_local(struct perf_event *event, event_f func, void *data) 314 { 315 struct perf_event_context *ctx = event->ctx; 316 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 317 struct task_struct *task = READ_ONCE(ctx->task); 318 struct perf_event_context *task_ctx = NULL; 319 320 lockdep_assert_irqs_disabled(); 321 322 if (task) { 323 if (task == TASK_TOMBSTONE) 324 return; 325 326 task_ctx = ctx; 327 } 328 329 perf_ctx_lock(cpuctx, task_ctx); 330 331 task = ctx->task; 332 if (task == TASK_TOMBSTONE) 333 goto unlock; 334 335 if (task) { 336 /* 337 * We must be either inactive or active and the right task, 338 * otherwise we're screwed, since we cannot IPI to somewhere 339 * else. 340 */ 341 if (ctx->is_active) { 342 if (WARN_ON_ONCE(task != current)) 343 goto unlock; 344 345 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx)) 346 goto unlock; 347 } 348 } else { 349 WARN_ON_ONCE(&cpuctx->ctx != ctx); 350 } 351 352 func(event, cpuctx, ctx, data); 353 unlock: 354 perf_ctx_unlock(cpuctx, task_ctx); 355 } 356 357 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 358 PERF_FLAG_FD_OUTPUT |\ 359 PERF_FLAG_PID_CGROUP |\ 360 PERF_FLAG_FD_CLOEXEC) 361 362 /* 363 * branch priv levels that need permission checks 364 */ 365 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 366 (PERF_SAMPLE_BRANCH_KERNEL |\ 367 PERF_SAMPLE_BRANCH_HV) 368 369 enum event_type_t { 370 EVENT_FLEXIBLE = 0x1, 371 EVENT_PINNED = 0x2, 372 EVENT_TIME = 0x4, 373 /* see ctx_resched() for details */ 374 EVENT_CPU = 0x8, 375 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 376 }; 377 378 /* 379 * perf_sched_events : >0 events exist 380 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu 381 */ 382 383 static void perf_sched_delayed(struct work_struct *work); 384 DEFINE_STATIC_KEY_FALSE(perf_sched_events); 385 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed); 386 static DEFINE_MUTEX(perf_sched_mutex); 387 static atomic_t perf_sched_count; 388 389 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); 390 static DEFINE_PER_CPU(int, perf_sched_cb_usages); 391 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events); 392 393 static atomic_t nr_mmap_events __read_mostly; 394 static atomic_t nr_comm_events __read_mostly; 395 static atomic_t nr_namespaces_events __read_mostly; 396 static atomic_t nr_task_events __read_mostly; 397 static atomic_t nr_freq_events __read_mostly; 398 static atomic_t nr_switch_events __read_mostly; 399 static atomic_t nr_ksymbol_events __read_mostly; 400 static atomic_t nr_bpf_events __read_mostly; 401 static atomic_t nr_cgroup_events __read_mostly; 402 static atomic_t nr_text_poke_events __read_mostly; 403 static atomic_t nr_build_id_events __read_mostly; 404 405 static LIST_HEAD(pmus); 406 static DEFINE_MUTEX(pmus_lock); 407 static struct srcu_struct pmus_srcu; 408 static cpumask_var_t perf_online_mask; 409 static struct kmem_cache *perf_event_cache; 410 411 /* 412 * perf event paranoia level: 413 * -1 - not paranoid at all 414 * 0 - disallow raw tracepoint access for unpriv 415 * 1 - disallow cpu events for unpriv 416 * 2 - disallow kernel profiling for unpriv 417 */ 418 int sysctl_perf_event_paranoid __read_mostly = 2; 419 420 /* Minimum for 512 kiB + 1 user control page */ 421 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 422 423 /* 424 * max perf event sample rate 425 */ 426 #define DEFAULT_MAX_SAMPLE_RATE 100000 427 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 428 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 429 430 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 431 432 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 433 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 434 435 static int perf_sample_allowed_ns __read_mostly = 436 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 437 438 static void update_perf_cpu_limits(void) 439 { 440 u64 tmp = perf_sample_period_ns; 441 442 tmp *= sysctl_perf_cpu_time_max_percent; 443 tmp = div_u64(tmp, 100); 444 if (!tmp) 445 tmp = 1; 446 447 WRITE_ONCE(perf_sample_allowed_ns, tmp); 448 } 449 450 static bool perf_rotate_context(struct perf_cpu_context *cpuctx); 451 452 int perf_proc_update_handler(struct ctl_table *table, int write, 453 void *buffer, size_t *lenp, loff_t *ppos) 454 { 455 int ret; 456 int perf_cpu = sysctl_perf_cpu_time_max_percent; 457 /* 458 * If throttling is disabled don't allow the write: 459 */ 460 if (write && (perf_cpu == 100 || perf_cpu == 0)) 461 return -EINVAL; 462 463 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 464 if (ret || !write) 465 return ret; 466 467 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 468 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 469 update_perf_cpu_limits(); 470 471 return 0; 472 } 473 474 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 475 476 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 477 void *buffer, size_t *lenp, loff_t *ppos) 478 { 479 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 480 481 if (ret || !write) 482 return ret; 483 484 if (sysctl_perf_cpu_time_max_percent == 100 || 485 sysctl_perf_cpu_time_max_percent == 0) { 486 printk(KERN_WARNING 487 "perf: Dynamic interrupt throttling disabled, can hang your system!\n"); 488 WRITE_ONCE(perf_sample_allowed_ns, 0); 489 } else { 490 update_perf_cpu_limits(); 491 } 492 493 return 0; 494 } 495 496 /* 497 * perf samples are done in some very critical code paths (NMIs). 498 * If they take too much CPU time, the system can lock up and not 499 * get any real work done. This will drop the sample rate when 500 * we detect that events are taking too long. 501 */ 502 #define NR_ACCUMULATED_SAMPLES 128 503 static DEFINE_PER_CPU(u64, running_sample_length); 504 505 static u64 __report_avg; 506 static u64 __report_allowed; 507 508 static void perf_duration_warn(struct irq_work *w) 509 { 510 printk_ratelimited(KERN_INFO 511 "perf: interrupt took too long (%lld > %lld), lowering " 512 "kernel.perf_event_max_sample_rate to %d\n", 513 __report_avg, __report_allowed, 514 sysctl_perf_event_sample_rate); 515 } 516 517 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 518 519 void perf_sample_event_took(u64 sample_len_ns) 520 { 521 u64 max_len = READ_ONCE(perf_sample_allowed_ns); 522 u64 running_len; 523 u64 avg_len; 524 u32 max; 525 526 if (max_len == 0) 527 return; 528 529 /* Decay the counter by 1 average sample. */ 530 running_len = __this_cpu_read(running_sample_length); 531 running_len -= running_len/NR_ACCUMULATED_SAMPLES; 532 running_len += sample_len_ns; 533 __this_cpu_write(running_sample_length, running_len); 534 535 /* 536 * Note: this will be biased artifically low until we have 537 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 538 * from having to maintain a count. 539 */ 540 avg_len = running_len/NR_ACCUMULATED_SAMPLES; 541 if (avg_len <= max_len) 542 return; 543 544 __report_avg = avg_len; 545 __report_allowed = max_len; 546 547 /* 548 * Compute a throttle threshold 25% below the current duration. 549 */ 550 avg_len += avg_len / 4; 551 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent; 552 if (avg_len < max) 553 max /= (u32)avg_len; 554 else 555 max = 1; 556 557 WRITE_ONCE(perf_sample_allowed_ns, avg_len); 558 WRITE_ONCE(max_samples_per_tick, max); 559 560 sysctl_perf_event_sample_rate = max * HZ; 561 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 562 563 if (!irq_work_queue(&perf_duration_work)) { 564 early_printk("perf: interrupt took too long (%lld > %lld), lowering " 565 "kernel.perf_event_max_sample_rate to %d\n", 566 __report_avg, __report_allowed, 567 sysctl_perf_event_sample_rate); 568 } 569 } 570 571 static atomic64_t perf_event_id; 572 573 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 574 enum event_type_t event_type); 575 576 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 577 enum event_type_t event_type, 578 struct task_struct *task); 579 580 static void update_context_time(struct perf_event_context *ctx); 581 static u64 perf_event_time(struct perf_event *event); 582 583 void __weak perf_event_print_debug(void) { } 584 585 static inline u64 perf_clock(void) 586 { 587 return local_clock(); 588 } 589 590 static inline u64 perf_event_clock(struct perf_event *event) 591 { 592 return event->clock(); 593 } 594 595 /* 596 * State based event timekeeping... 597 * 598 * The basic idea is to use event->state to determine which (if any) time 599 * fields to increment with the current delta. This means we only need to 600 * update timestamps when we change state or when they are explicitly requested 601 * (read). 602 * 603 * Event groups make things a little more complicated, but not terribly so. The 604 * rules for a group are that if the group leader is OFF the entire group is 605 * OFF, irrespecive of what the group member states are. This results in 606 * __perf_effective_state(). 607 * 608 * A futher ramification is that when a group leader flips between OFF and 609 * !OFF, we need to update all group member times. 610 * 611 * 612 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we 613 * need to make sure the relevant context time is updated before we try and 614 * update our timestamps. 615 */ 616 617 static __always_inline enum perf_event_state 618 __perf_effective_state(struct perf_event *event) 619 { 620 struct perf_event *leader = event->group_leader; 621 622 if (leader->state <= PERF_EVENT_STATE_OFF) 623 return leader->state; 624 625 return event->state; 626 } 627 628 static __always_inline void 629 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running) 630 { 631 enum perf_event_state state = __perf_effective_state(event); 632 u64 delta = now - event->tstamp; 633 634 *enabled = event->total_time_enabled; 635 if (state >= PERF_EVENT_STATE_INACTIVE) 636 *enabled += delta; 637 638 *running = event->total_time_running; 639 if (state >= PERF_EVENT_STATE_ACTIVE) 640 *running += delta; 641 } 642 643 static void perf_event_update_time(struct perf_event *event) 644 { 645 u64 now = perf_event_time(event); 646 647 __perf_update_times(event, now, &event->total_time_enabled, 648 &event->total_time_running); 649 event->tstamp = now; 650 } 651 652 static void perf_event_update_sibling_time(struct perf_event *leader) 653 { 654 struct perf_event *sibling; 655 656 for_each_sibling_event(sibling, leader) 657 perf_event_update_time(sibling); 658 } 659 660 static void 661 perf_event_set_state(struct perf_event *event, enum perf_event_state state) 662 { 663 if (event->state == state) 664 return; 665 666 perf_event_update_time(event); 667 /* 668 * If a group leader gets enabled/disabled all its siblings 669 * are affected too. 670 */ 671 if ((event->state < 0) ^ (state < 0)) 672 perf_event_update_sibling_time(event); 673 674 WRITE_ONCE(event->state, state); 675 } 676 677 #ifdef CONFIG_CGROUP_PERF 678 679 static inline bool 680 perf_cgroup_match(struct perf_event *event) 681 { 682 struct perf_event_context *ctx = event->ctx; 683 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 684 685 /* @event doesn't care about cgroup */ 686 if (!event->cgrp) 687 return true; 688 689 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 690 if (!cpuctx->cgrp) 691 return false; 692 693 /* 694 * Cgroup scoping is recursive. An event enabled for a cgroup is 695 * also enabled for all its descendant cgroups. If @cpuctx's 696 * cgroup is a descendant of @event's (the test covers identity 697 * case), it's a match. 698 */ 699 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 700 event->cgrp->css.cgroup); 701 } 702 703 static inline void perf_detach_cgroup(struct perf_event *event) 704 { 705 css_put(&event->cgrp->css); 706 event->cgrp = NULL; 707 } 708 709 static inline int is_cgroup_event(struct perf_event *event) 710 { 711 return event->cgrp != NULL; 712 } 713 714 static inline u64 perf_cgroup_event_time(struct perf_event *event) 715 { 716 struct perf_cgroup_info *t; 717 718 t = per_cpu_ptr(event->cgrp->info, event->cpu); 719 return t->time; 720 } 721 722 static inline void __update_cgrp_time(struct perf_cgroup *cgrp) 723 { 724 struct perf_cgroup_info *info; 725 u64 now; 726 727 now = perf_clock(); 728 729 info = this_cpu_ptr(cgrp->info); 730 731 info->time += now - info->timestamp; 732 info->timestamp = now; 733 } 734 735 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 736 { 737 struct perf_cgroup *cgrp = cpuctx->cgrp; 738 struct cgroup_subsys_state *css; 739 740 if (cgrp) { 741 for (css = &cgrp->css; css; css = css->parent) { 742 cgrp = container_of(css, struct perf_cgroup, css); 743 __update_cgrp_time(cgrp); 744 } 745 } 746 } 747 748 static inline void update_cgrp_time_from_event(struct perf_event *event) 749 { 750 struct perf_cgroup *cgrp; 751 752 /* 753 * ensure we access cgroup data only when needed and 754 * when we know the cgroup is pinned (css_get) 755 */ 756 if (!is_cgroup_event(event)) 757 return; 758 759 cgrp = perf_cgroup_from_task(current, event->ctx); 760 /* 761 * Do not update time when cgroup is not active 762 */ 763 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup)) 764 __update_cgrp_time(event->cgrp); 765 } 766 767 static inline void 768 perf_cgroup_set_timestamp(struct task_struct *task, 769 struct perf_event_context *ctx) 770 { 771 struct perf_cgroup *cgrp; 772 struct perf_cgroup_info *info; 773 struct cgroup_subsys_state *css; 774 775 /* 776 * ctx->lock held by caller 777 * ensure we do not access cgroup data 778 * unless we have the cgroup pinned (css_get) 779 */ 780 if (!task || !ctx->nr_cgroups) 781 return; 782 783 cgrp = perf_cgroup_from_task(task, ctx); 784 785 for (css = &cgrp->css; css; css = css->parent) { 786 cgrp = container_of(css, struct perf_cgroup, css); 787 info = this_cpu_ptr(cgrp->info); 788 info->timestamp = ctx->timestamp; 789 } 790 } 791 792 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list); 793 794 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */ 795 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */ 796 797 /* 798 * reschedule events based on the cgroup constraint of task. 799 * 800 * mode SWOUT : schedule out everything 801 * mode SWIN : schedule in based on cgroup for next 802 */ 803 static void perf_cgroup_switch(struct task_struct *task, int mode) 804 { 805 struct perf_cpu_context *cpuctx; 806 struct list_head *list; 807 unsigned long flags; 808 809 /* 810 * Disable interrupts and preemption to avoid this CPU's 811 * cgrp_cpuctx_entry to change under us. 812 */ 813 local_irq_save(flags); 814 815 list = this_cpu_ptr(&cgrp_cpuctx_list); 816 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) { 817 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0); 818 819 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 820 perf_pmu_disable(cpuctx->ctx.pmu); 821 822 if (mode & PERF_CGROUP_SWOUT) { 823 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 824 /* 825 * must not be done before ctxswout due 826 * to event_filter_match() in event_sched_out() 827 */ 828 cpuctx->cgrp = NULL; 829 } 830 831 if (mode & PERF_CGROUP_SWIN) { 832 WARN_ON_ONCE(cpuctx->cgrp); 833 /* 834 * set cgrp before ctxsw in to allow 835 * event_filter_match() to not have to pass 836 * task around 837 * we pass the cpuctx->ctx to perf_cgroup_from_task() 838 * because cgorup events are only per-cpu 839 */ 840 cpuctx->cgrp = perf_cgroup_from_task(task, 841 &cpuctx->ctx); 842 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task); 843 } 844 perf_pmu_enable(cpuctx->ctx.pmu); 845 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 846 } 847 848 local_irq_restore(flags); 849 } 850 851 static inline void perf_cgroup_sched_out(struct task_struct *task, 852 struct task_struct *next) 853 { 854 struct perf_cgroup *cgrp1; 855 struct perf_cgroup *cgrp2 = NULL; 856 857 rcu_read_lock(); 858 /* 859 * we come here when we know perf_cgroup_events > 0 860 * we do not need to pass the ctx here because we know 861 * we are holding the rcu lock 862 */ 863 cgrp1 = perf_cgroup_from_task(task, NULL); 864 cgrp2 = perf_cgroup_from_task(next, NULL); 865 866 /* 867 * only schedule out current cgroup events if we know 868 * that we are switching to a different cgroup. Otherwise, 869 * do no touch the cgroup events. 870 */ 871 if (cgrp1 != cgrp2) 872 perf_cgroup_switch(task, PERF_CGROUP_SWOUT); 873 874 rcu_read_unlock(); 875 } 876 877 static inline void perf_cgroup_sched_in(struct task_struct *prev, 878 struct task_struct *task) 879 { 880 struct perf_cgroup *cgrp1; 881 struct perf_cgroup *cgrp2 = NULL; 882 883 rcu_read_lock(); 884 /* 885 * we come here when we know perf_cgroup_events > 0 886 * we do not need to pass the ctx here because we know 887 * we are holding the rcu lock 888 */ 889 cgrp1 = perf_cgroup_from_task(task, NULL); 890 cgrp2 = perf_cgroup_from_task(prev, NULL); 891 892 /* 893 * only need to schedule in cgroup events if we are changing 894 * cgroup during ctxsw. Cgroup events were not scheduled 895 * out of ctxsw out if that was not the case. 896 */ 897 if (cgrp1 != cgrp2) 898 perf_cgroup_switch(task, PERF_CGROUP_SWIN); 899 900 rcu_read_unlock(); 901 } 902 903 static int perf_cgroup_ensure_storage(struct perf_event *event, 904 struct cgroup_subsys_state *css) 905 { 906 struct perf_cpu_context *cpuctx; 907 struct perf_event **storage; 908 int cpu, heap_size, ret = 0; 909 910 /* 911 * Allow storage to have sufficent space for an iterator for each 912 * possibly nested cgroup plus an iterator for events with no cgroup. 913 */ 914 for (heap_size = 1; css; css = css->parent) 915 heap_size++; 916 917 for_each_possible_cpu(cpu) { 918 cpuctx = per_cpu_ptr(event->pmu->pmu_cpu_context, cpu); 919 if (heap_size <= cpuctx->heap_size) 920 continue; 921 922 storage = kmalloc_node(heap_size * sizeof(struct perf_event *), 923 GFP_KERNEL, cpu_to_node(cpu)); 924 if (!storage) { 925 ret = -ENOMEM; 926 break; 927 } 928 929 raw_spin_lock_irq(&cpuctx->ctx.lock); 930 if (cpuctx->heap_size < heap_size) { 931 swap(cpuctx->heap, storage); 932 if (storage == cpuctx->heap_default) 933 storage = NULL; 934 cpuctx->heap_size = heap_size; 935 } 936 raw_spin_unlock_irq(&cpuctx->ctx.lock); 937 938 kfree(storage); 939 } 940 941 return ret; 942 } 943 944 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 945 struct perf_event_attr *attr, 946 struct perf_event *group_leader) 947 { 948 struct perf_cgroup *cgrp; 949 struct cgroup_subsys_state *css; 950 struct fd f = fdget(fd); 951 int ret = 0; 952 953 if (!f.file) 954 return -EBADF; 955 956 css = css_tryget_online_from_dir(f.file->f_path.dentry, 957 &perf_event_cgrp_subsys); 958 if (IS_ERR(css)) { 959 ret = PTR_ERR(css); 960 goto out; 961 } 962 963 ret = perf_cgroup_ensure_storage(event, css); 964 if (ret) 965 goto out; 966 967 cgrp = container_of(css, struct perf_cgroup, css); 968 event->cgrp = cgrp; 969 970 /* 971 * all events in a group must monitor 972 * the same cgroup because a task belongs 973 * to only one perf cgroup at a time 974 */ 975 if (group_leader && group_leader->cgrp != cgrp) { 976 perf_detach_cgroup(event); 977 ret = -EINVAL; 978 } 979 out: 980 fdput(f); 981 return ret; 982 } 983 984 static inline void 985 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 986 { 987 struct perf_cgroup_info *t; 988 t = per_cpu_ptr(event->cgrp->info, event->cpu); 989 event->shadow_ctx_time = now - t->timestamp; 990 } 991 992 static inline void 993 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 994 { 995 struct perf_cpu_context *cpuctx; 996 997 if (!is_cgroup_event(event)) 998 return; 999 1000 /* 1001 * Because cgroup events are always per-cpu events, 1002 * @ctx == &cpuctx->ctx. 1003 */ 1004 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 1005 1006 /* 1007 * Since setting cpuctx->cgrp is conditional on the current @cgrp 1008 * matching the event's cgroup, we must do this for every new event, 1009 * because if the first would mismatch, the second would not try again 1010 * and we would leave cpuctx->cgrp unset. 1011 */ 1012 if (ctx->is_active && !cpuctx->cgrp) { 1013 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 1014 1015 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup)) 1016 cpuctx->cgrp = cgrp; 1017 } 1018 1019 if (ctx->nr_cgroups++) 1020 return; 1021 1022 list_add(&cpuctx->cgrp_cpuctx_entry, 1023 per_cpu_ptr(&cgrp_cpuctx_list, event->cpu)); 1024 } 1025 1026 static inline void 1027 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 1028 { 1029 struct perf_cpu_context *cpuctx; 1030 1031 if (!is_cgroup_event(event)) 1032 return; 1033 1034 /* 1035 * Because cgroup events are always per-cpu events, 1036 * @ctx == &cpuctx->ctx. 1037 */ 1038 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 1039 1040 if (--ctx->nr_cgroups) 1041 return; 1042 1043 if (ctx->is_active && cpuctx->cgrp) 1044 cpuctx->cgrp = NULL; 1045 1046 list_del(&cpuctx->cgrp_cpuctx_entry); 1047 } 1048 1049 #else /* !CONFIG_CGROUP_PERF */ 1050 1051 static inline bool 1052 perf_cgroup_match(struct perf_event *event) 1053 { 1054 return true; 1055 } 1056 1057 static inline void perf_detach_cgroup(struct perf_event *event) 1058 {} 1059 1060 static inline int is_cgroup_event(struct perf_event *event) 1061 { 1062 return 0; 1063 } 1064 1065 static inline void update_cgrp_time_from_event(struct perf_event *event) 1066 { 1067 } 1068 1069 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 1070 { 1071 } 1072 1073 static inline void perf_cgroup_sched_out(struct task_struct *task, 1074 struct task_struct *next) 1075 { 1076 } 1077 1078 static inline void perf_cgroup_sched_in(struct task_struct *prev, 1079 struct task_struct *task) 1080 { 1081 } 1082 1083 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 1084 struct perf_event_attr *attr, 1085 struct perf_event *group_leader) 1086 { 1087 return -EINVAL; 1088 } 1089 1090 static inline void 1091 perf_cgroup_set_timestamp(struct task_struct *task, 1092 struct perf_event_context *ctx) 1093 { 1094 } 1095 1096 static inline void 1097 perf_cgroup_switch(struct task_struct *task, struct task_struct *next) 1098 { 1099 } 1100 1101 static inline void 1102 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 1103 { 1104 } 1105 1106 static inline u64 perf_cgroup_event_time(struct perf_event *event) 1107 { 1108 return 0; 1109 } 1110 1111 static inline void 1112 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 1113 { 1114 } 1115 1116 static inline void 1117 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 1118 { 1119 } 1120 #endif 1121 1122 /* 1123 * set default to be dependent on timer tick just 1124 * like original code 1125 */ 1126 #define PERF_CPU_HRTIMER (1000 / HZ) 1127 /* 1128 * function must be called with interrupts disabled 1129 */ 1130 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) 1131 { 1132 struct perf_cpu_context *cpuctx; 1133 bool rotations; 1134 1135 lockdep_assert_irqs_disabled(); 1136 1137 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer); 1138 rotations = perf_rotate_context(cpuctx); 1139 1140 raw_spin_lock(&cpuctx->hrtimer_lock); 1141 if (rotations) 1142 hrtimer_forward_now(hr, cpuctx->hrtimer_interval); 1143 else 1144 cpuctx->hrtimer_active = 0; 1145 raw_spin_unlock(&cpuctx->hrtimer_lock); 1146 1147 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; 1148 } 1149 1150 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu) 1151 { 1152 struct hrtimer *timer = &cpuctx->hrtimer; 1153 struct pmu *pmu = cpuctx->ctx.pmu; 1154 u64 interval; 1155 1156 /* no multiplexing needed for SW PMU */ 1157 if (pmu->task_ctx_nr == perf_sw_context) 1158 return; 1159 1160 /* 1161 * check default is sane, if not set then force to 1162 * default interval (1/tick) 1163 */ 1164 interval = pmu->hrtimer_interval_ms; 1165 if (interval < 1) 1166 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 1167 1168 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 1169 1170 raw_spin_lock_init(&cpuctx->hrtimer_lock); 1171 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD); 1172 timer->function = perf_mux_hrtimer_handler; 1173 } 1174 1175 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx) 1176 { 1177 struct hrtimer *timer = &cpuctx->hrtimer; 1178 struct pmu *pmu = cpuctx->ctx.pmu; 1179 unsigned long flags; 1180 1181 /* not for SW PMU */ 1182 if (pmu->task_ctx_nr == perf_sw_context) 1183 return 0; 1184 1185 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags); 1186 if (!cpuctx->hrtimer_active) { 1187 cpuctx->hrtimer_active = 1; 1188 hrtimer_forward_now(timer, cpuctx->hrtimer_interval); 1189 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD); 1190 } 1191 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags); 1192 1193 return 0; 1194 } 1195 1196 void perf_pmu_disable(struct pmu *pmu) 1197 { 1198 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1199 if (!(*count)++) 1200 pmu->pmu_disable(pmu); 1201 } 1202 1203 void perf_pmu_enable(struct pmu *pmu) 1204 { 1205 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1206 if (!--(*count)) 1207 pmu->pmu_enable(pmu); 1208 } 1209 1210 static DEFINE_PER_CPU(struct list_head, active_ctx_list); 1211 1212 /* 1213 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and 1214 * perf_event_task_tick() are fully serialized because they're strictly cpu 1215 * affine and perf_event_ctx{activate,deactivate} are called with IRQs 1216 * disabled, while perf_event_task_tick is called from IRQ context. 1217 */ 1218 static void perf_event_ctx_activate(struct perf_event_context *ctx) 1219 { 1220 struct list_head *head = this_cpu_ptr(&active_ctx_list); 1221 1222 lockdep_assert_irqs_disabled(); 1223 1224 WARN_ON(!list_empty(&ctx->active_ctx_list)); 1225 1226 list_add(&ctx->active_ctx_list, head); 1227 } 1228 1229 static void perf_event_ctx_deactivate(struct perf_event_context *ctx) 1230 { 1231 lockdep_assert_irqs_disabled(); 1232 1233 WARN_ON(list_empty(&ctx->active_ctx_list)); 1234 1235 list_del_init(&ctx->active_ctx_list); 1236 } 1237 1238 static void get_ctx(struct perf_event_context *ctx) 1239 { 1240 refcount_inc(&ctx->refcount); 1241 } 1242 1243 static void *alloc_task_ctx_data(struct pmu *pmu) 1244 { 1245 if (pmu->task_ctx_cache) 1246 return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL); 1247 1248 return NULL; 1249 } 1250 1251 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data) 1252 { 1253 if (pmu->task_ctx_cache && task_ctx_data) 1254 kmem_cache_free(pmu->task_ctx_cache, task_ctx_data); 1255 } 1256 1257 static void free_ctx(struct rcu_head *head) 1258 { 1259 struct perf_event_context *ctx; 1260 1261 ctx = container_of(head, struct perf_event_context, rcu_head); 1262 free_task_ctx_data(ctx->pmu, ctx->task_ctx_data); 1263 kfree(ctx); 1264 } 1265 1266 static void put_ctx(struct perf_event_context *ctx) 1267 { 1268 if (refcount_dec_and_test(&ctx->refcount)) { 1269 if (ctx->parent_ctx) 1270 put_ctx(ctx->parent_ctx); 1271 if (ctx->task && ctx->task != TASK_TOMBSTONE) 1272 put_task_struct(ctx->task); 1273 call_rcu(&ctx->rcu_head, free_ctx); 1274 } 1275 } 1276 1277 /* 1278 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 1279 * perf_pmu_migrate_context() we need some magic. 1280 * 1281 * Those places that change perf_event::ctx will hold both 1282 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 1283 * 1284 * Lock ordering is by mutex address. There are two other sites where 1285 * perf_event_context::mutex nests and those are: 1286 * 1287 * - perf_event_exit_task_context() [ child , 0 ] 1288 * perf_event_exit_event() 1289 * put_event() [ parent, 1 ] 1290 * 1291 * - perf_event_init_context() [ parent, 0 ] 1292 * inherit_task_group() 1293 * inherit_group() 1294 * inherit_event() 1295 * perf_event_alloc() 1296 * perf_init_event() 1297 * perf_try_init_event() [ child , 1 ] 1298 * 1299 * While it appears there is an obvious deadlock here -- the parent and child 1300 * nesting levels are inverted between the two. This is in fact safe because 1301 * life-time rules separate them. That is an exiting task cannot fork, and a 1302 * spawning task cannot (yet) exit. 1303 * 1304 * But remember that these are parent<->child context relations, and 1305 * migration does not affect children, therefore these two orderings should not 1306 * interact. 1307 * 1308 * The change in perf_event::ctx does not affect children (as claimed above) 1309 * because the sys_perf_event_open() case will install a new event and break 1310 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 1311 * concerned with cpuctx and that doesn't have children. 1312 * 1313 * The places that change perf_event::ctx will issue: 1314 * 1315 * perf_remove_from_context(); 1316 * synchronize_rcu(); 1317 * perf_install_in_context(); 1318 * 1319 * to affect the change. The remove_from_context() + synchronize_rcu() should 1320 * quiesce the event, after which we can install it in the new location. This 1321 * means that only external vectors (perf_fops, prctl) can perturb the event 1322 * while in transit. Therefore all such accessors should also acquire 1323 * perf_event_context::mutex to serialize against this. 1324 * 1325 * However; because event->ctx can change while we're waiting to acquire 1326 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 1327 * function. 1328 * 1329 * Lock order: 1330 * exec_update_lock 1331 * task_struct::perf_event_mutex 1332 * perf_event_context::mutex 1333 * perf_event::child_mutex; 1334 * perf_event_context::lock 1335 * perf_event::mmap_mutex 1336 * mmap_lock 1337 * perf_addr_filters_head::lock 1338 * 1339 * cpu_hotplug_lock 1340 * pmus_lock 1341 * cpuctx->mutex / perf_event_context::mutex 1342 */ 1343 static struct perf_event_context * 1344 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 1345 { 1346 struct perf_event_context *ctx; 1347 1348 again: 1349 rcu_read_lock(); 1350 ctx = READ_ONCE(event->ctx); 1351 if (!refcount_inc_not_zero(&ctx->refcount)) { 1352 rcu_read_unlock(); 1353 goto again; 1354 } 1355 rcu_read_unlock(); 1356 1357 mutex_lock_nested(&ctx->mutex, nesting); 1358 if (event->ctx != ctx) { 1359 mutex_unlock(&ctx->mutex); 1360 put_ctx(ctx); 1361 goto again; 1362 } 1363 1364 return ctx; 1365 } 1366 1367 static inline struct perf_event_context * 1368 perf_event_ctx_lock(struct perf_event *event) 1369 { 1370 return perf_event_ctx_lock_nested(event, 0); 1371 } 1372 1373 static void perf_event_ctx_unlock(struct perf_event *event, 1374 struct perf_event_context *ctx) 1375 { 1376 mutex_unlock(&ctx->mutex); 1377 put_ctx(ctx); 1378 } 1379 1380 /* 1381 * This must be done under the ctx->lock, such as to serialize against 1382 * context_equiv(), therefore we cannot call put_ctx() since that might end up 1383 * calling scheduler related locks and ctx->lock nests inside those. 1384 */ 1385 static __must_check struct perf_event_context * 1386 unclone_ctx(struct perf_event_context *ctx) 1387 { 1388 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1389 1390 lockdep_assert_held(&ctx->lock); 1391 1392 if (parent_ctx) 1393 ctx->parent_ctx = NULL; 1394 ctx->generation++; 1395 1396 return parent_ctx; 1397 } 1398 1399 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p, 1400 enum pid_type type) 1401 { 1402 u32 nr; 1403 /* 1404 * only top level events have the pid namespace they were created in 1405 */ 1406 if (event->parent) 1407 event = event->parent; 1408 1409 nr = __task_pid_nr_ns(p, type, event->ns); 1410 /* avoid -1 if it is idle thread or runs in another ns */ 1411 if (!nr && !pid_alive(p)) 1412 nr = -1; 1413 return nr; 1414 } 1415 1416 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1417 { 1418 return perf_event_pid_type(event, p, PIDTYPE_TGID); 1419 } 1420 1421 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1422 { 1423 return perf_event_pid_type(event, p, PIDTYPE_PID); 1424 } 1425 1426 /* 1427 * If we inherit events we want to return the parent event id 1428 * to userspace. 1429 */ 1430 static u64 primary_event_id(struct perf_event *event) 1431 { 1432 u64 id = event->id; 1433 1434 if (event->parent) 1435 id = event->parent->id; 1436 1437 return id; 1438 } 1439 1440 /* 1441 * Get the perf_event_context for a task and lock it. 1442 * 1443 * This has to cope with the fact that until it is locked, 1444 * the context could get moved to another task. 1445 */ 1446 static struct perf_event_context * 1447 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) 1448 { 1449 struct perf_event_context *ctx; 1450 1451 retry: 1452 /* 1453 * One of the few rules of preemptible RCU is that one cannot do 1454 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1455 * part of the read side critical section was irqs-enabled -- see 1456 * rcu_read_unlock_special(). 1457 * 1458 * Since ctx->lock nests under rq->lock we must ensure the entire read 1459 * side critical section has interrupts disabled. 1460 */ 1461 local_irq_save(*flags); 1462 rcu_read_lock(); 1463 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); 1464 if (ctx) { 1465 /* 1466 * If this context is a clone of another, it might 1467 * get swapped for another underneath us by 1468 * perf_event_task_sched_out, though the 1469 * rcu_read_lock() protects us from any context 1470 * getting freed. Lock the context and check if it 1471 * got swapped before we could get the lock, and retry 1472 * if so. If we locked the right context, then it 1473 * can't get swapped on us any more. 1474 */ 1475 raw_spin_lock(&ctx->lock); 1476 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { 1477 raw_spin_unlock(&ctx->lock); 1478 rcu_read_unlock(); 1479 local_irq_restore(*flags); 1480 goto retry; 1481 } 1482 1483 if (ctx->task == TASK_TOMBSTONE || 1484 !refcount_inc_not_zero(&ctx->refcount)) { 1485 raw_spin_unlock(&ctx->lock); 1486 ctx = NULL; 1487 } else { 1488 WARN_ON_ONCE(ctx->task != task); 1489 } 1490 } 1491 rcu_read_unlock(); 1492 if (!ctx) 1493 local_irq_restore(*flags); 1494 return ctx; 1495 } 1496 1497 /* 1498 * Get the context for a task and increment its pin_count so it 1499 * can't get swapped to another task. This also increments its 1500 * reference count so that the context can't get freed. 1501 */ 1502 static struct perf_event_context * 1503 perf_pin_task_context(struct task_struct *task, int ctxn) 1504 { 1505 struct perf_event_context *ctx; 1506 unsigned long flags; 1507 1508 ctx = perf_lock_task_context(task, ctxn, &flags); 1509 if (ctx) { 1510 ++ctx->pin_count; 1511 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1512 } 1513 return ctx; 1514 } 1515 1516 static void perf_unpin_context(struct perf_event_context *ctx) 1517 { 1518 unsigned long flags; 1519 1520 raw_spin_lock_irqsave(&ctx->lock, flags); 1521 --ctx->pin_count; 1522 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1523 } 1524 1525 /* 1526 * Update the record of the current time in a context. 1527 */ 1528 static void update_context_time(struct perf_event_context *ctx) 1529 { 1530 u64 now = perf_clock(); 1531 1532 ctx->time += now - ctx->timestamp; 1533 ctx->timestamp = now; 1534 } 1535 1536 static u64 perf_event_time(struct perf_event *event) 1537 { 1538 struct perf_event_context *ctx = event->ctx; 1539 1540 if (is_cgroup_event(event)) 1541 return perf_cgroup_event_time(event); 1542 1543 return ctx ? ctx->time : 0; 1544 } 1545 1546 static enum event_type_t get_event_type(struct perf_event *event) 1547 { 1548 struct perf_event_context *ctx = event->ctx; 1549 enum event_type_t event_type; 1550 1551 lockdep_assert_held(&ctx->lock); 1552 1553 /* 1554 * It's 'group type', really, because if our group leader is 1555 * pinned, so are we. 1556 */ 1557 if (event->group_leader != event) 1558 event = event->group_leader; 1559 1560 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE; 1561 if (!ctx->task) 1562 event_type |= EVENT_CPU; 1563 1564 return event_type; 1565 } 1566 1567 /* 1568 * Helper function to initialize event group nodes. 1569 */ 1570 static void init_event_group(struct perf_event *event) 1571 { 1572 RB_CLEAR_NODE(&event->group_node); 1573 event->group_index = 0; 1574 } 1575 1576 /* 1577 * Extract pinned or flexible groups from the context 1578 * based on event attrs bits. 1579 */ 1580 static struct perf_event_groups * 1581 get_event_groups(struct perf_event *event, struct perf_event_context *ctx) 1582 { 1583 if (event->attr.pinned) 1584 return &ctx->pinned_groups; 1585 else 1586 return &ctx->flexible_groups; 1587 } 1588 1589 /* 1590 * Helper function to initializes perf_event_group trees. 1591 */ 1592 static void perf_event_groups_init(struct perf_event_groups *groups) 1593 { 1594 groups->tree = RB_ROOT; 1595 groups->index = 0; 1596 } 1597 1598 static inline struct cgroup *event_cgroup(const struct perf_event *event) 1599 { 1600 struct cgroup *cgroup = NULL; 1601 1602 #ifdef CONFIG_CGROUP_PERF 1603 if (event->cgrp) 1604 cgroup = event->cgrp->css.cgroup; 1605 #endif 1606 1607 return cgroup; 1608 } 1609 1610 /* 1611 * Compare function for event groups; 1612 * 1613 * Implements complex key that first sorts by CPU and then by virtual index 1614 * which provides ordering when rotating groups for the same CPU. 1615 */ 1616 static __always_inline int 1617 perf_event_groups_cmp(const int left_cpu, const struct cgroup *left_cgroup, 1618 const u64 left_group_index, const struct perf_event *right) 1619 { 1620 if (left_cpu < right->cpu) 1621 return -1; 1622 if (left_cpu > right->cpu) 1623 return 1; 1624 1625 #ifdef CONFIG_CGROUP_PERF 1626 { 1627 const struct cgroup *right_cgroup = event_cgroup(right); 1628 1629 if (left_cgroup != right_cgroup) { 1630 if (!left_cgroup) { 1631 /* 1632 * Left has no cgroup but right does, no 1633 * cgroups come first. 1634 */ 1635 return -1; 1636 } 1637 if (!right_cgroup) { 1638 /* 1639 * Right has no cgroup but left does, no 1640 * cgroups come first. 1641 */ 1642 return 1; 1643 } 1644 /* Two dissimilar cgroups, order by id. */ 1645 if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup)) 1646 return -1; 1647 1648 return 1; 1649 } 1650 } 1651 #endif 1652 1653 if (left_group_index < right->group_index) 1654 return -1; 1655 if (left_group_index > right->group_index) 1656 return 1; 1657 1658 return 0; 1659 } 1660 1661 #define __node_2_pe(node) \ 1662 rb_entry((node), struct perf_event, group_node) 1663 1664 static inline bool __group_less(struct rb_node *a, const struct rb_node *b) 1665 { 1666 struct perf_event *e = __node_2_pe(a); 1667 return perf_event_groups_cmp(e->cpu, event_cgroup(e), e->group_index, 1668 __node_2_pe(b)) < 0; 1669 } 1670 1671 struct __group_key { 1672 int cpu; 1673 struct cgroup *cgroup; 1674 }; 1675 1676 static inline int __group_cmp(const void *key, const struct rb_node *node) 1677 { 1678 const struct __group_key *a = key; 1679 const struct perf_event *b = __node_2_pe(node); 1680 1681 /* partial/subtree match: @cpu, @cgroup; ignore: @group_index */ 1682 return perf_event_groups_cmp(a->cpu, a->cgroup, b->group_index, b); 1683 } 1684 1685 /* 1686 * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for 1687 * key (see perf_event_groups_less). This places it last inside the CPU 1688 * subtree. 1689 */ 1690 static void 1691 perf_event_groups_insert(struct perf_event_groups *groups, 1692 struct perf_event *event) 1693 { 1694 event->group_index = ++groups->index; 1695 1696 rb_add(&event->group_node, &groups->tree, __group_less); 1697 } 1698 1699 /* 1700 * Helper function to insert event into the pinned or flexible groups. 1701 */ 1702 static void 1703 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx) 1704 { 1705 struct perf_event_groups *groups; 1706 1707 groups = get_event_groups(event, ctx); 1708 perf_event_groups_insert(groups, event); 1709 } 1710 1711 /* 1712 * Delete a group from a tree. 1713 */ 1714 static void 1715 perf_event_groups_delete(struct perf_event_groups *groups, 1716 struct perf_event *event) 1717 { 1718 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) || 1719 RB_EMPTY_ROOT(&groups->tree)); 1720 1721 rb_erase(&event->group_node, &groups->tree); 1722 init_event_group(event); 1723 } 1724 1725 /* 1726 * Helper function to delete event from its groups. 1727 */ 1728 static void 1729 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx) 1730 { 1731 struct perf_event_groups *groups; 1732 1733 groups = get_event_groups(event, ctx); 1734 perf_event_groups_delete(groups, event); 1735 } 1736 1737 /* 1738 * Get the leftmost event in the cpu/cgroup subtree. 1739 */ 1740 static struct perf_event * 1741 perf_event_groups_first(struct perf_event_groups *groups, int cpu, 1742 struct cgroup *cgrp) 1743 { 1744 struct __group_key key = { 1745 .cpu = cpu, 1746 .cgroup = cgrp, 1747 }; 1748 struct rb_node *node; 1749 1750 node = rb_find_first(&key, &groups->tree, __group_cmp); 1751 if (node) 1752 return __node_2_pe(node); 1753 1754 return NULL; 1755 } 1756 1757 /* 1758 * Like rb_entry_next_safe() for the @cpu subtree. 1759 */ 1760 static struct perf_event * 1761 perf_event_groups_next(struct perf_event *event) 1762 { 1763 struct __group_key key = { 1764 .cpu = event->cpu, 1765 .cgroup = event_cgroup(event), 1766 }; 1767 struct rb_node *next; 1768 1769 next = rb_next_match(&key, &event->group_node, __group_cmp); 1770 if (next) 1771 return __node_2_pe(next); 1772 1773 return NULL; 1774 } 1775 1776 /* 1777 * Iterate through the whole groups tree. 1778 */ 1779 #define perf_event_groups_for_each(event, groups) \ 1780 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \ 1781 typeof(*event), group_node); event; \ 1782 event = rb_entry_safe(rb_next(&event->group_node), \ 1783 typeof(*event), group_node)) 1784 1785 /* 1786 * Add an event from the lists for its context. 1787 * Must be called with ctx->mutex and ctx->lock held. 1788 */ 1789 static void 1790 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1791 { 1792 lockdep_assert_held(&ctx->lock); 1793 1794 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1795 event->attach_state |= PERF_ATTACH_CONTEXT; 1796 1797 event->tstamp = perf_event_time(event); 1798 1799 /* 1800 * If we're a stand alone event or group leader, we go to the context 1801 * list, group events are kept attached to the group so that 1802 * perf_group_detach can, at all times, locate all siblings. 1803 */ 1804 if (event->group_leader == event) { 1805 event->group_caps = event->event_caps; 1806 add_event_to_groups(event, ctx); 1807 } 1808 1809 list_add_rcu(&event->event_entry, &ctx->event_list); 1810 ctx->nr_events++; 1811 if (event->attr.inherit_stat) 1812 ctx->nr_stat++; 1813 1814 if (event->state > PERF_EVENT_STATE_OFF) 1815 perf_cgroup_event_enable(event, ctx); 1816 1817 ctx->generation++; 1818 } 1819 1820 /* 1821 * Initialize event state based on the perf_event_attr::disabled. 1822 */ 1823 static inline void perf_event__state_init(struct perf_event *event) 1824 { 1825 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1826 PERF_EVENT_STATE_INACTIVE; 1827 } 1828 1829 static void __perf_event_read_size(struct perf_event *event, int nr_siblings) 1830 { 1831 int entry = sizeof(u64); /* value */ 1832 int size = 0; 1833 int nr = 1; 1834 1835 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1836 size += sizeof(u64); 1837 1838 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1839 size += sizeof(u64); 1840 1841 if (event->attr.read_format & PERF_FORMAT_ID) 1842 entry += sizeof(u64); 1843 1844 if (event->attr.read_format & PERF_FORMAT_GROUP) { 1845 nr += nr_siblings; 1846 size += sizeof(u64); 1847 } 1848 1849 size += entry * nr; 1850 event->read_size = size; 1851 } 1852 1853 static void __perf_event_header_size(struct perf_event *event, u64 sample_type) 1854 { 1855 struct perf_sample_data *data; 1856 u16 size = 0; 1857 1858 if (sample_type & PERF_SAMPLE_IP) 1859 size += sizeof(data->ip); 1860 1861 if (sample_type & PERF_SAMPLE_ADDR) 1862 size += sizeof(data->addr); 1863 1864 if (sample_type & PERF_SAMPLE_PERIOD) 1865 size += sizeof(data->period); 1866 1867 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) 1868 size += sizeof(data->weight.full); 1869 1870 if (sample_type & PERF_SAMPLE_READ) 1871 size += event->read_size; 1872 1873 if (sample_type & PERF_SAMPLE_DATA_SRC) 1874 size += sizeof(data->data_src.val); 1875 1876 if (sample_type & PERF_SAMPLE_TRANSACTION) 1877 size += sizeof(data->txn); 1878 1879 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 1880 size += sizeof(data->phys_addr); 1881 1882 if (sample_type & PERF_SAMPLE_CGROUP) 1883 size += sizeof(data->cgroup); 1884 1885 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 1886 size += sizeof(data->data_page_size); 1887 1888 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 1889 size += sizeof(data->code_page_size); 1890 1891 event->header_size = size; 1892 } 1893 1894 /* 1895 * Called at perf_event creation and when events are attached/detached from a 1896 * group. 1897 */ 1898 static void perf_event__header_size(struct perf_event *event) 1899 { 1900 __perf_event_read_size(event, 1901 event->group_leader->nr_siblings); 1902 __perf_event_header_size(event, event->attr.sample_type); 1903 } 1904 1905 static void perf_event__id_header_size(struct perf_event *event) 1906 { 1907 struct perf_sample_data *data; 1908 u64 sample_type = event->attr.sample_type; 1909 u16 size = 0; 1910 1911 if (sample_type & PERF_SAMPLE_TID) 1912 size += sizeof(data->tid_entry); 1913 1914 if (sample_type & PERF_SAMPLE_TIME) 1915 size += sizeof(data->time); 1916 1917 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1918 size += sizeof(data->id); 1919 1920 if (sample_type & PERF_SAMPLE_ID) 1921 size += sizeof(data->id); 1922 1923 if (sample_type & PERF_SAMPLE_STREAM_ID) 1924 size += sizeof(data->stream_id); 1925 1926 if (sample_type & PERF_SAMPLE_CPU) 1927 size += sizeof(data->cpu_entry); 1928 1929 event->id_header_size = size; 1930 } 1931 1932 static bool perf_event_validate_size(struct perf_event *event) 1933 { 1934 /* 1935 * The values computed here will be over-written when we actually 1936 * attach the event. 1937 */ 1938 __perf_event_read_size(event, event->group_leader->nr_siblings + 1); 1939 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ); 1940 perf_event__id_header_size(event); 1941 1942 /* 1943 * Sum the lot; should not exceed the 64k limit we have on records. 1944 * Conservative limit to allow for callchains and other variable fields. 1945 */ 1946 if (event->read_size + event->header_size + 1947 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024) 1948 return false; 1949 1950 return true; 1951 } 1952 1953 static void perf_group_attach(struct perf_event *event) 1954 { 1955 struct perf_event *group_leader = event->group_leader, *pos; 1956 1957 lockdep_assert_held(&event->ctx->lock); 1958 1959 /* 1960 * We can have double attach due to group movement in perf_event_open. 1961 */ 1962 if (event->attach_state & PERF_ATTACH_GROUP) 1963 return; 1964 1965 event->attach_state |= PERF_ATTACH_GROUP; 1966 1967 if (group_leader == event) 1968 return; 1969 1970 WARN_ON_ONCE(group_leader->ctx != event->ctx); 1971 1972 group_leader->group_caps &= event->event_caps; 1973 1974 list_add_tail(&event->sibling_list, &group_leader->sibling_list); 1975 group_leader->nr_siblings++; 1976 1977 perf_event__header_size(group_leader); 1978 1979 for_each_sibling_event(pos, group_leader) 1980 perf_event__header_size(pos); 1981 } 1982 1983 /* 1984 * Remove an event from the lists for its context. 1985 * Must be called with ctx->mutex and ctx->lock held. 1986 */ 1987 static void 1988 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 1989 { 1990 WARN_ON_ONCE(event->ctx != ctx); 1991 lockdep_assert_held(&ctx->lock); 1992 1993 /* 1994 * We can have double detach due to exit/hot-unplug + close. 1995 */ 1996 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 1997 return; 1998 1999 event->attach_state &= ~PERF_ATTACH_CONTEXT; 2000 2001 ctx->nr_events--; 2002 if (event->attr.inherit_stat) 2003 ctx->nr_stat--; 2004 2005 list_del_rcu(&event->event_entry); 2006 2007 if (event->group_leader == event) 2008 del_event_from_groups(event, ctx); 2009 2010 /* 2011 * If event was in error state, then keep it 2012 * that way, otherwise bogus counts will be 2013 * returned on read(). The only way to get out 2014 * of error state is by explicit re-enabling 2015 * of the event 2016 */ 2017 if (event->state > PERF_EVENT_STATE_OFF) { 2018 perf_cgroup_event_disable(event, ctx); 2019 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2020 } 2021 2022 ctx->generation++; 2023 } 2024 2025 static int 2026 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event) 2027 { 2028 if (!has_aux(aux_event)) 2029 return 0; 2030 2031 if (!event->pmu->aux_output_match) 2032 return 0; 2033 2034 return event->pmu->aux_output_match(aux_event); 2035 } 2036 2037 static void put_event(struct perf_event *event); 2038 static void event_sched_out(struct perf_event *event, 2039 struct perf_cpu_context *cpuctx, 2040 struct perf_event_context *ctx); 2041 2042 static void perf_put_aux_event(struct perf_event *event) 2043 { 2044 struct perf_event_context *ctx = event->ctx; 2045 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2046 struct perf_event *iter; 2047 2048 /* 2049 * If event uses aux_event tear down the link 2050 */ 2051 if (event->aux_event) { 2052 iter = event->aux_event; 2053 event->aux_event = NULL; 2054 put_event(iter); 2055 return; 2056 } 2057 2058 /* 2059 * If the event is an aux_event, tear down all links to 2060 * it from other events. 2061 */ 2062 for_each_sibling_event(iter, event->group_leader) { 2063 if (iter->aux_event != event) 2064 continue; 2065 2066 iter->aux_event = NULL; 2067 put_event(event); 2068 2069 /* 2070 * If it's ACTIVE, schedule it out and put it into ERROR 2071 * state so that we don't try to schedule it again. Note 2072 * that perf_event_enable() will clear the ERROR status. 2073 */ 2074 event_sched_out(iter, cpuctx, ctx); 2075 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 2076 } 2077 } 2078 2079 static bool perf_need_aux_event(struct perf_event *event) 2080 { 2081 return !!event->attr.aux_output || !!event->attr.aux_sample_size; 2082 } 2083 2084 static int perf_get_aux_event(struct perf_event *event, 2085 struct perf_event *group_leader) 2086 { 2087 /* 2088 * Our group leader must be an aux event if we want to be 2089 * an aux_output. This way, the aux event will precede its 2090 * aux_output events in the group, and therefore will always 2091 * schedule first. 2092 */ 2093 if (!group_leader) 2094 return 0; 2095 2096 /* 2097 * aux_output and aux_sample_size are mutually exclusive. 2098 */ 2099 if (event->attr.aux_output && event->attr.aux_sample_size) 2100 return 0; 2101 2102 if (event->attr.aux_output && 2103 !perf_aux_output_match(event, group_leader)) 2104 return 0; 2105 2106 if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux) 2107 return 0; 2108 2109 if (!atomic_long_inc_not_zero(&group_leader->refcount)) 2110 return 0; 2111 2112 /* 2113 * Link aux_outputs to their aux event; this is undone in 2114 * perf_group_detach() by perf_put_aux_event(). When the 2115 * group in torn down, the aux_output events loose their 2116 * link to the aux_event and can't schedule any more. 2117 */ 2118 event->aux_event = group_leader; 2119 2120 return 1; 2121 } 2122 2123 static inline struct list_head *get_event_list(struct perf_event *event) 2124 { 2125 struct perf_event_context *ctx = event->ctx; 2126 return event->attr.pinned ? &ctx->pinned_active : &ctx->flexible_active; 2127 } 2128 2129 /* 2130 * Events that have PERF_EV_CAP_SIBLING require being part of a group and 2131 * cannot exist on their own, schedule them out and move them into the ERROR 2132 * state. Also see _perf_event_enable(), it will not be able to recover 2133 * this ERROR state. 2134 */ 2135 static inline void perf_remove_sibling_event(struct perf_event *event) 2136 { 2137 struct perf_event_context *ctx = event->ctx; 2138 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2139 2140 event_sched_out(event, cpuctx, ctx); 2141 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 2142 } 2143 2144 static void perf_group_detach(struct perf_event *event) 2145 { 2146 struct perf_event *leader = event->group_leader; 2147 struct perf_event *sibling, *tmp; 2148 struct perf_event_context *ctx = event->ctx; 2149 2150 lockdep_assert_held(&ctx->lock); 2151 2152 /* 2153 * We can have double detach due to exit/hot-unplug + close. 2154 */ 2155 if (!(event->attach_state & PERF_ATTACH_GROUP)) 2156 return; 2157 2158 event->attach_state &= ~PERF_ATTACH_GROUP; 2159 2160 perf_put_aux_event(event); 2161 2162 /* 2163 * If this is a sibling, remove it from its group. 2164 */ 2165 if (leader != event) { 2166 list_del_init(&event->sibling_list); 2167 event->group_leader->nr_siblings--; 2168 goto out; 2169 } 2170 2171 /* 2172 * If this was a group event with sibling events then 2173 * upgrade the siblings to singleton events by adding them 2174 * to whatever list we are on. 2175 */ 2176 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) { 2177 2178 if (sibling->event_caps & PERF_EV_CAP_SIBLING) 2179 perf_remove_sibling_event(sibling); 2180 2181 sibling->group_leader = sibling; 2182 list_del_init(&sibling->sibling_list); 2183 2184 /* Inherit group flags from the previous leader */ 2185 sibling->group_caps = event->group_caps; 2186 2187 if (!RB_EMPTY_NODE(&event->group_node)) { 2188 add_event_to_groups(sibling, event->ctx); 2189 2190 if (sibling->state == PERF_EVENT_STATE_ACTIVE) 2191 list_add_tail(&sibling->active_list, get_event_list(sibling)); 2192 } 2193 2194 WARN_ON_ONCE(sibling->ctx != event->ctx); 2195 } 2196 2197 out: 2198 for_each_sibling_event(tmp, leader) 2199 perf_event__header_size(tmp); 2200 2201 perf_event__header_size(leader); 2202 } 2203 2204 static void sync_child_event(struct perf_event *child_event); 2205 2206 static void perf_child_detach(struct perf_event *event) 2207 { 2208 struct perf_event *parent_event = event->parent; 2209 2210 if (!(event->attach_state & PERF_ATTACH_CHILD)) 2211 return; 2212 2213 event->attach_state &= ~PERF_ATTACH_CHILD; 2214 2215 if (WARN_ON_ONCE(!parent_event)) 2216 return; 2217 2218 lockdep_assert_held(&parent_event->child_mutex); 2219 2220 sync_child_event(event); 2221 list_del_init(&event->child_list); 2222 } 2223 2224 static bool is_orphaned_event(struct perf_event *event) 2225 { 2226 return event->state == PERF_EVENT_STATE_DEAD; 2227 } 2228 2229 static inline int __pmu_filter_match(struct perf_event *event) 2230 { 2231 struct pmu *pmu = event->pmu; 2232 return pmu->filter_match ? pmu->filter_match(event) : 1; 2233 } 2234 2235 /* 2236 * Check whether we should attempt to schedule an event group based on 2237 * PMU-specific filtering. An event group can consist of HW and SW events, 2238 * potentially with a SW leader, so we must check all the filters, to 2239 * determine whether a group is schedulable: 2240 */ 2241 static inline int pmu_filter_match(struct perf_event *event) 2242 { 2243 struct perf_event *sibling; 2244 2245 if (!__pmu_filter_match(event)) 2246 return 0; 2247 2248 for_each_sibling_event(sibling, event) { 2249 if (!__pmu_filter_match(sibling)) 2250 return 0; 2251 } 2252 2253 return 1; 2254 } 2255 2256 static inline int 2257 event_filter_match(struct perf_event *event) 2258 { 2259 return (event->cpu == -1 || event->cpu == smp_processor_id()) && 2260 perf_cgroup_match(event) && pmu_filter_match(event); 2261 } 2262 2263 static void 2264 event_sched_out(struct perf_event *event, 2265 struct perf_cpu_context *cpuctx, 2266 struct perf_event_context *ctx) 2267 { 2268 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE; 2269 2270 WARN_ON_ONCE(event->ctx != ctx); 2271 lockdep_assert_held(&ctx->lock); 2272 2273 if (event->state != PERF_EVENT_STATE_ACTIVE) 2274 return; 2275 2276 /* 2277 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but 2278 * we can schedule events _OUT_ individually through things like 2279 * __perf_remove_from_context(). 2280 */ 2281 list_del_init(&event->active_list); 2282 2283 perf_pmu_disable(event->pmu); 2284 2285 event->pmu->del(event, 0); 2286 event->oncpu = -1; 2287 2288 if (READ_ONCE(event->pending_disable) >= 0) { 2289 WRITE_ONCE(event->pending_disable, -1); 2290 perf_cgroup_event_disable(event, ctx); 2291 state = PERF_EVENT_STATE_OFF; 2292 } 2293 perf_event_set_state(event, state); 2294 2295 if (!is_software_event(event)) 2296 cpuctx->active_oncpu--; 2297 if (!--ctx->nr_active) 2298 perf_event_ctx_deactivate(ctx); 2299 if (event->attr.freq && event->attr.sample_freq) 2300 ctx->nr_freq--; 2301 if (event->attr.exclusive || !cpuctx->active_oncpu) 2302 cpuctx->exclusive = 0; 2303 2304 perf_pmu_enable(event->pmu); 2305 } 2306 2307 static void 2308 group_sched_out(struct perf_event *group_event, 2309 struct perf_cpu_context *cpuctx, 2310 struct perf_event_context *ctx) 2311 { 2312 struct perf_event *event; 2313 2314 if (group_event->state != PERF_EVENT_STATE_ACTIVE) 2315 return; 2316 2317 perf_pmu_disable(ctx->pmu); 2318 2319 event_sched_out(group_event, cpuctx, ctx); 2320 2321 /* 2322 * Schedule out siblings (if any): 2323 */ 2324 for_each_sibling_event(event, group_event) 2325 event_sched_out(event, cpuctx, ctx); 2326 2327 perf_pmu_enable(ctx->pmu); 2328 } 2329 2330 #define DETACH_GROUP 0x01UL 2331 #define DETACH_CHILD 0x02UL 2332 2333 /* 2334 * Cross CPU call to remove a performance event 2335 * 2336 * We disable the event on the hardware level first. After that we 2337 * remove it from the context list. 2338 */ 2339 static void 2340 __perf_remove_from_context(struct perf_event *event, 2341 struct perf_cpu_context *cpuctx, 2342 struct perf_event_context *ctx, 2343 void *info) 2344 { 2345 unsigned long flags = (unsigned long)info; 2346 2347 if (ctx->is_active & EVENT_TIME) { 2348 update_context_time(ctx); 2349 update_cgrp_time_from_cpuctx(cpuctx); 2350 } 2351 2352 event_sched_out(event, cpuctx, ctx); 2353 if (flags & DETACH_GROUP) 2354 perf_group_detach(event); 2355 if (flags & DETACH_CHILD) 2356 perf_child_detach(event); 2357 list_del_event(event, ctx); 2358 2359 if (!ctx->nr_events && ctx->is_active) { 2360 ctx->is_active = 0; 2361 ctx->rotate_necessary = 0; 2362 if (ctx->task) { 2363 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2364 cpuctx->task_ctx = NULL; 2365 } 2366 } 2367 } 2368 2369 /* 2370 * Remove the event from a task's (or a CPU's) list of events. 2371 * 2372 * If event->ctx is a cloned context, callers must make sure that 2373 * every task struct that event->ctx->task could possibly point to 2374 * remains valid. This is OK when called from perf_release since 2375 * that only calls us on the top-level context, which can't be a clone. 2376 * When called from perf_event_exit_task, it's OK because the 2377 * context has been detached from its task. 2378 */ 2379 static void perf_remove_from_context(struct perf_event *event, unsigned long flags) 2380 { 2381 struct perf_event_context *ctx = event->ctx; 2382 2383 lockdep_assert_held(&ctx->mutex); 2384 2385 /* 2386 * Because of perf_event_exit_task(), perf_remove_from_context() ought 2387 * to work in the face of TASK_TOMBSTONE, unlike every other 2388 * event_function_call() user. 2389 */ 2390 raw_spin_lock_irq(&ctx->lock); 2391 if (!ctx->is_active) { 2392 __perf_remove_from_context(event, __get_cpu_context(ctx), 2393 ctx, (void *)flags); 2394 raw_spin_unlock_irq(&ctx->lock); 2395 return; 2396 } 2397 raw_spin_unlock_irq(&ctx->lock); 2398 2399 event_function_call(event, __perf_remove_from_context, (void *)flags); 2400 } 2401 2402 /* 2403 * Cross CPU call to disable a performance event 2404 */ 2405 static void __perf_event_disable(struct perf_event *event, 2406 struct perf_cpu_context *cpuctx, 2407 struct perf_event_context *ctx, 2408 void *info) 2409 { 2410 if (event->state < PERF_EVENT_STATE_INACTIVE) 2411 return; 2412 2413 if (ctx->is_active & EVENT_TIME) { 2414 update_context_time(ctx); 2415 update_cgrp_time_from_event(event); 2416 } 2417 2418 if (event == event->group_leader) 2419 group_sched_out(event, cpuctx, ctx); 2420 else 2421 event_sched_out(event, cpuctx, ctx); 2422 2423 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2424 perf_cgroup_event_disable(event, ctx); 2425 } 2426 2427 /* 2428 * Disable an event. 2429 * 2430 * If event->ctx is a cloned context, callers must make sure that 2431 * every task struct that event->ctx->task could possibly point to 2432 * remains valid. This condition is satisfied when called through 2433 * perf_event_for_each_child or perf_event_for_each because they 2434 * hold the top-level event's child_mutex, so any descendant that 2435 * goes to exit will block in perf_event_exit_event(). 2436 * 2437 * When called from perf_pending_event it's OK because event->ctx 2438 * is the current context on this CPU and preemption is disabled, 2439 * hence we can't get into perf_event_task_sched_out for this context. 2440 */ 2441 static void _perf_event_disable(struct perf_event *event) 2442 { 2443 struct perf_event_context *ctx = event->ctx; 2444 2445 raw_spin_lock_irq(&ctx->lock); 2446 if (event->state <= PERF_EVENT_STATE_OFF) { 2447 raw_spin_unlock_irq(&ctx->lock); 2448 return; 2449 } 2450 raw_spin_unlock_irq(&ctx->lock); 2451 2452 event_function_call(event, __perf_event_disable, NULL); 2453 } 2454 2455 void perf_event_disable_local(struct perf_event *event) 2456 { 2457 event_function_local(event, __perf_event_disable, NULL); 2458 } 2459 2460 /* 2461 * Strictly speaking kernel users cannot create groups and therefore this 2462 * interface does not need the perf_event_ctx_lock() magic. 2463 */ 2464 void perf_event_disable(struct perf_event *event) 2465 { 2466 struct perf_event_context *ctx; 2467 2468 ctx = perf_event_ctx_lock(event); 2469 _perf_event_disable(event); 2470 perf_event_ctx_unlock(event, ctx); 2471 } 2472 EXPORT_SYMBOL_GPL(perf_event_disable); 2473 2474 void perf_event_disable_inatomic(struct perf_event *event) 2475 { 2476 WRITE_ONCE(event->pending_disable, smp_processor_id()); 2477 /* can fail, see perf_pending_event_disable() */ 2478 irq_work_queue(&event->pending); 2479 } 2480 2481 static void perf_set_shadow_time(struct perf_event *event, 2482 struct perf_event_context *ctx) 2483 { 2484 /* 2485 * use the correct time source for the time snapshot 2486 * 2487 * We could get by without this by leveraging the 2488 * fact that to get to this function, the caller 2489 * has most likely already called update_context_time() 2490 * and update_cgrp_time_xx() and thus both timestamp 2491 * are identical (or very close). Given that tstamp is, 2492 * already adjusted for cgroup, we could say that: 2493 * tstamp - ctx->timestamp 2494 * is equivalent to 2495 * tstamp - cgrp->timestamp. 2496 * 2497 * Then, in perf_output_read(), the calculation would 2498 * work with no changes because: 2499 * - event is guaranteed scheduled in 2500 * - no scheduled out in between 2501 * - thus the timestamp would be the same 2502 * 2503 * But this is a bit hairy. 2504 * 2505 * So instead, we have an explicit cgroup call to remain 2506 * within the time source all along. We believe it 2507 * is cleaner and simpler to understand. 2508 */ 2509 if (is_cgroup_event(event)) 2510 perf_cgroup_set_shadow_time(event, event->tstamp); 2511 else 2512 event->shadow_ctx_time = event->tstamp - ctx->timestamp; 2513 } 2514 2515 #define MAX_INTERRUPTS (~0ULL) 2516 2517 static void perf_log_throttle(struct perf_event *event, int enable); 2518 static void perf_log_itrace_start(struct perf_event *event); 2519 2520 static int 2521 event_sched_in(struct perf_event *event, 2522 struct perf_cpu_context *cpuctx, 2523 struct perf_event_context *ctx) 2524 { 2525 int ret = 0; 2526 2527 WARN_ON_ONCE(event->ctx != ctx); 2528 2529 lockdep_assert_held(&ctx->lock); 2530 2531 if (event->state <= PERF_EVENT_STATE_OFF) 2532 return 0; 2533 2534 WRITE_ONCE(event->oncpu, smp_processor_id()); 2535 /* 2536 * Order event::oncpu write to happen before the ACTIVE state is 2537 * visible. This allows perf_event_{stop,read}() to observe the correct 2538 * ->oncpu if it sees ACTIVE. 2539 */ 2540 smp_wmb(); 2541 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE); 2542 2543 /* 2544 * Unthrottle events, since we scheduled we might have missed several 2545 * ticks already, also for a heavily scheduling task there is little 2546 * guarantee it'll get a tick in a timely manner. 2547 */ 2548 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 2549 perf_log_throttle(event, 1); 2550 event->hw.interrupts = 0; 2551 } 2552 2553 perf_pmu_disable(event->pmu); 2554 2555 perf_set_shadow_time(event, ctx); 2556 2557 perf_log_itrace_start(event); 2558 2559 if (event->pmu->add(event, PERF_EF_START)) { 2560 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2561 event->oncpu = -1; 2562 ret = -EAGAIN; 2563 goto out; 2564 } 2565 2566 if (!is_software_event(event)) 2567 cpuctx->active_oncpu++; 2568 if (!ctx->nr_active++) 2569 perf_event_ctx_activate(ctx); 2570 if (event->attr.freq && event->attr.sample_freq) 2571 ctx->nr_freq++; 2572 2573 if (event->attr.exclusive) 2574 cpuctx->exclusive = 1; 2575 2576 out: 2577 perf_pmu_enable(event->pmu); 2578 2579 return ret; 2580 } 2581 2582 static int 2583 group_sched_in(struct perf_event *group_event, 2584 struct perf_cpu_context *cpuctx, 2585 struct perf_event_context *ctx) 2586 { 2587 struct perf_event *event, *partial_group = NULL; 2588 struct pmu *pmu = ctx->pmu; 2589 2590 if (group_event->state == PERF_EVENT_STATE_OFF) 2591 return 0; 2592 2593 pmu->start_txn(pmu, PERF_PMU_TXN_ADD); 2594 2595 if (event_sched_in(group_event, cpuctx, ctx)) 2596 goto error; 2597 2598 /* 2599 * Schedule in siblings as one group (if any): 2600 */ 2601 for_each_sibling_event(event, group_event) { 2602 if (event_sched_in(event, cpuctx, ctx)) { 2603 partial_group = event; 2604 goto group_error; 2605 } 2606 } 2607 2608 if (!pmu->commit_txn(pmu)) 2609 return 0; 2610 2611 group_error: 2612 /* 2613 * Groups can be scheduled in as one unit only, so undo any 2614 * partial group before returning: 2615 * The events up to the failed event are scheduled out normally. 2616 */ 2617 for_each_sibling_event(event, group_event) { 2618 if (event == partial_group) 2619 break; 2620 2621 event_sched_out(event, cpuctx, ctx); 2622 } 2623 event_sched_out(group_event, cpuctx, ctx); 2624 2625 error: 2626 pmu->cancel_txn(pmu); 2627 return -EAGAIN; 2628 } 2629 2630 /* 2631 * Work out whether we can put this event group on the CPU now. 2632 */ 2633 static int group_can_go_on(struct perf_event *event, 2634 struct perf_cpu_context *cpuctx, 2635 int can_add_hw) 2636 { 2637 /* 2638 * Groups consisting entirely of software events can always go on. 2639 */ 2640 if (event->group_caps & PERF_EV_CAP_SOFTWARE) 2641 return 1; 2642 /* 2643 * If an exclusive group is already on, no other hardware 2644 * events can go on. 2645 */ 2646 if (cpuctx->exclusive) 2647 return 0; 2648 /* 2649 * If this group is exclusive and there are already 2650 * events on the CPU, it can't go on. 2651 */ 2652 if (event->attr.exclusive && !list_empty(get_event_list(event))) 2653 return 0; 2654 /* 2655 * Otherwise, try to add it if all previous groups were able 2656 * to go on. 2657 */ 2658 return can_add_hw; 2659 } 2660 2661 static void add_event_to_ctx(struct perf_event *event, 2662 struct perf_event_context *ctx) 2663 { 2664 list_add_event(event, ctx); 2665 perf_group_attach(event); 2666 } 2667 2668 static void ctx_sched_out(struct perf_event_context *ctx, 2669 struct perf_cpu_context *cpuctx, 2670 enum event_type_t event_type); 2671 static void 2672 ctx_sched_in(struct perf_event_context *ctx, 2673 struct perf_cpu_context *cpuctx, 2674 enum event_type_t event_type, 2675 struct task_struct *task); 2676 2677 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx, 2678 struct perf_event_context *ctx, 2679 enum event_type_t event_type) 2680 { 2681 if (!cpuctx->task_ctx) 2682 return; 2683 2684 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2685 return; 2686 2687 ctx_sched_out(ctx, cpuctx, event_type); 2688 } 2689 2690 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2691 struct perf_event_context *ctx, 2692 struct task_struct *task) 2693 { 2694 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task); 2695 if (ctx) 2696 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task); 2697 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task); 2698 if (ctx) 2699 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task); 2700 } 2701 2702 /* 2703 * We want to maintain the following priority of scheduling: 2704 * - CPU pinned (EVENT_CPU | EVENT_PINNED) 2705 * - task pinned (EVENT_PINNED) 2706 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE) 2707 * - task flexible (EVENT_FLEXIBLE). 2708 * 2709 * In order to avoid unscheduling and scheduling back in everything every 2710 * time an event is added, only do it for the groups of equal priority and 2711 * below. 2712 * 2713 * This can be called after a batch operation on task events, in which case 2714 * event_type is a bit mask of the types of events involved. For CPU events, 2715 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE. 2716 */ 2717 static void ctx_resched(struct perf_cpu_context *cpuctx, 2718 struct perf_event_context *task_ctx, 2719 enum event_type_t event_type) 2720 { 2721 enum event_type_t ctx_event_type; 2722 bool cpu_event = !!(event_type & EVENT_CPU); 2723 2724 /* 2725 * If pinned groups are involved, flexible groups also need to be 2726 * scheduled out. 2727 */ 2728 if (event_type & EVENT_PINNED) 2729 event_type |= EVENT_FLEXIBLE; 2730 2731 ctx_event_type = event_type & EVENT_ALL; 2732 2733 perf_pmu_disable(cpuctx->ctx.pmu); 2734 if (task_ctx) 2735 task_ctx_sched_out(cpuctx, task_ctx, event_type); 2736 2737 /* 2738 * Decide which cpu ctx groups to schedule out based on the types 2739 * of events that caused rescheduling: 2740 * - EVENT_CPU: schedule out corresponding groups; 2741 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups; 2742 * - otherwise, do nothing more. 2743 */ 2744 if (cpu_event) 2745 cpu_ctx_sched_out(cpuctx, ctx_event_type); 2746 else if (ctx_event_type & EVENT_PINNED) 2747 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2748 2749 perf_event_sched_in(cpuctx, task_ctx, current); 2750 perf_pmu_enable(cpuctx->ctx.pmu); 2751 } 2752 2753 void perf_pmu_resched(struct pmu *pmu) 2754 { 2755 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 2756 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2757 2758 perf_ctx_lock(cpuctx, task_ctx); 2759 ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU); 2760 perf_ctx_unlock(cpuctx, task_ctx); 2761 } 2762 2763 /* 2764 * Cross CPU call to install and enable a performance event 2765 * 2766 * Very similar to remote_function() + event_function() but cannot assume that 2767 * things like ctx->is_active and cpuctx->task_ctx are set. 2768 */ 2769 static int __perf_install_in_context(void *info) 2770 { 2771 struct perf_event *event = info; 2772 struct perf_event_context *ctx = event->ctx; 2773 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2774 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2775 bool reprogram = true; 2776 int ret = 0; 2777 2778 raw_spin_lock(&cpuctx->ctx.lock); 2779 if (ctx->task) { 2780 raw_spin_lock(&ctx->lock); 2781 task_ctx = ctx; 2782 2783 reprogram = (ctx->task == current); 2784 2785 /* 2786 * If the task is running, it must be running on this CPU, 2787 * otherwise we cannot reprogram things. 2788 * 2789 * If its not running, we don't care, ctx->lock will 2790 * serialize against it becoming runnable. 2791 */ 2792 if (task_curr(ctx->task) && !reprogram) { 2793 ret = -ESRCH; 2794 goto unlock; 2795 } 2796 2797 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx); 2798 } else if (task_ctx) { 2799 raw_spin_lock(&task_ctx->lock); 2800 } 2801 2802 #ifdef CONFIG_CGROUP_PERF 2803 if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) { 2804 /* 2805 * If the current cgroup doesn't match the event's 2806 * cgroup, we should not try to schedule it. 2807 */ 2808 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 2809 reprogram = cgroup_is_descendant(cgrp->css.cgroup, 2810 event->cgrp->css.cgroup); 2811 } 2812 #endif 2813 2814 if (reprogram) { 2815 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2816 add_event_to_ctx(event, ctx); 2817 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2818 } else { 2819 add_event_to_ctx(event, ctx); 2820 } 2821 2822 unlock: 2823 perf_ctx_unlock(cpuctx, task_ctx); 2824 2825 return ret; 2826 } 2827 2828 static bool exclusive_event_installable(struct perf_event *event, 2829 struct perf_event_context *ctx); 2830 2831 /* 2832 * Attach a performance event to a context. 2833 * 2834 * Very similar to event_function_call, see comment there. 2835 */ 2836 static void 2837 perf_install_in_context(struct perf_event_context *ctx, 2838 struct perf_event *event, 2839 int cpu) 2840 { 2841 struct task_struct *task = READ_ONCE(ctx->task); 2842 2843 lockdep_assert_held(&ctx->mutex); 2844 2845 WARN_ON_ONCE(!exclusive_event_installable(event, ctx)); 2846 2847 if (event->cpu != -1) 2848 event->cpu = cpu; 2849 2850 /* 2851 * Ensures that if we can observe event->ctx, both the event and ctx 2852 * will be 'complete'. See perf_iterate_sb_cpu(). 2853 */ 2854 smp_store_release(&event->ctx, ctx); 2855 2856 /* 2857 * perf_event_attr::disabled events will not run and can be initialized 2858 * without IPI. Except when this is the first event for the context, in 2859 * that case we need the magic of the IPI to set ctx->is_active. 2860 * 2861 * The IOC_ENABLE that is sure to follow the creation of a disabled 2862 * event will issue the IPI and reprogram the hardware. 2863 */ 2864 if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && ctx->nr_events) { 2865 raw_spin_lock_irq(&ctx->lock); 2866 if (ctx->task == TASK_TOMBSTONE) { 2867 raw_spin_unlock_irq(&ctx->lock); 2868 return; 2869 } 2870 add_event_to_ctx(event, ctx); 2871 raw_spin_unlock_irq(&ctx->lock); 2872 return; 2873 } 2874 2875 if (!task) { 2876 cpu_function_call(cpu, __perf_install_in_context, event); 2877 return; 2878 } 2879 2880 /* 2881 * Should not happen, we validate the ctx is still alive before calling. 2882 */ 2883 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) 2884 return; 2885 2886 /* 2887 * Installing events is tricky because we cannot rely on ctx->is_active 2888 * to be set in case this is the nr_events 0 -> 1 transition. 2889 * 2890 * Instead we use task_curr(), which tells us if the task is running. 2891 * However, since we use task_curr() outside of rq::lock, we can race 2892 * against the actual state. This means the result can be wrong. 2893 * 2894 * If we get a false positive, we retry, this is harmless. 2895 * 2896 * If we get a false negative, things are complicated. If we are after 2897 * perf_event_context_sched_in() ctx::lock will serialize us, and the 2898 * value must be correct. If we're before, it doesn't matter since 2899 * perf_event_context_sched_in() will program the counter. 2900 * 2901 * However, this hinges on the remote context switch having observed 2902 * our task->perf_event_ctxp[] store, such that it will in fact take 2903 * ctx::lock in perf_event_context_sched_in(). 2904 * 2905 * We do this by task_function_call(), if the IPI fails to hit the task 2906 * we know any future context switch of task must see the 2907 * perf_event_ctpx[] store. 2908 */ 2909 2910 /* 2911 * This smp_mb() orders the task->perf_event_ctxp[] store with the 2912 * task_cpu() load, such that if the IPI then does not find the task 2913 * running, a future context switch of that task must observe the 2914 * store. 2915 */ 2916 smp_mb(); 2917 again: 2918 if (!task_function_call(task, __perf_install_in_context, event)) 2919 return; 2920 2921 raw_spin_lock_irq(&ctx->lock); 2922 task = ctx->task; 2923 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) { 2924 /* 2925 * Cannot happen because we already checked above (which also 2926 * cannot happen), and we hold ctx->mutex, which serializes us 2927 * against perf_event_exit_task_context(). 2928 */ 2929 raw_spin_unlock_irq(&ctx->lock); 2930 return; 2931 } 2932 /* 2933 * If the task is not running, ctx->lock will avoid it becoming so, 2934 * thus we can safely install the event. 2935 */ 2936 if (task_curr(task)) { 2937 raw_spin_unlock_irq(&ctx->lock); 2938 goto again; 2939 } 2940 add_event_to_ctx(event, ctx); 2941 raw_spin_unlock_irq(&ctx->lock); 2942 } 2943 2944 /* 2945 * Cross CPU call to enable a performance event 2946 */ 2947 static void __perf_event_enable(struct perf_event *event, 2948 struct perf_cpu_context *cpuctx, 2949 struct perf_event_context *ctx, 2950 void *info) 2951 { 2952 struct perf_event *leader = event->group_leader; 2953 struct perf_event_context *task_ctx; 2954 2955 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2956 event->state <= PERF_EVENT_STATE_ERROR) 2957 return; 2958 2959 if (ctx->is_active) 2960 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2961 2962 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2963 perf_cgroup_event_enable(event, ctx); 2964 2965 if (!ctx->is_active) 2966 return; 2967 2968 if (!event_filter_match(event)) { 2969 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2970 return; 2971 } 2972 2973 /* 2974 * If the event is in a group and isn't the group leader, 2975 * then don't put it on unless the group is on. 2976 */ 2977 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) { 2978 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2979 return; 2980 } 2981 2982 task_ctx = cpuctx->task_ctx; 2983 if (ctx->task) 2984 WARN_ON_ONCE(task_ctx != ctx); 2985 2986 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2987 } 2988 2989 /* 2990 * Enable an event. 2991 * 2992 * If event->ctx is a cloned context, callers must make sure that 2993 * every task struct that event->ctx->task could possibly point to 2994 * remains valid. This condition is satisfied when called through 2995 * perf_event_for_each_child or perf_event_for_each as described 2996 * for perf_event_disable. 2997 */ 2998 static void _perf_event_enable(struct perf_event *event) 2999 { 3000 struct perf_event_context *ctx = event->ctx; 3001 3002 raw_spin_lock_irq(&ctx->lock); 3003 if (event->state >= PERF_EVENT_STATE_INACTIVE || 3004 event->state < PERF_EVENT_STATE_ERROR) { 3005 out: 3006 raw_spin_unlock_irq(&ctx->lock); 3007 return; 3008 } 3009 3010 /* 3011 * If the event is in error state, clear that first. 3012 * 3013 * That way, if we see the event in error state below, we know that it 3014 * has gone back into error state, as distinct from the task having 3015 * been scheduled away before the cross-call arrived. 3016 */ 3017 if (event->state == PERF_EVENT_STATE_ERROR) { 3018 /* 3019 * Detached SIBLING events cannot leave ERROR state. 3020 */ 3021 if (event->event_caps & PERF_EV_CAP_SIBLING && 3022 event->group_leader == event) 3023 goto out; 3024 3025 event->state = PERF_EVENT_STATE_OFF; 3026 } 3027 raw_spin_unlock_irq(&ctx->lock); 3028 3029 event_function_call(event, __perf_event_enable, NULL); 3030 } 3031 3032 /* 3033 * See perf_event_disable(); 3034 */ 3035 void perf_event_enable(struct perf_event *event) 3036 { 3037 struct perf_event_context *ctx; 3038 3039 ctx = perf_event_ctx_lock(event); 3040 _perf_event_enable(event); 3041 perf_event_ctx_unlock(event, ctx); 3042 } 3043 EXPORT_SYMBOL_GPL(perf_event_enable); 3044 3045 struct stop_event_data { 3046 struct perf_event *event; 3047 unsigned int restart; 3048 }; 3049 3050 static int __perf_event_stop(void *info) 3051 { 3052 struct stop_event_data *sd = info; 3053 struct perf_event *event = sd->event; 3054 3055 /* if it's already INACTIVE, do nothing */ 3056 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3057 return 0; 3058 3059 /* matches smp_wmb() in event_sched_in() */ 3060 smp_rmb(); 3061 3062 /* 3063 * There is a window with interrupts enabled before we get here, 3064 * so we need to check again lest we try to stop another CPU's event. 3065 */ 3066 if (READ_ONCE(event->oncpu) != smp_processor_id()) 3067 return -EAGAIN; 3068 3069 event->pmu->stop(event, PERF_EF_UPDATE); 3070 3071 /* 3072 * May race with the actual stop (through perf_pmu_output_stop()), 3073 * but it is only used for events with AUX ring buffer, and such 3074 * events will refuse to restart because of rb::aux_mmap_count==0, 3075 * see comments in perf_aux_output_begin(). 3076 * 3077 * Since this is happening on an event-local CPU, no trace is lost 3078 * while restarting. 3079 */ 3080 if (sd->restart) 3081 event->pmu->start(event, 0); 3082 3083 return 0; 3084 } 3085 3086 static int perf_event_stop(struct perf_event *event, int restart) 3087 { 3088 struct stop_event_data sd = { 3089 .event = event, 3090 .restart = restart, 3091 }; 3092 int ret = 0; 3093 3094 do { 3095 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3096 return 0; 3097 3098 /* matches smp_wmb() in event_sched_in() */ 3099 smp_rmb(); 3100 3101 /* 3102 * We only want to restart ACTIVE events, so if the event goes 3103 * inactive here (event->oncpu==-1), there's nothing more to do; 3104 * fall through with ret==-ENXIO. 3105 */ 3106 ret = cpu_function_call(READ_ONCE(event->oncpu), 3107 __perf_event_stop, &sd); 3108 } while (ret == -EAGAIN); 3109 3110 return ret; 3111 } 3112 3113 /* 3114 * In order to contain the amount of racy and tricky in the address filter 3115 * configuration management, it is a two part process: 3116 * 3117 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below, 3118 * we update the addresses of corresponding vmas in 3119 * event::addr_filter_ranges array and bump the event::addr_filters_gen; 3120 * (p2) when an event is scheduled in (pmu::add), it calls 3121 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync() 3122 * if the generation has changed since the previous call. 3123 * 3124 * If (p1) happens while the event is active, we restart it to force (p2). 3125 * 3126 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on 3127 * pre-existing mappings, called once when new filters arrive via SET_FILTER 3128 * ioctl; 3129 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly 3130 * registered mapping, called for every new mmap(), with mm::mmap_lock down 3131 * for reading; 3132 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process 3133 * of exec. 3134 */ 3135 void perf_event_addr_filters_sync(struct perf_event *event) 3136 { 3137 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 3138 3139 if (!has_addr_filter(event)) 3140 return; 3141 3142 raw_spin_lock(&ifh->lock); 3143 if (event->addr_filters_gen != event->hw.addr_filters_gen) { 3144 event->pmu->addr_filters_sync(event); 3145 event->hw.addr_filters_gen = event->addr_filters_gen; 3146 } 3147 raw_spin_unlock(&ifh->lock); 3148 } 3149 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync); 3150 3151 static int _perf_event_refresh(struct perf_event *event, int refresh) 3152 { 3153 /* 3154 * not supported on inherited events 3155 */ 3156 if (event->attr.inherit || !is_sampling_event(event)) 3157 return -EINVAL; 3158 3159 atomic_add(refresh, &event->event_limit); 3160 _perf_event_enable(event); 3161 3162 return 0; 3163 } 3164 3165 /* 3166 * See perf_event_disable() 3167 */ 3168 int perf_event_refresh(struct perf_event *event, int refresh) 3169 { 3170 struct perf_event_context *ctx; 3171 int ret; 3172 3173 ctx = perf_event_ctx_lock(event); 3174 ret = _perf_event_refresh(event, refresh); 3175 perf_event_ctx_unlock(event, ctx); 3176 3177 return ret; 3178 } 3179 EXPORT_SYMBOL_GPL(perf_event_refresh); 3180 3181 static int perf_event_modify_breakpoint(struct perf_event *bp, 3182 struct perf_event_attr *attr) 3183 { 3184 int err; 3185 3186 _perf_event_disable(bp); 3187 3188 err = modify_user_hw_breakpoint_check(bp, attr, true); 3189 3190 if (!bp->attr.disabled) 3191 _perf_event_enable(bp); 3192 3193 return err; 3194 } 3195 3196 static int perf_event_modify_attr(struct perf_event *event, 3197 struct perf_event_attr *attr) 3198 { 3199 int (*func)(struct perf_event *, struct perf_event_attr *); 3200 struct perf_event *child; 3201 int err; 3202 3203 if (event->attr.type != attr->type) 3204 return -EINVAL; 3205 3206 switch (event->attr.type) { 3207 case PERF_TYPE_BREAKPOINT: 3208 func = perf_event_modify_breakpoint; 3209 break; 3210 default: 3211 /* Place holder for future additions. */ 3212 return -EOPNOTSUPP; 3213 } 3214 3215 WARN_ON_ONCE(event->ctx->parent_ctx); 3216 3217 mutex_lock(&event->child_mutex); 3218 err = func(event, attr); 3219 if (err) 3220 goto out; 3221 list_for_each_entry(child, &event->child_list, child_list) { 3222 err = func(child, attr); 3223 if (err) 3224 goto out; 3225 } 3226 out: 3227 mutex_unlock(&event->child_mutex); 3228 return err; 3229 } 3230 3231 static void ctx_sched_out(struct perf_event_context *ctx, 3232 struct perf_cpu_context *cpuctx, 3233 enum event_type_t event_type) 3234 { 3235 struct perf_event *event, *tmp; 3236 int is_active = ctx->is_active; 3237 3238 lockdep_assert_held(&ctx->lock); 3239 3240 if (likely(!ctx->nr_events)) { 3241 /* 3242 * See __perf_remove_from_context(). 3243 */ 3244 WARN_ON_ONCE(ctx->is_active); 3245 if (ctx->task) 3246 WARN_ON_ONCE(cpuctx->task_ctx); 3247 return; 3248 } 3249 3250 ctx->is_active &= ~event_type; 3251 if (!(ctx->is_active & EVENT_ALL)) 3252 ctx->is_active = 0; 3253 3254 if (ctx->task) { 3255 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3256 if (!ctx->is_active) 3257 cpuctx->task_ctx = NULL; 3258 } 3259 3260 /* 3261 * Always update time if it was set; not only when it changes. 3262 * Otherwise we can 'forget' to update time for any but the last 3263 * context we sched out. For example: 3264 * 3265 * ctx_sched_out(.event_type = EVENT_FLEXIBLE) 3266 * ctx_sched_out(.event_type = EVENT_PINNED) 3267 * 3268 * would only update time for the pinned events. 3269 */ 3270 if (is_active & EVENT_TIME) { 3271 /* update (and stop) ctx time */ 3272 update_context_time(ctx); 3273 update_cgrp_time_from_cpuctx(cpuctx); 3274 } 3275 3276 is_active ^= ctx->is_active; /* changed bits */ 3277 3278 if (!ctx->nr_active || !(is_active & EVENT_ALL)) 3279 return; 3280 3281 perf_pmu_disable(ctx->pmu); 3282 if (is_active & EVENT_PINNED) { 3283 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list) 3284 group_sched_out(event, cpuctx, ctx); 3285 } 3286 3287 if (is_active & EVENT_FLEXIBLE) { 3288 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list) 3289 group_sched_out(event, cpuctx, ctx); 3290 3291 /* 3292 * Since we cleared EVENT_FLEXIBLE, also clear 3293 * rotate_necessary, is will be reset by 3294 * ctx_flexible_sched_in() when needed. 3295 */ 3296 ctx->rotate_necessary = 0; 3297 } 3298 perf_pmu_enable(ctx->pmu); 3299 } 3300 3301 /* 3302 * Test whether two contexts are equivalent, i.e. whether they have both been 3303 * cloned from the same version of the same context. 3304 * 3305 * Equivalence is measured using a generation number in the context that is 3306 * incremented on each modification to it; see unclone_ctx(), list_add_event() 3307 * and list_del_event(). 3308 */ 3309 static int context_equiv(struct perf_event_context *ctx1, 3310 struct perf_event_context *ctx2) 3311 { 3312 lockdep_assert_held(&ctx1->lock); 3313 lockdep_assert_held(&ctx2->lock); 3314 3315 /* Pinning disables the swap optimization */ 3316 if (ctx1->pin_count || ctx2->pin_count) 3317 return 0; 3318 3319 /* If ctx1 is the parent of ctx2 */ 3320 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 3321 return 1; 3322 3323 /* If ctx2 is the parent of ctx1 */ 3324 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 3325 return 1; 3326 3327 /* 3328 * If ctx1 and ctx2 have the same parent; we flatten the parent 3329 * hierarchy, see perf_event_init_context(). 3330 */ 3331 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 3332 ctx1->parent_gen == ctx2->parent_gen) 3333 return 1; 3334 3335 /* Unmatched */ 3336 return 0; 3337 } 3338 3339 static void __perf_event_sync_stat(struct perf_event *event, 3340 struct perf_event *next_event) 3341 { 3342 u64 value; 3343 3344 if (!event->attr.inherit_stat) 3345 return; 3346 3347 /* 3348 * Update the event value, we cannot use perf_event_read() 3349 * because we're in the middle of a context switch and have IRQs 3350 * disabled, which upsets smp_call_function_single(), however 3351 * we know the event must be on the current CPU, therefore we 3352 * don't need to use it. 3353 */ 3354 if (event->state == PERF_EVENT_STATE_ACTIVE) 3355 event->pmu->read(event); 3356 3357 perf_event_update_time(event); 3358 3359 /* 3360 * In order to keep per-task stats reliable we need to flip the event 3361 * values when we flip the contexts. 3362 */ 3363 value = local64_read(&next_event->count); 3364 value = local64_xchg(&event->count, value); 3365 local64_set(&next_event->count, value); 3366 3367 swap(event->total_time_enabled, next_event->total_time_enabled); 3368 swap(event->total_time_running, next_event->total_time_running); 3369 3370 /* 3371 * Since we swizzled the values, update the user visible data too. 3372 */ 3373 perf_event_update_userpage(event); 3374 perf_event_update_userpage(next_event); 3375 } 3376 3377 static void perf_event_sync_stat(struct perf_event_context *ctx, 3378 struct perf_event_context *next_ctx) 3379 { 3380 struct perf_event *event, *next_event; 3381 3382 if (!ctx->nr_stat) 3383 return; 3384 3385 update_context_time(ctx); 3386 3387 event = list_first_entry(&ctx->event_list, 3388 struct perf_event, event_entry); 3389 3390 next_event = list_first_entry(&next_ctx->event_list, 3391 struct perf_event, event_entry); 3392 3393 while (&event->event_entry != &ctx->event_list && 3394 &next_event->event_entry != &next_ctx->event_list) { 3395 3396 __perf_event_sync_stat(event, next_event); 3397 3398 event = list_next_entry(event, event_entry); 3399 next_event = list_next_entry(next_event, event_entry); 3400 } 3401 } 3402 3403 static void perf_event_context_sched_out(struct task_struct *task, int ctxn, 3404 struct task_struct *next) 3405 { 3406 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; 3407 struct perf_event_context *next_ctx; 3408 struct perf_event_context *parent, *next_parent; 3409 struct perf_cpu_context *cpuctx; 3410 int do_switch = 1; 3411 struct pmu *pmu; 3412 3413 if (likely(!ctx)) 3414 return; 3415 3416 pmu = ctx->pmu; 3417 cpuctx = __get_cpu_context(ctx); 3418 if (!cpuctx->task_ctx) 3419 return; 3420 3421 rcu_read_lock(); 3422 next_ctx = next->perf_event_ctxp[ctxn]; 3423 if (!next_ctx) 3424 goto unlock; 3425 3426 parent = rcu_dereference(ctx->parent_ctx); 3427 next_parent = rcu_dereference(next_ctx->parent_ctx); 3428 3429 /* If neither context have a parent context; they cannot be clones. */ 3430 if (!parent && !next_parent) 3431 goto unlock; 3432 3433 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 3434 /* 3435 * Looks like the two contexts are clones, so we might be 3436 * able to optimize the context switch. We lock both 3437 * contexts and check that they are clones under the 3438 * lock (including re-checking that neither has been 3439 * uncloned in the meantime). It doesn't matter which 3440 * order we take the locks because no other cpu could 3441 * be trying to lock both of these tasks. 3442 */ 3443 raw_spin_lock(&ctx->lock); 3444 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 3445 if (context_equiv(ctx, next_ctx)) { 3446 3447 WRITE_ONCE(ctx->task, next); 3448 WRITE_ONCE(next_ctx->task, task); 3449 3450 perf_pmu_disable(pmu); 3451 3452 if (cpuctx->sched_cb_usage && pmu->sched_task) 3453 pmu->sched_task(ctx, false); 3454 3455 /* 3456 * PMU specific parts of task perf context can require 3457 * additional synchronization. As an example of such 3458 * synchronization see implementation details of Intel 3459 * LBR call stack data profiling; 3460 */ 3461 if (pmu->swap_task_ctx) 3462 pmu->swap_task_ctx(ctx, next_ctx); 3463 else 3464 swap(ctx->task_ctx_data, next_ctx->task_ctx_data); 3465 3466 perf_pmu_enable(pmu); 3467 3468 /* 3469 * RCU_INIT_POINTER here is safe because we've not 3470 * modified the ctx and the above modification of 3471 * ctx->task and ctx->task_ctx_data are immaterial 3472 * since those values are always verified under 3473 * ctx->lock which we're now holding. 3474 */ 3475 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx); 3476 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx); 3477 3478 do_switch = 0; 3479 3480 perf_event_sync_stat(ctx, next_ctx); 3481 } 3482 raw_spin_unlock(&next_ctx->lock); 3483 raw_spin_unlock(&ctx->lock); 3484 } 3485 unlock: 3486 rcu_read_unlock(); 3487 3488 if (do_switch) { 3489 raw_spin_lock(&ctx->lock); 3490 perf_pmu_disable(pmu); 3491 3492 if (cpuctx->sched_cb_usage && pmu->sched_task) 3493 pmu->sched_task(ctx, false); 3494 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL); 3495 3496 perf_pmu_enable(pmu); 3497 raw_spin_unlock(&ctx->lock); 3498 } 3499 } 3500 3501 static DEFINE_PER_CPU(struct list_head, sched_cb_list); 3502 3503 void perf_sched_cb_dec(struct pmu *pmu) 3504 { 3505 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 3506 3507 this_cpu_dec(perf_sched_cb_usages); 3508 3509 if (!--cpuctx->sched_cb_usage) 3510 list_del(&cpuctx->sched_cb_entry); 3511 } 3512 3513 3514 void perf_sched_cb_inc(struct pmu *pmu) 3515 { 3516 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 3517 3518 if (!cpuctx->sched_cb_usage++) 3519 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list)); 3520 3521 this_cpu_inc(perf_sched_cb_usages); 3522 } 3523 3524 /* 3525 * This function provides the context switch callback to the lower code 3526 * layer. It is invoked ONLY when the context switch callback is enabled. 3527 * 3528 * This callback is relevant even to per-cpu events; for example multi event 3529 * PEBS requires this to provide PID/TID information. This requires we flush 3530 * all queued PEBS records before we context switch to a new task. 3531 */ 3532 static void __perf_pmu_sched_task(struct perf_cpu_context *cpuctx, bool sched_in) 3533 { 3534 struct pmu *pmu; 3535 3536 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */ 3537 3538 if (WARN_ON_ONCE(!pmu->sched_task)) 3539 return; 3540 3541 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3542 perf_pmu_disable(pmu); 3543 3544 pmu->sched_task(cpuctx->task_ctx, sched_in); 3545 3546 perf_pmu_enable(pmu); 3547 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3548 } 3549 3550 static void perf_pmu_sched_task(struct task_struct *prev, 3551 struct task_struct *next, 3552 bool sched_in) 3553 { 3554 struct perf_cpu_context *cpuctx; 3555 3556 if (prev == next) 3557 return; 3558 3559 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) { 3560 /* will be handled in perf_event_context_sched_in/out */ 3561 if (cpuctx->task_ctx) 3562 continue; 3563 3564 __perf_pmu_sched_task(cpuctx, sched_in); 3565 } 3566 } 3567 3568 static void perf_event_switch(struct task_struct *task, 3569 struct task_struct *next_prev, bool sched_in); 3570 3571 #define for_each_task_context_nr(ctxn) \ 3572 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) 3573 3574 /* 3575 * Called from scheduler to remove the events of the current task, 3576 * with interrupts disabled. 3577 * 3578 * We stop each event and update the event value in event->count. 3579 * 3580 * This does not protect us against NMI, but disable() 3581 * sets the disabled bit in the control field of event _before_ 3582 * accessing the event control register. If a NMI hits, then it will 3583 * not restart the event. 3584 */ 3585 void __perf_event_task_sched_out(struct task_struct *task, 3586 struct task_struct *next) 3587 { 3588 int ctxn; 3589 3590 if (__this_cpu_read(perf_sched_cb_usages)) 3591 perf_pmu_sched_task(task, next, false); 3592 3593 if (atomic_read(&nr_switch_events)) 3594 perf_event_switch(task, next, false); 3595 3596 for_each_task_context_nr(ctxn) 3597 perf_event_context_sched_out(task, ctxn, next); 3598 3599 /* 3600 * if cgroup events exist on this CPU, then we need 3601 * to check if we have to switch out PMU state. 3602 * cgroup event are system-wide mode only 3603 */ 3604 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3605 perf_cgroup_sched_out(task, next); 3606 } 3607 3608 /* 3609 * Called with IRQs disabled 3610 */ 3611 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 3612 enum event_type_t event_type) 3613 { 3614 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); 3615 } 3616 3617 static bool perf_less_group_idx(const void *l, const void *r) 3618 { 3619 const struct perf_event *le = *(const struct perf_event **)l; 3620 const struct perf_event *re = *(const struct perf_event **)r; 3621 3622 return le->group_index < re->group_index; 3623 } 3624 3625 static void swap_ptr(void *l, void *r) 3626 { 3627 void **lp = l, **rp = r; 3628 3629 swap(*lp, *rp); 3630 } 3631 3632 static const struct min_heap_callbacks perf_min_heap = { 3633 .elem_size = sizeof(struct perf_event *), 3634 .less = perf_less_group_idx, 3635 .swp = swap_ptr, 3636 }; 3637 3638 static void __heap_add(struct min_heap *heap, struct perf_event *event) 3639 { 3640 struct perf_event **itrs = heap->data; 3641 3642 if (event) { 3643 itrs[heap->nr] = event; 3644 heap->nr++; 3645 } 3646 } 3647 3648 static noinline int visit_groups_merge(struct perf_cpu_context *cpuctx, 3649 struct perf_event_groups *groups, int cpu, 3650 int (*func)(struct perf_event *, void *), 3651 void *data) 3652 { 3653 #ifdef CONFIG_CGROUP_PERF 3654 struct cgroup_subsys_state *css = NULL; 3655 #endif 3656 /* Space for per CPU and/or any CPU event iterators. */ 3657 struct perf_event *itrs[2]; 3658 struct min_heap event_heap; 3659 struct perf_event **evt; 3660 int ret; 3661 3662 if (cpuctx) { 3663 event_heap = (struct min_heap){ 3664 .data = cpuctx->heap, 3665 .nr = 0, 3666 .size = cpuctx->heap_size, 3667 }; 3668 3669 lockdep_assert_held(&cpuctx->ctx.lock); 3670 3671 #ifdef CONFIG_CGROUP_PERF 3672 if (cpuctx->cgrp) 3673 css = &cpuctx->cgrp->css; 3674 #endif 3675 } else { 3676 event_heap = (struct min_heap){ 3677 .data = itrs, 3678 .nr = 0, 3679 .size = ARRAY_SIZE(itrs), 3680 }; 3681 /* Events not within a CPU context may be on any CPU. */ 3682 __heap_add(&event_heap, perf_event_groups_first(groups, -1, NULL)); 3683 } 3684 evt = event_heap.data; 3685 3686 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, NULL)); 3687 3688 #ifdef CONFIG_CGROUP_PERF 3689 for (; css; css = css->parent) 3690 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, css->cgroup)); 3691 #endif 3692 3693 min_heapify_all(&event_heap, &perf_min_heap); 3694 3695 while (event_heap.nr) { 3696 ret = func(*evt, data); 3697 if (ret) 3698 return ret; 3699 3700 *evt = perf_event_groups_next(*evt); 3701 if (*evt) 3702 min_heapify(&event_heap, 0, &perf_min_heap); 3703 else 3704 min_heap_pop(&event_heap, &perf_min_heap); 3705 } 3706 3707 return 0; 3708 } 3709 3710 static int merge_sched_in(struct perf_event *event, void *data) 3711 { 3712 struct perf_event_context *ctx = event->ctx; 3713 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 3714 int *can_add_hw = data; 3715 3716 if (event->state <= PERF_EVENT_STATE_OFF) 3717 return 0; 3718 3719 if (!event_filter_match(event)) 3720 return 0; 3721 3722 if (group_can_go_on(event, cpuctx, *can_add_hw)) { 3723 if (!group_sched_in(event, cpuctx, ctx)) 3724 list_add_tail(&event->active_list, get_event_list(event)); 3725 } 3726 3727 if (event->state == PERF_EVENT_STATE_INACTIVE) { 3728 if (event->attr.pinned) { 3729 perf_cgroup_event_disable(event, ctx); 3730 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 3731 } 3732 3733 *can_add_hw = 0; 3734 ctx->rotate_necessary = 1; 3735 perf_mux_hrtimer_restart(cpuctx); 3736 } 3737 3738 return 0; 3739 } 3740 3741 static void 3742 ctx_pinned_sched_in(struct perf_event_context *ctx, 3743 struct perf_cpu_context *cpuctx) 3744 { 3745 int can_add_hw = 1; 3746 3747 if (ctx != &cpuctx->ctx) 3748 cpuctx = NULL; 3749 3750 visit_groups_merge(cpuctx, &ctx->pinned_groups, 3751 smp_processor_id(), 3752 merge_sched_in, &can_add_hw); 3753 } 3754 3755 static void 3756 ctx_flexible_sched_in(struct perf_event_context *ctx, 3757 struct perf_cpu_context *cpuctx) 3758 { 3759 int can_add_hw = 1; 3760 3761 if (ctx != &cpuctx->ctx) 3762 cpuctx = NULL; 3763 3764 visit_groups_merge(cpuctx, &ctx->flexible_groups, 3765 smp_processor_id(), 3766 merge_sched_in, &can_add_hw); 3767 } 3768 3769 static void 3770 ctx_sched_in(struct perf_event_context *ctx, 3771 struct perf_cpu_context *cpuctx, 3772 enum event_type_t event_type, 3773 struct task_struct *task) 3774 { 3775 int is_active = ctx->is_active; 3776 u64 now; 3777 3778 lockdep_assert_held(&ctx->lock); 3779 3780 if (likely(!ctx->nr_events)) 3781 return; 3782 3783 ctx->is_active |= (event_type | EVENT_TIME); 3784 if (ctx->task) { 3785 if (!is_active) 3786 cpuctx->task_ctx = ctx; 3787 else 3788 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3789 } 3790 3791 is_active ^= ctx->is_active; /* changed bits */ 3792 3793 if (is_active & EVENT_TIME) { 3794 /* start ctx time */ 3795 now = perf_clock(); 3796 ctx->timestamp = now; 3797 perf_cgroup_set_timestamp(task, ctx); 3798 } 3799 3800 /* 3801 * First go through the list and put on any pinned groups 3802 * in order to give them the best chance of going on. 3803 */ 3804 if (is_active & EVENT_PINNED) 3805 ctx_pinned_sched_in(ctx, cpuctx); 3806 3807 /* Then walk through the lower prio flexible groups */ 3808 if (is_active & EVENT_FLEXIBLE) 3809 ctx_flexible_sched_in(ctx, cpuctx); 3810 } 3811 3812 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 3813 enum event_type_t event_type, 3814 struct task_struct *task) 3815 { 3816 struct perf_event_context *ctx = &cpuctx->ctx; 3817 3818 ctx_sched_in(ctx, cpuctx, event_type, task); 3819 } 3820 3821 static void perf_event_context_sched_in(struct perf_event_context *ctx, 3822 struct task_struct *task) 3823 { 3824 struct perf_cpu_context *cpuctx; 3825 struct pmu *pmu; 3826 3827 cpuctx = __get_cpu_context(ctx); 3828 3829 /* 3830 * HACK: for HETEROGENEOUS the task context might have switched to a 3831 * different PMU, force (re)set the context, 3832 */ 3833 pmu = ctx->pmu = cpuctx->ctx.pmu; 3834 3835 if (cpuctx->task_ctx == ctx) { 3836 if (cpuctx->sched_cb_usage) 3837 __perf_pmu_sched_task(cpuctx, true); 3838 return; 3839 } 3840 3841 perf_ctx_lock(cpuctx, ctx); 3842 /* 3843 * We must check ctx->nr_events while holding ctx->lock, such 3844 * that we serialize against perf_install_in_context(). 3845 */ 3846 if (!ctx->nr_events) 3847 goto unlock; 3848 3849 perf_pmu_disable(pmu); 3850 /* 3851 * We want to keep the following priority order: 3852 * cpu pinned (that don't need to move), task pinned, 3853 * cpu flexible, task flexible. 3854 * 3855 * However, if task's ctx is not carrying any pinned 3856 * events, no need to flip the cpuctx's events around. 3857 */ 3858 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) 3859 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3860 perf_event_sched_in(cpuctx, ctx, task); 3861 3862 if (cpuctx->sched_cb_usage && pmu->sched_task) 3863 pmu->sched_task(cpuctx->task_ctx, true); 3864 3865 perf_pmu_enable(pmu); 3866 3867 unlock: 3868 perf_ctx_unlock(cpuctx, ctx); 3869 } 3870 3871 /* 3872 * Called from scheduler to add the events of the current task 3873 * with interrupts disabled. 3874 * 3875 * We restore the event value and then enable it. 3876 * 3877 * This does not protect us against NMI, but enable() 3878 * sets the enabled bit in the control field of event _before_ 3879 * accessing the event control register. If a NMI hits, then it will 3880 * keep the event running. 3881 */ 3882 void __perf_event_task_sched_in(struct task_struct *prev, 3883 struct task_struct *task) 3884 { 3885 struct perf_event_context *ctx; 3886 int ctxn; 3887 3888 /* 3889 * If cgroup events exist on this CPU, then we need to check if we have 3890 * to switch in PMU state; cgroup event are system-wide mode only. 3891 * 3892 * Since cgroup events are CPU events, we must schedule these in before 3893 * we schedule in the task events. 3894 */ 3895 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3896 perf_cgroup_sched_in(prev, task); 3897 3898 for_each_task_context_nr(ctxn) { 3899 ctx = task->perf_event_ctxp[ctxn]; 3900 if (likely(!ctx)) 3901 continue; 3902 3903 perf_event_context_sched_in(ctx, task); 3904 } 3905 3906 if (atomic_read(&nr_switch_events)) 3907 perf_event_switch(task, prev, true); 3908 3909 if (__this_cpu_read(perf_sched_cb_usages)) 3910 perf_pmu_sched_task(prev, task, true); 3911 } 3912 3913 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 3914 { 3915 u64 frequency = event->attr.sample_freq; 3916 u64 sec = NSEC_PER_SEC; 3917 u64 divisor, dividend; 3918 3919 int count_fls, nsec_fls, frequency_fls, sec_fls; 3920 3921 count_fls = fls64(count); 3922 nsec_fls = fls64(nsec); 3923 frequency_fls = fls64(frequency); 3924 sec_fls = 30; 3925 3926 /* 3927 * We got @count in @nsec, with a target of sample_freq HZ 3928 * the target period becomes: 3929 * 3930 * @count * 10^9 3931 * period = ------------------- 3932 * @nsec * sample_freq 3933 * 3934 */ 3935 3936 /* 3937 * Reduce accuracy by one bit such that @a and @b converge 3938 * to a similar magnitude. 3939 */ 3940 #define REDUCE_FLS(a, b) \ 3941 do { \ 3942 if (a##_fls > b##_fls) { \ 3943 a >>= 1; \ 3944 a##_fls--; \ 3945 } else { \ 3946 b >>= 1; \ 3947 b##_fls--; \ 3948 } \ 3949 } while (0) 3950 3951 /* 3952 * Reduce accuracy until either term fits in a u64, then proceed with 3953 * the other, so that finally we can do a u64/u64 division. 3954 */ 3955 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 3956 REDUCE_FLS(nsec, frequency); 3957 REDUCE_FLS(sec, count); 3958 } 3959 3960 if (count_fls + sec_fls > 64) { 3961 divisor = nsec * frequency; 3962 3963 while (count_fls + sec_fls > 64) { 3964 REDUCE_FLS(count, sec); 3965 divisor >>= 1; 3966 } 3967 3968 dividend = count * sec; 3969 } else { 3970 dividend = count * sec; 3971 3972 while (nsec_fls + frequency_fls > 64) { 3973 REDUCE_FLS(nsec, frequency); 3974 dividend >>= 1; 3975 } 3976 3977 divisor = nsec * frequency; 3978 } 3979 3980 if (!divisor) 3981 return dividend; 3982 3983 return div64_u64(dividend, divisor); 3984 } 3985 3986 static DEFINE_PER_CPU(int, perf_throttled_count); 3987 static DEFINE_PER_CPU(u64, perf_throttled_seq); 3988 3989 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 3990 { 3991 struct hw_perf_event *hwc = &event->hw; 3992 s64 period, sample_period; 3993 s64 delta; 3994 3995 period = perf_calculate_period(event, nsec, count); 3996 3997 delta = (s64)(period - hwc->sample_period); 3998 delta = (delta + 7) / 8; /* low pass filter */ 3999 4000 sample_period = hwc->sample_period + delta; 4001 4002 if (!sample_period) 4003 sample_period = 1; 4004 4005 hwc->sample_period = sample_period; 4006 4007 if (local64_read(&hwc->period_left) > 8*sample_period) { 4008 if (disable) 4009 event->pmu->stop(event, PERF_EF_UPDATE); 4010 4011 local64_set(&hwc->period_left, 0); 4012 4013 if (disable) 4014 event->pmu->start(event, PERF_EF_RELOAD); 4015 } 4016 } 4017 4018 /* 4019 * combine freq adjustment with unthrottling to avoid two passes over the 4020 * events. At the same time, make sure, having freq events does not change 4021 * the rate of unthrottling as that would introduce bias. 4022 */ 4023 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx, 4024 int needs_unthr) 4025 { 4026 struct perf_event *event; 4027 struct hw_perf_event *hwc; 4028 u64 now, period = TICK_NSEC; 4029 s64 delta; 4030 4031 /* 4032 * only need to iterate over all events iff: 4033 * - context have events in frequency mode (needs freq adjust) 4034 * - there are events to unthrottle on this cpu 4035 */ 4036 if (!(ctx->nr_freq || needs_unthr)) 4037 return; 4038 4039 raw_spin_lock(&ctx->lock); 4040 perf_pmu_disable(ctx->pmu); 4041 4042 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 4043 if (event->state != PERF_EVENT_STATE_ACTIVE) 4044 continue; 4045 4046 if (!event_filter_match(event)) 4047 continue; 4048 4049 perf_pmu_disable(event->pmu); 4050 4051 hwc = &event->hw; 4052 4053 if (hwc->interrupts == MAX_INTERRUPTS) { 4054 hwc->interrupts = 0; 4055 perf_log_throttle(event, 1); 4056 event->pmu->start(event, 0); 4057 } 4058 4059 if (!event->attr.freq || !event->attr.sample_freq) 4060 goto next; 4061 4062 /* 4063 * stop the event and update event->count 4064 */ 4065 event->pmu->stop(event, PERF_EF_UPDATE); 4066 4067 now = local64_read(&event->count); 4068 delta = now - hwc->freq_count_stamp; 4069 hwc->freq_count_stamp = now; 4070 4071 /* 4072 * restart the event 4073 * reload only if value has changed 4074 * we have stopped the event so tell that 4075 * to perf_adjust_period() to avoid stopping it 4076 * twice. 4077 */ 4078 if (delta > 0) 4079 perf_adjust_period(event, period, delta, false); 4080 4081 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 4082 next: 4083 perf_pmu_enable(event->pmu); 4084 } 4085 4086 perf_pmu_enable(ctx->pmu); 4087 raw_spin_unlock(&ctx->lock); 4088 } 4089 4090 /* 4091 * Move @event to the tail of the @ctx's elegible events. 4092 */ 4093 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event) 4094 { 4095 /* 4096 * Rotate the first entry last of non-pinned groups. Rotation might be 4097 * disabled by the inheritance code. 4098 */ 4099 if (ctx->rotate_disable) 4100 return; 4101 4102 perf_event_groups_delete(&ctx->flexible_groups, event); 4103 perf_event_groups_insert(&ctx->flexible_groups, event); 4104 } 4105 4106 /* pick an event from the flexible_groups to rotate */ 4107 static inline struct perf_event * 4108 ctx_event_to_rotate(struct perf_event_context *ctx) 4109 { 4110 struct perf_event *event; 4111 4112 /* pick the first active flexible event */ 4113 event = list_first_entry_or_null(&ctx->flexible_active, 4114 struct perf_event, active_list); 4115 4116 /* if no active flexible event, pick the first event */ 4117 if (!event) { 4118 event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree), 4119 typeof(*event), group_node); 4120 } 4121 4122 /* 4123 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in() 4124 * finds there are unschedulable events, it will set it again. 4125 */ 4126 ctx->rotate_necessary = 0; 4127 4128 return event; 4129 } 4130 4131 static bool perf_rotate_context(struct perf_cpu_context *cpuctx) 4132 { 4133 struct perf_event *cpu_event = NULL, *task_event = NULL; 4134 struct perf_event_context *task_ctx = NULL; 4135 int cpu_rotate, task_rotate; 4136 4137 /* 4138 * Since we run this from IRQ context, nobody can install new 4139 * events, thus the event count values are stable. 4140 */ 4141 4142 cpu_rotate = cpuctx->ctx.rotate_necessary; 4143 task_ctx = cpuctx->task_ctx; 4144 task_rotate = task_ctx ? task_ctx->rotate_necessary : 0; 4145 4146 if (!(cpu_rotate || task_rotate)) 4147 return false; 4148 4149 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 4150 perf_pmu_disable(cpuctx->ctx.pmu); 4151 4152 if (task_rotate) 4153 task_event = ctx_event_to_rotate(task_ctx); 4154 if (cpu_rotate) 4155 cpu_event = ctx_event_to_rotate(&cpuctx->ctx); 4156 4157 /* 4158 * As per the order given at ctx_resched() first 'pop' task flexible 4159 * and then, if needed CPU flexible. 4160 */ 4161 if (task_event || (task_ctx && cpu_event)) 4162 ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE); 4163 if (cpu_event) 4164 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 4165 4166 if (task_event) 4167 rotate_ctx(task_ctx, task_event); 4168 if (cpu_event) 4169 rotate_ctx(&cpuctx->ctx, cpu_event); 4170 4171 perf_event_sched_in(cpuctx, task_ctx, current); 4172 4173 perf_pmu_enable(cpuctx->ctx.pmu); 4174 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 4175 4176 return true; 4177 } 4178 4179 void perf_event_task_tick(void) 4180 { 4181 struct list_head *head = this_cpu_ptr(&active_ctx_list); 4182 struct perf_event_context *ctx, *tmp; 4183 int throttled; 4184 4185 lockdep_assert_irqs_disabled(); 4186 4187 __this_cpu_inc(perf_throttled_seq); 4188 throttled = __this_cpu_xchg(perf_throttled_count, 0); 4189 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 4190 4191 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list) 4192 perf_adjust_freq_unthr_context(ctx, throttled); 4193 } 4194 4195 static int event_enable_on_exec(struct perf_event *event, 4196 struct perf_event_context *ctx) 4197 { 4198 if (!event->attr.enable_on_exec) 4199 return 0; 4200 4201 event->attr.enable_on_exec = 0; 4202 if (event->state >= PERF_EVENT_STATE_INACTIVE) 4203 return 0; 4204 4205 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 4206 4207 return 1; 4208 } 4209 4210 /* 4211 * Enable all of a task's events that have been marked enable-on-exec. 4212 * This expects task == current. 4213 */ 4214 static void perf_event_enable_on_exec(int ctxn) 4215 { 4216 struct perf_event_context *ctx, *clone_ctx = NULL; 4217 enum event_type_t event_type = 0; 4218 struct perf_cpu_context *cpuctx; 4219 struct perf_event *event; 4220 unsigned long flags; 4221 int enabled = 0; 4222 4223 local_irq_save(flags); 4224 ctx = current->perf_event_ctxp[ctxn]; 4225 if (!ctx || !ctx->nr_events) 4226 goto out; 4227 4228 cpuctx = __get_cpu_context(ctx); 4229 perf_ctx_lock(cpuctx, ctx); 4230 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 4231 list_for_each_entry(event, &ctx->event_list, event_entry) { 4232 enabled |= event_enable_on_exec(event, ctx); 4233 event_type |= get_event_type(event); 4234 } 4235 4236 /* 4237 * Unclone and reschedule this context if we enabled any event. 4238 */ 4239 if (enabled) { 4240 clone_ctx = unclone_ctx(ctx); 4241 ctx_resched(cpuctx, ctx, event_type); 4242 } else { 4243 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 4244 } 4245 perf_ctx_unlock(cpuctx, ctx); 4246 4247 out: 4248 local_irq_restore(flags); 4249 4250 if (clone_ctx) 4251 put_ctx(clone_ctx); 4252 } 4253 4254 static void perf_remove_from_owner(struct perf_event *event); 4255 static void perf_event_exit_event(struct perf_event *event, 4256 struct perf_event_context *ctx); 4257 4258 /* 4259 * Removes all events from the current task that have been marked 4260 * remove-on-exec, and feeds their values back to parent events. 4261 */ 4262 static void perf_event_remove_on_exec(int ctxn) 4263 { 4264 struct perf_event_context *ctx, *clone_ctx = NULL; 4265 struct perf_event *event, *next; 4266 LIST_HEAD(free_list); 4267 unsigned long flags; 4268 bool modified = false; 4269 4270 ctx = perf_pin_task_context(current, ctxn); 4271 if (!ctx) 4272 return; 4273 4274 mutex_lock(&ctx->mutex); 4275 4276 if (WARN_ON_ONCE(ctx->task != current)) 4277 goto unlock; 4278 4279 list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) { 4280 if (!event->attr.remove_on_exec) 4281 continue; 4282 4283 if (!is_kernel_event(event)) 4284 perf_remove_from_owner(event); 4285 4286 modified = true; 4287 4288 perf_event_exit_event(event, ctx); 4289 } 4290 4291 raw_spin_lock_irqsave(&ctx->lock, flags); 4292 if (modified) 4293 clone_ctx = unclone_ctx(ctx); 4294 --ctx->pin_count; 4295 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4296 4297 unlock: 4298 mutex_unlock(&ctx->mutex); 4299 4300 put_ctx(ctx); 4301 if (clone_ctx) 4302 put_ctx(clone_ctx); 4303 } 4304 4305 struct perf_read_data { 4306 struct perf_event *event; 4307 bool group; 4308 int ret; 4309 }; 4310 4311 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu) 4312 { 4313 u16 local_pkg, event_pkg; 4314 4315 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) { 4316 int local_cpu = smp_processor_id(); 4317 4318 event_pkg = topology_physical_package_id(event_cpu); 4319 local_pkg = topology_physical_package_id(local_cpu); 4320 4321 if (event_pkg == local_pkg) 4322 return local_cpu; 4323 } 4324 4325 return event_cpu; 4326 } 4327 4328 /* 4329 * Cross CPU call to read the hardware event 4330 */ 4331 static void __perf_event_read(void *info) 4332 { 4333 struct perf_read_data *data = info; 4334 struct perf_event *sub, *event = data->event; 4335 struct perf_event_context *ctx = event->ctx; 4336 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 4337 struct pmu *pmu = event->pmu; 4338 4339 /* 4340 * If this is a task context, we need to check whether it is 4341 * the current task context of this cpu. If not it has been 4342 * scheduled out before the smp call arrived. In that case 4343 * event->count would have been updated to a recent sample 4344 * when the event was scheduled out. 4345 */ 4346 if (ctx->task && cpuctx->task_ctx != ctx) 4347 return; 4348 4349 raw_spin_lock(&ctx->lock); 4350 if (ctx->is_active & EVENT_TIME) { 4351 update_context_time(ctx); 4352 update_cgrp_time_from_event(event); 4353 } 4354 4355 perf_event_update_time(event); 4356 if (data->group) 4357 perf_event_update_sibling_time(event); 4358 4359 if (event->state != PERF_EVENT_STATE_ACTIVE) 4360 goto unlock; 4361 4362 if (!data->group) { 4363 pmu->read(event); 4364 data->ret = 0; 4365 goto unlock; 4366 } 4367 4368 pmu->start_txn(pmu, PERF_PMU_TXN_READ); 4369 4370 pmu->read(event); 4371 4372 for_each_sibling_event(sub, event) { 4373 if (sub->state == PERF_EVENT_STATE_ACTIVE) { 4374 /* 4375 * Use sibling's PMU rather than @event's since 4376 * sibling could be on different (eg: software) PMU. 4377 */ 4378 sub->pmu->read(sub); 4379 } 4380 } 4381 4382 data->ret = pmu->commit_txn(pmu); 4383 4384 unlock: 4385 raw_spin_unlock(&ctx->lock); 4386 } 4387 4388 static inline u64 perf_event_count(struct perf_event *event) 4389 { 4390 return local64_read(&event->count) + atomic64_read(&event->child_count); 4391 } 4392 4393 /* 4394 * NMI-safe method to read a local event, that is an event that 4395 * is: 4396 * - either for the current task, or for this CPU 4397 * - does not have inherit set, for inherited task events 4398 * will not be local and we cannot read them atomically 4399 * - must not have a pmu::count method 4400 */ 4401 int perf_event_read_local(struct perf_event *event, u64 *value, 4402 u64 *enabled, u64 *running) 4403 { 4404 unsigned long flags; 4405 int ret = 0; 4406 4407 /* 4408 * Disabling interrupts avoids all counter scheduling (context 4409 * switches, timer based rotation and IPIs). 4410 */ 4411 local_irq_save(flags); 4412 4413 /* 4414 * It must not be an event with inherit set, we cannot read 4415 * all child counters from atomic context. 4416 */ 4417 if (event->attr.inherit) { 4418 ret = -EOPNOTSUPP; 4419 goto out; 4420 } 4421 4422 /* If this is a per-task event, it must be for current */ 4423 if ((event->attach_state & PERF_ATTACH_TASK) && 4424 event->hw.target != current) { 4425 ret = -EINVAL; 4426 goto out; 4427 } 4428 4429 /* If this is a per-CPU event, it must be for this CPU */ 4430 if (!(event->attach_state & PERF_ATTACH_TASK) && 4431 event->cpu != smp_processor_id()) { 4432 ret = -EINVAL; 4433 goto out; 4434 } 4435 4436 /* If this is a pinned event it must be running on this CPU */ 4437 if (event->attr.pinned && event->oncpu != smp_processor_id()) { 4438 ret = -EBUSY; 4439 goto out; 4440 } 4441 4442 /* 4443 * If the event is currently on this CPU, its either a per-task event, 4444 * or local to this CPU. Furthermore it means its ACTIVE (otherwise 4445 * oncpu == -1). 4446 */ 4447 if (event->oncpu == smp_processor_id()) 4448 event->pmu->read(event); 4449 4450 *value = local64_read(&event->count); 4451 if (enabled || running) { 4452 u64 now = event->shadow_ctx_time + perf_clock(); 4453 u64 __enabled, __running; 4454 4455 __perf_update_times(event, now, &__enabled, &__running); 4456 if (enabled) 4457 *enabled = __enabled; 4458 if (running) 4459 *running = __running; 4460 } 4461 out: 4462 local_irq_restore(flags); 4463 4464 return ret; 4465 } 4466 4467 static int perf_event_read(struct perf_event *event, bool group) 4468 { 4469 enum perf_event_state state = READ_ONCE(event->state); 4470 int event_cpu, ret = 0; 4471 4472 /* 4473 * If event is enabled and currently active on a CPU, update the 4474 * value in the event structure: 4475 */ 4476 again: 4477 if (state == PERF_EVENT_STATE_ACTIVE) { 4478 struct perf_read_data data; 4479 4480 /* 4481 * Orders the ->state and ->oncpu loads such that if we see 4482 * ACTIVE we must also see the right ->oncpu. 4483 * 4484 * Matches the smp_wmb() from event_sched_in(). 4485 */ 4486 smp_rmb(); 4487 4488 event_cpu = READ_ONCE(event->oncpu); 4489 if ((unsigned)event_cpu >= nr_cpu_ids) 4490 return 0; 4491 4492 data = (struct perf_read_data){ 4493 .event = event, 4494 .group = group, 4495 .ret = 0, 4496 }; 4497 4498 preempt_disable(); 4499 event_cpu = __perf_event_read_cpu(event, event_cpu); 4500 4501 /* 4502 * Purposely ignore the smp_call_function_single() return 4503 * value. 4504 * 4505 * If event_cpu isn't a valid CPU it means the event got 4506 * scheduled out and that will have updated the event count. 4507 * 4508 * Therefore, either way, we'll have an up-to-date event count 4509 * after this. 4510 */ 4511 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1); 4512 preempt_enable(); 4513 ret = data.ret; 4514 4515 } else if (state == PERF_EVENT_STATE_INACTIVE) { 4516 struct perf_event_context *ctx = event->ctx; 4517 unsigned long flags; 4518 4519 raw_spin_lock_irqsave(&ctx->lock, flags); 4520 state = event->state; 4521 if (state != PERF_EVENT_STATE_INACTIVE) { 4522 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4523 goto again; 4524 } 4525 4526 /* 4527 * May read while context is not active (e.g., thread is 4528 * blocked), in that case we cannot update context time 4529 */ 4530 if (ctx->is_active & EVENT_TIME) { 4531 update_context_time(ctx); 4532 update_cgrp_time_from_event(event); 4533 } 4534 4535 perf_event_update_time(event); 4536 if (group) 4537 perf_event_update_sibling_time(event); 4538 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4539 } 4540 4541 return ret; 4542 } 4543 4544 /* 4545 * Initialize the perf_event context in a task_struct: 4546 */ 4547 static void __perf_event_init_context(struct perf_event_context *ctx) 4548 { 4549 raw_spin_lock_init(&ctx->lock); 4550 mutex_init(&ctx->mutex); 4551 INIT_LIST_HEAD(&ctx->active_ctx_list); 4552 perf_event_groups_init(&ctx->pinned_groups); 4553 perf_event_groups_init(&ctx->flexible_groups); 4554 INIT_LIST_HEAD(&ctx->event_list); 4555 INIT_LIST_HEAD(&ctx->pinned_active); 4556 INIT_LIST_HEAD(&ctx->flexible_active); 4557 refcount_set(&ctx->refcount, 1); 4558 } 4559 4560 static struct perf_event_context * 4561 alloc_perf_context(struct pmu *pmu, struct task_struct *task) 4562 { 4563 struct perf_event_context *ctx; 4564 4565 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 4566 if (!ctx) 4567 return NULL; 4568 4569 __perf_event_init_context(ctx); 4570 if (task) 4571 ctx->task = get_task_struct(task); 4572 ctx->pmu = pmu; 4573 4574 return ctx; 4575 } 4576 4577 static struct task_struct * 4578 find_lively_task_by_vpid(pid_t vpid) 4579 { 4580 struct task_struct *task; 4581 4582 rcu_read_lock(); 4583 if (!vpid) 4584 task = current; 4585 else 4586 task = find_task_by_vpid(vpid); 4587 if (task) 4588 get_task_struct(task); 4589 rcu_read_unlock(); 4590 4591 if (!task) 4592 return ERR_PTR(-ESRCH); 4593 4594 return task; 4595 } 4596 4597 /* 4598 * Returns a matching context with refcount and pincount. 4599 */ 4600 static struct perf_event_context * 4601 find_get_context(struct pmu *pmu, struct task_struct *task, 4602 struct perf_event *event) 4603 { 4604 struct perf_event_context *ctx, *clone_ctx = NULL; 4605 struct perf_cpu_context *cpuctx; 4606 void *task_ctx_data = NULL; 4607 unsigned long flags; 4608 int ctxn, err; 4609 int cpu = event->cpu; 4610 4611 if (!task) { 4612 /* Must be root to operate on a CPU event: */ 4613 err = perf_allow_cpu(&event->attr); 4614 if (err) 4615 return ERR_PTR(err); 4616 4617 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 4618 ctx = &cpuctx->ctx; 4619 get_ctx(ctx); 4620 raw_spin_lock_irqsave(&ctx->lock, flags); 4621 ++ctx->pin_count; 4622 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4623 4624 return ctx; 4625 } 4626 4627 err = -EINVAL; 4628 ctxn = pmu->task_ctx_nr; 4629 if (ctxn < 0) 4630 goto errout; 4631 4632 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 4633 task_ctx_data = alloc_task_ctx_data(pmu); 4634 if (!task_ctx_data) { 4635 err = -ENOMEM; 4636 goto errout; 4637 } 4638 } 4639 4640 retry: 4641 ctx = perf_lock_task_context(task, ctxn, &flags); 4642 if (ctx) { 4643 clone_ctx = unclone_ctx(ctx); 4644 ++ctx->pin_count; 4645 4646 if (task_ctx_data && !ctx->task_ctx_data) { 4647 ctx->task_ctx_data = task_ctx_data; 4648 task_ctx_data = NULL; 4649 } 4650 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4651 4652 if (clone_ctx) 4653 put_ctx(clone_ctx); 4654 } else { 4655 ctx = alloc_perf_context(pmu, task); 4656 err = -ENOMEM; 4657 if (!ctx) 4658 goto errout; 4659 4660 if (task_ctx_data) { 4661 ctx->task_ctx_data = task_ctx_data; 4662 task_ctx_data = NULL; 4663 } 4664 4665 err = 0; 4666 mutex_lock(&task->perf_event_mutex); 4667 /* 4668 * If it has already passed perf_event_exit_task(). 4669 * we must see PF_EXITING, it takes this mutex too. 4670 */ 4671 if (task->flags & PF_EXITING) 4672 err = -ESRCH; 4673 else if (task->perf_event_ctxp[ctxn]) 4674 err = -EAGAIN; 4675 else { 4676 get_ctx(ctx); 4677 ++ctx->pin_count; 4678 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); 4679 } 4680 mutex_unlock(&task->perf_event_mutex); 4681 4682 if (unlikely(err)) { 4683 put_ctx(ctx); 4684 4685 if (err == -EAGAIN) 4686 goto retry; 4687 goto errout; 4688 } 4689 } 4690 4691 free_task_ctx_data(pmu, task_ctx_data); 4692 return ctx; 4693 4694 errout: 4695 free_task_ctx_data(pmu, task_ctx_data); 4696 return ERR_PTR(err); 4697 } 4698 4699 static void perf_event_free_filter(struct perf_event *event); 4700 static void perf_event_free_bpf_prog(struct perf_event *event); 4701 4702 static void free_event_rcu(struct rcu_head *head) 4703 { 4704 struct perf_event *event; 4705 4706 event = container_of(head, struct perf_event, rcu_head); 4707 if (event->ns) 4708 put_pid_ns(event->ns); 4709 perf_event_free_filter(event); 4710 kmem_cache_free(perf_event_cache, event); 4711 } 4712 4713 static void ring_buffer_attach(struct perf_event *event, 4714 struct perf_buffer *rb); 4715 4716 static void detach_sb_event(struct perf_event *event) 4717 { 4718 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 4719 4720 raw_spin_lock(&pel->lock); 4721 list_del_rcu(&event->sb_list); 4722 raw_spin_unlock(&pel->lock); 4723 } 4724 4725 static bool is_sb_event(struct perf_event *event) 4726 { 4727 struct perf_event_attr *attr = &event->attr; 4728 4729 if (event->parent) 4730 return false; 4731 4732 if (event->attach_state & PERF_ATTACH_TASK) 4733 return false; 4734 4735 if (attr->mmap || attr->mmap_data || attr->mmap2 || 4736 attr->comm || attr->comm_exec || 4737 attr->task || attr->ksymbol || 4738 attr->context_switch || attr->text_poke || 4739 attr->bpf_event) 4740 return true; 4741 return false; 4742 } 4743 4744 static void unaccount_pmu_sb_event(struct perf_event *event) 4745 { 4746 if (is_sb_event(event)) 4747 detach_sb_event(event); 4748 } 4749 4750 static void unaccount_event_cpu(struct perf_event *event, int cpu) 4751 { 4752 if (event->parent) 4753 return; 4754 4755 if (is_cgroup_event(event)) 4756 atomic_dec(&per_cpu(perf_cgroup_events, cpu)); 4757 } 4758 4759 #ifdef CONFIG_NO_HZ_FULL 4760 static DEFINE_SPINLOCK(nr_freq_lock); 4761 #endif 4762 4763 static void unaccount_freq_event_nohz(void) 4764 { 4765 #ifdef CONFIG_NO_HZ_FULL 4766 spin_lock(&nr_freq_lock); 4767 if (atomic_dec_and_test(&nr_freq_events)) 4768 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS); 4769 spin_unlock(&nr_freq_lock); 4770 #endif 4771 } 4772 4773 static void unaccount_freq_event(void) 4774 { 4775 if (tick_nohz_full_enabled()) 4776 unaccount_freq_event_nohz(); 4777 else 4778 atomic_dec(&nr_freq_events); 4779 } 4780 4781 static void unaccount_event(struct perf_event *event) 4782 { 4783 bool dec = false; 4784 4785 if (event->parent) 4786 return; 4787 4788 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB)) 4789 dec = true; 4790 if (event->attr.mmap || event->attr.mmap_data) 4791 atomic_dec(&nr_mmap_events); 4792 if (event->attr.build_id) 4793 atomic_dec(&nr_build_id_events); 4794 if (event->attr.comm) 4795 atomic_dec(&nr_comm_events); 4796 if (event->attr.namespaces) 4797 atomic_dec(&nr_namespaces_events); 4798 if (event->attr.cgroup) 4799 atomic_dec(&nr_cgroup_events); 4800 if (event->attr.task) 4801 atomic_dec(&nr_task_events); 4802 if (event->attr.freq) 4803 unaccount_freq_event(); 4804 if (event->attr.context_switch) { 4805 dec = true; 4806 atomic_dec(&nr_switch_events); 4807 } 4808 if (is_cgroup_event(event)) 4809 dec = true; 4810 if (has_branch_stack(event)) 4811 dec = true; 4812 if (event->attr.ksymbol) 4813 atomic_dec(&nr_ksymbol_events); 4814 if (event->attr.bpf_event) 4815 atomic_dec(&nr_bpf_events); 4816 if (event->attr.text_poke) 4817 atomic_dec(&nr_text_poke_events); 4818 4819 if (dec) { 4820 if (!atomic_add_unless(&perf_sched_count, -1, 1)) 4821 schedule_delayed_work(&perf_sched_work, HZ); 4822 } 4823 4824 unaccount_event_cpu(event, event->cpu); 4825 4826 unaccount_pmu_sb_event(event); 4827 } 4828 4829 static void perf_sched_delayed(struct work_struct *work) 4830 { 4831 mutex_lock(&perf_sched_mutex); 4832 if (atomic_dec_and_test(&perf_sched_count)) 4833 static_branch_disable(&perf_sched_events); 4834 mutex_unlock(&perf_sched_mutex); 4835 } 4836 4837 /* 4838 * The following implement mutual exclusion of events on "exclusive" pmus 4839 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 4840 * at a time, so we disallow creating events that might conflict, namely: 4841 * 4842 * 1) cpu-wide events in the presence of per-task events, 4843 * 2) per-task events in the presence of cpu-wide events, 4844 * 3) two matching events on the same context. 4845 * 4846 * The former two cases are handled in the allocation path (perf_event_alloc(), 4847 * _free_event()), the latter -- before the first perf_install_in_context(). 4848 */ 4849 static int exclusive_event_init(struct perf_event *event) 4850 { 4851 struct pmu *pmu = event->pmu; 4852 4853 if (!is_exclusive_pmu(pmu)) 4854 return 0; 4855 4856 /* 4857 * Prevent co-existence of per-task and cpu-wide events on the 4858 * same exclusive pmu. 4859 * 4860 * Negative pmu::exclusive_cnt means there are cpu-wide 4861 * events on this "exclusive" pmu, positive means there are 4862 * per-task events. 4863 * 4864 * Since this is called in perf_event_alloc() path, event::ctx 4865 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 4866 * to mean "per-task event", because unlike other attach states it 4867 * never gets cleared. 4868 */ 4869 if (event->attach_state & PERF_ATTACH_TASK) { 4870 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 4871 return -EBUSY; 4872 } else { 4873 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 4874 return -EBUSY; 4875 } 4876 4877 return 0; 4878 } 4879 4880 static void exclusive_event_destroy(struct perf_event *event) 4881 { 4882 struct pmu *pmu = event->pmu; 4883 4884 if (!is_exclusive_pmu(pmu)) 4885 return; 4886 4887 /* see comment in exclusive_event_init() */ 4888 if (event->attach_state & PERF_ATTACH_TASK) 4889 atomic_dec(&pmu->exclusive_cnt); 4890 else 4891 atomic_inc(&pmu->exclusive_cnt); 4892 } 4893 4894 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 4895 { 4896 if ((e1->pmu == e2->pmu) && 4897 (e1->cpu == e2->cpu || 4898 e1->cpu == -1 || 4899 e2->cpu == -1)) 4900 return true; 4901 return false; 4902 } 4903 4904 static bool exclusive_event_installable(struct perf_event *event, 4905 struct perf_event_context *ctx) 4906 { 4907 struct perf_event *iter_event; 4908 struct pmu *pmu = event->pmu; 4909 4910 lockdep_assert_held(&ctx->mutex); 4911 4912 if (!is_exclusive_pmu(pmu)) 4913 return true; 4914 4915 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 4916 if (exclusive_event_match(iter_event, event)) 4917 return false; 4918 } 4919 4920 return true; 4921 } 4922 4923 static void perf_addr_filters_splice(struct perf_event *event, 4924 struct list_head *head); 4925 4926 static void _free_event(struct perf_event *event) 4927 { 4928 irq_work_sync(&event->pending); 4929 4930 unaccount_event(event); 4931 4932 security_perf_event_free(event); 4933 4934 if (event->rb) { 4935 /* 4936 * Can happen when we close an event with re-directed output. 4937 * 4938 * Since we have a 0 refcount, perf_mmap_close() will skip 4939 * over us; possibly making our ring_buffer_put() the last. 4940 */ 4941 mutex_lock(&event->mmap_mutex); 4942 ring_buffer_attach(event, NULL); 4943 mutex_unlock(&event->mmap_mutex); 4944 } 4945 4946 if (is_cgroup_event(event)) 4947 perf_detach_cgroup(event); 4948 4949 if (!event->parent) { 4950 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 4951 put_callchain_buffers(); 4952 } 4953 4954 perf_event_free_bpf_prog(event); 4955 perf_addr_filters_splice(event, NULL); 4956 kfree(event->addr_filter_ranges); 4957 4958 if (event->destroy) 4959 event->destroy(event); 4960 4961 /* 4962 * Must be after ->destroy(), due to uprobe_perf_close() using 4963 * hw.target. 4964 */ 4965 if (event->hw.target) 4966 put_task_struct(event->hw.target); 4967 4968 /* 4969 * perf_event_free_task() relies on put_ctx() being 'last', in particular 4970 * all task references must be cleaned up. 4971 */ 4972 if (event->ctx) 4973 put_ctx(event->ctx); 4974 4975 exclusive_event_destroy(event); 4976 module_put(event->pmu->module); 4977 4978 call_rcu(&event->rcu_head, free_event_rcu); 4979 } 4980 4981 /* 4982 * Used to free events which have a known refcount of 1, such as in error paths 4983 * where the event isn't exposed yet and inherited events. 4984 */ 4985 static void free_event(struct perf_event *event) 4986 { 4987 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 4988 "unexpected event refcount: %ld; ptr=%p\n", 4989 atomic_long_read(&event->refcount), event)) { 4990 /* leak to avoid use-after-free */ 4991 return; 4992 } 4993 4994 _free_event(event); 4995 } 4996 4997 /* 4998 * Remove user event from the owner task. 4999 */ 5000 static void perf_remove_from_owner(struct perf_event *event) 5001 { 5002 struct task_struct *owner; 5003 5004 rcu_read_lock(); 5005 /* 5006 * Matches the smp_store_release() in perf_event_exit_task(). If we 5007 * observe !owner it means the list deletion is complete and we can 5008 * indeed free this event, otherwise we need to serialize on 5009 * owner->perf_event_mutex. 5010 */ 5011 owner = READ_ONCE(event->owner); 5012 if (owner) { 5013 /* 5014 * Since delayed_put_task_struct() also drops the last 5015 * task reference we can safely take a new reference 5016 * while holding the rcu_read_lock(). 5017 */ 5018 get_task_struct(owner); 5019 } 5020 rcu_read_unlock(); 5021 5022 if (owner) { 5023 /* 5024 * If we're here through perf_event_exit_task() we're already 5025 * holding ctx->mutex which would be an inversion wrt. the 5026 * normal lock order. 5027 * 5028 * However we can safely take this lock because its the child 5029 * ctx->mutex. 5030 */ 5031 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 5032 5033 /* 5034 * We have to re-check the event->owner field, if it is cleared 5035 * we raced with perf_event_exit_task(), acquiring the mutex 5036 * ensured they're done, and we can proceed with freeing the 5037 * event. 5038 */ 5039 if (event->owner) { 5040 list_del_init(&event->owner_entry); 5041 smp_store_release(&event->owner, NULL); 5042 } 5043 mutex_unlock(&owner->perf_event_mutex); 5044 put_task_struct(owner); 5045 } 5046 } 5047 5048 static void put_event(struct perf_event *event) 5049 { 5050 if (!atomic_long_dec_and_test(&event->refcount)) 5051 return; 5052 5053 _free_event(event); 5054 } 5055 5056 /* 5057 * Kill an event dead; while event:refcount will preserve the event 5058 * object, it will not preserve its functionality. Once the last 'user' 5059 * gives up the object, we'll destroy the thing. 5060 */ 5061 int perf_event_release_kernel(struct perf_event *event) 5062 { 5063 struct perf_event_context *ctx = event->ctx; 5064 struct perf_event *child, *tmp; 5065 LIST_HEAD(free_list); 5066 5067 /* 5068 * If we got here through err_file: fput(event_file); we will not have 5069 * attached to a context yet. 5070 */ 5071 if (!ctx) { 5072 WARN_ON_ONCE(event->attach_state & 5073 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP)); 5074 goto no_ctx; 5075 } 5076 5077 if (!is_kernel_event(event)) 5078 perf_remove_from_owner(event); 5079 5080 ctx = perf_event_ctx_lock(event); 5081 WARN_ON_ONCE(ctx->parent_ctx); 5082 perf_remove_from_context(event, DETACH_GROUP); 5083 5084 raw_spin_lock_irq(&ctx->lock); 5085 /* 5086 * Mark this event as STATE_DEAD, there is no external reference to it 5087 * anymore. 5088 * 5089 * Anybody acquiring event->child_mutex after the below loop _must_ 5090 * also see this, most importantly inherit_event() which will avoid 5091 * placing more children on the list. 5092 * 5093 * Thus this guarantees that we will in fact observe and kill _ALL_ 5094 * child events. 5095 */ 5096 event->state = PERF_EVENT_STATE_DEAD; 5097 raw_spin_unlock_irq(&ctx->lock); 5098 5099 perf_event_ctx_unlock(event, ctx); 5100 5101 again: 5102 mutex_lock(&event->child_mutex); 5103 list_for_each_entry(child, &event->child_list, child_list) { 5104 5105 /* 5106 * Cannot change, child events are not migrated, see the 5107 * comment with perf_event_ctx_lock_nested(). 5108 */ 5109 ctx = READ_ONCE(child->ctx); 5110 /* 5111 * Since child_mutex nests inside ctx::mutex, we must jump 5112 * through hoops. We start by grabbing a reference on the ctx. 5113 * 5114 * Since the event cannot get freed while we hold the 5115 * child_mutex, the context must also exist and have a !0 5116 * reference count. 5117 */ 5118 get_ctx(ctx); 5119 5120 /* 5121 * Now that we have a ctx ref, we can drop child_mutex, and 5122 * acquire ctx::mutex without fear of it going away. Then we 5123 * can re-acquire child_mutex. 5124 */ 5125 mutex_unlock(&event->child_mutex); 5126 mutex_lock(&ctx->mutex); 5127 mutex_lock(&event->child_mutex); 5128 5129 /* 5130 * Now that we hold ctx::mutex and child_mutex, revalidate our 5131 * state, if child is still the first entry, it didn't get freed 5132 * and we can continue doing so. 5133 */ 5134 tmp = list_first_entry_or_null(&event->child_list, 5135 struct perf_event, child_list); 5136 if (tmp == child) { 5137 perf_remove_from_context(child, DETACH_GROUP); 5138 list_move(&child->child_list, &free_list); 5139 /* 5140 * This matches the refcount bump in inherit_event(); 5141 * this can't be the last reference. 5142 */ 5143 put_event(event); 5144 } 5145 5146 mutex_unlock(&event->child_mutex); 5147 mutex_unlock(&ctx->mutex); 5148 put_ctx(ctx); 5149 goto again; 5150 } 5151 mutex_unlock(&event->child_mutex); 5152 5153 list_for_each_entry_safe(child, tmp, &free_list, child_list) { 5154 void *var = &child->ctx->refcount; 5155 5156 list_del(&child->child_list); 5157 free_event(child); 5158 5159 /* 5160 * Wake any perf_event_free_task() waiting for this event to be 5161 * freed. 5162 */ 5163 smp_mb(); /* pairs with wait_var_event() */ 5164 wake_up_var(var); 5165 } 5166 5167 no_ctx: 5168 put_event(event); /* Must be the 'last' reference */ 5169 return 0; 5170 } 5171 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 5172 5173 /* 5174 * Called when the last reference to the file is gone. 5175 */ 5176 static int perf_release(struct inode *inode, struct file *file) 5177 { 5178 perf_event_release_kernel(file->private_data); 5179 return 0; 5180 } 5181 5182 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5183 { 5184 struct perf_event *child; 5185 u64 total = 0; 5186 5187 *enabled = 0; 5188 *running = 0; 5189 5190 mutex_lock(&event->child_mutex); 5191 5192 (void)perf_event_read(event, false); 5193 total += perf_event_count(event); 5194 5195 *enabled += event->total_time_enabled + 5196 atomic64_read(&event->child_total_time_enabled); 5197 *running += event->total_time_running + 5198 atomic64_read(&event->child_total_time_running); 5199 5200 list_for_each_entry(child, &event->child_list, child_list) { 5201 (void)perf_event_read(child, false); 5202 total += perf_event_count(child); 5203 *enabled += child->total_time_enabled; 5204 *running += child->total_time_running; 5205 } 5206 mutex_unlock(&event->child_mutex); 5207 5208 return total; 5209 } 5210 5211 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5212 { 5213 struct perf_event_context *ctx; 5214 u64 count; 5215 5216 ctx = perf_event_ctx_lock(event); 5217 count = __perf_event_read_value(event, enabled, running); 5218 perf_event_ctx_unlock(event, ctx); 5219 5220 return count; 5221 } 5222 EXPORT_SYMBOL_GPL(perf_event_read_value); 5223 5224 static int __perf_read_group_add(struct perf_event *leader, 5225 u64 read_format, u64 *values) 5226 { 5227 struct perf_event_context *ctx = leader->ctx; 5228 struct perf_event *sub; 5229 unsigned long flags; 5230 int n = 1; /* skip @nr */ 5231 int ret; 5232 5233 ret = perf_event_read(leader, true); 5234 if (ret) 5235 return ret; 5236 5237 raw_spin_lock_irqsave(&ctx->lock, flags); 5238 5239 /* 5240 * Since we co-schedule groups, {enabled,running} times of siblings 5241 * will be identical to those of the leader, so we only publish one 5242 * set. 5243 */ 5244 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 5245 values[n++] += leader->total_time_enabled + 5246 atomic64_read(&leader->child_total_time_enabled); 5247 } 5248 5249 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 5250 values[n++] += leader->total_time_running + 5251 atomic64_read(&leader->child_total_time_running); 5252 } 5253 5254 /* 5255 * Write {count,id} tuples for every sibling. 5256 */ 5257 values[n++] += perf_event_count(leader); 5258 if (read_format & PERF_FORMAT_ID) 5259 values[n++] = primary_event_id(leader); 5260 5261 for_each_sibling_event(sub, leader) { 5262 values[n++] += perf_event_count(sub); 5263 if (read_format & PERF_FORMAT_ID) 5264 values[n++] = primary_event_id(sub); 5265 } 5266 5267 raw_spin_unlock_irqrestore(&ctx->lock, flags); 5268 return 0; 5269 } 5270 5271 static int perf_read_group(struct perf_event *event, 5272 u64 read_format, char __user *buf) 5273 { 5274 struct perf_event *leader = event->group_leader, *child; 5275 struct perf_event_context *ctx = leader->ctx; 5276 int ret; 5277 u64 *values; 5278 5279 lockdep_assert_held(&ctx->mutex); 5280 5281 values = kzalloc(event->read_size, GFP_KERNEL); 5282 if (!values) 5283 return -ENOMEM; 5284 5285 values[0] = 1 + leader->nr_siblings; 5286 5287 /* 5288 * By locking the child_mutex of the leader we effectively 5289 * lock the child list of all siblings.. XXX explain how. 5290 */ 5291 mutex_lock(&leader->child_mutex); 5292 5293 ret = __perf_read_group_add(leader, read_format, values); 5294 if (ret) 5295 goto unlock; 5296 5297 list_for_each_entry(child, &leader->child_list, child_list) { 5298 ret = __perf_read_group_add(child, read_format, values); 5299 if (ret) 5300 goto unlock; 5301 } 5302 5303 mutex_unlock(&leader->child_mutex); 5304 5305 ret = event->read_size; 5306 if (copy_to_user(buf, values, event->read_size)) 5307 ret = -EFAULT; 5308 goto out; 5309 5310 unlock: 5311 mutex_unlock(&leader->child_mutex); 5312 out: 5313 kfree(values); 5314 return ret; 5315 } 5316 5317 static int perf_read_one(struct perf_event *event, 5318 u64 read_format, char __user *buf) 5319 { 5320 u64 enabled, running; 5321 u64 values[4]; 5322 int n = 0; 5323 5324 values[n++] = __perf_event_read_value(event, &enabled, &running); 5325 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 5326 values[n++] = enabled; 5327 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 5328 values[n++] = running; 5329 if (read_format & PERF_FORMAT_ID) 5330 values[n++] = primary_event_id(event); 5331 5332 if (copy_to_user(buf, values, n * sizeof(u64))) 5333 return -EFAULT; 5334 5335 return n * sizeof(u64); 5336 } 5337 5338 static bool is_event_hup(struct perf_event *event) 5339 { 5340 bool no_children; 5341 5342 if (event->state > PERF_EVENT_STATE_EXIT) 5343 return false; 5344 5345 mutex_lock(&event->child_mutex); 5346 no_children = list_empty(&event->child_list); 5347 mutex_unlock(&event->child_mutex); 5348 return no_children; 5349 } 5350 5351 /* 5352 * Read the performance event - simple non blocking version for now 5353 */ 5354 static ssize_t 5355 __perf_read(struct perf_event *event, char __user *buf, size_t count) 5356 { 5357 u64 read_format = event->attr.read_format; 5358 int ret; 5359 5360 /* 5361 * Return end-of-file for a read on an event that is in 5362 * error state (i.e. because it was pinned but it couldn't be 5363 * scheduled on to the CPU at some point). 5364 */ 5365 if (event->state == PERF_EVENT_STATE_ERROR) 5366 return 0; 5367 5368 if (count < event->read_size) 5369 return -ENOSPC; 5370 5371 WARN_ON_ONCE(event->ctx->parent_ctx); 5372 if (read_format & PERF_FORMAT_GROUP) 5373 ret = perf_read_group(event, read_format, buf); 5374 else 5375 ret = perf_read_one(event, read_format, buf); 5376 5377 return ret; 5378 } 5379 5380 static ssize_t 5381 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 5382 { 5383 struct perf_event *event = file->private_data; 5384 struct perf_event_context *ctx; 5385 int ret; 5386 5387 ret = security_perf_event_read(event); 5388 if (ret) 5389 return ret; 5390 5391 ctx = perf_event_ctx_lock(event); 5392 ret = __perf_read(event, buf, count); 5393 perf_event_ctx_unlock(event, ctx); 5394 5395 return ret; 5396 } 5397 5398 static __poll_t perf_poll(struct file *file, poll_table *wait) 5399 { 5400 struct perf_event *event = file->private_data; 5401 struct perf_buffer *rb; 5402 __poll_t events = EPOLLHUP; 5403 5404 poll_wait(file, &event->waitq, wait); 5405 5406 if (is_event_hup(event)) 5407 return events; 5408 5409 /* 5410 * Pin the event->rb by taking event->mmap_mutex; otherwise 5411 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 5412 */ 5413 mutex_lock(&event->mmap_mutex); 5414 rb = event->rb; 5415 if (rb) 5416 events = atomic_xchg(&rb->poll, 0); 5417 mutex_unlock(&event->mmap_mutex); 5418 return events; 5419 } 5420 5421 static void _perf_event_reset(struct perf_event *event) 5422 { 5423 (void)perf_event_read(event, false); 5424 local64_set(&event->count, 0); 5425 perf_event_update_userpage(event); 5426 } 5427 5428 /* Assume it's not an event with inherit set. */ 5429 u64 perf_event_pause(struct perf_event *event, bool reset) 5430 { 5431 struct perf_event_context *ctx; 5432 u64 count; 5433 5434 ctx = perf_event_ctx_lock(event); 5435 WARN_ON_ONCE(event->attr.inherit); 5436 _perf_event_disable(event); 5437 count = local64_read(&event->count); 5438 if (reset) 5439 local64_set(&event->count, 0); 5440 perf_event_ctx_unlock(event, ctx); 5441 5442 return count; 5443 } 5444 EXPORT_SYMBOL_GPL(perf_event_pause); 5445 5446 /* 5447 * Holding the top-level event's child_mutex means that any 5448 * descendant process that has inherited this event will block 5449 * in perf_event_exit_event() if it goes to exit, thus satisfying the 5450 * task existence requirements of perf_event_enable/disable. 5451 */ 5452 static void perf_event_for_each_child(struct perf_event *event, 5453 void (*func)(struct perf_event *)) 5454 { 5455 struct perf_event *child; 5456 5457 WARN_ON_ONCE(event->ctx->parent_ctx); 5458 5459 mutex_lock(&event->child_mutex); 5460 func(event); 5461 list_for_each_entry(child, &event->child_list, child_list) 5462 func(child); 5463 mutex_unlock(&event->child_mutex); 5464 } 5465 5466 static void perf_event_for_each(struct perf_event *event, 5467 void (*func)(struct perf_event *)) 5468 { 5469 struct perf_event_context *ctx = event->ctx; 5470 struct perf_event *sibling; 5471 5472 lockdep_assert_held(&ctx->mutex); 5473 5474 event = event->group_leader; 5475 5476 perf_event_for_each_child(event, func); 5477 for_each_sibling_event(sibling, event) 5478 perf_event_for_each_child(sibling, func); 5479 } 5480 5481 static void __perf_event_period(struct perf_event *event, 5482 struct perf_cpu_context *cpuctx, 5483 struct perf_event_context *ctx, 5484 void *info) 5485 { 5486 u64 value = *((u64 *)info); 5487 bool active; 5488 5489 if (event->attr.freq) { 5490 event->attr.sample_freq = value; 5491 } else { 5492 event->attr.sample_period = value; 5493 event->hw.sample_period = value; 5494 } 5495 5496 active = (event->state == PERF_EVENT_STATE_ACTIVE); 5497 if (active) { 5498 perf_pmu_disable(ctx->pmu); 5499 /* 5500 * We could be throttled; unthrottle now to avoid the tick 5501 * trying to unthrottle while we already re-started the event. 5502 */ 5503 if (event->hw.interrupts == MAX_INTERRUPTS) { 5504 event->hw.interrupts = 0; 5505 perf_log_throttle(event, 1); 5506 } 5507 event->pmu->stop(event, PERF_EF_UPDATE); 5508 } 5509 5510 local64_set(&event->hw.period_left, 0); 5511 5512 if (active) { 5513 event->pmu->start(event, PERF_EF_RELOAD); 5514 perf_pmu_enable(ctx->pmu); 5515 } 5516 } 5517 5518 static int perf_event_check_period(struct perf_event *event, u64 value) 5519 { 5520 return event->pmu->check_period(event, value); 5521 } 5522 5523 static int _perf_event_period(struct perf_event *event, u64 value) 5524 { 5525 if (!is_sampling_event(event)) 5526 return -EINVAL; 5527 5528 if (!value) 5529 return -EINVAL; 5530 5531 if (event->attr.freq && value > sysctl_perf_event_sample_rate) 5532 return -EINVAL; 5533 5534 if (perf_event_check_period(event, value)) 5535 return -EINVAL; 5536 5537 if (!event->attr.freq && (value & (1ULL << 63))) 5538 return -EINVAL; 5539 5540 event_function_call(event, __perf_event_period, &value); 5541 5542 return 0; 5543 } 5544 5545 int perf_event_period(struct perf_event *event, u64 value) 5546 { 5547 struct perf_event_context *ctx; 5548 int ret; 5549 5550 ctx = perf_event_ctx_lock(event); 5551 ret = _perf_event_period(event, value); 5552 perf_event_ctx_unlock(event, ctx); 5553 5554 return ret; 5555 } 5556 EXPORT_SYMBOL_GPL(perf_event_period); 5557 5558 static const struct file_operations perf_fops; 5559 5560 static inline int perf_fget_light(int fd, struct fd *p) 5561 { 5562 struct fd f = fdget(fd); 5563 if (!f.file) 5564 return -EBADF; 5565 5566 if (f.file->f_op != &perf_fops) { 5567 fdput(f); 5568 return -EBADF; 5569 } 5570 *p = f; 5571 return 0; 5572 } 5573 5574 static int perf_event_set_output(struct perf_event *event, 5575 struct perf_event *output_event); 5576 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 5577 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd); 5578 static int perf_copy_attr(struct perf_event_attr __user *uattr, 5579 struct perf_event_attr *attr); 5580 5581 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 5582 { 5583 void (*func)(struct perf_event *); 5584 u32 flags = arg; 5585 5586 switch (cmd) { 5587 case PERF_EVENT_IOC_ENABLE: 5588 func = _perf_event_enable; 5589 break; 5590 case PERF_EVENT_IOC_DISABLE: 5591 func = _perf_event_disable; 5592 break; 5593 case PERF_EVENT_IOC_RESET: 5594 func = _perf_event_reset; 5595 break; 5596 5597 case PERF_EVENT_IOC_REFRESH: 5598 return _perf_event_refresh(event, arg); 5599 5600 case PERF_EVENT_IOC_PERIOD: 5601 { 5602 u64 value; 5603 5604 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value))) 5605 return -EFAULT; 5606 5607 return _perf_event_period(event, value); 5608 } 5609 case PERF_EVENT_IOC_ID: 5610 { 5611 u64 id = primary_event_id(event); 5612 5613 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 5614 return -EFAULT; 5615 return 0; 5616 } 5617 5618 case PERF_EVENT_IOC_SET_OUTPUT: 5619 { 5620 int ret; 5621 if (arg != -1) { 5622 struct perf_event *output_event; 5623 struct fd output; 5624 ret = perf_fget_light(arg, &output); 5625 if (ret) 5626 return ret; 5627 output_event = output.file->private_data; 5628 ret = perf_event_set_output(event, output_event); 5629 fdput(output); 5630 } else { 5631 ret = perf_event_set_output(event, NULL); 5632 } 5633 return ret; 5634 } 5635 5636 case PERF_EVENT_IOC_SET_FILTER: 5637 return perf_event_set_filter(event, (void __user *)arg); 5638 5639 case PERF_EVENT_IOC_SET_BPF: 5640 return perf_event_set_bpf_prog(event, arg); 5641 5642 case PERF_EVENT_IOC_PAUSE_OUTPUT: { 5643 struct perf_buffer *rb; 5644 5645 rcu_read_lock(); 5646 rb = rcu_dereference(event->rb); 5647 if (!rb || !rb->nr_pages) { 5648 rcu_read_unlock(); 5649 return -EINVAL; 5650 } 5651 rb_toggle_paused(rb, !!arg); 5652 rcu_read_unlock(); 5653 return 0; 5654 } 5655 5656 case PERF_EVENT_IOC_QUERY_BPF: 5657 return perf_event_query_prog_array(event, (void __user *)arg); 5658 5659 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: { 5660 struct perf_event_attr new_attr; 5661 int err = perf_copy_attr((struct perf_event_attr __user *)arg, 5662 &new_attr); 5663 5664 if (err) 5665 return err; 5666 5667 return perf_event_modify_attr(event, &new_attr); 5668 } 5669 default: 5670 return -ENOTTY; 5671 } 5672 5673 if (flags & PERF_IOC_FLAG_GROUP) 5674 perf_event_for_each(event, func); 5675 else 5676 perf_event_for_each_child(event, func); 5677 5678 return 0; 5679 } 5680 5681 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5682 { 5683 struct perf_event *event = file->private_data; 5684 struct perf_event_context *ctx; 5685 long ret; 5686 5687 /* Treat ioctl like writes as it is likely a mutating operation. */ 5688 ret = security_perf_event_write(event); 5689 if (ret) 5690 return ret; 5691 5692 ctx = perf_event_ctx_lock(event); 5693 ret = _perf_ioctl(event, cmd, arg); 5694 perf_event_ctx_unlock(event, ctx); 5695 5696 return ret; 5697 } 5698 5699 #ifdef CONFIG_COMPAT 5700 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 5701 unsigned long arg) 5702 { 5703 switch (_IOC_NR(cmd)) { 5704 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 5705 case _IOC_NR(PERF_EVENT_IOC_ID): 5706 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF): 5707 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES): 5708 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 5709 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 5710 cmd &= ~IOCSIZE_MASK; 5711 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 5712 } 5713 break; 5714 } 5715 return perf_ioctl(file, cmd, arg); 5716 } 5717 #else 5718 # define perf_compat_ioctl NULL 5719 #endif 5720 5721 int perf_event_task_enable(void) 5722 { 5723 struct perf_event_context *ctx; 5724 struct perf_event *event; 5725 5726 mutex_lock(¤t->perf_event_mutex); 5727 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 5728 ctx = perf_event_ctx_lock(event); 5729 perf_event_for_each_child(event, _perf_event_enable); 5730 perf_event_ctx_unlock(event, ctx); 5731 } 5732 mutex_unlock(¤t->perf_event_mutex); 5733 5734 return 0; 5735 } 5736 5737 int perf_event_task_disable(void) 5738 { 5739 struct perf_event_context *ctx; 5740 struct perf_event *event; 5741 5742 mutex_lock(¤t->perf_event_mutex); 5743 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 5744 ctx = perf_event_ctx_lock(event); 5745 perf_event_for_each_child(event, _perf_event_disable); 5746 perf_event_ctx_unlock(event, ctx); 5747 } 5748 mutex_unlock(¤t->perf_event_mutex); 5749 5750 return 0; 5751 } 5752 5753 static int perf_event_index(struct perf_event *event) 5754 { 5755 if (event->hw.state & PERF_HES_STOPPED) 5756 return 0; 5757 5758 if (event->state != PERF_EVENT_STATE_ACTIVE) 5759 return 0; 5760 5761 return event->pmu->event_idx(event); 5762 } 5763 5764 static void calc_timer_values(struct perf_event *event, 5765 u64 *now, 5766 u64 *enabled, 5767 u64 *running) 5768 { 5769 u64 ctx_time; 5770 5771 *now = perf_clock(); 5772 ctx_time = event->shadow_ctx_time + *now; 5773 __perf_update_times(event, ctx_time, enabled, running); 5774 } 5775 5776 static void perf_event_init_userpage(struct perf_event *event) 5777 { 5778 struct perf_event_mmap_page *userpg; 5779 struct perf_buffer *rb; 5780 5781 rcu_read_lock(); 5782 rb = rcu_dereference(event->rb); 5783 if (!rb) 5784 goto unlock; 5785 5786 userpg = rb->user_page; 5787 5788 /* Allow new userspace to detect that bit 0 is deprecated */ 5789 userpg->cap_bit0_is_deprecated = 1; 5790 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 5791 userpg->data_offset = PAGE_SIZE; 5792 userpg->data_size = perf_data_size(rb); 5793 5794 unlock: 5795 rcu_read_unlock(); 5796 } 5797 5798 void __weak arch_perf_update_userpage( 5799 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 5800 { 5801 } 5802 5803 /* 5804 * Callers need to ensure there can be no nesting of this function, otherwise 5805 * the seqlock logic goes bad. We can not serialize this because the arch 5806 * code calls this from NMI context. 5807 */ 5808 void perf_event_update_userpage(struct perf_event *event) 5809 { 5810 struct perf_event_mmap_page *userpg; 5811 struct perf_buffer *rb; 5812 u64 enabled, running, now; 5813 5814 rcu_read_lock(); 5815 rb = rcu_dereference(event->rb); 5816 if (!rb) 5817 goto unlock; 5818 5819 /* 5820 * compute total_time_enabled, total_time_running 5821 * based on snapshot values taken when the event 5822 * was last scheduled in. 5823 * 5824 * we cannot simply called update_context_time() 5825 * because of locking issue as we can be called in 5826 * NMI context 5827 */ 5828 calc_timer_values(event, &now, &enabled, &running); 5829 5830 userpg = rb->user_page; 5831 /* 5832 * Disable preemption to guarantee consistent time stamps are stored to 5833 * the user page. 5834 */ 5835 preempt_disable(); 5836 ++userpg->lock; 5837 barrier(); 5838 userpg->index = perf_event_index(event); 5839 userpg->offset = perf_event_count(event); 5840 if (userpg->index) 5841 userpg->offset -= local64_read(&event->hw.prev_count); 5842 5843 userpg->time_enabled = enabled + 5844 atomic64_read(&event->child_total_time_enabled); 5845 5846 userpg->time_running = running + 5847 atomic64_read(&event->child_total_time_running); 5848 5849 arch_perf_update_userpage(event, userpg, now); 5850 5851 barrier(); 5852 ++userpg->lock; 5853 preempt_enable(); 5854 unlock: 5855 rcu_read_unlock(); 5856 } 5857 EXPORT_SYMBOL_GPL(perf_event_update_userpage); 5858 5859 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf) 5860 { 5861 struct perf_event *event = vmf->vma->vm_file->private_data; 5862 struct perf_buffer *rb; 5863 vm_fault_t ret = VM_FAULT_SIGBUS; 5864 5865 if (vmf->flags & FAULT_FLAG_MKWRITE) { 5866 if (vmf->pgoff == 0) 5867 ret = 0; 5868 return ret; 5869 } 5870 5871 rcu_read_lock(); 5872 rb = rcu_dereference(event->rb); 5873 if (!rb) 5874 goto unlock; 5875 5876 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 5877 goto unlock; 5878 5879 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 5880 if (!vmf->page) 5881 goto unlock; 5882 5883 get_page(vmf->page); 5884 vmf->page->mapping = vmf->vma->vm_file->f_mapping; 5885 vmf->page->index = vmf->pgoff; 5886 5887 ret = 0; 5888 unlock: 5889 rcu_read_unlock(); 5890 5891 return ret; 5892 } 5893 5894 static void ring_buffer_attach(struct perf_event *event, 5895 struct perf_buffer *rb) 5896 { 5897 struct perf_buffer *old_rb = NULL; 5898 unsigned long flags; 5899 5900 if (event->rb) { 5901 /* 5902 * Should be impossible, we set this when removing 5903 * event->rb_entry and wait/clear when adding event->rb_entry. 5904 */ 5905 WARN_ON_ONCE(event->rcu_pending); 5906 5907 old_rb = event->rb; 5908 spin_lock_irqsave(&old_rb->event_lock, flags); 5909 list_del_rcu(&event->rb_entry); 5910 spin_unlock_irqrestore(&old_rb->event_lock, flags); 5911 5912 event->rcu_batches = get_state_synchronize_rcu(); 5913 event->rcu_pending = 1; 5914 } 5915 5916 if (rb) { 5917 if (event->rcu_pending) { 5918 cond_synchronize_rcu(event->rcu_batches); 5919 event->rcu_pending = 0; 5920 } 5921 5922 spin_lock_irqsave(&rb->event_lock, flags); 5923 list_add_rcu(&event->rb_entry, &rb->event_list); 5924 spin_unlock_irqrestore(&rb->event_lock, flags); 5925 } 5926 5927 /* 5928 * Avoid racing with perf_mmap_close(AUX): stop the event 5929 * before swizzling the event::rb pointer; if it's getting 5930 * unmapped, its aux_mmap_count will be 0 and it won't 5931 * restart. See the comment in __perf_pmu_output_stop(). 5932 * 5933 * Data will inevitably be lost when set_output is done in 5934 * mid-air, but then again, whoever does it like this is 5935 * not in for the data anyway. 5936 */ 5937 if (has_aux(event)) 5938 perf_event_stop(event, 0); 5939 5940 rcu_assign_pointer(event->rb, rb); 5941 5942 if (old_rb) { 5943 ring_buffer_put(old_rb); 5944 /* 5945 * Since we detached before setting the new rb, so that we 5946 * could attach the new rb, we could have missed a wakeup. 5947 * Provide it now. 5948 */ 5949 wake_up_all(&event->waitq); 5950 } 5951 } 5952 5953 static void ring_buffer_wakeup(struct perf_event *event) 5954 { 5955 struct perf_buffer *rb; 5956 5957 rcu_read_lock(); 5958 rb = rcu_dereference(event->rb); 5959 if (rb) { 5960 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 5961 wake_up_all(&event->waitq); 5962 } 5963 rcu_read_unlock(); 5964 } 5965 5966 struct perf_buffer *ring_buffer_get(struct perf_event *event) 5967 { 5968 struct perf_buffer *rb; 5969 5970 rcu_read_lock(); 5971 rb = rcu_dereference(event->rb); 5972 if (rb) { 5973 if (!refcount_inc_not_zero(&rb->refcount)) 5974 rb = NULL; 5975 } 5976 rcu_read_unlock(); 5977 5978 return rb; 5979 } 5980 5981 void ring_buffer_put(struct perf_buffer *rb) 5982 { 5983 if (!refcount_dec_and_test(&rb->refcount)) 5984 return; 5985 5986 WARN_ON_ONCE(!list_empty(&rb->event_list)); 5987 5988 call_rcu(&rb->rcu_head, rb_free_rcu); 5989 } 5990 5991 static void perf_mmap_open(struct vm_area_struct *vma) 5992 { 5993 struct perf_event *event = vma->vm_file->private_data; 5994 5995 atomic_inc(&event->mmap_count); 5996 atomic_inc(&event->rb->mmap_count); 5997 5998 if (vma->vm_pgoff) 5999 atomic_inc(&event->rb->aux_mmap_count); 6000 6001 if (event->pmu->event_mapped) 6002 event->pmu->event_mapped(event, vma->vm_mm); 6003 } 6004 6005 static void perf_pmu_output_stop(struct perf_event *event); 6006 6007 /* 6008 * A buffer can be mmap()ed multiple times; either directly through the same 6009 * event, or through other events by use of perf_event_set_output(). 6010 * 6011 * In order to undo the VM accounting done by perf_mmap() we need to destroy 6012 * the buffer here, where we still have a VM context. This means we need 6013 * to detach all events redirecting to us. 6014 */ 6015 static void perf_mmap_close(struct vm_area_struct *vma) 6016 { 6017 struct perf_event *event = vma->vm_file->private_data; 6018 struct perf_buffer *rb = ring_buffer_get(event); 6019 struct user_struct *mmap_user = rb->mmap_user; 6020 int mmap_locked = rb->mmap_locked; 6021 unsigned long size = perf_data_size(rb); 6022 bool detach_rest = false; 6023 6024 if (event->pmu->event_unmapped) 6025 event->pmu->event_unmapped(event, vma->vm_mm); 6026 6027 /* 6028 * rb->aux_mmap_count will always drop before rb->mmap_count and 6029 * event->mmap_count, so it is ok to use event->mmap_mutex to 6030 * serialize with perf_mmap here. 6031 */ 6032 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 6033 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) { 6034 /* 6035 * Stop all AUX events that are writing to this buffer, 6036 * so that we can free its AUX pages and corresponding PMU 6037 * data. Note that after rb::aux_mmap_count dropped to zero, 6038 * they won't start any more (see perf_aux_output_begin()). 6039 */ 6040 perf_pmu_output_stop(event); 6041 6042 /* now it's safe to free the pages */ 6043 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm); 6044 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm); 6045 6046 /* this has to be the last one */ 6047 rb_free_aux(rb); 6048 WARN_ON_ONCE(refcount_read(&rb->aux_refcount)); 6049 6050 mutex_unlock(&event->mmap_mutex); 6051 } 6052 6053 if (atomic_dec_and_test(&rb->mmap_count)) 6054 detach_rest = true; 6055 6056 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 6057 goto out_put; 6058 6059 ring_buffer_attach(event, NULL); 6060 mutex_unlock(&event->mmap_mutex); 6061 6062 /* If there's still other mmap()s of this buffer, we're done. */ 6063 if (!detach_rest) 6064 goto out_put; 6065 6066 /* 6067 * No other mmap()s, detach from all other events that might redirect 6068 * into the now unreachable buffer. Somewhat complicated by the 6069 * fact that rb::event_lock otherwise nests inside mmap_mutex. 6070 */ 6071 again: 6072 rcu_read_lock(); 6073 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 6074 if (!atomic_long_inc_not_zero(&event->refcount)) { 6075 /* 6076 * This event is en-route to free_event() which will 6077 * detach it and remove it from the list. 6078 */ 6079 continue; 6080 } 6081 rcu_read_unlock(); 6082 6083 mutex_lock(&event->mmap_mutex); 6084 /* 6085 * Check we didn't race with perf_event_set_output() which can 6086 * swizzle the rb from under us while we were waiting to 6087 * acquire mmap_mutex. 6088 * 6089 * If we find a different rb; ignore this event, a next 6090 * iteration will no longer find it on the list. We have to 6091 * still restart the iteration to make sure we're not now 6092 * iterating the wrong list. 6093 */ 6094 if (event->rb == rb) 6095 ring_buffer_attach(event, NULL); 6096 6097 mutex_unlock(&event->mmap_mutex); 6098 put_event(event); 6099 6100 /* 6101 * Restart the iteration; either we're on the wrong list or 6102 * destroyed its integrity by doing a deletion. 6103 */ 6104 goto again; 6105 } 6106 rcu_read_unlock(); 6107 6108 /* 6109 * It could be there's still a few 0-ref events on the list; they'll 6110 * get cleaned up by free_event() -- they'll also still have their 6111 * ref on the rb and will free it whenever they are done with it. 6112 * 6113 * Aside from that, this buffer is 'fully' detached and unmapped, 6114 * undo the VM accounting. 6115 */ 6116 6117 atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked, 6118 &mmap_user->locked_vm); 6119 atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm); 6120 free_uid(mmap_user); 6121 6122 out_put: 6123 ring_buffer_put(rb); /* could be last */ 6124 } 6125 6126 static const struct vm_operations_struct perf_mmap_vmops = { 6127 .open = perf_mmap_open, 6128 .close = perf_mmap_close, /* non mergeable */ 6129 .fault = perf_mmap_fault, 6130 .page_mkwrite = perf_mmap_fault, 6131 }; 6132 6133 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 6134 { 6135 struct perf_event *event = file->private_data; 6136 unsigned long user_locked, user_lock_limit; 6137 struct user_struct *user = current_user(); 6138 struct perf_buffer *rb = NULL; 6139 unsigned long locked, lock_limit; 6140 unsigned long vma_size; 6141 unsigned long nr_pages; 6142 long user_extra = 0, extra = 0; 6143 int ret = 0, flags = 0; 6144 6145 /* 6146 * Don't allow mmap() of inherited per-task counters. This would 6147 * create a performance issue due to all children writing to the 6148 * same rb. 6149 */ 6150 if (event->cpu == -1 && event->attr.inherit) 6151 return -EINVAL; 6152 6153 if (!(vma->vm_flags & VM_SHARED)) 6154 return -EINVAL; 6155 6156 ret = security_perf_event_read(event); 6157 if (ret) 6158 return ret; 6159 6160 vma_size = vma->vm_end - vma->vm_start; 6161 6162 if (vma->vm_pgoff == 0) { 6163 nr_pages = (vma_size / PAGE_SIZE) - 1; 6164 } else { 6165 /* 6166 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 6167 * mapped, all subsequent mappings should have the same size 6168 * and offset. Must be above the normal perf buffer. 6169 */ 6170 u64 aux_offset, aux_size; 6171 6172 if (!event->rb) 6173 return -EINVAL; 6174 6175 nr_pages = vma_size / PAGE_SIZE; 6176 6177 mutex_lock(&event->mmap_mutex); 6178 ret = -EINVAL; 6179 6180 rb = event->rb; 6181 if (!rb) 6182 goto aux_unlock; 6183 6184 aux_offset = READ_ONCE(rb->user_page->aux_offset); 6185 aux_size = READ_ONCE(rb->user_page->aux_size); 6186 6187 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 6188 goto aux_unlock; 6189 6190 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 6191 goto aux_unlock; 6192 6193 /* already mapped with a different offset */ 6194 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 6195 goto aux_unlock; 6196 6197 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) 6198 goto aux_unlock; 6199 6200 /* already mapped with a different size */ 6201 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 6202 goto aux_unlock; 6203 6204 if (!is_power_of_2(nr_pages)) 6205 goto aux_unlock; 6206 6207 if (!atomic_inc_not_zero(&rb->mmap_count)) 6208 goto aux_unlock; 6209 6210 if (rb_has_aux(rb)) { 6211 atomic_inc(&rb->aux_mmap_count); 6212 ret = 0; 6213 goto unlock; 6214 } 6215 6216 atomic_set(&rb->aux_mmap_count, 1); 6217 user_extra = nr_pages; 6218 6219 goto accounting; 6220 } 6221 6222 /* 6223 * If we have rb pages ensure they're a power-of-two number, so we 6224 * can do bitmasks instead of modulo. 6225 */ 6226 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 6227 return -EINVAL; 6228 6229 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 6230 return -EINVAL; 6231 6232 WARN_ON_ONCE(event->ctx->parent_ctx); 6233 again: 6234 mutex_lock(&event->mmap_mutex); 6235 if (event->rb) { 6236 if (event->rb->nr_pages != nr_pages) { 6237 ret = -EINVAL; 6238 goto unlock; 6239 } 6240 6241 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 6242 /* 6243 * Raced against perf_mmap_close() through 6244 * perf_event_set_output(). Try again, hope for better 6245 * luck. 6246 */ 6247 mutex_unlock(&event->mmap_mutex); 6248 goto again; 6249 } 6250 6251 goto unlock; 6252 } 6253 6254 user_extra = nr_pages + 1; 6255 6256 accounting: 6257 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 6258 6259 /* 6260 * Increase the limit linearly with more CPUs: 6261 */ 6262 user_lock_limit *= num_online_cpus(); 6263 6264 user_locked = atomic_long_read(&user->locked_vm); 6265 6266 /* 6267 * sysctl_perf_event_mlock may have changed, so that 6268 * user->locked_vm > user_lock_limit 6269 */ 6270 if (user_locked > user_lock_limit) 6271 user_locked = user_lock_limit; 6272 user_locked += user_extra; 6273 6274 if (user_locked > user_lock_limit) { 6275 /* 6276 * charge locked_vm until it hits user_lock_limit; 6277 * charge the rest from pinned_vm 6278 */ 6279 extra = user_locked - user_lock_limit; 6280 user_extra -= extra; 6281 } 6282 6283 lock_limit = rlimit(RLIMIT_MEMLOCK); 6284 lock_limit >>= PAGE_SHIFT; 6285 locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra; 6286 6287 if ((locked > lock_limit) && perf_is_paranoid() && 6288 !capable(CAP_IPC_LOCK)) { 6289 ret = -EPERM; 6290 goto unlock; 6291 } 6292 6293 WARN_ON(!rb && event->rb); 6294 6295 if (vma->vm_flags & VM_WRITE) 6296 flags |= RING_BUFFER_WRITABLE; 6297 6298 if (!rb) { 6299 rb = rb_alloc(nr_pages, 6300 event->attr.watermark ? event->attr.wakeup_watermark : 0, 6301 event->cpu, flags); 6302 6303 if (!rb) { 6304 ret = -ENOMEM; 6305 goto unlock; 6306 } 6307 6308 atomic_set(&rb->mmap_count, 1); 6309 rb->mmap_user = get_current_user(); 6310 rb->mmap_locked = extra; 6311 6312 ring_buffer_attach(event, rb); 6313 6314 perf_event_init_userpage(event); 6315 perf_event_update_userpage(event); 6316 } else { 6317 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 6318 event->attr.aux_watermark, flags); 6319 if (!ret) 6320 rb->aux_mmap_locked = extra; 6321 } 6322 6323 unlock: 6324 if (!ret) { 6325 atomic_long_add(user_extra, &user->locked_vm); 6326 atomic64_add(extra, &vma->vm_mm->pinned_vm); 6327 6328 atomic_inc(&event->mmap_count); 6329 } else if (rb) { 6330 atomic_dec(&rb->mmap_count); 6331 } 6332 aux_unlock: 6333 mutex_unlock(&event->mmap_mutex); 6334 6335 /* 6336 * Since pinned accounting is per vm we cannot allow fork() to copy our 6337 * vma. 6338 */ 6339 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP; 6340 vma->vm_ops = &perf_mmap_vmops; 6341 6342 if (event->pmu->event_mapped) 6343 event->pmu->event_mapped(event, vma->vm_mm); 6344 6345 return ret; 6346 } 6347 6348 static int perf_fasync(int fd, struct file *filp, int on) 6349 { 6350 struct inode *inode = file_inode(filp); 6351 struct perf_event *event = filp->private_data; 6352 int retval; 6353 6354 inode_lock(inode); 6355 retval = fasync_helper(fd, filp, on, &event->fasync); 6356 inode_unlock(inode); 6357 6358 if (retval < 0) 6359 return retval; 6360 6361 return 0; 6362 } 6363 6364 static const struct file_operations perf_fops = { 6365 .llseek = no_llseek, 6366 .release = perf_release, 6367 .read = perf_read, 6368 .poll = perf_poll, 6369 .unlocked_ioctl = perf_ioctl, 6370 .compat_ioctl = perf_compat_ioctl, 6371 .mmap = perf_mmap, 6372 .fasync = perf_fasync, 6373 }; 6374 6375 /* 6376 * Perf event wakeup 6377 * 6378 * If there's data, ensure we set the poll() state and publish everything 6379 * to user-space before waking everybody up. 6380 */ 6381 6382 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event) 6383 { 6384 /* only the parent has fasync state */ 6385 if (event->parent) 6386 event = event->parent; 6387 return &event->fasync; 6388 } 6389 6390 void perf_event_wakeup(struct perf_event *event) 6391 { 6392 ring_buffer_wakeup(event); 6393 6394 if (event->pending_kill) { 6395 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); 6396 event->pending_kill = 0; 6397 } 6398 } 6399 6400 static void perf_sigtrap(struct perf_event *event) 6401 { 6402 /* 6403 * We'd expect this to only occur if the irq_work is delayed and either 6404 * ctx->task or current has changed in the meantime. This can be the 6405 * case on architectures that do not implement arch_irq_work_raise(). 6406 */ 6407 if (WARN_ON_ONCE(event->ctx->task != current)) 6408 return; 6409 6410 /* 6411 * perf_pending_event() can race with the task exiting. 6412 */ 6413 if (current->flags & PF_EXITING) 6414 return; 6415 6416 force_sig_perf((void __user *)event->pending_addr, 6417 event->attr.type, event->attr.sig_data); 6418 } 6419 6420 static void perf_pending_event_disable(struct perf_event *event) 6421 { 6422 int cpu = READ_ONCE(event->pending_disable); 6423 6424 if (cpu < 0) 6425 return; 6426 6427 if (cpu == smp_processor_id()) { 6428 WRITE_ONCE(event->pending_disable, -1); 6429 6430 if (event->attr.sigtrap) { 6431 perf_sigtrap(event); 6432 atomic_set_release(&event->event_limit, 1); /* rearm event */ 6433 return; 6434 } 6435 6436 perf_event_disable_local(event); 6437 return; 6438 } 6439 6440 /* 6441 * CPU-A CPU-B 6442 * 6443 * perf_event_disable_inatomic() 6444 * @pending_disable = CPU-A; 6445 * irq_work_queue(); 6446 * 6447 * sched-out 6448 * @pending_disable = -1; 6449 * 6450 * sched-in 6451 * perf_event_disable_inatomic() 6452 * @pending_disable = CPU-B; 6453 * irq_work_queue(); // FAILS 6454 * 6455 * irq_work_run() 6456 * perf_pending_event() 6457 * 6458 * But the event runs on CPU-B and wants disabling there. 6459 */ 6460 irq_work_queue_on(&event->pending, cpu); 6461 } 6462 6463 static void perf_pending_event(struct irq_work *entry) 6464 { 6465 struct perf_event *event = container_of(entry, struct perf_event, pending); 6466 int rctx; 6467 6468 rctx = perf_swevent_get_recursion_context(); 6469 /* 6470 * If we 'fail' here, that's OK, it means recursion is already disabled 6471 * and we won't recurse 'further'. 6472 */ 6473 6474 perf_pending_event_disable(event); 6475 6476 if (event->pending_wakeup) { 6477 event->pending_wakeup = 0; 6478 perf_event_wakeup(event); 6479 } 6480 6481 if (rctx >= 0) 6482 perf_swevent_put_recursion_context(rctx); 6483 } 6484 6485 /* 6486 * We assume there is only KVM supporting the callbacks. 6487 * Later on, we might change it to a list if there is 6488 * another virtualization implementation supporting the callbacks. 6489 */ 6490 struct perf_guest_info_callbacks *perf_guest_cbs; 6491 6492 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 6493 { 6494 perf_guest_cbs = cbs; 6495 return 0; 6496 } 6497 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 6498 6499 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 6500 { 6501 perf_guest_cbs = NULL; 6502 return 0; 6503 } 6504 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 6505 6506 static void 6507 perf_output_sample_regs(struct perf_output_handle *handle, 6508 struct pt_regs *regs, u64 mask) 6509 { 6510 int bit; 6511 DECLARE_BITMAP(_mask, 64); 6512 6513 bitmap_from_u64(_mask, mask); 6514 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) { 6515 u64 val; 6516 6517 val = perf_reg_value(regs, bit); 6518 perf_output_put(handle, val); 6519 } 6520 } 6521 6522 static void perf_sample_regs_user(struct perf_regs *regs_user, 6523 struct pt_regs *regs) 6524 { 6525 if (user_mode(regs)) { 6526 regs_user->abi = perf_reg_abi(current); 6527 regs_user->regs = regs; 6528 } else if (!(current->flags & PF_KTHREAD)) { 6529 perf_get_regs_user(regs_user, regs); 6530 } else { 6531 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 6532 regs_user->regs = NULL; 6533 } 6534 } 6535 6536 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 6537 struct pt_regs *regs) 6538 { 6539 regs_intr->regs = regs; 6540 regs_intr->abi = perf_reg_abi(current); 6541 } 6542 6543 6544 /* 6545 * Get remaining task size from user stack pointer. 6546 * 6547 * It'd be better to take stack vma map and limit this more 6548 * precisely, but there's no way to get it safely under interrupt, 6549 * so using TASK_SIZE as limit. 6550 */ 6551 static u64 perf_ustack_task_size(struct pt_regs *regs) 6552 { 6553 unsigned long addr = perf_user_stack_pointer(regs); 6554 6555 if (!addr || addr >= TASK_SIZE) 6556 return 0; 6557 6558 return TASK_SIZE - addr; 6559 } 6560 6561 static u16 6562 perf_sample_ustack_size(u16 stack_size, u16 header_size, 6563 struct pt_regs *regs) 6564 { 6565 u64 task_size; 6566 6567 /* No regs, no stack pointer, no dump. */ 6568 if (!regs) 6569 return 0; 6570 6571 /* 6572 * Check if we fit in with the requested stack size into the: 6573 * - TASK_SIZE 6574 * If we don't, we limit the size to the TASK_SIZE. 6575 * 6576 * - remaining sample size 6577 * If we don't, we customize the stack size to 6578 * fit in to the remaining sample size. 6579 */ 6580 6581 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 6582 stack_size = min(stack_size, (u16) task_size); 6583 6584 /* Current header size plus static size and dynamic size. */ 6585 header_size += 2 * sizeof(u64); 6586 6587 /* Do we fit in with the current stack dump size? */ 6588 if ((u16) (header_size + stack_size) < header_size) { 6589 /* 6590 * If we overflow the maximum size for the sample, 6591 * we customize the stack dump size to fit in. 6592 */ 6593 stack_size = USHRT_MAX - header_size - sizeof(u64); 6594 stack_size = round_up(stack_size, sizeof(u64)); 6595 } 6596 6597 return stack_size; 6598 } 6599 6600 static void 6601 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 6602 struct pt_regs *regs) 6603 { 6604 /* Case of a kernel thread, nothing to dump */ 6605 if (!regs) { 6606 u64 size = 0; 6607 perf_output_put(handle, size); 6608 } else { 6609 unsigned long sp; 6610 unsigned int rem; 6611 u64 dyn_size; 6612 mm_segment_t fs; 6613 6614 /* 6615 * We dump: 6616 * static size 6617 * - the size requested by user or the best one we can fit 6618 * in to the sample max size 6619 * data 6620 * - user stack dump data 6621 * dynamic size 6622 * - the actual dumped size 6623 */ 6624 6625 /* Static size. */ 6626 perf_output_put(handle, dump_size); 6627 6628 /* Data. */ 6629 sp = perf_user_stack_pointer(regs); 6630 fs = force_uaccess_begin(); 6631 rem = __output_copy_user(handle, (void *) sp, dump_size); 6632 force_uaccess_end(fs); 6633 dyn_size = dump_size - rem; 6634 6635 perf_output_skip(handle, rem); 6636 6637 /* Dynamic size. */ 6638 perf_output_put(handle, dyn_size); 6639 } 6640 } 6641 6642 static unsigned long perf_prepare_sample_aux(struct perf_event *event, 6643 struct perf_sample_data *data, 6644 size_t size) 6645 { 6646 struct perf_event *sampler = event->aux_event; 6647 struct perf_buffer *rb; 6648 6649 data->aux_size = 0; 6650 6651 if (!sampler) 6652 goto out; 6653 6654 if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE)) 6655 goto out; 6656 6657 if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id())) 6658 goto out; 6659 6660 rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler); 6661 if (!rb) 6662 goto out; 6663 6664 /* 6665 * If this is an NMI hit inside sampling code, don't take 6666 * the sample. See also perf_aux_sample_output(). 6667 */ 6668 if (READ_ONCE(rb->aux_in_sampling)) { 6669 data->aux_size = 0; 6670 } else { 6671 size = min_t(size_t, size, perf_aux_size(rb)); 6672 data->aux_size = ALIGN(size, sizeof(u64)); 6673 } 6674 ring_buffer_put(rb); 6675 6676 out: 6677 return data->aux_size; 6678 } 6679 6680 static long perf_pmu_snapshot_aux(struct perf_buffer *rb, 6681 struct perf_event *event, 6682 struct perf_output_handle *handle, 6683 unsigned long size) 6684 { 6685 unsigned long flags; 6686 long ret; 6687 6688 /* 6689 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler 6690 * paths. If we start calling them in NMI context, they may race with 6691 * the IRQ ones, that is, for example, re-starting an event that's just 6692 * been stopped, which is why we're using a separate callback that 6693 * doesn't change the event state. 6694 * 6695 * IRQs need to be disabled to prevent IPIs from racing with us. 6696 */ 6697 local_irq_save(flags); 6698 /* 6699 * Guard against NMI hits inside the critical section; 6700 * see also perf_prepare_sample_aux(). 6701 */ 6702 WRITE_ONCE(rb->aux_in_sampling, 1); 6703 barrier(); 6704 6705 ret = event->pmu->snapshot_aux(event, handle, size); 6706 6707 barrier(); 6708 WRITE_ONCE(rb->aux_in_sampling, 0); 6709 local_irq_restore(flags); 6710 6711 return ret; 6712 } 6713 6714 static void perf_aux_sample_output(struct perf_event *event, 6715 struct perf_output_handle *handle, 6716 struct perf_sample_data *data) 6717 { 6718 struct perf_event *sampler = event->aux_event; 6719 struct perf_buffer *rb; 6720 unsigned long pad; 6721 long size; 6722 6723 if (WARN_ON_ONCE(!sampler || !data->aux_size)) 6724 return; 6725 6726 rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler); 6727 if (!rb) 6728 return; 6729 6730 size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size); 6731 6732 /* 6733 * An error here means that perf_output_copy() failed (returned a 6734 * non-zero surplus that it didn't copy), which in its current 6735 * enlightened implementation is not possible. If that changes, we'd 6736 * like to know. 6737 */ 6738 if (WARN_ON_ONCE(size < 0)) 6739 goto out_put; 6740 6741 /* 6742 * The pad comes from ALIGN()ing data->aux_size up to u64 in 6743 * perf_prepare_sample_aux(), so should not be more than that. 6744 */ 6745 pad = data->aux_size - size; 6746 if (WARN_ON_ONCE(pad >= sizeof(u64))) 6747 pad = 8; 6748 6749 if (pad) { 6750 u64 zero = 0; 6751 perf_output_copy(handle, &zero, pad); 6752 } 6753 6754 out_put: 6755 ring_buffer_put(rb); 6756 } 6757 6758 static void __perf_event_header__init_id(struct perf_event_header *header, 6759 struct perf_sample_data *data, 6760 struct perf_event *event) 6761 { 6762 u64 sample_type = event->attr.sample_type; 6763 6764 data->type = sample_type; 6765 header->size += event->id_header_size; 6766 6767 if (sample_type & PERF_SAMPLE_TID) { 6768 /* namespace issues */ 6769 data->tid_entry.pid = perf_event_pid(event, current); 6770 data->tid_entry.tid = perf_event_tid(event, current); 6771 } 6772 6773 if (sample_type & PERF_SAMPLE_TIME) 6774 data->time = perf_event_clock(event); 6775 6776 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 6777 data->id = primary_event_id(event); 6778 6779 if (sample_type & PERF_SAMPLE_STREAM_ID) 6780 data->stream_id = event->id; 6781 6782 if (sample_type & PERF_SAMPLE_CPU) { 6783 data->cpu_entry.cpu = raw_smp_processor_id(); 6784 data->cpu_entry.reserved = 0; 6785 } 6786 } 6787 6788 void perf_event_header__init_id(struct perf_event_header *header, 6789 struct perf_sample_data *data, 6790 struct perf_event *event) 6791 { 6792 if (event->attr.sample_id_all) 6793 __perf_event_header__init_id(header, data, event); 6794 } 6795 6796 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 6797 struct perf_sample_data *data) 6798 { 6799 u64 sample_type = data->type; 6800 6801 if (sample_type & PERF_SAMPLE_TID) 6802 perf_output_put(handle, data->tid_entry); 6803 6804 if (sample_type & PERF_SAMPLE_TIME) 6805 perf_output_put(handle, data->time); 6806 6807 if (sample_type & PERF_SAMPLE_ID) 6808 perf_output_put(handle, data->id); 6809 6810 if (sample_type & PERF_SAMPLE_STREAM_ID) 6811 perf_output_put(handle, data->stream_id); 6812 6813 if (sample_type & PERF_SAMPLE_CPU) 6814 perf_output_put(handle, data->cpu_entry); 6815 6816 if (sample_type & PERF_SAMPLE_IDENTIFIER) 6817 perf_output_put(handle, data->id); 6818 } 6819 6820 void perf_event__output_id_sample(struct perf_event *event, 6821 struct perf_output_handle *handle, 6822 struct perf_sample_data *sample) 6823 { 6824 if (event->attr.sample_id_all) 6825 __perf_event__output_id_sample(handle, sample); 6826 } 6827 6828 static void perf_output_read_one(struct perf_output_handle *handle, 6829 struct perf_event *event, 6830 u64 enabled, u64 running) 6831 { 6832 u64 read_format = event->attr.read_format; 6833 u64 values[4]; 6834 int n = 0; 6835 6836 values[n++] = perf_event_count(event); 6837 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 6838 values[n++] = enabled + 6839 atomic64_read(&event->child_total_time_enabled); 6840 } 6841 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 6842 values[n++] = running + 6843 atomic64_read(&event->child_total_time_running); 6844 } 6845 if (read_format & PERF_FORMAT_ID) 6846 values[n++] = primary_event_id(event); 6847 6848 __output_copy(handle, values, n * sizeof(u64)); 6849 } 6850 6851 static void perf_output_read_group(struct perf_output_handle *handle, 6852 struct perf_event *event, 6853 u64 enabled, u64 running) 6854 { 6855 struct perf_event *leader = event->group_leader, *sub; 6856 u64 read_format = event->attr.read_format; 6857 u64 values[5]; 6858 int n = 0; 6859 6860 values[n++] = 1 + leader->nr_siblings; 6861 6862 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 6863 values[n++] = enabled; 6864 6865 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 6866 values[n++] = running; 6867 6868 if ((leader != event) && 6869 (leader->state == PERF_EVENT_STATE_ACTIVE)) 6870 leader->pmu->read(leader); 6871 6872 values[n++] = perf_event_count(leader); 6873 if (read_format & PERF_FORMAT_ID) 6874 values[n++] = primary_event_id(leader); 6875 6876 __output_copy(handle, values, n * sizeof(u64)); 6877 6878 for_each_sibling_event(sub, leader) { 6879 n = 0; 6880 6881 if ((sub != event) && 6882 (sub->state == PERF_EVENT_STATE_ACTIVE)) 6883 sub->pmu->read(sub); 6884 6885 values[n++] = perf_event_count(sub); 6886 if (read_format & PERF_FORMAT_ID) 6887 values[n++] = primary_event_id(sub); 6888 6889 __output_copy(handle, values, n * sizeof(u64)); 6890 } 6891 } 6892 6893 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 6894 PERF_FORMAT_TOTAL_TIME_RUNNING) 6895 6896 /* 6897 * XXX PERF_SAMPLE_READ vs inherited events seems difficult. 6898 * 6899 * The problem is that its both hard and excessively expensive to iterate the 6900 * child list, not to mention that its impossible to IPI the children running 6901 * on another CPU, from interrupt/NMI context. 6902 */ 6903 static void perf_output_read(struct perf_output_handle *handle, 6904 struct perf_event *event) 6905 { 6906 u64 enabled = 0, running = 0, now; 6907 u64 read_format = event->attr.read_format; 6908 6909 /* 6910 * compute total_time_enabled, total_time_running 6911 * based on snapshot values taken when the event 6912 * was last scheduled in. 6913 * 6914 * we cannot simply called update_context_time() 6915 * because of locking issue as we are called in 6916 * NMI context 6917 */ 6918 if (read_format & PERF_FORMAT_TOTAL_TIMES) 6919 calc_timer_values(event, &now, &enabled, &running); 6920 6921 if (event->attr.read_format & PERF_FORMAT_GROUP) 6922 perf_output_read_group(handle, event, enabled, running); 6923 else 6924 perf_output_read_one(handle, event, enabled, running); 6925 } 6926 6927 static inline bool perf_sample_save_hw_index(struct perf_event *event) 6928 { 6929 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX; 6930 } 6931 6932 void perf_output_sample(struct perf_output_handle *handle, 6933 struct perf_event_header *header, 6934 struct perf_sample_data *data, 6935 struct perf_event *event) 6936 { 6937 u64 sample_type = data->type; 6938 6939 perf_output_put(handle, *header); 6940 6941 if (sample_type & PERF_SAMPLE_IDENTIFIER) 6942 perf_output_put(handle, data->id); 6943 6944 if (sample_type & PERF_SAMPLE_IP) 6945 perf_output_put(handle, data->ip); 6946 6947 if (sample_type & PERF_SAMPLE_TID) 6948 perf_output_put(handle, data->tid_entry); 6949 6950 if (sample_type & PERF_SAMPLE_TIME) 6951 perf_output_put(handle, data->time); 6952 6953 if (sample_type & PERF_SAMPLE_ADDR) 6954 perf_output_put(handle, data->addr); 6955 6956 if (sample_type & PERF_SAMPLE_ID) 6957 perf_output_put(handle, data->id); 6958 6959 if (sample_type & PERF_SAMPLE_STREAM_ID) 6960 perf_output_put(handle, data->stream_id); 6961 6962 if (sample_type & PERF_SAMPLE_CPU) 6963 perf_output_put(handle, data->cpu_entry); 6964 6965 if (sample_type & PERF_SAMPLE_PERIOD) 6966 perf_output_put(handle, data->period); 6967 6968 if (sample_type & PERF_SAMPLE_READ) 6969 perf_output_read(handle, event); 6970 6971 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 6972 int size = 1; 6973 6974 size += data->callchain->nr; 6975 size *= sizeof(u64); 6976 __output_copy(handle, data->callchain, size); 6977 } 6978 6979 if (sample_type & PERF_SAMPLE_RAW) { 6980 struct perf_raw_record *raw = data->raw; 6981 6982 if (raw) { 6983 struct perf_raw_frag *frag = &raw->frag; 6984 6985 perf_output_put(handle, raw->size); 6986 do { 6987 if (frag->copy) { 6988 __output_custom(handle, frag->copy, 6989 frag->data, frag->size); 6990 } else { 6991 __output_copy(handle, frag->data, 6992 frag->size); 6993 } 6994 if (perf_raw_frag_last(frag)) 6995 break; 6996 frag = frag->next; 6997 } while (1); 6998 if (frag->pad) 6999 __output_skip(handle, NULL, frag->pad); 7000 } else { 7001 struct { 7002 u32 size; 7003 u32 data; 7004 } raw = { 7005 .size = sizeof(u32), 7006 .data = 0, 7007 }; 7008 perf_output_put(handle, raw); 7009 } 7010 } 7011 7012 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 7013 if (data->br_stack) { 7014 size_t size; 7015 7016 size = data->br_stack->nr 7017 * sizeof(struct perf_branch_entry); 7018 7019 perf_output_put(handle, data->br_stack->nr); 7020 if (perf_sample_save_hw_index(event)) 7021 perf_output_put(handle, data->br_stack->hw_idx); 7022 perf_output_copy(handle, data->br_stack->entries, size); 7023 } else { 7024 /* 7025 * we always store at least the value of nr 7026 */ 7027 u64 nr = 0; 7028 perf_output_put(handle, nr); 7029 } 7030 } 7031 7032 if (sample_type & PERF_SAMPLE_REGS_USER) { 7033 u64 abi = data->regs_user.abi; 7034 7035 /* 7036 * If there are no regs to dump, notice it through 7037 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 7038 */ 7039 perf_output_put(handle, abi); 7040 7041 if (abi) { 7042 u64 mask = event->attr.sample_regs_user; 7043 perf_output_sample_regs(handle, 7044 data->regs_user.regs, 7045 mask); 7046 } 7047 } 7048 7049 if (sample_type & PERF_SAMPLE_STACK_USER) { 7050 perf_output_sample_ustack(handle, 7051 data->stack_user_size, 7052 data->regs_user.regs); 7053 } 7054 7055 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) 7056 perf_output_put(handle, data->weight.full); 7057 7058 if (sample_type & PERF_SAMPLE_DATA_SRC) 7059 perf_output_put(handle, data->data_src.val); 7060 7061 if (sample_type & PERF_SAMPLE_TRANSACTION) 7062 perf_output_put(handle, data->txn); 7063 7064 if (sample_type & PERF_SAMPLE_REGS_INTR) { 7065 u64 abi = data->regs_intr.abi; 7066 /* 7067 * If there are no regs to dump, notice it through 7068 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 7069 */ 7070 perf_output_put(handle, abi); 7071 7072 if (abi) { 7073 u64 mask = event->attr.sample_regs_intr; 7074 7075 perf_output_sample_regs(handle, 7076 data->regs_intr.regs, 7077 mask); 7078 } 7079 } 7080 7081 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 7082 perf_output_put(handle, data->phys_addr); 7083 7084 if (sample_type & PERF_SAMPLE_CGROUP) 7085 perf_output_put(handle, data->cgroup); 7086 7087 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 7088 perf_output_put(handle, data->data_page_size); 7089 7090 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 7091 perf_output_put(handle, data->code_page_size); 7092 7093 if (sample_type & PERF_SAMPLE_AUX) { 7094 perf_output_put(handle, data->aux_size); 7095 7096 if (data->aux_size) 7097 perf_aux_sample_output(event, handle, data); 7098 } 7099 7100 if (!event->attr.watermark) { 7101 int wakeup_events = event->attr.wakeup_events; 7102 7103 if (wakeup_events) { 7104 struct perf_buffer *rb = handle->rb; 7105 int events = local_inc_return(&rb->events); 7106 7107 if (events >= wakeup_events) { 7108 local_sub(wakeup_events, &rb->events); 7109 local_inc(&rb->wakeup); 7110 } 7111 } 7112 } 7113 } 7114 7115 static u64 perf_virt_to_phys(u64 virt) 7116 { 7117 u64 phys_addr = 0; 7118 struct page *p = NULL; 7119 7120 if (!virt) 7121 return 0; 7122 7123 if (virt >= TASK_SIZE) { 7124 /* If it's vmalloc()d memory, leave phys_addr as 0 */ 7125 if (virt_addr_valid((void *)(uintptr_t)virt) && 7126 !(virt >= VMALLOC_START && virt < VMALLOC_END)) 7127 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt); 7128 } else { 7129 /* 7130 * Walking the pages tables for user address. 7131 * Interrupts are disabled, so it prevents any tear down 7132 * of the page tables. 7133 * Try IRQ-safe get_user_page_fast_only first. 7134 * If failed, leave phys_addr as 0. 7135 */ 7136 if (current->mm != NULL) { 7137 pagefault_disable(); 7138 if (get_user_page_fast_only(virt, 0, &p)) 7139 phys_addr = page_to_phys(p) + virt % PAGE_SIZE; 7140 pagefault_enable(); 7141 } 7142 7143 if (p) 7144 put_page(p); 7145 } 7146 7147 return phys_addr; 7148 } 7149 7150 /* 7151 * Return the pagetable size of a given virtual address. 7152 */ 7153 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr) 7154 { 7155 u64 size = 0; 7156 7157 #ifdef CONFIG_HAVE_FAST_GUP 7158 pgd_t *pgdp, pgd; 7159 p4d_t *p4dp, p4d; 7160 pud_t *pudp, pud; 7161 pmd_t *pmdp, pmd; 7162 pte_t *ptep, pte; 7163 7164 pgdp = pgd_offset(mm, addr); 7165 pgd = READ_ONCE(*pgdp); 7166 if (pgd_none(pgd)) 7167 return 0; 7168 7169 if (pgd_leaf(pgd)) 7170 return pgd_leaf_size(pgd); 7171 7172 p4dp = p4d_offset_lockless(pgdp, pgd, addr); 7173 p4d = READ_ONCE(*p4dp); 7174 if (!p4d_present(p4d)) 7175 return 0; 7176 7177 if (p4d_leaf(p4d)) 7178 return p4d_leaf_size(p4d); 7179 7180 pudp = pud_offset_lockless(p4dp, p4d, addr); 7181 pud = READ_ONCE(*pudp); 7182 if (!pud_present(pud)) 7183 return 0; 7184 7185 if (pud_leaf(pud)) 7186 return pud_leaf_size(pud); 7187 7188 pmdp = pmd_offset_lockless(pudp, pud, addr); 7189 pmd = READ_ONCE(*pmdp); 7190 if (!pmd_present(pmd)) 7191 return 0; 7192 7193 if (pmd_leaf(pmd)) 7194 return pmd_leaf_size(pmd); 7195 7196 ptep = pte_offset_map(&pmd, addr); 7197 pte = ptep_get_lockless(ptep); 7198 if (pte_present(pte)) 7199 size = pte_leaf_size(pte); 7200 pte_unmap(ptep); 7201 #endif /* CONFIG_HAVE_FAST_GUP */ 7202 7203 return size; 7204 } 7205 7206 static u64 perf_get_page_size(unsigned long addr) 7207 { 7208 struct mm_struct *mm; 7209 unsigned long flags; 7210 u64 size; 7211 7212 if (!addr) 7213 return 0; 7214 7215 /* 7216 * Software page-table walkers must disable IRQs, 7217 * which prevents any tear down of the page tables. 7218 */ 7219 local_irq_save(flags); 7220 7221 mm = current->mm; 7222 if (!mm) { 7223 /* 7224 * For kernel threads and the like, use init_mm so that 7225 * we can find kernel memory. 7226 */ 7227 mm = &init_mm; 7228 } 7229 7230 size = perf_get_pgtable_size(mm, addr); 7231 7232 local_irq_restore(flags); 7233 7234 return size; 7235 } 7236 7237 static struct perf_callchain_entry __empty_callchain = { .nr = 0, }; 7238 7239 struct perf_callchain_entry * 7240 perf_callchain(struct perf_event *event, struct pt_regs *regs) 7241 { 7242 bool kernel = !event->attr.exclude_callchain_kernel; 7243 bool user = !event->attr.exclude_callchain_user; 7244 /* Disallow cross-task user callchains. */ 7245 bool crosstask = event->ctx->task && event->ctx->task != current; 7246 const u32 max_stack = event->attr.sample_max_stack; 7247 struct perf_callchain_entry *callchain; 7248 7249 if (!kernel && !user) 7250 return &__empty_callchain; 7251 7252 callchain = get_perf_callchain(regs, 0, kernel, user, 7253 max_stack, crosstask, true); 7254 return callchain ?: &__empty_callchain; 7255 } 7256 7257 void perf_prepare_sample(struct perf_event_header *header, 7258 struct perf_sample_data *data, 7259 struct perf_event *event, 7260 struct pt_regs *regs) 7261 { 7262 u64 sample_type = event->attr.sample_type; 7263 7264 header->type = PERF_RECORD_SAMPLE; 7265 header->size = sizeof(*header) + event->header_size; 7266 7267 header->misc = 0; 7268 header->misc |= perf_misc_flags(regs); 7269 7270 __perf_event_header__init_id(header, data, event); 7271 7272 if (sample_type & (PERF_SAMPLE_IP | PERF_SAMPLE_CODE_PAGE_SIZE)) 7273 data->ip = perf_instruction_pointer(regs); 7274 7275 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 7276 int size = 1; 7277 7278 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY)) 7279 data->callchain = perf_callchain(event, regs); 7280 7281 size += data->callchain->nr; 7282 7283 header->size += size * sizeof(u64); 7284 } 7285 7286 if (sample_type & PERF_SAMPLE_RAW) { 7287 struct perf_raw_record *raw = data->raw; 7288 int size; 7289 7290 if (raw) { 7291 struct perf_raw_frag *frag = &raw->frag; 7292 u32 sum = 0; 7293 7294 do { 7295 sum += frag->size; 7296 if (perf_raw_frag_last(frag)) 7297 break; 7298 frag = frag->next; 7299 } while (1); 7300 7301 size = round_up(sum + sizeof(u32), sizeof(u64)); 7302 raw->size = size - sizeof(u32); 7303 frag->pad = raw->size - sum; 7304 } else { 7305 size = sizeof(u64); 7306 } 7307 7308 header->size += size; 7309 } 7310 7311 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 7312 int size = sizeof(u64); /* nr */ 7313 if (data->br_stack) { 7314 if (perf_sample_save_hw_index(event)) 7315 size += sizeof(u64); 7316 7317 size += data->br_stack->nr 7318 * sizeof(struct perf_branch_entry); 7319 } 7320 header->size += size; 7321 } 7322 7323 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER)) 7324 perf_sample_regs_user(&data->regs_user, regs); 7325 7326 if (sample_type & PERF_SAMPLE_REGS_USER) { 7327 /* regs dump ABI info */ 7328 int size = sizeof(u64); 7329 7330 if (data->regs_user.regs) { 7331 u64 mask = event->attr.sample_regs_user; 7332 size += hweight64(mask) * sizeof(u64); 7333 } 7334 7335 header->size += size; 7336 } 7337 7338 if (sample_type & PERF_SAMPLE_STACK_USER) { 7339 /* 7340 * Either we need PERF_SAMPLE_STACK_USER bit to be always 7341 * processed as the last one or have additional check added 7342 * in case new sample type is added, because we could eat 7343 * up the rest of the sample size. 7344 */ 7345 u16 stack_size = event->attr.sample_stack_user; 7346 u16 size = sizeof(u64); 7347 7348 stack_size = perf_sample_ustack_size(stack_size, header->size, 7349 data->regs_user.regs); 7350 7351 /* 7352 * If there is something to dump, add space for the dump 7353 * itself and for the field that tells the dynamic size, 7354 * which is how many have been actually dumped. 7355 */ 7356 if (stack_size) 7357 size += sizeof(u64) + stack_size; 7358 7359 data->stack_user_size = stack_size; 7360 header->size += size; 7361 } 7362 7363 if (sample_type & PERF_SAMPLE_REGS_INTR) { 7364 /* regs dump ABI info */ 7365 int size = sizeof(u64); 7366 7367 perf_sample_regs_intr(&data->regs_intr, regs); 7368 7369 if (data->regs_intr.regs) { 7370 u64 mask = event->attr.sample_regs_intr; 7371 7372 size += hweight64(mask) * sizeof(u64); 7373 } 7374 7375 header->size += size; 7376 } 7377 7378 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 7379 data->phys_addr = perf_virt_to_phys(data->addr); 7380 7381 #ifdef CONFIG_CGROUP_PERF 7382 if (sample_type & PERF_SAMPLE_CGROUP) { 7383 struct cgroup *cgrp; 7384 7385 /* protected by RCU */ 7386 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup; 7387 data->cgroup = cgroup_id(cgrp); 7388 } 7389 #endif 7390 7391 /* 7392 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't 7393 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr, 7394 * but the value will not dump to the userspace. 7395 */ 7396 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 7397 data->data_page_size = perf_get_page_size(data->addr); 7398 7399 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 7400 data->code_page_size = perf_get_page_size(data->ip); 7401 7402 if (sample_type & PERF_SAMPLE_AUX) { 7403 u64 size; 7404 7405 header->size += sizeof(u64); /* size */ 7406 7407 /* 7408 * Given the 16bit nature of header::size, an AUX sample can 7409 * easily overflow it, what with all the preceding sample bits. 7410 * Make sure this doesn't happen by using up to U16_MAX bytes 7411 * per sample in total (rounded down to 8 byte boundary). 7412 */ 7413 size = min_t(size_t, U16_MAX - header->size, 7414 event->attr.aux_sample_size); 7415 size = rounddown(size, 8); 7416 size = perf_prepare_sample_aux(event, data, size); 7417 7418 WARN_ON_ONCE(size + header->size > U16_MAX); 7419 header->size += size; 7420 } 7421 /* 7422 * If you're adding more sample types here, you likely need to do 7423 * something about the overflowing header::size, like repurpose the 7424 * lowest 3 bits of size, which should be always zero at the moment. 7425 * This raises a more important question, do we really need 512k sized 7426 * samples and why, so good argumentation is in order for whatever you 7427 * do here next. 7428 */ 7429 WARN_ON_ONCE(header->size & 7); 7430 } 7431 7432 static __always_inline int 7433 __perf_event_output(struct perf_event *event, 7434 struct perf_sample_data *data, 7435 struct pt_regs *regs, 7436 int (*output_begin)(struct perf_output_handle *, 7437 struct perf_sample_data *, 7438 struct perf_event *, 7439 unsigned int)) 7440 { 7441 struct perf_output_handle handle; 7442 struct perf_event_header header; 7443 int err; 7444 7445 /* protect the callchain buffers */ 7446 rcu_read_lock(); 7447 7448 perf_prepare_sample(&header, data, event, regs); 7449 7450 err = output_begin(&handle, data, event, header.size); 7451 if (err) 7452 goto exit; 7453 7454 perf_output_sample(&handle, &header, data, event); 7455 7456 perf_output_end(&handle); 7457 7458 exit: 7459 rcu_read_unlock(); 7460 return err; 7461 } 7462 7463 void 7464 perf_event_output_forward(struct perf_event *event, 7465 struct perf_sample_data *data, 7466 struct pt_regs *regs) 7467 { 7468 __perf_event_output(event, data, regs, perf_output_begin_forward); 7469 } 7470 7471 void 7472 perf_event_output_backward(struct perf_event *event, 7473 struct perf_sample_data *data, 7474 struct pt_regs *regs) 7475 { 7476 __perf_event_output(event, data, regs, perf_output_begin_backward); 7477 } 7478 7479 int 7480 perf_event_output(struct perf_event *event, 7481 struct perf_sample_data *data, 7482 struct pt_regs *regs) 7483 { 7484 return __perf_event_output(event, data, regs, perf_output_begin); 7485 } 7486 7487 /* 7488 * read event_id 7489 */ 7490 7491 struct perf_read_event { 7492 struct perf_event_header header; 7493 7494 u32 pid; 7495 u32 tid; 7496 }; 7497 7498 static void 7499 perf_event_read_event(struct perf_event *event, 7500 struct task_struct *task) 7501 { 7502 struct perf_output_handle handle; 7503 struct perf_sample_data sample; 7504 struct perf_read_event read_event = { 7505 .header = { 7506 .type = PERF_RECORD_READ, 7507 .misc = 0, 7508 .size = sizeof(read_event) + event->read_size, 7509 }, 7510 .pid = perf_event_pid(event, task), 7511 .tid = perf_event_tid(event, task), 7512 }; 7513 int ret; 7514 7515 perf_event_header__init_id(&read_event.header, &sample, event); 7516 ret = perf_output_begin(&handle, &sample, event, read_event.header.size); 7517 if (ret) 7518 return; 7519 7520 perf_output_put(&handle, read_event); 7521 perf_output_read(&handle, event); 7522 perf_event__output_id_sample(event, &handle, &sample); 7523 7524 perf_output_end(&handle); 7525 } 7526 7527 typedef void (perf_iterate_f)(struct perf_event *event, void *data); 7528 7529 static void 7530 perf_iterate_ctx(struct perf_event_context *ctx, 7531 perf_iterate_f output, 7532 void *data, bool all) 7533 { 7534 struct perf_event *event; 7535 7536 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 7537 if (!all) { 7538 if (event->state < PERF_EVENT_STATE_INACTIVE) 7539 continue; 7540 if (!event_filter_match(event)) 7541 continue; 7542 } 7543 7544 output(event, data); 7545 } 7546 } 7547 7548 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data) 7549 { 7550 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events); 7551 struct perf_event *event; 7552 7553 list_for_each_entry_rcu(event, &pel->list, sb_list) { 7554 /* 7555 * Skip events that are not fully formed yet; ensure that 7556 * if we observe event->ctx, both event and ctx will be 7557 * complete enough. See perf_install_in_context(). 7558 */ 7559 if (!smp_load_acquire(&event->ctx)) 7560 continue; 7561 7562 if (event->state < PERF_EVENT_STATE_INACTIVE) 7563 continue; 7564 if (!event_filter_match(event)) 7565 continue; 7566 output(event, data); 7567 } 7568 } 7569 7570 /* 7571 * Iterate all events that need to receive side-band events. 7572 * 7573 * For new callers; ensure that account_pmu_sb_event() includes 7574 * your event, otherwise it might not get delivered. 7575 */ 7576 static void 7577 perf_iterate_sb(perf_iterate_f output, void *data, 7578 struct perf_event_context *task_ctx) 7579 { 7580 struct perf_event_context *ctx; 7581 int ctxn; 7582 7583 rcu_read_lock(); 7584 preempt_disable(); 7585 7586 /* 7587 * If we have task_ctx != NULL we only notify the task context itself. 7588 * The task_ctx is set only for EXIT events before releasing task 7589 * context. 7590 */ 7591 if (task_ctx) { 7592 perf_iterate_ctx(task_ctx, output, data, false); 7593 goto done; 7594 } 7595 7596 perf_iterate_sb_cpu(output, data); 7597 7598 for_each_task_context_nr(ctxn) { 7599 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 7600 if (ctx) 7601 perf_iterate_ctx(ctx, output, data, false); 7602 } 7603 done: 7604 preempt_enable(); 7605 rcu_read_unlock(); 7606 } 7607 7608 /* 7609 * Clear all file-based filters at exec, they'll have to be 7610 * re-instated when/if these objects are mmapped again. 7611 */ 7612 static void perf_event_addr_filters_exec(struct perf_event *event, void *data) 7613 { 7614 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 7615 struct perf_addr_filter *filter; 7616 unsigned int restart = 0, count = 0; 7617 unsigned long flags; 7618 7619 if (!has_addr_filter(event)) 7620 return; 7621 7622 raw_spin_lock_irqsave(&ifh->lock, flags); 7623 list_for_each_entry(filter, &ifh->list, entry) { 7624 if (filter->path.dentry) { 7625 event->addr_filter_ranges[count].start = 0; 7626 event->addr_filter_ranges[count].size = 0; 7627 restart++; 7628 } 7629 7630 count++; 7631 } 7632 7633 if (restart) 7634 event->addr_filters_gen++; 7635 raw_spin_unlock_irqrestore(&ifh->lock, flags); 7636 7637 if (restart) 7638 perf_event_stop(event, 1); 7639 } 7640 7641 void perf_event_exec(void) 7642 { 7643 struct perf_event_context *ctx; 7644 int ctxn; 7645 7646 for_each_task_context_nr(ctxn) { 7647 perf_event_enable_on_exec(ctxn); 7648 perf_event_remove_on_exec(ctxn); 7649 7650 rcu_read_lock(); 7651 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 7652 if (ctx) { 7653 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, 7654 NULL, true); 7655 } 7656 rcu_read_unlock(); 7657 } 7658 } 7659 7660 struct remote_output { 7661 struct perf_buffer *rb; 7662 int err; 7663 }; 7664 7665 static void __perf_event_output_stop(struct perf_event *event, void *data) 7666 { 7667 struct perf_event *parent = event->parent; 7668 struct remote_output *ro = data; 7669 struct perf_buffer *rb = ro->rb; 7670 struct stop_event_data sd = { 7671 .event = event, 7672 }; 7673 7674 if (!has_aux(event)) 7675 return; 7676 7677 if (!parent) 7678 parent = event; 7679 7680 /* 7681 * In case of inheritance, it will be the parent that links to the 7682 * ring-buffer, but it will be the child that's actually using it. 7683 * 7684 * We are using event::rb to determine if the event should be stopped, 7685 * however this may race with ring_buffer_attach() (through set_output), 7686 * which will make us skip the event that actually needs to be stopped. 7687 * So ring_buffer_attach() has to stop an aux event before re-assigning 7688 * its rb pointer. 7689 */ 7690 if (rcu_dereference(parent->rb) == rb) 7691 ro->err = __perf_event_stop(&sd); 7692 } 7693 7694 static int __perf_pmu_output_stop(void *info) 7695 { 7696 struct perf_event *event = info; 7697 struct pmu *pmu = event->ctx->pmu; 7698 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 7699 struct remote_output ro = { 7700 .rb = event->rb, 7701 }; 7702 7703 rcu_read_lock(); 7704 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false); 7705 if (cpuctx->task_ctx) 7706 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop, 7707 &ro, false); 7708 rcu_read_unlock(); 7709 7710 return ro.err; 7711 } 7712 7713 static void perf_pmu_output_stop(struct perf_event *event) 7714 { 7715 struct perf_event *iter; 7716 int err, cpu; 7717 7718 restart: 7719 rcu_read_lock(); 7720 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) { 7721 /* 7722 * For per-CPU events, we need to make sure that neither they 7723 * nor their children are running; for cpu==-1 events it's 7724 * sufficient to stop the event itself if it's active, since 7725 * it can't have children. 7726 */ 7727 cpu = iter->cpu; 7728 if (cpu == -1) 7729 cpu = READ_ONCE(iter->oncpu); 7730 7731 if (cpu == -1) 7732 continue; 7733 7734 err = cpu_function_call(cpu, __perf_pmu_output_stop, event); 7735 if (err == -EAGAIN) { 7736 rcu_read_unlock(); 7737 goto restart; 7738 } 7739 } 7740 rcu_read_unlock(); 7741 } 7742 7743 /* 7744 * task tracking -- fork/exit 7745 * 7746 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 7747 */ 7748 7749 struct perf_task_event { 7750 struct task_struct *task; 7751 struct perf_event_context *task_ctx; 7752 7753 struct { 7754 struct perf_event_header header; 7755 7756 u32 pid; 7757 u32 ppid; 7758 u32 tid; 7759 u32 ptid; 7760 u64 time; 7761 } event_id; 7762 }; 7763 7764 static int perf_event_task_match(struct perf_event *event) 7765 { 7766 return event->attr.comm || event->attr.mmap || 7767 event->attr.mmap2 || event->attr.mmap_data || 7768 event->attr.task; 7769 } 7770 7771 static void perf_event_task_output(struct perf_event *event, 7772 void *data) 7773 { 7774 struct perf_task_event *task_event = data; 7775 struct perf_output_handle handle; 7776 struct perf_sample_data sample; 7777 struct task_struct *task = task_event->task; 7778 int ret, size = task_event->event_id.header.size; 7779 7780 if (!perf_event_task_match(event)) 7781 return; 7782 7783 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 7784 7785 ret = perf_output_begin(&handle, &sample, event, 7786 task_event->event_id.header.size); 7787 if (ret) 7788 goto out; 7789 7790 task_event->event_id.pid = perf_event_pid(event, task); 7791 task_event->event_id.tid = perf_event_tid(event, task); 7792 7793 if (task_event->event_id.header.type == PERF_RECORD_EXIT) { 7794 task_event->event_id.ppid = perf_event_pid(event, 7795 task->real_parent); 7796 task_event->event_id.ptid = perf_event_pid(event, 7797 task->real_parent); 7798 } else { /* PERF_RECORD_FORK */ 7799 task_event->event_id.ppid = perf_event_pid(event, current); 7800 task_event->event_id.ptid = perf_event_tid(event, current); 7801 } 7802 7803 task_event->event_id.time = perf_event_clock(event); 7804 7805 perf_output_put(&handle, task_event->event_id); 7806 7807 perf_event__output_id_sample(event, &handle, &sample); 7808 7809 perf_output_end(&handle); 7810 out: 7811 task_event->event_id.header.size = size; 7812 } 7813 7814 static void perf_event_task(struct task_struct *task, 7815 struct perf_event_context *task_ctx, 7816 int new) 7817 { 7818 struct perf_task_event task_event; 7819 7820 if (!atomic_read(&nr_comm_events) && 7821 !atomic_read(&nr_mmap_events) && 7822 !atomic_read(&nr_task_events)) 7823 return; 7824 7825 task_event = (struct perf_task_event){ 7826 .task = task, 7827 .task_ctx = task_ctx, 7828 .event_id = { 7829 .header = { 7830 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 7831 .misc = 0, 7832 .size = sizeof(task_event.event_id), 7833 }, 7834 /* .pid */ 7835 /* .ppid */ 7836 /* .tid */ 7837 /* .ptid */ 7838 /* .time */ 7839 }, 7840 }; 7841 7842 perf_iterate_sb(perf_event_task_output, 7843 &task_event, 7844 task_ctx); 7845 } 7846 7847 void perf_event_fork(struct task_struct *task) 7848 { 7849 perf_event_task(task, NULL, 1); 7850 perf_event_namespaces(task); 7851 } 7852 7853 /* 7854 * comm tracking 7855 */ 7856 7857 struct perf_comm_event { 7858 struct task_struct *task; 7859 char *comm; 7860 int comm_size; 7861 7862 struct { 7863 struct perf_event_header header; 7864 7865 u32 pid; 7866 u32 tid; 7867 } event_id; 7868 }; 7869 7870 static int perf_event_comm_match(struct perf_event *event) 7871 { 7872 return event->attr.comm; 7873 } 7874 7875 static void perf_event_comm_output(struct perf_event *event, 7876 void *data) 7877 { 7878 struct perf_comm_event *comm_event = data; 7879 struct perf_output_handle handle; 7880 struct perf_sample_data sample; 7881 int size = comm_event->event_id.header.size; 7882 int ret; 7883 7884 if (!perf_event_comm_match(event)) 7885 return; 7886 7887 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 7888 ret = perf_output_begin(&handle, &sample, event, 7889 comm_event->event_id.header.size); 7890 7891 if (ret) 7892 goto out; 7893 7894 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 7895 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 7896 7897 perf_output_put(&handle, comm_event->event_id); 7898 __output_copy(&handle, comm_event->comm, 7899 comm_event->comm_size); 7900 7901 perf_event__output_id_sample(event, &handle, &sample); 7902 7903 perf_output_end(&handle); 7904 out: 7905 comm_event->event_id.header.size = size; 7906 } 7907 7908 static void perf_event_comm_event(struct perf_comm_event *comm_event) 7909 { 7910 char comm[TASK_COMM_LEN]; 7911 unsigned int size; 7912 7913 memset(comm, 0, sizeof(comm)); 7914 strlcpy(comm, comm_event->task->comm, sizeof(comm)); 7915 size = ALIGN(strlen(comm)+1, sizeof(u64)); 7916 7917 comm_event->comm = comm; 7918 comm_event->comm_size = size; 7919 7920 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 7921 7922 perf_iterate_sb(perf_event_comm_output, 7923 comm_event, 7924 NULL); 7925 } 7926 7927 void perf_event_comm(struct task_struct *task, bool exec) 7928 { 7929 struct perf_comm_event comm_event; 7930 7931 if (!atomic_read(&nr_comm_events)) 7932 return; 7933 7934 comm_event = (struct perf_comm_event){ 7935 .task = task, 7936 /* .comm */ 7937 /* .comm_size */ 7938 .event_id = { 7939 .header = { 7940 .type = PERF_RECORD_COMM, 7941 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 7942 /* .size */ 7943 }, 7944 /* .pid */ 7945 /* .tid */ 7946 }, 7947 }; 7948 7949 perf_event_comm_event(&comm_event); 7950 } 7951 7952 /* 7953 * namespaces tracking 7954 */ 7955 7956 struct perf_namespaces_event { 7957 struct task_struct *task; 7958 7959 struct { 7960 struct perf_event_header header; 7961 7962 u32 pid; 7963 u32 tid; 7964 u64 nr_namespaces; 7965 struct perf_ns_link_info link_info[NR_NAMESPACES]; 7966 } event_id; 7967 }; 7968 7969 static int perf_event_namespaces_match(struct perf_event *event) 7970 { 7971 return event->attr.namespaces; 7972 } 7973 7974 static void perf_event_namespaces_output(struct perf_event *event, 7975 void *data) 7976 { 7977 struct perf_namespaces_event *namespaces_event = data; 7978 struct perf_output_handle handle; 7979 struct perf_sample_data sample; 7980 u16 header_size = namespaces_event->event_id.header.size; 7981 int ret; 7982 7983 if (!perf_event_namespaces_match(event)) 7984 return; 7985 7986 perf_event_header__init_id(&namespaces_event->event_id.header, 7987 &sample, event); 7988 ret = perf_output_begin(&handle, &sample, event, 7989 namespaces_event->event_id.header.size); 7990 if (ret) 7991 goto out; 7992 7993 namespaces_event->event_id.pid = perf_event_pid(event, 7994 namespaces_event->task); 7995 namespaces_event->event_id.tid = perf_event_tid(event, 7996 namespaces_event->task); 7997 7998 perf_output_put(&handle, namespaces_event->event_id); 7999 8000 perf_event__output_id_sample(event, &handle, &sample); 8001 8002 perf_output_end(&handle); 8003 out: 8004 namespaces_event->event_id.header.size = header_size; 8005 } 8006 8007 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info, 8008 struct task_struct *task, 8009 const struct proc_ns_operations *ns_ops) 8010 { 8011 struct path ns_path; 8012 struct inode *ns_inode; 8013 int error; 8014 8015 error = ns_get_path(&ns_path, task, ns_ops); 8016 if (!error) { 8017 ns_inode = ns_path.dentry->d_inode; 8018 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev); 8019 ns_link_info->ino = ns_inode->i_ino; 8020 path_put(&ns_path); 8021 } 8022 } 8023 8024 void perf_event_namespaces(struct task_struct *task) 8025 { 8026 struct perf_namespaces_event namespaces_event; 8027 struct perf_ns_link_info *ns_link_info; 8028 8029 if (!atomic_read(&nr_namespaces_events)) 8030 return; 8031 8032 namespaces_event = (struct perf_namespaces_event){ 8033 .task = task, 8034 .event_id = { 8035 .header = { 8036 .type = PERF_RECORD_NAMESPACES, 8037 .misc = 0, 8038 .size = sizeof(namespaces_event.event_id), 8039 }, 8040 /* .pid */ 8041 /* .tid */ 8042 .nr_namespaces = NR_NAMESPACES, 8043 /* .link_info[NR_NAMESPACES] */ 8044 }, 8045 }; 8046 8047 ns_link_info = namespaces_event.event_id.link_info; 8048 8049 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX], 8050 task, &mntns_operations); 8051 8052 #ifdef CONFIG_USER_NS 8053 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX], 8054 task, &userns_operations); 8055 #endif 8056 #ifdef CONFIG_NET_NS 8057 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX], 8058 task, &netns_operations); 8059 #endif 8060 #ifdef CONFIG_UTS_NS 8061 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX], 8062 task, &utsns_operations); 8063 #endif 8064 #ifdef CONFIG_IPC_NS 8065 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX], 8066 task, &ipcns_operations); 8067 #endif 8068 #ifdef CONFIG_PID_NS 8069 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX], 8070 task, &pidns_operations); 8071 #endif 8072 #ifdef CONFIG_CGROUPS 8073 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX], 8074 task, &cgroupns_operations); 8075 #endif 8076 8077 perf_iterate_sb(perf_event_namespaces_output, 8078 &namespaces_event, 8079 NULL); 8080 } 8081 8082 /* 8083 * cgroup tracking 8084 */ 8085 #ifdef CONFIG_CGROUP_PERF 8086 8087 struct perf_cgroup_event { 8088 char *path; 8089 int path_size; 8090 struct { 8091 struct perf_event_header header; 8092 u64 id; 8093 char path[]; 8094 } event_id; 8095 }; 8096 8097 static int perf_event_cgroup_match(struct perf_event *event) 8098 { 8099 return event->attr.cgroup; 8100 } 8101 8102 static void perf_event_cgroup_output(struct perf_event *event, void *data) 8103 { 8104 struct perf_cgroup_event *cgroup_event = data; 8105 struct perf_output_handle handle; 8106 struct perf_sample_data sample; 8107 u16 header_size = cgroup_event->event_id.header.size; 8108 int ret; 8109 8110 if (!perf_event_cgroup_match(event)) 8111 return; 8112 8113 perf_event_header__init_id(&cgroup_event->event_id.header, 8114 &sample, event); 8115 ret = perf_output_begin(&handle, &sample, event, 8116 cgroup_event->event_id.header.size); 8117 if (ret) 8118 goto out; 8119 8120 perf_output_put(&handle, cgroup_event->event_id); 8121 __output_copy(&handle, cgroup_event->path, cgroup_event->path_size); 8122 8123 perf_event__output_id_sample(event, &handle, &sample); 8124 8125 perf_output_end(&handle); 8126 out: 8127 cgroup_event->event_id.header.size = header_size; 8128 } 8129 8130 static void perf_event_cgroup(struct cgroup *cgrp) 8131 { 8132 struct perf_cgroup_event cgroup_event; 8133 char path_enomem[16] = "//enomem"; 8134 char *pathname; 8135 size_t size; 8136 8137 if (!atomic_read(&nr_cgroup_events)) 8138 return; 8139 8140 cgroup_event = (struct perf_cgroup_event){ 8141 .event_id = { 8142 .header = { 8143 .type = PERF_RECORD_CGROUP, 8144 .misc = 0, 8145 .size = sizeof(cgroup_event.event_id), 8146 }, 8147 .id = cgroup_id(cgrp), 8148 }, 8149 }; 8150 8151 pathname = kmalloc(PATH_MAX, GFP_KERNEL); 8152 if (pathname == NULL) { 8153 cgroup_event.path = path_enomem; 8154 } else { 8155 /* just to be sure to have enough space for alignment */ 8156 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64)); 8157 cgroup_event.path = pathname; 8158 } 8159 8160 /* 8161 * Since our buffer works in 8 byte units we need to align our string 8162 * size to a multiple of 8. However, we must guarantee the tail end is 8163 * zero'd out to avoid leaking random bits to userspace. 8164 */ 8165 size = strlen(cgroup_event.path) + 1; 8166 while (!IS_ALIGNED(size, sizeof(u64))) 8167 cgroup_event.path[size++] = '\0'; 8168 8169 cgroup_event.event_id.header.size += size; 8170 cgroup_event.path_size = size; 8171 8172 perf_iterate_sb(perf_event_cgroup_output, 8173 &cgroup_event, 8174 NULL); 8175 8176 kfree(pathname); 8177 } 8178 8179 #endif 8180 8181 /* 8182 * mmap tracking 8183 */ 8184 8185 struct perf_mmap_event { 8186 struct vm_area_struct *vma; 8187 8188 const char *file_name; 8189 int file_size; 8190 int maj, min; 8191 u64 ino; 8192 u64 ino_generation; 8193 u32 prot, flags; 8194 u8 build_id[BUILD_ID_SIZE_MAX]; 8195 u32 build_id_size; 8196 8197 struct { 8198 struct perf_event_header header; 8199 8200 u32 pid; 8201 u32 tid; 8202 u64 start; 8203 u64 len; 8204 u64 pgoff; 8205 } event_id; 8206 }; 8207 8208 static int perf_event_mmap_match(struct perf_event *event, 8209 void *data) 8210 { 8211 struct perf_mmap_event *mmap_event = data; 8212 struct vm_area_struct *vma = mmap_event->vma; 8213 int executable = vma->vm_flags & VM_EXEC; 8214 8215 return (!executable && event->attr.mmap_data) || 8216 (executable && (event->attr.mmap || event->attr.mmap2)); 8217 } 8218 8219 static void perf_event_mmap_output(struct perf_event *event, 8220 void *data) 8221 { 8222 struct perf_mmap_event *mmap_event = data; 8223 struct perf_output_handle handle; 8224 struct perf_sample_data sample; 8225 int size = mmap_event->event_id.header.size; 8226 u32 type = mmap_event->event_id.header.type; 8227 bool use_build_id; 8228 int ret; 8229 8230 if (!perf_event_mmap_match(event, data)) 8231 return; 8232 8233 if (event->attr.mmap2) { 8234 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 8235 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 8236 mmap_event->event_id.header.size += sizeof(mmap_event->min); 8237 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 8238 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 8239 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 8240 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 8241 } 8242 8243 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 8244 ret = perf_output_begin(&handle, &sample, event, 8245 mmap_event->event_id.header.size); 8246 if (ret) 8247 goto out; 8248 8249 mmap_event->event_id.pid = perf_event_pid(event, current); 8250 mmap_event->event_id.tid = perf_event_tid(event, current); 8251 8252 use_build_id = event->attr.build_id && mmap_event->build_id_size; 8253 8254 if (event->attr.mmap2 && use_build_id) 8255 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID; 8256 8257 perf_output_put(&handle, mmap_event->event_id); 8258 8259 if (event->attr.mmap2) { 8260 if (use_build_id) { 8261 u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 }; 8262 8263 __output_copy(&handle, size, 4); 8264 __output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX); 8265 } else { 8266 perf_output_put(&handle, mmap_event->maj); 8267 perf_output_put(&handle, mmap_event->min); 8268 perf_output_put(&handle, mmap_event->ino); 8269 perf_output_put(&handle, mmap_event->ino_generation); 8270 } 8271 perf_output_put(&handle, mmap_event->prot); 8272 perf_output_put(&handle, mmap_event->flags); 8273 } 8274 8275 __output_copy(&handle, mmap_event->file_name, 8276 mmap_event->file_size); 8277 8278 perf_event__output_id_sample(event, &handle, &sample); 8279 8280 perf_output_end(&handle); 8281 out: 8282 mmap_event->event_id.header.size = size; 8283 mmap_event->event_id.header.type = type; 8284 } 8285 8286 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 8287 { 8288 struct vm_area_struct *vma = mmap_event->vma; 8289 struct file *file = vma->vm_file; 8290 int maj = 0, min = 0; 8291 u64 ino = 0, gen = 0; 8292 u32 prot = 0, flags = 0; 8293 unsigned int size; 8294 char tmp[16]; 8295 char *buf = NULL; 8296 char *name; 8297 8298 if (vma->vm_flags & VM_READ) 8299 prot |= PROT_READ; 8300 if (vma->vm_flags & VM_WRITE) 8301 prot |= PROT_WRITE; 8302 if (vma->vm_flags & VM_EXEC) 8303 prot |= PROT_EXEC; 8304 8305 if (vma->vm_flags & VM_MAYSHARE) 8306 flags = MAP_SHARED; 8307 else 8308 flags = MAP_PRIVATE; 8309 8310 if (vma->vm_flags & VM_DENYWRITE) 8311 flags |= MAP_DENYWRITE; 8312 if (vma->vm_flags & VM_LOCKED) 8313 flags |= MAP_LOCKED; 8314 if (is_vm_hugetlb_page(vma)) 8315 flags |= MAP_HUGETLB; 8316 8317 if (file) { 8318 struct inode *inode; 8319 dev_t dev; 8320 8321 buf = kmalloc(PATH_MAX, GFP_KERNEL); 8322 if (!buf) { 8323 name = "//enomem"; 8324 goto cpy_name; 8325 } 8326 /* 8327 * d_path() works from the end of the rb backwards, so we 8328 * need to add enough zero bytes after the string to handle 8329 * the 64bit alignment we do later. 8330 */ 8331 name = file_path(file, buf, PATH_MAX - sizeof(u64)); 8332 if (IS_ERR(name)) { 8333 name = "//toolong"; 8334 goto cpy_name; 8335 } 8336 inode = file_inode(vma->vm_file); 8337 dev = inode->i_sb->s_dev; 8338 ino = inode->i_ino; 8339 gen = inode->i_generation; 8340 maj = MAJOR(dev); 8341 min = MINOR(dev); 8342 8343 goto got_name; 8344 } else { 8345 if (vma->vm_ops && vma->vm_ops->name) { 8346 name = (char *) vma->vm_ops->name(vma); 8347 if (name) 8348 goto cpy_name; 8349 } 8350 8351 name = (char *)arch_vma_name(vma); 8352 if (name) 8353 goto cpy_name; 8354 8355 if (vma->vm_start <= vma->vm_mm->start_brk && 8356 vma->vm_end >= vma->vm_mm->brk) { 8357 name = "[heap]"; 8358 goto cpy_name; 8359 } 8360 if (vma->vm_start <= vma->vm_mm->start_stack && 8361 vma->vm_end >= vma->vm_mm->start_stack) { 8362 name = "[stack]"; 8363 goto cpy_name; 8364 } 8365 8366 name = "//anon"; 8367 goto cpy_name; 8368 } 8369 8370 cpy_name: 8371 strlcpy(tmp, name, sizeof(tmp)); 8372 name = tmp; 8373 got_name: 8374 /* 8375 * Since our buffer works in 8 byte units we need to align our string 8376 * size to a multiple of 8. However, we must guarantee the tail end is 8377 * zero'd out to avoid leaking random bits to userspace. 8378 */ 8379 size = strlen(name)+1; 8380 while (!IS_ALIGNED(size, sizeof(u64))) 8381 name[size++] = '\0'; 8382 8383 mmap_event->file_name = name; 8384 mmap_event->file_size = size; 8385 mmap_event->maj = maj; 8386 mmap_event->min = min; 8387 mmap_event->ino = ino; 8388 mmap_event->ino_generation = gen; 8389 mmap_event->prot = prot; 8390 mmap_event->flags = flags; 8391 8392 if (!(vma->vm_flags & VM_EXEC)) 8393 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 8394 8395 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 8396 8397 if (atomic_read(&nr_build_id_events)) 8398 build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size); 8399 8400 perf_iterate_sb(perf_event_mmap_output, 8401 mmap_event, 8402 NULL); 8403 8404 kfree(buf); 8405 } 8406 8407 /* 8408 * Check whether inode and address range match filter criteria. 8409 */ 8410 static bool perf_addr_filter_match(struct perf_addr_filter *filter, 8411 struct file *file, unsigned long offset, 8412 unsigned long size) 8413 { 8414 /* d_inode(NULL) won't be equal to any mapped user-space file */ 8415 if (!filter->path.dentry) 8416 return false; 8417 8418 if (d_inode(filter->path.dentry) != file_inode(file)) 8419 return false; 8420 8421 if (filter->offset > offset + size) 8422 return false; 8423 8424 if (filter->offset + filter->size < offset) 8425 return false; 8426 8427 return true; 8428 } 8429 8430 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter, 8431 struct vm_area_struct *vma, 8432 struct perf_addr_filter_range *fr) 8433 { 8434 unsigned long vma_size = vma->vm_end - vma->vm_start; 8435 unsigned long off = vma->vm_pgoff << PAGE_SHIFT; 8436 struct file *file = vma->vm_file; 8437 8438 if (!perf_addr_filter_match(filter, file, off, vma_size)) 8439 return false; 8440 8441 if (filter->offset < off) { 8442 fr->start = vma->vm_start; 8443 fr->size = min(vma_size, filter->size - (off - filter->offset)); 8444 } else { 8445 fr->start = vma->vm_start + filter->offset - off; 8446 fr->size = min(vma->vm_end - fr->start, filter->size); 8447 } 8448 8449 return true; 8450 } 8451 8452 static void __perf_addr_filters_adjust(struct perf_event *event, void *data) 8453 { 8454 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 8455 struct vm_area_struct *vma = data; 8456 struct perf_addr_filter *filter; 8457 unsigned int restart = 0, count = 0; 8458 unsigned long flags; 8459 8460 if (!has_addr_filter(event)) 8461 return; 8462 8463 if (!vma->vm_file) 8464 return; 8465 8466 raw_spin_lock_irqsave(&ifh->lock, flags); 8467 list_for_each_entry(filter, &ifh->list, entry) { 8468 if (perf_addr_filter_vma_adjust(filter, vma, 8469 &event->addr_filter_ranges[count])) 8470 restart++; 8471 8472 count++; 8473 } 8474 8475 if (restart) 8476 event->addr_filters_gen++; 8477 raw_spin_unlock_irqrestore(&ifh->lock, flags); 8478 8479 if (restart) 8480 perf_event_stop(event, 1); 8481 } 8482 8483 /* 8484 * Adjust all task's events' filters to the new vma 8485 */ 8486 static void perf_addr_filters_adjust(struct vm_area_struct *vma) 8487 { 8488 struct perf_event_context *ctx; 8489 int ctxn; 8490 8491 /* 8492 * Data tracing isn't supported yet and as such there is no need 8493 * to keep track of anything that isn't related to executable code: 8494 */ 8495 if (!(vma->vm_flags & VM_EXEC)) 8496 return; 8497 8498 rcu_read_lock(); 8499 for_each_task_context_nr(ctxn) { 8500 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 8501 if (!ctx) 8502 continue; 8503 8504 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true); 8505 } 8506 rcu_read_unlock(); 8507 } 8508 8509 void perf_event_mmap(struct vm_area_struct *vma) 8510 { 8511 struct perf_mmap_event mmap_event; 8512 8513 if (!atomic_read(&nr_mmap_events)) 8514 return; 8515 8516 mmap_event = (struct perf_mmap_event){ 8517 .vma = vma, 8518 /* .file_name */ 8519 /* .file_size */ 8520 .event_id = { 8521 .header = { 8522 .type = PERF_RECORD_MMAP, 8523 .misc = PERF_RECORD_MISC_USER, 8524 /* .size */ 8525 }, 8526 /* .pid */ 8527 /* .tid */ 8528 .start = vma->vm_start, 8529 .len = vma->vm_end - vma->vm_start, 8530 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 8531 }, 8532 /* .maj (attr_mmap2 only) */ 8533 /* .min (attr_mmap2 only) */ 8534 /* .ino (attr_mmap2 only) */ 8535 /* .ino_generation (attr_mmap2 only) */ 8536 /* .prot (attr_mmap2 only) */ 8537 /* .flags (attr_mmap2 only) */ 8538 }; 8539 8540 perf_addr_filters_adjust(vma); 8541 perf_event_mmap_event(&mmap_event); 8542 } 8543 8544 void perf_event_aux_event(struct perf_event *event, unsigned long head, 8545 unsigned long size, u64 flags) 8546 { 8547 struct perf_output_handle handle; 8548 struct perf_sample_data sample; 8549 struct perf_aux_event { 8550 struct perf_event_header header; 8551 u64 offset; 8552 u64 size; 8553 u64 flags; 8554 } rec = { 8555 .header = { 8556 .type = PERF_RECORD_AUX, 8557 .misc = 0, 8558 .size = sizeof(rec), 8559 }, 8560 .offset = head, 8561 .size = size, 8562 .flags = flags, 8563 }; 8564 int ret; 8565 8566 perf_event_header__init_id(&rec.header, &sample, event); 8567 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 8568 8569 if (ret) 8570 return; 8571 8572 perf_output_put(&handle, rec); 8573 perf_event__output_id_sample(event, &handle, &sample); 8574 8575 perf_output_end(&handle); 8576 } 8577 8578 /* 8579 * Lost/dropped samples logging 8580 */ 8581 void perf_log_lost_samples(struct perf_event *event, u64 lost) 8582 { 8583 struct perf_output_handle handle; 8584 struct perf_sample_data sample; 8585 int ret; 8586 8587 struct { 8588 struct perf_event_header header; 8589 u64 lost; 8590 } lost_samples_event = { 8591 .header = { 8592 .type = PERF_RECORD_LOST_SAMPLES, 8593 .misc = 0, 8594 .size = sizeof(lost_samples_event), 8595 }, 8596 .lost = lost, 8597 }; 8598 8599 perf_event_header__init_id(&lost_samples_event.header, &sample, event); 8600 8601 ret = perf_output_begin(&handle, &sample, event, 8602 lost_samples_event.header.size); 8603 if (ret) 8604 return; 8605 8606 perf_output_put(&handle, lost_samples_event); 8607 perf_event__output_id_sample(event, &handle, &sample); 8608 perf_output_end(&handle); 8609 } 8610 8611 /* 8612 * context_switch tracking 8613 */ 8614 8615 struct perf_switch_event { 8616 struct task_struct *task; 8617 struct task_struct *next_prev; 8618 8619 struct { 8620 struct perf_event_header header; 8621 u32 next_prev_pid; 8622 u32 next_prev_tid; 8623 } event_id; 8624 }; 8625 8626 static int perf_event_switch_match(struct perf_event *event) 8627 { 8628 return event->attr.context_switch; 8629 } 8630 8631 static void perf_event_switch_output(struct perf_event *event, void *data) 8632 { 8633 struct perf_switch_event *se = data; 8634 struct perf_output_handle handle; 8635 struct perf_sample_data sample; 8636 int ret; 8637 8638 if (!perf_event_switch_match(event)) 8639 return; 8640 8641 /* Only CPU-wide events are allowed to see next/prev pid/tid */ 8642 if (event->ctx->task) { 8643 se->event_id.header.type = PERF_RECORD_SWITCH; 8644 se->event_id.header.size = sizeof(se->event_id.header); 8645 } else { 8646 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE; 8647 se->event_id.header.size = sizeof(se->event_id); 8648 se->event_id.next_prev_pid = 8649 perf_event_pid(event, se->next_prev); 8650 se->event_id.next_prev_tid = 8651 perf_event_tid(event, se->next_prev); 8652 } 8653 8654 perf_event_header__init_id(&se->event_id.header, &sample, event); 8655 8656 ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size); 8657 if (ret) 8658 return; 8659 8660 if (event->ctx->task) 8661 perf_output_put(&handle, se->event_id.header); 8662 else 8663 perf_output_put(&handle, se->event_id); 8664 8665 perf_event__output_id_sample(event, &handle, &sample); 8666 8667 perf_output_end(&handle); 8668 } 8669 8670 static void perf_event_switch(struct task_struct *task, 8671 struct task_struct *next_prev, bool sched_in) 8672 { 8673 struct perf_switch_event switch_event; 8674 8675 /* N.B. caller checks nr_switch_events != 0 */ 8676 8677 switch_event = (struct perf_switch_event){ 8678 .task = task, 8679 .next_prev = next_prev, 8680 .event_id = { 8681 .header = { 8682 /* .type */ 8683 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT, 8684 /* .size */ 8685 }, 8686 /* .next_prev_pid */ 8687 /* .next_prev_tid */ 8688 }, 8689 }; 8690 8691 if (!sched_in && task->on_rq) { 8692 switch_event.event_id.header.misc |= 8693 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT; 8694 } 8695 8696 perf_iterate_sb(perf_event_switch_output, &switch_event, NULL); 8697 } 8698 8699 /* 8700 * IRQ throttle logging 8701 */ 8702 8703 static void perf_log_throttle(struct perf_event *event, int enable) 8704 { 8705 struct perf_output_handle handle; 8706 struct perf_sample_data sample; 8707 int ret; 8708 8709 struct { 8710 struct perf_event_header header; 8711 u64 time; 8712 u64 id; 8713 u64 stream_id; 8714 } throttle_event = { 8715 .header = { 8716 .type = PERF_RECORD_THROTTLE, 8717 .misc = 0, 8718 .size = sizeof(throttle_event), 8719 }, 8720 .time = perf_event_clock(event), 8721 .id = primary_event_id(event), 8722 .stream_id = event->id, 8723 }; 8724 8725 if (enable) 8726 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 8727 8728 perf_event_header__init_id(&throttle_event.header, &sample, event); 8729 8730 ret = perf_output_begin(&handle, &sample, event, 8731 throttle_event.header.size); 8732 if (ret) 8733 return; 8734 8735 perf_output_put(&handle, throttle_event); 8736 perf_event__output_id_sample(event, &handle, &sample); 8737 perf_output_end(&handle); 8738 } 8739 8740 /* 8741 * ksymbol register/unregister tracking 8742 */ 8743 8744 struct perf_ksymbol_event { 8745 const char *name; 8746 int name_len; 8747 struct { 8748 struct perf_event_header header; 8749 u64 addr; 8750 u32 len; 8751 u16 ksym_type; 8752 u16 flags; 8753 } event_id; 8754 }; 8755 8756 static int perf_event_ksymbol_match(struct perf_event *event) 8757 { 8758 return event->attr.ksymbol; 8759 } 8760 8761 static void perf_event_ksymbol_output(struct perf_event *event, void *data) 8762 { 8763 struct perf_ksymbol_event *ksymbol_event = data; 8764 struct perf_output_handle handle; 8765 struct perf_sample_data sample; 8766 int ret; 8767 8768 if (!perf_event_ksymbol_match(event)) 8769 return; 8770 8771 perf_event_header__init_id(&ksymbol_event->event_id.header, 8772 &sample, event); 8773 ret = perf_output_begin(&handle, &sample, event, 8774 ksymbol_event->event_id.header.size); 8775 if (ret) 8776 return; 8777 8778 perf_output_put(&handle, ksymbol_event->event_id); 8779 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len); 8780 perf_event__output_id_sample(event, &handle, &sample); 8781 8782 perf_output_end(&handle); 8783 } 8784 8785 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister, 8786 const char *sym) 8787 { 8788 struct perf_ksymbol_event ksymbol_event; 8789 char name[KSYM_NAME_LEN]; 8790 u16 flags = 0; 8791 int name_len; 8792 8793 if (!atomic_read(&nr_ksymbol_events)) 8794 return; 8795 8796 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX || 8797 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN) 8798 goto err; 8799 8800 strlcpy(name, sym, KSYM_NAME_LEN); 8801 name_len = strlen(name) + 1; 8802 while (!IS_ALIGNED(name_len, sizeof(u64))) 8803 name[name_len++] = '\0'; 8804 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64)); 8805 8806 if (unregister) 8807 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER; 8808 8809 ksymbol_event = (struct perf_ksymbol_event){ 8810 .name = name, 8811 .name_len = name_len, 8812 .event_id = { 8813 .header = { 8814 .type = PERF_RECORD_KSYMBOL, 8815 .size = sizeof(ksymbol_event.event_id) + 8816 name_len, 8817 }, 8818 .addr = addr, 8819 .len = len, 8820 .ksym_type = ksym_type, 8821 .flags = flags, 8822 }, 8823 }; 8824 8825 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL); 8826 return; 8827 err: 8828 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type); 8829 } 8830 8831 /* 8832 * bpf program load/unload tracking 8833 */ 8834 8835 struct perf_bpf_event { 8836 struct bpf_prog *prog; 8837 struct { 8838 struct perf_event_header header; 8839 u16 type; 8840 u16 flags; 8841 u32 id; 8842 u8 tag[BPF_TAG_SIZE]; 8843 } event_id; 8844 }; 8845 8846 static int perf_event_bpf_match(struct perf_event *event) 8847 { 8848 return event->attr.bpf_event; 8849 } 8850 8851 static void perf_event_bpf_output(struct perf_event *event, void *data) 8852 { 8853 struct perf_bpf_event *bpf_event = data; 8854 struct perf_output_handle handle; 8855 struct perf_sample_data sample; 8856 int ret; 8857 8858 if (!perf_event_bpf_match(event)) 8859 return; 8860 8861 perf_event_header__init_id(&bpf_event->event_id.header, 8862 &sample, event); 8863 ret = perf_output_begin(&handle, data, event, 8864 bpf_event->event_id.header.size); 8865 if (ret) 8866 return; 8867 8868 perf_output_put(&handle, bpf_event->event_id); 8869 perf_event__output_id_sample(event, &handle, &sample); 8870 8871 perf_output_end(&handle); 8872 } 8873 8874 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog, 8875 enum perf_bpf_event_type type) 8876 { 8877 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD; 8878 int i; 8879 8880 if (prog->aux->func_cnt == 0) { 8881 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF, 8882 (u64)(unsigned long)prog->bpf_func, 8883 prog->jited_len, unregister, 8884 prog->aux->ksym.name); 8885 } else { 8886 for (i = 0; i < prog->aux->func_cnt; i++) { 8887 struct bpf_prog *subprog = prog->aux->func[i]; 8888 8889 perf_event_ksymbol( 8890 PERF_RECORD_KSYMBOL_TYPE_BPF, 8891 (u64)(unsigned long)subprog->bpf_func, 8892 subprog->jited_len, unregister, 8893 prog->aux->ksym.name); 8894 } 8895 } 8896 } 8897 8898 void perf_event_bpf_event(struct bpf_prog *prog, 8899 enum perf_bpf_event_type type, 8900 u16 flags) 8901 { 8902 struct perf_bpf_event bpf_event; 8903 8904 if (type <= PERF_BPF_EVENT_UNKNOWN || 8905 type >= PERF_BPF_EVENT_MAX) 8906 return; 8907 8908 switch (type) { 8909 case PERF_BPF_EVENT_PROG_LOAD: 8910 case PERF_BPF_EVENT_PROG_UNLOAD: 8911 if (atomic_read(&nr_ksymbol_events)) 8912 perf_event_bpf_emit_ksymbols(prog, type); 8913 break; 8914 default: 8915 break; 8916 } 8917 8918 if (!atomic_read(&nr_bpf_events)) 8919 return; 8920 8921 bpf_event = (struct perf_bpf_event){ 8922 .prog = prog, 8923 .event_id = { 8924 .header = { 8925 .type = PERF_RECORD_BPF_EVENT, 8926 .size = sizeof(bpf_event.event_id), 8927 }, 8928 .type = type, 8929 .flags = flags, 8930 .id = prog->aux->id, 8931 }, 8932 }; 8933 8934 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64)); 8935 8936 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE); 8937 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL); 8938 } 8939 8940 struct perf_text_poke_event { 8941 const void *old_bytes; 8942 const void *new_bytes; 8943 size_t pad; 8944 u16 old_len; 8945 u16 new_len; 8946 8947 struct { 8948 struct perf_event_header header; 8949 8950 u64 addr; 8951 } event_id; 8952 }; 8953 8954 static int perf_event_text_poke_match(struct perf_event *event) 8955 { 8956 return event->attr.text_poke; 8957 } 8958 8959 static void perf_event_text_poke_output(struct perf_event *event, void *data) 8960 { 8961 struct perf_text_poke_event *text_poke_event = data; 8962 struct perf_output_handle handle; 8963 struct perf_sample_data sample; 8964 u64 padding = 0; 8965 int ret; 8966 8967 if (!perf_event_text_poke_match(event)) 8968 return; 8969 8970 perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event); 8971 8972 ret = perf_output_begin(&handle, &sample, event, 8973 text_poke_event->event_id.header.size); 8974 if (ret) 8975 return; 8976 8977 perf_output_put(&handle, text_poke_event->event_id); 8978 perf_output_put(&handle, text_poke_event->old_len); 8979 perf_output_put(&handle, text_poke_event->new_len); 8980 8981 __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len); 8982 __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len); 8983 8984 if (text_poke_event->pad) 8985 __output_copy(&handle, &padding, text_poke_event->pad); 8986 8987 perf_event__output_id_sample(event, &handle, &sample); 8988 8989 perf_output_end(&handle); 8990 } 8991 8992 void perf_event_text_poke(const void *addr, const void *old_bytes, 8993 size_t old_len, const void *new_bytes, size_t new_len) 8994 { 8995 struct perf_text_poke_event text_poke_event; 8996 size_t tot, pad; 8997 8998 if (!atomic_read(&nr_text_poke_events)) 8999 return; 9000 9001 tot = sizeof(text_poke_event.old_len) + old_len; 9002 tot += sizeof(text_poke_event.new_len) + new_len; 9003 pad = ALIGN(tot, sizeof(u64)) - tot; 9004 9005 text_poke_event = (struct perf_text_poke_event){ 9006 .old_bytes = old_bytes, 9007 .new_bytes = new_bytes, 9008 .pad = pad, 9009 .old_len = old_len, 9010 .new_len = new_len, 9011 .event_id = { 9012 .header = { 9013 .type = PERF_RECORD_TEXT_POKE, 9014 .misc = PERF_RECORD_MISC_KERNEL, 9015 .size = sizeof(text_poke_event.event_id) + tot + pad, 9016 }, 9017 .addr = (unsigned long)addr, 9018 }, 9019 }; 9020 9021 perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL); 9022 } 9023 9024 void perf_event_itrace_started(struct perf_event *event) 9025 { 9026 event->attach_state |= PERF_ATTACH_ITRACE; 9027 } 9028 9029 static void perf_log_itrace_start(struct perf_event *event) 9030 { 9031 struct perf_output_handle handle; 9032 struct perf_sample_data sample; 9033 struct perf_aux_event { 9034 struct perf_event_header header; 9035 u32 pid; 9036 u32 tid; 9037 } rec; 9038 int ret; 9039 9040 if (event->parent) 9041 event = event->parent; 9042 9043 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || 9044 event->attach_state & PERF_ATTACH_ITRACE) 9045 return; 9046 9047 rec.header.type = PERF_RECORD_ITRACE_START; 9048 rec.header.misc = 0; 9049 rec.header.size = sizeof(rec); 9050 rec.pid = perf_event_pid(event, current); 9051 rec.tid = perf_event_tid(event, current); 9052 9053 perf_event_header__init_id(&rec.header, &sample, event); 9054 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 9055 9056 if (ret) 9057 return; 9058 9059 perf_output_put(&handle, rec); 9060 perf_event__output_id_sample(event, &handle, &sample); 9061 9062 perf_output_end(&handle); 9063 } 9064 9065 static int 9066 __perf_event_account_interrupt(struct perf_event *event, int throttle) 9067 { 9068 struct hw_perf_event *hwc = &event->hw; 9069 int ret = 0; 9070 u64 seq; 9071 9072 seq = __this_cpu_read(perf_throttled_seq); 9073 if (seq != hwc->interrupts_seq) { 9074 hwc->interrupts_seq = seq; 9075 hwc->interrupts = 1; 9076 } else { 9077 hwc->interrupts++; 9078 if (unlikely(throttle 9079 && hwc->interrupts >= max_samples_per_tick)) { 9080 __this_cpu_inc(perf_throttled_count); 9081 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 9082 hwc->interrupts = MAX_INTERRUPTS; 9083 perf_log_throttle(event, 0); 9084 ret = 1; 9085 } 9086 } 9087 9088 if (event->attr.freq) { 9089 u64 now = perf_clock(); 9090 s64 delta = now - hwc->freq_time_stamp; 9091 9092 hwc->freq_time_stamp = now; 9093 9094 if (delta > 0 && delta < 2*TICK_NSEC) 9095 perf_adjust_period(event, delta, hwc->last_period, true); 9096 } 9097 9098 return ret; 9099 } 9100 9101 int perf_event_account_interrupt(struct perf_event *event) 9102 { 9103 return __perf_event_account_interrupt(event, 1); 9104 } 9105 9106 /* 9107 * Generic event overflow handling, sampling. 9108 */ 9109 9110 static int __perf_event_overflow(struct perf_event *event, 9111 int throttle, struct perf_sample_data *data, 9112 struct pt_regs *regs) 9113 { 9114 int events = atomic_read(&event->event_limit); 9115 int ret = 0; 9116 9117 /* 9118 * Non-sampling counters might still use the PMI to fold short 9119 * hardware counters, ignore those. 9120 */ 9121 if (unlikely(!is_sampling_event(event))) 9122 return 0; 9123 9124 ret = __perf_event_account_interrupt(event, throttle); 9125 9126 /* 9127 * XXX event_limit might not quite work as expected on inherited 9128 * events 9129 */ 9130 9131 event->pending_kill = POLL_IN; 9132 if (events && atomic_dec_and_test(&event->event_limit)) { 9133 ret = 1; 9134 event->pending_kill = POLL_HUP; 9135 event->pending_addr = data->addr; 9136 9137 perf_event_disable_inatomic(event); 9138 } 9139 9140 READ_ONCE(event->overflow_handler)(event, data, regs); 9141 9142 if (*perf_event_fasync(event) && event->pending_kill) { 9143 event->pending_wakeup = 1; 9144 irq_work_queue(&event->pending); 9145 } 9146 9147 return ret; 9148 } 9149 9150 int perf_event_overflow(struct perf_event *event, 9151 struct perf_sample_data *data, 9152 struct pt_regs *regs) 9153 { 9154 return __perf_event_overflow(event, 1, data, regs); 9155 } 9156 9157 /* 9158 * Generic software event infrastructure 9159 */ 9160 9161 struct swevent_htable { 9162 struct swevent_hlist *swevent_hlist; 9163 struct mutex hlist_mutex; 9164 int hlist_refcount; 9165 9166 /* Recursion avoidance in each contexts */ 9167 int recursion[PERF_NR_CONTEXTS]; 9168 }; 9169 9170 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 9171 9172 /* 9173 * We directly increment event->count and keep a second value in 9174 * event->hw.period_left to count intervals. This period event 9175 * is kept in the range [-sample_period, 0] so that we can use the 9176 * sign as trigger. 9177 */ 9178 9179 u64 perf_swevent_set_period(struct perf_event *event) 9180 { 9181 struct hw_perf_event *hwc = &event->hw; 9182 u64 period = hwc->last_period; 9183 u64 nr, offset; 9184 s64 old, val; 9185 9186 hwc->last_period = hwc->sample_period; 9187 9188 again: 9189 old = val = local64_read(&hwc->period_left); 9190 if (val < 0) 9191 return 0; 9192 9193 nr = div64_u64(period + val, period); 9194 offset = nr * period; 9195 val -= offset; 9196 if (local64_cmpxchg(&hwc->period_left, old, val) != old) 9197 goto again; 9198 9199 return nr; 9200 } 9201 9202 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 9203 struct perf_sample_data *data, 9204 struct pt_regs *regs) 9205 { 9206 struct hw_perf_event *hwc = &event->hw; 9207 int throttle = 0; 9208 9209 if (!overflow) 9210 overflow = perf_swevent_set_period(event); 9211 9212 if (hwc->interrupts == MAX_INTERRUPTS) 9213 return; 9214 9215 for (; overflow; overflow--) { 9216 if (__perf_event_overflow(event, throttle, 9217 data, regs)) { 9218 /* 9219 * We inhibit the overflow from happening when 9220 * hwc->interrupts == MAX_INTERRUPTS. 9221 */ 9222 break; 9223 } 9224 throttle = 1; 9225 } 9226 } 9227 9228 static void perf_swevent_event(struct perf_event *event, u64 nr, 9229 struct perf_sample_data *data, 9230 struct pt_regs *regs) 9231 { 9232 struct hw_perf_event *hwc = &event->hw; 9233 9234 local64_add(nr, &event->count); 9235 9236 if (!regs) 9237 return; 9238 9239 if (!is_sampling_event(event)) 9240 return; 9241 9242 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 9243 data->period = nr; 9244 return perf_swevent_overflow(event, 1, data, regs); 9245 } else 9246 data->period = event->hw.last_period; 9247 9248 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 9249 return perf_swevent_overflow(event, 1, data, regs); 9250 9251 if (local64_add_negative(nr, &hwc->period_left)) 9252 return; 9253 9254 perf_swevent_overflow(event, 0, data, regs); 9255 } 9256 9257 static int perf_exclude_event(struct perf_event *event, 9258 struct pt_regs *regs) 9259 { 9260 if (event->hw.state & PERF_HES_STOPPED) 9261 return 1; 9262 9263 if (regs) { 9264 if (event->attr.exclude_user && user_mode(regs)) 9265 return 1; 9266 9267 if (event->attr.exclude_kernel && !user_mode(regs)) 9268 return 1; 9269 } 9270 9271 return 0; 9272 } 9273 9274 static int perf_swevent_match(struct perf_event *event, 9275 enum perf_type_id type, 9276 u32 event_id, 9277 struct perf_sample_data *data, 9278 struct pt_regs *regs) 9279 { 9280 if (event->attr.type != type) 9281 return 0; 9282 9283 if (event->attr.config != event_id) 9284 return 0; 9285 9286 if (perf_exclude_event(event, regs)) 9287 return 0; 9288 9289 return 1; 9290 } 9291 9292 static inline u64 swevent_hash(u64 type, u32 event_id) 9293 { 9294 u64 val = event_id | (type << 32); 9295 9296 return hash_64(val, SWEVENT_HLIST_BITS); 9297 } 9298 9299 static inline struct hlist_head * 9300 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 9301 { 9302 u64 hash = swevent_hash(type, event_id); 9303 9304 return &hlist->heads[hash]; 9305 } 9306 9307 /* For the read side: events when they trigger */ 9308 static inline struct hlist_head * 9309 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 9310 { 9311 struct swevent_hlist *hlist; 9312 9313 hlist = rcu_dereference(swhash->swevent_hlist); 9314 if (!hlist) 9315 return NULL; 9316 9317 return __find_swevent_head(hlist, type, event_id); 9318 } 9319 9320 /* For the event head insertion and removal in the hlist */ 9321 static inline struct hlist_head * 9322 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 9323 { 9324 struct swevent_hlist *hlist; 9325 u32 event_id = event->attr.config; 9326 u64 type = event->attr.type; 9327 9328 /* 9329 * Event scheduling is always serialized against hlist allocation 9330 * and release. Which makes the protected version suitable here. 9331 * The context lock guarantees that. 9332 */ 9333 hlist = rcu_dereference_protected(swhash->swevent_hlist, 9334 lockdep_is_held(&event->ctx->lock)); 9335 if (!hlist) 9336 return NULL; 9337 9338 return __find_swevent_head(hlist, type, event_id); 9339 } 9340 9341 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 9342 u64 nr, 9343 struct perf_sample_data *data, 9344 struct pt_regs *regs) 9345 { 9346 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9347 struct perf_event *event; 9348 struct hlist_head *head; 9349 9350 rcu_read_lock(); 9351 head = find_swevent_head_rcu(swhash, type, event_id); 9352 if (!head) 9353 goto end; 9354 9355 hlist_for_each_entry_rcu(event, head, hlist_entry) { 9356 if (perf_swevent_match(event, type, event_id, data, regs)) 9357 perf_swevent_event(event, nr, data, regs); 9358 } 9359 end: 9360 rcu_read_unlock(); 9361 } 9362 9363 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); 9364 9365 int perf_swevent_get_recursion_context(void) 9366 { 9367 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9368 9369 return get_recursion_context(swhash->recursion); 9370 } 9371 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 9372 9373 void perf_swevent_put_recursion_context(int rctx) 9374 { 9375 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9376 9377 put_recursion_context(swhash->recursion, rctx); 9378 } 9379 9380 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 9381 { 9382 struct perf_sample_data data; 9383 9384 if (WARN_ON_ONCE(!regs)) 9385 return; 9386 9387 perf_sample_data_init(&data, addr, 0); 9388 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 9389 } 9390 9391 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 9392 { 9393 int rctx; 9394 9395 preempt_disable_notrace(); 9396 rctx = perf_swevent_get_recursion_context(); 9397 if (unlikely(rctx < 0)) 9398 goto fail; 9399 9400 ___perf_sw_event(event_id, nr, regs, addr); 9401 9402 perf_swevent_put_recursion_context(rctx); 9403 fail: 9404 preempt_enable_notrace(); 9405 } 9406 9407 static void perf_swevent_read(struct perf_event *event) 9408 { 9409 } 9410 9411 static int perf_swevent_add(struct perf_event *event, int flags) 9412 { 9413 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9414 struct hw_perf_event *hwc = &event->hw; 9415 struct hlist_head *head; 9416 9417 if (is_sampling_event(event)) { 9418 hwc->last_period = hwc->sample_period; 9419 perf_swevent_set_period(event); 9420 } 9421 9422 hwc->state = !(flags & PERF_EF_START); 9423 9424 head = find_swevent_head(swhash, event); 9425 if (WARN_ON_ONCE(!head)) 9426 return -EINVAL; 9427 9428 hlist_add_head_rcu(&event->hlist_entry, head); 9429 perf_event_update_userpage(event); 9430 9431 return 0; 9432 } 9433 9434 static void perf_swevent_del(struct perf_event *event, int flags) 9435 { 9436 hlist_del_rcu(&event->hlist_entry); 9437 } 9438 9439 static void perf_swevent_start(struct perf_event *event, int flags) 9440 { 9441 event->hw.state = 0; 9442 } 9443 9444 static void perf_swevent_stop(struct perf_event *event, int flags) 9445 { 9446 event->hw.state = PERF_HES_STOPPED; 9447 } 9448 9449 /* Deref the hlist from the update side */ 9450 static inline struct swevent_hlist * 9451 swevent_hlist_deref(struct swevent_htable *swhash) 9452 { 9453 return rcu_dereference_protected(swhash->swevent_hlist, 9454 lockdep_is_held(&swhash->hlist_mutex)); 9455 } 9456 9457 static void swevent_hlist_release(struct swevent_htable *swhash) 9458 { 9459 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 9460 9461 if (!hlist) 9462 return; 9463 9464 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 9465 kfree_rcu(hlist, rcu_head); 9466 } 9467 9468 static void swevent_hlist_put_cpu(int cpu) 9469 { 9470 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 9471 9472 mutex_lock(&swhash->hlist_mutex); 9473 9474 if (!--swhash->hlist_refcount) 9475 swevent_hlist_release(swhash); 9476 9477 mutex_unlock(&swhash->hlist_mutex); 9478 } 9479 9480 static void swevent_hlist_put(void) 9481 { 9482 int cpu; 9483 9484 for_each_possible_cpu(cpu) 9485 swevent_hlist_put_cpu(cpu); 9486 } 9487 9488 static int swevent_hlist_get_cpu(int cpu) 9489 { 9490 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 9491 int err = 0; 9492 9493 mutex_lock(&swhash->hlist_mutex); 9494 if (!swevent_hlist_deref(swhash) && 9495 cpumask_test_cpu(cpu, perf_online_mask)) { 9496 struct swevent_hlist *hlist; 9497 9498 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 9499 if (!hlist) { 9500 err = -ENOMEM; 9501 goto exit; 9502 } 9503 rcu_assign_pointer(swhash->swevent_hlist, hlist); 9504 } 9505 swhash->hlist_refcount++; 9506 exit: 9507 mutex_unlock(&swhash->hlist_mutex); 9508 9509 return err; 9510 } 9511 9512 static int swevent_hlist_get(void) 9513 { 9514 int err, cpu, failed_cpu; 9515 9516 mutex_lock(&pmus_lock); 9517 for_each_possible_cpu(cpu) { 9518 err = swevent_hlist_get_cpu(cpu); 9519 if (err) { 9520 failed_cpu = cpu; 9521 goto fail; 9522 } 9523 } 9524 mutex_unlock(&pmus_lock); 9525 return 0; 9526 fail: 9527 for_each_possible_cpu(cpu) { 9528 if (cpu == failed_cpu) 9529 break; 9530 swevent_hlist_put_cpu(cpu); 9531 } 9532 mutex_unlock(&pmus_lock); 9533 return err; 9534 } 9535 9536 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 9537 9538 static void sw_perf_event_destroy(struct perf_event *event) 9539 { 9540 u64 event_id = event->attr.config; 9541 9542 WARN_ON(event->parent); 9543 9544 static_key_slow_dec(&perf_swevent_enabled[event_id]); 9545 swevent_hlist_put(); 9546 } 9547 9548 static int perf_swevent_init(struct perf_event *event) 9549 { 9550 u64 event_id = event->attr.config; 9551 9552 if (event->attr.type != PERF_TYPE_SOFTWARE) 9553 return -ENOENT; 9554 9555 /* 9556 * no branch sampling for software events 9557 */ 9558 if (has_branch_stack(event)) 9559 return -EOPNOTSUPP; 9560 9561 switch (event_id) { 9562 case PERF_COUNT_SW_CPU_CLOCK: 9563 case PERF_COUNT_SW_TASK_CLOCK: 9564 return -ENOENT; 9565 9566 default: 9567 break; 9568 } 9569 9570 if (event_id >= PERF_COUNT_SW_MAX) 9571 return -ENOENT; 9572 9573 if (!event->parent) { 9574 int err; 9575 9576 err = swevent_hlist_get(); 9577 if (err) 9578 return err; 9579 9580 static_key_slow_inc(&perf_swevent_enabled[event_id]); 9581 event->destroy = sw_perf_event_destroy; 9582 } 9583 9584 return 0; 9585 } 9586 9587 static struct pmu perf_swevent = { 9588 .task_ctx_nr = perf_sw_context, 9589 9590 .capabilities = PERF_PMU_CAP_NO_NMI, 9591 9592 .event_init = perf_swevent_init, 9593 .add = perf_swevent_add, 9594 .del = perf_swevent_del, 9595 .start = perf_swevent_start, 9596 .stop = perf_swevent_stop, 9597 .read = perf_swevent_read, 9598 }; 9599 9600 #ifdef CONFIG_EVENT_TRACING 9601 9602 static int perf_tp_filter_match(struct perf_event *event, 9603 struct perf_sample_data *data) 9604 { 9605 void *record = data->raw->frag.data; 9606 9607 /* only top level events have filters set */ 9608 if (event->parent) 9609 event = event->parent; 9610 9611 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 9612 return 1; 9613 return 0; 9614 } 9615 9616 static int perf_tp_event_match(struct perf_event *event, 9617 struct perf_sample_data *data, 9618 struct pt_regs *regs) 9619 { 9620 if (event->hw.state & PERF_HES_STOPPED) 9621 return 0; 9622 /* 9623 * If exclude_kernel, only trace user-space tracepoints (uprobes) 9624 */ 9625 if (event->attr.exclude_kernel && !user_mode(regs)) 9626 return 0; 9627 9628 if (!perf_tp_filter_match(event, data)) 9629 return 0; 9630 9631 return 1; 9632 } 9633 9634 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx, 9635 struct trace_event_call *call, u64 count, 9636 struct pt_regs *regs, struct hlist_head *head, 9637 struct task_struct *task) 9638 { 9639 if (bpf_prog_array_valid(call)) { 9640 *(struct pt_regs **)raw_data = regs; 9641 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) { 9642 perf_swevent_put_recursion_context(rctx); 9643 return; 9644 } 9645 } 9646 perf_tp_event(call->event.type, count, raw_data, size, regs, head, 9647 rctx, task); 9648 } 9649 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit); 9650 9651 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size, 9652 struct pt_regs *regs, struct hlist_head *head, int rctx, 9653 struct task_struct *task) 9654 { 9655 struct perf_sample_data data; 9656 struct perf_event *event; 9657 9658 struct perf_raw_record raw = { 9659 .frag = { 9660 .size = entry_size, 9661 .data = record, 9662 }, 9663 }; 9664 9665 perf_sample_data_init(&data, 0, 0); 9666 data.raw = &raw; 9667 9668 perf_trace_buf_update(record, event_type); 9669 9670 hlist_for_each_entry_rcu(event, head, hlist_entry) { 9671 if (perf_tp_event_match(event, &data, regs)) 9672 perf_swevent_event(event, count, &data, regs); 9673 } 9674 9675 /* 9676 * If we got specified a target task, also iterate its context and 9677 * deliver this event there too. 9678 */ 9679 if (task && task != current) { 9680 struct perf_event_context *ctx; 9681 struct trace_entry *entry = record; 9682 9683 rcu_read_lock(); 9684 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]); 9685 if (!ctx) 9686 goto unlock; 9687 9688 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 9689 if (event->cpu != smp_processor_id()) 9690 continue; 9691 if (event->attr.type != PERF_TYPE_TRACEPOINT) 9692 continue; 9693 if (event->attr.config != entry->type) 9694 continue; 9695 if (perf_tp_event_match(event, &data, regs)) 9696 perf_swevent_event(event, count, &data, regs); 9697 } 9698 unlock: 9699 rcu_read_unlock(); 9700 } 9701 9702 perf_swevent_put_recursion_context(rctx); 9703 } 9704 EXPORT_SYMBOL_GPL(perf_tp_event); 9705 9706 static void tp_perf_event_destroy(struct perf_event *event) 9707 { 9708 perf_trace_destroy(event); 9709 } 9710 9711 static int perf_tp_event_init(struct perf_event *event) 9712 { 9713 int err; 9714 9715 if (event->attr.type != PERF_TYPE_TRACEPOINT) 9716 return -ENOENT; 9717 9718 /* 9719 * no branch sampling for tracepoint events 9720 */ 9721 if (has_branch_stack(event)) 9722 return -EOPNOTSUPP; 9723 9724 err = perf_trace_init(event); 9725 if (err) 9726 return err; 9727 9728 event->destroy = tp_perf_event_destroy; 9729 9730 return 0; 9731 } 9732 9733 static struct pmu perf_tracepoint = { 9734 .task_ctx_nr = perf_sw_context, 9735 9736 .event_init = perf_tp_event_init, 9737 .add = perf_trace_add, 9738 .del = perf_trace_del, 9739 .start = perf_swevent_start, 9740 .stop = perf_swevent_stop, 9741 .read = perf_swevent_read, 9742 }; 9743 9744 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS) 9745 /* 9746 * Flags in config, used by dynamic PMU kprobe and uprobe 9747 * The flags should match following PMU_FORMAT_ATTR(). 9748 * 9749 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe 9750 * if not set, create kprobe/uprobe 9751 * 9752 * The following values specify a reference counter (or semaphore in the 9753 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically 9754 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset. 9755 * 9756 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset 9757 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left 9758 */ 9759 enum perf_probe_config { 9760 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */ 9761 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32, 9762 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS, 9763 }; 9764 9765 PMU_FORMAT_ATTR(retprobe, "config:0"); 9766 #endif 9767 9768 #ifdef CONFIG_KPROBE_EVENTS 9769 static struct attribute *kprobe_attrs[] = { 9770 &format_attr_retprobe.attr, 9771 NULL, 9772 }; 9773 9774 static struct attribute_group kprobe_format_group = { 9775 .name = "format", 9776 .attrs = kprobe_attrs, 9777 }; 9778 9779 static const struct attribute_group *kprobe_attr_groups[] = { 9780 &kprobe_format_group, 9781 NULL, 9782 }; 9783 9784 static int perf_kprobe_event_init(struct perf_event *event); 9785 static struct pmu perf_kprobe = { 9786 .task_ctx_nr = perf_sw_context, 9787 .event_init = perf_kprobe_event_init, 9788 .add = perf_trace_add, 9789 .del = perf_trace_del, 9790 .start = perf_swevent_start, 9791 .stop = perf_swevent_stop, 9792 .read = perf_swevent_read, 9793 .attr_groups = kprobe_attr_groups, 9794 }; 9795 9796 static int perf_kprobe_event_init(struct perf_event *event) 9797 { 9798 int err; 9799 bool is_retprobe; 9800 9801 if (event->attr.type != perf_kprobe.type) 9802 return -ENOENT; 9803 9804 if (!perfmon_capable()) 9805 return -EACCES; 9806 9807 /* 9808 * no branch sampling for probe events 9809 */ 9810 if (has_branch_stack(event)) 9811 return -EOPNOTSUPP; 9812 9813 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 9814 err = perf_kprobe_init(event, is_retprobe); 9815 if (err) 9816 return err; 9817 9818 event->destroy = perf_kprobe_destroy; 9819 9820 return 0; 9821 } 9822 #endif /* CONFIG_KPROBE_EVENTS */ 9823 9824 #ifdef CONFIG_UPROBE_EVENTS 9825 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63"); 9826 9827 static struct attribute *uprobe_attrs[] = { 9828 &format_attr_retprobe.attr, 9829 &format_attr_ref_ctr_offset.attr, 9830 NULL, 9831 }; 9832 9833 static struct attribute_group uprobe_format_group = { 9834 .name = "format", 9835 .attrs = uprobe_attrs, 9836 }; 9837 9838 static const struct attribute_group *uprobe_attr_groups[] = { 9839 &uprobe_format_group, 9840 NULL, 9841 }; 9842 9843 static int perf_uprobe_event_init(struct perf_event *event); 9844 static struct pmu perf_uprobe = { 9845 .task_ctx_nr = perf_sw_context, 9846 .event_init = perf_uprobe_event_init, 9847 .add = perf_trace_add, 9848 .del = perf_trace_del, 9849 .start = perf_swevent_start, 9850 .stop = perf_swevent_stop, 9851 .read = perf_swevent_read, 9852 .attr_groups = uprobe_attr_groups, 9853 }; 9854 9855 static int perf_uprobe_event_init(struct perf_event *event) 9856 { 9857 int err; 9858 unsigned long ref_ctr_offset; 9859 bool is_retprobe; 9860 9861 if (event->attr.type != perf_uprobe.type) 9862 return -ENOENT; 9863 9864 if (!perfmon_capable()) 9865 return -EACCES; 9866 9867 /* 9868 * no branch sampling for probe events 9869 */ 9870 if (has_branch_stack(event)) 9871 return -EOPNOTSUPP; 9872 9873 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 9874 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 9875 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe); 9876 if (err) 9877 return err; 9878 9879 event->destroy = perf_uprobe_destroy; 9880 9881 return 0; 9882 } 9883 #endif /* CONFIG_UPROBE_EVENTS */ 9884 9885 static inline void perf_tp_register(void) 9886 { 9887 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 9888 #ifdef CONFIG_KPROBE_EVENTS 9889 perf_pmu_register(&perf_kprobe, "kprobe", -1); 9890 #endif 9891 #ifdef CONFIG_UPROBE_EVENTS 9892 perf_pmu_register(&perf_uprobe, "uprobe", -1); 9893 #endif 9894 } 9895 9896 static void perf_event_free_filter(struct perf_event *event) 9897 { 9898 ftrace_profile_free_filter(event); 9899 } 9900 9901 #ifdef CONFIG_BPF_SYSCALL 9902 static void bpf_overflow_handler(struct perf_event *event, 9903 struct perf_sample_data *data, 9904 struct pt_regs *regs) 9905 { 9906 struct bpf_perf_event_data_kern ctx = { 9907 .data = data, 9908 .event = event, 9909 }; 9910 int ret = 0; 9911 9912 ctx.regs = perf_arch_bpf_user_pt_regs(regs); 9913 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) 9914 goto out; 9915 rcu_read_lock(); 9916 ret = BPF_PROG_RUN(event->prog, &ctx); 9917 rcu_read_unlock(); 9918 out: 9919 __this_cpu_dec(bpf_prog_active); 9920 if (!ret) 9921 return; 9922 9923 event->orig_overflow_handler(event, data, regs); 9924 } 9925 9926 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd) 9927 { 9928 struct bpf_prog *prog; 9929 9930 if (event->overflow_handler_context) 9931 /* hw breakpoint or kernel counter */ 9932 return -EINVAL; 9933 9934 if (event->prog) 9935 return -EEXIST; 9936 9937 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT); 9938 if (IS_ERR(prog)) 9939 return PTR_ERR(prog); 9940 9941 if (event->attr.precise_ip && 9942 prog->call_get_stack && 9943 (!(event->attr.sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY) || 9944 event->attr.exclude_callchain_kernel || 9945 event->attr.exclude_callchain_user)) { 9946 /* 9947 * On perf_event with precise_ip, calling bpf_get_stack() 9948 * may trigger unwinder warnings and occasional crashes. 9949 * bpf_get_[stack|stackid] works around this issue by using 9950 * callchain attached to perf_sample_data. If the 9951 * perf_event does not full (kernel and user) callchain 9952 * attached to perf_sample_data, do not allow attaching BPF 9953 * program that calls bpf_get_[stack|stackid]. 9954 */ 9955 bpf_prog_put(prog); 9956 return -EPROTO; 9957 } 9958 9959 event->prog = prog; 9960 event->orig_overflow_handler = READ_ONCE(event->overflow_handler); 9961 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler); 9962 return 0; 9963 } 9964 9965 static void perf_event_free_bpf_handler(struct perf_event *event) 9966 { 9967 struct bpf_prog *prog = event->prog; 9968 9969 if (!prog) 9970 return; 9971 9972 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler); 9973 event->prog = NULL; 9974 bpf_prog_put(prog); 9975 } 9976 #else 9977 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd) 9978 { 9979 return -EOPNOTSUPP; 9980 } 9981 static void perf_event_free_bpf_handler(struct perf_event *event) 9982 { 9983 } 9984 #endif 9985 9986 /* 9987 * returns true if the event is a tracepoint, or a kprobe/upprobe created 9988 * with perf_event_open() 9989 */ 9990 static inline bool perf_event_is_tracing(struct perf_event *event) 9991 { 9992 if (event->pmu == &perf_tracepoint) 9993 return true; 9994 #ifdef CONFIG_KPROBE_EVENTS 9995 if (event->pmu == &perf_kprobe) 9996 return true; 9997 #endif 9998 #ifdef CONFIG_UPROBE_EVENTS 9999 if (event->pmu == &perf_uprobe) 10000 return true; 10001 #endif 10002 return false; 10003 } 10004 10005 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 10006 { 10007 bool is_kprobe, is_tracepoint, is_syscall_tp; 10008 struct bpf_prog *prog; 10009 int ret; 10010 10011 if (!perf_event_is_tracing(event)) 10012 return perf_event_set_bpf_handler(event, prog_fd); 10013 10014 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE; 10015 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT; 10016 is_syscall_tp = is_syscall_trace_event(event->tp_event); 10017 if (!is_kprobe && !is_tracepoint && !is_syscall_tp) 10018 /* bpf programs can only be attached to u/kprobe or tracepoint */ 10019 return -EINVAL; 10020 10021 prog = bpf_prog_get(prog_fd); 10022 if (IS_ERR(prog)) 10023 return PTR_ERR(prog); 10024 10025 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) || 10026 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) || 10027 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) { 10028 /* valid fd, but invalid bpf program type */ 10029 bpf_prog_put(prog); 10030 return -EINVAL; 10031 } 10032 10033 /* Kprobe override only works for kprobes, not uprobes. */ 10034 if (prog->kprobe_override && 10035 !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) { 10036 bpf_prog_put(prog); 10037 return -EINVAL; 10038 } 10039 10040 if (is_tracepoint || is_syscall_tp) { 10041 int off = trace_event_get_offsets(event->tp_event); 10042 10043 if (prog->aux->max_ctx_offset > off) { 10044 bpf_prog_put(prog); 10045 return -EACCES; 10046 } 10047 } 10048 10049 ret = perf_event_attach_bpf_prog(event, prog); 10050 if (ret) 10051 bpf_prog_put(prog); 10052 return ret; 10053 } 10054 10055 static void perf_event_free_bpf_prog(struct perf_event *event) 10056 { 10057 if (!perf_event_is_tracing(event)) { 10058 perf_event_free_bpf_handler(event); 10059 return; 10060 } 10061 perf_event_detach_bpf_prog(event); 10062 } 10063 10064 #else 10065 10066 static inline void perf_tp_register(void) 10067 { 10068 } 10069 10070 static void perf_event_free_filter(struct perf_event *event) 10071 { 10072 } 10073 10074 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 10075 { 10076 return -ENOENT; 10077 } 10078 10079 static void perf_event_free_bpf_prog(struct perf_event *event) 10080 { 10081 } 10082 #endif /* CONFIG_EVENT_TRACING */ 10083 10084 #ifdef CONFIG_HAVE_HW_BREAKPOINT 10085 void perf_bp_event(struct perf_event *bp, void *data) 10086 { 10087 struct perf_sample_data sample; 10088 struct pt_regs *regs = data; 10089 10090 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 10091 10092 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 10093 perf_swevent_event(bp, 1, &sample, regs); 10094 } 10095 #endif 10096 10097 /* 10098 * Allocate a new address filter 10099 */ 10100 static struct perf_addr_filter * 10101 perf_addr_filter_new(struct perf_event *event, struct list_head *filters) 10102 { 10103 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu); 10104 struct perf_addr_filter *filter; 10105 10106 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node); 10107 if (!filter) 10108 return NULL; 10109 10110 INIT_LIST_HEAD(&filter->entry); 10111 list_add_tail(&filter->entry, filters); 10112 10113 return filter; 10114 } 10115 10116 static void free_filters_list(struct list_head *filters) 10117 { 10118 struct perf_addr_filter *filter, *iter; 10119 10120 list_for_each_entry_safe(filter, iter, filters, entry) { 10121 path_put(&filter->path); 10122 list_del(&filter->entry); 10123 kfree(filter); 10124 } 10125 } 10126 10127 /* 10128 * Free existing address filters and optionally install new ones 10129 */ 10130 static void perf_addr_filters_splice(struct perf_event *event, 10131 struct list_head *head) 10132 { 10133 unsigned long flags; 10134 LIST_HEAD(list); 10135 10136 if (!has_addr_filter(event)) 10137 return; 10138 10139 /* don't bother with children, they don't have their own filters */ 10140 if (event->parent) 10141 return; 10142 10143 raw_spin_lock_irqsave(&event->addr_filters.lock, flags); 10144 10145 list_splice_init(&event->addr_filters.list, &list); 10146 if (head) 10147 list_splice(head, &event->addr_filters.list); 10148 10149 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags); 10150 10151 free_filters_list(&list); 10152 } 10153 10154 /* 10155 * Scan through mm's vmas and see if one of them matches the 10156 * @filter; if so, adjust filter's address range. 10157 * Called with mm::mmap_lock down for reading. 10158 */ 10159 static void perf_addr_filter_apply(struct perf_addr_filter *filter, 10160 struct mm_struct *mm, 10161 struct perf_addr_filter_range *fr) 10162 { 10163 struct vm_area_struct *vma; 10164 10165 for (vma = mm->mmap; vma; vma = vma->vm_next) { 10166 if (!vma->vm_file) 10167 continue; 10168 10169 if (perf_addr_filter_vma_adjust(filter, vma, fr)) 10170 return; 10171 } 10172 } 10173 10174 /* 10175 * Update event's address range filters based on the 10176 * task's existing mappings, if any. 10177 */ 10178 static void perf_event_addr_filters_apply(struct perf_event *event) 10179 { 10180 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 10181 struct task_struct *task = READ_ONCE(event->ctx->task); 10182 struct perf_addr_filter *filter; 10183 struct mm_struct *mm = NULL; 10184 unsigned int count = 0; 10185 unsigned long flags; 10186 10187 /* 10188 * We may observe TASK_TOMBSTONE, which means that the event tear-down 10189 * will stop on the parent's child_mutex that our caller is also holding 10190 */ 10191 if (task == TASK_TOMBSTONE) 10192 return; 10193 10194 if (ifh->nr_file_filters) { 10195 mm = get_task_mm(event->ctx->task); 10196 if (!mm) 10197 goto restart; 10198 10199 mmap_read_lock(mm); 10200 } 10201 10202 raw_spin_lock_irqsave(&ifh->lock, flags); 10203 list_for_each_entry(filter, &ifh->list, entry) { 10204 if (filter->path.dentry) { 10205 /* 10206 * Adjust base offset if the filter is associated to a 10207 * binary that needs to be mapped: 10208 */ 10209 event->addr_filter_ranges[count].start = 0; 10210 event->addr_filter_ranges[count].size = 0; 10211 10212 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]); 10213 } else { 10214 event->addr_filter_ranges[count].start = filter->offset; 10215 event->addr_filter_ranges[count].size = filter->size; 10216 } 10217 10218 count++; 10219 } 10220 10221 event->addr_filters_gen++; 10222 raw_spin_unlock_irqrestore(&ifh->lock, flags); 10223 10224 if (ifh->nr_file_filters) { 10225 mmap_read_unlock(mm); 10226 10227 mmput(mm); 10228 } 10229 10230 restart: 10231 perf_event_stop(event, 1); 10232 } 10233 10234 /* 10235 * Address range filtering: limiting the data to certain 10236 * instruction address ranges. Filters are ioctl()ed to us from 10237 * userspace as ascii strings. 10238 * 10239 * Filter string format: 10240 * 10241 * ACTION RANGE_SPEC 10242 * where ACTION is one of the 10243 * * "filter": limit the trace to this region 10244 * * "start": start tracing from this address 10245 * * "stop": stop tracing at this address/region; 10246 * RANGE_SPEC is 10247 * * for kernel addresses: <start address>[/<size>] 10248 * * for object files: <start address>[/<size>]@</path/to/object/file> 10249 * 10250 * if <size> is not specified or is zero, the range is treated as a single 10251 * address; not valid for ACTION=="filter". 10252 */ 10253 enum { 10254 IF_ACT_NONE = -1, 10255 IF_ACT_FILTER, 10256 IF_ACT_START, 10257 IF_ACT_STOP, 10258 IF_SRC_FILE, 10259 IF_SRC_KERNEL, 10260 IF_SRC_FILEADDR, 10261 IF_SRC_KERNELADDR, 10262 }; 10263 10264 enum { 10265 IF_STATE_ACTION = 0, 10266 IF_STATE_SOURCE, 10267 IF_STATE_END, 10268 }; 10269 10270 static const match_table_t if_tokens = { 10271 { IF_ACT_FILTER, "filter" }, 10272 { IF_ACT_START, "start" }, 10273 { IF_ACT_STOP, "stop" }, 10274 { IF_SRC_FILE, "%u/%u@%s" }, 10275 { IF_SRC_KERNEL, "%u/%u" }, 10276 { IF_SRC_FILEADDR, "%u@%s" }, 10277 { IF_SRC_KERNELADDR, "%u" }, 10278 { IF_ACT_NONE, NULL }, 10279 }; 10280 10281 /* 10282 * Address filter string parser 10283 */ 10284 static int 10285 perf_event_parse_addr_filter(struct perf_event *event, char *fstr, 10286 struct list_head *filters) 10287 { 10288 struct perf_addr_filter *filter = NULL; 10289 char *start, *orig, *filename = NULL; 10290 substring_t args[MAX_OPT_ARGS]; 10291 int state = IF_STATE_ACTION, token; 10292 unsigned int kernel = 0; 10293 int ret = -EINVAL; 10294 10295 orig = fstr = kstrdup(fstr, GFP_KERNEL); 10296 if (!fstr) 10297 return -ENOMEM; 10298 10299 while ((start = strsep(&fstr, " ,\n")) != NULL) { 10300 static const enum perf_addr_filter_action_t actions[] = { 10301 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER, 10302 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START, 10303 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP, 10304 }; 10305 ret = -EINVAL; 10306 10307 if (!*start) 10308 continue; 10309 10310 /* filter definition begins */ 10311 if (state == IF_STATE_ACTION) { 10312 filter = perf_addr_filter_new(event, filters); 10313 if (!filter) 10314 goto fail; 10315 } 10316 10317 token = match_token(start, if_tokens, args); 10318 switch (token) { 10319 case IF_ACT_FILTER: 10320 case IF_ACT_START: 10321 case IF_ACT_STOP: 10322 if (state != IF_STATE_ACTION) 10323 goto fail; 10324 10325 filter->action = actions[token]; 10326 state = IF_STATE_SOURCE; 10327 break; 10328 10329 case IF_SRC_KERNELADDR: 10330 case IF_SRC_KERNEL: 10331 kernel = 1; 10332 fallthrough; 10333 10334 case IF_SRC_FILEADDR: 10335 case IF_SRC_FILE: 10336 if (state != IF_STATE_SOURCE) 10337 goto fail; 10338 10339 *args[0].to = 0; 10340 ret = kstrtoul(args[0].from, 0, &filter->offset); 10341 if (ret) 10342 goto fail; 10343 10344 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) { 10345 *args[1].to = 0; 10346 ret = kstrtoul(args[1].from, 0, &filter->size); 10347 if (ret) 10348 goto fail; 10349 } 10350 10351 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) { 10352 int fpos = token == IF_SRC_FILE ? 2 : 1; 10353 10354 kfree(filename); 10355 filename = match_strdup(&args[fpos]); 10356 if (!filename) { 10357 ret = -ENOMEM; 10358 goto fail; 10359 } 10360 } 10361 10362 state = IF_STATE_END; 10363 break; 10364 10365 default: 10366 goto fail; 10367 } 10368 10369 /* 10370 * Filter definition is fully parsed, validate and install it. 10371 * Make sure that it doesn't contradict itself or the event's 10372 * attribute. 10373 */ 10374 if (state == IF_STATE_END) { 10375 ret = -EINVAL; 10376 if (kernel && event->attr.exclude_kernel) 10377 goto fail; 10378 10379 /* 10380 * ACTION "filter" must have a non-zero length region 10381 * specified. 10382 */ 10383 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER && 10384 !filter->size) 10385 goto fail; 10386 10387 if (!kernel) { 10388 if (!filename) 10389 goto fail; 10390 10391 /* 10392 * For now, we only support file-based filters 10393 * in per-task events; doing so for CPU-wide 10394 * events requires additional context switching 10395 * trickery, since same object code will be 10396 * mapped at different virtual addresses in 10397 * different processes. 10398 */ 10399 ret = -EOPNOTSUPP; 10400 if (!event->ctx->task) 10401 goto fail; 10402 10403 /* look up the path and grab its inode */ 10404 ret = kern_path(filename, LOOKUP_FOLLOW, 10405 &filter->path); 10406 if (ret) 10407 goto fail; 10408 10409 ret = -EINVAL; 10410 if (!filter->path.dentry || 10411 !S_ISREG(d_inode(filter->path.dentry) 10412 ->i_mode)) 10413 goto fail; 10414 10415 event->addr_filters.nr_file_filters++; 10416 } 10417 10418 /* ready to consume more filters */ 10419 state = IF_STATE_ACTION; 10420 filter = NULL; 10421 } 10422 } 10423 10424 if (state != IF_STATE_ACTION) 10425 goto fail; 10426 10427 kfree(filename); 10428 kfree(orig); 10429 10430 return 0; 10431 10432 fail: 10433 kfree(filename); 10434 free_filters_list(filters); 10435 kfree(orig); 10436 10437 return ret; 10438 } 10439 10440 static int 10441 perf_event_set_addr_filter(struct perf_event *event, char *filter_str) 10442 { 10443 LIST_HEAD(filters); 10444 int ret; 10445 10446 /* 10447 * Since this is called in perf_ioctl() path, we're already holding 10448 * ctx::mutex. 10449 */ 10450 lockdep_assert_held(&event->ctx->mutex); 10451 10452 if (WARN_ON_ONCE(event->parent)) 10453 return -EINVAL; 10454 10455 ret = perf_event_parse_addr_filter(event, filter_str, &filters); 10456 if (ret) 10457 goto fail_clear_files; 10458 10459 ret = event->pmu->addr_filters_validate(&filters); 10460 if (ret) 10461 goto fail_free_filters; 10462 10463 /* remove existing filters, if any */ 10464 perf_addr_filters_splice(event, &filters); 10465 10466 /* install new filters */ 10467 perf_event_for_each_child(event, perf_event_addr_filters_apply); 10468 10469 return ret; 10470 10471 fail_free_filters: 10472 free_filters_list(&filters); 10473 10474 fail_clear_files: 10475 event->addr_filters.nr_file_filters = 0; 10476 10477 return ret; 10478 } 10479 10480 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 10481 { 10482 int ret = -EINVAL; 10483 char *filter_str; 10484 10485 filter_str = strndup_user(arg, PAGE_SIZE); 10486 if (IS_ERR(filter_str)) 10487 return PTR_ERR(filter_str); 10488 10489 #ifdef CONFIG_EVENT_TRACING 10490 if (perf_event_is_tracing(event)) { 10491 struct perf_event_context *ctx = event->ctx; 10492 10493 /* 10494 * Beware, here be dragons!! 10495 * 10496 * the tracepoint muck will deadlock against ctx->mutex, but 10497 * the tracepoint stuff does not actually need it. So 10498 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we 10499 * already have a reference on ctx. 10500 * 10501 * This can result in event getting moved to a different ctx, 10502 * but that does not affect the tracepoint state. 10503 */ 10504 mutex_unlock(&ctx->mutex); 10505 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 10506 mutex_lock(&ctx->mutex); 10507 } else 10508 #endif 10509 if (has_addr_filter(event)) 10510 ret = perf_event_set_addr_filter(event, filter_str); 10511 10512 kfree(filter_str); 10513 return ret; 10514 } 10515 10516 /* 10517 * hrtimer based swevent callback 10518 */ 10519 10520 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 10521 { 10522 enum hrtimer_restart ret = HRTIMER_RESTART; 10523 struct perf_sample_data data; 10524 struct pt_regs *regs; 10525 struct perf_event *event; 10526 u64 period; 10527 10528 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 10529 10530 if (event->state != PERF_EVENT_STATE_ACTIVE) 10531 return HRTIMER_NORESTART; 10532 10533 event->pmu->read(event); 10534 10535 perf_sample_data_init(&data, 0, event->hw.last_period); 10536 regs = get_irq_regs(); 10537 10538 if (regs && !perf_exclude_event(event, regs)) { 10539 if (!(event->attr.exclude_idle && is_idle_task(current))) 10540 if (__perf_event_overflow(event, 1, &data, regs)) 10541 ret = HRTIMER_NORESTART; 10542 } 10543 10544 period = max_t(u64, 10000, event->hw.sample_period); 10545 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 10546 10547 return ret; 10548 } 10549 10550 static void perf_swevent_start_hrtimer(struct perf_event *event) 10551 { 10552 struct hw_perf_event *hwc = &event->hw; 10553 s64 period; 10554 10555 if (!is_sampling_event(event)) 10556 return; 10557 10558 period = local64_read(&hwc->period_left); 10559 if (period) { 10560 if (period < 0) 10561 period = 10000; 10562 10563 local64_set(&hwc->period_left, 0); 10564 } else { 10565 period = max_t(u64, 10000, hwc->sample_period); 10566 } 10567 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), 10568 HRTIMER_MODE_REL_PINNED_HARD); 10569 } 10570 10571 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 10572 { 10573 struct hw_perf_event *hwc = &event->hw; 10574 10575 if (is_sampling_event(event)) { 10576 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 10577 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 10578 10579 hrtimer_cancel(&hwc->hrtimer); 10580 } 10581 } 10582 10583 static void perf_swevent_init_hrtimer(struct perf_event *event) 10584 { 10585 struct hw_perf_event *hwc = &event->hw; 10586 10587 if (!is_sampling_event(event)) 10588 return; 10589 10590 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 10591 hwc->hrtimer.function = perf_swevent_hrtimer; 10592 10593 /* 10594 * Since hrtimers have a fixed rate, we can do a static freq->period 10595 * mapping and avoid the whole period adjust feedback stuff. 10596 */ 10597 if (event->attr.freq) { 10598 long freq = event->attr.sample_freq; 10599 10600 event->attr.sample_period = NSEC_PER_SEC / freq; 10601 hwc->sample_period = event->attr.sample_period; 10602 local64_set(&hwc->period_left, hwc->sample_period); 10603 hwc->last_period = hwc->sample_period; 10604 event->attr.freq = 0; 10605 } 10606 } 10607 10608 /* 10609 * Software event: cpu wall time clock 10610 */ 10611 10612 static void cpu_clock_event_update(struct perf_event *event) 10613 { 10614 s64 prev; 10615 u64 now; 10616 10617 now = local_clock(); 10618 prev = local64_xchg(&event->hw.prev_count, now); 10619 local64_add(now - prev, &event->count); 10620 } 10621 10622 static void cpu_clock_event_start(struct perf_event *event, int flags) 10623 { 10624 local64_set(&event->hw.prev_count, local_clock()); 10625 perf_swevent_start_hrtimer(event); 10626 } 10627 10628 static void cpu_clock_event_stop(struct perf_event *event, int flags) 10629 { 10630 perf_swevent_cancel_hrtimer(event); 10631 cpu_clock_event_update(event); 10632 } 10633 10634 static int cpu_clock_event_add(struct perf_event *event, int flags) 10635 { 10636 if (flags & PERF_EF_START) 10637 cpu_clock_event_start(event, flags); 10638 perf_event_update_userpage(event); 10639 10640 return 0; 10641 } 10642 10643 static void cpu_clock_event_del(struct perf_event *event, int flags) 10644 { 10645 cpu_clock_event_stop(event, flags); 10646 } 10647 10648 static void cpu_clock_event_read(struct perf_event *event) 10649 { 10650 cpu_clock_event_update(event); 10651 } 10652 10653 static int cpu_clock_event_init(struct perf_event *event) 10654 { 10655 if (event->attr.type != PERF_TYPE_SOFTWARE) 10656 return -ENOENT; 10657 10658 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 10659 return -ENOENT; 10660 10661 /* 10662 * no branch sampling for software events 10663 */ 10664 if (has_branch_stack(event)) 10665 return -EOPNOTSUPP; 10666 10667 perf_swevent_init_hrtimer(event); 10668 10669 return 0; 10670 } 10671 10672 static struct pmu perf_cpu_clock = { 10673 .task_ctx_nr = perf_sw_context, 10674 10675 .capabilities = PERF_PMU_CAP_NO_NMI, 10676 10677 .event_init = cpu_clock_event_init, 10678 .add = cpu_clock_event_add, 10679 .del = cpu_clock_event_del, 10680 .start = cpu_clock_event_start, 10681 .stop = cpu_clock_event_stop, 10682 .read = cpu_clock_event_read, 10683 }; 10684 10685 /* 10686 * Software event: task time clock 10687 */ 10688 10689 static void task_clock_event_update(struct perf_event *event, u64 now) 10690 { 10691 u64 prev; 10692 s64 delta; 10693 10694 prev = local64_xchg(&event->hw.prev_count, now); 10695 delta = now - prev; 10696 local64_add(delta, &event->count); 10697 } 10698 10699 static void task_clock_event_start(struct perf_event *event, int flags) 10700 { 10701 local64_set(&event->hw.prev_count, event->ctx->time); 10702 perf_swevent_start_hrtimer(event); 10703 } 10704 10705 static void task_clock_event_stop(struct perf_event *event, int flags) 10706 { 10707 perf_swevent_cancel_hrtimer(event); 10708 task_clock_event_update(event, event->ctx->time); 10709 } 10710 10711 static int task_clock_event_add(struct perf_event *event, int flags) 10712 { 10713 if (flags & PERF_EF_START) 10714 task_clock_event_start(event, flags); 10715 perf_event_update_userpage(event); 10716 10717 return 0; 10718 } 10719 10720 static void task_clock_event_del(struct perf_event *event, int flags) 10721 { 10722 task_clock_event_stop(event, PERF_EF_UPDATE); 10723 } 10724 10725 static void task_clock_event_read(struct perf_event *event) 10726 { 10727 u64 now = perf_clock(); 10728 u64 delta = now - event->ctx->timestamp; 10729 u64 time = event->ctx->time + delta; 10730 10731 task_clock_event_update(event, time); 10732 } 10733 10734 static int task_clock_event_init(struct perf_event *event) 10735 { 10736 if (event->attr.type != PERF_TYPE_SOFTWARE) 10737 return -ENOENT; 10738 10739 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 10740 return -ENOENT; 10741 10742 /* 10743 * no branch sampling for software events 10744 */ 10745 if (has_branch_stack(event)) 10746 return -EOPNOTSUPP; 10747 10748 perf_swevent_init_hrtimer(event); 10749 10750 return 0; 10751 } 10752 10753 static struct pmu perf_task_clock = { 10754 .task_ctx_nr = perf_sw_context, 10755 10756 .capabilities = PERF_PMU_CAP_NO_NMI, 10757 10758 .event_init = task_clock_event_init, 10759 .add = task_clock_event_add, 10760 .del = task_clock_event_del, 10761 .start = task_clock_event_start, 10762 .stop = task_clock_event_stop, 10763 .read = task_clock_event_read, 10764 }; 10765 10766 static void perf_pmu_nop_void(struct pmu *pmu) 10767 { 10768 } 10769 10770 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags) 10771 { 10772 } 10773 10774 static int perf_pmu_nop_int(struct pmu *pmu) 10775 { 10776 return 0; 10777 } 10778 10779 static int perf_event_nop_int(struct perf_event *event, u64 value) 10780 { 10781 return 0; 10782 } 10783 10784 static DEFINE_PER_CPU(unsigned int, nop_txn_flags); 10785 10786 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags) 10787 { 10788 __this_cpu_write(nop_txn_flags, flags); 10789 10790 if (flags & ~PERF_PMU_TXN_ADD) 10791 return; 10792 10793 perf_pmu_disable(pmu); 10794 } 10795 10796 static int perf_pmu_commit_txn(struct pmu *pmu) 10797 { 10798 unsigned int flags = __this_cpu_read(nop_txn_flags); 10799 10800 __this_cpu_write(nop_txn_flags, 0); 10801 10802 if (flags & ~PERF_PMU_TXN_ADD) 10803 return 0; 10804 10805 perf_pmu_enable(pmu); 10806 return 0; 10807 } 10808 10809 static void perf_pmu_cancel_txn(struct pmu *pmu) 10810 { 10811 unsigned int flags = __this_cpu_read(nop_txn_flags); 10812 10813 __this_cpu_write(nop_txn_flags, 0); 10814 10815 if (flags & ~PERF_PMU_TXN_ADD) 10816 return; 10817 10818 perf_pmu_enable(pmu); 10819 } 10820 10821 static int perf_event_idx_default(struct perf_event *event) 10822 { 10823 return 0; 10824 } 10825 10826 /* 10827 * Ensures all contexts with the same task_ctx_nr have the same 10828 * pmu_cpu_context too. 10829 */ 10830 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn) 10831 { 10832 struct pmu *pmu; 10833 10834 if (ctxn < 0) 10835 return NULL; 10836 10837 list_for_each_entry(pmu, &pmus, entry) { 10838 if (pmu->task_ctx_nr == ctxn) 10839 return pmu->pmu_cpu_context; 10840 } 10841 10842 return NULL; 10843 } 10844 10845 static void free_pmu_context(struct pmu *pmu) 10846 { 10847 /* 10848 * Static contexts such as perf_sw_context have a global lifetime 10849 * and may be shared between different PMUs. Avoid freeing them 10850 * when a single PMU is going away. 10851 */ 10852 if (pmu->task_ctx_nr > perf_invalid_context) 10853 return; 10854 10855 free_percpu(pmu->pmu_cpu_context); 10856 } 10857 10858 /* 10859 * Let userspace know that this PMU supports address range filtering: 10860 */ 10861 static ssize_t nr_addr_filters_show(struct device *dev, 10862 struct device_attribute *attr, 10863 char *page) 10864 { 10865 struct pmu *pmu = dev_get_drvdata(dev); 10866 10867 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters); 10868 } 10869 DEVICE_ATTR_RO(nr_addr_filters); 10870 10871 static struct idr pmu_idr; 10872 10873 static ssize_t 10874 type_show(struct device *dev, struct device_attribute *attr, char *page) 10875 { 10876 struct pmu *pmu = dev_get_drvdata(dev); 10877 10878 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); 10879 } 10880 static DEVICE_ATTR_RO(type); 10881 10882 static ssize_t 10883 perf_event_mux_interval_ms_show(struct device *dev, 10884 struct device_attribute *attr, 10885 char *page) 10886 { 10887 struct pmu *pmu = dev_get_drvdata(dev); 10888 10889 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms); 10890 } 10891 10892 static DEFINE_MUTEX(mux_interval_mutex); 10893 10894 static ssize_t 10895 perf_event_mux_interval_ms_store(struct device *dev, 10896 struct device_attribute *attr, 10897 const char *buf, size_t count) 10898 { 10899 struct pmu *pmu = dev_get_drvdata(dev); 10900 int timer, cpu, ret; 10901 10902 ret = kstrtoint(buf, 0, &timer); 10903 if (ret) 10904 return ret; 10905 10906 if (timer < 1) 10907 return -EINVAL; 10908 10909 /* same value, noting to do */ 10910 if (timer == pmu->hrtimer_interval_ms) 10911 return count; 10912 10913 mutex_lock(&mux_interval_mutex); 10914 pmu->hrtimer_interval_ms = timer; 10915 10916 /* update all cpuctx for this PMU */ 10917 cpus_read_lock(); 10918 for_each_online_cpu(cpu) { 10919 struct perf_cpu_context *cpuctx; 10920 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 10921 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 10922 10923 cpu_function_call(cpu, 10924 (remote_function_f)perf_mux_hrtimer_restart, cpuctx); 10925 } 10926 cpus_read_unlock(); 10927 mutex_unlock(&mux_interval_mutex); 10928 10929 return count; 10930 } 10931 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 10932 10933 static struct attribute *pmu_dev_attrs[] = { 10934 &dev_attr_type.attr, 10935 &dev_attr_perf_event_mux_interval_ms.attr, 10936 NULL, 10937 }; 10938 ATTRIBUTE_GROUPS(pmu_dev); 10939 10940 static int pmu_bus_running; 10941 static struct bus_type pmu_bus = { 10942 .name = "event_source", 10943 .dev_groups = pmu_dev_groups, 10944 }; 10945 10946 static void pmu_dev_release(struct device *dev) 10947 { 10948 kfree(dev); 10949 } 10950 10951 static int pmu_dev_alloc(struct pmu *pmu) 10952 { 10953 int ret = -ENOMEM; 10954 10955 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 10956 if (!pmu->dev) 10957 goto out; 10958 10959 pmu->dev->groups = pmu->attr_groups; 10960 device_initialize(pmu->dev); 10961 ret = dev_set_name(pmu->dev, "%s", pmu->name); 10962 if (ret) 10963 goto free_dev; 10964 10965 dev_set_drvdata(pmu->dev, pmu); 10966 pmu->dev->bus = &pmu_bus; 10967 pmu->dev->release = pmu_dev_release; 10968 ret = device_add(pmu->dev); 10969 if (ret) 10970 goto free_dev; 10971 10972 /* For PMUs with address filters, throw in an extra attribute: */ 10973 if (pmu->nr_addr_filters) 10974 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters); 10975 10976 if (ret) 10977 goto del_dev; 10978 10979 if (pmu->attr_update) 10980 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update); 10981 10982 if (ret) 10983 goto del_dev; 10984 10985 out: 10986 return ret; 10987 10988 del_dev: 10989 device_del(pmu->dev); 10990 10991 free_dev: 10992 put_device(pmu->dev); 10993 goto out; 10994 } 10995 10996 static struct lock_class_key cpuctx_mutex; 10997 static struct lock_class_key cpuctx_lock; 10998 10999 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 11000 { 11001 int cpu, ret, max = PERF_TYPE_MAX; 11002 11003 mutex_lock(&pmus_lock); 11004 ret = -ENOMEM; 11005 pmu->pmu_disable_count = alloc_percpu(int); 11006 if (!pmu->pmu_disable_count) 11007 goto unlock; 11008 11009 pmu->type = -1; 11010 if (!name) 11011 goto skip_type; 11012 pmu->name = name; 11013 11014 if (type != PERF_TYPE_SOFTWARE) { 11015 if (type >= 0) 11016 max = type; 11017 11018 ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL); 11019 if (ret < 0) 11020 goto free_pdc; 11021 11022 WARN_ON(type >= 0 && ret != type); 11023 11024 type = ret; 11025 } 11026 pmu->type = type; 11027 11028 if (pmu_bus_running) { 11029 ret = pmu_dev_alloc(pmu); 11030 if (ret) 11031 goto free_idr; 11032 } 11033 11034 skip_type: 11035 if (pmu->task_ctx_nr == perf_hw_context) { 11036 static int hw_context_taken = 0; 11037 11038 /* 11039 * Other than systems with heterogeneous CPUs, it never makes 11040 * sense for two PMUs to share perf_hw_context. PMUs which are 11041 * uncore must use perf_invalid_context. 11042 */ 11043 if (WARN_ON_ONCE(hw_context_taken && 11044 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS))) 11045 pmu->task_ctx_nr = perf_invalid_context; 11046 11047 hw_context_taken = 1; 11048 } 11049 11050 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); 11051 if (pmu->pmu_cpu_context) 11052 goto got_cpu_context; 11053 11054 ret = -ENOMEM; 11055 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); 11056 if (!pmu->pmu_cpu_context) 11057 goto free_dev; 11058 11059 for_each_possible_cpu(cpu) { 11060 struct perf_cpu_context *cpuctx; 11061 11062 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 11063 __perf_event_init_context(&cpuctx->ctx); 11064 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 11065 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 11066 cpuctx->ctx.pmu = pmu; 11067 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask); 11068 11069 __perf_mux_hrtimer_init(cpuctx, cpu); 11070 11071 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default); 11072 cpuctx->heap = cpuctx->heap_default; 11073 } 11074 11075 got_cpu_context: 11076 if (!pmu->start_txn) { 11077 if (pmu->pmu_enable) { 11078 /* 11079 * If we have pmu_enable/pmu_disable calls, install 11080 * transaction stubs that use that to try and batch 11081 * hardware accesses. 11082 */ 11083 pmu->start_txn = perf_pmu_start_txn; 11084 pmu->commit_txn = perf_pmu_commit_txn; 11085 pmu->cancel_txn = perf_pmu_cancel_txn; 11086 } else { 11087 pmu->start_txn = perf_pmu_nop_txn; 11088 pmu->commit_txn = perf_pmu_nop_int; 11089 pmu->cancel_txn = perf_pmu_nop_void; 11090 } 11091 } 11092 11093 if (!pmu->pmu_enable) { 11094 pmu->pmu_enable = perf_pmu_nop_void; 11095 pmu->pmu_disable = perf_pmu_nop_void; 11096 } 11097 11098 if (!pmu->check_period) 11099 pmu->check_period = perf_event_nop_int; 11100 11101 if (!pmu->event_idx) 11102 pmu->event_idx = perf_event_idx_default; 11103 11104 /* 11105 * Ensure the TYPE_SOFTWARE PMUs are at the head of the list, 11106 * since these cannot be in the IDR. This way the linear search 11107 * is fast, provided a valid software event is provided. 11108 */ 11109 if (type == PERF_TYPE_SOFTWARE || !name) 11110 list_add_rcu(&pmu->entry, &pmus); 11111 else 11112 list_add_tail_rcu(&pmu->entry, &pmus); 11113 11114 atomic_set(&pmu->exclusive_cnt, 0); 11115 ret = 0; 11116 unlock: 11117 mutex_unlock(&pmus_lock); 11118 11119 return ret; 11120 11121 free_dev: 11122 device_del(pmu->dev); 11123 put_device(pmu->dev); 11124 11125 free_idr: 11126 if (pmu->type != PERF_TYPE_SOFTWARE) 11127 idr_remove(&pmu_idr, pmu->type); 11128 11129 free_pdc: 11130 free_percpu(pmu->pmu_disable_count); 11131 goto unlock; 11132 } 11133 EXPORT_SYMBOL_GPL(perf_pmu_register); 11134 11135 void perf_pmu_unregister(struct pmu *pmu) 11136 { 11137 mutex_lock(&pmus_lock); 11138 list_del_rcu(&pmu->entry); 11139 11140 /* 11141 * We dereference the pmu list under both SRCU and regular RCU, so 11142 * synchronize against both of those. 11143 */ 11144 synchronize_srcu(&pmus_srcu); 11145 synchronize_rcu(); 11146 11147 free_percpu(pmu->pmu_disable_count); 11148 if (pmu->type != PERF_TYPE_SOFTWARE) 11149 idr_remove(&pmu_idr, pmu->type); 11150 if (pmu_bus_running) { 11151 if (pmu->nr_addr_filters) 11152 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters); 11153 device_del(pmu->dev); 11154 put_device(pmu->dev); 11155 } 11156 free_pmu_context(pmu); 11157 mutex_unlock(&pmus_lock); 11158 } 11159 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 11160 11161 static inline bool has_extended_regs(struct perf_event *event) 11162 { 11163 return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) || 11164 (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK); 11165 } 11166 11167 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) 11168 { 11169 struct perf_event_context *ctx = NULL; 11170 int ret; 11171 11172 if (!try_module_get(pmu->module)) 11173 return -ENODEV; 11174 11175 /* 11176 * A number of pmu->event_init() methods iterate the sibling_list to, 11177 * for example, validate if the group fits on the PMU. Therefore, 11178 * if this is a sibling event, acquire the ctx->mutex to protect 11179 * the sibling_list. 11180 */ 11181 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) { 11182 /* 11183 * This ctx->mutex can nest when we're called through 11184 * inheritance. See the perf_event_ctx_lock_nested() comment. 11185 */ 11186 ctx = perf_event_ctx_lock_nested(event->group_leader, 11187 SINGLE_DEPTH_NESTING); 11188 BUG_ON(!ctx); 11189 } 11190 11191 event->pmu = pmu; 11192 ret = pmu->event_init(event); 11193 11194 if (ctx) 11195 perf_event_ctx_unlock(event->group_leader, ctx); 11196 11197 if (!ret) { 11198 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) && 11199 has_extended_regs(event)) 11200 ret = -EOPNOTSUPP; 11201 11202 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE && 11203 event_has_any_exclude_flag(event)) 11204 ret = -EINVAL; 11205 11206 if (ret && event->destroy) 11207 event->destroy(event); 11208 } 11209 11210 if (ret) 11211 module_put(pmu->module); 11212 11213 return ret; 11214 } 11215 11216 static struct pmu *perf_init_event(struct perf_event *event) 11217 { 11218 bool extended_type = false; 11219 int idx, type, ret; 11220 struct pmu *pmu; 11221 11222 idx = srcu_read_lock(&pmus_srcu); 11223 11224 /* Try parent's PMU first: */ 11225 if (event->parent && event->parent->pmu) { 11226 pmu = event->parent->pmu; 11227 ret = perf_try_init_event(pmu, event); 11228 if (!ret) 11229 goto unlock; 11230 } 11231 11232 /* 11233 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE 11234 * are often aliases for PERF_TYPE_RAW. 11235 */ 11236 type = event->attr.type; 11237 if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) { 11238 type = event->attr.config >> PERF_PMU_TYPE_SHIFT; 11239 if (!type) { 11240 type = PERF_TYPE_RAW; 11241 } else { 11242 extended_type = true; 11243 event->attr.config &= PERF_HW_EVENT_MASK; 11244 } 11245 } 11246 11247 again: 11248 rcu_read_lock(); 11249 pmu = idr_find(&pmu_idr, type); 11250 rcu_read_unlock(); 11251 if (pmu) { 11252 if (event->attr.type != type && type != PERF_TYPE_RAW && 11253 !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE)) 11254 goto fail; 11255 11256 ret = perf_try_init_event(pmu, event); 11257 if (ret == -ENOENT && event->attr.type != type && !extended_type) { 11258 type = event->attr.type; 11259 goto again; 11260 } 11261 11262 if (ret) 11263 pmu = ERR_PTR(ret); 11264 11265 goto unlock; 11266 } 11267 11268 list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) { 11269 ret = perf_try_init_event(pmu, event); 11270 if (!ret) 11271 goto unlock; 11272 11273 if (ret != -ENOENT) { 11274 pmu = ERR_PTR(ret); 11275 goto unlock; 11276 } 11277 } 11278 fail: 11279 pmu = ERR_PTR(-ENOENT); 11280 unlock: 11281 srcu_read_unlock(&pmus_srcu, idx); 11282 11283 return pmu; 11284 } 11285 11286 static void attach_sb_event(struct perf_event *event) 11287 { 11288 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 11289 11290 raw_spin_lock(&pel->lock); 11291 list_add_rcu(&event->sb_list, &pel->list); 11292 raw_spin_unlock(&pel->lock); 11293 } 11294 11295 /* 11296 * We keep a list of all !task (and therefore per-cpu) events 11297 * that need to receive side-band records. 11298 * 11299 * This avoids having to scan all the various PMU per-cpu contexts 11300 * looking for them. 11301 */ 11302 static void account_pmu_sb_event(struct perf_event *event) 11303 { 11304 if (is_sb_event(event)) 11305 attach_sb_event(event); 11306 } 11307 11308 static void account_event_cpu(struct perf_event *event, int cpu) 11309 { 11310 if (event->parent) 11311 return; 11312 11313 if (is_cgroup_event(event)) 11314 atomic_inc(&per_cpu(perf_cgroup_events, cpu)); 11315 } 11316 11317 /* Freq events need the tick to stay alive (see perf_event_task_tick). */ 11318 static void account_freq_event_nohz(void) 11319 { 11320 #ifdef CONFIG_NO_HZ_FULL 11321 /* Lock so we don't race with concurrent unaccount */ 11322 spin_lock(&nr_freq_lock); 11323 if (atomic_inc_return(&nr_freq_events) == 1) 11324 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS); 11325 spin_unlock(&nr_freq_lock); 11326 #endif 11327 } 11328 11329 static void account_freq_event(void) 11330 { 11331 if (tick_nohz_full_enabled()) 11332 account_freq_event_nohz(); 11333 else 11334 atomic_inc(&nr_freq_events); 11335 } 11336 11337 11338 static void account_event(struct perf_event *event) 11339 { 11340 bool inc = false; 11341 11342 if (event->parent) 11343 return; 11344 11345 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB)) 11346 inc = true; 11347 if (event->attr.mmap || event->attr.mmap_data) 11348 atomic_inc(&nr_mmap_events); 11349 if (event->attr.build_id) 11350 atomic_inc(&nr_build_id_events); 11351 if (event->attr.comm) 11352 atomic_inc(&nr_comm_events); 11353 if (event->attr.namespaces) 11354 atomic_inc(&nr_namespaces_events); 11355 if (event->attr.cgroup) 11356 atomic_inc(&nr_cgroup_events); 11357 if (event->attr.task) 11358 atomic_inc(&nr_task_events); 11359 if (event->attr.freq) 11360 account_freq_event(); 11361 if (event->attr.context_switch) { 11362 atomic_inc(&nr_switch_events); 11363 inc = true; 11364 } 11365 if (has_branch_stack(event)) 11366 inc = true; 11367 if (is_cgroup_event(event)) 11368 inc = true; 11369 if (event->attr.ksymbol) 11370 atomic_inc(&nr_ksymbol_events); 11371 if (event->attr.bpf_event) 11372 atomic_inc(&nr_bpf_events); 11373 if (event->attr.text_poke) 11374 atomic_inc(&nr_text_poke_events); 11375 11376 if (inc) { 11377 /* 11378 * We need the mutex here because static_branch_enable() 11379 * must complete *before* the perf_sched_count increment 11380 * becomes visible. 11381 */ 11382 if (atomic_inc_not_zero(&perf_sched_count)) 11383 goto enabled; 11384 11385 mutex_lock(&perf_sched_mutex); 11386 if (!atomic_read(&perf_sched_count)) { 11387 static_branch_enable(&perf_sched_events); 11388 /* 11389 * Guarantee that all CPUs observe they key change and 11390 * call the perf scheduling hooks before proceeding to 11391 * install events that need them. 11392 */ 11393 synchronize_rcu(); 11394 } 11395 /* 11396 * Now that we have waited for the sync_sched(), allow further 11397 * increments to by-pass the mutex. 11398 */ 11399 atomic_inc(&perf_sched_count); 11400 mutex_unlock(&perf_sched_mutex); 11401 } 11402 enabled: 11403 11404 account_event_cpu(event, event->cpu); 11405 11406 account_pmu_sb_event(event); 11407 } 11408 11409 /* 11410 * Allocate and initialize an event structure 11411 */ 11412 static struct perf_event * 11413 perf_event_alloc(struct perf_event_attr *attr, int cpu, 11414 struct task_struct *task, 11415 struct perf_event *group_leader, 11416 struct perf_event *parent_event, 11417 perf_overflow_handler_t overflow_handler, 11418 void *context, int cgroup_fd) 11419 { 11420 struct pmu *pmu; 11421 struct perf_event *event; 11422 struct hw_perf_event *hwc; 11423 long err = -EINVAL; 11424 int node; 11425 11426 if ((unsigned)cpu >= nr_cpu_ids) { 11427 if (!task || cpu != -1) 11428 return ERR_PTR(-EINVAL); 11429 } 11430 if (attr->sigtrap && !task) { 11431 /* Requires a task: avoid signalling random tasks. */ 11432 return ERR_PTR(-EINVAL); 11433 } 11434 11435 node = (cpu >= 0) ? cpu_to_node(cpu) : -1; 11436 event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO, 11437 node); 11438 if (!event) 11439 return ERR_PTR(-ENOMEM); 11440 11441 /* 11442 * Single events are their own group leaders, with an 11443 * empty sibling list: 11444 */ 11445 if (!group_leader) 11446 group_leader = event; 11447 11448 mutex_init(&event->child_mutex); 11449 INIT_LIST_HEAD(&event->child_list); 11450 11451 INIT_LIST_HEAD(&event->event_entry); 11452 INIT_LIST_HEAD(&event->sibling_list); 11453 INIT_LIST_HEAD(&event->active_list); 11454 init_event_group(event); 11455 INIT_LIST_HEAD(&event->rb_entry); 11456 INIT_LIST_HEAD(&event->active_entry); 11457 INIT_LIST_HEAD(&event->addr_filters.list); 11458 INIT_HLIST_NODE(&event->hlist_entry); 11459 11460 11461 init_waitqueue_head(&event->waitq); 11462 event->pending_disable = -1; 11463 init_irq_work(&event->pending, perf_pending_event); 11464 11465 mutex_init(&event->mmap_mutex); 11466 raw_spin_lock_init(&event->addr_filters.lock); 11467 11468 atomic_long_set(&event->refcount, 1); 11469 event->cpu = cpu; 11470 event->attr = *attr; 11471 event->group_leader = group_leader; 11472 event->pmu = NULL; 11473 event->oncpu = -1; 11474 11475 event->parent = parent_event; 11476 11477 event->ns = get_pid_ns(task_active_pid_ns(current)); 11478 event->id = atomic64_inc_return(&perf_event_id); 11479 11480 event->state = PERF_EVENT_STATE_INACTIVE; 11481 11482 if (event->attr.sigtrap) 11483 atomic_set(&event->event_limit, 1); 11484 11485 if (task) { 11486 event->attach_state = PERF_ATTACH_TASK; 11487 /* 11488 * XXX pmu::event_init needs to know what task to account to 11489 * and we cannot use the ctx information because we need the 11490 * pmu before we get a ctx. 11491 */ 11492 event->hw.target = get_task_struct(task); 11493 } 11494 11495 event->clock = &local_clock; 11496 if (parent_event) 11497 event->clock = parent_event->clock; 11498 11499 if (!overflow_handler && parent_event) { 11500 overflow_handler = parent_event->overflow_handler; 11501 context = parent_event->overflow_handler_context; 11502 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING) 11503 if (overflow_handler == bpf_overflow_handler) { 11504 struct bpf_prog *prog = parent_event->prog; 11505 11506 bpf_prog_inc(prog); 11507 event->prog = prog; 11508 event->orig_overflow_handler = 11509 parent_event->orig_overflow_handler; 11510 } 11511 #endif 11512 } 11513 11514 if (overflow_handler) { 11515 event->overflow_handler = overflow_handler; 11516 event->overflow_handler_context = context; 11517 } else if (is_write_backward(event)){ 11518 event->overflow_handler = perf_event_output_backward; 11519 event->overflow_handler_context = NULL; 11520 } else { 11521 event->overflow_handler = perf_event_output_forward; 11522 event->overflow_handler_context = NULL; 11523 } 11524 11525 perf_event__state_init(event); 11526 11527 pmu = NULL; 11528 11529 hwc = &event->hw; 11530 hwc->sample_period = attr->sample_period; 11531 if (attr->freq && attr->sample_freq) 11532 hwc->sample_period = 1; 11533 hwc->last_period = hwc->sample_period; 11534 11535 local64_set(&hwc->period_left, hwc->sample_period); 11536 11537 /* 11538 * We currently do not support PERF_SAMPLE_READ on inherited events. 11539 * See perf_output_read(). 11540 */ 11541 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ)) 11542 goto err_ns; 11543 11544 if (!has_branch_stack(event)) 11545 event->attr.branch_sample_type = 0; 11546 11547 pmu = perf_init_event(event); 11548 if (IS_ERR(pmu)) { 11549 err = PTR_ERR(pmu); 11550 goto err_ns; 11551 } 11552 11553 /* 11554 * Disallow uncore-cgroup events, they don't make sense as the cgroup will 11555 * be different on other CPUs in the uncore mask. 11556 */ 11557 if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) { 11558 err = -EINVAL; 11559 goto err_pmu; 11560 } 11561 11562 if (event->attr.aux_output && 11563 !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) { 11564 err = -EOPNOTSUPP; 11565 goto err_pmu; 11566 } 11567 11568 if (cgroup_fd != -1) { 11569 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); 11570 if (err) 11571 goto err_pmu; 11572 } 11573 11574 err = exclusive_event_init(event); 11575 if (err) 11576 goto err_pmu; 11577 11578 if (has_addr_filter(event)) { 11579 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters, 11580 sizeof(struct perf_addr_filter_range), 11581 GFP_KERNEL); 11582 if (!event->addr_filter_ranges) { 11583 err = -ENOMEM; 11584 goto err_per_task; 11585 } 11586 11587 /* 11588 * Clone the parent's vma offsets: they are valid until exec() 11589 * even if the mm is not shared with the parent. 11590 */ 11591 if (event->parent) { 11592 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 11593 11594 raw_spin_lock_irq(&ifh->lock); 11595 memcpy(event->addr_filter_ranges, 11596 event->parent->addr_filter_ranges, 11597 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range)); 11598 raw_spin_unlock_irq(&ifh->lock); 11599 } 11600 11601 /* force hw sync on the address filters */ 11602 event->addr_filters_gen = 1; 11603 } 11604 11605 if (!event->parent) { 11606 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 11607 err = get_callchain_buffers(attr->sample_max_stack); 11608 if (err) 11609 goto err_addr_filters; 11610 } 11611 } 11612 11613 err = security_perf_event_alloc(event); 11614 if (err) 11615 goto err_callchain_buffer; 11616 11617 /* symmetric to unaccount_event() in _free_event() */ 11618 account_event(event); 11619 11620 return event; 11621 11622 err_callchain_buffer: 11623 if (!event->parent) { 11624 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 11625 put_callchain_buffers(); 11626 } 11627 err_addr_filters: 11628 kfree(event->addr_filter_ranges); 11629 11630 err_per_task: 11631 exclusive_event_destroy(event); 11632 11633 err_pmu: 11634 if (is_cgroup_event(event)) 11635 perf_detach_cgroup(event); 11636 if (event->destroy) 11637 event->destroy(event); 11638 module_put(pmu->module); 11639 err_ns: 11640 if (event->ns) 11641 put_pid_ns(event->ns); 11642 if (event->hw.target) 11643 put_task_struct(event->hw.target); 11644 kmem_cache_free(perf_event_cache, event); 11645 11646 return ERR_PTR(err); 11647 } 11648 11649 static int perf_copy_attr(struct perf_event_attr __user *uattr, 11650 struct perf_event_attr *attr) 11651 { 11652 u32 size; 11653 int ret; 11654 11655 /* Zero the full structure, so that a short copy will be nice. */ 11656 memset(attr, 0, sizeof(*attr)); 11657 11658 ret = get_user(size, &uattr->size); 11659 if (ret) 11660 return ret; 11661 11662 /* ABI compatibility quirk: */ 11663 if (!size) 11664 size = PERF_ATTR_SIZE_VER0; 11665 if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE) 11666 goto err_size; 11667 11668 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); 11669 if (ret) { 11670 if (ret == -E2BIG) 11671 goto err_size; 11672 return ret; 11673 } 11674 11675 attr->size = size; 11676 11677 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) 11678 return -EINVAL; 11679 11680 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 11681 return -EINVAL; 11682 11683 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 11684 return -EINVAL; 11685 11686 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 11687 u64 mask = attr->branch_sample_type; 11688 11689 /* only using defined bits */ 11690 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 11691 return -EINVAL; 11692 11693 /* at least one branch bit must be set */ 11694 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 11695 return -EINVAL; 11696 11697 /* propagate priv level, when not set for branch */ 11698 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 11699 11700 /* exclude_kernel checked on syscall entry */ 11701 if (!attr->exclude_kernel) 11702 mask |= PERF_SAMPLE_BRANCH_KERNEL; 11703 11704 if (!attr->exclude_user) 11705 mask |= PERF_SAMPLE_BRANCH_USER; 11706 11707 if (!attr->exclude_hv) 11708 mask |= PERF_SAMPLE_BRANCH_HV; 11709 /* 11710 * adjust user setting (for HW filter setup) 11711 */ 11712 attr->branch_sample_type = mask; 11713 } 11714 /* privileged levels capture (kernel, hv): check permissions */ 11715 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) { 11716 ret = perf_allow_kernel(attr); 11717 if (ret) 11718 return ret; 11719 } 11720 } 11721 11722 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 11723 ret = perf_reg_validate(attr->sample_regs_user); 11724 if (ret) 11725 return ret; 11726 } 11727 11728 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 11729 if (!arch_perf_have_user_stack_dump()) 11730 return -ENOSYS; 11731 11732 /* 11733 * We have __u32 type for the size, but so far 11734 * we can only use __u16 as maximum due to the 11735 * __u16 sample size limit. 11736 */ 11737 if (attr->sample_stack_user >= USHRT_MAX) 11738 return -EINVAL; 11739 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 11740 return -EINVAL; 11741 } 11742 11743 if (!attr->sample_max_stack) 11744 attr->sample_max_stack = sysctl_perf_event_max_stack; 11745 11746 if (attr->sample_type & PERF_SAMPLE_REGS_INTR) 11747 ret = perf_reg_validate(attr->sample_regs_intr); 11748 11749 #ifndef CONFIG_CGROUP_PERF 11750 if (attr->sample_type & PERF_SAMPLE_CGROUP) 11751 return -EINVAL; 11752 #endif 11753 if ((attr->sample_type & PERF_SAMPLE_WEIGHT) && 11754 (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT)) 11755 return -EINVAL; 11756 11757 if (!attr->inherit && attr->inherit_thread) 11758 return -EINVAL; 11759 11760 if (attr->remove_on_exec && attr->enable_on_exec) 11761 return -EINVAL; 11762 11763 if (attr->sigtrap && !attr->remove_on_exec) 11764 return -EINVAL; 11765 11766 out: 11767 return ret; 11768 11769 err_size: 11770 put_user(sizeof(*attr), &uattr->size); 11771 ret = -E2BIG; 11772 goto out; 11773 } 11774 11775 static int 11776 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 11777 { 11778 struct perf_buffer *rb = NULL; 11779 int ret = -EINVAL; 11780 11781 if (!output_event) 11782 goto set; 11783 11784 /* don't allow circular references */ 11785 if (event == output_event) 11786 goto out; 11787 11788 /* 11789 * Don't allow cross-cpu buffers 11790 */ 11791 if (output_event->cpu != event->cpu) 11792 goto out; 11793 11794 /* 11795 * If its not a per-cpu rb, it must be the same task. 11796 */ 11797 if (output_event->cpu == -1 && output_event->ctx != event->ctx) 11798 goto out; 11799 11800 /* 11801 * Mixing clocks in the same buffer is trouble you don't need. 11802 */ 11803 if (output_event->clock != event->clock) 11804 goto out; 11805 11806 /* 11807 * Either writing ring buffer from beginning or from end. 11808 * Mixing is not allowed. 11809 */ 11810 if (is_write_backward(output_event) != is_write_backward(event)) 11811 goto out; 11812 11813 /* 11814 * If both events generate aux data, they must be on the same PMU 11815 */ 11816 if (has_aux(event) && has_aux(output_event) && 11817 event->pmu != output_event->pmu) 11818 goto out; 11819 11820 set: 11821 mutex_lock(&event->mmap_mutex); 11822 /* Can't redirect output if we've got an active mmap() */ 11823 if (atomic_read(&event->mmap_count)) 11824 goto unlock; 11825 11826 if (output_event) { 11827 /* get the rb we want to redirect to */ 11828 rb = ring_buffer_get(output_event); 11829 if (!rb) 11830 goto unlock; 11831 } 11832 11833 ring_buffer_attach(event, rb); 11834 11835 ret = 0; 11836 unlock: 11837 mutex_unlock(&event->mmap_mutex); 11838 11839 out: 11840 return ret; 11841 } 11842 11843 static void mutex_lock_double(struct mutex *a, struct mutex *b) 11844 { 11845 if (b < a) 11846 swap(a, b); 11847 11848 mutex_lock(a); 11849 mutex_lock_nested(b, SINGLE_DEPTH_NESTING); 11850 } 11851 11852 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) 11853 { 11854 bool nmi_safe = false; 11855 11856 switch (clk_id) { 11857 case CLOCK_MONOTONIC: 11858 event->clock = &ktime_get_mono_fast_ns; 11859 nmi_safe = true; 11860 break; 11861 11862 case CLOCK_MONOTONIC_RAW: 11863 event->clock = &ktime_get_raw_fast_ns; 11864 nmi_safe = true; 11865 break; 11866 11867 case CLOCK_REALTIME: 11868 event->clock = &ktime_get_real_ns; 11869 break; 11870 11871 case CLOCK_BOOTTIME: 11872 event->clock = &ktime_get_boottime_ns; 11873 break; 11874 11875 case CLOCK_TAI: 11876 event->clock = &ktime_get_clocktai_ns; 11877 break; 11878 11879 default: 11880 return -EINVAL; 11881 } 11882 11883 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) 11884 return -EINVAL; 11885 11886 return 0; 11887 } 11888 11889 /* 11890 * Variation on perf_event_ctx_lock_nested(), except we take two context 11891 * mutexes. 11892 */ 11893 static struct perf_event_context * 11894 __perf_event_ctx_lock_double(struct perf_event *group_leader, 11895 struct perf_event_context *ctx) 11896 { 11897 struct perf_event_context *gctx; 11898 11899 again: 11900 rcu_read_lock(); 11901 gctx = READ_ONCE(group_leader->ctx); 11902 if (!refcount_inc_not_zero(&gctx->refcount)) { 11903 rcu_read_unlock(); 11904 goto again; 11905 } 11906 rcu_read_unlock(); 11907 11908 mutex_lock_double(&gctx->mutex, &ctx->mutex); 11909 11910 if (group_leader->ctx != gctx) { 11911 mutex_unlock(&ctx->mutex); 11912 mutex_unlock(&gctx->mutex); 11913 put_ctx(gctx); 11914 goto again; 11915 } 11916 11917 return gctx; 11918 } 11919 11920 /** 11921 * sys_perf_event_open - open a performance event, associate it to a task/cpu 11922 * 11923 * @attr_uptr: event_id type attributes for monitoring/sampling 11924 * @pid: target pid 11925 * @cpu: target cpu 11926 * @group_fd: group leader event fd 11927 * @flags: perf event open flags 11928 */ 11929 SYSCALL_DEFINE5(perf_event_open, 11930 struct perf_event_attr __user *, attr_uptr, 11931 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 11932 { 11933 struct perf_event *group_leader = NULL, *output_event = NULL; 11934 struct perf_event *event, *sibling; 11935 struct perf_event_attr attr; 11936 struct perf_event_context *ctx, *gctx; 11937 struct file *event_file = NULL; 11938 struct fd group = {NULL, 0}; 11939 struct task_struct *task = NULL; 11940 struct pmu *pmu; 11941 int event_fd; 11942 int move_group = 0; 11943 int err; 11944 int f_flags = O_RDWR; 11945 int cgroup_fd = -1; 11946 11947 /* for future expandability... */ 11948 if (flags & ~PERF_FLAG_ALL) 11949 return -EINVAL; 11950 11951 /* Do we allow access to perf_event_open(2) ? */ 11952 err = security_perf_event_open(&attr, PERF_SECURITY_OPEN); 11953 if (err) 11954 return err; 11955 11956 err = perf_copy_attr(attr_uptr, &attr); 11957 if (err) 11958 return err; 11959 11960 if (!attr.exclude_kernel) { 11961 err = perf_allow_kernel(&attr); 11962 if (err) 11963 return err; 11964 } 11965 11966 if (attr.namespaces) { 11967 if (!perfmon_capable()) 11968 return -EACCES; 11969 } 11970 11971 if (attr.freq) { 11972 if (attr.sample_freq > sysctl_perf_event_sample_rate) 11973 return -EINVAL; 11974 } else { 11975 if (attr.sample_period & (1ULL << 63)) 11976 return -EINVAL; 11977 } 11978 11979 /* Only privileged users can get physical addresses */ 11980 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) { 11981 err = perf_allow_kernel(&attr); 11982 if (err) 11983 return err; 11984 } 11985 11986 /* REGS_INTR can leak data, lockdown must prevent this */ 11987 if (attr.sample_type & PERF_SAMPLE_REGS_INTR) { 11988 err = security_locked_down(LOCKDOWN_PERF); 11989 if (err) 11990 return err; 11991 } 11992 11993 /* 11994 * In cgroup mode, the pid argument is used to pass the fd 11995 * opened to the cgroup directory in cgroupfs. The cpu argument 11996 * designates the cpu on which to monitor threads from that 11997 * cgroup. 11998 */ 11999 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 12000 return -EINVAL; 12001 12002 if (flags & PERF_FLAG_FD_CLOEXEC) 12003 f_flags |= O_CLOEXEC; 12004 12005 event_fd = get_unused_fd_flags(f_flags); 12006 if (event_fd < 0) 12007 return event_fd; 12008 12009 if (group_fd != -1) { 12010 err = perf_fget_light(group_fd, &group); 12011 if (err) 12012 goto err_fd; 12013 group_leader = group.file->private_data; 12014 if (flags & PERF_FLAG_FD_OUTPUT) 12015 output_event = group_leader; 12016 if (flags & PERF_FLAG_FD_NO_GROUP) 12017 group_leader = NULL; 12018 } 12019 12020 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 12021 task = find_lively_task_by_vpid(pid); 12022 if (IS_ERR(task)) { 12023 err = PTR_ERR(task); 12024 goto err_group_fd; 12025 } 12026 } 12027 12028 if (task && group_leader && 12029 group_leader->attr.inherit != attr.inherit) { 12030 err = -EINVAL; 12031 goto err_task; 12032 } 12033 12034 if (flags & PERF_FLAG_PID_CGROUP) 12035 cgroup_fd = pid; 12036 12037 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 12038 NULL, NULL, cgroup_fd); 12039 if (IS_ERR(event)) { 12040 err = PTR_ERR(event); 12041 goto err_task; 12042 } 12043 12044 if (is_sampling_event(event)) { 12045 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 12046 err = -EOPNOTSUPP; 12047 goto err_alloc; 12048 } 12049 } 12050 12051 /* 12052 * Special case software events and allow them to be part of 12053 * any hardware group. 12054 */ 12055 pmu = event->pmu; 12056 12057 if (attr.use_clockid) { 12058 err = perf_event_set_clock(event, attr.clockid); 12059 if (err) 12060 goto err_alloc; 12061 } 12062 12063 if (pmu->task_ctx_nr == perf_sw_context) 12064 event->event_caps |= PERF_EV_CAP_SOFTWARE; 12065 12066 if (group_leader) { 12067 if (is_software_event(event) && 12068 !in_software_context(group_leader)) { 12069 /* 12070 * If the event is a sw event, but the group_leader 12071 * is on hw context. 12072 * 12073 * Allow the addition of software events to hw 12074 * groups, this is safe because software events 12075 * never fail to schedule. 12076 */ 12077 pmu = group_leader->ctx->pmu; 12078 } else if (!is_software_event(event) && 12079 is_software_event(group_leader) && 12080 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 12081 /* 12082 * In case the group is a pure software group, and we 12083 * try to add a hardware event, move the whole group to 12084 * the hardware context. 12085 */ 12086 move_group = 1; 12087 } 12088 } 12089 12090 /* 12091 * Get the target context (task or percpu): 12092 */ 12093 ctx = find_get_context(pmu, task, event); 12094 if (IS_ERR(ctx)) { 12095 err = PTR_ERR(ctx); 12096 goto err_alloc; 12097 } 12098 12099 /* 12100 * Look up the group leader (we will attach this event to it): 12101 */ 12102 if (group_leader) { 12103 err = -EINVAL; 12104 12105 /* 12106 * Do not allow a recursive hierarchy (this new sibling 12107 * becoming part of another group-sibling): 12108 */ 12109 if (group_leader->group_leader != group_leader) 12110 goto err_context; 12111 12112 /* All events in a group should have the same clock */ 12113 if (group_leader->clock != event->clock) 12114 goto err_context; 12115 12116 /* 12117 * Make sure we're both events for the same CPU; 12118 * grouping events for different CPUs is broken; since 12119 * you can never concurrently schedule them anyhow. 12120 */ 12121 if (group_leader->cpu != event->cpu) 12122 goto err_context; 12123 12124 /* 12125 * Make sure we're both on the same task, or both 12126 * per-CPU events. 12127 */ 12128 if (group_leader->ctx->task != ctx->task) 12129 goto err_context; 12130 12131 /* 12132 * Do not allow to attach to a group in a different task 12133 * or CPU context. If we're moving SW events, we'll fix 12134 * this up later, so allow that. 12135 */ 12136 if (!move_group && group_leader->ctx != ctx) 12137 goto err_context; 12138 12139 /* 12140 * Only a group leader can be exclusive or pinned 12141 */ 12142 if (attr.exclusive || attr.pinned) 12143 goto err_context; 12144 } 12145 12146 if (output_event) { 12147 err = perf_event_set_output(event, output_event); 12148 if (err) 12149 goto err_context; 12150 } 12151 12152 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, 12153 f_flags); 12154 if (IS_ERR(event_file)) { 12155 err = PTR_ERR(event_file); 12156 event_file = NULL; 12157 goto err_context; 12158 } 12159 12160 if (task) { 12161 err = down_read_interruptible(&task->signal->exec_update_lock); 12162 if (err) 12163 goto err_file; 12164 12165 /* 12166 * Preserve ptrace permission check for backwards compatibility. 12167 * 12168 * We must hold exec_update_lock across this and any potential 12169 * perf_install_in_context() call for this new event to 12170 * serialize against exec() altering our credentials (and the 12171 * perf_event_exit_task() that could imply). 12172 */ 12173 err = -EACCES; 12174 if (!perfmon_capable() && !ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) 12175 goto err_cred; 12176 } 12177 12178 if (move_group) { 12179 gctx = __perf_event_ctx_lock_double(group_leader, ctx); 12180 12181 if (gctx->task == TASK_TOMBSTONE) { 12182 err = -ESRCH; 12183 goto err_locked; 12184 } 12185 12186 /* 12187 * Check if we raced against another sys_perf_event_open() call 12188 * moving the software group underneath us. 12189 */ 12190 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 12191 /* 12192 * If someone moved the group out from under us, check 12193 * if this new event wound up on the same ctx, if so 12194 * its the regular !move_group case, otherwise fail. 12195 */ 12196 if (gctx != ctx) { 12197 err = -EINVAL; 12198 goto err_locked; 12199 } else { 12200 perf_event_ctx_unlock(group_leader, gctx); 12201 move_group = 0; 12202 } 12203 } 12204 12205 /* 12206 * Failure to create exclusive events returns -EBUSY. 12207 */ 12208 err = -EBUSY; 12209 if (!exclusive_event_installable(group_leader, ctx)) 12210 goto err_locked; 12211 12212 for_each_sibling_event(sibling, group_leader) { 12213 if (!exclusive_event_installable(sibling, ctx)) 12214 goto err_locked; 12215 } 12216 } else { 12217 mutex_lock(&ctx->mutex); 12218 } 12219 12220 if (ctx->task == TASK_TOMBSTONE) { 12221 err = -ESRCH; 12222 goto err_locked; 12223 } 12224 12225 if (!perf_event_validate_size(event)) { 12226 err = -E2BIG; 12227 goto err_locked; 12228 } 12229 12230 if (!task) { 12231 /* 12232 * Check if the @cpu we're creating an event for is online. 12233 * 12234 * We use the perf_cpu_context::ctx::mutex to serialize against 12235 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 12236 */ 12237 struct perf_cpu_context *cpuctx = 12238 container_of(ctx, struct perf_cpu_context, ctx); 12239 12240 if (!cpuctx->online) { 12241 err = -ENODEV; 12242 goto err_locked; 12243 } 12244 } 12245 12246 if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) { 12247 err = -EINVAL; 12248 goto err_locked; 12249 } 12250 12251 /* 12252 * Must be under the same ctx::mutex as perf_install_in_context(), 12253 * because we need to serialize with concurrent event creation. 12254 */ 12255 if (!exclusive_event_installable(event, ctx)) { 12256 err = -EBUSY; 12257 goto err_locked; 12258 } 12259 12260 WARN_ON_ONCE(ctx->parent_ctx); 12261 12262 /* 12263 * This is the point on no return; we cannot fail hereafter. This is 12264 * where we start modifying current state. 12265 */ 12266 12267 if (move_group) { 12268 /* 12269 * See perf_event_ctx_lock() for comments on the details 12270 * of swizzling perf_event::ctx. 12271 */ 12272 perf_remove_from_context(group_leader, 0); 12273 put_ctx(gctx); 12274 12275 for_each_sibling_event(sibling, group_leader) { 12276 perf_remove_from_context(sibling, 0); 12277 put_ctx(gctx); 12278 } 12279 12280 /* 12281 * Wait for everybody to stop referencing the events through 12282 * the old lists, before installing it on new lists. 12283 */ 12284 synchronize_rcu(); 12285 12286 /* 12287 * Install the group siblings before the group leader. 12288 * 12289 * Because a group leader will try and install the entire group 12290 * (through the sibling list, which is still in-tact), we can 12291 * end up with siblings installed in the wrong context. 12292 * 12293 * By installing siblings first we NO-OP because they're not 12294 * reachable through the group lists. 12295 */ 12296 for_each_sibling_event(sibling, group_leader) { 12297 perf_event__state_init(sibling); 12298 perf_install_in_context(ctx, sibling, sibling->cpu); 12299 get_ctx(ctx); 12300 } 12301 12302 /* 12303 * Removing from the context ends up with disabled 12304 * event. What we want here is event in the initial 12305 * startup state, ready to be add into new context. 12306 */ 12307 perf_event__state_init(group_leader); 12308 perf_install_in_context(ctx, group_leader, group_leader->cpu); 12309 get_ctx(ctx); 12310 } 12311 12312 /* 12313 * Precalculate sample_data sizes; do while holding ctx::mutex such 12314 * that we're serialized against further additions and before 12315 * perf_install_in_context() which is the point the event is active and 12316 * can use these values. 12317 */ 12318 perf_event__header_size(event); 12319 perf_event__id_header_size(event); 12320 12321 event->owner = current; 12322 12323 perf_install_in_context(ctx, event, event->cpu); 12324 perf_unpin_context(ctx); 12325 12326 if (move_group) 12327 perf_event_ctx_unlock(group_leader, gctx); 12328 mutex_unlock(&ctx->mutex); 12329 12330 if (task) { 12331 up_read(&task->signal->exec_update_lock); 12332 put_task_struct(task); 12333 } 12334 12335 mutex_lock(¤t->perf_event_mutex); 12336 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 12337 mutex_unlock(¤t->perf_event_mutex); 12338 12339 /* 12340 * Drop the reference on the group_event after placing the 12341 * new event on the sibling_list. This ensures destruction 12342 * of the group leader will find the pointer to itself in 12343 * perf_group_detach(). 12344 */ 12345 fdput(group); 12346 fd_install(event_fd, event_file); 12347 return event_fd; 12348 12349 err_locked: 12350 if (move_group) 12351 perf_event_ctx_unlock(group_leader, gctx); 12352 mutex_unlock(&ctx->mutex); 12353 err_cred: 12354 if (task) 12355 up_read(&task->signal->exec_update_lock); 12356 err_file: 12357 fput(event_file); 12358 err_context: 12359 perf_unpin_context(ctx); 12360 put_ctx(ctx); 12361 err_alloc: 12362 /* 12363 * If event_file is set, the fput() above will have called ->release() 12364 * and that will take care of freeing the event. 12365 */ 12366 if (!event_file) 12367 free_event(event); 12368 err_task: 12369 if (task) 12370 put_task_struct(task); 12371 err_group_fd: 12372 fdput(group); 12373 err_fd: 12374 put_unused_fd(event_fd); 12375 return err; 12376 } 12377 12378 /** 12379 * perf_event_create_kernel_counter 12380 * 12381 * @attr: attributes of the counter to create 12382 * @cpu: cpu in which the counter is bound 12383 * @task: task to profile (NULL for percpu) 12384 * @overflow_handler: callback to trigger when we hit the event 12385 * @context: context data could be used in overflow_handler callback 12386 */ 12387 struct perf_event * 12388 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 12389 struct task_struct *task, 12390 perf_overflow_handler_t overflow_handler, 12391 void *context) 12392 { 12393 struct perf_event_context *ctx; 12394 struct perf_event *event; 12395 int err; 12396 12397 /* 12398 * Grouping is not supported for kernel events, neither is 'AUX', 12399 * make sure the caller's intentions are adjusted. 12400 */ 12401 if (attr->aux_output) 12402 return ERR_PTR(-EINVAL); 12403 12404 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 12405 overflow_handler, context, -1); 12406 if (IS_ERR(event)) { 12407 err = PTR_ERR(event); 12408 goto err; 12409 } 12410 12411 /* Mark owner so we could distinguish it from user events. */ 12412 event->owner = TASK_TOMBSTONE; 12413 12414 /* 12415 * Get the target context (task or percpu): 12416 */ 12417 ctx = find_get_context(event->pmu, task, event); 12418 if (IS_ERR(ctx)) { 12419 err = PTR_ERR(ctx); 12420 goto err_free; 12421 } 12422 12423 WARN_ON_ONCE(ctx->parent_ctx); 12424 mutex_lock(&ctx->mutex); 12425 if (ctx->task == TASK_TOMBSTONE) { 12426 err = -ESRCH; 12427 goto err_unlock; 12428 } 12429 12430 if (!task) { 12431 /* 12432 * Check if the @cpu we're creating an event for is online. 12433 * 12434 * We use the perf_cpu_context::ctx::mutex to serialize against 12435 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 12436 */ 12437 struct perf_cpu_context *cpuctx = 12438 container_of(ctx, struct perf_cpu_context, ctx); 12439 if (!cpuctx->online) { 12440 err = -ENODEV; 12441 goto err_unlock; 12442 } 12443 } 12444 12445 if (!exclusive_event_installable(event, ctx)) { 12446 err = -EBUSY; 12447 goto err_unlock; 12448 } 12449 12450 perf_install_in_context(ctx, event, event->cpu); 12451 perf_unpin_context(ctx); 12452 mutex_unlock(&ctx->mutex); 12453 12454 return event; 12455 12456 err_unlock: 12457 mutex_unlock(&ctx->mutex); 12458 perf_unpin_context(ctx); 12459 put_ctx(ctx); 12460 err_free: 12461 free_event(event); 12462 err: 12463 return ERR_PTR(err); 12464 } 12465 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 12466 12467 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 12468 { 12469 struct perf_event_context *src_ctx; 12470 struct perf_event_context *dst_ctx; 12471 struct perf_event *event, *tmp; 12472 LIST_HEAD(events); 12473 12474 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx; 12475 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx; 12476 12477 /* 12478 * See perf_event_ctx_lock() for comments on the details 12479 * of swizzling perf_event::ctx. 12480 */ 12481 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); 12482 list_for_each_entry_safe(event, tmp, &src_ctx->event_list, 12483 event_entry) { 12484 perf_remove_from_context(event, 0); 12485 unaccount_event_cpu(event, src_cpu); 12486 put_ctx(src_ctx); 12487 list_add(&event->migrate_entry, &events); 12488 } 12489 12490 /* 12491 * Wait for the events to quiesce before re-instating them. 12492 */ 12493 synchronize_rcu(); 12494 12495 /* 12496 * Re-instate events in 2 passes. 12497 * 12498 * Skip over group leaders and only install siblings on this first 12499 * pass, siblings will not get enabled without a leader, however a 12500 * leader will enable its siblings, even if those are still on the old 12501 * context. 12502 */ 12503 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 12504 if (event->group_leader == event) 12505 continue; 12506 12507 list_del(&event->migrate_entry); 12508 if (event->state >= PERF_EVENT_STATE_OFF) 12509 event->state = PERF_EVENT_STATE_INACTIVE; 12510 account_event_cpu(event, dst_cpu); 12511 perf_install_in_context(dst_ctx, event, dst_cpu); 12512 get_ctx(dst_ctx); 12513 } 12514 12515 /* 12516 * Once all the siblings are setup properly, install the group leaders 12517 * to make it go. 12518 */ 12519 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 12520 list_del(&event->migrate_entry); 12521 if (event->state >= PERF_EVENT_STATE_OFF) 12522 event->state = PERF_EVENT_STATE_INACTIVE; 12523 account_event_cpu(event, dst_cpu); 12524 perf_install_in_context(dst_ctx, event, dst_cpu); 12525 get_ctx(dst_ctx); 12526 } 12527 mutex_unlock(&dst_ctx->mutex); 12528 mutex_unlock(&src_ctx->mutex); 12529 } 12530 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 12531 12532 static void sync_child_event(struct perf_event *child_event) 12533 { 12534 struct perf_event *parent_event = child_event->parent; 12535 u64 child_val; 12536 12537 if (child_event->attr.inherit_stat) { 12538 struct task_struct *task = child_event->ctx->task; 12539 12540 if (task && task != TASK_TOMBSTONE) 12541 perf_event_read_event(child_event, task); 12542 } 12543 12544 child_val = perf_event_count(child_event); 12545 12546 /* 12547 * Add back the child's count to the parent's count: 12548 */ 12549 atomic64_add(child_val, &parent_event->child_count); 12550 atomic64_add(child_event->total_time_enabled, 12551 &parent_event->child_total_time_enabled); 12552 atomic64_add(child_event->total_time_running, 12553 &parent_event->child_total_time_running); 12554 } 12555 12556 static void 12557 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx) 12558 { 12559 struct perf_event *parent_event = event->parent; 12560 unsigned long detach_flags = 0; 12561 12562 if (parent_event) { 12563 /* 12564 * Do not destroy the 'original' grouping; because of the 12565 * context switch optimization the original events could've 12566 * ended up in a random child task. 12567 * 12568 * If we were to destroy the original group, all group related 12569 * operations would cease to function properly after this 12570 * random child dies. 12571 * 12572 * Do destroy all inherited groups, we don't care about those 12573 * and being thorough is better. 12574 */ 12575 detach_flags = DETACH_GROUP | DETACH_CHILD; 12576 mutex_lock(&parent_event->child_mutex); 12577 } 12578 12579 perf_remove_from_context(event, detach_flags); 12580 12581 raw_spin_lock_irq(&ctx->lock); 12582 if (event->state > PERF_EVENT_STATE_EXIT) 12583 perf_event_set_state(event, PERF_EVENT_STATE_EXIT); 12584 raw_spin_unlock_irq(&ctx->lock); 12585 12586 /* 12587 * Child events can be freed. 12588 */ 12589 if (parent_event) { 12590 mutex_unlock(&parent_event->child_mutex); 12591 /* 12592 * Kick perf_poll() for is_event_hup(); 12593 */ 12594 perf_event_wakeup(parent_event); 12595 free_event(event); 12596 put_event(parent_event); 12597 return; 12598 } 12599 12600 /* 12601 * Parent events are governed by their filedesc, retain them. 12602 */ 12603 perf_event_wakeup(event); 12604 } 12605 12606 static void perf_event_exit_task_context(struct task_struct *child, int ctxn) 12607 { 12608 struct perf_event_context *child_ctx, *clone_ctx = NULL; 12609 struct perf_event *child_event, *next; 12610 12611 WARN_ON_ONCE(child != current); 12612 12613 child_ctx = perf_pin_task_context(child, ctxn); 12614 if (!child_ctx) 12615 return; 12616 12617 /* 12618 * In order to reduce the amount of tricky in ctx tear-down, we hold 12619 * ctx::mutex over the entire thing. This serializes against almost 12620 * everything that wants to access the ctx. 12621 * 12622 * The exception is sys_perf_event_open() / 12623 * perf_event_create_kernel_count() which does find_get_context() 12624 * without ctx::mutex (it cannot because of the move_group double mutex 12625 * lock thing). See the comments in perf_install_in_context(). 12626 */ 12627 mutex_lock(&child_ctx->mutex); 12628 12629 /* 12630 * In a single ctx::lock section, de-schedule the events and detach the 12631 * context from the task such that we cannot ever get it scheduled back 12632 * in. 12633 */ 12634 raw_spin_lock_irq(&child_ctx->lock); 12635 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL); 12636 12637 /* 12638 * Now that the context is inactive, destroy the task <-> ctx relation 12639 * and mark the context dead. 12640 */ 12641 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL); 12642 put_ctx(child_ctx); /* cannot be last */ 12643 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE); 12644 put_task_struct(current); /* cannot be last */ 12645 12646 clone_ctx = unclone_ctx(child_ctx); 12647 raw_spin_unlock_irq(&child_ctx->lock); 12648 12649 if (clone_ctx) 12650 put_ctx(clone_ctx); 12651 12652 /* 12653 * Report the task dead after unscheduling the events so that we 12654 * won't get any samples after PERF_RECORD_EXIT. We can however still 12655 * get a few PERF_RECORD_READ events. 12656 */ 12657 perf_event_task(child, child_ctx, 0); 12658 12659 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) 12660 perf_event_exit_event(child_event, child_ctx); 12661 12662 mutex_unlock(&child_ctx->mutex); 12663 12664 put_ctx(child_ctx); 12665 } 12666 12667 /* 12668 * When a child task exits, feed back event values to parent events. 12669 * 12670 * Can be called with exec_update_lock held when called from 12671 * setup_new_exec(). 12672 */ 12673 void perf_event_exit_task(struct task_struct *child) 12674 { 12675 struct perf_event *event, *tmp; 12676 int ctxn; 12677 12678 mutex_lock(&child->perf_event_mutex); 12679 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 12680 owner_entry) { 12681 list_del_init(&event->owner_entry); 12682 12683 /* 12684 * Ensure the list deletion is visible before we clear 12685 * the owner, closes a race against perf_release() where 12686 * we need to serialize on the owner->perf_event_mutex. 12687 */ 12688 smp_store_release(&event->owner, NULL); 12689 } 12690 mutex_unlock(&child->perf_event_mutex); 12691 12692 for_each_task_context_nr(ctxn) 12693 perf_event_exit_task_context(child, ctxn); 12694 12695 /* 12696 * The perf_event_exit_task_context calls perf_event_task 12697 * with child's task_ctx, which generates EXIT events for 12698 * child contexts and sets child->perf_event_ctxp[] to NULL. 12699 * At this point we need to send EXIT events to cpu contexts. 12700 */ 12701 perf_event_task(child, NULL, 0); 12702 } 12703 12704 static void perf_free_event(struct perf_event *event, 12705 struct perf_event_context *ctx) 12706 { 12707 struct perf_event *parent = event->parent; 12708 12709 if (WARN_ON_ONCE(!parent)) 12710 return; 12711 12712 mutex_lock(&parent->child_mutex); 12713 list_del_init(&event->child_list); 12714 mutex_unlock(&parent->child_mutex); 12715 12716 put_event(parent); 12717 12718 raw_spin_lock_irq(&ctx->lock); 12719 perf_group_detach(event); 12720 list_del_event(event, ctx); 12721 raw_spin_unlock_irq(&ctx->lock); 12722 free_event(event); 12723 } 12724 12725 /* 12726 * Free a context as created by inheritance by perf_event_init_task() below, 12727 * used by fork() in case of fail. 12728 * 12729 * Even though the task has never lived, the context and events have been 12730 * exposed through the child_list, so we must take care tearing it all down. 12731 */ 12732 void perf_event_free_task(struct task_struct *task) 12733 { 12734 struct perf_event_context *ctx; 12735 struct perf_event *event, *tmp; 12736 int ctxn; 12737 12738 for_each_task_context_nr(ctxn) { 12739 ctx = task->perf_event_ctxp[ctxn]; 12740 if (!ctx) 12741 continue; 12742 12743 mutex_lock(&ctx->mutex); 12744 raw_spin_lock_irq(&ctx->lock); 12745 /* 12746 * Destroy the task <-> ctx relation and mark the context dead. 12747 * 12748 * This is important because even though the task hasn't been 12749 * exposed yet the context has been (through child_list). 12750 */ 12751 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL); 12752 WRITE_ONCE(ctx->task, TASK_TOMBSTONE); 12753 put_task_struct(task); /* cannot be last */ 12754 raw_spin_unlock_irq(&ctx->lock); 12755 12756 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) 12757 perf_free_event(event, ctx); 12758 12759 mutex_unlock(&ctx->mutex); 12760 12761 /* 12762 * perf_event_release_kernel() could've stolen some of our 12763 * child events and still have them on its free_list. In that 12764 * case we must wait for these events to have been freed (in 12765 * particular all their references to this task must've been 12766 * dropped). 12767 * 12768 * Without this copy_process() will unconditionally free this 12769 * task (irrespective of its reference count) and 12770 * _free_event()'s put_task_struct(event->hw.target) will be a 12771 * use-after-free. 12772 * 12773 * Wait for all events to drop their context reference. 12774 */ 12775 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1); 12776 put_ctx(ctx); /* must be last */ 12777 } 12778 } 12779 12780 void perf_event_delayed_put(struct task_struct *task) 12781 { 12782 int ctxn; 12783 12784 for_each_task_context_nr(ctxn) 12785 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); 12786 } 12787 12788 struct file *perf_event_get(unsigned int fd) 12789 { 12790 struct file *file = fget(fd); 12791 if (!file) 12792 return ERR_PTR(-EBADF); 12793 12794 if (file->f_op != &perf_fops) { 12795 fput(file); 12796 return ERR_PTR(-EBADF); 12797 } 12798 12799 return file; 12800 } 12801 12802 const struct perf_event *perf_get_event(struct file *file) 12803 { 12804 if (file->f_op != &perf_fops) 12805 return ERR_PTR(-EINVAL); 12806 12807 return file->private_data; 12808 } 12809 12810 const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 12811 { 12812 if (!event) 12813 return ERR_PTR(-EINVAL); 12814 12815 return &event->attr; 12816 } 12817 12818 /* 12819 * Inherit an event from parent task to child task. 12820 * 12821 * Returns: 12822 * - valid pointer on success 12823 * - NULL for orphaned events 12824 * - IS_ERR() on error 12825 */ 12826 static struct perf_event * 12827 inherit_event(struct perf_event *parent_event, 12828 struct task_struct *parent, 12829 struct perf_event_context *parent_ctx, 12830 struct task_struct *child, 12831 struct perf_event *group_leader, 12832 struct perf_event_context *child_ctx) 12833 { 12834 enum perf_event_state parent_state = parent_event->state; 12835 struct perf_event *child_event; 12836 unsigned long flags; 12837 12838 /* 12839 * Instead of creating recursive hierarchies of events, 12840 * we link inherited events back to the original parent, 12841 * which has a filp for sure, which we use as the reference 12842 * count: 12843 */ 12844 if (parent_event->parent) 12845 parent_event = parent_event->parent; 12846 12847 child_event = perf_event_alloc(&parent_event->attr, 12848 parent_event->cpu, 12849 child, 12850 group_leader, parent_event, 12851 NULL, NULL, -1); 12852 if (IS_ERR(child_event)) 12853 return child_event; 12854 12855 12856 if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) && 12857 !child_ctx->task_ctx_data) { 12858 struct pmu *pmu = child_event->pmu; 12859 12860 child_ctx->task_ctx_data = alloc_task_ctx_data(pmu); 12861 if (!child_ctx->task_ctx_data) { 12862 free_event(child_event); 12863 return ERR_PTR(-ENOMEM); 12864 } 12865 } 12866 12867 /* 12868 * is_orphaned_event() and list_add_tail(&parent_event->child_list) 12869 * must be under the same lock in order to serialize against 12870 * perf_event_release_kernel(), such that either we must observe 12871 * is_orphaned_event() or they will observe us on the child_list. 12872 */ 12873 mutex_lock(&parent_event->child_mutex); 12874 if (is_orphaned_event(parent_event) || 12875 !atomic_long_inc_not_zero(&parent_event->refcount)) { 12876 mutex_unlock(&parent_event->child_mutex); 12877 /* task_ctx_data is freed with child_ctx */ 12878 free_event(child_event); 12879 return NULL; 12880 } 12881 12882 get_ctx(child_ctx); 12883 12884 /* 12885 * Make the child state follow the state of the parent event, 12886 * not its attr.disabled bit. We hold the parent's mutex, 12887 * so we won't race with perf_event_{en, dis}able_family. 12888 */ 12889 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 12890 child_event->state = PERF_EVENT_STATE_INACTIVE; 12891 else 12892 child_event->state = PERF_EVENT_STATE_OFF; 12893 12894 if (parent_event->attr.freq) { 12895 u64 sample_period = parent_event->hw.sample_period; 12896 struct hw_perf_event *hwc = &child_event->hw; 12897 12898 hwc->sample_period = sample_period; 12899 hwc->last_period = sample_period; 12900 12901 local64_set(&hwc->period_left, sample_period); 12902 } 12903 12904 child_event->ctx = child_ctx; 12905 child_event->overflow_handler = parent_event->overflow_handler; 12906 child_event->overflow_handler_context 12907 = parent_event->overflow_handler_context; 12908 12909 /* 12910 * Precalculate sample_data sizes 12911 */ 12912 perf_event__header_size(child_event); 12913 perf_event__id_header_size(child_event); 12914 12915 /* 12916 * Link it up in the child's context: 12917 */ 12918 raw_spin_lock_irqsave(&child_ctx->lock, flags); 12919 add_event_to_ctx(child_event, child_ctx); 12920 child_event->attach_state |= PERF_ATTACH_CHILD; 12921 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 12922 12923 /* 12924 * Link this into the parent event's child list 12925 */ 12926 list_add_tail(&child_event->child_list, &parent_event->child_list); 12927 mutex_unlock(&parent_event->child_mutex); 12928 12929 return child_event; 12930 } 12931 12932 /* 12933 * Inherits an event group. 12934 * 12935 * This will quietly suppress orphaned events; !inherit_event() is not an error. 12936 * This matches with perf_event_release_kernel() removing all child events. 12937 * 12938 * Returns: 12939 * - 0 on success 12940 * - <0 on error 12941 */ 12942 static int inherit_group(struct perf_event *parent_event, 12943 struct task_struct *parent, 12944 struct perf_event_context *parent_ctx, 12945 struct task_struct *child, 12946 struct perf_event_context *child_ctx) 12947 { 12948 struct perf_event *leader; 12949 struct perf_event *sub; 12950 struct perf_event *child_ctr; 12951 12952 leader = inherit_event(parent_event, parent, parent_ctx, 12953 child, NULL, child_ctx); 12954 if (IS_ERR(leader)) 12955 return PTR_ERR(leader); 12956 /* 12957 * @leader can be NULL here because of is_orphaned_event(). In this 12958 * case inherit_event() will create individual events, similar to what 12959 * perf_group_detach() would do anyway. 12960 */ 12961 for_each_sibling_event(sub, parent_event) { 12962 child_ctr = inherit_event(sub, parent, parent_ctx, 12963 child, leader, child_ctx); 12964 if (IS_ERR(child_ctr)) 12965 return PTR_ERR(child_ctr); 12966 12967 if (sub->aux_event == parent_event && child_ctr && 12968 !perf_get_aux_event(child_ctr, leader)) 12969 return -EINVAL; 12970 } 12971 return 0; 12972 } 12973 12974 /* 12975 * Creates the child task context and tries to inherit the event-group. 12976 * 12977 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave 12978 * inherited_all set when we 'fail' to inherit an orphaned event; this is 12979 * consistent with perf_event_release_kernel() removing all child events. 12980 * 12981 * Returns: 12982 * - 0 on success 12983 * - <0 on error 12984 */ 12985 static int 12986 inherit_task_group(struct perf_event *event, struct task_struct *parent, 12987 struct perf_event_context *parent_ctx, 12988 struct task_struct *child, int ctxn, 12989 u64 clone_flags, int *inherited_all) 12990 { 12991 int ret; 12992 struct perf_event_context *child_ctx; 12993 12994 if (!event->attr.inherit || 12995 (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) || 12996 /* Do not inherit if sigtrap and signal handlers were cleared. */ 12997 (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) { 12998 *inherited_all = 0; 12999 return 0; 13000 } 13001 13002 child_ctx = child->perf_event_ctxp[ctxn]; 13003 if (!child_ctx) { 13004 /* 13005 * This is executed from the parent task context, so 13006 * inherit events that have been marked for cloning. 13007 * First allocate and initialize a context for the 13008 * child. 13009 */ 13010 child_ctx = alloc_perf_context(parent_ctx->pmu, child); 13011 if (!child_ctx) 13012 return -ENOMEM; 13013 13014 child->perf_event_ctxp[ctxn] = child_ctx; 13015 } 13016 13017 ret = inherit_group(event, parent, parent_ctx, 13018 child, child_ctx); 13019 13020 if (ret) 13021 *inherited_all = 0; 13022 13023 return ret; 13024 } 13025 13026 /* 13027 * Initialize the perf_event context in task_struct 13028 */ 13029 static int perf_event_init_context(struct task_struct *child, int ctxn, 13030 u64 clone_flags) 13031 { 13032 struct perf_event_context *child_ctx, *parent_ctx; 13033 struct perf_event_context *cloned_ctx; 13034 struct perf_event *event; 13035 struct task_struct *parent = current; 13036 int inherited_all = 1; 13037 unsigned long flags; 13038 int ret = 0; 13039 13040 if (likely(!parent->perf_event_ctxp[ctxn])) 13041 return 0; 13042 13043 /* 13044 * If the parent's context is a clone, pin it so it won't get 13045 * swapped under us. 13046 */ 13047 parent_ctx = perf_pin_task_context(parent, ctxn); 13048 if (!parent_ctx) 13049 return 0; 13050 13051 /* 13052 * No need to check if parent_ctx != NULL here; since we saw 13053 * it non-NULL earlier, the only reason for it to become NULL 13054 * is if we exit, and since we're currently in the middle of 13055 * a fork we can't be exiting at the same time. 13056 */ 13057 13058 /* 13059 * Lock the parent list. No need to lock the child - not PID 13060 * hashed yet and not running, so nobody can access it. 13061 */ 13062 mutex_lock(&parent_ctx->mutex); 13063 13064 /* 13065 * We dont have to disable NMIs - we are only looking at 13066 * the list, not manipulating it: 13067 */ 13068 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) { 13069 ret = inherit_task_group(event, parent, parent_ctx, 13070 child, ctxn, clone_flags, 13071 &inherited_all); 13072 if (ret) 13073 goto out_unlock; 13074 } 13075 13076 /* 13077 * We can't hold ctx->lock when iterating the ->flexible_group list due 13078 * to allocations, but we need to prevent rotation because 13079 * rotate_ctx() will change the list from interrupt context. 13080 */ 13081 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 13082 parent_ctx->rotate_disable = 1; 13083 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 13084 13085 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) { 13086 ret = inherit_task_group(event, parent, parent_ctx, 13087 child, ctxn, clone_flags, 13088 &inherited_all); 13089 if (ret) 13090 goto out_unlock; 13091 } 13092 13093 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 13094 parent_ctx->rotate_disable = 0; 13095 13096 child_ctx = child->perf_event_ctxp[ctxn]; 13097 13098 if (child_ctx && inherited_all) { 13099 /* 13100 * Mark the child context as a clone of the parent 13101 * context, or of whatever the parent is a clone of. 13102 * 13103 * Note that if the parent is a clone, the holding of 13104 * parent_ctx->lock avoids it from being uncloned. 13105 */ 13106 cloned_ctx = parent_ctx->parent_ctx; 13107 if (cloned_ctx) { 13108 child_ctx->parent_ctx = cloned_ctx; 13109 child_ctx->parent_gen = parent_ctx->parent_gen; 13110 } else { 13111 child_ctx->parent_ctx = parent_ctx; 13112 child_ctx->parent_gen = parent_ctx->generation; 13113 } 13114 get_ctx(child_ctx->parent_ctx); 13115 } 13116 13117 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 13118 out_unlock: 13119 mutex_unlock(&parent_ctx->mutex); 13120 13121 perf_unpin_context(parent_ctx); 13122 put_ctx(parent_ctx); 13123 13124 return ret; 13125 } 13126 13127 /* 13128 * Initialize the perf_event context in task_struct 13129 */ 13130 int perf_event_init_task(struct task_struct *child, u64 clone_flags) 13131 { 13132 int ctxn, ret; 13133 13134 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); 13135 mutex_init(&child->perf_event_mutex); 13136 INIT_LIST_HEAD(&child->perf_event_list); 13137 13138 for_each_task_context_nr(ctxn) { 13139 ret = perf_event_init_context(child, ctxn, clone_flags); 13140 if (ret) { 13141 perf_event_free_task(child); 13142 return ret; 13143 } 13144 } 13145 13146 return 0; 13147 } 13148 13149 static void __init perf_event_init_all_cpus(void) 13150 { 13151 struct swevent_htable *swhash; 13152 int cpu; 13153 13154 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL); 13155 13156 for_each_possible_cpu(cpu) { 13157 swhash = &per_cpu(swevent_htable, cpu); 13158 mutex_init(&swhash->hlist_mutex); 13159 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu)); 13160 13161 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu)); 13162 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu)); 13163 13164 #ifdef CONFIG_CGROUP_PERF 13165 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu)); 13166 #endif 13167 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu)); 13168 } 13169 } 13170 13171 static void perf_swevent_init_cpu(unsigned int cpu) 13172 { 13173 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 13174 13175 mutex_lock(&swhash->hlist_mutex); 13176 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) { 13177 struct swevent_hlist *hlist; 13178 13179 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 13180 WARN_ON(!hlist); 13181 rcu_assign_pointer(swhash->swevent_hlist, hlist); 13182 } 13183 mutex_unlock(&swhash->hlist_mutex); 13184 } 13185 13186 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE 13187 static void __perf_event_exit_context(void *__info) 13188 { 13189 struct perf_event_context *ctx = __info; 13190 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 13191 struct perf_event *event; 13192 13193 raw_spin_lock(&ctx->lock); 13194 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 13195 list_for_each_entry(event, &ctx->event_list, event_entry) 13196 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP); 13197 raw_spin_unlock(&ctx->lock); 13198 } 13199 13200 static void perf_event_exit_cpu_context(int cpu) 13201 { 13202 struct perf_cpu_context *cpuctx; 13203 struct perf_event_context *ctx; 13204 struct pmu *pmu; 13205 13206 mutex_lock(&pmus_lock); 13207 list_for_each_entry(pmu, &pmus, entry) { 13208 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 13209 ctx = &cpuctx->ctx; 13210 13211 mutex_lock(&ctx->mutex); 13212 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 13213 cpuctx->online = 0; 13214 mutex_unlock(&ctx->mutex); 13215 } 13216 cpumask_clear_cpu(cpu, perf_online_mask); 13217 mutex_unlock(&pmus_lock); 13218 } 13219 #else 13220 13221 static void perf_event_exit_cpu_context(int cpu) { } 13222 13223 #endif 13224 13225 int perf_event_init_cpu(unsigned int cpu) 13226 { 13227 struct perf_cpu_context *cpuctx; 13228 struct perf_event_context *ctx; 13229 struct pmu *pmu; 13230 13231 perf_swevent_init_cpu(cpu); 13232 13233 mutex_lock(&pmus_lock); 13234 cpumask_set_cpu(cpu, perf_online_mask); 13235 list_for_each_entry(pmu, &pmus, entry) { 13236 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 13237 ctx = &cpuctx->ctx; 13238 13239 mutex_lock(&ctx->mutex); 13240 cpuctx->online = 1; 13241 mutex_unlock(&ctx->mutex); 13242 } 13243 mutex_unlock(&pmus_lock); 13244 13245 return 0; 13246 } 13247 13248 int perf_event_exit_cpu(unsigned int cpu) 13249 { 13250 perf_event_exit_cpu_context(cpu); 13251 return 0; 13252 } 13253 13254 static int 13255 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 13256 { 13257 int cpu; 13258 13259 for_each_online_cpu(cpu) 13260 perf_event_exit_cpu(cpu); 13261 13262 return NOTIFY_OK; 13263 } 13264 13265 /* 13266 * Run the perf reboot notifier at the very last possible moment so that 13267 * the generic watchdog code runs as long as possible. 13268 */ 13269 static struct notifier_block perf_reboot_notifier = { 13270 .notifier_call = perf_reboot, 13271 .priority = INT_MIN, 13272 }; 13273 13274 void __init perf_event_init(void) 13275 { 13276 int ret; 13277 13278 idr_init(&pmu_idr); 13279 13280 perf_event_init_all_cpus(); 13281 init_srcu_struct(&pmus_srcu); 13282 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 13283 perf_pmu_register(&perf_cpu_clock, NULL, -1); 13284 perf_pmu_register(&perf_task_clock, NULL, -1); 13285 perf_tp_register(); 13286 perf_event_init_cpu(smp_processor_id()); 13287 register_reboot_notifier(&perf_reboot_notifier); 13288 13289 ret = init_hw_breakpoint(); 13290 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 13291 13292 perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC); 13293 13294 /* 13295 * Build time assertion that we keep the data_head at the intended 13296 * location. IOW, validation we got the __reserved[] size right. 13297 */ 13298 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 13299 != 1024); 13300 } 13301 13302 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 13303 char *page) 13304 { 13305 struct perf_pmu_events_attr *pmu_attr = 13306 container_of(attr, struct perf_pmu_events_attr, attr); 13307 13308 if (pmu_attr->event_str) 13309 return sprintf(page, "%s\n", pmu_attr->event_str); 13310 13311 return 0; 13312 } 13313 EXPORT_SYMBOL_GPL(perf_event_sysfs_show); 13314 13315 static int __init perf_event_sysfs_init(void) 13316 { 13317 struct pmu *pmu; 13318 int ret; 13319 13320 mutex_lock(&pmus_lock); 13321 13322 ret = bus_register(&pmu_bus); 13323 if (ret) 13324 goto unlock; 13325 13326 list_for_each_entry(pmu, &pmus, entry) { 13327 if (!pmu->name || pmu->type < 0) 13328 continue; 13329 13330 ret = pmu_dev_alloc(pmu); 13331 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 13332 } 13333 pmu_bus_running = 1; 13334 ret = 0; 13335 13336 unlock: 13337 mutex_unlock(&pmus_lock); 13338 13339 return ret; 13340 } 13341 device_initcall(perf_event_sysfs_init); 13342 13343 #ifdef CONFIG_CGROUP_PERF 13344 static struct cgroup_subsys_state * 13345 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 13346 { 13347 struct perf_cgroup *jc; 13348 13349 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 13350 if (!jc) 13351 return ERR_PTR(-ENOMEM); 13352 13353 jc->info = alloc_percpu(struct perf_cgroup_info); 13354 if (!jc->info) { 13355 kfree(jc); 13356 return ERR_PTR(-ENOMEM); 13357 } 13358 13359 return &jc->css; 13360 } 13361 13362 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 13363 { 13364 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 13365 13366 free_percpu(jc->info); 13367 kfree(jc); 13368 } 13369 13370 static int perf_cgroup_css_online(struct cgroup_subsys_state *css) 13371 { 13372 perf_event_cgroup(css->cgroup); 13373 return 0; 13374 } 13375 13376 static int __perf_cgroup_move(void *info) 13377 { 13378 struct task_struct *task = info; 13379 rcu_read_lock(); 13380 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN); 13381 rcu_read_unlock(); 13382 return 0; 13383 } 13384 13385 static void perf_cgroup_attach(struct cgroup_taskset *tset) 13386 { 13387 struct task_struct *task; 13388 struct cgroup_subsys_state *css; 13389 13390 cgroup_taskset_for_each(task, css, tset) 13391 task_function_call(task, __perf_cgroup_move, task); 13392 } 13393 13394 struct cgroup_subsys perf_event_cgrp_subsys = { 13395 .css_alloc = perf_cgroup_css_alloc, 13396 .css_free = perf_cgroup_css_free, 13397 .css_online = perf_cgroup_css_online, 13398 .attach = perf_cgroup_attach, 13399 /* 13400 * Implicitly enable on dfl hierarchy so that perf events can 13401 * always be filtered by cgroup2 path as long as perf_event 13402 * controller is not mounted on a legacy hierarchy. 13403 */ 13404 .implicit_on_dfl = true, 13405 .threaded = true, 13406 }; 13407 #endif /* CONFIG_CGROUP_PERF */ 13408