xref: /openbmc/linux/kernel/events/core.c (revision a2fb4d78)
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11 
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/perf_event.h>
38 #include <linux/ftrace_event.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/mm_types.h>
41 #include <linux/cgroup.h>
42 
43 #include "internal.h"
44 
45 #include <asm/irq_regs.h>
46 
47 struct remote_function_call {
48 	struct task_struct	*p;
49 	int			(*func)(void *info);
50 	void			*info;
51 	int			ret;
52 };
53 
54 static void remote_function(void *data)
55 {
56 	struct remote_function_call *tfc = data;
57 	struct task_struct *p = tfc->p;
58 
59 	if (p) {
60 		tfc->ret = -EAGAIN;
61 		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
62 			return;
63 	}
64 
65 	tfc->ret = tfc->func(tfc->info);
66 }
67 
68 /**
69  * task_function_call - call a function on the cpu on which a task runs
70  * @p:		the task to evaluate
71  * @func:	the function to be called
72  * @info:	the function call argument
73  *
74  * Calls the function @func when the task is currently running. This might
75  * be on the current CPU, which just calls the function directly
76  *
77  * returns: @func return value, or
78  *	    -ESRCH  - when the process isn't running
79  *	    -EAGAIN - when the process moved away
80  */
81 static int
82 task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
83 {
84 	struct remote_function_call data = {
85 		.p	= p,
86 		.func	= func,
87 		.info	= info,
88 		.ret	= -ESRCH, /* No such (running) process */
89 	};
90 
91 	if (task_curr(p))
92 		smp_call_function_single(task_cpu(p), remote_function, &data, 1);
93 
94 	return data.ret;
95 }
96 
97 /**
98  * cpu_function_call - call a function on the cpu
99  * @func:	the function to be called
100  * @info:	the function call argument
101  *
102  * Calls the function @func on the remote cpu.
103  *
104  * returns: @func return value or -ENXIO when the cpu is offline
105  */
106 static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
107 {
108 	struct remote_function_call data = {
109 		.p	= NULL,
110 		.func	= func,
111 		.info	= info,
112 		.ret	= -ENXIO, /* No such CPU */
113 	};
114 
115 	smp_call_function_single(cpu, remote_function, &data, 1);
116 
117 	return data.ret;
118 }
119 
120 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
121 		       PERF_FLAG_FD_OUTPUT  |\
122 		       PERF_FLAG_PID_CGROUP |\
123 		       PERF_FLAG_FD_CLOEXEC)
124 
125 /*
126  * branch priv levels that need permission checks
127  */
128 #define PERF_SAMPLE_BRANCH_PERM_PLM \
129 	(PERF_SAMPLE_BRANCH_KERNEL |\
130 	 PERF_SAMPLE_BRANCH_HV)
131 
132 enum event_type_t {
133 	EVENT_FLEXIBLE = 0x1,
134 	EVENT_PINNED = 0x2,
135 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
136 };
137 
138 /*
139  * perf_sched_events : >0 events exist
140  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
141  */
142 struct static_key_deferred perf_sched_events __read_mostly;
143 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
144 static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
145 
146 static atomic_t nr_mmap_events __read_mostly;
147 static atomic_t nr_comm_events __read_mostly;
148 static atomic_t nr_task_events __read_mostly;
149 static atomic_t nr_freq_events __read_mostly;
150 
151 static LIST_HEAD(pmus);
152 static DEFINE_MUTEX(pmus_lock);
153 static struct srcu_struct pmus_srcu;
154 
155 /*
156  * perf event paranoia level:
157  *  -1 - not paranoid at all
158  *   0 - disallow raw tracepoint access for unpriv
159  *   1 - disallow cpu events for unpriv
160  *   2 - disallow kernel profiling for unpriv
161  */
162 int sysctl_perf_event_paranoid __read_mostly = 1;
163 
164 /* Minimum for 512 kiB + 1 user control page */
165 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
166 
167 /*
168  * max perf event sample rate
169  */
170 #define DEFAULT_MAX_SAMPLE_RATE		100000
171 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
172 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
173 
174 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
175 
176 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
177 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
178 
179 static int perf_sample_allowed_ns __read_mostly =
180 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
181 
182 void update_perf_cpu_limits(void)
183 {
184 	u64 tmp = perf_sample_period_ns;
185 
186 	tmp *= sysctl_perf_cpu_time_max_percent;
187 	do_div(tmp, 100);
188 	ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
189 }
190 
191 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
192 
193 int perf_proc_update_handler(struct ctl_table *table, int write,
194 		void __user *buffer, size_t *lenp,
195 		loff_t *ppos)
196 {
197 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
198 
199 	if (ret || !write)
200 		return ret;
201 
202 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
203 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
204 	update_perf_cpu_limits();
205 
206 	return 0;
207 }
208 
209 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
210 
211 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
212 				void __user *buffer, size_t *lenp,
213 				loff_t *ppos)
214 {
215 	int ret = proc_dointvec(table, write, buffer, lenp, ppos);
216 
217 	if (ret || !write)
218 		return ret;
219 
220 	update_perf_cpu_limits();
221 
222 	return 0;
223 }
224 
225 /*
226  * perf samples are done in some very critical code paths (NMIs).
227  * If they take too much CPU time, the system can lock up and not
228  * get any real work done.  This will drop the sample rate when
229  * we detect that events are taking too long.
230  */
231 #define NR_ACCUMULATED_SAMPLES 128
232 static DEFINE_PER_CPU(u64, running_sample_length);
233 
234 void perf_sample_event_took(u64 sample_len_ns)
235 {
236 	u64 avg_local_sample_len;
237 	u64 local_samples_len;
238 	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
239 
240 	if (allowed_ns == 0)
241 		return;
242 
243 	/* decay the counter by 1 average sample */
244 	local_samples_len = __get_cpu_var(running_sample_length);
245 	local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
246 	local_samples_len += sample_len_ns;
247 	__get_cpu_var(running_sample_length) = local_samples_len;
248 
249 	/*
250 	 * note: this will be biased artifically low until we have
251 	 * seen NR_ACCUMULATED_SAMPLES.  Doing it this way keeps us
252 	 * from having to maintain a count.
253 	 */
254 	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
255 
256 	if (avg_local_sample_len <= allowed_ns)
257 		return;
258 
259 	if (max_samples_per_tick <= 1)
260 		return;
261 
262 	max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
263 	sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
264 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
265 
266 	printk_ratelimited(KERN_WARNING
267 			"perf samples too long (%lld > %lld), lowering "
268 			"kernel.perf_event_max_sample_rate to %d\n",
269 			avg_local_sample_len, allowed_ns,
270 			sysctl_perf_event_sample_rate);
271 
272 	update_perf_cpu_limits();
273 }
274 
275 static atomic64_t perf_event_id;
276 
277 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
278 			      enum event_type_t event_type);
279 
280 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
281 			     enum event_type_t event_type,
282 			     struct task_struct *task);
283 
284 static void update_context_time(struct perf_event_context *ctx);
285 static u64 perf_event_time(struct perf_event *event);
286 
287 void __weak perf_event_print_debug(void)	{ }
288 
289 extern __weak const char *perf_pmu_name(void)
290 {
291 	return "pmu";
292 }
293 
294 static inline u64 perf_clock(void)
295 {
296 	return local_clock();
297 }
298 
299 static inline struct perf_cpu_context *
300 __get_cpu_context(struct perf_event_context *ctx)
301 {
302 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
303 }
304 
305 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
306 			  struct perf_event_context *ctx)
307 {
308 	raw_spin_lock(&cpuctx->ctx.lock);
309 	if (ctx)
310 		raw_spin_lock(&ctx->lock);
311 }
312 
313 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
314 			    struct perf_event_context *ctx)
315 {
316 	if (ctx)
317 		raw_spin_unlock(&ctx->lock);
318 	raw_spin_unlock(&cpuctx->ctx.lock);
319 }
320 
321 #ifdef CONFIG_CGROUP_PERF
322 
323 /*
324  * perf_cgroup_info keeps track of time_enabled for a cgroup.
325  * This is a per-cpu dynamically allocated data structure.
326  */
327 struct perf_cgroup_info {
328 	u64				time;
329 	u64				timestamp;
330 };
331 
332 struct perf_cgroup {
333 	struct cgroup_subsys_state	css;
334 	struct perf_cgroup_info	__percpu *info;
335 };
336 
337 /*
338  * Must ensure cgroup is pinned (css_get) before calling
339  * this function. In other words, we cannot call this function
340  * if there is no cgroup event for the current CPU context.
341  */
342 static inline struct perf_cgroup *
343 perf_cgroup_from_task(struct task_struct *task)
344 {
345 	return container_of(task_css(task, perf_subsys_id),
346 			    struct perf_cgroup, css);
347 }
348 
349 static inline bool
350 perf_cgroup_match(struct perf_event *event)
351 {
352 	struct perf_event_context *ctx = event->ctx;
353 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
354 
355 	/* @event doesn't care about cgroup */
356 	if (!event->cgrp)
357 		return true;
358 
359 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
360 	if (!cpuctx->cgrp)
361 		return false;
362 
363 	/*
364 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
365 	 * also enabled for all its descendant cgroups.  If @cpuctx's
366 	 * cgroup is a descendant of @event's (the test covers identity
367 	 * case), it's a match.
368 	 */
369 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
370 				    event->cgrp->css.cgroup);
371 }
372 
373 static inline bool perf_tryget_cgroup(struct perf_event *event)
374 {
375 	return css_tryget(&event->cgrp->css);
376 }
377 
378 static inline void perf_put_cgroup(struct perf_event *event)
379 {
380 	css_put(&event->cgrp->css);
381 }
382 
383 static inline void perf_detach_cgroup(struct perf_event *event)
384 {
385 	perf_put_cgroup(event);
386 	event->cgrp = NULL;
387 }
388 
389 static inline int is_cgroup_event(struct perf_event *event)
390 {
391 	return event->cgrp != NULL;
392 }
393 
394 static inline u64 perf_cgroup_event_time(struct perf_event *event)
395 {
396 	struct perf_cgroup_info *t;
397 
398 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
399 	return t->time;
400 }
401 
402 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
403 {
404 	struct perf_cgroup_info *info;
405 	u64 now;
406 
407 	now = perf_clock();
408 
409 	info = this_cpu_ptr(cgrp->info);
410 
411 	info->time += now - info->timestamp;
412 	info->timestamp = now;
413 }
414 
415 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
416 {
417 	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
418 	if (cgrp_out)
419 		__update_cgrp_time(cgrp_out);
420 }
421 
422 static inline void update_cgrp_time_from_event(struct perf_event *event)
423 {
424 	struct perf_cgroup *cgrp;
425 
426 	/*
427 	 * ensure we access cgroup data only when needed and
428 	 * when we know the cgroup is pinned (css_get)
429 	 */
430 	if (!is_cgroup_event(event))
431 		return;
432 
433 	cgrp = perf_cgroup_from_task(current);
434 	/*
435 	 * Do not update time when cgroup is not active
436 	 */
437 	if (cgrp == event->cgrp)
438 		__update_cgrp_time(event->cgrp);
439 }
440 
441 static inline void
442 perf_cgroup_set_timestamp(struct task_struct *task,
443 			  struct perf_event_context *ctx)
444 {
445 	struct perf_cgroup *cgrp;
446 	struct perf_cgroup_info *info;
447 
448 	/*
449 	 * ctx->lock held by caller
450 	 * ensure we do not access cgroup data
451 	 * unless we have the cgroup pinned (css_get)
452 	 */
453 	if (!task || !ctx->nr_cgroups)
454 		return;
455 
456 	cgrp = perf_cgroup_from_task(task);
457 	info = this_cpu_ptr(cgrp->info);
458 	info->timestamp = ctx->timestamp;
459 }
460 
461 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
462 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
463 
464 /*
465  * reschedule events based on the cgroup constraint of task.
466  *
467  * mode SWOUT : schedule out everything
468  * mode SWIN : schedule in based on cgroup for next
469  */
470 void perf_cgroup_switch(struct task_struct *task, int mode)
471 {
472 	struct perf_cpu_context *cpuctx;
473 	struct pmu *pmu;
474 	unsigned long flags;
475 
476 	/*
477 	 * disable interrupts to avoid geting nr_cgroup
478 	 * changes via __perf_event_disable(). Also
479 	 * avoids preemption.
480 	 */
481 	local_irq_save(flags);
482 
483 	/*
484 	 * we reschedule only in the presence of cgroup
485 	 * constrained events.
486 	 */
487 	rcu_read_lock();
488 
489 	list_for_each_entry_rcu(pmu, &pmus, entry) {
490 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
491 		if (cpuctx->unique_pmu != pmu)
492 			continue; /* ensure we process each cpuctx once */
493 
494 		/*
495 		 * perf_cgroup_events says at least one
496 		 * context on this CPU has cgroup events.
497 		 *
498 		 * ctx->nr_cgroups reports the number of cgroup
499 		 * events for a context.
500 		 */
501 		if (cpuctx->ctx.nr_cgroups > 0) {
502 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
503 			perf_pmu_disable(cpuctx->ctx.pmu);
504 
505 			if (mode & PERF_CGROUP_SWOUT) {
506 				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
507 				/*
508 				 * must not be done before ctxswout due
509 				 * to event_filter_match() in event_sched_out()
510 				 */
511 				cpuctx->cgrp = NULL;
512 			}
513 
514 			if (mode & PERF_CGROUP_SWIN) {
515 				WARN_ON_ONCE(cpuctx->cgrp);
516 				/*
517 				 * set cgrp before ctxsw in to allow
518 				 * event_filter_match() to not have to pass
519 				 * task around
520 				 */
521 				cpuctx->cgrp = perf_cgroup_from_task(task);
522 				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
523 			}
524 			perf_pmu_enable(cpuctx->ctx.pmu);
525 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
526 		}
527 	}
528 
529 	rcu_read_unlock();
530 
531 	local_irq_restore(flags);
532 }
533 
534 static inline void perf_cgroup_sched_out(struct task_struct *task,
535 					 struct task_struct *next)
536 {
537 	struct perf_cgroup *cgrp1;
538 	struct perf_cgroup *cgrp2 = NULL;
539 
540 	/*
541 	 * we come here when we know perf_cgroup_events > 0
542 	 */
543 	cgrp1 = perf_cgroup_from_task(task);
544 
545 	/*
546 	 * next is NULL when called from perf_event_enable_on_exec()
547 	 * that will systematically cause a cgroup_switch()
548 	 */
549 	if (next)
550 		cgrp2 = perf_cgroup_from_task(next);
551 
552 	/*
553 	 * only schedule out current cgroup events if we know
554 	 * that we are switching to a different cgroup. Otherwise,
555 	 * do no touch the cgroup events.
556 	 */
557 	if (cgrp1 != cgrp2)
558 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
559 }
560 
561 static inline void perf_cgroup_sched_in(struct task_struct *prev,
562 					struct task_struct *task)
563 {
564 	struct perf_cgroup *cgrp1;
565 	struct perf_cgroup *cgrp2 = NULL;
566 
567 	/*
568 	 * we come here when we know perf_cgroup_events > 0
569 	 */
570 	cgrp1 = perf_cgroup_from_task(task);
571 
572 	/* prev can never be NULL */
573 	cgrp2 = perf_cgroup_from_task(prev);
574 
575 	/*
576 	 * only need to schedule in cgroup events if we are changing
577 	 * cgroup during ctxsw. Cgroup events were not scheduled
578 	 * out of ctxsw out if that was not the case.
579 	 */
580 	if (cgrp1 != cgrp2)
581 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
582 }
583 
584 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
585 				      struct perf_event_attr *attr,
586 				      struct perf_event *group_leader)
587 {
588 	struct perf_cgroup *cgrp;
589 	struct cgroup_subsys_state *css;
590 	struct fd f = fdget(fd);
591 	int ret = 0;
592 
593 	if (!f.file)
594 		return -EBADF;
595 
596 	rcu_read_lock();
597 
598 	css = css_from_dir(f.file->f_dentry, &perf_subsys);
599 	if (IS_ERR(css)) {
600 		ret = PTR_ERR(css);
601 		goto out;
602 	}
603 
604 	cgrp = container_of(css, struct perf_cgroup, css);
605 	event->cgrp = cgrp;
606 
607 	/* must be done before we fput() the file */
608 	if (!perf_tryget_cgroup(event)) {
609 		event->cgrp = NULL;
610 		ret = -ENOENT;
611 		goto out;
612 	}
613 
614 	/*
615 	 * all events in a group must monitor
616 	 * the same cgroup because a task belongs
617 	 * to only one perf cgroup at a time
618 	 */
619 	if (group_leader && group_leader->cgrp != cgrp) {
620 		perf_detach_cgroup(event);
621 		ret = -EINVAL;
622 	}
623 out:
624 	rcu_read_unlock();
625 	fdput(f);
626 	return ret;
627 }
628 
629 static inline void
630 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
631 {
632 	struct perf_cgroup_info *t;
633 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
634 	event->shadow_ctx_time = now - t->timestamp;
635 }
636 
637 static inline void
638 perf_cgroup_defer_enabled(struct perf_event *event)
639 {
640 	/*
641 	 * when the current task's perf cgroup does not match
642 	 * the event's, we need to remember to call the
643 	 * perf_mark_enable() function the first time a task with
644 	 * a matching perf cgroup is scheduled in.
645 	 */
646 	if (is_cgroup_event(event) && !perf_cgroup_match(event))
647 		event->cgrp_defer_enabled = 1;
648 }
649 
650 static inline void
651 perf_cgroup_mark_enabled(struct perf_event *event,
652 			 struct perf_event_context *ctx)
653 {
654 	struct perf_event *sub;
655 	u64 tstamp = perf_event_time(event);
656 
657 	if (!event->cgrp_defer_enabled)
658 		return;
659 
660 	event->cgrp_defer_enabled = 0;
661 
662 	event->tstamp_enabled = tstamp - event->total_time_enabled;
663 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
664 		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
665 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
666 			sub->cgrp_defer_enabled = 0;
667 		}
668 	}
669 }
670 #else /* !CONFIG_CGROUP_PERF */
671 
672 static inline bool
673 perf_cgroup_match(struct perf_event *event)
674 {
675 	return true;
676 }
677 
678 static inline void perf_detach_cgroup(struct perf_event *event)
679 {}
680 
681 static inline int is_cgroup_event(struct perf_event *event)
682 {
683 	return 0;
684 }
685 
686 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
687 {
688 	return 0;
689 }
690 
691 static inline void update_cgrp_time_from_event(struct perf_event *event)
692 {
693 }
694 
695 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
696 {
697 }
698 
699 static inline void perf_cgroup_sched_out(struct task_struct *task,
700 					 struct task_struct *next)
701 {
702 }
703 
704 static inline void perf_cgroup_sched_in(struct task_struct *prev,
705 					struct task_struct *task)
706 {
707 }
708 
709 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
710 				      struct perf_event_attr *attr,
711 				      struct perf_event *group_leader)
712 {
713 	return -EINVAL;
714 }
715 
716 static inline void
717 perf_cgroup_set_timestamp(struct task_struct *task,
718 			  struct perf_event_context *ctx)
719 {
720 }
721 
722 void
723 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
724 {
725 }
726 
727 static inline void
728 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
729 {
730 }
731 
732 static inline u64 perf_cgroup_event_time(struct perf_event *event)
733 {
734 	return 0;
735 }
736 
737 static inline void
738 perf_cgroup_defer_enabled(struct perf_event *event)
739 {
740 }
741 
742 static inline void
743 perf_cgroup_mark_enabled(struct perf_event *event,
744 			 struct perf_event_context *ctx)
745 {
746 }
747 #endif
748 
749 /*
750  * set default to be dependent on timer tick just
751  * like original code
752  */
753 #define PERF_CPU_HRTIMER (1000 / HZ)
754 /*
755  * function must be called with interrupts disbled
756  */
757 static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
758 {
759 	struct perf_cpu_context *cpuctx;
760 	enum hrtimer_restart ret = HRTIMER_NORESTART;
761 	int rotations = 0;
762 
763 	WARN_ON(!irqs_disabled());
764 
765 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
766 
767 	rotations = perf_rotate_context(cpuctx);
768 
769 	/*
770 	 * arm timer if needed
771 	 */
772 	if (rotations) {
773 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
774 		ret = HRTIMER_RESTART;
775 	}
776 
777 	return ret;
778 }
779 
780 /* CPU is going down */
781 void perf_cpu_hrtimer_cancel(int cpu)
782 {
783 	struct perf_cpu_context *cpuctx;
784 	struct pmu *pmu;
785 	unsigned long flags;
786 
787 	if (WARN_ON(cpu != smp_processor_id()))
788 		return;
789 
790 	local_irq_save(flags);
791 
792 	rcu_read_lock();
793 
794 	list_for_each_entry_rcu(pmu, &pmus, entry) {
795 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
796 
797 		if (pmu->task_ctx_nr == perf_sw_context)
798 			continue;
799 
800 		hrtimer_cancel(&cpuctx->hrtimer);
801 	}
802 
803 	rcu_read_unlock();
804 
805 	local_irq_restore(flags);
806 }
807 
808 static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
809 {
810 	struct hrtimer *hr = &cpuctx->hrtimer;
811 	struct pmu *pmu = cpuctx->ctx.pmu;
812 	int timer;
813 
814 	/* no multiplexing needed for SW PMU */
815 	if (pmu->task_ctx_nr == perf_sw_context)
816 		return;
817 
818 	/*
819 	 * check default is sane, if not set then force to
820 	 * default interval (1/tick)
821 	 */
822 	timer = pmu->hrtimer_interval_ms;
823 	if (timer < 1)
824 		timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
825 
826 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
827 
828 	hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
829 	hr->function = perf_cpu_hrtimer_handler;
830 }
831 
832 static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
833 {
834 	struct hrtimer *hr = &cpuctx->hrtimer;
835 	struct pmu *pmu = cpuctx->ctx.pmu;
836 
837 	/* not for SW PMU */
838 	if (pmu->task_ctx_nr == perf_sw_context)
839 		return;
840 
841 	if (hrtimer_active(hr))
842 		return;
843 
844 	if (!hrtimer_callback_running(hr))
845 		__hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
846 					 0, HRTIMER_MODE_REL_PINNED, 0);
847 }
848 
849 void perf_pmu_disable(struct pmu *pmu)
850 {
851 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
852 	if (!(*count)++)
853 		pmu->pmu_disable(pmu);
854 }
855 
856 void perf_pmu_enable(struct pmu *pmu)
857 {
858 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
859 	if (!--(*count))
860 		pmu->pmu_enable(pmu);
861 }
862 
863 static DEFINE_PER_CPU(struct list_head, rotation_list);
864 
865 /*
866  * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
867  * because they're strictly cpu affine and rotate_start is called with IRQs
868  * disabled, while rotate_context is called from IRQ context.
869  */
870 static void perf_pmu_rotate_start(struct pmu *pmu)
871 {
872 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
873 	struct list_head *head = &__get_cpu_var(rotation_list);
874 
875 	WARN_ON(!irqs_disabled());
876 
877 	if (list_empty(&cpuctx->rotation_list))
878 		list_add(&cpuctx->rotation_list, head);
879 }
880 
881 static void get_ctx(struct perf_event_context *ctx)
882 {
883 	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
884 }
885 
886 static void put_ctx(struct perf_event_context *ctx)
887 {
888 	if (atomic_dec_and_test(&ctx->refcount)) {
889 		if (ctx->parent_ctx)
890 			put_ctx(ctx->parent_ctx);
891 		if (ctx->task)
892 			put_task_struct(ctx->task);
893 		kfree_rcu(ctx, rcu_head);
894 	}
895 }
896 
897 static void unclone_ctx(struct perf_event_context *ctx)
898 {
899 	if (ctx->parent_ctx) {
900 		put_ctx(ctx->parent_ctx);
901 		ctx->parent_ctx = NULL;
902 	}
903 	ctx->generation++;
904 }
905 
906 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
907 {
908 	/*
909 	 * only top level events have the pid namespace they were created in
910 	 */
911 	if (event->parent)
912 		event = event->parent;
913 
914 	return task_tgid_nr_ns(p, event->ns);
915 }
916 
917 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
918 {
919 	/*
920 	 * only top level events have the pid namespace they were created in
921 	 */
922 	if (event->parent)
923 		event = event->parent;
924 
925 	return task_pid_nr_ns(p, event->ns);
926 }
927 
928 /*
929  * If we inherit events we want to return the parent event id
930  * to userspace.
931  */
932 static u64 primary_event_id(struct perf_event *event)
933 {
934 	u64 id = event->id;
935 
936 	if (event->parent)
937 		id = event->parent->id;
938 
939 	return id;
940 }
941 
942 /*
943  * Get the perf_event_context for a task and lock it.
944  * This has to cope with with the fact that until it is locked,
945  * the context could get moved to another task.
946  */
947 static struct perf_event_context *
948 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
949 {
950 	struct perf_event_context *ctx;
951 
952 retry:
953 	/*
954 	 * One of the few rules of preemptible RCU is that one cannot do
955 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
956 	 * part of the read side critical section was preemptible -- see
957 	 * rcu_read_unlock_special().
958 	 *
959 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
960 	 * side critical section is non-preemptible.
961 	 */
962 	preempt_disable();
963 	rcu_read_lock();
964 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
965 	if (ctx) {
966 		/*
967 		 * If this context is a clone of another, it might
968 		 * get swapped for another underneath us by
969 		 * perf_event_task_sched_out, though the
970 		 * rcu_read_lock() protects us from any context
971 		 * getting freed.  Lock the context and check if it
972 		 * got swapped before we could get the lock, and retry
973 		 * if so.  If we locked the right context, then it
974 		 * can't get swapped on us any more.
975 		 */
976 		raw_spin_lock_irqsave(&ctx->lock, *flags);
977 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
978 			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
979 			rcu_read_unlock();
980 			preempt_enable();
981 			goto retry;
982 		}
983 
984 		if (!atomic_inc_not_zero(&ctx->refcount)) {
985 			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
986 			ctx = NULL;
987 		}
988 	}
989 	rcu_read_unlock();
990 	preempt_enable();
991 	return ctx;
992 }
993 
994 /*
995  * Get the context for a task and increment its pin_count so it
996  * can't get swapped to another task.  This also increments its
997  * reference count so that the context can't get freed.
998  */
999 static struct perf_event_context *
1000 perf_pin_task_context(struct task_struct *task, int ctxn)
1001 {
1002 	struct perf_event_context *ctx;
1003 	unsigned long flags;
1004 
1005 	ctx = perf_lock_task_context(task, ctxn, &flags);
1006 	if (ctx) {
1007 		++ctx->pin_count;
1008 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1009 	}
1010 	return ctx;
1011 }
1012 
1013 static void perf_unpin_context(struct perf_event_context *ctx)
1014 {
1015 	unsigned long flags;
1016 
1017 	raw_spin_lock_irqsave(&ctx->lock, flags);
1018 	--ctx->pin_count;
1019 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1020 }
1021 
1022 /*
1023  * Update the record of the current time in a context.
1024  */
1025 static void update_context_time(struct perf_event_context *ctx)
1026 {
1027 	u64 now = perf_clock();
1028 
1029 	ctx->time += now - ctx->timestamp;
1030 	ctx->timestamp = now;
1031 }
1032 
1033 static u64 perf_event_time(struct perf_event *event)
1034 {
1035 	struct perf_event_context *ctx = event->ctx;
1036 
1037 	if (is_cgroup_event(event))
1038 		return perf_cgroup_event_time(event);
1039 
1040 	return ctx ? ctx->time : 0;
1041 }
1042 
1043 /*
1044  * Update the total_time_enabled and total_time_running fields for a event.
1045  * The caller of this function needs to hold the ctx->lock.
1046  */
1047 static void update_event_times(struct perf_event *event)
1048 {
1049 	struct perf_event_context *ctx = event->ctx;
1050 	u64 run_end;
1051 
1052 	if (event->state < PERF_EVENT_STATE_INACTIVE ||
1053 	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1054 		return;
1055 	/*
1056 	 * in cgroup mode, time_enabled represents
1057 	 * the time the event was enabled AND active
1058 	 * tasks were in the monitored cgroup. This is
1059 	 * independent of the activity of the context as
1060 	 * there may be a mix of cgroup and non-cgroup events.
1061 	 *
1062 	 * That is why we treat cgroup events differently
1063 	 * here.
1064 	 */
1065 	if (is_cgroup_event(event))
1066 		run_end = perf_cgroup_event_time(event);
1067 	else if (ctx->is_active)
1068 		run_end = ctx->time;
1069 	else
1070 		run_end = event->tstamp_stopped;
1071 
1072 	event->total_time_enabled = run_end - event->tstamp_enabled;
1073 
1074 	if (event->state == PERF_EVENT_STATE_INACTIVE)
1075 		run_end = event->tstamp_stopped;
1076 	else
1077 		run_end = perf_event_time(event);
1078 
1079 	event->total_time_running = run_end - event->tstamp_running;
1080 
1081 }
1082 
1083 /*
1084  * Update total_time_enabled and total_time_running for all events in a group.
1085  */
1086 static void update_group_times(struct perf_event *leader)
1087 {
1088 	struct perf_event *event;
1089 
1090 	update_event_times(leader);
1091 	list_for_each_entry(event, &leader->sibling_list, group_entry)
1092 		update_event_times(event);
1093 }
1094 
1095 static struct list_head *
1096 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1097 {
1098 	if (event->attr.pinned)
1099 		return &ctx->pinned_groups;
1100 	else
1101 		return &ctx->flexible_groups;
1102 }
1103 
1104 /*
1105  * Add a event from the lists for its context.
1106  * Must be called with ctx->mutex and ctx->lock held.
1107  */
1108 static void
1109 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1110 {
1111 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1112 	event->attach_state |= PERF_ATTACH_CONTEXT;
1113 
1114 	/*
1115 	 * If we're a stand alone event or group leader, we go to the context
1116 	 * list, group events are kept attached to the group so that
1117 	 * perf_group_detach can, at all times, locate all siblings.
1118 	 */
1119 	if (event->group_leader == event) {
1120 		struct list_head *list;
1121 
1122 		if (is_software_event(event))
1123 			event->group_flags |= PERF_GROUP_SOFTWARE;
1124 
1125 		list = ctx_group_list(event, ctx);
1126 		list_add_tail(&event->group_entry, list);
1127 	}
1128 
1129 	if (is_cgroup_event(event))
1130 		ctx->nr_cgroups++;
1131 
1132 	if (has_branch_stack(event))
1133 		ctx->nr_branch_stack++;
1134 
1135 	list_add_rcu(&event->event_entry, &ctx->event_list);
1136 	if (!ctx->nr_events)
1137 		perf_pmu_rotate_start(ctx->pmu);
1138 	ctx->nr_events++;
1139 	if (event->attr.inherit_stat)
1140 		ctx->nr_stat++;
1141 
1142 	ctx->generation++;
1143 }
1144 
1145 /*
1146  * Initialize event state based on the perf_event_attr::disabled.
1147  */
1148 static inline void perf_event__state_init(struct perf_event *event)
1149 {
1150 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1151 					      PERF_EVENT_STATE_INACTIVE;
1152 }
1153 
1154 /*
1155  * Called at perf_event creation and when events are attached/detached from a
1156  * group.
1157  */
1158 static void perf_event__read_size(struct perf_event *event)
1159 {
1160 	int entry = sizeof(u64); /* value */
1161 	int size = 0;
1162 	int nr = 1;
1163 
1164 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1165 		size += sizeof(u64);
1166 
1167 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1168 		size += sizeof(u64);
1169 
1170 	if (event->attr.read_format & PERF_FORMAT_ID)
1171 		entry += sizeof(u64);
1172 
1173 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1174 		nr += event->group_leader->nr_siblings;
1175 		size += sizeof(u64);
1176 	}
1177 
1178 	size += entry * nr;
1179 	event->read_size = size;
1180 }
1181 
1182 static void perf_event__header_size(struct perf_event *event)
1183 {
1184 	struct perf_sample_data *data;
1185 	u64 sample_type = event->attr.sample_type;
1186 	u16 size = 0;
1187 
1188 	perf_event__read_size(event);
1189 
1190 	if (sample_type & PERF_SAMPLE_IP)
1191 		size += sizeof(data->ip);
1192 
1193 	if (sample_type & PERF_SAMPLE_ADDR)
1194 		size += sizeof(data->addr);
1195 
1196 	if (sample_type & PERF_SAMPLE_PERIOD)
1197 		size += sizeof(data->period);
1198 
1199 	if (sample_type & PERF_SAMPLE_WEIGHT)
1200 		size += sizeof(data->weight);
1201 
1202 	if (sample_type & PERF_SAMPLE_READ)
1203 		size += event->read_size;
1204 
1205 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1206 		size += sizeof(data->data_src.val);
1207 
1208 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1209 		size += sizeof(data->txn);
1210 
1211 	event->header_size = size;
1212 }
1213 
1214 static void perf_event__id_header_size(struct perf_event *event)
1215 {
1216 	struct perf_sample_data *data;
1217 	u64 sample_type = event->attr.sample_type;
1218 	u16 size = 0;
1219 
1220 	if (sample_type & PERF_SAMPLE_TID)
1221 		size += sizeof(data->tid_entry);
1222 
1223 	if (sample_type & PERF_SAMPLE_TIME)
1224 		size += sizeof(data->time);
1225 
1226 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1227 		size += sizeof(data->id);
1228 
1229 	if (sample_type & PERF_SAMPLE_ID)
1230 		size += sizeof(data->id);
1231 
1232 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1233 		size += sizeof(data->stream_id);
1234 
1235 	if (sample_type & PERF_SAMPLE_CPU)
1236 		size += sizeof(data->cpu_entry);
1237 
1238 	event->id_header_size = size;
1239 }
1240 
1241 static void perf_group_attach(struct perf_event *event)
1242 {
1243 	struct perf_event *group_leader = event->group_leader, *pos;
1244 
1245 	/*
1246 	 * We can have double attach due to group movement in perf_event_open.
1247 	 */
1248 	if (event->attach_state & PERF_ATTACH_GROUP)
1249 		return;
1250 
1251 	event->attach_state |= PERF_ATTACH_GROUP;
1252 
1253 	if (group_leader == event)
1254 		return;
1255 
1256 	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1257 			!is_software_event(event))
1258 		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1259 
1260 	list_add_tail(&event->group_entry, &group_leader->sibling_list);
1261 	group_leader->nr_siblings++;
1262 
1263 	perf_event__header_size(group_leader);
1264 
1265 	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1266 		perf_event__header_size(pos);
1267 }
1268 
1269 /*
1270  * Remove a event from the lists for its context.
1271  * Must be called with ctx->mutex and ctx->lock held.
1272  */
1273 static void
1274 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1275 {
1276 	struct perf_cpu_context *cpuctx;
1277 	/*
1278 	 * We can have double detach due to exit/hot-unplug + close.
1279 	 */
1280 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1281 		return;
1282 
1283 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1284 
1285 	if (is_cgroup_event(event)) {
1286 		ctx->nr_cgroups--;
1287 		cpuctx = __get_cpu_context(ctx);
1288 		/*
1289 		 * if there are no more cgroup events
1290 		 * then cler cgrp to avoid stale pointer
1291 		 * in update_cgrp_time_from_cpuctx()
1292 		 */
1293 		if (!ctx->nr_cgroups)
1294 			cpuctx->cgrp = NULL;
1295 	}
1296 
1297 	if (has_branch_stack(event))
1298 		ctx->nr_branch_stack--;
1299 
1300 	ctx->nr_events--;
1301 	if (event->attr.inherit_stat)
1302 		ctx->nr_stat--;
1303 
1304 	list_del_rcu(&event->event_entry);
1305 
1306 	if (event->group_leader == event)
1307 		list_del_init(&event->group_entry);
1308 
1309 	update_group_times(event);
1310 
1311 	/*
1312 	 * If event was in error state, then keep it
1313 	 * that way, otherwise bogus counts will be
1314 	 * returned on read(). The only way to get out
1315 	 * of error state is by explicit re-enabling
1316 	 * of the event
1317 	 */
1318 	if (event->state > PERF_EVENT_STATE_OFF)
1319 		event->state = PERF_EVENT_STATE_OFF;
1320 
1321 	ctx->generation++;
1322 }
1323 
1324 static void perf_group_detach(struct perf_event *event)
1325 {
1326 	struct perf_event *sibling, *tmp;
1327 	struct list_head *list = NULL;
1328 
1329 	/*
1330 	 * We can have double detach due to exit/hot-unplug + close.
1331 	 */
1332 	if (!(event->attach_state & PERF_ATTACH_GROUP))
1333 		return;
1334 
1335 	event->attach_state &= ~PERF_ATTACH_GROUP;
1336 
1337 	/*
1338 	 * If this is a sibling, remove it from its group.
1339 	 */
1340 	if (event->group_leader != event) {
1341 		list_del_init(&event->group_entry);
1342 		event->group_leader->nr_siblings--;
1343 		goto out;
1344 	}
1345 
1346 	if (!list_empty(&event->group_entry))
1347 		list = &event->group_entry;
1348 
1349 	/*
1350 	 * If this was a group event with sibling events then
1351 	 * upgrade the siblings to singleton events by adding them
1352 	 * to whatever list we are on.
1353 	 */
1354 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1355 		if (list)
1356 			list_move_tail(&sibling->group_entry, list);
1357 		sibling->group_leader = sibling;
1358 
1359 		/* Inherit group flags from the previous leader */
1360 		sibling->group_flags = event->group_flags;
1361 	}
1362 
1363 out:
1364 	perf_event__header_size(event->group_leader);
1365 
1366 	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1367 		perf_event__header_size(tmp);
1368 }
1369 
1370 static inline int
1371 event_filter_match(struct perf_event *event)
1372 {
1373 	return (event->cpu == -1 || event->cpu == smp_processor_id())
1374 	    && perf_cgroup_match(event);
1375 }
1376 
1377 static void
1378 event_sched_out(struct perf_event *event,
1379 		  struct perf_cpu_context *cpuctx,
1380 		  struct perf_event_context *ctx)
1381 {
1382 	u64 tstamp = perf_event_time(event);
1383 	u64 delta;
1384 	/*
1385 	 * An event which could not be activated because of
1386 	 * filter mismatch still needs to have its timings
1387 	 * maintained, otherwise bogus information is return
1388 	 * via read() for time_enabled, time_running:
1389 	 */
1390 	if (event->state == PERF_EVENT_STATE_INACTIVE
1391 	    && !event_filter_match(event)) {
1392 		delta = tstamp - event->tstamp_stopped;
1393 		event->tstamp_running += delta;
1394 		event->tstamp_stopped = tstamp;
1395 	}
1396 
1397 	if (event->state != PERF_EVENT_STATE_ACTIVE)
1398 		return;
1399 
1400 	perf_pmu_disable(event->pmu);
1401 
1402 	event->state = PERF_EVENT_STATE_INACTIVE;
1403 	if (event->pending_disable) {
1404 		event->pending_disable = 0;
1405 		event->state = PERF_EVENT_STATE_OFF;
1406 	}
1407 	event->tstamp_stopped = tstamp;
1408 	event->pmu->del(event, 0);
1409 	event->oncpu = -1;
1410 
1411 	if (!is_software_event(event))
1412 		cpuctx->active_oncpu--;
1413 	ctx->nr_active--;
1414 	if (event->attr.freq && event->attr.sample_freq)
1415 		ctx->nr_freq--;
1416 	if (event->attr.exclusive || !cpuctx->active_oncpu)
1417 		cpuctx->exclusive = 0;
1418 
1419 	perf_pmu_enable(event->pmu);
1420 }
1421 
1422 static void
1423 group_sched_out(struct perf_event *group_event,
1424 		struct perf_cpu_context *cpuctx,
1425 		struct perf_event_context *ctx)
1426 {
1427 	struct perf_event *event;
1428 	int state = group_event->state;
1429 
1430 	event_sched_out(group_event, cpuctx, ctx);
1431 
1432 	/*
1433 	 * Schedule out siblings (if any):
1434 	 */
1435 	list_for_each_entry(event, &group_event->sibling_list, group_entry)
1436 		event_sched_out(event, cpuctx, ctx);
1437 
1438 	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1439 		cpuctx->exclusive = 0;
1440 }
1441 
1442 /*
1443  * Cross CPU call to remove a performance event
1444  *
1445  * We disable the event on the hardware level first. After that we
1446  * remove it from the context list.
1447  */
1448 static int __perf_remove_from_context(void *info)
1449 {
1450 	struct perf_event *event = info;
1451 	struct perf_event_context *ctx = event->ctx;
1452 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1453 
1454 	raw_spin_lock(&ctx->lock);
1455 	event_sched_out(event, cpuctx, ctx);
1456 	list_del_event(event, ctx);
1457 	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1458 		ctx->is_active = 0;
1459 		cpuctx->task_ctx = NULL;
1460 	}
1461 	raw_spin_unlock(&ctx->lock);
1462 
1463 	return 0;
1464 }
1465 
1466 
1467 /*
1468  * Remove the event from a task's (or a CPU's) list of events.
1469  *
1470  * CPU events are removed with a smp call. For task events we only
1471  * call when the task is on a CPU.
1472  *
1473  * If event->ctx is a cloned context, callers must make sure that
1474  * every task struct that event->ctx->task could possibly point to
1475  * remains valid.  This is OK when called from perf_release since
1476  * that only calls us on the top-level context, which can't be a clone.
1477  * When called from perf_event_exit_task, it's OK because the
1478  * context has been detached from its task.
1479  */
1480 static void perf_remove_from_context(struct perf_event *event)
1481 {
1482 	struct perf_event_context *ctx = event->ctx;
1483 	struct task_struct *task = ctx->task;
1484 
1485 	lockdep_assert_held(&ctx->mutex);
1486 
1487 	if (!task) {
1488 		/*
1489 		 * Per cpu events are removed via an smp call and
1490 		 * the removal is always successful.
1491 		 */
1492 		cpu_function_call(event->cpu, __perf_remove_from_context, event);
1493 		return;
1494 	}
1495 
1496 retry:
1497 	if (!task_function_call(task, __perf_remove_from_context, event))
1498 		return;
1499 
1500 	raw_spin_lock_irq(&ctx->lock);
1501 	/*
1502 	 * If we failed to find a running task, but find the context active now
1503 	 * that we've acquired the ctx->lock, retry.
1504 	 */
1505 	if (ctx->is_active) {
1506 		raw_spin_unlock_irq(&ctx->lock);
1507 		goto retry;
1508 	}
1509 
1510 	/*
1511 	 * Since the task isn't running, its safe to remove the event, us
1512 	 * holding the ctx->lock ensures the task won't get scheduled in.
1513 	 */
1514 	list_del_event(event, ctx);
1515 	raw_spin_unlock_irq(&ctx->lock);
1516 }
1517 
1518 /*
1519  * Cross CPU call to disable a performance event
1520  */
1521 int __perf_event_disable(void *info)
1522 {
1523 	struct perf_event *event = info;
1524 	struct perf_event_context *ctx = event->ctx;
1525 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1526 
1527 	/*
1528 	 * If this is a per-task event, need to check whether this
1529 	 * event's task is the current task on this cpu.
1530 	 *
1531 	 * Can trigger due to concurrent perf_event_context_sched_out()
1532 	 * flipping contexts around.
1533 	 */
1534 	if (ctx->task && cpuctx->task_ctx != ctx)
1535 		return -EINVAL;
1536 
1537 	raw_spin_lock(&ctx->lock);
1538 
1539 	/*
1540 	 * If the event is on, turn it off.
1541 	 * If it is in error state, leave it in error state.
1542 	 */
1543 	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1544 		update_context_time(ctx);
1545 		update_cgrp_time_from_event(event);
1546 		update_group_times(event);
1547 		if (event == event->group_leader)
1548 			group_sched_out(event, cpuctx, ctx);
1549 		else
1550 			event_sched_out(event, cpuctx, ctx);
1551 		event->state = PERF_EVENT_STATE_OFF;
1552 	}
1553 
1554 	raw_spin_unlock(&ctx->lock);
1555 
1556 	return 0;
1557 }
1558 
1559 /*
1560  * Disable a event.
1561  *
1562  * If event->ctx is a cloned context, callers must make sure that
1563  * every task struct that event->ctx->task could possibly point to
1564  * remains valid.  This condition is satisifed when called through
1565  * perf_event_for_each_child or perf_event_for_each because they
1566  * hold the top-level event's child_mutex, so any descendant that
1567  * goes to exit will block in sync_child_event.
1568  * When called from perf_pending_event it's OK because event->ctx
1569  * is the current context on this CPU and preemption is disabled,
1570  * hence we can't get into perf_event_task_sched_out for this context.
1571  */
1572 void perf_event_disable(struct perf_event *event)
1573 {
1574 	struct perf_event_context *ctx = event->ctx;
1575 	struct task_struct *task = ctx->task;
1576 
1577 	if (!task) {
1578 		/*
1579 		 * Disable the event on the cpu that it's on
1580 		 */
1581 		cpu_function_call(event->cpu, __perf_event_disable, event);
1582 		return;
1583 	}
1584 
1585 retry:
1586 	if (!task_function_call(task, __perf_event_disable, event))
1587 		return;
1588 
1589 	raw_spin_lock_irq(&ctx->lock);
1590 	/*
1591 	 * If the event is still active, we need to retry the cross-call.
1592 	 */
1593 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1594 		raw_spin_unlock_irq(&ctx->lock);
1595 		/*
1596 		 * Reload the task pointer, it might have been changed by
1597 		 * a concurrent perf_event_context_sched_out().
1598 		 */
1599 		task = ctx->task;
1600 		goto retry;
1601 	}
1602 
1603 	/*
1604 	 * Since we have the lock this context can't be scheduled
1605 	 * in, so we can change the state safely.
1606 	 */
1607 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
1608 		update_group_times(event);
1609 		event->state = PERF_EVENT_STATE_OFF;
1610 	}
1611 	raw_spin_unlock_irq(&ctx->lock);
1612 }
1613 EXPORT_SYMBOL_GPL(perf_event_disable);
1614 
1615 static void perf_set_shadow_time(struct perf_event *event,
1616 				 struct perf_event_context *ctx,
1617 				 u64 tstamp)
1618 {
1619 	/*
1620 	 * use the correct time source for the time snapshot
1621 	 *
1622 	 * We could get by without this by leveraging the
1623 	 * fact that to get to this function, the caller
1624 	 * has most likely already called update_context_time()
1625 	 * and update_cgrp_time_xx() and thus both timestamp
1626 	 * are identical (or very close). Given that tstamp is,
1627 	 * already adjusted for cgroup, we could say that:
1628 	 *    tstamp - ctx->timestamp
1629 	 * is equivalent to
1630 	 *    tstamp - cgrp->timestamp.
1631 	 *
1632 	 * Then, in perf_output_read(), the calculation would
1633 	 * work with no changes because:
1634 	 * - event is guaranteed scheduled in
1635 	 * - no scheduled out in between
1636 	 * - thus the timestamp would be the same
1637 	 *
1638 	 * But this is a bit hairy.
1639 	 *
1640 	 * So instead, we have an explicit cgroup call to remain
1641 	 * within the time time source all along. We believe it
1642 	 * is cleaner and simpler to understand.
1643 	 */
1644 	if (is_cgroup_event(event))
1645 		perf_cgroup_set_shadow_time(event, tstamp);
1646 	else
1647 		event->shadow_ctx_time = tstamp - ctx->timestamp;
1648 }
1649 
1650 #define MAX_INTERRUPTS (~0ULL)
1651 
1652 static void perf_log_throttle(struct perf_event *event, int enable);
1653 
1654 static int
1655 event_sched_in(struct perf_event *event,
1656 		 struct perf_cpu_context *cpuctx,
1657 		 struct perf_event_context *ctx)
1658 {
1659 	u64 tstamp = perf_event_time(event);
1660 	int ret = 0;
1661 
1662 	if (event->state <= PERF_EVENT_STATE_OFF)
1663 		return 0;
1664 
1665 	event->state = PERF_EVENT_STATE_ACTIVE;
1666 	event->oncpu = smp_processor_id();
1667 
1668 	/*
1669 	 * Unthrottle events, since we scheduled we might have missed several
1670 	 * ticks already, also for a heavily scheduling task there is little
1671 	 * guarantee it'll get a tick in a timely manner.
1672 	 */
1673 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1674 		perf_log_throttle(event, 1);
1675 		event->hw.interrupts = 0;
1676 	}
1677 
1678 	/*
1679 	 * The new state must be visible before we turn it on in the hardware:
1680 	 */
1681 	smp_wmb();
1682 
1683 	perf_pmu_disable(event->pmu);
1684 
1685 	if (event->pmu->add(event, PERF_EF_START)) {
1686 		event->state = PERF_EVENT_STATE_INACTIVE;
1687 		event->oncpu = -1;
1688 		ret = -EAGAIN;
1689 		goto out;
1690 	}
1691 
1692 	event->tstamp_running += tstamp - event->tstamp_stopped;
1693 
1694 	perf_set_shadow_time(event, ctx, tstamp);
1695 
1696 	if (!is_software_event(event))
1697 		cpuctx->active_oncpu++;
1698 	ctx->nr_active++;
1699 	if (event->attr.freq && event->attr.sample_freq)
1700 		ctx->nr_freq++;
1701 
1702 	if (event->attr.exclusive)
1703 		cpuctx->exclusive = 1;
1704 
1705 out:
1706 	perf_pmu_enable(event->pmu);
1707 
1708 	return ret;
1709 }
1710 
1711 static int
1712 group_sched_in(struct perf_event *group_event,
1713 	       struct perf_cpu_context *cpuctx,
1714 	       struct perf_event_context *ctx)
1715 {
1716 	struct perf_event *event, *partial_group = NULL;
1717 	struct pmu *pmu = group_event->pmu;
1718 	u64 now = ctx->time;
1719 	bool simulate = false;
1720 
1721 	if (group_event->state == PERF_EVENT_STATE_OFF)
1722 		return 0;
1723 
1724 	pmu->start_txn(pmu);
1725 
1726 	if (event_sched_in(group_event, cpuctx, ctx)) {
1727 		pmu->cancel_txn(pmu);
1728 		perf_cpu_hrtimer_restart(cpuctx);
1729 		return -EAGAIN;
1730 	}
1731 
1732 	/*
1733 	 * Schedule in siblings as one group (if any):
1734 	 */
1735 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1736 		if (event_sched_in(event, cpuctx, ctx)) {
1737 			partial_group = event;
1738 			goto group_error;
1739 		}
1740 	}
1741 
1742 	if (!pmu->commit_txn(pmu))
1743 		return 0;
1744 
1745 group_error:
1746 	/*
1747 	 * Groups can be scheduled in as one unit only, so undo any
1748 	 * partial group before returning:
1749 	 * The events up to the failed event are scheduled out normally,
1750 	 * tstamp_stopped will be updated.
1751 	 *
1752 	 * The failed events and the remaining siblings need to have
1753 	 * their timings updated as if they had gone thru event_sched_in()
1754 	 * and event_sched_out(). This is required to get consistent timings
1755 	 * across the group. This also takes care of the case where the group
1756 	 * could never be scheduled by ensuring tstamp_stopped is set to mark
1757 	 * the time the event was actually stopped, such that time delta
1758 	 * calculation in update_event_times() is correct.
1759 	 */
1760 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1761 		if (event == partial_group)
1762 			simulate = true;
1763 
1764 		if (simulate) {
1765 			event->tstamp_running += now - event->tstamp_stopped;
1766 			event->tstamp_stopped = now;
1767 		} else {
1768 			event_sched_out(event, cpuctx, ctx);
1769 		}
1770 	}
1771 	event_sched_out(group_event, cpuctx, ctx);
1772 
1773 	pmu->cancel_txn(pmu);
1774 
1775 	perf_cpu_hrtimer_restart(cpuctx);
1776 
1777 	return -EAGAIN;
1778 }
1779 
1780 /*
1781  * Work out whether we can put this event group on the CPU now.
1782  */
1783 static int group_can_go_on(struct perf_event *event,
1784 			   struct perf_cpu_context *cpuctx,
1785 			   int can_add_hw)
1786 {
1787 	/*
1788 	 * Groups consisting entirely of software events can always go on.
1789 	 */
1790 	if (event->group_flags & PERF_GROUP_SOFTWARE)
1791 		return 1;
1792 	/*
1793 	 * If an exclusive group is already on, no other hardware
1794 	 * events can go on.
1795 	 */
1796 	if (cpuctx->exclusive)
1797 		return 0;
1798 	/*
1799 	 * If this group is exclusive and there are already
1800 	 * events on the CPU, it can't go on.
1801 	 */
1802 	if (event->attr.exclusive && cpuctx->active_oncpu)
1803 		return 0;
1804 	/*
1805 	 * Otherwise, try to add it if all previous groups were able
1806 	 * to go on.
1807 	 */
1808 	return can_add_hw;
1809 }
1810 
1811 static void add_event_to_ctx(struct perf_event *event,
1812 			       struct perf_event_context *ctx)
1813 {
1814 	u64 tstamp = perf_event_time(event);
1815 
1816 	list_add_event(event, ctx);
1817 	perf_group_attach(event);
1818 	event->tstamp_enabled = tstamp;
1819 	event->tstamp_running = tstamp;
1820 	event->tstamp_stopped = tstamp;
1821 }
1822 
1823 static void task_ctx_sched_out(struct perf_event_context *ctx);
1824 static void
1825 ctx_sched_in(struct perf_event_context *ctx,
1826 	     struct perf_cpu_context *cpuctx,
1827 	     enum event_type_t event_type,
1828 	     struct task_struct *task);
1829 
1830 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1831 				struct perf_event_context *ctx,
1832 				struct task_struct *task)
1833 {
1834 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1835 	if (ctx)
1836 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1837 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1838 	if (ctx)
1839 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1840 }
1841 
1842 /*
1843  * Cross CPU call to install and enable a performance event
1844  *
1845  * Must be called with ctx->mutex held
1846  */
1847 static int  __perf_install_in_context(void *info)
1848 {
1849 	struct perf_event *event = info;
1850 	struct perf_event_context *ctx = event->ctx;
1851 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1852 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
1853 	struct task_struct *task = current;
1854 
1855 	perf_ctx_lock(cpuctx, task_ctx);
1856 	perf_pmu_disable(cpuctx->ctx.pmu);
1857 
1858 	/*
1859 	 * If there was an active task_ctx schedule it out.
1860 	 */
1861 	if (task_ctx)
1862 		task_ctx_sched_out(task_ctx);
1863 
1864 	/*
1865 	 * If the context we're installing events in is not the
1866 	 * active task_ctx, flip them.
1867 	 */
1868 	if (ctx->task && task_ctx != ctx) {
1869 		if (task_ctx)
1870 			raw_spin_unlock(&task_ctx->lock);
1871 		raw_spin_lock(&ctx->lock);
1872 		task_ctx = ctx;
1873 	}
1874 
1875 	if (task_ctx) {
1876 		cpuctx->task_ctx = task_ctx;
1877 		task = task_ctx->task;
1878 	}
1879 
1880 	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
1881 
1882 	update_context_time(ctx);
1883 	/*
1884 	 * update cgrp time only if current cgrp
1885 	 * matches event->cgrp. Must be done before
1886 	 * calling add_event_to_ctx()
1887 	 */
1888 	update_cgrp_time_from_event(event);
1889 
1890 	add_event_to_ctx(event, ctx);
1891 
1892 	/*
1893 	 * Schedule everything back in
1894 	 */
1895 	perf_event_sched_in(cpuctx, task_ctx, task);
1896 
1897 	perf_pmu_enable(cpuctx->ctx.pmu);
1898 	perf_ctx_unlock(cpuctx, task_ctx);
1899 
1900 	return 0;
1901 }
1902 
1903 /*
1904  * Attach a performance event to a context
1905  *
1906  * First we add the event to the list with the hardware enable bit
1907  * in event->hw_config cleared.
1908  *
1909  * If the event is attached to a task which is on a CPU we use a smp
1910  * call to enable it in the task context. The task might have been
1911  * scheduled away, but we check this in the smp call again.
1912  */
1913 static void
1914 perf_install_in_context(struct perf_event_context *ctx,
1915 			struct perf_event *event,
1916 			int cpu)
1917 {
1918 	struct task_struct *task = ctx->task;
1919 
1920 	lockdep_assert_held(&ctx->mutex);
1921 
1922 	event->ctx = ctx;
1923 	if (event->cpu != -1)
1924 		event->cpu = cpu;
1925 
1926 	if (!task) {
1927 		/*
1928 		 * Per cpu events are installed via an smp call and
1929 		 * the install is always successful.
1930 		 */
1931 		cpu_function_call(cpu, __perf_install_in_context, event);
1932 		return;
1933 	}
1934 
1935 retry:
1936 	if (!task_function_call(task, __perf_install_in_context, event))
1937 		return;
1938 
1939 	raw_spin_lock_irq(&ctx->lock);
1940 	/*
1941 	 * If we failed to find a running task, but find the context active now
1942 	 * that we've acquired the ctx->lock, retry.
1943 	 */
1944 	if (ctx->is_active) {
1945 		raw_spin_unlock_irq(&ctx->lock);
1946 		goto retry;
1947 	}
1948 
1949 	/*
1950 	 * Since the task isn't running, its safe to add the event, us holding
1951 	 * the ctx->lock ensures the task won't get scheduled in.
1952 	 */
1953 	add_event_to_ctx(event, ctx);
1954 	raw_spin_unlock_irq(&ctx->lock);
1955 }
1956 
1957 /*
1958  * Put a event into inactive state and update time fields.
1959  * Enabling the leader of a group effectively enables all
1960  * the group members that aren't explicitly disabled, so we
1961  * have to update their ->tstamp_enabled also.
1962  * Note: this works for group members as well as group leaders
1963  * since the non-leader members' sibling_lists will be empty.
1964  */
1965 static void __perf_event_mark_enabled(struct perf_event *event)
1966 {
1967 	struct perf_event *sub;
1968 	u64 tstamp = perf_event_time(event);
1969 
1970 	event->state = PERF_EVENT_STATE_INACTIVE;
1971 	event->tstamp_enabled = tstamp - event->total_time_enabled;
1972 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
1973 		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1974 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
1975 	}
1976 }
1977 
1978 /*
1979  * Cross CPU call to enable a performance event
1980  */
1981 static int __perf_event_enable(void *info)
1982 {
1983 	struct perf_event *event = info;
1984 	struct perf_event_context *ctx = event->ctx;
1985 	struct perf_event *leader = event->group_leader;
1986 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1987 	int err;
1988 
1989 	/*
1990 	 * There's a time window between 'ctx->is_active' check
1991 	 * in perf_event_enable function and this place having:
1992 	 *   - IRQs on
1993 	 *   - ctx->lock unlocked
1994 	 *
1995 	 * where the task could be killed and 'ctx' deactivated
1996 	 * by perf_event_exit_task.
1997 	 */
1998 	if (!ctx->is_active)
1999 		return -EINVAL;
2000 
2001 	raw_spin_lock(&ctx->lock);
2002 	update_context_time(ctx);
2003 
2004 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2005 		goto unlock;
2006 
2007 	/*
2008 	 * set current task's cgroup time reference point
2009 	 */
2010 	perf_cgroup_set_timestamp(current, ctx);
2011 
2012 	__perf_event_mark_enabled(event);
2013 
2014 	if (!event_filter_match(event)) {
2015 		if (is_cgroup_event(event))
2016 			perf_cgroup_defer_enabled(event);
2017 		goto unlock;
2018 	}
2019 
2020 	/*
2021 	 * If the event is in a group and isn't the group leader,
2022 	 * then don't put it on unless the group is on.
2023 	 */
2024 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2025 		goto unlock;
2026 
2027 	if (!group_can_go_on(event, cpuctx, 1)) {
2028 		err = -EEXIST;
2029 	} else {
2030 		if (event == leader)
2031 			err = group_sched_in(event, cpuctx, ctx);
2032 		else
2033 			err = event_sched_in(event, cpuctx, ctx);
2034 	}
2035 
2036 	if (err) {
2037 		/*
2038 		 * If this event can't go on and it's part of a
2039 		 * group, then the whole group has to come off.
2040 		 */
2041 		if (leader != event) {
2042 			group_sched_out(leader, cpuctx, ctx);
2043 			perf_cpu_hrtimer_restart(cpuctx);
2044 		}
2045 		if (leader->attr.pinned) {
2046 			update_group_times(leader);
2047 			leader->state = PERF_EVENT_STATE_ERROR;
2048 		}
2049 	}
2050 
2051 unlock:
2052 	raw_spin_unlock(&ctx->lock);
2053 
2054 	return 0;
2055 }
2056 
2057 /*
2058  * Enable a event.
2059  *
2060  * If event->ctx is a cloned context, callers must make sure that
2061  * every task struct that event->ctx->task could possibly point to
2062  * remains valid.  This condition is satisfied when called through
2063  * perf_event_for_each_child or perf_event_for_each as described
2064  * for perf_event_disable.
2065  */
2066 void perf_event_enable(struct perf_event *event)
2067 {
2068 	struct perf_event_context *ctx = event->ctx;
2069 	struct task_struct *task = ctx->task;
2070 
2071 	if (!task) {
2072 		/*
2073 		 * Enable the event on the cpu that it's on
2074 		 */
2075 		cpu_function_call(event->cpu, __perf_event_enable, event);
2076 		return;
2077 	}
2078 
2079 	raw_spin_lock_irq(&ctx->lock);
2080 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2081 		goto out;
2082 
2083 	/*
2084 	 * If the event is in error state, clear that first.
2085 	 * That way, if we see the event in error state below, we
2086 	 * know that it has gone back into error state, as distinct
2087 	 * from the task having been scheduled away before the
2088 	 * cross-call arrived.
2089 	 */
2090 	if (event->state == PERF_EVENT_STATE_ERROR)
2091 		event->state = PERF_EVENT_STATE_OFF;
2092 
2093 retry:
2094 	if (!ctx->is_active) {
2095 		__perf_event_mark_enabled(event);
2096 		goto out;
2097 	}
2098 
2099 	raw_spin_unlock_irq(&ctx->lock);
2100 
2101 	if (!task_function_call(task, __perf_event_enable, event))
2102 		return;
2103 
2104 	raw_spin_lock_irq(&ctx->lock);
2105 
2106 	/*
2107 	 * If the context is active and the event is still off,
2108 	 * we need to retry the cross-call.
2109 	 */
2110 	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
2111 		/*
2112 		 * task could have been flipped by a concurrent
2113 		 * perf_event_context_sched_out()
2114 		 */
2115 		task = ctx->task;
2116 		goto retry;
2117 	}
2118 
2119 out:
2120 	raw_spin_unlock_irq(&ctx->lock);
2121 }
2122 EXPORT_SYMBOL_GPL(perf_event_enable);
2123 
2124 int perf_event_refresh(struct perf_event *event, int refresh)
2125 {
2126 	/*
2127 	 * not supported on inherited events
2128 	 */
2129 	if (event->attr.inherit || !is_sampling_event(event))
2130 		return -EINVAL;
2131 
2132 	atomic_add(refresh, &event->event_limit);
2133 	perf_event_enable(event);
2134 
2135 	return 0;
2136 }
2137 EXPORT_SYMBOL_GPL(perf_event_refresh);
2138 
2139 static void ctx_sched_out(struct perf_event_context *ctx,
2140 			  struct perf_cpu_context *cpuctx,
2141 			  enum event_type_t event_type)
2142 {
2143 	struct perf_event *event;
2144 	int is_active = ctx->is_active;
2145 
2146 	ctx->is_active &= ~event_type;
2147 	if (likely(!ctx->nr_events))
2148 		return;
2149 
2150 	update_context_time(ctx);
2151 	update_cgrp_time_from_cpuctx(cpuctx);
2152 	if (!ctx->nr_active)
2153 		return;
2154 
2155 	perf_pmu_disable(ctx->pmu);
2156 	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2157 		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2158 			group_sched_out(event, cpuctx, ctx);
2159 	}
2160 
2161 	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2162 		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2163 			group_sched_out(event, cpuctx, ctx);
2164 	}
2165 	perf_pmu_enable(ctx->pmu);
2166 }
2167 
2168 /*
2169  * Test whether two contexts are equivalent, i.e. whether they have both been
2170  * cloned from the same version of the same context.
2171  *
2172  * Equivalence is measured using a generation number in the context that is
2173  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2174  * and list_del_event().
2175  */
2176 static int context_equiv(struct perf_event_context *ctx1,
2177 			 struct perf_event_context *ctx2)
2178 {
2179 	/* Pinning disables the swap optimization */
2180 	if (ctx1->pin_count || ctx2->pin_count)
2181 		return 0;
2182 
2183 	/* If ctx1 is the parent of ctx2 */
2184 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2185 		return 1;
2186 
2187 	/* If ctx2 is the parent of ctx1 */
2188 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2189 		return 1;
2190 
2191 	/*
2192 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
2193 	 * hierarchy, see perf_event_init_context().
2194 	 */
2195 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2196 			ctx1->parent_gen == ctx2->parent_gen)
2197 		return 1;
2198 
2199 	/* Unmatched */
2200 	return 0;
2201 }
2202 
2203 static void __perf_event_sync_stat(struct perf_event *event,
2204 				     struct perf_event *next_event)
2205 {
2206 	u64 value;
2207 
2208 	if (!event->attr.inherit_stat)
2209 		return;
2210 
2211 	/*
2212 	 * Update the event value, we cannot use perf_event_read()
2213 	 * because we're in the middle of a context switch and have IRQs
2214 	 * disabled, which upsets smp_call_function_single(), however
2215 	 * we know the event must be on the current CPU, therefore we
2216 	 * don't need to use it.
2217 	 */
2218 	switch (event->state) {
2219 	case PERF_EVENT_STATE_ACTIVE:
2220 		event->pmu->read(event);
2221 		/* fall-through */
2222 
2223 	case PERF_EVENT_STATE_INACTIVE:
2224 		update_event_times(event);
2225 		break;
2226 
2227 	default:
2228 		break;
2229 	}
2230 
2231 	/*
2232 	 * In order to keep per-task stats reliable we need to flip the event
2233 	 * values when we flip the contexts.
2234 	 */
2235 	value = local64_read(&next_event->count);
2236 	value = local64_xchg(&event->count, value);
2237 	local64_set(&next_event->count, value);
2238 
2239 	swap(event->total_time_enabled, next_event->total_time_enabled);
2240 	swap(event->total_time_running, next_event->total_time_running);
2241 
2242 	/*
2243 	 * Since we swizzled the values, update the user visible data too.
2244 	 */
2245 	perf_event_update_userpage(event);
2246 	perf_event_update_userpage(next_event);
2247 }
2248 
2249 static void perf_event_sync_stat(struct perf_event_context *ctx,
2250 				   struct perf_event_context *next_ctx)
2251 {
2252 	struct perf_event *event, *next_event;
2253 
2254 	if (!ctx->nr_stat)
2255 		return;
2256 
2257 	update_context_time(ctx);
2258 
2259 	event = list_first_entry(&ctx->event_list,
2260 				   struct perf_event, event_entry);
2261 
2262 	next_event = list_first_entry(&next_ctx->event_list,
2263 					struct perf_event, event_entry);
2264 
2265 	while (&event->event_entry != &ctx->event_list &&
2266 	       &next_event->event_entry != &next_ctx->event_list) {
2267 
2268 		__perf_event_sync_stat(event, next_event);
2269 
2270 		event = list_next_entry(event, event_entry);
2271 		next_event = list_next_entry(next_event, event_entry);
2272 	}
2273 }
2274 
2275 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2276 					 struct task_struct *next)
2277 {
2278 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2279 	struct perf_event_context *next_ctx;
2280 	struct perf_event_context *parent, *next_parent;
2281 	struct perf_cpu_context *cpuctx;
2282 	int do_switch = 1;
2283 
2284 	if (likely(!ctx))
2285 		return;
2286 
2287 	cpuctx = __get_cpu_context(ctx);
2288 	if (!cpuctx->task_ctx)
2289 		return;
2290 
2291 	rcu_read_lock();
2292 	next_ctx = next->perf_event_ctxp[ctxn];
2293 	if (!next_ctx)
2294 		goto unlock;
2295 
2296 	parent = rcu_dereference(ctx->parent_ctx);
2297 	next_parent = rcu_dereference(next_ctx->parent_ctx);
2298 
2299 	/* If neither context have a parent context; they cannot be clones. */
2300 	if (!parent && !next_parent)
2301 		goto unlock;
2302 
2303 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2304 		/*
2305 		 * Looks like the two contexts are clones, so we might be
2306 		 * able to optimize the context switch.  We lock both
2307 		 * contexts and check that they are clones under the
2308 		 * lock (including re-checking that neither has been
2309 		 * uncloned in the meantime).  It doesn't matter which
2310 		 * order we take the locks because no other cpu could
2311 		 * be trying to lock both of these tasks.
2312 		 */
2313 		raw_spin_lock(&ctx->lock);
2314 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2315 		if (context_equiv(ctx, next_ctx)) {
2316 			/*
2317 			 * XXX do we need a memory barrier of sorts
2318 			 * wrt to rcu_dereference() of perf_event_ctxp
2319 			 */
2320 			task->perf_event_ctxp[ctxn] = next_ctx;
2321 			next->perf_event_ctxp[ctxn] = ctx;
2322 			ctx->task = next;
2323 			next_ctx->task = task;
2324 			do_switch = 0;
2325 
2326 			perf_event_sync_stat(ctx, next_ctx);
2327 		}
2328 		raw_spin_unlock(&next_ctx->lock);
2329 		raw_spin_unlock(&ctx->lock);
2330 	}
2331 unlock:
2332 	rcu_read_unlock();
2333 
2334 	if (do_switch) {
2335 		raw_spin_lock(&ctx->lock);
2336 		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2337 		cpuctx->task_ctx = NULL;
2338 		raw_spin_unlock(&ctx->lock);
2339 	}
2340 }
2341 
2342 #define for_each_task_context_nr(ctxn)					\
2343 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2344 
2345 /*
2346  * Called from scheduler to remove the events of the current task,
2347  * with interrupts disabled.
2348  *
2349  * We stop each event and update the event value in event->count.
2350  *
2351  * This does not protect us against NMI, but disable()
2352  * sets the disabled bit in the control field of event _before_
2353  * accessing the event control register. If a NMI hits, then it will
2354  * not restart the event.
2355  */
2356 void __perf_event_task_sched_out(struct task_struct *task,
2357 				 struct task_struct *next)
2358 {
2359 	int ctxn;
2360 
2361 	for_each_task_context_nr(ctxn)
2362 		perf_event_context_sched_out(task, ctxn, next);
2363 
2364 	/*
2365 	 * if cgroup events exist on this CPU, then we need
2366 	 * to check if we have to switch out PMU state.
2367 	 * cgroup event are system-wide mode only
2368 	 */
2369 	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2370 		perf_cgroup_sched_out(task, next);
2371 }
2372 
2373 static void task_ctx_sched_out(struct perf_event_context *ctx)
2374 {
2375 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2376 
2377 	if (!cpuctx->task_ctx)
2378 		return;
2379 
2380 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2381 		return;
2382 
2383 	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2384 	cpuctx->task_ctx = NULL;
2385 }
2386 
2387 /*
2388  * Called with IRQs disabled
2389  */
2390 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2391 			      enum event_type_t event_type)
2392 {
2393 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2394 }
2395 
2396 static void
2397 ctx_pinned_sched_in(struct perf_event_context *ctx,
2398 		    struct perf_cpu_context *cpuctx)
2399 {
2400 	struct perf_event *event;
2401 
2402 	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2403 		if (event->state <= PERF_EVENT_STATE_OFF)
2404 			continue;
2405 		if (!event_filter_match(event))
2406 			continue;
2407 
2408 		/* may need to reset tstamp_enabled */
2409 		if (is_cgroup_event(event))
2410 			perf_cgroup_mark_enabled(event, ctx);
2411 
2412 		if (group_can_go_on(event, cpuctx, 1))
2413 			group_sched_in(event, cpuctx, ctx);
2414 
2415 		/*
2416 		 * If this pinned group hasn't been scheduled,
2417 		 * put it in error state.
2418 		 */
2419 		if (event->state == PERF_EVENT_STATE_INACTIVE) {
2420 			update_group_times(event);
2421 			event->state = PERF_EVENT_STATE_ERROR;
2422 		}
2423 	}
2424 }
2425 
2426 static void
2427 ctx_flexible_sched_in(struct perf_event_context *ctx,
2428 		      struct perf_cpu_context *cpuctx)
2429 {
2430 	struct perf_event *event;
2431 	int can_add_hw = 1;
2432 
2433 	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2434 		/* Ignore events in OFF or ERROR state */
2435 		if (event->state <= PERF_EVENT_STATE_OFF)
2436 			continue;
2437 		/*
2438 		 * Listen to the 'cpu' scheduling filter constraint
2439 		 * of events:
2440 		 */
2441 		if (!event_filter_match(event))
2442 			continue;
2443 
2444 		/* may need to reset tstamp_enabled */
2445 		if (is_cgroup_event(event))
2446 			perf_cgroup_mark_enabled(event, ctx);
2447 
2448 		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2449 			if (group_sched_in(event, cpuctx, ctx))
2450 				can_add_hw = 0;
2451 		}
2452 	}
2453 }
2454 
2455 static void
2456 ctx_sched_in(struct perf_event_context *ctx,
2457 	     struct perf_cpu_context *cpuctx,
2458 	     enum event_type_t event_type,
2459 	     struct task_struct *task)
2460 {
2461 	u64 now;
2462 	int is_active = ctx->is_active;
2463 
2464 	ctx->is_active |= event_type;
2465 	if (likely(!ctx->nr_events))
2466 		return;
2467 
2468 	now = perf_clock();
2469 	ctx->timestamp = now;
2470 	perf_cgroup_set_timestamp(task, ctx);
2471 	/*
2472 	 * First go through the list and put on any pinned groups
2473 	 * in order to give them the best chance of going on.
2474 	 */
2475 	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2476 		ctx_pinned_sched_in(ctx, cpuctx);
2477 
2478 	/* Then walk through the lower prio flexible groups */
2479 	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2480 		ctx_flexible_sched_in(ctx, cpuctx);
2481 }
2482 
2483 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2484 			     enum event_type_t event_type,
2485 			     struct task_struct *task)
2486 {
2487 	struct perf_event_context *ctx = &cpuctx->ctx;
2488 
2489 	ctx_sched_in(ctx, cpuctx, event_type, task);
2490 }
2491 
2492 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2493 					struct task_struct *task)
2494 {
2495 	struct perf_cpu_context *cpuctx;
2496 
2497 	cpuctx = __get_cpu_context(ctx);
2498 	if (cpuctx->task_ctx == ctx)
2499 		return;
2500 
2501 	perf_ctx_lock(cpuctx, ctx);
2502 	perf_pmu_disable(ctx->pmu);
2503 	/*
2504 	 * We want to keep the following priority order:
2505 	 * cpu pinned (that don't need to move), task pinned,
2506 	 * cpu flexible, task flexible.
2507 	 */
2508 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2509 
2510 	if (ctx->nr_events)
2511 		cpuctx->task_ctx = ctx;
2512 
2513 	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2514 
2515 	perf_pmu_enable(ctx->pmu);
2516 	perf_ctx_unlock(cpuctx, ctx);
2517 
2518 	/*
2519 	 * Since these rotations are per-cpu, we need to ensure the
2520 	 * cpu-context we got scheduled on is actually rotating.
2521 	 */
2522 	perf_pmu_rotate_start(ctx->pmu);
2523 }
2524 
2525 /*
2526  * When sampling the branck stack in system-wide, it may be necessary
2527  * to flush the stack on context switch. This happens when the branch
2528  * stack does not tag its entries with the pid of the current task.
2529  * Otherwise it becomes impossible to associate a branch entry with a
2530  * task. This ambiguity is more likely to appear when the branch stack
2531  * supports priv level filtering and the user sets it to monitor only
2532  * at the user level (which could be a useful measurement in system-wide
2533  * mode). In that case, the risk is high of having a branch stack with
2534  * branch from multiple tasks. Flushing may mean dropping the existing
2535  * entries or stashing them somewhere in the PMU specific code layer.
2536  *
2537  * This function provides the context switch callback to the lower code
2538  * layer. It is invoked ONLY when there is at least one system-wide context
2539  * with at least one active event using taken branch sampling.
2540  */
2541 static void perf_branch_stack_sched_in(struct task_struct *prev,
2542 				       struct task_struct *task)
2543 {
2544 	struct perf_cpu_context *cpuctx;
2545 	struct pmu *pmu;
2546 	unsigned long flags;
2547 
2548 	/* no need to flush branch stack if not changing task */
2549 	if (prev == task)
2550 		return;
2551 
2552 	local_irq_save(flags);
2553 
2554 	rcu_read_lock();
2555 
2556 	list_for_each_entry_rcu(pmu, &pmus, entry) {
2557 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2558 
2559 		/*
2560 		 * check if the context has at least one
2561 		 * event using PERF_SAMPLE_BRANCH_STACK
2562 		 */
2563 		if (cpuctx->ctx.nr_branch_stack > 0
2564 		    && pmu->flush_branch_stack) {
2565 
2566 			pmu = cpuctx->ctx.pmu;
2567 
2568 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2569 
2570 			perf_pmu_disable(pmu);
2571 
2572 			pmu->flush_branch_stack();
2573 
2574 			perf_pmu_enable(pmu);
2575 
2576 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2577 		}
2578 	}
2579 
2580 	rcu_read_unlock();
2581 
2582 	local_irq_restore(flags);
2583 }
2584 
2585 /*
2586  * Called from scheduler to add the events of the current task
2587  * with interrupts disabled.
2588  *
2589  * We restore the event value and then enable it.
2590  *
2591  * This does not protect us against NMI, but enable()
2592  * sets the enabled bit in the control field of event _before_
2593  * accessing the event control register. If a NMI hits, then it will
2594  * keep the event running.
2595  */
2596 void __perf_event_task_sched_in(struct task_struct *prev,
2597 				struct task_struct *task)
2598 {
2599 	struct perf_event_context *ctx;
2600 	int ctxn;
2601 
2602 	for_each_task_context_nr(ctxn) {
2603 		ctx = task->perf_event_ctxp[ctxn];
2604 		if (likely(!ctx))
2605 			continue;
2606 
2607 		perf_event_context_sched_in(ctx, task);
2608 	}
2609 	/*
2610 	 * if cgroup events exist on this CPU, then we need
2611 	 * to check if we have to switch in PMU state.
2612 	 * cgroup event are system-wide mode only
2613 	 */
2614 	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2615 		perf_cgroup_sched_in(prev, task);
2616 
2617 	/* check for system-wide branch_stack events */
2618 	if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
2619 		perf_branch_stack_sched_in(prev, task);
2620 }
2621 
2622 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2623 {
2624 	u64 frequency = event->attr.sample_freq;
2625 	u64 sec = NSEC_PER_SEC;
2626 	u64 divisor, dividend;
2627 
2628 	int count_fls, nsec_fls, frequency_fls, sec_fls;
2629 
2630 	count_fls = fls64(count);
2631 	nsec_fls = fls64(nsec);
2632 	frequency_fls = fls64(frequency);
2633 	sec_fls = 30;
2634 
2635 	/*
2636 	 * We got @count in @nsec, with a target of sample_freq HZ
2637 	 * the target period becomes:
2638 	 *
2639 	 *             @count * 10^9
2640 	 * period = -------------------
2641 	 *          @nsec * sample_freq
2642 	 *
2643 	 */
2644 
2645 	/*
2646 	 * Reduce accuracy by one bit such that @a and @b converge
2647 	 * to a similar magnitude.
2648 	 */
2649 #define REDUCE_FLS(a, b)		\
2650 do {					\
2651 	if (a##_fls > b##_fls) {	\
2652 		a >>= 1;		\
2653 		a##_fls--;		\
2654 	} else {			\
2655 		b >>= 1;		\
2656 		b##_fls--;		\
2657 	}				\
2658 } while (0)
2659 
2660 	/*
2661 	 * Reduce accuracy until either term fits in a u64, then proceed with
2662 	 * the other, so that finally we can do a u64/u64 division.
2663 	 */
2664 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2665 		REDUCE_FLS(nsec, frequency);
2666 		REDUCE_FLS(sec, count);
2667 	}
2668 
2669 	if (count_fls + sec_fls > 64) {
2670 		divisor = nsec * frequency;
2671 
2672 		while (count_fls + sec_fls > 64) {
2673 			REDUCE_FLS(count, sec);
2674 			divisor >>= 1;
2675 		}
2676 
2677 		dividend = count * sec;
2678 	} else {
2679 		dividend = count * sec;
2680 
2681 		while (nsec_fls + frequency_fls > 64) {
2682 			REDUCE_FLS(nsec, frequency);
2683 			dividend >>= 1;
2684 		}
2685 
2686 		divisor = nsec * frequency;
2687 	}
2688 
2689 	if (!divisor)
2690 		return dividend;
2691 
2692 	return div64_u64(dividend, divisor);
2693 }
2694 
2695 static DEFINE_PER_CPU(int, perf_throttled_count);
2696 static DEFINE_PER_CPU(u64, perf_throttled_seq);
2697 
2698 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2699 {
2700 	struct hw_perf_event *hwc = &event->hw;
2701 	s64 period, sample_period;
2702 	s64 delta;
2703 
2704 	period = perf_calculate_period(event, nsec, count);
2705 
2706 	delta = (s64)(period - hwc->sample_period);
2707 	delta = (delta + 7) / 8; /* low pass filter */
2708 
2709 	sample_period = hwc->sample_period + delta;
2710 
2711 	if (!sample_period)
2712 		sample_period = 1;
2713 
2714 	hwc->sample_period = sample_period;
2715 
2716 	if (local64_read(&hwc->period_left) > 8*sample_period) {
2717 		if (disable)
2718 			event->pmu->stop(event, PERF_EF_UPDATE);
2719 
2720 		local64_set(&hwc->period_left, 0);
2721 
2722 		if (disable)
2723 			event->pmu->start(event, PERF_EF_RELOAD);
2724 	}
2725 }
2726 
2727 /*
2728  * combine freq adjustment with unthrottling to avoid two passes over the
2729  * events. At the same time, make sure, having freq events does not change
2730  * the rate of unthrottling as that would introduce bias.
2731  */
2732 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2733 					   int needs_unthr)
2734 {
2735 	struct perf_event *event;
2736 	struct hw_perf_event *hwc;
2737 	u64 now, period = TICK_NSEC;
2738 	s64 delta;
2739 
2740 	/*
2741 	 * only need to iterate over all events iff:
2742 	 * - context have events in frequency mode (needs freq adjust)
2743 	 * - there are events to unthrottle on this cpu
2744 	 */
2745 	if (!(ctx->nr_freq || needs_unthr))
2746 		return;
2747 
2748 	raw_spin_lock(&ctx->lock);
2749 	perf_pmu_disable(ctx->pmu);
2750 
2751 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2752 		if (event->state != PERF_EVENT_STATE_ACTIVE)
2753 			continue;
2754 
2755 		if (!event_filter_match(event))
2756 			continue;
2757 
2758 		perf_pmu_disable(event->pmu);
2759 
2760 		hwc = &event->hw;
2761 
2762 		if (hwc->interrupts == MAX_INTERRUPTS) {
2763 			hwc->interrupts = 0;
2764 			perf_log_throttle(event, 1);
2765 			event->pmu->start(event, 0);
2766 		}
2767 
2768 		if (!event->attr.freq || !event->attr.sample_freq)
2769 			goto next;
2770 
2771 		/*
2772 		 * stop the event and update event->count
2773 		 */
2774 		event->pmu->stop(event, PERF_EF_UPDATE);
2775 
2776 		now = local64_read(&event->count);
2777 		delta = now - hwc->freq_count_stamp;
2778 		hwc->freq_count_stamp = now;
2779 
2780 		/*
2781 		 * restart the event
2782 		 * reload only if value has changed
2783 		 * we have stopped the event so tell that
2784 		 * to perf_adjust_period() to avoid stopping it
2785 		 * twice.
2786 		 */
2787 		if (delta > 0)
2788 			perf_adjust_period(event, period, delta, false);
2789 
2790 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2791 	next:
2792 		perf_pmu_enable(event->pmu);
2793 	}
2794 
2795 	perf_pmu_enable(ctx->pmu);
2796 	raw_spin_unlock(&ctx->lock);
2797 }
2798 
2799 /*
2800  * Round-robin a context's events:
2801  */
2802 static void rotate_ctx(struct perf_event_context *ctx)
2803 {
2804 	/*
2805 	 * Rotate the first entry last of non-pinned groups. Rotation might be
2806 	 * disabled by the inheritance code.
2807 	 */
2808 	if (!ctx->rotate_disable)
2809 		list_rotate_left(&ctx->flexible_groups);
2810 }
2811 
2812 /*
2813  * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2814  * because they're strictly cpu affine and rotate_start is called with IRQs
2815  * disabled, while rotate_context is called from IRQ context.
2816  */
2817 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
2818 {
2819 	struct perf_event_context *ctx = NULL;
2820 	int rotate = 0, remove = 1;
2821 
2822 	if (cpuctx->ctx.nr_events) {
2823 		remove = 0;
2824 		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2825 			rotate = 1;
2826 	}
2827 
2828 	ctx = cpuctx->task_ctx;
2829 	if (ctx && ctx->nr_events) {
2830 		remove = 0;
2831 		if (ctx->nr_events != ctx->nr_active)
2832 			rotate = 1;
2833 	}
2834 
2835 	if (!rotate)
2836 		goto done;
2837 
2838 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2839 	perf_pmu_disable(cpuctx->ctx.pmu);
2840 
2841 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2842 	if (ctx)
2843 		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
2844 
2845 	rotate_ctx(&cpuctx->ctx);
2846 	if (ctx)
2847 		rotate_ctx(ctx);
2848 
2849 	perf_event_sched_in(cpuctx, ctx, current);
2850 
2851 	perf_pmu_enable(cpuctx->ctx.pmu);
2852 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2853 done:
2854 	if (remove)
2855 		list_del_init(&cpuctx->rotation_list);
2856 
2857 	return rotate;
2858 }
2859 
2860 #ifdef CONFIG_NO_HZ_FULL
2861 bool perf_event_can_stop_tick(void)
2862 {
2863 	if (atomic_read(&nr_freq_events) ||
2864 	    __this_cpu_read(perf_throttled_count))
2865 		return false;
2866 	else
2867 		return true;
2868 }
2869 #endif
2870 
2871 void perf_event_task_tick(void)
2872 {
2873 	struct list_head *head = &__get_cpu_var(rotation_list);
2874 	struct perf_cpu_context *cpuctx, *tmp;
2875 	struct perf_event_context *ctx;
2876 	int throttled;
2877 
2878 	WARN_ON(!irqs_disabled());
2879 
2880 	__this_cpu_inc(perf_throttled_seq);
2881 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
2882 
2883 	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2884 		ctx = &cpuctx->ctx;
2885 		perf_adjust_freq_unthr_context(ctx, throttled);
2886 
2887 		ctx = cpuctx->task_ctx;
2888 		if (ctx)
2889 			perf_adjust_freq_unthr_context(ctx, throttled);
2890 	}
2891 }
2892 
2893 static int event_enable_on_exec(struct perf_event *event,
2894 				struct perf_event_context *ctx)
2895 {
2896 	if (!event->attr.enable_on_exec)
2897 		return 0;
2898 
2899 	event->attr.enable_on_exec = 0;
2900 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2901 		return 0;
2902 
2903 	__perf_event_mark_enabled(event);
2904 
2905 	return 1;
2906 }
2907 
2908 /*
2909  * Enable all of a task's events that have been marked enable-on-exec.
2910  * This expects task == current.
2911  */
2912 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2913 {
2914 	struct perf_event *event;
2915 	unsigned long flags;
2916 	int enabled = 0;
2917 	int ret;
2918 
2919 	local_irq_save(flags);
2920 	if (!ctx || !ctx->nr_events)
2921 		goto out;
2922 
2923 	/*
2924 	 * We must ctxsw out cgroup events to avoid conflict
2925 	 * when invoking perf_task_event_sched_in() later on
2926 	 * in this function. Otherwise we end up trying to
2927 	 * ctxswin cgroup events which are already scheduled
2928 	 * in.
2929 	 */
2930 	perf_cgroup_sched_out(current, NULL);
2931 
2932 	raw_spin_lock(&ctx->lock);
2933 	task_ctx_sched_out(ctx);
2934 
2935 	list_for_each_entry(event, &ctx->event_list, event_entry) {
2936 		ret = event_enable_on_exec(event, ctx);
2937 		if (ret)
2938 			enabled = 1;
2939 	}
2940 
2941 	/*
2942 	 * Unclone this context if we enabled any event.
2943 	 */
2944 	if (enabled)
2945 		unclone_ctx(ctx);
2946 
2947 	raw_spin_unlock(&ctx->lock);
2948 
2949 	/*
2950 	 * Also calls ctxswin for cgroup events, if any:
2951 	 */
2952 	perf_event_context_sched_in(ctx, ctx->task);
2953 out:
2954 	local_irq_restore(flags);
2955 }
2956 
2957 /*
2958  * Cross CPU call to read the hardware event
2959  */
2960 static void __perf_event_read(void *info)
2961 {
2962 	struct perf_event *event = info;
2963 	struct perf_event_context *ctx = event->ctx;
2964 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2965 
2966 	/*
2967 	 * If this is a task context, we need to check whether it is
2968 	 * the current task context of this cpu.  If not it has been
2969 	 * scheduled out before the smp call arrived.  In that case
2970 	 * event->count would have been updated to a recent sample
2971 	 * when the event was scheduled out.
2972 	 */
2973 	if (ctx->task && cpuctx->task_ctx != ctx)
2974 		return;
2975 
2976 	raw_spin_lock(&ctx->lock);
2977 	if (ctx->is_active) {
2978 		update_context_time(ctx);
2979 		update_cgrp_time_from_event(event);
2980 	}
2981 	update_event_times(event);
2982 	if (event->state == PERF_EVENT_STATE_ACTIVE)
2983 		event->pmu->read(event);
2984 	raw_spin_unlock(&ctx->lock);
2985 }
2986 
2987 static inline u64 perf_event_count(struct perf_event *event)
2988 {
2989 	return local64_read(&event->count) + atomic64_read(&event->child_count);
2990 }
2991 
2992 static u64 perf_event_read(struct perf_event *event)
2993 {
2994 	/*
2995 	 * If event is enabled and currently active on a CPU, update the
2996 	 * value in the event structure:
2997 	 */
2998 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
2999 		smp_call_function_single(event->oncpu,
3000 					 __perf_event_read, event, 1);
3001 	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3002 		struct perf_event_context *ctx = event->ctx;
3003 		unsigned long flags;
3004 
3005 		raw_spin_lock_irqsave(&ctx->lock, flags);
3006 		/*
3007 		 * may read while context is not active
3008 		 * (e.g., thread is blocked), in that case
3009 		 * we cannot update context time
3010 		 */
3011 		if (ctx->is_active) {
3012 			update_context_time(ctx);
3013 			update_cgrp_time_from_event(event);
3014 		}
3015 		update_event_times(event);
3016 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3017 	}
3018 
3019 	return perf_event_count(event);
3020 }
3021 
3022 /*
3023  * Initialize the perf_event context in a task_struct:
3024  */
3025 static void __perf_event_init_context(struct perf_event_context *ctx)
3026 {
3027 	raw_spin_lock_init(&ctx->lock);
3028 	mutex_init(&ctx->mutex);
3029 	INIT_LIST_HEAD(&ctx->pinned_groups);
3030 	INIT_LIST_HEAD(&ctx->flexible_groups);
3031 	INIT_LIST_HEAD(&ctx->event_list);
3032 	atomic_set(&ctx->refcount, 1);
3033 }
3034 
3035 static struct perf_event_context *
3036 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3037 {
3038 	struct perf_event_context *ctx;
3039 
3040 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3041 	if (!ctx)
3042 		return NULL;
3043 
3044 	__perf_event_init_context(ctx);
3045 	if (task) {
3046 		ctx->task = task;
3047 		get_task_struct(task);
3048 	}
3049 	ctx->pmu = pmu;
3050 
3051 	return ctx;
3052 }
3053 
3054 static struct task_struct *
3055 find_lively_task_by_vpid(pid_t vpid)
3056 {
3057 	struct task_struct *task;
3058 	int err;
3059 
3060 	rcu_read_lock();
3061 	if (!vpid)
3062 		task = current;
3063 	else
3064 		task = find_task_by_vpid(vpid);
3065 	if (task)
3066 		get_task_struct(task);
3067 	rcu_read_unlock();
3068 
3069 	if (!task)
3070 		return ERR_PTR(-ESRCH);
3071 
3072 	/* Reuse ptrace permission checks for now. */
3073 	err = -EACCES;
3074 	if (!ptrace_may_access(task, PTRACE_MODE_READ))
3075 		goto errout;
3076 
3077 	return task;
3078 errout:
3079 	put_task_struct(task);
3080 	return ERR_PTR(err);
3081 
3082 }
3083 
3084 /*
3085  * Returns a matching context with refcount and pincount.
3086  */
3087 static struct perf_event_context *
3088 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
3089 {
3090 	struct perf_event_context *ctx;
3091 	struct perf_cpu_context *cpuctx;
3092 	unsigned long flags;
3093 	int ctxn, err;
3094 
3095 	if (!task) {
3096 		/* Must be root to operate on a CPU event: */
3097 		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3098 			return ERR_PTR(-EACCES);
3099 
3100 		/*
3101 		 * We could be clever and allow to attach a event to an
3102 		 * offline CPU and activate it when the CPU comes up, but
3103 		 * that's for later.
3104 		 */
3105 		if (!cpu_online(cpu))
3106 			return ERR_PTR(-ENODEV);
3107 
3108 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3109 		ctx = &cpuctx->ctx;
3110 		get_ctx(ctx);
3111 		++ctx->pin_count;
3112 
3113 		return ctx;
3114 	}
3115 
3116 	err = -EINVAL;
3117 	ctxn = pmu->task_ctx_nr;
3118 	if (ctxn < 0)
3119 		goto errout;
3120 
3121 retry:
3122 	ctx = perf_lock_task_context(task, ctxn, &flags);
3123 	if (ctx) {
3124 		unclone_ctx(ctx);
3125 		++ctx->pin_count;
3126 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3127 	} else {
3128 		ctx = alloc_perf_context(pmu, task);
3129 		err = -ENOMEM;
3130 		if (!ctx)
3131 			goto errout;
3132 
3133 		err = 0;
3134 		mutex_lock(&task->perf_event_mutex);
3135 		/*
3136 		 * If it has already passed perf_event_exit_task().
3137 		 * we must see PF_EXITING, it takes this mutex too.
3138 		 */
3139 		if (task->flags & PF_EXITING)
3140 			err = -ESRCH;
3141 		else if (task->perf_event_ctxp[ctxn])
3142 			err = -EAGAIN;
3143 		else {
3144 			get_ctx(ctx);
3145 			++ctx->pin_count;
3146 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3147 		}
3148 		mutex_unlock(&task->perf_event_mutex);
3149 
3150 		if (unlikely(err)) {
3151 			put_ctx(ctx);
3152 
3153 			if (err == -EAGAIN)
3154 				goto retry;
3155 			goto errout;
3156 		}
3157 	}
3158 
3159 	return ctx;
3160 
3161 errout:
3162 	return ERR_PTR(err);
3163 }
3164 
3165 static void perf_event_free_filter(struct perf_event *event);
3166 
3167 static void free_event_rcu(struct rcu_head *head)
3168 {
3169 	struct perf_event *event;
3170 
3171 	event = container_of(head, struct perf_event, rcu_head);
3172 	if (event->ns)
3173 		put_pid_ns(event->ns);
3174 	perf_event_free_filter(event);
3175 	kfree(event);
3176 }
3177 
3178 static void ring_buffer_put(struct ring_buffer *rb);
3179 static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb);
3180 
3181 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3182 {
3183 	if (event->parent)
3184 		return;
3185 
3186 	if (has_branch_stack(event)) {
3187 		if (!(event->attach_state & PERF_ATTACH_TASK))
3188 			atomic_dec(&per_cpu(perf_branch_stack_events, cpu));
3189 	}
3190 	if (is_cgroup_event(event))
3191 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3192 }
3193 
3194 static void unaccount_event(struct perf_event *event)
3195 {
3196 	if (event->parent)
3197 		return;
3198 
3199 	if (event->attach_state & PERF_ATTACH_TASK)
3200 		static_key_slow_dec_deferred(&perf_sched_events);
3201 	if (event->attr.mmap || event->attr.mmap_data)
3202 		atomic_dec(&nr_mmap_events);
3203 	if (event->attr.comm)
3204 		atomic_dec(&nr_comm_events);
3205 	if (event->attr.task)
3206 		atomic_dec(&nr_task_events);
3207 	if (event->attr.freq)
3208 		atomic_dec(&nr_freq_events);
3209 	if (is_cgroup_event(event))
3210 		static_key_slow_dec_deferred(&perf_sched_events);
3211 	if (has_branch_stack(event))
3212 		static_key_slow_dec_deferred(&perf_sched_events);
3213 
3214 	unaccount_event_cpu(event, event->cpu);
3215 }
3216 
3217 static void __free_event(struct perf_event *event)
3218 {
3219 	if (!event->parent) {
3220 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3221 			put_callchain_buffers();
3222 	}
3223 
3224 	if (event->destroy)
3225 		event->destroy(event);
3226 
3227 	if (event->ctx)
3228 		put_ctx(event->ctx);
3229 
3230 	call_rcu(&event->rcu_head, free_event_rcu);
3231 }
3232 static void free_event(struct perf_event *event)
3233 {
3234 	irq_work_sync(&event->pending);
3235 
3236 	unaccount_event(event);
3237 
3238 	if (event->rb) {
3239 		struct ring_buffer *rb;
3240 
3241 		/*
3242 		 * Can happen when we close an event with re-directed output.
3243 		 *
3244 		 * Since we have a 0 refcount, perf_mmap_close() will skip
3245 		 * over us; possibly making our ring_buffer_put() the last.
3246 		 */
3247 		mutex_lock(&event->mmap_mutex);
3248 		rb = event->rb;
3249 		if (rb) {
3250 			rcu_assign_pointer(event->rb, NULL);
3251 			ring_buffer_detach(event, rb);
3252 			ring_buffer_put(rb); /* could be last */
3253 		}
3254 		mutex_unlock(&event->mmap_mutex);
3255 	}
3256 
3257 	if (is_cgroup_event(event))
3258 		perf_detach_cgroup(event);
3259 
3260 
3261 	__free_event(event);
3262 }
3263 
3264 int perf_event_release_kernel(struct perf_event *event)
3265 {
3266 	struct perf_event_context *ctx = event->ctx;
3267 
3268 	WARN_ON_ONCE(ctx->parent_ctx);
3269 	/*
3270 	 * There are two ways this annotation is useful:
3271 	 *
3272 	 *  1) there is a lock recursion from perf_event_exit_task
3273 	 *     see the comment there.
3274 	 *
3275 	 *  2) there is a lock-inversion with mmap_sem through
3276 	 *     perf_event_read_group(), which takes faults while
3277 	 *     holding ctx->mutex, however this is called after
3278 	 *     the last filedesc died, so there is no possibility
3279 	 *     to trigger the AB-BA case.
3280 	 */
3281 	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
3282 	raw_spin_lock_irq(&ctx->lock);
3283 	perf_group_detach(event);
3284 	raw_spin_unlock_irq(&ctx->lock);
3285 	perf_remove_from_context(event);
3286 	mutex_unlock(&ctx->mutex);
3287 
3288 	free_event(event);
3289 
3290 	return 0;
3291 }
3292 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3293 
3294 /*
3295  * Called when the last reference to the file is gone.
3296  */
3297 static void put_event(struct perf_event *event)
3298 {
3299 	struct task_struct *owner;
3300 
3301 	if (!atomic_long_dec_and_test(&event->refcount))
3302 		return;
3303 
3304 	rcu_read_lock();
3305 	owner = ACCESS_ONCE(event->owner);
3306 	/*
3307 	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3308 	 * !owner it means the list deletion is complete and we can indeed
3309 	 * free this event, otherwise we need to serialize on
3310 	 * owner->perf_event_mutex.
3311 	 */
3312 	smp_read_barrier_depends();
3313 	if (owner) {
3314 		/*
3315 		 * Since delayed_put_task_struct() also drops the last
3316 		 * task reference we can safely take a new reference
3317 		 * while holding the rcu_read_lock().
3318 		 */
3319 		get_task_struct(owner);
3320 	}
3321 	rcu_read_unlock();
3322 
3323 	if (owner) {
3324 		mutex_lock(&owner->perf_event_mutex);
3325 		/*
3326 		 * We have to re-check the event->owner field, if it is cleared
3327 		 * we raced with perf_event_exit_task(), acquiring the mutex
3328 		 * ensured they're done, and we can proceed with freeing the
3329 		 * event.
3330 		 */
3331 		if (event->owner)
3332 			list_del_init(&event->owner_entry);
3333 		mutex_unlock(&owner->perf_event_mutex);
3334 		put_task_struct(owner);
3335 	}
3336 
3337 	perf_event_release_kernel(event);
3338 }
3339 
3340 static int perf_release(struct inode *inode, struct file *file)
3341 {
3342 	put_event(file->private_data);
3343 	return 0;
3344 }
3345 
3346 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3347 {
3348 	struct perf_event *child;
3349 	u64 total = 0;
3350 
3351 	*enabled = 0;
3352 	*running = 0;
3353 
3354 	mutex_lock(&event->child_mutex);
3355 	total += perf_event_read(event);
3356 	*enabled += event->total_time_enabled +
3357 			atomic64_read(&event->child_total_time_enabled);
3358 	*running += event->total_time_running +
3359 			atomic64_read(&event->child_total_time_running);
3360 
3361 	list_for_each_entry(child, &event->child_list, child_list) {
3362 		total += perf_event_read(child);
3363 		*enabled += child->total_time_enabled;
3364 		*running += child->total_time_running;
3365 	}
3366 	mutex_unlock(&event->child_mutex);
3367 
3368 	return total;
3369 }
3370 EXPORT_SYMBOL_GPL(perf_event_read_value);
3371 
3372 static int perf_event_read_group(struct perf_event *event,
3373 				   u64 read_format, char __user *buf)
3374 {
3375 	struct perf_event *leader = event->group_leader, *sub;
3376 	int n = 0, size = 0, ret = -EFAULT;
3377 	struct perf_event_context *ctx = leader->ctx;
3378 	u64 values[5];
3379 	u64 count, enabled, running;
3380 
3381 	mutex_lock(&ctx->mutex);
3382 	count = perf_event_read_value(leader, &enabled, &running);
3383 
3384 	values[n++] = 1 + leader->nr_siblings;
3385 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3386 		values[n++] = enabled;
3387 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3388 		values[n++] = running;
3389 	values[n++] = count;
3390 	if (read_format & PERF_FORMAT_ID)
3391 		values[n++] = primary_event_id(leader);
3392 
3393 	size = n * sizeof(u64);
3394 
3395 	if (copy_to_user(buf, values, size))
3396 		goto unlock;
3397 
3398 	ret = size;
3399 
3400 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3401 		n = 0;
3402 
3403 		values[n++] = perf_event_read_value(sub, &enabled, &running);
3404 		if (read_format & PERF_FORMAT_ID)
3405 			values[n++] = primary_event_id(sub);
3406 
3407 		size = n * sizeof(u64);
3408 
3409 		if (copy_to_user(buf + ret, values, size)) {
3410 			ret = -EFAULT;
3411 			goto unlock;
3412 		}
3413 
3414 		ret += size;
3415 	}
3416 unlock:
3417 	mutex_unlock(&ctx->mutex);
3418 
3419 	return ret;
3420 }
3421 
3422 static int perf_event_read_one(struct perf_event *event,
3423 				 u64 read_format, char __user *buf)
3424 {
3425 	u64 enabled, running;
3426 	u64 values[4];
3427 	int n = 0;
3428 
3429 	values[n++] = perf_event_read_value(event, &enabled, &running);
3430 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3431 		values[n++] = enabled;
3432 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3433 		values[n++] = running;
3434 	if (read_format & PERF_FORMAT_ID)
3435 		values[n++] = primary_event_id(event);
3436 
3437 	if (copy_to_user(buf, values, n * sizeof(u64)))
3438 		return -EFAULT;
3439 
3440 	return n * sizeof(u64);
3441 }
3442 
3443 /*
3444  * Read the performance event - simple non blocking version for now
3445  */
3446 static ssize_t
3447 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
3448 {
3449 	u64 read_format = event->attr.read_format;
3450 	int ret;
3451 
3452 	/*
3453 	 * Return end-of-file for a read on a event that is in
3454 	 * error state (i.e. because it was pinned but it couldn't be
3455 	 * scheduled on to the CPU at some point).
3456 	 */
3457 	if (event->state == PERF_EVENT_STATE_ERROR)
3458 		return 0;
3459 
3460 	if (count < event->read_size)
3461 		return -ENOSPC;
3462 
3463 	WARN_ON_ONCE(event->ctx->parent_ctx);
3464 	if (read_format & PERF_FORMAT_GROUP)
3465 		ret = perf_event_read_group(event, read_format, buf);
3466 	else
3467 		ret = perf_event_read_one(event, read_format, buf);
3468 
3469 	return ret;
3470 }
3471 
3472 static ssize_t
3473 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3474 {
3475 	struct perf_event *event = file->private_data;
3476 
3477 	return perf_read_hw(event, buf, count);
3478 }
3479 
3480 static unsigned int perf_poll(struct file *file, poll_table *wait)
3481 {
3482 	struct perf_event *event = file->private_data;
3483 	struct ring_buffer *rb;
3484 	unsigned int events = POLL_HUP;
3485 
3486 	/*
3487 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
3488 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
3489 	 */
3490 	mutex_lock(&event->mmap_mutex);
3491 	rb = event->rb;
3492 	if (rb)
3493 		events = atomic_xchg(&rb->poll, 0);
3494 	mutex_unlock(&event->mmap_mutex);
3495 
3496 	poll_wait(file, &event->waitq, wait);
3497 
3498 	return events;
3499 }
3500 
3501 static void perf_event_reset(struct perf_event *event)
3502 {
3503 	(void)perf_event_read(event);
3504 	local64_set(&event->count, 0);
3505 	perf_event_update_userpage(event);
3506 }
3507 
3508 /*
3509  * Holding the top-level event's child_mutex means that any
3510  * descendant process that has inherited this event will block
3511  * in sync_child_event if it goes to exit, thus satisfying the
3512  * task existence requirements of perf_event_enable/disable.
3513  */
3514 static void perf_event_for_each_child(struct perf_event *event,
3515 					void (*func)(struct perf_event *))
3516 {
3517 	struct perf_event *child;
3518 
3519 	WARN_ON_ONCE(event->ctx->parent_ctx);
3520 	mutex_lock(&event->child_mutex);
3521 	func(event);
3522 	list_for_each_entry(child, &event->child_list, child_list)
3523 		func(child);
3524 	mutex_unlock(&event->child_mutex);
3525 }
3526 
3527 static void perf_event_for_each(struct perf_event *event,
3528 				  void (*func)(struct perf_event *))
3529 {
3530 	struct perf_event_context *ctx = event->ctx;
3531 	struct perf_event *sibling;
3532 
3533 	WARN_ON_ONCE(ctx->parent_ctx);
3534 	mutex_lock(&ctx->mutex);
3535 	event = event->group_leader;
3536 
3537 	perf_event_for_each_child(event, func);
3538 	list_for_each_entry(sibling, &event->sibling_list, group_entry)
3539 		perf_event_for_each_child(sibling, func);
3540 	mutex_unlock(&ctx->mutex);
3541 }
3542 
3543 static int perf_event_period(struct perf_event *event, u64 __user *arg)
3544 {
3545 	struct perf_event_context *ctx = event->ctx;
3546 	int ret = 0, active;
3547 	u64 value;
3548 
3549 	if (!is_sampling_event(event))
3550 		return -EINVAL;
3551 
3552 	if (copy_from_user(&value, arg, sizeof(value)))
3553 		return -EFAULT;
3554 
3555 	if (!value)
3556 		return -EINVAL;
3557 
3558 	raw_spin_lock_irq(&ctx->lock);
3559 	if (event->attr.freq) {
3560 		if (value > sysctl_perf_event_sample_rate) {
3561 			ret = -EINVAL;
3562 			goto unlock;
3563 		}
3564 
3565 		event->attr.sample_freq = value;
3566 	} else {
3567 		event->attr.sample_period = value;
3568 		event->hw.sample_period = value;
3569 	}
3570 
3571 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
3572 	if (active) {
3573 		perf_pmu_disable(ctx->pmu);
3574 		event->pmu->stop(event, PERF_EF_UPDATE);
3575 	}
3576 
3577 	local64_set(&event->hw.period_left, 0);
3578 
3579 	if (active) {
3580 		event->pmu->start(event, PERF_EF_RELOAD);
3581 		perf_pmu_enable(ctx->pmu);
3582 	}
3583 
3584 unlock:
3585 	raw_spin_unlock_irq(&ctx->lock);
3586 
3587 	return ret;
3588 }
3589 
3590 static const struct file_operations perf_fops;
3591 
3592 static inline int perf_fget_light(int fd, struct fd *p)
3593 {
3594 	struct fd f = fdget(fd);
3595 	if (!f.file)
3596 		return -EBADF;
3597 
3598 	if (f.file->f_op != &perf_fops) {
3599 		fdput(f);
3600 		return -EBADF;
3601 	}
3602 	*p = f;
3603 	return 0;
3604 }
3605 
3606 static int perf_event_set_output(struct perf_event *event,
3607 				 struct perf_event *output_event);
3608 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3609 
3610 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3611 {
3612 	struct perf_event *event = file->private_data;
3613 	void (*func)(struct perf_event *);
3614 	u32 flags = arg;
3615 
3616 	switch (cmd) {
3617 	case PERF_EVENT_IOC_ENABLE:
3618 		func = perf_event_enable;
3619 		break;
3620 	case PERF_EVENT_IOC_DISABLE:
3621 		func = perf_event_disable;
3622 		break;
3623 	case PERF_EVENT_IOC_RESET:
3624 		func = perf_event_reset;
3625 		break;
3626 
3627 	case PERF_EVENT_IOC_REFRESH:
3628 		return perf_event_refresh(event, arg);
3629 
3630 	case PERF_EVENT_IOC_PERIOD:
3631 		return perf_event_period(event, (u64 __user *)arg);
3632 
3633 	case PERF_EVENT_IOC_ID:
3634 	{
3635 		u64 id = primary_event_id(event);
3636 
3637 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
3638 			return -EFAULT;
3639 		return 0;
3640 	}
3641 
3642 	case PERF_EVENT_IOC_SET_OUTPUT:
3643 	{
3644 		int ret;
3645 		if (arg != -1) {
3646 			struct perf_event *output_event;
3647 			struct fd output;
3648 			ret = perf_fget_light(arg, &output);
3649 			if (ret)
3650 				return ret;
3651 			output_event = output.file->private_data;
3652 			ret = perf_event_set_output(event, output_event);
3653 			fdput(output);
3654 		} else {
3655 			ret = perf_event_set_output(event, NULL);
3656 		}
3657 		return ret;
3658 	}
3659 
3660 	case PERF_EVENT_IOC_SET_FILTER:
3661 		return perf_event_set_filter(event, (void __user *)arg);
3662 
3663 	default:
3664 		return -ENOTTY;
3665 	}
3666 
3667 	if (flags & PERF_IOC_FLAG_GROUP)
3668 		perf_event_for_each(event, func);
3669 	else
3670 		perf_event_for_each_child(event, func);
3671 
3672 	return 0;
3673 }
3674 
3675 int perf_event_task_enable(void)
3676 {
3677 	struct perf_event *event;
3678 
3679 	mutex_lock(&current->perf_event_mutex);
3680 	list_for_each_entry(event, &current->perf_event_list, owner_entry)
3681 		perf_event_for_each_child(event, perf_event_enable);
3682 	mutex_unlock(&current->perf_event_mutex);
3683 
3684 	return 0;
3685 }
3686 
3687 int perf_event_task_disable(void)
3688 {
3689 	struct perf_event *event;
3690 
3691 	mutex_lock(&current->perf_event_mutex);
3692 	list_for_each_entry(event, &current->perf_event_list, owner_entry)
3693 		perf_event_for_each_child(event, perf_event_disable);
3694 	mutex_unlock(&current->perf_event_mutex);
3695 
3696 	return 0;
3697 }
3698 
3699 static int perf_event_index(struct perf_event *event)
3700 {
3701 	if (event->hw.state & PERF_HES_STOPPED)
3702 		return 0;
3703 
3704 	if (event->state != PERF_EVENT_STATE_ACTIVE)
3705 		return 0;
3706 
3707 	return event->pmu->event_idx(event);
3708 }
3709 
3710 static void calc_timer_values(struct perf_event *event,
3711 				u64 *now,
3712 				u64 *enabled,
3713 				u64 *running)
3714 {
3715 	u64 ctx_time;
3716 
3717 	*now = perf_clock();
3718 	ctx_time = event->shadow_ctx_time + *now;
3719 	*enabled = ctx_time - event->tstamp_enabled;
3720 	*running = ctx_time - event->tstamp_running;
3721 }
3722 
3723 static void perf_event_init_userpage(struct perf_event *event)
3724 {
3725 	struct perf_event_mmap_page *userpg;
3726 	struct ring_buffer *rb;
3727 
3728 	rcu_read_lock();
3729 	rb = rcu_dereference(event->rb);
3730 	if (!rb)
3731 		goto unlock;
3732 
3733 	userpg = rb->user_page;
3734 
3735 	/* Allow new userspace to detect that bit 0 is deprecated */
3736 	userpg->cap_bit0_is_deprecated = 1;
3737 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
3738 
3739 unlock:
3740 	rcu_read_unlock();
3741 }
3742 
3743 void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
3744 {
3745 }
3746 
3747 /*
3748  * Callers need to ensure there can be no nesting of this function, otherwise
3749  * the seqlock logic goes bad. We can not serialize this because the arch
3750  * code calls this from NMI context.
3751  */
3752 void perf_event_update_userpage(struct perf_event *event)
3753 {
3754 	struct perf_event_mmap_page *userpg;
3755 	struct ring_buffer *rb;
3756 	u64 enabled, running, now;
3757 
3758 	rcu_read_lock();
3759 	rb = rcu_dereference(event->rb);
3760 	if (!rb)
3761 		goto unlock;
3762 
3763 	/*
3764 	 * compute total_time_enabled, total_time_running
3765 	 * based on snapshot values taken when the event
3766 	 * was last scheduled in.
3767 	 *
3768 	 * we cannot simply called update_context_time()
3769 	 * because of locking issue as we can be called in
3770 	 * NMI context
3771 	 */
3772 	calc_timer_values(event, &now, &enabled, &running);
3773 
3774 	userpg = rb->user_page;
3775 	/*
3776 	 * Disable preemption so as to not let the corresponding user-space
3777 	 * spin too long if we get preempted.
3778 	 */
3779 	preempt_disable();
3780 	++userpg->lock;
3781 	barrier();
3782 	userpg->index = perf_event_index(event);
3783 	userpg->offset = perf_event_count(event);
3784 	if (userpg->index)
3785 		userpg->offset -= local64_read(&event->hw.prev_count);
3786 
3787 	userpg->time_enabled = enabled +
3788 			atomic64_read(&event->child_total_time_enabled);
3789 
3790 	userpg->time_running = running +
3791 			atomic64_read(&event->child_total_time_running);
3792 
3793 	arch_perf_update_userpage(userpg, now);
3794 
3795 	barrier();
3796 	++userpg->lock;
3797 	preempt_enable();
3798 unlock:
3799 	rcu_read_unlock();
3800 }
3801 
3802 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3803 {
3804 	struct perf_event *event = vma->vm_file->private_data;
3805 	struct ring_buffer *rb;
3806 	int ret = VM_FAULT_SIGBUS;
3807 
3808 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
3809 		if (vmf->pgoff == 0)
3810 			ret = 0;
3811 		return ret;
3812 	}
3813 
3814 	rcu_read_lock();
3815 	rb = rcu_dereference(event->rb);
3816 	if (!rb)
3817 		goto unlock;
3818 
3819 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3820 		goto unlock;
3821 
3822 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3823 	if (!vmf->page)
3824 		goto unlock;
3825 
3826 	get_page(vmf->page);
3827 	vmf->page->mapping = vma->vm_file->f_mapping;
3828 	vmf->page->index   = vmf->pgoff;
3829 
3830 	ret = 0;
3831 unlock:
3832 	rcu_read_unlock();
3833 
3834 	return ret;
3835 }
3836 
3837 static void ring_buffer_attach(struct perf_event *event,
3838 			       struct ring_buffer *rb)
3839 {
3840 	unsigned long flags;
3841 
3842 	if (!list_empty(&event->rb_entry))
3843 		return;
3844 
3845 	spin_lock_irqsave(&rb->event_lock, flags);
3846 	if (list_empty(&event->rb_entry))
3847 		list_add(&event->rb_entry, &rb->event_list);
3848 	spin_unlock_irqrestore(&rb->event_lock, flags);
3849 }
3850 
3851 static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb)
3852 {
3853 	unsigned long flags;
3854 
3855 	if (list_empty(&event->rb_entry))
3856 		return;
3857 
3858 	spin_lock_irqsave(&rb->event_lock, flags);
3859 	list_del_init(&event->rb_entry);
3860 	wake_up_all(&event->waitq);
3861 	spin_unlock_irqrestore(&rb->event_lock, flags);
3862 }
3863 
3864 static void ring_buffer_wakeup(struct perf_event *event)
3865 {
3866 	struct ring_buffer *rb;
3867 
3868 	rcu_read_lock();
3869 	rb = rcu_dereference(event->rb);
3870 	if (rb) {
3871 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
3872 			wake_up_all(&event->waitq);
3873 	}
3874 	rcu_read_unlock();
3875 }
3876 
3877 static void rb_free_rcu(struct rcu_head *rcu_head)
3878 {
3879 	struct ring_buffer *rb;
3880 
3881 	rb = container_of(rcu_head, struct ring_buffer, rcu_head);
3882 	rb_free(rb);
3883 }
3884 
3885 static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3886 {
3887 	struct ring_buffer *rb;
3888 
3889 	rcu_read_lock();
3890 	rb = rcu_dereference(event->rb);
3891 	if (rb) {
3892 		if (!atomic_inc_not_zero(&rb->refcount))
3893 			rb = NULL;
3894 	}
3895 	rcu_read_unlock();
3896 
3897 	return rb;
3898 }
3899 
3900 static void ring_buffer_put(struct ring_buffer *rb)
3901 {
3902 	if (!atomic_dec_and_test(&rb->refcount))
3903 		return;
3904 
3905 	WARN_ON_ONCE(!list_empty(&rb->event_list));
3906 
3907 	call_rcu(&rb->rcu_head, rb_free_rcu);
3908 }
3909 
3910 static void perf_mmap_open(struct vm_area_struct *vma)
3911 {
3912 	struct perf_event *event = vma->vm_file->private_data;
3913 
3914 	atomic_inc(&event->mmap_count);
3915 	atomic_inc(&event->rb->mmap_count);
3916 }
3917 
3918 /*
3919  * A buffer can be mmap()ed multiple times; either directly through the same
3920  * event, or through other events by use of perf_event_set_output().
3921  *
3922  * In order to undo the VM accounting done by perf_mmap() we need to destroy
3923  * the buffer here, where we still have a VM context. This means we need
3924  * to detach all events redirecting to us.
3925  */
3926 static void perf_mmap_close(struct vm_area_struct *vma)
3927 {
3928 	struct perf_event *event = vma->vm_file->private_data;
3929 
3930 	struct ring_buffer *rb = event->rb;
3931 	struct user_struct *mmap_user = rb->mmap_user;
3932 	int mmap_locked = rb->mmap_locked;
3933 	unsigned long size = perf_data_size(rb);
3934 
3935 	atomic_dec(&rb->mmap_count);
3936 
3937 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
3938 		return;
3939 
3940 	/* Detach current event from the buffer. */
3941 	rcu_assign_pointer(event->rb, NULL);
3942 	ring_buffer_detach(event, rb);
3943 	mutex_unlock(&event->mmap_mutex);
3944 
3945 	/* If there's still other mmap()s of this buffer, we're done. */
3946 	if (atomic_read(&rb->mmap_count)) {
3947 		ring_buffer_put(rb); /* can't be last */
3948 		return;
3949 	}
3950 
3951 	/*
3952 	 * No other mmap()s, detach from all other events that might redirect
3953 	 * into the now unreachable buffer. Somewhat complicated by the
3954 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
3955 	 */
3956 again:
3957 	rcu_read_lock();
3958 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
3959 		if (!atomic_long_inc_not_zero(&event->refcount)) {
3960 			/*
3961 			 * This event is en-route to free_event() which will
3962 			 * detach it and remove it from the list.
3963 			 */
3964 			continue;
3965 		}
3966 		rcu_read_unlock();
3967 
3968 		mutex_lock(&event->mmap_mutex);
3969 		/*
3970 		 * Check we didn't race with perf_event_set_output() which can
3971 		 * swizzle the rb from under us while we were waiting to
3972 		 * acquire mmap_mutex.
3973 		 *
3974 		 * If we find a different rb; ignore this event, a next
3975 		 * iteration will no longer find it on the list. We have to
3976 		 * still restart the iteration to make sure we're not now
3977 		 * iterating the wrong list.
3978 		 */
3979 		if (event->rb == rb) {
3980 			rcu_assign_pointer(event->rb, NULL);
3981 			ring_buffer_detach(event, rb);
3982 			ring_buffer_put(rb); /* can't be last, we still have one */
3983 		}
3984 		mutex_unlock(&event->mmap_mutex);
3985 		put_event(event);
3986 
3987 		/*
3988 		 * Restart the iteration; either we're on the wrong list or
3989 		 * destroyed its integrity by doing a deletion.
3990 		 */
3991 		goto again;
3992 	}
3993 	rcu_read_unlock();
3994 
3995 	/*
3996 	 * It could be there's still a few 0-ref events on the list; they'll
3997 	 * get cleaned up by free_event() -- they'll also still have their
3998 	 * ref on the rb and will free it whenever they are done with it.
3999 	 *
4000 	 * Aside from that, this buffer is 'fully' detached and unmapped,
4001 	 * undo the VM accounting.
4002 	 */
4003 
4004 	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4005 	vma->vm_mm->pinned_vm -= mmap_locked;
4006 	free_uid(mmap_user);
4007 
4008 	ring_buffer_put(rb); /* could be last */
4009 }
4010 
4011 static const struct vm_operations_struct perf_mmap_vmops = {
4012 	.open		= perf_mmap_open,
4013 	.close		= perf_mmap_close,
4014 	.fault		= perf_mmap_fault,
4015 	.page_mkwrite	= perf_mmap_fault,
4016 };
4017 
4018 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4019 {
4020 	struct perf_event *event = file->private_data;
4021 	unsigned long user_locked, user_lock_limit;
4022 	struct user_struct *user = current_user();
4023 	unsigned long locked, lock_limit;
4024 	struct ring_buffer *rb;
4025 	unsigned long vma_size;
4026 	unsigned long nr_pages;
4027 	long user_extra, extra;
4028 	int ret = 0, flags = 0;
4029 
4030 	/*
4031 	 * Don't allow mmap() of inherited per-task counters. This would
4032 	 * create a performance issue due to all children writing to the
4033 	 * same rb.
4034 	 */
4035 	if (event->cpu == -1 && event->attr.inherit)
4036 		return -EINVAL;
4037 
4038 	if (!(vma->vm_flags & VM_SHARED))
4039 		return -EINVAL;
4040 
4041 	vma_size = vma->vm_end - vma->vm_start;
4042 	nr_pages = (vma_size / PAGE_SIZE) - 1;
4043 
4044 	/*
4045 	 * If we have rb pages ensure they're a power-of-two number, so we
4046 	 * can do bitmasks instead of modulo.
4047 	 */
4048 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
4049 		return -EINVAL;
4050 
4051 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
4052 		return -EINVAL;
4053 
4054 	if (vma->vm_pgoff != 0)
4055 		return -EINVAL;
4056 
4057 	WARN_ON_ONCE(event->ctx->parent_ctx);
4058 again:
4059 	mutex_lock(&event->mmap_mutex);
4060 	if (event->rb) {
4061 		if (event->rb->nr_pages != nr_pages) {
4062 			ret = -EINVAL;
4063 			goto unlock;
4064 		}
4065 
4066 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4067 			/*
4068 			 * Raced against perf_mmap_close() through
4069 			 * perf_event_set_output(). Try again, hope for better
4070 			 * luck.
4071 			 */
4072 			mutex_unlock(&event->mmap_mutex);
4073 			goto again;
4074 		}
4075 
4076 		goto unlock;
4077 	}
4078 
4079 	user_extra = nr_pages + 1;
4080 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
4081 
4082 	/*
4083 	 * Increase the limit linearly with more CPUs:
4084 	 */
4085 	user_lock_limit *= num_online_cpus();
4086 
4087 	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4088 
4089 	extra = 0;
4090 	if (user_locked > user_lock_limit)
4091 		extra = user_locked - user_lock_limit;
4092 
4093 	lock_limit = rlimit(RLIMIT_MEMLOCK);
4094 	lock_limit >>= PAGE_SHIFT;
4095 	locked = vma->vm_mm->pinned_vm + extra;
4096 
4097 	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4098 		!capable(CAP_IPC_LOCK)) {
4099 		ret = -EPERM;
4100 		goto unlock;
4101 	}
4102 
4103 	WARN_ON(event->rb);
4104 
4105 	if (vma->vm_flags & VM_WRITE)
4106 		flags |= RING_BUFFER_WRITABLE;
4107 
4108 	rb = rb_alloc(nr_pages,
4109 		event->attr.watermark ? event->attr.wakeup_watermark : 0,
4110 		event->cpu, flags);
4111 
4112 	if (!rb) {
4113 		ret = -ENOMEM;
4114 		goto unlock;
4115 	}
4116 
4117 	atomic_set(&rb->mmap_count, 1);
4118 	rb->mmap_locked = extra;
4119 	rb->mmap_user = get_current_user();
4120 
4121 	atomic_long_add(user_extra, &user->locked_vm);
4122 	vma->vm_mm->pinned_vm += extra;
4123 
4124 	ring_buffer_attach(event, rb);
4125 	rcu_assign_pointer(event->rb, rb);
4126 
4127 	perf_event_init_userpage(event);
4128 	perf_event_update_userpage(event);
4129 
4130 unlock:
4131 	if (!ret)
4132 		atomic_inc(&event->mmap_count);
4133 	mutex_unlock(&event->mmap_mutex);
4134 
4135 	/*
4136 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
4137 	 * vma.
4138 	 */
4139 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4140 	vma->vm_ops = &perf_mmap_vmops;
4141 
4142 	return ret;
4143 }
4144 
4145 static int perf_fasync(int fd, struct file *filp, int on)
4146 {
4147 	struct inode *inode = file_inode(filp);
4148 	struct perf_event *event = filp->private_data;
4149 	int retval;
4150 
4151 	mutex_lock(&inode->i_mutex);
4152 	retval = fasync_helper(fd, filp, on, &event->fasync);
4153 	mutex_unlock(&inode->i_mutex);
4154 
4155 	if (retval < 0)
4156 		return retval;
4157 
4158 	return 0;
4159 }
4160 
4161 static const struct file_operations perf_fops = {
4162 	.llseek			= no_llseek,
4163 	.release		= perf_release,
4164 	.read			= perf_read,
4165 	.poll			= perf_poll,
4166 	.unlocked_ioctl		= perf_ioctl,
4167 	.compat_ioctl		= perf_ioctl,
4168 	.mmap			= perf_mmap,
4169 	.fasync			= perf_fasync,
4170 };
4171 
4172 /*
4173  * Perf event wakeup
4174  *
4175  * If there's data, ensure we set the poll() state and publish everything
4176  * to user-space before waking everybody up.
4177  */
4178 
4179 void perf_event_wakeup(struct perf_event *event)
4180 {
4181 	ring_buffer_wakeup(event);
4182 
4183 	if (event->pending_kill) {
4184 		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
4185 		event->pending_kill = 0;
4186 	}
4187 }
4188 
4189 static void perf_pending_event(struct irq_work *entry)
4190 {
4191 	struct perf_event *event = container_of(entry,
4192 			struct perf_event, pending);
4193 
4194 	if (event->pending_disable) {
4195 		event->pending_disable = 0;
4196 		__perf_event_disable(event);
4197 	}
4198 
4199 	if (event->pending_wakeup) {
4200 		event->pending_wakeup = 0;
4201 		perf_event_wakeup(event);
4202 	}
4203 }
4204 
4205 /*
4206  * We assume there is only KVM supporting the callbacks.
4207  * Later on, we might change it to a list if there is
4208  * another virtualization implementation supporting the callbacks.
4209  */
4210 struct perf_guest_info_callbacks *perf_guest_cbs;
4211 
4212 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4213 {
4214 	perf_guest_cbs = cbs;
4215 	return 0;
4216 }
4217 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4218 
4219 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4220 {
4221 	perf_guest_cbs = NULL;
4222 	return 0;
4223 }
4224 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4225 
4226 static void
4227 perf_output_sample_regs(struct perf_output_handle *handle,
4228 			struct pt_regs *regs, u64 mask)
4229 {
4230 	int bit;
4231 
4232 	for_each_set_bit(bit, (const unsigned long *) &mask,
4233 			 sizeof(mask) * BITS_PER_BYTE) {
4234 		u64 val;
4235 
4236 		val = perf_reg_value(regs, bit);
4237 		perf_output_put(handle, val);
4238 	}
4239 }
4240 
4241 static void perf_sample_regs_user(struct perf_regs_user *regs_user,
4242 				  struct pt_regs *regs)
4243 {
4244 	if (!user_mode(regs)) {
4245 		if (current->mm)
4246 			regs = task_pt_regs(current);
4247 		else
4248 			regs = NULL;
4249 	}
4250 
4251 	if (regs) {
4252 		regs_user->regs = regs;
4253 		regs_user->abi  = perf_reg_abi(current);
4254 	}
4255 }
4256 
4257 /*
4258  * Get remaining task size from user stack pointer.
4259  *
4260  * It'd be better to take stack vma map and limit this more
4261  * precisly, but there's no way to get it safely under interrupt,
4262  * so using TASK_SIZE as limit.
4263  */
4264 static u64 perf_ustack_task_size(struct pt_regs *regs)
4265 {
4266 	unsigned long addr = perf_user_stack_pointer(regs);
4267 
4268 	if (!addr || addr >= TASK_SIZE)
4269 		return 0;
4270 
4271 	return TASK_SIZE - addr;
4272 }
4273 
4274 static u16
4275 perf_sample_ustack_size(u16 stack_size, u16 header_size,
4276 			struct pt_regs *regs)
4277 {
4278 	u64 task_size;
4279 
4280 	/* No regs, no stack pointer, no dump. */
4281 	if (!regs)
4282 		return 0;
4283 
4284 	/*
4285 	 * Check if we fit in with the requested stack size into the:
4286 	 * - TASK_SIZE
4287 	 *   If we don't, we limit the size to the TASK_SIZE.
4288 	 *
4289 	 * - remaining sample size
4290 	 *   If we don't, we customize the stack size to
4291 	 *   fit in to the remaining sample size.
4292 	 */
4293 
4294 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
4295 	stack_size = min(stack_size, (u16) task_size);
4296 
4297 	/* Current header size plus static size and dynamic size. */
4298 	header_size += 2 * sizeof(u64);
4299 
4300 	/* Do we fit in with the current stack dump size? */
4301 	if ((u16) (header_size + stack_size) < header_size) {
4302 		/*
4303 		 * If we overflow the maximum size for the sample,
4304 		 * we customize the stack dump size to fit in.
4305 		 */
4306 		stack_size = USHRT_MAX - header_size - sizeof(u64);
4307 		stack_size = round_up(stack_size, sizeof(u64));
4308 	}
4309 
4310 	return stack_size;
4311 }
4312 
4313 static void
4314 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
4315 			  struct pt_regs *regs)
4316 {
4317 	/* Case of a kernel thread, nothing to dump */
4318 	if (!regs) {
4319 		u64 size = 0;
4320 		perf_output_put(handle, size);
4321 	} else {
4322 		unsigned long sp;
4323 		unsigned int rem;
4324 		u64 dyn_size;
4325 
4326 		/*
4327 		 * We dump:
4328 		 * static size
4329 		 *   - the size requested by user or the best one we can fit
4330 		 *     in to the sample max size
4331 		 * data
4332 		 *   - user stack dump data
4333 		 * dynamic size
4334 		 *   - the actual dumped size
4335 		 */
4336 
4337 		/* Static size. */
4338 		perf_output_put(handle, dump_size);
4339 
4340 		/* Data. */
4341 		sp = perf_user_stack_pointer(regs);
4342 		rem = __output_copy_user(handle, (void *) sp, dump_size);
4343 		dyn_size = dump_size - rem;
4344 
4345 		perf_output_skip(handle, rem);
4346 
4347 		/* Dynamic size. */
4348 		perf_output_put(handle, dyn_size);
4349 	}
4350 }
4351 
4352 static void __perf_event_header__init_id(struct perf_event_header *header,
4353 					 struct perf_sample_data *data,
4354 					 struct perf_event *event)
4355 {
4356 	u64 sample_type = event->attr.sample_type;
4357 
4358 	data->type = sample_type;
4359 	header->size += event->id_header_size;
4360 
4361 	if (sample_type & PERF_SAMPLE_TID) {
4362 		/* namespace issues */
4363 		data->tid_entry.pid = perf_event_pid(event, current);
4364 		data->tid_entry.tid = perf_event_tid(event, current);
4365 	}
4366 
4367 	if (sample_type & PERF_SAMPLE_TIME)
4368 		data->time = perf_clock();
4369 
4370 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
4371 		data->id = primary_event_id(event);
4372 
4373 	if (sample_type & PERF_SAMPLE_STREAM_ID)
4374 		data->stream_id = event->id;
4375 
4376 	if (sample_type & PERF_SAMPLE_CPU) {
4377 		data->cpu_entry.cpu	 = raw_smp_processor_id();
4378 		data->cpu_entry.reserved = 0;
4379 	}
4380 }
4381 
4382 void perf_event_header__init_id(struct perf_event_header *header,
4383 				struct perf_sample_data *data,
4384 				struct perf_event *event)
4385 {
4386 	if (event->attr.sample_id_all)
4387 		__perf_event_header__init_id(header, data, event);
4388 }
4389 
4390 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
4391 					   struct perf_sample_data *data)
4392 {
4393 	u64 sample_type = data->type;
4394 
4395 	if (sample_type & PERF_SAMPLE_TID)
4396 		perf_output_put(handle, data->tid_entry);
4397 
4398 	if (sample_type & PERF_SAMPLE_TIME)
4399 		perf_output_put(handle, data->time);
4400 
4401 	if (sample_type & PERF_SAMPLE_ID)
4402 		perf_output_put(handle, data->id);
4403 
4404 	if (sample_type & PERF_SAMPLE_STREAM_ID)
4405 		perf_output_put(handle, data->stream_id);
4406 
4407 	if (sample_type & PERF_SAMPLE_CPU)
4408 		perf_output_put(handle, data->cpu_entry);
4409 
4410 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
4411 		perf_output_put(handle, data->id);
4412 }
4413 
4414 void perf_event__output_id_sample(struct perf_event *event,
4415 				  struct perf_output_handle *handle,
4416 				  struct perf_sample_data *sample)
4417 {
4418 	if (event->attr.sample_id_all)
4419 		__perf_event__output_id_sample(handle, sample);
4420 }
4421 
4422 static void perf_output_read_one(struct perf_output_handle *handle,
4423 				 struct perf_event *event,
4424 				 u64 enabled, u64 running)
4425 {
4426 	u64 read_format = event->attr.read_format;
4427 	u64 values[4];
4428 	int n = 0;
4429 
4430 	values[n++] = perf_event_count(event);
4431 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4432 		values[n++] = enabled +
4433 			atomic64_read(&event->child_total_time_enabled);
4434 	}
4435 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4436 		values[n++] = running +
4437 			atomic64_read(&event->child_total_time_running);
4438 	}
4439 	if (read_format & PERF_FORMAT_ID)
4440 		values[n++] = primary_event_id(event);
4441 
4442 	__output_copy(handle, values, n * sizeof(u64));
4443 }
4444 
4445 /*
4446  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4447  */
4448 static void perf_output_read_group(struct perf_output_handle *handle,
4449 			    struct perf_event *event,
4450 			    u64 enabled, u64 running)
4451 {
4452 	struct perf_event *leader = event->group_leader, *sub;
4453 	u64 read_format = event->attr.read_format;
4454 	u64 values[5];
4455 	int n = 0;
4456 
4457 	values[n++] = 1 + leader->nr_siblings;
4458 
4459 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4460 		values[n++] = enabled;
4461 
4462 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4463 		values[n++] = running;
4464 
4465 	if (leader != event)
4466 		leader->pmu->read(leader);
4467 
4468 	values[n++] = perf_event_count(leader);
4469 	if (read_format & PERF_FORMAT_ID)
4470 		values[n++] = primary_event_id(leader);
4471 
4472 	__output_copy(handle, values, n * sizeof(u64));
4473 
4474 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4475 		n = 0;
4476 
4477 		if ((sub != event) &&
4478 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
4479 			sub->pmu->read(sub);
4480 
4481 		values[n++] = perf_event_count(sub);
4482 		if (read_format & PERF_FORMAT_ID)
4483 			values[n++] = primary_event_id(sub);
4484 
4485 		__output_copy(handle, values, n * sizeof(u64));
4486 	}
4487 }
4488 
4489 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
4490 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
4491 
4492 static void perf_output_read(struct perf_output_handle *handle,
4493 			     struct perf_event *event)
4494 {
4495 	u64 enabled = 0, running = 0, now;
4496 	u64 read_format = event->attr.read_format;
4497 
4498 	/*
4499 	 * compute total_time_enabled, total_time_running
4500 	 * based on snapshot values taken when the event
4501 	 * was last scheduled in.
4502 	 *
4503 	 * we cannot simply called update_context_time()
4504 	 * because of locking issue as we are called in
4505 	 * NMI context
4506 	 */
4507 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
4508 		calc_timer_values(event, &now, &enabled, &running);
4509 
4510 	if (event->attr.read_format & PERF_FORMAT_GROUP)
4511 		perf_output_read_group(handle, event, enabled, running);
4512 	else
4513 		perf_output_read_one(handle, event, enabled, running);
4514 }
4515 
4516 void perf_output_sample(struct perf_output_handle *handle,
4517 			struct perf_event_header *header,
4518 			struct perf_sample_data *data,
4519 			struct perf_event *event)
4520 {
4521 	u64 sample_type = data->type;
4522 
4523 	perf_output_put(handle, *header);
4524 
4525 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
4526 		perf_output_put(handle, data->id);
4527 
4528 	if (sample_type & PERF_SAMPLE_IP)
4529 		perf_output_put(handle, data->ip);
4530 
4531 	if (sample_type & PERF_SAMPLE_TID)
4532 		perf_output_put(handle, data->tid_entry);
4533 
4534 	if (sample_type & PERF_SAMPLE_TIME)
4535 		perf_output_put(handle, data->time);
4536 
4537 	if (sample_type & PERF_SAMPLE_ADDR)
4538 		perf_output_put(handle, data->addr);
4539 
4540 	if (sample_type & PERF_SAMPLE_ID)
4541 		perf_output_put(handle, data->id);
4542 
4543 	if (sample_type & PERF_SAMPLE_STREAM_ID)
4544 		perf_output_put(handle, data->stream_id);
4545 
4546 	if (sample_type & PERF_SAMPLE_CPU)
4547 		perf_output_put(handle, data->cpu_entry);
4548 
4549 	if (sample_type & PERF_SAMPLE_PERIOD)
4550 		perf_output_put(handle, data->period);
4551 
4552 	if (sample_type & PERF_SAMPLE_READ)
4553 		perf_output_read(handle, event);
4554 
4555 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4556 		if (data->callchain) {
4557 			int size = 1;
4558 
4559 			if (data->callchain)
4560 				size += data->callchain->nr;
4561 
4562 			size *= sizeof(u64);
4563 
4564 			__output_copy(handle, data->callchain, size);
4565 		} else {
4566 			u64 nr = 0;
4567 			perf_output_put(handle, nr);
4568 		}
4569 	}
4570 
4571 	if (sample_type & PERF_SAMPLE_RAW) {
4572 		if (data->raw) {
4573 			perf_output_put(handle, data->raw->size);
4574 			__output_copy(handle, data->raw->data,
4575 					   data->raw->size);
4576 		} else {
4577 			struct {
4578 				u32	size;
4579 				u32	data;
4580 			} raw = {
4581 				.size = sizeof(u32),
4582 				.data = 0,
4583 			};
4584 			perf_output_put(handle, raw);
4585 		}
4586 	}
4587 
4588 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4589 		if (data->br_stack) {
4590 			size_t size;
4591 
4592 			size = data->br_stack->nr
4593 			     * sizeof(struct perf_branch_entry);
4594 
4595 			perf_output_put(handle, data->br_stack->nr);
4596 			perf_output_copy(handle, data->br_stack->entries, size);
4597 		} else {
4598 			/*
4599 			 * we always store at least the value of nr
4600 			 */
4601 			u64 nr = 0;
4602 			perf_output_put(handle, nr);
4603 		}
4604 	}
4605 
4606 	if (sample_type & PERF_SAMPLE_REGS_USER) {
4607 		u64 abi = data->regs_user.abi;
4608 
4609 		/*
4610 		 * If there are no regs to dump, notice it through
4611 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
4612 		 */
4613 		perf_output_put(handle, abi);
4614 
4615 		if (abi) {
4616 			u64 mask = event->attr.sample_regs_user;
4617 			perf_output_sample_regs(handle,
4618 						data->regs_user.regs,
4619 						mask);
4620 		}
4621 	}
4622 
4623 	if (sample_type & PERF_SAMPLE_STACK_USER) {
4624 		perf_output_sample_ustack(handle,
4625 					  data->stack_user_size,
4626 					  data->regs_user.regs);
4627 	}
4628 
4629 	if (sample_type & PERF_SAMPLE_WEIGHT)
4630 		perf_output_put(handle, data->weight);
4631 
4632 	if (sample_type & PERF_SAMPLE_DATA_SRC)
4633 		perf_output_put(handle, data->data_src.val);
4634 
4635 	if (sample_type & PERF_SAMPLE_TRANSACTION)
4636 		perf_output_put(handle, data->txn);
4637 
4638 	if (!event->attr.watermark) {
4639 		int wakeup_events = event->attr.wakeup_events;
4640 
4641 		if (wakeup_events) {
4642 			struct ring_buffer *rb = handle->rb;
4643 			int events = local_inc_return(&rb->events);
4644 
4645 			if (events >= wakeup_events) {
4646 				local_sub(wakeup_events, &rb->events);
4647 				local_inc(&rb->wakeup);
4648 			}
4649 		}
4650 	}
4651 }
4652 
4653 void perf_prepare_sample(struct perf_event_header *header,
4654 			 struct perf_sample_data *data,
4655 			 struct perf_event *event,
4656 			 struct pt_regs *regs)
4657 {
4658 	u64 sample_type = event->attr.sample_type;
4659 
4660 	header->type = PERF_RECORD_SAMPLE;
4661 	header->size = sizeof(*header) + event->header_size;
4662 
4663 	header->misc = 0;
4664 	header->misc |= perf_misc_flags(regs);
4665 
4666 	__perf_event_header__init_id(header, data, event);
4667 
4668 	if (sample_type & PERF_SAMPLE_IP)
4669 		data->ip = perf_instruction_pointer(regs);
4670 
4671 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4672 		int size = 1;
4673 
4674 		data->callchain = perf_callchain(event, regs);
4675 
4676 		if (data->callchain)
4677 			size += data->callchain->nr;
4678 
4679 		header->size += size * sizeof(u64);
4680 	}
4681 
4682 	if (sample_type & PERF_SAMPLE_RAW) {
4683 		int size = sizeof(u32);
4684 
4685 		if (data->raw)
4686 			size += data->raw->size;
4687 		else
4688 			size += sizeof(u32);
4689 
4690 		WARN_ON_ONCE(size & (sizeof(u64)-1));
4691 		header->size += size;
4692 	}
4693 
4694 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4695 		int size = sizeof(u64); /* nr */
4696 		if (data->br_stack) {
4697 			size += data->br_stack->nr
4698 			      * sizeof(struct perf_branch_entry);
4699 		}
4700 		header->size += size;
4701 	}
4702 
4703 	if (sample_type & PERF_SAMPLE_REGS_USER) {
4704 		/* regs dump ABI info */
4705 		int size = sizeof(u64);
4706 
4707 		perf_sample_regs_user(&data->regs_user, regs);
4708 
4709 		if (data->regs_user.regs) {
4710 			u64 mask = event->attr.sample_regs_user;
4711 			size += hweight64(mask) * sizeof(u64);
4712 		}
4713 
4714 		header->size += size;
4715 	}
4716 
4717 	if (sample_type & PERF_SAMPLE_STACK_USER) {
4718 		/*
4719 		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
4720 		 * processed as the last one or have additional check added
4721 		 * in case new sample type is added, because we could eat
4722 		 * up the rest of the sample size.
4723 		 */
4724 		struct perf_regs_user *uregs = &data->regs_user;
4725 		u16 stack_size = event->attr.sample_stack_user;
4726 		u16 size = sizeof(u64);
4727 
4728 		if (!uregs->abi)
4729 			perf_sample_regs_user(uregs, regs);
4730 
4731 		stack_size = perf_sample_ustack_size(stack_size, header->size,
4732 						     uregs->regs);
4733 
4734 		/*
4735 		 * If there is something to dump, add space for the dump
4736 		 * itself and for the field that tells the dynamic size,
4737 		 * which is how many have been actually dumped.
4738 		 */
4739 		if (stack_size)
4740 			size += sizeof(u64) + stack_size;
4741 
4742 		data->stack_user_size = stack_size;
4743 		header->size += size;
4744 	}
4745 }
4746 
4747 static void perf_event_output(struct perf_event *event,
4748 				struct perf_sample_data *data,
4749 				struct pt_regs *regs)
4750 {
4751 	struct perf_output_handle handle;
4752 	struct perf_event_header header;
4753 
4754 	/* protect the callchain buffers */
4755 	rcu_read_lock();
4756 
4757 	perf_prepare_sample(&header, data, event, regs);
4758 
4759 	if (perf_output_begin(&handle, event, header.size))
4760 		goto exit;
4761 
4762 	perf_output_sample(&handle, &header, data, event);
4763 
4764 	perf_output_end(&handle);
4765 
4766 exit:
4767 	rcu_read_unlock();
4768 }
4769 
4770 /*
4771  * read event_id
4772  */
4773 
4774 struct perf_read_event {
4775 	struct perf_event_header	header;
4776 
4777 	u32				pid;
4778 	u32				tid;
4779 };
4780 
4781 static void
4782 perf_event_read_event(struct perf_event *event,
4783 			struct task_struct *task)
4784 {
4785 	struct perf_output_handle handle;
4786 	struct perf_sample_data sample;
4787 	struct perf_read_event read_event = {
4788 		.header = {
4789 			.type = PERF_RECORD_READ,
4790 			.misc = 0,
4791 			.size = sizeof(read_event) + event->read_size,
4792 		},
4793 		.pid = perf_event_pid(event, task),
4794 		.tid = perf_event_tid(event, task),
4795 	};
4796 	int ret;
4797 
4798 	perf_event_header__init_id(&read_event.header, &sample, event);
4799 	ret = perf_output_begin(&handle, event, read_event.header.size);
4800 	if (ret)
4801 		return;
4802 
4803 	perf_output_put(&handle, read_event);
4804 	perf_output_read(&handle, event);
4805 	perf_event__output_id_sample(event, &handle, &sample);
4806 
4807 	perf_output_end(&handle);
4808 }
4809 
4810 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
4811 
4812 static void
4813 perf_event_aux_ctx(struct perf_event_context *ctx,
4814 		   perf_event_aux_output_cb output,
4815 		   void *data)
4816 {
4817 	struct perf_event *event;
4818 
4819 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4820 		if (event->state < PERF_EVENT_STATE_INACTIVE)
4821 			continue;
4822 		if (!event_filter_match(event))
4823 			continue;
4824 		output(event, data);
4825 	}
4826 }
4827 
4828 static void
4829 perf_event_aux(perf_event_aux_output_cb output, void *data,
4830 	       struct perf_event_context *task_ctx)
4831 {
4832 	struct perf_cpu_context *cpuctx;
4833 	struct perf_event_context *ctx;
4834 	struct pmu *pmu;
4835 	int ctxn;
4836 
4837 	rcu_read_lock();
4838 	list_for_each_entry_rcu(pmu, &pmus, entry) {
4839 		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4840 		if (cpuctx->unique_pmu != pmu)
4841 			goto next;
4842 		perf_event_aux_ctx(&cpuctx->ctx, output, data);
4843 		if (task_ctx)
4844 			goto next;
4845 		ctxn = pmu->task_ctx_nr;
4846 		if (ctxn < 0)
4847 			goto next;
4848 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4849 		if (ctx)
4850 			perf_event_aux_ctx(ctx, output, data);
4851 next:
4852 		put_cpu_ptr(pmu->pmu_cpu_context);
4853 	}
4854 
4855 	if (task_ctx) {
4856 		preempt_disable();
4857 		perf_event_aux_ctx(task_ctx, output, data);
4858 		preempt_enable();
4859 	}
4860 	rcu_read_unlock();
4861 }
4862 
4863 /*
4864  * task tracking -- fork/exit
4865  *
4866  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
4867  */
4868 
4869 struct perf_task_event {
4870 	struct task_struct		*task;
4871 	struct perf_event_context	*task_ctx;
4872 
4873 	struct {
4874 		struct perf_event_header	header;
4875 
4876 		u32				pid;
4877 		u32				ppid;
4878 		u32				tid;
4879 		u32				ptid;
4880 		u64				time;
4881 	} event_id;
4882 };
4883 
4884 static int perf_event_task_match(struct perf_event *event)
4885 {
4886 	return event->attr.comm  || event->attr.mmap ||
4887 	       event->attr.mmap2 || event->attr.mmap_data ||
4888 	       event->attr.task;
4889 }
4890 
4891 static void perf_event_task_output(struct perf_event *event,
4892 				   void *data)
4893 {
4894 	struct perf_task_event *task_event = data;
4895 	struct perf_output_handle handle;
4896 	struct perf_sample_data	sample;
4897 	struct task_struct *task = task_event->task;
4898 	int ret, size = task_event->event_id.header.size;
4899 
4900 	if (!perf_event_task_match(event))
4901 		return;
4902 
4903 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
4904 
4905 	ret = perf_output_begin(&handle, event,
4906 				task_event->event_id.header.size);
4907 	if (ret)
4908 		goto out;
4909 
4910 	task_event->event_id.pid = perf_event_pid(event, task);
4911 	task_event->event_id.ppid = perf_event_pid(event, current);
4912 
4913 	task_event->event_id.tid = perf_event_tid(event, task);
4914 	task_event->event_id.ptid = perf_event_tid(event, current);
4915 
4916 	perf_output_put(&handle, task_event->event_id);
4917 
4918 	perf_event__output_id_sample(event, &handle, &sample);
4919 
4920 	perf_output_end(&handle);
4921 out:
4922 	task_event->event_id.header.size = size;
4923 }
4924 
4925 static void perf_event_task(struct task_struct *task,
4926 			      struct perf_event_context *task_ctx,
4927 			      int new)
4928 {
4929 	struct perf_task_event task_event;
4930 
4931 	if (!atomic_read(&nr_comm_events) &&
4932 	    !atomic_read(&nr_mmap_events) &&
4933 	    !atomic_read(&nr_task_events))
4934 		return;
4935 
4936 	task_event = (struct perf_task_event){
4937 		.task	  = task,
4938 		.task_ctx = task_ctx,
4939 		.event_id    = {
4940 			.header = {
4941 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4942 				.misc = 0,
4943 				.size = sizeof(task_event.event_id),
4944 			},
4945 			/* .pid  */
4946 			/* .ppid */
4947 			/* .tid  */
4948 			/* .ptid */
4949 			.time = perf_clock(),
4950 		},
4951 	};
4952 
4953 	perf_event_aux(perf_event_task_output,
4954 		       &task_event,
4955 		       task_ctx);
4956 }
4957 
4958 void perf_event_fork(struct task_struct *task)
4959 {
4960 	perf_event_task(task, NULL, 1);
4961 }
4962 
4963 /*
4964  * comm tracking
4965  */
4966 
4967 struct perf_comm_event {
4968 	struct task_struct	*task;
4969 	char			*comm;
4970 	int			comm_size;
4971 
4972 	struct {
4973 		struct perf_event_header	header;
4974 
4975 		u32				pid;
4976 		u32				tid;
4977 	} event_id;
4978 };
4979 
4980 static int perf_event_comm_match(struct perf_event *event)
4981 {
4982 	return event->attr.comm;
4983 }
4984 
4985 static void perf_event_comm_output(struct perf_event *event,
4986 				   void *data)
4987 {
4988 	struct perf_comm_event *comm_event = data;
4989 	struct perf_output_handle handle;
4990 	struct perf_sample_data sample;
4991 	int size = comm_event->event_id.header.size;
4992 	int ret;
4993 
4994 	if (!perf_event_comm_match(event))
4995 		return;
4996 
4997 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
4998 	ret = perf_output_begin(&handle, event,
4999 				comm_event->event_id.header.size);
5000 
5001 	if (ret)
5002 		goto out;
5003 
5004 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5005 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5006 
5007 	perf_output_put(&handle, comm_event->event_id);
5008 	__output_copy(&handle, comm_event->comm,
5009 				   comm_event->comm_size);
5010 
5011 	perf_event__output_id_sample(event, &handle, &sample);
5012 
5013 	perf_output_end(&handle);
5014 out:
5015 	comm_event->event_id.header.size = size;
5016 }
5017 
5018 static void perf_event_comm_event(struct perf_comm_event *comm_event)
5019 {
5020 	char comm[TASK_COMM_LEN];
5021 	unsigned int size;
5022 
5023 	memset(comm, 0, sizeof(comm));
5024 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
5025 	size = ALIGN(strlen(comm)+1, sizeof(u64));
5026 
5027 	comm_event->comm = comm;
5028 	comm_event->comm_size = size;
5029 
5030 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
5031 
5032 	perf_event_aux(perf_event_comm_output,
5033 		       comm_event,
5034 		       NULL);
5035 }
5036 
5037 void perf_event_comm(struct task_struct *task)
5038 {
5039 	struct perf_comm_event comm_event;
5040 	struct perf_event_context *ctx;
5041 	int ctxn;
5042 
5043 	rcu_read_lock();
5044 	for_each_task_context_nr(ctxn) {
5045 		ctx = task->perf_event_ctxp[ctxn];
5046 		if (!ctx)
5047 			continue;
5048 
5049 		perf_event_enable_on_exec(ctx);
5050 	}
5051 	rcu_read_unlock();
5052 
5053 	if (!atomic_read(&nr_comm_events))
5054 		return;
5055 
5056 	comm_event = (struct perf_comm_event){
5057 		.task	= task,
5058 		/* .comm      */
5059 		/* .comm_size */
5060 		.event_id  = {
5061 			.header = {
5062 				.type = PERF_RECORD_COMM,
5063 				.misc = 0,
5064 				/* .size */
5065 			},
5066 			/* .pid */
5067 			/* .tid */
5068 		},
5069 	};
5070 
5071 	perf_event_comm_event(&comm_event);
5072 }
5073 
5074 /*
5075  * mmap tracking
5076  */
5077 
5078 struct perf_mmap_event {
5079 	struct vm_area_struct	*vma;
5080 
5081 	const char		*file_name;
5082 	int			file_size;
5083 	int			maj, min;
5084 	u64			ino;
5085 	u64			ino_generation;
5086 
5087 	struct {
5088 		struct perf_event_header	header;
5089 
5090 		u32				pid;
5091 		u32				tid;
5092 		u64				start;
5093 		u64				len;
5094 		u64				pgoff;
5095 	} event_id;
5096 };
5097 
5098 static int perf_event_mmap_match(struct perf_event *event,
5099 				 void *data)
5100 {
5101 	struct perf_mmap_event *mmap_event = data;
5102 	struct vm_area_struct *vma = mmap_event->vma;
5103 	int executable = vma->vm_flags & VM_EXEC;
5104 
5105 	return (!executable && event->attr.mmap_data) ||
5106 	       (executable && (event->attr.mmap || event->attr.mmap2));
5107 }
5108 
5109 static void perf_event_mmap_output(struct perf_event *event,
5110 				   void *data)
5111 {
5112 	struct perf_mmap_event *mmap_event = data;
5113 	struct perf_output_handle handle;
5114 	struct perf_sample_data sample;
5115 	int size = mmap_event->event_id.header.size;
5116 	int ret;
5117 
5118 	if (!perf_event_mmap_match(event, data))
5119 		return;
5120 
5121 	if (event->attr.mmap2) {
5122 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5123 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5124 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
5125 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5126 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5127 	}
5128 
5129 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5130 	ret = perf_output_begin(&handle, event,
5131 				mmap_event->event_id.header.size);
5132 	if (ret)
5133 		goto out;
5134 
5135 	mmap_event->event_id.pid = perf_event_pid(event, current);
5136 	mmap_event->event_id.tid = perf_event_tid(event, current);
5137 
5138 	perf_output_put(&handle, mmap_event->event_id);
5139 
5140 	if (event->attr.mmap2) {
5141 		perf_output_put(&handle, mmap_event->maj);
5142 		perf_output_put(&handle, mmap_event->min);
5143 		perf_output_put(&handle, mmap_event->ino);
5144 		perf_output_put(&handle, mmap_event->ino_generation);
5145 	}
5146 
5147 	__output_copy(&handle, mmap_event->file_name,
5148 				   mmap_event->file_size);
5149 
5150 	perf_event__output_id_sample(event, &handle, &sample);
5151 
5152 	perf_output_end(&handle);
5153 out:
5154 	mmap_event->event_id.header.size = size;
5155 }
5156 
5157 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5158 {
5159 	struct vm_area_struct *vma = mmap_event->vma;
5160 	struct file *file = vma->vm_file;
5161 	int maj = 0, min = 0;
5162 	u64 ino = 0, gen = 0;
5163 	unsigned int size;
5164 	char tmp[16];
5165 	char *buf = NULL;
5166 	char *name;
5167 
5168 	if (file) {
5169 		struct inode *inode;
5170 		dev_t dev;
5171 
5172 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
5173 		if (!buf) {
5174 			name = "//enomem";
5175 			goto cpy_name;
5176 		}
5177 		/*
5178 		 * d_path() works from the end of the rb backwards, so we
5179 		 * need to add enough zero bytes after the string to handle
5180 		 * the 64bit alignment we do later.
5181 		 */
5182 		name = d_path(&file->f_path, buf, PATH_MAX - sizeof(u64));
5183 		if (IS_ERR(name)) {
5184 			name = "//toolong";
5185 			goto cpy_name;
5186 		}
5187 		inode = file_inode(vma->vm_file);
5188 		dev = inode->i_sb->s_dev;
5189 		ino = inode->i_ino;
5190 		gen = inode->i_generation;
5191 		maj = MAJOR(dev);
5192 		min = MINOR(dev);
5193 		goto got_name;
5194 	} else {
5195 		name = (char *)arch_vma_name(vma);
5196 		if (name)
5197 			goto cpy_name;
5198 
5199 		if (vma->vm_start <= vma->vm_mm->start_brk &&
5200 				vma->vm_end >= vma->vm_mm->brk) {
5201 			name = "[heap]";
5202 			goto cpy_name;
5203 		}
5204 		if (vma->vm_start <= vma->vm_mm->start_stack &&
5205 				vma->vm_end >= vma->vm_mm->start_stack) {
5206 			name = "[stack]";
5207 			goto cpy_name;
5208 		}
5209 
5210 		name = "//anon";
5211 		goto cpy_name;
5212 	}
5213 
5214 cpy_name:
5215 	strlcpy(tmp, name, sizeof(tmp));
5216 	name = tmp;
5217 got_name:
5218 	/*
5219 	 * Since our buffer works in 8 byte units we need to align our string
5220 	 * size to a multiple of 8. However, we must guarantee the tail end is
5221 	 * zero'd out to avoid leaking random bits to userspace.
5222 	 */
5223 	size = strlen(name)+1;
5224 	while (!IS_ALIGNED(size, sizeof(u64)))
5225 		name[size++] = '\0';
5226 
5227 	mmap_event->file_name = name;
5228 	mmap_event->file_size = size;
5229 	mmap_event->maj = maj;
5230 	mmap_event->min = min;
5231 	mmap_event->ino = ino;
5232 	mmap_event->ino_generation = gen;
5233 
5234 	if (!(vma->vm_flags & VM_EXEC))
5235 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
5236 
5237 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
5238 
5239 	perf_event_aux(perf_event_mmap_output,
5240 		       mmap_event,
5241 		       NULL);
5242 
5243 	kfree(buf);
5244 }
5245 
5246 void perf_event_mmap(struct vm_area_struct *vma)
5247 {
5248 	struct perf_mmap_event mmap_event;
5249 
5250 	if (!atomic_read(&nr_mmap_events))
5251 		return;
5252 
5253 	mmap_event = (struct perf_mmap_event){
5254 		.vma	= vma,
5255 		/* .file_name */
5256 		/* .file_size */
5257 		.event_id  = {
5258 			.header = {
5259 				.type = PERF_RECORD_MMAP,
5260 				.misc = PERF_RECORD_MISC_USER,
5261 				/* .size */
5262 			},
5263 			/* .pid */
5264 			/* .tid */
5265 			.start  = vma->vm_start,
5266 			.len    = vma->vm_end - vma->vm_start,
5267 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
5268 		},
5269 		/* .maj (attr_mmap2 only) */
5270 		/* .min (attr_mmap2 only) */
5271 		/* .ino (attr_mmap2 only) */
5272 		/* .ino_generation (attr_mmap2 only) */
5273 	};
5274 
5275 	perf_event_mmap_event(&mmap_event);
5276 }
5277 
5278 /*
5279  * IRQ throttle logging
5280  */
5281 
5282 static void perf_log_throttle(struct perf_event *event, int enable)
5283 {
5284 	struct perf_output_handle handle;
5285 	struct perf_sample_data sample;
5286 	int ret;
5287 
5288 	struct {
5289 		struct perf_event_header	header;
5290 		u64				time;
5291 		u64				id;
5292 		u64				stream_id;
5293 	} throttle_event = {
5294 		.header = {
5295 			.type = PERF_RECORD_THROTTLE,
5296 			.misc = 0,
5297 			.size = sizeof(throttle_event),
5298 		},
5299 		.time		= perf_clock(),
5300 		.id		= primary_event_id(event),
5301 		.stream_id	= event->id,
5302 	};
5303 
5304 	if (enable)
5305 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
5306 
5307 	perf_event_header__init_id(&throttle_event.header, &sample, event);
5308 
5309 	ret = perf_output_begin(&handle, event,
5310 				throttle_event.header.size);
5311 	if (ret)
5312 		return;
5313 
5314 	perf_output_put(&handle, throttle_event);
5315 	perf_event__output_id_sample(event, &handle, &sample);
5316 	perf_output_end(&handle);
5317 }
5318 
5319 /*
5320  * Generic event overflow handling, sampling.
5321  */
5322 
5323 static int __perf_event_overflow(struct perf_event *event,
5324 				   int throttle, struct perf_sample_data *data,
5325 				   struct pt_regs *regs)
5326 {
5327 	int events = atomic_read(&event->event_limit);
5328 	struct hw_perf_event *hwc = &event->hw;
5329 	u64 seq;
5330 	int ret = 0;
5331 
5332 	/*
5333 	 * Non-sampling counters might still use the PMI to fold short
5334 	 * hardware counters, ignore those.
5335 	 */
5336 	if (unlikely(!is_sampling_event(event)))
5337 		return 0;
5338 
5339 	seq = __this_cpu_read(perf_throttled_seq);
5340 	if (seq != hwc->interrupts_seq) {
5341 		hwc->interrupts_seq = seq;
5342 		hwc->interrupts = 1;
5343 	} else {
5344 		hwc->interrupts++;
5345 		if (unlikely(throttle
5346 			     && hwc->interrupts >= max_samples_per_tick)) {
5347 			__this_cpu_inc(perf_throttled_count);
5348 			hwc->interrupts = MAX_INTERRUPTS;
5349 			perf_log_throttle(event, 0);
5350 			tick_nohz_full_kick();
5351 			ret = 1;
5352 		}
5353 	}
5354 
5355 	if (event->attr.freq) {
5356 		u64 now = perf_clock();
5357 		s64 delta = now - hwc->freq_time_stamp;
5358 
5359 		hwc->freq_time_stamp = now;
5360 
5361 		if (delta > 0 && delta < 2*TICK_NSEC)
5362 			perf_adjust_period(event, delta, hwc->last_period, true);
5363 	}
5364 
5365 	/*
5366 	 * XXX event_limit might not quite work as expected on inherited
5367 	 * events
5368 	 */
5369 
5370 	event->pending_kill = POLL_IN;
5371 	if (events && atomic_dec_and_test(&event->event_limit)) {
5372 		ret = 1;
5373 		event->pending_kill = POLL_HUP;
5374 		event->pending_disable = 1;
5375 		irq_work_queue(&event->pending);
5376 	}
5377 
5378 	if (event->overflow_handler)
5379 		event->overflow_handler(event, data, regs);
5380 	else
5381 		perf_event_output(event, data, regs);
5382 
5383 	if (event->fasync && event->pending_kill) {
5384 		event->pending_wakeup = 1;
5385 		irq_work_queue(&event->pending);
5386 	}
5387 
5388 	return ret;
5389 }
5390 
5391 int perf_event_overflow(struct perf_event *event,
5392 			  struct perf_sample_data *data,
5393 			  struct pt_regs *regs)
5394 {
5395 	return __perf_event_overflow(event, 1, data, regs);
5396 }
5397 
5398 /*
5399  * Generic software event infrastructure
5400  */
5401 
5402 struct swevent_htable {
5403 	struct swevent_hlist		*swevent_hlist;
5404 	struct mutex			hlist_mutex;
5405 	int				hlist_refcount;
5406 
5407 	/* Recursion avoidance in each contexts */
5408 	int				recursion[PERF_NR_CONTEXTS];
5409 };
5410 
5411 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
5412 
5413 /*
5414  * We directly increment event->count and keep a second value in
5415  * event->hw.period_left to count intervals. This period event
5416  * is kept in the range [-sample_period, 0] so that we can use the
5417  * sign as trigger.
5418  */
5419 
5420 u64 perf_swevent_set_period(struct perf_event *event)
5421 {
5422 	struct hw_perf_event *hwc = &event->hw;
5423 	u64 period = hwc->last_period;
5424 	u64 nr, offset;
5425 	s64 old, val;
5426 
5427 	hwc->last_period = hwc->sample_period;
5428 
5429 again:
5430 	old = val = local64_read(&hwc->period_left);
5431 	if (val < 0)
5432 		return 0;
5433 
5434 	nr = div64_u64(period + val, period);
5435 	offset = nr * period;
5436 	val -= offset;
5437 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
5438 		goto again;
5439 
5440 	return nr;
5441 }
5442 
5443 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
5444 				    struct perf_sample_data *data,
5445 				    struct pt_regs *regs)
5446 {
5447 	struct hw_perf_event *hwc = &event->hw;
5448 	int throttle = 0;
5449 
5450 	if (!overflow)
5451 		overflow = perf_swevent_set_period(event);
5452 
5453 	if (hwc->interrupts == MAX_INTERRUPTS)
5454 		return;
5455 
5456 	for (; overflow; overflow--) {
5457 		if (__perf_event_overflow(event, throttle,
5458 					    data, regs)) {
5459 			/*
5460 			 * We inhibit the overflow from happening when
5461 			 * hwc->interrupts == MAX_INTERRUPTS.
5462 			 */
5463 			break;
5464 		}
5465 		throttle = 1;
5466 	}
5467 }
5468 
5469 static void perf_swevent_event(struct perf_event *event, u64 nr,
5470 			       struct perf_sample_data *data,
5471 			       struct pt_regs *regs)
5472 {
5473 	struct hw_perf_event *hwc = &event->hw;
5474 
5475 	local64_add(nr, &event->count);
5476 
5477 	if (!regs)
5478 		return;
5479 
5480 	if (!is_sampling_event(event))
5481 		return;
5482 
5483 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
5484 		data->period = nr;
5485 		return perf_swevent_overflow(event, 1, data, regs);
5486 	} else
5487 		data->period = event->hw.last_period;
5488 
5489 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
5490 		return perf_swevent_overflow(event, 1, data, regs);
5491 
5492 	if (local64_add_negative(nr, &hwc->period_left))
5493 		return;
5494 
5495 	perf_swevent_overflow(event, 0, data, regs);
5496 }
5497 
5498 static int perf_exclude_event(struct perf_event *event,
5499 			      struct pt_regs *regs)
5500 {
5501 	if (event->hw.state & PERF_HES_STOPPED)
5502 		return 1;
5503 
5504 	if (regs) {
5505 		if (event->attr.exclude_user && user_mode(regs))
5506 			return 1;
5507 
5508 		if (event->attr.exclude_kernel && !user_mode(regs))
5509 			return 1;
5510 	}
5511 
5512 	return 0;
5513 }
5514 
5515 static int perf_swevent_match(struct perf_event *event,
5516 				enum perf_type_id type,
5517 				u32 event_id,
5518 				struct perf_sample_data *data,
5519 				struct pt_regs *regs)
5520 {
5521 	if (event->attr.type != type)
5522 		return 0;
5523 
5524 	if (event->attr.config != event_id)
5525 		return 0;
5526 
5527 	if (perf_exclude_event(event, regs))
5528 		return 0;
5529 
5530 	return 1;
5531 }
5532 
5533 static inline u64 swevent_hash(u64 type, u32 event_id)
5534 {
5535 	u64 val = event_id | (type << 32);
5536 
5537 	return hash_64(val, SWEVENT_HLIST_BITS);
5538 }
5539 
5540 static inline struct hlist_head *
5541 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5542 {
5543 	u64 hash = swevent_hash(type, event_id);
5544 
5545 	return &hlist->heads[hash];
5546 }
5547 
5548 /* For the read side: events when they trigger */
5549 static inline struct hlist_head *
5550 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
5551 {
5552 	struct swevent_hlist *hlist;
5553 
5554 	hlist = rcu_dereference(swhash->swevent_hlist);
5555 	if (!hlist)
5556 		return NULL;
5557 
5558 	return __find_swevent_head(hlist, type, event_id);
5559 }
5560 
5561 /* For the event head insertion and removal in the hlist */
5562 static inline struct hlist_head *
5563 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
5564 {
5565 	struct swevent_hlist *hlist;
5566 	u32 event_id = event->attr.config;
5567 	u64 type = event->attr.type;
5568 
5569 	/*
5570 	 * Event scheduling is always serialized against hlist allocation
5571 	 * and release. Which makes the protected version suitable here.
5572 	 * The context lock guarantees that.
5573 	 */
5574 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
5575 					  lockdep_is_held(&event->ctx->lock));
5576 	if (!hlist)
5577 		return NULL;
5578 
5579 	return __find_swevent_head(hlist, type, event_id);
5580 }
5581 
5582 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
5583 				    u64 nr,
5584 				    struct perf_sample_data *data,
5585 				    struct pt_regs *regs)
5586 {
5587 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5588 	struct perf_event *event;
5589 	struct hlist_head *head;
5590 
5591 	rcu_read_lock();
5592 	head = find_swevent_head_rcu(swhash, type, event_id);
5593 	if (!head)
5594 		goto end;
5595 
5596 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
5597 		if (perf_swevent_match(event, type, event_id, data, regs))
5598 			perf_swevent_event(event, nr, data, regs);
5599 	}
5600 end:
5601 	rcu_read_unlock();
5602 }
5603 
5604 int perf_swevent_get_recursion_context(void)
5605 {
5606 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5607 
5608 	return get_recursion_context(swhash->recursion);
5609 }
5610 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
5611 
5612 inline void perf_swevent_put_recursion_context(int rctx)
5613 {
5614 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5615 
5616 	put_recursion_context(swhash->recursion, rctx);
5617 }
5618 
5619 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
5620 {
5621 	struct perf_sample_data data;
5622 	int rctx;
5623 
5624 	preempt_disable_notrace();
5625 	rctx = perf_swevent_get_recursion_context();
5626 	if (rctx < 0)
5627 		return;
5628 
5629 	perf_sample_data_init(&data, addr, 0);
5630 
5631 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
5632 
5633 	perf_swevent_put_recursion_context(rctx);
5634 	preempt_enable_notrace();
5635 }
5636 
5637 static void perf_swevent_read(struct perf_event *event)
5638 {
5639 }
5640 
5641 static int perf_swevent_add(struct perf_event *event, int flags)
5642 {
5643 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5644 	struct hw_perf_event *hwc = &event->hw;
5645 	struct hlist_head *head;
5646 
5647 	if (is_sampling_event(event)) {
5648 		hwc->last_period = hwc->sample_period;
5649 		perf_swevent_set_period(event);
5650 	}
5651 
5652 	hwc->state = !(flags & PERF_EF_START);
5653 
5654 	head = find_swevent_head(swhash, event);
5655 	if (WARN_ON_ONCE(!head))
5656 		return -EINVAL;
5657 
5658 	hlist_add_head_rcu(&event->hlist_entry, head);
5659 
5660 	return 0;
5661 }
5662 
5663 static void perf_swevent_del(struct perf_event *event, int flags)
5664 {
5665 	hlist_del_rcu(&event->hlist_entry);
5666 }
5667 
5668 static void perf_swevent_start(struct perf_event *event, int flags)
5669 {
5670 	event->hw.state = 0;
5671 }
5672 
5673 static void perf_swevent_stop(struct perf_event *event, int flags)
5674 {
5675 	event->hw.state = PERF_HES_STOPPED;
5676 }
5677 
5678 /* Deref the hlist from the update side */
5679 static inline struct swevent_hlist *
5680 swevent_hlist_deref(struct swevent_htable *swhash)
5681 {
5682 	return rcu_dereference_protected(swhash->swevent_hlist,
5683 					 lockdep_is_held(&swhash->hlist_mutex));
5684 }
5685 
5686 static void swevent_hlist_release(struct swevent_htable *swhash)
5687 {
5688 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5689 
5690 	if (!hlist)
5691 		return;
5692 
5693 	rcu_assign_pointer(swhash->swevent_hlist, NULL);
5694 	kfree_rcu(hlist, rcu_head);
5695 }
5696 
5697 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
5698 {
5699 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5700 
5701 	mutex_lock(&swhash->hlist_mutex);
5702 
5703 	if (!--swhash->hlist_refcount)
5704 		swevent_hlist_release(swhash);
5705 
5706 	mutex_unlock(&swhash->hlist_mutex);
5707 }
5708 
5709 static void swevent_hlist_put(struct perf_event *event)
5710 {
5711 	int cpu;
5712 
5713 	for_each_possible_cpu(cpu)
5714 		swevent_hlist_put_cpu(event, cpu);
5715 }
5716 
5717 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
5718 {
5719 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5720 	int err = 0;
5721 
5722 	mutex_lock(&swhash->hlist_mutex);
5723 
5724 	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5725 		struct swevent_hlist *hlist;
5726 
5727 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5728 		if (!hlist) {
5729 			err = -ENOMEM;
5730 			goto exit;
5731 		}
5732 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
5733 	}
5734 	swhash->hlist_refcount++;
5735 exit:
5736 	mutex_unlock(&swhash->hlist_mutex);
5737 
5738 	return err;
5739 }
5740 
5741 static int swevent_hlist_get(struct perf_event *event)
5742 {
5743 	int err;
5744 	int cpu, failed_cpu;
5745 
5746 	get_online_cpus();
5747 	for_each_possible_cpu(cpu) {
5748 		err = swevent_hlist_get_cpu(event, cpu);
5749 		if (err) {
5750 			failed_cpu = cpu;
5751 			goto fail;
5752 		}
5753 	}
5754 	put_online_cpus();
5755 
5756 	return 0;
5757 fail:
5758 	for_each_possible_cpu(cpu) {
5759 		if (cpu == failed_cpu)
5760 			break;
5761 		swevent_hlist_put_cpu(event, cpu);
5762 	}
5763 
5764 	put_online_cpus();
5765 	return err;
5766 }
5767 
5768 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5769 
5770 static void sw_perf_event_destroy(struct perf_event *event)
5771 {
5772 	u64 event_id = event->attr.config;
5773 
5774 	WARN_ON(event->parent);
5775 
5776 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
5777 	swevent_hlist_put(event);
5778 }
5779 
5780 static int perf_swevent_init(struct perf_event *event)
5781 {
5782 	u64 event_id = event->attr.config;
5783 
5784 	if (event->attr.type != PERF_TYPE_SOFTWARE)
5785 		return -ENOENT;
5786 
5787 	/*
5788 	 * no branch sampling for software events
5789 	 */
5790 	if (has_branch_stack(event))
5791 		return -EOPNOTSUPP;
5792 
5793 	switch (event_id) {
5794 	case PERF_COUNT_SW_CPU_CLOCK:
5795 	case PERF_COUNT_SW_TASK_CLOCK:
5796 		return -ENOENT;
5797 
5798 	default:
5799 		break;
5800 	}
5801 
5802 	if (event_id >= PERF_COUNT_SW_MAX)
5803 		return -ENOENT;
5804 
5805 	if (!event->parent) {
5806 		int err;
5807 
5808 		err = swevent_hlist_get(event);
5809 		if (err)
5810 			return err;
5811 
5812 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
5813 		event->destroy = sw_perf_event_destroy;
5814 	}
5815 
5816 	return 0;
5817 }
5818 
5819 static int perf_swevent_event_idx(struct perf_event *event)
5820 {
5821 	return 0;
5822 }
5823 
5824 static struct pmu perf_swevent = {
5825 	.task_ctx_nr	= perf_sw_context,
5826 
5827 	.event_init	= perf_swevent_init,
5828 	.add		= perf_swevent_add,
5829 	.del		= perf_swevent_del,
5830 	.start		= perf_swevent_start,
5831 	.stop		= perf_swevent_stop,
5832 	.read		= perf_swevent_read,
5833 
5834 	.event_idx	= perf_swevent_event_idx,
5835 };
5836 
5837 #ifdef CONFIG_EVENT_TRACING
5838 
5839 static int perf_tp_filter_match(struct perf_event *event,
5840 				struct perf_sample_data *data)
5841 {
5842 	void *record = data->raw->data;
5843 
5844 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
5845 		return 1;
5846 	return 0;
5847 }
5848 
5849 static int perf_tp_event_match(struct perf_event *event,
5850 				struct perf_sample_data *data,
5851 				struct pt_regs *regs)
5852 {
5853 	if (event->hw.state & PERF_HES_STOPPED)
5854 		return 0;
5855 	/*
5856 	 * All tracepoints are from kernel-space.
5857 	 */
5858 	if (event->attr.exclude_kernel)
5859 		return 0;
5860 
5861 	if (!perf_tp_filter_match(event, data))
5862 		return 0;
5863 
5864 	return 1;
5865 }
5866 
5867 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5868 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
5869 		   struct task_struct *task)
5870 {
5871 	struct perf_sample_data data;
5872 	struct perf_event *event;
5873 
5874 	struct perf_raw_record raw = {
5875 		.size = entry_size,
5876 		.data = record,
5877 	};
5878 
5879 	perf_sample_data_init(&data, addr, 0);
5880 	data.raw = &raw;
5881 
5882 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
5883 		if (perf_tp_event_match(event, &data, regs))
5884 			perf_swevent_event(event, count, &data, regs);
5885 	}
5886 
5887 	/*
5888 	 * If we got specified a target task, also iterate its context and
5889 	 * deliver this event there too.
5890 	 */
5891 	if (task && task != current) {
5892 		struct perf_event_context *ctx;
5893 		struct trace_entry *entry = record;
5894 
5895 		rcu_read_lock();
5896 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
5897 		if (!ctx)
5898 			goto unlock;
5899 
5900 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5901 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
5902 				continue;
5903 			if (event->attr.config != entry->type)
5904 				continue;
5905 			if (perf_tp_event_match(event, &data, regs))
5906 				perf_swevent_event(event, count, &data, regs);
5907 		}
5908 unlock:
5909 		rcu_read_unlock();
5910 	}
5911 
5912 	perf_swevent_put_recursion_context(rctx);
5913 }
5914 EXPORT_SYMBOL_GPL(perf_tp_event);
5915 
5916 static void tp_perf_event_destroy(struct perf_event *event)
5917 {
5918 	perf_trace_destroy(event);
5919 }
5920 
5921 static int perf_tp_event_init(struct perf_event *event)
5922 {
5923 	int err;
5924 
5925 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
5926 		return -ENOENT;
5927 
5928 	/*
5929 	 * no branch sampling for tracepoint events
5930 	 */
5931 	if (has_branch_stack(event))
5932 		return -EOPNOTSUPP;
5933 
5934 	err = perf_trace_init(event);
5935 	if (err)
5936 		return err;
5937 
5938 	event->destroy = tp_perf_event_destroy;
5939 
5940 	return 0;
5941 }
5942 
5943 static struct pmu perf_tracepoint = {
5944 	.task_ctx_nr	= perf_sw_context,
5945 
5946 	.event_init	= perf_tp_event_init,
5947 	.add		= perf_trace_add,
5948 	.del		= perf_trace_del,
5949 	.start		= perf_swevent_start,
5950 	.stop		= perf_swevent_stop,
5951 	.read		= perf_swevent_read,
5952 
5953 	.event_idx	= perf_swevent_event_idx,
5954 };
5955 
5956 static inline void perf_tp_register(void)
5957 {
5958 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5959 }
5960 
5961 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5962 {
5963 	char *filter_str;
5964 	int ret;
5965 
5966 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
5967 		return -EINVAL;
5968 
5969 	filter_str = strndup_user(arg, PAGE_SIZE);
5970 	if (IS_ERR(filter_str))
5971 		return PTR_ERR(filter_str);
5972 
5973 	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
5974 
5975 	kfree(filter_str);
5976 	return ret;
5977 }
5978 
5979 static void perf_event_free_filter(struct perf_event *event)
5980 {
5981 	ftrace_profile_free_filter(event);
5982 }
5983 
5984 #else
5985 
5986 static inline void perf_tp_register(void)
5987 {
5988 }
5989 
5990 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5991 {
5992 	return -ENOENT;
5993 }
5994 
5995 static void perf_event_free_filter(struct perf_event *event)
5996 {
5997 }
5998 
5999 #endif /* CONFIG_EVENT_TRACING */
6000 
6001 #ifdef CONFIG_HAVE_HW_BREAKPOINT
6002 void perf_bp_event(struct perf_event *bp, void *data)
6003 {
6004 	struct perf_sample_data sample;
6005 	struct pt_regs *regs = data;
6006 
6007 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
6008 
6009 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
6010 		perf_swevent_event(bp, 1, &sample, regs);
6011 }
6012 #endif
6013 
6014 /*
6015  * hrtimer based swevent callback
6016  */
6017 
6018 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
6019 {
6020 	enum hrtimer_restart ret = HRTIMER_RESTART;
6021 	struct perf_sample_data data;
6022 	struct pt_regs *regs;
6023 	struct perf_event *event;
6024 	u64 period;
6025 
6026 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
6027 
6028 	if (event->state != PERF_EVENT_STATE_ACTIVE)
6029 		return HRTIMER_NORESTART;
6030 
6031 	event->pmu->read(event);
6032 
6033 	perf_sample_data_init(&data, 0, event->hw.last_period);
6034 	regs = get_irq_regs();
6035 
6036 	if (regs && !perf_exclude_event(event, regs)) {
6037 		if (!(event->attr.exclude_idle && is_idle_task(current)))
6038 			if (__perf_event_overflow(event, 1, &data, regs))
6039 				ret = HRTIMER_NORESTART;
6040 	}
6041 
6042 	period = max_t(u64, 10000, event->hw.sample_period);
6043 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
6044 
6045 	return ret;
6046 }
6047 
6048 static void perf_swevent_start_hrtimer(struct perf_event *event)
6049 {
6050 	struct hw_perf_event *hwc = &event->hw;
6051 	s64 period;
6052 
6053 	if (!is_sampling_event(event))
6054 		return;
6055 
6056 	period = local64_read(&hwc->period_left);
6057 	if (period) {
6058 		if (period < 0)
6059 			period = 10000;
6060 
6061 		local64_set(&hwc->period_left, 0);
6062 	} else {
6063 		period = max_t(u64, 10000, hwc->sample_period);
6064 	}
6065 	__hrtimer_start_range_ns(&hwc->hrtimer,
6066 				ns_to_ktime(period), 0,
6067 				HRTIMER_MODE_REL_PINNED, 0);
6068 }
6069 
6070 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
6071 {
6072 	struct hw_perf_event *hwc = &event->hw;
6073 
6074 	if (is_sampling_event(event)) {
6075 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
6076 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
6077 
6078 		hrtimer_cancel(&hwc->hrtimer);
6079 	}
6080 }
6081 
6082 static void perf_swevent_init_hrtimer(struct perf_event *event)
6083 {
6084 	struct hw_perf_event *hwc = &event->hw;
6085 
6086 	if (!is_sampling_event(event))
6087 		return;
6088 
6089 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6090 	hwc->hrtimer.function = perf_swevent_hrtimer;
6091 
6092 	/*
6093 	 * Since hrtimers have a fixed rate, we can do a static freq->period
6094 	 * mapping and avoid the whole period adjust feedback stuff.
6095 	 */
6096 	if (event->attr.freq) {
6097 		long freq = event->attr.sample_freq;
6098 
6099 		event->attr.sample_period = NSEC_PER_SEC / freq;
6100 		hwc->sample_period = event->attr.sample_period;
6101 		local64_set(&hwc->period_left, hwc->sample_period);
6102 		hwc->last_period = hwc->sample_period;
6103 		event->attr.freq = 0;
6104 	}
6105 }
6106 
6107 /*
6108  * Software event: cpu wall time clock
6109  */
6110 
6111 static void cpu_clock_event_update(struct perf_event *event)
6112 {
6113 	s64 prev;
6114 	u64 now;
6115 
6116 	now = local_clock();
6117 	prev = local64_xchg(&event->hw.prev_count, now);
6118 	local64_add(now - prev, &event->count);
6119 }
6120 
6121 static void cpu_clock_event_start(struct perf_event *event, int flags)
6122 {
6123 	local64_set(&event->hw.prev_count, local_clock());
6124 	perf_swevent_start_hrtimer(event);
6125 }
6126 
6127 static void cpu_clock_event_stop(struct perf_event *event, int flags)
6128 {
6129 	perf_swevent_cancel_hrtimer(event);
6130 	cpu_clock_event_update(event);
6131 }
6132 
6133 static int cpu_clock_event_add(struct perf_event *event, int flags)
6134 {
6135 	if (flags & PERF_EF_START)
6136 		cpu_clock_event_start(event, flags);
6137 
6138 	return 0;
6139 }
6140 
6141 static void cpu_clock_event_del(struct perf_event *event, int flags)
6142 {
6143 	cpu_clock_event_stop(event, flags);
6144 }
6145 
6146 static void cpu_clock_event_read(struct perf_event *event)
6147 {
6148 	cpu_clock_event_update(event);
6149 }
6150 
6151 static int cpu_clock_event_init(struct perf_event *event)
6152 {
6153 	if (event->attr.type != PERF_TYPE_SOFTWARE)
6154 		return -ENOENT;
6155 
6156 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
6157 		return -ENOENT;
6158 
6159 	/*
6160 	 * no branch sampling for software events
6161 	 */
6162 	if (has_branch_stack(event))
6163 		return -EOPNOTSUPP;
6164 
6165 	perf_swevent_init_hrtimer(event);
6166 
6167 	return 0;
6168 }
6169 
6170 static struct pmu perf_cpu_clock = {
6171 	.task_ctx_nr	= perf_sw_context,
6172 
6173 	.event_init	= cpu_clock_event_init,
6174 	.add		= cpu_clock_event_add,
6175 	.del		= cpu_clock_event_del,
6176 	.start		= cpu_clock_event_start,
6177 	.stop		= cpu_clock_event_stop,
6178 	.read		= cpu_clock_event_read,
6179 
6180 	.event_idx	= perf_swevent_event_idx,
6181 };
6182 
6183 /*
6184  * Software event: task time clock
6185  */
6186 
6187 static void task_clock_event_update(struct perf_event *event, u64 now)
6188 {
6189 	u64 prev;
6190 	s64 delta;
6191 
6192 	prev = local64_xchg(&event->hw.prev_count, now);
6193 	delta = now - prev;
6194 	local64_add(delta, &event->count);
6195 }
6196 
6197 static void task_clock_event_start(struct perf_event *event, int flags)
6198 {
6199 	local64_set(&event->hw.prev_count, event->ctx->time);
6200 	perf_swevent_start_hrtimer(event);
6201 }
6202 
6203 static void task_clock_event_stop(struct perf_event *event, int flags)
6204 {
6205 	perf_swevent_cancel_hrtimer(event);
6206 	task_clock_event_update(event, event->ctx->time);
6207 }
6208 
6209 static int task_clock_event_add(struct perf_event *event, int flags)
6210 {
6211 	if (flags & PERF_EF_START)
6212 		task_clock_event_start(event, flags);
6213 
6214 	return 0;
6215 }
6216 
6217 static void task_clock_event_del(struct perf_event *event, int flags)
6218 {
6219 	task_clock_event_stop(event, PERF_EF_UPDATE);
6220 }
6221 
6222 static void task_clock_event_read(struct perf_event *event)
6223 {
6224 	u64 now = perf_clock();
6225 	u64 delta = now - event->ctx->timestamp;
6226 	u64 time = event->ctx->time + delta;
6227 
6228 	task_clock_event_update(event, time);
6229 }
6230 
6231 static int task_clock_event_init(struct perf_event *event)
6232 {
6233 	if (event->attr.type != PERF_TYPE_SOFTWARE)
6234 		return -ENOENT;
6235 
6236 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
6237 		return -ENOENT;
6238 
6239 	/*
6240 	 * no branch sampling for software events
6241 	 */
6242 	if (has_branch_stack(event))
6243 		return -EOPNOTSUPP;
6244 
6245 	perf_swevent_init_hrtimer(event);
6246 
6247 	return 0;
6248 }
6249 
6250 static struct pmu perf_task_clock = {
6251 	.task_ctx_nr	= perf_sw_context,
6252 
6253 	.event_init	= task_clock_event_init,
6254 	.add		= task_clock_event_add,
6255 	.del		= task_clock_event_del,
6256 	.start		= task_clock_event_start,
6257 	.stop		= task_clock_event_stop,
6258 	.read		= task_clock_event_read,
6259 
6260 	.event_idx	= perf_swevent_event_idx,
6261 };
6262 
6263 static void perf_pmu_nop_void(struct pmu *pmu)
6264 {
6265 }
6266 
6267 static int perf_pmu_nop_int(struct pmu *pmu)
6268 {
6269 	return 0;
6270 }
6271 
6272 static void perf_pmu_start_txn(struct pmu *pmu)
6273 {
6274 	perf_pmu_disable(pmu);
6275 }
6276 
6277 static int perf_pmu_commit_txn(struct pmu *pmu)
6278 {
6279 	perf_pmu_enable(pmu);
6280 	return 0;
6281 }
6282 
6283 static void perf_pmu_cancel_txn(struct pmu *pmu)
6284 {
6285 	perf_pmu_enable(pmu);
6286 }
6287 
6288 static int perf_event_idx_default(struct perf_event *event)
6289 {
6290 	return event->hw.idx + 1;
6291 }
6292 
6293 /*
6294  * Ensures all contexts with the same task_ctx_nr have the same
6295  * pmu_cpu_context too.
6296  */
6297 static void *find_pmu_context(int ctxn)
6298 {
6299 	struct pmu *pmu;
6300 
6301 	if (ctxn < 0)
6302 		return NULL;
6303 
6304 	list_for_each_entry(pmu, &pmus, entry) {
6305 		if (pmu->task_ctx_nr == ctxn)
6306 			return pmu->pmu_cpu_context;
6307 	}
6308 
6309 	return NULL;
6310 }
6311 
6312 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
6313 {
6314 	int cpu;
6315 
6316 	for_each_possible_cpu(cpu) {
6317 		struct perf_cpu_context *cpuctx;
6318 
6319 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6320 
6321 		if (cpuctx->unique_pmu == old_pmu)
6322 			cpuctx->unique_pmu = pmu;
6323 	}
6324 }
6325 
6326 static void free_pmu_context(struct pmu *pmu)
6327 {
6328 	struct pmu *i;
6329 
6330 	mutex_lock(&pmus_lock);
6331 	/*
6332 	 * Like a real lame refcount.
6333 	 */
6334 	list_for_each_entry(i, &pmus, entry) {
6335 		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
6336 			update_pmu_context(i, pmu);
6337 			goto out;
6338 		}
6339 	}
6340 
6341 	free_percpu(pmu->pmu_cpu_context);
6342 out:
6343 	mutex_unlock(&pmus_lock);
6344 }
6345 static struct idr pmu_idr;
6346 
6347 static ssize_t
6348 type_show(struct device *dev, struct device_attribute *attr, char *page)
6349 {
6350 	struct pmu *pmu = dev_get_drvdata(dev);
6351 
6352 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
6353 }
6354 static DEVICE_ATTR_RO(type);
6355 
6356 static ssize_t
6357 perf_event_mux_interval_ms_show(struct device *dev,
6358 				struct device_attribute *attr,
6359 				char *page)
6360 {
6361 	struct pmu *pmu = dev_get_drvdata(dev);
6362 
6363 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
6364 }
6365 
6366 static ssize_t
6367 perf_event_mux_interval_ms_store(struct device *dev,
6368 				 struct device_attribute *attr,
6369 				 const char *buf, size_t count)
6370 {
6371 	struct pmu *pmu = dev_get_drvdata(dev);
6372 	int timer, cpu, ret;
6373 
6374 	ret = kstrtoint(buf, 0, &timer);
6375 	if (ret)
6376 		return ret;
6377 
6378 	if (timer < 1)
6379 		return -EINVAL;
6380 
6381 	/* same value, noting to do */
6382 	if (timer == pmu->hrtimer_interval_ms)
6383 		return count;
6384 
6385 	pmu->hrtimer_interval_ms = timer;
6386 
6387 	/* update all cpuctx for this PMU */
6388 	for_each_possible_cpu(cpu) {
6389 		struct perf_cpu_context *cpuctx;
6390 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6391 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
6392 
6393 		if (hrtimer_active(&cpuctx->hrtimer))
6394 			hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
6395 	}
6396 
6397 	return count;
6398 }
6399 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
6400 
6401 static struct attribute *pmu_dev_attrs[] = {
6402 	&dev_attr_type.attr,
6403 	&dev_attr_perf_event_mux_interval_ms.attr,
6404 	NULL,
6405 };
6406 ATTRIBUTE_GROUPS(pmu_dev);
6407 
6408 static int pmu_bus_running;
6409 static struct bus_type pmu_bus = {
6410 	.name		= "event_source",
6411 	.dev_groups	= pmu_dev_groups,
6412 };
6413 
6414 static void pmu_dev_release(struct device *dev)
6415 {
6416 	kfree(dev);
6417 }
6418 
6419 static int pmu_dev_alloc(struct pmu *pmu)
6420 {
6421 	int ret = -ENOMEM;
6422 
6423 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
6424 	if (!pmu->dev)
6425 		goto out;
6426 
6427 	pmu->dev->groups = pmu->attr_groups;
6428 	device_initialize(pmu->dev);
6429 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
6430 	if (ret)
6431 		goto free_dev;
6432 
6433 	dev_set_drvdata(pmu->dev, pmu);
6434 	pmu->dev->bus = &pmu_bus;
6435 	pmu->dev->release = pmu_dev_release;
6436 	ret = device_add(pmu->dev);
6437 	if (ret)
6438 		goto free_dev;
6439 
6440 out:
6441 	return ret;
6442 
6443 free_dev:
6444 	put_device(pmu->dev);
6445 	goto out;
6446 }
6447 
6448 static struct lock_class_key cpuctx_mutex;
6449 static struct lock_class_key cpuctx_lock;
6450 
6451 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
6452 {
6453 	int cpu, ret;
6454 
6455 	mutex_lock(&pmus_lock);
6456 	ret = -ENOMEM;
6457 	pmu->pmu_disable_count = alloc_percpu(int);
6458 	if (!pmu->pmu_disable_count)
6459 		goto unlock;
6460 
6461 	pmu->type = -1;
6462 	if (!name)
6463 		goto skip_type;
6464 	pmu->name = name;
6465 
6466 	if (type < 0) {
6467 		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
6468 		if (type < 0) {
6469 			ret = type;
6470 			goto free_pdc;
6471 		}
6472 	}
6473 	pmu->type = type;
6474 
6475 	if (pmu_bus_running) {
6476 		ret = pmu_dev_alloc(pmu);
6477 		if (ret)
6478 			goto free_idr;
6479 	}
6480 
6481 skip_type:
6482 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
6483 	if (pmu->pmu_cpu_context)
6484 		goto got_cpu_context;
6485 
6486 	ret = -ENOMEM;
6487 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
6488 	if (!pmu->pmu_cpu_context)
6489 		goto free_dev;
6490 
6491 	for_each_possible_cpu(cpu) {
6492 		struct perf_cpu_context *cpuctx;
6493 
6494 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6495 		__perf_event_init_context(&cpuctx->ctx);
6496 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
6497 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
6498 		cpuctx->ctx.type = cpu_context;
6499 		cpuctx->ctx.pmu = pmu;
6500 
6501 		__perf_cpu_hrtimer_init(cpuctx, cpu);
6502 
6503 		INIT_LIST_HEAD(&cpuctx->rotation_list);
6504 		cpuctx->unique_pmu = pmu;
6505 	}
6506 
6507 got_cpu_context:
6508 	if (!pmu->start_txn) {
6509 		if (pmu->pmu_enable) {
6510 			/*
6511 			 * If we have pmu_enable/pmu_disable calls, install
6512 			 * transaction stubs that use that to try and batch
6513 			 * hardware accesses.
6514 			 */
6515 			pmu->start_txn  = perf_pmu_start_txn;
6516 			pmu->commit_txn = perf_pmu_commit_txn;
6517 			pmu->cancel_txn = perf_pmu_cancel_txn;
6518 		} else {
6519 			pmu->start_txn  = perf_pmu_nop_void;
6520 			pmu->commit_txn = perf_pmu_nop_int;
6521 			pmu->cancel_txn = perf_pmu_nop_void;
6522 		}
6523 	}
6524 
6525 	if (!pmu->pmu_enable) {
6526 		pmu->pmu_enable  = perf_pmu_nop_void;
6527 		pmu->pmu_disable = perf_pmu_nop_void;
6528 	}
6529 
6530 	if (!pmu->event_idx)
6531 		pmu->event_idx = perf_event_idx_default;
6532 
6533 	list_add_rcu(&pmu->entry, &pmus);
6534 	ret = 0;
6535 unlock:
6536 	mutex_unlock(&pmus_lock);
6537 
6538 	return ret;
6539 
6540 free_dev:
6541 	device_del(pmu->dev);
6542 	put_device(pmu->dev);
6543 
6544 free_idr:
6545 	if (pmu->type >= PERF_TYPE_MAX)
6546 		idr_remove(&pmu_idr, pmu->type);
6547 
6548 free_pdc:
6549 	free_percpu(pmu->pmu_disable_count);
6550 	goto unlock;
6551 }
6552 
6553 void perf_pmu_unregister(struct pmu *pmu)
6554 {
6555 	mutex_lock(&pmus_lock);
6556 	list_del_rcu(&pmu->entry);
6557 	mutex_unlock(&pmus_lock);
6558 
6559 	/*
6560 	 * We dereference the pmu list under both SRCU and regular RCU, so
6561 	 * synchronize against both of those.
6562 	 */
6563 	synchronize_srcu(&pmus_srcu);
6564 	synchronize_rcu();
6565 
6566 	free_percpu(pmu->pmu_disable_count);
6567 	if (pmu->type >= PERF_TYPE_MAX)
6568 		idr_remove(&pmu_idr, pmu->type);
6569 	device_del(pmu->dev);
6570 	put_device(pmu->dev);
6571 	free_pmu_context(pmu);
6572 }
6573 
6574 struct pmu *perf_init_event(struct perf_event *event)
6575 {
6576 	struct pmu *pmu = NULL;
6577 	int idx;
6578 	int ret;
6579 
6580 	idx = srcu_read_lock(&pmus_srcu);
6581 
6582 	rcu_read_lock();
6583 	pmu = idr_find(&pmu_idr, event->attr.type);
6584 	rcu_read_unlock();
6585 	if (pmu) {
6586 		event->pmu = pmu;
6587 		ret = pmu->event_init(event);
6588 		if (ret)
6589 			pmu = ERR_PTR(ret);
6590 		goto unlock;
6591 	}
6592 
6593 	list_for_each_entry_rcu(pmu, &pmus, entry) {
6594 		event->pmu = pmu;
6595 		ret = pmu->event_init(event);
6596 		if (!ret)
6597 			goto unlock;
6598 
6599 		if (ret != -ENOENT) {
6600 			pmu = ERR_PTR(ret);
6601 			goto unlock;
6602 		}
6603 	}
6604 	pmu = ERR_PTR(-ENOENT);
6605 unlock:
6606 	srcu_read_unlock(&pmus_srcu, idx);
6607 
6608 	return pmu;
6609 }
6610 
6611 static void account_event_cpu(struct perf_event *event, int cpu)
6612 {
6613 	if (event->parent)
6614 		return;
6615 
6616 	if (has_branch_stack(event)) {
6617 		if (!(event->attach_state & PERF_ATTACH_TASK))
6618 			atomic_inc(&per_cpu(perf_branch_stack_events, cpu));
6619 	}
6620 	if (is_cgroup_event(event))
6621 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
6622 }
6623 
6624 static void account_event(struct perf_event *event)
6625 {
6626 	if (event->parent)
6627 		return;
6628 
6629 	if (event->attach_state & PERF_ATTACH_TASK)
6630 		static_key_slow_inc(&perf_sched_events.key);
6631 	if (event->attr.mmap || event->attr.mmap_data)
6632 		atomic_inc(&nr_mmap_events);
6633 	if (event->attr.comm)
6634 		atomic_inc(&nr_comm_events);
6635 	if (event->attr.task)
6636 		atomic_inc(&nr_task_events);
6637 	if (event->attr.freq) {
6638 		if (atomic_inc_return(&nr_freq_events) == 1)
6639 			tick_nohz_full_kick_all();
6640 	}
6641 	if (has_branch_stack(event))
6642 		static_key_slow_inc(&perf_sched_events.key);
6643 	if (is_cgroup_event(event))
6644 		static_key_slow_inc(&perf_sched_events.key);
6645 
6646 	account_event_cpu(event, event->cpu);
6647 }
6648 
6649 /*
6650  * Allocate and initialize a event structure
6651  */
6652 static struct perf_event *
6653 perf_event_alloc(struct perf_event_attr *attr, int cpu,
6654 		 struct task_struct *task,
6655 		 struct perf_event *group_leader,
6656 		 struct perf_event *parent_event,
6657 		 perf_overflow_handler_t overflow_handler,
6658 		 void *context)
6659 {
6660 	struct pmu *pmu;
6661 	struct perf_event *event;
6662 	struct hw_perf_event *hwc;
6663 	long err = -EINVAL;
6664 
6665 	if ((unsigned)cpu >= nr_cpu_ids) {
6666 		if (!task || cpu != -1)
6667 			return ERR_PTR(-EINVAL);
6668 	}
6669 
6670 	event = kzalloc(sizeof(*event), GFP_KERNEL);
6671 	if (!event)
6672 		return ERR_PTR(-ENOMEM);
6673 
6674 	/*
6675 	 * Single events are their own group leaders, with an
6676 	 * empty sibling list:
6677 	 */
6678 	if (!group_leader)
6679 		group_leader = event;
6680 
6681 	mutex_init(&event->child_mutex);
6682 	INIT_LIST_HEAD(&event->child_list);
6683 
6684 	INIT_LIST_HEAD(&event->group_entry);
6685 	INIT_LIST_HEAD(&event->event_entry);
6686 	INIT_LIST_HEAD(&event->sibling_list);
6687 	INIT_LIST_HEAD(&event->rb_entry);
6688 	INIT_LIST_HEAD(&event->active_entry);
6689 	INIT_HLIST_NODE(&event->hlist_entry);
6690 
6691 
6692 	init_waitqueue_head(&event->waitq);
6693 	init_irq_work(&event->pending, perf_pending_event);
6694 
6695 	mutex_init(&event->mmap_mutex);
6696 
6697 	atomic_long_set(&event->refcount, 1);
6698 	event->cpu		= cpu;
6699 	event->attr		= *attr;
6700 	event->group_leader	= group_leader;
6701 	event->pmu		= NULL;
6702 	event->oncpu		= -1;
6703 
6704 	event->parent		= parent_event;
6705 
6706 	event->ns		= get_pid_ns(task_active_pid_ns(current));
6707 	event->id		= atomic64_inc_return(&perf_event_id);
6708 
6709 	event->state		= PERF_EVENT_STATE_INACTIVE;
6710 
6711 	if (task) {
6712 		event->attach_state = PERF_ATTACH_TASK;
6713 
6714 		if (attr->type == PERF_TYPE_TRACEPOINT)
6715 			event->hw.tp_target = task;
6716 #ifdef CONFIG_HAVE_HW_BREAKPOINT
6717 		/*
6718 		 * hw_breakpoint is a bit difficult here..
6719 		 */
6720 		else if (attr->type == PERF_TYPE_BREAKPOINT)
6721 			event->hw.bp_target = task;
6722 #endif
6723 	}
6724 
6725 	if (!overflow_handler && parent_event) {
6726 		overflow_handler = parent_event->overflow_handler;
6727 		context = parent_event->overflow_handler_context;
6728 	}
6729 
6730 	event->overflow_handler	= overflow_handler;
6731 	event->overflow_handler_context = context;
6732 
6733 	perf_event__state_init(event);
6734 
6735 	pmu = NULL;
6736 
6737 	hwc = &event->hw;
6738 	hwc->sample_period = attr->sample_period;
6739 	if (attr->freq && attr->sample_freq)
6740 		hwc->sample_period = 1;
6741 	hwc->last_period = hwc->sample_period;
6742 
6743 	local64_set(&hwc->period_left, hwc->sample_period);
6744 
6745 	/*
6746 	 * we currently do not support PERF_FORMAT_GROUP on inherited events
6747 	 */
6748 	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
6749 		goto err_ns;
6750 
6751 	pmu = perf_init_event(event);
6752 	if (!pmu)
6753 		goto err_ns;
6754 	else if (IS_ERR(pmu)) {
6755 		err = PTR_ERR(pmu);
6756 		goto err_ns;
6757 	}
6758 
6759 	if (!event->parent) {
6760 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
6761 			err = get_callchain_buffers();
6762 			if (err)
6763 				goto err_pmu;
6764 		}
6765 	}
6766 
6767 	return event;
6768 
6769 err_pmu:
6770 	if (event->destroy)
6771 		event->destroy(event);
6772 err_ns:
6773 	if (event->ns)
6774 		put_pid_ns(event->ns);
6775 	kfree(event);
6776 
6777 	return ERR_PTR(err);
6778 }
6779 
6780 static int perf_copy_attr(struct perf_event_attr __user *uattr,
6781 			  struct perf_event_attr *attr)
6782 {
6783 	u32 size;
6784 	int ret;
6785 
6786 	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
6787 		return -EFAULT;
6788 
6789 	/*
6790 	 * zero the full structure, so that a short copy will be nice.
6791 	 */
6792 	memset(attr, 0, sizeof(*attr));
6793 
6794 	ret = get_user(size, &uattr->size);
6795 	if (ret)
6796 		return ret;
6797 
6798 	if (size > PAGE_SIZE)	/* silly large */
6799 		goto err_size;
6800 
6801 	if (!size)		/* abi compat */
6802 		size = PERF_ATTR_SIZE_VER0;
6803 
6804 	if (size < PERF_ATTR_SIZE_VER0)
6805 		goto err_size;
6806 
6807 	/*
6808 	 * If we're handed a bigger struct than we know of,
6809 	 * ensure all the unknown bits are 0 - i.e. new
6810 	 * user-space does not rely on any kernel feature
6811 	 * extensions we dont know about yet.
6812 	 */
6813 	if (size > sizeof(*attr)) {
6814 		unsigned char __user *addr;
6815 		unsigned char __user *end;
6816 		unsigned char val;
6817 
6818 		addr = (void __user *)uattr + sizeof(*attr);
6819 		end  = (void __user *)uattr + size;
6820 
6821 		for (; addr < end; addr++) {
6822 			ret = get_user(val, addr);
6823 			if (ret)
6824 				return ret;
6825 			if (val)
6826 				goto err_size;
6827 		}
6828 		size = sizeof(*attr);
6829 	}
6830 
6831 	ret = copy_from_user(attr, uattr, size);
6832 	if (ret)
6833 		return -EFAULT;
6834 
6835 	/* disabled for now */
6836 	if (attr->mmap2)
6837 		return -EINVAL;
6838 
6839 	if (attr->__reserved_1)
6840 		return -EINVAL;
6841 
6842 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
6843 		return -EINVAL;
6844 
6845 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
6846 		return -EINVAL;
6847 
6848 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
6849 		u64 mask = attr->branch_sample_type;
6850 
6851 		/* only using defined bits */
6852 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
6853 			return -EINVAL;
6854 
6855 		/* at least one branch bit must be set */
6856 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
6857 			return -EINVAL;
6858 
6859 		/* propagate priv level, when not set for branch */
6860 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
6861 
6862 			/* exclude_kernel checked on syscall entry */
6863 			if (!attr->exclude_kernel)
6864 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
6865 
6866 			if (!attr->exclude_user)
6867 				mask |= PERF_SAMPLE_BRANCH_USER;
6868 
6869 			if (!attr->exclude_hv)
6870 				mask |= PERF_SAMPLE_BRANCH_HV;
6871 			/*
6872 			 * adjust user setting (for HW filter setup)
6873 			 */
6874 			attr->branch_sample_type = mask;
6875 		}
6876 		/* privileged levels capture (kernel, hv): check permissions */
6877 		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
6878 		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6879 			return -EACCES;
6880 	}
6881 
6882 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
6883 		ret = perf_reg_validate(attr->sample_regs_user);
6884 		if (ret)
6885 			return ret;
6886 	}
6887 
6888 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
6889 		if (!arch_perf_have_user_stack_dump())
6890 			return -ENOSYS;
6891 
6892 		/*
6893 		 * We have __u32 type for the size, but so far
6894 		 * we can only use __u16 as maximum due to the
6895 		 * __u16 sample size limit.
6896 		 */
6897 		if (attr->sample_stack_user >= USHRT_MAX)
6898 			ret = -EINVAL;
6899 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
6900 			ret = -EINVAL;
6901 	}
6902 
6903 out:
6904 	return ret;
6905 
6906 err_size:
6907 	put_user(sizeof(*attr), &uattr->size);
6908 	ret = -E2BIG;
6909 	goto out;
6910 }
6911 
6912 static int
6913 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
6914 {
6915 	struct ring_buffer *rb = NULL, *old_rb = NULL;
6916 	int ret = -EINVAL;
6917 
6918 	if (!output_event)
6919 		goto set;
6920 
6921 	/* don't allow circular references */
6922 	if (event == output_event)
6923 		goto out;
6924 
6925 	/*
6926 	 * Don't allow cross-cpu buffers
6927 	 */
6928 	if (output_event->cpu != event->cpu)
6929 		goto out;
6930 
6931 	/*
6932 	 * If its not a per-cpu rb, it must be the same task.
6933 	 */
6934 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
6935 		goto out;
6936 
6937 set:
6938 	mutex_lock(&event->mmap_mutex);
6939 	/* Can't redirect output if we've got an active mmap() */
6940 	if (atomic_read(&event->mmap_count))
6941 		goto unlock;
6942 
6943 	old_rb = event->rb;
6944 
6945 	if (output_event) {
6946 		/* get the rb we want to redirect to */
6947 		rb = ring_buffer_get(output_event);
6948 		if (!rb)
6949 			goto unlock;
6950 	}
6951 
6952 	if (old_rb)
6953 		ring_buffer_detach(event, old_rb);
6954 
6955 	if (rb)
6956 		ring_buffer_attach(event, rb);
6957 
6958 	rcu_assign_pointer(event->rb, rb);
6959 
6960 	if (old_rb) {
6961 		ring_buffer_put(old_rb);
6962 		/*
6963 		 * Since we detached before setting the new rb, so that we
6964 		 * could attach the new rb, we could have missed a wakeup.
6965 		 * Provide it now.
6966 		 */
6967 		wake_up_all(&event->waitq);
6968 	}
6969 
6970 	ret = 0;
6971 unlock:
6972 	mutex_unlock(&event->mmap_mutex);
6973 
6974 out:
6975 	return ret;
6976 }
6977 
6978 /**
6979  * sys_perf_event_open - open a performance event, associate it to a task/cpu
6980  *
6981  * @attr_uptr:	event_id type attributes for monitoring/sampling
6982  * @pid:		target pid
6983  * @cpu:		target cpu
6984  * @group_fd:		group leader event fd
6985  */
6986 SYSCALL_DEFINE5(perf_event_open,
6987 		struct perf_event_attr __user *, attr_uptr,
6988 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
6989 {
6990 	struct perf_event *group_leader = NULL, *output_event = NULL;
6991 	struct perf_event *event, *sibling;
6992 	struct perf_event_attr attr;
6993 	struct perf_event_context *ctx;
6994 	struct file *event_file = NULL;
6995 	struct fd group = {NULL, 0};
6996 	struct task_struct *task = NULL;
6997 	struct pmu *pmu;
6998 	int event_fd;
6999 	int move_group = 0;
7000 	int err;
7001 	int f_flags = O_RDWR;
7002 
7003 	/* for future expandability... */
7004 	if (flags & ~PERF_FLAG_ALL)
7005 		return -EINVAL;
7006 
7007 	err = perf_copy_attr(attr_uptr, &attr);
7008 	if (err)
7009 		return err;
7010 
7011 	if (!attr.exclude_kernel) {
7012 		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
7013 			return -EACCES;
7014 	}
7015 
7016 	if (attr.freq) {
7017 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
7018 			return -EINVAL;
7019 	}
7020 
7021 	/*
7022 	 * In cgroup mode, the pid argument is used to pass the fd
7023 	 * opened to the cgroup directory in cgroupfs. The cpu argument
7024 	 * designates the cpu on which to monitor threads from that
7025 	 * cgroup.
7026 	 */
7027 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
7028 		return -EINVAL;
7029 
7030 	if (flags & PERF_FLAG_FD_CLOEXEC)
7031 		f_flags |= O_CLOEXEC;
7032 
7033 	event_fd = get_unused_fd_flags(f_flags);
7034 	if (event_fd < 0)
7035 		return event_fd;
7036 
7037 	if (group_fd != -1) {
7038 		err = perf_fget_light(group_fd, &group);
7039 		if (err)
7040 			goto err_fd;
7041 		group_leader = group.file->private_data;
7042 		if (flags & PERF_FLAG_FD_OUTPUT)
7043 			output_event = group_leader;
7044 		if (flags & PERF_FLAG_FD_NO_GROUP)
7045 			group_leader = NULL;
7046 	}
7047 
7048 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
7049 		task = find_lively_task_by_vpid(pid);
7050 		if (IS_ERR(task)) {
7051 			err = PTR_ERR(task);
7052 			goto err_group_fd;
7053 		}
7054 	}
7055 
7056 	get_online_cpus();
7057 
7058 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
7059 				 NULL, NULL);
7060 	if (IS_ERR(event)) {
7061 		err = PTR_ERR(event);
7062 		goto err_task;
7063 	}
7064 
7065 	if (flags & PERF_FLAG_PID_CGROUP) {
7066 		err = perf_cgroup_connect(pid, event, &attr, group_leader);
7067 		if (err) {
7068 			__free_event(event);
7069 			goto err_task;
7070 		}
7071 	}
7072 
7073 	account_event(event);
7074 
7075 	/*
7076 	 * Special case software events and allow them to be part of
7077 	 * any hardware group.
7078 	 */
7079 	pmu = event->pmu;
7080 
7081 	if (group_leader &&
7082 	    (is_software_event(event) != is_software_event(group_leader))) {
7083 		if (is_software_event(event)) {
7084 			/*
7085 			 * If event and group_leader are not both a software
7086 			 * event, and event is, then group leader is not.
7087 			 *
7088 			 * Allow the addition of software events to !software
7089 			 * groups, this is safe because software events never
7090 			 * fail to schedule.
7091 			 */
7092 			pmu = group_leader->pmu;
7093 		} else if (is_software_event(group_leader) &&
7094 			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
7095 			/*
7096 			 * In case the group is a pure software group, and we
7097 			 * try to add a hardware event, move the whole group to
7098 			 * the hardware context.
7099 			 */
7100 			move_group = 1;
7101 		}
7102 	}
7103 
7104 	/*
7105 	 * Get the target context (task or percpu):
7106 	 */
7107 	ctx = find_get_context(pmu, task, event->cpu);
7108 	if (IS_ERR(ctx)) {
7109 		err = PTR_ERR(ctx);
7110 		goto err_alloc;
7111 	}
7112 
7113 	if (task) {
7114 		put_task_struct(task);
7115 		task = NULL;
7116 	}
7117 
7118 	/*
7119 	 * Look up the group leader (we will attach this event to it):
7120 	 */
7121 	if (group_leader) {
7122 		err = -EINVAL;
7123 
7124 		/*
7125 		 * Do not allow a recursive hierarchy (this new sibling
7126 		 * becoming part of another group-sibling):
7127 		 */
7128 		if (group_leader->group_leader != group_leader)
7129 			goto err_context;
7130 		/*
7131 		 * Do not allow to attach to a group in a different
7132 		 * task or CPU context:
7133 		 */
7134 		if (move_group) {
7135 			if (group_leader->ctx->type != ctx->type)
7136 				goto err_context;
7137 		} else {
7138 			if (group_leader->ctx != ctx)
7139 				goto err_context;
7140 		}
7141 
7142 		/*
7143 		 * Only a group leader can be exclusive or pinned
7144 		 */
7145 		if (attr.exclusive || attr.pinned)
7146 			goto err_context;
7147 	}
7148 
7149 	if (output_event) {
7150 		err = perf_event_set_output(event, output_event);
7151 		if (err)
7152 			goto err_context;
7153 	}
7154 
7155 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
7156 					f_flags);
7157 	if (IS_ERR(event_file)) {
7158 		err = PTR_ERR(event_file);
7159 		goto err_context;
7160 	}
7161 
7162 	if (move_group) {
7163 		struct perf_event_context *gctx = group_leader->ctx;
7164 
7165 		mutex_lock(&gctx->mutex);
7166 		perf_remove_from_context(group_leader);
7167 
7168 		/*
7169 		 * Removing from the context ends up with disabled
7170 		 * event. What we want here is event in the initial
7171 		 * startup state, ready to be add into new context.
7172 		 */
7173 		perf_event__state_init(group_leader);
7174 		list_for_each_entry(sibling, &group_leader->sibling_list,
7175 				    group_entry) {
7176 			perf_remove_from_context(sibling);
7177 			perf_event__state_init(sibling);
7178 			put_ctx(gctx);
7179 		}
7180 		mutex_unlock(&gctx->mutex);
7181 		put_ctx(gctx);
7182 	}
7183 
7184 	WARN_ON_ONCE(ctx->parent_ctx);
7185 	mutex_lock(&ctx->mutex);
7186 
7187 	if (move_group) {
7188 		synchronize_rcu();
7189 		perf_install_in_context(ctx, group_leader, event->cpu);
7190 		get_ctx(ctx);
7191 		list_for_each_entry(sibling, &group_leader->sibling_list,
7192 				    group_entry) {
7193 			perf_install_in_context(ctx, sibling, event->cpu);
7194 			get_ctx(ctx);
7195 		}
7196 	}
7197 
7198 	perf_install_in_context(ctx, event, event->cpu);
7199 	perf_unpin_context(ctx);
7200 	mutex_unlock(&ctx->mutex);
7201 
7202 	put_online_cpus();
7203 
7204 	event->owner = current;
7205 
7206 	mutex_lock(&current->perf_event_mutex);
7207 	list_add_tail(&event->owner_entry, &current->perf_event_list);
7208 	mutex_unlock(&current->perf_event_mutex);
7209 
7210 	/*
7211 	 * Precalculate sample_data sizes
7212 	 */
7213 	perf_event__header_size(event);
7214 	perf_event__id_header_size(event);
7215 
7216 	/*
7217 	 * Drop the reference on the group_event after placing the
7218 	 * new event on the sibling_list. This ensures destruction
7219 	 * of the group leader will find the pointer to itself in
7220 	 * perf_group_detach().
7221 	 */
7222 	fdput(group);
7223 	fd_install(event_fd, event_file);
7224 	return event_fd;
7225 
7226 err_context:
7227 	perf_unpin_context(ctx);
7228 	put_ctx(ctx);
7229 err_alloc:
7230 	free_event(event);
7231 err_task:
7232 	put_online_cpus();
7233 	if (task)
7234 		put_task_struct(task);
7235 err_group_fd:
7236 	fdput(group);
7237 err_fd:
7238 	put_unused_fd(event_fd);
7239 	return err;
7240 }
7241 
7242 /**
7243  * perf_event_create_kernel_counter
7244  *
7245  * @attr: attributes of the counter to create
7246  * @cpu: cpu in which the counter is bound
7247  * @task: task to profile (NULL for percpu)
7248  */
7249 struct perf_event *
7250 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
7251 				 struct task_struct *task,
7252 				 perf_overflow_handler_t overflow_handler,
7253 				 void *context)
7254 {
7255 	struct perf_event_context *ctx;
7256 	struct perf_event *event;
7257 	int err;
7258 
7259 	/*
7260 	 * Get the target context (task or percpu):
7261 	 */
7262 
7263 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
7264 				 overflow_handler, context);
7265 	if (IS_ERR(event)) {
7266 		err = PTR_ERR(event);
7267 		goto err;
7268 	}
7269 
7270 	account_event(event);
7271 
7272 	ctx = find_get_context(event->pmu, task, cpu);
7273 	if (IS_ERR(ctx)) {
7274 		err = PTR_ERR(ctx);
7275 		goto err_free;
7276 	}
7277 
7278 	WARN_ON_ONCE(ctx->parent_ctx);
7279 	mutex_lock(&ctx->mutex);
7280 	perf_install_in_context(ctx, event, cpu);
7281 	perf_unpin_context(ctx);
7282 	mutex_unlock(&ctx->mutex);
7283 
7284 	return event;
7285 
7286 err_free:
7287 	free_event(event);
7288 err:
7289 	return ERR_PTR(err);
7290 }
7291 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
7292 
7293 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
7294 {
7295 	struct perf_event_context *src_ctx;
7296 	struct perf_event_context *dst_ctx;
7297 	struct perf_event *event, *tmp;
7298 	LIST_HEAD(events);
7299 
7300 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
7301 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
7302 
7303 	mutex_lock(&src_ctx->mutex);
7304 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
7305 				 event_entry) {
7306 		perf_remove_from_context(event);
7307 		unaccount_event_cpu(event, src_cpu);
7308 		put_ctx(src_ctx);
7309 		list_add(&event->migrate_entry, &events);
7310 	}
7311 	mutex_unlock(&src_ctx->mutex);
7312 
7313 	synchronize_rcu();
7314 
7315 	mutex_lock(&dst_ctx->mutex);
7316 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
7317 		list_del(&event->migrate_entry);
7318 		if (event->state >= PERF_EVENT_STATE_OFF)
7319 			event->state = PERF_EVENT_STATE_INACTIVE;
7320 		account_event_cpu(event, dst_cpu);
7321 		perf_install_in_context(dst_ctx, event, dst_cpu);
7322 		get_ctx(dst_ctx);
7323 	}
7324 	mutex_unlock(&dst_ctx->mutex);
7325 }
7326 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
7327 
7328 static void sync_child_event(struct perf_event *child_event,
7329 			       struct task_struct *child)
7330 {
7331 	struct perf_event *parent_event = child_event->parent;
7332 	u64 child_val;
7333 
7334 	if (child_event->attr.inherit_stat)
7335 		perf_event_read_event(child_event, child);
7336 
7337 	child_val = perf_event_count(child_event);
7338 
7339 	/*
7340 	 * Add back the child's count to the parent's count:
7341 	 */
7342 	atomic64_add(child_val, &parent_event->child_count);
7343 	atomic64_add(child_event->total_time_enabled,
7344 		     &parent_event->child_total_time_enabled);
7345 	atomic64_add(child_event->total_time_running,
7346 		     &parent_event->child_total_time_running);
7347 
7348 	/*
7349 	 * Remove this event from the parent's list
7350 	 */
7351 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7352 	mutex_lock(&parent_event->child_mutex);
7353 	list_del_init(&child_event->child_list);
7354 	mutex_unlock(&parent_event->child_mutex);
7355 
7356 	/*
7357 	 * Release the parent event, if this was the last
7358 	 * reference to it.
7359 	 */
7360 	put_event(parent_event);
7361 }
7362 
7363 static void
7364 __perf_event_exit_task(struct perf_event *child_event,
7365 			 struct perf_event_context *child_ctx,
7366 			 struct task_struct *child)
7367 {
7368 	if (child_event->parent) {
7369 		raw_spin_lock_irq(&child_ctx->lock);
7370 		perf_group_detach(child_event);
7371 		raw_spin_unlock_irq(&child_ctx->lock);
7372 	}
7373 
7374 	perf_remove_from_context(child_event);
7375 
7376 	/*
7377 	 * It can happen that the parent exits first, and has events
7378 	 * that are still around due to the child reference. These
7379 	 * events need to be zapped.
7380 	 */
7381 	if (child_event->parent) {
7382 		sync_child_event(child_event, child);
7383 		free_event(child_event);
7384 	}
7385 }
7386 
7387 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
7388 {
7389 	struct perf_event *child_event, *tmp;
7390 	struct perf_event_context *child_ctx;
7391 	unsigned long flags;
7392 
7393 	if (likely(!child->perf_event_ctxp[ctxn])) {
7394 		perf_event_task(child, NULL, 0);
7395 		return;
7396 	}
7397 
7398 	local_irq_save(flags);
7399 	/*
7400 	 * We can't reschedule here because interrupts are disabled,
7401 	 * and either child is current or it is a task that can't be
7402 	 * scheduled, so we are now safe from rescheduling changing
7403 	 * our context.
7404 	 */
7405 	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
7406 
7407 	/*
7408 	 * Take the context lock here so that if find_get_context is
7409 	 * reading child->perf_event_ctxp, we wait until it has
7410 	 * incremented the context's refcount before we do put_ctx below.
7411 	 */
7412 	raw_spin_lock(&child_ctx->lock);
7413 	task_ctx_sched_out(child_ctx);
7414 	child->perf_event_ctxp[ctxn] = NULL;
7415 	/*
7416 	 * If this context is a clone; unclone it so it can't get
7417 	 * swapped to another process while we're removing all
7418 	 * the events from it.
7419 	 */
7420 	unclone_ctx(child_ctx);
7421 	update_context_time(child_ctx);
7422 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
7423 
7424 	/*
7425 	 * Report the task dead after unscheduling the events so that we
7426 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
7427 	 * get a few PERF_RECORD_READ events.
7428 	 */
7429 	perf_event_task(child, child_ctx, 0);
7430 
7431 	/*
7432 	 * We can recurse on the same lock type through:
7433 	 *
7434 	 *   __perf_event_exit_task()
7435 	 *     sync_child_event()
7436 	 *       put_event()
7437 	 *         mutex_lock(&ctx->mutex)
7438 	 *
7439 	 * But since its the parent context it won't be the same instance.
7440 	 */
7441 	mutex_lock(&child_ctx->mutex);
7442 
7443 again:
7444 	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
7445 				 group_entry)
7446 		__perf_event_exit_task(child_event, child_ctx, child);
7447 
7448 	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
7449 				 group_entry)
7450 		__perf_event_exit_task(child_event, child_ctx, child);
7451 
7452 	/*
7453 	 * If the last event was a group event, it will have appended all
7454 	 * its siblings to the list, but we obtained 'tmp' before that which
7455 	 * will still point to the list head terminating the iteration.
7456 	 */
7457 	if (!list_empty(&child_ctx->pinned_groups) ||
7458 	    !list_empty(&child_ctx->flexible_groups))
7459 		goto again;
7460 
7461 	mutex_unlock(&child_ctx->mutex);
7462 
7463 	put_ctx(child_ctx);
7464 }
7465 
7466 /*
7467  * When a child task exits, feed back event values to parent events.
7468  */
7469 void perf_event_exit_task(struct task_struct *child)
7470 {
7471 	struct perf_event *event, *tmp;
7472 	int ctxn;
7473 
7474 	mutex_lock(&child->perf_event_mutex);
7475 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
7476 				 owner_entry) {
7477 		list_del_init(&event->owner_entry);
7478 
7479 		/*
7480 		 * Ensure the list deletion is visible before we clear
7481 		 * the owner, closes a race against perf_release() where
7482 		 * we need to serialize on the owner->perf_event_mutex.
7483 		 */
7484 		smp_wmb();
7485 		event->owner = NULL;
7486 	}
7487 	mutex_unlock(&child->perf_event_mutex);
7488 
7489 	for_each_task_context_nr(ctxn)
7490 		perf_event_exit_task_context(child, ctxn);
7491 }
7492 
7493 static void perf_free_event(struct perf_event *event,
7494 			    struct perf_event_context *ctx)
7495 {
7496 	struct perf_event *parent = event->parent;
7497 
7498 	if (WARN_ON_ONCE(!parent))
7499 		return;
7500 
7501 	mutex_lock(&parent->child_mutex);
7502 	list_del_init(&event->child_list);
7503 	mutex_unlock(&parent->child_mutex);
7504 
7505 	put_event(parent);
7506 
7507 	perf_group_detach(event);
7508 	list_del_event(event, ctx);
7509 	free_event(event);
7510 }
7511 
7512 /*
7513  * free an unexposed, unused context as created by inheritance by
7514  * perf_event_init_task below, used by fork() in case of fail.
7515  */
7516 void perf_event_free_task(struct task_struct *task)
7517 {
7518 	struct perf_event_context *ctx;
7519 	struct perf_event *event, *tmp;
7520 	int ctxn;
7521 
7522 	for_each_task_context_nr(ctxn) {
7523 		ctx = task->perf_event_ctxp[ctxn];
7524 		if (!ctx)
7525 			continue;
7526 
7527 		mutex_lock(&ctx->mutex);
7528 again:
7529 		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
7530 				group_entry)
7531 			perf_free_event(event, ctx);
7532 
7533 		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
7534 				group_entry)
7535 			perf_free_event(event, ctx);
7536 
7537 		if (!list_empty(&ctx->pinned_groups) ||
7538 				!list_empty(&ctx->flexible_groups))
7539 			goto again;
7540 
7541 		mutex_unlock(&ctx->mutex);
7542 
7543 		put_ctx(ctx);
7544 	}
7545 }
7546 
7547 void perf_event_delayed_put(struct task_struct *task)
7548 {
7549 	int ctxn;
7550 
7551 	for_each_task_context_nr(ctxn)
7552 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
7553 }
7554 
7555 /*
7556  * inherit a event from parent task to child task:
7557  */
7558 static struct perf_event *
7559 inherit_event(struct perf_event *parent_event,
7560 	      struct task_struct *parent,
7561 	      struct perf_event_context *parent_ctx,
7562 	      struct task_struct *child,
7563 	      struct perf_event *group_leader,
7564 	      struct perf_event_context *child_ctx)
7565 {
7566 	struct perf_event *child_event;
7567 	unsigned long flags;
7568 
7569 	/*
7570 	 * Instead of creating recursive hierarchies of events,
7571 	 * we link inherited events back to the original parent,
7572 	 * which has a filp for sure, which we use as the reference
7573 	 * count:
7574 	 */
7575 	if (parent_event->parent)
7576 		parent_event = parent_event->parent;
7577 
7578 	child_event = perf_event_alloc(&parent_event->attr,
7579 					   parent_event->cpu,
7580 					   child,
7581 					   group_leader, parent_event,
7582 				           NULL, NULL);
7583 	if (IS_ERR(child_event))
7584 		return child_event;
7585 
7586 	if (!atomic_long_inc_not_zero(&parent_event->refcount)) {
7587 		free_event(child_event);
7588 		return NULL;
7589 	}
7590 
7591 	get_ctx(child_ctx);
7592 
7593 	/*
7594 	 * Make the child state follow the state of the parent event,
7595 	 * not its attr.disabled bit.  We hold the parent's mutex,
7596 	 * so we won't race with perf_event_{en, dis}able_family.
7597 	 */
7598 	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
7599 		child_event->state = PERF_EVENT_STATE_INACTIVE;
7600 	else
7601 		child_event->state = PERF_EVENT_STATE_OFF;
7602 
7603 	if (parent_event->attr.freq) {
7604 		u64 sample_period = parent_event->hw.sample_period;
7605 		struct hw_perf_event *hwc = &child_event->hw;
7606 
7607 		hwc->sample_period = sample_period;
7608 		hwc->last_period   = sample_period;
7609 
7610 		local64_set(&hwc->period_left, sample_period);
7611 	}
7612 
7613 	child_event->ctx = child_ctx;
7614 	child_event->overflow_handler = parent_event->overflow_handler;
7615 	child_event->overflow_handler_context
7616 		= parent_event->overflow_handler_context;
7617 
7618 	/*
7619 	 * Precalculate sample_data sizes
7620 	 */
7621 	perf_event__header_size(child_event);
7622 	perf_event__id_header_size(child_event);
7623 
7624 	/*
7625 	 * Link it up in the child's context:
7626 	 */
7627 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
7628 	add_event_to_ctx(child_event, child_ctx);
7629 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
7630 
7631 	/*
7632 	 * Link this into the parent event's child list
7633 	 */
7634 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7635 	mutex_lock(&parent_event->child_mutex);
7636 	list_add_tail(&child_event->child_list, &parent_event->child_list);
7637 	mutex_unlock(&parent_event->child_mutex);
7638 
7639 	return child_event;
7640 }
7641 
7642 static int inherit_group(struct perf_event *parent_event,
7643 	      struct task_struct *parent,
7644 	      struct perf_event_context *parent_ctx,
7645 	      struct task_struct *child,
7646 	      struct perf_event_context *child_ctx)
7647 {
7648 	struct perf_event *leader;
7649 	struct perf_event *sub;
7650 	struct perf_event *child_ctr;
7651 
7652 	leader = inherit_event(parent_event, parent, parent_ctx,
7653 				 child, NULL, child_ctx);
7654 	if (IS_ERR(leader))
7655 		return PTR_ERR(leader);
7656 	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
7657 		child_ctr = inherit_event(sub, parent, parent_ctx,
7658 					    child, leader, child_ctx);
7659 		if (IS_ERR(child_ctr))
7660 			return PTR_ERR(child_ctr);
7661 	}
7662 	return 0;
7663 }
7664 
7665 static int
7666 inherit_task_group(struct perf_event *event, struct task_struct *parent,
7667 		   struct perf_event_context *parent_ctx,
7668 		   struct task_struct *child, int ctxn,
7669 		   int *inherited_all)
7670 {
7671 	int ret;
7672 	struct perf_event_context *child_ctx;
7673 
7674 	if (!event->attr.inherit) {
7675 		*inherited_all = 0;
7676 		return 0;
7677 	}
7678 
7679 	child_ctx = child->perf_event_ctxp[ctxn];
7680 	if (!child_ctx) {
7681 		/*
7682 		 * This is executed from the parent task context, so
7683 		 * inherit events that have been marked for cloning.
7684 		 * First allocate and initialize a context for the
7685 		 * child.
7686 		 */
7687 
7688 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
7689 		if (!child_ctx)
7690 			return -ENOMEM;
7691 
7692 		child->perf_event_ctxp[ctxn] = child_ctx;
7693 	}
7694 
7695 	ret = inherit_group(event, parent, parent_ctx,
7696 			    child, child_ctx);
7697 
7698 	if (ret)
7699 		*inherited_all = 0;
7700 
7701 	return ret;
7702 }
7703 
7704 /*
7705  * Initialize the perf_event context in task_struct
7706  */
7707 int perf_event_init_context(struct task_struct *child, int ctxn)
7708 {
7709 	struct perf_event_context *child_ctx, *parent_ctx;
7710 	struct perf_event_context *cloned_ctx;
7711 	struct perf_event *event;
7712 	struct task_struct *parent = current;
7713 	int inherited_all = 1;
7714 	unsigned long flags;
7715 	int ret = 0;
7716 
7717 	if (likely(!parent->perf_event_ctxp[ctxn]))
7718 		return 0;
7719 
7720 	/*
7721 	 * If the parent's context is a clone, pin it so it won't get
7722 	 * swapped under us.
7723 	 */
7724 	parent_ctx = perf_pin_task_context(parent, ctxn);
7725 
7726 	/*
7727 	 * No need to check if parent_ctx != NULL here; since we saw
7728 	 * it non-NULL earlier, the only reason for it to become NULL
7729 	 * is if we exit, and since we're currently in the middle of
7730 	 * a fork we can't be exiting at the same time.
7731 	 */
7732 
7733 	/*
7734 	 * Lock the parent list. No need to lock the child - not PID
7735 	 * hashed yet and not running, so nobody can access it.
7736 	 */
7737 	mutex_lock(&parent_ctx->mutex);
7738 
7739 	/*
7740 	 * We dont have to disable NMIs - we are only looking at
7741 	 * the list, not manipulating it:
7742 	 */
7743 	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
7744 		ret = inherit_task_group(event, parent, parent_ctx,
7745 					 child, ctxn, &inherited_all);
7746 		if (ret)
7747 			break;
7748 	}
7749 
7750 	/*
7751 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
7752 	 * to allocations, but we need to prevent rotation because
7753 	 * rotate_ctx() will change the list from interrupt context.
7754 	 */
7755 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7756 	parent_ctx->rotate_disable = 1;
7757 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7758 
7759 	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
7760 		ret = inherit_task_group(event, parent, parent_ctx,
7761 					 child, ctxn, &inherited_all);
7762 		if (ret)
7763 			break;
7764 	}
7765 
7766 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7767 	parent_ctx->rotate_disable = 0;
7768 
7769 	child_ctx = child->perf_event_ctxp[ctxn];
7770 
7771 	if (child_ctx && inherited_all) {
7772 		/*
7773 		 * Mark the child context as a clone of the parent
7774 		 * context, or of whatever the parent is a clone of.
7775 		 *
7776 		 * Note that if the parent is a clone, the holding of
7777 		 * parent_ctx->lock avoids it from being uncloned.
7778 		 */
7779 		cloned_ctx = parent_ctx->parent_ctx;
7780 		if (cloned_ctx) {
7781 			child_ctx->parent_ctx = cloned_ctx;
7782 			child_ctx->parent_gen = parent_ctx->parent_gen;
7783 		} else {
7784 			child_ctx->parent_ctx = parent_ctx;
7785 			child_ctx->parent_gen = parent_ctx->generation;
7786 		}
7787 		get_ctx(child_ctx->parent_ctx);
7788 	}
7789 
7790 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7791 	mutex_unlock(&parent_ctx->mutex);
7792 
7793 	perf_unpin_context(parent_ctx);
7794 	put_ctx(parent_ctx);
7795 
7796 	return ret;
7797 }
7798 
7799 /*
7800  * Initialize the perf_event context in task_struct
7801  */
7802 int perf_event_init_task(struct task_struct *child)
7803 {
7804 	int ctxn, ret;
7805 
7806 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
7807 	mutex_init(&child->perf_event_mutex);
7808 	INIT_LIST_HEAD(&child->perf_event_list);
7809 
7810 	for_each_task_context_nr(ctxn) {
7811 		ret = perf_event_init_context(child, ctxn);
7812 		if (ret)
7813 			return ret;
7814 	}
7815 
7816 	return 0;
7817 }
7818 
7819 static void __init perf_event_init_all_cpus(void)
7820 {
7821 	struct swevent_htable *swhash;
7822 	int cpu;
7823 
7824 	for_each_possible_cpu(cpu) {
7825 		swhash = &per_cpu(swevent_htable, cpu);
7826 		mutex_init(&swhash->hlist_mutex);
7827 		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
7828 	}
7829 }
7830 
7831 static void perf_event_init_cpu(int cpu)
7832 {
7833 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7834 
7835 	mutex_lock(&swhash->hlist_mutex);
7836 	if (swhash->hlist_refcount > 0) {
7837 		struct swevent_hlist *hlist;
7838 
7839 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
7840 		WARN_ON(!hlist);
7841 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7842 	}
7843 	mutex_unlock(&swhash->hlist_mutex);
7844 }
7845 
7846 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
7847 static void perf_pmu_rotate_stop(struct pmu *pmu)
7848 {
7849 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7850 
7851 	WARN_ON(!irqs_disabled());
7852 
7853 	list_del_init(&cpuctx->rotation_list);
7854 }
7855 
7856 static void __perf_event_exit_context(void *__info)
7857 {
7858 	struct perf_event_context *ctx = __info;
7859 	struct perf_event *event;
7860 
7861 	perf_pmu_rotate_stop(ctx->pmu);
7862 
7863 	rcu_read_lock();
7864 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry)
7865 		__perf_remove_from_context(event);
7866 	rcu_read_unlock();
7867 }
7868 
7869 static void perf_event_exit_cpu_context(int cpu)
7870 {
7871 	struct perf_event_context *ctx;
7872 	struct pmu *pmu;
7873 	int idx;
7874 
7875 	idx = srcu_read_lock(&pmus_srcu);
7876 	list_for_each_entry_rcu(pmu, &pmus, entry) {
7877 		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
7878 
7879 		mutex_lock(&ctx->mutex);
7880 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
7881 		mutex_unlock(&ctx->mutex);
7882 	}
7883 	srcu_read_unlock(&pmus_srcu, idx);
7884 }
7885 
7886 static void perf_event_exit_cpu(int cpu)
7887 {
7888 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7889 
7890 	perf_event_exit_cpu_context(cpu);
7891 
7892 	mutex_lock(&swhash->hlist_mutex);
7893 	swevent_hlist_release(swhash);
7894 	mutex_unlock(&swhash->hlist_mutex);
7895 }
7896 #else
7897 static inline void perf_event_exit_cpu(int cpu) { }
7898 #endif
7899 
7900 static int
7901 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
7902 {
7903 	int cpu;
7904 
7905 	for_each_online_cpu(cpu)
7906 		perf_event_exit_cpu(cpu);
7907 
7908 	return NOTIFY_OK;
7909 }
7910 
7911 /*
7912  * Run the perf reboot notifier at the very last possible moment so that
7913  * the generic watchdog code runs as long as possible.
7914  */
7915 static struct notifier_block perf_reboot_notifier = {
7916 	.notifier_call = perf_reboot,
7917 	.priority = INT_MIN,
7918 };
7919 
7920 static int
7921 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
7922 {
7923 	unsigned int cpu = (long)hcpu;
7924 
7925 	switch (action & ~CPU_TASKS_FROZEN) {
7926 
7927 	case CPU_UP_PREPARE:
7928 	case CPU_DOWN_FAILED:
7929 		perf_event_init_cpu(cpu);
7930 		break;
7931 
7932 	case CPU_UP_CANCELED:
7933 	case CPU_DOWN_PREPARE:
7934 		perf_event_exit_cpu(cpu);
7935 		break;
7936 	default:
7937 		break;
7938 	}
7939 
7940 	return NOTIFY_OK;
7941 }
7942 
7943 void __init perf_event_init(void)
7944 {
7945 	int ret;
7946 
7947 	idr_init(&pmu_idr);
7948 
7949 	perf_event_init_all_cpus();
7950 	init_srcu_struct(&pmus_srcu);
7951 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
7952 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
7953 	perf_pmu_register(&perf_task_clock, NULL, -1);
7954 	perf_tp_register();
7955 	perf_cpu_notifier(perf_cpu_notify);
7956 	register_reboot_notifier(&perf_reboot_notifier);
7957 
7958 	ret = init_hw_breakpoint();
7959 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
7960 
7961 	/* do not patch jump label more than once per second */
7962 	jump_label_rate_limit(&perf_sched_events, HZ);
7963 
7964 	/*
7965 	 * Build time assertion that we keep the data_head at the intended
7966 	 * location.  IOW, validation we got the __reserved[] size right.
7967 	 */
7968 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
7969 		     != 1024);
7970 }
7971 
7972 static int __init perf_event_sysfs_init(void)
7973 {
7974 	struct pmu *pmu;
7975 	int ret;
7976 
7977 	mutex_lock(&pmus_lock);
7978 
7979 	ret = bus_register(&pmu_bus);
7980 	if (ret)
7981 		goto unlock;
7982 
7983 	list_for_each_entry(pmu, &pmus, entry) {
7984 		if (!pmu->name || pmu->type < 0)
7985 			continue;
7986 
7987 		ret = pmu_dev_alloc(pmu);
7988 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
7989 	}
7990 	pmu_bus_running = 1;
7991 	ret = 0;
7992 
7993 unlock:
7994 	mutex_unlock(&pmus_lock);
7995 
7996 	return ret;
7997 }
7998 device_initcall(perf_event_sysfs_init);
7999 
8000 #ifdef CONFIG_CGROUP_PERF
8001 static struct cgroup_subsys_state *
8002 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8003 {
8004 	struct perf_cgroup *jc;
8005 
8006 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
8007 	if (!jc)
8008 		return ERR_PTR(-ENOMEM);
8009 
8010 	jc->info = alloc_percpu(struct perf_cgroup_info);
8011 	if (!jc->info) {
8012 		kfree(jc);
8013 		return ERR_PTR(-ENOMEM);
8014 	}
8015 
8016 	return &jc->css;
8017 }
8018 
8019 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
8020 {
8021 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
8022 
8023 	free_percpu(jc->info);
8024 	kfree(jc);
8025 }
8026 
8027 static int __perf_cgroup_move(void *info)
8028 {
8029 	struct task_struct *task = info;
8030 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
8031 	return 0;
8032 }
8033 
8034 static void perf_cgroup_attach(struct cgroup_subsys_state *css,
8035 			       struct cgroup_taskset *tset)
8036 {
8037 	struct task_struct *task;
8038 
8039 	cgroup_taskset_for_each(task, css, tset)
8040 		task_function_call(task, __perf_cgroup_move, task);
8041 }
8042 
8043 static void perf_cgroup_exit(struct cgroup_subsys_state *css,
8044 			     struct cgroup_subsys_state *old_css,
8045 			     struct task_struct *task)
8046 {
8047 	/*
8048 	 * cgroup_exit() is called in the copy_process() failure path.
8049 	 * Ignore this case since the task hasn't ran yet, this avoids
8050 	 * trying to poke a half freed task state from generic code.
8051 	 */
8052 	if (!(task->flags & PF_EXITING))
8053 		return;
8054 
8055 	task_function_call(task, __perf_cgroup_move, task);
8056 }
8057 
8058 struct cgroup_subsys perf_subsys = {
8059 	.name		= "perf_event",
8060 	.subsys_id	= perf_subsys_id,
8061 	.css_alloc	= perf_cgroup_css_alloc,
8062 	.css_free	= perf_cgroup_css_free,
8063 	.exit		= perf_cgroup_exit,
8064 	.attach		= perf_cgroup_attach,
8065 };
8066 #endif /* CONFIG_CGROUP_PERF */
8067