xref: /openbmc/linux/kernel/events/core.c (revision a06c488d)
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11 
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 
48 #include "internal.h"
49 
50 #include <asm/irq_regs.h>
51 
52 static struct workqueue_struct *perf_wq;
53 
54 typedef int (*remote_function_f)(void *);
55 
56 struct remote_function_call {
57 	struct task_struct	*p;
58 	remote_function_f	func;
59 	void			*info;
60 	int			ret;
61 };
62 
63 static void remote_function(void *data)
64 {
65 	struct remote_function_call *tfc = data;
66 	struct task_struct *p = tfc->p;
67 
68 	if (p) {
69 		tfc->ret = -EAGAIN;
70 		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
71 			return;
72 	}
73 
74 	tfc->ret = tfc->func(tfc->info);
75 }
76 
77 /**
78  * task_function_call - call a function on the cpu on which a task runs
79  * @p:		the task to evaluate
80  * @func:	the function to be called
81  * @info:	the function call argument
82  *
83  * Calls the function @func when the task is currently running. This might
84  * be on the current CPU, which just calls the function directly
85  *
86  * returns: @func return value, or
87  *	    -ESRCH  - when the process isn't running
88  *	    -EAGAIN - when the process moved away
89  */
90 static int
91 task_function_call(struct task_struct *p, remote_function_f func, void *info)
92 {
93 	struct remote_function_call data = {
94 		.p	= p,
95 		.func	= func,
96 		.info	= info,
97 		.ret	= -ESRCH, /* No such (running) process */
98 	};
99 
100 	if (task_curr(p))
101 		smp_call_function_single(task_cpu(p), remote_function, &data, 1);
102 
103 	return data.ret;
104 }
105 
106 /**
107  * cpu_function_call - call a function on the cpu
108  * @func:	the function to be called
109  * @info:	the function call argument
110  *
111  * Calls the function @func on the remote cpu.
112  *
113  * returns: @func return value or -ENXIO when the cpu is offline
114  */
115 static int cpu_function_call(int cpu, remote_function_f func, void *info)
116 {
117 	struct remote_function_call data = {
118 		.p	= NULL,
119 		.func	= func,
120 		.info	= info,
121 		.ret	= -ENXIO, /* No such CPU */
122 	};
123 
124 	smp_call_function_single(cpu, remote_function, &data, 1);
125 
126 	return data.ret;
127 }
128 
129 static void event_function_call(struct perf_event *event,
130 				int (*active)(void *),
131 				void (*inactive)(void *),
132 				void *data)
133 {
134 	struct perf_event_context *ctx = event->ctx;
135 	struct task_struct *task = ctx->task;
136 
137 	if (!task) {
138 		cpu_function_call(event->cpu, active, data);
139 		return;
140 	}
141 
142 again:
143 	if (!task_function_call(task, active, data))
144 		return;
145 
146 	raw_spin_lock_irq(&ctx->lock);
147 	if (ctx->is_active) {
148 		/*
149 		 * Reload the task pointer, it might have been changed by
150 		 * a concurrent perf_event_context_sched_out().
151 		 */
152 		task = ctx->task;
153 		raw_spin_unlock_irq(&ctx->lock);
154 		goto again;
155 	}
156 	inactive(data);
157 	raw_spin_unlock_irq(&ctx->lock);
158 }
159 
160 #define EVENT_OWNER_KERNEL ((void *) -1)
161 
162 static bool is_kernel_event(struct perf_event *event)
163 {
164 	return event->owner == EVENT_OWNER_KERNEL;
165 }
166 
167 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
168 		       PERF_FLAG_FD_OUTPUT  |\
169 		       PERF_FLAG_PID_CGROUP |\
170 		       PERF_FLAG_FD_CLOEXEC)
171 
172 /*
173  * branch priv levels that need permission checks
174  */
175 #define PERF_SAMPLE_BRANCH_PERM_PLM \
176 	(PERF_SAMPLE_BRANCH_KERNEL |\
177 	 PERF_SAMPLE_BRANCH_HV)
178 
179 enum event_type_t {
180 	EVENT_FLEXIBLE = 0x1,
181 	EVENT_PINNED = 0x2,
182 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
183 };
184 
185 /*
186  * perf_sched_events : >0 events exist
187  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
188  */
189 struct static_key_deferred perf_sched_events __read_mostly;
190 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
191 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
192 
193 static atomic_t nr_mmap_events __read_mostly;
194 static atomic_t nr_comm_events __read_mostly;
195 static atomic_t nr_task_events __read_mostly;
196 static atomic_t nr_freq_events __read_mostly;
197 static atomic_t nr_switch_events __read_mostly;
198 
199 static LIST_HEAD(pmus);
200 static DEFINE_MUTEX(pmus_lock);
201 static struct srcu_struct pmus_srcu;
202 
203 /*
204  * perf event paranoia level:
205  *  -1 - not paranoid at all
206  *   0 - disallow raw tracepoint access for unpriv
207  *   1 - disallow cpu events for unpriv
208  *   2 - disallow kernel profiling for unpriv
209  */
210 int sysctl_perf_event_paranoid __read_mostly = 1;
211 
212 /* Minimum for 512 kiB + 1 user control page */
213 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
214 
215 /*
216  * max perf event sample rate
217  */
218 #define DEFAULT_MAX_SAMPLE_RATE		100000
219 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
220 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
221 
222 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
223 
224 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
225 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
226 
227 static int perf_sample_allowed_ns __read_mostly =
228 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
229 
230 static void update_perf_cpu_limits(void)
231 {
232 	u64 tmp = perf_sample_period_ns;
233 
234 	tmp *= sysctl_perf_cpu_time_max_percent;
235 	do_div(tmp, 100);
236 	ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
237 }
238 
239 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
240 
241 int perf_proc_update_handler(struct ctl_table *table, int write,
242 		void __user *buffer, size_t *lenp,
243 		loff_t *ppos)
244 {
245 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
246 
247 	if (ret || !write)
248 		return ret;
249 
250 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
251 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
252 	update_perf_cpu_limits();
253 
254 	return 0;
255 }
256 
257 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
258 
259 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
260 				void __user *buffer, size_t *lenp,
261 				loff_t *ppos)
262 {
263 	int ret = proc_dointvec(table, write, buffer, lenp, ppos);
264 
265 	if (ret || !write)
266 		return ret;
267 
268 	update_perf_cpu_limits();
269 
270 	return 0;
271 }
272 
273 /*
274  * perf samples are done in some very critical code paths (NMIs).
275  * If they take too much CPU time, the system can lock up and not
276  * get any real work done.  This will drop the sample rate when
277  * we detect that events are taking too long.
278  */
279 #define NR_ACCUMULATED_SAMPLES 128
280 static DEFINE_PER_CPU(u64, running_sample_length);
281 
282 static void perf_duration_warn(struct irq_work *w)
283 {
284 	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
285 	u64 avg_local_sample_len;
286 	u64 local_samples_len;
287 
288 	local_samples_len = __this_cpu_read(running_sample_length);
289 	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
290 
291 	printk_ratelimited(KERN_WARNING
292 			"perf interrupt took too long (%lld > %lld), lowering "
293 			"kernel.perf_event_max_sample_rate to %d\n",
294 			avg_local_sample_len, allowed_ns >> 1,
295 			sysctl_perf_event_sample_rate);
296 }
297 
298 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
299 
300 void perf_sample_event_took(u64 sample_len_ns)
301 {
302 	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
303 	u64 avg_local_sample_len;
304 	u64 local_samples_len;
305 
306 	if (allowed_ns == 0)
307 		return;
308 
309 	/* decay the counter by 1 average sample */
310 	local_samples_len = __this_cpu_read(running_sample_length);
311 	local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
312 	local_samples_len += sample_len_ns;
313 	__this_cpu_write(running_sample_length, local_samples_len);
314 
315 	/*
316 	 * note: this will be biased artifically low until we have
317 	 * seen NR_ACCUMULATED_SAMPLES.  Doing it this way keeps us
318 	 * from having to maintain a count.
319 	 */
320 	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
321 
322 	if (avg_local_sample_len <= allowed_ns)
323 		return;
324 
325 	if (max_samples_per_tick <= 1)
326 		return;
327 
328 	max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
329 	sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
330 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
331 
332 	update_perf_cpu_limits();
333 
334 	if (!irq_work_queue(&perf_duration_work)) {
335 		early_printk("perf interrupt took too long (%lld > %lld), lowering "
336 			     "kernel.perf_event_max_sample_rate to %d\n",
337 			     avg_local_sample_len, allowed_ns >> 1,
338 			     sysctl_perf_event_sample_rate);
339 	}
340 }
341 
342 static atomic64_t perf_event_id;
343 
344 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
345 			      enum event_type_t event_type);
346 
347 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
348 			     enum event_type_t event_type,
349 			     struct task_struct *task);
350 
351 static void update_context_time(struct perf_event_context *ctx);
352 static u64 perf_event_time(struct perf_event *event);
353 
354 void __weak perf_event_print_debug(void)	{ }
355 
356 extern __weak const char *perf_pmu_name(void)
357 {
358 	return "pmu";
359 }
360 
361 static inline u64 perf_clock(void)
362 {
363 	return local_clock();
364 }
365 
366 static inline u64 perf_event_clock(struct perf_event *event)
367 {
368 	return event->clock();
369 }
370 
371 static inline struct perf_cpu_context *
372 __get_cpu_context(struct perf_event_context *ctx)
373 {
374 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
375 }
376 
377 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
378 			  struct perf_event_context *ctx)
379 {
380 	raw_spin_lock(&cpuctx->ctx.lock);
381 	if (ctx)
382 		raw_spin_lock(&ctx->lock);
383 }
384 
385 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
386 			    struct perf_event_context *ctx)
387 {
388 	if (ctx)
389 		raw_spin_unlock(&ctx->lock);
390 	raw_spin_unlock(&cpuctx->ctx.lock);
391 }
392 
393 #ifdef CONFIG_CGROUP_PERF
394 
395 static inline bool
396 perf_cgroup_match(struct perf_event *event)
397 {
398 	struct perf_event_context *ctx = event->ctx;
399 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
400 
401 	/* @event doesn't care about cgroup */
402 	if (!event->cgrp)
403 		return true;
404 
405 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
406 	if (!cpuctx->cgrp)
407 		return false;
408 
409 	/*
410 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
411 	 * also enabled for all its descendant cgroups.  If @cpuctx's
412 	 * cgroup is a descendant of @event's (the test covers identity
413 	 * case), it's a match.
414 	 */
415 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
416 				    event->cgrp->css.cgroup);
417 }
418 
419 static inline void perf_detach_cgroup(struct perf_event *event)
420 {
421 	css_put(&event->cgrp->css);
422 	event->cgrp = NULL;
423 }
424 
425 static inline int is_cgroup_event(struct perf_event *event)
426 {
427 	return event->cgrp != NULL;
428 }
429 
430 static inline u64 perf_cgroup_event_time(struct perf_event *event)
431 {
432 	struct perf_cgroup_info *t;
433 
434 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
435 	return t->time;
436 }
437 
438 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
439 {
440 	struct perf_cgroup_info *info;
441 	u64 now;
442 
443 	now = perf_clock();
444 
445 	info = this_cpu_ptr(cgrp->info);
446 
447 	info->time += now - info->timestamp;
448 	info->timestamp = now;
449 }
450 
451 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
452 {
453 	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
454 	if (cgrp_out)
455 		__update_cgrp_time(cgrp_out);
456 }
457 
458 static inline void update_cgrp_time_from_event(struct perf_event *event)
459 {
460 	struct perf_cgroup *cgrp;
461 
462 	/*
463 	 * ensure we access cgroup data only when needed and
464 	 * when we know the cgroup is pinned (css_get)
465 	 */
466 	if (!is_cgroup_event(event))
467 		return;
468 
469 	cgrp = perf_cgroup_from_task(current, event->ctx);
470 	/*
471 	 * Do not update time when cgroup is not active
472 	 */
473 	if (cgrp == event->cgrp)
474 		__update_cgrp_time(event->cgrp);
475 }
476 
477 static inline void
478 perf_cgroup_set_timestamp(struct task_struct *task,
479 			  struct perf_event_context *ctx)
480 {
481 	struct perf_cgroup *cgrp;
482 	struct perf_cgroup_info *info;
483 
484 	/*
485 	 * ctx->lock held by caller
486 	 * ensure we do not access cgroup data
487 	 * unless we have the cgroup pinned (css_get)
488 	 */
489 	if (!task || !ctx->nr_cgroups)
490 		return;
491 
492 	cgrp = perf_cgroup_from_task(task, ctx);
493 	info = this_cpu_ptr(cgrp->info);
494 	info->timestamp = ctx->timestamp;
495 }
496 
497 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
498 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
499 
500 /*
501  * reschedule events based on the cgroup constraint of task.
502  *
503  * mode SWOUT : schedule out everything
504  * mode SWIN : schedule in based on cgroup for next
505  */
506 static void perf_cgroup_switch(struct task_struct *task, int mode)
507 {
508 	struct perf_cpu_context *cpuctx;
509 	struct pmu *pmu;
510 	unsigned long flags;
511 
512 	/*
513 	 * disable interrupts to avoid geting nr_cgroup
514 	 * changes via __perf_event_disable(). Also
515 	 * avoids preemption.
516 	 */
517 	local_irq_save(flags);
518 
519 	/*
520 	 * we reschedule only in the presence of cgroup
521 	 * constrained events.
522 	 */
523 
524 	list_for_each_entry_rcu(pmu, &pmus, entry) {
525 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
526 		if (cpuctx->unique_pmu != pmu)
527 			continue; /* ensure we process each cpuctx once */
528 
529 		/*
530 		 * perf_cgroup_events says at least one
531 		 * context on this CPU has cgroup events.
532 		 *
533 		 * ctx->nr_cgroups reports the number of cgroup
534 		 * events for a context.
535 		 */
536 		if (cpuctx->ctx.nr_cgroups > 0) {
537 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
538 			perf_pmu_disable(cpuctx->ctx.pmu);
539 
540 			if (mode & PERF_CGROUP_SWOUT) {
541 				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
542 				/*
543 				 * must not be done before ctxswout due
544 				 * to event_filter_match() in event_sched_out()
545 				 */
546 				cpuctx->cgrp = NULL;
547 			}
548 
549 			if (mode & PERF_CGROUP_SWIN) {
550 				WARN_ON_ONCE(cpuctx->cgrp);
551 				/*
552 				 * set cgrp before ctxsw in to allow
553 				 * event_filter_match() to not have to pass
554 				 * task around
555 				 * we pass the cpuctx->ctx to perf_cgroup_from_task()
556 				 * because cgorup events are only per-cpu
557 				 */
558 				cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
559 				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
560 			}
561 			perf_pmu_enable(cpuctx->ctx.pmu);
562 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
563 		}
564 	}
565 
566 	local_irq_restore(flags);
567 }
568 
569 static inline void perf_cgroup_sched_out(struct task_struct *task,
570 					 struct task_struct *next)
571 {
572 	struct perf_cgroup *cgrp1;
573 	struct perf_cgroup *cgrp2 = NULL;
574 
575 	rcu_read_lock();
576 	/*
577 	 * we come here when we know perf_cgroup_events > 0
578 	 * we do not need to pass the ctx here because we know
579 	 * we are holding the rcu lock
580 	 */
581 	cgrp1 = perf_cgroup_from_task(task, NULL);
582 
583 	/*
584 	 * next is NULL when called from perf_event_enable_on_exec()
585 	 * that will systematically cause a cgroup_switch()
586 	 */
587 	if (next)
588 		cgrp2 = perf_cgroup_from_task(next, NULL);
589 
590 	/*
591 	 * only schedule out current cgroup events if we know
592 	 * that we are switching to a different cgroup. Otherwise,
593 	 * do no touch the cgroup events.
594 	 */
595 	if (cgrp1 != cgrp2)
596 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
597 
598 	rcu_read_unlock();
599 }
600 
601 static inline void perf_cgroup_sched_in(struct task_struct *prev,
602 					struct task_struct *task)
603 {
604 	struct perf_cgroup *cgrp1;
605 	struct perf_cgroup *cgrp2 = NULL;
606 
607 	rcu_read_lock();
608 	/*
609 	 * we come here when we know perf_cgroup_events > 0
610 	 * we do not need to pass the ctx here because we know
611 	 * we are holding the rcu lock
612 	 */
613 	cgrp1 = perf_cgroup_from_task(task, NULL);
614 
615 	/* prev can never be NULL */
616 	cgrp2 = perf_cgroup_from_task(prev, NULL);
617 
618 	/*
619 	 * only need to schedule in cgroup events if we are changing
620 	 * cgroup during ctxsw. Cgroup events were not scheduled
621 	 * out of ctxsw out if that was not the case.
622 	 */
623 	if (cgrp1 != cgrp2)
624 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
625 
626 	rcu_read_unlock();
627 }
628 
629 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
630 				      struct perf_event_attr *attr,
631 				      struct perf_event *group_leader)
632 {
633 	struct perf_cgroup *cgrp;
634 	struct cgroup_subsys_state *css;
635 	struct fd f = fdget(fd);
636 	int ret = 0;
637 
638 	if (!f.file)
639 		return -EBADF;
640 
641 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
642 					 &perf_event_cgrp_subsys);
643 	if (IS_ERR(css)) {
644 		ret = PTR_ERR(css);
645 		goto out;
646 	}
647 
648 	cgrp = container_of(css, struct perf_cgroup, css);
649 	event->cgrp = cgrp;
650 
651 	/*
652 	 * all events in a group must monitor
653 	 * the same cgroup because a task belongs
654 	 * to only one perf cgroup at a time
655 	 */
656 	if (group_leader && group_leader->cgrp != cgrp) {
657 		perf_detach_cgroup(event);
658 		ret = -EINVAL;
659 	}
660 out:
661 	fdput(f);
662 	return ret;
663 }
664 
665 static inline void
666 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
667 {
668 	struct perf_cgroup_info *t;
669 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
670 	event->shadow_ctx_time = now - t->timestamp;
671 }
672 
673 static inline void
674 perf_cgroup_defer_enabled(struct perf_event *event)
675 {
676 	/*
677 	 * when the current task's perf cgroup does not match
678 	 * the event's, we need to remember to call the
679 	 * perf_mark_enable() function the first time a task with
680 	 * a matching perf cgroup is scheduled in.
681 	 */
682 	if (is_cgroup_event(event) && !perf_cgroup_match(event))
683 		event->cgrp_defer_enabled = 1;
684 }
685 
686 static inline void
687 perf_cgroup_mark_enabled(struct perf_event *event,
688 			 struct perf_event_context *ctx)
689 {
690 	struct perf_event *sub;
691 	u64 tstamp = perf_event_time(event);
692 
693 	if (!event->cgrp_defer_enabled)
694 		return;
695 
696 	event->cgrp_defer_enabled = 0;
697 
698 	event->tstamp_enabled = tstamp - event->total_time_enabled;
699 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
700 		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
701 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
702 			sub->cgrp_defer_enabled = 0;
703 		}
704 	}
705 }
706 #else /* !CONFIG_CGROUP_PERF */
707 
708 static inline bool
709 perf_cgroup_match(struct perf_event *event)
710 {
711 	return true;
712 }
713 
714 static inline void perf_detach_cgroup(struct perf_event *event)
715 {}
716 
717 static inline int is_cgroup_event(struct perf_event *event)
718 {
719 	return 0;
720 }
721 
722 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
723 {
724 	return 0;
725 }
726 
727 static inline void update_cgrp_time_from_event(struct perf_event *event)
728 {
729 }
730 
731 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
732 {
733 }
734 
735 static inline void perf_cgroup_sched_out(struct task_struct *task,
736 					 struct task_struct *next)
737 {
738 }
739 
740 static inline void perf_cgroup_sched_in(struct task_struct *prev,
741 					struct task_struct *task)
742 {
743 }
744 
745 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
746 				      struct perf_event_attr *attr,
747 				      struct perf_event *group_leader)
748 {
749 	return -EINVAL;
750 }
751 
752 static inline void
753 perf_cgroup_set_timestamp(struct task_struct *task,
754 			  struct perf_event_context *ctx)
755 {
756 }
757 
758 void
759 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
760 {
761 }
762 
763 static inline void
764 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
765 {
766 }
767 
768 static inline u64 perf_cgroup_event_time(struct perf_event *event)
769 {
770 	return 0;
771 }
772 
773 static inline void
774 perf_cgroup_defer_enabled(struct perf_event *event)
775 {
776 }
777 
778 static inline void
779 perf_cgroup_mark_enabled(struct perf_event *event,
780 			 struct perf_event_context *ctx)
781 {
782 }
783 #endif
784 
785 /*
786  * set default to be dependent on timer tick just
787  * like original code
788  */
789 #define PERF_CPU_HRTIMER (1000 / HZ)
790 /*
791  * function must be called with interrupts disbled
792  */
793 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
794 {
795 	struct perf_cpu_context *cpuctx;
796 	int rotations = 0;
797 
798 	WARN_ON(!irqs_disabled());
799 
800 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
801 	rotations = perf_rotate_context(cpuctx);
802 
803 	raw_spin_lock(&cpuctx->hrtimer_lock);
804 	if (rotations)
805 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
806 	else
807 		cpuctx->hrtimer_active = 0;
808 	raw_spin_unlock(&cpuctx->hrtimer_lock);
809 
810 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
811 }
812 
813 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
814 {
815 	struct hrtimer *timer = &cpuctx->hrtimer;
816 	struct pmu *pmu = cpuctx->ctx.pmu;
817 	u64 interval;
818 
819 	/* no multiplexing needed for SW PMU */
820 	if (pmu->task_ctx_nr == perf_sw_context)
821 		return;
822 
823 	/*
824 	 * check default is sane, if not set then force to
825 	 * default interval (1/tick)
826 	 */
827 	interval = pmu->hrtimer_interval_ms;
828 	if (interval < 1)
829 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
830 
831 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
832 
833 	raw_spin_lock_init(&cpuctx->hrtimer_lock);
834 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
835 	timer->function = perf_mux_hrtimer_handler;
836 }
837 
838 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
839 {
840 	struct hrtimer *timer = &cpuctx->hrtimer;
841 	struct pmu *pmu = cpuctx->ctx.pmu;
842 	unsigned long flags;
843 
844 	/* not for SW PMU */
845 	if (pmu->task_ctx_nr == perf_sw_context)
846 		return 0;
847 
848 	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
849 	if (!cpuctx->hrtimer_active) {
850 		cpuctx->hrtimer_active = 1;
851 		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
852 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
853 	}
854 	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
855 
856 	return 0;
857 }
858 
859 void perf_pmu_disable(struct pmu *pmu)
860 {
861 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
862 	if (!(*count)++)
863 		pmu->pmu_disable(pmu);
864 }
865 
866 void perf_pmu_enable(struct pmu *pmu)
867 {
868 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
869 	if (!--(*count))
870 		pmu->pmu_enable(pmu);
871 }
872 
873 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
874 
875 /*
876  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
877  * perf_event_task_tick() are fully serialized because they're strictly cpu
878  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
879  * disabled, while perf_event_task_tick is called from IRQ context.
880  */
881 static void perf_event_ctx_activate(struct perf_event_context *ctx)
882 {
883 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
884 
885 	WARN_ON(!irqs_disabled());
886 
887 	WARN_ON(!list_empty(&ctx->active_ctx_list));
888 
889 	list_add(&ctx->active_ctx_list, head);
890 }
891 
892 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
893 {
894 	WARN_ON(!irqs_disabled());
895 
896 	WARN_ON(list_empty(&ctx->active_ctx_list));
897 
898 	list_del_init(&ctx->active_ctx_list);
899 }
900 
901 static void get_ctx(struct perf_event_context *ctx)
902 {
903 	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
904 }
905 
906 static void free_ctx(struct rcu_head *head)
907 {
908 	struct perf_event_context *ctx;
909 
910 	ctx = container_of(head, struct perf_event_context, rcu_head);
911 	kfree(ctx->task_ctx_data);
912 	kfree(ctx);
913 }
914 
915 static void put_ctx(struct perf_event_context *ctx)
916 {
917 	if (atomic_dec_and_test(&ctx->refcount)) {
918 		if (ctx->parent_ctx)
919 			put_ctx(ctx->parent_ctx);
920 		if (ctx->task)
921 			put_task_struct(ctx->task);
922 		call_rcu(&ctx->rcu_head, free_ctx);
923 	}
924 }
925 
926 /*
927  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
928  * perf_pmu_migrate_context() we need some magic.
929  *
930  * Those places that change perf_event::ctx will hold both
931  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
932  *
933  * Lock ordering is by mutex address. There are two other sites where
934  * perf_event_context::mutex nests and those are:
935  *
936  *  - perf_event_exit_task_context()	[ child , 0 ]
937  *      __perf_event_exit_task()
938  *        sync_child_event()
939  *          put_event()			[ parent, 1 ]
940  *
941  *  - perf_event_init_context()		[ parent, 0 ]
942  *      inherit_task_group()
943  *        inherit_group()
944  *          inherit_event()
945  *            perf_event_alloc()
946  *              perf_init_event()
947  *                perf_try_init_event()	[ child , 1 ]
948  *
949  * While it appears there is an obvious deadlock here -- the parent and child
950  * nesting levels are inverted between the two. This is in fact safe because
951  * life-time rules separate them. That is an exiting task cannot fork, and a
952  * spawning task cannot (yet) exit.
953  *
954  * But remember that that these are parent<->child context relations, and
955  * migration does not affect children, therefore these two orderings should not
956  * interact.
957  *
958  * The change in perf_event::ctx does not affect children (as claimed above)
959  * because the sys_perf_event_open() case will install a new event and break
960  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
961  * concerned with cpuctx and that doesn't have children.
962  *
963  * The places that change perf_event::ctx will issue:
964  *
965  *   perf_remove_from_context();
966  *   synchronize_rcu();
967  *   perf_install_in_context();
968  *
969  * to affect the change. The remove_from_context() + synchronize_rcu() should
970  * quiesce the event, after which we can install it in the new location. This
971  * means that only external vectors (perf_fops, prctl) can perturb the event
972  * while in transit. Therefore all such accessors should also acquire
973  * perf_event_context::mutex to serialize against this.
974  *
975  * However; because event->ctx can change while we're waiting to acquire
976  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
977  * function.
978  *
979  * Lock order:
980  *	task_struct::perf_event_mutex
981  *	  perf_event_context::mutex
982  *	    perf_event_context::lock
983  *	    perf_event::child_mutex;
984  *	    perf_event::mmap_mutex
985  *	    mmap_sem
986  */
987 static struct perf_event_context *
988 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
989 {
990 	struct perf_event_context *ctx;
991 
992 again:
993 	rcu_read_lock();
994 	ctx = ACCESS_ONCE(event->ctx);
995 	if (!atomic_inc_not_zero(&ctx->refcount)) {
996 		rcu_read_unlock();
997 		goto again;
998 	}
999 	rcu_read_unlock();
1000 
1001 	mutex_lock_nested(&ctx->mutex, nesting);
1002 	if (event->ctx != ctx) {
1003 		mutex_unlock(&ctx->mutex);
1004 		put_ctx(ctx);
1005 		goto again;
1006 	}
1007 
1008 	return ctx;
1009 }
1010 
1011 static inline struct perf_event_context *
1012 perf_event_ctx_lock(struct perf_event *event)
1013 {
1014 	return perf_event_ctx_lock_nested(event, 0);
1015 }
1016 
1017 static void perf_event_ctx_unlock(struct perf_event *event,
1018 				  struct perf_event_context *ctx)
1019 {
1020 	mutex_unlock(&ctx->mutex);
1021 	put_ctx(ctx);
1022 }
1023 
1024 /*
1025  * This must be done under the ctx->lock, such as to serialize against
1026  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1027  * calling scheduler related locks and ctx->lock nests inside those.
1028  */
1029 static __must_check struct perf_event_context *
1030 unclone_ctx(struct perf_event_context *ctx)
1031 {
1032 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1033 
1034 	lockdep_assert_held(&ctx->lock);
1035 
1036 	if (parent_ctx)
1037 		ctx->parent_ctx = NULL;
1038 	ctx->generation++;
1039 
1040 	return parent_ctx;
1041 }
1042 
1043 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1044 {
1045 	/*
1046 	 * only top level events have the pid namespace they were created in
1047 	 */
1048 	if (event->parent)
1049 		event = event->parent;
1050 
1051 	return task_tgid_nr_ns(p, event->ns);
1052 }
1053 
1054 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1055 {
1056 	/*
1057 	 * only top level events have the pid namespace they were created in
1058 	 */
1059 	if (event->parent)
1060 		event = event->parent;
1061 
1062 	return task_pid_nr_ns(p, event->ns);
1063 }
1064 
1065 /*
1066  * If we inherit events we want to return the parent event id
1067  * to userspace.
1068  */
1069 static u64 primary_event_id(struct perf_event *event)
1070 {
1071 	u64 id = event->id;
1072 
1073 	if (event->parent)
1074 		id = event->parent->id;
1075 
1076 	return id;
1077 }
1078 
1079 /*
1080  * Get the perf_event_context for a task and lock it.
1081  * This has to cope with with the fact that until it is locked,
1082  * the context could get moved to another task.
1083  */
1084 static struct perf_event_context *
1085 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1086 {
1087 	struct perf_event_context *ctx;
1088 
1089 retry:
1090 	/*
1091 	 * One of the few rules of preemptible RCU is that one cannot do
1092 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1093 	 * part of the read side critical section was irqs-enabled -- see
1094 	 * rcu_read_unlock_special().
1095 	 *
1096 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1097 	 * side critical section has interrupts disabled.
1098 	 */
1099 	local_irq_save(*flags);
1100 	rcu_read_lock();
1101 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1102 	if (ctx) {
1103 		/*
1104 		 * If this context is a clone of another, it might
1105 		 * get swapped for another underneath us by
1106 		 * perf_event_task_sched_out, though the
1107 		 * rcu_read_lock() protects us from any context
1108 		 * getting freed.  Lock the context and check if it
1109 		 * got swapped before we could get the lock, and retry
1110 		 * if so.  If we locked the right context, then it
1111 		 * can't get swapped on us any more.
1112 		 */
1113 		raw_spin_lock(&ctx->lock);
1114 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1115 			raw_spin_unlock(&ctx->lock);
1116 			rcu_read_unlock();
1117 			local_irq_restore(*flags);
1118 			goto retry;
1119 		}
1120 
1121 		if (!atomic_inc_not_zero(&ctx->refcount)) {
1122 			raw_spin_unlock(&ctx->lock);
1123 			ctx = NULL;
1124 		}
1125 	}
1126 	rcu_read_unlock();
1127 	if (!ctx)
1128 		local_irq_restore(*flags);
1129 	return ctx;
1130 }
1131 
1132 /*
1133  * Get the context for a task and increment its pin_count so it
1134  * can't get swapped to another task.  This also increments its
1135  * reference count so that the context can't get freed.
1136  */
1137 static struct perf_event_context *
1138 perf_pin_task_context(struct task_struct *task, int ctxn)
1139 {
1140 	struct perf_event_context *ctx;
1141 	unsigned long flags;
1142 
1143 	ctx = perf_lock_task_context(task, ctxn, &flags);
1144 	if (ctx) {
1145 		++ctx->pin_count;
1146 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1147 	}
1148 	return ctx;
1149 }
1150 
1151 static void perf_unpin_context(struct perf_event_context *ctx)
1152 {
1153 	unsigned long flags;
1154 
1155 	raw_spin_lock_irqsave(&ctx->lock, flags);
1156 	--ctx->pin_count;
1157 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1158 }
1159 
1160 /*
1161  * Update the record of the current time in a context.
1162  */
1163 static void update_context_time(struct perf_event_context *ctx)
1164 {
1165 	u64 now = perf_clock();
1166 
1167 	ctx->time += now - ctx->timestamp;
1168 	ctx->timestamp = now;
1169 }
1170 
1171 static u64 perf_event_time(struct perf_event *event)
1172 {
1173 	struct perf_event_context *ctx = event->ctx;
1174 
1175 	if (is_cgroup_event(event))
1176 		return perf_cgroup_event_time(event);
1177 
1178 	return ctx ? ctx->time : 0;
1179 }
1180 
1181 /*
1182  * Update the total_time_enabled and total_time_running fields for a event.
1183  * The caller of this function needs to hold the ctx->lock.
1184  */
1185 static void update_event_times(struct perf_event *event)
1186 {
1187 	struct perf_event_context *ctx = event->ctx;
1188 	u64 run_end;
1189 
1190 	if (event->state < PERF_EVENT_STATE_INACTIVE ||
1191 	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1192 		return;
1193 	/*
1194 	 * in cgroup mode, time_enabled represents
1195 	 * the time the event was enabled AND active
1196 	 * tasks were in the monitored cgroup. This is
1197 	 * independent of the activity of the context as
1198 	 * there may be a mix of cgroup and non-cgroup events.
1199 	 *
1200 	 * That is why we treat cgroup events differently
1201 	 * here.
1202 	 */
1203 	if (is_cgroup_event(event))
1204 		run_end = perf_cgroup_event_time(event);
1205 	else if (ctx->is_active)
1206 		run_end = ctx->time;
1207 	else
1208 		run_end = event->tstamp_stopped;
1209 
1210 	event->total_time_enabled = run_end - event->tstamp_enabled;
1211 
1212 	if (event->state == PERF_EVENT_STATE_INACTIVE)
1213 		run_end = event->tstamp_stopped;
1214 	else
1215 		run_end = perf_event_time(event);
1216 
1217 	event->total_time_running = run_end - event->tstamp_running;
1218 
1219 }
1220 
1221 /*
1222  * Update total_time_enabled and total_time_running for all events in a group.
1223  */
1224 static void update_group_times(struct perf_event *leader)
1225 {
1226 	struct perf_event *event;
1227 
1228 	update_event_times(leader);
1229 	list_for_each_entry(event, &leader->sibling_list, group_entry)
1230 		update_event_times(event);
1231 }
1232 
1233 static struct list_head *
1234 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1235 {
1236 	if (event->attr.pinned)
1237 		return &ctx->pinned_groups;
1238 	else
1239 		return &ctx->flexible_groups;
1240 }
1241 
1242 /*
1243  * Add a event from the lists for its context.
1244  * Must be called with ctx->mutex and ctx->lock held.
1245  */
1246 static void
1247 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1248 {
1249 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1250 	event->attach_state |= PERF_ATTACH_CONTEXT;
1251 
1252 	/*
1253 	 * If we're a stand alone event or group leader, we go to the context
1254 	 * list, group events are kept attached to the group so that
1255 	 * perf_group_detach can, at all times, locate all siblings.
1256 	 */
1257 	if (event->group_leader == event) {
1258 		struct list_head *list;
1259 
1260 		if (is_software_event(event))
1261 			event->group_flags |= PERF_GROUP_SOFTWARE;
1262 
1263 		list = ctx_group_list(event, ctx);
1264 		list_add_tail(&event->group_entry, list);
1265 	}
1266 
1267 	if (is_cgroup_event(event))
1268 		ctx->nr_cgroups++;
1269 
1270 	list_add_rcu(&event->event_entry, &ctx->event_list);
1271 	ctx->nr_events++;
1272 	if (event->attr.inherit_stat)
1273 		ctx->nr_stat++;
1274 
1275 	ctx->generation++;
1276 }
1277 
1278 /*
1279  * Initialize event state based on the perf_event_attr::disabled.
1280  */
1281 static inline void perf_event__state_init(struct perf_event *event)
1282 {
1283 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1284 					      PERF_EVENT_STATE_INACTIVE;
1285 }
1286 
1287 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1288 {
1289 	int entry = sizeof(u64); /* value */
1290 	int size = 0;
1291 	int nr = 1;
1292 
1293 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1294 		size += sizeof(u64);
1295 
1296 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1297 		size += sizeof(u64);
1298 
1299 	if (event->attr.read_format & PERF_FORMAT_ID)
1300 		entry += sizeof(u64);
1301 
1302 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1303 		nr += nr_siblings;
1304 		size += sizeof(u64);
1305 	}
1306 
1307 	size += entry * nr;
1308 	event->read_size = size;
1309 }
1310 
1311 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1312 {
1313 	struct perf_sample_data *data;
1314 	u16 size = 0;
1315 
1316 	if (sample_type & PERF_SAMPLE_IP)
1317 		size += sizeof(data->ip);
1318 
1319 	if (sample_type & PERF_SAMPLE_ADDR)
1320 		size += sizeof(data->addr);
1321 
1322 	if (sample_type & PERF_SAMPLE_PERIOD)
1323 		size += sizeof(data->period);
1324 
1325 	if (sample_type & PERF_SAMPLE_WEIGHT)
1326 		size += sizeof(data->weight);
1327 
1328 	if (sample_type & PERF_SAMPLE_READ)
1329 		size += event->read_size;
1330 
1331 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1332 		size += sizeof(data->data_src.val);
1333 
1334 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1335 		size += sizeof(data->txn);
1336 
1337 	event->header_size = size;
1338 }
1339 
1340 /*
1341  * Called at perf_event creation and when events are attached/detached from a
1342  * group.
1343  */
1344 static void perf_event__header_size(struct perf_event *event)
1345 {
1346 	__perf_event_read_size(event,
1347 			       event->group_leader->nr_siblings);
1348 	__perf_event_header_size(event, event->attr.sample_type);
1349 }
1350 
1351 static void perf_event__id_header_size(struct perf_event *event)
1352 {
1353 	struct perf_sample_data *data;
1354 	u64 sample_type = event->attr.sample_type;
1355 	u16 size = 0;
1356 
1357 	if (sample_type & PERF_SAMPLE_TID)
1358 		size += sizeof(data->tid_entry);
1359 
1360 	if (sample_type & PERF_SAMPLE_TIME)
1361 		size += sizeof(data->time);
1362 
1363 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1364 		size += sizeof(data->id);
1365 
1366 	if (sample_type & PERF_SAMPLE_ID)
1367 		size += sizeof(data->id);
1368 
1369 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1370 		size += sizeof(data->stream_id);
1371 
1372 	if (sample_type & PERF_SAMPLE_CPU)
1373 		size += sizeof(data->cpu_entry);
1374 
1375 	event->id_header_size = size;
1376 }
1377 
1378 static bool perf_event_validate_size(struct perf_event *event)
1379 {
1380 	/*
1381 	 * The values computed here will be over-written when we actually
1382 	 * attach the event.
1383 	 */
1384 	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1385 	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1386 	perf_event__id_header_size(event);
1387 
1388 	/*
1389 	 * Sum the lot; should not exceed the 64k limit we have on records.
1390 	 * Conservative limit to allow for callchains and other variable fields.
1391 	 */
1392 	if (event->read_size + event->header_size +
1393 	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1394 		return false;
1395 
1396 	return true;
1397 }
1398 
1399 static void perf_group_attach(struct perf_event *event)
1400 {
1401 	struct perf_event *group_leader = event->group_leader, *pos;
1402 
1403 	/*
1404 	 * We can have double attach due to group movement in perf_event_open.
1405 	 */
1406 	if (event->attach_state & PERF_ATTACH_GROUP)
1407 		return;
1408 
1409 	event->attach_state |= PERF_ATTACH_GROUP;
1410 
1411 	if (group_leader == event)
1412 		return;
1413 
1414 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1415 
1416 	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1417 			!is_software_event(event))
1418 		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1419 
1420 	list_add_tail(&event->group_entry, &group_leader->sibling_list);
1421 	group_leader->nr_siblings++;
1422 
1423 	perf_event__header_size(group_leader);
1424 
1425 	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1426 		perf_event__header_size(pos);
1427 }
1428 
1429 /*
1430  * Remove a event from the lists for its context.
1431  * Must be called with ctx->mutex and ctx->lock held.
1432  */
1433 static void
1434 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1435 {
1436 	struct perf_cpu_context *cpuctx;
1437 
1438 	WARN_ON_ONCE(event->ctx != ctx);
1439 	lockdep_assert_held(&ctx->lock);
1440 
1441 	/*
1442 	 * We can have double detach due to exit/hot-unplug + close.
1443 	 */
1444 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1445 		return;
1446 
1447 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1448 
1449 	if (is_cgroup_event(event)) {
1450 		ctx->nr_cgroups--;
1451 		cpuctx = __get_cpu_context(ctx);
1452 		/*
1453 		 * if there are no more cgroup events
1454 		 * then cler cgrp to avoid stale pointer
1455 		 * in update_cgrp_time_from_cpuctx()
1456 		 */
1457 		if (!ctx->nr_cgroups)
1458 			cpuctx->cgrp = NULL;
1459 	}
1460 
1461 	ctx->nr_events--;
1462 	if (event->attr.inherit_stat)
1463 		ctx->nr_stat--;
1464 
1465 	list_del_rcu(&event->event_entry);
1466 
1467 	if (event->group_leader == event)
1468 		list_del_init(&event->group_entry);
1469 
1470 	update_group_times(event);
1471 
1472 	/*
1473 	 * If event was in error state, then keep it
1474 	 * that way, otherwise bogus counts will be
1475 	 * returned on read(). The only way to get out
1476 	 * of error state is by explicit re-enabling
1477 	 * of the event
1478 	 */
1479 	if (event->state > PERF_EVENT_STATE_OFF)
1480 		event->state = PERF_EVENT_STATE_OFF;
1481 
1482 	ctx->generation++;
1483 }
1484 
1485 static void perf_group_detach(struct perf_event *event)
1486 {
1487 	struct perf_event *sibling, *tmp;
1488 	struct list_head *list = NULL;
1489 
1490 	/*
1491 	 * We can have double detach due to exit/hot-unplug + close.
1492 	 */
1493 	if (!(event->attach_state & PERF_ATTACH_GROUP))
1494 		return;
1495 
1496 	event->attach_state &= ~PERF_ATTACH_GROUP;
1497 
1498 	/*
1499 	 * If this is a sibling, remove it from its group.
1500 	 */
1501 	if (event->group_leader != event) {
1502 		list_del_init(&event->group_entry);
1503 		event->group_leader->nr_siblings--;
1504 		goto out;
1505 	}
1506 
1507 	if (!list_empty(&event->group_entry))
1508 		list = &event->group_entry;
1509 
1510 	/*
1511 	 * If this was a group event with sibling events then
1512 	 * upgrade the siblings to singleton events by adding them
1513 	 * to whatever list we are on.
1514 	 */
1515 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1516 		if (list)
1517 			list_move_tail(&sibling->group_entry, list);
1518 		sibling->group_leader = sibling;
1519 
1520 		/* Inherit group flags from the previous leader */
1521 		sibling->group_flags = event->group_flags;
1522 
1523 		WARN_ON_ONCE(sibling->ctx != event->ctx);
1524 	}
1525 
1526 out:
1527 	perf_event__header_size(event->group_leader);
1528 
1529 	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1530 		perf_event__header_size(tmp);
1531 }
1532 
1533 /*
1534  * User event without the task.
1535  */
1536 static bool is_orphaned_event(struct perf_event *event)
1537 {
1538 	return event && !is_kernel_event(event) && !event->owner;
1539 }
1540 
1541 /*
1542  * Event has a parent but parent's task finished and it's
1543  * alive only because of children holding refference.
1544  */
1545 static bool is_orphaned_child(struct perf_event *event)
1546 {
1547 	return is_orphaned_event(event->parent);
1548 }
1549 
1550 static void orphans_remove_work(struct work_struct *work);
1551 
1552 static void schedule_orphans_remove(struct perf_event_context *ctx)
1553 {
1554 	if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
1555 		return;
1556 
1557 	if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
1558 		get_ctx(ctx);
1559 		ctx->orphans_remove_sched = true;
1560 	}
1561 }
1562 
1563 static int __init perf_workqueue_init(void)
1564 {
1565 	perf_wq = create_singlethread_workqueue("perf");
1566 	WARN(!perf_wq, "failed to create perf workqueue\n");
1567 	return perf_wq ? 0 : -1;
1568 }
1569 
1570 core_initcall(perf_workqueue_init);
1571 
1572 static inline int pmu_filter_match(struct perf_event *event)
1573 {
1574 	struct pmu *pmu = event->pmu;
1575 	return pmu->filter_match ? pmu->filter_match(event) : 1;
1576 }
1577 
1578 static inline int
1579 event_filter_match(struct perf_event *event)
1580 {
1581 	return (event->cpu == -1 || event->cpu == smp_processor_id())
1582 	    && perf_cgroup_match(event) && pmu_filter_match(event);
1583 }
1584 
1585 static void
1586 event_sched_out(struct perf_event *event,
1587 		  struct perf_cpu_context *cpuctx,
1588 		  struct perf_event_context *ctx)
1589 {
1590 	u64 tstamp = perf_event_time(event);
1591 	u64 delta;
1592 
1593 	WARN_ON_ONCE(event->ctx != ctx);
1594 	lockdep_assert_held(&ctx->lock);
1595 
1596 	/*
1597 	 * An event which could not be activated because of
1598 	 * filter mismatch still needs to have its timings
1599 	 * maintained, otherwise bogus information is return
1600 	 * via read() for time_enabled, time_running:
1601 	 */
1602 	if (event->state == PERF_EVENT_STATE_INACTIVE
1603 	    && !event_filter_match(event)) {
1604 		delta = tstamp - event->tstamp_stopped;
1605 		event->tstamp_running += delta;
1606 		event->tstamp_stopped = tstamp;
1607 	}
1608 
1609 	if (event->state != PERF_EVENT_STATE_ACTIVE)
1610 		return;
1611 
1612 	perf_pmu_disable(event->pmu);
1613 
1614 	event->state = PERF_EVENT_STATE_INACTIVE;
1615 	if (event->pending_disable) {
1616 		event->pending_disable = 0;
1617 		event->state = PERF_EVENT_STATE_OFF;
1618 	}
1619 	event->tstamp_stopped = tstamp;
1620 	event->pmu->del(event, 0);
1621 	event->oncpu = -1;
1622 
1623 	if (!is_software_event(event))
1624 		cpuctx->active_oncpu--;
1625 	if (!--ctx->nr_active)
1626 		perf_event_ctx_deactivate(ctx);
1627 	if (event->attr.freq && event->attr.sample_freq)
1628 		ctx->nr_freq--;
1629 	if (event->attr.exclusive || !cpuctx->active_oncpu)
1630 		cpuctx->exclusive = 0;
1631 
1632 	if (is_orphaned_child(event))
1633 		schedule_orphans_remove(ctx);
1634 
1635 	perf_pmu_enable(event->pmu);
1636 }
1637 
1638 static void
1639 group_sched_out(struct perf_event *group_event,
1640 		struct perf_cpu_context *cpuctx,
1641 		struct perf_event_context *ctx)
1642 {
1643 	struct perf_event *event;
1644 	int state = group_event->state;
1645 
1646 	event_sched_out(group_event, cpuctx, ctx);
1647 
1648 	/*
1649 	 * Schedule out siblings (if any):
1650 	 */
1651 	list_for_each_entry(event, &group_event->sibling_list, group_entry)
1652 		event_sched_out(event, cpuctx, ctx);
1653 
1654 	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1655 		cpuctx->exclusive = 0;
1656 }
1657 
1658 struct remove_event {
1659 	struct perf_event *event;
1660 	bool detach_group;
1661 };
1662 
1663 static void ___perf_remove_from_context(void *info)
1664 {
1665 	struct remove_event *re = info;
1666 	struct perf_event *event = re->event;
1667 	struct perf_event_context *ctx = event->ctx;
1668 
1669 	if (re->detach_group)
1670 		perf_group_detach(event);
1671 	list_del_event(event, ctx);
1672 }
1673 
1674 /*
1675  * Cross CPU call to remove a performance event
1676  *
1677  * We disable the event on the hardware level first. After that we
1678  * remove it from the context list.
1679  */
1680 static int __perf_remove_from_context(void *info)
1681 {
1682 	struct remove_event *re = info;
1683 	struct perf_event *event = re->event;
1684 	struct perf_event_context *ctx = event->ctx;
1685 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1686 
1687 	raw_spin_lock(&ctx->lock);
1688 	event_sched_out(event, cpuctx, ctx);
1689 	if (re->detach_group)
1690 		perf_group_detach(event);
1691 	list_del_event(event, ctx);
1692 	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1693 		ctx->is_active = 0;
1694 		cpuctx->task_ctx = NULL;
1695 	}
1696 	raw_spin_unlock(&ctx->lock);
1697 
1698 	return 0;
1699 }
1700 
1701 /*
1702  * Remove the event from a task's (or a CPU's) list of events.
1703  *
1704  * CPU events are removed with a smp call. For task events we only
1705  * call when the task is on a CPU.
1706  *
1707  * If event->ctx is a cloned context, callers must make sure that
1708  * every task struct that event->ctx->task could possibly point to
1709  * remains valid.  This is OK when called from perf_release since
1710  * that only calls us on the top-level context, which can't be a clone.
1711  * When called from perf_event_exit_task, it's OK because the
1712  * context has been detached from its task.
1713  */
1714 static void perf_remove_from_context(struct perf_event *event, bool detach_group)
1715 {
1716 	struct perf_event_context *ctx = event->ctx;
1717 	struct remove_event re = {
1718 		.event = event,
1719 		.detach_group = detach_group,
1720 	};
1721 
1722 	lockdep_assert_held(&ctx->mutex);
1723 
1724 	event_function_call(event, __perf_remove_from_context,
1725 			    ___perf_remove_from_context, &re);
1726 }
1727 
1728 /*
1729  * Cross CPU call to disable a performance event
1730  */
1731 int __perf_event_disable(void *info)
1732 {
1733 	struct perf_event *event = info;
1734 	struct perf_event_context *ctx = event->ctx;
1735 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1736 
1737 	/*
1738 	 * If this is a per-task event, need to check whether this
1739 	 * event's task is the current task on this cpu.
1740 	 *
1741 	 * Can trigger due to concurrent perf_event_context_sched_out()
1742 	 * flipping contexts around.
1743 	 */
1744 	if (ctx->task && cpuctx->task_ctx != ctx)
1745 		return -EINVAL;
1746 
1747 	raw_spin_lock(&ctx->lock);
1748 
1749 	/*
1750 	 * If the event is on, turn it off.
1751 	 * If it is in error state, leave it in error state.
1752 	 */
1753 	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1754 		update_context_time(ctx);
1755 		update_cgrp_time_from_event(event);
1756 		update_group_times(event);
1757 		if (event == event->group_leader)
1758 			group_sched_out(event, cpuctx, ctx);
1759 		else
1760 			event_sched_out(event, cpuctx, ctx);
1761 		event->state = PERF_EVENT_STATE_OFF;
1762 	}
1763 
1764 	raw_spin_unlock(&ctx->lock);
1765 
1766 	return 0;
1767 }
1768 
1769 void ___perf_event_disable(void *info)
1770 {
1771 	struct perf_event *event = info;
1772 
1773 	/*
1774 	 * Since we have the lock this context can't be scheduled
1775 	 * in, so we can change the state safely.
1776 	 */
1777 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
1778 		update_group_times(event);
1779 		event->state = PERF_EVENT_STATE_OFF;
1780 	}
1781 }
1782 
1783 /*
1784  * Disable a event.
1785  *
1786  * If event->ctx is a cloned context, callers must make sure that
1787  * every task struct that event->ctx->task could possibly point to
1788  * remains valid.  This condition is satisifed when called through
1789  * perf_event_for_each_child or perf_event_for_each because they
1790  * hold the top-level event's child_mutex, so any descendant that
1791  * goes to exit will block in sync_child_event.
1792  * When called from perf_pending_event it's OK because event->ctx
1793  * is the current context on this CPU and preemption is disabled,
1794  * hence we can't get into perf_event_task_sched_out for this context.
1795  */
1796 static void _perf_event_disable(struct perf_event *event)
1797 {
1798 	struct perf_event_context *ctx = event->ctx;
1799 
1800 	raw_spin_lock_irq(&ctx->lock);
1801 	if (event->state <= PERF_EVENT_STATE_OFF) {
1802 		raw_spin_unlock_irq(&ctx->lock);
1803 		return;
1804 	}
1805 	raw_spin_unlock_irq(&ctx->lock);
1806 
1807 	event_function_call(event, __perf_event_disable,
1808 			    ___perf_event_disable, event);
1809 }
1810 
1811 /*
1812  * Strictly speaking kernel users cannot create groups and therefore this
1813  * interface does not need the perf_event_ctx_lock() magic.
1814  */
1815 void perf_event_disable(struct perf_event *event)
1816 {
1817 	struct perf_event_context *ctx;
1818 
1819 	ctx = perf_event_ctx_lock(event);
1820 	_perf_event_disable(event);
1821 	perf_event_ctx_unlock(event, ctx);
1822 }
1823 EXPORT_SYMBOL_GPL(perf_event_disable);
1824 
1825 static void perf_set_shadow_time(struct perf_event *event,
1826 				 struct perf_event_context *ctx,
1827 				 u64 tstamp)
1828 {
1829 	/*
1830 	 * use the correct time source for the time snapshot
1831 	 *
1832 	 * We could get by without this by leveraging the
1833 	 * fact that to get to this function, the caller
1834 	 * has most likely already called update_context_time()
1835 	 * and update_cgrp_time_xx() and thus both timestamp
1836 	 * are identical (or very close). Given that tstamp is,
1837 	 * already adjusted for cgroup, we could say that:
1838 	 *    tstamp - ctx->timestamp
1839 	 * is equivalent to
1840 	 *    tstamp - cgrp->timestamp.
1841 	 *
1842 	 * Then, in perf_output_read(), the calculation would
1843 	 * work with no changes because:
1844 	 * - event is guaranteed scheduled in
1845 	 * - no scheduled out in between
1846 	 * - thus the timestamp would be the same
1847 	 *
1848 	 * But this is a bit hairy.
1849 	 *
1850 	 * So instead, we have an explicit cgroup call to remain
1851 	 * within the time time source all along. We believe it
1852 	 * is cleaner and simpler to understand.
1853 	 */
1854 	if (is_cgroup_event(event))
1855 		perf_cgroup_set_shadow_time(event, tstamp);
1856 	else
1857 		event->shadow_ctx_time = tstamp - ctx->timestamp;
1858 }
1859 
1860 #define MAX_INTERRUPTS (~0ULL)
1861 
1862 static void perf_log_throttle(struct perf_event *event, int enable);
1863 static void perf_log_itrace_start(struct perf_event *event);
1864 
1865 static int
1866 event_sched_in(struct perf_event *event,
1867 		 struct perf_cpu_context *cpuctx,
1868 		 struct perf_event_context *ctx)
1869 {
1870 	u64 tstamp = perf_event_time(event);
1871 	int ret = 0;
1872 
1873 	lockdep_assert_held(&ctx->lock);
1874 
1875 	if (event->state <= PERF_EVENT_STATE_OFF)
1876 		return 0;
1877 
1878 	event->state = PERF_EVENT_STATE_ACTIVE;
1879 	event->oncpu = smp_processor_id();
1880 
1881 	/*
1882 	 * Unthrottle events, since we scheduled we might have missed several
1883 	 * ticks already, also for a heavily scheduling task there is little
1884 	 * guarantee it'll get a tick in a timely manner.
1885 	 */
1886 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1887 		perf_log_throttle(event, 1);
1888 		event->hw.interrupts = 0;
1889 	}
1890 
1891 	/*
1892 	 * The new state must be visible before we turn it on in the hardware:
1893 	 */
1894 	smp_wmb();
1895 
1896 	perf_pmu_disable(event->pmu);
1897 
1898 	perf_set_shadow_time(event, ctx, tstamp);
1899 
1900 	perf_log_itrace_start(event);
1901 
1902 	if (event->pmu->add(event, PERF_EF_START)) {
1903 		event->state = PERF_EVENT_STATE_INACTIVE;
1904 		event->oncpu = -1;
1905 		ret = -EAGAIN;
1906 		goto out;
1907 	}
1908 
1909 	event->tstamp_running += tstamp - event->tstamp_stopped;
1910 
1911 	if (!is_software_event(event))
1912 		cpuctx->active_oncpu++;
1913 	if (!ctx->nr_active++)
1914 		perf_event_ctx_activate(ctx);
1915 	if (event->attr.freq && event->attr.sample_freq)
1916 		ctx->nr_freq++;
1917 
1918 	if (event->attr.exclusive)
1919 		cpuctx->exclusive = 1;
1920 
1921 	if (is_orphaned_child(event))
1922 		schedule_orphans_remove(ctx);
1923 
1924 out:
1925 	perf_pmu_enable(event->pmu);
1926 
1927 	return ret;
1928 }
1929 
1930 static int
1931 group_sched_in(struct perf_event *group_event,
1932 	       struct perf_cpu_context *cpuctx,
1933 	       struct perf_event_context *ctx)
1934 {
1935 	struct perf_event *event, *partial_group = NULL;
1936 	struct pmu *pmu = ctx->pmu;
1937 	u64 now = ctx->time;
1938 	bool simulate = false;
1939 
1940 	if (group_event->state == PERF_EVENT_STATE_OFF)
1941 		return 0;
1942 
1943 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
1944 
1945 	if (event_sched_in(group_event, cpuctx, ctx)) {
1946 		pmu->cancel_txn(pmu);
1947 		perf_mux_hrtimer_restart(cpuctx);
1948 		return -EAGAIN;
1949 	}
1950 
1951 	/*
1952 	 * Schedule in siblings as one group (if any):
1953 	 */
1954 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1955 		if (event_sched_in(event, cpuctx, ctx)) {
1956 			partial_group = event;
1957 			goto group_error;
1958 		}
1959 	}
1960 
1961 	if (!pmu->commit_txn(pmu))
1962 		return 0;
1963 
1964 group_error:
1965 	/*
1966 	 * Groups can be scheduled in as one unit only, so undo any
1967 	 * partial group before returning:
1968 	 * The events up to the failed event are scheduled out normally,
1969 	 * tstamp_stopped will be updated.
1970 	 *
1971 	 * The failed events and the remaining siblings need to have
1972 	 * their timings updated as if they had gone thru event_sched_in()
1973 	 * and event_sched_out(). This is required to get consistent timings
1974 	 * across the group. This also takes care of the case where the group
1975 	 * could never be scheduled by ensuring tstamp_stopped is set to mark
1976 	 * the time the event was actually stopped, such that time delta
1977 	 * calculation in update_event_times() is correct.
1978 	 */
1979 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1980 		if (event == partial_group)
1981 			simulate = true;
1982 
1983 		if (simulate) {
1984 			event->tstamp_running += now - event->tstamp_stopped;
1985 			event->tstamp_stopped = now;
1986 		} else {
1987 			event_sched_out(event, cpuctx, ctx);
1988 		}
1989 	}
1990 	event_sched_out(group_event, cpuctx, ctx);
1991 
1992 	pmu->cancel_txn(pmu);
1993 
1994 	perf_mux_hrtimer_restart(cpuctx);
1995 
1996 	return -EAGAIN;
1997 }
1998 
1999 /*
2000  * Work out whether we can put this event group on the CPU now.
2001  */
2002 static int group_can_go_on(struct perf_event *event,
2003 			   struct perf_cpu_context *cpuctx,
2004 			   int can_add_hw)
2005 {
2006 	/*
2007 	 * Groups consisting entirely of software events can always go on.
2008 	 */
2009 	if (event->group_flags & PERF_GROUP_SOFTWARE)
2010 		return 1;
2011 	/*
2012 	 * If an exclusive group is already on, no other hardware
2013 	 * events can go on.
2014 	 */
2015 	if (cpuctx->exclusive)
2016 		return 0;
2017 	/*
2018 	 * If this group is exclusive and there are already
2019 	 * events on the CPU, it can't go on.
2020 	 */
2021 	if (event->attr.exclusive && cpuctx->active_oncpu)
2022 		return 0;
2023 	/*
2024 	 * Otherwise, try to add it if all previous groups were able
2025 	 * to go on.
2026 	 */
2027 	return can_add_hw;
2028 }
2029 
2030 static void add_event_to_ctx(struct perf_event *event,
2031 			       struct perf_event_context *ctx)
2032 {
2033 	u64 tstamp = perf_event_time(event);
2034 
2035 	list_add_event(event, ctx);
2036 	perf_group_attach(event);
2037 	event->tstamp_enabled = tstamp;
2038 	event->tstamp_running = tstamp;
2039 	event->tstamp_stopped = tstamp;
2040 }
2041 
2042 static void task_ctx_sched_out(struct perf_event_context *ctx);
2043 static void
2044 ctx_sched_in(struct perf_event_context *ctx,
2045 	     struct perf_cpu_context *cpuctx,
2046 	     enum event_type_t event_type,
2047 	     struct task_struct *task);
2048 
2049 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2050 				struct perf_event_context *ctx,
2051 				struct task_struct *task)
2052 {
2053 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2054 	if (ctx)
2055 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2056 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2057 	if (ctx)
2058 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2059 }
2060 
2061 static void ___perf_install_in_context(void *info)
2062 {
2063 	struct perf_event *event = info;
2064 	struct perf_event_context *ctx = event->ctx;
2065 
2066 	/*
2067 	 * Since the task isn't running, its safe to add the event, us holding
2068 	 * the ctx->lock ensures the task won't get scheduled in.
2069 	 */
2070 	add_event_to_ctx(event, ctx);
2071 }
2072 
2073 /*
2074  * Cross CPU call to install and enable a performance event
2075  *
2076  * Must be called with ctx->mutex held
2077  */
2078 static int  __perf_install_in_context(void *info)
2079 {
2080 	struct perf_event *event = info;
2081 	struct perf_event_context *ctx = event->ctx;
2082 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2083 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2084 	struct task_struct *task = current;
2085 
2086 	perf_ctx_lock(cpuctx, task_ctx);
2087 	perf_pmu_disable(cpuctx->ctx.pmu);
2088 
2089 	/*
2090 	 * If there was an active task_ctx schedule it out.
2091 	 */
2092 	if (task_ctx)
2093 		task_ctx_sched_out(task_ctx);
2094 
2095 	/*
2096 	 * If the context we're installing events in is not the
2097 	 * active task_ctx, flip them.
2098 	 */
2099 	if (ctx->task && task_ctx != ctx) {
2100 		if (task_ctx)
2101 			raw_spin_unlock(&task_ctx->lock);
2102 		raw_spin_lock(&ctx->lock);
2103 		task_ctx = ctx;
2104 	}
2105 
2106 	if (task_ctx) {
2107 		cpuctx->task_ctx = task_ctx;
2108 		task = task_ctx->task;
2109 	}
2110 
2111 	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2112 
2113 	update_context_time(ctx);
2114 	/*
2115 	 * update cgrp time only if current cgrp
2116 	 * matches event->cgrp. Must be done before
2117 	 * calling add_event_to_ctx()
2118 	 */
2119 	update_cgrp_time_from_event(event);
2120 
2121 	add_event_to_ctx(event, ctx);
2122 
2123 	/*
2124 	 * Schedule everything back in
2125 	 */
2126 	perf_event_sched_in(cpuctx, task_ctx, task);
2127 
2128 	perf_pmu_enable(cpuctx->ctx.pmu);
2129 	perf_ctx_unlock(cpuctx, task_ctx);
2130 
2131 	return 0;
2132 }
2133 
2134 /*
2135  * Attach a performance event to a context
2136  *
2137  * First we add the event to the list with the hardware enable bit
2138  * in event->hw_config cleared.
2139  *
2140  * If the event is attached to a task which is on a CPU we use a smp
2141  * call to enable it in the task context. The task might have been
2142  * scheduled away, but we check this in the smp call again.
2143  */
2144 static void
2145 perf_install_in_context(struct perf_event_context *ctx,
2146 			struct perf_event *event,
2147 			int cpu)
2148 {
2149 	lockdep_assert_held(&ctx->mutex);
2150 
2151 	event->ctx = ctx;
2152 	if (event->cpu != -1)
2153 		event->cpu = cpu;
2154 
2155 	event_function_call(event, __perf_install_in_context,
2156 			    ___perf_install_in_context, event);
2157 }
2158 
2159 /*
2160  * Put a event into inactive state and update time fields.
2161  * Enabling the leader of a group effectively enables all
2162  * the group members that aren't explicitly disabled, so we
2163  * have to update their ->tstamp_enabled also.
2164  * Note: this works for group members as well as group leaders
2165  * since the non-leader members' sibling_lists will be empty.
2166  */
2167 static void __perf_event_mark_enabled(struct perf_event *event)
2168 {
2169 	struct perf_event *sub;
2170 	u64 tstamp = perf_event_time(event);
2171 
2172 	event->state = PERF_EVENT_STATE_INACTIVE;
2173 	event->tstamp_enabled = tstamp - event->total_time_enabled;
2174 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2175 		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2176 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2177 	}
2178 }
2179 
2180 /*
2181  * Cross CPU call to enable a performance event
2182  */
2183 static int __perf_event_enable(void *info)
2184 {
2185 	struct perf_event *event = info;
2186 	struct perf_event_context *ctx = event->ctx;
2187 	struct perf_event *leader = event->group_leader;
2188 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2189 	int err;
2190 
2191 	/*
2192 	 * There's a time window between 'ctx->is_active' check
2193 	 * in perf_event_enable function and this place having:
2194 	 *   - IRQs on
2195 	 *   - ctx->lock unlocked
2196 	 *
2197 	 * where the task could be killed and 'ctx' deactivated
2198 	 * by perf_event_exit_task.
2199 	 */
2200 	if (!ctx->is_active)
2201 		return -EINVAL;
2202 
2203 	raw_spin_lock(&ctx->lock);
2204 	update_context_time(ctx);
2205 
2206 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2207 		goto unlock;
2208 
2209 	/*
2210 	 * set current task's cgroup time reference point
2211 	 */
2212 	perf_cgroup_set_timestamp(current, ctx);
2213 
2214 	__perf_event_mark_enabled(event);
2215 
2216 	if (!event_filter_match(event)) {
2217 		if (is_cgroup_event(event))
2218 			perf_cgroup_defer_enabled(event);
2219 		goto unlock;
2220 	}
2221 
2222 	/*
2223 	 * If the event is in a group and isn't the group leader,
2224 	 * then don't put it on unless the group is on.
2225 	 */
2226 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2227 		goto unlock;
2228 
2229 	if (!group_can_go_on(event, cpuctx, 1)) {
2230 		err = -EEXIST;
2231 	} else {
2232 		if (event == leader)
2233 			err = group_sched_in(event, cpuctx, ctx);
2234 		else
2235 			err = event_sched_in(event, cpuctx, ctx);
2236 	}
2237 
2238 	if (err) {
2239 		/*
2240 		 * If this event can't go on and it's part of a
2241 		 * group, then the whole group has to come off.
2242 		 */
2243 		if (leader != event) {
2244 			group_sched_out(leader, cpuctx, ctx);
2245 			perf_mux_hrtimer_restart(cpuctx);
2246 		}
2247 		if (leader->attr.pinned) {
2248 			update_group_times(leader);
2249 			leader->state = PERF_EVENT_STATE_ERROR;
2250 		}
2251 	}
2252 
2253 unlock:
2254 	raw_spin_unlock(&ctx->lock);
2255 
2256 	return 0;
2257 }
2258 
2259 void ___perf_event_enable(void *info)
2260 {
2261 	__perf_event_mark_enabled((struct perf_event *)info);
2262 }
2263 
2264 /*
2265  * Enable a event.
2266  *
2267  * If event->ctx is a cloned context, callers must make sure that
2268  * every task struct that event->ctx->task could possibly point to
2269  * remains valid.  This condition is satisfied when called through
2270  * perf_event_for_each_child or perf_event_for_each as described
2271  * for perf_event_disable.
2272  */
2273 static void _perf_event_enable(struct perf_event *event)
2274 {
2275 	struct perf_event_context *ctx = event->ctx;
2276 
2277 	raw_spin_lock_irq(&ctx->lock);
2278 	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
2279 		raw_spin_unlock_irq(&ctx->lock);
2280 		return;
2281 	}
2282 
2283 	/*
2284 	 * If the event is in error state, clear that first.
2285 	 *
2286 	 * That way, if we see the event in error state below, we know that it
2287 	 * has gone back into error state, as distinct from the task having
2288 	 * been scheduled away before the cross-call arrived.
2289 	 */
2290 	if (event->state == PERF_EVENT_STATE_ERROR)
2291 		event->state = PERF_EVENT_STATE_OFF;
2292 	raw_spin_unlock_irq(&ctx->lock);
2293 
2294 	event_function_call(event, __perf_event_enable,
2295 			    ___perf_event_enable, event);
2296 }
2297 
2298 /*
2299  * See perf_event_disable();
2300  */
2301 void perf_event_enable(struct perf_event *event)
2302 {
2303 	struct perf_event_context *ctx;
2304 
2305 	ctx = perf_event_ctx_lock(event);
2306 	_perf_event_enable(event);
2307 	perf_event_ctx_unlock(event, ctx);
2308 }
2309 EXPORT_SYMBOL_GPL(perf_event_enable);
2310 
2311 static int _perf_event_refresh(struct perf_event *event, int refresh)
2312 {
2313 	/*
2314 	 * not supported on inherited events
2315 	 */
2316 	if (event->attr.inherit || !is_sampling_event(event))
2317 		return -EINVAL;
2318 
2319 	atomic_add(refresh, &event->event_limit);
2320 	_perf_event_enable(event);
2321 
2322 	return 0;
2323 }
2324 
2325 /*
2326  * See perf_event_disable()
2327  */
2328 int perf_event_refresh(struct perf_event *event, int refresh)
2329 {
2330 	struct perf_event_context *ctx;
2331 	int ret;
2332 
2333 	ctx = perf_event_ctx_lock(event);
2334 	ret = _perf_event_refresh(event, refresh);
2335 	perf_event_ctx_unlock(event, ctx);
2336 
2337 	return ret;
2338 }
2339 EXPORT_SYMBOL_GPL(perf_event_refresh);
2340 
2341 static void ctx_sched_out(struct perf_event_context *ctx,
2342 			  struct perf_cpu_context *cpuctx,
2343 			  enum event_type_t event_type)
2344 {
2345 	struct perf_event *event;
2346 	int is_active = ctx->is_active;
2347 
2348 	ctx->is_active &= ~event_type;
2349 	if (likely(!ctx->nr_events))
2350 		return;
2351 
2352 	update_context_time(ctx);
2353 	update_cgrp_time_from_cpuctx(cpuctx);
2354 	if (!ctx->nr_active)
2355 		return;
2356 
2357 	perf_pmu_disable(ctx->pmu);
2358 	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2359 		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2360 			group_sched_out(event, cpuctx, ctx);
2361 	}
2362 
2363 	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2364 		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2365 			group_sched_out(event, cpuctx, ctx);
2366 	}
2367 	perf_pmu_enable(ctx->pmu);
2368 }
2369 
2370 /*
2371  * Test whether two contexts are equivalent, i.e. whether they have both been
2372  * cloned from the same version of the same context.
2373  *
2374  * Equivalence is measured using a generation number in the context that is
2375  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2376  * and list_del_event().
2377  */
2378 static int context_equiv(struct perf_event_context *ctx1,
2379 			 struct perf_event_context *ctx2)
2380 {
2381 	lockdep_assert_held(&ctx1->lock);
2382 	lockdep_assert_held(&ctx2->lock);
2383 
2384 	/* Pinning disables the swap optimization */
2385 	if (ctx1->pin_count || ctx2->pin_count)
2386 		return 0;
2387 
2388 	/* If ctx1 is the parent of ctx2 */
2389 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2390 		return 1;
2391 
2392 	/* If ctx2 is the parent of ctx1 */
2393 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2394 		return 1;
2395 
2396 	/*
2397 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
2398 	 * hierarchy, see perf_event_init_context().
2399 	 */
2400 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2401 			ctx1->parent_gen == ctx2->parent_gen)
2402 		return 1;
2403 
2404 	/* Unmatched */
2405 	return 0;
2406 }
2407 
2408 static void __perf_event_sync_stat(struct perf_event *event,
2409 				     struct perf_event *next_event)
2410 {
2411 	u64 value;
2412 
2413 	if (!event->attr.inherit_stat)
2414 		return;
2415 
2416 	/*
2417 	 * Update the event value, we cannot use perf_event_read()
2418 	 * because we're in the middle of a context switch and have IRQs
2419 	 * disabled, which upsets smp_call_function_single(), however
2420 	 * we know the event must be on the current CPU, therefore we
2421 	 * don't need to use it.
2422 	 */
2423 	switch (event->state) {
2424 	case PERF_EVENT_STATE_ACTIVE:
2425 		event->pmu->read(event);
2426 		/* fall-through */
2427 
2428 	case PERF_EVENT_STATE_INACTIVE:
2429 		update_event_times(event);
2430 		break;
2431 
2432 	default:
2433 		break;
2434 	}
2435 
2436 	/*
2437 	 * In order to keep per-task stats reliable we need to flip the event
2438 	 * values when we flip the contexts.
2439 	 */
2440 	value = local64_read(&next_event->count);
2441 	value = local64_xchg(&event->count, value);
2442 	local64_set(&next_event->count, value);
2443 
2444 	swap(event->total_time_enabled, next_event->total_time_enabled);
2445 	swap(event->total_time_running, next_event->total_time_running);
2446 
2447 	/*
2448 	 * Since we swizzled the values, update the user visible data too.
2449 	 */
2450 	perf_event_update_userpage(event);
2451 	perf_event_update_userpage(next_event);
2452 }
2453 
2454 static void perf_event_sync_stat(struct perf_event_context *ctx,
2455 				   struct perf_event_context *next_ctx)
2456 {
2457 	struct perf_event *event, *next_event;
2458 
2459 	if (!ctx->nr_stat)
2460 		return;
2461 
2462 	update_context_time(ctx);
2463 
2464 	event = list_first_entry(&ctx->event_list,
2465 				   struct perf_event, event_entry);
2466 
2467 	next_event = list_first_entry(&next_ctx->event_list,
2468 					struct perf_event, event_entry);
2469 
2470 	while (&event->event_entry != &ctx->event_list &&
2471 	       &next_event->event_entry != &next_ctx->event_list) {
2472 
2473 		__perf_event_sync_stat(event, next_event);
2474 
2475 		event = list_next_entry(event, event_entry);
2476 		next_event = list_next_entry(next_event, event_entry);
2477 	}
2478 }
2479 
2480 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2481 					 struct task_struct *next)
2482 {
2483 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2484 	struct perf_event_context *next_ctx;
2485 	struct perf_event_context *parent, *next_parent;
2486 	struct perf_cpu_context *cpuctx;
2487 	int do_switch = 1;
2488 
2489 	if (likely(!ctx))
2490 		return;
2491 
2492 	cpuctx = __get_cpu_context(ctx);
2493 	if (!cpuctx->task_ctx)
2494 		return;
2495 
2496 	rcu_read_lock();
2497 	next_ctx = next->perf_event_ctxp[ctxn];
2498 	if (!next_ctx)
2499 		goto unlock;
2500 
2501 	parent = rcu_dereference(ctx->parent_ctx);
2502 	next_parent = rcu_dereference(next_ctx->parent_ctx);
2503 
2504 	/* If neither context have a parent context; they cannot be clones. */
2505 	if (!parent && !next_parent)
2506 		goto unlock;
2507 
2508 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2509 		/*
2510 		 * Looks like the two contexts are clones, so we might be
2511 		 * able to optimize the context switch.  We lock both
2512 		 * contexts and check that they are clones under the
2513 		 * lock (including re-checking that neither has been
2514 		 * uncloned in the meantime).  It doesn't matter which
2515 		 * order we take the locks because no other cpu could
2516 		 * be trying to lock both of these tasks.
2517 		 */
2518 		raw_spin_lock(&ctx->lock);
2519 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2520 		if (context_equiv(ctx, next_ctx)) {
2521 			/*
2522 			 * XXX do we need a memory barrier of sorts
2523 			 * wrt to rcu_dereference() of perf_event_ctxp
2524 			 */
2525 			task->perf_event_ctxp[ctxn] = next_ctx;
2526 			next->perf_event_ctxp[ctxn] = ctx;
2527 			ctx->task = next;
2528 			next_ctx->task = task;
2529 
2530 			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2531 
2532 			do_switch = 0;
2533 
2534 			perf_event_sync_stat(ctx, next_ctx);
2535 		}
2536 		raw_spin_unlock(&next_ctx->lock);
2537 		raw_spin_unlock(&ctx->lock);
2538 	}
2539 unlock:
2540 	rcu_read_unlock();
2541 
2542 	if (do_switch) {
2543 		raw_spin_lock(&ctx->lock);
2544 		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2545 		cpuctx->task_ctx = NULL;
2546 		raw_spin_unlock(&ctx->lock);
2547 	}
2548 }
2549 
2550 void perf_sched_cb_dec(struct pmu *pmu)
2551 {
2552 	this_cpu_dec(perf_sched_cb_usages);
2553 }
2554 
2555 void perf_sched_cb_inc(struct pmu *pmu)
2556 {
2557 	this_cpu_inc(perf_sched_cb_usages);
2558 }
2559 
2560 /*
2561  * This function provides the context switch callback to the lower code
2562  * layer. It is invoked ONLY when the context switch callback is enabled.
2563  */
2564 static void perf_pmu_sched_task(struct task_struct *prev,
2565 				struct task_struct *next,
2566 				bool sched_in)
2567 {
2568 	struct perf_cpu_context *cpuctx;
2569 	struct pmu *pmu;
2570 	unsigned long flags;
2571 
2572 	if (prev == next)
2573 		return;
2574 
2575 	local_irq_save(flags);
2576 
2577 	rcu_read_lock();
2578 
2579 	list_for_each_entry_rcu(pmu, &pmus, entry) {
2580 		if (pmu->sched_task) {
2581 			cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2582 
2583 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2584 
2585 			perf_pmu_disable(pmu);
2586 
2587 			pmu->sched_task(cpuctx->task_ctx, sched_in);
2588 
2589 			perf_pmu_enable(pmu);
2590 
2591 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2592 		}
2593 	}
2594 
2595 	rcu_read_unlock();
2596 
2597 	local_irq_restore(flags);
2598 }
2599 
2600 static void perf_event_switch(struct task_struct *task,
2601 			      struct task_struct *next_prev, bool sched_in);
2602 
2603 #define for_each_task_context_nr(ctxn)					\
2604 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2605 
2606 /*
2607  * Called from scheduler to remove the events of the current task,
2608  * with interrupts disabled.
2609  *
2610  * We stop each event and update the event value in event->count.
2611  *
2612  * This does not protect us against NMI, but disable()
2613  * sets the disabled bit in the control field of event _before_
2614  * accessing the event control register. If a NMI hits, then it will
2615  * not restart the event.
2616  */
2617 void __perf_event_task_sched_out(struct task_struct *task,
2618 				 struct task_struct *next)
2619 {
2620 	int ctxn;
2621 
2622 	if (__this_cpu_read(perf_sched_cb_usages))
2623 		perf_pmu_sched_task(task, next, false);
2624 
2625 	if (atomic_read(&nr_switch_events))
2626 		perf_event_switch(task, next, false);
2627 
2628 	for_each_task_context_nr(ctxn)
2629 		perf_event_context_sched_out(task, ctxn, next);
2630 
2631 	/*
2632 	 * if cgroup events exist on this CPU, then we need
2633 	 * to check if we have to switch out PMU state.
2634 	 * cgroup event are system-wide mode only
2635 	 */
2636 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2637 		perf_cgroup_sched_out(task, next);
2638 }
2639 
2640 static void task_ctx_sched_out(struct perf_event_context *ctx)
2641 {
2642 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2643 
2644 	if (!cpuctx->task_ctx)
2645 		return;
2646 
2647 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2648 		return;
2649 
2650 	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2651 	cpuctx->task_ctx = NULL;
2652 }
2653 
2654 /*
2655  * Called with IRQs disabled
2656  */
2657 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2658 			      enum event_type_t event_type)
2659 {
2660 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2661 }
2662 
2663 static void
2664 ctx_pinned_sched_in(struct perf_event_context *ctx,
2665 		    struct perf_cpu_context *cpuctx)
2666 {
2667 	struct perf_event *event;
2668 
2669 	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2670 		if (event->state <= PERF_EVENT_STATE_OFF)
2671 			continue;
2672 		if (!event_filter_match(event))
2673 			continue;
2674 
2675 		/* may need to reset tstamp_enabled */
2676 		if (is_cgroup_event(event))
2677 			perf_cgroup_mark_enabled(event, ctx);
2678 
2679 		if (group_can_go_on(event, cpuctx, 1))
2680 			group_sched_in(event, cpuctx, ctx);
2681 
2682 		/*
2683 		 * If this pinned group hasn't been scheduled,
2684 		 * put it in error state.
2685 		 */
2686 		if (event->state == PERF_EVENT_STATE_INACTIVE) {
2687 			update_group_times(event);
2688 			event->state = PERF_EVENT_STATE_ERROR;
2689 		}
2690 	}
2691 }
2692 
2693 static void
2694 ctx_flexible_sched_in(struct perf_event_context *ctx,
2695 		      struct perf_cpu_context *cpuctx)
2696 {
2697 	struct perf_event *event;
2698 	int can_add_hw = 1;
2699 
2700 	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2701 		/* Ignore events in OFF or ERROR state */
2702 		if (event->state <= PERF_EVENT_STATE_OFF)
2703 			continue;
2704 		/*
2705 		 * Listen to the 'cpu' scheduling filter constraint
2706 		 * of events:
2707 		 */
2708 		if (!event_filter_match(event))
2709 			continue;
2710 
2711 		/* may need to reset tstamp_enabled */
2712 		if (is_cgroup_event(event))
2713 			perf_cgroup_mark_enabled(event, ctx);
2714 
2715 		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2716 			if (group_sched_in(event, cpuctx, ctx))
2717 				can_add_hw = 0;
2718 		}
2719 	}
2720 }
2721 
2722 static void
2723 ctx_sched_in(struct perf_event_context *ctx,
2724 	     struct perf_cpu_context *cpuctx,
2725 	     enum event_type_t event_type,
2726 	     struct task_struct *task)
2727 {
2728 	u64 now;
2729 	int is_active = ctx->is_active;
2730 
2731 	ctx->is_active |= event_type;
2732 	if (likely(!ctx->nr_events))
2733 		return;
2734 
2735 	now = perf_clock();
2736 	ctx->timestamp = now;
2737 	perf_cgroup_set_timestamp(task, ctx);
2738 	/*
2739 	 * First go through the list and put on any pinned groups
2740 	 * in order to give them the best chance of going on.
2741 	 */
2742 	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2743 		ctx_pinned_sched_in(ctx, cpuctx);
2744 
2745 	/* Then walk through the lower prio flexible groups */
2746 	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2747 		ctx_flexible_sched_in(ctx, cpuctx);
2748 }
2749 
2750 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2751 			     enum event_type_t event_type,
2752 			     struct task_struct *task)
2753 {
2754 	struct perf_event_context *ctx = &cpuctx->ctx;
2755 
2756 	ctx_sched_in(ctx, cpuctx, event_type, task);
2757 }
2758 
2759 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2760 					struct task_struct *task)
2761 {
2762 	struct perf_cpu_context *cpuctx;
2763 
2764 	cpuctx = __get_cpu_context(ctx);
2765 	if (cpuctx->task_ctx == ctx)
2766 		return;
2767 
2768 	perf_ctx_lock(cpuctx, ctx);
2769 	perf_pmu_disable(ctx->pmu);
2770 	/*
2771 	 * We want to keep the following priority order:
2772 	 * cpu pinned (that don't need to move), task pinned,
2773 	 * cpu flexible, task flexible.
2774 	 */
2775 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2776 
2777 	if (ctx->nr_events)
2778 		cpuctx->task_ctx = ctx;
2779 
2780 	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2781 
2782 	perf_pmu_enable(ctx->pmu);
2783 	perf_ctx_unlock(cpuctx, ctx);
2784 }
2785 
2786 /*
2787  * Called from scheduler to add the events of the current task
2788  * with interrupts disabled.
2789  *
2790  * We restore the event value and then enable it.
2791  *
2792  * This does not protect us against NMI, but enable()
2793  * sets the enabled bit in the control field of event _before_
2794  * accessing the event control register. If a NMI hits, then it will
2795  * keep the event running.
2796  */
2797 void __perf_event_task_sched_in(struct task_struct *prev,
2798 				struct task_struct *task)
2799 {
2800 	struct perf_event_context *ctx;
2801 	int ctxn;
2802 
2803 	for_each_task_context_nr(ctxn) {
2804 		ctx = task->perf_event_ctxp[ctxn];
2805 		if (likely(!ctx))
2806 			continue;
2807 
2808 		perf_event_context_sched_in(ctx, task);
2809 	}
2810 	/*
2811 	 * if cgroup events exist on this CPU, then we need
2812 	 * to check if we have to switch in PMU state.
2813 	 * cgroup event are system-wide mode only
2814 	 */
2815 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2816 		perf_cgroup_sched_in(prev, task);
2817 
2818 	if (atomic_read(&nr_switch_events))
2819 		perf_event_switch(task, prev, true);
2820 
2821 	if (__this_cpu_read(perf_sched_cb_usages))
2822 		perf_pmu_sched_task(prev, task, true);
2823 }
2824 
2825 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2826 {
2827 	u64 frequency = event->attr.sample_freq;
2828 	u64 sec = NSEC_PER_SEC;
2829 	u64 divisor, dividend;
2830 
2831 	int count_fls, nsec_fls, frequency_fls, sec_fls;
2832 
2833 	count_fls = fls64(count);
2834 	nsec_fls = fls64(nsec);
2835 	frequency_fls = fls64(frequency);
2836 	sec_fls = 30;
2837 
2838 	/*
2839 	 * We got @count in @nsec, with a target of sample_freq HZ
2840 	 * the target period becomes:
2841 	 *
2842 	 *             @count * 10^9
2843 	 * period = -------------------
2844 	 *          @nsec * sample_freq
2845 	 *
2846 	 */
2847 
2848 	/*
2849 	 * Reduce accuracy by one bit such that @a and @b converge
2850 	 * to a similar magnitude.
2851 	 */
2852 #define REDUCE_FLS(a, b)		\
2853 do {					\
2854 	if (a##_fls > b##_fls) {	\
2855 		a >>= 1;		\
2856 		a##_fls--;		\
2857 	} else {			\
2858 		b >>= 1;		\
2859 		b##_fls--;		\
2860 	}				\
2861 } while (0)
2862 
2863 	/*
2864 	 * Reduce accuracy until either term fits in a u64, then proceed with
2865 	 * the other, so that finally we can do a u64/u64 division.
2866 	 */
2867 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2868 		REDUCE_FLS(nsec, frequency);
2869 		REDUCE_FLS(sec, count);
2870 	}
2871 
2872 	if (count_fls + sec_fls > 64) {
2873 		divisor = nsec * frequency;
2874 
2875 		while (count_fls + sec_fls > 64) {
2876 			REDUCE_FLS(count, sec);
2877 			divisor >>= 1;
2878 		}
2879 
2880 		dividend = count * sec;
2881 	} else {
2882 		dividend = count * sec;
2883 
2884 		while (nsec_fls + frequency_fls > 64) {
2885 			REDUCE_FLS(nsec, frequency);
2886 			dividend >>= 1;
2887 		}
2888 
2889 		divisor = nsec * frequency;
2890 	}
2891 
2892 	if (!divisor)
2893 		return dividend;
2894 
2895 	return div64_u64(dividend, divisor);
2896 }
2897 
2898 static DEFINE_PER_CPU(int, perf_throttled_count);
2899 static DEFINE_PER_CPU(u64, perf_throttled_seq);
2900 
2901 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2902 {
2903 	struct hw_perf_event *hwc = &event->hw;
2904 	s64 period, sample_period;
2905 	s64 delta;
2906 
2907 	period = perf_calculate_period(event, nsec, count);
2908 
2909 	delta = (s64)(period - hwc->sample_period);
2910 	delta = (delta + 7) / 8; /* low pass filter */
2911 
2912 	sample_period = hwc->sample_period + delta;
2913 
2914 	if (!sample_period)
2915 		sample_period = 1;
2916 
2917 	hwc->sample_period = sample_period;
2918 
2919 	if (local64_read(&hwc->period_left) > 8*sample_period) {
2920 		if (disable)
2921 			event->pmu->stop(event, PERF_EF_UPDATE);
2922 
2923 		local64_set(&hwc->period_left, 0);
2924 
2925 		if (disable)
2926 			event->pmu->start(event, PERF_EF_RELOAD);
2927 	}
2928 }
2929 
2930 /*
2931  * combine freq adjustment with unthrottling to avoid two passes over the
2932  * events. At the same time, make sure, having freq events does not change
2933  * the rate of unthrottling as that would introduce bias.
2934  */
2935 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2936 					   int needs_unthr)
2937 {
2938 	struct perf_event *event;
2939 	struct hw_perf_event *hwc;
2940 	u64 now, period = TICK_NSEC;
2941 	s64 delta;
2942 
2943 	/*
2944 	 * only need to iterate over all events iff:
2945 	 * - context have events in frequency mode (needs freq adjust)
2946 	 * - there are events to unthrottle on this cpu
2947 	 */
2948 	if (!(ctx->nr_freq || needs_unthr))
2949 		return;
2950 
2951 	raw_spin_lock(&ctx->lock);
2952 	perf_pmu_disable(ctx->pmu);
2953 
2954 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2955 		if (event->state != PERF_EVENT_STATE_ACTIVE)
2956 			continue;
2957 
2958 		if (!event_filter_match(event))
2959 			continue;
2960 
2961 		perf_pmu_disable(event->pmu);
2962 
2963 		hwc = &event->hw;
2964 
2965 		if (hwc->interrupts == MAX_INTERRUPTS) {
2966 			hwc->interrupts = 0;
2967 			perf_log_throttle(event, 1);
2968 			event->pmu->start(event, 0);
2969 		}
2970 
2971 		if (!event->attr.freq || !event->attr.sample_freq)
2972 			goto next;
2973 
2974 		/*
2975 		 * stop the event and update event->count
2976 		 */
2977 		event->pmu->stop(event, PERF_EF_UPDATE);
2978 
2979 		now = local64_read(&event->count);
2980 		delta = now - hwc->freq_count_stamp;
2981 		hwc->freq_count_stamp = now;
2982 
2983 		/*
2984 		 * restart the event
2985 		 * reload only if value has changed
2986 		 * we have stopped the event so tell that
2987 		 * to perf_adjust_period() to avoid stopping it
2988 		 * twice.
2989 		 */
2990 		if (delta > 0)
2991 			perf_adjust_period(event, period, delta, false);
2992 
2993 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2994 	next:
2995 		perf_pmu_enable(event->pmu);
2996 	}
2997 
2998 	perf_pmu_enable(ctx->pmu);
2999 	raw_spin_unlock(&ctx->lock);
3000 }
3001 
3002 /*
3003  * Round-robin a context's events:
3004  */
3005 static void rotate_ctx(struct perf_event_context *ctx)
3006 {
3007 	/*
3008 	 * Rotate the first entry last of non-pinned groups. Rotation might be
3009 	 * disabled by the inheritance code.
3010 	 */
3011 	if (!ctx->rotate_disable)
3012 		list_rotate_left(&ctx->flexible_groups);
3013 }
3014 
3015 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3016 {
3017 	struct perf_event_context *ctx = NULL;
3018 	int rotate = 0;
3019 
3020 	if (cpuctx->ctx.nr_events) {
3021 		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3022 			rotate = 1;
3023 	}
3024 
3025 	ctx = cpuctx->task_ctx;
3026 	if (ctx && ctx->nr_events) {
3027 		if (ctx->nr_events != ctx->nr_active)
3028 			rotate = 1;
3029 	}
3030 
3031 	if (!rotate)
3032 		goto done;
3033 
3034 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3035 	perf_pmu_disable(cpuctx->ctx.pmu);
3036 
3037 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3038 	if (ctx)
3039 		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3040 
3041 	rotate_ctx(&cpuctx->ctx);
3042 	if (ctx)
3043 		rotate_ctx(ctx);
3044 
3045 	perf_event_sched_in(cpuctx, ctx, current);
3046 
3047 	perf_pmu_enable(cpuctx->ctx.pmu);
3048 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3049 done:
3050 
3051 	return rotate;
3052 }
3053 
3054 #ifdef CONFIG_NO_HZ_FULL
3055 bool perf_event_can_stop_tick(void)
3056 {
3057 	if (atomic_read(&nr_freq_events) ||
3058 	    __this_cpu_read(perf_throttled_count))
3059 		return false;
3060 	else
3061 		return true;
3062 }
3063 #endif
3064 
3065 void perf_event_task_tick(void)
3066 {
3067 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
3068 	struct perf_event_context *ctx, *tmp;
3069 	int throttled;
3070 
3071 	WARN_ON(!irqs_disabled());
3072 
3073 	__this_cpu_inc(perf_throttled_seq);
3074 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
3075 
3076 	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3077 		perf_adjust_freq_unthr_context(ctx, throttled);
3078 }
3079 
3080 static int event_enable_on_exec(struct perf_event *event,
3081 				struct perf_event_context *ctx)
3082 {
3083 	if (!event->attr.enable_on_exec)
3084 		return 0;
3085 
3086 	event->attr.enable_on_exec = 0;
3087 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
3088 		return 0;
3089 
3090 	__perf_event_mark_enabled(event);
3091 
3092 	return 1;
3093 }
3094 
3095 /*
3096  * Enable all of a task's events that have been marked enable-on-exec.
3097  * This expects task == current.
3098  */
3099 static void perf_event_enable_on_exec(int ctxn)
3100 {
3101 	struct perf_event_context *ctx, *clone_ctx = NULL;
3102 	struct perf_event *event;
3103 	unsigned long flags;
3104 	int enabled = 0;
3105 	int ret;
3106 
3107 	local_irq_save(flags);
3108 	ctx = current->perf_event_ctxp[ctxn];
3109 	if (!ctx || !ctx->nr_events)
3110 		goto out;
3111 
3112 	/*
3113 	 * We must ctxsw out cgroup events to avoid conflict
3114 	 * when invoking perf_task_event_sched_in() later on
3115 	 * in this function. Otherwise we end up trying to
3116 	 * ctxswin cgroup events which are already scheduled
3117 	 * in.
3118 	 */
3119 	perf_cgroup_sched_out(current, NULL);
3120 
3121 	raw_spin_lock(&ctx->lock);
3122 	task_ctx_sched_out(ctx);
3123 
3124 	list_for_each_entry(event, &ctx->event_list, event_entry) {
3125 		ret = event_enable_on_exec(event, ctx);
3126 		if (ret)
3127 			enabled = 1;
3128 	}
3129 
3130 	/*
3131 	 * Unclone this context if we enabled any event.
3132 	 */
3133 	if (enabled)
3134 		clone_ctx = unclone_ctx(ctx);
3135 
3136 	raw_spin_unlock(&ctx->lock);
3137 
3138 	/*
3139 	 * Also calls ctxswin for cgroup events, if any:
3140 	 */
3141 	perf_event_context_sched_in(ctx, ctx->task);
3142 out:
3143 	local_irq_restore(flags);
3144 
3145 	if (clone_ctx)
3146 		put_ctx(clone_ctx);
3147 }
3148 
3149 void perf_event_exec(void)
3150 {
3151 	int ctxn;
3152 
3153 	rcu_read_lock();
3154 	for_each_task_context_nr(ctxn)
3155 		perf_event_enable_on_exec(ctxn);
3156 	rcu_read_unlock();
3157 }
3158 
3159 struct perf_read_data {
3160 	struct perf_event *event;
3161 	bool group;
3162 	int ret;
3163 };
3164 
3165 /*
3166  * Cross CPU call to read the hardware event
3167  */
3168 static void __perf_event_read(void *info)
3169 {
3170 	struct perf_read_data *data = info;
3171 	struct perf_event *sub, *event = data->event;
3172 	struct perf_event_context *ctx = event->ctx;
3173 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3174 	struct pmu *pmu = event->pmu;
3175 
3176 	/*
3177 	 * If this is a task context, we need to check whether it is
3178 	 * the current task context of this cpu.  If not it has been
3179 	 * scheduled out before the smp call arrived.  In that case
3180 	 * event->count would have been updated to a recent sample
3181 	 * when the event was scheduled out.
3182 	 */
3183 	if (ctx->task && cpuctx->task_ctx != ctx)
3184 		return;
3185 
3186 	raw_spin_lock(&ctx->lock);
3187 	if (ctx->is_active) {
3188 		update_context_time(ctx);
3189 		update_cgrp_time_from_event(event);
3190 	}
3191 
3192 	update_event_times(event);
3193 	if (event->state != PERF_EVENT_STATE_ACTIVE)
3194 		goto unlock;
3195 
3196 	if (!data->group) {
3197 		pmu->read(event);
3198 		data->ret = 0;
3199 		goto unlock;
3200 	}
3201 
3202 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3203 
3204 	pmu->read(event);
3205 
3206 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
3207 		update_event_times(sub);
3208 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3209 			/*
3210 			 * Use sibling's PMU rather than @event's since
3211 			 * sibling could be on different (eg: software) PMU.
3212 			 */
3213 			sub->pmu->read(sub);
3214 		}
3215 	}
3216 
3217 	data->ret = pmu->commit_txn(pmu);
3218 
3219 unlock:
3220 	raw_spin_unlock(&ctx->lock);
3221 }
3222 
3223 static inline u64 perf_event_count(struct perf_event *event)
3224 {
3225 	if (event->pmu->count)
3226 		return event->pmu->count(event);
3227 
3228 	return __perf_event_count(event);
3229 }
3230 
3231 /*
3232  * NMI-safe method to read a local event, that is an event that
3233  * is:
3234  *   - either for the current task, or for this CPU
3235  *   - does not have inherit set, for inherited task events
3236  *     will not be local and we cannot read them atomically
3237  *   - must not have a pmu::count method
3238  */
3239 u64 perf_event_read_local(struct perf_event *event)
3240 {
3241 	unsigned long flags;
3242 	u64 val;
3243 
3244 	/*
3245 	 * Disabling interrupts avoids all counter scheduling (context
3246 	 * switches, timer based rotation and IPIs).
3247 	 */
3248 	local_irq_save(flags);
3249 
3250 	/* If this is a per-task event, it must be for current */
3251 	WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3252 		     event->hw.target != current);
3253 
3254 	/* If this is a per-CPU event, it must be for this CPU */
3255 	WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3256 		     event->cpu != smp_processor_id());
3257 
3258 	/*
3259 	 * It must not be an event with inherit set, we cannot read
3260 	 * all child counters from atomic context.
3261 	 */
3262 	WARN_ON_ONCE(event->attr.inherit);
3263 
3264 	/*
3265 	 * It must not have a pmu::count method, those are not
3266 	 * NMI safe.
3267 	 */
3268 	WARN_ON_ONCE(event->pmu->count);
3269 
3270 	/*
3271 	 * If the event is currently on this CPU, its either a per-task event,
3272 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3273 	 * oncpu == -1).
3274 	 */
3275 	if (event->oncpu == smp_processor_id())
3276 		event->pmu->read(event);
3277 
3278 	val = local64_read(&event->count);
3279 	local_irq_restore(flags);
3280 
3281 	return val;
3282 }
3283 
3284 static int perf_event_read(struct perf_event *event, bool group)
3285 {
3286 	int ret = 0;
3287 
3288 	/*
3289 	 * If event is enabled and currently active on a CPU, update the
3290 	 * value in the event structure:
3291 	 */
3292 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
3293 		struct perf_read_data data = {
3294 			.event = event,
3295 			.group = group,
3296 			.ret = 0,
3297 		};
3298 		smp_call_function_single(event->oncpu,
3299 					 __perf_event_read, &data, 1);
3300 		ret = data.ret;
3301 	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3302 		struct perf_event_context *ctx = event->ctx;
3303 		unsigned long flags;
3304 
3305 		raw_spin_lock_irqsave(&ctx->lock, flags);
3306 		/*
3307 		 * may read while context is not active
3308 		 * (e.g., thread is blocked), in that case
3309 		 * we cannot update context time
3310 		 */
3311 		if (ctx->is_active) {
3312 			update_context_time(ctx);
3313 			update_cgrp_time_from_event(event);
3314 		}
3315 		if (group)
3316 			update_group_times(event);
3317 		else
3318 			update_event_times(event);
3319 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3320 	}
3321 
3322 	return ret;
3323 }
3324 
3325 /*
3326  * Initialize the perf_event context in a task_struct:
3327  */
3328 static void __perf_event_init_context(struct perf_event_context *ctx)
3329 {
3330 	raw_spin_lock_init(&ctx->lock);
3331 	mutex_init(&ctx->mutex);
3332 	INIT_LIST_HEAD(&ctx->active_ctx_list);
3333 	INIT_LIST_HEAD(&ctx->pinned_groups);
3334 	INIT_LIST_HEAD(&ctx->flexible_groups);
3335 	INIT_LIST_HEAD(&ctx->event_list);
3336 	atomic_set(&ctx->refcount, 1);
3337 	INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
3338 }
3339 
3340 static struct perf_event_context *
3341 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3342 {
3343 	struct perf_event_context *ctx;
3344 
3345 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3346 	if (!ctx)
3347 		return NULL;
3348 
3349 	__perf_event_init_context(ctx);
3350 	if (task) {
3351 		ctx->task = task;
3352 		get_task_struct(task);
3353 	}
3354 	ctx->pmu = pmu;
3355 
3356 	return ctx;
3357 }
3358 
3359 static struct task_struct *
3360 find_lively_task_by_vpid(pid_t vpid)
3361 {
3362 	struct task_struct *task;
3363 	int err;
3364 
3365 	rcu_read_lock();
3366 	if (!vpid)
3367 		task = current;
3368 	else
3369 		task = find_task_by_vpid(vpid);
3370 	if (task)
3371 		get_task_struct(task);
3372 	rcu_read_unlock();
3373 
3374 	if (!task)
3375 		return ERR_PTR(-ESRCH);
3376 
3377 	/* Reuse ptrace permission checks for now. */
3378 	err = -EACCES;
3379 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
3380 		goto errout;
3381 
3382 	return task;
3383 errout:
3384 	put_task_struct(task);
3385 	return ERR_PTR(err);
3386 
3387 }
3388 
3389 /*
3390  * Returns a matching context with refcount and pincount.
3391  */
3392 static struct perf_event_context *
3393 find_get_context(struct pmu *pmu, struct task_struct *task,
3394 		struct perf_event *event)
3395 {
3396 	struct perf_event_context *ctx, *clone_ctx = NULL;
3397 	struct perf_cpu_context *cpuctx;
3398 	void *task_ctx_data = NULL;
3399 	unsigned long flags;
3400 	int ctxn, err;
3401 	int cpu = event->cpu;
3402 
3403 	if (!task) {
3404 		/* Must be root to operate on a CPU event: */
3405 		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3406 			return ERR_PTR(-EACCES);
3407 
3408 		/*
3409 		 * We could be clever and allow to attach a event to an
3410 		 * offline CPU and activate it when the CPU comes up, but
3411 		 * that's for later.
3412 		 */
3413 		if (!cpu_online(cpu))
3414 			return ERR_PTR(-ENODEV);
3415 
3416 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3417 		ctx = &cpuctx->ctx;
3418 		get_ctx(ctx);
3419 		++ctx->pin_count;
3420 
3421 		return ctx;
3422 	}
3423 
3424 	err = -EINVAL;
3425 	ctxn = pmu->task_ctx_nr;
3426 	if (ctxn < 0)
3427 		goto errout;
3428 
3429 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3430 		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3431 		if (!task_ctx_data) {
3432 			err = -ENOMEM;
3433 			goto errout;
3434 		}
3435 	}
3436 
3437 retry:
3438 	ctx = perf_lock_task_context(task, ctxn, &flags);
3439 	if (ctx) {
3440 		clone_ctx = unclone_ctx(ctx);
3441 		++ctx->pin_count;
3442 
3443 		if (task_ctx_data && !ctx->task_ctx_data) {
3444 			ctx->task_ctx_data = task_ctx_data;
3445 			task_ctx_data = NULL;
3446 		}
3447 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3448 
3449 		if (clone_ctx)
3450 			put_ctx(clone_ctx);
3451 	} else {
3452 		ctx = alloc_perf_context(pmu, task);
3453 		err = -ENOMEM;
3454 		if (!ctx)
3455 			goto errout;
3456 
3457 		if (task_ctx_data) {
3458 			ctx->task_ctx_data = task_ctx_data;
3459 			task_ctx_data = NULL;
3460 		}
3461 
3462 		err = 0;
3463 		mutex_lock(&task->perf_event_mutex);
3464 		/*
3465 		 * If it has already passed perf_event_exit_task().
3466 		 * we must see PF_EXITING, it takes this mutex too.
3467 		 */
3468 		if (task->flags & PF_EXITING)
3469 			err = -ESRCH;
3470 		else if (task->perf_event_ctxp[ctxn])
3471 			err = -EAGAIN;
3472 		else {
3473 			get_ctx(ctx);
3474 			++ctx->pin_count;
3475 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3476 		}
3477 		mutex_unlock(&task->perf_event_mutex);
3478 
3479 		if (unlikely(err)) {
3480 			put_ctx(ctx);
3481 
3482 			if (err == -EAGAIN)
3483 				goto retry;
3484 			goto errout;
3485 		}
3486 	}
3487 
3488 	kfree(task_ctx_data);
3489 	return ctx;
3490 
3491 errout:
3492 	kfree(task_ctx_data);
3493 	return ERR_PTR(err);
3494 }
3495 
3496 static void perf_event_free_filter(struct perf_event *event);
3497 static void perf_event_free_bpf_prog(struct perf_event *event);
3498 
3499 static void free_event_rcu(struct rcu_head *head)
3500 {
3501 	struct perf_event *event;
3502 
3503 	event = container_of(head, struct perf_event, rcu_head);
3504 	if (event->ns)
3505 		put_pid_ns(event->ns);
3506 	perf_event_free_filter(event);
3507 	kfree(event);
3508 }
3509 
3510 static void ring_buffer_attach(struct perf_event *event,
3511 			       struct ring_buffer *rb);
3512 
3513 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3514 {
3515 	if (event->parent)
3516 		return;
3517 
3518 	if (is_cgroup_event(event))
3519 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3520 }
3521 
3522 static void unaccount_event(struct perf_event *event)
3523 {
3524 	if (event->parent)
3525 		return;
3526 
3527 	if (event->attach_state & PERF_ATTACH_TASK)
3528 		static_key_slow_dec_deferred(&perf_sched_events);
3529 	if (event->attr.mmap || event->attr.mmap_data)
3530 		atomic_dec(&nr_mmap_events);
3531 	if (event->attr.comm)
3532 		atomic_dec(&nr_comm_events);
3533 	if (event->attr.task)
3534 		atomic_dec(&nr_task_events);
3535 	if (event->attr.freq)
3536 		atomic_dec(&nr_freq_events);
3537 	if (event->attr.context_switch) {
3538 		static_key_slow_dec_deferred(&perf_sched_events);
3539 		atomic_dec(&nr_switch_events);
3540 	}
3541 	if (is_cgroup_event(event))
3542 		static_key_slow_dec_deferred(&perf_sched_events);
3543 	if (has_branch_stack(event))
3544 		static_key_slow_dec_deferred(&perf_sched_events);
3545 
3546 	unaccount_event_cpu(event, event->cpu);
3547 }
3548 
3549 /*
3550  * The following implement mutual exclusion of events on "exclusive" pmus
3551  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3552  * at a time, so we disallow creating events that might conflict, namely:
3553  *
3554  *  1) cpu-wide events in the presence of per-task events,
3555  *  2) per-task events in the presence of cpu-wide events,
3556  *  3) two matching events on the same context.
3557  *
3558  * The former two cases are handled in the allocation path (perf_event_alloc(),
3559  * __free_event()), the latter -- before the first perf_install_in_context().
3560  */
3561 static int exclusive_event_init(struct perf_event *event)
3562 {
3563 	struct pmu *pmu = event->pmu;
3564 
3565 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3566 		return 0;
3567 
3568 	/*
3569 	 * Prevent co-existence of per-task and cpu-wide events on the
3570 	 * same exclusive pmu.
3571 	 *
3572 	 * Negative pmu::exclusive_cnt means there are cpu-wide
3573 	 * events on this "exclusive" pmu, positive means there are
3574 	 * per-task events.
3575 	 *
3576 	 * Since this is called in perf_event_alloc() path, event::ctx
3577 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3578 	 * to mean "per-task event", because unlike other attach states it
3579 	 * never gets cleared.
3580 	 */
3581 	if (event->attach_state & PERF_ATTACH_TASK) {
3582 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3583 			return -EBUSY;
3584 	} else {
3585 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3586 			return -EBUSY;
3587 	}
3588 
3589 	return 0;
3590 }
3591 
3592 static void exclusive_event_destroy(struct perf_event *event)
3593 {
3594 	struct pmu *pmu = event->pmu;
3595 
3596 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3597 		return;
3598 
3599 	/* see comment in exclusive_event_init() */
3600 	if (event->attach_state & PERF_ATTACH_TASK)
3601 		atomic_dec(&pmu->exclusive_cnt);
3602 	else
3603 		atomic_inc(&pmu->exclusive_cnt);
3604 }
3605 
3606 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3607 {
3608 	if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
3609 	    (e1->cpu == e2->cpu ||
3610 	     e1->cpu == -1 ||
3611 	     e2->cpu == -1))
3612 		return true;
3613 	return false;
3614 }
3615 
3616 /* Called under the same ctx::mutex as perf_install_in_context() */
3617 static bool exclusive_event_installable(struct perf_event *event,
3618 					struct perf_event_context *ctx)
3619 {
3620 	struct perf_event *iter_event;
3621 	struct pmu *pmu = event->pmu;
3622 
3623 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3624 		return true;
3625 
3626 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3627 		if (exclusive_event_match(iter_event, event))
3628 			return false;
3629 	}
3630 
3631 	return true;
3632 }
3633 
3634 static void __free_event(struct perf_event *event)
3635 {
3636 	if (!event->parent) {
3637 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3638 			put_callchain_buffers();
3639 	}
3640 
3641 	perf_event_free_bpf_prog(event);
3642 
3643 	if (event->destroy)
3644 		event->destroy(event);
3645 
3646 	if (event->ctx)
3647 		put_ctx(event->ctx);
3648 
3649 	if (event->pmu) {
3650 		exclusive_event_destroy(event);
3651 		module_put(event->pmu->module);
3652 	}
3653 
3654 	call_rcu(&event->rcu_head, free_event_rcu);
3655 }
3656 
3657 static void _free_event(struct perf_event *event)
3658 {
3659 	irq_work_sync(&event->pending);
3660 
3661 	unaccount_event(event);
3662 
3663 	if (event->rb) {
3664 		/*
3665 		 * Can happen when we close an event with re-directed output.
3666 		 *
3667 		 * Since we have a 0 refcount, perf_mmap_close() will skip
3668 		 * over us; possibly making our ring_buffer_put() the last.
3669 		 */
3670 		mutex_lock(&event->mmap_mutex);
3671 		ring_buffer_attach(event, NULL);
3672 		mutex_unlock(&event->mmap_mutex);
3673 	}
3674 
3675 	if (is_cgroup_event(event))
3676 		perf_detach_cgroup(event);
3677 
3678 	__free_event(event);
3679 }
3680 
3681 /*
3682  * Used to free events which have a known refcount of 1, such as in error paths
3683  * where the event isn't exposed yet and inherited events.
3684  */
3685 static void free_event(struct perf_event *event)
3686 {
3687 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3688 				"unexpected event refcount: %ld; ptr=%p\n",
3689 				atomic_long_read(&event->refcount), event)) {
3690 		/* leak to avoid use-after-free */
3691 		return;
3692 	}
3693 
3694 	_free_event(event);
3695 }
3696 
3697 /*
3698  * Remove user event from the owner task.
3699  */
3700 static void perf_remove_from_owner(struct perf_event *event)
3701 {
3702 	struct task_struct *owner;
3703 
3704 	rcu_read_lock();
3705 	owner = ACCESS_ONCE(event->owner);
3706 	/*
3707 	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3708 	 * !owner it means the list deletion is complete and we can indeed
3709 	 * free this event, otherwise we need to serialize on
3710 	 * owner->perf_event_mutex.
3711 	 */
3712 	smp_read_barrier_depends();
3713 	if (owner) {
3714 		/*
3715 		 * Since delayed_put_task_struct() also drops the last
3716 		 * task reference we can safely take a new reference
3717 		 * while holding the rcu_read_lock().
3718 		 */
3719 		get_task_struct(owner);
3720 	}
3721 	rcu_read_unlock();
3722 
3723 	if (owner) {
3724 		/*
3725 		 * If we're here through perf_event_exit_task() we're already
3726 		 * holding ctx->mutex which would be an inversion wrt. the
3727 		 * normal lock order.
3728 		 *
3729 		 * However we can safely take this lock because its the child
3730 		 * ctx->mutex.
3731 		 */
3732 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
3733 
3734 		/*
3735 		 * We have to re-check the event->owner field, if it is cleared
3736 		 * we raced with perf_event_exit_task(), acquiring the mutex
3737 		 * ensured they're done, and we can proceed with freeing the
3738 		 * event.
3739 		 */
3740 		if (event->owner)
3741 			list_del_init(&event->owner_entry);
3742 		mutex_unlock(&owner->perf_event_mutex);
3743 		put_task_struct(owner);
3744 	}
3745 }
3746 
3747 static void put_event(struct perf_event *event)
3748 {
3749 	struct perf_event_context *ctx;
3750 
3751 	if (!atomic_long_dec_and_test(&event->refcount))
3752 		return;
3753 
3754 	if (!is_kernel_event(event))
3755 		perf_remove_from_owner(event);
3756 
3757 	/*
3758 	 * There are two ways this annotation is useful:
3759 	 *
3760 	 *  1) there is a lock recursion from perf_event_exit_task
3761 	 *     see the comment there.
3762 	 *
3763 	 *  2) there is a lock-inversion with mmap_sem through
3764 	 *     perf_read_group(), which takes faults while
3765 	 *     holding ctx->mutex, however this is called after
3766 	 *     the last filedesc died, so there is no possibility
3767 	 *     to trigger the AB-BA case.
3768 	 */
3769 	ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING);
3770 	WARN_ON_ONCE(ctx->parent_ctx);
3771 	perf_remove_from_context(event, true);
3772 	perf_event_ctx_unlock(event, ctx);
3773 
3774 	_free_event(event);
3775 }
3776 
3777 int perf_event_release_kernel(struct perf_event *event)
3778 {
3779 	put_event(event);
3780 	return 0;
3781 }
3782 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3783 
3784 /*
3785  * Called when the last reference to the file is gone.
3786  */
3787 static int perf_release(struct inode *inode, struct file *file)
3788 {
3789 	put_event(file->private_data);
3790 	return 0;
3791 }
3792 
3793 /*
3794  * Remove all orphanes events from the context.
3795  */
3796 static void orphans_remove_work(struct work_struct *work)
3797 {
3798 	struct perf_event_context *ctx;
3799 	struct perf_event *event, *tmp;
3800 
3801 	ctx = container_of(work, struct perf_event_context,
3802 			   orphans_remove.work);
3803 
3804 	mutex_lock(&ctx->mutex);
3805 	list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
3806 		struct perf_event *parent_event = event->parent;
3807 
3808 		if (!is_orphaned_child(event))
3809 			continue;
3810 
3811 		perf_remove_from_context(event, true);
3812 
3813 		mutex_lock(&parent_event->child_mutex);
3814 		list_del_init(&event->child_list);
3815 		mutex_unlock(&parent_event->child_mutex);
3816 
3817 		free_event(event);
3818 		put_event(parent_event);
3819 	}
3820 
3821 	raw_spin_lock_irq(&ctx->lock);
3822 	ctx->orphans_remove_sched = false;
3823 	raw_spin_unlock_irq(&ctx->lock);
3824 	mutex_unlock(&ctx->mutex);
3825 
3826 	put_ctx(ctx);
3827 }
3828 
3829 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3830 {
3831 	struct perf_event *child;
3832 	u64 total = 0;
3833 
3834 	*enabled = 0;
3835 	*running = 0;
3836 
3837 	mutex_lock(&event->child_mutex);
3838 
3839 	(void)perf_event_read(event, false);
3840 	total += perf_event_count(event);
3841 
3842 	*enabled += event->total_time_enabled +
3843 			atomic64_read(&event->child_total_time_enabled);
3844 	*running += event->total_time_running +
3845 			atomic64_read(&event->child_total_time_running);
3846 
3847 	list_for_each_entry(child, &event->child_list, child_list) {
3848 		(void)perf_event_read(child, false);
3849 		total += perf_event_count(child);
3850 		*enabled += child->total_time_enabled;
3851 		*running += child->total_time_running;
3852 	}
3853 	mutex_unlock(&event->child_mutex);
3854 
3855 	return total;
3856 }
3857 EXPORT_SYMBOL_GPL(perf_event_read_value);
3858 
3859 static int __perf_read_group_add(struct perf_event *leader,
3860 					u64 read_format, u64 *values)
3861 {
3862 	struct perf_event *sub;
3863 	int n = 1; /* skip @nr */
3864 	int ret;
3865 
3866 	ret = perf_event_read(leader, true);
3867 	if (ret)
3868 		return ret;
3869 
3870 	/*
3871 	 * Since we co-schedule groups, {enabled,running} times of siblings
3872 	 * will be identical to those of the leader, so we only publish one
3873 	 * set.
3874 	 */
3875 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3876 		values[n++] += leader->total_time_enabled +
3877 			atomic64_read(&leader->child_total_time_enabled);
3878 	}
3879 
3880 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3881 		values[n++] += leader->total_time_running +
3882 			atomic64_read(&leader->child_total_time_running);
3883 	}
3884 
3885 	/*
3886 	 * Write {count,id} tuples for every sibling.
3887 	 */
3888 	values[n++] += perf_event_count(leader);
3889 	if (read_format & PERF_FORMAT_ID)
3890 		values[n++] = primary_event_id(leader);
3891 
3892 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3893 		values[n++] += perf_event_count(sub);
3894 		if (read_format & PERF_FORMAT_ID)
3895 			values[n++] = primary_event_id(sub);
3896 	}
3897 
3898 	return 0;
3899 }
3900 
3901 static int perf_read_group(struct perf_event *event,
3902 				   u64 read_format, char __user *buf)
3903 {
3904 	struct perf_event *leader = event->group_leader, *child;
3905 	struct perf_event_context *ctx = leader->ctx;
3906 	int ret;
3907 	u64 *values;
3908 
3909 	lockdep_assert_held(&ctx->mutex);
3910 
3911 	values = kzalloc(event->read_size, GFP_KERNEL);
3912 	if (!values)
3913 		return -ENOMEM;
3914 
3915 	values[0] = 1 + leader->nr_siblings;
3916 
3917 	/*
3918 	 * By locking the child_mutex of the leader we effectively
3919 	 * lock the child list of all siblings.. XXX explain how.
3920 	 */
3921 	mutex_lock(&leader->child_mutex);
3922 
3923 	ret = __perf_read_group_add(leader, read_format, values);
3924 	if (ret)
3925 		goto unlock;
3926 
3927 	list_for_each_entry(child, &leader->child_list, child_list) {
3928 		ret = __perf_read_group_add(child, read_format, values);
3929 		if (ret)
3930 			goto unlock;
3931 	}
3932 
3933 	mutex_unlock(&leader->child_mutex);
3934 
3935 	ret = event->read_size;
3936 	if (copy_to_user(buf, values, event->read_size))
3937 		ret = -EFAULT;
3938 	goto out;
3939 
3940 unlock:
3941 	mutex_unlock(&leader->child_mutex);
3942 out:
3943 	kfree(values);
3944 	return ret;
3945 }
3946 
3947 static int perf_read_one(struct perf_event *event,
3948 				 u64 read_format, char __user *buf)
3949 {
3950 	u64 enabled, running;
3951 	u64 values[4];
3952 	int n = 0;
3953 
3954 	values[n++] = perf_event_read_value(event, &enabled, &running);
3955 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3956 		values[n++] = enabled;
3957 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3958 		values[n++] = running;
3959 	if (read_format & PERF_FORMAT_ID)
3960 		values[n++] = primary_event_id(event);
3961 
3962 	if (copy_to_user(buf, values, n * sizeof(u64)))
3963 		return -EFAULT;
3964 
3965 	return n * sizeof(u64);
3966 }
3967 
3968 static bool is_event_hup(struct perf_event *event)
3969 {
3970 	bool no_children;
3971 
3972 	if (event->state != PERF_EVENT_STATE_EXIT)
3973 		return false;
3974 
3975 	mutex_lock(&event->child_mutex);
3976 	no_children = list_empty(&event->child_list);
3977 	mutex_unlock(&event->child_mutex);
3978 	return no_children;
3979 }
3980 
3981 /*
3982  * Read the performance event - simple non blocking version for now
3983  */
3984 static ssize_t
3985 __perf_read(struct perf_event *event, char __user *buf, size_t count)
3986 {
3987 	u64 read_format = event->attr.read_format;
3988 	int ret;
3989 
3990 	/*
3991 	 * Return end-of-file for a read on a event that is in
3992 	 * error state (i.e. because it was pinned but it couldn't be
3993 	 * scheduled on to the CPU at some point).
3994 	 */
3995 	if (event->state == PERF_EVENT_STATE_ERROR)
3996 		return 0;
3997 
3998 	if (count < event->read_size)
3999 		return -ENOSPC;
4000 
4001 	WARN_ON_ONCE(event->ctx->parent_ctx);
4002 	if (read_format & PERF_FORMAT_GROUP)
4003 		ret = perf_read_group(event, read_format, buf);
4004 	else
4005 		ret = perf_read_one(event, read_format, buf);
4006 
4007 	return ret;
4008 }
4009 
4010 static ssize_t
4011 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4012 {
4013 	struct perf_event *event = file->private_data;
4014 	struct perf_event_context *ctx;
4015 	int ret;
4016 
4017 	ctx = perf_event_ctx_lock(event);
4018 	ret = __perf_read(event, buf, count);
4019 	perf_event_ctx_unlock(event, ctx);
4020 
4021 	return ret;
4022 }
4023 
4024 static unsigned int perf_poll(struct file *file, poll_table *wait)
4025 {
4026 	struct perf_event *event = file->private_data;
4027 	struct ring_buffer *rb;
4028 	unsigned int events = POLLHUP;
4029 
4030 	poll_wait(file, &event->waitq, wait);
4031 
4032 	if (is_event_hup(event))
4033 		return events;
4034 
4035 	/*
4036 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
4037 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4038 	 */
4039 	mutex_lock(&event->mmap_mutex);
4040 	rb = event->rb;
4041 	if (rb)
4042 		events = atomic_xchg(&rb->poll, 0);
4043 	mutex_unlock(&event->mmap_mutex);
4044 	return events;
4045 }
4046 
4047 static void _perf_event_reset(struct perf_event *event)
4048 {
4049 	(void)perf_event_read(event, false);
4050 	local64_set(&event->count, 0);
4051 	perf_event_update_userpage(event);
4052 }
4053 
4054 /*
4055  * Holding the top-level event's child_mutex means that any
4056  * descendant process that has inherited this event will block
4057  * in sync_child_event if it goes to exit, thus satisfying the
4058  * task existence requirements of perf_event_enable/disable.
4059  */
4060 static void perf_event_for_each_child(struct perf_event *event,
4061 					void (*func)(struct perf_event *))
4062 {
4063 	struct perf_event *child;
4064 
4065 	WARN_ON_ONCE(event->ctx->parent_ctx);
4066 
4067 	mutex_lock(&event->child_mutex);
4068 	func(event);
4069 	list_for_each_entry(child, &event->child_list, child_list)
4070 		func(child);
4071 	mutex_unlock(&event->child_mutex);
4072 }
4073 
4074 static void perf_event_for_each(struct perf_event *event,
4075 				  void (*func)(struct perf_event *))
4076 {
4077 	struct perf_event_context *ctx = event->ctx;
4078 	struct perf_event *sibling;
4079 
4080 	lockdep_assert_held(&ctx->mutex);
4081 
4082 	event = event->group_leader;
4083 
4084 	perf_event_for_each_child(event, func);
4085 	list_for_each_entry(sibling, &event->sibling_list, group_entry)
4086 		perf_event_for_each_child(sibling, func);
4087 }
4088 
4089 struct period_event {
4090 	struct perf_event *event;
4091 	u64 value;
4092 };
4093 
4094 static void ___perf_event_period(void *info)
4095 {
4096 	struct period_event *pe = info;
4097 	struct perf_event *event = pe->event;
4098 	u64 value = pe->value;
4099 
4100 	if (event->attr.freq) {
4101 		event->attr.sample_freq = value;
4102 	} else {
4103 		event->attr.sample_period = value;
4104 		event->hw.sample_period = value;
4105 	}
4106 
4107 	local64_set(&event->hw.period_left, 0);
4108 }
4109 
4110 static int __perf_event_period(void *info)
4111 {
4112 	struct period_event *pe = info;
4113 	struct perf_event *event = pe->event;
4114 	struct perf_event_context *ctx = event->ctx;
4115 	u64 value = pe->value;
4116 	bool active;
4117 
4118 	raw_spin_lock(&ctx->lock);
4119 	if (event->attr.freq) {
4120 		event->attr.sample_freq = value;
4121 	} else {
4122 		event->attr.sample_period = value;
4123 		event->hw.sample_period = value;
4124 	}
4125 
4126 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
4127 	if (active) {
4128 		perf_pmu_disable(ctx->pmu);
4129 		event->pmu->stop(event, PERF_EF_UPDATE);
4130 	}
4131 
4132 	local64_set(&event->hw.period_left, 0);
4133 
4134 	if (active) {
4135 		event->pmu->start(event, PERF_EF_RELOAD);
4136 		perf_pmu_enable(ctx->pmu);
4137 	}
4138 	raw_spin_unlock(&ctx->lock);
4139 
4140 	return 0;
4141 }
4142 
4143 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4144 {
4145 	struct period_event pe = { .event = event, };
4146 	u64 value;
4147 
4148 	if (!is_sampling_event(event))
4149 		return -EINVAL;
4150 
4151 	if (copy_from_user(&value, arg, sizeof(value)))
4152 		return -EFAULT;
4153 
4154 	if (!value)
4155 		return -EINVAL;
4156 
4157 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4158 		return -EINVAL;
4159 
4160 	pe.value = value;
4161 
4162 	event_function_call(event, __perf_event_period,
4163 			    ___perf_event_period, &pe);
4164 
4165 	return 0;
4166 }
4167 
4168 static const struct file_operations perf_fops;
4169 
4170 static inline int perf_fget_light(int fd, struct fd *p)
4171 {
4172 	struct fd f = fdget(fd);
4173 	if (!f.file)
4174 		return -EBADF;
4175 
4176 	if (f.file->f_op != &perf_fops) {
4177 		fdput(f);
4178 		return -EBADF;
4179 	}
4180 	*p = f;
4181 	return 0;
4182 }
4183 
4184 static int perf_event_set_output(struct perf_event *event,
4185 				 struct perf_event *output_event);
4186 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4187 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4188 
4189 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4190 {
4191 	void (*func)(struct perf_event *);
4192 	u32 flags = arg;
4193 
4194 	switch (cmd) {
4195 	case PERF_EVENT_IOC_ENABLE:
4196 		func = _perf_event_enable;
4197 		break;
4198 	case PERF_EVENT_IOC_DISABLE:
4199 		func = _perf_event_disable;
4200 		break;
4201 	case PERF_EVENT_IOC_RESET:
4202 		func = _perf_event_reset;
4203 		break;
4204 
4205 	case PERF_EVENT_IOC_REFRESH:
4206 		return _perf_event_refresh(event, arg);
4207 
4208 	case PERF_EVENT_IOC_PERIOD:
4209 		return perf_event_period(event, (u64 __user *)arg);
4210 
4211 	case PERF_EVENT_IOC_ID:
4212 	{
4213 		u64 id = primary_event_id(event);
4214 
4215 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4216 			return -EFAULT;
4217 		return 0;
4218 	}
4219 
4220 	case PERF_EVENT_IOC_SET_OUTPUT:
4221 	{
4222 		int ret;
4223 		if (arg != -1) {
4224 			struct perf_event *output_event;
4225 			struct fd output;
4226 			ret = perf_fget_light(arg, &output);
4227 			if (ret)
4228 				return ret;
4229 			output_event = output.file->private_data;
4230 			ret = perf_event_set_output(event, output_event);
4231 			fdput(output);
4232 		} else {
4233 			ret = perf_event_set_output(event, NULL);
4234 		}
4235 		return ret;
4236 	}
4237 
4238 	case PERF_EVENT_IOC_SET_FILTER:
4239 		return perf_event_set_filter(event, (void __user *)arg);
4240 
4241 	case PERF_EVENT_IOC_SET_BPF:
4242 		return perf_event_set_bpf_prog(event, arg);
4243 
4244 	default:
4245 		return -ENOTTY;
4246 	}
4247 
4248 	if (flags & PERF_IOC_FLAG_GROUP)
4249 		perf_event_for_each(event, func);
4250 	else
4251 		perf_event_for_each_child(event, func);
4252 
4253 	return 0;
4254 }
4255 
4256 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4257 {
4258 	struct perf_event *event = file->private_data;
4259 	struct perf_event_context *ctx;
4260 	long ret;
4261 
4262 	ctx = perf_event_ctx_lock(event);
4263 	ret = _perf_ioctl(event, cmd, arg);
4264 	perf_event_ctx_unlock(event, ctx);
4265 
4266 	return ret;
4267 }
4268 
4269 #ifdef CONFIG_COMPAT
4270 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4271 				unsigned long arg)
4272 {
4273 	switch (_IOC_NR(cmd)) {
4274 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4275 	case _IOC_NR(PERF_EVENT_IOC_ID):
4276 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4277 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4278 			cmd &= ~IOCSIZE_MASK;
4279 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4280 		}
4281 		break;
4282 	}
4283 	return perf_ioctl(file, cmd, arg);
4284 }
4285 #else
4286 # define perf_compat_ioctl NULL
4287 #endif
4288 
4289 int perf_event_task_enable(void)
4290 {
4291 	struct perf_event_context *ctx;
4292 	struct perf_event *event;
4293 
4294 	mutex_lock(&current->perf_event_mutex);
4295 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4296 		ctx = perf_event_ctx_lock(event);
4297 		perf_event_for_each_child(event, _perf_event_enable);
4298 		perf_event_ctx_unlock(event, ctx);
4299 	}
4300 	mutex_unlock(&current->perf_event_mutex);
4301 
4302 	return 0;
4303 }
4304 
4305 int perf_event_task_disable(void)
4306 {
4307 	struct perf_event_context *ctx;
4308 	struct perf_event *event;
4309 
4310 	mutex_lock(&current->perf_event_mutex);
4311 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4312 		ctx = perf_event_ctx_lock(event);
4313 		perf_event_for_each_child(event, _perf_event_disable);
4314 		perf_event_ctx_unlock(event, ctx);
4315 	}
4316 	mutex_unlock(&current->perf_event_mutex);
4317 
4318 	return 0;
4319 }
4320 
4321 static int perf_event_index(struct perf_event *event)
4322 {
4323 	if (event->hw.state & PERF_HES_STOPPED)
4324 		return 0;
4325 
4326 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4327 		return 0;
4328 
4329 	return event->pmu->event_idx(event);
4330 }
4331 
4332 static void calc_timer_values(struct perf_event *event,
4333 				u64 *now,
4334 				u64 *enabled,
4335 				u64 *running)
4336 {
4337 	u64 ctx_time;
4338 
4339 	*now = perf_clock();
4340 	ctx_time = event->shadow_ctx_time + *now;
4341 	*enabled = ctx_time - event->tstamp_enabled;
4342 	*running = ctx_time - event->tstamp_running;
4343 }
4344 
4345 static void perf_event_init_userpage(struct perf_event *event)
4346 {
4347 	struct perf_event_mmap_page *userpg;
4348 	struct ring_buffer *rb;
4349 
4350 	rcu_read_lock();
4351 	rb = rcu_dereference(event->rb);
4352 	if (!rb)
4353 		goto unlock;
4354 
4355 	userpg = rb->user_page;
4356 
4357 	/* Allow new userspace to detect that bit 0 is deprecated */
4358 	userpg->cap_bit0_is_deprecated = 1;
4359 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4360 	userpg->data_offset = PAGE_SIZE;
4361 	userpg->data_size = perf_data_size(rb);
4362 
4363 unlock:
4364 	rcu_read_unlock();
4365 }
4366 
4367 void __weak arch_perf_update_userpage(
4368 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4369 {
4370 }
4371 
4372 /*
4373  * Callers need to ensure there can be no nesting of this function, otherwise
4374  * the seqlock logic goes bad. We can not serialize this because the arch
4375  * code calls this from NMI context.
4376  */
4377 void perf_event_update_userpage(struct perf_event *event)
4378 {
4379 	struct perf_event_mmap_page *userpg;
4380 	struct ring_buffer *rb;
4381 	u64 enabled, running, now;
4382 
4383 	rcu_read_lock();
4384 	rb = rcu_dereference(event->rb);
4385 	if (!rb)
4386 		goto unlock;
4387 
4388 	/*
4389 	 * compute total_time_enabled, total_time_running
4390 	 * based on snapshot values taken when the event
4391 	 * was last scheduled in.
4392 	 *
4393 	 * we cannot simply called update_context_time()
4394 	 * because of locking issue as we can be called in
4395 	 * NMI context
4396 	 */
4397 	calc_timer_values(event, &now, &enabled, &running);
4398 
4399 	userpg = rb->user_page;
4400 	/*
4401 	 * Disable preemption so as to not let the corresponding user-space
4402 	 * spin too long if we get preempted.
4403 	 */
4404 	preempt_disable();
4405 	++userpg->lock;
4406 	barrier();
4407 	userpg->index = perf_event_index(event);
4408 	userpg->offset = perf_event_count(event);
4409 	if (userpg->index)
4410 		userpg->offset -= local64_read(&event->hw.prev_count);
4411 
4412 	userpg->time_enabled = enabled +
4413 			atomic64_read(&event->child_total_time_enabled);
4414 
4415 	userpg->time_running = running +
4416 			atomic64_read(&event->child_total_time_running);
4417 
4418 	arch_perf_update_userpage(event, userpg, now);
4419 
4420 	barrier();
4421 	++userpg->lock;
4422 	preempt_enable();
4423 unlock:
4424 	rcu_read_unlock();
4425 }
4426 
4427 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4428 {
4429 	struct perf_event *event = vma->vm_file->private_data;
4430 	struct ring_buffer *rb;
4431 	int ret = VM_FAULT_SIGBUS;
4432 
4433 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
4434 		if (vmf->pgoff == 0)
4435 			ret = 0;
4436 		return ret;
4437 	}
4438 
4439 	rcu_read_lock();
4440 	rb = rcu_dereference(event->rb);
4441 	if (!rb)
4442 		goto unlock;
4443 
4444 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4445 		goto unlock;
4446 
4447 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4448 	if (!vmf->page)
4449 		goto unlock;
4450 
4451 	get_page(vmf->page);
4452 	vmf->page->mapping = vma->vm_file->f_mapping;
4453 	vmf->page->index   = vmf->pgoff;
4454 
4455 	ret = 0;
4456 unlock:
4457 	rcu_read_unlock();
4458 
4459 	return ret;
4460 }
4461 
4462 static void ring_buffer_attach(struct perf_event *event,
4463 			       struct ring_buffer *rb)
4464 {
4465 	struct ring_buffer *old_rb = NULL;
4466 	unsigned long flags;
4467 
4468 	if (event->rb) {
4469 		/*
4470 		 * Should be impossible, we set this when removing
4471 		 * event->rb_entry and wait/clear when adding event->rb_entry.
4472 		 */
4473 		WARN_ON_ONCE(event->rcu_pending);
4474 
4475 		old_rb = event->rb;
4476 		spin_lock_irqsave(&old_rb->event_lock, flags);
4477 		list_del_rcu(&event->rb_entry);
4478 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
4479 
4480 		event->rcu_batches = get_state_synchronize_rcu();
4481 		event->rcu_pending = 1;
4482 	}
4483 
4484 	if (rb) {
4485 		if (event->rcu_pending) {
4486 			cond_synchronize_rcu(event->rcu_batches);
4487 			event->rcu_pending = 0;
4488 		}
4489 
4490 		spin_lock_irqsave(&rb->event_lock, flags);
4491 		list_add_rcu(&event->rb_entry, &rb->event_list);
4492 		spin_unlock_irqrestore(&rb->event_lock, flags);
4493 	}
4494 
4495 	rcu_assign_pointer(event->rb, rb);
4496 
4497 	if (old_rb) {
4498 		ring_buffer_put(old_rb);
4499 		/*
4500 		 * Since we detached before setting the new rb, so that we
4501 		 * could attach the new rb, we could have missed a wakeup.
4502 		 * Provide it now.
4503 		 */
4504 		wake_up_all(&event->waitq);
4505 	}
4506 }
4507 
4508 static void ring_buffer_wakeup(struct perf_event *event)
4509 {
4510 	struct ring_buffer *rb;
4511 
4512 	rcu_read_lock();
4513 	rb = rcu_dereference(event->rb);
4514 	if (rb) {
4515 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4516 			wake_up_all(&event->waitq);
4517 	}
4518 	rcu_read_unlock();
4519 }
4520 
4521 struct ring_buffer *ring_buffer_get(struct perf_event *event)
4522 {
4523 	struct ring_buffer *rb;
4524 
4525 	rcu_read_lock();
4526 	rb = rcu_dereference(event->rb);
4527 	if (rb) {
4528 		if (!atomic_inc_not_zero(&rb->refcount))
4529 			rb = NULL;
4530 	}
4531 	rcu_read_unlock();
4532 
4533 	return rb;
4534 }
4535 
4536 void ring_buffer_put(struct ring_buffer *rb)
4537 {
4538 	if (!atomic_dec_and_test(&rb->refcount))
4539 		return;
4540 
4541 	WARN_ON_ONCE(!list_empty(&rb->event_list));
4542 
4543 	call_rcu(&rb->rcu_head, rb_free_rcu);
4544 }
4545 
4546 static void perf_mmap_open(struct vm_area_struct *vma)
4547 {
4548 	struct perf_event *event = vma->vm_file->private_data;
4549 
4550 	atomic_inc(&event->mmap_count);
4551 	atomic_inc(&event->rb->mmap_count);
4552 
4553 	if (vma->vm_pgoff)
4554 		atomic_inc(&event->rb->aux_mmap_count);
4555 
4556 	if (event->pmu->event_mapped)
4557 		event->pmu->event_mapped(event);
4558 }
4559 
4560 /*
4561  * A buffer can be mmap()ed multiple times; either directly through the same
4562  * event, or through other events by use of perf_event_set_output().
4563  *
4564  * In order to undo the VM accounting done by perf_mmap() we need to destroy
4565  * the buffer here, where we still have a VM context. This means we need
4566  * to detach all events redirecting to us.
4567  */
4568 static void perf_mmap_close(struct vm_area_struct *vma)
4569 {
4570 	struct perf_event *event = vma->vm_file->private_data;
4571 
4572 	struct ring_buffer *rb = ring_buffer_get(event);
4573 	struct user_struct *mmap_user = rb->mmap_user;
4574 	int mmap_locked = rb->mmap_locked;
4575 	unsigned long size = perf_data_size(rb);
4576 
4577 	if (event->pmu->event_unmapped)
4578 		event->pmu->event_unmapped(event);
4579 
4580 	/*
4581 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
4582 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
4583 	 * serialize with perf_mmap here.
4584 	 */
4585 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4586 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4587 		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4588 		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4589 
4590 		rb_free_aux(rb);
4591 		mutex_unlock(&event->mmap_mutex);
4592 	}
4593 
4594 	atomic_dec(&rb->mmap_count);
4595 
4596 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4597 		goto out_put;
4598 
4599 	ring_buffer_attach(event, NULL);
4600 	mutex_unlock(&event->mmap_mutex);
4601 
4602 	/* If there's still other mmap()s of this buffer, we're done. */
4603 	if (atomic_read(&rb->mmap_count))
4604 		goto out_put;
4605 
4606 	/*
4607 	 * No other mmap()s, detach from all other events that might redirect
4608 	 * into the now unreachable buffer. Somewhat complicated by the
4609 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4610 	 */
4611 again:
4612 	rcu_read_lock();
4613 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4614 		if (!atomic_long_inc_not_zero(&event->refcount)) {
4615 			/*
4616 			 * This event is en-route to free_event() which will
4617 			 * detach it and remove it from the list.
4618 			 */
4619 			continue;
4620 		}
4621 		rcu_read_unlock();
4622 
4623 		mutex_lock(&event->mmap_mutex);
4624 		/*
4625 		 * Check we didn't race with perf_event_set_output() which can
4626 		 * swizzle the rb from under us while we were waiting to
4627 		 * acquire mmap_mutex.
4628 		 *
4629 		 * If we find a different rb; ignore this event, a next
4630 		 * iteration will no longer find it on the list. We have to
4631 		 * still restart the iteration to make sure we're not now
4632 		 * iterating the wrong list.
4633 		 */
4634 		if (event->rb == rb)
4635 			ring_buffer_attach(event, NULL);
4636 
4637 		mutex_unlock(&event->mmap_mutex);
4638 		put_event(event);
4639 
4640 		/*
4641 		 * Restart the iteration; either we're on the wrong list or
4642 		 * destroyed its integrity by doing a deletion.
4643 		 */
4644 		goto again;
4645 	}
4646 	rcu_read_unlock();
4647 
4648 	/*
4649 	 * It could be there's still a few 0-ref events on the list; they'll
4650 	 * get cleaned up by free_event() -- they'll also still have their
4651 	 * ref on the rb and will free it whenever they are done with it.
4652 	 *
4653 	 * Aside from that, this buffer is 'fully' detached and unmapped,
4654 	 * undo the VM accounting.
4655 	 */
4656 
4657 	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4658 	vma->vm_mm->pinned_vm -= mmap_locked;
4659 	free_uid(mmap_user);
4660 
4661 out_put:
4662 	ring_buffer_put(rb); /* could be last */
4663 }
4664 
4665 static const struct vm_operations_struct perf_mmap_vmops = {
4666 	.open		= perf_mmap_open,
4667 	.close		= perf_mmap_close, /* non mergable */
4668 	.fault		= perf_mmap_fault,
4669 	.page_mkwrite	= perf_mmap_fault,
4670 };
4671 
4672 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4673 {
4674 	struct perf_event *event = file->private_data;
4675 	unsigned long user_locked, user_lock_limit;
4676 	struct user_struct *user = current_user();
4677 	unsigned long locked, lock_limit;
4678 	struct ring_buffer *rb = NULL;
4679 	unsigned long vma_size;
4680 	unsigned long nr_pages;
4681 	long user_extra = 0, extra = 0;
4682 	int ret = 0, flags = 0;
4683 
4684 	/*
4685 	 * Don't allow mmap() of inherited per-task counters. This would
4686 	 * create a performance issue due to all children writing to the
4687 	 * same rb.
4688 	 */
4689 	if (event->cpu == -1 && event->attr.inherit)
4690 		return -EINVAL;
4691 
4692 	if (!(vma->vm_flags & VM_SHARED))
4693 		return -EINVAL;
4694 
4695 	vma_size = vma->vm_end - vma->vm_start;
4696 
4697 	if (vma->vm_pgoff == 0) {
4698 		nr_pages = (vma_size / PAGE_SIZE) - 1;
4699 	} else {
4700 		/*
4701 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
4702 		 * mapped, all subsequent mappings should have the same size
4703 		 * and offset. Must be above the normal perf buffer.
4704 		 */
4705 		u64 aux_offset, aux_size;
4706 
4707 		if (!event->rb)
4708 			return -EINVAL;
4709 
4710 		nr_pages = vma_size / PAGE_SIZE;
4711 
4712 		mutex_lock(&event->mmap_mutex);
4713 		ret = -EINVAL;
4714 
4715 		rb = event->rb;
4716 		if (!rb)
4717 			goto aux_unlock;
4718 
4719 		aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
4720 		aux_size = ACCESS_ONCE(rb->user_page->aux_size);
4721 
4722 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
4723 			goto aux_unlock;
4724 
4725 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
4726 			goto aux_unlock;
4727 
4728 		/* already mapped with a different offset */
4729 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
4730 			goto aux_unlock;
4731 
4732 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
4733 			goto aux_unlock;
4734 
4735 		/* already mapped with a different size */
4736 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
4737 			goto aux_unlock;
4738 
4739 		if (!is_power_of_2(nr_pages))
4740 			goto aux_unlock;
4741 
4742 		if (!atomic_inc_not_zero(&rb->mmap_count))
4743 			goto aux_unlock;
4744 
4745 		if (rb_has_aux(rb)) {
4746 			atomic_inc(&rb->aux_mmap_count);
4747 			ret = 0;
4748 			goto unlock;
4749 		}
4750 
4751 		atomic_set(&rb->aux_mmap_count, 1);
4752 		user_extra = nr_pages;
4753 
4754 		goto accounting;
4755 	}
4756 
4757 	/*
4758 	 * If we have rb pages ensure they're a power-of-two number, so we
4759 	 * can do bitmasks instead of modulo.
4760 	 */
4761 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
4762 		return -EINVAL;
4763 
4764 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
4765 		return -EINVAL;
4766 
4767 	WARN_ON_ONCE(event->ctx->parent_ctx);
4768 again:
4769 	mutex_lock(&event->mmap_mutex);
4770 	if (event->rb) {
4771 		if (event->rb->nr_pages != nr_pages) {
4772 			ret = -EINVAL;
4773 			goto unlock;
4774 		}
4775 
4776 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4777 			/*
4778 			 * Raced against perf_mmap_close() through
4779 			 * perf_event_set_output(). Try again, hope for better
4780 			 * luck.
4781 			 */
4782 			mutex_unlock(&event->mmap_mutex);
4783 			goto again;
4784 		}
4785 
4786 		goto unlock;
4787 	}
4788 
4789 	user_extra = nr_pages + 1;
4790 
4791 accounting:
4792 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
4793 
4794 	/*
4795 	 * Increase the limit linearly with more CPUs:
4796 	 */
4797 	user_lock_limit *= num_online_cpus();
4798 
4799 	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4800 
4801 	if (user_locked > user_lock_limit)
4802 		extra = user_locked - user_lock_limit;
4803 
4804 	lock_limit = rlimit(RLIMIT_MEMLOCK);
4805 	lock_limit >>= PAGE_SHIFT;
4806 	locked = vma->vm_mm->pinned_vm + extra;
4807 
4808 	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4809 		!capable(CAP_IPC_LOCK)) {
4810 		ret = -EPERM;
4811 		goto unlock;
4812 	}
4813 
4814 	WARN_ON(!rb && event->rb);
4815 
4816 	if (vma->vm_flags & VM_WRITE)
4817 		flags |= RING_BUFFER_WRITABLE;
4818 
4819 	if (!rb) {
4820 		rb = rb_alloc(nr_pages,
4821 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
4822 			      event->cpu, flags);
4823 
4824 		if (!rb) {
4825 			ret = -ENOMEM;
4826 			goto unlock;
4827 		}
4828 
4829 		atomic_set(&rb->mmap_count, 1);
4830 		rb->mmap_user = get_current_user();
4831 		rb->mmap_locked = extra;
4832 
4833 		ring_buffer_attach(event, rb);
4834 
4835 		perf_event_init_userpage(event);
4836 		perf_event_update_userpage(event);
4837 	} else {
4838 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
4839 				   event->attr.aux_watermark, flags);
4840 		if (!ret)
4841 			rb->aux_mmap_locked = extra;
4842 	}
4843 
4844 unlock:
4845 	if (!ret) {
4846 		atomic_long_add(user_extra, &user->locked_vm);
4847 		vma->vm_mm->pinned_vm += extra;
4848 
4849 		atomic_inc(&event->mmap_count);
4850 	} else if (rb) {
4851 		atomic_dec(&rb->mmap_count);
4852 	}
4853 aux_unlock:
4854 	mutex_unlock(&event->mmap_mutex);
4855 
4856 	/*
4857 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
4858 	 * vma.
4859 	 */
4860 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4861 	vma->vm_ops = &perf_mmap_vmops;
4862 
4863 	if (event->pmu->event_mapped)
4864 		event->pmu->event_mapped(event);
4865 
4866 	return ret;
4867 }
4868 
4869 static int perf_fasync(int fd, struct file *filp, int on)
4870 {
4871 	struct inode *inode = file_inode(filp);
4872 	struct perf_event *event = filp->private_data;
4873 	int retval;
4874 
4875 	inode_lock(inode);
4876 	retval = fasync_helper(fd, filp, on, &event->fasync);
4877 	inode_unlock(inode);
4878 
4879 	if (retval < 0)
4880 		return retval;
4881 
4882 	return 0;
4883 }
4884 
4885 static const struct file_operations perf_fops = {
4886 	.llseek			= no_llseek,
4887 	.release		= perf_release,
4888 	.read			= perf_read,
4889 	.poll			= perf_poll,
4890 	.unlocked_ioctl		= perf_ioctl,
4891 	.compat_ioctl		= perf_compat_ioctl,
4892 	.mmap			= perf_mmap,
4893 	.fasync			= perf_fasync,
4894 };
4895 
4896 /*
4897  * Perf event wakeup
4898  *
4899  * If there's data, ensure we set the poll() state and publish everything
4900  * to user-space before waking everybody up.
4901  */
4902 
4903 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
4904 {
4905 	/* only the parent has fasync state */
4906 	if (event->parent)
4907 		event = event->parent;
4908 	return &event->fasync;
4909 }
4910 
4911 void perf_event_wakeup(struct perf_event *event)
4912 {
4913 	ring_buffer_wakeup(event);
4914 
4915 	if (event->pending_kill) {
4916 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
4917 		event->pending_kill = 0;
4918 	}
4919 }
4920 
4921 static void perf_pending_event(struct irq_work *entry)
4922 {
4923 	struct perf_event *event = container_of(entry,
4924 			struct perf_event, pending);
4925 	int rctx;
4926 
4927 	rctx = perf_swevent_get_recursion_context();
4928 	/*
4929 	 * If we 'fail' here, that's OK, it means recursion is already disabled
4930 	 * and we won't recurse 'further'.
4931 	 */
4932 
4933 	if (event->pending_disable) {
4934 		event->pending_disable = 0;
4935 		__perf_event_disable(event);
4936 	}
4937 
4938 	if (event->pending_wakeup) {
4939 		event->pending_wakeup = 0;
4940 		perf_event_wakeup(event);
4941 	}
4942 
4943 	if (rctx >= 0)
4944 		perf_swevent_put_recursion_context(rctx);
4945 }
4946 
4947 /*
4948  * We assume there is only KVM supporting the callbacks.
4949  * Later on, we might change it to a list if there is
4950  * another virtualization implementation supporting the callbacks.
4951  */
4952 struct perf_guest_info_callbacks *perf_guest_cbs;
4953 
4954 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4955 {
4956 	perf_guest_cbs = cbs;
4957 	return 0;
4958 }
4959 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4960 
4961 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4962 {
4963 	perf_guest_cbs = NULL;
4964 	return 0;
4965 }
4966 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4967 
4968 static void
4969 perf_output_sample_regs(struct perf_output_handle *handle,
4970 			struct pt_regs *regs, u64 mask)
4971 {
4972 	int bit;
4973 
4974 	for_each_set_bit(bit, (const unsigned long *) &mask,
4975 			 sizeof(mask) * BITS_PER_BYTE) {
4976 		u64 val;
4977 
4978 		val = perf_reg_value(regs, bit);
4979 		perf_output_put(handle, val);
4980 	}
4981 }
4982 
4983 static void perf_sample_regs_user(struct perf_regs *regs_user,
4984 				  struct pt_regs *regs,
4985 				  struct pt_regs *regs_user_copy)
4986 {
4987 	if (user_mode(regs)) {
4988 		regs_user->abi = perf_reg_abi(current);
4989 		regs_user->regs = regs;
4990 	} else if (current->mm) {
4991 		perf_get_regs_user(regs_user, regs, regs_user_copy);
4992 	} else {
4993 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
4994 		regs_user->regs = NULL;
4995 	}
4996 }
4997 
4998 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
4999 				  struct pt_regs *regs)
5000 {
5001 	regs_intr->regs = regs;
5002 	regs_intr->abi  = perf_reg_abi(current);
5003 }
5004 
5005 
5006 /*
5007  * Get remaining task size from user stack pointer.
5008  *
5009  * It'd be better to take stack vma map and limit this more
5010  * precisly, but there's no way to get it safely under interrupt,
5011  * so using TASK_SIZE as limit.
5012  */
5013 static u64 perf_ustack_task_size(struct pt_regs *regs)
5014 {
5015 	unsigned long addr = perf_user_stack_pointer(regs);
5016 
5017 	if (!addr || addr >= TASK_SIZE)
5018 		return 0;
5019 
5020 	return TASK_SIZE - addr;
5021 }
5022 
5023 static u16
5024 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5025 			struct pt_regs *regs)
5026 {
5027 	u64 task_size;
5028 
5029 	/* No regs, no stack pointer, no dump. */
5030 	if (!regs)
5031 		return 0;
5032 
5033 	/*
5034 	 * Check if we fit in with the requested stack size into the:
5035 	 * - TASK_SIZE
5036 	 *   If we don't, we limit the size to the TASK_SIZE.
5037 	 *
5038 	 * - remaining sample size
5039 	 *   If we don't, we customize the stack size to
5040 	 *   fit in to the remaining sample size.
5041 	 */
5042 
5043 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5044 	stack_size = min(stack_size, (u16) task_size);
5045 
5046 	/* Current header size plus static size and dynamic size. */
5047 	header_size += 2 * sizeof(u64);
5048 
5049 	/* Do we fit in with the current stack dump size? */
5050 	if ((u16) (header_size + stack_size) < header_size) {
5051 		/*
5052 		 * If we overflow the maximum size for the sample,
5053 		 * we customize the stack dump size to fit in.
5054 		 */
5055 		stack_size = USHRT_MAX - header_size - sizeof(u64);
5056 		stack_size = round_up(stack_size, sizeof(u64));
5057 	}
5058 
5059 	return stack_size;
5060 }
5061 
5062 static void
5063 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5064 			  struct pt_regs *regs)
5065 {
5066 	/* Case of a kernel thread, nothing to dump */
5067 	if (!regs) {
5068 		u64 size = 0;
5069 		perf_output_put(handle, size);
5070 	} else {
5071 		unsigned long sp;
5072 		unsigned int rem;
5073 		u64 dyn_size;
5074 
5075 		/*
5076 		 * We dump:
5077 		 * static size
5078 		 *   - the size requested by user or the best one we can fit
5079 		 *     in to the sample max size
5080 		 * data
5081 		 *   - user stack dump data
5082 		 * dynamic size
5083 		 *   - the actual dumped size
5084 		 */
5085 
5086 		/* Static size. */
5087 		perf_output_put(handle, dump_size);
5088 
5089 		/* Data. */
5090 		sp = perf_user_stack_pointer(regs);
5091 		rem = __output_copy_user(handle, (void *) sp, dump_size);
5092 		dyn_size = dump_size - rem;
5093 
5094 		perf_output_skip(handle, rem);
5095 
5096 		/* Dynamic size. */
5097 		perf_output_put(handle, dyn_size);
5098 	}
5099 }
5100 
5101 static void __perf_event_header__init_id(struct perf_event_header *header,
5102 					 struct perf_sample_data *data,
5103 					 struct perf_event *event)
5104 {
5105 	u64 sample_type = event->attr.sample_type;
5106 
5107 	data->type = sample_type;
5108 	header->size += event->id_header_size;
5109 
5110 	if (sample_type & PERF_SAMPLE_TID) {
5111 		/* namespace issues */
5112 		data->tid_entry.pid = perf_event_pid(event, current);
5113 		data->tid_entry.tid = perf_event_tid(event, current);
5114 	}
5115 
5116 	if (sample_type & PERF_SAMPLE_TIME)
5117 		data->time = perf_event_clock(event);
5118 
5119 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5120 		data->id = primary_event_id(event);
5121 
5122 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5123 		data->stream_id = event->id;
5124 
5125 	if (sample_type & PERF_SAMPLE_CPU) {
5126 		data->cpu_entry.cpu	 = raw_smp_processor_id();
5127 		data->cpu_entry.reserved = 0;
5128 	}
5129 }
5130 
5131 void perf_event_header__init_id(struct perf_event_header *header,
5132 				struct perf_sample_data *data,
5133 				struct perf_event *event)
5134 {
5135 	if (event->attr.sample_id_all)
5136 		__perf_event_header__init_id(header, data, event);
5137 }
5138 
5139 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5140 					   struct perf_sample_data *data)
5141 {
5142 	u64 sample_type = data->type;
5143 
5144 	if (sample_type & PERF_SAMPLE_TID)
5145 		perf_output_put(handle, data->tid_entry);
5146 
5147 	if (sample_type & PERF_SAMPLE_TIME)
5148 		perf_output_put(handle, data->time);
5149 
5150 	if (sample_type & PERF_SAMPLE_ID)
5151 		perf_output_put(handle, data->id);
5152 
5153 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5154 		perf_output_put(handle, data->stream_id);
5155 
5156 	if (sample_type & PERF_SAMPLE_CPU)
5157 		perf_output_put(handle, data->cpu_entry);
5158 
5159 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
5160 		perf_output_put(handle, data->id);
5161 }
5162 
5163 void perf_event__output_id_sample(struct perf_event *event,
5164 				  struct perf_output_handle *handle,
5165 				  struct perf_sample_data *sample)
5166 {
5167 	if (event->attr.sample_id_all)
5168 		__perf_event__output_id_sample(handle, sample);
5169 }
5170 
5171 static void perf_output_read_one(struct perf_output_handle *handle,
5172 				 struct perf_event *event,
5173 				 u64 enabled, u64 running)
5174 {
5175 	u64 read_format = event->attr.read_format;
5176 	u64 values[4];
5177 	int n = 0;
5178 
5179 	values[n++] = perf_event_count(event);
5180 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5181 		values[n++] = enabled +
5182 			atomic64_read(&event->child_total_time_enabled);
5183 	}
5184 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5185 		values[n++] = running +
5186 			atomic64_read(&event->child_total_time_running);
5187 	}
5188 	if (read_format & PERF_FORMAT_ID)
5189 		values[n++] = primary_event_id(event);
5190 
5191 	__output_copy(handle, values, n * sizeof(u64));
5192 }
5193 
5194 /*
5195  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5196  */
5197 static void perf_output_read_group(struct perf_output_handle *handle,
5198 			    struct perf_event *event,
5199 			    u64 enabled, u64 running)
5200 {
5201 	struct perf_event *leader = event->group_leader, *sub;
5202 	u64 read_format = event->attr.read_format;
5203 	u64 values[5];
5204 	int n = 0;
5205 
5206 	values[n++] = 1 + leader->nr_siblings;
5207 
5208 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5209 		values[n++] = enabled;
5210 
5211 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5212 		values[n++] = running;
5213 
5214 	if (leader != event)
5215 		leader->pmu->read(leader);
5216 
5217 	values[n++] = perf_event_count(leader);
5218 	if (read_format & PERF_FORMAT_ID)
5219 		values[n++] = primary_event_id(leader);
5220 
5221 	__output_copy(handle, values, n * sizeof(u64));
5222 
5223 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5224 		n = 0;
5225 
5226 		if ((sub != event) &&
5227 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
5228 			sub->pmu->read(sub);
5229 
5230 		values[n++] = perf_event_count(sub);
5231 		if (read_format & PERF_FORMAT_ID)
5232 			values[n++] = primary_event_id(sub);
5233 
5234 		__output_copy(handle, values, n * sizeof(u64));
5235 	}
5236 }
5237 
5238 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5239 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
5240 
5241 static void perf_output_read(struct perf_output_handle *handle,
5242 			     struct perf_event *event)
5243 {
5244 	u64 enabled = 0, running = 0, now;
5245 	u64 read_format = event->attr.read_format;
5246 
5247 	/*
5248 	 * compute total_time_enabled, total_time_running
5249 	 * based on snapshot values taken when the event
5250 	 * was last scheduled in.
5251 	 *
5252 	 * we cannot simply called update_context_time()
5253 	 * because of locking issue as we are called in
5254 	 * NMI context
5255 	 */
5256 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
5257 		calc_timer_values(event, &now, &enabled, &running);
5258 
5259 	if (event->attr.read_format & PERF_FORMAT_GROUP)
5260 		perf_output_read_group(handle, event, enabled, running);
5261 	else
5262 		perf_output_read_one(handle, event, enabled, running);
5263 }
5264 
5265 void perf_output_sample(struct perf_output_handle *handle,
5266 			struct perf_event_header *header,
5267 			struct perf_sample_data *data,
5268 			struct perf_event *event)
5269 {
5270 	u64 sample_type = data->type;
5271 
5272 	perf_output_put(handle, *header);
5273 
5274 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
5275 		perf_output_put(handle, data->id);
5276 
5277 	if (sample_type & PERF_SAMPLE_IP)
5278 		perf_output_put(handle, data->ip);
5279 
5280 	if (sample_type & PERF_SAMPLE_TID)
5281 		perf_output_put(handle, data->tid_entry);
5282 
5283 	if (sample_type & PERF_SAMPLE_TIME)
5284 		perf_output_put(handle, data->time);
5285 
5286 	if (sample_type & PERF_SAMPLE_ADDR)
5287 		perf_output_put(handle, data->addr);
5288 
5289 	if (sample_type & PERF_SAMPLE_ID)
5290 		perf_output_put(handle, data->id);
5291 
5292 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5293 		perf_output_put(handle, data->stream_id);
5294 
5295 	if (sample_type & PERF_SAMPLE_CPU)
5296 		perf_output_put(handle, data->cpu_entry);
5297 
5298 	if (sample_type & PERF_SAMPLE_PERIOD)
5299 		perf_output_put(handle, data->period);
5300 
5301 	if (sample_type & PERF_SAMPLE_READ)
5302 		perf_output_read(handle, event);
5303 
5304 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5305 		if (data->callchain) {
5306 			int size = 1;
5307 
5308 			if (data->callchain)
5309 				size += data->callchain->nr;
5310 
5311 			size *= sizeof(u64);
5312 
5313 			__output_copy(handle, data->callchain, size);
5314 		} else {
5315 			u64 nr = 0;
5316 			perf_output_put(handle, nr);
5317 		}
5318 	}
5319 
5320 	if (sample_type & PERF_SAMPLE_RAW) {
5321 		if (data->raw) {
5322 			u32 raw_size = data->raw->size;
5323 			u32 real_size = round_up(raw_size + sizeof(u32),
5324 						 sizeof(u64)) - sizeof(u32);
5325 			u64 zero = 0;
5326 
5327 			perf_output_put(handle, real_size);
5328 			__output_copy(handle, data->raw->data, raw_size);
5329 			if (real_size - raw_size)
5330 				__output_copy(handle, &zero, real_size - raw_size);
5331 		} else {
5332 			struct {
5333 				u32	size;
5334 				u32	data;
5335 			} raw = {
5336 				.size = sizeof(u32),
5337 				.data = 0,
5338 			};
5339 			perf_output_put(handle, raw);
5340 		}
5341 	}
5342 
5343 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5344 		if (data->br_stack) {
5345 			size_t size;
5346 
5347 			size = data->br_stack->nr
5348 			     * sizeof(struct perf_branch_entry);
5349 
5350 			perf_output_put(handle, data->br_stack->nr);
5351 			perf_output_copy(handle, data->br_stack->entries, size);
5352 		} else {
5353 			/*
5354 			 * we always store at least the value of nr
5355 			 */
5356 			u64 nr = 0;
5357 			perf_output_put(handle, nr);
5358 		}
5359 	}
5360 
5361 	if (sample_type & PERF_SAMPLE_REGS_USER) {
5362 		u64 abi = data->regs_user.abi;
5363 
5364 		/*
5365 		 * If there are no regs to dump, notice it through
5366 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5367 		 */
5368 		perf_output_put(handle, abi);
5369 
5370 		if (abi) {
5371 			u64 mask = event->attr.sample_regs_user;
5372 			perf_output_sample_regs(handle,
5373 						data->regs_user.regs,
5374 						mask);
5375 		}
5376 	}
5377 
5378 	if (sample_type & PERF_SAMPLE_STACK_USER) {
5379 		perf_output_sample_ustack(handle,
5380 					  data->stack_user_size,
5381 					  data->regs_user.regs);
5382 	}
5383 
5384 	if (sample_type & PERF_SAMPLE_WEIGHT)
5385 		perf_output_put(handle, data->weight);
5386 
5387 	if (sample_type & PERF_SAMPLE_DATA_SRC)
5388 		perf_output_put(handle, data->data_src.val);
5389 
5390 	if (sample_type & PERF_SAMPLE_TRANSACTION)
5391 		perf_output_put(handle, data->txn);
5392 
5393 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
5394 		u64 abi = data->regs_intr.abi;
5395 		/*
5396 		 * If there are no regs to dump, notice it through
5397 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5398 		 */
5399 		perf_output_put(handle, abi);
5400 
5401 		if (abi) {
5402 			u64 mask = event->attr.sample_regs_intr;
5403 
5404 			perf_output_sample_regs(handle,
5405 						data->regs_intr.regs,
5406 						mask);
5407 		}
5408 	}
5409 
5410 	if (!event->attr.watermark) {
5411 		int wakeup_events = event->attr.wakeup_events;
5412 
5413 		if (wakeup_events) {
5414 			struct ring_buffer *rb = handle->rb;
5415 			int events = local_inc_return(&rb->events);
5416 
5417 			if (events >= wakeup_events) {
5418 				local_sub(wakeup_events, &rb->events);
5419 				local_inc(&rb->wakeup);
5420 			}
5421 		}
5422 	}
5423 }
5424 
5425 void perf_prepare_sample(struct perf_event_header *header,
5426 			 struct perf_sample_data *data,
5427 			 struct perf_event *event,
5428 			 struct pt_regs *regs)
5429 {
5430 	u64 sample_type = event->attr.sample_type;
5431 
5432 	header->type = PERF_RECORD_SAMPLE;
5433 	header->size = sizeof(*header) + event->header_size;
5434 
5435 	header->misc = 0;
5436 	header->misc |= perf_misc_flags(regs);
5437 
5438 	__perf_event_header__init_id(header, data, event);
5439 
5440 	if (sample_type & PERF_SAMPLE_IP)
5441 		data->ip = perf_instruction_pointer(regs);
5442 
5443 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5444 		int size = 1;
5445 
5446 		data->callchain = perf_callchain(event, regs);
5447 
5448 		if (data->callchain)
5449 			size += data->callchain->nr;
5450 
5451 		header->size += size * sizeof(u64);
5452 	}
5453 
5454 	if (sample_type & PERF_SAMPLE_RAW) {
5455 		int size = sizeof(u32);
5456 
5457 		if (data->raw)
5458 			size += data->raw->size;
5459 		else
5460 			size += sizeof(u32);
5461 
5462 		header->size += round_up(size, sizeof(u64));
5463 	}
5464 
5465 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5466 		int size = sizeof(u64); /* nr */
5467 		if (data->br_stack) {
5468 			size += data->br_stack->nr
5469 			      * sizeof(struct perf_branch_entry);
5470 		}
5471 		header->size += size;
5472 	}
5473 
5474 	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5475 		perf_sample_regs_user(&data->regs_user, regs,
5476 				      &data->regs_user_copy);
5477 
5478 	if (sample_type & PERF_SAMPLE_REGS_USER) {
5479 		/* regs dump ABI info */
5480 		int size = sizeof(u64);
5481 
5482 		if (data->regs_user.regs) {
5483 			u64 mask = event->attr.sample_regs_user;
5484 			size += hweight64(mask) * sizeof(u64);
5485 		}
5486 
5487 		header->size += size;
5488 	}
5489 
5490 	if (sample_type & PERF_SAMPLE_STACK_USER) {
5491 		/*
5492 		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5493 		 * processed as the last one or have additional check added
5494 		 * in case new sample type is added, because we could eat
5495 		 * up the rest of the sample size.
5496 		 */
5497 		u16 stack_size = event->attr.sample_stack_user;
5498 		u16 size = sizeof(u64);
5499 
5500 		stack_size = perf_sample_ustack_size(stack_size, header->size,
5501 						     data->regs_user.regs);
5502 
5503 		/*
5504 		 * If there is something to dump, add space for the dump
5505 		 * itself and for the field that tells the dynamic size,
5506 		 * which is how many have been actually dumped.
5507 		 */
5508 		if (stack_size)
5509 			size += sizeof(u64) + stack_size;
5510 
5511 		data->stack_user_size = stack_size;
5512 		header->size += size;
5513 	}
5514 
5515 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
5516 		/* regs dump ABI info */
5517 		int size = sizeof(u64);
5518 
5519 		perf_sample_regs_intr(&data->regs_intr, regs);
5520 
5521 		if (data->regs_intr.regs) {
5522 			u64 mask = event->attr.sample_regs_intr;
5523 
5524 			size += hweight64(mask) * sizeof(u64);
5525 		}
5526 
5527 		header->size += size;
5528 	}
5529 }
5530 
5531 void perf_event_output(struct perf_event *event,
5532 			struct perf_sample_data *data,
5533 			struct pt_regs *regs)
5534 {
5535 	struct perf_output_handle handle;
5536 	struct perf_event_header header;
5537 
5538 	/* protect the callchain buffers */
5539 	rcu_read_lock();
5540 
5541 	perf_prepare_sample(&header, data, event, regs);
5542 
5543 	if (perf_output_begin(&handle, event, header.size))
5544 		goto exit;
5545 
5546 	perf_output_sample(&handle, &header, data, event);
5547 
5548 	perf_output_end(&handle);
5549 
5550 exit:
5551 	rcu_read_unlock();
5552 }
5553 
5554 /*
5555  * read event_id
5556  */
5557 
5558 struct perf_read_event {
5559 	struct perf_event_header	header;
5560 
5561 	u32				pid;
5562 	u32				tid;
5563 };
5564 
5565 static void
5566 perf_event_read_event(struct perf_event *event,
5567 			struct task_struct *task)
5568 {
5569 	struct perf_output_handle handle;
5570 	struct perf_sample_data sample;
5571 	struct perf_read_event read_event = {
5572 		.header = {
5573 			.type = PERF_RECORD_READ,
5574 			.misc = 0,
5575 			.size = sizeof(read_event) + event->read_size,
5576 		},
5577 		.pid = perf_event_pid(event, task),
5578 		.tid = perf_event_tid(event, task),
5579 	};
5580 	int ret;
5581 
5582 	perf_event_header__init_id(&read_event.header, &sample, event);
5583 	ret = perf_output_begin(&handle, event, read_event.header.size);
5584 	if (ret)
5585 		return;
5586 
5587 	perf_output_put(&handle, read_event);
5588 	perf_output_read(&handle, event);
5589 	perf_event__output_id_sample(event, &handle, &sample);
5590 
5591 	perf_output_end(&handle);
5592 }
5593 
5594 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
5595 
5596 static void
5597 perf_event_aux_ctx(struct perf_event_context *ctx,
5598 		   perf_event_aux_output_cb output,
5599 		   void *data)
5600 {
5601 	struct perf_event *event;
5602 
5603 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5604 		if (event->state < PERF_EVENT_STATE_INACTIVE)
5605 			continue;
5606 		if (!event_filter_match(event))
5607 			continue;
5608 		output(event, data);
5609 	}
5610 }
5611 
5612 static void
5613 perf_event_aux_task_ctx(perf_event_aux_output_cb output, void *data,
5614 			struct perf_event_context *task_ctx)
5615 {
5616 	rcu_read_lock();
5617 	preempt_disable();
5618 	perf_event_aux_ctx(task_ctx, output, data);
5619 	preempt_enable();
5620 	rcu_read_unlock();
5621 }
5622 
5623 static void
5624 perf_event_aux(perf_event_aux_output_cb output, void *data,
5625 	       struct perf_event_context *task_ctx)
5626 {
5627 	struct perf_cpu_context *cpuctx;
5628 	struct perf_event_context *ctx;
5629 	struct pmu *pmu;
5630 	int ctxn;
5631 
5632 	/*
5633 	 * If we have task_ctx != NULL we only notify
5634 	 * the task context itself. The task_ctx is set
5635 	 * only for EXIT events before releasing task
5636 	 * context.
5637 	 */
5638 	if (task_ctx) {
5639 		perf_event_aux_task_ctx(output, data, task_ctx);
5640 		return;
5641 	}
5642 
5643 	rcu_read_lock();
5644 	list_for_each_entry_rcu(pmu, &pmus, entry) {
5645 		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5646 		if (cpuctx->unique_pmu != pmu)
5647 			goto next;
5648 		perf_event_aux_ctx(&cpuctx->ctx, output, data);
5649 		ctxn = pmu->task_ctx_nr;
5650 		if (ctxn < 0)
5651 			goto next;
5652 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5653 		if (ctx)
5654 			perf_event_aux_ctx(ctx, output, data);
5655 next:
5656 		put_cpu_ptr(pmu->pmu_cpu_context);
5657 	}
5658 	rcu_read_unlock();
5659 }
5660 
5661 /*
5662  * task tracking -- fork/exit
5663  *
5664  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
5665  */
5666 
5667 struct perf_task_event {
5668 	struct task_struct		*task;
5669 	struct perf_event_context	*task_ctx;
5670 
5671 	struct {
5672 		struct perf_event_header	header;
5673 
5674 		u32				pid;
5675 		u32				ppid;
5676 		u32				tid;
5677 		u32				ptid;
5678 		u64				time;
5679 	} event_id;
5680 };
5681 
5682 static int perf_event_task_match(struct perf_event *event)
5683 {
5684 	return event->attr.comm  || event->attr.mmap ||
5685 	       event->attr.mmap2 || event->attr.mmap_data ||
5686 	       event->attr.task;
5687 }
5688 
5689 static void perf_event_task_output(struct perf_event *event,
5690 				   void *data)
5691 {
5692 	struct perf_task_event *task_event = data;
5693 	struct perf_output_handle handle;
5694 	struct perf_sample_data	sample;
5695 	struct task_struct *task = task_event->task;
5696 	int ret, size = task_event->event_id.header.size;
5697 
5698 	if (!perf_event_task_match(event))
5699 		return;
5700 
5701 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
5702 
5703 	ret = perf_output_begin(&handle, event,
5704 				task_event->event_id.header.size);
5705 	if (ret)
5706 		goto out;
5707 
5708 	task_event->event_id.pid = perf_event_pid(event, task);
5709 	task_event->event_id.ppid = perf_event_pid(event, current);
5710 
5711 	task_event->event_id.tid = perf_event_tid(event, task);
5712 	task_event->event_id.ptid = perf_event_tid(event, current);
5713 
5714 	task_event->event_id.time = perf_event_clock(event);
5715 
5716 	perf_output_put(&handle, task_event->event_id);
5717 
5718 	perf_event__output_id_sample(event, &handle, &sample);
5719 
5720 	perf_output_end(&handle);
5721 out:
5722 	task_event->event_id.header.size = size;
5723 }
5724 
5725 static void perf_event_task(struct task_struct *task,
5726 			      struct perf_event_context *task_ctx,
5727 			      int new)
5728 {
5729 	struct perf_task_event task_event;
5730 
5731 	if (!atomic_read(&nr_comm_events) &&
5732 	    !atomic_read(&nr_mmap_events) &&
5733 	    !atomic_read(&nr_task_events))
5734 		return;
5735 
5736 	task_event = (struct perf_task_event){
5737 		.task	  = task,
5738 		.task_ctx = task_ctx,
5739 		.event_id    = {
5740 			.header = {
5741 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5742 				.misc = 0,
5743 				.size = sizeof(task_event.event_id),
5744 			},
5745 			/* .pid  */
5746 			/* .ppid */
5747 			/* .tid  */
5748 			/* .ptid */
5749 			/* .time */
5750 		},
5751 	};
5752 
5753 	perf_event_aux(perf_event_task_output,
5754 		       &task_event,
5755 		       task_ctx);
5756 }
5757 
5758 void perf_event_fork(struct task_struct *task)
5759 {
5760 	perf_event_task(task, NULL, 1);
5761 }
5762 
5763 /*
5764  * comm tracking
5765  */
5766 
5767 struct perf_comm_event {
5768 	struct task_struct	*task;
5769 	char			*comm;
5770 	int			comm_size;
5771 
5772 	struct {
5773 		struct perf_event_header	header;
5774 
5775 		u32				pid;
5776 		u32				tid;
5777 	} event_id;
5778 };
5779 
5780 static int perf_event_comm_match(struct perf_event *event)
5781 {
5782 	return event->attr.comm;
5783 }
5784 
5785 static void perf_event_comm_output(struct perf_event *event,
5786 				   void *data)
5787 {
5788 	struct perf_comm_event *comm_event = data;
5789 	struct perf_output_handle handle;
5790 	struct perf_sample_data sample;
5791 	int size = comm_event->event_id.header.size;
5792 	int ret;
5793 
5794 	if (!perf_event_comm_match(event))
5795 		return;
5796 
5797 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5798 	ret = perf_output_begin(&handle, event,
5799 				comm_event->event_id.header.size);
5800 
5801 	if (ret)
5802 		goto out;
5803 
5804 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5805 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5806 
5807 	perf_output_put(&handle, comm_event->event_id);
5808 	__output_copy(&handle, comm_event->comm,
5809 				   comm_event->comm_size);
5810 
5811 	perf_event__output_id_sample(event, &handle, &sample);
5812 
5813 	perf_output_end(&handle);
5814 out:
5815 	comm_event->event_id.header.size = size;
5816 }
5817 
5818 static void perf_event_comm_event(struct perf_comm_event *comm_event)
5819 {
5820 	char comm[TASK_COMM_LEN];
5821 	unsigned int size;
5822 
5823 	memset(comm, 0, sizeof(comm));
5824 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
5825 	size = ALIGN(strlen(comm)+1, sizeof(u64));
5826 
5827 	comm_event->comm = comm;
5828 	comm_event->comm_size = size;
5829 
5830 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
5831 
5832 	perf_event_aux(perf_event_comm_output,
5833 		       comm_event,
5834 		       NULL);
5835 }
5836 
5837 void perf_event_comm(struct task_struct *task, bool exec)
5838 {
5839 	struct perf_comm_event comm_event;
5840 
5841 	if (!atomic_read(&nr_comm_events))
5842 		return;
5843 
5844 	comm_event = (struct perf_comm_event){
5845 		.task	= task,
5846 		/* .comm      */
5847 		/* .comm_size */
5848 		.event_id  = {
5849 			.header = {
5850 				.type = PERF_RECORD_COMM,
5851 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5852 				/* .size */
5853 			},
5854 			/* .pid */
5855 			/* .tid */
5856 		},
5857 	};
5858 
5859 	perf_event_comm_event(&comm_event);
5860 }
5861 
5862 /*
5863  * mmap tracking
5864  */
5865 
5866 struct perf_mmap_event {
5867 	struct vm_area_struct	*vma;
5868 
5869 	const char		*file_name;
5870 	int			file_size;
5871 	int			maj, min;
5872 	u64			ino;
5873 	u64			ino_generation;
5874 	u32			prot, flags;
5875 
5876 	struct {
5877 		struct perf_event_header	header;
5878 
5879 		u32				pid;
5880 		u32				tid;
5881 		u64				start;
5882 		u64				len;
5883 		u64				pgoff;
5884 	} event_id;
5885 };
5886 
5887 static int perf_event_mmap_match(struct perf_event *event,
5888 				 void *data)
5889 {
5890 	struct perf_mmap_event *mmap_event = data;
5891 	struct vm_area_struct *vma = mmap_event->vma;
5892 	int executable = vma->vm_flags & VM_EXEC;
5893 
5894 	return (!executable && event->attr.mmap_data) ||
5895 	       (executable && (event->attr.mmap || event->attr.mmap2));
5896 }
5897 
5898 static void perf_event_mmap_output(struct perf_event *event,
5899 				   void *data)
5900 {
5901 	struct perf_mmap_event *mmap_event = data;
5902 	struct perf_output_handle handle;
5903 	struct perf_sample_data sample;
5904 	int size = mmap_event->event_id.header.size;
5905 	int ret;
5906 
5907 	if (!perf_event_mmap_match(event, data))
5908 		return;
5909 
5910 	if (event->attr.mmap2) {
5911 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5912 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5913 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
5914 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5915 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5916 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
5917 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
5918 	}
5919 
5920 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5921 	ret = perf_output_begin(&handle, event,
5922 				mmap_event->event_id.header.size);
5923 	if (ret)
5924 		goto out;
5925 
5926 	mmap_event->event_id.pid = perf_event_pid(event, current);
5927 	mmap_event->event_id.tid = perf_event_tid(event, current);
5928 
5929 	perf_output_put(&handle, mmap_event->event_id);
5930 
5931 	if (event->attr.mmap2) {
5932 		perf_output_put(&handle, mmap_event->maj);
5933 		perf_output_put(&handle, mmap_event->min);
5934 		perf_output_put(&handle, mmap_event->ino);
5935 		perf_output_put(&handle, mmap_event->ino_generation);
5936 		perf_output_put(&handle, mmap_event->prot);
5937 		perf_output_put(&handle, mmap_event->flags);
5938 	}
5939 
5940 	__output_copy(&handle, mmap_event->file_name,
5941 				   mmap_event->file_size);
5942 
5943 	perf_event__output_id_sample(event, &handle, &sample);
5944 
5945 	perf_output_end(&handle);
5946 out:
5947 	mmap_event->event_id.header.size = size;
5948 }
5949 
5950 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5951 {
5952 	struct vm_area_struct *vma = mmap_event->vma;
5953 	struct file *file = vma->vm_file;
5954 	int maj = 0, min = 0;
5955 	u64 ino = 0, gen = 0;
5956 	u32 prot = 0, flags = 0;
5957 	unsigned int size;
5958 	char tmp[16];
5959 	char *buf = NULL;
5960 	char *name;
5961 
5962 	if (file) {
5963 		struct inode *inode;
5964 		dev_t dev;
5965 
5966 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
5967 		if (!buf) {
5968 			name = "//enomem";
5969 			goto cpy_name;
5970 		}
5971 		/*
5972 		 * d_path() works from the end of the rb backwards, so we
5973 		 * need to add enough zero bytes after the string to handle
5974 		 * the 64bit alignment we do later.
5975 		 */
5976 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
5977 		if (IS_ERR(name)) {
5978 			name = "//toolong";
5979 			goto cpy_name;
5980 		}
5981 		inode = file_inode(vma->vm_file);
5982 		dev = inode->i_sb->s_dev;
5983 		ino = inode->i_ino;
5984 		gen = inode->i_generation;
5985 		maj = MAJOR(dev);
5986 		min = MINOR(dev);
5987 
5988 		if (vma->vm_flags & VM_READ)
5989 			prot |= PROT_READ;
5990 		if (vma->vm_flags & VM_WRITE)
5991 			prot |= PROT_WRITE;
5992 		if (vma->vm_flags & VM_EXEC)
5993 			prot |= PROT_EXEC;
5994 
5995 		if (vma->vm_flags & VM_MAYSHARE)
5996 			flags = MAP_SHARED;
5997 		else
5998 			flags = MAP_PRIVATE;
5999 
6000 		if (vma->vm_flags & VM_DENYWRITE)
6001 			flags |= MAP_DENYWRITE;
6002 		if (vma->vm_flags & VM_MAYEXEC)
6003 			flags |= MAP_EXECUTABLE;
6004 		if (vma->vm_flags & VM_LOCKED)
6005 			flags |= MAP_LOCKED;
6006 		if (vma->vm_flags & VM_HUGETLB)
6007 			flags |= MAP_HUGETLB;
6008 
6009 		goto got_name;
6010 	} else {
6011 		if (vma->vm_ops && vma->vm_ops->name) {
6012 			name = (char *) vma->vm_ops->name(vma);
6013 			if (name)
6014 				goto cpy_name;
6015 		}
6016 
6017 		name = (char *)arch_vma_name(vma);
6018 		if (name)
6019 			goto cpy_name;
6020 
6021 		if (vma->vm_start <= vma->vm_mm->start_brk &&
6022 				vma->vm_end >= vma->vm_mm->brk) {
6023 			name = "[heap]";
6024 			goto cpy_name;
6025 		}
6026 		if (vma->vm_start <= vma->vm_mm->start_stack &&
6027 				vma->vm_end >= vma->vm_mm->start_stack) {
6028 			name = "[stack]";
6029 			goto cpy_name;
6030 		}
6031 
6032 		name = "//anon";
6033 		goto cpy_name;
6034 	}
6035 
6036 cpy_name:
6037 	strlcpy(tmp, name, sizeof(tmp));
6038 	name = tmp;
6039 got_name:
6040 	/*
6041 	 * Since our buffer works in 8 byte units we need to align our string
6042 	 * size to a multiple of 8. However, we must guarantee the tail end is
6043 	 * zero'd out to avoid leaking random bits to userspace.
6044 	 */
6045 	size = strlen(name)+1;
6046 	while (!IS_ALIGNED(size, sizeof(u64)))
6047 		name[size++] = '\0';
6048 
6049 	mmap_event->file_name = name;
6050 	mmap_event->file_size = size;
6051 	mmap_event->maj = maj;
6052 	mmap_event->min = min;
6053 	mmap_event->ino = ino;
6054 	mmap_event->ino_generation = gen;
6055 	mmap_event->prot = prot;
6056 	mmap_event->flags = flags;
6057 
6058 	if (!(vma->vm_flags & VM_EXEC))
6059 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6060 
6061 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6062 
6063 	perf_event_aux(perf_event_mmap_output,
6064 		       mmap_event,
6065 		       NULL);
6066 
6067 	kfree(buf);
6068 }
6069 
6070 void perf_event_mmap(struct vm_area_struct *vma)
6071 {
6072 	struct perf_mmap_event mmap_event;
6073 
6074 	if (!atomic_read(&nr_mmap_events))
6075 		return;
6076 
6077 	mmap_event = (struct perf_mmap_event){
6078 		.vma	= vma,
6079 		/* .file_name */
6080 		/* .file_size */
6081 		.event_id  = {
6082 			.header = {
6083 				.type = PERF_RECORD_MMAP,
6084 				.misc = PERF_RECORD_MISC_USER,
6085 				/* .size */
6086 			},
6087 			/* .pid */
6088 			/* .tid */
6089 			.start  = vma->vm_start,
6090 			.len    = vma->vm_end - vma->vm_start,
6091 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
6092 		},
6093 		/* .maj (attr_mmap2 only) */
6094 		/* .min (attr_mmap2 only) */
6095 		/* .ino (attr_mmap2 only) */
6096 		/* .ino_generation (attr_mmap2 only) */
6097 		/* .prot (attr_mmap2 only) */
6098 		/* .flags (attr_mmap2 only) */
6099 	};
6100 
6101 	perf_event_mmap_event(&mmap_event);
6102 }
6103 
6104 void perf_event_aux_event(struct perf_event *event, unsigned long head,
6105 			  unsigned long size, u64 flags)
6106 {
6107 	struct perf_output_handle handle;
6108 	struct perf_sample_data sample;
6109 	struct perf_aux_event {
6110 		struct perf_event_header	header;
6111 		u64				offset;
6112 		u64				size;
6113 		u64				flags;
6114 	} rec = {
6115 		.header = {
6116 			.type = PERF_RECORD_AUX,
6117 			.misc = 0,
6118 			.size = sizeof(rec),
6119 		},
6120 		.offset		= head,
6121 		.size		= size,
6122 		.flags		= flags,
6123 	};
6124 	int ret;
6125 
6126 	perf_event_header__init_id(&rec.header, &sample, event);
6127 	ret = perf_output_begin(&handle, event, rec.header.size);
6128 
6129 	if (ret)
6130 		return;
6131 
6132 	perf_output_put(&handle, rec);
6133 	perf_event__output_id_sample(event, &handle, &sample);
6134 
6135 	perf_output_end(&handle);
6136 }
6137 
6138 /*
6139  * Lost/dropped samples logging
6140  */
6141 void perf_log_lost_samples(struct perf_event *event, u64 lost)
6142 {
6143 	struct perf_output_handle handle;
6144 	struct perf_sample_data sample;
6145 	int ret;
6146 
6147 	struct {
6148 		struct perf_event_header	header;
6149 		u64				lost;
6150 	} lost_samples_event = {
6151 		.header = {
6152 			.type = PERF_RECORD_LOST_SAMPLES,
6153 			.misc = 0,
6154 			.size = sizeof(lost_samples_event),
6155 		},
6156 		.lost		= lost,
6157 	};
6158 
6159 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6160 
6161 	ret = perf_output_begin(&handle, event,
6162 				lost_samples_event.header.size);
6163 	if (ret)
6164 		return;
6165 
6166 	perf_output_put(&handle, lost_samples_event);
6167 	perf_event__output_id_sample(event, &handle, &sample);
6168 	perf_output_end(&handle);
6169 }
6170 
6171 /*
6172  * context_switch tracking
6173  */
6174 
6175 struct perf_switch_event {
6176 	struct task_struct	*task;
6177 	struct task_struct	*next_prev;
6178 
6179 	struct {
6180 		struct perf_event_header	header;
6181 		u32				next_prev_pid;
6182 		u32				next_prev_tid;
6183 	} event_id;
6184 };
6185 
6186 static int perf_event_switch_match(struct perf_event *event)
6187 {
6188 	return event->attr.context_switch;
6189 }
6190 
6191 static void perf_event_switch_output(struct perf_event *event, void *data)
6192 {
6193 	struct perf_switch_event *se = data;
6194 	struct perf_output_handle handle;
6195 	struct perf_sample_data sample;
6196 	int ret;
6197 
6198 	if (!perf_event_switch_match(event))
6199 		return;
6200 
6201 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
6202 	if (event->ctx->task) {
6203 		se->event_id.header.type = PERF_RECORD_SWITCH;
6204 		se->event_id.header.size = sizeof(se->event_id.header);
6205 	} else {
6206 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6207 		se->event_id.header.size = sizeof(se->event_id);
6208 		se->event_id.next_prev_pid =
6209 					perf_event_pid(event, se->next_prev);
6210 		se->event_id.next_prev_tid =
6211 					perf_event_tid(event, se->next_prev);
6212 	}
6213 
6214 	perf_event_header__init_id(&se->event_id.header, &sample, event);
6215 
6216 	ret = perf_output_begin(&handle, event, se->event_id.header.size);
6217 	if (ret)
6218 		return;
6219 
6220 	if (event->ctx->task)
6221 		perf_output_put(&handle, se->event_id.header);
6222 	else
6223 		perf_output_put(&handle, se->event_id);
6224 
6225 	perf_event__output_id_sample(event, &handle, &sample);
6226 
6227 	perf_output_end(&handle);
6228 }
6229 
6230 static void perf_event_switch(struct task_struct *task,
6231 			      struct task_struct *next_prev, bool sched_in)
6232 {
6233 	struct perf_switch_event switch_event;
6234 
6235 	/* N.B. caller checks nr_switch_events != 0 */
6236 
6237 	switch_event = (struct perf_switch_event){
6238 		.task		= task,
6239 		.next_prev	= next_prev,
6240 		.event_id	= {
6241 			.header = {
6242 				/* .type */
6243 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6244 				/* .size */
6245 			},
6246 			/* .next_prev_pid */
6247 			/* .next_prev_tid */
6248 		},
6249 	};
6250 
6251 	perf_event_aux(perf_event_switch_output,
6252 		       &switch_event,
6253 		       NULL);
6254 }
6255 
6256 /*
6257  * IRQ throttle logging
6258  */
6259 
6260 static void perf_log_throttle(struct perf_event *event, int enable)
6261 {
6262 	struct perf_output_handle handle;
6263 	struct perf_sample_data sample;
6264 	int ret;
6265 
6266 	struct {
6267 		struct perf_event_header	header;
6268 		u64				time;
6269 		u64				id;
6270 		u64				stream_id;
6271 	} throttle_event = {
6272 		.header = {
6273 			.type = PERF_RECORD_THROTTLE,
6274 			.misc = 0,
6275 			.size = sizeof(throttle_event),
6276 		},
6277 		.time		= perf_event_clock(event),
6278 		.id		= primary_event_id(event),
6279 		.stream_id	= event->id,
6280 	};
6281 
6282 	if (enable)
6283 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6284 
6285 	perf_event_header__init_id(&throttle_event.header, &sample, event);
6286 
6287 	ret = perf_output_begin(&handle, event,
6288 				throttle_event.header.size);
6289 	if (ret)
6290 		return;
6291 
6292 	perf_output_put(&handle, throttle_event);
6293 	perf_event__output_id_sample(event, &handle, &sample);
6294 	perf_output_end(&handle);
6295 }
6296 
6297 static void perf_log_itrace_start(struct perf_event *event)
6298 {
6299 	struct perf_output_handle handle;
6300 	struct perf_sample_data sample;
6301 	struct perf_aux_event {
6302 		struct perf_event_header        header;
6303 		u32				pid;
6304 		u32				tid;
6305 	} rec;
6306 	int ret;
6307 
6308 	if (event->parent)
6309 		event = event->parent;
6310 
6311 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
6312 	    event->hw.itrace_started)
6313 		return;
6314 
6315 	rec.header.type	= PERF_RECORD_ITRACE_START;
6316 	rec.header.misc	= 0;
6317 	rec.header.size	= sizeof(rec);
6318 	rec.pid	= perf_event_pid(event, current);
6319 	rec.tid	= perf_event_tid(event, current);
6320 
6321 	perf_event_header__init_id(&rec.header, &sample, event);
6322 	ret = perf_output_begin(&handle, event, rec.header.size);
6323 
6324 	if (ret)
6325 		return;
6326 
6327 	perf_output_put(&handle, rec);
6328 	perf_event__output_id_sample(event, &handle, &sample);
6329 
6330 	perf_output_end(&handle);
6331 }
6332 
6333 /*
6334  * Generic event overflow handling, sampling.
6335  */
6336 
6337 static int __perf_event_overflow(struct perf_event *event,
6338 				   int throttle, struct perf_sample_data *data,
6339 				   struct pt_regs *regs)
6340 {
6341 	int events = atomic_read(&event->event_limit);
6342 	struct hw_perf_event *hwc = &event->hw;
6343 	u64 seq;
6344 	int ret = 0;
6345 
6346 	/*
6347 	 * Non-sampling counters might still use the PMI to fold short
6348 	 * hardware counters, ignore those.
6349 	 */
6350 	if (unlikely(!is_sampling_event(event)))
6351 		return 0;
6352 
6353 	seq = __this_cpu_read(perf_throttled_seq);
6354 	if (seq != hwc->interrupts_seq) {
6355 		hwc->interrupts_seq = seq;
6356 		hwc->interrupts = 1;
6357 	} else {
6358 		hwc->interrupts++;
6359 		if (unlikely(throttle
6360 			     && hwc->interrupts >= max_samples_per_tick)) {
6361 			__this_cpu_inc(perf_throttled_count);
6362 			hwc->interrupts = MAX_INTERRUPTS;
6363 			perf_log_throttle(event, 0);
6364 			tick_nohz_full_kick();
6365 			ret = 1;
6366 		}
6367 	}
6368 
6369 	if (event->attr.freq) {
6370 		u64 now = perf_clock();
6371 		s64 delta = now - hwc->freq_time_stamp;
6372 
6373 		hwc->freq_time_stamp = now;
6374 
6375 		if (delta > 0 && delta < 2*TICK_NSEC)
6376 			perf_adjust_period(event, delta, hwc->last_period, true);
6377 	}
6378 
6379 	/*
6380 	 * XXX event_limit might not quite work as expected on inherited
6381 	 * events
6382 	 */
6383 
6384 	event->pending_kill = POLL_IN;
6385 	if (events && atomic_dec_and_test(&event->event_limit)) {
6386 		ret = 1;
6387 		event->pending_kill = POLL_HUP;
6388 		event->pending_disable = 1;
6389 		irq_work_queue(&event->pending);
6390 	}
6391 
6392 	if (event->overflow_handler)
6393 		event->overflow_handler(event, data, regs);
6394 	else
6395 		perf_event_output(event, data, regs);
6396 
6397 	if (*perf_event_fasync(event) && event->pending_kill) {
6398 		event->pending_wakeup = 1;
6399 		irq_work_queue(&event->pending);
6400 	}
6401 
6402 	return ret;
6403 }
6404 
6405 int perf_event_overflow(struct perf_event *event,
6406 			  struct perf_sample_data *data,
6407 			  struct pt_regs *regs)
6408 {
6409 	return __perf_event_overflow(event, 1, data, regs);
6410 }
6411 
6412 /*
6413  * Generic software event infrastructure
6414  */
6415 
6416 struct swevent_htable {
6417 	struct swevent_hlist		*swevent_hlist;
6418 	struct mutex			hlist_mutex;
6419 	int				hlist_refcount;
6420 
6421 	/* Recursion avoidance in each contexts */
6422 	int				recursion[PERF_NR_CONTEXTS];
6423 };
6424 
6425 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
6426 
6427 /*
6428  * We directly increment event->count and keep a second value in
6429  * event->hw.period_left to count intervals. This period event
6430  * is kept in the range [-sample_period, 0] so that we can use the
6431  * sign as trigger.
6432  */
6433 
6434 u64 perf_swevent_set_period(struct perf_event *event)
6435 {
6436 	struct hw_perf_event *hwc = &event->hw;
6437 	u64 period = hwc->last_period;
6438 	u64 nr, offset;
6439 	s64 old, val;
6440 
6441 	hwc->last_period = hwc->sample_period;
6442 
6443 again:
6444 	old = val = local64_read(&hwc->period_left);
6445 	if (val < 0)
6446 		return 0;
6447 
6448 	nr = div64_u64(period + val, period);
6449 	offset = nr * period;
6450 	val -= offset;
6451 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
6452 		goto again;
6453 
6454 	return nr;
6455 }
6456 
6457 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
6458 				    struct perf_sample_data *data,
6459 				    struct pt_regs *regs)
6460 {
6461 	struct hw_perf_event *hwc = &event->hw;
6462 	int throttle = 0;
6463 
6464 	if (!overflow)
6465 		overflow = perf_swevent_set_period(event);
6466 
6467 	if (hwc->interrupts == MAX_INTERRUPTS)
6468 		return;
6469 
6470 	for (; overflow; overflow--) {
6471 		if (__perf_event_overflow(event, throttle,
6472 					    data, regs)) {
6473 			/*
6474 			 * We inhibit the overflow from happening when
6475 			 * hwc->interrupts == MAX_INTERRUPTS.
6476 			 */
6477 			break;
6478 		}
6479 		throttle = 1;
6480 	}
6481 }
6482 
6483 static void perf_swevent_event(struct perf_event *event, u64 nr,
6484 			       struct perf_sample_data *data,
6485 			       struct pt_regs *regs)
6486 {
6487 	struct hw_perf_event *hwc = &event->hw;
6488 
6489 	local64_add(nr, &event->count);
6490 
6491 	if (!regs)
6492 		return;
6493 
6494 	if (!is_sampling_event(event))
6495 		return;
6496 
6497 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
6498 		data->period = nr;
6499 		return perf_swevent_overflow(event, 1, data, regs);
6500 	} else
6501 		data->period = event->hw.last_period;
6502 
6503 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
6504 		return perf_swevent_overflow(event, 1, data, regs);
6505 
6506 	if (local64_add_negative(nr, &hwc->period_left))
6507 		return;
6508 
6509 	perf_swevent_overflow(event, 0, data, regs);
6510 }
6511 
6512 static int perf_exclude_event(struct perf_event *event,
6513 			      struct pt_regs *regs)
6514 {
6515 	if (event->hw.state & PERF_HES_STOPPED)
6516 		return 1;
6517 
6518 	if (regs) {
6519 		if (event->attr.exclude_user && user_mode(regs))
6520 			return 1;
6521 
6522 		if (event->attr.exclude_kernel && !user_mode(regs))
6523 			return 1;
6524 	}
6525 
6526 	return 0;
6527 }
6528 
6529 static int perf_swevent_match(struct perf_event *event,
6530 				enum perf_type_id type,
6531 				u32 event_id,
6532 				struct perf_sample_data *data,
6533 				struct pt_regs *regs)
6534 {
6535 	if (event->attr.type != type)
6536 		return 0;
6537 
6538 	if (event->attr.config != event_id)
6539 		return 0;
6540 
6541 	if (perf_exclude_event(event, regs))
6542 		return 0;
6543 
6544 	return 1;
6545 }
6546 
6547 static inline u64 swevent_hash(u64 type, u32 event_id)
6548 {
6549 	u64 val = event_id | (type << 32);
6550 
6551 	return hash_64(val, SWEVENT_HLIST_BITS);
6552 }
6553 
6554 static inline struct hlist_head *
6555 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
6556 {
6557 	u64 hash = swevent_hash(type, event_id);
6558 
6559 	return &hlist->heads[hash];
6560 }
6561 
6562 /* For the read side: events when they trigger */
6563 static inline struct hlist_head *
6564 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
6565 {
6566 	struct swevent_hlist *hlist;
6567 
6568 	hlist = rcu_dereference(swhash->swevent_hlist);
6569 	if (!hlist)
6570 		return NULL;
6571 
6572 	return __find_swevent_head(hlist, type, event_id);
6573 }
6574 
6575 /* For the event head insertion and removal in the hlist */
6576 static inline struct hlist_head *
6577 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
6578 {
6579 	struct swevent_hlist *hlist;
6580 	u32 event_id = event->attr.config;
6581 	u64 type = event->attr.type;
6582 
6583 	/*
6584 	 * Event scheduling is always serialized against hlist allocation
6585 	 * and release. Which makes the protected version suitable here.
6586 	 * The context lock guarantees that.
6587 	 */
6588 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
6589 					  lockdep_is_held(&event->ctx->lock));
6590 	if (!hlist)
6591 		return NULL;
6592 
6593 	return __find_swevent_head(hlist, type, event_id);
6594 }
6595 
6596 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
6597 				    u64 nr,
6598 				    struct perf_sample_data *data,
6599 				    struct pt_regs *regs)
6600 {
6601 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6602 	struct perf_event *event;
6603 	struct hlist_head *head;
6604 
6605 	rcu_read_lock();
6606 	head = find_swevent_head_rcu(swhash, type, event_id);
6607 	if (!head)
6608 		goto end;
6609 
6610 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
6611 		if (perf_swevent_match(event, type, event_id, data, regs))
6612 			perf_swevent_event(event, nr, data, regs);
6613 	}
6614 end:
6615 	rcu_read_unlock();
6616 }
6617 
6618 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
6619 
6620 int perf_swevent_get_recursion_context(void)
6621 {
6622 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6623 
6624 	return get_recursion_context(swhash->recursion);
6625 }
6626 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
6627 
6628 inline void perf_swevent_put_recursion_context(int rctx)
6629 {
6630 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6631 
6632 	put_recursion_context(swhash->recursion, rctx);
6633 }
6634 
6635 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6636 {
6637 	struct perf_sample_data data;
6638 
6639 	if (WARN_ON_ONCE(!regs))
6640 		return;
6641 
6642 	perf_sample_data_init(&data, addr, 0);
6643 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
6644 }
6645 
6646 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6647 {
6648 	int rctx;
6649 
6650 	preempt_disable_notrace();
6651 	rctx = perf_swevent_get_recursion_context();
6652 	if (unlikely(rctx < 0))
6653 		goto fail;
6654 
6655 	___perf_sw_event(event_id, nr, regs, addr);
6656 
6657 	perf_swevent_put_recursion_context(rctx);
6658 fail:
6659 	preempt_enable_notrace();
6660 }
6661 
6662 static void perf_swevent_read(struct perf_event *event)
6663 {
6664 }
6665 
6666 static int perf_swevent_add(struct perf_event *event, int flags)
6667 {
6668 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6669 	struct hw_perf_event *hwc = &event->hw;
6670 	struct hlist_head *head;
6671 
6672 	if (is_sampling_event(event)) {
6673 		hwc->last_period = hwc->sample_period;
6674 		perf_swevent_set_period(event);
6675 	}
6676 
6677 	hwc->state = !(flags & PERF_EF_START);
6678 
6679 	head = find_swevent_head(swhash, event);
6680 	if (WARN_ON_ONCE(!head))
6681 		return -EINVAL;
6682 
6683 	hlist_add_head_rcu(&event->hlist_entry, head);
6684 	perf_event_update_userpage(event);
6685 
6686 	return 0;
6687 }
6688 
6689 static void perf_swevent_del(struct perf_event *event, int flags)
6690 {
6691 	hlist_del_rcu(&event->hlist_entry);
6692 }
6693 
6694 static void perf_swevent_start(struct perf_event *event, int flags)
6695 {
6696 	event->hw.state = 0;
6697 }
6698 
6699 static void perf_swevent_stop(struct perf_event *event, int flags)
6700 {
6701 	event->hw.state = PERF_HES_STOPPED;
6702 }
6703 
6704 /* Deref the hlist from the update side */
6705 static inline struct swevent_hlist *
6706 swevent_hlist_deref(struct swevent_htable *swhash)
6707 {
6708 	return rcu_dereference_protected(swhash->swevent_hlist,
6709 					 lockdep_is_held(&swhash->hlist_mutex));
6710 }
6711 
6712 static void swevent_hlist_release(struct swevent_htable *swhash)
6713 {
6714 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
6715 
6716 	if (!hlist)
6717 		return;
6718 
6719 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
6720 	kfree_rcu(hlist, rcu_head);
6721 }
6722 
6723 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
6724 {
6725 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6726 
6727 	mutex_lock(&swhash->hlist_mutex);
6728 
6729 	if (!--swhash->hlist_refcount)
6730 		swevent_hlist_release(swhash);
6731 
6732 	mutex_unlock(&swhash->hlist_mutex);
6733 }
6734 
6735 static void swevent_hlist_put(struct perf_event *event)
6736 {
6737 	int cpu;
6738 
6739 	for_each_possible_cpu(cpu)
6740 		swevent_hlist_put_cpu(event, cpu);
6741 }
6742 
6743 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
6744 {
6745 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6746 	int err = 0;
6747 
6748 	mutex_lock(&swhash->hlist_mutex);
6749 	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
6750 		struct swevent_hlist *hlist;
6751 
6752 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
6753 		if (!hlist) {
6754 			err = -ENOMEM;
6755 			goto exit;
6756 		}
6757 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
6758 	}
6759 	swhash->hlist_refcount++;
6760 exit:
6761 	mutex_unlock(&swhash->hlist_mutex);
6762 
6763 	return err;
6764 }
6765 
6766 static int swevent_hlist_get(struct perf_event *event)
6767 {
6768 	int err;
6769 	int cpu, failed_cpu;
6770 
6771 	get_online_cpus();
6772 	for_each_possible_cpu(cpu) {
6773 		err = swevent_hlist_get_cpu(event, cpu);
6774 		if (err) {
6775 			failed_cpu = cpu;
6776 			goto fail;
6777 		}
6778 	}
6779 	put_online_cpus();
6780 
6781 	return 0;
6782 fail:
6783 	for_each_possible_cpu(cpu) {
6784 		if (cpu == failed_cpu)
6785 			break;
6786 		swevent_hlist_put_cpu(event, cpu);
6787 	}
6788 
6789 	put_online_cpus();
6790 	return err;
6791 }
6792 
6793 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
6794 
6795 static void sw_perf_event_destroy(struct perf_event *event)
6796 {
6797 	u64 event_id = event->attr.config;
6798 
6799 	WARN_ON(event->parent);
6800 
6801 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
6802 	swevent_hlist_put(event);
6803 }
6804 
6805 static int perf_swevent_init(struct perf_event *event)
6806 {
6807 	u64 event_id = event->attr.config;
6808 
6809 	if (event->attr.type != PERF_TYPE_SOFTWARE)
6810 		return -ENOENT;
6811 
6812 	/*
6813 	 * no branch sampling for software events
6814 	 */
6815 	if (has_branch_stack(event))
6816 		return -EOPNOTSUPP;
6817 
6818 	switch (event_id) {
6819 	case PERF_COUNT_SW_CPU_CLOCK:
6820 	case PERF_COUNT_SW_TASK_CLOCK:
6821 		return -ENOENT;
6822 
6823 	default:
6824 		break;
6825 	}
6826 
6827 	if (event_id >= PERF_COUNT_SW_MAX)
6828 		return -ENOENT;
6829 
6830 	if (!event->parent) {
6831 		int err;
6832 
6833 		err = swevent_hlist_get(event);
6834 		if (err)
6835 			return err;
6836 
6837 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
6838 		event->destroy = sw_perf_event_destroy;
6839 	}
6840 
6841 	return 0;
6842 }
6843 
6844 static struct pmu perf_swevent = {
6845 	.task_ctx_nr	= perf_sw_context,
6846 
6847 	.capabilities	= PERF_PMU_CAP_NO_NMI,
6848 
6849 	.event_init	= perf_swevent_init,
6850 	.add		= perf_swevent_add,
6851 	.del		= perf_swevent_del,
6852 	.start		= perf_swevent_start,
6853 	.stop		= perf_swevent_stop,
6854 	.read		= perf_swevent_read,
6855 };
6856 
6857 #ifdef CONFIG_EVENT_TRACING
6858 
6859 static int perf_tp_filter_match(struct perf_event *event,
6860 				struct perf_sample_data *data)
6861 {
6862 	void *record = data->raw->data;
6863 
6864 	/* only top level events have filters set */
6865 	if (event->parent)
6866 		event = event->parent;
6867 
6868 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
6869 		return 1;
6870 	return 0;
6871 }
6872 
6873 static int perf_tp_event_match(struct perf_event *event,
6874 				struct perf_sample_data *data,
6875 				struct pt_regs *regs)
6876 {
6877 	if (event->hw.state & PERF_HES_STOPPED)
6878 		return 0;
6879 	/*
6880 	 * All tracepoints are from kernel-space.
6881 	 */
6882 	if (event->attr.exclude_kernel)
6883 		return 0;
6884 
6885 	if (!perf_tp_filter_match(event, data))
6886 		return 0;
6887 
6888 	return 1;
6889 }
6890 
6891 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
6892 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
6893 		   struct task_struct *task)
6894 {
6895 	struct perf_sample_data data;
6896 	struct perf_event *event;
6897 
6898 	struct perf_raw_record raw = {
6899 		.size = entry_size,
6900 		.data = record,
6901 	};
6902 
6903 	perf_sample_data_init(&data, addr, 0);
6904 	data.raw = &raw;
6905 
6906 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
6907 		if (perf_tp_event_match(event, &data, regs))
6908 			perf_swevent_event(event, count, &data, regs);
6909 	}
6910 
6911 	/*
6912 	 * If we got specified a target task, also iterate its context and
6913 	 * deliver this event there too.
6914 	 */
6915 	if (task && task != current) {
6916 		struct perf_event_context *ctx;
6917 		struct trace_entry *entry = record;
6918 
6919 		rcu_read_lock();
6920 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
6921 		if (!ctx)
6922 			goto unlock;
6923 
6924 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6925 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
6926 				continue;
6927 			if (event->attr.config != entry->type)
6928 				continue;
6929 			if (perf_tp_event_match(event, &data, regs))
6930 				perf_swevent_event(event, count, &data, regs);
6931 		}
6932 unlock:
6933 		rcu_read_unlock();
6934 	}
6935 
6936 	perf_swevent_put_recursion_context(rctx);
6937 }
6938 EXPORT_SYMBOL_GPL(perf_tp_event);
6939 
6940 static void tp_perf_event_destroy(struct perf_event *event)
6941 {
6942 	perf_trace_destroy(event);
6943 }
6944 
6945 static int perf_tp_event_init(struct perf_event *event)
6946 {
6947 	int err;
6948 
6949 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
6950 		return -ENOENT;
6951 
6952 	/*
6953 	 * no branch sampling for tracepoint events
6954 	 */
6955 	if (has_branch_stack(event))
6956 		return -EOPNOTSUPP;
6957 
6958 	err = perf_trace_init(event);
6959 	if (err)
6960 		return err;
6961 
6962 	event->destroy = tp_perf_event_destroy;
6963 
6964 	return 0;
6965 }
6966 
6967 static struct pmu perf_tracepoint = {
6968 	.task_ctx_nr	= perf_sw_context,
6969 
6970 	.event_init	= perf_tp_event_init,
6971 	.add		= perf_trace_add,
6972 	.del		= perf_trace_del,
6973 	.start		= perf_swevent_start,
6974 	.stop		= perf_swevent_stop,
6975 	.read		= perf_swevent_read,
6976 };
6977 
6978 static inline void perf_tp_register(void)
6979 {
6980 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
6981 }
6982 
6983 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6984 {
6985 	char *filter_str;
6986 	int ret;
6987 
6988 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
6989 		return -EINVAL;
6990 
6991 	filter_str = strndup_user(arg, PAGE_SIZE);
6992 	if (IS_ERR(filter_str))
6993 		return PTR_ERR(filter_str);
6994 
6995 	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
6996 
6997 	kfree(filter_str);
6998 	return ret;
6999 }
7000 
7001 static void perf_event_free_filter(struct perf_event *event)
7002 {
7003 	ftrace_profile_free_filter(event);
7004 }
7005 
7006 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7007 {
7008 	struct bpf_prog *prog;
7009 
7010 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
7011 		return -EINVAL;
7012 
7013 	if (event->tp_event->prog)
7014 		return -EEXIST;
7015 
7016 	if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE))
7017 		/* bpf programs can only be attached to u/kprobes */
7018 		return -EINVAL;
7019 
7020 	prog = bpf_prog_get(prog_fd);
7021 	if (IS_ERR(prog))
7022 		return PTR_ERR(prog);
7023 
7024 	if (prog->type != BPF_PROG_TYPE_KPROBE) {
7025 		/* valid fd, but invalid bpf program type */
7026 		bpf_prog_put(prog);
7027 		return -EINVAL;
7028 	}
7029 
7030 	event->tp_event->prog = prog;
7031 
7032 	return 0;
7033 }
7034 
7035 static void perf_event_free_bpf_prog(struct perf_event *event)
7036 {
7037 	struct bpf_prog *prog;
7038 
7039 	if (!event->tp_event)
7040 		return;
7041 
7042 	prog = event->tp_event->prog;
7043 	if (prog) {
7044 		event->tp_event->prog = NULL;
7045 		bpf_prog_put(prog);
7046 	}
7047 }
7048 
7049 #else
7050 
7051 static inline void perf_tp_register(void)
7052 {
7053 }
7054 
7055 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
7056 {
7057 	return -ENOENT;
7058 }
7059 
7060 static void perf_event_free_filter(struct perf_event *event)
7061 {
7062 }
7063 
7064 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7065 {
7066 	return -ENOENT;
7067 }
7068 
7069 static void perf_event_free_bpf_prog(struct perf_event *event)
7070 {
7071 }
7072 #endif /* CONFIG_EVENT_TRACING */
7073 
7074 #ifdef CONFIG_HAVE_HW_BREAKPOINT
7075 void perf_bp_event(struct perf_event *bp, void *data)
7076 {
7077 	struct perf_sample_data sample;
7078 	struct pt_regs *regs = data;
7079 
7080 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7081 
7082 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
7083 		perf_swevent_event(bp, 1, &sample, regs);
7084 }
7085 #endif
7086 
7087 /*
7088  * hrtimer based swevent callback
7089  */
7090 
7091 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
7092 {
7093 	enum hrtimer_restart ret = HRTIMER_RESTART;
7094 	struct perf_sample_data data;
7095 	struct pt_regs *regs;
7096 	struct perf_event *event;
7097 	u64 period;
7098 
7099 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
7100 
7101 	if (event->state != PERF_EVENT_STATE_ACTIVE)
7102 		return HRTIMER_NORESTART;
7103 
7104 	event->pmu->read(event);
7105 
7106 	perf_sample_data_init(&data, 0, event->hw.last_period);
7107 	regs = get_irq_regs();
7108 
7109 	if (regs && !perf_exclude_event(event, regs)) {
7110 		if (!(event->attr.exclude_idle && is_idle_task(current)))
7111 			if (__perf_event_overflow(event, 1, &data, regs))
7112 				ret = HRTIMER_NORESTART;
7113 	}
7114 
7115 	period = max_t(u64, 10000, event->hw.sample_period);
7116 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
7117 
7118 	return ret;
7119 }
7120 
7121 static void perf_swevent_start_hrtimer(struct perf_event *event)
7122 {
7123 	struct hw_perf_event *hwc = &event->hw;
7124 	s64 period;
7125 
7126 	if (!is_sampling_event(event))
7127 		return;
7128 
7129 	period = local64_read(&hwc->period_left);
7130 	if (period) {
7131 		if (period < 0)
7132 			period = 10000;
7133 
7134 		local64_set(&hwc->period_left, 0);
7135 	} else {
7136 		period = max_t(u64, 10000, hwc->sample_period);
7137 	}
7138 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
7139 		      HRTIMER_MODE_REL_PINNED);
7140 }
7141 
7142 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
7143 {
7144 	struct hw_perf_event *hwc = &event->hw;
7145 
7146 	if (is_sampling_event(event)) {
7147 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
7148 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
7149 
7150 		hrtimer_cancel(&hwc->hrtimer);
7151 	}
7152 }
7153 
7154 static void perf_swevent_init_hrtimer(struct perf_event *event)
7155 {
7156 	struct hw_perf_event *hwc = &event->hw;
7157 
7158 	if (!is_sampling_event(event))
7159 		return;
7160 
7161 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
7162 	hwc->hrtimer.function = perf_swevent_hrtimer;
7163 
7164 	/*
7165 	 * Since hrtimers have a fixed rate, we can do a static freq->period
7166 	 * mapping and avoid the whole period adjust feedback stuff.
7167 	 */
7168 	if (event->attr.freq) {
7169 		long freq = event->attr.sample_freq;
7170 
7171 		event->attr.sample_period = NSEC_PER_SEC / freq;
7172 		hwc->sample_period = event->attr.sample_period;
7173 		local64_set(&hwc->period_left, hwc->sample_period);
7174 		hwc->last_period = hwc->sample_period;
7175 		event->attr.freq = 0;
7176 	}
7177 }
7178 
7179 /*
7180  * Software event: cpu wall time clock
7181  */
7182 
7183 static void cpu_clock_event_update(struct perf_event *event)
7184 {
7185 	s64 prev;
7186 	u64 now;
7187 
7188 	now = local_clock();
7189 	prev = local64_xchg(&event->hw.prev_count, now);
7190 	local64_add(now - prev, &event->count);
7191 }
7192 
7193 static void cpu_clock_event_start(struct perf_event *event, int flags)
7194 {
7195 	local64_set(&event->hw.prev_count, local_clock());
7196 	perf_swevent_start_hrtimer(event);
7197 }
7198 
7199 static void cpu_clock_event_stop(struct perf_event *event, int flags)
7200 {
7201 	perf_swevent_cancel_hrtimer(event);
7202 	cpu_clock_event_update(event);
7203 }
7204 
7205 static int cpu_clock_event_add(struct perf_event *event, int flags)
7206 {
7207 	if (flags & PERF_EF_START)
7208 		cpu_clock_event_start(event, flags);
7209 	perf_event_update_userpage(event);
7210 
7211 	return 0;
7212 }
7213 
7214 static void cpu_clock_event_del(struct perf_event *event, int flags)
7215 {
7216 	cpu_clock_event_stop(event, flags);
7217 }
7218 
7219 static void cpu_clock_event_read(struct perf_event *event)
7220 {
7221 	cpu_clock_event_update(event);
7222 }
7223 
7224 static int cpu_clock_event_init(struct perf_event *event)
7225 {
7226 	if (event->attr.type != PERF_TYPE_SOFTWARE)
7227 		return -ENOENT;
7228 
7229 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
7230 		return -ENOENT;
7231 
7232 	/*
7233 	 * no branch sampling for software events
7234 	 */
7235 	if (has_branch_stack(event))
7236 		return -EOPNOTSUPP;
7237 
7238 	perf_swevent_init_hrtimer(event);
7239 
7240 	return 0;
7241 }
7242 
7243 static struct pmu perf_cpu_clock = {
7244 	.task_ctx_nr	= perf_sw_context,
7245 
7246 	.capabilities	= PERF_PMU_CAP_NO_NMI,
7247 
7248 	.event_init	= cpu_clock_event_init,
7249 	.add		= cpu_clock_event_add,
7250 	.del		= cpu_clock_event_del,
7251 	.start		= cpu_clock_event_start,
7252 	.stop		= cpu_clock_event_stop,
7253 	.read		= cpu_clock_event_read,
7254 };
7255 
7256 /*
7257  * Software event: task time clock
7258  */
7259 
7260 static void task_clock_event_update(struct perf_event *event, u64 now)
7261 {
7262 	u64 prev;
7263 	s64 delta;
7264 
7265 	prev = local64_xchg(&event->hw.prev_count, now);
7266 	delta = now - prev;
7267 	local64_add(delta, &event->count);
7268 }
7269 
7270 static void task_clock_event_start(struct perf_event *event, int flags)
7271 {
7272 	local64_set(&event->hw.prev_count, event->ctx->time);
7273 	perf_swevent_start_hrtimer(event);
7274 }
7275 
7276 static void task_clock_event_stop(struct perf_event *event, int flags)
7277 {
7278 	perf_swevent_cancel_hrtimer(event);
7279 	task_clock_event_update(event, event->ctx->time);
7280 }
7281 
7282 static int task_clock_event_add(struct perf_event *event, int flags)
7283 {
7284 	if (flags & PERF_EF_START)
7285 		task_clock_event_start(event, flags);
7286 	perf_event_update_userpage(event);
7287 
7288 	return 0;
7289 }
7290 
7291 static void task_clock_event_del(struct perf_event *event, int flags)
7292 {
7293 	task_clock_event_stop(event, PERF_EF_UPDATE);
7294 }
7295 
7296 static void task_clock_event_read(struct perf_event *event)
7297 {
7298 	u64 now = perf_clock();
7299 	u64 delta = now - event->ctx->timestamp;
7300 	u64 time = event->ctx->time + delta;
7301 
7302 	task_clock_event_update(event, time);
7303 }
7304 
7305 static int task_clock_event_init(struct perf_event *event)
7306 {
7307 	if (event->attr.type != PERF_TYPE_SOFTWARE)
7308 		return -ENOENT;
7309 
7310 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
7311 		return -ENOENT;
7312 
7313 	/*
7314 	 * no branch sampling for software events
7315 	 */
7316 	if (has_branch_stack(event))
7317 		return -EOPNOTSUPP;
7318 
7319 	perf_swevent_init_hrtimer(event);
7320 
7321 	return 0;
7322 }
7323 
7324 static struct pmu perf_task_clock = {
7325 	.task_ctx_nr	= perf_sw_context,
7326 
7327 	.capabilities	= PERF_PMU_CAP_NO_NMI,
7328 
7329 	.event_init	= task_clock_event_init,
7330 	.add		= task_clock_event_add,
7331 	.del		= task_clock_event_del,
7332 	.start		= task_clock_event_start,
7333 	.stop		= task_clock_event_stop,
7334 	.read		= task_clock_event_read,
7335 };
7336 
7337 static void perf_pmu_nop_void(struct pmu *pmu)
7338 {
7339 }
7340 
7341 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
7342 {
7343 }
7344 
7345 static int perf_pmu_nop_int(struct pmu *pmu)
7346 {
7347 	return 0;
7348 }
7349 
7350 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
7351 
7352 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
7353 {
7354 	__this_cpu_write(nop_txn_flags, flags);
7355 
7356 	if (flags & ~PERF_PMU_TXN_ADD)
7357 		return;
7358 
7359 	perf_pmu_disable(pmu);
7360 }
7361 
7362 static int perf_pmu_commit_txn(struct pmu *pmu)
7363 {
7364 	unsigned int flags = __this_cpu_read(nop_txn_flags);
7365 
7366 	__this_cpu_write(nop_txn_flags, 0);
7367 
7368 	if (flags & ~PERF_PMU_TXN_ADD)
7369 		return 0;
7370 
7371 	perf_pmu_enable(pmu);
7372 	return 0;
7373 }
7374 
7375 static void perf_pmu_cancel_txn(struct pmu *pmu)
7376 {
7377 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
7378 
7379 	__this_cpu_write(nop_txn_flags, 0);
7380 
7381 	if (flags & ~PERF_PMU_TXN_ADD)
7382 		return;
7383 
7384 	perf_pmu_enable(pmu);
7385 }
7386 
7387 static int perf_event_idx_default(struct perf_event *event)
7388 {
7389 	return 0;
7390 }
7391 
7392 /*
7393  * Ensures all contexts with the same task_ctx_nr have the same
7394  * pmu_cpu_context too.
7395  */
7396 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
7397 {
7398 	struct pmu *pmu;
7399 
7400 	if (ctxn < 0)
7401 		return NULL;
7402 
7403 	list_for_each_entry(pmu, &pmus, entry) {
7404 		if (pmu->task_ctx_nr == ctxn)
7405 			return pmu->pmu_cpu_context;
7406 	}
7407 
7408 	return NULL;
7409 }
7410 
7411 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
7412 {
7413 	int cpu;
7414 
7415 	for_each_possible_cpu(cpu) {
7416 		struct perf_cpu_context *cpuctx;
7417 
7418 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7419 
7420 		if (cpuctx->unique_pmu == old_pmu)
7421 			cpuctx->unique_pmu = pmu;
7422 	}
7423 }
7424 
7425 static void free_pmu_context(struct pmu *pmu)
7426 {
7427 	struct pmu *i;
7428 
7429 	mutex_lock(&pmus_lock);
7430 	/*
7431 	 * Like a real lame refcount.
7432 	 */
7433 	list_for_each_entry(i, &pmus, entry) {
7434 		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
7435 			update_pmu_context(i, pmu);
7436 			goto out;
7437 		}
7438 	}
7439 
7440 	free_percpu(pmu->pmu_cpu_context);
7441 out:
7442 	mutex_unlock(&pmus_lock);
7443 }
7444 static struct idr pmu_idr;
7445 
7446 static ssize_t
7447 type_show(struct device *dev, struct device_attribute *attr, char *page)
7448 {
7449 	struct pmu *pmu = dev_get_drvdata(dev);
7450 
7451 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
7452 }
7453 static DEVICE_ATTR_RO(type);
7454 
7455 static ssize_t
7456 perf_event_mux_interval_ms_show(struct device *dev,
7457 				struct device_attribute *attr,
7458 				char *page)
7459 {
7460 	struct pmu *pmu = dev_get_drvdata(dev);
7461 
7462 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
7463 }
7464 
7465 static DEFINE_MUTEX(mux_interval_mutex);
7466 
7467 static ssize_t
7468 perf_event_mux_interval_ms_store(struct device *dev,
7469 				 struct device_attribute *attr,
7470 				 const char *buf, size_t count)
7471 {
7472 	struct pmu *pmu = dev_get_drvdata(dev);
7473 	int timer, cpu, ret;
7474 
7475 	ret = kstrtoint(buf, 0, &timer);
7476 	if (ret)
7477 		return ret;
7478 
7479 	if (timer < 1)
7480 		return -EINVAL;
7481 
7482 	/* same value, noting to do */
7483 	if (timer == pmu->hrtimer_interval_ms)
7484 		return count;
7485 
7486 	mutex_lock(&mux_interval_mutex);
7487 	pmu->hrtimer_interval_ms = timer;
7488 
7489 	/* update all cpuctx for this PMU */
7490 	get_online_cpus();
7491 	for_each_online_cpu(cpu) {
7492 		struct perf_cpu_context *cpuctx;
7493 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7494 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
7495 
7496 		cpu_function_call(cpu,
7497 			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
7498 	}
7499 	put_online_cpus();
7500 	mutex_unlock(&mux_interval_mutex);
7501 
7502 	return count;
7503 }
7504 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
7505 
7506 static struct attribute *pmu_dev_attrs[] = {
7507 	&dev_attr_type.attr,
7508 	&dev_attr_perf_event_mux_interval_ms.attr,
7509 	NULL,
7510 };
7511 ATTRIBUTE_GROUPS(pmu_dev);
7512 
7513 static int pmu_bus_running;
7514 static struct bus_type pmu_bus = {
7515 	.name		= "event_source",
7516 	.dev_groups	= pmu_dev_groups,
7517 };
7518 
7519 static void pmu_dev_release(struct device *dev)
7520 {
7521 	kfree(dev);
7522 }
7523 
7524 static int pmu_dev_alloc(struct pmu *pmu)
7525 {
7526 	int ret = -ENOMEM;
7527 
7528 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
7529 	if (!pmu->dev)
7530 		goto out;
7531 
7532 	pmu->dev->groups = pmu->attr_groups;
7533 	device_initialize(pmu->dev);
7534 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
7535 	if (ret)
7536 		goto free_dev;
7537 
7538 	dev_set_drvdata(pmu->dev, pmu);
7539 	pmu->dev->bus = &pmu_bus;
7540 	pmu->dev->release = pmu_dev_release;
7541 	ret = device_add(pmu->dev);
7542 	if (ret)
7543 		goto free_dev;
7544 
7545 out:
7546 	return ret;
7547 
7548 free_dev:
7549 	put_device(pmu->dev);
7550 	goto out;
7551 }
7552 
7553 static struct lock_class_key cpuctx_mutex;
7554 static struct lock_class_key cpuctx_lock;
7555 
7556 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
7557 {
7558 	int cpu, ret;
7559 
7560 	mutex_lock(&pmus_lock);
7561 	ret = -ENOMEM;
7562 	pmu->pmu_disable_count = alloc_percpu(int);
7563 	if (!pmu->pmu_disable_count)
7564 		goto unlock;
7565 
7566 	pmu->type = -1;
7567 	if (!name)
7568 		goto skip_type;
7569 	pmu->name = name;
7570 
7571 	if (type < 0) {
7572 		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
7573 		if (type < 0) {
7574 			ret = type;
7575 			goto free_pdc;
7576 		}
7577 	}
7578 	pmu->type = type;
7579 
7580 	if (pmu_bus_running) {
7581 		ret = pmu_dev_alloc(pmu);
7582 		if (ret)
7583 			goto free_idr;
7584 	}
7585 
7586 skip_type:
7587 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
7588 	if (pmu->pmu_cpu_context)
7589 		goto got_cpu_context;
7590 
7591 	ret = -ENOMEM;
7592 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
7593 	if (!pmu->pmu_cpu_context)
7594 		goto free_dev;
7595 
7596 	for_each_possible_cpu(cpu) {
7597 		struct perf_cpu_context *cpuctx;
7598 
7599 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7600 		__perf_event_init_context(&cpuctx->ctx);
7601 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
7602 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
7603 		cpuctx->ctx.pmu = pmu;
7604 
7605 		__perf_mux_hrtimer_init(cpuctx, cpu);
7606 
7607 		cpuctx->unique_pmu = pmu;
7608 	}
7609 
7610 got_cpu_context:
7611 	if (!pmu->start_txn) {
7612 		if (pmu->pmu_enable) {
7613 			/*
7614 			 * If we have pmu_enable/pmu_disable calls, install
7615 			 * transaction stubs that use that to try and batch
7616 			 * hardware accesses.
7617 			 */
7618 			pmu->start_txn  = perf_pmu_start_txn;
7619 			pmu->commit_txn = perf_pmu_commit_txn;
7620 			pmu->cancel_txn = perf_pmu_cancel_txn;
7621 		} else {
7622 			pmu->start_txn  = perf_pmu_nop_txn;
7623 			pmu->commit_txn = perf_pmu_nop_int;
7624 			pmu->cancel_txn = perf_pmu_nop_void;
7625 		}
7626 	}
7627 
7628 	if (!pmu->pmu_enable) {
7629 		pmu->pmu_enable  = perf_pmu_nop_void;
7630 		pmu->pmu_disable = perf_pmu_nop_void;
7631 	}
7632 
7633 	if (!pmu->event_idx)
7634 		pmu->event_idx = perf_event_idx_default;
7635 
7636 	list_add_rcu(&pmu->entry, &pmus);
7637 	atomic_set(&pmu->exclusive_cnt, 0);
7638 	ret = 0;
7639 unlock:
7640 	mutex_unlock(&pmus_lock);
7641 
7642 	return ret;
7643 
7644 free_dev:
7645 	device_del(pmu->dev);
7646 	put_device(pmu->dev);
7647 
7648 free_idr:
7649 	if (pmu->type >= PERF_TYPE_MAX)
7650 		idr_remove(&pmu_idr, pmu->type);
7651 
7652 free_pdc:
7653 	free_percpu(pmu->pmu_disable_count);
7654 	goto unlock;
7655 }
7656 EXPORT_SYMBOL_GPL(perf_pmu_register);
7657 
7658 void perf_pmu_unregister(struct pmu *pmu)
7659 {
7660 	mutex_lock(&pmus_lock);
7661 	list_del_rcu(&pmu->entry);
7662 	mutex_unlock(&pmus_lock);
7663 
7664 	/*
7665 	 * We dereference the pmu list under both SRCU and regular RCU, so
7666 	 * synchronize against both of those.
7667 	 */
7668 	synchronize_srcu(&pmus_srcu);
7669 	synchronize_rcu();
7670 
7671 	free_percpu(pmu->pmu_disable_count);
7672 	if (pmu->type >= PERF_TYPE_MAX)
7673 		idr_remove(&pmu_idr, pmu->type);
7674 	device_del(pmu->dev);
7675 	put_device(pmu->dev);
7676 	free_pmu_context(pmu);
7677 }
7678 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
7679 
7680 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
7681 {
7682 	struct perf_event_context *ctx = NULL;
7683 	int ret;
7684 
7685 	if (!try_module_get(pmu->module))
7686 		return -ENODEV;
7687 
7688 	if (event->group_leader != event) {
7689 		/*
7690 		 * This ctx->mutex can nest when we're called through
7691 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
7692 		 */
7693 		ctx = perf_event_ctx_lock_nested(event->group_leader,
7694 						 SINGLE_DEPTH_NESTING);
7695 		BUG_ON(!ctx);
7696 	}
7697 
7698 	event->pmu = pmu;
7699 	ret = pmu->event_init(event);
7700 
7701 	if (ctx)
7702 		perf_event_ctx_unlock(event->group_leader, ctx);
7703 
7704 	if (ret)
7705 		module_put(pmu->module);
7706 
7707 	return ret;
7708 }
7709 
7710 static struct pmu *perf_init_event(struct perf_event *event)
7711 {
7712 	struct pmu *pmu = NULL;
7713 	int idx;
7714 	int ret;
7715 
7716 	idx = srcu_read_lock(&pmus_srcu);
7717 
7718 	rcu_read_lock();
7719 	pmu = idr_find(&pmu_idr, event->attr.type);
7720 	rcu_read_unlock();
7721 	if (pmu) {
7722 		ret = perf_try_init_event(pmu, event);
7723 		if (ret)
7724 			pmu = ERR_PTR(ret);
7725 		goto unlock;
7726 	}
7727 
7728 	list_for_each_entry_rcu(pmu, &pmus, entry) {
7729 		ret = perf_try_init_event(pmu, event);
7730 		if (!ret)
7731 			goto unlock;
7732 
7733 		if (ret != -ENOENT) {
7734 			pmu = ERR_PTR(ret);
7735 			goto unlock;
7736 		}
7737 	}
7738 	pmu = ERR_PTR(-ENOENT);
7739 unlock:
7740 	srcu_read_unlock(&pmus_srcu, idx);
7741 
7742 	return pmu;
7743 }
7744 
7745 static void account_event_cpu(struct perf_event *event, int cpu)
7746 {
7747 	if (event->parent)
7748 		return;
7749 
7750 	if (is_cgroup_event(event))
7751 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
7752 }
7753 
7754 static void account_event(struct perf_event *event)
7755 {
7756 	if (event->parent)
7757 		return;
7758 
7759 	if (event->attach_state & PERF_ATTACH_TASK)
7760 		static_key_slow_inc(&perf_sched_events.key);
7761 	if (event->attr.mmap || event->attr.mmap_data)
7762 		atomic_inc(&nr_mmap_events);
7763 	if (event->attr.comm)
7764 		atomic_inc(&nr_comm_events);
7765 	if (event->attr.task)
7766 		atomic_inc(&nr_task_events);
7767 	if (event->attr.freq) {
7768 		if (atomic_inc_return(&nr_freq_events) == 1)
7769 			tick_nohz_full_kick_all();
7770 	}
7771 	if (event->attr.context_switch) {
7772 		atomic_inc(&nr_switch_events);
7773 		static_key_slow_inc(&perf_sched_events.key);
7774 	}
7775 	if (has_branch_stack(event))
7776 		static_key_slow_inc(&perf_sched_events.key);
7777 	if (is_cgroup_event(event))
7778 		static_key_slow_inc(&perf_sched_events.key);
7779 
7780 	account_event_cpu(event, event->cpu);
7781 }
7782 
7783 /*
7784  * Allocate and initialize a event structure
7785  */
7786 static struct perf_event *
7787 perf_event_alloc(struct perf_event_attr *attr, int cpu,
7788 		 struct task_struct *task,
7789 		 struct perf_event *group_leader,
7790 		 struct perf_event *parent_event,
7791 		 perf_overflow_handler_t overflow_handler,
7792 		 void *context, int cgroup_fd)
7793 {
7794 	struct pmu *pmu;
7795 	struct perf_event *event;
7796 	struct hw_perf_event *hwc;
7797 	long err = -EINVAL;
7798 
7799 	if ((unsigned)cpu >= nr_cpu_ids) {
7800 		if (!task || cpu != -1)
7801 			return ERR_PTR(-EINVAL);
7802 	}
7803 
7804 	event = kzalloc(sizeof(*event), GFP_KERNEL);
7805 	if (!event)
7806 		return ERR_PTR(-ENOMEM);
7807 
7808 	/*
7809 	 * Single events are their own group leaders, with an
7810 	 * empty sibling list:
7811 	 */
7812 	if (!group_leader)
7813 		group_leader = event;
7814 
7815 	mutex_init(&event->child_mutex);
7816 	INIT_LIST_HEAD(&event->child_list);
7817 
7818 	INIT_LIST_HEAD(&event->group_entry);
7819 	INIT_LIST_HEAD(&event->event_entry);
7820 	INIT_LIST_HEAD(&event->sibling_list);
7821 	INIT_LIST_HEAD(&event->rb_entry);
7822 	INIT_LIST_HEAD(&event->active_entry);
7823 	INIT_HLIST_NODE(&event->hlist_entry);
7824 
7825 
7826 	init_waitqueue_head(&event->waitq);
7827 	init_irq_work(&event->pending, perf_pending_event);
7828 
7829 	mutex_init(&event->mmap_mutex);
7830 
7831 	atomic_long_set(&event->refcount, 1);
7832 	event->cpu		= cpu;
7833 	event->attr		= *attr;
7834 	event->group_leader	= group_leader;
7835 	event->pmu		= NULL;
7836 	event->oncpu		= -1;
7837 
7838 	event->parent		= parent_event;
7839 
7840 	event->ns		= get_pid_ns(task_active_pid_ns(current));
7841 	event->id		= atomic64_inc_return(&perf_event_id);
7842 
7843 	event->state		= PERF_EVENT_STATE_INACTIVE;
7844 
7845 	if (task) {
7846 		event->attach_state = PERF_ATTACH_TASK;
7847 		/*
7848 		 * XXX pmu::event_init needs to know what task to account to
7849 		 * and we cannot use the ctx information because we need the
7850 		 * pmu before we get a ctx.
7851 		 */
7852 		event->hw.target = task;
7853 	}
7854 
7855 	event->clock = &local_clock;
7856 	if (parent_event)
7857 		event->clock = parent_event->clock;
7858 
7859 	if (!overflow_handler && parent_event) {
7860 		overflow_handler = parent_event->overflow_handler;
7861 		context = parent_event->overflow_handler_context;
7862 	}
7863 
7864 	event->overflow_handler	= overflow_handler;
7865 	event->overflow_handler_context = context;
7866 
7867 	perf_event__state_init(event);
7868 
7869 	pmu = NULL;
7870 
7871 	hwc = &event->hw;
7872 	hwc->sample_period = attr->sample_period;
7873 	if (attr->freq && attr->sample_freq)
7874 		hwc->sample_period = 1;
7875 	hwc->last_period = hwc->sample_period;
7876 
7877 	local64_set(&hwc->period_left, hwc->sample_period);
7878 
7879 	/*
7880 	 * we currently do not support PERF_FORMAT_GROUP on inherited events
7881 	 */
7882 	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
7883 		goto err_ns;
7884 
7885 	if (!has_branch_stack(event))
7886 		event->attr.branch_sample_type = 0;
7887 
7888 	if (cgroup_fd != -1) {
7889 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
7890 		if (err)
7891 			goto err_ns;
7892 	}
7893 
7894 	pmu = perf_init_event(event);
7895 	if (!pmu)
7896 		goto err_ns;
7897 	else if (IS_ERR(pmu)) {
7898 		err = PTR_ERR(pmu);
7899 		goto err_ns;
7900 	}
7901 
7902 	err = exclusive_event_init(event);
7903 	if (err)
7904 		goto err_pmu;
7905 
7906 	if (!event->parent) {
7907 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
7908 			err = get_callchain_buffers();
7909 			if (err)
7910 				goto err_per_task;
7911 		}
7912 	}
7913 
7914 	return event;
7915 
7916 err_per_task:
7917 	exclusive_event_destroy(event);
7918 
7919 err_pmu:
7920 	if (event->destroy)
7921 		event->destroy(event);
7922 	module_put(pmu->module);
7923 err_ns:
7924 	if (is_cgroup_event(event))
7925 		perf_detach_cgroup(event);
7926 	if (event->ns)
7927 		put_pid_ns(event->ns);
7928 	kfree(event);
7929 
7930 	return ERR_PTR(err);
7931 }
7932 
7933 static int perf_copy_attr(struct perf_event_attr __user *uattr,
7934 			  struct perf_event_attr *attr)
7935 {
7936 	u32 size;
7937 	int ret;
7938 
7939 	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
7940 		return -EFAULT;
7941 
7942 	/*
7943 	 * zero the full structure, so that a short copy will be nice.
7944 	 */
7945 	memset(attr, 0, sizeof(*attr));
7946 
7947 	ret = get_user(size, &uattr->size);
7948 	if (ret)
7949 		return ret;
7950 
7951 	if (size > PAGE_SIZE)	/* silly large */
7952 		goto err_size;
7953 
7954 	if (!size)		/* abi compat */
7955 		size = PERF_ATTR_SIZE_VER0;
7956 
7957 	if (size < PERF_ATTR_SIZE_VER0)
7958 		goto err_size;
7959 
7960 	/*
7961 	 * If we're handed a bigger struct than we know of,
7962 	 * ensure all the unknown bits are 0 - i.e. new
7963 	 * user-space does not rely on any kernel feature
7964 	 * extensions we dont know about yet.
7965 	 */
7966 	if (size > sizeof(*attr)) {
7967 		unsigned char __user *addr;
7968 		unsigned char __user *end;
7969 		unsigned char val;
7970 
7971 		addr = (void __user *)uattr + sizeof(*attr);
7972 		end  = (void __user *)uattr + size;
7973 
7974 		for (; addr < end; addr++) {
7975 			ret = get_user(val, addr);
7976 			if (ret)
7977 				return ret;
7978 			if (val)
7979 				goto err_size;
7980 		}
7981 		size = sizeof(*attr);
7982 	}
7983 
7984 	ret = copy_from_user(attr, uattr, size);
7985 	if (ret)
7986 		return -EFAULT;
7987 
7988 	if (attr->__reserved_1)
7989 		return -EINVAL;
7990 
7991 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
7992 		return -EINVAL;
7993 
7994 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
7995 		return -EINVAL;
7996 
7997 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
7998 		u64 mask = attr->branch_sample_type;
7999 
8000 		/* only using defined bits */
8001 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
8002 			return -EINVAL;
8003 
8004 		/* at least one branch bit must be set */
8005 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
8006 			return -EINVAL;
8007 
8008 		/* propagate priv level, when not set for branch */
8009 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
8010 
8011 			/* exclude_kernel checked on syscall entry */
8012 			if (!attr->exclude_kernel)
8013 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
8014 
8015 			if (!attr->exclude_user)
8016 				mask |= PERF_SAMPLE_BRANCH_USER;
8017 
8018 			if (!attr->exclude_hv)
8019 				mask |= PERF_SAMPLE_BRANCH_HV;
8020 			/*
8021 			 * adjust user setting (for HW filter setup)
8022 			 */
8023 			attr->branch_sample_type = mask;
8024 		}
8025 		/* privileged levels capture (kernel, hv): check permissions */
8026 		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
8027 		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8028 			return -EACCES;
8029 	}
8030 
8031 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
8032 		ret = perf_reg_validate(attr->sample_regs_user);
8033 		if (ret)
8034 			return ret;
8035 	}
8036 
8037 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
8038 		if (!arch_perf_have_user_stack_dump())
8039 			return -ENOSYS;
8040 
8041 		/*
8042 		 * We have __u32 type for the size, but so far
8043 		 * we can only use __u16 as maximum due to the
8044 		 * __u16 sample size limit.
8045 		 */
8046 		if (attr->sample_stack_user >= USHRT_MAX)
8047 			ret = -EINVAL;
8048 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
8049 			ret = -EINVAL;
8050 	}
8051 
8052 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
8053 		ret = perf_reg_validate(attr->sample_regs_intr);
8054 out:
8055 	return ret;
8056 
8057 err_size:
8058 	put_user(sizeof(*attr), &uattr->size);
8059 	ret = -E2BIG;
8060 	goto out;
8061 }
8062 
8063 static int
8064 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
8065 {
8066 	struct ring_buffer *rb = NULL;
8067 	int ret = -EINVAL;
8068 
8069 	if (!output_event)
8070 		goto set;
8071 
8072 	/* don't allow circular references */
8073 	if (event == output_event)
8074 		goto out;
8075 
8076 	/*
8077 	 * Don't allow cross-cpu buffers
8078 	 */
8079 	if (output_event->cpu != event->cpu)
8080 		goto out;
8081 
8082 	/*
8083 	 * If its not a per-cpu rb, it must be the same task.
8084 	 */
8085 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
8086 		goto out;
8087 
8088 	/*
8089 	 * Mixing clocks in the same buffer is trouble you don't need.
8090 	 */
8091 	if (output_event->clock != event->clock)
8092 		goto out;
8093 
8094 	/*
8095 	 * If both events generate aux data, they must be on the same PMU
8096 	 */
8097 	if (has_aux(event) && has_aux(output_event) &&
8098 	    event->pmu != output_event->pmu)
8099 		goto out;
8100 
8101 set:
8102 	mutex_lock(&event->mmap_mutex);
8103 	/* Can't redirect output if we've got an active mmap() */
8104 	if (atomic_read(&event->mmap_count))
8105 		goto unlock;
8106 
8107 	if (output_event) {
8108 		/* get the rb we want to redirect to */
8109 		rb = ring_buffer_get(output_event);
8110 		if (!rb)
8111 			goto unlock;
8112 	}
8113 
8114 	ring_buffer_attach(event, rb);
8115 
8116 	ret = 0;
8117 unlock:
8118 	mutex_unlock(&event->mmap_mutex);
8119 
8120 out:
8121 	return ret;
8122 }
8123 
8124 static void mutex_lock_double(struct mutex *a, struct mutex *b)
8125 {
8126 	if (b < a)
8127 		swap(a, b);
8128 
8129 	mutex_lock(a);
8130 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
8131 }
8132 
8133 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
8134 {
8135 	bool nmi_safe = false;
8136 
8137 	switch (clk_id) {
8138 	case CLOCK_MONOTONIC:
8139 		event->clock = &ktime_get_mono_fast_ns;
8140 		nmi_safe = true;
8141 		break;
8142 
8143 	case CLOCK_MONOTONIC_RAW:
8144 		event->clock = &ktime_get_raw_fast_ns;
8145 		nmi_safe = true;
8146 		break;
8147 
8148 	case CLOCK_REALTIME:
8149 		event->clock = &ktime_get_real_ns;
8150 		break;
8151 
8152 	case CLOCK_BOOTTIME:
8153 		event->clock = &ktime_get_boot_ns;
8154 		break;
8155 
8156 	case CLOCK_TAI:
8157 		event->clock = &ktime_get_tai_ns;
8158 		break;
8159 
8160 	default:
8161 		return -EINVAL;
8162 	}
8163 
8164 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
8165 		return -EINVAL;
8166 
8167 	return 0;
8168 }
8169 
8170 /**
8171  * sys_perf_event_open - open a performance event, associate it to a task/cpu
8172  *
8173  * @attr_uptr:	event_id type attributes for monitoring/sampling
8174  * @pid:		target pid
8175  * @cpu:		target cpu
8176  * @group_fd:		group leader event fd
8177  */
8178 SYSCALL_DEFINE5(perf_event_open,
8179 		struct perf_event_attr __user *, attr_uptr,
8180 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
8181 {
8182 	struct perf_event *group_leader = NULL, *output_event = NULL;
8183 	struct perf_event *event, *sibling;
8184 	struct perf_event_attr attr;
8185 	struct perf_event_context *ctx, *uninitialized_var(gctx);
8186 	struct file *event_file = NULL;
8187 	struct fd group = {NULL, 0};
8188 	struct task_struct *task = NULL;
8189 	struct pmu *pmu;
8190 	int event_fd;
8191 	int move_group = 0;
8192 	int err;
8193 	int f_flags = O_RDWR;
8194 	int cgroup_fd = -1;
8195 
8196 	/* for future expandability... */
8197 	if (flags & ~PERF_FLAG_ALL)
8198 		return -EINVAL;
8199 
8200 	err = perf_copy_attr(attr_uptr, &attr);
8201 	if (err)
8202 		return err;
8203 
8204 	if (!attr.exclude_kernel) {
8205 		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8206 			return -EACCES;
8207 	}
8208 
8209 	if (attr.freq) {
8210 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
8211 			return -EINVAL;
8212 	} else {
8213 		if (attr.sample_period & (1ULL << 63))
8214 			return -EINVAL;
8215 	}
8216 
8217 	/*
8218 	 * In cgroup mode, the pid argument is used to pass the fd
8219 	 * opened to the cgroup directory in cgroupfs. The cpu argument
8220 	 * designates the cpu on which to monitor threads from that
8221 	 * cgroup.
8222 	 */
8223 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
8224 		return -EINVAL;
8225 
8226 	if (flags & PERF_FLAG_FD_CLOEXEC)
8227 		f_flags |= O_CLOEXEC;
8228 
8229 	event_fd = get_unused_fd_flags(f_flags);
8230 	if (event_fd < 0)
8231 		return event_fd;
8232 
8233 	if (group_fd != -1) {
8234 		err = perf_fget_light(group_fd, &group);
8235 		if (err)
8236 			goto err_fd;
8237 		group_leader = group.file->private_data;
8238 		if (flags & PERF_FLAG_FD_OUTPUT)
8239 			output_event = group_leader;
8240 		if (flags & PERF_FLAG_FD_NO_GROUP)
8241 			group_leader = NULL;
8242 	}
8243 
8244 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
8245 		task = find_lively_task_by_vpid(pid);
8246 		if (IS_ERR(task)) {
8247 			err = PTR_ERR(task);
8248 			goto err_group_fd;
8249 		}
8250 	}
8251 
8252 	if (task && group_leader &&
8253 	    group_leader->attr.inherit != attr.inherit) {
8254 		err = -EINVAL;
8255 		goto err_task;
8256 	}
8257 
8258 	get_online_cpus();
8259 
8260 	if (flags & PERF_FLAG_PID_CGROUP)
8261 		cgroup_fd = pid;
8262 
8263 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
8264 				 NULL, NULL, cgroup_fd);
8265 	if (IS_ERR(event)) {
8266 		err = PTR_ERR(event);
8267 		goto err_cpus;
8268 	}
8269 
8270 	if (is_sampling_event(event)) {
8271 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
8272 			err = -ENOTSUPP;
8273 			goto err_alloc;
8274 		}
8275 	}
8276 
8277 	account_event(event);
8278 
8279 	/*
8280 	 * Special case software events and allow them to be part of
8281 	 * any hardware group.
8282 	 */
8283 	pmu = event->pmu;
8284 
8285 	if (attr.use_clockid) {
8286 		err = perf_event_set_clock(event, attr.clockid);
8287 		if (err)
8288 			goto err_alloc;
8289 	}
8290 
8291 	if (group_leader &&
8292 	    (is_software_event(event) != is_software_event(group_leader))) {
8293 		if (is_software_event(event)) {
8294 			/*
8295 			 * If event and group_leader are not both a software
8296 			 * event, and event is, then group leader is not.
8297 			 *
8298 			 * Allow the addition of software events to !software
8299 			 * groups, this is safe because software events never
8300 			 * fail to schedule.
8301 			 */
8302 			pmu = group_leader->pmu;
8303 		} else if (is_software_event(group_leader) &&
8304 			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
8305 			/*
8306 			 * In case the group is a pure software group, and we
8307 			 * try to add a hardware event, move the whole group to
8308 			 * the hardware context.
8309 			 */
8310 			move_group = 1;
8311 		}
8312 	}
8313 
8314 	/*
8315 	 * Get the target context (task or percpu):
8316 	 */
8317 	ctx = find_get_context(pmu, task, event);
8318 	if (IS_ERR(ctx)) {
8319 		err = PTR_ERR(ctx);
8320 		goto err_alloc;
8321 	}
8322 
8323 	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
8324 		err = -EBUSY;
8325 		goto err_context;
8326 	}
8327 
8328 	if (task) {
8329 		put_task_struct(task);
8330 		task = NULL;
8331 	}
8332 
8333 	/*
8334 	 * Look up the group leader (we will attach this event to it):
8335 	 */
8336 	if (group_leader) {
8337 		err = -EINVAL;
8338 
8339 		/*
8340 		 * Do not allow a recursive hierarchy (this new sibling
8341 		 * becoming part of another group-sibling):
8342 		 */
8343 		if (group_leader->group_leader != group_leader)
8344 			goto err_context;
8345 
8346 		/* All events in a group should have the same clock */
8347 		if (group_leader->clock != event->clock)
8348 			goto err_context;
8349 
8350 		/*
8351 		 * Do not allow to attach to a group in a different
8352 		 * task or CPU context:
8353 		 */
8354 		if (move_group) {
8355 			/*
8356 			 * Make sure we're both on the same task, or both
8357 			 * per-cpu events.
8358 			 */
8359 			if (group_leader->ctx->task != ctx->task)
8360 				goto err_context;
8361 
8362 			/*
8363 			 * Make sure we're both events for the same CPU;
8364 			 * grouping events for different CPUs is broken; since
8365 			 * you can never concurrently schedule them anyhow.
8366 			 */
8367 			if (group_leader->cpu != event->cpu)
8368 				goto err_context;
8369 		} else {
8370 			if (group_leader->ctx != ctx)
8371 				goto err_context;
8372 		}
8373 
8374 		/*
8375 		 * Only a group leader can be exclusive or pinned
8376 		 */
8377 		if (attr.exclusive || attr.pinned)
8378 			goto err_context;
8379 	}
8380 
8381 	if (output_event) {
8382 		err = perf_event_set_output(event, output_event);
8383 		if (err)
8384 			goto err_context;
8385 	}
8386 
8387 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
8388 					f_flags);
8389 	if (IS_ERR(event_file)) {
8390 		err = PTR_ERR(event_file);
8391 		goto err_context;
8392 	}
8393 
8394 	if (move_group) {
8395 		gctx = group_leader->ctx;
8396 		mutex_lock_double(&gctx->mutex, &ctx->mutex);
8397 	} else {
8398 		mutex_lock(&ctx->mutex);
8399 	}
8400 
8401 	if (!perf_event_validate_size(event)) {
8402 		err = -E2BIG;
8403 		goto err_locked;
8404 	}
8405 
8406 	/*
8407 	 * Must be under the same ctx::mutex as perf_install_in_context(),
8408 	 * because we need to serialize with concurrent event creation.
8409 	 */
8410 	if (!exclusive_event_installable(event, ctx)) {
8411 		/* exclusive and group stuff are assumed mutually exclusive */
8412 		WARN_ON_ONCE(move_group);
8413 
8414 		err = -EBUSY;
8415 		goto err_locked;
8416 	}
8417 
8418 	WARN_ON_ONCE(ctx->parent_ctx);
8419 
8420 	if (move_group) {
8421 		/*
8422 		 * See perf_event_ctx_lock() for comments on the details
8423 		 * of swizzling perf_event::ctx.
8424 		 */
8425 		perf_remove_from_context(group_leader, false);
8426 
8427 		list_for_each_entry(sibling, &group_leader->sibling_list,
8428 				    group_entry) {
8429 			perf_remove_from_context(sibling, false);
8430 			put_ctx(gctx);
8431 		}
8432 
8433 		/*
8434 		 * Wait for everybody to stop referencing the events through
8435 		 * the old lists, before installing it on new lists.
8436 		 */
8437 		synchronize_rcu();
8438 
8439 		/*
8440 		 * Install the group siblings before the group leader.
8441 		 *
8442 		 * Because a group leader will try and install the entire group
8443 		 * (through the sibling list, which is still in-tact), we can
8444 		 * end up with siblings installed in the wrong context.
8445 		 *
8446 		 * By installing siblings first we NO-OP because they're not
8447 		 * reachable through the group lists.
8448 		 */
8449 		list_for_each_entry(sibling, &group_leader->sibling_list,
8450 				    group_entry) {
8451 			perf_event__state_init(sibling);
8452 			perf_install_in_context(ctx, sibling, sibling->cpu);
8453 			get_ctx(ctx);
8454 		}
8455 
8456 		/*
8457 		 * Removing from the context ends up with disabled
8458 		 * event. What we want here is event in the initial
8459 		 * startup state, ready to be add into new context.
8460 		 */
8461 		perf_event__state_init(group_leader);
8462 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
8463 		get_ctx(ctx);
8464 
8465 		/*
8466 		 * Now that all events are installed in @ctx, nothing
8467 		 * references @gctx anymore, so drop the last reference we have
8468 		 * on it.
8469 		 */
8470 		put_ctx(gctx);
8471 	}
8472 
8473 	/*
8474 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
8475 	 * that we're serialized against further additions and before
8476 	 * perf_install_in_context() which is the point the event is active and
8477 	 * can use these values.
8478 	 */
8479 	perf_event__header_size(event);
8480 	perf_event__id_header_size(event);
8481 
8482 	perf_install_in_context(ctx, event, event->cpu);
8483 	perf_unpin_context(ctx);
8484 
8485 	if (move_group)
8486 		mutex_unlock(&gctx->mutex);
8487 	mutex_unlock(&ctx->mutex);
8488 
8489 	put_online_cpus();
8490 
8491 	event->owner = current;
8492 
8493 	mutex_lock(&current->perf_event_mutex);
8494 	list_add_tail(&event->owner_entry, &current->perf_event_list);
8495 	mutex_unlock(&current->perf_event_mutex);
8496 
8497 	/*
8498 	 * Drop the reference on the group_event after placing the
8499 	 * new event on the sibling_list. This ensures destruction
8500 	 * of the group leader will find the pointer to itself in
8501 	 * perf_group_detach().
8502 	 */
8503 	fdput(group);
8504 	fd_install(event_fd, event_file);
8505 	return event_fd;
8506 
8507 err_locked:
8508 	if (move_group)
8509 		mutex_unlock(&gctx->mutex);
8510 	mutex_unlock(&ctx->mutex);
8511 /* err_file: */
8512 	fput(event_file);
8513 err_context:
8514 	perf_unpin_context(ctx);
8515 	put_ctx(ctx);
8516 err_alloc:
8517 	free_event(event);
8518 err_cpus:
8519 	put_online_cpus();
8520 err_task:
8521 	if (task)
8522 		put_task_struct(task);
8523 err_group_fd:
8524 	fdput(group);
8525 err_fd:
8526 	put_unused_fd(event_fd);
8527 	return err;
8528 }
8529 
8530 /**
8531  * perf_event_create_kernel_counter
8532  *
8533  * @attr: attributes of the counter to create
8534  * @cpu: cpu in which the counter is bound
8535  * @task: task to profile (NULL for percpu)
8536  */
8537 struct perf_event *
8538 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
8539 				 struct task_struct *task,
8540 				 perf_overflow_handler_t overflow_handler,
8541 				 void *context)
8542 {
8543 	struct perf_event_context *ctx;
8544 	struct perf_event *event;
8545 	int err;
8546 
8547 	/*
8548 	 * Get the target context (task or percpu):
8549 	 */
8550 
8551 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
8552 				 overflow_handler, context, -1);
8553 	if (IS_ERR(event)) {
8554 		err = PTR_ERR(event);
8555 		goto err;
8556 	}
8557 
8558 	/* Mark owner so we could distinguish it from user events. */
8559 	event->owner = EVENT_OWNER_KERNEL;
8560 
8561 	account_event(event);
8562 
8563 	ctx = find_get_context(event->pmu, task, event);
8564 	if (IS_ERR(ctx)) {
8565 		err = PTR_ERR(ctx);
8566 		goto err_free;
8567 	}
8568 
8569 	WARN_ON_ONCE(ctx->parent_ctx);
8570 	mutex_lock(&ctx->mutex);
8571 	if (!exclusive_event_installable(event, ctx)) {
8572 		mutex_unlock(&ctx->mutex);
8573 		perf_unpin_context(ctx);
8574 		put_ctx(ctx);
8575 		err = -EBUSY;
8576 		goto err_free;
8577 	}
8578 
8579 	perf_install_in_context(ctx, event, cpu);
8580 	perf_unpin_context(ctx);
8581 	mutex_unlock(&ctx->mutex);
8582 
8583 	return event;
8584 
8585 err_free:
8586 	free_event(event);
8587 err:
8588 	return ERR_PTR(err);
8589 }
8590 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
8591 
8592 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
8593 {
8594 	struct perf_event_context *src_ctx;
8595 	struct perf_event_context *dst_ctx;
8596 	struct perf_event *event, *tmp;
8597 	LIST_HEAD(events);
8598 
8599 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
8600 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
8601 
8602 	/*
8603 	 * See perf_event_ctx_lock() for comments on the details
8604 	 * of swizzling perf_event::ctx.
8605 	 */
8606 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
8607 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
8608 				 event_entry) {
8609 		perf_remove_from_context(event, false);
8610 		unaccount_event_cpu(event, src_cpu);
8611 		put_ctx(src_ctx);
8612 		list_add(&event->migrate_entry, &events);
8613 	}
8614 
8615 	/*
8616 	 * Wait for the events to quiesce before re-instating them.
8617 	 */
8618 	synchronize_rcu();
8619 
8620 	/*
8621 	 * Re-instate events in 2 passes.
8622 	 *
8623 	 * Skip over group leaders and only install siblings on this first
8624 	 * pass, siblings will not get enabled without a leader, however a
8625 	 * leader will enable its siblings, even if those are still on the old
8626 	 * context.
8627 	 */
8628 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8629 		if (event->group_leader == event)
8630 			continue;
8631 
8632 		list_del(&event->migrate_entry);
8633 		if (event->state >= PERF_EVENT_STATE_OFF)
8634 			event->state = PERF_EVENT_STATE_INACTIVE;
8635 		account_event_cpu(event, dst_cpu);
8636 		perf_install_in_context(dst_ctx, event, dst_cpu);
8637 		get_ctx(dst_ctx);
8638 	}
8639 
8640 	/*
8641 	 * Once all the siblings are setup properly, install the group leaders
8642 	 * to make it go.
8643 	 */
8644 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8645 		list_del(&event->migrate_entry);
8646 		if (event->state >= PERF_EVENT_STATE_OFF)
8647 			event->state = PERF_EVENT_STATE_INACTIVE;
8648 		account_event_cpu(event, dst_cpu);
8649 		perf_install_in_context(dst_ctx, event, dst_cpu);
8650 		get_ctx(dst_ctx);
8651 	}
8652 	mutex_unlock(&dst_ctx->mutex);
8653 	mutex_unlock(&src_ctx->mutex);
8654 }
8655 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
8656 
8657 static void sync_child_event(struct perf_event *child_event,
8658 			       struct task_struct *child)
8659 {
8660 	struct perf_event *parent_event = child_event->parent;
8661 	u64 child_val;
8662 
8663 	if (child_event->attr.inherit_stat)
8664 		perf_event_read_event(child_event, child);
8665 
8666 	child_val = perf_event_count(child_event);
8667 
8668 	/*
8669 	 * Add back the child's count to the parent's count:
8670 	 */
8671 	atomic64_add(child_val, &parent_event->child_count);
8672 	atomic64_add(child_event->total_time_enabled,
8673 		     &parent_event->child_total_time_enabled);
8674 	atomic64_add(child_event->total_time_running,
8675 		     &parent_event->child_total_time_running);
8676 
8677 	/*
8678 	 * Remove this event from the parent's list
8679 	 */
8680 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8681 	mutex_lock(&parent_event->child_mutex);
8682 	list_del_init(&child_event->child_list);
8683 	mutex_unlock(&parent_event->child_mutex);
8684 
8685 	/*
8686 	 * Make sure user/parent get notified, that we just
8687 	 * lost one event.
8688 	 */
8689 	perf_event_wakeup(parent_event);
8690 
8691 	/*
8692 	 * Release the parent event, if this was the last
8693 	 * reference to it.
8694 	 */
8695 	put_event(parent_event);
8696 }
8697 
8698 static void
8699 __perf_event_exit_task(struct perf_event *child_event,
8700 			 struct perf_event_context *child_ctx,
8701 			 struct task_struct *child)
8702 {
8703 	/*
8704 	 * Do not destroy the 'original' grouping; because of the context
8705 	 * switch optimization the original events could've ended up in a
8706 	 * random child task.
8707 	 *
8708 	 * If we were to destroy the original group, all group related
8709 	 * operations would cease to function properly after this random
8710 	 * child dies.
8711 	 *
8712 	 * Do destroy all inherited groups, we don't care about those
8713 	 * and being thorough is better.
8714 	 */
8715 	perf_remove_from_context(child_event, !!child_event->parent);
8716 
8717 	/*
8718 	 * It can happen that the parent exits first, and has events
8719 	 * that are still around due to the child reference. These
8720 	 * events need to be zapped.
8721 	 */
8722 	if (child_event->parent) {
8723 		sync_child_event(child_event, child);
8724 		free_event(child_event);
8725 	} else {
8726 		child_event->state = PERF_EVENT_STATE_EXIT;
8727 		perf_event_wakeup(child_event);
8728 	}
8729 }
8730 
8731 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
8732 {
8733 	struct perf_event *child_event, *next;
8734 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
8735 	unsigned long flags;
8736 
8737 	if (likely(!child->perf_event_ctxp[ctxn]))
8738 		return;
8739 
8740 	local_irq_save(flags);
8741 	/*
8742 	 * We can't reschedule here because interrupts are disabled,
8743 	 * and either child is current or it is a task that can't be
8744 	 * scheduled, so we are now safe from rescheduling changing
8745 	 * our context.
8746 	 */
8747 	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
8748 
8749 	/*
8750 	 * Take the context lock here so that if find_get_context is
8751 	 * reading child->perf_event_ctxp, we wait until it has
8752 	 * incremented the context's refcount before we do put_ctx below.
8753 	 */
8754 	raw_spin_lock(&child_ctx->lock);
8755 	task_ctx_sched_out(child_ctx);
8756 	child->perf_event_ctxp[ctxn] = NULL;
8757 
8758 	/*
8759 	 * If this context is a clone; unclone it so it can't get
8760 	 * swapped to another process while we're removing all
8761 	 * the events from it.
8762 	 */
8763 	clone_ctx = unclone_ctx(child_ctx);
8764 	update_context_time(child_ctx);
8765 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
8766 
8767 	if (clone_ctx)
8768 		put_ctx(clone_ctx);
8769 
8770 	/*
8771 	 * Report the task dead after unscheduling the events so that we
8772 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
8773 	 * get a few PERF_RECORD_READ events.
8774 	 */
8775 	perf_event_task(child, child_ctx, 0);
8776 
8777 	/*
8778 	 * We can recurse on the same lock type through:
8779 	 *
8780 	 *   __perf_event_exit_task()
8781 	 *     sync_child_event()
8782 	 *       put_event()
8783 	 *         mutex_lock(&ctx->mutex)
8784 	 *
8785 	 * But since its the parent context it won't be the same instance.
8786 	 */
8787 	mutex_lock(&child_ctx->mutex);
8788 
8789 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8790 		__perf_event_exit_task(child_event, child_ctx, child);
8791 
8792 	mutex_unlock(&child_ctx->mutex);
8793 
8794 	put_ctx(child_ctx);
8795 }
8796 
8797 /*
8798  * When a child task exits, feed back event values to parent events.
8799  */
8800 void perf_event_exit_task(struct task_struct *child)
8801 {
8802 	struct perf_event *event, *tmp;
8803 	int ctxn;
8804 
8805 	mutex_lock(&child->perf_event_mutex);
8806 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
8807 				 owner_entry) {
8808 		list_del_init(&event->owner_entry);
8809 
8810 		/*
8811 		 * Ensure the list deletion is visible before we clear
8812 		 * the owner, closes a race against perf_release() where
8813 		 * we need to serialize on the owner->perf_event_mutex.
8814 		 */
8815 		smp_wmb();
8816 		event->owner = NULL;
8817 	}
8818 	mutex_unlock(&child->perf_event_mutex);
8819 
8820 	for_each_task_context_nr(ctxn)
8821 		perf_event_exit_task_context(child, ctxn);
8822 
8823 	/*
8824 	 * The perf_event_exit_task_context calls perf_event_task
8825 	 * with child's task_ctx, which generates EXIT events for
8826 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
8827 	 * At this point we need to send EXIT events to cpu contexts.
8828 	 */
8829 	perf_event_task(child, NULL, 0);
8830 }
8831 
8832 static void perf_free_event(struct perf_event *event,
8833 			    struct perf_event_context *ctx)
8834 {
8835 	struct perf_event *parent = event->parent;
8836 
8837 	if (WARN_ON_ONCE(!parent))
8838 		return;
8839 
8840 	mutex_lock(&parent->child_mutex);
8841 	list_del_init(&event->child_list);
8842 	mutex_unlock(&parent->child_mutex);
8843 
8844 	put_event(parent);
8845 
8846 	raw_spin_lock_irq(&ctx->lock);
8847 	perf_group_detach(event);
8848 	list_del_event(event, ctx);
8849 	raw_spin_unlock_irq(&ctx->lock);
8850 	free_event(event);
8851 }
8852 
8853 /*
8854  * Free an unexposed, unused context as created by inheritance by
8855  * perf_event_init_task below, used by fork() in case of fail.
8856  *
8857  * Not all locks are strictly required, but take them anyway to be nice and
8858  * help out with the lockdep assertions.
8859  */
8860 void perf_event_free_task(struct task_struct *task)
8861 {
8862 	struct perf_event_context *ctx;
8863 	struct perf_event *event, *tmp;
8864 	int ctxn;
8865 
8866 	for_each_task_context_nr(ctxn) {
8867 		ctx = task->perf_event_ctxp[ctxn];
8868 		if (!ctx)
8869 			continue;
8870 
8871 		mutex_lock(&ctx->mutex);
8872 again:
8873 		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
8874 				group_entry)
8875 			perf_free_event(event, ctx);
8876 
8877 		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
8878 				group_entry)
8879 			perf_free_event(event, ctx);
8880 
8881 		if (!list_empty(&ctx->pinned_groups) ||
8882 				!list_empty(&ctx->flexible_groups))
8883 			goto again;
8884 
8885 		mutex_unlock(&ctx->mutex);
8886 
8887 		put_ctx(ctx);
8888 	}
8889 }
8890 
8891 void perf_event_delayed_put(struct task_struct *task)
8892 {
8893 	int ctxn;
8894 
8895 	for_each_task_context_nr(ctxn)
8896 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
8897 }
8898 
8899 struct perf_event *perf_event_get(unsigned int fd)
8900 {
8901 	int err;
8902 	struct fd f;
8903 	struct perf_event *event;
8904 
8905 	err = perf_fget_light(fd, &f);
8906 	if (err)
8907 		return ERR_PTR(err);
8908 
8909 	event = f.file->private_data;
8910 	atomic_long_inc(&event->refcount);
8911 	fdput(f);
8912 
8913 	return event;
8914 }
8915 
8916 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
8917 {
8918 	if (!event)
8919 		return ERR_PTR(-EINVAL);
8920 
8921 	return &event->attr;
8922 }
8923 
8924 /*
8925  * inherit a event from parent task to child task:
8926  */
8927 static struct perf_event *
8928 inherit_event(struct perf_event *parent_event,
8929 	      struct task_struct *parent,
8930 	      struct perf_event_context *parent_ctx,
8931 	      struct task_struct *child,
8932 	      struct perf_event *group_leader,
8933 	      struct perf_event_context *child_ctx)
8934 {
8935 	enum perf_event_active_state parent_state = parent_event->state;
8936 	struct perf_event *child_event;
8937 	unsigned long flags;
8938 
8939 	/*
8940 	 * Instead of creating recursive hierarchies of events,
8941 	 * we link inherited events back to the original parent,
8942 	 * which has a filp for sure, which we use as the reference
8943 	 * count:
8944 	 */
8945 	if (parent_event->parent)
8946 		parent_event = parent_event->parent;
8947 
8948 	child_event = perf_event_alloc(&parent_event->attr,
8949 					   parent_event->cpu,
8950 					   child,
8951 					   group_leader, parent_event,
8952 					   NULL, NULL, -1);
8953 	if (IS_ERR(child_event))
8954 		return child_event;
8955 
8956 	if (is_orphaned_event(parent_event) ||
8957 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
8958 		free_event(child_event);
8959 		return NULL;
8960 	}
8961 
8962 	get_ctx(child_ctx);
8963 
8964 	/*
8965 	 * Make the child state follow the state of the parent event,
8966 	 * not its attr.disabled bit.  We hold the parent's mutex,
8967 	 * so we won't race with perf_event_{en, dis}able_family.
8968 	 */
8969 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
8970 		child_event->state = PERF_EVENT_STATE_INACTIVE;
8971 	else
8972 		child_event->state = PERF_EVENT_STATE_OFF;
8973 
8974 	if (parent_event->attr.freq) {
8975 		u64 sample_period = parent_event->hw.sample_period;
8976 		struct hw_perf_event *hwc = &child_event->hw;
8977 
8978 		hwc->sample_period = sample_period;
8979 		hwc->last_period   = sample_period;
8980 
8981 		local64_set(&hwc->period_left, sample_period);
8982 	}
8983 
8984 	child_event->ctx = child_ctx;
8985 	child_event->overflow_handler = parent_event->overflow_handler;
8986 	child_event->overflow_handler_context
8987 		= parent_event->overflow_handler_context;
8988 
8989 	/*
8990 	 * Precalculate sample_data sizes
8991 	 */
8992 	perf_event__header_size(child_event);
8993 	perf_event__id_header_size(child_event);
8994 
8995 	/*
8996 	 * Link it up in the child's context:
8997 	 */
8998 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
8999 	add_event_to_ctx(child_event, child_ctx);
9000 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
9001 
9002 	/*
9003 	 * Link this into the parent event's child list
9004 	 */
9005 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
9006 	mutex_lock(&parent_event->child_mutex);
9007 	list_add_tail(&child_event->child_list, &parent_event->child_list);
9008 	mutex_unlock(&parent_event->child_mutex);
9009 
9010 	return child_event;
9011 }
9012 
9013 static int inherit_group(struct perf_event *parent_event,
9014 	      struct task_struct *parent,
9015 	      struct perf_event_context *parent_ctx,
9016 	      struct task_struct *child,
9017 	      struct perf_event_context *child_ctx)
9018 {
9019 	struct perf_event *leader;
9020 	struct perf_event *sub;
9021 	struct perf_event *child_ctr;
9022 
9023 	leader = inherit_event(parent_event, parent, parent_ctx,
9024 				 child, NULL, child_ctx);
9025 	if (IS_ERR(leader))
9026 		return PTR_ERR(leader);
9027 	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
9028 		child_ctr = inherit_event(sub, parent, parent_ctx,
9029 					    child, leader, child_ctx);
9030 		if (IS_ERR(child_ctr))
9031 			return PTR_ERR(child_ctr);
9032 	}
9033 	return 0;
9034 }
9035 
9036 static int
9037 inherit_task_group(struct perf_event *event, struct task_struct *parent,
9038 		   struct perf_event_context *parent_ctx,
9039 		   struct task_struct *child, int ctxn,
9040 		   int *inherited_all)
9041 {
9042 	int ret;
9043 	struct perf_event_context *child_ctx;
9044 
9045 	if (!event->attr.inherit) {
9046 		*inherited_all = 0;
9047 		return 0;
9048 	}
9049 
9050 	child_ctx = child->perf_event_ctxp[ctxn];
9051 	if (!child_ctx) {
9052 		/*
9053 		 * This is executed from the parent task context, so
9054 		 * inherit events that have been marked for cloning.
9055 		 * First allocate and initialize a context for the
9056 		 * child.
9057 		 */
9058 
9059 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
9060 		if (!child_ctx)
9061 			return -ENOMEM;
9062 
9063 		child->perf_event_ctxp[ctxn] = child_ctx;
9064 	}
9065 
9066 	ret = inherit_group(event, parent, parent_ctx,
9067 			    child, child_ctx);
9068 
9069 	if (ret)
9070 		*inherited_all = 0;
9071 
9072 	return ret;
9073 }
9074 
9075 /*
9076  * Initialize the perf_event context in task_struct
9077  */
9078 static int perf_event_init_context(struct task_struct *child, int ctxn)
9079 {
9080 	struct perf_event_context *child_ctx, *parent_ctx;
9081 	struct perf_event_context *cloned_ctx;
9082 	struct perf_event *event;
9083 	struct task_struct *parent = current;
9084 	int inherited_all = 1;
9085 	unsigned long flags;
9086 	int ret = 0;
9087 
9088 	if (likely(!parent->perf_event_ctxp[ctxn]))
9089 		return 0;
9090 
9091 	/*
9092 	 * If the parent's context is a clone, pin it so it won't get
9093 	 * swapped under us.
9094 	 */
9095 	parent_ctx = perf_pin_task_context(parent, ctxn);
9096 	if (!parent_ctx)
9097 		return 0;
9098 
9099 	/*
9100 	 * No need to check if parent_ctx != NULL here; since we saw
9101 	 * it non-NULL earlier, the only reason for it to become NULL
9102 	 * is if we exit, and since we're currently in the middle of
9103 	 * a fork we can't be exiting at the same time.
9104 	 */
9105 
9106 	/*
9107 	 * Lock the parent list. No need to lock the child - not PID
9108 	 * hashed yet and not running, so nobody can access it.
9109 	 */
9110 	mutex_lock(&parent_ctx->mutex);
9111 
9112 	/*
9113 	 * We dont have to disable NMIs - we are only looking at
9114 	 * the list, not manipulating it:
9115 	 */
9116 	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
9117 		ret = inherit_task_group(event, parent, parent_ctx,
9118 					 child, ctxn, &inherited_all);
9119 		if (ret)
9120 			break;
9121 	}
9122 
9123 	/*
9124 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
9125 	 * to allocations, but we need to prevent rotation because
9126 	 * rotate_ctx() will change the list from interrupt context.
9127 	 */
9128 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9129 	parent_ctx->rotate_disable = 1;
9130 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9131 
9132 	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
9133 		ret = inherit_task_group(event, parent, parent_ctx,
9134 					 child, ctxn, &inherited_all);
9135 		if (ret)
9136 			break;
9137 	}
9138 
9139 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9140 	parent_ctx->rotate_disable = 0;
9141 
9142 	child_ctx = child->perf_event_ctxp[ctxn];
9143 
9144 	if (child_ctx && inherited_all) {
9145 		/*
9146 		 * Mark the child context as a clone of the parent
9147 		 * context, or of whatever the parent is a clone of.
9148 		 *
9149 		 * Note that if the parent is a clone, the holding of
9150 		 * parent_ctx->lock avoids it from being uncloned.
9151 		 */
9152 		cloned_ctx = parent_ctx->parent_ctx;
9153 		if (cloned_ctx) {
9154 			child_ctx->parent_ctx = cloned_ctx;
9155 			child_ctx->parent_gen = parent_ctx->parent_gen;
9156 		} else {
9157 			child_ctx->parent_ctx = parent_ctx;
9158 			child_ctx->parent_gen = parent_ctx->generation;
9159 		}
9160 		get_ctx(child_ctx->parent_ctx);
9161 	}
9162 
9163 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9164 	mutex_unlock(&parent_ctx->mutex);
9165 
9166 	perf_unpin_context(parent_ctx);
9167 	put_ctx(parent_ctx);
9168 
9169 	return ret;
9170 }
9171 
9172 /*
9173  * Initialize the perf_event context in task_struct
9174  */
9175 int perf_event_init_task(struct task_struct *child)
9176 {
9177 	int ctxn, ret;
9178 
9179 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
9180 	mutex_init(&child->perf_event_mutex);
9181 	INIT_LIST_HEAD(&child->perf_event_list);
9182 
9183 	for_each_task_context_nr(ctxn) {
9184 		ret = perf_event_init_context(child, ctxn);
9185 		if (ret) {
9186 			perf_event_free_task(child);
9187 			return ret;
9188 		}
9189 	}
9190 
9191 	return 0;
9192 }
9193 
9194 static void __init perf_event_init_all_cpus(void)
9195 {
9196 	struct swevent_htable *swhash;
9197 	int cpu;
9198 
9199 	for_each_possible_cpu(cpu) {
9200 		swhash = &per_cpu(swevent_htable, cpu);
9201 		mutex_init(&swhash->hlist_mutex);
9202 		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
9203 	}
9204 }
9205 
9206 static void perf_event_init_cpu(int cpu)
9207 {
9208 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9209 
9210 	mutex_lock(&swhash->hlist_mutex);
9211 	if (swhash->hlist_refcount > 0) {
9212 		struct swevent_hlist *hlist;
9213 
9214 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
9215 		WARN_ON(!hlist);
9216 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
9217 	}
9218 	mutex_unlock(&swhash->hlist_mutex);
9219 }
9220 
9221 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
9222 static void __perf_event_exit_context(void *__info)
9223 {
9224 	struct remove_event re = { .detach_group = true };
9225 	struct perf_event_context *ctx = __info;
9226 
9227 	rcu_read_lock();
9228 	list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
9229 		__perf_remove_from_context(&re);
9230 	rcu_read_unlock();
9231 }
9232 
9233 static void perf_event_exit_cpu_context(int cpu)
9234 {
9235 	struct perf_event_context *ctx;
9236 	struct pmu *pmu;
9237 	int idx;
9238 
9239 	idx = srcu_read_lock(&pmus_srcu);
9240 	list_for_each_entry_rcu(pmu, &pmus, entry) {
9241 		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
9242 
9243 		mutex_lock(&ctx->mutex);
9244 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
9245 		mutex_unlock(&ctx->mutex);
9246 	}
9247 	srcu_read_unlock(&pmus_srcu, idx);
9248 }
9249 
9250 static void perf_event_exit_cpu(int cpu)
9251 {
9252 	perf_event_exit_cpu_context(cpu);
9253 }
9254 #else
9255 static inline void perf_event_exit_cpu(int cpu) { }
9256 #endif
9257 
9258 static int
9259 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
9260 {
9261 	int cpu;
9262 
9263 	for_each_online_cpu(cpu)
9264 		perf_event_exit_cpu(cpu);
9265 
9266 	return NOTIFY_OK;
9267 }
9268 
9269 /*
9270  * Run the perf reboot notifier at the very last possible moment so that
9271  * the generic watchdog code runs as long as possible.
9272  */
9273 static struct notifier_block perf_reboot_notifier = {
9274 	.notifier_call = perf_reboot,
9275 	.priority = INT_MIN,
9276 };
9277 
9278 static int
9279 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
9280 {
9281 	unsigned int cpu = (long)hcpu;
9282 
9283 	switch (action & ~CPU_TASKS_FROZEN) {
9284 
9285 	case CPU_UP_PREPARE:
9286 	case CPU_DOWN_FAILED:
9287 		perf_event_init_cpu(cpu);
9288 		break;
9289 
9290 	case CPU_UP_CANCELED:
9291 	case CPU_DOWN_PREPARE:
9292 		perf_event_exit_cpu(cpu);
9293 		break;
9294 	default:
9295 		break;
9296 	}
9297 
9298 	return NOTIFY_OK;
9299 }
9300 
9301 void __init perf_event_init(void)
9302 {
9303 	int ret;
9304 
9305 	idr_init(&pmu_idr);
9306 
9307 	perf_event_init_all_cpus();
9308 	init_srcu_struct(&pmus_srcu);
9309 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
9310 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
9311 	perf_pmu_register(&perf_task_clock, NULL, -1);
9312 	perf_tp_register();
9313 	perf_cpu_notifier(perf_cpu_notify);
9314 	register_reboot_notifier(&perf_reboot_notifier);
9315 
9316 	ret = init_hw_breakpoint();
9317 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
9318 
9319 	/* do not patch jump label more than once per second */
9320 	jump_label_rate_limit(&perf_sched_events, HZ);
9321 
9322 	/*
9323 	 * Build time assertion that we keep the data_head at the intended
9324 	 * location.  IOW, validation we got the __reserved[] size right.
9325 	 */
9326 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
9327 		     != 1024);
9328 }
9329 
9330 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
9331 			      char *page)
9332 {
9333 	struct perf_pmu_events_attr *pmu_attr =
9334 		container_of(attr, struct perf_pmu_events_attr, attr);
9335 
9336 	if (pmu_attr->event_str)
9337 		return sprintf(page, "%s\n", pmu_attr->event_str);
9338 
9339 	return 0;
9340 }
9341 
9342 static int __init perf_event_sysfs_init(void)
9343 {
9344 	struct pmu *pmu;
9345 	int ret;
9346 
9347 	mutex_lock(&pmus_lock);
9348 
9349 	ret = bus_register(&pmu_bus);
9350 	if (ret)
9351 		goto unlock;
9352 
9353 	list_for_each_entry(pmu, &pmus, entry) {
9354 		if (!pmu->name || pmu->type < 0)
9355 			continue;
9356 
9357 		ret = pmu_dev_alloc(pmu);
9358 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
9359 	}
9360 	pmu_bus_running = 1;
9361 	ret = 0;
9362 
9363 unlock:
9364 	mutex_unlock(&pmus_lock);
9365 
9366 	return ret;
9367 }
9368 device_initcall(perf_event_sysfs_init);
9369 
9370 #ifdef CONFIG_CGROUP_PERF
9371 static struct cgroup_subsys_state *
9372 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
9373 {
9374 	struct perf_cgroup *jc;
9375 
9376 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
9377 	if (!jc)
9378 		return ERR_PTR(-ENOMEM);
9379 
9380 	jc->info = alloc_percpu(struct perf_cgroup_info);
9381 	if (!jc->info) {
9382 		kfree(jc);
9383 		return ERR_PTR(-ENOMEM);
9384 	}
9385 
9386 	return &jc->css;
9387 }
9388 
9389 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
9390 {
9391 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
9392 
9393 	free_percpu(jc->info);
9394 	kfree(jc);
9395 }
9396 
9397 static int __perf_cgroup_move(void *info)
9398 {
9399 	struct task_struct *task = info;
9400 	rcu_read_lock();
9401 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
9402 	rcu_read_unlock();
9403 	return 0;
9404 }
9405 
9406 static void perf_cgroup_attach(struct cgroup_taskset *tset)
9407 {
9408 	struct task_struct *task;
9409 	struct cgroup_subsys_state *css;
9410 
9411 	cgroup_taskset_for_each(task, css, tset)
9412 		task_function_call(task, __perf_cgroup_move, task);
9413 }
9414 
9415 struct cgroup_subsys perf_event_cgrp_subsys = {
9416 	.css_alloc	= perf_cgroup_css_alloc,
9417 	.css_free	= perf_cgroup_css_free,
9418 	.attach		= perf_cgroup_attach,
9419 };
9420 #endif /* CONFIG_CGROUP_PERF */
9421