1 /* 2 * Performance events core code: 3 * 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 8 * 9 * For licensing details see kernel-base/COPYING 10 */ 11 12 #include <linux/fs.h> 13 #include <linux/mm.h> 14 #include <linux/cpu.h> 15 #include <linux/smp.h> 16 #include <linux/idr.h> 17 #include <linux/file.h> 18 #include <linux/poll.h> 19 #include <linux/slab.h> 20 #include <linux/hash.h> 21 #include <linux/tick.h> 22 #include <linux/sysfs.h> 23 #include <linux/dcache.h> 24 #include <linux/percpu.h> 25 #include <linux/ptrace.h> 26 #include <linux/reboot.h> 27 #include <linux/vmstat.h> 28 #include <linux/device.h> 29 #include <linux/export.h> 30 #include <linux/vmalloc.h> 31 #include <linux/hardirq.h> 32 #include <linux/rculist.h> 33 #include <linux/uaccess.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/cgroup.h> 38 #include <linux/perf_event.h> 39 #include <linux/trace_events.h> 40 #include <linux/hw_breakpoint.h> 41 #include <linux/mm_types.h> 42 #include <linux/module.h> 43 #include <linux/mman.h> 44 #include <linux/compat.h> 45 #include <linux/bpf.h> 46 #include <linux/filter.h> 47 48 #include "internal.h" 49 50 #include <asm/irq_regs.h> 51 52 static struct workqueue_struct *perf_wq; 53 54 typedef int (*remote_function_f)(void *); 55 56 struct remote_function_call { 57 struct task_struct *p; 58 remote_function_f func; 59 void *info; 60 int ret; 61 }; 62 63 static void remote_function(void *data) 64 { 65 struct remote_function_call *tfc = data; 66 struct task_struct *p = tfc->p; 67 68 if (p) { 69 tfc->ret = -EAGAIN; 70 if (task_cpu(p) != smp_processor_id() || !task_curr(p)) 71 return; 72 } 73 74 tfc->ret = tfc->func(tfc->info); 75 } 76 77 /** 78 * task_function_call - call a function on the cpu on which a task runs 79 * @p: the task to evaluate 80 * @func: the function to be called 81 * @info: the function call argument 82 * 83 * Calls the function @func when the task is currently running. This might 84 * be on the current CPU, which just calls the function directly 85 * 86 * returns: @func return value, or 87 * -ESRCH - when the process isn't running 88 * -EAGAIN - when the process moved away 89 */ 90 static int 91 task_function_call(struct task_struct *p, remote_function_f func, void *info) 92 { 93 struct remote_function_call data = { 94 .p = p, 95 .func = func, 96 .info = info, 97 .ret = -ESRCH, /* No such (running) process */ 98 }; 99 100 if (task_curr(p)) 101 smp_call_function_single(task_cpu(p), remote_function, &data, 1); 102 103 return data.ret; 104 } 105 106 /** 107 * cpu_function_call - call a function on the cpu 108 * @func: the function to be called 109 * @info: the function call argument 110 * 111 * Calls the function @func on the remote cpu. 112 * 113 * returns: @func return value or -ENXIO when the cpu is offline 114 */ 115 static int cpu_function_call(int cpu, remote_function_f func, void *info) 116 { 117 struct remote_function_call data = { 118 .p = NULL, 119 .func = func, 120 .info = info, 121 .ret = -ENXIO, /* No such CPU */ 122 }; 123 124 smp_call_function_single(cpu, remote_function, &data, 1); 125 126 return data.ret; 127 } 128 129 static void event_function_call(struct perf_event *event, 130 int (*active)(void *), 131 void (*inactive)(void *), 132 void *data) 133 { 134 struct perf_event_context *ctx = event->ctx; 135 struct task_struct *task = ctx->task; 136 137 if (!task) { 138 cpu_function_call(event->cpu, active, data); 139 return; 140 } 141 142 again: 143 if (!task_function_call(task, active, data)) 144 return; 145 146 raw_spin_lock_irq(&ctx->lock); 147 if (ctx->is_active) { 148 /* 149 * Reload the task pointer, it might have been changed by 150 * a concurrent perf_event_context_sched_out(). 151 */ 152 task = ctx->task; 153 raw_spin_unlock_irq(&ctx->lock); 154 goto again; 155 } 156 inactive(data); 157 raw_spin_unlock_irq(&ctx->lock); 158 } 159 160 #define EVENT_OWNER_KERNEL ((void *) -1) 161 162 static bool is_kernel_event(struct perf_event *event) 163 { 164 return event->owner == EVENT_OWNER_KERNEL; 165 } 166 167 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 168 PERF_FLAG_FD_OUTPUT |\ 169 PERF_FLAG_PID_CGROUP |\ 170 PERF_FLAG_FD_CLOEXEC) 171 172 /* 173 * branch priv levels that need permission checks 174 */ 175 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 176 (PERF_SAMPLE_BRANCH_KERNEL |\ 177 PERF_SAMPLE_BRANCH_HV) 178 179 enum event_type_t { 180 EVENT_FLEXIBLE = 0x1, 181 EVENT_PINNED = 0x2, 182 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 183 }; 184 185 /* 186 * perf_sched_events : >0 events exist 187 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu 188 */ 189 struct static_key_deferred perf_sched_events __read_mostly; 190 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); 191 static DEFINE_PER_CPU(int, perf_sched_cb_usages); 192 193 static atomic_t nr_mmap_events __read_mostly; 194 static atomic_t nr_comm_events __read_mostly; 195 static atomic_t nr_task_events __read_mostly; 196 static atomic_t nr_freq_events __read_mostly; 197 static atomic_t nr_switch_events __read_mostly; 198 199 static LIST_HEAD(pmus); 200 static DEFINE_MUTEX(pmus_lock); 201 static struct srcu_struct pmus_srcu; 202 203 /* 204 * perf event paranoia level: 205 * -1 - not paranoid at all 206 * 0 - disallow raw tracepoint access for unpriv 207 * 1 - disallow cpu events for unpriv 208 * 2 - disallow kernel profiling for unpriv 209 */ 210 int sysctl_perf_event_paranoid __read_mostly = 1; 211 212 /* Minimum for 512 kiB + 1 user control page */ 213 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 214 215 /* 216 * max perf event sample rate 217 */ 218 #define DEFAULT_MAX_SAMPLE_RATE 100000 219 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 220 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 221 222 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 223 224 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 225 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 226 227 static int perf_sample_allowed_ns __read_mostly = 228 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 229 230 static void update_perf_cpu_limits(void) 231 { 232 u64 tmp = perf_sample_period_ns; 233 234 tmp *= sysctl_perf_cpu_time_max_percent; 235 do_div(tmp, 100); 236 ACCESS_ONCE(perf_sample_allowed_ns) = tmp; 237 } 238 239 static int perf_rotate_context(struct perf_cpu_context *cpuctx); 240 241 int perf_proc_update_handler(struct ctl_table *table, int write, 242 void __user *buffer, size_t *lenp, 243 loff_t *ppos) 244 { 245 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 246 247 if (ret || !write) 248 return ret; 249 250 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 251 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 252 update_perf_cpu_limits(); 253 254 return 0; 255 } 256 257 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 258 259 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 260 void __user *buffer, size_t *lenp, 261 loff_t *ppos) 262 { 263 int ret = proc_dointvec(table, write, buffer, lenp, ppos); 264 265 if (ret || !write) 266 return ret; 267 268 update_perf_cpu_limits(); 269 270 return 0; 271 } 272 273 /* 274 * perf samples are done in some very critical code paths (NMIs). 275 * If they take too much CPU time, the system can lock up and not 276 * get any real work done. This will drop the sample rate when 277 * we detect that events are taking too long. 278 */ 279 #define NR_ACCUMULATED_SAMPLES 128 280 static DEFINE_PER_CPU(u64, running_sample_length); 281 282 static void perf_duration_warn(struct irq_work *w) 283 { 284 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns); 285 u64 avg_local_sample_len; 286 u64 local_samples_len; 287 288 local_samples_len = __this_cpu_read(running_sample_length); 289 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES; 290 291 printk_ratelimited(KERN_WARNING 292 "perf interrupt took too long (%lld > %lld), lowering " 293 "kernel.perf_event_max_sample_rate to %d\n", 294 avg_local_sample_len, allowed_ns >> 1, 295 sysctl_perf_event_sample_rate); 296 } 297 298 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 299 300 void perf_sample_event_took(u64 sample_len_ns) 301 { 302 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns); 303 u64 avg_local_sample_len; 304 u64 local_samples_len; 305 306 if (allowed_ns == 0) 307 return; 308 309 /* decay the counter by 1 average sample */ 310 local_samples_len = __this_cpu_read(running_sample_length); 311 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES; 312 local_samples_len += sample_len_ns; 313 __this_cpu_write(running_sample_length, local_samples_len); 314 315 /* 316 * note: this will be biased artifically low until we have 317 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 318 * from having to maintain a count. 319 */ 320 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES; 321 322 if (avg_local_sample_len <= allowed_ns) 323 return; 324 325 if (max_samples_per_tick <= 1) 326 return; 327 328 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2); 329 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ; 330 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 331 332 update_perf_cpu_limits(); 333 334 if (!irq_work_queue(&perf_duration_work)) { 335 early_printk("perf interrupt took too long (%lld > %lld), lowering " 336 "kernel.perf_event_max_sample_rate to %d\n", 337 avg_local_sample_len, allowed_ns >> 1, 338 sysctl_perf_event_sample_rate); 339 } 340 } 341 342 static atomic64_t perf_event_id; 343 344 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 345 enum event_type_t event_type); 346 347 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 348 enum event_type_t event_type, 349 struct task_struct *task); 350 351 static void update_context_time(struct perf_event_context *ctx); 352 static u64 perf_event_time(struct perf_event *event); 353 354 void __weak perf_event_print_debug(void) { } 355 356 extern __weak const char *perf_pmu_name(void) 357 { 358 return "pmu"; 359 } 360 361 static inline u64 perf_clock(void) 362 { 363 return local_clock(); 364 } 365 366 static inline u64 perf_event_clock(struct perf_event *event) 367 { 368 return event->clock(); 369 } 370 371 static inline struct perf_cpu_context * 372 __get_cpu_context(struct perf_event_context *ctx) 373 { 374 return this_cpu_ptr(ctx->pmu->pmu_cpu_context); 375 } 376 377 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 378 struct perf_event_context *ctx) 379 { 380 raw_spin_lock(&cpuctx->ctx.lock); 381 if (ctx) 382 raw_spin_lock(&ctx->lock); 383 } 384 385 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 386 struct perf_event_context *ctx) 387 { 388 if (ctx) 389 raw_spin_unlock(&ctx->lock); 390 raw_spin_unlock(&cpuctx->ctx.lock); 391 } 392 393 #ifdef CONFIG_CGROUP_PERF 394 395 static inline bool 396 perf_cgroup_match(struct perf_event *event) 397 { 398 struct perf_event_context *ctx = event->ctx; 399 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 400 401 /* @event doesn't care about cgroup */ 402 if (!event->cgrp) 403 return true; 404 405 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 406 if (!cpuctx->cgrp) 407 return false; 408 409 /* 410 * Cgroup scoping is recursive. An event enabled for a cgroup is 411 * also enabled for all its descendant cgroups. If @cpuctx's 412 * cgroup is a descendant of @event's (the test covers identity 413 * case), it's a match. 414 */ 415 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 416 event->cgrp->css.cgroup); 417 } 418 419 static inline void perf_detach_cgroup(struct perf_event *event) 420 { 421 css_put(&event->cgrp->css); 422 event->cgrp = NULL; 423 } 424 425 static inline int is_cgroup_event(struct perf_event *event) 426 { 427 return event->cgrp != NULL; 428 } 429 430 static inline u64 perf_cgroup_event_time(struct perf_event *event) 431 { 432 struct perf_cgroup_info *t; 433 434 t = per_cpu_ptr(event->cgrp->info, event->cpu); 435 return t->time; 436 } 437 438 static inline void __update_cgrp_time(struct perf_cgroup *cgrp) 439 { 440 struct perf_cgroup_info *info; 441 u64 now; 442 443 now = perf_clock(); 444 445 info = this_cpu_ptr(cgrp->info); 446 447 info->time += now - info->timestamp; 448 info->timestamp = now; 449 } 450 451 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 452 { 453 struct perf_cgroup *cgrp_out = cpuctx->cgrp; 454 if (cgrp_out) 455 __update_cgrp_time(cgrp_out); 456 } 457 458 static inline void update_cgrp_time_from_event(struct perf_event *event) 459 { 460 struct perf_cgroup *cgrp; 461 462 /* 463 * ensure we access cgroup data only when needed and 464 * when we know the cgroup is pinned (css_get) 465 */ 466 if (!is_cgroup_event(event)) 467 return; 468 469 cgrp = perf_cgroup_from_task(current, event->ctx); 470 /* 471 * Do not update time when cgroup is not active 472 */ 473 if (cgrp == event->cgrp) 474 __update_cgrp_time(event->cgrp); 475 } 476 477 static inline void 478 perf_cgroup_set_timestamp(struct task_struct *task, 479 struct perf_event_context *ctx) 480 { 481 struct perf_cgroup *cgrp; 482 struct perf_cgroup_info *info; 483 484 /* 485 * ctx->lock held by caller 486 * ensure we do not access cgroup data 487 * unless we have the cgroup pinned (css_get) 488 */ 489 if (!task || !ctx->nr_cgroups) 490 return; 491 492 cgrp = perf_cgroup_from_task(task, ctx); 493 info = this_cpu_ptr(cgrp->info); 494 info->timestamp = ctx->timestamp; 495 } 496 497 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */ 498 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */ 499 500 /* 501 * reschedule events based on the cgroup constraint of task. 502 * 503 * mode SWOUT : schedule out everything 504 * mode SWIN : schedule in based on cgroup for next 505 */ 506 static void perf_cgroup_switch(struct task_struct *task, int mode) 507 { 508 struct perf_cpu_context *cpuctx; 509 struct pmu *pmu; 510 unsigned long flags; 511 512 /* 513 * disable interrupts to avoid geting nr_cgroup 514 * changes via __perf_event_disable(). Also 515 * avoids preemption. 516 */ 517 local_irq_save(flags); 518 519 /* 520 * we reschedule only in the presence of cgroup 521 * constrained events. 522 */ 523 524 list_for_each_entry_rcu(pmu, &pmus, entry) { 525 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 526 if (cpuctx->unique_pmu != pmu) 527 continue; /* ensure we process each cpuctx once */ 528 529 /* 530 * perf_cgroup_events says at least one 531 * context on this CPU has cgroup events. 532 * 533 * ctx->nr_cgroups reports the number of cgroup 534 * events for a context. 535 */ 536 if (cpuctx->ctx.nr_cgroups > 0) { 537 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 538 perf_pmu_disable(cpuctx->ctx.pmu); 539 540 if (mode & PERF_CGROUP_SWOUT) { 541 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 542 /* 543 * must not be done before ctxswout due 544 * to event_filter_match() in event_sched_out() 545 */ 546 cpuctx->cgrp = NULL; 547 } 548 549 if (mode & PERF_CGROUP_SWIN) { 550 WARN_ON_ONCE(cpuctx->cgrp); 551 /* 552 * set cgrp before ctxsw in to allow 553 * event_filter_match() to not have to pass 554 * task around 555 * we pass the cpuctx->ctx to perf_cgroup_from_task() 556 * because cgorup events are only per-cpu 557 */ 558 cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx); 559 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task); 560 } 561 perf_pmu_enable(cpuctx->ctx.pmu); 562 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 563 } 564 } 565 566 local_irq_restore(flags); 567 } 568 569 static inline void perf_cgroup_sched_out(struct task_struct *task, 570 struct task_struct *next) 571 { 572 struct perf_cgroup *cgrp1; 573 struct perf_cgroup *cgrp2 = NULL; 574 575 rcu_read_lock(); 576 /* 577 * we come here when we know perf_cgroup_events > 0 578 * we do not need to pass the ctx here because we know 579 * we are holding the rcu lock 580 */ 581 cgrp1 = perf_cgroup_from_task(task, NULL); 582 583 /* 584 * next is NULL when called from perf_event_enable_on_exec() 585 * that will systematically cause a cgroup_switch() 586 */ 587 if (next) 588 cgrp2 = perf_cgroup_from_task(next, NULL); 589 590 /* 591 * only schedule out current cgroup events if we know 592 * that we are switching to a different cgroup. Otherwise, 593 * do no touch the cgroup events. 594 */ 595 if (cgrp1 != cgrp2) 596 perf_cgroup_switch(task, PERF_CGROUP_SWOUT); 597 598 rcu_read_unlock(); 599 } 600 601 static inline void perf_cgroup_sched_in(struct task_struct *prev, 602 struct task_struct *task) 603 { 604 struct perf_cgroup *cgrp1; 605 struct perf_cgroup *cgrp2 = NULL; 606 607 rcu_read_lock(); 608 /* 609 * we come here when we know perf_cgroup_events > 0 610 * we do not need to pass the ctx here because we know 611 * we are holding the rcu lock 612 */ 613 cgrp1 = perf_cgroup_from_task(task, NULL); 614 615 /* prev can never be NULL */ 616 cgrp2 = perf_cgroup_from_task(prev, NULL); 617 618 /* 619 * only need to schedule in cgroup events if we are changing 620 * cgroup during ctxsw. Cgroup events were not scheduled 621 * out of ctxsw out if that was not the case. 622 */ 623 if (cgrp1 != cgrp2) 624 perf_cgroup_switch(task, PERF_CGROUP_SWIN); 625 626 rcu_read_unlock(); 627 } 628 629 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 630 struct perf_event_attr *attr, 631 struct perf_event *group_leader) 632 { 633 struct perf_cgroup *cgrp; 634 struct cgroup_subsys_state *css; 635 struct fd f = fdget(fd); 636 int ret = 0; 637 638 if (!f.file) 639 return -EBADF; 640 641 css = css_tryget_online_from_dir(f.file->f_path.dentry, 642 &perf_event_cgrp_subsys); 643 if (IS_ERR(css)) { 644 ret = PTR_ERR(css); 645 goto out; 646 } 647 648 cgrp = container_of(css, struct perf_cgroup, css); 649 event->cgrp = cgrp; 650 651 /* 652 * all events in a group must monitor 653 * the same cgroup because a task belongs 654 * to only one perf cgroup at a time 655 */ 656 if (group_leader && group_leader->cgrp != cgrp) { 657 perf_detach_cgroup(event); 658 ret = -EINVAL; 659 } 660 out: 661 fdput(f); 662 return ret; 663 } 664 665 static inline void 666 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 667 { 668 struct perf_cgroup_info *t; 669 t = per_cpu_ptr(event->cgrp->info, event->cpu); 670 event->shadow_ctx_time = now - t->timestamp; 671 } 672 673 static inline void 674 perf_cgroup_defer_enabled(struct perf_event *event) 675 { 676 /* 677 * when the current task's perf cgroup does not match 678 * the event's, we need to remember to call the 679 * perf_mark_enable() function the first time a task with 680 * a matching perf cgroup is scheduled in. 681 */ 682 if (is_cgroup_event(event) && !perf_cgroup_match(event)) 683 event->cgrp_defer_enabled = 1; 684 } 685 686 static inline void 687 perf_cgroup_mark_enabled(struct perf_event *event, 688 struct perf_event_context *ctx) 689 { 690 struct perf_event *sub; 691 u64 tstamp = perf_event_time(event); 692 693 if (!event->cgrp_defer_enabled) 694 return; 695 696 event->cgrp_defer_enabled = 0; 697 698 event->tstamp_enabled = tstamp - event->total_time_enabled; 699 list_for_each_entry(sub, &event->sibling_list, group_entry) { 700 if (sub->state >= PERF_EVENT_STATE_INACTIVE) { 701 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 702 sub->cgrp_defer_enabled = 0; 703 } 704 } 705 } 706 #else /* !CONFIG_CGROUP_PERF */ 707 708 static inline bool 709 perf_cgroup_match(struct perf_event *event) 710 { 711 return true; 712 } 713 714 static inline void perf_detach_cgroup(struct perf_event *event) 715 {} 716 717 static inline int is_cgroup_event(struct perf_event *event) 718 { 719 return 0; 720 } 721 722 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event) 723 { 724 return 0; 725 } 726 727 static inline void update_cgrp_time_from_event(struct perf_event *event) 728 { 729 } 730 731 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 732 { 733 } 734 735 static inline void perf_cgroup_sched_out(struct task_struct *task, 736 struct task_struct *next) 737 { 738 } 739 740 static inline void perf_cgroup_sched_in(struct task_struct *prev, 741 struct task_struct *task) 742 { 743 } 744 745 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 746 struct perf_event_attr *attr, 747 struct perf_event *group_leader) 748 { 749 return -EINVAL; 750 } 751 752 static inline void 753 perf_cgroup_set_timestamp(struct task_struct *task, 754 struct perf_event_context *ctx) 755 { 756 } 757 758 void 759 perf_cgroup_switch(struct task_struct *task, struct task_struct *next) 760 { 761 } 762 763 static inline void 764 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 765 { 766 } 767 768 static inline u64 perf_cgroup_event_time(struct perf_event *event) 769 { 770 return 0; 771 } 772 773 static inline void 774 perf_cgroup_defer_enabled(struct perf_event *event) 775 { 776 } 777 778 static inline void 779 perf_cgroup_mark_enabled(struct perf_event *event, 780 struct perf_event_context *ctx) 781 { 782 } 783 #endif 784 785 /* 786 * set default to be dependent on timer tick just 787 * like original code 788 */ 789 #define PERF_CPU_HRTIMER (1000 / HZ) 790 /* 791 * function must be called with interrupts disbled 792 */ 793 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) 794 { 795 struct perf_cpu_context *cpuctx; 796 int rotations = 0; 797 798 WARN_ON(!irqs_disabled()); 799 800 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer); 801 rotations = perf_rotate_context(cpuctx); 802 803 raw_spin_lock(&cpuctx->hrtimer_lock); 804 if (rotations) 805 hrtimer_forward_now(hr, cpuctx->hrtimer_interval); 806 else 807 cpuctx->hrtimer_active = 0; 808 raw_spin_unlock(&cpuctx->hrtimer_lock); 809 810 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; 811 } 812 813 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu) 814 { 815 struct hrtimer *timer = &cpuctx->hrtimer; 816 struct pmu *pmu = cpuctx->ctx.pmu; 817 u64 interval; 818 819 /* no multiplexing needed for SW PMU */ 820 if (pmu->task_ctx_nr == perf_sw_context) 821 return; 822 823 /* 824 * check default is sane, if not set then force to 825 * default interval (1/tick) 826 */ 827 interval = pmu->hrtimer_interval_ms; 828 if (interval < 1) 829 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 830 831 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 832 833 raw_spin_lock_init(&cpuctx->hrtimer_lock); 834 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 835 timer->function = perf_mux_hrtimer_handler; 836 } 837 838 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx) 839 { 840 struct hrtimer *timer = &cpuctx->hrtimer; 841 struct pmu *pmu = cpuctx->ctx.pmu; 842 unsigned long flags; 843 844 /* not for SW PMU */ 845 if (pmu->task_ctx_nr == perf_sw_context) 846 return 0; 847 848 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags); 849 if (!cpuctx->hrtimer_active) { 850 cpuctx->hrtimer_active = 1; 851 hrtimer_forward_now(timer, cpuctx->hrtimer_interval); 852 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 853 } 854 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags); 855 856 return 0; 857 } 858 859 void perf_pmu_disable(struct pmu *pmu) 860 { 861 int *count = this_cpu_ptr(pmu->pmu_disable_count); 862 if (!(*count)++) 863 pmu->pmu_disable(pmu); 864 } 865 866 void perf_pmu_enable(struct pmu *pmu) 867 { 868 int *count = this_cpu_ptr(pmu->pmu_disable_count); 869 if (!--(*count)) 870 pmu->pmu_enable(pmu); 871 } 872 873 static DEFINE_PER_CPU(struct list_head, active_ctx_list); 874 875 /* 876 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and 877 * perf_event_task_tick() are fully serialized because they're strictly cpu 878 * affine and perf_event_ctx{activate,deactivate} are called with IRQs 879 * disabled, while perf_event_task_tick is called from IRQ context. 880 */ 881 static void perf_event_ctx_activate(struct perf_event_context *ctx) 882 { 883 struct list_head *head = this_cpu_ptr(&active_ctx_list); 884 885 WARN_ON(!irqs_disabled()); 886 887 WARN_ON(!list_empty(&ctx->active_ctx_list)); 888 889 list_add(&ctx->active_ctx_list, head); 890 } 891 892 static void perf_event_ctx_deactivate(struct perf_event_context *ctx) 893 { 894 WARN_ON(!irqs_disabled()); 895 896 WARN_ON(list_empty(&ctx->active_ctx_list)); 897 898 list_del_init(&ctx->active_ctx_list); 899 } 900 901 static void get_ctx(struct perf_event_context *ctx) 902 { 903 WARN_ON(!atomic_inc_not_zero(&ctx->refcount)); 904 } 905 906 static void free_ctx(struct rcu_head *head) 907 { 908 struct perf_event_context *ctx; 909 910 ctx = container_of(head, struct perf_event_context, rcu_head); 911 kfree(ctx->task_ctx_data); 912 kfree(ctx); 913 } 914 915 static void put_ctx(struct perf_event_context *ctx) 916 { 917 if (atomic_dec_and_test(&ctx->refcount)) { 918 if (ctx->parent_ctx) 919 put_ctx(ctx->parent_ctx); 920 if (ctx->task) 921 put_task_struct(ctx->task); 922 call_rcu(&ctx->rcu_head, free_ctx); 923 } 924 } 925 926 /* 927 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 928 * perf_pmu_migrate_context() we need some magic. 929 * 930 * Those places that change perf_event::ctx will hold both 931 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 932 * 933 * Lock ordering is by mutex address. There are two other sites where 934 * perf_event_context::mutex nests and those are: 935 * 936 * - perf_event_exit_task_context() [ child , 0 ] 937 * __perf_event_exit_task() 938 * sync_child_event() 939 * put_event() [ parent, 1 ] 940 * 941 * - perf_event_init_context() [ parent, 0 ] 942 * inherit_task_group() 943 * inherit_group() 944 * inherit_event() 945 * perf_event_alloc() 946 * perf_init_event() 947 * perf_try_init_event() [ child , 1 ] 948 * 949 * While it appears there is an obvious deadlock here -- the parent and child 950 * nesting levels are inverted between the two. This is in fact safe because 951 * life-time rules separate them. That is an exiting task cannot fork, and a 952 * spawning task cannot (yet) exit. 953 * 954 * But remember that that these are parent<->child context relations, and 955 * migration does not affect children, therefore these two orderings should not 956 * interact. 957 * 958 * The change in perf_event::ctx does not affect children (as claimed above) 959 * because the sys_perf_event_open() case will install a new event and break 960 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 961 * concerned with cpuctx and that doesn't have children. 962 * 963 * The places that change perf_event::ctx will issue: 964 * 965 * perf_remove_from_context(); 966 * synchronize_rcu(); 967 * perf_install_in_context(); 968 * 969 * to affect the change. The remove_from_context() + synchronize_rcu() should 970 * quiesce the event, after which we can install it in the new location. This 971 * means that only external vectors (perf_fops, prctl) can perturb the event 972 * while in transit. Therefore all such accessors should also acquire 973 * perf_event_context::mutex to serialize against this. 974 * 975 * However; because event->ctx can change while we're waiting to acquire 976 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 977 * function. 978 * 979 * Lock order: 980 * task_struct::perf_event_mutex 981 * perf_event_context::mutex 982 * perf_event_context::lock 983 * perf_event::child_mutex; 984 * perf_event::mmap_mutex 985 * mmap_sem 986 */ 987 static struct perf_event_context * 988 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 989 { 990 struct perf_event_context *ctx; 991 992 again: 993 rcu_read_lock(); 994 ctx = ACCESS_ONCE(event->ctx); 995 if (!atomic_inc_not_zero(&ctx->refcount)) { 996 rcu_read_unlock(); 997 goto again; 998 } 999 rcu_read_unlock(); 1000 1001 mutex_lock_nested(&ctx->mutex, nesting); 1002 if (event->ctx != ctx) { 1003 mutex_unlock(&ctx->mutex); 1004 put_ctx(ctx); 1005 goto again; 1006 } 1007 1008 return ctx; 1009 } 1010 1011 static inline struct perf_event_context * 1012 perf_event_ctx_lock(struct perf_event *event) 1013 { 1014 return perf_event_ctx_lock_nested(event, 0); 1015 } 1016 1017 static void perf_event_ctx_unlock(struct perf_event *event, 1018 struct perf_event_context *ctx) 1019 { 1020 mutex_unlock(&ctx->mutex); 1021 put_ctx(ctx); 1022 } 1023 1024 /* 1025 * This must be done under the ctx->lock, such as to serialize against 1026 * context_equiv(), therefore we cannot call put_ctx() since that might end up 1027 * calling scheduler related locks and ctx->lock nests inside those. 1028 */ 1029 static __must_check struct perf_event_context * 1030 unclone_ctx(struct perf_event_context *ctx) 1031 { 1032 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1033 1034 lockdep_assert_held(&ctx->lock); 1035 1036 if (parent_ctx) 1037 ctx->parent_ctx = NULL; 1038 ctx->generation++; 1039 1040 return parent_ctx; 1041 } 1042 1043 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1044 { 1045 /* 1046 * only top level events have the pid namespace they were created in 1047 */ 1048 if (event->parent) 1049 event = event->parent; 1050 1051 return task_tgid_nr_ns(p, event->ns); 1052 } 1053 1054 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1055 { 1056 /* 1057 * only top level events have the pid namespace they were created in 1058 */ 1059 if (event->parent) 1060 event = event->parent; 1061 1062 return task_pid_nr_ns(p, event->ns); 1063 } 1064 1065 /* 1066 * If we inherit events we want to return the parent event id 1067 * to userspace. 1068 */ 1069 static u64 primary_event_id(struct perf_event *event) 1070 { 1071 u64 id = event->id; 1072 1073 if (event->parent) 1074 id = event->parent->id; 1075 1076 return id; 1077 } 1078 1079 /* 1080 * Get the perf_event_context for a task and lock it. 1081 * This has to cope with with the fact that until it is locked, 1082 * the context could get moved to another task. 1083 */ 1084 static struct perf_event_context * 1085 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) 1086 { 1087 struct perf_event_context *ctx; 1088 1089 retry: 1090 /* 1091 * One of the few rules of preemptible RCU is that one cannot do 1092 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1093 * part of the read side critical section was irqs-enabled -- see 1094 * rcu_read_unlock_special(). 1095 * 1096 * Since ctx->lock nests under rq->lock we must ensure the entire read 1097 * side critical section has interrupts disabled. 1098 */ 1099 local_irq_save(*flags); 1100 rcu_read_lock(); 1101 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); 1102 if (ctx) { 1103 /* 1104 * If this context is a clone of another, it might 1105 * get swapped for another underneath us by 1106 * perf_event_task_sched_out, though the 1107 * rcu_read_lock() protects us from any context 1108 * getting freed. Lock the context and check if it 1109 * got swapped before we could get the lock, and retry 1110 * if so. If we locked the right context, then it 1111 * can't get swapped on us any more. 1112 */ 1113 raw_spin_lock(&ctx->lock); 1114 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { 1115 raw_spin_unlock(&ctx->lock); 1116 rcu_read_unlock(); 1117 local_irq_restore(*flags); 1118 goto retry; 1119 } 1120 1121 if (!atomic_inc_not_zero(&ctx->refcount)) { 1122 raw_spin_unlock(&ctx->lock); 1123 ctx = NULL; 1124 } 1125 } 1126 rcu_read_unlock(); 1127 if (!ctx) 1128 local_irq_restore(*flags); 1129 return ctx; 1130 } 1131 1132 /* 1133 * Get the context for a task and increment its pin_count so it 1134 * can't get swapped to another task. This also increments its 1135 * reference count so that the context can't get freed. 1136 */ 1137 static struct perf_event_context * 1138 perf_pin_task_context(struct task_struct *task, int ctxn) 1139 { 1140 struct perf_event_context *ctx; 1141 unsigned long flags; 1142 1143 ctx = perf_lock_task_context(task, ctxn, &flags); 1144 if (ctx) { 1145 ++ctx->pin_count; 1146 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1147 } 1148 return ctx; 1149 } 1150 1151 static void perf_unpin_context(struct perf_event_context *ctx) 1152 { 1153 unsigned long flags; 1154 1155 raw_spin_lock_irqsave(&ctx->lock, flags); 1156 --ctx->pin_count; 1157 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1158 } 1159 1160 /* 1161 * Update the record of the current time in a context. 1162 */ 1163 static void update_context_time(struct perf_event_context *ctx) 1164 { 1165 u64 now = perf_clock(); 1166 1167 ctx->time += now - ctx->timestamp; 1168 ctx->timestamp = now; 1169 } 1170 1171 static u64 perf_event_time(struct perf_event *event) 1172 { 1173 struct perf_event_context *ctx = event->ctx; 1174 1175 if (is_cgroup_event(event)) 1176 return perf_cgroup_event_time(event); 1177 1178 return ctx ? ctx->time : 0; 1179 } 1180 1181 /* 1182 * Update the total_time_enabled and total_time_running fields for a event. 1183 * The caller of this function needs to hold the ctx->lock. 1184 */ 1185 static void update_event_times(struct perf_event *event) 1186 { 1187 struct perf_event_context *ctx = event->ctx; 1188 u64 run_end; 1189 1190 if (event->state < PERF_EVENT_STATE_INACTIVE || 1191 event->group_leader->state < PERF_EVENT_STATE_INACTIVE) 1192 return; 1193 /* 1194 * in cgroup mode, time_enabled represents 1195 * the time the event was enabled AND active 1196 * tasks were in the monitored cgroup. This is 1197 * independent of the activity of the context as 1198 * there may be a mix of cgroup and non-cgroup events. 1199 * 1200 * That is why we treat cgroup events differently 1201 * here. 1202 */ 1203 if (is_cgroup_event(event)) 1204 run_end = perf_cgroup_event_time(event); 1205 else if (ctx->is_active) 1206 run_end = ctx->time; 1207 else 1208 run_end = event->tstamp_stopped; 1209 1210 event->total_time_enabled = run_end - event->tstamp_enabled; 1211 1212 if (event->state == PERF_EVENT_STATE_INACTIVE) 1213 run_end = event->tstamp_stopped; 1214 else 1215 run_end = perf_event_time(event); 1216 1217 event->total_time_running = run_end - event->tstamp_running; 1218 1219 } 1220 1221 /* 1222 * Update total_time_enabled and total_time_running for all events in a group. 1223 */ 1224 static void update_group_times(struct perf_event *leader) 1225 { 1226 struct perf_event *event; 1227 1228 update_event_times(leader); 1229 list_for_each_entry(event, &leader->sibling_list, group_entry) 1230 update_event_times(event); 1231 } 1232 1233 static struct list_head * 1234 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx) 1235 { 1236 if (event->attr.pinned) 1237 return &ctx->pinned_groups; 1238 else 1239 return &ctx->flexible_groups; 1240 } 1241 1242 /* 1243 * Add a event from the lists for its context. 1244 * Must be called with ctx->mutex and ctx->lock held. 1245 */ 1246 static void 1247 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1248 { 1249 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1250 event->attach_state |= PERF_ATTACH_CONTEXT; 1251 1252 /* 1253 * If we're a stand alone event or group leader, we go to the context 1254 * list, group events are kept attached to the group so that 1255 * perf_group_detach can, at all times, locate all siblings. 1256 */ 1257 if (event->group_leader == event) { 1258 struct list_head *list; 1259 1260 if (is_software_event(event)) 1261 event->group_flags |= PERF_GROUP_SOFTWARE; 1262 1263 list = ctx_group_list(event, ctx); 1264 list_add_tail(&event->group_entry, list); 1265 } 1266 1267 if (is_cgroup_event(event)) 1268 ctx->nr_cgroups++; 1269 1270 list_add_rcu(&event->event_entry, &ctx->event_list); 1271 ctx->nr_events++; 1272 if (event->attr.inherit_stat) 1273 ctx->nr_stat++; 1274 1275 ctx->generation++; 1276 } 1277 1278 /* 1279 * Initialize event state based on the perf_event_attr::disabled. 1280 */ 1281 static inline void perf_event__state_init(struct perf_event *event) 1282 { 1283 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1284 PERF_EVENT_STATE_INACTIVE; 1285 } 1286 1287 static void __perf_event_read_size(struct perf_event *event, int nr_siblings) 1288 { 1289 int entry = sizeof(u64); /* value */ 1290 int size = 0; 1291 int nr = 1; 1292 1293 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1294 size += sizeof(u64); 1295 1296 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1297 size += sizeof(u64); 1298 1299 if (event->attr.read_format & PERF_FORMAT_ID) 1300 entry += sizeof(u64); 1301 1302 if (event->attr.read_format & PERF_FORMAT_GROUP) { 1303 nr += nr_siblings; 1304 size += sizeof(u64); 1305 } 1306 1307 size += entry * nr; 1308 event->read_size = size; 1309 } 1310 1311 static void __perf_event_header_size(struct perf_event *event, u64 sample_type) 1312 { 1313 struct perf_sample_data *data; 1314 u16 size = 0; 1315 1316 if (sample_type & PERF_SAMPLE_IP) 1317 size += sizeof(data->ip); 1318 1319 if (sample_type & PERF_SAMPLE_ADDR) 1320 size += sizeof(data->addr); 1321 1322 if (sample_type & PERF_SAMPLE_PERIOD) 1323 size += sizeof(data->period); 1324 1325 if (sample_type & PERF_SAMPLE_WEIGHT) 1326 size += sizeof(data->weight); 1327 1328 if (sample_type & PERF_SAMPLE_READ) 1329 size += event->read_size; 1330 1331 if (sample_type & PERF_SAMPLE_DATA_SRC) 1332 size += sizeof(data->data_src.val); 1333 1334 if (sample_type & PERF_SAMPLE_TRANSACTION) 1335 size += sizeof(data->txn); 1336 1337 event->header_size = size; 1338 } 1339 1340 /* 1341 * Called at perf_event creation and when events are attached/detached from a 1342 * group. 1343 */ 1344 static void perf_event__header_size(struct perf_event *event) 1345 { 1346 __perf_event_read_size(event, 1347 event->group_leader->nr_siblings); 1348 __perf_event_header_size(event, event->attr.sample_type); 1349 } 1350 1351 static void perf_event__id_header_size(struct perf_event *event) 1352 { 1353 struct perf_sample_data *data; 1354 u64 sample_type = event->attr.sample_type; 1355 u16 size = 0; 1356 1357 if (sample_type & PERF_SAMPLE_TID) 1358 size += sizeof(data->tid_entry); 1359 1360 if (sample_type & PERF_SAMPLE_TIME) 1361 size += sizeof(data->time); 1362 1363 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1364 size += sizeof(data->id); 1365 1366 if (sample_type & PERF_SAMPLE_ID) 1367 size += sizeof(data->id); 1368 1369 if (sample_type & PERF_SAMPLE_STREAM_ID) 1370 size += sizeof(data->stream_id); 1371 1372 if (sample_type & PERF_SAMPLE_CPU) 1373 size += sizeof(data->cpu_entry); 1374 1375 event->id_header_size = size; 1376 } 1377 1378 static bool perf_event_validate_size(struct perf_event *event) 1379 { 1380 /* 1381 * The values computed here will be over-written when we actually 1382 * attach the event. 1383 */ 1384 __perf_event_read_size(event, event->group_leader->nr_siblings + 1); 1385 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ); 1386 perf_event__id_header_size(event); 1387 1388 /* 1389 * Sum the lot; should not exceed the 64k limit we have on records. 1390 * Conservative limit to allow for callchains and other variable fields. 1391 */ 1392 if (event->read_size + event->header_size + 1393 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024) 1394 return false; 1395 1396 return true; 1397 } 1398 1399 static void perf_group_attach(struct perf_event *event) 1400 { 1401 struct perf_event *group_leader = event->group_leader, *pos; 1402 1403 /* 1404 * We can have double attach due to group movement in perf_event_open. 1405 */ 1406 if (event->attach_state & PERF_ATTACH_GROUP) 1407 return; 1408 1409 event->attach_state |= PERF_ATTACH_GROUP; 1410 1411 if (group_leader == event) 1412 return; 1413 1414 WARN_ON_ONCE(group_leader->ctx != event->ctx); 1415 1416 if (group_leader->group_flags & PERF_GROUP_SOFTWARE && 1417 !is_software_event(event)) 1418 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE; 1419 1420 list_add_tail(&event->group_entry, &group_leader->sibling_list); 1421 group_leader->nr_siblings++; 1422 1423 perf_event__header_size(group_leader); 1424 1425 list_for_each_entry(pos, &group_leader->sibling_list, group_entry) 1426 perf_event__header_size(pos); 1427 } 1428 1429 /* 1430 * Remove a event from the lists for its context. 1431 * Must be called with ctx->mutex and ctx->lock held. 1432 */ 1433 static void 1434 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 1435 { 1436 struct perf_cpu_context *cpuctx; 1437 1438 WARN_ON_ONCE(event->ctx != ctx); 1439 lockdep_assert_held(&ctx->lock); 1440 1441 /* 1442 * We can have double detach due to exit/hot-unplug + close. 1443 */ 1444 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 1445 return; 1446 1447 event->attach_state &= ~PERF_ATTACH_CONTEXT; 1448 1449 if (is_cgroup_event(event)) { 1450 ctx->nr_cgroups--; 1451 cpuctx = __get_cpu_context(ctx); 1452 /* 1453 * if there are no more cgroup events 1454 * then cler cgrp to avoid stale pointer 1455 * in update_cgrp_time_from_cpuctx() 1456 */ 1457 if (!ctx->nr_cgroups) 1458 cpuctx->cgrp = NULL; 1459 } 1460 1461 ctx->nr_events--; 1462 if (event->attr.inherit_stat) 1463 ctx->nr_stat--; 1464 1465 list_del_rcu(&event->event_entry); 1466 1467 if (event->group_leader == event) 1468 list_del_init(&event->group_entry); 1469 1470 update_group_times(event); 1471 1472 /* 1473 * If event was in error state, then keep it 1474 * that way, otherwise bogus counts will be 1475 * returned on read(). The only way to get out 1476 * of error state is by explicit re-enabling 1477 * of the event 1478 */ 1479 if (event->state > PERF_EVENT_STATE_OFF) 1480 event->state = PERF_EVENT_STATE_OFF; 1481 1482 ctx->generation++; 1483 } 1484 1485 static void perf_group_detach(struct perf_event *event) 1486 { 1487 struct perf_event *sibling, *tmp; 1488 struct list_head *list = NULL; 1489 1490 /* 1491 * We can have double detach due to exit/hot-unplug + close. 1492 */ 1493 if (!(event->attach_state & PERF_ATTACH_GROUP)) 1494 return; 1495 1496 event->attach_state &= ~PERF_ATTACH_GROUP; 1497 1498 /* 1499 * If this is a sibling, remove it from its group. 1500 */ 1501 if (event->group_leader != event) { 1502 list_del_init(&event->group_entry); 1503 event->group_leader->nr_siblings--; 1504 goto out; 1505 } 1506 1507 if (!list_empty(&event->group_entry)) 1508 list = &event->group_entry; 1509 1510 /* 1511 * If this was a group event with sibling events then 1512 * upgrade the siblings to singleton events by adding them 1513 * to whatever list we are on. 1514 */ 1515 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) { 1516 if (list) 1517 list_move_tail(&sibling->group_entry, list); 1518 sibling->group_leader = sibling; 1519 1520 /* Inherit group flags from the previous leader */ 1521 sibling->group_flags = event->group_flags; 1522 1523 WARN_ON_ONCE(sibling->ctx != event->ctx); 1524 } 1525 1526 out: 1527 perf_event__header_size(event->group_leader); 1528 1529 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry) 1530 perf_event__header_size(tmp); 1531 } 1532 1533 /* 1534 * User event without the task. 1535 */ 1536 static bool is_orphaned_event(struct perf_event *event) 1537 { 1538 return event && !is_kernel_event(event) && !event->owner; 1539 } 1540 1541 /* 1542 * Event has a parent but parent's task finished and it's 1543 * alive only because of children holding refference. 1544 */ 1545 static bool is_orphaned_child(struct perf_event *event) 1546 { 1547 return is_orphaned_event(event->parent); 1548 } 1549 1550 static void orphans_remove_work(struct work_struct *work); 1551 1552 static void schedule_orphans_remove(struct perf_event_context *ctx) 1553 { 1554 if (!ctx->task || ctx->orphans_remove_sched || !perf_wq) 1555 return; 1556 1557 if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) { 1558 get_ctx(ctx); 1559 ctx->orphans_remove_sched = true; 1560 } 1561 } 1562 1563 static int __init perf_workqueue_init(void) 1564 { 1565 perf_wq = create_singlethread_workqueue("perf"); 1566 WARN(!perf_wq, "failed to create perf workqueue\n"); 1567 return perf_wq ? 0 : -1; 1568 } 1569 1570 core_initcall(perf_workqueue_init); 1571 1572 static inline int pmu_filter_match(struct perf_event *event) 1573 { 1574 struct pmu *pmu = event->pmu; 1575 return pmu->filter_match ? pmu->filter_match(event) : 1; 1576 } 1577 1578 static inline int 1579 event_filter_match(struct perf_event *event) 1580 { 1581 return (event->cpu == -1 || event->cpu == smp_processor_id()) 1582 && perf_cgroup_match(event) && pmu_filter_match(event); 1583 } 1584 1585 static void 1586 event_sched_out(struct perf_event *event, 1587 struct perf_cpu_context *cpuctx, 1588 struct perf_event_context *ctx) 1589 { 1590 u64 tstamp = perf_event_time(event); 1591 u64 delta; 1592 1593 WARN_ON_ONCE(event->ctx != ctx); 1594 lockdep_assert_held(&ctx->lock); 1595 1596 /* 1597 * An event which could not be activated because of 1598 * filter mismatch still needs to have its timings 1599 * maintained, otherwise bogus information is return 1600 * via read() for time_enabled, time_running: 1601 */ 1602 if (event->state == PERF_EVENT_STATE_INACTIVE 1603 && !event_filter_match(event)) { 1604 delta = tstamp - event->tstamp_stopped; 1605 event->tstamp_running += delta; 1606 event->tstamp_stopped = tstamp; 1607 } 1608 1609 if (event->state != PERF_EVENT_STATE_ACTIVE) 1610 return; 1611 1612 perf_pmu_disable(event->pmu); 1613 1614 event->state = PERF_EVENT_STATE_INACTIVE; 1615 if (event->pending_disable) { 1616 event->pending_disable = 0; 1617 event->state = PERF_EVENT_STATE_OFF; 1618 } 1619 event->tstamp_stopped = tstamp; 1620 event->pmu->del(event, 0); 1621 event->oncpu = -1; 1622 1623 if (!is_software_event(event)) 1624 cpuctx->active_oncpu--; 1625 if (!--ctx->nr_active) 1626 perf_event_ctx_deactivate(ctx); 1627 if (event->attr.freq && event->attr.sample_freq) 1628 ctx->nr_freq--; 1629 if (event->attr.exclusive || !cpuctx->active_oncpu) 1630 cpuctx->exclusive = 0; 1631 1632 if (is_orphaned_child(event)) 1633 schedule_orphans_remove(ctx); 1634 1635 perf_pmu_enable(event->pmu); 1636 } 1637 1638 static void 1639 group_sched_out(struct perf_event *group_event, 1640 struct perf_cpu_context *cpuctx, 1641 struct perf_event_context *ctx) 1642 { 1643 struct perf_event *event; 1644 int state = group_event->state; 1645 1646 event_sched_out(group_event, cpuctx, ctx); 1647 1648 /* 1649 * Schedule out siblings (if any): 1650 */ 1651 list_for_each_entry(event, &group_event->sibling_list, group_entry) 1652 event_sched_out(event, cpuctx, ctx); 1653 1654 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive) 1655 cpuctx->exclusive = 0; 1656 } 1657 1658 struct remove_event { 1659 struct perf_event *event; 1660 bool detach_group; 1661 }; 1662 1663 static void ___perf_remove_from_context(void *info) 1664 { 1665 struct remove_event *re = info; 1666 struct perf_event *event = re->event; 1667 struct perf_event_context *ctx = event->ctx; 1668 1669 if (re->detach_group) 1670 perf_group_detach(event); 1671 list_del_event(event, ctx); 1672 } 1673 1674 /* 1675 * Cross CPU call to remove a performance event 1676 * 1677 * We disable the event on the hardware level first. After that we 1678 * remove it from the context list. 1679 */ 1680 static int __perf_remove_from_context(void *info) 1681 { 1682 struct remove_event *re = info; 1683 struct perf_event *event = re->event; 1684 struct perf_event_context *ctx = event->ctx; 1685 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1686 1687 raw_spin_lock(&ctx->lock); 1688 event_sched_out(event, cpuctx, ctx); 1689 if (re->detach_group) 1690 perf_group_detach(event); 1691 list_del_event(event, ctx); 1692 if (!ctx->nr_events && cpuctx->task_ctx == ctx) { 1693 ctx->is_active = 0; 1694 cpuctx->task_ctx = NULL; 1695 } 1696 raw_spin_unlock(&ctx->lock); 1697 1698 return 0; 1699 } 1700 1701 /* 1702 * Remove the event from a task's (or a CPU's) list of events. 1703 * 1704 * CPU events are removed with a smp call. For task events we only 1705 * call when the task is on a CPU. 1706 * 1707 * If event->ctx is a cloned context, callers must make sure that 1708 * every task struct that event->ctx->task could possibly point to 1709 * remains valid. This is OK when called from perf_release since 1710 * that only calls us on the top-level context, which can't be a clone. 1711 * When called from perf_event_exit_task, it's OK because the 1712 * context has been detached from its task. 1713 */ 1714 static void perf_remove_from_context(struct perf_event *event, bool detach_group) 1715 { 1716 struct perf_event_context *ctx = event->ctx; 1717 struct remove_event re = { 1718 .event = event, 1719 .detach_group = detach_group, 1720 }; 1721 1722 lockdep_assert_held(&ctx->mutex); 1723 1724 event_function_call(event, __perf_remove_from_context, 1725 ___perf_remove_from_context, &re); 1726 } 1727 1728 /* 1729 * Cross CPU call to disable a performance event 1730 */ 1731 int __perf_event_disable(void *info) 1732 { 1733 struct perf_event *event = info; 1734 struct perf_event_context *ctx = event->ctx; 1735 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1736 1737 /* 1738 * If this is a per-task event, need to check whether this 1739 * event's task is the current task on this cpu. 1740 * 1741 * Can trigger due to concurrent perf_event_context_sched_out() 1742 * flipping contexts around. 1743 */ 1744 if (ctx->task && cpuctx->task_ctx != ctx) 1745 return -EINVAL; 1746 1747 raw_spin_lock(&ctx->lock); 1748 1749 /* 1750 * If the event is on, turn it off. 1751 * If it is in error state, leave it in error state. 1752 */ 1753 if (event->state >= PERF_EVENT_STATE_INACTIVE) { 1754 update_context_time(ctx); 1755 update_cgrp_time_from_event(event); 1756 update_group_times(event); 1757 if (event == event->group_leader) 1758 group_sched_out(event, cpuctx, ctx); 1759 else 1760 event_sched_out(event, cpuctx, ctx); 1761 event->state = PERF_EVENT_STATE_OFF; 1762 } 1763 1764 raw_spin_unlock(&ctx->lock); 1765 1766 return 0; 1767 } 1768 1769 void ___perf_event_disable(void *info) 1770 { 1771 struct perf_event *event = info; 1772 1773 /* 1774 * Since we have the lock this context can't be scheduled 1775 * in, so we can change the state safely. 1776 */ 1777 if (event->state == PERF_EVENT_STATE_INACTIVE) { 1778 update_group_times(event); 1779 event->state = PERF_EVENT_STATE_OFF; 1780 } 1781 } 1782 1783 /* 1784 * Disable a event. 1785 * 1786 * If event->ctx is a cloned context, callers must make sure that 1787 * every task struct that event->ctx->task could possibly point to 1788 * remains valid. This condition is satisifed when called through 1789 * perf_event_for_each_child or perf_event_for_each because they 1790 * hold the top-level event's child_mutex, so any descendant that 1791 * goes to exit will block in sync_child_event. 1792 * When called from perf_pending_event it's OK because event->ctx 1793 * is the current context on this CPU and preemption is disabled, 1794 * hence we can't get into perf_event_task_sched_out for this context. 1795 */ 1796 static void _perf_event_disable(struct perf_event *event) 1797 { 1798 struct perf_event_context *ctx = event->ctx; 1799 1800 raw_spin_lock_irq(&ctx->lock); 1801 if (event->state <= PERF_EVENT_STATE_OFF) { 1802 raw_spin_unlock_irq(&ctx->lock); 1803 return; 1804 } 1805 raw_spin_unlock_irq(&ctx->lock); 1806 1807 event_function_call(event, __perf_event_disable, 1808 ___perf_event_disable, event); 1809 } 1810 1811 /* 1812 * Strictly speaking kernel users cannot create groups and therefore this 1813 * interface does not need the perf_event_ctx_lock() magic. 1814 */ 1815 void perf_event_disable(struct perf_event *event) 1816 { 1817 struct perf_event_context *ctx; 1818 1819 ctx = perf_event_ctx_lock(event); 1820 _perf_event_disable(event); 1821 perf_event_ctx_unlock(event, ctx); 1822 } 1823 EXPORT_SYMBOL_GPL(perf_event_disable); 1824 1825 static void perf_set_shadow_time(struct perf_event *event, 1826 struct perf_event_context *ctx, 1827 u64 tstamp) 1828 { 1829 /* 1830 * use the correct time source for the time snapshot 1831 * 1832 * We could get by without this by leveraging the 1833 * fact that to get to this function, the caller 1834 * has most likely already called update_context_time() 1835 * and update_cgrp_time_xx() and thus both timestamp 1836 * are identical (or very close). Given that tstamp is, 1837 * already adjusted for cgroup, we could say that: 1838 * tstamp - ctx->timestamp 1839 * is equivalent to 1840 * tstamp - cgrp->timestamp. 1841 * 1842 * Then, in perf_output_read(), the calculation would 1843 * work with no changes because: 1844 * - event is guaranteed scheduled in 1845 * - no scheduled out in between 1846 * - thus the timestamp would be the same 1847 * 1848 * But this is a bit hairy. 1849 * 1850 * So instead, we have an explicit cgroup call to remain 1851 * within the time time source all along. We believe it 1852 * is cleaner and simpler to understand. 1853 */ 1854 if (is_cgroup_event(event)) 1855 perf_cgroup_set_shadow_time(event, tstamp); 1856 else 1857 event->shadow_ctx_time = tstamp - ctx->timestamp; 1858 } 1859 1860 #define MAX_INTERRUPTS (~0ULL) 1861 1862 static void perf_log_throttle(struct perf_event *event, int enable); 1863 static void perf_log_itrace_start(struct perf_event *event); 1864 1865 static int 1866 event_sched_in(struct perf_event *event, 1867 struct perf_cpu_context *cpuctx, 1868 struct perf_event_context *ctx) 1869 { 1870 u64 tstamp = perf_event_time(event); 1871 int ret = 0; 1872 1873 lockdep_assert_held(&ctx->lock); 1874 1875 if (event->state <= PERF_EVENT_STATE_OFF) 1876 return 0; 1877 1878 event->state = PERF_EVENT_STATE_ACTIVE; 1879 event->oncpu = smp_processor_id(); 1880 1881 /* 1882 * Unthrottle events, since we scheduled we might have missed several 1883 * ticks already, also for a heavily scheduling task there is little 1884 * guarantee it'll get a tick in a timely manner. 1885 */ 1886 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 1887 perf_log_throttle(event, 1); 1888 event->hw.interrupts = 0; 1889 } 1890 1891 /* 1892 * The new state must be visible before we turn it on in the hardware: 1893 */ 1894 smp_wmb(); 1895 1896 perf_pmu_disable(event->pmu); 1897 1898 perf_set_shadow_time(event, ctx, tstamp); 1899 1900 perf_log_itrace_start(event); 1901 1902 if (event->pmu->add(event, PERF_EF_START)) { 1903 event->state = PERF_EVENT_STATE_INACTIVE; 1904 event->oncpu = -1; 1905 ret = -EAGAIN; 1906 goto out; 1907 } 1908 1909 event->tstamp_running += tstamp - event->tstamp_stopped; 1910 1911 if (!is_software_event(event)) 1912 cpuctx->active_oncpu++; 1913 if (!ctx->nr_active++) 1914 perf_event_ctx_activate(ctx); 1915 if (event->attr.freq && event->attr.sample_freq) 1916 ctx->nr_freq++; 1917 1918 if (event->attr.exclusive) 1919 cpuctx->exclusive = 1; 1920 1921 if (is_orphaned_child(event)) 1922 schedule_orphans_remove(ctx); 1923 1924 out: 1925 perf_pmu_enable(event->pmu); 1926 1927 return ret; 1928 } 1929 1930 static int 1931 group_sched_in(struct perf_event *group_event, 1932 struct perf_cpu_context *cpuctx, 1933 struct perf_event_context *ctx) 1934 { 1935 struct perf_event *event, *partial_group = NULL; 1936 struct pmu *pmu = ctx->pmu; 1937 u64 now = ctx->time; 1938 bool simulate = false; 1939 1940 if (group_event->state == PERF_EVENT_STATE_OFF) 1941 return 0; 1942 1943 pmu->start_txn(pmu, PERF_PMU_TXN_ADD); 1944 1945 if (event_sched_in(group_event, cpuctx, ctx)) { 1946 pmu->cancel_txn(pmu); 1947 perf_mux_hrtimer_restart(cpuctx); 1948 return -EAGAIN; 1949 } 1950 1951 /* 1952 * Schedule in siblings as one group (if any): 1953 */ 1954 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 1955 if (event_sched_in(event, cpuctx, ctx)) { 1956 partial_group = event; 1957 goto group_error; 1958 } 1959 } 1960 1961 if (!pmu->commit_txn(pmu)) 1962 return 0; 1963 1964 group_error: 1965 /* 1966 * Groups can be scheduled in as one unit only, so undo any 1967 * partial group before returning: 1968 * The events up to the failed event are scheduled out normally, 1969 * tstamp_stopped will be updated. 1970 * 1971 * The failed events and the remaining siblings need to have 1972 * their timings updated as if they had gone thru event_sched_in() 1973 * and event_sched_out(). This is required to get consistent timings 1974 * across the group. This also takes care of the case where the group 1975 * could never be scheduled by ensuring tstamp_stopped is set to mark 1976 * the time the event was actually stopped, such that time delta 1977 * calculation in update_event_times() is correct. 1978 */ 1979 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 1980 if (event == partial_group) 1981 simulate = true; 1982 1983 if (simulate) { 1984 event->tstamp_running += now - event->tstamp_stopped; 1985 event->tstamp_stopped = now; 1986 } else { 1987 event_sched_out(event, cpuctx, ctx); 1988 } 1989 } 1990 event_sched_out(group_event, cpuctx, ctx); 1991 1992 pmu->cancel_txn(pmu); 1993 1994 perf_mux_hrtimer_restart(cpuctx); 1995 1996 return -EAGAIN; 1997 } 1998 1999 /* 2000 * Work out whether we can put this event group on the CPU now. 2001 */ 2002 static int group_can_go_on(struct perf_event *event, 2003 struct perf_cpu_context *cpuctx, 2004 int can_add_hw) 2005 { 2006 /* 2007 * Groups consisting entirely of software events can always go on. 2008 */ 2009 if (event->group_flags & PERF_GROUP_SOFTWARE) 2010 return 1; 2011 /* 2012 * If an exclusive group is already on, no other hardware 2013 * events can go on. 2014 */ 2015 if (cpuctx->exclusive) 2016 return 0; 2017 /* 2018 * If this group is exclusive and there are already 2019 * events on the CPU, it can't go on. 2020 */ 2021 if (event->attr.exclusive && cpuctx->active_oncpu) 2022 return 0; 2023 /* 2024 * Otherwise, try to add it if all previous groups were able 2025 * to go on. 2026 */ 2027 return can_add_hw; 2028 } 2029 2030 static void add_event_to_ctx(struct perf_event *event, 2031 struct perf_event_context *ctx) 2032 { 2033 u64 tstamp = perf_event_time(event); 2034 2035 list_add_event(event, ctx); 2036 perf_group_attach(event); 2037 event->tstamp_enabled = tstamp; 2038 event->tstamp_running = tstamp; 2039 event->tstamp_stopped = tstamp; 2040 } 2041 2042 static void task_ctx_sched_out(struct perf_event_context *ctx); 2043 static void 2044 ctx_sched_in(struct perf_event_context *ctx, 2045 struct perf_cpu_context *cpuctx, 2046 enum event_type_t event_type, 2047 struct task_struct *task); 2048 2049 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2050 struct perf_event_context *ctx, 2051 struct task_struct *task) 2052 { 2053 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task); 2054 if (ctx) 2055 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task); 2056 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task); 2057 if (ctx) 2058 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task); 2059 } 2060 2061 static void ___perf_install_in_context(void *info) 2062 { 2063 struct perf_event *event = info; 2064 struct perf_event_context *ctx = event->ctx; 2065 2066 /* 2067 * Since the task isn't running, its safe to add the event, us holding 2068 * the ctx->lock ensures the task won't get scheduled in. 2069 */ 2070 add_event_to_ctx(event, ctx); 2071 } 2072 2073 /* 2074 * Cross CPU call to install and enable a performance event 2075 * 2076 * Must be called with ctx->mutex held 2077 */ 2078 static int __perf_install_in_context(void *info) 2079 { 2080 struct perf_event *event = info; 2081 struct perf_event_context *ctx = event->ctx; 2082 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2083 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2084 struct task_struct *task = current; 2085 2086 perf_ctx_lock(cpuctx, task_ctx); 2087 perf_pmu_disable(cpuctx->ctx.pmu); 2088 2089 /* 2090 * If there was an active task_ctx schedule it out. 2091 */ 2092 if (task_ctx) 2093 task_ctx_sched_out(task_ctx); 2094 2095 /* 2096 * If the context we're installing events in is not the 2097 * active task_ctx, flip them. 2098 */ 2099 if (ctx->task && task_ctx != ctx) { 2100 if (task_ctx) 2101 raw_spin_unlock(&task_ctx->lock); 2102 raw_spin_lock(&ctx->lock); 2103 task_ctx = ctx; 2104 } 2105 2106 if (task_ctx) { 2107 cpuctx->task_ctx = task_ctx; 2108 task = task_ctx->task; 2109 } 2110 2111 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 2112 2113 update_context_time(ctx); 2114 /* 2115 * update cgrp time only if current cgrp 2116 * matches event->cgrp. Must be done before 2117 * calling add_event_to_ctx() 2118 */ 2119 update_cgrp_time_from_event(event); 2120 2121 add_event_to_ctx(event, ctx); 2122 2123 /* 2124 * Schedule everything back in 2125 */ 2126 perf_event_sched_in(cpuctx, task_ctx, task); 2127 2128 perf_pmu_enable(cpuctx->ctx.pmu); 2129 perf_ctx_unlock(cpuctx, task_ctx); 2130 2131 return 0; 2132 } 2133 2134 /* 2135 * Attach a performance event to a context 2136 * 2137 * First we add the event to the list with the hardware enable bit 2138 * in event->hw_config cleared. 2139 * 2140 * If the event is attached to a task which is on a CPU we use a smp 2141 * call to enable it in the task context. The task might have been 2142 * scheduled away, but we check this in the smp call again. 2143 */ 2144 static void 2145 perf_install_in_context(struct perf_event_context *ctx, 2146 struct perf_event *event, 2147 int cpu) 2148 { 2149 lockdep_assert_held(&ctx->mutex); 2150 2151 event->ctx = ctx; 2152 if (event->cpu != -1) 2153 event->cpu = cpu; 2154 2155 event_function_call(event, __perf_install_in_context, 2156 ___perf_install_in_context, event); 2157 } 2158 2159 /* 2160 * Put a event into inactive state and update time fields. 2161 * Enabling the leader of a group effectively enables all 2162 * the group members that aren't explicitly disabled, so we 2163 * have to update their ->tstamp_enabled also. 2164 * Note: this works for group members as well as group leaders 2165 * since the non-leader members' sibling_lists will be empty. 2166 */ 2167 static void __perf_event_mark_enabled(struct perf_event *event) 2168 { 2169 struct perf_event *sub; 2170 u64 tstamp = perf_event_time(event); 2171 2172 event->state = PERF_EVENT_STATE_INACTIVE; 2173 event->tstamp_enabled = tstamp - event->total_time_enabled; 2174 list_for_each_entry(sub, &event->sibling_list, group_entry) { 2175 if (sub->state >= PERF_EVENT_STATE_INACTIVE) 2176 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 2177 } 2178 } 2179 2180 /* 2181 * Cross CPU call to enable a performance event 2182 */ 2183 static int __perf_event_enable(void *info) 2184 { 2185 struct perf_event *event = info; 2186 struct perf_event_context *ctx = event->ctx; 2187 struct perf_event *leader = event->group_leader; 2188 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2189 int err; 2190 2191 /* 2192 * There's a time window between 'ctx->is_active' check 2193 * in perf_event_enable function and this place having: 2194 * - IRQs on 2195 * - ctx->lock unlocked 2196 * 2197 * where the task could be killed and 'ctx' deactivated 2198 * by perf_event_exit_task. 2199 */ 2200 if (!ctx->is_active) 2201 return -EINVAL; 2202 2203 raw_spin_lock(&ctx->lock); 2204 update_context_time(ctx); 2205 2206 if (event->state >= PERF_EVENT_STATE_INACTIVE) 2207 goto unlock; 2208 2209 /* 2210 * set current task's cgroup time reference point 2211 */ 2212 perf_cgroup_set_timestamp(current, ctx); 2213 2214 __perf_event_mark_enabled(event); 2215 2216 if (!event_filter_match(event)) { 2217 if (is_cgroup_event(event)) 2218 perf_cgroup_defer_enabled(event); 2219 goto unlock; 2220 } 2221 2222 /* 2223 * If the event is in a group and isn't the group leader, 2224 * then don't put it on unless the group is on. 2225 */ 2226 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) 2227 goto unlock; 2228 2229 if (!group_can_go_on(event, cpuctx, 1)) { 2230 err = -EEXIST; 2231 } else { 2232 if (event == leader) 2233 err = group_sched_in(event, cpuctx, ctx); 2234 else 2235 err = event_sched_in(event, cpuctx, ctx); 2236 } 2237 2238 if (err) { 2239 /* 2240 * If this event can't go on and it's part of a 2241 * group, then the whole group has to come off. 2242 */ 2243 if (leader != event) { 2244 group_sched_out(leader, cpuctx, ctx); 2245 perf_mux_hrtimer_restart(cpuctx); 2246 } 2247 if (leader->attr.pinned) { 2248 update_group_times(leader); 2249 leader->state = PERF_EVENT_STATE_ERROR; 2250 } 2251 } 2252 2253 unlock: 2254 raw_spin_unlock(&ctx->lock); 2255 2256 return 0; 2257 } 2258 2259 void ___perf_event_enable(void *info) 2260 { 2261 __perf_event_mark_enabled((struct perf_event *)info); 2262 } 2263 2264 /* 2265 * Enable a event. 2266 * 2267 * If event->ctx is a cloned context, callers must make sure that 2268 * every task struct that event->ctx->task could possibly point to 2269 * remains valid. This condition is satisfied when called through 2270 * perf_event_for_each_child or perf_event_for_each as described 2271 * for perf_event_disable. 2272 */ 2273 static void _perf_event_enable(struct perf_event *event) 2274 { 2275 struct perf_event_context *ctx = event->ctx; 2276 2277 raw_spin_lock_irq(&ctx->lock); 2278 if (event->state >= PERF_EVENT_STATE_INACTIVE) { 2279 raw_spin_unlock_irq(&ctx->lock); 2280 return; 2281 } 2282 2283 /* 2284 * If the event is in error state, clear that first. 2285 * 2286 * That way, if we see the event in error state below, we know that it 2287 * has gone back into error state, as distinct from the task having 2288 * been scheduled away before the cross-call arrived. 2289 */ 2290 if (event->state == PERF_EVENT_STATE_ERROR) 2291 event->state = PERF_EVENT_STATE_OFF; 2292 raw_spin_unlock_irq(&ctx->lock); 2293 2294 event_function_call(event, __perf_event_enable, 2295 ___perf_event_enable, event); 2296 } 2297 2298 /* 2299 * See perf_event_disable(); 2300 */ 2301 void perf_event_enable(struct perf_event *event) 2302 { 2303 struct perf_event_context *ctx; 2304 2305 ctx = perf_event_ctx_lock(event); 2306 _perf_event_enable(event); 2307 perf_event_ctx_unlock(event, ctx); 2308 } 2309 EXPORT_SYMBOL_GPL(perf_event_enable); 2310 2311 static int _perf_event_refresh(struct perf_event *event, int refresh) 2312 { 2313 /* 2314 * not supported on inherited events 2315 */ 2316 if (event->attr.inherit || !is_sampling_event(event)) 2317 return -EINVAL; 2318 2319 atomic_add(refresh, &event->event_limit); 2320 _perf_event_enable(event); 2321 2322 return 0; 2323 } 2324 2325 /* 2326 * See perf_event_disable() 2327 */ 2328 int perf_event_refresh(struct perf_event *event, int refresh) 2329 { 2330 struct perf_event_context *ctx; 2331 int ret; 2332 2333 ctx = perf_event_ctx_lock(event); 2334 ret = _perf_event_refresh(event, refresh); 2335 perf_event_ctx_unlock(event, ctx); 2336 2337 return ret; 2338 } 2339 EXPORT_SYMBOL_GPL(perf_event_refresh); 2340 2341 static void ctx_sched_out(struct perf_event_context *ctx, 2342 struct perf_cpu_context *cpuctx, 2343 enum event_type_t event_type) 2344 { 2345 struct perf_event *event; 2346 int is_active = ctx->is_active; 2347 2348 ctx->is_active &= ~event_type; 2349 if (likely(!ctx->nr_events)) 2350 return; 2351 2352 update_context_time(ctx); 2353 update_cgrp_time_from_cpuctx(cpuctx); 2354 if (!ctx->nr_active) 2355 return; 2356 2357 perf_pmu_disable(ctx->pmu); 2358 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) { 2359 list_for_each_entry(event, &ctx->pinned_groups, group_entry) 2360 group_sched_out(event, cpuctx, ctx); 2361 } 2362 2363 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) { 2364 list_for_each_entry(event, &ctx->flexible_groups, group_entry) 2365 group_sched_out(event, cpuctx, ctx); 2366 } 2367 perf_pmu_enable(ctx->pmu); 2368 } 2369 2370 /* 2371 * Test whether two contexts are equivalent, i.e. whether they have both been 2372 * cloned from the same version of the same context. 2373 * 2374 * Equivalence is measured using a generation number in the context that is 2375 * incremented on each modification to it; see unclone_ctx(), list_add_event() 2376 * and list_del_event(). 2377 */ 2378 static int context_equiv(struct perf_event_context *ctx1, 2379 struct perf_event_context *ctx2) 2380 { 2381 lockdep_assert_held(&ctx1->lock); 2382 lockdep_assert_held(&ctx2->lock); 2383 2384 /* Pinning disables the swap optimization */ 2385 if (ctx1->pin_count || ctx2->pin_count) 2386 return 0; 2387 2388 /* If ctx1 is the parent of ctx2 */ 2389 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 2390 return 1; 2391 2392 /* If ctx2 is the parent of ctx1 */ 2393 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 2394 return 1; 2395 2396 /* 2397 * If ctx1 and ctx2 have the same parent; we flatten the parent 2398 * hierarchy, see perf_event_init_context(). 2399 */ 2400 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 2401 ctx1->parent_gen == ctx2->parent_gen) 2402 return 1; 2403 2404 /* Unmatched */ 2405 return 0; 2406 } 2407 2408 static void __perf_event_sync_stat(struct perf_event *event, 2409 struct perf_event *next_event) 2410 { 2411 u64 value; 2412 2413 if (!event->attr.inherit_stat) 2414 return; 2415 2416 /* 2417 * Update the event value, we cannot use perf_event_read() 2418 * because we're in the middle of a context switch and have IRQs 2419 * disabled, which upsets smp_call_function_single(), however 2420 * we know the event must be on the current CPU, therefore we 2421 * don't need to use it. 2422 */ 2423 switch (event->state) { 2424 case PERF_EVENT_STATE_ACTIVE: 2425 event->pmu->read(event); 2426 /* fall-through */ 2427 2428 case PERF_EVENT_STATE_INACTIVE: 2429 update_event_times(event); 2430 break; 2431 2432 default: 2433 break; 2434 } 2435 2436 /* 2437 * In order to keep per-task stats reliable we need to flip the event 2438 * values when we flip the contexts. 2439 */ 2440 value = local64_read(&next_event->count); 2441 value = local64_xchg(&event->count, value); 2442 local64_set(&next_event->count, value); 2443 2444 swap(event->total_time_enabled, next_event->total_time_enabled); 2445 swap(event->total_time_running, next_event->total_time_running); 2446 2447 /* 2448 * Since we swizzled the values, update the user visible data too. 2449 */ 2450 perf_event_update_userpage(event); 2451 perf_event_update_userpage(next_event); 2452 } 2453 2454 static void perf_event_sync_stat(struct perf_event_context *ctx, 2455 struct perf_event_context *next_ctx) 2456 { 2457 struct perf_event *event, *next_event; 2458 2459 if (!ctx->nr_stat) 2460 return; 2461 2462 update_context_time(ctx); 2463 2464 event = list_first_entry(&ctx->event_list, 2465 struct perf_event, event_entry); 2466 2467 next_event = list_first_entry(&next_ctx->event_list, 2468 struct perf_event, event_entry); 2469 2470 while (&event->event_entry != &ctx->event_list && 2471 &next_event->event_entry != &next_ctx->event_list) { 2472 2473 __perf_event_sync_stat(event, next_event); 2474 2475 event = list_next_entry(event, event_entry); 2476 next_event = list_next_entry(next_event, event_entry); 2477 } 2478 } 2479 2480 static void perf_event_context_sched_out(struct task_struct *task, int ctxn, 2481 struct task_struct *next) 2482 { 2483 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; 2484 struct perf_event_context *next_ctx; 2485 struct perf_event_context *parent, *next_parent; 2486 struct perf_cpu_context *cpuctx; 2487 int do_switch = 1; 2488 2489 if (likely(!ctx)) 2490 return; 2491 2492 cpuctx = __get_cpu_context(ctx); 2493 if (!cpuctx->task_ctx) 2494 return; 2495 2496 rcu_read_lock(); 2497 next_ctx = next->perf_event_ctxp[ctxn]; 2498 if (!next_ctx) 2499 goto unlock; 2500 2501 parent = rcu_dereference(ctx->parent_ctx); 2502 next_parent = rcu_dereference(next_ctx->parent_ctx); 2503 2504 /* If neither context have a parent context; they cannot be clones. */ 2505 if (!parent && !next_parent) 2506 goto unlock; 2507 2508 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 2509 /* 2510 * Looks like the two contexts are clones, so we might be 2511 * able to optimize the context switch. We lock both 2512 * contexts and check that they are clones under the 2513 * lock (including re-checking that neither has been 2514 * uncloned in the meantime). It doesn't matter which 2515 * order we take the locks because no other cpu could 2516 * be trying to lock both of these tasks. 2517 */ 2518 raw_spin_lock(&ctx->lock); 2519 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 2520 if (context_equiv(ctx, next_ctx)) { 2521 /* 2522 * XXX do we need a memory barrier of sorts 2523 * wrt to rcu_dereference() of perf_event_ctxp 2524 */ 2525 task->perf_event_ctxp[ctxn] = next_ctx; 2526 next->perf_event_ctxp[ctxn] = ctx; 2527 ctx->task = next; 2528 next_ctx->task = task; 2529 2530 swap(ctx->task_ctx_data, next_ctx->task_ctx_data); 2531 2532 do_switch = 0; 2533 2534 perf_event_sync_stat(ctx, next_ctx); 2535 } 2536 raw_spin_unlock(&next_ctx->lock); 2537 raw_spin_unlock(&ctx->lock); 2538 } 2539 unlock: 2540 rcu_read_unlock(); 2541 2542 if (do_switch) { 2543 raw_spin_lock(&ctx->lock); 2544 ctx_sched_out(ctx, cpuctx, EVENT_ALL); 2545 cpuctx->task_ctx = NULL; 2546 raw_spin_unlock(&ctx->lock); 2547 } 2548 } 2549 2550 void perf_sched_cb_dec(struct pmu *pmu) 2551 { 2552 this_cpu_dec(perf_sched_cb_usages); 2553 } 2554 2555 void perf_sched_cb_inc(struct pmu *pmu) 2556 { 2557 this_cpu_inc(perf_sched_cb_usages); 2558 } 2559 2560 /* 2561 * This function provides the context switch callback to the lower code 2562 * layer. It is invoked ONLY when the context switch callback is enabled. 2563 */ 2564 static void perf_pmu_sched_task(struct task_struct *prev, 2565 struct task_struct *next, 2566 bool sched_in) 2567 { 2568 struct perf_cpu_context *cpuctx; 2569 struct pmu *pmu; 2570 unsigned long flags; 2571 2572 if (prev == next) 2573 return; 2574 2575 local_irq_save(flags); 2576 2577 rcu_read_lock(); 2578 2579 list_for_each_entry_rcu(pmu, &pmus, entry) { 2580 if (pmu->sched_task) { 2581 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 2582 2583 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 2584 2585 perf_pmu_disable(pmu); 2586 2587 pmu->sched_task(cpuctx->task_ctx, sched_in); 2588 2589 perf_pmu_enable(pmu); 2590 2591 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 2592 } 2593 } 2594 2595 rcu_read_unlock(); 2596 2597 local_irq_restore(flags); 2598 } 2599 2600 static void perf_event_switch(struct task_struct *task, 2601 struct task_struct *next_prev, bool sched_in); 2602 2603 #define for_each_task_context_nr(ctxn) \ 2604 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) 2605 2606 /* 2607 * Called from scheduler to remove the events of the current task, 2608 * with interrupts disabled. 2609 * 2610 * We stop each event and update the event value in event->count. 2611 * 2612 * This does not protect us against NMI, but disable() 2613 * sets the disabled bit in the control field of event _before_ 2614 * accessing the event control register. If a NMI hits, then it will 2615 * not restart the event. 2616 */ 2617 void __perf_event_task_sched_out(struct task_struct *task, 2618 struct task_struct *next) 2619 { 2620 int ctxn; 2621 2622 if (__this_cpu_read(perf_sched_cb_usages)) 2623 perf_pmu_sched_task(task, next, false); 2624 2625 if (atomic_read(&nr_switch_events)) 2626 perf_event_switch(task, next, false); 2627 2628 for_each_task_context_nr(ctxn) 2629 perf_event_context_sched_out(task, ctxn, next); 2630 2631 /* 2632 * if cgroup events exist on this CPU, then we need 2633 * to check if we have to switch out PMU state. 2634 * cgroup event are system-wide mode only 2635 */ 2636 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 2637 perf_cgroup_sched_out(task, next); 2638 } 2639 2640 static void task_ctx_sched_out(struct perf_event_context *ctx) 2641 { 2642 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2643 2644 if (!cpuctx->task_ctx) 2645 return; 2646 2647 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2648 return; 2649 2650 ctx_sched_out(ctx, cpuctx, EVENT_ALL); 2651 cpuctx->task_ctx = NULL; 2652 } 2653 2654 /* 2655 * Called with IRQs disabled 2656 */ 2657 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 2658 enum event_type_t event_type) 2659 { 2660 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); 2661 } 2662 2663 static void 2664 ctx_pinned_sched_in(struct perf_event_context *ctx, 2665 struct perf_cpu_context *cpuctx) 2666 { 2667 struct perf_event *event; 2668 2669 list_for_each_entry(event, &ctx->pinned_groups, group_entry) { 2670 if (event->state <= PERF_EVENT_STATE_OFF) 2671 continue; 2672 if (!event_filter_match(event)) 2673 continue; 2674 2675 /* may need to reset tstamp_enabled */ 2676 if (is_cgroup_event(event)) 2677 perf_cgroup_mark_enabled(event, ctx); 2678 2679 if (group_can_go_on(event, cpuctx, 1)) 2680 group_sched_in(event, cpuctx, ctx); 2681 2682 /* 2683 * If this pinned group hasn't been scheduled, 2684 * put it in error state. 2685 */ 2686 if (event->state == PERF_EVENT_STATE_INACTIVE) { 2687 update_group_times(event); 2688 event->state = PERF_EVENT_STATE_ERROR; 2689 } 2690 } 2691 } 2692 2693 static void 2694 ctx_flexible_sched_in(struct perf_event_context *ctx, 2695 struct perf_cpu_context *cpuctx) 2696 { 2697 struct perf_event *event; 2698 int can_add_hw = 1; 2699 2700 list_for_each_entry(event, &ctx->flexible_groups, group_entry) { 2701 /* Ignore events in OFF or ERROR state */ 2702 if (event->state <= PERF_EVENT_STATE_OFF) 2703 continue; 2704 /* 2705 * Listen to the 'cpu' scheduling filter constraint 2706 * of events: 2707 */ 2708 if (!event_filter_match(event)) 2709 continue; 2710 2711 /* may need to reset tstamp_enabled */ 2712 if (is_cgroup_event(event)) 2713 perf_cgroup_mark_enabled(event, ctx); 2714 2715 if (group_can_go_on(event, cpuctx, can_add_hw)) { 2716 if (group_sched_in(event, cpuctx, ctx)) 2717 can_add_hw = 0; 2718 } 2719 } 2720 } 2721 2722 static void 2723 ctx_sched_in(struct perf_event_context *ctx, 2724 struct perf_cpu_context *cpuctx, 2725 enum event_type_t event_type, 2726 struct task_struct *task) 2727 { 2728 u64 now; 2729 int is_active = ctx->is_active; 2730 2731 ctx->is_active |= event_type; 2732 if (likely(!ctx->nr_events)) 2733 return; 2734 2735 now = perf_clock(); 2736 ctx->timestamp = now; 2737 perf_cgroup_set_timestamp(task, ctx); 2738 /* 2739 * First go through the list and put on any pinned groups 2740 * in order to give them the best chance of going on. 2741 */ 2742 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) 2743 ctx_pinned_sched_in(ctx, cpuctx); 2744 2745 /* Then walk through the lower prio flexible groups */ 2746 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) 2747 ctx_flexible_sched_in(ctx, cpuctx); 2748 } 2749 2750 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 2751 enum event_type_t event_type, 2752 struct task_struct *task) 2753 { 2754 struct perf_event_context *ctx = &cpuctx->ctx; 2755 2756 ctx_sched_in(ctx, cpuctx, event_type, task); 2757 } 2758 2759 static void perf_event_context_sched_in(struct perf_event_context *ctx, 2760 struct task_struct *task) 2761 { 2762 struct perf_cpu_context *cpuctx; 2763 2764 cpuctx = __get_cpu_context(ctx); 2765 if (cpuctx->task_ctx == ctx) 2766 return; 2767 2768 perf_ctx_lock(cpuctx, ctx); 2769 perf_pmu_disable(ctx->pmu); 2770 /* 2771 * We want to keep the following priority order: 2772 * cpu pinned (that don't need to move), task pinned, 2773 * cpu flexible, task flexible. 2774 */ 2775 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2776 2777 if (ctx->nr_events) 2778 cpuctx->task_ctx = ctx; 2779 2780 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task); 2781 2782 perf_pmu_enable(ctx->pmu); 2783 perf_ctx_unlock(cpuctx, ctx); 2784 } 2785 2786 /* 2787 * Called from scheduler to add the events of the current task 2788 * with interrupts disabled. 2789 * 2790 * We restore the event value and then enable it. 2791 * 2792 * This does not protect us against NMI, but enable() 2793 * sets the enabled bit in the control field of event _before_ 2794 * accessing the event control register. If a NMI hits, then it will 2795 * keep the event running. 2796 */ 2797 void __perf_event_task_sched_in(struct task_struct *prev, 2798 struct task_struct *task) 2799 { 2800 struct perf_event_context *ctx; 2801 int ctxn; 2802 2803 for_each_task_context_nr(ctxn) { 2804 ctx = task->perf_event_ctxp[ctxn]; 2805 if (likely(!ctx)) 2806 continue; 2807 2808 perf_event_context_sched_in(ctx, task); 2809 } 2810 /* 2811 * if cgroup events exist on this CPU, then we need 2812 * to check if we have to switch in PMU state. 2813 * cgroup event are system-wide mode only 2814 */ 2815 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 2816 perf_cgroup_sched_in(prev, task); 2817 2818 if (atomic_read(&nr_switch_events)) 2819 perf_event_switch(task, prev, true); 2820 2821 if (__this_cpu_read(perf_sched_cb_usages)) 2822 perf_pmu_sched_task(prev, task, true); 2823 } 2824 2825 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 2826 { 2827 u64 frequency = event->attr.sample_freq; 2828 u64 sec = NSEC_PER_SEC; 2829 u64 divisor, dividend; 2830 2831 int count_fls, nsec_fls, frequency_fls, sec_fls; 2832 2833 count_fls = fls64(count); 2834 nsec_fls = fls64(nsec); 2835 frequency_fls = fls64(frequency); 2836 sec_fls = 30; 2837 2838 /* 2839 * We got @count in @nsec, with a target of sample_freq HZ 2840 * the target period becomes: 2841 * 2842 * @count * 10^9 2843 * period = ------------------- 2844 * @nsec * sample_freq 2845 * 2846 */ 2847 2848 /* 2849 * Reduce accuracy by one bit such that @a and @b converge 2850 * to a similar magnitude. 2851 */ 2852 #define REDUCE_FLS(a, b) \ 2853 do { \ 2854 if (a##_fls > b##_fls) { \ 2855 a >>= 1; \ 2856 a##_fls--; \ 2857 } else { \ 2858 b >>= 1; \ 2859 b##_fls--; \ 2860 } \ 2861 } while (0) 2862 2863 /* 2864 * Reduce accuracy until either term fits in a u64, then proceed with 2865 * the other, so that finally we can do a u64/u64 division. 2866 */ 2867 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 2868 REDUCE_FLS(nsec, frequency); 2869 REDUCE_FLS(sec, count); 2870 } 2871 2872 if (count_fls + sec_fls > 64) { 2873 divisor = nsec * frequency; 2874 2875 while (count_fls + sec_fls > 64) { 2876 REDUCE_FLS(count, sec); 2877 divisor >>= 1; 2878 } 2879 2880 dividend = count * sec; 2881 } else { 2882 dividend = count * sec; 2883 2884 while (nsec_fls + frequency_fls > 64) { 2885 REDUCE_FLS(nsec, frequency); 2886 dividend >>= 1; 2887 } 2888 2889 divisor = nsec * frequency; 2890 } 2891 2892 if (!divisor) 2893 return dividend; 2894 2895 return div64_u64(dividend, divisor); 2896 } 2897 2898 static DEFINE_PER_CPU(int, perf_throttled_count); 2899 static DEFINE_PER_CPU(u64, perf_throttled_seq); 2900 2901 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 2902 { 2903 struct hw_perf_event *hwc = &event->hw; 2904 s64 period, sample_period; 2905 s64 delta; 2906 2907 period = perf_calculate_period(event, nsec, count); 2908 2909 delta = (s64)(period - hwc->sample_period); 2910 delta = (delta + 7) / 8; /* low pass filter */ 2911 2912 sample_period = hwc->sample_period + delta; 2913 2914 if (!sample_period) 2915 sample_period = 1; 2916 2917 hwc->sample_period = sample_period; 2918 2919 if (local64_read(&hwc->period_left) > 8*sample_period) { 2920 if (disable) 2921 event->pmu->stop(event, PERF_EF_UPDATE); 2922 2923 local64_set(&hwc->period_left, 0); 2924 2925 if (disable) 2926 event->pmu->start(event, PERF_EF_RELOAD); 2927 } 2928 } 2929 2930 /* 2931 * combine freq adjustment with unthrottling to avoid two passes over the 2932 * events. At the same time, make sure, having freq events does not change 2933 * the rate of unthrottling as that would introduce bias. 2934 */ 2935 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx, 2936 int needs_unthr) 2937 { 2938 struct perf_event *event; 2939 struct hw_perf_event *hwc; 2940 u64 now, period = TICK_NSEC; 2941 s64 delta; 2942 2943 /* 2944 * only need to iterate over all events iff: 2945 * - context have events in frequency mode (needs freq adjust) 2946 * - there are events to unthrottle on this cpu 2947 */ 2948 if (!(ctx->nr_freq || needs_unthr)) 2949 return; 2950 2951 raw_spin_lock(&ctx->lock); 2952 perf_pmu_disable(ctx->pmu); 2953 2954 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 2955 if (event->state != PERF_EVENT_STATE_ACTIVE) 2956 continue; 2957 2958 if (!event_filter_match(event)) 2959 continue; 2960 2961 perf_pmu_disable(event->pmu); 2962 2963 hwc = &event->hw; 2964 2965 if (hwc->interrupts == MAX_INTERRUPTS) { 2966 hwc->interrupts = 0; 2967 perf_log_throttle(event, 1); 2968 event->pmu->start(event, 0); 2969 } 2970 2971 if (!event->attr.freq || !event->attr.sample_freq) 2972 goto next; 2973 2974 /* 2975 * stop the event and update event->count 2976 */ 2977 event->pmu->stop(event, PERF_EF_UPDATE); 2978 2979 now = local64_read(&event->count); 2980 delta = now - hwc->freq_count_stamp; 2981 hwc->freq_count_stamp = now; 2982 2983 /* 2984 * restart the event 2985 * reload only if value has changed 2986 * we have stopped the event so tell that 2987 * to perf_adjust_period() to avoid stopping it 2988 * twice. 2989 */ 2990 if (delta > 0) 2991 perf_adjust_period(event, period, delta, false); 2992 2993 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 2994 next: 2995 perf_pmu_enable(event->pmu); 2996 } 2997 2998 perf_pmu_enable(ctx->pmu); 2999 raw_spin_unlock(&ctx->lock); 3000 } 3001 3002 /* 3003 * Round-robin a context's events: 3004 */ 3005 static void rotate_ctx(struct perf_event_context *ctx) 3006 { 3007 /* 3008 * Rotate the first entry last of non-pinned groups. Rotation might be 3009 * disabled by the inheritance code. 3010 */ 3011 if (!ctx->rotate_disable) 3012 list_rotate_left(&ctx->flexible_groups); 3013 } 3014 3015 static int perf_rotate_context(struct perf_cpu_context *cpuctx) 3016 { 3017 struct perf_event_context *ctx = NULL; 3018 int rotate = 0; 3019 3020 if (cpuctx->ctx.nr_events) { 3021 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active) 3022 rotate = 1; 3023 } 3024 3025 ctx = cpuctx->task_ctx; 3026 if (ctx && ctx->nr_events) { 3027 if (ctx->nr_events != ctx->nr_active) 3028 rotate = 1; 3029 } 3030 3031 if (!rotate) 3032 goto done; 3033 3034 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3035 perf_pmu_disable(cpuctx->ctx.pmu); 3036 3037 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3038 if (ctx) 3039 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE); 3040 3041 rotate_ctx(&cpuctx->ctx); 3042 if (ctx) 3043 rotate_ctx(ctx); 3044 3045 perf_event_sched_in(cpuctx, ctx, current); 3046 3047 perf_pmu_enable(cpuctx->ctx.pmu); 3048 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3049 done: 3050 3051 return rotate; 3052 } 3053 3054 #ifdef CONFIG_NO_HZ_FULL 3055 bool perf_event_can_stop_tick(void) 3056 { 3057 if (atomic_read(&nr_freq_events) || 3058 __this_cpu_read(perf_throttled_count)) 3059 return false; 3060 else 3061 return true; 3062 } 3063 #endif 3064 3065 void perf_event_task_tick(void) 3066 { 3067 struct list_head *head = this_cpu_ptr(&active_ctx_list); 3068 struct perf_event_context *ctx, *tmp; 3069 int throttled; 3070 3071 WARN_ON(!irqs_disabled()); 3072 3073 __this_cpu_inc(perf_throttled_seq); 3074 throttled = __this_cpu_xchg(perf_throttled_count, 0); 3075 3076 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list) 3077 perf_adjust_freq_unthr_context(ctx, throttled); 3078 } 3079 3080 static int event_enable_on_exec(struct perf_event *event, 3081 struct perf_event_context *ctx) 3082 { 3083 if (!event->attr.enable_on_exec) 3084 return 0; 3085 3086 event->attr.enable_on_exec = 0; 3087 if (event->state >= PERF_EVENT_STATE_INACTIVE) 3088 return 0; 3089 3090 __perf_event_mark_enabled(event); 3091 3092 return 1; 3093 } 3094 3095 /* 3096 * Enable all of a task's events that have been marked enable-on-exec. 3097 * This expects task == current. 3098 */ 3099 static void perf_event_enable_on_exec(int ctxn) 3100 { 3101 struct perf_event_context *ctx, *clone_ctx = NULL; 3102 struct perf_event *event; 3103 unsigned long flags; 3104 int enabled = 0; 3105 int ret; 3106 3107 local_irq_save(flags); 3108 ctx = current->perf_event_ctxp[ctxn]; 3109 if (!ctx || !ctx->nr_events) 3110 goto out; 3111 3112 /* 3113 * We must ctxsw out cgroup events to avoid conflict 3114 * when invoking perf_task_event_sched_in() later on 3115 * in this function. Otherwise we end up trying to 3116 * ctxswin cgroup events which are already scheduled 3117 * in. 3118 */ 3119 perf_cgroup_sched_out(current, NULL); 3120 3121 raw_spin_lock(&ctx->lock); 3122 task_ctx_sched_out(ctx); 3123 3124 list_for_each_entry(event, &ctx->event_list, event_entry) { 3125 ret = event_enable_on_exec(event, ctx); 3126 if (ret) 3127 enabled = 1; 3128 } 3129 3130 /* 3131 * Unclone this context if we enabled any event. 3132 */ 3133 if (enabled) 3134 clone_ctx = unclone_ctx(ctx); 3135 3136 raw_spin_unlock(&ctx->lock); 3137 3138 /* 3139 * Also calls ctxswin for cgroup events, if any: 3140 */ 3141 perf_event_context_sched_in(ctx, ctx->task); 3142 out: 3143 local_irq_restore(flags); 3144 3145 if (clone_ctx) 3146 put_ctx(clone_ctx); 3147 } 3148 3149 void perf_event_exec(void) 3150 { 3151 int ctxn; 3152 3153 rcu_read_lock(); 3154 for_each_task_context_nr(ctxn) 3155 perf_event_enable_on_exec(ctxn); 3156 rcu_read_unlock(); 3157 } 3158 3159 struct perf_read_data { 3160 struct perf_event *event; 3161 bool group; 3162 int ret; 3163 }; 3164 3165 /* 3166 * Cross CPU call to read the hardware event 3167 */ 3168 static void __perf_event_read(void *info) 3169 { 3170 struct perf_read_data *data = info; 3171 struct perf_event *sub, *event = data->event; 3172 struct perf_event_context *ctx = event->ctx; 3173 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 3174 struct pmu *pmu = event->pmu; 3175 3176 /* 3177 * If this is a task context, we need to check whether it is 3178 * the current task context of this cpu. If not it has been 3179 * scheduled out before the smp call arrived. In that case 3180 * event->count would have been updated to a recent sample 3181 * when the event was scheduled out. 3182 */ 3183 if (ctx->task && cpuctx->task_ctx != ctx) 3184 return; 3185 3186 raw_spin_lock(&ctx->lock); 3187 if (ctx->is_active) { 3188 update_context_time(ctx); 3189 update_cgrp_time_from_event(event); 3190 } 3191 3192 update_event_times(event); 3193 if (event->state != PERF_EVENT_STATE_ACTIVE) 3194 goto unlock; 3195 3196 if (!data->group) { 3197 pmu->read(event); 3198 data->ret = 0; 3199 goto unlock; 3200 } 3201 3202 pmu->start_txn(pmu, PERF_PMU_TXN_READ); 3203 3204 pmu->read(event); 3205 3206 list_for_each_entry(sub, &event->sibling_list, group_entry) { 3207 update_event_times(sub); 3208 if (sub->state == PERF_EVENT_STATE_ACTIVE) { 3209 /* 3210 * Use sibling's PMU rather than @event's since 3211 * sibling could be on different (eg: software) PMU. 3212 */ 3213 sub->pmu->read(sub); 3214 } 3215 } 3216 3217 data->ret = pmu->commit_txn(pmu); 3218 3219 unlock: 3220 raw_spin_unlock(&ctx->lock); 3221 } 3222 3223 static inline u64 perf_event_count(struct perf_event *event) 3224 { 3225 if (event->pmu->count) 3226 return event->pmu->count(event); 3227 3228 return __perf_event_count(event); 3229 } 3230 3231 /* 3232 * NMI-safe method to read a local event, that is an event that 3233 * is: 3234 * - either for the current task, or for this CPU 3235 * - does not have inherit set, for inherited task events 3236 * will not be local and we cannot read them atomically 3237 * - must not have a pmu::count method 3238 */ 3239 u64 perf_event_read_local(struct perf_event *event) 3240 { 3241 unsigned long flags; 3242 u64 val; 3243 3244 /* 3245 * Disabling interrupts avoids all counter scheduling (context 3246 * switches, timer based rotation and IPIs). 3247 */ 3248 local_irq_save(flags); 3249 3250 /* If this is a per-task event, it must be for current */ 3251 WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) && 3252 event->hw.target != current); 3253 3254 /* If this is a per-CPU event, it must be for this CPU */ 3255 WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) && 3256 event->cpu != smp_processor_id()); 3257 3258 /* 3259 * It must not be an event with inherit set, we cannot read 3260 * all child counters from atomic context. 3261 */ 3262 WARN_ON_ONCE(event->attr.inherit); 3263 3264 /* 3265 * It must not have a pmu::count method, those are not 3266 * NMI safe. 3267 */ 3268 WARN_ON_ONCE(event->pmu->count); 3269 3270 /* 3271 * If the event is currently on this CPU, its either a per-task event, 3272 * or local to this CPU. Furthermore it means its ACTIVE (otherwise 3273 * oncpu == -1). 3274 */ 3275 if (event->oncpu == smp_processor_id()) 3276 event->pmu->read(event); 3277 3278 val = local64_read(&event->count); 3279 local_irq_restore(flags); 3280 3281 return val; 3282 } 3283 3284 static int perf_event_read(struct perf_event *event, bool group) 3285 { 3286 int ret = 0; 3287 3288 /* 3289 * If event is enabled and currently active on a CPU, update the 3290 * value in the event structure: 3291 */ 3292 if (event->state == PERF_EVENT_STATE_ACTIVE) { 3293 struct perf_read_data data = { 3294 .event = event, 3295 .group = group, 3296 .ret = 0, 3297 }; 3298 smp_call_function_single(event->oncpu, 3299 __perf_event_read, &data, 1); 3300 ret = data.ret; 3301 } else if (event->state == PERF_EVENT_STATE_INACTIVE) { 3302 struct perf_event_context *ctx = event->ctx; 3303 unsigned long flags; 3304 3305 raw_spin_lock_irqsave(&ctx->lock, flags); 3306 /* 3307 * may read while context is not active 3308 * (e.g., thread is blocked), in that case 3309 * we cannot update context time 3310 */ 3311 if (ctx->is_active) { 3312 update_context_time(ctx); 3313 update_cgrp_time_from_event(event); 3314 } 3315 if (group) 3316 update_group_times(event); 3317 else 3318 update_event_times(event); 3319 raw_spin_unlock_irqrestore(&ctx->lock, flags); 3320 } 3321 3322 return ret; 3323 } 3324 3325 /* 3326 * Initialize the perf_event context in a task_struct: 3327 */ 3328 static void __perf_event_init_context(struct perf_event_context *ctx) 3329 { 3330 raw_spin_lock_init(&ctx->lock); 3331 mutex_init(&ctx->mutex); 3332 INIT_LIST_HEAD(&ctx->active_ctx_list); 3333 INIT_LIST_HEAD(&ctx->pinned_groups); 3334 INIT_LIST_HEAD(&ctx->flexible_groups); 3335 INIT_LIST_HEAD(&ctx->event_list); 3336 atomic_set(&ctx->refcount, 1); 3337 INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work); 3338 } 3339 3340 static struct perf_event_context * 3341 alloc_perf_context(struct pmu *pmu, struct task_struct *task) 3342 { 3343 struct perf_event_context *ctx; 3344 3345 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 3346 if (!ctx) 3347 return NULL; 3348 3349 __perf_event_init_context(ctx); 3350 if (task) { 3351 ctx->task = task; 3352 get_task_struct(task); 3353 } 3354 ctx->pmu = pmu; 3355 3356 return ctx; 3357 } 3358 3359 static struct task_struct * 3360 find_lively_task_by_vpid(pid_t vpid) 3361 { 3362 struct task_struct *task; 3363 int err; 3364 3365 rcu_read_lock(); 3366 if (!vpid) 3367 task = current; 3368 else 3369 task = find_task_by_vpid(vpid); 3370 if (task) 3371 get_task_struct(task); 3372 rcu_read_unlock(); 3373 3374 if (!task) 3375 return ERR_PTR(-ESRCH); 3376 3377 /* Reuse ptrace permission checks for now. */ 3378 err = -EACCES; 3379 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) 3380 goto errout; 3381 3382 return task; 3383 errout: 3384 put_task_struct(task); 3385 return ERR_PTR(err); 3386 3387 } 3388 3389 /* 3390 * Returns a matching context with refcount and pincount. 3391 */ 3392 static struct perf_event_context * 3393 find_get_context(struct pmu *pmu, struct task_struct *task, 3394 struct perf_event *event) 3395 { 3396 struct perf_event_context *ctx, *clone_ctx = NULL; 3397 struct perf_cpu_context *cpuctx; 3398 void *task_ctx_data = NULL; 3399 unsigned long flags; 3400 int ctxn, err; 3401 int cpu = event->cpu; 3402 3403 if (!task) { 3404 /* Must be root to operate on a CPU event: */ 3405 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) 3406 return ERR_PTR(-EACCES); 3407 3408 /* 3409 * We could be clever and allow to attach a event to an 3410 * offline CPU and activate it when the CPU comes up, but 3411 * that's for later. 3412 */ 3413 if (!cpu_online(cpu)) 3414 return ERR_PTR(-ENODEV); 3415 3416 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 3417 ctx = &cpuctx->ctx; 3418 get_ctx(ctx); 3419 ++ctx->pin_count; 3420 3421 return ctx; 3422 } 3423 3424 err = -EINVAL; 3425 ctxn = pmu->task_ctx_nr; 3426 if (ctxn < 0) 3427 goto errout; 3428 3429 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 3430 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL); 3431 if (!task_ctx_data) { 3432 err = -ENOMEM; 3433 goto errout; 3434 } 3435 } 3436 3437 retry: 3438 ctx = perf_lock_task_context(task, ctxn, &flags); 3439 if (ctx) { 3440 clone_ctx = unclone_ctx(ctx); 3441 ++ctx->pin_count; 3442 3443 if (task_ctx_data && !ctx->task_ctx_data) { 3444 ctx->task_ctx_data = task_ctx_data; 3445 task_ctx_data = NULL; 3446 } 3447 raw_spin_unlock_irqrestore(&ctx->lock, flags); 3448 3449 if (clone_ctx) 3450 put_ctx(clone_ctx); 3451 } else { 3452 ctx = alloc_perf_context(pmu, task); 3453 err = -ENOMEM; 3454 if (!ctx) 3455 goto errout; 3456 3457 if (task_ctx_data) { 3458 ctx->task_ctx_data = task_ctx_data; 3459 task_ctx_data = NULL; 3460 } 3461 3462 err = 0; 3463 mutex_lock(&task->perf_event_mutex); 3464 /* 3465 * If it has already passed perf_event_exit_task(). 3466 * we must see PF_EXITING, it takes this mutex too. 3467 */ 3468 if (task->flags & PF_EXITING) 3469 err = -ESRCH; 3470 else if (task->perf_event_ctxp[ctxn]) 3471 err = -EAGAIN; 3472 else { 3473 get_ctx(ctx); 3474 ++ctx->pin_count; 3475 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); 3476 } 3477 mutex_unlock(&task->perf_event_mutex); 3478 3479 if (unlikely(err)) { 3480 put_ctx(ctx); 3481 3482 if (err == -EAGAIN) 3483 goto retry; 3484 goto errout; 3485 } 3486 } 3487 3488 kfree(task_ctx_data); 3489 return ctx; 3490 3491 errout: 3492 kfree(task_ctx_data); 3493 return ERR_PTR(err); 3494 } 3495 3496 static void perf_event_free_filter(struct perf_event *event); 3497 static void perf_event_free_bpf_prog(struct perf_event *event); 3498 3499 static void free_event_rcu(struct rcu_head *head) 3500 { 3501 struct perf_event *event; 3502 3503 event = container_of(head, struct perf_event, rcu_head); 3504 if (event->ns) 3505 put_pid_ns(event->ns); 3506 perf_event_free_filter(event); 3507 kfree(event); 3508 } 3509 3510 static void ring_buffer_attach(struct perf_event *event, 3511 struct ring_buffer *rb); 3512 3513 static void unaccount_event_cpu(struct perf_event *event, int cpu) 3514 { 3515 if (event->parent) 3516 return; 3517 3518 if (is_cgroup_event(event)) 3519 atomic_dec(&per_cpu(perf_cgroup_events, cpu)); 3520 } 3521 3522 static void unaccount_event(struct perf_event *event) 3523 { 3524 if (event->parent) 3525 return; 3526 3527 if (event->attach_state & PERF_ATTACH_TASK) 3528 static_key_slow_dec_deferred(&perf_sched_events); 3529 if (event->attr.mmap || event->attr.mmap_data) 3530 atomic_dec(&nr_mmap_events); 3531 if (event->attr.comm) 3532 atomic_dec(&nr_comm_events); 3533 if (event->attr.task) 3534 atomic_dec(&nr_task_events); 3535 if (event->attr.freq) 3536 atomic_dec(&nr_freq_events); 3537 if (event->attr.context_switch) { 3538 static_key_slow_dec_deferred(&perf_sched_events); 3539 atomic_dec(&nr_switch_events); 3540 } 3541 if (is_cgroup_event(event)) 3542 static_key_slow_dec_deferred(&perf_sched_events); 3543 if (has_branch_stack(event)) 3544 static_key_slow_dec_deferred(&perf_sched_events); 3545 3546 unaccount_event_cpu(event, event->cpu); 3547 } 3548 3549 /* 3550 * The following implement mutual exclusion of events on "exclusive" pmus 3551 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 3552 * at a time, so we disallow creating events that might conflict, namely: 3553 * 3554 * 1) cpu-wide events in the presence of per-task events, 3555 * 2) per-task events in the presence of cpu-wide events, 3556 * 3) two matching events on the same context. 3557 * 3558 * The former two cases are handled in the allocation path (perf_event_alloc(), 3559 * __free_event()), the latter -- before the first perf_install_in_context(). 3560 */ 3561 static int exclusive_event_init(struct perf_event *event) 3562 { 3563 struct pmu *pmu = event->pmu; 3564 3565 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 3566 return 0; 3567 3568 /* 3569 * Prevent co-existence of per-task and cpu-wide events on the 3570 * same exclusive pmu. 3571 * 3572 * Negative pmu::exclusive_cnt means there are cpu-wide 3573 * events on this "exclusive" pmu, positive means there are 3574 * per-task events. 3575 * 3576 * Since this is called in perf_event_alloc() path, event::ctx 3577 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 3578 * to mean "per-task event", because unlike other attach states it 3579 * never gets cleared. 3580 */ 3581 if (event->attach_state & PERF_ATTACH_TASK) { 3582 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 3583 return -EBUSY; 3584 } else { 3585 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 3586 return -EBUSY; 3587 } 3588 3589 return 0; 3590 } 3591 3592 static void exclusive_event_destroy(struct perf_event *event) 3593 { 3594 struct pmu *pmu = event->pmu; 3595 3596 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 3597 return; 3598 3599 /* see comment in exclusive_event_init() */ 3600 if (event->attach_state & PERF_ATTACH_TASK) 3601 atomic_dec(&pmu->exclusive_cnt); 3602 else 3603 atomic_inc(&pmu->exclusive_cnt); 3604 } 3605 3606 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 3607 { 3608 if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && 3609 (e1->cpu == e2->cpu || 3610 e1->cpu == -1 || 3611 e2->cpu == -1)) 3612 return true; 3613 return false; 3614 } 3615 3616 /* Called under the same ctx::mutex as perf_install_in_context() */ 3617 static bool exclusive_event_installable(struct perf_event *event, 3618 struct perf_event_context *ctx) 3619 { 3620 struct perf_event *iter_event; 3621 struct pmu *pmu = event->pmu; 3622 3623 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 3624 return true; 3625 3626 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 3627 if (exclusive_event_match(iter_event, event)) 3628 return false; 3629 } 3630 3631 return true; 3632 } 3633 3634 static void __free_event(struct perf_event *event) 3635 { 3636 if (!event->parent) { 3637 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 3638 put_callchain_buffers(); 3639 } 3640 3641 perf_event_free_bpf_prog(event); 3642 3643 if (event->destroy) 3644 event->destroy(event); 3645 3646 if (event->ctx) 3647 put_ctx(event->ctx); 3648 3649 if (event->pmu) { 3650 exclusive_event_destroy(event); 3651 module_put(event->pmu->module); 3652 } 3653 3654 call_rcu(&event->rcu_head, free_event_rcu); 3655 } 3656 3657 static void _free_event(struct perf_event *event) 3658 { 3659 irq_work_sync(&event->pending); 3660 3661 unaccount_event(event); 3662 3663 if (event->rb) { 3664 /* 3665 * Can happen when we close an event with re-directed output. 3666 * 3667 * Since we have a 0 refcount, perf_mmap_close() will skip 3668 * over us; possibly making our ring_buffer_put() the last. 3669 */ 3670 mutex_lock(&event->mmap_mutex); 3671 ring_buffer_attach(event, NULL); 3672 mutex_unlock(&event->mmap_mutex); 3673 } 3674 3675 if (is_cgroup_event(event)) 3676 perf_detach_cgroup(event); 3677 3678 __free_event(event); 3679 } 3680 3681 /* 3682 * Used to free events which have a known refcount of 1, such as in error paths 3683 * where the event isn't exposed yet and inherited events. 3684 */ 3685 static void free_event(struct perf_event *event) 3686 { 3687 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 3688 "unexpected event refcount: %ld; ptr=%p\n", 3689 atomic_long_read(&event->refcount), event)) { 3690 /* leak to avoid use-after-free */ 3691 return; 3692 } 3693 3694 _free_event(event); 3695 } 3696 3697 /* 3698 * Remove user event from the owner task. 3699 */ 3700 static void perf_remove_from_owner(struct perf_event *event) 3701 { 3702 struct task_struct *owner; 3703 3704 rcu_read_lock(); 3705 owner = ACCESS_ONCE(event->owner); 3706 /* 3707 * Matches the smp_wmb() in perf_event_exit_task(). If we observe 3708 * !owner it means the list deletion is complete and we can indeed 3709 * free this event, otherwise we need to serialize on 3710 * owner->perf_event_mutex. 3711 */ 3712 smp_read_barrier_depends(); 3713 if (owner) { 3714 /* 3715 * Since delayed_put_task_struct() also drops the last 3716 * task reference we can safely take a new reference 3717 * while holding the rcu_read_lock(). 3718 */ 3719 get_task_struct(owner); 3720 } 3721 rcu_read_unlock(); 3722 3723 if (owner) { 3724 /* 3725 * If we're here through perf_event_exit_task() we're already 3726 * holding ctx->mutex which would be an inversion wrt. the 3727 * normal lock order. 3728 * 3729 * However we can safely take this lock because its the child 3730 * ctx->mutex. 3731 */ 3732 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 3733 3734 /* 3735 * We have to re-check the event->owner field, if it is cleared 3736 * we raced with perf_event_exit_task(), acquiring the mutex 3737 * ensured they're done, and we can proceed with freeing the 3738 * event. 3739 */ 3740 if (event->owner) 3741 list_del_init(&event->owner_entry); 3742 mutex_unlock(&owner->perf_event_mutex); 3743 put_task_struct(owner); 3744 } 3745 } 3746 3747 static void put_event(struct perf_event *event) 3748 { 3749 struct perf_event_context *ctx; 3750 3751 if (!atomic_long_dec_and_test(&event->refcount)) 3752 return; 3753 3754 if (!is_kernel_event(event)) 3755 perf_remove_from_owner(event); 3756 3757 /* 3758 * There are two ways this annotation is useful: 3759 * 3760 * 1) there is a lock recursion from perf_event_exit_task 3761 * see the comment there. 3762 * 3763 * 2) there is a lock-inversion with mmap_sem through 3764 * perf_read_group(), which takes faults while 3765 * holding ctx->mutex, however this is called after 3766 * the last filedesc died, so there is no possibility 3767 * to trigger the AB-BA case. 3768 */ 3769 ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING); 3770 WARN_ON_ONCE(ctx->parent_ctx); 3771 perf_remove_from_context(event, true); 3772 perf_event_ctx_unlock(event, ctx); 3773 3774 _free_event(event); 3775 } 3776 3777 int perf_event_release_kernel(struct perf_event *event) 3778 { 3779 put_event(event); 3780 return 0; 3781 } 3782 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 3783 3784 /* 3785 * Called when the last reference to the file is gone. 3786 */ 3787 static int perf_release(struct inode *inode, struct file *file) 3788 { 3789 put_event(file->private_data); 3790 return 0; 3791 } 3792 3793 /* 3794 * Remove all orphanes events from the context. 3795 */ 3796 static void orphans_remove_work(struct work_struct *work) 3797 { 3798 struct perf_event_context *ctx; 3799 struct perf_event *event, *tmp; 3800 3801 ctx = container_of(work, struct perf_event_context, 3802 orphans_remove.work); 3803 3804 mutex_lock(&ctx->mutex); 3805 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) { 3806 struct perf_event *parent_event = event->parent; 3807 3808 if (!is_orphaned_child(event)) 3809 continue; 3810 3811 perf_remove_from_context(event, true); 3812 3813 mutex_lock(&parent_event->child_mutex); 3814 list_del_init(&event->child_list); 3815 mutex_unlock(&parent_event->child_mutex); 3816 3817 free_event(event); 3818 put_event(parent_event); 3819 } 3820 3821 raw_spin_lock_irq(&ctx->lock); 3822 ctx->orphans_remove_sched = false; 3823 raw_spin_unlock_irq(&ctx->lock); 3824 mutex_unlock(&ctx->mutex); 3825 3826 put_ctx(ctx); 3827 } 3828 3829 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 3830 { 3831 struct perf_event *child; 3832 u64 total = 0; 3833 3834 *enabled = 0; 3835 *running = 0; 3836 3837 mutex_lock(&event->child_mutex); 3838 3839 (void)perf_event_read(event, false); 3840 total += perf_event_count(event); 3841 3842 *enabled += event->total_time_enabled + 3843 atomic64_read(&event->child_total_time_enabled); 3844 *running += event->total_time_running + 3845 atomic64_read(&event->child_total_time_running); 3846 3847 list_for_each_entry(child, &event->child_list, child_list) { 3848 (void)perf_event_read(child, false); 3849 total += perf_event_count(child); 3850 *enabled += child->total_time_enabled; 3851 *running += child->total_time_running; 3852 } 3853 mutex_unlock(&event->child_mutex); 3854 3855 return total; 3856 } 3857 EXPORT_SYMBOL_GPL(perf_event_read_value); 3858 3859 static int __perf_read_group_add(struct perf_event *leader, 3860 u64 read_format, u64 *values) 3861 { 3862 struct perf_event *sub; 3863 int n = 1; /* skip @nr */ 3864 int ret; 3865 3866 ret = perf_event_read(leader, true); 3867 if (ret) 3868 return ret; 3869 3870 /* 3871 * Since we co-schedule groups, {enabled,running} times of siblings 3872 * will be identical to those of the leader, so we only publish one 3873 * set. 3874 */ 3875 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 3876 values[n++] += leader->total_time_enabled + 3877 atomic64_read(&leader->child_total_time_enabled); 3878 } 3879 3880 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 3881 values[n++] += leader->total_time_running + 3882 atomic64_read(&leader->child_total_time_running); 3883 } 3884 3885 /* 3886 * Write {count,id} tuples for every sibling. 3887 */ 3888 values[n++] += perf_event_count(leader); 3889 if (read_format & PERF_FORMAT_ID) 3890 values[n++] = primary_event_id(leader); 3891 3892 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 3893 values[n++] += perf_event_count(sub); 3894 if (read_format & PERF_FORMAT_ID) 3895 values[n++] = primary_event_id(sub); 3896 } 3897 3898 return 0; 3899 } 3900 3901 static int perf_read_group(struct perf_event *event, 3902 u64 read_format, char __user *buf) 3903 { 3904 struct perf_event *leader = event->group_leader, *child; 3905 struct perf_event_context *ctx = leader->ctx; 3906 int ret; 3907 u64 *values; 3908 3909 lockdep_assert_held(&ctx->mutex); 3910 3911 values = kzalloc(event->read_size, GFP_KERNEL); 3912 if (!values) 3913 return -ENOMEM; 3914 3915 values[0] = 1 + leader->nr_siblings; 3916 3917 /* 3918 * By locking the child_mutex of the leader we effectively 3919 * lock the child list of all siblings.. XXX explain how. 3920 */ 3921 mutex_lock(&leader->child_mutex); 3922 3923 ret = __perf_read_group_add(leader, read_format, values); 3924 if (ret) 3925 goto unlock; 3926 3927 list_for_each_entry(child, &leader->child_list, child_list) { 3928 ret = __perf_read_group_add(child, read_format, values); 3929 if (ret) 3930 goto unlock; 3931 } 3932 3933 mutex_unlock(&leader->child_mutex); 3934 3935 ret = event->read_size; 3936 if (copy_to_user(buf, values, event->read_size)) 3937 ret = -EFAULT; 3938 goto out; 3939 3940 unlock: 3941 mutex_unlock(&leader->child_mutex); 3942 out: 3943 kfree(values); 3944 return ret; 3945 } 3946 3947 static int perf_read_one(struct perf_event *event, 3948 u64 read_format, char __user *buf) 3949 { 3950 u64 enabled, running; 3951 u64 values[4]; 3952 int n = 0; 3953 3954 values[n++] = perf_event_read_value(event, &enabled, &running); 3955 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 3956 values[n++] = enabled; 3957 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 3958 values[n++] = running; 3959 if (read_format & PERF_FORMAT_ID) 3960 values[n++] = primary_event_id(event); 3961 3962 if (copy_to_user(buf, values, n * sizeof(u64))) 3963 return -EFAULT; 3964 3965 return n * sizeof(u64); 3966 } 3967 3968 static bool is_event_hup(struct perf_event *event) 3969 { 3970 bool no_children; 3971 3972 if (event->state != PERF_EVENT_STATE_EXIT) 3973 return false; 3974 3975 mutex_lock(&event->child_mutex); 3976 no_children = list_empty(&event->child_list); 3977 mutex_unlock(&event->child_mutex); 3978 return no_children; 3979 } 3980 3981 /* 3982 * Read the performance event - simple non blocking version for now 3983 */ 3984 static ssize_t 3985 __perf_read(struct perf_event *event, char __user *buf, size_t count) 3986 { 3987 u64 read_format = event->attr.read_format; 3988 int ret; 3989 3990 /* 3991 * Return end-of-file for a read on a event that is in 3992 * error state (i.e. because it was pinned but it couldn't be 3993 * scheduled on to the CPU at some point). 3994 */ 3995 if (event->state == PERF_EVENT_STATE_ERROR) 3996 return 0; 3997 3998 if (count < event->read_size) 3999 return -ENOSPC; 4000 4001 WARN_ON_ONCE(event->ctx->parent_ctx); 4002 if (read_format & PERF_FORMAT_GROUP) 4003 ret = perf_read_group(event, read_format, buf); 4004 else 4005 ret = perf_read_one(event, read_format, buf); 4006 4007 return ret; 4008 } 4009 4010 static ssize_t 4011 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 4012 { 4013 struct perf_event *event = file->private_data; 4014 struct perf_event_context *ctx; 4015 int ret; 4016 4017 ctx = perf_event_ctx_lock(event); 4018 ret = __perf_read(event, buf, count); 4019 perf_event_ctx_unlock(event, ctx); 4020 4021 return ret; 4022 } 4023 4024 static unsigned int perf_poll(struct file *file, poll_table *wait) 4025 { 4026 struct perf_event *event = file->private_data; 4027 struct ring_buffer *rb; 4028 unsigned int events = POLLHUP; 4029 4030 poll_wait(file, &event->waitq, wait); 4031 4032 if (is_event_hup(event)) 4033 return events; 4034 4035 /* 4036 * Pin the event->rb by taking event->mmap_mutex; otherwise 4037 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 4038 */ 4039 mutex_lock(&event->mmap_mutex); 4040 rb = event->rb; 4041 if (rb) 4042 events = atomic_xchg(&rb->poll, 0); 4043 mutex_unlock(&event->mmap_mutex); 4044 return events; 4045 } 4046 4047 static void _perf_event_reset(struct perf_event *event) 4048 { 4049 (void)perf_event_read(event, false); 4050 local64_set(&event->count, 0); 4051 perf_event_update_userpage(event); 4052 } 4053 4054 /* 4055 * Holding the top-level event's child_mutex means that any 4056 * descendant process that has inherited this event will block 4057 * in sync_child_event if it goes to exit, thus satisfying the 4058 * task existence requirements of perf_event_enable/disable. 4059 */ 4060 static void perf_event_for_each_child(struct perf_event *event, 4061 void (*func)(struct perf_event *)) 4062 { 4063 struct perf_event *child; 4064 4065 WARN_ON_ONCE(event->ctx->parent_ctx); 4066 4067 mutex_lock(&event->child_mutex); 4068 func(event); 4069 list_for_each_entry(child, &event->child_list, child_list) 4070 func(child); 4071 mutex_unlock(&event->child_mutex); 4072 } 4073 4074 static void perf_event_for_each(struct perf_event *event, 4075 void (*func)(struct perf_event *)) 4076 { 4077 struct perf_event_context *ctx = event->ctx; 4078 struct perf_event *sibling; 4079 4080 lockdep_assert_held(&ctx->mutex); 4081 4082 event = event->group_leader; 4083 4084 perf_event_for_each_child(event, func); 4085 list_for_each_entry(sibling, &event->sibling_list, group_entry) 4086 perf_event_for_each_child(sibling, func); 4087 } 4088 4089 struct period_event { 4090 struct perf_event *event; 4091 u64 value; 4092 }; 4093 4094 static void ___perf_event_period(void *info) 4095 { 4096 struct period_event *pe = info; 4097 struct perf_event *event = pe->event; 4098 u64 value = pe->value; 4099 4100 if (event->attr.freq) { 4101 event->attr.sample_freq = value; 4102 } else { 4103 event->attr.sample_period = value; 4104 event->hw.sample_period = value; 4105 } 4106 4107 local64_set(&event->hw.period_left, 0); 4108 } 4109 4110 static int __perf_event_period(void *info) 4111 { 4112 struct period_event *pe = info; 4113 struct perf_event *event = pe->event; 4114 struct perf_event_context *ctx = event->ctx; 4115 u64 value = pe->value; 4116 bool active; 4117 4118 raw_spin_lock(&ctx->lock); 4119 if (event->attr.freq) { 4120 event->attr.sample_freq = value; 4121 } else { 4122 event->attr.sample_period = value; 4123 event->hw.sample_period = value; 4124 } 4125 4126 active = (event->state == PERF_EVENT_STATE_ACTIVE); 4127 if (active) { 4128 perf_pmu_disable(ctx->pmu); 4129 event->pmu->stop(event, PERF_EF_UPDATE); 4130 } 4131 4132 local64_set(&event->hw.period_left, 0); 4133 4134 if (active) { 4135 event->pmu->start(event, PERF_EF_RELOAD); 4136 perf_pmu_enable(ctx->pmu); 4137 } 4138 raw_spin_unlock(&ctx->lock); 4139 4140 return 0; 4141 } 4142 4143 static int perf_event_period(struct perf_event *event, u64 __user *arg) 4144 { 4145 struct period_event pe = { .event = event, }; 4146 u64 value; 4147 4148 if (!is_sampling_event(event)) 4149 return -EINVAL; 4150 4151 if (copy_from_user(&value, arg, sizeof(value))) 4152 return -EFAULT; 4153 4154 if (!value) 4155 return -EINVAL; 4156 4157 if (event->attr.freq && value > sysctl_perf_event_sample_rate) 4158 return -EINVAL; 4159 4160 pe.value = value; 4161 4162 event_function_call(event, __perf_event_period, 4163 ___perf_event_period, &pe); 4164 4165 return 0; 4166 } 4167 4168 static const struct file_operations perf_fops; 4169 4170 static inline int perf_fget_light(int fd, struct fd *p) 4171 { 4172 struct fd f = fdget(fd); 4173 if (!f.file) 4174 return -EBADF; 4175 4176 if (f.file->f_op != &perf_fops) { 4177 fdput(f); 4178 return -EBADF; 4179 } 4180 *p = f; 4181 return 0; 4182 } 4183 4184 static int perf_event_set_output(struct perf_event *event, 4185 struct perf_event *output_event); 4186 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 4187 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd); 4188 4189 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 4190 { 4191 void (*func)(struct perf_event *); 4192 u32 flags = arg; 4193 4194 switch (cmd) { 4195 case PERF_EVENT_IOC_ENABLE: 4196 func = _perf_event_enable; 4197 break; 4198 case PERF_EVENT_IOC_DISABLE: 4199 func = _perf_event_disable; 4200 break; 4201 case PERF_EVENT_IOC_RESET: 4202 func = _perf_event_reset; 4203 break; 4204 4205 case PERF_EVENT_IOC_REFRESH: 4206 return _perf_event_refresh(event, arg); 4207 4208 case PERF_EVENT_IOC_PERIOD: 4209 return perf_event_period(event, (u64 __user *)arg); 4210 4211 case PERF_EVENT_IOC_ID: 4212 { 4213 u64 id = primary_event_id(event); 4214 4215 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 4216 return -EFAULT; 4217 return 0; 4218 } 4219 4220 case PERF_EVENT_IOC_SET_OUTPUT: 4221 { 4222 int ret; 4223 if (arg != -1) { 4224 struct perf_event *output_event; 4225 struct fd output; 4226 ret = perf_fget_light(arg, &output); 4227 if (ret) 4228 return ret; 4229 output_event = output.file->private_data; 4230 ret = perf_event_set_output(event, output_event); 4231 fdput(output); 4232 } else { 4233 ret = perf_event_set_output(event, NULL); 4234 } 4235 return ret; 4236 } 4237 4238 case PERF_EVENT_IOC_SET_FILTER: 4239 return perf_event_set_filter(event, (void __user *)arg); 4240 4241 case PERF_EVENT_IOC_SET_BPF: 4242 return perf_event_set_bpf_prog(event, arg); 4243 4244 default: 4245 return -ENOTTY; 4246 } 4247 4248 if (flags & PERF_IOC_FLAG_GROUP) 4249 perf_event_for_each(event, func); 4250 else 4251 perf_event_for_each_child(event, func); 4252 4253 return 0; 4254 } 4255 4256 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 4257 { 4258 struct perf_event *event = file->private_data; 4259 struct perf_event_context *ctx; 4260 long ret; 4261 4262 ctx = perf_event_ctx_lock(event); 4263 ret = _perf_ioctl(event, cmd, arg); 4264 perf_event_ctx_unlock(event, ctx); 4265 4266 return ret; 4267 } 4268 4269 #ifdef CONFIG_COMPAT 4270 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 4271 unsigned long arg) 4272 { 4273 switch (_IOC_NR(cmd)) { 4274 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 4275 case _IOC_NR(PERF_EVENT_IOC_ID): 4276 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 4277 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 4278 cmd &= ~IOCSIZE_MASK; 4279 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 4280 } 4281 break; 4282 } 4283 return perf_ioctl(file, cmd, arg); 4284 } 4285 #else 4286 # define perf_compat_ioctl NULL 4287 #endif 4288 4289 int perf_event_task_enable(void) 4290 { 4291 struct perf_event_context *ctx; 4292 struct perf_event *event; 4293 4294 mutex_lock(¤t->perf_event_mutex); 4295 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 4296 ctx = perf_event_ctx_lock(event); 4297 perf_event_for_each_child(event, _perf_event_enable); 4298 perf_event_ctx_unlock(event, ctx); 4299 } 4300 mutex_unlock(¤t->perf_event_mutex); 4301 4302 return 0; 4303 } 4304 4305 int perf_event_task_disable(void) 4306 { 4307 struct perf_event_context *ctx; 4308 struct perf_event *event; 4309 4310 mutex_lock(¤t->perf_event_mutex); 4311 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 4312 ctx = perf_event_ctx_lock(event); 4313 perf_event_for_each_child(event, _perf_event_disable); 4314 perf_event_ctx_unlock(event, ctx); 4315 } 4316 mutex_unlock(¤t->perf_event_mutex); 4317 4318 return 0; 4319 } 4320 4321 static int perf_event_index(struct perf_event *event) 4322 { 4323 if (event->hw.state & PERF_HES_STOPPED) 4324 return 0; 4325 4326 if (event->state != PERF_EVENT_STATE_ACTIVE) 4327 return 0; 4328 4329 return event->pmu->event_idx(event); 4330 } 4331 4332 static void calc_timer_values(struct perf_event *event, 4333 u64 *now, 4334 u64 *enabled, 4335 u64 *running) 4336 { 4337 u64 ctx_time; 4338 4339 *now = perf_clock(); 4340 ctx_time = event->shadow_ctx_time + *now; 4341 *enabled = ctx_time - event->tstamp_enabled; 4342 *running = ctx_time - event->tstamp_running; 4343 } 4344 4345 static void perf_event_init_userpage(struct perf_event *event) 4346 { 4347 struct perf_event_mmap_page *userpg; 4348 struct ring_buffer *rb; 4349 4350 rcu_read_lock(); 4351 rb = rcu_dereference(event->rb); 4352 if (!rb) 4353 goto unlock; 4354 4355 userpg = rb->user_page; 4356 4357 /* Allow new userspace to detect that bit 0 is deprecated */ 4358 userpg->cap_bit0_is_deprecated = 1; 4359 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 4360 userpg->data_offset = PAGE_SIZE; 4361 userpg->data_size = perf_data_size(rb); 4362 4363 unlock: 4364 rcu_read_unlock(); 4365 } 4366 4367 void __weak arch_perf_update_userpage( 4368 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 4369 { 4370 } 4371 4372 /* 4373 * Callers need to ensure there can be no nesting of this function, otherwise 4374 * the seqlock logic goes bad. We can not serialize this because the arch 4375 * code calls this from NMI context. 4376 */ 4377 void perf_event_update_userpage(struct perf_event *event) 4378 { 4379 struct perf_event_mmap_page *userpg; 4380 struct ring_buffer *rb; 4381 u64 enabled, running, now; 4382 4383 rcu_read_lock(); 4384 rb = rcu_dereference(event->rb); 4385 if (!rb) 4386 goto unlock; 4387 4388 /* 4389 * compute total_time_enabled, total_time_running 4390 * based on snapshot values taken when the event 4391 * was last scheduled in. 4392 * 4393 * we cannot simply called update_context_time() 4394 * because of locking issue as we can be called in 4395 * NMI context 4396 */ 4397 calc_timer_values(event, &now, &enabled, &running); 4398 4399 userpg = rb->user_page; 4400 /* 4401 * Disable preemption so as to not let the corresponding user-space 4402 * spin too long if we get preempted. 4403 */ 4404 preempt_disable(); 4405 ++userpg->lock; 4406 barrier(); 4407 userpg->index = perf_event_index(event); 4408 userpg->offset = perf_event_count(event); 4409 if (userpg->index) 4410 userpg->offset -= local64_read(&event->hw.prev_count); 4411 4412 userpg->time_enabled = enabled + 4413 atomic64_read(&event->child_total_time_enabled); 4414 4415 userpg->time_running = running + 4416 atomic64_read(&event->child_total_time_running); 4417 4418 arch_perf_update_userpage(event, userpg, now); 4419 4420 barrier(); 4421 ++userpg->lock; 4422 preempt_enable(); 4423 unlock: 4424 rcu_read_unlock(); 4425 } 4426 4427 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 4428 { 4429 struct perf_event *event = vma->vm_file->private_data; 4430 struct ring_buffer *rb; 4431 int ret = VM_FAULT_SIGBUS; 4432 4433 if (vmf->flags & FAULT_FLAG_MKWRITE) { 4434 if (vmf->pgoff == 0) 4435 ret = 0; 4436 return ret; 4437 } 4438 4439 rcu_read_lock(); 4440 rb = rcu_dereference(event->rb); 4441 if (!rb) 4442 goto unlock; 4443 4444 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 4445 goto unlock; 4446 4447 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 4448 if (!vmf->page) 4449 goto unlock; 4450 4451 get_page(vmf->page); 4452 vmf->page->mapping = vma->vm_file->f_mapping; 4453 vmf->page->index = vmf->pgoff; 4454 4455 ret = 0; 4456 unlock: 4457 rcu_read_unlock(); 4458 4459 return ret; 4460 } 4461 4462 static void ring_buffer_attach(struct perf_event *event, 4463 struct ring_buffer *rb) 4464 { 4465 struct ring_buffer *old_rb = NULL; 4466 unsigned long flags; 4467 4468 if (event->rb) { 4469 /* 4470 * Should be impossible, we set this when removing 4471 * event->rb_entry and wait/clear when adding event->rb_entry. 4472 */ 4473 WARN_ON_ONCE(event->rcu_pending); 4474 4475 old_rb = event->rb; 4476 spin_lock_irqsave(&old_rb->event_lock, flags); 4477 list_del_rcu(&event->rb_entry); 4478 spin_unlock_irqrestore(&old_rb->event_lock, flags); 4479 4480 event->rcu_batches = get_state_synchronize_rcu(); 4481 event->rcu_pending = 1; 4482 } 4483 4484 if (rb) { 4485 if (event->rcu_pending) { 4486 cond_synchronize_rcu(event->rcu_batches); 4487 event->rcu_pending = 0; 4488 } 4489 4490 spin_lock_irqsave(&rb->event_lock, flags); 4491 list_add_rcu(&event->rb_entry, &rb->event_list); 4492 spin_unlock_irqrestore(&rb->event_lock, flags); 4493 } 4494 4495 rcu_assign_pointer(event->rb, rb); 4496 4497 if (old_rb) { 4498 ring_buffer_put(old_rb); 4499 /* 4500 * Since we detached before setting the new rb, so that we 4501 * could attach the new rb, we could have missed a wakeup. 4502 * Provide it now. 4503 */ 4504 wake_up_all(&event->waitq); 4505 } 4506 } 4507 4508 static void ring_buffer_wakeup(struct perf_event *event) 4509 { 4510 struct ring_buffer *rb; 4511 4512 rcu_read_lock(); 4513 rb = rcu_dereference(event->rb); 4514 if (rb) { 4515 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 4516 wake_up_all(&event->waitq); 4517 } 4518 rcu_read_unlock(); 4519 } 4520 4521 struct ring_buffer *ring_buffer_get(struct perf_event *event) 4522 { 4523 struct ring_buffer *rb; 4524 4525 rcu_read_lock(); 4526 rb = rcu_dereference(event->rb); 4527 if (rb) { 4528 if (!atomic_inc_not_zero(&rb->refcount)) 4529 rb = NULL; 4530 } 4531 rcu_read_unlock(); 4532 4533 return rb; 4534 } 4535 4536 void ring_buffer_put(struct ring_buffer *rb) 4537 { 4538 if (!atomic_dec_and_test(&rb->refcount)) 4539 return; 4540 4541 WARN_ON_ONCE(!list_empty(&rb->event_list)); 4542 4543 call_rcu(&rb->rcu_head, rb_free_rcu); 4544 } 4545 4546 static void perf_mmap_open(struct vm_area_struct *vma) 4547 { 4548 struct perf_event *event = vma->vm_file->private_data; 4549 4550 atomic_inc(&event->mmap_count); 4551 atomic_inc(&event->rb->mmap_count); 4552 4553 if (vma->vm_pgoff) 4554 atomic_inc(&event->rb->aux_mmap_count); 4555 4556 if (event->pmu->event_mapped) 4557 event->pmu->event_mapped(event); 4558 } 4559 4560 /* 4561 * A buffer can be mmap()ed multiple times; either directly through the same 4562 * event, or through other events by use of perf_event_set_output(). 4563 * 4564 * In order to undo the VM accounting done by perf_mmap() we need to destroy 4565 * the buffer here, where we still have a VM context. This means we need 4566 * to detach all events redirecting to us. 4567 */ 4568 static void perf_mmap_close(struct vm_area_struct *vma) 4569 { 4570 struct perf_event *event = vma->vm_file->private_data; 4571 4572 struct ring_buffer *rb = ring_buffer_get(event); 4573 struct user_struct *mmap_user = rb->mmap_user; 4574 int mmap_locked = rb->mmap_locked; 4575 unsigned long size = perf_data_size(rb); 4576 4577 if (event->pmu->event_unmapped) 4578 event->pmu->event_unmapped(event); 4579 4580 /* 4581 * rb->aux_mmap_count will always drop before rb->mmap_count and 4582 * event->mmap_count, so it is ok to use event->mmap_mutex to 4583 * serialize with perf_mmap here. 4584 */ 4585 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 4586 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) { 4587 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm); 4588 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked; 4589 4590 rb_free_aux(rb); 4591 mutex_unlock(&event->mmap_mutex); 4592 } 4593 4594 atomic_dec(&rb->mmap_count); 4595 4596 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 4597 goto out_put; 4598 4599 ring_buffer_attach(event, NULL); 4600 mutex_unlock(&event->mmap_mutex); 4601 4602 /* If there's still other mmap()s of this buffer, we're done. */ 4603 if (atomic_read(&rb->mmap_count)) 4604 goto out_put; 4605 4606 /* 4607 * No other mmap()s, detach from all other events that might redirect 4608 * into the now unreachable buffer. Somewhat complicated by the 4609 * fact that rb::event_lock otherwise nests inside mmap_mutex. 4610 */ 4611 again: 4612 rcu_read_lock(); 4613 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 4614 if (!atomic_long_inc_not_zero(&event->refcount)) { 4615 /* 4616 * This event is en-route to free_event() which will 4617 * detach it and remove it from the list. 4618 */ 4619 continue; 4620 } 4621 rcu_read_unlock(); 4622 4623 mutex_lock(&event->mmap_mutex); 4624 /* 4625 * Check we didn't race with perf_event_set_output() which can 4626 * swizzle the rb from under us while we were waiting to 4627 * acquire mmap_mutex. 4628 * 4629 * If we find a different rb; ignore this event, a next 4630 * iteration will no longer find it on the list. We have to 4631 * still restart the iteration to make sure we're not now 4632 * iterating the wrong list. 4633 */ 4634 if (event->rb == rb) 4635 ring_buffer_attach(event, NULL); 4636 4637 mutex_unlock(&event->mmap_mutex); 4638 put_event(event); 4639 4640 /* 4641 * Restart the iteration; either we're on the wrong list or 4642 * destroyed its integrity by doing a deletion. 4643 */ 4644 goto again; 4645 } 4646 rcu_read_unlock(); 4647 4648 /* 4649 * It could be there's still a few 0-ref events on the list; they'll 4650 * get cleaned up by free_event() -- they'll also still have their 4651 * ref on the rb and will free it whenever they are done with it. 4652 * 4653 * Aside from that, this buffer is 'fully' detached and unmapped, 4654 * undo the VM accounting. 4655 */ 4656 4657 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm); 4658 vma->vm_mm->pinned_vm -= mmap_locked; 4659 free_uid(mmap_user); 4660 4661 out_put: 4662 ring_buffer_put(rb); /* could be last */ 4663 } 4664 4665 static const struct vm_operations_struct perf_mmap_vmops = { 4666 .open = perf_mmap_open, 4667 .close = perf_mmap_close, /* non mergable */ 4668 .fault = perf_mmap_fault, 4669 .page_mkwrite = perf_mmap_fault, 4670 }; 4671 4672 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 4673 { 4674 struct perf_event *event = file->private_data; 4675 unsigned long user_locked, user_lock_limit; 4676 struct user_struct *user = current_user(); 4677 unsigned long locked, lock_limit; 4678 struct ring_buffer *rb = NULL; 4679 unsigned long vma_size; 4680 unsigned long nr_pages; 4681 long user_extra = 0, extra = 0; 4682 int ret = 0, flags = 0; 4683 4684 /* 4685 * Don't allow mmap() of inherited per-task counters. This would 4686 * create a performance issue due to all children writing to the 4687 * same rb. 4688 */ 4689 if (event->cpu == -1 && event->attr.inherit) 4690 return -EINVAL; 4691 4692 if (!(vma->vm_flags & VM_SHARED)) 4693 return -EINVAL; 4694 4695 vma_size = vma->vm_end - vma->vm_start; 4696 4697 if (vma->vm_pgoff == 0) { 4698 nr_pages = (vma_size / PAGE_SIZE) - 1; 4699 } else { 4700 /* 4701 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 4702 * mapped, all subsequent mappings should have the same size 4703 * and offset. Must be above the normal perf buffer. 4704 */ 4705 u64 aux_offset, aux_size; 4706 4707 if (!event->rb) 4708 return -EINVAL; 4709 4710 nr_pages = vma_size / PAGE_SIZE; 4711 4712 mutex_lock(&event->mmap_mutex); 4713 ret = -EINVAL; 4714 4715 rb = event->rb; 4716 if (!rb) 4717 goto aux_unlock; 4718 4719 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset); 4720 aux_size = ACCESS_ONCE(rb->user_page->aux_size); 4721 4722 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 4723 goto aux_unlock; 4724 4725 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 4726 goto aux_unlock; 4727 4728 /* already mapped with a different offset */ 4729 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 4730 goto aux_unlock; 4731 4732 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) 4733 goto aux_unlock; 4734 4735 /* already mapped with a different size */ 4736 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 4737 goto aux_unlock; 4738 4739 if (!is_power_of_2(nr_pages)) 4740 goto aux_unlock; 4741 4742 if (!atomic_inc_not_zero(&rb->mmap_count)) 4743 goto aux_unlock; 4744 4745 if (rb_has_aux(rb)) { 4746 atomic_inc(&rb->aux_mmap_count); 4747 ret = 0; 4748 goto unlock; 4749 } 4750 4751 atomic_set(&rb->aux_mmap_count, 1); 4752 user_extra = nr_pages; 4753 4754 goto accounting; 4755 } 4756 4757 /* 4758 * If we have rb pages ensure they're a power-of-two number, so we 4759 * can do bitmasks instead of modulo. 4760 */ 4761 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 4762 return -EINVAL; 4763 4764 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 4765 return -EINVAL; 4766 4767 WARN_ON_ONCE(event->ctx->parent_ctx); 4768 again: 4769 mutex_lock(&event->mmap_mutex); 4770 if (event->rb) { 4771 if (event->rb->nr_pages != nr_pages) { 4772 ret = -EINVAL; 4773 goto unlock; 4774 } 4775 4776 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 4777 /* 4778 * Raced against perf_mmap_close() through 4779 * perf_event_set_output(). Try again, hope for better 4780 * luck. 4781 */ 4782 mutex_unlock(&event->mmap_mutex); 4783 goto again; 4784 } 4785 4786 goto unlock; 4787 } 4788 4789 user_extra = nr_pages + 1; 4790 4791 accounting: 4792 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 4793 4794 /* 4795 * Increase the limit linearly with more CPUs: 4796 */ 4797 user_lock_limit *= num_online_cpus(); 4798 4799 user_locked = atomic_long_read(&user->locked_vm) + user_extra; 4800 4801 if (user_locked > user_lock_limit) 4802 extra = user_locked - user_lock_limit; 4803 4804 lock_limit = rlimit(RLIMIT_MEMLOCK); 4805 lock_limit >>= PAGE_SHIFT; 4806 locked = vma->vm_mm->pinned_vm + extra; 4807 4808 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() && 4809 !capable(CAP_IPC_LOCK)) { 4810 ret = -EPERM; 4811 goto unlock; 4812 } 4813 4814 WARN_ON(!rb && event->rb); 4815 4816 if (vma->vm_flags & VM_WRITE) 4817 flags |= RING_BUFFER_WRITABLE; 4818 4819 if (!rb) { 4820 rb = rb_alloc(nr_pages, 4821 event->attr.watermark ? event->attr.wakeup_watermark : 0, 4822 event->cpu, flags); 4823 4824 if (!rb) { 4825 ret = -ENOMEM; 4826 goto unlock; 4827 } 4828 4829 atomic_set(&rb->mmap_count, 1); 4830 rb->mmap_user = get_current_user(); 4831 rb->mmap_locked = extra; 4832 4833 ring_buffer_attach(event, rb); 4834 4835 perf_event_init_userpage(event); 4836 perf_event_update_userpage(event); 4837 } else { 4838 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 4839 event->attr.aux_watermark, flags); 4840 if (!ret) 4841 rb->aux_mmap_locked = extra; 4842 } 4843 4844 unlock: 4845 if (!ret) { 4846 atomic_long_add(user_extra, &user->locked_vm); 4847 vma->vm_mm->pinned_vm += extra; 4848 4849 atomic_inc(&event->mmap_count); 4850 } else if (rb) { 4851 atomic_dec(&rb->mmap_count); 4852 } 4853 aux_unlock: 4854 mutex_unlock(&event->mmap_mutex); 4855 4856 /* 4857 * Since pinned accounting is per vm we cannot allow fork() to copy our 4858 * vma. 4859 */ 4860 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP; 4861 vma->vm_ops = &perf_mmap_vmops; 4862 4863 if (event->pmu->event_mapped) 4864 event->pmu->event_mapped(event); 4865 4866 return ret; 4867 } 4868 4869 static int perf_fasync(int fd, struct file *filp, int on) 4870 { 4871 struct inode *inode = file_inode(filp); 4872 struct perf_event *event = filp->private_data; 4873 int retval; 4874 4875 inode_lock(inode); 4876 retval = fasync_helper(fd, filp, on, &event->fasync); 4877 inode_unlock(inode); 4878 4879 if (retval < 0) 4880 return retval; 4881 4882 return 0; 4883 } 4884 4885 static const struct file_operations perf_fops = { 4886 .llseek = no_llseek, 4887 .release = perf_release, 4888 .read = perf_read, 4889 .poll = perf_poll, 4890 .unlocked_ioctl = perf_ioctl, 4891 .compat_ioctl = perf_compat_ioctl, 4892 .mmap = perf_mmap, 4893 .fasync = perf_fasync, 4894 }; 4895 4896 /* 4897 * Perf event wakeup 4898 * 4899 * If there's data, ensure we set the poll() state and publish everything 4900 * to user-space before waking everybody up. 4901 */ 4902 4903 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event) 4904 { 4905 /* only the parent has fasync state */ 4906 if (event->parent) 4907 event = event->parent; 4908 return &event->fasync; 4909 } 4910 4911 void perf_event_wakeup(struct perf_event *event) 4912 { 4913 ring_buffer_wakeup(event); 4914 4915 if (event->pending_kill) { 4916 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); 4917 event->pending_kill = 0; 4918 } 4919 } 4920 4921 static void perf_pending_event(struct irq_work *entry) 4922 { 4923 struct perf_event *event = container_of(entry, 4924 struct perf_event, pending); 4925 int rctx; 4926 4927 rctx = perf_swevent_get_recursion_context(); 4928 /* 4929 * If we 'fail' here, that's OK, it means recursion is already disabled 4930 * and we won't recurse 'further'. 4931 */ 4932 4933 if (event->pending_disable) { 4934 event->pending_disable = 0; 4935 __perf_event_disable(event); 4936 } 4937 4938 if (event->pending_wakeup) { 4939 event->pending_wakeup = 0; 4940 perf_event_wakeup(event); 4941 } 4942 4943 if (rctx >= 0) 4944 perf_swevent_put_recursion_context(rctx); 4945 } 4946 4947 /* 4948 * We assume there is only KVM supporting the callbacks. 4949 * Later on, we might change it to a list if there is 4950 * another virtualization implementation supporting the callbacks. 4951 */ 4952 struct perf_guest_info_callbacks *perf_guest_cbs; 4953 4954 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 4955 { 4956 perf_guest_cbs = cbs; 4957 return 0; 4958 } 4959 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 4960 4961 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 4962 { 4963 perf_guest_cbs = NULL; 4964 return 0; 4965 } 4966 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 4967 4968 static void 4969 perf_output_sample_regs(struct perf_output_handle *handle, 4970 struct pt_regs *regs, u64 mask) 4971 { 4972 int bit; 4973 4974 for_each_set_bit(bit, (const unsigned long *) &mask, 4975 sizeof(mask) * BITS_PER_BYTE) { 4976 u64 val; 4977 4978 val = perf_reg_value(regs, bit); 4979 perf_output_put(handle, val); 4980 } 4981 } 4982 4983 static void perf_sample_regs_user(struct perf_regs *regs_user, 4984 struct pt_regs *regs, 4985 struct pt_regs *regs_user_copy) 4986 { 4987 if (user_mode(regs)) { 4988 regs_user->abi = perf_reg_abi(current); 4989 regs_user->regs = regs; 4990 } else if (current->mm) { 4991 perf_get_regs_user(regs_user, regs, regs_user_copy); 4992 } else { 4993 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 4994 regs_user->regs = NULL; 4995 } 4996 } 4997 4998 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 4999 struct pt_regs *regs) 5000 { 5001 regs_intr->regs = regs; 5002 regs_intr->abi = perf_reg_abi(current); 5003 } 5004 5005 5006 /* 5007 * Get remaining task size from user stack pointer. 5008 * 5009 * It'd be better to take stack vma map and limit this more 5010 * precisly, but there's no way to get it safely under interrupt, 5011 * so using TASK_SIZE as limit. 5012 */ 5013 static u64 perf_ustack_task_size(struct pt_regs *regs) 5014 { 5015 unsigned long addr = perf_user_stack_pointer(regs); 5016 5017 if (!addr || addr >= TASK_SIZE) 5018 return 0; 5019 5020 return TASK_SIZE - addr; 5021 } 5022 5023 static u16 5024 perf_sample_ustack_size(u16 stack_size, u16 header_size, 5025 struct pt_regs *regs) 5026 { 5027 u64 task_size; 5028 5029 /* No regs, no stack pointer, no dump. */ 5030 if (!regs) 5031 return 0; 5032 5033 /* 5034 * Check if we fit in with the requested stack size into the: 5035 * - TASK_SIZE 5036 * If we don't, we limit the size to the TASK_SIZE. 5037 * 5038 * - remaining sample size 5039 * If we don't, we customize the stack size to 5040 * fit in to the remaining sample size. 5041 */ 5042 5043 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 5044 stack_size = min(stack_size, (u16) task_size); 5045 5046 /* Current header size plus static size and dynamic size. */ 5047 header_size += 2 * sizeof(u64); 5048 5049 /* Do we fit in with the current stack dump size? */ 5050 if ((u16) (header_size + stack_size) < header_size) { 5051 /* 5052 * If we overflow the maximum size for the sample, 5053 * we customize the stack dump size to fit in. 5054 */ 5055 stack_size = USHRT_MAX - header_size - sizeof(u64); 5056 stack_size = round_up(stack_size, sizeof(u64)); 5057 } 5058 5059 return stack_size; 5060 } 5061 5062 static void 5063 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 5064 struct pt_regs *regs) 5065 { 5066 /* Case of a kernel thread, nothing to dump */ 5067 if (!regs) { 5068 u64 size = 0; 5069 perf_output_put(handle, size); 5070 } else { 5071 unsigned long sp; 5072 unsigned int rem; 5073 u64 dyn_size; 5074 5075 /* 5076 * We dump: 5077 * static size 5078 * - the size requested by user or the best one we can fit 5079 * in to the sample max size 5080 * data 5081 * - user stack dump data 5082 * dynamic size 5083 * - the actual dumped size 5084 */ 5085 5086 /* Static size. */ 5087 perf_output_put(handle, dump_size); 5088 5089 /* Data. */ 5090 sp = perf_user_stack_pointer(regs); 5091 rem = __output_copy_user(handle, (void *) sp, dump_size); 5092 dyn_size = dump_size - rem; 5093 5094 perf_output_skip(handle, rem); 5095 5096 /* Dynamic size. */ 5097 perf_output_put(handle, dyn_size); 5098 } 5099 } 5100 5101 static void __perf_event_header__init_id(struct perf_event_header *header, 5102 struct perf_sample_data *data, 5103 struct perf_event *event) 5104 { 5105 u64 sample_type = event->attr.sample_type; 5106 5107 data->type = sample_type; 5108 header->size += event->id_header_size; 5109 5110 if (sample_type & PERF_SAMPLE_TID) { 5111 /* namespace issues */ 5112 data->tid_entry.pid = perf_event_pid(event, current); 5113 data->tid_entry.tid = perf_event_tid(event, current); 5114 } 5115 5116 if (sample_type & PERF_SAMPLE_TIME) 5117 data->time = perf_event_clock(event); 5118 5119 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 5120 data->id = primary_event_id(event); 5121 5122 if (sample_type & PERF_SAMPLE_STREAM_ID) 5123 data->stream_id = event->id; 5124 5125 if (sample_type & PERF_SAMPLE_CPU) { 5126 data->cpu_entry.cpu = raw_smp_processor_id(); 5127 data->cpu_entry.reserved = 0; 5128 } 5129 } 5130 5131 void perf_event_header__init_id(struct perf_event_header *header, 5132 struct perf_sample_data *data, 5133 struct perf_event *event) 5134 { 5135 if (event->attr.sample_id_all) 5136 __perf_event_header__init_id(header, data, event); 5137 } 5138 5139 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 5140 struct perf_sample_data *data) 5141 { 5142 u64 sample_type = data->type; 5143 5144 if (sample_type & PERF_SAMPLE_TID) 5145 perf_output_put(handle, data->tid_entry); 5146 5147 if (sample_type & PERF_SAMPLE_TIME) 5148 perf_output_put(handle, data->time); 5149 5150 if (sample_type & PERF_SAMPLE_ID) 5151 perf_output_put(handle, data->id); 5152 5153 if (sample_type & PERF_SAMPLE_STREAM_ID) 5154 perf_output_put(handle, data->stream_id); 5155 5156 if (sample_type & PERF_SAMPLE_CPU) 5157 perf_output_put(handle, data->cpu_entry); 5158 5159 if (sample_type & PERF_SAMPLE_IDENTIFIER) 5160 perf_output_put(handle, data->id); 5161 } 5162 5163 void perf_event__output_id_sample(struct perf_event *event, 5164 struct perf_output_handle *handle, 5165 struct perf_sample_data *sample) 5166 { 5167 if (event->attr.sample_id_all) 5168 __perf_event__output_id_sample(handle, sample); 5169 } 5170 5171 static void perf_output_read_one(struct perf_output_handle *handle, 5172 struct perf_event *event, 5173 u64 enabled, u64 running) 5174 { 5175 u64 read_format = event->attr.read_format; 5176 u64 values[4]; 5177 int n = 0; 5178 5179 values[n++] = perf_event_count(event); 5180 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 5181 values[n++] = enabled + 5182 atomic64_read(&event->child_total_time_enabled); 5183 } 5184 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 5185 values[n++] = running + 5186 atomic64_read(&event->child_total_time_running); 5187 } 5188 if (read_format & PERF_FORMAT_ID) 5189 values[n++] = primary_event_id(event); 5190 5191 __output_copy(handle, values, n * sizeof(u64)); 5192 } 5193 5194 /* 5195 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult. 5196 */ 5197 static void perf_output_read_group(struct perf_output_handle *handle, 5198 struct perf_event *event, 5199 u64 enabled, u64 running) 5200 { 5201 struct perf_event *leader = event->group_leader, *sub; 5202 u64 read_format = event->attr.read_format; 5203 u64 values[5]; 5204 int n = 0; 5205 5206 values[n++] = 1 + leader->nr_siblings; 5207 5208 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 5209 values[n++] = enabled; 5210 5211 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 5212 values[n++] = running; 5213 5214 if (leader != event) 5215 leader->pmu->read(leader); 5216 5217 values[n++] = perf_event_count(leader); 5218 if (read_format & PERF_FORMAT_ID) 5219 values[n++] = primary_event_id(leader); 5220 5221 __output_copy(handle, values, n * sizeof(u64)); 5222 5223 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 5224 n = 0; 5225 5226 if ((sub != event) && 5227 (sub->state == PERF_EVENT_STATE_ACTIVE)) 5228 sub->pmu->read(sub); 5229 5230 values[n++] = perf_event_count(sub); 5231 if (read_format & PERF_FORMAT_ID) 5232 values[n++] = primary_event_id(sub); 5233 5234 __output_copy(handle, values, n * sizeof(u64)); 5235 } 5236 } 5237 5238 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 5239 PERF_FORMAT_TOTAL_TIME_RUNNING) 5240 5241 static void perf_output_read(struct perf_output_handle *handle, 5242 struct perf_event *event) 5243 { 5244 u64 enabled = 0, running = 0, now; 5245 u64 read_format = event->attr.read_format; 5246 5247 /* 5248 * compute total_time_enabled, total_time_running 5249 * based on snapshot values taken when the event 5250 * was last scheduled in. 5251 * 5252 * we cannot simply called update_context_time() 5253 * because of locking issue as we are called in 5254 * NMI context 5255 */ 5256 if (read_format & PERF_FORMAT_TOTAL_TIMES) 5257 calc_timer_values(event, &now, &enabled, &running); 5258 5259 if (event->attr.read_format & PERF_FORMAT_GROUP) 5260 perf_output_read_group(handle, event, enabled, running); 5261 else 5262 perf_output_read_one(handle, event, enabled, running); 5263 } 5264 5265 void perf_output_sample(struct perf_output_handle *handle, 5266 struct perf_event_header *header, 5267 struct perf_sample_data *data, 5268 struct perf_event *event) 5269 { 5270 u64 sample_type = data->type; 5271 5272 perf_output_put(handle, *header); 5273 5274 if (sample_type & PERF_SAMPLE_IDENTIFIER) 5275 perf_output_put(handle, data->id); 5276 5277 if (sample_type & PERF_SAMPLE_IP) 5278 perf_output_put(handle, data->ip); 5279 5280 if (sample_type & PERF_SAMPLE_TID) 5281 perf_output_put(handle, data->tid_entry); 5282 5283 if (sample_type & PERF_SAMPLE_TIME) 5284 perf_output_put(handle, data->time); 5285 5286 if (sample_type & PERF_SAMPLE_ADDR) 5287 perf_output_put(handle, data->addr); 5288 5289 if (sample_type & PERF_SAMPLE_ID) 5290 perf_output_put(handle, data->id); 5291 5292 if (sample_type & PERF_SAMPLE_STREAM_ID) 5293 perf_output_put(handle, data->stream_id); 5294 5295 if (sample_type & PERF_SAMPLE_CPU) 5296 perf_output_put(handle, data->cpu_entry); 5297 5298 if (sample_type & PERF_SAMPLE_PERIOD) 5299 perf_output_put(handle, data->period); 5300 5301 if (sample_type & PERF_SAMPLE_READ) 5302 perf_output_read(handle, event); 5303 5304 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 5305 if (data->callchain) { 5306 int size = 1; 5307 5308 if (data->callchain) 5309 size += data->callchain->nr; 5310 5311 size *= sizeof(u64); 5312 5313 __output_copy(handle, data->callchain, size); 5314 } else { 5315 u64 nr = 0; 5316 perf_output_put(handle, nr); 5317 } 5318 } 5319 5320 if (sample_type & PERF_SAMPLE_RAW) { 5321 if (data->raw) { 5322 u32 raw_size = data->raw->size; 5323 u32 real_size = round_up(raw_size + sizeof(u32), 5324 sizeof(u64)) - sizeof(u32); 5325 u64 zero = 0; 5326 5327 perf_output_put(handle, real_size); 5328 __output_copy(handle, data->raw->data, raw_size); 5329 if (real_size - raw_size) 5330 __output_copy(handle, &zero, real_size - raw_size); 5331 } else { 5332 struct { 5333 u32 size; 5334 u32 data; 5335 } raw = { 5336 .size = sizeof(u32), 5337 .data = 0, 5338 }; 5339 perf_output_put(handle, raw); 5340 } 5341 } 5342 5343 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 5344 if (data->br_stack) { 5345 size_t size; 5346 5347 size = data->br_stack->nr 5348 * sizeof(struct perf_branch_entry); 5349 5350 perf_output_put(handle, data->br_stack->nr); 5351 perf_output_copy(handle, data->br_stack->entries, size); 5352 } else { 5353 /* 5354 * we always store at least the value of nr 5355 */ 5356 u64 nr = 0; 5357 perf_output_put(handle, nr); 5358 } 5359 } 5360 5361 if (sample_type & PERF_SAMPLE_REGS_USER) { 5362 u64 abi = data->regs_user.abi; 5363 5364 /* 5365 * If there are no regs to dump, notice it through 5366 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 5367 */ 5368 perf_output_put(handle, abi); 5369 5370 if (abi) { 5371 u64 mask = event->attr.sample_regs_user; 5372 perf_output_sample_regs(handle, 5373 data->regs_user.regs, 5374 mask); 5375 } 5376 } 5377 5378 if (sample_type & PERF_SAMPLE_STACK_USER) { 5379 perf_output_sample_ustack(handle, 5380 data->stack_user_size, 5381 data->regs_user.regs); 5382 } 5383 5384 if (sample_type & PERF_SAMPLE_WEIGHT) 5385 perf_output_put(handle, data->weight); 5386 5387 if (sample_type & PERF_SAMPLE_DATA_SRC) 5388 perf_output_put(handle, data->data_src.val); 5389 5390 if (sample_type & PERF_SAMPLE_TRANSACTION) 5391 perf_output_put(handle, data->txn); 5392 5393 if (sample_type & PERF_SAMPLE_REGS_INTR) { 5394 u64 abi = data->regs_intr.abi; 5395 /* 5396 * If there are no regs to dump, notice it through 5397 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 5398 */ 5399 perf_output_put(handle, abi); 5400 5401 if (abi) { 5402 u64 mask = event->attr.sample_regs_intr; 5403 5404 perf_output_sample_regs(handle, 5405 data->regs_intr.regs, 5406 mask); 5407 } 5408 } 5409 5410 if (!event->attr.watermark) { 5411 int wakeup_events = event->attr.wakeup_events; 5412 5413 if (wakeup_events) { 5414 struct ring_buffer *rb = handle->rb; 5415 int events = local_inc_return(&rb->events); 5416 5417 if (events >= wakeup_events) { 5418 local_sub(wakeup_events, &rb->events); 5419 local_inc(&rb->wakeup); 5420 } 5421 } 5422 } 5423 } 5424 5425 void perf_prepare_sample(struct perf_event_header *header, 5426 struct perf_sample_data *data, 5427 struct perf_event *event, 5428 struct pt_regs *regs) 5429 { 5430 u64 sample_type = event->attr.sample_type; 5431 5432 header->type = PERF_RECORD_SAMPLE; 5433 header->size = sizeof(*header) + event->header_size; 5434 5435 header->misc = 0; 5436 header->misc |= perf_misc_flags(regs); 5437 5438 __perf_event_header__init_id(header, data, event); 5439 5440 if (sample_type & PERF_SAMPLE_IP) 5441 data->ip = perf_instruction_pointer(regs); 5442 5443 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 5444 int size = 1; 5445 5446 data->callchain = perf_callchain(event, regs); 5447 5448 if (data->callchain) 5449 size += data->callchain->nr; 5450 5451 header->size += size * sizeof(u64); 5452 } 5453 5454 if (sample_type & PERF_SAMPLE_RAW) { 5455 int size = sizeof(u32); 5456 5457 if (data->raw) 5458 size += data->raw->size; 5459 else 5460 size += sizeof(u32); 5461 5462 header->size += round_up(size, sizeof(u64)); 5463 } 5464 5465 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 5466 int size = sizeof(u64); /* nr */ 5467 if (data->br_stack) { 5468 size += data->br_stack->nr 5469 * sizeof(struct perf_branch_entry); 5470 } 5471 header->size += size; 5472 } 5473 5474 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER)) 5475 perf_sample_regs_user(&data->regs_user, regs, 5476 &data->regs_user_copy); 5477 5478 if (sample_type & PERF_SAMPLE_REGS_USER) { 5479 /* regs dump ABI info */ 5480 int size = sizeof(u64); 5481 5482 if (data->regs_user.regs) { 5483 u64 mask = event->attr.sample_regs_user; 5484 size += hweight64(mask) * sizeof(u64); 5485 } 5486 5487 header->size += size; 5488 } 5489 5490 if (sample_type & PERF_SAMPLE_STACK_USER) { 5491 /* 5492 * Either we need PERF_SAMPLE_STACK_USER bit to be allways 5493 * processed as the last one or have additional check added 5494 * in case new sample type is added, because we could eat 5495 * up the rest of the sample size. 5496 */ 5497 u16 stack_size = event->attr.sample_stack_user; 5498 u16 size = sizeof(u64); 5499 5500 stack_size = perf_sample_ustack_size(stack_size, header->size, 5501 data->regs_user.regs); 5502 5503 /* 5504 * If there is something to dump, add space for the dump 5505 * itself and for the field that tells the dynamic size, 5506 * which is how many have been actually dumped. 5507 */ 5508 if (stack_size) 5509 size += sizeof(u64) + stack_size; 5510 5511 data->stack_user_size = stack_size; 5512 header->size += size; 5513 } 5514 5515 if (sample_type & PERF_SAMPLE_REGS_INTR) { 5516 /* regs dump ABI info */ 5517 int size = sizeof(u64); 5518 5519 perf_sample_regs_intr(&data->regs_intr, regs); 5520 5521 if (data->regs_intr.regs) { 5522 u64 mask = event->attr.sample_regs_intr; 5523 5524 size += hweight64(mask) * sizeof(u64); 5525 } 5526 5527 header->size += size; 5528 } 5529 } 5530 5531 void perf_event_output(struct perf_event *event, 5532 struct perf_sample_data *data, 5533 struct pt_regs *regs) 5534 { 5535 struct perf_output_handle handle; 5536 struct perf_event_header header; 5537 5538 /* protect the callchain buffers */ 5539 rcu_read_lock(); 5540 5541 perf_prepare_sample(&header, data, event, regs); 5542 5543 if (perf_output_begin(&handle, event, header.size)) 5544 goto exit; 5545 5546 perf_output_sample(&handle, &header, data, event); 5547 5548 perf_output_end(&handle); 5549 5550 exit: 5551 rcu_read_unlock(); 5552 } 5553 5554 /* 5555 * read event_id 5556 */ 5557 5558 struct perf_read_event { 5559 struct perf_event_header header; 5560 5561 u32 pid; 5562 u32 tid; 5563 }; 5564 5565 static void 5566 perf_event_read_event(struct perf_event *event, 5567 struct task_struct *task) 5568 { 5569 struct perf_output_handle handle; 5570 struct perf_sample_data sample; 5571 struct perf_read_event read_event = { 5572 .header = { 5573 .type = PERF_RECORD_READ, 5574 .misc = 0, 5575 .size = sizeof(read_event) + event->read_size, 5576 }, 5577 .pid = perf_event_pid(event, task), 5578 .tid = perf_event_tid(event, task), 5579 }; 5580 int ret; 5581 5582 perf_event_header__init_id(&read_event.header, &sample, event); 5583 ret = perf_output_begin(&handle, event, read_event.header.size); 5584 if (ret) 5585 return; 5586 5587 perf_output_put(&handle, read_event); 5588 perf_output_read(&handle, event); 5589 perf_event__output_id_sample(event, &handle, &sample); 5590 5591 perf_output_end(&handle); 5592 } 5593 5594 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data); 5595 5596 static void 5597 perf_event_aux_ctx(struct perf_event_context *ctx, 5598 perf_event_aux_output_cb output, 5599 void *data) 5600 { 5601 struct perf_event *event; 5602 5603 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 5604 if (event->state < PERF_EVENT_STATE_INACTIVE) 5605 continue; 5606 if (!event_filter_match(event)) 5607 continue; 5608 output(event, data); 5609 } 5610 } 5611 5612 static void 5613 perf_event_aux_task_ctx(perf_event_aux_output_cb output, void *data, 5614 struct perf_event_context *task_ctx) 5615 { 5616 rcu_read_lock(); 5617 preempt_disable(); 5618 perf_event_aux_ctx(task_ctx, output, data); 5619 preempt_enable(); 5620 rcu_read_unlock(); 5621 } 5622 5623 static void 5624 perf_event_aux(perf_event_aux_output_cb output, void *data, 5625 struct perf_event_context *task_ctx) 5626 { 5627 struct perf_cpu_context *cpuctx; 5628 struct perf_event_context *ctx; 5629 struct pmu *pmu; 5630 int ctxn; 5631 5632 /* 5633 * If we have task_ctx != NULL we only notify 5634 * the task context itself. The task_ctx is set 5635 * only for EXIT events before releasing task 5636 * context. 5637 */ 5638 if (task_ctx) { 5639 perf_event_aux_task_ctx(output, data, task_ctx); 5640 return; 5641 } 5642 5643 rcu_read_lock(); 5644 list_for_each_entry_rcu(pmu, &pmus, entry) { 5645 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context); 5646 if (cpuctx->unique_pmu != pmu) 5647 goto next; 5648 perf_event_aux_ctx(&cpuctx->ctx, output, data); 5649 ctxn = pmu->task_ctx_nr; 5650 if (ctxn < 0) 5651 goto next; 5652 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 5653 if (ctx) 5654 perf_event_aux_ctx(ctx, output, data); 5655 next: 5656 put_cpu_ptr(pmu->pmu_cpu_context); 5657 } 5658 rcu_read_unlock(); 5659 } 5660 5661 /* 5662 * task tracking -- fork/exit 5663 * 5664 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 5665 */ 5666 5667 struct perf_task_event { 5668 struct task_struct *task; 5669 struct perf_event_context *task_ctx; 5670 5671 struct { 5672 struct perf_event_header header; 5673 5674 u32 pid; 5675 u32 ppid; 5676 u32 tid; 5677 u32 ptid; 5678 u64 time; 5679 } event_id; 5680 }; 5681 5682 static int perf_event_task_match(struct perf_event *event) 5683 { 5684 return event->attr.comm || event->attr.mmap || 5685 event->attr.mmap2 || event->attr.mmap_data || 5686 event->attr.task; 5687 } 5688 5689 static void perf_event_task_output(struct perf_event *event, 5690 void *data) 5691 { 5692 struct perf_task_event *task_event = data; 5693 struct perf_output_handle handle; 5694 struct perf_sample_data sample; 5695 struct task_struct *task = task_event->task; 5696 int ret, size = task_event->event_id.header.size; 5697 5698 if (!perf_event_task_match(event)) 5699 return; 5700 5701 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 5702 5703 ret = perf_output_begin(&handle, event, 5704 task_event->event_id.header.size); 5705 if (ret) 5706 goto out; 5707 5708 task_event->event_id.pid = perf_event_pid(event, task); 5709 task_event->event_id.ppid = perf_event_pid(event, current); 5710 5711 task_event->event_id.tid = perf_event_tid(event, task); 5712 task_event->event_id.ptid = perf_event_tid(event, current); 5713 5714 task_event->event_id.time = perf_event_clock(event); 5715 5716 perf_output_put(&handle, task_event->event_id); 5717 5718 perf_event__output_id_sample(event, &handle, &sample); 5719 5720 perf_output_end(&handle); 5721 out: 5722 task_event->event_id.header.size = size; 5723 } 5724 5725 static void perf_event_task(struct task_struct *task, 5726 struct perf_event_context *task_ctx, 5727 int new) 5728 { 5729 struct perf_task_event task_event; 5730 5731 if (!atomic_read(&nr_comm_events) && 5732 !atomic_read(&nr_mmap_events) && 5733 !atomic_read(&nr_task_events)) 5734 return; 5735 5736 task_event = (struct perf_task_event){ 5737 .task = task, 5738 .task_ctx = task_ctx, 5739 .event_id = { 5740 .header = { 5741 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 5742 .misc = 0, 5743 .size = sizeof(task_event.event_id), 5744 }, 5745 /* .pid */ 5746 /* .ppid */ 5747 /* .tid */ 5748 /* .ptid */ 5749 /* .time */ 5750 }, 5751 }; 5752 5753 perf_event_aux(perf_event_task_output, 5754 &task_event, 5755 task_ctx); 5756 } 5757 5758 void perf_event_fork(struct task_struct *task) 5759 { 5760 perf_event_task(task, NULL, 1); 5761 } 5762 5763 /* 5764 * comm tracking 5765 */ 5766 5767 struct perf_comm_event { 5768 struct task_struct *task; 5769 char *comm; 5770 int comm_size; 5771 5772 struct { 5773 struct perf_event_header header; 5774 5775 u32 pid; 5776 u32 tid; 5777 } event_id; 5778 }; 5779 5780 static int perf_event_comm_match(struct perf_event *event) 5781 { 5782 return event->attr.comm; 5783 } 5784 5785 static void perf_event_comm_output(struct perf_event *event, 5786 void *data) 5787 { 5788 struct perf_comm_event *comm_event = data; 5789 struct perf_output_handle handle; 5790 struct perf_sample_data sample; 5791 int size = comm_event->event_id.header.size; 5792 int ret; 5793 5794 if (!perf_event_comm_match(event)) 5795 return; 5796 5797 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 5798 ret = perf_output_begin(&handle, event, 5799 comm_event->event_id.header.size); 5800 5801 if (ret) 5802 goto out; 5803 5804 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 5805 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 5806 5807 perf_output_put(&handle, comm_event->event_id); 5808 __output_copy(&handle, comm_event->comm, 5809 comm_event->comm_size); 5810 5811 perf_event__output_id_sample(event, &handle, &sample); 5812 5813 perf_output_end(&handle); 5814 out: 5815 comm_event->event_id.header.size = size; 5816 } 5817 5818 static void perf_event_comm_event(struct perf_comm_event *comm_event) 5819 { 5820 char comm[TASK_COMM_LEN]; 5821 unsigned int size; 5822 5823 memset(comm, 0, sizeof(comm)); 5824 strlcpy(comm, comm_event->task->comm, sizeof(comm)); 5825 size = ALIGN(strlen(comm)+1, sizeof(u64)); 5826 5827 comm_event->comm = comm; 5828 comm_event->comm_size = size; 5829 5830 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 5831 5832 perf_event_aux(perf_event_comm_output, 5833 comm_event, 5834 NULL); 5835 } 5836 5837 void perf_event_comm(struct task_struct *task, bool exec) 5838 { 5839 struct perf_comm_event comm_event; 5840 5841 if (!atomic_read(&nr_comm_events)) 5842 return; 5843 5844 comm_event = (struct perf_comm_event){ 5845 .task = task, 5846 /* .comm */ 5847 /* .comm_size */ 5848 .event_id = { 5849 .header = { 5850 .type = PERF_RECORD_COMM, 5851 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 5852 /* .size */ 5853 }, 5854 /* .pid */ 5855 /* .tid */ 5856 }, 5857 }; 5858 5859 perf_event_comm_event(&comm_event); 5860 } 5861 5862 /* 5863 * mmap tracking 5864 */ 5865 5866 struct perf_mmap_event { 5867 struct vm_area_struct *vma; 5868 5869 const char *file_name; 5870 int file_size; 5871 int maj, min; 5872 u64 ino; 5873 u64 ino_generation; 5874 u32 prot, flags; 5875 5876 struct { 5877 struct perf_event_header header; 5878 5879 u32 pid; 5880 u32 tid; 5881 u64 start; 5882 u64 len; 5883 u64 pgoff; 5884 } event_id; 5885 }; 5886 5887 static int perf_event_mmap_match(struct perf_event *event, 5888 void *data) 5889 { 5890 struct perf_mmap_event *mmap_event = data; 5891 struct vm_area_struct *vma = mmap_event->vma; 5892 int executable = vma->vm_flags & VM_EXEC; 5893 5894 return (!executable && event->attr.mmap_data) || 5895 (executable && (event->attr.mmap || event->attr.mmap2)); 5896 } 5897 5898 static void perf_event_mmap_output(struct perf_event *event, 5899 void *data) 5900 { 5901 struct perf_mmap_event *mmap_event = data; 5902 struct perf_output_handle handle; 5903 struct perf_sample_data sample; 5904 int size = mmap_event->event_id.header.size; 5905 int ret; 5906 5907 if (!perf_event_mmap_match(event, data)) 5908 return; 5909 5910 if (event->attr.mmap2) { 5911 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 5912 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 5913 mmap_event->event_id.header.size += sizeof(mmap_event->min); 5914 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 5915 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 5916 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 5917 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 5918 } 5919 5920 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 5921 ret = perf_output_begin(&handle, event, 5922 mmap_event->event_id.header.size); 5923 if (ret) 5924 goto out; 5925 5926 mmap_event->event_id.pid = perf_event_pid(event, current); 5927 mmap_event->event_id.tid = perf_event_tid(event, current); 5928 5929 perf_output_put(&handle, mmap_event->event_id); 5930 5931 if (event->attr.mmap2) { 5932 perf_output_put(&handle, mmap_event->maj); 5933 perf_output_put(&handle, mmap_event->min); 5934 perf_output_put(&handle, mmap_event->ino); 5935 perf_output_put(&handle, mmap_event->ino_generation); 5936 perf_output_put(&handle, mmap_event->prot); 5937 perf_output_put(&handle, mmap_event->flags); 5938 } 5939 5940 __output_copy(&handle, mmap_event->file_name, 5941 mmap_event->file_size); 5942 5943 perf_event__output_id_sample(event, &handle, &sample); 5944 5945 perf_output_end(&handle); 5946 out: 5947 mmap_event->event_id.header.size = size; 5948 } 5949 5950 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 5951 { 5952 struct vm_area_struct *vma = mmap_event->vma; 5953 struct file *file = vma->vm_file; 5954 int maj = 0, min = 0; 5955 u64 ino = 0, gen = 0; 5956 u32 prot = 0, flags = 0; 5957 unsigned int size; 5958 char tmp[16]; 5959 char *buf = NULL; 5960 char *name; 5961 5962 if (file) { 5963 struct inode *inode; 5964 dev_t dev; 5965 5966 buf = kmalloc(PATH_MAX, GFP_KERNEL); 5967 if (!buf) { 5968 name = "//enomem"; 5969 goto cpy_name; 5970 } 5971 /* 5972 * d_path() works from the end of the rb backwards, so we 5973 * need to add enough zero bytes after the string to handle 5974 * the 64bit alignment we do later. 5975 */ 5976 name = file_path(file, buf, PATH_MAX - sizeof(u64)); 5977 if (IS_ERR(name)) { 5978 name = "//toolong"; 5979 goto cpy_name; 5980 } 5981 inode = file_inode(vma->vm_file); 5982 dev = inode->i_sb->s_dev; 5983 ino = inode->i_ino; 5984 gen = inode->i_generation; 5985 maj = MAJOR(dev); 5986 min = MINOR(dev); 5987 5988 if (vma->vm_flags & VM_READ) 5989 prot |= PROT_READ; 5990 if (vma->vm_flags & VM_WRITE) 5991 prot |= PROT_WRITE; 5992 if (vma->vm_flags & VM_EXEC) 5993 prot |= PROT_EXEC; 5994 5995 if (vma->vm_flags & VM_MAYSHARE) 5996 flags = MAP_SHARED; 5997 else 5998 flags = MAP_PRIVATE; 5999 6000 if (vma->vm_flags & VM_DENYWRITE) 6001 flags |= MAP_DENYWRITE; 6002 if (vma->vm_flags & VM_MAYEXEC) 6003 flags |= MAP_EXECUTABLE; 6004 if (vma->vm_flags & VM_LOCKED) 6005 flags |= MAP_LOCKED; 6006 if (vma->vm_flags & VM_HUGETLB) 6007 flags |= MAP_HUGETLB; 6008 6009 goto got_name; 6010 } else { 6011 if (vma->vm_ops && vma->vm_ops->name) { 6012 name = (char *) vma->vm_ops->name(vma); 6013 if (name) 6014 goto cpy_name; 6015 } 6016 6017 name = (char *)arch_vma_name(vma); 6018 if (name) 6019 goto cpy_name; 6020 6021 if (vma->vm_start <= vma->vm_mm->start_brk && 6022 vma->vm_end >= vma->vm_mm->brk) { 6023 name = "[heap]"; 6024 goto cpy_name; 6025 } 6026 if (vma->vm_start <= vma->vm_mm->start_stack && 6027 vma->vm_end >= vma->vm_mm->start_stack) { 6028 name = "[stack]"; 6029 goto cpy_name; 6030 } 6031 6032 name = "//anon"; 6033 goto cpy_name; 6034 } 6035 6036 cpy_name: 6037 strlcpy(tmp, name, sizeof(tmp)); 6038 name = tmp; 6039 got_name: 6040 /* 6041 * Since our buffer works in 8 byte units we need to align our string 6042 * size to a multiple of 8. However, we must guarantee the tail end is 6043 * zero'd out to avoid leaking random bits to userspace. 6044 */ 6045 size = strlen(name)+1; 6046 while (!IS_ALIGNED(size, sizeof(u64))) 6047 name[size++] = '\0'; 6048 6049 mmap_event->file_name = name; 6050 mmap_event->file_size = size; 6051 mmap_event->maj = maj; 6052 mmap_event->min = min; 6053 mmap_event->ino = ino; 6054 mmap_event->ino_generation = gen; 6055 mmap_event->prot = prot; 6056 mmap_event->flags = flags; 6057 6058 if (!(vma->vm_flags & VM_EXEC)) 6059 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 6060 6061 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 6062 6063 perf_event_aux(perf_event_mmap_output, 6064 mmap_event, 6065 NULL); 6066 6067 kfree(buf); 6068 } 6069 6070 void perf_event_mmap(struct vm_area_struct *vma) 6071 { 6072 struct perf_mmap_event mmap_event; 6073 6074 if (!atomic_read(&nr_mmap_events)) 6075 return; 6076 6077 mmap_event = (struct perf_mmap_event){ 6078 .vma = vma, 6079 /* .file_name */ 6080 /* .file_size */ 6081 .event_id = { 6082 .header = { 6083 .type = PERF_RECORD_MMAP, 6084 .misc = PERF_RECORD_MISC_USER, 6085 /* .size */ 6086 }, 6087 /* .pid */ 6088 /* .tid */ 6089 .start = vma->vm_start, 6090 .len = vma->vm_end - vma->vm_start, 6091 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 6092 }, 6093 /* .maj (attr_mmap2 only) */ 6094 /* .min (attr_mmap2 only) */ 6095 /* .ino (attr_mmap2 only) */ 6096 /* .ino_generation (attr_mmap2 only) */ 6097 /* .prot (attr_mmap2 only) */ 6098 /* .flags (attr_mmap2 only) */ 6099 }; 6100 6101 perf_event_mmap_event(&mmap_event); 6102 } 6103 6104 void perf_event_aux_event(struct perf_event *event, unsigned long head, 6105 unsigned long size, u64 flags) 6106 { 6107 struct perf_output_handle handle; 6108 struct perf_sample_data sample; 6109 struct perf_aux_event { 6110 struct perf_event_header header; 6111 u64 offset; 6112 u64 size; 6113 u64 flags; 6114 } rec = { 6115 .header = { 6116 .type = PERF_RECORD_AUX, 6117 .misc = 0, 6118 .size = sizeof(rec), 6119 }, 6120 .offset = head, 6121 .size = size, 6122 .flags = flags, 6123 }; 6124 int ret; 6125 6126 perf_event_header__init_id(&rec.header, &sample, event); 6127 ret = perf_output_begin(&handle, event, rec.header.size); 6128 6129 if (ret) 6130 return; 6131 6132 perf_output_put(&handle, rec); 6133 perf_event__output_id_sample(event, &handle, &sample); 6134 6135 perf_output_end(&handle); 6136 } 6137 6138 /* 6139 * Lost/dropped samples logging 6140 */ 6141 void perf_log_lost_samples(struct perf_event *event, u64 lost) 6142 { 6143 struct perf_output_handle handle; 6144 struct perf_sample_data sample; 6145 int ret; 6146 6147 struct { 6148 struct perf_event_header header; 6149 u64 lost; 6150 } lost_samples_event = { 6151 .header = { 6152 .type = PERF_RECORD_LOST_SAMPLES, 6153 .misc = 0, 6154 .size = sizeof(lost_samples_event), 6155 }, 6156 .lost = lost, 6157 }; 6158 6159 perf_event_header__init_id(&lost_samples_event.header, &sample, event); 6160 6161 ret = perf_output_begin(&handle, event, 6162 lost_samples_event.header.size); 6163 if (ret) 6164 return; 6165 6166 perf_output_put(&handle, lost_samples_event); 6167 perf_event__output_id_sample(event, &handle, &sample); 6168 perf_output_end(&handle); 6169 } 6170 6171 /* 6172 * context_switch tracking 6173 */ 6174 6175 struct perf_switch_event { 6176 struct task_struct *task; 6177 struct task_struct *next_prev; 6178 6179 struct { 6180 struct perf_event_header header; 6181 u32 next_prev_pid; 6182 u32 next_prev_tid; 6183 } event_id; 6184 }; 6185 6186 static int perf_event_switch_match(struct perf_event *event) 6187 { 6188 return event->attr.context_switch; 6189 } 6190 6191 static void perf_event_switch_output(struct perf_event *event, void *data) 6192 { 6193 struct perf_switch_event *se = data; 6194 struct perf_output_handle handle; 6195 struct perf_sample_data sample; 6196 int ret; 6197 6198 if (!perf_event_switch_match(event)) 6199 return; 6200 6201 /* Only CPU-wide events are allowed to see next/prev pid/tid */ 6202 if (event->ctx->task) { 6203 se->event_id.header.type = PERF_RECORD_SWITCH; 6204 se->event_id.header.size = sizeof(se->event_id.header); 6205 } else { 6206 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE; 6207 se->event_id.header.size = sizeof(se->event_id); 6208 se->event_id.next_prev_pid = 6209 perf_event_pid(event, se->next_prev); 6210 se->event_id.next_prev_tid = 6211 perf_event_tid(event, se->next_prev); 6212 } 6213 6214 perf_event_header__init_id(&se->event_id.header, &sample, event); 6215 6216 ret = perf_output_begin(&handle, event, se->event_id.header.size); 6217 if (ret) 6218 return; 6219 6220 if (event->ctx->task) 6221 perf_output_put(&handle, se->event_id.header); 6222 else 6223 perf_output_put(&handle, se->event_id); 6224 6225 perf_event__output_id_sample(event, &handle, &sample); 6226 6227 perf_output_end(&handle); 6228 } 6229 6230 static void perf_event_switch(struct task_struct *task, 6231 struct task_struct *next_prev, bool sched_in) 6232 { 6233 struct perf_switch_event switch_event; 6234 6235 /* N.B. caller checks nr_switch_events != 0 */ 6236 6237 switch_event = (struct perf_switch_event){ 6238 .task = task, 6239 .next_prev = next_prev, 6240 .event_id = { 6241 .header = { 6242 /* .type */ 6243 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT, 6244 /* .size */ 6245 }, 6246 /* .next_prev_pid */ 6247 /* .next_prev_tid */ 6248 }, 6249 }; 6250 6251 perf_event_aux(perf_event_switch_output, 6252 &switch_event, 6253 NULL); 6254 } 6255 6256 /* 6257 * IRQ throttle logging 6258 */ 6259 6260 static void perf_log_throttle(struct perf_event *event, int enable) 6261 { 6262 struct perf_output_handle handle; 6263 struct perf_sample_data sample; 6264 int ret; 6265 6266 struct { 6267 struct perf_event_header header; 6268 u64 time; 6269 u64 id; 6270 u64 stream_id; 6271 } throttle_event = { 6272 .header = { 6273 .type = PERF_RECORD_THROTTLE, 6274 .misc = 0, 6275 .size = sizeof(throttle_event), 6276 }, 6277 .time = perf_event_clock(event), 6278 .id = primary_event_id(event), 6279 .stream_id = event->id, 6280 }; 6281 6282 if (enable) 6283 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 6284 6285 perf_event_header__init_id(&throttle_event.header, &sample, event); 6286 6287 ret = perf_output_begin(&handle, event, 6288 throttle_event.header.size); 6289 if (ret) 6290 return; 6291 6292 perf_output_put(&handle, throttle_event); 6293 perf_event__output_id_sample(event, &handle, &sample); 6294 perf_output_end(&handle); 6295 } 6296 6297 static void perf_log_itrace_start(struct perf_event *event) 6298 { 6299 struct perf_output_handle handle; 6300 struct perf_sample_data sample; 6301 struct perf_aux_event { 6302 struct perf_event_header header; 6303 u32 pid; 6304 u32 tid; 6305 } rec; 6306 int ret; 6307 6308 if (event->parent) 6309 event = event->parent; 6310 6311 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || 6312 event->hw.itrace_started) 6313 return; 6314 6315 rec.header.type = PERF_RECORD_ITRACE_START; 6316 rec.header.misc = 0; 6317 rec.header.size = sizeof(rec); 6318 rec.pid = perf_event_pid(event, current); 6319 rec.tid = perf_event_tid(event, current); 6320 6321 perf_event_header__init_id(&rec.header, &sample, event); 6322 ret = perf_output_begin(&handle, event, rec.header.size); 6323 6324 if (ret) 6325 return; 6326 6327 perf_output_put(&handle, rec); 6328 perf_event__output_id_sample(event, &handle, &sample); 6329 6330 perf_output_end(&handle); 6331 } 6332 6333 /* 6334 * Generic event overflow handling, sampling. 6335 */ 6336 6337 static int __perf_event_overflow(struct perf_event *event, 6338 int throttle, struct perf_sample_data *data, 6339 struct pt_regs *regs) 6340 { 6341 int events = atomic_read(&event->event_limit); 6342 struct hw_perf_event *hwc = &event->hw; 6343 u64 seq; 6344 int ret = 0; 6345 6346 /* 6347 * Non-sampling counters might still use the PMI to fold short 6348 * hardware counters, ignore those. 6349 */ 6350 if (unlikely(!is_sampling_event(event))) 6351 return 0; 6352 6353 seq = __this_cpu_read(perf_throttled_seq); 6354 if (seq != hwc->interrupts_seq) { 6355 hwc->interrupts_seq = seq; 6356 hwc->interrupts = 1; 6357 } else { 6358 hwc->interrupts++; 6359 if (unlikely(throttle 6360 && hwc->interrupts >= max_samples_per_tick)) { 6361 __this_cpu_inc(perf_throttled_count); 6362 hwc->interrupts = MAX_INTERRUPTS; 6363 perf_log_throttle(event, 0); 6364 tick_nohz_full_kick(); 6365 ret = 1; 6366 } 6367 } 6368 6369 if (event->attr.freq) { 6370 u64 now = perf_clock(); 6371 s64 delta = now - hwc->freq_time_stamp; 6372 6373 hwc->freq_time_stamp = now; 6374 6375 if (delta > 0 && delta < 2*TICK_NSEC) 6376 perf_adjust_period(event, delta, hwc->last_period, true); 6377 } 6378 6379 /* 6380 * XXX event_limit might not quite work as expected on inherited 6381 * events 6382 */ 6383 6384 event->pending_kill = POLL_IN; 6385 if (events && atomic_dec_and_test(&event->event_limit)) { 6386 ret = 1; 6387 event->pending_kill = POLL_HUP; 6388 event->pending_disable = 1; 6389 irq_work_queue(&event->pending); 6390 } 6391 6392 if (event->overflow_handler) 6393 event->overflow_handler(event, data, regs); 6394 else 6395 perf_event_output(event, data, regs); 6396 6397 if (*perf_event_fasync(event) && event->pending_kill) { 6398 event->pending_wakeup = 1; 6399 irq_work_queue(&event->pending); 6400 } 6401 6402 return ret; 6403 } 6404 6405 int perf_event_overflow(struct perf_event *event, 6406 struct perf_sample_data *data, 6407 struct pt_regs *regs) 6408 { 6409 return __perf_event_overflow(event, 1, data, regs); 6410 } 6411 6412 /* 6413 * Generic software event infrastructure 6414 */ 6415 6416 struct swevent_htable { 6417 struct swevent_hlist *swevent_hlist; 6418 struct mutex hlist_mutex; 6419 int hlist_refcount; 6420 6421 /* Recursion avoidance in each contexts */ 6422 int recursion[PERF_NR_CONTEXTS]; 6423 }; 6424 6425 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 6426 6427 /* 6428 * We directly increment event->count and keep a second value in 6429 * event->hw.period_left to count intervals. This period event 6430 * is kept in the range [-sample_period, 0] so that we can use the 6431 * sign as trigger. 6432 */ 6433 6434 u64 perf_swevent_set_period(struct perf_event *event) 6435 { 6436 struct hw_perf_event *hwc = &event->hw; 6437 u64 period = hwc->last_period; 6438 u64 nr, offset; 6439 s64 old, val; 6440 6441 hwc->last_period = hwc->sample_period; 6442 6443 again: 6444 old = val = local64_read(&hwc->period_left); 6445 if (val < 0) 6446 return 0; 6447 6448 nr = div64_u64(period + val, period); 6449 offset = nr * period; 6450 val -= offset; 6451 if (local64_cmpxchg(&hwc->period_left, old, val) != old) 6452 goto again; 6453 6454 return nr; 6455 } 6456 6457 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 6458 struct perf_sample_data *data, 6459 struct pt_regs *regs) 6460 { 6461 struct hw_perf_event *hwc = &event->hw; 6462 int throttle = 0; 6463 6464 if (!overflow) 6465 overflow = perf_swevent_set_period(event); 6466 6467 if (hwc->interrupts == MAX_INTERRUPTS) 6468 return; 6469 6470 for (; overflow; overflow--) { 6471 if (__perf_event_overflow(event, throttle, 6472 data, regs)) { 6473 /* 6474 * We inhibit the overflow from happening when 6475 * hwc->interrupts == MAX_INTERRUPTS. 6476 */ 6477 break; 6478 } 6479 throttle = 1; 6480 } 6481 } 6482 6483 static void perf_swevent_event(struct perf_event *event, u64 nr, 6484 struct perf_sample_data *data, 6485 struct pt_regs *regs) 6486 { 6487 struct hw_perf_event *hwc = &event->hw; 6488 6489 local64_add(nr, &event->count); 6490 6491 if (!regs) 6492 return; 6493 6494 if (!is_sampling_event(event)) 6495 return; 6496 6497 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 6498 data->period = nr; 6499 return perf_swevent_overflow(event, 1, data, regs); 6500 } else 6501 data->period = event->hw.last_period; 6502 6503 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 6504 return perf_swevent_overflow(event, 1, data, regs); 6505 6506 if (local64_add_negative(nr, &hwc->period_left)) 6507 return; 6508 6509 perf_swevent_overflow(event, 0, data, regs); 6510 } 6511 6512 static int perf_exclude_event(struct perf_event *event, 6513 struct pt_regs *regs) 6514 { 6515 if (event->hw.state & PERF_HES_STOPPED) 6516 return 1; 6517 6518 if (regs) { 6519 if (event->attr.exclude_user && user_mode(regs)) 6520 return 1; 6521 6522 if (event->attr.exclude_kernel && !user_mode(regs)) 6523 return 1; 6524 } 6525 6526 return 0; 6527 } 6528 6529 static int perf_swevent_match(struct perf_event *event, 6530 enum perf_type_id type, 6531 u32 event_id, 6532 struct perf_sample_data *data, 6533 struct pt_regs *regs) 6534 { 6535 if (event->attr.type != type) 6536 return 0; 6537 6538 if (event->attr.config != event_id) 6539 return 0; 6540 6541 if (perf_exclude_event(event, regs)) 6542 return 0; 6543 6544 return 1; 6545 } 6546 6547 static inline u64 swevent_hash(u64 type, u32 event_id) 6548 { 6549 u64 val = event_id | (type << 32); 6550 6551 return hash_64(val, SWEVENT_HLIST_BITS); 6552 } 6553 6554 static inline struct hlist_head * 6555 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 6556 { 6557 u64 hash = swevent_hash(type, event_id); 6558 6559 return &hlist->heads[hash]; 6560 } 6561 6562 /* For the read side: events when they trigger */ 6563 static inline struct hlist_head * 6564 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 6565 { 6566 struct swevent_hlist *hlist; 6567 6568 hlist = rcu_dereference(swhash->swevent_hlist); 6569 if (!hlist) 6570 return NULL; 6571 6572 return __find_swevent_head(hlist, type, event_id); 6573 } 6574 6575 /* For the event head insertion and removal in the hlist */ 6576 static inline struct hlist_head * 6577 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 6578 { 6579 struct swevent_hlist *hlist; 6580 u32 event_id = event->attr.config; 6581 u64 type = event->attr.type; 6582 6583 /* 6584 * Event scheduling is always serialized against hlist allocation 6585 * and release. Which makes the protected version suitable here. 6586 * The context lock guarantees that. 6587 */ 6588 hlist = rcu_dereference_protected(swhash->swevent_hlist, 6589 lockdep_is_held(&event->ctx->lock)); 6590 if (!hlist) 6591 return NULL; 6592 6593 return __find_swevent_head(hlist, type, event_id); 6594 } 6595 6596 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 6597 u64 nr, 6598 struct perf_sample_data *data, 6599 struct pt_regs *regs) 6600 { 6601 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 6602 struct perf_event *event; 6603 struct hlist_head *head; 6604 6605 rcu_read_lock(); 6606 head = find_swevent_head_rcu(swhash, type, event_id); 6607 if (!head) 6608 goto end; 6609 6610 hlist_for_each_entry_rcu(event, head, hlist_entry) { 6611 if (perf_swevent_match(event, type, event_id, data, regs)) 6612 perf_swevent_event(event, nr, data, regs); 6613 } 6614 end: 6615 rcu_read_unlock(); 6616 } 6617 6618 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); 6619 6620 int perf_swevent_get_recursion_context(void) 6621 { 6622 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 6623 6624 return get_recursion_context(swhash->recursion); 6625 } 6626 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 6627 6628 inline void perf_swevent_put_recursion_context(int rctx) 6629 { 6630 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 6631 6632 put_recursion_context(swhash->recursion, rctx); 6633 } 6634 6635 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 6636 { 6637 struct perf_sample_data data; 6638 6639 if (WARN_ON_ONCE(!regs)) 6640 return; 6641 6642 perf_sample_data_init(&data, addr, 0); 6643 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 6644 } 6645 6646 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 6647 { 6648 int rctx; 6649 6650 preempt_disable_notrace(); 6651 rctx = perf_swevent_get_recursion_context(); 6652 if (unlikely(rctx < 0)) 6653 goto fail; 6654 6655 ___perf_sw_event(event_id, nr, regs, addr); 6656 6657 perf_swevent_put_recursion_context(rctx); 6658 fail: 6659 preempt_enable_notrace(); 6660 } 6661 6662 static void perf_swevent_read(struct perf_event *event) 6663 { 6664 } 6665 6666 static int perf_swevent_add(struct perf_event *event, int flags) 6667 { 6668 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 6669 struct hw_perf_event *hwc = &event->hw; 6670 struct hlist_head *head; 6671 6672 if (is_sampling_event(event)) { 6673 hwc->last_period = hwc->sample_period; 6674 perf_swevent_set_period(event); 6675 } 6676 6677 hwc->state = !(flags & PERF_EF_START); 6678 6679 head = find_swevent_head(swhash, event); 6680 if (WARN_ON_ONCE(!head)) 6681 return -EINVAL; 6682 6683 hlist_add_head_rcu(&event->hlist_entry, head); 6684 perf_event_update_userpage(event); 6685 6686 return 0; 6687 } 6688 6689 static void perf_swevent_del(struct perf_event *event, int flags) 6690 { 6691 hlist_del_rcu(&event->hlist_entry); 6692 } 6693 6694 static void perf_swevent_start(struct perf_event *event, int flags) 6695 { 6696 event->hw.state = 0; 6697 } 6698 6699 static void perf_swevent_stop(struct perf_event *event, int flags) 6700 { 6701 event->hw.state = PERF_HES_STOPPED; 6702 } 6703 6704 /* Deref the hlist from the update side */ 6705 static inline struct swevent_hlist * 6706 swevent_hlist_deref(struct swevent_htable *swhash) 6707 { 6708 return rcu_dereference_protected(swhash->swevent_hlist, 6709 lockdep_is_held(&swhash->hlist_mutex)); 6710 } 6711 6712 static void swevent_hlist_release(struct swevent_htable *swhash) 6713 { 6714 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 6715 6716 if (!hlist) 6717 return; 6718 6719 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 6720 kfree_rcu(hlist, rcu_head); 6721 } 6722 6723 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu) 6724 { 6725 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 6726 6727 mutex_lock(&swhash->hlist_mutex); 6728 6729 if (!--swhash->hlist_refcount) 6730 swevent_hlist_release(swhash); 6731 6732 mutex_unlock(&swhash->hlist_mutex); 6733 } 6734 6735 static void swevent_hlist_put(struct perf_event *event) 6736 { 6737 int cpu; 6738 6739 for_each_possible_cpu(cpu) 6740 swevent_hlist_put_cpu(event, cpu); 6741 } 6742 6743 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu) 6744 { 6745 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 6746 int err = 0; 6747 6748 mutex_lock(&swhash->hlist_mutex); 6749 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) { 6750 struct swevent_hlist *hlist; 6751 6752 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 6753 if (!hlist) { 6754 err = -ENOMEM; 6755 goto exit; 6756 } 6757 rcu_assign_pointer(swhash->swevent_hlist, hlist); 6758 } 6759 swhash->hlist_refcount++; 6760 exit: 6761 mutex_unlock(&swhash->hlist_mutex); 6762 6763 return err; 6764 } 6765 6766 static int swevent_hlist_get(struct perf_event *event) 6767 { 6768 int err; 6769 int cpu, failed_cpu; 6770 6771 get_online_cpus(); 6772 for_each_possible_cpu(cpu) { 6773 err = swevent_hlist_get_cpu(event, cpu); 6774 if (err) { 6775 failed_cpu = cpu; 6776 goto fail; 6777 } 6778 } 6779 put_online_cpus(); 6780 6781 return 0; 6782 fail: 6783 for_each_possible_cpu(cpu) { 6784 if (cpu == failed_cpu) 6785 break; 6786 swevent_hlist_put_cpu(event, cpu); 6787 } 6788 6789 put_online_cpus(); 6790 return err; 6791 } 6792 6793 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 6794 6795 static void sw_perf_event_destroy(struct perf_event *event) 6796 { 6797 u64 event_id = event->attr.config; 6798 6799 WARN_ON(event->parent); 6800 6801 static_key_slow_dec(&perf_swevent_enabled[event_id]); 6802 swevent_hlist_put(event); 6803 } 6804 6805 static int perf_swevent_init(struct perf_event *event) 6806 { 6807 u64 event_id = event->attr.config; 6808 6809 if (event->attr.type != PERF_TYPE_SOFTWARE) 6810 return -ENOENT; 6811 6812 /* 6813 * no branch sampling for software events 6814 */ 6815 if (has_branch_stack(event)) 6816 return -EOPNOTSUPP; 6817 6818 switch (event_id) { 6819 case PERF_COUNT_SW_CPU_CLOCK: 6820 case PERF_COUNT_SW_TASK_CLOCK: 6821 return -ENOENT; 6822 6823 default: 6824 break; 6825 } 6826 6827 if (event_id >= PERF_COUNT_SW_MAX) 6828 return -ENOENT; 6829 6830 if (!event->parent) { 6831 int err; 6832 6833 err = swevent_hlist_get(event); 6834 if (err) 6835 return err; 6836 6837 static_key_slow_inc(&perf_swevent_enabled[event_id]); 6838 event->destroy = sw_perf_event_destroy; 6839 } 6840 6841 return 0; 6842 } 6843 6844 static struct pmu perf_swevent = { 6845 .task_ctx_nr = perf_sw_context, 6846 6847 .capabilities = PERF_PMU_CAP_NO_NMI, 6848 6849 .event_init = perf_swevent_init, 6850 .add = perf_swevent_add, 6851 .del = perf_swevent_del, 6852 .start = perf_swevent_start, 6853 .stop = perf_swevent_stop, 6854 .read = perf_swevent_read, 6855 }; 6856 6857 #ifdef CONFIG_EVENT_TRACING 6858 6859 static int perf_tp_filter_match(struct perf_event *event, 6860 struct perf_sample_data *data) 6861 { 6862 void *record = data->raw->data; 6863 6864 /* only top level events have filters set */ 6865 if (event->parent) 6866 event = event->parent; 6867 6868 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 6869 return 1; 6870 return 0; 6871 } 6872 6873 static int perf_tp_event_match(struct perf_event *event, 6874 struct perf_sample_data *data, 6875 struct pt_regs *regs) 6876 { 6877 if (event->hw.state & PERF_HES_STOPPED) 6878 return 0; 6879 /* 6880 * All tracepoints are from kernel-space. 6881 */ 6882 if (event->attr.exclude_kernel) 6883 return 0; 6884 6885 if (!perf_tp_filter_match(event, data)) 6886 return 0; 6887 6888 return 1; 6889 } 6890 6891 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size, 6892 struct pt_regs *regs, struct hlist_head *head, int rctx, 6893 struct task_struct *task) 6894 { 6895 struct perf_sample_data data; 6896 struct perf_event *event; 6897 6898 struct perf_raw_record raw = { 6899 .size = entry_size, 6900 .data = record, 6901 }; 6902 6903 perf_sample_data_init(&data, addr, 0); 6904 data.raw = &raw; 6905 6906 hlist_for_each_entry_rcu(event, head, hlist_entry) { 6907 if (perf_tp_event_match(event, &data, regs)) 6908 perf_swevent_event(event, count, &data, regs); 6909 } 6910 6911 /* 6912 * If we got specified a target task, also iterate its context and 6913 * deliver this event there too. 6914 */ 6915 if (task && task != current) { 6916 struct perf_event_context *ctx; 6917 struct trace_entry *entry = record; 6918 6919 rcu_read_lock(); 6920 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]); 6921 if (!ctx) 6922 goto unlock; 6923 6924 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 6925 if (event->attr.type != PERF_TYPE_TRACEPOINT) 6926 continue; 6927 if (event->attr.config != entry->type) 6928 continue; 6929 if (perf_tp_event_match(event, &data, regs)) 6930 perf_swevent_event(event, count, &data, regs); 6931 } 6932 unlock: 6933 rcu_read_unlock(); 6934 } 6935 6936 perf_swevent_put_recursion_context(rctx); 6937 } 6938 EXPORT_SYMBOL_GPL(perf_tp_event); 6939 6940 static void tp_perf_event_destroy(struct perf_event *event) 6941 { 6942 perf_trace_destroy(event); 6943 } 6944 6945 static int perf_tp_event_init(struct perf_event *event) 6946 { 6947 int err; 6948 6949 if (event->attr.type != PERF_TYPE_TRACEPOINT) 6950 return -ENOENT; 6951 6952 /* 6953 * no branch sampling for tracepoint events 6954 */ 6955 if (has_branch_stack(event)) 6956 return -EOPNOTSUPP; 6957 6958 err = perf_trace_init(event); 6959 if (err) 6960 return err; 6961 6962 event->destroy = tp_perf_event_destroy; 6963 6964 return 0; 6965 } 6966 6967 static struct pmu perf_tracepoint = { 6968 .task_ctx_nr = perf_sw_context, 6969 6970 .event_init = perf_tp_event_init, 6971 .add = perf_trace_add, 6972 .del = perf_trace_del, 6973 .start = perf_swevent_start, 6974 .stop = perf_swevent_stop, 6975 .read = perf_swevent_read, 6976 }; 6977 6978 static inline void perf_tp_register(void) 6979 { 6980 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 6981 } 6982 6983 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 6984 { 6985 char *filter_str; 6986 int ret; 6987 6988 if (event->attr.type != PERF_TYPE_TRACEPOINT) 6989 return -EINVAL; 6990 6991 filter_str = strndup_user(arg, PAGE_SIZE); 6992 if (IS_ERR(filter_str)) 6993 return PTR_ERR(filter_str); 6994 6995 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 6996 6997 kfree(filter_str); 6998 return ret; 6999 } 7000 7001 static void perf_event_free_filter(struct perf_event *event) 7002 { 7003 ftrace_profile_free_filter(event); 7004 } 7005 7006 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 7007 { 7008 struct bpf_prog *prog; 7009 7010 if (event->attr.type != PERF_TYPE_TRACEPOINT) 7011 return -EINVAL; 7012 7013 if (event->tp_event->prog) 7014 return -EEXIST; 7015 7016 if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE)) 7017 /* bpf programs can only be attached to u/kprobes */ 7018 return -EINVAL; 7019 7020 prog = bpf_prog_get(prog_fd); 7021 if (IS_ERR(prog)) 7022 return PTR_ERR(prog); 7023 7024 if (prog->type != BPF_PROG_TYPE_KPROBE) { 7025 /* valid fd, but invalid bpf program type */ 7026 bpf_prog_put(prog); 7027 return -EINVAL; 7028 } 7029 7030 event->tp_event->prog = prog; 7031 7032 return 0; 7033 } 7034 7035 static void perf_event_free_bpf_prog(struct perf_event *event) 7036 { 7037 struct bpf_prog *prog; 7038 7039 if (!event->tp_event) 7040 return; 7041 7042 prog = event->tp_event->prog; 7043 if (prog) { 7044 event->tp_event->prog = NULL; 7045 bpf_prog_put(prog); 7046 } 7047 } 7048 7049 #else 7050 7051 static inline void perf_tp_register(void) 7052 { 7053 } 7054 7055 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 7056 { 7057 return -ENOENT; 7058 } 7059 7060 static void perf_event_free_filter(struct perf_event *event) 7061 { 7062 } 7063 7064 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 7065 { 7066 return -ENOENT; 7067 } 7068 7069 static void perf_event_free_bpf_prog(struct perf_event *event) 7070 { 7071 } 7072 #endif /* CONFIG_EVENT_TRACING */ 7073 7074 #ifdef CONFIG_HAVE_HW_BREAKPOINT 7075 void perf_bp_event(struct perf_event *bp, void *data) 7076 { 7077 struct perf_sample_data sample; 7078 struct pt_regs *regs = data; 7079 7080 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 7081 7082 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 7083 perf_swevent_event(bp, 1, &sample, regs); 7084 } 7085 #endif 7086 7087 /* 7088 * hrtimer based swevent callback 7089 */ 7090 7091 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 7092 { 7093 enum hrtimer_restart ret = HRTIMER_RESTART; 7094 struct perf_sample_data data; 7095 struct pt_regs *regs; 7096 struct perf_event *event; 7097 u64 period; 7098 7099 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 7100 7101 if (event->state != PERF_EVENT_STATE_ACTIVE) 7102 return HRTIMER_NORESTART; 7103 7104 event->pmu->read(event); 7105 7106 perf_sample_data_init(&data, 0, event->hw.last_period); 7107 regs = get_irq_regs(); 7108 7109 if (regs && !perf_exclude_event(event, regs)) { 7110 if (!(event->attr.exclude_idle && is_idle_task(current))) 7111 if (__perf_event_overflow(event, 1, &data, regs)) 7112 ret = HRTIMER_NORESTART; 7113 } 7114 7115 period = max_t(u64, 10000, event->hw.sample_period); 7116 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 7117 7118 return ret; 7119 } 7120 7121 static void perf_swevent_start_hrtimer(struct perf_event *event) 7122 { 7123 struct hw_perf_event *hwc = &event->hw; 7124 s64 period; 7125 7126 if (!is_sampling_event(event)) 7127 return; 7128 7129 period = local64_read(&hwc->period_left); 7130 if (period) { 7131 if (period < 0) 7132 period = 10000; 7133 7134 local64_set(&hwc->period_left, 0); 7135 } else { 7136 period = max_t(u64, 10000, hwc->sample_period); 7137 } 7138 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), 7139 HRTIMER_MODE_REL_PINNED); 7140 } 7141 7142 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 7143 { 7144 struct hw_perf_event *hwc = &event->hw; 7145 7146 if (is_sampling_event(event)) { 7147 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 7148 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 7149 7150 hrtimer_cancel(&hwc->hrtimer); 7151 } 7152 } 7153 7154 static void perf_swevent_init_hrtimer(struct perf_event *event) 7155 { 7156 struct hw_perf_event *hwc = &event->hw; 7157 7158 if (!is_sampling_event(event)) 7159 return; 7160 7161 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 7162 hwc->hrtimer.function = perf_swevent_hrtimer; 7163 7164 /* 7165 * Since hrtimers have a fixed rate, we can do a static freq->period 7166 * mapping and avoid the whole period adjust feedback stuff. 7167 */ 7168 if (event->attr.freq) { 7169 long freq = event->attr.sample_freq; 7170 7171 event->attr.sample_period = NSEC_PER_SEC / freq; 7172 hwc->sample_period = event->attr.sample_period; 7173 local64_set(&hwc->period_left, hwc->sample_period); 7174 hwc->last_period = hwc->sample_period; 7175 event->attr.freq = 0; 7176 } 7177 } 7178 7179 /* 7180 * Software event: cpu wall time clock 7181 */ 7182 7183 static void cpu_clock_event_update(struct perf_event *event) 7184 { 7185 s64 prev; 7186 u64 now; 7187 7188 now = local_clock(); 7189 prev = local64_xchg(&event->hw.prev_count, now); 7190 local64_add(now - prev, &event->count); 7191 } 7192 7193 static void cpu_clock_event_start(struct perf_event *event, int flags) 7194 { 7195 local64_set(&event->hw.prev_count, local_clock()); 7196 perf_swevent_start_hrtimer(event); 7197 } 7198 7199 static void cpu_clock_event_stop(struct perf_event *event, int flags) 7200 { 7201 perf_swevent_cancel_hrtimer(event); 7202 cpu_clock_event_update(event); 7203 } 7204 7205 static int cpu_clock_event_add(struct perf_event *event, int flags) 7206 { 7207 if (flags & PERF_EF_START) 7208 cpu_clock_event_start(event, flags); 7209 perf_event_update_userpage(event); 7210 7211 return 0; 7212 } 7213 7214 static void cpu_clock_event_del(struct perf_event *event, int flags) 7215 { 7216 cpu_clock_event_stop(event, flags); 7217 } 7218 7219 static void cpu_clock_event_read(struct perf_event *event) 7220 { 7221 cpu_clock_event_update(event); 7222 } 7223 7224 static int cpu_clock_event_init(struct perf_event *event) 7225 { 7226 if (event->attr.type != PERF_TYPE_SOFTWARE) 7227 return -ENOENT; 7228 7229 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 7230 return -ENOENT; 7231 7232 /* 7233 * no branch sampling for software events 7234 */ 7235 if (has_branch_stack(event)) 7236 return -EOPNOTSUPP; 7237 7238 perf_swevent_init_hrtimer(event); 7239 7240 return 0; 7241 } 7242 7243 static struct pmu perf_cpu_clock = { 7244 .task_ctx_nr = perf_sw_context, 7245 7246 .capabilities = PERF_PMU_CAP_NO_NMI, 7247 7248 .event_init = cpu_clock_event_init, 7249 .add = cpu_clock_event_add, 7250 .del = cpu_clock_event_del, 7251 .start = cpu_clock_event_start, 7252 .stop = cpu_clock_event_stop, 7253 .read = cpu_clock_event_read, 7254 }; 7255 7256 /* 7257 * Software event: task time clock 7258 */ 7259 7260 static void task_clock_event_update(struct perf_event *event, u64 now) 7261 { 7262 u64 prev; 7263 s64 delta; 7264 7265 prev = local64_xchg(&event->hw.prev_count, now); 7266 delta = now - prev; 7267 local64_add(delta, &event->count); 7268 } 7269 7270 static void task_clock_event_start(struct perf_event *event, int flags) 7271 { 7272 local64_set(&event->hw.prev_count, event->ctx->time); 7273 perf_swevent_start_hrtimer(event); 7274 } 7275 7276 static void task_clock_event_stop(struct perf_event *event, int flags) 7277 { 7278 perf_swevent_cancel_hrtimer(event); 7279 task_clock_event_update(event, event->ctx->time); 7280 } 7281 7282 static int task_clock_event_add(struct perf_event *event, int flags) 7283 { 7284 if (flags & PERF_EF_START) 7285 task_clock_event_start(event, flags); 7286 perf_event_update_userpage(event); 7287 7288 return 0; 7289 } 7290 7291 static void task_clock_event_del(struct perf_event *event, int flags) 7292 { 7293 task_clock_event_stop(event, PERF_EF_UPDATE); 7294 } 7295 7296 static void task_clock_event_read(struct perf_event *event) 7297 { 7298 u64 now = perf_clock(); 7299 u64 delta = now - event->ctx->timestamp; 7300 u64 time = event->ctx->time + delta; 7301 7302 task_clock_event_update(event, time); 7303 } 7304 7305 static int task_clock_event_init(struct perf_event *event) 7306 { 7307 if (event->attr.type != PERF_TYPE_SOFTWARE) 7308 return -ENOENT; 7309 7310 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 7311 return -ENOENT; 7312 7313 /* 7314 * no branch sampling for software events 7315 */ 7316 if (has_branch_stack(event)) 7317 return -EOPNOTSUPP; 7318 7319 perf_swevent_init_hrtimer(event); 7320 7321 return 0; 7322 } 7323 7324 static struct pmu perf_task_clock = { 7325 .task_ctx_nr = perf_sw_context, 7326 7327 .capabilities = PERF_PMU_CAP_NO_NMI, 7328 7329 .event_init = task_clock_event_init, 7330 .add = task_clock_event_add, 7331 .del = task_clock_event_del, 7332 .start = task_clock_event_start, 7333 .stop = task_clock_event_stop, 7334 .read = task_clock_event_read, 7335 }; 7336 7337 static void perf_pmu_nop_void(struct pmu *pmu) 7338 { 7339 } 7340 7341 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags) 7342 { 7343 } 7344 7345 static int perf_pmu_nop_int(struct pmu *pmu) 7346 { 7347 return 0; 7348 } 7349 7350 static DEFINE_PER_CPU(unsigned int, nop_txn_flags); 7351 7352 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags) 7353 { 7354 __this_cpu_write(nop_txn_flags, flags); 7355 7356 if (flags & ~PERF_PMU_TXN_ADD) 7357 return; 7358 7359 perf_pmu_disable(pmu); 7360 } 7361 7362 static int perf_pmu_commit_txn(struct pmu *pmu) 7363 { 7364 unsigned int flags = __this_cpu_read(nop_txn_flags); 7365 7366 __this_cpu_write(nop_txn_flags, 0); 7367 7368 if (flags & ~PERF_PMU_TXN_ADD) 7369 return 0; 7370 7371 perf_pmu_enable(pmu); 7372 return 0; 7373 } 7374 7375 static void perf_pmu_cancel_txn(struct pmu *pmu) 7376 { 7377 unsigned int flags = __this_cpu_read(nop_txn_flags); 7378 7379 __this_cpu_write(nop_txn_flags, 0); 7380 7381 if (flags & ~PERF_PMU_TXN_ADD) 7382 return; 7383 7384 perf_pmu_enable(pmu); 7385 } 7386 7387 static int perf_event_idx_default(struct perf_event *event) 7388 { 7389 return 0; 7390 } 7391 7392 /* 7393 * Ensures all contexts with the same task_ctx_nr have the same 7394 * pmu_cpu_context too. 7395 */ 7396 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn) 7397 { 7398 struct pmu *pmu; 7399 7400 if (ctxn < 0) 7401 return NULL; 7402 7403 list_for_each_entry(pmu, &pmus, entry) { 7404 if (pmu->task_ctx_nr == ctxn) 7405 return pmu->pmu_cpu_context; 7406 } 7407 7408 return NULL; 7409 } 7410 7411 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu) 7412 { 7413 int cpu; 7414 7415 for_each_possible_cpu(cpu) { 7416 struct perf_cpu_context *cpuctx; 7417 7418 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 7419 7420 if (cpuctx->unique_pmu == old_pmu) 7421 cpuctx->unique_pmu = pmu; 7422 } 7423 } 7424 7425 static void free_pmu_context(struct pmu *pmu) 7426 { 7427 struct pmu *i; 7428 7429 mutex_lock(&pmus_lock); 7430 /* 7431 * Like a real lame refcount. 7432 */ 7433 list_for_each_entry(i, &pmus, entry) { 7434 if (i->pmu_cpu_context == pmu->pmu_cpu_context) { 7435 update_pmu_context(i, pmu); 7436 goto out; 7437 } 7438 } 7439 7440 free_percpu(pmu->pmu_cpu_context); 7441 out: 7442 mutex_unlock(&pmus_lock); 7443 } 7444 static struct idr pmu_idr; 7445 7446 static ssize_t 7447 type_show(struct device *dev, struct device_attribute *attr, char *page) 7448 { 7449 struct pmu *pmu = dev_get_drvdata(dev); 7450 7451 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); 7452 } 7453 static DEVICE_ATTR_RO(type); 7454 7455 static ssize_t 7456 perf_event_mux_interval_ms_show(struct device *dev, 7457 struct device_attribute *attr, 7458 char *page) 7459 { 7460 struct pmu *pmu = dev_get_drvdata(dev); 7461 7462 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms); 7463 } 7464 7465 static DEFINE_MUTEX(mux_interval_mutex); 7466 7467 static ssize_t 7468 perf_event_mux_interval_ms_store(struct device *dev, 7469 struct device_attribute *attr, 7470 const char *buf, size_t count) 7471 { 7472 struct pmu *pmu = dev_get_drvdata(dev); 7473 int timer, cpu, ret; 7474 7475 ret = kstrtoint(buf, 0, &timer); 7476 if (ret) 7477 return ret; 7478 7479 if (timer < 1) 7480 return -EINVAL; 7481 7482 /* same value, noting to do */ 7483 if (timer == pmu->hrtimer_interval_ms) 7484 return count; 7485 7486 mutex_lock(&mux_interval_mutex); 7487 pmu->hrtimer_interval_ms = timer; 7488 7489 /* update all cpuctx for this PMU */ 7490 get_online_cpus(); 7491 for_each_online_cpu(cpu) { 7492 struct perf_cpu_context *cpuctx; 7493 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 7494 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 7495 7496 cpu_function_call(cpu, 7497 (remote_function_f)perf_mux_hrtimer_restart, cpuctx); 7498 } 7499 put_online_cpus(); 7500 mutex_unlock(&mux_interval_mutex); 7501 7502 return count; 7503 } 7504 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 7505 7506 static struct attribute *pmu_dev_attrs[] = { 7507 &dev_attr_type.attr, 7508 &dev_attr_perf_event_mux_interval_ms.attr, 7509 NULL, 7510 }; 7511 ATTRIBUTE_GROUPS(pmu_dev); 7512 7513 static int pmu_bus_running; 7514 static struct bus_type pmu_bus = { 7515 .name = "event_source", 7516 .dev_groups = pmu_dev_groups, 7517 }; 7518 7519 static void pmu_dev_release(struct device *dev) 7520 { 7521 kfree(dev); 7522 } 7523 7524 static int pmu_dev_alloc(struct pmu *pmu) 7525 { 7526 int ret = -ENOMEM; 7527 7528 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 7529 if (!pmu->dev) 7530 goto out; 7531 7532 pmu->dev->groups = pmu->attr_groups; 7533 device_initialize(pmu->dev); 7534 ret = dev_set_name(pmu->dev, "%s", pmu->name); 7535 if (ret) 7536 goto free_dev; 7537 7538 dev_set_drvdata(pmu->dev, pmu); 7539 pmu->dev->bus = &pmu_bus; 7540 pmu->dev->release = pmu_dev_release; 7541 ret = device_add(pmu->dev); 7542 if (ret) 7543 goto free_dev; 7544 7545 out: 7546 return ret; 7547 7548 free_dev: 7549 put_device(pmu->dev); 7550 goto out; 7551 } 7552 7553 static struct lock_class_key cpuctx_mutex; 7554 static struct lock_class_key cpuctx_lock; 7555 7556 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 7557 { 7558 int cpu, ret; 7559 7560 mutex_lock(&pmus_lock); 7561 ret = -ENOMEM; 7562 pmu->pmu_disable_count = alloc_percpu(int); 7563 if (!pmu->pmu_disable_count) 7564 goto unlock; 7565 7566 pmu->type = -1; 7567 if (!name) 7568 goto skip_type; 7569 pmu->name = name; 7570 7571 if (type < 0) { 7572 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL); 7573 if (type < 0) { 7574 ret = type; 7575 goto free_pdc; 7576 } 7577 } 7578 pmu->type = type; 7579 7580 if (pmu_bus_running) { 7581 ret = pmu_dev_alloc(pmu); 7582 if (ret) 7583 goto free_idr; 7584 } 7585 7586 skip_type: 7587 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); 7588 if (pmu->pmu_cpu_context) 7589 goto got_cpu_context; 7590 7591 ret = -ENOMEM; 7592 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); 7593 if (!pmu->pmu_cpu_context) 7594 goto free_dev; 7595 7596 for_each_possible_cpu(cpu) { 7597 struct perf_cpu_context *cpuctx; 7598 7599 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 7600 __perf_event_init_context(&cpuctx->ctx); 7601 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 7602 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 7603 cpuctx->ctx.pmu = pmu; 7604 7605 __perf_mux_hrtimer_init(cpuctx, cpu); 7606 7607 cpuctx->unique_pmu = pmu; 7608 } 7609 7610 got_cpu_context: 7611 if (!pmu->start_txn) { 7612 if (pmu->pmu_enable) { 7613 /* 7614 * If we have pmu_enable/pmu_disable calls, install 7615 * transaction stubs that use that to try and batch 7616 * hardware accesses. 7617 */ 7618 pmu->start_txn = perf_pmu_start_txn; 7619 pmu->commit_txn = perf_pmu_commit_txn; 7620 pmu->cancel_txn = perf_pmu_cancel_txn; 7621 } else { 7622 pmu->start_txn = perf_pmu_nop_txn; 7623 pmu->commit_txn = perf_pmu_nop_int; 7624 pmu->cancel_txn = perf_pmu_nop_void; 7625 } 7626 } 7627 7628 if (!pmu->pmu_enable) { 7629 pmu->pmu_enable = perf_pmu_nop_void; 7630 pmu->pmu_disable = perf_pmu_nop_void; 7631 } 7632 7633 if (!pmu->event_idx) 7634 pmu->event_idx = perf_event_idx_default; 7635 7636 list_add_rcu(&pmu->entry, &pmus); 7637 atomic_set(&pmu->exclusive_cnt, 0); 7638 ret = 0; 7639 unlock: 7640 mutex_unlock(&pmus_lock); 7641 7642 return ret; 7643 7644 free_dev: 7645 device_del(pmu->dev); 7646 put_device(pmu->dev); 7647 7648 free_idr: 7649 if (pmu->type >= PERF_TYPE_MAX) 7650 idr_remove(&pmu_idr, pmu->type); 7651 7652 free_pdc: 7653 free_percpu(pmu->pmu_disable_count); 7654 goto unlock; 7655 } 7656 EXPORT_SYMBOL_GPL(perf_pmu_register); 7657 7658 void perf_pmu_unregister(struct pmu *pmu) 7659 { 7660 mutex_lock(&pmus_lock); 7661 list_del_rcu(&pmu->entry); 7662 mutex_unlock(&pmus_lock); 7663 7664 /* 7665 * We dereference the pmu list under both SRCU and regular RCU, so 7666 * synchronize against both of those. 7667 */ 7668 synchronize_srcu(&pmus_srcu); 7669 synchronize_rcu(); 7670 7671 free_percpu(pmu->pmu_disable_count); 7672 if (pmu->type >= PERF_TYPE_MAX) 7673 idr_remove(&pmu_idr, pmu->type); 7674 device_del(pmu->dev); 7675 put_device(pmu->dev); 7676 free_pmu_context(pmu); 7677 } 7678 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 7679 7680 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) 7681 { 7682 struct perf_event_context *ctx = NULL; 7683 int ret; 7684 7685 if (!try_module_get(pmu->module)) 7686 return -ENODEV; 7687 7688 if (event->group_leader != event) { 7689 /* 7690 * This ctx->mutex can nest when we're called through 7691 * inheritance. See the perf_event_ctx_lock_nested() comment. 7692 */ 7693 ctx = perf_event_ctx_lock_nested(event->group_leader, 7694 SINGLE_DEPTH_NESTING); 7695 BUG_ON(!ctx); 7696 } 7697 7698 event->pmu = pmu; 7699 ret = pmu->event_init(event); 7700 7701 if (ctx) 7702 perf_event_ctx_unlock(event->group_leader, ctx); 7703 7704 if (ret) 7705 module_put(pmu->module); 7706 7707 return ret; 7708 } 7709 7710 static struct pmu *perf_init_event(struct perf_event *event) 7711 { 7712 struct pmu *pmu = NULL; 7713 int idx; 7714 int ret; 7715 7716 idx = srcu_read_lock(&pmus_srcu); 7717 7718 rcu_read_lock(); 7719 pmu = idr_find(&pmu_idr, event->attr.type); 7720 rcu_read_unlock(); 7721 if (pmu) { 7722 ret = perf_try_init_event(pmu, event); 7723 if (ret) 7724 pmu = ERR_PTR(ret); 7725 goto unlock; 7726 } 7727 7728 list_for_each_entry_rcu(pmu, &pmus, entry) { 7729 ret = perf_try_init_event(pmu, event); 7730 if (!ret) 7731 goto unlock; 7732 7733 if (ret != -ENOENT) { 7734 pmu = ERR_PTR(ret); 7735 goto unlock; 7736 } 7737 } 7738 pmu = ERR_PTR(-ENOENT); 7739 unlock: 7740 srcu_read_unlock(&pmus_srcu, idx); 7741 7742 return pmu; 7743 } 7744 7745 static void account_event_cpu(struct perf_event *event, int cpu) 7746 { 7747 if (event->parent) 7748 return; 7749 7750 if (is_cgroup_event(event)) 7751 atomic_inc(&per_cpu(perf_cgroup_events, cpu)); 7752 } 7753 7754 static void account_event(struct perf_event *event) 7755 { 7756 if (event->parent) 7757 return; 7758 7759 if (event->attach_state & PERF_ATTACH_TASK) 7760 static_key_slow_inc(&perf_sched_events.key); 7761 if (event->attr.mmap || event->attr.mmap_data) 7762 atomic_inc(&nr_mmap_events); 7763 if (event->attr.comm) 7764 atomic_inc(&nr_comm_events); 7765 if (event->attr.task) 7766 atomic_inc(&nr_task_events); 7767 if (event->attr.freq) { 7768 if (atomic_inc_return(&nr_freq_events) == 1) 7769 tick_nohz_full_kick_all(); 7770 } 7771 if (event->attr.context_switch) { 7772 atomic_inc(&nr_switch_events); 7773 static_key_slow_inc(&perf_sched_events.key); 7774 } 7775 if (has_branch_stack(event)) 7776 static_key_slow_inc(&perf_sched_events.key); 7777 if (is_cgroup_event(event)) 7778 static_key_slow_inc(&perf_sched_events.key); 7779 7780 account_event_cpu(event, event->cpu); 7781 } 7782 7783 /* 7784 * Allocate and initialize a event structure 7785 */ 7786 static struct perf_event * 7787 perf_event_alloc(struct perf_event_attr *attr, int cpu, 7788 struct task_struct *task, 7789 struct perf_event *group_leader, 7790 struct perf_event *parent_event, 7791 perf_overflow_handler_t overflow_handler, 7792 void *context, int cgroup_fd) 7793 { 7794 struct pmu *pmu; 7795 struct perf_event *event; 7796 struct hw_perf_event *hwc; 7797 long err = -EINVAL; 7798 7799 if ((unsigned)cpu >= nr_cpu_ids) { 7800 if (!task || cpu != -1) 7801 return ERR_PTR(-EINVAL); 7802 } 7803 7804 event = kzalloc(sizeof(*event), GFP_KERNEL); 7805 if (!event) 7806 return ERR_PTR(-ENOMEM); 7807 7808 /* 7809 * Single events are their own group leaders, with an 7810 * empty sibling list: 7811 */ 7812 if (!group_leader) 7813 group_leader = event; 7814 7815 mutex_init(&event->child_mutex); 7816 INIT_LIST_HEAD(&event->child_list); 7817 7818 INIT_LIST_HEAD(&event->group_entry); 7819 INIT_LIST_HEAD(&event->event_entry); 7820 INIT_LIST_HEAD(&event->sibling_list); 7821 INIT_LIST_HEAD(&event->rb_entry); 7822 INIT_LIST_HEAD(&event->active_entry); 7823 INIT_HLIST_NODE(&event->hlist_entry); 7824 7825 7826 init_waitqueue_head(&event->waitq); 7827 init_irq_work(&event->pending, perf_pending_event); 7828 7829 mutex_init(&event->mmap_mutex); 7830 7831 atomic_long_set(&event->refcount, 1); 7832 event->cpu = cpu; 7833 event->attr = *attr; 7834 event->group_leader = group_leader; 7835 event->pmu = NULL; 7836 event->oncpu = -1; 7837 7838 event->parent = parent_event; 7839 7840 event->ns = get_pid_ns(task_active_pid_ns(current)); 7841 event->id = atomic64_inc_return(&perf_event_id); 7842 7843 event->state = PERF_EVENT_STATE_INACTIVE; 7844 7845 if (task) { 7846 event->attach_state = PERF_ATTACH_TASK; 7847 /* 7848 * XXX pmu::event_init needs to know what task to account to 7849 * and we cannot use the ctx information because we need the 7850 * pmu before we get a ctx. 7851 */ 7852 event->hw.target = task; 7853 } 7854 7855 event->clock = &local_clock; 7856 if (parent_event) 7857 event->clock = parent_event->clock; 7858 7859 if (!overflow_handler && parent_event) { 7860 overflow_handler = parent_event->overflow_handler; 7861 context = parent_event->overflow_handler_context; 7862 } 7863 7864 event->overflow_handler = overflow_handler; 7865 event->overflow_handler_context = context; 7866 7867 perf_event__state_init(event); 7868 7869 pmu = NULL; 7870 7871 hwc = &event->hw; 7872 hwc->sample_period = attr->sample_period; 7873 if (attr->freq && attr->sample_freq) 7874 hwc->sample_period = 1; 7875 hwc->last_period = hwc->sample_period; 7876 7877 local64_set(&hwc->period_left, hwc->sample_period); 7878 7879 /* 7880 * we currently do not support PERF_FORMAT_GROUP on inherited events 7881 */ 7882 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP)) 7883 goto err_ns; 7884 7885 if (!has_branch_stack(event)) 7886 event->attr.branch_sample_type = 0; 7887 7888 if (cgroup_fd != -1) { 7889 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); 7890 if (err) 7891 goto err_ns; 7892 } 7893 7894 pmu = perf_init_event(event); 7895 if (!pmu) 7896 goto err_ns; 7897 else if (IS_ERR(pmu)) { 7898 err = PTR_ERR(pmu); 7899 goto err_ns; 7900 } 7901 7902 err = exclusive_event_init(event); 7903 if (err) 7904 goto err_pmu; 7905 7906 if (!event->parent) { 7907 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 7908 err = get_callchain_buffers(); 7909 if (err) 7910 goto err_per_task; 7911 } 7912 } 7913 7914 return event; 7915 7916 err_per_task: 7917 exclusive_event_destroy(event); 7918 7919 err_pmu: 7920 if (event->destroy) 7921 event->destroy(event); 7922 module_put(pmu->module); 7923 err_ns: 7924 if (is_cgroup_event(event)) 7925 perf_detach_cgroup(event); 7926 if (event->ns) 7927 put_pid_ns(event->ns); 7928 kfree(event); 7929 7930 return ERR_PTR(err); 7931 } 7932 7933 static int perf_copy_attr(struct perf_event_attr __user *uattr, 7934 struct perf_event_attr *attr) 7935 { 7936 u32 size; 7937 int ret; 7938 7939 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0)) 7940 return -EFAULT; 7941 7942 /* 7943 * zero the full structure, so that a short copy will be nice. 7944 */ 7945 memset(attr, 0, sizeof(*attr)); 7946 7947 ret = get_user(size, &uattr->size); 7948 if (ret) 7949 return ret; 7950 7951 if (size > PAGE_SIZE) /* silly large */ 7952 goto err_size; 7953 7954 if (!size) /* abi compat */ 7955 size = PERF_ATTR_SIZE_VER0; 7956 7957 if (size < PERF_ATTR_SIZE_VER0) 7958 goto err_size; 7959 7960 /* 7961 * If we're handed a bigger struct than we know of, 7962 * ensure all the unknown bits are 0 - i.e. new 7963 * user-space does not rely on any kernel feature 7964 * extensions we dont know about yet. 7965 */ 7966 if (size > sizeof(*attr)) { 7967 unsigned char __user *addr; 7968 unsigned char __user *end; 7969 unsigned char val; 7970 7971 addr = (void __user *)uattr + sizeof(*attr); 7972 end = (void __user *)uattr + size; 7973 7974 for (; addr < end; addr++) { 7975 ret = get_user(val, addr); 7976 if (ret) 7977 return ret; 7978 if (val) 7979 goto err_size; 7980 } 7981 size = sizeof(*attr); 7982 } 7983 7984 ret = copy_from_user(attr, uattr, size); 7985 if (ret) 7986 return -EFAULT; 7987 7988 if (attr->__reserved_1) 7989 return -EINVAL; 7990 7991 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 7992 return -EINVAL; 7993 7994 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 7995 return -EINVAL; 7996 7997 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 7998 u64 mask = attr->branch_sample_type; 7999 8000 /* only using defined bits */ 8001 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 8002 return -EINVAL; 8003 8004 /* at least one branch bit must be set */ 8005 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 8006 return -EINVAL; 8007 8008 /* propagate priv level, when not set for branch */ 8009 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 8010 8011 /* exclude_kernel checked on syscall entry */ 8012 if (!attr->exclude_kernel) 8013 mask |= PERF_SAMPLE_BRANCH_KERNEL; 8014 8015 if (!attr->exclude_user) 8016 mask |= PERF_SAMPLE_BRANCH_USER; 8017 8018 if (!attr->exclude_hv) 8019 mask |= PERF_SAMPLE_BRANCH_HV; 8020 /* 8021 * adjust user setting (for HW filter setup) 8022 */ 8023 attr->branch_sample_type = mask; 8024 } 8025 /* privileged levels capture (kernel, hv): check permissions */ 8026 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM) 8027 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 8028 return -EACCES; 8029 } 8030 8031 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 8032 ret = perf_reg_validate(attr->sample_regs_user); 8033 if (ret) 8034 return ret; 8035 } 8036 8037 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 8038 if (!arch_perf_have_user_stack_dump()) 8039 return -ENOSYS; 8040 8041 /* 8042 * We have __u32 type for the size, but so far 8043 * we can only use __u16 as maximum due to the 8044 * __u16 sample size limit. 8045 */ 8046 if (attr->sample_stack_user >= USHRT_MAX) 8047 ret = -EINVAL; 8048 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 8049 ret = -EINVAL; 8050 } 8051 8052 if (attr->sample_type & PERF_SAMPLE_REGS_INTR) 8053 ret = perf_reg_validate(attr->sample_regs_intr); 8054 out: 8055 return ret; 8056 8057 err_size: 8058 put_user(sizeof(*attr), &uattr->size); 8059 ret = -E2BIG; 8060 goto out; 8061 } 8062 8063 static int 8064 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 8065 { 8066 struct ring_buffer *rb = NULL; 8067 int ret = -EINVAL; 8068 8069 if (!output_event) 8070 goto set; 8071 8072 /* don't allow circular references */ 8073 if (event == output_event) 8074 goto out; 8075 8076 /* 8077 * Don't allow cross-cpu buffers 8078 */ 8079 if (output_event->cpu != event->cpu) 8080 goto out; 8081 8082 /* 8083 * If its not a per-cpu rb, it must be the same task. 8084 */ 8085 if (output_event->cpu == -1 && output_event->ctx != event->ctx) 8086 goto out; 8087 8088 /* 8089 * Mixing clocks in the same buffer is trouble you don't need. 8090 */ 8091 if (output_event->clock != event->clock) 8092 goto out; 8093 8094 /* 8095 * If both events generate aux data, they must be on the same PMU 8096 */ 8097 if (has_aux(event) && has_aux(output_event) && 8098 event->pmu != output_event->pmu) 8099 goto out; 8100 8101 set: 8102 mutex_lock(&event->mmap_mutex); 8103 /* Can't redirect output if we've got an active mmap() */ 8104 if (atomic_read(&event->mmap_count)) 8105 goto unlock; 8106 8107 if (output_event) { 8108 /* get the rb we want to redirect to */ 8109 rb = ring_buffer_get(output_event); 8110 if (!rb) 8111 goto unlock; 8112 } 8113 8114 ring_buffer_attach(event, rb); 8115 8116 ret = 0; 8117 unlock: 8118 mutex_unlock(&event->mmap_mutex); 8119 8120 out: 8121 return ret; 8122 } 8123 8124 static void mutex_lock_double(struct mutex *a, struct mutex *b) 8125 { 8126 if (b < a) 8127 swap(a, b); 8128 8129 mutex_lock(a); 8130 mutex_lock_nested(b, SINGLE_DEPTH_NESTING); 8131 } 8132 8133 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) 8134 { 8135 bool nmi_safe = false; 8136 8137 switch (clk_id) { 8138 case CLOCK_MONOTONIC: 8139 event->clock = &ktime_get_mono_fast_ns; 8140 nmi_safe = true; 8141 break; 8142 8143 case CLOCK_MONOTONIC_RAW: 8144 event->clock = &ktime_get_raw_fast_ns; 8145 nmi_safe = true; 8146 break; 8147 8148 case CLOCK_REALTIME: 8149 event->clock = &ktime_get_real_ns; 8150 break; 8151 8152 case CLOCK_BOOTTIME: 8153 event->clock = &ktime_get_boot_ns; 8154 break; 8155 8156 case CLOCK_TAI: 8157 event->clock = &ktime_get_tai_ns; 8158 break; 8159 8160 default: 8161 return -EINVAL; 8162 } 8163 8164 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) 8165 return -EINVAL; 8166 8167 return 0; 8168 } 8169 8170 /** 8171 * sys_perf_event_open - open a performance event, associate it to a task/cpu 8172 * 8173 * @attr_uptr: event_id type attributes for monitoring/sampling 8174 * @pid: target pid 8175 * @cpu: target cpu 8176 * @group_fd: group leader event fd 8177 */ 8178 SYSCALL_DEFINE5(perf_event_open, 8179 struct perf_event_attr __user *, attr_uptr, 8180 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 8181 { 8182 struct perf_event *group_leader = NULL, *output_event = NULL; 8183 struct perf_event *event, *sibling; 8184 struct perf_event_attr attr; 8185 struct perf_event_context *ctx, *uninitialized_var(gctx); 8186 struct file *event_file = NULL; 8187 struct fd group = {NULL, 0}; 8188 struct task_struct *task = NULL; 8189 struct pmu *pmu; 8190 int event_fd; 8191 int move_group = 0; 8192 int err; 8193 int f_flags = O_RDWR; 8194 int cgroup_fd = -1; 8195 8196 /* for future expandability... */ 8197 if (flags & ~PERF_FLAG_ALL) 8198 return -EINVAL; 8199 8200 err = perf_copy_attr(attr_uptr, &attr); 8201 if (err) 8202 return err; 8203 8204 if (!attr.exclude_kernel) { 8205 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 8206 return -EACCES; 8207 } 8208 8209 if (attr.freq) { 8210 if (attr.sample_freq > sysctl_perf_event_sample_rate) 8211 return -EINVAL; 8212 } else { 8213 if (attr.sample_period & (1ULL << 63)) 8214 return -EINVAL; 8215 } 8216 8217 /* 8218 * In cgroup mode, the pid argument is used to pass the fd 8219 * opened to the cgroup directory in cgroupfs. The cpu argument 8220 * designates the cpu on which to monitor threads from that 8221 * cgroup. 8222 */ 8223 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 8224 return -EINVAL; 8225 8226 if (flags & PERF_FLAG_FD_CLOEXEC) 8227 f_flags |= O_CLOEXEC; 8228 8229 event_fd = get_unused_fd_flags(f_flags); 8230 if (event_fd < 0) 8231 return event_fd; 8232 8233 if (group_fd != -1) { 8234 err = perf_fget_light(group_fd, &group); 8235 if (err) 8236 goto err_fd; 8237 group_leader = group.file->private_data; 8238 if (flags & PERF_FLAG_FD_OUTPUT) 8239 output_event = group_leader; 8240 if (flags & PERF_FLAG_FD_NO_GROUP) 8241 group_leader = NULL; 8242 } 8243 8244 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 8245 task = find_lively_task_by_vpid(pid); 8246 if (IS_ERR(task)) { 8247 err = PTR_ERR(task); 8248 goto err_group_fd; 8249 } 8250 } 8251 8252 if (task && group_leader && 8253 group_leader->attr.inherit != attr.inherit) { 8254 err = -EINVAL; 8255 goto err_task; 8256 } 8257 8258 get_online_cpus(); 8259 8260 if (flags & PERF_FLAG_PID_CGROUP) 8261 cgroup_fd = pid; 8262 8263 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 8264 NULL, NULL, cgroup_fd); 8265 if (IS_ERR(event)) { 8266 err = PTR_ERR(event); 8267 goto err_cpus; 8268 } 8269 8270 if (is_sampling_event(event)) { 8271 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 8272 err = -ENOTSUPP; 8273 goto err_alloc; 8274 } 8275 } 8276 8277 account_event(event); 8278 8279 /* 8280 * Special case software events and allow them to be part of 8281 * any hardware group. 8282 */ 8283 pmu = event->pmu; 8284 8285 if (attr.use_clockid) { 8286 err = perf_event_set_clock(event, attr.clockid); 8287 if (err) 8288 goto err_alloc; 8289 } 8290 8291 if (group_leader && 8292 (is_software_event(event) != is_software_event(group_leader))) { 8293 if (is_software_event(event)) { 8294 /* 8295 * If event and group_leader are not both a software 8296 * event, and event is, then group leader is not. 8297 * 8298 * Allow the addition of software events to !software 8299 * groups, this is safe because software events never 8300 * fail to schedule. 8301 */ 8302 pmu = group_leader->pmu; 8303 } else if (is_software_event(group_leader) && 8304 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) { 8305 /* 8306 * In case the group is a pure software group, and we 8307 * try to add a hardware event, move the whole group to 8308 * the hardware context. 8309 */ 8310 move_group = 1; 8311 } 8312 } 8313 8314 /* 8315 * Get the target context (task or percpu): 8316 */ 8317 ctx = find_get_context(pmu, task, event); 8318 if (IS_ERR(ctx)) { 8319 err = PTR_ERR(ctx); 8320 goto err_alloc; 8321 } 8322 8323 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) { 8324 err = -EBUSY; 8325 goto err_context; 8326 } 8327 8328 if (task) { 8329 put_task_struct(task); 8330 task = NULL; 8331 } 8332 8333 /* 8334 * Look up the group leader (we will attach this event to it): 8335 */ 8336 if (group_leader) { 8337 err = -EINVAL; 8338 8339 /* 8340 * Do not allow a recursive hierarchy (this new sibling 8341 * becoming part of another group-sibling): 8342 */ 8343 if (group_leader->group_leader != group_leader) 8344 goto err_context; 8345 8346 /* All events in a group should have the same clock */ 8347 if (group_leader->clock != event->clock) 8348 goto err_context; 8349 8350 /* 8351 * Do not allow to attach to a group in a different 8352 * task or CPU context: 8353 */ 8354 if (move_group) { 8355 /* 8356 * Make sure we're both on the same task, or both 8357 * per-cpu events. 8358 */ 8359 if (group_leader->ctx->task != ctx->task) 8360 goto err_context; 8361 8362 /* 8363 * Make sure we're both events for the same CPU; 8364 * grouping events for different CPUs is broken; since 8365 * you can never concurrently schedule them anyhow. 8366 */ 8367 if (group_leader->cpu != event->cpu) 8368 goto err_context; 8369 } else { 8370 if (group_leader->ctx != ctx) 8371 goto err_context; 8372 } 8373 8374 /* 8375 * Only a group leader can be exclusive or pinned 8376 */ 8377 if (attr.exclusive || attr.pinned) 8378 goto err_context; 8379 } 8380 8381 if (output_event) { 8382 err = perf_event_set_output(event, output_event); 8383 if (err) 8384 goto err_context; 8385 } 8386 8387 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, 8388 f_flags); 8389 if (IS_ERR(event_file)) { 8390 err = PTR_ERR(event_file); 8391 goto err_context; 8392 } 8393 8394 if (move_group) { 8395 gctx = group_leader->ctx; 8396 mutex_lock_double(&gctx->mutex, &ctx->mutex); 8397 } else { 8398 mutex_lock(&ctx->mutex); 8399 } 8400 8401 if (!perf_event_validate_size(event)) { 8402 err = -E2BIG; 8403 goto err_locked; 8404 } 8405 8406 /* 8407 * Must be under the same ctx::mutex as perf_install_in_context(), 8408 * because we need to serialize with concurrent event creation. 8409 */ 8410 if (!exclusive_event_installable(event, ctx)) { 8411 /* exclusive and group stuff are assumed mutually exclusive */ 8412 WARN_ON_ONCE(move_group); 8413 8414 err = -EBUSY; 8415 goto err_locked; 8416 } 8417 8418 WARN_ON_ONCE(ctx->parent_ctx); 8419 8420 if (move_group) { 8421 /* 8422 * See perf_event_ctx_lock() for comments on the details 8423 * of swizzling perf_event::ctx. 8424 */ 8425 perf_remove_from_context(group_leader, false); 8426 8427 list_for_each_entry(sibling, &group_leader->sibling_list, 8428 group_entry) { 8429 perf_remove_from_context(sibling, false); 8430 put_ctx(gctx); 8431 } 8432 8433 /* 8434 * Wait for everybody to stop referencing the events through 8435 * the old lists, before installing it on new lists. 8436 */ 8437 synchronize_rcu(); 8438 8439 /* 8440 * Install the group siblings before the group leader. 8441 * 8442 * Because a group leader will try and install the entire group 8443 * (through the sibling list, which is still in-tact), we can 8444 * end up with siblings installed in the wrong context. 8445 * 8446 * By installing siblings first we NO-OP because they're not 8447 * reachable through the group lists. 8448 */ 8449 list_for_each_entry(sibling, &group_leader->sibling_list, 8450 group_entry) { 8451 perf_event__state_init(sibling); 8452 perf_install_in_context(ctx, sibling, sibling->cpu); 8453 get_ctx(ctx); 8454 } 8455 8456 /* 8457 * Removing from the context ends up with disabled 8458 * event. What we want here is event in the initial 8459 * startup state, ready to be add into new context. 8460 */ 8461 perf_event__state_init(group_leader); 8462 perf_install_in_context(ctx, group_leader, group_leader->cpu); 8463 get_ctx(ctx); 8464 8465 /* 8466 * Now that all events are installed in @ctx, nothing 8467 * references @gctx anymore, so drop the last reference we have 8468 * on it. 8469 */ 8470 put_ctx(gctx); 8471 } 8472 8473 /* 8474 * Precalculate sample_data sizes; do while holding ctx::mutex such 8475 * that we're serialized against further additions and before 8476 * perf_install_in_context() which is the point the event is active and 8477 * can use these values. 8478 */ 8479 perf_event__header_size(event); 8480 perf_event__id_header_size(event); 8481 8482 perf_install_in_context(ctx, event, event->cpu); 8483 perf_unpin_context(ctx); 8484 8485 if (move_group) 8486 mutex_unlock(&gctx->mutex); 8487 mutex_unlock(&ctx->mutex); 8488 8489 put_online_cpus(); 8490 8491 event->owner = current; 8492 8493 mutex_lock(¤t->perf_event_mutex); 8494 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 8495 mutex_unlock(¤t->perf_event_mutex); 8496 8497 /* 8498 * Drop the reference on the group_event after placing the 8499 * new event on the sibling_list. This ensures destruction 8500 * of the group leader will find the pointer to itself in 8501 * perf_group_detach(). 8502 */ 8503 fdput(group); 8504 fd_install(event_fd, event_file); 8505 return event_fd; 8506 8507 err_locked: 8508 if (move_group) 8509 mutex_unlock(&gctx->mutex); 8510 mutex_unlock(&ctx->mutex); 8511 /* err_file: */ 8512 fput(event_file); 8513 err_context: 8514 perf_unpin_context(ctx); 8515 put_ctx(ctx); 8516 err_alloc: 8517 free_event(event); 8518 err_cpus: 8519 put_online_cpus(); 8520 err_task: 8521 if (task) 8522 put_task_struct(task); 8523 err_group_fd: 8524 fdput(group); 8525 err_fd: 8526 put_unused_fd(event_fd); 8527 return err; 8528 } 8529 8530 /** 8531 * perf_event_create_kernel_counter 8532 * 8533 * @attr: attributes of the counter to create 8534 * @cpu: cpu in which the counter is bound 8535 * @task: task to profile (NULL for percpu) 8536 */ 8537 struct perf_event * 8538 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 8539 struct task_struct *task, 8540 perf_overflow_handler_t overflow_handler, 8541 void *context) 8542 { 8543 struct perf_event_context *ctx; 8544 struct perf_event *event; 8545 int err; 8546 8547 /* 8548 * Get the target context (task or percpu): 8549 */ 8550 8551 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 8552 overflow_handler, context, -1); 8553 if (IS_ERR(event)) { 8554 err = PTR_ERR(event); 8555 goto err; 8556 } 8557 8558 /* Mark owner so we could distinguish it from user events. */ 8559 event->owner = EVENT_OWNER_KERNEL; 8560 8561 account_event(event); 8562 8563 ctx = find_get_context(event->pmu, task, event); 8564 if (IS_ERR(ctx)) { 8565 err = PTR_ERR(ctx); 8566 goto err_free; 8567 } 8568 8569 WARN_ON_ONCE(ctx->parent_ctx); 8570 mutex_lock(&ctx->mutex); 8571 if (!exclusive_event_installable(event, ctx)) { 8572 mutex_unlock(&ctx->mutex); 8573 perf_unpin_context(ctx); 8574 put_ctx(ctx); 8575 err = -EBUSY; 8576 goto err_free; 8577 } 8578 8579 perf_install_in_context(ctx, event, cpu); 8580 perf_unpin_context(ctx); 8581 mutex_unlock(&ctx->mutex); 8582 8583 return event; 8584 8585 err_free: 8586 free_event(event); 8587 err: 8588 return ERR_PTR(err); 8589 } 8590 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 8591 8592 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 8593 { 8594 struct perf_event_context *src_ctx; 8595 struct perf_event_context *dst_ctx; 8596 struct perf_event *event, *tmp; 8597 LIST_HEAD(events); 8598 8599 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx; 8600 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx; 8601 8602 /* 8603 * See perf_event_ctx_lock() for comments on the details 8604 * of swizzling perf_event::ctx. 8605 */ 8606 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); 8607 list_for_each_entry_safe(event, tmp, &src_ctx->event_list, 8608 event_entry) { 8609 perf_remove_from_context(event, false); 8610 unaccount_event_cpu(event, src_cpu); 8611 put_ctx(src_ctx); 8612 list_add(&event->migrate_entry, &events); 8613 } 8614 8615 /* 8616 * Wait for the events to quiesce before re-instating them. 8617 */ 8618 synchronize_rcu(); 8619 8620 /* 8621 * Re-instate events in 2 passes. 8622 * 8623 * Skip over group leaders and only install siblings on this first 8624 * pass, siblings will not get enabled without a leader, however a 8625 * leader will enable its siblings, even if those are still on the old 8626 * context. 8627 */ 8628 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 8629 if (event->group_leader == event) 8630 continue; 8631 8632 list_del(&event->migrate_entry); 8633 if (event->state >= PERF_EVENT_STATE_OFF) 8634 event->state = PERF_EVENT_STATE_INACTIVE; 8635 account_event_cpu(event, dst_cpu); 8636 perf_install_in_context(dst_ctx, event, dst_cpu); 8637 get_ctx(dst_ctx); 8638 } 8639 8640 /* 8641 * Once all the siblings are setup properly, install the group leaders 8642 * to make it go. 8643 */ 8644 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 8645 list_del(&event->migrate_entry); 8646 if (event->state >= PERF_EVENT_STATE_OFF) 8647 event->state = PERF_EVENT_STATE_INACTIVE; 8648 account_event_cpu(event, dst_cpu); 8649 perf_install_in_context(dst_ctx, event, dst_cpu); 8650 get_ctx(dst_ctx); 8651 } 8652 mutex_unlock(&dst_ctx->mutex); 8653 mutex_unlock(&src_ctx->mutex); 8654 } 8655 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 8656 8657 static void sync_child_event(struct perf_event *child_event, 8658 struct task_struct *child) 8659 { 8660 struct perf_event *parent_event = child_event->parent; 8661 u64 child_val; 8662 8663 if (child_event->attr.inherit_stat) 8664 perf_event_read_event(child_event, child); 8665 8666 child_val = perf_event_count(child_event); 8667 8668 /* 8669 * Add back the child's count to the parent's count: 8670 */ 8671 atomic64_add(child_val, &parent_event->child_count); 8672 atomic64_add(child_event->total_time_enabled, 8673 &parent_event->child_total_time_enabled); 8674 atomic64_add(child_event->total_time_running, 8675 &parent_event->child_total_time_running); 8676 8677 /* 8678 * Remove this event from the parent's list 8679 */ 8680 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 8681 mutex_lock(&parent_event->child_mutex); 8682 list_del_init(&child_event->child_list); 8683 mutex_unlock(&parent_event->child_mutex); 8684 8685 /* 8686 * Make sure user/parent get notified, that we just 8687 * lost one event. 8688 */ 8689 perf_event_wakeup(parent_event); 8690 8691 /* 8692 * Release the parent event, if this was the last 8693 * reference to it. 8694 */ 8695 put_event(parent_event); 8696 } 8697 8698 static void 8699 __perf_event_exit_task(struct perf_event *child_event, 8700 struct perf_event_context *child_ctx, 8701 struct task_struct *child) 8702 { 8703 /* 8704 * Do not destroy the 'original' grouping; because of the context 8705 * switch optimization the original events could've ended up in a 8706 * random child task. 8707 * 8708 * If we were to destroy the original group, all group related 8709 * operations would cease to function properly after this random 8710 * child dies. 8711 * 8712 * Do destroy all inherited groups, we don't care about those 8713 * and being thorough is better. 8714 */ 8715 perf_remove_from_context(child_event, !!child_event->parent); 8716 8717 /* 8718 * It can happen that the parent exits first, and has events 8719 * that are still around due to the child reference. These 8720 * events need to be zapped. 8721 */ 8722 if (child_event->parent) { 8723 sync_child_event(child_event, child); 8724 free_event(child_event); 8725 } else { 8726 child_event->state = PERF_EVENT_STATE_EXIT; 8727 perf_event_wakeup(child_event); 8728 } 8729 } 8730 8731 static void perf_event_exit_task_context(struct task_struct *child, int ctxn) 8732 { 8733 struct perf_event *child_event, *next; 8734 struct perf_event_context *child_ctx, *clone_ctx = NULL; 8735 unsigned long flags; 8736 8737 if (likely(!child->perf_event_ctxp[ctxn])) 8738 return; 8739 8740 local_irq_save(flags); 8741 /* 8742 * We can't reschedule here because interrupts are disabled, 8743 * and either child is current or it is a task that can't be 8744 * scheduled, so we are now safe from rescheduling changing 8745 * our context. 8746 */ 8747 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]); 8748 8749 /* 8750 * Take the context lock here so that if find_get_context is 8751 * reading child->perf_event_ctxp, we wait until it has 8752 * incremented the context's refcount before we do put_ctx below. 8753 */ 8754 raw_spin_lock(&child_ctx->lock); 8755 task_ctx_sched_out(child_ctx); 8756 child->perf_event_ctxp[ctxn] = NULL; 8757 8758 /* 8759 * If this context is a clone; unclone it so it can't get 8760 * swapped to another process while we're removing all 8761 * the events from it. 8762 */ 8763 clone_ctx = unclone_ctx(child_ctx); 8764 update_context_time(child_ctx); 8765 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 8766 8767 if (clone_ctx) 8768 put_ctx(clone_ctx); 8769 8770 /* 8771 * Report the task dead after unscheduling the events so that we 8772 * won't get any samples after PERF_RECORD_EXIT. We can however still 8773 * get a few PERF_RECORD_READ events. 8774 */ 8775 perf_event_task(child, child_ctx, 0); 8776 8777 /* 8778 * We can recurse on the same lock type through: 8779 * 8780 * __perf_event_exit_task() 8781 * sync_child_event() 8782 * put_event() 8783 * mutex_lock(&ctx->mutex) 8784 * 8785 * But since its the parent context it won't be the same instance. 8786 */ 8787 mutex_lock(&child_ctx->mutex); 8788 8789 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) 8790 __perf_event_exit_task(child_event, child_ctx, child); 8791 8792 mutex_unlock(&child_ctx->mutex); 8793 8794 put_ctx(child_ctx); 8795 } 8796 8797 /* 8798 * When a child task exits, feed back event values to parent events. 8799 */ 8800 void perf_event_exit_task(struct task_struct *child) 8801 { 8802 struct perf_event *event, *tmp; 8803 int ctxn; 8804 8805 mutex_lock(&child->perf_event_mutex); 8806 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 8807 owner_entry) { 8808 list_del_init(&event->owner_entry); 8809 8810 /* 8811 * Ensure the list deletion is visible before we clear 8812 * the owner, closes a race against perf_release() where 8813 * we need to serialize on the owner->perf_event_mutex. 8814 */ 8815 smp_wmb(); 8816 event->owner = NULL; 8817 } 8818 mutex_unlock(&child->perf_event_mutex); 8819 8820 for_each_task_context_nr(ctxn) 8821 perf_event_exit_task_context(child, ctxn); 8822 8823 /* 8824 * The perf_event_exit_task_context calls perf_event_task 8825 * with child's task_ctx, which generates EXIT events for 8826 * child contexts and sets child->perf_event_ctxp[] to NULL. 8827 * At this point we need to send EXIT events to cpu contexts. 8828 */ 8829 perf_event_task(child, NULL, 0); 8830 } 8831 8832 static void perf_free_event(struct perf_event *event, 8833 struct perf_event_context *ctx) 8834 { 8835 struct perf_event *parent = event->parent; 8836 8837 if (WARN_ON_ONCE(!parent)) 8838 return; 8839 8840 mutex_lock(&parent->child_mutex); 8841 list_del_init(&event->child_list); 8842 mutex_unlock(&parent->child_mutex); 8843 8844 put_event(parent); 8845 8846 raw_spin_lock_irq(&ctx->lock); 8847 perf_group_detach(event); 8848 list_del_event(event, ctx); 8849 raw_spin_unlock_irq(&ctx->lock); 8850 free_event(event); 8851 } 8852 8853 /* 8854 * Free an unexposed, unused context as created by inheritance by 8855 * perf_event_init_task below, used by fork() in case of fail. 8856 * 8857 * Not all locks are strictly required, but take them anyway to be nice and 8858 * help out with the lockdep assertions. 8859 */ 8860 void perf_event_free_task(struct task_struct *task) 8861 { 8862 struct perf_event_context *ctx; 8863 struct perf_event *event, *tmp; 8864 int ctxn; 8865 8866 for_each_task_context_nr(ctxn) { 8867 ctx = task->perf_event_ctxp[ctxn]; 8868 if (!ctx) 8869 continue; 8870 8871 mutex_lock(&ctx->mutex); 8872 again: 8873 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, 8874 group_entry) 8875 perf_free_event(event, ctx); 8876 8877 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, 8878 group_entry) 8879 perf_free_event(event, ctx); 8880 8881 if (!list_empty(&ctx->pinned_groups) || 8882 !list_empty(&ctx->flexible_groups)) 8883 goto again; 8884 8885 mutex_unlock(&ctx->mutex); 8886 8887 put_ctx(ctx); 8888 } 8889 } 8890 8891 void perf_event_delayed_put(struct task_struct *task) 8892 { 8893 int ctxn; 8894 8895 for_each_task_context_nr(ctxn) 8896 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); 8897 } 8898 8899 struct perf_event *perf_event_get(unsigned int fd) 8900 { 8901 int err; 8902 struct fd f; 8903 struct perf_event *event; 8904 8905 err = perf_fget_light(fd, &f); 8906 if (err) 8907 return ERR_PTR(err); 8908 8909 event = f.file->private_data; 8910 atomic_long_inc(&event->refcount); 8911 fdput(f); 8912 8913 return event; 8914 } 8915 8916 const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 8917 { 8918 if (!event) 8919 return ERR_PTR(-EINVAL); 8920 8921 return &event->attr; 8922 } 8923 8924 /* 8925 * inherit a event from parent task to child task: 8926 */ 8927 static struct perf_event * 8928 inherit_event(struct perf_event *parent_event, 8929 struct task_struct *parent, 8930 struct perf_event_context *parent_ctx, 8931 struct task_struct *child, 8932 struct perf_event *group_leader, 8933 struct perf_event_context *child_ctx) 8934 { 8935 enum perf_event_active_state parent_state = parent_event->state; 8936 struct perf_event *child_event; 8937 unsigned long flags; 8938 8939 /* 8940 * Instead of creating recursive hierarchies of events, 8941 * we link inherited events back to the original parent, 8942 * which has a filp for sure, which we use as the reference 8943 * count: 8944 */ 8945 if (parent_event->parent) 8946 parent_event = parent_event->parent; 8947 8948 child_event = perf_event_alloc(&parent_event->attr, 8949 parent_event->cpu, 8950 child, 8951 group_leader, parent_event, 8952 NULL, NULL, -1); 8953 if (IS_ERR(child_event)) 8954 return child_event; 8955 8956 if (is_orphaned_event(parent_event) || 8957 !atomic_long_inc_not_zero(&parent_event->refcount)) { 8958 free_event(child_event); 8959 return NULL; 8960 } 8961 8962 get_ctx(child_ctx); 8963 8964 /* 8965 * Make the child state follow the state of the parent event, 8966 * not its attr.disabled bit. We hold the parent's mutex, 8967 * so we won't race with perf_event_{en, dis}able_family. 8968 */ 8969 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 8970 child_event->state = PERF_EVENT_STATE_INACTIVE; 8971 else 8972 child_event->state = PERF_EVENT_STATE_OFF; 8973 8974 if (parent_event->attr.freq) { 8975 u64 sample_period = parent_event->hw.sample_period; 8976 struct hw_perf_event *hwc = &child_event->hw; 8977 8978 hwc->sample_period = sample_period; 8979 hwc->last_period = sample_period; 8980 8981 local64_set(&hwc->period_left, sample_period); 8982 } 8983 8984 child_event->ctx = child_ctx; 8985 child_event->overflow_handler = parent_event->overflow_handler; 8986 child_event->overflow_handler_context 8987 = parent_event->overflow_handler_context; 8988 8989 /* 8990 * Precalculate sample_data sizes 8991 */ 8992 perf_event__header_size(child_event); 8993 perf_event__id_header_size(child_event); 8994 8995 /* 8996 * Link it up in the child's context: 8997 */ 8998 raw_spin_lock_irqsave(&child_ctx->lock, flags); 8999 add_event_to_ctx(child_event, child_ctx); 9000 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 9001 9002 /* 9003 * Link this into the parent event's child list 9004 */ 9005 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 9006 mutex_lock(&parent_event->child_mutex); 9007 list_add_tail(&child_event->child_list, &parent_event->child_list); 9008 mutex_unlock(&parent_event->child_mutex); 9009 9010 return child_event; 9011 } 9012 9013 static int inherit_group(struct perf_event *parent_event, 9014 struct task_struct *parent, 9015 struct perf_event_context *parent_ctx, 9016 struct task_struct *child, 9017 struct perf_event_context *child_ctx) 9018 { 9019 struct perf_event *leader; 9020 struct perf_event *sub; 9021 struct perf_event *child_ctr; 9022 9023 leader = inherit_event(parent_event, parent, parent_ctx, 9024 child, NULL, child_ctx); 9025 if (IS_ERR(leader)) 9026 return PTR_ERR(leader); 9027 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) { 9028 child_ctr = inherit_event(sub, parent, parent_ctx, 9029 child, leader, child_ctx); 9030 if (IS_ERR(child_ctr)) 9031 return PTR_ERR(child_ctr); 9032 } 9033 return 0; 9034 } 9035 9036 static int 9037 inherit_task_group(struct perf_event *event, struct task_struct *parent, 9038 struct perf_event_context *parent_ctx, 9039 struct task_struct *child, int ctxn, 9040 int *inherited_all) 9041 { 9042 int ret; 9043 struct perf_event_context *child_ctx; 9044 9045 if (!event->attr.inherit) { 9046 *inherited_all = 0; 9047 return 0; 9048 } 9049 9050 child_ctx = child->perf_event_ctxp[ctxn]; 9051 if (!child_ctx) { 9052 /* 9053 * This is executed from the parent task context, so 9054 * inherit events that have been marked for cloning. 9055 * First allocate and initialize a context for the 9056 * child. 9057 */ 9058 9059 child_ctx = alloc_perf_context(parent_ctx->pmu, child); 9060 if (!child_ctx) 9061 return -ENOMEM; 9062 9063 child->perf_event_ctxp[ctxn] = child_ctx; 9064 } 9065 9066 ret = inherit_group(event, parent, parent_ctx, 9067 child, child_ctx); 9068 9069 if (ret) 9070 *inherited_all = 0; 9071 9072 return ret; 9073 } 9074 9075 /* 9076 * Initialize the perf_event context in task_struct 9077 */ 9078 static int perf_event_init_context(struct task_struct *child, int ctxn) 9079 { 9080 struct perf_event_context *child_ctx, *parent_ctx; 9081 struct perf_event_context *cloned_ctx; 9082 struct perf_event *event; 9083 struct task_struct *parent = current; 9084 int inherited_all = 1; 9085 unsigned long flags; 9086 int ret = 0; 9087 9088 if (likely(!parent->perf_event_ctxp[ctxn])) 9089 return 0; 9090 9091 /* 9092 * If the parent's context is a clone, pin it so it won't get 9093 * swapped under us. 9094 */ 9095 parent_ctx = perf_pin_task_context(parent, ctxn); 9096 if (!parent_ctx) 9097 return 0; 9098 9099 /* 9100 * No need to check if parent_ctx != NULL here; since we saw 9101 * it non-NULL earlier, the only reason for it to become NULL 9102 * is if we exit, and since we're currently in the middle of 9103 * a fork we can't be exiting at the same time. 9104 */ 9105 9106 /* 9107 * Lock the parent list. No need to lock the child - not PID 9108 * hashed yet and not running, so nobody can access it. 9109 */ 9110 mutex_lock(&parent_ctx->mutex); 9111 9112 /* 9113 * We dont have to disable NMIs - we are only looking at 9114 * the list, not manipulating it: 9115 */ 9116 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) { 9117 ret = inherit_task_group(event, parent, parent_ctx, 9118 child, ctxn, &inherited_all); 9119 if (ret) 9120 break; 9121 } 9122 9123 /* 9124 * We can't hold ctx->lock when iterating the ->flexible_group list due 9125 * to allocations, but we need to prevent rotation because 9126 * rotate_ctx() will change the list from interrupt context. 9127 */ 9128 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 9129 parent_ctx->rotate_disable = 1; 9130 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 9131 9132 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) { 9133 ret = inherit_task_group(event, parent, parent_ctx, 9134 child, ctxn, &inherited_all); 9135 if (ret) 9136 break; 9137 } 9138 9139 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 9140 parent_ctx->rotate_disable = 0; 9141 9142 child_ctx = child->perf_event_ctxp[ctxn]; 9143 9144 if (child_ctx && inherited_all) { 9145 /* 9146 * Mark the child context as a clone of the parent 9147 * context, or of whatever the parent is a clone of. 9148 * 9149 * Note that if the parent is a clone, the holding of 9150 * parent_ctx->lock avoids it from being uncloned. 9151 */ 9152 cloned_ctx = parent_ctx->parent_ctx; 9153 if (cloned_ctx) { 9154 child_ctx->parent_ctx = cloned_ctx; 9155 child_ctx->parent_gen = parent_ctx->parent_gen; 9156 } else { 9157 child_ctx->parent_ctx = parent_ctx; 9158 child_ctx->parent_gen = parent_ctx->generation; 9159 } 9160 get_ctx(child_ctx->parent_ctx); 9161 } 9162 9163 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 9164 mutex_unlock(&parent_ctx->mutex); 9165 9166 perf_unpin_context(parent_ctx); 9167 put_ctx(parent_ctx); 9168 9169 return ret; 9170 } 9171 9172 /* 9173 * Initialize the perf_event context in task_struct 9174 */ 9175 int perf_event_init_task(struct task_struct *child) 9176 { 9177 int ctxn, ret; 9178 9179 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); 9180 mutex_init(&child->perf_event_mutex); 9181 INIT_LIST_HEAD(&child->perf_event_list); 9182 9183 for_each_task_context_nr(ctxn) { 9184 ret = perf_event_init_context(child, ctxn); 9185 if (ret) { 9186 perf_event_free_task(child); 9187 return ret; 9188 } 9189 } 9190 9191 return 0; 9192 } 9193 9194 static void __init perf_event_init_all_cpus(void) 9195 { 9196 struct swevent_htable *swhash; 9197 int cpu; 9198 9199 for_each_possible_cpu(cpu) { 9200 swhash = &per_cpu(swevent_htable, cpu); 9201 mutex_init(&swhash->hlist_mutex); 9202 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu)); 9203 } 9204 } 9205 9206 static void perf_event_init_cpu(int cpu) 9207 { 9208 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 9209 9210 mutex_lock(&swhash->hlist_mutex); 9211 if (swhash->hlist_refcount > 0) { 9212 struct swevent_hlist *hlist; 9213 9214 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 9215 WARN_ON(!hlist); 9216 rcu_assign_pointer(swhash->swevent_hlist, hlist); 9217 } 9218 mutex_unlock(&swhash->hlist_mutex); 9219 } 9220 9221 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE 9222 static void __perf_event_exit_context(void *__info) 9223 { 9224 struct remove_event re = { .detach_group = true }; 9225 struct perf_event_context *ctx = __info; 9226 9227 rcu_read_lock(); 9228 list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry) 9229 __perf_remove_from_context(&re); 9230 rcu_read_unlock(); 9231 } 9232 9233 static void perf_event_exit_cpu_context(int cpu) 9234 { 9235 struct perf_event_context *ctx; 9236 struct pmu *pmu; 9237 int idx; 9238 9239 idx = srcu_read_lock(&pmus_srcu); 9240 list_for_each_entry_rcu(pmu, &pmus, entry) { 9241 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx; 9242 9243 mutex_lock(&ctx->mutex); 9244 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 9245 mutex_unlock(&ctx->mutex); 9246 } 9247 srcu_read_unlock(&pmus_srcu, idx); 9248 } 9249 9250 static void perf_event_exit_cpu(int cpu) 9251 { 9252 perf_event_exit_cpu_context(cpu); 9253 } 9254 #else 9255 static inline void perf_event_exit_cpu(int cpu) { } 9256 #endif 9257 9258 static int 9259 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 9260 { 9261 int cpu; 9262 9263 for_each_online_cpu(cpu) 9264 perf_event_exit_cpu(cpu); 9265 9266 return NOTIFY_OK; 9267 } 9268 9269 /* 9270 * Run the perf reboot notifier at the very last possible moment so that 9271 * the generic watchdog code runs as long as possible. 9272 */ 9273 static struct notifier_block perf_reboot_notifier = { 9274 .notifier_call = perf_reboot, 9275 .priority = INT_MIN, 9276 }; 9277 9278 static int 9279 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu) 9280 { 9281 unsigned int cpu = (long)hcpu; 9282 9283 switch (action & ~CPU_TASKS_FROZEN) { 9284 9285 case CPU_UP_PREPARE: 9286 case CPU_DOWN_FAILED: 9287 perf_event_init_cpu(cpu); 9288 break; 9289 9290 case CPU_UP_CANCELED: 9291 case CPU_DOWN_PREPARE: 9292 perf_event_exit_cpu(cpu); 9293 break; 9294 default: 9295 break; 9296 } 9297 9298 return NOTIFY_OK; 9299 } 9300 9301 void __init perf_event_init(void) 9302 { 9303 int ret; 9304 9305 idr_init(&pmu_idr); 9306 9307 perf_event_init_all_cpus(); 9308 init_srcu_struct(&pmus_srcu); 9309 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 9310 perf_pmu_register(&perf_cpu_clock, NULL, -1); 9311 perf_pmu_register(&perf_task_clock, NULL, -1); 9312 perf_tp_register(); 9313 perf_cpu_notifier(perf_cpu_notify); 9314 register_reboot_notifier(&perf_reboot_notifier); 9315 9316 ret = init_hw_breakpoint(); 9317 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 9318 9319 /* do not patch jump label more than once per second */ 9320 jump_label_rate_limit(&perf_sched_events, HZ); 9321 9322 /* 9323 * Build time assertion that we keep the data_head at the intended 9324 * location. IOW, validation we got the __reserved[] size right. 9325 */ 9326 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 9327 != 1024); 9328 } 9329 9330 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 9331 char *page) 9332 { 9333 struct perf_pmu_events_attr *pmu_attr = 9334 container_of(attr, struct perf_pmu_events_attr, attr); 9335 9336 if (pmu_attr->event_str) 9337 return sprintf(page, "%s\n", pmu_attr->event_str); 9338 9339 return 0; 9340 } 9341 9342 static int __init perf_event_sysfs_init(void) 9343 { 9344 struct pmu *pmu; 9345 int ret; 9346 9347 mutex_lock(&pmus_lock); 9348 9349 ret = bus_register(&pmu_bus); 9350 if (ret) 9351 goto unlock; 9352 9353 list_for_each_entry(pmu, &pmus, entry) { 9354 if (!pmu->name || pmu->type < 0) 9355 continue; 9356 9357 ret = pmu_dev_alloc(pmu); 9358 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 9359 } 9360 pmu_bus_running = 1; 9361 ret = 0; 9362 9363 unlock: 9364 mutex_unlock(&pmus_lock); 9365 9366 return ret; 9367 } 9368 device_initcall(perf_event_sysfs_init); 9369 9370 #ifdef CONFIG_CGROUP_PERF 9371 static struct cgroup_subsys_state * 9372 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 9373 { 9374 struct perf_cgroup *jc; 9375 9376 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 9377 if (!jc) 9378 return ERR_PTR(-ENOMEM); 9379 9380 jc->info = alloc_percpu(struct perf_cgroup_info); 9381 if (!jc->info) { 9382 kfree(jc); 9383 return ERR_PTR(-ENOMEM); 9384 } 9385 9386 return &jc->css; 9387 } 9388 9389 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 9390 { 9391 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 9392 9393 free_percpu(jc->info); 9394 kfree(jc); 9395 } 9396 9397 static int __perf_cgroup_move(void *info) 9398 { 9399 struct task_struct *task = info; 9400 rcu_read_lock(); 9401 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN); 9402 rcu_read_unlock(); 9403 return 0; 9404 } 9405 9406 static void perf_cgroup_attach(struct cgroup_taskset *tset) 9407 { 9408 struct task_struct *task; 9409 struct cgroup_subsys_state *css; 9410 9411 cgroup_taskset_for_each(task, css, tset) 9412 task_function_call(task, __perf_cgroup_move, task); 9413 } 9414 9415 struct cgroup_subsys perf_event_cgrp_subsys = { 9416 .css_alloc = perf_cgroup_css_alloc, 9417 .css_free = perf_cgroup_css_free, 9418 .attach = perf_cgroup_attach, 9419 }; 9420 #endif /* CONFIG_CGROUP_PERF */ 9421