xref: /openbmc/linux/kernel/events/core.c (revision 9fb29c73)
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11 
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 
54 #include "internal.h"
55 
56 #include <asm/irq_regs.h>
57 
58 typedef int (*remote_function_f)(void *);
59 
60 struct remote_function_call {
61 	struct task_struct	*p;
62 	remote_function_f	func;
63 	void			*info;
64 	int			ret;
65 };
66 
67 static void remote_function(void *data)
68 {
69 	struct remote_function_call *tfc = data;
70 	struct task_struct *p = tfc->p;
71 
72 	if (p) {
73 		/* -EAGAIN */
74 		if (task_cpu(p) != smp_processor_id())
75 			return;
76 
77 		/*
78 		 * Now that we're on right CPU with IRQs disabled, we can test
79 		 * if we hit the right task without races.
80 		 */
81 
82 		tfc->ret = -ESRCH; /* No such (running) process */
83 		if (p != current)
84 			return;
85 	}
86 
87 	tfc->ret = tfc->func(tfc->info);
88 }
89 
90 /**
91  * task_function_call - call a function on the cpu on which a task runs
92  * @p:		the task to evaluate
93  * @func:	the function to be called
94  * @info:	the function call argument
95  *
96  * Calls the function @func when the task is currently running. This might
97  * be on the current CPU, which just calls the function directly
98  *
99  * returns: @func return value, or
100  *	    -ESRCH  - when the process isn't running
101  *	    -EAGAIN - when the process moved away
102  */
103 static int
104 task_function_call(struct task_struct *p, remote_function_f func, void *info)
105 {
106 	struct remote_function_call data = {
107 		.p	= p,
108 		.func	= func,
109 		.info	= info,
110 		.ret	= -EAGAIN,
111 	};
112 	int ret;
113 
114 	do {
115 		ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
116 		if (!ret)
117 			ret = data.ret;
118 	} while (ret == -EAGAIN);
119 
120 	return ret;
121 }
122 
123 /**
124  * cpu_function_call - call a function on the cpu
125  * @func:	the function to be called
126  * @info:	the function call argument
127  *
128  * Calls the function @func on the remote cpu.
129  *
130  * returns: @func return value or -ENXIO when the cpu is offline
131  */
132 static int cpu_function_call(int cpu, remote_function_f func, void *info)
133 {
134 	struct remote_function_call data = {
135 		.p	= NULL,
136 		.func	= func,
137 		.info	= info,
138 		.ret	= -ENXIO, /* No such CPU */
139 	};
140 
141 	smp_call_function_single(cpu, remote_function, &data, 1);
142 
143 	return data.ret;
144 }
145 
146 static inline struct perf_cpu_context *
147 __get_cpu_context(struct perf_event_context *ctx)
148 {
149 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
150 }
151 
152 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
153 			  struct perf_event_context *ctx)
154 {
155 	raw_spin_lock(&cpuctx->ctx.lock);
156 	if (ctx)
157 		raw_spin_lock(&ctx->lock);
158 }
159 
160 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
161 			    struct perf_event_context *ctx)
162 {
163 	if (ctx)
164 		raw_spin_unlock(&ctx->lock);
165 	raw_spin_unlock(&cpuctx->ctx.lock);
166 }
167 
168 #define TASK_TOMBSTONE ((void *)-1L)
169 
170 static bool is_kernel_event(struct perf_event *event)
171 {
172 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
173 }
174 
175 /*
176  * On task ctx scheduling...
177  *
178  * When !ctx->nr_events a task context will not be scheduled. This means
179  * we can disable the scheduler hooks (for performance) without leaving
180  * pending task ctx state.
181  *
182  * This however results in two special cases:
183  *
184  *  - removing the last event from a task ctx; this is relatively straight
185  *    forward and is done in __perf_remove_from_context.
186  *
187  *  - adding the first event to a task ctx; this is tricky because we cannot
188  *    rely on ctx->is_active and therefore cannot use event_function_call().
189  *    See perf_install_in_context().
190  *
191  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
192  */
193 
194 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
195 			struct perf_event_context *, void *);
196 
197 struct event_function_struct {
198 	struct perf_event *event;
199 	event_f func;
200 	void *data;
201 };
202 
203 static int event_function(void *info)
204 {
205 	struct event_function_struct *efs = info;
206 	struct perf_event *event = efs->event;
207 	struct perf_event_context *ctx = event->ctx;
208 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
209 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
210 	int ret = 0;
211 
212 	lockdep_assert_irqs_disabled();
213 
214 	perf_ctx_lock(cpuctx, task_ctx);
215 	/*
216 	 * Since we do the IPI call without holding ctx->lock things can have
217 	 * changed, double check we hit the task we set out to hit.
218 	 */
219 	if (ctx->task) {
220 		if (ctx->task != current) {
221 			ret = -ESRCH;
222 			goto unlock;
223 		}
224 
225 		/*
226 		 * We only use event_function_call() on established contexts,
227 		 * and event_function() is only ever called when active (or
228 		 * rather, we'll have bailed in task_function_call() or the
229 		 * above ctx->task != current test), therefore we must have
230 		 * ctx->is_active here.
231 		 */
232 		WARN_ON_ONCE(!ctx->is_active);
233 		/*
234 		 * And since we have ctx->is_active, cpuctx->task_ctx must
235 		 * match.
236 		 */
237 		WARN_ON_ONCE(task_ctx != ctx);
238 	} else {
239 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
240 	}
241 
242 	efs->func(event, cpuctx, ctx, efs->data);
243 unlock:
244 	perf_ctx_unlock(cpuctx, task_ctx);
245 
246 	return ret;
247 }
248 
249 static void event_function_call(struct perf_event *event, event_f func, void *data)
250 {
251 	struct perf_event_context *ctx = event->ctx;
252 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
253 	struct event_function_struct efs = {
254 		.event = event,
255 		.func = func,
256 		.data = data,
257 	};
258 
259 	if (!event->parent) {
260 		/*
261 		 * If this is a !child event, we must hold ctx::mutex to
262 		 * stabilize the the event->ctx relation. See
263 		 * perf_event_ctx_lock().
264 		 */
265 		lockdep_assert_held(&ctx->mutex);
266 	}
267 
268 	if (!task) {
269 		cpu_function_call(event->cpu, event_function, &efs);
270 		return;
271 	}
272 
273 	if (task == TASK_TOMBSTONE)
274 		return;
275 
276 again:
277 	if (!task_function_call(task, event_function, &efs))
278 		return;
279 
280 	raw_spin_lock_irq(&ctx->lock);
281 	/*
282 	 * Reload the task pointer, it might have been changed by
283 	 * a concurrent perf_event_context_sched_out().
284 	 */
285 	task = ctx->task;
286 	if (task == TASK_TOMBSTONE) {
287 		raw_spin_unlock_irq(&ctx->lock);
288 		return;
289 	}
290 	if (ctx->is_active) {
291 		raw_spin_unlock_irq(&ctx->lock);
292 		goto again;
293 	}
294 	func(event, NULL, ctx, data);
295 	raw_spin_unlock_irq(&ctx->lock);
296 }
297 
298 /*
299  * Similar to event_function_call() + event_function(), but hard assumes IRQs
300  * are already disabled and we're on the right CPU.
301  */
302 static void event_function_local(struct perf_event *event, event_f func, void *data)
303 {
304 	struct perf_event_context *ctx = event->ctx;
305 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
306 	struct task_struct *task = READ_ONCE(ctx->task);
307 	struct perf_event_context *task_ctx = NULL;
308 
309 	lockdep_assert_irqs_disabled();
310 
311 	if (task) {
312 		if (task == TASK_TOMBSTONE)
313 			return;
314 
315 		task_ctx = ctx;
316 	}
317 
318 	perf_ctx_lock(cpuctx, task_ctx);
319 
320 	task = ctx->task;
321 	if (task == TASK_TOMBSTONE)
322 		goto unlock;
323 
324 	if (task) {
325 		/*
326 		 * We must be either inactive or active and the right task,
327 		 * otherwise we're screwed, since we cannot IPI to somewhere
328 		 * else.
329 		 */
330 		if (ctx->is_active) {
331 			if (WARN_ON_ONCE(task != current))
332 				goto unlock;
333 
334 			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
335 				goto unlock;
336 		}
337 	} else {
338 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
339 	}
340 
341 	func(event, cpuctx, ctx, data);
342 unlock:
343 	perf_ctx_unlock(cpuctx, task_ctx);
344 }
345 
346 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
347 		       PERF_FLAG_FD_OUTPUT  |\
348 		       PERF_FLAG_PID_CGROUP |\
349 		       PERF_FLAG_FD_CLOEXEC)
350 
351 /*
352  * branch priv levels that need permission checks
353  */
354 #define PERF_SAMPLE_BRANCH_PERM_PLM \
355 	(PERF_SAMPLE_BRANCH_KERNEL |\
356 	 PERF_SAMPLE_BRANCH_HV)
357 
358 enum event_type_t {
359 	EVENT_FLEXIBLE = 0x1,
360 	EVENT_PINNED = 0x2,
361 	EVENT_TIME = 0x4,
362 	/* see ctx_resched() for details */
363 	EVENT_CPU = 0x8,
364 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
365 };
366 
367 /*
368  * perf_sched_events : >0 events exist
369  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
370  */
371 
372 static void perf_sched_delayed(struct work_struct *work);
373 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
374 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
375 static DEFINE_MUTEX(perf_sched_mutex);
376 static atomic_t perf_sched_count;
377 
378 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
379 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
380 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
381 
382 static atomic_t nr_mmap_events __read_mostly;
383 static atomic_t nr_comm_events __read_mostly;
384 static atomic_t nr_namespaces_events __read_mostly;
385 static atomic_t nr_task_events __read_mostly;
386 static atomic_t nr_freq_events __read_mostly;
387 static atomic_t nr_switch_events __read_mostly;
388 
389 static LIST_HEAD(pmus);
390 static DEFINE_MUTEX(pmus_lock);
391 static struct srcu_struct pmus_srcu;
392 static cpumask_var_t perf_online_mask;
393 
394 /*
395  * perf event paranoia level:
396  *  -1 - not paranoid at all
397  *   0 - disallow raw tracepoint access for unpriv
398  *   1 - disallow cpu events for unpriv
399  *   2 - disallow kernel profiling for unpriv
400  */
401 int sysctl_perf_event_paranoid __read_mostly = 2;
402 
403 /* Minimum for 512 kiB + 1 user control page */
404 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
405 
406 /*
407  * max perf event sample rate
408  */
409 #define DEFAULT_MAX_SAMPLE_RATE		100000
410 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
411 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
412 
413 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
414 
415 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
416 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
417 
418 static int perf_sample_allowed_ns __read_mostly =
419 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
420 
421 static void update_perf_cpu_limits(void)
422 {
423 	u64 tmp = perf_sample_period_ns;
424 
425 	tmp *= sysctl_perf_cpu_time_max_percent;
426 	tmp = div_u64(tmp, 100);
427 	if (!tmp)
428 		tmp = 1;
429 
430 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
431 }
432 
433 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
434 
435 int perf_proc_update_handler(struct ctl_table *table, int write,
436 		void __user *buffer, size_t *lenp,
437 		loff_t *ppos)
438 {
439 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
440 
441 	if (ret || !write)
442 		return ret;
443 
444 	/*
445 	 * If throttling is disabled don't allow the write:
446 	 */
447 	if (sysctl_perf_cpu_time_max_percent == 100 ||
448 	    sysctl_perf_cpu_time_max_percent == 0)
449 		return -EINVAL;
450 
451 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
452 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
453 	update_perf_cpu_limits();
454 
455 	return 0;
456 }
457 
458 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
459 
460 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
461 				void __user *buffer, size_t *lenp,
462 				loff_t *ppos)
463 {
464 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
465 
466 	if (ret || !write)
467 		return ret;
468 
469 	if (sysctl_perf_cpu_time_max_percent == 100 ||
470 	    sysctl_perf_cpu_time_max_percent == 0) {
471 		printk(KERN_WARNING
472 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
473 		WRITE_ONCE(perf_sample_allowed_ns, 0);
474 	} else {
475 		update_perf_cpu_limits();
476 	}
477 
478 	return 0;
479 }
480 
481 /*
482  * perf samples are done in some very critical code paths (NMIs).
483  * If they take too much CPU time, the system can lock up and not
484  * get any real work done.  This will drop the sample rate when
485  * we detect that events are taking too long.
486  */
487 #define NR_ACCUMULATED_SAMPLES 128
488 static DEFINE_PER_CPU(u64, running_sample_length);
489 
490 static u64 __report_avg;
491 static u64 __report_allowed;
492 
493 static void perf_duration_warn(struct irq_work *w)
494 {
495 	printk_ratelimited(KERN_INFO
496 		"perf: interrupt took too long (%lld > %lld), lowering "
497 		"kernel.perf_event_max_sample_rate to %d\n",
498 		__report_avg, __report_allowed,
499 		sysctl_perf_event_sample_rate);
500 }
501 
502 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
503 
504 void perf_sample_event_took(u64 sample_len_ns)
505 {
506 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
507 	u64 running_len;
508 	u64 avg_len;
509 	u32 max;
510 
511 	if (max_len == 0)
512 		return;
513 
514 	/* Decay the counter by 1 average sample. */
515 	running_len = __this_cpu_read(running_sample_length);
516 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
517 	running_len += sample_len_ns;
518 	__this_cpu_write(running_sample_length, running_len);
519 
520 	/*
521 	 * Note: this will be biased artifically low until we have
522 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
523 	 * from having to maintain a count.
524 	 */
525 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
526 	if (avg_len <= max_len)
527 		return;
528 
529 	__report_avg = avg_len;
530 	__report_allowed = max_len;
531 
532 	/*
533 	 * Compute a throttle threshold 25% below the current duration.
534 	 */
535 	avg_len += avg_len / 4;
536 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
537 	if (avg_len < max)
538 		max /= (u32)avg_len;
539 	else
540 		max = 1;
541 
542 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
543 	WRITE_ONCE(max_samples_per_tick, max);
544 
545 	sysctl_perf_event_sample_rate = max * HZ;
546 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
547 
548 	if (!irq_work_queue(&perf_duration_work)) {
549 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
550 			     "kernel.perf_event_max_sample_rate to %d\n",
551 			     __report_avg, __report_allowed,
552 			     sysctl_perf_event_sample_rate);
553 	}
554 }
555 
556 static atomic64_t perf_event_id;
557 
558 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
559 			      enum event_type_t event_type);
560 
561 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
562 			     enum event_type_t event_type,
563 			     struct task_struct *task);
564 
565 static void update_context_time(struct perf_event_context *ctx);
566 static u64 perf_event_time(struct perf_event *event);
567 
568 void __weak perf_event_print_debug(void)	{ }
569 
570 extern __weak const char *perf_pmu_name(void)
571 {
572 	return "pmu";
573 }
574 
575 static inline u64 perf_clock(void)
576 {
577 	return local_clock();
578 }
579 
580 static inline u64 perf_event_clock(struct perf_event *event)
581 {
582 	return event->clock();
583 }
584 
585 /*
586  * State based event timekeeping...
587  *
588  * The basic idea is to use event->state to determine which (if any) time
589  * fields to increment with the current delta. This means we only need to
590  * update timestamps when we change state or when they are explicitly requested
591  * (read).
592  *
593  * Event groups make things a little more complicated, but not terribly so. The
594  * rules for a group are that if the group leader is OFF the entire group is
595  * OFF, irrespecive of what the group member states are. This results in
596  * __perf_effective_state().
597  *
598  * A futher ramification is that when a group leader flips between OFF and
599  * !OFF, we need to update all group member times.
600  *
601  *
602  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
603  * need to make sure the relevant context time is updated before we try and
604  * update our timestamps.
605  */
606 
607 static __always_inline enum perf_event_state
608 __perf_effective_state(struct perf_event *event)
609 {
610 	struct perf_event *leader = event->group_leader;
611 
612 	if (leader->state <= PERF_EVENT_STATE_OFF)
613 		return leader->state;
614 
615 	return event->state;
616 }
617 
618 static __always_inline void
619 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
620 {
621 	enum perf_event_state state = __perf_effective_state(event);
622 	u64 delta = now - event->tstamp;
623 
624 	*enabled = event->total_time_enabled;
625 	if (state >= PERF_EVENT_STATE_INACTIVE)
626 		*enabled += delta;
627 
628 	*running = event->total_time_running;
629 	if (state >= PERF_EVENT_STATE_ACTIVE)
630 		*running += delta;
631 }
632 
633 static void perf_event_update_time(struct perf_event *event)
634 {
635 	u64 now = perf_event_time(event);
636 
637 	__perf_update_times(event, now, &event->total_time_enabled,
638 					&event->total_time_running);
639 	event->tstamp = now;
640 }
641 
642 static void perf_event_update_sibling_time(struct perf_event *leader)
643 {
644 	struct perf_event *sibling;
645 
646 	for_each_sibling_event(sibling, leader)
647 		perf_event_update_time(sibling);
648 }
649 
650 static void
651 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
652 {
653 	if (event->state == state)
654 		return;
655 
656 	perf_event_update_time(event);
657 	/*
658 	 * If a group leader gets enabled/disabled all its siblings
659 	 * are affected too.
660 	 */
661 	if ((event->state < 0) ^ (state < 0))
662 		perf_event_update_sibling_time(event);
663 
664 	WRITE_ONCE(event->state, state);
665 }
666 
667 #ifdef CONFIG_CGROUP_PERF
668 
669 static inline bool
670 perf_cgroup_match(struct perf_event *event)
671 {
672 	struct perf_event_context *ctx = event->ctx;
673 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
674 
675 	/* @event doesn't care about cgroup */
676 	if (!event->cgrp)
677 		return true;
678 
679 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
680 	if (!cpuctx->cgrp)
681 		return false;
682 
683 	/*
684 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
685 	 * also enabled for all its descendant cgroups.  If @cpuctx's
686 	 * cgroup is a descendant of @event's (the test covers identity
687 	 * case), it's a match.
688 	 */
689 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
690 				    event->cgrp->css.cgroup);
691 }
692 
693 static inline void perf_detach_cgroup(struct perf_event *event)
694 {
695 	css_put(&event->cgrp->css);
696 	event->cgrp = NULL;
697 }
698 
699 static inline int is_cgroup_event(struct perf_event *event)
700 {
701 	return event->cgrp != NULL;
702 }
703 
704 static inline u64 perf_cgroup_event_time(struct perf_event *event)
705 {
706 	struct perf_cgroup_info *t;
707 
708 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
709 	return t->time;
710 }
711 
712 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
713 {
714 	struct perf_cgroup_info *info;
715 	u64 now;
716 
717 	now = perf_clock();
718 
719 	info = this_cpu_ptr(cgrp->info);
720 
721 	info->time += now - info->timestamp;
722 	info->timestamp = now;
723 }
724 
725 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
726 {
727 	struct perf_cgroup *cgrp = cpuctx->cgrp;
728 	struct cgroup_subsys_state *css;
729 
730 	if (cgrp) {
731 		for (css = &cgrp->css; css; css = css->parent) {
732 			cgrp = container_of(css, struct perf_cgroup, css);
733 			__update_cgrp_time(cgrp);
734 		}
735 	}
736 }
737 
738 static inline void update_cgrp_time_from_event(struct perf_event *event)
739 {
740 	struct perf_cgroup *cgrp;
741 
742 	/*
743 	 * ensure we access cgroup data only when needed and
744 	 * when we know the cgroup is pinned (css_get)
745 	 */
746 	if (!is_cgroup_event(event))
747 		return;
748 
749 	cgrp = perf_cgroup_from_task(current, event->ctx);
750 	/*
751 	 * Do not update time when cgroup is not active
752 	 */
753 	if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
754 		__update_cgrp_time(event->cgrp);
755 }
756 
757 static inline void
758 perf_cgroup_set_timestamp(struct task_struct *task,
759 			  struct perf_event_context *ctx)
760 {
761 	struct perf_cgroup *cgrp;
762 	struct perf_cgroup_info *info;
763 	struct cgroup_subsys_state *css;
764 
765 	/*
766 	 * ctx->lock held by caller
767 	 * ensure we do not access cgroup data
768 	 * unless we have the cgroup pinned (css_get)
769 	 */
770 	if (!task || !ctx->nr_cgroups)
771 		return;
772 
773 	cgrp = perf_cgroup_from_task(task, ctx);
774 
775 	for (css = &cgrp->css; css; css = css->parent) {
776 		cgrp = container_of(css, struct perf_cgroup, css);
777 		info = this_cpu_ptr(cgrp->info);
778 		info->timestamp = ctx->timestamp;
779 	}
780 }
781 
782 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
783 
784 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
785 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
786 
787 /*
788  * reschedule events based on the cgroup constraint of task.
789  *
790  * mode SWOUT : schedule out everything
791  * mode SWIN : schedule in based on cgroup for next
792  */
793 static void perf_cgroup_switch(struct task_struct *task, int mode)
794 {
795 	struct perf_cpu_context *cpuctx;
796 	struct list_head *list;
797 	unsigned long flags;
798 
799 	/*
800 	 * Disable interrupts and preemption to avoid this CPU's
801 	 * cgrp_cpuctx_entry to change under us.
802 	 */
803 	local_irq_save(flags);
804 
805 	list = this_cpu_ptr(&cgrp_cpuctx_list);
806 	list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
807 		WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
808 
809 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
810 		perf_pmu_disable(cpuctx->ctx.pmu);
811 
812 		if (mode & PERF_CGROUP_SWOUT) {
813 			cpu_ctx_sched_out(cpuctx, EVENT_ALL);
814 			/*
815 			 * must not be done before ctxswout due
816 			 * to event_filter_match() in event_sched_out()
817 			 */
818 			cpuctx->cgrp = NULL;
819 		}
820 
821 		if (mode & PERF_CGROUP_SWIN) {
822 			WARN_ON_ONCE(cpuctx->cgrp);
823 			/*
824 			 * set cgrp before ctxsw in to allow
825 			 * event_filter_match() to not have to pass
826 			 * task around
827 			 * we pass the cpuctx->ctx to perf_cgroup_from_task()
828 			 * because cgorup events are only per-cpu
829 			 */
830 			cpuctx->cgrp = perf_cgroup_from_task(task,
831 							     &cpuctx->ctx);
832 			cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
833 		}
834 		perf_pmu_enable(cpuctx->ctx.pmu);
835 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
836 	}
837 
838 	local_irq_restore(flags);
839 }
840 
841 static inline void perf_cgroup_sched_out(struct task_struct *task,
842 					 struct task_struct *next)
843 {
844 	struct perf_cgroup *cgrp1;
845 	struct perf_cgroup *cgrp2 = NULL;
846 
847 	rcu_read_lock();
848 	/*
849 	 * we come here when we know perf_cgroup_events > 0
850 	 * we do not need to pass the ctx here because we know
851 	 * we are holding the rcu lock
852 	 */
853 	cgrp1 = perf_cgroup_from_task(task, NULL);
854 	cgrp2 = perf_cgroup_from_task(next, NULL);
855 
856 	/*
857 	 * only schedule out current cgroup events if we know
858 	 * that we are switching to a different cgroup. Otherwise,
859 	 * do no touch the cgroup events.
860 	 */
861 	if (cgrp1 != cgrp2)
862 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
863 
864 	rcu_read_unlock();
865 }
866 
867 static inline void perf_cgroup_sched_in(struct task_struct *prev,
868 					struct task_struct *task)
869 {
870 	struct perf_cgroup *cgrp1;
871 	struct perf_cgroup *cgrp2 = NULL;
872 
873 	rcu_read_lock();
874 	/*
875 	 * we come here when we know perf_cgroup_events > 0
876 	 * we do not need to pass the ctx here because we know
877 	 * we are holding the rcu lock
878 	 */
879 	cgrp1 = perf_cgroup_from_task(task, NULL);
880 	cgrp2 = perf_cgroup_from_task(prev, NULL);
881 
882 	/*
883 	 * only need to schedule in cgroup events if we are changing
884 	 * cgroup during ctxsw. Cgroup events were not scheduled
885 	 * out of ctxsw out if that was not the case.
886 	 */
887 	if (cgrp1 != cgrp2)
888 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
889 
890 	rcu_read_unlock();
891 }
892 
893 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
894 				      struct perf_event_attr *attr,
895 				      struct perf_event *group_leader)
896 {
897 	struct perf_cgroup *cgrp;
898 	struct cgroup_subsys_state *css;
899 	struct fd f = fdget(fd);
900 	int ret = 0;
901 
902 	if (!f.file)
903 		return -EBADF;
904 
905 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
906 					 &perf_event_cgrp_subsys);
907 	if (IS_ERR(css)) {
908 		ret = PTR_ERR(css);
909 		goto out;
910 	}
911 
912 	cgrp = container_of(css, struct perf_cgroup, css);
913 	event->cgrp = cgrp;
914 
915 	/*
916 	 * all events in a group must monitor
917 	 * the same cgroup because a task belongs
918 	 * to only one perf cgroup at a time
919 	 */
920 	if (group_leader && group_leader->cgrp != cgrp) {
921 		perf_detach_cgroup(event);
922 		ret = -EINVAL;
923 	}
924 out:
925 	fdput(f);
926 	return ret;
927 }
928 
929 static inline void
930 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
931 {
932 	struct perf_cgroup_info *t;
933 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
934 	event->shadow_ctx_time = now - t->timestamp;
935 }
936 
937 /*
938  * Update cpuctx->cgrp so that it is set when first cgroup event is added and
939  * cleared when last cgroup event is removed.
940  */
941 static inline void
942 list_update_cgroup_event(struct perf_event *event,
943 			 struct perf_event_context *ctx, bool add)
944 {
945 	struct perf_cpu_context *cpuctx;
946 	struct list_head *cpuctx_entry;
947 
948 	if (!is_cgroup_event(event))
949 		return;
950 
951 	/*
952 	 * Because cgroup events are always per-cpu events,
953 	 * this will always be called from the right CPU.
954 	 */
955 	cpuctx = __get_cpu_context(ctx);
956 
957 	/*
958 	 * Since setting cpuctx->cgrp is conditional on the current @cgrp
959 	 * matching the event's cgroup, we must do this for every new event,
960 	 * because if the first would mismatch, the second would not try again
961 	 * and we would leave cpuctx->cgrp unset.
962 	 */
963 	if (add && !cpuctx->cgrp) {
964 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
965 
966 		if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
967 			cpuctx->cgrp = cgrp;
968 	}
969 
970 	if (add && ctx->nr_cgroups++)
971 		return;
972 	else if (!add && --ctx->nr_cgroups)
973 		return;
974 
975 	/* no cgroup running */
976 	if (!add)
977 		cpuctx->cgrp = NULL;
978 
979 	cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
980 	if (add)
981 		list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
982 	else
983 		list_del(cpuctx_entry);
984 }
985 
986 #else /* !CONFIG_CGROUP_PERF */
987 
988 static inline bool
989 perf_cgroup_match(struct perf_event *event)
990 {
991 	return true;
992 }
993 
994 static inline void perf_detach_cgroup(struct perf_event *event)
995 {}
996 
997 static inline int is_cgroup_event(struct perf_event *event)
998 {
999 	return 0;
1000 }
1001 
1002 static inline void update_cgrp_time_from_event(struct perf_event *event)
1003 {
1004 }
1005 
1006 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1007 {
1008 }
1009 
1010 static inline void perf_cgroup_sched_out(struct task_struct *task,
1011 					 struct task_struct *next)
1012 {
1013 }
1014 
1015 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1016 					struct task_struct *task)
1017 {
1018 }
1019 
1020 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1021 				      struct perf_event_attr *attr,
1022 				      struct perf_event *group_leader)
1023 {
1024 	return -EINVAL;
1025 }
1026 
1027 static inline void
1028 perf_cgroup_set_timestamp(struct task_struct *task,
1029 			  struct perf_event_context *ctx)
1030 {
1031 }
1032 
1033 void
1034 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1035 {
1036 }
1037 
1038 static inline void
1039 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1040 {
1041 }
1042 
1043 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1044 {
1045 	return 0;
1046 }
1047 
1048 static inline void
1049 list_update_cgroup_event(struct perf_event *event,
1050 			 struct perf_event_context *ctx, bool add)
1051 {
1052 }
1053 
1054 #endif
1055 
1056 /*
1057  * set default to be dependent on timer tick just
1058  * like original code
1059  */
1060 #define PERF_CPU_HRTIMER (1000 / HZ)
1061 /*
1062  * function must be called with interrupts disabled
1063  */
1064 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1065 {
1066 	struct perf_cpu_context *cpuctx;
1067 	bool rotations;
1068 
1069 	lockdep_assert_irqs_disabled();
1070 
1071 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1072 	rotations = perf_rotate_context(cpuctx);
1073 
1074 	raw_spin_lock(&cpuctx->hrtimer_lock);
1075 	if (rotations)
1076 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1077 	else
1078 		cpuctx->hrtimer_active = 0;
1079 	raw_spin_unlock(&cpuctx->hrtimer_lock);
1080 
1081 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1082 }
1083 
1084 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1085 {
1086 	struct hrtimer *timer = &cpuctx->hrtimer;
1087 	struct pmu *pmu = cpuctx->ctx.pmu;
1088 	u64 interval;
1089 
1090 	/* no multiplexing needed for SW PMU */
1091 	if (pmu->task_ctx_nr == perf_sw_context)
1092 		return;
1093 
1094 	/*
1095 	 * check default is sane, if not set then force to
1096 	 * default interval (1/tick)
1097 	 */
1098 	interval = pmu->hrtimer_interval_ms;
1099 	if (interval < 1)
1100 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1101 
1102 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1103 
1104 	raw_spin_lock_init(&cpuctx->hrtimer_lock);
1105 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1106 	timer->function = perf_mux_hrtimer_handler;
1107 }
1108 
1109 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1110 {
1111 	struct hrtimer *timer = &cpuctx->hrtimer;
1112 	struct pmu *pmu = cpuctx->ctx.pmu;
1113 	unsigned long flags;
1114 
1115 	/* not for SW PMU */
1116 	if (pmu->task_ctx_nr == perf_sw_context)
1117 		return 0;
1118 
1119 	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1120 	if (!cpuctx->hrtimer_active) {
1121 		cpuctx->hrtimer_active = 1;
1122 		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1123 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1124 	}
1125 	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1126 
1127 	return 0;
1128 }
1129 
1130 void perf_pmu_disable(struct pmu *pmu)
1131 {
1132 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1133 	if (!(*count)++)
1134 		pmu->pmu_disable(pmu);
1135 }
1136 
1137 void perf_pmu_enable(struct pmu *pmu)
1138 {
1139 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1140 	if (!--(*count))
1141 		pmu->pmu_enable(pmu);
1142 }
1143 
1144 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1145 
1146 /*
1147  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1148  * perf_event_task_tick() are fully serialized because they're strictly cpu
1149  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1150  * disabled, while perf_event_task_tick is called from IRQ context.
1151  */
1152 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1153 {
1154 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
1155 
1156 	lockdep_assert_irqs_disabled();
1157 
1158 	WARN_ON(!list_empty(&ctx->active_ctx_list));
1159 
1160 	list_add(&ctx->active_ctx_list, head);
1161 }
1162 
1163 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1164 {
1165 	lockdep_assert_irqs_disabled();
1166 
1167 	WARN_ON(list_empty(&ctx->active_ctx_list));
1168 
1169 	list_del_init(&ctx->active_ctx_list);
1170 }
1171 
1172 static void get_ctx(struct perf_event_context *ctx)
1173 {
1174 	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1175 }
1176 
1177 static void free_ctx(struct rcu_head *head)
1178 {
1179 	struct perf_event_context *ctx;
1180 
1181 	ctx = container_of(head, struct perf_event_context, rcu_head);
1182 	kfree(ctx->task_ctx_data);
1183 	kfree(ctx);
1184 }
1185 
1186 static void put_ctx(struct perf_event_context *ctx)
1187 {
1188 	if (atomic_dec_and_test(&ctx->refcount)) {
1189 		if (ctx->parent_ctx)
1190 			put_ctx(ctx->parent_ctx);
1191 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1192 			put_task_struct(ctx->task);
1193 		call_rcu(&ctx->rcu_head, free_ctx);
1194 	}
1195 }
1196 
1197 /*
1198  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1199  * perf_pmu_migrate_context() we need some magic.
1200  *
1201  * Those places that change perf_event::ctx will hold both
1202  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1203  *
1204  * Lock ordering is by mutex address. There are two other sites where
1205  * perf_event_context::mutex nests and those are:
1206  *
1207  *  - perf_event_exit_task_context()	[ child , 0 ]
1208  *      perf_event_exit_event()
1209  *        put_event()			[ parent, 1 ]
1210  *
1211  *  - perf_event_init_context()		[ parent, 0 ]
1212  *      inherit_task_group()
1213  *        inherit_group()
1214  *          inherit_event()
1215  *            perf_event_alloc()
1216  *              perf_init_event()
1217  *                perf_try_init_event()	[ child , 1 ]
1218  *
1219  * While it appears there is an obvious deadlock here -- the parent and child
1220  * nesting levels are inverted between the two. This is in fact safe because
1221  * life-time rules separate them. That is an exiting task cannot fork, and a
1222  * spawning task cannot (yet) exit.
1223  *
1224  * But remember that that these are parent<->child context relations, and
1225  * migration does not affect children, therefore these two orderings should not
1226  * interact.
1227  *
1228  * The change in perf_event::ctx does not affect children (as claimed above)
1229  * because the sys_perf_event_open() case will install a new event and break
1230  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1231  * concerned with cpuctx and that doesn't have children.
1232  *
1233  * The places that change perf_event::ctx will issue:
1234  *
1235  *   perf_remove_from_context();
1236  *   synchronize_rcu();
1237  *   perf_install_in_context();
1238  *
1239  * to affect the change. The remove_from_context() + synchronize_rcu() should
1240  * quiesce the event, after which we can install it in the new location. This
1241  * means that only external vectors (perf_fops, prctl) can perturb the event
1242  * while in transit. Therefore all such accessors should also acquire
1243  * perf_event_context::mutex to serialize against this.
1244  *
1245  * However; because event->ctx can change while we're waiting to acquire
1246  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1247  * function.
1248  *
1249  * Lock order:
1250  *    cred_guard_mutex
1251  *	task_struct::perf_event_mutex
1252  *	  perf_event_context::mutex
1253  *	    perf_event::child_mutex;
1254  *	      perf_event_context::lock
1255  *	    perf_event::mmap_mutex
1256  *	    mmap_sem
1257  *
1258  *    cpu_hotplug_lock
1259  *      pmus_lock
1260  *	  cpuctx->mutex / perf_event_context::mutex
1261  */
1262 static struct perf_event_context *
1263 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1264 {
1265 	struct perf_event_context *ctx;
1266 
1267 again:
1268 	rcu_read_lock();
1269 	ctx = READ_ONCE(event->ctx);
1270 	if (!atomic_inc_not_zero(&ctx->refcount)) {
1271 		rcu_read_unlock();
1272 		goto again;
1273 	}
1274 	rcu_read_unlock();
1275 
1276 	mutex_lock_nested(&ctx->mutex, nesting);
1277 	if (event->ctx != ctx) {
1278 		mutex_unlock(&ctx->mutex);
1279 		put_ctx(ctx);
1280 		goto again;
1281 	}
1282 
1283 	return ctx;
1284 }
1285 
1286 static inline struct perf_event_context *
1287 perf_event_ctx_lock(struct perf_event *event)
1288 {
1289 	return perf_event_ctx_lock_nested(event, 0);
1290 }
1291 
1292 static void perf_event_ctx_unlock(struct perf_event *event,
1293 				  struct perf_event_context *ctx)
1294 {
1295 	mutex_unlock(&ctx->mutex);
1296 	put_ctx(ctx);
1297 }
1298 
1299 /*
1300  * This must be done under the ctx->lock, such as to serialize against
1301  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1302  * calling scheduler related locks and ctx->lock nests inside those.
1303  */
1304 static __must_check struct perf_event_context *
1305 unclone_ctx(struct perf_event_context *ctx)
1306 {
1307 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1308 
1309 	lockdep_assert_held(&ctx->lock);
1310 
1311 	if (parent_ctx)
1312 		ctx->parent_ctx = NULL;
1313 	ctx->generation++;
1314 
1315 	return parent_ctx;
1316 }
1317 
1318 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1319 				enum pid_type type)
1320 {
1321 	u32 nr;
1322 	/*
1323 	 * only top level events have the pid namespace they were created in
1324 	 */
1325 	if (event->parent)
1326 		event = event->parent;
1327 
1328 	nr = __task_pid_nr_ns(p, type, event->ns);
1329 	/* avoid -1 if it is idle thread or runs in another ns */
1330 	if (!nr && !pid_alive(p))
1331 		nr = -1;
1332 	return nr;
1333 }
1334 
1335 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1336 {
1337 	return perf_event_pid_type(event, p, PIDTYPE_TGID);
1338 }
1339 
1340 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1341 {
1342 	return perf_event_pid_type(event, p, PIDTYPE_PID);
1343 }
1344 
1345 /*
1346  * If we inherit events we want to return the parent event id
1347  * to userspace.
1348  */
1349 static u64 primary_event_id(struct perf_event *event)
1350 {
1351 	u64 id = event->id;
1352 
1353 	if (event->parent)
1354 		id = event->parent->id;
1355 
1356 	return id;
1357 }
1358 
1359 /*
1360  * Get the perf_event_context for a task and lock it.
1361  *
1362  * This has to cope with with the fact that until it is locked,
1363  * the context could get moved to another task.
1364  */
1365 static struct perf_event_context *
1366 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1367 {
1368 	struct perf_event_context *ctx;
1369 
1370 retry:
1371 	/*
1372 	 * One of the few rules of preemptible RCU is that one cannot do
1373 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1374 	 * part of the read side critical section was irqs-enabled -- see
1375 	 * rcu_read_unlock_special().
1376 	 *
1377 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1378 	 * side critical section has interrupts disabled.
1379 	 */
1380 	local_irq_save(*flags);
1381 	rcu_read_lock();
1382 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1383 	if (ctx) {
1384 		/*
1385 		 * If this context is a clone of another, it might
1386 		 * get swapped for another underneath us by
1387 		 * perf_event_task_sched_out, though the
1388 		 * rcu_read_lock() protects us from any context
1389 		 * getting freed.  Lock the context and check if it
1390 		 * got swapped before we could get the lock, and retry
1391 		 * if so.  If we locked the right context, then it
1392 		 * can't get swapped on us any more.
1393 		 */
1394 		raw_spin_lock(&ctx->lock);
1395 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1396 			raw_spin_unlock(&ctx->lock);
1397 			rcu_read_unlock();
1398 			local_irq_restore(*flags);
1399 			goto retry;
1400 		}
1401 
1402 		if (ctx->task == TASK_TOMBSTONE ||
1403 		    !atomic_inc_not_zero(&ctx->refcount)) {
1404 			raw_spin_unlock(&ctx->lock);
1405 			ctx = NULL;
1406 		} else {
1407 			WARN_ON_ONCE(ctx->task != task);
1408 		}
1409 	}
1410 	rcu_read_unlock();
1411 	if (!ctx)
1412 		local_irq_restore(*flags);
1413 	return ctx;
1414 }
1415 
1416 /*
1417  * Get the context for a task and increment its pin_count so it
1418  * can't get swapped to another task.  This also increments its
1419  * reference count so that the context can't get freed.
1420  */
1421 static struct perf_event_context *
1422 perf_pin_task_context(struct task_struct *task, int ctxn)
1423 {
1424 	struct perf_event_context *ctx;
1425 	unsigned long flags;
1426 
1427 	ctx = perf_lock_task_context(task, ctxn, &flags);
1428 	if (ctx) {
1429 		++ctx->pin_count;
1430 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1431 	}
1432 	return ctx;
1433 }
1434 
1435 static void perf_unpin_context(struct perf_event_context *ctx)
1436 {
1437 	unsigned long flags;
1438 
1439 	raw_spin_lock_irqsave(&ctx->lock, flags);
1440 	--ctx->pin_count;
1441 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1442 }
1443 
1444 /*
1445  * Update the record of the current time in a context.
1446  */
1447 static void update_context_time(struct perf_event_context *ctx)
1448 {
1449 	u64 now = perf_clock();
1450 
1451 	ctx->time += now - ctx->timestamp;
1452 	ctx->timestamp = now;
1453 }
1454 
1455 static u64 perf_event_time(struct perf_event *event)
1456 {
1457 	struct perf_event_context *ctx = event->ctx;
1458 
1459 	if (is_cgroup_event(event))
1460 		return perf_cgroup_event_time(event);
1461 
1462 	return ctx ? ctx->time : 0;
1463 }
1464 
1465 static enum event_type_t get_event_type(struct perf_event *event)
1466 {
1467 	struct perf_event_context *ctx = event->ctx;
1468 	enum event_type_t event_type;
1469 
1470 	lockdep_assert_held(&ctx->lock);
1471 
1472 	/*
1473 	 * It's 'group type', really, because if our group leader is
1474 	 * pinned, so are we.
1475 	 */
1476 	if (event->group_leader != event)
1477 		event = event->group_leader;
1478 
1479 	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1480 	if (!ctx->task)
1481 		event_type |= EVENT_CPU;
1482 
1483 	return event_type;
1484 }
1485 
1486 /*
1487  * Helper function to initialize event group nodes.
1488  */
1489 static void init_event_group(struct perf_event *event)
1490 {
1491 	RB_CLEAR_NODE(&event->group_node);
1492 	event->group_index = 0;
1493 }
1494 
1495 /*
1496  * Extract pinned or flexible groups from the context
1497  * based on event attrs bits.
1498  */
1499 static struct perf_event_groups *
1500 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1501 {
1502 	if (event->attr.pinned)
1503 		return &ctx->pinned_groups;
1504 	else
1505 		return &ctx->flexible_groups;
1506 }
1507 
1508 /*
1509  * Helper function to initializes perf_event_group trees.
1510  */
1511 static void perf_event_groups_init(struct perf_event_groups *groups)
1512 {
1513 	groups->tree = RB_ROOT;
1514 	groups->index = 0;
1515 }
1516 
1517 /*
1518  * Compare function for event groups;
1519  *
1520  * Implements complex key that first sorts by CPU and then by virtual index
1521  * which provides ordering when rotating groups for the same CPU.
1522  */
1523 static bool
1524 perf_event_groups_less(struct perf_event *left, struct perf_event *right)
1525 {
1526 	if (left->cpu < right->cpu)
1527 		return true;
1528 	if (left->cpu > right->cpu)
1529 		return false;
1530 
1531 	if (left->group_index < right->group_index)
1532 		return true;
1533 	if (left->group_index > right->group_index)
1534 		return false;
1535 
1536 	return false;
1537 }
1538 
1539 /*
1540  * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1541  * key (see perf_event_groups_less). This places it last inside the CPU
1542  * subtree.
1543  */
1544 static void
1545 perf_event_groups_insert(struct perf_event_groups *groups,
1546 			 struct perf_event *event)
1547 {
1548 	struct perf_event *node_event;
1549 	struct rb_node *parent;
1550 	struct rb_node **node;
1551 
1552 	event->group_index = ++groups->index;
1553 
1554 	node = &groups->tree.rb_node;
1555 	parent = *node;
1556 
1557 	while (*node) {
1558 		parent = *node;
1559 		node_event = container_of(*node, struct perf_event, group_node);
1560 
1561 		if (perf_event_groups_less(event, node_event))
1562 			node = &parent->rb_left;
1563 		else
1564 			node = &parent->rb_right;
1565 	}
1566 
1567 	rb_link_node(&event->group_node, parent, node);
1568 	rb_insert_color(&event->group_node, &groups->tree);
1569 }
1570 
1571 /*
1572  * Helper function to insert event into the pinned or flexible groups.
1573  */
1574 static void
1575 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1576 {
1577 	struct perf_event_groups *groups;
1578 
1579 	groups = get_event_groups(event, ctx);
1580 	perf_event_groups_insert(groups, event);
1581 }
1582 
1583 /*
1584  * Delete a group from a tree.
1585  */
1586 static void
1587 perf_event_groups_delete(struct perf_event_groups *groups,
1588 			 struct perf_event *event)
1589 {
1590 	WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1591 		     RB_EMPTY_ROOT(&groups->tree));
1592 
1593 	rb_erase(&event->group_node, &groups->tree);
1594 	init_event_group(event);
1595 }
1596 
1597 /*
1598  * Helper function to delete event from its groups.
1599  */
1600 static void
1601 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1602 {
1603 	struct perf_event_groups *groups;
1604 
1605 	groups = get_event_groups(event, ctx);
1606 	perf_event_groups_delete(groups, event);
1607 }
1608 
1609 /*
1610  * Get the leftmost event in the @cpu subtree.
1611  */
1612 static struct perf_event *
1613 perf_event_groups_first(struct perf_event_groups *groups, int cpu)
1614 {
1615 	struct perf_event *node_event = NULL, *match = NULL;
1616 	struct rb_node *node = groups->tree.rb_node;
1617 
1618 	while (node) {
1619 		node_event = container_of(node, struct perf_event, group_node);
1620 
1621 		if (cpu < node_event->cpu) {
1622 			node = node->rb_left;
1623 		} else if (cpu > node_event->cpu) {
1624 			node = node->rb_right;
1625 		} else {
1626 			match = node_event;
1627 			node = node->rb_left;
1628 		}
1629 	}
1630 
1631 	return match;
1632 }
1633 
1634 /*
1635  * Like rb_entry_next_safe() for the @cpu subtree.
1636  */
1637 static struct perf_event *
1638 perf_event_groups_next(struct perf_event *event)
1639 {
1640 	struct perf_event *next;
1641 
1642 	next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node);
1643 	if (next && next->cpu == event->cpu)
1644 		return next;
1645 
1646 	return NULL;
1647 }
1648 
1649 /*
1650  * Iterate through the whole groups tree.
1651  */
1652 #define perf_event_groups_for_each(event, groups)			\
1653 	for (event = rb_entry_safe(rb_first(&((groups)->tree)),		\
1654 				typeof(*event), group_node); event;	\
1655 		event = rb_entry_safe(rb_next(&event->group_node),	\
1656 				typeof(*event), group_node))
1657 
1658 /*
1659  * Add an event from the lists for its context.
1660  * Must be called with ctx->mutex and ctx->lock held.
1661  */
1662 static void
1663 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1664 {
1665 	lockdep_assert_held(&ctx->lock);
1666 
1667 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1668 	event->attach_state |= PERF_ATTACH_CONTEXT;
1669 
1670 	event->tstamp = perf_event_time(event);
1671 
1672 	/*
1673 	 * If we're a stand alone event or group leader, we go to the context
1674 	 * list, group events are kept attached to the group so that
1675 	 * perf_group_detach can, at all times, locate all siblings.
1676 	 */
1677 	if (event->group_leader == event) {
1678 		event->group_caps = event->event_caps;
1679 		add_event_to_groups(event, ctx);
1680 	}
1681 
1682 	list_update_cgroup_event(event, ctx, true);
1683 
1684 	list_add_rcu(&event->event_entry, &ctx->event_list);
1685 	ctx->nr_events++;
1686 	if (event->attr.inherit_stat)
1687 		ctx->nr_stat++;
1688 
1689 	ctx->generation++;
1690 }
1691 
1692 /*
1693  * Initialize event state based on the perf_event_attr::disabled.
1694  */
1695 static inline void perf_event__state_init(struct perf_event *event)
1696 {
1697 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1698 					      PERF_EVENT_STATE_INACTIVE;
1699 }
1700 
1701 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1702 {
1703 	int entry = sizeof(u64); /* value */
1704 	int size = 0;
1705 	int nr = 1;
1706 
1707 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1708 		size += sizeof(u64);
1709 
1710 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1711 		size += sizeof(u64);
1712 
1713 	if (event->attr.read_format & PERF_FORMAT_ID)
1714 		entry += sizeof(u64);
1715 
1716 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1717 		nr += nr_siblings;
1718 		size += sizeof(u64);
1719 	}
1720 
1721 	size += entry * nr;
1722 	event->read_size = size;
1723 }
1724 
1725 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1726 {
1727 	struct perf_sample_data *data;
1728 	u16 size = 0;
1729 
1730 	if (sample_type & PERF_SAMPLE_IP)
1731 		size += sizeof(data->ip);
1732 
1733 	if (sample_type & PERF_SAMPLE_ADDR)
1734 		size += sizeof(data->addr);
1735 
1736 	if (sample_type & PERF_SAMPLE_PERIOD)
1737 		size += sizeof(data->period);
1738 
1739 	if (sample_type & PERF_SAMPLE_WEIGHT)
1740 		size += sizeof(data->weight);
1741 
1742 	if (sample_type & PERF_SAMPLE_READ)
1743 		size += event->read_size;
1744 
1745 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1746 		size += sizeof(data->data_src.val);
1747 
1748 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1749 		size += sizeof(data->txn);
1750 
1751 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1752 		size += sizeof(data->phys_addr);
1753 
1754 	event->header_size = size;
1755 }
1756 
1757 /*
1758  * Called at perf_event creation and when events are attached/detached from a
1759  * group.
1760  */
1761 static void perf_event__header_size(struct perf_event *event)
1762 {
1763 	__perf_event_read_size(event,
1764 			       event->group_leader->nr_siblings);
1765 	__perf_event_header_size(event, event->attr.sample_type);
1766 }
1767 
1768 static void perf_event__id_header_size(struct perf_event *event)
1769 {
1770 	struct perf_sample_data *data;
1771 	u64 sample_type = event->attr.sample_type;
1772 	u16 size = 0;
1773 
1774 	if (sample_type & PERF_SAMPLE_TID)
1775 		size += sizeof(data->tid_entry);
1776 
1777 	if (sample_type & PERF_SAMPLE_TIME)
1778 		size += sizeof(data->time);
1779 
1780 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1781 		size += sizeof(data->id);
1782 
1783 	if (sample_type & PERF_SAMPLE_ID)
1784 		size += sizeof(data->id);
1785 
1786 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1787 		size += sizeof(data->stream_id);
1788 
1789 	if (sample_type & PERF_SAMPLE_CPU)
1790 		size += sizeof(data->cpu_entry);
1791 
1792 	event->id_header_size = size;
1793 }
1794 
1795 static bool perf_event_validate_size(struct perf_event *event)
1796 {
1797 	/*
1798 	 * The values computed here will be over-written when we actually
1799 	 * attach the event.
1800 	 */
1801 	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1802 	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1803 	perf_event__id_header_size(event);
1804 
1805 	/*
1806 	 * Sum the lot; should not exceed the 64k limit we have on records.
1807 	 * Conservative limit to allow for callchains and other variable fields.
1808 	 */
1809 	if (event->read_size + event->header_size +
1810 	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1811 		return false;
1812 
1813 	return true;
1814 }
1815 
1816 static void perf_group_attach(struct perf_event *event)
1817 {
1818 	struct perf_event *group_leader = event->group_leader, *pos;
1819 
1820 	lockdep_assert_held(&event->ctx->lock);
1821 
1822 	/*
1823 	 * We can have double attach due to group movement in perf_event_open.
1824 	 */
1825 	if (event->attach_state & PERF_ATTACH_GROUP)
1826 		return;
1827 
1828 	event->attach_state |= PERF_ATTACH_GROUP;
1829 
1830 	if (group_leader == event)
1831 		return;
1832 
1833 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1834 
1835 	group_leader->group_caps &= event->event_caps;
1836 
1837 	list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1838 	group_leader->nr_siblings++;
1839 
1840 	perf_event__header_size(group_leader);
1841 
1842 	for_each_sibling_event(pos, group_leader)
1843 		perf_event__header_size(pos);
1844 }
1845 
1846 /*
1847  * Remove an event from the lists for its context.
1848  * Must be called with ctx->mutex and ctx->lock held.
1849  */
1850 static void
1851 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1852 {
1853 	WARN_ON_ONCE(event->ctx != ctx);
1854 	lockdep_assert_held(&ctx->lock);
1855 
1856 	/*
1857 	 * We can have double detach due to exit/hot-unplug + close.
1858 	 */
1859 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1860 		return;
1861 
1862 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1863 
1864 	list_update_cgroup_event(event, ctx, false);
1865 
1866 	ctx->nr_events--;
1867 	if (event->attr.inherit_stat)
1868 		ctx->nr_stat--;
1869 
1870 	list_del_rcu(&event->event_entry);
1871 
1872 	if (event->group_leader == event)
1873 		del_event_from_groups(event, ctx);
1874 
1875 	/*
1876 	 * If event was in error state, then keep it
1877 	 * that way, otherwise bogus counts will be
1878 	 * returned on read(). The only way to get out
1879 	 * of error state is by explicit re-enabling
1880 	 * of the event
1881 	 */
1882 	if (event->state > PERF_EVENT_STATE_OFF)
1883 		perf_event_set_state(event, PERF_EVENT_STATE_OFF);
1884 
1885 	ctx->generation++;
1886 }
1887 
1888 static void perf_group_detach(struct perf_event *event)
1889 {
1890 	struct perf_event *sibling, *tmp;
1891 	struct perf_event_context *ctx = event->ctx;
1892 
1893 	lockdep_assert_held(&ctx->lock);
1894 
1895 	/*
1896 	 * We can have double detach due to exit/hot-unplug + close.
1897 	 */
1898 	if (!(event->attach_state & PERF_ATTACH_GROUP))
1899 		return;
1900 
1901 	event->attach_state &= ~PERF_ATTACH_GROUP;
1902 
1903 	/*
1904 	 * If this is a sibling, remove it from its group.
1905 	 */
1906 	if (event->group_leader != event) {
1907 		list_del_init(&event->sibling_list);
1908 		event->group_leader->nr_siblings--;
1909 		goto out;
1910 	}
1911 
1912 	/*
1913 	 * If this was a group event with sibling events then
1914 	 * upgrade the siblings to singleton events by adding them
1915 	 * to whatever list we are on.
1916 	 */
1917 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
1918 
1919 		sibling->group_leader = sibling;
1920 		list_del_init(&sibling->sibling_list);
1921 
1922 		/* Inherit group flags from the previous leader */
1923 		sibling->group_caps = event->group_caps;
1924 
1925 		if (!RB_EMPTY_NODE(&event->group_node)) {
1926 			add_event_to_groups(sibling, event->ctx);
1927 
1928 			if (sibling->state == PERF_EVENT_STATE_ACTIVE) {
1929 				struct list_head *list = sibling->attr.pinned ?
1930 					&ctx->pinned_active : &ctx->flexible_active;
1931 
1932 				list_add_tail(&sibling->active_list, list);
1933 			}
1934 		}
1935 
1936 		WARN_ON_ONCE(sibling->ctx != event->ctx);
1937 	}
1938 
1939 out:
1940 	perf_event__header_size(event->group_leader);
1941 
1942 	for_each_sibling_event(tmp, event->group_leader)
1943 		perf_event__header_size(tmp);
1944 }
1945 
1946 static bool is_orphaned_event(struct perf_event *event)
1947 {
1948 	return event->state == PERF_EVENT_STATE_DEAD;
1949 }
1950 
1951 static inline int __pmu_filter_match(struct perf_event *event)
1952 {
1953 	struct pmu *pmu = event->pmu;
1954 	return pmu->filter_match ? pmu->filter_match(event) : 1;
1955 }
1956 
1957 /*
1958  * Check whether we should attempt to schedule an event group based on
1959  * PMU-specific filtering. An event group can consist of HW and SW events,
1960  * potentially with a SW leader, so we must check all the filters, to
1961  * determine whether a group is schedulable:
1962  */
1963 static inline int pmu_filter_match(struct perf_event *event)
1964 {
1965 	struct perf_event *sibling;
1966 
1967 	if (!__pmu_filter_match(event))
1968 		return 0;
1969 
1970 	for_each_sibling_event(sibling, event) {
1971 		if (!__pmu_filter_match(sibling))
1972 			return 0;
1973 	}
1974 
1975 	return 1;
1976 }
1977 
1978 static inline int
1979 event_filter_match(struct perf_event *event)
1980 {
1981 	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1982 	       perf_cgroup_match(event) && pmu_filter_match(event);
1983 }
1984 
1985 static void
1986 event_sched_out(struct perf_event *event,
1987 		  struct perf_cpu_context *cpuctx,
1988 		  struct perf_event_context *ctx)
1989 {
1990 	enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
1991 
1992 	WARN_ON_ONCE(event->ctx != ctx);
1993 	lockdep_assert_held(&ctx->lock);
1994 
1995 	if (event->state != PERF_EVENT_STATE_ACTIVE)
1996 		return;
1997 
1998 	/*
1999 	 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2000 	 * we can schedule events _OUT_ individually through things like
2001 	 * __perf_remove_from_context().
2002 	 */
2003 	list_del_init(&event->active_list);
2004 
2005 	perf_pmu_disable(event->pmu);
2006 
2007 	event->pmu->del(event, 0);
2008 	event->oncpu = -1;
2009 
2010 	if (event->pending_disable) {
2011 		event->pending_disable = 0;
2012 		state = PERF_EVENT_STATE_OFF;
2013 	}
2014 	perf_event_set_state(event, state);
2015 
2016 	if (!is_software_event(event))
2017 		cpuctx->active_oncpu--;
2018 	if (!--ctx->nr_active)
2019 		perf_event_ctx_deactivate(ctx);
2020 	if (event->attr.freq && event->attr.sample_freq)
2021 		ctx->nr_freq--;
2022 	if (event->attr.exclusive || !cpuctx->active_oncpu)
2023 		cpuctx->exclusive = 0;
2024 
2025 	perf_pmu_enable(event->pmu);
2026 }
2027 
2028 static void
2029 group_sched_out(struct perf_event *group_event,
2030 		struct perf_cpu_context *cpuctx,
2031 		struct perf_event_context *ctx)
2032 {
2033 	struct perf_event *event;
2034 
2035 	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2036 		return;
2037 
2038 	perf_pmu_disable(ctx->pmu);
2039 
2040 	event_sched_out(group_event, cpuctx, ctx);
2041 
2042 	/*
2043 	 * Schedule out siblings (if any):
2044 	 */
2045 	for_each_sibling_event(event, group_event)
2046 		event_sched_out(event, cpuctx, ctx);
2047 
2048 	perf_pmu_enable(ctx->pmu);
2049 
2050 	if (group_event->attr.exclusive)
2051 		cpuctx->exclusive = 0;
2052 }
2053 
2054 #define DETACH_GROUP	0x01UL
2055 
2056 /*
2057  * Cross CPU call to remove a performance event
2058  *
2059  * We disable the event on the hardware level first. After that we
2060  * remove it from the context list.
2061  */
2062 static void
2063 __perf_remove_from_context(struct perf_event *event,
2064 			   struct perf_cpu_context *cpuctx,
2065 			   struct perf_event_context *ctx,
2066 			   void *info)
2067 {
2068 	unsigned long flags = (unsigned long)info;
2069 
2070 	if (ctx->is_active & EVENT_TIME) {
2071 		update_context_time(ctx);
2072 		update_cgrp_time_from_cpuctx(cpuctx);
2073 	}
2074 
2075 	event_sched_out(event, cpuctx, ctx);
2076 	if (flags & DETACH_GROUP)
2077 		perf_group_detach(event);
2078 	list_del_event(event, ctx);
2079 
2080 	if (!ctx->nr_events && ctx->is_active) {
2081 		ctx->is_active = 0;
2082 		if (ctx->task) {
2083 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2084 			cpuctx->task_ctx = NULL;
2085 		}
2086 	}
2087 }
2088 
2089 /*
2090  * Remove the event from a task's (or a CPU's) list of events.
2091  *
2092  * If event->ctx is a cloned context, callers must make sure that
2093  * every task struct that event->ctx->task could possibly point to
2094  * remains valid.  This is OK when called from perf_release since
2095  * that only calls us on the top-level context, which can't be a clone.
2096  * When called from perf_event_exit_task, it's OK because the
2097  * context has been detached from its task.
2098  */
2099 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2100 {
2101 	struct perf_event_context *ctx = event->ctx;
2102 
2103 	lockdep_assert_held(&ctx->mutex);
2104 
2105 	event_function_call(event, __perf_remove_from_context, (void *)flags);
2106 
2107 	/*
2108 	 * The above event_function_call() can NO-OP when it hits
2109 	 * TASK_TOMBSTONE. In that case we must already have been detached
2110 	 * from the context (by perf_event_exit_event()) but the grouping
2111 	 * might still be in-tact.
2112 	 */
2113 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
2114 	if ((flags & DETACH_GROUP) &&
2115 	    (event->attach_state & PERF_ATTACH_GROUP)) {
2116 		/*
2117 		 * Since in that case we cannot possibly be scheduled, simply
2118 		 * detach now.
2119 		 */
2120 		raw_spin_lock_irq(&ctx->lock);
2121 		perf_group_detach(event);
2122 		raw_spin_unlock_irq(&ctx->lock);
2123 	}
2124 }
2125 
2126 /*
2127  * Cross CPU call to disable a performance event
2128  */
2129 static void __perf_event_disable(struct perf_event *event,
2130 				 struct perf_cpu_context *cpuctx,
2131 				 struct perf_event_context *ctx,
2132 				 void *info)
2133 {
2134 	if (event->state < PERF_EVENT_STATE_INACTIVE)
2135 		return;
2136 
2137 	if (ctx->is_active & EVENT_TIME) {
2138 		update_context_time(ctx);
2139 		update_cgrp_time_from_event(event);
2140 	}
2141 
2142 	if (event == event->group_leader)
2143 		group_sched_out(event, cpuctx, ctx);
2144 	else
2145 		event_sched_out(event, cpuctx, ctx);
2146 
2147 	perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2148 }
2149 
2150 /*
2151  * Disable an event.
2152  *
2153  * If event->ctx is a cloned context, callers must make sure that
2154  * every task struct that event->ctx->task could possibly point to
2155  * remains valid.  This condition is satisifed when called through
2156  * perf_event_for_each_child or perf_event_for_each because they
2157  * hold the top-level event's child_mutex, so any descendant that
2158  * goes to exit will block in perf_event_exit_event().
2159  *
2160  * When called from perf_pending_event it's OK because event->ctx
2161  * is the current context on this CPU and preemption is disabled,
2162  * hence we can't get into perf_event_task_sched_out for this context.
2163  */
2164 static void _perf_event_disable(struct perf_event *event)
2165 {
2166 	struct perf_event_context *ctx = event->ctx;
2167 
2168 	raw_spin_lock_irq(&ctx->lock);
2169 	if (event->state <= PERF_EVENT_STATE_OFF) {
2170 		raw_spin_unlock_irq(&ctx->lock);
2171 		return;
2172 	}
2173 	raw_spin_unlock_irq(&ctx->lock);
2174 
2175 	event_function_call(event, __perf_event_disable, NULL);
2176 }
2177 
2178 void perf_event_disable_local(struct perf_event *event)
2179 {
2180 	event_function_local(event, __perf_event_disable, NULL);
2181 }
2182 
2183 /*
2184  * Strictly speaking kernel users cannot create groups and therefore this
2185  * interface does not need the perf_event_ctx_lock() magic.
2186  */
2187 void perf_event_disable(struct perf_event *event)
2188 {
2189 	struct perf_event_context *ctx;
2190 
2191 	ctx = perf_event_ctx_lock(event);
2192 	_perf_event_disable(event);
2193 	perf_event_ctx_unlock(event, ctx);
2194 }
2195 EXPORT_SYMBOL_GPL(perf_event_disable);
2196 
2197 void perf_event_disable_inatomic(struct perf_event *event)
2198 {
2199 	event->pending_disable = 1;
2200 	irq_work_queue(&event->pending);
2201 }
2202 
2203 static void perf_set_shadow_time(struct perf_event *event,
2204 				 struct perf_event_context *ctx)
2205 {
2206 	/*
2207 	 * use the correct time source for the time snapshot
2208 	 *
2209 	 * We could get by without this by leveraging the
2210 	 * fact that to get to this function, the caller
2211 	 * has most likely already called update_context_time()
2212 	 * and update_cgrp_time_xx() and thus both timestamp
2213 	 * are identical (or very close). Given that tstamp is,
2214 	 * already adjusted for cgroup, we could say that:
2215 	 *    tstamp - ctx->timestamp
2216 	 * is equivalent to
2217 	 *    tstamp - cgrp->timestamp.
2218 	 *
2219 	 * Then, in perf_output_read(), the calculation would
2220 	 * work with no changes because:
2221 	 * - event is guaranteed scheduled in
2222 	 * - no scheduled out in between
2223 	 * - thus the timestamp would be the same
2224 	 *
2225 	 * But this is a bit hairy.
2226 	 *
2227 	 * So instead, we have an explicit cgroup call to remain
2228 	 * within the time time source all along. We believe it
2229 	 * is cleaner and simpler to understand.
2230 	 */
2231 	if (is_cgroup_event(event))
2232 		perf_cgroup_set_shadow_time(event, event->tstamp);
2233 	else
2234 		event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2235 }
2236 
2237 #define MAX_INTERRUPTS (~0ULL)
2238 
2239 static void perf_log_throttle(struct perf_event *event, int enable);
2240 static void perf_log_itrace_start(struct perf_event *event);
2241 
2242 static int
2243 event_sched_in(struct perf_event *event,
2244 		 struct perf_cpu_context *cpuctx,
2245 		 struct perf_event_context *ctx)
2246 {
2247 	int ret = 0;
2248 
2249 	lockdep_assert_held(&ctx->lock);
2250 
2251 	if (event->state <= PERF_EVENT_STATE_OFF)
2252 		return 0;
2253 
2254 	WRITE_ONCE(event->oncpu, smp_processor_id());
2255 	/*
2256 	 * Order event::oncpu write to happen before the ACTIVE state is
2257 	 * visible. This allows perf_event_{stop,read}() to observe the correct
2258 	 * ->oncpu if it sees ACTIVE.
2259 	 */
2260 	smp_wmb();
2261 	perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2262 
2263 	/*
2264 	 * Unthrottle events, since we scheduled we might have missed several
2265 	 * ticks already, also for a heavily scheduling task there is little
2266 	 * guarantee it'll get a tick in a timely manner.
2267 	 */
2268 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2269 		perf_log_throttle(event, 1);
2270 		event->hw.interrupts = 0;
2271 	}
2272 
2273 	perf_pmu_disable(event->pmu);
2274 
2275 	perf_set_shadow_time(event, ctx);
2276 
2277 	perf_log_itrace_start(event);
2278 
2279 	if (event->pmu->add(event, PERF_EF_START)) {
2280 		perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2281 		event->oncpu = -1;
2282 		ret = -EAGAIN;
2283 		goto out;
2284 	}
2285 
2286 	if (!is_software_event(event))
2287 		cpuctx->active_oncpu++;
2288 	if (!ctx->nr_active++)
2289 		perf_event_ctx_activate(ctx);
2290 	if (event->attr.freq && event->attr.sample_freq)
2291 		ctx->nr_freq++;
2292 
2293 	if (event->attr.exclusive)
2294 		cpuctx->exclusive = 1;
2295 
2296 out:
2297 	perf_pmu_enable(event->pmu);
2298 
2299 	return ret;
2300 }
2301 
2302 static int
2303 group_sched_in(struct perf_event *group_event,
2304 	       struct perf_cpu_context *cpuctx,
2305 	       struct perf_event_context *ctx)
2306 {
2307 	struct perf_event *event, *partial_group = NULL;
2308 	struct pmu *pmu = ctx->pmu;
2309 
2310 	if (group_event->state == PERF_EVENT_STATE_OFF)
2311 		return 0;
2312 
2313 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2314 
2315 	if (event_sched_in(group_event, cpuctx, ctx)) {
2316 		pmu->cancel_txn(pmu);
2317 		perf_mux_hrtimer_restart(cpuctx);
2318 		return -EAGAIN;
2319 	}
2320 
2321 	/*
2322 	 * Schedule in siblings as one group (if any):
2323 	 */
2324 	for_each_sibling_event(event, group_event) {
2325 		if (event_sched_in(event, cpuctx, ctx)) {
2326 			partial_group = event;
2327 			goto group_error;
2328 		}
2329 	}
2330 
2331 	if (!pmu->commit_txn(pmu))
2332 		return 0;
2333 
2334 group_error:
2335 	/*
2336 	 * Groups can be scheduled in as one unit only, so undo any
2337 	 * partial group before returning:
2338 	 * The events up to the failed event are scheduled out normally.
2339 	 */
2340 	for_each_sibling_event(event, group_event) {
2341 		if (event == partial_group)
2342 			break;
2343 
2344 		event_sched_out(event, cpuctx, ctx);
2345 	}
2346 	event_sched_out(group_event, cpuctx, ctx);
2347 
2348 	pmu->cancel_txn(pmu);
2349 
2350 	perf_mux_hrtimer_restart(cpuctx);
2351 
2352 	return -EAGAIN;
2353 }
2354 
2355 /*
2356  * Work out whether we can put this event group on the CPU now.
2357  */
2358 static int group_can_go_on(struct perf_event *event,
2359 			   struct perf_cpu_context *cpuctx,
2360 			   int can_add_hw)
2361 {
2362 	/*
2363 	 * Groups consisting entirely of software events can always go on.
2364 	 */
2365 	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2366 		return 1;
2367 	/*
2368 	 * If an exclusive group is already on, no other hardware
2369 	 * events can go on.
2370 	 */
2371 	if (cpuctx->exclusive)
2372 		return 0;
2373 	/*
2374 	 * If this group is exclusive and there are already
2375 	 * events on the CPU, it can't go on.
2376 	 */
2377 	if (event->attr.exclusive && cpuctx->active_oncpu)
2378 		return 0;
2379 	/*
2380 	 * Otherwise, try to add it if all previous groups were able
2381 	 * to go on.
2382 	 */
2383 	return can_add_hw;
2384 }
2385 
2386 static void add_event_to_ctx(struct perf_event *event,
2387 			       struct perf_event_context *ctx)
2388 {
2389 	list_add_event(event, ctx);
2390 	perf_group_attach(event);
2391 }
2392 
2393 static void ctx_sched_out(struct perf_event_context *ctx,
2394 			  struct perf_cpu_context *cpuctx,
2395 			  enum event_type_t event_type);
2396 static void
2397 ctx_sched_in(struct perf_event_context *ctx,
2398 	     struct perf_cpu_context *cpuctx,
2399 	     enum event_type_t event_type,
2400 	     struct task_struct *task);
2401 
2402 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2403 			       struct perf_event_context *ctx,
2404 			       enum event_type_t event_type)
2405 {
2406 	if (!cpuctx->task_ctx)
2407 		return;
2408 
2409 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2410 		return;
2411 
2412 	ctx_sched_out(ctx, cpuctx, event_type);
2413 }
2414 
2415 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2416 				struct perf_event_context *ctx,
2417 				struct task_struct *task)
2418 {
2419 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2420 	if (ctx)
2421 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2422 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2423 	if (ctx)
2424 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2425 }
2426 
2427 /*
2428  * We want to maintain the following priority of scheduling:
2429  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2430  *  - task pinned (EVENT_PINNED)
2431  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2432  *  - task flexible (EVENT_FLEXIBLE).
2433  *
2434  * In order to avoid unscheduling and scheduling back in everything every
2435  * time an event is added, only do it for the groups of equal priority and
2436  * below.
2437  *
2438  * This can be called after a batch operation on task events, in which case
2439  * event_type is a bit mask of the types of events involved. For CPU events,
2440  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2441  */
2442 static void ctx_resched(struct perf_cpu_context *cpuctx,
2443 			struct perf_event_context *task_ctx,
2444 			enum event_type_t event_type)
2445 {
2446 	enum event_type_t ctx_event_type;
2447 	bool cpu_event = !!(event_type & EVENT_CPU);
2448 
2449 	/*
2450 	 * If pinned groups are involved, flexible groups also need to be
2451 	 * scheduled out.
2452 	 */
2453 	if (event_type & EVENT_PINNED)
2454 		event_type |= EVENT_FLEXIBLE;
2455 
2456 	ctx_event_type = event_type & EVENT_ALL;
2457 
2458 	perf_pmu_disable(cpuctx->ctx.pmu);
2459 	if (task_ctx)
2460 		task_ctx_sched_out(cpuctx, task_ctx, event_type);
2461 
2462 	/*
2463 	 * Decide which cpu ctx groups to schedule out based on the types
2464 	 * of events that caused rescheduling:
2465 	 *  - EVENT_CPU: schedule out corresponding groups;
2466 	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2467 	 *  - otherwise, do nothing more.
2468 	 */
2469 	if (cpu_event)
2470 		cpu_ctx_sched_out(cpuctx, ctx_event_type);
2471 	else if (ctx_event_type & EVENT_PINNED)
2472 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2473 
2474 	perf_event_sched_in(cpuctx, task_ctx, current);
2475 	perf_pmu_enable(cpuctx->ctx.pmu);
2476 }
2477 
2478 /*
2479  * Cross CPU call to install and enable a performance event
2480  *
2481  * Very similar to remote_function() + event_function() but cannot assume that
2482  * things like ctx->is_active and cpuctx->task_ctx are set.
2483  */
2484 static int  __perf_install_in_context(void *info)
2485 {
2486 	struct perf_event *event = info;
2487 	struct perf_event_context *ctx = event->ctx;
2488 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2489 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2490 	bool reprogram = true;
2491 	int ret = 0;
2492 
2493 	raw_spin_lock(&cpuctx->ctx.lock);
2494 	if (ctx->task) {
2495 		raw_spin_lock(&ctx->lock);
2496 		task_ctx = ctx;
2497 
2498 		reprogram = (ctx->task == current);
2499 
2500 		/*
2501 		 * If the task is running, it must be running on this CPU,
2502 		 * otherwise we cannot reprogram things.
2503 		 *
2504 		 * If its not running, we don't care, ctx->lock will
2505 		 * serialize against it becoming runnable.
2506 		 */
2507 		if (task_curr(ctx->task) && !reprogram) {
2508 			ret = -ESRCH;
2509 			goto unlock;
2510 		}
2511 
2512 		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2513 	} else if (task_ctx) {
2514 		raw_spin_lock(&task_ctx->lock);
2515 	}
2516 
2517 #ifdef CONFIG_CGROUP_PERF
2518 	if (is_cgroup_event(event)) {
2519 		/*
2520 		 * If the current cgroup doesn't match the event's
2521 		 * cgroup, we should not try to schedule it.
2522 		 */
2523 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2524 		reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2525 					event->cgrp->css.cgroup);
2526 	}
2527 #endif
2528 
2529 	if (reprogram) {
2530 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2531 		add_event_to_ctx(event, ctx);
2532 		ctx_resched(cpuctx, task_ctx, get_event_type(event));
2533 	} else {
2534 		add_event_to_ctx(event, ctx);
2535 	}
2536 
2537 unlock:
2538 	perf_ctx_unlock(cpuctx, task_ctx);
2539 
2540 	return ret;
2541 }
2542 
2543 /*
2544  * Attach a performance event to a context.
2545  *
2546  * Very similar to event_function_call, see comment there.
2547  */
2548 static void
2549 perf_install_in_context(struct perf_event_context *ctx,
2550 			struct perf_event *event,
2551 			int cpu)
2552 {
2553 	struct task_struct *task = READ_ONCE(ctx->task);
2554 
2555 	lockdep_assert_held(&ctx->mutex);
2556 
2557 	if (event->cpu != -1)
2558 		event->cpu = cpu;
2559 
2560 	/*
2561 	 * Ensures that if we can observe event->ctx, both the event and ctx
2562 	 * will be 'complete'. See perf_iterate_sb_cpu().
2563 	 */
2564 	smp_store_release(&event->ctx, ctx);
2565 
2566 	if (!task) {
2567 		cpu_function_call(cpu, __perf_install_in_context, event);
2568 		return;
2569 	}
2570 
2571 	/*
2572 	 * Should not happen, we validate the ctx is still alive before calling.
2573 	 */
2574 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2575 		return;
2576 
2577 	/*
2578 	 * Installing events is tricky because we cannot rely on ctx->is_active
2579 	 * to be set in case this is the nr_events 0 -> 1 transition.
2580 	 *
2581 	 * Instead we use task_curr(), which tells us if the task is running.
2582 	 * However, since we use task_curr() outside of rq::lock, we can race
2583 	 * against the actual state. This means the result can be wrong.
2584 	 *
2585 	 * If we get a false positive, we retry, this is harmless.
2586 	 *
2587 	 * If we get a false negative, things are complicated. If we are after
2588 	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2589 	 * value must be correct. If we're before, it doesn't matter since
2590 	 * perf_event_context_sched_in() will program the counter.
2591 	 *
2592 	 * However, this hinges on the remote context switch having observed
2593 	 * our task->perf_event_ctxp[] store, such that it will in fact take
2594 	 * ctx::lock in perf_event_context_sched_in().
2595 	 *
2596 	 * We do this by task_function_call(), if the IPI fails to hit the task
2597 	 * we know any future context switch of task must see the
2598 	 * perf_event_ctpx[] store.
2599 	 */
2600 
2601 	/*
2602 	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2603 	 * task_cpu() load, such that if the IPI then does not find the task
2604 	 * running, a future context switch of that task must observe the
2605 	 * store.
2606 	 */
2607 	smp_mb();
2608 again:
2609 	if (!task_function_call(task, __perf_install_in_context, event))
2610 		return;
2611 
2612 	raw_spin_lock_irq(&ctx->lock);
2613 	task = ctx->task;
2614 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2615 		/*
2616 		 * Cannot happen because we already checked above (which also
2617 		 * cannot happen), and we hold ctx->mutex, which serializes us
2618 		 * against perf_event_exit_task_context().
2619 		 */
2620 		raw_spin_unlock_irq(&ctx->lock);
2621 		return;
2622 	}
2623 	/*
2624 	 * If the task is not running, ctx->lock will avoid it becoming so,
2625 	 * thus we can safely install the event.
2626 	 */
2627 	if (task_curr(task)) {
2628 		raw_spin_unlock_irq(&ctx->lock);
2629 		goto again;
2630 	}
2631 	add_event_to_ctx(event, ctx);
2632 	raw_spin_unlock_irq(&ctx->lock);
2633 }
2634 
2635 /*
2636  * Cross CPU call to enable a performance event
2637  */
2638 static void __perf_event_enable(struct perf_event *event,
2639 				struct perf_cpu_context *cpuctx,
2640 				struct perf_event_context *ctx,
2641 				void *info)
2642 {
2643 	struct perf_event *leader = event->group_leader;
2644 	struct perf_event_context *task_ctx;
2645 
2646 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2647 	    event->state <= PERF_EVENT_STATE_ERROR)
2648 		return;
2649 
2650 	if (ctx->is_active)
2651 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2652 
2653 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2654 
2655 	if (!ctx->is_active)
2656 		return;
2657 
2658 	if (!event_filter_match(event)) {
2659 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2660 		return;
2661 	}
2662 
2663 	/*
2664 	 * If the event is in a group and isn't the group leader,
2665 	 * then don't put it on unless the group is on.
2666 	 */
2667 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2668 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2669 		return;
2670 	}
2671 
2672 	task_ctx = cpuctx->task_ctx;
2673 	if (ctx->task)
2674 		WARN_ON_ONCE(task_ctx != ctx);
2675 
2676 	ctx_resched(cpuctx, task_ctx, get_event_type(event));
2677 }
2678 
2679 /*
2680  * Enable an event.
2681  *
2682  * If event->ctx is a cloned context, callers must make sure that
2683  * every task struct that event->ctx->task could possibly point to
2684  * remains valid.  This condition is satisfied when called through
2685  * perf_event_for_each_child or perf_event_for_each as described
2686  * for perf_event_disable.
2687  */
2688 static void _perf_event_enable(struct perf_event *event)
2689 {
2690 	struct perf_event_context *ctx = event->ctx;
2691 
2692 	raw_spin_lock_irq(&ctx->lock);
2693 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2694 	    event->state <  PERF_EVENT_STATE_ERROR) {
2695 		raw_spin_unlock_irq(&ctx->lock);
2696 		return;
2697 	}
2698 
2699 	/*
2700 	 * If the event is in error state, clear that first.
2701 	 *
2702 	 * That way, if we see the event in error state below, we know that it
2703 	 * has gone back into error state, as distinct from the task having
2704 	 * been scheduled away before the cross-call arrived.
2705 	 */
2706 	if (event->state == PERF_EVENT_STATE_ERROR)
2707 		event->state = PERF_EVENT_STATE_OFF;
2708 	raw_spin_unlock_irq(&ctx->lock);
2709 
2710 	event_function_call(event, __perf_event_enable, NULL);
2711 }
2712 
2713 /*
2714  * See perf_event_disable();
2715  */
2716 void perf_event_enable(struct perf_event *event)
2717 {
2718 	struct perf_event_context *ctx;
2719 
2720 	ctx = perf_event_ctx_lock(event);
2721 	_perf_event_enable(event);
2722 	perf_event_ctx_unlock(event, ctx);
2723 }
2724 EXPORT_SYMBOL_GPL(perf_event_enable);
2725 
2726 struct stop_event_data {
2727 	struct perf_event	*event;
2728 	unsigned int		restart;
2729 };
2730 
2731 static int __perf_event_stop(void *info)
2732 {
2733 	struct stop_event_data *sd = info;
2734 	struct perf_event *event = sd->event;
2735 
2736 	/* if it's already INACTIVE, do nothing */
2737 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2738 		return 0;
2739 
2740 	/* matches smp_wmb() in event_sched_in() */
2741 	smp_rmb();
2742 
2743 	/*
2744 	 * There is a window with interrupts enabled before we get here,
2745 	 * so we need to check again lest we try to stop another CPU's event.
2746 	 */
2747 	if (READ_ONCE(event->oncpu) != smp_processor_id())
2748 		return -EAGAIN;
2749 
2750 	event->pmu->stop(event, PERF_EF_UPDATE);
2751 
2752 	/*
2753 	 * May race with the actual stop (through perf_pmu_output_stop()),
2754 	 * but it is only used for events with AUX ring buffer, and such
2755 	 * events will refuse to restart because of rb::aux_mmap_count==0,
2756 	 * see comments in perf_aux_output_begin().
2757 	 *
2758 	 * Since this is happening on an event-local CPU, no trace is lost
2759 	 * while restarting.
2760 	 */
2761 	if (sd->restart)
2762 		event->pmu->start(event, 0);
2763 
2764 	return 0;
2765 }
2766 
2767 static int perf_event_stop(struct perf_event *event, int restart)
2768 {
2769 	struct stop_event_data sd = {
2770 		.event		= event,
2771 		.restart	= restart,
2772 	};
2773 	int ret = 0;
2774 
2775 	do {
2776 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2777 			return 0;
2778 
2779 		/* matches smp_wmb() in event_sched_in() */
2780 		smp_rmb();
2781 
2782 		/*
2783 		 * We only want to restart ACTIVE events, so if the event goes
2784 		 * inactive here (event->oncpu==-1), there's nothing more to do;
2785 		 * fall through with ret==-ENXIO.
2786 		 */
2787 		ret = cpu_function_call(READ_ONCE(event->oncpu),
2788 					__perf_event_stop, &sd);
2789 	} while (ret == -EAGAIN);
2790 
2791 	return ret;
2792 }
2793 
2794 /*
2795  * In order to contain the amount of racy and tricky in the address filter
2796  * configuration management, it is a two part process:
2797  *
2798  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2799  *      we update the addresses of corresponding vmas in
2800  *	event::addr_filters_offs array and bump the event::addr_filters_gen;
2801  * (p2) when an event is scheduled in (pmu::add), it calls
2802  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2803  *      if the generation has changed since the previous call.
2804  *
2805  * If (p1) happens while the event is active, we restart it to force (p2).
2806  *
2807  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2808  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2809  *     ioctl;
2810  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2811  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2812  *     for reading;
2813  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2814  *     of exec.
2815  */
2816 void perf_event_addr_filters_sync(struct perf_event *event)
2817 {
2818 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2819 
2820 	if (!has_addr_filter(event))
2821 		return;
2822 
2823 	raw_spin_lock(&ifh->lock);
2824 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2825 		event->pmu->addr_filters_sync(event);
2826 		event->hw.addr_filters_gen = event->addr_filters_gen;
2827 	}
2828 	raw_spin_unlock(&ifh->lock);
2829 }
2830 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2831 
2832 static int _perf_event_refresh(struct perf_event *event, int refresh)
2833 {
2834 	/*
2835 	 * not supported on inherited events
2836 	 */
2837 	if (event->attr.inherit || !is_sampling_event(event))
2838 		return -EINVAL;
2839 
2840 	atomic_add(refresh, &event->event_limit);
2841 	_perf_event_enable(event);
2842 
2843 	return 0;
2844 }
2845 
2846 /*
2847  * See perf_event_disable()
2848  */
2849 int perf_event_refresh(struct perf_event *event, int refresh)
2850 {
2851 	struct perf_event_context *ctx;
2852 	int ret;
2853 
2854 	ctx = perf_event_ctx_lock(event);
2855 	ret = _perf_event_refresh(event, refresh);
2856 	perf_event_ctx_unlock(event, ctx);
2857 
2858 	return ret;
2859 }
2860 EXPORT_SYMBOL_GPL(perf_event_refresh);
2861 
2862 static int perf_event_modify_breakpoint(struct perf_event *bp,
2863 					 struct perf_event_attr *attr)
2864 {
2865 	int err;
2866 
2867 	_perf_event_disable(bp);
2868 
2869 	err = modify_user_hw_breakpoint_check(bp, attr, true);
2870 
2871 	if (!bp->attr.disabled)
2872 		_perf_event_enable(bp);
2873 
2874 	return err;
2875 }
2876 
2877 static int perf_event_modify_attr(struct perf_event *event,
2878 				  struct perf_event_attr *attr)
2879 {
2880 	if (event->attr.type != attr->type)
2881 		return -EINVAL;
2882 
2883 	switch (event->attr.type) {
2884 	case PERF_TYPE_BREAKPOINT:
2885 		return perf_event_modify_breakpoint(event, attr);
2886 	default:
2887 		/* Place holder for future additions. */
2888 		return -EOPNOTSUPP;
2889 	}
2890 }
2891 
2892 static void ctx_sched_out(struct perf_event_context *ctx,
2893 			  struct perf_cpu_context *cpuctx,
2894 			  enum event_type_t event_type)
2895 {
2896 	struct perf_event *event, *tmp;
2897 	int is_active = ctx->is_active;
2898 
2899 	lockdep_assert_held(&ctx->lock);
2900 
2901 	if (likely(!ctx->nr_events)) {
2902 		/*
2903 		 * See __perf_remove_from_context().
2904 		 */
2905 		WARN_ON_ONCE(ctx->is_active);
2906 		if (ctx->task)
2907 			WARN_ON_ONCE(cpuctx->task_ctx);
2908 		return;
2909 	}
2910 
2911 	ctx->is_active &= ~event_type;
2912 	if (!(ctx->is_active & EVENT_ALL))
2913 		ctx->is_active = 0;
2914 
2915 	if (ctx->task) {
2916 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2917 		if (!ctx->is_active)
2918 			cpuctx->task_ctx = NULL;
2919 	}
2920 
2921 	/*
2922 	 * Always update time if it was set; not only when it changes.
2923 	 * Otherwise we can 'forget' to update time for any but the last
2924 	 * context we sched out. For example:
2925 	 *
2926 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2927 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
2928 	 *
2929 	 * would only update time for the pinned events.
2930 	 */
2931 	if (is_active & EVENT_TIME) {
2932 		/* update (and stop) ctx time */
2933 		update_context_time(ctx);
2934 		update_cgrp_time_from_cpuctx(cpuctx);
2935 	}
2936 
2937 	is_active ^= ctx->is_active; /* changed bits */
2938 
2939 	if (!ctx->nr_active || !(is_active & EVENT_ALL))
2940 		return;
2941 
2942 	perf_pmu_disable(ctx->pmu);
2943 	if (is_active & EVENT_PINNED) {
2944 		list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
2945 			group_sched_out(event, cpuctx, ctx);
2946 	}
2947 
2948 	if (is_active & EVENT_FLEXIBLE) {
2949 		list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
2950 			group_sched_out(event, cpuctx, ctx);
2951 	}
2952 	perf_pmu_enable(ctx->pmu);
2953 }
2954 
2955 /*
2956  * Test whether two contexts are equivalent, i.e. whether they have both been
2957  * cloned from the same version of the same context.
2958  *
2959  * Equivalence is measured using a generation number in the context that is
2960  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2961  * and list_del_event().
2962  */
2963 static int context_equiv(struct perf_event_context *ctx1,
2964 			 struct perf_event_context *ctx2)
2965 {
2966 	lockdep_assert_held(&ctx1->lock);
2967 	lockdep_assert_held(&ctx2->lock);
2968 
2969 	/* Pinning disables the swap optimization */
2970 	if (ctx1->pin_count || ctx2->pin_count)
2971 		return 0;
2972 
2973 	/* If ctx1 is the parent of ctx2 */
2974 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2975 		return 1;
2976 
2977 	/* If ctx2 is the parent of ctx1 */
2978 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2979 		return 1;
2980 
2981 	/*
2982 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
2983 	 * hierarchy, see perf_event_init_context().
2984 	 */
2985 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2986 			ctx1->parent_gen == ctx2->parent_gen)
2987 		return 1;
2988 
2989 	/* Unmatched */
2990 	return 0;
2991 }
2992 
2993 static void __perf_event_sync_stat(struct perf_event *event,
2994 				     struct perf_event *next_event)
2995 {
2996 	u64 value;
2997 
2998 	if (!event->attr.inherit_stat)
2999 		return;
3000 
3001 	/*
3002 	 * Update the event value, we cannot use perf_event_read()
3003 	 * because we're in the middle of a context switch and have IRQs
3004 	 * disabled, which upsets smp_call_function_single(), however
3005 	 * we know the event must be on the current CPU, therefore we
3006 	 * don't need to use it.
3007 	 */
3008 	if (event->state == PERF_EVENT_STATE_ACTIVE)
3009 		event->pmu->read(event);
3010 
3011 	perf_event_update_time(event);
3012 
3013 	/*
3014 	 * In order to keep per-task stats reliable we need to flip the event
3015 	 * values when we flip the contexts.
3016 	 */
3017 	value = local64_read(&next_event->count);
3018 	value = local64_xchg(&event->count, value);
3019 	local64_set(&next_event->count, value);
3020 
3021 	swap(event->total_time_enabled, next_event->total_time_enabled);
3022 	swap(event->total_time_running, next_event->total_time_running);
3023 
3024 	/*
3025 	 * Since we swizzled the values, update the user visible data too.
3026 	 */
3027 	perf_event_update_userpage(event);
3028 	perf_event_update_userpage(next_event);
3029 }
3030 
3031 static void perf_event_sync_stat(struct perf_event_context *ctx,
3032 				   struct perf_event_context *next_ctx)
3033 {
3034 	struct perf_event *event, *next_event;
3035 
3036 	if (!ctx->nr_stat)
3037 		return;
3038 
3039 	update_context_time(ctx);
3040 
3041 	event = list_first_entry(&ctx->event_list,
3042 				   struct perf_event, event_entry);
3043 
3044 	next_event = list_first_entry(&next_ctx->event_list,
3045 					struct perf_event, event_entry);
3046 
3047 	while (&event->event_entry != &ctx->event_list &&
3048 	       &next_event->event_entry != &next_ctx->event_list) {
3049 
3050 		__perf_event_sync_stat(event, next_event);
3051 
3052 		event = list_next_entry(event, event_entry);
3053 		next_event = list_next_entry(next_event, event_entry);
3054 	}
3055 }
3056 
3057 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3058 					 struct task_struct *next)
3059 {
3060 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3061 	struct perf_event_context *next_ctx;
3062 	struct perf_event_context *parent, *next_parent;
3063 	struct perf_cpu_context *cpuctx;
3064 	int do_switch = 1;
3065 
3066 	if (likely(!ctx))
3067 		return;
3068 
3069 	cpuctx = __get_cpu_context(ctx);
3070 	if (!cpuctx->task_ctx)
3071 		return;
3072 
3073 	rcu_read_lock();
3074 	next_ctx = next->perf_event_ctxp[ctxn];
3075 	if (!next_ctx)
3076 		goto unlock;
3077 
3078 	parent = rcu_dereference(ctx->parent_ctx);
3079 	next_parent = rcu_dereference(next_ctx->parent_ctx);
3080 
3081 	/* If neither context have a parent context; they cannot be clones. */
3082 	if (!parent && !next_parent)
3083 		goto unlock;
3084 
3085 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3086 		/*
3087 		 * Looks like the two contexts are clones, so we might be
3088 		 * able to optimize the context switch.  We lock both
3089 		 * contexts and check that they are clones under the
3090 		 * lock (including re-checking that neither has been
3091 		 * uncloned in the meantime).  It doesn't matter which
3092 		 * order we take the locks because no other cpu could
3093 		 * be trying to lock both of these tasks.
3094 		 */
3095 		raw_spin_lock(&ctx->lock);
3096 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3097 		if (context_equiv(ctx, next_ctx)) {
3098 			WRITE_ONCE(ctx->task, next);
3099 			WRITE_ONCE(next_ctx->task, task);
3100 
3101 			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3102 
3103 			/*
3104 			 * RCU_INIT_POINTER here is safe because we've not
3105 			 * modified the ctx and the above modification of
3106 			 * ctx->task and ctx->task_ctx_data are immaterial
3107 			 * since those values are always verified under
3108 			 * ctx->lock which we're now holding.
3109 			 */
3110 			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3111 			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3112 
3113 			do_switch = 0;
3114 
3115 			perf_event_sync_stat(ctx, next_ctx);
3116 		}
3117 		raw_spin_unlock(&next_ctx->lock);
3118 		raw_spin_unlock(&ctx->lock);
3119 	}
3120 unlock:
3121 	rcu_read_unlock();
3122 
3123 	if (do_switch) {
3124 		raw_spin_lock(&ctx->lock);
3125 		task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3126 		raw_spin_unlock(&ctx->lock);
3127 	}
3128 }
3129 
3130 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3131 
3132 void perf_sched_cb_dec(struct pmu *pmu)
3133 {
3134 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3135 
3136 	this_cpu_dec(perf_sched_cb_usages);
3137 
3138 	if (!--cpuctx->sched_cb_usage)
3139 		list_del(&cpuctx->sched_cb_entry);
3140 }
3141 
3142 
3143 void perf_sched_cb_inc(struct pmu *pmu)
3144 {
3145 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3146 
3147 	if (!cpuctx->sched_cb_usage++)
3148 		list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3149 
3150 	this_cpu_inc(perf_sched_cb_usages);
3151 }
3152 
3153 /*
3154  * This function provides the context switch callback to the lower code
3155  * layer. It is invoked ONLY when the context switch callback is enabled.
3156  *
3157  * This callback is relevant even to per-cpu events; for example multi event
3158  * PEBS requires this to provide PID/TID information. This requires we flush
3159  * all queued PEBS records before we context switch to a new task.
3160  */
3161 static void perf_pmu_sched_task(struct task_struct *prev,
3162 				struct task_struct *next,
3163 				bool sched_in)
3164 {
3165 	struct perf_cpu_context *cpuctx;
3166 	struct pmu *pmu;
3167 
3168 	if (prev == next)
3169 		return;
3170 
3171 	list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3172 		pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3173 
3174 		if (WARN_ON_ONCE(!pmu->sched_task))
3175 			continue;
3176 
3177 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3178 		perf_pmu_disable(pmu);
3179 
3180 		pmu->sched_task(cpuctx->task_ctx, sched_in);
3181 
3182 		perf_pmu_enable(pmu);
3183 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3184 	}
3185 }
3186 
3187 static void perf_event_switch(struct task_struct *task,
3188 			      struct task_struct *next_prev, bool sched_in);
3189 
3190 #define for_each_task_context_nr(ctxn)					\
3191 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3192 
3193 /*
3194  * Called from scheduler to remove the events of the current task,
3195  * with interrupts disabled.
3196  *
3197  * We stop each event and update the event value in event->count.
3198  *
3199  * This does not protect us against NMI, but disable()
3200  * sets the disabled bit in the control field of event _before_
3201  * accessing the event control register. If a NMI hits, then it will
3202  * not restart the event.
3203  */
3204 void __perf_event_task_sched_out(struct task_struct *task,
3205 				 struct task_struct *next)
3206 {
3207 	int ctxn;
3208 
3209 	if (__this_cpu_read(perf_sched_cb_usages))
3210 		perf_pmu_sched_task(task, next, false);
3211 
3212 	if (atomic_read(&nr_switch_events))
3213 		perf_event_switch(task, next, false);
3214 
3215 	for_each_task_context_nr(ctxn)
3216 		perf_event_context_sched_out(task, ctxn, next);
3217 
3218 	/*
3219 	 * if cgroup events exist on this CPU, then we need
3220 	 * to check if we have to switch out PMU state.
3221 	 * cgroup event are system-wide mode only
3222 	 */
3223 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3224 		perf_cgroup_sched_out(task, next);
3225 }
3226 
3227 /*
3228  * Called with IRQs disabled
3229  */
3230 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3231 			      enum event_type_t event_type)
3232 {
3233 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3234 }
3235 
3236 static int visit_groups_merge(struct perf_event_groups *groups, int cpu,
3237 			      int (*func)(struct perf_event *, void *), void *data)
3238 {
3239 	struct perf_event **evt, *evt1, *evt2;
3240 	int ret;
3241 
3242 	evt1 = perf_event_groups_first(groups, -1);
3243 	evt2 = perf_event_groups_first(groups, cpu);
3244 
3245 	while (evt1 || evt2) {
3246 		if (evt1 && evt2) {
3247 			if (evt1->group_index < evt2->group_index)
3248 				evt = &evt1;
3249 			else
3250 				evt = &evt2;
3251 		} else if (evt1) {
3252 			evt = &evt1;
3253 		} else {
3254 			evt = &evt2;
3255 		}
3256 
3257 		ret = func(*evt, data);
3258 		if (ret)
3259 			return ret;
3260 
3261 		*evt = perf_event_groups_next(*evt);
3262 	}
3263 
3264 	return 0;
3265 }
3266 
3267 struct sched_in_data {
3268 	struct perf_event_context *ctx;
3269 	struct perf_cpu_context *cpuctx;
3270 	int can_add_hw;
3271 };
3272 
3273 static int pinned_sched_in(struct perf_event *event, void *data)
3274 {
3275 	struct sched_in_data *sid = data;
3276 
3277 	if (event->state <= PERF_EVENT_STATE_OFF)
3278 		return 0;
3279 
3280 	if (!event_filter_match(event))
3281 		return 0;
3282 
3283 	if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3284 		if (!group_sched_in(event, sid->cpuctx, sid->ctx))
3285 			list_add_tail(&event->active_list, &sid->ctx->pinned_active);
3286 	}
3287 
3288 	/*
3289 	 * If this pinned group hasn't been scheduled,
3290 	 * put it in error state.
3291 	 */
3292 	if (event->state == PERF_EVENT_STATE_INACTIVE)
3293 		perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3294 
3295 	return 0;
3296 }
3297 
3298 static int flexible_sched_in(struct perf_event *event, void *data)
3299 {
3300 	struct sched_in_data *sid = data;
3301 
3302 	if (event->state <= PERF_EVENT_STATE_OFF)
3303 		return 0;
3304 
3305 	if (!event_filter_match(event))
3306 		return 0;
3307 
3308 	if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3309 		if (!group_sched_in(event, sid->cpuctx, sid->ctx))
3310 			list_add_tail(&event->active_list, &sid->ctx->flexible_active);
3311 		else
3312 			sid->can_add_hw = 0;
3313 	}
3314 
3315 	return 0;
3316 }
3317 
3318 static void
3319 ctx_pinned_sched_in(struct perf_event_context *ctx,
3320 		    struct perf_cpu_context *cpuctx)
3321 {
3322 	struct sched_in_data sid = {
3323 		.ctx = ctx,
3324 		.cpuctx = cpuctx,
3325 		.can_add_hw = 1,
3326 	};
3327 
3328 	visit_groups_merge(&ctx->pinned_groups,
3329 			   smp_processor_id(),
3330 			   pinned_sched_in, &sid);
3331 }
3332 
3333 static void
3334 ctx_flexible_sched_in(struct perf_event_context *ctx,
3335 		      struct perf_cpu_context *cpuctx)
3336 {
3337 	struct sched_in_data sid = {
3338 		.ctx = ctx,
3339 		.cpuctx = cpuctx,
3340 		.can_add_hw = 1,
3341 	};
3342 
3343 	visit_groups_merge(&ctx->flexible_groups,
3344 			   smp_processor_id(),
3345 			   flexible_sched_in, &sid);
3346 }
3347 
3348 static void
3349 ctx_sched_in(struct perf_event_context *ctx,
3350 	     struct perf_cpu_context *cpuctx,
3351 	     enum event_type_t event_type,
3352 	     struct task_struct *task)
3353 {
3354 	int is_active = ctx->is_active;
3355 	u64 now;
3356 
3357 	lockdep_assert_held(&ctx->lock);
3358 
3359 	if (likely(!ctx->nr_events))
3360 		return;
3361 
3362 	ctx->is_active |= (event_type | EVENT_TIME);
3363 	if (ctx->task) {
3364 		if (!is_active)
3365 			cpuctx->task_ctx = ctx;
3366 		else
3367 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3368 	}
3369 
3370 	is_active ^= ctx->is_active; /* changed bits */
3371 
3372 	if (is_active & EVENT_TIME) {
3373 		/* start ctx time */
3374 		now = perf_clock();
3375 		ctx->timestamp = now;
3376 		perf_cgroup_set_timestamp(task, ctx);
3377 	}
3378 
3379 	/*
3380 	 * First go through the list and put on any pinned groups
3381 	 * in order to give them the best chance of going on.
3382 	 */
3383 	if (is_active & EVENT_PINNED)
3384 		ctx_pinned_sched_in(ctx, cpuctx);
3385 
3386 	/* Then walk through the lower prio flexible groups */
3387 	if (is_active & EVENT_FLEXIBLE)
3388 		ctx_flexible_sched_in(ctx, cpuctx);
3389 }
3390 
3391 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3392 			     enum event_type_t event_type,
3393 			     struct task_struct *task)
3394 {
3395 	struct perf_event_context *ctx = &cpuctx->ctx;
3396 
3397 	ctx_sched_in(ctx, cpuctx, event_type, task);
3398 }
3399 
3400 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3401 					struct task_struct *task)
3402 {
3403 	struct perf_cpu_context *cpuctx;
3404 
3405 	cpuctx = __get_cpu_context(ctx);
3406 	if (cpuctx->task_ctx == ctx)
3407 		return;
3408 
3409 	perf_ctx_lock(cpuctx, ctx);
3410 	/*
3411 	 * We must check ctx->nr_events while holding ctx->lock, such
3412 	 * that we serialize against perf_install_in_context().
3413 	 */
3414 	if (!ctx->nr_events)
3415 		goto unlock;
3416 
3417 	perf_pmu_disable(ctx->pmu);
3418 	/*
3419 	 * We want to keep the following priority order:
3420 	 * cpu pinned (that don't need to move), task pinned,
3421 	 * cpu flexible, task flexible.
3422 	 *
3423 	 * However, if task's ctx is not carrying any pinned
3424 	 * events, no need to flip the cpuctx's events around.
3425 	 */
3426 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3427 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3428 	perf_event_sched_in(cpuctx, ctx, task);
3429 	perf_pmu_enable(ctx->pmu);
3430 
3431 unlock:
3432 	perf_ctx_unlock(cpuctx, ctx);
3433 }
3434 
3435 /*
3436  * Called from scheduler to add the events of the current task
3437  * with interrupts disabled.
3438  *
3439  * We restore the event value and then enable it.
3440  *
3441  * This does not protect us against NMI, but enable()
3442  * sets the enabled bit in the control field of event _before_
3443  * accessing the event control register. If a NMI hits, then it will
3444  * keep the event running.
3445  */
3446 void __perf_event_task_sched_in(struct task_struct *prev,
3447 				struct task_struct *task)
3448 {
3449 	struct perf_event_context *ctx;
3450 	int ctxn;
3451 
3452 	/*
3453 	 * If cgroup events exist on this CPU, then we need to check if we have
3454 	 * to switch in PMU state; cgroup event are system-wide mode only.
3455 	 *
3456 	 * Since cgroup events are CPU events, we must schedule these in before
3457 	 * we schedule in the task events.
3458 	 */
3459 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3460 		perf_cgroup_sched_in(prev, task);
3461 
3462 	for_each_task_context_nr(ctxn) {
3463 		ctx = task->perf_event_ctxp[ctxn];
3464 		if (likely(!ctx))
3465 			continue;
3466 
3467 		perf_event_context_sched_in(ctx, task);
3468 	}
3469 
3470 	if (atomic_read(&nr_switch_events))
3471 		perf_event_switch(task, prev, true);
3472 
3473 	if (__this_cpu_read(perf_sched_cb_usages))
3474 		perf_pmu_sched_task(prev, task, true);
3475 }
3476 
3477 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3478 {
3479 	u64 frequency = event->attr.sample_freq;
3480 	u64 sec = NSEC_PER_SEC;
3481 	u64 divisor, dividend;
3482 
3483 	int count_fls, nsec_fls, frequency_fls, sec_fls;
3484 
3485 	count_fls = fls64(count);
3486 	nsec_fls = fls64(nsec);
3487 	frequency_fls = fls64(frequency);
3488 	sec_fls = 30;
3489 
3490 	/*
3491 	 * We got @count in @nsec, with a target of sample_freq HZ
3492 	 * the target period becomes:
3493 	 *
3494 	 *             @count * 10^9
3495 	 * period = -------------------
3496 	 *          @nsec * sample_freq
3497 	 *
3498 	 */
3499 
3500 	/*
3501 	 * Reduce accuracy by one bit such that @a and @b converge
3502 	 * to a similar magnitude.
3503 	 */
3504 #define REDUCE_FLS(a, b)		\
3505 do {					\
3506 	if (a##_fls > b##_fls) {	\
3507 		a >>= 1;		\
3508 		a##_fls--;		\
3509 	} else {			\
3510 		b >>= 1;		\
3511 		b##_fls--;		\
3512 	}				\
3513 } while (0)
3514 
3515 	/*
3516 	 * Reduce accuracy until either term fits in a u64, then proceed with
3517 	 * the other, so that finally we can do a u64/u64 division.
3518 	 */
3519 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3520 		REDUCE_FLS(nsec, frequency);
3521 		REDUCE_FLS(sec, count);
3522 	}
3523 
3524 	if (count_fls + sec_fls > 64) {
3525 		divisor = nsec * frequency;
3526 
3527 		while (count_fls + sec_fls > 64) {
3528 			REDUCE_FLS(count, sec);
3529 			divisor >>= 1;
3530 		}
3531 
3532 		dividend = count * sec;
3533 	} else {
3534 		dividend = count * sec;
3535 
3536 		while (nsec_fls + frequency_fls > 64) {
3537 			REDUCE_FLS(nsec, frequency);
3538 			dividend >>= 1;
3539 		}
3540 
3541 		divisor = nsec * frequency;
3542 	}
3543 
3544 	if (!divisor)
3545 		return dividend;
3546 
3547 	return div64_u64(dividend, divisor);
3548 }
3549 
3550 static DEFINE_PER_CPU(int, perf_throttled_count);
3551 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3552 
3553 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3554 {
3555 	struct hw_perf_event *hwc = &event->hw;
3556 	s64 period, sample_period;
3557 	s64 delta;
3558 
3559 	period = perf_calculate_period(event, nsec, count);
3560 
3561 	delta = (s64)(period - hwc->sample_period);
3562 	delta = (delta + 7) / 8; /* low pass filter */
3563 
3564 	sample_period = hwc->sample_period + delta;
3565 
3566 	if (!sample_period)
3567 		sample_period = 1;
3568 
3569 	hwc->sample_period = sample_period;
3570 
3571 	if (local64_read(&hwc->period_left) > 8*sample_period) {
3572 		if (disable)
3573 			event->pmu->stop(event, PERF_EF_UPDATE);
3574 
3575 		local64_set(&hwc->period_left, 0);
3576 
3577 		if (disable)
3578 			event->pmu->start(event, PERF_EF_RELOAD);
3579 	}
3580 }
3581 
3582 /*
3583  * combine freq adjustment with unthrottling to avoid two passes over the
3584  * events. At the same time, make sure, having freq events does not change
3585  * the rate of unthrottling as that would introduce bias.
3586  */
3587 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3588 					   int needs_unthr)
3589 {
3590 	struct perf_event *event;
3591 	struct hw_perf_event *hwc;
3592 	u64 now, period = TICK_NSEC;
3593 	s64 delta;
3594 
3595 	/*
3596 	 * only need to iterate over all events iff:
3597 	 * - context have events in frequency mode (needs freq adjust)
3598 	 * - there are events to unthrottle on this cpu
3599 	 */
3600 	if (!(ctx->nr_freq || needs_unthr))
3601 		return;
3602 
3603 	raw_spin_lock(&ctx->lock);
3604 	perf_pmu_disable(ctx->pmu);
3605 
3606 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3607 		if (event->state != PERF_EVENT_STATE_ACTIVE)
3608 			continue;
3609 
3610 		if (!event_filter_match(event))
3611 			continue;
3612 
3613 		perf_pmu_disable(event->pmu);
3614 
3615 		hwc = &event->hw;
3616 
3617 		if (hwc->interrupts == MAX_INTERRUPTS) {
3618 			hwc->interrupts = 0;
3619 			perf_log_throttle(event, 1);
3620 			event->pmu->start(event, 0);
3621 		}
3622 
3623 		if (!event->attr.freq || !event->attr.sample_freq)
3624 			goto next;
3625 
3626 		/*
3627 		 * stop the event and update event->count
3628 		 */
3629 		event->pmu->stop(event, PERF_EF_UPDATE);
3630 
3631 		now = local64_read(&event->count);
3632 		delta = now - hwc->freq_count_stamp;
3633 		hwc->freq_count_stamp = now;
3634 
3635 		/*
3636 		 * restart the event
3637 		 * reload only if value has changed
3638 		 * we have stopped the event so tell that
3639 		 * to perf_adjust_period() to avoid stopping it
3640 		 * twice.
3641 		 */
3642 		if (delta > 0)
3643 			perf_adjust_period(event, period, delta, false);
3644 
3645 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3646 	next:
3647 		perf_pmu_enable(event->pmu);
3648 	}
3649 
3650 	perf_pmu_enable(ctx->pmu);
3651 	raw_spin_unlock(&ctx->lock);
3652 }
3653 
3654 /*
3655  * Move @event to the tail of the @ctx's elegible events.
3656  */
3657 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
3658 {
3659 	/*
3660 	 * Rotate the first entry last of non-pinned groups. Rotation might be
3661 	 * disabled by the inheritance code.
3662 	 */
3663 	if (ctx->rotate_disable)
3664 		return;
3665 
3666 	perf_event_groups_delete(&ctx->flexible_groups, event);
3667 	perf_event_groups_insert(&ctx->flexible_groups, event);
3668 }
3669 
3670 static inline struct perf_event *
3671 ctx_first_active(struct perf_event_context *ctx)
3672 {
3673 	return list_first_entry_or_null(&ctx->flexible_active,
3674 					struct perf_event, active_list);
3675 }
3676 
3677 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
3678 {
3679 	struct perf_event *cpu_event = NULL, *task_event = NULL;
3680 	bool cpu_rotate = false, task_rotate = false;
3681 	struct perf_event_context *ctx = NULL;
3682 
3683 	/*
3684 	 * Since we run this from IRQ context, nobody can install new
3685 	 * events, thus the event count values are stable.
3686 	 */
3687 
3688 	if (cpuctx->ctx.nr_events) {
3689 		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3690 			cpu_rotate = true;
3691 	}
3692 
3693 	ctx = cpuctx->task_ctx;
3694 	if (ctx && ctx->nr_events) {
3695 		if (ctx->nr_events != ctx->nr_active)
3696 			task_rotate = true;
3697 	}
3698 
3699 	if (!(cpu_rotate || task_rotate))
3700 		return false;
3701 
3702 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3703 	perf_pmu_disable(cpuctx->ctx.pmu);
3704 
3705 	if (task_rotate)
3706 		task_event = ctx_first_active(ctx);
3707 	if (cpu_rotate)
3708 		cpu_event = ctx_first_active(&cpuctx->ctx);
3709 
3710 	/*
3711 	 * As per the order given at ctx_resched() first 'pop' task flexible
3712 	 * and then, if needed CPU flexible.
3713 	 */
3714 	if (task_event || (ctx && cpu_event))
3715 		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3716 	if (cpu_event)
3717 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3718 
3719 	if (task_event)
3720 		rotate_ctx(ctx, task_event);
3721 	if (cpu_event)
3722 		rotate_ctx(&cpuctx->ctx, cpu_event);
3723 
3724 	perf_event_sched_in(cpuctx, ctx, current);
3725 
3726 	perf_pmu_enable(cpuctx->ctx.pmu);
3727 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3728 
3729 	return true;
3730 }
3731 
3732 void perf_event_task_tick(void)
3733 {
3734 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
3735 	struct perf_event_context *ctx, *tmp;
3736 	int throttled;
3737 
3738 	lockdep_assert_irqs_disabled();
3739 
3740 	__this_cpu_inc(perf_throttled_seq);
3741 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
3742 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3743 
3744 	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3745 		perf_adjust_freq_unthr_context(ctx, throttled);
3746 }
3747 
3748 static int event_enable_on_exec(struct perf_event *event,
3749 				struct perf_event_context *ctx)
3750 {
3751 	if (!event->attr.enable_on_exec)
3752 		return 0;
3753 
3754 	event->attr.enable_on_exec = 0;
3755 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
3756 		return 0;
3757 
3758 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
3759 
3760 	return 1;
3761 }
3762 
3763 /*
3764  * Enable all of a task's events that have been marked enable-on-exec.
3765  * This expects task == current.
3766  */
3767 static void perf_event_enable_on_exec(int ctxn)
3768 {
3769 	struct perf_event_context *ctx, *clone_ctx = NULL;
3770 	enum event_type_t event_type = 0;
3771 	struct perf_cpu_context *cpuctx;
3772 	struct perf_event *event;
3773 	unsigned long flags;
3774 	int enabled = 0;
3775 
3776 	local_irq_save(flags);
3777 	ctx = current->perf_event_ctxp[ctxn];
3778 	if (!ctx || !ctx->nr_events)
3779 		goto out;
3780 
3781 	cpuctx = __get_cpu_context(ctx);
3782 	perf_ctx_lock(cpuctx, ctx);
3783 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3784 	list_for_each_entry(event, &ctx->event_list, event_entry) {
3785 		enabled |= event_enable_on_exec(event, ctx);
3786 		event_type |= get_event_type(event);
3787 	}
3788 
3789 	/*
3790 	 * Unclone and reschedule this context if we enabled any event.
3791 	 */
3792 	if (enabled) {
3793 		clone_ctx = unclone_ctx(ctx);
3794 		ctx_resched(cpuctx, ctx, event_type);
3795 	} else {
3796 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3797 	}
3798 	perf_ctx_unlock(cpuctx, ctx);
3799 
3800 out:
3801 	local_irq_restore(flags);
3802 
3803 	if (clone_ctx)
3804 		put_ctx(clone_ctx);
3805 }
3806 
3807 struct perf_read_data {
3808 	struct perf_event *event;
3809 	bool group;
3810 	int ret;
3811 };
3812 
3813 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3814 {
3815 	u16 local_pkg, event_pkg;
3816 
3817 	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3818 		int local_cpu = smp_processor_id();
3819 
3820 		event_pkg = topology_physical_package_id(event_cpu);
3821 		local_pkg = topology_physical_package_id(local_cpu);
3822 
3823 		if (event_pkg == local_pkg)
3824 			return local_cpu;
3825 	}
3826 
3827 	return event_cpu;
3828 }
3829 
3830 /*
3831  * Cross CPU call to read the hardware event
3832  */
3833 static void __perf_event_read(void *info)
3834 {
3835 	struct perf_read_data *data = info;
3836 	struct perf_event *sub, *event = data->event;
3837 	struct perf_event_context *ctx = event->ctx;
3838 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3839 	struct pmu *pmu = event->pmu;
3840 
3841 	/*
3842 	 * If this is a task context, we need to check whether it is
3843 	 * the current task context of this cpu.  If not it has been
3844 	 * scheduled out before the smp call arrived.  In that case
3845 	 * event->count would have been updated to a recent sample
3846 	 * when the event was scheduled out.
3847 	 */
3848 	if (ctx->task && cpuctx->task_ctx != ctx)
3849 		return;
3850 
3851 	raw_spin_lock(&ctx->lock);
3852 	if (ctx->is_active & EVENT_TIME) {
3853 		update_context_time(ctx);
3854 		update_cgrp_time_from_event(event);
3855 	}
3856 
3857 	perf_event_update_time(event);
3858 	if (data->group)
3859 		perf_event_update_sibling_time(event);
3860 
3861 	if (event->state != PERF_EVENT_STATE_ACTIVE)
3862 		goto unlock;
3863 
3864 	if (!data->group) {
3865 		pmu->read(event);
3866 		data->ret = 0;
3867 		goto unlock;
3868 	}
3869 
3870 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3871 
3872 	pmu->read(event);
3873 
3874 	for_each_sibling_event(sub, event) {
3875 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3876 			/*
3877 			 * Use sibling's PMU rather than @event's since
3878 			 * sibling could be on different (eg: software) PMU.
3879 			 */
3880 			sub->pmu->read(sub);
3881 		}
3882 	}
3883 
3884 	data->ret = pmu->commit_txn(pmu);
3885 
3886 unlock:
3887 	raw_spin_unlock(&ctx->lock);
3888 }
3889 
3890 static inline u64 perf_event_count(struct perf_event *event)
3891 {
3892 	return local64_read(&event->count) + atomic64_read(&event->child_count);
3893 }
3894 
3895 /*
3896  * NMI-safe method to read a local event, that is an event that
3897  * is:
3898  *   - either for the current task, or for this CPU
3899  *   - does not have inherit set, for inherited task events
3900  *     will not be local and we cannot read them atomically
3901  *   - must not have a pmu::count method
3902  */
3903 int perf_event_read_local(struct perf_event *event, u64 *value,
3904 			  u64 *enabled, u64 *running)
3905 {
3906 	unsigned long flags;
3907 	int ret = 0;
3908 
3909 	/*
3910 	 * Disabling interrupts avoids all counter scheduling (context
3911 	 * switches, timer based rotation and IPIs).
3912 	 */
3913 	local_irq_save(flags);
3914 
3915 	/*
3916 	 * It must not be an event with inherit set, we cannot read
3917 	 * all child counters from atomic context.
3918 	 */
3919 	if (event->attr.inherit) {
3920 		ret = -EOPNOTSUPP;
3921 		goto out;
3922 	}
3923 
3924 	/* If this is a per-task event, it must be for current */
3925 	if ((event->attach_state & PERF_ATTACH_TASK) &&
3926 	    event->hw.target != current) {
3927 		ret = -EINVAL;
3928 		goto out;
3929 	}
3930 
3931 	/* If this is a per-CPU event, it must be for this CPU */
3932 	if (!(event->attach_state & PERF_ATTACH_TASK) &&
3933 	    event->cpu != smp_processor_id()) {
3934 		ret = -EINVAL;
3935 		goto out;
3936 	}
3937 
3938 	/* If this is a pinned event it must be running on this CPU */
3939 	if (event->attr.pinned && event->oncpu != smp_processor_id()) {
3940 		ret = -EBUSY;
3941 		goto out;
3942 	}
3943 
3944 	/*
3945 	 * If the event is currently on this CPU, its either a per-task event,
3946 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3947 	 * oncpu == -1).
3948 	 */
3949 	if (event->oncpu == smp_processor_id())
3950 		event->pmu->read(event);
3951 
3952 	*value = local64_read(&event->count);
3953 	if (enabled || running) {
3954 		u64 now = event->shadow_ctx_time + perf_clock();
3955 		u64 __enabled, __running;
3956 
3957 		__perf_update_times(event, now, &__enabled, &__running);
3958 		if (enabled)
3959 			*enabled = __enabled;
3960 		if (running)
3961 			*running = __running;
3962 	}
3963 out:
3964 	local_irq_restore(flags);
3965 
3966 	return ret;
3967 }
3968 
3969 static int perf_event_read(struct perf_event *event, bool group)
3970 {
3971 	enum perf_event_state state = READ_ONCE(event->state);
3972 	int event_cpu, ret = 0;
3973 
3974 	/*
3975 	 * If event is enabled and currently active on a CPU, update the
3976 	 * value in the event structure:
3977 	 */
3978 again:
3979 	if (state == PERF_EVENT_STATE_ACTIVE) {
3980 		struct perf_read_data data;
3981 
3982 		/*
3983 		 * Orders the ->state and ->oncpu loads such that if we see
3984 		 * ACTIVE we must also see the right ->oncpu.
3985 		 *
3986 		 * Matches the smp_wmb() from event_sched_in().
3987 		 */
3988 		smp_rmb();
3989 
3990 		event_cpu = READ_ONCE(event->oncpu);
3991 		if ((unsigned)event_cpu >= nr_cpu_ids)
3992 			return 0;
3993 
3994 		data = (struct perf_read_data){
3995 			.event = event,
3996 			.group = group,
3997 			.ret = 0,
3998 		};
3999 
4000 		preempt_disable();
4001 		event_cpu = __perf_event_read_cpu(event, event_cpu);
4002 
4003 		/*
4004 		 * Purposely ignore the smp_call_function_single() return
4005 		 * value.
4006 		 *
4007 		 * If event_cpu isn't a valid CPU it means the event got
4008 		 * scheduled out and that will have updated the event count.
4009 		 *
4010 		 * Therefore, either way, we'll have an up-to-date event count
4011 		 * after this.
4012 		 */
4013 		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4014 		preempt_enable();
4015 		ret = data.ret;
4016 
4017 	} else if (state == PERF_EVENT_STATE_INACTIVE) {
4018 		struct perf_event_context *ctx = event->ctx;
4019 		unsigned long flags;
4020 
4021 		raw_spin_lock_irqsave(&ctx->lock, flags);
4022 		state = event->state;
4023 		if (state != PERF_EVENT_STATE_INACTIVE) {
4024 			raw_spin_unlock_irqrestore(&ctx->lock, flags);
4025 			goto again;
4026 		}
4027 
4028 		/*
4029 		 * May read while context is not active (e.g., thread is
4030 		 * blocked), in that case we cannot update context time
4031 		 */
4032 		if (ctx->is_active & EVENT_TIME) {
4033 			update_context_time(ctx);
4034 			update_cgrp_time_from_event(event);
4035 		}
4036 
4037 		perf_event_update_time(event);
4038 		if (group)
4039 			perf_event_update_sibling_time(event);
4040 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4041 	}
4042 
4043 	return ret;
4044 }
4045 
4046 /*
4047  * Initialize the perf_event context in a task_struct:
4048  */
4049 static void __perf_event_init_context(struct perf_event_context *ctx)
4050 {
4051 	raw_spin_lock_init(&ctx->lock);
4052 	mutex_init(&ctx->mutex);
4053 	INIT_LIST_HEAD(&ctx->active_ctx_list);
4054 	perf_event_groups_init(&ctx->pinned_groups);
4055 	perf_event_groups_init(&ctx->flexible_groups);
4056 	INIT_LIST_HEAD(&ctx->event_list);
4057 	INIT_LIST_HEAD(&ctx->pinned_active);
4058 	INIT_LIST_HEAD(&ctx->flexible_active);
4059 	atomic_set(&ctx->refcount, 1);
4060 }
4061 
4062 static struct perf_event_context *
4063 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4064 {
4065 	struct perf_event_context *ctx;
4066 
4067 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4068 	if (!ctx)
4069 		return NULL;
4070 
4071 	__perf_event_init_context(ctx);
4072 	if (task) {
4073 		ctx->task = task;
4074 		get_task_struct(task);
4075 	}
4076 	ctx->pmu = pmu;
4077 
4078 	return ctx;
4079 }
4080 
4081 static struct task_struct *
4082 find_lively_task_by_vpid(pid_t vpid)
4083 {
4084 	struct task_struct *task;
4085 
4086 	rcu_read_lock();
4087 	if (!vpid)
4088 		task = current;
4089 	else
4090 		task = find_task_by_vpid(vpid);
4091 	if (task)
4092 		get_task_struct(task);
4093 	rcu_read_unlock();
4094 
4095 	if (!task)
4096 		return ERR_PTR(-ESRCH);
4097 
4098 	return task;
4099 }
4100 
4101 /*
4102  * Returns a matching context with refcount and pincount.
4103  */
4104 static struct perf_event_context *
4105 find_get_context(struct pmu *pmu, struct task_struct *task,
4106 		struct perf_event *event)
4107 {
4108 	struct perf_event_context *ctx, *clone_ctx = NULL;
4109 	struct perf_cpu_context *cpuctx;
4110 	void *task_ctx_data = NULL;
4111 	unsigned long flags;
4112 	int ctxn, err;
4113 	int cpu = event->cpu;
4114 
4115 	if (!task) {
4116 		/* Must be root to operate on a CPU event: */
4117 		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
4118 			return ERR_PTR(-EACCES);
4119 
4120 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4121 		ctx = &cpuctx->ctx;
4122 		get_ctx(ctx);
4123 		++ctx->pin_count;
4124 
4125 		return ctx;
4126 	}
4127 
4128 	err = -EINVAL;
4129 	ctxn = pmu->task_ctx_nr;
4130 	if (ctxn < 0)
4131 		goto errout;
4132 
4133 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4134 		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
4135 		if (!task_ctx_data) {
4136 			err = -ENOMEM;
4137 			goto errout;
4138 		}
4139 	}
4140 
4141 retry:
4142 	ctx = perf_lock_task_context(task, ctxn, &flags);
4143 	if (ctx) {
4144 		clone_ctx = unclone_ctx(ctx);
4145 		++ctx->pin_count;
4146 
4147 		if (task_ctx_data && !ctx->task_ctx_data) {
4148 			ctx->task_ctx_data = task_ctx_data;
4149 			task_ctx_data = NULL;
4150 		}
4151 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4152 
4153 		if (clone_ctx)
4154 			put_ctx(clone_ctx);
4155 	} else {
4156 		ctx = alloc_perf_context(pmu, task);
4157 		err = -ENOMEM;
4158 		if (!ctx)
4159 			goto errout;
4160 
4161 		if (task_ctx_data) {
4162 			ctx->task_ctx_data = task_ctx_data;
4163 			task_ctx_data = NULL;
4164 		}
4165 
4166 		err = 0;
4167 		mutex_lock(&task->perf_event_mutex);
4168 		/*
4169 		 * If it has already passed perf_event_exit_task().
4170 		 * we must see PF_EXITING, it takes this mutex too.
4171 		 */
4172 		if (task->flags & PF_EXITING)
4173 			err = -ESRCH;
4174 		else if (task->perf_event_ctxp[ctxn])
4175 			err = -EAGAIN;
4176 		else {
4177 			get_ctx(ctx);
4178 			++ctx->pin_count;
4179 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4180 		}
4181 		mutex_unlock(&task->perf_event_mutex);
4182 
4183 		if (unlikely(err)) {
4184 			put_ctx(ctx);
4185 
4186 			if (err == -EAGAIN)
4187 				goto retry;
4188 			goto errout;
4189 		}
4190 	}
4191 
4192 	kfree(task_ctx_data);
4193 	return ctx;
4194 
4195 errout:
4196 	kfree(task_ctx_data);
4197 	return ERR_PTR(err);
4198 }
4199 
4200 static void perf_event_free_filter(struct perf_event *event);
4201 static void perf_event_free_bpf_prog(struct perf_event *event);
4202 
4203 static void free_event_rcu(struct rcu_head *head)
4204 {
4205 	struct perf_event *event;
4206 
4207 	event = container_of(head, struct perf_event, rcu_head);
4208 	if (event->ns)
4209 		put_pid_ns(event->ns);
4210 	perf_event_free_filter(event);
4211 	kfree(event);
4212 }
4213 
4214 static void ring_buffer_attach(struct perf_event *event,
4215 			       struct ring_buffer *rb);
4216 
4217 static void detach_sb_event(struct perf_event *event)
4218 {
4219 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4220 
4221 	raw_spin_lock(&pel->lock);
4222 	list_del_rcu(&event->sb_list);
4223 	raw_spin_unlock(&pel->lock);
4224 }
4225 
4226 static bool is_sb_event(struct perf_event *event)
4227 {
4228 	struct perf_event_attr *attr = &event->attr;
4229 
4230 	if (event->parent)
4231 		return false;
4232 
4233 	if (event->attach_state & PERF_ATTACH_TASK)
4234 		return false;
4235 
4236 	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4237 	    attr->comm || attr->comm_exec ||
4238 	    attr->task ||
4239 	    attr->context_switch)
4240 		return true;
4241 	return false;
4242 }
4243 
4244 static void unaccount_pmu_sb_event(struct perf_event *event)
4245 {
4246 	if (is_sb_event(event))
4247 		detach_sb_event(event);
4248 }
4249 
4250 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4251 {
4252 	if (event->parent)
4253 		return;
4254 
4255 	if (is_cgroup_event(event))
4256 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4257 }
4258 
4259 #ifdef CONFIG_NO_HZ_FULL
4260 static DEFINE_SPINLOCK(nr_freq_lock);
4261 #endif
4262 
4263 static void unaccount_freq_event_nohz(void)
4264 {
4265 #ifdef CONFIG_NO_HZ_FULL
4266 	spin_lock(&nr_freq_lock);
4267 	if (atomic_dec_and_test(&nr_freq_events))
4268 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4269 	spin_unlock(&nr_freq_lock);
4270 #endif
4271 }
4272 
4273 static void unaccount_freq_event(void)
4274 {
4275 	if (tick_nohz_full_enabled())
4276 		unaccount_freq_event_nohz();
4277 	else
4278 		atomic_dec(&nr_freq_events);
4279 }
4280 
4281 static void unaccount_event(struct perf_event *event)
4282 {
4283 	bool dec = false;
4284 
4285 	if (event->parent)
4286 		return;
4287 
4288 	if (event->attach_state & PERF_ATTACH_TASK)
4289 		dec = true;
4290 	if (event->attr.mmap || event->attr.mmap_data)
4291 		atomic_dec(&nr_mmap_events);
4292 	if (event->attr.comm)
4293 		atomic_dec(&nr_comm_events);
4294 	if (event->attr.namespaces)
4295 		atomic_dec(&nr_namespaces_events);
4296 	if (event->attr.task)
4297 		atomic_dec(&nr_task_events);
4298 	if (event->attr.freq)
4299 		unaccount_freq_event();
4300 	if (event->attr.context_switch) {
4301 		dec = true;
4302 		atomic_dec(&nr_switch_events);
4303 	}
4304 	if (is_cgroup_event(event))
4305 		dec = true;
4306 	if (has_branch_stack(event))
4307 		dec = true;
4308 
4309 	if (dec) {
4310 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
4311 			schedule_delayed_work(&perf_sched_work, HZ);
4312 	}
4313 
4314 	unaccount_event_cpu(event, event->cpu);
4315 
4316 	unaccount_pmu_sb_event(event);
4317 }
4318 
4319 static void perf_sched_delayed(struct work_struct *work)
4320 {
4321 	mutex_lock(&perf_sched_mutex);
4322 	if (atomic_dec_and_test(&perf_sched_count))
4323 		static_branch_disable(&perf_sched_events);
4324 	mutex_unlock(&perf_sched_mutex);
4325 }
4326 
4327 /*
4328  * The following implement mutual exclusion of events on "exclusive" pmus
4329  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4330  * at a time, so we disallow creating events that might conflict, namely:
4331  *
4332  *  1) cpu-wide events in the presence of per-task events,
4333  *  2) per-task events in the presence of cpu-wide events,
4334  *  3) two matching events on the same context.
4335  *
4336  * The former two cases are handled in the allocation path (perf_event_alloc(),
4337  * _free_event()), the latter -- before the first perf_install_in_context().
4338  */
4339 static int exclusive_event_init(struct perf_event *event)
4340 {
4341 	struct pmu *pmu = event->pmu;
4342 
4343 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4344 		return 0;
4345 
4346 	/*
4347 	 * Prevent co-existence of per-task and cpu-wide events on the
4348 	 * same exclusive pmu.
4349 	 *
4350 	 * Negative pmu::exclusive_cnt means there are cpu-wide
4351 	 * events on this "exclusive" pmu, positive means there are
4352 	 * per-task events.
4353 	 *
4354 	 * Since this is called in perf_event_alloc() path, event::ctx
4355 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4356 	 * to mean "per-task event", because unlike other attach states it
4357 	 * never gets cleared.
4358 	 */
4359 	if (event->attach_state & PERF_ATTACH_TASK) {
4360 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4361 			return -EBUSY;
4362 	} else {
4363 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4364 			return -EBUSY;
4365 	}
4366 
4367 	return 0;
4368 }
4369 
4370 static void exclusive_event_destroy(struct perf_event *event)
4371 {
4372 	struct pmu *pmu = event->pmu;
4373 
4374 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4375 		return;
4376 
4377 	/* see comment in exclusive_event_init() */
4378 	if (event->attach_state & PERF_ATTACH_TASK)
4379 		atomic_dec(&pmu->exclusive_cnt);
4380 	else
4381 		atomic_inc(&pmu->exclusive_cnt);
4382 }
4383 
4384 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4385 {
4386 	if ((e1->pmu == e2->pmu) &&
4387 	    (e1->cpu == e2->cpu ||
4388 	     e1->cpu == -1 ||
4389 	     e2->cpu == -1))
4390 		return true;
4391 	return false;
4392 }
4393 
4394 /* Called under the same ctx::mutex as perf_install_in_context() */
4395 static bool exclusive_event_installable(struct perf_event *event,
4396 					struct perf_event_context *ctx)
4397 {
4398 	struct perf_event *iter_event;
4399 	struct pmu *pmu = event->pmu;
4400 
4401 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4402 		return true;
4403 
4404 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4405 		if (exclusive_event_match(iter_event, event))
4406 			return false;
4407 	}
4408 
4409 	return true;
4410 }
4411 
4412 static void perf_addr_filters_splice(struct perf_event *event,
4413 				       struct list_head *head);
4414 
4415 static void _free_event(struct perf_event *event)
4416 {
4417 	irq_work_sync(&event->pending);
4418 
4419 	unaccount_event(event);
4420 
4421 	if (event->rb) {
4422 		/*
4423 		 * Can happen when we close an event with re-directed output.
4424 		 *
4425 		 * Since we have a 0 refcount, perf_mmap_close() will skip
4426 		 * over us; possibly making our ring_buffer_put() the last.
4427 		 */
4428 		mutex_lock(&event->mmap_mutex);
4429 		ring_buffer_attach(event, NULL);
4430 		mutex_unlock(&event->mmap_mutex);
4431 	}
4432 
4433 	if (is_cgroup_event(event))
4434 		perf_detach_cgroup(event);
4435 
4436 	if (!event->parent) {
4437 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4438 			put_callchain_buffers();
4439 	}
4440 
4441 	perf_event_free_bpf_prog(event);
4442 	perf_addr_filters_splice(event, NULL);
4443 	kfree(event->addr_filters_offs);
4444 
4445 	if (event->destroy)
4446 		event->destroy(event);
4447 
4448 	if (event->ctx)
4449 		put_ctx(event->ctx);
4450 
4451 	if (event->hw.target)
4452 		put_task_struct(event->hw.target);
4453 
4454 	exclusive_event_destroy(event);
4455 	module_put(event->pmu->module);
4456 
4457 	call_rcu(&event->rcu_head, free_event_rcu);
4458 }
4459 
4460 /*
4461  * Used to free events which have a known refcount of 1, such as in error paths
4462  * where the event isn't exposed yet and inherited events.
4463  */
4464 static void free_event(struct perf_event *event)
4465 {
4466 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4467 				"unexpected event refcount: %ld; ptr=%p\n",
4468 				atomic_long_read(&event->refcount), event)) {
4469 		/* leak to avoid use-after-free */
4470 		return;
4471 	}
4472 
4473 	_free_event(event);
4474 }
4475 
4476 /*
4477  * Remove user event from the owner task.
4478  */
4479 static void perf_remove_from_owner(struct perf_event *event)
4480 {
4481 	struct task_struct *owner;
4482 
4483 	rcu_read_lock();
4484 	/*
4485 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
4486 	 * observe !owner it means the list deletion is complete and we can
4487 	 * indeed free this event, otherwise we need to serialize on
4488 	 * owner->perf_event_mutex.
4489 	 */
4490 	owner = READ_ONCE(event->owner);
4491 	if (owner) {
4492 		/*
4493 		 * Since delayed_put_task_struct() also drops the last
4494 		 * task reference we can safely take a new reference
4495 		 * while holding the rcu_read_lock().
4496 		 */
4497 		get_task_struct(owner);
4498 	}
4499 	rcu_read_unlock();
4500 
4501 	if (owner) {
4502 		/*
4503 		 * If we're here through perf_event_exit_task() we're already
4504 		 * holding ctx->mutex which would be an inversion wrt. the
4505 		 * normal lock order.
4506 		 *
4507 		 * However we can safely take this lock because its the child
4508 		 * ctx->mutex.
4509 		 */
4510 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4511 
4512 		/*
4513 		 * We have to re-check the event->owner field, if it is cleared
4514 		 * we raced with perf_event_exit_task(), acquiring the mutex
4515 		 * ensured they're done, and we can proceed with freeing the
4516 		 * event.
4517 		 */
4518 		if (event->owner) {
4519 			list_del_init(&event->owner_entry);
4520 			smp_store_release(&event->owner, NULL);
4521 		}
4522 		mutex_unlock(&owner->perf_event_mutex);
4523 		put_task_struct(owner);
4524 	}
4525 }
4526 
4527 static void put_event(struct perf_event *event)
4528 {
4529 	if (!atomic_long_dec_and_test(&event->refcount))
4530 		return;
4531 
4532 	_free_event(event);
4533 }
4534 
4535 /*
4536  * Kill an event dead; while event:refcount will preserve the event
4537  * object, it will not preserve its functionality. Once the last 'user'
4538  * gives up the object, we'll destroy the thing.
4539  */
4540 int perf_event_release_kernel(struct perf_event *event)
4541 {
4542 	struct perf_event_context *ctx = event->ctx;
4543 	struct perf_event *child, *tmp;
4544 	LIST_HEAD(free_list);
4545 
4546 	/*
4547 	 * If we got here through err_file: fput(event_file); we will not have
4548 	 * attached to a context yet.
4549 	 */
4550 	if (!ctx) {
4551 		WARN_ON_ONCE(event->attach_state &
4552 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4553 		goto no_ctx;
4554 	}
4555 
4556 	if (!is_kernel_event(event))
4557 		perf_remove_from_owner(event);
4558 
4559 	ctx = perf_event_ctx_lock(event);
4560 	WARN_ON_ONCE(ctx->parent_ctx);
4561 	perf_remove_from_context(event, DETACH_GROUP);
4562 
4563 	raw_spin_lock_irq(&ctx->lock);
4564 	/*
4565 	 * Mark this event as STATE_DEAD, there is no external reference to it
4566 	 * anymore.
4567 	 *
4568 	 * Anybody acquiring event->child_mutex after the below loop _must_
4569 	 * also see this, most importantly inherit_event() which will avoid
4570 	 * placing more children on the list.
4571 	 *
4572 	 * Thus this guarantees that we will in fact observe and kill _ALL_
4573 	 * child events.
4574 	 */
4575 	event->state = PERF_EVENT_STATE_DEAD;
4576 	raw_spin_unlock_irq(&ctx->lock);
4577 
4578 	perf_event_ctx_unlock(event, ctx);
4579 
4580 again:
4581 	mutex_lock(&event->child_mutex);
4582 	list_for_each_entry(child, &event->child_list, child_list) {
4583 
4584 		/*
4585 		 * Cannot change, child events are not migrated, see the
4586 		 * comment with perf_event_ctx_lock_nested().
4587 		 */
4588 		ctx = READ_ONCE(child->ctx);
4589 		/*
4590 		 * Since child_mutex nests inside ctx::mutex, we must jump
4591 		 * through hoops. We start by grabbing a reference on the ctx.
4592 		 *
4593 		 * Since the event cannot get freed while we hold the
4594 		 * child_mutex, the context must also exist and have a !0
4595 		 * reference count.
4596 		 */
4597 		get_ctx(ctx);
4598 
4599 		/*
4600 		 * Now that we have a ctx ref, we can drop child_mutex, and
4601 		 * acquire ctx::mutex without fear of it going away. Then we
4602 		 * can re-acquire child_mutex.
4603 		 */
4604 		mutex_unlock(&event->child_mutex);
4605 		mutex_lock(&ctx->mutex);
4606 		mutex_lock(&event->child_mutex);
4607 
4608 		/*
4609 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
4610 		 * state, if child is still the first entry, it didn't get freed
4611 		 * and we can continue doing so.
4612 		 */
4613 		tmp = list_first_entry_or_null(&event->child_list,
4614 					       struct perf_event, child_list);
4615 		if (tmp == child) {
4616 			perf_remove_from_context(child, DETACH_GROUP);
4617 			list_move(&child->child_list, &free_list);
4618 			/*
4619 			 * This matches the refcount bump in inherit_event();
4620 			 * this can't be the last reference.
4621 			 */
4622 			put_event(event);
4623 		}
4624 
4625 		mutex_unlock(&event->child_mutex);
4626 		mutex_unlock(&ctx->mutex);
4627 		put_ctx(ctx);
4628 		goto again;
4629 	}
4630 	mutex_unlock(&event->child_mutex);
4631 
4632 	list_for_each_entry_safe(child, tmp, &free_list, child_list) {
4633 		list_del(&child->child_list);
4634 		free_event(child);
4635 	}
4636 
4637 no_ctx:
4638 	put_event(event); /* Must be the 'last' reference */
4639 	return 0;
4640 }
4641 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4642 
4643 /*
4644  * Called when the last reference to the file is gone.
4645  */
4646 static int perf_release(struct inode *inode, struct file *file)
4647 {
4648 	perf_event_release_kernel(file->private_data);
4649 	return 0;
4650 }
4651 
4652 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4653 {
4654 	struct perf_event *child;
4655 	u64 total = 0;
4656 
4657 	*enabled = 0;
4658 	*running = 0;
4659 
4660 	mutex_lock(&event->child_mutex);
4661 
4662 	(void)perf_event_read(event, false);
4663 	total += perf_event_count(event);
4664 
4665 	*enabled += event->total_time_enabled +
4666 			atomic64_read(&event->child_total_time_enabled);
4667 	*running += event->total_time_running +
4668 			atomic64_read(&event->child_total_time_running);
4669 
4670 	list_for_each_entry(child, &event->child_list, child_list) {
4671 		(void)perf_event_read(child, false);
4672 		total += perf_event_count(child);
4673 		*enabled += child->total_time_enabled;
4674 		*running += child->total_time_running;
4675 	}
4676 	mutex_unlock(&event->child_mutex);
4677 
4678 	return total;
4679 }
4680 
4681 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4682 {
4683 	struct perf_event_context *ctx;
4684 	u64 count;
4685 
4686 	ctx = perf_event_ctx_lock(event);
4687 	count = __perf_event_read_value(event, enabled, running);
4688 	perf_event_ctx_unlock(event, ctx);
4689 
4690 	return count;
4691 }
4692 EXPORT_SYMBOL_GPL(perf_event_read_value);
4693 
4694 static int __perf_read_group_add(struct perf_event *leader,
4695 					u64 read_format, u64 *values)
4696 {
4697 	struct perf_event_context *ctx = leader->ctx;
4698 	struct perf_event *sub;
4699 	unsigned long flags;
4700 	int n = 1; /* skip @nr */
4701 	int ret;
4702 
4703 	ret = perf_event_read(leader, true);
4704 	if (ret)
4705 		return ret;
4706 
4707 	raw_spin_lock_irqsave(&ctx->lock, flags);
4708 
4709 	/*
4710 	 * Since we co-schedule groups, {enabled,running} times of siblings
4711 	 * will be identical to those of the leader, so we only publish one
4712 	 * set.
4713 	 */
4714 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4715 		values[n++] += leader->total_time_enabled +
4716 			atomic64_read(&leader->child_total_time_enabled);
4717 	}
4718 
4719 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4720 		values[n++] += leader->total_time_running +
4721 			atomic64_read(&leader->child_total_time_running);
4722 	}
4723 
4724 	/*
4725 	 * Write {count,id} tuples for every sibling.
4726 	 */
4727 	values[n++] += perf_event_count(leader);
4728 	if (read_format & PERF_FORMAT_ID)
4729 		values[n++] = primary_event_id(leader);
4730 
4731 	for_each_sibling_event(sub, leader) {
4732 		values[n++] += perf_event_count(sub);
4733 		if (read_format & PERF_FORMAT_ID)
4734 			values[n++] = primary_event_id(sub);
4735 	}
4736 
4737 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
4738 	return 0;
4739 }
4740 
4741 static int perf_read_group(struct perf_event *event,
4742 				   u64 read_format, char __user *buf)
4743 {
4744 	struct perf_event *leader = event->group_leader, *child;
4745 	struct perf_event_context *ctx = leader->ctx;
4746 	int ret;
4747 	u64 *values;
4748 
4749 	lockdep_assert_held(&ctx->mutex);
4750 
4751 	values = kzalloc(event->read_size, GFP_KERNEL);
4752 	if (!values)
4753 		return -ENOMEM;
4754 
4755 	values[0] = 1 + leader->nr_siblings;
4756 
4757 	/*
4758 	 * By locking the child_mutex of the leader we effectively
4759 	 * lock the child list of all siblings.. XXX explain how.
4760 	 */
4761 	mutex_lock(&leader->child_mutex);
4762 
4763 	ret = __perf_read_group_add(leader, read_format, values);
4764 	if (ret)
4765 		goto unlock;
4766 
4767 	list_for_each_entry(child, &leader->child_list, child_list) {
4768 		ret = __perf_read_group_add(child, read_format, values);
4769 		if (ret)
4770 			goto unlock;
4771 	}
4772 
4773 	mutex_unlock(&leader->child_mutex);
4774 
4775 	ret = event->read_size;
4776 	if (copy_to_user(buf, values, event->read_size))
4777 		ret = -EFAULT;
4778 	goto out;
4779 
4780 unlock:
4781 	mutex_unlock(&leader->child_mutex);
4782 out:
4783 	kfree(values);
4784 	return ret;
4785 }
4786 
4787 static int perf_read_one(struct perf_event *event,
4788 				 u64 read_format, char __user *buf)
4789 {
4790 	u64 enabled, running;
4791 	u64 values[4];
4792 	int n = 0;
4793 
4794 	values[n++] = __perf_event_read_value(event, &enabled, &running);
4795 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4796 		values[n++] = enabled;
4797 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4798 		values[n++] = running;
4799 	if (read_format & PERF_FORMAT_ID)
4800 		values[n++] = primary_event_id(event);
4801 
4802 	if (copy_to_user(buf, values, n * sizeof(u64)))
4803 		return -EFAULT;
4804 
4805 	return n * sizeof(u64);
4806 }
4807 
4808 static bool is_event_hup(struct perf_event *event)
4809 {
4810 	bool no_children;
4811 
4812 	if (event->state > PERF_EVENT_STATE_EXIT)
4813 		return false;
4814 
4815 	mutex_lock(&event->child_mutex);
4816 	no_children = list_empty(&event->child_list);
4817 	mutex_unlock(&event->child_mutex);
4818 	return no_children;
4819 }
4820 
4821 /*
4822  * Read the performance event - simple non blocking version for now
4823  */
4824 static ssize_t
4825 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4826 {
4827 	u64 read_format = event->attr.read_format;
4828 	int ret;
4829 
4830 	/*
4831 	 * Return end-of-file for a read on an event that is in
4832 	 * error state (i.e. because it was pinned but it couldn't be
4833 	 * scheduled on to the CPU at some point).
4834 	 */
4835 	if (event->state == PERF_EVENT_STATE_ERROR)
4836 		return 0;
4837 
4838 	if (count < event->read_size)
4839 		return -ENOSPC;
4840 
4841 	WARN_ON_ONCE(event->ctx->parent_ctx);
4842 	if (read_format & PERF_FORMAT_GROUP)
4843 		ret = perf_read_group(event, read_format, buf);
4844 	else
4845 		ret = perf_read_one(event, read_format, buf);
4846 
4847 	return ret;
4848 }
4849 
4850 static ssize_t
4851 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4852 {
4853 	struct perf_event *event = file->private_data;
4854 	struct perf_event_context *ctx;
4855 	int ret;
4856 
4857 	ctx = perf_event_ctx_lock(event);
4858 	ret = __perf_read(event, buf, count);
4859 	perf_event_ctx_unlock(event, ctx);
4860 
4861 	return ret;
4862 }
4863 
4864 static __poll_t perf_poll(struct file *file, poll_table *wait)
4865 {
4866 	struct perf_event *event = file->private_data;
4867 	struct ring_buffer *rb;
4868 	__poll_t events = EPOLLHUP;
4869 
4870 	poll_wait(file, &event->waitq, wait);
4871 
4872 	if (is_event_hup(event))
4873 		return events;
4874 
4875 	/*
4876 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
4877 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4878 	 */
4879 	mutex_lock(&event->mmap_mutex);
4880 	rb = event->rb;
4881 	if (rb)
4882 		events = atomic_xchg(&rb->poll, 0);
4883 	mutex_unlock(&event->mmap_mutex);
4884 	return events;
4885 }
4886 
4887 static void _perf_event_reset(struct perf_event *event)
4888 {
4889 	(void)perf_event_read(event, false);
4890 	local64_set(&event->count, 0);
4891 	perf_event_update_userpage(event);
4892 }
4893 
4894 /*
4895  * Holding the top-level event's child_mutex means that any
4896  * descendant process that has inherited this event will block
4897  * in perf_event_exit_event() if it goes to exit, thus satisfying the
4898  * task existence requirements of perf_event_enable/disable.
4899  */
4900 static void perf_event_for_each_child(struct perf_event *event,
4901 					void (*func)(struct perf_event *))
4902 {
4903 	struct perf_event *child;
4904 
4905 	WARN_ON_ONCE(event->ctx->parent_ctx);
4906 
4907 	mutex_lock(&event->child_mutex);
4908 	func(event);
4909 	list_for_each_entry(child, &event->child_list, child_list)
4910 		func(child);
4911 	mutex_unlock(&event->child_mutex);
4912 }
4913 
4914 static void perf_event_for_each(struct perf_event *event,
4915 				  void (*func)(struct perf_event *))
4916 {
4917 	struct perf_event_context *ctx = event->ctx;
4918 	struct perf_event *sibling;
4919 
4920 	lockdep_assert_held(&ctx->mutex);
4921 
4922 	event = event->group_leader;
4923 
4924 	perf_event_for_each_child(event, func);
4925 	for_each_sibling_event(sibling, event)
4926 		perf_event_for_each_child(sibling, func);
4927 }
4928 
4929 static void __perf_event_period(struct perf_event *event,
4930 				struct perf_cpu_context *cpuctx,
4931 				struct perf_event_context *ctx,
4932 				void *info)
4933 {
4934 	u64 value = *((u64 *)info);
4935 	bool active;
4936 
4937 	if (event->attr.freq) {
4938 		event->attr.sample_freq = value;
4939 	} else {
4940 		event->attr.sample_period = value;
4941 		event->hw.sample_period = value;
4942 	}
4943 
4944 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
4945 	if (active) {
4946 		perf_pmu_disable(ctx->pmu);
4947 		/*
4948 		 * We could be throttled; unthrottle now to avoid the tick
4949 		 * trying to unthrottle while we already re-started the event.
4950 		 */
4951 		if (event->hw.interrupts == MAX_INTERRUPTS) {
4952 			event->hw.interrupts = 0;
4953 			perf_log_throttle(event, 1);
4954 		}
4955 		event->pmu->stop(event, PERF_EF_UPDATE);
4956 	}
4957 
4958 	local64_set(&event->hw.period_left, 0);
4959 
4960 	if (active) {
4961 		event->pmu->start(event, PERF_EF_RELOAD);
4962 		perf_pmu_enable(ctx->pmu);
4963 	}
4964 }
4965 
4966 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4967 {
4968 	u64 value;
4969 
4970 	if (!is_sampling_event(event))
4971 		return -EINVAL;
4972 
4973 	if (copy_from_user(&value, arg, sizeof(value)))
4974 		return -EFAULT;
4975 
4976 	if (!value)
4977 		return -EINVAL;
4978 
4979 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4980 		return -EINVAL;
4981 
4982 	event_function_call(event, __perf_event_period, &value);
4983 
4984 	return 0;
4985 }
4986 
4987 static const struct file_operations perf_fops;
4988 
4989 static inline int perf_fget_light(int fd, struct fd *p)
4990 {
4991 	struct fd f = fdget(fd);
4992 	if (!f.file)
4993 		return -EBADF;
4994 
4995 	if (f.file->f_op != &perf_fops) {
4996 		fdput(f);
4997 		return -EBADF;
4998 	}
4999 	*p = f;
5000 	return 0;
5001 }
5002 
5003 static int perf_event_set_output(struct perf_event *event,
5004 				 struct perf_event *output_event);
5005 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5006 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
5007 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5008 			  struct perf_event_attr *attr);
5009 
5010 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5011 {
5012 	void (*func)(struct perf_event *);
5013 	u32 flags = arg;
5014 
5015 	switch (cmd) {
5016 	case PERF_EVENT_IOC_ENABLE:
5017 		func = _perf_event_enable;
5018 		break;
5019 	case PERF_EVENT_IOC_DISABLE:
5020 		func = _perf_event_disable;
5021 		break;
5022 	case PERF_EVENT_IOC_RESET:
5023 		func = _perf_event_reset;
5024 		break;
5025 
5026 	case PERF_EVENT_IOC_REFRESH:
5027 		return _perf_event_refresh(event, arg);
5028 
5029 	case PERF_EVENT_IOC_PERIOD:
5030 		return perf_event_period(event, (u64 __user *)arg);
5031 
5032 	case PERF_EVENT_IOC_ID:
5033 	{
5034 		u64 id = primary_event_id(event);
5035 
5036 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5037 			return -EFAULT;
5038 		return 0;
5039 	}
5040 
5041 	case PERF_EVENT_IOC_SET_OUTPUT:
5042 	{
5043 		int ret;
5044 		if (arg != -1) {
5045 			struct perf_event *output_event;
5046 			struct fd output;
5047 			ret = perf_fget_light(arg, &output);
5048 			if (ret)
5049 				return ret;
5050 			output_event = output.file->private_data;
5051 			ret = perf_event_set_output(event, output_event);
5052 			fdput(output);
5053 		} else {
5054 			ret = perf_event_set_output(event, NULL);
5055 		}
5056 		return ret;
5057 	}
5058 
5059 	case PERF_EVENT_IOC_SET_FILTER:
5060 		return perf_event_set_filter(event, (void __user *)arg);
5061 
5062 	case PERF_EVENT_IOC_SET_BPF:
5063 		return perf_event_set_bpf_prog(event, arg);
5064 
5065 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5066 		struct ring_buffer *rb;
5067 
5068 		rcu_read_lock();
5069 		rb = rcu_dereference(event->rb);
5070 		if (!rb || !rb->nr_pages) {
5071 			rcu_read_unlock();
5072 			return -EINVAL;
5073 		}
5074 		rb_toggle_paused(rb, !!arg);
5075 		rcu_read_unlock();
5076 		return 0;
5077 	}
5078 
5079 	case PERF_EVENT_IOC_QUERY_BPF:
5080 		return perf_event_query_prog_array(event, (void __user *)arg);
5081 
5082 	case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5083 		struct perf_event_attr new_attr;
5084 		int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5085 					 &new_attr);
5086 
5087 		if (err)
5088 			return err;
5089 
5090 		return perf_event_modify_attr(event,  &new_attr);
5091 	}
5092 	default:
5093 		return -ENOTTY;
5094 	}
5095 
5096 	if (flags & PERF_IOC_FLAG_GROUP)
5097 		perf_event_for_each(event, func);
5098 	else
5099 		perf_event_for_each_child(event, func);
5100 
5101 	return 0;
5102 }
5103 
5104 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5105 {
5106 	struct perf_event *event = file->private_data;
5107 	struct perf_event_context *ctx;
5108 	long ret;
5109 
5110 	ctx = perf_event_ctx_lock(event);
5111 	ret = _perf_ioctl(event, cmd, arg);
5112 	perf_event_ctx_unlock(event, ctx);
5113 
5114 	return ret;
5115 }
5116 
5117 #ifdef CONFIG_COMPAT
5118 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5119 				unsigned long arg)
5120 {
5121 	switch (_IOC_NR(cmd)) {
5122 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5123 	case _IOC_NR(PERF_EVENT_IOC_ID):
5124 	case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5125 	case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5126 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5127 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5128 			cmd &= ~IOCSIZE_MASK;
5129 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5130 		}
5131 		break;
5132 	}
5133 	return perf_ioctl(file, cmd, arg);
5134 }
5135 #else
5136 # define perf_compat_ioctl NULL
5137 #endif
5138 
5139 int perf_event_task_enable(void)
5140 {
5141 	struct perf_event_context *ctx;
5142 	struct perf_event *event;
5143 
5144 	mutex_lock(&current->perf_event_mutex);
5145 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5146 		ctx = perf_event_ctx_lock(event);
5147 		perf_event_for_each_child(event, _perf_event_enable);
5148 		perf_event_ctx_unlock(event, ctx);
5149 	}
5150 	mutex_unlock(&current->perf_event_mutex);
5151 
5152 	return 0;
5153 }
5154 
5155 int perf_event_task_disable(void)
5156 {
5157 	struct perf_event_context *ctx;
5158 	struct perf_event *event;
5159 
5160 	mutex_lock(&current->perf_event_mutex);
5161 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5162 		ctx = perf_event_ctx_lock(event);
5163 		perf_event_for_each_child(event, _perf_event_disable);
5164 		perf_event_ctx_unlock(event, ctx);
5165 	}
5166 	mutex_unlock(&current->perf_event_mutex);
5167 
5168 	return 0;
5169 }
5170 
5171 static int perf_event_index(struct perf_event *event)
5172 {
5173 	if (event->hw.state & PERF_HES_STOPPED)
5174 		return 0;
5175 
5176 	if (event->state != PERF_EVENT_STATE_ACTIVE)
5177 		return 0;
5178 
5179 	return event->pmu->event_idx(event);
5180 }
5181 
5182 static void calc_timer_values(struct perf_event *event,
5183 				u64 *now,
5184 				u64 *enabled,
5185 				u64 *running)
5186 {
5187 	u64 ctx_time;
5188 
5189 	*now = perf_clock();
5190 	ctx_time = event->shadow_ctx_time + *now;
5191 	__perf_update_times(event, ctx_time, enabled, running);
5192 }
5193 
5194 static void perf_event_init_userpage(struct perf_event *event)
5195 {
5196 	struct perf_event_mmap_page *userpg;
5197 	struct ring_buffer *rb;
5198 
5199 	rcu_read_lock();
5200 	rb = rcu_dereference(event->rb);
5201 	if (!rb)
5202 		goto unlock;
5203 
5204 	userpg = rb->user_page;
5205 
5206 	/* Allow new userspace to detect that bit 0 is deprecated */
5207 	userpg->cap_bit0_is_deprecated = 1;
5208 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5209 	userpg->data_offset = PAGE_SIZE;
5210 	userpg->data_size = perf_data_size(rb);
5211 
5212 unlock:
5213 	rcu_read_unlock();
5214 }
5215 
5216 void __weak arch_perf_update_userpage(
5217 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5218 {
5219 }
5220 
5221 /*
5222  * Callers need to ensure there can be no nesting of this function, otherwise
5223  * the seqlock logic goes bad. We can not serialize this because the arch
5224  * code calls this from NMI context.
5225  */
5226 void perf_event_update_userpage(struct perf_event *event)
5227 {
5228 	struct perf_event_mmap_page *userpg;
5229 	struct ring_buffer *rb;
5230 	u64 enabled, running, now;
5231 
5232 	rcu_read_lock();
5233 	rb = rcu_dereference(event->rb);
5234 	if (!rb)
5235 		goto unlock;
5236 
5237 	/*
5238 	 * compute total_time_enabled, total_time_running
5239 	 * based on snapshot values taken when the event
5240 	 * was last scheduled in.
5241 	 *
5242 	 * we cannot simply called update_context_time()
5243 	 * because of locking issue as we can be called in
5244 	 * NMI context
5245 	 */
5246 	calc_timer_values(event, &now, &enabled, &running);
5247 
5248 	userpg = rb->user_page;
5249 	/*
5250 	 * Disable preemption to guarantee consistent time stamps are stored to
5251 	 * the user page.
5252 	 */
5253 	preempt_disable();
5254 	++userpg->lock;
5255 	barrier();
5256 	userpg->index = perf_event_index(event);
5257 	userpg->offset = perf_event_count(event);
5258 	if (userpg->index)
5259 		userpg->offset -= local64_read(&event->hw.prev_count);
5260 
5261 	userpg->time_enabled = enabled +
5262 			atomic64_read(&event->child_total_time_enabled);
5263 
5264 	userpg->time_running = running +
5265 			atomic64_read(&event->child_total_time_running);
5266 
5267 	arch_perf_update_userpage(event, userpg, now);
5268 
5269 	barrier();
5270 	++userpg->lock;
5271 	preempt_enable();
5272 unlock:
5273 	rcu_read_unlock();
5274 }
5275 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5276 
5277 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
5278 {
5279 	struct perf_event *event = vmf->vma->vm_file->private_data;
5280 	struct ring_buffer *rb;
5281 	vm_fault_t ret = VM_FAULT_SIGBUS;
5282 
5283 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
5284 		if (vmf->pgoff == 0)
5285 			ret = 0;
5286 		return ret;
5287 	}
5288 
5289 	rcu_read_lock();
5290 	rb = rcu_dereference(event->rb);
5291 	if (!rb)
5292 		goto unlock;
5293 
5294 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5295 		goto unlock;
5296 
5297 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5298 	if (!vmf->page)
5299 		goto unlock;
5300 
5301 	get_page(vmf->page);
5302 	vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5303 	vmf->page->index   = vmf->pgoff;
5304 
5305 	ret = 0;
5306 unlock:
5307 	rcu_read_unlock();
5308 
5309 	return ret;
5310 }
5311 
5312 static void ring_buffer_attach(struct perf_event *event,
5313 			       struct ring_buffer *rb)
5314 {
5315 	struct ring_buffer *old_rb = NULL;
5316 	unsigned long flags;
5317 
5318 	if (event->rb) {
5319 		/*
5320 		 * Should be impossible, we set this when removing
5321 		 * event->rb_entry and wait/clear when adding event->rb_entry.
5322 		 */
5323 		WARN_ON_ONCE(event->rcu_pending);
5324 
5325 		old_rb = event->rb;
5326 		spin_lock_irqsave(&old_rb->event_lock, flags);
5327 		list_del_rcu(&event->rb_entry);
5328 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
5329 
5330 		event->rcu_batches = get_state_synchronize_rcu();
5331 		event->rcu_pending = 1;
5332 	}
5333 
5334 	if (rb) {
5335 		if (event->rcu_pending) {
5336 			cond_synchronize_rcu(event->rcu_batches);
5337 			event->rcu_pending = 0;
5338 		}
5339 
5340 		spin_lock_irqsave(&rb->event_lock, flags);
5341 		list_add_rcu(&event->rb_entry, &rb->event_list);
5342 		spin_unlock_irqrestore(&rb->event_lock, flags);
5343 	}
5344 
5345 	/*
5346 	 * Avoid racing with perf_mmap_close(AUX): stop the event
5347 	 * before swizzling the event::rb pointer; if it's getting
5348 	 * unmapped, its aux_mmap_count will be 0 and it won't
5349 	 * restart. See the comment in __perf_pmu_output_stop().
5350 	 *
5351 	 * Data will inevitably be lost when set_output is done in
5352 	 * mid-air, but then again, whoever does it like this is
5353 	 * not in for the data anyway.
5354 	 */
5355 	if (has_aux(event))
5356 		perf_event_stop(event, 0);
5357 
5358 	rcu_assign_pointer(event->rb, rb);
5359 
5360 	if (old_rb) {
5361 		ring_buffer_put(old_rb);
5362 		/*
5363 		 * Since we detached before setting the new rb, so that we
5364 		 * could attach the new rb, we could have missed a wakeup.
5365 		 * Provide it now.
5366 		 */
5367 		wake_up_all(&event->waitq);
5368 	}
5369 }
5370 
5371 static void ring_buffer_wakeup(struct perf_event *event)
5372 {
5373 	struct ring_buffer *rb;
5374 
5375 	rcu_read_lock();
5376 	rb = rcu_dereference(event->rb);
5377 	if (rb) {
5378 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5379 			wake_up_all(&event->waitq);
5380 	}
5381 	rcu_read_unlock();
5382 }
5383 
5384 struct ring_buffer *ring_buffer_get(struct perf_event *event)
5385 {
5386 	struct ring_buffer *rb;
5387 
5388 	rcu_read_lock();
5389 	rb = rcu_dereference(event->rb);
5390 	if (rb) {
5391 		if (!atomic_inc_not_zero(&rb->refcount))
5392 			rb = NULL;
5393 	}
5394 	rcu_read_unlock();
5395 
5396 	return rb;
5397 }
5398 
5399 void ring_buffer_put(struct ring_buffer *rb)
5400 {
5401 	if (!atomic_dec_and_test(&rb->refcount))
5402 		return;
5403 
5404 	WARN_ON_ONCE(!list_empty(&rb->event_list));
5405 
5406 	call_rcu(&rb->rcu_head, rb_free_rcu);
5407 }
5408 
5409 static void perf_mmap_open(struct vm_area_struct *vma)
5410 {
5411 	struct perf_event *event = vma->vm_file->private_data;
5412 
5413 	atomic_inc(&event->mmap_count);
5414 	atomic_inc(&event->rb->mmap_count);
5415 
5416 	if (vma->vm_pgoff)
5417 		atomic_inc(&event->rb->aux_mmap_count);
5418 
5419 	if (event->pmu->event_mapped)
5420 		event->pmu->event_mapped(event, vma->vm_mm);
5421 }
5422 
5423 static void perf_pmu_output_stop(struct perf_event *event);
5424 
5425 /*
5426  * A buffer can be mmap()ed multiple times; either directly through the same
5427  * event, or through other events by use of perf_event_set_output().
5428  *
5429  * In order to undo the VM accounting done by perf_mmap() we need to destroy
5430  * the buffer here, where we still have a VM context. This means we need
5431  * to detach all events redirecting to us.
5432  */
5433 static void perf_mmap_close(struct vm_area_struct *vma)
5434 {
5435 	struct perf_event *event = vma->vm_file->private_data;
5436 
5437 	struct ring_buffer *rb = ring_buffer_get(event);
5438 	struct user_struct *mmap_user = rb->mmap_user;
5439 	int mmap_locked = rb->mmap_locked;
5440 	unsigned long size = perf_data_size(rb);
5441 
5442 	if (event->pmu->event_unmapped)
5443 		event->pmu->event_unmapped(event, vma->vm_mm);
5444 
5445 	/*
5446 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
5447 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
5448 	 * serialize with perf_mmap here.
5449 	 */
5450 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5451 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5452 		/*
5453 		 * Stop all AUX events that are writing to this buffer,
5454 		 * so that we can free its AUX pages and corresponding PMU
5455 		 * data. Note that after rb::aux_mmap_count dropped to zero,
5456 		 * they won't start any more (see perf_aux_output_begin()).
5457 		 */
5458 		perf_pmu_output_stop(event);
5459 
5460 		/* now it's safe to free the pages */
5461 		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5462 		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5463 
5464 		/* this has to be the last one */
5465 		rb_free_aux(rb);
5466 		WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5467 
5468 		mutex_unlock(&event->mmap_mutex);
5469 	}
5470 
5471 	atomic_dec(&rb->mmap_count);
5472 
5473 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5474 		goto out_put;
5475 
5476 	ring_buffer_attach(event, NULL);
5477 	mutex_unlock(&event->mmap_mutex);
5478 
5479 	/* If there's still other mmap()s of this buffer, we're done. */
5480 	if (atomic_read(&rb->mmap_count))
5481 		goto out_put;
5482 
5483 	/*
5484 	 * No other mmap()s, detach from all other events that might redirect
5485 	 * into the now unreachable buffer. Somewhat complicated by the
5486 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5487 	 */
5488 again:
5489 	rcu_read_lock();
5490 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5491 		if (!atomic_long_inc_not_zero(&event->refcount)) {
5492 			/*
5493 			 * This event is en-route to free_event() which will
5494 			 * detach it and remove it from the list.
5495 			 */
5496 			continue;
5497 		}
5498 		rcu_read_unlock();
5499 
5500 		mutex_lock(&event->mmap_mutex);
5501 		/*
5502 		 * Check we didn't race with perf_event_set_output() which can
5503 		 * swizzle the rb from under us while we were waiting to
5504 		 * acquire mmap_mutex.
5505 		 *
5506 		 * If we find a different rb; ignore this event, a next
5507 		 * iteration will no longer find it on the list. We have to
5508 		 * still restart the iteration to make sure we're not now
5509 		 * iterating the wrong list.
5510 		 */
5511 		if (event->rb == rb)
5512 			ring_buffer_attach(event, NULL);
5513 
5514 		mutex_unlock(&event->mmap_mutex);
5515 		put_event(event);
5516 
5517 		/*
5518 		 * Restart the iteration; either we're on the wrong list or
5519 		 * destroyed its integrity by doing a deletion.
5520 		 */
5521 		goto again;
5522 	}
5523 	rcu_read_unlock();
5524 
5525 	/*
5526 	 * It could be there's still a few 0-ref events on the list; they'll
5527 	 * get cleaned up by free_event() -- they'll also still have their
5528 	 * ref on the rb and will free it whenever they are done with it.
5529 	 *
5530 	 * Aside from that, this buffer is 'fully' detached and unmapped,
5531 	 * undo the VM accounting.
5532 	 */
5533 
5534 	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5535 	vma->vm_mm->pinned_vm -= mmap_locked;
5536 	free_uid(mmap_user);
5537 
5538 out_put:
5539 	ring_buffer_put(rb); /* could be last */
5540 }
5541 
5542 static const struct vm_operations_struct perf_mmap_vmops = {
5543 	.open		= perf_mmap_open,
5544 	.close		= perf_mmap_close, /* non mergeable */
5545 	.fault		= perf_mmap_fault,
5546 	.page_mkwrite	= perf_mmap_fault,
5547 };
5548 
5549 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5550 {
5551 	struct perf_event *event = file->private_data;
5552 	unsigned long user_locked, user_lock_limit;
5553 	struct user_struct *user = current_user();
5554 	unsigned long locked, lock_limit;
5555 	struct ring_buffer *rb = NULL;
5556 	unsigned long vma_size;
5557 	unsigned long nr_pages;
5558 	long user_extra = 0, extra = 0;
5559 	int ret = 0, flags = 0;
5560 
5561 	/*
5562 	 * Don't allow mmap() of inherited per-task counters. This would
5563 	 * create a performance issue due to all children writing to the
5564 	 * same rb.
5565 	 */
5566 	if (event->cpu == -1 && event->attr.inherit)
5567 		return -EINVAL;
5568 
5569 	if (!(vma->vm_flags & VM_SHARED))
5570 		return -EINVAL;
5571 
5572 	vma_size = vma->vm_end - vma->vm_start;
5573 
5574 	if (vma->vm_pgoff == 0) {
5575 		nr_pages = (vma_size / PAGE_SIZE) - 1;
5576 	} else {
5577 		/*
5578 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5579 		 * mapped, all subsequent mappings should have the same size
5580 		 * and offset. Must be above the normal perf buffer.
5581 		 */
5582 		u64 aux_offset, aux_size;
5583 
5584 		if (!event->rb)
5585 			return -EINVAL;
5586 
5587 		nr_pages = vma_size / PAGE_SIZE;
5588 
5589 		mutex_lock(&event->mmap_mutex);
5590 		ret = -EINVAL;
5591 
5592 		rb = event->rb;
5593 		if (!rb)
5594 			goto aux_unlock;
5595 
5596 		aux_offset = READ_ONCE(rb->user_page->aux_offset);
5597 		aux_size = READ_ONCE(rb->user_page->aux_size);
5598 
5599 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5600 			goto aux_unlock;
5601 
5602 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5603 			goto aux_unlock;
5604 
5605 		/* already mapped with a different offset */
5606 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5607 			goto aux_unlock;
5608 
5609 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5610 			goto aux_unlock;
5611 
5612 		/* already mapped with a different size */
5613 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5614 			goto aux_unlock;
5615 
5616 		if (!is_power_of_2(nr_pages))
5617 			goto aux_unlock;
5618 
5619 		if (!atomic_inc_not_zero(&rb->mmap_count))
5620 			goto aux_unlock;
5621 
5622 		if (rb_has_aux(rb)) {
5623 			atomic_inc(&rb->aux_mmap_count);
5624 			ret = 0;
5625 			goto unlock;
5626 		}
5627 
5628 		atomic_set(&rb->aux_mmap_count, 1);
5629 		user_extra = nr_pages;
5630 
5631 		goto accounting;
5632 	}
5633 
5634 	/*
5635 	 * If we have rb pages ensure they're a power-of-two number, so we
5636 	 * can do bitmasks instead of modulo.
5637 	 */
5638 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
5639 		return -EINVAL;
5640 
5641 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
5642 		return -EINVAL;
5643 
5644 	WARN_ON_ONCE(event->ctx->parent_ctx);
5645 again:
5646 	mutex_lock(&event->mmap_mutex);
5647 	if (event->rb) {
5648 		if (event->rb->nr_pages != nr_pages) {
5649 			ret = -EINVAL;
5650 			goto unlock;
5651 		}
5652 
5653 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5654 			/*
5655 			 * Raced against perf_mmap_close() through
5656 			 * perf_event_set_output(). Try again, hope for better
5657 			 * luck.
5658 			 */
5659 			mutex_unlock(&event->mmap_mutex);
5660 			goto again;
5661 		}
5662 
5663 		goto unlock;
5664 	}
5665 
5666 	user_extra = nr_pages + 1;
5667 
5668 accounting:
5669 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5670 
5671 	/*
5672 	 * Increase the limit linearly with more CPUs:
5673 	 */
5674 	user_lock_limit *= num_online_cpus();
5675 
5676 	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5677 
5678 	if (user_locked > user_lock_limit)
5679 		extra = user_locked - user_lock_limit;
5680 
5681 	lock_limit = rlimit(RLIMIT_MEMLOCK);
5682 	lock_limit >>= PAGE_SHIFT;
5683 	locked = vma->vm_mm->pinned_vm + extra;
5684 
5685 	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5686 		!capable(CAP_IPC_LOCK)) {
5687 		ret = -EPERM;
5688 		goto unlock;
5689 	}
5690 
5691 	WARN_ON(!rb && event->rb);
5692 
5693 	if (vma->vm_flags & VM_WRITE)
5694 		flags |= RING_BUFFER_WRITABLE;
5695 
5696 	if (!rb) {
5697 		rb = rb_alloc(nr_pages,
5698 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
5699 			      event->cpu, flags);
5700 
5701 		if (!rb) {
5702 			ret = -ENOMEM;
5703 			goto unlock;
5704 		}
5705 
5706 		atomic_set(&rb->mmap_count, 1);
5707 		rb->mmap_user = get_current_user();
5708 		rb->mmap_locked = extra;
5709 
5710 		ring_buffer_attach(event, rb);
5711 
5712 		perf_event_init_userpage(event);
5713 		perf_event_update_userpage(event);
5714 	} else {
5715 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5716 				   event->attr.aux_watermark, flags);
5717 		if (!ret)
5718 			rb->aux_mmap_locked = extra;
5719 	}
5720 
5721 unlock:
5722 	if (!ret) {
5723 		atomic_long_add(user_extra, &user->locked_vm);
5724 		vma->vm_mm->pinned_vm += extra;
5725 
5726 		atomic_inc(&event->mmap_count);
5727 	} else if (rb) {
5728 		atomic_dec(&rb->mmap_count);
5729 	}
5730 aux_unlock:
5731 	mutex_unlock(&event->mmap_mutex);
5732 
5733 	/*
5734 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
5735 	 * vma.
5736 	 */
5737 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5738 	vma->vm_ops = &perf_mmap_vmops;
5739 
5740 	if (event->pmu->event_mapped)
5741 		event->pmu->event_mapped(event, vma->vm_mm);
5742 
5743 	return ret;
5744 }
5745 
5746 static int perf_fasync(int fd, struct file *filp, int on)
5747 {
5748 	struct inode *inode = file_inode(filp);
5749 	struct perf_event *event = filp->private_data;
5750 	int retval;
5751 
5752 	inode_lock(inode);
5753 	retval = fasync_helper(fd, filp, on, &event->fasync);
5754 	inode_unlock(inode);
5755 
5756 	if (retval < 0)
5757 		return retval;
5758 
5759 	return 0;
5760 }
5761 
5762 static const struct file_operations perf_fops = {
5763 	.llseek			= no_llseek,
5764 	.release		= perf_release,
5765 	.read			= perf_read,
5766 	.poll			= perf_poll,
5767 	.unlocked_ioctl		= perf_ioctl,
5768 	.compat_ioctl		= perf_compat_ioctl,
5769 	.mmap			= perf_mmap,
5770 	.fasync			= perf_fasync,
5771 };
5772 
5773 /*
5774  * Perf event wakeup
5775  *
5776  * If there's data, ensure we set the poll() state and publish everything
5777  * to user-space before waking everybody up.
5778  */
5779 
5780 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5781 {
5782 	/* only the parent has fasync state */
5783 	if (event->parent)
5784 		event = event->parent;
5785 	return &event->fasync;
5786 }
5787 
5788 void perf_event_wakeup(struct perf_event *event)
5789 {
5790 	ring_buffer_wakeup(event);
5791 
5792 	if (event->pending_kill) {
5793 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5794 		event->pending_kill = 0;
5795 	}
5796 }
5797 
5798 static void perf_pending_event(struct irq_work *entry)
5799 {
5800 	struct perf_event *event = container_of(entry,
5801 			struct perf_event, pending);
5802 	int rctx;
5803 
5804 	rctx = perf_swevent_get_recursion_context();
5805 	/*
5806 	 * If we 'fail' here, that's OK, it means recursion is already disabled
5807 	 * and we won't recurse 'further'.
5808 	 */
5809 
5810 	if (event->pending_disable) {
5811 		event->pending_disable = 0;
5812 		perf_event_disable_local(event);
5813 	}
5814 
5815 	if (event->pending_wakeup) {
5816 		event->pending_wakeup = 0;
5817 		perf_event_wakeup(event);
5818 	}
5819 
5820 	if (rctx >= 0)
5821 		perf_swevent_put_recursion_context(rctx);
5822 }
5823 
5824 /*
5825  * We assume there is only KVM supporting the callbacks.
5826  * Later on, we might change it to a list if there is
5827  * another virtualization implementation supporting the callbacks.
5828  */
5829 struct perf_guest_info_callbacks *perf_guest_cbs;
5830 
5831 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5832 {
5833 	perf_guest_cbs = cbs;
5834 	return 0;
5835 }
5836 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5837 
5838 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5839 {
5840 	perf_guest_cbs = NULL;
5841 	return 0;
5842 }
5843 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5844 
5845 static void
5846 perf_output_sample_regs(struct perf_output_handle *handle,
5847 			struct pt_regs *regs, u64 mask)
5848 {
5849 	int bit;
5850 	DECLARE_BITMAP(_mask, 64);
5851 
5852 	bitmap_from_u64(_mask, mask);
5853 	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5854 		u64 val;
5855 
5856 		val = perf_reg_value(regs, bit);
5857 		perf_output_put(handle, val);
5858 	}
5859 }
5860 
5861 static void perf_sample_regs_user(struct perf_regs *regs_user,
5862 				  struct pt_regs *regs,
5863 				  struct pt_regs *regs_user_copy)
5864 {
5865 	if (user_mode(regs)) {
5866 		regs_user->abi = perf_reg_abi(current);
5867 		regs_user->regs = regs;
5868 	} else if (current->mm) {
5869 		perf_get_regs_user(regs_user, regs, regs_user_copy);
5870 	} else {
5871 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5872 		regs_user->regs = NULL;
5873 	}
5874 }
5875 
5876 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5877 				  struct pt_regs *regs)
5878 {
5879 	regs_intr->regs = regs;
5880 	regs_intr->abi  = perf_reg_abi(current);
5881 }
5882 
5883 
5884 /*
5885  * Get remaining task size from user stack pointer.
5886  *
5887  * It'd be better to take stack vma map and limit this more
5888  * precisly, but there's no way to get it safely under interrupt,
5889  * so using TASK_SIZE as limit.
5890  */
5891 static u64 perf_ustack_task_size(struct pt_regs *regs)
5892 {
5893 	unsigned long addr = perf_user_stack_pointer(regs);
5894 
5895 	if (!addr || addr >= TASK_SIZE)
5896 		return 0;
5897 
5898 	return TASK_SIZE - addr;
5899 }
5900 
5901 static u16
5902 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5903 			struct pt_regs *regs)
5904 {
5905 	u64 task_size;
5906 
5907 	/* No regs, no stack pointer, no dump. */
5908 	if (!regs)
5909 		return 0;
5910 
5911 	/*
5912 	 * Check if we fit in with the requested stack size into the:
5913 	 * - TASK_SIZE
5914 	 *   If we don't, we limit the size to the TASK_SIZE.
5915 	 *
5916 	 * - remaining sample size
5917 	 *   If we don't, we customize the stack size to
5918 	 *   fit in to the remaining sample size.
5919 	 */
5920 
5921 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5922 	stack_size = min(stack_size, (u16) task_size);
5923 
5924 	/* Current header size plus static size and dynamic size. */
5925 	header_size += 2 * sizeof(u64);
5926 
5927 	/* Do we fit in with the current stack dump size? */
5928 	if ((u16) (header_size + stack_size) < header_size) {
5929 		/*
5930 		 * If we overflow the maximum size for the sample,
5931 		 * we customize the stack dump size to fit in.
5932 		 */
5933 		stack_size = USHRT_MAX - header_size - sizeof(u64);
5934 		stack_size = round_up(stack_size, sizeof(u64));
5935 	}
5936 
5937 	return stack_size;
5938 }
5939 
5940 static void
5941 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5942 			  struct pt_regs *regs)
5943 {
5944 	/* Case of a kernel thread, nothing to dump */
5945 	if (!regs) {
5946 		u64 size = 0;
5947 		perf_output_put(handle, size);
5948 	} else {
5949 		unsigned long sp;
5950 		unsigned int rem;
5951 		u64 dyn_size;
5952 		mm_segment_t fs;
5953 
5954 		/*
5955 		 * We dump:
5956 		 * static size
5957 		 *   - the size requested by user or the best one we can fit
5958 		 *     in to the sample max size
5959 		 * data
5960 		 *   - user stack dump data
5961 		 * dynamic size
5962 		 *   - the actual dumped size
5963 		 */
5964 
5965 		/* Static size. */
5966 		perf_output_put(handle, dump_size);
5967 
5968 		/* Data. */
5969 		sp = perf_user_stack_pointer(regs);
5970 		fs = get_fs();
5971 		set_fs(USER_DS);
5972 		rem = __output_copy_user(handle, (void *) sp, dump_size);
5973 		set_fs(fs);
5974 		dyn_size = dump_size - rem;
5975 
5976 		perf_output_skip(handle, rem);
5977 
5978 		/* Dynamic size. */
5979 		perf_output_put(handle, dyn_size);
5980 	}
5981 }
5982 
5983 static void __perf_event_header__init_id(struct perf_event_header *header,
5984 					 struct perf_sample_data *data,
5985 					 struct perf_event *event)
5986 {
5987 	u64 sample_type = event->attr.sample_type;
5988 
5989 	data->type = sample_type;
5990 	header->size += event->id_header_size;
5991 
5992 	if (sample_type & PERF_SAMPLE_TID) {
5993 		/* namespace issues */
5994 		data->tid_entry.pid = perf_event_pid(event, current);
5995 		data->tid_entry.tid = perf_event_tid(event, current);
5996 	}
5997 
5998 	if (sample_type & PERF_SAMPLE_TIME)
5999 		data->time = perf_event_clock(event);
6000 
6001 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6002 		data->id = primary_event_id(event);
6003 
6004 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6005 		data->stream_id = event->id;
6006 
6007 	if (sample_type & PERF_SAMPLE_CPU) {
6008 		data->cpu_entry.cpu	 = raw_smp_processor_id();
6009 		data->cpu_entry.reserved = 0;
6010 	}
6011 }
6012 
6013 void perf_event_header__init_id(struct perf_event_header *header,
6014 				struct perf_sample_data *data,
6015 				struct perf_event *event)
6016 {
6017 	if (event->attr.sample_id_all)
6018 		__perf_event_header__init_id(header, data, event);
6019 }
6020 
6021 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6022 					   struct perf_sample_data *data)
6023 {
6024 	u64 sample_type = data->type;
6025 
6026 	if (sample_type & PERF_SAMPLE_TID)
6027 		perf_output_put(handle, data->tid_entry);
6028 
6029 	if (sample_type & PERF_SAMPLE_TIME)
6030 		perf_output_put(handle, data->time);
6031 
6032 	if (sample_type & PERF_SAMPLE_ID)
6033 		perf_output_put(handle, data->id);
6034 
6035 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6036 		perf_output_put(handle, data->stream_id);
6037 
6038 	if (sample_type & PERF_SAMPLE_CPU)
6039 		perf_output_put(handle, data->cpu_entry);
6040 
6041 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
6042 		perf_output_put(handle, data->id);
6043 }
6044 
6045 void perf_event__output_id_sample(struct perf_event *event,
6046 				  struct perf_output_handle *handle,
6047 				  struct perf_sample_data *sample)
6048 {
6049 	if (event->attr.sample_id_all)
6050 		__perf_event__output_id_sample(handle, sample);
6051 }
6052 
6053 static void perf_output_read_one(struct perf_output_handle *handle,
6054 				 struct perf_event *event,
6055 				 u64 enabled, u64 running)
6056 {
6057 	u64 read_format = event->attr.read_format;
6058 	u64 values[4];
6059 	int n = 0;
6060 
6061 	values[n++] = perf_event_count(event);
6062 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6063 		values[n++] = enabled +
6064 			atomic64_read(&event->child_total_time_enabled);
6065 	}
6066 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6067 		values[n++] = running +
6068 			atomic64_read(&event->child_total_time_running);
6069 	}
6070 	if (read_format & PERF_FORMAT_ID)
6071 		values[n++] = primary_event_id(event);
6072 
6073 	__output_copy(handle, values, n * sizeof(u64));
6074 }
6075 
6076 static void perf_output_read_group(struct perf_output_handle *handle,
6077 			    struct perf_event *event,
6078 			    u64 enabled, u64 running)
6079 {
6080 	struct perf_event *leader = event->group_leader, *sub;
6081 	u64 read_format = event->attr.read_format;
6082 	u64 values[5];
6083 	int n = 0;
6084 
6085 	values[n++] = 1 + leader->nr_siblings;
6086 
6087 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6088 		values[n++] = enabled;
6089 
6090 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6091 		values[n++] = running;
6092 
6093 	if ((leader != event) &&
6094 	    (leader->state == PERF_EVENT_STATE_ACTIVE))
6095 		leader->pmu->read(leader);
6096 
6097 	values[n++] = perf_event_count(leader);
6098 	if (read_format & PERF_FORMAT_ID)
6099 		values[n++] = primary_event_id(leader);
6100 
6101 	__output_copy(handle, values, n * sizeof(u64));
6102 
6103 	for_each_sibling_event(sub, leader) {
6104 		n = 0;
6105 
6106 		if ((sub != event) &&
6107 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
6108 			sub->pmu->read(sub);
6109 
6110 		values[n++] = perf_event_count(sub);
6111 		if (read_format & PERF_FORMAT_ID)
6112 			values[n++] = primary_event_id(sub);
6113 
6114 		__output_copy(handle, values, n * sizeof(u64));
6115 	}
6116 }
6117 
6118 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6119 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
6120 
6121 /*
6122  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6123  *
6124  * The problem is that its both hard and excessively expensive to iterate the
6125  * child list, not to mention that its impossible to IPI the children running
6126  * on another CPU, from interrupt/NMI context.
6127  */
6128 static void perf_output_read(struct perf_output_handle *handle,
6129 			     struct perf_event *event)
6130 {
6131 	u64 enabled = 0, running = 0, now;
6132 	u64 read_format = event->attr.read_format;
6133 
6134 	/*
6135 	 * compute total_time_enabled, total_time_running
6136 	 * based on snapshot values taken when the event
6137 	 * was last scheduled in.
6138 	 *
6139 	 * we cannot simply called update_context_time()
6140 	 * because of locking issue as we are called in
6141 	 * NMI context
6142 	 */
6143 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
6144 		calc_timer_values(event, &now, &enabled, &running);
6145 
6146 	if (event->attr.read_format & PERF_FORMAT_GROUP)
6147 		perf_output_read_group(handle, event, enabled, running);
6148 	else
6149 		perf_output_read_one(handle, event, enabled, running);
6150 }
6151 
6152 void perf_output_sample(struct perf_output_handle *handle,
6153 			struct perf_event_header *header,
6154 			struct perf_sample_data *data,
6155 			struct perf_event *event)
6156 {
6157 	u64 sample_type = data->type;
6158 
6159 	perf_output_put(handle, *header);
6160 
6161 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
6162 		perf_output_put(handle, data->id);
6163 
6164 	if (sample_type & PERF_SAMPLE_IP)
6165 		perf_output_put(handle, data->ip);
6166 
6167 	if (sample_type & PERF_SAMPLE_TID)
6168 		perf_output_put(handle, data->tid_entry);
6169 
6170 	if (sample_type & PERF_SAMPLE_TIME)
6171 		perf_output_put(handle, data->time);
6172 
6173 	if (sample_type & PERF_SAMPLE_ADDR)
6174 		perf_output_put(handle, data->addr);
6175 
6176 	if (sample_type & PERF_SAMPLE_ID)
6177 		perf_output_put(handle, data->id);
6178 
6179 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6180 		perf_output_put(handle, data->stream_id);
6181 
6182 	if (sample_type & PERF_SAMPLE_CPU)
6183 		perf_output_put(handle, data->cpu_entry);
6184 
6185 	if (sample_type & PERF_SAMPLE_PERIOD)
6186 		perf_output_put(handle, data->period);
6187 
6188 	if (sample_type & PERF_SAMPLE_READ)
6189 		perf_output_read(handle, event);
6190 
6191 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6192 		int size = 1;
6193 
6194 		size += data->callchain->nr;
6195 		size *= sizeof(u64);
6196 		__output_copy(handle, data->callchain, size);
6197 	}
6198 
6199 	if (sample_type & PERF_SAMPLE_RAW) {
6200 		struct perf_raw_record *raw = data->raw;
6201 
6202 		if (raw) {
6203 			struct perf_raw_frag *frag = &raw->frag;
6204 
6205 			perf_output_put(handle, raw->size);
6206 			do {
6207 				if (frag->copy) {
6208 					__output_custom(handle, frag->copy,
6209 							frag->data, frag->size);
6210 				} else {
6211 					__output_copy(handle, frag->data,
6212 						      frag->size);
6213 				}
6214 				if (perf_raw_frag_last(frag))
6215 					break;
6216 				frag = frag->next;
6217 			} while (1);
6218 			if (frag->pad)
6219 				__output_skip(handle, NULL, frag->pad);
6220 		} else {
6221 			struct {
6222 				u32	size;
6223 				u32	data;
6224 			} raw = {
6225 				.size = sizeof(u32),
6226 				.data = 0,
6227 			};
6228 			perf_output_put(handle, raw);
6229 		}
6230 	}
6231 
6232 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6233 		if (data->br_stack) {
6234 			size_t size;
6235 
6236 			size = data->br_stack->nr
6237 			     * sizeof(struct perf_branch_entry);
6238 
6239 			perf_output_put(handle, data->br_stack->nr);
6240 			perf_output_copy(handle, data->br_stack->entries, size);
6241 		} else {
6242 			/*
6243 			 * we always store at least the value of nr
6244 			 */
6245 			u64 nr = 0;
6246 			perf_output_put(handle, nr);
6247 		}
6248 	}
6249 
6250 	if (sample_type & PERF_SAMPLE_REGS_USER) {
6251 		u64 abi = data->regs_user.abi;
6252 
6253 		/*
6254 		 * If there are no regs to dump, notice it through
6255 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6256 		 */
6257 		perf_output_put(handle, abi);
6258 
6259 		if (abi) {
6260 			u64 mask = event->attr.sample_regs_user;
6261 			perf_output_sample_regs(handle,
6262 						data->regs_user.regs,
6263 						mask);
6264 		}
6265 	}
6266 
6267 	if (sample_type & PERF_SAMPLE_STACK_USER) {
6268 		perf_output_sample_ustack(handle,
6269 					  data->stack_user_size,
6270 					  data->regs_user.regs);
6271 	}
6272 
6273 	if (sample_type & PERF_SAMPLE_WEIGHT)
6274 		perf_output_put(handle, data->weight);
6275 
6276 	if (sample_type & PERF_SAMPLE_DATA_SRC)
6277 		perf_output_put(handle, data->data_src.val);
6278 
6279 	if (sample_type & PERF_SAMPLE_TRANSACTION)
6280 		perf_output_put(handle, data->txn);
6281 
6282 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
6283 		u64 abi = data->regs_intr.abi;
6284 		/*
6285 		 * If there are no regs to dump, notice it through
6286 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6287 		 */
6288 		perf_output_put(handle, abi);
6289 
6290 		if (abi) {
6291 			u64 mask = event->attr.sample_regs_intr;
6292 
6293 			perf_output_sample_regs(handle,
6294 						data->regs_intr.regs,
6295 						mask);
6296 		}
6297 	}
6298 
6299 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6300 		perf_output_put(handle, data->phys_addr);
6301 
6302 	if (!event->attr.watermark) {
6303 		int wakeup_events = event->attr.wakeup_events;
6304 
6305 		if (wakeup_events) {
6306 			struct ring_buffer *rb = handle->rb;
6307 			int events = local_inc_return(&rb->events);
6308 
6309 			if (events >= wakeup_events) {
6310 				local_sub(wakeup_events, &rb->events);
6311 				local_inc(&rb->wakeup);
6312 			}
6313 		}
6314 	}
6315 }
6316 
6317 static u64 perf_virt_to_phys(u64 virt)
6318 {
6319 	u64 phys_addr = 0;
6320 	struct page *p = NULL;
6321 
6322 	if (!virt)
6323 		return 0;
6324 
6325 	if (virt >= TASK_SIZE) {
6326 		/* If it's vmalloc()d memory, leave phys_addr as 0 */
6327 		if (virt_addr_valid((void *)(uintptr_t)virt) &&
6328 		    !(virt >= VMALLOC_START && virt < VMALLOC_END))
6329 			phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6330 	} else {
6331 		/*
6332 		 * Walking the pages tables for user address.
6333 		 * Interrupts are disabled, so it prevents any tear down
6334 		 * of the page tables.
6335 		 * Try IRQ-safe __get_user_pages_fast first.
6336 		 * If failed, leave phys_addr as 0.
6337 		 */
6338 		if ((current->mm != NULL) &&
6339 		    (__get_user_pages_fast(virt, 1, 0, &p) == 1))
6340 			phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6341 
6342 		if (p)
6343 			put_page(p);
6344 	}
6345 
6346 	return phys_addr;
6347 }
6348 
6349 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
6350 
6351 struct perf_callchain_entry *
6352 perf_callchain(struct perf_event *event, struct pt_regs *regs)
6353 {
6354 	bool kernel = !event->attr.exclude_callchain_kernel;
6355 	bool user   = !event->attr.exclude_callchain_user;
6356 	/* Disallow cross-task user callchains. */
6357 	bool crosstask = event->ctx->task && event->ctx->task != current;
6358 	const u32 max_stack = event->attr.sample_max_stack;
6359 	struct perf_callchain_entry *callchain;
6360 
6361 	if (!kernel && !user)
6362 		return &__empty_callchain;
6363 
6364 	callchain = get_perf_callchain(regs, 0, kernel, user,
6365 				       max_stack, crosstask, true);
6366 	return callchain ?: &__empty_callchain;
6367 }
6368 
6369 void perf_prepare_sample(struct perf_event_header *header,
6370 			 struct perf_sample_data *data,
6371 			 struct perf_event *event,
6372 			 struct pt_regs *regs)
6373 {
6374 	u64 sample_type = event->attr.sample_type;
6375 
6376 	header->type = PERF_RECORD_SAMPLE;
6377 	header->size = sizeof(*header) + event->header_size;
6378 
6379 	header->misc = 0;
6380 	header->misc |= perf_misc_flags(regs);
6381 
6382 	__perf_event_header__init_id(header, data, event);
6383 
6384 	if (sample_type & PERF_SAMPLE_IP)
6385 		data->ip = perf_instruction_pointer(regs);
6386 
6387 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6388 		int size = 1;
6389 
6390 		if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
6391 			data->callchain = perf_callchain(event, regs);
6392 
6393 		size += data->callchain->nr;
6394 
6395 		header->size += size * sizeof(u64);
6396 	}
6397 
6398 	if (sample_type & PERF_SAMPLE_RAW) {
6399 		struct perf_raw_record *raw = data->raw;
6400 		int size;
6401 
6402 		if (raw) {
6403 			struct perf_raw_frag *frag = &raw->frag;
6404 			u32 sum = 0;
6405 
6406 			do {
6407 				sum += frag->size;
6408 				if (perf_raw_frag_last(frag))
6409 					break;
6410 				frag = frag->next;
6411 			} while (1);
6412 
6413 			size = round_up(sum + sizeof(u32), sizeof(u64));
6414 			raw->size = size - sizeof(u32);
6415 			frag->pad = raw->size - sum;
6416 		} else {
6417 			size = sizeof(u64);
6418 		}
6419 
6420 		header->size += size;
6421 	}
6422 
6423 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6424 		int size = sizeof(u64); /* nr */
6425 		if (data->br_stack) {
6426 			size += data->br_stack->nr
6427 			      * sizeof(struct perf_branch_entry);
6428 		}
6429 		header->size += size;
6430 	}
6431 
6432 	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6433 		perf_sample_regs_user(&data->regs_user, regs,
6434 				      &data->regs_user_copy);
6435 
6436 	if (sample_type & PERF_SAMPLE_REGS_USER) {
6437 		/* regs dump ABI info */
6438 		int size = sizeof(u64);
6439 
6440 		if (data->regs_user.regs) {
6441 			u64 mask = event->attr.sample_regs_user;
6442 			size += hweight64(mask) * sizeof(u64);
6443 		}
6444 
6445 		header->size += size;
6446 	}
6447 
6448 	if (sample_type & PERF_SAMPLE_STACK_USER) {
6449 		/*
6450 		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6451 		 * processed as the last one or have additional check added
6452 		 * in case new sample type is added, because we could eat
6453 		 * up the rest of the sample size.
6454 		 */
6455 		u16 stack_size = event->attr.sample_stack_user;
6456 		u16 size = sizeof(u64);
6457 
6458 		stack_size = perf_sample_ustack_size(stack_size, header->size,
6459 						     data->regs_user.regs);
6460 
6461 		/*
6462 		 * If there is something to dump, add space for the dump
6463 		 * itself and for the field that tells the dynamic size,
6464 		 * which is how many have been actually dumped.
6465 		 */
6466 		if (stack_size)
6467 			size += sizeof(u64) + stack_size;
6468 
6469 		data->stack_user_size = stack_size;
6470 		header->size += size;
6471 	}
6472 
6473 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
6474 		/* regs dump ABI info */
6475 		int size = sizeof(u64);
6476 
6477 		perf_sample_regs_intr(&data->regs_intr, regs);
6478 
6479 		if (data->regs_intr.regs) {
6480 			u64 mask = event->attr.sample_regs_intr;
6481 
6482 			size += hweight64(mask) * sizeof(u64);
6483 		}
6484 
6485 		header->size += size;
6486 	}
6487 
6488 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6489 		data->phys_addr = perf_virt_to_phys(data->addr);
6490 }
6491 
6492 static __always_inline void
6493 __perf_event_output(struct perf_event *event,
6494 		    struct perf_sample_data *data,
6495 		    struct pt_regs *regs,
6496 		    int (*output_begin)(struct perf_output_handle *,
6497 					struct perf_event *,
6498 					unsigned int))
6499 {
6500 	struct perf_output_handle handle;
6501 	struct perf_event_header header;
6502 
6503 	/* protect the callchain buffers */
6504 	rcu_read_lock();
6505 
6506 	perf_prepare_sample(&header, data, event, regs);
6507 
6508 	if (output_begin(&handle, event, header.size))
6509 		goto exit;
6510 
6511 	perf_output_sample(&handle, &header, data, event);
6512 
6513 	perf_output_end(&handle);
6514 
6515 exit:
6516 	rcu_read_unlock();
6517 }
6518 
6519 void
6520 perf_event_output_forward(struct perf_event *event,
6521 			 struct perf_sample_data *data,
6522 			 struct pt_regs *regs)
6523 {
6524 	__perf_event_output(event, data, regs, perf_output_begin_forward);
6525 }
6526 
6527 void
6528 perf_event_output_backward(struct perf_event *event,
6529 			   struct perf_sample_data *data,
6530 			   struct pt_regs *regs)
6531 {
6532 	__perf_event_output(event, data, regs, perf_output_begin_backward);
6533 }
6534 
6535 void
6536 perf_event_output(struct perf_event *event,
6537 		  struct perf_sample_data *data,
6538 		  struct pt_regs *regs)
6539 {
6540 	__perf_event_output(event, data, regs, perf_output_begin);
6541 }
6542 
6543 /*
6544  * read event_id
6545  */
6546 
6547 struct perf_read_event {
6548 	struct perf_event_header	header;
6549 
6550 	u32				pid;
6551 	u32				tid;
6552 };
6553 
6554 static void
6555 perf_event_read_event(struct perf_event *event,
6556 			struct task_struct *task)
6557 {
6558 	struct perf_output_handle handle;
6559 	struct perf_sample_data sample;
6560 	struct perf_read_event read_event = {
6561 		.header = {
6562 			.type = PERF_RECORD_READ,
6563 			.misc = 0,
6564 			.size = sizeof(read_event) + event->read_size,
6565 		},
6566 		.pid = perf_event_pid(event, task),
6567 		.tid = perf_event_tid(event, task),
6568 	};
6569 	int ret;
6570 
6571 	perf_event_header__init_id(&read_event.header, &sample, event);
6572 	ret = perf_output_begin(&handle, event, read_event.header.size);
6573 	if (ret)
6574 		return;
6575 
6576 	perf_output_put(&handle, read_event);
6577 	perf_output_read(&handle, event);
6578 	perf_event__output_id_sample(event, &handle, &sample);
6579 
6580 	perf_output_end(&handle);
6581 }
6582 
6583 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6584 
6585 static void
6586 perf_iterate_ctx(struct perf_event_context *ctx,
6587 		   perf_iterate_f output,
6588 		   void *data, bool all)
6589 {
6590 	struct perf_event *event;
6591 
6592 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6593 		if (!all) {
6594 			if (event->state < PERF_EVENT_STATE_INACTIVE)
6595 				continue;
6596 			if (!event_filter_match(event))
6597 				continue;
6598 		}
6599 
6600 		output(event, data);
6601 	}
6602 }
6603 
6604 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6605 {
6606 	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6607 	struct perf_event *event;
6608 
6609 	list_for_each_entry_rcu(event, &pel->list, sb_list) {
6610 		/*
6611 		 * Skip events that are not fully formed yet; ensure that
6612 		 * if we observe event->ctx, both event and ctx will be
6613 		 * complete enough. See perf_install_in_context().
6614 		 */
6615 		if (!smp_load_acquire(&event->ctx))
6616 			continue;
6617 
6618 		if (event->state < PERF_EVENT_STATE_INACTIVE)
6619 			continue;
6620 		if (!event_filter_match(event))
6621 			continue;
6622 		output(event, data);
6623 	}
6624 }
6625 
6626 /*
6627  * Iterate all events that need to receive side-band events.
6628  *
6629  * For new callers; ensure that account_pmu_sb_event() includes
6630  * your event, otherwise it might not get delivered.
6631  */
6632 static void
6633 perf_iterate_sb(perf_iterate_f output, void *data,
6634 	       struct perf_event_context *task_ctx)
6635 {
6636 	struct perf_event_context *ctx;
6637 	int ctxn;
6638 
6639 	rcu_read_lock();
6640 	preempt_disable();
6641 
6642 	/*
6643 	 * If we have task_ctx != NULL we only notify the task context itself.
6644 	 * The task_ctx is set only for EXIT events before releasing task
6645 	 * context.
6646 	 */
6647 	if (task_ctx) {
6648 		perf_iterate_ctx(task_ctx, output, data, false);
6649 		goto done;
6650 	}
6651 
6652 	perf_iterate_sb_cpu(output, data);
6653 
6654 	for_each_task_context_nr(ctxn) {
6655 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6656 		if (ctx)
6657 			perf_iterate_ctx(ctx, output, data, false);
6658 	}
6659 done:
6660 	preempt_enable();
6661 	rcu_read_unlock();
6662 }
6663 
6664 /*
6665  * Clear all file-based filters at exec, they'll have to be
6666  * re-instated when/if these objects are mmapped again.
6667  */
6668 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6669 {
6670 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6671 	struct perf_addr_filter *filter;
6672 	unsigned int restart = 0, count = 0;
6673 	unsigned long flags;
6674 
6675 	if (!has_addr_filter(event))
6676 		return;
6677 
6678 	raw_spin_lock_irqsave(&ifh->lock, flags);
6679 	list_for_each_entry(filter, &ifh->list, entry) {
6680 		if (filter->path.dentry) {
6681 			event->addr_filters_offs[count] = 0;
6682 			restart++;
6683 		}
6684 
6685 		count++;
6686 	}
6687 
6688 	if (restart)
6689 		event->addr_filters_gen++;
6690 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
6691 
6692 	if (restart)
6693 		perf_event_stop(event, 1);
6694 }
6695 
6696 void perf_event_exec(void)
6697 {
6698 	struct perf_event_context *ctx;
6699 	int ctxn;
6700 
6701 	rcu_read_lock();
6702 	for_each_task_context_nr(ctxn) {
6703 		ctx = current->perf_event_ctxp[ctxn];
6704 		if (!ctx)
6705 			continue;
6706 
6707 		perf_event_enable_on_exec(ctxn);
6708 
6709 		perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6710 				   true);
6711 	}
6712 	rcu_read_unlock();
6713 }
6714 
6715 struct remote_output {
6716 	struct ring_buffer	*rb;
6717 	int			err;
6718 };
6719 
6720 static void __perf_event_output_stop(struct perf_event *event, void *data)
6721 {
6722 	struct perf_event *parent = event->parent;
6723 	struct remote_output *ro = data;
6724 	struct ring_buffer *rb = ro->rb;
6725 	struct stop_event_data sd = {
6726 		.event	= event,
6727 	};
6728 
6729 	if (!has_aux(event))
6730 		return;
6731 
6732 	if (!parent)
6733 		parent = event;
6734 
6735 	/*
6736 	 * In case of inheritance, it will be the parent that links to the
6737 	 * ring-buffer, but it will be the child that's actually using it.
6738 	 *
6739 	 * We are using event::rb to determine if the event should be stopped,
6740 	 * however this may race with ring_buffer_attach() (through set_output),
6741 	 * which will make us skip the event that actually needs to be stopped.
6742 	 * So ring_buffer_attach() has to stop an aux event before re-assigning
6743 	 * its rb pointer.
6744 	 */
6745 	if (rcu_dereference(parent->rb) == rb)
6746 		ro->err = __perf_event_stop(&sd);
6747 }
6748 
6749 static int __perf_pmu_output_stop(void *info)
6750 {
6751 	struct perf_event *event = info;
6752 	struct pmu *pmu = event->pmu;
6753 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6754 	struct remote_output ro = {
6755 		.rb	= event->rb,
6756 	};
6757 
6758 	rcu_read_lock();
6759 	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6760 	if (cpuctx->task_ctx)
6761 		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6762 				   &ro, false);
6763 	rcu_read_unlock();
6764 
6765 	return ro.err;
6766 }
6767 
6768 static void perf_pmu_output_stop(struct perf_event *event)
6769 {
6770 	struct perf_event *iter;
6771 	int err, cpu;
6772 
6773 restart:
6774 	rcu_read_lock();
6775 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6776 		/*
6777 		 * For per-CPU events, we need to make sure that neither they
6778 		 * nor their children are running; for cpu==-1 events it's
6779 		 * sufficient to stop the event itself if it's active, since
6780 		 * it can't have children.
6781 		 */
6782 		cpu = iter->cpu;
6783 		if (cpu == -1)
6784 			cpu = READ_ONCE(iter->oncpu);
6785 
6786 		if (cpu == -1)
6787 			continue;
6788 
6789 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6790 		if (err == -EAGAIN) {
6791 			rcu_read_unlock();
6792 			goto restart;
6793 		}
6794 	}
6795 	rcu_read_unlock();
6796 }
6797 
6798 /*
6799  * task tracking -- fork/exit
6800  *
6801  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6802  */
6803 
6804 struct perf_task_event {
6805 	struct task_struct		*task;
6806 	struct perf_event_context	*task_ctx;
6807 
6808 	struct {
6809 		struct perf_event_header	header;
6810 
6811 		u32				pid;
6812 		u32				ppid;
6813 		u32				tid;
6814 		u32				ptid;
6815 		u64				time;
6816 	} event_id;
6817 };
6818 
6819 static int perf_event_task_match(struct perf_event *event)
6820 {
6821 	return event->attr.comm  || event->attr.mmap ||
6822 	       event->attr.mmap2 || event->attr.mmap_data ||
6823 	       event->attr.task;
6824 }
6825 
6826 static void perf_event_task_output(struct perf_event *event,
6827 				   void *data)
6828 {
6829 	struct perf_task_event *task_event = data;
6830 	struct perf_output_handle handle;
6831 	struct perf_sample_data	sample;
6832 	struct task_struct *task = task_event->task;
6833 	int ret, size = task_event->event_id.header.size;
6834 
6835 	if (!perf_event_task_match(event))
6836 		return;
6837 
6838 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6839 
6840 	ret = perf_output_begin(&handle, event,
6841 				task_event->event_id.header.size);
6842 	if (ret)
6843 		goto out;
6844 
6845 	task_event->event_id.pid = perf_event_pid(event, task);
6846 	task_event->event_id.ppid = perf_event_pid(event, current);
6847 
6848 	task_event->event_id.tid = perf_event_tid(event, task);
6849 	task_event->event_id.ptid = perf_event_tid(event, current);
6850 
6851 	task_event->event_id.time = perf_event_clock(event);
6852 
6853 	perf_output_put(&handle, task_event->event_id);
6854 
6855 	perf_event__output_id_sample(event, &handle, &sample);
6856 
6857 	perf_output_end(&handle);
6858 out:
6859 	task_event->event_id.header.size = size;
6860 }
6861 
6862 static void perf_event_task(struct task_struct *task,
6863 			      struct perf_event_context *task_ctx,
6864 			      int new)
6865 {
6866 	struct perf_task_event task_event;
6867 
6868 	if (!atomic_read(&nr_comm_events) &&
6869 	    !atomic_read(&nr_mmap_events) &&
6870 	    !atomic_read(&nr_task_events))
6871 		return;
6872 
6873 	task_event = (struct perf_task_event){
6874 		.task	  = task,
6875 		.task_ctx = task_ctx,
6876 		.event_id    = {
6877 			.header = {
6878 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6879 				.misc = 0,
6880 				.size = sizeof(task_event.event_id),
6881 			},
6882 			/* .pid  */
6883 			/* .ppid */
6884 			/* .tid  */
6885 			/* .ptid */
6886 			/* .time */
6887 		},
6888 	};
6889 
6890 	perf_iterate_sb(perf_event_task_output,
6891 		       &task_event,
6892 		       task_ctx);
6893 }
6894 
6895 void perf_event_fork(struct task_struct *task)
6896 {
6897 	perf_event_task(task, NULL, 1);
6898 	perf_event_namespaces(task);
6899 }
6900 
6901 /*
6902  * comm tracking
6903  */
6904 
6905 struct perf_comm_event {
6906 	struct task_struct	*task;
6907 	char			*comm;
6908 	int			comm_size;
6909 
6910 	struct {
6911 		struct perf_event_header	header;
6912 
6913 		u32				pid;
6914 		u32				tid;
6915 	} event_id;
6916 };
6917 
6918 static int perf_event_comm_match(struct perf_event *event)
6919 {
6920 	return event->attr.comm;
6921 }
6922 
6923 static void perf_event_comm_output(struct perf_event *event,
6924 				   void *data)
6925 {
6926 	struct perf_comm_event *comm_event = data;
6927 	struct perf_output_handle handle;
6928 	struct perf_sample_data sample;
6929 	int size = comm_event->event_id.header.size;
6930 	int ret;
6931 
6932 	if (!perf_event_comm_match(event))
6933 		return;
6934 
6935 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6936 	ret = perf_output_begin(&handle, event,
6937 				comm_event->event_id.header.size);
6938 
6939 	if (ret)
6940 		goto out;
6941 
6942 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6943 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6944 
6945 	perf_output_put(&handle, comm_event->event_id);
6946 	__output_copy(&handle, comm_event->comm,
6947 				   comm_event->comm_size);
6948 
6949 	perf_event__output_id_sample(event, &handle, &sample);
6950 
6951 	perf_output_end(&handle);
6952 out:
6953 	comm_event->event_id.header.size = size;
6954 }
6955 
6956 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6957 {
6958 	char comm[TASK_COMM_LEN];
6959 	unsigned int size;
6960 
6961 	memset(comm, 0, sizeof(comm));
6962 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
6963 	size = ALIGN(strlen(comm)+1, sizeof(u64));
6964 
6965 	comm_event->comm = comm;
6966 	comm_event->comm_size = size;
6967 
6968 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6969 
6970 	perf_iterate_sb(perf_event_comm_output,
6971 		       comm_event,
6972 		       NULL);
6973 }
6974 
6975 void perf_event_comm(struct task_struct *task, bool exec)
6976 {
6977 	struct perf_comm_event comm_event;
6978 
6979 	if (!atomic_read(&nr_comm_events))
6980 		return;
6981 
6982 	comm_event = (struct perf_comm_event){
6983 		.task	= task,
6984 		/* .comm      */
6985 		/* .comm_size */
6986 		.event_id  = {
6987 			.header = {
6988 				.type = PERF_RECORD_COMM,
6989 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6990 				/* .size */
6991 			},
6992 			/* .pid */
6993 			/* .tid */
6994 		},
6995 	};
6996 
6997 	perf_event_comm_event(&comm_event);
6998 }
6999 
7000 /*
7001  * namespaces tracking
7002  */
7003 
7004 struct perf_namespaces_event {
7005 	struct task_struct		*task;
7006 
7007 	struct {
7008 		struct perf_event_header	header;
7009 
7010 		u32				pid;
7011 		u32				tid;
7012 		u64				nr_namespaces;
7013 		struct perf_ns_link_info	link_info[NR_NAMESPACES];
7014 	} event_id;
7015 };
7016 
7017 static int perf_event_namespaces_match(struct perf_event *event)
7018 {
7019 	return event->attr.namespaces;
7020 }
7021 
7022 static void perf_event_namespaces_output(struct perf_event *event,
7023 					 void *data)
7024 {
7025 	struct perf_namespaces_event *namespaces_event = data;
7026 	struct perf_output_handle handle;
7027 	struct perf_sample_data sample;
7028 	u16 header_size = namespaces_event->event_id.header.size;
7029 	int ret;
7030 
7031 	if (!perf_event_namespaces_match(event))
7032 		return;
7033 
7034 	perf_event_header__init_id(&namespaces_event->event_id.header,
7035 				   &sample, event);
7036 	ret = perf_output_begin(&handle, event,
7037 				namespaces_event->event_id.header.size);
7038 	if (ret)
7039 		goto out;
7040 
7041 	namespaces_event->event_id.pid = perf_event_pid(event,
7042 							namespaces_event->task);
7043 	namespaces_event->event_id.tid = perf_event_tid(event,
7044 							namespaces_event->task);
7045 
7046 	perf_output_put(&handle, namespaces_event->event_id);
7047 
7048 	perf_event__output_id_sample(event, &handle, &sample);
7049 
7050 	perf_output_end(&handle);
7051 out:
7052 	namespaces_event->event_id.header.size = header_size;
7053 }
7054 
7055 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
7056 				   struct task_struct *task,
7057 				   const struct proc_ns_operations *ns_ops)
7058 {
7059 	struct path ns_path;
7060 	struct inode *ns_inode;
7061 	void *error;
7062 
7063 	error = ns_get_path(&ns_path, task, ns_ops);
7064 	if (!error) {
7065 		ns_inode = ns_path.dentry->d_inode;
7066 		ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
7067 		ns_link_info->ino = ns_inode->i_ino;
7068 		path_put(&ns_path);
7069 	}
7070 }
7071 
7072 void perf_event_namespaces(struct task_struct *task)
7073 {
7074 	struct perf_namespaces_event namespaces_event;
7075 	struct perf_ns_link_info *ns_link_info;
7076 
7077 	if (!atomic_read(&nr_namespaces_events))
7078 		return;
7079 
7080 	namespaces_event = (struct perf_namespaces_event){
7081 		.task	= task,
7082 		.event_id  = {
7083 			.header = {
7084 				.type = PERF_RECORD_NAMESPACES,
7085 				.misc = 0,
7086 				.size = sizeof(namespaces_event.event_id),
7087 			},
7088 			/* .pid */
7089 			/* .tid */
7090 			.nr_namespaces = NR_NAMESPACES,
7091 			/* .link_info[NR_NAMESPACES] */
7092 		},
7093 	};
7094 
7095 	ns_link_info = namespaces_event.event_id.link_info;
7096 
7097 	perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
7098 			       task, &mntns_operations);
7099 
7100 #ifdef CONFIG_USER_NS
7101 	perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
7102 			       task, &userns_operations);
7103 #endif
7104 #ifdef CONFIG_NET_NS
7105 	perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
7106 			       task, &netns_operations);
7107 #endif
7108 #ifdef CONFIG_UTS_NS
7109 	perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
7110 			       task, &utsns_operations);
7111 #endif
7112 #ifdef CONFIG_IPC_NS
7113 	perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
7114 			       task, &ipcns_operations);
7115 #endif
7116 #ifdef CONFIG_PID_NS
7117 	perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
7118 			       task, &pidns_operations);
7119 #endif
7120 #ifdef CONFIG_CGROUPS
7121 	perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
7122 			       task, &cgroupns_operations);
7123 #endif
7124 
7125 	perf_iterate_sb(perf_event_namespaces_output,
7126 			&namespaces_event,
7127 			NULL);
7128 }
7129 
7130 /*
7131  * mmap tracking
7132  */
7133 
7134 struct perf_mmap_event {
7135 	struct vm_area_struct	*vma;
7136 
7137 	const char		*file_name;
7138 	int			file_size;
7139 	int			maj, min;
7140 	u64			ino;
7141 	u64			ino_generation;
7142 	u32			prot, flags;
7143 
7144 	struct {
7145 		struct perf_event_header	header;
7146 
7147 		u32				pid;
7148 		u32				tid;
7149 		u64				start;
7150 		u64				len;
7151 		u64				pgoff;
7152 	} event_id;
7153 };
7154 
7155 static int perf_event_mmap_match(struct perf_event *event,
7156 				 void *data)
7157 {
7158 	struct perf_mmap_event *mmap_event = data;
7159 	struct vm_area_struct *vma = mmap_event->vma;
7160 	int executable = vma->vm_flags & VM_EXEC;
7161 
7162 	return (!executable && event->attr.mmap_data) ||
7163 	       (executable && (event->attr.mmap || event->attr.mmap2));
7164 }
7165 
7166 static void perf_event_mmap_output(struct perf_event *event,
7167 				   void *data)
7168 {
7169 	struct perf_mmap_event *mmap_event = data;
7170 	struct perf_output_handle handle;
7171 	struct perf_sample_data sample;
7172 	int size = mmap_event->event_id.header.size;
7173 	int ret;
7174 
7175 	if (!perf_event_mmap_match(event, data))
7176 		return;
7177 
7178 	if (event->attr.mmap2) {
7179 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
7180 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
7181 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
7182 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
7183 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
7184 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
7185 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
7186 	}
7187 
7188 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
7189 	ret = perf_output_begin(&handle, event,
7190 				mmap_event->event_id.header.size);
7191 	if (ret)
7192 		goto out;
7193 
7194 	mmap_event->event_id.pid = perf_event_pid(event, current);
7195 	mmap_event->event_id.tid = perf_event_tid(event, current);
7196 
7197 	perf_output_put(&handle, mmap_event->event_id);
7198 
7199 	if (event->attr.mmap2) {
7200 		perf_output_put(&handle, mmap_event->maj);
7201 		perf_output_put(&handle, mmap_event->min);
7202 		perf_output_put(&handle, mmap_event->ino);
7203 		perf_output_put(&handle, mmap_event->ino_generation);
7204 		perf_output_put(&handle, mmap_event->prot);
7205 		perf_output_put(&handle, mmap_event->flags);
7206 	}
7207 
7208 	__output_copy(&handle, mmap_event->file_name,
7209 				   mmap_event->file_size);
7210 
7211 	perf_event__output_id_sample(event, &handle, &sample);
7212 
7213 	perf_output_end(&handle);
7214 out:
7215 	mmap_event->event_id.header.size = size;
7216 }
7217 
7218 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
7219 {
7220 	struct vm_area_struct *vma = mmap_event->vma;
7221 	struct file *file = vma->vm_file;
7222 	int maj = 0, min = 0;
7223 	u64 ino = 0, gen = 0;
7224 	u32 prot = 0, flags = 0;
7225 	unsigned int size;
7226 	char tmp[16];
7227 	char *buf = NULL;
7228 	char *name;
7229 
7230 	if (vma->vm_flags & VM_READ)
7231 		prot |= PROT_READ;
7232 	if (vma->vm_flags & VM_WRITE)
7233 		prot |= PROT_WRITE;
7234 	if (vma->vm_flags & VM_EXEC)
7235 		prot |= PROT_EXEC;
7236 
7237 	if (vma->vm_flags & VM_MAYSHARE)
7238 		flags = MAP_SHARED;
7239 	else
7240 		flags = MAP_PRIVATE;
7241 
7242 	if (vma->vm_flags & VM_DENYWRITE)
7243 		flags |= MAP_DENYWRITE;
7244 	if (vma->vm_flags & VM_MAYEXEC)
7245 		flags |= MAP_EXECUTABLE;
7246 	if (vma->vm_flags & VM_LOCKED)
7247 		flags |= MAP_LOCKED;
7248 	if (vma->vm_flags & VM_HUGETLB)
7249 		flags |= MAP_HUGETLB;
7250 
7251 	if (file) {
7252 		struct inode *inode;
7253 		dev_t dev;
7254 
7255 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
7256 		if (!buf) {
7257 			name = "//enomem";
7258 			goto cpy_name;
7259 		}
7260 		/*
7261 		 * d_path() works from the end of the rb backwards, so we
7262 		 * need to add enough zero bytes after the string to handle
7263 		 * the 64bit alignment we do later.
7264 		 */
7265 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
7266 		if (IS_ERR(name)) {
7267 			name = "//toolong";
7268 			goto cpy_name;
7269 		}
7270 		inode = file_inode(vma->vm_file);
7271 		dev = inode->i_sb->s_dev;
7272 		ino = inode->i_ino;
7273 		gen = inode->i_generation;
7274 		maj = MAJOR(dev);
7275 		min = MINOR(dev);
7276 
7277 		goto got_name;
7278 	} else {
7279 		if (vma->vm_ops && vma->vm_ops->name) {
7280 			name = (char *) vma->vm_ops->name(vma);
7281 			if (name)
7282 				goto cpy_name;
7283 		}
7284 
7285 		name = (char *)arch_vma_name(vma);
7286 		if (name)
7287 			goto cpy_name;
7288 
7289 		if (vma->vm_start <= vma->vm_mm->start_brk &&
7290 				vma->vm_end >= vma->vm_mm->brk) {
7291 			name = "[heap]";
7292 			goto cpy_name;
7293 		}
7294 		if (vma->vm_start <= vma->vm_mm->start_stack &&
7295 				vma->vm_end >= vma->vm_mm->start_stack) {
7296 			name = "[stack]";
7297 			goto cpy_name;
7298 		}
7299 
7300 		name = "//anon";
7301 		goto cpy_name;
7302 	}
7303 
7304 cpy_name:
7305 	strlcpy(tmp, name, sizeof(tmp));
7306 	name = tmp;
7307 got_name:
7308 	/*
7309 	 * Since our buffer works in 8 byte units we need to align our string
7310 	 * size to a multiple of 8. However, we must guarantee the tail end is
7311 	 * zero'd out to avoid leaking random bits to userspace.
7312 	 */
7313 	size = strlen(name)+1;
7314 	while (!IS_ALIGNED(size, sizeof(u64)))
7315 		name[size++] = '\0';
7316 
7317 	mmap_event->file_name = name;
7318 	mmap_event->file_size = size;
7319 	mmap_event->maj = maj;
7320 	mmap_event->min = min;
7321 	mmap_event->ino = ino;
7322 	mmap_event->ino_generation = gen;
7323 	mmap_event->prot = prot;
7324 	mmap_event->flags = flags;
7325 
7326 	if (!(vma->vm_flags & VM_EXEC))
7327 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
7328 
7329 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
7330 
7331 	perf_iterate_sb(perf_event_mmap_output,
7332 		       mmap_event,
7333 		       NULL);
7334 
7335 	kfree(buf);
7336 }
7337 
7338 /*
7339  * Check whether inode and address range match filter criteria.
7340  */
7341 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
7342 				     struct file *file, unsigned long offset,
7343 				     unsigned long size)
7344 {
7345 	/* d_inode(NULL) won't be equal to any mapped user-space file */
7346 	if (!filter->path.dentry)
7347 		return false;
7348 
7349 	if (d_inode(filter->path.dentry) != file_inode(file))
7350 		return false;
7351 
7352 	if (filter->offset > offset + size)
7353 		return false;
7354 
7355 	if (filter->offset + filter->size < offset)
7356 		return false;
7357 
7358 	return true;
7359 }
7360 
7361 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
7362 {
7363 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7364 	struct vm_area_struct *vma = data;
7365 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
7366 	struct file *file = vma->vm_file;
7367 	struct perf_addr_filter *filter;
7368 	unsigned int restart = 0, count = 0;
7369 
7370 	if (!has_addr_filter(event))
7371 		return;
7372 
7373 	if (!file)
7374 		return;
7375 
7376 	raw_spin_lock_irqsave(&ifh->lock, flags);
7377 	list_for_each_entry(filter, &ifh->list, entry) {
7378 		if (perf_addr_filter_match(filter, file, off,
7379 					     vma->vm_end - vma->vm_start)) {
7380 			event->addr_filters_offs[count] = vma->vm_start;
7381 			restart++;
7382 		}
7383 
7384 		count++;
7385 	}
7386 
7387 	if (restart)
7388 		event->addr_filters_gen++;
7389 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
7390 
7391 	if (restart)
7392 		perf_event_stop(event, 1);
7393 }
7394 
7395 /*
7396  * Adjust all task's events' filters to the new vma
7397  */
7398 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7399 {
7400 	struct perf_event_context *ctx;
7401 	int ctxn;
7402 
7403 	/*
7404 	 * Data tracing isn't supported yet and as such there is no need
7405 	 * to keep track of anything that isn't related to executable code:
7406 	 */
7407 	if (!(vma->vm_flags & VM_EXEC))
7408 		return;
7409 
7410 	rcu_read_lock();
7411 	for_each_task_context_nr(ctxn) {
7412 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7413 		if (!ctx)
7414 			continue;
7415 
7416 		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7417 	}
7418 	rcu_read_unlock();
7419 }
7420 
7421 void perf_event_mmap(struct vm_area_struct *vma)
7422 {
7423 	struct perf_mmap_event mmap_event;
7424 
7425 	if (!atomic_read(&nr_mmap_events))
7426 		return;
7427 
7428 	mmap_event = (struct perf_mmap_event){
7429 		.vma	= vma,
7430 		/* .file_name */
7431 		/* .file_size */
7432 		.event_id  = {
7433 			.header = {
7434 				.type = PERF_RECORD_MMAP,
7435 				.misc = PERF_RECORD_MISC_USER,
7436 				/* .size */
7437 			},
7438 			/* .pid */
7439 			/* .tid */
7440 			.start  = vma->vm_start,
7441 			.len    = vma->vm_end - vma->vm_start,
7442 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
7443 		},
7444 		/* .maj (attr_mmap2 only) */
7445 		/* .min (attr_mmap2 only) */
7446 		/* .ino (attr_mmap2 only) */
7447 		/* .ino_generation (attr_mmap2 only) */
7448 		/* .prot (attr_mmap2 only) */
7449 		/* .flags (attr_mmap2 only) */
7450 	};
7451 
7452 	perf_addr_filters_adjust(vma);
7453 	perf_event_mmap_event(&mmap_event);
7454 }
7455 
7456 void perf_event_aux_event(struct perf_event *event, unsigned long head,
7457 			  unsigned long size, u64 flags)
7458 {
7459 	struct perf_output_handle handle;
7460 	struct perf_sample_data sample;
7461 	struct perf_aux_event {
7462 		struct perf_event_header	header;
7463 		u64				offset;
7464 		u64				size;
7465 		u64				flags;
7466 	} rec = {
7467 		.header = {
7468 			.type = PERF_RECORD_AUX,
7469 			.misc = 0,
7470 			.size = sizeof(rec),
7471 		},
7472 		.offset		= head,
7473 		.size		= size,
7474 		.flags		= flags,
7475 	};
7476 	int ret;
7477 
7478 	perf_event_header__init_id(&rec.header, &sample, event);
7479 	ret = perf_output_begin(&handle, event, rec.header.size);
7480 
7481 	if (ret)
7482 		return;
7483 
7484 	perf_output_put(&handle, rec);
7485 	perf_event__output_id_sample(event, &handle, &sample);
7486 
7487 	perf_output_end(&handle);
7488 }
7489 
7490 /*
7491  * Lost/dropped samples logging
7492  */
7493 void perf_log_lost_samples(struct perf_event *event, u64 lost)
7494 {
7495 	struct perf_output_handle handle;
7496 	struct perf_sample_data sample;
7497 	int ret;
7498 
7499 	struct {
7500 		struct perf_event_header	header;
7501 		u64				lost;
7502 	} lost_samples_event = {
7503 		.header = {
7504 			.type = PERF_RECORD_LOST_SAMPLES,
7505 			.misc = 0,
7506 			.size = sizeof(lost_samples_event),
7507 		},
7508 		.lost		= lost,
7509 	};
7510 
7511 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7512 
7513 	ret = perf_output_begin(&handle, event,
7514 				lost_samples_event.header.size);
7515 	if (ret)
7516 		return;
7517 
7518 	perf_output_put(&handle, lost_samples_event);
7519 	perf_event__output_id_sample(event, &handle, &sample);
7520 	perf_output_end(&handle);
7521 }
7522 
7523 /*
7524  * context_switch tracking
7525  */
7526 
7527 struct perf_switch_event {
7528 	struct task_struct	*task;
7529 	struct task_struct	*next_prev;
7530 
7531 	struct {
7532 		struct perf_event_header	header;
7533 		u32				next_prev_pid;
7534 		u32				next_prev_tid;
7535 	} event_id;
7536 };
7537 
7538 static int perf_event_switch_match(struct perf_event *event)
7539 {
7540 	return event->attr.context_switch;
7541 }
7542 
7543 static void perf_event_switch_output(struct perf_event *event, void *data)
7544 {
7545 	struct perf_switch_event *se = data;
7546 	struct perf_output_handle handle;
7547 	struct perf_sample_data sample;
7548 	int ret;
7549 
7550 	if (!perf_event_switch_match(event))
7551 		return;
7552 
7553 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
7554 	if (event->ctx->task) {
7555 		se->event_id.header.type = PERF_RECORD_SWITCH;
7556 		se->event_id.header.size = sizeof(se->event_id.header);
7557 	} else {
7558 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7559 		se->event_id.header.size = sizeof(se->event_id);
7560 		se->event_id.next_prev_pid =
7561 					perf_event_pid(event, se->next_prev);
7562 		se->event_id.next_prev_tid =
7563 					perf_event_tid(event, se->next_prev);
7564 	}
7565 
7566 	perf_event_header__init_id(&se->event_id.header, &sample, event);
7567 
7568 	ret = perf_output_begin(&handle, event, se->event_id.header.size);
7569 	if (ret)
7570 		return;
7571 
7572 	if (event->ctx->task)
7573 		perf_output_put(&handle, se->event_id.header);
7574 	else
7575 		perf_output_put(&handle, se->event_id);
7576 
7577 	perf_event__output_id_sample(event, &handle, &sample);
7578 
7579 	perf_output_end(&handle);
7580 }
7581 
7582 static void perf_event_switch(struct task_struct *task,
7583 			      struct task_struct *next_prev, bool sched_in)
7584 {
7585 	struct perf_switch_event switch_event;
7586 
7587 	/* N.B. caller checks nr_switch_events != 0 */
7588 
7589 	switch_event = (struct perf_switch_event){
7590 		.task		= task,
7591 		.next_prev	= next_prev,
7592 		.event_id	= {
7593 			.header = {
7594 				/* .type */
7595 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7596 				/* .size */
7597 			},
7598 			/* .next_prev_pid */
7599 			/* .next_prev_tid */
7600 		},
7601 	};
7602 
7603 	if (!sched_in && task->state == TASK_RUNNING)
7604 		switch_event.event_id.header.misc |=
7605 				PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
7606 
7607 	perf_iterate_sb(perf_event_switch_output,
7608 		       &switch_event,
7609 		       NULL);
7610 }
7611 
7612 /*
7613  * IRQ throttle logging
7614  */
7615 
7616 static void perf_log_throttle(struct perf_event *event, int enable)
7617 {
7618 	struct perf_output_handle handle;
7619 	struct perf_sample_data sample;
7620 	int ret;
7621 
7622 	struct {
7623 		struct perf_event_header	header;
7624 		u64				time;
7625 		u64				id;
7626 		u64				stream_id;
7627 	} throttle_event = {
7628 		.header = {
7629 			.type = PERF_RECORD_THROTTLE,
7630 			.misc = 0,
7631 			.size = sizeof(throttle_event),
7632 		},
7633 		.time		= perf_event_clock(event),
7634 		.id		= primary_event_id(event),
7635 		.stream_id	= event->id,
7636 	};
7637 
7638 	if (enable)
7639 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7640 
7641 	perf_event_header__init_id(&throttle_event.header, &sample, event);
7642 
7643 	ret = perf_output_begin(&handle, event,
7644 				throttle_event.header.size);
7645 	if (ret)
7646 		return;
7647 
7648 	perf_output_put(&handle, throttle_event);
7649 	perf_event__output_id_sample(event, &handle, &sample);
7650 	perf_output_end(&handle);
7651 }
7652 
7653 void perf_event_itrace_started(struct perf_event *event)
7654 {
7655 	event->attach_state |= PERF_ATTACH_ITRACE;
7656 }
7657 
7658 static void perf_log_itrace_start(struct perf_event *event)
7659 {
7660 	struct perf_output_handle handle;
7661 	struct perf_sample_data sample;
7662 	struct perf_aux_event {
7663 		struct perf_event_header        header;
7664 		u32				pid;
7665 		u32				tid;
7666 	} rec;
7667 	int ret;
7668 
7669 	if (event->parent)
7670 		event = event->parent;
7671 
7672 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7673 	    event->attach_state & PERF_ATTACH_ITRACE)
7674 		return;
7675 
7676 	rec.header.type	= PERF_RECORD_ITRACE_START;
7677 	rec.header.misc	= 0;
7678 	rec.header.size	= sizeof(rec);
7679 	rec.pid	= perf_event_pid(event, current);
7680 	rec.tid	= perf_event_tid(event, current);
7681 
7682 	perf_event_header__init_id(&rec.header, &sample, event);
7683 	ret = perf_output_begin(&handle, event, rec.header.size);
7684 
7685 	if (ret)
7686 		return;
7687 
7688 	perf_output_put(&handle, rec);
7689 	perf_event__output_id_sample(event, &handle, &sample);
7690 
7691 	perf_output_end(&handle);
7692 }
7693 
7694 static int
7695 __perf_event_account_interrupt(struct perf_event *event, int throttle)
7696 {
7697 	struct hw_perf_event *hwc = &event->hw;
7698 	int ret = 0;
7699 	u64 seq;
7700 
7701 	seq = __this_cpu_read(perf_throttled_seq);
7702 	if (seq != hwc->interrupts_seq) {
7703 		hwc->interrupts_seq = seq;
7704 		hwc->interrupts = 1;
7705 	} else {
7706 		hwc->interrupts++;
7707 		if (unlikely(throttle
7708 			     && hwc->interrupts >= max_samples_per_tick)) {
7709 			__this_cpu_inc(perf_throttled_count);
7710 			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
7711 			hwc->interrupts = MAX_INTERRUPTS;
7712 			perf_log_throttle(event, 0);
7713 			ret = 1;
7714 		}
7715 	}
7716 
7717 	if (event->attr.freq) {
7718 		u64 now = perf_clock();
7719 		s64 delta = now - hwc->freq_time_stamp;
7720 
7721 		hwc->freq_time_stamp = now;
7722 
7723 		if (delta > 0 && delta < 2*TICK_NSEC)
7724 			perf_adjust_period(event, delta, hwc->last_period, true);
7725 	}
7726 
7727 	return ret;
7728 }
7729 
7730 int perf_event_account_interrupt(struct perf_event *event)
7731 {
7732 	return __perf_event_account_interrupt(event, 1);
7733 }
7734 
7735 /*
7736  * Generic event overflow handling, sampling.
7737  */
7738 
7739 static int __perf_event_overflow(struct perf_event *event,
7740 				   int throttle, struct perf_sample_data *data,
7741 				   struct pt_regs *regs)
7742 {
7743 	int events = atomic_read(&event->event_limit);
7744 	int ret = 0;
7745 
7746 	/*
7747 	 * Non-sampling counters might still use the PMI to fold short
7748 	 * hardware counters, ignore those.
7749 	 */
7750 	if (unlikely(!is_sampling_event(event)))
7751 		return 0;
7752 
7753 	ret = __perf_event_account_interrupt(event, throttle);
7754 
7755 	/*
7756 	 * XXX event_limit might not quite work as expected on inherited
7757 	 * events
7758 	 */
7759 
7760 	event->pending_kill = POLL_IN;
7761 	if (events && atomic_dec_and_test(&event->event_limit)) {
7762 		ret = 1;
7763 		event->pending_kill = POLL_HUP;
7764 
7765 		perf_event_disable_inatomic(event);
7766 	}
7767 
7768 	READ_ONCE(event->overflow_handler)(event, data, regs);
7769 
7770 	if (*perf_event_fasync(event) && event->pending_kill) {
7771 		event->pending_wakeup = 1;
7772 		irq_work_queue(&event->pending);
7773 	}
7774 
7775 	return ret;
7776 }
7777 
7778 int perf_event_overflow(struct perf_event *event,
7779 			  struct perf_sample_data *data,
7780 			  struct pt_regs *regs)
7781 {
7782 	return __perf_event_overflow(event, 1, data, regs);
7783 }
7784 
7785 /*
7786  * Generic software event infrastructure
7787  */
7788 
7789 struct swevent_htable {
7790 	struct swevent_hlist		*swevent_hlist;
7791 	struct mutex			hlist_mutex;
7792 	int				hlist_refcount;
7793 
7794 	/* Recursion avoidance in each contexts */
7795 	int				recursion[PERF_NR_CONTEXTS];
7796 };
7797 
7798 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7799 
7800 /*
7801  * We directly increment event->count and keep a second value in
7802  * event->hw.period_left to count intervals. This period event
7803  * is kept in the range [-sample_period, 0] so that we can use the
7804  * sign as trigger.
7805  */
7806 
7807 u64 perf_swevent_set_period(struct perf_event *event)
7808 {
7809 	struct hw_perf_event *hwc = &event->hw;
7810 	u64 period = hwc->last_period;
7811 	u64 nr, offset;
7812 	s64 old, val;
7813 
7814 	hwc->last_period = hwc->sample_period;
7815 
7816 again:
7817 	old = val = local64_read(&hwc->period_left);
7818 	if (val < 0)
7819 		return 0;
7820 
7821 	nr = div64_u64(period + val, period);
7822 	offset = nr * period;
7823 	val -= offset;
7824 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7825 		goto again;
7826 
7827 	return nr;
7828 }
7829 
7830 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7831 				    struct perf_sample_data *data,
7832 				    struct pt_regs *regs)
7833 {
7834 	struct hw_perf_event *hwc = &event->hw;
7835 	int throttle = 0;
7836 
7837 	if (!overflow)
7838 		overflow = perf_swevent_set_period(event);
7839 
7840 	if (hwc->interrupts == MAX_INTERRUPTS)
7841 		return;
7842 
7843 	for (; overflow; overflow--) {
7844 		if (__perf_event_overflow(event, throttle,
7845 					    data, regs)) {
7846 			/*
7847 			 * We inhibit the overflow from happening when
7848 			 * hwc->interrupts == MAX_INTERRUPTS.
7849 			 */
7850 			break;
7851 		}
7852 		throttle = 1;
7853 	}
7854 }
7855 
7856 static void perf_swevent_event(struct perf_event *event, u64 nr,
7857 			       struct perf_sample_data *data,
7858 			       struct pt_regs *regs)
7859 {
7860 	struct hw_perf_event *hwc = &event->hw;
7861 
7862 	local64_add(nr, &event->count);
7863 
7864 	if (!regs)
7865 		return;
7866 
7867 	if (!is_sampling_event(event))
7868 		return;
7869 
7870 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7871 		data->period = nr;
7872 		return perf_swevent_overflow(event, 1, data, regs);
7873 	} else
7874 		data->period = event->hw.last_period;
7875 
7876 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7877 		return perf_swevent_overflow(event, 1, data, regs);
7878 
7879 	if (local64_add_negative(nr, &hwc->period_left))
7880 		return;
7881 
7882 	perf_swevent_overflow(event, 0, data, regs);
7883 }
7884 
7885 static int perf_exclude_event(struct perf_event *event,
7886 			      struct pt_regs *regs)
7887 {
7888 	if (event->hw.state & PERF_HES_STOPPED)
7889 		return 1;
7890 
7891 	if (regs) {
7892 		if (event->attr.exclude_user && user_mode(regs))
7893 			return 1;
7894 
7895 		if (event->attr.exclude_kernel && !user_mode(regs))
7896 			return 1;
7897 	}
7898 
7899 	return 0;
7900 }
7901 
7902 static int perf_swevent_match(struct perf_event *event,
7903 				enum perf_type_id type,
7904 				u32 event_id,
7905 				struct perf_sample_data *data,
7906 				struct pt_regs *regs)
7907 {
7908 	if (event->attr.type != type)
7909 		return 0;
7910 
7911 	if (event->attr.config != event_id)
7912 		return 0;
7913 
7914 	if (perf_exclude_event(event, regs))
7915 		return 0;
7916 
7917 	return 1;
7918 }
7919 
7920 static inline u64 swevent_hash(u64 type, u32 event_id)
7921 {
7922 	u64 val = event_id | (type << 32);
7923 
7924 	return hash_64(val, SWEVENT_HLIST_BITS);
7925 }
7926 
7927 static inline struct hlist_head *
7928 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7929 {
7930 	u64 hash = swevent_hash(type, event_id);
7931 
7932 	return &hlist->heads[hash];
7933 }
7934 
7935 /* For the read side: events when they trigger */
7936 static inline struct hlist_head *
7937 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7938 {
7939 	struct swevent_hlist *hlist;
7940 
7941 	hlist = rcu_dereference(swhash->swevent_hlist);
7942 	if (!hlist)
7943 		return NULL;
7944 
7945 	return __find_swevent_head(hlist, type, event_id);
7946 }
7947 
7948 /* For the event head insertion and removal in the hlist */
7949 static inline struct hlist_head *
7950 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7951 {
7952 	struct swevent_hlist *hlist;
7953 	u32 event_id = event->attr.config;
7954 	u64 type = event->attr.type;
7955 
7956 	/*
7957 	 * Event scheduling is always serialized against hlist allocation
7958 	 * and release. Which makes the protected version suitable here.
7959 	 * The context lock guarantees that.
7960 	 */
7961 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
7962 					  lockdep_is_held(&event->ctx->lock));
7963 	if (!hlist)
7964 		return NULL;
7965 
7966 	return __find_swevent_head(hlist, type, event_id);
7967 }
7968 
7969 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7970 				    u64 nr,
7971 				    struct perf_sample_data *data,
7972 				    struct pt_regs *regs)
7973 {
7974 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7975 	struct perf_event *event;
7976 	struct hlist_head *head;
7977 
7978 	rcu_read_lock();
7979 	head = find_swevent_head_rcu(swhash, type, event_id);
7980 	if (!head)
7981 		goto end;
7982 
7983 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
7984 		if (perf_swevent_match(event, type, event_id, data, regs))
7985 			perf_swevent_event(event, nr, data, regs);
7986 	}
7987 end:
7988 	rcu_read_unlock();
7989 }
7990 
7991 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7992 
7993 int perf_swevent_get_recursion_context(void)
7994 {
7995 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7996 
7997 	return get_recursion_context(swhash->recursion);
7998 }
7999 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
8000 
8001 void perf_swevent_put_recursion_context(int rctx)
8002 {
8003 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8004 
8005 	put_recursion_context(swhash->recursion, rctx);
8006 }
8007 
8008 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8009 {
8010 	struct perf_sample_data data;
8011 
8012 	if (WARN_ON_ONCE(!regs))
8013 		return;
8014 
8015 	perf_sample_data_init(&data, addr, 0);
8016 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
8017 }
8018 
8019 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8020 {
8021 	int rctx;
8022 
8023 	preempt_disable_notrace();
8024 	rctx = perf_swevent_get_recursion_context();
8025 	if (unlikely(rctx < 0))
8026 		goto fail;
8027 
8028 	___perf_sw_event(event_id, nr, regs, addr);
8029 
8030 	perf_swevent_put_recursion_context(rctx);
8031 fail:
8032 	preempt_enable_notrace();
8033 }
8034 
8035 static void perf_swevent_read(struct perf_event *event)
8036 {
8037 }
8038 
8039 static int perf_swevent_add(struct perf_event *event, int flags)
8040 {
8041 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8042 	struct hw_perf_event *hwc = &event->hw;
8043 	struct hlist_head *head;
8044 
8045 	if (is_sampling_event(event)) {
8046 		hwc->last_period = hwc->sample_period;
8047 		perf_swevent_set_period(event);
8048 	}
8049 
8050 	hwc->state = !(flags & PERF_EF_START);
8051 
8052 	head = find_swevent_head(swhash, event);
8053 	if (WARN_ON_ONCE(!head))
8054 		return -EINVAL;
8055 
8056 	hlist_add_head_rcu(&event->hlist_entry, head);
8057 	perf_event_update_userpage(event);
8058 
8059 	return 0;
8060 }
8061 
8062 static void perf_swevent_del(struct perf_event *event, int flags)
8063 {
8064 	hlist_del_rcu(&event->hlist_entry);
8065 }
8066 
8067 static void perf_swevent_start(struct perf_event *event, int flags)
8068 {
8069 	event->hw.state = 0;
8070 }
8071 
8072 static void perf_swevent_stop(struct perf_event *event, int flags)
8073 {
8074 	event->hw.state = PERF_HES_STOPPED;
8075 }
8076 
8077 /* Deref the hlist from the update side */
8078 static inline struct swevent_hlist *
8079 swevent_hlist_deref(struct swevent_htable *swhash)
8080 {
8081 	return rcu_dereference_protected(swhash->swevent_hlist,
8082 					 lockdep_is_held(&swhash->hlist_mutex));
8083 }
8084 
8085 static void swevent_hlist_release(struct swevent_htable *swhash)
8086 {
8087 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
8088 
8089 	if (!hlist)
8090 		return;
8091 
8092 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
8093 	kfree_rcu(hlist, rcu_head);
8094 }
8095 
8096 static void swevent_hlist_put_cpu(int cpu)
8097 {
8098 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8099 
8100 	mutex_lock(&swhash->hlist_mutex);
8101 
8102 	if (!--swhash->hlist_refcount)
8103 		swevent_hlist_release(swhash);
8104 
8105 	mutex_unlock(&swhash->hlist_mutex);
8106 }
8107 
8108 static void swevent_hlist_put(void)
8109 {
8110 	int cpu;
8111 
8112 	for_each_possible_cpu(cpu)
8113 		swevent_hlist_put_cpu(cpu);
8114 }
8115 
8116 static int swevent_hlist_get_cpu(int cpu)
8117 {
8118 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8119 	int err = 0;
8120 
8121 	mutex_lock(&swhash->hlist_mutex);
8122 	if (!swevent_hlist_deref(swhash) &&
8123 	    cpumask_test_cpu(cpu, perf_online_mask)) {
8124 		struct swevent_hlist *hlist;
8125 
8126 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
8127 		if (!hlist) {
8128 			err = -ENOMEM;
8129 			goto exit;
8130 		}
8131 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
8132 	}
8133 	swhash->hlist_refcount++;
8134 exit:
8135 	mutex_unlock(&swhash->hlist_mutex);
8136 
8137 	return err;
8138 }
8139 
8140 static int swevent_hlist_get(void)
8141 {
8142 	int err, cpu, failed_cpu;
8143 
8144 	mutex_lock(&pmus_lock);
8145 	for_each_possible_cpu(cpu) {
8146 		err = swevent_hlist_get_cpu(cpu);
8147 		if (err) {
8148 			failed_cpu = cpu;
8149 			goto fail;
8150 		}
8151 	}
8152 	mutex_unlock(&pmus_lock);
8153 	return 0;
8154 fail:
8155 	for_each_possible_cpu(cpu) {
8156 		if (cpu == failed_cpu)
8157 			break;
8158 		swevent_hlist_put_cpu(cpu);
8159 	}
8160 	mutex_unlock(&pmus_lock);
8161 	return err;
8162 }
8163 
8164 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
8165 
8166 static void sw_perf_event_destroy(struct perf_event *event)
8167 {
8168 	u64 event_id = event->attr.config;
8169 
8170 	WARN_ON(event->parent);
8171 
8172 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
8173 	swevent_hlist_put();
8174 }
8175 
8176 static int perf_swevent_init(struct perf_event *event)
8177 {
8178 	u64 event_id = event->attr.config;
8179 
8180 	if (event->attr.type != PERF_TYPE_SOFTWARE)
8181 		return -ENOENT;
8182 
8183 	/*
8184 	 * no branch sampling for software events
8185 	 */
8186 	if (has_branch_stack(event))
8187 		return -EOPNOTSUPP;
8188 
8189 	switch (event_id) {
8190 	case PERF_COUNT_SW_CPU_CLOCK:
8191 	case PERF_COUNT_SW_TASK_CLOCK:
8192 		return -ENOENT;
8193 
8194 	default:
8195 		break;
8196 	}
8197 
8198 	if (event_id >= PERF_COUNT_SW_MAX)
8199 		return -ENOENT;
8200 
8201 	if (!event->parent) {
8202 		int err;
8203 
8204 		err = swevent_hlist_get();
8205 		if (err)
8206 			return err;
8207 
8208 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
8209 		event->destroy = sw_perf_event_destroy;
8210 	}
8211 
8212 	return 0;
8213 }
8214 
8215 static struct pmu perf_swevent = {
8216 	.task_ctx_nr	= perf_sw_context,
8217 
8218 	.capabilities	= PERF_PMU_CAP_NO_NMI,
8219 
8220 	.event_init	= perf_swevent_init,
8221 	.add		= perf_swevent_add,
8222 	.del		= perf_swevent_del,
8223 	.start		= perf_swevent_start,
8224 	.stop		= perf_swevent_stop,
8225 	.read		= perf_swevent_read,
8226 };
8227 
8228 #ifdef CONFIG_EVENT_TRACING
8229 
8230 static int perf_tp_filter_match(struct perf_event *event,
8231 				struct perf_sample_data *data)
8232 {
8233 	void *record = data->raw->frag.data;
8234 
8235 	/* only top level events have filters set */
8236 	if (event->parent)
8237 		event = event->parent;
8238 
8239 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
8240 		return 1;
8241 	return 0;
8242 }
8243 
8244 static int perf_tp_event_match(struct perf_event *event,
8245 				struct perf_sample_data *data,
8246 				struct pt_regs *regs)
8247 {
8248 	if (event->hw.state & PERF_HES_STOPPED)
8249 		return 0;
8250 	/*
8251 	 * All tracepoints are from kernel-space.
8252 	 */
8253 	if (event->attr.exclude_kernel)
8254 		return 0;
8255 
8256 	if (!perf_tp_filter_match(event, data))
8257 		return 0;
8258 
8259 	return 1;
8260 }
8261 
8262 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
8263 			       struct trace_event_call *call, u64 count,
8264 			       struct pt_regs *regs, struct hlist_head *head,
8265 			       struct task_struct *task)
8266 {
8267 	if (bpf_prog_array_valid(call)) {
8268 		*(struct pt_regs **)raw_data = regs;
8269 		if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
8270 			perf_swevent_put_recursion_context(rctx);
8271 			return;
8272 		}
8273 	}
8274 	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
8275 		      rctx, task);
8276 }
8277 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
8278 
8279 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
8280 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
8281 		   struct task_struct *task)
8282 {
8283 	struct perf_sample_data data;
8284 	struct perf_event *event;
8285 
8286 	struct perf_raw_record raw = {
8287 		.frag = {
8288 			.size = entry_size,
8289 			.data = record,
8290 		},
8291 	};
8292 
8293 	perf_sample_data_init(&data, 0, 0);
8294 	data.raw = &raw;
8295 
8296 	perf_trace_buf_update(record, event_type);
8297 
8298 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
8299 		if (perf_tp_event_match(event, &data, regs))
8300 			perf_swevent_event(event, count, &data, regs);
8301 	}
8302 
8303 	/*
8304 	 * If we got specified a target task, also iterate its context and
8305 	 * deliver this event there too.
8306 	 */
8307 	if (task && task != current) {
8308 		struct perf_event_context *ctx;
8309 		struct trace_entry *entry = record;
8310 
8311 		rcu_read_lock();
8312 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
8313 		if (!ctx)
8314 			goto unlock;
8315 
8316 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
8317 			if (event->cpu != smp_processor_id())
8318 				continue;
8319 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
8320 				continue;
8321 			if (event->attr.config != entry->type)
8322 				continue;
8323 			if (perf_tp_event_match(event, &data, regs))
8324 				perf_swevent_event(event, count, &data, regs);
8325 		}
8326 unlock:
8327 		rcu_read_unlock();
8328 	}
8329 
8330 	perf_swevent_put_recursion_context(rctx);
8331 }
8332 EXPORT_SYMBOL_GPL(perf_tp_event);
8333 
8334 static void tp_perf_event_destroy(struct perf_event *event)
8335 {
8336 	perf_trace_destroy(event);
8337 }
8338 
8339 static int perf_tp_event_init(struct perf_event *event)
8340 {
8341 	int err;
8342 
8343 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
8344 		return -ENOENT;
8345 
8346 	/*
8347 	 * no branch sampling for tracepoint events
8348 	 */
8349 	if (has_branch_stack(event))
8350 		return -EOPNOTSUPP;
8351 
8352 	err = perf_trace_init(event);
8353 	if (err)
8354 		return err;
8355 
8356 	event->destroy = tp_perf_event_destroy;
8357 
8358 	return 0;
8359 }
8360 
8361 static struct pmu perf_tracepoint = {
8362 	.task_ctx_nr	= perf_sw_context,
8363 
8364 	.event_init	= perf_tp_event_init,
8365 	.add		= perf_trace_add,
8366 	.del		= perf_trace_del,
8367 	.start		= perf_swevent_start,
8368 	.stop		= perf_swevent_stop,
8369 	.read		= perf_swevent_read,
8370 };
8371 
8372 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
8373 /*
8374  * Flags in config, used by dynamic PMU kprobe and uprobe
8375  * The flags should match following PMU_FORMAT_ATTR().
8376  *
8377  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
8378  *                               if not set, create kprobe/uprobe
8379  *
8380  * The following values specify a reference counter (or semaphore in the
8381  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
8382  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
8383  *
8384  * PERF_UPROBE_REF_CTR_OFFSET_BITS	# of bits in config as th offset
8385  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT	# of bits to shift left
8386  */
8387 enum perf_probe_config {
8388 	PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
8389 	PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
8390 	PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
8391 };
8392 
8393 PMU_FORMAT_ATTR(retprobe, "config:0");
8394 #endif
8395 
8396 #ifdef CONFIG_KPROBE_EVENTS
8397 static struct attribute *kprobe_attrs[] = {
8398 	&format_attr_retprobe.attr,
8399 	NULL,
8400 };
8401 
8402 static struct attribute_group kprobe_format_group = {
8403 	.name = "format",
8404 	.attrs = kprobe_attrs,
8405 };
8406 
8407 static const struct attribute_group *kprobe_attr_groups[] = {
8408 	&kprobe_format_group,
8409 	NULL,
8410 };
8411 
8412 static int perf_kprobe_event_init(struct perf_event *event);
8413 static struct pmu perf_kprobe = {
8414 	.task_ctx_nr	= perf_sw_context,
8415 	.event_init	= perf_kprobe_event_init,
8416 	.add		= perf_trace_add,
8417 	.del		= perf_trace_del,
8418 	.start		= perf_swevent_start,
8419 	.stop		= perf_swevent_stop,
8420 	.read		= perf_swevent_read,
8421 	.attr_groups	= kprobe_attr_groups,
8422 };
8423 
8424 static int perf_kprobe_event_init(struct perf_event *event)
8425 {
8426 	int err;
8427 	bool is_retprobe;
8428 
8429 	if (event->attr.type != perf_kprobe.type)
8430 		return -ENOENT;
8431 
8432 	if (!capable(CAP_SYS_ADMIN))
8433 		return -EACCES;
8434 
8435 	/*
8436 	 * no branch sampling for probe events
8437 	 */
8438 	if (has_branch_stack(event))
8439 		return -EOPNOTSUPP;
8440 
8441 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8442 	err = perf_kprobe_init(event, is_retprobe);
8443 	if (err)
8444 		return err;
8445 
8446 	event->destroy = perf_kprobe_destroy;
8447 
8448 	return 0;
8449 }
8450 #endif /* CONFIG_KPROBE_EVENTS */
8451 
8452 #ifdef CONFIG_UPROBE_EVENTS
8453 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
8454 
8455 static struct attribute *uprobe_attrs[] = {
8456 	&format_attr_retprobe.attr,
8457 	&format_attr_ref_ctr_offset.attr,
8458 	NULL,
8459 };
8460 
8461 static struct attribute_group uprobe_format_group = {
8462 	.name = "format",
8463 	.attrs = uprobe_attrs,
8464 };
8465 
8466 static const struct attribute_group *uprobe_attr_groups[] = {
8467 	&uprobe_format_group,
8468 	NULL,
8469 };
8470 
8471 static int perf_uprobe_event_init(struct perf_event *event);
8472 static struct pmu perf_uprobe = {
8473 	.task_ctx_nr	= perf_sw_context,
8474 	.event_init	= perf_uprobe_event_init,
8475 	.add		= perf_trace_add,
8476 	.del		= perf_trace_del,
8477 	.start		= perf_swevent_start,
8478 	.stop		= perf_swevent_stop,
8479 	.read		= perf_swevent_read,
8480 	.attr_groups	= uprobe_attr_groups,
8481 };
8482 
8483 static int perf_uprobe_event_init(struct perf_event *event)
8484 {
8485 	int err;
8486 	unsigned long ref_ctr_offset;
8487 	bool is_retprobe;
8488 
8489 	if (event->attr.type != perf_uprobe.type)
8490 		return -ENOENT;
8491 
8492 	if (!capable(CAP_SYS_ADMIN))
8493 		return -EACCES;
8494 
8495 	/*
8496 	 * no branch sampling for probe events
8497 	 */
8498 	if (has_branch_stack(event))
8499 		return -EOPNOTSUPP;
8500 
8501 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8502 	ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
8503 	err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
8504 	if (err)
8505 		return err;
8506 
8507 	event->destroy = perf_uprobe_destroy;
8508 
8509 	return 0;
8510 }
8511 #endif /* CONFIG_UPROBE_EVENTS */
8512 
8513 static inline void perf_tp_register(void)
8514 {
8515 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
8516 #ifdef CONFIG_KPROBE_EVENTS
8517 	perf_pmu_register(&perf_kprobe, "kprobe", -1);
8518 #endif
8519 #ifdef CONFIG_UPROBE_EVENTS
8520 	perf_pmu_register(&perf_uprobe, "uprobe", -1);
8521 #endif
8522 }
8523 
8524 static void perf_event_free_filter(struct perf_event *event)
8525 {
8526 	ftrace_profile_free_filter(event);
8527 }
8528 
8529 #ifdef CONFIG_BPF_SYSCALL
8530 static void bpf_overflow_handler(struct perf_event *event,
8531 				 struct perf_sample_data *data,
8532 				 struct pt_regs *regs)
8533 {
8534 	struct bpf_perf_event_data_kern ctx = {
8535 		.data = data,
8536 		.event = event,
8537 	};
8538 	int ret = 0;
8539 
8540 	ctx.regs = perf_arch_bpf_user_pt_regs(regs);
8541 	preempt_disable();
8542 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8543 		goto out;
8544 	rcu_read_lock();
8545 	ret = BPF_PROG_RUN(event->prog, &ctx);
8546 	rcu_read_unlock();
8547 out:
8548 	__this_cpu_dec(bpf_prog_active);
8549 	preempt_enable();
8550 	if (!ret)
8551 		return;
8552 
8553 	event->orig_overflow_handler(event, data, regs);
8554 }
8555 
8556 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8557 {
8558 	struct bpf_prog *prog;
8559 
8560 	if (event->overflow_handler_context)
8561 		/* hw breakpoint or kernel counter */
8562 		return -EINVAL;
8563 
8564 	if (event->prog)
8565 		return -EEXIST;
8566 
8567 	prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8568 	if (IS_ERR(prog))
8569 		return PTR_ERR(prog);
8570 
8571 	event->prog = prog;
8572 	event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8573 	WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8574 	return 0;
8575 }
8576 
8577 static void perf_event_free_bpf_handler(struct perf_event *event)
8578 {
8579 	struct bpf_prog *prog = event->prog;
8580 
8581 	if (!prog)
8582 		return;
8583 
8584 	WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8585 	event->prog = NULL;
8586 	bpf_prog_put(prog);
8587 }
8588 #else
8589 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8590 {
8591 	return -EOPNOTSUPP;
8592 }
8593 static void perf_event_free_bpf_handler(struct perf_event *event)
8594 {
8595 }
8596 #endif
8597 
8598 /*
8599  * returns true if the event is a tracepoint, or a kprobe/upprobe created
8600  * with perf_event_open()
8601  */
8602 static inline bool perf_event_is_tracing(struct perf_event *event)
8603 {
8604 	if (event->pmu == &perf_tracepoint)
8605 		return true;
8606 #ifdef CONFIG_KPROBE_EVENTS
8607 	if (event->pmu == &perf_kprobe)
8608 		return true;
8609 #endif
8610 #ifdef CONFIG_UPROBE_EVENTS
8611 	if (event->pmu == &perf_uprobe)
8612 		return true;
8613 #endif
8614 	return false;
8615 }
8616 
8617 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8618 {
8619 	bool is_kprobe, is_tracepoint, is_syscall_tp;
8620 	struct bpf_prog *prog;
8621 	int ret;
8622 
8623 	if (!perf_event_is_tracing(event))
8624 		return perf_event_set_bpf_handler(event, prog_fd);
8625 
8626 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8627 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
8628 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
8629 	if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
8630 		/* bpf programs can only be attached to u/kprobe or tracepoint */
8631 		return -EINVAL;
8632 
8633 	prog = bpf_prog_get(prog_fd);
8634 	if (IS_ERR(prog))
8635 		return PTR_ERR(prog);
8636 
8637 	if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
8638 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
8639 	    (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
8640 		/* valid fd, but invalid bpf program type */
8641 		bpf_prog_put(prog);
8642 		return -EINVAL;
8643 	}
8644 
8645 	/* Kprobe override only works for kprobes, not uprobes. */
8646 	if (prog->kprobe_override &&
8647 	    !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
8648 		bpf_prog_put(prog);
8649 		return -EINVAL;
8650 	}
8651 
8652 	if (is_tracepoint || is_syscall_tp) {
8653 		int off = trace_event_get_offsets(event->tp_event);
8654 
8655 		if (prog->aux->max_ctx_offset > off) {
8656 			bpf_prog_put(prog);
8657 			return -EACCES;
8658 		}
8659 	}
8660 
8661 	ret = perf_event_attach_bpf_prog(event, prog);
8662 	if (ret)
8663 		bpf_prog_put(prog);
8664 	return ret;
8665 }
8666 
8667 static void perf_event_free_bpf_prog(struct perf_event *event)
8668 {
8669 	if (!perf_event_is_tracing(event)) {
8670 		perf_event_free_bpf_handler(event);
8671 		return;
8672 	}
8673 	perf_event_detach_bpf_prog(event);
8674 }
8675 
8676 #else
8677 
8678 static inline void perf_tp_register(void)
8679 {
8680 }
8681 
8682 static void perf_event_free_filter(struct perf_event *event)
8683 {
8684 }
8685 
8686 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8687 {
8688 	return -ENOENT;
8689 }
8690 
8691 static void perf_event_free_bpf_prog(struct perf_event *event)
8692 {
8693 }
8694 #endif /* CONFIG_EVENT_TRACING */
8695 
8696 #ifdef CONFIG_HAVE_HW_BREAKPOINT
8697 void perf_bp_event(struct perf_event *bp, void *data)
8698 {
8699 	struct perf_sample_data sample;
8700 	struct pt_regs *regs = data;
8701 
8702 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
8703 
8704 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
8705 		perf_swevent_event(bp, 1, &sample, regs);
8706 }
8707 #endif
8708 
8709 /*
8710  * Allocate a new address filter
8711  */
8712 static struct perf_addr_filter *
8713 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
8714 {
8715 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
8716 	struct perf_addr_filter *filter;
8717 
8718 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
8719 	if (!filter)
8720 		return NULL;
8721 
8722 	INIT_LIST_HEAD(&filter->entry);
8723 	list_add_tail(&filter->entry, filters);
8724 
8725 	return filter;
8726 }
8727 
8728 static void free_filters_list(struct list_head *filters)
8729 {
8730 	struct perf_addr_filter *filter, *iter;
8731 
8732 	list_for_each_entry_safe(filter, iter, filters, entry) {
8733 		path_put(&filter->path);
8734 		list_del(&filter->entry);
8735 		kfree(filter);
8736 	}
8737 }
8738 
8739 /*
8740  * Free existing address filters and optionally install new ones
8741  */
8742 static void perf_addr_filters_splice(struct perf_event *event,
8743 				     struct list_head *head)
8744 {
8745 	unsigned long flags;
8746 	LIST_HEAD(list);
8747 
8748 	if (!has_addr_filter(event))
8749 		return;
8750 
8751 	/* don't bother with children, they don't have their own filters */
8752 	if (event->parent)
8753 		return;
8754 
8755 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8756 
8757 	list_splice_init(&event->addr_filters.list, &list);
8758 	if (head)
8759 		list_splice(head, &event->addr_filters.list);
8760 
8761 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
8762 
8763 	free_filters_list(&list);
8764 }
8765 
8766 /*
8767  * Scan through mm's vmas and see if one of them matches the
8768  * @filter; if so, adjust filter's address range.
8769  * Called with mm::mmap_sem down for reading.
8770  */
8771 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
8772 					    struct mm_struct *mm)
8773 {
8774 	struct vm_area_struct *vma;
8775 
8776 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
8777 		struct file *file = vma->vm_file;
8778 		unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8779 		unsigned long vma_size = vma->vm_end - vma->vm_start;
8780 
8781 		if (!file)
8782 			continue;
8783 
8784 		if (!perf_addr_filter_match(filter, file, off, vma_size))
8785 			continue;
8786 
8787 		return vma->vm_start;
8788 	}
8789 
8790 	return 0;
8791 }
8792 
8793 /*
8794  * Update event's address range filters based on the
8795  * task's existing mappings, if any.
8796  */
8797 static void perf_event_addr_filters_apply(struct perf_event *event)
8798 {
8799 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8800 	struct task_struct *task = READ_ONCE(event->ctx->task);
8801 	struct perf_addr_filter *filter;
8802 	struct mm_struct *mm = NULL;
8803 	unsigned int count = 0;
8804 	unsigned long flags;
8805 
8806 	/*
8807 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
8808 	 * will stop on the parent's child_mutex that our caller is also holding
8809 	 */
8810 	if (task == TASK_TOMBSTONE)
8811 		return;
8812 
8813 	if (!ifh->nr_file_filters)
8814 		return;
8815 
8816 	mm = get_task_mm(event->ctx->task);
8817 	if (!mm)
8818 		goto restart;
8819 
8820 	down_read(&mm->mmap_sem);
8821 
8822 	raw_spin_lock_irqsave(&ifh->lock, flags);
8823 	list_for_each_entry(filter, &ifh->list, entry) {
8824 		event->addr_filters_offs[count] = 0;
8825 
8826 		/*
8827 		 * Adjust base offset if the filter is associated to a binary
8828 		 * that needs to be mapped:
8829 		 */
8830 		if (filter->path.dentry)
8831 			event->addr_filters_offs[count] =
8832 				perf_addr_filter_apply(filter, mm);
8833 
8834 		count++;
8835 	}
8836 
8837 	event->addr_filters_gen++;
8838 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
8839 
8840 	up_read(&mm->mmap_sem);
8841 
8842 	mmput(mm);
8843 
8844 restart:
8845 	perf_event_stop(event, 1);
8846 }
8847 
8848 /*
8849  * Address range filtering: limiting the data to certain
8850  * instruction address ranges. Filters are ioctl()ed to us from
8851  * userspace as ascii strings.
8852  *
8853  * Filter string format:
8854  *
8855  * ACTION RANGE_SPEC
8856  * where ACTION is one of the
8857  *  * "filter": limit the trace to this region
8858  *  * "start": start tracing from this address
8859  *  * "stop": stop tracing at this address/region;
8860  * RANGE_SPEC is
8861  *  * for kernel addresses: <start address>[/<size>]
8862  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
8863  *
8864  * if <size> is not specified or is zero, the range is treated as a single
8865  * address; not valid for ACTION=="filter".
8866  */
8867 enum {
8868 	IF_ACT_NONE = -1,
8869 	IF_ACT_FILTER,
8870 	IF_ACT_START,
8871 	IF_ACT_STOP,
8872 	IF_SRC_FILE,
8873 	IF_SRC_KERNEL,
8874 	IF_SRC_FILEADDR,
8875 	IF_SRC_KERNELADDR,
8876 };
8877 
8878 enum {
8879 	IF_STATE_ACTION = 0,
8880 	IF_STATE_SOURCE,
8881 	IF_STATE_END,
8882 };
8883 
8884 static const match_table_t if_tokens = {
8885 	{ IF_ACT_FILTER,	"filter" },
8886 	{ IF_ACT_START,		"start" },
8887 	{ IF_ACT_STOP,		"stop" },
8888 	{ IF_SRC_FILE,		"%u/%u@%s" },
8889 	{ IF_SRC_KERNEL,	"%u/%u" },
8890 	{ IF_SRC_FILEADDR,	"%u@%s" },
8891 	{ IF_SRC_KERNELADDR,	"%u" },
8892 	{ IF_ACT_NONE,		NULL },
8893 };
8894 
8895 /*
8896  * Address filter string parser
8897  */
8898 static int
8899 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8900 			     struct list_head *filters)
8901 {
8902 	struct perf_addr_filter *filter = NULL;
8903 	char *start, *orig, *filename = NULL;
8904 	substring_t args[MAX_OPT_ARGS];
8905 	int state = IF_STATE_ACTION, token;
8906 	unsigned int kernel = 0;
8907 	int ret = -EINVAL;
8908 
8909 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
8910 	if (!fstr)
8911 		return -ENOMEM;
8912 
8913 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
8914 		static const enum perf_addr_filter_action_t actions[] = {
8915 			[IF_ACT_FILTER]	= PERF_ADDR_FILTER_ACTION_FILTER,
8916 			[IF_ACT_START]	= PERF_ADDR_FILTER_ACTION_START,
8917 			[IF_ACT_STOP]	= PERF_ADDR_FILTER_ACTION_STOP,
8918 		};
8919 		ret = -EINVAL;
8920 
8921 		if (!*start)
8922 			continue;
8923 
8924 		/* filter definition begins */
8925 		if (state == IF_STATE_ACTION) {
8926 			filter = perf_addr_filter_new(event, filters);
8927 			if (!filter)
8928 				goto fail;
8929 		}
8930 
8931 		token = match_token(start, if_tokens, args);
8932 		switch (token) {
8933 		case IF_ACT_FILTER:
8934 		case IF_ACT_START:
8935 		case IF_ACT_STOP:
8936 			if (state != IF_STATE_ACTION)
8937 				goto fail;
8938 
8939 			filter->action = actions[token];
8940 			state = IF_STATE_SOURCE;
8941 			break;
8942 
8943 		case IF_SRC_KERNELADDR:
8944 		case IF_SRC_KERNEL:
8945 			kernel = 1;
8946 
8947 		case IF_SRC_FILEADDR:
8948 		case IF_SRC_FILE:
8949 			if (state != IF_STATE_SOURCE)
8950 				goto fail;
8951 
8952 			*args[0].to = 0;
8953 			ret = kstrtoul(args[0].from, 0, &filter->offset);
8954 			if (ret)
8955 				goto fail;
8956 
8957 			if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
8958 				*args[1].to = 0;
8959 				ret = kstrtoul(args[1].from, 0, &filter->size);
8960 				if (ret)
8961 					goto fail;
8962 			}
8963 
8964 			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8965 				int fpos = token == IF_SRC_FILE ? 2 : 1;
8966 
8967 				filename = match_strdup(&args[fpos]);
8968 				if (!filename) {
8969 					ret = -ENOMEM;
8970 					goto fail;
8971 				}
8972 			}
8973 
8974 			state = IF_STATE_END;
8975 			break;
8976 
8977 		default:
8978 			goto fail;
8979 		}
8980 
8981 		/*
8982 		 * Filter definition is fully parsed, validate and install it.
8983 		 * Make sure that it doesn't contradict itself or the event's
8984 		 * attribute.
8985 		 */
8986 		if (state == IF_STATE_END) {
8987 			ret = -EINVAL;
8988 			if (kernel && event->attr.exclude_kernel)
8989 				goto fail;
8990 
8991 			/*
8992 			 * ACTION "filter" must have a non-zero length region
8993 			 * specified.
8994 			 */
8995 			if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
8996 			    !filter->size)
8997 				goto fail;
8998 
8999 			if (!kernel) {
9000 				if (!filename)
9001 					goto fail;
9002 
9003 				/*
9004 				 * For now, we only support file-based filters
9005 				 * in per-task events; doing so for CPU-wide
9006 				 * events requires additional context switching
9007 				 * trickery, since same object code will be
9008 				 * mapped at different virtual addresses in
9009 				 * different processes.
9010 				 */
9011 				ret = -EOPNOTSUPP;
9012 				if (!event->ctx->task)
9013 					goto fail_free_name;
9014 
9015 				/* look up the path and grab its inode */
9016 				ret = kern_path(filename, LOOKUP_FOLLOW,
9017 						&filter->path);
9018 				if (ret)
9019 					goto fail_free_name;
9020 
9021 				kfree(filename);
9022 				filename = NULL;
9023 
9024 				ret = -EINVAL;
9025 				if (!filter->path.dentry ||
9026 				    !S_ISREG(d_inode(filter->path.dentry)
9027 					     ->i_mode))
9028 					goto fail;
9029 
9030 				event->addr_filters.nr_file_filters++;
9031 			}
9032 
9033 			/* ready to consume more filters */
9034 			state = IF_STATE_ACTION;
9035 			filter = NULL;
9036 		}
9037 	}
9038 
9039 	if (state != IF_STATE_ACTION)
9040 		goto fail;
9041 
9042 	kfree(orig);
9043 
9044 	return 0;
9045 
9046 fail_free_name:
9047 	kfree(filename);
9048 fail:
9049 	free_filters_list(filters);
9050 	kfree(orig);
9051 
9052 	return ret;
9053 }
9054 
9055 static int
9056 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
9057 {
9058 	LIST_HEAD(filters);
9059 	int ret;
9060 
9061 	/*
9062 	 * Since this is called in perf_ioctl() path, we're already holding
9063 	 * ctx::mutex.
9064 	 */
9065 	lockdep_assert_held(&event->ctx->mutex);
9066 
9067 	if (WARN_ON_ONCE(event->parent))
9068 		return -EINVAL;
9069 
9070 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
9071 	if (ret)
9072 		goto fail_clear_files;
9073 
9074 	ret = event->pmu->addr_filters_validate(&filters);
9075 	if (ret)
9076 		goto fail_free_filters;
9077 
9078 	/* remove existing filters, if any */
9079 	perf_addr_filters_splice(event, &filters);
9080 
9081 	/* install new filters */
9082 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
9083 
9084 	return ret;
9085 
9086 fail_free_filters:
9087 	free_filters_list(&filters);
9088 
9089 fail_clear_files:
9090 	event->addr_filters.nr_file_filters = 0;
9091 
9092 	return ret;
9093 }
9094 
9095 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
9096 {
9097 	int ret = -EINVAL;
9098 	char *filter_str;
9099 
9100 	filter_str = strndup_user(arg, PAGE_SIZE);
9101 	if (IS_ERR(filter_str))
9102 		return PTR_ERR(filter_str);
9103 
9104 #ifdef CONFIG_EVENT_TRACING
9105 	if (perf_event_is_tracing(event)) {
9106 		struct perf_event_context *ctx = event->ctx;
9107 
9108 		/*
9109 		 * Beware, here be dragons!!
9110 		 *
9111 		 * the tracepoint muck will deadlock against ctx->mutex, but
9112 		 * the tracepoint stuff does not actually need it. So
9113 		 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
9114 		 * already have a reference on ctx.
9115 		 *
9116 		 * This can result in event getting moved to a different ctx,
9117 		 * but that does not affect the tracepoint state.
9118 		 */
9119 		mutex_unlock(&ctx->mutex);
9120 		ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
9121 		mutex_lock(&ctx->mutex);
9122 	} else
9123 #endif
9124 	if (has_addr_filter(event))
9125 		ret = perf_event_set_addr_filter(event, filter_str);
9126 
9127 	kfree(filter_str);
9128 	return ret;
9129 }
9130 
9131 /*
9132  * hrtimer based swevent callback
9133  */
9134 
9135 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
9136 {
9137 	enum hrtimer_restart ret = HRTIMER_RESTART;
9138 	struct perf_sample_data data;
9139 	struct pt_regs *regs;
9140 	struct perf_event *event;
9141 	u64 period;
9142 
9143 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
9144 
9145 	if (event->state != PERF_EVENT_STATE_ACTIVE)
9146 		return HRTIMER_NORESTART;
9147 
9148 	event->pmu->read(event);
9149 
9150 	perf_sample_data_init(&data, 0, event->hw.last_period);
9151 	regs = get_irq_regs();
9152 
9153 	if (regs && !perf_exclude_event(event, regs)) {
9154 		if (!(event->attr.exclude_idle && is_idle_task(current)))
9155 			if (__perf_event_overflow(event, 1, &data, regs))
9156 				ret = HRTIMER_NORESTART;
9157 	}
9158 
9159 	period = max_t(u64, 10000, event->hw.sample_period);
9160 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
9161 
9162 	return ret;
9163 }
9164 
9165 static void perf_swevent_start_hrtimer(struct perf_event *event)
9166 {
9167 	struct hw_perf_event *hwc = &event->hw;
9168 	s64 period;
9169 
9170 	if (!is_sampling_event(event))
9171 		return;
9172 
9173 	period = local64_read(&hwc->period_left);
9174 	if (period) {
9175 		if (period < 0)
9176 			period = 10000;
9177 
9178 		local64_set(&hwc->period_left, 0);
9179 	} else {
9180 		period = max_t(u64, 10000, hwc->sample_period);
9181 	}
9182 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
9183 		      HRTIMER_MODE_REL_PINNED);
9184 }
9185 
9186 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
9187 {
9188 	struct hw_perf_event *hwc = &event->hw;
9189 
9190 	if (is_sampling_event(event)) {
9191 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
9192 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
9193 
9194 		hrtimer_cancel(&hwc->hrtimer);
9195 	}
9196 }
9197 
9198 static void perf_swevent_init_hrtimer(struct perf_event *event)
9199 {
9200 	struct hw_perf_event *hwc = &event->hw;
9201 
9202 	if (!is_sampling_event(event))
9203 		return;
9204 
9205 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
9206 	hwc->hrtimer.function = perf_swevent_hrtimer;
9207 
9208 	/*
9209 	 * Since hrtimers have a fixed rate, we can do a static freq->period
9210 	 * mapping and avoid the whole period adjust feedback stuff.
9211 	 */
9212 	if (event->attr.freq) {
9213 		long freq = event->attr.sample_freq;
9214 
9215 		event->attr.sample_period = NSEC_PER_SEC / freq;
9216 		hwc->sample_period = event->attr.sample_period;
9217 		local64_set(&hwc->period_left, hwc->sample_period);
9218 		hwc->last_period = hwc->sample_period;
9219 		event->attr.freq = 0;
9220 	}
9221 }
9222 
9223 /*
9224  * Software event: cpu wall time clock
9225  */
9226 
9227 static void cpu_clock_event_update(struct perf_event *event)
9228 {
9229 	s64 prev;
9230 	u64 now;
9231 
9232 	now = local_clock();
9233 	prev = local64_xchg(&event->hw.prev_count, now);
9234 	local64_add(now - prev, &event->count);
9235 }
9236 
9237 static void cpu_clock_event_start(struct perf_event *event, int flags)
9238 {
9239 	local64_set(&event->hw.prev_count, local_clock());
9240 	perf_swevent_start_hrtimer(event);
9241 }
9242 
9243 static void cpu_clock_event_stop(struct perf_event *event, int flags)
9244 {
9245 	perf_swevent_cancel_hrtimer(event);
9246 	cpu_clock_event_update(event);
9247 }
9248 
9249 static int cpu_clock_event_add(struct perf_event *event, int flags)
9250 {
9251 	if (flags & PERF_EF_START)
9252 		cpu_clock_event_start(event, flags);
9253 	perf_event_update_userpage(event);
9254 
9255 	return 0;
9256 }
9257 
9258 static void cpu_clock_event_del(struct perf_event *event, int flags)
9259 {
9260 	cpu_clock_event_stop(event, flags);
9261 }
9262 
9263 static void cpu_clock_event_read(struct perf_event *event)
9264 {
9265 	cpu_clock_event_update(event);
9266 }
9267 
9268 static int cpu_clock_event_init(struct perf_event *event)
9269 {
9270 	if (event->attr.type != PERF_TYPE_SOFTWARE)
9271 		return -ENOENT;
9272 
9273 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
9274 		return -ENOENT;
9275 
9276 	/*
9277 	 * no branch sampling for software events
9278 	 */
9279 	if (has_branch_stack(event))
9280 		return -EOPNOTSUPP;
9281 
9282 	perf_swevent_init_hrtimer(event);
9283 
9284 	return 0;
9285 }
9286 
9287 static struct pmu perf_cpu_clock = {
9288 	.task_ctx_nr	= perf_sw_context,
9289 
9290 	.capabilities	= PERF_PMU_CAP_NO_NMI,
9291 
9292 	.event_init	= cpu_clock_event_init,
9293 	.add		= cpu_clock_event_add,
9294 	.del		= cpu_clock_event_del,
9295 	.start		= cpu_clock_event_start,
9296 	.stop		= cpu_clock_event_stop,
9297 	.read		= cpu_clock_event_read,
9298 };
9299 
9300 /*
9301  * Software event: task time clock
9302  */
9303 
9304 static void task_clock_event_update(struct perf_event *event, u64 now)
9305 {
9306 	u64 prev;
9307 	s64 delta;
9308 
9309 	prev = local64_xchg(&event->hw.prev_count, now);
9310 	delta = now - prev;
9311 	local64_add(delta, &event->count);
9312 }
9313 
9314 static void task_clock_event_start(struct perf_event *event, int flags)
9315 {
9316 	local64_set(&event->hw.prev_count, event->ctx->time);
9317 	perf_swevent_start_hrtimer(event);
9318 }
9319 
9320 static void task_clock_event_stop(struct perf_event *event, int flags)
9321 {
9322 	perf_swevent_cancel_hrtimer(event);
9323 	task_clock_event_update(event, event->ctx->time);
9324 }
9325 
9326 static int task_clock_event_add(struct perf_event *event, int flags)
9327 {
9328 	if (flags & PERF_EF_START)
9329 		task_clock_event_start(event, flags);
9330 	perf_event_update_userpage(event);
9331 
9332 	return 0;
9333 }
9334 
9335 static void task_clock_event_del(struct perf_event *event, int flags)
9336 {
9337 	task_clock_event_stop(event, PERF_EF_UPDATE);
9338 }
9339 
9340 static void task_clock_event_read(struct perf_event *event)
9341 {
9342 	u64 now = perf_clock();
9343 	u64 delta = now - event->ctx->timestamp;
9344 	u64 time = event->ctx->time + delta;
9345 
9346 	task_clock_event_update(event, time);
9347 }
9348 
9349 static int task_clock_event_init(struct perf_event *event)
9350 {
9351 	if (event->attr.type != PERF_TYPE_SOFTWARE)
9352 		return -ENOENT;
9353 
9354 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
9355 		return -ENOENT;
9356 
9357 	/*
9358 	 * no branch sampling for software events
9359 	 */
9360 	if (has_branch_stack(event))
9361 		return -EOPNOTSUPP;
9362 
9363 	perf_swevent_init_hrtimer(event);
9364 
9365 	return 0;
9366 }
9367 
9368 static struct pmu perf_task_clock = {
9369 	.task_ctx_nr	= perf_sw_context,
9370 
9371 	.capabilities	= PERF_PMU_CAP_NO_NMI,
9372 
9373 	.event_init	= task_clock_event_init,
9374 	.add		= task_clock_event_add,
9375 	.del		= task_clock_event_del,
9376 	.start		= task_clock_event_start,
9377 	.stop		= task_clock_event_stop,
9378 	.read		= task_clock_event_read,
9379 };
9380 
9381 static void perf_pmu_nop_void(struct pmu *pmu)
9382 {
9383 }
9384 
9385 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
9386 {
9387 }
9388 
9389 static int perf_pmu_nop_int(struct pmu *pmu)
9390 {
9391 	return 0;
9392 }
9393 
9394 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
9395 
9396 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
9397 {
9398 	__this_cpu_write(nop_txn_flags, flags);
9399 
9400 	if (flags & ~PERF_PMU_TXN_ADD)
9401 		return;
9402 
9403 	perf_pmu_disable(pmu);
9404 }
9405 
9406 static int perf_pmu_commit_txn(struct pmu *pmu)
9407 {
9408 	unsigned int flags = __this_cpu_read(nop_txn_flags);
9409 
9410 	__this_cpu_write(nop_txn_flags, 0);
9411 
9412 	if (flags & ~PERF_PMU_TXN_ADD)
9413 		return 0;
9414 
9415 	perf_pmu_enable(pmu);
9416 	return 0;
9417 }
9418 
9419 static void perf_pmu_cancel_txn(struct pmu *pmu)
9420 {
9421 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
9422 
9423 	__this_cpu_write(nop_txn_flags, 0);
9424 
9425 	if (flags & ~PERF_PMU_TXN_ADD)
9426 		return;
9427 
9428 	perf_pmu_enable(pmu);
9429 }
9430 
9431 static int perf_event_idx_default(struct perf_event *event)
9432 {
9433 	return 0;
9434 }
9435 
9436 /*
9437  * Ensures all contexts with the same task_ctx_nr have the same
9438  * pmu_cpu_context too.
9439  */
9440 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
9441 {
9442 	struct pmu *pmu;
9443 
9444 	if (ctxn < 0)
9445 		return NULL;
9446 
9447 	list_for_each_entry(pmu, &pmus, entry) {
9448 		if (pmu->task_ctx_nr == ctxn)
9449 			return pmu->pmu_cpu_context;
9450 	}
9451 
9452 	return NULL;
9453 }
9454 
9455 static void free_pmu_context(struct pmu *pmu)
9456 {
9457 	/*
9458 	 * Static contexts such as perf_sw_context have a global lifetime
9459 	 * and may be shared between different PMUs. Avoid freeing them
9460 	 * when a single PMU is going away.
9461 	 */
9462 	if (pmu->task_ctx_nr > perf_invalid_context)
9463 		return;
9464 
9465 	free_percpu(pmu->pmu_cpu_context);
9466 }
9467 
9468 /*
9469  * Let userspace know that this PMU supports address range filtering:
9470  */
9471 static ssize_t nr_addr_filters_show(struct device *dev,
9472 				    struct device_attribute *attr,
9473 				    char *page)
9474 {
9475 	struct pmu *pmu = dev_get_drvdata(dev);
9476 
9477 	return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
9478 }
9479 DEVICE_ATTR_RO(nr_addr_filters);
9480 
9481 static struct idr pmu_idr;
9482 
9483 static ssize_t
9484 type_show(struct device *dev, struct device_attribute *attr, char *page)
9485 {
9486 	struct pmu *pmu = dev_get_drvdata(dev);
9487 
9488 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
9489 }
9490 static DEVICE_ATTR_RO(type);
9491 
9492 static ssize_t
9493 perf_event_mux_interval_ms_show(struct device *dev,
9494 				struct device_attribute *attr,
9495 				char *page)
9496 {
9497 	struct pmu *pmu = dev_get_drvdata(dev);
9498 
9499 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
9500 }
9501 
9502 static DEFINE_MUTEX(mux_interval_mutex);
9503 
9504 static ssize_t
9505 perf_event_mux_interval_ms_store(struct device *dev,
9506 				 struct device_attribute *attr,
9507 				 const char *buf, size_t count)
9508 {
9509 	struct pmu *pmu = dev_get_drvdata(dev);
9510 	int timer, cpu, ret;
9511 
9512 	ret = kstrtoint(buf, 0, &timer);
9513 	if (ret)
9514 		return ret;
9515 
9516 	if (timer < 1)
9517 		return -EINVAL;
9518 
9519 	/* same value, noting to do */
9520 	if (timer == pmu->hrtimer_interval_ms)
9521 		return count;
9522 
9523 	mutex_lock(&mux_interval_mutex);
9524 	pmu->hrtimer_interval_ms = timer;
9525 
9526 	/* update all cpuctx for this PMU */
9527 	cpus_read_lock();
9528 	for_each_online_cpu(cpu) {
9529 		struct perf_cpu_context *cpuctx;
9530 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9531 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9532 
9533 		cpu_function_call(cpu,
9534 			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
9535 	}
9536 	cpus_read_unlock();
9537 	mutex_unlock(&mux_interval_mutex);
9538 
9539 	return count;
9540 }
9541 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
9542 
9543 static struct attribute *pmu_dev_attrs[] = {
9544 	&dev_attr_type.attr,
9545 	&dev_attr_perf_event_mux_interval_ms.attr,
9546 	NULL,
9547 };
9548 ATTRIBUTE_GROUPS(pmu_dev);
9549 
9550 static int pmu_bus_running;
9551 static struct bus_type pmu_bus = {
9552 	.name		= "event_source",
9553 	.dev_groups	= pmu_dev_groups,
9554 };
9555 
9556 static void pmu_dev_release(struct device *dev)
9557 {
9558 	kfree(dev);
9559 }
9560 
9561 static int pmu_dev_alloc(struct pmu *pmu)
9562 {
9563 	int ret = -ENOMEM;
9564 
9565 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
9566 	if (!pmu->dev)
9567 		goto out;
9568 
9569 	pmu->dev->groups = pmu->attr_groups;
9570 	device_initialize(pmu->dev);
9571 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
9572 	if (ret)
9573 		goto free_dev;
9574 
9575 	dev_set_drvdata(pmu->dev, pmu);
9576 	pmu->dev->bus = &pmu_bus;
9577 	pmu->dev->release = pmu_dev_release;
9578 	ret = device_add(pmu->dev);
9579 	if (ret)
9580 		goto free_dev;
9581 
9582 	/* For PMUs with address filters, throw in an extra attribute: */
9583 	if (pmu->nr_addr_filters)
9584 		ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
9585 
9586 	if (ret)
9587 		goto del_dev;
9588 
9589 out:
9590 	return ret;
9591 
9592 del_dev:
9593 	device_del(pmu->dev);
9594 
9595 free_dev:
9596 	put_device(pmu->dev);
9597 	goto out;
9598 }
9599 
9600 static struct lock_class_key cpuctx_mutex;
9601 static struct lock_class_key cpuctx_lock;
9602 
9603 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
9604 {
9605 	int cpu, ret;
9606 
9607 	mutex_lock(&pmus_lock);
9608 	ret = -ENOMEM;
9609 	pmu->pmu_disable_count = alloc_percpu(int);
9610 	if (!pmu->pmu_disable_count)
9611 		goto unlock;
9612 
9613 	pmu->type = -1;
9614 	if (!name)
9615 		goto skip_type;
9616 	pmu->name = name;
9617 
9618 	if (type < 0) {
9619 		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9620 		if (type < 0) {
9621 			ret = type;
9622 			goto free_pdc;
9623 		}
9624 	}
9625 	pmu->type = type;
9626 
9627 	if (pmu_bus_running) {
9628 		ret = pmu_dev_alloc(pmu);
9629 		if (ret)
9630 			goto free_idr;
9631 	}
9632 
9633 skip_type:
9634 	if (pmu->task_ctx_nr == perf_hw_context) {
9635 		static int hw_context_taken = 0;
9636 
9637 		/*
9638 		 * Other than systems with heterogeneous CPUs, it never makes
9639 		 * sense for two PMUs to share perf_hw_context. PMUs which are
9640 		 * uncore must use perf_invalid_context.
9641 		 */
9642 		if (WARN_ON_ONCE(hw_context_taken &&
9643 		    !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
9644 			pmu->task_ctx_nr = perf_invalid_context;
9645 
9646 		hw_context_taken = 1;
9647 	}
9648 
9649 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9650 	if (pmu->pmu_cpu_context)
9651 		goto got_cpu_context;
9652 
9653 	ret = -ENOMEM;
9654 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9655 	if (!pmu->pmu_cpu_context)
9656 		goto free_dev;
9657 
9658 	for_each_possible_cpu(cpu) {
9659 		struct perf_cpu_context *cpuctx;
9660 
9661 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9662 		__perf_event_init_context(&cpuctx->ctx);
9663 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
9664 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
9665 		cpuctx->ctx.pmu = pmu;
9666 		cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9667 
9668 		__perf_mux_hrtimer_init(cpuctx, cpu);
9669 	}
9670 
9671 got_cpu_context:
9672 	if (!pmu->start_txn) {
9673 		if (pmu->pmu_enable) {
9674 			/*
9675 			 * If we have pmu_enable/pmu_disable calls, install
9676 			 * transaction stubs that use that to try and batch
9677 			 * hardware accesses.
9678 			 */
9679 			pmu->start_txn  = perf_pmu_start_txn;
9680 			pmu->commit_txn = perf_pmu_commit_txn;
9681 			pmu->cancel_txn = perf_pmu_cancel_txn;
9682 		} else {
9683 			pmu->start_txn  = perf_pmu_nop_txn;
9684 			pmu->commit_txn = perf_pmu_nop_int;
9685 			pmu->cancel_txn = perf_pmu_nop_void;
9686 		}
9687 	}
9688 
9689 	if (!pmu->pmu_enable) {
9690 		pmu->pmu_enable  = perf_pmu_nop_void;
9691 		pmu->pmu_disable = perf_pmu_nop_void;
9692 	}
9693 
9694 	if (!pmu->event_idx)
9695 		pmu->event_idx = perf_event_idx_default;
9696 
9697 	list_add_rcu(&pmu->entry, &pmus);
9698 	atomic_set(&pmu->exclusive_cnt, 0);
9699 	ret = 0;
9700 unlock:
9701 	mutex_unlock(&pmus_lock);
9702 
9703 	return ret;
9704 
9705 free_dev:
9706 	device_del(pmu->dev);
9707 	put_device(pmu->dev);
9708 
9709 free_idr:
9710 	if (pmu->type >= PERF_TYPE_MAX)
9711 		idr_remove(&pmu_idr, pmu->type);
9712 
9713 free_pdc:
9714 	free_percpu(pmu->pmu_disable_count);
9715 	goto unlock;
9716 }
9717 EXPORT_SYMBOL_GPL(perf_pmu_register);
9718 
9719 void perf_pmu_unregister(struct pmu *pmu)
9720 {
9721 	mutex_lock(&pmus_lock);
9722 	list_del_rcu(&pmu->entry);
9723 
9724 	/*
9725 	 * We dereference the pmu list under both SRCU and regular RCU, so
9726 	 * synchronize against both of those.
9727 	 */
9728 	synchronize_srcu(&pmus_srcu);
9729 	synchronize_rcu();
9730 
9731 	free_percpu(pmu->pmu_disable_count);
9732 	if (pmu->type >= PERF_TYPE_MAX)
9733 		idr_remove(&pmu_idr, pmu->type);
9734 	if (pmu_bus_running) {
9735 		if (pmu->nr_addr_filters)
9736 			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
9737 		device_del(pmu->dev);
9738 		put_device(pmu->dev);
9739 	}
9740 	free_pmu_context(pmu);
9741 	mutex_unlock(&pmus_lock);
9742 }
9743 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
9744 
9745 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
9746 {
9747 	struct perf_event_context *ctx = NULL;
9748 	int ret;
9749 
9750 	if (!try_module_get(pmu->module))
9751 		return -ENODEV;
9752 
9753 	/*
9754 	 * A number of pmu->event_init() methods iterate the sibling_list to,
9755 	 * for example, validate if the group fits on the PMU. Therefore,
9756 	 * if this is a sibling event, acquire the ctx->mutex to protect
9757 	 * the sibling_list.
9758 	 */
9759 	if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
9760 		/*
9761 		 * This ctx->mutex can nest when we're called through
9762 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
9763 		 */
9764 		ctx = perf_event_ctx_lock_nested(event->group_leader,
9765 						 SINGLE_DEPTH_NESTING);
9766 		BUG_ON(!ctx);
9767 	}
9768 
9769 	event->pmu = pmu;
9770 	ret = pmu->event_init(event);
9771 
9772 	if (ctx)
9773 		perf_event_ctx_unlock(event->group_leader, ctx);
9774 
9775 	if (ret)
9776 		module_put(pmu->module);
9777 
9778 	return ret;
9779 }
9780 
9781 static struct pmu *perf_init_event(struct perf_event *event)
9782 {
9783 	struct pmu *pmu;
9784 	int idx;
9785 	int ret;
9786 
9787 	idx = srcu_read_lock(&pmus_srcu);
9788 
9789 	/* Try parent's PMU first: */
9790 	if (event->parent && event->parent->pmu) {
9791 		pmu = event->parent->pmu;
9792 		ret = perf_try_init_event(pmu, event);
9793 		if (!ret)
9794 			goto unlock;
9795 	}
9796 
9797 	rcu_read_lock();
9798 	pmu = idr_find(&pmu_idr, event->attr.type);
9799 	rcu_read_unlock();
9800 	if (pmu) {
9801 		ret = perf_try_init_event(pmu, event);
9802 		if (ret)
9803 			pmu = ERR_PTR(ret);
9804 		goto unlock;
9805 	}
9806 
9807 	list_for_each_entry_rcu(pmu, &pmus, entry) {
9808 		ret = perf_try_init_event(pmu, event);
9809 		if (!ret)
9810 			goto unlock;
9811 
9812 		if (ret != -ENOENT) {
9813 			pmu = ERR_PTR(ret);
9814 			goto unlock;
9815 		}
9816 	}
9817 	pmu = ERR_PTR(-ENOENT);
9818 unlock:
9819 	srcu_read_unlock(&pmus_srcu, idx);
9820 
9821 	return pmu;
9822 }
9823 
9824 static void attach_sb_event(struct perf_event *event)
9825 {
9826 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9827 
9828 	raw_spin_lock(&pel->lock);
9829 	list_add_rcu(&event->sb_list, &pel->list);
9830 	raw_spin_unlock(&pel->lock);
9831 }
9832 
9833 /*
9834  * We keep a list of all !task (and therefore per-cpu) events
9835  * that need to receive side-band records.
9836  *
9837  * This avoids having to scan all the various PMU per-cpu contexts
9838  * looking for them.
9839  */
9840 static void account_pmu_sb_event(struct perf_event *event)
9841 {
9842 	if (is_sb_event(event))
9843 		attach_sb_event(event);
9844 }
9845 
9846 static void account_event_cpu(struct perf_event *event, int cpu)
9847 {
9848 	if (event->parent)
9849 		return;
9850 
9851 	if (is_cgroup_event(event))
9852 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9853 }
9854 
9855 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
9856 static void account_freq_event_nohz(void)
9857 {
9858 #ifdef CONFIG_NO_HZ_FULL
9859 	/* Lock so we don't race with concurrent unaccount */
9860 	spin_lock(&nr_freq_lock);
9861 	if (atomic_inc_return(&nr_freq_events) == 1)
9862 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9863 	spin_unlock(&nr_freq_lock);
9864 #endif
9865 }
9866 
9867 static void account_freq_event(void)
9868 {
9869 	if (tick_nohz_full_enabled())
9870 		account_freq_event_nohz();
9871 	else
9872 		atomic_inc(&nr_freq_events);
9873 }
9874 
9875 
9876 static void account_event(struct perf_event *event)
9877 {
9878 	bool inc = false;
9879 
9880 	if (event->parent)
9881 		return;
9882 
9883 	if (event->attach_state & PERF_ATTACH_TASK)
9884 		inc = true;
9885 	if (event->attr.mmap || event->attr.mmap_data)
9886 		atomic_inc(&nr_mmap_events);
9887 	if (event->attr.comm)
9888 		atomic_inc(&nr_comm_events);
9889 	if (event->attr.namespaces)
9890 		atomic_inc(&nr_namespaces_events);
9891 	if (event->attr.task)
9892 		atomic_inc(&nr_task_events);
9893 	if (event->attr.freq)
9894 		account_freq_event();
9895 	if (event->attr.context_switch) {
9896 		atomic_inc(&nr_switch_events);
9897 		inc = true;
9898 	}
9899 	if (has_branch_stack(event))
9900 		inc = true;
9901 	if (is_cgroup_event(event))
9902 		inc = true;
9903 
9904 	if (inc) {
9905 		/*
9906 		 * We need the mutex here because static_branch_enable()
9907 		 * must complete *before* the perf_sched_count increment
9908 		 * becomes visible.
9909 		 */
9910 		if (atomic_inc_not_zero(&perf_sched_count))
9911 			goto enabled;
9912 
9913 		mutex_lock(&perf_sched_mutex);
9914 		if (!atomic_read(&perf_sched_count)) {
9915 			static_branch_enable(&perf_sched_events);
9916 			/*
9917 			 * Guarantee that all CPUs observe they key change and
9918 			 * call the perf scheduling hooks before proceeding to
9919 			 * install events that need them.
9920 			 */
9921 			synchronize_rcu();
9922 		}
9923 		/*
9924 		 * Now that we have waited for the sync_sched(), allow further
9925 		 * increments to by-pass the mutex.
9926 		 */
9927 		atomic_inc(&perf_sched_count);
9928 		mutex_unlock(&perf_sched_mutex);
9929 	}
9930 enabled:
9931 
9932 	account_event_cpu(event, event->cpu);
9933 
9934 	account_pmu_sb_event(event);
9935 }
9936 
9937 /*
9938  * Allocate and initialize an event structure
9939  */
9940 static struct perf_event *
9941 perf_event_alloc(struct perf_event_attr *attr, int cpu,
9942 		 struct task_struct *task,
9943 		 struct perf_event *group_leader,
9944 		 struct perf_event *parent_event,
9945 		 perf_overflow_handler_t overflow_handler,
9946 		 void *context, int cgroup_fd)
9947 {
9948 	struct pmu *pmu;
9949 	struct perf_event *event;
9950 	struct hw_perf_event *hwc;
9951 	long err = -EINVAL;
9952 
9953 	if ((unsigned)cpu >= nr_cpu_ids) {
9954 		if (!task || cpu != -1)
9955 			return ERR_PTR(-EINVAL);
9956 	}
9957 
9958 	event = kzalloc(sizeof(*event), GFP_KERNEL);
9959 	if (!event)
9960 		return ERR_PTR(-ENOMEM);
9961 
9962 	/*
9963 	 * Single events are their own group leaders, with an
9964 	 * empty sibling list:
9965 	 */
9966 	if (!group_leader)
9967 		group_leader = event;
9968 
9969 	mutex_init(&event->child_mutex);
9970 	INIT_LIST_HEAD(&event->child_list);
9971 
9972 	INIT_LIST_HEAD(&event->event_entry);
9973 	INIT_LIST_HEAD(&event->sibling_list);
9974 	INIT_LIST_HEAD(&event->active_list);
9975 	init_event_group(event);
9976 	INIT_LIST_HEAD(&event->rb_entry);
9977 	INIT_LIST_HEAD(&event->active_entry);
9978 	INIT_LIST_HEAD(&event->addr_filters.list);
9979 	INIT_HLIST_NODE(&event->hlist_entry);
9980 
9981 
9982 	init_waitqueue_head(&event->waitq);
9983 	init_irq_work(&event->pending, perf_pending_event);
9984 
9985 	mutex_init(&event->mmap_mutex);
9986 	raw_spin_lock_init(&event->addr_filters.lock);
9987 
9988 	atomic_long_set(&event->refcount, 1);
9989 	event->cpu		= cpu;
9990 	event->attr		= *attr;
9991 	event->group_leader	= group_leader;
9992 	event->pmu		= NULL;
9993 	event->oncpu		= -1;
9994 
9995 	event->parent		= parent_event;
9996 
9997 	event->ns		= get_pid_ns(task_active_pid_ns(current));
9998 	event->id		= atomic64_inc_return(&perf_event_id);
9999 
10000 	event->state		= PERF_EVENT_STATE_INACTIVE;
10001 
10002 	if (task) {
10003 		event->attach_state = PERF_ATTACH_TASK;
10004 		/*
10005 		 * XXX pmu::event_init needs to know what task to account to
10006 		 * and we cannot use the ctx information because we need the
10007 		 * pmu before we get a ctx.
10008 		 */
10009 		get_task_struct(task);
10010 		event->hw.target = task;
10011 	}
10012 
10013 	event->clock = &local_clock;
10014 	if (parent_event)
10015 		event->clock = parent_event->clock;
10016 
10017 	if (!overflow_handler && parent_event) {
10018 		overflow_handler = parent_event->overflow_handler;
10019 		context = parent_event->overflow_handler_context;
10020 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
10021 		if (overflow_handler == bpf_overflow_handler) {
10022 			struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
10023 
10024 			if (IS_ERR(prog)) {
10025 				err = PTR_ERR(prog);
10026 				goto err_ns;
10027 			}
10028 			event->prog = prog;
10029 			event->orig_overflow_handler =
10030 				parent_event->orig_overflow_handler;
10031 		}
10032 #endif
10033 	}
10034 
10035 	if (overflow_handler) {
10036 		event->overflow_handler	= overflow_handler;
10037 		event->overflow_handler_context = context;
10038 	} else if (is_write_backward(event)){
10039 		event->overflow_handler = perf_event_output_backward;
10040 		event->overflow_handler_context = NULL;
10041 	} else {
10042 		event->overflow_handler = perf_event_output_forward;
10043 		event->overflow_handler_context = NULL;
10044 	}
10045 
10046 	perf_event__state_init(event);
10047 
10048 	pmu = NULL;
10049 
10050 	hwc = &event->hw;
10051 	hwc->sample_period = attr->sample_period;
10052 	if (attr->freq && attr->sample_freq)
10053 		hwc->sample_period = 1;
10054 	hwc->last_period = hwc->sample_period;
10055 
10056 	local64_set(&hwc->period_left, hwc->sample_period);
10057 
10058 	/*
10059 	 * We currently do not support PERF_SAMPLE_READ on inherited events.
10060 	 * See perf_output_read().
10061 	 */
10062 	if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
10063 		goto err_ns;
10064 
10065 	if (!has_branch_stack(event))
10066 		event->attr.branch_sample_type = 0;
10067 
10068 	if (cgroup_fd != -1) {
10069 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
10070 		if (err)
10071 			goto err_ns;
10072 	}
10073 
10074 	pmu = perf_init_event(event);
10075 	if (IS_ERR(pmu)) {
10076 		err = PTR_ERR(pmu);
10077 		goto err_ns;
10078 	}
10079 
10080 	err = exclusive_event_init(event);
10081 	if (err)
10082 		goto err_pmu;
10083 
10084 	if (has_addr_filter(event)) {
10085 		event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
10086 						   sizeof(unsigned long),
10087 						   GFP_KERNEL);
10088 		if (!event->addr_filters_offs) {
10089 			err = -ENOMEM;
10090 			goto err_per_task;
10091 		}
10092 
10093 		/* force hw sync on the address filters */
10094 		event->addr_filters_gen = 1;
10095 	}
10096 
10097 	if (!event->parent) {
10098 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
10099 			err = get_callchain_buffers(attr->sample_max_stack);
10100 			if (err)
10101 				goto err_addr_filters;
10102 		}
10103 	}
10104 
10105 	/* symmetric to unaccount_event() in _free_event() */
10106 	account_event(event);
10107 
10108 	return event;
10109 
10110 err_addr_filters:
10111 	kfree(event->addr_filters_offs);
10112 
10113 err_per_task:
10114 	exclusive_event_destroy(event);
10115 
10116 err_pmu:
10117 	if (event->destroy)
10118 		event->destroy(event);
10119 	module_put(pmu->module);
10120 err_ns:
10121 	if (is_cgroup_event(event))
10122 		perf_detach_cgroup(event);
10123 	if (event->ns)
10124 		put_pid_ns(event->ns);
10125 	if (event->hw.target)
10126 		put_task_struct(event->hw.target);
10127 	kfree(event);
10128 
10129 	return ERR_PTR(err);
10130 }
10131 
10132 static int perf_copy_attr(struct perf_event_attr __user *uattr,
10133 			  struct perf_event_attr *attr)
10134 {
10135 	u32 size;
10136 	int ret;
10137 
10138 	if (!access_ok(uattr, PERF_ATTR_SIZE_VER0))
10139 		return -EFAULT;
10140 
10141 	/*
10142 	 * zero the full structure, so that a short copy will be nice.
10143 	 */
10144 	memset(attr, 0, sizeof(*attr));
10145 
10146 	ret = get_user(size, &uattr->size);
10147 	if (ret)
10148 		return ret;
10149 
10150 	if (size > PAGE_SIZE)	/* silly large */
10151 		goto err_size;
10152 
10153 	if (!size)		/* abi compat */
10154 		size = PERF_ATTR_SIZE_VER0;
10155 
10156 	if (size < PERF_ATTR_SIZE_VER0)
10157 		goto err_size;
10158 
10159 	/*
10160 	 * If we're handed a bigger struct than we know of,
10161 	 * ensure all the unknown bits are 0 - i.e. new
10162 	 * user-space does not rely on any kernel feature
10163 	 * extensions we dont know about yet.
10164 	 */
10165 	if (size > sizeof(*attr)) {
10166 		unsigned char __user *addr;
10167 		unsigned char __user *end;
10168 		unsigned char val;
10169 
10170 		addr = (void __user *)uattr + sizeof(*attr);
10171 		end  = (void __user *)uattr + size;
10172 
10173 		for (; addr < end; addr++) {
10174 			ret = get_user(val, addr);
10175 			if (ret)
10176 				return ret;
10177 			if (val)
10178 				goto err_size;
10179 		}
10180 		size = sizeof(*attr);
10181 	}
10182 
10183 	ret = copy_from_user(attr, uattr, size);
10184 	if (ret)
10185 		return -EFAULT;
10186 
10187 	attr->size = size;
10188 
10189 	if (attr->__reserved_1)
10190 		return -EINVAL;
10191 
10192 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
10193 		return -EINVAL;
10194 
10195 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
10196 		return -EINVAL;
10197 
10198 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
10199 		u64 mask = attr->branch_sample_type;
10200 
10201 		/* only using defined bits */
10202 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
10203 			return -EINVAL;
10204 
10205 		/* at least one branch bit must be set */
10206 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
10207 			return -EINVAL;
10208 
10209 		/* propagate priv level, when not set for branch */
10210 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
10211 
10212 			/* exclude_kernel checked on syscall entry */
10213 			if (!attr->exclude_kernel)
10214 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
10215 
10216 			if (!attr->exclude_user)
10217 				mask |= PERF_SAMPLE_BRANCH_USER;
10218 
10219 			if (!attr->exclude_hv)
10220 				mask |= PERF_SAMPLE_BRANCH_HV;
10221 			/*
10222 			 * adjust user setting (for HW filter setup)
10223 			 */
10224 			attr->branch_sample_type = mask;
10225 		}
10226 		/* privileged levels capture (kernel, hv): check permissions */
10227 		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
10228 		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10229 			return -EACCES;
10230 	}
10231 
10232 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
10233 		ret = perf_reg_validate(attr->sample_regs_user);
10234 		if (ret)
10235 			return ret;
10236 	}
10237 
10238 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
10239 		if (!arch_perf_have_user_stack_dump())
10240 			return -ENOSYS;
10241 
10242 		/*
10243 		 * We have __u32 type for the size, but so far
10244 		 * we can only use __u16 as maximum due to the
10245 		 * __u16 sample size limit.
10246 		 */
10247 		if (attr->sample_stack_user >= USHRT_MAX)
10248 			return -EINVAL;
10249 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
10250 			return -EINVAL;
10251 	}
10252 
10253 	if (!attr->sample_max_stack)
10254 		attr->sample_max_stack = sysctl_perf_event_max_stack;
10255 
10256 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
10257 		ret = perf_reg_validate(attr->sample_regs_intr);
10258 out:
10259 	return ret;
10260 
10261 err_size:
10262 	put_user(sizeof(*attr), &uattr->size);
10263 	ret = -E2BIG;
10264 	goto out;
10265 }
10266 
10267 static int
10268 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
10269 {
10270 	struct ring_buffer *rb = NULL;
10271 	int ret = -EINVAL;
10272 
10273 	if (!output_event)
10274 		goto set;
10275 
10276 	/* don't allow circular references */
10277 	if (event == output_event)
10278 		goto out;
10279 
10280 	/*
10281 	 * Don't allow cross-cpu buffers
10282 	 */
10283 	if (output_event->cpu != event->cpu)
10284 		goto out;
10285 
10286 	/*
10287 	 * If its not a per-cpu rb, it must be the same task.
10288 	 */
10289 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
10290 		goto out;
10291 
10292 	/*
10293 	 * Mixing clocks in the same buffer is trouble you don't need.
10294 	 */
10295 	if (output_event->clock != event->clock)
10296 		goto out;
10297 
10298 	/*
10299 	 * Either writing ring buffer from beginning or from end.
10300 	 * Mixing is not allowed.
10301 	 */
10302 	if (is_write_backward(output_event) != is_write_backward(event))
10303 		goto out;
10304 
10305 	/*
10306 	 * If both events generate aux data, they must be on the same PMU
10307 	 */
10308 	if (has_aux(event) && has_aux(output_event) &&
10309 	    event->pmu != output_event->pmu)
10310 		goto out;
10311 
10312 set:
10313 	mutex_lock(&event->mmap_mutex);
10314 	/* Can't redirect output if we've got an active mmap() */
10315 	if (atomic_read(&event->mmap_count))
10316 		goto unlock;
10317 
10318 	if (output_event) {
10319 		/* get the rb we want to redirect to */
10320 		rb = ring_buffer_get(output_event);
10321 		if (!rb)
10322 			goto unlock;
10323 	}
10324 
10325 	ring_buffer_attach(event, rb);
10326 
10327 	ret = 0;
10328 unlock:
10329 	mutex_unlock(&event->mmap_mutex);
10330 
10331 out:
10332 	return ret;
10333 }
10334 
10335 static void mutex_lock_double(struct mutex *a, struct mutex *b)
10336 {
10337 	if (b < a)
10338 		swap(a, b);
10339 
10340 	mutex_lock(a);
10341 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
10342 }
10343 
10344 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
10345 {
10346 	bool nmi_safe = false;
10347 
10348 	switch (clk_id) {
10349 	case CLOCK_MONOTONIC:
10350 		event->clock = &ktime_get_mono_fast_ns;
10351 		nmi_safe = true;
10352 		break;
10353 
10354 	case CLOCK_MONOTONIC_RAW:
10355 		event->clock = &ktime_get_raw_fast_ns;
10356 		nmi_safe = true;
10357 		break;
10358 
10359 	case CLOCK_REALTIME:
10360 		event->clock = &ktime_get_real_ns;
10361 		break;
10362 
10363 	case CLOCK_BOOTTIME:
10364 		event->clock = &ktime_get_boot_ns;
10365 		break;
10366 
10367 	case CLOCK_TAI:
10368 		event->clock = &ktime_get_tai_ns;
10369 		break;
10370 
10371 	default:
10372 		return -EINVAL;
10373 	}
10374 
10375 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
10376 		return -EINVAL;
10377 
10378 	return 0;
10379 }
10380 
10381 /*
10382  * Variation on perf_event_ctx_lock_nested(), except we take two context
10383  * mutexes.
10384  */
10385 static struct perf_event_context *
10386 __perf_event_ctx_lock_double(struct perf_event *group_leader,
10387 			     struct perf_event_context *ctx)
10388 {
10389 	struct perf_event_context *gctx;
10390 
10391 again:
10392 	rcu_read_lock();
10393 	gctx = READ_ONCE(group_leader->ctx);
10394 	if (!atomic_inc_not_zero(&gctx->refcount)) {
10395 		rcu_read_unlock();
10396 		goto again;
10397 	}
10398 	rcu_read_unlock();
10399 
10400 	mutex_lock_double(&gctx->mutex, &ctx->mutex);
10401 
10402 	if (group_leader->ctx != gctx) {
10403 		mutex_unlock(&ctx->mutex);
10404 		mutex_unlock(&gctx->mutex);
10405 		put_ctx(gctx);
10406 		goto again;
10407 	}
10408 
10409 	return gctx;
10410 }
10411 
10412 /**
10413  * sys_perf_event_open - open a performance event, associate it to a task/cpu
10414  *
10415  * @attr_uptr:	event_id type attributes for monitoring/sampling
10416  * @pid:		target pid
10417  * @cpu:		target cpu
10418  * @group_fd:		group leader event fd
10419  */
10420 SYSCALL_DEFINE5(perf_event_open,
10421 		struct perf_event_attr __user *, attr_uptr,
10422 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
10423 {
10424 	struct perf_event *group_leader = NULL, *output_event = NULL;
10425 	struct perf_event *event, *sibling;
10426 	struct perf_event_attr attr;
10427 	struct perf_event_context *ctx, *uninitialized_var(gctx);
10428 	struct file *event_file = NULL;
10429 	struct fd group = {NULL, 0};
10430 	struct task_struct *task = NULL;
10431 	struct pmu *pmu;
10432 	int event_fd;
10433 	int move_group = 0;
10434 	int err;
10435 	int f_flags = O_RDWR;
10436 	int cgroup_fd = -1;
10437 
10438 	/* for future expandability... */
10439 	if (flags & ~PERF_FLAG_ALL)
10440 		return -EINVAL;
10441 
10442 	err = perf_copy_attr(attr_uptr, &attr);
10443 	if (err)
10444 		return err;
10445 
10446 	if (!attr.exclude_kernel) {
10447 		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10448 			return -EACCES;
10449 	}
10450 
10451 	if (attr.namespaces) {
10452 		if (!capable(CAP_SYS_ADMIN))
10453 			return -EACCES;
10454 	}
10455 
10456 	if (attr.freq) {
10457 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
10458 			return -EINVAL;
10459 	} else {
10460 		if (attr.sample_period & (1ULL << 63))
10461 			return -EINVAL;
10462 	}
10463 
10464 	/* Only privileged users can get physical addresses */
10465 	if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) &&
10466 	    perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10467 		return -EACCES;
10468 
10469 	/*
10470 	 * In cgroup mode, the pid argument is used to pass the fd
10471 	 * opened to the cgroup directory in cgroupfs. The cpu argument
10472 	 * designates the cpu on which to monitor threads from that
10473 	 * cgroup.
10474 	 */
10475 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
10476 		return -EINVAL;
10477 
10478 	if (flags & PERF_FLAG_FD_CLOEXEC)
10479 		f_flags |= O_CLOEXEC;
10480 
10481 	event_fd = get_unused_fd_flags(f_flags);
10482 	if (event_fd < 0)
10483 		return event_fd;
10484 
10485 	if (group_fd != -1) {
10486 		err = perf_fget_light(group_fd, &group);
10487 		if (err)
10488 			goto err_fd;
10489 		group_leader = group.file->private_data;
10490 		if (flags & PERF_FLAG_FD_OUTPUT)
10491 			output_event = group_leader;
10492 		if (flags & PERF_FLAG_FD_NO_GROUP)
10493 			group_leader = NULL;
10494 	}
10495 
10496 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
10497 		task = find_lively_task_by_vpid(pid);
10498 		if (IS_ERR(task)) {
10499 			err = PTR_ERR(task);
10500 			goto err_group_fd;
10501 		}
10502 	}
10503 
10504 	if (task && group_leader &&
10505 	    group_leader->attr.inherit != attr.inherit) {
10506 		err = -EINVAL;
10507 		goto err_task;
10508 	}
10509 
10510 	if (task) {
10511 		err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
10512 		if (err)
10513 			goto err_task;
10514 
10515 		/*
10516 		 * Reuse ptrace permission checks for now.
10517 		 *
10518 		 * We must hold cred_guard_mutex across this and any potential
10519 		 * perf_install_in_context() call for this new event to
10520 		 * serialize against exec() altering our credentials (and the
10521 		 * perf_event_exit_task() that could imply).
10522 		 */
10523 		err = -EACCES;
10524 		if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
10525 			goto err_cred;
10526 	}
10527 
10528 	if (flags & PERF_FLAG_PID_CGROUP)
10529 		cgroup_fd = pid;
10530 
10531 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
10532 				 NULL, NULL, cgroup_fd);
10533 	if (IS_ERR(event)) {
10534 		err = PTR_ERR(event);
10535 		goto err_cred;
10536 	}
10537 
10538 	if (is_sampling_event(event)) {
10539 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
10540 			err = -EOPNOTSUPP;
10541 			goto err_alloc;
10542 		}
10543 	}
10544 
10545 	/*
10546 	 * Special case software events and allow them to be part of
10547 	 * any hardware group.
10548 	 */
10549 	pmu = event->pmu;
10550 
10551 	if (attr.use_clockid) {
10552 		err = perf_event_set_clock(event, attr.clockid);
10553 		if (err)
10554 			goto err_alloc;
10555 	}
10556 
10557 	if (pmu->task_ctx_nr == perf_sw_context)
10558 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
10559 
10560 	if (group_leader) {
10561 		if (is_software_event(event) &&
10562 		    !in_software_context(group_leader)) {
10563 			/*
10564 			 * If the event is a sw event, but the group_leader
10565 			 * is on hw context.
10566 			 *
10567 			 * Allow the addition of software events to hw
10568 			 * groups, this is safe because software events
10569 			 * never fail to schedule.
10570 			 */
10571 			pmu = group_leader->ctx->pmu;
10572 		} else if (!is_software_event(event) &&
10573 			   is_software_event(group_leader) &&
10574 			   (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10575 			/*
10576 			 * In case the group is a pure software group, and we
10577 			 * try to add a hardware event, move the whole group to
10578 			 * the hardware context.
10579 			 */
10580 			move_group = 1;
10581 		}
10582 	}
10583 
10584 	/*
10585 	 * Get the target context (task or percpu):
10586 	 */
10587 	ctx = find_get_context(pmu, task, event);
10588 	if (IS_ERR(ctx)) {
10589 		err = PTR_ERR(ctx);
10590 		goto err_alloc;
10591 	}
10592 
10593 	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
10594 		err = -EBUSY;
10595 		goto err_context;
10596 	}
10597 
10598 	/*
10599 	 * Look up the group leader (we will attach this event to it):
10600 	 */
10601 	if (group_leader) {
10602 		err = -EINVAL;
10603 
10604 		/*
10605 		 * Do not allow a recursive hierarchy (this new sibling
10606 		 * becoming part of another group-sibling):
10607 		 */
10608 		if (group_leader->group_leader != group_leader)
10609 			goto err_context;
10610 
10611 		/* All events in a group should have the same clock */
10612 		if (group_leader->clock != event->clock)
10613 			goto err_context;
10614 
10615 		/*
10616 		 * Make sure we're both events for the same CPU;
10617 		 * grouping events for different CPUs is broken; since
10618 		 * you can never concurrently schedule them anyhow.
10619 		 */
10620 		if (group_leader->cpu != event->cpu)
10621 			goto err_context;
10622 
10623 		/*
10624 		 * Make sure we're both on the same task, or both
10625 		 * per-CPU events.
10626 		 */
10627 		if (group_leader->ctx->task != ctx->task)
10628 			goto err_context;
10629 
10630 		/*
10631 		 * Do not allow to attach to a group in a different task
10632 		 * or CPU context. If we're moving SW events, we'll fix
10633 		 * this up later, so allow that.
10634 		 */
10635 		if (!move_group && group_leader->ctx != ctx)
10636 			goto err_context;
10637 
10638 		/*
10639 		 * Only a group leader can be exclusive or pinned
10640 		 */
10641 		if (attr.exclusive || attr.pinned)
10642 			goto err_context;
10643 	}
10644 
10645 	if (output_event) {
10646 		err = perf_event_set_output(event, output_event);
10647 		if (err)
10648 			goto err_context;
10649 	}
10650 
10651 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
10652 					f_flags);
10653 	if (IS_ERR(event_file)) {
10654 		err = PTR_ERR(event_file);
10655 		event_file = NULL;
10656 		goto err_context;
10657 	}
10658 
10659 	if (move_group) {
10660 		gctx = __perf_event_ctx_lock_double(group_leader, ctx);
10661 
10662 		if (gctx->task == TASK_TOMBSTONE) {
10663 			err = -ESRCH;
10664 			goto err_locked;
10665 		}
10666 
10667 		/*
10668 		 * Check if we raced against another sys_perf_event_open() call
10669 		 * moving the software group underneath us.
10670 		 */
10671 		if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10672 			/*
10673 			 * If someone moved the group out from under us, check
10674 			 * if this new event wound up on the same ctx, if so
10675 			 * its the regular !move_group case, otherwise fail.
10676 			 */
10677 			if (gctx != ctx) {
10678 				err = -EINVAL;
10679 				goto err_locked;
10680 			} else {
10681 				perf_event_ctx_unlock(group_leader, gctx);
10682 				move_group = 0;
10683 			}
10684 		}
10685 	} else {
10686 		mutex_lock(&ctx->mutex);
10687 	}
10688 
10689 	if (ctx->task == TASK_TOMBSTONE) {
10690 		err = -ESRCH;
10691 		goto err_locked;
10692 	}
10693 
10694 	if (!perf_event_validate_size(event)) {
10695 		err = -E2BIG;
10696 		goto err_locked;
10697 	}
10698 
10699 	if (!task) {
10700 		/*
10701 		 * Check if the @cpu we're creating an event for is online.
10702 		 *
10703 		 * We use the perf_cpu_context::ctx::mutex to serialize against
10704 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10705 		 */
10706 		struct perf_cpu_context *cpuctx =
10707 			container_of(ctx, struct perf_cpu_context, ctx);
10708 
10709 		if (!cpuctx->online) {
10710 			err = -ENODEV;
10711 			goto err_locked;
10712 		}
10713 	}
10714 
10715 
10716 	/*
10717 	 * Must be under the same ctx::mutex as perf_install_in_context(),
10718 	 * because we need to serialize with concurrent event creation.
10719 	 */
10720 	if (!exclusive_event_installable(event, ctx)) {
10721 		/* exclusive and group stuff are assumed mutually exclusive */
10722 		WARN_ON_ONCE(move_group);
10723 
10724 		err = -EBUSY;
10725 		goto err_locked;
10726 	}
10727 
10728 	WARN_ON_ONCE(ctx->parent_ctx);
10729 
10730 	/*
10731 	 * This is the point on no return; we cannot fail hereafter. This is
10732 	 * where we start modifying current state.
10733 	 */
10734 
10735 	if (move_group) {
10736 		/*
10737 		 * See perf_event_ctx_lock() for comments on the details
10738 		 * of swizzling perf_event::ctx.
10739 		 */
10740 		perf_remove_from_context(group_leader, 0);
10741 		put_ctx(gctx);
10742 
10743 		for_each_sibling_event(sibling, group_leader) {
10744 			perf_remove_from_context(sibling, 0);
10745 			put_ctx(gctx);
10746 		}
10747 
10748 		/*
10749 		 * Wait for everybody to stop referencing the events through
10750 		 * the old lists, before installing it on new lists.
10751 		 */
10752 		synchronize_rcu();
10753 
10754 		/*
10755 		 * Install the group siblings before the group leader.
10756 		 *
10757 		 * Because a group leader will try and install the entire group
10758 		 * (through the sibling list, which is still in-tact), we can
10759 		 * end up with siblings installed in the wrong context.
10760 		 *
10761 		 * By installing siblings first we NO-OP because they're not
10762 		 * reachable through the group lists.
10763 		 */
10764 		for_each_sibling_event(sibling, group_leader) {
10765 			perf_event__state_init(sibling);
10766 			perf_install_in_context(ctx, sibling, sibling->cpu);
10767 			get_ctx(ctx);
10768 		}
10769 
10770 		/*
10771 		 * Removing from the context ends up with disabled
10772 		 * event. What we want here is event in the initial
10773 		 * startup state, ready to be add into new context.
10774 		 */
10775 		perf_event__state_init(group_leader);
10776 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
10777 		get_ctx(ctx);
10778 	}
10779 
10780 	/*
10781 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
10782 	 * that we're serialized against further additions and before
10783 	 * perf_install_in_context() which is the point the event is active and
10784 	 * can use these values.
10785 	 */
10786 	perf_event__header_size(event);
10787 	perf_event__id_header_size(event);
10788 
10789 	event->owner = current;
10790 
10791 	perf_install_in_context(ctx, event, event->cpu);
10792 	perf_unpin_context(ctx);
10793 
10794 	if (move_group)
10795 		perf_event_ctx_unlock(group_leader, gctx);
10796 	mutex_unlock(&ctx->mutex);
10797 
10798 	if (task) {
10799 		mutex_unlock(&task->signal->cred_guard_mutex);
10800 		put_task_struct(task);
10801 	}
10802 
10803 	mutex_lock(&current->perf_event_mutex);
10804 	list_add_tail(&event->owner_entry, &current->perf_event_list);
10805 	mutex_unlock(&current->perf_event_mutex);
10806 
10807 	/*
10808 	 * Drop the reference on the group_event after placing the
10809 	 * new event on the sibling_list. This ensures destruction
10810 	 * of the group leader will find the pointer to itself in
10811 	 * perf_group_detach().
10812 	 */
10813 	fdput(group);
10814 	fd_install(event_fd, event_file);
10815 	return event_fd;
10816 
10817 err_locked:
10818 	if (move_group)
10819 		perf_event_ctx_unlock(group_leader, gctx);
10820 	mutex_unlock(&ctx->mutex);
10821 /* err_file: */
10822 	fput(event_file);
10823 err_context:
10824 	perf_unpin_context(ctx);
10825 	put_ctx(ctx);
10826 err_alloc:
10827 	/*
10828 	 * If event_file is set, the fput() above will have called ->release()
10829 	 * and that will take care of freeing the event.
10830 	 */
10831 	if (!event_file)
10832 		free_event(event);
10833 err_cred:
10834 	if (task)
10835 		mutex_unlock(&task->signal->cred_guard_mutex);
10836 err_task:
10837 	if (task)
10838 		put_task_struct(task);
10839 err_group_fd:
10840 	fdput(group);
10841 err_fd:
10842 	put_unused_fd(event_fd);
10843 	return err;
10844 }
10845 
10846 /**
10847  * perf_event_create_kernel_counter
10848  *
10849  * @attr: attributes of the counter to create
10850  * @cpu: cpu in which the counter is bound
10851  * @task: task to profile (NULL for percpu)
10852  */
10853 struct perf_event *
10854 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
10855 				 struct task_struct *task,
10856 				 perf_overflow_handler_t overflow_handler,
10857 				 void *context)
10858 {
10859 	struct perf_event_context *ctx;
10860 	struct perf_event *event;
10861 	int err;
10862 
10863 	/*
10864 	 * Get the target context (task or percpu):
10865 	 */
10866 
10867 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
10868 				 overflow_handler, context, -1);
10869 	if (IS_ERR(event)) {
10870 		err = PTR_ERR(event);
10871 		goto err;
10872 	}
10873 
10874 	/* Mark owner so we could distinguish it from user events. */
10875 	event->owner = TASK_TOMBSTONE;
10876 
10877 	ctx = find_get_context(event->pmu, task, event);
10878 	if (IS_ERR(ctx)) {
10879 		err = PTR_ERR(ctx);
10880 		goto err_free;
10881 	}
10882 
10883 	WARN_ON_ONCE(ctx->parent_ctx);
10884 	mutex_lock(&ctx->mutex);
10885 	if (ctx->task == TASK_TOMBSTONE) {
10886 		err = -ESRCH;
10887 		goto err_unlock;
10888 	}
10889 
10890 	if (!task) {
10891 		/*
10892 		 * Check if the @cpu we're creating an event for is online.
10893 		 *
10894 		 * We use the perf_cpu_context::ctx::mutex to serialize against
10895 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10896 		 */
10897 		struct perf_cpu_context *cpuctx =
10898 			container_of(ctx, struct perf_cpu_context, ctx);
10899 		if (!cpuctx->online) {
10900 			err = -ENODEV;
10901 			goto err_unlock;
10902 		}
10903 	}
10904 
10905 	if (!exclusive_event_installable(event, ctx)) {
10906 		err = -EBUSY;
10907 		goto err_unlock;
10908 	}
10909 
10910 	perf_install_in_context(ctx, event, cpu);
10911 	perf_unpin_context(ctx);
10912 	mutex_unlock(&ctx->mutex);
10913 
10914 	return event;
10915 
10916 err_unlock:
10917 	mutex_unlock(&ctx->mutex);
10918 	perf_unpin_context(ctx);
10919 	put_ctx(ctx);
10920 err_free:
10921 	free_event(event);
10922 err:
10923 	return ERR_PTR(err);
10924 }
10925 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
10926 
10927 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10928 {
10929 	struct perf_event_context *src_ctx;
10930 	struct perf_event_context *dst_ctx;
10931 	struct perf_event *event, *tmp;
10932 	LIST_HEAD(events);
10933 
10934 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
10935 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
10936 
10937 	/*
10938 	 * See perf_event_ctx_lock() for comments on the details
10939 	 * of swizzling perf_event::ctx.
10940 	 */
10941 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
10942 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
10943 				 event_entry) {
10944 		perf_remove_from_context(event, 0);
10945 		unaccount_event_cpu(event, src_cpu);
10946 		put_ctx(src_ctx);
10947 		list_add(&event->migrate_entry, &events);
10948 	}
10949 
10950 	/*
10951 	 * Wait for the events to quiesce before re-instating them.
10952 	 */
10953 	synchronize_rcu();
10954 
10955 	/*
10956 	 * Re-instate events in 2 passes.
10957 	 *
10958 	 * Skip over group leaders and only install siblings on this first
10959 	 * pass, siblings will not get enabled without a leader, however a
10960 	 * leader will enable its siblings, even if those are still on the old
10961 	 * context.
10962 	 */
10963 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10964 		if (event->group_leader == event)
10965 			continue;
10966 
10967 		list_del(&event->migrate_entry);
10968 		if (event->state >= PERF_EVENT_STATE_OFF)
10969 			event->state = PERF_EVENT_STATE_INACTIVE;
10970 		account_event_cpu(event, dst_cpu);
10971 		perf_install_in_context(dst_ctx, event, dst_cpu);
10972 		get_ctx(dst_ctx);
10973 	}
10974 
10975 	/*
10976 	 * Once all the siblings are setup properly, install the group leaders
10977 	 * to make it go.
10978 	 */
10979 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10980 		list_del(&event->migrate_entry);
10981 		if (event->state >= PERF_EVENT_STATE_OFF)
10982 			event->state = PERF_EVENT_STATE_INACTIVE;
10983 		account_event_cpu(event, dst_cpu);
10984 		perf_install_in_context(dst_ctx, event, dst_cpu);
10985 		get_ctx(dst_ctx);
10986 	}
10987 	mutex_unlock(&dst_ctx->mutex);
10988 	mutex_unlock(&src_ctx->mutex);
10989 }
10990 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10991 
10992 static void sync_child_event(struct perf_event *child_event,
10993 			       struct task_struct *child)
10994 {
10995 	struct perf_event *parent_event = child_event->parent;
10996 	u64 child_val;
10997 
10998 	if (child_event->attr.inherit_stat)
10999 		perf_event_read_event(child_event, child);
11000 
11001 	child_val = perf_event_count(child_event);
11002 
11003 	/*
11004 	 * Add back the child's count to the parent's count:
11005 	 */
11006 	atomic64_add(child_val, &parent_event->child_count);
11007 	atomic64_add(child_event->total_time_enabled,
11008 		     &parent_event->child_total_time_enabled);
11009 	atomic64_add(child_event->total_time_running,
11010 		     &parent_event->child_total_time_running);
11011 }
11012 
11013 static void
11014 perf_event_exit_event(struct perf_event *child_event,
11015 		      struct perf_event_context *child_ctx,
11016 		      struct task_struct *child)
11017 {
11018 	struct perf_event *parent_event = child_event->parent;
11019 
11020 	/*
11021 	 * Do not destroy the 'original' grouping; because of the context
11022 	 * switch optimization the original events could've ended up in a
11023 	 * random child task.
11024 	 *
11025 	 * If we were to destroy the original group, all group related
11026 	 * operations would cease to function properly after this random
11027 	 * child dies.
11028 	 *
11029 	 * Do destroy all inherited groups, we don't care about those
11030 	 * and being thorough is better.
11031 	 */
11032 	raw_spin_lock_irq(&child_ctx->lock);
11033 	WARN_ON_ONCE(child_ctx->is_active);
11034 
11035 	if (parent_event)
11036 		perf_group_detach(child_event);
11037 	list_del_event(child_event, child_ctx);
11038 	perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
11039 	raw_spin_unlock_irq(&child_ctx->lock);
11040 
11041 	/*
11042 	 * Parent events are governed by their filedesc, retain them.
11043 	 */
11044 	if (!parent_event) {
11045 		perf_event_wakeup(child_event);
11046 		return;
11047 	}
11048 	/*
11049 	 * Child events can be cleaned up.
11050 	 */
11051 
11052 	sync_child_event(child_event, child);
11053 
11054 	/*
11055 	 * Remove this event from the parent's list
11056 	 */
11057 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
11058 	mutex_lock(&parent_event->child_mutex);
11059 	list_del_init(&child_event->child_list);
11060 	mutex_unlock(&parent_event->child_mutex);
11061 
11062 	/*
11063 	 * Kick perf_poll() for is_event_hup().
11064 	 */
11065 	perf_event_wakeup(parent_event);
11066 	free_event(child_event);
11067 	put_event(parent_event);
11068 }
11069 
11070 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
11071 {
11072 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
11073 	struct perf_event *child_event, *next;
11074 
11075 	WARN_ON_ONCE(child != current);
11076 
11077 	child_ctx = perf_pin_task_context(child, ctxn);
11078 	if (!child_ctx)
11079 		return;
11080 
11081 	/*
11082 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
11083 	 * ctx::mutex over the entire thing. This serializes against almost
11084 	 * everything that wants to access the ctx.
11085 	 *
11086 	 * The exception is sys_perf_event_open() /
11087 	 * perf_event_create_kernel_count() which does find_get_context()
11088 	 * without ctx::mutex (it cannot because of the move_group double mutex
11089 	 * lock thing). See the comments in perf_install_in_context().
11090 	 */
11091 	mutex_lock(&child_ctx->mutex);
11092 
11093 	/*
11094 	 * In a single ctx::lock section, de-schedule the events and detach the
11095 	 * context from the task such that we cannot ever get it scheduled back
11096 	 * in.
11097 	 */
11098 	raw_spin_lock_irq(&child_ctx->lock);
11099 	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
11100 
11101 	/*
11102 	 * Now that the context is inactive, destroy the task <-> ctx relation
11103 	 * and mark the context dead.
11104 	 */
11105 	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
11106 	put_ctx(child_ctx); /* cannot be last */
11107 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
11108 	put_task_struct(current); /* cannot be last */
11109 
11110 	clone_ctx = unclone_ctx(child_ctx);
11111 	raw_spin_unlock_irq(&child_ctx->lock);
11112 
11113 	if (clone_ctx)
11114 		put_ctx(clone_ctx);
11115 
11116 	/*
11117 	 * Report the task dead after unscheduling the events so that we
11118 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
11119 	 * get a few PERF_RECORD_READ events.
11120 	 */
11121 	perf_event_task(child, child_ctx, 0);
11122 
11123 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
11124 		perf_event_exit_event(child_event, child_ctx, child);
11125 
11126 	mutex_unlock(&child_ctx->mutex);
11127 
11128 	put_ctx(child_ctx);
11129 }
11130 
11131 /*
11132  * When a child task exits, feed back event values to parent events.
11133  *
11134  * Can be called with cred_guard_mutex held when called from
11135  * install_exec_creds().
11136  */
11137 void perf_event_exit_task(struct task_struct *child)
11138 {
11139 	struct perf_event *event, *tmp;
11140 	int ctxn;
11141 
11142 	mutex_lock(&child->perf_event_mutex);
11143 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
11144 				 owner_entry) {
11145 		list_del_init(&event->owner_entry);
11146 
11147 		/*
11148 		 * Ensure the list deletion is visible before we clear
11149 		 * the owner, closes a race against perf_release() where
11150 		 * we need to serialize on the owner->perf_event_mutex.
11151 		 */
11152 		smp_store_release(&event->owner, NULL);
11153 	}
11154 	mutex_unlock(&child->perf_event_mutex);
11155 
11156 	for_each_task_context_nr(ctxn)
11157 		perf_event_exit_task_context(child, ctxn);
11158 
11159 	/*
11160 	 * The perf_event_exit_task_context calls perf_event_task
11161 	 * with child's task_ctx, which generates EXIT events for
11162 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
11163 	 * At this point we need to send EXIT events to cpu contexts.
11164 	 */
11165 	perf_event_task(child, NULL, 0);
11166 }
11167 
11168 static void perf_free_event(struct perf_event *event,
11169 			    struct perf_event_context *ctx)
11170 {
11171 	struct perf_event *parent = event->parent;
11172 
11173 	if (WARN_ON_ONCE(!parent))
11174 		return;
11175 
11176 	mutex_lock(&parent->child_mutex);
11177 	list_del_init(&event->child_list);
11178 	mutex_unlock(&parent->child_mutex);
11179 
11180 	put_event(parent);
11181 
11182 	raw_spin_lock_irq(&ctx->lock);
11183 	perf_group_detach(event);
11184 	list_del_event(event, ctx);
11185 	raw_spin_unlock_irq(&ctx->lock);
11186 	free_event(event);
11187 }
11188 
11189 /*
11190  * Free an unexposed, unused context as created by inheritance by
11191  * perf_event_init_task below, used by fork() in case of fail.
11192  *
11193  * Not all locks are strictly required, but take them anyway to be nice and
11194  * help out with the lockdep assertions.
11195  */
11196 void perf_event_free_task(struct task_struct *task)
11197 {
11198 	struct perf_event_context *ctx;
11199 	struct perf_event *event, *tmp;
11200 	int ctxn;
11201 
11202 	for_each_task_context_nr(ctxn) {
11203 		ctx = task->perf_event_ctxp[ctxn];
11204 		if (!ctx)
11205 			continue;
11206 
11207 		mutex_lock(&ctx->mutex);
11208 		raw_spin_lock_irq(&ctx->lock);
11209 		/*
11210 		 * Destroy the task <-> ctx relation and mark the context dead.
11211 		 *
11212 		 * This is important because even though the task hasn't been
11213 		 * exposed yet the context has been (through child_list).
11214 		 */
11215 		RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
11216 		WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
11217 		put_task_struct(task); /* cannot be last */
11218 		raw_spin_unlock_irq(&ctx->lock);
11219 
11220 		list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
11221 			perf_free_event(event, ctx);
11222 
11223 		mutex_unlock(&ctx->mutex);
11224 		put_ctx(ctx);
11225 	}
11226 }
11227 
11228 void perf_event_delayed_put(struct task_struct *task)
11229 {
11230 	int ctxn;
11231 
11232 	for_each_task_context_nr(ctxn)
11233 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
11234 }
11235 
11236 struct file *perf_event_get(unsigned int fd)
11237 {
11238 	struct file *file;
11239 
11240 	file = fget_raw(fd);
11241 	if (!file)
11242 		return ERR_PTR(-EBADF);
11243 
11244 	if (file->f_op != &perf_fops) {
11245 		fput(file);
11246 		return ERR_PTR(-EBADF);
11247 	}
11248 
11249 	return file;
11250 }
11251 
11252 const struct perf_event *perf_get_event(struct file *file)
11253 {
11254 	if (file->f_op != &perf_fops)
11255 		return ERR_PTR(-EINVAL);
11256 
11257 	return file->private_data;
11258 }
11259 
11260 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
11261 {
11262 	if (!event)
11263 		return ERR_PTR(-EINVAL);
11264 
11265 	return &event->attr;
11266 }
11267 
11268 /*
11269  * Inherit an event from parent task to child task.
11270  *
11271  * Returns:
11272  *  - valid pointer on success
11273  *  - NULL for orphaned events
11274  *  - IS_ERR() on error
11275  */
11276 static struct perf_event *
11277 inherit_event(struct perf_event *parent_event,
11278 	      struct task_struct *parent,
11279 	      struct perf_event_context *parent_ctx,
11280 	      struct task_struct *child,
11281 	      struct perf_event *group_leader,
11282 	      struct perf_event_context *child_ctx)
11283 {
11284 	enum perf_event_state parent_state = parent_event->state;
11285 	struct perf_event *child_event;
11286 	unsigned long flags;
11287 
11288 	/*
11289 	 * Instead of creating recursive hierarchies of events,
11290 	 * we link inherited events back to the original parent,
11291 	 * which has a filp for sure, which we use as the reference
11292 	 * count:
11293 	 */
11294 	if (parent_event->parent)
11295 		parent_event = parent_event->parent;
11296 
11297 	child_event = perf_event_alloc(&parent_event->attr,
11298 					   parent_event->cpu,
11299 					   child,
11300 					   group_leader, parent_event,
11301 					   NULL, NULL, -1);
11302 	if (IS_ERR(child_event))
11303 		return child_event;
11304 
11305 
11306 	if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
11307 	    !child_ctx->task_ctx_data) {
11308 		struct pmu *pmu = child_event->pmu;
11309 
11310 		child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size,
11311 						   GFP_KERNEL);
11312 		if (!child_ctx->task_ctx_data) {
11313 			free_event(child_event);
11314 			return NULL;
11315 		}
11316 	}
11317 
11318 	/*
11319 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
11320 	 * must be under the same lock in order to serialize against
11321 	 * perf_event_release_kernel(), such that either we must observe
11322 	 * is_orphaned_event() or they will observe us on the child_list.
11323 	 */
11324 	mutex_lock(&parent_event->child_mutex);
11325 	if (is_orphaned_event(parent_event) ||
11326 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
11327 		mutex_unlock(&parent_event->child_mutex);
11328 		/* task_ctx_data is freed with child_ctx */
11329 		free_event(child_event);
11330 		return NULL;
11331 	}
11332 
11333 	get_ctx(child_ctx);
11334 
11335 	/*
11336 	 * Make the child state follow the state of the parent event,
11337 	 * not its attr.disabled bit.  We hold the parent's mutex,
11338 	 * so we won't race with perf_event_{en, dis}able_family.
11339 	 */
11340 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
11341 		child_event->state = PERF_EVENT_STATE_INACTIVE;
11342 	else
11343 		child_event->state = PERF_EVENT_STATE_OFF;
11344 
11345 	if (parent_event->attr.freq) {
11346 		u64 sample_period = parent_event->hw.sample_period;
11347 		struct hw_perf_event *hwc = &child_event->hw;
11348 
11349 		hwc->sample_period = sample_period;
11350 		hwc->last_period   = sample_period;
11351 
11352 		local64_set(&hwc->period_left, sample_period);
11353 	}
11354 
11355 	child_event->ctx = child_ctx;
11356 	child_event->overflow_handler = parent_event->overflow_handler;
11357 	child_event->overflow_handler_context
11358 		= parent_event->overflow_handler_context;
11359 
11360 	/*
11361 	 * Precalculate sample_data sizes
11362 	 */
11363 	perf_event__header_size(child_event);
11364 	perf_event__id_header_size(child_event);
11365 
11366 	/*
11367 	 * Link it up in the child's context:
11368 	 */
11369 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
11370 	add_event_to_ctx(child_event, child_ctx);
11371 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
11372 
11373 	/*
11374 	 * Link this into the parent event's child list
11375 	 */
11376 	list_add_tail(&child_event->child_list, &parent_event->child_list);
11377 	mutex_unlock(&parent_event->child_mutex);
11378 
11379 	return child_event;
11380 }
11381 
11382 /*
11383  * Inherits an event group.
11384  *
11385  * This will quietly suppress orphaned events; !inherit_event() is not an error.
11386  * This matches with perf_event_release_kernel() removing all child events.
11387  *
11388  * Returns:
11389  *  - 0 on success
11390  *  - <0 on error
11391  */
11392 static int inherit_group(struct perf_event *parent_event,
11393 	      struct task_struct *parent,
11394 	      struct perf_event_context *parent_ctx,
11395 	      struct task_struct *child,
11396 	      struct perf_event_context *child_ctx)
11397 {
11398 	struct perf_event *leader;
11399 	struct perf_event *sub;
11400 	struct perf_event *child_ctr;
11401 
11402 	leader = inherit_event(parent_event, parent, parent_ctx,
11403 				 child, NULL, child_ctx);
11404 	if (IS_ERR(leader))
11405 		return PTR_ERR(leader);
11406 	/*
11407 	 * @leader can be NULL here because of is_orphaned_event(). In this
11408 	 * case inherit_event() will create individual events, similar to what
11409 	 * perf_group_detach() would do anyway.
11410 	 */
11411 	for_each_sibling_event(sub, parent_event) {
11412 		child_ctr = inherit_event(sub, parent, parent_ctx,
11413 					    child, leader, child_ctx);
11414 		if (IS_ERR(child_ctr))
11415 			return PTR_ERR(child_ctr);
11416 	}
11417 	return 0;
11418 }
11419 
11420 /*
11421  * Creates the child task context and tries to inherit the event-group.
11422  *
11423  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
11424  * inherited_all set when we 'fail' to inherit an orphaned event; this is
11425  * consistent with perf_event_release_kernel() removing all child events.
11426  *
11427  * Returns:
11428  *  - 0 on success
11429  *  - <0 on error
11430  */
11431 static int
11432 inherit_task_group(struct perf_event *event, struct task_struct *parent,
11433 		   struct perf_event_context *parent_ctx,
11434 		   struct task_struct *child, int ctxn,
11435 		   int *inherited_all)
11436 {
11437 	int ret;
11438 	struct perf_event_context *child_ctx;
11439 
11440 	if (!event->attr.inherit) {
11441 		*inherited_all = 0;
11442 		return 0;
11443 	}
11444 
11445 	child_ctx = child->perf_event_ctxp[ctxn];
11446 	if (!child_ctx) {
11447 		/*
11448 		 * This is executed from the parent task context, so
11449 		 * inherit events that have been marked for cloning.
11450 		 * First allocate and initialize a context for the
11451 		 * child.
11452 		 */
11453 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
11454 		if (!child_ctx)
11455 			return -ENOMEM;
11456 
11457 		child->perf_event_ctxp[ctxn] = child_ctx;
11458 	}
11459 
11460 	ret = inherit_group(event, parent, parent_ctx,
11461 			    child, child_ctx);
11462 
11463 	if (ret)
11464 		*inherited_all = 0;
11465 
11466 	return ret;
11467 }
11468 
11469 /*
11470  * Initialize the perf_event context in task_struct
11471  */
11472 static int perf_event_init_context(struct task_struct *child, int ctxn)
11473 {
11474 	struct perf_event_context *child_ctx, *parent_ctx;
11475 	struct perf_event_context *cloned_ctx;
11476 	struct perf_event *event;
11477 	struct task_struct *parent = current;
11478 	int inherited_all = 1;
11479 	unsigned long flags;
11480 	int ret = 0;
11481 
11482 	if (likely(!parent->perf_event_ctxp[ctxn]))
11483 		return 0;
11484 
11485 	/*
11486 	 * If the parent's context is a clone, pin it so it won't get
11487 	 * swapped under us.
11488 	 */
11489 	parent_ctx = perf_pin_task_context(parent, ctxn);
11490 	if (!parent_ctx)
11491 		return 0;
11492 
11493 	/*
11494 	 * No need to check if parent_ctx != NULL here; since we saw
11495 	 * it non-NULL earlier, the only reason for it to become NULL
11496 	 * is if we exit, and since we're currently in the middle of
11497 	 * a fork we can't be exiting at the same time.
11498 	 */
11499 
11500 	/*
11501 	 * Lock the parent list. No need to lock the child - not PID
11502 	 * hashed yet and not running, so nobody can access it.
11503 	 */
11504 	mutex_lock(&parent_ctx->mutex);
11505 
11506 	/*
11507 	 * We dont have to disable NMIs - we are only looking at
11508 	 * the list, not manipulating it:
11509 	 */
11510 	perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
11511 		ret = inherit_task_group(event, parent, parent_ctx,
11512 					 child, ctxn, &inherited_all);
11513 		if (ret)
11514 			goto out_unlock;
11515 	}
11516 
11517 	/*
11518 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
11519 	 * to allocations, but we need to prevent rotation because
11520 	 * rotate_ctx() will change the list from interrupt context.
11521 	 */
11522 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11523 	parent_ctx->rotate_disable = 1;
11524 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11525 
11526 	perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
11527 		ret = inherit_task_group(event, parent, parent_ctx,
11528 					 child, ctxn, &inherited_all);
11529 		if (ret)
11530 			goto out_unlock;
11531 	}
11532 
11533 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11534 	parent_ctx->rotate_disable = 0;
11535 
11536 	child_ctx = child->perf_event_ctxp[ctxn];
11537 
11538 	if (child_ctx && inherited_all) {
11539 		/*
11540 		 * Mark the child context as a clone of the parent
11541 		 * context, or of whatever the parent is a clone of.
11542 		 *
11543 		 * Note that if the parent is a clone, the holding of
11544 		 * parent_ctx->lock avoids it from being uncloned.
11545 		 */
11546 		cloned_ctx = parent_ctx->parent_ctx;
11547 		if (cloned_ctx) {
11548 			child_ctx->parent_ctx = cloned_ctx;
11549 			child_ctx->parent_gen = parent_ctx->parent_gen;
11550 		} else {
11551 			child_ctx->parent_ctx = parent_ctx;
11552 			child_ctx->parent_gen = parent_ctx->generation;
11553 		}
11554 		get_ctx(child_ctx->parent_ctx);
11555 	}
11556 
11557 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11558 out_unlock:
11559 	mutex_unlock(&parent_ctx->mutex);
11560 
11561 	perf_unpin_context(parent_ctx);
11562 	put_ctx(parent_ctx);
11563 
11564 	return ret;
11565 }
11566 
11567 /*
11568  * Initialize the perf_event context in task_struct
11569  */
11570 int perf_event_init_task(struct task_struct *child)
11571 {
11572 	int ctxn, ret;
11573 
11574 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
11575 	mutex_init(&child->perf_event_mutex);
11576 	INIT_LIST_HEAD(&child->perf_event_list);
11577 
11578 	for_each_task_context_nr(ctxn) {
11579 		ret = perf_event_init_context(child, ctxn);
11580 		if (ret) {
11581 			perf_event_free_task(child);
11582 			return ret;
11583 		}
11584 	}
11585 
11586 	return 0;
11587 }
11588 
11589 static void __init perf_event_init_all_cpus(void)
11590 {
11591 	struct swevent_htable *swhash;
11592 	int cpu;
11593 
11594 	zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
11595 
11596 	for_each_possible_cpu(cpu) {
11597 		swhash = &per_cpu(swevent_htable, cpu);
11598 		mutex_init(&swhash->hlist_mutex);
11599 		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
11600 
11601 		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
11602 		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
11603 
11604 #ifdef CONFIG_CGROUP_PERF
11605 		INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
11606 #endif
11607 		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
11608 	}
11609 }
11610 
11611 void perf_swevent_init_cpu(unsigned int cpu)
11612 {
11613 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
11614 
11615 	mutex_lock(&swhash->hlist_mutex);
11616 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
11617 		struct swevent_hlist *hlist;
11618 
11619 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
11620 		WARN_ON(!hlist);
11621 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
11622 	}
11623 	mutex_unlock(&swhash->hlist_mutex);
11624 }
11625 
11626 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
11627 static void __perf_event_exit_context(void *__info)
11628 {
11629 	struct perf_event_context *ctx = __info;
11630 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
11631 	struct perf_event *event;
11632 
11633 	raw_spin_lock(&ctx->lock);
11634 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
11635 	list_for_each_entry(event, &ctx->event_list, event_entry)
11636 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
11637 	raw_spin_unlock(&ctx->lock);
11638 }
11639 
11640 static void perf_event_exit_cpu_context(int cpu)
11641 {
11642 	struct perf_cpu_context *cpuctx;
11643 	struct perf_event_context *ctx;
11644 	struct pmu *pmu;
11645 
11646 	mutex_lock(&pmus_lock);
11647 	list_for_each_entry(pmu, &pmus, entry) {
11648 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11649 		ctx = &cpuctx->ctx;
11650 
11651 		mutex_lock(&ctx->mutex);
11652 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
11653 		cpuctx->online = 0;
11654 		mutex_unlock(&ctx->mutex);
11655 	}
11656 	cpumask_clear_cpu(cpu, perf_online_mask);
11657 	mutex_unlock(&pmus_lock);
11658 }
11659 #else
11660 
11661 static void perf_event_exit_cpu_context(int cpu) { }
11662 
11663 #endif
11664 
11665 int perf_event_init_cpu(unsigned int cpu)
11666 {
11667 	struct perf_cpu_context *cpuctx;
11668 	struct perf_event_context *ctx;
11669 	struct pmu *pmu;
11670 
11671 	perf_swevent_init_cpu(cpu);
11672 
11673 	mutex_lock(&pmus_lock);
11674 	cpumask_set_cpu(cpu, perf_online_mask);
11675 	list_for_each_entry(pmu, &pmus, entry) {
11676 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11677 		ctx = &cpuctx->ctx;
11678 
11679 		mutex_lock(&ctx->mutex);
11680 		cpuctx->online = 1;
11681 		mutex_unlock(&ctx->mutex);
11682 	}
11683 	mutex_unlock(&pmus_lock);
11684 
11685 	return 0;
11686 }
11687 
11688 int perf_event_exit_cpu(unsigned int cpu)
11689 {
11690 	perf_event_exit_cpu_context(cpu);
11691 	return 0;
11692 }
11693 
11694 static int
11695 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
11696 {
11697 	int cpu;
11698 
11699 	for_each_online_cpu(cpu)
11700 		perf_event_exit_cpu(cpu);
11701 
11702 	return NOTIFY_OK;
11703 }
11704 
11705 /*
11706  * Run the perf reboot notifier at the very last possible moment so that
11707  * the generic watchdog code runs as long as possible.
11708  */
11709 static struct notifier_block perf_reboot_notifier = {
11710 	.notifier_call = perf_reboot,
11711 	.priority = INT_MIN,
11712 };
11713 
11714 void __init perf_event_init(void)
11715 {
11716 	int ret;
11717 
11718 	idr_init(&pmu_idr);
11719 
11720 	perf_event_init_all_cpus();
11721 	init_srcu_struct(&pmus_srcu);
11722 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
11723 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
11724 	perf_pmu_register(&perf_task_clock, NULL, -1);
11725 	perf_tp_register();
11726 	perf_event_init_cpu(smp_processor_id());
11727 	register_reboot_notifier(&perf_reboot_notifier);
11728 
11729 	ret = init_hw_breakpoint();
11730 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
11731 
11732 	/*
11733 	 * Build time assertion that we keep the data_head at the intended
11734 	 * location.  IOW, validation we got the __reserved[] size right.
11735 	 */
11736 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
11737 		     != 1024);
11738 }
11739 
11740 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
11741 			      char *page)
11742 {
11743 	struct perf_pmu_events_attr *pmu_attr =
11744 		container_of(attr, struct perf_pmu_events_attr, attr);
11745 
11746 	if (pmu_attr->event_str)
11747 		return sprintf(page, "%s\n", pmu_attr->event_str);
11748 
11749 	return 0;
11750 }
11751 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
11752 
11753 static int __init perf_event_sysfs_init(void)
11754 {
11755 	struct pmu *pmu;
11756 	int ret;
11757 
11758 	mutex_lock(&pmus_lock);
11759 
11760 	ret = bus_register(&pmu_bus);
11761 	if (ret)
11762 		goto unlock;
11763 
11764 	list_for_each_entry(pmu, &pmus, entry) {
11765 		if (!pmu->name || pmu->type < 0)
11766 			continue;
11767 
11768 		ret = pmu_dev_alloc(pmu);
11769 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
11770 	}
11771 	pmu_bus_running = 1;
11772 	ret = 0;
11773 
11774 unlock:
11775 	mutex_unlock(&pmus_lock);
11776 
11777 	return ret;
11778 }
11779 device_initcall(perf_event_sysfs_init);
11780 
11781 #ifdef CONFIG_CGROUP_PERF
11782 static struct cgroup_subsys_state *
11783 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
11784 {
11785 	struct perf_cgroup *jc;
11786 
11787 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
11788 	if (!jc)
11789 		return ERR_PTR(-ENOMEM);
11790 
11791 	jc->info = alloc_percpu(struct perf_cgroup_info);
11792 	if (!jc->info) {
11793 		kfree(jc);
11794 		return ERR_PTR(-ENOMEM);
11795 	}
11796 
11797 	return &jc->css;
11798 }
11799 
11800 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
11801 {
11802 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
11803 
11804 	free_percpu(jc->info);
11805 	kfree(jc);
11806 }
11807 
11808 static int __perf_cgroup_move(void *info)
11809 {
11810 	struct task_struct *task = info;
11811 	rcu_read_lock();
11812 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
11813 	rcu_read_unlock();
11814 	return 0;
11815 }
11816 
11817 static void perf_cgroup_attach(struct cgroup_taskset *tset)
11818 {
11819 	struct task_struct *task;
11820 	struct cgroup_subsys_state *css;
11821 
11822 	cgroup_taskset_for_each(task, css, tset)
11823 		task_function_call(task, __perf_cgroup_move, task);
11824 }
11825 
11826 struct cgroup_subsys perf_event_cgrp_subsys = {
11827 	.css_alloc	= perf_cgroup_css_alloc,
11828 	.css_free	= perf_cgroup_css_free,
11829 	.attach		= perf_cgroup_attach,
11830 	/*
11831 	 * Implicitly enable on dfl hierarchy so that perf events can
11832 	 * always be filtered by cgroup2 path as long as perf_event
11833 	 * controller is not mounted on a legacy hierarchy.
11834 	 */
11835 	.implicit_on_dfl = true,
11836 	.threaded	= true,
11837 };
11838 #endif /* CONFIG_CGROUP_PERF */
11839