1 /* 2 * Performance events core code: 3 * 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 8 * 9 * For licensing details see kernel-base/COPYING 10 */ 11 12 #include <linux/fs.h> 13 #include <linux/mm.h> 14 #include <linux/cpu.h> 15 #include <linux/smp.h> 16 #include <linux/idr.h> 17 #include <linux/file.h> 18 #include <linux/poll.h> 19 #include <linux/slab.h> 20 #include <linux/hash.h> 21 #include <linux/sysfs.h> 22 #include <linux/dcache.h> 23 #include <linux/percpu.h> 24 #include <linux/ptrace.h> 25 #include <linux/reboot.h> 26 #include <linux/vmstat.h> 27 #include <linux/device.h> 28 #include <linux/export.h> 29 #include <linux/vmalloc.h> 30 #include <linux/hardirq.h> 31 #include <linux/rculist.h> 32 #include <linux/uaccess.h> 33 #include <linux/syscalls.h> 34 #include <linux/anon_inodes.h> 35 #include <linux/kernel_stat.h> 36 #include <linux/perf_event.h> 37 #include <linux/ftrace_event.h> 38 #include <linux/hw_breakpoint.h> 39 #include <linux/mm_types.h> 40 41 #include "internal.h" 42 43 #include <asm/irq_regs.h> 44 45 struct remote_function_call { 46 struct task_struct *p; 47 int (*func)(void *info); 48 void *info; 49 int ret; 50 }; 51 52 static void remote_function(void *data) 53 { 54 struct remote_function_call *tfc = data; 55 struct task_struct *p = tfc->p; 56 57 if (p) { 58 tfc->ret = -EAGAIN; 59 if (task_cpu(p) != smp_processor_id() || !task_curr(p)) 60 return; 61 } 62 63 tfc->ret = tfc->func(tfc->info); 64 } 65 66 /** 67 * task_function_call - call a function on the cpu on which a task runs 68 * @p: the task to evaluate 69 * @func: the function to be called 70 * @info: the function call argument 71 * 72 * Calls the function @func when the task is currently running. This might 73 * be on the current CPU, which just calls the function directly 74 * 75 * returns: @func return value, or 76 * -ESRCH - when the process isn't running 77 * -EAGAIN - when the process moved away 78 */ 79 static int 80 task_function_call(struct task_struct *p, int (*func) (void *info), void *info) 81 { 82 struct remote_function_call data = { 83 .p = p, 84 .func = func, 85 .info = info, 86 .ret = -ESRCH, /* No such (running) process */ 87 }; 88 89 if (task_curr(p)) 90 smp_call_function_single(task_cpu(p), remote_function, &data, 1); 91 92 return data.ret; 93 } 94 95 /** 96 * cpu_function_call - call a function on the cpu 97 * @func: the function to be called 98 * @info: the function call argument 99 * 100 * Calls the function @func on the remote cpu. 101 * 102 * returns: @func return value or -ENXIO when the cpu is offline 103 */ 104 static int cpu_function_call(int cpu, int (*func) (void *info), void *info) 105 { 106 struct remote_function_call data = { 107 .p = NULL, 108 .func = func, 109 .info = info, 110 .ret = -ENXIO, /* No such CPU */ 111 }; 112 113 smp_call_function_single(cpu, remote_function, &data, 1); 114 115 return data.ret; 116 } 117 118 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 119 PERF_FLAG_FD_OUTPUT |\ 120 PERF_FLAG_PID_CGROUP) 121 122 /* 123 * branch priv levels that need permission checks 124 */ 125 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 126 (PERF_SAMPLE_BRANCH_KERNEL |\ 127 PERF_SAMPLE_BRANCH_HV) 128 129 enum event_type_t { 130 EVENT_FLEXIBLE = 0x1, 131 EVENT_PINNED = 0x2, 132 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 133 }; 134 135 /* 136 * perf_sched_events : >0 events exist 137 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu 138 */ 139 struct static_key_deferred perf_sched_events __read_mostly; 140 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); 141 static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events); 142 143 static atomic_t nr_mmap_events __read_mostly; 144 static atomic_t nr_comm_events __read_mostly; 145 static atomic_t nr_task_events __read_mostly; 146 147 static LIST_HEAD(pmus); 148 static DEFINE_MUTEX(pmus_lock); 149 static struct srcu_struct pmus_srcu; 150 151 /* 152 * perf event paranoia level: 153 * -1 - not paranoid at all 154 * 0 - disallow raw tracepoint access for unpriv 155 * 1 - disallow cpu events for unpriv 156 * 2 - disallow kernel profiling for unpriv 157 */ 158 int sysctl_perf_event_paranoid __read_mostly = 1; 159 160 /* Minimum for 512 kiB + 1 user control page */ 161 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 162 163 /* 164 * max perf event sample rate 165 */ 166 #define DEFAULT_MAX_SAMPLE_RATE 100000 167 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 168 static int max_samples_per_tick __read_mostly = 169 DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 170 171 int perf_proc_update_handler(struct ctl_table *table, int write, 172 void __user *buffer, size_t *lenp, 173 loff_t *ppos) 174 { 175 int ret = proc_dointvec(table, write, buffer, lenp, ppos); 176 177 if (ret || !write) 178 return ret; 179 180 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 181 182 return 0; 183 } 184 185 static atomic64_t perf_event_id; 186 187 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 188 enum event_type_t event_type); 189 190 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 191 enum event_type_t event_type, 192 struct task_struct *task); 193 194 static void update_context_time(struct perf_event_context *ctx); 195 static u64 perf_event_time(struct perf_event *event); 196 197 static void ring_buffer_attach(struct perf_event *event, 198 struct ring_buffer *rb); 199 200 void __weak perf_event_print_debug(void) { } 201 202 extern __weak const char *perf_pmu_name(void) 203 { 204 return "pmu"; 205 } 206 207 static inline u64 perf_clock(void) 208 { 209 return local_clock(); 210 } 211 212 static inline struct perf_cpu_context * 213 __get_cpu_context(struct perf_event_context *ctx) 214 { 215 return this_cpu_ptr(ctx->pmu->pmu_cpu_context); 216 } 217 218 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 219 struct perf_event_context *ctx) 220 { 221 raw_spin_lock(&cpuctx->ctx.lock); 222 if (ctx) 223 raw_spin_lock(&ctx->lock); 224 } 225 226 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 227 struct perf_event_context *ctx) 228 { 229 if (ctx) 230 raw_spin_unlock(&ctx->lock); 231 raw_spin_unlock(&cpuctx->ctx.lock); 232 } 233 234 #ifdef CONFIG_CGROUP_PERF 235 236 /* 237 * Must ensure cgroup is pinned (css_get) before calling 238 * this function. In other words, we cannot call this function 239 * if there is no cgroup event for the current CPU context. 240 */ 241 static inline struct perf_cgroup * 242 perf_cgroup_from_task(struct task_struct *task) 243 { 244 return container_of(task_subsys_state(task, perf_subsys_id), 245 struct perf_cgroup, css); 246 } 247 248 static inline bool 249 perf_cgroup_match(struct perf_event *event) 250 { 251 struct perf_event_context *ctx = event->ctx; 252 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 253 254 return !event->cgrp || event->cgrp == cpuctx->cgrp; 255 } 256 257 static inline bool perf_tryget_cgroup(struct perf_event *event) 258 { 259 return css_tryget(&event->cgrp->css); 260 } 261 262 static inline void perf_put_cgroup(struct perf_event *event) 263 { 264 css_put(&event->cgrp->css); 265 } 266 267 static inline void perf_detach_cgroup(struct perf_event *event) 268 { 269 perf_put_cgroup(event); 270 event->cgrp = NULL; 271 } 272 273 static inline int is_cgroup_event(struct perf_event *event) 274 { 275 return event->cgrp != NULL; 276 } 277 278 static inline u64 perf_cgroup_event_time(struct perf_event *event) 279 { 280 struct perf_cgroup_info *t; 281 282 t = per_cpu_ptr(event->cgrp->info, event->cpu); 283 return t->time; 284 } 285 286 static inline void __update_cgrp_time(struct perf_cgroup *cgrp) 287 { 288 struct perf_cgroup_info *info; 289 u64 now; 290 291 now = perf_clock(); 292 293 info = this_cpu_ptr(cgrp->info); 294 295 info->time += now - info->timestamp; 296 info->timestamp = now; 297 } 298 299 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 300 { 301 struct perf_cgroup *cgrp_out = cpuctx->cgrp; 302 if (cgrp_out) 303 __update_cgrp_time(cgrp_out); 304 } 305 306 static inline void update_cgrp_time_from_event(struct perf_event *event) 307 { 308 struct perf_cgroup *cgrp; 309 310 /* 311 * ensure we access cgroup data only when needed and 312 * when we know the cgroup is pinned (css_get) 313 */ 314 if (!is_cgroup_event(event)) 315 return; 316 317 cgrp = perf_cgroup_from_task(current); 318 /* 319 * Do not update time when cgroup is not active 320 */ 321 if (cgrp == event->cgrp) 322 __update_cgrp_time(event->cgrp); 323 } 324 325 static inline void 326 perf_cgroup_set_timestamp(struct task_struct *task, 327 struct perf_event_context *ctx) 328 { 329 struct perf_cgroup *cgrp; 330 struct perf_cgroup_info *info; 331 332 /* 333 * ctx->lock held by caller 334 * ensure we do not access cgroup data 335 * unless we have the cgroup pinned (css_get) 336 */ 337 if (!task || !ctx->nr_cgroups) 338 return; 339 340 cgrp = perf_cgroup_from_task(task); 341 info = this_cpu_ptr(cgrp->info); 342 info->timestamp = ctx->timestamp; 343 } 344 345 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */ 346 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */ 347 348 /* 349 * reschedule events based on the cgroup constraint of task. 350 * 351 * mode SWOUT : schedule out everything 352 * mode SWIN : schedule in based on cgroup for next 353 */ 354 void perf_cgroup_switch(struct task_struct *task, int mode) 355 { 356 struct perf_cpu_context *cpuctx; 357 struct pmu *pmu; 358 unsigned long flags; 359 360 /* 361 * disable interrupts to avoid geting nr_cgroup 362 * changes via __perf_event_disable(). Also 363 * avoids preemption. 364 */ 365 local_irq_save(flags); 366 367 /* 368 * we reschedule only in the presence of cgroup 369 * constrained events. 370 */ 371 rcu_read_lock(); 372 373 list_for_each_entry_rcu(pmu, &pmus, entry) { 374 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 375 if (cpuctx->unique_pmu != pmu) 376 continue; /* ensure we process each cpuctx once */ 377 378 /* 379 * perf_cgroup_events says at least one 380 * context on this CPU has cgroup events. 381 * 382 * ctx->nr_cgroups reports the number of cgroup 383 * events for a context. 384 */ 385 if (cpuctx->ctx.nr_cgroups > 0) { 386 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 387 perf_pmu_disable(cpuctx->ctx.pmu); 388 389 if (mode & PERF_CGROUP_SWOUT) { 390 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 391 /* 392 * must not be done before ctxswout due 393 * to event_filter_match() in event_sched_out() 394 */ 395 cpuctx->cgrp = NULL; 396 } 397 398 if (mode & PERF_CGROUP_SWIN) { 399 WARN_ON_ONCE(cpuctx->cgrp); 400 /* 401 * set cgrp before ctxsw in to allow 402 * event_filter_match() to not have to pass 403 * task around 404 */ 405 cpuctx->cgrp = perf_cgroup_from_task(task); 406 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task); 407 } 408 perf_pmu_enable(cpuctx->ctx.pmu); 409 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 410 } 411 } 412 413 rcu_read_unlock(); 414 415 local_irq_restore(flags); 416 } 417 418 static inline void perf_cgroup_sched_out(struct task_struct *task, 419 struct task_struct *next) 420 { 421 struct perf_cgroup *cgrp1; 422 struct perf_cgroup *cgrp2 = NULL; 423 424 /* 425 * we come here when we know perf_cgroup_events > 0 426 */ 427 cgrp1 = perf_cgroup_from_task(task); 428 429 /* 430 * next is NULL when called from perf_event_enable_on_exec() 431 * that will systematically cause a cgroup_switch() 432 */ 433 if (next) 434 cgrp2 = perf_cgroup_from_task(next); 435 436 /* 437 * only schedule out current cgroup events if we know 438 * that we are switching to a different cgroup. Otherwise, 439 * do no touch the cgroup events. 440 */ 441 if (cgrp1 != cgrp2) 442 perf_cgroup_switch(task, PERF_CGROUP_SWOUT); 443 } 444 445 static inline void perf_cgroup_sched_in(struct task_struct *prev, 446 struct task_struct *task) 447 { 448 struct perf_cgroup *cgrp1; 449 struct perf_cgroup *cgrp2 = NULL; 450 451 /* 452 * we come here when we know perf_cgroup_events > 0 453 */ 454 cgrp1 = perf_cgroup_from_task(task); 455 456 /* prev can never be NULL */ 457 cgrp2 = perf_cgroup_from_task(prev); 458 459 /* 460 * only need to schedule in cgroup events if we are changing 461 * cgroup during ctxsw. Cgroup events were not scheduled 462 * out of ctxsw out if that was not the case. 463 */ 464 if (cgrp1 != cgrp2) 465 perf_cgroup_switch(task, PERF_CGROUP_SWIN); 466 } 467 468 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 469 struct perf_event_attr *attr, 470 struct perf_event *group_leader) 471 { 472 struct perf_cgroup *cgrp; 473 struct cgroup_subsys_state *css; 474 struct fd f = fdget(fd); 475 int ret = 0; 476 477 if (!f.file) 478 return -EBADF; 479 480 css = cgroup_css_from_dir(f.file, perf_subsys_id); 481 if (IS_ERR(css)) { 482 ret = PTR_ERR(css); 483 goto out; 484 } 485 486 cgrp = container_of(css, struct perf_cgroup, css); 487 event->cgrp = cgrp; 488 489 /* must be done before we fput() the file */ 490 if (!perf_tryget_cgroup(event)) { 491 event->cgrp = NULL; 492 ret = -ENOENT; 493 goto out; 494 } 495 496 /* 497 * all events in a group must monitor 498 * the same cgroup because a task belongs 499 * to only one perf cgroup at a time 500 */ 501 if (group_leader && group_leader->cgrp != cgrp) { 502 perf_detach_cgroup(event); 503 ret = -EINVAL; 504 } 505 out: 506 fdput(f); 507 return ret; 508 } 509 510 static inline void 511 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 512 { 513 struct perf_cgroup_info *t; 514 t = per_cpu_ptr(event->cgrp->info, event->cpu); 515 event->shadow_ctx_time = now - t->timestamp; 516 } 517 518 static inline void 519 perf_cgroup_defer_enabled(struct perf_event *event) 520 { 521 /* 522 * when the current task's perf cgroup does not match 523 * the event's, we need to remember to call the 524 * perf_mark_enable() function the first time a task with 525 * a matching perf cgroup is scheduled in. 526 */ 527 if (is_cgroup_event(event) && !perf_cgroup_match(event)) 528 event->cgrp_defer_enabled = 1; 529 } 530 531 static inline void 532 perf_cgroup_mark_enabled(struct perf_event *event, 533 struct perf_event_context *ctx) 534 { 535 struct perf_event *sub; 536 u64 tstamp = perf_event_time(event); 537 538 if (!event->cgrp_defer_enabled) 539 return; 540 541 event->cgrp_defer_enabled = 0; 542 543 event->tstamp_enabled = tstamp - event->total_time_enabled; 544 list_for_each_entry(sub, &event->sibling_list, group_entry) { 545 if (sub->state >= PERF_EVENT_STATE_INACTIVE) { 546 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 547 sub->cgrp_defer_enabled = 0; 548 } 549 } 550 } 551 #else /* !CONFIG_CGROUP_PERF */ 552 553 static inline bool 554 perf_cgroup_match(struct perf_event *event) 555 { 556 return true; 557 } 558 559 static inline void perf_detach_cgroup(struct perf_event *event) 560 {} 561 562 static inline int is_cgroup_event(struct perf_event *event) 563 { 564 return 0; 565 } 566 567 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event) 568 { 569 return 0; 570 } 571 572 static inline void update_cgrp_time_from_event(struct perf_event *event) 573 { 574 } 575 576 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 577 { 578 } 579 580 static inline void perf_cgroup_sched_out(struct task_struct *task, 581 struct task_struct *next) 582 { 583 } 584 585 static inline void perf_cgroup_sched_in(struct task_struct *prev, 586 struct task_struct *task) 587 { 588 } 589 590 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 591 struct perf_event_attr *attr, 592 struct perf_event *group_leader) 593 { 594 return -EINVAL; 595 } 596 597 static inline void 598 perf_cgroup_set_timestamp(struct task_struct *task, 599 struct perf_event_context *ctx) 600 { 601 } 602 603 void 604 perf_cgroup_switch(struct task_struct *task, struct task_struct *next) 605 { 606 } 607 608 static inline void 609 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 610 { 611 } 612 613 static inline u64 perf_cgroup_event_time(struct perf_event *event) 614 { 615 return 0; 616 } 617 618 static inline void 619 perf_cgroup_defer_enabled(struct perf_event *event) 620 { 621 } 622 623 static inline void 624 perf_cgroup_mark_enabled(struct perf_event *event, 625 struct perf_event_context *ctx) 626 { 627 } 628 #endif 629 630 void perf_pmu_disable(struct pmu *pmu) 631 { 632 int *count = this_cpu_ptr(pmu->pmu_disable_count); 633 if (!(*count)++) 634 pmu->pmu_disable(pmu); 635 } 636 637 void perf_pmu_enable(struct pmu *pmu) 638 { 639 int *count = this_cpu_ptr(pmu->pmu_disable_count); 640 if (!--(*count)) 641 pmu->pmu_enable(pmu); 642 } 643 644 static DEFINE_PER_CPU(struct list_head, rotation_list); 645 646 /* 647 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized 648 * because they're strictly cpu affine and rotate_start is called with IRQs 649 * disabled, while rotate_context is called from IRQ context. 650 */ 651 static void perf_pmu_rotate_start(struct pmu *pmu) 652 { 653 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 654 struct list_head *head = &__get_cpu_var(rotation_list); 655 656 WARN_ON(!irqs_disabled()); 657 658 if (list_empty(&cpuctx->rotation_list)) 659 list_add(&cpuctx->rotation_list, head); 660 } 661 662 static void get_ctx(struct perf_event_context *ctx) 663 { 664 WARN_ON(!atomic_inc_not_zero(&ctx->refcount)); 665 } 666 667 static void put_ctx(struct perf_event_context *ctx) 668 { 669 if (atomic_dec_and_test(&ctx->refcount)) { 670 if (ctx->parent_ctx) 671 put_ctx(ctx->parent_ctx); 672 if (ctx->task) 673 put_task_struct(ctx->task); 674 kfree_rcu(ctx, rcu_head); 675 } 676 } 677 678 static void unclone_ctx(struct perf_event_context *ctx) 679 { 680 if (ctx->parent_ctx) { 681 put_ctx(ctx->parent_ctx); 682 ctx->parent_ctx = NULL; 683 } 684 } 685 686 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 687 { 688 /* 689 * only top level events have the pid namespace they were created in 690 */ 691 if (event->parent) 692 event = event->parent; 693 694 return task_tgid_nr_ns(p, event->ns); 695 } 696 697 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 698 { 699 /* 700 * only top level events have the pid namespace they were created in 701 */ 702 if (event->parent) 703 event = event->parent; 704 705 return task_pid_nr_ns(p, event->ns); 706 } 707 708 /* 709 * If we inherit events we want to return the parent event id 710 * to userspace. 711 */ 712 static u64 primary_event_id(struct perf_event *event) 713 { 714 u64 id = event->id; 715 716 if (event->parent) 717 id = event->parent->id; 718 719 return id; 720 } 721 722 /* 723 * Get the perf_event_context for a task and lock it. 724 * This has to cope with with the fact that until it is locked, 725 * the context could get moved to another task. 726 */ 727 static struct perf_event_context * 728 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) 729 { 730 struct perf_event_context *ctx; 731 732 rcu_read_lock(); 733 retry: 734 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); 735 if (ctx) { 736 /* 737 * If this context is a clone of another, it might 738 * get swapped for another underneath us by 739 * perf_event_task_sched_out, though the 740 * rcu_read_lock() protects us from any context 741 * getting freed. Lock the context and check if it 742 * got swapped before we could get the lock, and retry 743 * if so. If we locked the right context, then it 744 * can't get swapped on us any more. 745 */ 746 raw_spin_lock_irqsave(&ctx->lock, *flags); 747 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { 748 raw_spin_unlock_irqrestore(&ctx->lock, *flags); 749 goto retry; 750 } 751 752 if (!atomic_inc_not_zero(&ctx->refcount)) { 753 raw_spin_unlock_irqrestore(&ctx->lock, *flags); 754 ctx = NULL; 755 } 756 } 757 rcu_read_unlock(); 758 return ctx; 759 } 760 761 /* 762 * Get the context for a task and increment its pin_count so it 763 * can't get swapped to another task. This also increments its 764 * reference count so that the context can't get freed. 765 */ 766 static struct perf_event_context * 767 perf_pin_task_context(struct task_struct *task, int ctxn) 768 { 769 struct perf_event_context *ctx; 770 unsigned long flags; 771 772 ctx = perf_lock_task_context(task, ctxn, &flags); 773 if (ctx) { 774 ++ctx->pin_count; 775 raw_spin_unlock_irqrestore(&ctx->lock, flags); 776 } 777 return ctx; 778 } 779 780 static void perf_unpin_context(struct perf_event_context *ctx) 781 { 782 unsigned long flags; 783 784 raw_spin_lock_irqsave(&ctx->lock, flags); 785 --ctx->pin_count; 786 raw_spin_unlock_irqrestore(&ctx->lock, flags); 787 } 788 789 /* 790 * Update the record of the current time in a context. 791 */ 792 static void update_context_time(struct perf_event_context *ctx) 793 { 794 u64 now = perf_clock(); 795 796 ctx->time += now - ctx->timestamp; 797 ctx->timestamp = now; 798 } 799 800 static u64 perf_event_time(struct perf_event *event) 801 { 802 struct perf_event_context *ctx = event->ctx; 803 804 if (is_cgroup_event(event)) 805 return perf_cgroup_event_time(event); 806 807 return ctx ? ctx->time : 0; 808 } 809 810 /* 811 * Update the total_time_enabled and total_time_running fields for a event. 812 * The caller of this function needs to hold the ctx->lock. 813 */ 814 static void update_event_times(struct perf_event *event) 815 { 816 struct perf_event_context *ctx = event->ctx; 817 u64 run_end; 818 819 if (event->state < PERF_EVENT_STATE_INACTIVE || 820 event->group_leader->state < PERF_EVENT_STATE_INACTIVE) 821 return; 822 /* 823 * in cgroup mode, time_enabled represents 824 * the time the event was enabled AND active 825 * tasks were in the monitored cgroup. This is 826 * independent of the activity of the context as 827 * there may be a mix of cgroup and non-cgroup events. 828 * 829 * That is why we treat cgroup events differently 830 * here. 831 */ 832 if (is_cgroup_event(event)) 833 run_end = perf_cgroup_event_time(event); 834 else if (ctx->is_active) 835 run_end = ctx->time; 836 else 837 run_end = event->tstamp_stopped; 838 839 event->total_time_enabled = run_end - event->tstamp_enabled; 840 841 if (event->state == PERF_EVENT_STATE_INACTIVE) 842 run_end = event->tstamp_stopped; 843 else 844 run_end = perf_event_time(event); 845 846 event->total_time_running = run_end - event->tstamp_running; 847 848 } 849 850 /* 851 * Update total_time_enabled and total_time_running for all events in a group. 852 */ 853 static void update_group_times(struct perf_event *leader) 854 { 855 struct perf_event *event; 856 857 update_event_times(leader); 858 list_for_each_entry(event, &leader->sibling_list, group_entry) 859 update_event_times(event); 860 } 861 862 static struct list_head * 863 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx) 864 { 865 if (event->attr.pinned) 866 return &ctx->pinned_groups; 867 else 868 return &ctx->flexible_groups; 869 } 870 871 /* 872 * Add a event from the lists for its context. 873 * Must be called with ctx->mutex and ctx->lock held. 874 */ 875 static void 876 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 877 { 878 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 879 event->attach_state |= PERF_ATTACH_CONTEXT; 880 881 /* 882 * If we're a stand alone event or group leader, we go to the context 883 * list, group events are kept attached to the group so that 884 * perf_group_detach can, at all times, locate all siblings. 885 */ 886 if (event->group_leader == event) { 887 struct list_head *list; 888 889 if (is_software_event(event)) 890 event->group_flags |= PERF_GROUP_SOFTWARE; 891 892 list = ctx_group_list(event, ctx); 893 list_add_tail(&event->group_entry, list); 894 } 895 896 if (is_cgroup_event(event)) 897 ctx->nr_cgroups++; 898 899 if (has_branch_stack(event)) 900 ctx->nr_branch_stack++; 901 902 list_add_rcu(&event->event_entry, &ctx->event_list); 903 if (!ctx->nr_events) 904 perf_pmu_rotate_start(ctx->pmu); 905 ctx->nr_events++; 906 if (event->attr.inherit_stat) 907 ctx->nr_stat++; 908 } 909 910 /* 911 * Initialize event state based on the perf_event_attr::disabled. 912 */ 913 static inline void perf_event__state_init(struct perf_event *event) 914 { 915 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 916 PERF_EVENT_STATE_INACTIVE; 917 } 918 919 /* 920 * Called at perf_event creation and when events are attached/detached from a 921 * group. 922 */ 923 static void perf_event__read_size(struct perf_event *event) 924 { 925 int entry = sizeof(u64); /* value */ 926 int size = 0; 927 int nr = 1; 928 929 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 930 size += sizeof(u64); 931 932 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 933 size += sizeof(u64); 934 935 if (event->attr.read_format & PERF_FORMAT_ID) 936 entry += sizeof(u64); 937 938 if (event->attr.read_format & PERF_FORMAT_GROUP) { 939 nr += event->group_leader->nr_siblings; 940 size += sizeof(u64); 941 } 942 943 size += entry * nr; 944 event->read_size = size; 945 } 946 947 static void perf_event__header_size(struct perf_event *event) 948 { 949 struct perf_sample_data *data; 950 u64 sample_type = event->attr.sample_type; 951 u16 size = 0; 952 953 perf_event__read_size(event); 954 955 if (sample_type & PERF_SAMPLE_IP) 956 size += sizeof(data->ip); 957 958 if (sample_type & PERF_SAMPLE_ADDR) 959 size += sizeof(data->addr); 960 961 if (sample_type & PERF_SAMPLE_PERIOD) 962 size += sizeof(data->period); 963 964 if (sample_type & PERF_SAMPLE_READ) 965 size += event->read_size; 966 967 event->header_size = size; 968 } 969 970 static void perf_event__id_header_size(struct perf_event *event) 971 { 972 struct perf_sample_data *data; 973 u64 sample_type = event->attr.sample_type; 974 u16 size = 0; 975 976 if (sample_type & PERF_SAMPLE_TID) 977 size += sizeof(data->tid_entry); 978 979 if (sample_type & PERF_SAMPLE_TIME) 980 size += sizeof(data->time); 981 982 if (sample_type & PERF_SAMPLE_ID) 983 size += sizeof(data->id); 984 985 if (sample_type & PERF_SAMPLE_STREAM_ID) 986 size += sizeof(data->stream_id); 987 988 if (sample_type & PERF_SAMPLE_CPU) 989 size += sizeof(data->cpu_entry); 990 991 event->id_header_size = size; 992 } 993 994 static void perf_group_attach(struct perf_event *event) 995 { 996 struct perf_event *group_leader = event->group_leader, *pos; 997 998 /* 999 * We can have double attach due to group movement in perf_event_open. 1000 */ 1001 if (event->attach_state & PERF_ATTACH_GROUP) 1002 return; 1003 1004 event->attach_state |= PERF_ATTACH_GROUP; 1005 1006 if (group_leader == event) 1007 return; 1008 1009 if (group_leader->group_flags & PERF_GROUP_SOFTWARE && 1010 !is_software_event(event)) 1011 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE; 1012 1013 list_add_tail(&event->group_entry, &group_leader->sibling_list); 1014 group_leader->nr_siblings++; 1015 1016 perf_event__header_size(group_leader); 1017 1018 list_for_each_entry(pos, &group_leader->sibling_list, group_entry) 1019 perf_event__header_size(pos); 1020 } 1021 1022 /* 1023 * Remove a event from the lists for its context. 1024 * Must be called with ctx->mutex and ctx->lock held. 1025 */ 1026 static void 1027 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 1028 { 1029 struct perf_cpu_context *cpuctx; 1030 /* 1031 * We can have double detach due to exit/hot-unplug + close. 1032 */ 1033 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 1034 return; 1035 1036 event->attach_state &= ~PERF_ATTACH_CONTEXT; 1037 1038 if (is_cgroup_event(event)) { 1039 ctx->nr_cgroups--; 1040 cpuctx = __get_cpu_context(ctx); 1041 /* 1042 * if there are no more cgroup events 1043 * then cler cgrp to avoid stale pointer 1044 * in update_cgrp_time_from_cpuctx() 1045 */ 1046 if (!ctx->nr_cgroups) 1047 cpuctx->cgrp = NULL; 1048 } 1049 1050 if (has_branch_stack(event)) 1051 ctx->nr_branch_stack--; 1052 1053 ctx->nr_events--; 1054 if (event->attr.inherit_stat) 1055 ctx->nr_stat--; 1056 1057 list_del_rcu(&event->event_entry); 1058 1059 if (event->group_leader == event) 1060 list_del_init(&event->group_entry); 1061 1062 update_group_times(event); 1063 1064 /* 1065 * If event was in error state, then keep it 1066 * that way, otherwise bogus counts will be 1067 * returned on read(). The only way to get out 1068 * of error state is by explicit re-enabling 1069 * of the event 1070 */ 1071 if (event->state > PERF_EVENT_STATE_OFF) 1072 event->state = PERF_EVENT_STATE_OFF; 1073 } 1074 1075 static void perf_group_detach(struct perf_event *event) 1076 { 1077 struct perf_event *sibling, *tmp; 1078 struct list_head *list = NULL; 1079 1080 /* 1081 * We can have double detach due to exit/hot-unplug + close. 1082 */ 1083 if (!(event->attach_state & PERF_ATTACH_GROUP)) 1084 return; 1085 1086 event->attach_state &= ~PERF_ATTACH_GROUP; 1087 1088 /* 1089 * If this is a sibling, remove it from its group. 1090 */ 1091 if (event->group_leader != event) { 1092 list_del_init(&event->group_entry); 1093 event->group_leader->nr_siblings--; 1094 goto out; 1095 } 1096 1097 if (!list_empty(&event->group_entry)) 1098 list = &event->group_entry; 1099 1100 /* 1101 * If this was a group event with sibling events then 1102 * upgrade the siblings to singleton events by adding them 1103 * to whatever list we are on. 1104 */ 1105 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) { 1106 if (list) 1107 list_move_tail(&sibling->group_entry, list); 1108 sibling->group_leader = sibling; 1109 1110 /* Inherit group flags from the previous leader */ 1111 sibling->group_flags = event->group_flags; 1112 } 1113 1114 out: 1115 perf_event__header_size(event->group_leader); 1116 1117 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry) 1118 perf_event__header_size(tmp); 1119 } 1120 1121 static inline int 1122 event_filter_match(struct perf_event *event) 1123 { 1124 return (event->cpu == -1 || event->cpu == smp_processor_id()) 1125 && perf_cgroup_match(event); 1126 } 1127 1128 static void 1129 event_sched_out(struct perf_event *event, 1130 struct perf_cpu_context *cpuctx, 1131 struct perf_event_context *ctx) 1132 { 1133 u64 tstamp = perf_event_time(event); 1134 u64 delta; 1135 /* 1136 * An event which could not be activated because of 1137 * filter mismatch still needs to have its timings 1138 * maintained, otherwise bogus information is return 1139 * via read() for time_enabled, time_running: 1140 */ 1141 if (event->state == PERF_EVENT_STATE_INACTIVE 1142 && !event_filter_match(event)) { 1143 delta = tstamp - event->tstamp_stopped; 1144 event->tstamp_running += delta; 1145 event->tstamp_stopped = tstamp; 1146 } 1147 1148 if (event->state != PERF_EVENT_STATE_ACTIVE) 1149 return; 1150 1151 event->state = PERF_EVENT_STATE_INACTIVE; 1152 if (event->pending_disable) { 1153 event->pending_disable = 0; 1154 event->state = PERF_EVENT_STATE_OFF; 1155 } 1156 event->tstamp_stopped = tstamp; 1157 event->pmu->del(event, 0); 1158 event->oncpu = -1; 1159 1160 if (!is_software_event(event)) 1161 cpuctx->active_oncpu--; 1162 ctx->nr_active--; 1163 if (event->attr.freq && event->attr.sample_freq) 1164 ctx->nr_freq--; 1165 if (event->attr.exclusive || !cpuctx->active_oncpu) 1166 cpuctx->exclusive = 0; 1167 } 1168 1169 static void 1170 group_sched_out(struct perf_event *group_event, 1171 struct perf_cpu_context *cpuctx, 1172 struct perf_event_context *ctx) 1173 { 1174 struct perf_event *event; 1175 int state = group_event->state; 1176 1177 event_sched_out(group_event, cpuctx, ctx); 1178 1179 /* 1180 * Schedule out siblings (if any): 1181 */ 1182 list_for_each_entry(event, &group_event->sibling_list, group_entry) 1183 event_sched_out(event, cpuctx, ctx); 1184 1185 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive) 1186 cpuctx->exclusive = 0; 1187 } 1188 1189 /* 1190 * Cross CPU call to remove a performance event 1191 * 1192 * We disable the event on the hardware level first. After that we 1193 * remove it from the context list. 1194 */ 1195 static int __perf_remove_from_context(void *info) 1196 { 1197 struct perf_event *event = info; 1198 struct perf_event_context *ctx = event->ctx; 1199 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1200 1201 raw_spin_lock(&ctx->lock); 1202 event_sched_out(event, cpuctx, ctx); 1203 list_del_event(event, ctx); 1204 if (!ctx->nr_events && cpuctx->task_ctx == ctx) { 1205 ctx->is_active = 0; 1206 cpuctx->task_ctx = NULL; 1207 } 1208 raw_spin_unlock(&ctx->lock); 1209 1210 return 0; 1211 } 1212 1213 1214 /* 1215 * Remove the event from a task's (or a CPU's) list of events. 1216 * 1217 * CPU events are removed with a smp call. For task events we only 1218 * call when the task is on a CPU. 1219 * 1220 * If event->ctx is a cloned context, callers must make sure that 1221 * every task struct that event->ctx->task could possibly point to 1222 * remains valid. This is OK when called from perf_release since 1223 * that only calls us on the top-level context, which can't be a clone. 1224 * When called from perf_event_exit_task, it's OK because the 1225 * context has been detached from its task. 1226 */ 1227 static void perf_remove_from_context(struct perf_event *event) 1228 { 1229 struct perf_event_context *ctx = event->ctx; 1230 struct task_struct *task = ctx->task; 1231 1232 lockdep_assert_held(&ctx->mutex); 1233 1234 if (!task) { 1235 /* 1236 * Per cpu events are removed via an smp call and 1237 * the removal is always successful. 1238 */ 1239 cpu_function_call(event->cpu, __perf_remove_from_context, event); 1240 return; 1241 } 1242 1243 retry: 1244 if (!task_function_call(task, __perf_remove_from_context, event)) 1245 return; 1246 1247 raw_spin_lock_irq(&ctx->lock); 1248 /* 1249 * If we failed to find a running task, but find the context active now 1250 * that we've acquired the ctx->lock, retry. 1251 */ 1252 if (ctx->is_active) { 1253 raw_spin_unlock_irq(&ctx->lock); 1254 goto retry; 1255 } 1256 1257 /* 1258 * Since the task isn't running, its safe to remove the event, us 1259 * holding the ctx->lock ensures the task won't get scheduled in. 1260 */ 1261 list_del_event(event, ctx); 1262 raw_spin_unlock_irq(&ctx->lock); 1263 } 1264 1265 /* 1266 * Cross CPU call to disable a performance event 1267 */ 1268 int __perf_event_disable(void *info) 1269 { 1270 struct perf_event *event = info; 1271 struct perf_event_context *ctx = event->ctx; 1272 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1273 1274 /* 1275 * If this is a per-task event, need to check whether this 1276 * event's task is the current task on this cpu. 1277 * 1278 * Can trigger due to concurrent perf_event_context_sched_out() 1279 * flipping contexts around. 1280 */ 1281 if (ctx->task && cpuctx->task_ctx != ctx) 1282 return -EINVAL; 1283 1284 raw_spin_lock(&ctx->lock); 1285 1286 /* 1287 * If the event is on, turn it off. 1288 * If it is in error state, leave it in error state. 1289 */ 1290 if (event->state >= PERF_EVENT_STATE_INACTIVE) { 1291 update_context_time(ctx); 1292 update_cgrp_time_from_event(event); 1293 update_group_times(event); 1294 if (event == event->group_leader) 1295 group_sched_out(event, cpuctx, ctx); 1296 else 1297 event_sched_out(event, cpuctx, ctx); 1298 event->state = PERF_EVENT_STATE_OFF; 1299 } 1300 1301 raw_spin_unlock(&ctx->lock); 1302 1303 return 0; 1304 } 1305 1306 /* 1307 * Disable a event. 1308 * 1309 * If event->ctx is a cloned context, callers must make sure that 1310 * every task struct that event->ctx->task could possibly point to 1311 * remains valid. This condition is satisifed when called through 1312 * perf_event_for_each_child or perf_event_for_each because they 1313 * hold the top-level event's child_mutex, so any descendant that 1314 * goes to exit will block in sync_child_event. 1315 * When called from perf_pending_event it's OK because event->ctx 1316 * is the current context on this CPU and preemption is disabled, 1317 * hence we can't get into perf_event_task_sched_out for this context. 1318 */ 1319 void perf_event_disable(struct perf_event *event) 1320 { 1321 struct perf_event_context *ctx = event->ctx; 1322 struct task_struct *task = ctx->task; 1323 1324 if (!task) { 1325 /* 1326 * Disable the event on the cpu that it's on 1327 */ 1328 cpu_function_call(event->cpu, __perf_event_disable, event); 1329 return; 1330 } 1331 1332 retry: 1333 if (!task_function_call(task, __perf_event_disable, event)) 1334 return; 1335 1336 raw_spin_lock_irq(&ctx->lock); 1337 /* 1338 * If the event is still active, we need to retry the cross-call. 1339 */ 1340 if (event->state == PERF_EVENT_STATE_ACTIVE) { 1341 raw_spin_unlock_irq(&ctx->lock); 1342 /* 1343 * Reload the task pointer, it might have been changed by 1344 * a concurrent perf_event_context_sched_out(). 1345 */ 1346 task = ctx->task; 1347 goto retry; 1348 } 1349 1350 /* 1351 * Since we have the lock this context can't be scheduled 1352 * in, so we can change the state safely. 1353 */ 1354 if (event->state == PERF_EVENT_STATE_INACTIVE) { 1355 update_group_times(event); 1356 event->state = PERF_EVENT_STATE_OFF; 1357 } 1358 raw_spin_unlock_irq(&ctx->lock); 1359 } 1360 EXPORT_SYMBOL_GPL(perf_event_disable); 1361 1362 static void perf_set_shadow_time(struct perf_event *event, 1363 struct perf_event_context *ctx, 1364 u64 tstamp) 1365 { 1366 /* 1367 * use the correct time source for the time snapshot 1368 * 1369 * We could get by without this by leveraging the 1370 * fact that to get to this function, the caller 1371 * has most likely already called update_context_time() 1372 * and update_cgrp_time_xx() and thus both timestamp 1373 * are identical (or very close). Given that tstamp is, 1374 * already adjusted for cgroup, we could say that: 1375 * tstamp - ctx->timestamp 1376 * is equivalent to 1377 * tstamp - cgrp->timestamp. 1378 * 1379 * Then, in perf_output_read(), the calculation would 1380 * work with no changes because: 1381 * - event is guaranteed scheduled in 1382 * - no scheduled out in between 1383 * - thus the timestamp would be the same 1384 * 1385 * But this is a bit hairy. 1386 * 1387 * So instead, we have an explicit cgroup call to remain 1388 * within the time time source all along. We believe it 1389 * is cleaner and simpler to understand. 1390 */ 1391 if (is_cgroup_event(event)) 1392 perf_cgroup_set_shadow_time(event, tstamp); 1393 else 1394 event->shadow_ctx_time = tstamp - ctx->timestamp; 1395 } 1396 1397 #define MAX_INTERRUPTS (~0ULL) 1398 1399 static void perf_log_throttle(struct perf_event *event, int enable); 1400 1401 static int 1402 event_sched_in(struct perf_event *event, 1403 struct perf_cpu_context *cpuctx, 1404 struct perf_event_context *ctx) 1405 { 1406 u64 tstamp = perf_event_time(event); 1407 1408 if (event->state <= PERF_EVENT_STATE_OFF) 1409 return 0; 1410 1411 event->state = PERF_EVENT_STATE_ACTIVE; 1412 event->oncpu = smp_processor_id(); 1413 1414 /* 1415 * Unthrottle events, since we scheduled we might have missed several 1416 * ticks already, also for a heavily scheduling task there is little 1417 * guarantee it'll get a tick in a timely manner. 1418 */ 1419 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 1420 perf_log_throttle(event, 1); 1421 event->hw.interrupts = 0; 1422 } 1423 1424 /* 1425 * The new state must be visible before we turn it on in the hardware: 1426 */ 1427 smp_wmb(); 1428 1429 if (event->pmu->add(event, PERF_EF_START)) { 1430 event->state = PERF_EVENT_STATE_INACTIVE; 1431 event->oncpu = -1; 1432 return -EAGAIN; 1433 } 1434 1435 event->tstamp_running += tstamp - event->tstamp_stopped; 1436 1437 perf_set_shadow_time(event, ctx, tstamp); 1438 1439 if (!is_software_event(event)) 1440 cpuctx->active_oncpu++; 1441 ctx->nr_active++; 1442 if (event->attr.freq && event->attr.sample_freq) 1443 ctx->nr_freq++; 1444 1445 if (event->attr.exclusive) 1446 cpuctx->exclusive = 1; 1447 1448 return 0; 1449 } 1450 1451 static int 1452 group_sched_in(struct perf_event *group_event, 1453 struct perf_cpu_context *cpuctx, 1454 struct perf_event_context *ctx) 1455 { 1456 struct perf_event *event, *partial_group = NULL; 1457 struct pmu *pmu = group_event->pmu; 1458 u64 now = ctx->time; 1459 bool simulate = false; 1460 1461 if (group_event->state == PERF_EVENT_STATE_OFF) 1462 return 0; 1463 1464 pmu->start_txn(pmu); 1465 1466 if (event_sched_in(group_event, cpuctx, ctx)) { 1467 pmu->cancel_txn(pmu); 1468 return -EAGAIN; 1469 } 1470 1471 /* 1472 * Schedule in siblings as one group (if any): 1473 */ 1474 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 1475 if (event_sched_in(event, cpuctx, ctx)) { 1476 partial_group = event; 1477 goto group_error; 1478 } 1479 } 1480 1481 if (!pmu->commit_txn(pmu)) 1482 return 0; 1483 1484 group_error: 1485 /* 1486 * Groups can be scheduled in as one unit only, so undo any 1487 * partial group before returning: 1488 * The events up to the failed event are scheduled out normally, 1489 * tstamp_stopped will be updated. 1490 * 1491 * The failed events and the remaining siblings need to have 1492 * their timings updated as if they had gone thru event_sched_in() 1493 * and event_sched_out(). This is required to get consistent timings 1494 * across the group. This also takes care of the case where the group 1495 * could never be scheduled by ensuring tstamp_stopped is set to mark 1496 * the time the event was actually stopped, such that time delta 1497 * calculation in update_event_times() is correct. 1498 */ 1499 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 1500 if (event == partial_group) 1501 simulate = true; 1502 1503 if (simulate) { 1504 event->tstamp_running += now - event->tstamp_stopped; 1505 event->tstamp_stopped = now; 1506 } else { 1507 event_sched_out(event, cpuctx, ctx); 1508 } 1509 } 1510 event_sched_out(group_event, cpuctx, ctx); 1511 1512 pmu->cancel_txn(pmu); 1513 1514 return -EAGAIN; 1515 } 1516 1517 /* 1518 * Work out whether we can put this event group on the CPU now. 1519 */ 1520 static int group_can_go_on(struct perf_event *event, 1521 struct perf_cpu_context *cpuctx, 1522 int can_add_hw) 1523 { 1524 /* 1525 * Groups consisting entirely of software events can always go on. 1526 */ 1527 if (event->group_flags & PERF_GROUP_SOFTWARE) 1528 return 1; 1529 /* 1530 * If an exclusive group is already on, no other hardware 1531 * events can go on. 1532 */ 1533 if (cpuctx->exclusive) 1534 return 0; 1535 /* 1536 * If this group is exclusive and there are already 1537 * events on the CPU, it can't go on. 1538 */ 1539 if (event->attr.exclusive && cpuctx->active_oncpu) 1540 return 0; 1541 /* 1542 * Otherwise, try to add it if all previous groups were able 1543 * to go on. 1544 */ 1545 return can_add_hw; 1546 } 1547 1548 static void add_event_to_ctx(struct perf_event *event, 1549 struct perf_event_context *ctx) 1550 { 1551 u64 tstamp = perf_event_time(event); 1552 1553 list_add_event(event, ctx); 1554 perf_group_attach(event); 1555 event->tstamp_enabled = tstamp; 1556 event->tstamp_running = tstamp; 1557 event->tstamp_stopped = tstamp; 1558 } 1559 1560 static void task_ctx_sched_out(struct perf_event_context *ctx); 1561 static void 1562 ctx_sched_in(struct perf_event_context *ctx, 1563 struct perf_cpu_context *cpuctx, 1564 enum event_type_t event_type, 1565 struct task_struct *task); 1566 1567 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 1568 struct perf_event_context *ctx, 1569 struct task_struct *task) 1570 { 1571 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task); 1572 if (ctx) 1573 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task); 1574 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task); 1575 if (ctx) 1576 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task); 1577 } 1578 1579 /* 1580 * Cross CPU call to install and enable a performance event 1581 * 1582 * Must be called with ctx->mutex held 1583 */ 1584 static int __perf_install_in_context(void *info) 1585 { 1586 struct perf_event *event = info; 1587 struct perf_event_context *ctx = event->ctx; 1588 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1589 struct perf_event_context *task_ctx = cpuctx->task_ctx; 1590 struct task_struct *task = current; 1591 1592 perf_ctx_lock(cpuctx, task_ctx); 1593 perf_pmu_disable(cpuctx->ctx.pmu); 1594 1595 /* 1596 * If there was an active task_ctx schedule it out. 1597 */ 1598 if (task_ctx) 1599 task_ctx_sched_out(task_ctx); 1600 1601 /* 1602 * If the context we're installing events in is not the 1603 * active task_ctx, flip them. 1604 */ 1605 if (ctx->task && task_ctx != ctx) { 1606 if (task_ctx) 1607 raw_spin_unlock(&task_ctx->lock); 1608 raw_spin_lock(&ctx->lock); 1609 task_ctx = ctx; 1610 } 1611 1612 if (task_ctx) { 1613 cpuctx->task_ctx = task_ctx; 1614 task = task_ctx->task; 1615 } 1616 1617 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 1618 1619 update_context_time(ctx); 1620 /* 1621 * update cgrp time only if current cgrp 1622 * matches event->cgrp. Must be done before 1623 * calling add_event_to_ctx() 1624 */ 1625 update_cgrp_time_from_event(event); 1626 1627 add_event_to_ctx(event, ctx); 1628 1629 /* 1630 * Schedule everything back in 1631 */ 1632 perf_event_sched_in(cpuctx, task_ctx, task); 1633 1634 perf_pmu_enable(cpuctx->ctx.pmu); 1635 perf_ctx_unlock(cpuctx, task_ctx); 1636 1637 return 0; 1638 } 1639 1640 /* 1641 * Attach a performance event to a context 1642 * 1643 * First we add the event to the list with the hardware enable bit 1644 * in event->hw_config cleared. 1645 * 1646 * If the event is attached to a task which is on a CPU we use a smp 1647 * call to enable it in the task context. The task might have been 1648 * scheduled away, but we check this in the smp call again. 1649 */ 1650 static void 1651 perf_install_in_context(struct perf_event_context *ctx, 1652 struct perf_event *event, 1653 int cpu) 1654 { 1655 struct task_struct *task = ctx->task; 1656 1657 lockdep_assert_held(&ctx->mutex); 1658 1659 event->ctx = ctx; 1660 if (event->cpu != -1) 1661 event->cpu = cpu; 1662 1663 if (!task) { 1664 /* 1665 * Per cpu events are installed via an smp call and 1666 * the install is always successful. 1667 */ 1668 cpu_function_call(cpu, __perf_install_in_context, event); 1669 return; 1670 } 1671 1672 retry: 1673 if (!task_function_call(task, __perf_install_in_context, event)) 1674 return; 1675 1676 raw_spin_lock_irq(&ctx->lock); 1677 /* 1678 * If we failed to find a running task, but find the context active now 1679 * that we've acquired the ctx->lock, retry. 1680 */ 1681 if (ctx->is_active) { 1682 raw_spin_unlock_irq(&ctx->lock); 1683 goto retry; 1684 } 1685 1686 /* 1687 * Since the task isn't running, its safe to add the event, us holding 1688 * the ctx->lock ensures the task won't get scheduled in. 1689 */ 1690 add_event_to_ctx(event, ctx); 1691 raw_spin_unlock_irq(&ctx->lock); 1692 } 1693 1694 /* 1695 * Put a event into inactive state and update time fields. 1696 * Enabling the leader of a group effectively enables all 1697 * the group members that aren't explicitly disabled, so we 1698 * have to update their ->tstamp_enabled also. 1699 * Note: this works for group members as well as group leaders 1700 * since the non-leader members' sibling_lists will be empty. 1701 */ 1702 static void __perf_event_mark_enabled(struct perf_event *event) 1703 { 1704 struct perf_event *sub; 1705 u64 tstamp = perf_event_time(event); 1706 1707 event->state = PERF_EVENT_STATE_INACTIVE; 1708 event->tstamp_enabled = tstamp - event->total_time_enabled; 1709 list_for_each_entry(sub, &event->sibling_list, group_entry) { 1710 if (sub->state >= PERF_EVENT_STATE_INACTIVE) 1711 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 1712 } 1713 } 1714 1715 /* 1716 * Cross CPU call to enable a performance event 1717 */ 1718 static int __perf_event_enable(void *info) 1719 { 1720 struct perf_event *event = info; 1721 struct perf_event_context *ctx = event->ctx; 1722 struct perf_event *leader = event->group_leader; 1723 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1724 int err; 1725 1726 if (WARN_ON_ONCE(!ctx->is_active)) 1727 return -EINVAL; 1728 1729 raw_spin_lock(&ctx->lock); 1730 update_context_time(ctx); 1731 1732 if (event->state >= PERF_EVENT_STATE_INACTIVE) 1733 goto unlock; 1734 1735 /* 1736 * set current task's cgroup time reference point 1737 */ 1738 perf_cgroup_set_timestamp(current, ctx); 1739 1740 __perf_event_mark_enabled(event); 1741 1742 if (!event_filter_match(event)) { 1743 if (is_cgroup_event(event)) 1744 perf_cgroup_defer_enabled(event); 1745 goto unlock; 1746 } 1747 1748 /* 1749 * If the event is in a group and isn't the group leader, 1750 * then don't put it on unless the group is on. 1751 */ 1752 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) 1753 goto unlock; 1754 1755 if (!group_can_go_on(event, cpuctx, 1)) { 1756 err = -EEXIST; 1757 } else { 1758 if (event == leader) 1759 err = group_sched_in(event, cpuctx, ctx); 1760 else 1761 err = event_sched_in(event, cpuctx, ctx); 1762 } 1763 1764 if (err) { 1765 /* 1766 * If this event can't go on and it's part of a 1767 * group, then the whole group has to come off. 1768 */ 1769 if (leader != event) 1770 group_sched_out(leader, cpuctx, ctx); 1771 if (leader->attr.pinned) { 1772 update_group_times(leader); 1773 leader->state = PERF_EVENT_STATE_ERROR; 1774 } 1775 } 1776 1777 unlock: 1778 raw_spin_unlock(&ctx->lock); 1779 1780 return 0; 1781 } 1782 1783 /* 1784 * Enable a event. 1785 * 1786 * If event->ctx is a cloned context, callers must make sure that 1787 * every task struct that event->ctx->task could possibly point to 1788 * remains valid. This condition is satisfied when called through 1789 * perf_event_for_each_child or perf_event_for_each as described 1790 * for perf_event_disable. 1791 */ 1792 void perf_event_enable(struct perf_event *event) 1793 { 1794 struct perf_event_context *ctx = event->ctx; 1795 struct task_struct *task = ctx->task; 1796 1797 if (!task) { 1798 /* 1799 * Enable the event on the cpu that it's on 1800 */ 1801 cpu_function_call(event->cpu, __perf_event_enable, event); 1802 return; 1803 } 1804 1805 raw_spin_lock_irq(&ctx->lock); 1806 if (event->state >= PERF_EVENT_STATE_INACTIVE) 1807 goto out; 1808 1809 /* 1810 * If the event is in error state, clear that first. 1811 * That way, if we see the event in error state below, we 1812 * know that it has gone back into error state, as distinct 1813 * from the task having been scheduled away before the 1814 * cross-call arrived. 1815 */ 1816 if (event->state == PERF_EVENT_STATE_ERROR) 1817 event->state = PERF_EVENT_STATE_OFF; 1818 1819 retry: 1820 if (!ctx->is_active) { 1821 __perf_event_mark_enabled(event); 1822 goto out; 1823 } 1824 1825 raw_spin_unlock_irq(&ctx->lock); 1826 1827 if (!task_function_call(task, __perf_event_enable, event)) 1828 return; 1829 1830 raw_spin_lock_irq(&ctx->lock); 1831 1832 /* 1833 * If the context is active and the event is still off, 1834 * we need to retry the cross-call. 1835 */ 1836 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) { 1837 /* 1838 * task could have been flipped by a concurrent 1839 * perf_event_context_sched_out() 1840 */ 1841 task = ctx->task; 1842 goto retry; 1843 } 1844 1845 out: 1846 raw_spin_unlock_irq(&ctx->lock); 1847 } 1848 EXPORT_SYMBOL_GPL(perf_event_enable); 1849 1850 int perf_event_refresh(struct perf_event *event, int refresh) 1851 { 1852 /* 1853 * not supported on inherited events 1854 */ 1855 if (event->attr.inherit || !is_sampling_event(event)) 1856 return -EINVAL; 1857 1858 atomic_add(refresh, &event->event_limit); 1859 perf_event_enable(event); 1860 1861 return 0; 1862 } 1863 EXPORT_SYMBOL_GPL(perf_event_refresh); 1864 1865 static void ctx_sched_out(struct perf_event_context *ctx, 1866 struct perf_cpu_context *cpuctx, 1867 enum event_type_t event_type) 1868 { 1869 struct perf_event *event; 1870 int is_active = ctx->is_active; 1871 1872 ctx->is_active &= ~event_type; 1873 if (likely(!ctx->nr_events)) 1874 return; 1875 1876 update_context_time(ctx); 1877 update_cgrp_time_from_cpuctx(cpuctx); 1878 if (!ctx->nr_active) 1879 return; 1880 1881 perf_pmu_disable(ctx->pmu); 1882 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) { 1883 list_for_each_entry(event, &ctx->pinned_groups, group_entry) 1884 group_sched_out(event, cpuctx, ctx); 1885 } 1886 1887 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) { 1888 list_for_each_entry(event, &ctx->flexible_groups, group_entry) 1889 group_sched_out(event, cpuctx, ctx); 1890 } 1891 perf_pmu_enable(ctx->pmu); 1892 } 1893 1894 /* 1895 * Test whether two contexts are equivalent, i.e. whether they 1896 * have both been cloned from the same version of the same context 1897 * and they both have the same number of enabled events. 1898 * If the number of enabled events is the same, then the set 1899 * of enabled events should be the same, because these are both 1900 * inherited contexts, therefore we can't access individual events 1901 * in them directly with an fd; we can only enable/disable all 1902 * events via prctl, or enable/disable all events in a family 1903 * via ioctl, which will have the same effect on both contexts. 1904 */ 1905 static int context_equiv(struct perf_event_context *ctx1, 1906 struct perf_event_context *ctx2) 1907 { 1908 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx 1909 && ctx1->parent_gen == ctx2->parent_gen 1910 && !ctx1->pin_count && !ctx2->pin_count; 1911 } 1912 1913 static void __perf_event_sync_stat(struct perf_event *event, 1914 struct perf_event *next_event) 1915 { 1916 u64 value; 1917 1918 if (!event->attr.inherit_stat) 1919 return; 1920 1921 /* 1922 * Update the event value, we cannot use perf_event_read() 1923 * because we're in the middle of a context switch and have IRQs 1924 * disabled, which upsets smp_call_function_single(), however 1925 * we know the event must be on the current CPU, therefore we 1926 * don't need to use it. 1927 */ 1928 switch (event->state) { 1929 case PERF_EVENT_STATE_ACTIVE: 1930 event->pmu->read(event); 1931 /* fall-through */ 1932 1933 case PERF_EVENT_STATE_INACTIVE: 1934 update_event_times(event); 1935 break; 1936 1937 default: 1938 break; 1939 } 1940 1941 /* 1942 * In order to keep per-task stats reliable we need to flip the event 1943 * values when we flip the contexts. 1944 */ 1945 value = local64_read(&next_event->count); 1946 value = local64_xchg(&event->count, value); 1947 local64_set(&next_event->count, value); 1948 1949 swap(event->total_time_enabled, next_event->total_time_enabled); 1950 swap(event->total_time_running, next_event->total_time_running); 1951 1952 /* 1953 * Since we swizzled the values, update the user visible data too. 1954 */ 1955 perf_event_update_userpage(event); 1956 perf_event_update_userpage(next_event); 1957 } 1958 1959 #define list_next_entry(pos, member) \ 1960 list_entry(pos->member.next, typeof(*pos), member) 1961 1962 static void perf_event_sync_stat(struct perf_event_context *ctx, 1963 struct perf_event_context *next_ctx) 1964 { 1965 struct perf_event *event, *next_event; 1966 1967 if (!ctx->nr_stat) 1968 return; 1969 1970 update_context_time(ctx); 1971 1972 event = list_first_entry(&ctx->event_list, 1973 struct perf_event, event_entry); 1974 1975 next_event = list_first_entry(&next_ctx->event_list, 1976 struct perf_event, event_entry); 1977 1978 while (&event->event_entry != &ctx->event_list && 1979 &next_event->event_entry != &next_ctx->event_list) { 1980 1981 __perf_event_sync_stat(event, next_event); 1982 1983 event = list_next_entry(event, event_entry); 1984 next_event = list_next_entry(next_event, event_entry); 1985 } 1986 } 1987 1988 static void perf_event_context_sched_out(struct task_struct *task, int ctxn, 1989 struct task_struct *next) 1990 { 1991 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; 1992 struct perf_event_context *next_ctx; 1993 struct perf_event_context *parent; 1994 struct perf_cpu_context *cpuctx; 1995 int do_switch = 1; 1996 1997 if (likely(!ctx)) 1998 return; 1999 2000 cpuctx = __get_cpu_context(ctx); 2001 if (!cpuctx->task_ctx) 2002 return; 2003 2004 rcu_read_lock(); 2005 parent = rcu_dereference(ctx->parent_ctx); 2006 next_ctx = next->perf_event_ctxp[ctxn]; 2007 if (parent && next_ctx && 2008 rcu_dereference(next_ctx->parent_ctx) == parent) { 2009 /* 2010 * Looks like the two contexts are clones, so we might be 2011 * able to optimize the context switch. We lock both 2012 * contexts and check that they are clones under the 2013 * lock (including re-checking that neither has been 2014 * uncloned in the meantime). It doesn't matter which 2015 * order we take the locks because no other cpu could 2016 * be trying to lock both of these tasks. 2017 */ 2018 raw_spin_lock(&ctx->lock); 2019 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 2020 if (context_equiv(ctx, next_ctx)) { 2021 /* 2022 * XXX do we need a memory barrier of sorts 2023 * wrt to rcu_dereference() of perf_event_ctxp 2024 */ 2025 task->perf_event_ctxp[ctxn] = next_ctx; 2026 next->perf_event_ctxp[ctxn] = ctx; 2027 ctx->task = next; 2028 next_ctx->task = task; 2029 do_switch = 0; 2030 2031 perf_event_sync_stat(ctx, next_ctx); 2032 } 2033 raw_spin_unlock(&next_ctx->lock); 2034 raw_spin_unlock(&ctx->lock); 2035 } 2036 rcu_read_unlock(); 2037 2038 if (do_switch) { 2039 raw_spin_lock(&ctx->lock); 2040 ctx_sched_out(ctx, cpuctx, EVENT_ALL); 2041 cpuctx->task_ctx = NULL; 2042 raw_spin_unlock(&ctx->lock); 2043 } 2044 } 2045 2046 #define for_each_task_context_nr(ctxn) \ 2047 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) 2048 2049 /* 2050 * Called from scheduler to remove the events of the current task, 2051 * with interrupts disabled. 2052 * 2053 * We stop each event and update the event value in event->count. 2054 * 2055 * This does not protect us against NMI, but disable() 2056 * sets the disabled bit in the control field of event _before_ 2057 * accessing the event control register. If a NMI hits, then it will 2058 * not restart the event. 2059 */ 2060 void __perf_event_task_sched_out(struct task_struct *task, 2061 struct task_struct *next) 2062 { 2063 int ctxn; 2064 2065 for_each_task_context_nr(ctxn) 2066 perf_event_context_sched_out(task, ctxn, next); 2067 2068 /* 2069 * if cgroup events exist on this CPU, then we need 2070 * to check if we have to switch out PMU state. 2071 * cgroup event are system-wide mode only 2072 */ 2073 if (atomic_read(&__get_cpu_var(perf_cgroup_events))) 2074 perf_cgroup_sched_out(task, next); 2075 } 2076 2077 static void task_ctx_sched_out(struct perf_event_context *ctx) 2078 { 2079 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2080 2081 if (!cpuctx->task_ctx) 2082 return; 2083 2084 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2085 return; 2086 2087 ctx_sched_out(ctx, cpuctx, EVENT_ALL); 2088 cpuctx->task_ctx = NULL; 2089 } 2090 2091 /* 2092 * Called with IRQs disabled 2093 */ 2094 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 2095 enum event_type_t event_type) 2096 { 2097 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); 2098 } 2099 2100 static void 2101 ctx_pinned_sched_in(struct perf_event_context *ctx, 2102 struct perf_cpu_context *cpuctx) 2103 { 2104 struct perf_event *event; 2105 2106 list_for_each_entry(event, &ctx->pinned_groups, group_entry) { 2107 if (event->state <= PERF_EVENT_STATE_OFF) 2108 continue; 2109 if (!event_filter_match(event)) 2110 continue; 2111 2112 /* may need to reset tstamp_enabled */ 2113 if (is_cgroup_event(event)) 2114 perf_cgroup_mark_enabled(event, ctx); 2115 2116 if (group_can_go_on(event, cpuctx, 1)) 2117 group_sched_in(event, cpuctx, ctx); 2118 2119 /* 2120 * If this pinned group hasn't been scheduled, 2121 * put it in error state. 2122 */ 2123 if (event->state == PERF_EVENT_STATE_INACTIVE) { 2124 update_group_times(event); 2125 event->state = PERF_EVENT_STATE_ERROR; 2126 } 2127 } 2128 } 2129 2130 static void 2131 ctx_flexible_sched_in(struct perf_event_context *ctx, 2132 struct perf_cpu_context *cpuctx) 2133 { 2134 struct perf_event *event; 2135 int can_add_hw = 1; 2136 2137 list_for_each_entry(event, &ctx->flexible_groups, group_entry) { 2138 /* Ignore events in OFF or ERROR state */ 2139 if (event->state <= PERF_EVENT_STATE_OFF) 2140 continue; 2141 /* 2142 * Listen to the 'cpu' scheduling filter constraint 2143 * of events: 2144 */ 2145 if (!event_filter_match(event)) 2146 continue; 2147 2148 /* may need to reset tstamp_enabled */ 2149 if (is_cgroup_event(event)) 2150 perf_cgroup_mark_enabled(event, ctx); 2151 2152 if (group_can_go_on(event, cpuctx, can_add_hw)) { 2153 if (group_sched_in(event, cpuctx, ctx)) 2154 can_add_hw = 0; 2155 } 2156 } 2157 } 2158 2159 static void 2160 ctx_sched_in(struct perf_event_context *ctx, 2161 struct perf_cpu_context *cpuctx, 2162 enum event_type_t event_type, 2163 struct task_struct *task) 2164 { 2165 u64 now; 2166 int is_active = ctx->is_active; 2167 2168 ctx->is_active |= event_type; 2169 if (likely(!ctx->nr_events)) 2170 return; 2171 2172 now = perf_clock(); 2173 ctx->timestamp = now; 2174 perf_cgroup_set_timestamp(task, ctx); 2175 /* 2176 * First go through the list and put on any pinned groups 2177 * in order to give them the best chance of going on. 2178 */ 2179 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) 2180 ctx_pinned_sched_in(ctx, cpuctx); 2181 2182 /* Then walk through the lower prio flexible groups */ 2183 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) 2184 ctx_flexible_sched_in(ctx, cpuctx); 2185 } 2186 2187 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 2188 enum event_type_t event_type, 2189 struct task_struct *task) 2190 { 2191 struct perf_event_context *ctx = &cpuctx->ctx; 2192 2193 ctx_sched_in(ctx, cpuctx, event_type, task); 2194 } 2195 2196 static void perf_event_context_sched_in(struct perf_event_context *ctx, 2197 struct task_struct *task) 2198 { 2199 struct perf_cpu_context *cpuctx; 2200 2201 cpuctx = __get_cpu_context(ctx); 2202 if (cpuctx->task_ctx == ctx) 2203 return; 2204 2205 perf_ctx_lock(cpuctx, ctx); 2206 perf_pmu_disable(ctx->pmu); 2207 /* 2208 * We want to keep the following priority order: 2209 * cpu pinned (that don't need to move), task pinned, 2210 * cpu flexible, task flexible. 2211 */ 2212 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2213 2214 if (ctx->nr_events) 2215 cpuctx->task_ctx = ctx; 2216 2217 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task); 2218 2219 perf_pmu_enable(ctx->pmu); 2220 perf_ctx_unlock(cpuctx, ctx); 2221 2222 /* 2223 * Since these rotations are per-cpu, we need to ensure the 2224 * cpu-context we got scheduled on is actually rotating. 2225 */ 2226 perf_pmu_rotate_start(ctx->pmu); 2227 } 2228 2229 /* 2230 * When sampling the branck stack in system-wide, it may be necessary 2231 * to flush the stack on context switch. This happens when the branch 2232 * stack does not tag its entries with the pid of the current task. 2233 * Otherwise it becomes impossible to associate a branch entry with a 2234 * task. This ambiguity is more likely to appear when the branch stack 2235 * supports priv level filtering and the user sets it to monitor only 2236 * at the user level (which could be a useful measurement in system-wide 2237 * mode). In that case, the risk is high of having a branch stack with 2238 * branch from multiple tasks. Flushing may mean dropping the existing 2239 * entries or stashing them somewhere in the PMU specific code layer. 2240 * 2241 * This function provides the context switch callback to the lower code 2242 * layer. It is invoked ONLY when there is at least one system-wide context 2243 * with at least one active event using taken branch sampling. 2244 */ 2245 static void perf_branch_stack_sched_in(struct task_struct *prev, 2246 struct task_struct *task) 2247 { 2248 struct perf_cpu_context *cpuctx; 2249 struct pmu *pmu; 2250 unsigned long flags; 2251 2252 /* no need to flush branch stack if not changing task */ 2253 if (prev == task) 2254 return; 2255 2256 local_irq_save(flags); 2257 2258 rcu_read_lock(); 2259 2260 list_for_each_entry_rcu(pmu, &pmus, entry) { 2261 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 2262 2263 /* 2264 * check if the context has at least one 2265 * event using PERF_SAMPLE_BRANCH_STACK 2266 */ 2267 if (cpuctx->ctx.nr_branch_stack > 0 2268 && pmu->flush_branch_stack) { 2269 2270 pmu = cpuctx->ctx.pmu; 2271 2272 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 2273 2274 perf_pmu_disable(pmu); 2275 2276 pmu->flush_branch_stack(); 2277 2278 perf_pmu_enable(pmu); 2279 2280 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 2281 } 2282 } 2283 2284 rcu_read_unlock(); 2285 2286 local_irq_restore(flags); 2287 } 2288 2289 /* 2290 * Called from scheduler to add the events of the current task 2291 * with interrupts disabled. 2292 * 2293 * We restore the event value and then enable it. 2294 * 2295 * This does not protect us against NMI, but enable() 2296 * sets the enabled bit in the control field of event _before_ 2297 * accessing the event control register. If a NMI hits, then it will 2298 * keep the event running. 2299 */ 2300 void __perf_event_task_sched_in(struct task_struct *prev, 2301 struct task_struct *task) 2302 { 2303 struct perf_event_context *ctx; 2304 int ctxn; 2305 2306 for_each_task_context_nr(ctxn) { 2307 ctx = task->perf_event_ctxp[ctxn]; 2308 if (likely(!ctx)) 2309 continue; 2310 2311 perf_event_context_sched_in(ctx, task); 2312 } 2313 /* 2314 * if cgroup events exist on this CPU, then we need 2315 * to check if we have to switch in PMU state. 2316 * cgroup event are system-wide mode only 2317 */ 2318 if (atomic_read(&__get_cpu_var(perf_cgroup_events))) 2319 perf_cgroup_sched_in(prev, task); 2320 2321 /* check for system-wide branch_stack events */ 2322 if (atomic_read(&__get_cpu_var(perf_branch_stack_events))) 2323 perf_branch_stack_sched_in(prev, task); 2324 } 2325 2326 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 2327 { 2328 u64 frequency = event->attr.sample_freq; 2329 u64 sec = NSEC_PER_SEC; 2330 u64 divisor, dividend; 2331 2332 int count_fls, nsec_fls, frequency_fls, sec_fls; 2333 2334 count_fls = fls64(count); 2335 nsec_fls = fls64(nsec); 2336 frequency_fls = fls64(frequency); 2337 sec_fls = 30; 2338 2339 /* 2340 * We got @count in @nsec, with a target of sample_freq HZ 2341 * the target period becomes: 2342 * 2343 * @count * 10^9 2344 * period = ------------------- 2345 * @nsec * sample_freq 2346 * 2347 */ 2348 2349 /* 2350 * Reduce accuracy by one bit such that @a and @b converge 2351 * to a similar magnitude. 2352 */ 2353 #define REDUCE_FLS(a, b) \ 2354 do { \ 2355 if (a##_fls > b##_fls) { \ 2356 a >>= 1; \ 2357 a##_fls--; \ 2358 } else { \ 2359 b >>= 1; \ 2360 b##_fls--; \ 2361 } \ 2362 } while (0) 2363 2364 /* 2365 * Reduce accuracy until either term fits in a u64, then proceed with 2366 * the other, so that finally we can do a u64/u64 division. 2367 */ 2368 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 2369 REDUCE_FLS(nsec, frequency); 2370 REDUCE_FLS(sec, count); 2371 } 2372 2373 if (count_fls + sec_fls > 64) { 2374 divisor = nsec * frequency; 2375 2376 while (count_fls + sec_fls > 64) { 2377 REDUCE_FLS(count, sec); 2378 divisor >>= 1; 2379 } 2380 2381 dividend = count * sec; 2382 } else { 2383 dividend = count * sec; 2384 2385 while (nsec_fls + frequency_fls > 64) { 2386 REDUCE_FLS(nsec, frequency); 2387 dividend >>= 1; 2388 } 2389 2390 divisor = nsec * frequency; 2391 } 2392 2393 if (!divisor) 2394 return dividend; 2395 2396 return div64_u64(dividend, divisor); 2397 } 2398 2399 static DEFINE_PER_CPU(int, perf_throttled_count); 2400 static DEFINE_PER_CPU(u64, perf_throttled_seq); 2401 2402 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 2403 { 2404 struct hw_perf_event *hwc = &event->hw; 2405 s64 period, sample_period; 2406 s64 delta; 2407 2408 period = perf_calculate_period(event, nsec, count); 2409 2410 delta = (s64)(period - hwc->sample_period); 2411 delta = (delta + 7) / 8; /* low pass filter */ 2412 2413 sample_period = hwc->sample_period + delta; 2414 2415 if (!sample_period) 2416 sample_period = 1; 2417 2418 hwc->sample_period = sample_period; 2419 2420 if (local64_read(&hwc->period_left) > 8*sample_period) { 2421 if (disable) 2422 event->pmu->stop(event, PERF_EF_UPDATE); 2423 2424 local64_set(&hwc->period_left, 0); 2425 2426 if (disable) 2427 event->pmu->start(event, PERF_EF_RELOAD); 2428 } 2429 } 2430 2431 /* 2432 * combine freq adjustment with unthrottling to avoid two passes over the 2433 * events. At the same time, make sure, having freq events does not change 2434 * the rate of unthrottling as that would introduce bias. 2435 */ 2436 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx, 2437 int needs_unthr) 2438 { 2439 struct perf_event *event; 2440 struct hw_perf_event *hwc; 2441 u64 now, period = TICK_NSEC; 2442 s64 delta; 2443 2444 /* 2445 * only need to iterate over all events iff: 2446 * - context have events in frequency mode (needs freq adjust) 2447 * - there are events to unthrottle on this cpu 2448 */ 2449 if (!(ctx->nr_freq || needs_unthr)) 2450 return; 2451 2452 raw_spin_lock(&ctx->lock); 2453 perf_pmu_disable(ctx->pmu); 2454 2455 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 2456 if (event->state != PERF_EVENT_STATE_ACTIVE) 2457 continue; 2458 2459 if (!event_filter_match(event)) 2460 continue; 2461 2462 hwc = &event->hw; 2463 2464 if (needs_unthr && hwc->interrupts == MAX_INTERRUPTS) { 2465 hwc->interrupts = 0; 2466 perf_log_throttle(event, 1); 2467 event->pmu->start(event, 0); 2468 } 2469 2470 if (!event->attr.freq || !event->attr.sample_freq) 2471 continue; 2472 2473 /* 2474 * stop the event and update event->count 2475 */ 2476 event->pmu->stop(event, PERF_EF_UPDATE); 2477 2478 now = local64_read(&event->count); 2479 delta = now - hwc->freq_count_stamp; 2480 hwc->freq_count_stamp = now; 2481 2482 /* 2483 * restart the event 2484 * reload only if value has changed 2485 * we have stopped the event so tell that 2486 * to perf_adjust_period() to avoid stopping it 2487 * twice. 2488 */ 2489 if (delta > 0) 2490 perf_adjust_period(event, period, delta, false); 2491 2492 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 2493 } 2494 2495 perf_pmu_enable(ctx->pmu); 2496 raw_spin_unlock(&ctx->lock); 2497 } 2498 2499 /* 2500 * Round-robin a context's events: 2501 */ 2502 static void rotate_ctx(struct perf_event_context *ctx) 2503 { 2504 /* 2505 * Rotate the first entry last of non-pinned groups. Rotation might be 2506 * disabled by the inheritance code. 2507 */ 2508 if (!ctx->rotate_disable) 2509 list_rotate_left(&ctx->flexible_groups); 2510 } 2511 2512 /* 2513 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized 2514 * because they're strictly cpu affine and rotate_start is called with IRQs 2515 * disabled, while rotate_context is called from IRQ context. 2516 */ 2517 static void perf_rotate_context(struct perf_cpu_context *cpuctx) 2518 { 2519 struct perf_event_context *ctx = NULL; 2520 int rotate = 0, remove = 1; 2521 2522 if (cpuctx->ctx.nr_events) { 2523 remove = 0; 2524 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active) 2525 rotate = 1; 2526 } 2527 2528 ctx = cpuctx->task_ctx; 2529 if (ctx && ctx->nr_events) { 2530 remove = 0; 2531 if (ctx->nr_events != ctx->nr_active) 2532 rotate = 1; 2533 } 2534 2535 if (!rotate) 2536 goto done; 2537 2538 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 2539 perf_pmu_disable(cpuctx->ctx.pmu); 2540 2541 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2542 if (ctx) 2543 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE); 2544 2545 rotate_ctx(&cpuctx->ctx); 2546 if (ctx) 2547 rotate_ctx(ctx); 2548 2549 perf_event_sched_in(cpuctx, ctx, current); 2550 2551 perf_pmu_enable(cpuctx->ctx.pmu); 2552 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 2553 done: 2554 if (remove) 2555 list_del_init(&cpuctx->rotation_list); 2556 } 2557 2558 void perf_event_task_tick(void) 2559 { 2560 struct list_head *head = &__get_cpu_var(rotation_list); 2561 struct perf_cpu_context *cpuctx, *tmp; 2562 struct perf_event_context *ctx; 2563 int throttled; 2564 2565 WARN_ON(!irqs_disabled()); 2566 2567 __this_cpu_inc(perf_throttled_seq); 2568 throttled = __this_cpu_xchg(perf_throttled_count, 0); 2569 2570 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) { 2571 ctx = &cpuctx->ctx; 2572 perf_adjust_freq_unthr_context(ctx, throttled); 2573 2574 ctx = cpuctx->task_ctx; 2575 if (ctx) 2576 perf_adjust_freq_unthr_context(ctx, throttled); 2577 2578 if (cpuctx->jiffies_interval == 1 || 2579 !(jiffies % cpuctx->jiffies_interval)) 2580 perf_rotate_context(cpuctx); 2581 } 2582 } 2583 2584 static int event_enable_on_exec(struct perf_event *event, 2585 struct perf_event_context *ctx) 2586 { 2587 if (!event->attr.enable_on_exec) 2588 return 0; 2589 2590 event->attr.enable_on_exec = 0; 2591 if (event->state >= PERF_EVENT_STATE_INACTIVE) 2592 return 0; 2593 2594 __perf_event_mark_enabled(event); 2595 2596 return 1; 2597 } 2598 2599 /* 2600 * Enable all of a task's events that have been marked enable-on-exec. 2601 * This expects task == current. 2602 */ 2603 static void perf_event_enable_on_exec(struct perf_event_context *ctx) 2604 { 2605 struct perf_event *event; 2606 unsigned long flags; 2607 int enabled = 0; 2608 int ret; 2609 2610 local_irq_save(flags); 2611 if (!ctx || !ctx->nr_events) 2612 goto out; 2613 2614 /* 2615 * We must ctxsw out cgroup events to avoid conflict 2616 * when invoking perf_task_event_sched_in() later on 2617 * in this function. Otherwise we end up trying to 2618 * ctxswin cgroup events which are already scheduled 2619 * in. 2620 */ 2621 perf_cgroup_sched_out(current, NULL); 2622 2623 raw_spin_lock(&ctx->lock); 2624 task_ctx_sched_out(ctx); 2625 2626 list_for_each_entry(event, &ctx->event_list, event_entry) { 2627 ret = event_enable_on_exec(event, ctx); 2628 if (ret) 2629 enabled = 1; 2630 } 2631 2632 /* 2633 * Unclone this context if we enabled any event. 2634 */ 2635 if (enabled) 2636 unclone_ctx(ctx); 2637 2638 raw_spin_unlock(&ctx->lock); 2639 2640 /* 2641 * Also calls ctxswin for cgroup events, if any: 2642 */ 2643 perf_event_context_sched_in(ctx, ctx->task); 2644 out: 2645 local_irq_restore(flags); 2646 } 2647 2648 /* 2649 * Cross CPU call to read the hardware event 2650 */ 2651 static void __perf_event_read(void *info) 2652 { 2653 struct perf_event *event = info; 2654 struct perf_event_context *ctx = event->ctx; 2655 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2656 2657 /* 2658 * If this is a task context, we need to check whether it is 2659 * the current task context of this cpu. If not it has been 2660 * scheduled out before the smp call arrived. In that case 2661 * event->count would have been updated to a recent sample 2662 * when the event was scheduled out. 2663 */ 2664 if (ctx->task && cpuctx->task_ctx != ctx) 2665 return; 2666 2667 raw_spin_lock(&ctx->lock); 2668 if (ctx->is_active) { 2669 update_context_time(ctx); 2670 update_cgrp_time_from_event(event); 2671 } 2672 update_event_times(event); 2673 if (event->state == PERF_EVENT_STATE_ACTIVE) 2674 event->pmu->read(event); 2675 raw_spin_unlock(&ctx->lock); 2676 } 2677 2678 static inline u64 perf_event_count(struct perf_event *event) 2679 { 2680 return local64_read(&event->count) + atomic64_read(&event->child_count); 2681 } 2682 2683 static u64 perf_event_read(struct perf_event *event) 2684 { 2685 /* 2686 * If event is enabled and currently active on a CPU, update the 2687 * value in the event structure: 2688 */ 2689 if (event->state == PERF_EVENT_STATE_ACTIVE) { 2690 smp_call_function_single(event->oncpu, 2691 __perf_event_read, event, 1); 2692 } else if (event->state == PERF_EVENT_STATE_INACTIVE) { 2693 struct perf_event_context *ctx = event->ctx; 2694 unsigned long flags; 2695 2696 raw_spin_lock_irqsave(&ctx->lock, flags); 2697 /* 2698 * may read while context is not active 2699 * (e.g., thread is blocked), in that case 2700 * we cannot update context time 2701 */ 2702 if (ctx->is_active) { 2703 update_context_time(ctx); 2704 update_cgrp_time_from_event(event); 2705 } 2706 update_event_times(event); 2707 raw_spin_unlock_irqrestore(&ctx->lock, flags); 2708 } 2709 2710 return perf_event_count(event); 2711 } 2712 2713 /* 2714 * Initialize the perf_event context in a task_struct: 2715 */ 2716 static void __perf_event_init_context(struct perf_event_context *ctx) 2717 { 2718 raw_spin_lock_init(&ctx->lock); 2719 mutex_init(&ctx->mutex); 2720 INIT_LIST_HEAD(&ctx->pinned_groups); 2721 INIT_LIST_HEAD(&ctx->flexible_groups); 2722 INIT_LIST_HEAD(&ctx->event_list); 2723 atomic_set(&ctx->refcount, 1); 2724 } 2725 2726 static struct perf_event_context * 2727 alloc_perf_context(struct pmu *pmu, struct task_struct *task) 2728 { 2729 struct perf_event_context *ctx; 2730 2731 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 2732 if (!ctx) 2733 return NULL; 2734 2735 __perf_event_init_context(ctx); 2736 if (task) { 2737 ctx->task = task; 2738 get_task_struct(task); 2739 } 2740 ctx->pmu = pmu; 2741 2742 return ctx; 2743 } 2744 2745 static struct task_struct * 2746 find_lively_task_by_vpid(pid_t vpid) 2747 { 2748 struct task_struct *task; 2749 int err; 2750 2751 rcu_read_lock(); 2752 if (!vpid) 2753 task = current; 2754 else 2755 task = find_task_by_vpid(vpid); 2756 if (task) 2757 get_task_struct(task); 2758 rcu_read_unlock(); 2759 2760 if (!task) 2761 return ERR_PTR(-ESRCH); 2762 2763 /* Reuse ptrace permission checks for now. */ 2764 err = -EACCES; 2765 if (!ptrace_may_access(task, PTRACE_MODE_READ)) 2766 goto errout; 2767 2768 return task; 2769 errout: 2770 put_task_struct(task); 2771 return ERR_PTR(err); 2772 2773 } 2774 2775 /* 2776 * Returns a matching context with refcount and pincount. 2777 */ 2778 static struct perf_event_context * 2779 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu) 2780 { 2781 struct perf_event_context *ctx; 2782 struct perf_cpu_context *cpuctx; 2783 unsigned long flags; 2784 int ctxn, err; 2785 2786 if (!task) { 2787 /* Must be root to operate on a CPU event: */ 2788 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) 2789 return ERR_PTR(-EACCES); 2790 2791 /* 2792 * We could be clever and allow to attach a event to an 2793 * offline CPU and activate it when the CPU comes up, but 2794 * that's for later. 2795 */ 2796 if (!cpu_online(cpu)) 2797 return ERR_PTR(-ENODEV); 2798 2799 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 2800 ctx = &cpuctx->ctx; 2801 get_ctx(ctx); 2802 ++ctx->pin_count; 2803 2804 return ctx; 2805 } 2806 2807 err = -EINVAL; 2808 ctxn = pmu->task_ctx_nr; 2809 if (ctxn < 0) 2810 goto errout; 2811 2812 retry: 2813 ctx = perf_lock_task_context(task, ctxn, &flags); 2814 if (ctx) { 2815 unclone_ctx(ctx); 2816 ++ctx->pin_count; 2817 raw_spin_unlock_irqrestore(&ctx->lock, flags); 2818 } else { 2819 ctx = alloc_perf_context(pmu, task); 2820 err = -ENOMEM; 2821 if (!ctx) 2822 goto errout; 2823 2824 err = 0; 2825 mutex_lock(&task->perf_event_mutex); 2826 /* 2827 * If it has already passed perf_event_exit_task(). 2828 * we must see PF_EXITING, it takes this mutex too. 2829 */ 2830 if (task->flags & PF_EXITING) 2831 err = -ESRCH; 2832 else if (task->perf_event_ctxp[ctxn]) 2833 err = -EAGAIN; 2834 else { 2835 get_ctx(ctx); 2836 ++ctx->pin_count; 2837 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); 2838 } 2839 mutex_unlock(&task->perf_event_mutex); 2840 2841 if (unlikely(err)) { 2842 put_ctx(ctx); 2843 2844 if (err == -EAGAIN) 2845 goto retry; 2846 goto errout; 2847 } 2848 } 2849 2850 return ctx; 2851 2852 errout: 2853 return ERR_PTR(err); 2854 } 2855 2856 static void perf_event_free_filter(struct perf_event *event); 2857 2858 static void free_event_rcu(struct rcu_head *head) 2859 { 2860 struct perf_event *event; 2861 2862 event = container_of(head, struct perf_event, rcu_head); 2863 if (event->ns) 2864 put_pid_ns(event->ns); 2865 perf_event_free_filter(event); 2866 kfree(event); 2867 } 2868 2869 static void ring_buffer_put(struct ring_buffer *rb); 2870 2871 static void free_event(struct perf_event *event) 2872 { 2873 irq_work_sync(&event->pending); 2874 2875 if (!event->parent) { 2876 if (event->attach_state & PERF_ATTACH_TASK) 2877 static_key_slow_dec_deferred(&perf_sched_events); 2878 if (event->attr.mmap || event->attr.mmap_data) 2879 atomic_dec(&nr_mmap_events); 2880 if (event->attr.comm) 2881 atomic_dec(&nr_comm_events); 2882 if (event->attr.task) 2883 atomic_dec(&nr_task_events); 2884 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 2885 put_callchain_buffers(); 2886 if (is_cgroup_event(event)) { 2887 atomic_dec(&per_cpu(perf_cgroup_events, event->cpu)); 2888 static_key_slow_dec_deferred(&perf_sched_events); 2889 } 2890 2891 if (has_branch_stack(event)) { 2892 static_key_slow_dec_deferred(&perf_sched_events); 2893 /* is system-wide event */ 2894 if (!(event->attach_state & PERF_ATTACH_TASK)) 2895 atomic_dec(&per_cpu(perf_branch_stack_events, 2896 event->cpu)); 2897 } 2898 } 2899 2900 if (event->rb) { 2901 ring_buffer_put(event->rb); 2902 event->rb = NULL; 2903 } 2904 2905 if (is_cgroup_event(event)) 2906 perf_detach_cgroup(event); 2907 2908 if (event->destroy) 2909 event->destroy(event); 2910 2911 if (event->ctx) 2912 put_ctx(event->ctx); 2913 2914 call_rcu(&event->rcu_head, free_event_rcu); 2915 } 2916 2917 int perf_event_release_kernel(struct perf_event *event) 2918 { 2919 struct perf_event_context *ctx = event->ctx; 2920 2921 WARN_ON_ONCE(ctx->parent_ctx); 2922 /* 2923 * There are two ways this annotation is useful: 2924 * 2925 * 1) there is a lock recursion from perf_event_exit_task 2926 * see the comment there. 2927 * 2928 * 2) there is a lock-inversion with mmap_sem through 2929 * perf_event_read_group(), which takes faults while 2930 * holding ctx->mutex, however this is called after 2931 * the last filedesc died, so there is no possibility 2932 * to trigger the AB-BA case. 2933 */ 2934 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING); 2935 raw_spin_lock_irq(&ctx->lock); 2936 perf_group_detach(event); 2937 raw_spin_unlock_irq(&ctx->lock); 2938 perf_remove_from_context(event); 2939 mutex_unlock(&ctx->mutex); 2940 2941 free_event(event); 2942 2943 return 0; 2944 } 2945 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 2946 2947 /* 2948 * Called when the last reference to the file is gone. 2949 */ 2950 static void put_event(struct perf_event *event) 2951 { 2952 struct task_struct *owner; 2953 2954 if (!atomic_long_dec_and_test(&event->refcount)) 2955 return; 2956 2957 rcu_read_lock(); 2958 owner = ACCESS_ONCE(event->owner); 2959 /* 2960 * Matches the smp_wmb() in perf_event_exit_task(). If we observe 2961 * !owner it means the list deletion is complete and we can indeed 2962 * free this event, otherwise we need to serialize on 2963 * owner->perf_event_mutex. 2964 */ 2965 smp_read_barrier_depends(); 2966 if (owner) { 2967 /* 2968 * Since delayed_put_task_struct() also drops the last 2969 * task reference we can safely take a new reference 2970 * while holding the rcu_read_lock(). 2971 */ 2972 get_task_struct(owner); 2973 } 2974 rcu_read_unlock(); 2975 2976 if (owner) { 2977 mutex_lock(&owner->perf_event_mutex); 2978 /* 2979 * We have to re-check the event->owner field, if it is cleared 2980 * we raced with perf_event_exit_task(), acquiring the mutex 2981 * ensured they're done, and we can proceed with freeing the 2982 * event. 2983 */ 2984 if (event->owner) 2985 list_del_init(&event->owner_entry); 2986 mutex_unlock(&owner->perf_event_mutex); 2987 put_task_struct(owner); 2988 } 2989 2990 perf_event_release_kernel(event); 2991 } 2992 2993 static int perf_release(struct inode *inode, struct file *file) 2994 { 2995 put_event(file->private_data); 2996 return 0; 2997 } 2998 2999 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 3000 { 3001 struct perf_event *child; 3002 u64 total = 0; 3003 3004 *enabled = 0; 3005 *running = 0; 3006 3007 mutex_lock(&event->child_mutex); 3008 total += perf_event_read(event); 3009 *enabled += event->total_time_enabled + 3010 atomic64_read(&event->child_total_time_enabled); 3011 *running += event->total_time_running + 3012 atomic64_read(&event->child_total_time_running); 3013 3014 list_for_each_entry(child, &event->child_list, child_list) { 3015 total += perf_event_read(child); 3016 *enabled += child->total_time_enabled; 3017 *running += child->total_time_running; 3018 } 3019 mutex_unlock(&event->child_mutex); 3020 3021 return total; 3022 } 3023 EXPORT_SYMBOL_GPL(perf_event_read_value); 3024 3025 static int perf_event_read_group(struct perf_event *event, 3026 u64 read_format, char __user *buf) 3027 { 3028 struct perf_event *leader = event->group_leader, *sub; 3029 int n = 0, size = 0, ret = -EFAULT; 3030 struct perf_event_context *ctx = leader->ctx; 3031 u64 values[5]; 3032 u64 count, enabled, running; 3033 3034 mutex_lock(&ctx->mutex); 3035 count = perf_event_read_value(leader, &enabled, &running); 3036 3037 values[n++] = 1 + leader->nr_siblings; 3038 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 3039 values[n++] = enabled; 3040 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 3041 values[n++] = running; 3042 values[n++] = count; 3043 if (read_format & PERF_FORMAT_ID) 3044 values[n++] = primary_event_id(leader); 3045 3046 size = n * sizeof(u64); 3047 3048 if (copy_to_user(buf, values, size)) 3049 goto unlock; 3050 3051 ret = size; 3052 3053 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 3054 n = 0; 3055 3056 values[n++] = perf_event_read_value(sub, &enabled, &running); 3057 if (read_format & PERF_FORMAT_ID) 3058 values[n++] = primary_event_id(sub); 3059 3060 size = n * sizeof(u64); 3061 3062 if (copy_to_user(buf + ret, values, size)) { 3063 ret = -EFAULT; 3064 goto unlock; 3065 } 3066 3067 ret += size; 3068 } 3069 unlock: 3070 mutex_unlock(&ctx->mutex); 3071 3072 return ret; 3073 } 3074 3075 static int perf_event_read_one(struct perf_event *event, 3076 u64 read_format, char __user *buf) 3077 { 3078 u64 enabled, running; 3079 u64 values[4]; 3080 int n = 0; 3081 3082 values[n++] = perf_event_read_value(event, &enabled, &running); 3083 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 3084 values[n++] = enabled; 3085 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 3086 values[n++] = running; 3087 if (read_format & PERF_FORMAT_ID) 3088 values[n++] = primary_event_id(event); 3089 3090 if (copy_to_user(buf, values, n * sizeof(u64))) 3091 return -EFAULT; 3092 3093 return n * sizeof(u64); 3094 } 3095 3096 /* 3097 * Read the performance event - simple non blocking version for now 3098 */ 3099 static ssize_t 3100 perf_read_hw(struct perf_event *event, char __user *buf, size_t count) 3101 { 3102 u64 read_format = event->attr.read_format; 3103 int ret; 3104 3105 /* 3106 * Return end-of-file for a read on a event that is in 3107 * error state (i.e. because it was pinned but it couldn't be 3108 * scheduled on to the CPU at some point). 3109 */ 3110 if (event->state == PERF_EVENT_STATE_ERROR) 3111 return 0; 3112 3113 if (count < event->read_size) 3114 return -ENOSPC; 3115 3116 WARN_ON_ONCE(event->ctx->parent_ctx); 3117 if (read_format & PERF_FORMAT_GROUP) 3118 ret = perf_event_read_group(event, read_format, buf); 3119 else 3120 ret = perf_event_read_one(event, read_format, buf); 3121 3122 return ret; 3123 } 3124 3125 static ssize_t 3126 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 3127 { 3128 struct perf_event *event = file->private_data; 3129 3130 return perf_read_hw(event, buf, count); 3131 } 3132 3133 static unsigned int perf_poll(struct file *file, poll_table *wait) 3134 { 3135 struct perf_event *event = file->private_data; 3136 struct ring_buffer *rb; 3137 unsigned int events = POLL_HUP; 3138 3139 /* 3140 * Race between perf_event_set_output() and perf_poll(): perf_poll() 3141 * grabs the rb reference but perf_event_set_output() overrides it. 3142 * Here is the timeline for two threads T1, T2: 3143 * t0: T1, rb = rcu_dereference(event->rb) 3144 * t1: T2, old_rb = event->rb 3145 * t2: T2, event->rb = new rb 3146 * t3: T2, ring_buffer_detach(old_rb) 3147 * t4: T1, ring_buffer_attach(rb1) 3148 * t5: T1, poll_wait(event->waitq) 3149 * 3150 * To avoid this problem, we grab mmap_mutex in perf_poll() 3151 * thereby ensuring that the assignment of the new ring buffer 3152 * and the detachment of the old buffer appear atomic to perf_poll() 3153 */ 3154 mutex_lock(&event->mmap_mutex); 3155 3156 rcu_read_lock(); 3157 rb = rcu_dereference(event->rb); 3158 if (rb) { 3159 ring_buffer_attach(event, rb); 3160 events = atomic_xchg(&rb->poll, 0); 3161 } 3162 rcu_read_unlock(); 3163 3164 mutex_unlock(&event->mmap_mutex); 3165 3166 poll_wait(file, &event->waitq, wait); 3167 3168 return events; 3169 } 3170 3171 static void perf_event_reset(struct perf_event *event) 3172 { 3173 (void)perf_event_read(event); 3174 local64_set(&event->count, 0); 3175 perf_event_update_userpage(event); 3176 } 3177 3178 /* 3179 * Holding the top-level event's child_mutex means that any 3180 * descendant process that has inherited this event will block 3181 * in sync_child_event if it goes to exit, thus satisfying the 3182 * task existence requirements of perf_event_enable/disable. 3183 */ 3184 static void perf_event_for_each_child(struct perf_event *event, 3185 void (*func)(struct perf_event *)) 3186 { 3187 struct perf_event *child; 3188 3189 WARN_ON_ONCE(event->ctx->parent_ctx); 3190 mutex_lock(&event->child_mutex); 3191 func(event); 3192 list_for_each_entry(child, &event->child_list, child_list) 3193 func(child); 3194 mutex_unlock(&event->child_mutex); 3195 } 3196 3197 static void perf_event_for_each(struct perf_event *event, 3198 void (*func)(struct perf_event *)) 3199 { 3200 struct perf_event_context *ctx = event->ctx; 3201 struct perf_event *sibling; 3202 3203 WARN_ON_ONCE(ctx->parent_ctx); 3204 mutex_lock(&ctx->mutex); 3205 event = event->group_leader; 3206 3207 perf_event_for_each_child(event, func); 3208 list_for_each_entry(sibling, &event->sibling_list, group_entry) 3209 perf_event_for_each_child(sibling, func); 3210 mutex_unlock(&ctx->mutex); 3211 } 3212 3213 static int perf_event_period(struct perf_event *event, u64 __user *arg) 3214 { 3215 struct perf_event_context *ctx = event->ctx; 3216 int ret = 0; 3217 u64 value; 3218 3219 if (!is_sampling_event(event)) 3220 return -EINVAL; 3221 3222 if (copy_from_user(&value, arg, sizeof(value))) 3223 return -EFAULT; 3224 3225 if (!value) 3226 return -EINVAL; 3227 3228 raw_spin_lock_irq(&ctx->lock); 3229 if (event->attr.freq) { 3230 if (value > sysctl_perf_event_sample_rate) { 3231 ret = -EINVAL; 3232 goto unlock; 3233 } 3234 3235 event->attr.sample_freq = value; 3236 } else { 3237 event->attr.sample_period = value; 3238 event->hw.sample_period = value; 3239 } 3240 unlock: 3241 raw_spin_unlock_irq(&ctx->lock); 3242 3243 return ret; 3244 } 3245 3246 static const struct file_operations perf_fops; 3247 3248 static inline int perf_fget_light(int fd, struct fd *p) 3249 { 3250 struct fd f = fdget(fd); 3251 if (!f.file) 3252 return -EBADF; 3253 3254 if (f.file->f_op != &perf_fops) { 3255 fdput(f); 3256 return -EBADF; 3257 } 3258 *p = f; 3259 return 0; 3260 } 3261 3262 static int perf_event_set_output(struct perf_event *event, 3263 struct perf_event *output_event); 3264 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 3265 3266 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 3267 { 3268 struct perf_event *event = file->private_data; 3269 void (*func)(struct perf_event *); 3270 u32 flags = arg; 3271 3272 switch (cmd) { 3273 case PERF_EVENT_IOC_ENABLE: 3274 func = perf_event_enable; 3275 break; 3276 case PERF_EVENT_IOC_DISABLE: 3277 func = perf_event_disable; 3278 break; 3279 case PERF_EVENT_IOC_RESET: 3280 func = perf_event_reset; 3281 break; 3282 3283 case PERF_EVENT_IOC_REFRESH: 3284 return perf_event_refresh(event, arg); 3285 3286 case PERF_EVENT_IOC_PERIOD: 3287 return perf_event_period(event, (u64 __user *)arg); 3288 3289 case PERF_EVENT_IOC_SET_OUTPUT: 3290 { 3291 int ret; 3292 if (arg != -1) { 3293 struct perf_event *output_event; 3294 struct fd output; 3295 ret = perf_fget_light(arg, &output); 3296 if (ret) 3297 return ret; 3298 output_event = output.file->private_data; 3299 ret = perf_event_set_output(event, output_event); 3300 fdput(output); 3301 } else { 3302 ret = perf_event_set_output(event, NULL); 3303 } 3304 return ret; 3305 } 3306 3307 case PERF_EVENT_IOC_SET_FILTER: 3308 return perf_event_set_filter(event, (void __user *)arg); 3309 3310 default: 3311 return -ENOTTY; 3312 } 3313 3314 if (flags & PERF_IOC_FLAG_GROUP) 3315 perf_event_for_each(event, func); 3316 else 3317 perf_event_for_each_child(event, func); 3318 3319 return 0; 3320 } 3321 3322 int perf_event_task_enable(void) 3323 { 3324 struct perf_event *event; 3325 3326 mutex_lock(¤t->perf_event_mutex); 3327 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) 3328 perf_event_for_each_child(event, perf_event_enable); 3329 mutex_unlock(¤t->perf_event_mutex); 3330 3331 return 0; 3332 } 3333 3334 int perf_event_task_disable(void) 3335 { 3336 struct perf_event *event; 3337 3338 mutex_lock(¤t->perf_event_mutex); 3339 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) 3340 perf_event_for_each_child(event, perf_event_disable); 3341 mutex_unlock(¤t->perf_event_mutex); 3342 3343 return 0; 3344 } 3345 3346 static int perf_event_index(struct perf_event *event) 3347 { 3348 if (event->hw.state & PERF_HES_STOPPED) 3349 return 0; 3350 3351 if (event->state != PERF_EVENT_STATE_ACTIVE) 3352 return 0; 3353 3354 return event->pmu->event_idx(event); 3355 } 3356 3357 static void calc_timer_values(struct perf_event *event, 3358 u64 *now, 3359 u64 *enabled, 3360 u64 *running) 3361 { 3362 u64 ctx_time; 3363 3364 *now = perf_clock(); 3365 ctx_time = event->shadow_ctx_time + *now; 3366 *enabled = ctx_time - event->tstamp_enabled; 3367 *running = ctx_time - event->tstamp_running; 3368 } 3369 3370 void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now) 3371 { 3372 } 3373 3374 /* 3375 * Callers need to ensure there can be no nesting of this function, otherwise 3376 * the seqlock logic goes bad. We can not serialize this because the arch 3377 * code calls this from NMI context. 3378 */ 3379 void perf_event_update_userpage(struct perf_event *event) 3380 { 3381 struct perf_event_mmap_page *userpg; 3382 struct ring_buffer *rb; 3383 u64 enabled, running, now; 3384 3385 rcu_read_lock(); 3386 /* 3387 * compute total_time_enabled, total_time_running 3388 * based on snapshot values taken when the event 3389 * was last scheduled in. 3390 * 3391 * we cannot simply called update_context_time() 3392 * because of locking issue as we can be called in 3393 * NMI context 3394 */ 3395 calc_timer_values(event, &now, &enabled, &running); 3396 rb = rcu_dereference(event->rb); 3397 if (!rb) 3398 goto unlock; 3399 3400 userpg = rb->user_page; 3401 3402 /* 3403 * Disable preemption so as to not let the corresponding user-space 3404 * spin too long if we get preempted. 3405 */ 3406 preempt_disable(); 3407 ++userpg->lock; 3408 barrier(); 3409 userpg->index = perf_event_index(event); 3410 userpg->offset = perf_event_count(event); 3411 if (userpg->index) 3412 userpg->offset -= local64_read(&event->hw.prev_count); 3413 3414 userpg->time_enabled = enabled + 3415 atomic64_read(&event->child_total_time_enabled); 3416 3417 userpg->time_running = running + 3418 atomic64_read(&event->child_total_time_running); 3419 3420 arch_perf_update_userpage(userpg, now); 3421 3422 barrier(); 3423 ++userpg->lock; 3424 preempt_enable(); 3425 unlock: 3426 rcu_read_unlock(); 3427 } 3428 3429 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 3430 { 3431 struct perf_event *event = vma->vm_file->private_data; 3432 struct ring_buffer *rb; 3433 int ret = VM_FAULT_SIGBUS; 3434 3435 if (vmf->flags & FAULT_FLAG_MKWRITE) { 3436 if (vmf->pgoff == 0) 3437 ret = 0; 3438 return ret; 3439 } 3440 3441 rcu_read_lock(); 3442 rb = rcu_dereference(event->rb); 3443 if (!rb) 3444 goto unlock; 3445 3446 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 3447 goto unlock; 3448 3449 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 3450 if (!vmf->page) 3451 goto unlock; 3452 3453 get_page(vmf->page); 3454 vmf->page->mapping = vma->vm_file->f_mapping; 3455 vmf->page->index = vmf->pgoff; 3456 3457 ret = 0; 3458 unlock: 3459 rcu_read_unlock(); 3460 3461 return ret; 3462 } 3463 3464 static void ring_buffer_attach(struct perf_event *event, 3465 struct ring_buffer *rb) 3466 { 3467 unsigned long flags; 3468 3469 if (!list_empty(&event->rb_entry)) 3470 return; 3471 3472 spin_lock_irqsave(&rb->event_lock, flags); 3473 if (!list_empty(&event->rb_entry)) 3474 goto unlock; 3475 3476 list_add(&event->rb_entry, &rb->event_list); 3477 unlock: 3478 spin_unlock_irqrestore(&rb->event_lock, flags); 3479 } 3480 3481 static void ring_buffer_detach(struct perf_event *event, 3482 struct ring_buffer *rb) 3483 { 3484 unsigned long flags; 3485 3486 if (list_empty(&event->rb_entry)) 3487 return; 3488 3489 spin_lock_irqsave(&rb->event_lock, flags); 3490 list_del_init(&event->rb_entry); 3491 wake_up_all(&event->waitq); 3492 spin_unlock_irqrestore(&rb->event_lock, flags); 3493 } 3494 3495 static void ring_buffer_wakeup(struct perf_event *event) 3496 { 3497 struct ring_buffer *rb; 3498 3499 rcu_read_lock(); 3500 rb = rcu_dereference(event->rb); 3501 if (!rb) 3502 goto unlock; 3503 3504 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 3505 wake_up_all(&event->waitq); 3506 3507 unlock: 3508 rcu_read_unlock(); 3509 } 3510 3511 static void rb_free_rcu(struct rcu_head *rcu_head) 3512 { 3513 struct ring_buffer *rb; 3514 3515 rb = container_of(rcu_head, struct ring_buffer, rcu_head); 3516 rb_free(rb); 3517 } 3518 3519 static struct ring_buffer *ring_buffer_get(struct perf_event *event) 3520 { 3521 struct ring_buffer *rb; 3522 3523 rcu_read_lock(); 3524 rb = rcu_dereference(event->rb); 3525 if (rb) { 3526 if (!atomic_inc_not_zero(&rb->refcount)) 3527 rb = NULL; 3528 } 3529 rcu_read_unlock(); 3530 3531 return rb; 3532 } 3533 3534 static void ring_buffer_put(struct ring_buffer *rb) 3535 { 3536 struct perf_event *event, *n; 3537 unsigned long flags; 3538 3539 if (!atomic_dec_and_test(&rb->refcount)) 3540 return; 3541 3542 spin_lock_irqsave(&rb->event_lock, flags); 3543 list_for_each_entry_safe(event, n, &rb->event_list, rb_entry) { 3544 list_del_init(&event->rb_entry); 3545 wake_up_all(&event->waitq); 3546 } 3547 spin_unlock_irqrestore(&rb->event_lock, flags); 3548 3549 call_rcu(&rb->rcu_head, rb_free_rcu); 3550 } 3551 3552 static void perf_mmap_open(struct vm_area_struct *vma) 3553 { 3554 struct perf_event *event = vma->vm_file->private_data; 3555 3556 atomic_inc(&event->mmap_count); 3557 } 3558 3559 static void perf_mmap_close(struct vm_area_struct *vma) 3560 { 3561 struct perf_event *event = vma->vm_file->private_data; 3562 3563 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) { 3564 unsigned long size = perf_data_size(event->rb); 3565 struct user_struct *user = event->mmap_user; 3566 struct ring_buffer *rb = event->rb; 3567 3568 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm); 3569 vma->vm_mm->pinned_vm -= event->mmap_locked; 3570 rcu_assign_pointer(event->rb, NULL); 3571 ring_buffer_detach(event, rb); 3572 mutex_unlock(&event->mmap_mutex); 3573 3574 ring_buffer_put(rb); 3575 free_uid(user); 3576 } 3577 } 3578 3579 static const struct vm_operations_struct perf_mmap_vmops = { 3580 .open = perf_mmap_open, 3581 .close = perf_mmap_close, 3582 .fault = perf_mmap_fault, 3583 .page_mkwrite = perf_mmap_fault, 3584 }; 3585 3586 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 3587 { 3588 struct perf_event *event = file->private_data; 3589 unsigned long user_locked, user_lock_limit; 3590 struct user_struct *user = current_user(); 3591 unsigned long locked, lock_limit; 3592 struct ring_buffer *rb; 3593 unsigned long vma_size; 3594 unsigned long nr_pages; 3595 long user_extra, extra; 3596 int ret = 0, flags = 0; 3597 3598 /* 3599 * Don't allow mmap() of inherited per-task counters. This would 3600 * create a performance issue due to all children writing to the 3601 * same rb. 3602 */ 3603 if (event->cpu == -1 && event->attr.inherit) 3604 return -EINVAL; 3605 3606 if (!(vma->vm_flags & VM_SHARED)) 3607 return -EINVAL; 3608 3609 vma_size = vma->vm_end - vma->vm_start; 3610 nr_pages = (vma_size / PAGE_SIZE) - 1; 3611 3612 /* 3613 * If we have rb pages ensure they're a power-of-two number, so we 3614 * can do bitmasks instead of modulo. 3615 */ 3616 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 3617 return -EINVAL; 3618 3619 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 3620 return -EINVAL; 3621 3622 if (vma->vm_pgoff != 0) 3623 return -EINVAL; 3624 3625 WARN_ON_ONCE(event->ctx->parent_ctx); 3626 mutex_lock(&event->mmap_mutex); 3627 if (event->rb) { 3628 if (event->rb->nr_pages == nr_pages) 3629 atomic_inc(&event->rb->refcount); 3630 else 3631 ret = -EINVAL; 3632 goto unlock; 3633 } 3634 3635 user_extra = nr_pages + 1; 3636 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 3637 3638 /* 3639 * Increase the limit linearly with more CPUs: 3640 */ 3641 user_lock_limit *= num_online_cpus(); 3642 3643 user_locked = atomic_long_read(&user->locked_vm) + user_extra; 3644 3645 extra = 0; 3646 if (user_locked > user_lock_limit) 3647 extra = user_locked - user_lock_limit; 3648 3649 lock_limit = rlimit(RLIMIT_MEMLOCK); 3650 lock_limit >>= PAGE_SHIFT; 3651 locked = vma->vm_mm->pinned_vm + extra; 3652 3653 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() && 3654 !capable(CAP_IPC_LOCK)) { 3655 ret = -EPERM; 3656 goto unlock; 3657 } 3658 3659 WARN_ON(event->rb); 3660 3661 if (vma->vm_flags & VM_WRITE) 3662 flags |= RING_BUFFER_WRITABLE; 3663 3664 rb = rb_alloc(nr_pages, 3665 event->attr.watermark ? event->attr.wakeup_watermark : 0, 3666 event->cpu, flags); 3667 3668 if (!rb) { 3669 ret = -ENOMEM; 3670 goto unlock; 3671 } 3672 rcu_assign_pointer(event->rb, rb); 3673 3674 atomic_long_add(user_extra, &user->locked_vm); 3675 event->mmap_locked = extra; 3676 event->mmap_user = get_current_user(); 3677 vma->vm_mm->pinned_vm += event->mmap_locked; 3678 3679 perf_event_update_userpage(event); 3680 3681 unlock: 3682 if (!ret) 3683 atomic_inc(&event->mmap_count); 3684 mutex_unlock(&event->mmap_mutex); 3685 3686 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP; 3687 vma->vm_ops = &perf_mmap_vmops; 3688 3689 return ret; 3690 } 3691 3692 static int perf_fasync(int fd, struct file *filp, int on) 3693 { 3694 struct inode *inode = filp->f_path.dentry->d_inode; 3695 struct perf_event *event = filp->private_data; 3696 int retval; 3697 3698 mutex_lock(&inode->i_mutex); 3699 retval = fasync_helper(fd, filp, on, &event->fasync); 3700 mutex_unlock(&inode->i_mutex); 3701 3702 if (retval < 0) 3703 return retval; 3704 3705 return 0; 3706 } 3707 3708 static const struct file_operations perf_fops = { 3709 .llseek = no_llseek, 3710 .release = perf_release, 3711 .read = perf_read, 3712 .poll = perf_poll, 3713 .unlocked_ioctl = perf_ioctl, 3714 .compat_ioctl = perf_ioctl, 3715 .mmap = perf_mmap, 3716 .fasync = perf_fasync, 3717 }; 3718 3719 /* 3720 * Perf event wakeup 3721 * 3722 * If there's data, ensure we set the poll() state and publish everything 3723 * to user-space before waking everybody up. 3724 */ 3725 3726 void perf_event_wakeup(struct perf_event *event) 3727 { 3728 ring_buffer_wakeup(event); 3729 3730 if (event->pending_kill) { 3731 kill_fasync(&event->fasync, SIGIO, event->pending_kill); 3732 event->pending_kill = 0; 3733 } 3734 } 3735 3736 static void perf_pending_event(struct irq_work *entry) 3737 { 3738 struct perf_event *event = container_of(entry, 3739 struct perf_event, pending); 3740 3741 if (event->pending_disable) { 3742 event->pending_disable = 0; 3743 __perf_event_disable(event); 3744 } 3745 3746 if (event->pending_wakeup) { 3747 event->pending_wakeup = 0; 3748 perf_event_wakeup(event); 3749 } 3750 } 3751 3752 /* 3753 * We assume there is only KVM supporting the callbacks. 3754 * Later on, we might change it to a list if there is 3755 * another virtualization implementation supporting the callbacks. 3756 */ 3757 struct perf_guest_info_callbacks *perf_guest_cbs; 3758 3759 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 3760 { 3761 perf_guest_cbs = cbs; 3762 return 0; 3763 } 3764 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 3765 3766 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 3767 { 3768 perf_guest_cbs = NULL; 3769 return 0; 3770 } 3771 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 3772 3773 static void 3774 perf_output_sample_regs(struct perf_output_handle *handle, 3775 struct pt_regs *regs, u64 mask) 3776 { 3777 int bit; 3778 3779 for_each_set_bit(bit, (const unsigned long *) &mask, 3780 sizeof(mask) * BITS_PER_BYTE) { 3781 u64 val; 3782 3783 val = perf_reg_value(regs, bit); 3784 perf_output_put(handle, val); 3785 } 3786 } 3787 3788 static void perf_sample_regs_user(struct perf_regs_user *regs_user, 3789 struct pt_regs *regs) 3790 { 3791 if (!user_mode(regs)) { 3792 if (current->mm) 3793 regs = task_pt_regs(current); 3794 else 3795 regs = NULL; 3796 } 3797 3798 if (regs) { 3799 regs_user->regs = regs; 3800 regs_user->abi = perf_reg_abi(current); 3801 } 3802 } 3803 3804 /* 3805 * Get remaining task size from user stack pointer. 3806 * 3807 * It'd be better to take stack vma map and limit this more 3808 * precisly, but there's no way to get it safely under interrupt, 3809 * so using TASK_SIZE as limit. 3810 */ 3811 static u64 perf_ustack_task_size(struct pt_regs *regs) 3812 { 3813 unsigned long addr = perf_user_stack_pointer(regs); 3814 3815 if (!addr || addr >= TASK_SIZE) 3816 return 0; 3817 3818 return TASK_SIZE - addr; 3819 } 3820 3821 static u16 3822 perf_sample_ustack_size(u16 stack_size, u16 header_size, 3823 struct pt_regs *regs) 3824 { 3825 u64 task_size; 3826 3827 /* No regs, no stack pointer, no dump. */ 3828 if (!regs) 3829 return 0; 3830 3831 /* 3832 * Check if we fit in with the requested stack size into the: 3833 * - TASK_SIZE 3834 * If we don't, we limit the size to the TASK_SIZE. 3835 * 3836 * - remaining sample size 3837 * If we don't, we customize the stack size to 3838 * fit in to the remaining sample size. 3839 */ 3840 3841 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 3842 stack_size = min(stack_size, (u16) task_size); 3843 3844 /* Current header size plus static size and dynamic size. */ 3845 header_size += 2 * sizeof(u64); 3846 3847 /* Do we fit in with the current stack dump size? */ 3848 if ((u16) (header_size + stack_size) < header_size) { 3849 /* 3850 * If we overflow the maximum size for the sample, 3851 * we customize the stack dump size to fit in. 3852 */ 3853 stack_size = USHRT_MAX - header_size - sizeof(u64); 3854 stack_size = round_up(stack_size, sizeof(u64)); 3855 } 3856 3857 return stack_size; 3858 } 3859 3860 static void 3861 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 3862 struct pt_regs *regs) 3863 { 3864 /* Case of a kernel thread, nothing to dump */ 3865 if (!regs) { 3866 u64 size = 0; 3867 perf_output_put(handle, size); 3868 } else { 3869 unsigned long sp; 3870 unsigned int rem; 3871 u64 dyn_size; 3872 3873 /* 3874 * We dump: 3875 * static size 3876 * - the size requested by user or the best one we can fit 3877 * in to the sample max size 3878 * data 3879 * - user stack dump data 3880 * dynamic size 3881 * - the actual dumped size 3882 */ 3883 3884 /* Static size. */ 3885 perf_output_put(handle, dump_size); 3886 3887 /* Data. */ 3888 sp = perf_user_stack_pointer(regs); 3889 rem = __output_copy_user(handle, (void *) sp, dump_size); 3890 dyn_size = dump_size - rem; 3891 3892 perf_output_skip(handle, rem); 3893 3894 /* Dynamic size. */ 3895 perf_output_put(handle, dyn_size); 3896 } 3897 } 3898 3899 static void __perf_event_header__init_id(struct perf_event_header *header, 3900 struct perf_sample_data *data, 3901 struct perf_event *event) 3902 { 3903 u64 sample_type = event->attr.sample_type; 3904 3905 data->type = sample_type; 3906 header->size += event->id_header_size; 3907 3908 if (sample_type & PERF_SAMPLE_TID) { 3909 /* namespace issues */ 3910 data->tid_entry.pid = perf_event_pid(event, current); 3911 data->tid_entry.tid = perf_event_tid(event, current); 3912 } 3913 3914 if (sample_type & PERF_SAMPLE_TIME) 3915 data->time = perf_clock(); 3916 3917 if (sample_type & PERF_SAMPLE_ID) 3918 data->id = primary_event_id(event); 3919 3920 if (sample_type & PERF_SAMPLE_STREAM_ID) 3921 data->stream_id = event->id; 3922 3923 if (sample_type & PERF_SAMPLE_CPU) { 3924 data->cpu_entry.cpu = raw_smp_processor_id(); 3925 data->cpu_entry.reserved = 0; 3926 } 3927 } 3928 3929 void perf_event_header__init_id(struct perf_event_header *header, 3930 struct perf_sample_data *data, 3931 struct perf_event *event) 3932 { 3933 if (event->attr.sample_id_all) 3934 __perf_event_header__init_id(header, data, event); 3935 } 3936 3937 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 3938 struct perf_sample_data *data) 3939 { 3940 u64 sample_type = data->type; 3941 3942 if (sample_type & PERF_SAMPLE_TID) 3943 perf_output_put(handle, data->tid_entry); 3944 3945 if (sample_type & PERF_SAMPLE_TIME) 3946 perf_output_put(handle, data->time); 3947 3948 if (sample_type & PERF_SAMPLE_ID) 3949 perf_output_put(handle, data->id); 3950 3951 if (sample_type & PERF_SAMPLE_STREAM_ID) 3952 perf_output_put(handle, data->stream_id); 3953 3954 if (sample_type & PERF_SAMPLE_CPU) 3955 perf_output_put(handle, data->cpu_entry); 3956 } 3957 3958 void perf_event__output_id_sample(struct perf_event *event, 3959 struct perf_output_handle *handle, 3960 struct perf_sample_data *sample) 3961 { 3962 if (event->attr.sample_id_all) 3963 __perf_event__output_id_sample(handle, sample); 3964 } 3965 3966 static void perf_output_read_one(struct perf_output_handle *handle, 3967 struct perf_event *event, 3968 u64 enabled, u64 running) 3969 { 3970 u64 read_format = event->attr.read_format; 3971 u64 values[4]; 3972 int n = 0; 3973 3974 values[n++] = perf_event_count(event); 3975 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 3976 values[n++] = enabled + 3977 atomic64_read(&event->child_total_time_enabled); 3978 } 3979 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 3980 values[n++] = running + 3981 atomic64_read(&event->child_total_time_running); 3982 } 3983 if (read_format & PERF_FORMAT_ID) 3984 values[n++] = primary_event_id(event); 3985 3986 __output_copy(handle, values, n * sizeof(u64)); 3987 } 3988 3989 /* 3990 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult. 3991 */ 3992 static void perf_output_read_group(struct perf_output_handle *handle, 3993 struct perf_event *event, 3994 u64 enabled, u64 running) 3995 { 3996 struct perf_event *leader = event->group_leader, *sub; 3997 u64 read_format = event->attr.read_format; 3998 u64 values[5]; 3999 int n = 0; 4000 4001 values[n++] = 1 + leader->nr_siblings; 4002 4003 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 4004 values[n++] = enabled; 4005 4006 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 4007 values[n++] = running; 4008 4009 if (leader != event) 4010 leader->pmu->read(leader); 4011 4012 values[n++] = perf_event_count(leader); 4013 if (read_format & PERF_FORMAT_ID) 4014 values[n++] = primary_event_id(leader); 4015 4016 __output_copy(handle, values, n * sizeof(u64)); 4017 4018 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 4019 n = 0; 4020 4021 if (sub != event) 4022 sub->pmu->read(sub); 4023 4024 values[n++] = perf_event_count(sub); 4025 if (read_format & PERF_FORMAT_ID) 4026 values[n++] = primary_event_id(sub); 4027 4028 __output_copy(handle, values, n * sizeof(u64)); 4029 } 4030 } 4031 4032 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 4033 PERF_FORMAT_TOTAL_TIME_RUNNING) 4034 4035 static void perf_output_read(struct perf_output_handle *handle, 4036 struct perf_event *event) 4037 { 4038 u64 enabled = 0, running = 0, now; 4039 u64 read_format = event->attr.read_format; 4040 4041 /* 4042 * compute total_time_enabled, total_time_running 4043 * based on snapshot values taken when the event 4044 * was last scheduled in. 4045 * 4046 * we cannot simply called update_context_time() 4047 * because of locking issue as we are called in 4048 * NMI context 4049 */ 4050 if (read_format & PERF_FORMAT_TOTAL_TIMES) 4051 calc_timer_values(event, &now, &enabled, &running); 4052 4053 if (event->attr.read_format & PERF_FORMAT_GROUP) 4054 perf_output_read_group(handle, event, enabled, running); 4055 else 4056 perf_output_read_one(handle, event, enabled, running); 4057 } 4058 4059 void perf_output_sample(struct perf_output_handle *handle, 4060 struct perf_event_header *header, 4061 struct perf_sample_data *data, 4062 struct perf_event *event) 4063 { 4064 u64 sample_type = data->type; 4065 4066 perf_output_put(handle, *header); 4067 4068 if (sample_type & PERF_SAMPLE_IP) 4069 perf_output_put(handle, data->ip); 4070 4071 if (sample_type & PERF_SAMPLE_TID) 4072 perf_output_put(handle, data->tid_entry); 4073 4074 if (sample_type & PERF_SAMPLE_TIME) 4075 perf_output_put(handle, data->time); 4076 4077 if (sample_type & PERF_SAMPLE_ADDR) 4078 perf_output_put(handle, data->addr); 4079 4080 if (sample_type & PERF_SAMPLE_ID) 4081 perf_output_put(handle, data->id); 4082 4083 if (sample_type & PERF_SAMPLE_STREAM_ID) 4084 perf_output_put(handle, data->stream_id); 4085 4086 if (sample_type & PERF_SAMPLE_CPU) 4087 perf_output_put(handle, data->cpu_entry); 4088 4089 if (sample_type & PERF_SAMPLE_PERIOD) 4090 perf_output_put(handle, data->period); 4091 4092 if (sample_type & PERF_SAMPLE_READ) 4093 perf_output_read(handle, event); 4094 4095 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 4096 if (data->callchain) { 4097 int size = 1; 4098 4099 if (data->callchain) 4100 size += data->callchain->nr; 4101 4102 size *= sizeof(u64); 4103 4104 __output_copy(handle, data->callchain, size); 4105 } else { 4106 u64 nr = 0; 4107 perf_output_put(handle, nr); 4108 } 4109 } 4110 4111 if (sample_type & PERF_SAMPLE_RAW) { 4112 if (data->raw) { 4113 perf_output_put(handle, data->raw->size); 4114 __output_copy(handle, data->raw->data, 4115 data->raw->size); 4116 } else { 4117 struct { 4118 u32 size; 4119 u32 data; 4120 } raw = { 4121 .size = sizeof(u32), 4122 .data = 0, 4123 }; 4124 perf_output_put(handle, raw); 4125 } 4126 } 4127 4128 if (!event->attr.watermark) { 4129 int wakeup_events = event->attr.wakeup_events; 4130 4131 if (wakeup_events) { 4132 struct ring_buffer *rb = handle->rb; 4133 int events = local_inc_return(&rb->events); 4134 4135 if (events >= wakeup_events) { 4136 local_sub(wakeup_events, &rb->events); 4137 local_inc(&rb->wakeup); 4138 } 4139 } 4140 } 4141 4142 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 4143 if (data->br_stack) { 4144 size_t size; 4145 4146 size = data->br_stack->nr 4147 * sizeof(struct perf_branch_entry); 4148 4149 perf_output_put(handle, data->br_stack->nr); 4150 perf_output_copy(handle, data->br_stack->entries, size); 4151 } else { 4152 /* 4153 * we always store at least the value of nr 4154 */ 4155 u64 nr = 0; 4156 perf_output_put(handle, nr); 4157 } 4158 } 4159 4160 if (sample_type & PERF_SAMPLE_REGS_USER) { 4161 u64 abi = data->regs_user.abi; 4162 4163 /* 4164 * If there are no regs to dump, notice it through 4165 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 4166 */ 4167 perf_output_put(handle, abi); 4168 4169 if (abi) { 4170 u64 mask = event->attr.sample_regs_user; 4171 perf_output_sample_regs(handle, 4172 data->regs_user.regs, 4173 mask); 4174 } 4175 } 4176 4177 if (sample_type & PERF_SAMPLE_STACK_USER) 4178 perf_output_sample_ustack(handle, 4179 data->stack_user_size, 4180 data->regs_user.regs); 4181 } 4182 4183 void perf_prepare_sample(struct perf_event_header *header, 4184 struct perf_sample_data *data, 4185 struct perf_event *event, 4186 struct pt_regs *regs) 4187 { 4188 u64 sample_type = event->attr.sample_type; 4189 4190 header->type = PERF_RECORD_SAMPLE; 4191 header->size = sizeof(*header) + event->header_size; 4192 4193 header->misc = 0; 4194 header->misc |= perf_misc_flags(regs); 4195 4196 __perf_event_header__init_id(header, data, event); 4197 4198 if (sample_type & PERF_SAMPLE_IP) 4199 data->ip = perf_instruction_pointer(regs); 4200 4201 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 4202 int size = 1; 4203 4204 data->callchain = perf_callchain(event, regs); 4205 4206 if (data->callchain) 4207 size += data->callchain->nr; 4208 4209 header->size += size * sizeof(u64); 4210 } 4211 4212 if (sample_type & PERF_SAMPLE_RAW) { 4213 int size = sizeof(u32); 4214 4215 if (data->raw) 4216 size += data->raw->size; 4217 else 4218 size += sizeof(u32); 4219 4220 WARN_ON_ONCE(size & (sizeof(u64)-1)); 4221 header->size += size; 4222 } 4223 4224 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 4225 int size = sizeof(u64); /* nr */ 4226 if (data->br_stack) { 4227 size += data->br_stack->nr 4228 * sizeof(struct perf_branch_entry); 4229 } 4230 header->size += size; 4231 } 4232 4233 if (sample_type & PERF_SAMPLE_REGS_USER) { 4234 /* regs dump ABI info */ 4235 int size = sizeof(u64); 4236 4237 perf_sample_regs_user(&data->regs_user, regs); 4238 4239 if (data->regs_user.regs) { 4240 u64 mask = event->attr.sample_regs_user; 4241 size += hweight64(mask) * sizeof(u64); 4242 } 4243 4244 header->size += size; 4245 } 4246 4247 if (sample_type & PERF_SAMPLE_STACK_USER) { 4248 /* 4249 * Either we need PERF_SAMPLE_STACK_USER bit to be allways 4250 * processed as the last one or have additional check added 4251 * in case new sample type is added, because we could eat 4252 * up the rest of the sample size. 4253 */ 4254 struct perf_regs_user *uregs = &data->regs_user; 4255 u16 stack_size = event->attr.sample_stack_user; 4256 u16 size = sizeof(u64); 4257 4258 if (!uregs->abi) 4259 perf_sample_regs_user(uregs, regs); 4260 4261 stack_size = perf_sample_ustack_size(stack_size, header->size, 4262 uregs->regs); 4263 4264 /* 4265 * If there is something to dump, add space for the dump 4266 * itself and for the field that tells the dynamic size, 4267 * which is how many have been actually dumped. 4268 */ 4269 if (stack_size) 4270 size += sizeof(u64) + stack_size; 4271 4272 data->stack_user_size = stack_size; 4273 header->size += size; 4274 } 4275 } 4276 4277 static void perf_event_output(struct perf_event *event, 4278 struct perf_sample_data *data, 4279 struct pt_regs *regs) 4280 { 4281 struct perf_output_handle handle; 4282 struct perf_event_header header; 4283 4284 /* protect the callchain buffers */ 4285 rcu_read_lock(); 4286 4287 perf_prepare_sample(&header, data, event, regs); 4288 4289 if (perf_output_begin(&handle, event, header.size)) 4290 goto exit; 4291 4292 perf_output_sample(&handle, &header, data, event); 4293 4294 perf_output_end(&handle); 4295 4296 exit: 4297 rcu_read_unlock(); 4298 } 4299 4300 /* 4301 * read event_id 4302 */ 4303 4304 struct perf_read_event { 4305 struct perf_event_header header; 4306 4307 u32 pid; 4308 u32 tid; 4309 }; 4310 4311 static void 4312 perf_event_read_event(struct perf_event *event, 4313 struct task_struct *task) 4314 { 4315 struct perf_output_handle handle; 4316 struct perf_sample_data sample; 4317 struct perf_read_event read_event = { 4318 .header = { 4319 .type = PERF_RECORD_READ, 4320 .misc = 0, 4321 .size = sizeof(read_event) + event->read_size, 4322 }, 4323 .pid = perf_event_pid(event, task), 4324 .tid = perf_event_tid(event, task), 4325 }; 4326 int ret; 4327 4328 perf_event_header__init_id(&read_event.header, &sample, event); 4329 ret = perf_output_begin(&handle, event, read_event.header.size); 4330 if (ret) 4331 return; 4332 4333 perf_output_put(&handle, read_event); 4334 perf_output_read(&handle, event); 4335 perf_event__output_id_sample(event, &handle, &sample); 4336 4337 perf_output_end(&handle); 4338 } 4339 4340 /* 4341 * task tracking -- fork/exit 4342 * 4343 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task 4344 */ 4345 4346 struct perf_task_event { 4347 struct task_struct *task; 4348 struct perf_event_context *task_ctx; 4349 4350 struct { 4351 struct perf_event_header header; 4352 4353 u32 pid; 4354 u32 ppid; 4355 u32 tid; 4356 u32 ptid; 4357 u64 time; 4358 } event_id; 4359 }; 4360 4361 static void perf_event_task_output(struct perf_event *event, 4362 struct perf_task_event *task_event) 4363 { 4364 struct perf_output_handle handle; 4365 struct perf_sample_data sample; 4366 struct task_struct *task = task_event->task; 4367 int ret, size = task_event->event_id.header.size; 4368 4369 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 4370 4371 ret = perf_output_begin(&handle, event, 4372 task_event->event_id.header.size); 4373 if (ret) 4374 goto out; 4375 4376 task_event->event_id.pid = perf_event_pid(event, task); 4377 task_event->event_id.ppid = perf_event_pid(event, current); 4378 4379 task_event->event_id.tid = perf_event_tid(event, task); 4380 task_event->event_id.ptid = perf_event_tid(event, current); 4381 4382 perf_output_put(&handle, task_event->event_id); 4383 4384 perf_event__output_id_sample(event, &handle, &sample); 4385 4386 perf_output_end(&handle); 4387 out: 4388 task_event->event_id.header.size = size; 4389 } 4390 4391 static int perf_event_task_match(struct perf_event *event) 4392 { 4393 if (event->state < PERF_EVENT_STATE_INACTIVE) 4394 return 0; 4395 4396 if (!event_filter_match(event)) 4397 return 0; 4398 4399 if (event->attr.comm || event->attr.mmap || 4400 event->attr.mmap_data || event->attr.task) 4401 return 1; 4402 4403 return 0; 4404 } 4405 4406 static void perf_event_task_ctx(struct perf_event_context *ctx, 4407 struct perf_task_event *task_event) 4408 { 4409 struct perf_event *event; 4410 4411 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 4412 if (perf_event_task_match(event)) 4413 perf_event_task_output(event, task_event); 4414 } 4415 } 4416 4417 static void perf_event_task_event(struct perf_task_event *task_event) 4418 { 4419 struct perf_cpu_context *cpuctx; 4420 struct perf_event_context *ctx; 4421 struct pmu *pmu; 4422 int ctxn; 4423 4424 rcu_read_lock(); 4425 list_for_each_entry_rcu(pmu, &pmus, entry) { 4426 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context); 4427 if (cpuctx->unique_pmu != pmu) 4428 goto next; 4429 perf_event_task_ctx(&cpuctx->ctx, task_event); 4430 4431 ctx = task_event->task_ctx; 4432 if (!ctx) { 4433 ctxn = pmu->task_ctx_nr; 4434 if (ctxn < 0) 4435 goto next; 4436 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 4437 } 4438 if (ctx) 4439 perf_event_task_ctx(ctx, task_event); 4440 next: 4441 put_cpu_ptr(pmu->pmu_cpu_context); 4442 } 4443 rcu_read_unlock(); 4444 } 4445 4446 static void perf_event_task(struct task_struct *task, 4447 struct perf_event_context *task_ctx, 4448 int new) 4449 { 4450 struct perf_task_event task_event; 4451 4452 if (!atomic_read(&nr_comm_events) && 4453 !atomic_read(&nr_mmap_events) && 4454 !atomic_read(&nr_task_events)) 4455 return; 4456 4457 task_event = (struct perf_task_event){ 4458 .task = task, 4459 .task_ctx = task_ctx, 4460 .event_id = { 4461 .header = { 4462 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 4463 .misc = 0, 4464 .size = sizeof(task_event.event_id), 4465 }, 4466 /* .pid */ 4467 /* .ppid */ 4468 /* .tid */ 4469 /* .ptid */ 4470 .time = perf_clock(), 4471 }, 4472 }; 4473 4474 perf_event_task_event(&task_event); 4475 } 4476 4477 void perf_event_fork(struct task_struct *task) 4478 { 4479 perf_event_task(task, NULL, 1); 4480 } 4481 4482 /* 4483 * comm tracking 4484 */ 4485 4486 struct perf_comm_event { 4487 struct task_struct *task; 4488 char *comm; 4489 int comm_size; 4490 4491 struct { 4492 struct perf_event_header header; 4493 4494 u32 pid; 4495 u32 tid; 4496 } event_id; 4497 }; 4498 4499 static void perf_event_comm_output(struct perf_event *event, 4500 struct perf_comm_event *comm_event) 4501 { 4502 struct perf_output_handle handle; 4503 struct perf_sample_data sample; 4504 int size = comm_event->event_id.header.size; 4505 int ret; 4506 4507 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 4508 ret = perf_output_begin(&handle, event, 4509 comm_event->event_id.header.size); 4510 4511 if (ret) 4512 goto out; 4513 4514 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 4515 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 4516 4517 perf_output_put(&handle, comm_event->event_id); 4518 __output_copy(&handle, comm_event->comm, 4519 comm_event->comm_size); 4520 4521 perf_event__output_id_sample(event, &handle, &sample); 4522 4523 perf_output_end(&handle); 4524 out: 4525 comm_event->event_id.header.size = size; 4526 } 4527 4528 static int perf_event_comm_match(struct perf_event *event) 4529 { 4530 if (event->state < PERF_EVENT_STATE_INACTIVE) 4531 return 0; 4532 4533 if (!event_filter_match(event)) 4534 return 0; 4535 4536 if (event->attr.comm) 4537 return 1; 4538 4539 return 0; 4540 } 4541 4542 static void perf_event_comm_ctx(struct perf_event_context *ctx, 4543 struct perf_comm_event *comm_event) 4544 { 4545 struct perf_event *event; 4546 4547 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 4548 if (perf_event_comm_match(event)) 4549 perf_event_comm_output(event, comm_event); 4550 } 4551 } 4552 4553 static void perf_event_comm_event(struct perf_comm_event *comm_event) 4554 { 4555 struct perf_cpu_context *cpuctx; 4556 struct perf_event_context *ctx; 4557 char comm[TASK_COMM_LEN]; 4558 unsigned int size; 4559 struct pmu *pmu; 4560 int ctxn; 4561 4562 memset(comm, 0, sizeof(comm)); 4563 strlcpy(comm, comm_event->task->comm, sizeof(comm)); 4564 size = ALIGN(strlen(comm)+1, sizeof(u64)); 4565 4566 comm_event->comm = comm; 4567 comm_event->comm_size = size; 4568 4569 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 4570 rcu_read_lock(); 4571 list_for_each_entry_rcu(pmu, &pmus, entry) { 4572 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context); 4573 if (cpuctx->unique_pmu != pmu) 4574 goto next; 4575 perf_event_comm_ctx(&cpuctx->ctx, comm_event); 4576 4577 ctxn = pmu->task_ctx_nr; 4578 if (ctxn < 0) 4579 goto next; 4580 4581 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 4582 if (ctx) 4583 perf_event_comm_ctx(ctx, comm_event); 4584 next: 4585 put_cpu_ptr(pmu->pmu_cpu_context); 4586 } 4587 rcu_read_unlock(); 4588 } 4589 4590 void perf_event_comm(struct task_struct *task) 4591 { 4592 struct perf_comm_event comm_event; 4593 struct perf_event_context *ctx; 4594 int ctxn; 4595 4596 for_each_task_context_nr(ctxn) { 4597 ctx = task->perf_event_ctxp[ctxn]; 4598 if (!ctx) 4599 continue; 4600 4601 perf_event_enable_on_exec(ctx); 4602 } 4603 4604 if (!atomic_read(&nr_comm_events)) 4605 return; 4606 4607 comm_event = (struct perf_comm_event){ 4608 .task = task, 4609 /* .comm */ 4610 /* .comm_size */ 4611 .event_id = { 4612 .header = { 4613 .type = PERF_RECORD_COMM, 4614 .misc = 0, 4615 /* .size */ 4616 }, 4617 /* .pid */ 4618 /* .tid */ 4619 }, 4620 }; 4621 4622 perf_event_comm_event(&comm_event); 4623 } 4624 4625 /* 4626 * mmap tracking 4627 */ 4628 4629 struct perf_mmap_event { 4630 struct vm_area_struct *vma; 4631 4632 const char *file_name; 4633 int file_size; 4634 4635 struct { 4636 struct perf_event_header header; 4637 4638 u32 pid; 4639 u32 tid; 4640 u64 start; 4641 u64 len; 4642 u64 pgoff; 4643 } event_id; 4644 }; 4645 4646 static void perf_event_mmap_output(struct perf_event *event, 4647 struct perf_mmap_event *mmap_event) 4648 { 4649 struct perf_output_handle handle; 4650 struct perf_sample_data sample; 4651 int size = mmap_event->event_id.header.size; 4652 int ret; 4653 4654 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 4655 ret = perf_output_begin(&handle, event, 4656 mmap_event->event_id.header.size); 4657 if (ret) 4658 goto out; 4659 4660 mmap_event->event_id.pid = perf_event_pid(event, current); 4661 mmap_event->event_id.tid = perf_event_tid(event, current); 4662 4663 perf_output_put(&handle, mmap_event->event_id); 4664 __output_copy(&handle, mmap_event->file_name, 4665 mmap_event->file_size); 4666 4667 perf_event__output_id_sample(event, &handle, &sample); 4668 4669 perf_output_end(&handle); 4670 out: 4671 mmap_event->event_id.header.size = size; 4672 } 4673 4674 static int perf_event_mmap_match(struct perf_event *event, 4675 struct perf_mmap_event *mmap_event, 4676 int executable) 4677 { 4678 if (event->state < PERF_EVENT_STATE_INACTIVE) 4679 return 0; 4680 4681 if (!event_filter_match(event)) 4682 return 0; 4683 4684 if ((!executable && event->attr.mmap_data) || 4685 (executable && event->attr.mmap)) 4686 return 1; 4687 4688 return 0; 4689 } 4690 4691 static void perf_event_mmap_ctx(struct perf_event_context *ctx, 4692 struct perf_mmap_event *mmap_event, 4693 int executable) 4694 { 4695 struct perf_event *event; 4696 4697 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 4698 if (perf_event_mmap_match(event, mmap_event, executable)) 4699 perf_event_mmap_output(event, mmap_event); 4700 } 4701 } 4702 4703 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 4704 { 4705 struct perf_cpu_context *cpuctx; 4706 struct perf_event_context *ctx; 4707 struct vm_area_struct *vma = mmap_event->vma; 4708 struct file *file = vma->vm_file; 4709 unsigned int size; 4710 char tmp[16]; 4711 char *buf = NULL; 4712 const char *name; 4713 struct pmu *pmu; 4714 int ctxn; 4715 4716 memset(tmp, 0, sizeof(tmp)); 4717 4718 if (file) { 4719 /* 4720 * d_path works from the end of the rb backwards, so we 4721 * need to add enough zero bytes after the string to handle 4722 * the 64bit alignment we do later. 4723 */ 4724 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL); 4725 if (!buf) { 4726 name = strncpy(tmp, "//enomem", sizeof(tmp)); 4727 goto got_name; 4728 } 4729 name = d_path(&file->f_path, buf, PATH_MAX); 4730 if (IS_ERR(name)) { 4731 name = strncpy(tmp, "//toolong", sizeof(tmp)); 4732 goto got_name; 4733 } 4734 } else { 4735 if (arch_vma_name(mmap_event->vma)) { 4736 name = strncpy(tmp, arch_vma_name(mmap_event->vma), 4737 sizeof(tmp)); 4738 goto got_name; 4739 } 4740 4741 if (!vma->vm_mm) { 4742 name = strncpy(tmp, "[vdso]", sizeof(tmp)); 4743 goto got_name; 4744 } else if (vma->vm_start <= vma->vm_mm->start_brk && 4745 vma->vm_end >= vma->vm_mm->brk) { 4746 name = strncpy(tmp, "[heap]", sizeof(tmp)); 4747 goto got_name; 4748 } else if (vma->vm_start <= vma->vm_mm->start_stack && 4749 vma->vm_end >= vma->vm_mm->start_stack) { 4750 name = strncpy(tmp, "[stack]", sizeof(tmp)); 4751 goto got_name; 4752 } 4753 4754 name = strncpy(tmp, "//anon", sizeof(tmp)); 4755 goto got_name; 4756 } 4757 4758 got_name: 4759 size = ALIGN(strlen(name)+1, sizeof(u64)); 4760 4761 mmap_event->file_name = name; 4762 mmap_event->file_size = size; 4763 4764 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 4765 4766 rcu_read_lock(); 4767 list_for_each_entry_rcu(pmu, &pmus, entry) { 4768 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context); 4769 if (cpuctx->unique_pmu != pmu) 4770 goto next; 4771 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event, 4772 vma->vm_flags & VM_EXEC); 4773 4774 ctxn = pmu->task_ctx_nr; 4775 if (ctxn < 0) 4776 goto next; 4777 4778 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 4779 if (ctx) { 4780 perf_event_mmap_ctx(ctx, mmap_event, 4781 vma->vm_flags & VM_EXEC); 4782 } 4783 next: 4784 put_cpu_ptr(pmu->pmu_cpu_context); 4785 } 4786 rcu_read_unlock(); 4787 4788 kfree(buf); 4789 } 4790 4791 void perf_event_mmap(struct vm_area_struct *vma) 4792 { 4793 struct perf_mmap_event mmap_event; 4794 4795 if (!atomic_read(&nr_mmap_events)) 4796 return; 4797 4798 mmap_event = (struct perf_mmap_event){ 4799 .vma = vma, 4800 /* .file_name */ 4801 /* .file_size */ 4802 .event_id = { 4803 .header = { 4804 .type = PERF_RECORD_MMAP, 4805 .misc = PERF_RECORD_MISC_USER, 4806 /* .size */ 4807 }, 4808 /* .pid */ 4809 /* .tid */ 4810 .start = vma->vm_start, 4811 .len = vma->vm_end - vma->vm_start, 4812 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 4813 }, 4814 }; 4815 4816 perf_event_mmap_event(&mmap_event); 4817 } 4818 4819 /* 4820 * IRQ throttle logging 4821 */ 4822 4823 static void perf_log_throttle(struct perf_event *event, int enable) 4824 { 4825 struct perf_output_handle handle; 4826 struct perf_sample_data sample; 4827 int ret; 4828 4829 struct { 4830 struct perf_event_header header; 4831 u64 time; 4832 u64 id; 4833 u64 stream_id; 4834 } throttle_event = { 4835 .header = { 4836 .type = PERF_RECORD_THROTTLE, 4837 .misc = 0, 4838 .size = sizeof(throttle_event), 4839 }, 4840 .time = perf_clock(), 4841 .id = primary_event_id(event), 4842 .stream_id = event->id, 4843 }; 4844 4845 if (enable) 4846 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 4847 4848 perf_event_header__init_id(&throttle_event.header, &sample, event); 4849 4850 ret = perf_output_begin(&handle, event, 4851 throttle_event.header.size); 4852 if (ret) 4853 return; 4854 4855 perf_output_put(&handle, throttle_event); 4856 perf_event__output_id_sample(event, &handle, &sample); 4857 perf_output_end(&handle); 4858 } 4859 4860 /* 4861 * Generic event overflow handling, sampling. 4862 */ 4863 4864 static int __perf_event_overflow(struct perf_event *event, 4865 int throttle, struct perf_sample_data *data, 4866 struct pt_regs *regs) 4867 { 4868 int events = atomic_read(&event->event_limit); 4869 struct hw_perf_event *hwc = &event->hw; 4870 u64 seq; 4871 int ret = 0; 4872 4873 /* 4874 * Non-sampling counters might still use the PMI to fold short 4875 * hardware counters, ignore those. 4876 */ 4877 if (unlikely(!is_sampling_event(event))) 4878 return 0; 4879 4880 seq = __this_cpu_read(perf_throttled_seq); 4881 if (seq != hwc->interrupts_seq) { 4882 hwc->interrupts_seq = seq; 4883 hwc->interrupts = 1; 4884 } else { 4885 hwc->interrupts++; 4886 if (unlikely(throttle 4887 && hwc->interrupts >= max_samples_per_tick)) { 4888 __this_cpu_inc(perf_throttled_count); 4889 hwc->interrupts = MAX_INTERRUPTS; 4890 perf_log_throttle(event, 0); 4891 ret = 1; 4892 } 4893 } 4894 4895 if (event->attr.freq) { 4896 u64 now = perf_clock(); 4897 s64 delta = now - hwc->freq_time_stamp; 4898 4899 hwc->freq_time_stamp = now; 4900 4901 if (delta > 0 && delta < 2*TICK_NSEC) 4902 perf_adjust_period(event, delta, hwc->last_period, true); 4903 } 4904 4905 /* 4906 * XXX event_limit might not quite work as expected on inherited 4907 * events 4908 */ 4909 4910 event->pending_kill = POLL_IN; 4911 if (events && atomic_dec_and_test(&event->event_limit)) { 4912 ret = 1; 4913 event->pending_kill = POLL_HUP; 4914 event->pending_disable = 1; 4915 irq_work_queue(&event->pending); 4916 } 4917 4918 if (event->overflow_handler) 4919 event->overflow_handler(event, data, regs); 4920 else 4921 perf_event_output(event, data, regs); 4922 4923 if (event->fasync && event->pending_kill) { 4924 event->pending_wakeup = 1; 4925 irq_work_queue(&event->pending); 4926 } 4927 4928 return ret; 4929 } 4930 4931 int perf_event_overflow(struct perf_event *event, 4932 struct perf_sample_data *data, 4933 struct pt_regs *regs) 4934 { 4935 return __perf_event_overflow(event, 1, data, regs); 4936 } 4937 4938 /* 4939 * Generic software event infrastructure 4940 */ 4941 4942 struct swevent_htable { 4943 struct swevent_hlist *swevent_hlist; 4944 struct mutex hlist_mutex; 4945 int hlist_refcount; 4946 4947 /* Recursion avoidance in each contexts */ 4948 int recursion[PERF_NR_CONTEXTS]; 4949 }; 4950 4951 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 4952 4953 /* 4954 * We directly increment event->count and keep a second value in 4955 * event->hw.period_left to count intervals. This period event 4956 * is kept in the range [-sample_period, 0] so that we can use the 4957 * sign as trigger. 4958 */ 4959 4960 static u64 perf_swevent_set_period(struct perf_event *event) 4961 { 4962 struct hw_perf_event *hwc = &event->hw; 4963 u64 period = hwc->last_period; 4964 u64 nr, offset; 4965 s64 old, val; 4966 4967 hwc->last_period = hwc->sample_period; 4968 4969 again: 4970 old = val = local64_read(&hwc->period_left); 4971 if (val < 0) 4972 return 0; 4973 4974 nr = div64_u64(period + val, period); 4975 offset = nr * period; 4976 val -= offset; 4977 if (local64_cmpxchg(&hwc->period_left, old, val) != old) 4978 goto again; 4979 4980 return nr; 4981 } 4982 4983 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 4984 struct perf_sample_data *data, 4985 struct pt_regs *regs) 4986 { 4987 struct hw_perf_event *hwc = &event->hw; 4988 int throttle = 0; 4989 4990 if (!overflow) 4991 overflow = perf_swevent_set_period(event); 4992 4993 if (hwc->interrupts == MAX_INTERRUPTS) 4994 return; 4995 4996 for (; overflow; overflow--) { 4997 if (__perf_event_overflow(event, throttle, 4998 data, regs)) { 4999 /* 5000 * We inhibit the overflow from happening when 5001 * hwc->interrupts == MAX_INTERRUPTS. 5002 */ 5003 break; 5004 } 5005 throttle = 1; 5006 } 5007 } 5008 5009 static void perf_swevent_event(struct perf_event *event, u64 nr, 5010 struct perf_sample_data *data, 5011 struct pt_regs *regs) 5012 { 5013 struct hw_perf_event *hwc = &event->hw; 5014 5015 local64_add(nr, &event->count); 5016 5017 if (!regs) 5018 return; 5019 5020 if (!is_sampling_event(event)) 5021 return; 5022 5023 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 5024 data->period = nr; 5025 return perf_swevent_overflow(event, 1, data, regs); 5026 } else 5027 data->period = event->hw.last_period; 5028 5029 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 5030 return perf_swevent_overflow(event, 1, data, regs); 5031 5032 if (local64_add_negative(nr, &hwc->period_left)) 5033 return; 5034 5035 perf_swevent_overflow(event, 0, data, regs); 5036 } 5037 5038 static int perf_exclude_event(struct perf_event *event, 5039 struct pt_regs *regs) 5040 { 5041 if (event->hw.state & PERF_HES_STOPPED) 5042 return 1; 5043 5044 if (regs) { 5045 if (event->attr.exclude_user && user_mode(regs)) 5046 return 1; 5047 5048 if (event->attr.exclude_kernel && !user_mode(regs)) 5049 return 1; 5050 } 5051 5052 return 0; 5053 } 5054 5055 static int perf_swevent_match(struct perf_event *event, 5056 enum perf_type_id type, 5057 u32 event_id, 5058 struct perf_sample_data *data, 5059 struct pt_regs *regs) 5060 { 5061 if (event->attr.type != type) 5062 return 0; 5063 5064 if (event->attr.config != event_id) 5065 return 0; 5066 5067 if (perf_exclude_event(event, regs)) 5068 return 0; 5069 5070 return 1; 5071 } 5072 5073 static inline u64 swevent_hash(u64 type, u32 event_id) 5074 { 5075 u64 val = event_id | (type << 32); 5076 5077 return hash_64(val, SWEVENT_HLIST_BITS); 5078 } 5079 5080 static inline struct hlist_head * 5081 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 5082 { 5083 u64 hash = swevent_hash(type, event_id); 5084 5085 return &hlist->heads[hash]; 5086 } 5087 5088 /* For the read side: events when they trigger */ 5089 static inline struct hlist_head * 5090 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 5091 { 5092 struct swevent_hlist *hlist; 5093 5094 hlist = rcu_dereference(swhash->swevent_hlist); 5095 if (!hlist) 5096 return NULL; 5097 5098 return __find_swevent_head(hlist, type, event_id); 5099 } 5100 5101 /* For the event head insertion and removal in the hlist */ 5102 static inline struct hlist_head * 5103 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 5104 { 5105 struct swevent_hlist *hlist; 5106 u32 event_id = event->attr.config; 5107 u64 type = event->attr.type; 5108 5109 /* 5110 * Event scheduling is always serialized against hlist allocation 5111 * and release. Which makes the protected version suitable here. 5112 * The context lock guarantees that. 5113 */ 5114 hlist = rcu_dereference_protected(swhash->swevent_hlist, 5115 lockdep_is_held(&event->ctx->lock)); 5116 if (!hlist) 5117 return NULL; 5118 5119 return __find_swevent_head(hlist, type, event_id); 5120 } 5121 5122 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 5123 u64 nr, 5124 struct perf_sample_data *data, 5125 struct pt_regs *regs) 5126 { 5127 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); 5128 struct perf_event *event; 5129 struct hlist_node *node; 5130 struct hlist_head *head; 5131 5132 rcu_read_lock(); 5133 head = find_swevent_head_rcu(swhash, type, event_id); 5134 if (!head) 5135 goto end; 5136 5137 hlist_for_each_entry_rcu(event, node, head, hlist_entry) { 5138 if (perf_swevent_match(event, type, event_id, data, regs)) 5139 perf_swevent_event(event, nr, data, regs); 5140 } 5141 end: 5142 rcu_read_unlock(); 5143 } 5144 5145 int perf_swevent_get_recursion_context(void) 5146 { 5147 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); 5148 5149 return get_recursion_context(swhash->recursion); 5150 } 5151 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 5152 5153 inline void perf_swevent_put_recursion_context(int rctx) 5154 { 5155 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); 5156 5157 put_recursion_context(swhash->recursion, rctx); 5158 } 5159 5160 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 5161 { 5162 struct perf_sample_data data; 5163 int rctx; 5164 5165 preempt_disable_notrace(); 5166 rctx = perf_swevent_get_recursion_context(); 5167 if (rctx < 0) 5168 return; 5169 5170 perf_sample_data_init(&data, addr, 0); 5171 5172 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 5173 5174 perf_swevent_put_recursion_context(rctx); 5175 preempt_enable_notrace(); 5176 } 5177 5178 static void perf_swevent_read(struct perf_event *event) 5179 { 5180 } 5181 5182 static int perf_swevent_add(struct perf_event *event, int flags) 5183 { 5184 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); 5185 struct hw_perf_event *hwc = &event->hw; 5186 struct hlist_head *head; 5187 5188 if (is_sampling_event(event)) { 5189 hwc->last_period = hwc->sample_period; 5190 perf_swevent_set_period(event); 5191 } 5192 5193 hwc->state = !(flags & PERF_EF_START); 5194 5195 head = find_swevent_head(swhash, event); 5196 if (WARN_ON_ONCE(!head)) 5197 return -EINVAL; 5198 5199 hlist_add_head_rcu(&event->hlist_entry, head); 5200 5201 return 0; 5202 } 5203 5204 static void perf_swevent_del(struct perf_event *event, int flags) 5205 { 5206 hlist_del_rcu(&event->hlist_entry); 5207 } 5208 5209 static void perf_swevent_start(struct perf_event *event, int flags) 5210 { 5211 event->hw.state = 0; 5212 } 5213 5214 static void perf_swevent_stop(struct perf_event *event, int flags) 5215 { 5216 event->hw.state = PERF_HES_STOPPED; 5217 } 5218 5219 /* Deref the hlist from the update side */ 5220 static inline struct swevent_hlist * 5221 swevent_hlist_deref(struct swevent_htable *swhash) 5222 { 5223 return rcu_dereference_protected(swhash->swevent_hlist, 5224 lockdep_is_held(&swhash->hlist_mutex)); 5225 } 5226 5227 static void swevent_hlist_release(struct swevent_htable *swhash) 5228 { 5229 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 5230 5231 if (!hlist) 5232 return; 5233 5234 rcu_assign_pointer(swhash->swevent_hlist, NULL); 5235 kfree_rcu(hlist, rcu_head); 5236 } 5237 5238 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu) 5239 { 5240 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 5241 5242 mutex_lock(&swhash->hlist_mutex); 5243 5244 if (!--swhash->hlist_refcount) 5245 swevent_hlist_release(swhash); 5246 5247 mutex_unlock(&swhash->hlist_mutex); 5248 } 5249 5250 static void swevent_hlist_put(struct perf_event *event) 5251 { 5252 int cpu; 5253 5254 if (event->cpu != -1) { 5255 swevent_hlist_put_cpu(event, event->cpu); 5256 return; 5257 } 5258 5259 for_each_possible_cpu(cpu) 5260 swevent_hlist_put_cpu(event, cpu); 5261 } 5262 5263 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu) 5264 { 5265 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 5266 int err = 0; 5267 5268 mutex_lock(&swhash->hlist_mutex); 5269 5270 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) { 5271 struct swevent_hlist *hlist; 5272 5273 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 5274 if (!hlist) { 5275 err = -ENOMEM; 5276 goto exit; 5277 } 5278 rcu_assign_pointer(swhash->swevent_hlist, hlist); 5279 } 5280 swhash->hlist_refcount++; 5281 exit: 5282 mutex_unlock(&swhash->hlist_mutex); 5283 5284 return err; 5285 } 5286 5287 static int swevent_hlist_get(struct perf_event *event) 5288 { 5289 int err; 5290 int cpu, failed_cpu; 5291 5292 if (event->cpu != -1) 5293 return swevent_hlist_get_cpu(event, event->cpu); 5294 5295 get_online_cpus(); 5296 for_each_possible_cpu(cpu) { 5297 err = swevent_hlist_get_cpu(event, cpu); 5298 if (err) { 5299 failed_cpu = cpu; 5300 goto fail; 5301 } 5302 } 5303 put_online_cpus(); 5304 5305 return 0; 5306 fail: 5307 for_each_possible_cpu(cpu) { 5308 if (cpu == failed_cpu) 5309 break; 5310 swevent_hlist_put_cpu(event, cpu); 5311 } 5312 5313 put_online_cpus(); 5314 return err; 5315 } 5316 5317 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 5318 5319 static void sw_perf_event_destroy(struct perf_event *event) 5320 { 5321 u64 event_id = event->attr.config; 5322 5323 WARN_ON(event->parent); 5324 5325 static_key_slow_dec(&perf_swevent_enabled[event_id]); 5326 swevent_hlist_put(event); 5327 } 5328 5329 static int perf_swevent_init(struct perf_event *event) 5330 { 5331 int event_id = event->attr.config; 5332 5333 if (event->attr.type != PERF_TYPE_SOFTWARE) 5334 return -ENOENT; 5335 5336 /* 5337 * no branch sampling for software events 5338 */ 5339 if (has_branch_stack(event)) 5340 return -EOPNOTSUPP; 5341 5342 switch (event_id) { 5343 case PERF_COUNT_SW_CPU_CLOCK: 5344 case PERF_COUNT_SW_TASK_CLOCK: 5345 return -ENOENT; 5346 5347 default: 5348 break; 5349 } 5350 5351 if (event_id >= PERF_COUNT_SW_MAX) 5352 return -ENOENT; 5353 5354 if (!event->parent) { 5355 int err; 5356 5357 err = swevent_hlist_get(event); 5358 if (err) 5359 return err; 5360 5361 static_key_slow_inc(&perf_swevent_enabled[event_id]); 5362 event->destroy = sw_perf_event_destroy; 5363 } 5364 5365 return 0; 5366 } 5367 5368 static int perf_swevent_event_idx(struct perf_event *event) 5369 { 5370 return 0; 5371 } 5372 5373 static struct pmu perf_swevent = { 5374 .task_ctx_nr = perf_sw_context, 5375 5376 .event_init = perf_swevent_init, 5377 .add = perf_swevent_add, 5378 .del = perf_swevent_del, 5379 .start = perf_swevent_start, 5380 .stop = perf_swevent_stop, 5381 .read = perf_swevent_read, 5382 5383 .event_idx = perf_swevent_event_idx, 5384 }; 5385 5386 #ifdef CONFIG_EVENT_TRACING 5387 5388 static int perf_tp_filter_match(struct perf_event *event, 5389 struct perf_sample_data *data) 5390 { 5391 void *record = data->raw->data; 5392 5393 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 5394 return 1; 5395 return 0; 5396 } 5397 5398 static int perf_tp_event_match(struct perf_event *event, 5399 struct perf_sample_data *data, 5400 struct pt_regs *regs) 5401 { 5402 if (event->hw.state & PERF_HES_STOPPED) 5403 return 0; 5404 /* 5405 * All tracepoints are from kernel-space. 5406 */ 5407 if (event->attr.exclude_kernel) 5408 return 0; 5409 5410 if (!perf_tp_filter_match(event, data)) 5411 return 0; 5412 5413 return 1; 5414 } 5415 5416 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size, 5417 struct pt_regs *regs, struct hlist_head *head, int rctx, 5418 struct task_struct *task) 5419 { 5420 struct perf_sample_data data; 5421 struct perf_event *event; 5422 struct hlist_node *node; 5423 5424 struct perf_raw_record raw = { 5425 .size = entry_size, 5426 .data = record, 5427 }; 5428 5429 perf_sample_data_init(&data, addr, 0); 5430 data.raw = &raw; 5431 5432 hlist_for_each_entry_rcu(event, node, head, hlist_entry) { 5433 if (perf_tp_event_match(event, &data, regs)) 5434 perf_swevent_event(event, count, &data, regs); 5435 } 5436 5437 /* 5438 * If we got specified a target task, also iterate its context and 5439 * deliver this event there too. 5440 */ 5441 if (task && task != current) { 5442 struct perf_event_context *ctx; 5443 struct trace_entry *entry = record; 5444 5445 rcu_read_lock(); 5446 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]); 5447 if (!ctx) 5448 goto unlock; 5449 5450 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 5451 if (event->attr.type != PERF_TYPE_TRACEPOINT) 5452 continue; 5453 if (event->attr.config != entry->type) 5454 continue; 5455 if (perf_tp_event_match(event, &data, regs)) 5456 perf_swevent_event(event, count, &data, regs); 5457 } 5458 unlock: 5459 rcu_read_unlock(); 5460 } 5461 5462 perf_swevent_put_recursion_context(rctx); 5463 } 5464 EXPORT_SYMBOL_GPL(perf_tp_event); 5465 5466 static void tp_perf_event_destroy(struct perf_event *event) 5467 { 5468 perf_trace_destroy(event); 5469 } 5470 5471 static int perf_tp_event_init(struct perf_event *event) 5472 { 5473 int err; 5474 5475 if (event->attr.type != PERF_TYPE_TRACEPOINT) 5476 return -ENOENT; 5477 5478 /* 5479 * no branch sampling for tracepoint events 5480 */ 5481 if (has_branch_stack(event)) 5482 return -EOPNOTSUPP; 5483 5484 err = perf_trace_init(event); 5485 if (err) 5486 return err; 5487 5488 event->destroy = tp_perf_event_destroy; 5489 5490 return 0; 5491 } 5492 5493 static struct pmu perf_tracepoint = { 5494 .task_ctx_nr = perf_sw_context, 5495 5496 .event_init = perf_tp_event_init, 5497 .add = perf_trace_add, 5498 .del = perf_trace_del, 5499 .start = perf_swevent_start, 5500 .stop = perf_swevent_stop, 5501 .read = perf_swevent_read, 5502 5503 .event_idx = perf_swevent_event_idx, 5504 }; 5505 5506 static inline void perf_tp_register(void) 5507 { 5508 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 5509 } 5510 5511 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 5512 { 5513 char *filter_str; 5514 int ret; 5515 5516 if (event->attr.type != PERF_TYPE_TRACEPOINT) 5517 return -EINVAL; 5518 5519 filter_str = strndup_user(arg, PAGE_SIZE); 5520 if (IS_ERR(filter_str)) 5521 return PTR_ERR(filter_str); 5522 5523 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 5524 5525 kfree(filter_str); 5526 return ret; 5527 } 5528 5529 static void perf_event_free_filter(struct perf_event *event) 5530 { 5531 ftrace_profile_free_filter(event); 5532 } 5533 5534 #else 5535 5536 static inline void perf_tp_register(void) 5537 { 5538 } 5539 5540 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 5541 { 5542 return -ENOENT; 5543 } 5544 5545 static void perf_event_free_filter(struct perf_event *event) 5546 { 5547 } 5548 5549 #endif /* CONFIG_EVENT_TRACING */ 5550 5551 #ifdef CONFIG_HAVE_HW_BREAKPOINT 5552 void perf_bp_event(struct perf_event *bp, void *data) 5553 { 5554 struct perf_sample_data sample; 5555 struct pt_regs *regs = data; 5556 5557 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 5558 5559 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 5560 perf_swevent_event(bp, 1, &sample, regs); 5561 } 5562 #endif 5563 5564 /* 5565 * hrtimer based swevent callback 5566 */ 5567 5568 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 5569 { 5570 enum hrtimer_restart ret = HRTIMER_RESTART; 5571 struct perf_sample_data data; 5572 struct pt_regs *regs; 5573 struct perf_event *event; 5574 u64 period; 5575 5576 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 5577 5578 if (event->state != PERF_EVENT_STATE_ACTIVE) 5579 return HRTIMER_NORESTART; 5580 5581 event->pmu->read(event); 5582 5583 perf_sample_data_init(&data, 0, event->hw.last_period); 5584 regs = get_irq_regs(); 5585 5586 if (regs && !perf_exclude_event(event, regs)) { 5587 if (!(event->attr.exclude_idle && is_idle_task(current))) 5588 if (__perf_event_overflow(event, 1, &data, regs)) 5589 ret = HRTIMER_NORESTART; 5590 } 5591 5592 period = max_t(u64, 10000, event->hw.sample_period); 5593 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 5594 5595 return ret; 5596 } 5597 5598 static void perf_swevent_start_hrtimer(struct perf_event *event) 5599 { 5600 struct hw_perf_event *hwc = &event->hw; 5601 s64 period; 5602 5603 if (!is_sampling_event(event)) 5604 return; 5605 5606 period = local64_read(&hwc->period_left); 5607 if (period) { 5608 if (period < 0) 5609 period = 10000; 5610 5611 local64_set(&hwc->period_left, 0); 5612 } else { 5613 period = max_t(u64, 10000, hwc->sample_period); 5614 } 5615 __hrtimer_start_range_ns(&hwc->hrtimer, 5616 ns_to_ktime(period), 0, 5617 HRTIMER_MODE_REL_PINNED, 0); 5618 } 5619 5620 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 5621 { 5622 struct hw_perf_event *hwc = &event->hw; 5623 5624 if (is_sampling_event(event)) { 5625 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 5626 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 5627 5628 hrtimer_cancel(&hwc->hrtimer); 5629 } 5630 } 5631 5632 static void perf_swevent_init_hrtimer(struct perf_event *event) 5633 { 5634 struct hw_perf_event *hwc = &event->hw; 5635 5636 if (!is_sampling_event(event)) 5637 return; 5638 5639 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 5640 hwc->hrtimer.function = perf_swevent_hrtimer; 5641 5642 /* 5643 * Since hrtimers have a fixed rate, we can do a static freq->period 5644 * mapping and avoid the whole period adjust feedback stuff. 5645 */ 5646 if (event->attr.freq) { 5647 long freq = event->attr.sample_freq; 5648 5649 event->attr.sample_period = NSEC_PER_SEC / freq; 5650 hwc->sample_period = event->attr.sample_period; 5651 local64_set(&hwc->period_left, hwc->sample_period); 5652 event->attr.freq = 0; 5653 } 5654 } 5655 5656 /* 5657 * Software event: cpu wall time clock 5658 */ 5659 5660 static void cpu_clock_event_update(struct perf_event *event) 5661 { 5662 s64 prev; 5663 u64 now; 5664 5665 now = local_clock(); 5666 prev = local64_xchg(&event->hw.prev_count, now); 5667 local64_add(now - prev, &event->count); 5668 } 5669 5670 static void cpu_clock_event_start(struct perf_event *event, int flags) 5671 { 5672 local64_set(&event->hw.prev_count, local_clock()); 5673 perf_swevent_start_hrtimer(event); 5674 } 5675 5676 static void cpu_clock_event_stop(struct perf_event *event, int flags) 5677 { 5678 perf_swevent_cancel_hrtimer(event); 5679 cpu_clock_event_update(event); 5680 } 5681 5682 static int cpu_clock_event_add(struct perf_event *event, int flags) 5683 { 5684 if (flags & PERF_EF_START) 5685 cpu_clock_event_start(event, flags); 5686 5687 return 0; 5688 } 5689 5690 static void cpu_clock_event_del(struct perf_event *event, int flags) 5691 { 5692 cpu_clock_event_stop(event, flags); 5693 } 5694 5695 static void cpu_clock_event_read(struct perf_event *event) 5696 { 5697 cpu_clock_event_update(event); 5698 } 5699 5700 static int cpu_clock_event_init(struct perf_event *event) 5701 { 5702 if (event->attr.type != PERF_TYPE_SOFTWARE) 5703 return -ENOENT; 5704 5705 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 5706 return -ENOENT; 5707 5708 /* 5709 * no branch sampling for software events 5710 */ 5711 if (has_branch_stack(event)) 5712 return -EOPNOTSUPP; 5713 5714 perf_swevent_init_hrtimer(event); 5715 5716 return 0; 5717 } 5718 5719 static struct pmu perf_cpu_clock = { 5720 .task_ctx_nr = perf_sw_context, 5721 5722 .event_init = cpu_clock_event_init, 5723 .add = cpu_clock_event_add, 5724 .del = cpu_clock_event_del, 5725 .start = cpu_clock_event_start, 5726 .stop = cpu_clock_event_stop, 5727 .read = cpu_clock_event_read, 5728 5729 .event_idx = perf_swevent_event_idx, 5730 }; 5731 5732 /* 5733 * Software event: task time clock 5734 */ 5735 5736 static void task_clock_event_update(struct perf_event *event, u64 now) 5737 { 5738 u64 prev; 5739 s64 delta; 5740 5741 prev = local64_xchg(&event->hw.prev_count, now); 5742 delta = now - prev; 5743 local64_add(delta, &event->count); 5744 } 5745 5746 static void task_clock_event_start(struct perf_event *event, int flags) 5747 { 5748 local64_set(&event->hw.prev_count, event->ctx->time); 5749 perf_swevent_start_hrtimer(event); 5750 } 5751 5752 static void task_clock_event_stop(struct perf_event *event, int flags) 5753 { 5754 perf_swevent_cancel_hrtimer(event); 5755 task_clock_event_update(event, event->ctx->time); 5756 } 5757 5758 static int task_clock_event_add(struct perf_event *event, int flags) 5759 { 5760 if (flags & PERF_EF_START) 5761 task_clock_event_start(event, flags); 5762 5763 return 0; 5764 } 5765 5766 static void task_clock_event_del(struct perf_event *event, int flags) 5767 { 5768 task_clock_event_stop(event, PERF_EF_UPDATE); 5769 } 5770 5771 static void task_clock_event_read(struct perf_event *event) 5772 { 5773 u64 now = perf_clock(); 5774 u64 delta = now - event->ctx->timestamp; 5775 u64 time = event->ctx->time + delta; 5776 5777 task_clock_event_update(event, time); 5778 } 5779 5780 static int task_clock_event_init(struct perf_event *event) 5781 { 5782 if (event->attr.type != PERF_TYPE_SOFTWARE) 5783 return -ENOENT; 5784 5785 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 5786 return -ENOENT; 5787 5788 /* 5789 * no branch sampling for software events 5790 */ 5791 if (has_branch_stack(event)) 5792 return -EOPNOTSUPP; 5793 5794 perf_swevent_init_hrtimer(event); 5795 5796 return 0; 5797 } 5798 5799 static struct pmu perf_task_clock = { 5800 .task_ctx_nr = perf_sw_context, 5801 5802 .event_init = task_clock_event_init, 5803 .add = task_clock_event_add, 5804 .del = task_clock_event_del, 5805 .start = task_clock_event_start, 5806 .stop = task_clock_event_stop, 5807 .read = task_clock_event_read, 5808 5809 .event_idx = perf_swevent_event_idx, 5810 }; 5811 5812 static void perf_pmu_nop_void(struct pmu *pmu) 5813 { 5814 } 5815 5816 static int perf_pmu_nop_int(struct pmu *pmu) 5817 { 5818 return 0; 5819 } 5820 5821 static void perf_pmu_start_txn(struct pmu *pmu) 5822 { 5823 perf_pmu_disable(pmu); 5824 } 5825 5826 static int perf_pmu_commit_txn(struct pmu *pmu) 5827 { 5828 perf_pmu_enable(pmu); 5829 return 0; 5830 } 5831 5832 static void perf_pmu_cancel_txn(struct pmu *pmu) 5833 { 5834 perf_pmu_enable(pmu); 5835 } 5836 5837 static int perf_event_idx_default(struct perf_event *event) 5838 { 5839 return event->hw.idx + 1; 5840 } 5841 5842 /* 5843 * Ensures all contexts with the same task_ctx_nr have the same 5844 * pmu_cpu_context too. 5845 */ 5846 static void *find_pmu_context(int ctxn) 5847 { 5848 struct pmu *pmu; 5849 5850 if (ctxn < 0) 5851 return NULL; 5852 5853 list_for_each_entry(pmu, &pmus, entry) { 5854 if (pmu->task_ctx_nr == ctxn) 5855 return pmu->pmu_cpu_context; 5856 } 5857 5858 return NULL; 5859 } 5860 5861 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu) 5862 { 5863 int cpu; 5864 5865 for_each_possible_cpu(cpu) { 5866 struct perf_cpu_context *cpuctx; 5867 5868 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 5869 5870 if (cpuctx->unique_pmu == old_pmu) 5871 cpuctx->unique_pmu = pmu; 5872 } 5873 } 5874 5875 static void free_pmu_context(struct pmu *pmu) 5876 { 5877 struct pmu *i; 5878 5879 mutex_lock(&pmus_lock); 5880 /* 5881 * Like a real lame refcount. 5882 */ 5883 list_for_each_entry(i, &pmus, entry) { 5884 if (i->pmu_cpu_context == pmu->pmu_cpu_context) { 5885 update_pmu_context(i, pmu); 5886 goto out; 5887 } 5888 } 5889 5890 free_percpu(pmu->pmu_cpu_context); 5891 out: 5892 mutex_unlock(&pmus_lock); 5893 } 5894 static struct idr pmu_idr; 5895 5896 static ssize_t 5897 type_show(struct device *dev, struct device_attribute *attr, char *page) 5898 { 5899 struct pmu *pmu = dev_get_drvdata(dev); 5900 5901 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); 5902 } 5903 5904 static struct device_attribute pmu_dev_attrs[] = { 5905 __ATTR_RO(type), 5906 __ATTR_NULL, 5907 }; 5908 5909 static int pmu_bus_running; 5910 static struct bus_type pmu_bus = { 5911 .name = "event_source", 5912 .dev_attrs = pmu_dev_attrs, 5913 }; 5914 5915 static void pmu_dev_release(struct device *dev) 5916 { 5917 kfree(dev); 5918 } 5919 5920 static int pmu_dev_alloc(struct pmu *pmu) 5921 { 5922 int ret = -ENOMEM; 5923 5924 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 5925 if (!pmu->dev) 5926 goto out; 5927 5928 pmu->dev->groups = pmu->attr_groups; 5929 device_initialize(pmu->dev); 5930 ret = dev_set_name(pmu->dev, "%s", pmu->name); 5931 if (ret) 5932 goto free_dev; 5933 5934 dev_set_drvdata(pmu->dev, pmu); 5935 pmu->dev->bus = &pmu_bus; 5936 pmu->dev->release = pmu_dev_release; 5937 ret = device_add(pmu->dev); 5938 if (ret) 5939 goto free_dev; 5940 5941 out: 5942 return ret; 5943 5944 free_dev: 5945 put_device(pmu->dev); 5946 goto out; 5947 } 5948 5949 static struct lock_class_key cpuctx_mutex; 5950 static struct lock_class_key cpuctx_lock; 5951 5952 int perf_pmu_register(struct pmu *pmu, char *name, int type) 5953 { 5954 int cpu, ret; 5955 5956 mutex_lock(&pmus_lock); 5957 ret = -ENOMEM; 5958 pmu->pmu_disable_count = alloc_percpu(int); 5959 if (!pmu->pmu_disable_count) 5960 goto unlock; 5961 5962 pmu->type = -1; 5963 if (!name) 5964 goto skip_type; 5965 pmu->name = name; 5966 5967 if (type < 0) { 5968 int err = idr_pre_get(&pmu_idr, GFP_KERNEL); 5969 if (!err) 5970 goto free_pdc; 5971 5972 err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type); 5973 if (err) { 5974 ret = err; 5975 goto free_pdc; 5976 } 5977 } 5978 pmu->type = type; 5979 5980 if (pmu_bus_running) { 5981 ret = pmu_dev_alloc(pmu); 5982 if (ret) 5983 goto free_idr; 5984 } 5985 5986 skip_type: 5987 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); 5988 if (pmu->pmu_cpu_context) 5989 goto got_cpu_context; 5990 5991 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); 5992 if (!pmu->pmu_cpu_context) 5993 goto free_dev; 5994 5995 for_each_possible_cpu(cpu) { 5996 struct perf_cpu_context *cpuctx; 5997 5998 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 5999 __perf_event_init_context(&cpuctx->ctx); 6000 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 6001 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 6002 cpuctx->ctx.type = cpu_context; 6003 cpuctx->ctx.pmu = pmu; 6004 cpuctx->jiffies_interval = 1; 6005 INIT_LIST_HEAD(&cpuctx->rotation_list); 6006 cpuctx->unique_pmu = pmu; 6007 } 6008 6009 got_cpu_context: 6010 if (!pmu->start_txn) { 6011 if (pmu->pmu_enable) { 6012 /* 6013 * If we have pmu_enable/pmu_disable calls, install 6014 * transaction stubs that use that to try and batch 6015 * hardware accesses. 6016 */ 6017 pmu->start_txn = perf_pmu_start_txn; 6018 pmu->commit_txn = perf_pmu_commit_txn; 6019 pmu->cancel_txn = perf_pmu_cancel_txn; 6020 } else { 6021 pmu->start_txn = perf_pmu_nop_void; 6022 pmu->commit_txn = perf_pmu_nop_int; 6023 pmu->cancel_txn = perf_pmu_nop_void; 6024 } 6025 } 6026 6027 if (!pmu->pmu_enable) { 6028 pmu->pmu_enable = perf_pmu_nop_void; 6029 pmu->pmu_disable = perf_pmu_nop_void; 6030 } 6031 6032 if (!pmu->event_idx) 6033 pmu->event_idx = perf_event_idx_default; 6034 6035 list_add_rcu(&pmu->entry, &pmus); 6036 ret = 0; 6037 unlock: 6038 mutex_unlock(&pmus_lock); 6039 6040 return ret; 6041 6042 free_dev: 6043 device_del(pmu->dev); 6044 put_device(pmu->dev); 6045 6046 free_idr: 6047 if (pmu->type >= PERF_TYPE_MAX) 6048 idr_remove(&pmu_idr, pmu->type); 6049 6050 free_pdc: 6051 free_percpu(pmu->pmu_disable_count); 6052 goto unlock; 6053 } 6054 6055 void perf_pmu_unregister(struct pmu *pmu) 6056 { 6057 mutex_lock(&pmus_lock); 6058 list_del_rcu(&pmu->entry); 6059 mutex_unlock(&pmus_lock); 6060 6061 /* 6062 * We dereference the pmu list under both SRCU and regular RCU, so 6063 * synchronize against both of those. 6064 */ 6065 synchronize_srcu(&pmus_srcu); 6066 synchronize_rcu(); 6067 6068 free_percpu(pmu->pmu_disable_count); 6069 if (pmu->type >= PERF_TYPE_MAX) 6070 idr_remove(&pmu_idr, pmu->type); 6071 device_del(pmu->dev); 6072 put_device(pmu->dev); 6073 free_pmu_context(pmu); 6074 } 6075 6076 struct pmu *perf_init_event(struct perf_event *event) 6077 { 6078 struct pmu *pmu = NULL; 6079 int idx; 6080 int ret; 6081 6082 idx = srcu_read_lock(&pmus_srcu); 6083 6084 rcu_read_lock(); 6085 pmu = idr_find(&pmu_idr, event->attr.type); 6086 rcu_read_unlock(); 6087 if (pmu) { 6088 event->pmu = pmu; 6089 ret = pmu->event_init(event); 6090 if (ret) 6091 pmu = ERR_PTR(ret); 6092 goto unlock; 6093 } 6094 6095 list_for_each_entry_rcu(pmu, &pmus, entry) { 6096 event->pmu = pmu; 6097 ret = pmu->event_init(event); 6098 if (!ret) 6099 goto unlock; 6100 6101 if (ret != -ENOENT) { 6102 pmu = ERR_PTR(ret); 6103 goto unlock; 6104 } 6105 } 6106 pmu = ERR_PTR(-ENOENT); 6107 unlock: 6108 srcu_read_unlock(&pmus_srcu, idx); 6109 6110 return pmu; 6111 } 6112 6113 /* 6114 * Allocate and initialize a event structure 6115 */ 6116 static struct perf_event * 6117 perf_event_alloc(struct perf_event_attr *attr, int cpu, 6118 struct task_struct *task, 6119 struct perf_event *group_leader, 6120 struct perf_event *parent_event, 6121 perf_overflow_handler_t overflow_handler, 6122 void *context) 6123 { 6124 struct pmu *pmu; 6125 struct perf_event *event; 6126 struct hw_perf_event *hwc; 6127 long err; 6128 6129 if ((unsigned)cpu >= nr_cpu_ids) { 6130 if (!task || cpu != -1) 6131 return ERR_PTR(-EINVAL); 6132 } 6133 6134 event = kzalloc(sizeof(*event), GFP_KERNEL); 6135 if (!event) 6136 return ERR_PTR(-ENOMEM); 6137 6138 /* 6139 * Single events are their own group leaders, with an 6140 * empty sibling list: 6141 */ 6142 if (!group_leader) 6143 group_leader = event; 6144 6145 mutex_init(&event->child_mutex); 6146 INIT_LIST_HEAD(&event->child_list); 6147 6148 INIT_LIST_HEAD(&event->group_entry); 6149 INIT_LIST_HEAD(&event->event_entry); 6150 INIT_LIST_HEAD(&event->sibling_list); 6151 INIT_LIST_HEAD(&event->rb_entry); 6152 6153 init_waitqueue_head(&event->waitq); 6154 init_irq_work(&event->pending, perf_pending_event); 6155 6156 mutex_init(&event->mmap_mutex); 6157 6158 atomic_long_set(&event->refcount, 1); 6159 event->cpu = cpu; 6160 event->attr = *attr; 6161 event->group_leader = group_leader; 6162 event->pmu = NULL; 6163 event->oncpu = -1; 6164 6165 event->parent = parent_event; 6166 6167 event->ns = get_pid_ns(task_active_pid_ns(current)); 6168 event->id = atomic64_inc_return(&perf_event_id); 6169 6170 event->state = PERF_EVENT_STATE_INACTIVE; 6171 6172 if (task) { 6173 event->attach_state = PERF_ATTACH_TASK; 6174 6175 if (attr->type == PERF_TYPE_TRACEPOINT) 6176 event->hw.tp_target = task; 6177 #ifdef CONFIG_HAVE_HW_BREAKPOINT 6178 /* 6179 * hw_breakpoint is a bit difficult here.. 6180 */ 6181 else if (attr->type == PERF_TYPE_BREAKPOINT) 6182 event->hw.bp_target = task; 6183 #endif 6184 } 6185 6186 if (!overflow_handler && parent_event) { 6187 overflow_handler = parent_event->overflow_handler; 6188 context = parent_event->overflow_handler_context; 6189 } 6190 6191 event->overflow_handler = overflow_handler; 6192 event->overflow_handler_context = context; 6193 6194 perf_event__state_init(event); 6195 6196 pmu = NULL; 6197 6198 hwc = &event->hw; 6199 hwc->sample_period = attr->sample_period; 6200 if (attr->freq && attr->sample_freq) 6201 hwc->sample_period = 1; 6202 hwc->last_period = hwc->sample_period; 6203 6204 local64_set(&hwc->period_left, hwc->sample_period); 6205 6206 /* 6207 * we currently do not support PERF_FORMAT_GROUP on inherited events 6208 */ 6209 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP)) 6210 goto done; 6211 6212 pmu = perf_init_event(event); 6213 6214 done: 6215 err = 0; 6216 if (!pmu) 6217 err = -EINVAL; 6218 else if (IS_ERR(pmu)) 6219 err = PTR_ERR(pmu); 6220 6221 if (err) { 6222 if (event->ns) 6223 put_pid_ns(event->ns); 6224 kfree(event); 6225 return ERR_PTR(err); 6226 } 6227 6228 if (!event->parent) { 6229 if (event->attach_state & PERF_ATTACH_TASK) 6230 static_key_slow_inc(&perf_sched_events.key); 6231 if (event->attr.mmap || event->attr.mmap_data) 6232 atomic_inc(&nr_mmap_events); 6233 if (event->attr.comm) 6234 atomic_inc(&nr_comm_events); 6235 if (event->attr.task) 6236 atomic_inc(&nr_task_events); 6237 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 6238 err = get_callchain_buffers(); 6239 if (err) { 6240 free_event(event); 6241 return ERR_PTR(err); 6242 } 6243 } 6244 if (has_branch_stack(event)) { 6245 static_key_slow_inc(&perf_sched_events.key); 6246 if (!(event->attach_state & PERF_ATTACH_TASK)) 6247 atomic_inc(&per_cpu(perf_branch_stack_events, 6248 event->cpu)); 6249 } 6250 } 6251 6252 return event; 6253 } 6254 6255 static int perf_copy_attr(struct perf_event_attr __user *uattr, 6256 struct perf_event_attr *attr) 6257 { 6258 u32 size; 6259 int ret; 6260 6261 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0)) 6262 return -EFAULT; 6263 6264 /* 6265 * zero the full structure, so that a short copy will be nice. 6266 */ 6267 memset(attr, 0, sizeof(*attr)); 6268 6269 ret = get_user(size, &uattr->size); 6270 if (ret) 6271 return ret; 6272 6273 if (size > PAGE_SIZE) /* silly large */ 6274 goto err_size; 6275 6276 if (!size) /* abi compat */ 6277 size = PERF_ATTR_SIZE_VER0; 6278 6279 if (size < PERF_ATTR_SIZE_VER0) 6280 goto err_size; 6281 6282 /* 6283 * If we're handed a bigger struct than we know of, 6284 * ensure all the unknown bits are 0 - i.e. new 6285 * user-space does not rely on any kernel feature 6286 * extensions we dont know about yet. 6287 */ 6288 if (size > sizeof(*attr)) { 6289 unsigned char __user *addr; 6290 unsigned char __user *end; 6291 unsigned char val; 6292 6293 addr = (void __user *)uattr + sizeof(*attr); 6294 end = (void __user *)uattr + size; 6295 6296 for (; addr < end; addr++) { 6297 ret = get_user(val, addr); 6298 if (ret) 6299 return ret; 6300 if (val) 6301 goto err_size; 6302 } 6303 size = sizeof(*attr); 6304 } 6305 6306 ret = copy_from_user(attr, uattr, size); 6307 if (ret) 6308 return -EFAULT; 6309 6310 if (attr->__reserved_1) 6311 return -EINVAL; 6312 6313 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 6314 return -EINVAL; 6315 6316 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 6317 return -EINVAL; 6318 6319 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 6320 u64 mask = attr->branch_sample_type; 6321 6322 /* only using defined bits */ 6323 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 6324 return -EINVAL; 6325 6326 /* at least one branch bit must be set */ 6327 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 6328 return -EINVAL; 6329 6330 /* kernel level capture: check permissions */ 6331 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM) 6332 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 6333 return -EACCES; 6334 6335 /* propagate priv level, when not set for branch */ 6336 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 6337 6338 /* exclude_kernel checked on syscall entry */ 6339 if (!attr->exclude_kernel) 6340 mask |= PERF_SAMPLE_BRANCH_KERNEL; 6341 6342 if (!attr->exclude_user) 6343 mask |= PERF_SAMPLE_BRANCH_USER; 6344 6345 if (!attr->exclude_hv) 6346 mask |= PERF_SAMPLE_BRANCH_HV; 6347 /* 6348 * adjust user setting (for HW filter setup) 6349 */ 6350 attr->branch_sample_type = mask; 6351 } 6352 } 6353 6354 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 6355 ret = perf_reg_validate(attr->sample_regs_user); 6356 if (ret) 6357 return ret; 6358 } 6359 6360 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 6361 if (!arch_perf_have_user_stack_dump()) 6362 return -ENOSYS; 6363 6364 /* 6365 * We have __u32 type for the size, but so far 6366 * we can only use __u16 as maximum due to the 6367 * __u16 sample size limit. 6368 */ 6369 if (attr->sample_stack_user >= USHRT_MAX) 6370 ret = -EINVAL; 6371 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 6372 ret = -EINVAL; 6373 } 6374 6375 out: 6376 return ret; 6377 6378 err_size: 6379 put_user(sizeof(*attr), &uattr->size); 6380 ret = -E2BIG; 6381 goto out; 6382 } 6383 6384 static int 6385 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 6386 { 6387 struct ring_buffer *rb = NULL, *old_rb = NULL; 6388 int ret = -EINVAL; 6389 6390 if (!output_event) 6391 goto set; 6392 6393 /* don't allow circular references */ 6394 if (event == output_event) 6395 goto out; 6396 6397 /* 6398 * Don't allow cross-cpu buffers 6399 */ 6400 if (output_event->cpu != event->cpu) 6401 goto out; 6402 6403 /* 6404 * If its not a per-cpu rb, it must be the same task. 6405 */ 6406 if (output_event->cpu == -1 && output_event->ctx != event->ctx) 6407 goto out; 6408 6409 set: 6410 mutex_lock(&event->mmap_mutex); 6411 /* Can't redirect output if we've got an active mmap() */ 6412 if (atomic_read(&event->mmap_count)) 6413 goto unlock; 6414 6415 if (output_event) { 6416 /* get the rb we want to redirect to */ 6417 rb = ring_buffer_get(output_event); 6418 if (!rb) 6419 goto unlock; 6420 } 6421 6422 old_rb = event->rb; 6423 rcu_assign_pointer(event->rb, rb); 6424 if (old_rb) 6425 ring_buffer_detach(event, old_rb); 6426 ret = 0; 6427 unlock: 6428 mutex_unlock(&event->mmap_mutex); 6429 6430 if (old_rb) 6431 ring_buffer_put(old_rb); 6432 out: 6433 return ret; 6434 } 6435 6436 /** 6437 * sys_perf_event_open - open a performance event, associate it to a task/cpu 6438 * 6439 * @attr_uptr: event_id type attributes for monitoring/sampling 6440 * @pid: target pid 6441 * @cpu: target cpu 6442 * @group_fd: group leader event fd 6443 */ 6444 SYSCALL_DEFINE5(perf_event_open, 6445 struct perf_event_attr __user *, attr_uptr, 6446 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 6447 { 6448 struct perf_event *group_leader = NULL, *output_event = NULL; 6449 struct perf_event *event, *sibling; 6450 struct perf_event_attr attr; 6451 struct perf_event_context *ctx; 6452 struct file *event_file = NULL; 6453 struct fd group = {NULL, 0}; 6454 struct task_struct *task = NULL; 6455 struct pmu *pmu; 6456 int event_fd; 6457 int move_group = 0; 6458 int err; 6459 6460 /* for future expandability... */ 6461 if (flags & ~PERF_FLAG_ALL) 6462 return -EINVAL; 6463 6464 err = perf_copy_attr(attr_uptr, &attr); 6465 if (err) 6466 return err; 6467 6468 if (!attr.exclude_kernel) { 6469 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 6470 return -EACCES; 6471 } 6472 6473 if (attr.freq) { 6474 if (attr.sample_freq > sysctl_perf_event_sample_rate) 6475 return -EINVAL; 6476 } 6477 6478 /* 6479 * In cgroup mode, the pid argument is used to pass the fd 6480 * opened to the cgroup directory in cgroupfs. The cpu argument 6481 * designates the cpu on which to monitor threads from that 6482 * cgroup. 6483 */ 6484 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 6485 return -EINVAL; 6486 6487 event_fd = get_unused_fd(); 6488 if (event_fd < 0) 6489 return event_fd; 6490 6491 if (group_fd != -1) { 6492 err = perf_fget_light(group_fd, &group); 6493 if (err) 6494 goto err_fd; 6495 group_leader = group.file->private_data; 6496 if (flags & PERF_FLAG_FD_OUTPUT) 6497 output_event = group_leader; 6498 if (flags & PERF_FLAG_FD_NO_GROUP) 6499 group_leader = NULL; 6500 } 6501 6502 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 6503 task = find_lively_task_by_vpid(pid); 6504 if (IS_ERR(task)) { 6505 err = PTR_ERR(task); 6506 goto err_group_fd; 6507 } 6508 } 6509 6510 get_online_cpus(); 6511 6512 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 6513 NULL, NULL); 6514 if (IS_ERR(event)) { 6515 err = PTR_ERR(event); 6516 goto err_task; 6517 } 6518 6519 if (flags & PERF_FLAG_PID_CGROUP) { 6520 err = perf_cgroup_connect(pid, event, &attr, group_leader); 6521 if (err) 6522 goto err_alloc; 6523 /* 6524 * one more event: 6525 * - that has cgroup constraint on event->cpu 6526 * - that may need work on context switch 6527 */ 6528 atomic_inc(&per_cpu(perf_cgroup_events, event->cpu)); 6529 static_key_slow_inc(&perf_sched_events.key); 6530 } 6531 6532 /* 6533 * Special case software events and allow them to be part of 6534 * any hardware group. 6535 */ 6536 pmu = event->pmu; 6537 6538 if (group_leader && 6539 (is_software_event(event) != is_software_event(group_leader))) { 6540 if (is_software_event(event)) { 6541 /* 6542 * If event and group_leader are not both a software 6543 * event, and event is, then group leader is not. 6544 * 6545 * Allow the addition of software events to !software 6546 * groups, this is safe because software events never 6547 * fail to schedule. 6548 */ 6549 pmu = group_leader->pmu; 6550 } else if (is_software_event(group_leader) && 6551 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) { 6552 /* 6553 * In case the group is a pure software group, and we 6554 * try to add a hardware event, move the whole group to 6555 * the hardware context. 6556 */ 6557 move_group = 1; 6558 } 6559 } 6560 6561 /* 6562 * Get the target context (task or percpu): 6563 */ 6564 ctx = find_get_context(pmu, task, event->cpu); 6565 if (IS_ERR(ctx)) { 6566 err = PTR_ERR(ctx); 6567 goto err_alloc; 6568 } 6569 6570 if (task) { 6571 put_task_struct(task); 6572 task = NULL; 6573 } 6574 6575 /* 6576 * Look up the group leader (we will attach this event to it): 6577 */ 6578 if (group_leader) { 6579 err = -EINVAL; 6580 6581 /* 6582 * Do not allow a recursive hierarchy (this new sibling 6583 * becoming part of another group-sibling): 6584 */ 6585 if (group_leader->group_leader != group_leader) 6586 goto err_context; 6587 /* 6588 * Do not allow to attach to a group in a different 6589 * task or CPU context: 6590 */ 6591 if (move_group) { 6592 if (group_leader->ctx->type != ctx->type) 6593 goto err_context; 6594 } else { 6595 if (group_leader->ctx != ctx) 6596 goto err_context; 6597 } 6598 6599 /* 6600 * Only a group leader can be exclusive or pinned 6601 */ 6602 if (attr.exclusive || attr.pinned) 6603 goto err_context; 6604 } 6605 6606 if (output_event) { 6607 err = perf_event_set_output(event, output_event); 6608 if (err) 6609 goto err_context; 6610 } 6611 6612 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR); 6613 if (IS_ERR(event_file)) { 6614 err = PTR_ERR(event_file); 6615 goto err_context; 6616 } 6617 6618 if (move_group) { 6619 struct perf_event_context *gctx = group_leader->ctx; 6620 6621 mutex_lock(&gctx->mutex); 6622 perf_remove_from_context(group_leader); 6623 6624 /* 6625 * Removing from the context ends up with disabled 6626 * event. What we want here is event in the initial 6627 * startup state, ready to be add into new context. 6628 */ 6629 perf_event__state_init(group_leader); 6630 list_for_each_entry(sibling, &group_leader->sibling_list, 6631 group_entry) { 6632 perf_remove_from_context(sibling); 6633 perf_event__state_init(sibling); 6634 put_ctx(gctx); 6635 } 6636 mutex_unlock(&gctx->mutex); 6637 put_ctx(gctx); 6638 } 6639 6640 WARN_ON_ONCE(ctx->parent_ctx); 6641 mutex_lock(&ctx->mutex); 6642 6643 if (move_group) { 6644 synchronize_rcu(); 6645 perf_install_in_context(ctx, group_leader, event->cpu); 6646 get_ctx(ctx); 6647 list_for_each_entry(sibling, &group_leader->sibling_list, 6648 group_entry) { 6649 perf_install_in_context(ctx, sibling, event->cpu); 6650 get_ctx(ctx); 6651 } 6652 } 6653 6654 perf_install_in_context(ctx, event, event->cpu); 6655 ++ctx->generation; 6656 perf_unpin_context(ctx); 6657 mutex_unlock(&ctx->mutex); 6658 6659 put_online_cpus(); 6660 6661 event->owner = current; 6662 6663 mutex_lock(¤t->perf_event_mutex); 6664 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 6665 mutex_unlock(¤t->perf_event_mutex); 6666 6667 /* 6668 * Precalculate sample_data sizes 6669 */ 6670 perf_event__header_size(event); 6671 perf_event__id_header_size(event); 6672 6673 /* 6674 * Drop the reference on the group_event after placing the 6675 * new event on the sibling_list. This ensures destruction 6676 * of the group leader will find the pointer to itself in 6677 * perf_group_detach(). 6678 */ 6679 fdput(group); 6680 fd_install(event_fd, event_file); 6681 return event_fd; 6682 6683 err_context: 6684 perf_unpin_context(ctx); 6685 put_ctx(ctx); 6686 err_alloc: 6687 free_event(event); 6688 err_task: 6689 put_online_cpus(); 6690 if (task) 6691 put_task_struct(task); 6692 err_group_fd: 6693 fdput(group); 6694 err_fd: 6695 put_unused_fd(event_fd); 6696 return err; 6697 } 6698 6699 /** 6700 * perf_event_create_kernel_counter 6701 * 6702 * @attr: attributes of the counter to create 6703 * @cpu: cpu in which the counter is bound 6704 * @task: task to profile (NULL for percpu) 6705 */ 6706 struct perf_event * 6707 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 6708 struct task_struct *task, 6709 perf_overflow_handler_t overflow_handler, 6710 void *context) 6711 { 6712 struct perf_event_context *ctx; 6713 struct perf_event *event; 6714 int err; 6715 6716 /* 6717 * Get the target context (task or percpu): 6718 */ 6719 6720 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 6721 overflow_handler, context); 6722 if (IS_ERR(event)) { 6723 err = PTR_ERR(event); 6724 goto err; 6725 } 6726 6727 ctx = find_get_context(event->pmu, task, cpu); 6728 if (IS_ERR(ctx)) { 6729 err = PTR_ERR(ctx); 6730 goto err_free; 6731 } 6732 6733 WARN_ON_ONCE(ctx->parent_ctx); 6734 mutex_lock(&ctx->mutex); 6735 perf_install_in_context(ctx, event, cpu); 6736 ++ctx->generation; 6737 perf_unpin_context(ctx); 6738 mutex_unlock(&ctx->mutex); 6739 6740 return event; 6741 6742 err_free: 6743 free_event(event); 6744 err: 6745 return ERR_PTR(err); 6746 } 6747 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 6748 6749 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 6750 { 6751 struct perf_event_context *src_ctx; 6752 struct perf_event_context *dst_ctx; 6753 struct perf_event *event, *tmp; 6754 LIST_HEAD(events); 6755 6756 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx; 6757 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx; 6758 6759 mutex_lock(&src_ctx->mutex); 6760 list_for_each_entry_safe(event, tmp, &src_ctx->event_list, 6761 event_entry) { 6762 perf_remove_from_context(event); 6763 put_ctx(src_ctx); 6764 list_add(&event->event_entry, &events); 6765 } 6766 mutex_unlock(&src_ctx->mutex); 6767 6768 synchronize_rcu(); 6769 6770 mutex_lock(&dst_ctx->mutex); 6771 list_for_each_entry_safe(event, tmp, &events, event_entry) { 6772 list_del(&event->event_entry); 6773 if (event->state >= PERF_EVENT_STATE_OFF) 6774 event->state = PERF_EVENT_STATE_INACTIVE; 6775 perf_install_in_context(dst_ctx, event, dst_cpu); 6776 get_ctx(dst_ctx); 6777 } 6778 mutex_unlock(&dst_ctx->mutex); 6779 } 6780 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 6781 6782 static void sync_child_event(struct perf_event *child_event, 6783 struct task_struct *child) 6784 { 6785 struct perf_event *parent_event = child_event->parent; 6786 u64 child_val; 6787 6788 if (child_event->attr.inherit_stat) 6789 perf_event_read_event(child_event, child); 6790 6791 child_val = perf_event_count(child_event); 6792 6793 /* 6794 * Add back the child's count to the parent's count: 6795 */ 6796 atomic64_add(child_val, &parent_event->child_count); 6797 atomic64_add(child_event->total_time_enabled, 6798 &parent_event->child_total_time_enabled); 6799 atomic64_add(child_event->total_time_running, 6800 &parent_event->child_total_time_running); 6801 6802 /* 6803 * Remove this event from the parent's list 6804 */ 6805 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 6806 mutex_lock(&parent_event->child_mutex); 6807 list_del_init(&child_event->child_list); 6808 mutex_unlock(&parent_event->child_mutex); 6809 6810 /* 6811 * Release the parent event, if this was the last 6812 * reference to it. 6813 */ 6814 put_event(parent_event); 6815 } 6816 6817 static void 6818 __perf_event_exit_task(struct perf_event *child_event, 6819 struct perf_event_context *child_ctx, 6820 struct task_struct *child) 6821 { 6822 if (child_event->parent) { 6823 raw_spin_lock_irq(&child_ctx->lock); 6824 perf_group_detach(child_event); 6825 raw_spin_unlock_irq(&child_ctx->lock); 6826 } 6827 6828 perf_remove_from_context(child_event); 6829 6830 /* 6831 * It can happen that the parent exits first, and has events 6832 * that are still around due to the child reference. These 6833 * events need to be zapped. 6834 */ 6835 if (child_event->parent) { 6836 sync_child_event(child_event, child); 6837 free_event(child_event); 6838 } 6839 } 6840 6841 static void perf_event_exit_task_context(struct task_struct *child, int ctxn) 6842 { 6843 struct perf_event *child_event, *tmp; 6844 struct perf_event_context *child_ctx; 6845 unsigned long flags; 6846 6847 if (likely(!child->perf_event_ctxp[ctxn])) { 6848 perf_event_task(child, NULL, 0); 6849 return; 6850 } 6851 6852 local_irq_save(flags); 6853 /* 6854 * We can't reschedule here because interrupts are disabled, 6855 * and either child is current or it is a task that can't be 6856 * scheduled, so we are now safe from rescheduling changing 6857 * our context. 6858 */ 6859 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]); 6860 6861 /* 6862 * Take the context lock here so that if find_get_context is 6863 * reading child->perf_event_ctxp, we wait until it has 6864 * incremented the context's refcount before we do put_ctx below. 6865 */ 6866 raw_spin_lock(&child_ctx->lock); 6867 task_ctx_sched_out(child_ctx); 6868 child->perf_event_ctxp[ctxn] = NULL; 6869 /* 6870 * If this context is a clone; unclone it so it can't get 6871 * swapped to another process while we're removing all 6872 * the events from it. 6873 */ 6874 unclone_ctx(child_ctx); 6875 update_context_time(child_ctx); 6876 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 6877 6878 /* 6879 * Report the task dead after unscheduling the events so that we 6880 * won't get any samples after PERF_RECORD_EXIT. We can however still 6881 * get a few PERF_RECORD_READ events. 6882 */ 6883 perf_event_task(child, child_ctx, 0); 6884 6885 /* 6886 * We can recurse on the same lock type through: 6887 * 6888 * __perf_event_exit_task() 6889 * sync_child_event() 6890 * put_event() 6891 * mutex_lock(&ctx->mutex) 6892 * 6893 * But since its the parent context it won't be the same instance. 6894 */ 6895 mutex_lock(&child_ctx->mutex); 6896 6897 again: 6898 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups, 6899 group_entry) 6900 __perf_event_exit_task(child_event, child_ctx, child); 6901 6902 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups, 6903 group_entry) 6904 __perf_event_exit_task(child_event, child_ctx, child); 6905 6906 /* 6907 * If the last event was a group event, it will have appended all 6908 * its siblings to the list, but we obtained 'tmp' before that which 6909 * will still point to the list head terminating the iteration. 6910 */ 6911 if (!list_empty(&child_ctx->pinned_groups) || 6912 !list_empty(&child_ctx->flexible_groups)) 6913 goto again; 6914 6915 mutex_unlock(&child_ctx->mutex); 6916 6917 put_ctx(child_ctx); 6918 } 6919 6920 /* 6921 * When a child task exits, feed back event values to parent events. 6922 */ 6923 void perf_event_exit_task(struct task_struct *child) 6924 { 6925 struct perf_event *event, *tmp; 6926 int ctxn; 6927 6928 mutex_lock(&child->perf_event_mutex); 6929 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 6930 owner_entry) { 6931 list_del_init(&event->owner_entry); 6932 6933 /* 6934 * Ensure the list deletion is visible before we clear 6935 * the owner, closes a race against perf_release() where 6936 * we need to serialize on the owner->perf_event_mutex. 6937 */ 6938 smp_wmb(); 6939 event->owner = NULL; 6940 } 6941 mutex_unlock(&child->perf_event_mutex); 6942 6943 for_each_task_context_nr(ctxn) 6944 perf_event_exit_task_context(child, ctxn); 6945 } 6946 6947 static void perf_free_event(struct perf_event *event, 6948 struct perf_event_context *ctx) 6949 { 6950 struct perf_event *parent = event->parent; 6951 6952 if (WARN_ON_ONCE(!parent)) 6953 return; 6954 6955 mutex_lock(&parent->child_mutex); 6956 list_del_init(&event->child_list); 6957 mutex_unlock(&parent->child_mutex); 6958 6959 put_event(parent); 6960 6961 perf_group_detach(event); 6962 list_del_event(event, ctx); 6963 free_event(event); 6964 } 6965 6966 /* 6967 * free an unexposed, unused context as created by inheritance by 6968 * perf_event_init_task below, used by fork() in case of fail. 6969 */ 6970 void perf_event_free_task(struct task_struct *task) 6971 { 6972 struct perf_event_context *ctx; 6973 struct perf_event *event, *tmp; 6974 int ctxn; 6975 6976 for_each_task_context_nr(ctxn) { 6977 ctx = task->perf_event_ctxp[ctxn]; 6978 if (!ctx) 6979 continue; 6980 6981 mutex_lock(&ctx->mutex); 6982 again: 6983 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, 6984 group_entry) 6985 perf_free_event(event, ctx); 6986 6987 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, 6988 group_entry) 6989 perf_free_event(event, ctx); 6990 6991 if (!list_empty(&ctx->pinned_groups) || 6992 !list_empty(&ctx->flexible_groups)) 6993 goto again; 6994 6995 mutex_unlock(&ctx->mutex); 6996 6997 put_ctx(ctx); 6998 } 6999 } 7000 7001 void perf_event_delayed_put(struct task_struct *task) 7002 { 7003 int ctxn; 7004 7005 for_each_task_context_nr(ctxn) 7006 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); 7007 } 7008 7009 /* 7010 * inherit a event from parent task to child task: 7011 */ 7012 static struct perf_event * 7013 inherit_event(struct perf_event *parent_event, 7014 struct task_struct *parent, 7015 struct perf_event_context *parent_ctx, 7016 struct task_struct *child, 7017 struct perf_event *group_leader, 7018 struct perf_event_context *child_ctx) 7019 { 7020 struct perf_event *child_event; 7021 unsigned long flags; 7022 7023 /* 7024 * Instead of creating recursive hierarchies of events, 7025 * we link inherited events back to the original parent, 7026 * which has a filp for sure, which we use as the reference 7027 * count: 7028 */ 7029 if (parent_event->parent) 7030 parent_event = parent_event->parent; 7031 7032 child_event = perf_event_alloc(&parent_event->attr, 7033 parent_event->cpu, 7034 child, 7035 group_leader, parent_event, 7036 NULL, NULL); 7037 if (IS_ERR(child_event)) 7038 return child_event; 7039 7040 if (!atomic_long_inc_not_zero(&parent_event->refcount)) { 7041 free_event(child_event); 7042 return NULL; 7043 } 7044 7045 get_ctx(child_ctx); 7046 7047 /* 7048 * Make the child state follow the state of the parent event, 7049 * not its attr.disabled bit. We hold the parent's mutex, 7050 * so we won't race with perf_event_{en, dis}able_family. 7051 */ 7052 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE) 7053 child_event->state = PERF_EVENT_STATE_INACTIVE; 7054 else 7055 child_event->state = PERF_EVENT_STATE_OFF; 7056 7057 if (parent_event->attr.freq) { 7058 u64 sample_period = parent_event->hw.sample_period; 7059 struct hw_perf_event *hwc = &child_event->hw; 7060 7061 hwc->sample_period = sample_period; 7062 hwc->last_period = sample_period; 7063 7064 local64_set(&hwc->period_left, sample_period); 7065 } 7066 7067 child_event->ctx = child_ctx; 7068 child_event->overflow_handler = parent_event->overflow_handler; 7069 child_event->overflow_handler_context 7070 = parent_event->overflow_handler_context; 7071 7072 /* 7073 * Precalculate sample_data sizes 7074 */ 7075 perf_event__header_size(child_event); 7076 perf_event__id_header_size(child_event); 7077 7078 /* 7079 * Link it up in the child's context: 7080 */ 7081 raw_spin_lock_irqsave(&child_ctx->lock, flags); 7082 add_event_to_ctx(child_event, child_ctx); 7083 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 7084 7085 /* 7086 * Link this into the parent event's child list 7087 */ 7088 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 7089 mutex_lock(&parent_event->child_mutex); 7090 list_add_tail(&child_event->child_list, &parent_event->child_list); 7091 mutex_unlock(&parent_event->child_mutex); 7092 7093 return child_event; 7094 } 7095 7096 static int inherit_group(struct perf_event *parent_event, 7097 struct task_struct *parent, 7098 struct perf_event_context *parent_ctx, 7099 struct task_struct *child, 7100 struct perf_event_context *child_ctx) 7101 { 7102 struct perf_event *leader; 7103 struct perf_event *sub; 7104 struct perf_event *child_ctr; 7105 7106 leader = inherit_event(parent_event, parent, parent_ctx, 7107 child, NULL, child_ctx); 7108 if (IS_ERR(leader)) 7109 return PTR_ERR(leader); 7110 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) { 7111 child_ctr = inherit_event(sub, parent, parent_ctx, 7112 child, leader, child_ctx); 7113 if (IS_ERR(child_ctr)) 7114 return PTR_ERR(child_ctr); 7115 } 7116 return 0; 7117 } 7118 7119 static int 7120 inherit_task_group(struct perf_event *event, struct task_struct *parent, 7121 struct perf_event_context *parent_ctx, 7122 struct task_struct *child, int ctxn, 7123 int *inherited_all) 7124 { 7125 int ret; 7126 struct perf_event_context *child_ctx; 7127 7128 if (!event->attr.inherit) { 7129 *inherited_all = 0; 7130 return 0; 7131 } 7132 7133 child_ctx = child->perf_event_ctxp[ctxn]; 7134 if (!child_ctx) { 7135 /* 7136 * This is executed from the parent task context, so 7137 * inherit events that have been marked for cloning. 7138 * First allocate and initialize a context for the 7139 * child. 7140 */ 7141 7142 child_ctx = alloc_perf_context(event->pmu, child); 7143 if (!child_ctx) 7144 return -ENOMEM; 7145 7146 child->perf_event_ctxp[ctxn] = child_ctx; 7147 } 7148 7149 ret = inherit_group(event, parent, parent_ctx, 7150 child, child_ctx); 7151 7152 if (ret) 7153 *inherited_all = 0; 7154 7155 return ret; 7156 } 7157 7158 /* 7159 * Initialize the perf_event context in task_struct 7160 */ 7161 int perf_event_init_context(struct task_struct *child, int ctxn) 7162 { 7163 struct perf_event_context *child_ctx, *parent_ctx; 7164 struct perf_event_context *cloned_ctx; 7165 struct perf_event *event; 7166 struct task_struct *parent = current; 7167 int inherited_all = 1; 7168 unsigned long flags; 7169 int ret = 0; 7170 7171 if (likely(!parent->perf_event_ctxp[ctxn])) 7172 return 0; 7173 7174 /* 7175 * If the parent's context is a clone, pin it so it won't get 7176 * swapped under us. 7177 */ 7178 parent_ctx = perf_pin_task_context(parent, ctxn); 7179 7180 /* 7181 * No need to check if parent_ctx != NULL here; since we saw 7182 * it non-NULL earlier, the only reason for it to become NULL 7183 * is if we exit, and since we're currently in the middle of 7184 * a fork we can't be exiting at the same time. 7185 */ 7186 7187 /* 7188 * Lock the parent list. No need to lock the child - not PID 7189 * hashed yet and not running, so nobody can access it. 7190 */ 7191 mutex_lock(&parent_ctx->mutex); 7192 7193 /* 7194 * We dont have to disable NMIs - we are only looking at 7195 * the list, not manipulating it: 7196 */ 7197 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) { 7198 ret = inherit_task_group(event, parent, parent_ctx, 7199 child, ctxn, &inherited_all); 7200 if (ret) 7201 break; 7202 } 7203 7204 /* 7205 * We can't hold ctx->lock when iterating the ->flexible_group list due 7206 * to allocations, but we need to prevent rotation because 7207 * rotate_ctx() will change the list from interrupt context. 7208 */ 7209 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 7210 parent_ctx->rotate_disable = 1; 7211 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 7212 7213 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) { 7214 ret = inherit_task_group(event, parent, parent_ctx, 7215 child, ctxn, &inherited_all); 7216 if (ret) 7217 break; 7218 } 7219 7220 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 7221 parent_ctx->rotate_disable = 0; 7222 7223 child_ctx = child->perf_event_ctxp[ctxn]; 7224 7225 if (child_ctx && inherited_all) { 7226 /* 7227 * Mark the child context as a clone of the parent 7228 * context, or of whatever the parent is a clone of. 7229 * 7230 * Note that if the parent is a clone, the holding of 7231 * parent_ctx->lock avoids it from being uncloned. 7232 */ 7233 cloned_ctx = parent_ctx->parent_ctx; 7234 if (cloned_ctx) { 7235 child_ctx->parent_ctx = cloned_ctx; 7236 child_ctx->parent_gen = parent_ctx->parent_gen; 7237 } else { 7238 child_ctx->parent_ctx = parent_ctx; 7239 child_ctx->parent_gen = parent_ctx->generation; 7240 } 7241 get_ctx(child_ctx->parent_ctx); 7242 } 7243 7244 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 7245 mutex_unlock(&parent_ctx->mutex); 7246 7247 perf_unpin_context(parent_ctx); 7248 put_ctx(parent_ctx); 7249 7250 return ret; 7251 } 7252 7253 /* 7254 * Initialize the perf_event context in task_struct 7255 */ 7256 int perf_event_init_task(struct task_struct *child) 7257 { 7258 int ctxn, ret; 7259 7260 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); 7261 mutex_init(&child->perf_event_mutex); 7262 INIT_LIST_HEAD(&child->perf_event_list); 7263 7264 for_each_task_context_nr(ctxn) { 7265 ret = perf_event_init_context(child, ctxn); 7266 if (ret) 7267 return ret; 7268 } 7269 7270 return 0; 7271 } 7272 7273 static void __init perf_event_init_all_cpus(void) 7274 { 7275 struct swevent_htable *swhash; 7276 int cpu; 7277 7278 for_each_possible_cpu(cpu) { 7279 swhash = &per_cpu(swevent_htable, cpu); 7280 mutex_init(&swhash->hlist_mutex); 7281 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu)); 7282 } 7283 } 7284 7285 static void __cpuinit perf_event_init_cpu(int cpu) 7286 { 7287 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 7288 7289 mutex_lock(&swhash->hlist_mutex); 7290 if (swhash->hlist_refcount > 0) { 7291 struct swevent_hlist *hlist; 7292 7293 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 7294 WARN_ON(!hlist); 7295 rcu_assign_pointer(swhash->swevent_hlist, hlist); 7296 } 7297 mutex_unlock(&swhash->hlist_mutex); 7298 } 7299 7300 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC 7301 static void perf_pmu_rotate_stop(struct pmu *pmu) 7302 { 7303 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 7304 7305 WARN_ON(!irqs_disabled()); 7306 7307 list_del_init(&cpuctx->rotation_list); 7308 } 7309 7310 static void __perf_event_exit_context(void *__info) 7311 { 7312 struct perf_event_context *ctx = __info; 7313 struct perf_event *event, *tmp; 7314 7315 perf_pmu_rotate_stop(ctx->pmu); 7316 7317 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry) 7318 __perf_remove_from_context(event); 7319 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry) 7320 __perf_remove_from_context(event); 7321 } 7322 7323 static void perf_event_exit_cpu_context(int cpu) 7324 { 7325 struct perf_event_context *ctx; 7326 struct pmu *pmu; 7327 int idx; 7328 7329 idx = srcu_read_lock(&pmus_srcu); 7330 list_for_each_entry_rcu(pmu, &pmus, entry) { 7331 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx; 7332 7333 mutex_lock(&ctx->mutex); 7334 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 7335 mutex_unlock(&ctx->mutex); 7336 } 7337 srcu_read_unlock(&pmus_srcu, idx); 7338 } 7339 7340 static void perf_event_exit_cpu(int cpu) 7341 { 7342 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 7343 7344 mutex_lock(&swhash->hlist_mutex); 7345 swevent_hlist_release(swhash); 7346 mutex_unlock(&swhash->hlist_mutex); 7347 7348 perf_event_exit_cpu_context(cpu); 7349 } 7350 #else 7351 static inline void perf_event_exit_cpu(int cpu) { } 7352 #endif 7353 7354 static int 7355 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 7356 { 7357 int cpu; 7358 7359 for_each_online_cpu(cpu) 7360 perf_event_exit_cpu(cpu); 7361 7362 return NOTIFY_OK; 7363 } 7364 7365 /* 7366 * Run the perf reboot notifier at the very last possible moment so that 7367 * the generic watchdog code runs as long as possible. 7368 */ 7369 static struct notifier_block perf_reboot_notifier = { 7370 .notifier_call = perf_reboot, 7371 .priority = INT_MIN, 7372 }; 7373 7374 static int __cpuinit 7375 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu) 7376 { 7377 unsigned int cpu = (long)hcpu; 7378 7379 switch (action & ~CPU_TASKS_FROZEN) { 7380 7381 case CPU_UP_PREPARE: 7382 case CPU_DOWN_FAILED: 7383 perf_event_init_cpu(cpu); 7384 break; 7385 7386 case CPU_UP_CANCELED: 7387 case CPU_DOWN_PREPARE: 7388 perf_event_exit_cpu(cpu); 7389 break; 7390 7391 default: 7392 break; 7393 } 7394 7395 return NOTIFY_OK; 7396 } 7397 7398 void __init perf_event_init(void) 7399 { 7400 int ret; 7401 7402 idr_init(&pmu_idr); 7403 7404 perf_event_init_all_cpus(); 7405 init_srcu_struct(&pmus_srcu); 7406 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 7407 perf_pmu_register(&perf_cpu_clock, NULL, -1); 7408 perf_pmu_register(&perf_task_clock, NULL, -1); 7409 perf_tp_register(); 7410 perf_cpu_notifier(perf_cpu_notify); 7411 register_reboot_notifier(&perf_reboot_notifier); 7412 7413 ret = init_hw_breakpoint(); 7414 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 7415 7416 /* do not patch jump label more than once per second */ 7417 jump_label_rate_limit(&perf_sched_events, HZ); 7418 7419 /* 7420 * Build time assertion that we keep the data_head at the intended 7421 * location. IOW, validation we got the __reserved[] size right. 7422 */ 7423 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 7424 != 1024); 7425 } 7426 7427 static int __init perf_event_sysfs_init(void) 7428 { 7429 struct pmu *pmu; 7430 int ret; 7431 7432 mutex_lock(&pmus_lock); 7433 7434 ret = bus_register(&pmu_bus); 7435 if (ret) 7436 goto unlock; 7437 7438 list_for_each_entry(pmu, &pmus, entry) { 7439 if (!pmu->name || pmu->type < 0) 7440 continue; 7441 7442 ret = pmu_dev_alloc(pmu); 7443 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 7444 } 7445 pmu_bus_running = 1; 7446 ret = 0; 7447 7448 unlock: 7449 mutex_unlock(&pmus_lock); 7450 7451 return ret; 7452 } 7453 device_initcall(perf_event_sysfs_init); 7454 7455 #ifdef CONFIG_CGROUP_PERF 7456 static struct cgroup_subsys_state *perf_cgroup_css_alloc(struct cgroup *cont) 7457 { 7458 struct perf_cgroup *jc; 7459 7460 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 7461 if (!jc) 7462 return ERR_PTR(-ENOMEM); 7463 7464 jc->info = alloc_percpu(struct perf_cgroup_info); 7465 if (!jc->info) { 7466 kfree(jc); 7467 return ERR_PTR(-ENOMEM); 7468 } 7469 7470 return &jc->css; 7471 } 7472 7473 static void perf_cgroup_css_free(struct cgroup *cont) 7474 { 7475 struct perf_cgroup *jc; 7476 jc = container_of(cgroup_subsys_state(cont, perf_subsys_id), 7477 struct perf_cgroup, css); 7478 free_percpu(jc->info); 7479 kfree(jc); 7480 } 7481 7482 static int __perf_cgroup_move(void *info) 7483 { 7484 struct task_struct *task = info; 7485 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN); 7486 return 0; 7487 } 7488 7489 static void perf_cgroup_attach(struct cgroup *cgrp, struct cgroup_taskset *tset) 7490 { 7491 struct task_struct *task; 7492 7493 cgroup_taskset_for_each(task, cgrp, tset) 7494 task_function_call(task, __perf_cgroup_move, task); 7495 } 7496 7497 static void perf_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp, 7498 struct task_struct *task) 7499 { 7500 /* 7501 * cgroup_exit() is called in the copy_process() failure path. 7502 * Ignore this case since the task hasn't ran yet, this avoids 7503 * trying to poke a half freed task state from generic code. 7504 */ 7505 if (!(task->flags & PF_EXITING)) 7506 return; 7507 7508 task_function_call(task, __perf_cgroup_move, task); 7509 } 7510 7511 struct cgroup_subsys perf_subsys = { 7512 .name = "perf_event", 7513 .subsys_id = perf_subsys_id, 7514 .css_alloc = perf_cgroup_css_alloc, 7515 .css_free = perf_cgroup_css_free, 7516 .exit = perf_cgroup_exit, 7517 .attach = perf_cgroup_attach, 7518 7519 /* 7520 * perf_event cgroup doesn't handle nesting correctly. 7521 * ctx->nr_cgroups adjustments should be propagated through the 7522 * cgroup hierarchy. Fix it and remove the following. 7523 */ 7524 .broken_hierarchy = true, 7525 }; 7526 #endif /* CONFIG_CGROUP_PERF */ 7527