xref: /openbmc/linux/kernel/events/core.c (revision 9c0d16ac)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10 
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/rculist.h>
32 #include <linux/uaccess.h>
33 #include <linux/syscalls.h>
34 #include <linux/anon_inodes.h>
35 #include <linux/kernel_stat.h>
36 #include <linux/cgroup.h>
37 #include <linux/perf_event.h>
38 #include <linux/trace_events.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/mm_types.h>
41 #include <linux/module.h>
42 #include <linux/mman.h>
43 #include <linux/compat.h>
44 #include <linux/bpf.h>
45 #include <linux/filter.h>
46 #include <linux/namei.h>
47 #include <linux/parser.h>
48 #include <linux/sched/clock.h>
49 #include <linux/sched/mm.h>
50 #include <linux/proc_ns.h>
51 #include <linux/mount.h>
52 
53 #include "internal.h"
54 
55 #include <asm/irq_regs.h>
56 
57 typedef int (*remote_function_f)(void *);
58 
59 struct remote_function_call {
60 	struct task_struct	*p;
61 	remote_function_f	func;
62 	void			*info;
63 	int			ret;
64 };
65 
66 static void remote_function(void *data)
67 {
68 	struct remote_function_call *tfc = data;
69 	struct task_struct *p = tfc->p;
70 
71 	if (p) {
72 		/* -EAGAIN */
73 		if (task_cpu(p) != smp_processor_id())
74 			return;
75 
76 		/*
77 		 * Now that we're on right CPU with IRQs disabled, we can test
78 		 * if we hit the right task without races.
79 		 */
80 
81 		tfc->ret = -ESRCH; /* No such (running) process */
82 		if (p != current)
83 			return;
84 	}
85 
86 	tfc->ret = tfc->func(tfc->info);
87 }
88 
89 /**
90  * task_function_call - call a function on the cpu on which a task runs
91  * @p:		the task to evaluate
92  * @func:	the function to be called
93  * @info:	the function call argument
94  *
95  * Calls the function @func when the task is currently running. This might
96  * be on the current CPU, which just calls the function directly
97  *
98  * returns: @func return value, or
99  *	    -ESRCH  - when the process isn't running
100  *	    -EAGAIN - when the process moved away
101  */
102 static int
103 task_function_call(struct task_struct *p, remote_function_f func, void *info)
104 {
105 	struct remote_function_call data = {
106 		.p	= p,
107 		.func	= func,
108 		.info	= info,
109 		.ret	= -EAGAIN,
110 	};
111 	int ret;
112 
113 	do {
114 		ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
115 		if (!ret)
116 			ret = data.ret;
117 	} while (ret == -EAGAIN);
118 
119 	return ret;
120 }
121 
122 /**
123  * cpu_function_call - call a function on the cpu
124  * @func:	the function to be called
125  * @info:	the function call argument
126  *
127  * Calls the function @func on the remote cpu.
128  *
129  * returns: @func return value or -ENXIO when the cpu is offline
130  */
131 static int cpu_function_call(int cpu, remote_function_f func, void *info)
132 {
133 	struct remote_function_call data = {
134 		.p	= NULL,
135 		.func	= func,
136 		.info	= info,
137 		.ret	= -ENXIO, /* No such CPU */
138 	};
139 
140 	smp_call_function_single(cpu, remote_function, &data, 1);
141 
142 	return data.ret;
143 }
144 
145 static inline struct perf_cpu_context *
146 __get_cpu_context(struct perf_event_context *ctx)
147 {
148 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
149 }
150 
151 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
152 			  struct perf_event_context *ctx)
153 {
154 	raw_spin_lock(&cpuctx->ctx.lock);
155 	if (ctx)
156 		raw_spin_lock(&ctx->lock);
157 }
158 
159 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
160 			    struct perf_event_context *ctx)
161 {
162 	if (ctx)
163 		raw_spin_unlock(&ctx->lock);
164 	raw_spin_unlock(&cpuctx->ctx.lock);
165 }
166 
167 #define TASK_TOMBSTONE ((void *)-1L)
168 
169 static bool is_kernel_event(struct perf_event *event)
170 {
171 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
172 }
173 
174 /*
175  * On task ctx scheduling...
176  *
177  * When !ctx->nr_events a task context will not be scheduled. This means
178  * we can disable the scheduler hooks (for performance) without leaving
179  * pending task ctx state.
180  *
181  * This however results in two special cases:
182  *
183  *  - removing the last event from a task ctx; this is relatively straight
184  *    forward and is done in __perf_remove_from_context.
185  *
186  *  - adding the first event to a task ctx; this is tricky because we cannot
187  *    rely on ctx->is_active and therefore cannot use event_function_call().
188  *    See perf_install_in_context().
189  *
190  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
191  */
192 
193 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
194 			struct perf_event_context *, void *);
195 
196 struct event_function_struct {
197 	struct perf_event *event;
198 	event_f func;
199 	void *data;
200 };
201 
202 static int event_function(void *info)
203 {
204 	struct event_function_struct *efs = info;
205 	struct perf_event *event = efs->event;
206 	struct perf_event_context *ctx = event->ctx;
207 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
208 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
209 	int ret = 0;
210 
211 	lockdep_assert_irqs_disabled();
212 
213 	perf_ctx_lock(cpuctx, task_ctx);
214 	/*
215 	 * Since we do the IPI call without holding ctx->lock things can have
216 	 * changed, double check we hit the task we set out to hit.
217 	 */
218 	if (ctx->task) {
219 		if (ctx->task != current) {
220 			ret = -ESRCH;
221 			goto unlock;
222 		}
223 
224 		/*
225 		 * We only use event_function_call() on established contexts,
226 		 * and event_function() is only ever called when active (or
227 		 * rather, we'll have bailed in task_function_call() or the
228 		 * above ctx->task != current test), therefore we must have
229 		 * ctx->is_active here.
230 		 */
231 		WARN_ON_ONCE(!ctx->is_active);
232 		/*
233 		 * And since we have ctx->is_active, cpuctx->task_ctx must
234 		 * match.
235 		 */
236 		WARN_ON_ONCE(task_ctx != ctx);
237 	} else {
238 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
239 	}
240 
241 	efs->func(event, cpuctx, ctx, efs->data);
242 unlock:
243 	perf_ctx_unlock(cpuctx, task_ctx);
244 
245 	return ret;
246 }
247 
248 static void event_function_call(struct perf_event *event, event_f func, void *data)
249 {
250 	struct perf_event_context *ctx = event->ctx;
251 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
252 	struct event_function_struct efs = {
253 		.event = event,
254 		.func = func,
255 		.data = data,
256 	};
257 
258 	if (!event->parent) {
259 		/*
260 		 * If this is a !child event, we must hold ctx::mutex to
261 		 * stabilize the the event->ctx relation. See
262 		 * perf_event_ctx_lock().
263 		 */
264 		lockdep_assert_held(&ctx->mutex);
265 	}
266 
267 	if (!task) {
268 		cpu_function_call(event->cpu, event_function, &efs);
269 		return;
270 	}
271 
272 	if (task == TASK_TOMBSTONE)
273 		return;
274 
275 again:
276 	if (!task_function_call(task, event_function, &efs))
277 		return;
278 
279 	raw_spin_lock_irq(&ctx->lock);
280 	/*
281 	 * Reload the task pointer, it might have been changed by
282 	 * a concurrent perf_event_context_sched_out().
283 	 */
284 	task = ctx->task;
285 	if (task == TASK_TOMBSTONE) {
286 		raw_spin_unlock_irq(&ctx->lock);
287 		return;
288 	}
289 	if (ctx->is_active) {
290 		raw_spin_unlock_irq(&ctx->lock);
291 		goto again;
292 	}
293 	func(event, NULL, ctx, data);
294 	raw_spin_unlock_irq(&ctx->lock);
295 }
296 
297 /*
298  * Similar to event_function_call() + event_function(), but hard assumes IRQs
299  * are already disabled and we're on the right CPU.
300  */
301 static void event_function_local(struct perf_event *event, event_f func, void *data)
302 {
303 	struct perf_event_context *ctx = event->ctx;
304 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
305 	struct task_struct *task = READ_ONCE(ctx->task);
306 	struct perf_event_context *task_ctx = NULL;
307 
308 	lockdep_assert_irqs_disabled();
309 
310 	if (task) {
311 		if (task == TASK_TOMBSTONE)
312 			return;
313 
314 		task_ctx = ctx;
315 	}
316 
317 	perf_ctx_lock(cpuctx, task_ctx);
318 
319 	task = ctx->task;
320 	if (task == TASK_TOMBSTONE)
321 		goto unlock;
322 
323 	if (task) {
324 		/*
325 		 * We must be either inactive or active and the right task,
326 		 * otherwise we're screwed, since we cannot IPI to somewhere
327 		 * else.
328 		 */
329 		if (ctx->is_active) {
330 			if (WARN_ON_ONCE(task != current))
331 				goto unlock;
332 
333 			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
334 				goto unlock;
335 		}
336 	} else {
337 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
338 	}
339 
340 	func(event, cpuctx, ctx, data);
341 unlock:
342 	perf_ctx_unlock(cpuctx, task_ctx);
343 }
344 
345 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
346 		       PERF_FLAG_FD_OUTPUT  |\
347 		       PERF_FLAG_PID_CGROUP |\
348 		       PERF_FLAG_FD_CLOEXEC)
349 
350 /*
351  * branch priv levels that need permission checks
352  */
353 #define PERF_SAMPLE_BRANCH_PERM_PLM \
354 	(PERF_SAMPLE_BRANCH_KERNEL |\
355 	 PERF_SAMPLE_BRANCH_HV)
356 
357 enum event_type_t {
358 	EVENT_FLEXIBLE = 0x1,
359 	EVENT_PINNED = 0x2,
360 	EVENT_TIME = 0x4,
361 	/* see ctx_resched() for details */
362 	EVENT_CPU = 0x8,
363 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
364 };
365 
366 /*
367  * perf_sched_events : >0 events exist
368  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
369  */
370 
371 static void perf_sched_delayed(struct work_struct *work);
372 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
373 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
374 static DEFINE_MUTEX(perf_sched_mutex);
375 static atomic_t perf_sched_count;
376 
377 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
378 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
379 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
380 
381 static atomic_t nr_mmap_events __read_mostly;
382 static atomic_t nr_comm_events __read_mostly;
383 static atomic_t nr_namespaces_events __read_mostly;
384 static atomic_t nr_task_events __read_mostly;
385 static atomic_t nr_freq_events __read_mostly;
386 static atomic_t nr_switch_events __read_mostly;
387 static atomic_t nr_ksymbol_events __read_mostly;
388 static atomic_t nr_bpf_events __read_mostly;
389 
390 static LIST_HEAD(pmus);
391 static DEFINE_MUTEX(pmus_lock);
392 static struct srcu_struct pmus_srcu;
393 static cpumask_var_t perf_online_mask;
394 
395 /*
396  * perf event paranoia level:
397  *  -1 - not paranoid at all
398  *   0 - disallow raw tracepoint access for unpriv
399  *   1 - disallow cpu events for unpriv
400  *   2 - disallow kernel profiling for unpriv
401  */
402 int sysctl_perf_event_paranoid __read_mostly = 2;
403 
404 /* Minimum for 512 kiB + 1 user control page */
405 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
406 
407 /*
408  * max perf event sample rate
409  */
410 #define DEFAULT_MAX_SAMPLE_RATE		100000
411 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
412 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
413 
414 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
415 
416 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
417 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
418 
419 static int perf_sample_allowed_ns __read_mostly =
420 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
421 
422 static void update_perf_cpu_limits(void)
423 {
424 	u64 tmp = perf_sample_period_ns;
425 
426 	tmp *= sysctl_perf_cpu_time_max_percent;
427 	tmp = div_u64(tmp, 100);
428 	if (!tmp)
429 		tmp = 1;
430 
431 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
432 }
433 
434 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
435 
436 int perf_proc_update_handler(struct ctl_table *table, int write,
437 		void __user *buffer, size_t *lenp,
438 		loff_t *ppos)
439 {
440 	int ret;
441 	int perf_cpu = sysctl_perf_cpu_time_max_percent;
442 	/*
443 	 * If throttling is disabled don't allow the write:
444 	 */
445 	if (write && (perf_cpu == 100 || perf_cpu == 0))
446 		return -EINVAL;
447 
448 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
449 	if (ret || !write)
450 		return ret;
451 
452 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
453 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
454 	update_perf_cpu_limits();
455 
456 	return 0;
457 }
458 
459 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
460 
461 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
462 				void __user *buffer, size_t *lenp,
463 				loff_t *ppos)
464 {
465 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
466 
467 	if (ret || !write)
468 		return ret;
469 
470 	if (sysctl_perf_cpu_time_max_percent == 100 ||
471 	    sysctl_perf_cpu_time_max_percent == 0) {
472 		printk(KERN_WARNING
473 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
474 		WRITE_ONCE(perf_sample_allowed_ns, 0);
475 	} else {
476 		update_perf_cpu_limits();
477 	}
478 
479 	return 0;
480 }
481 
482 /*
483  * perf samples are done in some very critical code paths (NMIs).
484  * If they take too much CPU time, the system can lock up and not
485  * get any real work done.  This will drop the sample rate when
486  * we detect that events are taking too long.
487  */
488 #define NR_ACCUMULATED_SAMPLES 128
489 static DEFINE_PER_CPU(u64, running_sample_length);
490 
491 static u64 __report_avg;
492 static u64 __report_allowed;
493 
494 static void perf_duration_warn(struct irq_work *w)
495 {
496 	printk_ratelimited(KERN_INFO
497 		"perf: interrupt took too long (%lld > %lld), lowering "
498 		"kernel.perf_event_max_sample_rate to %d\n",
499 		__report_avg, __report_allowed,
500 		sysctl_perf_event_sample_rate);
501 }
502 
503 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
504 
505 void perf_sample_event_took(u64 sample_len_ns)
506 {
507 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
508 	u64 running_len;
509 	u64 avg_len;
510 	u32 max;
511 
512 	if (max_len == 0)
513 		return;
514 
515 	/* Decay the counter by 1 average sample. */
516 	running_len = __this_cpu_read(running_sample_length);
517 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
518 	running_len += sample_len_ns;
519 	__this_cpu_write(running_sample_length, running_len);
520 
521 	/*
522 	 * Note: this will be biased artifically low until we have
523 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
524 	 * from having to maintain a count.
525 	 */
526 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
527 	if (avg_len <= max_len)
528 		return;
529 
530 	__report_avg = avg_len;
531 	__report_allowed = max_len;
532 
533 	/*
534 	 * Compute a throttle threshold 25% below the current duration.
535 	 */
536 	avg_len += avg_len / 4;
537 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
538 	if (avg_len < max)
539 		max /= (u32)avg_len;
540 	else
541 		max = 1;
542 
543 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
544 	WRITE_ONCE(max_samples_per_tick, max);
545 
546 	sysctl_perf_event_sample_rate = max * HZ;
547 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
548 
549 	if (!irq_work_queue(&perf_duration_work)) {
550 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
551 			     "kernel.perf_event_max_sample_rate to %d\n",
552 			     __report_avg, __report_allowed,
553 			     sysctl_perf_event_sample_rate);
554 	}
555 }
556 
557 static atomic64_t perf_event_id;
558 
559 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
560 			      enum event_type_t event_type);
561 
562 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
563 			     enum event_type_t event_type,
564 			     struct task_struct *task);
565 
566 static void update_context_time(struct perf_event_context *ctx);
567 static u64 perf_event_time(struct perf_event *event);
568 
569 void __weak perf_event_print_debug(void)	{ }
570 
571 extern __weak const char *perf_pmu_name(void)
572 {
573 	return "pmu";
574 }
575 
576 static inline u64 perf_clock(void)
577 {
578 	return local_clock();
579 }
580 
581 static inline u64 perf_event_clock(struct perf_event *event)
582 {
583 	return event->clock();
584 }
585 
586 /*
587  * State based event timekeeping...
588  *
589  * The basic idea is to use event->state to determine which (if any) time
590  * fields to increment with the current delta. This means we only need to
591  * update timestamps when we change state or when they are explicitly requested
592  * (read).
593  *
594  * Event groups make things a little more complicated, but not terribly so. The
595  * rules for a group are that if the group leader is OFF the entire group is
596  * OFF, irrespecive of what the group member states are. This results in
597  * __perf_effective_state().
598  *
599  * A futher ramification is that when a group leader flips between OFF and
600  * !OFF, we need to update all group member times.
601  *
602  *
603  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
604  * need to make sure the relevant context time is updated before we try and
605  * update our timestamps.
606  */
607 
608 static __always_inline enum perf_event_state
609 __perf_effective_state(struct perf_event *event)
610 {
611 	struct perf_event *leader = event->group_leader;
612 
613 	if (leader->state <= PERF_EVENT_STATE_OFF)
614 		return leader->state;
615 
616 	return event->state;
617 }
618 
619 static __always_inline void
620 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
621 {
622 	enum perf_event_state state = __perf_effective_state(event);
623 	u64 delta = now - event->tstamp;
624 
625 	*enabled = event->total_time_enabled;
626 	if (state >= PERF_EVENT_STATE_INACTIVE)
627 		*enabled += delta;
628 
629 	*running = event->total_time_running;
630 	if (state >= PERF_EVENT_STATE_ACTIVE)
631 		*running += delta;
632 }
633 
634 static void perf_event_update_time(struct perf_event *event)
635 {
636 	u64 now = perf_event_time(event);
637 
638 	__perf_update_times(event, now, &event->total_time_enabled,
639 					&event->total_time_running);
640 	event->tstamp = now;
641 }
642 
643 static void perf_event_update_sibling_time(struct perf_event *leader)
644 {
645 	struct perf_event *sibling;
646 
647 	for_each_sibling_event(sibling, leader)
648 		perf_event_update_time(sibling);
649 }
650 
651 static void
652 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
653 {
654 	if (event->state == state)
655 		return;
656 
657 	perf_event_update_time(event);
658 	/*
659 	 * If a group leader gets enabled/disabled all its siblings
660 	 * are affected too.
661 	 */
662 	if ((event->state < 0) ^ (state < 0))
663 		perf_event_update_sibling_time(event);
664 
665 	WRITE_ONCE(event->state, state);
666 }
667 
668 #ifdef CONFIG_CGROUP_PERF
669 
670 static inline bool
671 perf_cgroup_match(struct perf_event *event)
672 {
673 	struct perf_event_context *ctx = event->ctx;
674 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
675 
676 	/* @event doesn't care about cgroup */
677 	if (!event->cgrp)
678 		return true;
679 
680 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
681 	if (!cpuctx->cgrp)
682 		return false;
683 
684 	/*
685 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
686 	 * also enabled for all its descendant cgroups.  If @cpuctx's
687 	 * cgroup is a descendant of @event's (the test covers identity
688 	 * case), it's a match.
689 	 */
690 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
691 				    event->cgrp->css.cgroup);
692 }
693 
694 static inline void perf_detach_cgroup(struct perf_event *event)
695 {
696 	css_put(&event->cgrp->css);
697 	event->cgrp = NULL;
698 }
699 
700 static inline int is_cgroup_event(struct perf_event *event)
701 {
702 	return event->cgrp != NULL;
703 }
704 
705 static inline u64 perf_cgroup_event_time(struct perf_event *event)
706 {
707 	struct perf_cgroup_info *t;
708 
709 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
710 	return t->time;
711 }
712 
713 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
714 {
715 	struct perf_cgroup_info *info;
716 	u64 now;
717 
718 	now = perf_clock();
719 
720 	info = this_cpu_ptr(cgrp->info);
721 
722 	info->time += now - info->timestamp;
723 	info->timestamp = now;
724 }
725 
726 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
727 {
728 	struct perf_cgroup *cgrp = cpuctx->cgrp;
729 	struct cgroup_subsys_state *css;
730 
731 	if (cgrp) {
732 		for (css = &cgrp->css; css; css = css->parent) {
733 			cgrp = container_of(css, struct perf_cgroup, css);
734 			__update_cgrp_time(cgrp);
735 		}
736 	}
737 }
738 
739 static inline void update_cgrp_time_from_event(struct perf_event *event)
740 {
741 	struct perf_cgroup *cgrp;
742 
743 	/*
744 	 * ensure we access cgroup data only when needed and
745 	 * when we know the cgroup is pinned (css_get)
746 	 */
747 	if (!is_cgroup_event(event))
748 		return;
749 
750 	cgrp = perf_cgroup_from_task(current, event->ctx);
751 	/*
752 	 * Do not update time when cgroup is not active
753 	 */
754 	if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
755 		__update_cgrp_time(event->cgrp);
756 }
757 
758 static inline void
759 perf_cgroup_set_timestamp(struct task_struct *task,
760 			  struct perf_event_context *ctx)
761 {
762 	struct perf_cgroup *cgrp;
763 	struct perf_cgroup_info *info;
764 	struct cgroup_subsys_state *css;
765 
766 	/*
767 	 * ctx->lock held by caller
768 	 * ensure we do not access cgroup data
769 	 * unless we have the cgroup pinned (css_get)
770 	 */
771 	if (!task || !ctx->nr_cgroups)
772 		return;
773 
774 	cgrp = perf_cgroup_from_task(task, ctx);
775 
776 	for (css = &cgrp->css; css; css = css->parent) {
777 		cgrp = container_of(css, struct perf_cgroup, css);
778 		info = this_cpu_ptr(cgrp->info);
779 		info->timestamp = ctx->timestamp;
780 	}
781 }
782 
783 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
784 
785 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
786 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
787 
788 /*
789  * reschedule events based on the cgroup constraint of task.
790  *
791  * mode SWOUT : schedule out everything
792  * mode SWIN : schedule in based on cgroup for next
793  */
794 static void perf_cgroup_switch(struct task_struct *task, int mode)
795 {
796 	struct perf_cpu_context *cpuctx;
797 	struct list_head *list;
798 	unsigned long flags;
799 
800 	/*
801 	 * Disable interrupts and preemption to avoid this CPU's
802 	 * cgrp_cpuctx_entry to change under us.
803 	 */
804 	local_irq_save(flags);
805 
806 	list = this_cpu_ptr(&cgrp_cpuctx_list);
807 	list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
808 		WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
809 
810 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
811 		perf_pmu_disable(cpuctx->ctx.pmu);
812 
813 		if (mode & PERF_CGROUP_SWOUT) {
814 			cpu_ctx_sched_out(cpuctx, EVENT_ALL);
815 			/*
816 			 * must not be done before ctxswout due
817 			 * to event_filter_match() in event_sched_out()
818 			 */
819 			cpuctx->cgrp = NULL;
820 		}
821 
822 		if (mode & PERF_CGROUP_SWIN) {
823 			WARN_ON_ONCE(cpuctx->cgrp);
824 			/*
825 			 * set cgrp before ctxsw in to allow
826 			 * event_filter_match() to not have to pass
827 			 * task around
828 			 * we pass the cpuctx->ctx to perf_cgroup_from_task()
829 			 * because cgorup events are only per-cpu
830 			 */
831 			cpuctx->cgrp = perf_cgroup_from_task(task,
832 							     &cpuctx->ctx);
833 			cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
834 		}
835 		perf_pmu_enable(cpuctx->ctx.pmu);
836 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
837 	}
838 
839 	local_irq_restore(flags);
840 }
841 
842 static inline void perf_cgroup_sched_out(struct task_struct *task,
843 					 struct task_struct *next)
844 {
845 	struct perf_cgroup *cgrp1;
846 	struct perf_cgroup *cgrp2 = NULL;
847 
848 	rcu_read_lock();
849 	/*
850 	 * we come here when we know perf_cgroup_events > 0
851 	 * we do not need to pass the ctx here because we know
852 	 * we are holding the rcu lock
853 	 */
854 	cgrp1 = perf_cgroup_from_task(task, NULL);
855 	cgrp2 = perf_cgroup_from_task(next, NULL);
856 
857 	/*
858 	 * only schedule out current cgroup events if we know
859 	 * that we are switching to a different cgroup. Otherwise,
860 	 * do no touch the cgroup events.
861 	 */
862 	if (cgrp1 != cgrp2)
863 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
864 
865 	rcu_read_unlock();
866 }
867 
868 static inline void perf_cgroup_sched_in(struct task_struct *prev,
869 					struct task_struct *task)
870 {
871 	struct perf_cgroup *cgrp1;
872 	struct perf_cgroup *cgrp2 = NULL;
873 
874 	rcu_read_lock();
875 	/*
876 	 * we come here when we know perf_cgroup_events > 0
877 	 * we do not need to pass the ctx here because we know
878 	 * we are holding the rcu lock
879 	 */
880 	cgrp1 = perf_cgroup_from_task(task, NULL);
881 	cgrp2 = perf_cgroup_from_task(prev, NULL);
882 
883 	/*
884 	 * only need to schedule in cgroup events if we are changing
885 	 * cgroup during ctxsw. Cgroup events were not scheduled
886 	 * out of ctxsw out if that was not the case.
887 	 */
888 	if (cgrp1 != cgrp2)
889 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
890 
891 	rcu_read_unlock();
892 }
893 
894 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
895 				      struct perf_event_attr *attr,
896 				      struct perf_event *group_leader)
897 {
898 	struct perf_cgroup *cgrp;
899 	struct cgroup_subsys_state *css;
900 	struct fd f = fdget(fd);
901 	int ret = 0;
902 
903 	if (!f.file)
904 		return -EBADF;
905 
906 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
907 					 &perf_event_cgrp_subsys);
908 	if (IS_ERR(css)) {
909 		ret = PTR_ERR(css);
910 		goto out;
911 	}
912 
913 	cgrp = container_of(css, struct perf_cgroup, css);
914 	event->cgrp = cgrp;
915 
916 	/*
917 	 * all events in a group must monitor
918 	 * the same cgroup because a task belongs
919 	 * to only one perf cgroup at a time
920 	 */
921 	if (group_leader && group_leader->cgrp != cgrp) {
922 		perf_detach_cgroup(event);
923 		ret = -EINVAL;
924 	}
925 out:
926 	fdput(f);
927 	return ret;
928 }
929 
930 static inline void
931 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
932 {
933 	struct perf_cgroup_info *t;
934 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
935 	event->shadow_ctx_time = now - t->timestamp;
936 }
937 
938 /*
939  * Update cpuctx->cgrp so that it is set when first cgroup event is added and
940  * cleared when last cgroup event is removed.
941  */
942 static inline void
943 list_update_cgroup_event(struct perf_event *event,
944 			 struct perf_event_context *ctx, bool add)
945 {
946 	struct perf_cpu_context *cpuctx;
947 	struct list_head *cpuctx_entry;
948 
949 	if (!is_cgroup_event(event))
950 		return;
951 
952 	/*
953 	 * Because cgroup events are always per-cpu events,
954 	 * @ctx == &cpuctx->ctx.
955 	 */
956 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
957 
958 	/*
959 	 * Since setting cpuctx->cgrp is conditional on the current @cgrp
960 	 * matching the event's cgroup, we must do this for every new event,
961 	 * because if the first would mismatch, the second would not try again
962 	 * and we would leave cpuctx->cgrp unset.
963 	 */
964 	if (add && !cpuctx->cgrp) {
965 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
966 
967 		if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
968 			cpuctx->cgrp = cgrp;
969 	}
970 
971 	if (add && ctx->nr_cgroups++)
972 		return;
973 	else if (!add && --ctx->nr_cgroups)
974 		return;
975 
976 	/* no cgroup running */
977 	if (!add)
978 		cpuctx->cgrp = NULL;
979 
980 	cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
981 	if (add)
982 		list_add(cpuctx_entry,
983 			 per_cpu_ptr(&cgrp_cpuctx_list, event->cpu));
984 	else
985 		list_del(cpuctx_entry);
986 }
987 
988 #else /* !CONFIG_CGROUP_PERF */
989 
990 static inline bool
991 perf_cgroup_match(struct perf_event *event)
992 {
993 	return true;
994 }
995 
996 static inline void perf_detach_cgroup(struct perf_event *event)
997 {}
998 
999 static inline int is_cgroup_event(struct perf_event *event)
1000 {
1001 	return 0;
1002 }
1003 
1004 static inline void update_cgrp_time_from_event(struct perf_event *event)
1005 {
1006 }
1007 
1008 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1009 {
1010 }
1011 
1012 static inline void perf_cgroup_sched_out(struct task_struct *task,
1013 					 struct task_struct *next)
1014 {
1015 }
1016 
1017 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1018 					struct task_struct *task)
1019 {
1020 }
1021 
1022 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1023 				      struct perf_event_attr *attr,
1024 				      struct perf_event *group_leader)
1025 {
1026 	return -EINVAL;
1027 }
1028 
1029 static inline void
1030 perf_cgroup_set_timestamp(struct task_struct *task,
1031 			  struct perf_event_context *ctx)
1032 {
1033 }
1034 
1035 static inline void
1036 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1037 {
1038 }
1039 
1040 static inline void
1041 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1042 {
1043 }
1044 
1045 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1046 {
1047 	return 0;
1048 }
1049 
1050 static inline void
1051 list_update_cgroup_event(struct perf_event *event,
1052 			 struct perf_event_context *ctx, bool add)
1053 {
1054 }
1055 
1056 #endif
1057 
1058 /*
1059  * set default to be dependent on timer tick just
1060  * like original code
1061  */
1062 #define PERF_CPU_HRTIMER (1000 / HZ)
1063 /*
1064  * function must be called with interrupts disabled
1065  */
1066 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1067 {
1068 	struct perf_cpu_context *cpuctx;
1069 	bool rotations;
1070 
1071 	lockdep_assert_irqs_disabled();
1072 
1073 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1074 	rotations = perf_rotate_context(cpuctx);
1075 
1076 	raw_spin_lock(&cpuctx->hrtimer_lock);
1077 	if (rotations)
1078 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1079 	else
1080 		cpuctx->hrtimer_active = 0;
1081 	raw_spin_unlock(&cpuctx->hrtimer_lock);
1082 
1083 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1084 }
1085 
1086 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1087 {
1088 	struct hrtimer *timer = &cpuctx->hrtimer;
1089 	struct pmu *pmu = cpuctx->ctx.pmu;
1090 	u64 interval;
1091 
1092 	/* no multiplexing needed for SW PMU */
1093 	if (pmu->task_ctx_nr == perf_sw_context)
1094 		return;
1095 
1096 	/*
1097 	 * check default is sane, if not set then force to
1098 	 * default interval (1/tick)
1099 	 */
1100 	interval = pmu->hrtimer_interval_ms;
1101 	if (interval < 1)
1102 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1103 
1104 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1105 
1106 	raw_spin_lock_init(&cpuctx->hrtimer_lock);
1107 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1108 	timer->function = perf_mux_hrtimer_handler;
1109 }
1110 
1111 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1112 {
1113 	struct hrtimer *timer = &cpuctx->hrtimer;
1114 	struct pmu *pmu = cpuctx->ctx.pmu;
1115 	unsigned long flags;
1116 
1117 	/* not for SW PMU */
1118 	if (pmu->task_ctx_nr == perf_sw_context)
1119 		return 0;
1120 
1121 	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1122 	if (!cpuctx->hrtimer_active) {
1123 		cpuctx->hrtimer_active = 1;
1124 		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1125 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1126 	}
1127 	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1128 
1129 	return 0;
1130 }
1131 
1132 void perf_pmu_disable(struct pmu *pmu)
1133 {
1134 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1135 	if (!(*count)++)
1136 		pmu->pmu_disable(pmu);
1137 }
1138 
1139 void perf_pmu_enable(struct pmu *pmu)
1140 {
1141 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1142 	if (!--(*count))
1143 		pmu->pmu_enable(pmu);
1144 }
1145 
1146 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1147 
1148 /*
1149  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1150  * perf_event_task_tick() are fully serialized because they're strictly cpu
1151  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1152  * disabled, while perf_event_task_tick is called from IRQ context.
1153  */
1154 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1155 {
1156 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
1157 
1158 	lockdep_assert_irqs_disabled();
1159 
1160 	WARN_ON(!list_empty(&ctx->active_ctx_list));
1161 
1162 	list_add(&ctx->active_ctx_list, head);
1163 }
1164 
1165 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1166 {
1167 	lockdep_assert_irqs_disabled();
1168 
1169 	WARN_ON(list_empty(&ctx->active_ctx_list));
1170 
1171 	list_del_init(&ctx->active_ctx_list);
1172 }
1173 
1174 static void get_ctx(struct perf_event_context *ctx)
1175 {
1176 	refcount_inc(&ctx->refcount);
1177 }
1178 
1179 static void free_ctx(struct rcu_head *head)
1180 {
1181 	struct perf_event_context *ctx;
1182 
1183 	ctx = container_of(head, struct perf_event_context, rcu_head);
1184 	kfree(ctx->task_ctx_data);
1185 	kfree(ctx);
1186 }
1187 
1188 static void put_ctx(struct perf_event_context *ctx)
1189 {
1190 	if (refcount_dec_and_test(&ctx->refcount)) {
1191 		if (ctx->parent_ctx)
1192 			put_ctx(ctx->parent_ctx);
1193 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1194 			put_task_struct(ctx->task);
1195 		call_rcu(&ctx->rcu_head, free_ctx);
1196 	}
1197 }
1198 
1199 /*
1200  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1201  * perf_pmu_migrate_context() we need some magic.
1202  *
1203  * Those places that change perf_event::ctx will hold both
1204  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1205  *
1206  * Lock ordering is by mutex address. There are two other sites where
1207  * perf_event_context::mutex nests and those are:
1208  *
1209  *  - perf_event_exit_task_context()	[ child , 0 ]
1210  *      perf_event_exit_event()
1211  *        put_event()			[ parent, 1 ]
1212  *
1213  *  - perf_event_init_context()		[ parent, 0 ]
1214  *      inherit_task_group()
1215  *        inherit_group()
1216  *          inherit_event()
1217  *            perf_event_alloc()
1218  *              perf_init_event()
1219  *                perf_try_init_event()	[ child , 1 ]
1220  *
1221  * While it appears there is an obvious deadlock here -- the parent and child
1222  * nesting levels are inverted between the two. This is in fact safe because
1223  * life-time rules separate them. That is an exiting task cannot fork, and a
1224  * spawning task cannot (yet) exit.
1225  *
1226  * But remember that that these are parent<->child context relations, and
1227  * migration does not affect children, therefore these two orderings should not
1228  * interact.
1229  *
1230  * The change in perf_event::ctx does not affect children (as claimed above)
1231  * because the sys_perf_event_open() case will install a new event and break
1232  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1233  * concerned with cpuctx and that doesn't have children.
1234  *
1235  * The places that change perf_event::ctx will issue:
1236  *
1237  *   perf_remove_from_context();
1238  *   synchronize_rcu();
1239  *   perf_install_in_context();
1240  *
1241  * to affect the change. The remove_from_context() + synchronize_rcu() should
1242  * quiesce the event, after which we can install it in the new location. This
1243  * means that only external vectors (perf_fops, prctl) can perturb the event
1244  * while in transit. Therefore all such accessors should also acquire
1245  * perf_event_context::mutex to serialize against this.
1246  *
1247  * However; because event->ctx can change while we're waiting to acquire
1248  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1249  * function.
1250  *
1251  * Lock order:
1252  *    cred_guard_mutex
1253  *	task_struct::perf_event_mutex
1254  *	  perf_event_context::mutex
1255  *	    perf_event::child_mutex;
1256  *	      perf_event_context::lock
1257  *	    perf_event::mmap_mutex
1258  *	    mmap_sem
1259  *	      perf_addr_filters_head::lock
1260  *
1261  *    cpu_hotplug_lock
1262  *      pmus_lock
1263  *	  cpuctx->mutex / perf_event_context::mutex
1264  */
1265 static struct perf_event_context *
1266 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1267 {
1268 	struct perf_event_context *ctx;
1269 
1270 again:
1271 	rcu_read_lock();
1272 	ctx = READ_ONCE(event->ctx);
1273 	if (!refcount_inc_not_zero(&ctx->refcount)) {
1274 		rcu_read_unlock();
1275 		goto again;
1276 	}
1277 	rcu_read_unlock();
1278 
1279 	mutex_lock_nested(&ctx->mutex, nesting);
1280 	if (event->ctx != ctx) {
1281 		mutex_unlock(&ctx->mutex);
1282 		put_ctx(ctx);
1283 		goto again;
1284 	}
1285 
1286 	return ctx;
1287 }
1288 
1289 static inline struct perf_event_context *
1290 perf_event_ctx_lock(struct perf_event *event)
1291 {
1292 	return perf_event_ctx_lock_nested(event, 0);
1293 }
1294 
1295 static void perf_event_ctx_unlock(struct perf_event *event,
1296 				  struct perf_event_context *ctx)
1297 {
1298 	mutex_unlock(&ctx->mutex);
1299 	put_ctx(ctx);
1300 }
1301 
1302 /*
1303  * This must be done under the ctx->lock, such as to serialize against
1304  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1305  * calling scheduler related locks and ctx->lock nests inside those.
1306  */
1307 static __must_check struct perf_event_context *
1308 unclone_ctx(struct perf_event_context *ctx)
1309 {
1310 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1311 
1312 	lockdep_assert_held(&ctx->lock);
1313 
1314 	if (parent_ctx)
1315 		ctx->parent_ctx = NULL;
1316 	ctx->generation++;
1317 
1318 	return parent_ctx;
1319 }
1320 
1321 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1322 				enum pid_type type)
1323 {
1324 	u32 nr;
1325 	/*
1326 	 * only top level events have the pid namespace they were created in
1327 	 */
1328 	if (event->parent)
1329 		event = event->parent;
1330 
1331 	nr = __task_pid_nr_ns(p, type, event->ns);
1332 	/* avoid -1 if it is idle thread or runs in another ns */
1333 	if (!nr && !pid_alive(p))
1334 		nr = -1;
1335 	return nr;
1336 }
1337 
1338 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1339 {
1340 	return perf_event_pid_type(event, p, PIDTYPE_TGID);
1341 }
1342 
1343 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1344 {
1345 	return perf_event_pid_type(event, p, PIDTYPE_PID);
1346 }
1347 
1348 /*
1349  * If we inherit events we want to return the parent event id
1350  * to userspace.
1351  */
1352 static u64 primary_event_id(struct perf_event *event)
1353 {
1354 	u64 id = event->id;
1355 
1356 	if (event->parent)
1357 		id = event->parent->id;
1358 
1359 	return id;
1360 }
1361 
1362 /*
1363  * Get the perf_event_context for a task and lock it.
1364  *
1365  * This has to cope with with the fact that until it is locked,
1366  * the context could get moved to another task.
1367  */
1368 static struct perf_event_context *
1369 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1370 {
1371 	struct perf_event_context *ctx;
1372 
1373 retry:
1374 	/*
1375 	 * One of the few rules of preemptible RCU is that one cannot do
1376 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1377 	 * part of the read side critical section was irqs-enabled -- see
1378 	 * rcu_read_unlock_special().
1379 	 *
1380 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1381 	 * side critical section has interrupts disabled.
1382 	 */
1383 	local_irq_save(*flags);
1384 	rcu_read_lock();
1385 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1386 	if (ctx) {
1387 		/*
1388 		 * If this context is a clone of another, it might
1389 		 * get swapped for another underneath us by
1390 		 * perf_event_task_sched_out, though the
1391 		 * rcu_read_lock() protects us from any context
1392 		 * getting freed.  Lock the context and check if it
1393 		 * got swapped before we could get the lock, and retry
1394 		 * if so.  If we locked the right context, then it
1395 		 * can't get swapped on us any more.
1396 		 */
1397 		raw_spin_lock(&ctx->lock);
1398 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1399 			raw_spin_unlock(&ctx->lock);
1400 			rcu_read_unlock();
1401 			local_irq_restore(*flags);
1402 			goto retry;
1403 		}
1404 
1405 		if (ctx->task == TASK_TOMBSTONE ||
1406 		    !refcount_inc_not_zero(&ctx->refcount)) {
1407 			raw_spin_unlock(&ctx->lock);
1408 			ctx = NULL;
1409 		} else {
1410 			WARN_ON_ONCE(ctx->task != task);
1411 		}
1412 	}
1413 	rcu_read_unlock();
1414 	if (!ctx)
1415 		local_irq_restore(*flags);
1416 	return ctx;
1417 }
1418 
1419 /*
1420  * Get the context for a task and increment its pin_count so it
1421  * can't get swapped to another task.  This also increments its
1422  * reference count so that the context can't get freed.
1423  */
1424 static struct perf_event_context *
1425 perf_pin_task_context(struct task_struct *task, int ctxn)
1426 {
1427 	struct perf_event_context *ctx;
1428 	unsigned long flags;
1429 
1430 	ctx = perf_lock_task_context(task, ctxn, &flags);
1431 	if (ctx) {
1432 		++ctx->pin_count;
1433 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1434 	}
1435 	return ctx;
1436 }
1437 
1438 static void perf_unpin_context(struct perf_event_context *ctx)
1439 {
1440 	unsigned long flags;
1441 
1442 	raw_spin_lock_irqsave(&ctx->lock, flags);
1443 	--ctx->pin_count;
1444 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1445 }
1446 
1447 /*
1448  * Update the record of the current time in a context.
1449  */
1450 static void update_context_time(struct perf_event_context *ctx)
1451 {
1452 	u64 now = perf_clock();
1453 
1454 	ctx->time += now - ctx->timestamp;
1455 	ctx->timestamp = now;
1456 }
1457 
1458 static u64 perf_event_time(struct perf_event *event)
1459 {
1460 	struct perf_event_context *ctx = event->ctx;
1461 
1462 	if (is_cgroup_event(event))
1463 		return perf_cgroup_event_time(event);
1464 
1465 	return ctx ? ctx->time : 0;
1466 }
1467 
1468 static enum event_type_t get_event_type(struct perf_event *event)
1469 {
1470 	struct perf_event_context *ctx = event->ctx;
1471 	enum event_type_t event_type;
1472 
1473 	lockdep_assert_held(&ctx->lock);
1474 
1475 	/*
1476 	 * It's 'group type', really, because if our group leader is
1477 	 * pinned, so are we.
1478 	 */
1479 	if (event->group_leader != event)
1480 		event = event->group_leader;
1481 
1482 	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1483 	if (!ctx->task)
1484 		event_type |= EVENT_CPU;
1485 
1486 	return event_type;
1487 }
1488 
1489 /*
1490  * Helper function to initialize event group nodes.
1491  */
1492 static void init_event_group(struct perf_event *event)
1493 {
1494 	RB_CLEAR_NODE(&event->group_node);
1495 	event->group_index = 0;
1496 }
1497 
1498 /*
1499  * Extract pinned or flexible groups from the context
1500  * based on event attrs bits.
1501  */
1502 static struct perf_event_groups *
1503 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1504 {
1505 	if (event->attr.pinned)
1506 		return &ctx->pinned_groups;
1507 	else
1508 		return &ctx->flexible_groups;
1509 }
1510 
1511 /*
1512  * Helper function to initializes perf_event_group trees.
1513  */
1514 static void perf_event_groups_init(struct perf_event_groups *groups)
1515 {
1516 	groups->tree = RB_ROOT;
1517 	groups->index = 0;
1518 }
1519 
1520 /*
1521  * Compare function for event groups;
1522  *
1523  * Implements complex key that first sorts by CPU and then by virtual index
1524  * which provides ordering when rotating groups for the same CPU.
1525  */
1526 static bool
1527 perf_event_groups_less(struct perf_event *left, struct perf_event *right)
1528 {
1529 	if (left->cpu < right->cpu)
1530 		return true;
1531 	if (left->cpu > right->cpu)
1532 		return false;
1533 
1534 	if (left->group_index < right->group_index)
1535 		return true;
1536 	if (left->group_index > right->group_index)
1537 		return false;
1538 
1539 	return false;
1540 }
1541 
1542 /*
1543  * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1544  * key (see perf_event_groups_less). This places it last inside the CPU
1545  * subtree.
1546  */
1547 static void
1548 perf_event_groups_insert(struct perf_event_groups *groups,
1549 			 struct perf_event *event)
1550 {
1551 	struct perf_event *node_event;
1552 	struct rb_node *parent;
1553 	struct rb_node **node;
1554 
1555 	event->group_index = ++groups->index;
1556 
1557 	node = &groups->tree.rb_node;
1558 	parent = *node;
1559 
1560 	while (*node) {
1561 		parent = *node;
1562 		node_event = container_of(*node, struct perf_event, group_node);
1563 
1564 		if (perf_event_groups_less(event, node_event))
1565 			node = &parent->rb_left;
1566 		else
1567 			node = &parent->rb_right;
1568 	}
1569 
1570 	rb_link_node(&event->group_node, parent, node);
1571 	rb_insert_color(&event->group_node, &groups->tree);
1572 }
1573 
1574 /*
1575  * Helper function to insert event into the pinned or flexible groups.
1576  */
1577 static void
1578 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1579 {
1580 	struct perf_event_groups *groups;
1581 
1582 	groups = get_event_groups(event, ctx);
1583 	perf_event_groups_insert(groups, event);
1584 }
1585 
1586 /*
1587  * Delete a group from a tree.
1588  */
1589 static void
1590 perf_event_groups_delete(struct perf_event_groups *groups,
1591 			 struct perf_event *event)
1592 {
1593 	WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1594 		     RB_EMPTY_ROOT(&groups->tree));
1595 
1596 	rb_erase(&event->group_node, &groups->tree);
1597 	init_event_group(event);
1598 }
1599 
1600 /*
1601  * Helper function to delete event from its groups.
1602  */
1603 static void
1604 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1605 {
1606 	struct perf_event_groups *groups;
1607 
1608 	groups = get_event_groups(event, ctx);
1609 	perf_event_groups_delete(groups, event);
1610 }
1611 
1612 /*
1613  * Get the leftmost event in the @cpu subtree.
1614  */
1615 static struct perf_event *
1616 perf_event_groups_first(struct perf_event_groups *groups, int cpu)
1617 {
1618 	struct perf_event *node_event = NULL, *match = NULL;
1619 	struct rb_node *node = groups->tree.rb_node;
1620 
1621 	while (node) {
1622 		node_event = container_of(node, struct perf_event, group_node);
1623 
1624 		if (cpu < node_event->cpu) {
1625 			node = node->rb_left;
1626 		} else if (cpu > node_event->cpu) {
1627 			node = node->rb_right;
1628 		} else {
1629 			match = node_event;
1630 			node = node->rb_left;
1631 		}
1632 	}
1633 
1634 	return match;
1635 }
1636 
1637 /*
1638  * Like rb_entry_next_safe() for the @cpu subtree.
1639  */
1640 static struct perf_event *
1641 perf_event_groups_next(struct perf_event *event)
1642 {
1643 	struct perf_event *next;
1644 
1645 	next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node);
1646 	if (next && next->cpu == event->cpu)
1647 		return next;
1648 
1649 	return NULL;
1650 }
1651 
1652 /*
1653  * Iterate through the whole groups tree.
1654  */
1655 #define perf_event_groups_for_each(event, groups)			\
1656 	for (event = rb_entry_safe(rb_first(&((groups)->tree)),		\
1657 				typeof(*event), group_node); event;	\
1658 		event = rb_entry_safe(rb_next(&event->group_node),	\
1659 				typeof(*event), group_node))
1660 
1661 /*
1662  * Add an event from the lists for its context.
1663  * Must be called with ctx->mutex and ctx->lock held.
1664  */
1665 static void
1666 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1667 {
1668 	lockdep_assert_held(&ctx->lock);
1669 
1670 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1671 	event->attach_state |= PERF_ATTACH_CONTEXT;
1672 
1673 	event->tstamp = perf_event_time(event);
1674 
1675 	/*
1676 	 * If we're a stand alone event or group leader, we go to the context
1677 	 * list, group events are kept attached to the group so that
1678 	 * perf_group_detach can, at all times, locate all siblings.
1679 	 */
1680 	if (event->group_leader == event) {
1681 		event->group_caps = event->event_caps;
1682 		add_event_to_groups(event, ctx);
1683 	}
1684 
1685 	list_update_cgroup_event(event, ctx, true);
1686 
1687 	list_add_rcu(&event->event_entry, &ctx->event_list);
1688 	ctx->nr_events++;
1689 	if (event->attr.inherit_stat)
1690 		ctx->nr_stat++;
1691 
1692 	ctx->generation++;
1693 }
1694 
1695 /*
1696  * Initialize event state based on the perf_event_attr::disabled.
1697  */
1698 static inline void perf_event__state_init(struct perf_event *event)
1699 {
1700 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1701 					      PERF_EVENT_STATE_INACTIVE;
1702 }
1703 
1704 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1705 {
1706 	int entry = sizeof(u64); /* value */
1707 	int size = 0;
1708 	int nr = 1;
1709 
1710 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1711 		size += sizeof(u64);
1712 
1713 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1714 		size += sizeof(u64);
1715 
1716 	if (event->attr.read_format & PERF_FORMAT_ID)
1717 		entry += sizeof(u64);
1718 
1719 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1720 		nr += nr_siblings;
1721 		size += sizeof(u64);
1722 	}
1723 
1724 	size += entry * nr;
1725 	event->read_size = size;
1726 }
1727 
1728 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1729 {
1730 	struct perf_sample_data *data;
1731 	u16 size = 0;
1732 
1733 	if (sample_type & PERF_SAMPLE_IP)
1734 		size += sizeof(data->ip);
1735 
1736 	if (sample_type & PERF_SAMPLE_ADDR)
1737 		size += sizeof(data->addr);
1738 
1739 	if (sample_type & PERF_SAMPLE_PERIOD)
1740 		size += sizeof(data->period);
1741 
1742 	if (sample_type & PERF_SAMPLE_WEIGHT)
1743 		size += sizeof(data->weight);
1744 
1745 	if (sample_type & PERF_SAMPLE_READ)
1746 		size += event->read_size;
1747 
1748 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1749 		size += sizeof(data->data_src.val);
1750 
1751 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1752 		size += sizeof(data->txn);
1753 
1754 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1755 		size += sizeof(data->phys_addr);
1756 
1757 	event->header_size = size;
1758 }
1759 
1760 /*
1761  * Called at perf_event creation and when events are attached/detached from a
1762  * group.
1763  */
1764 static void perf_event__header_size(struct perf_event *event)
1765 {
1766 	__perf_event_read_size(event,
1767 			       event->group_leader->nr_siblings);
1768 	__perf_event_header_size(event, event->attr.sample_type);
1769 }
1770 
1771 static void perf_event__id_header_size(struct perf_event *event)
1772 {
1773 	struct perf_sample_data *data;
1774 	u64 sample_type = event->attr.sample_type;
1775 	u16 size = 0;
1776 
1777 	if (sample_type & PERF_SAMPLE_TID)
1778 		size += sizeof(data->tid_entry);
1779 
1780 	if (sample_type & PERF_SAMPLE_TIME)
1781 		size += sizeof(data->time);
1782 
1783 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1784 		size += sizeof(data->id);
1785 
1786 	if (sample_type & PERF_SAMPLE_ID)
1787 		size += sizeof(data->id);
1788 
1789 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1790 		size += sizeof(data->stream_id);
1791 
1792 	if (sample_type & PERF_SAMPLE_CPU)
1793 		size += sizeof(data->cpu_entry);
1794 
1795 	event->id_header_size = size;
1796 }
1797 
1798 static bool perf_event_validate_size(struct perf_event *event)
1799 {
1800 	/*
1801 	 * The values computed here will be over-written when we actually
1802 	 * attach the event.
1803 	 */
1804 	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1805 	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1806 	perf_event__id_header_size(event);
1807 
1808 	/*
1809 	 * Sum the lot; should not exceed the 64k limit we have on records.
1810 	 * Conservative limit to allow for callchains and other variable fields.
1811 	 */
1812 	if (event->read_size + event->header_size +
1813 	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1814 		return false;
1815 
1816 	return true;
1817 }
1818 
1819 static void perf_group_attach(struct perf_event *event)
1820 {
1821 	struct perf_event *group_leader = event->group_leader, *pos;
1822 
1823 	lockdep_assert_held(&event->ctx->lock);
1824 
1825 	/*
1826 	 * We can have double attach due to group movement in perf_event_open.
1827 	 */
1828 	if (event->attach_state & PERF_ATTACH_GROUP)
1829 		return;
1830 
1831 	event->attach_state |= PERF_ATTACH_GROUP;
1832 
1833 	if (group_leader == event)
1834 		return;
1835 
1836 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1837 
1838 	group_leader->group_caps &= event->event_caps;
1839 
1840 	list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1841 	group_leader->nr_siblings++;
1842 
1843 	perf_event__header_size(group_leader);
1844 
1845 	for_each_sibling_event(pos, group_leader)
1846 		perf_event__header_size(pos);
1847 }
1848 
1849 /*
1850  * Remove an event from the lists for its context.
1851  * Must be called with ctx->mutex and ctx->lock held.
1852  */
1853 static void
1854 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1855 {
1856 	WARN_ON_ONCE(event->ctx != ctx);
1857 	lockdep_assert_held(&ctx->lock);
1858 
1859 	/*
1860 	 * We can have double detach due to exit/hot-unplug + close.
1861 	 */
1862 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1863 		return;
1864 
1865 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1866 
1867 	list_update_cgroup_event(event, ctx, false);
1868 
1869 	ctx->nr_events--;
1870 	if (event->attr.inherit_stat)
1871 		ctx->nr_stat--;
1872 
1873 	list_del_rcu(&event->event_entry);
1874 
1875 	if (event->group_leader == event)
1876 		del_event_from_groups(event, ctx);
1877 
1878 	/*
1879 	 * If event was in error state, then keep it
1880 	 * that way, otherwise bogus counts will be
1881 	 * returned on read(). The only way to get out
1882 	 * of error state is by explicit re-enabling
1883 	 * of the event
1884 	 */
1885 	if (event->state > PERF_EVENT_STATE_OFF)
1886 		perf_event_set_state(event, PERF_EVENT_STATE_OFF);
1887 
1888 	ctx->generation++;
1889 }
1890 
1891 static int
1892 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
1893 {
1894 	if (!has_aux(aux_event))
1895 		return 0;
1896 
1897 	if (!event->pmu->aux_output_match)
1898 		return 0;
1899 
1900 	return event->pmu->aux_output_match(aux_event);
1901 }
1902 
1903 static void put_event(struct perf_event *event);
1904 static void event_sched_out(struct perf_event *event,
1905 			    struct perf_cpu_context *cpuctx,
1906 			    struct perf_event_context *ctx);
1907 
1908 static void perf_put_aux_event(struct perf_event *event)
1909 {
1910 	struct perf_event_context *ctx = event->ctx;
1911 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1912 	struct perf_event *iter;
1913 
1914 	/*
1915 	 * If event uses aux_event tear down the link
1916 	 */
1917 	if (event->aux_event) {
1918 		iter = event->aux_event;
1919 		event->aux_event = NULL;
1920 		put_event(iter);
1921 		return;
1922 	}
1923 
1924 	/*
1925 	 * If the event is an aux_event, tear down all links to
1926 	 * it from other events.
1927 	 */
1928 	for_each_sibling_event(iter, event->group_leader) {
1929 		if (iter->aux_event != event)
1930 			continue;
1931 
1932 		iter->aux_event = NULL;
1933 		put_event(event);
1934 
1935 		/*
1936 		 * If it's ACTIVE, schedule it out and put it into ERROR
1937 		 * state so that we don't try to schedule it again. Note
1938 		 * that perf_event_enable() will clear the ERROR status.
1939 		 */
1940 		event_sched_out(iter, cpuctx, ctx);
1941 		perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
1942 	}
1943 }
1944 
1945 static bool perf_need_aux_event(struct perf_event *event)
1946 {
1947 	return !!event->attr.aux_output || !!event->attr.aux_sample_size;
1948 }
1949 
1950 static int perf_get_aux_event(struct perf_event *event,
1951 			      struct perf_event *group_leader)
1952 {
1953 	/*
1954 	 * Our group leader must be an aux event if we want to be
1955 	 * an aux_output. This way, the aux event will precede its
1956 	 * aux_output events in the group, and therefore will always
1957 	 * schedule first.
1958 	 */
1959 	if (!group_leader)
1960 		return 0;
1961 
1962 	/*
1963 	 * aux_output and aux_sample_size are mutually exclusive.
1964 	 */
1965 	if (event->attr.aux_output && event->attr.aux_sample_size)
1966 		return 0;
1967 
1968 	if (event->attr.aux_output &&
1969 	    !perf_aux_output_match(event, group_leader))
1970 		return 0;
1971 
1972 	if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
1973 		return 0;
1974 
1975 	if (!atomic_long_inc_not_zero(&group_leader->refcount))
1976 		return 0;
1977 
1978 	/*
1979 	 * Link aux_outputs to their aux event; this is undone in
1980 	 * perf_group_detach() by perf_put_aux_event(). When the
1981 	 * group in torn down, the aux_output events loose their
1982 	 * link to the aux_event and can't schedule any more.
1983 	 */
1984 	event->aux_event = group_leader;
1985 
1986 	return 1;
1987 }
1988 
1989 static void perf_group_detach(struct perf_event *event)
1990 {
1991 	struct perf_event *sibling, *tmp;
1992 	struct perf_event_context *ctx = event->ctx;
1993 
1994 	lockdep_assert_held(&ctx->lock);
1995 
1996 	/*
1997 	 * We can have double detach due to exit/hot-unplug + close.
1998 	 */
1999 	if (!(event->attach_state & PERF_ATTACH_GROUP))
2000 		return;
2001 
2002 	event->attach_state &= ~PERF_ATTACH_GROUP;
2003 
2004 	perf_put_aux_event(event);
2005 
2006 	/*
2007 	 * If this is a sibling, remove it from its group.
2008 	 */
2009 	if (event->group_leader != event) {
2010 		list_del_init(&event->sibling_list);
2011 		event->group_leader->nr_siblings--;
2012 		goto out;
2013 	}
2014 
2015 	/*
2016 	 * If this was a group event with sibling events then
2017 	 * upgrade the siblings to singleton events by adding them
2018 	 * to whatever list we are on.
2019 	 */
2020 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2021 
2022 		sibling->group_leader = sibling;
2023 		list_del_init(&sibling->sibling_list);
2024 
2025 		/* Inherit group flags from the previous leader */
2026 		sibling->group_caps = event->group_caps;
2027 
2028 		if (!RB_EMPTY_NODE(&event->group_node)) {
2029 			add_event_to_groups(sibling, event->ctx);
2030 
2031 			if (sibling->state == PERF_EVENT_STATE_ACTIVE) {
2032 				struct list_head *list = sibling->attr.pinned ?
2033 					&ctx->pinned_active : &ctx->flexible_active;
2034 
2035 				list_add_tail(&sibling->active_list, list);
2036 			}
2037 		}
2038 
2039 		WARN_ON_ONCE(sibling->ctx != event->ctx);
2040 	}
2041 
2042 out:
2043 	perf_event__header_size(event->group_leader);
2044 
2045 	for_each_sibling_event(tmp, event->group_leader)
2046 		perf_event__header_size(tmp);
2047 }
2048 
2049 static bool is_orphaned_event(struct perf_event *event)
2050 {
2051 	return event->state == PERF_EVENT_STATE_DEAD;
2052 }
2053 
2054 static inline int __pmu_filter_match(struct perf_event *event)
2055 {
2056 	struct pmu *pmu = event->pmu;
2057 	return pmu->filter_match ? pmu->filter_match(event) : 1;
2058 }
2059 
2060 /*
2061  * Check whether we should attempt to schedule an event group based on
2062  * PMU-specific filtering. An event group can consist of HW and SW events,
2063  * potentially with a SW leader, so we must check all the filters, to
2064  * determine whether a group is schedulable:
2065  */
2066 static inline int pmu_filter_match(struct perf_event *event)
2067 {
2068 	struct perf_event *sibling;
2069 
2070 	if (!__pmu_filter_match(event))
2071 		return 0;
2072 
2073 	for_each_sibling_event(sibling, event) {
2074 		if (!__pmu_filter_match(sibling))
2075 			return 0;
2076 	}
2077 
2078 	return 1;
2079 }
2080 
2081 static inline int
2082 event_filter_match(struct perf_event *event)
2083 {
2084 	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2085 	       perf_cgroup_match(event) && pmu_filter_match(event);
2086 }
2087 
2088 static void
2089 event_sched_out(struct perf_event *event,
2090 		  struct perf_cpu_context *cpuctx,
2091 		  struct perf_event_context *ctx)
2092 {
2093 	enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2094 
2095 	WARN_ON_ONCE(event->ctx != ctx);
2096 	lockdep_assert_held(&ctx->lock);
2097 
2098 	if (event->state != PERF_EVENT_STATE_ACTIVE)
2099 		return;
2100 
2101 	/*
2102 	 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2103 	 * we can schedule events _OUT_ individually through things like
2104 	 * __perf_remove_from_context().
2105 	 */
2106 	list_del_init(&event->active_list);
2107 
2108 	perf_pmu_disable(event->pmu);
2109 
2110 	event->pmu->del(event, 0);
2111 	event->oncpu = -1;
2112 
2113 	if (READ_ONCE(event->pending_disable) >= 0) {
2114 		WRITE_ONCE(event->pending_disable, -1);
2115 		state = PERF_EVENT_STATE_OFF;
2116 	}
2117 	perf_event_set_state(event, state);
2118 
2119 	if (!is_software_event(event))
2120 		cpuctx->active_oncpu--;
2121 	if (!--ctx->nr_active)
2122 		perf_event_ctx_deactivate(ctx);
2123 	if (event->attr.freq && event->attr.sample_freq)
2124 		ctx->nr_freq--;
2125 	if (event->attr.exclusive || !cpuctx->active_oncpu)
2126 		cpuctx->exclusive = 0;
2127 
2128 	perf_pmu_enable(event->pmu);
2129 }
2130 
2131 static void
2132 group_sched_out(struct perf_event *group_event,
2133 		struct perf_cpu_context *cpuctx,
2134 		struct perf_event_context *ctx)
2135 {
2136 	struct perf_event *event;
2137 
2138 	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2139 		return;
2140 
2141 	perf_pmu_disable(ctx->pmu);
2142 
2143 	event_sched_out(group_event, cpuctx, ctx);
2144 
2145 	/*
2146 	 * Schedule out siblings (if any):
2147 	 */
2148 	for_each_sibling_event(event, group_event)
2149 		event_sched_out(event, cpuctx, ctx);
2150 
2151 	perf_pmu_enable(ctx->pmu);
2152 
2153 	if (group_event->attr.exclusive)
2154 		cpuctx->exclusive = 0;
2155 }
2156 
2157 #define DETACH_GROUP	0x01UL
2158 
2159 /*
2160  * Cross CPU call to remove a performance event
2161  *
2162  * We disable the event on the hardware level first. After that we
2163  * remove it from the context list.
2164  */
2165 static void
2166 __perf_remove_from_context(struct perf_event *event,
2167 			   struct perf_cpu_context *cpuctx,
2168 			   struct perf_event_context *ctx,
2169 			   void *info)
2170 {
2171 	unsigned long flags = (unsigned long)info;
2172 
2173 	if (ctx->is_active & EVENT_TIME) {
2174 		update_context_time(ctx);
2175 		update_cgrp_time_from_cpuctx(cpuctx);
2176 	}
2177 
2178 	event_sched_out(event, cpuctx, ctx);
2179 	if (flags & DETACH_GROUP)
2180 		perf_group_detach(event);
2181 	list_del_event(event, ctx);
2182 
2183 	if (!ctx->nr_events && ctx->is_active) {
2184 		ctx->is_active = 0;
2185 		if (ctx->task) {
2186 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2187 			cpuctx->task_ctx = NULL;
2188 		}
2189 	}
2190 }
2191 
2192 /*
2193  * Remove the event from a task's (or a CPU's) list of events.
2194  *
2195  * If event->ctx is a cloned context, callers must make sure that
2196  * every task struct that event->ctx->task could possibly point to
2197  * remains valid.  This is OK when called from perf_release since
2198  * that only calls us on the top-level context, which can't be a clone.
2199  * When called from perf_event_exit_task, it's OK because the
2200  * context has been detached from its task.
2201  */
2202 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2203 {
2204 	struct perf_event_context *ctx = event->ctx;
2205 
2206 	lockdep_assert_held(&ctx->mutex);
2207 
2208 	event_function_call(event, __perf_remove_from_context, (void *)flags);
2209 
2210 	/*
2211 	 * The above event_function_call() can NO-OP when it hits
2212 	 * TASK_TOMBSTONE. In that case we must already have been detached
2213 	 * from the context (by perf_event_exit_event()) but the grouping
2214 	 * might still be in-tact.
2215 	 */
2216 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
2217 	if ((flags & DETACH_GROUP) &&
2218 	    (event->attach_state & PERF_ATTACH_GROUP)) {
2219 		/*
2220 		 * Since in that case we cannot possibly be scheduled, simply
2221 		 * detach now.
2222 		 */
2223 		raw_spin_lock_irq(&ctx->lock);
2224 		perf_group_detach(event);
2225 		raw_spin_unlock_irq(&ctx->lock);
2226 	}
2227 }
2228 
2229 /*
2230  * Cross CPU call to disable a performance event
2231  */
2232 static void __perf_event_disable(struct perf_event *event,
2233 				 struct perf_cpu_context *cpuctx,
2234 				 struct perf_event_context *ctx,
2235 				 void *info)
2236 {
2237 	if (event->state < PERF_EVENT_STATE_INACTIVE)
2238 		return;
2239 
2240 	if (ctx->is_active & EVENT_TIME) {
2241 		update_context_time(ctx);
2242 		update_cgrp_time_from_event(event);
2243 	}
2244 
2245 	if (event == event->group_leader)
2246 		group_sched_out(event, cpuctx, ctx);
2247 	else
2248 		event_sched_out(event, cpuctx, ctx);
2249 
2250 	perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2251 }
2252 
2253 /*
2254  * Disable an event.
2255  *
2256  * If event->ctx is a cloned context, callers must make sure that
2257  * every task struct that event->ctx->task could possibly point to
2258  * remains valid.  This condition is satisfied when called through
2259  * perf_event_for_each_child or perf_event_for_each because they
2260  * hold the top-level event's child_mutex, so any descendant that
2261  * goes to exit will block in perf_event_exit_event().
2262  *
2263  * When called from perf_pending_event it's OK because event->ctx
2264  * is the current context on this CPU and preemption is disabled,
2265  * hence we can't get into perf_event_task_sched_out for this context.
2266  */
2267 static void _perf_event_disable(struct perf_event *event)
2268 {
2269 	struct perf_event_context *ctx = event->ctx;
2270 
2271 	raw_spin_lock_irq(&ctx->lock);
2272 	if (event->state <= PERF_EVENT_STATE_OFF) {
2273 		raw_spin_unlock_irq(&ctx->lock);
2274 		return;
2275 	}
2276 	raw_spin_unlock_irq(&ctx->lock);
2277 
2278 	event_function_call(event, __perf_event_disable, NULL);
2279 }
2280 
2281 void perf_event_disable_local(struct perf_event *event)
2282 {
2283 	event_function_local(event, __perf_event_disable, NULL);
2284 }
2285 
2286 /*
2287  * Strictly speaking kernel users cannot create groups and therefore this
2288  * interface does not need the perf_event_ctx_lock() magic.
2289  */
2290 void perf_event_disable(struct perf_event *event)
2291 {
2292 	struct perf_event_context *ctx;
2293 
2294 	ctx = perf_event_ctx_lock(event);
2295 	_perf_event_disable(event);
2296 	perf_event_ctx_unlock(event, ctx);
2297 }
2298 EXPORT_SYMBOL_GPL(perf_event_disable);
2299 
2300 void perf_event_disable_inatomic(struct perf_event *event)
2301 {
2302 	WRITE_ONCE(event->pending_disable, smp_processor_id());
2303 	/* can fail, see perf_pending_event_disable() */
2304 	irq_work_queue(&event->pending);
2305 }
2306 
2307 static void perf_set_shadow_time(struct perf_event *event,
2308 				 struct perf_event_context *ctx)
2309 {
2310 	/*
2311 	 * use the correct time source for the time snapshot
2312 	 *
2313 	 * We could get by without this by leveraging the
2314 	 * fact that to get to this function, the caller
2315 	 * has most likely already called update_context_time()
2316 	 * and update_cgrp_time_xx() and thus both timestamp
2317 	 * are identical (or very close). Given that tstamp is,
2318 	 * already adjusted for cgroup, we could say that:
2319 	 *    tstamp - ctx->timestamp
2320 	 * is equivalent to
2321 	 *    tstamp - cgrp->timestamp.
2322 	 *
2323 	 * Then, in perf_output_read(), the calculation would
2324 	 * work with no changes because:
2325 	 * - event is guaranteed scheduled in
2326 	 * - no scheduled out in between
2327 	 * - thus the timestamp would be the same
2328 	 *
2329 	 * But this is a bit hairy.
2330 	 *
2331 	 * So instead, we have an explicit cgroup call to remain
2332 	 * within the time time source all along. We believe it
2333 	 * is cleaner and simpler to understand.
2334 	 */
2335 	if (is_cgroup_event(event))
2336 		perf_cgroup_set_shadow_time(event, event->tstamp);
2337 	else
2338 		event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2339 }
2340 
2341 #define MAX_INTERRUPTS (~0ULL)
2342 
2343 static void perf_log_throttle(struct perf_event *event, int enable);
2344 static void perf_log_itrace_start(struct perf_event *event);
2345 
2346 static int
2347 event_sched_in(struct perf_event *event,
2348 		 struct perf_cpu_context *cpuctx,
2349 		 struct perf_event_context *ctx)
2350 {
2351 	int ret = 0;
2352 
2353 	lockdep_assert_held(&ctx->lock);
2354 
2355 	if (event->state <= PERF_EVENT_STATE_OFF)
2356 		return 0;
2357 
2358 	WRITE_ONCE(event->oncpu, smp_processor_id());
2359 	/*
2360 	 * Order event::oncpu write to happen before the ACTIVE state is
2361 	 * visible. This allows perf_event_{stop,read}() to observe the correct
2362 	 * ->oncpu if it sees ACTIVE.
2363 	 */
2364 	smp_wmb();
2365 	perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2366 
2367 	/*
2368 	 * Unthrottle events, since we scheduled we might have missed several
2369 	 * ticks already, also for a heavily scheduling task there is little
2370 	 * guarantee it'll get a tick in a timely manner.
2371 	 */
2372 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2373 		perf_log_throttle(event, 1);
2374 		event->hw.interrupts = 0;
2375 	}
2376 
2377 	perf_pmu_disable(event->pmu);
2378 
2379 	perf_set_shadow_time(event, ctx);
2380 
2381 	perf_log_itrace_start(event);
2382 
2383 	if (event->pmu->add(event, PERF_EF_START)) {
2384 		perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2385 		event->oncpu = -1;
2386 		ret = -EAGAIN;
2387 		goto out;
2388 	}
2389 
2390 	if (!is_software_event(event))
2391 		cpuctx->active_oncpu++;
2392 	if (!ctx->nr_active++)
2393 		perf_event_ctx_activate(ctx);
2394 	if (event->attr.freq && event->attr.sample_freq)
2395 		ctx->nr_freq++;
2396 
2397 	if (event->attr.exclusive)
2398 		cpuctx->exclusive = 1;
2399 
2400 out:
2401 	perf_pmu_enable(event->pmu);
2402 
2403 	return ret;
2404 }
2405 
2406 static int
2407 group_sched_in(struct perf_event *group_event,
2408 	       struct perf_cpu_context *cpuctx,
2409 	       struct perf_event_context *ctx)
2410 {
2411 	struct perf_event *event, *partial_group = NULL;
2412 	struct pmu *pmu = ctx->pmu;
2413 
2414 	if (group_event->state == PERF_EVENT_STATE_OFF)
2415 		return 0;
2416 
2417 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2418 
2419 	if (event_sched_in(group_event, cpuctx, ctx)) {
2420 		pmu->cancel_txn(pmu);
2421 		perf_mux_hrtimer_restart(cpuctx);
2422 		return -EAGAIN;
2423 	}
2424 
2425 	/*
2426 	 * Schedule in siblings as one group (if any):
2427 	 */
2428 	for_each_sibling_event(event, group_event) {
2429 		if (event_sched_in(event, cpuctx, ctx)) {
2430 			partial_group = event;
2431 			goto group_error;
2432 		}
2433 	}
2434 
2435 	if (!pmu->commit_txn(pmu))
2436 		return 0;
2437 
2438 group_error:
2439 	/*
2440 	 * Groups can be scheduled in as one unit only, so undo any
2441 	 * partial group before returning:
2442 	 * The events up to the failed event are scheduled out normally.
2443 	 */
2444 	for_each_sibling_event(event, group_event) {
2445 		if (event == partial_group)
2446 			break;
2447 
2448 		event_sched_out(event, cpuctx, ctx);
2449 	}
2450 	event_sched_out(group_event, cpuctx, ctx);
2451 
2452 	pmu->cancel_txn(pmu);
2453 
2454 	perf_mux_hrtimer_restart(cpuctx);
2455 
2456 	return -EAGAIN;
2457 }
2458 
2459 /*
2460  * Work out whether we can put this event group on the CPU now.
2461  */
2462 static int group_can_go_on(struct perf_event *event,
2463 			   struct perf_cpu_context *cpuctx,
2464 			   int can_add_hw)
2465 {
2466 	/*
2467 	 * Groups consisting entirely of software events can always go on.
2468 	 */
2469 	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2470 		return 1;
2471 	/*
2472 	 * If an exclusive group is already on, no other hardware
2473 	 * events can go on.
2474 	 */
2475 	if (cpuctx->exclusive)
2476 		return 0;
2477 	/*
2478 	 * If this group is exclusive and there are already
2479 	 * events on the CPU, it can't go on.
2480 	 */
2481 	if (event->attr.exclusive && cpuctx->active_oncpu)
2482 		return 0;
2483 	/*
2484 	 * Otherwise, try to add it if all previous groups were able
2485 	 * to go on.
2486 	 */
2487 	return can_add_hw;
2488 }
2489 
2490 static void add_event_to_ctx(struct perf_event *event,
2491 			       struct perf_event_context *ctx)
2492 {
2493 	list_add_event(event, ctx);
2494 	perf_group_attach(event);
2495 }
2496 
2497 static void ctx_sched_out(struct perf_event_context *ctx,
2498 			  struct perf_cpu_context *cpuctx,
2499 			  enum event_type_t event_type);
2500 static void
2501 ctx_sched_in(struct perf_event_context *ctx,
2502 	     struct perf_cpu_context *cpuctx,
2503 	     enum event_type_t event_type,
2504 	     struct task_struct *task);
2505 
2506 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2507 			       struct perf_event_context *ctx,
2508 			       enum event_type_t event_type)
2509 {
2510 	if (!cpuctx->task_ctx)
2511 		return;
2512 
2513 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2514 		return;
2515 
2516 	ctx_sched_out(ctx, cpuctx, event_type);
2517 }
2518 
2519 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2520 				struct perf_event_context *ctx,
2521 				struct task_struct *task)
2522 {
2523 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2524 	if (ctx)
2525 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2526 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2527 	if (ctx)
2528 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2529 }
2530 
2531 /*
2532  * We want to maintain the following priority of scheduling:
2533  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2534  *  - task pinned (EVENT_PINNED)
2535  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2536  *  - task flexible (EVENT_FLEXIBLE).
2537  *
2538  * In order to avoid unscheduling and scheduling back in everything every
2539  * time an event is added, only do it for the groups of equal priority and
2540  * below.
2541  *
2542  * This can be called after a batch operation on task events, in which case
2543  * event_type is a bit mask of the types of events involved. For CPU events,
2544  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2545  */
2546 static void ctx_resched(struct perf_cpu_context *cpuctx,
2547 			struct perf_event_context *task_ctx,
2548 			enum event_type_t event_type)
2549 {
2550 	enum event_type_t ctx_event_type;
2551 	bool cpu_event = !!(event_type & EVENT_CPU);
2552 
2553 	/*
2554 	 * If pinned groups are involved, flexible groups also need to be
2555 	 * scheduled out.
2556 	 */
2557 	if (event_type & EVENT_PINNED)
2558 		event_type |= EVENT_FLEXIBLE;
2559 
2560 	ctx_event_type = event_type & EVENT_ALL;
2561 
2562 	perf_pmu_disable(cpuctx->ctx.pmu);
2563 	if (task_ctx)
2564 		task_ctx_sched_out(cpuctx, task_ctx, event_type);
2565 
2566 	/*
2567 	 * Decide which cpu ctx groups to schedule out based on the types
2568 	 * of events that caused rescheduling:
2569 	 *  - EVENT_CPU: schedule out corresponding groups;
2570 	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2571 	 *  - otherwise, do nothing more.
2572 	 */
2573 	if (cpu_event)
2574 		cpu_ctx_sched_out(cpuctx, ctx_event_type);
2575 	else if (ctx_event_type & EVENT_PINNED)
2576 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2577 
2578 	perf_event_sched_in(cpuctx, task_ctx, current);
2579 	perf_pmu_enable(cpuctx->ctx.pmu);
2580 }
2581 
2582 void perf_pmu_resched(struct pmu *pmu)
2583 {
2584 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2585 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2586 
2587 	perf_ctx_lock(cpuctx, task_ctx);
2588 	ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2589 	perf_ctx_unlock(cpuctx, task_ctx);
2590 }
2591 
2592 /*
2593  * Cross CPU call to install and enable a performance event
2594  *
2595  * Very similar to remote_function() + event_function() but cannot assume that
2596  * things like ctx->is_active and cpuctx->task_ctx are set.
2597  */
2598 static int  __perf_install_in_context(void *info)
2599 {
2600 	struct perf_event *event = info;
2601 	struct perf_event_context *ctx = event->ctx;
2602 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2603 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2604 	bool reprogram = true;
2605 	int ret = 0;
2606 
2607 	raw_spin_lock(&cpuctx->ctx.lock);
2608 	if (ctx->task) {
2609 		raw_spin_lock(&ctx->lock);
2610 		task_ctx = ctx;
2611 
2612 		reprogram = (ctx->task == current);
2613 
2614 		/*
2615 		 * If the task is running, it must be running on this CPU,
2616 		 * otherwise we cannot reprogram things.
2617 		 *
2618 		 * If its not running, we don't care, ctx->lock will
2619 		 * serialize against it becoming runnable.
2620 		 */
2621 		if (task_curr(ctx->task) && !reprogram) {
2622 			ret = -ESRCH;
2623 			goto unlock;
2624 		}
2625 
2626 		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2627 	} else if (task_ctx) {
2628 		raw_spin_lock(&task_ctx->lock);
2629 	}
2630 
2631 #ifdef CONFIG_CGROUP_PERF
2632 	if (is_cgroup_event(event)) {
2633 		/*
2634 		 * If the current cgroup doesn't match the event's
2635 		 * cgroup, we should not try to schedule it.
2636 		 */
2637 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2638 		reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2639 					event->cgrp->css.cgroup);
2640 	}
2641 #endif
2642 
2643 	if (reprogram) {
2644 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2645 		add_event_to_ctx(event, ctx);
2646 		ctx_resched(cpuctx, task_ctx, get_event_type(event));
2647 	} else {
2648 		add_event_to_ctx(event, ctx);
2649 	}
2650 
2651 unlock:
2652 	perf_ctx_unlock(cpuctx, task_ctx);
2653 
2654 	return ret;
2655 }
2656 
2657 static bool exclusive_event_installable(struct perf_event *event,
2658 					struct perf_event_context *ctx);
2659 
2660 /*
2661  * Attach a performance event to a context.
2662  *
2663  * Very similar to event_function_call, see comment there.
2664  */
2665 static void
2666 perf_install_in_context(struct perf_event_context *ctx,
2667 			struct perf_event *event,
2668 			int cpu)
2669 {
2670 	struct task_struct *task = READ_ONCE(ctx->task);
2671 
2672 	lockdep_assert_held(&ctx->mutex);
2673 
2674 	WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2675 
2676 	if (event->cpu != -1)
2677 		event->cpu = cpu;
2678 
2679 	/*
2680 	 * Ensures that if we can observe event->ctx, both the event and ctx
2681 	 * will be 'complete'. See perf_iterate_sb_cpu().
2682 	 */
2683 	smp_store_release(&event->ctx, ctx);
2684 
2685 	/*
2686 	 * perf_event_attr::disabled events will not run and can be initialized
2687 	 * without IPI. Except when this is the first event for the context, in
2688 	 * that case we need the magic of the IPI to set ctx->is_active.
2689 	 *
2690 	 * The IOC_ENABLE that is sure to follow the creation of a disabled
2691 	 * event will issue the IPI and reprogram the hardware.
2692 	 */
2693 	if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && ctx->nr_events) {
2694 		raw_spin_lock_irq(&ctx->lock);
2695 		if (ctx->task == TASK_TOMBSTONE) {
2696 			raw_spin_unlock_irq(&ctx->lock);
2697 			return;
2698 		}
2699 		add_event_to_ctx(event, ctx);
2700 		raw_spin_unlock_irq(&ctx->lock);
2701 		return;
2702 	}
2703 
2704 	if (!task) {
2705 		cpu_function_call(cpu, __perf_install_in_context, event);
2706 		return;
2707 	}
2708 
2709 	/*
2710 	 * Should not happen, we validate the ctx is still alive before calling.
2711 	 */
2712 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2713 		return;
2714 
2715 	/*
2716 	 * Installing events is tricky because we cannot rely on ctx->is_active
2717 	 * to be set in case this is the nr_events 0 -> 1 transition.
2718 	 *
2719 	 * Instead we use task_curr(), which tells us if the task is running.
2720 	 * However, since we use task_curr() outside of rq::lock, we can race
2721 	 * against the actual state. This means the result can be wrong.
2722 	 *
2723 	 * If we get a false positive, we retry, this is harmless.
2724 	 *
2725 	 * If we get a false negative, things are complicated. If we are after
2726 	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2727 	 * value must be correct. If we're before, it doesn't matter since
2728 	 * perf_event_context_sched_in() will program the counter.
2729 	 *
2730 	 * However, this hinges on the remote context switch having observed
2731 	 * our task->perf_event_ctxp[] store, such that it will in fact take
2732 	 * ctx::lock in perf_event_context_sched_in().
2733 	 *
2734 	 * We do this by task_function_call(), if the IPI fails to hit the task
2735 	 * we know any future context switch of task must see the
2736 	 * perf_event_ctpx[] store.
2737 	 */
2738 
2739 	/*
2740 	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2741 	 * task_cpu() load, such that if the IPI then does not find the task
2742 	 * running, a future context switch of that task must observe the
2743 	 * store.
2744 	 */
2745 	smp_mb();
2746 again:
2747 	if (!task_function_call(task, __perf_install_in_context, event))
2748 		return;
2749 
2750 	raw_spin_lock_irq(&ctx->lock);
2751 	task = ctx->task;
2752 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2753 		/*
2754 		 * Cannot happen because we already checked above (which also
2755 		 * cannot happen), and we hold ctx->mutex, which serializes us
2756 		 * against perf_event_exit_task_context().
2757 		 */
2758 		raw_spin_unlock_irq(&ctx->lock);
2759 		return;
2760 	}
2761 	/*
2762 	 * If the task is not running, ctx->lock will avoid it becoming so,
2763 	 * thus we can safely install the event.
2764 	 */
2765 	if (task_curr(task)) {
2766 		raw_spin_unlock_irq(&ctx->lock);
2767 		goto again;
2768 	}
2769 	add_event_to_ctx(event, ctx);
2770 	raw_spin_unlock_irq(&ctx->lock);
2771 }
2772 
2773 /*
2774  * Cross CPU call to enable a performance event
2775  */
2776 static void __perf_event_enable(struct perf_event *event,
2777 				struct perf_cpu_context *cpuctx,
2778 				struct perf_event_context *ctx,
2779 				void *info)
2780 {
2781 	struct perf_event *leader = event->group_leader;
2782 	struct perf_event_context *task_ctx;
2783 
2784 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2785 	    event->state <= PERF_EVENT_STATE_ERROR)
2786 		return;
2787 
2788 	if (ctx->is_active)
2789 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2790 
2791 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2792 
2793 	if (!ctx->is_active)
2794 		return;
2795 
2796 	if (!event_filter_match(event)) {
2797 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2798 		return;
2799 	}
2800 
2801 	/*
2802 	 * If the event is in a group and isn't the group leader,
2803 	 * then don't put it on unless the group is on.
2804 	 */
2805 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2806 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2807 		return;
2808 	}
2809 
2810 	task_ctx = cpuctx->task_ctx;
2811 	if (ctx->task)
2812 		WARN_ON_ONCE(task_ctx != ctx);
2813 
2814 	ctx_resched(cpuctx, task_ctx, get_event_type(event));
2815 }
2816 
2817 /*
2818  * Enable an event.
2819  *
2820  * If event->ctx is a cloned context, callers must make sure that
2821  * every task struct that event->ctx->task could possibly point to
2822  * remains valid.  This condition is satisfied when called through
2823  * perf_event_for_each_child or perf_event_for_each as described
2824  * for perf_event_disable.
2825  */
2826 static void _perf_event_enable(struct perf_event *event)
2827 {
2828 	struct perf_event_context *ctx = event->ctx;
2829 
2830 	raw_spin_lock_irq(&ctx->lock);
2831 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2832 	    event->state <  PERF_EVENT_STATE_ERROR) {
2833 		raw_spin_unlock_irq(&ctx->lock);
2834 		return;
2835 	}
2836 
2837 	/*
2838 	 * If the event is in error state, clear that first.
2839 	 *
2840 	 * That way, if we see the event in error state below, we know that it
2841 	 * has gone back into error state, as distinct from the task having
2842 	 * been scheduled away before the cross-call arrived.
2843 	 */
2844 	if (event->state == PERF_EVENT_STATE_ERROR)
2845 		event->state = PERF_EVENT_STATE_OFF;
2846 	raw_spin_unlock_irq(&ctx->lock);
2847 
2848 	event_function_call(event, __perf_event_enable, NULL);
2849 }
2850 
2851 /*
2852  * See perf_event_disable();
2853  */
2854 void perf_event_enable(struct perf_event *event)
2855 {
2856 	struct perf_event_context *ctx;
2857 
2858 	ctx = perf_event_ctx_lock(event);
2859 	_perf_event_enable(event);
2860 	perf_event_ctx_unlock(event, ctx);
2861 }
2862 EXPORT_SYMBOL_GPL(perf_event_enable);
2863 
2864 struct stop_event_data {
2865 	struct perf_event	*event;
2866 	unsigned int		restart;
2867 };
2868 
2869 static int __perf_event_stop(void *info)
2870 {
2871 	struct stop_event_data *sd = info;
2872 	struct perf_event *event = sd->event;
2873 
2874 	/* if it's already INACTIVE, do nothing */
2875 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2876 		return 0;
2877 
2878 	/* matches smp_wmb() in event_sched_in() */
2879 	smp_rmb();
2880 
2881 	/*
2882 	 * There is a window with interrupts enabled before we get here,
2883 	 * so we need to check again lest we try to stop another CPU's event.
2884 	 */
2885 	if (READ_ONCE(event->oncpu) != smp_processor_id())
2886 		return -EAGAIN;
2887 
2888 	event->pmu->stop(event, PERF_EF_UPDATE);
2889 
2890 	/*
2891 	 * May race with the actual stop (through perf_pmu_output_stop()),
2892 	 * but it is only used for events with AUX ring buffer, and such
2893 	 * events will refuse to restart because of rb::aux_mmap_count==0,
2894 	 * see comments in perf_aux_output_begin().
2895 	 *
2896 	 * Since this is happening on an event-local CPU, no trace is lost
2897 	 * while restarting.
2898 	 */
2899 	if (sd->restart)
2900 		event->pmu->start(event, 0);
2901 
2902 	return 0;
2903 }
2904 
2905 static int perf_event_stop(struct perf_event *event, int restart)
2906 {
2907 	struct stop_event_data sd = {
2908 		.event		= event,
2909 		.restart	= restart,
2910 	};
2911 	int ret = 0;
2912 
2913 	do {
2914 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2915 			return 0;
2916 
2917 		/* matches smp_wmb() in event_sched_in() */
2918 		smp_rmb();
2919 
2920 		/*
2921 		 * We only want to restart ACTIVE events, so if the event goes
2922 		 * inactive here (event->oncpu==-1), there's nothing more to do;
2923 		 * fall through with ret==-ENXIO.
2924 		 */
2925 		ret = cpu_function_call(READ_ONCE(event->oncpu),
2926 					__perf_event_stop, &sd);
2927 	} while (ret == -EAGAIN);
2928 
2929 	return ret;
2930 }
2931 
2932 /*
2933  * In order to contain the amount of racy and tricky in the address filter
2934  * configuration management, it is a two part process:
2935  *
2936  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2937  *      we update the addresses of corresponding vmas in
2938  *	event::addr_filter_ranges array and bump the event::addr_filters_gen;
2939  * (p2) when an event is scheduled in (pmu::add), it calls
2940  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2941  *      if the generation has changed since the previous call.
2942  *
2943  * If (p1) happens while the event is active, we restart it to force (p2).
2944  *
2945  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2946  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2947  *     ioctl;
2948  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2949  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2950  *     for reading;
2951  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2952  *     of exec.
2953  */
2954 void perf_event_addr_filters_sync(struct perf_event *event)
2955 {
2956 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2957 
2958 	if (!has_addr_filter(event))
2959 		return;
2960 
2961 	raw_spin_lock(&ifh->lock);
2962 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2963 		event->pmu->addr_filters_sync(event);
2964 		event->hw.addr_filters_gen = event->addr_filters_gen;
2965 	}
2966 	raw_spin_unlock(&ifh->lock);
2967 }
2968 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2969 
2970 static int _perf_event_refresh(struct perf_event *event, int refresh)
2971 {
2972 	/*
2973 	 * not supported on inherited events
2974 	 */
2975 	if (event->attr.inherit || !is_sampling_event(event))
2976 		return -EINVAL;
2977 
2978 	atomic_add(refresh, &event->event_limit);
2979 	_perf_event_enable(event);
2980 
2981 	return 0;
2982 }
2983 
2984 /*
2985  * See perf_event_disable()
2986  */
2987 int perf_event_refresh(struct perf_event *event, int refresh)
2988 {
2989 	struct perf_event_context *ctx;
2990 	int ret;
2991 
2992 	ctx = perf_event_ctx_lock(event);
2993 	ret = _perf_event_refresh(event, refresh);
2994 	perf_event_ctx_unlock(event, ctx);
2995 
2996 	return ret;
2997 }
2998 EXPORT_SYMBOL_GPL(perf_event_refresh);
2999 
3000 static int perf_event_modify_breakpoint(struct perf_event *bp,
3001 					 struct perf_event_attr *attr)
3002 {
3003 	int err;
3004 
3005 	_perf_event_disable(bp);
3006 
3007 	err = modify_user_hw_breakpoint_check(bp, attr, true);
3008 
3009 	if (!bp->attr.disabled)
3010 		_perf_event_enable(bp);
3011 
3012 	return err;
3013 }
3014 
3015 static int perf_event_modify_attr(struct perf_event *event,
3016 				  struct perf_event_attr *attr)
3017 {
3018 	if (event->attr.type != attr->type)
3019 		return -EINVAL;
3020 
3021 	switch (event->attr.type) {
3022 	case PERF_TYPE_BREAKPOINT:
3023 		return perf_event_modify_breakpoint(event, attr);
3024 	default:
3025 		/* Place holder for future additions. */
3026 		return -EOPNOTSUPP;
3027 	}
3028 }
3029 
3030 static void ctx_sched_out(struct perf_event_context *ctx,
3031 			  struct perf_cpu_context *cpuctx,
3032 			  enum event_type_t event_type)
3033 {
3034 	struct perf_event *event, *tmp;
3035 	int is_active = ctx->is_active;
3036 
3037 	lockdep_assert_held(&ctx->lock);
3038 
3039 	if (likely(!ctx->nr_events)) {
3040 		/*
3041 		 * See __perf_remove_from_context().
3042 		 */
3043 		WARN_ON_ONCE(ctx->is_active);
3044 		if (ctx->task)
3045 			WARN_ON_ONCE(cpuctx->task_ctx);
3046 		return;
3047 	}
3048 
3049 	ctx->is_active &= ~event_type;
3050 	if (!(ctx->is_active & EVENT_ALL))
3051 		ctx->is_active = 0;
3052 
3053 	if (ctx->task) {
3054 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3055 		if (!ctx->is_active)
3056 			cpuctx->task_ctx = NULL;
3057 	}
3058 
3059 	/*
3060 	 * Always update time if it was set; not only when it changes.
3061 	 * Otherwise we can 'forget' to update time for any but the last
3062 	 * context we sched out. For example:
3063 	 *
3064 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3065 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
3066 	 *
3067 	 * would only update time for the pinned events.
3068 	 */
3069 	if (is_active & EVENT_TIME) {
3070 		/* update (and stop) ctx time */
3071 		update_context_time(ctx);
3072 		update_cgrp_time_from_cpuctx(cpuctx);
3073 	}
3074 
3075 	is_active ^= ctx->is_active; /* changed bits */
3076 
3077 	if (!ctx->nr_active || !(is_active & EVENT_ALL))
3078 		return;
3079 
3080 	/*
3081 	 * If we had been multiplexing, no rotations are necessary, now no events
3082 	 * are active.
3083 	 */
3084 	ctx->rotate_necessary = 0;
3085 
3086 	perf_pmu_disable(ctx->pmu);
3087 	if (is_active & EVENT_PINNED) {
3088 		list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
3089 			group_sched_out(event, cpuctx, ctx);
3090 	}
3091 
3092 	if (is_active & EVENT_FLEXIBLE) {
3093 		list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
3094 			group_sched_out(event, cpuctx, ctx);
3095 	}
3096 	perf_pmu_enable(ctx->pmu);
3097 }
3098 
3099 /*
3100  * Test whether two contexts are equivalent, i.e. whether they have both been
3101  * cloned from the same version of the same context.
3102  *
3103  * Equivalence is measured using a generation number in the context that is
3104  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3105  * and list_del_event().
3106  */
3107 static int context_equiv(struct perf_event_context *ctx1,
3108 			 struct perf_event_context *ctx2)
3109 {
3110 	lockdep_assert_held(&ctx1->lock);
3111 	lockdep_assert_held(&ctx2->lock);
3112 
3113 	/* Pinning disables the swap optimization */
3114 	if (ctx1->pin_count || ctx2->pin_count)
3115 		return 0;
3116 
3117 	/* If ctx1 is the parent of ctx2 */
3118 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3119 		return 1;
3120 
3121 	/* If ctx2 is the parent of ctx1 */
3122 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3123 		return 1;
3124 
3125 	/*
3126 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
3127 	 * hierarchy, see perf_event_init_context().
3128 	 */
3129 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3130 			ctx1->parent_gen == ctx2->parent_gen)
3131 		return 1;
3132 
3133 	/* Unmatched */
3134 	return 0;
3135 }
3136 
3137 static void __perf_event_sync_stat(struct perf_event *event,
3138 				     struct perf_event *next_event)
3139 {
3140 	u64 value;
3141 
3142 	if (!event->attr.inherit_stat)
3143 		return;
3144 
3145 	/*
3146 	 * Update the event value, we cannot use perf_event_read()
3147 	 * because we're in the middle of a context switch and have IRQs
3148 	 * disabled, which upsets smp_call_function_single(), however
3149 	 * we know the event must be on the current CPU, therefore we
3150 	 * don't need to use it.
3151 	 */
3152 	if (event->state == PERF_EVENT_STATE_ACTIVE)
3153 		event->pmu->read(event);
3154 
3155 	perf_event_update_time(event);
3156 
3157 	/*
3158 	 * In order to keep per-task stats reliable we need to flip the event
3159 	 * values when we flip the contexts.
3160 	 */
3161 	value = local64_read(&next_event->count);
3162 	value = local64_xchg(&event->count, value);
3163 	local64_set(&next_event->count, value);
3164 
3165 	swap(event->total_time_enabled, next_event->total_time_enabled);
3166 	swap(event->total_time_running, next_event->total_time_running);
3167 
3168 	/*
3169 	 * Since we swizzled the values, update the user visible data too.
3170 	 */
3171 	perf_event_update_userpage(event);
3172 	perf_event_update_userpage(next_event);
3173 }
3174 
3175 static void perf_event_sync_stat(struct perf_event_context *ctx,
3176 				   struct perf_event_context *next_ctx)
3177 {
3178 	struct perf_event *event, *next_event;
3179 
3180 	if (!ctx->nr_stat)
3181 		return;
3182 
3183 	update_context_time(ctx);
3184 
3185 	event = list_first_entry(&ctx->event_list,
3186 				   struct perf_event, event_entry);
3187 
3188 	next_event = list_first_entry(&next_ctx->event_list,
3189 					struct perf_event, event_entry);
3190 
3191 	while (&event->event_entry != &ctx->event_list &&
3192 	       &next_event->event_entry != &next_ctx->event_list) {
3193 
3194 		__perf_event_sync_stat(event, next_event);
3195 
3196 		event = list_next_entry(event, event_entry);
3197 		next_event = list_next_entry(next_event, event_entry);
3198 	}
3199 }
3200 
3201 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3202 					 struct task_struct *next)
3203 {
3204 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3205 	struct perf_event_context *next_ctx;
3206 	struct perf_event_context *parent, *next_parent;
3207 	struct perf_cpu_context *cpuctx;
3208 	int do_switch = 1;
3209 
3210 	if (likely(!ctx))
3211 		return;
3212 
3213 	cpuctx = __get_cpu_context(ctx);
3214 	if (!cpuctx->task_ctx)
3215 		return;
3216 
3217 	rcu_read_lock();
3218 	next_ctx = next->perf_event_ctxp[ctxn];
3219 	if (!next_ctx)
3220 		goto unlock;
3221 
3222 	parent = rcu_dereference(ctx->parent_ctx);
3223 	next_parent = rcu_dereference(next_ctx->parent_ctx);
3224 
3225 	/* If neither context have a parent context; they cannot be clones. */
3226 	if (!parent && !next_parent)
3227 		goto unlock;
3228 
3229 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3230 		/*
3231 		 * Looks like the two contexts are clones, so we might be
3232 		 * able to optimize the context switch.  We lock both
3233 		 * contexts and check that they are clones under the
3234 		 * lock (including re-checking that neither has been
3235 		 * uncloned in the meantime).  It doesn't matter which
3236 		 * order we take the locks because no other cpu could
3237 		 * be trying to lock both of these tasks.
3238 		 */
3239 		raw_spin_lock(&ctx->lock);
3240 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3241 		if (context_equiv(ctx, next_ctx)) {
3242 			struct pmu *pmu = ctx->pmu;
3243 
3244 			WRITE_ONCE(ctx->task, next);
3245 			WRITE_ONCE(next_ctx->task, task);
3246 
3247 			/*
3248 			 * PMU specific parts of task perf context can require
3249 			 * additional synchronization. As an example of such
3250 			 * synchronization see implementation details of Intel
3251 			 * LBR call stack data profiling;
3252 			 */
3253 			if (pmu->swap_task_ctx)
3254 				pmu->swap_task_ctx(ctx, next_ctx);
3255 			else
3256 				swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3257 
3258 			/*
3259 			 * RCU_INIT_POINTER here is safe because we've not
3260 			 * modified the ctx and the above modification of
3261 			 * ctx->task and ctx->task_ctx_data are immaterial
3262 			 * since those values are always verified under
3263 			 * ctx->lock which we're now holding.
3264 			 */
3265 			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3266 			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3267 
3268 			do_switch = 0;
3269 
3270 			perf_event_sync_stat(ctx, next_ctx);
3271 		}
3272 		raw_spin_unlock(&next_ctx->lock);
3273 		raw_spin_unlock(&ctx->lock);
3274 	}
3275 unlock:
3276 	rcu_read_unlock();
3277 
3278 	if (do_switch) {
3279 		raw_spin_lock(&ctx->lock);
3280 		task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3281 		raw_spin_unlock(&ctx->lock);
3282 	}
3283 }
3284 
3285 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3286 
3287 void perf_sched_cb_dec(struct pmu *pmu)
3288 {
3289 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3290 
3291 	this_cpu_dec(perf_sched_cb_usages);
3292 
3293 	if (!--cpuctx->sched_cb_usage)
3294 		list_del(&cpuctx->sched_cb_entry);
3295 }
3296 
3297 
3298 void perf_sched_cb_inc(struct pmu *pmu)
3299 {
3300 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3301 
3302 	if (!cpuctx->sched_cb_usage++)
3303 		list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3304 
3305 	this_cpu_inc(perf_sched_cb_usages);
3306 }
3307 
3308 /*
3309  * This function provides the context switch callback to the lower code
3310  * layer. It is invoked ONLY when the context switch callback is enabled.
3311  *
3312  * This callback is relevant even to per-cpu events; for example multi event
3313  * PEBS requires this to provide PID/TID information. This requires we flush
3314  * all queued PEBS records before we context switch to a new task.
3315  */
3316 static void perf_pmu_sched_task(struct task_struct *prev,
3317 				struct task_struct *next,
3318 				bool sched_in)
3319 {
3320 	struct perf_cpu_context *cpuctx;
3321 	struct pmu *pmu;
3322 
3323 	if (prev == next)
3324 		return;
3325 
3326 	list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3327 		pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3328 
3329 		if (WARN_ON_ONCE(!pmu->sched_task))
3330 			continue;
3331 
3332 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3333 		perf_pmu_disable(pmu);
3334 
3335 		pmu->sched_task(cpuctx->task_ctx, sched_in);
3336 
3337 		perf_pmu_enable(pmu);
3338 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3339 	}
3340 }
3341 
3342 static void perf_event_switch(struct task_struct *task,
3343 			      struct task_struct *next_prev, bool sched_in);
3344 
3345 #define for_each_task_context_nr(ctxn)					\
3346 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3347 
3348 /*
3349  * Called from scheduler to remove the events of the current task,
3350  * with interrupts disabled.
3351  *
3352  * We stop each event and update the event value in event->count.
3353  *
3354  * This does not protect us against NMI, but disable()
3355  * sets the disabled bit in the control field of event _before_
3356  * accessing the event control register. If a NMI hits, then it will
3357  * not restart the event.
3358  */
3359 void __perf_event_task_sched_out(struct task_struct *task,
3360 				 struct task_struct *next)
3361 {
3362 	int ctxn;
3363 
3364 	if (__this_cpu_read(perf_sched_cb_usages))
3365 		perf_pmu_sched_task(task, next, false);
3366 
3367 	if (atomic_read(&nr_switch_events))
3368 		perf_event_switch(task, next, false);
3369 
3370 	for_each_task_context_nr(ctxn)
3371 		perf_event_context_sched_out(task, ctxn, next);
3372 
3373 	/*
3374 	 * if cgroup events exist on this CPU, then we need
3375 	 * to check if we have to switch out PMU state.
3376 	 * cgroup event are system-wide mode only
3377 	 */
3378 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3379 		perf_cgroup_sched_out(task, next);
3380 }
3381 
3382 /*
3383  * Called with IRQs disabled
3384  */
3385 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3386 			      enum event_type_t event_type)
3387 {
3388 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3389 }
3390 
3391 static int visit_groups_merge(struct perf_event_groups *groups, int cpu,
3392 			      int (*func)(struct perf_event *, void *), void *data)
3393 {
3394 	struct perf_event **evt, *evt1, *evt2;
3395 	int ret;
3396 
3397 	evt1 = perf_event_groups_first(groups, -1);
3398 	evt2 = perf_event_groups_first(groups, cpu);
3399 
3400 	while (evt1 || evt2) {
3401 		if (evt1 && evt2) {
3402 			if (evt1->group_index < evt2->group_index)
3403 				evt = &evt1;
3404 			else
3405 				evt = &evt2;
3406 		} else if (evt1) {
3407 			evt = &evt1;
3408 		} else {
3409 			evt = &evt2;
3410 		}
3411 
3412 		ret = func(*evt, data);
3413 		if (ret)
3414 			return ret;
3415 
3416 		*evt = perf_event_groups_next(*evt);
3417 	}
3418 
3419 	return 0;
3420 }
3421 
3422 struct sched_in_data {
3423 	struct perf_event_context *ctx;
3424 	struct perf_cpu_context *cpuctx;
3425 	int can_add_hw;
3426 };
3427 
3428 static int pinned_sched_in(struct perf_event *event, void *data)
3429 {
3430 	struct sched_in_data *sid = data;
3431 
3432 	if (event->state <= PERF_EVENT_STATE_OFF)
3433 		return 0;
3434 
3435 	if (!event_filter_match(event))
3436 		return 0;
3437 
3438 	if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3439 		if (!group_sched_in(event, sid->cpuctx, sid->ctx))
3440 			list_add_tail(&event->active_list, &sid->ctx->pinned_active);
3441 	}
3442 
3443 	/*
3444 	 * If this pinned group hasn't been scheduled,
3445 	 * put it in error state.
3446 	 */
3447 	if (event->state == PERF_EVENT_STATE_INACTIVE)
3448 		perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3449 
3450 	return 0;
3451 }
3452 
3453 static int flexible_sched_in(struct perf_event *event, void *data)
3454 {
3455 	struct sched_in_data *sid = data;
3456 
3457 	if (event->state <= PERF_EVENT_STATE_OFF)
3458 		return 0;
3459 
3460 	if (!event_filter_match(event))
3461 		return 0;
3462 
3463 	if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3464 		int ret = group_sched_in(event, sid->cpuctx, sid->ctx);
3465 		if (ret) {
3466 			sid->can_add_hw = 0;
3467 			sid->ctx->rotate_necessary = 1;
3468 			return 0;
3469 		}
3470 		list_add_tail(&event->active_list, &sid->ctx->flexible_active);
3471 	}
3472 
3473 	return 0;
3474 }
3475 
3476 static void
3477 ctx_pinned_sched_in(struct perf_event_context *ctx,
3478 		    struct perf_cpu_context *cpuctx)
3479 {
3480 	struct sched_in_data sid = {
3481 		.ctx = ctx,
3482 		.cpuctx = cpuctx,
3483 		.can_add_hw = 1,
3484 	};
3485 
3486 	visit_groups_merge(&ctx->pinned_groups,
3487 			   smp_processor_id(),
3488 			   pinned_sched_in, &sid);
3489 }
3490 
3491 static void
3492 ctx_flexible_sched_in(struct perf_event_context *ctx,
3493 		      struct perf_cpu_context *cpuctx)
3494 {
3495 	struct sched_in_data sid = {
3496 		.ctx = ctx,
3497 		.cpuctx = cpuctx,
3498 		.can_add_hw = 1,
3499 	};
3500 
3501 	visit_groups_merge(&ctx->flexible_groups,
3502 			   smp_processor_id(),
3503 			   flexible_sched_in, &sid);
3504 }
3505 
3506 static void
3507 ctx_sched_in(struct perf_event_context *ctx,
3508 	     struct perf_cpu_context *cpuctx,
3509 	     enum event_type_t event_type,
3510 	     struct task_struct *task)
3511 {
3512 	int is_active = ctx->is_active;
3513 	u64 now;
3514 
3515 	lockdep_assert_held(&ctx->lock);
3516 
3517 	if (likely(!ctx->nr_events))
3518 		return;
3519 
3520 	ctx->is_active |= (event_type | EVENT_TIME);
3521 	if (ctx->task) {
3522 		if (!is_active)
3523 			cpuctx->task_ctx = ctx;
3524 		else
3525 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3526 	}
3527 
3528 	is_active ^= ctx->is_active; /* changed bits */
3529 
3530 	if (is_active & EVENT_TIME) {
3531 		/* start ctx time */
3532 		now = perf_clock();
3533 		ctx->timestamp = now;
3534 		perf_cgroup_set_timestamp(task, ctx);
3535 	}
3536 
3537 	/*
3538 	 * First go through the list and put on any pinned groups
3539 	 * in order to give them the best chance of going on.
3540 	 */
3541 	if (is_active & EVENT_PINNED)
3542 		ctx_pinned_sched_in(ctx, cpuctx);
3543 
3544 	/* Then walk through the lower prio flexible groups */
3545 	if (is_active & EVENT_FLEXIBLE)
3546 		ctx_flexible_sched_in(ctx, cpuctx);
3547 }
3548 
3549 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3550 			     enum event_type_t event_type,
3551 			     struct task_struct *task)
3552 {
3553 	struct perf_event_context *ctx = &cpuctx->ctx;
3554 
3555 	ctx_sched_in(ctx, cpuctx, event_type, task);
3556 }
3557 
3558 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3559 					struct task_struct *task)
3560 {
3561 	struct perf_cpu_context *cpuctx;
3562 
3563 	cpuctx = __get_cpu_context(ctx);
3564 	if (cpuctx->task_ctx == ctx)
3565 		return;
3566 
3567 	perf_ctx_lock(cpuctx, ctx);
3568 	/*
3569 	 * We must check ctx->nr_events while holding ctx->lock, such
3570 	 * that we serialize against perf_install_in_context().
3571 	 */
3572 	if (!ctx->nr_events)
3573 		goto unlock;
3574 
3575 	perf_pmu_disable(ctx->pmu);
3576 	/*
3577 	 * We want to keep the following priority order:
3578 	 * cpu pinned (that don't need to move), task pinned,
3579 	 * cpu flexible, task flexible.
3580 	 *
3581 	 * However, if task's ctx is not carrying any pinned
3582 	 * events, no need to flip the cpuctx's events around.
3583 	 */
3584 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3585 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3586 	perf_event_sched_in(cpuctx, ctx, task);
3587 	perf_pmu_enable(ctx->pmu);
3588 
3589 unlock:
3590 	perf_ctx_unlock(cpuctx, ctx);
3591 }
3592 
3593 /*
3594  * Called from scheduler to add the events of the current task
3595  * with interrupts disabled.
3596  *
3597  * We restore the event value and then enable it.
3598  *
3599  * This does not protect us against NMI, but enable()
3600  * sets the enabled bit in the control field of event _before_
3601  * accessing the event control register. If a NMI hits, then it will
3602  * keep the event running.
3603  */
3604 void __perf_event_task_sched_in(struct task_struct *prev,
3605 				struct task_struct *task)
3606 {
3607 	struct perf_event_context *ctx;
3608 	int ctxn;
3609 
3610 	/*
3611 	 * If cgroup events exist on this CPU, then we need to check if we have
3612 	 * to switch in PMU state; cgroup event are system-wide mode only.
3613 	 *
3614 	 * Since cgroup events are CPU events, we must schedule these in before
3615 	 * we schedule in the task events.
3616 	 */
3617 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3618 		perf_cgroup_sched_in(prev, task);
3619 
3620 	for_each_task_context_nr(ctxn) {
3621 		ctx = task->perf_event_ctxp[ctxn];
3622 		if (likely(!ctx))
3623 			continue;
3624 
3625 		perf_event_context_sched_in(ctx, task);
3626 	}
3627 
3628 	if (atomic_read(&nr_switch_events))
3629 		perf_event_switch(task, prev, true);
3630 
3631 	if (__this_cpu_read(perf_sched_cb_usages))
3632 		perf_pmu_sched_task(prev, task, true);
3633 }
3634 
3635 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3636 {
3637 	u64 frequency = event->attr.sample_freq;
3638 	u64 sec = NSEC_PER_SEC;
3639 	u64 divisor, dividend;
3640 
3641 	int count_fls, nsec_fls, frequency_fls, sec_fls;
3642 
3643 	count_fls = fls64(count);
3644 	nsec_fls = fls64(nsec);
3645 	frequency_fls = fls64(frequency);
3646 	sec_fls = 30;
3647 
3648 	/*
3649 	 * We got @count in @nsec, with a target of sample_freq HZ
3650 	 * the target period becomes:
3651 	 *
3652 	 *             @count * 10^9
3653 	 * period = -------------------
3654 	 *          @nsec * sample_freq
3655 	 *
3656 	 */
3657 
3658 	/*
3659 	 * Reduce accuracy by one bit such that @a and @b converge
3660 	 * to a similar magnitude.
3661 	 */
3662 #define REDUCE_FLS(a, b)		\
3663 do {					\
3664 	if (a##_fls > b##_fls) {	\
3665 		a >>= 1;		\
3666 		a##_fls--;		\
3667 	} else {			\
3668 		b >>= 1;		\
3669 		b##_fls--;		\
3670 	}				\
3671 } while (0)
3672 
3673 	/*
3674 	 * Reduce accuracy until either term fits in a u64, then proceed with
3675 	 * the other, so that finally we can do a u64/u64 division.
3676 	 */
3677 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3678 		REDUCE_FLS(nsec, frequency);
3679 		REDUCE_FLS(sec, count);
3680 	}
3681 
3682 	if (count_fls + sec_fls > 64) {
3683 		divisor = nsec * frequency;
3684 
3685 		while (count_fls + sec_fls > 64) {
3686 			REDUCE_FLS(count, sec);
3687 			divisor >>= 1;
3688 		}
3689 
3690 		dividend = count * sec;
3691 	} else {
3692 		dividend = count * sec;
3693 
3694 		while (nsec_fls + frequency_fls > 64) {
3695 			REDUCE_FLS(nsec, frequency);
3696 			dividend >>= 1;
3697 		}
3698 
3699 		divisor = nsec * frequency;
3700 	}
3701 
3702 	if (!divisor)
3703 		return dividend;
3704 
3705 	return div64_u64(dividend, divisor);
3706 }
3707 
3708 static DEFINE_PER_CPU(int, perf_throttled_count);
3709 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3710 
3711 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3712 {
3713 	struct hw_perf_event *hwc = &event->hw;
3714 	s64 period, sample_period;
3715 	s64 delta;
3716 
3717 	period = perf_calculate_period(event, nsec, count);
3718 
3719 	delta = (s64)(period - hwc->sample_period);
3720 	delta = (delta + 7) / 8; /* low pass filter */
3721 
3722 	sample_period = hwc->sample_period + delta;
3723 
3724 	if (!sample_period)
3725 		sample_period = 1;
3726 
3727 	hwc->sample_period = sample_period;
3728 
3729 	if (local64_read(&hwc->period_left) > 8*sample_period) {
3730 		if (disable)
3731 			event->pmu->stop(event, PERF_EF_UPDATE);
3732 
3733 		local64_set(&hwc->period_left, 0);
3734 
3735 		if (disable)
3736 			event->pmu->start(event, PERF_EF_RELOAD);
3737 	}
3738 }
3739 
3740 /*
3741  * combine freq adjustment with unthrottling to avoid two passes over the
3742  * events. At the same time, make sure, having freq events does not change
3743  * the rate of unthrottling as that would introduce bias.
3744  */
3745 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3746 					   int needs_unthr)
3747 {
3748 	struct perf_event *event;
3749 	struct hw_perf_event *hwc;
3750 	u64 now, period = TICK_NSEC;
3751 	s64 delta;
3752 
3753 	/*
3754 	 * only need to iterate over all events iff:
3755 	 * - context have events in frequency mode (needs freq adjust)
3756 	 * - there are events to unthrottle on this cpu
3757 	 */
3758 	if (!(ctx->nr_freq || needs_unthr))
3759 		return;
3760 
3761 	raw_spin_lock(&ctx->lock);
3762 	perf_pmu_disable(ctx->pmu);
3763 
3764 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3765 		if (event->state != PERF_EVENT_STATE_ACTIVE)
3766 			continue;
3767 
3768 		if (!event_filter_match(event))
3769 			continue;
3770 
3771 		perf_pmu_disable(event->pmu);
3772 
3773 		hwc = &event->hw;
3774 
3775 		if (hwc->interrupts == MAX_INTERRUPTS) {
3776 			hwc->interrupts = 0;
3777 			perf_log_throttle(event, 1);
3778 			event->pmu->start(event, 0);
3779 		}
3780 
3781 		if (!event->attr.freq || !event->attr.sample_freq)
3782 			goto next;
3783 
3784 		/*
3785 		 * stop the event and update event->count
3786 		 */
3787 		event->pmu->stop(event, PERF_EF_UPDATE);
3788 
3789 		now = local64_read(&event->count);
3790 		delta = now - hwc->freq_count_stamp;
3791 		hwc->freq_count_stamp = now;
3792 
3793 		/*
3794 		 * restart the event
3795 		 * reload only if value has changed
3796 		 * we have stopped the event so tell that
3797 		 * to perf_adjust_period() to avoid stopping it
3798 		 * twice.
3799 		 */
3800 		if (delta > 0)
3801 			perf_adjust_period(event, period, delta, false);
3802 
3803 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3804 	next:
3805 		perf_pmu_enable(event->pmu);
3806 	}
3807 
3808 	perf_pmu_enable(ctx->pmu);
3809 	raw_spin_unlock(&ctx->lock);
3810 }
3811 
3812 /*
3813  * Move @event to the tail of the @ctx's elegible events.
3814  */
3815 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
3816 {
3817 	/*
3818 	 * Rotate the first entry last of non-pinned groups. Rotation might be
3819 	 * disabled by the inheritance code.
3820 	 */
3821 	if (ctx->rotate_disable)
3822 		return;
3823 
3824 	perf_event_groups_delete(&ctx->flexible_groups, event);
3825 	perf_event_groups_insert(&ctx->flexible_groups, event);
3826 }
3827 
3828 /* pick an event from the flexible_groups to rotate */
3829 static inline struct perf_event *
3830 ctx_event_to_rotate(struct perf_event_context *ctx)
3831 {
3832 	struct perf_event *event;
3833 
3834 	/* pick the first active flexible event */
3835 	event = list_first_entry_or_null(&ctx->flexible_active,
3836 					 struct perf_event, active_list);
3837 
3838 	/* if no active flexible event, pick the first event */
3839 	if (!event) {
3840 		event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree),
3841 				      typeof(*event), group_node);
3842 	}
3843 
3844 	return event;
3845 }
3846 
3847 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
3848 {
3849 	struct perf_event *cpu_event = NULL, *task_event = NULL;
3850 	struct perf_event_context *task_ctx = NULL;
3851 	int cpu_rotate, task_rotate;
3852 
3853 	/*
3854 	 * Since we run this from IRQ context, nobody can install new
3855 	 * events, thus the event count values are stable.
3856 	 */
3857 
3858 	cpu_rotate = cpuctx->ctx.rotate_necessary;
3859 	task_ctx = cpuctx->task_ctx;
3860 	task_rotate = task_ctx ? task_ctx->rotate_necessary : 0;
3861 
3862 	if (!(cpu_rotate || task_rotate))
3863 		return false;
3864 
3865 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3866 	perf_pmu_disable(cpuctx->ctx.pmu);
3867 
3868 	if (task_rotate)
3869 		task_event = ctx_event_to_rotate(task_ctx);
3870 	if (cpu_rotate)
3871 		cpu_event = ctx_event_to_rotate(&cpuctx->ctx);
3872 
3873 	/*
3874 	 * As per the order given at ctx_resched() first 'pop' task flexible
3875 	 * and then, if needed CPU flexible.
3876 	 */
3877 	if (task_event || (task_ctx && cpu_event))
3878 		ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE);
3879 	if (cpu_event)
3880 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3881 
3882 	if (task_event)
3883 		rotate_ctx(task_ctx, task_event);
3884 	if (cpu_event)
3885 		rotate_ctx(&cpuctx->ctx, cpu_event);
3886 
3887 	perf_event_sched_in(cpuctx, task_ctx, current);
3888 
3889 	perf_pmu_enable(cpuctx->ctx.pmu);
3890 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3891 
3892 	return true;
3893 }
3894 
3895 void perf_event_task_tick(void)
3896 {
3897 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
3898 	struct perf_event_context *ctx, *tmp;
3899 	int throttled;
3900 
3901 	lockdep_assert_irqs_disabled();
3902 
3903 	__this_cpu_inc(perf_throttled_seq);
3904 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
3905 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3906 
3907 	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3908 		perf_adjust_freq_unthr_context(ctx, throttled);
3909 }
3910 
3911 static int event_enable_on_exec(struct perf_event *event,
3912 				struct perf_event_context *ctx)
3913 {
3914 	if (!event->attr.enable_on_exec)
3915 		return 0;
3916 
3917 	event->attr.enable_on_exec = 0;
3918 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
3919 		return 0;
3920 
3921 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
3922 
3923 	return 1;
3924 }
3925 
3926 /*
3927  * Enable all of a task's events that have been marked enable-on-exec.
3928  * This expects task == current.
3929  */
3930 static void perf_event_enable_on_exec(int ctxn)
3931 {
3932 	struct perf_event_context *ctx, *clone_ctx = NULL;
3933 	enum event_type_t event_type = 0;
3934 	struct perf_cpu_context *cpuctx;
3935 	struct perf_event *event;
3936 	unsigned long flags;
3937 	int enabled = 0;
3938 
3939 	local_irq_save(flags);
3940 	ctx = current->perf_event_ctxp[ctxn];
3941 	if (!ctx || !ctx->nr_events)
3942 		goto out;
3943 
3944 	cpuctx = __get_cpu_context(ctx);
3945 	perf_ctx_lock(cpuctx, ctx);
3946 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3947 	list_for_each_entry(event, &ctx->event_list, event_entry) {
3948 		enabled |= event_enable_on_exec(event, ctx);
3949 		event_type |= get_event_type(event);
3950 	}
3951 
3952 	/*
3953 	 * Unclone and reschedule this context if we enabled any event.
3954 	 */
3955 	if (enabled) {
3956 		clone_ctx = unclone_ctx(ctx);
3957 		ctx_resched(cpuctx, ctx, event_type);
3958 	} else {
3959 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3960 	}
3961 	perf_ctx_unlock(cpuctx, ctx);
3962 
3963 out:
3964 	local_irq_restore(flags);
3965 
3966 	if (clone_ctx)
3967 		put_ctx(clone_ctx);
3968 }
3969 
3970 struct perf_read_data {
3971 	struct perf_event *event;
3972 	bool group;
3973 	int ret;
3974 };
3975 
3976 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3977 {
3978 	u16 local_pkg, event_pkg;
3979 
3980 	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3981 		int local_cpu = smp_processor_id();
3982 
3983 		event_pkg = topology_physical_package_id(event_cpu);
3984 		local_pkg = topology_physical_package_id(local_cpu);
3985 
3986 		if (event_pkg == local_pkg)
3987 			return local_cpu;
3988 	}
3989 
3990 	return event_cpu;
3991 }
3992 
3993 /*
3994  * Cross CPU call to read the hardware event
3995  */
3996 static void __perf_event_read(void *info)
3997 {
3998 	struct perf_read_data *data = info;
3999 	struct perf_event *sub, *event = data->event;
4000 	struct perf_event_context *ctx = event->ctx;
4001 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4002 	struct pmu *pmu = event->pmu;
4003 
4004 	/*
4005 	 * If this is a task context, we need to check whether it is
4006 	 * the current task context of this cpu.  If not it has been
4007 	 * scheduled out before the smp call arrived.  In that case
4008 	 * event->count would have been updated to a recent sample
4009 	 * when the event was scheduled out.
4010 	 */
4011 	if (ctx->task && cpuctx->task_ctx != ctx)
4012 		return;
4013 
4014 	raw_spin_lock(&ctx->lock);
4015 	if (ctx->is_active & EVENT_TIME) {
4016 		update_context_time(ctx);
4017 		update_cgrp_time_from_event(event);
4018 	}
4019 
4020 	perf_event_update_time(event);
4021 	if (data->group)
4022 		perf_event_update_sibling_time(event);
4023 
4024 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4025 		goto unlock;
4026 
4027 	if (!data->group) {
4028 		pmu->read(event);
4029 		data->ret = 0;
4030 		goto unlock;
4031 	}
4032 
4033 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4034 
4035 	pmu->read(event);
4036 
4037 	for_each_sibling_event(sub, event) {
4038 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4039 			/*
4040 			 * Use sibling's PMU rather than @event's since
4041 			 * sibling could be on different (eg: software) PMU.
4042 			 */
4043 			sub->pmu->read(sub);
4044 		}
4045 	}
4046 
4047 	data->ret = pmu->commit_txn(pmu);
4048 
4049 unlock:
4050 	raw_spin_unlock(&ctx->lock);
4051 }
4052 
4053 static inline u64 perf_event_count(struct perf_event *event)
4054 {
4055 	return local64_read(&event->count) + atomic64_read(&event->child_count);
4056 }
4057 
4058 /*
4059  * NMI-safe method to read a local event, that is an event that
4060  * is:
4061  *   - either for the current task, or for this CPU
4062  *   - does not have inherit set, for inherited task events
4063  *     will not be local and we cannot read them atomically
4064  *   - must not have a pmu::count method
4065  */
4066 int perf_event_read_local(struct perf_event *event, u64 *value,
4067 			  u64 *enabled, u64 *running)
4068 {
4069 	unsigned long flags;
4070 	int ret = 0;
4071 
4072 	/*
4073 	 * Disabling interrupts avoids all counter scheduling (context
4074 	 * switches, timer based rotation and IPIs).
4075 	 */
4076 	local_irq_save(flags);
4077 
4078 	/*
4079 	 * It must not be an event with inherit set, we cannot read
4080 	 * all child counters from atomic context.
4081 	 */
4082 	if (event->attr.inherit) {
4083 		ret = -EOPNOTSUPP;
4084 		goto out;
4085 	}
4086 
4087 	/* If this is a per-task event, it must be for current */
4088 	if ((event->attach_state & PERF_ATTACH_TASK) &&
4089 	    event->hw.target != current) {
4090 		ret = -EINVAL;
4091 		goto out;
4092 	}
4093 
4094 	/* If this is a per-CPU event, it must be for this CPU */
4095 	if (!(event->attach_state & PERF_ATTACH_TASK) &&
4096 	    event->cpu != smp_processor_id()) {
4097 		ret = -EINVAL;
4098 		goto out;
4099 	}
4100 
4101 	/* If this is a pinned event it must be running on this CPU */
4102 	if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4103 		ret = -EBUSY;
4104 		goto out;
4105 	}
4106 
4107 	/*
4108 	 * If the event is currently on this CPU, its either a per-task event,
4109 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4110 	 * oncpu == -1).
4111 	 */
4112 	if (event->oncpu == smp_processor_id())
4113 		event->pmu->read(event);
4114 
4115 	*value = local64_read(&event->count);
4116 	if (enabled || running) {
4117 		u64 now = event->shadow_ctx_time + perf_clock();
4118 		u64 __enabled, __running;
4119 
4120 		__perf_update_times(event, now, &__enabled, &__running);
4121 		if (enabled)
4122 			*enabled = __enabled;
4123 		if (running)
4124 			*running = __running;
4125 	}
4126 out:
4127 	local_irq_restore(flags);
4128 
4129 	return ret;
4130 }
4131 
4132 static int perf_event_read(struct perf_event *event, bool group)
4133 {
4134 	enum perf_event_state state = READ_ONCE(event->state);
4135 	int event_cpu, ret = 0;
4136 
4137 	/*
4138 	 * If event is enabled and currently active on a CPU, update the
4139 	 * value in the event structure:
4140 	 */
4141 again:
4142 	if (state == PERF_EVENT_STATE_ACTIVE) {
4143 		struct perf_read_data data;
4144 
4145 		/*
4146 		 * Orders the ->state and ->oncpu loads such that if we see
4147 		 * ACTIVE we must also see the right ->oncpu.
4148 		 *
4149 		 * Matches the smp_wmb() from event_sched_in().
4150 		 */
4151 		smp_rmb();
4152 
4153 		event_cpu = READ_ONCE(event->oncpu);
4154 		if ((unsigned)event_cpu >= nr_cpu_ids)
4155 			return 0;
4156 
4157 		data = (struct perf_read_data){
4158 			.event = event,
4159 			.group = group,
4160 			.ret = 0,
4161 		};
4162 
4163 		preempt_disable();
4164 		event_cpu = __perf_event_read_cpu(event, event_cpu);
4165 
4166 		/*
4167 		 * Purposely ignore the smp_call_function_single() return
4168 		 * value.
4169 		 *
4170 		 * If event_cpu isn't a valid CPU it means the event got
4171 		 * scheduled out and that will have updated the event count.
4172 		 *
4173 		 * Therefore, either way, we'll have an up-to-date event count
4174 		 * after this.
4175 		 */
4176 		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4177 		preempt_enable();
4178 		ret = data.ret;
4179 
4180 	} else if (state == PERF_EVENT_STATE_INACTIVE) {
4181 		struct perf_event_context *ctx = event->ctx;
4182 		unsigned long flags;
4183 
4184 		raw_spin_lock_irqsave(&ctx->lock, flags);
4185 		state = event->state;
4186 		if (state != PERF_EVENT_STATE_INACTIVE) {
4187 			raw_spin_unlock_irqrestore(&ctx->lock, flags);
4188 			goto again;
4189 		}
4190 
4191 		/*
4192 		 * May read while context is not active (e.g., thread is
4193 		 * blocked), in that case we cannot update context time
4194 		 */
4195 		if (ctx->is_active & EVENT_TIME) {
4196 			update_context_time(ctx);
4197 			update_cgrp_time_from_event(event);
4198 		}
4199 
4200 		perf_event_update_time(event);
4201 		if (group)
4202 			perf_event_update_sibling_time(event);
4203 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4204 	}
4205 
4206 	return ret;
4207 }
4208 
4209 /*
4210  * Initialize the perf_event context in a task_struct:
4211  */
4212 static void __perf_event_init_context(struct perf_event_context *ctx)
4213 {
4214 	raw_spin_lock_init(&ctx->lock);
4215 	mutex_init(&ctx->mutex);
4216 	INIT_LIST_HEAD(&ctx->active_ctx_list);
4217 	perf_event_groups_init(&ctx->pinned_groups);
4218 	perf_event_groups_init(&ctx->flexible_groups);
4219 	INIT_LIST_HEAD(&ctx->event_list);
4220 	INIT_LIST_HEAD(&ctx->pinned_active);
4221 	INIT_LIST_HEAD(&ctx->flexible_active);
4222 	refcount_set(&ctx->refcount, 1);
4223 }
4224 
4225 static struct perf_event_context *
4226 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4227 {
4228 	struct perf_event_context *ctx;
4229 
4230 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4231 	if (!ctx)
4232 		return NULL;
4233 
4234 	__perf_event_init_context(ctx);
4235 	if (task)
4236 		ctx->task = get_task_struct(task);
4237 	ctx->pmu = pmu;
4238 
4239 	return ctx;
4240 }
4241 
4242 static struct task_struct *
4243 find_lively_task_by_vpid(pid_t vpid)
4244 {
4245 	struct task_struct *task;
4246 
4247 	rcu_read_lock();
4248 	if (!vpid)
4249 		task = current;
4250 	else
4251 		task = find_task_by_vpid(vpid);
4252 	if (task)
4253 		get_task_struct(task);
4254 	rcu_read_unlock();
4255 
4256 	if (!task)
4257 		return ERR_PTR(-ESRCH);
4258 
4259 	return task;
4260 }
4261 
4262 /*
4263  * Returns a matching context with refcount and pincount.
4264  */
4265 static struct perf_event_context *
4266 find_get_context(struct pmu *pmu, struct task_struct *task,
4267 		struct perf_event *event)
4268 {
4269 	struct perf_event_context *ctx, *clone_ctx = NULL;
4270 	struct perf_cpu_context *cpuctx;
4271 	void *task_ctx_data = NULL;
4272 	unsigned long flags;
4273 	int ctxn, err;
4274 	int cpu = event->cpu;
4275 
4276 	if (!task) {
4277 		/* Must be root to operate on a CPU event: */
4278 		err = perf_allow_cpu(&event->attr);
4279 		if (err)
4280 			return ERR_PTR(err);
4281 
4282 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4283 		ctx = &cpuctx->ctx;
4284 		get_ctx(ctx);
4285 		++ctx->pin_count;
4286 
4287 		return ctx;
4288 	}
4289 
4290 	err = -EINVAL;
4291 	ctxn = pmu->task_ctx_nr;
4292 	if (ctxn < 0)
4293 		goto errout;
4294 
4295 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4296 		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
4297 		if (!task_ctx_data) {
4298 			err = -ENOMEM;
4299 			goto errout;
4300 		}
4301 	}
4302 
4303 retry:
4304 	ctx = perf_lock_task_context(task, ctxn, &flags);
4305 	if (ctx) {
4306 		clone_ctx = unclone_ctx(ctx);
4307 		++ctx->pin_count;
4308 
4309 		if (task_ctx_data && !ctx->task_ctx_data) {
4310 			ctx->task_ctx_data = task_ctx_data;
4311 			task_ctx_data = NULL;
4312 		}
4313 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4314 
4315 		if (clone_ctx)
4316 			put_ctx(clone_ctx);
4317 	} else {
4318 		ctx = alloc_perf_context(pmu, task);
4319 		err = -ENOMEM;
4320 		if (!ctx)
4321 			goto errout;
4322 
4323 		if (task_ctx_data) {
4324 			ctx->task_ctx_data = task_ctx_data;
4325 			task_ctx_data = NULL;
4326 		}
4327 
4328 		err = 0;
4329 		mutex_lock(&task->perf_event_mutex);
4330 		/*
4331 		 * If it has already passed perf_event_exit_task().
4332 		 * we must see PF_EXITING, it takes this mutex too.
4333 		 */
4334 		if (task->flags & PF_EXITING)
4335 			err = -ESRCH;
4336 		else if (task->perf_event_ctxp[ctxn])
4337 			err = -EAGAIN;
4338 		else {
4339 			get_ctx(ctx);
4340 			++ctx->pin_count;
4341 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4342 		}
4343 		mutex_unlock(&task->perf_event_mutex);
4344 
4345 		if (unlikely(err)) {
4346 			put_ctx(ctx);
4347 
4348 			if (err == -EAGAIN)
4349 				goto retry;
4350 			goto errout;
4351 		}
4352 	}
4353 
4354 	kfree(task_ctx_data);
4355 	return ctx;
4356 
4357 errout:
4358 	kfree(task_ctx_data);
4359 	return ERR_PTR(err);
4360 }
4361 
4362 static void perf_event_free_filter(struct perf_event *event);
4363 static void perf_event_free_bpf_prog(struct perf_event *event);
4364 
4365 static void free_event_rcu(struct rcu_head *head)
4366 {
4367 	struct perf_event *event;
4368 
4369 	event = container_of(head, struct perf_event, rcu_head);
4370 	if (event->ns)
4371 		put_pid_ns(event->ns);
4372 	perf_event_free_filter(event);
4373 	kfree(event);
4374 }
4375 
4376 static void ring_buffer_attach(struct perf_event *event,
4377 			       struct perf_buffer *rb);
4378 
4379 static void detach_sb_event(struct perf_event *event)
4380 {
4381 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4382 
4383 	raw_spin_lock(&pel->lock);
4384 	list_del_rcu(&event->sb_list);
4385 	raw_spin_unlock(&pel->lock);
4386 }
4387 
4388 static bool is_sb_event(struct perf_event *event)
4389 {
4390 	struct perf_event_attr *attr = &event->attr;
4391 
4392 	if (event->parent)
4393 		return false;
4394 
4395 	if (event->attach_state & PERF_ATTACH_TASK)
4396 		return false;
4397 
4398 	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4399 	    attr->comm || attr->comm_exec ||
4400 	    attr->task || attr->ksymbol ||
4401 	    attr->context_switch ||
4402 	    attr->bpf_event)
4403 		return true;
4404 	return false;
4405 }
4406 
4407 static void unaccount_pmu_sb_event(struct perf_event *event)
4408 {
4409 	if (is_sb_event(event))
4410 		detach_sb_event(event);
4411 }
4412 
4413 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4414 {
4415 	if (event->parent)
4416 		return;
4417 
4418 	if (is_cgroup_event(event))
4419 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4420 }
4421 
4422 #ifdef CONFIG_NO_HZ_FULL
4423 static DEFINE_SPINLOCK(nr_freq_lock);
4424 #endif
4425 
4426 static void unaccount_freq_event_nohz(void)
4427 {
4428 #ifdef CONFIG_NO_HZ_FULL
4429 	spin_lock(&nr_freq_lock);
4430 	if (atomic_dec_and_test(&nr_freq_events))
4431 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4432 	spin_unlock(&nr_freq_lock);
4433 #endif
4434 }
4435 
4436 static void unaccount_freq_event(void)
4437 {
4438 	if (tick_nohz_full_enabled())
4439 		unaccount_freq_event_nohz();
4440 	else
4441 		atomic_dec(&nr_freq_events);
4442 }
4443 
4444 static void unaccount_event(struct perf_event *event)
4445 {
4446 	bool dec = false;
4447 
4448 	if (event->parent)
4449 		return;
4450 
4451 	if (event->attach_state & PERF_ATTACH_TASK)
4452 		dec = true;
4453 	if (event->attr.mmap || event->attr.mmap_data)
4454 		atomic_dec(&nr_mmap_events);
4455 	if (event->attr.comm)
4456 		atomic_dec(&nr_comm_events);
4457 	if (event->attr.namespaces)
4458 		atomic_dec(&nr_namespaces_events);
4459 	if (event->attr.task)
4460 		atomic_dec(&nr_task_events);
4461 	if (event->attr.freq)
4462 		unaccount_freq_event();
4463 	if (event->attr.context_switch) {
4464 		dec = true;
4465 		atomic_dec(&nr_switch_events);
4466 	}
4467 	if (is_cgroup_event(event))
4468 		dec = true;
4469 	if (has_branch_stack(event))
4470 		dec = true;
4471 	if (event->attr.ksymbol)
4472 		atomic_dec(&nr_ksymbol_events);
4473 	if (event->attr.bpf_event)
4474 		atomic_dec(&nr_bpf_events);
4475 
4476 	if (dec) {
4477 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
4478 			schedule_delayed_work(&perf_sched_work, HZ);
4479 	}
4480 
4481 	unaccount_event_cpu(event, event->cpu);
4482 
4483 	unaccount_pmu_sb_event(event);
4484 }
4485 
4486 static void perf_sched_delayed(struct work_struct *work)
4487 {
4488 	mutex_lock(&perf_sched_mutex);
4489 	if (atomic_dec_and_test(&perf_sched_count))
4490 		static_branch_disable(&perf_sched_events);
4491 	mutex_unlock(&perf_sched_mutex);
4492 }
4493 
4494 /*
4495  * The following implement mutual exclusion of events on "exclusive" pmus
4496  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4497  * at a time, so we disallow creating events that might conflict, namely:
4498  *
4499  *  1) cpu-wide events in the presence of per-task events,
4500  *  2) per-task events in the presence of cpu-wide events,
4501  *  3) two matching events on the same context.
4502  *
4503  * The former two cases are handled in the allocation path (perf_event_alloc(),
4504  * _free_event()), the latter -- before the first perf_install_in_context().
4505  */
4506 static int exclusive_event_init(struct perf_event *event)
4507 {
4508 	struct pmu *pmu = event->pmu;
4509 
4510 	if (!is_exclusive_pmu(pmu))
4511 		return 0;
4512 
4513 	/*
4514 	 * Prevent co-existence of per-task and cpu-wide events on the
4515 	 * same exclusive pmu.
4516 	 *
4517 	 * Negative pmu::exclusive_cnt means there are cpu-wide
4518 	 * events on this "exclusive" pmu, positive means there are
4519 	 * per-task events.
4520 	 *
4521 	 * Since this is called in perf_event_alloc() path, event::ctx
4522 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4523 	 * to mean "per-task event", because unlike other attach states it
4524 	 * never gets cleared.
4525 	 */
4526 	if (event->attach_state & PERF_ATTACH_TASK) {
4527 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4528 			return -EBUSY;
4529 	} else {
4530 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4531 			return -EBUSY;
4532 	}
4533 
4534 	return 0;
4535 }
4536 
4537 static void exclusive_event_destroy(struct perf_event *event)
4538 {
4539 	struct pmu *pmu = event->pmu;
4540 
4541 	if (!is_exclusive_pmu(pmu))
4542 		return;
4543 
4544 	/* see comment in exclusive_event_init() */
4545 	if (event->attach_state & PERF_ATTACH_TASK)
4546 		atomic_dec(&pmu->exclusive_cnt);
4547 	else
4548 		atomic_inc(&pmu->exclusive_cnt);
4549 }
4550 
4551 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4552 {
4553 	if ((e1->pmu == e2->pmu) &&
4554 	    (e1->cpu == e2->cpu ||
4555 	     e1->cpu == -1 ||
4556 	     e2->cpu == -1))
4557 		return true;
4558 	return false;
4559 }
4560 
4561 static bool exclusive_event_installable(struct perf_event *event,
4562 					struct perf_event_context *ctx)
4563 {
4564 	struct perf_event *iter_event;
4565 	struct pmu *pmu = event->pmu;
4566 
4567 	lockdep_assert_held(&ctx->mutex);
4568 
4569 	if (!is_exclusive_pmu(pmu))
4570 		return true;
4571 
4572 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4573 		if (exclusive_event_match(iter_event, event))
4574 			return false;
4575 	}
4576 
4577 	return true;
4578 }
4579 
4580 static void perf_addr_filters_splice(struct perf_event *event,
4581 				       struct list_head *head);
4582 
4583 static void _free_event(struct perf_event *event)
4584 {
4585 	irq_work_sync(&event->pending);
4586 
4587 	unaccount_event(event);
4588 
4589 	security_perf_event_free(event);
4590 
4591 	if (event->rb) {
4592 		/*
4593 		 * Can happen when we close an event with re-directed output.
4594 		 *
4595 		 * Since we have a 0 refcount, perf_mmap_close() will skip
4596 		 * over us; possibly making our ring_buffer_put() the last.
4597 		 */
4598 		mutex_lock(&event->mmap_mutex);
4599 		ring_buffer_attach(event, NULL);
4600 		mutex_unlock(&event->mmap_mutex);
4601 	}
4602 
4603 	if (is_cgroup_event(event))
4604 		perf_detach_cgroup(event);
4605 
4606 	if (!event->parent) {
4607 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4608 			put_callchain_buffers();
4609 	}
4610 
4611 	perf_event_free_bpf_prog(event);
4612 	perf_addr_filters_splice(event, NULL);
4613 	kfree(event->addr_filter_ranges);
4614 
4615 	if (event->destroy)
4616 		event->destroy(event);
4617 
4618 	/*
4619 	 * Must be after ->destroy(), due to uprobe_perf_close() using
4620 	 * hw.target.
4621 	 */
4622 	if (event->hw.target)
4623 		put_task_struct(event->hw.target);
4624 
4625 	/*
4626 	 * perf_event_free_task() relies on put_ctx() being 'last', in particular
4627 	 * all task references must be cleaned up.
4628 	 */
4629 	if (event->ctx)
4630 		put_ctx(event->ctx);
4631 
4632 	exclusive_event_destroy(event);
4633 	module_put(event->pmu->module);
4634 
4635 	call_rcu(&event->rcu_head, free_event_rcu);
4636 }
4637 
4638 /*
4639  * Used to free events which have a known refcount of 1, such as in error paths
4640  * where the event isn't exposed yet and inherited events.
4641  */
4642 static void free_event(struct perf_event *event)
4643 {
4644 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4645 				"unexpected event refcount: %ld; ptr=%p\n",
4646 				atomic_long_read(&event->refcount), event)) {
4647 		/* leak to avoid use-after-free */
4648 		return;
4649 	}
4650 
4651 	_free_event(event);
4652 }
4653 
4654 /*
4655  * Remove user event from the owner task.
4656  */
4657 static void perf_remove_from_owner(struct perf_event *event)
4658 {
4659 	struct task_struct *owner;
4660 
4661 	rcu_read_lock();
4662 	/*
4663 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
4664 	 * observe !owner it means the list deletion is complete and we can
4665 	 * indeed free this event, otherwise we need to serialize on
4666 	 * owner->perf_event_mutex.
4667 	 */
4668 	owner = READ_ONCE(event->owner);
4669 	if (owner) {
4670 		/*
4671 		 * Since delayed_put_task_struct() also drops the last
4672 		 * task reference we can safely take a new reference
4673 		 * while holding the rcu_read_lock().
4674 		 */
4675 		get_task_struct(owner);
4676 	}
4677 	rcu_read_unlock();
4678 
4679 	if (owner) {
4680 		/*
4681 		 * If we're here through perf_event_exit_task() we're already
4682 		 * holding ctx->mutex which would be an inversion wrt. the
4683 		 * normal lock order.
4684 		 *
4685 		 * However we can safely take this lock because its the child
4686 		 * ctx->mutex.
4687 		 */
4688 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4689 
4690 		/*
4691 		 * We have to re-check the event->owner field, if it is cleared
4692 		 * we raced with perf_event_exit_task(), acquiring the mutex
4693 		 * ensured they're done, and we can proceed with freeing the
4694 		 * event.
4695 		 */
4696 		if (event->owner) {
4697 			list_del_init(&event->owner_entry);
4698 			smp_store_release(&event->owner, NULL);
4699 		}
4700 		mutex_unlock(&owner->perf_event_mutex);
4701 		put_task_struct(owner);
4702 	}
4703 }
4704 
4705 static void put_event(struct perf_event *event)
4706 {
4707 	if (!atomic_long_dec_and_test(&event->refcount))
4708 		return;
4709 
4710 	_free_event(event);
4711 }
4712 
4713 /*
4714  * Kill an event dead; while event:refcount will preserve the event
4715  * object, it will not preserve its functionality. Once the last 'user'
4716  * gives up the object, we'll destroy the thing.
4717  */
4718 int perf_event_release_kernel(struct perf_event *event)
4719 {
4720 	struct perf_event_context *ctx = event->ctx;
4721 	struct perf_event *child, *tmp;
4722 	LIST_HEAD(free_list);
4723 
4724 	/*
4725 	 * If we got here through err_file: fput(event_file); we will not have
4726 	 * attached to a context yet.
4727 	 */
4728 	if (!ctx) {
4729 		WARN_ON_ONCE(event->attach_state &
4730 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4731 		goto no_ctx;
4732 	}
4733 
4734 	if (!is_kernel_event(event))
4735 		perf_remove_from_owner(event);
4736 
4737 	ctx = perf_event_ctx_lock(event);
4738 	WARN_ON_ONCE(ctx->parent_ctx);
4739 	perf_remove_from_context(event, DETACH_GROUP);
4740 
4741 	raw_spin_lock_irq(&ctx->lock);
4742 	/*
4743 	 * Mark this event as STATE_DEAD, there is no external reference to it
4744 	 * anymore.
4745 	 *
4746 	 * Anybody acquiring event->child_mutex after the below loop _must_
4747 	 * also see this, most importantly inherit_event() which will avoid
4748 	 * placing more children on the list.
4749 	 *
4750 	 * Thus this guarantees that we will in fact observe and kill _ALL_
4751 	 * child events.
4752 	 */
4753 	event->state = PERF_EVENT_STATE_DEAD;
4754 	raw_spin_unlock_irq(&ctx->lock);
4755 
4756 	perf_event_ctx_unlock(event, ctx);
4757 
4758 again:
4759 	mutex_lock(&event->child_mutex);
4760 	list_for_each_entry(child, &event->child_list, child_list) {
4761 
4762 		/*
4763 		 * Cannot change, child events are not migrated, see the
4764 		 * comment with perf_event_ctx_lock_nested().
4765 		 */
4766 		ctx = READ_ONCE(child->ctx);
4767 		/*
4768 		 * Since child_mutex nests inside ctx::mutex, we must jump
4769 		 * through hoops. We start by grabbing a reference on the ctx.
4770 		 *
4771 		 * Since the event cannot get freed while we hold the
4772 		 * child_mutex, the context must also exist and have a !0
4773 		 * reference count.
4774 		 */
4775 		get_ctx(ctx);
4776 
4777 		/*
4778 		 * Now that we have a ctx ref, we can drop child_mutex, and
4779 		 * acquire ctx::mutex without fear of it going away. Then we
4780 		 * can re-acquire child_mutex.
4781 		 */
4782 		mutex_unlock(&event->child_mutex);
4783 		mutex_lock(&ctx->mutex);
4784 		mutex_lock(&event->child_mutex);
4785 
4786 		/*
4787 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
4788 		 * state, if child is still the first entry, it didn't get freed
4789 		 * and we can continue doing so.
4790 		 */
4791 		tmp = list_first_entry_or_null(&event->child_list,
4792 					       struct perf_event, child_list);
4793 		if (tmp == child) {
4794 			perf_remove_from_context(child, DETACH_GROUP);
4795 			list_move(&child->child_list, &free_list);
4796 			/*
4797 			 * This matches the refcount bump in inherit_event();
4798 			 * this can't be the last reference.
4799 			 */
4800 			put_event(event);
4801 		}
4802 
4803 		mutex_unlock(&event->child_mutex);
4804 		mutex_unlock(&ctx->mutex);
4805 		put_ctx(ctx);
4806 		goto again;
4807 	}
4808 	mutex_unlock(&event->child_mutex);
4809 
4810 	list_for_each_entry_safe(child, tmp, &free_list, child_list) {
4811 		void *var = &child->ctx->refcount;
4812 
4813 		list_del(&child->child_list);
4814 		free_event(child);
4815 
4816 		/*
4817 		 * Wake any perf_event_free_task() waiting for this event to be
4818 		 * freed.
4819 		 */
4820 		smp_mb(); /* pairs with wait_var_event() */
4821 		wake_up_var(var);
4822 	}
4823 
4824 no_ctx:
4825 	put_event(event); /* Must be the 'last' reference */
4826 	return 0;
4827 }
4828 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4829 
4830 /*
4831  * Called when the last reference to the file is gone.
4832  */
4833 static int perf_release(struct inode *inode, struct file *file)
4834 {
4835 	perf_event_release_kernel(file->private_data);
4836 	return 0;
4837 }
4838 
4839 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4840 {
4841 	struct perf_event *child;
4842 	u64 total = 0;
4843 
4844 	*enabled = 0;
4845 	*running = 0;
4846 
4847 	mutex_lock(&event->child_mutex);
4848 
4849 	(void)perf_event_read(event, false);
4850 	total += perf_event_count(event);
4851 
4852 	*enabled += event->total_time_enabled +
4853 			atomic64_read(&event->child_total_time_enabled);
4854 	*running += event->total_time_running +
4855 			atomic64_read(&event->child_total_time_running);
4856 
4857 	list_for_each_entry(child, &event->child_list, child_list) {
4858 		(void)perf_event_read(child, false);
4859 		total += perf_event_count(child);
4860 		*enabled += child->total_time_enabled;
4861 		*running += child->total_time_running;
4862 	}
4863 	mutex_unlock(&event->child_mutex);
4864 
4865 	return total;
4866 }
4867 
4868 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4869 {
4870 	struct perf_event_context *ctx;
4871 	u64 count;
4872 
4873 	ctx = perf_event_ctx_lock(event);
4874 	count = __perf_event_read_value(event, enabled, running);
4875 	perf_event_ctx_unlock(event, ctx);
4876 
4877 	return count;
4878 }
4879 EXPORT_SYMBOL_GPL(perf_event_read_value);
4880 
4881 static int __perf_read_group_add(struct perf_event *leader,
4882 					u64 read_format, u64 *values)
4883 {
4884 	struct perf_event_context *ctx = leader->ctx;
4885 	struct perf_event *sub;
4886 	unsigned long flags;
4887 	int n = 1; /* skip @nr */
4888 	int ret;
4889 
4890 	ret = perf_event_read(leader, true);
4891 	if (ret)
4892 		return ret;
4893 
4894 	raw_spin_lock_irqsave(&ctx->lock, flags);
4895 
4896 	/*
4897 	 * Since we co-schedule groups, {enabled,running} times of siblings
4898 	 * will be identical to those of the leader, so we only publish one
4899 	 * set.
4900 	 */
4901 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4902 		values[n++] += leader->total_time_enabled +
4903 			atomic64_read(&leader->child_total_time_enabled);
4904 	}
4905 
4906 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4907 		values[n++] += leader->total_time_running +
4908 			atomic64_read(&leader->child_total_time_running);
4909 	}
4910 
4911 	/*
4912 	 * Write {count,id} tuples for every sibling.
4913 	 */
4914 	values[n++] += perf_event_count(leader);
4915 	if (read_format & PERF_FORMAT_ID)
4916 		values[n++] = primary_event_id(leader);
4917 
4918 	for_each_sibling_event(sub, leader) {
4919 		values[n++] += perf_event_count(sub);
4920 		if (read_format & PERF_FORMAT_ID)
4921 			values[n++] = primary_event_id(sub);
4922 	}
4923 
4924 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
4925 	return 0;
4926 }
4927 
4928 static int perf_read_group(struct perf_event *event,
4929 				   u64 read_format, char __user *buf)
4930 {
4931 	struct perf_event *leader = event->group_leader, *child;
4932 	struct perf_event_context *ctx = leader->ctx;
4933 	int ret;
4934 	u64 *values;
4935 
4936 	lockdep_assert_held(&ctx->mutex);
4937 
4938 	values = kzalloc(event->read_size, GFP_KERNEL);
4939 	if (!values)
4940 		return -ENOMEM;
4941 
4942 	values[0] = 1 + leader->nr_siblings;
4943 
4944 	/*
4945 	 * By locking the child_mutex of the leader we effectively
4946 	 * lock the child list of all siblings.. XXX explain how.
4947 	 */
4948 	mutex_lock(&leader->child_mutex);
4949 
4950 	ret = __perf_read_group_add(leader, read_format, values);
4951 	if (ret)
4952 		goto unlock;
4953 
4954 	list_for_each_entry(child, &leader->child_list, child_list) {
4955 		ret = __perf_read_group_add(child, read_format, values);
4956 		if (ret)
4957 			goto unlock;
4958 	}
4959 
4960 	mutex_unlock(&leader->child_mutex);
4961 
4962 	ret = event->read_size;
4963 	if (copy_to_user(buf, values, event->read_size))
4964 		ret = -EFAULT;
4965 	goto out;
4966 
4967 unlock:
4968 	mutex_unlock(&leader->child_mutex);
4969 out:
4970 	kfree(values);
4971 	return ret;
4972 }
4973 
4974 static int perf_read_one(struct perf_event *event,
4975 				 u64 read_format, char __user *buf)
4976 {
4977 	u64 enabled, running;
4978 	u64 values[4];
4979 	int n = 0;
4980 
4981 	values[n++] = __perf_event_read_value(event, &enabled, &running);
4982 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4983 		values[n++] = enabled;
4984 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4985 		values[n++] = running;
4986 	if (read_format & PERF_FORMAT_ID)
4987 		values[n++] = primary_event_id(event);
4988 
4989 	if (copy_to_user(buf, values, n * sizeof(u64)))
4990 		return -EFAULT;
4991 
4992 	return n * sizeof(u64);
4993 }
4994 
4995 static bool is_event_hup(struct perf_event *event)
4996 {
4997 	bool no_children;
4998 
4999 	if (event->state > PERF_EVENT_STATE_EXIT)
5000 		return false;
5001 
5002 	mutex_lock(&event->child_mutex);
5003 	no_children = list_empty(&event->child_list);
5004 	mutex_unlock(&event->child_mutex);
5005 	return no_children;
5006 }
5007 
5008 /*
5009  * Read the performance event - simple non blocking version for now
5010  */
5011 static ssize_t
5012 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5013 {
5014 	u64 read_format = event->attr.read_format;
5015 	int ret;
5016 
5017 	/*
5018 	 * Return end-of-file for a read on an event that is in
5019 	 * error state (i.e. because it was pinned but it couldn't be
5020 	 * scheduled on to the CPU at some point).
5021 	 */
5022 	if (event->state == PERF_EVENT_STATE_ERROR)
5023 		return 0;
5024 
5025 	if (count < event->read_size)
5026 		return -ENOSPC;
5027 
5028 	WARN_ON_ONCE(event->ctx->parent_ctx);
5029 	if (read_format & PERF_FORMAT_GROUP)
5030 		ret = perf_read_group(event, read_format, buf);
5031 	else
5032 		ret = perf_read_one(event, read_format, buf);
5033 
5034 	return ret;
5035 }
5036 
5037 static ssize_t
5038 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5039 {
5040 	struct perf_event *event = file->private_data;
5041 	struct perf_event_context *ctx;
5042 	int ret;
5043 
5044 	ret = security_perf_event_read(event);
5045 	if (ret)
5046 		return ret;
5047 
5048 	ctx = perf_event_ctx_lock(event);
5049 	ret = __perf_read(event, buf, count);
5050 	perf_event_ctx_unlock(event, ctx);
5051 
5052 	return ret;
5053 }
5054 
5055 static __poll_t perf_poll(struct file *file, poll_table *wait)
5056 {
5057 	struct perf_event *event = file->private_data;
5058 	struct perf_buffer *rb;
5059 	__poll_t events = EPOLLHUP;
5060 
5061 	poll_wait(file, &event->waitq, wait);
5062 
5063 	if (is_event_hup(event))
5064 		return events;
5065 
5066 	/*
5067 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
5068 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5069 	 */
5070 	mutex_lock(&event->mmap_mutex);
5071 	rb = event->rb;
5072 	if (rb)
5073 		events = atomic_xchg(&rb->poll, 0);
5074 	mutex_unlock(&event->mmap_mutex);
5075 	return events;
5076 }
5077 
5078 static void _perf_event_reset(struct perf_event *event)
5079 {
5080 	(void)perf_event_read(event, false);
5081 	local64_set(&event->count, 0);
5082 	perf_event_update_userpage(event);
5083 }
5084 
5085 /* Assume it's not an event with inherit set. */
5086 u64 perf_event_pause(struct perf_event *event, bool reset)
5087 {
5088 	struct perf_event_context *ctx;
5089 	u64 count;
5090 
5091 	ctx = perf_event_ctx_lock(event);
5092 	WARN_ON_ONCE(event->attr.inherit);
5093 	_perf_event_disable(event);
5094 	count = local64_read(&event->count);
5095 	if (reset)
5096 		local64_set(&event->count, 0);
5097 	perf_event_ctx_unlock(event, ctx);
5098 
5099 	return count;
5100 }
5101 EXPORT_SYMBOL_GPL(perf_event_pause);
5102 
5103 /*
5104  * Holding the top-level event's child_mutex means that any
5105  * descendant process that has inherited this event will block
5106  * in perf_event_exit_event() if it goes to exit, thus satisfying the
5107  * task existence requirements of perf_event_enable/disable.
5108  */
5109 static void perf_event_for_each_child(struct perf_event *event,
5110 					void (*func)(struct perf_event *))
5111 {
5112 	struct perf_event *child;
5113 
5114 	WARN_ON_ONCE(event->ctx->parent_ctx);
5115 
5116 	mutex_lock(&event->child_mutex);
5117 	func(event);
5118 	list_for_each_entry(child, &event->child_list, child_list)
5119 		func(child);
5120 	mutex_unlock(&event->child_mutex);
5121 }
5122 
5123 static void perf_event_for_each(struct perf_event *event,
5124 				  void (*func)(struct perf_event *))
5125 {
5126 	struct perf_event_context *ctx = event->ctx;
5127 	struct perf_event *sibling;
5128 
5129 	lockdep_assert_held(&ctx->mutex);
5130 
5131 	event = event->group_leader;
5132 
5133 	perf_event_for_each_child(event, func);
5134 	for_each_sibling_event(sibling, event)
5135 		perf_event_for_each_child(sibling, func);
5136 }
5137 
5138 static void __perf_event_period(struct perf_event *event,
5139 				struct perf_cpu_context *cpuctx,
5140 				struct perf_event_context *ctx,
5141 				void *info)
5142 {
5143 	u64 value = *((u64 *)info);
5144 	bool active;
5145 
5146 	if (event->attr.freq) {
5147 		event->attr.sample_freq = value;
5148 	} else {
5149 		event->attr.sample_period = value;
5150 		event->hw.sample_period = value;
5151 	}
5152 
5153 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
5154 	if (active) {
5155 		perf_pmu_disable(ctx->pmu);
5156 		/*
5157 		 * We could be throttled; unthrottle now to avoid the tick
5158 		 * trying to unthrottle while we already re-started the event.
5159 		 */
5160 		if (event->hw.interrupts == MAX_INTERRUPTS) {
5161 			event->hw.interrupts = 0;
5162 			perf_log_throttle(event, 1);
5163 		}
5164 		event->pmu->stop(event, PERF_EF_UPDATE);
5165 	}
5166 
5167 	local64_set(&event->hw.period_left, 0);
5168 
5169 	if (active) {
5170 		event->pmu->start(event, PERF_EF_RELOAD);
5171 		perf_pmu_enable(ctx->pmu);
5172 	}
5173 }
5174 
5175 static int perf_event_check_period(struct perf_event *event, u64 value)
5176 {
5177 	return event->pmu->check_period(event, value);
5178 }
5179 
5180 static int _perf_event_period(struct perf_event *event, u64 value)
5181 {
5182 	if (!is_sampling_event(event))
5183 		return -EINVAL;
5184 
5185 	if (!value)
5186 		return -EINVAL;
5187 
5188 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5189 		return -EINVAL;
5190 
5191 	if (perf_event_check_period(event, value))
5192 		return -EINVAL;
5193 
5194 	if (!event->attr.freq && (value & (1ULL << 63)))
5195 		return -EINVAL;
5196 
5197 	event_function_call(event, __perf_event_period, &value);
5198 
5199 	return 0;
5200 }
5201 
5202 int perf_event_period(struct perf_event *event, u64 value)
5203 {
5204 	struct perf_event_context *ctx;
5205 	int ret;
5206 
5207 	ctx = perf_event_ctx_lock(event);
5208 	ret = _perf_event_period(event, value);
5209 	perf_event_ctx_unlock(event, ctx);
5210 
5211 	return ret;
5212 }
5213 EXPORT_SYMBOL_GPL(perf_event_period);
5214 
5215 static const struct file_operations perf_fops;
5216 
5217 static inline int perf_fget_light(int fd, struct fd *p)
5218 {
5219 	struct fd f = fdget(fd);
5220 	if (!f.file)
5221 		return -EBADF;
5222 
5223 	if (f.file->f_op != &perf_fops) {
5224 		fdput(f);
5225 		return -EBADF;
5226 	}
5227 	*p = f;
5228 	return 0;
5229 }
5230 
5231 static int perf_event_set_output(struct perf_event *event,
5232 				 struct perf_event *output_event);
5233 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5234 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
5235 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5236 			  struct perf_event_attr *attr);
5237 
5238 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5239 {
5240 	void (*func)(struct perf_event *);
5241 	u32 flags = arg;
5242 
5243 	switch (cmd) {
5244 	case PERF_EVENT_IOC_ENABLE:
5245 		func = _perf_event_enable;
5246 		break;
5247 	case PERF_EVENT_IOC_DISABLE:
5248 		func = _perf_event_disable;
5249 		break;
5250 	case PERF_EVENT_IOC_RESET:
5251 		func = _perf_event_reset;
5252 		break;
5253 
5254 	case PERF_EVENT_IOC_REFRESH:
5255 		return _perf_event_refresh(event, arg);
5256 
5257 	case PERF_EVENT_IOC_PERIOD:
5258 	{
5259 		u64 value;
5260 
5261 		if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5262 			return -EFAULT;
5263 
5264 		return _perf_event_period(event, value);
5265 	}
5266 	case PERF_EVENT_IOC_ID:
5267 	{
5268 		u64 id = primary_event_id(event);
5269 
5270 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5271 			return -EFAULT;
5272 		return 0;
5273 	}
5274 
5275 	case PERF_EVENT_IOC_SET_OUTPUT:
5276 	{
5277 		int ret;
5278 		if (arg != -1) {
5279 			struct perf_event *output_event;
5280 			struct fd output;
5281 			ret = perf_fget_light(arg, &output);
5282 			if (ret)
5283 				return ret;
5284 			output_event = output.file->private_data;
5285 			ret = perf_event_set_output(event, output_event);
5286 			fdput(output);
5287 		} else {
5288 			ret = perf_event_set_output(event, NULL);
5289 		}
5290 		return ret;
5291 	}
5292 
5293 	case PERF_EVENT_IOC_SET_FILTER:
5294 		return perf_event_set_filter(event, (void __user *)arg);
5295 
5296 	case PERF_EVENT_IOC_SET_BPF:
5297 		return perf_event_set_bpf_prog(event, arg);
5298 
5299 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5300 		struct perf_buffer *rb;
5301 
5302 		rcu_read_lock();
5303 		rb = rcu_dereference(event->rb);
5304 		if (!rb || !rb->nr_pages) {
5305 			rcu_read_unlock();
5306 			return -EINVAL;
5307 		}
5308 		rb_toggle_paused(rb, !!arg);
5309 		rcu_read_unlock();
5310 		return 0;
5311 	}
5312 
5313 	case PERF_EVENT_IOC_QUERY_BPF:
5314 		return perf_event_query_prog_array(event, (void __user *)arg);
5315 
5316 	case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5317 		struct perf_event_attr new_attr;
5318 		int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5319 					 &new_attr);
5320 
5321 		if (err)
5322 			return err;
5323 
5324 		return perf_event_modify_attr(event,  &new_attr);
5325 	}
5326 	default:
5327 		return -ENOTTY;
5328 	}
5329 
5330 	if (flags & PERF_IOC_FLAG_GROUP)
5331 		perf_event_for_each(event, func);
5332 	else
5333 		perf_event_for_each_child(event, func);
5334 
5335 	return 0;
5336 }
5337 
5338 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5339 {
5340 	struct perf_event *event = file->private_data;
5341 	struct perf_event_context *ctx;
5342 	long ret;
5343 
5344 	/* Treat ioctl like writes as it is likely a mutating operation. */
5345 	ret = security_perf_event_write(event);
5346 	if (ret)
5347 		return ret;
5348 
5349 	ctx = perf_event_ctx_lock(event);
5350 	ret = _perf_ioctl(event, cmd, arg);
5351 	perf_event_ctx_unlock(event, ctx);
5352 
5353 	return ret;
5354 }
5355 
5356 #ifdef CONFIG_COMPAT
5357 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5358 				unsigned long arg)
5359 {
5360 	switch (_IOC_NR(cmd)) {
5361 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5362 	case _IOC_NR(PERF_EVENT_IOC_ID):
5363 	case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5364 	case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5365 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5366 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5367 			cmd &= ~IOCSIZE_MASK;
5368 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5369 		}
5370 		break;
5371 	}
5372 	return perf_ioctl(file, cmd, arg);
5373 }
5374 #else
5375 # define perf_compat_ioctl NULL
5376 #endif
5377 
5378 int perf_event_task_enable(void)
5379 {
5380 	struct perf_event_context *ctx;
5381 	struct perf_event *event;
5382 
5383 	mutex_lock(&current->perf_event_mutex);
5384 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5385 		ctx = perf_event_ctx_lock(event);
5386 		perf_event_for_each_child(event, _perf_event_enable);
5387 		perf_event_ctx_unlock(event, ctx);
5388 	}
5389 	mutex_unlock(&current->perf_event_mutex);
5390 
5391 	return 0;
5392 }
5393 
5394 int perf_event_task_disable(void)
5395 {
5396 	struct perf_event_context *ctx;
5397 	struct perf_event *event;
5398 
5399 	mutex_lock(&current->perf_event_mutex);
5400 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5401 		ctx = perf_event_ctx_lock(event);
5402 		perf_event_for_each_child(event, _perf_event_disable);
5403 		perf_event_ctx_unlock(event, ctx);
5404 	}
5405 	mutex_unlock(&current->perf_event_mutex);
5406 
5407 	return 0;
5408 }
5409 
5410 static int perf_event_index(struct perf_event *event)
5411 {
5412 	if (event->hw.state & PERF_HES_STOPPED)
5413 		return 0;
5414 
5415 	if (event->state != PERF_EVENT_STATE_ACTIVE)
5416 		return 0;
5417 
5418 	return event->pmu->event_idx(event);
5419 }
5420 
5421 static void calc_timer_values(struct perf_event *event,
5422 				u64 *now,
5423 				u64 *enabled,
5424 				u64 *running)
5425 {
5426 	u64 ctx_time;
5427 
5428 	*now = perf_clock();
5429 	ctx_time = event->shadow_ctx_time + *now;
5430 	__perf_update_times(event, ctx_time, enabled, running);
5431 }
5432 
5433 static void perf_event_init_userpage(struct perf_event *event)
5434 {
5435 	struct perf_event_mmap_page *userpg;
5436 	struct perf_buffer *rb;
5437 
5438 	rcu_read_lock();
5439 	rb = rcu_dereference(event->rb);
5440 	if (!rb)
5441 		goto unlock;
5442 
5443 	userpg = rb->user_page;
5444 
5445 	/* Allow new userspace to detect that bit 0 is deprecated */
5446 	userpg->cap_bit0_is_deprecated = 1;
5447 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5448 	userpg->data_offset = PAGE_SIZE;
5449 	userpg->data_size = perf_data_size(rb);
5450 
5451 unlock:
5452 	rcu_read_unlock();
5453 }
5454 
5455 void __weak arch_perf_update_userpage(
5456 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5457 {
5458 }
5459 
5460 /*
5461  * Callers need to ensure there can be no nesting of this function, otherwise
5462  * the seqlock logic goes bad. We can not serialize this because the arch
5463  * code calls this from NMI context.
5464  */
5465 void perf_event_update_userpage(struct perf_event *event)
5466 {
5467 	struct perf_event_mmap_page *userpg;
5468 	struct perf_buffer *rb;
5469 	u64 enabled, running, now;
5470 
5471 	rcu_read_lock();
5472 	rb = rcu_dereference(event->rb);
5473 	if (!rb)
5474 		goto unlock;
5475 
5476 	/*
5477 	 * compute total_time_enabled, total_time_running
5478 	 * based on snapshot values taken when the event
5479 	 * was last scheduled in.
5480 	 *
5481 	 * we cannot simply called update_context_time()
5482 	 * because of locking issue as we can be called in
5483 	 * NMI context
5484 	 */
5485 	calc_timer_values(event, &now, &enabled, &running);
5486 
5487 	userpg = rb->user_page;
5488 	/*
5489 	 * Disable preemption to guarantee consistent time stamps are stored to
5490 	 * the user page.
5491 	 */
5492 	preempt_disable();
5493 	++userpg->lock;
5494 	barrier();
5495 	userpg->index = perf_event_index(event);
5496 	userpg->offset = perf_event_count(event);
5497 	if (userpg->index)
5498 		userpg->offset -= local64_read(&event->hw.prev_count);
5499 
5500 	userpg->time_enabled = enabled +
5501 			atomic64_read(&event->child_total_time_enabled);
5502 
5503 	userpg->time_running = running +
5504 			atomic64_read(&event->child_total_time_running);
5505 
5506 	arch_perf_update_userpage(event, userpg, now);
5507 
5508 	barrier();
5509 	++userpg->lock;
5510 	preempt_enable();
5511 unlock:
5512 	rcu_read_unlock();
5513 }
5514 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5515 
5516 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
5517 {
5518 	struct perf_event *event = vmf->vma->vm_file->private_data;
5519 	struct perf_buffer *rb;
5520 	vm_fault_t ret = VM_FAULT_SIGBUS;
5521 
5522 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
5523 		if (vmf->pgoff == 0)
5524 			ret = 0;
5525 		return ret;
5526 	}
5527 
5528 	rcu_read_lock();
5529 	rb = rcu_dereference(event->rb);
5530 	if (!rb)
5531 		goto unlock;
5532 
5533 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5534 		goto unlock;
5535 
5536 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5537 	if (!vmf->page)
5538 		goto unlock;
5539 
5540 	get_page(vmf->page);
5541 	vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5542 	vmf->page->index   = vmf->pgoff;
5543 
5544 	ret = 0;
5545 unlock:
5546 	rcu_read_unlock();
5547 
5548 	return ret;
5549 }
5550 
5551 static void ring_buffer_attach(struct perf_event *event,
5552 			       struct perf_buffer *rb)
5553 {
5554 	struct perf_buffer *old_rb = NULL;
5555 	unsigned long flags;
5556 
5557 	if (event->rb) {
5558 		/*
5559 		 * Should be impossible, we set this when removing
5560 		 * event->rb_entry and wait/clear when adding event->rb_entry.
5561 		 */
5562 		WARN_ON_ONCE(event->rcu_pending);
5563 
5564 		old_rb = event->rb;
5565 		spin_lock_irqsave(&old_rb->event_lock, flags);
5566 		list_del_rcu(&event->rb_entry);
5567 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
5568 
5569 		event->rcu_batches = get_state_synchronize_rcu();
5570 		event->rcu_pending = 1;
5571 	}
5572 
5573 	if (rb) {
5574 		if (event->rcu_pending) {
5575 			cond_synchronize_rcu(event->rcu_batches);
5576 			event->rcu_pending = 0;
5577 		}
5578 
5579 		spin_lock_irqsave(&rb->event_lock, flags);
5580 		list_add_rcu(&event->rb_entry, &rb->event_list);
5581 		spin_unlock_irqrestore(&rb->event_lock, flags);
5582 	}
5583 
5584 	/*
5585 	 * Avoid racing with perf_mmap_close(AUX): stop the event
5586 	 * before swizzling the event::rb pointer; if it's getting
5587 	 * unmapped, its aux_mmap_count will be 0 and it won't
5588 	 * restart. See the comment in __perf_pmu_output_stop().
5589 	 *
5590 	 * Data will inevitably be lost when set_output is done in
5591 	 * mid-air, but then again, whoever does it like this is
5592 	 * not in for the data anyway.
5593 	 */
5594 	if (has_aux(event))
5595 		perf_event_stop(event, 0);
5596 
5597 	rcu_assign_pointer(event->rb, rb);
5598 
5599 	if (old_rb) {
5600 		ring_buffer_put(old_rb);
5601 		/*
5602 		 * Since we detached before setting the new rb, so that we
5603 		 * could attach the new rb, we could have missed a wakeup.
5604 		 * Provide it now.
5605 		 */
5606 		wake_up_all(&event->waitq);
5607 	}
5608 }
5609 
5610 static void ring_buffer_wakeup(struct perf_event *event)
5611 {
5612 	struct perf_buffer *rb;
5613 
5614 	rcu_read_lock();
5615 	rb = rcu_dereference(event->rb);
5616 	if (rb) {
5617 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5618 			wake_up_all(&event->waitq);
5619 	}
5620 	rcu_read_unlock();
5621 }
5622 
5623 struct perf_buffer *ring_buffer_get(struct perf_event *event)
5624 {
5625 	struct perf_buffer *rb;
5626 
5627 	rcu_read_lock();
5628 	rb = rcu_dereference(event->rb);
5629 	if (rb) {
5630 		if (!refcount_inc_not_zero(&rb->refcount))
5631 			rb = NULL;
5632 	}
5633 	rcu_read_unlock();
5634 
5635 	return rb;
5636 }
5637 
5638 void ring_buffer_put(struct perf_buffer *rb)
5639 {
5640 	if (!refcount_dec_and_test(&rb->refcount))
5641 		return;
5642 
5643 	WARN_ON_ONCE(!list_empty(&rb->event_list));
5644 
5645 	call_rcu(&rb->rcu_head, rb_free_rcu);
5646 }
5647 
5648 static void perf_mmap_open(struct vm_area_struct *vma)
5649 {
5650 	struct perf_event *event = vma->vm_file->private_data;
5651 
5652 	atomic_inc(&event->mmap_count);
5653 	atomic_inc(&event->rb->mmap_count);
5654 
5655 	if (vma->vm_pgoff)
5656 		atomic_inc(&event->rb->aux_mmap_count);
5657 
5658 	if (event->pmu->event_mapped)
5659 		event->pmu->event_mapped(event, vma->vm_mm);
5660 }
5661 
5662 static void perf_pmu_output_stop(struct perf_event *event);
5663 
5664 /*
5665  * A buffer can be mmap()ed multiple times; either directly through the same
5666  * event, or through other events by use of perf_event_set_output().
5667  *
5668  * In order to undo the VM accounting done by perf_mmap() we need to destroy
5669  * the buffer here, where we still have a VM context. This means we need
5670  * to detach all events redirecting to us.
5671  */
5672 static void perf_mmap_close(struct vm_area_struct *vma)
5673 {
5674 	struct perf_event *event = vma->vm_file->private_data;
5675 
5676 	struct perf_buffer *rb = ring_buffer_get(event);
5677 	struct user_struct *mmap_user = rb->mmap_user;
5678 	int mmap_locked = rb->mmap_locked;
5679 	unsigned long size = perf_data_size(rb);
5680 
5681 	if (event->pmu->event_unmapped)
5682 		event->pmu->event_unmapped(event, vma->vm_mm);
5683 
5684 	/*
5685 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
5686 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
5687 	 * serialize with perf_mmap here.
5688 	 */
5689 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5690 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5691 		/*
5692 		 * Stop all AUX events that are writing to this buffer,
5693 		 * so that we can free its AUX pages and corresponding PMU
5694 		 * data. Note that after rb::aux_mmap_count dropped to zero,
5695 		 * they won't start any more (see perf_aux_output_begin()).
5696 		 */
5697 		perf_pmu_output_stop(event);
5698 
5699 		/* now it's safe to free the pages */
5700 		atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
5701 		atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
5702 
5703 		/* this has to be the last one */
5704 		rb_free_aux(rb);
5705 		WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
5706 
5707 		mutex_unlock(&event->mmap_mutex);
5708 	}
5709 
5710 	atomic_dec(&rb->mmap_count);
5711 
5712 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5713 		goto out_put;
5714 
5715 	ring_buffer_attach(event, NULL);
5716 	mutex_unlock(&event->mmap_mutex);
5717 
5718 	/* If there's still other mmap()s of this buffer, we're done. */
5719 	if (atomic_read(&rb->mmap_count))
5720 		goto out_put;
5721 
5722 	/*
5723 	 * No other mmap()s, detach from all other events that might redirect
5724 	 * into the now unreachable buffer. Somewhat complicated by the
5725 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5726 	 */
5727 again:
5728 	rcu_read_lock();
5729 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5730 		if (!atomic_long_inc_not_zero(&event->refcount)) {
5731 			/*
5732 			 * This event is en-route to free_event() which will
5733 			 * detach it and remove it from the list.
5734 			 */
5735 			continue;
5736 		}
5737 		rcu_read_unlock();
5738 
5739 		mutex_lock(&event->mmap_mutex);
5740 		/*
5741 		 * Check we didn't race with perf_event_set_output() which can
5742 		 * swizzle the rb from under us while we were waiting to
5743 		 * acquire mmap_mutex.
5744 		 *
5745 		 * If we find a different rb; ignore this event, a next
5746 		 * iteration will no longer find it on the list. We have to
5747 		 * still restart the iteration to make sure we're not now
5748 		 * iterating the wrong list.
5749 		 */
5750 		if (event->rb == rb)
5751 			ring_buffer_attach(event, NULL);
5752 
5753 		mutex_unlock(&event->mmap_mutex);
5754 		put_event(event);
5755 
5756 		/*
5757 		 * Restart the iteration; either we're on the wrong list or
5758 		 * destroyed its integrity by doing a deletion.
5759 		 */
5760 		goto again;
5761 	}
5762 	rcu_read_unlock();
5763 
5764 	/*
5765 	 * It could be there's still a few 0-ref events on the list; they'll
5766 	 * get cleaned up by free_event() -- they'll also still have their
5767 	 * ref on the rb and will free it whenever they are done with it.
5768 	 *
5769 	 * Aside from that, this buffer is 'fully' detached and unmapped,
5770 	 * undo the VM accounting.
5771 	 */
5772 
5773 	atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
5774 			&mmap_user->locked_vm);
5775 	atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
5776 	free_uid(mmap_user);
5777 
5778 out_put:
5779 	ring_buffer_put(rb); /* could be last */
5780 }
5781 
5782 static const struct vm_operations_struct perf_mmap_vmops = {
5783 	.open		= perf_mmap_open,
5784 	.close		= perf_mmap_close, /* non mergeable */
5785 	.fault		= perf_mmap_fault,
5786 	.page_mkwrite	= perf_mmap_fault,
5787 };
5788 
5789 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5790 {
5791 	struct perf_event *event = file->private_data;
5792 	unsigned long user_locked, user_lock_limit;
5793 	struct user_struct *user = current_user();
5794 	struct perf_buffer *rb = NULL;
5795 	unsigned long locked, lock_limit;
5796 	unsigned long vma_size;
5797 	unsigned long nr_pages;
5798 	long user_extra = 0, extra = 0;
5799 	int ret = 0, flags = 0;
5800 
5801 	/*
5802 	 * Don't allow mmap() of inherited per-task counters. This would
5803 	 * create a performance issue due to all children writing to the
5804 	 * same rb.
5805 	 */
5806 	if (event->cpu == -1 && event->attr.inherit)
5807 		return -EINVAL;
5808 
5809 	if (!(vma->vm_flags & VM_SHARED))
5810 		return -EINVAL;
5811 
5812 	ret = security_perf_event_read(event);
5813 	if (ret)
5814 		return ret;
5815 
5816 	vma_size = vma->vm_end - vma->vm_start;
5817 
5818 	if (vma->vm_pgoff == 0) {
5819 		nr_pages = (vma_size / PAGE_SIZE) - 1;
5820 	} else {
5821 		/*
5822 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5823 		 * mapped, all subsequent mappings should have the same size
5824 		 * and offset. Must be above the normal perf buffer.
5825 		 */
5826 		u64 aux_offset, aux_size;
5827 
5828 		if (!event->rb)
5829 			return -EINVAL;
5830 
5831 		nr_pages = vma_size / PAGE_SIZE;
5832 
5833 		mutex_lock(&event->mmap_mutex);
5834 		ret = -EINVAL;
5835 
5836 		rb = event->rb;
5837 		if (!rb)
5838 			goto aux_unlock;
5839 
5840 		aux_offset = READ_ONCE(rb->user_page->aux_offset);
5841 		aux_size = READ_ONCE(rb->user_page->aux_size);
5842 
5843 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5844 			goto aux_unlock;
5845 
5846 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5847 			goto aux_unlock;
5848 
5849 		/* already mapped with a different offset */
5850 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5851 			goto aux_unlock;
5852 
5853 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5854 			goto aux_unlock;
5855 
5856 		/* already mapped with a different size */
5857 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5858 			goto aux_unlock;
5859 
5860 		if (!is_power_of_2(nr_pages))
5861 			goto aux_unlock;
5862 
5863 		if (!atomic_inc_not_zero(&rb->mmap_count))
5864 			goto aux_unlock;
5865 
5866 		if (rb_has_aux(rb)) {
5867 			atomic_inc(&rb->aux_mmap_count);
5868 			ret = 0;
5869 			goto unlock;
5870 		}
5871 
5872 		atomic_set(&rb->aux_mmap_count, 1);
5873 		user_extra = nr_pages;
5874 
5875 		goto accounting;
5876 	}
5877 
5878 	/*
5879 	 * If we have rb pages ensure they're a power-of-two number, so we
5880 	 * can do bitmasks instead of modulo.
5881 	 */
5882 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
5883 		return -EINVAL;
5884 
5885 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
5886 		return -EINVAL;
5887 
5888 	WARN_ON_ONCE(event->ctx->parent_ctx);
5889 again:
5890 	mutex_lock(&event->mmap_mutex);
5891 	if (event->rb) {
5892 		if (event->rb->nr_pages != nr_pages) {
5893 			ret = -EINVAL;
5894 			goto unlock;
5895 		}
5896 
5897 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5898 			/*
5899 			 * Raced against perf_mmap_close() through
5900 			 * perf_event_set_output(). Try again, hope for better
5901 			 * luck.
5902 			 */
5903 			mutex_unlock(&event->mmap_mutex);
5904 			goto again;
5905 		}
5906 
5907 		goto unlock;
5908 	}
5909 
5910 	user_extra = nr_pages + 1;
5911 
5912 accounting:
5913 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5914 
5915 	/*
5916 	 * Increase the limit linearly with more CPUs:
5917 	 */
5918 	user_lock_limit *= num_online_cpus();
5919 
5920 	user_locked = atomic_long_read(&user->locked_vm);
5921 
5922 	/*
5923 	 * sysctl_perf_event_mlock may have changed, so that
5924 	 *     user->locked_vm > user_lock_limit
5925 	 */
5926 	if (user_locked > user_lock_limit)
5927 		user_locked = user_lock_limit;
5928 	user_locked += user_extra;
5929 
5930 	if (user_locked > user_lock_limit) {
5931 		/*
5932 		 * charge locked_vm until it hits user_lock_limit;
5933 		 * charge the rest from pinned_vm
5934 		 */
5935 		extra = user_locked - user_lock_limit;
5936 		user_extra -= extra;
5937 	}
5938 
5939 	lock_limit = rlimit(RLIMIT_MEMLOCK);
5940 	lock_limit >>= PAGE_SHIFT;
5941 	locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
5942 
5943 	if ((locked > lock_limit) && perf_is_paranoid() &&
5944 		!capable(CAP_IPC_LOCK)) {
5945 		ret = -EPERM;
5946 		goto unlock;
5947 	}
5948 
5949 	WARN_ON(!rb && event->rb);
5950 
5951 	if (vma->vm_flags & VM_WRITE)
5952 		flags |= RING_BUFFER_WRITABLE;
5953 
5954 	if (!rb) {
5955 		rb = rb_alloc(nr_pages,
5956 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
5957 			      event->cpu, flags);
5958 
5959 		if (!rb) {
5960 			ret = -ENOMEM;
5961 			goto unlock;
5962 		}
5963 
5964 		atomic_set(&rb->mmap_count, 1);
5965 		rb->mmap_user = get_current_user();
5966 		rb->mmap_locked = extra;
5967 
5968 		ring_buffer_attach(event, rb);
5969 
5970 		perf_event_init_userpage(event);
5971 		perf_event_update_userpage(event);
5972 	} else {
5973 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5974 				   event->attr.aux_watermark, flags);
5975 		if (!ret)
5976 			rb->aux_mmap_locked = extra;
5977 	}
5978 
5979 unlock:
5980 	if (!ret) {
5981 		atomic_long_add(user_extra, &user->locked_vm);
5982 		atomic64_add(extra, &vma->vm_mm->pinned_vm);
5983 
5984 		atomic_inc(&event->mmap_count);
5985 	} else if (rb) {
5986 		atomic_dec(&rb->mmap_count);
5987 	}
5988 aux_unlock:
5989 	mutex_unlock(&event->mmap_mutex);
5990 
5991 	/*
5992 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
5993 	 * vma.
5994 	 */
5995 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5996 	vma->vm_ops = &perf_mmap_vmops;
5997 
5998 	if (event->pmu->event_mapped)
5999 		event->pmu->event_mapped(event, vma->vm_mm);
6000 
6001 	return ret;
6002 }
6003 
6004 static int perf_fasync(int fd, struct file *filp, int on)
6005 {
6006 	struct inode *inode = file_inode(filp);
6007 	struct perf_event *event = filp->private_data;
6008 	int retval;
6009 
6010 	inode_lock(inode);
6011 	retval = fasync_helper(fd, filp, on, &event->fasync);
6012 	inode_unlock(inode);
6013 
6014 	if (retval < 0)
6015 		return retval;
6016 
6017 	return 0;
6018 }
6019 
6020 static const struct file_operations perf_fops = {
6021 	.llseek			= no_llseek,
6022 	.release		= perf_release,
6023 	.read			= perf_read,
6024 	.poll			= perf_poll,
6025 	.unlocked_ioctl		= perf_ioctl,
6026 	.compat_ioctl		= perf_compat_ioctl,
6027 	.mmap			= perf_mmap,
6028 	.fasync			= perf_fasync,
6029 };
6030 
6031 /*
6032  * Perf event wakeup
6033  *
6034  * If there's data, ensure we set the poll() state and publish everything
6035  * to user-space before waking everybody up.
6036  */
6037 
6038 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
6039 {
6040 	/* only the parent has fasync state */
6041 	if (event->parent)
6042 		event = event->parent;
6043 	return &event->fasync;
6044 }
6045 
6046 void perf_event_wakeup(struct perf_event *event)
6047 {
6048 	ring_buffer_wakeup(event);
6049 
6050 	if (event->pending_kill) {
6051 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6052 		event->pending_kill = 0;
6053 	}
6054 }
6055 
6056 static void perf_pending_event_disable(struct perf_event *event)
6057 {
6058 	int cpu = READ_ONCE(event->pending_disable);
6059 
6060 	if (cpu < 0)
6061 		return;
6062 
6063 	if (cpu == smp_processor_id()) {
6064 		WRITE_ONCE(event->pending_disable, -1);
6065 		perf_event_disable_local(event);
6066 		return;
6067 	}
6068 
6069 	/*
6070 	 *  CPU-A			CPU-B
6071 	 *
6072 	 *  perf_event_disable_inatomic()
6073 	 *    @pending_disable = CPU-A;
6074 	 *    irq_work_queue();
6075 	 *
6076 	 *  sched-out
6077 	 *    @pending_disable = -1;
6078 	 *
6079 	 *				sched-in
6080 	 *				perf_event_disable_inatomic()
6081 	 *				  @pending_disable = CPU-B;
6082 	 *				  irq_work_queue(); // FAILS
6083 	 *
6084 	 *  irq_work_run()
6085 	 *    perf_pending_event()
6086 	 *
6087 	 * But the event runs on CPU-B and wants disabling there.
6088 	 */
6089 	irq_work_queue_on(&event->pending, cpu);
6090 }
6091 
6092 static void perf_pending_event(struct irq_work *entry)
6093 {
6094 	struct perf_event *event = container_of(entry, struct perf_event, pending);
6095 	int rctx;
6096 
6097 	rctx = perf_swevent_get_recursion_context();
6098 	/*
6099 	 * If we 'fail' here, that's OK, it means recursion is already disabled
6100 	 * and we won't recurse 'further'.
6101 	 */
6102 
6103 	perf_pending_event_disable(event);
6104 
6105 	if (event->pending_wakeup) {
6106 		event->pending_wakeup = 0;
6107 		perf_event_wakeup(event);
6108 	}
6109 
6110 	if (rctx >= 0)
6111 		perf_swevent_put_recursion_context(rctx);
6112 }
6113 
6114 /*
6115  * We assume there is only KVM supporting the callbacks.
6116  * Later on, we might change it to a list if there is
6117  * another virtualization implementation supporting the callbacks.
6118  */
6119 struct perf_guest_info_callbacks *perf_guest_cbs;
6120 
6121 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6122 {
6123 	perf_guest_cbs = cbs;
6124 	return 0;
6125 }
6126 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6127 
6128 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6129 {
6130 	perf_guest_cbs = NULL;
6131 	return 0;
6132 }
6133 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6134 
6135 static void
6136 perf_output_sample_regs(struct perf_output_handle *handle,
6137 			struct pt_regs *regs, u64 mask)
6138 {
6139 	int bit;
6140 	DECLARE_BITMAP(_mask, 64);
6141 
6142 	bitmap_from_u64(_mask, mask);
6143 	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6144 		u64 val;
6145 
6146 		val = perf_reg_value(regs, bit);
6147 		perf_output_put(handle, val);
6148 	}
6149 }
6150 
6151 static void perf_sample_regs_user(struct perf_regs *regs_user,
6152 				  struct pt_regs *regs,
6153 				  struct pt_regs *regs_user_copy)
6154 {
6155 	if (user_mode(regs)) {
6156 		regs_user->abi = perf_reg_abi(current);
6157 		regs_user->regs = regs;
6158 	} else if (!(current->flags & PF_KTHREAD)) {
6159 		perf_get_regs_user(regs_user, regs, regs_user_copy);
6160 	} else {
6161 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6162 		regs_user->regs = NULL;
6163 	}
6164 }
6165 
6166 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6167 				  struct pt_regs *regs)
6168 {
6169 	regs_intr->regs = regs;
6170 	regs_intr->abi  = perf_reg_abi(current);
6171 }
6172 
6173 
6174 /*
6175  * Get remaining task size from user stack pointer.
6176  *
6177  * It'd be better to take stack vma map and limit this more
6178  * precisely, but there's no way to get it safely under interrupt,
6179  * so using TASK_SIZE as limit.
6180  */
6181 static u64 perf_ustack_task_size(struct pt_regs *regs)
6182 {
6183 	unsigned long addr = perf_user_stack_pointer(regs);
6184 
6185 	if (!addr || addr >= TASK_SIZE)
6186 		return 0;
6187 
6188 	return TASK_SIZE - addr;
6189 }
6190 
6191 static u16
6192 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6193 			struct pt_regs *regs)
6194 {
6195 	u64 task_size;
6196 
6197 	/* No regs, no stack pointer, no dump. */
6198 	if (!regs)
6199 		return 0;
6200 
6201 	/*
6202 	 * Check if we fit in with the requested stack size into the:
6203 	 * - TASK_SIZE
6204 	 *   If we don't, we limit the size to the TASK_SIZE.
6205 	 *
6206 	 * - remaining sample size
6207 	 *   If we don't, we customize the stack size to
6208 	 *   fit in to the remaining sample size.
6209 	 */
6210 
6211 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6212 	stack_size = min(stack_size, (u16) task_size);
6213 
6214 	/* Current header size plus static size and dynamic size. */
6215 	header_size += 2 * sizeof(u64);
6216 
6217 	/* Do we fit in with the current stack dump size? */
6218 	if ((u16) (header_size + stack_size) < header_size) {
6219 		/*
6220 		 * If we overflow the maximum size for the sample,
6221 		 * we customize the stack dump size to fit in.
6222 		 */
6223 		stack_size = USHRT_MAX - header_size - sizeof(u64);
6224 		stack_size = round_up(stack_size, sizeof(u64));
6225 	}
6226 
6227 	return stack_size;
6228 }
6229 
6230 static void
6231 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6232 			  struct pt_regs *regs)
6233 {
6234 	/* Case of a kernel thread, nothing to dump */
6235 	if (!regs) {
6236 		u64 size = 0;
6237 		perf_output_put(handle, size);
6238 	} else {
6239 		unsigned long sp;
6240 		unsigned int rem;
6241 		u64 dyn_size;
6242 		mm_segment_t fs;
6243 
6244 		/*
6245 		 * We dump:
6246 		 * static size
6247 		 *   - the size requested by user or the best one we can fit
6248 		 *     in to the sample max size
6249 		 * data
6250 		 *   - user stack dump data
6251 		 * dynamic size
6252 		 *   - the actual dumped size
6253 		 */
6254 
6255 		/* Static size. */
6256 		perf_output_put(handle, dump_size);
6257 
6258 		/* Data. */
6259 		sp = perf_user_stack_pointer(regs);
6260 		fs = get_fs();
6261 		set_fs(USER_DS);
6262 		rem = __output_copy_user(handle, (void *) sp, dump_size);
6263 		set_fs(fs);
6264 		dyn_size = dump_size - rem;
6265 
6266 		perf_output_skip(handle, rem);
6267 
6268 		/* Dynamic size. */
6269 		perf_output_put(handle, dyn_size);
6270 	}
6271 }
6272 
6273 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
6274 					  struct perf_sample_data *data,
6275 					  size_t size)
6276 {
6277 	struct perf_event *sampler = event->aux_event;
6278 	struct perf_buffer *rb;
6279 
6280 	data->aux_size = 0;
6281 
6282 	if (!sampler)
6283 		goto out;
6284 
6285 	if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
6286 		goto out;
6287 
6288 	if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
6289 		goto out;
6290 
6291 	rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6292 	if (!rb)
6293 		goto out;
6294 
6295 	/*
6296 	 * If this is an NMI hit inside sampling code, don't take
6297 	 * the sample. See also perf_aux_sample_output().
6298 	 */
6299 	if (READ_ONCE(rb->aux_in_sampling)) {
6300 		data->aux_size = 0;
6301 	} else {
6302 		size = min_t(size_t, size, perf_aux_size(rb));
6303 		data->aux_size = ALIGN(size, sizeof(u64));
6304 	}
6305 	ring_buffer_put(rb);
6306 
6307 out:
6308 	return data->aux_size;
6309 }
6310 
6311 long perf_pmu_snapshot_aux(struct perf_buffer *rb,
6312 			   struct perf_event *event,
6313 			   struct perf_output_handle *handle,
6314 			   unsigned long size)
6315 {
6316 	unsigned long flags;
6317 	long ret;
6318 
6319 	/*
6320 	 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
6321 	 * paths. If we start calling them in NMI context, they may race with
6322 	 * the IRQ ones, that is, for example, re-starting an event that's just
6323 	 * been stopped, which is why we're using a separate callback that
6324 	 * doesn't change the event state.
6325 	 *
6326 	 * IRQs need to be disabled to prevent IPIs from racing with us.
6327 	 */
6328 	local_irq_save(flags);
6329 	/*
6330 	 * Guard against NMI hits inside the critical section;
6331 	 * see also perf_prepare_sample_aux().
6332 	 */
6333 	WRITE_ONCE(rb->aux_in_sampling, 1);
6334 	barrier();
6335 
6336 	ret = event->pmu->snapshot_aux(event, handle, size);
6337 
6338 	barrier();
6339 	WRITE_ONCE(rb->aux_in_sampling, 0);
6340 	local_irq_restore(flags);
6341 
6342 	return ret;
6343 }
6344 
6345 static void perf_aux_sample_output(struct perf_event *event,
6346 				   struct perf_output_handle *handle,
6347 				   struct perf_sample_data *data)
6348 {
6349 	struct perf_event *sampler = event->aux_event;
6350 	struct perf_buffer *rb;
6351 	unsigned long pad;
6352 	long size;
6353 
6354 	if (WARN_ON_ONCE(!sampler || !data->aux_size))
6355 		return;
6356 
6357 	rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6358 	if (!rb)
6359 		return;
6360 
6361 	size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
6362 
6363 	/*
6364 	 * An error here means that perf_output_copy() failed (returned a
6365 	 * non-zero surplus that it didn't copy), which in its current
6366 	 * enlightened implementation is not possible. If that changes, we'd
6367 	 * like to know.
6368 	 */
6369 	if (WARN_ON_ONCE(size < 0))
6370 		goto out_put;
6371 
6372 	/*
6373 	 * The pad comes from ALIGN()ing data->aux_size up to u64 in
6374 	 * perf_prepare_sample_aux(), so should not be more than that.
6375 	 */
6376 	pad = data->aux_size - size;
6377 	if (WARN_ON_ONCE(pad >= sizeof(u64)))
6378 		pad = 8;
6379 
6380 	if (pad) {
6381 		u64 zero = 0;
6382 		perf_output_copy(handle, &zero, pad);
6383 	}
6384 
6385 out_put:
6386 	ring_buffer_put(rb);
6387 }
6388 
6389 static void __perf_event_header__init_id(struct perf_event_header *header,
6390 					 struct perf_sample_data *data,
6391 					 struct perf_event *event)
6392 {
6393 	u64 sample_type = event->attr.sample_type;
6394 
6395 	data->type = sample_type;
6396 	header->size += event->id_header_size;
6397 
6398 	if (sample_type & PERF_SAMPLE_TID) {
6399 		/* namespace issues */
6400 		data->tid_entry.pid = perf_event_pid(event, current);
6401 		data->tid_entry.tid = perf_event_tid(event, current);
6402 	}
6403 
6404 	if (sample_type & PERF_SAMPLE_TIME)
6405 		data->time = perf_event_clock(event);
6406 
6407 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6408 		data->id = primary_event_id(event);
6409 
6410 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6411 		data->stream_id = event->id;
6412 
6413 	if (sample_type & PERF_SAMPLE_CPU) {
6414 		data->cpu_entry.cpu	 = raw_smp_processor_id();
6415 		data->cpu_entry.reserved = 0;
6416 	}
6417 }
6418 
6419 void perf_event_header__init_id(struct perf_event_header *header,
6420 				struct perf_sample_data *data,
6421 				struct perf_event *event)
6422 {
6423 	if (event->attr.sample_id_all)
6424 		__perf_event_header__init_id(header, data, event);
6425 }
6426 
6427 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6428 					   struct perf_sample_data *data)
6429 {
6430 	u64 sample_type = data->type;
6431 
6432 	if (sample_type & PERF_SAMPLE_TID)
6433 		perf_output_put(handle, data->tid_entry);
6434 
6435 	if (sample_type & PERF_SAMPLE_TIME)
6436 		perf_output_put(handle, data->time);
6437 
6438 	if (sample_type & PERF_SAMPLE_ID)
6439 		perf_output_put(handle, data->id);
6440 
6441 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6442 		perf_output_put(handle, data->stream_id);
6443 
6444 	if (sample_type & PERF_SAMPLE_CPU)
6445 		perf_output_put(handle, data->cpu_entry);
6446 
6447 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
6448 		perf_output_put(handle, data->id);
6449 }
6450 
6451 void perf_event__output_id_sample(struct perf_event *event,
6452 				  struct perf_output_handle *handle,
6453 				  struct perf_sample_data *sample)
6454 {
6455 	if (event->attr.sample_id_all)
6456 		__perf_event__output_id_sample(handle, sample);
6457 }
6458 
6459 static void perf_output_read_one(struct perf_output_handle *handle,
6460 				 struct perf_event *event,
6461 				 u64 enabled, u64 running)
6462 {
6463 	u64 read_format = event->attr.read_format;
6464 	u64 values[4];
6465 	int n = 0;
6466 
6467 	values[n++] = perf_event_count(event);
6468 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6469 		values[n++] = enabled +
6470 			atomic64_read(&event->child_total_time_enabled);
6471 	}
6472 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6473 		values[n++] = running +
6474 			atomic64_read(&event->child_total_time_running);
6475 	}
6476 	if (read_format & PERF_FORMAT_ID)
6477 		values[n++] = primary_event_id(event);
6478 
6479 	__output_copy(handle, values, n * sizeof(u64));
6480 }
6481 
6482 static void perf_output_read_group(struct perf_output_handle *handle,
6483 			    struct perf_event *event,
6484 			    u64 enabled, u64 running)
6485 {
6486 	struct perf_event *leader = event->group_leader, *sub;
6487 	u64 read_format = event->attr.read_format;
6488 	u64 values[5];
6489 	int n = 0;
6490 
6491 	values[n++] = 1 + leader->nr_siblings;
6492 
6493 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6494 		values[n++] = enabled;
6495 
6496 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6497 		values[n++] = running;
6498 
6499 	if ((leader != event) &&
6500 	    (leader->state == PERF_EVENT_STATE_ACTIVE))
6501 		leader->pmu->read(leader);
6502 
6503 	values[n++] = perf_event_count(leader);
6504 	if (read_format & PERF_FORMAT_ID)
6505 		values[n++] = primary_event_id(leader);
6506 
6507 	__output_copy(handle, values, n * sizeof(u64));
6508 
6509 	for_each_sibling_event(sub, leader) {
6510 		n = 0;
6511 
6512 		if ((sub != event) &&
6513 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
6514 			sub->pmu->read(sub);
6515 
6516 		values[n++] = perf_event_count(sub);
6517 		if (read_format & PERF_FORMAT_ID)
6518 			values[n++] = primary_event_id(sub);
6519 
6520 		__output_copy(handle, values, n * sizeof(u64));
6521 	}
6522 }
6523 
6524 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6525 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
6526 
6527 /*
6528  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6529  *
6530  * The problem is that its both hard and excessively expensive to iterate the
6531  * child list, not to mention that its impossible to IPI the children running
6532  * on another CPU, from interrupt/NMI context.
6533  */
6534 static void perf_output_read(struct perf_output_handle *handle,
6535 			     struct perf_event *event)
6536 {
6537 	u64 enabled = 0, running = 0, now;
6538 	u64 read_format = event->attr.read_format;
6539 
6540 	/*
6541 	 * compute total_time_enabled, total_time_running
6542 	 * based on snapshot values taken when the event
6543 	 * was last scheduled in.
6544 	 *
6545 	 * we cannot simply called update_context_time()
6546 	 * because of locking issue as we are called in
6547 	 * NMI context
6548 	 */
6549 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
6550 		calc_timer_values(event, &now, &enabled, &running);
6551 
6552 	if (event->attr.read_format & PERF_FORMAT_GROUP)
6553 		perf_output_read_group(handle, event, enabled, running);
6554 	else
6555 		perf_output_read_one(handle, event, enabled, running);
6556 }
6557 
6558 void perf_output_sample(struct perf_output_handle *handle,
6559 			struct perf_event_header *header,
6560 			struct perf_sample_data *data,
6561 			struct perf_event *event)
6562 {
6563 	u64 sample_type = data->type;
6564 
6565 	perf_output_put(handle, *header);
6566 
6567 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
6568 		perf_output_put(handle, data->id);
6569 
6570 	if (sample_type & PERF_SAMPLE_IP)
6571 		perf_output_put(handle, data->ip);
6572 
6573 	if (sample_type & PERF_SAMPLE_TID)
6574 		perf_output_put(handle, data->tid_entry);
6575 
6576 	if (sample_type & PERF_SAMPLE_TIME)
6577 		perf_output_put(handle, data->time);
6578 
6579 	if (sample_type & PERF_SAMPLE_ADDR)
6580 		perf_output_put(handle, data->addr);
6581 
6582 	if (sample_type & PERF_SAMPLE_ID)
6583 		perf_output_put(handle, data->id);
6584 
6585 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6586 		perf_output_put(handle, data->stream_id);
6587 
6588 	if (sample_type & PERF_SAMPLE_CPU)
6589 		perf_output_put(handle, data->cpu_entry);
6590 
6591 	if (sample_type & PERF_SAMPLE_PERIOD)
6592 		perf_output_put(handle, data->period);
6593 
6594 	if (sample_type & PERF_SAMPLE_READ)
6595 		perf_output_read(handle, event);
6596 
6597 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6598 		int size = 1;
6599 
6600 		size += data->callchain->nr;
6601 		size *= sizeof(u64);
6602 		__output_copy(handle, data->callchain, size);
6603 	}
6604 
6605 	if (sample_type & PERF_SAMPLE_RAW) {
6606 		struct perf_raw_record *raw = data->raw;
6607 
6608 		if (raw) {
6609 			struct perf_raw_frag *frag = &raw->frag;
6610 
6611 			perf_output_put(handle, raw->size);
6612 			do {
6613 				if (frag->copy) {
6614 					__output_custom(handle, frag->copy,
6615 							frag->data, frag->size);
6616 				} else {
6617 					__output_copy(handle, frag->data,
6618 						      frag->size);
6619 				}
6620 				if (perf_raw_frag_last(frag))
6621 					break;
6622 				frag = frag->next;
6623 			} while (1);
6624 			if (frag->pad)
6625 				__output_skip(handle, NULL, frag->pad);
6626 		} else {
6627 			struct {
6628 				u32	size;
6629 				u32	data;
6630 			} raw = {
6631 				.size = sizeof(u32),
6632 				.data = 0,
6633 			};
6634 			perf_output_put(handle, raw);
6635 		}
6636 	}
6637 
6638 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6639 		if (data->br_stack) {
6640 			size_t size;
6641 
6642 			size = data->br_stack->nr
6643 			     * sizeof(struct perf_branch_entry);
6644 
6645 			perf_output_put(handle, data->br_stack->nr);
6646 			perf_output_copy(handle, data->br_stack->entries, size);
6647 		} else {
6648 			/*
6649 			 * we always store at least the value of nr
6650 			 */
6651 			u64 nr = 0;
6652 			perf_output_put(handle, nr);
6653 		}
6654 	}
6655 
6656 	if (sample_type & PERF_SAMPLE_REGS_USER) {
6657 		u64 abi = data->regs_user.abi;
6658 
6659 		/*
6660 		 * If there are no regs to dump, notice it through
6661 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6662 		 */
6663 		perf_output_put(handle, abi);
6664 
6665 		if (abi) {
6666 			u64 mask = event->attr.sample_regs_user;
6667 			perf_output_sample_regs(handle,
6668 						data->regs_user.regs,
6669 						mask);
6670 		}
6671 	}
6672 
6673 	if (sample_type & PERF_SAMPLE_STACK_USER) {
6674 		perf_output_sample_ustack(handle,
6675 					  data->stack_user_size,
6676 					  data->regs_user.regs);
6677 	}
6678 
6679 	if (sample_type & PERF_SAMPLE_WEIGHT)
6680 		perf_output_put(handle, data->weight);
6681 
6682 	if (sample_type & PERF_SAMPLE_DATA_SRC)
6683 		perf_output_put(handle, data->data_src.val);
6684 
6685 	if (sample_type & PERF_SAMPLE_TRANSACTION)
6686 		perf_output_put(handle, data->txn);
6687 
6688 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
6689 		u64 abi = data->regs_intr.abi;
6690 		/*
6691 		 * If there are no regs to dump, notice it through
6692 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6693 		 */
6694 		perf_output_put(handle, abi);
6695 
6696 		if (abi) {
6697 			u64 mask = event->attr.sample_regs_intr;
6698 
6699 			perf_output_sample_regs(handle,
6700 						data->regs_intr.regs,
6701 						mask);
6702 		}
6703 	}
6704 
6705 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6706 		perf_output_put(handle, data->phys_addr);
6707 
6708 	if (sample_type & PERF_SAMPLE_AUX) {
6709 		perf_output_put(handle, data->aux_size);
6710 
6711 		if (data->aux_size)
6712 			perf_aux_sample_output(event, handle, data);
6713 	}
6714 
6715 	if (!event->attr.watermark) {
6716 		int wakeup_events = event->attr.wakeup_events;
6717 
6718 		if (wakeup_events) {
6719 			struct perf_buffer *rb = handle->rb;
6720 			int events = local_inc_return(&rb->events);
6721 
6722 			if (events >= wakeup_events) {
6723 				local_sub(wakeup_events, &rb->events);
6724 				local_inc(&rb->wakeup);
6725 			}
6726 		}
6727 	}
6728 }
6729 
6730 static u64 perf_virt_to_phys(u64 virt)
6731 {
6732 	u64 phys_addr = 0;
6733 	struct page *p = NULL;
6734 
6735 	if (!virt)
6736 		return 0;
6737 
6738 	if (virt >= TASK_SIZE) {
6739 		/* If it's vmalloc()d memory, leave phys_addr as 0 */
6740 		if (virt_addr_valid((void *)(uintptr_t)virt) &&
6741 		    !(virt >= VMALLOC_START && virt < VMALLOC_END))
6742 			phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6743 	} else {
6744 		/*
6745 		 * Walking the pages tables for user address.
6746 		 * Interrupts are disabled, so it prevents any tear down
6747 		 * of the page tables.
6748 		 * Try IRQ-safe __get_user_pages_fast first.
6749 		 * If failed, leave phys_addr as 0.
6750 		 */
6751 		if ((current->mm != NULL) &&
6752 		    (__get_user_pages_fast(virt, 1, 0, &p) == 1))
6753 			phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6754 
6755 		if (p)
6756 			put_page(p);
6757 	}
6758 
6759 	return phys_addr;
6760 }
6761 
6762 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
6763 
6764 struct perf_callchain_entry *
6765 perf_callchain(struct perf_event *event, struct pt_regs *regs)
6766 {
6767 	bool kernel = !event->attr.exclude_callchain_kernel;
6768 	bool user   = !event->attr.exclude_callchain_user;
6769 	/* Disallow cross-task user callchains. */
6770 	bool crosstask = event->ctx->task && event->ctx->task != current;
6771 	const u32 max_stack = event->attr.sample_max_stack;
6772 	struct perf_callchain_entry *callchain;
6773 
6774 	if (!kernel && !user)
6775 		return &__empty_callchain;
6776 
6777 	callchain = get_perf_callchain(regs, 0, kernel, user,
6778 				       max_stack, crosstask, true);
6779 	return callchain ?: &__empty_callchain;
6780 }
6781 
6782 void perf_prepare_sample(struct perf_event_header *header,
6783 			 struct perf_sample_data *data,
6784 			 struct perf_event *event,
6785 			 struct pt_regs *regs)
6786 {
6787 	u64 sample_type = event->attr.sample_type;
6788 
6789 	header->type = PERF_RECORD_SAMPLE;
6790 	header->size = sizeof(*header) + event->header_size;
6791 
6792 	header->misc = 0;
6793 	header->misc |= perf_misc_flags(regs);
6794 
6795 	__perf_event_header__init_id(header, data, event);
6796 
6797 	if (sample_type & PERF_SAMPLE_IP)
6798 		data->ip = perf_instruction_pointer(regs);
6799 
6800 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6801 		int size = 1;
6802 
6803 		if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
6804 			data->callchain = perf_callchain(event, regs);
6805 
6806 		size += data->callchain->nr;
6807 
6808 		header->size += size * sizeof(u64);
6809 	}
6810 
6811 	if (sample_type & PERF_SAMPLE_RAW) {
6812 		struct perf_raw_record *raw = data->raw;
6813 		int size;
6814 
6815 		if (raw) {
6816 			struct perf_raw_frag *frag = &raw->frag;
6817 			u32 sum = 0;
6818 
6819 			do {
6820 				sum += frag->size;
6821 				if (perf_raw_frag_last(frag))
6822 					break;
6823 				frag = frag->next;
6824 			} while (1);
6825 
6826 			size = round_up(sum + sizeof(u32), sizeof(u64));
6827 			raw->size = size - sizeof(u32);
6828 			frag->pad = raw->size - sum;
6829 		} else {
6830 			size = sizeof(u64);
6831 		}
6832 
6833 		header->size += size;
6834 	}
6835 
6836 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6837 		int size = sizeof(u64); /* nr */
6838 		if (data->br_stack) {
6839 			size += data->br_stack->nr
6840 			      * sizeof(struct perf_branch_entry);
6841 		}
6842 		header->size += size;
6843 	}
6844 
6845 	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6846 		perf_sample_regs_user(&data->regs_user, regs,
6847 				      &data->regs_user_copy);
6848 
6849 	if (sample_type & PERF_SAMPLE_REGS_USER) {
6850 		/* regs dump ABI info */
6851 		int size = sizeof(u64);
6852 
6853 		if (data->regs_user.regs) {
6854 			u64 mask = event->attr.sample_regs_user;
6855 			size += hweight64(mask) * sizeof(u64);
6856 		}
6857 
6858 		header->size += size;
6859 	}
6860 
6861 	if (sample_type & PERF_SAMPLE_STACK_USER) {
6862 		/*
6863 		 * Either we need PERF_SAMPLE_STACK_USER bit to be always
6864 		 * processed as the last one or have additional check added
6865 		 * in case new sample type is added, because we could eat
6866 		 * up the rest of the sample size.
6867 		 */
6868 		u16 stack_size = event->attr.sample_stack_user;
6869 		u16 size = sizeof(u64);
6870 
6871 		stack_size = perf_sample_ustack_size(stack_size, header->size,
6872 						     data->regs_user.regs);
6873 
6874 		/*
6875 		 * If there is something to dump, add space for the dump
6876 		 * itself and for the field that tells the dynamic size,
6877 		 * which is how many have been actually dumped.
6878 		 */
6879 		if (stack_size)
6880 			size += sizeof(u64) + stack_size;
6881 
6882 		data->stack_user_size = stack_size;
6883 		header->size += size;
6884 	}
6885 
6886 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
6887 		/* regs dump ABI info */
6888 		int size = sizeof(u64);
6889 
6890 		perf_sample_regs_intr(&data->regs_intr, regs);
6891 
6892 		if (data->regs_intr.regs) {
6893 			u64 mask = event->attr.sample_regs_intr;
6894 
6895 			size += hweight64(mask) * sizeof(u64);
6896 		}
6897 
6898 		header->size += size;
6899 	}
6900 
6901 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6902 		data->phys_addr = perf_virt_to_phys(data->addr);
6903 
6904 	if (sample_type & PERF_SAMPLE_AUX) {
6905 		u64 size;
6906 
6907 		header->size += sizeof(u64); /* size */
6908 
6909 		/*
6910 		 * Given the 16bit nature of header::size, an AUX sample can
6911 		 * easily overflow it, what with all the preceding sample bits.
6912 		 * Make sure this doesn't happen by using up to U16_MAX bytes
6913 		 * per sample in total (rounded down to 8 byte boundary).
6914 		 */
6915 		size = min_t(size_t, U16_MAX - header->size,
6916 			     event->attr.aux_sample_size);
6917 		size = rounddown(size, 8);
6918 		size = perf_prepare_sample_aux(event, data, size);
6919 
6920 		WARN_ON_ONCE(size + header->size > U16_MAX);
6921 		header->size += size;
6922 	}
6923 	/*
6924 	 * If you're adding more sample types here, you likely need to do
6925 	 * something about the overflowing header::size, like repurpose the
6926 	 * lowest 3 bits of size, which should be always zero at the moment.
6927 	 * This raises a more important question, do we really need 512k sized
6928 	 * samples and why, so good argumentation is in order for whatever you
6929 	 * do here next.
6930 	 */
6931 	WARN_ON_ONCE(header->size & 7);
6932 }
6933 
6934 static __always_inline int
6935 __perf_event_output(struct perf_event *event,
6936 		    struct perf_sample_data *data,
6937 		    struct pt_regs *regs,
6938 		    int (*output_begin)(struct perf_output_handle *,
6939 					struct perf_event *,
6940 					unsigned int))
6941 {
6942 	struct perf_output_handle handle;
6943 	struct perf_event_header header;
6944 	int err;
6945 
6946 	/* protect the callchain buffers */
6947 	rcu_read_lock();
6948 
6949 	perf_prepare_sample(&header, data, event, regs);
6950 
6951 	err = output_begin(&handle, event, header.size);
6952 	if (err)
6953 		goto exit;
6954 
6955 	perf_output_sample(&handle, &header, data, event);
6956 
6957 	perf_output_end(&handle);
6958 
6959 exit:
6960 	rcu_read_unlock();
6961 	return err;
6962 }
6963 
6964 void
6965 perf_event_output_forward(struct perf_event *event,
6966 			 struct perf_sample_data *data,
6967 			 struct pt_regs *regs)
6968 {
6969 	__perf_event_output(event, data, regs, perf_output_begin_forward);
6970 }
6971 
6972 void
6973 perf_event_output_backward(struct perf_event *event,
6974 			   struct perf_sample_data *data,
6975 			   struct pt_regs *regs)
6976 {
6977 	__perf_event_output(event, data, regs, perf_output_begin_backward);
6978 }
6979 
6980 int
6981 perf_event_output(struct perf_event *event,
6982 		  struct perf_sample_data *data,
6983 		  struct pt_regs *regs)
6984 {
6985 	return __perf_event_output(event, data, regs, perf_output_begin);
6986 }
6987 
6988 /*
6989  * read event_id
6990  */
6991 
6992 struct perf_read_event {
6993 	struct perf_event_header	header;
6994 
6995 	u32				pid;
6996 	u32				tid;
6997 };
6998 
6999 static void
7000 perf_event_read_event(struct perf_event *event,
7001 			struct task_struct *task)
7002 {
7003 	struct perf_output_handle handle;
7004 	struct perf_sample_data sample;
7005 	struct perf_read_event read_event = {
7006 		.header = {
7007 			.type = PERF_RECORD_READ,
7008 			.misc = 0,
7009 			.size = sizeof(read_event) + event->read_size,
7010 		},
7011 		.pid = perf_event_pid(event, task),
7012 		.tid = perf_event_tid(event, task),
7013 	};
7014 	int ret;
7015 
7016 	perf_event_header__init_id(&read_event.header, &sample, event);
7017 	ret = perf_output_begin(&handle, event, read_event.header.size);
7018 	if (ret)
7019 		return;
7020 
7021 	perf_output_put(&handle, read_event);
7022 	perf_output_read(&handle, event);
7023 	perf_event__output_id_sample(event, &handle, &sample);
7024 
7025 	perf_output_end(&handle);
7026 }
7027 
7028 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
7029 
7030 static void
7031 perf_iterate_ctx(struct perf_event_context *ctx,
7032 		   perf_iterate_f output,
7033 		   void *data, bool all)
7034 {
7035 	struct perf_event *event;
7036 
7037 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7038 		if (!all) {
7039 			if (event->state < PERF_EVENT_STATE_INACTIVE)
7040 				continue;
7041 			if (!event_filter_match(event))
7042 				continue;
7043 		}
7044 
7045 		output(event, data);
7046 	}
7047 }
7048 
7049 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
7050 {
7051 	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
7052 	struct perf_event *event;
7053 
7054 	list_for_each_entry_rcu(event, &pel->list, sb_list) {
7055 		/*
7056 		 * Skip events that are not fully formed yet; ensure that
7057 		 * if we observe event->ctx, both event and ctx will be
7058 		 * complete enough. See perf_install_in_context().
7059 		 */
7060 		if (!smp_load_acquire(&event->ctx))
7061 			continue;
7062 
7063 		if (event->state < PERF_EVENT_STATE_INACTIVE)
7064 			continue;
7065 		if (!event_filter_match(event))
7066 			continue;
7067 		output(event, data);
7068 	}
7069 }
7070 
7071 /*
7072  * Iterate all events that need to receive side-band events.
7073  *
7074  * For new callers; ensure that account_pmu_sb_event() includes
7075  * your event, otherwise it might not get delivered.
7076  */
7077 static void
7078 perf_iterate_sb(perf_iterate_f output, void *data,
7079 	       struct perf_event_context *task_ctx)
7080 {
7081 	struct perf_event_context *ctx;
7082 	int ctxn;
7083 
7084 	rcu_read_lock();
7085 	preempt_disable();
7086 
7087 	/*
7088 	 * If we have task_ctx != NULL we only notify the task context itself.
7089 	 * The task_ctx is set only for EXIT events before releasing task
7090 	 * context.
7091 	 */
7092 	if (task_ctx) {
7093 		perf_iterate_ctx(task_ctx, output, data, false);
7094 		goto done;
7095 	}
7096 
7097 	perf_iterate_sb_cpu(output, data);
7098 
7099 	for_each_task_context_nr(ctxn) {
7100 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7101 		if (ctx)
7102 			perf_iterate_ctx(ctx, output, data, false);
7103 	}
7104 done:
7105 	preempt_enable();
7106 	rcu_read_unlock();
7107 }
7108 
7109 /*
7110  * Clear all file-based filters at exec, they'll have to be
7111  * re-instated when/if these objects are mmapped again.
7112  */
7113 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
7114 {
7115 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7116 	struct perf_addr_filter *filter;
7117 	unsigned int restart = 0, count = 0;
7118 	unsigned long flags;
7119 
7120 	if (!has_addr_filter(event))
7121 		return;
7122 
7123 	raw_spin_lock_irqsave(&ifh->lock, flags);
7124 	list_for_each_entry(filter, &ifh->list, entry) {
7125 		if (filter->path.dentry) {
7126 			event->addr_filter_ranges[count].start = 0;
7127 			event->addr_filter_ranges[count].size = 0;
7128 			restart++;
7129 		}
7130 
7131 		count++;
7132 	}
7133 
7134 	if (restart)
7135 		event->addr_filters_gen++;
7136 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
7137 
7138 	if (restart)
7139 		perf_event_stop(event, 1);
7140 }
7141 
7142 void perf_event_exec(void)
7143 {
7144 	struct perf_event_context *ctx;
7145 	int ctxn;
7146 
7147 	rcu_read_lock();
7148 	for_each_task_context_nr(ctxn) {
7149 		ctx = current->perf_event_ctxp[ctxn];
7150 		if (!ctx)
7151 			continue;
7152 
7153 		perf_event_enable_on_exec(ctxn);
7154 
7155 		perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
7156 				   true);
7157 	}
7158 	rcu_read_unlock();
7159 }
7160 
7161 struct remote_output {
7162 	struct perf_buffer	*rb;
7163 	int			err;
7164 };
7165 
7166 static void __perf_event_output_stop(struct perf_event *event, void *data)
7167 {
7168 	struct perf_event *parent = event->parent;
7169 	struct remote_output *ro = data;
7170 	struct perf_buffer *rb = ro->rb;
7171 	struct stop_event_data sd = {
7172 		.event	= event,
7173 	};
7174 
7175 	if (!has_aux(event))
7176 		return;
7177 
7178 	if (!parent)
7179 		parent = event;
7180 
7181 	/*
7182 	 * In case of inheritance, it will be the parent that links to the
7183 	 * ring-buffer, but it will be the child that's actually using it.
7184 	 *
7185 	 * We are using event::rb to determine if the event should be stopped,
7186 	 * however this may race with ring_buffer_attach() (through set_output),
7187 	 * which will make us skip the event that actually needs to be stopped.
7188 	 * So ring_buffer_attach() has to stop an aux event before re-assigning
7189 	 * its rb pointer.
7190 	 */
7191 	if (rcu_dereference(parent->rb) == rb)
7192 		ro->err = __perf_event_stop(&sd);
7193 }
7194 
7195 static int __perf_pmu_output_stop(void *info)
7196 {
7197 	struct perf_event *event = info;
7198 	struct pmu *pmu = event->ctx->pmu;
7199 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7200 	struct remote_output ro = {
7201 		.rb	= event->rb,
7202 	};
7203 
7204 	rcu_read_lock();
7205 	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
7206 	if (cpuctx->task_ctx)
7207 		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
7208 				   &ro, false);
7209 	rcu_read_unlock();
7210 
7211 	return ro.err;
7212 }
7213 
7214 static void perf_pmu_output_stop(struct perf_event *event)
7215 {
7216 	struct perf_event *iter;
7217 	int err, cpu;
7218 
7219 restart:
7220 	rcu_read_lock();
7221 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
7222 		/*
7223 		 * For per-CPU events, we need to make sure that neither they
7224 		 * nor their children are running; for cpu==-1 events it's
7225 		 * sufficient to stop the event itself if it's active, since
7226 		 * it can't have children.
7227 		 */
7228 		cpu = iter->cpu;
7229 		if (cpu == -1)
7230 			cpu = READ_ONCE(iter->oncpu);
7231 
7232 		if (cpu == -1)
7233 			continue;
7234 
7235 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
7236 		if (err == -EAGAIN) {
7237 			rcu_read_unlock();
7238 			goto restart;
7239 		}
7240 	}
7241 	rcu_read_unlock();
7242 }
7243 
7244 /*
7245  * task tracking -- fork/exit
7246  *
7247  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
7248  */
7249 
7250 struct perf_task_event {
7251 	struct task_struct		*task;
7252 	struct perf_event_context	*task_ctx;
7253 
7254 	struct {
7255 		struct perf_event_header	header;
7256 
7257 		u32				pid;
7258 		u32				ppid;
7259 		u32				tid;
7260 		u32				ptid;
7261 		u64				time;
7262 	} event_id;
7263 };
7264 
7265 static int perf_event_task_match(struct perf_event *event)
7266 {
7267 	return event->attr.comm  || event->attr.mmap ||
7268 	       event->attr.mmap2 || event->attr.mmap_data ||
7269 	       event->attr.task;
7270 }
7271 
7272 static void perf_event_task_output(struct perf_event *event,
7273 				   void *data)
7274 {
7275 	struct perf_task_event *task_event = data;
7276 	struct perf_output_handle handle;
7277 	struct perf_sample_data	sample;
7278 	struct task_struct *task = task_event->task;
7279 	int ret, size = task_event->event_id.header.size;
7280 
7281 	if (!perf_event_task_match(event))
7282 		return;
7283 
7284 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
7285 
7286 	ret = perf_output_begin(&handle, event,
7287 				task_event->event_id.header.size);
7288 	if (ret)
7289 		goto out;
7290 
7291 	task_event->event_id.pid = perf_event_pid(event, task);
7292 	task_event->event_id.ppid = perf_event_pid(event, current);
7293 
7294 	task_event->event_id.tid = perf_event_tid(event, task);
7295 	task_event->event_id.ptid = perf_event_tid(event, current);
7296 
7297 	task_event->event_id.time = perf_event_clock(event);
7298 
7299 	perf_output_put(&handle, task_event->event_id);
7300 
7301 	perf_event__output_id_sample(event, &handle, &sample);
7302 
7303 	perf_output_end(&handle);
7304 out:
7305 	task_event->event_id.header.size = size;
7306 }
7307 
7308 static void perf_event_task(struct task_struct *task,
7309 			      struct perf_event_context *task_ctx,
7310 			      int new)
7311 {
7312 	struct perf_task_event task_event;
7313 
7314 	if (!atomic_read(&nr_comm_events) &&
7315 	    !atomic_read(&nr_mmap_events) &&
7316 	    !atomic_read(&nr_task_events))
7317 		return;
7318 
7319 	task_event = (struct perf_task_event){
7320 		.task	  = task,
7321 		.task_ctx = task_ctx,
7322 		.event_id    = {
7323 			.header = {
7324 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
7325 				.misc = 0,
7326 				.size = sizeof(task_event.event_id),
7327 			},
7328 			/* .pid  */
7329 			/* .ppid */
7330 			/* .tid  */
7331 			/* .ptid */
7332 			/* .time */
7333 		},
7334 	};
7335 
7336 	perf_iterate_sb(perf_event_task_output,
7337 		       &task_event,
7338 		       task_ctx);
7339 }
7340 
7341 void perf_event_fork(struct task_struct *task)
7342 {
7343 	perf_event_task(task, NULL, 1);
7344 	perf_event_namespaces(task);
7345 }
7346 
7347 /*
7348  * comm tracking
7349  */
7350 
7351 struct perf_comm_event {
7352 	struct task_struct	*task;
7353 	char			*comm;
7354 	int			comm_size;
7355 
7356 	struct {
7357 		struct perf_event_header	header;
7358 
7359 		u32				pid;
7360 		u32				tid;
7361 	} event_id;
7362 };
7363 
7364 static int perf_event_comm_match(struct perf_event *event)
7365 {
7366 	return event->attr.comm;
7367 }
7368 
7369 static void perf_event_comm_output(struct perf_event *event,
7370 				   void *data)
7371 {
7372 	struct perf_comm_event *comm_event = data;
7373 	struct perf_output_handle handle;
7374 	struct perf_sample_data sample;
7375 	int size = comm_event->event_id.header.size;
7376 	int ret;
7377 
7378 	if (!perf_event_comm_match(event))
7379 		return;
7380 
7381 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
7382 	ret = perf_output_begin(&handle, event,
7383 				comm_event->event_id.header.size);
7384 
7385 	if (ret)
7386 		goto out;
7387 
7388 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
7389 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
7390 
7391 	perf_output_put(&handle, comm_event->event_id);
7392 	__output_copy(&handle, comm_event->comm,
7393 				   comm_event->comm_size);
7394 
7395 	perf_event__output_id_sample(event, &handle, &sample);
7396 
7397 	perf_output_end(&handle);
7398 out:
7399 	comm_event->event_id.header.size = size;
7400 }
7401 
7402 static void perf_event_comm_event(struct perf_comm_event *comm_event)
7403 {
7404 	char comm[TASK_COMM_LEN];
7405 	unsigned int size;
7406 
7407 	memset(comm, 0, sizeof(comm));
7408 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
7409 	size = ALIGN(strlen(comm)+1, sizeof(u64));
7410 
7411 	comm_event->comm = comm;
7412 	comm_event->comm_size = size;
7413 
7414 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
7415 
7416 	perf_iterate_sb(perf_event_comm_output,
7417 		       comm_event,
7418 		       NULL);
7419 }
7420 
7421 void perf_event_comm(struct task_struct *task, bool exec)
7422 {
7423 	struct perf_comm_event comm_event;
7424 
7425 	if (!atomic_read(&nr_comm_events))
7426 		return;
7427 
7428 	comm_event = (struct perf_comm_event){
7429 		.task	= task,
7430 		/* .comm      */
7431 		/* .comm_size */
7432 		.event_id  = {
7433 			.header = {
7434 				.type = PERF_RECORD_COMM,
7435 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
7436 				/* .size */
7437 			},
7438 			/* .pid */
7439 			/* .tid */
7440 		},
7441 	};
7442 
7443 	perf_event_comm_event(&comm_event);
7444 }
7445 
7446 /*
7447  * namespaces tracking
7448  */
7449 
7450 struct perf_namespaces_event {
7451 	struct task_struct		*task;
7452 
7453 	struct {
7454 		struct perf_event_header	header;
7455 
7456 		u32				pid;
7457 		u32				tid;
7458 		u64				nr_namespaces;
7459 		struct perf_ns_link_info	link_info[NR_NAMESPACES];
7460 	} event_id;
7461 };
7462 
7463 static int perf_event_namespaces_match(struct perf_event *event)
7464 {
7465 	return event->attr.namespaces;
7466 }
7467 
7468 static void perf_event_namespaces_output(struct perf_event *event,
7469 					 void *data)
7470 {
7471 	struct perf_namespaces_event *namespaces_event = data;
7472 	struct perf_output_handle handle;
7473 	struct perf_sample_data sample;
7474 	u16 header_size = namespaces_event->event_id.header.size;
7475 	int ret;
7476 
7477 	if (!perf_event_namespaces_match(event))
7478 		return;
7479 
7480 	perf_event_header__init_id(&namespaces_event->event_id.header,
7481 				   &sample, event);
7482 	ret = perf_output_begin(&handle, event,
7483 				namespaces_event->event_id.header.size);
7484 	if (ret)
7485 		goto out;
7486 
7487 	namespaces_event->event_id.pid = perf_event_pid(event,
7488 							namespaces_event->task);
7489 	namespaces_event->event_id.tid = perf_event_tid(event,
7490 							namespaces_event->task);
7491 
7492 	perf_output_put(&handle, namespaces_event->event_id);
7493 
7494 	perf_event__output_id_sample(event, &handle, &sample);
7495 
7496 	perf_output_end(&handle);
7497 out:
7498 	namespaces_event->event_id.header.size = header_size;
7499 }
7500 
7501 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
7502 				   struct task_struct *task,
7503 				   const struct proc_ns_operations *ns_ops)
7504 {
7505 	struct path ns_path;
7506 	struct inode *ns_inode;
7507 	int error;
7508 
7509 	error = ns_get_path(&ns_path, task, ns_ops);
7510 	if (!error) {
7511 		ns_inode = ns_path.dentry->d_inode;
7512 		ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
7513 		ns_link_info->ino = ns_inode->i_ino;
7514 		path_put(&ns_path);
7515 	}
7516 }
7517 
7518 void perf_event_namespaces(struct task_struct *task)
7519 {
7520 	struct perf_namespaces_event namespaces_event;
7521 	struct perf_ns_link_info *ns_link_info;
7522 
7523 	if (!atomic_read(&nr_namespaces_events))
7524 		return;
7525 
7526 	namespaces_event = (struct perf_namespaces_event){
7527 		.task	= task,
7528 		.event_id  = {
7529 			.header = {
7530 				.type = PERF_RECORD_NAMESPACES,
7531 				.misc = 0,
7532 				.size = sizeof(namespaces_event.event_id),
7533 			},
7534 			/* .pid */
7535 			/* .tid */
7536 			.nr_namespaces = NR_NAMESPACES,
7537 			/* .link_info[NR_NAMESPACES] */
7538 		},
7539 	};
7540 
7541 	ns_link_info = namespaces_event.event_id.link_info;
7542 
7543 	perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
7544 			       task, &mntns_operations);
7545 
7546 #ifdef CONFIG_USER_NS
7547 	perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
7548 			       task, &userns_operations);
7549 #endif
7550 #ifdef CONFIG_NET_NS
7551 	perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
7552 			       task, &netns_operations);
7553 #endif
7554 #ifdef CONFIG_UTS_NS
7555 	perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
7556 			       task, &utsns_operations);
7557 #endif
7558 #ifdef CONFIG_IPC_NS
7559 	perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
7560 			       task, &ipcns_operations);
7561 #endif
7562 #ifdef CONFIG_PID_NS
7563 	perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
7564 			       task, &pidns_operations);
7565 #endif
7566 #ifdef CONFIG_CGROUPS
7567 	perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
7568 			       task, &cgroupns_operations);
7569 #endif
7570 
7571 	perf_iterate_sb(perf_event_namespaces_output,
7572 			&namespaces_event,
7573 			NULL);
7574 }
7575 
7576 /*
7577  * mmap tracking
7578  */
7579 
7580 struct perf_mmap_event {
7581 	struct vm_area_struct	*vma;
7582 
7583 	const char		*file_name;
7584 	int			file_size;
7585 	int			maj, min;
7586 	u64			ino;
7587 	u64			ino_generation;
7588 	u32			prot, flags;
7589 
7590 	struct {
7591 		struct perf_event_header	header;
7592 
7593 		u32				pid;
7594 		u32				tid;
7595 		u64				start;
7596 		u64				len;
7597 		u64				pgoff;
7598 	} event_id;
7599 };
7600 
7601 static int perf_event_mmap_match(struct perf_event *event,
7602 				 void *data)
7603 {
7604 	struct perf_mmap_event *mmap_event = data;
7605 	struct vm_area_struct *vma = mmap_event->vma;
7606 	int executable = vma->vm_flags & VM_EXEC;
7607 
7608 	return (!executable && event->attr.mmap_data) ||
7609 	       (executable && (event->attr.mmap || event->attr.mmap2));
7610 }
7611 
7612 static void perf_event_mmap_output(struct perf_event *event,
7613 				   void *data)
7614 {
7615 	struct perf_mmap_event *mmap_event = data;
7616 	struct perf_output_handle handle;
7617 	struct perf_sample_data sample;
7618 	int size = mmap_event->event_id.header.size;
7619 	u32 type = mmap_event->event_id.header.type;
7620 	int ret;
7621 
7622 	if (!perf_event_mmap_match(event, data))
7623 		return;
7624 
7625 	if (event->attr.mmap2) {
7626 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
7627 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
7628 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
7629 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
7630 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
7631 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
7632 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
7633 	}
7634 
7635 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
7636 	ret = perf_output_begin(&handle, event,
7637 				mmap_event->event_id.header.size);
7638 	if (ret)
7639 		goto out;
7640 
7641 	mmap_event->event_id.pid = perf_event_pid(event, current);
7642 	mmap_event->event_id.tid = perf_event_tid(event, current);
7643 
7644 	perf_output_put(&handle, mmap_event->event_id);
7645 
7646 	if (event->attr.mmap2) {
7647 		perf_output_put(&handle, mmap_event->maj);
7648 		perf_output_put(&handle, mmap_event->min);
7649 		perf_output_put(&handle, mmap_event->ino);
7650 		perf_output_put(&handle, mmap_event->ino_generation);
7651 		perf_output_put(&handle, mmap_event->prot);
7652 		perf_output_put(&handle, mmap_event->flags);
7653 	}
7654 
7655 	__output_copy(&handle, mmap_event->file_name,
7656 				   mmap_event->file_size);
7657 
7658 	perf_event__output_id_sample(event, &handle, &sample);
7659 
7660 	perf_output_end(&handle);
7661 out:
7662 	mmap_event->event_id.header.size = size;
7663 	mmap_event->event_id.header.type = type;
7664 }
7665 
7666 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
7667 {
7668 	struct vm_area_struct *vma = mmap_event->vma;
7669 	struct file *file = vma->vm_file;
7670 	int maj = 0, min = 0;
7671 	u64 ino = 0, gen = 0;
7672 	u32 prot = 0, flags = 0;
7673 	unsigned int size;
7674 	char tmp[16];
7675 	char *buf = NULL;
7676 	char *name;
7677 
7678 	if (vma->vm_flags & VM_READ)
7679 		prot |= PROT_READ;
7680 	if (vma->vm_flags & VM_WRITE)
7681 		prot |= PROT_WRITE;
7682 	if (vma->vm_flags & VM_EXEC)
7683 		prot |= PROT_EXEC;
7684 
7685 	if (vma->vm_flags & VM_MAYSHARE)
7686 		flags = MAP_SHARED;
7687 	else
7688 		flags = MAP_PRIVATE;
7689 
7690 	if (vma->vm_flags & VM_DENYWRITE)
7691 		flags |= MAP_DENYWRITE;
7692 	if (vma->vm_flags & VM_MAYEXEC)
7693 		flags |= MAP_EXECUTABLE;
7694 	if (vma->vm_flags & VM_LOCKED)
7695 		flags |= MAP_LOCKED;
7696 	if (vma->vm_flags & VM_HUGETLB)
7697 		flags |= MAP_HUGETLB;
7698 
7699 	if (file) {
7700 		struct inode *inode;
7701 		dev_t dev;
7702 
7703 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
7704 		if (!buf) {
7705 			name = "//enomem";
7706 			goto cpy_name;
7707 		}
7708 		/*
7709 		 * d_path() works from the end of the rb backwards, so we
7710 		 * need to add enough zero bytes after the string to handle
7711 		 * the 64bit alignment we do later.
7712 		 */
7713 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
7714 		if (IS_ERR(name)) {
7715 			name = "//toolong";
7716 			goto cpy_name;
7717 		}
7718 		inode = file_inode(vma->vm_file);
7719 		dev = inode->i_sb->s_dev;
7720 		ino = inode->i_ino;
7721 		gen = inode->i_generation;
7722 		maj = MAJOR(dev);
7723 		min = MINOR(dev);
7724 
7725 		goto got_name;
7726 	} else {
7727 		if (vma->vm_ops && vma->vm_ops->name) {
7728 			name = (char *) vma->vm_ops->name(vma);
7729 			if (name)
7730 				goto cpy_name;
7731 		}
7732 
7733 		name = (char *)arch_vma_name(vma);
7734 		if (name)
7735 			goto cpy_name;
7736 
7737 		if (vma->vm_start <= vma->vm_mm->start_brk &&
7738 				vma->vm_end >= vma->vm_mm->brk) {
7739 			name = "[heap]";
7740 			goto cpy_name;
7741 		}
7742 		if (vma->vm_start <= vma->vm_mm->start_stack &&
7743 				vma->vm_end >= vma->vm_mm->start_stack) {
7744 			name = "[stack]";
7745 			goto cpy_name;
7746 		}
7747 
7748 		name = "//anon";
7749 		goto cpy_name;
7750 	}
7751 
7752 cpy_name:
7753 	strlcpy(tmp, name, sizeof(tmp));
7754 	name = tmp;
7755 got_name:
7756 	/*
7757 	 * Since our buffer works in 8 byte units we need to align our string
7758 	 * size to a multiple of 8. However, we must guarantee the tail end is
7759 	 * zero'd out to avoid leaking random bits to userspace.
7760 	 */
7761 	size = strlen(name)+1;
7762 	while (!IS_ALIGNED(size, sizeof(u64)))
7763 		name[size++] = '\0';
7764 
7765 	mmap_event->file_name = name;
7766 	mmap_event->file_size = size;
7767 	mmap_event->maj = maj;
7768 	mmap_event->min = min;
7769 	mmap_event->ino = ino;
7770 	mmap_event->ino_generation = gen;
7771 	mmap_event->prot = prot;
7772 	mmap_event->flags = flags;
7773 
7774 	if (!(vma->vm_flags & VM_EXEC))
7775 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
7776 
7777 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
7778 
7779 	perf_iterate_sb(perf_event_mmap_output,
7780 		       mmap_event,
7781 		       NULL);
7782 
7783 	kfree(buf);
7784 }
7785 
7786 /*
7787  * Check whether inode and address range match filter criteria.
7788  */
7789 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
7790 				     struct file *file, unsigned long offset,
7791 				     unsigned long size)
7792 {
7793 	/* d_inode(NULL) won't be equal to any mapped user-space file */
7794 	if (!filter->path.dentry)
7795 		return false;
7796 
7797 	if (d_inode(filter->path.dentry) != file_inode(file))
7798 		return false;
7799 
7800 	if (filter->offset > offset + size)
7801 		return false;
7802 
7803 	if (filter->offset + filter->size < offset)
7804 		return false;
7805 
7806 	return true;
7807 }
7808 
7809 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
7810 					struct vm_area_struct *vma,
7811 					struct perf_addr_filter_range *fr)
7812 {
7813 	unsigned long vma_size = vma->vm_end - vma->vm_start;
7814 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
7815 	struct file *file = vma->vm_file;
7816 
7817 	if (!perf_addr_filter_match(filter, file, off, vma_size))
7818 		return false;
7819 
7820 	if (filter->offset < off) {
7821 		fr->start = vma->vm_start;
7822 		fr->size = min(vma_size, filter->size - (off - filter->offset));
7823 	} else {
7824 		fr->start = vma->vm_start + filter->offset - off;
7825 		fr->size = min(vma->vm_end - fr->start, filter->size);
7826 	}
7827 
7828 	return true;
7829 }
7830 
7831 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
7832 {
7833 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7834 	struct vm_area_struct *vma = data;
7835 	struct perf_addr_filter *filter;
7836 	unsigned int restart = 0, count = 0;
7837 	unsigned long flags;
7838 
7839 	if (!has_addr_filter(event))
7840 		return;
7841 
7842 	if (!vma->vm_file)
7843 		return;
7844 
7845 	raw_spin_lock_irqsave(&ifh->lock, flags);
7846 	list_for_each_entry(filter, &ifh->list, entry) {
7847 		if (perf_addr_filter_vma_adjust(filter, vma,
7848 						&event->addr_filter_ranges[count]))
7849 			restart++;
7850 
7851 		count++;
7852 	}
7853 
7854 	if (restart)
7855 		event->addr_filters_gen++;
7856 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
7857 
7858 	if (restart)
7859 		perf_event_stop(event, 1);
7860 }
7861 
7862 /*
7863  * Adjust all task's events' filters to the new vma
7864  */
7865 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7866 {
7867 	struct perf_event_context *ctx;
7868 	int ctxn;
7869 
7870 	/*
7871 	 * Data tracing isn't supported yet and as such there is no need
7872 	 * to keep track of anything that isn't related to executable code:
7873 	 */
7874 	if (!(vma->vm_flags & VM_EXEC))
7875 		return;
7876 
7877 	rcu_read_lock();
7878 	for_each_task_context_nr(ctxn) {
7879 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7880 		if (!ctx)
7881 			continue;
7882 
7883 		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7884 	}
7885 	rcu_read_unlock();
7886 }
7887 
7888 void perf_event_mmap(struct vm_area_struct *vma)
7889 {
7890 	struct perf_mmap_event mmap_event;
7891 
7892 	if (!atomic_read(&nr_mmap_events))
7893 		return;
7894 
7895 	mmap_event = (struct perf_mmap_event){
7896 		.vma	= vma,
7897 		/* .file_name */
7898 		/* .file_size */
7899 		.event_id  = {
7900 			.header = {
7901 				.type = PERF_RECORD_MMAP,
7902 				.misc = PERF_RECORD_MISC_USER,
7903 				/* .size */
7904 			},
7905 			/* .pid */
7906 			/* .tid */
7907 			.start  = vma->vm_start,
7908 			.len    = vma->vm_end - vma->vm_start,
7909 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
7910 		},
7911 		/* .maj (attr_mmap2 only) */
7912 		/* .min (attr_mmap2 only) */
7913 		/* .ino (attr_mmap2 only) */
7914 		/* .ino_generation (attr_mmap2 only) */
7915 		/* .prot (attr_mmap2 only) */
7916 		/* .flags (attr_mmap2 only) */
7917 	};
7918 
7919 	perf_addr_filters_adjust(vma);
7920 	perf_event_mmap_event(&mmap_event);
7921 }
7922 
7923 void perf_event_aux_event(struct perf_event *event, unsigned long head,
7924 			  unsigned long size, u64 flags)
7925 {
7926 	struct perf_output_handle handle;
7927 	struct perf_sample_data sample;
7928 	struct perf_aux_event {
7929 		struct perf_event_header	header;
7930 		u64				offset;
7931 		u64				size;
7932 		u64				flags;
7933 	} rec = {
7934 		.header = {
7935 			.type = PERF_RECORD_AUX,
7936 			.misc = 0,
7937 			.size = sizeof(rec),
7938 		},
7939 		.offset		= head,
7940 		.size		= size,
7941 		.flags		= flags,
7942 	};
7943 	int ret;
7944 
7945 	perf_event_header__init_id(&rec.header, &sample, event);
7946 	ret = perf_output_begin(&handle, event, rec.header.size);
7947 
7948 	if (ret)
7949 		return;
7950 
7951 	perf_output_put(&handle, rec);
7952 	perf_event__output_id_sample(event, &handle, &sample);
7953 
7954 	perf_output_end(&handle);
7955 }
7956 
7957 /*
7958  * Lost/dropped samples logging
7959  */
7960 void perf_log_lost_samples(struct perf_event *event, u64 lost)
7961 {
7962 	struct perf_output_handle handle;
7963 	struct perf_sample_data sample;
7964 	int ret;
7965 
7966 	struct {
7967 		struct perf_event_header	header;
7968 		u64				lost;
7969 	} lost_samples_event = {
7970 		.header = {
7971 			.type = PERF_RECORD_LOST_SAMPLES,
7972 			.misc = 0,
7973 			.size = sizeof(lost_samples_event),
7974 		},
7975 		.lost		= lost,
7976 	};
7977 
7978 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7979 
7980 	ret = perf_output_begin(&handle, event,
7981 				lost_samples_event.header.size);
7982 	if (ret)
7983 		return;
7984 
7985 	perf_output_put(&handle, lost_samples_event);
7986 	perf_event__output_id_sample(event, &handle, &sample);
7987 	perf_output_end(&handle);
7988 }
7989 
7990 /*
7991  * context_switch tracking
7992  */
7993 
7994 struct perf_switch_event {
7995 	struct task_struct	*task;
7996 	struct task_struct	*next_prev;
7997 
7998 	struct {
7999 		struct perf_event_header	header;
8000 		u32				next_prev_pid;
8001 		u32				next_prev_tid;
8002 	} event_id;
8003 };
8004 
8005 static int perf_event_switch_match(struct perf_event *event)
8006 {
8007 	return event->attr.context_switch;
8008 }
8009 
8010 static void perf_event_switch_output(struct perf_event *event, void *data)
8011 {
8012 	struct perf_switch_event *se = data;
8013 	struct perf_output_handle handle;
8014 	struct perf_sample_data sample;
8015 	int ret;
8016 
8017 	if (!perf_event_switch_match(event))
8018 		return;
8019 
8020 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
8021 	if (event->ctx->task) {
8022 		se->event_id.header.type = PERF_RECORD_SWITCH;
8023 		se->event_id.header.size = sizeof(se->event_id.header);
8024 	} else {
8025 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
8026 		se->event_id.header.size = sizeof(se->event_id);
8027 		se->event_id.next_prev_pid =
8028 					perf_event_pid(event, se->next_prev);
8029 		se->event_id.next_prev_tid =
8030 					perf_event_tid(event, se->next_prev);
8031 	}
8032 
8033 	perf_event_header__init_id(&se->event_id.header, &sample, event);
8034 
8035 	ret = perf_output_begin(&handle, event, se->event_id.header.size);
8036 	if (ret)
8037 		return;
8038 
8039 	if (event->ctx->task)
8040 		perf_output_put(&handle, se->event_id.header);
8041 	else
8042 		perf_output_put(&handle, se->event_id);
8043 
8044 	perf_event__output_id_sample(event, &handle, &sample);
8045 
8046 	perf_output_end(&handle);
8047 }
8048 
8049 static void perf_event_switch(struct task_struct *task,
8050 			      struct task_struct *next_prev, bool sched_in)
8051 {
8052 	struct perf_switch_event switch_event;
8053 
8054 	/* N.B. caller checks nr_switch_events != 0 */
8055 
8056 	switch_event = (struct perf_switch_event){
8057 		.task		= task,
8058 		.next_prev	= next_prev,
8059 		.event_id	= {
8060 			.header = {
8061 				/* .type */
8062 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
8063 				/* .size */
8064 			},
8065 			/* .next_prev_pid */
8066 			/* .next_prev_tid */
8067 		},
8068 	};
8069 
8070 	if (!sched_in && task->state == TASK_RUNNING)
8071 		switch_event.event_id.header.misc |=
8072 				PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
8073 
8074 	perf_iterate_sb(perf_event_switch_output,
8075 		       &switch_event,
8076 		       NULL);
8077 }
8078 
8079 /*
8080  * IRQ throttle logging
8081  */
8082 
8083 static void perf_log_throttle(struct perf_event *event, int enable)
8084 {
8085 	struct perf_output_handle handle;
8086 	struct perf_sample_data sample;
8087 	int ret;
8088 
8089 	struct {
8090 		struct perf_event_header	header;
8091 		u64				time;
8092 		u64				id;
8093 		u64				stream_id;
8094 	} throttle_event = {
8095 		.header = {
8096 			.type = PERF_RECORD_THROTTLE,
8097 			.misc = 0,
8098 			.size = sizeof(throttle_event),
8099 		},
8100 		.time		= perf_event_clock(event),
8101 		.id		= primary_event_id(event),
8102 		.stream_id	= event->id,
8103 	};
8104 
8105 	if (enable)
8106 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
8107 
8108 	perf_event_header__init_id(&throttle_event.header, &sample, event);
8109 
8110 	ret = perf_output_begin(&handle, event,
8111 				throttle_event.header.size);
8112 	if (ret)
8113 		return;
8114 
8115 	perf_output_put(&handle, throttle_event);
8116 	perf_event__output_id_sample(event, &handle, &sample);
8117 	perf_output_end(&handle);
8118 }
8119 
8120 /*
8121  * ksymbol register/unregister tracking
8122  */
8123 
8124 struct perf_ksymbol_event {
8125 	const char	*name;
8126 	int		name_len;
8127 	struct {
8128 		struct perf_event_header        header;
8129 		u64				addr;
8130 		u32				len;
8131 		u16				ksym_type;
8132 		u16				flags;
8133 	} event_id;
8134 };
8135 
8136 static int perf_event_ksymbol_match(struct perf_event *event)
8137 {
8138 	return event->attr.ksymbol;
8139 }
8140 
8141 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
8142 {
8143 	struct perf_ksymbol_event *ksymbol_event = data;
8144 	struct perf_output_handle handle;
8145 	struct perf_sample_data sample;
8146 	int ret;
8147 
8148 	if (!perf_event_ksymbol_match(event))
8149 		return;
8150 
8151 	perf_event_header__init_id(&ksymbol_event->event_id.header,
8152 				   &sample, event);
8153 	ret = perf_output_begin(&handle, event,
8154 				ksymbol_event->event_id.header.size);
8155 	if (ret)
8156 		return;
8157 
8158 	perf_output_put(&handle, ksymbol_event->event_id);
8159 	__output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
8160 	perf_event__output_id_sample(event, &handle, &sample);
8161 
8162 	perf_output_end(&handle);
8163 }
8164 
8165 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
8166 			const char *sym)
8167 {
8168 	struct perf_ksymbol_event ksymbol_event;
8169 	char name[KSYM_NAME_LEN];
8170 	u16 flags = 0;
8171 	int name_len;
8172 
8173 	if (!atomic_read(&nr_ksymbol_events))
8174 		return;
8175 
8176 	if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
8177 	    ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
8178 		goto err;
8179 
8180 	strlcpy(name, sym, KSYM_NAME_LEN);
8181 	name_len = strlen(name) + 1;
8182 	while (!IS_ALIGNED(name_len, sizeof(u64)))
8183 		name[name_len++] = '\0';
8184 	BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
8185 
8186 	if (unregister)
8187 		flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
8188 
8189 	ksymbol_event = (struct perf_ksymbol_event){
8190 		.name = name,
8191 		.name_len = name_len,
8192 		.event_id = {
8193 			.header = {
8194 				.type = PERF_RECORD_KSYMBOL,
8195 				.size = sizeof(ksymbol_event.event_id) +
8196 					name_len,
8197 			},
8198 			.addr = addr,
8199 			.len = len,
8200 			.ksym_type = ksym_type,
8201 			.flags = flags,
8202 		},
8203 	};
8204 
8205 	perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
8206 	return;
8207 err:
8208 	WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
8209 }
8210 
8211 /*
8212  * bpf program load/unload tracking
8213  */
8214 
8215 struct perf_bpf_event {
8216 	struct bpf_prog	*prog;
8217 	struct {
8218 		struct perf_event_header        header;
8219 		u16				type;
8220 		u16				flags;
8221 		u32				id;
8222 		u8				tag[BPF_TAG_SIZE];
8223 	} event_id;
8224 };
8225 
8226 static int perf_event_bpf_match(struct perf_event *event)
8227 {
8228 	return event->attr.bpf_event;
8229 }
8230 
8231 static void perf_event_bpf_output(struct perf_event *event, void *data)
8232 {
8233 	struct perf_bpf_event *bpf_event = data;
8234 	struct perf_output_handle handle;
8235 	struct perf_sample_data sample;
8236 	int ret;
8237 
8238 	if (!perf_event_bpf_match(event))
8239 		return;
8240 
8241 	perf_event_header__init_id(&bpf_event->event_id.header,
8242 				   &sample, event);
8243 	ret = perf_output_begin(&handle, event,
8244 				bpf_event->event_id.header.size);
8245 	if (ret)
8246 		return;
8247 
8248 	perf_output_put(&handle, bpf_event->event_id);
8249 	perf_event__output_id_sample(event, &handle, &sample);
8250 
8251 	perf_output_end(&handle);
8252 }
8253 
8254 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
8255 					 enum perf_bpf_event_type type)
8256 {
8257 	bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
8258 	char sym[KSYM_NAME_LEN];
8259 	int i;
8260 
8261 	if (prog->aux->func_cnt == 0) {
8262 		bpf_get_prog_name(prog, sym);
8263 		perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
8264 				   (u64)(unsigned long)prog->bpf_func,
8265 				   prog->jited_len, unregister, sym);
8266 	} else {
8267 		for (i = 0; i < prog->aux->func_cnt; i++) {
8268 			struct bpf_prog *subprog = prog->aux->func[i];
8269 
8270 			bpf_get_prog_name(subprog, sym);
8271 			perf_event_ksymbol(
8272 				PERF_RECORD_KSYMBOL_TYPE_BPF,
8273 				(u64)(unsigned long)subprog->bpf_func,
8274 				subprog->jited_len, unregister, sym);
8275 		}
8276 	}
8277 }
8278 
8279 void perf_event_bpf_event(struct bpf_prog *prog,
8280 			  enum perf_bpf_event_type type,
8281 			  u16 flags)
8282 {
8283 	struct perf_bpf_event bpf_event;
8284 
8285 	if (type <= PERF_BPF_EVENT_UNKNOWN ||
8286 	    type >= PERF_BPF_EVENT_MAX)
8287 		return;
8288 
8289 	switch (type) {
8290 	case PERF_BPF_EVENT_PROG_LOAD:
8291 	case PERF_BPF_EVENT_PROG_UNLOAD:
8292 		if (atomic_read(&nr_ksymbol_events))
8293 			perf_event_bpf_emit_ksymbols(prog, type);
8294 		break;
8295 	default:
8296 		break;
8297 	}
8298 
8299 	if (!atomic_read(&nr_bpf_events))
8300 		return;
8301 
8302 	bpf_event = (struct perf_bpf_event){
8303 		.prog = prog,
8304 		.event_id = {
8305 			.header = {
8306 				.type = PERF_RECORD_BPF_EVENT,
8307 				.size = sizeof(bpf_event.event_id),
8308 			},
8309 			.type = type,
8310 			.flags = flags,
8311 			.id = prog->aux->id,
8312 		},
8313 	};
8314 
8315 	BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
8316 
8317 	memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
8318 	perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
8319 }
8320 
8321 void perf_event_itrace_started(struct perf_event *event)
8322 {
8323 	event->attach_state |= PERF_ATTACH_ITRACE;
8324 }
8325 
8326 static void perf_log_itrace_start(struct perf_event *event)
8327 {
8328 	struct perf_output_handle handle;
8329 	struct perf_sample_data sample;
8330 	struct perf_aux_event {
8331 		struct perf_event_header        header;
8332 		u32				pid;
8333 		u32				tid;
8334 	} rec;
8335 	int ret;
8336 
8337 	if (event->parent)
8338 		event = event->parent;
8339 
8340 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
8341 	    event->attach_state & PERF_ATTACH_ITRACE)
8342 		return;
8343 
8344 	rec.header.type	= PERF_RECORD_ITRACE_START;
8345 	rec.header.misc	= 0;
8346 	rec.header.size	= sizeof(rec);
8347 	rec.pid	= perf_event_pid(event, current);
8348 	rec.tid	= perf_event_tid(event, current);
8349 
8350 	perf_event_header__init_id(&rec.header, &sample, event);
8351 	ret = perf_output_begin(&handle, event, rec.header.size);
8352 
8353 	if (ret)
8354 		return;
8355 
8356 	perf_output_put(&handle, rec);
8357 	perf_event__output_id_sample(event, &handle, &sample);
8358 
8359 	perf_output_end(&handle);
8360 }
8361 
8362 static int
8363 __perf_event_account_interrupt(struct perf_event *event, int throttle)
8364 {
8365 	struct hw_perf_event *hwc = &event->hw;
8366 	int ret = 0;
8367 	u64 seq;
8368 
8369 	seq = __this_cpu_read(perf_throttled_seq);
8370 	if (seq != hwc->interrupts_seq) {
8371 		hwc->interrupts_seq = seq;
8372 		hwc->interrupts = 1;
8373 	} else {
8374 		hwc->interrupts++;
8375 		if (unlikely(throttle
8376 			     && hwc->interrupts >= max_samples_per_tick)) {
8377 			__this_cpu_inc(perf_throttled_count);
8378 			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
8379 			hwc->interrupts = MAX_INTERRUPTS;
8380 			perf_log_throttle(event, 0);
8381 			ret = 1;
8382 		}
8383 	}
8384 
8385 	if (event->attr.freq) {
8386 		u64 now = perf_clock();
8387 		s64 delta = now - hwc->freq_time_stamp;
8388 
8389 		hwc->freq_time_stamp = now;
8390 
8391 		if (delta > 0 && delta < 2*TICK_NSEC)
8392 			perf_adjust_period(event, delta, hwc->last_period, true);
8393 	}
8394 
8395 	return ret;
8396 }
8397 
8398 int perf_event_account_interrupt(struct perf_event *event)
8399 {
8400 	return __perf_event_account_interrupt(event, 1);
8401 }
8402 
8403 /*
8404  * Generic event overflow handling, sampling.
8405  */
8406 
8407 static int __perf_event_overflow(struct perf_event *event,
8408 				   int throttle, struct perf_sample_data *data,
8409 				   struct pt_regs *regs)
8410 {
8411 	int events = atomic_read(&event->event_limit);
8412 	int ret = 0;
8413 
8414 	/*
8415 	 * Non-sampling counters might still use the PMI to fold short
8416 	 * hardware counters, ignore those.
8417 	 */
8418 	if (unlikely(!is_sampling_event(event)))
8419 		return 0;
8420 
8421 	ret = __perf_event_account_interrupt(event, throttle);
8422 
8423 	/*
8424 	 * XXX event_limit might not quite work as expected on inherited
8425 	 * events
8426 	 */
8427 
8428 	event->pending_kill = POLL_IN;
8429 	if (events && atomic_dec_and_test(&event->event_limit)) {
8430 		ret = 1;
8431 		event->pending_kill = POLL_HUP;
8432 
8433 		perf_event_disable_inatomic(event);
8434 	}
8435 
8436 	READ_ONCE(event->overflow_handler)(event, data, regs);
8437 
8438 	if (*perf_event_fasync(event) && event->pending_kill) {
8439 		event->pending_wakeup = 1;
8440 		irq_work_queue(&event->pending);
8441 	}
8442 
8443 	return ret;
8444 }
8445 
8446 int perf_event_overflow(struct perf_event *event,
8447 			  struct perf_sample_data *data,
8448 			  struct pt_regs *regs)
8449 {
8450 	return __perf_event_overflow(event, 1, data, regs);
8451 }
8452 
8453 /*
8454  * Generic software event infrastructure
8455  */
8456 
8457 struct swevent_htable {
8458 	struct swevent_hlist		*swevent_hlist;
8459 	struct mutex			hlist_mutex;
8460 	int				hlist_refcount;
8461 
8462 	/* Recursion avoidance in each contexts */
8463 	int				recursion[PERF_NR_CONTEXTS];
8464 };
8465 
8466 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
8467 
8468 /*
8469  * We directly increment event->count and keep a second value in
8470  * event->hw.period_left to count intervals. This period event
8471  * is kept in the range [-sample_period, 0] so that we can use the
8472  * sign as trigger.
8473  */
8474 
8475 u64 perf_swevent_set_period(struct perf_event *event)
8476 {
8477 	struct hw_perf_event *hwc = &event->hw;
8478 	u64 period = hwc->last_period;
8479 	u64 nr, offset;
8480 	s64 old, val;
8481 
8482 	hwc->last_period = hwc->sample_period;
8483 
8484 again:
8485 	old = val = local64_read(&hwc->period_left);
8486 	if (val < 0)
8487 		return 0;
8488 
8489 	nr = div64_u64(period + val, period);
8490 	offset = nr * period;
8491 	val -= offset;
8492 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
8493 		goto again;
8494 
8495 	return nr;
8496 }
8497 
8498 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
8499 				    struct perf_sample_data *data,
8500 				    struct pt_regs *regs)
8501 {
8502 	struct hw_perf_event *hwc = &event->hw;
8503 	int throttle = 0;
8504 
8505 	if (!overflow)
8506 		overflow = perf_swevent_set_period(event);
8507 
8508 	if (hwc->interrupts == MAX_INTERRUPTS)
8509 		return;
8510 
8511 	for (; overflow; overflow--) {
8512 		if (__perf_event_overflow(event, throttle,
8513 					    data, regs)) {
8514 			/*
8515 			 * We inhibit the overflow from happening when
8516 			 * hwc->interrupts == MAX_INTERRUPTS.
8517 			 */
8518 			break;
8519 		}
8520 		throttle = 1;
8521 	}
8522 }
8523 
8524 static void perf_swevent_event(struct perf_event *event, u64 nr,
8525 			       struct perf_sample_data *data,
8526 			       struct pt_regs *regs)
8527 {
8528 	struct hw_perf_event *hwc = &event->hw;
8529 
8530 	local64_add(nr, &event->count);
8531 
8532 	if (!regs)
8533 		return;
8534 
8535 	if (!is_sampling_event(event))
8536 		return;
8537 
8538 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
8539 		data->period = nr;
8540 		return perf_swevent_overflow(event, 1, data, regs);
8541 	} else
8542 		data->period = event->hw.last_period;
8543 
8544 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
8545 		return perf_swevent_overflow(event, 1, data, regs);
8546 
8547 	if (local64_add_negative(nr, &hwc->period_left))
8548 		return;
8549 
8550 	perf_swevent_overflow(event, 0, data, regs);
8551 }
8552 
8553 static int perf_exclude_event(struct perf_event *event,
8554 			      struct pt_regs *regs)
8555 {
8556 	if (event->hw.state & PERF_HES_STOPPED)
8557 		return 1;
8558 
8559 	if (regs) {
8560 		if (event->attr.exclude_user && user_mode(regs))
8561 			return 1;
8562 
8563 		if (event->attr.exclude_kernel && !user_mode(regs))
8564 			return 1;
8565 	}
8566 
8567 	return 0;
8568 }
8569 
8570 static int perf_swevent_match(struct perf_event *event,
8571 				enum perf_type_id type,
8572 				u32 event_id,
8573 				struct perf_sample_data *data,
8574 				struct pt_regs *regs)
8575 {
8576 	if (event->attr.type != type)
8577 		return 0;
8578 
8579 	if (event->attr.config != event_id)
8580 		return 0;
8581 
8582 	if (perf_exclude_event(event, regs))
8583 		return 0;
8584 
8585 	return 1;
8586 }
8587 
8588 static inline u64 swevent_hash(u64 type, u32 event_id)
8589 {
8590 	u64 val = event_id | (type << 32);
8591 
8592 	return hash_64(val, SWEVENT_HLIST_BITS);
8593 }
8594 
8595 static inline struct hlist_head *
8596 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
8597 {
8598 	u64 hash = swevent_hash(type, event_id);
8599 
8600 	return &hlist->heads[hash];
8601 }
8602 
8603 /* For the read side: events when they trigger */
8604 static inline struct hlist_head *
8605 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
8606 {
8607 	struct swevent_hlist *hlist;
8608 
8609 	hlist = rcu_dereference(swhash->swevent_hlist);
8610 	if (!hlist)
8611 		return NULL;
8612 
8613 	return __find_swevent_head(hlist, type, event_id);
8614 }
8615 
8616 /* For the event head insertion and removal in the hlist */
8617 static inline struct hlist_head *
8618 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
8619 {
8620 	struct swevent_hlist *hlist;
8621 	u32 event_id = event->attr.config;
8622 	u64 type = event->attr.type;
8623 
8624 	/*
8625 	 * Event scheduling is always serialized against hlist allocation
8626 	 * and release. Which makes the protected version suitable here.
8627 	 * The context lock guarantees that.
8628 	 */
8629 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
8630 					  lockdep_is_held(&event->ctx->lock));
8631 	if (!hlist)
8632 		return NULL;
8633 
8634 	return __find_swevent_head(hlist, type, event_id);
8635 }
8636 
8637 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
8638 				    u64 nr,
8639 				    struct perf_sample_data *data,
8640 				    struct pt_regs *regs)
8641 {
8642 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8643 	struct perf_event *event;
8644 	struct hlist_head *head;
8645 
8646 	rcu_read_lock();
8647 	head = find_swevent_head_rcu(swhash, type, event_id);
8648 	if (!head)
8649 		goto end;
8650 
8651 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
8652 		if (perf_swevent_match(event, type, event_id, data, regs))
8653 			perf_swevent_event(event, nr, data, regs);
8654 	}
8655 end:
8656 	rcu_read_unlock();
8657 }
8658 
8659 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
8660 
8661 int perf_swevent_get_recursion_context(void)
8662 {
8663 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8664 
8665 	return get_recursion_context(swhash->recursion);
8666 }
8667 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
8668 
8669 void perf_swevent_put_recursion_context(int rctx)
8670 {
8671 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8672 
8673 	put_recursion_context(swhash->recursion, rctx);
8674 }
8675 
8676 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8677 {
8678 	struct perf_sample_data data;
8679 
8680 	if (WARN_ON_ONCE(!regs))
8681 		return;
8682 
8683 	perf_sample_data_init(&data, addr, 0);
8684 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
8685 }
8686 
8687 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8688 {
8689 	int rctx;
8690 
8691 	preempt_disable_notrace();
8692 	rctx = perf_swevent_get_recursion_context();
8693 	if (unlikely(rctx < 0))
8694 		goto fail;
8695 
8696 	___perf_sw_event(event_id, nr, regs, addr);
8697 
8698 	perf_swevent_put_recursion_context(rctx);
8699 fail:
8700 	preempt_enable_notrace();
8701 }
8702 
8703 static void perf_swevent_read(struct perf_event *event)
8704 {
8705 }
8706 
8707 static int perf_swevent_add(struct perf_event *event, int flags)
8708 {
8709 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8710 	struct hw_perf_event *hwc = &event->hw;
8711 	struct hlist_head *head;
8712 
8713 	if (is_sampling_event(event)) {
8714 		hwc->last_period = hwc->sample_period;
8715 		perf_swevent_set_period(event);
8716 	}
8717 
8718 	hwc->state = !(flags & PERF_EF_START);
8719 
8720 	head = find_swevent_head(swhash, event);
8721 	if (WARN_ON_ONCE(!head))
8722 		return -EINVAL;
8723 
8724 	hlist_add_head_rcu(&event->hlist_entry, head);
8725 	perf_event_update_userpage(event);
8726 
8727 	return 0;
8728 }
8729 
8730 static void perf_swevent_del(struct perf_event *event, int flags)
8731 {
8732 	hlist_del_rcu(&event->hlist_entry);
8733 }
8734 
8735 static void perf_swevent_start(struct perf_event *event, int flags)
8736 {
8737 	event->hw.state = 0;
8738 }
8739 
8740 static void perf_swevent_stop(struct perf_event *event, int flags)
8741 {
8742 	event->hw.state = PERF_HES_STOPPED;
8743 }
8744 
8745 /* Deref the hlist from the update side */
8746 static inline struct swevent_hlist *
8747 swevent_hlist_deref(struct swevent_htable *swhash)
8748 {
8749 	return rcu_dereference_protected(swhash->swevent_hlist,
8750 					 lockdep_is_held(&swhash->hlist_mutex));
8751 }
8752 
8753 static void swevent_hlist_release(struct swevent_htable *swhash)
8754 {
8755 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
8756 
8757 	if (!hlist)
8758 		return;
8759 
8760 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
8761 	kfree_rcu(hlist, rcu_head);
8762 }
8763 
8764 static void swevent_hlist_put_cpu(int cpu)
8765 {
8766 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8767 
8768 	mutex_lock(&swhash->hlist_mutex);
8769 
8770 	if (!--swhash->hlist_refcount)
8771 		swevent_hlist_release(swhash);
8772 
8773 	mutex_unlock(&swhash->hlist_mutex);
8774 }
8775 
8776 static void swevent_hlist_put(void)
8777 {
8778 	int cpu;
8779 
8780 	for_each_possible_cpu(cpu)
8781 		swevent_hlist_put_cpu(cpu);
8782 }
8783 
8784 static int swevent_hlist_get_cpu(int cpu)
8785 {
8786 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8787 	int err = 0;
8788 
8789 	mutex_lock(&swhash->hlist_mutex);
8790 	if (!swevent_hlist_deref(swhash) &&
8791 	    cpumask_test_cpu(cpu, perf_online_mask)) {
8792 		struct swevent_hlist *hlist;
8793 
8794 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
8795 		if (!hlist) {
8796 			err = -ENOMEM;
8797 			goto exit;
8798 		}
8799 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
8800 	}
8801 	swhash->hlist_refcount++;
8802 exit:
8803 	mutex_unlock(&swhash->hlist_mutex);
8804 
8805 	return err;
8806 }
8807 
8808 static int swevent_hlist_get(void)
8809 {
8810 	int err, cpu, failed_cpu;
8811 
8812 	mutex_lock(&pmus_lock);
8813 	for_each_possible_cpu(cpu) {
8814 		err = swevent_hlist_get_cpu(cpu);
8815 		if (err) {
8816 			failed_cpu = cpu;
8817 			goto fail;
8818 		}
8819 	}
8820 	mutex_unlock(&pmus_lock);
8821 	return 0;
8822 fail:
8823 	for_each_possible_cpu(cpu) {
8824 		if (cpu == failed_cpu)
8825 			break;
8826 		swevent_hlist_put_cpu(cpu);
8827 	}
8828 	mutex_unlock(&pmus_lock);
8829 	return err;
8830 }
8831 
8832 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
8833 
8834 static void sw_perf_event_destroy(struct perf_event *event)
8835 {
8836 	u64 event_id = event->attr.config;
8837 
8838 	WARN_ON(event->parent);
8839 
8840 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
8841 	swevent_hlist_put();
8842 }
8843 
8844 static int perf_swevent_init(struct perf_event *event)
8845 {
8846 	u64 event_id = event->attr.config;
8847 
8848 	if (event->attr.type != PERF_TYPE_SOFTWARE)
8849 		return -ENOENT;
8850 
8851 	/*
8852 	 * no branch sampling for software events
8853 	 */
8854 	if (has_branch_stack(event))
8855 		return -EOPNOTSUPP;
8856 
8857 	switch (event_id) {
8858 	case PERF_COUNT_SW_CPU_CLOCK:
8859 	case PERF_COUNT_SW_TASK_CLOCK:
8860 		return -ENOENT;
8861 
8862 	default:
8863 		break;
8864 	}
8865 
8866 	if (event_id >= PERF_COUNT_SW_MAX)
8867 		return -ENOENT;
8868 
8869 	if (!event->parent) {
8870 		int err;
8871 
8872 		err = swevent_hlist_get();
8873 		if (err)
8874 			return err;
8875 
8876 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
8877 		event->destroy = sw_perf_event_destroy;
8878 	}
8879 
8880 	return 0;
8881 }
8882 
8883 static struct pmu perf_swevent = {
8884 	.task_ctx_nr	= perf_sw_context,
8885 
8886 	.capabilities	= PERF_PMU_CAP_NO_NMI,
8887 
8888 	.event_init	= perf_swevent_init,
8889 	.add		= perf_swevent_add,
8890 	.del		= perf_swevent_del,
8891 	.start		= perf_swevent_start,
8892 	.stop		= perf_swevent_stop,
8893 	.read		= perf_swevent_read,
8894 };
8895 
8896 #ifdef CONFIG_EVENT_TRACING
8897 
8898 static int perf_tp_filter_match(struct perf_event *event,
8899 				struct perf_sample_data *data)
8900 {
8901 	void *record = data->raw->frag.data;
8902 
8903 	/* only top level events have filters set */
8904 	if (event->parent)
8905 		event = event->parent;
8906 
8907 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
8908 		return 1;
8909 	return 0;
8910 }
8911 
8912 static int perf_tp_event_match(struct perf_event *event,
8913 				struct perf_sample_data *data,
8914 				struct pt_regs *regs)
8915 {
8916 	if (event->hw.state & PERF_HES_STOPPED)
8917 		return 0;
8918 	/*
8919 	 * If exclude_kernel, only trace user-space tracepoints (uprobes)
8920 	 */
8921 	if (event->attr.exclude_kernel && !user_mode(regs))
8922 		return 0;
8923 
8924 	if (!perf_tp_filter_match(event, data))
8925 		return 0;
8926 
8927 	return 1;
8928 }
8929 
8930 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
8931 			       struct trace_event_call *call, u64 count,
8932 			       struct pt_regs *regs, struct hlist_head *head,
8933 			       struct task_struct *task)
8934 {
8935 	if (bpf_prog_array_valid(call)) {
8936 		*(struct pt_regs **)raw_data = regs;
8937 		if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
8938 			perf_swevent_put_recursion_context(rctx);
8939 			return;
8940 		}
8941 	}
8942 	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
8943 		      rctx, task);
8944 }
8945 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
8946 
8947 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
8948 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
8949 		   struct task_struct *task)
8950 {
8951 	struct perf_sample_data data;
8952 	struct perf_event *event;
8953 
8954 	struct perf_raw_record raw = {
8955 		.frag = {
8956 			.size = entry_size,
8957 			.data = record,
8958 		},
8959 	};
8960 
8961 	perf_sample_data_init(&data, 0, 0);
8962 	data.raw = &raw;
8963 
8964 	perf_trace_buf_update(record, event_type);
8965 
8966 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
8967 		if (perf_tp_event_match(event, &data, regs))
8968 			perf_swevent_event(event, count, &data, regs);
8969 	}
8970 
8971 	/*
8972 	 * If we got specified a target task, also iterate its context and
8973 	 * deliver this event there too.
8974 	 */
8975 	if (task && task != current) {
8976 		struct perf_event_context *ctx;
8977 		struct trace_entry *entry = record;
8978 
8979 		rcu_read_lock();
8980 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
8981 		if (!ctx)
8982 			goto unlock;
8983 
8984 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
8985 			if (event->cpu != smp_processor_id())
8986 				continue;
8987 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
8988 				continue;
8989 			if (event->attr.config != entry->type)
8990 				continue;
8991 			if (perf_tp_event_match(event, &data, regs))
8992 				perf_swevent_event(event, count, &data, regs);
8993 		}
8994 unlock:
8995 		rcu_read_unlock();
8996 	}
8997 
8998 	perf_swevent_put_recursion_context(rctx);
8999 }
9000 EXPORT_SYMBOL_GPL(perf_tp_event);
9001 
9002 static void tp_perf_event_destroy(struct perf_event *event)
9003 {
9004 	perf_trace_destroy(event);
9005 }
9006 
9007 static int perf_tp_event_init(struct perf_event *event)
9008 {
9009 	int err;
9010 
9011 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
9012 		return -ENOENT;
9013 
9014 	/*
9015 	 * no branch sampling for tracepoint events
9016 	 */
9017 	if (has_branch_stack(event))
9018 		return -EOPNOTSUPP;
9019 
9020 	err = perf_trace_init(event);
9021 	if (err)
9022 		return err;
9023 
9024 	event->destroy = tp_perf_event_destroy;
9025 
9026 	return 0;
9027 }
9028 
9029 static struct pmu perf_tracepoint = {
9030 	.task_ctx_nr	= perf_sw_context,
9031 
9032 	.event_init	= perf_tp_event_init,
9033 	.add		= perf_trace_add,
9034 	.del		= perf_trace_del,
9035 	.start		= perf_swevent_start,
9036 	.stop		= perf_swevent_stop,
9037 	.read		= perf_swevent_read,
9038 };
9039 
9040 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
9041 /*
9042  * Flags in config, used by dynamic PMU kprobe and uprobe
9043  * The flags should match following PMU_FORMAT_ATTR().
9044  *
9045  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
9046  *                               if not set, create kprobe/uprobe
9047  *
9048  * The following values specify a reference counter (or semaphore in the
9049  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
9050  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
9051  *
9052  * PERF_UPROBE_REF_CTR_OFFSET_BITS	# of bits in config as th offset
9053  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT	# of bits to shift left
9054  */
9055 enum perf_probe_config {
9056 	PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
9057 	PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
9058 	PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
9059 };
9060 
9061 PMU_FORMAT_ATTR(retprobe, "config:0");
9062 #endif
9063 
9064 #ifdef CONFIG_KPROBE_EVENTS
9065 static struct attribute *kprobe_attrs[] = {
9066 	&format_attr_retprobe.attr,
9067 	NULL,
9068 };
9069 
9070 static struct attribute_group kprobe_format_group = {
9071 	.name = "format",
9072 	.attrs = kprobe_attrs,
9073 };
9074 
9075 static const struct attribute_group *kprobe_attr_groups[] = {
9076 	&kprobe_format_group,
9077 	NULL,
9078 };
9079 
9080 static int perf_kprobe_event_init(struct perf_event *event);
9081 static struct pmu perf_kprobe = {
9082 	.task_ctx_nr	= perf_sw_context,
9083 	.event_init	= perf_kprobe_event_init,
9084 	.add		= perf_trace_add,
9085 	.del		= perf_trace_del,
9086 	.start		= perf_swevent_start,
9087 	.stop		= perf_swevent_stop,
9088 	.read		= perf_swevent_read,
9089 	.attr_groups	= kprobe_attr_groups,
9090 };
9091 
9092 static int perf_kprobe_event_init(struct perf_event *event)
9093 {
9094 	int err;
9095 	bool is_retprobe;
9096 
9097 	if (event->attr.type != perf_kprobe.type)
9098 		return -ENOENT;
9099 
9100 	if (!capable(CAP_SYS_ADMIN))
9101 		return -EACCES;
9102 
9103 	/*
9104 	 * no branch sampling for probe events
9105 	 */
9106 	if (has_branch_stack(event))
9107 		return -EOPNOTSUPP;
9108 
9109 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9110 	err = perf_kprobe_init(event, is_retprobe);
9111 	if (err)
9112 		return err;
9113 
9114 	event->destroy = perf_kprobe_destroy;
9115 
9116 	return 0;
9117 }
9118 #endif /* CONFIG_KPROBE_EVENTS */
9119 
9120 #ifdef CONFIG_UPROBE_EVENTS
9121 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
9122 
9123 static struct attribute *uprobe_attrs[] = {
9124 	&format_attr_retprobe.attr,
9125 	&format_attr_ref_ctr_offset.attr,
9126 	NULL,
9127 };
9128 
9129 static struct attribute_group uprobe_format_group = {
9130 	.name = "format",
9131 	.attrs = uprobe_attrs,
9132 };
9133 
9134 static const struct attribute_group *uprobe_attr_groups[] = {
9135 	&uprobe_format_group,
9136 	NULL,
9137 };
9138 
9139 static int perf_uprobe_event_init(struct perf_event *event);
9140 static struct pmu perf_uprobe = {
9141 	.task_ctx_nr	= perf_sw_context,
9142 	.event_init	= perf_uprobe_event_init,
9143 	.add		= perf_trace_add,
9144 	.del		= perf_trace_del,
9145 	.start		= perf_swevent_start,
9146 	.stop		= perf_swevent_stop,
9147 	.read		= perf_swevent_read,
9148 	.attr_groups	= uprobe_attr_groups,
9149 };
9150 
9151 static int perf_uprobe_event_init(struct perf_event *event)
9152 {
9153 	int err;
9154 	unsigned long ref_ctr_offset;
9155 	bool is_retprobe;
9156 
9157 	if (event->attr.type != perf_uprobe.type)
9158 		return -ENOENT;
9159 
9160 	if (!capable(CAP_SYS_ADMIN))
9161 		return -EACCES;
9162 
9163 	/*
9164 	 * no branch sampling for probe events
9165 	 */
9166 	if (has_branch_stack(event))
9167 		return -EOPNOTSUPP;
9168 
9169 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9170 	ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
9171 	err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
9172 	if (err)
9173 		return err;
9174 
9175 	event->destroy = perf_uprobe_destroy;
9176 
9177 	return 0;
9178 }
9179 #endif /* CONFIG_UPROBE_EVENTS */
9180 
9181 static inline void perf_tp_register(void)
9182 {
9183 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
9184 #ifdef CONFIG_KPROBE_EVENTS
9185 	perf_pmu_register(&perf_kprobe, "kprobe", -1);
9186 #endif
9187 #ifdef CONFIG_UPROBE_EVENTS
9188 	perf_pmu_register(&perf_uprobe, "uprobe", -1);
9189 #endif
9190 }
9191 
9192 static void perf_event_free_filter(struct perf_event *event)
9193 {
9194 	ftrace_profile_free_filter(event);
9195 }
9196 
9197 #ifdef CONFIG_BPF_SYSCALL
9198 static void bpf_overflow_handler(struct perf_event *event,
9199 				 struct perf_sample_data *data,
9200 				 struct pt_regs *regs)
9201 {
9202 	struct bpf_perf_event_data_kern ctx = {
9203 		.data = data,
9204 		.event = event,
9205 	};
9206 	int ret = 0;
9207 
9208 	ctx.regs = perf_arch_bpf_user_pt_regs(regs);
9209 	preempt_disable();
9210 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
9211 		goto out;
9212 	rcu_read_lock();
9213 	ret = BPF_PROG_RUN(event->prog, &ctx);
9214 	rcu_read_unlock();
9215 out:
9216 	__this_cpu_dec(bpf_prog_active);
9217 	preempt_enable();
9218 	if (!ret)
9219 		return;
9220 
9221 	event->orig_overflow_handler(event, data, regs);
9222 }
9223 
9224 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9225 {
9226 	struct bpf_prog *prog;
9227 
9228 	if (event->overflow_handler_context)
9229 		/* hw breakpoint or kernel counter */
9230 		return -EINVAL;
9231 
9232 	if (event->prog)
9233 		return -EEXIST;
9234 
9235 	prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
9236 	if (IS_ERR(prog))
9237 		return PTR_ERR(prog);
9238 
9239 	event->prog = prog;
9240 	event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
9241 	WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
9242 	return 0;
9243 }
9244 
9245 static void perf_event_free_bpf_handler(struct perf_event *event)
9246 {
9247 	struct bpf_prog *prog = event->prog;
9248 
9249 	if (!prog)
9250 		return;
9251 
9252 	WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
9253 	event->prog = NULL;
9254 	bpf_prog_put(prog);
9255 }
9256 #else
9257 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9258 {
9259 	return -EOPNOTSUPP;
9260 }
9261 static void perf_event_free_bpf_handler(struct perf_event *event)
9262 {
9263 }
9264 #endif
9265 
9266 /*
9267  * returns true if the event is a tracepoint, or a kprobe/upprobe created
9268  * with perf_event_open()
9269  */
9270 static inline bool perf_event_is_tracing(struct perf_event *event)
9271 {
9272 	if (event->pmu == &perf_tracepoint)
9273 		return true;
9274 #ifdef CONFIG_KPROBE_EVENTS
9275 	if (event->pmu == &perf_kprobe)
9276 		return true;
9277 #endif
9278 #ifdef CONFIG_UPROBE_EVENTS
9279 	if (event->pmu == &perf_uprobe)
9280 		return true;
9281 #endif
9282 	return false;
9283 }
9284 
9285 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
9286 {
9287 	bool is_kprobe, is_tracepoint, is_syscall_tp;
9288 	struct bpf_prog *prog;
9289 	int ret;
9290 
9291 	if (!perf_event_is_tracing(event))
9292 		return perf_event_set_bpf_handler(event, prog_fd);
9293 
9294 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
9295 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
9296 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
9297 	if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
9298 		/* bpf programs can only be attached to u/kprobe or tracepoint */
9299 		return -EINVAL;
9300 
9301 	prog = bpf_prog_get(prog_fd);
9302 	if (IS_ERR(prog))
9303 		return PTR_ERR(prog);
9304 
9305 	if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
9306 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
9307 	    (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
9308 		/* valid fd, but invalid bpf program type */
9309 		bpf_prog_put(prog);
9310 		return -EINVAL;
9311 	}
9312 
9313 	/* Kprobe override only works for kprobes, not uprobes. */
9314 	if (prog->kprobe_override &&
9315 	    !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
9316 		bpf_prog_put(prog);
9317 		return -EINVAL;
9318 	}
9319 
9320 	if (is_tracepoint || is_syscall_tp) {
9321 		int off = trace_event_get_offsets(event->tp_event);
9322 
9323 		if (prog->aux->max_ctx_offset > off) {
9324 			bpf_prog_put(prog);
9325 			return -EACCES;
9326 		}
9327 	}
9328 
9329 	ret = perf_event_attach_bpf_prog(event, prog);
9330 	if (ret)
9331 		bpf_prog_put(prog);
9332 	return ret;
9333 }
9334 
9335 static void perf_event_free_bpf_prog(struct perf_event *event)
9336 {
9337 	if (!perf_event_is_tracing(event)) {
9338 		perf_event_free_bpf_handler(event);
9339 		return;
9340 	}
9341 	perf_event_detach_bpf_prog(event);
9342 }
9343 
9344 #else
9345 
9346 static inline void perf_tp_register(void)
9347 {
9348 }
9349 
9350 static void perf_event_free_filter(struct perf_event *event)
9351 {
9352 }
9353 
9354 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
9355 {
9356 	return -ENOENT;
9357 }
9358 
9359 static void perf_event_free_bpf_prog(struct perf_event *event)
9360 {
9361 }
9362 #endif /* CONFIG_EVENT_TRACING */
9363 
9364 #ifdef CONFIG_HAVE_HW_BREAKPOINT
9365 void perf_bp_event(struct perf_event *bp, void *data)
9366 {
9367 	struct perf_sample_data sample;
9368 	struct pt_regs *regs = data;
9369 
9370 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
9371 
9372 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
9373 		perf_swevent_event(bp, 1, &sample, regs);
9374 }
9375 #endif
9376 
9377 /*
9378  * Allocate a new address filter
9379  */
9380 static struct perf_addr_filter *
9381 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
9382 {
9383 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
9384 	struct perf_addr_filter *filter;
9385 
9386 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
9387 	if (!filter)
9388 		return NULL;
9389 
9390 	INIT_LIST_HEAD(&filter->entry);
9391 	list_add_tail(&filter->entry, filters);
9392 
9393 	return filter;
9394 }
9395 
9396 static void free_filters_list(struct list_head *filters)
9397 {
9398 	struct perf_addr_filter *filter, *iter;
9399 
9400 	list_for_each_entry_safe(filter, iter, filters, entry) {
9401 		path_put(&filter->path);
9402 		list_del(&filter->entry);
9403 		kfree(filter);
9404 	}
9405 }
9406 
9407 /*
9408  * Free existing address filters and optionally install new ones
9409  */
9410 static void perf_addr_filters_splice(struct perf_event *event,
9411 				     struct list_head *head)
9412 {
9413 	unsigned long flags;
9414 	LIST_HEAD(list);
9415 
9416 	if (!has_addr_filter(event))
9417 		return;
9418 
9419 	/* don't bother with children, they don't have their own filters */
9420 	if (event->parent)
9421 		return;
9422 
9423 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
9424 
9425 	list_splice_init(&event->addr_filters.list, &list);
9426 	if (head)
9427 		list_splice(head, &event->addr_filters.list);
9428 
9429 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
9430 
9431 	free_filters_list(&list);
9432 }
9433 
9434 /*
9435  * Scan through mm's vmas and see if one of them matches the
9436  * @filter; if so, adjust filter's address range.
9437  * Called with mm::mmap_sem down for reading.
9438  */
9439 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
9440 				   struct mm_struct *mm,
9441 				   struct perf_addr_filter_range *fr)
9442 {
9443 	struct vm_area_struct *vma;
9444 
9445 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
9446 		if (!vma->vm_file)
9447 			continue;
9448 
9449 		if (perf_addr_filter_vma_adjust(filter, vma, fr))
9450 			return;
9451 	}
9452 }
9453 
9454 /*
9455  * Update event's address range filters based on the
9456  * task's existing mappings, if any.
9457  */
9458 static void perf_event_addr_filters_apply(struct perf_event *event)
9459 {
9460 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
9461 	struct task_struct *task = READ_ONCE(event->ctx->task);
9462 	struct perf_addr_filter *filter;
9463 	struct mm_struct *mm = NULL;
9464 	unsigned int count = 0;
9465 	unsigned long flags;
9466 
9467 	/*
9468 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
9469 	 * will stop on the parent's child_mutex that our caller is also holding
9470 	 */
9471 	if (task == TASK_TOMBSTONE)
9472 		return;
9473 
9474 	if (ifh->nr_file_filters) {
9475 		mm = get_task_mm(event->ctx->task);
9476 		if (!mm)
9477 			goto restart;
9478 
9479 		down_read(&mm->mmap_sem);
9480 	}
9481 
9482 	raw_spin_lock_irqsave(&ifh->lock, flags);
9483 	list_for_each_entry(filter, &ifh->list, entry) {
9484 		if (filter->path.dentry) {
9485 			/*
9486 			 * Adjust base offset if the filter is associated to a
9487 			 * binary that needs to be mapped:
9488 			 */
9489 			event->addr_filter_ranges[count].start = 0;
9490 			event->addr_filter_ranges[count].size = 0;
9491 
9492 			perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
9493 		} else {
9494 			event->addr_filter_ranges[count].start = filter->offset;
9495 			event->addr_filter_ranges[count].size  = filter->size;
9496 		}
9497 
9498 		count++;
9499 	}
9500 
9501 	event->addr_filters_gen++;
9502 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
9503 
9504 	if (ifh->nr_file_filters) {
9505 		up_read(&mm->mmap_sem);
9506 
9507 		mmput(mm);
9508 	}
9509 
9510 restart:
9511 	perf_event_stop(event, 1);
9512 }
9513 
9514 /*
9515  * Address range filtering: limiting the data to certain
9516  * instruction address ranges. Filters are ioctl()ed to us from
9517  * userspace as ascii strings.
9518  *
9519  * Filter string format:
9520  *
9521  * ACTION RANGE_SPEC
9522  * where ACTION is one of the
9523  *  * "filter": limit the trace to this region
9524  *  * "start": start tracing from this address
9525  *  * "stop": stop tracing at this address/region;
9526  * RANGE_SPEC is
9527  *  * for kernel addresses: <start address>[/<size>]
9528  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
9529  *
9530  * if <size> is not specified or is zero, the range is treated as a single
9531  * address; not valid for ACTION=="filter".
9532  */
9533 enum {
9534 	IF_ACT_NONE = -1,
9535 	IF_ACT_FILTER,
9536 	IF_ACT_START,
9537 	IF_ACT_STOP,
9538 	IF_SRC_FILE,
9539 	IF_SRC_KERNEL,
9540 	IF_SRC_FILEADDR,
9541 	IF_SRC_KERNELADDR,
9542 };
9543 
9544 enum {
9545 	IF_STATE_ACTION = 0,
9546 	IF_STATE_SOURCE,
9547 	IF_STATE_END,
9548 };
9549 
9550 static const match_table_t if_tokens = {
9551 	{ IF_ACT_FILTER,	"filter" },
9552 	{ IF_ACT_START,		"start" },
9553 	{ IF_ACT_STOP,		"stop" },
9554 	{ IF_SRC_FILE,		"%u/%u@%s" },
9555 	{ IF_SRC_KERNEL,	"%u/%u" },
9556 	{ IF_SRC_FILEADDR,	"%u@%s" },
9557 	{ IF_SRC_KERNELADDR,	"%u" },
9558 	{ IF_ACT_NONE,		NULL },
9559 };
9560 
9561 /*
9562  * Address filter string parser
9563  */
9564 static int
9565 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
9566 			     struct list_head *filters)
9567 {
9568 	struct perf_addr_filter *filter = NULL;
9569 	char *start, *orig, *filename = NULL;
9570 	substring_t args[MAX_OPT_ARGS];
9571 	int state = IF_STATE_ACTION, token;
9572 	unsigned int kernel = 0;
9573 	int ret = -EINVAL;
9574 
9575 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
9576 	if (!fstr)
9577 		return -ENOMEM;
9578 
9579 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
9580 		static const enum perf_addr_filter_action_t actions[] = {
9581 			[IF_ACT_FILTER]	= PERF_ADDR_FILTER_ACTION_FILTER,
9582 			[IF_ACT_START]	= PERF_ADDR_FILTER_ACTION_START,
9583 			[IF_ACT_STOP]	= PERF_ADDR_FILTER_ACTION_STOP,
9584 		};
9585 		ret = -EINVAL;
9586 
9587 		if (!*start)
9588 			continue;
9589 
9590 		/* filter definition begins */
9591 		if (state == IF_STATE_ACTION) {
9592 			filter = perf_addr_filter_new(event, filters);
9593 			if (!filter)
9594 				goto fail;
9595 		}
9596 
9597 		token = match_token(start, if_tokens, args);
9598 		switch (token) {
9599 		case IF_ACT_FILTER:
9600 		case IF_ACT_START:
9601 		case IF_ACT_STOP:
9602 			if (state != IF_STATE_ACTION)
9603 				goto fail;
9604 
9605 			filter->action = actions[token];
9606 			state = IF_STATE_SOURCE;
9607 			break;
9608 
9609 		case IF_SRC_KERNELADDR:
9610 		case IF_SRC_KERNEL:
9611 			kernel = 1;
9612 			/* fall through */
9613 
9614 		case IF_SRC_FILEADDR:
9615 		case IF_SRC_FILE:
9616 			if (state != IF_STATE_SOURCE)
9617 				goto fail;
9618 
9619 			*args[0].to = 0;
9620 			ret = kstrtoul(args[0].from, 0, &filter->offset);
9621 			if (ret)
9622 				goto fail;
9623 
9624 			if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
9625 				*args[1].to = 0;
9626 				ret = kstrtoul(args[1].from, 0, &filter->size);
9627 				if (ret)
9628 					goto fail;
9629 			}
9630 
9631 			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
9632 				int fpos = token == IF_SRC_FILE ? 2 : 1;
9633 
9634 				filename = match_strdup(&args[fpos]);
9635 				if (!filename) {
9636 					ret = -ENOMEM;
9637 					goto fail;
9638 				}
9639 			}
9640 
9641 			state = IF_STATE_END;
9642 			break;
9643 
9644 		default:
9645 			goto fail;
9646 		}
9647 
9648 		/*
9649 		 * Filter definition is fully parsed, validate and install it.
9650 		 * Make sure that it doesn't contradict itself or the event's
9651 		 * attribute.
9652 		 */
9653 		if (state == IF_STATE_END) {
9654 			ret = -EINVAL;
9655 			if (kernel && event->attr.exclude_kernel)
9656 				goto fail;
9657 
9658 			/*
9659 			 * ACTION "filter" must have a non-zero length region
9660 			 * specified.
9661 			 */
9662 			if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
9663 			    !filter->size)
9664 				goto fail;
9665 
9666 			if (!kernel) {
9667 				if (!filename)
9668 					goto fail;
9669 
9670 				/*
9671 				 * For now, we only support file-based filters
9672 				 * in per-task events; doing so for CPU-wide
9673 				 * events requires additional context switching
9674 				 * trickery, since same object code will be
9675 				 * mapped at different virtual addresses in
9676 				 * different processes.
9677 				 */
9678 				ret = -EOPNOTSUPP;
9679 				if (!event->ctx->task)
9680 					goto fail_free_name;
9681 
9682 				/* look up the path and grab its inode */
9683 				ret = kern_path(filename, LOOKUP_FOLLOW,
9684 						&filter->path);
9685 				if (ret)
9686 					goto fail_free_name;
9687 
9688 				kfree(filename);
9689 				filename = NULL;
9690 
9691 				ret = -EINVAL;
9692 				if (!filter->path.dentry ||
9693 				    !S_ISREG(d_inode(filter->path.dentry)
9694 					     ->i_mode))
9695 					goto fail;
9696 
9697 				event->addr_filters.nr_file_filters++;
9698 			}
9699 
9700 			/* ready to consume more filters */
9701 			state = IF_STATE_ACTION;
9702 			filter = NULL;
9703 		}
9704 	}
9705 
9706 	if (state != IF_STATE_ACTION)
9707 		goto fail;
9708 
9709 	kfree(orig);
9710 
9711 	return 0;
9712 
9713 fail_free_name:
9714 	kfree(filename);
9715 fail:
9716 	free_filters_list(filters);
9717 	kfree(orig);
9718 
9719 	return ret;
9720 }
9721 
9722 static int
9723 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
9724 {
9725 	LIST_HEAD(filters);
9726 	int ret;
9727 
9728 	/*
9729 	 * Since this is called in perf_ioctl() path, we're already holding
9730 	 * ctx::mutex.
9731 	 */
9732 	lockdep_assert_held(&event->ctx->mutex);
9733 
9734 	if (WARN_ON_ONCE(event->parent))
9735 		return -EINVAL;
9736 
9737 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
9738 	if (ret)
9739 		goto fail_clear_files;
9740 
9741 	ret = event->pmu->addr_filters_validate(&filters);
9742 	if (ret)
9743 		goto fail_free_filters;
9744 
9745 	/* remove existing filters, if any */
9746 	perf_addr_filters_splice(event, &filters);
9747 
9748 	/* install new filters */
9749 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
9750 
9751 	return ret;
9752 
9753 fail_free_filters:
9754 	free_filters_list(&filters);
9755 
9756 fail_clear_files:
9757 	event->addr_filters.nr_file_filters = 0;
9758 
9759 	return ret;
9760 }
9761 
9762 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
9763 {
9764 	int ret = -EINVAL;
9765 	char *filter_str;
9766 
9767 	filter_str = strndup_user(arg, PAGE_SIZE);
9768 	if (IS_ERR(filter_str))
9769 		return PTR_ERR(filter_str);
9770 
9771 #ifdef CONFIG_EVENT_TRACING
9772 	if (perf_event_is_tracing(event)) {
9773 		struct perf_event_context *ctx = event->ctx;
9774 
9775 		/*
9776 		 * Beware, here be dragons!!
9777 		 *
9778 		 * the tracepoint muck will deadlock against ctx->mutex, but
9779 		 * the tracepoint stuff does not actually need it. So
9780 		 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
9781 		 * already have a reference on ctx.
9782 		 *
9783 		 * This can result in event getting moved to a different ctx,
9784 		 * but that does not affect the tracepoint state.
9785 		 */
9786 		mutex_unlock(&ctx->mutex);
9787 		ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
9788 		mutex_lock(&ctx->mutex);
9789 	} else
9790 #endif
9791 	if (has_addr_filter(event))
9792 		ret = perf_event_set_addr_filter(event, filter_str);
9793 
9794 	kfree(filter_str);
9795 	return ret;
9796 }
9797 
9798 /*
9799  * hrtimer based swevent callback
9800  */
9801 
9802 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
9803 {
9804 	enum hrtimer_restart ret = HRTIMER_RESTART;
9805 	struct perf_sample_data data;
9806 	struct pt_regs *regs;
9807 	struct perf_event *event;
9808 	u64 period;
9809 
9810 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
9811 
9812 	if (event->state != PERF_EVENT_STATE_ACTIVE)
9813 		return HRTIMER_NORESTART;
9814 
9815 	event->pmu->read(event);
9816 
9817 	perf_sample_data_init(&data, 0, event->hw.last_period);
9818 	regs = get_irq_regs();
9819 
9820 	if (regs && !perf_exclude_event(event, regs)) {
9821 		if (!(event->attr.exclude_idle && is_idle_task(current)))
9822 			if (__perf_event_overflow(event, 1, &data, regs))
9823 				ret = HRTIMER_NORESTART;
9824 	}
9825 
9826 	period = max_t(u64, 10000, event->hw.sample_period);
9827 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
9828 
9829 	return ret;
9830 }
9831 
9832 static void perf_swevent_start_hrtimer(struct perf_event *event)
9833 {
9834 	struct hw_perf_event *hwc = &event->hw;
9835 	s64 period;
9836 
9837 	if (!is_sampling_event(event))
9838 		return;
9839 
9840 	period = local64_read(&hwc->period_left);
9841 	if (period) {
9842 		if (period < 0)
9843 			period = 10000;
9844 
9845 		local64_set(&hwc->period_left, 0);
9846 	} else {
9847 		period = max_t(u64, 10000, hwc->sample_period);
9848 	}
9849 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
9850 		      HRTIMER_MODE_REL_PINNED_HARD);
9851 }
9852 
9853 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
9854 {
9855 	struct hw_perf_event *hwc = &event->hw;
9856 
9857 	if (is_sampling_event(event)) {
9858 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
9859 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
9860 
9861 		hrtimer_cancel(&hwc->hrtimer);
9862 	}
9863 }
9864 
9865 static void perf_swevent_init_hrtimer(struct perf_event *event)
9866 {
9867 	struct hw_perf_event *hwc = &event->hw;
9868 
9869 	if (!is_sampling_event(event))
9870 		return;
9871 
9872 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
9873 	hwc->hrtimer.function = perf_swevent_hrtimer;
9874 
9875 	/*
9876 	 * Since hrtimers have a fixed rate, we can do a static freq->period
9877 	 * mapping and avoid the whole period adjust feedback stuff.
9878 	 */
9879 	if (event->attr.freq) {
9880 		long freq = event->attr.sample_freq;
9881 
9882 		event->attr.sample_period = NSEC_PER_SEC / freq;
9883 		hwc->sample_period = event->attr.sample_period;
9884 		local64_set(&hwc->period_left, hwc->sample_period);
9885 		hwc->last_period = hwc->sample_period;
9886 		event->attr.freq = 0;
9887 	}
9888 }
9889 
9890 /*
9891  * Software event: cpu wall time clock
9892  */
9893 
9894 static void cpu_clock_event_update(struct perf_event *event)
9895 {
9896 	s64 prev;
9897 	u64 now;
9898 
9899 	now = local_clock();
9900 	prev = local64_xchg(&event->hw.prev_count, now);
9901 	local64_add(now - prev, &event->count);
9902 }
9903 
9904 static void cpu_clock_event_start(struct perf_event *event, int flags)
9905 {
9906 	local64_set(&event->hw.prev_count, local_clock());
9907 	perf_swevent_start_hrtimer(event);
9908 }
9909 
9910 static void cpu_clock_event_stop(struct perf_event *event, int flags)
9911 {
9912 	perf_swevent_cancel_hrtimer(event);
9913 	cpu_clock_event_update(event);
9914 }
9915 
9916 static int cpu_clock_event_add(struct perf_event *event, int flags)
9917 {
9918 	if (flags & PERF_EF_START)
9919 		cpu_clock_event_start(event, flags);
9920 	perf_event_update_userpage(event);
9921 
9922 	return 0;
9923 }
9924 
9925 static void cpu_clock_event_del(struct perf_event *event, int flags)
9926 {
9927 	cpu_clock_event_stop(event, flags);
9928 }
9929 
9930 static void cpu_clock_event_read(struct perf_event *event)
9931 {
9932 	cpu_clock_event_update(event);
9933 }
9934 
9935 static int cpu_clock_event_init(struct perf_event *event)
9936 {
9937 	if (event->attr.type != PERF_TYPE_SOFTWARE)
9938 		return -ENOENT;
9939 
9940 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
9941 		return -ENOENT;
9942 
9943 	/*
9944 	 * no branch sampling for software events
9945 	 */
9946 	if (has_branch_stack(event))
9947 		return -EOPNOTSUPP;
9948 
9949 	perf_swevent_init_hrtimer(event);
9950 
9951 	return 0;
9952 }
9953 
9954 static struct pmu perf_cpu_clock = {
9955 	.task_ctx_nr	= perf_sw_context,
9956 
9957 	.capabilities	= PERF_PMU_CAP_NO_NMI,
9958 
9959 	.event_init	= cpu_clock_event_init,
9960 	.add		= cpu_clock_event_add,
9961 	.del		= cpu_clock_event_del,
9962 	.start		= cpu_clock_event_start,
9963 	.stop		= cpu_clock_event_stop,
9964 	.read		= cpu_clock_event_read,
9965 };
9966 
9967 /*
9968  * Software event: task time clock
9969  */
9970 
9971 static void task_clock_event_update(struct perf_event *event, u64 now)
9972 {
9973 	u64 prev;
9974 	s64 delta;
9975 
9976 	prev = local64_xchg(&event->hw.prev_count, now);
9977 	delta = now - prev;
9978 	local64_add(delta, &event->count);
9979 }
9980 
9981 static void task_clock_event_start(struct perf_event *event, int flags)
9982 {
9983 	local64_set(&event->hw.prev_count, event->ctx->time);
9984 	perf_swevent_start_hrtimer(event);
9985 }
9986 
9987 static void task_clock_event_stop(struct perf_event *event, int flags)
9988 {
9989 	perf_swevent_cancel_hrtimer(event);
9990 	task_clock_event_update(event, event->ctx->time);
9991 }
9992 
9993 static int task_clock_event_add(struct perf_event *event, int flags)
9994 {
9995 	if (flags & PERF_EF_START)
9996 		task_clock_event_start(event, flags);
9997 	perf_event_update_userpage(event);
9998 
9999 	return 0;
10000 }
10001 
10002 static void task_clock_event_del(struct perf_event *event, int flags)
10003 {
10004 	task_clock_event_stop(event, PERF_EF_UPDATE);
10005 }
10006 
10007 static void task_clock_event_read(struct perf_event *event)
10008 {
10009 	u64 now = perf_clock();
10010 	u64 delta = now - event->ctx->timestamp;
10011 	u64 time = event->ctx->time + delta;
10012 
10013 	task_clock_event_update(event, time);
10014 }
10015 
10016 static int task_clock_event_init(struct perf_event *event)
10017 {
10018 	if (event->attr.type != PERF_TYPE_SOFTWARE)
10019 		return -ENOENT;
10020 
10021 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
10022 		return -ENOENT;
10023 
10024 	/*
10025 	 * no branch sampling for software events
10026 	 */
10027 	if (has_branch_stack(event))
10028 		return -EOPNOTSUPP;
10029 
10030 	perf_swevent_init_hrtimer(event);
10031 
10032 	return 0;
10033 }
10034 
10035 static struct pmu perf_task_clock = {
10036 	.task_ctx_nr	= perf_sw_context,
10037 
10038 	.capabilities	= PERF_PMU_CAP_NO_NMI,
10039 
10040 	.event_init	= task_clock_event_init,
10041 	.add		= task_clock_event_add,
10042 	.del		= task_clock_event_del,
10043 	.start		= task_clock_event_start,
10044 	.stop		= task_clock_event_stop,
10045 	.read		= task_clock_event_read,
10046 };
10047 
10048 static void perf_pmu_nop_void(struct pmu *pmu)
10049 {
10050 }
10051 
10052 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
10053 {
10054 }
10055 
10056 static int perf_pmu_nop_int(struct pmu *pmu)
10057 {
10058 	return 0;
10059 }
10060 
10061 static int perf_event_nop_int(struct perf_event *event, u64 value)
10062 {
10063 	return 0;
10064 }
10065 
10066 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
10067 
10068 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
10069 {
10070 	__this_cpu_write(nop_txn_flags, flags);
10071 
10072 	if (flags & ~PERF_PMU_TXN_ADD)
10073 		return;
10074 
10075 	perf_pmu_disable(pmu);
10076 }
10077 
10078 static int perf_pmu_commit_txn(struct pmu *pmu)
10079 {
10080 	unsigned int flags = __this_cpu_read(nop_txn_flags);
10081 
10082 	__this_cpu_write(nop_txn_flags, 0);
10083 
10084 	if (flags & ~PERF_PMU_TXN_ADD)
10085 		return 0;
10086 
10087 	perf_pmu_enable(pmu);
10088 	return 0;
10089 }
10090 
10091 static void perf_pmu_cancel_txn(struct pmu *pmu)
10092 {
10093 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
10094 
10095 	__this_cpu_write(nop_txn_flags, 0);
10096 
10097 	if (flags & ~PERF_PMU_TXN_ADD)
10098 		return;
10099 
10100 	perf_pmu_enable(pmu);
10101 }
10102 
10103 static int perf_event_idx_default(struct perf_event *event)
10104 {
10105 	return 0;
10106 }
10107 
10108 /*
10109  * Ensures all contexts with the same task_ctx_nr have the same
10110  * pmu_cpu_context too.
10111  */
10112 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
10113 {
10114 	struct pmu *pmu;
10115 
10116 	if (ctxn < 0)
10117 		return NULL;
10118 
10119 	list_for_each_entry(pmu, &pmus, entry) {
10120 		if (pmu->task_ctx_nr == ctxn)
10121 			return pmu->pmu_cpu_context;
10122 	}
10123 
10124 	return NULL;
10125 }
10126 
10127 static void free_pmu_context(struct pmu *pmu)
10128 {
10129 	/*
10130 	 * Static contexts such as perf_sw_context have a global lifetime
10131 	 * and may be shared between different PMUs. Avoid freeing them
10132 	 * when a single PMU is going away.
10133 	 */
10134 	if (pmu->task_ctx_nr > perf_invalid_context)
10135 		return;
10136 
10137 	free_percpu(pmu->pmu_cpu_context);
10138 }
10139 
10140 /*
10141  * Let userspace know that this PMU supports address range filtering:
10142  */
10143 static ssize_t nr_addr_filters_show(struct device *dev,
10144 				    struct device_attribute *attr,
10145 				    char *page)
10146 {
10147 	struct pmu *pmu = dev_get_drvdata(dev);
10148 
10149 	return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
10150 }
10151 DEVICE_ATTR_RO(nr_addr_filters);
10152 
10153 static struct idr pmu_idr;
10154 
10155 static ssize_t
10156 type_show(struct device *dev, struct device_attribute *attr, char *page)
10157 {
10158 	struct pmu *pmu = dev_get_drvdata(dev);
10159 
10160 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
10161 }
10162 static DEVICE_ATTR_RO(type);
10163 
10164 static ssize_t
10165 perf_event_mux_interval_ms_show(struct device *dev,
10166 				struct device_attribute *attr,
10167 				char *page)
10168 {
10169 	struct pmu *pmu = dev_get_drvdata(dev);
10170 
10171 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
10172 }
10173 
10174 static DEFINE_MUTEX(mux_interval_mutex);
10175 
10176 static ssize_t
10177 perf_event_mux_interval_ms_store(struct device *dev,
10178 				 struct device_attribute *attr,
10179 				 const char *buf, size_t count)
10180 {
10181 	struct pmu *pmu = dev_get_drvdata(dev);
10182 	int timer, cpu, ret;
10183 
10184 	ret = kstrtoint(buf, 0, &timer);
10185 	if (ret)
10186 		return ret;
10187 
10188 	if (timer < 1)
10189 		return -EINVAL;
10190 
10191 	/* same value, noting to do */
10192 	if (timer == pmu->hrtimer_interval_ms)
10193 		return count;
10194 
10195 	mutex_lock(&mux_interval_mutex);
10196 	pmu->hrtimer_interval_ms = timer;
10197 
10198 	/* update all cpuctx for this PMU */
10199 	cpus_read_lock();
10200 	for_each_online_cpu(cpu) {
10201 		struct perf_cpu_context *cpuctx;
10202 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10203 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
10204 
10205 		cpu_function_call(cpu,
10206 			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
10207 	}
10208 	cpus_read_unlock();
10209 	mutex_unlock(&mux_interval_mutex);
10210 
10211 	return count;
10212 }
10213 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
10214 
10215 static struct attribute *pmu_dev_attrs[] = {
10216 	&dev_attr_type.attr,
10217 	&dev_attr_perf_event_mux_interval_ms.attr,
10218 	NULL,
10219 };
10220 ATTRIBUTE_GROUPS(pmu_dev);
10221 
10222 static int pmu_bus_running;
10223 static struct bus_type pmu_bus = {
10224 	.name		= "event_source",
10225 	.dev_groups	= pmu_dev_groups,
10226 };
10227 
10228 static void pmu_dev_release(struct device *dev)
10229 {
10230 	kfree(dev);
10231 }
10232 
10233 static int pmu_dev_alloc(struct pmu *pmu)
10234 {
10235 	int ret = -ENOMEM;
10236 
10237 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
10238 	if (!pmu->dev)
10239 		goto out;
10240 
10241 	pmu->dev->groups = pmu->attr_groups;
10242 	device_initialize(pmu->dev);
10243 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
10244 	if (ret)
10245 		goto free_dev;
10246 
10247 	dev_set_drvdata(pmu->dev, pmu);
10248 	pmu->dev->bus = &pmu_bus;
10249 	pmu->dev->release = pmu_dev_release;
10250 	ret = device_add(pmu->dev);
10251 	if (ret)
10252 		goto free_dev;
10253 
10254 	/* For PMUs with address filters, throw in an extra attribute: */
10255 	if (pmu->nr_addr_filters)
10256 		ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
10257 
10258 	if (ret)
10259 		goto del_dev;
10260 
10261 	if (pmu->attr_update)
10262 		ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
10263 
10264 	if (ret)
10265 		goto del_dev;
10266 
10267 out:
10268 	return ret;
10269 
10270 del_dev:
10271 	device_del(pmu->dev);
10272 
10273 free_dev:
10274 	put_device(pmu->dev);
10275 	goto out;
10276 }
10277 
10278 static struct lock_class_key cpuctx_mutex;
10279 static struct lock_class_key cpuctx_lock;
10280 
10281 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
10282 {
10283 	int cpu, ret, max = PERF_TYPE_MAX;
10284 
10285 	mutex_lock(&pmus_lock);
10286 	ret = -ENOMEM;
10287 	pmu->pmu_disable_count = alloc_percpu(int);
10288 	if (!pmu->pmu_disable_count)
10289 		goto unlock;
10290 
10291 	pmu->type = -1;
10292 	if (!name)
10293 		goto skip_type;
10294 	pmu->name = name;
10295 
10296 	if (type != PERF_TYPE_SOFTWARE) {
10297 		if (type >= 0)
10298 			max = type;
10299 
10300 		ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
10301 		if (ret < 0)
10302 			goto free_pdc;
10303 
10304 		WARN_ON(type >= 0 && ret != type);
10305 
10306 		type = ret;
10307 	}
10308 	pmu->type = type;
10309 
10310 	if (pmu_bus_running) {
10311 		ret = pmu_dev_alloc(pmu);
10312 		if (ret)
10313 			goto free_idr;
10314 	}
10315 
10316 skip_type:
10317 	if (pmu->task_ctx_nr == perf_hw_context) {
10318 		static int hw_context_taken = 0;
10319 
10320 		/*
10321 		 * Other than systems with heterogeneous CPUs, it never makes
10322 		 * sense for two PMUs to share perf_hw_context. PMUs which are
10323 		 * uncore must use perf_invalid_context.
10324 		 */
10325 		if (WARN_ON_ONCE(hw_context_taken &&
10326 		    !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
10327 			pmu->task_ctx_nr = perf_invalid_context;
10328 
10329 		hw_context_taken = 1;
10330 	}
10331 
10332 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
10333 	if (pmu->pmu_cpu_context)
10334 		goto got_cpu_context;
10335 
10336 	ret = -ENOMEM;
10337 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
10338 	if (!pmu->pmu_cpu_context)
10339 		goto free_dev;
10340 
10341 	for_each_possible_cpu(cpu) {
10342 		struct perf_cpu_context *cpuctx;
10343 
10344 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10345 		__perf_event_init_context(&cpuctx->ctx);
10346 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
10347 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
10348 		cpuctx->ctx.pmu = pmu;
10349 		cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
10350 
10351 		__perf_mux_hrtimer_init(cpuctx, cpu);
10352 	}
10353 
10354 got_cpu_context:
10355 	if (!pmu->start_txn) {
10356 		if (pmu->pmu_enable) {
10357 			/*
10358 			 * If we have pmu_enable/pmu_disable calls, install
10359 			 * transaction stubs that use that to try and batch
10360 			 * hardware accesses.
10361 			 */
10362 			pmu->start_txn  = perf_pmu_start_txn;
10363 			pmu->commit_txn = perf_pmu_commit_txn;
10364 			pmu->cancel_txn = perf_pmu_cancel_txn;
10365 		} else {
10366 			pmu->start_txn  = perf_pmu_nop_txn;
10367 			pmu->commit_txn = perf_pmu_nop_int;
10368 			pmu->cancel_txn = perf_pmu_nop_void;
10369 		}
10370 	}
10371 
10372 	if (!pmu->pmu_enable) {
10373 		pmu->pmu_enable  = perf_pmu_nop_void;
10374 		pmu->pmu_disable = perf_pmu_nop_void;
10375 	}
10376 
10377 	if (!pmu->check_period)
10378 		pmu->check_period = perf_event_nop_int;
10379 
10380 	if (!pmu->event_idx)
10381 		pmu->event_idx = perf_event_idx_default;
10382 
10383 	/*
10384 	 * Ensure the TYPE_SOFTWARE PMUs are at the head of the list,
10385 	 * since these cannot be in the IDR. This way the linear search
10386 	 * is fast, provided a valid software event is provided.
10387 	 */
10388 	if (type == PERF_TYPE_SOFTWARE || !name)
10389 		list_add_rcu(&pmu->entry, &pmus);
10390 	else
10391 		list_add_tail_rcu(&pmu->entry, &pmus);
10392 
10393 	atomic_set(&pmu->exclusive_cnt, 0);
10394 	ret = 0;
10395 unlock:
10396 	mutex_unlock(&pmus_lock);
10397 
10398 	return ret;
10399 
10400 free_dev:
10401 	device_del(pmu->dev);
10402 	put_device(pmu->dev);
10403 
10404 free_idr:
10405 	if (pmu->type != PERF_TYPE_SOFTWARE)
10406 		idr_remove(&pmu_idr, pmu->type);
10407 
10408 free_pdc:
10409 	free_percpu(pmu->pmu_disable_count);
10410 	goto unlock;
10411 }
10412 EXPORT_SYMBOL_GPL(perf_pmu_register);
10413 
10414 void perf_pmu_unregister(struct pmu *pmu)
10415 {
10416 	mutex_lock(&pmus_lock);
10417 	list_del_rcu(&pmu->entry);
10418 
10419 	/*
10420 	 * We dereference the pmu list under both SRCU and regular RCU, so
10421 	 * synchronize against both of those.
10422 	 */
10423 	synchronize_srcu(&pmus_srcu);
10424 	synchronize_rcu();
10425 
10426 	free_percpu(pmu->pmu_disable_count);
10427 	if (pmu->type != PERF_TYPE_SOFTWARE)
10428 		idr_remove(&pmu_idr, pmu->type);
10429 	if (pmu_bus_running) {
10430 		if (pmu->nr_addr_filters)
10431 			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
10432 		device_del(pmu->dev);
10433 		put_device(pmu->dev);
10434 	}
10435 	free_pmu_context(pmu);
10436 	mutex_unlock(&pmus_lock);
10437 }
10438 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
10439 
10440 static inline bool has_extended_regs(struct perf_event *event)
10441 {
10442 	return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
10443 	       (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
10444 }
10445 
10446 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
10447 {
10448 	struct perf_event_context *ctx = NULL;
10449 	int ret;
10450 
10451 	if (!try_module_get(pmu->module))
10452 		return -ENODEV;
10453 
10454 	/*
10455 	 * A number of pmu->event_init() methods iterate the sibling_list to,
10456 	 * for example, validate if the group fits on the PMU. Therefore,
10457 	 * if this is a sibling event, acquire the ctx->mutex to protect
10458 	 * the sibling_list.
10459 	 */
10460 	if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
10461 		/*
10462 		 * This ctx->mutex can nest when we're called through
10463 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
10464 		 */
10465 		ctx = perf_event_ctx_lock_nested(event->group_leader,
10466 						 SINGLE_DEPTH_NESTING);
10467 		BUG_ON(!ctx);
10468 	}
10469 
10470 	event->pmu = pmu;
10471 	ret = pmu->event_init(event);
10472 
10473 	if (ctx)
10474 		perf_event_ctx_unlock(event->group_leader, ctx);
10475 
10476 	if (!ret) {
10477 		if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
10478 		    has_extended_regs(event))
10479 			ret = -EOPNOTSUPP;
10480 
10481 		if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
10482 		    event_has_any_exclude_flag(event))
10483 			ret = -EINVAL;
10484 
10485 		if (ret && event->destroy)
10486 			event->destroy(event);
10487 	}
10488 
10489 	if (ret)
10490 		module_put(pmu->module);
10491 
10492 	return ret;
10493 }
10494 
10495 static struct pmu *perf_init_event(struct perf_event *event)
10496 {
10497 	int idx, type, ret;
10498 	struct pmu *pmu;
10499 
10500 	idx = srcu_read_lock(&pmus_srcu);
10501 
10502 	/* Try parent's PMU first: */
10503 	if (event->parent && event->parent->pmu) {
10504 		pmu = event->parent->pmu;
10505 		ret = perf_try_init_event(pmu, event);
10506 		if (!ret)
10507 			goto unlock;
10508 	}
10509 
10510 	/*
10511 	 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
10512 	 * are often aliases for PERF_TYPE_RAW.
10513 	 */
10514 	type = event->attr.type;
10515 	if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE)
10516 		type = PERF_TYPE_RAW;
10517 
10518 again:
10519 	rcu_read_lock();
10520 	pmu = idr_find(&pmu_idr, type);
10521 	rcu_read_unlock();
10522 	if (pmu) {
10523 		ret = perf_try_init_event(pmu, event);
10524 		if (ret == -ENOENT && event->attr.type != type) {
10525 			type = event->attr.type;
10526 			goto again;
10527 		}
10528 
10529 		if (ret)
10530 			pmu = ERR_PTR(ret);
10531 
10532 		goto unlock;
10533 	}
10534 
10535 	list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
10536 		ret = perf_try_init_event(pmu, event);
10537 		if (!ret)
10538 			goto unlock;
10539 
10540 		if (ret != -ENOENT) {
10541 			pmu = ERR_PTR(ret);
10542 			goto unlock;
10543 		}
10544 	}
10545 	pmu = ERR_PTR(-ENOENT);
10546 unlock:
10547 	srcu_read_unlock(&pmus_srcu, idx);
10548 
10549 	return pmu;
10550 }
10551 
10552 static void attach_sb_event(struct perf_event *event)
10553 {
10554 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
10555 
10556 	raw_spin_lock(&pel->lock);
10557 	list_add_rcu(&event->sb_list, &pel->list);
10558 	raw_spin_unlock(&pel->lock);
10559 }
10560 
10561 /*
10562  * We keep a list of all !task (and therefore per-cpu) events
10563  * that need to receive side-band records.
10564  *
10565  * This avoids having to scan all the various PMU per-cpu contexts
10566  * looking for them.
10567  */
10568 static void account_pmu_sb_event(struct perf_event *event)
10569 {
10570 	if (is_sb_event(event))
10571 		attach_sb_event(event);
10572 }
10573 
10574 static void account_event_cpu(struct perf_event *event, int cpu)
10575 {
10576 	if (event->parent)
10577 		return;
10578 
10579 	if (is_cgroup_event(event))
10580 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
10581 }
10582 
10583 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
10584 static void account_freq_event_nohz(void)
10585 {
10586 #ifdef CONFIG_NO_HZ_FULL
10587 	/* Lock so we don't race with concurrent unaccount */
10588 	spin_lock(&nr_freq_lock);
10589 	if (atomic_inc_return(&nr_freq_events) == 1)
10590 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
10591 	spin_unlock(&nr_freq_lock);
10592 #endif
10593 }
10594 
10595 static void account_freq_event(void)
10596 {
10597 	if (tick_nohz_full_enabled())
10598 		account_freq_event_nohz();
10599 	else
10600 		atomic_inc(&nr_freq_events);
10601 }
10602 
10603 
10604 static void account_event(struct perf_event *event)
10605 {
10606 	bool inc = false;
10607 
10608 	if (event->parent)
10609 		return;
10610 
10611 	if (event->attach_state & PERF_ATTACH_TASK)
10612 		inc = true;
10613 	if (event->attr.mmap || event->attr.mmap_data)
10614 		atomic_inc(&nr_mmap_events);
10615 	if (event->attr.comm)
10616 		atomic_inc(&nr_comm_events);
10617 	if (event->attr.namespaces)
10618 		atomic_inc(&nr_namespaces_events);
10619 	if (event->attr.task)
10620 		atomic_inc(&nr_task_events);
10621 	if (event->attr.freq)
10622 		account_freq_event();
10623 	if (event->attr.context_switch) {
10624 		atomic_inc(&nr_switch_events);
10625 		inc = true;
10626 	}
10627 	if (has_branch_stack(event))
10628 		inc = true;
10629 	if (is_cgroup_event(event))
10630 		inc = true;
10631 	if (event->attr.ksymbol)
10632 		atomic_inc(&nr_ksymbol_events);
10633 	if (event->attr.bpf_event)
10634 		atomic_inc(&nr_bpf_events);
10635 
10636 	if (inc) {
10637 		/*
10638 		 * We need the mutex here because static_branch_enable()
10639 		 * must complete *before* the perf_sched_count increment
10640 		 * becomes visible.
10641 		 */
10642 		if (atomic_inc_not_zero(&perf_sched_count))
10643 			goto enabled;
10644 
10645 		mutex_lock(&perf_sched_mutex);
10646 		if (!atomic_read(&perf_sched_count)) {
10647 			static_branch_enable(&perf_sched_events);
10648 			/*
10649 			 * Guarantee that all CPUs observe they key change and
10650 			 * call the perf scheduling hooks before proceeding to
10651 			 * install events that need them.
10652 			 */
10653 			synchronize_rcu();
10654 		}
10655 		/*
10656 		 * Now that we have waited for the sync_sched(), allow further
10657 		 * increments to by-pass the mutex.
10658 		 */
10659 		atomic_inc(&perf_sched_count);
10660 		mutex_unlock(&perf_sched_mutex);
10661 	}
10662 enabled:
10663 
10664 	account_event_cpu(event, event->cpu);
10665 
10666 	account_pmu_sb_event(event);
10667 }
10668 
10669 /*
10670  * Allocate and initialize an event structure
10671  */
10672 static struct perf_event *
10673 perf_event_alloc(struct perf_event_attr *attr, int cpu,
10674 		 struct task_struct *task,
10675 		 struct perf_event *group_leader,
10676 		 struct perf_event *parent_event,
10677 		 perf_overflow_handler_t overflow_handler,
10678 		 void *context, int cgroup_fd)
10679 {
10680 	struct pmu *pmu;
10681 	struct perf_event *event;
10682 	struct hw_perf_event *hwc;
10683 	long err = -EINVAL;
10684 
10685 	if ((unsigned)cpu >= nr_cpu_ids) {
10686 		if (!task || cpu != -1)
10687 			return ERR_PTR(-EINVAL);
10688 	}
10689 
10690 	event = kzalloc(sizeof(*event), GFP_KERNEL);
10691 	if (!event)
10692 		return ERR_PTR(-ENOMEM);
10693 
10694 	/*
10695 	 * Single events are their own group leaders, with an
10696 	 * empty sibling list:
10697 	 */
10698 	if (!group_leader)
10699 		group_leader = event;
10700 
10701 	mutex_init(&event->child_mutex);
10702 	INIT_LIST_HEAD(&event->child_list);
10703 
10704 	INIT_LIST_HEAD(&event->event_entry);
10705 	INIT_LIST_HEAD(&event->sibling_list);
10706 	INIT_LIST_HEAD(&event->active_list);
10707 	init_event_group(event);
10708 	INIT_LIST_HEAD(&event->rb_entry);
10709 	INIT_LIST_HEAD(&event->active_entry);
10710 	INIT_LIST_HEAD(&event->addr_filters.list);
10711 	INIT_HLIST_NODE(&event->hlist_entry);
10712 
10713 
10714 	init_waitqueue_head(&event->waitq);
10715 	event->pending_disable = -1;
10716 	init_irq_work(&event->pending, perf_pending_event);
10717 
10718 	mutex_init(&event->mmap_mutex);
10719 	raw_spin_lock_init(&event->addr_filters.lock);
10720 
10721 	atomic_long_set(&event->refcount, 1);
10722 	event->cpu		= cpu;
10723 	event->attr		= *attr;
10724 	event->group_leader	= group_leader;
10725 	event->pmu		= NULL;
10726 	event->oncpu		= -1;
10727 
10728 	event->parent		= parent_event;
10729 
10730 	event->ns		= get_pid_ns(task_active_pid_ns(current));
10731 	event->id		= atomic64_inc_return(&perf_event_id);
10732 
10733 	event->state		= PERF_EVENT_STATE_INACTIVE;
10734 
10735 	if (task) {
10736 		event->attach_state = PERF_ATTACH_TASK;
10737 		/*
10738 		 * XXX pmu::event_init needs to know what task to account to
10739 		 * and we cannot use the ctx information because we need the
10740 		 * pmu before we get a ctx.
10741 		 */
10742 		event->hw.target = get_task_struct(task);
10743 	}
10744 
10745 	event->clock = &local_clock;
10746 	if (parent_event)
10747 		event->clock = parent_event->clock;
10748 
10749 	if (!overflow_handler && parent_event) {
10750 		overflow_handler = parent_event->overflow_handler;
10751 		context = parent_event->overflow_handler_context;
10752 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
10753 		if (overflow_handler == bpf_overflow_handler) {
10754 			struct bpf_prog *prog = parent_event->prog;
10755 
10756 			bpf_prog_inc(prog);
10757 			event->prog = prog;
10758 			event->orig_overflow_handler =
10759 				parent_event->orig_overflow_handler;
10760 		}
10761 #endif
10762 	}
10763 
10764 	if (overflow_handler) {
10765 		event->overflow_handler	= overflow_handler;
10766 		event->overflow_handler_context = context;
10767 	} else if (is_write_backward(event)){
10768 		event->overflow_handler = perf_event_output_backward;
10769 		event->overflow_handler_context = NULL;
10770 	} else {
10771 		event->overflow_handler = perf_event_output_forward;
10772 		event->overflow_handler_context = NULL;
10773 	}
10774 
10775 	perf_event__state_init(event);
10776 
10777 	pmu = NULL;
10778 
10779 	hwc = &event->hw;
10780 	hwc->sample_period = attr->sample_period;
10781 	if (attr->freq && attr->sample_freq)
10782 		hwc->sample_period = 1;
10783 	hwc->last_period = hwc->sample_period;
10784 
10785 	local64_set(&hwc->period_left, hwc->sample_period);
10786 
10787 	/*
10788 	 * We currently do not support PERF_SAMPLE_READ on inherited events.
10789 	 * See perf_output_read().
10790 	 */
10791 	if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
10792 		goto err_ns;
10793 
10794 	if (!has_branch_stack(event))
10795 		event->attr.branch_sample_type = 0;
10796 
10797 	if (cgroup_fd != -1) {
10798 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
10799 		if (err)
10800 			goto err_ns;
10801 	}
10802 
10803 	pmu = perf_init_event(event);
10804 	if (IS_ERR(pmu)) {
10805 		err = PTR_ERR(pmu);
10806 		goto err_ns;
10807 	}
10808 
10809 	/*
10810 	 * Disallow uncore-cgroup events, they don't make sense as the cgroup will
10811 	 * be different on other CPUs in the uncore mask.
10812 	 */
10813 	if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) {
10814 		err = -EINVAL;
10815 		goto err_pmu;
10816 	}
10817 
10818 	if (event->attr.aux_output &&
10819 	    !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
10820 		err = -EOPNOTSUPP;
10821 		goto err_pmu;
10822 	}
10823 
10824 	err = exclusive_event_init(event);
10825 	if (err)
10826 		goto err_pmu;
10827 
10828 	if (has_addr_filter(event)) {
10829 		event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
10830 						    sizeof(struct perf_addr_filter_range),
10831 						    GFP_KERNEL);
10832 		if (!event->addr_filter_ranges) {
10833 			err = -ENOMEM;
10834 			goto err_per_task;
10835 		}
10836 
10837 		/*
10838 		 * Clone the parent's vma offsets: they are valid until exec()
10839 		 * even if the mm is not shared with the parent.
10840 		 */
10841 		if (event->parent) {
10842 			struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10843 
10844 			raw_spin_lock_irq(&ifh->lock);
10845 			memcpy(event->addr_filter_ranges,
10846 			       event->parent->addr_filter_ranges,
10847 			       pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
10848 			raw_spin_unlock_irq(&ifh->lock);
10849 		}
10850 
10851 		/* force hw sync on the address filters */
10852 		event->addr_filters_gen = 1;
10853 	}
10854 
10855 	if (!event->parent) {
10856 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
10857 			err = get_callchain_buffers(attr->sample_max_stack);
10858 			if (err)
10859 				goto err_addr_filters;
10860 		}
10861 	}
10862 
10863 	err = security_perf_event_alloc(event);
10864 	if (err)
10865 		goto err_callchain_buffer;
10866 
10867 	/* symmetric to unaccount_event() in _free_event() */
10868 	account_event(event);
10869 
10870 	return event;
10871 
10872 err_callchain_buffer:
10873 	if (!event->parent) {
10874 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
10875 			put_callchain_buffers();
10876 	}
10877 err_addr_filters:
10878 	kfree(event->addr_filter_ranges);
10879 
10880 err_per_task:
10881 	exclusive_event_destroy(event);
10882 
10883 err_pmu:
10884 	if (event->destroy)
10885 		event->destroy(event);
10886 	module_put(pmu->module);
10887 err_ns:
10888 	if (is_cgroup_event(event))
10889 		perf_detach_cgroup(event);
10890 	if (event->ns)
10891 		put_pid_ns(event->ns);
10892 	if (event->hw.target)
10893 		put_task_struct(event->hw.target);
10894 	kfree(event);
10895 
10896 	return ERR_PTR(err);
10897 }
10898 
10899 static int perf_copy_attr(struct perf_event_attr __user *uattr,
10900 			  struct perf_event_attr *attr)
10901 {
10902 	u32 size;
10903 	int ret;
10904 
10905 	/* Zero the full structure, so that a short copy will be nice. */
10906 	memset(attr, 0, sizeof(*attr));
10907 
10908 	ret = get_user(size, &uattr->size);
10909 	if (ret)
10910 		return ret;
10911 
10912 	/* ABI compatibility quirk: */
10913 	if (!size)
10914 		size = PERF_ATTR_SIZE_VER0;
10915 	if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
10916 		goto err_size;
10917 
10918 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
10919 	if (ret) {
10920 		if (ret == -E2BIG)
10921 			goto err_size;
10922 		return ret;
10923 	}
10924 
10925 	attr->size = size;
10926 
10927 	if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
10928 		return -EINVAL;
10929 
10930 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
10931 		return -EINVAL;
10932 
10933 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
10934 		return -EINVAL;
10935 
10936 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
10937 		u64 mask = attr->branch_sample_type;
10938 
10939 		/* only using defined bits */
10940 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
10941 			return -EINVAL;
10942 
10943 		/* at least one branch bit must be set */
10944 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
10945 			return -EINVAL;
10946 
10947 		/* propagate priv level, when not set for branch */
10948 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
10949 
10950 			/* exclude_kernel checked on syscall entry */
10951 			if (!attr->exclude_kernel)
10952 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
10953 
10954 			if (!attr->exclude_user)
10955 				mask |= PERF_SAMPLE_BRANCH_USER;
10956 
10957 			if (!attr->exclude_hv)
10958 				mask |= PERF_SAMPLE_BRANCH_HV;
10959 			/*
10960 			 * adjust user setting (for HW filter setup)
10961 			 */
10962 			attr->branch_sample_type = mask;
10963 		}
10964 		/* privileged levels capture (kernel, hv): check permissions */
10965 		if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
10966 			ret = perf_allow_kernel(attr);
10967 			if (ret)
10968 				return ret;
10969 		}
10970 	}
10971 
10972 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
10973 		ret = perf_reg_validate(attr->sample_regs_user);
10974 		if (ret)
10975 			return ret;
10976 	}
10977 
10978 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
10979 		if (!arch_perf_have_user_stack_dump())
10980 			return -ENOSYS;
10981 
10982 		/*
10983 		 * We have __u32 type for the size, but so far
10984 		 * we can only use __u16 as maximum due to the
10985 		 * __u16 sample size limit.
10986 		 */
10987 		if (attr->sample_stack_user >= USHRT_MAX)
10988 			return -EINVAL;
10989 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
10990 			return -EINVAL;
10991 	}
10992 
10993 	if (!attr->sample_max_stack)
10994 		attr->sample_max_stack = sysctl_perf_event_max_stack;
10995 
10996 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
10997 		ret = perf_reg_validate(attr->sample_regs_intr);
10998 out:
10999 	return ret;
11000 
11001 err_size:
11002 	put_user(sizeof(*attr), &uattr->size);
11003 	ret = -E2BIG;
11004 	goto out;
11005 }
11006 
11007 static int
11008 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
11009 {
11010 	struct perf_buffer *rb = NULL;
11011 	int ret = -EINVAL;
11012 
11013 	if (!output_event)
11014 		goto set;
11015 
11016 	/* don't allow circular references */
11017 	if (event == output_event)
11018 		goto out;
11019 
11020 	/*
11021 	 * Don't allow cross-cpu buffers
11022 	 */
11023 	if (output_event->cpu != event->cpu)
11024 		goto out;
11025 
11026 	/*
11027 	 * If its not a per-cpu rb, it must be the same task.
11028 	 */
11029 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
11030 		goto out;
11031 
11032 	/*
11033 	 * Mixing clocks in the same buffer is trouble you don't need.
11034 	 */
11035 	if (output_event->clock != event->clock)
11036 		goto out;
11037 
11038 	/*
11039 	 * Either writing ring buffer from beginning or from end.
11040 	 * Mixing is not allowed.
11041 	 */
11042 	if (is_write_backward(output_event) != is_write_backward(event))
11043 		goto out;
11044 
11045 	/*
11046 	 * If both events generate aux data, they must be on the same PMU
11047 	 */
11048 	if (has_aux(event) && has_aux(output_event) &&
11049 	    event->pmu != output_event->pmu)
11050 		goto out;
11051 
11052 set:
11053 	mutex_lock(&event->mmap_mutex);
11054 	/* Can't redirect output if we've got an active mmap() */
11055 	if (atomic_read(&event->mmap_count))
11056 		goto unlock;
11057 
11058 	if (output_event) {
11059 		/* get the rb we want to redirect to */
11060 		rb = ring_buffer_get(output_event);
11061 		if (!rb)
11062 			goto unlock;
11063 	}
11064 
11065 	ring_buffer_attach(event, rb);
11066 
11067 	ret = 0;
11068 unlock:
11069 	mutex_unlock(&event->mmap_mutex);
11070 
11071 out:
11072 	return ret;
11073 }
11074 
11075 static void mutex_lock_double(struct mutex *a, struct mutex *b)
11076 {
11077 	if (b < a)
11078 		swap(a, b);
11079 
11080 	mutex_lock(a);
11081 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
11082 }
11083 
11084 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
11085 {
11086 	bool nmi_safe = false;
11087 
11088 	switch (clk_id) {
11089 	case CLOCK_MONOTONIC:
11090 		event->clock = &ktime_get_mono_fast_ns;
11091 		nmi_safe = true;
11092 		break;
11093 
11094 	case CLOCK_MONOTONIC_RAW:
11095 		event->clock = &ktime_get_raw_fast_ns;
11096 		nmi_safe = true;
11097 		break;
11098 
11099 	case CLOCK_REALTIME:
11100 		event->clock = &ktime_get_real_ns;
11101 		break;
11102 
11103 	case CLOCK_BOOTTIME:
11104 		event->clock = &ktime_get_boottime_ns;
11105 		break;
11106 
11107 	case CLOCK_TAI:
11108 		event->clock = &ktime_get_clocktai_ns;
11109 		break;
11110 
11111 	default:
11112 		return -EINVAL;
11113 	}
11114 
11115 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
11116 		return -EINVAL;
11117 
11118 	return 0;
11119 }
11120 
11121 /*
11122  * Variation on perf_event_ctx_lock_nested(), except we take two context
11123  * mutexes.
11124  */
11125 static struct perf_event_context *
11126 __perf_event_ctx_lock_double(struct perf_event *group_leader,
11127 			     struct perf_event_context *ctx)
11128 {
11129 	struct perf_event_context *gctx;
11130 
11131 again:
11132 	rcu_read_lock();
11133 	gctx = READ_ONCE(group_leader->ctx);
11134 	if (!refcount_inc_not_zero(&gctx->refcount)) {
11135 		rcu_read_unlock();
11136 		goto again;
11137 	}
11138 	rcu_read_unlock();
11139 
11140 	mutex_lock_double(&gctx->mutex, &ctx->mutex);
11141 
11142 	if (group_leader->ctx != gctx) {
11143 		mutex_unlock(&ctx->mutex);
11144 		mutex_unlock(&gctx->mutex);
11145 		put_ctx(gctx);
11146 		goto again;
11147 	}
11148 
11149 	return gctx;
11150 }
11151 
11152 /**
11153  * sys_perf_event_open - open a performance event, associate it to a task/cpu
11154  *
11155  * @attr_uptr:	event_id type attributes for monitoring/sampling
11156  * @pid:		target pid
11157  * @cpu:		target cpu
11158  * @group_fd:		group leader event fd
11159  */
11160 SYSCALL_DEFINE5(perf_event_open,
11161 		struct perf_event_attr __user *, attr_uptr,
11162 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
11163 {
11164 	struct perf_event *group_leader = NULL, *output_event = NULL;
11165 	struct perf_event *event, *sibling;
11166 	struct perf_event_attr attr;
11167 	struct perf_event_context *ctx, *uninitialized_var(gctx);
11168 	struct file *event_file = NULL;
11169 	struct fd group = {NULL, 0};
11170 	struct task_struct *task = NULL;
11171 	struct pmu *pmu;
11172 	int event_fd;
11173 	int move_group = 0;
11174 	int err;
11175 	int f_flags = O_RDWR;
11176 	int cgroup_fd = -1;
11177 
11178 	/* for future expandability... */
11179 	if (flags & ~PERF_FLAG_ALL)
11180 		return -EINVAL;
11181 
11182 	/* Do we allow access to perf_event_open(2) ? */
11183 	err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
11184 	if (err)
11185 		return err;
11186 
11187 	err = perf_copy_attr(attr_uptr, &attr);
11188 	if (err)
11189 		return err;
11190 
11191 	if (!attr.exclude_kernel) {
11192 		err = perf_allow_kernel(&attr);
11193 		if (err)
11194 			return err;
11195 	}
11196 
11197 	if (attr.namespaces) {
11198 		if (!capable(CAP_SYS_ADMIN))
11199 			return -EACCES;
11200 	}
11201 
11202 	if (attr.freq) {
11203 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
11204 			return -EINVAL;
11205 	} else {
11206 		if (attr.sample_period & (1ULL << 63))
11207 			return -EINVAL;
11208 	}
11209 
11210 	/* Only privileged users can get physical addresses */
11211 	if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
11212 		err = perf_allow_kernel(&attr);
11213 		if (err)
11214 			return err;
11215 	}
11216 
11217 	err = security_locked_down(LOCKDOWN_PERF);
11218 	if (err && (attr.sample_type & PERF_SAMPLE_REGS_INTR))
11219 		/* REGS_INTR can leak data, lockdown must prevent this */
11220 		return err;
11221 
11222 	err = 0;
11223 
11224 	/*
11225 	 * In cgroup mode, the pid argument is used to pass the fd
11226 	 * opened to the cgroup directory in cgroupfs. The cpu argument
11227 	 * designates the cpu on which to monitor threads from that
11228 	 * cgroup.
11229 	 */
11230 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
11231 		return -EINVAL;
11232 
11233 	if (flags & PERF_FLAG_FD_CLOEXEC)
11234 		f_flags |= O_CLOEXEC;
11235 
11236 	event_fd = get_unused_fd_flags(f_flags);
11237 	if (event_fd < 0)
11238 		return event_fd;
11239 
11240 	if (group_fd != -1) {
11241 		err = perf_fget_light(group_fd, &group);
11242 		if (err)
11243 			goto err_fd;
11244 		group_leader = group.file->private_data;
11245 		if (flags & PERF_FLAG_FD_OUTPUT)
11246 			output_event = group_leader;
11247 		if (flags & PERF_FLAG_FD_NO_GROUP)
11248 			group_leader = NULL;
11249 	}
11250 
11251 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
11252 		task = find_lively_task_by_vpid(pid);
11253 		if (IS_ERR(task)) {
11254 			err = PTR_ERR(task);
11255 			goto err_group_fd;
11256 		}
11257 	}
11258 
11259 	if (task && group_leader &&
11260 	    group_leader->attr.inherit != attr.inherit) {
11261 		err = -EINVAL;
11262 		goto err_task;
11263 	}
11264 
11265 	if (task) {
11266 		err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
11267 		if (err)
11268 			goto err_task;
11269 
11270 		/*
11271 		 * Reuse ptrace permission checks for now.
11272 		 *
11273 		 * We must hold cred_guard_mutex across this and any potential
11274 		 * perf_install_in_context() call for this new event to
11275 		 * serialize against exec() altering our credentials (and the
11276 		 * perf_event_exit_task() that could imply).
11277 		 */
11278 		err = -EACCES;
11279 		if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
11280 			goto err_cred;
11281 	}
11282 
11283 	if (flags & PERF_FLAG_PID_CGROUP)
11284 		cgroup_fd = pid;
11285 
11286 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
11287 				 NULL, NULL, cgroup_fd);
11288 	if (IS_ERR(event)) {
11289 		err = PTR_ERR(event);
11290 		goto err_cred;
11291 	}
11292 
11293 	if (is_sampling_event(event)) {
11294 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
11295 			err = -EOPNOTSUPP;
11296 			goto err_alloc;
11297 		}
11298 	}
11299 
11300 	/*
11301 	 * Special case software events and allow them to be part of
11302 	 * any hardware group.
11303 	 */
11304 	pmu = event->pmu;
11305 
11306 	if (attr.use_clockid) {
11307 		err = perf_event_set_clock(event, attr.clockid);
11308 		if (err)
11309 			goto err_alloc;
11310 	}
11311 
11312 	if (pmu->task_ctx_nr == perf_sw_context)
11313 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
11314 
11315 	if (group_leader) {
11316 		if (is_software_event(event) &&
11317 		    !in_software_context(group_leader)) {
11318 			/*
11319 			 * If the event is a sw event, but the group_leader
11320 			 * is on hw context.
11321 			 *
11322 			 * Allow the addition of software events to hw
11323 			 * groups, this is safe because software events
11324 			 * never fail to schedule.
11325 			 */
11326 			pmu = group_leader->ctx->pmu;
11327 		} else if (!is_software_event(event) &&
11328 			   is_software_event(group_leader) &&
11329 			   (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
11330 			/*
11331 			 * In case the group is a pure software group, and we
11332 			 * try to add a hardware event, move the whole group to
11333 			 * the hardware context.
11334 			 */
11335 			move_group = 1;
11336 		}
11337 	}
11338 
11339 	/*
11340 	 * Get the target context (task or percpu):
11341 	 */
11342 	ctx = find_get_context(pmu, task, event);
11343 	if (IS_ERR(ctx)) {
11344 		err = PTR_ERR(ctx);
11345 		goto err_alloc;
11346 	}
11347 
11348 	/*
11349 	 * Look up the group leader (we will attach this event to it):
11350 	 */
11351 	if (group_leader) {
11352 		err = -EINVAL;
11353 
11354 		/*
11355 		 * Do not allow a recursive hierarchy (this new sibling
11356 		 * becoming part of another group-sibling):
11357 		 */
11358 		if (group_leader->group_leader != group_leader)
11359 			goto err_context;
11360 
11361 		/* All events in a group should have the same clock */
11362 		if (group_leader->clock != event->clock)
11363 			goto err_context;
11364 
11365 		/*
11366 		 * Make sure we're both events for the same CPU;
11367 		 * grouping events for different CPUs is broken; since
11368 		 * you can never concurrently schedule them anyhow.
11369 		 */
11370 		if (group_leader->cpu != event->cpu)
11371 			goto err_context;
11372 
11373 		/*
11374 		 * Make sure we're both on the same task, or both
11375 		 * per-CPU events.
11376 		 */
11377 		if (group_leader->ctx->task != ctx->task)
11378 			goto err_context;
11379 
11380 		/*
11381 		 * Do not allow to attach to a group in a different task
11382 		 * or CPU context. If we're moving SW events, we'll fix
11383 		 * this up later, so allow that.
11384 		 */
11385 		if (!move_group && group_leader->ctx != ctx)
11386 			goto err_context;
11387 
11388 		/*
11389 		 * Only a group leader can be exclusive or pinned
11390 		 */
11391 		if (attr.exclusive || attr.pinned)
11392 			goto err_context;
11393 	}
11394 
11395 	if (output_event) {
11396 		err = perf_event_set_output(event, output_event);
11397 		if (err)
11398 			goto err_context;
11399 	}
11400 
11401 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
11402 					f_flags);
11403 	if (IS_ERR(event_file)) {
11404 		err = PTR_ERR(event_file);
11405 		event_file = NULL;
11406 		goto err_context;
11407 	}
11408 
11409 	if (move_group) {
11410 		gctx = __perf_event_ctx_lock_double(group_leader, ctx);
11411 
11412 		if (gctx->task == TASK_TOMBSTONE) {
11413 			err = -ESRCH;
11414 			goto err_locked;
11415 		}
11416 
11417 		/*
11418 		 * Check if we raced against another sys_perf_event_open() call
11419 		 * moving the software group underneath us.
11420 		 */
11421 		if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
11422 			/*
11423 			 * If someone moved the group out from under us, check
11424 			 * if this new event wound up on the same ctx, if so
11425 			 * its the regular !move_group case, otherwise fail.
11426 			 */
11427 			if (gctx != ctx) {
11428 				err = -EINVAL;
11429 				goto err_locked;
11430 			} else {
11431 				perf_event_ctx_unlock(group_leader, gctx);
11432 				move_group = 0;
11433 			}
11434 		}
11435 
11436 		/*
11437 		 * Failure to create exclusive events returns -EBUSY.
11438 		 */
11439 		err = -EBUSY;
11440 		if (!exclusive_event_installable(group_leader, ctx))
11441 			goto err_locked;
11442 
11443 		for_each_sibling_event(sibling, group_leader) {
11444 			if (!exclusive_event_installable(sibling, ctx))
11445 				goto err_locked;
11446 		}
11447 	} else {
11448 		mutex_lock(&ctx->mutex);
11449 	}
11450 
11451 	if (ctx->task == TASK_TOMBSTONE) {
11452 		err = -ESRCH;
11453 		goto err_locked;
11454 	}
11455 
11456 	if (!perf_event_validate_size(event)) {
11457 		err = -E2BIG;
11458 		goto err_locked;
11459 	}
11460 
11461 	if (!task) {
11462 		/*
11463 		 * Check if the @cpu we're creating an event for is online.
11464 		 *
11465 		 * We use the perf_cpu_context::ctx::mutex to serialize against
11466 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11467 		 */
11468 		struct perf_cpu_context *cpuctx =
11469 			container_of(ctx, struct perf_cpu_context, ctx);
11470 
11471 		if (!cpuctx->online) {
11472 			err = -ENODEV;
11473 			goto err_locked;
11474 		}
11475 	}
11476 
11477 	if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
11478 		err = -EINVAL;
11479 		goto err_locked;
11480 	}
11481 
11482 	/*
11483 	 * Must be under the same ctx::mutex as perf_install_in_context(),
11484 	 * because we need to serialize with concurrent event creation.
11485 	 */
11486 	if (!exclusive_event_installable(event, ctx)) {
11487 		err = -EBUSY;
11488 		goto err_locked;
11489 	}
11490 
11491 	WARN_ON_ONCE(ctx->parent_ctx);
11492 
11493 	/*
11494 	 * This is the point on no return; we cannot fail hereafter. This is
11495 	 * where we start modifying current state.
11496 	 */
11497 
11498 	if (move_group) {
11499 		/*
11500 		 * See perf_event_ctx_lock() for comments on the details
11501 		 * of swizzling perf_event::ctx.
11502 		 */
11503 		perf_remove_from_context(group_leader, 0);
11504 		put_ctx(gctx);
11505 
11506 		for_each_sibling_event(sibling, group_leader) {
11507 			perf_remove_from_context(sibling, 0);
11508 			put_ctx(gctx);
11509 		}
11510 
11511 		/*
11512 		 * Wait for everybody to stop referencing the events through
11513 		 * the old lists, before installing it on new lists.
11514 		 */
11515 		synchronize_rcu();
11516 
11517 		/*
11518 		 * Install the group siblings before the group leader.
11519 		 *
11520 		 * Because a group leader will try and install the entire group
11521 		 * (through the sibling list, which is still in-tact), we can
11522 		 * end up with siblings installed in the wrong context.
11523 		 *
11524 		 * By installing siblings first we NO-OP because they're not
11525 		 * reachable through the group lists.
11526 		 */
11527 		for_each_sibling_event(sibling, group_leader) {
11528 			perf_event__state_init(sibling);
11529 			perf_install_in_context(ctx, sibling, sibling->cpu);
11530 			get_ctx(ctx);
11531 		}
11532 
11533 		/*
11534 		 * Removing from the context ends up with disabled
11535 		 * event. What we want here is event in the initial
11536 		 * startup state, ready to be add into new context.
11537 		 */
11538 		perf_event__state_init(group_leader);
11539 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
11540 		get_ctx(ctx);
11541 	}
11542 
11543 	/*
11544 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
11545 	 * that we're serialized against further additions and before
11546 	 * perf_install_in_context() which is the point the event is active and
11547 	 * can use these values.
11548 	 */
11549 	perf_event__header_size(event);
11550 	perf_event__id_header_size(event);
11551 
11552 	event->owner = current;
11553 
11554 	perf_install_in_context(ctx, event, event->cpu);
11555 	perf_unpin_context(ctx);
11556 
11557 	if (move_group)
11558 		perf_event_ctx_unlock(group_leader, gctx);
11559 	mutex_unlock(&ctx->mutex);
11560 
11561 	if (task) {
11562 		mutex_unlock(&task->signal->cred_guard_mutex);
11563 		put_task_struct(task);
11564 	}
11565 
11566 	mutex_lock(&current->perf_event_mutex);
11567 	list_add_tail(&event->owner_entry, &current->perf_event_list);
11568 	mutex_unlock(&current->perf_event_mutex);
11569 
11570 	/*
11571 	 * Drop the reference on the group_event after placing the
11572 	 * new event on the sibling_list. This ensures destruction
11573 	 * of the group leader will find the pointer to itself in
11574 	 * perf_group_detach().
11575 	 */
11576 	fdput(group);
11577 	fd_install(event_fd, event_file);
11578 	return event_fd;
11579 
11580 err_locked:
11581 	if (move_group)
11582 		perf_event_ctx_unlock(group_leader, gctx);
11583 	mutex_unlock(&ctx->mutex);
11584 /* err_file: */
11585 	fput(event_file);
11586 err_context:
11587 	perf_unpin_context(ctx);
11588 	put_ctx(ctx);
11589 err_alloc:
11590 	/*
11591 	 * If event_file is set, the fput() above will have called ->release()
11592 	 * and that will take care of freeing the event.
11593 	 */
11594 	if (!event_file)
11595 		free_event(event);
11596 err_cred:
11597 	if (task)
11598 		mutex_unlock(&task->signal->cred_guard_mutex);
11599 err_task:
11600 	if (task)
11601 		put_task_struct(task);
11602 err_group_fd:
11603 	fdput(group);
11604 err_fd:
11605 	put_unused_fd(event_fd);
11606 	return err;
11607 }
11608 
11609 /**
11610  * perf_event_create_kernel_counter
11611  *
11612  * @attr: attributes of the counter to create
11613  * @cpu: cpu in which the counter is bound
11614  * @task: task to profile (NULL for percpu)
11615  */
11616 struct perf_event *
11617 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
11618 				 struct task_struct *task,
11619 				 perf_overflow_handler_t overflow_handler,
11620 				 void *context)
11621 {
11622 	struct perf_event_context *ctx;
11623 	struct perf_event *event;
11624 	int err;
11625 
11626 	/*
11627 	 * Grouping is not supported for kernel events, neither is 'AUX',
11628 	 * make sure the caller's intentions are adjusted.
11629 	 */
11630 	if (attr->aux_output)
11631 		return ERR_PTR(-EINVAL);
11632 
11633 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
11634 				 overflow_handler, context, -1);
11635 	if (IS_ERR(event)) {
11636 		err = PTR_ERR(event);
11637 		goto err;
11638 	}
11639 
11640 	/* Mark owner so we could distinguish it from user events. */
11641 	event->owner = TASK_TOMBSTONE;
11642 
11643 	/*
11644 	 * Get the target context (task or percpu):
11645 	 */
11646 	ctx = find_get_context(event->pmu, task, event);
11647 	if (IS_ERR(ctx)) {
11648 		err = PTR_ERR(ctx);
11649 		goto err_free;
11650 	}
11651 
11652 	WARN_ON_ONCE(ctx->parent_ctx);
11653 	mutex_lock(&ctx->mutex);
11654 	if (ctx->task == TASK_TOMBSTONE) {
11655 		err = -ESRCH;
11656 		goto err_unlock;
11657 	}
11658 
11659 	if (!task) {
11660 		/*
11661 		 * Check if the @cpu we're creating an event for is online.
11662 		 *
11663 		 * We use the perf_cpu_context::ctx::mutex to serialize against
11664 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11665 		 */
11666 		struct perf_cpu_context *cpuctx =
11667 			container_of(ctx, struct perf_cpu_context, ctx);
11668 		if (!cpuctx->online) {
11669 			err = -ENODEV;
11670 			goto err_unlock;
11671 		}
11672 	}
11673 
11674 	if (!exclusive_event_installable(event, ctx)) {
11675 		err = -EBUSY;
11676 		goto err_unlock;
11677 	}
11678 
11679 	perf_install_in_context(ctx, event, event->cpu);
11680 	perf_unpin_context(ctx);
11681 	mutex_unlock(&ctx->mutex);
11682 
11683 	return event;
11684 
11685 err_unlock:
11686 	mutex_unlock(&ctx->mutex);
11687 	perf_unpin_context(ctx);
11688 	put_ctx(ctx);
11689 err_free:
11690 	free_event(event);
11691 err:
11692 	return ERR_PTR(err);
11693 }
11694 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
11695 
11696 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
11697 {
11698 	struct perf_event_context *src_ctx;
11699 	struct perf_event_context *dst_ctx;
11700 	struct perf_event *event, *tmp;
11701 	LIST_HEAD(events);
11702 
11703 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
11704 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
11705 
11706 	/*
11707 	 * See perf_event_ctx_lock() for comments on the details
11708 	 * of swizzling perf_event::ctx.
11709 	 */
11710 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
11711 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
11712 				 event_entry) {
11713 		perf_remove_from_context(event, 0);
11714 		unaccount_event_cpu(event, src_cpu);
11715 		put_ctx(src_ctx);
11716 		list_add(&event->migrate_entry, &events);
11717 	}
11718 
11719 	/*
11720 	 * Wait for the events to quiesce before re-instating them.
11721 	 */
11722 	synchronize_rcu();
11723 
11724 	/*
11725 	 * Re-instate events in 2 passes.
11726 	 *
11727 	 * Skip over group leaders and only install siblings on this first
11728 	 * pass, siblings will not get enabled without a leader, however a
11729 	 * leader will enable its siblings, even if those are still on the old
11730 	 * context.
11731 	 */
11732 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
11733 		if (event->group_leader == event)
11734 			continue;
11735 
11736 		list_del(&event->migrate_entry);
11737 		if (event->state >= PERF_EVENT_STATE_OFF)
11738 			event->state = PERF_EVENT_STATE_INACTIVE;
11739 		account_event_cpu(event, dst_cpu);
11740 		perf_install_in_context(dst_ctx, event, dst_cpu);
11741 		get_ctx(dst_ctx);
11742 	}
11743 
11744 	/*
11745 	 * Once all the siblings are setup properly, install the group leaders
11746 	 * to make it go.
11747 	 */
11748 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
11749 		list_del(&event->migrate_entry);
11750 		if (event->state >= PERF_EVENT_STATE_OFF)
11751 			event->state = PERF_EVENT_STATE_INACTIVE;
11752 		account_event_cpu(event, dst_cpu);
11753 		perf_install_in_context(dst_ctx, event, dst_cpu);
11754 		get_ctx(dst_ctx);
11755 	}
11756 	mutex_unlock(&dst_ctx->mutex);
11757 	mutex_unlock(&src_ctx->mutex);
11758 }
11759 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
11760 
11761 static void sync_child_event(struct perf_event *child_event,
11762 			       struct task_struct *child)
11763 {
11764 	struct perf_event *parent_event = child_event->parent;
11765 	u64 child_val;
11766 
11767 	if (child_event->attr.inherit_stat)
11768 		perf_event_read_event(child_event, child);
11769 
11770 	child_val = perf_event_count(child_event);
11771 
11772 	/*
11773 	 * Add back the child's count to the parent's count:
11774 	 */
11775 	atomic64_add(child_val, &parent_event->child_count);
11776 	atomic64_add(child_event->total_time_enabled,
11777 		     &parent_event->child_total_time_enabled);
11778 	atomic64_add(child_event->total_time_running,
11779 		     &parent_event->child_total_time_running);
11780 }
11781 
11782 static void
11783 perf_event_exit_event(struct perf_event *child_event,
11784 		      struct perf_event_context *child_ctx,
11785 		      struct task_struct *child)
11786 {
11787 	struct perf_event *parent_event = child_event->parent;
11788 
11789 	/*
11790 	 * Do not destroy the 'original' grouping; because of the context
11791 	 * switch optimization the original events could've ended up in a
11792 	 * random child task.
11793 	 *
11794 	 * If we were to destroy the original group, all group related
11795 	 * operations would cease to function properly after this random
11796 	 * child dies.
11797 	 *
11798 	 * Do destroy all inherited groups, we don't care about those
11799 	 * and being thorough is better.
11800 	 */
11801 	raw_spin_lock_irq(&child_ctx->lock);
11802 	WARN_ON_ONCE(child_ctx->is_active);
11803 
11804 	if (parent_event)
11805 		perf_group_detach(child_event);
11806 	list_del_event(child_event, child_ctx);
11807 	perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
11808 	raw_spin_unlock_irq(&child_ctx->lock);
11809 
11810 	/*
11811 	 * Parent events are governed by their filedesc, retain them.
11812 	 */
11813 	if (!parent_event) {
11814 		perf_event_wakeup(child_event);
11815 		return;
11816 	}
11817 	/*
11818 	 * Child events can be cleaned up.
11819 	 */
11820 
11821 	sync_child_event(child_event, child);
11822 
11823 	/*
11824 	 * Remove this event from the parent's list
11825 	 */
11826 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
11827 	mutex_lock(&parent_event->child_mutex);
11828 	list_del_init(&child_event->child_list);
11829 	mutex_unlock(&parent_event->child_mutex);
11830 
11831 	/*
11832 	 * Kick perf_poll() for is_event_hup().
11833 	 */
11834 	perf_event_wakeup(parent_event);
11835 	free_event(child_event);
11836 	put_event(parent_event);
11837 }
11838 
11839 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
11840 {
11841 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
11842 	struct perf_event *child_event, *next;
11843 
11844 	WARN_ON_ONCE(child != current);
11845 
11846 	child_ctx = perf_pin_task_context(child, ctxn);
11847 	if (!child_ctx)
11848 		return;
11849 
11850 	/*
11851 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
11852 	 * ctx::mutex over the entire thing. This serializes against almost
11853 	 * everything that wants to access the ctx.
11854 	 *
11855 	 * The exception is sys_perf_event_open() /
11856 	 * perf_event_create_kernel_count() which does find_get_context()
11857 	 * without ctx::mutex (it cannot because of the move_group double mutex
11858 	 * lock thing). See the comments in perf_install_in_context().
11859 	 */
11860 	mutex_lock(&child_ctx->mutex);
11861 
11862 	/*
11863 	 * In a single ctx::lock section, de-schedule the events and detach the
11864 	 * context from the task such that we cannot ever get it scheduled back
11865 	 * in.
11866 	 */
11867 	raw_spin_lock_irq(&child_ctx->lock);
11868 	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
11869 
11870 	/*
11871 	 * Now that the context is inactive, destroy the task <-> ctx relation
11872 	 * and mark the context dead.
11873 	 */
11874 	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
11875 	put_ctx(child_ctx); /* cannot be last */
11876 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
11877 	put_task_struct(current); /* cannot be last */
11878 
11879 	clone_ctx = unclone_ctx(child_ctx);
11880 	raw_spin_unlock_irq(&child_ctx->lock);
11881 
11882 	if (clone_ctx)
11883 		put_ctx(clone_ctx);
11884 
11885 	/*
11886 	 * Report the task dead after unscheduling the events so that we
11887 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
11888 	 * get a few PERF_RECORD_READ events.
11889 	 */
11890 	perf_event_task(child, child_ctx, 0);
11891 
11892 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
11893 		perf_event_exit_event(child_event, child_ctx, child);
11894 
11895 	mutex_unlock(&child_ctx->mutex);
11896 
11897 	put_ctx(child_ctx);
11898 }
11899 
11900 /*
11901  * When a child task exits, feed back event values to parent events.
11902  *
11903  * Can be called with cred_guard_mutex held when called from
11904  * install_exec_creds().
11905  */
11906 void perf_event_exit_task(struct task_struct *child)
11907 {
11908 	struct perf_event *event, *tmp;
11909 	int ctxn;
11910 
11911 	mutex_lock(&child->perf_event_mutex);
11912 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
11913 				 owner_entry) {
11914 		list_del_init(&event->owner_entry);
11915 
11916 		/*
11917 		 * Ensure the list deletion is visible before we clear
11918 		 * the owner, closes a race against perf_release() where
11919 		 * we need to serialize on the owner->perf_event_mutex.
11920 		 */
11921 		smp_store_release(&event->owner, NULL);
11922 	}
11923 	mutex_unlock(&child->perf_event_mutex);
11924 
11925 	for_each_task_context_nr(ctxn)
11926 		perf_event_exit_task_context(child, ctxn);
11927 
11928 	/*
11929 	 * The perf_event_exit_task_context calls perf_event_task
11930 	 * with child's task_ctx, which generates EXIT events for
11931 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
11932 	 * At this point we need to send EXIT events to cpu contexts.
11933 	 */
11934 	perf_event_task(child, NULL, 0);
11935 }
11936 
11937 static void perf_free_event(struct perf_event *event,
11938 			    struct perf_event_context *ctx)
11939 {
11940 	struct perf_event *parent = event->parent;
11941 
11942 	if (WARN_ON_ONCE(!parent))
11943 		return;
11944 
11945 	mutex_lock(&parent->child_mutex);
11946 	list_del_init(&event->child_list);
11947 	mutex_unlock(&parent->child_mutex);
11948 
11949 	put_event(parent);
11950 
11951 	raw_spin_lock_irq(&ctx->lock);
11952 	perf_group_detach(event);
11953 	list_del_event(event, ctx);
11954 	raw_spin_unlock_irq(&ctx->lock);
11955 	free_event(event);
11956 }
11957 
11958 /*
11959  * Free a context as created by inheritance by perf_event_init_task() below,
11960  * used by fork() in case of fail.
11961  *
11962  * Even though the task has never lived, the context and events have been
11963  * exposed through the child_list, so we must take care tearing it all down.
11964  */
11965 void perf_event_free_task(struct task_struct *task)
11966 {
11967 	struct perf_event_context *ctx;
11968 	struct perf_event *event, *tmp;
11969 	int ctxn;
11970 
11971 	for_each_task_context_nr(ctxn) {
11972 		ctx = task->perf_event_ctxp[ctxn];
11973 		if (!ctx)
11974 			continue;
11975 
11976 		mutex_lock(&ctx->mutex);
11977 		raw_spin_lock_irq(&ctx->lock);
11978 		/*
11979 		 * Destroy the task <-> ctx relation and mark the context dead.
11980 		 *
11981 		 * This is important because even though the task hasn't been
11982 		 * exposed yet the context has been (through child_list).
11983 		 */
11984 		RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
11985 		WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
11986 		put_task_struct(task); /* cannot be last */
11987 		raw_spin_unlock_irq(&ctx->lock);
11988 
11989 		list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
11990 			perf_free_event(event, ctx);
11991 
11992 		mutex_unlock(&ctx->mutex);
11993 
11994 		/*
11995 		 * perf_event_release_kernel() could've stolen some of our
11996 		 * child events and still have them on its free_list. In that
11997 		 * case we must wait for these events to have been freed (in
11998 		 * particular all their references to this task must've been
11999 		 * dropped).
12000 		 *
12001 		 * Without this copy_process() will unconditionally free this
12002 		 * task (irrespective of its reference count) and
12003 		 * _free_event()'s put_task_struct(event->hw.target) will be a
12004 		 * use-after-free.
12005 		 *
12006 		 * Wait for all events to drop their context reference.
12007 		 */
12008 		wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
12009 		put_ctx(ctx); /* must be last */
12010 	}
12011 }
12012 
12013 void perf_event_delayed_put(struct task_struct *task)
12014 {
12015 	int ctxn;
12016 
12017 	for_each_task_context_nr(ctxn)
12018 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
12019 }
12020 
12021 struct file *perf_event_get(unsigned int fd)
12022 {
12023 	struct file *file = fget(fd);
12024 	if (!file)
12025 		return ERR_PTR(-EBADF);
12026 
12027 	if (file->f_op != &perf_fops) {
12028 		fput(file);
12029 		return ERR_PTR(-EBADF);
12030 	}
12031 
12032 	return file;
12033 }
12034 
12035 const struct perf_event *perf_get_event(struct file *file)
12036 {
12037 	if (file->f_op != &perf_fops)
12038 		return ERR_PTR(-EINVAL);
12039 
12040 	return file->private_data;
12041 }
12042 
12043 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
12044 {
12045 	if (!event)
12046 		return ERR_PTR(-EINVAL);
12047 
12048 	return &event->attr;
12049 }
12050 
12051 /*
12052  * Inherit an event from parent task to child task.
12053  *
12054  * Returns:
12055  *  - valid pointer on success
12056  *  - NULL for orphaned events
12057  *  - IS_ERR() on error
12058  */
12059 static struct perf_event *
12060 inherit_event(struct perf_event *parent_event,
12061 	      struct task_struct *parent,
12062 	      struct perf_event_context *parent_ctx,
12063 	      struct task_struct *child,
12064 	      struct perf_event *group_leader,
12065 	      struct perf_event_context *child_ctx)
12066 {
12067 	enum perf_event_state parent_state = parent_event->state;
12068 	struct perf_event *child_event;
12069 	unsigned long flags;
12070 
12071 	/*
12072 	 * Instead of creating recursive hierarchies of events,
12073 	 * we link inherited events back to the original parent,
12074 	 * which has a filp for sure, which we use as the reference
12075 	 * count:
12076 	 */
12077 	if (parent_event->parent)
12078 		parent_event = parent_event->parent;
12079 
12080 	child_event = perf_event_alloc(&parent_event->attr,
12081 					   parent_event->cpu,
12082 					   child,
12083 					   group_leader, parent_event,
12084 					   NULL, NULL, -1);
12085 	if (IS_ERR(child_event))
12086 		return child_event;
12087 
12088 
12089 	if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
12090 	    !child_ctx->task_ctx_data) {
12091 		struct pmu *pmu = child_event->pmu;
12092 
12093 		child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size,
12094 						   GFP_KERNEL);
12095 		if (!child_ctx->task_ctx_data) {
12096 			free_event(child_event);
12097 			return ERR_PTR(-ENOMEM);
12098 		}
12099 	}
12100 
12101 	/*
12102 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
12103 	 * must be under the same lock in order to serialize against
12104 	 * perf_event_release_kernel(), such that either we must observe
12105 	 * is_orphaned_event() or they will observe us on the child_list.
12106 	 */
12107 	mutex_lock(&parent_event->child_mutex);
12108 	if (is_orphaned_event(parent_event) ||
12109 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
12110 		mutex_unlock(&parent_event->child_mutex);
12111 		/* task_ctx_data is freed with child_ctx */
12112 		free_event(child_event);
12113 		return NULL;
12114 	}
12115 
12116 	get_ctx(child_ctx);
12117 
12118 	/*
12119 	 * Make the child state follow the state of the parent event,
12120 	 * not its attr.disabled bit.  We hold the parent's mutex,
12121 	 * so we won't race with perf_event_{en, dis}able_family.
12122 	 */
12123 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
12124 		child_event->state = PERF_EVENT_STATE_INACTIVE;
12125 	else
12126 		child_event->state = PERF_EVENT_STATE_OFF;
12127 
12128 	if (parent_event->attr.freq) {
12129 		u64 sample_period = parent_event->hw.sample_period;
12130 		struct hw_perf_event *hwc = &child_event->hw;
12131 
12132 		hwc->sample_period = sample_period;
12133 		hwc->last_period   = sample_period;
12134 
12135 		local64_set(&hwc->period_left, sample_period);
12136 	}
12137 
12138 	child_event->ctx = child_ctx;
12139 	child_event->overflow_handler = parent_event->overflow_handler;
12140 	child_event->overflow_handler_context
12141 		= parent_event->overflow_handler_context;
12142 
12143 	/*
12144 	 * Precalculate sample_data sizes
12145 	 */
12146 	perf_event__header_size(child_event);
12147 	perf_event__id_header_size(child_event);
12148 
12149 	/*
12150 	 * Link it up in the child's context:
12151 	 */
12152 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
12153 	add_event_to_ctx(child_event, child_ctx);
12154 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
12155 
12156 	/*
12157 	 * Link this into the parent event's child list
12158 	 */
12159 	list_add_tail(&child_event->child_list, &parent_event->child_list);
12160 	mutex_unlock(&parent_event->child_mutex);
12161 
12162 	return child_event;
12163 }
12164 
12165 /*
12166  * Inherits an event group.
12167  *
12168  * This will quietly suppress orphaned events; !inherit_event() is not an error.
12169  * This matches with perf_event_release_kernel() removing all child events.
12170  *
12171  * Returns:
12172  *  - 0 on success
12173  *  - <0 on error
12174  */
12175 static int inherit_group(struct perf_event *parent_event,
12176 	      struct task_struct *parent,
12177 	      struct perf_event_context *parent_ctx,
12178 	      struct task_struct *child,
12179 	      struct perf_event_context *child_ctx)
12180 {
12181 	struct perf_event *leader;
12182 	struct perf_event *sub;
12183 	struct perf_event *child_ctr;
12184 
12185 	leader = inherit_event(parent_event, parent, parent_ctx,
12186 				 child, NULL, child_ctx);
12187 	if (IS_ERR(leader))
12188 		return PTR_ERR(leader);
12189 	/*
12190 	 * @leader can be NULL here because of is_orphaned_event(). In this
12191 	 * case inherit_event() will create individual events, similar to what
12192 	 * perf_group_detach() would do anyway.
12193 	 */
12194 	for_each_sibling_event(sub, parent_event) {
12195 		child_ctr = inherit_event(sub, parent, parent_ctx,
12196 					    child, leader, child_ctx);
12197 		if (IS_ERR(child_ctr))
12198 			return PTR_ERR(child_ctr);
12199 
12200 		if (sub->aux_event == parent_event && child_ctr &&
12201 		    !perf_get_aux_event(child_ctr, leader))
12202 			return -EINVAL;
12203 	}
12204 	return 0;
12205 }
12206 
12207 /*
12208  * Creates the child task context and tries to inherit the event-group.
12209  *
12210  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
12211  * inherited_all set when we 'fail' to inherit an orphaned event; this is
12212  * consistent with perf_event_release_kernel() removing all child events.
12213  *
12214  * Returns:
12215  *  - 0 on success
12216  *  - <0 on error
12217  */
12218 static int
12219 inherit_task_group(struct perf_event *event, struct task_struct *parent,
12220 		   struct perf_event_context *parent_ctx,
12221 		   struct task_struct *child, int ctxn,
12222 		   int *inherited_all)
12223 {
12224 	int ret;
12225 	struct perf_event_context *child_ctx;
12226 
12227 	if (!event->attr.inherit) {
12228 		*inherited_all = 0;
12229 		return 0;
12230 	}
12231 
12232 	child_ctx = child->perf_event_ctxp[ctxn];
12233 	if (!child_ctx) {
12234 		/*
12235 		 * This is executed from the parent task context, so
12236 		 * inherit events that have been marked for cloning.
12237 		 * First allocate and initialize a context for the
12238 		 * child.
12239 		 */
12240 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
12241 		if (!child_ctx)
12242 			return -ENOMEM;
12243 
12244 		child->perf_event_ctxp[ctxn] = child_ctx;
12245 	}
12246 
12247 	ret = inherit_group(event, parent, parent_ctx,
12248 			    child, child_ctx);
12249 
12250 	if (ret)
12251 		*inherited_all = 0;
12252 
12253 	return ret;
12254 }
12255 
12256 /*
12257  * Initialize the perf_event context in task_struct
12258  */
12259 static int perf_event_init_context(struct task_struct *child, int ctxn)
12260 {
12261 	struct perf_event_context *child_ctx, *parent_ctx;
12262 	struct perf_event_context *cloned_ctx;
12263 	struct perf_event *event;
12264 	struct task_struct *parent = current;
12265 	int inherited_all = 1;
12266 	unsigned long flags;
12267 	int ret = 0;
12268 
12269 	if (likely(!parent->perf_event_ctxp[ctxn]))
12270 		return 0;
12271 
12272 	/*
12273 	 * If the parent's context is a clone, pin it so it won't get
12274 	 * swapped under us.
12275 	 */
12276 	parent_ctx = perf_pin_task_context(parent, ctxn);
12277 	if (!parent_ctx)
12278 		return 0;
12279 
12280 	/*
12281 	 * No need to check if parent_ctx != NULL here; since we saw
12282 	 * it non-NULL earlier, the only reason for it to become NULL
12283 	 * is if we exit, and since we're currently in the middle of
12284 	 * a fork we can't be exiting at the same time.
12285 	 */
12286 
12287 	/*
12288 	 * Lock the parent list. No need to lock the child - not PID
12289 	 * hashed yet and not running, so nobody can access it.
12290 	 */
12291 	mutex_lock(&parent_ctx->mutex);
12292 
12293 	/*
12294 	 * We dont have to disable NMIs - we are only looking at
12295 	 * the list, not manipulating it:
12296 	 */
12297 	perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
12298 		ret = inherit_task_group(event, parent, parent_ctx,
12299 					 child, ctxn, &inherited_all);
12300 		if (ret)
12301 			goto out_unlock;
12302 	}
12303 
12304 	/*
12305 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
12306 	 * to allocations, but we need to prevent rotation because
12307 	 * rotate_ctx() will change the list from interrupt context.
12308 	 */
12309 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
12310 	parent_ctx->rotate_disable = 1;
12311 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
12312 
12313 	perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
12314 		ret = inherit_task_group(event, parent, parent_ctx,
12315 					 child, ctxn, &inherited_all);
12316 		if (ret)
12317 			goto out_unlock;
12318 	}
12319 
12320 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
12321 	parent_ctx->rotate_disable = 0;
12322 
12323 	child_ctx = child->perf_event_ctxp[ctxn];
12324 
12325 	if (child_ctx && inherited_all) {
12326 		/*
12327 		 * Mark the child context as a clone of the parent
12328 		 * context, or of whatever the parent is a clone of.
12329 		 *
12330 		 * Note that if the parent is a clone, the holding of
12331 		 * parent_ctx->lock avoids it from being uncloned.
12332 		 */
12333 		cloned_ctx = parent_ctx->parent_ctx;
12334 		if (cloned_ctx) {
12335 			child_ctx->parent_ctx = cloned_ctx;
12336 			child_ctx->parent_gen = parent_ctx->parent_gen;
12337 		} else {
12338 			child_ctx->parent_ctx = parent_ctx;
12339 			child_ctx->parent_gen = parent_ctx->generation;
12340 		}
12341 		get_ctx(child_ctx->parent_ctx);
12342 	}
12343 
12344 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
12345 out_unlock:
12346 	mutex_unlock(&parent_ctx->mutex);
12347 
12348 	perf_unpin_context(parent_ctx);
12349 	put_ctx(parent_ctx);
12350 
12351 	return ret;
12352 }
12353 
12354 /*
12355  * Initialize the perf_event context in task_struct
12356  */
12357 int perf_event_init_task(struct task_struct *child)
12358 {
12359 	int ctxn, ret;
12360 
12361 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
12362 	mutex_init(&child->perf_event_mutex);
12363 	INIT_LIST_HEAD(&child->perf_event_list);
12364 
12365 	for_each_task_context_nr(ctxn) {
12366 		ret = perf_event_init_context(child, ctxn);
12367 		if (ret) {
12368 			perf_event_free_task(child);
12369 			return ret;
12370 		}
12371 	}
12372 
12373 	return 0;
12374 }
12375 
12376 static void __init perf_event_init_all_cpus(void)
12377 {
12378 	struct swevent_htable *swhash;
12379 	int cpu;
12380 
12381 	zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
12382 
12383 	for_each_possible_cpu(cpu) {
12384 		swhash = &per_cpu(swevent_htable, cpu);
12385 		mutex_init(&swhash->hlist_mutex);
12386 		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
12387 
12388 		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
12389 		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
12390 
12391 #ifdef CONFIG_CGROUP_PERF
12392 		INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
12393 #endif
12394 		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
12395 	}
12396 }
12397 
12398 static void perf_swevent_init_cpu(unsigned int cpu)
12399 {
12400 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
12401 
12402 	mutex_lock(&swhash->hlist_mutex);
12403 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
12404 		struct swevent_hlist *hlist;
12405 
12406 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
12407 		WARN_ON(!hlist);
12408 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
12409 	}
12410 	mutex_unlock(&swhash->hlist_mutex);
12411 }
12412 
12413 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
12414 static void __perf_event_exit_context(void *__info)
12415 {
12416 	struct perf_event_context *ctx = __info;
12417 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
12418 	struct perf_event *event;
12419 
12420 	raw_spin_lock(&ctx->lock);
12421 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
12422 	list_for_each_entry(event, &ctx->event_list, event_entry)
12423 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
12424 	raw_spin_unlock(&ctx->lock);
12425 }
12426 
12427 static void perf_event_exit_cpu_context(int cpu)
12428 {
12429 	struct perf_cpu_context *cpuctx;
12430 	struct perf_event_context *ctx;
12431 	struct pmu *pmu;
12432 
12433 	mutex_lock(&pmus_lock);
12434 	list_for_each_entry(pmu, &pmus, entry) {
12435 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
12436 		ctx = &cpuctx->ctx;
12437 
12438 		mutex_lock(&ctx->mutex);
12439 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
12440 		cpuctx->online = 0;
12441 		mutex_unlock(&ctx->mutex);
12442 	}
12443 	cpumask_clear_cpu(cpu, perf_online_mask);
12444 	mutex_unlock(&pmus_lock);
12445 }
12446 #else
12447 
12448 static void perf_event_exit_cpu_context(int cpu) { }
12449 
12450 #endif
12451 
12452 int perf_event_init_cpu(unsigned int cpu)
12453 {
12454 	struct perf_cpu_context *cpuctx;
12455 	struct perf_event_context *ctx;
12456 	struct pmu *pmu;
12457 
12458 	perf_swevent_init_cpu(cpu);
12459 
12460 	mutex_lock(&pmus_lock);
12461 	cpumask_set_cpu(cpu, perf_online_mask);
12462 	list_for_each_entry(pmu, &pmus, entry) {
12463 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
12464 		ctx = &cpuctx->ctx;
12465 
12466 		mutex_lock(&ctx->mutex);
12467 		cpuctx->online = 1;
12468 		mutex_unlock(&ctx->mutex);
12469 	}
12470 	mutex_unlock(&pmus_lock);
12471 
12472 	return 0;
12473 }
12474 
12475 int perf_event_exit_cpu(unsigned int cpu)
12476 {
12477 	perf_event_exit_cpu_context(cpu);
12478 	return 0;
12479 }
12480 
12481 static int
12482 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
12483 {
12484 	int cpu;
12485 
12486 	for_each_online_cpu(cpu)
12487 		perf_event_exit_cpu(cpu);
12488 
12489 	return NOTIFY_OK;
12490 }
12491 
12492 /*
12493  * Run the perf reboot notifier at the very last possible moment so that
12494  * the generic watchdog code runs as long as possible.
12495  */
12496 static struct notifier_block perf_reboot_notifier = {
12497 	.notifier_call = perf_reboot,
12498 	.priority = INT_MIN,
12499 };
12500 
12501 void __init perf_event_init(void)
12502 {
12503 	int ret;
12504 
12505 	idr_init(&pmu_idr);
12506 
12507 	perf_event_init_all_cpus();
12508 	init_srcu_struct(&pmus_srcu);
12509 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
12510 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
12511 	perf_pmu_register(&perf_task_clock, NULL, -1);
12512 	perf_tp_register();
12513 	perf_event_init_cpu(smp_processor_id());
12514 	register_reboot_notifier(&perf_reboot_notifier);
12515 
12516 	ret = init_hw_breakpoint();
12517 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
12518 
12519 	/*
12520 	 * Build time assertion that we keep the data_head at the intended
12521 	 * location.  IOW, validation we got the __reserved[] size right.
12522 	 */
12523 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
12524 		     != 1024);
12525 }
12526 
12527 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
12528 			      char *page)
12529 {
12530 	struct perf_pmu_events_attr *pmu_attr =
12531 		container_of(attr, struct perf_pmu_events_attr, attr);
12532 
12533 	if (pmu_attr->event_str)
12534 		return sprintf(page, "%s\n", pmu_attr->event_str);
12535 
12536 	return 0;
12537 }
12538 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
12539 
12540 static int __init perf_event_sysfs_init(void)
12541 {
12542 	struct pmu *pmu;
12543 	int ret;
12544 
12545 	mutex_lock(&pmus_lock);
12546 
12547 	ret = bus_register(&pmu_bus);
12548 	if (ret)
12549 		goto unlock;
12550 
12551 	list_for_each_entry(pmu, &pmus, entry) {
12552 		if (!pmu->name || pmu->type < 0)
12553 			continue;
12554 
12555 		ret = pmu_dev_alloc(pmu);
12556 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
12557 	}
12558 	pmu_bus_running = 1;
12559 	ret = 0;
12560 
12561 unlock:
12562 	mutex_unlock(&pmus_lock);
12563 
12564 	return ret;
12565 }
12566 device_initcall(perf_event_sysfs_init);
12567 
12568 #ifdef CONFIG_CGROUP_PERF
12569 static struct cgroup_subsys_state *
12570 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
12571 {
12572 	struct perf_cgroup *jc;
12573 
12574 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
12575 	if (!jc)
12576 		return ERR_PTR(-ENOMEM);
12577 
12578 	jc->info = alloc_percpu(struct perf_cgroup_info);
12579 	if (!jc->info) {
12580 		kfree(jc);
12581 		return ERR_PTR(-ENOMEM);
12582 	}
12583 
12584 	return &jc->css;
12585 }
12586 
12587 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
12588 {
12589 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
12590 
12591 	free_percpu(jc->info);
12592 	kfree(jc);
12593 }
12594 
12595 static int __perf_cgroup_move(void *info)
12596 {
12597 	struct task_struct *task = info;
12598 	rcu_read_lock();
12599 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
12600 	rcu_read_unlock();
12601 	return 0;
12602 }
12603 
12604 static void perf_cgroup_attach(struct cgroup_taskset *tset)
12605 {
12606 	struct task_struct *task;
12607 	struct cgroup_subsys_state *css;
12608 
12609 	cgroup_taskset_for_each(task, css, tset)
12610 		task_function_call(task, __perf_cgroup_move, task);
12611 }
12612 
12613 struct cgroup_subsys perf_event_cgrp_subsys = {
12614 	.css_alloc	= perf_cgroup_css_alloc,
12615 	.css_free	= perf_cgroup_css_free,
12616 	.attach		= perf_cgroup_attach,
12617 	/*
12618 	 * Implicitly enable on dfl hierarchy so that perf events can
12619 	 * always be filtered by cgroup2 path as long as perf_event
12620 	 * controller is not mounted on a legacy hierarchy.
12621 	 */
12622 	.implicit_on_dfl = true,
12623 	.threaded	= true,
12624 };
12625 #endif /* CONFIG_CGROUP_PERF */
12626