1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Performance events core code: 4 * 5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 9 */ 10 11 #include <linux/fs.h> 12 #include <linux/mm.h> 13 #include <linux/cpu.h> 14 #include <linux/smp.h> 15 #include <linux/idr.h> 16 #include <linux/file.h> 17 #include <linux/poll.h> 18 #include <linux/slab.h> 19 #include <linux/hash.h> 20 #include <linux/tick.h> 21 #include <linux/sysfs.h> 22 #include <linux/dcache.h> 23 #include <linux/percpu.h> 24 #include <linux/ptrace.h> 25 #include <linux/reboot.h> 26 #include <linux/vmstat.h> 27 #include <linux/device.h> 28 #include <linux/export.h> 29 #include <linux/vmalloc.h> 30 #include <linux/hardirq.h> 31 #include <linux/hugetlb.h> 32 #include <linux/rculist.h> 33 #include <linux/uaccess.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/cgroup.h> 38 #include <linux/perf_event.h> 39 #include <linux/trace_events.h> 40 #include <linux/hw_breakpoint.h> 41 #include <linux/mm_types.h> 42 #include <linux/module.h> 43 #include <linux/mman.h> 44 #include <linux/compat.h> 45 #include <linux/bpf.h> 46 #include <linux/filter.h> 47 #include <linux/namei.h> 48 #include <linux/parser.h> 49 #include <linux/sched/clock.h> 50 #include <linux/sched/mm.h> 51 #include <linux/proc_ns.h> 52 #include <linux/mount.h> 53 #include <linux/min_heap.h> 54 #include <linux/highmem.h> 55 #include <linux/pgtable.h> 56 #include <linux/buildid.h> 57 #include <linux/task_work.h> 58 59 #include "internal.h" 60 61 #include <asm/irq_regs.h> 62 63 typedef int (*remote_function_f)(void *); 64 65 struct remote_function_call { 66 struct task_struct *p; 67 remote_function_f func; 68 void *info; 69 int ret; 70 }; 71 72 static void remote_function(void *data) 73 { 74 struct remote_function_call *tfc = data; 75 struct task_struct *p = tfc->p; 76 77 if (p) { 78 /* -EAGAIN */ 79 if (task_cpu(p) != smp_processor_id()) 80 return; 81 82 /* 83 * Now that we're on right CPU with IRQs disabled, we can test 84 * if we hit the right task without races. 85 */ 86 87 tfc->ret = -ESRCH; /* No such (running) process */ 88 if (p != current) 89 return; 90 } 91 92 tfc->ret = tfc->func(tfc->info); 93 } 94 95 /** 96 * task_function_call - call a function on the cpu on which a task runs 97 * @p: the task to evaluate 98 * @func: the function to be called 99 * @info: the function call argument 100 * 101 * Calls the function @func when the task is currently running. This might 102 * be on the current CPU, which just calls the function directly. This will 103 * retry due to any failures in smp_call_function_single(), such as if the 104 * task_cpu() goes offline concurrently. 105 * 106 * returns @func return value or -ESRCH or -ENXIO when the process isn't running 107 */ 108 static int 109 task_function_call(struct task_struct *p, remote_function_f func, void *info) 110 { 111 struct remote_function_call data = { 112 .p = p, 113 .func = func, 114 .info = info, 115 .ret = -EAGAIN, 116 }; 117 int ret; 118 119 for (;;) { 120 ret = smp_call_function_single(task_cpu(p), remote_function, 121 &data, 1); 122 if (!ret) 123 ret = data.ret; 124 125 if (ret != -EAGAIN) 126 break; 127 128 cond_resched(); 129 } 130 131 return ret; 132 } 133 134 /** 135 * cpu_function_call - call a function on the cpu 136 * @cpu: target cpu to queue this function 137 * @func: the function to be called 138 * @info: the function call argument 139 * 140 * Calls the function @func on the remote cpu. 141 * 142 * returns: @func return value or -ENXIO when the cpu is offline 143 */ 144 static int cpu_function_call(int cpu, remote_function_f func, void *info) 145 { 146 struct remote_function_call data = { 147 .p = NULL, 148 .func = func, 149 .info = info, 150 .ret = -ENXIO, /* No such CPU */ 151 }; 152 153 smp_call_function_single(cpu, remote_function, &data, 1); 154 155 return data.ret; 156 } 157 158 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 159 struct perf_event_context *ctx) 160 { 161 raw_spin_lock(&cpuctx->ctx.lock); 162 if (ctx) 163 raw_spin_lock(&ctx->lock); 164 } 165 166 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 167 struct perf_event_context *ctx) 168 { 169 if (ctx) 170 raw_spin_unlock(&ctx->lock); 171 raw_spin_unlock(&cpuctx->ctx.lock); 172 } 173 174 #define TASK_TOMBSTONE ((void *)-1L) 175 176 static bool is_kernel_event(struct perf_event *event) 177 { 178 return READ_ONCE(event->owner) == TASK_TOMBSTONE; 179 } 180 181 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context); 182 183 struct perf_event_context *perf_cpu_task_ctx(void) 184 { 185 lockdep_assert_irqs_disabled(); 186 return this_cpu_ptr(&perf_cpu_context)->task_ctx; 187 } 188 189 /* 190 * On task ctx scheduling... 191 * 192 * When !ctx->nr_events a task context will not be scheduled. This means 193 * we can disable the scheduler hooks (for performance) without leaving 194 * pending task ctx state. 195 * 196 * This however results in two special cases: 197 * 198 * - removing the last event from a task ctx; this is relatively straight 199 * forward and is done in __perf_remove_from_context. 200 * 201 * - adding the first event to a task ctx; this is tricky because we cannot 202 * rely on ctx->is_active and therefore cannot use event_function_call(). 203 * See perf_install_in_context(). 204 * 205 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set. 206 */ 207 208 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *, 209 struct perf_event_context *, void *); 210 211 struct event_function_struct { 212 struct perf_event *event; 213 event_f func; 214 void *data; 215 }; 216 217 static int event_function(void *info) 218 { 219 struct event_function_struct *efs = info; 220 struct perf_event *event = efs->event; 221 struct perf_event_context *ctx = event->ctx; 222 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 223 struct perf_event_context *task_ctx = cpuctx->task_ctx; 224 int ret = 0; 225 226 lockdep_assert_irqs_disabled(); 227 228 perf_ctx_lock(cpuctx, task_ctx); 229 /* 230 * Since we do the IPI call without holding ctx->lock things can have 231 * changed, double check we hit the task we set out to hit. 232 */ 233 if (ctx->task) { 234 if (ctx->task != current) { 235 ret = -ESRCH; 236 goto unlock; 237 } 238 239 /* 240 * We only use event_function_call() on established contexts, 241 * and event_function() is only ever called when active (or 242 * rather, we'll have bailed in task_function_call() or the 243 * above ctx->task != current test), therefore we must have 244 * ctx->is_active here. 245 */ 246 WARN_ON_ONCE(!ctx->is_active); 247 /* 248 * And since we have ctx->is_active, cpuctx->task_ctx must 249 * match. 250 */ 251 WARN_ON_ONCE(task_ctx != ctx); 252 } else { 253 WARN_ON_ONCE(&cpuctx->ctx != ctx); 254 } 255 256 efs->func(event, cpuctx, ctx, efs->data); 257 unlock: 258 perf_ctx_unlock(cpuctx, task_ctx); 259 260 return ret; 261 } 262 263 static void event_function_call(struct perf_event *event, event_f func, void *data) 264 { 265 struct perf_event_context *ctx = event->ctx; 266 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */ 267 struct event_function_struct efs = { 268 .event = event, 269 .func = func, 270 .data = data, 271 }; 272 273 if (!event->parent) { 274 /* 275 * If this is a !child event, we must hold ctx::mutex to 276 * stabilize the event->ctx relation. See 277 * perf_event_ctx_lock(). 278 */ 279 lockdep_assert_held(&ctx->mutex); 280 } 281 282 if (!task) { 283 cpu_function_call(event->cpu, event_function, &efs); 284 return; 285 } 286 287 if (task == TASK_TOMBSTONE) 288 return; 289 290 again: 291 if (!task_function_call(task, event_function, &efs)) 292 return; 293 294 raw_spin_lock_irq(&ctx->lock); 295 /* 296 * Reload the task pointer, it might have been changed by 297 * a concurrent perf_event_context_sched_out(). 298 */ 299 task = ctx->task; 300 if (task == TASK_TOMBSTONE) { 301 raw_spin_unlock_irq(&ctx->lock); 302 return; 303 } 304 if (ctx->is_active) { 305 raw_spin_unlock_irq(&ctx->lock); 306 goto again; 307 } 308 func(event, NULL, ctx, data); 309 raw_spin_unlock_irq(&ctx->lock); 310 } 311 312 /* 313 * Similar to event_function_call() + event_function(), but hard assumes IRQs 314 * are already disabled and we're on the right CPU. 315 */ 316 static void event_function_local(struct perf_event *event, event_f func, void *data) 317 { 318 struct perf_event_context *ctx = event->ctx; 319 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 320 struct task_struct *task = READ_ONCE(ctx->task); 321 struct perf_event_context *task_ctx = NULL; 322 323 lockdep_assert_irqs_disabled(); 324 325 if (task) { 326 if (task == TASK_TOMBSTONE) 327 return; 328 329 task_ctx = ctx; 330 } 331 332 perf_ctx_lock(cpuctx, task_ctx); 333 334 task = ctx->task; 335 if (task == TASK_TOMBSTONE) 336 goto unlock; 337 338 if (task) { 339 /* 340 * We must be either inactive or active and the right task, 341 * otherwise we're screwed, since we cannot IPI to somewhere 342 * else. 343 */ 344 if (ctx->is_active) { 345 if (WARN_ON_ONCE(task != current)) 346 goto unlock; 347 348 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx)) 349 goto unlock; 350 } 351 } else { 352 WARN_ON_ONCE(&cpuctx->ctx != ctx); 353 } 354 355 func(event, cpuctx, ctx, data); 356 unlock: 357 perf_ctx_unlock(cpuctx, task_ctx); 358 } 359 360 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 361 PERF_FLAG_FD_OUTPUT |\ 362 PERF_FLAG_PID_CGROUP |\ 363 PERF_FLAG_FD_CLOEXEC) 364 365 /* 366 * branch priv levels that need permission checks 367 */ 368 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 369 (PERF_SAMPLE_BRANCH_KERNEL |\ 370 PERF_SAMPLE_BRANCH_HV) 371 372 enum event_type_t { 373 EVENT_FLEXIBLE = 0x1, 374 EVENT_PINNED = 0x2, 375 EVENT_TIME = 0x4, 376 /* see ctx_resched() for details */ 377 EVENT_CPU = 0x8, 378 EVENT_CGROUP = 0x10, 379 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 380 }; 381 382 /* 383 * perf_sched_events : >0 events exist 384 */ 385 386 static void perf_sched_delayed(struct work_struct *work); 387 DEFINE_STATIC_KEY_FALSE(perf_sched_events); 388 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed); 389 static DEFINE_MUTEX(perf_sched_mutex); 390 static atomic_t perf_sched_count; 391 392 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events); 393 394 static atomic_t nr_mmap_events __read_mostly; 395 static atomic_t nr_comm_events __read_mostly; 396 static atomic_t nr_namespaces_events __read_mostly; 397 static atomic_t nr_task_events __read_mostly; 398 static atomic_t nr_freq_events __read_mostly; 399 static atomic_t nr_switch_events __read_mostly; 400 static atomic_t nr_ksymbol_events __read_mostly; 401 static atomic_t nr_bpf_events __read_mostly; 402 static atomic_t nr_cgroup_events __read_mostly; 403 static atomic_t nr_text_poke_events __read_mostly; 404 static atomic_t nr_build_id_events __read_mostly; 405 406 static LIST_HEAD(pmus); 407 static DEFINE_MUTEX(pmus_lock); 408 static struct srcu_struct pmus_srcu; 409 static cpumask_var_t perf_online_mask; 410 static struct kmem_cache *perf_event_cache; 411 412 /* 413 * perf event paranoia level: 414 * -1 - not paranoid at all 415 * 0 - disallow raw tracepoint access for unpriv 416 * 1 - disallow cpu events for unpriv 417 * 2 - disallow kernel profiling for unpriv 418 */ 419 int sysctl_perf_event_paranoid __read_mostly = 2; 420 421 /* Minimum for 512 kiB + 1 user control page */ 422 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 423 424 /* 425 * max perf event sample rate 426 */ 427 #define DEFAULT_MAX_SAMPLE_RATE 100000 428 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 429 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 430 431 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 432 433 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 434 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 435 436 static int perf_sample_allowed_ns __read_mostly = 437 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 438 439 static void update_perf_cpu_limits(void) 440 { 441 u64 tmp = perf_sample_period_ns; 442 443 tmp *= sysctl_perf_cpu_time_max_percent; 444 tmp = div_u64(tmp, 100); 445 if (!tmp) 446 tmp = 1; 447 448 WRITE_ONCE(perf_sample_allowed_ns, tmp); 449 } 450 451 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc); 452 453 int perf_proc_update_handler(struct ctl_table *table, int write, 454 void *buffer, size_t *lenp, loff_t *ppos) 455 { 456 int ret; 457 int perf_cpu = sysctl_perf_cpu_time_max_percent; 458 /* 459 * If throttling is disabled don't allow the write: 460 */ 461 if (write && (perf_cpu == 100 || perf_cpu == 0)) 462 return -EINVAL; 463 464 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 465 if (ret || !write) 466 return ret; 467 468 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 469 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 470 update_perf_cpu_limits(); 471 472 return 0; 473 } 474 475 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 476 477 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 478 void *buffer, size_t *lenp, loff_t *ppos) 479 { 480 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 481 482 if (ret || !write) 483 return ret; 484 485 if (sysctl_perf_cpu_time_max_percent == 100 || 486 sysctl_perf_cpu_time_max_percent == 0) { 487 printk(KERN_WARNING 488 "perf: Dynamic interrupt throttling disabled, can hang your system!\n"); 489 WRITE_ONCE(perf_sample_allowed_ns, 0); 490 } else { 491 update_perf_cpu_limits(); 492 } 493 494 return 0; 495 } 496 497 /* 498 * perf samples are done in some very critical code paths (NMIs). 499 * If they take too much CPU time, the system can lock up and not 500 * get any real work done. This will drop the sample rate when 501 * we detect that events are taking too long. 502 */ 503 #define NR_ACCUMULATED_SAMPLES 128 504 static DEFINE_PER_CPU(u64, running_sample_length); 505 506 static u64 __report_avg; 507 static u64 __report_allowed; 508 509 static void perf_duration_warn(struct irq_work *w) 510 { 511 printk_ratelimited(KERN_INFO 512 "perf: interrupt took too long (%lld > %lld), lowering " 513 "kernel.perf_event_max_sample_rate to %d\n", 514 __report_avg, __report_allowed, 515 sysctl_perf_event_sample_rate); 516 } 517 518 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 519 520 void perf_sample_event_took(u64 sample_len_ns) 521 { 522 u64 max_len = READ_ONCE(perf_sample_allowed_ns); 523 u64 running_len; 524 u64 avg_len; 525 u32 max; 526 527 if (max_len == 0) 528 return; 529 530 /* Decay the counter by 1 average sample. */ 531 running_len = __this_cpu_read(running_sample_length); 532 running_len -= running_len/NR_ACCUMULATED_SAMPLES; 533 running_len += sample_len_ns; 534 __this_cpu_write(running_sample_length, running_len); 535 536 /* 537 * Note: this will be biased artifically low until we have 538 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 539 * from having to maintain a count. 540 */ 541 avg_len = running_len/NR_ACCUMULATED_SAMPLES; 542 if (avg_len <= max_len) 543 return; 544 545 __report_avg = avg_len; 546 __report_allowed = max_len; 547 548 /* 549 * Compute a throttle threshold 25% below the current duration. 550 */ 551 avg_len += avg_len / 4; 552 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent; 553 if (avg_len < max) 554 max /= (u32)avg_len; 555 else 556 max = 1; 557 558 WRITE_ONCE(perf_sample_allowed_ns, avg_len); 559 WRITE_ONCE(max_samples_per_tick, max); 560 561 sysctl_perf_event_sample_rate = max * HZ; 562 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 563 564 if (!irq_work_queue(&perf_duration_work)) { 565 early_printk("perf: interrupt took too long (%lld > %lld), lowering " 566 "kernel.perf_event_max_sample_rate to %d\n", 567 __report_avg, __report_allowed, 568 sysctl_perf_event_sample_rate); 569 } 570 } 571 572 static atomic64_t perf_event_id; 573 574 static void update_context_time(struct perf_event_context *ctx); 575 static u64 perf_event_time(struct perf_event *event); 576 577 void __weak perf_event_print_debug(void) { } 578 579 static inline u64 perf_clock(void) 580 { 581 return local_clock(); 582 } 583 584 static inline u64 perf_event_clock(struct perf_event *event) 585 { 586 return event->clock(); 587 } 588 589 /* 590 * State based event timekeeping... 591 * 592 * The basic idea is to use event->state to determine which (if any) time 593 * fields to increment with the current delta. This means we only need to 594 * update timestamps when we change state or when they are explicitly requested 595 * (read). 596 * 597 * Event groups make things a little more complicated, but not terribly so. The 598 * rules for a group are that if the group leader is OFF the entire group is 599 * OFF, irrespecive of what the group member states are. This results in 600 * __perf_effective_state(). 601 * 602 * A futher ramification is that when a group leader flips between OFF and 603 * !OFF, we need to update all group member times. 604 * 605 * 606 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we 607 * need to make sure the relevant context time is updated before we try and 608 * update our timestamps. 609 */ 610 611 static __always_inline enum perf_event_state 612 __perf_effective_state(struct perf_event *event) 613 { 614 struct perf_event *leader = event->group_leader; 615 616 if (leader->state <= PERF_EVENT_STATE_OFF) 617 return leader->state; 618 619 return event->state; 620 } 621 622 static __always_inline void 623 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running) 624 { 625 enum perf_event_state state = __perf_effective_state(event); 626 u64 delta = now - event->tstamp; 627 628 *enabled = event->total_time_enabled; 629 if (state >= PERF_EVENT_STATE_INACTIVE) 630 *enabled += delta; 631 632 *running = event->total_time_running; 633 if (state >= PERF_EVENT_STATE_ACTIVE) 634 *running += delta; 635 } 636 637 static void perf_event_update_time(struct perf_event *event) 638 { 639 u64 now = perf_event_time(event); 640 641 __perf_update_times(event, now, &event->total_time_enabled, 642 &event->total_time_running); 643 event->tstamp = now; 644 } 645 646 static void perf_event_update_sibling_time(struct perf_event *leader) 647 { 648 struct perf_event *sibling; 649 650 for_each_sibling_event(sibling, leader) 651 perf_event_update_time(sibling); 652 } 653 654 static void 655 perf_event_set_state(struct perf_event *event, enum perf_event_state state) 656 { 657 if (event->state == state) 658 return; 659 660 perf_event_update_time(event); 661 /* 662 * If a group leader gets enabled/disabled all its siblings 663 * are affected too. 664 */ 665 if ((event->state < 0) ^ (state < 0)) 666 perf_event_update_sibling_time(event); 667 668 WRITE_ONCE(event->state, state); 669 } 670 671 /* 672 * UP store-release, load-acquire 673 */ 674 675 #define __store_release(ptr, val) \ 676 do { \ 677 barrier(); \ 678 WRITE_ONCE(*(ptr), (val)); \ 679 } while (0) 680 681 #define __load_acquire(ptr) \ 682 ({ \ 683 __unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr)); \ 684 barrier(); \ 685 ___p; \ 686 }) 687 688 static void perf_ctx_disable(struct perf_event_context *ctx, bool cgroup) 689 { 690 struct perf_event_pmu_context *pmu_ctx; 691 692 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 693 if (cgroup && !pmu_ctx->nr_cgroups) 694 continue; 695 perf_pmu_disable(pmu_ctx->pmu); 696 } 697 } 698 699 static void perf_ctx_enable(struct perf_event_context *ctx, bool cgroup) 700 { 701 struct perf_event_pmu_context *pmu_ctx; 702 703 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 704 if (cgroup && !pmu_ctx->nr_cgroups) 705 continue; 706 perf_pmu_enable(pmu_ctx->pmu); 707 } 708 } 709 710 static void ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type); 711 static void ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type); 712 713 #ifdef CONFIG_CGROUP_PERF 714 715 static inline bool 716 perf_cgroup_match(struct perf_event *event) 717 { 718 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 719 720 /* @event doesn't care about cgroup */ 721 if (!event->cgrp) 722 return true; 723 724 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 725 if (!cpuctx->cgrp) 726 return false; 727 728 /* 729 * Cgroup scoping is recursive. An event enabled for a cgroup is 730 * also enabled for all its descendant cgroups. If @cpuctx's 731 * cgroup is a descendant of @event's (the test covers identity 732 * case), it's a match. 733 */ 734 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 735 event->cgrp->css.cgroup); 736 } 737 738 static inline void perf_detach_cgroup(struct perf_event *event) 739 { 740 css_put(&event->cgrp->css); 741 event->cgrp = NULL; 742 } 743 744 static inline int is_cgroup_event(struct perf_event *event) 745 { 746 return event->cgrp != NULL; 747 } 748 749 static inline u64 perf_cgroup_event_time(struct perf_event *event) 750 { 751 struct perf_cgroup_info *t; 752 753 t = per_cpu_ptr(event->cgrp->info, event->cpu); 754 return t->time; 755 } 756 757 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now) 758 { 759 struct perf_cgroup_info *t; 760 761 t = per_cpu_ptr(event->cgrp->info, event->cpu); 762 if (!__load_acquire(&t->active)) 763 return t->time; 764 now += READ_ONCE(t->timeoffset); 765 return now; 766 } 767 768 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv) 769 { 770 if (adv) 771 info->time += now - info->timestamp; 772 info->timestamp = now; 773 /* 774 * see update_context_time() 775 */ 776 WRITE_ONCE(info->timeoffset, info->time - info->timestamp); 777 } 778 779 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final) 780 { 781 struct perf_cgroup *cgrp = cpuctx->cgrp; 782 struct cgroup_subsys_state *css; 783 struct perf_cgroup_info *info; 784 785 if (cgrp) { 786 u64 now = perf_clock(); 787 788 for (css = &cgrp->css; css; css = css->parent) { 789 cgrp = container_of(css, struct perf_cgroup, css); 790 info = this_cpu_ptr(cgrp->info); 791 792 __update_cgrp_time(info, now, true); 793 if (final) 794 __store_release(&info->active, 0); 795 } 796 } 797 } 798 799 static inline void update_cgrp_time_from_event(struct perf_event *event) 800 { 801 struct perf_cgroup_info *info; 802 803 /* 804 * ensure we access cgroup data only when needed and 805 * when we know the cgroup is pinned (css_get) 806 */ 807 if (!is_cgroup_event(event)) 808 return; 809 810 info = this_cpu_ptr(event->cgrp->info); 811 /* 812 * Do not update time when cgroup is not active 813 */ 814 if (info->active) 815 __update_cgrp_time(info, perf_clock(), true); 816 } 817 818 static inline void 819 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx) 820 { 821 struct perf_event_context *ctx = &cpuctx->ctx; 822 struct perf_cgroup *cgrp = cpuctx->cgrp; 823 struct perf_cgroup_info *info; 824 struct cgroup_subsys_state *css; 825 826 /* 827 * ctx->lock held by caller 828 * ensure we do not access cgroup data 829 * unless we have the cgroup pinned (css_get) 830 */ 831 if (!cgrp) 832 return; 833 834 WARN_ON_ONCE(!ctx->nr_cgroups); 835 836 for (css = &cgrp->css; css; css = css->parent) { 837 cgrp = container_of(css, struct perf_cgroup, css); 838 info = this_cpu_ptr(cgrp->info); 839 __update_cgrp_time(info, ctx->timestamp, false); 840 __store_release(&info->active, 1); 841 } 842 } 843 844 /* 845 * reschedule events based on the cgroup constraint of task. 846 */ 847 static void perf_cgroup_switch(struct task_struct *task) 848 { 849 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 850 struct perf_cgroup *cgrp; 851 852 /* 853 * cpuctx->cgrp is set when the first cgroup event enabled, 854 * and is cleared when the last cgroup event disabled. 855 */ 856 if (READ_ONCE(cpuctx->cgrp) == NULL) 857 return; 858 859 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0); 860 861 cgrp = perf_cgroup_from_task(task, NULL); 862 if (READ_ONCE(cpuctx->cgrp) == cgrp) 863 return; 864 865 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 866 perf_ctx_disable(&cpuctx->ctx, true); 867 868 ctx_sched_out(&cpuctx->ctx, EVENT_ALL|EVENT_CGROUP); 869 /* 870 * must not be done before ctxswout due 871 * to update_cgrp_time_from_cpuctx() in 872 * ctx_sched_out() 873 */ 874 cpuctx->cgrp = cgrp; 875 /* 876 * set cgrp before ctxsw in to allow 877 * perf_cgroup_set_timestamp() in ctx_sched_in() 878 * to not have to pass task around 879 */ 880 ctx_sched_in(&cpuctx->ctx, EVENT_ALL|EVENT_CGROUP); 881 882 perf_ctx_enable(&cpuctx->ctx, true); 883 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 884 } 885 886 static int perf_cgroup_ensure_storage(struct perf_event *event, 887 struct cgroup_subsys_state *css) 888 { 889 struct perf_cpu_context *cpuctx; 890 struct perf_event **storage; 891 int cpu, heap_size, ret = 0; 892 893 /* 894 * Allow storage to have sufficent space for an iterator for each 895 * possibly nested cgroup plus an iterator for events with no cgroup. 896 */ 897 for (heap_size = 1; css; css = css->parent) 898 heap_size++; 899 900 for_each_possible_cpu(cpu) { 901 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 902 if (heap_size <= cpuctx->heap_size) 903 continue; 904 905 storage = kmalloc_node(heap_size * sizeof(struct perf_event *), 906 GFP_KERNEL, cpu_to_node(cpu)); 907 if (!storage) { 908 ret = -ENOMEM; 909 break; 910 } 911 912 raw_spin_lock_irq(&cpuctx->ctx.lock); 913 if (cpuctx->heap_size < heap_size) { 914 swap(cpuctx->heap, storage); 915 if (storage == cpuctx->heap_default) 916 storage = NULL; 917 cpuctx->heap_size = heap_size; 918 } 919 raw_spin_unlock_irq(&cpuctx->ctx.lock); 920 921 kfree(storage); 922 } 923 924 return ret; 925 } 926 927 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 928 struct perf_event_attr *attr, 929 struct perf_event *group_leader) 930 { 931 struct perf_cgroup *cgrp; 932 struct cgroup_subsys_state *css; 933 struct fd f = fdget(fd); 934 int ret = 0; 935 936 if (!f.file) 937 return -EBADF; 938 939 css = css_tryget_online_from_dir(f.file->f_path.dentry, 940 &perf_event_cgrp_subsys); 941 if (IS_ERR(css)) { 942 ret = PTR_ERR(css); 943 goto out; 944 } 945 946 ret = perf_cgroup_ensure_storage(event, css); 947 if (ret) 948 goto out; 949 950 cgrp = container_of(css, struct perf_cgroup, css); 951 event->cgrp = cgrp; 952 953 /* 954 * all events in a group must monitor 955 * the same cgroup because a task belongs 956 * to only one perf cgroup at a time 957 */ 958 if (group_leader && group_leader->cgrp != cgrp) { 959 perf_detach_cgroup(event); 960 ret = -EINVAL; 961 } 962 out: 963 fdput(f); 964 return ret; 965 } 966 967 static inline void 968 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 969 { 970 struct perf_cpu_context *cpuctx; 971 972 if (!is_cgroup_event(event)) 973 return; 974 975 event->pmu_ctx->nr_cgroups++; 976 977 /* 978 * Because cgroup events are always per-cpu events, 979 * @ctx == &cpuctx->ctx. 980 */ 981 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 982 983 if (ctx->nr_cgroups++) 984 return; 985 986 cpuctx->cgrp = perf_cgroup_from_task(current, ctx); 987 } 988 989 static inline void 990 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 991 { 992 struct perf_cpu_context *cpuctx; 993 994 if (!is_cgroup_event(event)) 995 return; 996 997 event->pmu_ctx->nr_cgroups--; 998 999 /* 1000 * Because cgroup events are always per-cpu events, 1001 * @ctx == &cpuctx->ctx. 1002 */ 1003 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 1004 1005 if (--ctx->nr_cgroups) 1006 return; 1007 1008 cpuctx->cgrp = NULL; 1009 } 1010 1011 #else /* !CONFIG_CGROUP_PERF */ 1012 1013 static inline bool 1014 perf_cgroup_match(struct perf_event *event) 1015 { 1016 return true; 1017 } 1018 1019 static inline void perf_detach_cgroup(struct perf_event *event) 1020 {} 1021 1022 static inline int is_cgroup_event(struct perf_event *event) 1023 { 1024 return 0; 1025 } 1026 1027 static inline void update_cgrp_time_from_event(struct perf_event *event) 1028 { 1029 } 1030 1031 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, 1032 bool final) 1033 { 1034 } 1035 1036 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 1037 struct perf_event_attr *attr, 1038 struct perf_event *group_leader) 1039 { 1040 return -EINVAL; 1041 } 1042 1043 static inline void 1044 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx) 1045 { 1046 } 1047 1048 static inline u64 perf_cgroup_event_time(struct perf_event *event) 1049 { 1050 return 0; 1051 } 1052 1053 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now) 1054 { 1055 return 0; 1056 } 1057 1058 static inline void 1059 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 1060 { 1061 } 1062 1063 static inline void 1064 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 1065 { 1066 } 1067 1068 static void perf_cgroup_switch(struct task_struct *task) 1069 { 1070 } 1071 #endif 1072 1073 /* 1074 * set default to be dependent on timer tick just 1075 * like original code 1076 */ 1077 #define PERF_CPU_HRTIMER (1000 / HZ) 1078 /* 1079 * function must be called with interrupts disabled 1080 */ 1081 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) 1082 { 1083 struct perf_cpu_pmu_context *cpc; 1084 bool rotations; 1085 1086 lockdep_assert_irqs_disabled(); 1087 1088 cpc = container_of(hr, struct perf_cpu_pmu_context, hrtimer); 1089 rotations = perf_rotate_context(cpc); 1090 1091 raw_spin_lock(&cpc->hrtimer_lock); 1092 if (rotations) 1093 hrtimer_forward_now(hr, cpc->hrtimer_interval); 1094 else 1095 cpc->hrtimer_active = 0; 1096 raw_spin_unlock(&cpc->hrtimer_lock); 1097 1098 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; 1099 } 1100 1101 static void __perf_mux_hrtimer_init(struct perf_cpu_pmu_context *cpc, int cpu) 1102 { 1103 struct hrtimer *timer = &cpc->hrtimer; 1104 struct pmu *pmu = cpc->epc.pmu; 1105 u64 interval; 1106 1107 /* 1108 * check default is sane, if not set then force to 1109 * default interval (1/tick) 1110 */ 1111 interval = pmu->hrtimer_interval_ms; 1112 if (interval < 1) 1113 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 1114 1115 cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 1116 1117 raw_spin_lock_init(&cpc->hrtimer_lock); 1118 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD); 1119 timer->function = perf_mux_hrtimer_handler; 1120 } 1121 1122 static int perf_mux_hrtimer_restart(struct perf_cpu_pmu_context *cpc) 1123 { 1124 struct hrtimer *timer = &cpc->hrtimer; 1125 unsigned long flags; 1126 1127 raw_spin_lock_irqsave(&cpc->hrtimer_lock, flags); 1128 if (!cpc->hrtimer_active) { 1129 cpc->hrtimer_active = 1; 1130 hrtimer_forward_now(timer, cpc->hrtimer_interval); 1131 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD); 1132 } 1133 raw_spin_unlock_irqrestore(&cpc->hrtimer_lock, flags); 1134 1135 return 0; 1136 } 1137 1138 static int perf_mux_hrtimer_restart_ipi(void *arg) 1139 { 1140 return perf_mux_hrtimer_restart(arg); 1141 } 1142 1143 void perf_pmu_disable(struct pmu *pmu) 1144 { 1145 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1146 if (!(*count)++) 1147 pmu->pmu_disable(pmu); 1148 } 1149 1150 void perf_pmu_enable(struct pmu *pmu) 1151 { 1152 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1153 if (!--(*count)) 1154 pmu->pmu_enable(pmu); 1155 } 1156 1157 static void perf_assert_pmu_disabled(struct pmu *pmu) 1158 { 1159 WARN_ON_ONCE(*this_cpu_ptr(pmu->pmu_disable_count) == 0); 1160 } 1161 1162 static void get_ctx(struct perf_event_context *ctx) 1163 { 1164 refcount_inc(&ctx->refcount); 1165 } 1166 1167 static void *alloc_task_ctx_data(struct pmu *pmu) 1168 { 1169 if (pmu->task_ctx_cache) 1170 return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL); 1171 1172 return NULL; 1173 } 1174 1175 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data) 1176 { 1177 if (pmu->task_ctx_cache && task_ctx_data) 1178 kmem_cache_free(pmu->task_ctx_cache, task_ctx_data); 1179 } 1180 1181 static void free_ctx(struct rcu_head *head) 1182 { 1183 struct perf_event_context *ctx; 1184 1185 ctx = container_of(head, struct perf_event_context, rcu_head); 1186 kfree(ctx); 1187 } 1188 1189 static void put_ctx(struct perf_event_context *ctx) 1190 { 1191 if (refcount_dec_and_test(&ctx->refcount)) { 1192 if (ctx->parent_ctx) 1193 put_ctx(ctx->parent_ctx); 1194 if (ctx->task && ctx->task != TASK_TOMBSTONE) 1195 put_task_struct(ctx->task); 1196 call_rcu(&ctx->rcu_head, free_ctx); 1197 } 1198 } 1199 1200 /* 1201 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 1202 * perf_pmu_migrate_context() we need some magic. 1203 * 1204 * Those places that change perf_event::ctx will hold both 1205 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 1206 * 1207 * Lock ordering is by mutex address. There are two other sites where 1208 * perf_event_context::mutex nests and those are: 1209 * 1210 * - perf_event_exit_task_context() [ child , 0 ] 1211 * perf_event_exit_event() 1212 * put_event() [ parent, 1 ] 1213 * 1214 * - perf_event_init_context() [ parent, 0 ] 1215 * inherit_task_group() 1216 * inherit_group() 1217 * inherit_event() 1218 * perf_event_alloc() 1219 * perf_init_event() 1220 * perf_try_init_event() [ child , 1 ] 1221 * 1222 * While it appears there is an obvious deadlock here -- the parent and child 1223 * nesting levels are inverted between the two. This is in fact safe because 1224 * life-time rules separate them. That is an exiting task cannot fork, and a 1225 * spawning task cannot (yet) exit. 1226 * 1227 * But remember that these are parent<->child context relations, and 1228 * migration does not affect children, therefore these two orderings should not 1229 * interact. 1230 * 1231 * The change in perf_event::ctx does not affect children (as claimed above) 1232 * because the sys_perf_event_open() case will install a new event and break 1233 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 1234 * concerned with cpuctx and that doesn't have children. 1235 * 1236 * The places that change perf_event::ctx will issue: 1237 * 1238 * perf_remove_from_context(); 1239 * synchronize_rcu(); 1240 * perf_install_in_context(); 1241 * 1242 * to affect the change. The remove_from_context() + synchronize_rcu() should 1243 * quiesce the event, after which we can install it in the new location. This 1244 * means that only external vectors (perf_fops, prctl) can perturb the event 1245 * while in transit. Therefore all such accessors should also acquire 1246 * perf_event_context::mutex to serialize against this. 1247 * 1248 * However; because event->ctx can change while we're waiting to acquire 1249 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 1250 * function. 1251 * 1252 * Lock order: 1253 * exec_update_lock 1254 * task_struct::perf_event_mutex 1255 * perf_event_context::mutex 1256 * perf_event::child_mutex; 1257 * perf_event_context::lock 1258 * perf_event::mmap_mutex 1259 * mmap_lock 1260 * perf_addr_filters_head::lock 1261 * 1262 * cpu_hotplug_lock 1263 * pmus_lock 1264 * cpuctx->mutex / perf_event_context::mutex 1265 */ 1266 static struct perf_event_context * 1267 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 1268 { 1269 struct perf_event_context *ctx; 1270 1271 again: 1272 rcu_read_lock(); 1273 ctx = READ_ONCE(event->ctx); 1274 if (!refcount_inc_not_zero(&ctx->refcount)) { 1275 rcu_read_unlock(); 1276 goto again; 1277 } 1278 rcu_read_unlock(); 1279 1280 mutex_lock_nested(&ctx->mutex, nesting); 1281 if (event->ctx != ctx) { 1282 mutex_unlock(&ctx->mutex); 1283 put_ctx(ctx); 1284 goto again; 1285 } 1286 1287 return ctx; 1288 } 1289 1290 static inline struct perf_event_context * 1291 perf_event_ctx_lock(struct perf_event *event) 1292 { 1293 return perf_event_ctx_lock_nested(event, 0); 1294 } 1295 1296 static void perf_event_ctx_unlock(struct perf_event *event, 1297 struct perf_event_context *ctx) 1298 { 1299 mutex_unlock(&ctx->mutex); 1300 put_ctx(ctx); 1301 } 1302 1303 /* 1304 * This must be done under the ctx->lock, such as to serialize against 1305 * context_equiv(), therefore we cannot call put_ctx() since that might end up 1306 * calling scheduler related locks and ctx->lock nests inside those. 1307 */ 1308 static __must_check struct perf_event_context * 1309 unclone_ctx(struct perf_event_context *ctx) 1310 { 1311 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1312 1313 lockdep_assert_held(&ctx->lock); 1314 1315 if (parent_ctx) 1316 ctx->parent_ctx = NULL; 1317 ctx->generation++; 1318 1319 return parent_ctx; 1320 } 1321 1322 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p, 1323 enum pid_type type) 1324 { 1325 u32 nr; 1326 /* 1327 * only top level events have the pid namespace they were created in 1328 */ 1329 if (event->parent) 1330 event = event->parent; 1331 1332 nr = __task_pid_nr_ns(p, type, event->ns); 1333 /* avoid -1 if it is idle thread or runs in another ns */ 1334 if (!nr && !pid_alive(p)) 1335 nr = -1; 1336 return nr; 1337 } 1338 1339 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1340 { 1341 return perf_event_pid_type(event, p, PIDTYPE_TGID); 1342 } 1343 1344 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1345 { 1346 return perf_event_pid_type(event, p, PIDTYPE_PID); 1347 } 1348 1349 /* 1350 * If we inherit events we want to return the parent event id 1351 * to userspace. 1352 */ 1353 static u64 primary_event_id(struct perf_event *event) 1354 { 1355 u64 id = event->id; 1356 1357 if (event->parent) 1358 id = event->parent->id; 1359 1360 return id; 1361 } 1362 1363 /* 1364 * Get the perf_event_context for a task and lock it. 1365 * 1366 * This has to cope with the fact that until it is locked, 1367 * the context could get moved to another task. 1368 */ 1369 static struct perf_event_context * 1370 perf_lock_task_context(struct task_struct *task, unsigned long *flags) 1371 { 1372 struct perf_event_context *ctx; 1373 1374 retry: 1375 /* 1376 * One of the few rules of preemptible RCU is that one cannot do 1377 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1378 * part of the read side critical section was irqs-enabled -- see 1379 * rcu_read_unlock_special(). 1380 * 1381 * Since ctx->lock nests under rq->lock we must ensure the entire read 1382 * side critical section has interrupts disabled. 1383 */ 1384 local_irq_save(*flags); 1385 rcu_read_lock(); 1386 ctx = rcu_dereference(task->perf_event_ctxp); 1387 if (ctx) { 1388 /* 1389 * If this context is a clone of another, it might 1390 * get swapped for another underneath us by 1391 * perf_event_task_sched_out, though the 1392 * rcu_read_lock() protects us from any context 1393 * getting freed. Lock the context and check if it 1394 * got swapped before we could get the lock, and retry 1395 * if so. If we locked the right context, then it 1396 * can't get swapped on us any more. 1397 */ 1398 raw_spin_lock(&ctx->lock); 1399 if (ctx != rcu_dereference(task->perf_event_ctxp)) { 1400 raw_spin_unlock(&ctx->lock); 1401 rcu_read_unlock(); 1402 local_irq_restore(*flags); 1403 goto retry; 1404 } 1405 1406 if (ctx->task == TASK_TOMBSTONE || 1407 !refcount_inc_not_zero(&ctx->refcount)) { 1408 raw_spin_unlock(&ctx->lock); 1409 ctx = NULL; 1410 } else { 1411 WARN_ON_ONCE(ctx->task != task); 1412 } 1413 } 1414 rcu_read_unlock(); 1415 if (!ctx) 1416 local_irq_restore(*flags); 1417 return ctx; 1418 } 1419 1420 /* 1421 * Get the context for a task and increment its pin_count so it 1422 * can't get swapped to another task. This also increments its 1423 * reference count so that the context can't get freed. 1424 */ 1425 static struct perf_event_context * 1426 perf_pin_task_context(struct task_struct *task) 1427 { 1428 struct perf_event_context *ctx; 1429 unsigned long flags; 1430 1431 ctx = perf_lock_task_context(task, &flags); 1432 if (ctx) { 1433 ++ctx->pin_count; 1434 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1435 } 1436 return ctx; 1437 } 1438 1439 static void perf_unpin_context(struct perf_event_context *ctx) 1440 { 1441 unsigned long flags; 1442 1443 raw_spin_lock_irqsave(&ctx->lock, flags); 1444 --ctx->pin_count; 1445 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1446 } 1447 1448 /* 1449 * Update the record of the current time in a context. 1450 */ 1451 static void __update_context_time(struct perf_event_context *ctx, bool adv) 1452 { 1453 u64 now = perf_clock(); 1454 1455 lockdep_assert_held(&ctx->lock); 1456 1457 if (adv) 1458 ctx->time += now - ctx->timestamp; 1459 ctx->timestamp = now; 1460 1461 /* 1462 * The above: time' = time + (now - timestamp), can be re-arranged 1463 * into: time` = now + (time - timestamp), which gives a single value 1464 * offset to compute future time without locks on. 1465 * 1466 * See perf_event_time_now(), which can be used from NMI context where 1467 * it's (obviously) not possible to acquire ctx->lock in order to read 1468 * both the above values in a consistent manner. 1469 */ 1470 WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp); 1471 } 1472 1473 static void update_context_time(struct perf_event_context *ctx) 1474 { 1475 __update_context_time(ctx, true); 1476 } 1477 1478 static u64 perf_event_time(struct perf_event *event) 1479 { 1480 struct perf_event_context *ctx = event->ctx; 1481 1482 if (unlikely(!ctx)) 1483 return 0; 1484 1485 if (is_cgroup_event(event)) 1486 return perf_cgroup_event_time(event); 1487 1488 return ctx->time; 1489 } 1490 1491 static u64 perf_event_time_now(struct perf_event *event, u64 now) 1492 { 1493 struct perf_event_context *ctx = event->ctx; 1494 1495 if (unlikely(!ctx)) 1496 return 0; 1497 1498 if (is_cgroup_event(event)) 1499 return perf_cgroup_event_time_now(event, now); 1500 1501 if (!(__load_acquire(&ctx->is_active) & EVENT_TIME)) 1502 return ctx->time; 1503 1504 now += READ_ONCE(ctx->timeoffset); 1505 return now; 1506 } 1507 1508 static enum event_type_t get_event_type(struct perf_event *event) 1509 { 1510 struct perf_event_context *ctx = event->ctx; 1511 enum event_type_t event_type; 1512 1513 lockdep_assert_held(&ctx->lock); 1514 1515 /* 1516 * It's 'group type', really, because if our group leader is 1517 * pinned, so are we. 1518 */ 1519 if (event->group_leader != event) 1520 event = event->group_leader; 1521 1522 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE; 1523 if (!ctx->task) 1524 event_type |= EVENT_CPU; 1525 1526 return event_type; 1527 } 1528 1529 /* 1530 * Helper function to initialize event group nodes. 1531 */ 1532 static void init_event_group(struct perf_event *event) 1533 { 1534 RB_CLEAR_NODE(&event->group_node); 1535 event->group_index = 0; 1536 } 1537 1538 /* 1539 * Extract pinned or flexible groups from the context 1540 * based on event attrs bits. 1541 */ 1542 static struct perf_event_groups * 1543 get_event_groups(struct perf_event *event, struct perf_event_context *ctx) 1544 { 1545 if (event->attr.pinned) 1546 return &ctx->pinned_groups; 1547 else 1548 return &ctx->flexible_groups; 1549 } 1550 1551 /* 1552 * Helper function to initializes perf_event_group trees. 1553 */ 1554 static void perf_event_groups_init(struct perf_event_groups *groups) 1555 { 1556 groups->tree = RB_ROOT; 1557 groups->index = 0; 1558 } 1559 1560 static inline struct cgroup *event_cgroup(const struct perf_event *event) 1561 { 1562 struct cgroup *cgroup = NULL; 1563 1564 #ifdef CONFIG_CGROUP_PERF 1565 if (event->cgrp) 1566 cgroup = event->cgrp->css.cgroup; 1567 #endif 1568 1569 return cgroup; 1570 } 1571 1572 /* 1573 * Compare function for event groups; 1574 * 1575 * Implements complex key that first sorts by CPU and then by virtual index 1576 * which provides ordering when rotating groups for the same CPU. 1577 */ 1578 static __always_inline int 1579 perf_event_groups_cmp(const int left_cpu, const struct pmu *left_pmu, 1580 const struct cgroup *left_cgroup, const u64 left_group_index, 1581 const struct perf_event *right) 1582 { 1583 if (left_cpu < right->cpu) 1584 return -1; 1585 if (left_cpu > right->cpu) 1586 return 1; 1587 1588 if (left_pmu) { 1589 if (left_pmu < right->pmu_ctx->pmu) 1590 return -1; 1591 if (left_pmu > right->pmu_ctx->pmu) 1592 return 1; 1593 } 1594 1595 #ifdef CONFIG_CGROUP_PERF 1596 { 1597 const struct cgroup *right_cgroup = event_cgroup(right); 1598 1599 if (left_cgroup != right_cgroup) { 1600 if (!left_cgroup) { 1601 /* 1602 * Left has no cgroup but right does, no 1603 * cgroups come first. 1604 */ 1605 return -1; 1606 } 1607 if (!right_cgroup) { 1608 /* 1609 * Right has no cgroup but left does, no 1610 * cgroups come first. 1611 */ 1612 return 1; 1613 } 1614 /* Two dissimilar cgroups, order by id. */ 1615 if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup)) 1616 return -1; 1617 1618 return 1; 1619 } 1620 } 1621 #endif 1622 1623 if (left_group_index < right->group_index) 1624 return -1; 1625 if (left_group_index > right->group_index) 1626 return 1; 1627 1628 return 0; 1629 } 1630 1631 #define __node_2_pe(node) \ 1632 rb_entry((node), struct perf_event, group_node) 1633 1634 static inline bool __group_less(struct rb_node *a, const struct rb_node *b) 1635 { 1636 struct perf_event *e = __node_2_pe(a); 1637 return perf_event_groups_cmp(e->cpu, e->pmu_ctx->pmu, event_cgroup(e), 1638 e->group_index, __node_2_pe(b)) < 0; 1639 } 1640 1641 struct __group_key { 1642 int cpu; 1643 struct pmu *pmu; 1644 struct cgroup *cgroup; 1645 }; 1646 1647 static inline int __group_cmp(const void *key, const struct rb_node *node) 1648 { 1649 const struct __group_key *a = key; 1650 const struct perf_event *b = __node_2_pe(node); 1651 1652 /* partial/subtree match: @cpu, @pmu, @cgroup; ignore: @group_index */ 1653 return perf_event_groups_cmp(a->cpu, a->pmu, a->cgroup, b->group_index, b); 1654 } 1655 1656 static inline int 1657 __group_cmp_ignore_cgroup(const void *key, const struct rb_node *node) 1658 { 1659 const struct __group_key *a = key; 1660 const struct perf_event *b = __node_2_pe(node); 1661 1662 /* partial/subtree match: @cpu, @pmu, ignore: @cgroup, @group_index */ 1663 return perf_event_groups_cmp(a->cpu, a->pmu, event_cgroup(b), 1664 b->group_index, b); 1665 } 1666 1667 /* 1668 * Insert @event into @groups' tree; using 1669 * {@event->cpu, @event->pmu_ctx->pmu, event_cgroup(@event), ++@groups->index} 1670 * as key. This places it last inside the {cpu,pmu,cgroup} subtree. 1671 */ 1672 static void 1673 perf_event_groups_insert(struct perf_event_groups *groups, 1674 struct perf_event *event) 1675 { 1676 event->group_index = ++groups->index; 1677 1678 rb_add(&event->group_node, &groups->tree, __group_less); 1679 } 1680 1681 /* 1682 * Helper function to insert event into the pinned or flexible groups. 1683 */ 1684 static void 1685 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx) 1686 { 1687 struct perf_event_groups *groups; 1688 1689 groups = get_event_groups(event, ctx); 1690 perf_event_groups_insert(groups, event); 1691 } 1692 1693 /* 1694 * Delete a group from a tree. 1695 */ 1696 static void 1697 perf_event_groups_delete(struct perf_event_groups *groups, 1698 struct perf_event *event) 1699 { 1700 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) || 1701 RB_EMPTY_ROOT(&groups->tree)); 1702 1703 rb_erase(&event->group_node, &groups->tree); 1704 init_event_group(event); 1705 } 1706 1707 /* 1708 * Helper function to delete event from its groups. 1709 */ 1710 static void 1711 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx) 1712 { 1713 struct perf_event_groups *groups; 1714 1715 groups = get_event_groups(event, ctx); 1716 perf_event_groups_delete(groups, event); 1717 } 1718 1719 /* 1720 * Get the leftmost event in the {cpu,pmu,cgroup} subtree. 1721 */ 1722 static struct perf_event * 1723 perf_event_groups_first(struct perf_event_groups *groups, int cpu, 1724 struct pmu *pmu, struct cgroup *cgrp) 1725 { 1726 struct __group_key key = { 1727 .cpu = cpu, 1728 .pmu = pmu, 1729 .cgroup = cgrp, 1730 }; 1731 struct rb_node *node; 1732 1733 node = rb_find_first(&key, &groups->tree, __group_cmp); 1734 if (node) 1735 return __node_2_pe(node); 1736 1737 return NULL; 1738 } 1739 1740 static struct perf_event * 1741 perf_event_groups_next(struct perf_event *event, struct pmu *pmu) 1742 { 1743 struct __group_key key = { 1744 .cpu = event->cpu, 1745 .pmu = pmu, 1746 .cgroup = event_cgroup(event), 1747 }; 1748 struct rb_node *next; 1749 1750 next = rb_next_match(&key, &event->group_node, __group_cmp); 1751 if (next) 1752 return __node_2_pe(next); 1753 1754 return NULL; 1755 } 1756 1757 #define perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) \ 1758 for (event = perf_event_groups_first(groups, cpu, pmu, NULL); \ 1759 event; event = perf_event_groups_next(event, pmu)) 1760 1761 /* 1762 * Iterate through the whole groups tree. 1763 */ 1764 #define perf_event_groups_for_each(event, groups) \ 1765 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \ 1766 typeof(*event), group_node); event; \ 1767 event = rb_entry_safe(rb_next(&event->group_node), \ 1768 typeof(*event), group_node)) 1769 1770 /* 1771 * Add an event from the lists for its context. 1772 * Must be called with ctx->mutex and ctx->lock held. 1773 */ 1774 static void 1775 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1776 { 1777 lockdep_assert_held(&ctx->lock); 1778 1779 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1780 event->attach_state |= PERF_ATTACH_CONTEXT; 1781 1782 event->tstamp = perf_event_time(event); 1783 1784 /* 1785 * If we're a stand alone event or group leader, we go to the context 1786 * list, group events are kept attached to the group so that 1787 * perf_group_detach can, at all times, locate all siblings. 1788 */ 1789 if (event->group_leader == event) { 1790 event->group_caps = event->event_caps; 1791 add_event_to_groups(event, ctx); 1792 } 1793 1794 list_add_rcu(&event->event_entry, &ctx->event_list); 1795 ctx->nr_events++; 1796 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT) 1797 ctx->nr_user++; 1798 if (event->attr.inherit_stat) 1799 ctx->nr_stat++; 1800 1801 if (event->state > PERF_EVENT_STATE_OFF) 1802 perf_cgroup_event_enable(event, ctx); 1803 1804 ctx->generation++; 1805 event->pmu_ctx->nr_events++; 1806 } 1807 1808 /* 1809 * Initialize event state based on the perf_event_attr::disabled. 1810 */ 1811 static inline void perf_event__state_init(struct perf_event *event) 1812 { 1813 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1814 PERF_EVENT_STATE_INACTIVE; 1815 } 1816 1817 static int __perf_event_read_size(u64 read_format, int nr_siblings) 1818 { 1819 int entry = sizeof(u64); /* value */ 1820 int size = 0; 1821 int nr = 1; 1822 1823 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1824 size += sizeof(u64); 1825 1826 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1827 size += sizeof(u64); 1828 1829 if (read_format & PERF_FORMAT_ID) 1830 entry += sizeof(u64); 1831 1832 if (read_format & PERF_FORMAT_LOST) 1833 entry += sizeof(u64); 1834 1835 if (read_format & PERF_FORMAT_GROUP) { 1836 nr += nr_siblings; 1837 size += sizeof(u64); 1838 } 1839 1840 /* 1841 * Since perf_event_validate_size() limits this to 16k and inhibits 1842 * adding more siblings, this will never overflow. 1843 */ 1844 return size + nr * entry; 1845 } 1846 1847 static void __perf_event_header_size(struct perf_event *event, u64 sample_type) 1848 { 1849 struct perf_sample_data *data; 1850 u16 size = 0; 1851 1852 if (sample_type & PERF_SAMPLE_IP) 1853 size += sizeof(data->ip); 1854 1855 if (sample_type & PERF_SAMPLE_ADDR) 1856 size += sizeof(data->addr); 1857 1858 if (sample_type & PERF_SAMPLE_PERIOD) 1859 size += sizeof(data->period); 1860 1861 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) 1862 size += sizeof(data->weight.full); 1863 1864 if (sample_type & PERF_SAMPLE_READ) 1865 size += event->read_size; 1866 1867 if (sample_type & PERF_SAMPLE_DATA_SRC) 1868 size += sizeof(data->data_src.val); 1869 1870 if (sample_type & PERF_SAMPLE_TRANSACTION) 1871 size += sizeof(data->txn); 1872 1873 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 1874 size += sizeof(data->phys_addr); 1875 1876 if (sample_type & PERF_SAMPLE_CGROUP) 1877 size += sizeof(data->cgroup); 1878 1879 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 1880 size += sizeof(data->data_page_size); 1881 1882 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 1883 size += sizeof(data->code_page_size); 1884 1885 event->header_size = size; 1886 } 1887 1888 /* 1889 * Called at perf_event creation and when events are attached/detached from a 1890 * group. 1891 */ 1892 static void perf_event__header_size(struct perf_event *event) 1893 { 1894 event->read_size = 1895 __perf_event_read_size(event->attr.read_format, 1896 event->group_leader->nr_siblings); 1897 __perf_event_header_size(event, event->attr.sample_type); 1898 } 1899 1900 static void perf_event__id_header_size(struct perf_event *event) 1901 { 1902 struct perf_sample_data *data; 1903 u64 sample_type = event->attr.sample_type; 1904 u16 size = 0; 1905 1906 if (sample_type & PERF_SAMPLE_TID) 1907 size += sizeof(data->tid_entry); 1908 1909 if (sample_type & PERF_SAMPLE_TIME) 1910 size += sizeof(data->time); 1911 1912 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1913 size += sizeof(data->id); 1914 1915 if (sample_type & PERF_SAMPLE_ID) 1916 size += sizeof(data->id); 1917 1918 if (sample_type & PERF_SAMPLE_STREAM_ID) 1919 size += sizeof(data->stream_id); 1920 1921 if (sample_type & PERF_SAMPLE_CPU) 1922 size += sizeof(data->cpu_entry); 1923 1924 event->id_header_size = size; 1925 } 1926 1927 /* 1928 * Check that adding an event to the group does not result in anybody 1929 * overflowing the 64k event limit imposed by the output buffer. 1930 * 1931 * Specifically, check that the read_size for the event does not exceed 16k, 1932 * read_size being the one term that grows with groups size. Since read_size 1933 * depends on per-event read_format, also (re)check the existing events. 1934 * 1935 * This leaves 48k for the constant size fields and things like callchains, 1936 * branch stacks and register sets. 1937 */ 1938 static bool perf_event_validate_size(struct perf_event *event) 1939 { 1940 struct perf_event *sibling, *group_leader = event->group_leader; 1941 1942 if (__perf_event_read_size(event->attr.read_format, 1943 group_leader->nr_siblings + 1) > 16*1024) 1944 return false; 1945 1946 if (__perf_event_read_size(group_leader->attr.read_format, 1947 group_leader->nr_siblings + 1) > 16*1024) 1948 return false; 1949 1950 /* 1951 * When creating a new group leader, group_leader->ctx is initialized 1952 * after the size has been validated, but we cannot safely use 1953 * for_each_sibling_event() until group_leader->ctx is set. A new group 1954 * leader cannot have any siblings yet, so we can safely skip checking 1955 * the non-existent siblings. 1956 */ 1957 if (event == group_leader) 1958 return true; 1959 1960 for_each_sibling_event(sibling, group_leader) { 1961 if (__perf_event_read_size(sibling->attr.read_format, 1962 group_leader->nr_siblings + 1) > 16*1024) 1963 return false; 1964 } 1965 1966 return true; 1967 } 1968 1969 static void perf_group_attach(struct perf_event *event) 1970 { 1971 struct perf_event *group_leader = event->group_leader, *pos; 1972 1973 lockdep_assert_held(&event->ctx->lock); 1974 1975 /* 1976 * We can have double attach due to group movement (move_group) in 1977 * perf_event_open(). 1978 */ 1979 if (event->attach_state & PERF_ATTACH_GROUP) 1980 return; 1981 1982 event->attach_state |= PERF_ATTACH_GROUP; 1983 1984 if (group_leader == event) 1985 return; 1986 1987 WARN_ON_ONCE(group_leader->ctx != event->ctx); 1988 1989 group_leader->group_caps &= event->event_caps; 1990 1991 list_add_tail(&event->sibling_list, &group_leader->sibling_list); 1992 group_leader->nr_siblings++; 1993 group_leader->group_generation++; 1994 1995 perf_event__header_size(group_leader); 1996 1997 for_each_sibling_event(pos, group_leader) 1998 perf_event__header_size(pos); 1999 } 2000 2001 /* 2002 * Remove an event from the lists for its context. 2003 * Must be called with ctx->mutex and ctx->lock held. 2004 */ 2005 static void 2006 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 2007 { 2008 WARN_ON_ONCE(event->ctx != ctx); 2009 lockdep_assert_held(&ctx->lock); 2010 2011 /* 2012 * We can have double detach due to exit/hot-unplug + close. 2013 */ 2014 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 2015 return; 2016 2017 event->attach_state &= ~PERF_ATTACH_CONTEXT; 2018 2019 ctx->nr_events--; 2020 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT) 2021 ctx->nr_user--; 2022 if (event->attr.inherit_stat) 2023 ctx->nr_stat--; 2024 2025 list_del_rcu(&event->event_entry); 2026 2027 if (event->group_leader == event) 2028 del_event_from_groups(event, ctx); 2029 2030 /* 2031 * If event was in error state, then keep it 2032 * that way, otherwise bogus counts will be 2033 * returned on read(). The only way to get out 2034 * of error state is by explicit re-enabling 2035 * of the event 2036 */ 2037 if (event->state > PERF_EVENT_STATE_OFF) { 2038 perf_cgroup_event_disable(event, ctx); 2039 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2040 } 2041 2042 ctx->generation++; 2043 event->pmu_ctx->nr_events--; 2044 } 2045 2046 static int 2047 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event) 2048 { 2049 if (!has_aux(aux_event)) 2050 return 0; 2051 2052 if (!event->pmu->aux_output_match) 2053 return 0; 2054 2055 return event->pmu->aux_output_match(aux_event); 2056 } 2057 2058 static void put_event(struct perf_event *event); 2059 static void event_sched_out(struct perf_event *event, 2060 struct perf_event_context *ctx); 2061 2062 static void perf_put_aux_event(struct perf_event *event) 2063 { 2064 struct perf_event_context *ctx = event->ctx; 2065 struct perf_event *iter; 2066 2067 /* 2068 * If event uses aux_event tear down the link 2069 */ 2070 if (event->aux_event) { 2071 iter = event->aux_event; 2072 event->aux_event = NULL; 2073 put_event(iter); 2074 return; 2075 } 2076 2077 /* 2078 * If the event is an aux_event, tear down all links to 2079 * it from other events. 2080 */ 2081 for_each_sibling_event(iter, event->group_leader) { 2082 if (iter->aux_event != event) 2083 continue; 2084 2085 iter->aux_event = NULL; 2086 put_event(event); 2087 2088 /* 2089 * If it's ACTIVE, schedule it out and put it into ERROR 2090 * state so that we don't try to schedule it again. Note 2091 * that perf_event_enable() will clear the ERROR status. 2092 */ 2093 event_sched_out(iter, ctx); 2094 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 2095 } 2096 } 2097 2098 static bool perf_need_aux_event(struct perf_event *event) 2099 { 2100 return !!event->attr.aux_output || !!event->attr.aux_sample_size; 2101 } 2102 2103 static int perf_get_aux_event(struct perf_event *event, 2104 struct perf_event *group_leader) 2105 { 2106 /* 2107 * Our group leader must be an aux event if we want to be 2108 * an aux_output. This way, the aux event will precede its 2109 * aux_output events in the group, and therefore will always 2110 * schedule first. 2111 */ 2112 if (!group_leader) 2113 return 0; 2114 2115 /* 2116 * aux_output and aux_sample_size are mutually exclusive. 2117 */ 2118 if (event->attr.aux_output && event->attr.aux_sample_size) 2119 return 0; 2120 2121 if (event->attr.aux_output && 2122 !perf_aux_output_match(event, group_leader)) 2123 return 0; 2124 2125 if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux) 2126 return 0; 2127 2128 if (!atomic_long_inc_not_zero(&group_leader->refcount)) 2129 return 0; 2130 2131 /* 2132 * Link aux_outputs to their aux event; this is undone in 2133 * perf_group_detach() by perf_put_aux_event(). When the 2134 * group in torn down, the aux_output events loose their 2135 * link to the aux_event and can't schedule any more. 2136 */ 2137 event->aux_event = group_leader; 2138 2139 return 1; 2140 } 2141 2142 static inline struct list_head *get_event_list(struct perf_event *event) 2143 { 2144 return event->attr.pinned ? &event->pmu_ctx->pinned_active : 2145 &event->pmu_ctx->flexible_active; 2146 } 2147 2148 /* 2149 * Events that have PERF_EV_CAP_SIBLING require being part of a group and 2150 * cannot exist on their own, schedule them out and move them into the ERROR 2151 * state. Also see _perf_event_enable(), it will not be able to recover 2152 * this ERROR state. 2153 */ 2154 static inline void perf_remove_sibling_event(struct perf_event *event) 2155 { 2156 event_sched_out(event, event->ctx); 2157 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 2158 } 2159 2160 static void perf_group_detach(struct perf_event *event) 2161 { 2162 struct perf_event *leader = event->group_leader; 2163 struct perf_event *sibling, *tmp; 2164 struct perf_event_context *ctx = event->ctx; 2165 2166 lockdep_assert_held(&ctx->lock); 2167 2168 /* 2169 * We can have double detach due to exit/hot-unplug + close. 2170 */ 2171 if (!(event->attach_state & PERF_ATTACH_GROUP)) 2172 return; 2173 2174 event->attach_state &= ~PERF_ATTACH_GROUP; 2175 2176 perf_put_aux_event(event); 2177 2178 /* 2179 * If this is a sibling, remove it from its group. 2180 */ 2181 if (leader != event) { 2182 list_del_init(&event->sibling_list); 2183 event->group_leader->nr_siblings--; 2184 event->group_leader->group_generation++; 2185 goto out; 2186 } 2187 2188 /* 2189 * If this was a group event with sibling events then 2190 * upgrade the siblings to singleton events by adding them 2191 * to whatever list we are on. 2192 */ 2193 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) { 2194 2195 if (sibling->event_caps & PERF_EV_CAP_SIBLING) 2196 perf_remove_sibling_event(sibling); 2197 2198 sibling->group_leader = sibling; 2199 list_del_init(&sibling->sibling_list); 2200 2201 /* Inherit group flags from the previous leader */ 2202 sibling->group_caps = event->group_caps; 2203 2204 if (sibling->attach_state & PERF_ATTACH_CONTEXT) { 2205 add_event_to_groups(sibling, event->ctx); 2206 2207 if (sibling->state == PERF_EVENT_STATE_ACTIVE) 2208 list_add_tail(&sibling->active_list, get_event_list(sibling)); 2209 } 2210 2211 WARN_ON_ONCE(sibling->ctx != event->ctx); 2212 } 2213 2214 out: 2215 for_each_sibling_event(tmp, leader) 2216 perf_event__header_size(tmp); 2217 2218 perf_event__header_size(leader); 2219 } 2220 2221 static void sync_child_event(struct perf_event *child_event); 2222 2223 static void perf_child_detach(struct perf_event *event) 2224 { 2225 struct perf_event *parent_event = event->parent; 2226 2227 if (!(event->attach_state & PERF_ATTACH_CHILD)) 2228 return; 2229 2230 event->attach_state &= ~PERF_ATTACH_CHILD; 2231 2232 if (WARN_ON_ONCE(!parent_event)) 2233 return; 2234 2235 lockdep_assert_held(&parent_event->child_mutex); 2236 2237 sync_child_event(event); 2238 list_del_init(&event->child_list); 2239 } 2240 2241 static bool is_orphaned_event(struct perf_event *event) 2242 { 2243 return event->state == PERF_EVENT_STATE_DEAD; 2244 } 2245 2246 static inline int 2247 event_filter_match(struct perf_event *event) 2248 { 2249 return (event->cpu == -1 || event->cpu == smp_processor_id()) && 2250 perf_cgroup_match(event); 2251 } 2252 2253 static void 2254 event_sched_out(struct perf_event *event, struct perf_event_context *ctx) 2255 { 2256 struct perf_event_pmu_context *epc = event->pmu_ctx; 2257 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context); 2258 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE; 2259 2260 // XXX cpc serialization, probably per-cpu IRQ disabled 2261 2262 WARN_ON_ONCE(event->ctx != ctx); 2263 lockdep_assert_held(&ctx->lock); 2264 2265 if (event->state != PERF_EVENT_STATE_ACTIVE) 2266 return; 2267 2268 /* 2269 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but 2270 * we can schedule events _OUT_ individually through things like 2271 * __perf_remove_from_context(). 2272 */ 2273 list_del_init(&event->active_list); 2274 2275 perf_pmu_disable(event->pmu); 2276 2277 event->pmu->del(event, 0); 2278 event->oncpu = -1; 2279 2280 if (event->pending_disable) { 2281 event->pending_disable = 0; 2282 perf_cgroup_event_disable(event, ctx); 2283 state = PERF_EVENT_STATE_OFF; 2284 } 2285 2286 if (event->pending_sigtrap) { 2287 bool dec = true; 2288 2289 event->pending_sigtrap = 0; 2290 if (state != PERF_EVENT_STATE_OFF && 2291 !event->pending_work) { 2292 event->pending_work = 1; 2293 dec = false; 2294 WARN_ON_ONCE(!atomic_long_inc_not_zero(&event->refcount)); 2295 task_work_add(current, &event->pending_task, TWA_RESUME); 2296 } 2297 if (dec) 2298 local_dec(&event->ctx->nr_pending); 2299 } 2300 2301 perf_event_set_state(event, state); 2302 2303 if (!is_software_event(event)) 2304 cpc->active_oncpu--; 2305 if (event->attr.freq && event->attr.sample_freq) 2306 ctx->nr_freq--; 2307 if (event->attr.exclusive || !cpc->active_oncpu) 2308 cpc->exclusive = 0; 2309 2310 perf_pmu_enable(event->pmu); 2311 } 2312 2313 static void 2314 group_sched_out(struct perf_event *group_event, struct perf_event_context *ctx) 2315 { 2316 struct perf_event *event; 2317 2318 if (group_event->state != PERF_EVENT_STATE_ACTIVE) 2319 return; 2320 2321 perf_assert_pmu_disabled(group_event->pmu_ctx->pmu); 2322 2323 event_sched_out(group_event, ctx); 2324 2325 /* 2326 * Schedule out siblings (if any): 2327 */ 2328 for_each_sibling_event(event, group_event) 2329 event_sched_out(event, ctx); 2330 } 2331 2332 #define DETACH_GROUP 0x01UL 2333 #define DETACH_CHILD 0x02UL 2334 #define DETACH_DEAD 0x04UL 2335 2336 /* 2337 * Cross CPU call to remove a performance event 2338 * 2339 * We disable the event on the hardware level first. After that we 2340 * remove it from the context list. 2341 */ 2342 static void 2343 __perf_remove_from_context(struct perf_event *event, 2344 struct perf_cpu_context *cpuctx, 2345 struct perf_event_context *ctx, 2346 void *info) 2347 { 2348 struct perf_event_pmu_context *pmu_ctx = event->pmu_ctx; 2349 unsigned long flags = (unsigned long)info; 2350 2351 if (ctx->is_active & EVENT_TIME) { 2352 update_context_time(ctx); 2353 update_cgrp_time_from_cpuctx(cpuctx, false); 2354 } 2355 2356 /* 2357 * Ensure event_sched_out() switches to OFF, at the very least 2358 * this avoids raising perf_pending_task() at this time. 2359 */ 2360 if (flags & DETACH_DEAD) 2361 event->pending_disable = 1; 2362 event_sched_out(event, ctx); 2363 if (flags & DETACH_GROUP) 2364 perf_group_detach(event); 2365 if (flags & DETACH_CHILD) 2366 perf_child_detach(event); 2367 list_del_event(event, ctx); 2368 if (flags & DETACH_DEAD) 2369 event->state = PERF_EVENT_STATE_DEAD; 2370 2371 if (!pmu_ctx->nr_events) { 2372 pmu_ctx->rotate_necessary = 0; 2373 2374 if (ctx->task && ctx->is_active) { 2375 struct perf_cpu_pmu_context *cpc; 2376 2377 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context); 2378 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx); 2379 cpc->task_epc = NULL; 2380 } 2381 } 2382 2383 if (!ctx->nr_events && ctx->is_active) { 2384 if (ctx == &cpuctx->ctx) 2385 update_cgrp_time_from_cpuctx(cpuctx, true); 2386 2387 ctx->is_active = 0; 2388 if (ctx->task) { 2389 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2390 cpuctx->task_ctx = NULL; 2391 } 2392 } 2393 } 2394 2395 /* 2396 * Remove the event from a task's (or a CPU's) list of events. 2397 * 2398 * If event->ctx is a cloned context, callers must make sure that 2399 * every task struct that event->ctx->task could possibly point to 2400 * remains valid. This is OK when called from perf_release since 2401 * that only calls us on the top-level context, which can't be a clone. 2402 * When called from perf_event_exit_task, it's OK because the 2403 * context has been detached from its task. 2404 */ 2405 static void perf_remove_from_context(struct perf_event *event, unsigned long flags) 2406 { 2407 struct perf_event_context *ctx = event->ctx; 2408 2409 lockdep_assert_held(&ctx->mutex); 2410 2411 /* 2412 * Because of perf_event_exit_task(), perf_remove_from_context() ought 2413 * to work in the face of TASK_TOMBSTONE, unlike every other 2414 * event_function_call() user. 2415 */ 2416 raw_spin_lock_irq(&ctx->lock); 2417 if (!ctx->is_active) { 2418 __perf_remove_from_context(event, this_cpu_ptr(&perf_cpu_context), 2419 ctx, (void *)flags); 2420 raw_spin_unlock_irq(&ctx->lock); 2421 return; 2422 } 2423 raw_spin_unlock_irq(&ctx->lock); 2424 2425 event_function_call(event, __perf_remove_from_context, (void *)flags); 2426 } 2427 2428 /* 2429 * Cross CPU call to disable a performance event 2430 */ 2431 static void __perf_event_disable(struct perf_event *event, 2432 struct perf_cpu_context *cpuctx, 2433 struct perf_event_context *ctx, 2434 void *info) 2435 { 2436 if (event->state < PERF_EVENT_STATE_INACTIVE) 2437 return; 2438 2439 if (ctx->is_active & EVENT_TIME) { 2440 update_context_time(ctx); 2441 update_cgrp_time_from_event(event); 2442 } 2443 2444 perf_pmu_disable(event->pmu_ctx->pmu); 2445 2446 if (event == event->group_leader) 2447 group_sched_out(event, ctx); 2448 else 2449 event_sched_out(event, ctx); 2450 2451 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2452 perf_cgroup_event_disable(event, ctx); 2453 2454 perf_pmu_enable(event->pmu_ctx->pmu); 2455 } 2456 2457 /* 2458 * Disable an event. 2459 * 2460 * If event->ctx is a cloned context, callers must make sure that 2461 * every task struct that event->ctx->task could possibly point to 2462 * remains valid. This condition is satisfied when called through 2463 * perf_event_for_each_child or perf_event_for_each because they 2464 * hold the top-level event's child_mutex, so any descendant that 2465 * goes to exit will block in perf_event_exit_event(). 2466 * 2467 * When called from perf_pending_irq it's OK because event->ctx 2468 * is the current context on this CPU and preemption is disabled, 2469 * hence we can't get into perf_event_task_sched_out for this context. 2470 */ 2471 static void _perf_event_disable(struct perf_event *event) 2472 { 2473 struct perf_event_context *ctx = event->ctx; 2474 2475 raw_spin_lock_irq(&ctx->lock); 2476 if (event->state <= PERF_EVENT_STATE_OFF) { 2477 raw_spin_unlock_irq(&ctx->lock); 2478 return; 2479 } 2480 raw_spin_unlock_irq(&ctx->lock); 2481 2482 event_function_call(event, __perf_event_disable, NULL); 2483 } 2484 2485 void perf_event_disable_local(struct perf_event *event) 2486 { 2487 event_function_local(event, __perf_event_disable, NULL); 2488 } 2489 2490 /* 2491 * Strictly speaking kernel users cannot create groups and therefore this 2492 * interface does not need the perf_event_ctx_lock() magic. 2493 */ 2494 void perf_event_disable(struct perf_event *event) 2495 { 2496 struct perf_event_context *ctx; 2497 2498 ctx = perf_event_ctx_lock(event); 2499 _perf_event_disable(event); 2500 perf_event_ctx_unlock(event, ctx); 2501 } 2502 EXPORT_SYMBOL_GPL(perf_event_disable); 2503 2504 void perf_event_disable_inatomic(struct perf_event *event) 2505 { 2506 event->pending_disable = 1; 2507 irq_work_queue(&event->pending_irq); 2508 } 2509 2510 #define MAX_INTERRUPTS (~0ULL) 2511 2512 static void perf_log_throttle(struct perf_event *event, int enable); 2513 static void perf_log_itrace_start(struct perf_event *event); 2514 2515 static int 2516 event_sched_in(struct perf_event *event, struct perf_event_context *ctx) 2517 { 2518 struct perf_event_pmu_context *epc = event->pmu_ctx; 2519 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context); 2520 int ret = 0; 2521 2522 WARN_ON_ONCE(event->ctx != ctx); 2523 2524 lockdep_assert_held(&ctx->lock); 2525 2526 if (event->state <= PERF_EVENT_STATE_OFF) 2527 return 0; 2528 2529 WRITE_ONCE(event->oncpu, smp_processor_id()); 2530 /* 2531 * Order event::oncpu write to happen before the ACTIVE state is 2532 * visible. This allows perf_event_{stop,read}() to observe the correct 2533 * ->oncpu if it sees ACTIVE. 2534 */ 2535 smp_wmb(); 2536 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE); 2537 2538 /* 2539 * Unthrottle events, since we scheduled we might have missed several 2540 * ticks already, also for a heavily scheduling task there is little 2541 * guarantee it'll get a tick in a timely manner. 2542 */ 2543 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 2544 perf_log_throttle(event, 1); 2545 event->hw.interrupts = 0; 2546 } 2547 2548 perf_pmu_disable(event->pmu); 2549 2550 perf_log_itrace_start(event); 2551 2552 if (event->pmu->add(event, PERF_EF_START)) { 2553 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2554 event->oncpu = -1; 2555 ret = -EAGAIN; 2556 goto out; 2557 } 2558 2559 if (!is_software_event(event)) 2560 cpc->active_oncpu++; 2561 if (event->attr.freq && event->attr.sample_freq) 2562 ctx->nr_freq++; 2563 2564 if (event->attr.exclusive) 2565 cpc->exclusive = 1; 2566 2567 out: 2568 perf_pmu_enable(event->pmu); 2569 2570 return ret; 2571 } 2572 2573 static int 2574 group_sched_in(struct perf_event *group_event, struct perf_event_context *ctx) 2575 { 2576 struct perf_event *event, *partial_group = NULL; 2577 struct pmu *pmu = group_event->pmu_ctx->pmu; 2578 2579 if (group_event->state == PERF_EVENT_STATE_OFF) 2580 return 0; 2581 2582 pmu->start_txn(pmu, PERF_PMU_TXN_ADD); 2583 2584 if (event_sched_in(group_event, ctx)) 2585 goto error; 2586 2587 /* 2588 * Schedule in siblings as one group (if any): 2589 */ 2590 for_each_sibling_event(event, group_event) { 2591 if (event_sched_in(event, ctx)) { 2592 partial_group = event; 2593 goto group_error; 2594 } 2595 } 2596 2597 if (!pmu->commit_txn(pmu)) 2598 return 0; 2599 2600 group_error: 2601 /* 2602 * Groups can be scheduled in as one unit only, so undo any 2603 * partial group before returning: 2604 * The events up to the failed event are scheduled out normally. 2605 */ 2606 for_each_sibling_event(event, group_event) { 2607 if (event == partial_group) 2608 break; 2609 2610 event_sched_out(event, ctx); 2611 } 2612 event_sched_out(group_event, ctx); 2613 2614 error: 2615 pmu->cancel_txn(pmu); 2616 return -EAGAIN; 2617 } 2618 2619 /* 2620 * Work out whether we can put this event group on the CPU now. 2621 */ 2622 static int group_can_go_on(struct perf_event *event, int can_add_hw) 2623 { 2624 struct perf_event_pmu_context *epc = event->pmu_ctx; 2625 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context); 2626 2627 /* 2628 * Groups consisting entirely of software events can always go on. 2629 */ 2630 if (event->group_caps & PERF_EV_CAP_SOFTWARE) 2631 return 1; 2632 /* 2633 * If an exclusive group is already on, no other hardware 2634 * events can go on. 2635 */ 2636 if (cpc->exclusive) 2637 return 0; 2638 /* 2639 * If this group is exclusive and there are already 2640 * events on the CPU, it can't go on. 2641 */ 2642 if (event->attr.exclusive && !list_empty(get_event_list(event))) 2643 return 0; 2644 /* 2645 * Otherwise, try to add it if all previous groups were able 2646 * to go on. 2647 */ 2648 return can_add_hw; 2649 } 2650 2651 static void add_event_to_ctx(struct perf_event *event, 2652 struct perf_event_context *ctx) 2653 { 2654 list_add_event(event, ctx); 2655 perf_group_attach(event); 2656 } 2657 2658 static void task_ctx_sched_out(struct perf_event_context *ctx, 2659 enum event_type_t event_type) 2660 { 2661 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 2662 2663 if (!cpuctx->task_ctx) 2664 return; 2665 2666 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2667 return; 2668 2669 ctx_sched_out(ctx, event_type); 2670 } 2671 2672 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2673 struct perf_event_context *ctx) 2674 { 2675 ctx_sched_in(&cpuctx->ctx, EVENT_PINNED); 2676 if (ctx) 2677 ctx_sched_in(ctx, EVENT_PINNED); 2678 ctx_sched_in(&cpuctx->ctx, EVENT_FLEXIBLE); 2679 if (ctx) 2680 ctx_sched_in(ctx, EVENT_FLEXIBLE); 2681 } 2682 2683 /* 2684 * We want to maintain the following priority of scheduling: 2685 * - CPU pinned (EVENT_CPU | EVENT_PINNED) 2686 * - task pinned (EVENT_PINNED) 2687 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE) 2688 * - task flexible (EVENT_FLEXIBLE). 2689 * 2690 * In order to avoid unscheduling and scheduling back in everything every 2691 * time an event is added, only do it for the groups of equal priority and 2692 * below. 2693 * 2694 * This can be called after a batch operation on task events, in which case 2695 * event_type is a bit mask of the types of events involved. For CPU events, 2696 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE. 2697 */ 2698 /* 2699 * XXX: ctx_resched() reschedule entire perf_event_context while adding new 2700 * event to the context or enabling existing event in the context. We can 2701 * probably optimize it by rescheduling only affected pmu_ctx. 2702 */ 2703 static void ctx_resched(struct perf_cpu_context *cpuctx, 2704 struct perf_event_context *task_ctx, 2705 enum event_type_t event_type) 2706 { 2707 bool cpu_event = !!(event_type & EVENT_CPU); 2708 2709 /* 2710 * If pinned groups are involved, flexible groups also need to be 2711 * scheduled out. 2712 */ 2713 if (event_type & EVENT_PINNED) 2714 event_type |= EVENT_FLEXIBLE; 2715 2716 event_type &= EVENT_ALL; 2717 2718 perf_ctx_disable(&cpuctx->ctx, false); 2719 if (task_ctx) { 2720 perf_ctx_disable(task_ctx, false); 2721 task_ctx_sched_out(task_ctx, event_type); 2722 } 2723 2724 /* 2725 * Decide which cpu ctx groups to schedule out based on the types 2726 * of events that caused rescheduling: 2727 * - EVENT_CPU: schedule out corresponding groups; 2728 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups; 2729 * - otherwise, do nothing more. 2730 */ 2731 if (cpu_event) 2732 ctx_sched_out(&cpuctx->ctx, event_type); 2733 else if (event_type & EVENT_PINNED) 2734 ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE); 2735 2736 perf_event_sched_in(cpuctx, task_ctx); 2737 2738 perf_ctx_enable(&cpuctx->ctx, false); 2739 if (task_ctx) 2740 perf_ctx_enable(task_ctx, false); 2741 } 2742 2743 void perf_pmu_resched(struct pmu *pmu) 2744 { 2745 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 2746 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2747 2748 perf_ctx_lock(cpuctx, task_ctx); 2749 ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU); 2750 perf_ctx_unlock(cpuctx, task_ctx); 2751 } 2752 2753 /* 2754 * Cross CPU call to install and enable a performance event 2755 * 2756 * Very similar to remote_function() + event_function() but cannot assume that 2757 * things like ctx->is_active and cpuctx->task_ctx are set. 2758 */ 2759 static int __perf_install_in_context(void *info) 2760 { 2761 struct perf_event *event = info; 2762 struct perf_event_context *ctx = event->ctx; 2763 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 2764 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2765 bool reprogram = true; 2766 int ret = 0; 2767 2768 raw_spin_lock(&cpuctx->ctx.lock); 2769 if (ctx->task) { 2770 raw_spin_lock(&ctx->lock); 2771 task_ctx = ctx; 2772 2773 reprogram = (ctx->task == current); 2774 2775 /* 2776 * If the task is running, it must be running on this CPU, 2777 * otherwise we cannot reprogram things. 2778 * 2779 * If its not running, we don't care, ctx->lock will 2780 * serialize against it becoming runnable. 2781 */ 2782 if (task_curr(ctx->task) && !reprogram) { 2783 ret = -ESRCH; 2784 goto unlock; 2785 } 2786 2787 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx); 2788 } else if (task_ctx) { 2789 raw_spin_lock(&task_ctx->lock); 2790 } 2791 2792 #ifdef CONFIG_CGROUP_PERF 2793 if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) { 2794 /* 2795 * If the current cgroup doesn't match the event's 2796 * cgroup, we should not try to schedule it. 2797 */ 2798 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 2799 reprogram = cgroup_is_descendant(cgrp->css.cgroup, 2800 event->cgrp->css.cgroup); 2801 } 2802 #endif 2803 2804 if (reprogram) { 2805 ctx_sched_out(ctx, EVENT_TIME); 2806 add_event_to_ctx(event, ctx); 2807 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2808 } else { 2809 add_event_to_ctx(event, ctx); 2810 } 2811 2812 unlock: 2813 perf_ctx_unlock(cpuctx, task_ctx); 2814 2815 return ret; 2816 } 2817 2818 static bool exclusive_event_installable(struct perf_event *event, 2819 struct perf_event_context *ctx); 2820 2821 /* 2822 * Attach a performance event to a context. 2823 * 2824 * Very similar to event_function_call, see comment there. 2825 */ 2826 static void 2827 perf_install_in_context(struct perf_event_context *ctx, 2828 struct perf_event *event, 2829 int cpu) 2830 { 2831 struct task_struct *task = READ_ONCE(ctx->task); 2832 2833 lockdep_assert_held(&ctx->mutex); 2834 2835 WARN_ON_ONCE(!exclusive_event_installable(event, ctx)); 2836 2837 if (event->cpu != -1) 2838 WARN_ON_ONCE(event->cpu != cpu); 2839 2840 /* 2841 * Ensures that if we can observe event->ctx, both the event and ctx 2842 * will be 'complete'. See perf_iterate_sb_cpu(). 2843 */ 2844 smp_store_release(&event->ctx, ctx); 2845 2846 /* 2847 * perf_event_attr::disabled events will not run and can be initialized 2848 * without IPI. Except when this is the first event for the context, in 2849 * that case we need the magic of the IPI to set ctx->is_active. 2850 * 2851 * The IOC_ENABLE that is sure to follow the creation of a disabled 2852 * event will issue the IPI and reprogram the hardware. 2853 */ 2854 if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && 2855 ctx->nr_events && !is_cgroup_event(event)) { 2856 raw_spin_lock_irq(&ctx->lock); 2857 if (ctx->task == TASK_TOMBSTONE) { 2858 raw_spin_unlock_irq(&ctx->lock); 2859 return; 2860 } 2861 add_event_to_ctx(event, ctx); 2862 raw_spin_unlock_irq(&ctx->lock); 2863 return; 2864 } 2865 2866 if (!task) { 2867 cpu_function_call(cpu, __perf_install_in_context, event); 2868 return; 2869 } 2870 2871 /* 2872 * Should not happen, we validate the ctx is still alive before calling. 2873 */ 2874 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) 2875 return; 2876 2877 /* 2878 * Installing events is tricky because we cannot rely on ctx->is_active 2879 * to be set in case this is the nr_events 0 -> 1 transition. 2880 * 2881 * Instead we use task_curr(), which tells us if the task is running. 2882 * However, since we use task_curr() outside of rq::lock, we can race 2883 * against the actual state. This means the result can be wrong. 2884 * 2885 * If we get a false positive, we retry, this is harmless. 2886 * 2887 * If we get a false negative, things are complicated. If we are after 2888 * perf_event_context_sched_in() ctx::lock will serialize us, and the 2889 * value must be correct. If we're before, it doesn't matter since 2890 * perf_event_context_sched_in() will program the counter. 2891 * 2892 * However, this hinges on the remote context switch having observed 2893 * our task->perf_event_ctxp[] store, such that it will in fact take 2894 * ctx::lock in perf_event_context_sched_in(). 2895 * 2896 * We do this by task_function_call(), if the IPI fails to hit the task 2897 * we know any future context switch of task must see the 2898 * perf_event_ctpx[] store. 2899 */ 2900 2901 /* 2902 * This smp_mb() orders the task->perf_event_ctxp[] store with the 2903 * task_cpu() load, such that if the IPI then does not find the task 2904 * running, a future context switch of that task must observe the 2905 * store. 2906 */ 2907 smp_mb(); 2908 again: 2909 if (!task_function_call(task, __perf_install_in_context, event)) 2910 return; 2911 2912 raw_spin_lock_irq(&ctx->lock); 2913 task = ctx->task; 2914 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) { 2915 /* 2916 * Cannot happen because we already checked above (which also 2917 * cannot happen), and we hold ctx->mutex, which serializes us 2918 * against perf_event_exit_task_context(). 2919 */ 2920 raw_spin_unlock_irq(&ctx->lock); 2921 return; 2922 } 2923 /* 2924 * If the task is not running, ctx->lock will avoid it becoming so, 2925 * thus we can safely install the event. 2926 */ 2927 if (task_curr(task)) { 2928 raw_spin_unlock_irq(&ctx->lock); 2929 goto again; 2930 } 2931 add_event_to_ctx(event, ctx); 2932 raw_spin_unlock_irq(&ctx->lock); 2933 } 2934 2935 /* 2936 * Cross CPU call to enable a performance event 2937 */ 2938 static void __perf_event_enable(struct perf_event *event, 2939 struct perf_cpu_context *cpuctx, 2940 struct perf_event_context *ctx, 2941 void *info) 2942 { 2943 struct perf_event *leader = event->group_leader; 2944 struct perf_event_context *task_ctx; 2945 2946 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2947 event->state <= PERF_EVENT_STATE_ERROR) 2948 return; 2949 2950 if (ctx->is_active) 2951 ctx_sched_out(ctx, EVENT_TIME); 2952 2953 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2954 perf_cgroup_event_enable(event, ctx); 2955 2956 if (!ctx->is_active) 2957 return; 2958 2959 if (!event_filter_match(event)) { 2960 ctx_sched_in(ctx, EVENT_TIME); 2961 return; 2962 } 2963 2964 /* 2965 * If the event is in a group and isn't the group leader, 2966 * then don't put it on unless the group is on. 2967 */ 2968 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) { 2969 ctx_sched_in(ctx, EVENT_TIME); 2970 return; 2971 } 2972 2973 task_ctx = cpuctx->task_ctx; 2974 if (ctx->task) 2975 WARN_ON_ONCE(task_ctx != ctx); 2976 2977 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2978 } 2979 2980 /* 2981 * Enable an event. 2982 * 2983 * If event->ctx is a cloned context, callers must make sure that 2984 * every task struct that event->ctx->task could possibly point to 2985 * remains valid. This condition is satisfied when called through 2986 * perf_event_for_each_child or perf_event_for_each as described 2987 * for perf_event_disable. 2988 */ 2989 static void _perf_event_enable(struct perf_event *event) 2990 { 2991 struct perf_event_context *ctx = event->ctx; 2992 2993 raw_spin_lock_irq(&ctx->lock); 2994 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2995 event->state < PERF_EVENT_STATE_ERROR) { 2996 out: 2997 raw_spin_unlock_irq(&ctx->lock); 2998 return; 2999 } 3000 3001 /* 3002 * If the event is in error state, clear that first. 3003 * 3004 * That way, if we see the event in error state below, we know that it 3005 * has gone back into error state, as distinct from the task having 3006 * been scheduled away before the cross-call arrived. 3007 */ 3008 if (event->state == PERF_EVENT_STATE_ERROR) { 3009 /* 3010 * Detached SIBLING events cannot leave ERROR state. 3011 */ 3012 if (event->event_caps & PERF_EV_CAP_SIBLING && 3013 event->group_leader == event) 3014 goto out; 3015 3016 event->state = PERF_EVENT_STATE_OFF; 3017 } 3018 raw_spin_unlock_irq(&ctx->lock); 3019 3020 event_function_call(event, __perf_event_enable, NULL); 3021 } 3022 3023 /* 3024 * See perf_event_disable(); 3025 */ 3026 void perf_event_enable(struct perf_event *event) 3027 { 3028 struct perf_event_context *ctx; 3029 3030 ctx = perf_event_ctx_lock(event); 3031 _perf_event_enable(event); 3032 perf_event_ctx_unlock(event, ctx); 3033 } 3034 EXPORT_SYMBOL_GPL(perf_event_enable); 3035 3036 struct stop_event_data { 3037 struct perf_event *event; 3038 unsigned int restart; 3039 }; 3040 3041 static int __perf_event_stop(void *info) 3042 { 3043 struct stop_event_data *sd = info; 3044 struct perf_event *event = sd->event; 3045 3046 /* if it's already INACTIVE, do nothing */ 3047 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3048 return 0; 3049 3050 /* matches smp_wmb() in event_sched_in() */ 3051 smp_rmb(); 3052 3053 /* 3054 * There is a window with interrupts enabled before we get here, 3055 * so we need to check again lest we try to stop another CPU's event. 3056 */ 3057 if (READ_ONCE(event->oncpu) != smp_processor_id()) 3058 return -EAGAIN; 3059 3060 event->pmu->stop(event, PERF_EF_UPDATE); 3061 3062 /* 3063 * May race with the actual stop (through perf_pmu_output_stop()), 3064 * but it is only used for events with AUX ring buffer, and such 3065 * events will refuse to restart because of rb::aux_mmap_count==0, 3066 * see comments in perf_aux_output_begin(). 3067 * 3068 * Since this is happening on an event-local CPU, no trace is lost 3069 * while restarting. 3070 */ 3071 if (sd->restart) 3072 event->pmu->start(event, 0); 3073 3074 return 0; 3075 } 3076 3077 static int perf_event_stop(struct perf_event *event, int restart) 3078 { 3079 struct stop_event_data sd = { 3080 .event = event, 3081 .restart = restart, 3082 }; 3083 int ret = 0; 3084 3085 do { 3086 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3087 return 0; 3088 3089 /* matches smp_wmb() in event_sched_in() */ 3090 smp_rmb(); 3091 3092 /* 3093 * We only want to restart ACTIVE events, so if the event goes 3094 * inactive here (event->oncpu==-1), there's nothing more to do; 3095 * fall through with ret==-ENXIO. 3096 */ 3097 ret = cpu_function_call(READ_ONCE(event->oncpu), 3098 __perf_event_stop, &sd); 3099 } while (ret == -EAGAIN); 3100 3101 return ret; 3102 } 3103 3104 /* 3105 * In order to contain the amount of racy and tricky in the address filter 3106 * configuration management, it is a two part process: 3107 * 3108 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below, 3109 * we update the addresses of corresponding vmas in 3110 * event::addr_filter_ranges array and bump the event::addr_filters_gen; 3111 * (p2) when an event is scheduled in (pmu::add), it calls 3112 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync() 3113 * if the generation has changed since the previous call. 3114 * 3115 * If (p1) happens while the event is active, we restart it to force (p2). 3116 * 3117 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on 3118 * pre-existing mappings, called once when new filters arrive via SET_FILTER 3119 * ioctl; 3120 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly 3121 * registered mapping, called for every new mmap(), with mm::mmap_lock down 3122 * for reading; 3123 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process 3124 * of exec. 3125 */ 3126 void perf_event_addr_filters_sync(struct perf_event *event) 3127 { 3128 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 3129 3130 if (!has_addr_filter(event)) 3131 return; 3132 3133 raw_spin_lock(&ifh->lock); 3134 if (event->addr_filters_gen != event->hw.addr_filters_gen) { 3135 event->pmu->addr_filters_sync(event); 3136 event->hw.addr_filters_gen = event->addr_filters_gen; 3137 } 3138 raw_spin_unlock(&ifh->lock); 3139 } 3140 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync); 3141 3142 static int _perf_event_refresh(struct perf_event *event, int refresh) 3143 { 3144 /* 3145 * not supported on inherited events 3146 */ 3147 if (event->attr.inherit || !is_sampling_event(event)) 3148 return -EINVAL; 3149 3150 atomic_add(refresh, &event->event_limit); 3151 _perf_event_enable(event); 3152 3153 return 0; 3154 } 3155 3156 /* 3157 * See perf_event_disable() 3158 */ 3159 int perf_event_refresh(struct perf_event *event, int refresh) 3160 { 3161 struct perf_event_context *ctx; 3162 int ret; 3163 3164 ctx = perf_event_ctx_lock(event); 3165 ret = _perf_event_refresh(event, refresh); 3166 perf_event_ctx_unlock(event, ctx); 3167 3168 return ret; 3169 } 3170 EXPORT_SYMBOL_GPL(perf_event_refresh); 3171 3172 static int perf_event_modify_breakpoint(struct perf_event *bp, 3173 struct perf_event_attr *attr) 3174 { 3175 int err; 3176 3177 _perf_event_disable(bp); 3178 3179 err = modify_user_hw_breakpoint_check(bp, attr, true); 3180 3181 if (!bp->attr.disabled) 3182 _perf_event_enable(bp); 3183 3184 return err; 3185 } 3186 3187 /* 3188 * Copy event-type-independent attributes that may be modified. 3189 */ 3190 static void perf_event_modify_copy_attr(struct perf_event_attr *to, 3191 const struct perf_event_attr *from) 3192 { 3193 to->sig_data = from->sig_data; 3194 } 3195 3196 static int perf_event_modify_attr(struct perf_event *event, 3197 struct perf_event_attr *attr) 3198 { 3199 int (*func)(struct perf_event *, struct perf_event_attr *); 3200 struct perf_event *child; 3201 int err; 3202 3203 if (event->attr.type != attr->type) 3204 return -EINVAL; 3205 3206 switch (event->attr.type) { 3207 case PERF_TYPE_BREAKPOINT: 3208 func = perf_event_modify_breakpoint; 3209 break; 3210 default: 3211 /* Place holder for future additions. */ 3212 return -EOPNOTSUPP; 3213 } 3214 3215 WARN_ON_ONCE(event->ctx->parent_ctx); 3216 3217 mutex_lock(&event->child_mutex); 3218 /* 3219 * Event-type-independent attributes must be copied before event-type 3220 * modification, which will validate that final attributes match the 3221 * source attributes after all relevant attributes have been copied. 3222 */ 3223 perf_event_modify_copy_attr(&event->attr, attr); 3224 err = func(event, attr); 3225 if (err) 3226 goto out; 3227 list_for_each_entry(child, &event->child_list, child_list) { 3228 perf_event_modify_copy_attr(&child->attr, attr); 3229 err = func(child, attr); 3230 if (err) 3231 goto out; 3232 } 3233 out: 3234 mutex_unlock(&event->child_mutex); 3235 return err; 3236 } 3237 3238 static void __pmu_ctx_sched_out(struct perf_event_pmu_context *pmu_ctx, 3239 enum event_type_t event_type) 3240 { 3241 struct perf_event_context *ctx = pmu_ctx->ctx; 3242 struct perf_event *event, *tmp; 3243 struct pmu *pmu = pmu_ctx->pmu; 3244 3245 if (ctx->task && !ctx->is_active) { 3246 struct perf_cpu_pmu_context *cpc; 3247 3248 cpc = this_cpu_ptr(pmu->cpu_pmu_context); 3249 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx); 3250 cpc->task_epc = NULL; 3251 } 3252 3253 if (!event_type) 3254 return; 3255 3256 perf_pmu_disable(pmu); 3257 if (event_type & EVENT_PINNED) { 3258 list_for_each_entry_safe(event, tmp, 3259 &pmu_ctx->pinned_active, 3260 active_list) 3261 group_sched_out(event, ctx); 3262 } 3263 3264 if (event_type & EVENT_FLEXIBLE) { 3265 list_for_each_entry_safe(event, tmp, 3266 &pmu_ctx->flexible_active, 3267 active_list) 3268 group_sched_out(event, ctx); 3269 /* 3270 * Since we cleared EVENT_FLEXIBLE, also clear 3271 * rotate_necessary, is will be reset by 3272 * ctx_flexible_sched_in() when needed. 3273 */ 3274 pmu_ctx->rotate_necessary = 0; 3275 } 3276 perf_pmu_enable(pmu); 3277 } 3278 3279 static void 3280 ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type) 3281 { 3282 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3283 struct perf_event_pmu_context *pmu_ctx; 3284 int is_active = ctx->is_active; 3285 bool cgroup = event_type & EVENT_CGROUP; 3286 3287 event_type &= ~EVENT_CGROUP; 3288 3289 lockdep_assert_held(&ctx->lock); 3290 3291 if (likely(!ctx->nr_events)) { 3292 /* 3293 * See __perf_remove_from_context(). 3294 */ 3295 WARN_ON_ONCE(ctx->is_active); 3296 if (ctx->task) 3297 WARN_ON_ONCE(cpuctx->task_ctx); 3298 return; 3299 } 3300 3301 /* 3302 * Always update time if it was set; not only when it changes. 3303 * Otherwise we can 'forget' to update time for any but the last 3304 * context we sched out. For example: 3305 * 3306 * ctx_sched_out(.event_type = EVENT_FLEXIBLE) 3307 * ctx_sched_out(.event_type = EVENT_PINNED) 3308 * 3309 * would only update time for the pinned events. 3310 */ 3311 if (is_active & EVENT_TIME) { 3312 /* update (and stop) ctx time */ 3313 update_context_time(ctx); 3314 update_cgrp_time_from_cpuctx(cpuctx, ctx == &cpuctx->ctx); 3315 /* 3316 * CPU-release for the below ->is_active store, 3317 * see __load_acquire() in perf_event_time_now() 3318 */ 3319 barrier(); 3320 } 3321 3322 ctx->is_active &= ~event_type; 3323 if (!(ctx->is_active & EVENT_ALL)) 3324 ctx->is_active = 0; 3325 3326 if (ctx->task) { 3327 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3328 if (!ctx->is_active) 3329 cpuctx->task_ctx = NULL; 3330 } 3331 3332 is_active ^= ctx->is_active; /* changed bits */ 3333 3334 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 3335 if (cgroup && !pmu_ctx->nr_cgroups) 3336 continue; 3337 __pmu_ctx_sched_out(pmu_ctx, is_active); 3338 } 3339 } 3340 3341 /* 3342 * Test whether two contexts are equivalent, i.e. whether they have both been 3343 * cloned from the same version of the same context. 3344 * 3345 * Equivalence is measured using a generation number in the context that is 3346 * incremented on each modification to it; see unclone_ctx(), list_add_event() 3347 * and list_del_event(). 3348 */ 3349 static int context_equiv(struct perf_event_context *ctx1, 3350 struct perf_event_context *ctx2) 3351 { 3352 lockdep_assert_held(&ctx1->lock); 3353 lockdep_assert_held(&ctx2->lock); 3354 3355 /* Pinning disables the swap optimization */ 3356 if (ctx1->pin_count || ctx2->pin_count) 3357 return 0; 3358 3359 /* If ctx1 is the parent of ctx2 */ 3360 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 3361 return 1; 3362 3363 /* If ctx2 is the parent of ctx1 */ 3364 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 3365 return 1; 3366 3367 /* 3368 * If ctx1 and ctx2 have the same parent; we flatten the parent 3369 * hierarchy, see perf_event_init_context(). 3370 */ 3371 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 3372 ctx1->parent_gen == ctx2->parent_gen) 3373 return 1; 3374 3375 /* Unmatched */ 3376 return 0; 3377 } 3378 3379 static void __perf_event_sync_stat(struct perf_event *event, 3380 struct perf_event *next_event) 3381 { 3382 u64 value; 3383 3384 if (!event->attr.inherit_stat) 3385 return; 3386 3387 /* 3388 * Update the event value, we cannot use perf_event_read() 3389 * because we're in the middle of a context switch and have IRQs 3390 * disabled, which upsets smp_call_function_single(), however 3391 * we know the event must be on the current CPU, therefore we 3392 * don't need to use it. 3393 */ 3394 if (event->state == PERF_EVENT_STATE_ACTIVE) 3395 event->pmu->read(event); 3396 3397 perf_event_update_time(event); 3398 3399 /* 3400 * In order to keep per-task stats reliable we need to flip the event 3401 * values when we flip the contexts. 3402 */ 3403 value = local64_read(&next_event->count); 3404 value = local64_xchg(&event->count, value); 3405 local64_set(&next_event->count, value); 3406 3407 swap(event->total_time_enabled, next_event->total_time_enabled); 3408 swap(event->total_time_running, next_event->total_time_running); 3409 3410 /* 3411 * Since we swizzled the values, update the user visible data too. 3412 */ 3413 perf_event_update_userpage(event); 3414 perf_event_update_userpage(next_event); 3415 } 3416 3417 static void perf_event_sync_stat(struct perf_event_context *ctx, 3418 struct perf_event_context *next_ctx) 3419 { 3420 struct perf_event *event, *next_event; 3421 3422 if (!ctx->nr_stat) 3423 return; 3424 3425 update_context_time(ctx); 3426 3427 event = list_first_entry(&ctx->event_list, 3428 struct perf_event, event_entry); 3429 3430 next_event = list_first_entry(&next_ctx->event_list, 3431 struct perf_event, event_entry); 3432 3433 while (&event->event_entry != &ctx->event_list && 3434 &next_event->event_entry != &next_ctx->event_list) { 3435 3436 __perf_event_sync_stat(event, next_event); 3437 3438 event = list_next_entry(event, event_entry); 3439 next_event = list_next_entry(next_event, event_entry); 3440 } 3441 } 3442 3443 #define double_list_for_each_entry(pos1, pos2, head1, head2, member) \ 3444 for (pos1 = list_first_entry(head1, typeof(*pos1), member), \ 3445 pos2 = list_first_entry(head2, typeof(*pos2), member); \ 3446 !list_entry_is_head(pos1, head1, member) && \ 3447 !list_entry_is_head(pos2, head2, member); \ 3448 pos1 = list_next_entry(pos1, member), \ 3449 pos2 = list_next_entry(pos2, member)) 3450 3451 static void perf_event_swap_task_ctx_data(struct perf_event_context *prev_ctx, 3452 struct perf_event_context *next_ctx) 3453 { 3454 struct perf_event_pmu_context *prev_epc, *next_epc; 3455 3456 if (!prev_ctx->nr_task_data) 3457 return; 3458 3459 double_list_for_each_entry(prev_epc, next_epc, 3460 &prev_ctx->pmu_ctx_list, &next_ctx->pmu_ctx_list, 3461 pmu_ctx_entry) { 3462 3463 if (WARN_ON_ONCE(prev_epc->pmu != next_epc->pmu)) 3464 continue; 3465 3466 /* 3467 * PMU specific parts of task perf context can require 3468 * additional synchronization. As an example of such 3469 * synchronization see implementation details of Intel 3470 * LBR call stack data profiling; 3471 */ 3472 if (prev_epc->pmu->swap_task_ctx) 3473 prev_epc->pmu->swap_task_ctx(prev_epc, next_epc); 3474 else 3475 swap(prev_epc->task_ctx_data, next_epc->task_ctx_data); 3476 } 3477 } 3478 3479 static void perf_ctx_sched_task_cb(struct perf_event_context *ctx, bool sched_in) 3480 { 3481 struct perf_event_pmu_context *pmu_ctx; 3482 struct perf_cpu_pmu_context *cpc; 3483 3484 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 3485 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context); 3486 3487 if (cpc->sched_cb_usage && pmu_ctx->pmu->sched_task) 3488 pmu_ctx->pmu->sched_task(pmu_ctx, sched_in); 3489 } 3490 } 3491 3492 static void 3493 perf_event_context_sched_out(struct task_struct *task, struct task_struct *next) 3494 { 3495 struct perf_event_context *ctx = task->perf_event_ctxp; 3496 struct perf_event_context *next_ctx; 3497 struct perf_event_context *parent, *next_parent; 3498 int do_switch = 1; 3499 3500 if (likely(!ctx)) 3501 return; 3502 3503 rcu_read_lock(); 3504 next_ctx = rcu_dereference(next->perf_event_ctxp); 3505 if (!next_ctx) 3506 goto unlock; 3507 3508 parent = rcu_dereference(ctx->parent_ctx); 3509 next_parent = rcu_dereference(next_ctx->parent_ctx); 3510 3511 /* If neither context have a parent context; they cannot be clones. */ 3512 if (!parent && !next_parent) 3513 goto unlock; 3514 3515 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 3516 /* 3517 * Looks like the two contexts are clones, so we might be 3518 * able to optimize the context switch. We lock both 3519 * contexts and check that they are clones under the 3520 * lock (including re-checking that neither has been 3521 * uncloned in the meantime). It doesn't matter which 3522 * order we take the locks because no other cpu could 3523 * be trying to lock both of these tasks. 3524 */ 3525 raw_spin_lock(&ctx->lock); 3526 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 3527 if (context_equiv(ctx, next_ctx)) { 3528 3529 perf_ctx_disable(ctx, false); 3530 3531 /* PMIs are disabled; ctx->nr_pending is stable. */ 3532 if (local_read(&ctx->nr_pending) || 3533 local_read(&next_ctx->nr_pending)) { 3534 /* 3535 * Must not swap out ctx when there's pending 3536 * events that rely on the ctx->task relation. 3537 */ 3538 raw_spin_unlock(&next_ctx->lock); 3539 rcu_read_unlock(); 3540 goto inside_switch; 3541 } 3542 3543 WRITE_ONCE(ctx->task, next); 3544 WRITE_ONCE(next_ctx->task, task); 3545 3546 perf_ctx_sched_task_cb(ctx, false); 3547 perf_event_swap_task_ctx_data(ctx, next_ctx); 3548 3549 perf_ctx_enable(ctx, false); 3550 3551 /* 3552 * RCU_INIT_POINTER here is safe because we've not 3553 * modified the ctx and the above modification of 3554 * ctx->task and ctx->task_ctx_data are immaterial 3555 * since those values are always verified under 3556 * ctx->lock which we're now holding. 3557 */ 3558 RCU_INIT_POINTER(task->perf_event_ctxp, next_ctx); 3559 RCU_INIT_POINTER(next->perf_event_ctxp, ctx); 3560 3561 do_switch = 0; 3562 3563 perf_event_sync_stat(ctx, next_ctx); 3564 } 3565 raw_spin_unlock(&next_ctx->lock); 3566 raw_spin_unlock(&ctx->lock); 3567 } 3568 unlock: 3569 rcu_read_unlock(); 3570 3571 if (do_switch) { 3572 raw_spin_lock(&ctx->lock); 3573 perf_ctx_disable(ctx, false); 3574 3575 inside_switch: 3576 perf_ctx_sched_task_cb(ctx, false); 3577 task_ctx_sched_out(ctx, EVENT_ALL); 3578 3579 perf_ctx_enable(ctx, false); 3580 raw_spin_unlock(&ctx->lock); 3581 } 3582 } 3583 3584 static DEFINE_PER_CPU(struct list_head, sched_cb_list); 3585 static DEFINE_PER_CPU(int, perf_sched_cb_usages); 3586 3587 void perf_sched_cb_dec(struct pmu *pmu) 3588 { 3589 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context); 3590 3591 this_cpu_dec(perf_sched_cb_usages); 3592 barrier(); 3593 3594 if (!--cpc->sched_cb_usage) 3595 list_del(&cpc->sched_cb_entry); 3596 } 3597 3598 3599 void perf_sched_cb_inc(struct pmu *pmu) 3600 { 3601 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context); 3602 3603 if (!cpc->sched_cb_usage++) 3604 list_add(&cpc->sched_cb_entry, this_cpu_ptr(&sched_cb_list)); 3605 3606 barrier(); 3607 this_cpu_inc(perf_sched_cb_usages); 3608 } 3609 3610 /* 3611 * This function provides the context switch callback to the lower code 3612 * layer. It is invoked ONLY when the context switch callback is enabled. 3613 * 3614 * This callback is relevant even to per-cpu events; for example multi event 3615 * PEBS requires this to provide PID/TID information. This requires we flush 3616 * all queued PEBS records before we context switch to a new task. 3617 */ 3618 static void __perf_pmu_sched_task(struct perf_cpu_pmu_context *cpc, bool sched_in) 3619 { 3620 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3621 struct pmu *pmu; 3622 3623 pmu = cpc->epc.pmu; 3624 3625 /* software PMUs will not have sched_task */ 3626 if (WARN_ON_ONCE(!pmu->sched_task)) 3627 return; 3628 3629 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3630 perf_pmu_disable(pmu); 3631 3632 pmu->sched_task(cpc->task_epc, sched_in); 3633 3634 perf_pmu_enable(pmu); 3635 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3636 } 3637 3638 static void perf_pmu_sched_task(struct task_struct *prev, 3639 struct task_struct *next, 3640 bool sched_in) 3641 { 3642 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3643 struct perf_cpu_pmu_context *cpc; 3644 3645 /* cpuctx->task_ctx will be handled in perf_event_context_sched_in/out */ 3646 if (prev == next || cpuctx->task_ctx) 3647 return; 3648 3649 list_for_each_entry(cpc, this_cpu_ptr(&sched_cb_list), sched_cb_entry) 3650 __perf_pmu_sched_task(cpc, sched_in); 3651 } 3652 3653 static void perf_event_switch(struct task_struct *task, 3654 struct task_struct *next_prev, bool sched_in); 3655 3656 /* 3657 * Called from scheduler to remove the events of the current task, 3658 * with interrupts disabled. 3659 * 3660 * We stop each event and update the event value in event->count. 3661 * 3662 * This does not protect us against NMI, but disable() 3663 * sets the disabled bit in the control field of event _before_ 3664 * accessing the event control register. If a NMI hits, then it will 3665 * not restart the event. 3666 */ 3667 void __perf_event_task_sched_out(struct task_struct *task, 3668 struct task_struct *next) 3669 { 3670 if (__this_cpu_read(perf_sched_cb_usages)) 3671 perf_pmu_sched_task(task, next, false); 3672 3673 if (atomic_read(&nr_switch_events)) 3674 perf_event_switch(task, next, false); 3675 3676 perf_event_context_sched_out(task, next); 3677 3678 /* 3679 * if cgroup events exist on this CPU, then we need 3680 * to check if we have to switch out PMU state. 3681 * cgroup event are system-wide mode only 3682 */ 3683 perf_cgroup_switch(next); 3684 } 3685 3686 static bool perf_less_group_idx(const void *l, const void *r) 3687 { 3688 const struct perf_event *le = *(const struct perf_event **)l; 3689 const struct perf_event *re = *(const struct perf_event **)r; 3690 3691 return le->group_index < re->group_index; 3692 } 3693 3694 static void swap_ptr(void *l, void *r) 3695 { 3696 void **lp = l, **rp = r; 3697 3698 swap(*lp, *rp); 3699 } 3700 3701 static const struct min_heap_callbacks perf_min_heap = { 3702 .elem_size = sizeof(struct perf_event *), 3703 .less = perf_less_group_idx, 3704 .swp = swap_ptr, 3705 }; 3706 3707 static void __heap_add(struct min_heap *heap, struct perf_event *event) 3708 { 3709 struct perf_event **itrs = heap->data; 3710 3711 if (event) { 3712 itrs[heap->nr] = event; 3713 heap->nr++; 3714 } 3715 } 3716 3717 static void __link_epc(struct perf_event_pmu_context *pmu_ctx) 3718 { 3719 struct perf_cpu_pmu_context *cpc; 3720 3721 if (!pmu_ctx->ctx->task) 3722 return; 3723 3724 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context); 3725 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx); 3726 cpc->task_epc = pmu_ctx; 3727 } 3728 3729 static noinline int visit_groups_merge(struct perf_event_context *ctx, 3730 struct perf_event_groups *groups, int cpu, 3731 struct pmu *pmu, 3732 int (*func)(struct perf_event *, void *), 3733 void *data) 3734 { 3735 #ifdef CONFIG_CGROUP_PERF 3736 struct cgroup_subsys_state *css = NULL; 3737 #endif 3738 struct perf_cpu_context *cpuctx = NULL; 3739 /* Space for per CPU and/or any CPU event iterators. */ 3740 struct perf_event *itrs[2]; 3741 struct min_heap event_heap; 3742 struct perf_event **evt; 3743 int ret; 3744 3745 if (pmu->filter && pmu->filter(pmu, cpu)) 3746 return 0; 3747 3748 if (!ctx->task) { 3749 cpuctx = this_cpu_ptr(&perf_cpu_context); 3750 event_heap = (struct min_heap){ 3751 .data = cpuctx->heap, 3752 .nr = 0, 3753 .size = cpuctx->heap_size, 3754 }; 3755 3756 lockdep_assert_held(&cpuctx->ctx.lock); 3757 3758 #ifdef CONFIG_CGROUP_PERF 3759 if (cpuctx->cgrp) 3760 css = &cpuctx->cgrp->css; 3761 #endif 3762 } else { 3763 event_heap = (struct min_heap){ 3764 .data = itrs, 3765 .nr = 0, 3766 .size = ARRAY_SIZE(itrs), 3767 }; 3768 /* Events not within a CPU context may be on any CPU. */ 3769 __heap_add(&event_heap, perf_event_groups_first(groups, -1, pmu, NULL)); 3770 } 3771 evt = event_heap.data; 3772 3773 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, NULL)); 3774 3775 #ifdef CONFIG_CGROUP_PERF 3776 for (; css; css = css->parent) 3777 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, css->cgroup)); 3778 #endif 3779 3780 if (event_heap.nr) { 3781 __link_epc((*evt)->pmu_ctx); 3782 perf_assert_pmu_disabled((*evt)->pmu_ctx->pmu); 3783 } 3784 3785 min_heapify_all(&event_heap, &perf_min_heap); 3786 3787 while (event_heap.nr) { 3788 ret = func(*evt, data); 3789 if (ret) 3790 return ret; 3791 3792 *evt = perf_event_groups_next(*evt, pmu); 3793 if (*evt) 3794 min_heapify(&event_heap, 0, &perf_min_heap); 3795 else 3796 min_heap_pop(&event_heap, &perf_min_heap); 3797 } 3798 3799 return 0; 3800 } 3801 3802 /* 3803 * Because the userpage is strictly per-event (there is no concept of context, 3804 * so there cannot be a context indirection), every userpage must be updated 3805 * when context time starts :-( 3806 * 3807 * IOW, we must not miss EVENT_TIME edges. 3808 */ 3809 static inline bool event_update_userpage(struct perf_event *event) 3810 { 3811 if (likely(!atomic_read(&event->mmap_count))) 3812 return false; 3813 3814 perf_event_update_time(event); 3815 perf_event_update_userpage(event); 3816 3817 return true; 3818 } 3819 3820 static inline void group_update_userpage(struct perf_event *group_event) 3821 { 3822 struct perf_event *event; 3823 3824 if (!event_update_userpage(group_event)) 3825 return; 3826 3827 for_each_sibling_event(event, group_event) 3828 event_update_userpage(event); 3829 } 3830 3831 static int merge_sched_in(struct perf_event *event, void *data) 3832 { 3833 struct perf_event_context *ctx = event->ctx; 3834 int *can_add_hw = data; 3835 3836 if (event->state <= PERF_EVENT_STATE_OFF) 3837 return 0; 3838 3839 if (!event_filter_match(event)) 3840 return 0; 3841 3842 if (group_can_go_on(event, *can_add_hw)) { 3843 if (!group_sched_in(event, ctx)) 3844 list_add_tail(&event->active_list, get_event_list(event)); 3845 } 3846 3847 if (event->state == PERF_EVENT_STATE_INACTIVE) { 3848 *can_add_hw = 0; 3849 if (event->attr.pinned) { 3850 perf_cgroup_event_disable(event, ctx); 3851 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 3852 } else { 3853 struct perf_cpu_pmu_context *cpc; 3854 3855 event->pmu_ctx->rotate_necessary = 1; 3856 cpc = this_cpu_ptr(event->pmu_ctx->pmu->cpu_pmu_context); 3857 perf_mux_hrtimer_restart(cpc); 3858 group_update_userpage(event); 3859 } 3860 } 3861 3862 return 0; 3863 } 3864 3865 static void pmu_groups_sched_in(struct perf_event_context *ctx, 3866 struct perf_event_groups *groups, 3867 struct pmu *pmu) 3868 { 3869 int can_add_hw = 1; 3870 visit_groups_merge(ctx, groups, smp_processor_id(), pmu, 3871 merge_sched_in, &can_add_hw); 3872 } 3873 3874 static void ctx_groups_sched_in(struct perf_event_context *ctx, 3875 struct perf_event_groups *groups, 3876 bool cgroup) 3877 { 3878 struct perf_event_pmu_context *pmu_ctx; 3879 3880 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 3881 if (cgroup && !pmu_ctx->nr_cgroups) 3882 continue; 3883 pmu_groups_sched_in(ctx, groups, pmu_ctx->pmu); 3884 } 3885 } 3886 3887 static void __pmu_ctx_sched_in(struct perf_event_context *ctx, 3888 struct pmu *pmu) 3889 { 3890 pmu_groups_sched_in(ctx, &ctx->flexible_groups, pmu); 3891 } 3892 3893 static void 3894 ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type) 3895 { 3896 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3897 int is_active = ctx->is_active; 3898 bool cgroup = event_type & EVENT_CGROUP; 3899 3900 event_type &= ~EVENT_CGROUP; 3901 3902 lockdep_assert_held(&ctx->lock); 3903 3904 if (likely(!ctx->nr_events)) 3905 return; 3906 3907 if (!(is_active & EVENT_TIME)) { 3908 /* start ctx time */ 3909 __update_context_time(ctx, false); 3910 perf_cgroup_set_timestamp(cpuctx); 3911 /* 3912 * CPU-release for the below ->is_active store, 3913 * see __load_acquire() in perf_event_time_now() 3914 */ 3915 barrier(); 3916 } 3917 3918 ctx->is_active |= (event_type | EVENT_TIME); 3919 if (ctx->task) { 3920 if (!is_active) 3921 cpuctx->task_ctx = ctx; 3922 else 3923 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3924 } 3925 3926 is_active ^= ctx->is_active; /* changed bits */ 3927 3928 /* 3929 * First go through the list and put on any pinned groups 3930 * in order to give them the best chance of going on. 3931 */ 3932 if (is_active & EVENT_PINNED) 3933 ctx_groups_sched_in(ctx, &ctx->pinned_groups, cgroup); 3934 3935 /* Then walk through the lower prio flexible groups */ 3936 if (is_active & EVENT_FLEXIBLE) 3937 ctx_groups_sched_in(ctx, &ctx->flexible_groups, cgroup); 3938 } 3939 3940 static void perf_event_context_sched_in(struct task_struct *task) 3941 { 3942 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3943 struct perf_event_context *ctx; 3944 3945 rcu_read_lock(); 3946 ctx = rcu_dereference(task->perf_event_ctxp); 3947 if (!ctx) 3948 goto rcu_unlock; 3949 3950 if (cpuctx->task_ctx == ctx) { 3951 perf_ctx_lock(cpuctx, ctx); 3952 perf_ctx_disable(ctx, false); 3953 3954 perf_ctx_sched_task_cb(ctx, true); 3955 3956 perf_ctx_enable(ctx, false); 3957 perf_ctx_unlock(cpuctx, ctx); 3958 goto rcu_unlock; 3959 } 3960 3961 perf_ctx_lock(cpuctx, ctx); 3962 /* 3963 * We must check ctx->nr_events while holding ctx->lock, such 3964 * that we serialize against perf_install_in_context(). 3965 */ 3966 if (!ctx->nr_events) 3967 goto unlock; 3968 3969 perf_ctx_disable(ctx, false); 3970 /* 3971 * We want to keep the following priority order: 3972 * cpu pinned (that don't need to move), task pinned, 3973 * cpu flexible, task flexible. 3974 * 3975 * However, if task's ctx is not carrying any pinned 3976 * events, no need to flip the cpuctx's events around. 3977 */ 3978 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) { 3979 perf_ctx_disable(&cpuctx->ctx, false); 3980 ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE); 3981 } 3982 3983 perf_event_sched_in(cpuctx, ctx); 3984 3985 perf_ctx_sched_task_cb(cpuctx->task_ctx, true); 3986 3987 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) 3988 perf_ctx_enable(&cpuctx->ctx, false); 3989 3990 perf_ctx_enable(ctx, false); 3991 3992 unlock: 3993 perf_ctx_unlock(cpuctx, ctx); 3994 rcu_unlock: 3995 rcu_read_unlock(); 3996 } 3997 3998 /* 3999 * Called from scheduler to add the events of the current task 4000 * with interrupts disabled. 4001 * 4002 * We restore the event value and then enable it. 4003 * 4004 * This does not protect us against NMI, but enable() 4005 * sets the enabled bit in the control field of event _before_ 4006 * accessing the event control register. If a NMI hits, then it will 4007 * keep the event running. 4008 */ 4009 void __perf_event_task_sched_in(struct task_struct *prev, 4010 struct task_struct *task) 4011 { 4012 perf_event_context_sched_in(task); 4013 4014 if (atomic_read(&nr_switch_events)) 4015 perf_event_switch(task, prev, true); 4016 4017 if (__this_cpu_read(perf_sched_cb_usages)) 4018 perf_pmu_sched_task(prev, task, true); 4019 } 4020 4021 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 4022 { 4023 u64 frequency = event->attr.sample_freq; 4024 u64 sec = NSEC_PER_SEC; 4025 u64 divisor, dividend; 4026 4027 int count_fls, nsec_fls, frequency_fls, sec_fls; 4028 4029 count_fls = fls64(count); 4030 nsec_fls = fls64(nsec); 4031 frequency_fls = fls64(frequency); 4032 sec_fls = 30; 4033 4034 /* 4035 * We got @count in @nsec, with a target of sample_freq HZ 4036 * the target period becomes: 4037 * 4038 * @count * 10^9 4039 * period = ------------------- 4040 * @nsec * sample_freq 4041 * 4042 */ 4043 4044 /* 4045 * Reduce accuracy by one bit such that @a and @b converge 4046 * to a similar magnitude. 4047 */ 4048 #define REDUCE_FLS(a, b) \ 4049 do { \ 4050 if (a##_fls > b##_fls) { \ 4051 a >>= 1; \ 4052 a##_fls--; \ 4053 } else { \ 4054 b >>= 1; \ 4055 b##_fls--; \ 4056 } \ 4057 } while (0) 4058 4059 /* 4060 * Reduce accuracy until either term fits in a u64, then proceed with 4061 * the other, so that finally we can do a u64/u64 division. 4062 */ 4063 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 4064 REDUCE_FLS(nsec, frequency); 4065 REDUCE_FLS(sec, count); 4066 } 4067 4068 if (count_fls + sec_fls > 64) { 4069 divisor = nsec * frequency; 4070 4071 while (count_fls + sec_fls > 64) { 4072 REDUCE_FLS(count, sec); 4073 divisor >>= 1; 4074 } 4075 4076 dividend = count * sec; 4077 } else { 4078 dividend = count * sec; 4079 4080 while (nsec_fls + frequency_fls > 64) { 4081 REDUCE_FLS(nsec, frequency); 4082 dividend >>= 1; 4083 } 4084 4085 divisor = nsec * frequency; 4086 } 4087 4088 if (!divisor) 4089 return dividend; 4090 4091 return div64_u64(dividend, divisor); 4092 } 4093 4094 static DEFINE_PER_CPU(int, perf_throttled_count); 4095 static DEFINE_PER_CPU(u64, perf_throttled_seq); 4096 4097 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 4098 { 4099 struct hw_perf_event *hwc = &event->hw; 4100 s64 period, sample_period; 4101 s64 delta; 4102 4103 period = perf_calculate_period(event, nsec, count); 4104 4105 delta = (s64)(period - hwc->sample_period); 4106 delta = (delta + 7) / 8; /* low pass filter */ 4107 4108 sample_period = hwc->sample_period + delta; 4109 4110 if (!sample_period) 4111 sample_period = 1; 4112 4113 hwc->sample_period = sample_period; 4114 4115 if (local64_read(&hwc->period_left) > 8*sample_period) { 4116 if (disable) 4117 event->pmu->stop(event, PERF_EF_UPDATE); 4118 4119 local64_set(&hwc->period_left, 0); 4120 4121 if (disable) 4122 event->pmu->start(event, PERF_EF_RELOAD); 4123 } 4124 } 4125 4126 /* 4127 * combine freq adjustment with unthrottling to avoid two passes over the 4128 * events. At the same time, make sure, having freq events does not change 4129 * the rate of unthrottling as that would introduce bias. 4130 */ 4131 static void 4132 perf_adjust_freq_unthr_context(struct perf_event_context *ctx, bool unthrottle) 4133 { 4134 struct perf_event *event; 4135 struct hw_perf_event *hwc; 4136 u64 now, period = TICK_NSEC; 4137 s64 delta; 4138 4139 /* 4140 * only need to iterate over all events iff: 4141 * - context have events in frequency mode (needs freq adjust) 4142 * - there are events to unthrottle on this cpu 4143 */ 4144 if (!(ctx->nr_freq || unthrottle)) 4145 return; 4146 4147 raw_spin_lock(&ctx->lock); 4148 4149 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 4150 if (event->state != PERF_EVENT_STATE_ACTIVE) 4151 continue; 4152 4153 // XXX use visit thingy to avoid the -1,cpu match 4154 if (!event_filter_match(event)) 4155 continue; 4156 4157 perf_pmu_disable(event->pmu); 4158 4159 hwc = &event->hw; 4160 4161 if (hwc->interrupts == MAX_INTERRUPTS) { 4162 hwc->interrupts = 0; 4163 perf_log_throttle(event, 1); 4164 event->pmu->start(event, 0); 4165 } 4166 4167 if (!event->attr.freq || !event->attr.sample_freq) 4168 goto next; 4169 4170 /* 4171 * stop the event and update event->count 4172 */ 4173 event->pmu->stop(event, PERF_EF_UPDATE); 4174 4175 now = local64_read(&event->count); 4176 delta = now - hwc->freq_count_stamp; 4177 hwc->freq_count_stamp = now; 4178 4179 /* 4180 * restart the event 4181 * reload only if value has changed 4182 * we have stopped the event so tell that 4183 * to perf_adjust_period() to avoid stopping it 4184 * twice. 4185 */ 4186 if (delta > 0) 4187 perf_adjust_period(event, period, delta, false); 4188 4189 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 4190 next: 4191 perf_pmu_enable(event->pmu); 4192 } 4193 4194 raw_spin_unlock(&ctx->lock); 4195 } 4196 4197 /* 4198 * Move @event to the tail of the @ctx's elegible events. 4199 */ 4200 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event) 4201 { 4202 /* 4203 * Rotate the first entry last of non-pinned groups. Rotation might be 4204 * disabled by the inheritance code. 4205 */ 4206 if (ctx->rotate_disable) 4207 return; 4208 4209 perf_event_groups_delete(&ctx->flexible_groups, event); 4210 perf_event_groups_insert(&ctx->flexible_groups, event); 4211 } 4212 4213 /* pick an event from the flexible_groups to rotate */ 4214 static inline struct perf_event * 4215 ctx_event_to_rotate(struct perf_event_pmu_context *pmu_ctx) 4216 { 4217 struct perf_event *event; 4218 struct rb_node *node; 4219 struct rb_root *tree; 4220 struct __group_key key = { 4221 .pmu = pmu_ctx->pmu, 4222 }; 4223 4224 /* pick the first active flexible event */ 4225 event = list_first_entry_or_null(&pmu_ctx->flexible_active, 4226 struct perf_event, active_list); 4227 if (event) 4228 goto out; 4229 4230 /* if no active flexible event, pick the first event */ 4231 tree = &pmu_ctx->ctx->flexible_groups.tree; 4232 4233 if (!pmu_ctx->ctx->task) { 4234 key.cpu = smp_processor_id(); 4235 4236 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup); 4237 if (node) 4238 event = __node_2_pe(node); 4239 goto out; 4240 } 4241 4242 key.cpu = -1; 4243 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup); 4244 if (node) { 4245 event = __node_2_pe(node); 4246 goto out; 4247 } 4248 4249 key.cpu = smp_processor_id(); 4250 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup); 4251 if (node) 4252 event = __node_2_pe(node); 4253 4254 out: 4255 /* 4256 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in() 4257 * finds there are unschedulable events, it will set it again. 4258 */ 4259 pmu_ctx->rotate_necessary = 0; 4260 4261 return event; 4262 } 4263 4264 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc) 4265 { 4266 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4267 struct perf_event_pmu_context *cpu_epc, *task_epc = NULL; 4268 struct perf_event *cpu_event = NULL, *task_event = NULL; 4269 int cpu_rotate, task_rotate; 4270 struct pmu *pmu; 4271 4272 /* 4273 * Since we run this from IRQ context, nobody can install new 4274 * events, thus the event count values are stable. 4275 */ 4276 4277 cpu_epc = &cpc->epc; 4278 pmu = cpu_epc->pmu; 4279 task_epc = cpc->task_epc; 4280 4281 cpu_rotate = cpu_epc->rotate_necessary; 4282 task_rotate = task_epc ? task_epc->rotate_necessary : 0; 4283 4284 if (!(cpu_rotate || task_rotate)) 4285 return false; 4286 4287 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 4288 perf_pmu_disable(pmu); 4289 4290 if (task_rotate) 4291 task_event = ctx_event_to_rotate(task_epc); 4292 if (cpu_rotate) 4293 cpu_event = ctx_event_to_rotate(cpu_epc); 4294 4295 /* 4296 * As per the order given at ctx_resched() first 'pop' task flexible 4297 * and then, if needed CPU flexible. 4298 */ 4299 if (task_event || (task_epc && cpu_event)) { 4300 update_context_time(task_epc->ctx); 4301 __pmu_ctx_sched_out(task_epc, EVENT_FLEXIBLE); 4302 } 4303 4304 if (cpu_event) { 4305 update_context_time(&cpuctx->ctx); 4306 __pmu_ctx_sched_out(cpu_epc, EVENT_FLEXIBLE); 4307 rotate_ctx(&cpuctx->ctx, cpu_event); 4308 __pmu_ctx_sched_in(&cpuctx->ctx, pmu); 4309 } 4310 4311 if (task_event) 4312 rotate_ctx(task_epc->ctx, task_event); 4313 4314 if (task_event || (task_epc && cpu_event)) 4315 __pmu_ctx_sched_in(task_epc->ctx, pmu); 4316 4317 perf_pmu_enable(pmu); 4318 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 4319 4320 return true; 4321 } 4322 4323 void perf_event_task_tick(void) 4324 { 4325 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4326 struct perf_event_context *ctx; 4327 int throttled; 4328 4329 lockdep_assert_irqs_disabled(); 4330 4331 __this_cpu_inc(perf_throttled_seq); 4332 throttled = __this_cpu_xchg(perf_throttled_count, 0); 4333 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 4334 4335 perf_adjust_freq_unthr_context(&cpuctx->ctx, !!throttled); 4336 4337 rcu_read_lock(); 4338 ctx = rcu_dereference(current->perf_event_ctxp); 4339 if (ctx) 4340 perf_adjust_freq_unthr_context(ctx, !!throttled); 4341 rcu_read_unlock(); 4342 } 4343 4344 static int event_enable_on_exec(struct perf_event *event, 4345 struct perf_event_context *ctx) 4346 { 4347 if (!event->attr.enable_on_exec) 4348 return 0; 4349 4350 event->attr.enable_on_exec = 0; 4351 if (event->state >= PERF_EVENT_STATE_INACTIVE) 4352 return 0; 4353 4354 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 4355 4356 return 1; 4357 } 4358 4359 /* 4360 * Enable all of a task's events that have been marked enable-on-exec. 4361 * This expects task == current. 4362 */ 4363 static void perf_event_enable_on_exec(struct perf_event_context *ctx) 4364 { 4365 struct perf_event_context *clone_ctx = NULL; 4366 enum event_type_t event_type = 0; 4367 struct perf_cpu_context *cpuctx; 4368 struct perf_event *event; 4369 unsigned long flags; 4370 int enabled = 0; 4371 4372 local_irq_save(flags); 4373 if (WARN_ON_ONCE(current->perf_event_ctxp != ctx)) 4374 goto out; 4375 4376 if (!ctx->nr_events) 4377 goto out; 4378 4379 cpuctx = this_cpu_ptr(&perf_cpu_context); 4380 perf_ctx_lock(cpuctx, ctx); 4381 ctx_sched_out(ctx, EVENT_TIME); 4382 4383 list_for_each_entry(event, &ctx->event_list, event_entry) { 4384 enabled |= event_enable_on_exec(event, ctx); 4385 event_type |= get_event_type(event); 4386 } 4387 4388 /* 4389 * Unclone and reschedule this context if we enabled any event. 4390 */ 4391 if (enabled) { 4392 clone_ctx = unclone_ctx(ctx); 4393 ctx_resched(cpuctx, ctx, event_type); 4394 } else { 4395 ctx_sched_in(ctx, EVENT_TIME); 4396 } 4397 perf_ctx_unlock(cpuctx, ctx); 4398 4399 out: 4400 local_irq_restore(flags); 4401 4402 if (clone_ctx) 4403 put_ctx(clone_ctx); 4404 } 4405 4406 static void perf_remove_from_owner(struct perf_event *event); 4407 static void perf_event_exit_event(struct perf_event *event, 4408 struct perf_event_context *ctx); 4409 4410 /* 4411 * Removes all events from the current task that have been marked 4412 * remove-on-exec, and feeds their values back to parent events. 4413 */ 4414 static void perf_event_remove_on_exec(struct perf_event_context *ctx) 4415 { 4416 struct perf_event_context *clone_ctx = NULL; 4417 struct perf_event *event, *next; 4418 unsigned long flags; 4419 bool modified = false; 4420 4421 mutex_lock(&ctx->mutex); 4422 4423 if (WARN_ON_ONCE(ctx->task != current)) 4424 goto unlock; 4425 4426 list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) { 4427 if (!event->attr.remove_on_exec) 4428 continue; 4429 4430 if (!is_kernel_event(event)) 4431 perf_remove_from_owner(event); 4432 4433 modified = true; 4434 4435 perf_event_exit_event(event, ctx); 4436 } 4437 4438 raw_spin_lock_irqsave(&ctx->lock, flags); 4439 if (modified) 4440 clone_ctx = unclone_ctx(ctx); 4441 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4442 4443 unlock: 4444 mutex_unlock(&ctx->mutex); 4445 4446 if (clone_ctx) 4447 put_ctx(clone_ctx); 4448 } 4449 4450 struct perf_read_data { 4451 struct perf_event *event; 4452 bool group; 4453 int ret; 4454 }; 4455 4456 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu) 4457 { 4458 u16 local_pkg, event_pkg; 4459 4460 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) { 4461 int local_cpu = smp_processor_id(); 4462 4463 event_pkg = topology_physical_package_id(event_cpu); 4464 local_pkg = topology_physical_package_id(local_cpu); 4465 4466 if (event_pkg == local_pkg) 4467 return local_cpu; 4468 } 4469 4470 return event_cpu; 4471 } 4472 4473 /* 4474 * Cross CPU call to read the hardware event 4475 */ 4476 static void __perf_event_read(void *info) 4477 { 4478 struct perf_read_data *data = info; 4479 struct perf_event *sub, *event = data->event; 4480 struct perf_event_context *ctx = event->ctx; 4481 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4482 struct pmu *pmu = event->pmu; 4483 4484 /* 4485 * If this is a task context, we need to check whether it is 4486 * the current task context of this cpu. If not it has been 4487 * scheduled out before the smp call arrived. In that case 4488 * event->count would have been updated to a recent sample 4489 * when the event was scheduled out. 4490 */ 4491 if (ctx->task && cpuctx->task_ctx != ctx) 4492 return; 4493 4494 raw_spin_lock(&ctx->lock); 4495 if (ctx->is_active & EVENT_TIME) { 4496 update_context_time(ctx); 4497 update_cgrp_time_from_event(event); 4498 } 4499 4500 perf_event_update_time(event); 4501 if (data->group) 4502 perf_event_update_sibling_time(event); 4503 4504 if (event->state != PERF_EVENT_STATE_ACTIVE) 4505 goto unlock; 4506 4507 if (!data->group) { 4508 pmu->read(event); 4509 data->ret = 0; 4510 goto unlock; 4511 } 4512 4513 pmu->start_txn(pmu, PERF_PMU_TXN_READ); 4514 4515 pmu->read(event); 4516 4517 for_each_sibling_event(sub, event) { 4518 if (sub->state == PERF_EVENT_STATE_ACTIVE) { 4519 /* 4520 * Use sibling's PMU rather than @event's since 4521 * sibling could be on different (eg: software) PMU. 4522 */ 4523 sub->pmu->read(sub); 4524 } 4525 } 4526 4527 data->ret = pmu->commit_txn(pmu); 4528 4529 unlock: 4530 raw_spin_unlock(&ctx->lock); 4531 } 4532 4533 static inline u64 perf_event_count(struct perf_event *event) 4534 { 4535 return local64_read(&event->count) + atomic64_read(&event->child_count); 4536 } 4537 4538 static void calc_timer_values(struct perf_event *event, 4539 u64 *now, 4540 u64 *enabled, 4541 u64 *running) 4542 { 4543 u64 ctx_time; 4544 4545 *now = perf_clock(); 4546 ctx_time = perf_event_time_now(event, *now); 4547 __perf_update_times(event, ctx_time, enabled, running); 4548 } 4549 4550 /* 4551 * NMI-safe method to read a local event, that is an event that 4552 * is: 4553 * - either for the current task, or for this CPU 4554 * - does not have inherit set, for inherited task events 4555 * will not be local and we cannot read them atomically 4556 * - must not have a pmu::count method 4557 */ 4558 int perf_event_read_local(struct perf_event *event, u64 *value, 4559 u64 *enabled, u64 *running) 4560 { 4561 unsigned long flags; 4562 int ret = 0; 4563 4564 /* 4565 * Disabling interrupts avoids all counter scheduling (context 4566 * switches, timer based rotation and IPIs). 4567 */ 4568 local_irq_save(flags); 4569 4570 /* 4571 * It must not be an event with inherit set, we cannot read 4572 * all child counters from atomic context. 4573 */ 4574 if (event->attr.inherit) { 4575 ret = -EOPNOTSUPP; 4576 goto out; 4577 } 4578 4579 /* If this is a per-task event, it must be for current */ 4580 if ((event->attach_state & PERF_ATTACH_TASK) && 4581 event->hw.target != current) { 4582 ret = -EINVAL; 4583 goto out; 4584 } 4585 4586 /* If this is a per-CPU event, it must be for this CPU */ 4587 if (!(event->attach_state & PERF_ATTACH_TASK) && 4588 event->cpu != smp_processor_id()) { 4589 ret = -EINVAL; 4590 goto out; 4591 } 4592 4593 /* If this is a pinned event it must be running on this CPU */ 4594 if (event->attr.pinned && event->oncpu != smp_processor_id()) { 4595 ret = -EBUSY; 4596 goto out; 4597 } 4598 4599 /* 4600 * If the event is currently on this CPU, its either a per-task event, 4601 * or local to this CPU. Furthermore it means its ACTIVE (otherwise 4602 * oncpu == -1). 4603 */ 4604 if (event->oncpu == smp_processor_id()) 4605 event->pmu->read(event); 4606 4607 *value = local64_read(&event->count); 4608 if (enabled || running) { 4609 u64 __enabled, __running, __now; 4610 4611 calc_timer_values(event, &__now, &__enabled, &__running); 4612 if (enabled) 4613 *enabled = __enabled; 4614 if (running) 4615 *running = __running; 4616 } 4617 out: 4618 local_irq_restore(flags); 4619 4620 return ret; 4621 } 4622 4623 static int perf_event_read(struct perf_event *event, bool group) 4624 { 4625 enum perf_event_state state = READ_ONCE(event->state); 4626 int event_cpu, ret = 0; 4627 4628 /* 4629 * If event is enabled and currently active on a CPU, update the 4630 * value in the event structure: 4631 */ 4632 again: 4633 if (state == PERF_EVENT_STATE_ACTIVE) { 4634 struct perf_read_data data; 4635 4636 /* 4637 * Orders the ->state and ->oncpu loads such that if we see 4638 * ACTIVE we must also see the right ->oncpu. 4639 * 4640 * Matches the smp_wmb() from event_sched_in(). 4641 */ 4642 smp_rmb(); 4643 4644 event_cpu = READ_ONCE(event->oncpu); 4645 if ((unsigned)event_cpu >= nr_cpu_ids) 4646 return 0; 4647 4648 data = (struct perf_read_data){ 4649 .event = event, 4650 .group = group, 4651 .ret = 0, 4652 }; 4653 4654 preempt_disable(); 4655 event_cpu = __perf_event_read_cpu(event, event_cpu); 4656 4657 /* 4658 * Purposely ignore the smp_call_function_single() return 4659 * value. 4660 * 4661 * If event_cpu isn't a valid CPU it means the event got 4662 * scheduled out and that will have updated the event count. 4663 * 4664 * Therefore, either way, we'll have an up-to-date event count 4665 * after this. 4666 */ 4667 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1); 4668 preempt_enable(); 4669 ret = data.ret; 4670 4671 } else if (state == PERF_EVENT_STATE_INACTIVE) { 4672 struct perf_event_context *ctx = event->ctx; 4673 unsigned long flags; 4674 4675 raw_spin_lock_irqsave(&ctx->lock, flags); 4676 state = event->state; 4677 if (state != PERF_EVENT_STATE_INACTIVE) { 4678 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4679 goto again; 4680 } 4681 4682 /* 4683 * May read while context is not active (e.g., thread is 4684 * blocked), in that case we cannot update context time 4685 */ 4686 if (ctx->is_active & EVENT_TIME) { 4687 update_context_time(ctx); 4688 update_cgrp_time_from_event(event); 4689 } 4690 4691 perf_event_update_time(event); 4692 if (group) 4693 perf_event_update_sibling_time(event); 4694 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4695 } 4696 4697 return ret; 4698 } 4699 4700 /* 4701 * Initialize the perf_event context in a task_struct: 4702 */ 4703 static void __perf_event_init_context(struct perf_event_context *ctx) 4704 { 4705 raw_spin_lock_init(&ctx->lock); 4706 mutex_init(&ctx->mutex); 4707 INIT_LIST_HEAD(&ctx->pmu_ctx_list); 4708 perf_event_groups_init(&ctx->pinned_groups); 4709 perf_event_groups_init(&ctx->flexible_groups); 4710 INIT_LIST_HEAD(&ctx->event_list); 4711 refcount_set(&ctx->refcount, 1); 4712 } 4713 4714 static void 4715 __perf_init_event_pmu_context(struct perf_event_pmu_context *epc, struct pmu *pmu) 4716 { 4717 epc->pmu = pmu; 4718 INIT_LIST_HEAD(&epc->pmu_ctx_entry); 4719 INIT_LIST_HEAD(&epc->pinned_active); 4720 INIT_LIST_HEAD(&epc->flexible_active); 4721 atomic_set(&epc->refcount, 1); 4722 } 4723 4724 static struct perf_event_context * 4725 alloc_perf_context(struct task_struct *task) 4726 { 4727 struct perf_event_context *ctx; 4728 4729 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 4730 if (!ctx) 4731 return NULL; 4732 4733 __perf_event_init_context(ctx); 4734 if (task) 4735 ctx->task = get_task_struct(task); 4736 4737 return ctx; 4738 } 4739 4740 static struct task_struct * 4741 find_lively_task_by_vpid(pid_t vpid) 4742 { 4743 struct task_struct *task; 4744 4745 rcu_read_lock(); 4746 if (!vpid) 4747 task = current; 4748 else 4749 task = find_task_by_vpid(vpid); 4750 if (task) 4751 get_task_struct(task); 4752 rcu_read_unlock(); 4753 4754 if (!task) 4755 return ERR_PTR(-ESRCH); 4756 4757 return task; 4758 } 4759 4760 /* 4761 * Returns a matching context with refcount and pincount. 4762 */ 4763 static struct perf_event_context * 4764 find_get_context(struct task_struct *task, struct perf_event *event) 4765 { 4766 struct perf_event_context *ctx, *clone_ctx = NULL; 4767 struct perf_cpu_context *cpuctx; 4768 unsigned long flags; 4769 int err; 4770 4771 if (!task) { 4772 /* Must be root to operate on a CPU event: */ 4773 err = perf_allow_cpu(&event->attr); 4774 if (err) 4775 return ERR_PTR(err); 4776 4777 cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu); 4778 ctx = &cpuctx->ctx; 4779 get_ctx(ctx); 4780 raw_spin_lock_irqsave(&ctx->lock, flags); 4781 ++ctx->pin_count; 4782 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4783 4784 return ctx; 4785 } 4786 4787 err = -EINVAL; 4788 retry: 4789 ctx = perf_lock_task_context(task, &flags); 4790 if (ctx) { 4791 clone_ctx = unclone_ctx(ctx); 4792 ++ctx->pin_count; 4793 4794 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4795 4796 if (clone_ctx) 4797 put_ctx(clone_ctx); 4798 } else { 4799 ctx = alloc_perf_context(task); 4800 err = -ENOMEM; 4801 if (!ctx) 4802 goto errout; 4803 4804 err = 0; 4805 mutex_lock(&task->perf_event_mutex); 4806 /* 4807 * If it has already passed perf_event_exit_task(). 4808 * we must see PF_EXITING, it takes this mutex too. 4809 */ 4810 if (task->flags & PF_EXITING) 4811 err = -ESRCH; 4812 else if (task->perf_event_ctxp) 4813 err = -EAGAIN; 4814 else { 4815 get_ctx(ctx); 4816 ++ctx->pin_count; 4817 rcu_assign_pointer(task->perf_event_ctxp, ctx); 4818 } 4819 mutex_unlock(&task->perf_event_mutex); 4820 4821 if (unlikely(err)) { 4822 put_ctx(ctx); 4823 4824 if (err == -EAGAIN) 4825 goto retry; 4826 goto errout; 4827 } 4828 } 4829 4830 return ctx; 4831 4832 errout: 4833 return ERR_PTR(err); 4834 } 4835 4836 static struct perf_event_pmu_context * 4837 find_get_pmu_context(struct pmu *pmu, struct perf_event_context *ctx, 4838 struct perf_event *event) 4839 { 4840 struct perf_event_pmu_context *new = NULL, *epc; 4841 void *task_ctx_data = NULL; 4842 4843 if (!ctx->task) { 4844 /* 4845 * perf_pmu_migrate_context() / __perf_pmu_install_event() 4846 * relies on the fact that find_get_pmu_context() cannot fail 4847 * for CPU contexts. 4848 */ 4849 struct perf_cpu_pmu_context *cpc; 4850 4851 cpc = per_cpu_ptr(pmu->cpu_pmu_context, event->cpu); 4852 epc = &cpc->epc; 4853 raw_spin_lock_irq(&ctx->lock); 4854 if (!epc->ctx) { 4855 atomic_set(&epc->refcount, 1); 4856 epc->embedded = 1; 4857 list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list); 4858 epc->ctx = ctx; 4859 } else { 4860 WARN_ON_ONCE(epc->ctx != ctx); 4861 atomic_inc(&epc->refcount); 4862 } 4863 raw_spin_unlock_irq(&ctx->lock); 4864 return epc; 4865 } 4866 4867 new = kzalloc(sizeof(*epc), GFP_KERNEL); 4868 if (!new) 4869 return ERR_PTR(-ENOMEM); 4870 4871 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 4872 task_ctx_data = alloc_task_ctx_data(pmu); 4873 if (!task_ctx_data) { 4874 kfree(new); 4875 return ERR_PTR(-ENOMEM); 4876 } 4877 } 4878 4879 __perf_init_event_pmu_context(new, pmu); 4880 4881 /* 4882 * XXX 4883 * 4884 * lockdep_assert_held(&ctx->mutex); 4885 * 4886 * can't because perf_event_init_task() doesn't actually hold the 4887 * child_ctx->mutex. 4888 */ 4889 4890 raw_spin_lock_irq(&ctx->lock); 4891 list_for_each_entry(epc, &ctx->pmu_ctx_list, pmu_ctx_entry) { 4892 if (epc->pmu == pmu) { 4893 WARN_ON_ONCE(epc->ctx != ctx); 4894 atomic_inc(&epc->refcount); 4895 goto found_epc; 4896 } 4897 } 4898 4899 epc = new; 4900 new = NULL; 4901 4902 list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list); 4903 epc->ctx = ctx; 4904 4905 found_epc: 4906 if (task_ctx_data && !epc->task_ctx_data) { 4907 epc->task_ctx_data = task_ctx_data; 4908 task_ctx_data = NULL; 4909 ctx->nr_task_data++; 4910 } 4911 raw_spin_unlock_irq(&ctx->lock); 4912 4913 free_task_ctx_data(pmu, task_ctx_data); 4914 kfree(new); 4915 4916 return epc; 4917 } 4918 4919 static void get_pmu_ctx(struct perf_event_pmu_context *epc) 4920 { 4921 WARN_ON_ONCE(!atomic_inc_not_zero(&epc->refcount)); 4922 } 4923 4924 static void free_epc_rcu(struct rcu_head *head) 4925 { 4926 struct perf_event_pmu_context *epc = container_of(head, typeof(*epc), rcu_head); 4927 4928 kfree(epc->task_ctx_data); 4929 kfree(epc); 4930 } 4931 4932 static void put_pmu_ctx(struct perf_event_pmu_context *epc) 4933 { 4934 struct perf_event_context *ctx = epc->ctx; 4935 unsigned long flags; 4936 4937 /* 4938 * XXX 4939 * 4940 * lockdep_assert_held(&ctx->mutex); 4941 * 4942 * can't because of the call-site in _free_event()/put_event() 4943 * which isn't always called under ctx->mutex. 4944 */ 4945 if (!atomic_dec_and_raw_lock_irqsave(&epc->refcount, &ctx->lock, flags)) 4946 return; 4947 4948 WARN_ON_ONCE(list_empty(&epc->pmu_ctx_entry)); 4949 4950 list_del_init(&epc->pmu_ctx_entry); 4951 epc->ctx = NULL; 4952 4953 WARN_ON_ONCE(!list_empty(&epc->pinned_active)); 4954 WARN_ON_ONCE(!list_empty(&epc->flexible_active)); 4955 4956 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4957 4958 if (epc->embedded) 4959 return; 4960 4961 call_rcu(&epc->rcu_head, free_epc_rcu); 4962 } 4963 4964 static void perf_event_free_filter(struct perf_event *event); 4965 4966 static void free_event_rcu(struct rcu_head *head) 4967 { 4968 struct perf_event *event = container_of(head, typeof(*event), rcu_head); 4969 4970 if (event->ns) 4971 put_pid_ns(event->ns); 4972 perf_event_free_filter(event); 4973 kmem_cache_free(perf_event_cache, event); 4974 } 4975 4976 static void ring_buffer_attach(struct perf_event *event, 4977 struct perf_buffer *rb); 4978 4979 static void detach_sb_event(struct perf_event *event) 4980 { 4981 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 4982 4983 raw_spin_lock(&pel->lock); 4984 list_del_rcu(&event->sb_list); 4985 raw_spin_unlock(&pel->lock); 4986 } 4987 4988 static bool is_sb_event(struct perf_event *event) 4989 { 4990 struct perf_event_attr *attr = &event->attr; 4991 4992 if (event->parent) 4993 return false; 4994 4995 if (event->attach_state & PERF_ATTACH_TASK) 4996 return false; 4997 4998 if (attr->mmap || attr->mmap_data || attr->mmap2 || 4999 attr->comm || attr->comm_exec || 5000 attr->task || attr->ksymbol || 5001 attr->context_switch || attr->text_poke || 5002 attr->bpf_event) 5003 return true; 5004 return false; 5005 } 5006 5007 static void unaccount_pmu_sb_event(struct perf_event *event) 5008 { 5009 if (is_sb_event(event)) 5010 detach_sb_event(event); 5011 } 5012 5013 #ifdef CONFIG_NO_HZ_FULL 5014 static DEFINE_SPINLOCK(nr_freq_lock); 5015 #endif 5016 5017 static void unaccount_freq_event_nohz(void) 5018 { 5019 #ifdef CONFIG_NO_HZ_FULL 5020 spin_lock(&nr_freq_lock); 5021 if (atomic_dec_and_test(&nr_freq_events)) 5022 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS); 5023 spin_unlock(&nr_freq_lock); 5024 #endif 5025 } 5026 5027 static void unaccount_freq_event(void) 5028 { 5029 if (tick_nohz_full_enabled()) 5030 unaccount_freq_event_nohz(); 5031 else 5032 atomic_dec(&nr_freq_events); 5033 } 5034 5035 static void unaccount_event(struct perf_event *event) 5036 { 5037 bool dec = false; 5038 5039 if (event->parent) 5040 return; 5041 5042 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB)) 5043 dec = true; 5044 if (event->attr.mmap || event->attr.mmap_data) 5045 atomic_dec(&nr_mmap_events); 5046 if (event->attr.build_id) 5047 atomic_dec(&nr_build_id_events); 5048 if (event->attr.comm) 5049 atomic_dec(&nr_comm_events); 5050 if (event->attr.namespaces) 5051 atomic_dec(&nr_namespaces_events); 5052 if (event->attr.cgroup) 5053 atomic_dec(&nr_cgroup_events); 5054 if (event->attr.task) 5055 atomic_dec(&nr_task_events); 5056 if (event->attr.freq) 5057 unaccount_freq_event(); 5058 if (event->attr.context_switch) { 5059 dec = true; 5060 atomic_dec(&nr_switch_events); 5061 } 5062 if (is_cgroup_event(event)) 5063 dec = true; 5064 if (has_branch_stack(event)) 5065 dec = true; 5066 if (event->attr.ksymbol) 5067 atomic_dec(&nr_ksymbol_events); 5068 if (event->attr.bpf_event) 5069 atomic_dec(&nr_bpf_events); 5070 if (event->attr.text_poke) 5071 atomic_dec(&nr_text_poke_events); 5072 5073 if (dec) { 5074 if (!atomic_add_unless(&perf_sched_count, -1, 1)) 5075 schedule_delayed_work(&perf_sched_work, HZ); 5076 } 5077 5078 unaccount_pmu_sb_event(event); 5079 } 5080 5081 static void perf_sched_delayed(struct work_struct *work) 5082 { 5083 mutex_lock(&perf_sched_mutex); 5084 if (atomic_dec_and_test(&perf_sched_count)) 5085 static_branch_disable(&perf_sched_events); 5086 mutex_unlock(&perf_sched_mutex); 5087 } 5088 5089 /* 5090 * The following implement mutual exclusion of events on "exclusive" pmus 5091 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 5092 * at a time, so we disallow creating events that might conflict, namely: 5093 * 5094 * 1) cpu-wide events in the presence of per-task events, 5095 * 2) per-task events in the presence of cpu-wide events, 5096 * 3) two matching events on the same perf_event_context. 5097 * 5098 * The former two cases are handled in the allocation path (perf_event_alloc(), 5099 * _free_event()), the latter -- before the first perf_install_in_context(). 5100 */ 5101 static int exclusive_event_init(struct perf_event *event) 5102 { 5103 struct pmu *pmu = event->pmu; 5104 5105 if (!is_exclusive_pmu(pmu)) 5106 return 0; 5107 5108 /* 5109 * Prevent co-existence of per-task and cpu-wide events on the 5110 * same exclusive pmu. 5111 * 5112 * Negative pmu::exclusive_cnt means there are cpu-wide 5113 * events on this "exclusive" pmu, positive means there are 5114 * per-task events. 5115 * 5116 * Since this is called in perf_event_alloc() path, event::ctx 5117 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 5118 * to mean "per-task event", because unlike other attach states it 5119 * never gets cleared. 5120 */ 5121 if (event->attach_state & PERF_ATTACH_TASK) { 5122 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 5123 return -EBUSY; 5124 } else { 5125 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 5126 return -EBUSY; 5127 } 5128 5129 return 0; 5130 } 5131 5132 static void exclusive_event_destroy(struct perf_event *event) 5133 { 5134 struct pmu *pmu = event->pmu; 5135 5136 if (!is_exclusive_pmu(pmu)) 5137 return; 5138 5139 /* see comment in exclusive_event_init() */ 5140 if (event->attach_state & PERF_ATTACH_TASK) 5141 atomic_dec(&pmu->exclusive_cnt); 5142 else 5143 atomic_inc(&pmu->exclusive_cnt); 5144 } 5145 5146 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 5147 { 5148 if ((e1->pmu == e2->pmu) && 5149 (e1->cpu == e2->cpu || 5150 e1->cpu == -1 || 5151 e2->cpu == -1)) 5152 return true; 5153 return false; 5154 } 5155 5156 static bool exclusive_event_installable(struct perf_event *event, 5157 struct perf_event_context *ctx) 5158 { 5159 struct perf_event *iter_event; 5160 struct pmu *pmu = event->pmu; 5161 5162 lockdep_assert_held(&ctx->mutex); 5163 5164 if (!is_exclusive_pmu(pmu)) 5165 return true; 5166 5167 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 5168 if (exclusive_event_match(iter_event, event)) 5169 return false; 5170 } 5171 5172 return true; 5173 } 5174 5175 static void perf_addr_filters_splice(struct perf_event *event, 5176 struct list_head *head); 5177 5178 static void _free_event(struct perf_event *event) 5179 { 5180 irq_work_sync(&event->pending_irq); 5181 5182 unaccount_event(event); 5183 5184 security_perf_event_free(event); 5185 5186 if (event->rb) { 5187 /* 5188 * Can happen when we close an event with re-directed output. 5189 * 5190 * Since we have a 0 refcount, perf_mmap_close() will skip 5191 * over us; possibly making our ring_buffer_put() the last. 5192 */ 5193 mutex_lock(&event->mmap_mutex); 5194 ring_buffer_attach(event, NULL); 5195 mutex_unlock(&event->mmap_mutex); 5196 } 5197 5198 if (is_cgroup_event(event)) 5199 perf_detach_cgroup(event); 5200 5201 if (!event->parent) { 5202 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 5203 put_callchain_buffers(); 5204 } 5205 5206 perf_event_free_bpf_prog(event); 5207 perf_addr_filters_splice(event, NULL); 5208 kfree(event->addr_filter_ranges); 5209 5210 if (event->destroy) 5211 event->destroy(event); 5212 5213 /* 5214 * Must be after ->destroy(), due to uprobe_perf_close() using 5215 * hw.target. 5216 */ 5217 if (event->hw.target) 5218 put_task_struct(event->hw.target); 5219 5220 if (event->pmu_ctx) 5221 put_pmu_ctx(event->pmu_ctx); 5222 5223 /* 5224 * perf_event_free_task() relies on put_ctx() being 'last', in particular 5225 * all task references must be cleaned up. 5226 */ 5227 if (event->ctx) 5228 put_ctx(event->ctx); 5229 5230 exclusive_event_destroy(event); 5231 module_put(event->pmu->module); 5232 5233 call_rcu(&event->rcu_head, free_event_rcu); 5234 } 5235 5236 /* 5237 * Used to free events which have a known refcount of 1, such as in error paths 5238 * where the event isn't exposed yet and inherited events. 5239 */ 5240 static void free_event(struct perf_event *event) 5241 { 5242 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 5243 "unexpected event refcount: %ld; ptr=%p\n", 5244 atomic_long_read(&event->refcount), event)) { 5245 /* leak to avoid use-after-free */ 5246 return; 5247 } 5248 5249 _free_event(event); 5250 } 5251 5252 /* 5253 * Remove user event from the owner task. 5254 */ 5255 static void perf_remove_from_owner(struct perf_event *event) 5256 { 5257 struct task_struct *owner; 5258 5259 rcu_read_lock(); 5260 /* 5261 * Matches the smp_store_release() in perf_event_exit_task(). If we 5262 * observe !owner it means the list deletion is complete and we can 5263 * indeed free this event, otherwise we need to serialize on 5264 * owner->perf_event_mutex. 5265 */ 5266 owner = READ_ONCE(event->owner); 5267 if (owner) { 5268 /* 5269 * Since delayed_put_task_struct() also drops the last 5270 * task reference we can safely take a new reference 5271 * while holding the rcu_read_lock(). 5272 */ 5273 get_task_struct(owner); 5274 } 5275 rcu_read_unlock(); 5276 5277 if (owner) { 5278 /* 5279 * If we're here through perf_event_exit_task() we're already 5280 * holding ctx->mutex which would be an inversion wrt. the 5281 * normal lock order. 5282 * 5283 * However we can safely take this lock because its the child 5284 * ctx->mutex. 5285 */ 5286 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 5287 5288 /* 5289 * We have to re-check the event->owner field, if it is cleared 5290 * we raced with perf_event_exit_task(), acquiring the mutex 5291 * ensured they're done, and we can proceed with freeing the 5292 * event. 5293 */ 5294 if (event->owner) { 5295 list_del_init(&event->owner_entry); 5296 smp_store_release(&event->owner, NULL); 5297 } 5298 mutex_unlock(&owner->perf_event_mutex); 5299 put_task_struct(owner); 5300 } 5301 } 5302 5303 static void put_event(struct perf_event *event) 5304 { 5305 if (!atomic_long_dec_and_test(&event->refcount)) 5306 return; 5307 5308 _free_event(event); 5309 } 5310 5311 /* 5312 * Kill an event dead; while event:refcount will preserve the event 5313 * object, it will not preserve its functionality. Once the last 'user' 5314 * gives up the object, we'll destroy the thing. 5315 */ 5316 int perf_event_release_kernel(struct perf_event *event) 5317 { 5318 struct perf_event_context *ctx = event->ctx; 5319 struct perf_event *child, *tmp; 5320 LIST_HEAD(free_list); 5321 5322 /* 5323 * If we got here through err_alloc: free_event(event); we will not 5324 * have attached to a context yet. 5325 */ 5326 if (!ctx) { 5327 WARN_ON_ONCE(event->attach_state & 5328 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP)); 5329 goto no_ctx; 5330 } 5331 5332 if (!is_kernel_event(event)) 5333 perf_remove_from_owner(event); 5334 5335 ctx = perf_event_ctx_lock(event); 5336 WARN_ON_ONCE(ctx->parent_ctx); 5337 5338 /* 5339 * Mark this event as STATE_DEAD, there is no external reference to it 5340 * anymore. 5341 * 5342 * Anybody acquiring event->child_mutex after the below loop _must_ 5343 * also see this, most importantly inherit_event() which will avoid 5344 * placing more children on the list. 5345 * 5346 * Thus this guarantees that we will in fact observe and kill _ALL_ 5347 * child events. 5348 */ 5349 perf_remove_from_context(event, DETACH_GROUP|DETACH_DEAD); 5350 5351 perf_event_ctx_unlock(event, ctx); 5352 5353 again: 5354 mutex_lock(&event->child_mutex); 5355 list_for_each_entry(child, &event->child_list, child_list) { 5356 void *var = NULL; 5357 5358 /* 5359 * Cannot change, child events are not migrated, see the 5360 * comment with perf_event_ctx_lock_nested(). 5361 */ 5362 ctx = READ_ONCE(child->ctx); 5363 /* 5364 * Since child_mutex nests inside ctx::mutex, we must jump 5365 * through hoops. We start by grabbing a reference on the ctx. 5366 * 5367 * Since the event cannot get freed while we hold the 5368 * child_mutex, the context must also exist and have a !0 5369 * reference count. 5370 */ 5371 get_ctx(ctx); 5372 5373 /* 5374 * Now that we have a ctx ref, we can drop child_mutex, and 5375 * acquire ctx::mutex without fear of it going away. Then we 5376 * can re-acquire child_mutex. 5377 */ 5378 mutex_unlock(&event->child_mutex); 5379 mutex_lock(&ctx->mutex); 5380 mutex_lock(&event->child_mutex); 5381 5382 /* 5383 * Now that we hold ctx::mutex and child_mutex, revalidate our 5384 * state, if child is still the first entry, it didn't get freed 5385 * and we can continue doing so. 5386 */ 5387 tmp = list_first_entry_or_null(&event->child_list, 5388 struct perf_event, child_list); 5389 if (tmp == child) { 5390 perf_remove_from_context(child, DETACH_GROUP); 5391 list_move(&child->child_list, &free_list); 5392 /* 5393 * This matches the refcount bump in inherit_event(); 5394 * this can't be the last reference. 5395 */ 5396 put_event(event); 5397 } else { 5398 var = &ctx->refcount; 5399 } 5400 5401 mutex_unlock(&event->child_mutex); 5402 mutex_unlock(&ctx->mutex); 5403 put_ctx(ctx); 5404 5405 if (var) { 5406 /* 5407 * If perf_event_free_task() has deleted all events from the 5408 * ctx while the child_mutex got released above, make sure to 5409 * notify about the preceding put_ctx(). 5410 */ 5411 smp_mb(); /* pairs with wait_var_event() */ 5412 wake_up_var(var); 5413 } 5414 goto again; 5415 } 5416 mutex_unlock(&event->child_mutex); 5417 5418 list_for_each_entry_safe(child, tmp, &free_list, child_list) { 5419 void *var = &child->ctx->refcount; 5420 5421 list_del(&child->child_list); 5422 free_event(child); 5423 5424 /* 5425 * Wake any perf_event_free_task() waiting for this event to be 5426 * freed. 5427 */ 5428 smp_mb(); /* pairs with wait_var_event() */ 5429 wake_up_var(var); 5430 } 5431 5432 no_ctx: 5433 put_event(event); /* Must be the 'last' reference */ 5434 return 0; 5435 } 5436 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 5437 5438 /* 5439 * Called when the last reference to the file is gone. 5440 */ 5441 static int perf_release(struct inode *inode, struct file *file) 5442 { 5443 perf_event_release_kernel(file->private_data); 5444 return 0; 5445 } 5446 5447 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5448 { 5449 struct perf_event *child; 5450 u64 total = 0; 5451 5452 *enabled = 0; 5453 *running = 0; 5454 5455 mutex_lock(&event->child_mutex); 5456 5457 (void)perf_event_read(event, false); 5458 total += perf_event_count(event); 5459 5460 *enabled += event->total_time_enabled + 5461 atomic64_read(&event->child_total_time_enabled); 5462 *running += event->total_time_running + 5463 atomic64_read(&event->child_total_time_running); 5464 5465 list_for_each_entry(child, &event->child_list, child_list) { 5466 (void)perf_event_read(child, false); 5467 total += perf_event_count(child); 5468 *enabled += child->total_time_enabled; 5469 *running += child->total_time_running; 5470 } 5471 mutex_unlock(&event->child_mutex); 5472 5473 return total; 5474 } 5475 5476 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5477 { 5478 struct perf_event_context *ctx; 5479 u64 count; 5480 5481 ctx = perf_event_ctx_lock(event); 5482 count = __perf_event_read_value(event, enabled, running); 5483 perf_event_ctx_unlock(event, ctx); 5484 5485 return count; 5486 } 5487 EXPORT_SYMBOL_GPL(perf_event_read_value); 5488 5489 static int __perf_read_group_add(struct perf_event *leader, 5490 u64 read_format, u64 *values) 5491 { 5492 struct perf_event_context *ctx = leader->ctx; 5493 struct perf_event *sub, *parent; 5494 unsigned long flags; 5495 int n = 1; /* skip @nr */ 5496 int ret; 5497 5498 ret = perf_event_read(leader, true); 5499 if (ret) 5500 return ret; 5501 5502 raw_spin_lock_irqsave(&ctx->lock, flags); 5503 /* 5504 * Verify the grouping between the parent and child (inherited) 5505 * events is still in tact. 5506 * 5507 * Specifically: 5508 * - leader->ctx->lock pins leader->sibling_list 5509 * - parent->child_mutex pins parent->child_list 5510 * - parent->ctx->mutex pins parent->sibling_list 5511 * 5512 * Because parent->ctx != leader->ctx (and child_list nests inside 5513 * ctx->mutex), group destruction is not atomic between children, also 5514 * see perf_event_release_kernel(). Additionally, parent can grow the 5515 * group. 5516 * 5517 * Therefore it is possible to have parent and child groups in a 5518 * different configuration and summing over such a beast makes no sense 5519 * what so ever. 5520 * 5521 * Reject this. 5522 */ 5523 parent = leader->parent; 5524 if (parent && 5525 (parent->group_generation != leader->group_generation || 5526 parent->nr_siblings != leader->nr_siblings)) { 5527 ret = -ECHILD; 5528 goto unlock; 5529 } 5530 5531 /* 5532 * Since we co-schedule groups, {enabled,running} times of siblings 5533 * will be identical to those of the leader, so we only publish one 5534 * set. 5535 */ 5536 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 5537 values[n++] += leader->total_time_enabled + 5538 atomic64_read(&leader->child_total_time_enabled); 5539 } 5540 5541 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 5542 values[n++] += leader->total_time_running + 5543 atomic64_read(&leader->child_total_time_running); 5544 } 5545 5546 /* 5547 * Write {count,id} tuples for every sibling. 5548 */ 5549 values[n++] += perf_event_count(leader); 5550 if (read_format & PERF_FORMAT_ID) 5551 values[n++] = primary_event_id(leader); 5552 if (read_format & PERF_FORMAT_LOST) 5553 values[n++] = atomic64_read(&leader->lost_samples); 5554 5555 for_each_sibling_event(sub, leader) { 5556 values[n++] += perf_event_count(sub); 5557 if (read_format & PERF_FORMAT_ID) 5558 values[n++] = primary_event_id(sub); 5559 if (read_format & PERF_FORMAT_LOST) 5560 values[n++] = atomic64_read(&sub->lost_samples); 5561 } 5562 5563 unlock: 5564 raw_spin_unlock_irqrestore(&ctx->lock, flags); 5565 return ret; 5566 } 5567 5568 static int perf_read_group(struct perf_event *event, 5569 u64 read_format, char __user *buf) 5570 { 5571 struct perf_event *leader = event->group_leader, *child; 5572 struct perf_event_context *ctx = leader->ctx; 5573 int ret; 5574 u64 *values; 5575 5576 lockdep_assert_held(&ctx->mutex); 5577 5578 values = kzalloc(event->read_size, GFP_KERNEL); 5579 if (!values) 5580 return -ENOMEM; 5581 5582 values[0] = 1 + leader->nr_siblings; 5583 5584 mutex_lock(&leader->child_mutex); 5585 5586 ret = __perf_read_group_add(leader, read_format, values); 5587 if (ret) 5588 goto unlock; 5589 5590 list_for_each_entry(child, &leader->child_list, child_list) { 5591 ret = __perf_read_group_add(child, read_format, values); 5592 if (ret) 5593 goto unlock; 5594 } 5595 5596 mutex_unlock(&leader->child_mutex); 5597 5598 ret = event->read_size; 5599 if (copy_to_user(buf, values, event->read_size)) 5600 ret = -EFAULT; 5601 goto out; 5602 5603 unlock: 5604 mutex_unlock(&leader->child_mutex); 5605 out: 5606 kfree(values); 5607 return ret; 5608 } 5609 5610 static int perf_read_one(struct perf_event *event, 5611 u64 read_format, char __user *buf) 5612 { 5613 u64 enabled, running; 5614 u64 values[5]; 5615 int n = 0; 5616 5617 values[n++] = __perf_event_read_value(event, &enabled, &running); 5618 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 5619 values[n++] = enabled; 5620 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 5621 values[n++] = running; 5622 if (read_format & PERF_FORMAT_ID) 5623 values[n++] = primary_event_id(event); 5624 if (read_format & PERF_FORMAT_LOST) 5625 values[n++] = atomic64_read(&event->lost_samples); 5626 5627 if (copy_to_user(buf, values, n * sizeof(u64))) 5628 return -EFAULT; 5629 5630 return n * sizeof(u64); 5631 } 5632 5633 static bool is_event_hup(struct perf_event *event) 5634 { 5635 bool no_children; 5636 5637 if (event->state > PERF_EVENT_STATE_EXIT) 5638 return false; 5639 5640 mutex_lock(&event->child_mutex); 5641 no_children = list_empty(&event->child_list); 5642 mutex_unlock(&event->child_mutex); 5643 return no_children; 5644 } 5645 5646 /* 5647 * Read the performance event - simple non blocking version for now 5648 */ 5649 static ssize_t 5650 __perf_read(struct perf_event *event, char __user *buf, size_t count) 5651 { 5652 u64 read_format = event->attr.read_format; 5653 int ret; 5654 5655 /* 5656 * Return end-of-file for a read on an event that is in 5657 * error state (i.e. because it was pinned but it couldn't be 5658 * scheduled on to the CPU at some point). 5659 */ 5660 if (event->state == PERF_EVENT_STATE_ERROR) 5661 return 0; 5662 5663 if (count < event->read_size) 5664 return -ENOSPC; 5665 5666 WARN_ON_ONCE(event->ctx->parent_ctx); 5667 if (read_format & PERF_FORMAT_GROUP) 5668 ret = perf_read_group(event, read_format, buf); 5669 else 5670 ret = perf_read_one(event, read_format, buf); 5671 5672 return ret; 5673 } 5674 5675 static ssize_t 5676 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 5677 { 5678 struct perf_event *event = file->private_data; 5679 struct perf_event_context *ctx; 5680 int ret; 5681 5682 ret = security_perf_event_read(event); 5683 if (ret) 5684 return ret; 5685 5686 ctx = perf_event_ctx_lock(event); 5687 ret = __perf_read(event, buf, count); 5688 perf_event_ctx_unlock(event, ctx); 5689 5690 return ret; 5691 } 5692 5693 static __poll_t perf_poll(struct file *file, poll_table *wait) 5694 { 5695 struct perf_event *event = file->private_data; 5696 struct perf_buffer *rb; 5697 __poll_t events = EPOLLHUP; 5698 5699 poll_wait(file, &event->waitq, wait); 5700 5701 if (is_event_hup(event)) 5702 return events; 5703 5704 /* 5705 * Pin the event->rb by taking event->mmap_mutex; otherwise 5706 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 5707 */ 5708 mutex_lock(&event->mmap_mutex); 5709 rb = event->rb; 5710 if (rb) 5711 events = atomic_xchg(&rb->poll, 0); 5712 mutex_unlock(&event->mmap_mutex); 5713 return events; 5714 } 5715 5716 static void _perf_event_reset(struct perf_event *event) 5717 { 5718 (void)perf_event_read(event, false); 5719 local64_set(&event->count, 0); 5720 perf_event_update_userpage(event); 5721 } 5722 5723 /* Assume it's not an event with inherit set. */ 5724 u64 perf_event_pause(struct perf_event *event, bool reset) 5725 { 5726 struct perf_event_context *ctx; 5727 u64 count; 5728 5729 ctx = perf_event_ctx_lock(event); 5730 WARN_ON_ONCE(event->attr.inherit); 5731 _perf_event_disable(event); 5732 count = local64_read(&event->count); 5733 if (reset) 5734 local64_set(&event->count, 0); 5735 perf_event_ctx_unlock(event, ctx); 5736 5737 return count; 5738 } 5739 EXPORT_SYMBOL_GPL(perf_event_pause); 5740 5741 /* 5742 * Holding the top-level event's child_mutex means that any 5743 * descendant process that has inherited this event will block 5744 * in perf_event_exit_event() if it goes to exit, thus satisfying the 5745 * task existence requirements of perf_event_enable/disable. 5746 */ 5747 static void perf_event_for_each_child(struct perf_event *event, 5748 void (*func)(struct perf_event *)) 5749 { 5750 struct perf_event *child; 5751 5752 WARN_ON_ONCE(event->ctx->parent_ctx); 5753 5754 mutex_lock(&event->child_mutex); 5755 func(event); 5756 list_for_each_entry(child, &event->child_list, child_list) 5757 func(child); 5758 mutex_unlock(&event->child_mutex); 5759 } 5760 5761 static void perf_event_for_each(struct perf_event *event, 5762 void (*func)(struct perf_event *)) 5763 { 5764 struct perf_event_context *ctx = event->ctx; 5765 struct perf_event *sibling; 5766 5767 lockdep_assert_held(&ctx->mutex); 5768 5769 event = event->group_leader; 5770 5771 perf_event_for_each_child(event, func); 5772 for_each_sibling_event(sibling, event) 5773 perf_event_for_each_child(sibling, func); 5774 } 5775 5776 static void __perf_event_period(struct perf_event *event, 5777 struct perf_cpu_context *cpuctx, 5778 struct perf_event_context *ctx, 5779 void *info) 5780 { 5781 u64 value = *((u64 *)info); 5782 bool active; 5783 5784 if (event->attr.freq) { 5785 event->attr.sample_freq = value; 5786 } else { 5787 event->attr.sample_period = value; 5788 event->hw.sample_period = value; 5789 } 5790 5791 active = (event->state == PERF_EVENT_STATE_ACTIVE); 5792 if (active) { 5793 perf_pmu_disable(event->pmu); 5794 /* 5795 * We could be throttled; unthrottle now to avoid the tick 5796 * trying to unthrottle while we already re-started the event. 5797 */ 5798 if (event->hw.interrupts == MAX_INTERRUPTS) { 5799 event->hw.interrupts = 0; 5800 perf_log_throttle(event, 1); 5801 } 5802 event->pmu->stop(event, PERF_EF_UPDATE); 5803 } 5804 5805 local64_set(&event->hw.period_left, 0); 5806 5807 if (active) { 5808 event->pmu->start(event, PERF_EF_RELOAD); 5809 perf_pmu_enable(event->pmu); 5810 } 5811 } 5812 5813 static int perf_event_check_period(struct perf_event *event, u64 value) 5814 { 5815 return event->pmu->check_period(event, value); 5816 } 5817 5818 static int _perf_event_period(struct perf_event *event, u64 value) 5819 { 5820 if (!is_sampling_event(event)) 5821 return -EINVAL; 5822 5823 if (!value) 5824 return -EINVAL; 5825 5826 if (event->attr.freq && value > sysctl_perf_event_sample_rate) 5827 return -EINVAL; 5828 5829 if (perf_event_check_period(event, value)) 5830 return -EINVAL; 5831 5832 if (!event->attr.freq && (value & (1ULL << 63))) 5833 return -EINVAL; 5834 5835 event_function_call(event, __perf_event_period, &value); 5836 5837 return 0; 5838 } 5839 5840 int perf_event_period(struct perf_event *event, u64 value) 5841 { 5842 struct perf_event_context *ctx; 5843 int ret; 5844 5845 ctx = perf_event_ctx_lock(event); 5846 ret = _perf_event_period(event, value); 5847 perf_event_ctx_unlock(event, ctx); 5848 5849 return ret; 5850 } 5851 EXPORT_SYMBOL_GPL(perf_event_period); 5852 5853 static const struct file_operations perf_fops; 5854 5855 static inline int perf_fget_light(int fd, struct fd *p) 5856 { 5857 struct fd f = fdget(fd); 5858 if (!f.file) 5859 return -EBADF; 5860 5861 if (f.file->f_op != &perf_fops) { 5862 fdput(f); 5863 return -EBADF; 5864 } 5865 *p = f; 5866 return 0; 5867 } 5868 5869 static int perf_event_set_output(struct perf_event *event, 5870 struct perf_event *output_event); 5871 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 5872 static int perf_copy_attr(struct perf_event_attr __user *uattr, 5873 struct perf_event_attr *attr); 5874 5875 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 5876 { 5877 void (*func)(struct perf_event *); 5878 u32 flags = arg; 5879 5880 switch (cmd) { 5881 case PERF_EVENT_IOC_ENABLE: 5882 func = _perf_event_enable; 5883 break; 5884 case PERF_EVENT_IOC_DISABLE: 5885 func = _perf_event_disable; 5886 break; 5887 case PERF_EVENT_IOC_RESET: 5888 func = _perf_event_reset; 5889 break; 5890 5891 case PERF_EVENT_IOC_REFRESH: 5892 return _perf_event_refresh(event, arg); 5893 5894 case PERF_EVENT_IOC_PERIOD: 5895 { 5896 u64 value; 5897 5898 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value))) 5899 return -EFAULT; 5900 5901 return _perf_event_period(event, value); 5902 } 5903 case PERF_EVENT_IOC_ID: 5904 { 5905 u64 id = primary_event_id(event); 5906 5907 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 5908 return -EFAULT; 5909 return 0; 5910 } 5911 5912 case PERF_EVENT_IOC_SET_OUTPUT: 5913 { 5914 int ret; 5915 if (arg != -1) { 5916 struct perf_event *output_event; 5917 struct fd output; 5918 ret = perf_fget_light(arg, &output); 5919 if (ret) 5920 return ret; 5921 output_event = output.file->private_data; 5922 ret = perf_event_set_output(event, output_event); 5923 fdput(output); 5924 } else { 5925 ret = perf_event_set_output(event, NULL); 5926 } 5927 return ret; 5928 } 5929 5930 case PERF_EVENT_IOC_SET_FILTER: 5931 return perf_event_set_filter(event, (void __user *)arg); 5932 5933 case PERF_EVENT_IOC_SET_BPF: 5934 { 5935 struct bpf_prog *prog; 5936 int err; 5937 5938 prog = bpf_prog_get(arg); 5939 if (IS_ERR(prog)) 5940 return PTR_ERR(prog); 5941 5942 err = perf_event_set_bpf_prog(event, prog, 0); 5943 if (err) { 5944 bpf_prog_put(prog); 5945 return err; 5946 } 5947 5948 return 0; 5949 } 5950 5951 case PERF_EVENT_IOC_PAUSE_OUTPUT: { 5952 struct perf_buffer *rb; 5953 5954 rcu_read_lock(); 5955 rb = rcu_dereference(event->rb); 5956 if (!rb || !rb->nr_pages) { 5957 rcu_read_unlock(); 5958 return -EINVAL; 5959 } 5960 rb_toggle_paused(rb, !!arg); 5961 rcu_read_unlock(); 5962 return 0; 5963 } 5964 5965 case PERF_EVENT_IOC_QUERY_BPF: 5966 return perf_event_query_prog_array(event, (void __user *)arg); 5967 5968 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: { 5969 struct perf_event_attr new_attr; 5970 int err = perf_copy_attr((struct perf_event_attr __user *)arg, 5971 &new_attr); 5972 5973 if (err) 5974 return err; 5975 5976 return perf_event_modify_attr(event, &new_attr); 5977 } 5978 default: 5979 return -ENOTTY; 5980 } 5981 5982 if (flags & PERF_IOC_FLAG_GROUP) 5983 perf_event_for_each(event, func); 5984 else 5985 perf_event_for_each_child(event, func); 5986 5987 return 0; 5988 } 5989 5990 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5991 { 5992 struct perf_event *event = file->private_data; 5993 struct perf_event_context *ctx; 5994 long ret; 5995 5996 /* Treat ioctl like writes as it is likely a mutating operation. */ 5997 ret = security_perf_event_write(event); 5998 if (ret) 5999 return ret; 6000 6001 ctx = perf_event_ctx_lock(event); 6002 ret = _perf_ioctl(event, cmd, arg); 6003 perf_event_ctx_unlock(event, ctx); 6004 6005 return ret; 6006 } 6007 6008 #ifdef CONFIG_COMPAT 6009 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 6010 unsigned long arg) 6011 { 6012 switch (_IOC_NR(cmd)) { 6013 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 6014 case _IOC_NR(PERF_EVENT_IOC_ID): 6015 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF): 6016 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES): 6017 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 6018 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 6019 cmd &= ~IOCSIZE_MASK; 6020 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 6021 } 6022 break; 6023 } 6024 return perf_ioctl(file, cmd, arg); 6025 } 6026 #else 6027 # define perf_compat_ioctl NULL 6028 #endif 6029 6030 int perf_event_task_enable(void) 6031 { 6032 struct perf_event_context *ctx; 6033 struct perf_event *event; 6034 6035 mutex_lock(¤t->perf_event_mutex); 6036 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 6037 ctx = perf_event_ctx_lock(event); 6038 perf_event_for_each_child(event, _perf_event_enable); 6039 perf_event_ctx_unlock(event, ctx); 6040 } 6041 mutex_unlock(¤t->perf_event_mutex); 6042 6043 return 0; 6044 } 6045 6046 int perf_event_task_disable(void) 6047 { 6048 struct perf_event_context *ctx; 6049 struct perf_event *event; 6050 6051 mutex_lock(¤t->perf_event_mutex); 6052 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 6053 ctx = perf_event_ctx_lock(event); 6054 perf_event_for_each_child(event, _perf_event_disable); 6055 perf_event_ctx_unlock(event, ctx); 6056 } 6057 mutex_unlock(¤t->perf_event_mutex); 6058 6059 return 0; 6060 } 6061 6062 static int perf_event_index(struct perf_event *event) 6063 { 6064 if (event->hw.state & PERF_HES_STOPPED) 6065 return 0; 6066 6067 if (event->state != PERF_EVENT_STATE_ACTIVE) 6068 return 0; 6069 6070 return event->pmu->event_idx(event); 6071 } 6072 6073 static void perf_event_init_userpage(struct perf_event *event) 6074 { 6075 struct perf_event_mmap_page *userpg; 6076 struct perf_buffer *rb; 6077 6078 rcu_read_lock(); 6079 rb = rcu_dereference(event->rb); 6080 if (!rb) 6081 goto unlock; 6082 6083 userpg = rb->user_page; 6084 6085 /* Allow new userspace to detect that bit 0 is deprecated */ 6086 userpg->cap_bit0_is_deprecated = 1; 6087 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 6088 userpg->data_offset = PAGE_SIZE; 6089 userpg->data_size = perf_data_size(rb); 6090 6091 unlock: 6092 rcu_read_unlock(); 6093 } 6094 6095 void __weak arch_perf_update_userpage( 6096 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 6097 { 6098 } 6099 6100 /* 6101 * Callers need to ensure there can be no nesting of this function, otherwise 6102 * the seqlock logic goes bad. We can not serialize this because the arch 6103 * code calls this from NMI context. 6104 */ 6105 void perf_event_update_userpage(struct perf_event *event) 6106 { 6107 struct perf_event_mmap_page *userpg; 6108 struct perf_buffer *rb; 6109 u64 enabled, running, now; 6110 6111 rcu_read_lock(); 6112 rb = rcu_dereference(event->rb); 6113 if (!rb) 6114 goto unlock; 6115 6116 /* 6117 * compute total_time_enabled, total_time_running 6118 * based on snapshot values taken when the event 6119 * was last scheduled in. 6120 * 6121 * we cannot simply called update_context_time() 6122 * because of locking issue as we can be called in 6123 * NMI context 6124 */ 6125 calc_timer_values(event, &now, &enabled, &running); 6126 6127 userpg = rb->user_page; 6128 /* 6129 * Disable preemption to guarantee consistent time stamps are stored to 6130 * the user page. 6131 */ 6132 preempt_disable(); 6133 ++userpg->lock; 6134 barrier(); 6135 userpg->index = perf_event_index(event); 6136 userpg->offset = perf_event_count(event); 6137 if (userpg->index) 6138 userpg->offset -= local64_read(&event->hw.prev_count); 6139 6140 userpg->time_enabled = enabled + 6141 atomic64_read(&event->child_total_time_enabled); 6142 6143 userpg->time_running = running + 6144 atomic64_read(&event->child_total_time_running); 6145 6146 arch_perf_update_userpage(event, userpg, now); 6147 6148 barrier(); 6149 ++userpg->lock; 6150 preempt_enable(); 6151 unlock: 6152 rcu_read_unlock(); 6153 } 6154 EXPORT_SYMBOL_GPL(perf_event_update_userpage); 6155 6156 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf) 6157 { 6158 struct perf_event *event = vmf->vma->vm_file->private_data; 6159 struct perf_buffer *rb; 6160 vm_fault_t ret = VM_FAULT_SIGBUS; 6161 6162 if (vmf->flags & FAULT_FLAG_MKWRITE) { 6163 if (vmf->pgoff == 0) 6164 ret = 0; 6165 return ret; 6166 } 6167 6168 rcu_read_lock(); 6169 rb = rcu_dereference(event->rb); 6170 if (!rb) 6171 goto unlock; 6172 6173 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 6174 goto unlock; 6175 6176 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 6177 if (!vmf->page) 6178 goto unlock; 6179 6180 get_page(vmf->page); 6181 vmf->page->mapping = vmf->vma->vm_file->f_mapping; 6182 vmf->page->index = vmf->pgoff; 6183 6184 ret = 0; 6185 unlock: 6186 rcu_read_unlock(); 6187 6188 return ret; 6189 } 6190 6191 static void ring_buffer_attach(struct perf_event *event, 6192 struct perf_buffer *rb) 6193 { 6194 struct perf_buffer *old_rb = NULL; 6195 unsigned long flags; 6196 6197 WARN_ON_ONCE(event->parent); 6198 6199 if (event->rb) { 6200 /* 6201 * Should be impossible, we set this when removing 6202 * event->rb_entry and wait/clear when adding event->rb_entry. 6203 */ 6204 WARN_ON_ONCE(event->rcu_pending); 6205 6206 old_rb = event->rb; 6207 spin_lock_irqsave(&old_rb->event_lock, flags); 6208 list_del_rcu(&event->rb_entry); 6209 spin_unlock_irqrestore(&old_rb->event_lock, flags); 6210 6211 event->rcu_batches = get_state_synchronize_rcu(); 6212 event->rcu_pending = 1; 6213 } 6214 6215 if (rb) { 6216 if (event->rcu_pending) { 6217 cond_synchronize_rcu(event->rcu_batches); 6218 event->rcu_pending = 0; 6219 } 6220 6221 spin_lock_irqsave(&rb->event_lock, flags); 6222 list_add_rcu(&event->rb_entry, &rb->event_list); 6223 spin_unlock_irqrestore(&rb->event_lock, flags); 6224 } 6225 6226 /* 6227 * Avoid racing with perf_mmap_close(AUX): stop the event 6228 * before swizzling the event::rb pointer; if it's getting 6229 * unmapped, its aux_mmap_count will be 0 and it won't 6230 * restart. See the comment in __perf_pmu_output_stop(). 6231 * 6232 * Data will inevitably be lost when set_output is done in 6233 * mid-air, but then again, whoever does it like this is 6234 * not in for the data anyway. 6235 */ 6236 if (has_aux(event)) 6237 perf_event_stop(event, 0); 6238 6239 rcu_assign_pointer(event->rb, rb); 6240 6241 if (old_rb) { 6242 ring_buffer_put(old_rb); 6243 /* 6244 * Since we detached before setting the new rb, so that we 6245 * could attach the new rb, we could have missed a wakeup. 6246 * Provide it now. 6247 */ 6248 wake_up_all(&event->waitq); 6249 } 6250 } 6251 6252 static void ring_buffer_wakeup(struct perf_event *event) 6253 { 6254 struct perf_buffer *rb; 6255 6256 if (event->parent) 6257 event = event->parent; 6258 6259 rcu_read_lock(); 6260 rb = rcu_dereference(event->rb); 6261 if (rb) { 6262 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 6263 wake_up_all(&event->waitq); 6264 } 6265 rcu_read_unlock(); 6266 } 6267 6268 struct perf_buffer *ring_buffer_get(struct perf_event *event) 6269 { 6270 struct perf_buffer *rb; 6271 6272 if (event->parent) 6273 event = event->parent; 6274 6275 rcu_read_lock(); 6276 rb = rcu_dereference(event->rb); 6277 if (rb) { 6278 if (!refcount_inc_not_zero(&rb->refcount)) 6279 rb = NULL; 6280 } 6281 rcu_read_unlock(); 6282 6283 return rb; 6284 } 6285 6286 void ring_buffer_put(struct perf_buffer *rb) 6287 { 6288 if (!refcount_dec_and_test(&rb->refcount)) 6289 return; 6290 6291 WARN_ON_ONCE(!list_empty(&rb->event_list)); 6292 6293 call_rcu(&rb->rcu_head, rb_free_rcu); 6294 } 6295 6296 static void perf_mmap_open(struct vm_area_struct *vma) 6297 { 6298 struct perf_event *event = vma->vm_file->private_data; 6299 6300 atomic_inc(&event->mmap_count); 6301 atomic_inc(&event->rb->mmap_count); 6302 6303 if (vma->vm_pgoff) 6304 atomic_inc(&event->rb->aux_mmap_count); 6305 6306 if (event->pmu->event_mapped) 6307 event->pmu->event_mapped(event, vma->vm_mm); 6308 } 6309 6310 static void perf_pmu_output_stop(struct perf_event *event); 6311 6312 /* 6313 * A buffer can be mmap()ed multiple times; either directly through the same 6314 * event, or through other events by use of perf_event_set_output(). 6315 * 6316 * In order to undo the VM accounting done by perf_mmap() we need to destroy 6317 * the buffer here, where we still have a VM context. This means we need 6318 * to detach all events redirecting to us. 6319 */ 6320 static void perf_mmap_close(struct vm_area_struct *vma) 6321 { 6322 struct perf_event *event = vma->vm_file->private_data; 6323 struct perf_buffer *rb = ring_buffer_get(event); 6324 struct user_struct *mmap_user = rb->mmap_user; 6325 int mmap_locked = rb->mmap_locked; 6326 unsigned long size = perf_data_size(rb); 6327 bool detach_rest = false; 6328 6329 if (event->pmu->event_unmapped) 6330 event->pmu->event_unmapped(event, vma->vm_mm); 6331 6332 /* 6333 * rb->aux_mmap_count will always drop before rb->mmap_count and 6334 * event->mmap_count, so it is ok to use event->mmap_mutex to 6335 * serialize with perf_mmap here. 6336 */ 6337 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 6338 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) { 6339 /* 6340 * Stop all AUX events that are writing to this buffer, 6341 * so that we can free its AUX pages and corresponding PMU 6342 * data. Note that after rb::aux_mmap_count dropped to zero, 6343 * they won't start any more (see perf_aux_output_begin()). 6344 */ 6345 perf_pmu_output_stop(event); 6346 6347 /* now it's safe to free the pages */ 6348 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm); 6349 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm); 6350 6351 /* this has to be the last one */ 6352 rb_free_aux(rb); 6353 WARN_ON_ONCE(refcount_read(&rb->aux_refcount)); 6354 6355 mutex_unlock(&event->mmap_mutex); 6356 } 6357 6358 if (atomic_dec_and_test(&rb->mmap_count)) 6359 detach_rest = true; 6360 6361 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 6362 goto out_put; 6363 6364 ring_buffer_attach(event, NULL); 6365 mutex_unlock(&event->mmap_mutex); 6366 6367 /* If there's still other mmap()s of this buffer, we're done. */ 6368 if (!detach_rest) 6369 goto out_put; 6370 6371 /* 6372 * No other mmap()s, detach from all other events that might redirect 6373 * into the now unreachable buffer. Somewhat complicated by the 6374 * fact that rb::event_lock otherwise nests inside mmap_mutex. 6375 */ 6376 again: 6377 rcu_read_lock(); 6378 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 6379 if (!atomic_long_inc_not_zero(&event->refcount)) { 6380 /* 6381 * This event is en-route to free_event() which will 6382 * detach it and remove it from the list. 6383 */ 6384 continue; 6385 } 6386 rcu_read_unlock(); 6387 6388 mutex_lock(&event->mmap_mutex); 6389 /* 6390 * Check we didn't race with perf_event_set_output() which can 6391 * swizzle the rb from under us while we were waiting to 6392 * acquire mmap_mutex. 6393 * 6394 * If we find a different rb; ignore this event, a next 6395 * iteration will no longer find it on the list. We have to 6396 * still restart the iteration to make sure we're not now 6397 * iterating the wrong list. 6398 */ 6399 if (event->rb == rb) 6400 ring_buffer_attach(event, NULL); 6401 6402 mutex_unlock(&event->mmap_mutex); 6403 put_event(event); 6404 6405 /* 6406 * Restart the iteration; either we're on the wrong list or 6407 * destroyed its integrity by doing a deletion. 6408 */ 6409 goto again; 6410 } 6411 rcu_read_unlock(); 6412 6413 /* 6414 * It could be there's still a few 0-ref events on the list; they'll 6415 * get cleaned up by free_event() -- they'll also still have their 6416 * ref on the rb and will free it whenever they are done with it. 6417 * 6418 * Aside from that, this buffer is 'fully' detached and unmapped, 6419 * undo the VM accounting. 6420 */ 6421 6422 atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked, 6423 &mmap_user->locked_vm); 6424 atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm); 6425 free_uid(mmap_user); 6426 6427 out_put: 6428 ring_buffer_put(rb); /* could be last */ 6429 } 6430 6431 static const struct vm_operations_struct perf_mmap_vmops = { 6432 .open = perf_mmap_open, 6433 .close = perf_mmap_close, /* non mergeable */ 6434 .fault = perf_mmap_fault, 6435 .page_mkwrite = perf_mmap_fault, 6436 }; 6437 6438 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 6439 { 6440 struct perf_event *event = file->private_data; 6441 unsigned long user_locked, user_lock_limit; 6442 struct user_struct *user = current_user(); 6443 struct perf_buffer *rb = NULL; 6444 unsigned long locked, lock_limit; 6445 unsigned long vma_size; 6446 unsigned long nr_pages; 6447 long user_extra = 0, extra = 0; 6448 int ret = 0, flags = 0; 6449 6450 /* 6451 * Don't allow mmap() of inherited per-task counters. This would 6452 * create a performance issue due to all children writing to the 6453 * same rb. 6454 */ 6455 if (event->cpu == -1 && event->attr.inherit) 6456 return -EINVAL; 6457 6458 if (!(vma->vm_flags & VM_SHARED)) 6459 return -EINVAL; 6460 6461 ret = security_perf_event_read(event); 6462 if (ret) 6463 return ret; 6464 6465 vma_size = vma->vm_end - vma->vm_start; 6466 6467 if (vma->vm_pgoff == 0) { 6468 nr_pages = (vma_size / PAGE_SIZE) - 1; 6469 } else { 6470 /* 6471 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 6472 * mapped, all subsequent mappings should have the same size 6473 * and offset. Must be above the normal perf buffer. 6474 */ 6475 u64 aux_offset, aux_size; 6476 6477 if (!event->rb) 6478 return -EINVAL; 6479 6480 nr_pages = vma_size / PAGE_SIZE; 6481 if (nr_pages > INT_MAX) 6482 return -ENOMEM; 6483 6484 mutex_lock(&event->mmap_mutex); 6485 ret = -EINVAL; 6486 6487 rb = event->rb; 6488 if (!rb) 6489 goto aux_unlock; 6490 6491 aux_offset = READ_ONCE(rb->user_page->aux_offset); 6492 aux_size = READ_ONCE(rb->user_page->aux_size); 6493 6494 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 6495 goto aux_unlock; 6496 6497 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 6498 goto aux_unlock; 6499 6500 /* already mapped with a different offset */ 6501 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 6502 goto aux_unlock; 6503 6504 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) 6505 goto aux_unlock; 6506 6507 /* already mapped with a different size */ 6508 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 6509 goto aux_unlock; 6510 6511 if (!is_power_of_2(nr_pages)) 6512 goto aux_unlock; 6513 6514 if (!atomic_inc_not_zero(&rb->mmap_count)) 6515 goto aux_unlock; 6516 6517 if (rb_has_aux(rb)) { 6518 atomic_inc(&rb->aux_mmap_count); 6519 ret = 0; 6520 goto unlock; 6521 } 6522 6523 atomic_set(&rb->aux_mmap_count, 1); 6524 user_extra = nr_pages; 6525 6526 goto accounting; 6527 } 6528 6529 /* 6530 * If we have rb pages ensure they're a power-of-two number, so we 6531 * can do bitmasks instead of modulo. 6532 */ 6533 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 6534 return -EINVAL; 6535 6536 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 6537 return -EINVAL; 6538 6539 WARN_ON_ONCE(event->ctx->parent_ctx); 6540 again: 6541 mutex_lock(&event->mmap_mutex); 6542 if (event->rb) { 6543 if (data_page_nr(event->rb) != nr_pages) { 6544 ret = -EINVAL; 6545 goto unlock; 6546 } 6547 6548 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 6549 /* 6550 * Raced against perf_mmap_close(); remove the 6551 * event and try again. 6552 */ 6553 ring_buffer_attach(event, NULL); 6554 mutex_unlock(&event->mmap_mutex); 6555 goto again; 6556 } 6557 6558 goto unlock; 6559 } 6560 6561 user_extra = nr_pages + 1; 6562 6563 accounting: 6564 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 6565 6566 /* 6567 * Increase the limit linearly with more CPUs: 6568 */ 6569 user_lock_limit *= num_online_cpus(); 6570 6571 user_locked = atomic_long_read(&user->locked_vm); 6572 6573 /* 6574 * sysctl_perf_event_mlock may have changed, so that 6575 * user->locked_vm > user_lock_limit 6576 */ 6577 if (user_locked > user_lock_limit) 6578 user_locked = user_lock_limit; 6579 user_locked += user_extra; 6580 6581 if (user_locked > user_lock_limit) { 6582 /* 6583 * charge locked_vm until it hits user_lock_limit; 6584 * charge the rest from pinned_vm 6585 */ 6586 extra = user_locked - user_lock_limit; 6587 user_extra -= extra; 6588 } 6589 6590 lock_limit = rlimit(RLIMIT_MEMLOCK); 6591 lock_limit >>= PAGE_SHIFT; 6592 locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra; 6593 6594 if ((locked > lock_limit) && perf_is_paranoid() && 6595 !capable(CAP_IPC_LOCK)) { 6596 ret = -EPERM; 6597 goto unlock; 6598 } 6599 6600 WARN_ON(!rb && event->rb); 6601 6602 if (vma->vm_flags & VM_WRITE) 6603 flags |= RING_BUFFER_WRITABLE; 6604 6605 if (!rb) { 6606 rb = rb_alloc(nr_pages, 6607 event->attr.watermark ? event->attr.wakeup_watermark : 0, 6608 event->cpu, flags); 6609 6610 if (!rb) { 6611 ret = -ENOMEM; 6612 goto unlock; 6613 } 6614 6615 atomic_set(&rb->mmap_count, 1); 6616 rb->mmap_user = get_current_user(); 6617 rb->mmap_locked = extra; 6618 6619 ring_buffer_attach(event, rb); 6620 6621 perf_event_update_time(event); 6622 perf_event_init_userpage(event); 6623 perf_event_update_userpage(event); 6624 } else { 6625 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 6626 event->attr.aux_watermark, flags); 6627 if (!ret) 6628 rb->aux_mmap_locked = extra; 6629 } 6630 6631 unlock: 6632 if (!ret) { 6633 atomic_long_add(user_extra, &user->locked_vm); 6634 atomic64_add(extra, &vma->vm_mm->pinned_vm); 6635 6636 atomic_inc(&event->mmap_count); 6637 } else if (rb) { 6638 atomic_dec(&rb->mmap_count); 6639 } 6640 aux_unlock: 6641 mutex_unlock(&event->mmap_mutex); 6642 6643 /* 6644 * Since pinned accounting is per vm we cannot allow fork() to copy our 6645 * vma. 6646 */ 6647 vm_flags_set(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP); 6648 vma->vm_ops = &perf_mmap_vmops; 6649 6650 if (event->pmu->event_mapped) 6651 event->pmu->event_mapped(event, vma->vm_mm); 6652 6653 return ret; 6654 } 6655 6656 static int perf_fasync(int fd, struct file *filp, int on) 6657 { 6658 struct inode *inode = file_inode(filp); 6659 struct perf_event *event = filp->private_data; 6660 int retval; 6661 6662 inode_lock(inode); 6663 retval = fasync_helper(fd, filp, on, &event->fasync); 6664 inode_unlock(inode); 6665 6666 if (retval < 0) 6667 return retval; 6668 6669 return 0; 6670 } 6671 6672 static const struct file_operations perf_fops = { 6673 .llseek = no_llseek, 6674 .release = perf_release, 6675 .read = perf_read, 6676 .poll = perf_poll, 6677 .unlocked_ioctl = perf_ioctl, 6678 .compat_ioctl = perf_compat_ioctl, 6679 .mmap = perf_mmap, 6680 .fasync = perf_fasync, 6681 }; 6682 6683 /* 6684 * Perf event wakeup 6685 * 6686 * If there's data, ensure we set the poll() state and publish everything 6687 * to user-space before waking everybody up. 6688 */ 6689 6690 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event) 6691 { 6692 /* only the parent has fasync state */ 6693 if (event->parent) 6694 event = event->parent; 6695 return &event->fasync; 6696 } 6697 6698 void perf_event_wakeup(struct perf_event *event) 6699 { 6700 ring_buffer_wakeup(event); 6701 6702 if (event->pending_kill) { 6703 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); 6704 event->pending_kill = 0; 6705 } 6706 } 6707 6708 static void perf_sigtrap(struct perf_event *event) 6709 { 6710 /* 6711 * We'd expect this to only occur if the irq_work is delayed and either 6712 * ctx->task or current has changed in the meantime. This can be the 6713 * case on architectures that do not implement arch_irq_work_raise(). 6714 */ 6715 if (WARN_ON_ONCE(event->ctx->task != current)) 6716 return; 6717 6718 /* 6719 * Both perf_pending_task() and perf_pending_irq() can race with the 6720 * task exiting. 6721 */ 6722 if (current->flags & PF_EXITING) 6723 return; 6724 6725 send_sig_perf((void __user *)event->pending_addr, 6726 event->orig_type, event->attr.sig_data); 6727 } 6728 6729 /* 6730 * Deliver the pending work in-event-context or follow the context. 6731 */ 6732 static void __perf_pending_irq(struct perf_event *event) 6733 { 6734 int cpu = READ_ONCE(event->oncpu); 6735 6736 /* 6737 * If the event isn't running; we done. event_sched_out() will have 6738 * taken care of things. 6739 */ 6740 if (cpu < 0) 6741 return; 6742 6743 /* 6744 * Yay, we hit home and are in the context of the event. 6745 */ 6746 if (cpu == smp_processor_id()) { 6747 if (event->pending_sigtrap) { 6748 event->pending_sigtrap = 0; 6749 perf_sigtrap(event); 6750 local_dec(&event->ctx->nr_pending); 6751 } 6752 if (event->pending_disable) { 6753 event->pending_disable = 0; 6754 perf_event_disable_local(event); 6755 } 6756 return; 6757 } 6758 6759 /* 6760 * CPU-A CPU-B 6761 * 6762 * perf_event_disable_inatomic() 6763 * @pending_disable = CPU-A; 6764 * irq_work_queue(); 6765 * 6766 * sched-out 6767 * @pending_disable = -1; 6768 * 6769 * sched-in 6770 * perf_event_disable_inatomic() 6771 * @pending_disable = CPU-B; 6772 * irq_work_queue(); // FAILS 6773 * 6774 * irq_work_run() 6775 * perf_pending_irq() 6776 * 6777 * But the event runs on CPU-B and wants disabling there. 6778 */ 6779 irq_work_queue_on(&event->pending_irq, cpu); 6780 } 6781 6782 static void perf_pending_irq(struct irq_work *entry) 6783 { 6784 struct perf_event *event = container_of(entry, struct perf_event, pending_irq); 6785 int rctx; 6786 6787 /* 6788 * If we 'fail' here, that's OK, it means recursion is already disabled 6789 * and we won't recurse 'further'. 6790 */ 6791 rctx = perf_swevent_get_recursion_context(); 6792 6793 /* 6794 * The wakeup isn't bound to the context of the event -- it can happen 6795 * irrespective of where the event is. 6796 */ 6797 if (event->pending_wakeup) { 6798 event->pending_wakeup = 0; 6799 perf_event_wakeup(event); 6800 } 6801 6802 __perf_pending_irq(event); 6803 6804 if (rctx >= 0) 6805 perf_swevent_put_recursion_context(rctx); 6806 } 6807 6808 static void perf_pending_task(struct callback_head *head) 6809 { 6810 struct perf_event *event = container_of(head, struct perf_event, pending_task); 6811 int rctx; 6812 6813 /* 6814 * If we 'fail' here, that's OK, it means recursion is already disabled 6815 * and we won't recurse 'further'. 6816 */ 6817 preempt_disable_notrace(); 6818 rctx = perf_swevent_get_recursion_context(); 6819 6820 if (event->pending_work) { 6821 event->pending_work = 0; 6822 perf_sigtrap(event); 6823 local_dec(&event->ctx->nr_pending); 6824 } 6825 6826 if (rctx >= 0) 6827 perf_swevent_put_recursion_context(rctx); 6828 preempt_enable_notrace(); 6829 6830 put_event(event); 6831 } 6832 6833 #ifdef CONFIG_GUEST_PERF_EVENTS 6834 struct perf_guest_info_callbacks __rcu *perf_guest_cbs; 6835 6836 DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state); 6837 DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip); 6838 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr); 6839 6840 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 6841 { 6842 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs))) 6843 return; 6844 6845 rcu_assign_pointer(perf_guest_cbs, cbs); 6846 static_call_update(__perf_guest_state, cbs->state); 6847 static_call_update(__perf_guest_get_ip, cbs->get_ip); 6848 6849 /* Implementing ->handle_intel_pt_intr is optional. */ 6850 if (cbs->handle_intel_pt_intr) 6851 static_call_update(__perf_guest_handle_intel_pt_intr, 6852 cbs->handle_intel_pt_intr); 6853 } 6854 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 6855 6856 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 6857 { 6858 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs)) 6859 return; 6860 6861 rcu_assign_pointer(perf_guest_cbs, NULL); 6862 static_call_update(__perf_guest_state, (void *)&__static_call_return0); 6863 static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0); 6864 static_call_update(__perf_guest_handle_intel_pt_intr, 6865 (void *)&__static_call_return0); 6866 synchronize_rcu(); 6867 } 6868 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 6869 #endif 6870 6871 static void 6872 perf_output_sample_regs(struct perf_output_handle *handle, 6873 struct pt_regs *regs, u64 mask) 6874 { 6875 int bit; 6876 DECLARE_BITMAP(_mask, 64); 6877 6878 bitmap_from_u64(_mask, mask); 6879 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) { 6880 u64 val; 6881 6882 val = perf_reg_value(regs, bit); 6883 perf_output_put(handle, val); 6884 } 6885 } 6886 6887 static void perf_sample_regs_user(struct perf_regs *regs_user, 6888 struct pt_regs *regs) 6889 { 6890 if (user_mode(regs)) { 6891 regs_user->abi = perf_reg_abi(current); 6892 regs_user->regs = regs; 6893 } else if (!(current->flags & PF_KTHREAD)) { 6894 perf_get_regs_user(regs_user, regs); 6895 } else { 6896 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 6897 regs_user->regs = NULL; 6898 } 6899 } 6900 6901 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 6902 struct pt_regs *regs) 6903 { 6904 regs_intr->regs = regs; 6905 regs_intr->abi = perf_reg_abi(current); 6906 } 6907 6908 6909 /* 6910 * Get remaining task size from user stack pointer. 6911 * 6912 * It'd be better to take stack vma map and limit this more 6913 * precisely, but there's no way to get it safely under interrupt, 6914 * so using TASK_SIZE as limit. 6915 */ 6916 static u64 perf_ustack_task_size(struct pt_regs *regs) 6917 { 6918 unsigned long addr = perf_user_stack_pointer(regs); 6919 6920 if (!addr || addr >= TASK_SIZE) 6921 return 0; 6922 6923 return TASK_SIZE - addr; 6924 } 6925 6926 static u16 6927 perf_sample_ustack_size(u16 stack_size, u16 header_size, 6928 struct pt_regs *regs) 6929 { 6930 u64 task_size; 6931 6932 /* No regs, no stack pointer, no dump. */ 6933 if (!regs) 6934 return 0; 6935 6936 /* 6937 * Check if we fit in with the requested stack size into the: 6938 * - TASK_SIZE 6939 * If we don't, we limit the size to the TASK_SIZE. 6940 * 6941 * - remaining sample size 6942 * If we don't, we customize the stack size to 6943 * fit in to the remaining sample size. 6944 */ 6945 6946 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 6947 stack_size = min(stack_size, (u16) task_size); 6948 6949 /* Current header size plus static size and dynamic size. */ 6950 header_size += 2 * sizeof(u64); 6951 6952 /* Do we fit in with the current stack dump size? */ 6953 if ((u16) (header_size + stack_size) < header_size) { 6954 /* 6955 * If we overflow the maximum size for the sample, 6956 * we customize the stack dump size to fit in. 6957 */ 6958 stack_size = USHRT_MAX - header_size - sizeof(u64); 6959 stack_size = round_up(stack_size, sizeof(u64)); 6960 } 6961 6962 return stack_size; 6963 } 6964 6965 static void 6966 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 6967 struct pt_regs *regs) 6968 { 6969 /* Case of a kernel thread, nothing to dump */ 6970 if (!regs) { 6971 u64 size = 0; 6972 perf_output_put(handle, size); 6973 } else { 6974 unsigned long sp; 6975 unsigned int rem; 6976 u64 dyn_size; 6977 6978 /* 6979 * We dump: 6980 * static size 6981 * - the size requested by user or the best one we can fit 6982 * in to the sample max size 6983 * data 6984 * - user stack dump data 6985 * dynamic size 6986 * - the actual dumped size 6987 */ 6988 6989 /* Static size. */ 6990 perf_output_put(handle, dump_size); 6991 6992 /* Data. */ 6993 sp = perf_user_stack_pointer(regs); 6994 rem = __output_copy_user(handle, (void *) sp, dump_size); 6995 dyn_size = dump_size - rem; 6996 6997 perf_output_skip(handle, rem); 6998 6999 /* Dynamic size. */ 7000 perf_output_put(handle, dyn_size); 7001 } 7002 } 7003 7004 static unsigned long perf_prepare_sample_aux(struct perf_event *event, 7005 struct perf_sample_data *data, 7006 size_t size) 7007 { 7008 struct perf_event *sampler = event->aux_event; 7009 struct perf_buffer *rb; 7010 7011 data->aux_size = 0; 7012 7013 if (!sampler) 7014 goto out; 7015 7016 if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE)) 7017 goto out; 7018 7019 if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id())) 7020 goto out; 7021 7022 rb = ring_buffer_get(sampler); 7023 if (!rb) 7024 goto out; 7025 7026 /* 7027 * If this is an NMI hit inside sampling code, don't take 7028 * the sample. See also perf_aux_sample_output(). 7029 */ 7030 if (READ_ONCE(rb->aux_in_sampling)) { 7031 data->aux_size = 0; 7032 } else { 7033 size = min_t(size_t, size, perf_aux_size(rb)); 7034 data->aux_size = ALIGN(size, sizeof(u64)); 7035 } 7036 ring_buffer_put(rb); 7037 7038 out: 7039 return data->aux_size; 7040 } 7041 7042 static long perf_pmu_snapshot_aux(struct perf_buffer *rb, 7043 struct perf_event *event, 7044 struct perf_output_handle *handle, 7045 unsigned long size) 7046 { 7047 unsigned long flags; 7048 long ret; 7049 7050 /* 7051 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler 7052 * paths. If we start calling them in NMI context, they may race with 7053 * the IRQ ones, that is, for example, re-starting an event that's just 7054 * been stopped, which is why we're using a separate callback that 7055 * doesn't change the event state. 7056 * 7057 * IRQs need to be disabled to prevent IPIs from racing with us. 7058 */ 7059 local_irq_save(flags); 7060 /* 7061 * Guard against NMI hits inside the critical section; 7062 * see also perf_prepare_sample_aux(). 7063 */ 7064 WRITE_ONCE(rb->aux_in_sampling, 1); 7065 barrier(); 7066 7067 ret = event->pmu->snapshot_aux(event, handle, size); 7068 7069 barrier(); 7070 WRITE_ONCE(rb->aux_in_sampling, 0); 7071 local_irq_restore(flags); 7072 7073 return ret; 7074 } 7075 7076 static void perf_aux_sample_output(struct perf_event *event, 7077 struct perf_output_handle *handle, 7078 struct perf_sample_data *data) 7079 { 7080 struct perf_event *sampler = event->aux_event; 7081 struct perf_buffer *rb; 7082 unsigned long pad; 7083 long size; 7084 7085 if (WARN_ON_ONCE(!sampler || !data->aux_size)) 7086 return; 7087 7088 rb = ring_buffer_get(sampler); 7089 if (!rb) 7090 return; 7091 7092 size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size); 7093 7094 /* 7095 * An error here means that perf_output_copy() failed (returned a 7096 * non-zero surplus that it didn't copy), which in its current 7097 * enlightened implementation is not possible. If that changes, we'd 7098 * like to know. 7099 */ 7100 if (WARN_ON_ONCE(size < 0)) 7101 goto out_put; 7102 7103 /* 7104 * The pad comes from ALIGN()ing data->aux_size up to u64 in 7105 * perf_prepare_sample_aux(), so should not be more than that. 7106 */ 7107 pad = data->aux_size - size; 7108 if (WARN_ON_ONCE(pad >= sizeof(u64))) 7109 pad = 8; 7110 7111 if (pad) { 7112 u64 zero = 0; 7113 perf_output_copy(handle, &zero, pad); 7114 } 7115 7116 out_put: 7117 ring_buffer_put(rb); 7118 } 7119 7120 /* 7121 * A set of common sample data types saved even for non-sample records 7122 * when event->attr.sample_id_all is set. 7123 */ 7124 #define PERF_SAMPLE_ID_ALL (PERF_SAMPLE_TID | PERF_SAMPLE_TIME | \ 7125 PERF_SAMPLE_ID | PERF_SAMPLE_STREAM_ID | \ 7126 PERF_SAMPLE_CPU | PERF_SAMPLE_IDENTIFIER) 7127 7128 static void __perf_event_header__init_id(struct perf_sample_data *data, 7129 struct perf_event *event, 7130 u64 sample_type) 7131 { 7132 data->type = event->attr.sample_type; 7133 data->sample_flags |= data->type & PERF_SAMPLE_ID_ALL; 7134 7135 if (sample_type & PERF_SAMPLE_TID) { 7136 /* namespace issues */ 7137 data->tid_entry.pid = perf_event_pid(event, current); 7138 data->tid_entry.tid = perf_event_tid(event, current); 7139 } 7140 7141 if (sample_type & PERF_SAMPLE_TIME) 7142 data->time = perf_event_clock(event); 7143 7144 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 7145 data->id = primary_event_id(event); 7146 7147 if (sample_type & PERF_SAMPLE_STREAM_ID) 7148 data->stream_id = event->id; 7149 7150 if (sample_type & PERF_SAMPLE_CPU) { 7151 data->cpu_entry.cpu = raw_smp_processor_id(); 7152 data->cpu_entry.reserved = 0; 7153 } 7154 } 7155 7156 void perf_event_header__init_id(struct perf_event_header *header, 7157 struct perf_sample_data *data, 7158 struct perf_event *event) 7159 { 7160 if (event->attr.sample_id_all) { 7161 header->size += event->id_header_size; 7162 __perf_event_header__init_id(data, event, event->attr.sample_type); 7163 } 7164 } 7165 7166 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 7167 struct perf_sample_data *data) 7168 { 7169 u64 sample_type = data->type; 7170 7171 if (sample_type & PERF_SAMPLE_TID) 7172 perf_output_put(handle, data->tid_entry); 7173 7174 if (sample_type & PERF_SAMPLE_TIME) 7175 perf_output_put(handle, data->time); 7176 7177 if (sample_type & PERF_SAMPLE_ID) 7178 perf_output_put(handle, data->id); 7179 7180 if (sample_type & PERF_SAMPLE_STREAM_ID) 7181 perf_output_put(handle, data->stream_id); 7182 7183 if (sample_type & PERF_SAMPLE_CPU) 7184 perf_output_put(handle, data->cpu_entry); 7185 7186 if (sample_type & PERF_SAMPLE_IDENTIFIER) 7187 perf_output_put(handle, data->id); 7188 } 7189 7190 void perf_event__output_id_sample(struct perf_event *event, 7191 struct perf_output_handle *handle, 7192 struct perf_sample_data *sample) 7193 { 7194 if (event->attr.sample_id_all) 7195 __perf_event__output_id_sample(handle, sample); 7196 } 7197 7198 static void perf_output_read_one(struct perf_output_handle *handle, 7199 struct perf_event *event, 7200 u64 enabled, u64 running) 7201 { 7202 u64 read_format = event->attr.read_format; 7203 u64 values[5]; 7204 int n = 0; 7205 7206 values[n++] = perf_event_count(event); 7207 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 7208 values[n++] = enabled + 7209 atomic64_read(&event->child_total_time_enabled); 7210 } 7211 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 7212 values[n++] = running + 7213 atomic64_read(&event->child_total_time_running); 7214 } 7215 if (read_format & PERF_FORMAT_ID) 7216 values[n++] = primary_event_id(event); 7217 if (read_format & PERF_FORMAT_LOST) 7218 values[n++] = atomic64_read(&event->lost_samples); 7219 7220 __output_copy(handle, values, n * sizeof(u64)); 7221 } 7222 7223 static void perf_output_read_group(struct perf_output_handle *handle, 7224 struct perf_event *event, 7225 u64 enabled, u64 running) 7226 { 7227 struct perf_event *leader = event->group_leader, *sub; 7228 u64 read_format = event->attr.read_format; 7229 unsigned long flags; 7230 u64 values[6]; 7231 int n = 0; 7232 7233 /* 7234 * Disabling interrupts avoids all counter scheduling 7235 * (context switches, timer based rotation and IPIs). 7236 */ 7237 local_irq_save(flags); 7238 7239 values[n++] = 1 + leader->nr_siblings; 7240 7241 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 7242 values[n++] = enabled; 7243 7244 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 7245 values[n++] = running; 7246 7247 if ((leader != event) && 7248 (leader->state == PERF_EVENT_STATE_ACTIVE)) 7249 leader->pmu->read(leader); 7250 7251 values[n++] = perf_event_count(leader); 7252 if (read_format & PERF_FORMAT_ID) 7253 values[n++] = primary_event_id(leader); 7254 if (read_format & PERF_FORMAT_LOST) 7255 values[n++] = atomic64_read(&leader->lost_samples); 7256 7257 __output_copy(handle, values, n * sizeof(u64)); 7258 7259 for_each_sibling_event(sub, leader) { 7260 n = 0; 7261 7262 if ((sub != event) && 7263 (sub->state == PERF_EVENT_STATE_ACTIVE)) 7264 sub->pmu->read(sub); 7265 7266 values[n++] = perf_event_count(sub); 7267 if (read_format & PERF_FORMAT_ID) 7268 values[n++] = primary_event_id(sub); 7269 if (read_format & PERF_FORMAT_LOST) 7270 values[n++] = atomic64_read(&sub->lost_samples); 7271 7272 __output_copy(handle, values, n * sizeof(u64)); 7273 } 7274 7275 local_irq_restore(flags); 7276 } 7277 7278 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 7279 PERF_FORMAT_TOTAL_TIME_RUNNING) 7280 7281 /* 7282 * XXX PERF_SAMPLE_READ vs inherited events seems difficult. 7283 * 7284 * The problem is that its both hard and excessively expensive to iterate the 7285 * child list, not to mention that its impossible to IPI the children running 7286 * on another CPU, from interrupt/NMI context. 7287 */ 7288 static void perf_output_read(struct perf_output_handle *handle, 7289 struct perf_event *event) 7290 { 7291 u64 enabled = 0, running = 0, now; 7292 u64 read_format = event->attr.read_format; 7293 7294 /* 7295 * compute total_time_enabled, total_time_running 7296 * based on snapshot values taken when the event 7297 * was last scheduled in. 7298 * 7299 * we cannot simply called update_context_time() 7300 * because of locking issue as we are called in 7301 * NMI context 7302 */ 7303 if (read_format & PERF_FORMAT_TOTAL_TIMES) 7304 calc_timer_values(event, &now, &enabled, &running); 7305 7306 if (event->attr.read_format & PERF_FORMAT_GROUP) 7307 perf_output_read_group(handle, event, enabled, running); 7308 else 7309 perf_output_read_one(handle, event, enabled, running); 7310 } 7311 7312 void perf_output_sample(struct perf_output_handle *handle, 7313 struct perf_event_header *header, 7314 struct perf_sample_data *data, 7315 struct perf_event *event) 7316 { 7317 u64 sample_type = data->type; 7318 7319 perf_output_put(handle, *header); 7320 7321 if (sample_type & PERF_SAMPLE_IDENTIFIER) 7322 perf_output_put(handle, data->id); 7323 7324 if (sample_type & PERF_SAMPLE_IP) 7325 perf_output_put(handle, data->ip); 7326 7327 if (sample_type & PERF_SAMPLE_TID) 7328 perf_output_put(handle, data->tid_entry); 7329 7330 if (sample_type & PERF_SAMPLE_TIME) 7331 perf_output_put(handle, data->time); 7332 7333 if (sample_type & PERF_SAMPLE_ADDR) 7334 perf_output_put(handle, data->addr); 7335 7336 if (sample_type & PERF_SAMPLE_ID) 7337 perf_output_put(handle, data->id); 7338 7339 if (sample_type & PERF_SAMPLE_STREAM_ID) 7340 perf_output_put(handle, data->stream_id); 7341 7342 if (sample_type & PERF_SAMPLE_CPU) 7343 perf_output_put(handle, data->cpu_entry); 7344 7345 if (sample_type & PERF_SAMPLE_PERIOD) 7346 perf_output_put(handle, data->period); 7347 7348 if (sample_type & PERF_SAMPLE_READ) 7349 perf_output_read(handle, event); 7350 7351 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 7352 int size = 1; 7353 7354 size += data->callchain->nr; 7355 size *= sizeof(u64); 7356 __output_copy(handle, data->callchain, size); 7357 } 7358 7359 if (sample_type & PERF_SAMPLE_RAW) { 7360 struct perf_raw_record *raw = data->raw; 7361 7362 if (raw) { 7363 struct perf_raw_frag *frag = &raw->frag; 7364 7365 perf_output_put(handle, raw->size); 7366 do { 7367 if (frag->copy) { 7368 __output_custom(handle, frag->copy, 7369 frag->data, frag->size); 7370 } else { 7371 __output_copy(handle, frag->data, 7372 frag->size); 7373 } 7374 if (perf_raw_frag_last(frag)) 7375 break; 7376 frag = frag->next; 7377 } while (1); 7378 if (frag->pad) 7379 __output_skip(handle, NULL, frag->pad); 7380 } else { 7381 struct { 7382 u32 size; 7383 u32 data; 7384 } raw = { 7385 .size = sizeof(u32), 7386 .data = 0, 7387 }; 7388 perf_output_put(handle, raw); 7389 } 7390 } 7391 7392 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 7393 if (data->br_stack) { 7394 size_t size; 7395 7396 size = data->br_stack->nr 7397 * sizeof(struct perf_branch_entry); 7398 7399 perf_output_put(handle, data->br_stack->nr); 7400 if (branch_sample_hw_index(event)) 7401 perf_output_put(handle, data->br_stack->hw_idx); 7402 perf_output_copy(handle, data->br_stack->entries, size); 7403 } else { 7404 /* 7405 * we always store at least the value of nr 7406 */ 7407 u64 nr = 0; 7408 perf_output_put(handle, nr); 7409 } 7410 } 7411 7412 if (sample_type & PERF_SAMPLE_REGS_USER) { 7413 u64 abi = data->regs_user.abi; 7414 7415 /* 7416 * If there are no regs to dump, notice it through 7417 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 7418 */ 7419 perf_output_put(handle, abi); 7420 7421 if (abi) { 7422 u64 mask = event->attr.sample_regs_user; 7423 perf_output_sample_regs(handle, 7424 data->regs_user.regs, 7425 mask); 7426 } 7427 } 7428 7429 if (sample_type & PERF_SAMPLE_STACK_USER) { 7430 perf_output_sample_ustack(handle, 7431 data->stack_user_size, 7432 data->regs_user.regs); 7433 } 7434 7435 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) 7436 perf_output_put(handle, data->weight.full); 7437 7438 if (sample_type & PERF_SAMPLE_DATA_SRC) 7439 perf_output_put(handle, data->data_src.val); 7440 7441 if (sample_type & PERF_SAMPLE_TRANSACTION) 7442 perf_output_put(handle, data->txn); 7443 7444 if (sample_type & PERF_SAMPLE_REGS_INTR) { 7445 u64 abi = data->regs_intr.abi; 7446 /* 7447 * If there are no regs to dump, notice it through 7448 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 7449 */ 7450 perf_output_put(handle, abi); 7451 7452 if (abi) { 7453 u64 mask = event->attr.sample_regs_intr; 7454 7455 perf_output_sample_regs(handle, 7456 data->regs_intr.regs, 7457 mask); 7458 } 7459 } 7460 7461 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 7462 perf_output_put(handle, data->phys_addr); 7463 7464 if (sample_type & PERF_SAMPLE_CGROUP) 7465 perf_output_put(handle, data->cgroup); 7466 7467 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 7468 perf_output_put(handle, data->data_page_size); 7469 7470 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 7471 perf_output_put(handle, data->code_page_size); 7472 7473 if (sample_type & PERF_SAMPLE_AUX) { 7474 perf_output_put(handle, data->aux_size); 7475 7476 if (data->aux_size) 7477 perf_aux_sample_output(event, handle, data); 7478 } 7479 7480 if (!event->attr.watermark) { 7481 int wakeup_events = event->attr.wakeup_events; 7482 7483 if (wakeup_events) { 7484 struct perf_buffer *rb = handle->rb; 7485 int events = local_inc_return(&rb->events); 7486 7487 if (events >= wakeup_events) { 7488 local_sub(wakeup_events, &rb->events); 7489 local_inc(&rb->wakeup); 7490 } 7491 } 7492 } 7493 } 7494 7495 static u64 perf_virt_to_phys(u64 virt) 7496 { 7497 u64 phys_addr = 0; 7498 7499 if (!virt) 7500 return 0; 7501 7502 if (virt >= TASK_SIZE) { 7503 /* If it's vmalloc()d memory, leave phys_addr as 0 */ 7504 if (virt_addr_valid((void *)(uintptr_t)virt) && 7505 !(virt >= VMALLOC_START && virt < VMALLOC_END)) 7506 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt); 7507 } else { 7508 /* 7509 * Walking the pages tables for user address. 7510 * Interrupts are disabled, so it prevents any tear down 7511 * of the page tables. 7512 * Try IRQ-safe get_user_page_fast_only first. 7513 * If failed, leave phys_addr as 0. 7514 */ 7515 if (current->mm != NULL) { 7516 struct page *p; 7517 7518 pagefault_disable(); 7519 if (get_user_page_fast_only(virt, 0, &p)) { 7520 phys_addr = page_to_phys(p) + virt % PAGE_SIZE; 7521 put_page(p); 7522 } 7523 pagefault_enable(); 7524 } 7525 } 7526 7527 return phys_addr; 7528 } 7529 7530 /* 7531 * Return the pagetable size of a given virtual address. 7532 */ 7533 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr) 7534 { 7535 u64 size = 0; 7536 7537 #ifdef CONFIG_HAVE_FAST_GUP 7538 pgd_t *pgdp, pgd; 7539 p4d_t *p4dp, p4d; 7540 pud_t *pudp, pud; 7541 pmd_t *pmdp, pmd; 7542 pte_t *ptep, pte; 7543 7544 pgdp = pgd_offset(mm, addr); 7545 pgd = READ_ONCE(*pgdp); 7546 if (pgd_none(pgd)) 7547 return 0; 7548 7549 if (pgd_leaf(pgd)) 7550 return pgd_leaf_size(pgd); 7551 7552 p4dp = p4d_offset_lockless(pgdp, pgd, addr); 7553 p4d = READ_ONCE(*p4dp); 7554 if (!p4d_present(p4d)) 7555 return 0; 7556 7557 if (p4d_leaf(p4d)) 7558 return p4d_leaf_size(p4d); 7559 7560 pudp = pud_offset_lockless(p4dp, p4d, addr); 7561 pud = READ_ONCE(*pudp); 7562 if (!pud_present(pud)) 7563 return 0; 7564 7565 if (pud_leaf(pud)) 7566 return pud_leaf_size(pud); 7567 7568 pmdp = pmd_offset_lockless(pudp, pud, addr); 7569 again: 7570 pmd = pmdp_get_lockless(pmdp); 7571 if (!pmd_present(pmd)) 7572 return 0; 7573 7574 if (pmd_leaf(pmd)) 7575 return pmd_leaf_size(pmd); 7576 7577 ptep = pte_offset_map(&pmd, addr); 7578 if (!ptep) 7579 goto again; 7580 7581 pte = ptep_get_lockless(ptep); 7582 if (pte_present(pte)) 7583 size = pte_leaf_size(pte); 7584 pte_unmap(ptep); 7585 #endif /* CONFIG_HAVE_FAST_GUP */ 7586 7587 return size; 7588 } 7589 7590 static u64 perf_get_page_size(unsigned long addr) 7591 { 7592 struct mm_struct *mm; 7593 unsigned long flags; 7594 u64 size; 7595 7596 if (!addr) 7597 return 0; 7598 7599 /* 7600 * Software page-table walkers must disable IRQs, 7601 * which prevents any tear down of the page tables. 7602 */ 7603 local_irq_save(flags); 7604 7605 mm = current->mm; 7606 if (!mm) { 7607 /* 7608 * For kernel threads and the like, use init_mm so that 7609 * we can find kernel memory. 7610 */ 7611 mm = &init_mm; 7612 } 7613 7614 size = perf_get_pgtable_size(mm, addr); 7615 7616 local_irq_restore(flags); 7617 7618 return size; 7619 } 7620 7621 static struct perf_callchain_entry __empty_callchain = { .nr = 0, }; 7622 7623 struct perf_callchain_entry * 7624 perf_callchain(struct perf_event *event, struct pt_regs *regs) 7625 { 7626 bool kernel = !event->attr.exclude_callchain_kernel; 7627 bool user = !event->attr.exclude_callchain_user; 7628 /* Disallow cross-task user callchains. */ 7629 bool crosstask = event->ctx->task && event->ctx->task != current; 7630 const u32 max_stack = event->attr.sample_max_stack; 7631 struct perf_callchain_entry *callchain; 7632 7633 if (!kernel && !user) 7634 return &__empty_callchain; 7635 7636 callchain = get_perf_callchain(regs, 0, kernel, user, 7637 max_stack, crosstask, true); 7638 return callchain ?: &__empty_callchain; 7639 } 7640 7641 static __always_inline u64 __cond_set(u64 flags, u64 s, u64 d) 7642 { 7643 return d * !!(flags & s); 7644 } 7645 7646 void perf_prepare_sample(struct perf_sample_data *data, 7647 struct perf_event *event, 7648 struct pt_regs *regs) 7649 { 7650 u64 sample_type = event->attr.sample_type; 7651 u64 filtered_sample_type; 7652 7653 /* 7654 * Add the sample flags that are dependent to others. And clear the 7655 * sample flags that have already been done by the PMU driver. 7656 */ 7657 filtered_sample_type = sample_type; 7658 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_CODE_PAGE_SIZE, 7659 PERF_SAMPLE_IP); 7660 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_DATA_PAGE_SIZE | 7661 PERF_SAMPLE_PHYS_ADDR, PERF_SAMPLE_ADDR); 7662 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_STACK_USER, 7663 PERF_SAMPLE_REGS_USER); 7664 filtered_sample_type &= ~data->sample_flags; 7665 7666 if (filtered_sample_type == 0) { 7667 /* Make sure it has the correct data->type for output */ 7668 data->type = event->attr.sample_type; 7669 return; 7670 } 7671 7672 __perf_event_header__init_id(data, event, filtered_sample_type); 7673 7674 if (filtered_sample_type & PERF_SAMPLE_IP) { 7675 data->ip = perf_instruction_pointer(regs); 7676 data->sample_flags |= PERF_SAMPLE_IP; 7677 } 7678 7679 if (filtered_sample_type & PERF_SAMPLE_CALLCHAIN) 7680 perf_sample_save_callchain(data, event, regs); 7681 7682 if (filtered_sample_type & PERF_SAMPLE_RAW) { 7683 data->raw = NULL; 7684 data->dyn_size += sizeof(u64); 7685 data->sample_flags |= PERF_SAMPLE_RAW; 7686 } 7687 7688 if (filtered_sample_type & PERF_SAMPLE_BRANCH_STACK) { 7689 data->br_stack = NULL; 7690 data->dyn_size += sizeof(u64); 7691 data->sample_flags |= PERF_SAMPLE_BRANCH_STACK; 7692 } 7693 7694 if (filtered_sample_type & PERF_SAMPLE_REGS_USER) 7695 perf_sample_regs_user(&data->regs_user, regs); 7696 7697 /* 7698 * It cannot use the filtered_sample_type here as REGS_USER can be set 7699 * by STACK_USER (using __cond_set() above) and we don't want to update 7700 * the dyn_size if it's not requested by users. 7701 */ 7702 if ((sample_type & ~data->sample_flags) & PERF_SAMPLE_REGS_USER) { 7703 /* regs dump ABI info */ 7704 int size = sizeof(u64); 7705 7706 if (data->regs_user.regs) { 7707 u64 mask = event->attr.sample_regs_user; 7708 size += hweight64(mask) * sizeof(u64); 7709 } 7710 7711 data->dyn_size += size; 7712 data->sample_flags |= PERF_SAMPLE_REGS_USER; 7713 } 7714 7715 if (filtered_sample_type & PERF_SAMPLE_STACK_USER) { 7716 /* 7717 * Either we need PERF_SAMPLE_STACK_USER bit to be always 7718 * processed as the last one or have additional check added 7719 * in case new sample type is added, because we could eat 7720 * up the rest of the sample size. 7721 */ 7722 u16 stack_size = event->attr.sample_stack_user; 7723 u16 header_size = perf_sample_data_size(data, event); 7724 u16 size = sizeof(u64); 7725 7726 stack_size = perf_sample_ustack_size(stack_size, header_size, 7727 data->regs_user.regs); 7728 7729 /* 7730 * If there is something to dump, add space for the dump 7731 * itself and for the field that tells the dynamic size, 7732 * which is how many have been actually dumped. 7733 */ 7734 if (stack_size) 7735 size += sizeof(u64) + stack_size; 7736 7737 data->stack_user_size = stack_size; 7738 data->dyn_size += size; 7739 data->sample_flags |= PERF_SAMPLE_STACK_USER; 7740 } 7741 7742 if (filtered_sample_type & PERF_SAMPLE_WEIGHT_TYPE) { 7743 data->weight.full = 0; 7744 data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE; 7745 } 7746 7747 if (filtered_sample_type & PERF_SAMPLE_DATA_SRC) { 7748 data->data_src.val = PERF_MEM_NA; 7749 data->sample_flags |= PERF_SAMPLE_DATA_SRC; 7750 } 7751 7752 if (filtered_sample_type & PERF_SAMPLE_TRANSACTION) { 7753 data->txn = 0; 7754 data->sample_flags |= PERF_SAMPLE_TRANSACTION; 7755 } 7756 7757 if (filtered_sample_type & PERF_SAMPLE_ADDR) { 7758 data->addr = 0; 7759 data->sample_flags |= PERF_SAMPLE_ADDR; 7760 } 7761 7762 if (filtered_sample_type & PERF_SAMPLE_REGS_INTR) { 7763 /* regs dump ABI info */ 7764 int size = sizeof(u64); 7765 7766 perf_sample_regs_intr(&data->regs_intr, regs); 7767 7768 if (data->regs_intr.regs) { 7769 u64 mask = event->attr.sample_regs_intr; 7770 7771 size += hweight64(mask) * sizeof(u64); 7772 } 7773 7774 data->dyn_size += size; 7775 data->sample_flags |= PERF_SAMPLE_REGS_INTR; 7776 } 7777 7778 if (filtered_sample_type & PERF_SAMPLE_PHYS_ADDR) { 7779 data->phys_addr = perf_virt_to_phys(data->addr); 7780 data->sample_flags |= PERF_SAMPLE_PHYS_ADDR; 7781 } 7782 7783 #ifdef CONFIG_CGROUP_PERF 7784 if (filtered_sample_type & PERF_SAMPLE_CGROUP) { 7785 struct cgroup *cgrp; 7786 7787 /* protected by RCU */ 7788 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup; 7789 data->cgroup = cgroup_id(cgrp); 7790 data->sample_flags |= PERF_SAMPLE_CGROUP; 7791 } 7792 #endif 7793 7794 /* 7795 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't 7796 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr, 7797 * but the value will not dump to the userspace. 7798 */ 7799 if (filtered_sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) { 7800 data->data_page_size = perf_get_page_size(data->addr); 7801 data->sample_flags |= PERF_SAMPLE_DATA_PAGE_SIZE; 7802 } 7803 7804 if (filtered_sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) { 7805 data->code_page_size = perf_get_page_size(data->ip); 7806 data->sample_flags |= PERF_SAMPLE_CODE_PAGE_SIZE; 7807 } 7808 7809 if (filtered_sample_type & PERF_SAMPLE_AUX) { 7810 u64 size; 7811 u16 header_size = perf_sample_data_size(data, event); 7812 7813 header_size += sizeof(u64); /* size */ 7814 7815 /* 7816 * Given the 16bit nature of header::size, an AUX sample can 7817 * easily overflow it, what with all the preceding sample bits. 7818 * Make sure this doesn't happen by using up to U16_MAX bytes 7819 * per sample in total (rounded down to 8 byte boundary). 7820 */ 7821 size = min_t(size_t, U16_MAX - header_size, 7822 event->attr.aux_sample_size); 7823 size = rounddown(size, 8); 7824 size = perf_prepare_sample_aux(event, data, size); 7825 7826 WARN_ON_ONCE(size + header_size > U16_MAX); 7827 data->dyn_size += size + sizeof(u64); /* size above */ 7828 data->sample_flags |= PERF_SAMPLE_AUX; 7829 } 7830 } 7831 7832 void perf_prepare_header(struct perf_event_header *header, 7833 struct perf_sample_data *data, 7834 struct perf_event *event, 7835 struct pt_regs *regs) 7836 { 7837 header->type = PERF_RECORD_SAMPLE; 7838 header->size = perf_sample_data_size(data, event); 7839 header->misc = perf_misc_flags(regs); 7840 7841 /* 7842 * If you're adding more sample types here, you likely need to do 7843 * something about the overflowing header::size, like repurpose the 7844 * lowest 3 bits of size, which should be always zero at the moment. 7845 * This raises a more important question, do we really need 512k sized 7846 * samples and why, so good argumentation is in order for whatever you 7847 * do here next. 7848 */ 7849 WARN_ON_ONCE(header->size & 7); 7850 } 7851 7852 static __always_inline int 7853 __perf_event_output(struct perf_event *event, 7854 struct perf_sample_data *data, 7855 struct pt_regs *regs, 7856 int (*output_begin)(struct perf_output_handle *, 7857 struct perf_sample_data *, 7858 struct perf_event *, 7859 unsigned int)) 7860 { 7861 struct perf_output_handle handle; 7862 struct perf_event_header header; 7863 int err; 7864 7865 /* protect the callchain buffers */ 7866 rcu_read_lock(); 7867 7868 perf_prepare_sample(data, event, regs); 7869 perf_prepare_header(&header, data, event, regs); 7870 7871 err = output_begin(&handle, data, event, header.size); 7872 if (err) 7873 goto exit; 7874 7875 perf_output_sample(&handle, &header, data, event); 7876 7877 perf_output_end(&handle); 7878 7879 exit: 7880 rcu_read_unlock(); 7881 return err; 7882 } 7883 7884 void 7885 perf_event_output_forward(struct perf_event *event, 7886 struct perf_sample_data *data, 7887 struct pt_regs *regs) 7888 { 7889 __perf_event_output(event, data, regs, perf_output_begin_forward); 7890 } 7891 7892 void 7893 perf_event_output_backward(struct perf_event *event, 7894 struct perf_sample_data *data, 7895 struct pt_regs *regs) 7896 { 7897 __perf_event_output(event, data, regs, perf_output_begin_backward); 7898 } 7899 7900 int 7901 perf_event_output(struct perf_event *event, 7902 struct perf_sample_data *data, 7903 struct pt_regs *regs) 7904 { 7905 return __perf_event_output(event, data, regs, perf_output_begin); 7906 } 7907 7908 /* 7909 * read event_id 7910 */ 7911 7912 struct perf_read_event { 7913 struct perf_event_header header; 7914 7915 u32 pid; 7916 u32 tid; 7917 }; 7918 7919 static void 7920 perf_event_read_event(struct perf_event *event, 7921 struct task_struct *task) 7922 { 7923 struct perf_output_handle handle; 7924 struct perf_sample_data sample; 7925 struct perf_read_event read_event = { 7926 .header = { 7927 .type = PERF_RECORD_READ, 7928 .misc = 0, 7929 .size = sizeof(read_event) + event->read_size, 7930 }, 7931 .pid = perf_event_pid(event, task), 7932 .tid = perf_event_tid(event, task), 7933 }; 7934 int ret; 7935 7936 perf_event_header__init_id(&read_event.header, &sample, event); 7937 ret = perf_output_begin(&handle, &sample, event, read_event.header.size); 7938 if (ret) 7939 return; 7940 7941 perf_output_put(&handle, read_event); 7942 perf_output_read(&handle, event); 7943 perf_event__output_id_sample(event, &handle, &sample); 7944 7945 perf_output_end(&handle); 7946 } 7947 7948 typedef void (perf_iterate_f)(struct perf_event *event, void *data); 7949 7950 static void 7951 perf_iterate_ctx(struct perf_event_context *ctx, 7952 perf_iterate_f output, 7953 void *data, bool all) 7954 { 7955 struct perf_event *event; 7956 7957 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 7958 if (!all) { 7959 if (event->state < PERF_EVENT_STATE_INACTIVE) 7960 continue; 7961 if (!event_filter_match(event)) 7962 continue; 7963 } 7964 7965 output(event, data); 7966 } 7967 } 7968 7969 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data) 7970 { 7971 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events); 7972 struct perf_event *event; 7973 7974 list_for_each_entry_rcu(event, &pel->list, sb_list) { 7975 /* 7976 * Skip events that are not fully formed yet; ensure that 7977 * if we observe event->ctx, both event and ctx will be 7978 * complete enough. See perf_install_in_context(). 7979 */ 7980 if (!smp_load_acquire(&event->ctx)) 7981 continue; 7982 7983 if (event->state < PERF_EVENT_STATE_INACTIVE) 7984 continue; 7985 if (!event_filter_match(event)) 7986 continue; 7987 output(event, data); 7988 } 7989 } 7990 7991 /* 7992 * Iterate all events that need to receive side-band events. 7993 * 7994 * For new callers; ensure that account_pmu_sb_event() includes 7995 * your event, otherwise it might not get delivered. 7996 */ 7997 static void 7998 perf_iterate_sb(perf_iterate_f output, void *data, 7999 struct perf_event_context *task_ctx) 8000 { 8001 struct perf_event_context *ctx; 8002 8003 rcu_read_lock(); 8004 preempt_disable(); 8005 8006 /* 8007 * If we have task_ctx != NULL we only notify the task context itself. 8008 * The task_ctx is set only for EXIT events before releasing task 8009 * context. 8010 */ 8011 if (task_ctx) { 8012 perf_iterate_ctx(task_ctx, output, data, false); 8013 goto done; 8014 } 8015 8016 perf_iterate_sb_cpu(output, data); 8017 8018 ctx = rcu_dereference(current->perf_event_ctxp); 8019 if (ctx) 8020 perf_iterate_ctx(ctx, output, data, false); 8021 done: 8022 preempt_enable(); 8023 rcu_read_unlock(); 8024 } 8025 8026 /* 8027 * Clear all file-based filters at exec, they'll have to be 8028 * re-instated when/if these objects are mmapped again. 8029 */ 8030 static void perf_event_addr_filters_exec(struct perf_event *event, void *data) 8031 { 8032 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 8033 struct perf_addr_filter *filter; 8034 unsigned int restart = 0, count = 0; 8035 unsigned long flags; 8036 8037 if (!has_addr_filter(event)) 8038 return; 8039 8040 raw_spin_lock_irqsave(&ifh->lock, flags); 8041 list_for_each_entry(filter, &ifh->list, entry) { 8042 if (filter->path.dentry) { 8043 event->addr_filter_ranges[count].start = 0; 8044 event->addr_filter_ranges[count].size = 0; 8045 restart++; 8046 } 8047 8048 count++; 8049 } 8050 8051 if (restart) 8052 event->addr_filters_gen++; 8053 raw_spin_unlock_irqrestore(&ifh->lock, flags); 8054 8055 if (restart) 8056 perf_event_stop(event, 1); 8057 } 8058 8059 void perf_event_exec(void) 8060 { 8061 struct perf_event_context *ctx; 8062 8063 ctx = perf_pin_task_context(current); 8064 if (!ctx) 8065 return; 8066 8067 perf_event_enable_on_exec(ctx); 8068 perf_event_remove_on_exec(ctx); 8069 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, true); 8070 8071 perf_unpin_context(ctx); 8072 put_ctx(ctx); 8073 } 8074 8075 struct remote_output { 8076 struct perf_buffer *rb; 8077 int err; 8078 }; 8079 8080 static void __perf_event_output_stop(struct perf_event *event, void *data) 8081 { 8082 struct perf_event *parent = event->parent; 8083 struct remote_output *ro = data; 8084 struct perf_buffer *rb = ro->rb; 8085 struct stop_event_data sd = { 8086 .event = event, 8087 }; 8088 8089 if (!has_aux(event)) 8090 return; 8091 8092 if (!parent) 8093 parent = event; 8094 8095 /* 8096 * In case of inheritance, it will be the parent that links to the 8097 * ring-buffer, but it will be the child that's actually using it. 8098 * 8099 * We are using event::rb to determine if the event should be stopped, 8100 * however this may race with ring_buffer_attach() (through set_output), 8101 * which will make us skip the event that actually needs to be stopped. 8102 * So ring_buffer_attach() has to stop an aux event before re-assigning 8103 * its rb pointer. 8104 */ 8105 if (rcu_dereference(parent->rb) == rb) 8106 ro->err = __perf_event_stop(&sd); 8107 } 8108 8109 static int __perf_pmu_output_stop(void *info) 8110 { 8111 struct perf_event *event = info; 8112 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 8113 struct remote_output ro = { 8114 .rb = event->rb, 8115 }; 8116 8117 rcu_read_lock(); 8118 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false); 8119 if (cpuctx->task_ctx) 8120 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop, 8121 &ro, false); 8122 rcu_read_unlock(); 8123 8124 return ro.err; 8125 } 8126 8127 static void perf_pmu_output_stop(struct perf_event *event) 8128 { 8129 struct perf_event *iter; 8130 int err, cpu; 8131 8132 restart: 8133 rcu_read_lock(); 8134 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) { 8135 /* 8136 * For per-CPU events, we need to make sure that neither they 8137 * nor their children are running; for cpu==-1 events it's 8138 * sufficient to stop the event itself if it's active, since 8139 * it can't have children. 8140 */ 8141 cpu = iter->cpu; 8142 if (cpu == -1) 8143 cpu = READ_ONCE(iter->oncpu); 8144 8145 if (cpu == -1) 8146 continue; 8147 8148 err = cpu_function_call(cpu, __perf_pmu_output_stop, event); 8149 if (err == -EAGAIN) { 8150 rcu_read_unlock(); 8151 goto restart; 8152 } 8153 } 8154 rcu_read_unlock(); 8155 } 8156 8157 /* 8158 * task tracking -- fork/exit 8159 * 8160 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 8161 */ 8162 8163 struct perf_task_event { 8164 struct task_struct *task; 8165 struct perf_event_context *task_ctx; 8166 8167 struct { 8168 struct perf_event_header header; 8169 8170 u32 pid; 8171 u32 ppid; 8172 u32 tid; 8173 u32 ptid; 8174 u64 time; 8175 } event_id; 8176 }; 8177 8178 static int perf_event_task_match(struct perf_event *event) 8179 { 8180 return event->attr.comm || event->attr.mmap || 8181 event->attr.mmap2 || event->attr.mmap_data || 8182 event->attr.task; 8183 } 8184 8185 static void perf_event_task_output(struct perf_event *event, 8186 void *data) 8187 { 8188 struct perf_task_event *task_event = data; 8189 struct perf_output_handle handle; 8190 struct perf_sample_data sample; 8191 struct task_struct *task = task_event->task; 8192 int ret, size = task_event->event_id.header.size; 8193 8194 if (!perf_event_task_match(event)) 8195 return; 8196 8197 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 8198 8199 ret = perf_output_begin(&handle, &sample, event, 8200 task_event->event_id.header.size); 8201 if (ret) 8202 goto out; 8203 8204 task_event->event_id.pid = perf_event_pid(event, task); 8205 task_event->event_id.tid = perf_event_tid(event, task); 8206 8207 if (task_event->event_id.header.type == PERF_RECORD_EXIT) { 8208 task_event->event_id.ppid = perf_event_pid(event, 8209 task->real_parent); 8210 task_event->event_id.ptid = perf_event_pid(event, 8211 task->real_parent); 8212 } else { /* PERF_RECORD_FORK */ 8213 task_event->event_id.ppid = perf_event_pid(event, current); 8214 task_event->event_id.ptid = perf_event_tid(event, current); 8215 } 8216 8217 task_event->event_id.time = perf_event_clock(event); 8218 8219 perf_output_put(&handle, task_event->event_id); 8220 8221 perf_event__output_id_sample(event, &handle, &sample); 8222 8223 perf_output_end(&handle); 8224 out: 8225 task_event->event_id.header.size = size; 8226 } 8227 8228 static void perf_event_task(struct task_struct *task, 8229 struct perf_event_context *task_ctx, 8230 int new) 8231 { 8232 struct perf_task_event task_event; 8233 8234 if (!atomic_read(&nr_comm_events) && 8235 !atomic_read(&nr_mmap_events) && 8236 !atomic_read(&nr_task_events)) 8237 return; 8238 8239 task_event = (struct perf_task_event){ 8240 .task = task, 8241 .task_ctx = task_ctx, 8242 .event_id = { 8243 .header = { 8244 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 8245 .misc = 0, 8246 .size = sizeof(task_event.event_id), 8247 }, 8248 /* .pid */ 8249 /* .ppid */ 8250 /* .tid */ 8251 /* .ptid */ 8252 /* .time */ 8253 }, 8254 }; 8255 8256 perf_iterate_sb(perf_event_task_output, 8257 &task_event, 8258 task_ctx); 8259 } 8260 8261 void perf_event_fork(struct task_struct *task) 8262 { 8263 perf_event_task(task, NULL, 1); 8264 perf_event_namespaces(task); 8265 } 8266 8267 /* 8268 * comm tracking 8269 */ 8270 8271 struct perf_comm_event { 8272 struct task_struct *task; 8273 char *comm; 8274 int comm_size; 8275 8276 struct { 8277 struct perf_event_header header; 8278 8279 u32 pid; 8280 u32 tid; 8281 } event_id; 8282 }; 8283 8284 static int perf_event_comm_match(struct perf_event *event) 8285 { 8286 return event->attr.comm; 8287 } 8288 8289 static void perf_event_comm_output(struct perf_event *event, 8290 void *data) 8291 { 8292 struct perf_comm_event *comm_event = data; 8293 struct perf_output_handle handle; 8294 struct perf_sample_data sample; 8295 int size = comm_event->event_id.header.size; 8296 int ret; 8297 8298 if (!perf_event_comm_match(event)) 8299 return; 8300 8301 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 8302 ret = perf_output_begin(&handle, &sample, event, 8303 comm_event->event_id.header.size); 8304 8305 if (ret) 8306 goto out; 8307 8308 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 8309 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 8310 8311 perf_output_put(&handle, comm_event->event_id); 8312 __output_copy(&handle, comm_event->comm, 8313 comm_event->comm_size); 8314 8315 perf_event__output_id_sample(event, &handle, &sample); 8316 8317 perf_output_end(&handle); 8318 out: 8319 comm_event->event_id.header.size = size; 8320 } 8321 8322 static void perf_event_comm_event(struct perf_comm_event *comm_event) 8323 { 8324 char comm[TASK_COMM_LEN]; 8325 unsigned int size; 8326 8327 memset(comm, 0, sizeof(comm)); 8328 strscpy(comm, comm_event->task->comm, sizeof(comm)); 8329 size = ALIGN(strlen(comm)+1, sizeof(u64)); 8330 8331 comm_event->comm = comm; 8332 comm_event->comm_size = size; 8333 8334 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 8335 8336 perf_iterate_sb(perf_event_comm_output, 8337 comm_event, 8338 NULL); 8339 } 8340 8341 void perf_event_comm(struct task_struct *task, bool exec) 8342 { 8343 struct perf_comm_event comm_event; 8344 8345 if (!atomic_read(&nr_comm_events)) 8346 return; 8347 8348 comm_event = (struct perf_comm_event){ 8349 .task = task, 8350 /* .comm */ 8351 /* .comm_size */ 8352 .event_id = { 8353 .header = { 8354 .type = PERF_RECORD_COMM, 8355 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 8356 /* .size */ 8357 }, 8358 /* .pid */ 8359 /* .tid */ 8360 }, 8361 }; 8362 8363 perf_event_comm_event(&comm_event); 8364 } 8365 8366 /* 8367 * namespaces tracking 8368 */ 8369 8370 struct perf_namespaces_event { 8371 struct task_struct *task; 8372 8373 struct { 8374 struct perf_event_header header; 8375 8376 u32 pid; 8377 u32 tid; 8378 u64 nr_namespaces; 8379 struct perf_ns_link_info link_info[NR_NAMESPACES]; 8380 } event_id; 8381 }; 8382 8383 static int perf_event_namespaces_match(struct perf_event *event) 8384 { 8385 return event->attr.namespaces; 8386 } 8387 8388 static void perf_event_namespaces_output(struct perf_event *event, 8389 void *data) 8390 { 8391 struct perf_namespaces_event *namespaces_event = data; 8392 struct perf_output_handle handle; 8393 struct perf_sample_data sample; 8394 u16 header_size = namespaces_event->event_id.header.size; 8395 int ret; 8396 8397 if (!perf_event_namespaces_match(event)) 8398 return; 8399 8400 perf_event_header__init_id(&namespaces_event->event_id.header, 8401 &sample, event); 8402 ret = perf_output_begin(&handle, &sample, event, 8403 namespaces_event->event_id.header.size); 8404 if (ret) 8405 goto out; 8406 8407 namespaces_event->event_id.pid = perf_event_pid(event, 8408 namespaces_event->task); 8409 namespaces_event->event_id.tid = perf_event_tid(event, 8410 namespaces_event->task); 8411 8412 perf_output_put(&handle, namespaces_event->event_id); 8413 8414 perf_event__output_id_sample(event, &handle, &sample); 8415 8416 perf_output_end(&handle); 8417 out: 8418 namespaces_event->event_id.header.size = header_size; 8419 } 8420 8421 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info, 8422 struct task_struct *task, 8423 const struct proc_ns_operations *ns_ops) 8424 { 8425 struct path ns_path; 8426 struct inode *ns_inode; 8427 int error; 8428 8429 error = ns_get_path(&ns_path, task, ns_ops); 8430 if (!error) { 8431 ns_inode = ns_path.dentry->d_inode; 8432 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev); 8433 ns_link_info->ino = ns_inode->i_ino; 8434 path_put(&ns_path); 8435 } 8436 } 8437 8438 void perf_event_namespaces(struct task_struct *task) 8439 { 8440 struct perf_namespaces_event namespaces_event; 8441 struct perf_ns_link_info *ns_link_info; 8442 8443 if (!atomic_read(&nr_namespaces_events)) 8444 return; 8445 8446 namespaces_event = (struct perf_namespaces_event){ 8447 .task = task, 8448 .event_id = { 8449 .header = { 8450 .type = PERF_RECORD_NAMESPACES, 8451 .misc = 0, 8452 .size = sizeof(namespaces_event.event_id), 8453 }, 8454 /* .pid */ 8455 /* .tid */ 8456 .nr_namespaces = NR_NAMESPACES, 8457 /* .link_info[NR_NAMESPACES] */ 8458 }, 8459 }; 8460 8461 ns_link_info = namespaces_event.event_id.link_info; 8462 8463 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX], 8464 task, &mntns_operations); 8465 8466 #ifdef CONFIG_USER_NS 8467 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX], 8468 task, &userns_operations); 8469 #endif 8470 #ifdef CONFIG_NET_NS 8471 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX], 8472 task, &netns_operations); 8473 #endif 8474 #ifdef CONFIG_UTS_NS 8475 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX], 8476 task, &utsns_operations); 8477 #endif 8478 #ifdef CONFIG_IPC_NS 8479 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX], 8480 task, &ipcns_operations); 8481 #endif 8482 #ifdef CONFIG_PID_NS 8483 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX], 8484 task, &pidns_operations); 8485 #endif 8486 #ifdef CONFIG_CGROUPS 8487 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX], 8488 task, &cgroupns_operations); 8489 #endif 8490 8491 perf_iterate_sb(perf_event_namespaces_output, 8492 &namespaces_event, 8493 NULL); 8494 } 8495 8496 /* 8497 * cgroup tracking 8498 */ 8499 #ifdef CONFIG_CGROUP_PERF 8500 8501 struct perf_cgroup_event { 8502 char *path; 8503 int path_size; 8504 struct { 8505 struct perf_event_header header; 8506 u64 id; 8507 char path[]; 8508 } event_id; 8509 }; 8510 8511 static int perf_event_cgroup_match(struct perf_event *event) 8512 { 8513 return event->attr.cgroup; 8514 } 8515 8516 static void perf_event_cgroup_output(struct perf_event *event, void *data) 8517 { 8518 struct perf_cgroup_event *cgroup_event = data; 8519 struct perf_output_handle handle; 8520 struct perf_sample_data sample; 8521 u16 header_size = cgroup_event->event_id.header.size; 8522 int ret; 8523 8524 if (!perf_event_cgroup_match(event)) 8525 return; 8526 8527 perf_event_header__init_id(&cgroup_event->event_id.header, 8528 &sample, event); 8529 ret = perf_output_begin(&handle, &sample, event, 8530 cgroup_event->event_id.header.size); 8531 if (ret) 8532 goto out; 8533 8534 perf_output_put(&handle, cgroup_event->event_id); 8535 __output_copy(&handle, cgroup_event->path, cgroup_event->path_size); 8536 8537 perf_event__output_id_sample(event, &handle, &sample); 8538 8539 perf_output_end(&handle); 8540 out: 8541 cgroup_event->event_id.header.size = header_size; 8542 } 8543 8544 static void perf_event_cgroup(struct cgroup *cgrp) 8545 { 8546 struct perf_cgroup_event cgroup_event; 8547 char path_enomem[16] = "//enomem"; 8548 char *pathname; 8549 size_t size; 8550 8551 if (!atomic_read(&nr_cgroup_events)) 8552 return; 8553 8554 cgroup_event = (struct perf_cgroup_event){ 8555 .event_id = { 8556 .header = { 8557 .type = PERF_RECORD_CGROUP, 8558 .misc = 0, 8559 .size = sizeof(cgroup_event.event_id), 8560 }, 8561 .id = cgroup_id(cgrp), 8562 }, 8563 }; 8564 8565 pathname = kmalloc(PATH_MAX, GFP_KERNEL); 8566 if (pathname == NULL) { 8567 cgroup_event.path = path_enomem; 8568 } else { 8569 /* just to be sure to have enough space for alignment */ 8570 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64)); 8571 cgroup_event.path = pathname; 8572 } 8573 8574 /* 8575 * Since our buffer works in 8 byte units we need to align our string 8576 * size to a multiple of 8. However, we must guarantee the tail end is 8577 * zero'd out to avoid leaking random bits to userspace. 8578 */ 8579 size = strlen(cgroup_event.path) + 1; 8580 while (!IS_ALIGNED(size, sizeof(u64))) 8581 cgroup_event.path[size++] = '\0'; 8582 8583 cgroup_event.event_id.header.size += size; 8584 cgroup_event.path_size = size; 8585 8586 perf_iterate_sb(perf_event_cgroup_output, 8587 &cgroup_event, 8588 NULL); 8589 8590 kfree(pathname); 8591 } 8592 8593 #endif 8594 8595 /* 8596 * mmap tracking 8597 */ 8598 8599 struct perf_mmap_event { 8600 struct vm_area_struct *vma; 8601 8602 const char *file_name; 8603 int file_size; 8604 int maj, min; 8605 u64 ino; 8606 u64 ino_generation; 8607 u32 prot, flags; 8608 u8 build_id[BUILD_ID_SIZE_MAX]; 8609 u32 build_id_size; 8610 8611 struct { 8612 struct perf_event_header header; 8613 8614 u32 pid; 8615 u32 tid; 8616 u64 start; 8617 u64 len; 8618 u64 pgoff; 8619 } event_id; 8620 }; 8621 8622 static int perf_event_mmap_match(struct perf_event *event, 8623 void *data) 8624 { 8625 struct perf_mmap_event *mmap_event = data; 8626 struct vm_area_struct *vma = mmap_event->vma; 8627 int executable = vma->vm_flags & VM_EXEC; 8628 8629 return (!executable && event->attr.mmap_data) || 8630 (executable && (event->attr.mmap || event->attr.mmap2)); 8631 } 8632 8633 static void perf_event_mmap_output(struct perf_event *event, 8634 void *data) 8635 { 8636 struct perf_mmap_event *mmap_event = data; 8637 struct perf_output_handle handle; 8638 struct perf_sample_data sample; 8639 int size = mmap_event->event_id.header.size; 8640 u32 type = mmap_event->event_id.header.type; 8641 bool use_build_id; 8642 int ret; 8643 8644 if (!perf_event_mmap_match(event, data)) 8645 return; 8646 8647 if (event->attr.mmap2) { 8648 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 8649 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 8650 mmap_event->event_id.header.size += sizeof(mmap_event->min); 8651 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 8652 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 8653 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 8654 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 8655 } 8656 8657 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 8658 ret = perf_output_begin(&handle, &sample, event, 8659 mmap_event->event_id.header.size); 8660 if (ret) 8661 goto out; 8662 8663 mmap_event->event_id.pid = perf_event_pid(event, current); 8664 mmap_event->event_id.tid = perf_event_tid(event, current); 8665 8666 use_build_id = event->attr.build_id && mmap_event->build_id_size; 8667 8668 if (event->attr.mmap2 && use_build_id) 8669 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID; 8670 8671 perf_output_put(&handle, mmap_event->event_id); 8672 8673 if (event->attr.mmap2) { 8674 if (use_build_id) { 8675 u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 }; 8676 8677 __output_copy(&handle, size, 4); 8678 __output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX); 8679 } else { 8680 perf_output_put(&handle, mmap_event->maj); 8681 perf_output_put(&handle, mmap_event->min); 8682 perf_output_put(&handle, mmap_event->ino); 8683 perf_output_put(&handle, mmap_event->ino_generation); 8684 } 8685 perf_output_put(&handle, mmap_event->prot); 8686 perf_output_put(&handle, mmap_event->flags); 8687 } 8688 8689 __output_copy(&handle, mmap_event->file_name, 8690 mmap_event->file_size); 8691 8692 perf_event__output_id_sample(event, &handle, &sample); 8693 8694 perf_output_end(&handle); 8695 out: 8696 mmap_event->event_id.header.size = size; 8697 mmap_event->event_id.header.type = type; 8698 } 8699 8700 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 8701 { 8702 struct vm_area_struct *vma = mmap_event->vma; 8703 struct file *file = vma->vm_file; 8704 int maj = 0, min = 0; 8705 u64 ino = 0, gen = 0; 8706 u32 prot = 0, flags = 0; 8707 unsigned int size; 8708 char tmp[16]; 8709 char *buf = NULL; 8710 char *name = NULL; 8711 8712 if (vma->vm_flags & VM_READ) 8713 prot |= PROT_READ; 8714 if (vma->vm_flags & VM_WRITE) 8715 prot |= PROT_WRITE; 8716 if (vma->vm_flags & VM_EXEC) 8717 prot |= PROT_EXEC; 8718 8719 if (vma->vm_flags & VM_MAYSHARE) 8720 flags = MAP_SHARED; 8721 else 8722 flags = MAP_PRIVATE; 8723 8724 if (vma->vm_flags & VM_LOCKED) 8725 flags |= MAP_LOCKED; 8726 if (is_vm_hugetlb_page(vma)) 8727 flags |= MAP_HUGETLB; 8728 8729 if (file) { 8730 struct inode *inode; 8731 dev_t dev; 8732 8733 buf = kmalloc(PATH_MAX, GFP_KERNEL); 8734 if (!buf) { 8735 name = "//enomem"; 8736 goto cpy_name; 8737 } 8738 /* 8739 * d_path() works from the end of the rb backwards, so we 8740 * need to add enough zero bytes after the string to handle 8741 * the 64bit alignment we do later. 8742 */ 8743 name = file_path(file, buf, PATH_MAX - sizeof(u64)); 8744 if (IS_ERR(name)) { 8745 name = "//toolong"; 8746 goto cpy_name; 8747 } 8748 inode = file_inode(vma->vm_file); 8749 dev = inode->i_sb->s_dev; 8750 ino = inode->i_ino; 8751 gen = inode->i_generation; 8752 maj = MAJOR(dev); 8753 min = MINOR(dev); 8754 8755 goto got_name; 8756 } else { 8757 if (vma->vm_ops && vma->vm_ops->name) 8758 name = (char *) vma->vm_ops->name(vma); 8759 if (!name) 8760 name = (char *)arch_vma_name(vma); 8761 if (!name) { 8762 if (vma_is_initial_heap(vma)) 8763 name = "[heap]"; 8764 else if (vma_is_initial_stack(vma)) 8765 name = "[stack]"; 8766 else 8767 name = "//anon"; 8768 } 8769 } 8770 8771 cpy_name: 8772 strscpy(tmp, name, sizeof(tmp)); 8773 name = tmp; 8774 got_name: 8775 /* 8776 * Since our buffer works in 8 byte units we need to align our string 8777 * size to a multiple of 8. However, we must guarantee the tail end is 8778 * zero'd out to avoid leaking random bits to userspace. 8779 */ 8780 size = strlen(name)+1; 8781 while (!IS_ALIGNED(size, sizeof(u64))) 8782 name[size++] = '\0'; 8783 8784 mmap_event->file_name = name; 8785 mmap_event->file_size = size; 8786 mmap_event->maj = maj; 8787 mmap_event->min = min; 8788 mmap_event->ino = ino; 8789 mmap_event->ino_generation = gen; 8790 mmap_event->prot = prot; 8791 mmap_event->flags = flags; 8792 8793 if (!(vma->vm_flags & VM_EXEC)) 8794 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 8795 8796 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 8797 8798 if (atomic_read(&nr_build_id_events)) 8799 build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size); 8800 8801 perf_iterate_sb(perf_event_mmap_output, 8802 mmap_event, 8803 NULL); 8804 8805 kfree(buf); 8806 } 8807 8808 /* 8809 * Check whether inode and address range match filter criteria. 8810 */ 8811 static bool perf_addr_filter_match(struct perf_addr_filter *filter, 8812 struct file *file, unsigned long offset, 8813 unsigned long size) 8814 { 8815 /* d_inode(NULL) won't be equal to any mapped user-space file */ 8816 if (!filter->path.dentry) 8817 return false; 8818 8819 if (d_inode(filter->path.dentry) != file_inode(file)) 8820 return false; 8821 8822 if (filter->offset > offset + size) 8823 return false; 8824 8825 if (filter->offset + filter->size < offset) 8826 return false; 8827 8828 return true; 8829 } 8830 8831 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter, 8832 struct vm_area_struct *vma, 8833 struct perf_addr_filter_range *fr) 8834 { 8835 unsigned long vma_size = vma->vm_end - vma->vm_start; 8836 unsigned long off = vma->vm_pgoff << PAGE_SHIFT; 8837 struct file *file = vma->vm_file; 8838 8839 if (!perf_addr_filter_match(filter, file, off, vma_size)) 8840 return false; 8841 8842 if (filter->offset < off) { 8843 fr->start = vma->vm_start; 8844 fr->size = min(vma_size, filter->size - (off - filter->offset)); 8845 } else { 8846 fr->start = vma->vm_start + filter->offset - off; 8847 fr->size = min(vma->vm_end - fr->start, filter->size); 8848 } 8849 8850 return true; 8851 } 8852 8853 static void __perf_addr_filters_adjust(struct perf_event *event, void *data) 8854 { 8855 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 8856 struct vm_area_struct *vma = data; 8857 struct perf_addr_filter *filter; 8858 unsigned int restart = 0, count = 0; 8859 unsigned long flags; 8860 8861 if (!has_addr_filter(event)) 8862 return; 8863 8864 if (!vma->vm_file) 8865 return; 8866 8867 raw_spin_lock_irqsave(&ifh->lock, flags); 8868 list_for_each_entry(filter, &ifh->list, entry) { 8869 if (perf_addr_filter_vma_adjust(filter, vma, 8870 &event->addr_filter_ranges[count])) 8871 restart++; 8872 8873 count++; 8874 } 8875 8876 if (restart) 8877 event->addr_filters_gen++; 8878 raw_spin_unlock_irqrestore(&ifh->lock, flags); 8879 8880 if (restart) 8881 perf_event_stop(event, 1); 8882 } 8883 8884 /* 8885 * Adjust all task's events' filters to the new vma 8886 */ 8887 static void perf_addr_filters_adjust(struct vm_area_struct *vma) 8888 { 8889 struct perf_event_context *ctx; 8890 8891 /* 8892 * Data tracing isn't supported yet and as such there is no need 8893 * to keep track of anything that isn't related to executable code: 8894 */ 8895 if (!(vma->vm_flags & VM_EXEC)) 8896 return; 8897 8898 rcu_read_lock(); 8899 ctx = rcu_dereference(current->perf_event_ctxp); 8900 if (ctx) 8901 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true); 8902 rcu_read_unlock(); 8903 } 8904 8905 void perf_event_mmap(struct vm_area_struct *vma) 8906 { 8907 struct perf_mmap_event mmap_event; 8908 8909 if (!atomic_read(&nr_mmap_events)) 8910 return; 8911 8912 mmap_event = (struct perf_mmap_event){ 8913 .vma = vma, 8914 /* .file_name */ 8915 /* .file_size */ 8916 .event_id = { 8917 .header = { 8918 .type = PERF_RECORD_MMAP, 8919 .misc = PERF_RECORD_MISC_USER, 8920 /* .size */ 8921 }, 8922 /* .pid */ 8923 /* .tid */ 8924 .start = vma->vm_start, 8925 .len = vma->vm_end - vma->vm_start, 8926 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 8927 }, 8928 /* .maj (attr_mmap2 only) */ 8929 /* .min (attr_mmap2 only) */ 8930 /* .ino (attr_mmap2 only) */ 8931 /* .ino_generation (attr_mmap2 only) */ 8932 /* .prot (attr_mmap2 only) */ 8933 /* .flags (attr_mmap2 only) */ 8934 }; 8935 8936 perf_addr_filters_adjust(vma); 8937 perf_event_mmap_event(&mmap_event); 8938 } 8939 8940 void perf_event_aux_event(struct perf_event *event, unsigned long head, 8941 unsigned long size, u64 flags) 8942 { 8943 struct perf_output_handle handle; 8944 struct perf_sample_data sample; 8945 struct perf_aux_event { 8946 struct perf_event_header header; 8947 u64 offset; 8948 u64 size; 8949 u64 flags; 8950 } rec = { 8951 .header = { 8952 .type = PERF_RECORD_AUX, 8953 .misc = 0, 8954 .size = sizeof(rec), 8955 }, 8956 .offset = head, 8957 .size = size, 8958 .flags = flags, 8959 }; 8960 int ret; 8961 8962 perf_event_header__init_id(&rec.header, &sample, event); 8963 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 8964 8965 if (ret) 8966 return; 8967 8968 perf_output_put(&handle, rec); 8969 perf_event__output_id_sample(event, &handle, &sample); 8970 8971 perf_output_end(&handle); 8972 } 8973 8974 /* 8975 * Lost/dropped samples logging 8976 */ 8977 void perf_log_lost_samples(struct perf_event *event, u64 lost) 8978 { 8979 struct perf_output_handle handle; 8980 struct perf_sample_data sample; 8981 int ret; 8982 8983 struct { 8984 struct perf_event_header header; 8985 u64 lost; 8986 } lost_samples_event = { 8987 .header = { 8988 .type = PERF_RECORD_LOST_SAMPLES, 8989 .misc = 0, 8990 .size = sizeof(lost_samples_event), 8991 }, 8992 .lost = lost, 8993 }; 8994 8995 perf_event_header__init_id(&lost_samples_event.header, &sample, event); 8996 8997 ret = perf_output_begin(&handle, &sample, event, 8998 lost_samples_event.header.size); 8999 if (ret) 9000 return; 9001 9002 perf_output_put(&handle, lost_samples_event); 9003 perf_event__output_id_sample(event, &handle, &sample); 9004 perf_output_end(&handle); 9005 } 9006 9007 /* 9008 * context_switch tracking 9009 */ 9010 9011 struct perf_switch_event { 9012 struct task_struct *task; 9013 struct task_struct *next_prev; 9014 9015 struct { 9016 struct perf_event_header header; 9017 u32 next_prev_pid; 9018 u32 next_prev_tid; 9019 } event_id; 9020 }; 9021 9022 static int perf_event_switch_match(struct perf_event *event) 9023 { 9024 return event->attr.context_switch; 9025 } 9026 9027 static void perf_event_switch_output(struct perf_event *event, void *data) 9028 { 9029 struct perf_switch_event *se = data; 9030 struct perf_output_handle handle; 9031 struct perf_sample_data sample; 9032 int ret; 9033 9034 if (!perf_event_switch_match(event)) 9035 return; 9036 9037 /* Only CPU-wide events are allowed to see next/prev pid/tid */ 9038 if (event->ctx->task) { 9039 se->event_id.header.type = PERF_RECORD_SWITCH; 9040 se->event_id.header.size = sizeof(se->event_id.header); 9041 } else { 9042 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE; 9043 se->event_id.header.size = sizeof(se->event_id); 9044 se->event_id.next_prev_pid = 9045 perf_event_pid(event, se->next_prev); 9046 se->event_id.next_prev_tid = 9047 perf_event_tid(event, se->next_prev); 9048 } 9049 9050 perf_event_header__init_id(&se->event_id.header, &sample, event); 9051 9052 ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size); 9053 if (ret) 9054 return; 9055 9056 if (event->ctx->task) 9057 perf_output_put(&handle, se->event_id.header); 9058 else 9059 perf_output_put(&handle, se->event_id); 9060 9061 perf_event__output_id_sample(event, &handle, &sample); 9062 9063 perf_output_end(&handle); 9064 } 9065 9066 static void perf_event_switch(struct task_struct *task, 9067 struct task_struct *next_prev, bool sched_in) 9068 { 9069 struct perf_switch_event switch_event; 9070 9071 /* N.B. caller checks nr_switch_events != 0 */ 9072 9073 switch_event = (struct perf_switch_event){ 9074 .task = task, 9075 .next_prev = next_prev, 9076 .event_id = { 9077 .header = { 9078 /* .type */ 9079 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT, 9080 /* .size */ 9081 }, 9082 /* .next_prev_pid */ 9083 /* .next_prev_tid */ 9084 }, 9085 }; 9086 9087 if (!sched_in && task->on_rq) { 9088 switch_event.event_id.header.misc |= 9089 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT; 9090 } 9091 9092 perf_iterate_sb(perf_event_switch_output, &switch_event, NULL); 9093 } 9094 9095 /* 9096 * IRQ throttle logging 9097 */ 9098 9099 static void perf_log_throttle(struct perf_event *event, int enable) 9100 { 9101 struct perf_output_handle handle; 9102 struct perf_sample_data sample; 9103 int ret; 9104 9105 struct { 9106 struct perf_event_header header; 9107 u64 time; 9108 u64 id; 9109 u64 stream_id; 9110 } throttle_event = { 9111 .header = { 9112 .type = PERF_RECORD_THROTTLE, 9113 .misc = 0, 9114 .size = sizeof(throttle_event), 9115 }, 9116 .time = perf_event_clock(event), 9117 .id = primary_event_id(event), 9118 .stream_id = event->id, 9119 }; 9120 9121 if (enable) 9122 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 9123 9124 perf_event_header__init_id(&throttle_event.header, &sample, event); 9125 9126 ret = perf_output_begin(&handle, &sample, event, 9127 throttle_event.header.size); 9128 if (ret) 9129 return; 9130 9131 perf_output_put(&handle, throttle_event); 9132 perf_event__output_id_sample(event, &handle, &sample); 9133 perf_output_end(&handle); 9134 } 9135 9136 /* 9137 * ksymbol register/unregister tracking 9138 */ 9139 9140 struct perf_ksymbol_event { 9141 const char *name; 9142 int name_len; 9143 struct { 9144 struct perf_event_header header; 9145 u64 addr; 9146 u32 len; 9147 u16 ksym_type; 9148 u16 flags; 9149 } event_id; 9150 }; 9151 9152 static int perf_event_ksymbol_match(struct perf_event *event) 9153 { 9154 return event->attr.ksymbol; 9155 } 9156 9157 static void perf_event_ksymbol_output(struct perf_event *event, void *data) 9158 { 9159 struct perf_ksymbol_event *ksymbol_event = data; 9160 struct perf_output_handle handle; 9161 struct perf_sample_data sample; 9162 int ret; 9163 9164 if (!perf_event_ksymbol_match(event)) 9165 return; 9166 9167 perf_event_header__init_id(&ksymbol_event->event_id.header, 9168 &sample, event); 9169 ret = perf_output_begin(&handle, &sample, event, 9170 ksymbol_event->event_id.header.size); 9171 if (ret) 9172 return; 9173 9174 perf_output_put(&handle, ksymbol_event->event_id); 9175 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len); 9176 perf_event__output_id_sample(event, &handle, &sample); 9177 9178 perf_output_end(&handle); 9179 } 9180 9181 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister, 9182 const char *sym) 9183 { 9184 struct perf_ksymbol_event ksymbol_event; 9185 char name[KSYM_NAME_LEN]; 9186 u16 flags = 0; 9187 int name_len; 9188 9189 if (!atomic_read(&nr_ksymbol_events)) 9190 return; 9191 9192 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX || 9193 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN) 9194 goto err; 9195 9196 strscpy(name, sym, KSYM_NAME_LEN); 9197 name_len = strlen(name) + 1; 9198 while (!IS_ALIGNED(name_len, sizeof(u64))) 9199 name[name_len++] = '\0'; 9200 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64)); 9201 9202 if (unregister) 9203 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER; 9204 9205 ksymbol_event = (struct perf_ksymbol_event){ 9206 .name = name, 9207 .name_len = name_len, 9208 .event_id = { 9209 .header = { 9210 .type = PERF_RECORD_KSYMBOL, 9211 .size = sizeof(ksymbol_event.event_id) + 9212 name_len, 9213 }, 9214 .addr = addr, 9215 .len = len, 9216 .ksym_type = ksym_type, 9217 .flags = flags, 9218 }, 9219 }; 9220 9221 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL); 9222 return; 9223 err: 9224 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type); 9225 } 9226 9227 /* 9228 * bpf program load/unload tracking 9229 */ 9230 9231 struct perf_bpf_event { 9232 struct bpf_prog *prog; 9233 struct { 9234 struct perf_event_header header; 9235 u16 type; 9236 u16 flags; 9237 u32 id; 9238 u8 tag[BPF_TAG_SIZE]; 9239 } event_id; 9240 }; 9241 9242 static int perf_event_bpf_match(struct perf_event *event) 9243 { 9244 return event->attr.bpf_event; 9245 } 9246 9247 static void perf_event_bpf_output(struct perf_event *event, void *data) 9248 { 9249 struct perf_bpf_event *bpf_event = data; 9250 struct perf_output_handle handle; 9251 struct perf_sample_data sample; 9252 int ret; 9253 9254 if (!perf_event_bpf_match(event)) 9255 return; 9256 9257 perf_event_header__init_id(&bpf_event->event_id.header, 9258 &sample, event); 9259 ret = perf_output_begin(&handle, &sample, event, 9260 bpf_event->event_id.header.size); 9261 if (ret) 9262 return; 9263 9264 perf_output_put(&handle, bpf_event->event_id); 9265 perf_event__output_id_sample(event, &handle, &sample); 9266 9267 perf_output_end(&handle); 9268 } 9269 9270 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog, 9271 enum perf_bpf_event_type type) 9272 { 9273 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD; 9274 int i; 9275 9276 if (prog->aux->func_cnt == 0) { 9277 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF, 9278 (u64)(unsigned long)prog->bpf_func, 9279 prog->jited_len, unregister, 9280 prog->aux->ksym.name); 9281 } else { 9282 for (i = 0; i < prog->aux->func_cnt; i++) { 9283 struct bpf_prog *subprog = prog->aux->func[i]; 9284 9285 perf_event_ksymbol( 9286 PERF_RECORD_KSYMBOL_TYPE_BPF, 9287 (u64)(unsigned long)subprog->bpf_func, 9288 subprog->jited_len, unregister, 9289 subprog->aux->ksym.name); 9290 } 9291 } 9292 } 9293 9294 void perf_event_bpf_event(struct bpf_prog *prog, 9295 enum perf_bpf_event_type type, 9296 u16 flags) 9297 { 9298 struct perf_bpf_event bpf_event; 9299 9300 if (type <= PERF_BPF_EVENT_UNKNOWN || 9301 type >= PERF_BPF_EVENT_MAX) 9302 return; 9303 9304 switch (type) { 9305 case PERF_BPF_EVENT_PROG_LOAD: 9306 case PERF_BPF_EVENT_PROG_UNLOAD: 9307 if (atomic_read(&nr_ksymbol_events)) 9308 perf_event_bpf_emit_ksymbols(prog, type); 9309 break; 9310 default: 9311 break; 9312 } 9313 9314 if (!atomic_read(&nr_bpf_events)) 9315 return; 9316 9317 bpf_event = (struct perf_bpf_event){ 9318 .prog = prog, 9319 .event_id = { 9320 .header = { 9321 .type = PERF_RECORD_BPF_EVENT, 9322 .size = sizeof(bpf_event.event_id), 9323 }, 9324 .type = type, 9325 .flags = flags, 9326 .id = prog->aux->id, 9327 }, 9328 }; 9329 9330 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64)); 9331 9332 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE); 9333 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL); 9334 } 9335 9336 struct perf_text_poke_event { 9337 const void *old_bytes; 9338 const void *new_bytes; 9339 size_t pad; 9340 u16 old_len; 9341 u16 new_len; 9342 9343 struct { 9344 struct perf_event_header header; 9345 9346 u64 addr; 9347 } event_id; 9348 }; 9349 9350 static int perf_event_text_poke_match(struct perf_event *event) 9351 { 9352 return event->attr.text_poke; 9353 } 9354 9355 static void perf_event_text_poke_output(struct perf_event *event, void *data) 9356 { 9357 struct perf_text_poke_event *text_poke_event = data; 9358 struct perf_output_handle handle; 9359 struct perf_sample_data sample; 9360 u64 padding = 0; 9361 int ret; 9362 9363 if (!perf_event_text_poke_match(event)) 9364 return; 9365 9366 perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event); 9367 9368 ret = perf_output_begin(&handle, &sample, event, 9369 text_poke_event->event_id.header.size); 9370 if (ret) 9371 return; 9372 9373 perf_output_put(&handle, text_poke_event->event_id); 9374 perf_output_put(&handle, text_poke_event->old_len); 9375 perf_output_put(&handle, text_poke_event->new_len); 9376 9377 __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len); 9378 __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len); 9379 9380 if (text_poke_event->pad) 9381 __output_copy(&handle, &padding, text_poke_event->pad); 9382 9383 perf_event__output_id_sample(event, &handle, &sample); 9384 9385 perf_output_end(&handle); 9386 } 9387 9388 void perf_event_text_poke(const void *addr, const void *old_bytes, 9389 size_t old_len, const void *new_bytes, size_t new_len) 9390 { 9391 struct perf_text_poke_event text_poke_event; 9392 size_t tot, pad; 9393 9394 if (!atomic_read(&nr_text_poke_events)) 9395 return; 9396 9397 tot = sizeof(text_poke_event.old_len) + old_len; 9398 tot += sizeof(text_poke_event.new_len) + new_len; 9399 pad = ALIGN(tot, sizeof(u64)) - tot; 9400 9401 text_poke_event = (struct perf_text_poke_event){ 9402 .old_bytes = old_bytes, 9403 .new_bytes = new_bytes, 9404 .pad = pad, 9405 .old_len = old_len, 9406 .new_len = new_len, 9407 .event_id = { 9408 .header = { 9409 .type = PERF_RECORD_TEXT_POKE, 9410 .misc = PERF_RECORD_MISC_KERNEL, 9411 .size = sizeof(text_poke_event.event_id) + tot + pad, 9412 }, 9413 .addr = (unsigned long)addr, 9414 }, 9415 }; 9416 9417 perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL); 9418 } 9419 9420 void perf_event_itrace_started(struct perf_event *event) 9421 { 9422 event->attach_state |= PERF_ATTACH_ITRACE; 9423 } 9424 9425 static void perf_log_itrace_start(struct perf_event *event) 9426 { 9427 struct perf_output_handle handle; 9428 struct perf_sample_data sample; 9429 struct perf_aux_event { 9430 struct perf_event_header header; 9431 u32 pid; 9432 u32 tid; 9433 } rec; 9434 int ret; 9435 9436 if (event->parent) 9437 event = event->parent; 9438 9439 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || 9440 event->attach_state & PERF_ATTACH_ITRACE) 9441 return; 9442 9443 rec.header.type = PERF_RECORD_ITRACE_START; 9444 rec.header.misc = 0; 9445 rec.header.size = sizeof(rec); 9446 rec.pid = perf_event_pid(event, current); 9447 rec.tid = perf_event_tid(event, current); 9448 9449 perf_event_header__init_id(&rec.header, &sample, event); 9450 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 9451 9452 if (ret) 9453 return; 9454 9455 perf_output_put(&handle, rec); 9456 perf_event__output_id_sample(event, &handle, &sample); 9457 9458 perf_output_end(&handle); 9459 } 9460 9461 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id) 9462 { 9463 struct perf_output_handle handle; 9464 struct perf_sample_data sample; 9465 struct perf_aux_event { 9466 struct perf_event_header header; 9467 u64 hw_id; 9468 } rec; 9469 int ret; 9470 9471 if (event->parent) 9472 event = event->parent; 9473 9474 rec.header.type = PERF_RECORD_AUX_OUTPUT_HW_ID; 9475 rec.header.misc = 0; 9476 rec.header.size = sizeof(rec); 9477 rec.hw_id = hw_id; 9478 9479 perf_event_header__init_id(&rec.header, &sample, event); 9480 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 9481 9482 if (ret) 9483 return; 9484 9485 perf_output_put(&handle, rec); 9486 perf_event__output_id_sample(event, &handle, &sample); 9487 9488 perf_output_end(&handle); 9489 } 9490 EXPORT_SYMBOL_GPL(perf_report_aux_output_id); 9491 9492 static int 9493 __perf_event_account_interrupt(struct perf_event *event, int throttle) 9494 { 9495 struct hw_perf_event *hwc = &event->hw; 9496 int ret = 0; 9497 u64 seq; 9498 9499 seq = __this_cpu_read(perf_throttled_seq); 9500 if (seq != hwc->interrupts_seq) { 9501 hwc->interrupts_seq = seq; 9502 hwc->interrupts = 1; 9503 } else { 9504 hwc->interrupts++; 9505 if (unlikely(throttle && 9506 hwc->interrupts > max_samples_per_tick)) { 9507 __this_cpu_inc(perf_throttled_count); 9508 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 9509 hwc->interrupts = MAX_INTERRUPTS; 9510 perf_log_throttle(event, 0); 9511 ret = 1; 9512 } 9513 } 9514 9515 if (event->attr.freq) { 9516 u64 now = perf_clock(); 9517 s64 delta = now - hwc->freq_time_stamp; 9518 9519 hwc->freq_time_stamp = now; 9520 9521 if (delta > 0 && delta < 2*TICK_NSEC) 9522 perf_adjust_period(event, delta, hwc->last_period, true); 9523 } 9524 9525 return ret; 9526 } 9527 9528 int perf_event_account_interrupt(struct perf_event *event) 9529 { 9530 return __perf_event_account_interrupt(event, 1); 9531 } 9532 9533 static inline bool sample_is_allowed(struct perf_event *event, struct pt_regs *regs) 9534 { 9535 /* 9536 * Due to interrupt latency (AKA "skid"), we may enter the 9537 * kernel before taking an overflow, even if the PMU is only 9538 * counting user events. 9539 */ 9540 if (event->attr.exclude_kernel && !user_mode(regs)) 9541 return false; 9542 9543 return true; 9544 } 9545 9546 /* 9547 * Generic event overflow handling, sampling. 9548 */ 9549 9550 static int __perf_event_overflow(struct perf_event *event, 9551 int throttle, struct perf_sample_data *data, 9552 struct pt_regs *regs) 9553 { 9554 int events = atomic_read(&event->event_limit); 9555 int ret = 0; 9556 9557 /* 9558 * Non-sampling counters might still use the PMI to fold short 9559 * hardware counters, ignore those. 9560 */ 9561 if (unlikely(!is_sampling_event(event))) 9562 return 0; 9563 9564 ret = __perf_event_account_interrupt(event, throttle); 9565 9566 /* 9567 * XXX event_limit might not quite work as expected on inherited 9568 * events 9569 */ 9570 9571 event->pending_kill = POLL_IN; 9572 if (events && atomic_dec_and_test(&event->event_limit)) { 9573 ret = 1; 9574 event->pending_kill = POLL_HUP; 9575 perf_event_disable_inatomic(event); 9576 } 9577 9578 if (event->attr.sigtrap) { 9579 /* 9580 * The desired behaviour of sigtrap vs invalid samples is a bit 9581 * tricky; on the one hand, one should not loose the SIGTRAP if 9582 * it is the first event, on the other hand, we should also not 9583 * trigger the WARN or override the data address. 9584 */ 9585 bool valid_sample = sample_is_allowed(event, regs); 9586 unsigned int pending_id = 1; 9587 9588 if (regs) 9589 pending_id = hash32_ptr((void *)instruction_pointer(regs)) ?: 1; 9590 if (!event->pending_sigtrap) { 9591 event->pending_sigtrap = pending_id; 9592 local_inc(&event->ctx->nr_pending); 9593 } else if (event->attr.exclude_kernel && valid_sample) { 9594 /* 9595 * Should not be able to return to user space without 9596 * consuming pending_sigtrap; with exceptions: 9597 * 9598 * 1. Where !exclude_kernel, events can overflow again 9599 * in the kernel without returning to user space. 9600 * 9601 * 2. Events that can overflow again before the IRQ- 9602 * work without user space progress (e.g. hrtimer). 9603 * To approximate progress (with false negatives), 9604 * check 32-bit hash of the current IP. 9605 */ 9606 WARN_ON_ONCE(event->pending_sigtrap != pending_id); 9607 } 9608 9609 event->pending_addr = 0; 9610 if (valid_sample && (data->sample_flags & PERF_SAMPLE_ADDR)) 9611 event->pending_addr = data->addr; 9612 irq_work_queue(&event->pending_irq); 9613 } 9614 9615 READ_ONCE(event->overflow_handler)(event, data, regs); 9616 9617 if (*perf_event_fasync(event) && event->pending_kill) { 9618 event->pending_wakeup = 1; 9619 irq_work_queue(&event->pending_irq); 9620 } 9621 9622 return ret; 9623 } 9624 9625 int perf_event_overflow(struct perf_event *event, 9626 struct perf_sample_data *data, 9627 struct pt_regs *regs) 9628 { 9629 return __perf_event_overflow(event, 1, data, regs); 9630 } 9631 9632 /* 9633 * Generic software event infrastructure 9634 */ 9635 9636 struct swevent_htable { 9637 struct swevent_hlist *swevent_hlist; 9638 struct mutex hlist_mutex; 9639 int hlist_refcount; 9640 9641 /* Recursion avoidance in each contexts */ 9642 int recursion[PERF_NR_CONTEXTS]; 9643 }; 9644 9645 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 9646 9647 /* 9648 * We directly increment event->count and keep a second value in 9649 * event->hw.period_left to count intervals. This period event 9650 * is kept in the range [-sample_period, 0] so that we can use the 9651 * sign as trigger. 9652 */ 9653 9654 u64 perf_swevent_set_period(struct perf_event *event) 9655 { 9656 struct hw_perf_event *hwc = &event->hw; 9657 u64 period = hwc->last_period; 9658 u64 nr, offset; 9659 s64 old, val; 9660 9661 hwc->last_period = hwc->sample_period; 9662 9663 old = local64_read(&hwc->period_left); 9664 do { 9665 val = old; 9666 if (val < 0) 9667 return 0; 9668 9669 nr = div64_u64(period + val, period); 9670 offset = nr * period; 9671 val -= offset; 9672 } while (!local64_try_cmpxchg(&hwc->period_left, &old, val)); 9673 9674 return nr; 9675 } 9676 9677 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 9678 struct perf_sample_data *data, 9679 struct pt_regs *regs) 9680 { 9681 struct hw_perf_event *hwc = &event->hw; 9682 int throttle = 0; 9683 9684 if (!overflow) 9685 overflow = perf_swevent_set_period(event); 9686 9687 if (hwc->interrupts == MAX_INTERRUPTS) 9688 return; 9689 9690 for (; overflow; overflow--) { 9691 if (__perf_event_overflow(event, throttle, 9692 data, regs)) { 9693 /* 9694 * We inhibit the overflow from happening when 9695 * hwc->interrupts == MAX_INTERRUPTS. 9696 */ 9697 break; 9698 } 9699 throttle = 1; 9700 } 9701 } 9702 9703 static void perf_swevent_event(struct perf_event *event, u64 nr, 9704 struct perf_sample_data *data, 9705 struct pt_regs *regs) 9706 { 9707 struct hw_perf_event *hwc = &event->hw; 9708 9709 local64_add(nr, &event->count); 9710 9711 if (!regs) 9712 return; 9713 9714 if (!is_sampling_event(event)) 9715 return; 9716 9717 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 9718 data->period = nr; 9719 return perf_swevent_overflow(event, 1, data, regs); 9720 } else 9721 data->period = event->hw.last_period; 9722 9723 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 9724 return perf_swevent_overflow(event, 1, data, regs); 9725 9726 if (local64_add_negative(nr, &hwc->period_left)) 9727 return; 9728 9729 perf_swevent_overflow(event, 0, data, regs); 9730 } 9731 9732 static int perf_exclude_event(struct perf_event *event, 9733 struct pt_regs *regs) 9734 { 9735 if (event->hw.state & PERF_HES_STOPPED) 9736 return 1; 9737 9738 if (regs) { 9739 if (event->attr.exclude_user && user_mode(regs)) 9740 return 1; 9741 9742 if (event->attr.exclude_kernel && !user_mode(regs)) 9743 return 1; 9744 } 9745 9746 return 0; 9747 } 9748 9749 static int perf_swevent_match(struct perf_event *event, 9750 enum perf_type_id type, 9751 u32 event_id, 9752 struct perf_sample_data *data, 9753 struct pt_regs *regs) 9754 { 9755 if (event->attr.type != type) 9756 return 0; 9757 9758 if (event->attr.config != event_id) 9759 return 0; 9760 9761 if (perf_exclude_event(event, regs)) 9762 return 0; 9763 9764 return 1; 9765 } 9766 9767 static inline u64 swevent_hash(u64 type, u32 event_id) 9768 { 9769 u64 val = event_id | (type << 32); 9770 9771 return hash_64(val, SWEVENT_HLIST_BITS); 9772 } 9773 9774 static inline struct hlist_head * 9775 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 9776 { 9777 u64 hash = swevent_hash(type, event_id); 9778 9779 return &hlist->heads[hash]; 9780 } 9781 9782 /* For the read side: events when they trigger */ 9783 static inline struct hlist_head * 9784 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 9785 { 9786 struct swevent_hlist *hlist; 9787 9788 hlist = rcu_dereference(swhash->swevent_hlist); 9789 if (!hlist) 9790 return NULL; 9791 9792 return __find_swevent_head(hlist, type, event_id); 9793 } 9794 9795 /* For the event head insertion and removal in the hlist */ 9796 static inline struct hlist_head * 9797 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 9798 { 9799 struct swevent_hlist *hlist; 9800 u32 event_id = event->attr.config; 9801 u64 type = event->attr.type; 9802 9803 /* 9804 * Event scheduling is always serialized against hlist allocation 9805 * and release. Which makes the protected version suitable here. 9806 * The context lock guarantees that. 9807 */ 9808 hlist = rcu_dereference_protected(swhash->swevent_hlist, 9809 lockdep_is_held(&event->ctx->lock)); 9810 if (!hlist) 9811 return NULL; 9812 9813 return __find_swevent_head(hlist, type, event_id); 9814 } 9815 9816 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 9817 u64 nr, 9818 struct perf_sample_data *data, 9819 struct pt_regs *regs) 9820 { 9821 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9822 struct perf_event *event; 9823 struct hlist_head *head; 9824 9825 rcu_read_lock(); 9826 head = find_swevent_head_rcu(swhash, type, event_id); 9827 if (!head) 9828 goto end; 9829 9830 hlist_for_each_entry_rcu(event, head, hlist_entry) { 9831 if (perf_swevent_match(event, type, event_id, data, regs)) 9832 perf_swevent_event(event, nr, data, regs); 9833 } 9834 end: 9835 rcu_read_unlock(); 9836 } 9837 9838 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); 9839 9840 int perf_swevent_get_recursion_context(void) 9841 { 9842 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9843 9844 return get_recursion_context(swhash->recursion); 9845 } 9846 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 9847 9848 void perf_swevent_put_recursion_context(int rctx) 9849 { 9850 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9851 9852 put_recursion_context(swhash->recursion, rctx); 9853 } 9854 9855 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 9856 { 9857 struct perf_sample_data data; 9858 9859 if (WARN_ON_ONCE(!regs)) 9860 return; 9861 9862 perf_sample_data_init(&data, addr, 0); 9863 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 9864 } 9865 9866 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 9867 { 9868 int rctx; 9869 9870 preempt_disable_notrace(); 9871 rctx = perf_swevent_get_recursion_context(); 9872 if (unlikely(rctx < 0)) 9873 goto fail; 9874 9875 ___perf_sw_event(event_id, nr, regs, addr); 9876 9877 perf_swevent_put_recursion_context(rctx); 9878 fail: 9879 preempt_enable_notrace(); 9880 } 9881 9882 static void perf_swevent_read(struct perf_event *event) 9883 { 9884 } 9885 9886 static int perf_swevent_add(struct perf_event *event, int flags) 9887 { 9888 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9889 struct hw_perf_event *hwc = &event->hw; 9890 struct hlist_head *head; 9891 9892 if (is_sampling_event(event)) { 9893 hwc->last_period = hwc->sample_period; 9894 perf_swevent_set_period(event); 9895 } 9896 9897 hwc->state = !(flags & PERF_EF_START); 9898 9899 head = find_swevent_head(swhash, event); 9900 if (WARN_ON_ONCE(!head)) 9901 return -EINVAL; 9902 9903 hlist_add_head_rcu(&event->hlist_entry, head); 9904 perf_event_update_userpage(event); 9905 9906 return 0; 9907 } 9908 9909 static void perf_swevent_del(struct perf_event *event, int flags) 9910 { 9911 hlist_del_rcu(&event->hlist_entry); 9912 } 9913 9914 static void perf_swevent_start(struct perf_event *event, int flags) 9915 { 9916 event->hw.state = 0; 9917 } 9918 9919 static void perf_swevent_stop(struct perf_event *event, int flags) 9920 { 9921 event->hw.state = PERF_HES_STOPPED; 9922 } 9923 9924 /* Deref the hlist from the update side */ 9925 static inline struct swevent_hlist * 9926 swevent_hlist_deref(struct swevent_htable *swhash) 9927 { 9928 return rcu_dereference_protected(swhash->swevent_hlist, 9929 lockdep_is_held(&swhash->hlist_mutex)); 9930 } 9931 9932 static void swevent_hlist_release(struct swevent_htable *swhash) 9933 { 9934 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 9935 9936 if (!hlist) 9937 return; 9938 9939 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 9940 kfree_rcu(hlist, rcu_head); 9941 } 9942 9943 static void swevent_hlist_put_cpu(int cpu) 9944 { 9945 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 9946 9947 mutex_lock(&swhash->hlist_mutex); 9948 9949 if (!--swhash->hlist_refcount) 9950 swevent_hlist_release(swhash); 9951 9952 mutex_unlock(&swhash->hlist_mutex); 9953 } 9954 9955 static void swevent_hlist_put(void) 9956 { 9957 int cpu; 9958 9959 for_each_possible_cpu(cpu) 9960 swevent_hlist_put_cpu(cpu); 9961 } 9962 9963 static int swevent_hlist_get_cpu(int cpu) 9964 { 9965 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 9966 int err = 0; 9967 9968 mutex_lock(&swhash->hlist_mutex); 9969 if (!swevent_hlist_deref(swhash) && 9970 cpumask_test_cpu(cpu, perf_online_mask)) { 9971 struct swevent_hlist *hlist; 9972 9973 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 9974 if (!hlist) { 9975 err = -ENOMEM; 9976 goto exit; 9977 } 9978 rcu_assign_pointer(swhash->swevent_hlist, hlist); 9979 } 9980 swhash->hlist_refcount++; 9981 exit: 9982 mutex_unlock(&swhash->hlist_mutex); 9983 9984 return err; 9985 } 9986 9987 static int swevent_hlist_get(void) 9988 { 9989 int err, cpu, failed_cpu; 9990 9991 mutex_lock(&pmus_lock); 9992 for_each_possible_cpu(cpu) { 9993 err = swevent_hlist_get_cpu(cpu); 9994 if (err) { 9995 failed_cpu = cpu; 9996 goto fail; 9997 } 9998 } 9999 mutex_unlock(&pmus_lock); 10000 return 0; 10001 fail: 10002 for_each_possible_cpu(cpu) { 10003 if (cpu == failed_cpu) 10004 break; 10005 swevent_hlist_put_cpu(cpu); 10006 } 10007 mutex_unlock(&pmus_lock); 10008 return err; 10009 } 10010 10011 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 10012 10013 static void sw_perf_event_destroy(struct perf_event *event) 10014 { 10015 u64 event_id = event->attr.config; 10016 10017 WARN_ON(event->parent); 10018 10019 static_key_slow_dec(&perf_swevent_enabled[event_id]); 10020 swevent_hlist_put(); 10021 } 10022 10023 static struct pmu perf_cpu_clock; /* fwd declaration */ 10024 static struct pmu perf_task_clock; 10025 10026 static int perf_swevent_init(struct perf_event *event) 10027 { 10028 u64 event_id = event->attr.config; 10029 10030 if (event->attr.type != PERF_TYPE_SOFTWARE) 10031 return -ENOENT; 10032 10033 /* 10034 * no branch sampling for software events 10035 */ 10036 if (has_branch_stack(event)) 10037 return -EOPNOTSUPP; 10038 10039 switch (event_id) { 10040 case PERF_COUNT_SW_CPU_CLOCK: 10041 event->attr.type = perf_cpu_clock.type; 10042 return -ENOENT; 10043 case PERF_COUNT_SW_TASK_CLOCK: 10044 event->attr.type = perf_task_clock.type; 10045 return -ENOENT; 10046 10047 default: 10048 break; 10049 } 10050 10051 if (event_id >= PERF_COUNT_SW_MAX) 10052 return -ENOENT; 10053 10054 if (!event->parent) { 10055 int err; 10056 10057 err = swevent_hlist_get(); 10058 if (err) 10059 return err; 10060 10061 static_key_slow_inc(&perf_swevent_enabled[event_id]); 10062 event->destroy = sw_perf_event_destroy; 10063 } 10064 10065 return 0; 10066 } 10067 10068 static struct pmu perf_swevent = { 10069 .task_ctx_nr = perf_sw_context, 10070 10071 .capabilities = PERF_PMU_CAP_NO_NMI, 10072 10073 .event_init = perf_swevent_init, 10074 .add = perf_swevent_add, 10075 .del = perf_swevent_del, 10076 .start = perf_swevent_start, 10077 .stop = perf_swevent_stop, 10078 .read = perf_swevent_read, 10079 }; 10080 10081 #ifdef CONFIG_EVENT_TRACING 10082 10083 static void tp_perf_event_destroy(struct perf_event *event) 10084 { 10085 perf_trace_destroy(event); 10086 } 10087 10088 static int perf_tp_event_init(struct perf_event *event) 10089 { 10090 int err; 10091 10092 if (event->attr.type != PERF_TYPE_TRACEPOINT) 10093 return -ENOENT; 10094 10095 /* 10096 * no branch sampling for tracepoint events 10097 */ 10098 if (has_branch_stack(event)) 10099 return -EOPNOTSUPP; 10100 10101 err = perf_trace_init(event); 10102 if (err) 10103 return err; 10104 10105 event->destroy = tp_perf_event_destroy; 10106 10107 return 0; 10108 } 10109 10110 static struct pmu perf_tracepoint = { 10111 .task_ctx_nr = perf_sw_context, 10112 10113 .event_init = perf_tp_event_init, 10114 .add = perf_trace_add, 10115 .del = perf_trace_del, 10116 .start = perf_swevent_start, 10117 .stop = perf_swevent_stop, 10118 .read = perf_swevent_read, 10119 }; 10120 10121 static int perf_tp_filter_match(struct perf_event *event, 10122 struct perf_sample_data *data) 10123 { 10124 void *record = data->raw->frag.data; 10125 10126 /* only top level events have filters set */ 10127 if (event->parent) 10128 event = event->parent; 10129 10130 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 10131 return 1; 10132 return 0; 10133 } 10134 10135 static int perf_tp_event_match(struct perf_event *event, 10136 struct perf_sample_data *data, 10137 struct pt_regs *regs) 10138 { 10139 if (event->hw.state & PERF_HES_STOPPED) 10140 return 0; 10141 /* 10142 * If exclude_kernel, only trace user-space tracepoints (uprobes) 10143 */ 10144 if (event->attr.exclude_kernel && !user_mode(regs)) 10145 return 0; 10146 10147 if (!perf_tp_filter_match(event, data)) 10148 return 0; 10149 10150 return 1; 10151 } 10152 10153 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx, 10154 struct trace_event_call *call, u64 count, 10155 struct pt_regs *regs, struct hlist_head *head, 10156 struct task_struct *task) 10157 { 10158 if (bpf_prog_array_valid(call)) { 10159 *(struct pt_regs **)raw_data = regs; 10160 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) { 10161 perf_swevent_put_recursion_context(rctx); 10162 return; 10163 } 10164 } 10165 perf_tp_event(call->event.type, count, raw_data, size, regs, head, 10166 rctx, task); 10167 } 10168 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit); 10169 10170 static void __perf_tp_event_target_task(u64 count, void *record, 10171 struct pt_regs *regs, 10172 struct perf_sample_data *data, 10173 struct perf_event *event) 10174 { 10175 struct trace_entry *entry = record; 10176 10177 if (event->attr.config != entry->type) 10178 return; 10179 /* Cannot deliver synchronous signal to other task. */ 10180 if (event->attr.sigtrap) 10181 return; 10182 if (perf_tp_event_match(event, data, regs)) 10183 perf_swevent_event(event, count, data, regs); 10184 } 10185 10186 static void perf_tp_event_target_task(u64 count, void *record, 10187 struct pt_regs *regs, 10188 struct perf_sample_data *data, 10189 struct perf_event_context *ctx) 10190 { 10191 unsigned int cpu = smp_processor_id(); 10192 struct pmu *pmu = &perf_tracepoint; 10193 struct perf_event *event, *sibling; 10194 10195 perf_event_groups_for_cpu_pmu(event, &ctx->pinned_groups, cpu, pmu) { 10196 __perf_tp_event_target_task(count, record, regs, data, event); 10197 for_each_sibling_event(sibling, event) 10198 __perf_tp_event_target_task(count, record, regs, data, sibling); 10199 } 10200 10201 perf_event_groups_for_cpu_pmu(event, &ctx->flexible_groups, cpu, pmu) { 10202 __perf_tp_event_target_task(count, record, regs, data, event); 10203 for_each_sibling_event(sibling, event) 10204 __perf_tp_event_target_task(count, record, regs, data, sibling); 10205 } 10206 } 10207 10208 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size, 10209 struct pt_regs *regs, struct hlist_head *head, int rctx, 10210 struct task_struct *task) 10211 { 10212 struct perf_sample_data data; 10213 struct perf_event *event; 10214 10215 struct perf_raw_record raw = { 10216 .frag = { 10217 .size = entry_size, 10218 .data = record, 10219 }, 10220 }; 10221 10222 perf_sample_data_init(&data, 0, 0); 10223 perf_sample_save_raw_data(&data, &raw); 10224 10225 perf_trace_buf_update(record, event_type); 10226 10227 hlist_for_each_entry_rcu(event, head, hlist_entry) { 10228 if (perf_tp_event_match(event, &data, regs)) { 10229 perf_swevent_event(event, count, &data, regs); 10230 10231 /* 10232 * Here use the same on-stack perf_sample_data, 10233 * some members in data are event-specific and 10234 * need to be re-computed for different sweveents. 10235 * Re-initialize data->sample_flags safely to avoid 10236 * the problem that next event skips preparing data 10237 * because data->sample_flags is set. 10238 */ 10239 perf_sample_data_init(&data, 0, 0); 10240 perf_sample_save_raw_data(&data, &raw); 10241 } 10242 } 10243 10244 /* 10245 * If we got specified a target task, also iterate its context and 10246 * deliver this event there too. 10247 */ 10248 if (task && task != current) { 10249 struct perf_event_context *ctx; 10250 10251 rcu_read_lock(); 10252 ctx = rcu_dereference(task->perf_event_ctxp); 10253 if (!ctx) 10254 goto unlock; 10255 10256 raw_spin_lock(&ctx->lock); 10257 perf_tp_event_target_task(count, record, regs, &data, ctx); 10258 raw_spin_unlock(&ctx->lock); 10259 unlock: 10260 rcu_read_unlock(); 10261 } 10262 10263 perf_swevent_put_recursion_context(rctx); 10264 } 10265 EXPORT_SYMBOL_GPL(perf_tp_event); 10266 10267 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS) 10268 /* 10269 * Flags in config, used by dynamic PMU kprobe and uprobe 10270 * The flags should match following PMU_FORMAT_ATTR(). 10271 * 10272 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe 10273 * if not set, create kprobe/uprobe 10274 * 10275 * The following values specify a reference counter (or semaphore in the 10276 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically 10277 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset. 10278 * 10279 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset 10280 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left 10281 */ 10282 enum perf_probe_config { 10283 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */ 10284 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32, 10285 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS, 10286 }; 10287 10288 PMU_FORMAT_ATTR(retprobe, "config:0"); 10289 #endif 10290 10291 #ifdef CONFIG_KPROBE_EVENTS 10292 static struct attribute *kprobe_attrs[] = { 10293 &format_attr_retprobe.attr, 10294 NULL, 10295 }; 10296 10297 static struct attribute_group kprobe_format_group = { 10298 .name = "format", 10299 .attrs = kprobe_attrs, 10300 }; 10301 10302 static const struct attribute_group *kprobe_attr_groups[] = { 10303 &kprobe_format_group, 10304 NULL, 10305 }; 10306 10307 static int perf_kprobe_event_init(struct perf_event *event); 10308 static struct pmu perf_kprobe = { 10309 .task_ctx_nr = perf_sw_context, 10310 .event_init = perf_kprobe_event_init, 10311 .add = perf_trace_add, 10312 .del = perf_trace_del, 10313 .start = perf_swevent_start, 10314 .stop = perf_swevent_stop, 10315 .read = perf_swevent_read, 10316 .attr_groups = kprobe_attr_groups, 10317 }; 10318 10319 static int perf_kprobe_event_init(struct perf_event *event) 10320 { 10321 int err; 10322 bool is_retprobe; 10323 10324 if (event->attr.type != perf_kprobe.type) 10325 return -ENOENT; 10326 10327 if (!perfmon_capable()) 10328 return -EACCES; 10329 10330 /* 10331 * no branch sampling for probe events 10332 */ 10333 if (has_branch_stack(event)) 10334 return -EOPNOTSUPP; 10335 10336 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 10337 err = perf_kprobe_init(event, is_retprobe); 10338 if (err) 10339 return err; 10340 10341 event->destroy = perf_kprobe_destroy; 10342 10343 return 0; 10344 } 10345 #endif /* CONFIG_KPROBE_EVENTS */ 10346 10347 #ifdef CONFIG_UPROBE_EVENTS 10348 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63"); 10349 10350 static struct attribute *uprobe_attrs[] = { 10351 &format_attr_retprobe.attr, 10352 &format_attr_ref_ctr_offset.attr, 10353 NULL, 10354 }; 10355 10356 static struct attribute_group uprobe_format_group = { 10357 .name = "format", 10358 .attrs = uprobe_attrs, 10359 }; 10360 10361 static const struct attribute_group *uprobe_attr_groups[] = { 10362 &uprobe_format_group, 10363 NULL, 10364 }; 10365 10366 static int perf_uprobe_event_init(struct perf_event *event); 10367 static struct pmu perf_uprobe = { 10368 .task_ctx_nr = perf_sw_context, 10369 .event_init = perf_uprobe_event_init, 10370 .add = perf_trace_add, 10371 .del = perf_trace_del, 10372 .start = perf_swevent_start, 10373 .stop = perf_swevent_stop, 10374 .read = perf_swevent_read, 10375 .attr_groups = uprobe_attr_groups, 10376 }; 10377 10378 static int perf_uprobe_event_init(struct perf_event *event) 10379 { 10380 int err; 10381 unsigned long ref_ctr_offset; 10382 bool is_retprobe; 10383 10384 if (event->attr.type != perf_uprobe.type) 10385 return -ENOENT; 10386 10387 if (!perfmon_capable()) 10388 return -EACCES; 10389 10390 /* 10391 * no branch sampling for probe events 10392 */ 10393 if (has_branch_stack(event)) 10394 return -EOPNOTSUPP; 10395 10396 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 10397 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 10398 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe); 10399 if (err) 10400 return err; 10401 10402 event->destroy = perf_uprobe_destroy; 10403 10404 return 0; 10405 } 10406 #endif /* CONFIG_UPROBE_EVENTS */ 10407 10408 static inline void perf_tp_register(void) 10409 { 10410 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 10411 #ifdef CONFIG_KPROBE_EVENTS 10412 perf_pmu_register(&perf_kprobe, "kprobe", -1); 10413 #endif 10414 #ifdef CONFIG_UPROBE_EVENTS 10415 perf_pmu_register(&perf_uprobe, "uprobe", -1); 10416 #endif 10417 } 10418 10419 static void perf_event_free_filter(struct perf_event *event) 10420 { 10421 ftrace_profile_free_filter(event); 10422 } 10423 10424 #ifdef CONFIG_BPF_SYSCALL 10425 static void bpf_overflow_handler(struct perf_event *event, 10426 struct perf_sample_data *data, 10427 struct pt_regs *regs) 10428 { 10429 struct bpf_perf_event_data_kern ctx = { 10430 .data = data, 10431 .event = event, 10432 }; 10433 struct bpf_prog *prog; 10434 int ret = 0; 10435 10436 ctx.regs = perf_arch_bpf_user_pt_regs(regs); 10437 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) 10438 goto out; 10439 rcu_read_lock(); 10440 prog = READ_ONCE(event->prog); 10441 if (prog) { 10442 perf_prepare_sample(data, event, regs); 10443 ret = bpf_prog_run(prog, &ctx); 10444 } 10445 rcu_read_unlock(); 10446 out: 10447 __this_cpu_dec(bpf_prog_active); 10448 if (!ret) 10449 return; 10450 10451 event->orig_overflow_handler(event, data, regs); 10452 } 10453 10454 static int perf_event_set_bpf_handler(struct perf_event *event, 10455 struct bpf_prog *prog, 10456 u64 bpf_cookie) 10457 { 10458 if (event->overflow_handler_context) 10459 /* hw breakpoint or kernel counter */ 10460 return -EINVAL; 10461 10462 if (event->prog) 10463 return -EEXIST; 10464 10465 if (prog->type != BPF_PROG_TYPE_PERF_EVENT) 10466 return -EINVAL; 10467 10468 if (event->attr.precise_ip && 10469 prog->call_get_stack && 10470 (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) || 10471 event->attr.exclude_callchain_kernel || 10472 event->attr.exclude_callchain_user)) { 10473 /* 10474 * On perf_event with precise_ip, calling bpf_get_stack() 10475 * may trigger unwinder warnings and occasional crashes. 10476 * bpf_get_[stack|stackid] works around this issue by using 10477 * callchain attached to perf_sample_data. If the 10478 * perf_event does not full (kernel and user) callchain 10479 * attached to perf_sample_data, do not allow attaching BPF 10480 * program that calls bpf_get_[stack|stackid]. 10481 */ 10482 return -EPROTO; 10483 } 10484 10485 event->prog = prog; 10486 event->bpf_cookie = bpf_cookie; 10487 event->orig_overflow_handler = READ_ONCE(event->overflow_handler); 10488 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler); 10489 return 0; 10490 } 10491 10492 static void perf_event_free_bpf_handler(struct perf_event *event) 10493 { 10494 struct bpf_prog *prog = event->prog; 10495 10496 if (!prog) 10497 return; 10498 10499 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler); 10500 event->prog = NULL; 10501 bpf_prog_put(prog); 10502 } 10503 #else 10504 static int perf_event_set_bpf_handler(struct perf_event *event, 10505 struct bpf_prog *prog, 10506 u64 bpf_cookie) 10507 { 10508 return -EOPNOTSUPP; 10509 } 10510 static void perf_event_free_bpf_handler(struct perf_event *event) 10511 { 10512 } 10513 #endif 10514 10515 /* 10516 * returns true if the event is a tracepoint, or a kprobe/upprobe created 10517 * with perf_event_open() 10518 */ 10519 static inline bool perf_event_is_tracing(struct perf_event *event) 10520 { 10521 if (event->pmu == &perf_tracepoint) 10522 return true; 10523 #ifdef CONFIG_KPROBE_EVENTS 10524 if (event->pmu == &perf_kprobe) 10525 return true; 10526 #endif 10527 #ifdef CONFIG_UPROBE_EVENTS 10528 if (event->pmu == &perf_uprobe) 10529 return true; 10530 #endif 10531 return false; 10532 } 10533 10534 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog, 10535 u64 bpf_cookie) 10536 { 10537 bool is_kprobe, is_uprobe, is_tracepoint, is_syscall_tp; 10538 10539 if (!perf_event_is_tracing(event)) 10540 return perf_event_set_bpf_handler(event, prog, bpf_cookie); 10541 10542 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_KPROBE; 10543 is_uprobe = event->tp_event->flags & TRACE_EVENT_FL_UPROBE; 10544 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT; 10545 is_syscall_tp = is_syscall_trace_event(event->tp_event); 10546 if (!is_kprobe && !is_uprobe && !is_tracepoint && !is_syscall_tp) 10547 /* bpf programs can only be attached to u/kprobe or tracepoint */ 10548 return -EINVAL; 10549 10550 if (((is_kprobe || is_uprobe) && prog->type != BPF_PROG_TYPE_KPROBE) || 10551 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) || 10552 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) 10553 return -EINVAL; 10554 10555 if (prog->type == BPF_PROG_TYPE_KPROBE && prog->aux->sleepable && !is_uprobe) 10556 /* only uprobe programs are allowed to be sleepable */ 10557 return -EINVAL; 10558 10559 /* Kprobe override only works for kprobes, not uprobes. */ 10560 if (prog->kprobe_override && !is_kprobe) 10561 return -EINVAL; 10562 10563 if (is_tracepoint || is_syscall_tp) { 10564 int off = trace_event_get_offsets(event->tp_event); 10565 10566 if (prog->aux->max_ctx_offset > off) 10567 return -EACCES; 10568 } 10569 10570 return perf_event_attach_bpf_prog(event, prog, bpf_cookie); 10571 } 10572 10573 void perf_event_free_bpf_prog(struct perf_event *event) 10574 { 10575 if (!perf_event_is_tracing(event)) { 10576 perf_event_free_bpf_handler(event); 10577 return; 10578 } 10579 perf_event_detach_bpf_prog(event); 10580 } 10581 10582 #else 10583 10584 static inline void perf_tp_register(void) 10585 { 10586 } 10587 10588 static void perf_event_free_filter(struct perf_event *event) 10589 { 10590 } 10591 10592 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog, 10593 u64 bpf_cookie) 10594 { 10595 return -ENOENT; 10596 } 10597 10598 void perf_event_free_bpf_prog(struct perf_event *event) 10599 { 10600 } 10601 #endif /* CONFIG_EVENT_TRACING */ 10602 10603 #ifdef CONFIG_HAVE_HW_BREAKPOINT 10604 void perf_bp_event(struct perf_event *bp, void *data) 10605 { 10606 struct perf_sample_data sample; 10607 struct pt_regs *regs = data; 10608 10609 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 10610 10611 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 10612 perf_swevent_event(bp, 1, &sample, regs); 10613 } 10614 #endif 10615 10616 /* 10617 * Allocate a new address filter 10618 */ 10619 static struct perf_addr_filter * 10620 perf_addr_filter_new(struct perf_event *event, struct list_head *filters) 10621 { 10622 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu); 10623 struct perf_addr_filter *filter; 10624 10625 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node); 10626 if (!filter) 10627 return NULL; 10628 10629 INIT_LIST_HEAD(&filter->entry); 10630 list_add_tail(&filter->entry, filters); 10631 10632 return filter; 10633 } 10634 10635 static void free_filters_list(struct list_head *filters) 10636 { 10637 struct perf_addr_filter *filter, *iter; 10638 10639 list_for_each_entry_safe(filter, iter, filters, entry) { 10640 path_put(&filter->path); 10641 list_del(&filter->entry); 10642 kfree(filter); 10643 } 10644 } 10645 10646 /* 10647 * Free existing address filters and optionally install new ones 10648 */ 10649 static void perf_addr_filters_splice(struct perf_event *event, 10650 struct list_head *head) 10651 { 10652 unsigned long flags; 10653 LIST_HEAD(list); 10654 10655 if (!has_addr_filter(event)) 10656 return; 10657 10658 /* don't bother with children, they don't have their own filters */ 10659 if (event->parent) 10660 return; 10661 10662 raw_spin_lock_irqsave(&event->addr_filters.lock, flags); 10663 10664 list_splice_init(&event->addr_filters.list, &list); 10665 if (head) 10666 list_splice(head, &event->addr_filters.list); 10667 10668 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags); 10669 10670 free_filters_list(&list); 10671 } 10672 10673 /* 10674 * Scan through mm's vmas and see if one of them matches the 10675 * @filter; if so, adjust filter's address range. 10676 * Called with mm::mmap_lock down for reading. 10677 */ 10678 static void perf_addr_filter_apply(struct perf_addr_filter *filter, 10679 struct mm_struct *mm, 10680 struct perf_addr_filter_range *fr) 10681 { 10682 struct vm_area_struct *vma; 10683 VMA_ITERATOR(vmi, mm, 0); 10684 10685 for_each_vma(vmi, vma) { 10686 if (!vma->vm_file) 10687 continue; 10688 10689 if (perf_addr_filter_vma_adjust(filter, vma, fr)) 10690 return; 10691 } 10692 } 10693 10694 /* 10695 * Update event's address range filters based on the 10696 * task's existing mappings, if any. 10697 */ 10698 static void perf_event_addr_filters_apply(struct perf_event *event) 10699 { 10700 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 10701 struct task_struct *task = READ_ONCE(event->ctx->task); 10702 struct perf_addr_filter *filter; 10703 struct mm_struct *mm = NULL; 10704 unsigned int count = 0; 10705 unsigned long flags; 10706 10707 /* 10708 * We may observe TASK_TOMBSTONE, which means that the event tear-down 10709 * will stop on the parent's child_mutex that our caller is also holding 10710 */ 10711 if (task == TASK_TOMBSTONE) 10712 return; 10713 10714 if (ifh->nr_file_filters) { 10715 mm = get_task_mm(task); 10716 if (!mm) 10717 goto restart; 10718 10719 mmap_read_lock(mm); 10720 } 10721 10722 raw_spin_lock_irqsave(&ifh->lock, flags); 10723 list_for_each_entry(filter, &ifh->list, entry) { 10724 if (filter->path.dentry) { 10725 /* 10726 * Adjust base offset if the filter is associated to a 10727 * binary that needs to be mapped: 10728 */ 10729 event->addr_filter_ranges[count].start = 0; 10730 event->addr_filter_ranges[count].size = 0; 10731 10732 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]); 10733 } else { 10734 event->addr_filter_ranges[count].start = filter->offset; 10735 event->addr_filter_ranges[count].size = filter->size; 10736 } 10737 10738 count++; 10739 } 10740 10741 event->addr_filters_gen++; 10742 raw_spin_unlock_irqrestore(&ifh->lock, flags); 10743 10744 if (ifh->nr_file_filters) { 10745 mmap_read_unlock(mm); 10746 10747 mmput(mm); 10748 } 10749 10750 restart: 10751 perf_event_stop(event, 1); 10752 } 10753 10754 /* 10755 * Address range filtering: limiting the data to certain 10756 * instruction address ranges. Filters are ioctl()ed to us from 10757 * userspace as ascii strings. 10758 * 10759 * Filter string format: 10760 * 10761 * ACTION RANGE_SPEC 10762 * where ACTION is one of the 10763 * * "filter": limit the trace to this region 10764 * * "start": start tracing from this address 10765 * * "stop": stop tracing at this address/region; 10766 * RANGE_SPEC is 10767 * * for kernel addresses: <start address>[/<size>] 10768 * * for object files: <start address>[/<size>]@</path/to/object/file> 10769 * 10770 * if <size> is not specified or is zero, the range is treated as a single 10771 * address; not valid for ACTION=="filter". 10772 */ 10773 enum { 10774 IF_ACT_NONE = -1, 10775 IF_ACT_FILTER, 10776 IF_ACT_START, 10777 IF_ACT_STOP, 10778 IF_SRC_FILE, 10779 IF_SRC_KERNEL, 10780 IF_SRC_FILEADDR, 10781 IF_SRC_KERNELADDR, 10782 }; 10783 10784 enum { 10785 IF_STATE_ACTION = 0, 10786 IF_STATE_SOURCE, 10787 IF_STATE_END, 10788 }; 10789 10790 static const match_table_t if_tokens = { 10791 { IF_ACT_FILTER, "filter" }, 10792 { IF_ACT_START, "start" }, 10793 { IF_ACT_STOP, "stop" }, 10794 { IF_SRC_FILE, "%u/%u@%s" }, 10795 { IF_SRC_KERNEL, "%u/%u" }, 10796 { IF_SRC_FILEADDR, "%u@%s" }, 10797 { IF_SRC_KERNELADDR, "%u" }, 10798 { IF_ACT_NONE, NULL }, 10799 }; 10800 10801 /* 10802 * Address filter string parser 10803 */ 10804 static int 10805 perf_event_parse_addr_filter(struct perf_event *event, char *fstr, 10806 struct list_head *filters) 10807 { 10808 struct perf_addr_filter *filter = NULL; 10809 char *start, *orig, *filename = NULL; 10810 substring_t args[MAX_OPT_ARGS]; 10811 int state = IF_STATE_ACTION, token; 10812 unsigned int kernel = 0; 10813 int ret = -EINVAL; 10814 10815 orig = fstr = kstrdup(fstr, GFP_KERNEL); 10816 if (!fstr) 10817 return -ENOMEM; 10818 10819 while ((start = strsep(&fstr, " ,\n")) != NULL) { 10820 static const enum perf_addr_filter_action_t actions[] = { 10821 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER, 10822 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START, 10823 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP, 10824 }; 10825 ret = -EINVAL; 10826 10827 if (!*start) 10828 continue; 10829 10830 /* filter definition begins */ 10831 if (state == IF_STATE_ACTION) { 10832 filter = perf_addr_filter_new(event, filters); 10833 if (!filter) 10834 goto fail; 10835 } 10836 10837 token = match_token(start, if_tokens, args); 10838 switch (token) { 10839 case IF_ACT_FILTER: 10840 case IF_ACT_START: 10841 case IF_ACT_STOP: 10842 if (state != IF_STATE_ACTION) 10843 goto fail; 10844 10845 filter->action = actions[token]; 10846 state = IF_STATE_SOURCE; 10847 break; 10848 10849 case IF_SRC_KERNELADDR: 10850 case IF_SRC_KERNEL: 10851 kernel = 1; 10852 fallthrough; 10853 10854 case IF_SRC_FILEADDR: 10855 case IF_SRC_FILE: 10856 if (state != IF_STATE_SOURCE) 10857 goto fail; 10858 10859 *args[0].to = 0; 10860 ret = kstrtoul(args[0].from, 0, &filter->offset); 10861 if (ret) 10862 goto fail; 10863 10864 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) { 10865 *args[1].to = 0; 10866 ret = kstrtoul(args[1].from, 0, &filter->size); 10867 if (ret) 10868 goto fail; 10869 } 10870 10871 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) { 10872 int fpos = token == IF_SRC_FILE ? 2 : 1; 10873 10874 kfree(filename); 10875 filename = match_strdup(&args[fpos]); 10876 if (!filename) { 10877 ret = -ENOMEM; 10878 goto fail; 10879 } 10880 } 10881 10882 state = IF_STATE_END; 10883 break; 10884 10885 default: 10886 goto fail; 10887 } 10888 10889 /* 10890 * Filter definition is fully parsed, validate and install it. 10891 * Make sure that it doesn't contradict itself or the event's 10892 * attribute. 10893 */ 10894 if (state == IF_STATE_END) { 10895 ret = -EINVAL; 10896 10897 /* 10898 * ACTION "filter" must have a non-zero length region 10899 * specified. 10900 */ 10901 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER && 10902 !filter->size) 10903 goto fail; 10904 10905 if (!kernel) { 10906 if (!filename) 10907 goto fail; 10908 10909 /* 10910 * For now, we only support file-based filters 10911 * in per-task events; doing so for CPU-wide 10912 * events requires additional context switching 10913 * trickery, since same object code will be 10914 * mapped at different virtual addresses in 10915 * different processes. 10916 */ 10917 ret = -EOPNOTSUPP; 10918 if (!event->ctx->task) 10919 goto fail; 10920 10921 /* look up the path and grab its inode */ 10922 ret = kern_path(filename, LOOKUP_FOLLOW, 10923 &filter->path); 10924 if (ret) 10925 goto fail; 10926 10927 ret = -EINVAL; 10928 if (!filter->path.dentry || 10929 !S_ISREG(d_inode(filter->path.dentry) 10930 ->i_mode)) 10931 goto fail; 10932 10933 event->addr_filters.nr_file_filters++; 10934 } 10935 10936 /* ready to consume more filters */ 10937 kfree(filename); 10938 filename = NULL; 10939 state = IF_STATE_ACTION; 10940 filter = NULL; 10941 kernel = 0; 10942 } 10943 } 10944 10945 if (state != IF_STATE_ACTION) 10946 goto fail; 10947 10948 kfree(filename); 10949 kfree(orig); 10950 10951 return 0; 10952 10953 fail: 10954 kfree(filename); 10955 free_filters_list(filters); 10956 kfree(orig); 10957 10958 return ret; 10959 } 10960 10961 static int 10962 perf_event_set_addr_filter(struct perf_event *event, char *filter_str) 10963 { 10964 LIST_HEAD(filters); 10965 int ret; 10966 10967 /* 10968 * Since this is called in perf_ioctl() path, we're already holding 10969 * ctx::mutex. 10970 */ 10971 lockdep_assert_held(&event->ctx->mutex); 10972 10973 if (WARN_ON_ONCE(event->parent)) 10974 return -EINVAL; 10975 10976 ret = perf_event_parse_addr_filter(event, filter_str, &filters); 10977 if (ret) 10978 goto fail_clear_files; 10979 10980 ret = event->pmu->addr_filters_validate(&filters); 10981 if (ret) 10982 goto fail_free_filters; 10983 10984 /* remove existing filters, if any */ 10985 perf_addr_filters_splice(event, &filters); 10986 10987 /* install new filters */ 10988 perf_event_for_each_child(event, perf_event_addr_filters_apply); 10989 10990 return ret; 10991 10992 fail_free_filters: 10993 free_filters_list(&filters); 10994 10995 fail_clear_files: 10996 event->addr_filters.nr_file_filters = 0; 10997 10998 return ret; 10999 } 11000 11001 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 11002 { 11003 int ret = -EINVAL; 11004 char *filter_str; 11005 11006 filter_str = strndup_user(arg, PAGE_SIZE); 11007 if (IS_ERR(filter_str)) 11008 return PTR_ERR(filter_str); 11009 11010 #ifdef CONFIG_EVENT_TRACING 11011 if (perf_event_is_tracing(event)) { 11012 struct perf_event_context *ctx = event->ctx; 11013 11014 /* 11015 * Beware, here be dragons!! 11016 * 11017 * the tracepoint muck will deadlock against ctx->mutex, but 11018 * the tracepoint stuff does not actually need it. So 11019 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we 11020 * already have a reference on ctx. 11021 * 11022 * This can result in event getting moved to a different ctx, 11023 * but that does not affect the tracepoint state. 11024 */ 11025 mutex_unlock(&ctx->mutex); 11026 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 11027 mutex_lock(&ctx->mutex); 11028 } else 11029 #endif 11030 if (has_addr_filter(event)) 11031 ret = perf_event_set_addr_filter(event, filter_str); 11032 11033 kfree(filter_str); 11034 return ret; 11035 } 11036 11037 /* 11038 * hrtimer based swevent callback 11039 */ 11040 11041 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 11042 { 11043 enum hrtimer_restart ret = HRTIMER_RESTART; 11044 struct perf_sample_data data; 11045 struct pt_regs *regs; 11046 struct perf_event *event; 11047 u64 period; 11048 11049 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 11050 11051 if (event->state != PERF_EVENT_STATE_ACTIVE) 11052 return HRTIMER_NORESTART; 11053 11054 event->pmu->read(event); 11055 11056 perf_sample_data_init(&data, 0, event->hw.last_period); 11057 regs = get_irq_regs(); 11058 11059 if (regs && !perf_exclude_event(event, regs)) { 11060 if (!(event->attr.exclude_idle && is_idle_task(current))) 11061 if (__perf_event_overflow(event, 1, &data, regs)) 11062 ret = HRTIMER_NORESTART; 11063 } 11064 11065 period = max_t(u64, 10000, event->hw.sample_period); 11066 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 11067 11068 return ret; 11069 } 11070 11071 static void perf_swevent_start_hrtimer(struct perf_event *event) 11072 { 11073 struct hw_perf_event *hwc = &event->hw; 11074 s64 period; 11075 11076 if (!is_sampling_event(event)) 11077 return; 11078 11079 period = local64_read(&hwc->period_left); 11080 if (period) { 11081 if (period < 0) 11082 period = 10000; 11083 11084 local64_set(&hwc->period_left, 0); 11085 } else { 11086 period = max_t(u64, 10000, hwc->sample_period); 11087 } 11088 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), 11089 HRTIMER_MODE_REL_PINNED_HARD); 11090 } 11091 11092 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 11093 { 11094 struct hw_perf_event *hwc = &event->hw; 11095 11096 if (is_sampling_event(event)) { 11097 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 11098 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 11099 11100 hrtimer_cancel(&hwc->hrtimer); 11101 } 11102 } 11103 11104 static void perf_swevent_init_hrtimer(struct perf_event *event) 11105 { 11106 struct hw_perf_event *hwc = &event->hw; 11107 11108 if (!is_sampling_event(event)) 11109 return; 11110 11111 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 11112 hwc->hrtimer.function = perf_swevent_hrtimer; 11113 11114 /* 11115 * Since hrtimers have a fixed rate, we can do a static freq->period 11116 * mapping and avoid the whole period adjust feedback stuff. 11117 */ 11118 if (event->attr.freq) { 11119 long freq = event->attr.sample_freq; 11120 11121 event->attr.sample_period = NSEC_PER_SEC / freq; 11122 hwc->sample_period = event->attr.sample_period; 11123 local64_set(&hwc->period_left, hwc->sample_period); 11124 hwc->last_period = hwc->sample_period; 11125 event->attr.freq = 0; 11126 } 11127 } 11128 11129 /* 11130 * Software event: cpu wall time clock 11131 */ 11132 11133 static void cpu_clock_event_update(struct perf_event *event) 11134 { 11135 s64 prev; 11136 u64 now; 11137 11138 now = local_clock(); 11139 prev = local64_xchg(&event->hw.prev_count, now); 11140 local64_add(now - prev, &event->count); 11141 } 11142 11143 static void cpu_clock_event_start(struct perf_event *event, int flags) 11144 { 11145 local64_set(&event->hw.prev_count, local_clock()); 11146 perf_swevent_start_hrtimer(event); 11147 } 11148 11149 static void cpu_clock_event_stop(struct perf_event *event, int flags) 11150 { 11151 perf_swevent_cancel_hrtimer(event); 11152 cpu_clock_event_update(event); 11153 } 11154 11155 static int cpu_clock_event_add(struct perf_event *event, int flags) 11156 { 11157 if (flags & PERF_EF_START) 11158 cpu_clock_event_start(event, flags); 11159 perf_event_update_userpage(event); 11160 11161 return 0; 11162 } 11163 11164 static void cpu_clock_event_del(struct perf_event *event, int flags) 11165 { 11166 cpu_clock_event_stop(event, flags); 11167 } 11168 11169 static void cpu_clock_event_read(struct perf_event *event) 11170 { 11171 cpu_clock_event_update(event); 11172 } 11173 11174 static int cpu_clock_event_init(struct perf_event *event) 11175 { 11176 if (event->attr.type != perf_cpu_clock.type) 11177 return -ENOENT; 11178 11179 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 11180 return -ENOENT; 11181 11182 /* 11183 * no branch sampling for software events 11184 */ 11185 if (has_branch_stack(event)) 11186 return -EOPNOTSUPP; 11187 11188 perf_swevent_init_hrtimer(event); 11189 11190 return 0; 11191 } 11192 11193 static struct pmu perf_cpu_clock = { 11194 .task_ctx_nr = perf_sw_context, 11195 11196 .capabilities = PERF_PMU_CAP_NO_NMI, 11197 .dev = PMU_NULL_DEV, 11198 11199 .event_init = cpu_clock_event_init, 11200 .add = cpu_clock_event_add, 11201 .del = cpu_clock_event_del, 11202 .start = cpu_clock_event_start, 11203 .stop = cpu_clock_event_stop, 11204 .read = cpu_clock_event_read, 11205 }; 11206 11207 /* 11208 * Software event: task time clock 11209 */ 11210 11211 static void task_clock_event_update(struct perf_event *event, u64 now) 11212 { 11213 u64 prev; 11214 s64 delta; 11215 11216 prev = local64_xchg(&event->hw.prev_count, now); 11217 delta = now - prev; 11218 local64_add(delta, &event->count); 11219 } 11220 11221 static void task_clock_event_start(struct perf_event *event, int flags) 11222 { 11223 local64_set(&event->hw.prev_count, event->ctx->time); 11224 perf_swevent_start_hrtimer(event); 11225 } 11226 11227 static void task_clock_event_stop(struct perf_event *event, int flags) 11228 { 11229 perf_swevent_cancel_hrtimer(event); 11230 task_clock_event_update(event, event->ctx->time); 11231 } 11232 11233 static int task_clock_event_add(struct perf_event *event, int flags) 11234 { 11235 if (flags & PERF_EF_START) 11236 task_clock_event_start(event, flags); 11237 perf_event_update_userpage(event); 11238 11239 return 0; 11240 } 11241 11242 static void task_clock_event_del(struct perf_event *event, int flags) 11243 { 11244 task_clock_event_stop(event, PERF_EF_UPDATE); 11245 } 11246 11247 static void task_clock_event_read(struct perf_event *event) 11248 { 11249 u64 now = perf_clock(); 11250 u64 delta = now - event->ctx->timestamp; 11251 u64 time = event->ctx->time + delta; 11252 11253 task_clock_event_update(event, time); 11254 } 11255 11256 static int task_clock_event_init(struct perf_event *event) 11257 { 11258 if (event->attr.type != perf_task_clock.type) 11259 return -ENOENT; 11260 11261 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 11262 return -ENOENT; 11263 11264 /* 11265 * no branch sampling for software events 11266 */ 11267 if (has_branch_stack(event)) 11268 return -EOPNOTSUPP; 11269 11270 perf_swevent_init_hrtimer(event); 11271 11272 return 0; 11273 } 11274 11275 static struct pmu perf_task_clock = { 11276 .task_ctx_nr = perf_sw_context, 11277 11278 .capabilities = PERF_PMU_CAP_NO_NMI, 11279 .dev = PMU_NULL_DEV, 11280 11281 .event_init = task_clock_event_init, 11282 .add = task_clock_event_add, 11283 .del = task_clock_event_del, 11284 .start = task_clock_event_start, 11285 .stop = task_clock_event_stop, 11286 .read = task_clock_event_read, 11287 }; 11288 11289 static void perf_pmu_nop_void(struct pmu *pmu) 11290 { 11291 } 11292 11293 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags) 11294 { 11295 } 11296 11297 static int perf_pmu_nop_int(struct pmu *pmu) 11298 { 11299 return 0; 11300 } 11301 11302 static int perf_event_nop_int(struct perf_event *event, u64 value) 11303 { 11304 return 0; 11305 } 11306 11307 static DEFINE_PER_CPU(unsigned int, nop_txn_flags); 11308 11309 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags) 11310 { 11311 __this_cpu_write(nop_txn_flags, flags); 11312 11313 if (flags & ~PERF_PMU_TXN_ADD) 11314 return; 11315 11316 perf_pmu_disable(pmu); 11317 } 11318 11319 static int perf_pmu_commit_txn(struct pmu *pmu) 11320 { 11321 unsigned int flags = __this_cpu_read(nop_txn_flags); 11322 11323 __this_cpu_write(nop_txn_flags, 0); 11324 11325 if (flags & ~PERF_PMU_TXN_ADD) 11326 return 0; 11327 11328 perf_pmu_enable(pmu); 11329 return 0; 11330 } 11331 11332 static void perf_pmu_cancel_txn(struct pmu *pmu) 11333 { 11334 unsigned int flags = __this_cpu_read(nop_txn_flags); 11335 11336 __this_cpu_write(nop_txn_flags, 0); 11337 11338 if (flags & ~PERF_PMU_TXN_ADD) 11339 return; 11340 11341 perf_pmu_enable(pmu); 11342 } 11343 11344 static int perf_event_idx_default(struct perf_event *event) 11345 { 11346 return 0; 11347 } 11348 11349 static void free_pmu_context(struct pmu *pmu) 11350 { 11351 free_percpu(pmu->cpu_pmu_context); 11352 } 11353 11354 /* 11355 * Let userspace know that this PMU supports address range filtering: 11356 */ 11357 static ssize_t nr_addr_filters_show(struct device *dev, 11358 struct device_attribute *attr, 11359 char *page) 11360 { 11361 struct pmu *pmu = dev_get_drvdata(dev); 11362 11363 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters); 11364 } 11365 DEVICE_ATTR_RO(nr_addr_filters); 11366 11367 static struct idr pmu_idr; 11368 11369 static ssize_t 11370 type_show(struct device *dev, struct device_attribute *attr, char *page) 11371 { 11372 struct pmu *pmu = dev_get_drvdata(dev); 11373 11374 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->type); 11375 } 11376 static DEVICE_ATTR_RO(type); 11377 11378 static ssize_t 11379 perf_event_mux_interval_ms_show(struct device *dev, 11380 struct device_attribute *attr, 11381 char *page) 11382 { 11383 struct pmu *pmu = dev_get_drvdata(dev); 11384 11385 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->hrtimer_interval_ms); 11386 } 11387 11388 static DEFINE_MUTEX(mux_interval_mutex); 11389 11390 static ssize_t 11391 perf_event_mux_interval_ms_store(struct device *dev, 11392 struct device_attribute *attr, 11393 const char *buf, size_t count) 11394 { 11395 struct pmu *pmu = dev_get_drvdata(dev); 11396 int timer, cpu, ret; 11397 11398 ret = kstrtoint(buf, 0, &timer); 11399 if (ret) 11400 return ret; 11401 11402 if (timer < 1) 11403 return -EINVAL; 11404 11405 /* same value, noting to do */ 11406 if (timer == pmu->hrtimer_interval_ms) 11407 return count; 11408 11409 mutex_lock(&mux_interval_mutex); 11410 pmu->hrtimer_interval_ms = timer; 11411 11412 /* update all cpuctx for this PMU */ 11413 cpus_read_lock(); 11414 for_each_online_cpu(cpu) { 11415 struct perf_cpu_pmu_context *cpc; 11416 cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu); 11417 cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 11418 11419 cpu_function_call(cpu, perf_mux_hrtimer_restart_ipi, cpc); 11420 } 11421 cpus_read_unlock(); 11422 mutex_unlock(&mux_interval_mutex); 11423 11424 return count; 11425 } 11426 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 11427 11428 static struct attribute *pmu_dev_attrs[] = { 11429 &dev_attr_type.attr, 11430 &dev_attr_perf_event_mux_interval_ms.attr, 11431 &dev_attr_nr_addr_filters.attr, 11432 NULL, 11433 }; 11434 11435 static umode_t pmu_dev_is_visible(struct kobject *kobj, struct attribute *a, int n) 11436 { 11437 struct device *dev = kobj_to_dev(kobj); 11438 struct pmu *pmu = dev_get_drvdata(dev); 11439 11440 if (n == 2 && !pmu->nr_addr_filters) 11441 return 0; 11442 11443 return a->mode; 11444 } 11445 11446 static struct attribute_group pmu_dev_attr_group = { 11447 .is_visible = pmu_dev_is_visible, 11448 .attrs = pmu_dev_attrs, 11449 }; 11450 11451 static const struct attribute_group *pmu_dev_groups[] = { 11452 &pmu_dev_attr_group, 11453 NULL, 11454 }; 11455 11456 static int pmu_bus_running; 11457 static struct bus_type pmu_bus = { 11458 .name = "event_source", 11459 .dev_groups = pmu_dev_groups, 11460 }; 11461 11462 static void pmu_dev_release(struct device *dev) 11463 { 11464 kfree(dev); 11465 } 11466 11467 static int pmu_dev_alloc(struct pmu *pmu) 11468 { 11469 int ret = -ENOMEM; 11470 11471 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 11472 if (!pmu->dev) 11473 goto out; 11474 11475 pmu->dev->groups = pmu->attr_groups; 11476 device_initialize(pmu->dev); 11477 11478 dev_set_drvdata(pmu->dev, pmu); 11479 pmu->dev->bus = &pmu_bus; 11480 pmu->dev->parent = pmu->parent; 11481 pmu->dev->release = pmu_dev_release; 11482 11483 ret = dev_set_name(pmu->dev, "%s", pmu->name); 11484 if (ret) 11485 goto free_dev; 11486 11487 ret = device_add(pmu->dev); 11488 if (ret) 11489 goto free_dev; 11490 11491 if (pmu->attr_update) { 11492 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update); 11493 if (ret) 11494 goto del_dev; 11495 } 11496 11497 out: 11498 return ret; 11499 11500 del_dev: 11501 device_del(pmu->dev); 11502 11503 free_dev: 11504 put_device(pmu->dev); 11505 goto out; 11506 } 11507 11508 static struct lock_class_key cpuctx_mutex; 11509 static struct lock_class_key cpuctx_lock; 11510 11511 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 11512 { 11513 int cpu, ret, max = PERF_TYPE_MAX; 11514 11515 mutex_lock(&pmus_lock); 11516 ret = -ENOMEM; 11517 pmu->pmu_disable_count = alloc_percpu(int); 11518 if (!pmu->pmu_disable_count) 11519 goto unlock; 11520 11521 pmu->type = -1; 11522 if (WARN_ONCE(!name, "Can not register anonymous pmu.\n")) { 11523 ret = -EINVAL; 11524 goto free_pdc; 11525 } 11526 11527 pmu->name = name; 11528 11529 if (type >= 0) 11530 max = type; 11531 11532 ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL); 11533 if (ret < 0) 11534 goto free_pdc; 11535 11536 WARN_ON(type >= 0 && ret != type); 11537 11538 type = ret; 11539 pmu->type = type; 11540 11541 if (pmu_bus_running && !pmu->dev) { 11542 ret = pmu_dev_alloc(pmu); 11543 if (ret) 11544 goto free_idr; 11545 } 11546 11547 ret = -ENOMEM; 11548 pmu->cpu_pmu_context = alloc_percpu(struct perf_cpu_pmu_context); 11549 if (!pmu->cpu_pmu_context) 11550 goto free_dev; 11551 11552 for_each_possible_cpu(cpu) { 11553 struct perf_cpu_pmu_context *cpc; 11554 11555 cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu); 11556 __perf_init_event_pmu_context(&cpc->epc, pmu); 11557 __perf_mux_hrtimer_init(cpc, cpu); 11558 } 11559 11560 if (!pmu->start_txn) { 11561 if (pmu->pmu_enable) { 11562 /* 11563 * If we have pmu_enable/pmu_disable calls, install 11564 * transaction stubs that use that to try and batch 11565 * hardware accesses. 11566 */ 11567 pmu->start_txn = perf_pmu_start_txn; 11568 pmu->commit_txn = perf_pmu_commit_txn; 11569 pmu->cancel_txn = perf_pmu_cancel_txn; 11570 } else { 11571 pmu->start_txn = perf_pmu_nop_txn; 11572 pmu->commit_txn = perf_pmu_nop_int; 11573 pmu->cancel_txn = perf_pmu_nop_void; 11574 } 11575 } 11576 11577 if (!pmu->pmu_enable) { 11578 pmu->pmu_enable = perf_pmu_nop_void; 11579 pmu->pmu_disable = perf_pmu_nop_void; 11580 } 11581 11582 if (!pmu->check_period) 11583 pmu->check_period = perf_event_nop_int; 11584 11585 if (!pmu->event_idx) 11586 pmu->event_idx = perf_event_idx_default; 11587 11588 list_add_rcu(&pmu->entry, &pmus); 11589 atomic_set(&pmu->exclusive_cnt, 0); 11590 ret = 0; 11591 unlock: 11592 mutex_unlock(&pmus_lock); 11593 11594 return ret; 11595 11596 free_dev: 11597 if (pmu->dev && pmu->dev != PMU_NULL_DEV) { 11598 device_del(pmu->dev); 11599 put_device(pmu->dev); 11600 } 11601 11602 free_idr: 11603 idr_remove(&pmu_idr, pmu->type); 11604 11605 free_pdc: 11606 free_percpu(pmu->pmu_disable_count); 11607 goto unlock; 11608 } 11609 EXPORT_SYMBOL_GPL(perf_pmu_register); 11610 11611 void perf_pmu_unregister(struct pmu *pmu) 11612 { 11613 mutex_lock(&pmus_lock); 11614 list_del_rcu(&pmu->entry); 11615 11616 /* 11617 * We dereference the pmu list under both SRCU and regular RCU, so 11618 * synchronize against both of those. 11619 */ 11620 synchronize_srcu(&pmus_srcu); 11621 synchronize_rcu(); 11622 11623 free_percpu(pmu->pmu_disable_count); 11624 idr_remove(&pmu_idr, pmu->type); 11625 if (pmu_bus_running && pmu->dev && pmu->dev != PMU_NULL_DEV) { 11626 if (pmu->nr_addr_filters) 11627 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters); 11628 device_del(pmu->dev); 11629 put_device(pmu->dev); 11630 } 11631 free_pmu_context(pmu); 11632 mutex_unlock(&pmus_lock); 11633 } 11634 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 11635 11636 static inline bool has_extended_regs(struct perf_event *event) 11637 { 11638 return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) || 11639 (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK); 11640 } 11641 11642 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) 11643 { 11644 struct perf_event_context *ctx = NULL; 11645 int ret; 11646 11647 if (!try_module_get(pmu->module)) 11648 return -ENODEV; 11649 11650 /* 11651 * A number of pmu->event_init() methods iterate the sibling_list to, 11652 * for example, validate if the group fits on the PMU. Therefore, 11653 * if this is a sibling event, acquire the ctx->mutex to protect 11654 * the sibling_list. 11655 */ 11656 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) { 11657 /* 11658 * This ctx->mutex can nest when we're called through 11659 * inheritance. See the perf_event_ctx_lock_nested() comment. 11660 */ 11661 ctx = perf_event_ctx_lock_nested(event->group_leader, 11662 SINGLE_DEPTH_NESTING); 11663 BUG_ON(!ctx); 11664 } 11665 11666 event->pmu = pmu; 11667 ret = pmu->event_init(event); 11668 11669 if (ctx) 11670 perf_event_ctx_unlock(event->group_leader, ctx); 11671 11672 if (!ret) { 11673 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) && 11674 has_extended_regs(event)) 11675 ret = -EOPNOTSUPP; 11676 11677 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE && 11678 event_has_any_exclude_flag(event)) 11679 ret = -EINVAL; 11680 11681 if (ret && event->destroy) 11682 event->destroy(event); 11683 } 11684 11685 if (ret) 11686 module_put(pmu->module); 11687 11688 return ret; 11689 } 11690 11691 static struct pmu *perf_init_event(struct perf_event *event) 11692 { 11693 bool extended_type = false; 11694 int idx, type, ret; 11695 struct pmu *pmu; 11696 11697 idx = srcu_read_lock(&pmus_srcu); 11698 11699 /* 11700 * Save original type before calling pmu->event_init() since certain 11701 * pmus overwrites event->attr.type to forward event to another pmu. 11702 */ 11703 event->orig_type = event->attr.type; 11704 11705 /* Try parent's PMU first: */ 11706 if (event->parent && event->parent->pmu) { 11707 pmu = event->parent->pmu; 11708 ret = perf_try_init_event(pmu, event); 11709 if (!ret) 11710 goto unlock; 11711 } 11712 11713 /* 11714 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE 11715 * are often aliases for PERF_TYPE_RAW. 11716 */ 11717 type = event->attr.type; 11718 if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) { 11719 type = event->attr.config >> PERF_PMU_TYPE_SHIFT; 11720 if (!type) { 11721 type = PERF_TYPE_RAW; 11722 } else { 11723 extended_type = true; 11724 event->attr.config &= PERF_HW_EVENT_MASK; 11725 } 11726 } 11727 11728 again: 11729 rcu_read_lock(); 11730 pmu = idr_find(&pmu_idr, type); 11731 rcu_read_unlock(); 11732 if (pmu) { 11733 if (event->attr.type != type && type != PERF_TYPE_RAW && 11734 !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE)) 11735 goto fail; 11736 11737 ret = perf_try_init_event(pmu, event); 11738 if (ret == -ENOENT && event->attr.type != type && !extended_type) { 11739 type = event->attr.type; 11740 goto again; 11741 } 11742 11743 if (ret) 11744 pmu = ERR_PTR(ret); 11745 11746 goto unlock; 11747 } 11748 11749 list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) { 11750 ret = perf_try_init_event(pmu, event); 11751 if (!ret) 11752 goto unlock; 11753 11754 if (ret != -ENOENT) { 11755 pmu = ERR_PTR(ret); 11756 goto unlock; 11757 } 11758 } 11759 fail: 11760 pmu = ERR_PTR(-ENOENT); 11761 unlock: 11762 srcu_read_unlock(&pmus_srcu, idx); 11763 11764 return pmu; 11765 } 11766 11767 static void attach_sb_event(struct perf_event *event) 11768 { 11769 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 11770 11771 raw_spin_lock(&pel->lock); 11772 list_add_rcu(&event->sb_list, &pel->list); 11773 raw_spin_unlock(&pel->lock); 11774 } 11775 11776 /* 11777 * We keep a list of all !task (and therefore per-cpu) events 11778 * that need to receive side-band records. 11779 * 11780 * This avoids having to scan all the various PMU per-cpu contexts 11781 * looking for them. 11782 */ 11783 static void account_pmu_sb_event(struct perf_event *event) 11784 { 11785 if (is_sb_event(event)) 11786 attach_sb_event(event); 11787 } 11788 11789 /* Freq events need the tick to stay alive (see perf_event_task_tick). */ 11790 static void account_freq_event_nohz(void) 11791 { 11792 #ifdef CONFIG_NO_HZ_FULL 11793 /* Lock so we don't race with concurrent unaccount */ 11794 spin_lock(&nr_freq_lock); 11795 if (atomic_inc_return(&nr_freq_events) == 1) 11796 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS); 11797 spin_unlock(&nr_freq_lock); 11798 #endif 11799 } 11800 11801 static void account_freq_event(void) 11802 { 11803 if (tick_nohz_full_enabled()) 11804 account_freq_event_nohz(); 11805 else 11806 atomic_inc(&nr_freq_events); 11807 } 11808 11809 11810 static void account_event(struct perf_event *event) 11811 { 11812 bool inc = false; 11813 11814 if (event->parent) 11815 return; 11816 11817 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB)) 11818 inc = true; 11819 if (event->attr.mmap || event->attr.mmap_data) 11820 atomic_inc(&nr_mmap_events); 11821 if (event->attr.build_id) 11822 atomic_inc(&nr_build_id_events); 11823 if (event->attr.comm) 11824 atomic_inc(&nr_comm_events); 11825 if (event->attr.namespaces) 11826 atomic_inc(&nr_namespaces_events); 11827 if (event->attr.cgroup) 11828 atomic_inc(&nr_cgroup_events); 11829 if (event->attr.task) 11830 atomic_inc(&nr_task_events); 11831 if (event->attr.freq) 11832 account_freq_event(); 11833 if (event->attr.context_switch) { 11834 atomic_inc(&nr_switch_events); 11835 inc = true; 11836 } 11837 if (has_branch_stack(event)) 11838 inc = true; 11839 if (is_cgroup_event(event)) 11840 inc = true; 11841 if (event->attr.ksymbol) 11842 atomic_inc(&nr_ksymbol_events); 11843 if (event->attr.bpf_event) 11844 atomic_inc(&nr_bpf_events); 11845 if (event->attr.text_poke) 11846 atomic_inc(&nr_text_poke_events); 11847 11848 if (inc) { 11849 /* 11850 * We need the mutex here because static_branch_enable() 11851 * must complete *before* the perf_sched_count increment 11852 * becomes visible. 11853 */ 11854 if (atomic_inc_not_zero(&perf_sched_count)) 11855 goto enabled; 11856 11857 mutex_lock(&perf_sched_mutex); 11858 if (!atomic_read(&perf_sched_count)) { 11859 static_branch_enable(&perf_sched_events); 11860 /* 11861 * Guarantee that all CPUs observe they key change and 11862 * call the perf scheduling hooks before proceeding to 11863 * install events that need them. 11864 */ 11865 synchronize_rcu(); 11866 } 11867 /* 11868 * Now that we have waited for the sync_sched(), allow further 11869 * increments to by-pass the mutex. 11870 */ 11871 atomic_inc(&perf_sched_count); 11872 mutex_unlock(&perf_sched_mutex); 11873 } 11874 enabled: 11875 11876 account_pmu_sb_event(event); 11877 } 11878 11879 /* 11880 * Allocate and initialize an event structure 11881 */ 11882 static struct perf_event * 11883 perf_event_alloc(struct perf_event_attr *attr, int cpu, 11884 struct task_struct *task, 11885 struct perf_event *group_leader, 11886 struct perf_event *parent_event, 11887 perf_overflow_handler_t overflow_handler, 11888 void *context, int cgroup_fd) 11889 { 11890 struct pmu *pmu; 11891 struct perf_event *event; 11892 struct hw_perf_event *hwc; 11893 long err = -EINVAL; 11894 int node; 11895 11896 if ((unsigned)cpu >= nr_cpu_ids) { 11897 if (!task || cpu != -1) 11898 return ERR_PTR(-EINVAL); 11899 } 11900 if (attr->sigtrap && !task) { 11901 /* Requires a task: avoid signalling random tasks. */ 11902 return ERR_PTR(-EINVAL); 11903 } 11904 11905 node = (cpu >= 0) ? cpu_to_node(cpu) : -1; 11906 event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO, 11907 node); 11908 if (!event) 11909 return ERR_PTR(-ENOMEM); 11910 11911 /* 11912 * Single events are their own group leaders, with an 11913 * empty sibling list: 11914 */ 11915 if (!group_leader) 11916 group_leader = event; 11917 11918 mutex_init(&event->child_mutex); 11919 INIT_LIST_HEAD(&event->child_list); 11920 11921 INIT_LIST_HEAD(&event->event_entry); 11922 INIT_LIST_HEAD(&event->sibling_list); 11923 INIT_LIST_HEAD(&event->active_list); 11924 init_event_group(event); 11925 INIT_LIST_HEAD(&event->rb_entry); 11926 INIT_LIST_HEAD(&event->active_entry); 11927 INIT_LIST_HEAD(&event->addr_filters.list); 11928 INIT_HLIST_NODE(&event->hlist_entry); 11929 11930 11931 init_waitqueue_head(&event->waitq); 11932 init_irq_work(&event->pending_irq, perf_pending_irq); 11933 init_task_work(&event->pending_task, perf_pending_task); 11934 11935 mutex_init(&event->mmap_mutex); 11936 raw_spin_lock_init(&event->addr_filters.lock); 11937 11938 atomic_long_set(&event->refcount, 1); 11939 event->cpu = cpu; 11940 event->attr = *attr; 11941 event->group_leader = group_leader; 11942 event->pmu = NULL; 11943 event->oncpu = -1; 11944 11945 event->parent = parent_event; 11946 11947 event->ns = get_pid_ns(task_active_pid_ns(current)); 11948 event->id = atomic64_inc_return(&perf_event_id); 11949 11950 event->state = PERF_EVENT_STATE_INACTIVE; 11951 11952 if (parent_event) 11953 event->event_caps = parent_event->event_caps; 11954 11955 if (task) { 11956 event->attach_state = PERF_ATTACH_TASK; 11957 /* 11958 * XXX pmu::event_init needs to know what task to account to 11959 * and we cannot use the ctx information because we need the 11960 * pmu before we get a ctx. 11961 */ 11962 event->hw.target = get_task_struct(task); 11963 } 11964 11965 event->clock = &local_clock; 11966 if (parent_event) 11967 event->clock = parent_event->clock; 11968 11969 if (!overflow_handler && parent_event) { 11970 overflow_handler = parent_event->overflow_handler; 11971 context = parent_event->overflow_handler_context; 11972 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING) 11973 if (overflow_handler == bpf_overflow_handler) { 11974 struct bpf_prog *prog = parent_event->prog; 11975 11976 bpf_prog_inc(prog); 11977 event->prog = prog; 11978 event->orig_overflow_handler = 11979 parent_event->orig_overflow_handler; 11980 } 11981 #endif 11982 } 11983 11984 if (overflow_handler) { 11985 event->overflow_handler = overflow_handler; 11986 event->overflow_handler_context = context; 11987 } else if (is_write_backward(event)){ 11988 event->overflow_handler = perf_event_output_backward; 11989 event->overflow_handler_context = NULL; 11990 } else { 11991 event->overflow_handler = perf_event_output_forward; 11992 event->overflow_handler_context = NULL; 11993 } 11994 11995 perf_event__state_init(event); 11996 11997 pmu = NULL; 11998 11999 hwc = &event->hw; 12000 hwc->sample_period = attr->sample_period; 12001 if (attr->freq && attr->sample_freq) 12002 hwc->sample_period = 1; 12003 hwc->last_period = hwc->sample_period; 12004 12005 local64_set(&hwc->period_left, hwc->sample_period); 12006 12007 /* 12008 * We currently do not support PERF_SAMPLE_READ on inherited events. 12009 * See perf_output_read(). 12010 */ 12011 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ)) 12012 goto err_ns; 12013 12014 if (!has_branch_stack(event)) 12015 event->attr.branch_sample_type = 0; 12016 12017 pmu = perf_init_event(event); 12018 if (IS_ERR(pmu)) { 12019 err = PTR_ERR(pmu); 12020 goto err_ns; 12021 } 12022 12023 /* 12024 * Disallow uncore-task events. Similarly, disallow uncore-cgroup 12025 * events (they don't make sense as the cgroup will be different 12026 * on other CPUs in the uncore mask). 12027 */ 12028 if (pmu->task_ctx_nr == perf_invalid_context && (task || cgroup_fd != -1)) { 12029 err = -EINVAL; 12030 goto err_pmu; 12031 } 12032 12033 if (event->attr.aux_output && 12034 !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) { 12035 err = -EOPNOTSUPP; 12036 goto err_pmu; 12037 } 12038 12039 if (cgroup_fd != -1) { 12040 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); 12041 if (err) 12042 goto err_pmu; 12043 } 12044 12045 err = exclusive_event_init(event); 12046 if (err) 12047 goto err_pmu; 12048 12049 if (has_addr_filter(event)) { 12050 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters, 12051 sizeof(struct perf_addr_filter_range), 12052 GFP_KERNEL); 12053 if (!event->addr_filter_ranges) { 12054 err = -ENOMEM; 12055 goto err_per_task; 12056 } 12057 12058 /* 12059 * Clone the parent's vma offsets: they are valid until exec() 12060 * even if the mm is not shared with the parent. 12061 */ 12062 if (event->parent) { 12063 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 12064 12065 raw_spin_lock_irq(&ifh->lock); 12066 memcpy(event->addr_filter_ranges, 12067 event->parent->addr_filter_ranges, 12068 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range)); 12069 raw_spin_unlock_irq(&ifh->lock); 12070 } 12071 12072 /* force hw sync on the address filters */ 12073 event->addr_filters_gen = 1; 12074 } 12075 12076 if (!event->parent) { 12077 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 12078 err = get_callchain_buffers(attr->sample_max_stack); 12079 if (err) 12080 goto err_addr_filters; 12081 } 12082 } 12083 12084 err = security_perf_event_alloc(event); 12085 if (err) 12086 goto err_callchain_buffer; 12087 12088 /* symmetric to unaccount_event() in _free_event() */ 12089 account_event(event); 12090 12091 return event; 12092 12093 err_callchain_buffer: 12094 if (!event->parent) { 12095 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 12096 put_callchain_buffers(); 12097 } 12098 err_addr_filters: 12099 kfree(event->addr_filter_ranges); 12100 12101 err_per_task: 12102 exclusive_event_destroy(event); 12103 12104 err_pmu: 12105 if (is_cgroup_event(event)) 12106 perf_detach_cgroup(event); 12107 if (event->destroy) 12108 event->destroy(event); 12109 module_put(pmu->module); 12110 err_ns: 12111 if (event->hw.target) 12112 put_task_struct(event->hw.target); 12113 call_rcu(&event->rcu_head, free_event_rcu); 12114 12115 return ERR_PTR(err); 12116 } 12117 12118 static int perf_copy_attr(struct perf_event_attr __user *uattr, 12119 struct perf_event_attr *attr) 12120 { 12121 u32 size; 12122 int ret; 12123 12124 /* Zero the full structure, so that a short copy will be nice. */ 12125 memset(attr, 0, sizeof(*attr)); 12126 12127 ret = get_user(size, &uattr->size); 12128 if (ret) 12129 return ret; 12130 12131 /* ABI compatibility quirk: */ 12132 if (!size) 12133 size = PERF_ATTR_SIZE_VER0; 12134 if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE) 12135 goto err_size; 12136 12137 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); 12138 if (ret) { 12139 if (ret == -E2BIG) 12140 goto err_size; 12141 return ret; 12142 } 12143 12144 attr->size = size; 12145 12146 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) 12147 return -EINVAL; 12148 12149 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 12150 return -EINVAL; 12151 12152 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 12153 return -EINVAL; 12154 12155 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 12156 u64 mask = attr->branch_sample_type; 12157 12158 /* only using defined bits */ 12159 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 12160 return -EINVAL; 12161 12162 /* at least one branch bit must be set */ 12163 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 12164 return -EINVAL; 12165 12166 /* propagate priv level, when not set for branch */ 12167 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 12168 12169 /* exclude_kernel checked on syscall entry */ 12170 if (!attr->exclude_kernel) 12171 mask |= PERF_SAMPLE_BRANCH_KERNEL; 12172 12173 if (!attr->exclude_user) 12174 mask |= PERF_SAMPLE_BRANCH_USER; 12175 12176 if (!attr->exclude_hv) 12177 mask |= PERF_SAMPLE_BRANCH_HV; 12178 /* 12179 * adjust user setting (for HW filter setup) 12180 */ 12181 attr->branch_sample_type = mask; 12182 } 12183 /* privileged levels capture (kernel, hv): check permissions */ 12184 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) { 12185 ret = perf_allow_kernel(attr); 12186 if (ret) 12187 return ret; 12188 } 12189 } 12190 12191 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 12192 ret = perf_reg_validate(attr->sample_regs_user); 12193 if (ret) 12194 return ret; 12195 } 12196 12197 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 12198 if (!arch_perf_have_user_stack_dump()) 12199 return -ENOSYS; 12200 12201 /* 12202 * We have __u32 type for the size, but so far 12203 * we can only use __u16 as maximum due to the 12204 * __u16 sample size limit. 12205 */ 12206 if (attr->sample_stack_user >= USHRT_MAX) 12207 return -EINVAL; 12208 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 12209 return -EINVAL; 12210 } 12211 12212 if (!attr->sample_max_stack) 12213 attr->sample_max_stack = sysctl_perf_event_max_stack; 12214 12215 if (attr->sample_type & PERF_SAMPLE_REGS_INTR) 12216 ret = perf_reg_validate(attr->sample_regs_intr); 12217 12218 #ifndef CONFIG_CGROUP_PERF 12219 if (attr->sample_type & PERF_SAMPLE_CGROUP) 12220 return -EINVAL; 12221 #endif 12222 if ((attr->sample_type & PERF_SAMPLE_WEIGHT) && 12223 (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT)) 12224 return -EINVAL; 12225 12226 if (!attr->inherit && attr->inherit_thread) 12227 return -EINVAL; 12228 12229 if (attr->remove_on_exec && attr->enable_on_exec) 12230 return -EINVAL; 12231 12232 if (attr->sigtrap && !attr->remove_on_exec) 12233 return -EINVAL; 12234 12235 out: 12236 return ret; 12237 12238 err_size: 12239 put_user(sizeof(*attr), &uattr->size); 12240 ret = -E2BIG; 12241 goto out; 12242 } 12243 12244 static void mutex_lock_double(struct mutex *a, struct mutex *b) 12245 { 12246 if (b < a) 12247 swap(a, b); 12248 12249 mutex_lock(a); 12250 mutex_lock_nested(b, SINGLE_DEPTH_NESTING); 12251 } 12252 12253 static int 12254 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 12255 { 12256 struct perf_buffer *rb = NULL; 12257 int ret = -EINVAL; 12258 12259 if (!output_event) { 12260 mutex_lock(&event->mmap_mutex); 12261 goto set; 12262 } 12263 12264 /* don't allow circular references */ 12265 if (event == output_event) 12266 goto out; 12267 12268 /* 12269 * Don't allow cross-cpu buffers 12270 */ 12271 if (output_event->cpu != event->cpu) 12272 goto out; 12273 12274 /* 12275 * If its not a per-cpu rb, it must be the same task. 12276 */ 12277 if (output_event->cpu == -1 && output_event->hw.target != event->hw.target) 12278 goto out; 12279 12280 /* 12281 * Mixing clocks in the same buffer is trouble you don't need. 12282 */ 12283 if (output_event->clock != event->clock) 12284 goto out; 12285 12286 /* 12287 * Either writing ring buffer from beginning or from end. 12288 * Mixing is not allowed. 12289 */ 12290 if (is_write_backward(output_event) != is_write_backward(event)) 12291 goto out; 12292 12293 /* 12294 * If both events generate aux data, they must be on the same PMU 12295 */ 12296 if (has_aux(event) && has_aux(output_event) && 12297 event->pmu != output_event->pmu) 12298 goto out; 12299 12300 /* 12301 * Hold both mmap_mutex to serialize against perf_mmap_close(). Since 12302 * output_event is already on rb->event_list, and the list iteration 12303 * restarts after every removal, it is guaranteed this new event is 12304 * observed *OR* if output_event is already removed, it's guaranteed we 12305 * observe !rb->mmap_count. 12306 */ 12307 mutex_lock_double(&event->mmap_mutex, &output_event->mmap_mutex); 12308 set: 12309 /* Can't redirect output if we've got an active mmap() */ 12310 if (atomic_read(&event->mmap_count)) 12311 goto unlock; 12312 12313 if (output_event) { 12314 /* get the rb we want to redirect to */ 12315 rb = ring_buffer_get(output_event); 12316 if (!rb) 12317 goto unlock; 12318 12319 /* did we race against perf_mmap_close() */ 12320 if (!atomic_read(&rb->mmap_count)) { 12321 ring_buffer_put(rb); 12322 goto unlock; 12323 } 12324 } 12325 12326 ring_buffer_attach(event, rb); 12327 12328 ret = 0; 12329 unlock: 12330 mutex_unlock(&event->mmap_mutex); 12331 if (output_event) 12332 mutex_unlock(&output_event->mmap_mutex); 12333 12334 out: 12335 return ret; 12336 } 12337 12338 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) 12339 { 12340 bool nmi_safe = false; 12341 12342 switch (clk_id) { 12343 case CLOCK_MONOTONIC: 12344 event->clock = &ktime_get_mono_fast_ns; 12345 nmi_safe = true; 12346 break; 12347 12348 case CLOCK_MONOTONIC_RAW: 12349 event->clock = &ktime_get_raw_fast_ns; 12350 nmi_safe = true; 12351 break; 12352 12353 case CLOCK_REALTIME: 12354 event->clock = &ktime_get_real_ns; 12355 break; 12356 12357 case CLOCK_BOOTTIME: 12358 event->clock = &ktime_get_boottime_ns; 12359 break; 12360 12361 case CLOCK_TAI: 12362 event->clock = &ktime_get_clocktai_ns; 12363 break; 12364 12365 default: 12366 return -EINVAL; 12367 } 12368 12369 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) 12370 return -EINVAL; 12371 12372 return 0; 12373 } 12374 12375 static bool 12376 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task) 12377 { 12378 unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS; 12379 bool is_capable = perfmon_capable(); 12380 12381 if (attr->sigtrap) { 12382 /* 12383 * perf_event_attr::sigtrap sends signals to the other task. 12384 * Require the current task to also have CAP_KILL. 12385 */ 12386 rcu_read_lock(); 12387 is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL); 12388 rcu_read_unlock(); 12389 12390 /* 12391 * If the required capabilities aren't available, checks for 12392 * ptrace permissions: upgrade to ATTACH, since sending signals 12393 * can effectively change the target task. 12394 */ 12395 ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS; 12396 } 12397 12398 /* 12399 * Preserve ptrace permission check for backwards compatibility. The 12400 * ptrace check also includes checks that the current task and other 12401 * task have matching uids, and is therefore not done here explicitly. 12402 */ 12403 return is_capable || ptrace_may_access(task, ptrace_mode); 12404 } 12405 12406 /** 12407 * sys_perf_event_open - open a performance event, associate it to a task/cpu 12408 * 12409 * @attr_uptr: event_id type attributes for monitoring/sampling 12410 * @pid: target pid 12411 * @cpu: target cpu 12412 * @group_fd: group leader event fd 12413 * @flags: perf event open flags 12414 */ 12415 SYSCALL_DEFINE5(perf_event_open, 12416 struct perf_event_attr __user *, attr_uptr, 12417 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 12418 { 12419 struct perf_event *group_leader = NULL, *output_event = NULL; 12420 struct perf_event_pmu_context *pmu_ctx; 12421 struct perf_event *event, *sibling; 12422 struct perf_event_attr attr; 12423 struct perf_event_context *ctx; 12424 struct file *event_file = NULL; 12425 struct fd group = {NULL, 0}; 12426 struct task_struct *task = NULL; 12427 struct pmu *pmu; 12428 int event_fd; 12429 int move_group = 0; 12430 int err; 12431 int f_flags = O_RDWR; 12432 int cgroup_fd = -1; 12433 12434 /* for future expandability... */ 12435 if (flags & ~PERF_FLAG_ALL) 12436 return -EINVAL; 12437 12438 err = perf_copy_attr(attr_uptr, &attr); 12439 if (err) 12440 return err; 12441 12442 /* Do we allow access to perf_event_open(2) ? */ 12443 err = security_perf_event_open(&attr, PERF_SECURITY_OPEN); 12444 if (err) 12445 return err; 12446 12447 if (!attr.exclude_kernel) { 12448 err = perf_allow_kernel(&attr); 12449 if (err) 12450 return err; 12451 } 12452 12453 if (attr.namespaces) { 12454 if (!perfmon_capable()) 12455 return -EACCES; 12456 } 12457 12458 if (attr.freq) { 12459 if (attr.sample_freq > sysctl_perf_event_sample_rate) 12460 return -EINVAL; 12461 } else { 12462 if (attr.sample_period & (1ULL << 63)) 12463 return -EINVAL; 12464 } 12465 12466 /* Only privileged users can get physical addresses */ 12467 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) { 12468 err = perf_allow_kernel(&attr); 12469 if (err) 12470 return err; 12471 } 12472 12473 /* REGS_INTR can leak data, lockdown must prevent this */ 12474 if (attr.sample_type & PERF_SAMPLE_REGS_INTR) { 12475 err = security_locked_down(LOCKDOWN_PERF); 12476 if (err) 12477 return err; 12478 } 12479 12480 /* 12481 * In cgroup mode, the pid argument is used to pass the fd 12482 * opened to the cgroup directory in cgroupfs. The cpu argument 12483 * designates the cpu on which to monitor threads from that 12484 * cgroup. 12485 */ 12486 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 12487 return -EINVAL; 12488 12489 if (flags & PERF_FLAG_FD_CLOEXEC) 12490 f_flags |= O_CLOEXEC; 12491 12492 event_fd = get_unused_fd_flags(f_flags); 12493 if (event_fd < 0) 12494 return event_fd; 12495 12496 if (group_fd != -1) { 12497 err = perf_fget_light(group_fd, &group); 12498 if (err) 12499 goto err_fd; 12500 group_leader = group.file->private_data; 12501 if (flags & PERF_FLAG_FD_OUTPUT) 12502 output_event = group_leader; 12503 if (flags & PERF_FLAG_FD_NO_GROUP) 12504 group_leader = NULL; 12505 } 12506 12507 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 12508 task = find_lively_task_by_vpid(pid); 12509 if (IS_ERR(task)) { 12510 err = PTR_ERR(task); 12511 goto err_group_fd; 12512 } 12513 } 12514 12515 if (task && group_leader && 12516 group_leader->attr.inherit != attr.inherit) { 12517 err = -EINVAL; 12518 goto err_task; 12519 } 12520 12521 if (flags & PERF_FLAG_PID_CGROUP) 12522 cgroup_fd = pid; 12523 12524 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 12525 NULL, NULL, cgroup_fd); 12526 if (IS_ERR(event)) { 12527 err = PTR_ERR(event); 12528 goto err_task; 12529 } 12530 12531 if (is_sampling_event(event)) { 12532 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 12533 err = -EOPNOTSUPP; 12534 goto err_alloc; 12535 } 12536 } 12537 12538 /* 12539 * Special case software events and allow them to be part of 12540 * any hardware group. 12541 */ 12542 pmu = event->pmu; 12543 12544 if (attr.use_clockid) { 12545 err = perf_event_set_clock(event, attr.clockid); 12546 if (err) 12547 goto err_alloc; 12548 } 12549 12550 if (pmu->task_ctx_nr == perf_sw_context) 12551 event->event_caps |= PERF_EV_CAP_SOFTWARE; 12552 12553 if (task) { 12554 err = down_read_interruptible(&task->signal->exec_update_lock); 12555 if (err) 12556 goto err_alloc; 12557 12558 /* 12559 * We must hold exec_update_lock across this and any potential 12560 * perf_install_in_context() call for this new event to 12561 * serialize against exec() altering our credentials (and the 12562 * perf_event_exit_task() that could imply). 12563 */ 12564 err = -EACCES; 12565 if (!perf_check_permission(&attr, task)) 12566 goto err_cred; 12567 } 12568 12569 /* 12570 * Get the target context (task or percpu): 12571 */ 12572 ctx = find_get_context(task, event); 12573 if (IS_ERR(ctx)) { 12574 err = PTR_ERR(ctx); 12575 goto err_cred; 12576 } 12577 12578 mutex_lock(&ctx->mutex); 12579 12580 if (ctx->task == TASK_TOMBSTONE) { 12581 err = -ESRCH; 12582 goto err_locked; 12583 } 12584 12585 if (!task) { 12586 /* 12587 * Check if the @cpu we're creating an event for is online. 12588 * 12589 * We use the perf_cpu_context::ctx::mutex to serialize against 12590 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 12591 */ 12592 struct perf_cpu_context *cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu); 12593 12594 if (!cpuctx->online) { 12595 err = -ENODEV; 12596 goto err_locked; 12597 } 12598 } 12599 12600 if (group_leader) { 12601 err = -EINVAL; 12602 12603 /* 12604 * Do not allow a recursive hierarchy (this new sibling 12605 * becoming part of another group-sibling): 12606 */ 12607 if (group_leader->group_leader != group_leader) 12608 goto err_locked; 12609 12610 /* All events in a group should have the same clock */ 12611 if (group_leader->clock != event->clock) 12612 goto err_locked; 12613 12614 /* 12615 * Make sure we're both events for the same CPU; 12616 * grouping events for different CPUs is broken; since 12617 * you can never concurrently schedule them anyhow. 12618 */ 12619 if (group_leader->cpu != event->cpu) 12620 goto err_locked; 12621 12622 /* 12623 * Make sure we're both on the same context; either task or cpu. 12624 */ 12625 if (group_leader->ctx != ctx) 12626 goto err_locked; 12627 12628 /* 12629 * Only a group leader can be exclusive or pinned 12630 */ 12631 if (attr.exclusive || attr.pinned) 12632 goto err_locked; 12633 12634 if (is_software_event(event) && 12635 !in_software_context(group_leader)) { 12636 /* 12637 * If the event is a sw event, but the group_leader 12638 * is on hw context. 12639 * 12640 * Allow the addition of software events to hw 12641 * groups, this is safe because software events 12642 * never fail to schedule. 12643 * 12644 * Note the comment that goes with struct 12645 * perf_event_pmu_context. 12646 */ 12647 pmu = group_leader->pmu_ctx->pmu; 12648 } else if (!is_software_event(event)) { 12649 if (is_software_event(group_leader) && 12650 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 12651 /* 12652 * In case the group is a pure software group, and we 12653 * try to add a hardware event, move the whole group to 12654 * the hardware context. 12655 */ 12656 move_group = 1; 12657 } 12658 12659 /* Don't allow group of multiple hw events from different pmus */ 12660 if (!in_software_context(group_leader) && 12661 group_leader->pmu_ctx->pmu != pmu) 12662 goto err_locked; 12663 } 12664 } 12665 12666 /* 12667 * Now that we're certain of the pmu; find the pmu_ctx. 12668 */ 12669 pmu_ctx = find_get_pmu_context(pmu, ctx, event); 12670 if (IS_ERR(pmu_ctx)) { 12671 err = PTR_ERR(pmu_ctx); 12672 goto err_locked; 12673 } 12674 event->pmu_ctx = pmu_ctx; 12675 12676 if (output_event) { 12677 err = perf_event_set_output(event, output_event); 12678 if (err) 12679 goto err_context; 12680 } 12681 12682 if (!perf_event_validate_size(event)) { 12683 err = -E2BIG; 12684 goto err_context; 12685 } 12686 12687 if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) { 12688 err = -EINVAL; 12689 goto err_context; 12690 } 12691 12692 /* 12693 * Must be under the same ctx::mutex as perf_install_in_context(), 12694 * because we need to serialize with concurrent event creation. 12695 */ 12696 if (!exclusive_event_installable(event, ctx)) { 12697 err = -EBUSY; 12698 goto err_context; 12699 } 12700 12701 WARN_ON_ONCE(ctx->parent_ctx); 12702 12703 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, f_flags); 12704 if (IS_ERR(event_file)) { 12705 err = PTR_ERR(event_file); 12706 event_file = NULL; 12707 goto err_context; 12708 } 12709 12710 /* 12711 * This is the point on no return; we cannot fail hereafter. This is 12712 * where we start modifying current state. 12713 */ 12714 12715 if (move_group) { 12716 perf_remove_from_context(group_leader, 0); 12717 put_pmu_ctx(group_leader->pmu_ctx); 12718 12719 for_each_sibling_event(sibling, group_leader) { 12720 perf_remove_from_context(sibling, 0); 12721 put_pmu_ctx(sibling->pmu_ctx); 12722 } 12723 12724 /* 12725 * Install the group siblings before the group leader. 12726 * 12727 * Because a group leader will try and install the entire group 12728 * (through the sibling list, which is still in-tact), we can 12729 * end up with siblings installed in the wrong context. 12730 * 12731 * By installing siblings first we NO-OP because they're not 12732 * reachable through the group lists. 12733 */ 12734 for_each_sibling_event(sibling, group_leader) { 12735 sibling->pmu_ctx = pmu_ctx; 12736 get_pmu_ctx(pmu_ctx); 12737 perf_event__state_init(sibling); 12738 perf_install_in_context(ctx, sibling, sibling->cpu); 12739 } 12740 12741 /* 12742 * Removing from the context ends up with disabled 12743 * event. What we want here is event in the initial 12744 * startup state, ready to be add into new context. 12745 */ 12746 group_leader->pmu_ctx = pmu_ctx; 12747 get_pmu_ctx(pmu_ctx); 12748 perf_event__state_init(group_leader); 12749 perf_install_in_context(ctx, group_leader, group_leader->cpu); 12750 } 12751 12752 /* 12753 * Precalculate sample_data sizes; do while holding ctx::mutex such 12754 * that we're serialized against further additions and before 12755 * perf_install_in_context() which is the point the event is active and 12756 * can use these values. 12757 */ 12758 perf_event__header_size(event); 12759 perf_event__id_header_size(event); 12760 12761 event->owner = current; 12762 12763 perf_install_in_context(ctx, event, event->cpu); 12764 perf_unpin_context(ctx); 12765 12766 mutex_unlock(&ctx->mutex); 12767 12768 if (task) { 12769 up_read(&task->signal->exec_update_lock); 12770 put_task_struct(task); 12771 } 12772 12773 mutex_lock(¤t->perf_event_mutex); 12774 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 12775 mutex_unlock(¤t->perf_event_mutex); 12776 12777 /* 12778 * Drop the reference on the group_event after placing the 12779 * new event on the sibling_list. This ensures destruction 12780 * of the group leader will find the pointer to itself in 12781 * perf_group_detach(). 12782 */ 12783 fdput(group); 12784 fd_install(event_fd, event_file); 12785 return event_fd; 12786 12787 err_context: 12788 put_pmu_ctx(event->pmu_ctx); 12789 event->pmu_ctx = NULL; /* _free_event() */ 12790 err_locked: 12791 mutex_unlock(&ctx->mutex); 12792 perf_unpin_context(ctx); 12793 put_ctx(ctx); 12794 err_cred: 12795 if (task) 12796 up_read(&task->signal->exec_update_lock); 12797 err_alloc: 12798 free_event(event); 12799 err_task: 12800 if (task) 12801 put_task_struct(task); 12802 err_group_fd: 12803 fdput(group); 12804 err_fd: 12805 put_unused_fd(event_fd); 12806 return err; 12807 } 12808 12809 /** 12810 * perf_event_create_kernel_counter 12811 * 12812 * @attr: attributes of the counter to create 12813 * @cpu: cpu in which the counter is bound 12814 * @task: task to profile (NULL for percpu) 12815 * @overflow_handler: callback to trigger when we hit the event 12816 * @context: context data could be used in overflow_handler callback 12817 */ 12818 struct perf_event * 12819 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 12820 struct task_struct *task, 12821 perf_overflow_handler_t overflow_handler, 12822 void *context) 12823 { 12824 struct perf_event_pmu_context *pmu_ctx; 12825 struct perf_event_context *ctx; 12826 struct perf_event *event; 12827 struct pmu *pmu; 12828 int err; 12829 12830 /* 12831 * Grouping is not supported for kernel events, neither is 'AUX', 12832 * make sure the caller's intentions are adjusted. 12833 */ 12834 if (attr->aux_output) 12835 return ERR_PTR(-EINVAL); 12836 12837 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 12838 overflow_handler, context, -1); 12839 if (IS_ERR(event)) { 12840 err = PTR_ERR(event); 12841 goto err; 12842 } 12843 12844 /* Mark owner so we could distinguish it from user events. */ 12845 event->owner = TASK_TOMBSTONE; 12846 pmu = event->pmu; 12847 12848 if (pmu->task_ctx_nr == perf_sw_context) 12849 event->event_caps |= PERF_EV_CAP_SOFTWARE; 12850 12851 /* 12852 * Get the target context (task or percpu): 12853 */ 12854 ctx = find_get_context(task, event); 12855 if (IS_ERR(ctx)) { 12856 err = PTR_ERR(ctx); 12857 goto err_alloc; 12858 } 12859 12860 WARN_ON_ONCE(ctx->parent_ctx); 12861 mutex_lock(&ctx->mutex); 12862 if (ctx->task == TASK_TOMBSTONE) { 12863 err = -ESRCH; 12864 goto err_unlock; 12865 } 12866 12867 pmu_ctx = find_get_pmu_context(pmu, ctx, event); 12868 if (IS_ERR(pmu_ctx)) { 12869 err = PTR_ERR(pmu_ctx); 12870 goto err_unlock; 12871 } 12872 event->pmu_ctx = pmu_ctx; 12873 12874 if (!task) { 12875 /* 12876 * Check if the @cpu we're creating an event for is online. 12877 * 12878 * We use the perf_cpu_context::ctx::mutex to serialize against 12879 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 12880 */ 12881 struct perf_cpu_context *cpuctx = 12882 container_of(ctx, struct perf_cpu_context, ctx); 12883 if (!cpuctx->online) { 12884 err = -ENODEV; 12885 goto err_pmu_ctx; 12886 } 12887 } 12888 12889 if (!exclusive_event_installable(event, ctx)) { 12890 err = -EBUSY; 12891 goto err_pmu_ctx; 12892 } 12893 12894 perf_install_in_context(ctx, event, event->cpu); 12895 perf_unpin_context(ctx); 12896 mutex_unlock(&ctx->mutex); 12897 12898 return event; 12899 12900 err_pmu_ctx: 12901 put_pmu_ctx(pmu_ctx); 12902 event->pmu_ctx = NULL; /* _free_event() */ 12903 err_unlock: 12904 mutex_unlock(&ctx->mutex); 12905 perf_unpin_context(ctx); 12906 put_ctx(ctx); 12907 err_alloc: 12908 free_event(event); 12909 err: 12910 return ERR_PTR(err); 12911 } 12912 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 12913 12914 static void __perf_pmu_remove(struct perf_event_context *ctx, 12915 int cpu, struct pmu *pmu, 12916 struct perf_event_groups *groups, 12917 struct list_head *events) 12918 { 12919 struct perf_event *event, *sibling; 12920 12921 perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) { 12922 perf_remove_from_context(event, 0); 12923 put_pmu_ctx(event->pmu_ctx); 12924 list_add(&event->migrate_entry, events); 12925 12926 for_each_sibling_event(sibling, event) { 12927 perf_remove_from_context(sibling, 0); 12928 put_pmu_ctx(sibling->pmu_ctx); 12929 list_add(&sibling->migrate_entry, events); 12930 } 12931 } 12932 } 12933 12934 static void __perf_pmu_install_event(struct pmu *pmu, 12935 struct perf_event_context *ctx, 12936 int cpu, struct perf_event *event) 12937 { 12938 struct perf_event_pmu_context *epc; 12939 struct perf_event_context *old_ctx = event->ctx; 12940 12941 get_ctx(ctx); /* normally find_get_context() */ 12942 12943 event->cpu = cpu; 12944 epc = find_get_pmu_context(pmu, ctx, event); 12945 event->pmu_ctx = epc; 12946 12947 if (event->state >= PERF_EVENT_STATE_OFF) 12948 event->state = PERF_EVENT_STATE_INACTIVE; 12949 perf_install_in_context(ctx, event, cpu); 12950 12951 /* 12952 * Now that event->ctx is updated and visible, put the old ctx. 12953 */ 12954 put_ctx(old_ctx); 12955 } 12956 12957 static void __perf_pmu_install(struct perf_event_context *ctx, 12958 int cpu, struct pmu *pmu, struct list_head *events) 12959 { 12960 struct perf_event *event, *tmp; 12961 12962 /* 12963 * Re-instate events in 2 passes. 12964 * 12965 * Skip over group leaders and only install siblings on this first 12966 * pass, siblings will not get enabled without a leader, however a 12967 * leader will enable its siblings, even if those are still on the old 12968 * context. 12969 */ 12970 list_for_each_entry_safe(event, tmp, events, migrate_entry) { 12971 if (event->group_leader == event) 12972 continue; 12973 12974 list_del(&event->migrate_entry); 12975 __perf_pmu_install_event(pmu, ctx, cpu, event); 12976 } 12977 12978 /* 12979 * Once all the siblings are setup properly, install the group leaders 12980 * to make it go. 12981 */ 12982 list_for_each_entry_safe(event, tmp, events, migrate_entry) { 12983 list_del(&event->migrate_entry); 12984 __perf_pmu_install_event(pmu, ctx, cpu, event); 12985 } 12986 } 12987 12988 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 12989 { 12990 struct perf_event_context *src_ctx, *dst_ctx; 12991 LIST_HEAD(events); 12992 12993 /* 12994 * Since per-cpu context is persistent, no need to grab an extra 12995 * reference. 12996 */ 12997 src_ctx = &per_cpu_ptr(&perf_cpu_context, src_cpu)->ctx; 12998 dst_ctx = &per_cpu_ptr(&perf_cpu_context, dst_cpu)->ctx; 12999 13000 /* 13001 * See perf_event_ctx_lock() for comments on the details 13002 * of swizzling perf_event::ctx. 13003 */ 13004 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); 13005 13006 __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->pinned_groups, &events); 13007 __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->flexible_groups, &events); 13008 13009 if (!list_empty(&events)) { 13010 /* 13011 * Wait for the events to quiesce before re-instating them. 13012 */ 13013 synchronize_rcu(); 13014 13015 __perf_pmu_install(dst_ctx, dst_cpu, pmu, &events); 13016 } 13017 13018 mutex_unlock(&dst_ctx->mutex); 13019 mutex_unlock(&src_ctx->mutex); 13020 } 13021 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 13022 13023 static void sync_child_event(struct perf_event *child_event) 13024 { 13025 struct perf_event *parent_event = child_event->parent; 13026 u64 child_val; 13027 13028 if (child_event->attr.inherit_stat) { 13029 struct task_struct *task = child_event->ctx->task; 13030 13031 if (task && task != TASK_TOMBSTONE) 13032 perf_event_read_event(child_event, task); 13033 } 13034 13035 child_val = perf_event_count(child_event); 13036 13037 /* 13038 * Add back the child's count to the parent's count: 13039 */ 13040 atomic64_add(child_val, &parent_event->child_count); 13041 atomic64_add(child_event->total_time_enabled, 13042 &parent_event->child_total_time_enabled); 13043 atomic64_add(child_event->total_time_running, 13044 &parent_event->child_total_time_running); 13045 } 13046 13047 static void 13048 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx) 13049 { 13050 struct perf_event *parent_event = event->parent; 13051 unsigned long detach_flags = 0; 13052 13053 if (parent_event) { 13054 /* 13055 * Do not destroy the 'original' grouping; because of the 13056 * context switch optimization the original events could've 13057 * ended up in a random child task. 13058 * 13059 * If we were to destroy the original group, all group related 13060 * operations would cease to function properly after this 13061 * random child dies. 13062 * 13063 * Do destroy all inherited groups, we don't care about those 13064 * and being thorough is better. 13065 */ 13066 detach_flags = DETACH_GROUP | DETACH_CHILD; 13067 mutex_lock(&parent_event->child_mutex); 13068 } 13069 13070 perf_remove_from_context(event, detach_flags); 13071 13072 raw_spin_lock_irq(&ctx->lock); 13073 if (event->state > PERF_EVENT_STATE_EXIT) 13074 perf_event_set_state(event, PERF_EVENT_STATE_EXIT); 13075 raw_spin_unlock_irq(&ctx->lock); 13076 13077 /* 13078 * Child events can be freed. 13079 */ 13080 if (parent_event) { 13081 mutex_unlock(&parent_event->child_mutex); 13082 /* 13083 * Kick perf_poll() for is_event_hup(); 13084 */ 13085 perf_event_wakeup(parent_event); 13086 free_event(event); 13087 put_event(parent_event); 13088 return; 13089 } 13090 13091 /* 13092 * Parent events are governed by their filedesc, retain them. 13093 */ 13094 perf_event_wakeup(event); 13095 } 13096 13097 static void perf_event_exit_task_context(struct task_struct *child) 13098 { 13099 struct perf_event_context *child_ctx, *clone_ctx = NULL; 13100 struct perf_event *child_event, *next; 13101 13102 WARN_ON_ONCE(child != current); 13103 13104 child_ctx = perf_pin_task_context(child); 13105 if (!child_ctx) 13106 return; 13107 13108 /* 13109 * In order to reduce the amount of tricky in ctx tear-down, we hold 13110 * ctx::mutex over the entire thing. This serializes against almost 13111 * everything that wants to access the ctx. 13112 * 13113 * The exception is sys_perf_event_open() / 13114 * perf_event_create_kernel_count() which does find_get_context() 13115 * without ctx::mutex (it cannot because of the move_group double mutex 13116 * lock thing). See the comments in perf_install_in_context(). 13117 */ 13118 mutex_lock(&child_ctx->mutex); 13119 13120 /* 13121 * In a single ctx::lock section, de-schedule the events and detach the 13122 * context from the task such that we cannot ever get it scheduled back 13123 * in. 13124 */ 13125 raw_spin_lock_irq(&child_ctx->lock); 13126 task_ctx_sched_out(child_ctx, EVENT_ALL); 13127 13128 /* 13129 * Now that the context is inactive, destroy the task <-> ctx relation 13130 * and mark the context dead. 13131 */ 13132 RCU_INIT_POINTER(child->perf_event_ctxp, NULL); 13133 put_ctx(child_ctx); /* cannot be last */ 13134 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE); 13135 put_task_struct(current); /* cannot be last */ 13136 13137 clone_ctx = unclone_ctx(child_ctx); 13138 raw_spin_unlock_irq(&child_ctx->lock); 13139 13140 if (clone_ctx) 13141 put_ctx(clone_ctx); 13142 13143 /* 13144 * Report the task dead after unscheduling the events so that we 13145 * won't get any samples after PERF_RECORD_EXIT. We can however still 13146 * get a few PERF_RECORD_READ events. 13147 */ 13148 perf_event_task(child, child_ctx, 0); 13149 13150 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) 13151 perf_event_exit_event(child_event, child_ctx); 13152 13153 mutex_unlock(&child_ctx->mutex); 13154 13155 put_ctx(child_ctx); 13156 } 13157 13158 /* 13159 * When a child task exits, feed back event values to parent events. 13160 * 13161 * Can be called with exec_update_lock held when called from 13162 * setup_new_exec(). 13163 */ 13164 void perf_event_exit_task(struct task_struct *child) 13165 { 13166 struct perf_event *event, *tmp; 13167 13168 mutex_lock(&child->perf_event_mutex); 13169 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 13170 owner_entry) { 13171 list_del_init(&event->owner_entry); 13172 13173 /* 13174 * Ensure the list deletion is visible before we clear 13175 * the owner, closes a race against perf_release() where 13176 * we need to serialize on the owner->perf_event_mutex. 13177 */ 13178 smp_store_release(&event->owner, NULL); 13179 } 13180 mutex_unlock(&child->perf_event_mutex); 13181 13182 perf_event_exit_task_context(child); 13183 13184 /* 13185 * The perf_event_exit_task_context calls perf_event_task 13186 * with child's task_ctx, which generates EXIT events for 13187 * child contexts and sets child->perf_event_ctxp[] to NULL. 13188 * At this point we need to send EXIT events to cpu contexts. 13189 */ 13190 perf_event_task(child, NULL, 0); 13191 } 13192 13193 static void perf_free_event(struct perf_event *event, 13194 struct perf_event_context *ctx) 13195 { 13196 struct perf_event *parent = event->parent; 13197 13198 if (WARN_ON_ONCE(!parent)) 13199 return; 13200 13201 mutex_lock(&parent->child_mutex); 13202 list_del_init(&event->child_list); 13203 mutex_unlock(&parent->child_mutex); 13204 13205 put_event(parent); 13206 13207 raw_spin_lock_irq(&ctx->lock); 13208 perf_group_detach(event); 13209 list_del_event(event, ctx); 13210 raw_spin_unlock_irq(&ctx->lock); 13211 free_event(event); 13212 } 13213 13214 /* 13215 * Free a context as created by inheritance by perf_event_init_task() below, 13216 * used by fork() in case of fail. 13217 * 13218 * Even though the task has never lived, the context and events have been 13219 * exposed through the child_list, so we must take care tearing it all down. 13220 */ 13221 void perf_event_free_task(struct task_struct *task) 13222 { 13223 struct perf_event_context *ctx; 13224 struct perf_event *event, *tmp; 13225 13226 ctx = rcu_access_pointer(task->perf_event_ctxp); 13227 if (!ctx) 13228 return; 13229 13230 mutex_lock(&ctx->mutex); 13231 raw_spin_lock_irq(&ctx->lock); 13232 /* 13233 * Destroy the task <-> ctx relation and mark the context dead. 13234 * 13235 * This is important because even though the task hasn't been 13236 * exposed yet the context has been (through child_list). 13237 */ 13238 RCU_INIT_POINTER(task->perf_event_ctxp, NULL); 13239 WRITE_ONCE(ctx->task, TASK_TOMBSTONE); 13240 put_task_struct(task); /* cannot be last */ 13241 raw_spin_unlock_irq(&ctx->lock); 13242 13243 13244 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) 13245 perf_free_event(event, ctx); 13246 13247 mutex_unlock(&ctx->mutex); 13248 13249 /* 13250 * perf_event_release_kernel() could've stolen some of our 13251 * child events and still have them on its free_list. In that 13252 * case we must wait for these events to have been freed (in 13253 * particular all their references to this task must've been 13254 * dropped). 13255 * 13256 * Without this copy_process() will unconditionally free this 13257 * task (irrespective of its reference count) and 13258 * _free_event()'s put_task_struct(event->hw.target) will be a 13259 * use-after-free. 13260 * 13261 * Wait for all events to drop their context reference. 13262 */ 13263 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1); 13264 put_ctx(ctx); /* must be last */ 13265 } 13266 13267 void perf_event_delayed_put(struct task_struct *task) 13268 { 13269 WARN_ON_ONCE(task->perf_event_ctxp); 13270 } 13271 13272 struct file *perf_event_get(unsigned int fd) 13273 { 13274 struct file *file = fget(fd); 13275 if (!file) 13276 return ERR_PTR(-EBADF); 13277 13278 if (file->f_op != &perf_fops) { 13279 fput(file); 13280 return ERR_PTR(-EBADF); 13281 } 13282 13283 return file; 13284 } 13285 13286 const struct perf_event *perf_get_event(struct file *file) 13287 { 13288 if (file->f_op != &perf_fops) 13289 return ERR_PTR(-EINVAL); 13290 13291 return file->private_data; 13292 } 13293 13294 const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 13295 { 13296 if (!event) 13297 return ERR_PTR(-EINVAL); 13298 13299 return &event->attr; 13300 } 13301 13302 /* 13303 * Inherit an event from parent task to child task. 13304 * 13305 * Returns: 13306 * - valid pointer on success 13307 * - NULL for orphaned events 13308 * - IS_ERR() on error 13309 */ 13310 static struct perf_event * 13311 inherit_event(struct perf_event *parent_event, 13312 struct task_struct *parent, 13313 struct perf_event_context *parent_ctx, 13314 struct task_struct *child, 13315 struct perf_event *group_leader, 13316 struct perf_event_context *child_ctx) 13317 { 13318 enum perf_event_state parent_state = parent_event->state; 13319 struct perf_event_pmu_context *pmu_ctx; 13320 struct perf_event *child_event; 13321 unsigned long flags; 13322 13323 /* 13324 * Instead of creating recursive hierarchies of events, 13325 * we link inherited events back to the original parent, 13326 * which has a filp for sure, which we use as the reference 13327 * count: 13328 */ 13329 if (parent_event->parent) 13330 parent_event = parent_event->parent; 13331 13332 child_event = perf_event_alloc(&parent_event->attr, 13333 parent_event->cpu, 13334 child, 13335 group_leader, parent_event, 13336 NULL, NULL, -1); 13337 if (IS_ERR(child_event)) 13338 return child_event; 13339 13340 pmu_ctx = find_get_pmu_context(child_event->pmu, child_ctx, child_event); 13341 if (IS_ERR(pmu_ctx)) { 13342 free_event(child_event); 13343 return ERR_CAST(pmu_ctx); 13344 } 13345 child_event->pmu_ctx = pmu_ctx; 13346 13347 /* 13348 * is_orphaned_event() and list_add_tail(&parent_event->child_list) 13349 * must be under the same lock in order to serialize against 13350 * perf_event_release_kernel(), such that either we must observe 13351 * is_orphaned_event() or they will observe us on the child_list. 13352 */ 13353 mutex_lock(&parent_event->child_mutex); 13354 if (is_orphaned_event(parent_event) || 13355 !atomic_long_inc_not_zero(&parent_event->refcount)) { 13356 mutex_unlock(&parent_event->child_mutex); 13357 /* task_ctx_data is freed with child_ctx */ 13358 free_event(child_event); 13359 return NULL; 13360 } 13361 13362 get_ctx(child_ctx); 13363 13364 /* 13365 * Make the child state follow the state of the parent event, 13366 * not its attr.disabled bit. We hold the parent's mutex, 13367 * so we won't race with perf_event_{en, dis}able_family. 13368 */ 13369 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 13370 child_event->state = PERF_EVENT_STATE_INACTIVE; 13371 else 13372 child_event->state = PERF_EVENT_STATE_OFF; 13373 13374 if (parent_event->attr.freq) { 13375 u64 sample_period = parent_event->hw.sample_period; 13376 struct hw_perf_event *hwc = &child_event->hw; 13377 13378 hwc->sample_period = sample_period; 13379 hwc->last_period = sample_period; 13380 13381 local64_set(&hwc->period_left, sample_period); 13382 } 13383 13384 child_event->ctx = child_ctx; 13385 child_event->overflow_handler = parent_event->overflow_handler; 13386 child_event->overflow_handler_context 13387 = parent_event->overflow_handler_context; 13388 13389 /* 13390 * Precalculate sample_data sizes 13391 */ 13392 perf_event__header_size(child_event); 13393 perf_event__id_header_size(child_event); 13394 13395 /* 13396 * Link it up in the child's context: 13397 */ 13398 raw_spin_lock_irqsave(&child_ctx->lock, flags); 13399 add_event_to_ctx(child_event, child_ctx); 13400 child_event->attach_state |= PERF_ATTACH_CHILD; 13401 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 13402 13403 /* 13404 * Link this into the parent event's child list 13405 */ 13406 list_add_tail(&child_event->child_list, &parent_event->child_list); 13407 mutex_unlock(&parent_event->child_mutex); 13408 13409 return child_event; 13410 } 13411 13412 /* 13413 * Inherits an event group. 13414 * 13415 * This will quietly suppress orphaned events; !inherit_event() is not an error. 13416 * This matches with perf_event_release_kernel() removing all child events. 13417 * 13418 * Returns: 13419 * - 0 on success 13420 * - <0 on error 13421 */ 13422 static int inherit_group(struct perf_event *parent_event, 13423 struct task_struct *parent, 13424 struct perf_event_context *parent_ctx, 13425 struct task_struct *child, 13426 struct perf_event_context *child_ctx) 13427 { 13428 struct perf_event *leader; 13429 struct perf_event *sub; 13430 struct perf_event *child_ctr; 13431 13432 leader = inherit_event(parent_event, parent, parent_ctx, 13433 child, NULL, child_ctx); 13434 if (IS_ERR(leader)) 13435 return PTR_ERR(leader); 13436 /* 13437 * @leader can be NULL here because of is_orphaned_event(). In this 13438 * case inherit_event() will create individual events, similar to what 13439 * perf_group_detach() would do anyway. 13440 */ 13441 for_each_sibling_event(sub, parent_event) { 13442 child_ctr = inherit_event(sub, parent, parent_ctx, 13443 child, leader, child_ctx); 13444 if (IS_ERR(child_ctr)) 13445 return PTR_ERR(child_ctr); 13446 13447 if (sub->aux_event == parent_event && child_ctr && 13448 !perf_get_aux_event(child_ctr, leader)) 13449 return -EINVAL; 13450 } 13451 if (leader) 13452 leader->group_generation = parent_event->group_generation; 13453 return 0; 13454 } 13455 13456 /* 13457 * Creates the child task context and tries to inherit the event-group. 13458 * 13459 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave 13460 * inherited_all set when we 'fail' to inherit an orphaned event; this is 13461 * consistent with perf_event_release_kernel() removing all child events. 13462 * 13463 * Returns: 13464 * - 0 on success 13465 * - <0 on error 13466 */ 13467 static int 13468 inherit_task_group(struct perf_event *event, struct task_struct *parent, 13469 struct perf_event_context *parent_ctx, 13470 struct task_struct *child, 13471 u64 clone_flags, int *inherited_all) 13472 { 13473 struct perf_event_context *child_ctx; 13474 int ret; 13475 13476 if (!event->attr.inherit || 13477 (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) || 13478 /* Do not inherit if sigtrap and signal handlers were cleared. */ 13479 (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) { 13480 *inherited_all = 0; 13481 return 0; 13482 } 13483 13484 child_ctx = child->perf_event_ctxp; 13485 if (!child_ctx) { 13486 /* 13487 * This is executed from the parent task context, so 13488 * inherit events that have been marked for cloning. 13489 * First allocate and initialize a context for the 13490 * child. 13491 */ 13492 child_ctx = alloc_perf_context(child); 13493 if (!child_ctx) 13494 return -ENOMEM; 13495 13496 child->perf_event_ctxp = child_ctx; 13497 } 13498 13499 ret = inherit_group(event, parent, parent_ctx, child, child_ctx); 13500 if (ret) 13501 *inherited_all = 0; 13502 13503 return ret; 13504 } 13505 13506 /* 13507 * Initialize the perf_event context in task_struct 13508 */ 13509 static int perf_event_init_context(struct task_struct *child, u64 clone_flags) 13510 { 13511 struct perf_event_context *child_ctx, *parent_ctx; 13512 struct perf_event_context *cloned_ctx; 13513 struct perf_event *event; 13514 struct task_struct *parent = current; 13515 int inherited_all = 1; 13516 unsigned long flags; 13517 int ret = 0; 13518 13519 if (likely(!parent->perf_event_ctxp)) 13520 return 0; 13521 13522 /* 13523 * If the parent's context is a clone, pin it so it won't get 13524 * swapped under us. 13525 */ 13526 parent_ctx = perf_pin_task_context(parent); 13527 if (!parent_ctx) 13528 return 0; 13529 13530 /* 13531 * No need to check if parent_ctx != NULL here; since we saw 13532 * it non-NULL earlier, the only reason for it to become NULL 13533 * is if we exit, and since we're currently in the middle of 13534 * a fork we can't be exiting at the same time. 13535 */ 13536 13537 /* 13538 * Lock the parent list. No need to lock the child - not PID 13539 * hashed yet and not running, so nobody can access it. 13540 */ 13541 mutex_lock(&parent_ctx->mutex); 13542 13543 /* 13544 * We dont have to disable NMIs - we are only looking at 13545 * the list, not manipulating it: 13546 */ 13547 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) { 13548 ret = inherit_task_group(event, parent, parent_ctx, 13549 child, clone_flags, &inherited_all); 13550 if (ret) 13551 goto out_unlock; 13552 } 13553 13554 /* 13555 * We can't hold ctx->lock when iterating the ->flexible_group list due 13556 * to allocations, but we need to prevent rotation because 13557 * rotate_ctx() will change the list from interrupt context. 13558 */ 13559 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 13560 parent_ctx->rotate_disable = 1; 13561 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 13562 13563 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) { 13564 ret = inherit_task_group(event, parent, parent_ctx, 13565 child, clone_flags, &inherited_all); 13566 if (ret) 13567 goto out_unlock; 13568 } 13569 13570 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 13571 parent_ctx->rotate_disable = 0; 13572 13573 child_ctx = child->perf_event_ctxp; 13574 13575 if (child_ctx && inherited_all) { 13576 /* 13577 * Mark the child context as a clone of the parent 13578 * context, or of whatever the parent is a clone of. 13579 * 13580 * Note that if the parent is a clone, the holding of 13581 * parent_ctx->lock avoids it from being uncloned. 13582 */ 13583 cloned_ctx = parent_ctx->parent_ctx; 13584 if (cloned_ctx) { 13585 child_ctx->parent_ctx = cloned_ctx; 13586 child_ctx->parent_gen = parent_ctx->parent_gen; 13587 } else { 13588 child_ctx->parent_ctx = parent_ctx; 13589 child_ctx->parent_gen = parent_ctx->generation; 13590 } 13591 get_ctx(child_ctx->parent_ctx); 13592 } 13593 13594 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 13595 out_unlock: 13596 mutex_unlock(&parent_ctx->mutex); 13597 13598 perf_unpin_context(parent_ctx); 13599 put_ctx(parent_ctx); 13600 13601 return ret; 13602 } 13603 13604 /* 13605 * Initialize the perf_event context in task_struct 13606 */ 13607 int perf_event_init_task(struct task_struct *child, u64 clone_flags) 13608 { 13609 int ret; 13610 13611 child->perf_event_ctxp = NULL; 13612 mutex_init(&child->perf_event_mutex); 13613 INIT_LIST_HEAD(&child->perf_event_list); 13614 13615 ret = perf_event_init_context(child, clone_flags); 13616 if (ret) { 13617 perf_event_free_task(child); 13618 return ret; 13619 } 13620 13621 return 0; 13622 } 13623 13624 static void __init perf_event_init_all_cpus(void) 13625 { 13626 struct swevent_htable *swhash; 13627 struct perf_cpu_context *cpuctx; 13628 int cpu; 13629 13630 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL); 13631 13632 for_each_possible_cpu(cpu) { 13633 swhash = &per_cpu(swevent_htable, cpu); 13634 mutex_init(&swhash->hlist_mutex); 13635 13636 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu)); 13637 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu)); 13638 13639 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu)); 13640 13641 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 13642 __perf_event_init_context(&cpuctx->ctx); 13643 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 13644 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 13645 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask); 13646 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default); 13647 cpuctx->heap = cpuctx->heap_default; 13648 } 13649 } 13650 13651 static void perf_swevent_init_cpu(unsigned int cpu) 13652 { 13653 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 13654 13655 mutex_lock(&swhash->hlist_mutex); 13656 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) { 13657 struct swevent_hlist *hlist; 13658 13659 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 13660 WARN_ON(!hlist); 13661 rcu_assign_pointer(swhash->swevent_hlist, hlist); 13662 } 13663 mutex_unlock(&swhash->hlist_mutex); 13664 } 13665 13666 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE 13667 static void __perf_event_exit_context(void *__info) 13668 { 13669 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 13670 struct perf_event_context *ctx = __info; 13671 struct perf_event *event; 13672 13673 raw_spin_lock(&ctx->lock); 13674 ctx_sched_out(ctx, EVENT_TIME); 13675 list_for_each_entry(event, &ctx->event_list, event_entry) 13676 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP); 13677 raw_spin_unlock(&ctx->lock); 13678 } 13679 13680 static void perf_event_exit_cpu_context(int cpu) 13681 { 13682 struct perf_cpu_context *cpuctx; 13683 struct perf_event_context *ctx; 13684 13685 // XXX simplify cpuctx->online 13686 mutex_lock(&pmus_lock); 13687 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 13688 ctx = &cpuctx->ctx; 13689 13690 mutex_lock(&ctx->mutex); 13691 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 13692 cpuctx->online = 0; 13693 mutex_unlock(&ctx->mutex); 13694 cpumask_clear_cpu(cpu, perf_online_mask); 13695 mutex_unlock(&pmus_lock); 13696 } 13697 #else 13698 13699 static void perf_event_exit_cpu_context(int cpu) { } 13700 13701 #endif 13702 13703 int perf_event_init_cpu(unsigned int cpu) 13704 { 13705 struct perf_cpu_context *cpuctx; 13706 struct perf_event_context *ctx; 13707 13708 perf_swevent_init_cpu(cpu); 13709 13710 mutex_lock(&pmus_lock); 13711 cpumask_set_cpu(cpu, perf_online_mask); 13712 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 13713 ctx = &cpuctx->ctx; 13714 13715 mutex_lock(&ctx->mutex); 13716 cpuctx->online = 1; 13717 mutex_unlock(&ctx->mutex); 13718 mutex_unlock(&pmus_lock); 13719 13720 return 0; 13721 } 13722 13723 int perf_event_exit_cpu(unsigned int cpu) 13724 { 13725 perf_event_exit_cpu_context(cpu); 13726 return 0; 13727 } 13728 13729 static int 13730 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 13731 { 13732 int cpu; 13733 13734 for_each_online_cpu(cpu) 13735 perf_event_exit_cpu(cpu); 13736 13737 return NOTIFY_OK; 13738 } 13739 13740 /* 13741 * Run the perf reboot notifier at the very last possible moment so that 13742 * the generic watchdog code runs as long as possible. 13743 */ 13744 static struct notifier_block perf_reboot_notifier = { 13745 .notifier_call = perf_reboot, 13746 .priority = INT_MIN, 13747 }; 13748 13749 void __init perf_event_init(void) 13750 { 13751 int ret; 13752 13753 idr_init(&pmu_idr); 13754 13755 perf_event_init_all_cpus(); 13756 init_srcu_struct(&pmus_srcu); 13757 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 13758 perf_pmu_register(&perf_cpu_clock, "cpu_clock", -1); 13759 perf_pmu_register(&perf_task_clock, "task_clock", -1); 13760 perf_tp_register(); 13761 perf_event_init_cpu(smp_processor_id()); 13762 register_reboot_notifier(&perf_reboot_notifier); 13763 13764 ret = init_hw_breakpoint(); 13765 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 13766 13767 perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC); 13768 13769 /* 13770 * Build time assertion that we keep the data_head at the intended 13771 * location. IOW, validation we got the __reserved[] size right. 13772 */ 13773 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 13774 != 1024); 13775 } 13776 13777 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 13778 char *page) 13779 { 13780 struct perf_pmu_events_attr *pmu_attr = 13781 container_of(attr, struct perf_pmu_events_attr, attr); 13782 13783 if (pmu_attr->event_str) 13784 return sprintf(page, "%s\n", pmu_attr->event_str); 13785 13786 return 0; 13787 } 13788 EXPORT_SYMBOL_GPL(perf_event_sysfs_show); 13789 13790 static int __init perf_event_sysfs_init(void) 13791 { 13792 struct pmu *pmu; 13793 int ret; 13794 13795 mutex_lock(&pmus_lock); 13796 13797 ret = bus_register(&pmu_bus); 13798 if (ret) 13799 goto unlock; 13800 13801 list_for_each_entry(pmu, &pmus, entry) { 13802 if (pmu->dev) 13803 continue; 13804 13805 ret = pmu_dev_alloc(pmu); 13806 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 13807 } 13808 pmu_bus_running = 1; 13809 ret = 0; 13810 13811 unlock: 13812 mutex_unlock(&pmus_lock); 13813 13814 return ret; 13815 } 13816 device_initcall(perf_event_sysfs_init); 13817 13818 #ifdef CONFIG_CGROUP_PERF 13819 static struct cgroup_subsys_state * 13820 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 13821 { 13822 struct perf_cgroup *jc; 13823 13824 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 13825 if (!jc) 13826 return ERR_PTR(-ENOMEM); 13827 13828 jc->info = alloc_percpu(struct perf_cgroup_info); 13829 if (!jc->info) { 13830 kfree(jc); 13831 return ERR_PTR(-ENOMEM); 13832 } 13833 13834 return &jc->css; 13835 } 13836 13837 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 13838 { 13839 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 13840 13841 free_percpu(jc->info); 13842 kfree(jc); 13843 } 13844 13845 static int perf_cgroup_css_online(struct cgroup_subsys_state *css) 13846 { 13847 perf_event_cgroup(css->cgroup); 13848 return 0; 13849 } 13850 13851 static int __perf_cgroup_move(void *info) 13852 { 13853 struct task_struct *task = info; 13854 13855 preempt_disable(); 13856 perf_cgroup_switch(task); 13857 preempt_enable(); 13858 13859 return 0; 13860 } 13861 13862 static void perf_cgroup_attach(struct cgroup_taskset *tset) 13863 { 13864 struct task_struct *task; 13865 struct cgroup_subsys_state *css; 13866 13867 cgroup_taskset_for_each(task, css, tset) 13868 task_function_call(task, __perf_cgroup_move, task); 13869 } 13870 13871 struct cgroup_subsys perf_event_cgrp_subsys = { 13872 .css_alloc = perf_cgroup_css_alloc, 13873 .css_free = perf_cgroup_css_free, 13874 .css_online = perf_cgroup_css_online, 13875 .attach = perf_cgroup_attach, 13876 /* 13877 * Implicitly enable on dfl hierarchy so that perf events can 13878 * always be filtered by cgroup2 path as long as perf_event 13879 * controller is not mounted on a legacy hierarchy. 13880 */ 13881 .implicit_on_dfl = true, 13882 .threaded = true, 13883 }; 13884 #endif /* CONFIG_CGROUP_PERF */ 13885 13886 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t); 13887