1 /* 2 * Performance events core code: 3 * 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 8 * 9 * For licensing details see kernel-base/COPYING 10 */ 11 12 #include <linux/fs.h> 13 #include <linux/mm.h> 14 #include <linux/cpu.h> 15 #include <linux/smp.h> 16 #include <linux/idr.h> 17 #include <linux/file.h> 18 #include <linux/poll.h> 19 #include <linux/slab.h> 20 #include <linux/hash.h> 21 #include <linux/tick.h> 22 #include <linux/sysfs.h> 23 #include <linux/dcache.h> 24 #include <linux/percpu.h> 25 #include <linux/ptrace.h> 26 #include <linux/reboot.h> 27 #include <linux/vmstat.h> 28 #include <linux/device.h> 29 #include <linux/export.h> 30 #include <linux/vmalloc.h> 31 #include <linux/hardirq.h> 32 #include <linux/rculist.h> 33 #include <linux/uaccess.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/cgroup.h> 38 #include <linux/perf_event.h> 39 #include <linux/ftrace_event.h> 40 #include <linux/hw_breakpoint.h> 41 #include <linux/mm_types.h> 42 #include <linux/module.h> 43 #include <linux/mman.h> 44 #include <linux/compat.h> 45 #include <linux/bpf.h> 46 #include <linux/filter.h> 47 48 #include "internal.h" 49 50 #include <asm/irq_regs.h> 51 52 static struct workqueue_struct *perf_wq; 53 54 struct remote_function_call { 55 struct task_struct *p; 56 int (*func)(void *info); 57 void *info; 58 int ret; 59 }; 60 61 static void remote_function(void *data) 62 { 63 struct remote_function_call *tfc = data; 64 struct task_struct *p = tfc->p; 65 66 if (p) { 67 tfc->ret = -EAGAIN; 68 if (task_cpu(p) != smp_processor_id() || !task_curr(p)) 69 return; 70 } 71 72 tfc->ret = tfc->func(tfc->info); 73 } 74 75 /** 76 * task_function_call - call a function on the cpu on which a task runs 77 * @p: the task to evaluate 78 * @func: the function to be called 79 * @info: the function call argument 80 * 81 * Calls the function @func when the task is currently running. This might 82 * be on the current CPU, which just calls the function directly 83 * 84 * returns: @func return value, or 85 * -ESRCH - when the process isn't running 86 * -EAGAIN - when the process moved away 87 */ 88 static int 89 task_function_call(struct task_struct *p, int (*func) (void *info), void *info) 90 { 91 struct remote_function_call data = { 92 .p = p, 93 .func = func, 94 .info = info, 95 .ret = -ESRCH, /* No such (running) process */ 96 }; 97 98 if (task_curr(p)) 99 smp_call_function_single(task_cpu(p), remote_function, &data, 1); 100 101 return data.ret; 102 } 103 104 /** 105 * cpu_function_call - call a function on the cpu 106 * @func: the function to be called 107 * @info: the function call argument 108 * 109 * Calls the function @func on the remote cpu. 110 * 111 * returns: @func return value or -ENXIO when the cpu is offline 112 */ 113 static int cpu_function_call(int cpu, int (*func) (void *info), void *info) 114 { 115 struct remote_function_call data = { 116 .p = NULL, 117 .func = func, 118 .info = info, 119 .ret = -ENXIO, /* No such CPU */ 120 }; 121 122 smp_call_function_single(cpu, remote_function, &data, 1); 123 124 return data.ret; 125 } 126 127 #define EVENT_OWNER_KERNEL ((void *) -1) 128 129 static bool is_kernel_event(struct perf_event *event) 130 { 131 return event->owner == EVENT_OWNER_KERNEL; 132 } 133 134 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 135 PERF_FLAG_FD_OUTPUT |\ 136 PERF_FLAG_PID_CGROUP |\ 137 PERF_FLAG_FD_CLOEXEC) 138 139 /* 140 * branch priv levels that need permission checks 141 */ 142 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 143 (PERF_SAMPLE_BRANCH_KERNEL |\ 144 PERF_SAMPLE_BRANCH_HV) 145 146 enum event_type_t { 147 EVENT_FLEXIBLE = 0x1, 148 EVENT_PINNED = 0x2, 149 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 150 }; 151 152 /* 153 * perf_sched_events : >0 events exist 154 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu 155 */ 156 struct static_key_deferred perf_sched_events __read_mostly; 157 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); 158 static DEFINE_PER_CPU(int, perf_sched_cb_usages); 159 160 static atomic_t nr_mmap_events __read_mostly; 161 static atomic_t nr_comm_events __read_mostly; 162 static atomic_t nr_task_events __read_mostly; 163 static atomic_t nr_freq_events __read_mostly; 164 165 static LIST_HEAD(pmus); 166 static DEFINE_MUTEX(pmus_lock); 167 static struct srcu_struct pmus_srcu; 168 169 /* 170 * perf event paranoia level: 171 * -1 - not paranoid at all 172 * 0 - disallow raw tracepoint access for unpriv 173 * 1 - disallow cpu events for unpriv 174 * 2 - disallow kernel profiling for unpriv 175 */ 176 int sysctl_perf_event_paranoid __read_mostly = 1; 177 178 /* Minimum for 512 kiB + 1 user control page */ 179 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 180 181 /* 182 * max perf event sample rate 183 */ 184 #define DEFAULT_MAX_SAMPLE_RATE 100000 185 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 186 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 187 188 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 189 190 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 191 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 192 193 static int perf_sample_allowed_ns __read_mostly = 194 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 195 196 void update_perf_cpu_limits(void) 197 { 198 u64 tmp = perf_sample_period_ns; 199 200 tmp *= sysctl_perf_cpu_time_max_percent; 201 do_div(tmp, 100); 202 ACCESS_ONCE(perf_sample_allowed_ns) = tmp; 203 } 204 205 static int perf_rotate_context(struct perf_cpu_context *cpuctx); 206 207 int perf_proc_update_handler(struct ctl_table *table, int write, 208 void __user *buffer, size_t *lenp, 209 loff_t *ppos) 210 { 211 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 212 213 if (ret || !write) 214 return ret; 215 216 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 217 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 218 update_perf_cpu_limits(); 219 220 return 0; 221 } 222 223 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 224 225 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 226 void __user *buffer, size_t *lenp, 227 loff_t *ppos) 228 { 229 int ret = proc_dointvec(table, write, buffer, lenp, ppos); 230 231 if (ret || !write) 232 return ret; 233 234 update_perf_cpu_limits(); 235 236 return 0; 237 } 238 239 /* 240 * perf samples are done in some very critical code paths (NMIs). 241 * If they take too much CPU time, the system can lock up and not 242 * get any real work done. This will drop the sample rate when 243 * we detect that events are taking too long. 244 */ 245 #define NR_ACCUMULATED_SAMPLES 128 246 static DEFINE_PER_CPU(u64, running_sample_length); 247 248 static void perf_duration_warn(struct irq_work *w) 249 { 250 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns); 251 u64 avg_local_sample_len; 252 u64 local_samples_len; 253 254 local_samples_len = __this_cpu_read(running_sample_length); 255 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES; 256 257 printk_ratelimited(KERN_WARNING 258 "perf interrupt took too long (%lld > %lld), lowering " 259 "kernel.perf_event_max_sample_rate to %d\n", 260 avg_local_sample_len, allowed_ns >> 1, 261 sysctl_perf_event_sample_rate); 262 } 263 264 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 265 266 void perf_sample_event_took(u64 sample_len_ns) 267 { 268 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns); 269 u64 avg_local_sample_len; 270 u64 local_samples_len; 271 272 if (allowed_ns == 0) 273 return; 274 275 /* decay the counter by 1 average sample */ 276 local_samples_len = __this_cpu_read(running_sample_length); 277 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES; 278 local_samples_len += sample_len_ns; 279 __this_cpu_write(running_sample_length, local_samples_len); 280 281 /* 282 * note: this will be biased artifically low until we have 283 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 284 * from having to maintain a count. 285 */ 286 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES; 287 288 if (avg_local_sample_len <= allowed_ns) 289 return; 290 291 if (max_samples_per_tick <= 1) 292 return; 293 294 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2); 295 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ; 296 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 297 298 update_perf_cpu_limits(); 299 300 if (!irq_work_queue(&perf_duration_work)) { 301 early_printk("perf interrupt took too long (%lld > %lld), lowering " 302 "kernel.perf_event_max_sample_rate to %d\n", 303 avg_local_sample_len, allowed_ns >> 1, 304 sysctl_perf_event_sample_rate); 305 } 306 } 307 308 static atomic64_t perf_event_id; 309 310 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 311 enum event_type_t event_type); 312 313 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 314 enum event_type_t event_type, 315 struct task_struct *task); 316 317 static void update_context_time(struct perf_event_context *ctx); 318 static u64 perf_event_time(struct perf_event *event); 319 320 void __weak perf_event_print_debug(void) { } 321 322 extern __weak const char *perf_pmu_name(void) 323 { 324 return "pmu"; 325 } 326 327 static inline u64 perf_clock(void) 328 { 329 return local_clock(); 330 } 331 332 static inline u64 perf_event_clock(struct perf_event *event) 333 { 334 return event->clock(); 335 } 336 337 static inline struct perf_cpu_context * 338 __get_cpu_context(struct perf_event_context *ctx) 339 { 340 return this_cpu_ptr(ctx->pmu->pmu_cpu_context); 341 } 342 343 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 344 struct perf_event_context *ctx) 345 { 346 raw_spin_lock(&cpuctx->ctx.lock); 347 if (ctx) 348 raw_spin_lock(&ctx->lock); 349 } 350 351 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 352 struct perf_event_context *ctx) 353 { 354 if (ctx) 355 raw_spin_unlock(&ctx->lock); 356 raw_spin_unlock(&cpuctx->ctx.lock); 357 } 358 359 #ifdef CONFIG_CGROUP_PERF 360 361 static inline bool 362 perf_cgroup_match(struct perf_event *event) 363 { 364 struct perf_event_context *ctx = event->ctx; 365 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 366 367 /* @event doesn't care about cgroup */ 368 if (!event->cgrp) 369 return true; 370 371 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 372 if (!cpuctx->cgrp) 373 return false; 374 375 /* 376 * Cgroup scoping is recursive. An event enabled for a cgroup is 377 * also enabled for all its descendant cgroups. If @cpuctx's 378 * cgroup is a descendant of @event's (the test covers identity 379 * case), it's a match. 380 */ 381 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 382 event->cgrp->css.cgroup); 383 } 384 385 static inline void perf_detach_cgroup(struct perf_event *event) 386 { 387 css_put(&event->cgrp->css); 388 event->cgrp = NULL; 389 } 390 391 static inline int is_cgroup_event(struct perf_event *event) 392 { 393 return event->cgrp != NULL; 394 } 395 396 static inline u64 perf_cgroup_event_time(struct perf_event *event) 397 { 398 struct perf_cgroup_info *t; 399 400 t = per_cpu_ptr(event->cgrp->info, event->cpu); 401 return t->time; 402 } 403 404 static inline void __update_cgrp_time(struct perf_cgroup *cgrp) 405 { 406 struct perf_cgroup_info *info; 407 u64 now; 408 409 now = perf_clock(); 410 411 info = this_cpu_ptr(cgrp->info); 412 413 info->time += now - info->timestamp; 414 info->timestamp = now; 415 } 416 417 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 418 { 419 struct perf_cgroup *cgrp_out = cpuctx->cgrp; 420 if (cgrp_out) 421 __update_cgrp_time(cgrp_out); 422 } 423 424 static inline void update_cgrp_time_from_event(struct perf_event *event) 425 { 426 struct perf_cgroup *cgrp; 427 428 /* 429 * ensure we access cgroup data only when needed and 430 * when we know the cgroup is pinned (css_get) 431 */ 432 if (!is_cgroup_event(event)) 433 return; 434 435 cgrp = perf_cgroup_from_task(current); 436 /* 437 * Do not update time when cgroup is not active 438 */ 439 if (cgrp == event->cgrp) 440 __update_cgrp_time(event->cgrp); 441 } 442 443 static inline void 444 perf_cgroup_set_timestamp(struct task_struct *task, 445 struct perf_event_context *ctx) 446 { 447 struct perf_cgroup *cgrp; 448 struct perf_cgroup_info *info; 449 450 /* 451 * ctx->lock held by caller 452 * ensure we do not access cgroup data 453 * unless we have the cgroup pinned (css_get) 454 */ 455 if (!task || !ctx->nr_cgroups) 456 return; 457 458 cgrp = perf_cgroup_from_task(task); 459 info = this_cpu_ptr(cgrp->info); 460 info->timestamp = ctx->timestamp; 461 } 462 463 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */ 464 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */ 465 466 /* 467 * reschedule events based on the cgroup constraint of task. 468 * 469 * mode SWOUT : schedule out everything 470 * mode SWIN : schedule in based on cgroup for next 471 */ 472 void perf_cgroup_switch(struct task_struct *task, int mode) 473 { 474 struct perf_cpu_context *cpuctx; 475 struct pmu *pmu; 476 unsigned long flags; 477 478 /* 479 * disable interrupts to avoid geting nr_cgroup 480 * changes via __perf_event_disable(). Also 481 * avoids preemption. 482 */ 483 local_irq_save(flags); 484 485 /* 486 * we reschedule only in the presence of cgroup 487 * constrained events. 488 */ 489 rcu_read_lock(); 490 491 list_for_each_entry_rcu(pmu, &pmus, entry) { 492 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 493 if (cpuctx->unique_pmu != pmu) 494 continue; /* ensure we process each cpuctx once */ 495 496 /* 497 * perf_cgroup_events says at least one 498 * context on this CPU has cgroup events. 499 * 500 * ctx->nr_cgroups reports the number of cgroup 501 * events for a context. 502 */ 503 if (cpuctx->ctx.nr_cgroups > 0) { 504 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 505 perf_pmu_disable(cpuctx->ctx.pmu); 506 507 if (mode & PERF_CGROUP_SWOUT) { 508 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 509 /* 510 * must not be done before ctxswout due 511 * to event_filter_match() in event_sched_out() 512 */ 513 cpuctx->cgrp = NULL; 514 } 515 516 if (mode & PERF_CGROUP_SWIN) { 517 WARN_ON_ONCE(cpuctx->cgrp); 518 /* 519 * set cgrp before ctxsw in to allow 520 * event_filter_match() to not have to pass 521 * task around 522 */ 523 cpuctx->cgrp = perf_cgroup_from_task(task); 524 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task); 525 } 526 perf_pmu_enable(cpuctx->ctx.pmu); 527 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 528 } 529 } 530 531 rcu_read_unlock(); 532 533 local_irq_restore(flags); 534 } 535 536 static inline void perf_cgroup_sched_out(struct task_struct *task, 537 struct task_struct *next) 538 { 539 struct perf_cgroup *cgrp1; 540 struct perf_cgroup *cgrp2 = NULL; 541 542 /* 543 * we come here when we know perf_cgroup_events > 0 544 */ 545 cgrp1 = perf_cgroup_from_task(task); 546 547 /* 548 * next is NULL when called from perf_event_enable_on_exec() 549 * that will systematically cause a cgroup_switch() 550 */ 551 if (next) 552 cgrp2 = perf_cgroup_from_task(next); 553 554 /* 555 * only schedule out current cgroup events if we know 556 * that we are switching to a different cgroup. Otherwise, 557 * do no touch the cgroup events. 558 */ 559 if (cgrp1 != cgrp2) 560 perf_cgroup_switch(task, PERF_CGROUP_SWOUT); 561 } 562 563 static inline void perf_cgroup_sched_in(struct task_struct *prev, 564 struct task_struct *task) 565 { 566 struct perf_cgroup *cgrp1; 567 struct perf_cgroup *cgrp2 = NULL; 568 569 /* 570 * we come here when we know perf_cgroup_events > 0 571 */ 572 cgrp1 = perf_cgroup_from_task(task); 573 574 /* prev can never be NULL */ 575 cgrp2 = perf_cgroup_from_task(prev); 576 577 /* 578 * only need to schedule in cgroup events if we are changing 579 * cgroup during ctxsw. Cgroup events were not scheduled 580 * out of ctxsw out if that was not the case. 581 */ 582 if (cgrp1 != cgrp2) 583 perf_cgroup_switch(task, PERF_CGROUP_SWIN); 584 } 585 586 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 587 struct perf_event_attr *attr, 588 struct perf_event *group_leader) 589 { 590 struct perf_cgroup *cgrp; 591 struct cgroup_subsys_state *css; 592 struct fd f = fdget(fd); 593 int ret = 0; 594 595 if (!f.file) 596 return -EBADF; 597 598 css = css_tryget_online_from_dir(f.file->f_path.dentry, 599 &perf_event_cgrp_subsys); 600 if (IS_ERR(css)) { 601 ret = PTR_ERR(css); 602 goto out; 603 } 604 605 cgrp = container_of(css, struct perf_cgroup, css); 606 event->cgrp = cgrp; 607 608 /* 609 * all events in a group must monitor 610 * the same cgroup because a task belongs 611 * to only one perf cgroup at a time 612 */ 613 if (group_leader && group_leader->cgrp != cgrp) { 614 perf_detach_cgroup(event); 615 ret = -EINVAL; 616 } 617 out: 618 fdput(f); 619 return ret; 620 } 621 622 static inline void 623 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 624 { 625 struct perf_cgroup_info *t; 626 t = per_cpu_ptr(event->cgrp->info, event->cpu); 627 event->shadow_ctx_time = now - t->timestamp; 628 } 629 630 static inline void 631 perf_cgroup_defer_enabled(struct perf_event *event) 632 { 633 /* 634 * when the current task's perf cgroup does not match 635 * the event's, we need to remember to call the 636 * perf_mark_enable() function the first time a task with 637 * a matching perf cgroup is scheduled in. 638 */ 639 if (is_cgroup_event(event) && !perf_cgroup_match(event)) 640 event->cgrp_defer_enabled = 1; 641 } 642 643 static inline void 644 perf_cgroup_mark_enabled(struct perf_event *event, 645 struct perf_event_context *ctx) 646 { 647 struct perf_event *sub; 648 u64 tstamp = perf_event_time(event); 649 650 if (!event->cgrp_defer_enabled) 651 return; 652 653 event->cgrp_defer_enabled = 0; 654 655 event->tstamp_enabled = tstamp - event->total_time_enabled; 656 list_for_each_entry(sub, &event->sibling_list, group_entry) { 657 if (sub->state >= PERF_EVENT_STATE_INACTIVE) { 658 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 659 sub->cgrp_defer_enabled = 0; 660 } 661 } 662 } 663 #else /* !CONFIG_CGROUP_PERF */ 664 665 static inline bool 666 perf_cgroup_match(struct perf_event *event) 667 { 668 return true; 669 } 670 671 static inline void perf_detach_cgroup(struct perf_event *event) 672 {} 673 674 static inline int is_cgroup_event(struct perf_event *event) 675 { 676 return 0; 677 } 678 679 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event) 680 { 681 return 0; 682 } 683 684 static inline void update_cgrp_time_from_event(struct perf_event *event) 685 { 686 } 687 688 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 689 { 690 } 691 692 static inline void perf_cgroup_sched_out(struct task_struct *task, 693 struct task_struct *next) 694 { 695 } 696 697 static inline void perf_cgroup_sched_in(struct task_struct *prev, 698 struct task_struct *task) 699 { 700 } 701 702 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 703 struct perf_event_attr *attr, 704 struct perf_event *group_leader) 705 { 706 return -EINVAL; 707 } 708 709 static inline void 710 perf_cgroup_set_timestamp(struct task_struct *task, 711 struct perf_event_context *ctx) 712 { 713 } 714 715 void 716 perf_cgroup_switch(struct task_struct *task, struct task_struct *next) 717 { 718 } 719 720 static inline void 721 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 722 { 723 } 724 725 static inline u64 perf_cgroup_event_time(struct perf_event *event) 726 { 727 return 0; 728 } 729 730 static inline void 731 perf_cgroup_defer_enabled(struct perf_event *event) 732 { 733 } 734 735 static inline void 736 perf_cgroup_mark_enabled(struct perf_event *event, 737 struct perf_event_context *ctx) 738 { 739 } 740 #endif 741 742 /* 743 * set default to be dependent on timer tick just 744 * like original code 745 */ 746 #define PERF_CPU_HRTIMER (1000 / HZ) 747 /* 748 * function must be called with interrupts disbled 749 */ 750 static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr) 751 { 752 struct perf_cpu_context *cpuctx; 753 enum hrtimer_restart ret = HRTIMER_NORESTART; 754 int rotations = 0; 755 756 WARN_ON(!irqs_disabled()); 757 758 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer); 759 760 rotations = perf_rotate_context(cpuctx); 761 762 /* 763 * arm timer if needed 764 */ 765 if (rotations) { 766 hrtimer_forward_now(hr, cpuctx->hrtimer_interval); 767 ret = HRTIMER_RESTART; 768 } 769 770 return ret; 771 } 772 773 /* CPU is going down */ 774 void perf_cpu_hrtimer_cancel(int cpu) 775 { 776 struct perf_cpu_context *cpuctx; 777 struct pmu *pmu; 778 unsigned long flags; 779 780 if (WARN_ON(cpu != smp_processor_id())) 781 return; 782 783 local_irq_save(flags); 784 785 rcu_read_lock(); 786 787 list_for_each_entry_rcu(pmu, &pmus, entry) { 788 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 789 790 if (pmu->task_ctx_nr == perf_sw_context) 791 continue; 792 793 hrtimer_cancel(&cpuctx->hrtimer); 794 } 795 796 rcu_read_unlock(); 797 798 local_irq_restore(flags); 799 } 800 801 static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu) 802 { 803 struct hrtimer *hr = &cpuctx->hrtimer; 804 struct pmu *pmu = cpuctx->ctx.pmu; 805 int timer; 806 807 /* no multiplexing needed for SW PMU */ 808 if (pmu->task_ctx_nr == perf_sw_context) 809 return; 810 811 /* 812 * check default is sane, if not set then force to 813 * default interval (1/tick) 814 */ 815 timer = pmu->hrtimer_interval_ms; 816 if (timer < 1) 817 timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 818 819 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 820 821 hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 822 hr->function = perf_cpu_hrtimer_handler; 823 } 824 825 static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx) 826 { 827 struct hrtimer *hr = &cpuctx->hrtimer; 828 struct pmu *pmu = cpuctx->ctx.pmu; 829 830 /* not for SW PMU */ 831 if (pmu->task_ctx_nr == perf_sw_context) 832 return; 833 834 if (hrtimer_active(hr)) 835 return; 836 837 if (!hrtimer_callback_running(hr)) 838 __hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval, 839 0, HRTIMER_MODE_REL_PINNED, 0); 840 } 841 842 void perf_pmu_disable(struct pmu *pmu) 843 { 844 int *count = this_cpu_ptr(pmu->pmu_disable_count); 845 if (!(*count)++) 846 pmu->pmu_disable(pmu); 847 } 848 849 void perf_pmu_enable(struct pmu *pmu) 850 { 851 int *count = this_cpu_ptr(pmu->pmu_disable_count); 852 if (!--(*count)) 853 pmu->pmu_enable(pmu); 854 } 855 856 static DEFINE_PER_CPU(struct list_head, active_ctx_list); 857 858 /* 859 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and 860 * perf_event_task_tick() are fully serialized because they're strictly cpu 861 * affine and perf_event_ctx{activate,deactivate} are called with IRQs 862 * disabled, while perf_event_task_tick is called from IRQ context. 863 */ 864 static void perf_event_ctx_activate(struct perf_event_context *ctx) 865 { 866 struct list_head *head = this_cpu_ptr(&active_ctx_list); 867 868 WARN_ON(!irqs_disabled()); 869 870 WARN_ON(!list_empty(&ctx->active_ctx_list)); 871 872 list_add(&ctx->active_ctx_list, head); 873 } 874 875 static void perf_event_ctx_deactivate(struct perf_event_context *ctx) 876 { 877 WARN_ON(!irqs_disabled()); 878 879 WARN_ON(list_empty(&ctx->active_ctx_list)); 880 881 list_del_init(&ctx->active_ctx_list); 882 } 883 884 static void get_ctx(struct perf_event_context *ctx) 885 { 886 WARN_ON(!atomic_inc_not_zero(&ctx->refcount)); 887 } 888 889 static void free_ctx(struct rcu_head *head) 890 { 891 struct perf_event_context *ctx; 892 893 ctx = container_of(head, struct perf_event_context, rcu_head); 894 kfree(ctx->task_ctx_data); 895 kfree(ctx); 896 } 897 898 static void put_ctx(struct perf_event_context *ctx) 899 { 900 if (atomic_dec_and_test(&ctx->refcount)) { 901 if (ctx->parent_ctx) 902 put_ctx(ctx->parent_ctx); 903 if (ctx->task) 904 put_task_struct(ctx->task); 905 call_rcu(&ctx->rcu_head, free_ctx); 906 } 907 } 908 909 /* 910 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 911 * perf_pmu_migrate_context() we need some magic. 912 * 913 * Those places that change perf_event::ctx will hold both 914 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 915 * 916 * Lock ordering is by mutex address. There is one other site where 917 * perf_event_context::mutex nests and that is put_event(). But remember that 918 * that is a parent<->child context relation, and migration does not affect 919 * children, therefore these two orderings should not interact. 920 * 921 * The change in perf_event::ctx does not affect children (as claimed above) 922 * because the sys_perf_event_open() case will install a new event and break 923 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 924 * concerned with cpuctx and that doesn't have children. 925 * 926 * The places that change perf_event::ctx will issue: 927 * 928 * perf_remove_from_context(); 929 * synchronize_rcu(); 930 * perf_install_in_context(); 931 * 932 * to affect the change. The remove_from_context() + synchronize_rcu() should 933 * quiesce the event, after which we can install it in the new location. This 934 * means that only external vectors (perf_fops, prctl) can perturb the event 935 * while in transit. Therefore all such accessors should also acquire 936 * perf_event_context::mutex to serialize against this. 937 * 938 * However; because event->ctx can change while we're waiting to acquire 939 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 940 * function. 941 * 942 * Lock order: 943 * task_struct::perf_event_mutex 944 * perf_event_context::mutex 945 * perf_event_context::lock 946 * perf_event::child_mutex; 947 * perf_event::mmap_mutex 948 * mmap_sem 949 */ 950 static struct perf_event_context * 951 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 952 { 953 struct perf_event_context *ctx; 954 955 again: 956 rcu_read_lock(); 957 ctx = ACCESS_ONCE(event->ctx); 958 if (!atomic_inc_not_zero(&ctx->refcount)) { 959 rcu_read_unlock(); 960 goto again; 961 } 962 rcu_read_unlock(); 963 964 mutex_lock_nested(&ctx->mutex, nesting); 965 if (event->ctx != ctx) { 966 mutex_unlock(&ctx->mutex); 967 put_ctx(ctx); 968 goto again; 969 } 970 971 return ctx; 972 } 973 974 static inline struct perf_event_context * 975 perf_event_ctx_lock(struct perf_event *event) 976 { 977 return perf_event_ctx_lock_nested(event, 0); 978 } 979 980 static void perf_event_ctx_unlock(struct perf_event *event, 981 struct perf_event_context *ctx) 982 { 983 mutex_unlock(&ctx->mutex); 984 put_ctx(ctx); 985 } 986 987 /* 988 * This must be done under the ctx->lock, such as to serialize against 989 * context_equiv(), therefore we cannot call put_ctx() since that might end up 990 * calling scheduler related locks and ctx->lock nests inside those. 991 */ 992 static __must_check struct perf_event_context * 993 unclone_ctx(struct perf_event_context *ctx) 994 { 995 struct perf_event_context *parent_ctx = ctx->parent_ctx; 996 997 lockdep_assert_held(&ctx->lock); 998 999 if (parent_ctx) 1000 ctx->parent_ctx = NULL; 1001 ctx->generation++; 1002 1003 return parent_ctx; 1004 } 1005 1006 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1007 { 1008 /* 1009 * only top level events have the pid namespace they were created in 1010 */ 1011 if (event->parent) 1012 event = event->parent; 1013 1014 return task_tgid_nr_ns(p, event->ns); 1015 } 1016 1017 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1018 { 1019 /* 1020 * only top level events have the pid namespace they were created in 1021 */ 1022 if (event->parent) 1023 event = event->parent; 1024 1025 return task_pid_nr_ns(p, event->ns); 1026 } 1027 1028 /* 1029 * If we inherit events we want to return the parent event id 1030 * to userspace. 1031 */ 1032 static u64 primary_event_id(struct perf_event *event) 1033 { 1034 u64 id = event->id; 1035 1036 if (event->parent) 1037 id = event->parent->id; 1038 1039 return id; 1040 } 1041 1042 /* 1043 * Get the perf_event_context for a task and lock it. 1044 * This has to cope with with the fact that until it is locked, 1045 * the context could get moved to another task. 1046 */ 1047 static struct perf_event_context * 1048 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) 1049 { 1050 struct perf_event_context *ctx; 1051 1052 retry: 1053 /* 1054 * One of the few rules of preemptible RCU is that one cannot do 1055 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1056 * part of the read side critical section was preemptible -- see 1057 * rcu_read_unlock_special(). 1058 * 1059 * Since ctx->lock nests under rq->lock we must ensure the entire read 1060 * side critical section is non-preemptible. 1061 */ 1062 preempt_disable(); 1063 rcu_read_lock(); 1064 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); 1065 if (ctx) { 1066 /* 1067 * If this context is a clone of another, it might 1068 * get swapped for another underneath us by 1069 * perf_event_task_sched_out, though the 1070 * rcu_read_lock() protects us from any context 1071 * getting freed. Lock the context and check if it 1072 * got swapped before we could get the lock, and retry 1073 * if so. If we locked the right context, then it 1074 * can't get swapped on us any more. 1075 */ 1076 raw_spin_lock_irqsave(&ctx->lock, *flags); 1077 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { 1078 raw_spin_unlock_irqrestore(&ctx->lock, *flags); 1079 rcu_read_unlock(); 1080 preempt_enable(); 1081 goto retry; 1082 } 1083 1084 if (!atomic_inc_not_zero(&ctx->refcount)) { 1085 raw_spin_unlock_irqrestore(&ctx->lock, *flags); 1086 ctx = NULL; 1087 } 1088 } 1089 rcu_read_unlock(); 1090 preempt_enable(); 1091 return ctx; 1092 } 1093 1094 /* 1095 * Get the context for a task and increment its pin_count so it 1096 * can't get swapped to another task. This also increments its 1097 * reference count so that the context can't get freed. 1098 */ 1099 static struct perf_event_context * 1100 perf_pin_task_context(struct task_struct *task, int ctxn) 1101 { 1102 struct perf_event_context *ctx; 1103 unsigned long flags; 1104 1105 ctx = perf_lock_task_context(task, ctxn, &flags); 1106 if (ctx) { 1107 ++ctx->pin_count; 1108 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1109 } 1110 return ctx; 1111 } 1112 1113 static void perf_unpin_context(struct perf_event_context *ctx) 1114 { 1115 unsigned long flags; 1116 1117 raw_spin_lock_irqsave(&ctx->lock, flags); 1118 --ctx->pin_count; 1119 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1120 } 1121 1122 /* 1123 * Update the record of the current time in a context. 1124 */ 1125 static void update_context_time(struct perf_event_context *ctx) 1126 { 1127 u64 now = perf_clock(); 1128 1129 ctx->time += now - ctx->timestamp; 1130 ctx->timestamp = now; 1131 } 1132 1133 static u64 perf_event_time(struct perf_event *event) 1134 { 1135 struct perf_event_context *ctx = event->ctx; 1136 1137 if (is_cgroup_event(event)) 1138 return perf_cgroup_event_time(event); 1139 1140 return ctx ? ctx->time : 0; 1141 } 1142 1143 /* 1144 * Update the total_time_enabled and total_time_running fields for a event. 1145 * The caller of this function needs to hold the ctx->lock. 1146 */ 1147 static void update_event_times(struct perf_event *event) 1148 { 1149 struct perf_event_context *ctx = event->ctx; 1150 u64 run_end; 1151 1152 if (event->state < PERF_EVENT_STATE_INACTIVE || 1153 event->group_leader->state < PERF_EVENT_STATE_INACTIVE) 1154 return; 1155 /* 1156 * in cgroup mode, time_enabled represents 1157 * the time the event was enabled AND active 1158 * tasks were in the monitored cgroup. This is 1159 * independent of the activity of the context as 1160 * there may be a mix of cgroup and non-cgroup events. 1161 * 1162 * That is why we treat cgroup events differently 1163 * here. 1164 */ 1165 if (is_cgroup_event(event)) 1166 run_end = perf_cgroup_event_time(event); 1167 else if (ctx->is_active) 1168 run_end = ctx->time; 1169 else 1170 run_end = event->tstamp_stopped; 1171 1172 event->total_time_enabled = run_end - event->tstamp_enabled; 1173 1174 if (event->state == PERF_EVENT_STATE_INACTIVE) 1175 run_end = event->tstamp_stopped; 1176 else 1177 run_end = perf_event_time(event); 1178 1179 event->total_time_running = run_end - event->tstamp_running; 1180 1181 } 1182 1183 /* 1184 * Update total_time_enabled and total_time_running for all events in a group. 1185 */ 1186 static void update_group_times(struct perf_event *leader) 1187 { 1188 struct perf_event *event; 1189 1190 update_event_times(leader); 1191 list_for_each_entry(event, &leader->sibling_list, group_entry) 1192 update_event_times(event); 1193 } 1194 1195 static struct list_head * 1196 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx) 1197 { 1198 if (event->attr.pinned) 1199 return &ctx->pinned_groups; 1200 else 1201 return &ctx->flexible_groups; 1202 } 1203 1204 /* 1205 * Add a event from the lists for its context. 1206 * Must be called with ctx->mutex and ctx->lock held. 1207 */ 1208 static void 1209 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1210 { 1211 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1212 event->attach_state |= PERF_ATTACH_CONTEXT; 1213 1214 /* 1215 * If we're a stand alone event or group leader, we go to the context 1216 * list, group events are kept attached to the group so that 1217 * perf_group_detach can, at all times, locate all siblings. 1218 */ 1219 if (event->group_leader == event) { 1220 struct list_head *list; 1221 1222 if (is_software_event(event)) 1223 event->group_flags |= PERF_GROUP_SOFTWARE; 1224 1225 list = ctx_group_list(event, ctx); 1226 list_add_tail(&event->group_entry, list); 1227 } 1228 1229 if (is_cgroup_event(event)) 1230 ctx->nr_cgroups++; 1231 1232 list_add_rcu(&event->event_entry, &ctx->event_list); 1233 ctx->nr_events++; 1234 if (event->attr.inherit_stat) 1235 ctx->nr_stat++; 1236 1237 ctx->generation++; 1238 } 1239 1240 /* 1241 * Initialize event state based on the perf_event_attr::disabled. 1242 */ 1243 static inline void perf_event__state_init(struct perf_event *event) 1244 { 1245 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1246 PERF_EVENT_STATE_INACTIVE; 1247 } 1248 1249 /* 1250 * Called at perf_event creation and when events are attached/detached from a 1251 * group. 1252 */ 1253 static void perf_event__read_size(struct perf_event *event) 1254 { 1255 int entry = sizeof(u64); /* value */ 1256 int size = 0; 1257 int nr = 1; 1258 1259 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1260 size += sizeof(u64); 1261 1262 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1263 size += sizeof(u64); 1264 1265 if (event->attr.read_format & PERF_FORMAT_ID) 1266 entry += sizeof(u64); 1267 1268 if (event->attr.read_format & PERF_FORMAT_GROUP) { 1269 nr += event->group_leader->nr_siblings; 1270 size += sizeof(u64); 1271 } 1272 1273 size += entry * nr; 1274 event->read_size = size; 1275 } 1276 1277 static void perf_event__header_size(struct perf_event *event) 1278 { 1279 struct perf_sample_data *data; 1280 u64 sample_type = event->attr.sample_type; 1281 u16 size = 0; 1282 1283 perf_event__read_size(event); 1284 1285 if (sample_type & PERF_SAMPLE_IP) 1286 size += sizeof(data->ip); 1287 1288 if (sample_type & PERF_SAMPLE_ADDR) 1289 size += sizeof(data->addr); 1290 1291 if (sample_type & PERF_SAMPLE_PERIOD) 1292 size += sizeof(data->period); 1293 1294 if (sample_type & PERF_SAMPLE_WEIGHT) 1295 size += sizeof(data->weight); 1296 1297 if (sample_type & PERF_SAMPLE_READ) 1298 size += event->read_size; 1299 1300 if (sample_type & PERF_SAMPLE_DATA_SRC) 1301 size += sizeof(data->data_src.val); 1302 1303 if (sample_type & PERF_SAMPLE_TRANSACTION) 1304 size += sizeof(data->txn); 1305 1306 event->header_size = size; 1307 } 1308 1309 static void perf_event__id_header_size(struct perf_event *event) 1310 { 1311 struct perf_sample_data *data; 1312 u64 sample_type = event->attr.sample_type; 1313 u16 size = 0; 1314 1315 if (sample_type & PERF_SAMPLE_TID) 1316 size += sizeof(data->tid_entry); 1317 1318 if (sample_type & PERF_SAMPLE_TIME) 1319 size += sizeof(data->time); 1320 1321 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1322 size += sizeof(data->id); 1323 1324 if (sample_type & PERF_SAMPLE_ID) 1325 size += sizeof(data->id); 1326 1327 if (sample_type & PERF_SAMPLE_STREAM_ID) 1328 size += sizeof(data->stream_id); 1329 1330 if (sample_type & PERF_SAMPLE_CPU) 1331 size += sizeof(data->cpu_entry); 1332 1333 event->id_header_size = size; 1334 } 1335 1336 static void perf_group_attach(struct perf_event *event) 1337 { 1338 struct perf_event *group_leader = event->group_leader, *pos; 1339 1340 /* 1341 * We can have double attach due to group movement in perf_event_open. 1342 */ 1343 if (event->attach_state & PERF_ATTACH_GROUP) 1344 return; 1345 1346 event->attach_state |= PERF_ATTACH_GROUP; 1347 1348 if (group_leader == event) 1349 return; 1350 1351 WARN_ON_ONCE(group_leader->ctx != event->ctx); 1352 1353 if (group_leader->group_flags & PERF_GROUP_SOFTWARE && 1354 !is_software_event(event)) 1355 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE; 1356 1357 list_add_tail(&event->group_entry, &group_leader->sibling_list); 1358 group_leader->nr_siblings++; 1359 1360 perf_event__header_size(group_leader); 1361 1362 list_for_each_entry(pos, &group_leader->sibling_list, group_entry) 1363 perf_event__header_size(pos); 1364 } 1365 1366 /* 1367 * Remove a event from the lists for its context. 1368 * Must be called with ctx->mutex and ctx->lock held. 1369 */ 1370 static void 1371 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 1372 { 1373 struct perf_cpu_context *cpuctx; 1374 1375 WARN_ON_ONCE(event->ctx != ctx); 1376 lockdep_assert_held(&ctx->lock); 1377 1378 /* 1379 * We can have double detach due to exit/hot-unplug + close. 1380 */ 1381 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 1382 return; 1383 1384 event->attach_state &= ~PERF_ATTACH_CONTEXT; 1385 1386 if (is_cgroup_event(event)) { 1387 ctx->nr_cgroups--; 1388 cpuctx = __get_cpu_context(ctx); 1389 /* 1390 * if there are no more cgroup events 1391 * then cler cgrp to avoid stale pointer 1392 * in update_cgrp_time_from_cpuctx() 1393 */ 1394 if (!ctx->nr_cgroups) 1395 cpuctx->cgrp = NULL; 1396 } 1397 1398 ctx->nr_events--; 1399 if (event->attr.inherit_stat) 1400 ctx->nr_stat--; 1401 1402 list_del_rcu(&event->event_entry); 1403 1404 if (event->group_leader == event) 1405 list_del_init(&event->group_entry); 1406 1407 update_group_times(event); 1408 1409 /* 1410 * If event was in error state, then keep it 1411 * that way, otherwise bogus counts will be 1412 * returned on read(). The only way to get out 1413 * of error state is by explicit re-enabling 1414 * of the event 1415 */ 1416 if (event->state > PERF_EVENT_STATE_OFF) 1417 event->state = PERF_EVENT_STATE_OFF; 1418 1419 ctx->generation++; 1420 } 1421 1422 static void perf_group_detach(struct perf_event *event) 1423 { 1424 struct perf_event *sibling, *tmp; 1425 struct list_head *list = NULL; 1426 1427 /* 1428 * We can have double detach due to exit/hot-unplug + close. 1429 */ 1430 if (!(event->attach_state & PERF_ATTACH_GROUP)) 1431 return; 1432 1433 event->attach_state &= ~PERF_ATTACH_GROUP; 1434 1435 /* 1436 * If this is a sibling, remove it from its group. 1437 */ 1438 if (event->group_leader != event) { 1439 list_del_init(&event->group_entry); 1440 event->group_leader->nr_siblings--; 1441 goto out; 1442 } 1443 1444 if (!list_empty(&event->group_entry)) 1445 list = &event->group_entry; 1446 1447 /* 1448 * If this was a group event with sibling events then 1449 * upgrade the siblings to singleton events by adding them 1450 * to whatever list we are on. 1451 */ 1452 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) { 1453 if (list) 1454 list_move_tail(&sibling->group_entry, list); 1455 sibling->group_leader = sibling; 1456 1457 /* Inherit group flags from the previous leader */ 1458 sibling->group_flags = event->group_flags; 1459 1460 WARN_ON_ONCE(sibling->ctx != event->ctx); 1461 } 1462 1463 out: 1464 perf_event__header_size(event->group_leader); 1465 1466 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry) 1467 perf_event__header_size(tmp); 1468 } 1469 1470 /* 1471 * User event without the task. 1472 */ 1473 static bool is_orphaned_event(struct perf_event *event) 1474 { 1475 return event && !is_kernel_event(event) && !event->owner; 1476 } 1477 1478 /* 1479 * Event has a parent but parent's task finished and it's 1480 * alive only because of children holding refference. 1481 */ 1482 static bool is_orphaned_child(struct perf_event *event) 1483 { 1484 return is_orphaned_event(event->parent); 1485 } 1486 1487 static void orphans_remove_work(struct work_struct *work); 1488 1489 static void schedule_orphans_remove(struct perf_event_context *ctx) 1490 { 1491 if (!ctx->task || ctx->orphans_remove_sched || !perf_wq) 1492 return; 1493 1494 if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) { 1495 get_ctx(ctx); 1496 ctx->orphans_remove_sched = true; 1497 } 1498 } 1499 1500 static int __init perf_workqueue_init(void) 1501 { 1502 perf_wq = create_singlethread_workqueue("perf"); 1503 WARN(!perf_wq, "failed to create perf workqueue\n"); 1504 return perf_wq ? 0 : -1; 1505 } 1506 1507 core_initcall(perf_workqueue_init); 1508 1509 static inline int 1510 event_filter_match(struct perf_event *event) 1511 { 1512 return (event->cpu == -1 || event->cpu == smp_processor_id()) 1513 && perf_cgroup_match(event); 1514 } 1515 1516 static void 1517 event_sched_out(struct perf_event *event, 1518 struct perf_cpu_context *cpuctx, 1519 struct perf_event_context *ctx) 1520 { 1521 u64 tstamp = perf_event_time(event); 1522 u64 delta; 1523 1524 WARN_ON_ONCE(event->ctx != ctx); 1525 lockdep_assert_held(&ctx->lock); 1526 1527 /* 1528 * An event which could not be activated because of 1529 * filter mismatch still needs to have its timings 1530 * maintained, otherwise bogus information is return 1531 * via read() for time_enabled, time_running: 1532 */ 1533 if (event->state == PERF_EVENT_STATE_INACTIVE 1534 && !event_filter_match(event)) { 1535 delta = tstamp - event->tstamp_stopped; 1536 event->tstamp_running += delta; 1537 event->tstamp_stopped = tstamp; 1538 } 1539 1540 if (event->state != PERF_EVENT_STATE_ACTIVE) 1541 return; 1542 1543 perf_pmu_disable(event->pmu); 1544 1545 event->state = PERF_EVENT_STATE_INACTIVE; 1546 if (event->pending_disable) { 1547 event->pending_disable = 0; 1548 event->state = PERF_EVENT_STATE_OFF; 1549 } 1550 event->tstamp_stopped = tstamp; 1551 event->pmu->del(event, 0); 1552 event->oncpu = -1; 1553 1554 if (!is_software_event(event)) 1555 cpuctx->active_oncpu--; 1556 if (!--ctx->nr_active) 1557 perf_event_ctx_deactivate(ctx); 1558 if (event->attr.freq && event->attr.sample_freq) 1559 ctx->nr_freq--; 1560 if (event->attr.exclusive || !cpuctx->active_oncpu) 1561 cpuctx->exclusive = 0; 1562 1563 if (is_orphaned_child(event)) 1564 schedule_orphans_remove(ctx); 1565 1566 perf_pmu_enable(event->pmu); 1567 } 1568 1569 static void 1570 group_sched_out(struct perf_event *group_event, 1571 struct perf_cpu_context *cpuctx, 1572 struct perf_event_context *ctx) 1573 { 1574 struct perf_event *event; 1575 int state = group_event->state; 1576 1577 event_sched_out(group_event, cpuctx, ctx); 1578 1579 /* 1580 * Schedule out siblings (if any): 1581 */ 1582 list_for_each_entry(event, &group_event->sibling_list, group_entry) 1583 event_sched_out(event, cpuctx, ctx); 1584 1585 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive) 1586 cpuctx->exclusive = 0; 1587 } 1588 1589 struct remove_event { 1590 struct perf_event *event; 1591 bool detach_group; 1592 }; 1593 1594 /* 1595 * Cross CPU call to remove a performance event 1596 * 1597 * We disable the event on the hardware level first. After that we 1598 * remove it from the context list. 1599 */ 1600 static int __perf_remove_from_context(void *info) 1601 { 1602 struct remove_event *re = info; 1603 struct perf_event *event = re->event; 1604 struct perf_event_context *ctx = event->ctx; 1605 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1606 1607 raw_spin_lock(&ctx->lock); 1608 event_sched_out(event, cpuctx, ctx); 1609 if (re->detach_group) 1610 perf_group_detach(event); 1611 list_del_event(event, ctx); 1612 if (!ctx->nr_events && cpuctx->task_ctx == ctx) { 1613 ctx->is_active = 0; 1614 cpuctx->task_ctx = NULL; 1615 } 1616 raw_spin_unlock(&ctx->lock); 1617 1618 return 0; 1619 } 1620 1621 1622 /* 1623 * Remove the event from a task's (or a CPU's) list of events. 1624 * 1625 * CPU events are removed with a smp call. For task events we only 1626 * call when the task is on a CPU. 1627 * 1628 * If event->ctx is a cloned context, callers must make sure that 1629 * every task struct that event->ctx->task could possibly point to 1630 * remains valid. This is OK when called from perf_release since 1631 * that only calls us on the top-level context, which can't be a clone. 1632 * When called from perf_event_exit_task, it's OK because the 1633 * context has been detached from its task. 1634 */ 1635 static void perf_remove_from_context(struct perf_event *event, bool detach_group) 1636 { 1637 struct perf_event_context *ctx = event->ctx; 1638 struct task_struct *task = ctx->task; 1639 struct remove_event re = { 1640 .event = event, 1641 .detach_group = detach_group, 1642 }; 1643 1644 lockdep_assert_held(&ctx->mutex); 1645 1646 if (!task) { 1647 /* 1648 * Per cpu events are removed via an smp call. The removal can 1649 * fail if the CPU is currently offline, but in that case we 1650 * already called __perf_remove_from_context from 1651 * perf_event_exit_cpu. 1652 */ 1653 cpu_function_call(event->cpu, __perf_remove_from_context, &re); 1654 return; 1655 } 1656 1657 retry: 1658 if (!task_function_call(task, __perf_remove_from_context, &re)) 1659 return; 1660 1661 raw_spin_lock_irq(&ctx->lock); 1662 /* 1663 * If we failed to find a running task, but find the context active now 1664 * that we've acquired the ctx->lock, retry. 1665 */ 1666 if (ctx->is_active) { 1667 raw_spin_unlock_irq(&ctx->lock); 1668 /* 1669 * Reload the task pointer, it might have been changed by 1670 * a concurrent perf_event_context_sched_out(). 1671 */ 1672 task = ctx->task; 1673 goto retry; 1674 } 1675 1676 /* 1677 * Since the task isn't running, its safe to remove the event, us 1678 * holding the ctx->lock ensures the task won't get scheduled in. 1679 */ 1680 if (detach_group) 1681 perf_group_detach(event); 1682 list_del_event(event, ctx); 1683 raw_spin_unlock_irq(&ctx->lock); 1684 } 1685 1686 /* 1687 * Cross CPU call to disable a performance event 1688 */ 1689 int __perf_event_disable(void *info) 1690 { 1691 struct perf_event *event = info; 1692 struct perf_event_context *ctx = event->ctx; 1693 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1694 1695 /* 1696 * If this is a per-task event, need to check whether this 1697 * event's task is the current task on this cpu. 1698 * 1699 * Can trigger due to concurrent perf_event_context_sched_out() 1700 * flipping contexts around. 1701 */ 1702 if (ctx->task && cpuctx->task_ctx != ctx) 1703 return -EINVAL; 1704 1705 raw_spin_lock(&ctx->lock); 1706 1707 /* 1708 * If the event is on, turn it off. 1709 * If it is in error state, leave it in error state. 1710 */ 1711 if (event->state >= PERF_EVENT_STATE_INACTIVE) { 1712 update_context_time(ctx); 1713 update_cgrp_time_from_event(event); 1714 update_group_times(event); 1715 if (event == event->group_leader) 1716 group_sched_out(event, cpuctx, ctx); 1717 else 1718 event_sched_out(event, cpuctx, ctx); 1719 event->state = PERF_EVENT_STATE_OFF; 1720 } 1721 1722 raw_spin_unlock(&ctx->lock); 1723 1724 return 0; 1725 } 1726 1727 /* 1728 * Disable a event. 1729 * 1730 * If event->ctx is a cloned context, callers must make sure that 1731 * every task struct that event->ctx->task could possibly point to 1732 * remains valid. This condition is satisifed when called through 1733 * perf_event_for_each_child or perf_event_for_each because they 1734 * hold the top-level event's child_mutex, so any descendant that 1735 * goes to exit will block in sync_child_event. 1736 * When called from perf_pending_event it's OK because event->ctx 1737 * is the current context on this CPU and preemption is disabled, 1738 * hence we can't get into perf_event_task_sched_out for this context. 1739 */ 1740 static void _perf_event_disable(struct perf_event *event) 1741 { 1742 struct perf_event_context *ctx = event->ctx; 1743 struct task_struct *task = ctx->task; 1744 1745 if (!task) { 1746 /* 1747 * Disable the event on the cpu that it's on 1748 */ 1749 cpu_function_call(event->cpu, __perf_event_disable, event); 1750 return; 1751 } 1752 1753 retry: 1754 if (!task_function_call(task, __perf_event_disable, event)) 1755 return; 1756 1757 raw_spin_lock_irq(&ctx->lock); 1758 /* 1759 * If the event is still active, we need to retry the cross-call. 1760 */ 1761 if (event->state == PERF_EVENT_STATE_ACTIVE) { 1762 raw_spin_unlock_irq(&ctx->lock); 1763 /* 1764 * Reload the task pointer, it might have been changed by 1765 * a concurrent perf_event_context_sched_out(). 1766 */ 1767 task = ctx->task; 1768 goto retry; 1769 } 1770 1771 /* 1772 * Since we have the lock this context can't be scheduled 1773 * in, so we can change the state safely. 1774 */ 1775 if (event->state == PERF_EVENT_STATE_INACTIVE) { 1776 update_group_times(event); 1777 event->state = PERF_EVENT_STATE_OFF; 1778 } 1779 raw_spin_unlock_irq(&ctx->lock); 1780 } 1781 1782 /* 1783 * Strictly speaking kernel users cannot create groups and therefore this 1784 * interface does not need the perf_event_ctx_lock() magic. 1785 */ 1786 void perf_event_disable(struct perf_event *event) 1787 { 1788 struct perf_event_context *ctx; 1789 1790 ctx = perf_event_ctx_lock(event); 1791 _perf_event_disable(event); 1792 perf_event_ctx_unlock(event, ctx); 1793 } 1794 EXPORT_SYMBOL_GPL(perf_event_disable); 1795 1796 static void perf_set_shadow_time(struct perf_event *event, 1797 struct perf_event_context *ctx, 1798 u64 tstamp) 1799 { 1800 /* 1801 * use the correct time source for the time snapshot 1802 * 1803 * We could get by without this by leveraging the 1804 * fact that to get to this function, the caller 1805 * has most likely already called update_context_time() 1806 * and update_cgrp_time_xx() and thus both timestamp 1807 * are identical (or very close). Given that tstamp is, 1808 * already adjusted for cgroup, we could say that: 1809 * tstamp - ctx->timestamp 1810 * is equivalent to 1811 * tstamp - cgrp->timestamp. 1812 * 1813 * Then, in perf_output_read(), the calculation would 1814 * work with no changes because: 1815 * - event is guaranteed scheduled in 1816 * - no scheduled out in between 1817 * - thus the timestamp would be the same 1818 * 1819 * But this is a bit hairy. 1820 * 1821 * So instead, we have an explicit cgroup call to remain 1822 * within the time time source all along. We believe it 1823 * is cleaner and simpler to understand. 1824 */ 1825 if (is_cgroup_event(event)) 1826 perf_cgroup_set_shadow_time(event, tstamp); 1827 else 1828 event->shadow_ctx_time = tstamp - ctx->timestamp; 1829 } 1830 1831 #define MAX_INTERRUPTS (~0ULL) 1832 1833 static void perf_log_throttle(struct perf_event *event, int enable); 1834 static void perf_log_itrace_start(struct perf_event *event); 1835 1836 static int 1837 event_sched_in(struct perf_event *event, 1838 struct perf_cpu_context *cpuctx, 1839 struct perf_event_context *ctx) 1840 { 1841 u64 tstamp = perf_event_time(event); 1842 int ret = 0; 1843 1844 lockdep_assert_held(&ctx->lock); 1845 1846 if (event->state <= PERF_EVENT_STATE_OFF) 1847 return 0; 1848 1849 event->state = PERF_EVENT_STATE_ACTIVE; 1850 event->oncpu = smp_processor_id(); 1851 1852 /* 1853 * Unthrottle events, since we scheduled we might have missed several 1854 * ticks already, also for a heavily scheduling task there is little 1855 * guarantee it'll get a tick in a timely manner. 1856 */ 1857 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 1858 perf_log_throttle(event, 1); 1859 event->hw.interrupts = 0; 1860 } 1861 1862 /* 1863 * The new state must be visible before we turn it on in the hardware: 1864 */ 1865 smp_wmb(); 1866 1867 perf_pmu_disable(event->pmu); 1868 1869 event->tstamp_running += tstamp - event->tstamp_stopped; 1870 1871 perf_set_shadow_time(event, ctx, tstamp); 1872 1873 perf_log_itrace_start(event); 1874 1875 if (event->pmu->add(event, PERF_EF_START)) { 1876 event->state = PERF_EVENT_STATE_INACTIVE; 1877 event->oncpu = -1; 1878 ret = -EAGAIN; 1879 goto out; 1880 } 1881 1882 if (!is_software_event(event)) 1883 cpuctx->active_oncpu++; 1884 if (!ctx->nr_active++) 1885 perf_event_ctx_activate(ctx); 1886 if (event->attr.freq && event->attr.sample_freq) 1887 ctx->nr_freq++; 1888 1889 if (event->attr.exclusive) 1890 cpuctx->exclusive = 1; 1891 1892 if (is_orphaned_child(event)) 1893 schedule_orphans_remove(ctx); 1894 1895 out: 1896 perf_pmu_enable(event->pmu); 1897 1898 return ret; 1899 } 1900 1901 static int 1902 group_sched_in(struct perf_event *group_event, 1903 struct perf_cpu_context *cpuctx, 1904 struct perf_event_context *ctx) 1905 { 1906 struct perf_event *event, *partial_group = NULL; 1907 struct pmu *pmu = ctx->pmu; 1908 u64 now = ctx->time; 1909 bool simulate = false; 1910 1911 if (group_event->state == PERF_EVENT_STATE_OFF) 1912 return 0; 1913 1914 pmu->start_txn(pmu); 1915 1916 if (event_sched_in(group_event, cpuctx, ctx)) { 1917 pmu->cancel_txn(pmu); 1918 perf_cpu_hrtimer_restart(cpuctx); 1919 return -EAGAIN; 1920 } 1921 1922 /* 1923 * Schedule in siblings as one group (if any): 1924 */ 1925 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 1926 if (event_sched_in(event, cpuctx, ctx)) { 1927 partial_group = event; 1928 goto group_error; 1929 } 1930 } 1931 1932 if (!pmu->commit_txn(pmu)) 1933 return 0; 1934 1935 group_error: 1936 /* 1937 * Groups can be scheduled in as one unit only, so undo any 1938 * partial group before returning: 1939 * The events up to the failed event are scheduled out normally, 1940 * tstamp_stopped will be updated. 1941 * 1942 * The failed events and the remaining siblings need to have 1943 * their timings updated as if they had gone thru event_sched_in() 1944 * and event_sched_out(). This is required to get consistent timings 1945 * across the group. This also takes care of the case where the group 1946 * could never be scheduled by ensuring tstamp_stopped is set to mark 1947 * the time the event was actually stopped, such that time delta 1948 * calculation in update_event_times() is correct. 1949 */ 1950 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 1951 if (event == partial_group) 1952 simulate = true; 1953 1954 if (simulate) { 1955 event->tstamp_running += now - event->tstamp_stopped; 1956 event->tstamp_stopped = now; 1957 } else { 1958 event_sched_out(event, cpuctx, ctx); 1959 } 1960 } 1961 event_sched_out(group_event, cpuctx, ctx); 1962 1963 pmu->cancel_txn(pmu); 1964 1965 perf_cpu_hrtimer_restart(cpuctx); 1966 1967 return -EAGAIN; 1968 } 1969 1970 /* 1971 * Work out whether we can put this event group on the CPU now. 1972 */ 1973 static int group_can_go_on(struct perf_event *event, 1974 struct perf_cpu_context *cpuctx, 1975 int can_add_hw) 1976 { 1977 /* 1978 * Groups consisting entirely of software events can always go on. 1979 */ 1980 if (event->group_flags & PERF_GROUP_SOFTWARE) 1981 return 1; 1982 /* 1983 * If an exclusive group is already on, no other hardware 1984 * events can go on. 1985 */ 1986 if (cpuctx->exclusive) 1987 return 0; 1988 /* 1989 * If this group is exclusive and there are already 1990 * events on the CPU, it can't go on. 1991 */ 1992 if (event->attr.exclusive && cpuctx->active_oncpu) 1993 return 0; 1994 /* 1995 * Otherwise, try to add it if all previous groups were able 1996 * to go on. 1997 */ 1998 return can_add_hw; 1999 } 2000 2001 static void add_event_to_ctx(struct perf_event *event, 2002 struct perf_event_context *ctx) 2003 { 2004 u64 tstamp = perf_event_time(event); 2005 2006 list_add_event(event, ctx); 2007 perf_group_attach(event); 2008 event->tstamp_enabled = tstamp; 2009 event->tstamp_running = tstamp; 2010 event->tstamp_stopped = tstamp; 2011 } 2012 2013 static void task_ctx_sched_out(struct perf_event_context *ctx); 2014 static void 2015 ctx_sched_in(struct perf_event_context *ctx, 2016 struct perf_cpu_context *cpuctx, 2017 enum event_type_t event_type, 2018 struct task_struct *task); 2019 2020 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2021 struct perf_event_context *ctx, 2022 struct task_struct *task) 2023 { 2024 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task); 2025 if (ctx) 2026 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task); 2027 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task); 2028 if (ctx) 2029 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task); 2030 } 2031 2032 /* 2033 * Cross CPU call to install and enable a performance event 2034 * 2035 * Must be called with ctx->mutex held 2036 */ 2037 static int __perf_install_in_context(void *info) 2038 { 2039 struct perf_event *event = info; 2040 struct perf_event_context *ctx = event->ctx; 2041 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2042 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2043 struct task_struct *task = current; 2044 2045 perf_ctx_lock(cpuctx, task_ctx); 2046 perf_pmu_disable(cpuctx->ctx.pmu); 2047 2048 /* 2049 * If there was an active task_ctx schedule it out. 2050 */ 2051 if (task_ctx) 2052 task_ctx_sched_out(task_ctx); 2053 2054 /* 2055 * If the context we're installing events in is not the 2056 * active task_ctx, flip them. 2057 */ 2058 if (ctx->task && task_ctx != ctx) { 2059 if (task_ctx) 2060 raw_spin_unlock(&task_ctx->lock); 2061 raw_spin_lock(&ctx->lock); 2062 task_ctx = ctx; 2063 } 2064 2065 if (task_ctx) { 2066 cpuctx->task_ctx = task_ctx; 2067 task = task_ctx->task; 2068 } 2069 2070 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 2071 2072 update_context_time(ctx); 2073 /* 2074 * update cgrp time only if current cgrp 2075 * matches event->cgrp. Must be done before 2076 * calling add_event_to_ctx() 2077 */ 2078 update_cgrp_time_from_event(event); 2079 2080 add_event_to_ctx(event, ctx); 2081 2082 /* 2083 * Schedule everything back in 2084 */ 2085 perf_event_sched_in(cpuctx, task_ctx, task); 2086 2087 perf_pmu_enable(cpuctx->ctx.pmu); 2088 perf_ctx_unlock(cpuctx, task_ctx); 2089 2090 return 0; 2091 } 2092 2093 /* 2094 * Attach a performance event to a context 2095 * 2096 * First we add the event to the list with the hardware enable bit 2097 * in event->hw_config cleared. 2098 * 2099 * If the event is attached to a task which is on a CPU we use a smp 2100 * call to enable it in the task context. The task might have been 2101 * scheduled away, but we check this in the smp call again. 2102 */ 2103 static void 2104 perf_install_in_context(struct perf_event_context *ctx, 2105 struct perf_event *event, 2106 int cpu) 2107 { 2108 struct task_struct *task = ctx->task; 2109 2110 lockdep_assert_held(&ctx->mutex); 2111 2112 event->ctx = ctx; 2113 if (event->cpu != -1) 2114 event->cpu = cpu; 2115 2116 if (!task) { 2117 /* 2118 * Per cpu events are installed via an smp call and 2119 * the install is always successful. 2120 */ 2121 cpu_function_call(cpu, __perf_install_in_context, event); 2122 return; 2123 } 2124 2125 retry: 2126 if (!task_function_call(task, __perf_install_in_context, event)) 2127 return; 2128 2129 raw_spin_lock_irq(&ctx->lock); 2130 /* 2131 * If we failed to find a running task, but find the context active now 2132 * that we've acquired the ctx->lock, retry. 2133 */ 2134 if (ctx->is_active) { 2135 raw_spin_unlock_irq(&ctx->lock); 2136 /* 2137 * Reload the task pointer, it might have been changed by 2138 * a concurrent perf_event_context_sched_out(). 2139 */ 2140 task = ctx->task; 2141 goto retry; 2142 } 2143 2144 /* 2145 * Since the task isn't running, its safe to add the event, us holding 2146 * the ctx->lock ensures the task won't get scheduled in. 2147 */ 2148 add_event_to_ctx(event, ctx); 2149 raw_spin_unlock_irq(&ctx->lock); 2150 } 2151 2152 /* 2153 * Put a event into inactive state and update time fields. 2154 * Enabling the leader of a group effectively enables all 2155 * the group members that aren't explicitly disabled, so we 2156 * have to update their ->tstamp_enabled also. 2157 * Note: this works for group members as well as group leaders 2158 * since the non-leader members' sibling_lists will be empty. 2159 */ 2160 static void __perf_event_mark_enabled(struct perf_event *event) 2161 { 2162 struct perf_event *sub; 2163 u64 tstamp = perf_event_time(event); 2164 2165 event->state = PERF_EVENT_STATE_INACTIVE; 2166 event->tstamp_enabled = tstamp - event->total_time_enabled; 2167 list_for_each_entry(sub, &event->sibling_list, group_entry) { 2168 if (sub->state >= PERF_EVENT_STATE_INACTIVE) 2169 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 2170 } 2171 } 2172 2173 /* 2174 * Cross CPU call to enable a performance event 2175 */ 2176 static int __perf_event_enable(void *info) 2177 { 2178 struct perf_event *event = info; 2179 struct perf_event_context *ctx = event->ctx; 2180 struct perf_event *leader = event->group_leader; 2181 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2182 int err; 2183 2184 /* 2185 * There's a time window between 'ctx->is_active' check 2186 * in perf_event_enable function and this place having: 2187 * - IRQs on 2188 * - ctx->lock unlocked 2189 * 2190 * where the task could be killed and 'ctx' deactivated 2191 * by perf_event_exit_task. 2192 */ 2193 if (!ctx->is_active) 2194 return -EINVAL; 2195 2196 raw_spin_lock(&ctx->lock); 2197 update_context_time(ctx); 2198 2199 if (event->state >= PERF_EVENT_STATE_INACTIVE) 2200 goto unlock; 2201 2202 /* 2203 * set current task's cgroup time reference point 2204 */ 2205 perf_cgroup_set_timestamp(current, ctx); 2206 2207 __perf_event_mark_enabled(event); 2208 2209 if (!event_filter_match(event)) { 2210 if (is_cgroup_event(event)) 2211 perf_cgroup_defer_enabled(event); 2212 goto unlock; 2213 } 2214 2215 /* 2216 * If the event is in a group and isn't the group leader, 2217 * then don't put it on unless the group is on. 2218 */ 2219 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) 2220 goto unlock; 2221 2222 if (!group_can_go_on(event, cpuctx, 1)) { 2223 err = -EEXIST; 2224 } else { 2225 if (event == leader) 2226 err = group_sched_in(event, cpuctx, ctx); 2227 else 2228 err = event_sched_in(event, cpuctx, ctx); 2229 } 2230 2231 if (err) { 2232 /* 2233 * If this event can't go on and it's part of a 2234 * group, then the whole group has to come off. 2235 */ 2236 if (leader != event) { 2237 group_sched_out(leader, cpuctx, ctx); 2238 perf_cpu_hrtimer_restart(cpuctx); 2239 } 2240 if (leader->attr.pinned) { 2241 update_group_times(leader); 2242 leader->state = PERF_EVENT_STATE_ERROR; 2243 } 2244 } 2245 2246 unlock: 2247 raw_spin_unlock(&ctx->lock); 2248 2249 return 0; 2250 } 2251 2252 /* 2253 * Enable a event. 2254 * 2255 * If event->ctx is a cloned context, callers must make sure that 2256 * every task struct that event->ctx->task could possibly point to 2257 * remains valid. This condition is satisfied when called through 2258 * perf_event_for_each_child or perf_event_for_each as described 2259 * for perf_event_disable. 2260 */ 2261 static void _perf_event_enable(struct perf_event *event) 2262 { 2263 struct perf_event_context *ctx = event->ctx; 2264 struct task_struct *task = ctx->task; 2265 2266 if (!task) { 2267 /* 2268 * Enable the event on the cpu that it's on 2269 */ 2270 cpu_function_call(event->cpu, __perf_event_enable, event); 2271 return; 2272 } 2273 2274 raw_spin_lock_irq(&ctx->lock); 2275 if (event->state >= PERF_EVENT_STATE_INACTIVE) 2276 goto out; 2277 2278 /* 2279 * If the event is in error state, clear that first. 2280 * That way, if we see the event in error state below, we 2281 * know that it has gone back into error state, as distinct 2282 * from the task having been scheduled away before the 2283 * cross-call arrived. 2284 */ 2285 if (event->state == PERF_EVENT_STATE_ERROR) 2286 event->state = PERF_EVENT_STATE_OFF; 2287 2288 retry: 2289 if (!ctx->is_active) { 2290 __perf_event_mark_enabled(event); 2291 goto out; 2292 } 2293 2294 raw_spin_unlock_irq(&ctx->lock); 2295 2296 if (!task_function_call(task, __perf_event_enable, event)) 2297 return; 2298 2299 raw_spin_lock_irq(&ctx->lock); 2300 2301 /* 2302 * If the context is active and the event is still off, 2303 * we need to retry the cross-call. 2304 */ 2305 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) { 2306 /* 2307 * task could have been flipped by a concurrent 2308 * perf_event_context_sched_out() 2309 */ 2310 task = ctx->task; 2311 goto retry; 2312 } 2313 2314 out: 2315 raw_spin_unlock_irq(&ctx->lock); 2316 } 2317 2318 /* 2319 * See perf_event_disable(); 2320 */ 2321 void perf_event_enable(struct perf_event *event) 2322 { 2323 struct perf_event_context *ctx; 2324 2325 ctx = perf_event_ctx_lock(event); 2326 _perf_event_enable(event); 2327 perf_event_ctx_unlock(event, ctx); 2328 } 2329 EXPORT_SYMBOL_GPL(perf_event_enable); 2330 2331 static int _perf_event_refresh(struct perf_event *event, int refresh) 2332 { 2333 /* 2334 * not supported on inherited events 2335 */ 2336 if (event->attr.inherit || !is_sampling_event(event)) 2337 return -EINVAL; 2338 2339 atomic_add(refresh, &event->event_limit); 2340 _perf_event_enable(event); 2341 2342 return 0; 2343 } 2344 2345 /* 2346 * See perf_event_disable() 2347 */ 2348 int perf_event_refresh(struct perf_event *event, int refresh) 2349 { 2350 struct perf_event_context *ctx; 2351 int ret; 2352 2353 ctx = perf_event_ctx_lock(event); 2354 ret = _perf_event_refresh(event, refresh); 2355 perf_event_ctx_unlock(event, ctx); 2356 2357 return ret; 2358 } 2359 EXPORT_SYMBOL_GPL(perf_event_refresh); 2360 2361 static void ctx_sched_out(struct perf_event_context *ctx, 2362 struct perf_cpu_context *cpuctx, 2363 enum event_type_t event_type) 2364 { 2365 struct perf_event *event; 2366 int is_active = ctx->is_active; 2367 2368 ctx->is_active &= ~event_type; 2369 if (likely(!ctx->nr_events)) 2370 return; 2371 2372 update_context_time(ctx); 2373 update_cgrp_time_from_cpuctx(cpuctx); 2374 if (!ctx->nr_active) 2375 return; 2376 2377 perf_pmu_disable(ctx->pmu); 2378 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) { 2379 list_for_each_entry(event, &ctx->pinned_groups, group_entry) 2380 group_sched_out(event, cpuctx, ctx); 2381 } 2382 2383 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) { 2384 list_for_each_entry(event, &ctx->flexible_groups, group_entry) 2385 group_sched_out(event, cpuctx, ctx); 2386 } 2387 perf_pmu_enable(ctx->pmu); 2388 } 2389 2390 /* 2391 * Test whether two contexts are equivalent, i.e. whether they have both been 2392 * cloned from the same version of the same context. 2393 * 2394 * Equivalence is measured using a generation number in the context that is 2395 * incremented on each modification to it; see unclone_ctx(), list_add_event() 2396 * and list_del_event(). 2397 */ 2398 static int context_equiv(struct perf_event_context *ctx1, 2399 struct perf_event_context *ctx2) 2400 { 2401 lockdep_assert_held(&ctx1->lock); 2402 lockdep_assert_held(&ctx2->lock); 2403 2404 /* Pinning disables the swap optimization */ 2405 if (ctx1->pin_count || ctx2->pin_count) 2406 return 0; 2407 2408 /* If ctx1 is the parent of ctx2 */ 2409 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 2410 return 1; 2411 2412 /* If ctx2 is the parent of ctx1 */ 2413 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 2414 return 1; 2415 2416 /* 2417 * If ctx1 and ctx2 have the same parent; we flatten the parent 2418 * hierarchy, see perf_event_init_context(). 2419 */ 2420 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 2421 ctx1->parent_gen == ctx2->parent_gen) 2422 return 1; 2423 2424 /* Unmatched */ 2425 return 0; 2426 } 2427 2428 static void __perf_event_sync_stat(struct perf_event *event, 2429 struct perf_event *next_event) 2430 { 2431 u64 value; 2432 2433 if (!event->attr.inherit_stat) 2434 return; 2435 2436 /* 2437 * Update the event value, we cannot use perf_event_read() 2438 * because we're in the middle of a context switch and have IRQs 2439 * disabled, which upsets smp_call_function_single(), however 2440 * we know the event must be on the current CPU, therefore we 2441 * don't need to use it. 2442 */ 2443 switch (event->state) { 2444 case PERF_EVENT_STATE_ACTIVE: 2445 event->pmu->read(event); 2446 /* fall-through */ 2447 2448 case PERF_EVENT_STATE_INACTIVE: 2449 update_event_times(event); 2450 break; 2451 2452 default: 2453 break; 2454 } 2455 2456 /* 2457 * In order to keep per-task stats reliable we need to flip the event 2458 * values when we flip the contexts. 2459 */ 2460 value = local64_read(&next_event->count); 2461 value = local64_xchg(&event->count, value); 2462 local64_set(&next_event->count, value); 2463 2464 swap(event->total_time_enabled, next_event->total_time_enabled); 2465 swap(event->total_time_running, next_event->total_time_running); 2466 2467 /* 2468 * Since we swizzled the values, update the user visible data too. 2469 */ 2470 perf_event_update_userpage(event); 2471 perf_event_update_userpage(next_event); 2472 } 2473 2474 static void perf_event_sync_stat(struct perf_event_context *ctx, 2475 struct perf_event_context *next_ctx) 2476 { 2477 struct perf_event *event, *next_event; 2478 2479 if (!ctx->nr_stat) 2480 return; 2481 2482 update_context_time(ctx); 2483 2484 event = list_first_entry(&ctx->event_list, 2485 struct perf_event, event_entry); 2486 2487 next_event = list_first_entry(&next_ctx->event_list, 2488 struct perf_event, event_entry); 2489 2490 while (&event->event_entry != &ctx->event_list && 2491 &next_event->event_entry != &next_ctx->event_list) { 2492 2493 __perf_event_sync_stat(event, next_event); 2494 2495 event = list_next_entry(event, event_entry); 2496 next_event = list_next_entry(next_event, event_entry); 2497 } 2498 } 2499 2500 static void perf_event_context_sched_out(struct task_struct *task, int ctxn, 2501 struct task_struct *next) 2502 { 2503 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; 2504 struct perf_event_context *next_ctx; 2505 struct perf_event_context *parent, *next_parent; 2506 struct perf_cpu_context *cpuctx; 2507 int do_switch = 1; 2508 2509 if (likely(!ctx)) 2510 return; 2511 2512 cpuctx = __get_cpu_context(ctx); 2513 if (!cpuctx->task_ctx) 2514 return; 2515 2516 rcu_read_lock(); 2517 next_ctx = next->perf_event_ctxp[ctxn]; 2518 if (!next_ctx) 2519 goto unlock; 2520 2521 parent = rcu_dereference(ctx->parent_ctx); 2522 next_parent = rcu_dereference(next_ctx->parent_ctx); 2523 2524 /* If neither context have a parent context; they cannot be clones. */ 2525 if (!parent && !next_parent) 2526 goto unlock; 2527 2528 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 2529 /* 2530 * Looks like the two contexts are clones, so we might be 2531 * able to optimize the context switch. We lock both 2532 * contexts and check that they are clones under the 2533 * lock (including re-checking that neither has been 2534 * uncloned in the meantime). It doesn't matter which 2535 * order we take the locks because no other cpu could 2536 * be trying to lock both of these tasks. 2537 */ 2538 raw_spin_lock(&ctx->lock); 2539 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 2540 if (context_equiv(ctx, next_ctx)) { 2541 /* 2542 * XXX do we need a memory barrier of sorts 2543 * wrt to rcu_dereference() of perf_event_ctxp 2544 */ 2545 task->perf_event_ctxp[ctxn] = next_ctx; 2546 next->perf_event_ctxp[ctxn] = ctx; 2547 ctx->task = next; 2548 next_ctx->task = task; 2549 2550 swap(ctx->task_ctx_data, next_ctx->task_ctx_data); 2551 2552 do_switch = 0; 2553 2554 perf_event_sync_stat(ctx, next_ctx); 2555 } 2556 raw_spin_unlock(&next_ctx->lock); 2557 raw_spin_unlock(&ctx->lock); 2558 } 2559 unlock: 2560 rcu_read_unlock(); 2561 2562 if (do_switch) { 2563 raw_spin_lock(&ctx->lock); 2564 ctx_sched_out(ctx, cpuctx, EVENT_ALL); 2565 cpuctx->task_ctx = NULL; 2566 raw_spin_unlock(&ctx->lock); 2567 } 2568 } 2569 2570 void perf_sched_cb_dec(struct pmu *pmu) 2571 { 2572 this_cpu_dec(perf_sched_cb_usages); 2573 } 2574 2575 void perf_sched_cb_inc(struct pmu *pmu) 2576 { 2577 this_cpu_inc(perf_sched_cb_usages); 2578 } 2579 2580 /* 2581 * This function provides the context switch callback to the lower code 2582 * layer. It is invoked ONLY when the context switch callback is enabled. 2583 */ 2584 static void perf_pmu_sched_task(struct task_struct *prev, 2585 struct task_struct *next, 2586 bool sched_in) 2587 { 2588 struct perf_cpu_context *cpuctx; 2589 struct pmu *pmu; 2590 unsigned long flags; 2591 2592 if (prev == next) 2593 return; 2594 2595 local_irq_save(flags); 2596 2597 rcu_read_lock(); 2598 2599 list_for_each_entry_rcu(pmu, &pmus, entry) { 2600 if (pmu->sched_task) { 2601 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 2602 2603 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 2604 2605 perf_pmu_disable(pmu); 2606 2607 pmu->sched_task(cpuctx->task_ctx, sched_in); 2608 2609 perf_pmu_enable(pmu); 2610 2611 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 2612 } 2613 } 2614 2615 rcu_read_unlock(); 2616 2617 local_irq_restore(flags); 2618 } 2619 2620 #define for_each_task_context_nr(ctxn) \ 2621 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) 2622 2623 /* 2624 * Called from scheduler to remove the events of the current task, 2625 * with interrupts disabled. 2626 * 2627 * We stop each event and update the event value in event->count. 2628 * 2629 * This does not protect us against NMI, but disable() 2630 * sets the disabled bit in the control field of event _before_ 2631 * accessing the event control register. If a NMI hits, then it will 2632 * not restart the event. 2633 */ 2634 void __perf_event_task_sched_out(struct task_struct *task, 2635 struct task_struct *next) 2636 { 2637 int ctxn; 2638 2639 if (__this_cpu_read(perf_sched_cb_usages)) 2640 perf_pmu_sched_task(task, next, false); 2641 2642 for_each_task_context_nr(ctxn) 2643 perf_event_context_sched_out(task, ctxn, next); 2644 2645 /* 2646 * if cgroup events exist on this CPU, then we need 2647 * to check if we have to switch out PMU state. 2648 * cgroup event are system-wide mode only 2649 */ 2650 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 2651 perf_cgroup_sched_out(task, next); 2652 } 2653 2654 static void task_ctx_sched_out(struct perf_event_context *ctx) 2655 { 2656 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2657 2658 if (!cpuctx->task_ctx) 2659 return; 2660 2661 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2662 return; 2663 2664 ctx_sched_out(ctx, cpuctx, EVENT_ALL); 2665 cpuctx->task_ctx = NULL; 2666 } 2667 2668 /* 2669 * Called with IRQs disabled 2670 */ 2671 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 2672 enum event_type_t event_type) 2673 { 2674 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); 2675 } 2676 2677 static void 2678 ctx_pinned_sched_in(struct perf_event_context *ctx, 2679 struct perf_cpu_context *cpuctx) 2680 { 2681 struct perf_event *event; 2682 2683 list_for_each_entry(event, &ctx->pinned_groups, group_entry) { 2684 if (event->state <= PERF_EVENT_STATE_OFF) 2685 continue; 2686 if (!event_filter_match(event)) 2687 continue; 2688 2689 /* may need to reset tstamp_enabled */ 2690 if (is_cgroup_event(event)) 2691 perf_cgroup_mark_enabled(event, ctx); 2692 2693 if (group_can_go_on(event, cpuctx, 1)) 2694 group_sched_in(event, cpuctx, ctx); 2695 2696 /* 2697 * If this pinned group hasn't been scheduled, 2698 * put it in error state. 2699 */ 2700 if (event->state == PERF_EVENT_STATE_INACTIVE) { 2701 update_group_times(event); 2702 event->state = PERF_EVENT_STATE_ERROR; 2703 } 2704 } 2705 } 2706 2707 static void 2708 ctx_flexible_sched_in(struct perf_event_context *ctx, 2709 struct perf_cpu_context *cpuctx) 2710 { 2711 struct perf_event *event; 2712 int can_add_hw = 1; 2713 2714 list_for_each_entry(event, &ctx->flexible_groups, group_entry) { 2715 /* Ignore events in OFF or ERROR state */ 2716 if (event->state <= PERF_EVENT_STATE_OFF) 2717 continue; 2718 /* 2719 * Listen to the 'cpu' scheduling filter constraint 2720 * of events: 2721 */ 2722 if (!event_filter_match(event)) 2723 continue; 2724 2725 /* may need to reset tstamp_enabled */ 2726 if (is_cgroup_event(event)) 2727 perf_cgroup_mark_enabled(event, ctx); 2728 2729 if (group_can_go_on(event, cpuctx, can_add_hw)) { 2730 if (group_sched_in(event, cpuctx, ctx)) 2731 can_add_hw = 0; 2732 } 2733 } 2734 } 2735 2736 static void 2737 ctx_sched_in(struct perf_event_context *ctx, 2738 struct perf_cpu_context *cpuctx, 2739 enum event_type_t event_type, 2740 struct task_struct *task) 2741 { 2742 u64 now; 2743 int is_active = ctx->is_active; 2744 2745 ctx->is_active |= event_type; 2746 if (likely(!ctx->nr_events)) 2747 return; 2748 2749 now = perf_clock(); 2750 ctx->timestamp = now; 2751 perf_cgroup_set_timestamp(task, ctx); 2752 /* 2753 * First go through the list and put on any pinned groups 2754 * in order to give them the best chance of going on. 2755 */ 2756 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) 2757 ctx_pinned_sched_in(ctx, cpuctx); 2758 2759 /* Then walk through the lower prio flexible groups */ 2760 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) 2761 ctx_flexible_sched_in(ctx, cpuctx); 2762 } 2763 2764 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 2765 enum event_type_t event_type, 2766 struct task_struct *task) 2767 { 2768 struct perf_event_context *ctx = &cpuctx->ctx; 2769 2770 ctx_sched_in(ctx, cpuctx, event_type, task); 2771 } 2772 2773 static void perf_event_context_sched_in(struct perf_event_context *ctx, 2774 struct task_struct *task) 2775 { 2776 struct perf_cpu_context *cpuctx; 2777 2778 cpuctx = __get_cpu_context(ctx); 2779 if (cpuctx->task_ctx == ctx) 2780 return; 2781 2782 perf_ctx_lock(cpuctx, ctx); 2783 perf_pmu_disable(ctx->pmu); 2784 /* 2785 * We want to keep the following priority order: 2786 * cpu pinned (that don't need to move), task pinned, 2787 * cpu flexible, task flexible. 2788 */ 2789 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2790 2791 if (ctx->nr_events) 2792 cpuctx->task_ctx = ctx; 2793 2794 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task); 2795 2796 perf_pmu_enable(ctx->pmu); 2797 perf_ctx_unlock(cpuctx, ctx); 2798 } 2799 2800 /* 2801 * Called from scheduler to add the events of the current task 2802 * with interrupts disabled. 2803 * 2804 * We restore the event value and then enable it. 2805 * 2806 * This does not protect us against NMI, but enable() 2807 * sets the enabled bit in the control field of event _before_ 2808 * accessing the event control register. If a NMI hits, then it will 2809 * keep the event running. 2810 */ 2811 void __perf_event_task_sched_in(struct task_struct *prev, 2812 struct task_struct *task) 2813 { 2814 struct perf_event_context *ctx; 2815 int ctxn; 2816 2817 for_each_task_context_nr(ctxn) { 2818 ctx = task->perf_event_ctxp[ctxn]; 2819 if (likely(!ctx)) 2820 continue; 2821 2822 perf_event_context_sched_in(ctx, task); 2823 } 2824 /* 2825 * if cgroup events exist on this CPU, then we need 2826 * to check if we have to switch in PMU state. 2827 * cgroup event are system-wide mode only 2828 */ 2829 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 2830 perf_cgroup_sched_in(prev, task); 2831 2832 if (__this_cpu_read(perf_sched_cb_usages)) 2833 perf_pmu_sched_task(prev, task, true); 2834 } 2835 2836 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 2837 { 2838 u64 frequency = event->attr.sample_freq; 2839 u64 sec = NSEC_PER_SEC; 2840 u64 divisor, dividend; 2841 2842 int count_fls, nsec_fls, frequency_fls, sec_fls; 2843 2844 count_fls = fls64(count); 2845 nsec_fls = fls64(nsec); 2846 frequency_fls = fls64(frequency); 2847 sec_fls = 30; 2848 2849 /* 2850 * We got @count in @nsec, with a target of sample_freq HZ 2851 * the target period becomes: 2852 * 2853 * @count * 10^9 2854 * period = ------------------- 2855 * @nsec * sample_freq 2856 * 2857 */ 2858 2859 /* 2860 * Reduce accuracy by one bit such that @a and @b converge 2861 * to a similar magnitude. 2862 */ 2863 #define REDUCE_FLS(a, b) \ 2864 do { \ 2865 if (a##_fls > b##_fls) { \ 2866 a >>= 1; \ 2867 a##_fls--; \ 2868 } else { \ 2869 b >>= 1; \ 2870 b##_fls--; \ 2871 } \ 2872 } while (0) 2873 2874 /* 2875 * Reduce accuracy until either term fits in a u64, then proceed with 2876 * the other, so that finally we can do a u64/u64 division. 2877 */ 2878 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 2879 REDUCE_FLS(nsec, frequency); 2880 REDUCE_FLS(sec, count); 2881 } 2882 2883 if (count_fls + sec_fls > 64) { 2884 divisor = nsec * frequency; 2885 2886 while (count_fls + sec_fls > 64) { 2887 REDUCE_FLS(count, sec); 2888 divisor >>= 1; 2889 } 2890 2891 dividend = count * sec; 2892 } else { 2893 dividend = count * sec; 2894 2895 while (nsec_fls + frequency_fls > 64) { 2896 REDUCE_FLS(nsec, frequency); 2897 dividend >>= 1; 2898 } 2899 2900 divisor = nsec * frequency; 2901 } 2902 2903 if (!divisor) 2904 return dividend; 2905 2906 return div64_u64(dividend, divisor); 2907 } 2908 2909 static DEFINE_PER_CPU(int, perf_throttled_count); 2910 static DEFINE_PER_CPU(u64, perf_throttled_seq); 2911 2912 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 2913 { 2914 struct hw_perf_event *hwc = &event->hw; 2915 s64 period, sample_period; 2916 s64 delta; 2917 2918 period = perf_calculate_period(event, nsec, count); 2919 2920 delta = (s64)(period - hwc->sample_period); 2921 delta = (delta + 7) / 8; /* low pass filter */ 2922 2923 sample_period = hwc->sample_period + delta; 2924 2925 if (!sample_period) 2926 sample_period = 1; 2927 2928 hwc->sample_period = sample_period; 2929 2930 if (local64_read(&hwc->period_left) > 8*sample_period) { 2931 if (disable) 2932 event->pmu->stop(event, PERF_EF_UPDATE); 2933 2934 local64_set(&hwc->period_left, 0); 2935 2936 if (disable) 2937 event->pmu->start(event, PERF_EF_RELOAD); 2938 } 2939 } 2940 2941 /* 2942 * combine freq adjustment with unthrottling to avoid two passes over the 2943 * events. At the same time, make sure, having freq events does not change 2944 * the rate of unthrottling as that would introduce bias. 2945 */ 2946 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx, 2947 int needs_unthr) 2948 { 2949 struct perf_event *event; 2950 struct hw_perf_event *hwc; 2951 u64 now, period = TICK_NSEC; 2952 s64 delta; 2953 2954 /* 2955 * only need to iterate over all events iff: 2956 * - context have events in frequency mode (needs freq adjust) 2957 * - there are events to unthrottle on this cpu 2958 */ 2959 if (!(ctx->nr_freq || needs_unthr)) 2960 return; 2961 2962 raw_spin_lock(&ctx->lock); 2963 perf_pmu_disable(ctx->pmu); 2964 2965 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 2966 if (event->state != PERF_EVENT_STATE_ACTIVE) 2967 continue; 2968 2969 if (!event_filter_match(event)) 2970 continue; 2971 2972 perf_pmu_disable(event->pmu); 2973 2974 hwc = &event->hw; 2975 2976 if (hwc->interrupts == MAX_INTERRUPTS) { 2977 hwc->interrupts = 0; 2978 perf_log_throttle(event, 1); 2979 event->pmu->start(event, 0); 2980 } 2981 2982 if (!event->attr.freq || !event->attr.sample_freq) 2983 goto next; 2984 2985 /* 2986 * stop the event and update event->count 2987 */ 2988 event->pmu->stop(event, PERF_EF_UPDATE); 2989 2990 now = local64_read(&event->count); 2991 delta = now - hwc->freq_count_stamp; 2992 hwc->freq_count_stamp = now; 2993 2994 /* 2995 * restart the event 2996 * reload only if value has changed 2997 * we have stopped the event so tell that 2998 * to perf_adjust_period() to avoid stopping it 2999 * twice. 3000 */ 3001 if (delta > 0) 3002 perf_adjust_period(event, period, delta, false); 3003 3004 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 3005 next: 3006 perf_pmu_enable(event->pmu); 3007 } 3008 3009 perf_pmu_enable(ctx->pmu); 3010 raw_spin_unlock(&ctx->lock); 3011 } 3012 3013 /* 3014 * Round-robin a context's events: 3015 */ 3016 static void rotate_ctx(struct perf_event_context *ctx) 3017 { 3018 /* 3019 * Rotate the first entry last of non-pinned groups. Rotation might be 3020 * disabled by the inheritance code. 3021 */ 3022 if (!ctx->rotate_disable) 3023 list_rotate_left(&ctx->flexible_groups); 3024 } 3025 3026 static int perf_rotate_context(struct perf_cpu_context *cpuctx) 3027 { 3028 struct perf_event_context *ctx = NULL; 3029 int rotate = 0; 3030 3031 if (cpuctx->ctx.nr_events) { 3032 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active) 3033 rotate = 1; 3034 } 3035 3036 ctx = cpuctx->task_ctx; 3037 if (ctx && ctx->nr_events) { 3038 if (ctx->nr_events != ctx->nr_active) 3039 rotate = 1; 3040 } 3041 3042 if (!rotate) 3043 goto done; 3044 3045 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3046 perf_pmu_disable(cpuctx->ctx.pmu); 3047 3048 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3049 if (ctx) 3050 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE); 3051 3052 rotate_ctx(&cpuctx->ctx); 3053 if (ctx) 3054 rotate_ctx(ctx); 3055 3056 perf_event_sched_in(cpuctx, ctx, current); 3057 3058 perf_pmu_enable(cpuctx->ctx.pmu); 3059 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3060 done: 3061 3062 return rotate; 3063 } 3064 3065 #ifdef CONFIG_NO_HZ_FULL 3066 bool perf_event_can_stop_tick(void) 3067 { 3068 if (atomic_read(&nr_freq_events) || 3069 __this_cpu_read(perf_throttled_count)) 3070 return false; 3071 else 3072 return true; 3073 } 3074 #endif 3075 3076 void perf_event_task_tick(void) 3077 { 3078 struct list_head *head = this_cpu_ptr(&active_ctx_list); 3079 struct perf_event_context *ctx, *tmp; 3080 int throttled; 3081 3082 WARN_ON(!irqs_disabled()); 3083 3084 __this_cpu_inc(perf_throttled_seq); 3085 throttled = __this_cpu_xchg(perf_throttled_count, 0); 3086 3087 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list) 3088 perf_adjust_freq_unthr_context(ctx, throttled); 3089 } 3090 3091 static int event_enable_on_exec(struct perf_event *event, 3092 struct perf_event_context *ctx) 3093 { 3094 if (!event->attr.enable_on_exec) 3095 return 0; 3096 3097 event->attr.enable_on_exec = 0; 3098 if (event->state >= PERF_EVENT_STATE_INACTIVE) 3099 return 0; 3100 3101 __perf_event_mark_enabled(event); 3102 3103 return 1; 3104 } 3105 3106 /* 3107 * Enable all of a task's events that have been marked enable-on-exec. 3108 * This expects task == current. 3109 */ 3110 static void perf_event_enable_on_exec(struct perf_event_context *ctx) 3111 { 3112 struct perf_event_context *clone_ctx = NULL; 3113 struct perf_event *event; 3114 unsigned long flags; 3115 int enabled = 0; 3116 int ret; 3117 3118 local_irq_save(flags); 3119 if (!ctx || !ctx->nr_events) 3120 goto out; 3121 3122 /* 3123 * We must ctxsw out cgroup events to avoid conflict 3124 * when invoking perf_task_event_sched_in() later on 3125 * in this function. Otherwise we end up trying to 3126 * ctxswin cgroup events which are already scheduled 3127 * in. 3128 */ 3129 perf_cgroup_sched_out(current, NULL); 3130 3131 raw_spin_lock(&ctx->lock); 3132 task_ctx_sched_out(ctx); 3133 3134 list_for_each_entry(event, &ctx->event_list, event_entry) { 3135 ret = event_enable_on_exec(event, ctx); 3136 if (ret) 3137 enabled = 1; 3138 } 3139 3140 /* 3141 * Unclone this context if we enabled any event. 3142 */ 3143 if (enabled) 3144 clone_ctx = unclone_ctx(ctx); 3145 3146 raw_spin_unlock(&ctx->lock); 3147 3148 /* 3149 * Also calls ctxswin for cgroup events, if any: 3150 */ 3151 perf_event_context_sched_in(ctx, ctx->task); 3152 out: 3153 local_irq_restore(flags); 3154 3155 if (clone_ctx) 3156 put_ctx(clone_ctx); 3157 } 3158 3159 void perf_event_exec(void) 3160 { 3161 struct perf_event_context *ctx; 3162 int ctxn; 3163 3164 rcu_read_lock(); 3165 for_each_task_context_nr(ctxn) { 3166 ctx = current->perf_event_ctxp[ctxn]; 3167 if (!ctx) 3168 continue; 3169 3170 perf_event_enable_on_exec(ctx); 3171 } 3172 rcu_read_unlock(); 3173 } 3174 3175 /* 3176 * Cross CPU call to read the hardware event 3177 */ 3178 static void __perf_event_read(void *info) 3179 { 3180 struct perf_event *event = info; 3181 struct perf_event_context *ctx = event->ctx; 3182 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 3183 3184 /* 3185 * If this is a task context, we need to check whether it is 3186 * the current task context of this cpu. If not it has been 3187 * scheduled out before the smp call arrived. In that case 3188 * event->count would have been updated to a recent sample 3189 * when the event was scheduled out. 3190 */ 3191 if (ctx->task && cpuctx->task_ctx != ctx) 3192 return; 3193 3194 raw_spin_lock(&ctx->lock); 3195 if (ctx->is_active) { 3196 update_context_time(ctx); 3197 update_cgrp_time_from_event(event); 3198 } 3199 update_event_times(event); 3200 if (event->state == PERF_EVENT_STATE_ACTIVE) 3201 event->pmu->read(event); 3202 raw_spin_unlock(&ctx->lock); 3203 } 3204 3205 static inline u64 perf_event_count(struct perf_event *event) 3206 { 3207 if (event->pmu->count) 3208 return event->pmu->count(event); 3209 3210 return __perf_event_count(event); 3211 } 3212 3213 static u64 perf_event_read(struct perf_event *event) 3214 { 3215 /* 3216 * If event is enabled and currently active on a CPU, update the 3217 * value in the event structure: 3218 */ 3219 if (event->state == PERF_EVENT_STATE_ACTIVE) { 3220 smp_call_function_single(event->oncpu, 3221 __perf_event_read, event, 1); 3222 } else if (event->state == PERF_EVENT_STATE_INACTIVE) { 3223 struct perf_event_context *ctx = event->ctx; 3224 unsigned long flags; 3225 3226 raw_spin_lock_irqsave(&ctx->lock, flags); 3227 /* 3228 * may read while context is not active 3229 * (e.g., thread is blocked), in that case 3230 * we cannot update context time 3231 */ 3232 if (ctx->is_active) { 3233 update_context_time(ctx); 3234 update_cgrp_time_from_event(event); 3235 } 3236 update_event_times(event); 3237 raw_spin_unlock_irqrestore(&ctx->lock, flags); 3238 } 3239 3240 return perf_event_count(event); 3241 } 3242 3243 /* 3244 * Initialize the perf_event context in a task_struct: 3245 */ 3246 static void __perf_event_init_context(struct perf_event_context *ctx) 3247 { 3248 raw_spin_lock_init(&ctx->lock); 3249 mutex_init(&ctx->mutex); 3250 INIT_LIST_HEAD(&ctx->active_ctx_list); 3251 INIT_LIST_HEAD(&ctx->pinned_groups); 3252 INIT_LIST_HEAD(&ctx->flexible_groups); 3253 INIT_LIST_HEAD(&ctx->event_list); 3254 atomic_set(&ctx->refcount, 1); 3255 INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work); 3256 } 3257 3258 static struct perf_event_context * 3259 alloc_perf_context(struct pmu *pmu, struct task_struct *task) 3260 { 3261 struct perf_event_context *ctx; 3262 3263 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 3264 if (!ctx) 3265 return NULL; 3266 3267 __perf_event_init_context(ctx); 3268 if (task) { 3269 ctx->task = task; 3270 get_task_struct(task); 3271 } 3272 ctx->pmu = pmu; 3273 3274 return ctx; 3275 } 3276 3277 static struct task_struct * 3278 find_lively_task_by_vpid(pid_t vpid) 3279 { 3280 struct task_struct *task; 3281 int err; 3282 3283 rcu_read_lock(); 3284 if (!vpid) 3285 task = current; 3286 else 3287 task = find_task_by_vpid(vpid); 3288 if (task) 3289 get_task_struct(task); 3290 rcu_read_unlock(); 3291 3292 if (!task) 3293 return ERR_PTR(-ESRCH); 3294 3295 /* Reuse ptrace permission checks for now. */ 3296 err = -EACCES; 3297 if (!ptrace_may_access(task, PTRACE_MODE_READ)) 3298 goto errout; 3299 3300 return task; 3301 errout: 3302 put_task_struct(task); 3303 return ERR_PTR(err); 3304 3305 } 3306 3307 /* 3308 * Returns a matching context with refcount and pincount. 3309 */ 3310 static struct perf_event_context * 3311 find_get_context(struct pmu *pmu, struct task_struct *task, 3312 struct perf_event *event) 3313 { 3314 struct perf_event_context *ctx, *clone_ctx = NULL; 3315 struct perf_cpu_context *cpuctx; 3316 void *task_ctx_data = NULL; 3317 unsigned long flags; 3318 int ctxn, err; 3319 int cpu = event->cpu; 3320 3321 if (!task) { 3322 /* Must be root to operate on a CPU event: */ 3323 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) 3324 return ERR_PTR(-EACCES); 3325 3326 /* 3327 * We could be clever and allow to attach a event to an 3328 * offline CPU and activate it when the CPU comes up, but 3329 * that's for later. 3330 */ 3331 if (!cpu_online(cpu)) 3332 return ERR_PTR(-ENODEV); 3333 3334 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 3335 ctx = &cpuctx->ctx; 3336 get_ctx(ctx); 3337 ++ctx->pin_count; 3338 3339 return ctx; 3340 } 3341 3342 err = -EINVAL; 3343 ctxn = pmu->task_ctx_nr; 3344 if (ctxn < 0) 3345 goto errout; 3346 3347 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 3348 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL); 3349 if (!task_ctx_data) { 3350 err = -ENOMEM; 3351 goto errout; 3352 } 3353 } 3354 3355 retry: 3356 ctx = perf_lock_task_context(task, ctxn, &flags); 3357 if (ctx) { 3358 clone_ctx = unclone_ctx(ctx); 3359 ++ctx->pin_count; 3360 3361 if (task_ctx_data && !ctx->task_ctx_data) { 3362 ctx->task_ctx_data = task_ctx_data; 3363 task_ctx_data = NULL; 3364 } 3365 raw_spin_unlock_irqrestore(&ctx->lock, flags); 3366 3367 if (clone_ctx) 3368 put_ctx(clone_ctx); 3369 } else { 3370 ctx = alloc_perf_context(pmu, task); 3371 err = -ENOMEM; 3372 if (!ctx) 3373 goto errout; 3374 3375 if (task_ctx_data) { 3376 ctx->task_ctx_data = task_ctx_data; 3377 task_ctx_data = NULL; 3378 } 3379 3380 err = 0; 3381 mutex_lock(&task->perf_event_mutex); 3382 /* 3383 * If it has already passed perf_event_exit_task(). 3384 * we must see PF_EXITING, it takes this mutex too. 3385 */ 3386 if (task->flags & PF_EXITING) 3387 err = -ESRCH; 3388 else if (task->perf_event_ctxp[ctxn]) 3389 err = -EAGAIN; 3390 else { 3391 get_ctx(ctx); 3392 ++ctx->pin_count; 3393 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); 3394 } 3395 mutex_unlock(&task->perf_event_mutex); 3396 3397 if (unlikely(err)) { 3398 put_ctx(ctx); 3399 3400 if (err == -EAGAIN) 3401 goto retry; 3402 goto errout; 3403 } 3404 } 3405 3406 kfree(task_ctx_data); 3407 return ctx; 3408 3409 errout: 3410 kfree(task_ctx_data); 3411 return ERR_PTR(err); 3412 } 3413 3414 static void perf_event_free_filter(struct perf_event *event); 3415 static void perf_event_free_bpf_prog(struct perf_event *event); 3416 3417 static void free_event_rcu(struct rcu_head *head) 3418 { 3419 struct perf_event *event; 3420 3421 event = container_of(head, struct perf_event, rcu_head); 3422 if (event->ns) 3423 put_pid_ns(event->ns); 3424 perf_event_free_filter(event); 3425 perf_event_free_bpf_prog(event); 3426 kfree(event); 3427 } 3428 3429 static void ring_buffer_attach(struct perf_event *event, 3430 struct ring_buffer *rb); 3431 3432 static void unaccount_event_cpu(struct perf_event *event, int cpu) 3433 { 3434 if (event->parent) 3435 return; 3436 3437 if (is_cgroup_event(event)) 3438 atomic_dec(&per_cpu(perf_cgroup_events, cpu)); 3439 } 3440 3441 static void unaccount_event(struct perf_event *event) 3442 { 3443 if (event->parent) 3444 return; 3445 3446 if (event->attach_state & PERF_ATTACH_TASK) 3447 static_key_slow_dec_deferred(&perf_sched_events); 3448 if (event->attr.mmap || event->attr.mmap_data) 3449 atomic_dec(&nr_mmap_events); 3450 if (event->attr.comm) 3451 atomic_dec(&nr_comm_events); 3452 if (event->attr.task) 3453 atomic_dec(&nr_task_events); 3454 if (event->attr.freq) 3455 atomic_dec(&nr_freq_events); 3456 if (is_cgroup_event(event)) 3457 static_key_slow_dec_deferred(&perf_sched_events); 3458 if (has_branch_stack(event)) 3459 static_key_slow_dec_deferred(&perf_sched_events); 3460 3461 unaccount_event_cpu(event, event->cpu); 3462 } 3463 3464 /* 3465 * The following implement mutual exclusion of events on "exclusive" pmus 3466 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 3467 * at a time, so we disallow creating events that might conflict, namely: 3468 * 3469 * 1) cpu-wide events in the presence of per-task events, 3470 * 2) per-task events in the presence of cpu-wide events, 3471 * 3) two matching events on the same context. 3472 * 3473 * The former two cases are handled in the allocation path (perf_event_alloc(), 3474 * __free_event()), the latter -- before the first perf_install_in_context(). 3475 */ 3476 static int exclusive_event_init(struct perf_event *event) 3477 { 3478 struct pmu *pmu = event->pmu; 3479 3480 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 3481 return 0; 3482 3483 /* 3484 * Prevent co-existence of per-task and cpu-wide events on the 3485 * same exclusive pmu. 3486 * 3487 * Negative pmu::exclusive_cnt means there are cpu-wide 3488 * events on this "exclusive" pmu, positive means there are 3489 * per-task events. 3490 * 3491 * Since this is called in perf_event_alloc() path, event::ctx 3492 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 3493 * to mean "per-task event", because unlike other attach states it 3494 * never gets cleared. 3495 */ 3496 if (event->attach_state & PERF_ATTACH_TASK) { 3497 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 3498 return -EBUSY; 3499 } else { 3500 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 3501 return -EBUSY; 3502 } 3503 3504 return 0; 3505 } 3506 3507 static void exclusive_event_destroy(struct perf_event *event) 3508 { 3509 struct pmu *pmu = event->pmu; 3510 3511 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 3512 return; 3513 3514 /* see comment in exclusive_event_init() */ 3515 if (event->attach_state & PERF_ATTACH_TASK) 3516 atomic_dec(&pmu->exclusive_cnt); 3517 else 3518 atomic_inc(&pmu->exclusive_cnt); 3519 } 3520 3521 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 3522 { 3523 if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && 3524 (e1->cpu == e2->cpu || 3525 e1->cpu == -1 || 3526 e2->cpu == -1)) 3527 return true; 3528 return false; 3529 } 3530 3531 /* Called under the same ctx::mutex as perf_install_in_context() */ 3532 static bool exclusive_event_installable(struct perf_event *event, 3533 struct perf_event_context *ctx) 3534 { 3535 struct perf_event *iter_event; 3536 struct pmu *pmu = event->pmu; 3537 3538 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 3539 return true; 3540 3541 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 3542 if (exclusive_event_match(iter_event, event)) 3543 return false; 3544 } 3545 3546 return true; 3547 } 3548 3549 static void __free_event(struct perf_event *event) 3550 { 3551 if (!event->parent) { 3552 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 3553 put_callchain_buffers(); 3554 } 3555 3556 if (event->destroy) 3557 event->destroy(event); 3558 3559 if (event->ctx) 3560 put_ctx(event->ctx); 3561 3562 if (event->pmu) { 3563 exclusive_event_destroy(event); 3564 module_put(event->pmu->module); 3565 } 3566 3567 call_rcu(&event->rcu_head, free_event_rcu); 3568 } 3569 3570 static void _free_event(struct perf_event *event) 3571 { 3572 irq_work_sync(&event->pending); 3573 3574 unaccount_event(event); 3575 3576 if (event->rb) { 3577 /* 3578 * Can happen when we close an event with re-directed output. 3579 * 3580 * Since we have a 0 refcount, perf_mmap_close() will skip 3581 * over us; possibly making our ring_buffer_put() the last. 3582 */ 3583 mutex_lock(&event->mmap_mutex); 3584 ring_buffer_attach(event, NULL); 3585 mutex_unlock(&event->mmap_mutex); 3586 } 3587 3588 if (is_cgroup_event(event)) 3589 perf_detach_cgroup(event); 3590 3591 __free_event(event); 3592 } 3593 3594 /* 3595 * Used to free events which have a known refcount of 1, such as in error paths 3596 * where the event isn't exposed yet and inherited events. 3597 */ 3598 static void free_event(struct perf_event *event) 3599 { 3600 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 3601 "unexpected event refcount: %ld; ptr=%p\n", 3602 atomic_long_read(&event->refcount), event)) { 3603 /* leak to avoid use-after-free */ 3604 return; 3605 } 3606 3607 _free_event(event); 3608 } 3609 3610 /* 3611 * Remove user event from the owner task. 3612 */ 3613 static void perf_remove_from_owner(struct perf_event *event) 3614 { 3615 struct task_struct *owner; 3616 3617 rcu_read_lock(); 3618 owner = ACCESS_ONCE(event->owner); 3619 /* 3620 * Matches the smp_wmb() in perf_event_exit_task(). If we observe 3621 * !owner it means the list deletion is complete and we can indeed 3622 * free this event, otherwise we need to serialize on 3623 * owner->perf_event_mutex. 3624 */ 3625 smp_read_barrier_depends(); 3626 if (owner) { 3627 /* 3628 * Since delayed_put_task_struct() also drops the last 3629 * task reference we can safely take a new reference 3630 * while holding the rcu_read_lock(). 3631 */ 3632 get_task_struct(owner); 3633 } 3634 rcu_read_unlock(); 3635 3636 if (owner) { 3637 /* 3638 * If we're here through perf_event_exit_task() we're already 3639 * holding ctx->mutex which would be an inversion wrt. the 3640 * normal lock order. 3641 * 3642 * However we can safely take this lock because its the child 3643 * ctx->mutex. 3644 */ 3645 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 3646 3647 /* 3648 * We have to re-check the event->owner field, if it is cleared 3649 * we raced with perf_event_exit_task(), acquiring the mutex 3650 * ensured they're done, and we can proceed with freeing the 3651 * event. 3652 */ 3653 if (event->owner) 3654 list_del_init(&event->owner_entry); 3655 mutex_unlock(&owner->perf_event_mutex); 3656 put_task_struct(owner); 3657 } 3658 } 3659 3660 /* 3661 * Called when the last reference to the file is gone. 3662 */ 3663 static void put_event(struct perf_event *event) 3664 { 3665 struct perf_event_context *ctx; 3666 3667 if (!atomic_long_dec_and_test(&event->refcount)) 3668 return; 3669 3670 if (!is_kernel_event(event)) 3671 perf_remove_from_owner(event); 3672 3673 /* 3674 * There are two ways this annotation is useful: 3675 * 3676 * 1) there is a lock recursion from perf_event_exit_task 3677 * see the comment there. 3678 * 3679 * 2) there is a lock-inversion with mmap_sem through 3680 * perf_event_read_group(), which takes faults while 3681 * holding ctx->mutex, however this is called after 3682 * the last filedesc died, so there is no possibility 3683 * to trigger the AB-BA case. 3684 */ 3685 ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING); 3686 WARN_ON_ONCE(ctx->parent_ctx); 3687 perf_remove_from_context(event, true); 3688 perf_event_ctx_unlock(event, ctx); 3689 3690 _free_event(event); 3691 } 3692 3693 int perf_event_release_kernel(struct perf_event *event) 3694 { 3695 put_event(event); 3696 return 0; 3697 } 3698 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 3699 3700 static int perf_release(struct inode *inode, struct file *file) 3701 { 3702 put_event(file->private_data); 3703 return 0; 3704 } 3705 3706 /* 3707 * Remove all orphanes events from the context. 3708 */ 3709 static void orphans_remove_work(struct work_struct *work) 3710 { 3711 struct perf_event_context *ctx; 3712 struct perf_event *event, *tmp; 3713 3714 ctx = container_of(work, struct perf_event_context, 3715 orphans_remove.work); 3716 3717 mutex_lock(&ctx->mutex); 3718 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) { 3719 struct perf_event *parent_event = event->parent; 3720 3721 if (!is_orphaned_child(event)) 3722 continue; 3723 3724 perf_remove_from_context(event, true); 3725 3726 mutex_lock(&parent_event->child_mutex); 3727 list_del_init(&event->child_list); 3728 mutex_unlock(&parent_event->child_mutex); 3729 3730 free_event(event); 3731 put_event(parent_event); 3732 } 3733 3734 raw_spin_lock_irq(&ctx->lock); 3735 ctx->orphans_remove_sched = false; 3736 raw_spin_unlock_irq(&ctx->lock); 3737 mutex_unlock(&ctx->mutex); 3738 3739 put_ctx(ctx); 3740 } 3741 3742 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 3743 { 3744 struct perf_event *child; 3745 u64 total = 0; 3746 3747 *enabled = 0; 3748 *running = 0; 3749 3750 mutex_lock(&event->child_mutex); 3751 total += perf_event_read(event); 3752 *enabled += event->total_time_enabled + 3753 atomic64_read(&event->child_total_time_enabled); 3754 *running += event->total_time_running + 3755 atomic64_read(&event->child_total_time_running); 3756 3757 list_for_each_entry(child, &event->child_list, child_list) { 3758 total += perf_event_read(child); 3759 *enabled += child->total_time_enabled; 3760 *running += child->total_time_running; 3761 } 3762 mutex_unlock(&event->child_mutex); 3763 3764 return total; 3765 } 3766 EXPORT_SYMBOL_GPL(perf_event_read_value); 3767 3768 static int perf_event_read_group(struct perf_event *event, 3769 u64 read_format, char __user *buf) 3770 { 3771 struct perf_event *leader = event->group_leader, *sub; 3772 struct perf_event_context *ctx = leader->ctx; 3773 int n = 0, size = 0, ret; 3774 u64 count, enabled, running; 3775 u64 values[5]; 3776 3777 lockdep_assert_held(&ctx->mutex); 3778 3779 count = perf_event_read_value(leader, &enabled, &running); 3780 3781 values[n++] = 1 + leader->nr_siblings; 3782 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 3783 values[n++] = enabled; 3784 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 3785 values[n++] = running; 3786 values[n++] = count; 3787 if (read_format & PERF_FORMAT_ID) 3788 values[n++] = primary_event_id(leader); 3789 3790 size = n * sizeof(u64); 3791 3792 if (copy_to_user(buf, values, size)) 3793 return -EFAULT; 3794 3795 ret = size; 3796 3797 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 3798 n = 0; 3799 3800 values[n++] = perf_event_read_value(sub, &enabled, &running); 3801 if (read_format & PERF_FORMAT_ID) 3802 values[n++] = primary_event_id(sub); 3803 3804 size = n * sizeof(u64); 3805 3806 if (copy_to_user(buf + ret, values, size)) { 3807 return -EFAULT; 3808 } 3809 3810 ret += size; 3811 } 3812 3813 return ret; 3814 } 3815 3816 static int perf_event_read_one(struct perf_event *event, 3817 u64 read_format, char __user *buf) 3818 { 3819 u64 enabled, running; 3820 u64 values[4]; 3821 int n = 0; 3822 3823 values[n++] = perf_event_read_value(event, &enabled, &running); 3824 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 3825 values[n++] = enabled; 3826 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 3827 values[n++] = running; 3828 if (read_format & PERF_FORMAT_ID) 3829 values[n++] = primary_event_id(event); 3830 3831 if (copy_to_user(buf, values, n * sizeof(u64))) 3832 return -EFAULT; 3833 3834 return n * sizeof(u64); 3835 } 3836 3837 static bool is_event_hup(struct perf_event *event) 3838 { 3839 bool no_children; 3840 3841 if (event->state != PERF_EVENT_STATE_EXIT) 3842 return false; 3843 3844 mutex_lock(&event->child_mutex); 3845 no_children = list_empty(&event->child_list); 3846 mutex_unlock(&event->child_mutex); 3847 return no_children; 3848 } 3849 3850 /* 3851 * Read the performance event - simple non blocking version for now 3852 */ 3853 static ssize_t 3854 perf_read_hw(struct perf_event *event, char __user *buf, size_t count) 3855 { 3856 u64 read_format = event->attr.read_format; 3857 int ret; 3858 3859 /* 3860 * Return end-of-file for a read on a event that is in 3861 * error state (i.e. because it was pinned but it couldn't be 3862 * scheduled on to the CPU at some point). 3863 */ 3864 if (event->state == PERF_EVENT_STATE_ERROR) 3865 return 0; 3866 3867 if (count < event->read_size) 3868 return -ENOSPC; 3869 3870 WARN_ON_ONCE(event->ctx->parent_ctx); 3871 if (read_format & PERF_FORMAT_GROUP) 3872 ret = perf_event_read_group(event, read_format, buf); 3873 else 3874 ret = perf_event_read_one(event, read_format, buf); 3875 3876 return ret; 3877 } 3878 3879 static ssize_t 3880 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 3881 { 3882 struct perf_event *event = file->private_data; 3883 struct perf_event_context *ctx; 3884 int ret; 3885 3886 ctx = perf_event_ctx_lock(event); 3887 ret = perf_read_hw(event, buf, count); 3888 perf_event_ctx_unlock(event, ctx); 3889 3890 return ret; 3891 } 3892 3893 static unsigned int perf_poll(struct file *file, poll_table *wait) 3894 { 3895 struct perf_event *event = file->private_data; 3896 struct ring_buffer *rb; 3897 unsigned int events = POLLHUP; 3898 3899 poll_wait(file, &event->waitq, wait); 3900 3901 if (is_event_hup(event)) 3902 return events; 3903 3904 /* 3905 * Pin the event->rb by taking event->mmap_mutex; otherwise 3906 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 3907 */ 3908 mutex_lock(&event->mmap_mutex); 3909 rb = event->rb; 3910 if (rb) 3911 events = atomic_xchg(&rb->poll, 0); 3912 mutex_unlock(&event->mmap_mutex); 3913 return events; 3914 } 3915 3916 static void _perf_event_reset(struct perf_event *event) 3917 { 3918 (void)perf_event_read(event); 3919 local64_set(&event->count, 0); 3920 perf_event_update_userpage(event); 3921 } 3922 3923 /* 3924 * Holding the top-level event's child_mutex means that any 3925 * descendant process that has inherited this event will block 3926 * in sync_child_event if it goes to exit, thus satisfying the 3927 * task existence requirements of perf_event_enable/disable. 3928 */ 3929 static void perf_event_for_each_child(struct perf_event *event, 3930 void (*func)(struct perf_event *)) 3931 { 3932 struct perf_event *child; 3933 3934 WARN_ON_ONCE(event->ctx->parent_ctx); 3935 3936 mutex_lock(&event->child_mutex); 3937 func(event); 3938 list_for_each_entry(child, &event->child_list, child_list) 3939 func(child); 3940 mutex_unlock(&event->child_mutex); 3941 } 3942 3943 static void perf_event_for_each(struct perf_event *event, 3944 void (*func)(struct perf_event *)) 3945 { 3946 struct perf_event_context *ctx = event->ctx; 3947 struct perf_event *sibling; 3948 3949 lockdep_assert_held(&ctx->mutex); 3950 3951 event = event->group_leader; 3952 3953 perf_event_for_each_child(event, func); 3954 list_for_each_entry(sibling, &event->sibling_list, group_entry) 3955 perf_event_for_each_child(sibling, func); 3956 } 3957 3958 static int perf_event_period(struct perf_event *event, u64 __user *arg) 3959 { 3960 struct perf_event_context *ctx = event->ctx; 3961 int ret = 0, active; 3962 u64 value; 3963 3964 if (!is_sampling_event(event)) 3965 return -EINVAL; 3966 3967 if (copy_from_user(&value, arg, sizeof(value))) 3968 return -EFAULT; 3969 3970 if (!value) 3971 return -EINVAL; 3972 3973 raw_spin_lock_irq(&ctx->lock); 3974 if (event->attr.freq) { 3975 if (value > sysctl_perf_event_sample_rate) { 3976 ret = -EINVAL; 3977 goto unlock; 3978 } 3979 3980 event->attr.sample_freq = value; 3981 } else { 3982 event->attr.sample_period = value; 3983 event->hw.sample_period = value; 3984 } 3985 3986 active = (event->state == PERF_EVENT_STATE_ACTIVE); 3987 if (active) { 3988 perf_pmu_disable(ctx->pmu); 3989 event->pmu->stop(event, PERF_EF_UPDATE); 3990 } 3991 3992 local64_set(&event->hw.period_left, 0); 3993 3994 if (active) { 3995 event->pmu->start(event, PERF_EF_RELOAD); 3996 perf_pmu_enable(ctx->pmu); 3997 } 3998 3999 unlock: 4000 raw_spin_unlock_irq(&ctx->lock); 4001 4002 return ret; 4003 } 4004 4005 static const struct file_operations perf_fops; 4006 4007 static inline int perf_fget_light(int fd, struct fd *p) 4008 { 4009 struct fd f = fdget(fd); 4010 if (!f.file) 4011 return -EBADF; 4012 4013 if (f.file->f_op != &perf_fops) { 4014 fdput(f); 4015 return -EBADF; 4016 } 4017 *p = f; 4018 return 0; 4019 } 4020 4021 static int perf_event_set_output(struct perf_event *event, 4022 struct perf_event *output_event); 4023 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 4024 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd); 4025 4026 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 4027 { 4028 void (*func)(struct perf_event *); 4029 u32 flags = arg; 4030 4031 switch (cmd) { 4032 case PERF_EVENT_IOC_ENABLE: 4033 func = _perf_event_enable; 4034 break; 4035 case PERF_EVENT_IOC_DISABLE: 4036 func = _perf_event_disable; 4037 break; 4038 case PERF_EVENT_IOC_RESET: 4039 func = _perf_event_reset; 4040 break; 4041 4042 case PERF_EVENT_IOC_REFRESH: 4043 return _perf_event_refresh(event, arg); 4044 4045 case PERF_EVENT_IOC_PERIOD: 4046 return perf_event_period(event, (u64 __user *)arg); 4047 4048 case PERF_EVENT_IOC_ID: 4049 { 4050 u64 id = primary_event_id(event); 4051 4052 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 4053 return -EFAULT; 4054 return 0; 4055 } 4056 4057 case PERF_EVENT_IOC_SET_OUTPUT: 4058 { 4059 int ret; 4060 if (arg != -1) { 4061 struct perf_event *output_event; 4062 struct fd output; 4063 ret = perf_fget_light(arg, &output); 4064 if (ret) 4065 return ret; 4066 output_event = output.file->private_data; 4067 ret = perf_event_set_output(event, output_event); 4068 fdput(output); 4069 } else { 4070 ret = perf_event_set_output(event, NULL); 4071 } 4072 return ret; 4073 } 4074 4075 case PERF_EVENT_IOC_SET_FILTER: 4076 return perf_event_set_filter(event, (void __user *)arg); 4077 4078 case PERF_EVENT_IOC_SET_BPF: 4079 return perf_event_set_bpf_prog(event, arg); 4080 4081 default: 4082 return -ENOTTY; 4083 } 4084 4085 if (flags & PERF_IOC_FLAG_GROUP) 4086 perf_event_for_each(event, func); 4087 else 4088 perf_event_for_each_child(event, func); 4089 4090 return 0; 4091 } 4092 4093 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 4094 { 4095 struct perf_event *event = file->private_data; 4096 struct perf_event_context *ctx; 4097 long ret; 4098 4099 ctx = perf_event_ctx_lock(event); 4100 ret = _perf_ioctl(event, cmd, arg); 4101 perf_event_ctx_unlock(event, ctx); 4102 4103 return ret; 4104 } 4105 4106 #ifdef CONFIG_COMPAT 4107 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 4108 unsigned long arg) 4109 { 4110 switch (_IOC_NR(cmd)) { 4111 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 4112 case _IOC_NR(PERF_EVENT_IOC_ID): 4113 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 4114 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 4115 cmd &= ~IOCSIZE_MASK; 4116 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 4117 } 4118 break; 4119 } 4120 return perf_ioctl(file, cmd, arg); 4121 } 4122 #else 4123 # define perf_compat_ioctl NULL 4124 #endif 4125 4126 int perf_event_task_enable(void) 4127 { 4128 struct perf_event_context *ctx; 4129 struct perf_event *event; 4130 4131 mutex_lock(¤t->perf_event_mutex); 4132 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 4133 ctx = perf_event_ctx_lock(event); 4134 perf_event_for_each_child(event, _perf_event_enable); 4135 perf_event_ctx_unlock(event, ctx); 4136 } 4137 mutex_unlock(¤t->perf_event_mutex); 4138 4139 return 0; 4140 } 4141 4142 int perf_event_task_disable(void) 4143 { 4144 struct perf_event_context *ctx; 4145 struct perf_event *event; 4146 4147 mutex_lock(¤t->perf_event_mutex); 4148 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 4149 ctx = perf_event_ctx_lock(event); 4150 perf_event_for_each_child(event, _perf_event_disable); 4151 perf_event_ctx_unlock(event, ctx); 4152 } 4153 mutex_unlock(¤t->perf_event_mutex); 4154 4155 return 0; 4156 } 4157 4158 static int perf_event_index(struct perf_event *event) 4159 { 4160 if (event->hw.state & PERF_HES_STOPPED) 4161 return 0; 4162 4163 if (event->state != PERF_EVENT_STATE_ACTIVE) 4164 return 0; 4165 4166 return event->pmu->event_idx(event); 4167 } 4168 4169 static void calc_timer_values(struct perf_event *event, 4170 u64 *now, 4171 u64 *enabled, 4172 u64 *running) 4173 { 4174 u64 ctx_time; 4175 4176 *now = perf_clock(); 4177 ctx_time = event->shadow_ctx_time + *now; 4178 *enabled = ctx_time - event->tstamp_enabled; 4179 *running = ctx_time - event->tstamp_running; 4180 } 4181 4182 static void perf_event_init_userpage(struct perf_event *event) 4183 { 4184 struct perf_event_mmap_page *userpg; 4185 struct ring_buffer *rb; 4186 4187 rcu_read_lock(); 4188 rb = rcu_dereference(event->rb); 4189 if (!rb) 4190 goto unlock; 4191 4192 userpg = rb->user_page; 4193 4194 /* Allow new userspace to detect that bit 0 is deprecated */ 4195 userpg->cap_bit0_is_deprecated = 1; 4196 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 4197 userpg->data_offset = PAGE_SIZE; 4198 userpg->data_size = perf_data_size(rb); 4199 4200 unlock: 4201 rcu_read_unlock(); 4202 } 4203 4204 void __weak arch_perf_update_userpage( 4205 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 4206 { 4207 } 4208 4209 /* 4210 * Callers need to ensure there can be no nesting of this function, otherwise 4211 * the seqlock logic goes bad. We can not serialize this because the arch 4212 * code calls this from NMI context. 4213 */ 4214 void perf_event_update_userpage(struct perf_event *event) 4215 { 4216 struct perf_event_mmap_page *userpg; 4217 struct ring_buffer *rb; 4218 u64 enabled, running, now; 4219 4220 rcu_read_lock(); 4221 rb = rcu_dereference(event->rb); 4222 if (!rb) 4223 goto unlock; 4224 4225 /* 4226 * compute total_time_enabled, total_time_running 4227 * based on snapshot values taken when the event 4228 * was last scheduled in. 4229 * 4230 * we cannot simply called update_context_time() 4231 * because of locking issue as we can be called in 4232 * NMI context 4233 */ 4234 calc_timer_values(event, &now, &enabled, &running); 4235 4236 userpg = rb->user_page; 4237 /* 4238 * Disable preemption so as to not let the corresponding user-space 4239 * spin too long if we get preempted. 4240 */ 4241 preempt_disable(); 4242 ++userpg->lock; 4243 barrier(); 4244 userpg->index = perf_event_index(event); 4245 userpg->offset = perf_event_count(event); 4246 if (userpg->index) 4247 userpg->offset -= local64_read(&event->hw.prev_count); 4248 4249 userpg->time_enabled = enabled + 4250 atomic64_read(&event->child_total_time_enabled); 4251 4252 userpg->time_running = running + 4253 atomic64_read(&event->child_total_time_running); 4254 4255 arch_perf_update_userpage(event, userpg, now); 4256 4257 barrier(); 4258 ++userpg->lock; 4259 preempt_enable(); 4260 unlock: 4261 rcu_read_unlock(); 4262 } 4263 4264 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 4265 { 4266 struct perf_event *event = vma->vm_file->private_data; 4267 struct ring_buffer *rb; 4268 int ret = VM_FAULT_SIGBUS; 4269 4270 if (vmf->flags & FAULT_FLAG_MKWRITE) { 4271 if (vmf->pgoff == 0) 4272 ret = 0; 4273 return ret; 4274 } 4275 4276 rcu_read_lock(); 4277 rb = rcu_dereference(event->rb); 4278 if (!rb) 4279 goto unlock; 4280 4281 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 4282 goto unlock; 4283 4284 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 4285 if (!vmf->page) 4286 goto unlock; 4287 4288 get_page(vmf->page); 4289 vmf->page->mapping = vma->vm_file->f_mapping; 4290 vmf->page->index = vmf->pgoff; 4291 4292 ret = 0; 4293 unlock: 4294 rcu_read_unlock(); 4295 4296 return ret; 4297 } 4298 4299 static void ring_buffer_attach(struct perf_event *event, 4300 struct ring_buffer *rb) 4301 { 4302 struct ring_buffer *old_rb = NULL; 4303 unsigned long flags; 4304 4305 if (event->rb) { 4306 /* 4307 * Should be impossible, we set this when removing 4308 * event->rb_entry and wait/clear when adding event->rb_entry. 4309 */ 4310 WARN_ON_ONCE(event->rcu_pending); 4311 4312 old_rb = event->rb; 4313 event->rcu_batches = get_state_synchronize_rcu(); 4314 event->rcu_pending = 1; 4315 4316 spin_lock_irqsave(&old_rb->event_lock, flags); 4317 list_del_rcu(&event->rb_entry); 4318 spin_unlock_irqrestore(&old_rb->event_lock, flags); 4319 } 4320 4321 if (event->rcu_pending && rb) { 4322 cond_synchronize_rcu(event->rcu_batches); 4323 event->rcu_pending = 0; 4324 } 4325 4326 if (rb) { 4327 spin_lock_irqsave(&rb->event_lock, flags); 4328 list_add_rcu(&event->rb_entry, &rb->event_list); 4329 spin_unlock_irqrestore(&rb->event_lock, flags); 4330 } 4331 4332 rcu_assign_pointer(event->rb, rb); 4333 4334 if (old_rb) { 4335 ring_buffer_put(old_rb); 4336 /* 4337 * Since we detached before setting the new rb, so that we 4338 * could attach the new rb, we could have missed a wakeup. 4339 * Provide it now. 4340 */ 4341 wake_up_all(&event->waitq); 4342 } 4343 } 4344 4345 static void ring_buffer_wakeup(struct perf_event *event) 4346 { 4347 struct ring_buffer *rb; 4348 4349 rcu_read_lock(); 4350 rb = rcu_dereference(event->rb); 4351 if (rb) { 4352 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 4353 wake_up_all(&event->waitq); 4354 } 4355 rcu_read_unlock(); 4356 } 4357 4358 static void rb_free_rcu(struct rcu_head *rcu_head) 4359 { 4360 struct ring_buffer *rb; 4361 4362 rb = container_of(rcu_head, struct ring_buffer, rcu_head); 4363 rb_free(rb); 4364 } 4365 4366 struct ring_buffer *ring_buffer_get(struct perf_event *event) 4367 { 4368 struct ring_buffer *rb; 4369 4370 rcu_read_lock(); 4371 rb = rcu_dereference(event->rb); 4372 if (rb) { 4373 if (!atomic_inc_not_zero(&rb->refcount)) 4374 rb = NULL; 4375 } 4376 rcu_read_unlock(); 4377 4378 return rb; 4379 } 4380 4381 void ring_buffer_put(struct ring_buffer *rb) 4382 { 4383 if (!atomic_dec_and_test(&rb->refcount)) 4384 return; 4385 4386 WARN_ON_ONCE(!list_empty(&rb->event_list)); 4387 4388 call_rcu(&rb->rcu_head, rb_free_rcu); 4389 } 4390 4391 static void perf_mmap_open(struct vm_area_struct *vma) 4392 { 4393 struct perf_event *event = vma->vm_file->private_data; 4394 4395 atomic_inc(&event->mmap_count); 4396 atomic_inc(&event->rb->mmap_count); 4397 4398 if (vma->vm_pgoff) 4399 atomic_inc(&event->rb->aux_mmap_count); 4400 4401 if (event->pmu->event_mapped) 4402 event->pmu->event_mapped(event); 4403 } 4404 4405 /* 4406 * A buffer can be mmap()ed multiple times; either directly through the same 4407 * event, or through other events by use of perf_event_set_output(). 4408 * 4409 * In order to undo the VM accounting done by perf_mmap() we need to destroy 4410 * the buffer here, where we still have a VM context. This means we need 4411 * to detach all events redirecting to us. 4412 */ 4413 static void perf_mmap_close(struct vm_area_struct *vma) 4414 { 4415 struct perf_event *event = vma->vm_file->private_data; 4416 4417 struct ring_buffer *rb = ring_buffer_get(event); 4418 struct user_struct *mmap_user = rb->mmap_user; 4419 int mmap_locked = rb->mmap_locked; 4420 unsigned long size = perf_data_size(rb); 4421 4422 if (event->pmu->event_unmapped) 4423 event->pmu->event_unmapped(event); 4424 4425 /* 4426 * rb->aux_mmap_count will always drop before rb->mmap_count and 4427 * event->mmap_count, so it is ok to use event->mmap_mutex to 4428 * serialize with perf_mmap here. 4429 */ 4430 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 4431 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) { 4432 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm); 4433 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked; 4434 4435 rb_free_aux(rb); 4436 mutex_unlock(&event->mmap_mutex); 4437 } 4438 4439 atomic_dec(&rb->mmap_count); 4440 4441 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 4442 goto out_put; 4443 4444 ring_buffer_attach(event, NULL); 4445 mutex_unlock(&event->mmap_mutex); 4446 4447 /* If there's still other mmap()s of this buffer, we're done. */ 4448 if (atomic_read(&rb->mmap_count)) 4449 goto out_put; 4450 4451 /* 4452 * No other mmap()s, detach from all other events that might redirect 4453 * into the now unreachable buffer. Somewhat complicated by the 4454 * fact that rb::event_lock otherwise nests inside mmap_mutex. 4455 */ 4456 again: 4457 rcu_read_lock(); 4458 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 4459 if (!atomic_long_inc_not_zero(&event->refcount)) { 4460 /* 4461 * This event is en-route to free_event() which will 4462 * detach it and remove it from the list. 4463 */ 4464 continue; 4465 } 4466 rcu_read_unlock(); 4467 4468 mutex_lock(&event->mmap_mutex); 4469 /* 4470 * Check we didn't race with perf_event_set_output() which can 4471 * swizzle the rb from under us while we were waiting to 4472 * acquire mmap_mutex. 4473 * 4474 * If we find a different rb; ignore this event, a next 4475 * iteration will no longer find it on the list. We have to 4476 * still restart the iteration to make sure we're not now 4477 * iterating the wrong list. 4478 */ 4479 if (event->rb == rb) 4480 ring_buffer_attach(event, NULL); 4481 4482 mutex_unlock(&event->mmap_mutex); 4483 put_event(event); 4484 4485 /* 4486 * Restart the iteration; either we're on the wrong list or 4487 * destroyed its integrity by doing a deletion. 4488 */ 4489 goto again; 4490 } 4491 rcu_read_unlock(); 4492 4493 /* 4494 * It could be there's still a few 0-ref events on the list; they'll 4495 * get cleaned up by free_event() -- they'll also still have their 4496 * ref on the rb and will free it whenever they are done with it. 4497 * 4498 * Aside from that, this buffer is 'fully' detached and unmapped, 4499 * undo the VM accounting. 4500 */ 4501 4502 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm); 4503 vma->vm_mm->pinned_vm -= mmap_locked; 4504 free_uid(mmap_user); 4505 4506 out_put: 4507 ring_buffer_put(rb); /* could be last */ 4508 } 4509 4510 static const struct vm_operations_struct perf_mmap_vmops = { 4511 .open = perf_mmap_open, 4512 .close = perf_mmap_close, /* non mergable */ 4513 .fault = perf_mmap_fault, 4514 .page_mkwrite = perf_mmap_fault, 4515 }; 4516 4517 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 4518 { 4519 struct perf_event *event = file->private_data; 4520 unsigned long user_locked, user_lock_limit; 4521 struct user_struct *user = current_user(); 4522 unsigned long locked, lock_limit; 4523 struct ring_buffer *rb = NULL; 4524 unsigned long vma_size; 4525 unsigned long nr_pages; 4526 long user_extra = 0, extra = 0; 4527 int ret = 0, flags = 0; 4528 4529 /* 4530 * Don't allow mmap() of inherited per-task counters. This would 4531 * create a performance issue due to all children writing to the 4532 * same rb. 4533 */ 4534 if (event->cpu == -1 && event->attr.inherit) 4535 return -EINVAL; 4536 4537 if (!(vma->vm_flags & VM_SHARED)) 4538 return -EINVAL; 4539 4540 vma_size = vma->vm_end - vma->vm_start; 4541 4542 if (vma->vm_pgoff == 0) { 4543 nr_pages = (vma_size / PAGE_SIZE) - 1; 4544 } else { 4545 /* 4546 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 4547 * mapped, all subsequent mappings should have the same size 4548 * and offset. Must be above the normal perf buffer. 4549 */ 4550 u64 aux_offset, aux_size; 4551 4552 if (!event->rb) 4553 return -EINVAL; 4554 4555 nr_pages = vma_size / PAGE_SIZE; 4556 4557 mutex_lock(&event->mmap_mutex); 4558 ret = -EINVAL; 4559 4560 rb = event->rb; 4561 if (!rb) 4562 goto aux_unlock; 4563 4564 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset); 4565 aux_size = ACCESS_ONCE(rb->user_page->aux_size); 4566 4567 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 4568 goto aux_unlock; 4569 4570 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 4571 goto aux_unlock; 4572 4573 /* already mapped with a different offset */ 4574 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 4575 goto aux_unlock; 4576 4577 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) 4578 goto aux_unlock; 4579 4580 /* already mapped with a different size */ 4581 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 4582 goto aux_unlock; 4583 4584 if (!is_power_of_2(nr_pages)) 4585 goto aux_unlock; 4586 4587 if (!atomic_inc_not_zero(&rb->mmap_count)) 4588 goto aux_unlock; 4589 4590 if (rb_has_aux(rb)) { 4591 atomic_inc(&rb->aux_mmap_count); 4592 ret = 0; 4593 goto unlock; 4594 } 4595 4596 atomic_set(&rb->aux_mmap_count, 1); 4597 user_extra = nr_pages; 4598 4599 goto accounting; 4600 } 4601 4602 /* 4603 * If we have rb pages ensure they're a power-of-two number, so we 4604 * can do bitmasks instead of modulo. 4605 */ 4606 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 4607 return -EINVAL; 4608 4609 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 4610 return -EINVAL; 4611 4612 WARN_ON_ONCE(event->ctx->parent_ctx); 4613 again: 4614 mutex_lock(&event->mmap_mutex); 4615 if (event->rb) { 4616 if (event->rb->nr_pages != nr_pages) { 4617 ret = -EINVAL; 4618 goto unlock; 4619 } 4620 4621 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 4622 /* 4623 * Raced against perf_mmap_close() through 4624 * perf_event_set_output(). Try again, hope for better 4625 * luck. 4626 */ 4627 mutex_unlock(&event->mmap_mutex); 4628 goto again; 4629 } 4630 4631 goto unlock; 4632 } 4633 4634 user_extra = nr_pages + 1; 4635 4636 accounting: 4637 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 4638 4639 /* 4640 * Increase the limit linearly with more CPUs: 4641 */ 4642 user_lock_limit *= num_online_cpus(); 4643 4644 user_locked = atomic_long_read(&user->locked_vm) + user_extra; 4645 4646 if (user_locked > user_lock_limit) 4647 extra = user_locked - user_lock_limit; 4648 4649 lock_limit = rlimit(RLIMIT_MEMLOCK); 4650 lock_limit >>= PAGE_SHIFT; 4651 locked = vma->vm_mm->pinned_vm + extra; 4652 4653 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() && 4654 !capable(CAP_IPC_LOCK)) { 4655 ret = -EPERM; 4656 goto unlock; 4657 } 4658 4659 WARN_ON(!rb && event->rb); 4660 4661 if (vma->vm_flags & VM_WRITE) 4662 flags |= RING_BUFFER_WRITABLE; 4663 4664 if (!rb) { 4665 rb = rb_alloc(nr_pages, 4666 event->attr.watermark ? event->attr.wakeup_watermark : 0, 4667 event->cpu, flags); 4668 4669 if (!rb) { 4670 ret = -ENOMEM; 4671 goto unlock; 4672 } 4673 4674 atomic_set(&rb->mmap_count, 1); 4675 rb->mmap_user = get_current_user(); 4676 rb->mmap_locked = extra; 4677 4678 ring_buffer_attach(event, rb); 4679 4680 perf_event_init_userpage(event); 4681 perf_event_update_userpage(event); 4682 } else { 4683 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 4684 event->attr.aux_watermark, flags); 4685 if (!ret) 4686 rb->aux_mmap_locked = extra; 4687 } 4688 4689 unlock: 4690 if (!ret) { 4691 atomic_long_add(user_extra, &user->locked_vm); 4692 vma->vm_mm->pinned_vm += extra; 4693 4694 atomic_inc(&event->mmap_count); 4695 } else if (rb) { 4696 atomic_dec(&rb->mmap_count); 4697 } 4698 aux_unlock: 4699 mutex_unlock(&event->mmap_mutex); 4700 4701 /* 4702 * Since pinned accounting is per vm we cannot allow fork() to copy our 4703 * vma. 4704 */ 4705 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP; 4706 vma->vm_ops = &perf_mmap_vmops; 4707 4708 if (event->pmu->event_mapped) 4709 event->pmu->event_mapped(event); 4710 4711 return ret; 4712 } 4713 4714 static int perf_fasync(int fd, struct file *filp, int on) 4715 { 4716 struct inode *inode = file_inode(filp); 4717 struct perf_event *event = filp->private_data; 4718 int retval; 4719 4720 mutex_lock(&inode->i_mutex); 4721 retval = fasync_helper(fd, filp, on, &event->fasync); 4722 mutex_unlock(&inode->i_mutex); 4723 4724 if (retval < 0) 4725 return retval; 4726 4727 return 0; 4728 } 4729 4730 static const struct file_operations perf_fops = { 4731 .llseek = no_llseek, 4732 .release = perf_release, 4733 .read = perf_read, 4734 .poll = perf_poll, 4735 .unlocked_ioctl = perf_ioctl, 4736 .compat_ioctl = perf_compat_ioctl, 4737 .mmap = perf_mmap, 4738 .fasync = perf_fasync, 4739 }; 4740 4741 /* 4742 * Perf event wakeup 4743 * 4744 * If there's data, ensure we set the poll() state and publish everything 4745 * to user-space before waking everybody up. 4746 */ 4747 4748 void perf_event_wakeup(struct perf_event *event) 4749 { 4750 ring_buffer_wakeup(event); 4751 4752 if (event->pending_kill) { 4753 kill_fasync(&event->fasync, SIGIO, event->pending_kill); 4754 event->pending_kill = 0; 4755 } 4756 } 4757 4758 static void perf_pending_event(struct irq_work *entry) 4759 { 4760 struct perf_event *event = container_of(entry, 4761 struct perf_event, pending); 4762 int rctx; 4763 4764 rctx = perf_swevent_get_recursion_context(); 4765 /* 4766 * If we 'fail' here, that's OK, it means recursion is already disabled 4767 * and we won't recurse 'further'. 4768 */ 4769 4770 if (event->pending_disable) { 4771 event->pending_disable = 0; 4772 __perf_event_disable(event); 4773 } 4774 4775 if (event->pending_wakeup) { 4776 event->pending_wakeup = 0; 4777 perf_event_wakeup(event); 4778 } 4779 4780 if (rctx >= 0) 4781 perf_swevent_put_recursion_context(rctx); 4782 } 4783 4784 /* 4785 * We assume there is only KVM supporting the callbacks. 4786 * Later on, we might change it to a list if there is 4787 * another virtualization implementation supporting the callbacks. 4788 */ 4789 struct perf_guest_info_callbacks *perf_guest_cbs; 4790 4791 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 4792 { 4793 perf_guest_cbs = cbs; 4794 return 0; 4795 } 4796 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 4797 4798 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 4799 { 4800 perf_guest_cbs = NULL; 4801 return 0; 4802 } 4803 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 4804 4805 static void 4806 perf_output_sample_regs(struct perf_output_handle *handle, 4807 struct pt_regs *regs, u64 mask) 4808 { 4809 int bit; 4810 4811 for_each_set_bit(bit, (const unsigned long *) &mask, 4812 sizeof(mask) * BITS_PER_BYTE) { 4813 u64 val; 4814 4815 val = perf_reg_value(regs, bit); 4816 perf_output_put(handle, val); 4817 } 4818 } 4819 4820 static void perf_sample_regs_user(struct perf_regs *regs_user, 4821 struct pt_regs *regs, 4822 struct pt_regs *regs_user_copy) 4823 { 4824 if (user_mode(regs)) { 4825 regs_user->abi = perf_reg_abi(current); 4826 regs_user->regs = regs; 4827 } else if (current->mm) { 4828 perf_get_regs_user(regs_user, regs, regs_user_copy); 4829 } else { 4830 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 4831 regs_user->regs = NULL; 4832 } 4833 } 4834 4835 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 4836 struct pt_regs *regs) 4837 { 4838 regs_intr->regs = regs; 4839 regs_intr->abi = perf_reg_abi(current); 4840 } 4841 4842 4843 /* 4844 * Get remaining task size from user stack pointer. 4845 * 4846 * It'd be better to take stack vma map and limit this more 4847 * precisly, but there's no way to get it safely under interrupt, 4848 * so using TASK_SIZE as limit. 4849 */ 4850 static u64 perf_ustack_task_size(struct pt_regs *regs) 4851 { 4852 unsigned long addr = perf_user_stack_pointer(regs); 4853 4854 if (!addr || addr >= TASK_SIZE) 4855 return 0; 4856 4857 return TASK_SIZE - addr; 4858 } 4859 4860 static u16 4861 perf_sample_ustack_size(u16 stack_size, u16 header_size, 4862 struct pt_regs *regs) 4863 { 4864 u64 task_size; 4865 4866 /* No regs, no stack pointer, no dump. */ 4867 if (!regs) 4868 return 0; 4869 4870 /* 4871 * Check if we fit in with the requested stack size into the: 4872 * - TASK_SIZE 4873 * If we don't, we limit the size to the TASK_SIZE. 4874 * 4875 * - remaining sample size 4876 * If we don't, we customize the stack size to 4877 * fit in to the remaining sample size. 4878 */ 4879 4880 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 4881 stack_size = min(stack_size, (u16) task_size); 4882 4883 /* Current header size plus static size and dynamic size. */ 4884 header_size += 2 * sizeof(u64); 4885 4886 /* Do we fit in with the current stack dump size? */ 4887 if ((u16) (header_size + stack_size) < header_size) { 4888 /* 4889 * If we overflow the maximum size for the sample, 4890 * we customize the stack dump size to fit in. 4891 */ 4892 stack_size = USHRT_MAX - header_size - sizeof(u64); 4893 stack_size = round_up(stack_size, sizeof(u64)); 4894 } 4895 4896 return stack_size; 4897 } 4898 4899 static void 4900 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 4901 struct pt_regs *regs) 4902 { 4903 /* Case of a kernel thread, nothing to dump */ 4904 if (!regs) { 4905 u64 size = 0; 4906 perf_output_put(handle, size); 4907 } else { 4908 unsigned long sp; 4909 unsigned int rem; 4910 u64 dyn_size; 4911 4912 /* 4913 * We dump: 4914 * static size 4915 * - the size requested by user or the best one we can fit 4916 * in to the sample max size 4917 * data 4918 * - user stack dump data 4919 * dynamic size 4920 * - the actual dumped size 4921 */ 4922 4923 /* Static size. */ 4924 perf_output_put(handle, dump_size); 4925 4926 /* Data. */ 4927 sp = perf_user_stack_pointer(regs); 4928 rem = __output_copy_user(handle, (void *) sp, dump_size); 4929 dyn_size = dump_size - rem; 4930 4931 perf_output_skip(handle, rem); 4932 4933 /* Dynamic size. */ 4934 perf_output_put(handle, dyn_size); 4935 } 4936 } 4937 4938 static void __perf_event_header__init_id(struct perf_event_header *header, 4939 struct perf_sample_data *data, 4940 struct perf_event *event) 4941 { 4942 u64 sample_type = event->attr.sample_type; 4943 4944 data->type = sample_type; 4945 header->size += event->id_header_size; 4946 4947 if (sample_type & PERF_SAMPLE_TID) { 4948 /* namespace issues */ 4949 data->tid_entry.pid = perf_event_pid(event, current); 4950 data->tid_entry.tid = perf_event_tid(event, current); 4951 } 4952 4953 if (sample_type & PERF_SAMPLE_TIME) 4954 data->time = perf_event_clock(event); 4955 4956 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 4957 data->id = primary_event_id(event); 4958 4959 if (sample_type & PERF_SAMPLE_STREAM_ID) 4960 data->stream_id = event->id; 4961 4962 if (sample_type & PERF_SAMPLE_CPU) { 4963 data->cpu_entry.cpu = raw_smp_processor_id(); 4964 data->cpu_entry.reserved = 0; 4965 } 4966 } 4967 4968 void perf_event_header__init_id(struct perf_event_header *header, 4969 struct perf_sample_data *data, 4970 struct perf_event *event) 4971 { 4972 if (event->attr.sample_id_all) 4973 __perf_event_header__init_id(header, data, event); 4974 } 4975 4976 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 4977 struct perf_sample_data *data) 4978 { 4979 u64 sample_type = data->type; 4980 4981 if (sample_type & PERF_SAMPLE_TID) 4982 perf_output_put(handle, data->tid_entry); 4983 4984 if (sample_type & PERF_SAMPLE_TIME) 4985 perf_output_put(handle, data->time); 4986 4987 if (sample_type & PERF_SAMPLE_ID) 4988 perf_output_put(handle, data->id); 4989 4990 if (sample_type & PERF_SAMPLE_STREAM_ID) 4991 perf_output_put(handle, data->stream_id); 4992 4993 if (sample_type & PERF_SAMPLE_CPU) 4994 perf_output_put(handle, data->cpu_entry); 4995 4996 if (sample_type & PERF_SAMPLE_IDENTIFIER) 4997 perf_output_put(handle, data->id); 4998 } 4999 5000 void perf_event__output_id_sample(struct perf_event *event, 5001 struct perf_output_handle *handle, 5002 struct perf_sample_data *sample) 5003 { 5004 if (event->attr.sample_id_all) 5005 __perf_event__output_id_sample(handle, sample); 5006 } 5007 5008 static void perf_output_read_one(struct perf_output_handle *handle, 5009 struct perf_event *event, 5010 u64 enabled, u64 running) 5011 { 5012 u64 read_format = event->attr.read_format; 5013 u64 values[4]; 5014 int n = 0; 5015 5016 values[n++] = perf_event_count(event); 5017 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 5018 values[n++] = enabled + 5019 atomic64_read(&event->child_total_time_enabled); 5020 } 5021 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 5022 values[n++] = running + 5023 atomic64_read(&event->child_total_time_running); 5024 } 5025 if (read_format & PERF_FORMAT_ID) 5026 values[n++] = primary_event_id(event); 5027 5028 __output_copy(handle, values, n * sizeof(u64)); 5029 } 5030 5031 /* 5032 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult. 5033 */ 5034 static void perf_output_read_group(struct perf_output_handle *handle, 5035 struct perf_event *event, 5036 u64 enabled, u64 running) 5037 { 5038 struct perf_event *leader = event->group_leader, *sub; 5039 u64 read_format = event->attr.read_format; 5040 u64 values[5]; 5041 int n = 0; 5042 5043 values[n++] = 1 + leader->nr_siblings; 5044 5045 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 5046 values[n++] = enabled; 5047 5048 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 5049 values[n++] = running; 5050 5051 if (leader != event) 5052 leader->pmu->read(leader); 5053 5054 values[n++] = perf_event_count(leader); 5055 if (read_format & PERF_FORMAT_ID) 5056 values[n++] = primary_event_id(leader); 5057 5058 __output_copy(handle, values, n * sizeof(u64)); 5059 5060 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 5061 n = 0; 5062 5063 if ((sub != event) && 5064 (sub->state == PERF_EVENT_STATE_ACTIVE)) 5065 sub->pmu->read(sub); 5066 5067 values[n++] = perf_event_count(sub); 5068 if (read_format & PERF_FORMAT_ID) 5069 values[n++] = primary_event_id(sub); 5070 5071 __output_copy(handle, values, n * sizeof(u64)); 5072 } 5073 } 5074 5075 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 5076 PERF_FORMAT_TOTAL_TIME_RUNNING) 5077 5078 static void perf_output_read(struct perf_output_handle *handle, 5079 struct perf_event *event) 5080 { 5081 u64 enabled = 0, running = 0, now; 5082 u64 read_format = event->attr.read_format; 5083 5084 /* 5085 * compute total_time_enabled, total_time_running 5086 * based on snapshot values taken when the event 5087 * was last scheduled in. 5088 * 5089 * we cannot simply called update_context_time() 5090 * because of locking issue as we are called in 5091 * NMI context 5092 */ 5093 if (read_format & PERF_FORMAT_TOTAL_TIMES) 5094 calc_timer_values(event, &now, &enabled, &running); 5095 5096 if (event->attr.read_format & PERF_FORMAT_GROUP) 5097 perf_output_read_group(handle, event, enabled, running); 5098 else 5099 perf_output_read_one(handle, event, enabled, running); 5100 } 5101 5102 void perf_output_sample(struct perf_output_handle *handle, 5103 struct perf_event_header *header, 5104 struct perf_sample_data *data, 5105 struct perf_event *event) 5106 { 5107 u64 sample_type = data->type; 5108 5109 perf_output_put(handle, *header); 5110 5111 if (sample_type & PERF_SAMPLE_IDENTIFIER) 5112 perf_output_put(handle, data->id); 5113 5114 if (sample_type & PERF_SAMPLE_IP) 5115 perf_output_put(handle, data->ip); 5116 5117 if (sample_type & PERF_SAMPLE_TID) 5118 perf_output_put(handle, data->tid_entry); 5119 5120 if (sample_type & PERF_SAMPLE_TIME) 5121 perf_output_put(handle, data->time); 5122 5123 if (sample_type & PERF_SAMPLE_ADDR) 5124 perf_output_put(handle, data->addr); 5125 5126 if (sample_type & PERF_SAMPLE_ID) 5127 perf_output_put(handle, data->id); 5128 5129 if (sample_type & PERF_SAMPLE_STREAM_ID) 5130 perf_output_put(handle, data->stream_id); 5131 5132 if (sample_type & PERF_SAMPLE_CPU) 5133 perf_output_put(handle, data->cpu_entry); 5134 5135 if (sample_type & PERF_SAMPLE_PERIOD) 5136 perf_output_put(handle, data->period); 5137 5138 if (sample_type & PERF_SAMPLE_READ) 5139 perf_output_read(handle, event); 5140 5141 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 5142 if (data->callchain) { 5143 int size = 1; 5144 5145 if (data->callchain) 5146 size += data->callchain->nr; 5147 5148 size *= sizeof(u64); 5149 5150 __output_copy(handle, data->callchain, size); 5151 } else { 5152 u64 nr = 0; 5153 perf_output_put(handle, nr); 5154 } 5155 } 5156 5157 if (sample_type & PERF_SAMPLE_RAW) { 5158 if (data->raw) { 5159 perf_output_put(handle, data->raw->size); 5160 __output_copy(handle, data->raw->data, 5161 data->raw->size); 5162 } else { 5163 struct { 5164 u32 size; 5165 u32 data; 5166 } raw = { 5167 .size = sizeof(u32), 5168 .data = 0, 5169 }; 5170 perf_output_put(handle, raw); 5171 } 5172 } 5173 5174 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 5175 if (data->br_stack) { 5176 size_t size; 5177 5178 size = data->br_stack->nr 5179 * sizeof(struct perf_branch_entry); 5180 5181 perf_output_put(handle, data->br_stack->nr); 5182 perf_output_copy(handle, data->br_stack->entries, size); 5183 } else { 5184 /* 5185 * we always store at least the value of nr 5186 */ 5187 u64 nr = 0; 5188 perf_output_put(handle, nr); 5189 } 5190 } 5191 5192 if (sample_type & PERF_SAMPLE_REGS_USER) { 5193 u64 abi = data->regs_user.abi; 5194 5195 /* 5196 * If there are no regs to dump, notice it through 5197 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 5198 */ 5199 perf_output_put(handle, abi); 5200 5201 if (abi) { 5202 u64 mask = event->attr.sample_regs_user; 5203 perf_output_sample_regs(handle, 5204 data->regs_user.regs, 5205 mask); 5206 } 5207 } 5208 5209 if (sample_type & PERF_SAMPLE_STACK_USER) { 5210 perf_output_sample_ustack(handle, 5211 data->stack_user_size, 5212 data->regs_user.regs); 5213 } 5214 5215 if (sample_type & PERF_SAMPLE_WEIGHT) 5216 perf_output_put(handle, data->weight); 5217 5218 if (sample_type & PERF_SAMPLE_DATA_SRC) 5219 perf_output_put(handle, data->data_src.val); 5220 5221 if (sample_type & PERF_SAMPLE_TRANSACTION) 5222 perf_output_put(handle, data->txn); 5223 5224 if (sample_type & PERF_SAMPLE_REGS_INTR) { 5225 u64 abi = data->regs_intr.abi; 5226 /* 5227 * If there are no regs to dump, notice it through 5228 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 5229 */ 5230 perf_output_put(handle, abi); 5231 5232 if (abi) { 5233 u64 mask = event->attr.sample_regs_intr; 5234 5235 perf_output_sample_regs(handle, 5236 data->regs_intr.regs, 5237 mask); 5238 } 5239 } 5240 5241 if (!event->attr.watermark) { 5242 int wakeup_events = event->attr.wakeup_events; 5243 5244 if (wakeup_events) { 5245 struct ring_buffer *rb = handle->rb; 5246 int events = local_inc_return(&rb->events); 5247 5248 if (events >= wakeup_events) { 5249 local_sub(wakeup_events, &rb->events); 5250 local_inc(&rb->wakeup); 5251 } 5252 } 5253 } 5254 } 5255 5256 void perf_prepare_sample(struct perf_event_header *header, 5257 struct perf_sample_data *data, 5258 struct perf_event *event, 5259 struct pt_regs *regs) 5260 { 5261 u64 sample_type = event->attr.sample_type; 5262 5263 header->type = PERF_RECORD_SAMPLE; 5264 header->size = sizeof(*header) + event->header_size; 5265 5266 header->misc = 0; 5267 header->misc |= perf_misc_flags(regs); 5268 5269 __perf_event_header__init_id(header, data, event); 5270 5271 if (sample_type & PERF_SAMPLE_IP) 5272 data->ip = perf_instruction_pointer(regs); 5273 5274 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 5275 int size = 1; 5276 5277 data->callchain = perf_callchain(event, regs); 5278 5279 if (data->callchain) 5280 size += data->callchain->nr; 5281 5282 header->size += size * sizeof(u64); 5283 } 5284 5285 if (sample_type & PERF_SAMPLE_RAW) { 5286 int size = sizeof(u32); 5287 5288 if (data->raw) 5289 size += data->raw->size; 5290 else 5291 size += sizeof(u32); 5292 5293 WARN_ON_ONCE(size & (sizeof(u64)-1)); 5294 header->size += size; 5295 } 5296 5297 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 5298 int size = sizeof(u64); /* nr */ 5299 if (data->br_stack) { 5300 size += data->br_stack->nr 5301 * sizeof(struct perf_branch_entry); 5302 } 5303 header->size += size; 5304 } 5305 5306 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER)) 5307 perf_sample_regs_user(&data->regs_user, regs, 5308 &data->regs_user_copy); 5309 5310 if (sample_type & PERF_SAMPLE_REGS_USER) { 5311 /* regs dump ABI info */ 5312 int size = sizeof(u64); 5313 5314 if (data->regs_user.regs) { 5315 u64 mask = event->attr.sample_regs_user; 5316 size += hweight64(mask) * sizeof(u64); 5317 } 5318 5319 header->size += size; 5320 } 5321 5322 if (sample_type & PERF_SAMPLE_STACK_USER) { 5323 /* 5324 * Either we need PERF_SAMPLE_STACK_USER bit to be allways 5325 * processed as the last one or have additional check added 5326 * in case new sample type is added, because we could eat 5327 * up the rest of the sample size. 5328 */ 5329 u16 stack_size = event->attr.sample_stack_user; 5330 u16 size = sizeof(u64); 5331 5332 stack_size = perf_sample_ustack_size(stack_size, header->size, 5333 data->regs_user.regs); 5334 5335 /* 5336 * If there is something to dump, add space for the dump 5337 * itself and for the field that tells the dynamic size, 5338 * which is how many have been actually dumped. 5339 */ 5340 if (stack_size) 5341 size += sizeof(u64) + stack_size; 5342 5343 data->stack_user_size = stack_size; 5344 header->size += size; 5345 } 5346 5347 if (sample_type & PERF_SAMPLE_REGS_INTR) { 5348 /* regs dump ABI info */ 5349 int size = sizeof(u64); 5350 5351 perf_sample_regs_intr(&data->regs_intr, regs); 5352 5353 if (data->regs_intr.regs) { 5354 u64 mask = event->attr.sample_regs_intr; 5355 5356 size += hweight64(mask) * sizeof(u64); 5357 } 5358 5359 header->size += size; 5360 } 5361 } 5362 5363 static void perf_event_output(struct perf_event *event, 5364 struct perf_sample_data *data, 5365 struct pt_regs *regs) 5366 { 5367 struct perf_output_handle handle; 5368 struct perf_event_header header; 5369 5370 /* protect the callchain buffers */ 5371 rcu_read_lock(); 5372 5373 perf_prepare_sample(&header, data, event, regs); 5374 5375 if (perf_output_begin(&handle, event, header.size)) 5376 goto exit; 5377 5378 perf_output_sample(&handle, &header, data, event); 5379 5380 perf_output_end(&handle); 5381 5382 exit: 5383 rcu_read_unlock(); 5384 } 5385 5386 /* 5387 * read event_id 5388 */ 5389 5390 struct perf_read_event { 5391 struct perf_event_header header; 5392 5393 u32 pid; 5394 u32 tid; 5395 }; 5396 5397 static void 5398 perf_event_read_event(struct perf_event *event, 5399 struct task_struct *task) 5400 { 5401 struct perf_output_handle handle; 5402 struct perf_sample_data sample; 5403 struct perf_read_event read_event = { 5404 .header = { 5405 .type = PERF_RECORD_READ, 5406 .misc = 0, 5407 .size = sizeof(read_event) + event->read_size, 5408 }, 5409 .pid = perf_event_pid(event, task), 5410 .tid = perf_event_tid(event, task), 5411 }; 5412 int ret; 5413 5414 perf_event_header__init_id(&read_event.header, &sample, event); 5415 ret = perf_output_begin(&handle, event, read_event.header.size); 5416 if (ret) 5417 return; 5418 5419 perf_output_put(&handle, read_event); 5420 perf_output_read(&handle, event); 5421 perf_event__output_id_sample(event, &handle, &sample); 5422 5423 perf_output_end(&handle); 5424 } 5425 5426 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data); 5427 5428 static void 5429 perf_event_aux_ctx(struct perf_event_context *ctx, 5430 perf_event_aux_output_cb output, 5431 void *data) 5432 { 5433 struct perf_event *event; 5434 5435 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 5436 if (event->state < PERF_EVENT_STATE_INACTIVE) 5437 continue; 5438 if (!event_filter_match(event)) 5439 continue; 5440 output(event, data); 5441 } 5442 } 5443 5444 static void 5445 perf_event_aux(perf_event_aux_output_cb output, void *data, 5446 struct perf_event_context *task_ctx) 5447 { 5448 struct perf_cpu_context *cpuctx; 5449 struct perf_event_context *ctx; 5450 struct pmu *pmu; 5451 int ctxn; 5452 5453 rcu_read_lock(); 5454 list_for_each_entry_rcu(pmu, &pmus, entry) { 5455 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context); 5456 if (cpuctx->unique_pmu != pmu) 5457 goto next; 5458 perf_event_aux_ctx(&cpuctx->ctx, output, data); 5459 if (task_ctx) 5460 goto next; 5461 ctxn = pmu->task_ctx_nr; 5462 if (ctxn < 0) 5463 goto next; 5464 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 5465 if (ctx) 5466 perf_event_aux_ctx(ctx, output, data); 5467 next: 5468 put_cpu_ptr(pmu->pmu_cpu_context); 5469 } 5470 5471 if (task_ctx) { 5472 preempt_disable(); 5473 perf_event_aux_ctx(task_ctx, output, data); 5474 preempt_enable(); 5475 } 5476 rcu_read_unlock(); 5477 } 5478 5479 /* 5480 * task tracking -- fork/exit 5481 * 5482 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 5483 */ 5484 5485 struct perf_task_event { 5486 struct task_struct *task; 5487 struct perf_event_context *task_ctx; 5488 5489 struct { 5490 struct perf_event_header header; 5491 5492 u32 pid; 5493 u32 ppid; 5494 u32 tid; 5495 u32 ptid; 5496 u64 time; 5497 } event_id; 5498 }; 5499 5500 static int perf_event_task_match(struct perf_event *event) 5501 { 5502 return event->attr.comm || event->attr.mmap || 5503 event->attr.mmap2 || event->attr.mmap_data || 5504 event->attr.task; 5505 } 5506 5507 static void perf_event_task_output(struct perf_event *event, 5508 void *data) 5509 { 5510 struct perf_task_event *task_event = data; 5511 struct perf_output_handle handle; 5512 struct perf_sample_data sample; 5513 struct task_struct *task = task_event->task; 5514 int ret, size = task_event->event_id.header.size; 5515 5516 if (!perf_event_task_match(event)) 5517 return; 5518 5519 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 5520 5521 ret = perf_output_begin(&handle, event, 5522 task_event->event_id.header.size); 5523 if (ret) 5524 goto out; 5525 5526 task_event->event_id.pid = perf_event_pid(event, task); 5527 task_event->event_id.ppid = perf_event_pid(event, current); 5528 5529 task_event->event_id.tid = perf_event_tid(event, task); 5530 task_event->event_id.ptid = perf_event_tid(event, current); 5531 5532 task_event->event_id.time = perf_event_clock(event); 5533 5534 perf_output_put(&handle, task_event->event_id); 5535 5536 perf_event__output_id_sample(event, &handle, &sample); 5537 5538 perf_output_end(&handle); 5539 out: 5540 task_event->event_id.header.size = size; 5541 } 5542 5543 static void perf_event_task(struct task_struct *task, 5544 struct perf_event_context *task_ctx, 5545 int new) 5546 { 5547 struct perf_task_event task_event; 5548 5549 if (!atomic_read(&nr_comm_events) && 5550 !atomic_read(&nr_mmap_events) && 5551 !atomic_read(&nr_task_events)) 5552 return; 5553 5554 task_event = (struct perf_task_event){ 5555 .task = task, 5556 .task_ctx = task_ctx, 5557 .event_id = { 5558 .header = { 5559 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 5560 .misc = 0, 5561 .size = sizeof(task_event.event_id), 5562 }, 5563 /* .pid */ 5564 /* .ppid */ 5565 /* .tid */ 5566 /* .ptid */ 5567 /* .time */ 5568 }, 5569 }; 5570 5571 perf_event_aux(perf_event_task_output, 5572 &task_event, 5573 task_ctx); 5574 } 5575 5576 void perf_event_fork(struct task_struct *task) 5577 { 5578 perf_event_task(task, NULL, 1); 5579 } 5580 5581 /* 5582 * comm tracking 5583 */ 5584 5585 struct perf_comm_event { 5586 struct task_struct *task; 5587 char *comm; 5588 int comm_size; 5589 5590 struct { 5591 struct perf_event_header header; 5592 5593 u32 pid; 5594 u32 tid; 5595 } event_id; 5596 }; 5597 5598 static int perf_event_comm_match(struct perf_event *event) 5599 { 5600 return event->attr.comm; 5601 } 5602 5603 static void perf_event_comm_output(struct perf_event *event, 5604 void *data) 5605 { 5606 struct perf_comm_event *comm_event = data; 5607 struct perf_output_handle handle; 5608 struct perf_sample_data sample; 5609 int size = comm_event->event_id.header.size; 5610 int ret; 5611 5612 if (!perf_event_comm_match(event)) 5613 return; 5614 5615 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 5616 ret = perf_output_begin(&handle, event, 5617 comm_event->event_id.header.size); 5618 5619 if (ret) 5620 goto out; 5621 5622 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 5623 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 5624 5625 perf_output_put(&handle, comm_event->event_id); 5626 __output_copy(&handle, comm_event->comm, 5627 comm_event->comm_size); 5628 5629 perf_event__output_id_sample(event, &handle, &sample); 5630 5631 perf_output_end(&handle); 5632 out: 5633 comm_event->event_id.header.size = size; 5634 } 5635 5636 static void perf_event_comm_event(struct perf_comm_event *comm_event) 5637 { 5638 char comm[TASK_COMM_LEN]; 5639 unsigned int size; 5640 5641 memset(comm, 0, sizeof(comm)); 5642 strlcpy(comm, comm_event->task->comm, sizeof(comm)); 5643 size = ALIGN(strlen(comm)+1, sizeof(u64)); 5644 5645 comm_event->comm = comm; 5646 comm_event->comm_size = size; 5647 5648 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 5649 5650 perf_event_aux(perf_event_comm_output, 5651 comm_event, 5652 NULL); 5653 } 5654 5655 void perf_event_comm(struct task_struct *task, bool exec) 5656 { 5657 struct perf_comm_event comm_event; 5658 5659 if (!atomic_read(&nr_comm_events)) 5660 return; 5661 5662 comm_event = (struct perf_comm_event){ 5663 .task = task, 5664 /* .comm */ 5665 /* .comm_size */ 5666 .event_id = { 5667 .header = { 5668 .type = PERF_RECORD_COMM, 5669 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 5670 /* .size */ 5671 }, 5672 /* .pid */ 5673 /* .tid */ 5674 }, 5675 }; 5676 5677 perf_event_comm_event(&comm_event); 5678 } 5679 5680 /* 5681 * mmap tracking 5682 */ 5683 5684 struct perf_mmap_event { 5685 struct vm_area_struct *vma; 5686 5687 const char *file_name; 5688 int file_size; 5689 int maj, min; 5690 u64 ino; 5691 u64 ino_generation; 5692 u32 prot, flags; 5693 5694 struct { 5695 struct perf_event_header header; 5696 5697 u32 pid; 5698 u32 tid; 5699 u64 start; 5700 u64 len; 5701 u64 pgoff; 5702 } event_id; 5703 }; 5704 5705 static int perf_event_mmap_match(struct perf_event *event, 5706 void *data) 5707 { 5708 struct perf_mmap_event *mmap_event = data; 5709 struct vm_area_struct *vma = mmap_event->vma; 5710 int executable = vma->vm_flags & VM_EXEC; 5711 5712 return (!executable && event->attr.mmap_data) || 5713 (executable && (event->attr.mmap || event->attr.mmap2)); 5714 } 5715 5716 static void perf_event_mmap_output(struct perf_event *event, 5717 void *data) 5718 { 5719 struct perf_mmap_event *mmap_event = data; 5720 struct perf_output_handle handle; 5721 struct perf_sample_data sample; 5722 int size = mmap_event->event_id.header.size; 5723 int ret; 5724 5725 if (!perf_event_mmap_match(event, data)) 5726 return; 5727 5728 if (event->attr.mmap2) { 5729 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 5730 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 5731 mmap_event->event_id.header.size += sizeof(mmap_event->min); 5732 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 5733 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 5734 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 5735 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 5736 } 5737 5738 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 5739 ret = perf_output_begin(&handle, event, 5740 mmap_event->event_id.header.size); 5741 if (ret) 5742 goto out; 5743 5744 mmap_event->event_id.pid = perf_event_pid(event, current); 5745 mmap_event->event_id.tid = perf_event_tid(event, current); 5746 5747 perf_output_put(&handle, mmap_event->event_id); 5748 5749 if (event->attr.mmap2) { 5750 perf_output_put(&handle, mmap_event->maj); 5751 perf_output_put(&handle, mmap_event->min); 5752 perf_output_put(&handle, mmap_event->ino); 5753 perf_output_put(&handle, mmap_event->ino_generation); 5754 perf_output_put(&handle, mmap_event->prot); 5755 perf_output_put(&handle, mmap_event->flags); 5756 } 5757 5758 __output_copy(&handle, mmap_event->file_name, 5759 mmap_event->file_size); 5760 5761 perf_event__output_id_sample(event, &handle, &sample); 5762 5763 perf_output_end(&handle); 5764 out: 5765 mmap_event->event_id.header.size = size; 5766 } 5767 5768 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 5769 { 5770 struct vm_area_struct *vma = mmap_event->vma; 5771 struct file *file = vma->vm_file; 5772 int maj = 0, min = 0; 5773 u64 ino = 0, gen = 0; 5774 u32 prot = 0, flags = 0; 5775 unsigned int size; 5776 char tmp[16]; 5777 char *buf = NULL; 5778 char *name; 5779 5780 if (file) { 5781 struct inode *inode; 5782 dev_t dev; 5783 5784 buf = kmalloc(PATH_MAX, GFP_KERNEL); 5785 if (!buf) { 5786 name = "//enomem"; 5787 goto cpy_name; 5788 } 5789 /* 5790 * d_path() works from the end of the rb backwards, so we 5791 * need to add enough zero bytes after the string to handle 5792 * the 64bit alignment we do later. 5793 */ 5794 name = d_path(&file->f_path, buf, PATH_MAX - sizeof(u64)); 5795 if (IS_ERR(name)) { 5796 name = "//toolong"; 5797 goto cpy_name; 5798 } 5799 inode = file_inode(vma->vm_file); 5800 dev = inode->i_sb->s_dev; 5801 ino = inode->i_ino; 5802 gen = inode->i_generation; 5803 maj = MAJOR(dev); 5804 min = MINOR(dev); 5805 5806 if (vma->vm_flags & VM_READ) 5807 prot |= PROT_READ; 5808 if (vma->vm_flags & VM_WRITE) 5809 prot |= PROT_WRITE; 5810 if (vma->vm_flags & VM_EXEC) 5811 prot |= PROT_EXEC; 5812 5813 if (vma->vm_flags & VM_MAYSHARE) 5814 flags = MAP_SHARED; 5815 else 5816 flags = MAP_PRIVATE; 5817 5818 if (vma->vm_flags & VM_DENYWRITE) 5819 flags |= MAP_DENYWRITE; 5820 if (vma->vm_flags & VM_MAYEXEC) 5821 flags |= MAP_EXECUTABLE; 5822 if (vma->vm_flags & VM_LOCKED) 5823 flags |= MAP_LOCKED; 5824 if (vma->vm_flags & VM_HUGETLB) 5825 flags |= MAP_HUGETLB; 5826 5827 goto got_name; 5828 } else { 5829 if (vma->vm_ops && vma->vm_ops->name) { 5830 name = (char *) vma->vm_ops->name(vma); 5831 if (name) 5832 goto cpy_name; 5833 } 5834 5835 name = (char *)arch_vma_name(vma); 5836 if (name) 5837 goto cpy_name; 5838 5839 if (vma->vm_start <= vma->vm_mm->start_brk && 5840 vma->vm_end >= vma->vm_mm->brk) { 5841 name = "[heap]"; 5842 goto cpy_name; 5843 } 5844 if (vma->vm_start <= vma->vm_mm->start_stack && 5845 vma->vm_end >= vma->vm_mm->start_stack) { 5846 name = "[stack]"; 5847 goto cpy_name; 5848 } 5849 5850 name = "//anon"; 5851 goto cpy_name; 5852 } 5853 5854 cpy_name: 5855 strlcpy(tmp, name, sizeof(tmp)); 5856 name = tmp; 5857 got_name: 5858 /* 5859 * Since our buffer works in 8 byte units we need to align our string 5860 * size to a multiple of 8. However, we must guarantee the tail end is 5861 * zero'd out to avoid leaking random bits to userspace. 5862 */ 5863 size = strlen(name)+1; 5864 while (!IS_ALIGNED(size, sizeof(u64))) 5865 name[size++] = '\0'; 5866 5867 mmap_event->file_name = name; 5868 mmap_event->file_size = size; 5869 mmap_event->maj = maj; 5870 mmap_event->min = min; 5871 mmap_event->ino = ino; 5872 mmap_event->ino_generation = gen; 5873 mmap_event->prot = prot; 5874 mmap_event->flags = flags; 5875 5876 if (!(vma->vm_flags & VM_EXEC)) 5877 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 5878 5879 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 5880 5881 perf_event_aux(perf_event_mmap_output, 5882 mmap_event, 5883 NULL); 5884 5885 kfree(buf); 5886 } 5887 5888 void perf_event_mmap(struct vm_area_struct *vma) 5889 { 5890 struct perf_mmap_event mmap_event; 5891 5892 if (!atomic_read(&nr_mmap_events)) 5893 return; 5894 5895 mmap_event = (struct perf_mmap_event){ 5896 .vma = vma, 5897 /* .file_name */ 5898 /* .file_size */ 5899 .event_id = { 5900 .header = { 5901 .type = PERF_RECORD_MMAP, 5902 .misc = PERF_RECORD_MISC_USER, 5903 /* .size */ 5904 }, 5905 /* .pid */ 5906 /* .tid */ 5907 .start = vma->vm_start, 5908 .len = vma->vm_end - vma->vm_start, 5909 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 5910 }, 5911 /* .maj (attr_mmap2 only) */ 5912 /* .min (attr_mmap2 only) */ 5913 /* .ino (attr_mmap2 only) */ 5914 /* .ino_generation (attr_mmap2 only) */ 5915 /* .prot (attr_mmap2 only) */ 5916 /* .flags (attr_mmap2 only) */ 5917 }; 5918 5919 perf_event_mmap_event(&mmap_event); 5920 } 5921 5922 void perf_event_aux_event(struct perf_event *event, unsigned long head, 5923 unsigned long size, u64 flags) 5924 { 5925 struct perf_output_handle handle; 5926 struct perf_sample_data sample; 5927 struct perf_aux_event { 5928 struct perf_event_header header; 5929 u64 offset; 5930 u64 size; 5931 u64 flags; 5932 } rec = { 5933 .header = { 5934 .type = PERF_RECORD_AUX, 5935 .misc = 0, 5936 .size = sizeof(rec), 5937 }, 5938 .offset = head, 5939 .size = size, 5940 .flags = flags, 5941 }; 5942 int ret; 5943 5944 perf_event_header__init_id(&rec.header, &sample, event); 5945 ret = perf_output_begin(&handle, event, rec.header.size); 5946 5947 if (ret) 5948 return; 5949 5950 perf_output_put(&handle, rec); 5951 perf_event__output_id_sample(event, &handle, &sample); 5952 5953 perf_output_end(&handle); 5954 } 5955 5956 /* 5957 * IRQ throttle logging 5958 */ 5959 5960 static void perf_log_throttle(struct perf_event *event, int enable) 5961 { 5962 struct perf_output_handle handle; 5963 struct perf_sample_data sample; 5964 int ret; 5965 5966 struct { 5967 struct perf_event_header header; 5968 u64 time; 5969 u64 id; 5970 u64 stream_id; 5971 } throttle_event = { 5972 .header = { 5973 .type = PERF_RECORD_THROTTLE, 5974 .misc = 0, 5975 .size = sizeof(throttle_event), 5976 }, 5977 .time = perf_event_clock(event), 5978 .id = primary_event_id(event), 5979 .stream_id = event->id, 5980 }; 5981 5982 if (enable) 5983 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 5984 5985 perf_event_header__init_id(&throttle_event.header, &sample, event); 5986 5987 ret = perf_output_begin(&handle, event, 5988 throttle_event.header.size); 5989 if (ret) 5990 return; 5991 5992 perf_output_put(&handle, throttle_event); 5993 perf_event__output_id_sample(event, &handle, &sample); 5994 perf_output_end(&handle); 5995 } 5996 5997 static void perf_log_itrace_start(struct perf_event *event) 5998 { 5999 struct perf_output_handle handle; 6000 struct perf_sample_data sample; 6001 struct perf_aux_event { 6002 struct perf_event_header header; 6003 u32 pid; 6004 u32 tid; 6005 } rec; 6006 int ret; 6007 6008 if (event->parent) 6009 event = event->parent; 6010 6011 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || 6012 event->hw.itrace_started) 6013 return; 6014 6015 event->hw.itrace_started = 1; 6016 6017 rec.header.type = PERF_RECORD_ITRACE_START; 6018 rec.header.misc = 0; 6019 rec.header.size = sizeof(rec); 6020 rec.pid = perf_event_pid(event, current); 6021 rec.tid = perf_event_tid(event, current); 6022 6023 perf_event_header__init_id(&rec.header, &sample, event); 6024 ret = perf_output_begin(&handle, event, rec.header.size); 6025 6026 if (ret) 6027 return; 6028 6029 perf_output_put(&handle, rec); 6030 perf_event__output_id_sample(event, &handle, &sample); 6031 6032 perf_output_end(&handle); 6033 } 6034 6035 /* 6036 * Generic event overflow handling, sampling. 6037 */ 6038 6039 static int __perf_event_overflow(struct perf_event *event, 6040 int throttle, struct perf_sample_data *data, 6041 struct pt_regs *regs) 6042 { 6043 int events = atomic_read(&event->event_limit); 6044 struct hw_perf_event *hwc = &event->hw; 6045 u64 seq; 6046 int ret = 0; 6047 6048 /* 6049 * Non-sampling counters might still use the PMI to fold short 6050 * hardware counters, ignore those. 6051 */ 6052 if (unlikely(!is_sampling_event(event))) 6053 return 0; 6054 6055 seq = __this_cpu_read(perf_throttled_seq); 6056 if (seq != hwc->interrupts_seq) { 6057 hwc->interrupts_seq = seq; 6058 hwc->interrupts = 1; 6059 } else { 6060 hwc->interrupts++; 6061 if (unlikely(throttle 6062 && hwc->interrupts >= max_samples_per_tick)) { 6063 __this_cpu_inc(perf_throttled_count); 6064 hwc->interrupts = MAX_INTERRUPTS; 6065 perf_log_throttle(event, 0); 6066 tick_nohz_full_kick(); 6067 ret = 1; 6068 } 6069 } 6070 6071 if (event->attr.freq) { 6072 u64 now = perf_clock(); 6073 s64 delta = now - hwc->freq_time_stamp; 6074 6075 hwc->freq_time_stamp = now; 6076 6077 if (delta > 0 && delta < 2*TICK_NSEC) 6078 perf_adjust_period(event, delta, hwc->last_period, true); 6079 } 6080 6081 /* 6082 * XXX event_limit might not quite work as expected on inherited 6083 * events 6084 */ 6085 6086 event->pending_kill = POLL_IN; 6087 if (events && atomic_dec_and_test(&event->event_limit)) { 6088 ret = 1; 6089 event->pending_kill = POLL_HUP; 6090 event->pending_disable = 1; 6091 irq_work_queue(&event->pending); 6092 } 6093 6094 if (event->overflow_handler) 6095 event->overflow_handler(event, data, regs); 6096 else 6097 perf_event_output(event, data, regs); 6098 6099 if (event->fasync && event->pending_kill) { 6100 event->pending_wakeup = 1; 6101 irq_work_queue(&event->pending); 6102 } 6103 6104 return ret; 6105 } 6106 6107 int perf_event_overflow(struct perf_event *event, 6108 struct perf_sample_data *data, 6109 struct pt_regs *regs) 6110 { 6111 return __perf_event_overflow(event, 1, data, regs); 6112 } 6113 6114 /* 6115 * Generic software event infrastructure 6116 */ 6117 6118 struct swevent_htable { 6119 struct swevent_hlist *swevent_hlist; 6120 struct mutex hlist_mutex; 6121 int hlist_refcount; 6122 6123 /* Recursion avoidance in each contexts */ 6124 int recursion[PERF_NR_CONTEXTS]; 6125 6126 /* Keeps track of cpu being initialized/exited */ 6127 bool online; 6128 }; 6129 6130 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 6131 6132 /* 6133 * We directly increment event->count and keep a second value in 6134 * event->hw.period_left to count intervals. This period event 6135 * is kept in the range [-sample_period, 0] so that we can use the 6136 * sign as trigger. 6137 */ 6138 6139 u64 perf_swevent_set_period(struct perf_event *event) 6140 { 6141 struct hw_perf_event *hwc = &event->hw; 6142 u64 period = hwc->last_period; 6143 u64 nr, offset; 6144 s64 old, val; 6145 6146 hwc->last_period = hwc->sample_period; 6147 6148 again: 6149 old = val = local64_read(&hwc->period_left); 6150 if (val < 0) 6151 return 0; 6152 6153 nr = div64_u64(period + val, period); 6154 offset = nr * period; 6155 val -= offset; 6156 if (local64_cmpxchg(&hwc->period_left, old, val) != old) 6157 goto again; 6158 6159 return nr; 6160 } 6161 6162 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 6163 struct perf_sample_data *data, 6164 struct pt_regs *regs) 6165 { 6166 struct hw_perf_event *hwc = &event->hw; 6167 int throttle = 0; 6168 6169 if (!overflow) 6170 overflow = perf_swevent_set_period(event); 6171 6172 if (hwc->interrupts == MAX_INTERRUPTS) 6173 return; 6174 6175 for (; overflow; overflow--) { 6176 if (__perf_event_overflow(event, throttle, 6177 data, regs)) { 6178 /* 6179 * We inhibit the overflow from happening when 6180 * hwc->interrupts == MAX_INTERRUPTS. 6181 */ 6182 break; 6183 } 6184 throttle = 1; 6185 } 6186 } 6187 6188 static void perf_swevent_event(struct perf_event *event, u64 nr, 6189 struct perf_sample_data *data, 6190 struct pt_regs *regs) 6191 { 6192 struct hw_perf_event *hwc = &event->hw; 6193 6194 local64_add(nr, &event->count); 6195 6196 if (!regs) 6197 return; 6198 6199 if (!is_sampling_event(event)) 6200 return; 6201 6202 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 6203 data->period = nr; 6204 return perf_swevent_overflow(event, 1, data, regs); 6205 } else 6206 data->period = event->hw.last_period; 6207 6208 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 6209 return perf_swevent_overflow(event, 1, data, regs); 6210 6211 if (local64_add_negative(nr, &hwc->period_left)) 6212 return; 6213 6214 perf_swevent_overflow(event, 0, data, regs); 6215 } 6216 6217 static int perf_exclude_event(struct perf_event *event, 6218 struct pt_regs *regs) 6219 { 6220 if (event->hw.state & PERF_HES_STOPPED) 6221 return 1; 6222 6223 if (regs) { 6224 if (event->attr.exclude_user && user_mode(regs)) 6225 return 1; 6226 6227 if (event->attr.exclude_kernel && !user_mode(regs)) 6228 return 1; 6229 } 6230 6231 return 0; 6232 } 6233 6234 static int perf_swevent_match(struct perf_event *event, 6235 enum perf_type_id type, 6236 u32 event_id, 6237 struct perf_sample_data *data, 6238 struct pt_regs *regs) 6239 { 6240 if (event->attr.type != type) 6241 return 0; 6242 6243 if (event->attr.config != event_id) 6244 return 0; 6245 6246 if (perf_exclude_event(event, regs)) 6247 return 0; 6248 6249 return 1; 6250 } 6251 6252 static inline u64 swevent_hash(u64 type, u32 event_id) 6253 { 6254 u64 val = event_id | (type << 32); 6255 6256 return hash_64(val, SWEVENT_HLIST_BITS); 6257 } 6258 6259 static inline struct hlist_head * 6260 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 6261 { 6262 u64 hash = swevent_hash(type, event_id); 6263 6264 return &hlist->heads[hash]; 6265 } 6266 6267 /* For the read side: events when they trigger */ 6268 static inline struct hlist_head * 6269 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 6270 { 6271 struct swevent_hlist *hlist; 6272 6273 hlist = rcu_dereference(swhash->swevent_hlist); 6274 if (!hlist) 6275 return NULL; 6276 6277 return __find_swevent_head(hlist, type, event_id); 6278 } 6279 6280 /* For the event head insertion and removal in the hlist */ 6281 static inline struct hlist_head * 6282 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 6283 { 6284 struct swevent_hlist *hlist; 6285 u32 event_id = event->attr.config; 6286 u64 type = event->attr.type; 6287 6288 /* 6289 * Event scheduling is always serialized against hlist allocation 6290 * and release. Which makes the protected version suitable here. 6291 * The context lock guarantees that. 6292 */ 6293 hlist = rcu_dereference_protected(swhash->swevent_hlist, 6294 lockdep_is_held(&event->ctx->lock)); 6295 if (!hlist) 6296 return NULL; 6297 6298 return __find_swevent_head(hlist, type, event_id); 6299 } 6300 6301 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 6302 u64 nr, 6303 struct perf_sample_data *data, 6304 struct pt_regs *regs) 6305 { 6306 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 6307 struct perf_event *event; 6308 struct hlist_head *head; 6309 6310 rcu_read_lock(); 6311 head = find_swevent_head_rcu(swhash, type, event_id); 6312 if (!head) 6313 goto end; 6314 6315 hlist_for_each_entry_rcu(event, head, hlist_entry) { 6316 if (perf_swevent_match(event, type, event_id, data, regs)) 6317 perf_swevent_event(event, nr, data, regs); 6318 } 6319 end: 6320 rcu_read_unlock(); 6321 } 6322 6323 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); 6324 6325 int perf_swevent_get_recursion_context(void) 6326 { 6327 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 6328 6329 return get_recursion_context(swhash->recursion); 6330 } 6331 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 6332 6333 inline void perf_swevent_put_recursion_context(int rctx) 6334 { 6335 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 6336 6337 put_recursion_context(swhash->recursion, rctx); 6338 } 6339 6340 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 6341 { 6342 struct perf_sample_data data; 6343 6344 if (WARN_ON_ONCE(!regs)) 6345 return; 6346 6347 perf_sample_data_init(&data, addr, 0); 6348 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 6349 } 6350 6351 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 6352 { 6353 int rctx; 6354 6355 preempt_disable_notrace(); 6356 rctx = perf_swevent_get_recursion_context(); 6357 if (unlikely(rctx < 0)) 6358 goto fail; 6359 6360 ___perf_sw_event(event_id, nr, regs, addr); 6361 6362 perf_swevent_put_recursion_context(rctx); 6363 fail: 6364 preempt_enable_notrace(); 6365 } 6366 6367 static void perf_swevent_read(struct perf_event *event) 6368 { 6369 } 6370 6371 static int perf_swevent_add(struct perf_event *event, int flags) 6372 { 6373 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 6374 struct hw_perf_event *hwc = &event->hw; 6375 struct hlist_head *head; 6376 6377 if (is_sampling_event(event)) { 6378 hwc->last_period = hwc->sample_period; 6379 perf_swevent_set_period(event); 6380 } 6381 6382 hwc->state = !(flags & PERF_EF_START); 6383 6384 head = find_swevent_head(swhash, event); 6385 if (!head) { 6386 /* 6387 * We can race with cpu hotplug code. Do not 6388 * WARN if the cpu just got unplugged. 6389 */ 6390 WARN_ON_ONCE(swhash->online); 6391 return -EINVAL; 6392 } 6393 6394 hlist_add_head_rcu(&event->hlist_entry, head); 6395 perf_event_update_userpage(event); 6396 6397 return 0; 6398 } 6399 6400 static void perf_swevent_del(struct perf_event *event, int flags) 6401 { 6402 hlist_del_rcu(&event->hlist_entry); 6403 } 6404 6405 static void perf_swevent_start(struct perf_event *event, int flags) 6406 { 6407 event->hw.state = 0; 6408 } 6409 6410 static void perf_swevent_stop(struct perf_event *event, int flags) 6411 { 6412 event->hw.state = PERF_HES_STOPPED; 6413 } 6414 6415 /* Deref the hlist from the update side */ 6416 static inline struct swevent_hlist * 6417 swevent_hlist_deref(struct swevent_htable *swhash) 6418 { 6419 return rcu_dereference_protected(swhash->swevent_hlist, 6420 lockdep_is_held(&swhash->hlist_mutex)); 6421 } 6422 6423 static void swevent_hlist_release(struct swevent_htable *swhash) 6424 { 6425 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 6426 6427 if (!hlist) 6428 return; 6429 6430 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 6431 kfree_rcu(hlist, rcu_head); 6432 } 6433 6434 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu) 6435 { 6436 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 6437 6438 mutex_lock(&swhash->hlist_mutex); 6439 6440 if (!--swhash->hlist_refcount) 6441 swevent_hlist_release(swhash); 6442 6443 mutex_unlock(&swhash->hlist_mutex); 6444 } 6445 6446 static void swevent_hlist_put(struct perf_event *event) 6447 { 6448 int cpu; 6449 6450 for_each_possible_cpu(cpu) 6451 swevent_hlist_put_cpu(event, cpu); 6452 } 6453 6454 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu) 6455 { 6456 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 6457 int err = 0; 6458 6459 mutex_lock(&swhash->hlist_mutex); 6460 6461 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) { 6462 struct swevent_hlist *hlist; 6463 6464 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 6465 if (!hlist) { 6466 err = -ENOMEM; 6467 goto exit; 6468 } 6469 rcu_assign_pointer(swhash->swevent_hlist, hlist); 6470 } 6471 swhash->hlist_refcount++; 6472 exit: 6473 mutex_unlock(&swhash->hlist_mutex); 6474 6475 return err; 6476 } 6477 6478 static int swevent_hlist_get(struct perf_event *event) 6479 { 6480 int err; 6481 int cpu, failed_cpu; 6482 6483 get_online_cpus(); 6484 for_each_possible_cpu(cpu) { 6485 err = swevent_hlist_get_cpu(event, cpu); 6486 if (err) { 6487 failed_cpu = cpu; 6488 goto fail; 6489 } 6490 } 6491 put_online_cpus(); 6492 6493 return 0; 6494 fail: 6495 for_each_possible_cpu(cpu) { 6496 if (cpu == failed_cpu) 6497 break; 6498 swevent_hlist_put_cpu(event, cpu); 6499 } 6500 6501 put_online_cpus(); 6502 return err; 6503 } 6504 6505 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 6506 6507 static void sw_perf_event_destroy(struct perf_event *event) 6508 { 6509 u64 event_id = event->attr.config; 6510 6511 WARN_ON(event->parent); 6512 6513 static_key_slow_dec(&perf_swevent_enabled[event_id]); 6514 swevent_hlist_put(event); 6515 } 6516 6517 static int perf_swevent_init(struct perf_event *event) 6518 { 6519 u64 event_id = event->attr.config; 6520 6521 if (event->attr.type != PERF_TYPE_SOFTWARE) 6522 return -ENOENT; 6523 6524 /* 6525 * no branch sampling for software events 6526 */ 6527 if (has_branch_stack(event)) 6528 return -EOPNOTSUPP; 6529 6530 switch (event_id) { 6531 case PERF_COUNT_SW_CPU_CLOCK: 6532 case PERF_COUNT_SW_TASK_CLOCK: 6533 return -ENOENT; 6534 6535 default: 6536 break; 6537 } 6538 6539 if (event_id >= PERF_COUNT_SW_MAX) 6540 return -ENOENT; 6541 6542 if (!event->parent) { 6543 int err; 6544 6545 err = swevent_hlist_get(event); 6546 if (err) 6547 return err; 6548 6549 static_key_slow_inc(&perf_swevent_enabled[event_id]); 6550 event->destroy = sw_perf_event_destroy; 6551 } 6552 6553 return 0; 6554 } 6555 6556 static struct pmu perf_swevent = { 6557 .task_ctx_nr = perf_sw_context, 6558 6559 .capabilities = PERF_PMU_CAP_NO_NMI, 6560 6561 .event_init = perf_swevent_init, 6562 .add = perf_swevent_add, 6563 .del = perf_swevent_del, 6564 .start = perf_swevent_start, 6565 .stop = perf_swevent_stop, 6566 .read = perf_swevent_read, 6567 }; 6568 6569 #ifdef CONFIG_EVENT_TRACING 6570 6571 static int perf_tp_filter_match(struct perf_event *event, 6572 struct perf_sample_data *data) 6573 { 6574 void *record = data->raw->data; 6575 6576 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 6577 return 1; 6578 return 0; 6579 } 6580 6581 static int perf_tp_event_match(struct perf_event *event, 6582 struct perf_sample_data *data, 6583 struct pt_regs *regs) 6584 { 6585 if (event->hw.state & PERF_HES_STOPPED) 6586 return 0; 6587 /* 6588 * All tracepoints are from kernel-space. 6589 */ 6590 if (event->attr.exclude_kernel) 6591 return 0; 6592 6593 if (!perf_tp_filter_match(event, data)) 6594 return 0; 6595 6596 return 1; 6597 } 6598 6599 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size, 6600 struct pt_regs *regs, struct hlist_head *head, int rctx, 6601 struct task_struct *task) 6602 { 6603 struct perf_sample_data data; 6604 struct perf_event *event; 6605 6606 struct perf_raw_record raw = { 6607 .size = entry_size, 6608 .data = record, 6609 }; 6610 6611 perf_sample_data_init(&data, addr, 0); 6612 data.raw = &raw; 6613 6614 hlist_for_each_entry_rcu(event, head, hlist_entry) { 6615 if (perf_tp_event_match(event, &data, regs)) 6616 perf_swevent_event(event, count, &data, regs); 6617 } 6618 6619 /* 6620 * If we got specified a target task, also iterate its context and 6621 * deliver this event there too. 6622 */ 6623 if (task && task != current) { 6624 struct perf_event_context *ctx; 6625 struct trace_entry *entry = record; 6626 6627 rcu_read_lock(); 6628 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]); 6629 if (!ctx) 6630 goto unlock; 6631 6632 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 6633 if (event->attr.type != PERF_TYPE_TRACEPOINT) 6634 continue; 6635 if (event->attr.config != entry->type) 6636 continue; 6637 if (perf_tp_event_match(event, &data, regs)) 6638 perf_swevent_event(event, count, &data, regs); 6639 } 6640 unlock: 6641 rcu_read_unlock(); 6642 } 6643 6644 perf_swevent_put_recursion_context(rctx); 6645 } 6646 EXPORT_SYMBOL_GPL(perf_tp_event); 6647 6648 static void tp_perf_event_destroy(struct perf_event *event) 6649 { 6650 perf_trace_destroy(event); 6651 } 6652 6653 static int perf_tp_event_init(struct perf_event *event) 6654 { 6655 int err; 6656 6657 if (event->attr.type != PERF_TYPE_TRACEPOINT) 6658 return -ENOENT; 6659 6660 /* 6661 * no branch sampling for tracepoint events 6662 */ 6663 if (has_branch_stack(event)) 6664 return -EOPNOTSUPP; 6665 6666 err = perf_trace_init(event); 6667 if (err) 6668 return err; 6669 6670 event->destroy = tp_perf_event_destroy; 6671 6672 return 0; 6673 } 6674 6675 static struct pmu perf_tracepoint = { 6676 .task_ctx_nr = perf_sw_context, 6677 6678 .event_init = perf_tp_event_init, 6679 .add = perf_trace_add, 6680 .del = perf_trace_del, 6681 .start = perf_swevent_start, 6682 .stop = perf_swevent_stop, 6683 .read = perf_swevent_read, 6684 }; 6685 6686 static inline void perf_tp_register(void) 6687 { 6688 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 6689 } 6690 6691 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 6692 { 6693 char *filter_str; 6694 int ret; 6695 6696 if (event->attr.type != PERF_TYPE_TRACEPOINT) 6697 return -EINVAL; 6698 6699 filter_str = strndup_user(arg, PAGE_SIZE); 6700 if (IS_ERR(filter_str)) 6701 return PTR_ERR(filter_str); 6702 6703 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 6704 6705 kfree(filter_str); 6706 return ret; 6707 } 6708 6709 static void perf_event_free_filter(struct perf_event *event) 6710 { 6711 ftrace_profile_free_filter(event); 6712 } 6713 6714 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 6715 { 6716 struct bpf_prog *prog; 6717 6718 if (event->attr.type != PERF_TYPE_TRACEPOINT) 6719 return -EINVAL; 6720 6721 if (event->tp_event->prog) 6722 return -EEXIST; 6723 6724 if (!(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) 6725 /* bpf programs can only be attached to kprobes */ 6726 return -EINVAL; 6727 6728 prog = bpf_prog_get(prog_fd); 6729 if (IS_ERR(prog)) 6730 return PTR_ERR(prog); 6731 6732 if (prog->type != BPF_PROG_TYPE_KPROBE) { 6733 /* valid fd, but invalid bpf program type */ 6734 bpf_prog_put(prog); 6735 return -EINVAL; 6736 } 6737 6738 event->tp_event->prog = prog; 6739 6740 return 0; 6741 } 6742 6743 static void perf_event_free_bpf_prog(struct perf_event *event) 6744 { 6745 struct bpf_prog *prog; 6746 6747 if (!event->tp_event) 6748 return; 6749 6750 prog = event->tp_event->prog; 6751 if (prog) { 6752 event->tp_event->prog = NULL; 6753 bpf_prog_put(prog); 6754 } 6755 } 6756 6757 #else 6758 6759 static inline void perf_tp_register(void) 6760 { 6761 } 6762 6763 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 6764 { 6765 return -ENOENT; 6766 } 6767 6768 static void perf_event_free_filter(struct perf_event *event) 6769 { 6770 } 6771 6772 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 6773 { 6774 return -ENOENT; 6775 } 6776 6777 static void perf_event_free_bpf_prog(struct perf_event *event) 6778 { 6779 } 6780 #endif /* CONFIG_EVENT_TRACING */ 6781 6782 #ifdef CONFIG_HAVE_HW_BREAKPOINT 6783 void perf_bp_event(struct perf_event *bp, void *data) 6784 { 6785 struct perf_sample_data sample; 6786 struct pt_regs *regs = data; 6787 6788 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 6789 6790 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 6791 perf_swevent_event(bp, 1, &sample, regs); 6792 } 6793 #endif 6794 6795 /* 6796 * hrtimer based swevent callback 6797 */ 6798 6799 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 6800 { 6801 enum hrtimer_restart ret = HRTIMER_RESTART; 6802 struct perf_sample_data data; 6803 struct pt_regs *regs; 6804 struct perf_event *event; 6805 u64 period; 6806 6807 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 6808 6809 if (event->state != PERF_EVENT_STATE_ACTIVE) 6810 return HRTIMER_NORESTART; 6811 6812 event->pmu->read(event); 6813 6814 perf_sample_data_init(&data, 0, event->hw.last_period); 6815 regs = get_irq_regs(); 6816 6817 if (regs && !perf_exclude_event(event, regs)) { 6818 if (!(event->attr.exclude_idle && is_idle_task(current))) 6819 if (__perf_event_overflow(event, 1, &data, regs)) 6820 ret = HRTIMER_NORESTART; 6821 } 6822 6823 period = max_t(u64, 10000, event->hw.sample_period); 6824 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 6825 6826 return ret; 6827 } 6828 6829 static void perf_swevent_start_hrtimer(struct perf_event *event) 6830 { 6831 struct hw_perf_event *hwc = &event->hw; 6832 s64 period; 6833 6834 if (!is_sampling_event(event)) 6835 return; 6836 6837 period = local64_read(&hwc->period_left); 6838 if (period) { 6839 if (period < 0) 6840 period = 10000; 6841 6842 local64_set(&hwc->period_left, 0); 6843 } else { 6844 period = max_t(u64, 10000, hwc->sample_period); 6845 } 6846 __hrtimer_start_range_ns(&hwc->hrtimer, 6847 ns_to_ktime(period), 0, 6848 HRTIMER_MODE_REL_PINNED, 0); 6849 } 6850 6851 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 6852 { 6853 struct hw_perf_event *hwc = &event->hw; 6854 6855 if (is_sampling_event(event)) { 6856 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 6857 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 6858 6859 hrtimer_cancel(&hwc->hrtimer); 6860 } 6861 } 6862 6863 static void perf_swevent_init_hrtimer(struct perf_event *event) 6864 { 6865 struct hw_perf_event *hwc = &event->hw; 6866 6867 if (!is_sampling_event(event)) 6868 return; 6869 6870 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 6871 hwc->hrtimer.function = perf_swevent_hrtimer; 6872 6873 /* 6874 * Since hrtimers have a fixed rate, we can do a static freq->period 6875 * mapping and avoid the whole period adjust feedback stuff. 6876 */ 6877 if (event->attr.freq) { 6878 long freq = event->attr.sample_freq; 6879 6880 event->attr.sample_period = NSEC_PER_SEC / freq; 6881 hwc->sample_period = event->attr.sample_period; 6882 local64_set(&hwc->period_left, hwc->sample_period); 6883 hwc->last_period = hwc->sample_period; 6884 event->attr.freq = 0; 6885 } 6886 } 6887 6888 /* 6889 * Software event: cpu wall time clock 6890 */ 6891 6892 static void cpu_clock_event_update(struct perf_event *event) 6893 { 6894 s64 prev; 6895 u64 now; 6896 6897 now = local_clock(); 6898 prev = local64_xchg(&event->hw.prev_count, now); 6899 local64_add(now - prev, &event->count); 6900 } 6901 6902 static void cpu_clock_event_start(struct perf_event *event, int flags) 6903 { 6904 local64_set(&event->hw.prev_count, local_clock()); 6905 perf_swevent_start_hrtimer(event); 6906 } 6907 6908 static void cpu_clock_event_stop(struct perf_event *event, int flags) 6909 { 6910 perf_swevent_cancel_hrtimer(event); 6911 cpu_clock_event_update(event); 6912 } 6913 6914 static int cpu_clock_event_add(struct perf_event *event, int flags) 6915 { 6916 if (flags & PERF_EF_START) 6917 cpu_clock_event_start(event, flags); 6918 perf_event_update_userpage(event); 6919 6920 return 0; 6921 } 6922 6923 static void cpu_clock_event_del(struct perf_event *event, int flags) 6924 { 6925 cpu_clock_event_stop(event, flags); 6926 } 6927 6928 static void cpu_clock_event_read(struct perf_event *event) 6929 { 6930 cpu_clock_event_update(event); 6931 } 6932 6933 static int cpu_clock_event_init(struct perf_event *event) 6934 { 6935 if (event->attr.type != PERF_TYPE_SOFTWARE) 6936 return -ENOENT; 6937 6938 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 6939 return -ENOENT; 6940 6941 /* 6942 * no branch sampling for software events 6943 */ 6944 if (has_branch_stack(event)) 6945 return -EOPNOTSUPP; 6946 6947 perf_swevent_init_hrtimer(event); 6948 6949 return 0; 6950 } 6951 6952 static struct pmu perf_cpu_clock = { 6953 .task_ctx_nr = perf_sw_context, 6954 6955 .capabilities = PERF_PMU_CAP_NO_NMI, 6956 6957 .event_init = cpu_clock_event_init, 6958 .add = cpu_clock_event_add, 6959 .del = cpu_clock_event_del, 6960 .start = cpu_clock_event_start, 6961 .stop = cpu_clock_event_stop, 6962 .read = cpu_clock_event_read, 6963 }; 6964 6965 /* 6966 * Software event: task time clock 6967 */ 6968 6969 static void task_clock_event_update(struct perf_event *event, u64 now) 6970 { 6971 u64 prev; 6972 s64 delta; 6973 6974 prev = local64_xchg(&event->hw.prev_count, now); 6975 delta = now - prev; 6976 local64_add(delta, &event->count); 6977 } 6978 6979 static void task_clock_event_start(struct perf_event *event, int flags) 6980 { 6981 local64_set(&event->hw.prev_count, event->ctx->time); 6982 perf_swevent_start_hrtimer(event); 6983 } 6984 6985 static void task_clock_event_stop(struct perf_event *event, int flags) 6986 { 6987 perf_swevent_cancel_hrtimer(event); 6988 task_clock_event_update(event, event->ctx->time); 6989 } 6990 6991 static int task_clock_event_add(struct perf_event *event, int flags) 6992 { 6993 if (flags & PERF_EF_START) 6994 task_clock_event_start(event, flags); 6995 perf_event_update_userpage(event); 6996 6997 return 0; 6998 } 6999 7000 static void task_clock_event_del(struct perf_event *event, int flags) 7001 { 7002 task_clock_event_stop(event, PERF_EF_UPDATE); 7003 } 7004 7005 static void task_clock_event_read(struct perf_event *event) 7006 { 7007 u64 now = perf_clock(); 7008 u64 delta = now - event->ctx->timestamp; 7009 u64 time = event->ctx->time + delta; 7010 7011 task_clock_event_update(event, time); 7012 } 7013 7014 static int task_clock_event_init(struct perf_event *event) 7015 { 7016 if (event->attr.type != PERF_TYPE_SOFTWARE) 7017 return -ENOENT; 7018 7019 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 7020 return -ENOENT; 7021 7022 /* 7023 * no branch sampling for software events 7024 */ 7025 if (has_branch_stack(event)) 7026 return -EOPNOTSUPP; 7027 7028 perf_swevent_init_hrtimer(event); 7029 7030 return 0; 7031 } 7032 7033 static struct pmu perf_task_clock = { 7034 .task_ctx_nr = perf_sw_context, 7035 7036 .capabilities = PERF_PMU_CAP_NO_NMI, 7037 7038 .event_init = task_clock_event_init, 7039 .add = task_clock_event_add, 7040 .del = task_clock_event_del, 7041 .start = task_clock_event_start, 7042 .stop = task_clock_event_stop, 7043 .read = task_clock_event_read, 7044 }; 7045 7046 static void perf_pmu_nop_void(struct pmu *pmu) 7047 { 7048 } 7049 7050 static int perf_pmu_nop_int(struct pmu *pmu) 7051 { 7052 return 0; 7053 } 7054 7055 static void perf_pmu_start_txn(struct pmu *pmu) 7056 { 7057 perf_pmu_disable(pmu); 7058 } 7059 7060 static int perf_pmu_commit_txn(struct pmu *pmu) 7061 { 7062 perf_pmu_enable(pmu); 7063 return 0; 7064 } 7065 7066 static void perf_pmu_cancel_txn(struct pmu *pmu) 7067 { 7068 perf_pmu_enable(pmu); 7069 } 7070 7071 static int perf_event_idx_default(struct perf_event *event) 7072 { 7073 return 0; 7074 } 7075 7076 /* 7077 * Ensures all contexts with the same task_ctx_nr have the same 7078 * pmu_cpu_context too. 7079 */ 7080 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn) 7081 { 7082 struct pmu *pmu; 7083 7084 if (ctxn < 0) 7085 return NULL; 7086 7087 list_for_each_entry(pmu, &pmus, entry) { 7088 if (pmu->task_ctx_nr == ctxn) 7089 return pmu->pmu_cpu_context; 7090 } 7091 7092 return NULL; 7093 } 7094 7095 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu) 7096 { 7097 int cpu; 7098 7099 for_each_possible_cpu(cpu) { 7100 struct perf_cpu_context *cpuctx; 7101 7102 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 7103 7104 if (cpuctx->unique_pmu == old_pmu) 7105 cpuctx->unique_pmu = pmu; 7106 } 7107 } 7108 7109 static void free_pmu_context(struct pmu *pmu) 7110 { 7111 struct pmu *i; 7112 7113 mutex_lock(&pmus_lock); 7114 /* 7115 * Like a real lame refcount. 7116 */ 7117 list_for_each_entry(i, &pmus, entry) { 7118 if (i->pmu_cpu_context == pmu->pmu_cpu_context) { 7119 update_pmu_context(i, pmu); 7120 goto out; 7121 } 7122 } 7123 7124 free_percpu(pmu->pmu_cpu_context); 7125 out: 7126 mutex_unlock(&pmus_lock); 7127 } 7128 static struct idr pmu_idr; 7129 7130 static ssize_t 7131 type_show(struct device *dev, struct device_attribute *attr, char *page) 7132 { 7133 struct pmu *pmu = dev_get_drvdata(dev); 7134 7135 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); 7136 } 7137 static DEVICE_ATTR_RO(type); 7138 7139 static ssize_t 7140 perf_event_mux_interval_ms_show(struct device *dev, 7141 struct device_attribute *attr, 7142 char *page) 7143 { 7144 struct pmu *pmu = dev_get_drvdata(dev); 7145 7146 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms); 7147 } 7148 7149 static ssize_t 7150 perf_event_mux_interval_ms_store(struct device *dev, 7151 struct device_attribute *attr, 7152 const char *buf, size_t count) 7153 { 7154 struct pmu *pmu = dev_get_drvdata(dev); 7155 int timer, cpu, ret; 7156 7157 ret = kstrtoint(buf, 0, &timer); 7158 if (ret) 7159 return ret; 7160 7161 if (timer < 1) 7162 return -EINVAL; 7163 7164 /* same value, noting to do */ 7165 if (timer == pmu->hrtimer_interval_ms) 7166 return count; 7167 7168 pmu->hrtimer_interval_ms = timer; 7169 7170 /* update all cpuctx for this PMU */ 7171 for_each_possible_cpu(cpu) { 7172 struct perf_cpu_context *cpuctx; 7173 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 7174 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 7175 7176 if (hrtimer_active(&cpuctx->hrtimer)) 7177 hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval); 7178 } 7179 7180 return count; 7181 } 7182 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 7183 7184 static struct attribute *pmu_dev_attrs[] = { 7185 &dev_attr_type.attr, 7186 &dev_attr_perf_event_mux_interval_ms.attr, 7187 NULL, 7188 }; 7189 ATTRIBUTE_GROUPS(pmu_dev); 7190 7191 static int pmu_bus_running; 7192 static struct bus_type pmu_bus = { 7193 .name = "event_source", 7194 .dev_groups = pmu_dev_groups, 7195 }; 7196 7197 static void pmu_dev_release(struct device *dev) 7198 { 7199 kfree(dev); 7200 } 7201 7202 static int pmu_dev_alloc(struct pmu *pmu) 7203 { 7204 int ret = -ENOMEM; 7205 7206 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 7207 if (!pmu->dev) 7208 goto out; 7209 7210 pmu->dev->groups = pmu->attr_groups; 7211 device_initialize(pmu->dev); 7212 ret = dev_set_name(pmu->dev, "%s", pmu->name); 7213 if (ret) 7214 goto free_dev; 7215 7216 dev_set_drvdata(pmu->dev, pmu); 7217 pmu->dev->bus = &pmu_bus; 7218 pmu->dev->release = pmu_dev_release; 7219 ret = device_add(pmu->dev); 7220 if (ret) 7221 goto free_dev; 7222 7223 out: 7224 return ret; 7225 7226 free_dev: 7227 put_device(pmu->dev); 7228 goto out; 7229 } 7230 7231 static struct lock_class_key cpuctx_mutex; 7232 static struct lock_class_key cpuctx_lock; 7233 7234 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 7235 { 7236 int cpu, ret; 7237 7238 mutex_lock(&pmus_lock); 7239 ret = -ENOMEM; 7240 pmu->pmu_disable_count = alloc_percpu(int); 7241 if (!pmu->pmu_disable_count) 7242 goto unlock; 7243 7244 pmu->type = -1; 7245 if (!name) 7246 goto skip_type; 7247 pmu->name = name; 7248 7249 if (type < 0) { 7250 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL); 7251 if (type < 0) { 7252 ret = type; 7253 goto free_pdc; 7254 } 7255 } 7256 pmu->type = type; 7257 7258 if (pmu_bus_running) { 7259 ret = pmu_dev_alloc(pmu); 7260 if (ret) 7261 goto free_idr; 7262 } 7263 7264 skip_type: 7265 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); 7266 if (pmu->pmu_cpu_context) 7267 goto got_cpu_context; 7268 7269 ret = -ENOMEM; 7270 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); 7271 if (!pmu->pmu_cpu_context) 7272 goto free_dev; 7273 7274 for_each_possible_cpu(cpu) { 7275 struct perf_cpu_context *cpuctx; 7276 7277 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 7278 __perf_event_init_context(&cpuctx->ctx); 7279 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 7280 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 7281 cpuctx->ctx.pmu = pmu; 7282 7283 __perf_cpu_hrtimer_init(cpuctx, cpu); 7284 7285 cpuctx->unique_pmu = pmu; 7286 } 7287 7288 got_cpu_context: 7289 if (!pmu->start_txn) { 7290 if (pmu->pmu_enable) { 7291 /* 7292 * If we have pmu_enable/pmu_disable calls, install 7293 * transaction stubs that use that to try and batch 7294 * hardware accesses. 7295 */ 7296 pmu->start_txn = perf_pmu_start_txn; 7297 pmu->commit_txn = perf_pmu_commit_txn; 7298 pmu->cancel_txn = perf_pmu_cancel_txn; 7299 } else { 7300 pmu->start_txn = perf_pmu_nop_void; 7301 pmu->commit_txn = perf_pmu_nop_int; 7302 pmu->cancel_txn = perf_pmu_nop_void; 7303 } 7304 } 7305 7306 if (!pmu->pmu_enable) { 7307 pmu->pmu_enable = perf_pmu_nop_void; 7308 pmu->pmu_disable = perf_pmu_nop_void; 7309 } 7310 7311 if (!pmu->event_idx) 7312 pmu->event_idx = perf_event_idx_default; 7313 7314 list_add_rcu(&pmu->entry, &pmus); 7315 atomic_set(&pmu->exclusive_cnt, 0); 7316 ret = 0; 7317 unlock: 7318 mutex_unlock(&pmus_lock); 7319 7320 return ret; 7321 7322 free_dev: 7323 device_del(pmu->dev); 7324 put_device(pmu->dev); 7325 7326 free_idr: 7327 if (pmu->type >= PERF_TYPE_MAX) 7328 idr_remove(&pmu_idr, pmu->type); 7329 7330 free_pdc: 7331 free_percpu(pmu->pmu_disable_count); 7332 goto unlock; 7333 } 7334 EXPORT_SYMBOL_GPL(perf_pmu_register); 7335 7336 void perf_pmu_unregister(struct pmu *pmu) 7337 { 7338 mutex_lock(&pmus_lock); 7339 list_del_rcu(&pmu->entry); 7340 mutex_unlock(&pmus_lock); 7341 7342 /* 7343 * We dereference the pmu list under both SRCU and regular RCU, so 7344 * synchronize against both of those. 7345 */ 7346 synchronize_srcu(&pmus_srcu); 7347 synchronize_rcu(); 7348 7349 free_percpu(pmu->pmu_disable_count); 7350 if (pmu->type >= PERF_TYPE_MAX) 7351 idr_remove(&pmu_idr, pmu->type); 7352 device_del(pmu->dev); 7353 put_device(pmu->dev); 7354 free_pmu_context(pmu); 7355 } 7356 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 7357 7358 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) 7359 { 7360 struct perf_event_context *ctx = NULL; 7361 int ret; 7362 7363 if (!try_module_get(pmu->module)) 7364 return -ENODEV; 7365 7366 if (event->group_leader != event) { 7367 ctx = perf_event_ctx_lock(event->group_leader); 7368 BUG_ON(!ctx); 7369 } 7370 7371 event->pmu = pmu; 7372 ret = pmu->event_init(event); 7373 7374 if (ctx) 7375 perf_event_ctx_unlock(event->group_leader, ctx); 7376 7377 if (ret) 7378 module_put(pmu->module); 7379 7380 return ret; 7381 } 7382 7383 struct pmu *perf_init_event(struct perf_event *event) 7384 { 7385 struct pmu *pmu = NULL; 7386 int idx; 7387 int ret; 7388 7389 idx = srcu_read_lock(&pmus_srcu); 7390 7391 rcu_read_lock(); 7392 pmu = idr_find(&pmu_idr, event->attr.type); 7393 rcu_read_unlock(); 7394 if (pmu) { 7395 ret = perf_try_init_event(pmu, event); 7396 if (ret) 7397 pmu = ERR_PTR(ret); 7398 goto unlock; 7399 } 7400 7401 list_for_each_entry_rcu(pmu, &pmus, entry) { 7402 ret = perf_try_init_event(pmu, event); 7403 if (!ret) 7404 goto unlock; 7405 7406 if (ret != -ENOENT) { 7407 pmu = ERR_PTR(ret); 7408 goto unlock; 7409 } 7410 } 7411 pmu = ERR_PTR(-ENOENT); 7412 unlock: 7413 srcu_read_unlock(&pmus_srcu, idx); 7414 7415 return pmu; 7416 } 7417 7418 static void account_event_cpu(struct perf_event *event, int cpu) 7419 { 7420 if (event->parent) 7421 return; 7422 7423 if (is_cgroup_event(event)) 7424 atomic_inc(&per_cpu(perf_cgroup_events, cpu)); 7425 } 7426 7427 static void account_event(struct perf_event *event) 7428 { 7429 if (event->parent) 7430 return; 7431 7432 if (event->attach_state & PERF_ATTACH_TASK) 7433 static_key_slow_inc(&perf_sched_events.key); 7434 if (event->attr.mmap || event->attr.mmap_data) 7435 atomic_inc(&nr_mmap_events); 7436 if (event->attr.comm) 7437 atomic_inc(&nr_comm_events); 7438 if (event->attr.task) 7439 atomic_inc(&nr_task_events); 7440 if (event->attr.freq) { 7441 if (atomic_inc_return(&nr_freq_events) == 1) 7442 tick_nohz_full_kick_all(); 7443 } 7444 if (has_branch_stack(event)) 7445 static_key_slow_inc(&perf_sched_events.key); 7446 if (is_cgroup_event(event)) 7447 static_key_slow_inc(&perf_sched_events.key); 7448 7449 account_event_cpu(event, event->cpu); 7450 } 7451 7452 /* 7453 * Allocate and initialize a event structure 7454 */ 7455 static struct perf_event * 7456 perf_event_alloc(struct perf_event_attr *attr, int cpu, 7457 struct task_struct *task, 7458 struct perf_event *group_leader, 7459 struct perf_event *parent_event, 7460 perf_overflow_handler_t overflow_handler, 7461 void *context, int cgroup_fd) 7462 { 7463 struct pmu *pmu; 7464 struct perf_event *event; 7465 struct hw_perf_event *hwc; 7466 long err = -EINVAL; 7467 7468 if ((unsigned)cpu >= nr_cpu_ids) { 7469 if (!task || cpu != -1) 7470 return ERR_PTR(-EINVAL); 7471 } 7472 7473 event = kzalloc(sizeof(*event), GFP_KERNEL); 7474 if (!event) 7475 return ERR_PTR(-ENOMEM); 7476 7477 /* 7478 * Single events are their own group leaders, with an 7479 * empty sibling list: 7480 */ 7481 if (!group_leader) 7482 group_leader = event; 7483 7484 mutex_init(&event->child_mutex); 7485 INIT_LIST_HEAD(&event->child_list); 7486 7487 INIT_LIST_HEAD(&event->group_entry); 7488 INIT_LIST_HEAD(&event->event_entry); 7489 INIT_LIST_HEAD(&event->sibling_list); 7490 INIT_LIST_HEAD(&event->rb_entry); 7491 INIT_LIST_HEAD(&event->active_entry); 7492 INIT_HLIST_NODE(&event->hlist_entry); 7493 7494 7495 init_waitqueue_head(&event->waitq); 7496 init_irq_work(&event->pending, perf_pending_event); 7497 7498 mutex_init(&event->mmap_mutex); 7499 7500 atomic_long_set(&event->refcount, 1); 7501 event->cpu = cpu; 7502 event->attr = *attr; 7503 event->group_leader = group_leader; 7504 event->pmu = NULL; 7505 event->oncpu = -1; 7506 7507 event->parent = parent_event; 7508 7509 event->ns = get_pid_ns(task_active_pid_ns(current)); 7510 event->id = atomic64_inc_return(&perf_event_id); 7511 7512 event->state = PERF_EVENT_STATE_INACTIVE; 7513 7514 if (task) { 7515 event->attach_state = PERF_ATTACH_TASK; 7516 /* 7517 * XXX pmu::event_init needs to know what task to account to 7518 * and we cannot use the ctx information because we need the 7519 * pmu before we get a ctx. 7520 */ 7521 event->hw.target = task; 7522 } 7523 7524 event->clock = &local_clock; 7525 if (parent_event) 7526 event->clock = parent_event->clock; 7527 7528 if (!overflow_handler && parent_event) { 7529 overflow_handler = parent_event->overflow_handler; 7530 context = parent_event->overflow_handler_context; 7531 } 7532 7533 event->overflow_handler = overflow_handler; 7534 event->overflow_handler_context = context; 7535 7536 perf_event__state_init(event); 7537 7538 pmu = NULL; 7539 7540 hwc = &event->hw; 7541 hwc->sample_period = attr->sample_period; 7542 if (attr->freq && attr->sample_freq) 7543 hwc->sample_period = 1; 7544 hwc->last_period = hwc->sample_period; 7545 7546 local64_set(&hwc->period_left, hwc->sample_period); 7547 7548 /* 7549 * we currently do not support PERF_FORMAT_GROUP on inherited events 7550 */ 7551 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP)) 7552 goto err_ns; 7553 7554 if (!has_branch_stack(event)) 7555 event->attr.branch_sample_type = 0; 7556 7557 if (cgroup_fd != -1) { 7558 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); 7559 if (err) 7560 goto err_ns; 7561 } 7562 7563 pmu = perf_init_event(event); 7564 if (!pmu) 7565 goto err_ns; 7566 else if (IS_ERR(pmu)) { 7567 err = PTR_ERR(pmu); 7568 goto err_ns; 7569 } 7570 7571 err = exclusive_event_init(event); 7572 if (err) 7573 goto err_pmu; 7574 7575 if (!event->parent) { 7576 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 7577 err = get_callchain_buffers(); 7578 if (err) 7579 goto err_per_task; 7580 } 7581 } 7582 7583 return event; 7584 7585 err_per_task: 7586 exclusive_event_destroy(event); 7587 7588 err_pmu: 7589 if (event->destroy) 7590 event->destroy(event); 7591 module_put(pmu->module); 7592 err_ns: 7593 if (is_cgroup_event(event)) 7594 perf_detach_cgroup(event); 7595 if (event->ns) 7596 put_pid_ns(event->ns); 7597 kfree(event); 7598 7599 return ERR_PTR(err); 7600 } 7601 7602 static int perf_copy_attr(struct perf_event_attr __user *uattr, 7603 struct perf_event_attr *attr) 7604 { 7605 u32 size; 7606 int ret; 7607 7608 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0)) 7609 return -EFAULT; 7610 7611 /* 7612 * zero the full structure, so that a short copy will be nice. 7613 */ 7614 memset(attr, 0, sizeof(*attr)); 7615 7616 ret = get_user(size, &uattr->size); 7617 if (ret) 7618 return ret; 7619 7620 if (size > PAGE_SIZE) /* silly large */ 7621 goto err_size; 7622 7623 if (!size) /* abi compat */ 7624 size = PERF_ATTR_SIZE_VER0; 7625 7626 if (size < PERF_ATTR_SIZE_VER0) 7627 goto err_size; 7628 7629 /* 7630 * If we're handed a bigger struct than we know of, 7631 * ensure all the unknown bits are 0 - i.e. new 7632 * user-space does not rely on any kernel feature 7633 * extensions we dont know about yet. 7634 */ 7635 if (size > sizeof(*attr)) { 7636 unsigned char __user *addr; 7637 unsigned char __user *end; 7638 unsigned char val; 7639 7640 addr = (void __user *)uattr + sizeof(*attr); 7641 end = (void __user *)uattr + size; 7642 7643 for (; addr < end; addr++) { 7644 ret = get_user(val, addr); 7645 if (ret) 7646 return ret; 7647 if (val) 7648 goto err_size; 7649 } 7650 size = sizeof(*attr); 7651 } 7652 7653 ret = copy_from_user(attr, uattr, size); 7654 if (ret) 7655 return -EFAULT; 7656 7657 if (attr->__reserved_1) 7658 return -EINVAL; 7659 7660 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 7661 return -EINVAL; 7662 7663 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 7664 return -EINVAL; 7665 7666 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 7667 u64 mask = attr->branch_sample_type; 7668 7669 /* only using defined bits */ 7670 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 7671 return -EINVAL; 7672 7673 /* at least one branch bit must be set */ 7674 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 7675 return -EINVAL; 7676 7677 /* propagate priv level, when not set for branch */ 7678 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 7679 7680 /* exclude_kernel checked on syscall entry */ 7681 if (!attr->exclude_kernel) 7682 mask |= PERF_SAMPLE_BRANCH_KERNEL; 7683 7684 if (!attr->exclude_user) 7685 mask |= PERF_SAMPLE_BRANCH_USER; 7686 7687 if (!attr->exclude_hv) 7688 mask |= PERF_SAMPLE_BRANCH_HV; 7689 /* 7690 * adjust user setting (for HW filter setup) 7691 */ 7692 attr->branch_sample_type = mask; 7693 } 7694 /* privileged levels capture (kernel, hv): check permissions */ 7695 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM) 7696 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 7697 return -EACCES; 7698 } 7699 7700 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 7701 ret = perf_reg_validate(attr->sample_regs_user); 7702 if (ret) 7703 return ret; 7704 } 7705 7706 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 7707 if (!arch_perf_have_user_stack_dump()) 7708 return -ENOSYS; 7709 7710 /* 7711 * We have __u32 type for the size, but so far 7712 * we can only use __u16 as maximum due to the 7713 * __u16 sample size limit. 7714 */ 7715 if (attr->sample_stack_user >= USHRT_MAX) 7716 ret = -EINVAL; 7717 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 7718 ret = -EINVAL; 7719 } 7720 7721 if (attr->sample_type & PERF_SAMPLE_REGS_INTR) 7722 ret = perf_reg_validate(attr->sample_regs_intr); 7723 out: 7724 return ret; 7725 7726 err_size: 7727 put_user(sizeof(*attr), &uattr->size); 7728 ret = -E2BIG; 7729 goto out; 7730 } 7731 7732 static int 7733 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 7734 { 7735 struct ring_buffer *rb = NULL; 7736 int ret = -EINVAL; 7737 7738 if (!output_event) 7739 goto set; 7740 7741 /* don't allow circular references */ 7742 if (event == output_event) 7743 goto out; 7744 7745 /* 7746 * Don't allow cross-cpu buffers 7747 */ 7748 if (output_event->cpu != event->cpu) 7749 goto out; 7750 7751 /* 7752 * If its not a per-cpu rb, it must be the same task. 7753 */ 7754 if (output_event->cpu == -1 && output_event->ctx != event->ctx) 7755 goto out; 7756 7757 /* 7758 * Mixing clocks in the same buffer is trouble you don't need. 7759 */ 7760 if (output_event->clock != event->clock) 7761 goto out; 7762 7763 /* 7764 * If both events generate aux data, they must be on the same PMU 7765 */ 7766 if (has_aux(event) && has_aux(output_event) && 7767 event->pmu != output_event->pmu) 7768 goto out; 7769 7770 set: 7771 mutex_lock(&event->mmap_mutex); 7772 /* Can't redirect output if we've got an active mmap() */ 7773 if (atomic_read(&event->mmap_count)) 7774 goto unlock; 7775 7776 if (output_event) { 7777 /* get the rb we want to redirect to */ 7778 rb = ring_buffer_get(output_event); 7779 if (!rb) 7780 goto unlock; 7781 } 7782 7783 ring_buffer_attach(event, rb); 7784 7785 ret = 0; 7786 unlock: 7787 mutex_unlock(&event->mmap_mutex); 7788 7789 out: 7790 return ret; 7791 } 7792 7793 static void mutex_lock_double(struct mutex *a, struct mutex *b) 7794 { 7795 if (b < a) 7796 swap(a, b); 7797 7798 mutex_lock(a); 7799 mutex_lock_nested(b, SINGLE_DEPTH_NESTING); 7800 } 7801 7802 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) 7803 { 7804 bool nmi_safe = false; 7805 7806 switch (clk_id) { 7807 case CLOCK_MONOTONIC: 7808 event->clock = &ktime_get_mono_fast_ns; 7809 nmi_safe = true; 7810 break; 7811 7812 case CLOCK_MONOTONIC_RAW: 7813 event->clock = &ktime_get_raw_fast_ns; 7814 nmi_safe = true; 7815 break; 7816 7817 case CLOCK_REALTIME: 7818 event->clock = &ktime_get_real_ns; 7819 break; 7820 7821 case CLOCK_BOOTTIME: 7822 event->clock = &ktime_get_boot_ns; 7823 break; 7824 7825 case CLOCK_TAI: 7826 event->clock = &ktime_get_tai_ns; 7827 break; 7828 7829 default: 7830 return -EINVAL; 7831 } 7832 7833 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) 7834 return -EINVAL; 7835 7836 return 0; 7837 } 7838 7839 /** 7840 * sys_perf_event_open - open a performance event, associate it to a task/cpu 7841 * 7842 * @attr_uptr: event_id type attributes for monitoring/sampling 7843 * @pid: target pid 7844 * @cpu: target cpu 7845 * @group_fd: group leader event fd 7846 */ 7847 SYSCALL_DEFINE5(perf_event_open, 7848 struct perf_event_attr __user *, attr_uptr, 7849 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 7850 { 7851 struct perf_event *group_leader = NULL, *output_event = NULL; 7852 struct perf_event *event, *sibling; 7853 struct perf_event_attr attr; 7854 struct perf_event_context *ctx, *uninitialized_var(gctx); 7855 struct file *event_file = NULL; 7856 struct fd group = {NULL, 0}; 7857 struct task_struct *task = NULL; 7858 struct pmu *pmu; 7859 int event_fd; 7860 int move_group = 0; 7861 int err; 7862 int f_flags = O_RDWR; 7863 int cgroup_fd = -1; 7864 7865 /* for future expandability... */ 7866 if (flags & ~PERF_FLAG_ALL) 7867 return -EINVAL; 7868 7869 err = perf_copy_attr(attr_uptr, &attr); 7870 if (err) 7871 return err; 7872 7873 if (!attr.exclude_kernel) { 7874 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 7875 return -EACCES; 7876 } 7877 7878 if (attr.freq) { 7879 if (attr.sample_freq > sysctl_perf_event_sample_rate) 7880 return -EINVAL; 7881 } else { 7882 if (attr.sample_period & (1ULL << 63)) 7883 return -EINVAL; 7884 } 7885 7886 /* 7887 * In cgroup mode, the pid argument is used to pass the fd 7888 * opened to the cgroup directory in cgroupfs. The cpu argument 7889 * designates the cpu on which to monitor threads from that 7890 * cgroup. 7891 */ 7892 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 7893 return -EINVAL; 7894 7895 if (flags & PERF_FLAG_FD_CLOEXEC) 7896 f_flags |= O_CLOEXEC; 7897 7898 event_fd = get_unused_fd_flags(f_flags); 7899 if (event_fd < 0) 7900 return event_fd; 7901 7902 if (group_fd != -1) { 7903 err = perf_fget_light(group_fd, &group); 7904 if (err) 7905 goto err_fd; 7906 group_leader = group.file->private_data; 7907 if (flags & PERF_FLAG_FD_OUTPUT) 7908 output_event = group_leader; 7909 if (flags & PERF_FLAG_FD_NO_GROUP) 7910 group_leader = NULL; 7911 } 7912 7913 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 7914 task = find_lively_task_by_vpid(pid); 7915 if (IS_ERR(task)) { 7916 err = PTR_ERR(task); 7917 goto err_group_fd; 7918 } 7919 } 7920 7921 if (task && group_leader && 7922 group_leader->attr.inherit != attr.inherit) { 7923 err = -EINVAL; 7924 goto err_task; 7925 } 7926 7927 get_online_cpus(); 7928 7929 if (flags & PERF_FLAG_PID_CGROUP) 7930 cgroup_fd = pid; 7931 7932 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 7933 NULL, NULL, cgroup_fd); 7934 if (IS_ERR(event)) { 7935 err = PTR_ERR(event); 7936 goto err_cpus; 7937 } 7938 7939 if (is_sampling_event(event)) { 7940 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 7941 err = -ENOTSUPP; 7942 goto err_alloc; 7943 } 7944 } 7945 7946 account_event(event); 7947 7948 /* 7949 * Special case software events and allow them to be part of 7950 * any hardware group. 7951 */ 7952 pmu = event->pmu; 7953 7954 if (attr.use_clockid) { 7955 err = perf_event_set_clock(event, attr.clockid); 7956 if (err) 7957 goto err_alloc; 7958 } 7959 7960 if (group_leader && 7961 (is_software_event(event) != is_software_event(group_leader))) { 7962 if (is_software_event(event)) { 7963 /* 7964 * If event and group_leader are not both a software 7965 * event, and event is, then group leader is not. 7966 * 7967 * Allow the addition of software events to !software 7968 * groups, this is safe because software events never 7969 * fail to schedule. 7970 */ 7971 pmu = group_leader->pmu; 7972 } else if (is_software_event(group_leader) && 7973 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) { 7974 /* 7975 * In case the group is a pure software group, and we 7976 * try to add a hardware event, move the whole group to 7977 * the hardware context. 7978 */ 7979 move_group = 1; 7980 } 7981 } 7982 7983 /* 7984 * Get the target context (task or percpu): 7985 */ 7986 ctx = find_get_context(pmu, task, event); 7987 if (IS_ERR(ctx)) { 7988 err = PTR_ERR(ctx); 7989 goto err_alloc; 7990 } 7991 7992 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) { 7993 err = -EBUSY; 7994 goto err_context; 7995 } 7996 7997 if (task) { 7998 put_task_struct(task); 7999 task = NULL; 8000 } 8001 8002 /* 8003 * Look up the group leader (we will attach this event to it): 8004 */ 8005 if (group_leader) { 8006 err = -EINVAL; 8007 8008 /* 8009 * Do not allow a recursive hierarchy (this new sibling 8010 * becoming part of another group-sibling): 8011 */ 8012 if (group_leader->group_leader != group_leader) 8013 goto err_context; 8014 8015 /* All events in a group should have the same clock */ 8016 if (group_leader->clock != event->clock) 8017 goto err_context; 8018 8019 /* 8020 * Do not allow to attach to a group in a different 8021 * task or CPU context: 8022 */ 8023 if (move_group) { 8024 /* 8025 * Make sure we're both on the same task, or both 8026 * per-cpu events. 8027 */ 8028 if (group_leader->ctx->task != ctx->task) 8029 goto err_context; 8030 8031 /* 8032 * Make sure we're both events for the same CPU; 8033 * grouping events for different CPUs is broken; since 8034 * you can never concurrently schedule them anyhow. 8035 */ 8036 if (group_leader->cpu != event->cpu) 8037 goto err_context; 8038 } else { 8039 if (group_leader->ctx != ctx) 8040 goto err_context; 8041 } 8042 8043 /* 8044 * Only a group leader can be exclusive or pinned 8045 */ 8046 if (attr.exclusive || attr.pinned) 8047 goto err_context; 8048 } 8049 8050 if (output_event) { 8051 err = perf_event_set_output(event, output_event); 8052 if (err) 8053 goto err_context; 8054 } 8055 8056 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, 8057 f_flags); 8058 if (IS_ERR(event_file)) { 8059 err = PTR_ERR(event_file); 8060 goto err_context; 8061 } 8062 8063 if (move_group) { 8064 gctx = group_leader->ctx; 8065 8066 /* 8067 * See perf_event_ctx_lock() for comments on the details 8068 * of swizzling perf_event::ctx. 8069 */ 8070 mutex_lock_double(&gctx->mutex, &ctx->mutex); 8071 8072 perf_remove_from_context(group_leader, false); 8073 8074 list_for_each_entry(sibling, &group_leader->sibling_list, 8075 group_entry) { 8076 perf_remove_from_context(sibling, false); 8077 put_ctx(gctx); 8078 } 8079 } else { 8080 mutex_lock(&ctx->mutex); 8081 } 8082 8083 WARN_ON_ONCE(ctx->parent_ctx); 8084 8085 if (move_group) { 8086 /* 8087 * Wait for everybody to stop referencing the events through 8088 * the old lists, before installing it on new lists. 8089 */ 8090 synchronize_rcu(); 8091 8092 /* 8093 * Install the group siblings before the group leader. 8094 * 8095 * Because a group leader will try and install the entire group 8096 * (through the sibling list, which is still in-tact), we can 8097 * end up with siblings installed in the wrong context. 8098 * 8099 * By installing siblings first we NO-OP because they're not 8100 * reachable through the group lists. 8101 */ 8102 list_for_each_entry(sibling, &group_leader->sibling_list, 8103 group_entry) { 8104 perf_event__state_init(sibling); 8105 perf_install_in_context(ctx, sibling, sibling->cpu); 8106 get_ctx(ctx); 8107 } 8108 8109 /* 8110 * Removing from the context ends up with disabled 8111 * event. What we want here is event in the initial 8112 * startup state, ready to be add into new context. 8113 */ 8114 perf_event__state_init(group_leader); 8115 perf_install_in_context(ctx, group_leader, group_leader->cpu); 8116 get_ctx(ctx); 8117 } 8118 8119 if (!exclusive_event_installable(event, ctx)) { 8120 err = -EBUSY; 8121 mutex_unlock(&ctx->mutex); 8122 fput(event_file); 8123 goto err_context; 8124 } 8125 8126 perf_install_in_context(ctx, event, event->cpu); 8127 perf_unpin_context(ctx); 8128 8129 if (move_group) { 8130 mutex_unlock(&gctx->mutex); 8131 put_ctx(gctx); 8132 } 8133 mutex_unlock(&ctx->mutex); 8134 8135 put_online_cpus(); 8136 8137 event->owner = current; 8138 8139 mutex_lock(¤t->perf_event_mutex); 8140 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 8141 mutex_unlock(¤t->perf_event_mutex); 8142 8143 /* 8144 * Precalculate sample_data sizes 8145 */ 8146 perf_event__header_size(event); 8147 perf_event__id_header_size(event); 8148 8149 /* 8150 * Drop the reference on the group_event after placing the 8151 * new event on the sibling_list. This ensures destruction 8152 * of the group leader will find the pointer to itself in 8153 * perf_group_detach(). 8154 */ 8155 fdput(group); 8156 fd_install(event_fd, event_file); 8157 return event_fd; 8158 8159 err_context: 8160 perf_unpin_context(ctx); 8161 put_ctx(ctx); 8162 err_alloc: 8163 free_event(event); 8164 err_cpus: 8165 put_online_cpus(); 8166 err_task: 8167 if (task) 8168 put_task_struct(task); 8169 err_group_fd: 8170 fdput(group); 8171 err_fd: 8172 put_unused_fd(event_fd); 8173 return err; 8174 } 8175 8176 /** 8177 * perf_event_create_kernel_counter 8178 * 8179 * @attr: attributes of the counter to create 8180 * @cpu: cpu in which the counter is bound 8181 * @task: task to profile (NULL for percpu) 8182 */ 8183 struct perf_event * 8184 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 8185 struct task_struct *task, 8186 perf_overflow_handler_t overflow_handler, 8187 void *context) 8188 { 8189 struct perf_event_context *ctx; 8190 struct perf_event *event; 8191 int err; 8192 8193 /* 8194 * Get the target context (task or percpu): 8195 */ 8196 8197 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 8198 overflow_handler, context, -1); 8199 if (IS_ERR(event)) { 8200 err = PTR_ERR(event); 8201 goto err; 8202 } 8203 8204 /* Mark owner so we could distinguish it from user events. */ 8205 event->owner = EVENT_OWNER_KERNEL; 8206 8207 account_event(event); 8208 8209 ctx = find_get_context(event->pmu, task, event); 8210 if (IS_ERR(ctx)) { 8211 err = PTR_ERR(ctx); 8212 goto err_free; 8213 } 8214 8215 WARN_ON_ONCE(ctx->parent_ctx); 8216 mutex_lock(&ctx->mutex); 8217 if (!exclusive_event_installable(event, ctx)) { 8218 mutex_unlock(&ctx->mutex); 8219 perf_unpin_context(ctx); 8220 put_ctx(ctx); 8221 err = -EBUSY; 8222 goto err_free; 8223 } 8224 8225 perf_install_in_context(ctx, event, cpu); 8226 perf_unpin_context(ctx); 8227 mutex_unlock(&ctx->mutex); 8228 8229 return event; 8230 8231 err_free: 8232 free_event(event); 8233 err: 8234 return ERR_PTR(err); 8235 } 8236 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 8237 8238 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 8239 { 8240 struct perf_event_context *src_ctx; 8241 struct perf_event_context *dst_ctx; 8242 struct perf_event *event, *tmp; 8243 LIST_HEAD(events); 8244 8245 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx; 8246 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx; 8247 8248 /* 8249 * See perf_event_ctx_lock() for comments on the details 8250 * of swizzling perf_event::ctx. 8251 */ 8252 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); 8253 list_for_each_entry_safe(event, tmp, &src_ctx->event_list, 8254 event_entry) { 8255 perf_remove_from_context(event, false); 8256 unaccount_event_cpu(event, src_cpu); 8257 put_ctx(src_ctx); 8258 list_add(&event->migrate_entry, &events); 8259 } 8260 8261 /* 8262 * Wait for the events to quiesce before re-instating them. 8263 */ 8264 synchronize_rcu(); 8265 8266 /* 8267 * Re-instate events in 2 passes. 8268 * 8269 * Skip over group leaders and only install siblings on this first 8270 * pass, siblings will not get enabled without a leader, however a 8271 * leader will enable its siblings, even if those are still on the old 8272 * context. 8273 */ 8274 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 8275 if (event->group_leader == event) 8276 continue; 8277 8278 list_del(&event->migrate_entry); 8279 if (event->state >= PERF_EVENT_STATE_OFF) 8280 event->state = PERF_EVENT_STATE_INACTIVE; 8281 account_event_cpu(event, dst_cpu); 8282 perf_install_in_context(dst_ctx, event, dst_cpu); 8283 get_ctx(dst_ctx); 8284 } 8285 8286 /* 8287 * Once all the siblings are setup properly, install the group leaders 8288 * to make it go. 8289 */ 8290 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 8291 list_del(&event->migrate_entry); 8292 if (event->state >= PERF_EVENT_STATE_OFF) 8293 event->state = PERF_EVENT_STATE_INACTIVE; 8294 account_event_cpu(event, dst_cpu); 8295 perf_install_in_context(dst_ctx, event, dst_cpu); 8296 get_ctx(dst_ctx); 8297 } 8298 mutex_unlock(&dst_ctx->mutex); 8299 mutex_unlock(&src_ctx->mutex); 8300 } 8301 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 8302 8303 static void sync_child_event(struct perf_event *child_event, 8304 struct task_struct *child) 8305 { 8306 struct perf_event *parent_event = child_event->parent; 8307 u64 child_val; 8308 8309 if (child_event->attr.inherit_stat) 8310 perf_event_read_event(child_event, child); 8311 8312 child_val = perf_event_count(child_event); 8313 8314 /* 8315 * Add back the child's count to the parent's count: 8316 */ 8317 atomic64_add(child_val, &parent_event->child_count); 8318 atomic64_add(child_event->total_time_enabled, 8319 &parent_event->child_total_time_enabled); 8320 atomic64_add(child_event->total_time_running, 8321 &parent_event->child_total_time_running); 8322 8323 /* 8324 * Remove this event from the parent's list 8325 */ 8326 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 8327 mutex_lock(&parent_event->child_mutex); 8328 list_del_init(&child_event->child_list); 8329 mutex_unlock(&parent_event->child_mutex); 8330 8331 /* 8332 * Make sure user/parent get notified, that we just 8333 * lost one event. 8334 */ 8335 perf_event_wakeup(parent_event); 8336 8337 /* 8338 * Release the parent event, if this was the last 8339 * reference to it. 8340 */ 8341 put_event(parent_event); 8342 } 8343 8344 static void 8345 __perf_event_exit_task(struct perf_event *child_event, 8346 struct perf_event_context *child_ctx, 8347 struct task_struct *child) 8348 { 8349 /* 8350 * Do not destroy the 'original' grouping; because of the context 8351 * switch optimization the original events could've ended up in a 8352 * random child task. 8353 * 8354 * If we were to destroy the original group, all group related 8355 * operations would cease to function properly after this random 8356 * child dies. 8357 * 8358 * Do destroy all inherited groups, we don't care about those 8359 * and being thorough is better. 8360 */ 8361 perf_remove_from_context(child_event, !!child_event->parent); 8362 8363 /* 8364 * It can happen that the parent exits first, and has events 8365 * that are still around due to the child reference. These 8366 * events need to be zapped. 8367 */ 8368 if (child_event->parent) { 8369 sync_child_event(child_event, child); 8370 free_event(child_event); 8371 } else { 8372 child_event->state = PERF_EVENT_STATE_EXIT; 8373 perf_event_wakeup(child_event); 8374 } 8375 } 8376 8377 static void perf_event_exit_task_context(struct task_struct *child, int ctxn) 8378 { 8379 struct perf_event *child_event, *next; 8380 struct perf_event_context *child_ctx, *clone_ctx = NULL; 8381 unsigned long flags; 8382 8383 if (likely(!child->perf_event_ctxp[ctxn])) { 8384 perf_event_task(child, NULL, 0); 8385 return; 8386 } 8387 8388 local_irq_save(flags); 8389 /* 8390 * We can't reschedule here because interrupts are disabled, 8391 * and either child is current or it is a task that can't be 8392 * scheduled, so we are now safe from rescheduling changing 8393 * our context. 8394 */ 8395 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]); 8396 8397 /* 8398 * Take the context lock here so that if find_get_context is 8399 * reading child->perf_event_ctxp, we wait until it has 8400 * incremented the context's refcount before we do put_ctx below. 8401 */ 8402 raw_spin_lock(&child_ctx->lock); 8403 task_ctx_sched_out(child_ctx); 8404 child->perf_event_ctxp[ctxn] = NULL; 8405 8406 /* 8407 * If this context is a clone; unclone it so it can't get 8408 * swapped to another process while we're removing all 8409 * the events from it. 8410 */ 8411 clone_ctx = unclone_ctx(child_ctx); 8412 update_context_time(child_ctx); 8413 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 8414 8415 if (clone_ctx) 8416 put_ctx(clone_ctx); 8417 8418 /* 8419 * Report the task dead after unscheduling the events so that we 8420 * won't get any samples after PERF_RECORD_EXIT. We can however still 8421 * get a few PERF_RECORD_READ events. 8422 */ 8423 perf_event_task(child, child_ctx, 0); 8424 8425 /* 8426 * We can recurse on the same lock type through: 8427 * 8428 * __perf_event_exit_task() 8429 * sync_child_event() 8430 * put_event() 8431 * mutex_lock(&ctx->mutex) 8432 * 8433 * But since its the parent context it won't be the same instance. 8434 */ 8435 mutex_lock(&child_ctx->mutex); 8436 8437 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) 8438 __perf_event_exit_task(child_event, child_ctx, child); 8439 8440 mutex_unlock(&child_ctx->mutex); 8441 8442 put_ctx(child_ctx); 8443 } 8444 8445 /* 8446 * When a child task exits, feed back event values to parent events. 8447 */ 8448 void perf_event_exit_task(struct task_struct *child) 8449 { 8450 struct perf_event *event, *tmp; 8451 int ctxn; 8452 8453 mutex_lock(&child->perf_event_mutex); 8454 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 8455 owner_entry) { 8456 list_del_init(&event->owner_entry); 8457 8458 /* 8459 * Ensure the list deletion is visible before we clear 8460 * the owner, closes a race against perf_release() where 8461 * we need to serialize on the owner->perf_event_mutex. 8462 */ 8463 smp_wmb(); 8464 event->owner = NULL; 8465 } 8466 mutex_unlock(&child->perf_event_mutex); 8467 8468 for_each_task_context_nr(ctxn) 8469 perf_event_exit_task_context(child, ctxn); 8470 } 8471 8472 static void perf_free_event(struct perf_event *event, 8473 struct perf_event_context *ctx) 8474 { 8475 struct perf_event *parent = event->parent; 8476 8477 if (WARN_ON_ONCE(!parent)) 8478 return; 8479 8480 mutex_lock(&parent->child_mutex); 8481 list_del_init(&event->child_list); 8482 mutex_unlock(&parent->child_mutex); 8483 8484 put_event(parent); 8485 8486 raw_spin_lock_irq(&ctx->lock); 8487 perf_group_detach(event); 8488 list_del_event(event, ctx); 8489 raw_spin_unlock_irq(&ctx->lock); 8490 free_event(event); 8491 } 8492 8493 /* 8494 * Free an unexposed, unused context as created by inheritance by 8495 * perf_event_init_task below, used by fork() in case of fail. 8496 * 8497 * Not all locks are strictly required, but take them anyway to be nice and 8498 * help out with the lockdep assertions. 8499 */ 8500 void perf_event_free_task(struct task_struct *task) 8501 { 8502 struct perf_event_context *ctx; 8503 struct perf_event *event, *tmp; 8504 int ctxn; 8505 8506 for_each_task_context_nr(ctxn) { 8507 ctx = task->perf_event_ctxp[ctxn]; 8508 if (!ctx) 8509 continue; 8510 8511 mutex_lock(&ctx->mutex); 8512 again: 8513 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, 8514 group_entry) 8515 perf_free_event(event, ctx); 8516 8517 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, 8518 group_entry) 8519 perf_free_event(event, ctx); 8520 8521 if (!list_empty(&ctx->pinned_groups) || 8522 !list_empty(&ctx->flexible_groups)) 8523 goto again; 8524 8525 mutex_unlock(&ctx->mutex); 8526 8527 put_ctx(ctx); 8528 } 8529 } 8530 8531 void perf_event_delayed_put(struct task_struct *task) 8532 { 8533 int ctxn; 8534 8535 for_each_task_context_nr(ctxn) 8536 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); 8537 } 8538 8539 /* 8540 * inherit a event from parent task to child task: 8541 */ 8542 static struct perf_event * 8543 inherit_event(struct perf_event *parent_event, 8544 struct task_struct *parent, 8545 struct perf_event_context *parent_ctx, 8546 struct task_struct *child, 8547 struct perf_event *group_leader, 8548 struct perf_event_context *child_ctx) 8549 { 8550 enum perf_event_active_state parent_state = parent_event->state; 8551 struct perf_event *child_event; 8552 unsigned long flags; 8553 8554 /* 8555 * Instead of creating recursive hierarchies of events, 8556 * we link inherited events back to the original parent, 8557 * which has a filp for sure, which we use as the reference 8558 * count: 8559 */ 8560 if (parent_event->parent) 8561 parent_event = parent_event->parent; 8562 8563 child_event = perf_event_alloc(&parent_event->attr, 8564 parent_event->cpu, 8565 child, 8566 group_leader, parent_event, 8567 NULL, NULL, -1); 8568 if (IS_ERR(child_event)) 8569 return child_event; 8570 8571 if (is_orphaned_event(parent_event) || 8572 !atomic_long_inc_not_zero(&parent_event->refcount)) { 8573 free_event(child_event); 8574 return NULL; 8575 } 8576 8577 get_ctx(child_ctx); 8578 8579 /* 8580 * Make the child state follow the state of the parent event, 8581 * not its attr.disabled bit. We hold the parent's mutex, 8582 * so we won't race with perf_event_{en, dis}able_family. 8583 */ 8584 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 8585 child_event->state = PERF_EVENT_STATE_INACTIVE; 8586 else 8587 child_event->state = PERF_EVENT_STATE_OFF; 8588 8589 if (parent_event->attr.freq) { 8590 u64 sample_period = parent_event->hw.sample_period; 8591 struct hw_perf_event *hwc = &child_event->hw; 8592 8593 hwc->sample_period = sample_period; 8594 hwc->last_period = sample_period; 8595 8596 local64_set(&hwc->period_left, sample_period); 8597 } 8598 8599 child_event->ctx = child_ctx; 8600 child_event->overflow_handler = parent_event->overflow_handler; 8601 child_event->overflow_handler_context 8602 = parent_event->overflow_handler_context; 8603 8604 /* 8605 * Precalculate sample_data sizes 8606 */ 8607 perf_event__header_size(child_event); 8608 perf_event__id_header_size(child_event); 8609 8610 /* 8611 * Link it up in the child's context: 8612 */ 8613 raw_spin_lock_irqsave(&child_ctx->lock, flags); 8614 add_event_to_ctx(child_event, child_ctx); 8615 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 8616 8617 /* 8618 * Link this into the parent event's child list 8619 */ 8620 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 8621 mutex_lock(&parent_event->child_mutex); 8622 list_add_tail(&child_event->child_list, &parent_event->child_list); 8623 mutex_unlock(&parent_event->child_mutex); 8624 8625 return child_event; 8626 } 8627 8628 static int inherit_group(struct perf_event *parent_event, 8629 struct task_struct *parent, 8630 struct perf_event_context *parent_ctx, 8631 struct task_struct *child, 8632 struct perf_event_context *child_ctx) 8633 { 8634 struct perf_event *leader; 8635 struct perf_event *sub; 8636 struct perf_event *child_ctr; 8637 8638 leader = inherit_event(parent_event, parent, parent_ctx, 8639 child, NULL, child_ctx); 8640 if (IS_ERR(leader)) 8641 return PTR_ERR(leader); 8642 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) { 8643 child_ctr = inherit_event(sub, parent, parent_ctx, 8644 child, leader, child_ctx); 8645 if (IS_ERR(child_ctr)) 8646 return PTR_ERR(child_ctr); 8647 } 8648 return 0; 8649 } 8650 8651 static int 8652 inherit_task_group(struct perf_event *event, struct task_struct *parent, 8653 struct perf_event_context *parent_ctx, 8654 struct task_struct *child, int ctxn, 8655 int *inherited_all) 8656 { 8657 int ret; 8658 struct perf_event_context *child_ctx; 8659 8660 if (!event->attr.inherit) { 8661 *inherited_all = 0; 8662 return 0; 8663 } 8664 8665 child_ctx = child->perf_event_ctxp[ctxn]; 8666 if (!child_ctx) { 8667 /* 8668 * This is executed from the parent task context, so 8669 * inherit events that have been marked for cloning. 8670 * First allocate and initialize a context for the 8671 * child. 8672 */ 8673 8674 child_ctx = alloc_perf_context(parent_ctx->pmu, child); 8675 if (!child_ctx) 8676 return -ENOMEM; 8677 8678 child->perf_event_ctxp[ctxn] = child_ctx; 8679 } 8680 8681 ret = inherit_group(event, parent, parent_ctx, 8682 child, child_ctx); 8683 8684 if (ret) 8685 *inherited_all = 0; 8686 8687 return ret; 8688 } 8689 8690 /* 8691 * Initialize the perf_event context in task_struct 8692 */ 8693 static int perf_event_init_context(struct task_struct *child, int ctxn) 8694 { 8695 struct perf_event_context *child_ctx, *parent_ctx; 8696 struct perf_event_context *cloned_ctx; 8697 struct perf_event *event; 8698 struct task_struct *parent = current; 8699 int inherited_all = 1; 8700 unsigned long flags; 8701 int ret = 0; 8702 8703 if (likely(!parent->perf_event_ctxp[ctxn])) 8704 return 0; 8705 8706 /* 8707 * If the parent's context is a clone, pin it so it won't get 8708 * swapped under us. 8709 */ 8710 parent_ctx = perf_pin_task_context(parent, ctxn); 8711 if (!parent_ctx) 8712 return 0; 8713 8714 /* 8715 * No need to check if parent_ctx != NULL here; since we saw 8716 * it non-NULL earlier, the only reason for it to become NULL 8717 * is if we exit, and since we're currently in the middle of 8718 * a fork we can't be exiting at the same time. 8719 */ 8720 8721 /* 8722 * Lock the parent list. No need to lock the child - not PID 8723 * hashed yet and not running, so nobody can access it. 8724 */ 8725 mutex_lock(&parent_ctx->mutex); 8726 8727 /* 8728 * We dont have to disable NMIs - we are only looking at 8729 * the list, not manipulating it: 8730 */ 8731 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) { 8732 ret = inherit_task_group(event, parent, parent_ctx, 8733 child, ctxn, &inherited_all); 8734 if (ret) 8735 break; 8736 } 8737 8738 /* 8739 * We can't hold ctx->lock when iterating the ->flexible_group list due 8740 * to allocations, but we need to prevent rotation because 8741 * rotate_ctx() will change the list from interrupt context. 8742 */ 8743 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 8744 parent_ctx->rotate_disable = 1; 8745 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 8746 8747 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) { 8748 ret = inherit_task_group(event, parent, parent_ctx, 8749 child, ctxn, &inherited_all); 8750 if (ret) 8751 break; 8752 } 8753 8754 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 8755 parent_ctx->rotate_disable = 0; 8756 8757 child_ctx = child->perf_event_ctxp[ctxn]; 8758 8759 if (child_ctx && inherited_all) { 8760 /* 8761 * Mark the child context as a clone of the parent 8762 * context, or of whatever the parent is a clone of. 8763 * 8764 * Note that if the parent is a clone, the holding of 8765 * parent_ctx->lock avoids it from being uncloned. 8766 */ 8767 cloned_ctx = parent_ctx->parent_ctx; 8768 if (cloned_ctx) { 8769 child_ctx->parent_ctx = cloned_ctx; 8770 child_ctx->parent_gen = parent_ctx->parent_gen; 8771 } else { 8772 child_ctx->parent_ctx = parent_ctx; 8773 child_ctx->parent_gen = parent_ctx->generation; 8774 } 8775 get_ctx(child_ctx->parent_ctx); 8776 } 8777 8778 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 8779 mutex_unlock(&parent_ctx->mutex); 8780 8781 perf_unpin_context(parent_ctx); 8782 put_ctx(parent_ctx); 8783 8784 return ret; 8785 } 8786 8787 /* 8788 * Initialize the perf_event context in task_struct 8789 */ 8790 int perf_event_init_task(struct task_struct *child) 8791 { 8792 int ctxn, ret; 8793 8794 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); 8795 mutex_init(&child->perf_event_mutex); 8796 INIT_LIST_HEAD(&child->perf_event_list); 8797 8798 for_each_task_context_nr(ctxn) { 8799 ret = perf_event_init_context(child, ctxn); 8800 if (ret) { 8801 perf_event_free_task(child); 8802 return ret; 8803 } 8804 } 8805 8806 return 0; 8807 } 8808 8809 static void __init perf_event_init_all_cpus(void) 8810 { 8811 struct swevent_htable *swhash; 8812 int cpu; 8813 8814 for_each_possible_cpu(cpu) { 8815 swhash = &per_cpu(swevent_htable, cpu); 8816 mutex_init(&swhash->hlist_mutex); 8817 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu)); 8818 } 8819 } 8820 8821 static void perf_event_init_cpu(int cpu) 8822 { 8823 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 8824 8825 mutex_lock(&swhash->hlist_mutex); 8826 swhash->online = true; 8827 if (swhash->hlist_refcount > 0) { 8828 struct swevent_hlist *hlist; 8829 8830 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 8831 WARN_ON(!hlist); 8832 rcu_assign_pointer(swhash->swevent_hlist, hlist); 8833 } 8834 mutex_unlock(&swhash->hlist_mutex); 8835 } 8836 8837 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC 8838 static void __perf_event_exit_context(void *__info) 8839 { 8840 struct remove_event re = { .detach_group = true }; 8841 struct perf_event_context *ctx = __info; 8842 8843 rcu_read_lock(); 8844 list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry) 8845 __perf_remove_from_context(&re); 8846 rcu_read_unlock(); 8847 } 8848 8849 static void perf_event_exit_cpu_context(int cpu) 8850 { 8851 struct perf_event_context *ctx; 8852 struct pmu *pmu; 8853 int idx; 8854 8855 idx = srcu_read_lock(&pmus_srcu); 8856 list_for_each_entry_rcu(pmu, &pmus, entry) { 8857 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx; 8858 8859 mutex_lock(&ctx->mutex); 8860 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 8861 mutex_unlock(&ctx->mutex); 8862 } 8863 srcu_read_unlock(&pmus_srcu, idx); 8864 } 8865 8866 static void perf_event_exit_cpu(int cpu) 8867 { 8868 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 8869 8870 perf_event_exit_cpu_context(cpu); 8871 8872 mutex_lock(&swhash->hlist_mutex); 8873 swhash->online = false; 8874 swevent_hlist_release(swhash); 8875 mutex_unlock(&swhash->hlist_mutex); 8876 } 8877 #else 8878 static inline void perf_event_exit_cpu(int cpu) { } 8879 #endif 8880 8881 static int 8882 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 8883 { 8884 int cpu; 8885 8886 for_each_online_cpu(cpu) 8887 perf_event_exit_cpu(cpu); 8888 8889 return NOTIFY_OK; 8890 } 8891 8892 /* 8893 * Run the perf reboot notifier at the very last possible moment so that 8894 * the generic watchdog code runs as long as possible. 8895 */ 8896 static struct notifier_block perf_reboot_notifier = { 8897 .notifier_call = perf_reboot, 8898 .priority = INT_MIN, 8899 }; 8900 8901 static int 8902 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu) 8903 { 8904 unsigned int cpu = (long)hcpu; 8905 8906 switch (action & ~CPU_TASKS_FROZEN) { 8907 8908 case CPU_UP_PREPARE: 8909 case CPU_DOWN_FAILED: 8910 perf_event_init_cpu(cpu); 8911 break; 8912 8913 case CPU_UP_CANCELED: 8914 case CPU_DOWN_PREPARE: 8915 perf_event_exit_cpu(cpu); 8916 break; 8917 default: 8918 break; 8919 } 8920 8921 return NOTIFY_OK; 8922 } 8923 8924 void __init perf_event_init(void) 8925 { 8926 int ret; 8927 8928 idr_init(&pmu_idr); 8929 8930 perf_event_init_all_cpus(); 8931 init_srcu_struct(&pmus_srcu); 8932 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 8933 perf_pmu_register(&perf_cpu_clock, NULL, -1); 8934 perf_pmu_register(&perf_task_clock, NULL, -1); 8935 perf_tp_register(); 8936 perf_cpu_notifier(perf_cpu_notify); 8937 register_reboot_notifier(&perf_reboot_notifier); 8938 8939 ret = init_hw_breakpoint(); 8940 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 8941 8942 /* do not patch jump label more than once per second */ 8943 jump_label_rate_limit(&perf_sched_events, HZ); 8944 8945 /* 8946 * Build time assertion that we keep the data_head at the intended 8947 * location. IOW, validation we got the __reserved[] size right. 8948 */ 8949 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 8950 != 1024); 8951 } 8952 8953 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 8954 char *page) 8955 { 8956 struct perf_pmu_events_attr *pmu_attr = 8957 container_of(attr, struct perf_pmu_events_attr, attr); 8958 8959 if (pmu_attr->event_str) 8960 return sprintf(page, "%s\n", pmu_attr->event_str); 8961 8962 return 0; 8963 } 8964 8965 static int __init perf_event_sysfs_init(void) 8966 { 8967 struct pmu *pmu; 8968 int ret; 8969 8970 mutex_lock(&pmus_lock); 8971 8972 ret = bus_register(&pmu_bus); 8973 if (ret) 8974 goto unlock; 8975 8976 list_for_each_entry(pmu, &pmus, entry) { 8977 if (!pmu->name || pmu->type < 0) 8978 continue; 8979 8980 ret = pmu_dev_alloc(pmu); 8981 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 8982 } 8983 pmu_bus_running = 1; 8984 ret = 0; 8985 8986 unlock: 8987 mutex_unlock(&pmus_lock); 8988 8989 return ret; 8990 } 8991 device_initcall(perf_event_sysfs_init); 8992 8993 #ifdef CONFIG_CGROUP_PERF 8994 static struct cgroup_subsys_state * 8995 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 8996 { 8997 struct perf_cgroup *jc; 8998 8999 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 9000 if (!jc) 9001 return ERR_PTR(-ENOMEM); 9002 9003 jc->info = alloc_percpu(struct perf_cgroup_info); 9004 if (!jc->info) { 9005 kfree(jc); 9006 return ERR_PTR(-ENOMEM); 9007 } 9008 9009 return &jc->css; 9010 } 9011 9012 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 9013 { 9014 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 9015 9016 free_percpu(jc->info); 9017 kfree(jc); 9018 } 9019 9020 static int __perf_cgroup_move(void *info) 9021 { 9022 struct task_struct *task = info; 9023 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN); 9024 return 0; 9025 } 9026 9027 static void perf_cgroup_attach(struct cgroup_subsys_state *css, 9028 struct cgroup_taskset *tset) 9029 { 9030 struct task_struct *task; 9031 9032 cgroup_taskset_for_each(task, tset) 9033 task_function_call(task, __perf_cgroup_move, task); 9034 } 9035 9036 static void perf_cgroup_exit(struct cgroup_subsys_state *css, 9037 struct cgroup_subsys_state *old_css, 9038 struct task_struct *task) 9039 { 9040 /* 9041 * cgroup_exit() is called in the copy_process() failure path. 9042 * Ignore this case since the task hasn't ran yet, this avoids 9043 * trying to poke a half freed task state from generic code. 9044 */ 9045 if (!(task->flags & PF_EXITING)) 9046 return; 9047 9048 task_function_call(task, __perf_cgroup_move, task); 9049 } 9050 9051 struct cgroup_subsys perf_event_cgrp_subsys = { 9052 .css_alloc = perf_cgroup_css_alloc, 9053 .css_free = perf_cgroup_css_free, 9054 .exit = perf_cgroup_exit, 9055 .attach = perf_cgroup_attach, 9056 }; 9057 #endif /* CONFIG_CGROUP_PERF */ 9058