xref: /openbmc/linux/kernel/events/core.c (revision 976fa9a3)
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11 
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/ftrace_event.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 
48 #include "internal.h"
49 
50 #include <asm/irq_regs.h>
51 
52 static struct workqueue_struct *perf_wq;
53 
54 struct remote_function_call {
55 	struct task_struct	*p;
56 	int			(*func)(void *info);
57 	void			*info;
58 	int			ret;
59 };
60 
61 static void remote_function(void *data)
62 {
63 	struct remote_function_call *tfc = data;
64 	struct task_struct *p = tfc->p;
65 
66 	if (p) {
67 		tfc->ret = -EAGAIN;
68 		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
69 			return;
70 	}
71 
72 	tfc->ret = tfc->func(tfc->info);
73 }
74 
75 /**
76  * task_function_call - call a function on the cpu on which a task runs
77  * @p:		the task to evaluate
78  * @func:	the function to be called
79  * @info:	the function call argument
80  *
81  * Calls the function @func when the task is currently running. This might
82  * be on the current CPU, which just calls the function directly
83  *
84  * returns: @func return value, or
85  *	    -ESRCH  - when the process isn't running
86  *	    -EAGAIN - when the process moved away
87  */
88 static int
89 task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
90 {
91 	struct remote_function_call data = {
92 		.p	= p,
93 		.func	= func,
94 		.info	= info,
95 		.ret	= -ESRCH, /* No such (running) process */
96 	};
97 
98 	if (task_curr(p))
99 		smp_call_function_single(task_cpu(p), remote_function, &data, 1);
100 
101 	return data.ret;
102 }
103 
104 /**
105  * cpu_function_call - call a function on the cpu
106  * @func:	the function to be called
107  * @info:	the function call argument
108  *
109  * Calls the function @func on the remote cpu.
110  *
111  * returns: @func return value or -ENXIO when the cpu is offline
112  */
113 static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
114 {
115 	struct remote_function_call data = {
116 		.p	= NULL,
117 		.func	= func,
118 		.info	= info,
119 		.ret	= -ENXIO, /* No such CPU */
120 	};
121 
122 	smp_call_function_single(cpu, remote_function, &data, 1);
123 
124 	return data.ret;
125 }
126 
127 #define EVENT_OWNER_KERNEL ((void *) -1)
128 
129 static bool is_kernel_event(struct perf_event *event)
130 {
131 	return event->owner == EVENT_OWNER_KERNEL;
132 }
133 
134 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
135 		       PERF_FLAG_FD_OUTPUT  |\
136 		       PERF_FLAG_PID_CGROUP |\
137 		       PERF_FLAG_FD_CLOEXEC)
138 
139 /*
140  * branch priv levels that need permission checks
141  */
142 #define PERF_SAMPLE_BRANCH_PERM_PLM \
143 	(PERF_SAMPLE_BRANCH_KERNEL |\
144 	 PERF_SAMPLE_BRANCH_HV)
145 
146 enum event_type_t {
147 	EVENT_FLEXIBLE = 0x1,
148 	EVENT_PINNED = 0x2,
149 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
150 };
151 
152 /*
153  * perf_sched_events : >0 events exist
154  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
155  */
156 struct static_key_deferred perf_sched_events __read_mostly;
157 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
158 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
159 
160 static atomic_t nr_mmap_events __read_mostly;
161 static atomic_t nr_comm_events __read_mostly;
162 static atomic_t nr_task_events __read_mostly;
163 static atomic_t nr_freq_events __read_mostly;
164 
165 static LIST_HEAD(pmus);
166 static DEFINE_MUTEX(pmus_lock);
167 static struct srcu_struct pmus_srcu;
168 
169 /*
170  * perf event paranoia level:
171  *  -1 - not paranoid at all
172  *   0 - disallow raw tracepoint access for unpriv
173  *   1 - disallow cpu events for unpriv
174  *   2 - disallow kernel profiling for unpriv
175  */
176 int sysctl_perf_event_paranoid __read_mostly = 1;
177 
178 /* Minimum for 512 kiB + 1 user control page */
179 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
180 
181 /*
182  * max perf event sample rate
183  */
184 #define DEFAULT_MAX_SAMPLE_RATE		100000
185 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
186 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
187 
188 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
189 
190 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
191 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
192 
193 static int perf_sample_allowed_ns __read_mostly =
194 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
195 
196 void update_perf_cpu_limits(void)
197 {
198 	u64 tmp = perf_sample_period_ns;
199 
200 	tmp *= sysctl_perf_cpu_time_max_percent;
201 	do_div(tmp, 100);
202 	ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
203 }
204 
205 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
206 
207 int perf_proc_update_handler(struct ctl_table *table, int write,
208 		void __user *buffer, size_t *lenp,
209 		loff_t *ppos)
210 {
211 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
212 
213 	if (ret || !write)
214 		return ret;
215 
216 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
217 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
218 	update_perf_cpu_limits();
219 
220 	return 0;
221 }
222 
223 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
224 
225 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
226 				void __user *buffer, size_t *lenp,
227 				loff_t *ppos)
228 {
229 	int ret = proc_dointvec(table, write, buffer, lenp, ppos);
230 
231 	if (ret || !write)
232 		return ret;
233 
234 	update_perf_cpu_limits();
235 
236 	return 0;
237 }
238 
239 /*
240  * perf samples are done in some very critical code paths (NMIs).
241  * If they take too much CPU time, the system can lock up and not
242  * get any real work done.  This will drop the sample rate when
243  * we detect that events are taking too long.
244  */
245 #define NR_ACCUMULATED_SAMPLES 128
246 static DEFINE_PER_CPU(u64, running_sample_length);
247 
248 static void perf_duration_warn(struct irq_work *w)
249 {
250 	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
251 	u64 avg_local_sample_len;
252 	u64 local_samples_len;
253 
254 	local_samples_len = __this_cpu_read(running_sample_length);
255 	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
256 
257 	printk_ratelimited(KERN_WARNING
258 			"perf interrupt took too long (%lld > %lld), lowering "
259 			"kernel.perf_event_max_sample_rate to %d\n",
260 			avg_local_sample_len, allowed_ns >> 1,
261 			sysctl_perf_event_sample_rate);
262 }
263 
264 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
265 
266 void perf_sample_event_took(u64 sample_len_ns)
267 {
268 	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
269 	u64 avg_local_sample_len;
270 	u64 local_samples_len;
271 
272 	if (allowed_ns == 0)
273 		return;
274 
275 	/* decay the counter by 1 average sample */
276 	local_samples_len = __this_cpu_read(running_sample_length);
277 	local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
278 	local_samples_len += sample_len_ns;
279 	__this_cpu_write(running_sample_length, local_samples_len);
280 
281 	/*
282 	 * note: this will be biased artifically low until we have
283 	 * seen NR_ACCUMULATED_SAMPLES.  Doing it this way keeps us
284 	 * from having to maintain a count.
285 	 */
286 	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
287 
288 	if (avg_local_sample_len <= allowed_ns)
289 		return;
290 
291 	if (max_samples_per_tick <= 1)
292 		return;
293 
294 	max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
295 	sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
296 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
297 
298 	update_perf_cpu_limits();
299 
300 	if (!irq_work_queue(&perf_duration_work)) {
301 		early_printk("perf interrupt took too long (%lld > %lld), lowering "
302 			     "kernel.perf_event_max_sample_rate to %d\n",
303 			     avg_local_sample_len, allowed_ns >> 1,
304 			     sysctl_perf_event_sample_rate);
305 	}
306 }
307 
308 static atomic64_t perf_event_id;
309 
310 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
311 			      enum event_type_t event_type);
312 
313 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
314 			     enum event_type_t event_type,
315 			     struct task_struct *task);
316 
317 static void update_context_time(struct perf_event_context *ctx);
318 static u64 perf_event_time(struct perf_event *event);
319 
320 void __weak perf_event_print_debug(void)	{ }
321 
322 extern __weak const char *perf_pmu_name(void)
323 {
324 	return "pmu";
325 }
326 
327 static inline u64 perf_clock(void)
328 {
329 	return local_clock();
330 }
331 
332 static inline u64 perf_event_clock(struct perf_event *event)
333 {
334 	return event->clock();
335 }
336 
337 static inline struct perf_cpu_context *
338 __get_cpu_context(struct perf_event_context *ctx)
339 {
340 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
341 }
342 
343 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
344 			  struct perf_event_context *ctx)
345 {
346 	raw_spin_lock(&cpuctx->ctx.lock);
347 	if (ctx)
348 		raw_spin_lock(&ctx->lock);
349 }
350 
351 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
352 			    struct perf_event_context *ctx)
353 {
354 	if (ctx)
355 		raw_spin_unlock(&ctx->lock);
356 	raw_spin_unlock(&cpuctx->ctx.lock);
357 }
358 
359 #ifdef CONFIG_CGROUP_PERF
360 
361 static inline bool
362 perf_cgroup_match(struct perf_event *event)
363 {
364 	struct perf_event_context *ctx = event->ctx;
365 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
366 
367 	/* @event doesn't care about cgroup */
368 	if (!event->cgrp)
369 		return true;
370 
371 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
372 	if (!cpuctx->cgrp)
373 		return false;
374 
375 	/*
376 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
377 	 * also enabled for all its descendant cgroups.  If @cpuctx's
378 	 * cgroup is a descendant of @event's (the test covers identity
379 	 * case), it's a match.
380 	 */
381 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
382 				    event->cgrp->css.cgroup);
383 }
384 
385 static inline void perf_detach_cgroup(struct perf_event *event)
386 {
387 	css_put(&event->cgrp->css);
388 	event->cgrp = NULL;
389 }
390 
391 static inline int is_cgroup_event(struct perf_event *event)
392 {
393 	return event->cgrp != NULL;
394 }
395 
396 static inline u64 perf_cgroup_event_time(struct perf_event *event)
397 {
398 	struct perf_cgroup_info *t;
399 
400 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
401 	return t->time;
402 }
403 
404 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
405 {
406 	struct perf_cgroup_info *info;
407 	u64 now;
408 
409 	now = perf_clock();
410 
411 	info = this_cpu_ptr(cgrp->info);
412 
413 	info->time += now - info->timestamp;
414 	info->timestamp = now;
415 }
416 
417 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
418 {
419 	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
420 	if (cgrp_out)
421 		__update_cgrp_time(cgrp_out);
422 }
423 
424 static inline void update_cgrp_time_from_event(struct perf_event *event)
425 {
426 	struct perf_cgroup *cgrp;
427 
428 	/*
429 	 * ensure we access cgroup data only when needed and
430 	 * when we know the cgroup is pinned (css_get)
431 	 */
432 	if (!is_cgroup_event(event))
433 		return;
434 
435 	cgrp = perf_cgroup_from_task(current);
436 	/*
437 	 * Do not update time when cgroup is not active
438 	 */
439 	if (cgrp == event->cgrp)
440 		__update_cgrp_time(event->cgrp);
441 }
442 
443 static inline void
444 perf_cgroup_set_timestamp(struct task_struct *task,
445 			  struct perf_event_context *ctx)
446 {
447 	struct perf_cgroup *cgrp;
448 	struct perf_cgroup_info *info;
449 
450 	/*
451 	 * ctx->lock held by caller
452 	 * ensure we do not access cgroup data
453 	 * unless we have the cgroup pinned (css_get)
454 	 */
455 	if (!task || !ctx->nr_cgroups)
456 		return;
457 
458 	cgrp = perf_cgroup_from_task(task);
459 	info = this_cpu_ptr(cgrp->info);
460 	info->timestamp = ctx->timestamp;
461 }
462 
463 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
464 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
465 
466 /*
467  * reschedule events based on the cgroup constraint of task.
468  *
469  * mode SWOUT : schedule out everything
470  * mode SWIN : schedule in based on cgroup for next
471  */
472 void perf_cgroup_switch(struct task_struct *task, int mode)
473 {
474 	struct perf_cpu_context *cpuctx;
475 	struct pmu *pmu;
476 	unsigned long flags;
477 
478 	/*
479 	 * disable interrupts to avoid geting nr_cgroup
480 	 * changes via __perf_event_disable(). Also
481 	 * avoids preemption.
482 	 */
483 	local_irq_save(flags);
484 
485 	/*
486 	 * we reschedule only in the presence of cgroup
487 	 * constrained events.
488 	 */
489 	rcu_read_lock();
490 
491 	list_for_each_entry_rcu(pmu, &pmus, entry) {
492 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
493 		if (cpuctx->unique_pmu != pmu)
494 			continue; /* ensure we process each cpuctx once */
495 
496 		/*
497 		 * perf_cgroup_events says at least one
498 		 * context on this CPU has cgroup events.
499 		 *
500 		 * ctx->nr_cgroups reports the number of cgroup
501 		 * events for a context.
502 		 */
503 		if (cpuctx->ctx.nr_cgroups > 0) {
504 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
505 			perf_pmu_disable(cpuctx->ctx.pmu);
506 
507 			if (mode & PERF_CGROUP_SWOUT) {
508 				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
509 				/*
510 				 * must not be done before ctxswout due
511 				 * to event_filter_match() in event_sched_out()
512 				 */
513 				cpuctx->cgrp = NULL;
514 			}
515 
516 			if (mode & PERF_CGROUP_SWIN) {
517 				WARN_ON_ONCE(cpuctx->cgrp);
518 				/*
519 				 * set cgrp before ctxsw in to allow
520 				 * event_filter_match() to not have to pass
521 				 * task around
522 				 */
523 				cpuctx->cgrp = perf_cgroup_from_task(task);
524 				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
525 			}
526 			perf_pmu_enable(cpuctx->ctx.pmu);
527 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
528 		}
529 	}
530 
531 	rcu_read_unlock();
532 
533 	local_irq_restore(flags);
534 }
535 
536 static inline void perf_cgroup_sched_out(struct task_struct *task,
537 					 struct task_struct *next)
538 {
539 	struct perf_cgroup *cgrp1;
540 	struct perf_cgroup *cgrp2 = NULL;
541 
542 	/*
543 	 * we come here when we know perf_cgroup_events > 0
544 	 */
545 	cgrp1 = perf_cgroup_from_task(task);
546 
547 	/*
548 	 * next is NULL when called from perf_event_enable_on_exec()
549 	 * that will systematically cause a cgroup_switch()
550 	 */
551 	if (next)
552 		cgrp2 = perf_cgroup_from_task(next);
553 
554 	/*
555 	 * only schedule out current cgroup events if we know
556 	 * that we are switching to a different cgroup. Otherwise,
557 	 * do no touch the cgroup events.
558 	 */
559 	if (cgrp1 != cgrp2)
560 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
561 }
562 
563 static inline void perf_cgroup_sched_in(struct task_struct *prev,
564 					struct task_struct *task)
565 {
566 	struct perf_cgroup *cgrp1;
567 	struct perf_cgroup *cgrp2 = NULL;
568 
569 	/*
570 	 * we come here when we know perf_cgroup_events > 0
571 	 */
572 	cgrp1 = perf_cgroup_from_task(task);
573 
574 	/* prev can never be NULL */
575 	cgrp2 = perf_cgroup_from_task(prev);
576 
577 	/*
578 	 * only need to schedule in cgroup events if we are changing
579 	 * cgroup during ctxsw. Cgroup events were not scheduled
580 	 * out of ctxsw out if that was not the case.
581 	 */
582 	if (cgrp1 != cgrp2)
583 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
584 }
585 
586 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
587 				      struct perf_event_attr *attr,
588 				      struct perf_event *group_leader)
589 {
590 	struct perf_cgroup *cgrp;
591 	struct cgroup_subsys_state *css;
592 	struct fd f = fdget(fd);
593 	int ret = 0;
594 
595 	if (!f.file)
596 		return -EBADF;
597 
598 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
599 					 &perf_event_cgrp_subsys);
600 	if (IS_ERR(css)) {
601 		ret = PTR_ERR(css);
602 		goto out;
603 	}
604 
605 	cgrp = container_of(css, struct perf_cgroup, css);
606 	event->cgrp = cgrp;
607 
608 	/*
609 	 * all events in a group must monitor
610 	 * the same cgroup because a task belongs
611 	 * to only one perf cgroup at a time
612 	 */
613 	if (group_leader && group_leader->cgrp != cgrp) {
614 		perf_detach_cgroup(event);
615 		ret = -EINVAL;
616 	}
617 out:
618 	fdput(f);
619 	return ret;
620 }
621 
622 static inline void
623 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
624 {
625 	struct perf_cgroup_info *t;
626 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
627 	event->shadow_ctx_time = now - t->timestamp;
628 }
629 
630 static inline void
631 perf_cgroup_defer_enabled(struct perf_event *event)
632 {
633 	/*
634 	 * when the current task's perf cgroup does not match
635 	 * the event's, we need to remember to call the
636 	 * perf_mark_enable() function the first time a task with
637 	 * a matching perf cgroup is scheduled in.
638 	 */
639 	if (is_cgroup_event(event) && !perf_cgroup_match(event))
640 		event->cgrp_defer_enabled = 1;
641 }
642 
643 static inline void
644 perf_cgroup_mark_enabled(struct perf_event *event,
645 			 struct perf_event_context *ctx)
646 {
647 	struct perf_event *sub;
648 	u64 tstamp = perf_event_time(event);
649 
650 	if (!event->cgrp_defer_enabled)
651 		return;
652 
653 	event->cgrp_defer_enabled = 0;
654 
655 	event->tstamp_enabled = tstamp - event->total_time_enabled;
656 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
657 		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
658 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
659 			sub->cgrp_defer_enabled = 0;
660 		}
661 	}
662 }
663 #else /* !CONFIG_CGROUP_PERF */
664 
665 static inline bool
666 perf_cgroup_match(struct perf_event *event)
667 {
668 	return true;
669 }
670 
671 static inline void perf_detach_cgroup(struct perf_event *event)
672 {}
673 
674 static inline int is_cgroup_event(struct perf_event *event)
675 {
676 	return 0;
677 }
678 
679 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
680 {
681 	return 0;
682 }
683 
684 static inline void update_cgrp_time_from_event(struct perf_event *event)
685 {
686 }
687 
688 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
689 {
690 }
691 
692 static inline void perf_cgroup_sched_out(struct task_struct *task,
693 					 struct task_struct *next)
694 {
695 }
696 
697 static inline void perf_cgroup_sched_in(struct task_struct *prev,
698 					struct task_struct *task)
699 {
700 }
701 
702 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
703 				      struct perf_event_attr *attr,
704 				      struct perf_event *group_leader)
705 {
706 	return -EINVAL;
707 }
708 
709 static inline void
710 perf_cgroup_set_timestamp(struct task_struct *task,
711 			  struct perf_event_context *ctx)
712 {
713 }
714 
715 void
716 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
717 {
718 }
719 
720 static inline void
721 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
722 {
723 }
724 
725 static inline u64 perf_cgroup_event_time(struct perf_event *event)
726 {
727 	return 0;
728 }
729 
730 static inline void
731 perf_cgroup_defer_enabled(struct perf_event *event)
732 {
733 }
734 
735 static inline void
736 perf_cgroup_mark_enabled(struct perf_event *event,
737 			 struct perf_event_context *ctx)
738 {
739 }
740 #endif
741 
742 /*
743  * set default to be dependent on timer tick just
744  * like original code
745  */
746 #define PERF_CPU_HRTIMER (1000 / HZ)
747 /*
748  * function must be called with interrupts disbled
749  */
750 static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
751 {
752 	struct perf_cpu_context *cpuctx;
753 	enum hrtimer_restart ret = HRTIMER_NORESTART;
754 	int rotations = 0;
755 
756 	WARN_ON(!irqs_disabled());
757 
758 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
759 
760 	rotations = perf_rotate_context(cpuctx);
761 
762 	/*
763 	 * arm timer if needed
764 	 */
765 	if (rotations) {
766 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
767 		ret = HRTIMER_RESTART;
768 	}
769 
770 	return ret;
771 }
772 
773 /* CPU is going down */
774 void perf_cpu_hrtimer_cancel(int cpu)
775 {
776 	struct perf_cpu_context *cpuctx;
777 	struct pmu *pmu;
778 	unsigned long flags;
779 
780 	if (WARN_ON(cpu != smp_processor_id()))
781 		return;
782 
783 	local_irq_save(flags);
784 
785 	rcu_read_lock();
786 
787 	list_for_each_entry_rcu(pmu, &pmus, entry) {
788 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
789 
790 		if (pmu->task_ctx_nr == perf_sw_context)
791 			continue;
792 
793 		hrtimer_cancel(&cpuctx->hrtimer);
794 	}
795 
796 	rcu_read_unlock();
797 
798 	local_irq_restore(flags);
799 }
800 
801 static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
802 {
803 	struct hrtimer *hr = &cpuctx->hrtimer;
804 	struct pmu *pmu = cpuctx->ctx.pmu;
805 	int timer;
806 
807 	/* no multiplexing needed for SW PMU */
808 	if (pmu->task_ctx_nr == perf_sw_context)
809 		return;
810 
811 	/*
812 	 * check default is sane, if not set then force to
813 	 * default interval (1/tick)
814 	 */
815 	timer = pmu->hrtimer_interval_ms;
816 	if (timer < 1)
817 		timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
818 
819 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
820 
821 	hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
822 	hr->function = perf_cpu_hrtimer_handler;
823 }
824 
825 static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
826 {
827 	struct hrtimer *hr = &cpuctx->hrtimer;
828 	struct pmu *pmu = cpuctx->ctx.pmu;
829 
830 	/* not for SW PMU */
831 	if (pmu->task_ctx_nr == perf_sw_context)
832 		return;
833 
834 	if (hrtimer_active(hr))
835 		return;
836 
837 	if (!hrtimer_callback_running(hr))
838 		__hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
839 					 0, HRTIMER_MODE_REL_PINNED, 0);
840 }
841 
842 void perf_pmu_disable(struct pmu *pmu)
843 {
844 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
845 	if (!(*count)++)
846 		pmu->pmu_disable(pmu);
847 }
848 
849 void perf_pmu_enable(struct pmu *pmu)
850 {
851 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
852 	if (!--(*count))
853 		pmu->pmu_enable(pmu);
854 }
855 
856 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
857 
858 /*
859  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
860  * perf_event_task_tick() are fully serialized because they're strictly cpu
861  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
862  * disabled, while perf_event_task_tick is called from IRQ context.
863  */
864 static void perf_event_ctx_activate(struct perf_event_context *ctx)
865 {
866 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
867 
868 	WARN_ON(!irqs_disabled());
869 
870 	WARN_ON(!list_empty(&ctx->active_ctx_list));
871 
872 	list_add(&ctx->active_ctx_list, head);
873 }
874 
875 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
876 {
877 	WARN_ON(!irqs_disabled());
878 
879 	WARN_ON(list_empty(&ctx->active_ctx_list));
880 
881 	list_del_init(&ctx->active_ctx_list);
882 }
883 
884 static void get_ctx(struct perf_event_context *ctx)
885 {
886 	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
887 }
888 
889 static void free_ctx(struct rcu_head *head)
890 {
891 	struct perf_event_context *ctx;
892 
893 	ctx = container_of(head, struct perf_event_context, rcu_head);
894 	kfree(ctx->task_ctx_data);
895 	kfree(ctx);
896 }
897 
898 static void put_ctx(struct perf_event_context *ctx)
899 {
900 	if (atomic_dec_and_test(&ctx->refcount)) {
901 		if (ctx->parent_ctx)
902 			put_ctx(ctx->parent_ctx);
903 		if (ctx->task)
904 			put_task_struct(ctx->task);
905 		call_rcu(&ctx->rcu_head, free_ctx);
906 	}
907 }
908 
909 /*
910  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
911  * perf_pmu_migrate_context() we need some magic.
912  *
913  * Those places that change perf_event::ctx will hold both
914  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
915  *
916  * Lock ordering is by mutex address. There is one other site where
917  * perf_event_context::mutex nests and that is put_event(). But remember that
918  * that is a parent<->child context relation, and migration does not affect
919  * children, therefore these two orderings should not interact.
920  *
921  * The change in perf_event::ctx does not affect children (as claimed above)
922  * because the sys_perf_event_open() case will install a new event and break
923  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
924  * concerned with cpuctx and that doesn't have children.
925  *
926  * The places that change perf_event::ctx will issue:
927  *
928  *   perf_remove_from_context();
929  *   synchronize_rcu();
930  *   perf_install_in_context();
931  *
932  * to affect the change. The remove_from_context() + synchronize_rcu() should
933  * quiesce the event, after which we can install it in the new location. This
934  * means that only external vectors (perf_fops, prctl) can perturb the event
935  * while in transit. Therefore all such accessors should also acquire
936  * perf_event_context::mutex to serialize against this.
937  *
938  * However; because event->ctx can change while we're waiting to acquire
939  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
940  * function.
941  *
942  * Lock order:
943  *	task_struct::perf_event_mutex
944  *	  perf_event_context::mutex
945  *	    perf_event_context::lock
946  *	    perf_event::child_mutex;
947  *	    perf_event::mmap_mutex
948  *	    mmap_sem
949  */
950 static struct perf_event_context *
951 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
952 {
953 	struct perf_event_context *ctx;
954 
955 again:
956 	rcu_read_lock();
957 	ctx = ACCESS_ONCE(event->ctx);
958 	if (!atomic_inc_not_zero(&ctx->refcount)) {
959 		rcu_read_unlock();
960 		goto again;
961 	}
962 	rcu_read_unlock();
963 
964 	mutex_lock_nested(&ctx->mutex, nesting);
965 	if (event->ctx != ctx) {
966 		mutex_unlock(&ctx->mutex);
967 		put_ctx(ctx);
968 		goto again;
969 	}
970 
971 	return ctx;
972 }
973 
974 static inline struct perf_event_context *
975 perf_event_ctx_lock(struct perf_event *event)
976 {
977 	return perf_event_ctx_lock_nested(event, 0);
978 }
979 
980 static void perf_event_ctx_unlock(struct perf_event *event,
981 				  struct perf_event_context *ctx)
982 {
983 	mutex_unlock(&ctx->mutex);
984 	put_ctx(ctx);
985 }
986 
987 /*
988  * This must be done under the ctx->lock, such as to serialize against
989  * context_equiv(), therefore we cannot call put_ctx() since that might end up
990  * calling scheduler related locks and ctx->lock nests inside those.
991  */
992 static __must_check struct perf_event_context *
993 unclone_ctx(struct perf_event_context *ctx)
994 {
995 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
996 
997 	lockdep_assert_held(&ctx->lock);
998 
999 	if (parent_ctx)
1000 		ctx->parent_ctx = NULL;
1001 	ctx->generation++;
1002 
1003 	return parent_ctx;
1004 }
1005 
1006 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1007 {
1008 	/*
1009 	 * only top level events have the pid namespace they were created in
1010 	 */
1011 	if (event->parent)
1012 		event = event->parent;
1013 
1014 	return task_tgid_nr_ns(p, event->ns);
1015 }
1016 
1017 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1018 {
1019 	/*
1020 	 * only top level events have the pid namespace they were created in
1021 	 */
1022 	if (event->parent)
1023 		event = event->parent;
1024 
1025 	return task_pid_nr_ns(p, event->ns);
1026 }
1027 
1028 /*
1029  * If we inherit events we want to return the parent event id
1030  * to userspace.
1031  */
1032 static u64 primary_event_id(struct perf_event *event)
1033 {
1034 	u64 id = event->id;
1035 
1036 	if (event->parent)
1037 		id = event->parent->id;
1038 
1039 	return id;
1040 }
1041 
1042 /*
1043  * Get the perf_event_context for a task and lock it.
1044  * This has to cope with with the fact that until it is locked,
1045  * the context could get moved to another task.
1046  */
1047 static struct perf_event_context *
1048 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1049 {
1050 	struct perf_event_context *ctx;
1051 
1052 retry:
1053 	/*
1054 	 * One of the few rules of preemptible RCU is that one cannot do
1055 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1056 	 * part of the read side critical section was preemptible -- see
1057 	 * rcu_read_unlock_special().
1058 	 *
1059 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1060 	 * side critical section is non-preemptible.
1061 	 */
1062 	preempt_disable();
1063 	rcu_read_lock();
1064 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1065 	if (ctx) {
1066 		/*
1067 		 * If this context is a clone of another, it might
1068 		 * get swapped for another underneath us by
1069 		 * perf_event_task_sched_out, though the
1070 		 * rcu_read_lock() protects us from any context
1071 		 * getting freed.  Lock the context and check if it
1072 		 * got swapped before we could get the lock, and retry
1073 		 * if so.  If we locked the right context, then it
1074 		 * can't get swapped on us any more.
1075 		 */
1076 		raw_spin_lock_irqsave(&ctx->lock, *flags);
1077 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1078 			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1079 			rcu_read_unlock();
1080 			preempt_enable();
1081 			goto retry;
1082 		}
1083 
1084 		if (!atomic_inc_not_zero(&ctx->refcount)) {
1085 			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1086 			ctx = NULL;
1087 		}
1088 	}
1089 	rcu_read_unlock();
1090 	preempt_enable();
1091 	return ctx;
1092 }
1093 
1094 /*
1095  * Get the context for a task and increment its pin_count so it
1096  * can't get swapped to another task.  This also increments its
1097  * reference count so that the context can't get freed.
1098  */
1099 static struct perf_event_context *
1100 perf_pin_task_context(struct task_struct *task, int ctxn)
1101 {
1102 	struct perf_event_context *ctx;
1103 	unsigned long flags;
1104 
1105 	ctx = perf_lock_task_context(task, ctxn, &flags);
1106 	if (ctx) {
1107 		++ctx->pin_count;
1108 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1109 	}
1110 	return ctx;
1111 }
1112 
1113 static void perf_unpin_context(struct perf_event_context *ctx)
1114 {
1115 	unsigned long flags;
1116 
1117 	raw_spin_lock_irqsave(&ctx->lock, flags);
1118 	--ctx->pin_count;
1119 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1120 }
1121 
1122 /*
1123  * Update the record of the current time in a context.
1124  */
1125 static void update_context_time(struct perf_event_context *ctx)
1126 {
1127 	u64 now = perf_clock();
1128 
1129 	ctx->time += now - ctx->timestamp;
1130 	ctx->timestamp = now;
1131 }
1132 
1133 static u64 perf_event_time(struct perf_event *event)
1134 {
1135 	struct perf_event_context *ctx = event->ctx;
1136 
1137 	if (is_cgroup_event(event))
1138 		return perf_cgroup_event_time(event);
1139 
1140 	return ctx ? ctx->time : 0;
1141 }
1142 
1143 /*
1144  * Update the total_time_enabled and total_time_running fields for a event.
1145  * The caller of this function needs to hold the ctx->lock.
1146  */
1147 static void update_event_times(struct perf_event *event)
1148 {
1149 	struct perf_event_context *ctx = event->ctx;
1150 	u64 run_end;
1151 
1152 	if (event->state < PERF_EVENT_STATE_INACTIVE ||
1153 	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1154 		return;
1155 	/*
1156 	 * in cgroup mode, time_enabled represents
1157 	 * the time the event was enabled AND active
1158 	 * tasks were in the monitored cgroup. This is
1159 	 * independent of the activity of the context as
1160 	 * there may be a mix of cgroup and non-cgroup events.
1161 	 *
1162 	 * That is why we treat cgroup events differently
1163 	 * here.
1164 	 */
1165 	if (is_cgroup_event(event))
1166 		run_end = perf_cgroup_event_time(event);
1167 	else if (ctx->is_active)
1168 		run_end = ctx->time;
1169 	else
1170 		run_end = event->tstamp_stopped;
1171 
1172 	event->total_time_enabled = run_end - event->tstamp_enabled;
1173 
1174 	if (event->state == PERF_EVENT_STATE_INACTIVE)
1175 		run_end = event->tstamp_stopped;
1176 	else
1177 		run_end = perf_event_time(event);
1178 
1179 	event->total_time_running = run_end - event->tstamp_running;
1180 
1181 }
1182 
1183 /*
1184  * Update total_time_enabled and total_time_running for all events in a group.
1185  */
1186 static void update_group_times(struct perf_event *leader)
1187 {
1188 	struct perf_event *event;
1189 
1190 	update_event_times(leader);
1191 	list_for_each_entry(event, &leader->sibling_list, group_entry)
1192 		update_event_times(event);
1193 }
1194 
1195 static struct list_head *
1196 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1197 {
1198 	if (event->attr.pinned)
1199 		return &ctx->pinned_groups;
1200 	else
1201 		return &ctx->flexible_groups;
1202 }
1203 
1204 /*
1205  * Add a event from the lists for its context.
1206  * Must be called with ctx->mutex and ctx->lock held.
1207  */
1208 static void
1209 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1210 {
1211 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1212 	event->attach_state |= PERF_ATTACH_CONTEXT;
1213 
1214 	/*
1215 	 * If we're a stand alone event or group leader, we go to the context
1216 	 * list, group events are kept attached to the group so that
1217 	 * perf_group_detach can, at all times, locate all siblings.
1218 	 */
1219 	if (event->group_leader == event) {
1220 		struct list_head *list;
1221 
1222 		if (is_software_event(event))
1223 			event->group_flags |= PERF_GROUP_SOFTWARE;
1224 
1225 		list = ctx_group_list(event, ctx);
1226 		list_add_tail(&event->group_entry, list);
1227 	}
1228 
1229 	if (is_cgroup_event(event))
1230 		ctx->nr_cgroups++;
1231 
1232 	list_add_rcu(&event->event_entry, &ctx->event_list);
1233 	ctx->nr_events++;
1234 	if (event->attr.inherit_stat)
1235 		ctx->nr_stat++;
1236 
1237 	ctx->generation++;
1238 }
1239 
1240 /*
1241  * Initialize event state based on the perf_event_attr::disabled.
1242  */
1243 static inline void perf_event__state_init(struct perf_event *event)
1244 {
1245 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1246 					      PERF_EVENT_STATE_INACTIVE;
1247 }
1248 
1249 /*
1250  * Called at perf_event creation and when events are attached/detached from a
1251  * group.
1252  */
1253 static void perf_event__read_size(struct perf_event *event)
1254 {
1255 	int entry = sizeof(u64); /* value */
1256 	int size = 0;
1257 	int nr = 1;
1258 
1259 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1260 		size += sizeof(u64);
1261 
1262 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1263 		size += sizeof(u64);
1264 
1265 	if (event->attr.read_format & PERF_FORMAT_ID)
1266 		entry += sizeof(u64);
1267 
1268 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1269 		nr += event->group_leader->nr_siblings;
1270 		size += sizeof(u64);
1271 	}
1272 
1273 	size += entry * nr;
1274 	event->read_size = size;
1275 }
1276 
1277 static void perf_event__header_size(struct perf_event *event)
1278 {
1279 	struct perf_sample_data *data;
1280 	u64 sample_type = event->attr.sample_type;
1281 	u16 size = 0;
1282 
1283 	perf_event__read_size(event);
1284 
1285 	if (sample_type & PERF_SAMPLE_IP)
1286 		size += sizeof(data->ip);
1287 
1288 	if (sample_type & PERF_SAMPLE_ADDR)
1289 		size += sizeof(data->addr);
1290 
1291 	if (sample_type & PERF_SAMPLE_PERIOD)
1292 		size += sizeof(data->period);
1293 
1294 	if (sample_type & PERF_SAMPLE_WEIGHT)
1295 		size += sizeof(data->weight);
1296 
1297 	if (sample_type & PERF_SAMPLE_READ)
1298 		size += event->read_size;
1299 
1300 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1301 		size += sizeof(data->data_src.val);
1302 
1303 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1304 		size += sizeof(data->txn);
1305 
1306 	event->header_size = size;
1307 }
1308 
1309 static void perf_event__id_header_size(struct perf_event *event)
1310 {
1311 	struct perf_sample_data *data;
1312 	u64 sample_type = event->attr.sample_type;
1313 	u16 size = 0;
1314 
1315 	if (sample_type & PERF_SAMPLE_TID)
1316 		size += sizeof(data->tid_entry);
1317 
1318 	if (sample_type & PERF_SAMPLE_TIME)
1319 		size += sizeof(data->time);
1320 
1321 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1322 		size += sizeof(data->id);
1323 
1324 	if (sample_type & PERF_SAMPLE_ID)
1325 		size += sizeof(data->id);
1326 
1327 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1328 		size += sizeof(data->stream_id);
1329 
1330 	if (sample_type & PERF_SAMPLE_CPU)
1331 		size += sizeof(data->cpu_entry);
1332 
1333 	event->id_header_size = size;
1334 }
1335 
1336 static void perf_group_attach(struct perf_event *event)
1337 {
1338 	struct perf_event *group_leader = event->group_leader, *pos;
1339 
1340 	/*
1341 	 * We can have double attach due to group movement in perf_event_open.
1342 	 */
1343 	if (event->attach_state & PERF_ATTACH_GROUP)
1344 		return;
1345 
1346 	event->attach_state |= PERF_ATTACH_GROUP;
1347 
1348 	if (group_leader == event)
1349 		return;
1350 
1351 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1352 
1353 	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1354 			!is_software_event(event))
1355 		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1356 
1357 	list_add_tail(&event->group_entry, &group_leader->sibling_list);
1358 	group_leader->nr_siblings++;
1359 
1360 	perf_event__header_size(group_leader);
1361 
1362 	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1363 		perf_event__header_size(pos);
1364 }
1365 
1366 /*
1367  * Remove a event from the lists for its context.
1368  * Must be called with ctx->mutex and ctx->lock held.
1369  */
1370 static void
1371 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1372 {
1373 	struct perf_cpu_context *cpuctx;
1374 
1375 	WARN_ON_ONCE(event->ctx != ctx);
1376 	lockdep_assert_held(&ctx->lock);
1377 
1378 	/*
1379 	 * We can have double detach due to exit/hot-unplug + close.
1380 	 */
1381 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1382 		return;
1383 
1384 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1385 
1386 	if (is_cgroup_event(event)) {
1387 		ctx->nr_cgroups--;
1388 		cpuctx = __get_cpu_context(ctx);
1389 		/*
1390 		 * if there are no more cgroup events
1391 		 * then cler cgrp to avoid stale pointer
1392 		 * in update_cgrp_time_from_cpuctx()
1393 		 */
1394 		if (!ctx->nr_cgroups)
1395 			cpuctx->cgrp = NULL;
1396 	}
1397 
1398 	ctx->nr_events--;
1399 	if (event->attr.inherit_stat)
1400 		ctx->nr_stat--;
1401 
1402 	list_del_rcu(&event->event_entry);
1403 
1404 	if (event->group_leader == event)
1405 		list_del_init(&event->group_entry);
1406 
1407 	update_group_times(event);
1408 
1409 	/*
1410 	 * If event was in error state, then keep it
1411 	 * that way, otherwise bogus counts will be
1412 	 * returned on read(). The only way to get out
1413 	 * of error state is by explicit re-enabling
1414 	 * of the event
1415 	 */
1416 	if (event->state > PERF_EVENT_STATE_OFF)
1417 		event->state = PERF_EVENT_STATE_OFF;
1418 
1419 	ctx->generation++;
1420 }
1421 
1422 static void perf_group_detach(struct perf_event *event)
1423 {
1424 	struct perf_event *sibling, *tmp;
1425 	struct list_head *list = NULL;
1426 
1427 	/*
1428 	 * We can have double detach due to exit/hot-unplug + close.
1429 	 */
1430 	if (!(event->attach_state & PERF_ATTACH_GROUP))
1431 		return;
1432 
1433 	event->attach_state &= ~PERF_ATTACH_GROUP;
1434 
1435 	/*
1436 	 * If this is a sibling, remove it from its group.
1437 	 */
1438 	if (event->group_leader != event) {
1439 		list_del_init(&event->group_entry);
1440 		event->group_leader->nr_siblings--;
1441 		goto out;
1442 	}
1443 
1444 	if (!list_empty(&event->group_entry))
1445 		list = &event->group_entry;
1446 
1447 	/*
1448 	 * If this was a group event with sibling events then
1449 	 * upgrade the siblings to singleton events by adding them
1450 	 * to whatever list we are on.
1451 	 */
1452 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1453 		if (list)
1454 			list_move_tail(&sibling->group_entry, list);
1455 		sibling->group_leader = sibling;
1456 
1457 		/* Inherit group flags from the previous leader */
1458 		sibling->group_flags = event->group_flags;
1459 
1460 		WARN_ON_ONCE(sibling->ctx != event->ctx);
1461 	}
1462 
1463 out:
1464 	perf_event__header_size(event->group_leader);
1465 
1466 	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1467 		perf_event__header_size(tmp);
1468 }
1469 
1470 /*
1471  * User event without the task.
1472  */
1473 static bool is_orphaned_event(struct perf_event *event)
1474 {
1475 	return event && !is_kernel_event(event) && !event->owner;
1476 }
1477 
1478 /*
1479  * Event has a parent but parent's task finished and it's
1480  * alive only because of children holding refference.
1481  */
1482 static bool is_orphaned_child(struct perf_event *event)
1483 {
1484 	return is_orphaned_event(event->parent);
1485 }
1486 
1487 static void orphans_remove_work(struct work_struct *work);
1488 
1489 static void schedule_orphans_remove(struct perf_event_context *ctx)
1490 {
1491 	if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
1492 		return;
1493 
1494 	if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
1495 		get_ctx(ctx);
1496 		ctx->orphans_remove_sched = true;
1497 	}
1498 }
1499 
1500 static int __init perf_workqueue_init(void)
1501 {
1502 	perf_wq = create_singlethread_workqueue("perf");
1503 	WARN(!perf_wq, "failed to create perf workqueue\n");
1504 	return perf_wq ? 0 : -1;
1505 }
1506 
1507 core_initcall(perf_workqueue_init);
1508 
1509 static inline int
1510 event_filter_match(struct perf_event *event)
1511 {
1512 	return (event->cpu == -1 || event->cpu == smp_processor_id())
1513 	    && perf_cgroup_match(event);
1514 }
1515 
1516 static void
1517 event_sched_out(struct perf_event *event,
1518 		  struct perf_cpu_context *cpuctx,
1519 		  struct perf_event_context *ctx)
1520 {
1521 	u64 tstamp = perf_event_time(event);
1522 	u64 delta;
1523 
1524 	WARN_ON_ONCE(event->ctx != ctx);
1525 	lockdep_assert_held(&ctx->lock);
1526 
1527 	/*
1528 	 * An event which could not be activated because of
1529 	 * filter mismatch still needs to have its timings
1530 	 * maintained, otherwise bogus information is return
1531 	 * via read() for time_enabled, time_running:
1532 	 */
1533 	if (event->state == PERF_EVENT_STATE_INACTIVE
1534 	    && !event_filter_match(event)) {
1535 		delta = tstamp - event->tstamp_stopped;
1536 		event->tstamp_running += delta;
1537 		event->tstamp_stopped = tstamp;
1538 	}
1539 
1540 	if (event->state != PERF_EVENT_STATE_ACTIVE)
1541 		return;
1542 
1543 	perf_pmu_disable(event->pmu);
1544 
1545 	event->state = PERF_EVENT_STATE_INACTIVE;
1546 	if (event->pending_disable) {
1547 		event->pending_disable = 0;
1548 		event->state = PERF_EVENT_STATE_OFF;
1549 	}
1550 	event->tstamp_stopped = tstamp;
1551 	event->pmu->del(event, 0);
1552 	event->oncpu = -1;
1553 
1554 	if (!is_software_event(event))
1555 		cpuctx->active_oncpu--;
1556 	if (!--ctx->nr_active)
1557 		perf_event_ctx_deactivate(ctx);
1558 	if (event->attr.freq && event->attr.sample_freq)
1559 		ctx->nr_freq--;
1560 	if (event->attr.exclusive || !cpuctx->active_oncpu)
1561 		cpuctx->exclusive = 0;
1562 
1563 	if (is_orphaned_child(event))
1564 		schedule_orphans_remove(ctx);
1565 
1566 	perf_pmu_enable(event->pmu);
1567 }
1568 
1569 static void
1570 group_sched_out(struct perf_event *group_event,
1571 		struct perf_cpu_context *cpuctx,
1572 		struct perf_event_context *ctx)
1573 {
1574 	struct perf_event *event;
1575 	int state = group_event->state;
1576 
1577 	event_sched_out(group_event, cpuctx, ctx);
1578 
1579 	/*
1580 	 * Schedule out siblings (if any):
1581 	 */
1582 	list_for_each_entry(event, &group_event->sibling_list, group_entry)
1583 		event_sched_out(event, cpuctx, ctx);
1584 
1585 	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1586 		cpuctx->exclusive = 0;
1587 }
1588 
1589 struct remove_event {
1590 	struct perf_event *event;
1591 	bool detach_group;
1592 };
1593 
1594 /*
1595  * Cross CPU call to remove a performance event
1596  *
1597  * We disable the event on the hardware level first. After that we
1598  * remove it from the context list.
1599  */
1600 static int __perf_remove_from_context(void *info)
1601 {
1602 	struct remove_event *re = info;
1603 	struct perf_event *event = re->event;
1604 	struct perf_event_context *ctx = event->ctx;
1605 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1606 
1607 	raw_spin_lock(&ctx->lock);
1608 	event_sched_out(event, cpuctx, ctx);
1609 	if (re->detach_group)
1610 		perf_group_detach(event);
1611 	list_del_event(event, ctx);
1612 	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1613 		ctx->is_active = 0;
1614 		cpuctx->task_ctx = NULL;
1615 	}
1616 	raw_spin_unlock(&ctx->lock);
1617 
1618 	return 0;
1619 }
1620 
1621 
1622 /*
1623  * Remove the event from a task's (or a CPU's) list of events.
1624  *
1625  * CPU events are removed with a smp call. For task events we only
1626  * call when the task is on a CPU.
1627  *
1628  * If event->ctx is a cloned context, callers must make sure that
1629  * every task struct that event->ctx->task could possibly point to
1630  * remains valid.  This is OK when called from perf_release since
1631  * that only calls us on the top-level context, which can't be a clone.
1632  * When called from perf_event_exit_task, it's OK because the
1633  * context has been detached from its task.
1634  */
1635 static void perf_remove_from_context(struct perf_event *event, bool detach_group)
1636 {
1637 	struct perf_event_context *ctx = event->ctx;
1638 	struct task_struct *task = ctx->task;
1639 	struct remove_event re = {
1640 		.event = event,
1641 		.detach_group = detach_group,
1642 	};
1643 
1644 	lockdep_assert_held(&ctx->mutex);
1645 
1646 	if (!task) {
1647 		/*
1648 		 * Per cpu events are removed via an smp call. The removal can
1649 		 * fail if the CPU is currently offline, but in that case we
1650 		 * already called __perf_remove_from_context from
1651 		 * perf_event_exit_cpu.
1652 		 */
1653 		cpu_function_call(event->cpu, __perf_remove_from_context, &re);
1654 		return;
1655 	}
1656 
1657 retry:
1658 	if (!task_function_call(task, __perf_remove_from_context, &re))
1659 		return;
1660 
1661 	raw_spin_lock_irq(&ctx->lock);
1662 	/*
1663 	 * If we failed to find a running task, but find the context active now
1664 	 * that we've acquired the ctx->lock, retry.
1665 	 */
1666 	if (ctx->is_active) {
1667 		raw_spin_unlock_irq(&ctx->lock);
1668 		/*
1669 		 * Reload the task pointer, it might have been changed by
1670 		 * a concurrent perf_event_context_sched_out().
1671 		 */
1672 		task = ctx->task;
1673 		goto retry;
1674 	}
1675 
1676 	/*
1677 	 * Since the task isn't running, its safe to remove the event, us
1678 	 * holding the ctx->lock ensures the task won't get scheduled in.
1679 	 */
1680 	if (detach_group)
1681 		perf_group_detach(event);
1682 	list_del_event(event, ctx);
1683 	raw_spin_unlock_irq(&ctx->lock);
1684 }
1685 
1686 /*
1687  * Cross CPU call to disable a performance event
1688  */
1689 int __perf_event_disable(void *info)
1690 {
1691 	struct perf_event *event = info;
1692 	struct perf_event_context *ctx = event->ctx;
1693 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1694 
1695 	/*
1696 	 * If this is a per-task event, need to check whether this
1697 	 * event's task is the current task on this cpu.
1698 	 *
1699 	 * Can trigger due to concurrent perf_event_context_sched_out()
1700 	 * flipping contexts around.
1701 	 */
1702 	if (ctx->task && cpuctx->task_ctx != ctx)
1703 		return -EINVAL;
1704 
1705 	raw_spin_lock(&ctx->lock);
1706 
1707 	/*
1708 	 * If the event is on, turn it off.
1709 	 * If it is in error state, leave it in error state.
1710 	 */
1711 	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1712 		update_context_time(ctx);
1713 		update_cgrp_time_from_event(event);
1714 		update_group_times(event);
1715 		if (event == event->group_leader)
1716 			group_sched_out(event, cpuctx, ctx);
1717 		else
1718 			event_sched_out(event, cpuctx, ctx);
1719 		event->state = PERF_EVENT_STATE_OFF;
1720 	}
1721 
1722 	raw_spin_unlock(&ctx->lock);
1723 
1724 	return 0;
1725 }
1726 
1727 /*
1728  * Disable a event.
1729  *
1730  * If event->ctx is a cloned context, callers must make sure that
1731  * every task struct that event->ctx->task could possibly point to
1732  * remains valid.  This condition is satisifed when called through
1733  * perf_event_for_each_child or perf_event_for_each because they
1734  * hold the top-level event's child_mutex, so any descendant that
1735  * goes to exit will block in sync_child_event.
1736  * When called from perf_pending_event it's OK because event->ctx
1737  * is the current context on this CPU and preemption is disabled,
1738  * hence we can't get into perf_event_task_sched_out for this context.
1739  */
1740 static void _perf_event_disable(struct perf_event *event)
1741 {
1742 	struct perf_event_context *ctx = event->ctx;
1743 	struct task_struct *task = ctx->task;
1744 
1745 	if (!task) {
1746 		/*
1747 		 * Disable the event on the cpu that it's on
1748 		 */
1749 		cpu_function_call(event->cpu, __perf_event_disable, event);
1750 		return;
1751 	}
1752 
1753 retry:
1754 	if (!task_function_call(task, __perf_event_disable, event))
1755 		return;
1756 
1757 	raw_spin_lock_irq(&ctx->lock);
1758 	/*
1759 	 * If the event is still active, we need to retry the cross-call.
1760 	 */
1761 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1762 		raw_spin_unlock_irq(&ctx->lock);
1763 		/*
1764 		 * Reload the task pointer, it might have been changed by
1765 		 * a concurrent perf_event_context_sched_out().
1766 		 */
1767 		task = ctx->task;
1768 		goto retry;
1769 	}
1770 
1771 	/*
1772 	 * Since we have the lock this context can't be scheduled
1773 	 * in, so we can change the state safely.
1774 	 */
1775 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
1776 		update_group_times(event);
1777 		event->state = PERF_EVENT_STATE_OFF;
1778 	}
1779 	raw_spin_unlock_irq(&ctx->lock);
1780 }
1781 
1782 /*
1783  * Strictly speaking kernel users cannot create groups and therefore this
1784  * interface does not need the perf_event_ctx_lock() magic.
1785  */
1786 void perf_event_disable(struct perf_event *event)
1787 {
1788 	struct perf_event_context *ctx;
1789 
1790 	ctx = perf_event_ctx_lock(event);
1791 	_perf_event_disable(event);
1792 	perf_event_ctx_unlock(event, ctx);
1793 }
1794 EXPORT_SYMBOL_GPL(perf_event_disable);
1795 
1796 static void perf_set_shadow_time(struct perf_event *event,
1797 				 struct perf_event_context *ctx,
1798 				 u64 tstamp)
1799 {
1800 	/*
1801 	 * use the correct time source for the time snapshot
1802 	 *
1803 	 * We could get by without this by leveraging the
1804 	 * fact that to get to this function, the caller
1805 	 * has most likely already called update_context_time()
1806 	 * and update_cgrp_time_xx() and thus both timestamp
1807 	 * are identical (or very close). Given that tstamp is,
1808 	 * already adjusted for cgroup, we could say that:
1809 	 *    tstamp - ctx->timestamp
1810 	 * is equivalent to
1811 	 *    tstamp - cgrp->timestamp.
1812 	 *
1813 	 * Then, in perf_output_read(), the calculation would
1814 	 * work with no changes because:
1815 	 * - event is guaranteed scheduled in
1816 	 * - no scheduled out in between
1817 	 * - thus the timestamp would be the same
1818 	 *
1819 	 * But this is a bit hairy.
1820 	 *
1821 	 * So instead, we have an explicit cgroup call to remain
1822 	 * within the time time source all along. We believe it
1823 	 * is cleaner and simpler to understand.
1824 	 */
1825 	if (is_cgroup_event(event))
1826 		perf_cgroup_set_shadow_time(event, tstamp);
1827 	else
1828 		event->shadow_ctx_time = tstamp - ctx->timestamp;
1829 }
1830 
1831 #define MAX_INTERRUPTS (~0ULL)
1832 
1833 static void perf_log_throttle(struct perf_event *event, int enable);
1834 static void perf_log_itrace_start(struct perf_event *event);
1835 
1836 static int
1837 event_sched_in(struct perf_event *event,
1838 		 struct perf_cpu_context *cpuctx,
1839 		 struct perf_event_context *ctx)
1840 {
1841 	u64 tstamp = perf_event_time(event);
1842 	int ret = 0;
1843 
1844 	lockdep_assert_held(&ctx->lock);
1845 
1846 	if (event->state <= PERF_EVENT_STATE_OFF)
1847 		return 0;
1848 
1849 	event->state = PERF_EVENT_STATE_ACTIVE;
1850 	event->oncpu = smp_processor_id();
1851 
1852 	/*
1853 	 * Unthrottle events, since we scheduled we might have missed several
1854 	 * ticks already, also for a heavily scheduling task there is little
1855 	 * guarantee it'll get a tick in a timely manner.
1856 	 */
1857 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1858 		perf_log_throttle(event, 1);
1859 		event->hw.interrupts = 0;
1860 	}
1861 
1862 	/*
1863 	 * The new state must be visible before we turn it on in the hardware:
1864 	 */
1865 	smp_wmb();
1866 
1867 	perf_pmu_disable(event->pmu);
1868 
1869 	event->tstamp_running += tstamp - event->tstamp_stopped;
1870 
1871 	perf_set_shadow_time(event, ctx, tstamp);
1872 
1873 	perf_log_itrace_start(event);
1874 
1875 	if (event->pmu->add(event, PERF_EF_START)) {
1876 		event->state = PERF_EVENT_STATE_INACTIVE;
1877 		event->oncpu = -1;
1878 		ret = -EAGAIN;
1879 		goto out;
1880 	}
1881 
1882 	if (!is_software_event(event))
1883 		cpuctx->active_oncpu++;
1884 	if (!ctx->nr_active++)
1885 		perf_event_ctx_activate(ctx);
1886 	if (event->attr.freq && event->attr.sample_freq)
1887 		ctx->nr_freq++;
1888 
1889 	if (event->attr.exclusive)
1890 		cpuctx->exclusive = 1;
1891 
1892 	if (is_orphaned_child(event))
1893 		schedule_orphans_remove(ctx);
1894 
1895 out:
1896 	perf_pmu_enable(event->pmu);
1897 
1898 	return ret;
1899 }
1900 
1901 static int
1902 group_sched_in(struct perf_event *group_event,
1903 	       struct perf_cpu_context *cpuctx,
1904 	       struct perf_event_context *ctx)
1905 {
1906 	struct perf_event *event, *partial_group = NULL;
1907 	struct pmu *pmu = ctx->pmu;
1908 	u64 now = ctx->time;
1909 	bool simulate = false;
1910 
1911 	if (group_event->state == PERF_EVENT_STATE_OFF)
1912 		return 0;
1913 
1914 	pmu->start_txn(pmu);
1915 
1916 	if (event_sched_in(group_event, cpuctx, ctx)) {
1917 		pmu->cancel_txn(pmu);
1918 		perf_cpu_hrtimer_restart(cpuctx);
1919 		return -EAGAIN;
1920 	}
1921 
1922 	/*
1923 	 * Schedule in siblings as one group (if any):
1924 	 */
1925 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1926 		if (event_sched_in(event, cpuctx, ctx)) {
1927 			partial_group = event;
1928 			goto group_error;
1929 		}
1930 	}
1931 
1932 	if (!pmu->commit_txn(pmu))
1933 		return 0;
1934 
1935 group_error:
1936 	/*
1937 	 * Groups can be scheduled in as one unit only, so undo any
1938 	 * partial group before returning:
1939 	 * The events up to the failed event are scheduled out normally,
1940 	 * tstamp_stopped will be updated.
1941 	 *
1942 	 * The failed events and the remaining siblings need to have
1943 	 * their timings updated as if they had gone thru event_sched_in()
1944 	 * and event_sched_out(). This is required to get consistent timings
1945 	 * across the group. This also takes care of the case where the group
1946 	 * could never be scheduled by ensuring tstamp_stopped is set to mark
1947 	 * the time the event was actually stopped, such that time delta
1948 	 * calculation in update_event_times() is correct.
1949 	 */
1950 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1951 		if (event == partial_group)
1952 			simulate = true;
1953 
1954 		if (simulate) {
1955 			event->tstamp_running += now - event->tstamp_stopped;
1956 			event->tstamp_stopped = now;
1957 		} else {
1958 			event_sched_out(event, cpuctx, ctx);
1959 		}
1960 	}
1961 	event_sched_out(group_event, cpuctx, ctx);
1962 
1963 	pmu->cancel_txn(pmu);
1964 
1965 	perf_cpu_hrtimer_restart(cpuctx);
1966 
1967 	return -EAGAIN;
1968 }
1969 
1970 /*
1971  * Work out whether we can put this event group on the CPU now.
1972  */
1973 static int group_can_go_on(struct perf_event *event,
1974 			   struct perf_cpu_context *cpuctx,
1975 			   int can_add_hw)
1976 {
1977 	/*
1978 	 * Groups consisting entirely of software events can always go on.
1979 	 */
1980 	if (event->group_flags & PERF_GROUP_SOFTWARE)
1981 		return 1;
1982 	/*
1983 	 * If an exclusive group is already on, no other hardware
1984 	 * events can go on.
1985 	 */
1986 	if (cpuctx->exclusive)
1987 		return 0;
1988 	/*
1989 	 * If this group is exclusive and there are already
1990 	 * events on the CPU, it can't go on.
1991 	 */
1992 	if (event->attr.exclusive && cpuctx->active_oncpu)
1993 		return 0;
1994 	/*
1995 	 * Otherwise, try to add it if all previous groups were able
1996 	 * to go on.
1997 	 */
1998 	return can_add_hw;
1999 }
2000 
2001 static void add_event_to_ctx(struct perf_event *event,
2002 			       struct perf_event_context *ctx)
2003 {
2004 	u64 tstamp = perf_event_time(event);
2005 
2006 	list_add_event(event, ctx);
2007 	perf_group_attach(event);
2008 	event->tstamp_enabled = tstamp;
2009 	event->tstamp_running = tstamp;
2010 	event->tstamp_stopped = tstamp;
2011 }
2012 
2013 static void task_ctx_sched_out(struct perf_event_context *ctx);
2014 static void
2015 ctx_sched_in(struct perf_event_context *ctx,
2016 	     struct perf_cpu_context *cpuctx,
2017 	     enum event_type_t event_type,
2018 	     struct task_struct *task);
2019 
2020 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2021 				struct perf_event_context *ctx,
2022 				struct task_struct *task)
2023 {
2024 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2025 	if (ctx)
2026 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2027 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2028 	if (ctx)
2029 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2030 }
2031 
2032 /*
2033  * Cross CPU call to install and enable a performance event
2034  *
2035  * Must be called with ctx->mutex held
2036  */
2037 static int  __perf_install_in_context(void *info)
2038 {
2039 	struct perf_event *event = info;
2040 	struct perf_event_context *ctx = event->ctx;
2041 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2042 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2043 	struct task_struct *task = current;
2044 
2045 	perf_ctx_lock(cpuctx, task_ctx);
2046 	perf_pmu_disable(cpuctx->ctx.pmu);
2047 
2048 	/*
2049 	 * If there was an active task_ctx schedule it out.
2050 	 */
2051 	if (task_ctx)
2052 		task_ctx_sched_out(task_ctx);
2053 
2054 	/*
2055 	 * If the context we're installing events in is not the
2056 	 * active task_ctx, flip them.
2057 	 */
2058 	if (ctx->task && task_ctx != ctx) {
2059 		if (task_ctx)
2060 			raw_spin_unlock(&task_ctx->lock);
2061 		raw_spin_lock(&ctx->lock);
2062 		task_ctx = ctx;
2063 	}
2064 
2065 	if (task_ctx) {
2066 		cpuctx->task_ctx = task_ctx;
2067 		task = task_ctx->task;
2068 	}
2069 
2070 	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2071 
2072 	update_context_time(ctx);
2073 	/*
2074 	 * update cgrp time only if current cgrp
2075 	 * matches event->cgrp. Must be done before
2076 	 * calling add_event_to_ctx()
2077 	 */
2078 	update_cgrp_time_from_event(event);
2079 
2080 	add_event_to_ctx(event, ctx);
2081 
2082 	/*
2083 	 * Schedule everything back in
2084 	 */
2085 	perf_event_sched_in(cpuctx, task_ctx, task);
2086 
2087 	perf_pmu_enable(cpuctx->ctx.pmu);
2088 	perf_ctx_unlock(cpuctx, task_ctx);
2089 
2090 	return 0;
2091 }
2092 
2093 /*
2094  * Attach a performance event to a context
2095  *
2096  * First we add the event to the list with the hardware enable bit
2097  * in event->hw_config cleared.
2098  *
2099  * If the event is attached to a task which is on a CPU we use a smp
2100  * call to enable it in the task context. The task might have been
2101  * scheduled away, but we check this in the smp call again.
2102  */
2103 static void
2104 perf_install_in_context(struct perf_event_context *ctx,
2105 			struct perf_event *event,
2106 			int cpu)
2107 {
2108 	struct task_struct *task = ctx->task;
2109 
2110 	lockdep_assert_held(&ctx->mutex);
2111 
2112 	event->ctx = ctx;
2113 	if (event->cpu != -1)
2114 		event->cpu = cpu;
2115 
2116 	if (!task) {
2117 		/*
2118 		 * Per cpu events are installed via an smp call and
2119 		 * the install is always successful.
2120 		 */
2121 		cpu_function_call(cpu, __perf_install_in_context, event);
2122 		return;
2123 	}
2124 
2125 retry:
2126 	if (!task_function_call(task, __perf_install_in_context, event))
2127 		return;
2128 
2129 	raw_spin_lock_irq(&ctx->lock);
2130 	/*
2131 	 * If we failed to find a running task, but find the context active now
2132 	 * that we've acquired the ctx->lock, retry.
2133 	 */
2134 	if (ctx->is_active) {
2135 		raw_spin_unlock_irq(&ctx->lock);
2136 		/*
2137 		 * Reload the task pointer, it might have been changed by
2138 		 * a concurrent perf_event_context_sched_out().
2139 		 */
2140 		task = ctx->task;
2141 		goto retry;
2142 	}
2143 
2144 	/*
2145 	 * Since the task isn't running, its safe to add the event, us holding
2146 	 * the ctx->lock ensures the task won't get scheduled in.
2147 	 */
2148 	add_event_to_ctx(event, ctx);
2149 	raw_spin_unlock_irq(&ctx->lock);
2150 }
2151 
2152 /*
2153  * Put a event into inactive state and update time fields.
2154  * Enabling the leader of a group effectively enables all
2155  * the group members that aren't explicitly disabled, so we
2156  * have to update their ->tstamp_enabled also.
2157  * Note: this works for group members as well as group leaders
2158  * since the non-leader members' sibling_lists will be empty.
2159  */
2160 static void __perf_event_mark_enabled(struct perf_event *event)
2161 {
2162 	struct perf_event *sub;
2163 	u64 tstamp = perf_event_time(event);
2164 
2165 	event->state = PERF_EVENT_STATE_INACTIVE;
2166 	event->tstamp_enabled = tstamp - event->total_time_enabled;
2167 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2168 		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2169 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2170 	}
2171 }
2172 
2173 /*
2174  * Cross CPU call to enable a performance event
2175  */
2176 static int __perf_event_enable(void *info)
2177 {
2178 	struct perf_event *event = info;
2179 	struct perf_event_context *ctx = event->ctx;
2180 	struct perf_event *leader = event->group_leader;
2181 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2182 	int err;
2183 
2184 	/*
2185 	 * There's a time window between 'ctx->is_active' check
2186 	 * in perf_event_enable function and this place having:
2187 	 *   - IRQs on
2188 	 *   - ctx->lock unlocked
2189 	 *
2190 	 * where the task could be killed and 'ctx' deactivated
2191 	 * by perf_event_exit_task.
2192 	 */
2193 	if (!ctx->is_active)
2194 		return -EINVAL;
2195 
2196 	raw_spin_lock(&ctx->lock);
2197 	update_context_time(ctx);
2198 
2199 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2200 		goto unlock;
2201 
2202 	/*
2203 	 * set current task's cgroup time reference point
2204 	 */
2205 	perf_cgroup_set_timestamp(current, ctx);
2206 
2207 	__perf_event_mark_enabled(event);
2208 
2209 	if (!event_filter_match(event)) {
2210 		if (is_cgroup_event(event))
2211 			perf_cgroup_defer_enabled(event);
2212 		goto unlock;
2213 	}
2214 
2215 	/*
2216 	 * If the event is in a group and isn't the group leader,
2217 	 * then don't put it on unless the group is on.
2218 	 */
2219 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2220 		goto unlock;
2221 
2222 	if (!group_can_go_on(event, cpuctx, 1)) {
2223 		err = -EEXIST;
2224 	} else {
2225 		if (event == leader)
2226 			err = group_sched_in(event, cpuctx, ctx);
2227 		else
2228 			err = event_sched_in(event, cpuctx, ctx);
2229 	}
2230 
2231 	if (err) {
2232 		/*
2233 		 * If this event can't go on and it's part of a
2234 		 * group, then the whole group has to come off.
2235 		 */
2236 		if (leader != event) {
2237 			group_sched_out(leader, cpuctx, ctx);
2238 			perf_cpu_hrtimer_restart(cpuctx);
2239 		}
2240 		if (leader->attr.pinned) {
2241 			update_group_times(leader);
2242 			leader->state = PERF_EVENT_STATE_ERROR;
2243 		}
2244 	}
2245 
2246 unlock:
2247 	raw_spin_unlock(&ctx->lock);
2248 
2249 	return 0;
2250 }
2251 
2252 /*
2253  * Enable a event.
2254  *
2255  * If event->ctx is a cloned context, callers must make sure that
2256  * every task struct that event->ctx->task could possibly point to
2257  * remains valid.  This condition is satisfied when called through
2258  * perf_event_for_each_child or perf_event_for_each as described
2259  * for perf_event_disable.
2260  */
2261 static void _perf_event_enable(struct perf_event *event)
2262 {
2263 	struct perf_event_context *ctx = event->ctx;
2264 	struct task_struct *task = ctx->task;
2265 
2266 	if (!task) {
2267 		/*
2268 		 * Enable the event on the cpu that it's on
2269 		 */
2270 		cpu_function_call(event->cpu, __perf_event_enable, event);
2271 		return;
2272 	}
2273 
2274 	raw_spin_lock_irq(&ctx->lock);
2275 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2276 		goto out;
2277 
2278 	/*
2279 	 * If the event is in error state, clear that first.
2280 	 * That way, if we see the event in error state below, we
2281 	 * know that it has gone back into error state, as distinct
2282 	 * from the task having been scheduled away before the
2283 	 * cross-call arrived.
2284 	 */
2285 	if (event->state == PERF_EVENT_STATE_ERROR)
2286 		event->state = PERF_EVENT_STATE_OFF;
2287 
2288 retry:
2289 	if (!ctx->is_active) {
2290 		__perf_event_mark_enabled(event);
2291 		goto out;
2292 	}
2293 
2294 	raw_spin_unlock_irq(&ctx->lock);
2295 
2296 	if (!task_function_call(task, __perf_event_enable, event))
2297 		return;
2298 
2299 	raw_spin_lock_irq(&ctx->lock);
2300 
2301 	/*
2302 	 * If the context is active and the event is still off,
2303 	 * we need to retry the cross-call.
2304 	 */
2305 	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
2306 		/*
2307 		 * task could have been flipped by a concurrent
2308 		 * perf_event_context_sched_out()
2309 		 */
2310 		task = ctx->task;
2311 		goto retry;
2312 	}
2313 
2314 out:
2315 	raw_spin_unlock_irq(&ctx->lock);
2316 }
2317 
2318 /*
2319  * See perf_event_disable();
2320  */
2321 void perf_event_enable(struct perf_event *event)
2322 {
2323 	struct perf_event_context *ctx;
2324 
2325 	ctx = perf_event_ctx_lock(event);
2326 	_perf_event_enable(event);
2327 	perf_event_ctx_unlock(event, ctx);
2328 }
2329 EXPORT_SYMBOL_GPL(perf_event_enable);
2330 
2331 static int _perf_event_refresh(struct perf_event *event, int refresh)
2332 {
2333 	/*
2334 	 * not supported on inherited events
2335 	 */
2336 	if (event->attr.inherit || !is_sampling_event(event))
2337 		return -EINVAL;
2338 
2339 	atomic_add(refresh, &event->event_limit);
2340 	_perf_event_enable(event);
2341 
2342 	return 0;
2343 }
2344 
2345 /*
2346  * See perf_event_disable()
2347  */
2348 int perf_event_refresh(struct perf_event *event, int refresh)
2349 {
2350 	struct perf_event_context *ctx;
2351 	int ret;
2352 
2353 	ctx = perf_event_ctx_lock(event);
2354 	ret = _perf_event_refresh(event, refresh);
2355 	perf_event_ctx_unlock(event, ctx);
2356 
2357 	return ret;
2358 }
2359 EXPORT_SYMBOL_GPL(perf_event_refresh);
2360 
2361 static void ctx_sched_out(struct perf_event_context *ctx,
2362 			  struct perf_cpu_context *cpuctx,
2363 			  enum event_type_t event_type)
2364 {
2365 	struct perf_event *event;
2366 	int is_active = ctx->is_active;
2367 
2368 	ctx->is_active &= ~event_type;
2369 	if (likely(!ctx->nr_events))
2370 		return;
2371 
2372 	update_context_time(ctx);
2373 	update_cgrp_time_from_cpuctx(cpuctx);
2374 	if (!ctx->nr_active)
2375 		return;
2376 
2377 	perf_pmu_disable(ctx->pmu);
2378 	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2379 		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2380 			group_sched_out(event, cpuctx, ctx);
2381 	}
2382 
2383 	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2384 		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2385 			group_sched_out(event, cpuctx, ctx);
2386 	}
2387 	perf_pmu_enable(ctx->pmu);
2388 }
2389 
2390 /*
2391  * Test whether two contexts are equivalent, i.e. whether they have both been
2392  * cloned from the same version of the same context.
2393  *
2394  * Equivalence is measured using a generation number in the context that is
2395  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2396  * and list_del_event().
2397  */
2398 static int context_equiv(struct perf_event_context *ctx1,
2399 			 struct perf_event_context *ctx2)
2400 {
2401 	lockdep_assert_held(&ctx1->lock);
2402 	lockdep_assert_held(&ctx2->lock);
2403 
2404 	/* Pinning disables the swap optimization */
2405 	if (ctx1->pin_count || ctx2->pin_count)
2406 		return 0;
2407 
2408 	/* If ctx1 is the parent of ctx2 */
2409 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2410 		return 1;
2411 
2412 	/* If ctx2 is the parent of ctx1 */
2413 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2414 		return 1;
2415 
2416 	/*
2417 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
2418 	 * hierarchy, see perf_event_init_context().
2419 	 */
2420 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2421 			ctx1->parent_gen == ctx2->parent_gen)
2422 		return 1;
2423 
2424 	/* Unmatched */
2425 	return 0;
2426 }
2427 
2428 static void __perf_event_sync_stat(struct perf_event *event,
2429 				     struct perf_event *next_event)
2430 {
2431 	u64 value;
2432 
2433 	if (!event->attr.inherit_stat)
2434 		return;
2435 
2436 	/*
2437 	 * Update the event value, we cannot use perf_event_read()
2438 	 * because we're in the middle of a context switch and have IRQs
2439 	 * disabled, which upsets smp_call_function_single(), however
2440 	 * we know the event must be on the current CPU, therefore we
2441 	 * don't need to use it.
2442 	 */
2443 	switch (event->state) {
2444 	case PERF_EVENT_STATE_ACTIVE:
2445 		event->pmu->read(event);
2446 		/* fall-through */
2447 
2448 	case PERF_EVENT_STATE_INACTIVE:
2449 		update_event_times(event);
2450 		break;
2451 
2452 	default:
2453 		break;
2454 	}
2455 
2456 	/*
2457 	 * In order to keep per-task stats reliable we need to flip the event
2458 	 * values when we flip the contexts.
2459 	 */
2460 	value = local64_read(&next_event->count);
2461 	value = local64_xchg(&event->count, value);
2462 	local64_set(&next_event->count, value);
2463 
2464 	swap(event->total_time_enabled, next_event->total_time_enabled);
2465 	swap(event->total_time_running, next_event->total_time_running);
2466 
2467 	/*
2468 	 * Since we swizzled the values, update the user visible data too.
2469 	 */
2470 	perf_event_update_userpage(event);
2471 	perf_event_update_userpage(next_event);
2472 }
2473 
2474 static void perf_event_sync_stat(struct perf_event_context *ctx,
2475 				   struct perf_event_context *next_ctx)
2476 {
2477 	struct perf_event *event, *next_event;
2478 
2479 	if (!ctx->nr_stat)
2480 		return;
2481 
2482 	update_context_time(ctx);
2483 
2484 	event = list_first_entry(&ctx->event_list,
2485 				   struct perf_event, event_entry);
2486 
2487 	next_event = list_first_entry(&next_ctx->event_list,
2488 					struct perf_event, event_entry);
2489 
2490 	while (&event->event_entry != &ctx->event_list &&
2491 	       &next_event->event_entry != &next_ctx->event_list) {
2492 
2493 		__perf_event_sync_stat(event, next_event);
2494 
2495 		event = list_next_entry(event, event_entry);
2496 		next_event = list_next_entry(next_event, event_entry);
2497 	}
2498 }
2499 
2500 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2501 					 struct task_struct *next)
2502 {
2503 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2504 	struct perf_event_context *next_ctx;
2505 	struct perf_event_context *parent, *next_parent;
2506 	struct perf_cpu_context *cpuctx;
2507 	int do_switch = 1;
2508 
2509 	if (likely(!ctx))
2510 		return;
2511 
2512 	cpuctx = __get_cpu_context(ctx);
2513 	if (!cpuctx->task_ctx)
2514 		return;
2515 
2516 	rcu_read_lock();
2517 	next_ctx = next->perf_event_ctxp[ctxn];
2518 	if (!next_ctx)
2519 		goto unlock;
2520 
2521 	parent = rcu_dereference(ctx->parent_ctx);
2522 	next_parent = rcu_dereference(next_ctx->parent_ctx);
2523 
2524 	/* If neither context have a parent context; they cannot be clones. */
2525 	if (!parent && !next_parent)
2526 		goto unlock;
2527 
2528 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2529 		/*
2530 		 * Looks like the two contexts are clones, so we might be
2531 		 * able to optimize the context switch.  We lock both
2532 		 * contexts and check that they are clones under the
2533 		 * lock (including re-checking that neither has been
2534 		 * uncloned in the meantime).  It doesn't matter which
2535 		 * order we take the locks because no other cpu could
2536 		 * be trying to lock both of these tasks.
2537 		 */
2538 		raw_spin_lock(&ctx->lock);
2539 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2540 		if (context_equiv(ctx, next_ctx)) {
2541 			/*
2542 			 * XXX do we need a memory barrier of sorts
2543 			 * wrt to rcu_dereference() of perf_event_ctxp
2544 			 */
2545 			task->perf_event_ctxp[ctxn] = next_ctx;
2546 			next->perf_event_ctxp[ctxn] = ctx;
2547 			ctx->task = next;
2548 			next_ctx->task = task;
2549 
2550 			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2551 
2552 			do_switch = 0;
2553 
2554 			perf_event_sync_stat(ctx, next_ctx);
2555 		}
2556 		raw_spin_unlock(&next_ctx->lock);
2557 		raw_spin_unlock(&ctx->lock);
2558 	}
2559 unlock:
2560 	rcu_read_unlock();
2561 
2562 	if (do_switch) {
2563 		raw_spin_lock(&ctx->lock);
2564 		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2565 		cpuctx->task_ctx = NULL;
2566 		raw_spin_unlock(&ctx->lock);
2567 	}
2568 }
2569 
2570 void perf_sched_cb_dec(struct pmu *pmu)
2571 {
2572 	this_cpu_dec(perf_sched_cb_usages);
2573 }
2574 
2575 void perf_sched_cb_inc(struct pmu *pmu)
2576 {
2577 	this_cpu_inc(perf_sched_cb_usages);
2578 }
2579 
2580 /*
2581  * This function provides the context switch callback to the lower code
2582  * layer. It is invoked ONLY when the context switch callback is enabled.
2583  */
2584 static void perf_pmu_sched_task(struct task_struct *prev,
2585 				struct task_struct *next,
2586 				bool sched_in)
2587 {
2588 	struct perf_cpu_context *cpuctx;
2589 	struct pmu *pmu;
2590 	unsigned long flags;
2591 
2592 	if (prev == next)
2593 		return;
2594 
2595 	local_irq_save(flags);
2596 
2597 	rcu_read_lock();
2598 
2599 	list_for_each_entry_rcu(pmu, &pmus, entry) {
2600 		if (pmu->sched_task) {
2601 			cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2602 
2603 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2604 
2605 			perf_pmu_disable(pmu);
2606 
2607 			pmu->sched_task(cpuctx->task_ctx, sched_in);
2608 
2609 			perf_pmu_enable(pmu);
2610 
2611 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2612 		}
2613 	}
2614 
2615 	rcu_read_unlock();
2616 
2617 	local_irq_restore(flags);
2618 }
2619 
2620 #define for_each_task_context_nr(ctxn)					\
2621 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2622 
2623 /*
2624  * Called from scheduler to remove the events of the current task,
2625  * with interrupts disabled.
2626  *
2627  * We stop each event and update the event value in event->count.
2628  *
2629  * This does not protect us against NMI, but disable()
2630  * sets the disabled bit in the control field of event _before_
2631  * accessing the event control register. If a NMI hits, then it will
2632  * not restart the event.
2633  */
2634 void __perf_event_task_sched_out(struct task_struct *task,
2635 				 struct task_struct *next)
2636 {
2637 	int ctxn;
2638 
2639 	if (__this_cpu_read(perf_sched_cb_usages))
2640 		perf_pmu_sched_task(task, next, false);
2641 
2642 	for_each_task_context_nr(ctxn)
2643 		perf_event_context_sched_out(task, ctxn, next);
2644 
2645 	/*
2646 	 * if cgroup events exist on this CPU, then we need
2647 	 * to check if we have to switch out PMU state.
2648 	 * cgroup event are system-wide mode only
2649 	 */
2650 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2651 		perf_cgroup_sched_out(task, next);
2652 }
2653 
2654 static void task_ctx_sched_out(struct perf_event_context *ctx)
2655 {
2656 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2657 
2658 	if (!cpuctx->task_ctx)
2659 		return;
2660 
2661 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2662 		return;
2663 
2664 	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2665 	cpuctx->task_ctx = NULL;
2666 }
2667 
2668 /*
2669  * Called with IRQs disabled
2670  */
2671 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2672 			      enum event_type_t event_type)
2673 {
2674 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2675 }
2676 
2677 static void
2678 ctx_pinned_sched_in(struct perf_event_context *ctx,
2679 		    struct perf_cpu_context *cpuctx)
2680 {
2681 	struct perf_event *event;
2682 
2683 	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2684 		if (event->state <= PERF_EVENT_STATE_OFF)
2685 			continue;
2686 		if (!event_filter_match(event))
2687 			continue;
2688 
2689 		/* may need to reset tstamp_enabled */
2690 		if (is_cgroup_event(event))
2691 			perf_cgroup_mark_enabled(event, ctx);
2692 
2693 		if (group_can_go_on(event, cpuctx, 1))
2694 			group_sched_in(event, cpuctx, ctx);
2695 
2696 		/*
2697 		 * If this pinned group hasn't been scheduled,
2698 		 * put it in error state.
2699 		 */
2700 		if (event->state == PERF_EVENT_STATE_INACTIVE) {
2701 			update_group_times(event);
2702 			event->state = PERF_EVENT_STATE_ERROR;
2703 		}
2704 	}
2705 }
2706 
2707 static void
2708 ctx_flexible_sched_in(struct perf_event_context *ctx,
2709 		      struct perf_cpu_context *cpuctx)
2710 {
2711 	struct perf_event *event;
2712 	int can_add_hw = 1;
2713 
2714 	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2715 		/* Ignore events in OFF or ERROR state */
2716 		if (event->state <= PERF_EVENT_STATE_OFF)
2717 			continue;
2718 		/*
2719 		 * Listen to the 'cpu' scheduling filter constraint
2720 		 * of events:
2721 		 */
2722 		if (!event_filter_match(event))
2723 			continue;
2724 
2725 		/* may need to reset tstamp_enabled */
2726 		if (is_cgroup_event(event))
2727 			perf_cgroup_mark_enabled(event, ctx);
2728 
2729 		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2730 			if (group_sched_in(event, cpuctx, ctx))
2731 				can_add_hw = 0;
2732 		}
2733 	}
2734 }
2735 
2736 static void
2737 ctx_sched_in(struct perf_event_context *ctx,
2738 	     struct perf_cpu_context *cpuctx,
2739 	     enum event_type_t event_type,
2740 	     struct task_struct *task)
2741 {
2742 	u64 now;
2743 	int is_active = ctx->is_active;
2744 
2745 	ctx->is_active |= event_type;
2746 	if (likely(!ctx->nr_events))
2747 		return;
2748 
2749 	now = perf_clock();
2750 	ctx->timestamp = now;
2751 	perf_cgroup_set_timestamp(task, ctx);
2752 	/*
2753 	 * First go through the list and put on any pinned groups
2754 	 * in order to give them the best chance of going on.
2755 	 */
2756 	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2757 		ctx_pinned_sched_in(ctx, cpuctx);
2758 
2759 	/* Then walk through the lower prio flexible groups */
2760 	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2761 		ctx_flexible_sched_in(ctx, cpuctx);
2762 }
2763 
2764 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2765 			     enum event_type_t event_type,
2766 			     struct task_struct *task)
2767 {
2768 	struct perf_event_context *ctx = &cpuctx->ctx;
2769 
2770 	ctx_sched_in(ctx, cpuctx, event_type, task);
2771 }
2772 
2773 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2774 					struct task_struct *task)
2775 {
2776 	struct perf_cpu_context *cpuctx;
2777 
2778 	cpuctx = __get_cpu_context(ctx);
2779 	if (cpuctx->task_ctx == ctx)
2780 		return;
2781 
2782 	perf_ctx_lock(cpuctx, ctx);
2783 	perf_pmu_disable(ctx->pmu);
2784 	/*
2785 	 * We want to keep the following priority order:
2786 	 * cpu pinned (that don't need to move), task pinned,
2787 	 * cpu flexible, task flexible.
2788 	 */
2789 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2790 
2791 	if (ctx->nr_events)
2792 		cpuctx->task_ctx = ctx;
2793 
2794 	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2795 
2796 	perf_pmu_enable(ctx->pmu);
2797 	perf_ctx_unlock(cpuctx, ctx);
2798 }
2799 
2800 /*
2801  * Called from scheduler to add the events of the current task
2802  * with interrupts disabled.
2803  *
2804  * We restore the event value and then enable it.
2805  *
2806  * This does not protect us against NMI, but enable()
2807  * sets the enabled bit in the control field of event _before_
2808  * accessing the event control register. If a NMI hits, then it will
2809  * keep the event running.
2810  */
2811 void __perf_event_task_sched_in(struct task_struct *prev,
2812 				struct task_struct *task)
2813 {
2814 	struct perf_event_context *ctx;
2815 	int ctxn;
2816 
2817 	for_each_task_context_nr(ctxn) {
2818 		ctx = task->perf_event_ctxp[ctxn];
2819 		if (likely(!ctx))
2820 			continue;
2821 
2822 		perf_event_context_sched_in(ctx, task);
2823 	}
2824 	/*
2825 	 * if cgroup events exist on this CPU, then we need
2826 	 * to check if we have to switch in PMU state.
2827 	 * cgroup event are system-wide mode only
2828 	 */
2829 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2830 		perf_cgroup_sched_in(prev, task);
2831 
2832 	if (__this_cpu_read(perf_sched_cb_usages))
2833 		perf_pmu_sched_task(prev, task, true);
2834 }
2835 
2836 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2837 {
2838 	u64 frequency = event->attr.sample_freq;
2839 	u64 sec = NSEC_PER_SEC;
2840 	u64 divisor, dividend;
2841 
2842 	int count_fls, nsec_fls, frequency_fls, sec_fls;
2843 
2844 	count_fls = fls64(count);
2845 	nsec_fls = fls64(nsec);
2846 	frequency_fls = fls64(frequency);
2847 	sec_fls = 30;
2848 
2849 	/*
2850 	 * We got @count in @nsec, with a target of sample_freq HZ
2851 	 * the target period becomes:
2852 	 *
2853 	 *             @count * 10^9
2854 	 * period = -------------------
2855 	 *          @nsec * sample_freq
2856 	 *
2857 	 */
2858 
2859 	/*
2860 	 * Reduce accuracy by one bit such that @a and @b converge
2861 	 * to a similar magnitude.
2862 	 */
2863 #define REDUCE_FLS(a, b)		\
2864 do {					\
2865 	if (a##_fls > b##_fls) {	\
2866 		a >>= 1;		\
2867 		a##_fls--;		\
2868 	} else {			\
2869 		b >>= 1;		\
2870 		b##_fls--;		\
2871 	}				\
2872 } while (0)
2873 
2874 	/*
2875 	 * Reduce accuracy until either term fits in a u64, then proceed with
2876 	 * the other, so that finally we can do a u64/u64 division.
2877 	 */
2878 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2879 		REDUCE_FLS(nsec, frequency);
2880 		REDUCE_FLS(sec, count);
2881 	}
2882 
2883 	if (count_fls + sec_fls > 64) {
2884 		divisor = nsec * frequency;
2885 
2886 		while (count_fls + sec_fls > 64) {
2887 			REDUCE_FLS(count, sec);
2888 			divisor >>= 1;
2889 		}
2890 
2891 		dividend = count * sec;
2892 	} else {
2893 		dividend = count * sec;
2894 
2895 		while (nsec_fls + frequency_fls > 64) {
2896 			REDUCE_FLS(nsec, frequency);
2897 			dividend >>= 1;
2898 		}
2899 
2900 		divisor = nsec * frequency;
2901 	}
2902 
2903 	if (!divisor)
2904 		return dividend;
2905 
2906 	return div64_u64(dividend, divisor);
2907 }
2908 
2909 static DEFINE_PER_CPU(int, perf_throttled_count);
2910 static DEFINE_PER_CPU(u64, perf_throttled_seq);
2911 
2912 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2913 {
2914 	struct hw_perf_event *hwc = &event->hw;
2915 	s64 period, sample_period;
2916 	s64 delta;
2917 
2918 	period = perf_calculate_period(event, nsec, count);
2919 
2920 	delta = (s64)(period - hwc->sample_period);
2921 	delta = (delta + 7) / 8; /* low pass filter */
2922 
2923 	sample_period = hwc->sample_period + delta;
2924 
2925 	if (!sample_period)
2926 		sample_period = 1;
2927 
2928 	hwc->sample_period = sample_period;
2929 
2930 	if (local64_read(&hwc->period_left) > 8*sample_period) {
2931 		if (disable)
2932 			event->pmu->stop(event, PERF_EF_UPDATE);
2933 
2934 		local64_set(&hwc->period_left, 0);
2935 
2936 		if (disable)
2937 			event->pmu->start(event, PERF_EF_RELOAD);
2938 	}
2939 }
2940 
2941 /*
2942  * combine freq adjustment with unthrottling to avoid two passes over the
2943  * events. At the same time, make sure, having freq events does not change
2944  * the rate of unthrottling as that would introduce bias.
2945  */
2946 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2947 					   int needs_unthr)
2948 {
2949 	struct perf_event *event;
2950 	struct hw_perf_event *hwc;
2951 	u64 now, period = TICK_NSEC;
2952 	s64 delta;
2953 
2954 	/*
2955 	 * only need to iterate over all events iff:
2956 	 * - context have events in frequency mode (needs freq adjust)
2957 	 * - there are events to unthrottle on this cpu
2958 	 */
2959 	if (!(ctx->nr_freq || needs_unthr))
2960 		return;
2961 
2962 	raw_spin_lock(&ctx->lock);
2963 	perf_pmu_disable(ctx->pmu);
2964 
2965 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2966 		if (event->state != PERF_EVENT_STATE_ACTIVE)
2967 			continue;
2968 
2969 		if (!event_filter_match(event))
2970 			continue;
2971 
2972 		perf_pmu_disable(event->pmu);
2973 
2974 		hwc = &event->hw;
2975 
2976 		if (hwc->interrupts == MAX_INTERRUPTS) {
2977 			hwc->interrupts = 0;
2978 			perf_log_throttle(event, 1);
2979 			event->pmu->start(event, 0);
2980 		}
2981 
2982 		if (!event->attr.freq || !event->attr.sample_freq)
2983 			goto next;
2984 
2985 		/*
2986 		 * stop the event and update event->count
2987 		 */
2988 		event->pmu->stop(event, PERF_EF_UPDATE);
2989 
2990 		now = local64_read(&event->count);
2991 		delta = now - hwc->freq_count_stamp;
2992 		hwc->freq_count_stamp = now;
2993 
2994 		/*
2995 		 * restart the event
2996 		 * reload only if value has changed
2997 		 * we have stopped the event so tell that
2998 		 * to perf_adjust_period() to avoid stopping it
2999 		 * twice.
3000 		 */
3001 		if (delta > 0)
3002 			perf_adjust_period(event, period, delta, false);
3003 
3004 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3005 	next:
3006 		perf_pmu_enable(event->pmu);
3007 	}
3008 
3009 	perf_pmu_enable(ctx->pmu);
3010 	raw_spin_unlock(&ctx->lock);
3011 }
3012 
3013 /*
3014  * Round-robin a context's events:
3015  */
3016 static void rotate_ctx(struct perf_event_context *ctx)
3017 {
3018 	/*
3019 	 * Rotate the first entry last of non-pinned groups. Rotation might be
3020 	 * disabled by the inheritance code.
3021 	 */
3022 	if (!ctx->rotate_disable)
3023 		list_rotate_left(&ctx->flexible_groups);
3024 }
3025 
3026 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3027 {
3028 	struct perf_event_context *ctx = NULL;
3029 	int rotate = 0;
3030 
3031 	if (cpuctx->ctx.nr_events) {
3032 		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3033 			rotate = 1;
3034 	}
3035 
3036 	ctx = cpuctx->task_ctx;
3037 	if (ctx && ctx->nr_events) {
3038 		if (ctx->nr_events != ctx->nr_active)
3039 			rotate = 1;
3040 	}
3041 
3042 	if (!rotate)
3043 		goto done;
3044 
3045 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3046 	perf_pmu_disable(cpuctx->ctx.pmu);
3047 
3048 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3049 	if (ctx)
3050 		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3051 
3052 	rotate_ctx(&cpuctx->ctx);
3053 	if (ctx)
3054 		rotate_ctx(ctx);
3055 
3056 	perf_event_sched_in(cpuctx, ctx, current);
3057 
3058 	perf_pmu_enable(cpuctx->ctx.pmu);
3059 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3060 done:
3061 
3062 	return rotate;
3063 }
3064 
3065 #ifdef CONFIG_NO_HZ_FULL
3066 bool perf_event_can_stop_tick(void)
3067 {
3068 	if (atomic_read(&nr_freq_events) ||
3069 	    __this_cpu_read(perf_throttled_count))
3070 		return false;
3071 	else
3072 		return true;
3073 }
3074 #endif
3075 
3076 void perf_event_task_tick(void)
3077 {
3078 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
3079 	struct perf_event_context *ctx, *tmp;
3080 	int throttled;
3081 
3082 	WARN_ON(!irqs_disabled());
3083 
3084 	__this_cpu_inc(perf_throttled_seq);
3085 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
3086 
3087 	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3088 		perf_adjust_freq_unthr_context(ctx, throttled);
3089 }
3090 
3091 static int event_enable_on_exec(struct perf_event *event,
3092 				struct perf_event_context *ctx)
3093 {
3094 	if (!event->attr.enable_on_exec)
3095 		return 0;
3096 
3097 	event->attr.enable_on_exec = 0;
3098 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
3099 		return 0;
3100 
3101 	__perf_event_mark_enabled(event);
3102 
3103 	return 1;
3104 }
3105 
3106 /*
3107  * Enable all of a task's events that have been marked enable-on-exec.
3108  * This expects task == current.
3109  */
3110 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
3111 {
3112 	struct perf_event_context *clone_ctx = NULL;
3113 	struct perf_event *event;
3114 	unsigned long flags;
3115 	int enabled = 0;
3116 	int ret;
3117 
3118 	local_irq_save(flags);
3119 	if (!ctx || !ctx->nr_events)
3120 		goto out;
3121 
3122 	/*
3123 	 * We must ctxsw out cgroup events to avoid conflict
3124 	 * when invoking perf_task_event_sched_in() later on
3125 	 * in this function. Otherwise we end up trying to
3126 	 * ctxswin cgroup events which are already scheduled
3127 	 * in.
3128 	 */
3129 	perf_cgroup_sched_out(current, NULL);
3130 
3131 	raw_spin_lock(&ctx->lock);
3132 	task_ctx_sched_out(ctx);
3133 
3134 	list_for_each_entry(event, &ctx->event_list, event_entry) {
3135 		ret = event_enable_on_exec(event, ctx);
3136 		if (ret)
3137 			enabled = 1;
3138 	}
3139 
3140 	/*
3141 	 * Unclone this context if we enabled any event.
3142 	 */
3143 	if (enabled)
3144 		clone_ctx = unclone_ctx(ctx);
3145 
3146 	raw_spin_unlock(&ctx->lock);
3147 
3148 	/*
3149 	 * Also calls ctxswin for cgroup events, if any:
3150 	 */
3151 	perf_event_context_sched_in(ctx, ctx->task);
3152 out:
3153 	local_irq_restore(flags);
3154 
3155 	if (clone_ctx)
3156 		put_ctx(clone_ctx);
3157 }
3158 
3159 void perf_event_exec(void)
3160 {
3161 	struct perf_event_context *ctx;
3162 	int ctxn;
3163 
3164 	rcu_read_lock();
3165 	for_each_task_context_nr(ctxn) {
3166 		ctx = current->perf_event_ctxp[ctxn];
3167 		if (!ctx)
3168 			continue;
3169 
3170 		perf_event_enable_on_exec(ctx);
3171 	}
3172 	rcu_read_unlock();
3173 }
3174 
3175 /*
3176  * Cross CPU call to read the hardware event
3177  */
3178 static void __perf_event_read(void *info)
3179 {
3180 	struct perf_event *event = info;
3181 	struct perf_event_context *ctx = event->ctx;
3182 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3183 
3184 	/*
3185 	 * If this is a task context, we need to check whether it is
3186 	 * the current task context of this cpu.  If not it has been
3187 	 * scheduled out before the smp call arrived.  In that case
3188 	 * event->count would have been updated to a recent sample
3189 	 * when the event was scheduled out.
3190 	 */
3191 	if (ctx->task && cpuctx->task_ctx != ctx)
3192 		return;
3193 
3194 	raw_spin_lock(&ctx->lock);
3195 	if (ctx->is_active) {
3196 		update_context_time(ctx);
3197 		update_cgrp_time_from_event(event);
3198 	}
3199 	update_event_times(event);
3200 	if (event->state == PERF_EVENT_STATE_ACTIVE)
3201 		event->pmu->read(event);
3202 	raw_spin_unlock(&ctx->lock);
3203 }
3204 
3205 static inline u64 perf_event_count(struct perf_event *event)
3206 {
3207 	if (event->pmu->count)
3208 		return event->pmu->count(event);
3209 
3210 	return __perf_event_count(event);
3211 }
3212 
3213 static u64 perf_event_read(struct perf_event *event)
3214 {
3215 	/*
3216 	 * If event is enabled and currently active on a CPU, update the
3217 	 * value in the event structure:
3218 	 */
3219 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
3220 		smp_call_function_single(event->oncpu,
3221 					 __perf_event_read, event, 1);
3222 	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3223 		struct perf_event_context *ctx = event->ctx;
3224 		unsigned long flags;
3225 
3226 		raw_spin_lock_irqsave(&ctx->lock, flags);
3227 		/*
3228 		 * may read while context is not active
3229 		 * (e.g., thread is blocked), in that case
3230 		 * we cannot update context time
3231 		 */
3232 		if (ctx->is_active) {
3233 			update_context_time(ctx);
3234 			update_cgrp_time_from_event(event);
3235 		}
3236 		update_event_times(event);
3237 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3238 	}
3239 
3240 	return perf_event_count(event);
3241 }
3242 
3243 /*
3244  * Initialize the perf_event context in a task_struct:
3245  */
3246 static void __perf_event_init_context(struct perf_event_context *ctx)
3247 {
3248 	raw_spin_lock_init(&ctx->lock);
3249 	mutex_init(&ctx->mutex);
3250 	INIT_LIST_HEAD(&ctx->active_ctx_list);
3251 	INIT_LIST_HEAD(&ctx->pinned_groups);
3252 	INIT_LIST_HEAD(&ctx->flexible_groups);
3253 	INIT_LIST_HEAD(&ctx->event_list);
3254 	atomic_set(&ctx->refcount, 1);
3255 	INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
3256 }
3257 
3258 static struct perf_event_context *
3259 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3260 {
3261 	struct perf_event_context *ctx;
3262 
3263 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3264 	if (!ctx)
3265 		return NULL;
3266 
3267 	__perf_event_init_context(ctx);
3268 	if (task) {
3269 		ctx->task = task;
3270 		get_task_struct(task);
3271 	}
3272 	ctx->pmu = pmu;
3273 
3274 	return ctx;
3275 }
3276 
3277 static struct task_struct *
3278 find_lively_task_by_vpid(pid_t vpid)
3279 {
3280 	struct task_struct *task;
3281 	int err;
3282 
3283 	rcu_read_lock();
3284 	if (!vpid)
3285 		task = current;
3286 	else
3287 		task = find_task_by_vpid(vpid);
3288 	if (task)
3289 		get_task_struct(task);
3290 	rcu_read_unlock();
3291 
3292 	if (!task)
3293 		return ERR_PTR(-ESRCH);
3294 
3295 	/* Reuse ptrace permission checks for now. */
3296 	err = -EACCES;
3297 	if (!ptrace_may_access(task, PTRACE_MODE_READ))
3298 		goto errout;
3299 
3300 	return task;
3301 errout:
3302 	put_task_struct(task);
3303 	return ERR_PTR(err);
3304 
3305 }
3306 
3307 /*
3308  * Returns a matching context with refcount and pincount.
3309  */
3310 static struct perf_event_context *
3311 find_get_context(struct pmu *pmu, struct task_struct *task,
3312 		struct perf_event *event)
3313 {
3314 	struct perf_event_context *ctx, *clone_ctx = NULL;
3315 	struct perf_cpu_context *cpuctx;
3316 	void *task_ctx_data = NULL;
3317 	unsigned long flags;
3318 	int ctxn, err;
3319 	int cpu = event->cpu;
3320 
3321 	if (!task) {
3322 		/* Must be root to operate on a CPU event: */
3323 		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3324 			return ERR_PTR(-EACCES);
3325 
3326 		/*
3327 		 * We could be clever and allow to attach a event to an
3328 		 * offline CPU and activate it when the CPU comes up, but
3329 		 * that's for later.
3330 		 */
3331 		if (!cpu_online(cpu))
3332 			return ERR_PTR(-ENODEV);
3333 
3334 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3335 		ctx = &cpuctx->ctx;
3336 		get_ctx(ctx);
3337 		++ctx->pin_count;
3338 
3339 		return ctx;
3340 	}
3341 
3342 	err = -EINVAL;
3343 	ctxn = pmu->task_ctx_nr;
3344 	if (ctxn < 0)
3345 		goto errout;
3346 
3347 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3348 		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3349 		if (!task_ctx_data) {
3350 			err = -ENOMEM;
3351 			goto errout;
3352 		}
3353 	}
3354 
3355 retry:
3356 	ctx = perf_lock_task_context(task, ctxn, &flags);
3357 	if (ctx) {
3358 		clone_ctx = unclone_ctx(ctx);
3359 		++ctx->pin_count;
3360 
3361 		if (task_ctx_data && !ctx->task_ctx_data) {
3362 			ctx->task_ctx_data = task_ctx_data;
3363 			task_ctx_data = NULL;
3364 		}
3365 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3366 
3367 		if (clone_ctx)
3368 			put_ctx(clone_ctx);
3369 	} else {
3370 		ctx = alloc_perf_context(pmu, task);
3371 		err = -ENOMEM;
3372 		if (!ctx)
3373 			goto errout;
3374 
3375 		if (task_ctx_data) {
3376 			ctx->task_ctx_data = task_ctx_data;
3377 			task_ctx_data = NULL;
3378 		}
3379 
3380 		err = 0;
3381 		mutex_lock(&task->perf_event_mutex);
3382 		/*
3383 		 * If it has already passed perf_event_exit_task().
3384 		 * we must see PF_EXITING, it takes this mutex too.
3385 		 */
3386 		if (task->flags & PF_EXITING)
3387 			err = -ESRCH;
3388 		else if (task->perf_event_ctxp[ctxn])
3389 			err = -EAGAIN;
3390 		else {
3391 			get_ctx(ctx);
3392 			++ctx->pin_count;
3393 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3394 		}
3395 		mutex_unlock(&task->perf_event_mutex);
3396 
3397 		if (unlikely(err)) {
3398 			put_ctx(ctx);
3399 
3400 			if (err == -EAGAIN)
3401 				goto retry;
3402 			goto errout;
3403 		}
3404 	}
3405 
3406 	kfree(task_ctx_data);
3407 	return ctx;
3408 
3409 errout:
3410 	kfree(task_ctx_data);
3411 	return ERR_PTR(err);
3412 }
3413 
3414 static void perf_event_free_filter(struct perf_event *event);
3415 static void perf_event_free_bpf_prog(struct perf_event *event);
3416 
3417 static void free_event_rcu(struct rcu_head *head)
3418 {
3419 	struct perf_event *event;
3420 
3421 	event = container_of(head, struct perf_event, rcu_head);
3422 	if (event->ns)
3423 		put_pid_ns(event->ns);
3424 	perf_event_free_filter(event);
3425 	perf_event_free_bpf_prog(event);
3426 	kfree(event);
3427 }
3428 
3429 static void ring_buffer_attach(struct perf_event *event,
3430 			       struct ring_buffer *rb);
3431 
3432 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3433 {
3434 	if (event->parent)
3435 		return;
3436 
3437 	if (is_cgroup_event(event))
3438 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3439 }
3440 
3441 static void unaccount_event(struct perf_event *event)
3442 {
3443 	if (event->parent)
3444 		return;
3445 
3446 	if (event->attach_state & PERF_ATTACH_TASK)
3447 		static_key_slow_dec_deferred(&perf_sched_events);
3448 	if (event->attr.mmap || event->attr.mmap_data)
3449 		atomic_dec(&nr_mmap_events);
3450 	if (event->attr.comm)
3451 		atomic_dec(&nr_comm_events);
3452 	if (event->attr.task)
3453 		atomic_dec(&nr_task_events);
3454 	if (event->attr.freq)
3455 		atomic_dec(&nr_freq_events);
3456 	if (is_cgroup_event(event))
3457 		static_key_slow_dec_deferred(&perf_sched_events);
3458 	if (has_branch_stack(event))
3459 		static_key_slow_dec_deferred(&perf_sched_events);
3460 
3461 	unaccount_event_cpu(event, event->cpu);
3462 }
3463 
3464 /*
3465  * The following implement mutual exclusion of events on "exclusive" pmus
3466  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3467  * at a time, so we disallow creating events that might conflict, namely:
3468  *
3469  *  1) cpu-wide events in the presence of per-task events,
3470  *  2) per-task events in the presence of cpu-wide events,
3471  *  3) two matching events on the same context.
3472  *
3473  * The former two cases are handled in the allocation path (perf_event_alloc(),
3474  * __free_event()), the latter -- before the first perf_install_in_context().
3475  */
3476 static int exclusive_event_init(struct perf_event *event)
3477 {
3478 	struct pmu *pmu = event->pmu;
3479 
3480 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3481 		return 0;
3482 
3483 	/*
3484 	 * Prevent co-existence of per-task and cpu-wide events on the
3485 	 * same exclusive pmu.
3486 	 *
3487 	 * Negative pmu::exclusive_cnt means there are cpu-wide
3488 	 * events on this "exclusive" pmu, positive means there are
3489 	 * per-task events.
3490 	 *
3491 	 * Since this is called in perf_event_alloc() path, event::ctx
3492 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3493 	 * to mean "per-task event", because unlike other attach states it
3494 	 * never gets cleared.
3495 	 */
3496 	if (event->attach_state & PERF_ATTACH_TASK) {
3497 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3498 			return -EBUSY;
3499 	} else {
3500 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3501 			return -EBUSY;
3502 	}
3503 
3504 	return 0;
3505 }
3506 
3507 static void exclusive_event_destroy(struct perf_event *event)
3508 {
3509 	struct pmu *pmu = event->pmu;
3510 
3511 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3512 		return;
3513 
3514 	/* see comment in exclusive_event_init() */
3515 	if (event->attach_state & PERF_ATTACH_TASK)
3516 		atomic_dec(&pmu->exclusive_cnt);
3517 	else
3518 		atomic_inc(&pmu->exclusive_cnt);
3519 }
3520 
3521 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3522 {
3523 	if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
3524 	    (e1->cpu == e2->cpu ||
3525 	     e1->cpu == -1 ||
3526 	     e2->cpu == -1))
3527 		return true;
3528 	return false;
3529 }
3530 
3531 /* Called under the same ctx::mutex as perf_install_in_context() */
3532 static bool exclusive_event_installable(struct perf_event *event,
3533 					struct perf_event_context *ctx)
3534 {
3535 	struct perf_event *iter_event;
3536 	struct pmu *pmu = event->pmu;
3537 
3538 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3539 		return true;
3540 
3541 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3542 		if (exclusive_event_match(iter_event, event))
3543 			return false;
3544 	}
3545 
3546 	return true;
3547 }
3548 
3549 static void __free_event(struct perf_event *event)
3550 {
3551 	if (!event->parent) {
3552 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3553 			put_callchain_buffers();
3554 	}
3555 
3556 	if (event->destroy)
3557 		event->destroy(event);
3558 
3559 	if (event->ctx)
3560 		put_ctx(event->ctx);
3561 
3562 	if (event->pmu) {
3563 		exclusive_event_destroy(event);
3564 		module_put(event->pmu->module);
3565 	}
3566 
3567 	call_rcu(&event->rcu_head, free_event_rcu);
3568 }
3569 
3570 static void _free_event(struct perf_event *event)
3571 {
3572 	irq_work_sync(&event->pending);
3573 
3574 	unaccount_event(event);
3575 
3576 	if (event->rb) {
3577 		/*
3578 		 * Can happen when we close an event with re-directed output.
3579 		 *
3580 		 * Since we have a 0 refcount, perf_mmap_close() will skip
3581 		 * over us; possibly making our ring_buffer_put() the last.
3582 		 */
3583 		mutex_lock(&event->mmap_mutex);
3584 		ring_buffer_attach(event, NULL);
3585 		mutex_unlock(&event->mmap_mutex);
3586 	}
3587 
3588 	if (is_cgroup_event(event))
3589 		perf_detach_cgroup(event);
3590 
3591 	__free_event(event);
3592 }
3593 
3594 /*
3595  * Used to free events which have a known refcount of 1, such as in error paths
3596  * where the event isn't exposed yet and inherited events.
3597  */
3598 static void free_event(struct perf_event *event)
3599 {
3600 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3601 				"unexpected event refcount: %ld; ptr=%p\n",
3602 				atomic_long_read(&event->refcount), event)) {
3603 		/* leak to avoid use-after-free */
3604 		return;
3605 	}
3606 
3607 	_free_event(event);
3608 }
3609 
3610 /*
3611  * Remove user event from the owner task.
3612  */
3613 static void perf_remove_from_owner(struct perf_event *event)
3614 {
3615 	struct task_struct *owner;
3616 
3617 	rcu_read_lock();
3618 	owner = ACCESS_ONCE(event->owner);
3619 	/*
3620 	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3621 	 * !owner it means the list deletion is complete and we can indeed
3622 	 * free this event, otherwise we need to serialize on
3623 	 * owner->perf_event_mutex.
3624 	 */
3625 	smp_read_barrier_depends();
3626 	if (owner) {
3627 		/*
3628 		 * Since delayed_put_task_struct() also drops the last
3629 		 * task reference we can safely take a new reference
3630 		 * while holding the rcu_read_lock().
3631 		 */
3632 		get_task_struct(owner);
3633 	}
3634 	rcu_read_unlock();
3635 
3636 	if (owner) {
3637 		/*
3638 		 * If we're here through perf_event_exit_task() we're already
3639 		 * holding ctx->mutex which would be an inversion wrt. the
3640 		 * normal lock order.
3641 		 *
3642 		 * However we can safely take this lock because its the child
3643 		 * ctx->mutex.
3644 		 */
3645 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
3646 
3647 		/*
3648 		 * We have to re-check the event->owner field, if it is cleared
3649 		 * we raced with perf_event_exit_task(), acquiring the mutex
3650 		 * ensured they're done, and we can proceed with freeing the
3651 		 * event.
3652 		 */
3653 		if (event->owner)
3654 			list_del_init(&event->owner_entry);
3655 		mutex_unlock(&owner->perf_event_mutex);
3656 		put_task_struct(owner);
3657 	}
3658 }
3659 
3660 /*
3661  * Called when the last reference to the file is gone.
3662  */
3663 static void put_event(struct perf_event *event)
3664 {
3665 	struct perf_event_context *ctx;
3666 
3667 	if (!atomic_long_dec_and_test(&event->refcount))
3668 		return;
3669 
3670 	if (!is_kernel_event(event))
3671 		perf_remove_from_owner(event);
3672 
3673 	/*
3674 	 * There are two ways this annotation is useful:
3675 	 *
3676 	 *  1) there is a lock recursion from perf_event_exit_task
3677 	 *     see the comment there.
3678 	 *
3679 	 *  2) there is a lock-inversion with mmap_sem through
3680 	 *     perf_event_read_group(), which takes faults while
3681 	 *     holding ctx->mutex, however this is called after
3682 	 *     the last filedesc died, so there is no possibility
3683 	 *     to trigger the AB-BA case.
3684 	 */
3685 	ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING);
3686 	WARN_ON_ONCE(ctx->parent_ctx);
3687 	perf_remove_from_context(event, true);
3688 	perf_event_ctx_unlock(event, ctx);
3689 
3690 	_free_event(event);
3691 }
3692 
3693 int perf_event_release_kernel(struct perf_event *event)
3694 {
3695 	put_event(event);
3696 	return 0;
3697 }
3698 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3699 
3700 static int perf_release(struct inode *inode, struct file *file)
3701 {
3702 	put_event(file->private_data);
3703 	return 0;
3704 }
3705 
3706 /*
3707  * Remove all orphanes events from the context.
3708  */
3709 static void orphans_remove_work(struct work_struct *work)
3710 {
3711 	struct perf_event_context *ctx;
3712 	struct perf_event *event, *tmp;
3713 
3714 	ctx = container_of(work, struct perf_event_context,
3715 			   orphans_remove.work);
3716 
3717 	mutex_lock(&ctx->mutex);
3718 	list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
3719 		struct perf_event *parent_event = event->parent;
3720 
3721 		if (!is_orphaned_child(event))
3722 			continue;
3723 
3724 		perf_remove_from_context(event, true);
3725 
3726 		mutex_lock(&parent_event->child_mutex);
3727 		list_del_init(&event->child_list);
3728 		mutex_unlock(&parent_event->child_mutex);
3729 
3730 		free_event(event);
3731 		put_event(parent_event);
3732 	}
3733 
3734 	raw_spin_lock_irq(&ctx->lock);
3735 	ctx->orphans_remove_sched = false;
3736 	raw_spin_unlock_irq(&ctx->lock);
3737 	mutex_unlock(&ctx->mutex);
3738 
3739 	put_ctx(ctx);
3740 }
3741 
3742 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3743 {
3744 	struct perf_event *child;
3745 	u64 total = 0;
3746 
3747 	*enabled = 0;
3748 	*running = 0;
3749 
3750 	mutex_lock(&event->child_mutex);
3751 	total += perf_event_read(event);
3752 	*enabled += event->total_time_enabled +
3753 			atomic64_read(&event->child_total_time_enabled);
3754 	*running += event->total_time_running +
3755 			atomic64_read(&event->child_total_time_running);
3756 
3757 	list_for_each_entry(child, &event->child_list, child_list) {
3758 		total += perf_event_read(child);
3759 		*enabled += child->total_time_enabled;
3760 		*running += child->total_time_running;
3761 	}
3762 	mutex_unlock(&event->child_mutex);
3763 
3764 	return total;
3765 }
3766 EXPORT_SYMBOL_GPL(perf_event_read_value);
3767 
3768 static int perf_event_read_group(struct perf_event *event,
3769 				   u64 read_format, char __user *buf)
3770 {
3771 	struct perf_event *leader = event->group_leader, *sub;
3772 	struct perf_event_context *ctx = leader->ctx;
3773 	int n = 0, size = 0, ret;
3774 	u64 count, enabled, running;
3775 	u64 values[5];
3776 
3777 	lockdep_assert_held(&ctx->mutex);
3778 
3779 	count = perf_event_read_value(leader, &enabled, &running);
3780 
3781 	values[n++] = 1 + leader->nr_siblings;
3782 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3783 		values[n++] = enabled;
3784 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3785 		values[n++] = running;
3786 	values[n++] = count;
3787 	if (read_format & PERF_FORMAT_ID)
3788 		values[n++] = primary_event_id(leader);
3789 
3790 	size = n * sizeof(u64);
3791 
3792 	if (copy_to_user(buf, values, size))
3793 		return -EFAULT;
3794 
3795 	ret = size;
3796 
3797 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3798 		n = 0;
3799 
3800 		values[n++] = perf_event_read_value(sub, &enabled, &running);
3801 		if (read_format & PERF_FORMAT_ID)
3802 			values[n++] = primary_event_id(sub);
3803 
3804 		size = n * sizeof(u64);
3805 
3806 		if (copy_to_user(buf + ret, values, size)) {
3807 			return -EFAULT;
3808 		}
3809 
3810 		ret += size;
3811 	}
3812 
3813 	return ret;
3814 }
3815 
3816 static int perf_event_read_one(struct perf_event *event,
3817 				 u64 read_format, char __user *buf)
3818 {
3819 	u64 enabled, running;
3820 	u64 values[4];
3821 	int n = 0;
3822 
3823 	values[n++] = perf_event_read_value(event, &enabled, &running);
3824 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3825 		values[n++] = enabled;
3826 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3827 		values[n++] = running;
3828 	if (read_format & PERF_FORMAT_ID)
3829 		values[n++] = primary_event_id(event);
3830 
3831 	if (copy_to_user(buf, values, n * sizeof(u64)))
3832 		return -EFAULT;
3833 
3834 	return n * sizeof(u64);
3835 }
3836 
3837 static bool is_event_hup(struct perf_event *event)
3838 {
3839 	bool no_children;
3840 
3841 	if (event->state != PERF_EVENT_STATE_EXIT)
3842 		return false;
3843 
3844 	mutex_lock(&event->child_mutex);
3845 	no_children = list_empty(&event->child_list);
3846 	mutex_unlock(&event->child_mutex);
3847 	return no_children;
3848 }
3849 
3850 /*
3851  * Read the performance event - simple non blocking version for now
3852  */
3853 static ssize_t
3854 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
3855 {
3856 	u64 read_format = event->attr.read_format;
3857 	int ret;
3858 
3859 	/*
3860 	 * Return end-of-file for a read on a event that is in
3861 	 * error state (i.e. because it was pinned but it couldn't be
3862 	 * scheduled on to the CPU at some point).
3863 	 */
3864 	if (event->state == PERF_EVENT_STATE_ERROR)
3865 		return 0;
3866 
3867 	if (count < event->read_size)
3868 		return -ENOSPC;
3869 
3870 	WARN_ON_ONCE(event->ctx->parent_ctx);
3871 	if (read_format & PERF_FORMAT_GROUP)
3872 		ret = perf_event_read_group(event, read_format, buf);
3873 	else
3874 		ret = perf_event_read_one(event, read_format, buf);
3875 
3876 	return ret;
3877 }
3878 
3879 static ssize_t
3880 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3881 {
3882 	struct perf_event *event = file->private_data;
3883 	struct perf_event_context *ctx;
3884 	int ret;
3885 
3886 	ctx = perf_event_ctx_lock(event);
3887 	ret = perf_read_hw(event, buf, count);
3888 	perf_event_ctx_unlock(event, ctx);
3889 
3890 	return ret;
3891 }
3892 
3893 static unsigned int perf_poll(struct file *file, poll_table *wait)
3894 {
3895 	struct perf_event *event = file->private_data;
3896 	struct ring_buffer *rb;
3897 	unsigned int events = POLLHUP;
3898 
3899 	poll_wait(file, &event->waitq, wait);
3900 
3901 	if (is_event_hup(event))
3902 		return events;
3903 
3904 	/*
3905 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
3906 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
3907 	 */
3908 	mutex_lock(&event->mmap_mutex);
3909 	rb = event->rb;
3910 	if (rb)
3911 		events = atomic_xchg(&rb->poll, 0);
3912 	mutex_unlock(&event->mmap_mutex);
3913 	return events;
3914 }
3915 
3916 static void _perf_event_reset(struct perf_event *event)
3917 {
3918 	(void)perf_event_read(event);
3919 	local64_set(&event->count, 0);
3920 	perf_event_update_userpage(event);
3921 }
3922 
3923 /*
3924  * Holding the top-level event's child_mutex means that any
3925  * descendant process that has inherited this event will block
3926  * in sync_child_event if it goes to exit, thus satisfying the
3927  * task existence requirements of perf_event_enable/disable.
3928  */
3929 static void perf_event_for_each_child(struct perf_event *event,
3930 					void (*func)(struct perf_event *))
3931 {
3932 	struct perf_event *child;
3933 
3934 	WARN_ON_ONCE(event->ctx->parent_ctx);
3935 
3936 	mutex_lock(&event->child_mutex);
3937 	func(event);
3938 	list_for_each_entry(child, &event->child_list, child_list)
3939 		func(child);
3940 	mutex_unlock(&event->child_mutex);
3941 }
3942 
3943 static void perf_event_for_each(struct perf_event *event,
3944 				  void (*func)(struct perf_event *))
3945 {
3946 	struct perf_event_context *ctx = event->ctx;
3947 	struct perf_event *sibling;
3948 
3949 	lockdep_assert_held(&ctx->mutex);
3950 
3951 	event = event->group_leader;
3952 
3953 	perf_event_for_each_child(event, func);
3954 	list_for_each_entry(sibling, &event->sibling_list, group_entry)
3955 		perf_event_for_each_child(sibling, func);
3956 }
3957 
3958 static int perf_event_period(struct perf_event *event, u64 __user *arg)
3959 {
3960 	struct perf_event_context *ctx = event->ctx;
3961 	int ret = 0, active;
3962 	u64 value;
3963 
3964 	if (!is_sampling_event(event))
3965 		return -EINVAL;
3966 
3967 	if (copy_from_user(&value, arg, sizeof(value)))
3968 		return -EFAULT;
3969 
3970 	if (!value)
3971 		return -EINVAL;
3972 
3973 	raw_spin_lock_irq(&ctx->lock);
3974 	if (event->attr.freq) {
3975 		if (value > sysctl_perf_event_sample_rate) {
3976 			ret = -EINVAL;
3977 			goto unlock;
3978 		}
3979 
3980 		event->attr.sample_freq = value;
3981 	} else {
3982 		event->attr.sample_period = value;
3983 		event->hw.sample_period = value;
3984 	}
3985 
3986 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
3987 	if (active) {
3988 		perf_pmu_disable(ctx->pmu);
3989 		event->pmu->stop(event, PERF_EF_UPDATE);
3990 	}
3991 
3992 	local64_set(&event->hw.period_left, 0);
3993 
3994 	if (active) {
3995 		event->pmu->start(event, PERF_EF_RELOAD);
3996 		perf_pmu_enable(ctx->pmu);
3997 	}
3998 
3999 unlock:
4000 	raw_spin_unlock_irq(&ctx->lock);
4001 
4002 	return ret;
4003 }
4004 
4005 static const struct file_operations perf_fops;
4006 
4007 static inline int perf_fget_light(int fd, struct fd *p)
4008 {
4009 	struct fd f = fdget(fd);
4010 	if (!f.file)
4011 		return -EBADF;
4012 
4013 	if (f.file->f_op != &perf_fops) {
4014 		fdput(f);
4015 		return -EBADF;
4016 	}
4017 	*p = f;
4018 	return 0;
4019 }
4020 
4021 static int perf_event_set_output(struct perf_event *event,
4022 				 struct perf_event *output_event);
4023 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4024 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4025 
4026 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4027 {
4028 	void (*func)(struct perf_event *);
4029 	u32 flags = arg;
4030 
4031 	switch (cmd) {
4032 	case PERF_EVENT_IOC_ENABLE:
4033 		func = _perf_event_enable;
4034 		break;
4035 	case PERF_EVENT_IOC_DISABLE:
4036 		func = _perf_event_disable;
4037 		break;
4038 	case PERF_EVENT_IOC_RESET:
4039 		func = _perf_event_reset;
4040 		break;
4041 
4042 	case PERF_EVENT_IOC_REFRESH:
4043 		return _perf_event_refresh(event, arg);
4044 
4045 	case PERF_EVENT_IOC_PERIOD:
4046 		return perf_event_period(event, (u64 __user *)arg);
4047 
4048 	case PERF_EVENT_IOC_ID:
4049 	{
4050 		u64 id = primary_event_id(event);
4051 
4052 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4053 			return -EFAULT;
4054 		return 0;
4055 	}
4056 
4057 	case PERF_EVENT_IOC_SET_OUTPUT:
4058 	{
4059 		int ret;
4060 		if (arg != -1) {
4061 			struct perf_event *output_event;
4062 			struct fd output;
4063 			ret = perf_fget_light(arg, &output);
4064 			if (ret)
4065 				return ret;
4066 			output_event = output.file->private_data;
4067 			ret = perf_event_set_output(event, output_event);
4068 			fdput(output);
4069 		} else {
4070 			ret = perf_event_set_output(event, NULL);
4071 		}
4072 		return ret;
4073 	}
4074 
4075 	case PERF_EVENT_IOC_SET_FILTER:
4076 		return perf_event_set_filter(event, (void __user *)arg);
4077 
4078 	case PERF_EVENT_IOC_SET_BPF:
4079 		return perf_event_set_bpf_prog(event, arg);
4080 
4081 	default:
4082 		return -ENOTTY;
4083 	}
4084 
4085 	if (flags & PERF_IOC_FLAG_GROUP)
4086 		perf_event_for_each(event, func);
4087 	else
4088 		perf_event_for_each_child(event, func);
4089 
4090 	return 0;
4091 }
4092 
4093 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4094 {
4095 	struct perf_event *event = file->private_data;
4096 	struct perf_event_context *ctx;
4097 	long ret;
4098 
4099 	ctx = perf_event_ctx_lock(event);
4100 	ret = _perf_ioctl(event, cmd, arg);
4101 	perf_event_ctx_unlock(event, ctx);
4102 
4103 	return ret;
4104 }
4105 
4106 #ifdef CONFIG_COMPAT
4107 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4108 				unsigned long arg)
4109 {
4110 	switch (_IOC_NR(cmd)) {
4111 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4112 	case _IOC_NR(PERF_EVENT_IOC_ID):
4113 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4114 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4115 			cmd &= ~IOCSIZE_MASK;
4116 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4117 		}
4118 		break;
4119 	}
4120 	return perf_ioctl(file, cmd, arg);
4121 }
4122 #else
4123 # define perf_compat_ioctl NULL
4124 #endif
4125 
4126 int perf_event_task_enable(void)
4127 {
4128 	struct perf_event_context *ctx;
4129 	struct perf_event *event;
4130 
4131 	mutex_lock(&current->perf_event_mutex);
4132 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4133 		ctx = perf_event_ctx_lock(event);
4134 		perf_event_for_each_child(event, _perf_event_enable);
4135 		perf_event_ctx_unlock(event, ctx);
4136 	}
4137 	mutex_unlock(&current->perf_event_mutex);
4138 
4139 	return 0;
4140 }
4141 
4142 int perf_event_task_disable(void)
4143 {
4144 	struct perf_event_context *ctx;
4145 	struct perf_event *event;
4146 
4147 	mutex_lock(&current->perf_event_mutex);
4148 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4149 		ctx = perf_event_ctx_lock(event);
4150 		perf_event_for_each_child(event, _perf_event_disable);
4151 		perf_event_ctx_unlock(event, ctx);
4152 	}
4153 	mutex_unlock(&current->perf_event_mutex);
4154 
4155 	return 0;
4156 }
4157 
4158 static int perf_event_index(struct perf_event *event)
4159 {
4160 	if (event->hw.state & PERF_HES_STOPPED)
4161 		return 0;
4162 
4163 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4164 		return 0;
4165 
4166 	return event->pmu->event_idx(event);
4167 }
4168 
4169 static void calc_timer_values(struct perf_event *event,
4170 				u64 *now,
4171 				u64 *enabled,
4172 				u64 *running)
4173 {
4174 	u64 ctx_time;
4175 
4176 	*now = perf_clock();
4177 	ctx_time = event->shadow_ctx_time + *now;
4178 	*enabled = ctx_time - event->tstamp_enabled;
4179 	*running = ctx_time - event->tstamp_running;
4180 }
4181 
4182 static void perf_event_init_userpage(struct perf_event *event)
4183 {
4184 	struct perf_event_mmap_page *userpg;
4185 	struct ring_buffer *rb;
4186 
4187 	rcu_read_lock();
4188 	rb = rcu_dereference(event->rb);
4189 	if (!rb)
4190 		goto unlock;
4191 
4192 	userpg = rb->user_page;
4193 
4194 	/* Allow new userspace to detect that bit 0 is deprecated */
4195 	userpg->cap_bit0_is_deprecated = 1;
4196 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4197 	userpg->data_offset = PAGE_SIZE;
4198 	userpg->data_size = perf_data_size(rb);
4199 
4200 unlock:
4201 	rcu_read_unlock();
4202 }
4203 
4204 void __weak arch_perf_update_userpage(
4205 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4206 {
4207 }
4208 
4209 /*
4210  * Callers need to ensure there can be no nesting of this function, otherwise
4211  * the seqlock logic goes bad. We can not serialize this because the arch
4212  * code calls this from NMI context.
4213  */
4214 void perf_event_update_userpage(struct perf_event *event)
4215 {
4216 	struct perf_event_mmap_page *userpg;
4217 	struct ring_buffer *rb;
4218 	u64 enabled, running, now;
4219 
4220 	rcu_read_lock();
4221 	rb = rcu_dereference(event->rb);
4222 	if (!rb)
4223 		goto unlock;
4224 
4225 	/*
4226 	 * compute total_time_enabled, total_time_running
4227 	 * based on snapshot values taken when the event
4228 	 * was last scheduled in.
4229 	 *
4230 	 * we cannot simply called update_context_time()
4231 	 * because of locking issue as we can be called in
4232 	 * NMI context
4233 	 */
4234 	calc_timer_values(event, &now, &enabled, &running);
4235 
4236 	userpg = rb->user_page;
4237 	/*
4238 	 * Disable preemption so as to not let the corresponding user-space
4239 	 * spin too long if we get preempted.
4240 	 */
4241 	preempt_disable();
4242 	++userpg->lock;
4243 	barrier();
4244 	userpg->index = perf_event_index(event);
4245 	userpg->offset = perf_event_count(event);
4246 	if (userpg->index)
4247 		userpg->offset -= local64_read(&event->hw.prev_count);
4248 
4249 	userpg->time_enabled = enabled +
4250 			atomic64_read(&event->child_total_time_enabled);
4251 
4252 	userpg->time_running = running +
4253 			atomic64_read(&event->child_total_time_running);
4254 
4255 	arch_perf_update_userpage(event, userpg, now);
4256 
4257 	barrier();
4258 	++userpg->lock;
4259 	preempt_enable();
4260 unlock:
4261 	rcu_read_unlock();
4262 }
4263 
4264 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4265 {
4266 	struct perf_event *event = vma->vm_file->private_data;
4267 	struct ring_buffer *rb;
4268 	int ret = VM_FAULT_SIGBUS;
4269 
4270 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
4271 		if (vmf->pgoff == 0)
4272 			ret = 0;
4273 		return ret;
4274 	}
4275 
4276 	rcu_read_lock();
4277 	rb = rcu_dereference(event->rb);
4278 	if (!rb)
4279 		goto unlock;
4280 
4281 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4282 		goto unlock;
4283 
4284 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4285 	if (!vmf->page)
4286 		goto unlock;
4287 
4288 	get_page(vmf->page);
4289 	vmf->page->mapping = vma->vm_file->f_mapping;
4290 	vmf->page->index   = vmf->pgoff;
4291 
4292 	ret = 0;
4293 unlock:
4294 	rcu_read_unlock();
4295 
4296 	return ret;
4297 }
4298 
4299 static void ring_buffer_attach(struct perf_event *event,
4300 			       struct ring_buffer *rb)
4301 {
4302 	struct ring_buffer *old_rb = NULL;
4303 	unsigned long flags;
4304 
4305 	if (event->rb) {
4306 		/*
4307 		 * Should be impossible, we set this when removing
4308 		 * event->rb_entry and wait/clear when adding event->rb_entry.
4309 		 */
4310 		WARN_ON_ONCE(event->rcu_pending);
4311 
4312 		old_rb = event->rb;
4313 		event->rcu_batches = get_state_synchronize_rcu();
4314 		event->rcu_pending = 1;
4315 
4316 		spin_lock_irqsave(&old_rb->event_lock, flags);
4317 		list_del_rcu(&event->rb_entry);
4318 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
4319 	}
4320 
4321 	if (event->rcu_pending && rb) {
4322 		cond_synchronize_rcu(event->rcu_batches);
4323 		event->rcu_pending = 0;
4324 	}
4325 
4326 	if (rb) {
4327 		spin_lock_irqsave(&rb->event_lock, flags);
4328 		list_add_rcu(&event->rb_entry, &rb->event_list);
4329 		spin_unlock_irqrestore(&rb->event_lock, flags);
4330 	}
4331 
4332 	rcu_assign_pointer(event->rb, rb);
4333 
4334 	if (old_rb) {
4335 		ring_buffer_put(old_rb);
4336 		/*
4337 		 * Since we detached before setting the new rb, so that we
4338 		 * could attach the new rb, we could have missed a wakeup.
4339 		 * Provide it now.
4340 		 */
4341 		wake_up_all(&event->waitq);
4342 	}
4343 }
4344 
4345 static void ring_buffer_wakeup(struct perf_event *event)
4346 {
4347 	struct ring_buffer *rb;
4348 
4349 	rcu_read_lock();
4350 	rb = rcu_dereference(event->rb);
4351 	if (rb) {
4352 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4353 			wake_up_all(&event->waitq);
4354 	}
4355 	rcu_read_unlock();
4356 }
4357 
4358 static void rb_free_rcu(struct rcu_head *rcu_head)
4359 {
4360 	struct ring_buffer *rb;
4361 
4362 	rb = container_of(rcu_head, struct ring_buffer, rcu_head);
4363 	rb_free(rb);
4364 }
4365 
4366 struct ring_buffer *ring_buffer_get(struct perf_event *event)
4367 {
4368 	struct ring_buffer *rb;
4369 
4370 	rcu_read_lock();
4371 	rb = rcu_dereference(event->rb);
4372 	if (rb) {
4373 		if (!atomic_inc_not_zero(&rb->refcount))
4374 			rb = NULL;
4375 	}
4376 	rcu_read_unlock();
4377 
4378 	return rb;
4379 }
4380 
4381 void ring_buffer_put(struct ring_buffer *rb)
4382 {
4383 	if (!atomic_dec_and_test(&rb->refcount))
4384 		return;
4385 
4386 	WARN_ON_ONCE(!list_empty(&rb->event_list));
4387 
4388 	call_rcu(&rb->rcu_head, rb_free_rcu);
4389 }
4390 
4391 static void perf_mmap_open(struct vm_area_struct *vma)
4392 {
4393 	struct perf_event *event = vma->vm_file->private_data;
4394 
4395 	atomic_inc(&event->mmap_count);
4396 	atomic_inc(&event->rb->mmap_count);
4397 
4398 	if (vma->vm_pgoff)
4399 		atomic_inc(&event->rb->aux_mmap_count);
4400 
4401 	if (event->pmu->event_mapped)
4402 		event->pmu->event_mapped(event);
4403 }
4404 
4405 /*
4406  * A buffer can be mmap()ed multiple times; either directly through the same
4407  * event, or through other events by use of perf_event_set_output().
4408  *
4409  * In order to undo the VM accounting done by perf_mmap() we need to destroy
4410  * the buffer here, where we still have a VM context. This means we need
4411  * to detach all events redirecting to us.
4412  */
4413 static void perf_mmap_close(struct vm_area_struct *vma)
4414 {
4415 	struct perf_event *event = vma->vm_file->private_data;
4416 
4417 	struct ring_buffer *rb = ring_buffer_get(event);
4418 	struct user_struct *mmap_user = rb->mmap_user;
4419 	int mmap_locked = rb->mmap_locked;
4420 	unsigned long size = perf_data_size(rb);
4421 
4422 	if (event->pmu->event_unmapped)
4423 		event->pmu->event_unmapped(event);
4424 
4425 	/*
4426 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
4427 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
4428 	 * serialize with perf_mmap here.
4429 	 */
4430 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4431 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4432 		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4433 		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4434 
4435 		rb_free_aux(rb);
4436 		mutex_unlock(&event->mmap_mutex);
4437 	}
4438 
4439 	atomic_dec(&rb->mmap_count);
4440 
4441 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4442 		goto out_put;
4443 
4444 	ring_buffer_attach(event, NULL);
4445 	mutex_unlock(&event->mmap_mutex);
4446 
4447 	/* If there's still other mmap()s of this buffer, we're done. */
4448 	if (atomic_read(&rb->mmap_count))
4449 		goto out_put;
4450 
4451 	/*
4452 	 * No other mmap()s, detach from all other events that might redirect
4453 	 * into the now unreachable buffer. Somewhat complicated by the
4454 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4455 	 */
4456 again:
4457 	rcu_read_lock();
4458 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4459 		if (!atomic_long_inc_not_zero(&event->refcount)) {
4460 			/*
4461 			 * This event is en-route to free_event() which will
4462 			 * detach it and remove it from the list.
4463 			 */
4464 			continue;
4465 		}
4466 		rcu_read_unlock();
4467 
4468 		mutex_lock(&event->mmap_mutex);
4469 		/*
4470 		 * Check we didn't race with perf_event_set_output() which can
4471 		 * swizzle the rb from under us while we were waiting to
4472 		 * acquire mmap_mutex.
4473 		 *
4474 		 * If we find a different rb; ignore this event, a next
4475 		 * iteration will no longer find it on the list. We have to
4476 		 * still restart the iteration to make sure we're not now
4477 		 * iterating the wrong list.
4478 		 */
4479 		if (event->rb == rb)
4480 			ring_buffer_attach(event, NULL);
4481 
4482 		mutex_unlock(&event->mmap_mutex);
4483 		put_event(event);
4484 
4485 		/*
4486 		 * Restart the iteration; either we're on the wrong list or
4487 		 * destroyed its integrity by doing a deletion.
4488 		 */
4489 		goto again;
4490 	}
4491 	rcu_read_unlock();
4492 
4493 	/*
4494 	 * It could be there's still a few 0-ref events on the list; they'll
4495 	 * get cleaned up by free_event() -- they'll also still have their
4496 	 * ref on the rb and will free it whenever they are done with it.
4497 	 *
4498 	 * Aside from that, this buffer is 'fully' detached and unmapped,
4499 	 * undo the VM accounting.
4500 	 */
4501 
4502 	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4503 	vma->vm_mm->pinned_vm -= mmap_locked;
4504 	free_uid(mmap_user);
4505 
4506 out_put:
4507 	ring_buffer_put(rb); /* could be last */
4508 }
4509 
4510 static const struct vm_operations_struct perf_mmap_vmops = {
4511 	.open		= perf_mmap_open,
4512 	.close		= perf_mmap_close, /* non mergable */
4513 	.fault		= perf_mmap_fault,
4514 	.page_mkwrite	= perf_mmap_fault,
4515 };
4516 
4517 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4518 {
4519 	struct perf_event *event = file->private_data;
4520 	unsigned long user_locked, user_lock_limit;
4521 	struct user_struct *user = current_user();
4522 	unsigned long locked, lock_limit;
4523 	struct ring_buffer *rb = NULL;
4524 	unsigned long vma_size;
4525 	unsigned long nr_pages;
4526 	long user_extra = 0, extra = 0;
4527 	int ret = 0, flags = 0;
4528 
4529 	/*
4530 	 * Don't allow mmap() of inherited per-task counters. This would
4531 	 * create a performance issue due to all children writing to the
4532 	 * same rb.
4533 	 */
4534 	if (event->cpu == -1 && event->attr.inherit)
4535 		return -EINVAL;
4536 
4537 	if (!(vma->vm_flags & VM_SHARED))
4538 		return -EINVAL;
4539 
4540 	vma_size = vma->vm_end - vma->vm_start;
4541 
4542 	if (vma->vm_pgoff == 0) {
4543 		nr_pages = (vma_size / PAGE_SIZE) - 1;
4544 	} else {
4545 		/*
4546 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
4547 		 * mapped, all subsequent mappings should have the same size
4548 		 * and offset. Must be above the normal perf buffer.
4549 		 */
4550 		u64 aux_offset, aux_size;
4551 
4552 		if (!event->rb)
4553 			return -EINVAL;
4554 
4555 		nr_pages = vma_size / PAGE_SIZE;
4556 
4557 		mutex_lock(&event->mmap_mutex);
4558 		ret = -EINVAL;
4559 
4560 		rb = event->rb;
4561 		if (!rb)
4562 			goto aux_unlock;
4563 
4564 		aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
4565 		aux_size = ACCESS_ONCE(rb->user_page->aux_size);
4566 
4567 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
4568 			goto aux_unlock;
4569 
4570 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
4571 			goto aux_unlock;
4572 
4573 		/* already mapped with a different offset */
4574 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
4575 			goto aux_unlock;
4576 
4577 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
4578 			goto aux_unlock;
4579 
4580 		/* already mapped with a different size */
4581 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
4582 			goto aux_unlock;
4583 
4584 		if (!is_power_of_2(nr_pages))
4585 			goto aux_unlock;
4586 
4587 		if (!atomic_inc_not_zero(&rb->mmap_count))
4588 			goto aux_unlock;
4589 
4590 		if (rb_has_aux(rb)) {
4591 			atomic_inc(&rb->aux_mmap_count);
4592 			ret = 0;
4593 			goto unlock;
4594 		}
4595 
4596 		atomic_set(&rb->aux_mmap_count, 1);
4597 		user_extra = nr_pages;
4598 
4599 		goto accounting;
4600 	}
4601 
4602 	/*
4603 	 * If we have rb pages ensure they're a power-of-two number, so we
4604 	 * can do bitmasks instead of modulo.
4605 	 */
4606 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
4607 		return -EINVAL;
4608 
4609 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
4610 		return -EINVAL;
4611 
4612 	WARN_ON_ONCE(event->ctx->parent_ctx);
4613 again:
4614 	mutex_lock(&event->mmap_mutex);
4615 	if (event->rb) {
4616 		if (event->rb->nr_pages != nr_pages) {
4617 			ret = -EINVAL;
4618 			goto unlock;
4619 		}
4620 
4621 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4622 			/*
4623 			 * Raced against perf_mmap_close() through
4624 			 * perf_event_set_output(). Try again, hope for better
4625 			 * luck.
4626 			 */
4627 			mutex_unlock(&event->mmap_mutex);
4628 			goto again;
4629 		}
4630 
4631 		goto unlock;
4632 	}
4633 
4634 	user_extra = nr_pages + 1;
4635 
4636 accounting:
4637 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
4638 
4639 	/*
4640 	 * Increase the limit linearly with more CPUs:
4641 	 */
4642 	user_lock_limit *= num_online_cpus();
4643 
4644 	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4645 
4646 	if (user_locked > user_lock_limit)
4647 		extra = user_locked - user_lock_limit;
4648 
4649 	lock_limit = rlimit(RLIMIT_MEMLOCK);
4650 	lock_limit >>= PAGE_SHIFT;
4651 	locked = vma->vm_mm->pinned_vm + extra;
4652 
4653 	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4654 		!capable(CAP_IPC_LOCK)) {
4655 		ret = -EPERM;
4656 		goto unlock;
4657 	}
4658 
4659 	WARN_ON(!rb && event->rb);
4660 
4661 	if (vma->vm_flags & VM_WRITE)
4662 		flags |= RING_BUFFER_WRITABLE;
4663 
4664 	if (!rb) {
4665 		rb = rb_alloc(nr_pages,
4666 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
4667 			      event->cpu, flags);
4668 
4669 		if (!rb) {
4670 			ret = -ENOMEM;
4671 			goto unlock;
4672 		}
4673 
4674 		atomic_set(&rb->mmap_count, 1);
4675 		rb->mmap_user = get_current_user();
4676 		rb->mmap_locked = extra;
4677 
4678 		ring_buffer_attach(event, rb);
4679 
4680 		perf_event_init_userpage(event);
4681 		perf_event_update_userpage(event);
4682 	} else {
4683 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
4684 				   event->attr.aux_watermark, flags);
4685 		if (!ret)
4686 			rb->aux_mmap_locked = extra;
4687 	}
4688 
4689 unlock:
4690 	if (!ret) {
4691 		atomic_long_add(user_extra, &user->locked_vm);
4692 		vma->vm_mm->pinned_vm += extra;
4693 
4694 		atomic_inc(&event->mmap_count);
4695 	} else if (rb) {
4696 		atomic_dec(&rb->mmap_count);
4697 	}
4698 aux_unlock:
4699 	mutex_unlock(&event->mmap_mutex);
4700 
4701 	/*
4702 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
4703 	 * vma.
4704 	 */
4705 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4706 	vma->vm_ops = &perf_mmap_vmops;
4707 
4708 	if (event->pmu->event_mapped)
4709 		event->pmu->event_mapped(event);
4710 
4711 	return ret;
4712 }
4713 
4714 static int perf_fasync(int fd, struct file *filp, int on)
4715 {
4716 	struct inode *inode = file_inode(filp);
4717 	struct perf_event *event = filp->private_data;
4718 	int retval;
4719 
4720 	mutex_lock(&inode->i_mutex);
4721 	retval = fasync_helper(fd, filp, on, &event->fasync);
4722 	mutex_unlock(&inode->i_mutex);
4723 
4724 	if (retval < 0)
4725 		return retval;
4726 
4727 	return 0;
4728 }
4729 
4730 static const struct file_operations perf_fops = {
4731 	.llseek			= no_llseek,
4732 	.release		= perf_release,
4733 	.read			= perf_read,
4734 	.poll			= perf_poll,
4735 	.unlocked_ioctl		= perf_ioctl,
4736 	.compat_ioctl		= perf_compat_ioctl,
4737 	.mmap			= perf_mmap,
4738 	.fasync			= perf_fasync,
4739 };
4740 
4741 /*
4742  * Perf event wakeup
4743  *
4744  * If there's data, ensure we set the poll() state and publish everything
4745  * to user-space before waking everybody up.
4746  */
4747 
4748 void perf_event_wakeup(struct perf_event *event)
4749 {
4750 	ring_buffer_wakeup(event);
4751 
4752 	if (event->pending_kill) {
4753 		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
4754 		event->pending_kill = 0;
4755 	}
4756 }
4757 
4758 static void perf_pending_event(struct irq_work *entry)
4759 {
4760 	struct perf_event *event = container_of(entry,
4761 			struct perf_event, pending);
4762 	int rctx;
4763 
4764 	rctx = perf_swevent_get_recursion_context();
4765 	/*
4766 	 * If we 'fail' here, that's OK, it means recursion is already disabled
4767 	 * and we won't recurse 'further'.
4768 	 */
4769 
4770 	if (event->pending_disable) {
4771 		event->pending_disable = 0;
4772 		__perf_event_disable(event);
4773 	}
4774 
4775 	if (event->pending_wakeup) {
4776 		event->pending_wakeup = 0;
4777 		perf_event_wakeup(event);
4778 	}
4779 
4780 	if (rctx >= 0)
4781 		perf_swevent_put_recursion_context(rctx);
4782 }
4783 
4784 /*
4785  * We assume there is only KVM supporting the callbacks.
4786  * Later on, we might change it to a list if there is
4787  * another virtualization implementation supporting the callbacks.
4788  */
4789 struct perf_guest_info_callbacks *perf_guest_cbs;
4790 
4791 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4792 {
4793 	perf_guest_cbs = cbs;
4794 	return 0;
4795 }
4796 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4797 
4798 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4799 {
4800 	perf_guest_cbs = NULL;
4801 	return 0;
4802 }
4803 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4804 
4805 static void
4806 perf_output_sample_regs(struct perf_output_handle *handle,
4807 			struct pt_regs *regs, u64 mask)
4808 {
4809 	int bit;
4810 
4811 	for_each_set_bit(bit, (const unsigned long *) &mask,
4812 			 sizeof(mask) * BITS_PER_BYTE) {
4813 		u64 val;
4814 
4815 		val = perf_reg_value(regs, bit);
4816 		perf_output_put(handle, val);
4817 	}
4818 }
4819 
4820 static void perf_sample_regs_user(struct perf_regs *regs_user,
4821 				  struct pt_regs *regs,
4822 				  struct pt_regs *regs_user_copy)
4823 {
4824 	if (user_mode(regs)) {
4825 		regs_user->abi = perf_reg_abi(current);
4826 		regs_user->regs = regs;
4827 	} else if (current->mm) {
4828 		perf_get_regs_user(regs_user, regs, regs_user_copy);
4829 	} else {
4830 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
4831 		regs_user->regs = NULL;
4832 	}
4833 }
4834 
4835 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
4836 				  struct pt_regs *regs)
4837 {
4838 	regs_intr->regs = regs;
4839 	regs_intr->abi  = perf_reg_abi(current);
4840 }
4841 
4842 
4843 /*
4844  * Get remaining task size from user stack pointer.
4845  *
4846  * It'd be better to take stack vma map and limit this more
4847  * precisly, but there's no way to get it safely under interrupt,
4848  * so using TASK_SIZE as limit.
4849  */
4850 static u64 perf_ustack_task_size(struct pt_regs *regs)
4851 {
4852 	unsigned long addr = perf_user_stack_pointer(regs);
4853 
4854 	if (!addr || addr >= TASK_SIZE)
4855 		return 0;
4856 
4857 	return TASK_SIZE - addr;
4858 }
4859 
4860 static u16
4861 perf_sample_ustack_size(u16 stack_size, u16 header_size,
4862 			struct pt_regs *regs)
4863 {
4864 	u64 task_size;
4865 
4866 	/* No regs, no stack pointer, no dump. */
4867 	if (!regs)
4868 		return 0;
4869 
4870 	/*
4871 	 * Check if we fit in with the requested stack size into the:
4872 	 * - TASK_SIZE
4873 	 *   If we don't, we limit the size to the TASK_SIZE.
4874 	 *
4875 	 * - remaining sample size
4876 	 *   If we don't, we customize the stack size to
4877 	 *   fit in to the remaining sample size.
4878 	 */
4879 
4880 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
4881 	stack_size = min(stack_size, (u16) task_size);
4882 
4883 	/* Current header size plus static size and dynamic size. */
4884 	header_size += 2 * sizeof(u64);
4885 
4886 	/* Do we fit in with the current stack dump size? */
4887 	if ((u16) (header_size + stack_size) < header_size) {
4888 		/*
4889 		 * If we overflow the maximum size for the sample,
4890 		 * we customize the stack dump size to fit in.
4891 		 */
4892 		stack_size = USHRT_MAX - header_size - sizeof(u64);
4893 		stack_size = round_up(stack_size, sizeof(u64));
4894 	}
4895 
4896 	return stack_size;
4897 }
4898 
4899 static void
4900 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
4901 			  struct pt_regs *regs)
4902 {
4903 	/* Case of a kernel thread, nothing to dump */
4904 	if (!regs) {
4905 		u64 size = 0;
4906 		perf_output_put(handle, size);
4907 	} else {
4908 		unsigned long sp;
4909 		unsigned int rem;
4910 		u64 dyn_size;
4911 
4912 		/*
4913 		 * We dump:
4914 		 * static size
4915 		 *   - the size requested by user or the best one we can fit
4916 		 *     in to the sample max size
4917 		 * data
4918 		 *   - user stack dump data
4919 		 * dynamic size
4920 		 *   - the actual dumped size
4921 		 */
4922 
4923 		/* Static size. */
4924 		perf_output_put(handle, dump_size);
4925 
4926 		/* Data. */
4927 		sp = perf_user_stack_pointer(regs);
4928 		rem = __output_copy_user(handle, (void *) sp, dump_size);
4929 		dyn_size = dump_size - rem;
4930 
4931 		perf_output_skip(handle, rem);
4932 
4933 		/* Dynamic size. */
4934 		perf_output_put(handle, dyn_size);
4935 	}
4936 }
4937 
4938 static void __perf_event_header__init_id(struct perf_event_header *header,
4939 					 struct perf_sample_data *data,
4940 					 struct perf_event *event)
4941 {
4942 	u64 sample_type = event->attr.sample_type;
4943 
4944 	data->type = sample_type;
4945 	header->size += event->id_header_size;
4946 
4947 	if (sample_type & PERF_SAMPLE_TID) {
4948 		/* namespace issues */
4949 		data->tid_entry.pid = perf_event_pid(event, current);
4950 		data->tid_entry.tid = perf_event_tid(event, current);
4951 	}
4952 
4953 	if (sample_type & PERF_SAMPLE_TIME)
4954 		data->time = perf_event_clock(event);
4955 
4956 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
4957 		data->id = primary_event_id(event);
4958 
4959 	if (sample_type & PERF_SAMPLE_STREAM_ID)
4960 		data->stream_id = event->id;
4961 
4962 	if (sample_type & PERF_SAMPLE_CPU) {
4963 		data->cpu_entry.cpu	 = raw_smp_processor_id();
4964 		data->cpu_entry.reserved = 0;
4965 	}
4966 }
4967 
4968 void perf_event_header__init_id(struct perf_event_header *header,
4969 				struct perf_sample_data *data,
4970 				struct perf_event *event)
4971 {
4972 	if (event->attr.sample_id_all)
4973 		__perf_event_header__init_id(header, data, event);
4974 }
4975 
4976 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
4977 					   struct perf_sample_data *data)
4978 {
4979 	u64 sample_type = data->type;
4980 
4981 	if (sample_type & PERF_SAMPLE_TID)
4982 		perf_output_put(handle, data->tid_entry);
4983 
4984 	if (sample_type & PERF_SAMPLE_TIME)
4985 		perf_output_put(handle, data->time);
4986 
4987 	if (sample_type & PERF_SAMPLE_ID)
4988 		perf_output_put(handle, data->id);
4989 
4990 	if (sample_type & PERF_SAMPLE_STREAM_ID)
4991 		perf_output_put(handle, data->stream_id);
4992 
4993 	if (sample_type & PERF_SAMPLE_CPU)
4994 		perf_output_put(handle, data->cpu_entry);
4995 
4996 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
4997 		perf_output_put(handle, data->id);
4998 }
4999 
5000 void perf_event__output_id_sample(struct perf_event *event,
5001 				  struct perf_output_handle *handle,
5002 				  struct perf_sample_data *sample)
5003 {
5004 	if (event->attr.sample_id_all)
5005 		__perf_event__output_id_sample(handle, sample);
5006 }
5007 
5008 static void perf_output_read_one(struct perf_output_handle *handle,
5009 				 struct perf_event *event,
5010 				 u64 enabled, u64 running)
5011 {
5012 	u64 read_format = event->attr.read_format;
5013 	u64 values[4];
5014 	int n = 0;
5015 
5016 	values[n++] = perf_event_count(event);
5017 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5018 		values[n++] = enabled +
5019 			atomic64_read(&event->child_total_time_enabled);
5020 	}
5021 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5022 		values[n++] = running +
5023 			atomic64_read(&event->child_total_time_running);
5024 	}
5025 	if (read_format & PERF_FORMAT_ID)
5026 		values[n++] = primary_event_id(event);
5027 
5028 	__output_copy(handle, values, n * sizeof(u64));
5029 }
5030 
5031 /*
5032  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5033  */
5034 static void perf_output_read_group(struct perf_output_handle *handle,
5035 			    struct perf_event *event,
5036 			    u64 enabled, u64 running)
5037 {
5038 	struct perf_event *leader = event->group_leader, *sub;
5039 	u64 read_format = event->attr.read_format;
5040 	u64 values[5];
5041 	int n = 0;
5042 
5043 	values[n++] = 1 + leader->nr_siblings;
5044 
5045 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5046 		values[n++] = enabled;
5047 
5048 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5049 		values[n++] = running;
5050 
5051 	if (leader != event)
5052 		leader->pmu->read(leader);
5053 
5054 	values[n++] = perf_event_count(leader);
5055 	if (read_format & PERF_FORMAT_ID)
5056 		values[n++] = primary_event_id(leader);
5057 
5058 	__output_copy(handle, values, n * sizeof(u64));
5059 
5060 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5061 		n = 0;
5062 
5063 		if ((sub != event) &&
5064 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
5065 			sub->pmu->read(sub);
5066 
5067 		values[n++] = perf_event_count(sub);
5068 		if (read_format & PERF_FORMAT_ID)
5069 			values[n++] = primary_event_id(sub);
5070 
5071 		__output_copy(handle, values, n * sizeof(u64));
5072 	}
5073 }
5074 
5075 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5076 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
5077 
5078 static void perf_output_read(struct perf_output_handle *handle,
5079 			     struct perf_event *event)
5080 {
5081 	u64 enabled = 0, running = 0, now;
5082 	u64 read_format = event->attr.read_format;
5083 
5084 	/*
5085 	 * compute total_time_enabled, total_time_running
5086 	 * based on snapshot values taken when the event
5087 	 * was last scheduled in.
5088 	 *
5089 	 * we cannot simply called update_context_time()
5090 	 * because of locking issue as we are called in
5091 	 * NMI context
5092 	 */
5093 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
5094 		calc_timer_values(event, &now, &enabled, &running);
5095 
5096 	if (event->attr.read_format & PERF_FORMAT_GROUP)
5097 		perf_output_read_group(handle, event, enabled, running);
5098 	else
5099 		perf_output_read_one(handle, event, enabled, running);
5100 }
5101 
5102 void perf_output_sample(struct perf_output_handle *handle,
5103 			struct perf_event_header *header,
5104 			struct perf_sample_data *data,
5105 			struct perf_event *event)
5106 {
5107 	u64 sample_type = data->type;
5108 
5109 	perf_output_put(handle, *header);
5110 
5111 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
5112 		perf_output_put(handle, data->id);
5113 
5114 	if (sample_type & PERF_SAMPLE_IP)
5115 		perf_output_put(handle, data->ip);
5116 
5117 	if (sample_type & PERF_SAMPLE_TID)
5118 		perf_output_put(handle, data->tid_entry);
5119 
5120 	if (sample_type & PERF_SAMPLE_TIME)
5121 		perf_output_put(handle, data->time);
5122 
5123 	if (sample_type & PERF_SAMPLE_ADDR)
5124 		perf_output_put(handle, data->addr);
5125 
5126 	if (sample_type & PERF_SAMPLE_ID)
5127 		perf_output_put(handle, data->id);
5128 
5129 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5130 		perf_output_put(handle, data->stream_id);
5131 
5132 	if (sample_type & PERF_SAMPLE_CPU)
5133 		perf_output_put(handle, data->cpu_entry);
5134 
5135 	if (sample_type & PERF_SAMPLE_PERIOD)
5136 		perf_output_put(handle, data->period);
5137 
5138 	if (sample_type & PERF_SAMPLE_READ)
5139 		perf_output_read(handle, event);
5140 
5141 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5142 		if (data->callchain) {
5143 			int size = 1;
5144 
5145 			if (data->callchain)
5146 				size += data->callchain->nr;
5147 
5148 			size *= sizeof(u64);
5149 
5150 			__output_copy(handle, data->callchain, size);
5151 		} else {
5152 			u64 nr = 0;
5153 			perf_output_put(handle, nr);
5154 		}
5155 	}
5156 
5157 	if (sample_type & PERF_SAMPLE_RAW) {
5158 		if (data->raw) {
5159 			perf_output_put(handle, data->raw->size);
5160 			__output_copy(handle, data->raw->data,
5161 					   data->raw->size);
5162 		} else {
5163 			struct {
5164 				u32	size;
5165 				u32	data;
5166 			} raw = {
5167 				.size = sizeof(u32),
5168 				.data = 0,
5169 			};
5170 			perf_output_put(handle, raw);
5171 		}
5172 	}
5173 
5174 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5175 		if (data->br_stack) {
5176 			size_t size;
5177 
5178 			size = data->br_stack->nr
5179 			     * sizeof(struct perf_branch_entry);
5180 
5181 			perf_output_put(handle, data->br_stack->nr);
5182 			perf_output_copy(handle, data->br_stack->entries, size);
5183 		} else {
5184 			/*
5185 			 * we always store at least the value of nr
5186 			 */
5187 			u64 nr = 0;
5188 			perf_output_put(handle, nr);
5189 		}
5190 	}
5191 
5192 	if (sample_type & PERF_SAMPLE_REGS_USER) {
5193 		u64 abi = data->regs_user.abi;
5194 
5195 		/*
5196 		 * If there are no regs to dump, notice it through
5197 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5198 		 */
5199 		perf_output_put(handle, abi);
5200 
5201 		if (abi) {
5202 			u64 mask = event->attr.sample_regs_user;
5203 			perf_output_sample_regs(handle,
5204 						data->regs_user.regs,
5205 						mask);
5206 		}
5207 	}
5208 
5209 	if (sample_type & PERF_SAMPLE_STACK_USER) {
5210 		perf_output_sample_ustack(handle,
5211 					  data->stack_user_size,
5212 					  data->regs_user.regs);
5213 	}
5214 
5215 	if (sample_type & PERF_SAMPLE_WEIGHT)
5216 		perf_output_put(handle, data->weight);
5217 
5218 	if (sample_type & PERF_SAMPLE_DATA_SRC)
5219 		perf_output_put(handle, data->data_src.val);
5220 
5221 	if (sample_type & PERF_SAMPLE_TRANSACTION)
5222 		perf_output_put(handle, data->txn);
5223 
5224 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
5225 		u64 abi = data->regs_intr.abi;
5226 		/*
5227 		 * If there are no regs to dump, notice it through
5228 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5229 		 */
5230 		perf_output_put(handle, abi);
5231 
5232 		if (abi) {
5233 			u64 mask = event->attr.sample_regs_intr;
5234 
5235 			perf_output_sample_regs(handle,
5236 						data->regs_intr.regs,
5237 						mask);
5238 		}
5239 	}
5240 
5241 	if (!event->attr.watermark) {
5242 		int wakeup_events = event->attr.wakeup_events;
5243 
5244 		if (wakeup_events) {
5245 			struct ring_buffer *rb = handle->rb;
5246 			int events = local_inc_return(&rb->events);
5247 
5248 			if (events >= wakeup_events) {
5249 				local_sub(wakeup_events, &rb->events);
5250 				local_inc(&rb->wakeup);
5251 			}
5252 		}
5253 	}
5254 }
5255 
5256 void perf_prepare_sample(struct perf_event_header *header,
5257 			 struct perf_sample_data *data,
5258 			 struct perf_event *event,
5259 			 struct pt_regs *regs)
5260 {
5261 	u64 sample_type = event->attr.sample_type;
5262 
5263 	header->type = PERF_RECORD_SAMPLE;
5264 	header->size = sizeof(*header) + event->header_size;
5265 
5266 	header->misc = 0;
5267 	header->misc |= perf_misc_flags(regs);
5268 
5269 	__perf_event_header__init_id(header, data, event);
5270 
5271 	if (sample_type & PERF_SAMPLE_IP)
5272 		data->ip = perf_instruction_pointer(regs);
5273 
5274 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5275 		int size = 1;
5276 
5277 		data->callchain = perf_callchain(event, regs);
5278 
5279 		if (data->callchain)
5280 			size += data->callchain->nr;
5281 
5282 		header->size += size * sizeof(u64);
5283 	}
5284 
5285 	if (sample_type & PERF_SAMPLE_RAW) {
5286 		int size = sizeof(u32);
5287 
5288 		if (data->raw)
5289 			size += data->raw->size;
5290 		else
5291 			size += sizeof(u32);
5292 
5293 		WARN_ON_ONCE(size & (sizeof(u64)-1));
5294 		header->size += size;
5295 	}
5296 
5297 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5298 		int size = sizeof(u64); /* nr */
5299 		if (data->br_stack) {
5300 			size += data->br_stack->nr
5301 			      * sizeof(struct perf_branch_entry);
5302 		}
5303 		header->size += size;
5304 	}
5305 
5306 	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5307 		perf_sample_regs_user(&data->regs_user, regs,
5308 				      &data->regs_user_copy);
5309 
5310 	if (sample_type & PERF_SAMPLE_REGS_USER) {
5311 		/* regs dump ABI info */
5312 		int size = sizeof(u64);
5313 
5314 		if (data->regs_user.regs) {
5315 			u64 mask = event->attr.sample_regs_user;
5316 			size += hweight64(mask) * sizeof(u64);
5317 		}
5318 
5319 		header->size += size;
5320 	}
5321 
5322 	if (sample_type & PERF_SAMPLE_STACK_USER) {
5323 		/*
5324 		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5325 		 * processed as the last one or have additional check added
5326 		 * in case new sample type is added, because we could eat
5327 		 * up the rest of the sample size.
5328 		 */
5329 		u16 stack_size = event->attr.sample_stack_user;
5330 		u16 size = sizeof(u64);
5331 
5332 		stack_size = perf_sample_ustack_size(stack_size, header->size,
5333 						     data->regs_user.regs);
5334 
5335 		/*
5336 		 * If there is something to dump, add space for the dump
5337 		 * itself and for the field that tells the dynamic size,
5338 		 * which is how many have been actually dumped.
5339 		 */
5340 		if (stack_size)
5341 			size += sizeof(u64) + stack_size;
5342 
5343 		data->stack_user_size = stack_size;
5344 		header->size += size;
5345 	}
5346 
5347 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
5348 		/* regs dump ABI info */
5349 		int size = sizeof(u64);
5350 
5351 		perf_sample_regs_intr(&data->regs_intr, regs);
5352 
5353 		if (data->regs_intr.regs) {
5354 			u64 mask = event->attr.sample_regs_intr;
5355 
5356 			size += hweight64(mask) * sizeof(u64);
5357 		}
5358 
5359 		header->size += size;
5360 	}
5361 }
5362 
5363 static void perf_event_output(struct perf_event *event,
5364 				struct perf_sample_data *data,
5365 				struct pt_regs *regs)
5366 {
5367 	struct perf_output_handle handle;
5368 	struct perf_event_header header;
5369 
5370 	/* protect the callchain buffers */
5371 	rcu_read_lock();
5372 
5373 	perf_prepare_sample(&header, data, event, regs);
5374 
5375 	if (perf_output_begin(&handle, event, header.size))
5376 		goto exit;
5377 
5378 	perf_output_sample(&handle, &header, data, event);
5379 
5380 	perf_output_end(&handle);
5381 
5382 exit:
5383 	rcu_read_unlock();
5384 }
5385 
5386 /*
5387  * read event_id
5388  */
5389 
5390 struct perf_read_event {
5391 	struct perf_event_header	header;
5392 
5393 	u32				pid;
5394 	u32				tid;
5395 };
5396 
5397 static void
5398 perf_event_read_event(struct perf_event *event,
5399 			struct task_struct *task)
5400 {
5401 	struct perf_output_handle handle;
5402 	struct perf_sample_data sample;
5403 	struct perf_read_event read_event = {
5404 		.header = {
5405 			.type = PERF_RECORD_READ,
5406 			.misc = 0,
5407 			.size = sizeof(read_event) + event->read_size,
5408 		},
5409 		.pid = perf_event_pid(event, task),
5410 		.tid = perf_event_tid(event, task),
5411 	};
5412 	int ret;
5413 
5414 	perf_event_header__init_id(&read_event.header, &sample, event);
5415 	ret = perf_output_begin(&handle, event, read_event.header.size);
5416 	if (ret)
5417 		return;
5418 
5419 	perf_output_put(&handle, read_event);
5420 	perf_output_read(&handle, event);
5421 	perf_event__output_id_sample(event, &handle, &sample);
5422 
5423 	perf_output_end(&handle);
5424 }
5425 
5426 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
5427 
5428 static void
5429 perf_event_aux_ctx(struct perf_event_context *ctx,
5430 		   perf_event_aux_output_cb output,
5431 		   void *data)
5432 {
5433 	struct perf_event *event;
5434 
5435 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5436 		if (event->state < PERF_EVENT_STATE_INACTIVE)
5437 			continue;
5438 		if (!event_filter_match(event))
5439 			continue;
5440 		output(event, data);
5441 	}
5442 }
5443 
5444 static void
5445 perf_event_aux(perf_event_aux_output_cb output, void *data,
5446 	       struct perf_event_context *task_ctx)
5447 {
5448 	struct perf_cpu_context *cpuctx;
5449 	struct perf_event_context *ctx;
5450 	struct pmu *pmu;
5451 	int ctxn;
5452 
5453 	rcu_read_lock();
5454 	list_for_each_entry_rcu(pmu, &pmus, entry) {
5455 		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5456 		if (cpuctx->unique_pmu != pmu)
5457 			goto next;
5458 		perf_event_aux_ctx(&cpuctx->ctx, output, data);
5459 		if (task_ctx)
5460 			goto next;
5461 		ctxn = pmu->task_ctx_nr;
5462 		if (ctxn < 0)
5463 			goto next;
5464 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5465 		if (ctx)
5466 			perf_event_aux_ctx(ctx, output, data);
5467 next:
5468 		put_cpu_ptr(pmu->pmu_cpu_context);
5469 	}
5470 
5471 	if (task_ctx) {
5472 		preempt_disable();
5473 		perf_event_aux_ctx(task_ctx, output, data);
5474 		preempt_enable();
5475 	}
5476 	rcu_read_unlock();
5477 }
5478 
5479 /*
5480  * task tracking -- fork/exit
5481  *
5482  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
5483  */
5484 
5485 struct perf_task_event {
5486 	struct task_struct		*task;
5487 	struct perf_event_context	*task_ctx;
5488 
5489 	struct {
5490 		struct perf_event_header	header;
5491 
5492 		u32				pid;
5493 		u32				ppid;
5494 		u32				tid;
5495 		u32				ptid;
5496 		u64				time;
5497 	} event_id;
5498 };
5499 
5500 static int perf_event_task_match(struct perf_event *event)
5501 {
5502 	return event->attr.comm  || event->attr.mmap ||
5503 	       event->attr.mmap2 || event->attr.mmap_data ||
5504 	       event->attr.task;
5505 }
5506 
5507 static void perf_event_task_output(struct perf_event *event,
5508 				   void *data)
5509 {
5510 	struct perf_task_event *task_event = data;
5511 	struct perf_output_handle handle;
5512 	struct perf_sample_data	sample;
5513 	struct task_struct *task = task_event->task;
5514 	int ret, size = task_event->event_id.header.size;
5515 
5516 	if (!perf_event_task_match(event))
5517 		return;
5518 
5519 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
5520 
5521 	ret = perf_output_begin(&handle, event,
5522 				task_event->event_id.header.size);
5523 	if (ret)
5524 		goto out;
5525 
5526 	task_event->event_id.pid = perf_event_pid(event, task);
5527 	task_event->event_id.ppid = perf_event_pid(event, current);
5528 
5529 	task_event->event_id.tid = perf_event_tid(event, task);
5530 	task_event->event_id.ptid = perf_event_tid(event, current);
5531 
5532 	task_event->event_id.time = perf_event_clock(event);
5533 
5534 	perf_output_put(&handle, task_event->event_id);
5535 
5536 	perf_event__output_id_sample(event, &handle, &sample);
5537 
5538 	perf_output_end(&handle);
5539 out:
5540 	task_event->event_id.header.size = size;
5541 }
5542 
5543 static void perf_event_task(struct task_struct *task,
5544 			      struct perf_event_context *task_ctx,
5545 			      int new)
5546 {
5547 	struct perf_task_event task_event;
5548 
5549 	if (!atomic_read(&nr_comm_events) &&
5550 	    !atomic_read(&nr_mmap_events) &&
5551 	    !atomic_read(&nr_task_events))
5552 		return;
5553 
5554 	task_event = (struct perf_task_event){
5555 		.task	  = task,
5556 		.task_ctx = task_ctx,
5557 		.event_id    = {
5558 			.header = {
5559 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5560 				.misc = 0,
5561 				.size = sizeof(task_event.event_id),
5562 			},
5563 			/* .pid  */
5564 			/* .ppid */
5565 			/* .tid  */
5566 			/* .ptid */
5567 			/* .time */
5568 		},
5569 	};
5570 
5571 	perf_event_aux(perf_event_task_output,
5572 		       &task_event,
5573 		       task_ctx);
5574 }
5575 
5576 void perf_event_fork(struct task_struct *task)
5577 {
5578 	perf_event_task(task, NULL, 1);
5579 }
5580 
5581 /*
5582  * comm tracking
5583  */
5584 
5585 struct perf_comm_event {
5586 	struct task_struct	*task;
5587 	char			*comm;
5588 	int			comm_size;
5589 
5590 	struct {
5591 		struct perf_event_header	header;
5592 
5593 		u32				pid;
5594 		u32				tid;
5595 	} event_id;
5596 };
5597 
5598 static int perf_event_comm_match(struct perf_event *event)
5599 {
5600 	return event->attr.comm;
5601 }
5602 
5603 static void perf_event_comm_output(struct perf_event *event,
5604 				   void *data)
5605 {
5606 	struct perf_comm_event *comm_event = data;
5607 	struct perf_output_handle handle;
5608 	struct perf_sample_data sample;
5609 	int size = comm_event->event_id.header.size;
5610 	int ret;
5611 
5612 	if (!perf_event_comm_match(event))
5613 		return;
5614 
5615 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5616 	ret = perf_output_begin(&handle, event,
5617 				comm_event->event_id.header.size);
5618 
5619 	if (ret)
5620 		goto out;
5621 
5622 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5623 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5624 
5625 	perf_output_put(&handle, comm_event->event_id);
5626 	__output_copy(&handle, comm_event->comm,
5627 				   comm_event->comm_size);
5628 
5629 	perf_event__output_id_sample(event, &handle, &sample);
5630 
5631 	perf_output_end(&handle);
5632 out:
5633 	comm_event->event_id.header.size = size;
5634 }
5635 
5636 static void perf_event_comm_event(struct perf_comm_event *comm_event)
5637 {
5638 	char comm[TASK_COMM_LEN];
5639 	unsigned int size;
5640 
5641 	memset(comm, 0, sizeof(comm));
5642 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
5643 	size = ALIGN(strlen(comm)+1, sizeof(u64));
5644 
5645 	comm_event->comm = comm;
5646 	comm_event->comm_size = size;
5647 
5648 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
5649 
5650 	perf_event_aux(perf_event_comm_output,
5651 		       comm_event,
5652 		       NULL);
5653 }
5654 
5655 void perf_event_comm(struct task_struct *task, bool exec)
5656 {
5657 	struct perf_comm_event comm_event;
5658 
5659 	if (!atomic_read(&nr_comm_events))
5660 		return;
5661 
5662 	comm_event = (struct perf_comm_event){
5663 		.task	= task,
5664 		/* .comm      */
5665 		/* .comm_size */
5666 		.event_id  = {
5667 			.header = {
5668 				.type = PERF_RECORD_COMM,
5669 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5670 				/* .size */
5671 			},
5672 			/* .pid */
5673 			/* .tid */
5674 		},
5675 	};
5676 
5677 	perf_event_comm_event(&comm_event);
5678 }
5679 
5680 /*
5681  * mmap tracking
5682  */
5683 
5684 struct perf_mmap_event {
5685 	struct vm_area_struct	*vma;
5686 
5687 	const char		*file_name;
5688 	int			file_size;
5689 	int			maj, min;
5690 	u64			ino;
5691 	u64			ino_generation;
5692 	u32			prot, flags;
5693 
5694 	struct {
5695 		struct perf_event_header	header;
5696 
5697 		u32				pid;
5698 		u32				tid;
5699 		u64				start;
5700 		u64				len;
5701 		u64				pgoff;
5702 	} event_id;
5703 };
5704 
5705 static int perf_event_mmap_match(struct perf_event *event,
5706 				 void *data)
5707 {
5708 	struct perf_mmap_event *mmap_event = data;
5709 	struct vm_area_struct *vma = mmap_event->vma;
5710 	int executable = vma->vm_flags & VM_EXEC;
5711 
5712 	return (!executable && event->attr.mmap_data) ||
5713 	       (executable && (event->attr.mmap || event->attr.mmap2));
5714 }
5715 
5716 static void perf_event_mmap_output(struct perf_event *event,
5717 				   void *data)
5718 {
5719 	struct perf_mmap_event *mmap_event = data;
5720 	struct perf_output_handle handle;
5721 	struct perf_sample_data sample;
5722 	int size = mmap_event->event_id.header.size;
5723 	int ret;
5724 
5725 	if (!perf_event_mmap_match(event, data))
5726 		return;
5727 
5728 	if (event->attr.mmap2) {
5729 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5730 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5731 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
5732 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5733 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5734 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
5735 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
5736 	}
5737 
5738 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5739 	ret = perf_output_begin(&handle, event,
5740 				mmap_event->event_id.header.size);
5741 	if (ret)
5742 		goto out;
5743 
5744 	mmap_event->event_id.pid = perf_event_pid(event, current);
5745 	mmap_event->event_id.tid = perf_event_tid(event, current);
5746 
5747 	perf_output_put(&handle, mmap_event->event_id);
5748 
5749 	if (event->attr.mmap2) {
5750 		perf_output_put(&handle, mmap_event->maj);
5751 		perf_output_put(&handle, mmap_event->min);
5752 		perf_output_put(&handle, mmap_event->ino);
5753 		perf_output_put(&handle, mmap_event->ino_generation);
5754 		perf_output_put(&handle, mmap_event->prot);
5755 		perf_output_put(&handle, mmap_event->flags);
5756 	}
5757 
5758 	__output_copy(&handle, mmap_event->file_name,
5759 				   mmap_event->file_size);
5760 
5761 	perf_event__output_id_sample(event, &handle, &sample);
5762 
5763 	perf_output_end(&handle);
5764 out:
5765 	mmap_event->event_id.header.size = size;
5766 }
5767 
5768 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5769 {
5770 	struct vm_area_struct *vma = mmap_event->vma;
5771 	struct file *file = vma->vm_file;
5772 	int maj = 0, min = 0;
5773 	u64 ino = 0, gen = 0;
5774 	u32 prot = 0, flags = 0;
5775 	unsigned int size;
5776 	char tmp[16];
5777 	char *buf = NULL;
5778 	char *name;
5779 
5780 	if (file) {
5781 		struct inode *inode;
5782 		dev_t dev;
5783 
5784 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
5785 		if (!buf) {
5786 			name = "//enomem";
5787 			goto cpy_name;
5788 		}
5789 		/*
5790 		 * d_path() works from the end of the rb backwards, so we
5791 		 * need to add enough zero bytes after the string to handle
5792 		 * the 64bit alignment we do later.
5793 		 */
5794 		name = d_path(&file->f_path, buf, PATH_MAX - sizeof(u64));
5795 		if (IS_ERR(name)) {
5796 			name = "//toolong";
5797 			goto cpy_name;
5798 		}
5799 		inode = file_inode(vma->vm_file);
5800 		dev = inode->i_sb->s_dev;
5801 		ino = inode->i_ino;
5802 		gen = inode->i_generation;
5803 		maj = MAJOR(dev);
5804 		min = MINOR(dev);
5805 
5806 		if (vma->vm_flags & VM_READ)
5807 			prot |= PROT_READ;
5808 		if (vma->vm_flags & VM_WRITE)
5809 			prot |= PROT_WRITE;
5810 		if (vma->vm_flags & VM_EXEC)
5811 			prot |= PROT_EXEC;
5812 
5813 		if (vma->vm_flags & VM_MAYSHARE)
5814 			flags = MAP_SHARED;
5815 		else
5816 			flags = MAP_PRIVATE;
5817 
5818 		if (vma->vm_flags & VM_DENYWRITE)
5819 			flags |= MAP_DENYWRITE;
5820 		if (vma->vm_flags & VM_MAYEXEC)
5821 			flags |= MAP_EXECUTABLE;
5822 		if (vma->vm_flags & VM_LOCKED)
5823 			flags |= MAP_LOCKED;
5824 		if (vma->vm_flags & VM_HUGETLB)
5825 			flags |= MAP_HUGETLB;
5826 
5827 		goto got_name;
5828 	} else {
5829 		if (vma->vm_ops && vma->vm_ops->name) {
5830 			name = (char *) vma->vm_ops->name(vma);
5831 			if (name)
5832 				goto cpy_name;
5833 		}
5834 
5835 		name = (char *)arch_vma_name(vma);
5836 		if (name)
5837 			goto cpy_name;
5838 
5839 		if (vma->vm_start <= vma->vm_mm->start_brk &&
5840 				vma->vm_end >= vma->vm_mm->brk) {
5841 			name = "[heap]";
5842 			goto cpy_name;
5843 		}
5844 		if (vma->vm_start <= vma->vm_mm->start_stack &&
5845 				vma->vm_end >= vma->vm_mm->start_stack) {
5846 			name = "[stack]";
5847 			goto cpy_name;
5848 		}
5849 
5850 		name = "//anon";
5851 		goto cpy_name;
5852 	}
5853 
5854 cpy_name:
5855 	strlcpy(tmp, name, sizeof(tmp));
5856 	name = tmp;
5857 got_name:
5858 	/*
5859 	 * Since our buffer works in 8 byte units we need to align our string
5860 	 * size to a multiple of 8. However, we must guarantee the tail end is
5861 	 * zero'd out to avoid leaking random bits to userspace.
5862 	 */
5863 	size = strlen(name)+1;
5864 	while (!IS_ALIGNED(size, sizeof(u64)))
5865 		name[size++] = '\0';
5866 
5867 	mmap_event->file_name = name;
5868 	mmap_event->file_size = size;
5869 	mmap_event->maj = maj;
5870 	mmap_event->min = min;
5871 	mmap_event->ino = ino;
5872 	mmap_event->ino_generation = gen;
5873 	mmap_event->prot = prot;
5874 	mmap_event->flags = flags;
5875 
5876 	if (!(vma->vm_flags & VM_EXEC))
5877 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
5878 
5879 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
5880 
5881 	perf_event_aux(perf_event_mmap_output,
5882 		       mmap_event,
5883 		       NULL);
5884 
5885 	kfree(buf);
5886 }
5887 
5888 void perf_event_mmap(struct vm_area_struct *vma)
5889 {
5890 	struct perf_mmap_event mmap_event;
5891 
5892 	if (!atomic_read(&nr_mmap_events))
5893 		return;
5894 
5895 	mmap_event = (struct perf_mmap_event){
5896 		.vma	= vma,
5897 		/* .file_name */
5898 		/* .file_size */
5899 		.event_id  = {
5900 			.header = {
5901 				.type = PERF_RECORD_MMAP,
5902 				.misc = PERF_RECORD_MISC_USER,
5903 				/* .size */
5904 			},
5905 			/* .pid */
5906 			/* .tid */
5907 			.start  = vma->vm_start,
5908 			.len    = vma->vm_end - vma->vm_start,
5909 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
5910 		},
5911 		/* .maj (attr_mmap2 only) */
5912 		/* .min (attr_mmap2 only) */
5913 		/* .ino (attr_mmap2 only) */
5914 		/* .ino_generation (attr_mmap2 only) */
5915 		/* .prot (attr_mmap2 only) */
5916 		/* .flags (attr_mmap2 only) */
5917 	};
5918 
5919 	perf_event_mmap_event(&mmap_event);
5920 }
5921 
5922 void perf_event_aux_event(struct perf_event *event, unsigned long head,
5923 			  unsigned long size, u64 flags)
5924 {
5925 	struct perf_output_handle handle;
5926 	struct perf_sample_data sample;
5927 	struct perf_aux_event {
5928 		struct perf_event_header	header;
5929 		u64				offset;
5930 		u64				size;
5931 		u64				flags;
5932 	} rec = {
5933 		.header = {
5934 			.type = PERF_RECORD_AUX,
5935 			.misc = 0,
5936 			.size = sizeof(rec),
5937 		},
5938 		.offset		= head,
5939 		.size		= size,
5940 		.flags		= flags,
5941 	};
5942 	int ret;
5943 
5944 	perf_event_header__init_id(&rec.header, &sample, event);
5945 	ret = perf_output_begin(&handle, event, rec.header.size);
5946 
5947 	if (ret)
5948 		return;
5949 
5950 	perf_output_put(&handle, rec);
5951 	perf_event__output_id_sample(event, &handle, &sample);
5952 
5953 	perf_output_end(&handle);
5954 }
5955 
5956 /*
5957  * IRQ throttle logging
5958  */
5959 
5960 static void perf_log_throttle(struct perf_event *event, int enable)
5961 {
5962 	struct perf_output_handle handle;
5963 	struct perf_sample_data sample;
5964 	int ret;
5965 
5966 	struct {
5967 		struct perf_event_header	header;
5968 		u64				time;
5969 		u64				id;
5970 		u64				stream_id;
5971 	} throttle_event = {
5972 		.header = {
5973 			.type = PERF_RECORD_THROTTLE,
5974 			.misc = 0,
5975 			.size = sizeof(throttle_event),
5976 		},
5977 		.time		= perf_event_clock(event),
5978 		.id		= primary_event_id(event),
5979 		.stream_id	= event->id,
5980 	};
5981 
5982 	if (enable)
5983 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
5984 
5985 	perf_event_header__init_id(&throttle_event.header, &sample, event);
5986 
5987 	ret = perf_output_begin(&handle, event,
5988 				throttle_event.header.size);
5989 	if (ret)
5990 		return;
5991 
5992 	perf_output_put(&handle, throttle_event);
5993 	perf_event__output_id_sample(event, &handle, &sample);
5994 	perf_output_end(&handle);
5995 }
5996 
5997 static void perf_log_itrace_start(struct perf_event *event)
5998 {
5999 	struct perf_output_handle handle;
6000 	struct perf_sample_data sample;
6001 	struct perf_aux_event {
6002 		struct perf_event_header        header;
6003 		u32				pid;
6004 		u32				tid;
6005 	} rec;
6006 	int ret;
6007 
6008 	if (event->parent)
6009 		event = event->parent;
6010 
6011 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
6012 	    event->hw.itrace_started)
6013 		return;
6014 
6015 	event->hw.itrace_started = 1;
6016 
6017 	rec.header.type	= PERF_RECORD_ITRACE_START;
6018 	rec.header.misc	= 0;
6019 	rec.header.size	= sizeof(rec);
6020 	rec.pid	= perf_event_pid(event, current);
6021 	rec.tid	= perf_event_tid(event, current);
6022 
6023 	perf_event_header__init_id(&rec.header, &sample, event);
6024 	ret = perf_output_begin(&handle, event, rec.header.size);
6025 
6026 	if (ret)
6027 		return;
6028 
6029 	perf_output_put(&handle, rec);
6030 	perf_event__output_id_sample(event, &handle, &sample);
6031 
6032 	perf_output_end(&handle);
6033 }
6034 
6035 /*
6036  * Generic event overflow handling, sampling.
6037  */
6038 
6039 static int __perf_event_overflow(struct perf_event *event,
6040 				   int throttle, struct perf_sample_data *data,
6041 				   struct pt_regs *regs)
6042 {
6043 	int events = atomic_read(&event->event_limit);
6044 	struct hw_perf_event *hwc = &event->hw;
6045 	u64 seq;
6046 	int ret = 0;
6047 
6048 	/*
6049 	 * Non-sampling counters might still use the PMI to fold short
6050 	 * hardware counters, ignore those.
6051 	 */
6052 	if (unlikely(!is_sampling_event(event)))
6053 		return 0;
6054 
6055 	seq = __this_cpu_read(perf_throttled_seq);
6056 	if (seq != hwc->interrupts_seq) {
6057 		hwc->interrupts_seq = seq;
6058 		hwc->interrupts = 1;
6059 	} else {
6060 		hwc->interrupts++;
6061 		if (unlikely(throttle
6062 			     && hwc->interrupts >= max_samples_per_tick)) {
6063 			__this_cpu_inc(perf_throttled_count);
6064 			hwc->interrupts = MAX_INTERRUPTS;
6065 			perf_log_throttle(event, 0);
6066 			tick_nohz_full_kick();
6067 			ret = 1;
6068 		}
6069 	}
6070 
6071 	if (event->attr.freq) {
6072 		u64 now = perf_clock();
6073 		s64 delta = now - hwc->freq_time_stamp;
6074 
6075 		hwc->freq_time_stamp = now;
6076 
6077 		if (delta > 0 && delta < 2*TICK_NSEC)
6078 			perf_adjust_period(event, delta, hwc->last_period, true);
6079 	}
6080 
6081 	/*
6082 	 * XXX event_limit might not quite work as expected on inherited
6083 	 * events
6084 	 */
6085 
6086 	event->pending_kill = POLL_IN;
6087 	if (events && atomic_dec_and_test(&event->event_limit)) {
6088 		ret = 1;
6089 		event->pending_kill = POLL_HUP;
6090 		event->pending_disable = 1;
6091 		irq_work_queue(&event->pending);
6092 	}
6093 
6094 	if (event->overflow_handler)
6095 		event->overflow_handler(event, data, regs);
6096 	else
6097 		perf_event_output(event, data, regs);
6098 
6099 	if (event->fasync && event->pending_kill) {
6100 		event->pending_wakeup = 1;
6101 		irq_work_queue(&event->pending);
6102 	}
6103 
6104 	return ret;
6105 }
6106 
6107 int perf_event_overflow(struct perf_event *event,
6108 			  struct perf_sample_data *data,
6109 			  struct pt_regs *regs)
6110 {
6111 	return __perf_event_overflow(event, 1, data, regs);
6112 }
6113 
6114 /*
6115  * Generic software event infrastructure
6116  */
6117 
6118 struct swevent_htable {
6119 	struct swevent_hlist		*swevent_hlist;
6120 	struct mutex			hlist_mutex;
6121 	int				hlist_refcount;
6122 
6123 	/* Recursion avoidance in each contexts */
6124 	int				recursion[PERF_NR_CONTEXTS];
6125 
6126 	/* Keeps track of cpu being initialized/exited */
6127 	bool				online;
6128 };
6129 
6130 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
6131 
6132 /*
6133  * We directly increment event->count and keep a second value in
6134  * event->hw.period_left to count intervals. This period event
6135  * is kept in the range [-sample_period, 0] so that we can use the
6136  * sign as trigger.
6137  */
6138 
6139 u64 perf_swevent_set_period(struct perf_event *event)
6140 {
6141 	struct hw_perf_event *hwc = &event->hw;
6142 	u64 period = hwc->last_period;
6143 	u64 nr, offset;
6144 	s64 old, val;
6145 
6146 	hwc->last_period = hwc->sample_period;
6147 
6148 again:
6149 	old = val = local64_read(&hwc->period_left);
6150 	if (val < 0)
6151 		return 0;
6152 
6153 	nr = div64_u64(period + val, period);
6154 	offset = nr * period;
6155 	val -= offset;
6156 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
6157 		goto again;
6158 
6159 	return nr;
6160 }
6161 
6162 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
6163 				    struct perf_sample_data *data,
6164 				    struct pt_regs *regs)
6165 {
6166 	struct hw_perf_event *hwc = &event->hw;
6167 	int throttle = 0;
6168 
6169 	if (!overflow)
6170 		overflow = perf_swevent_set_period(event);
6171 
6172 	if (hwc->interrupts == MAX_INTERRUPTS)
6173 		return;
6174 
6175 	for (; overflow; overflow--) {
6176 		if (__perf_event_overflow(event, throttle,
6177 					    data, regs)) {
6178 			/*
6179 			 * We inhibit the overflow from happening when
6180 			 * hwc->interrupts == MAX_INTERRUPTS.
6181 			 */
6182 			break;
6183 		}
6184 		throttle = 1;
6185 	}
6186 }
6187 
6188 static void perf_swevent_event(struct perf_event *event, u64 nr,
6189 			       struct perf_sample_data *data,
6190 			       struct pt_regs *regs)
6191 {
6192 	struct hw_perf_event *hwc = &event->hw;
6193 
6194 	local64_add(nr, &event->count);
6195 
6196 	if (!regs)
6197 		return;
6198 
6199 	if (!is_sampling_event(event))
6200 		return;
6201 
6202 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
6203 		data->period = nr;
6204 		return perf_swevent_overflow(event, 1, data, regs);
6205 	} else
6206 		data->period = event->hw.last_period;
6207 
6208 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
6209 		return perf_swevent_overflow(event, 1, data, regs);
6210 
6211 	if (local64_add_negative(nr, &hwc->period_left))
6212 		return;
6213 
6214 	perf_swevent_overflow(event, 0, data, regs);
6215 }
6216 
6217 static int perf_exclude_event(struct perf_event *event,
6218 			      struct pt_regs *regs)
6219 {
6220 	if (event->hw.state & PERF_HES_STOPPED)
6221 		return 1;
6222 
6223 	if (regs) {
6224 		if (event->attr.exclude_user && user_mode(regs))
6225 			return 1;
6226 
6227 		if (event->attr.exclude_kernel && !user_mode(regs))
6228 			return 1;
6229 	}
6230 
6231 	return 0;
6232 }
6233 
6234 static int perf_swevent_match(struct perf_event *event,
6235 				enum perf_type_id type,
6236 				u32 event_id,
6237 				struct perf_sample_data *data,
6238 				struct pt_regs *regs)
6239 {
6240 	if (event->attr.type != type)
6241 		return 0;
6242 
6243 	if (event->attr.config != event_id)
6244 		return 0;
6245 
6246 	if (perf_exclude_event(event, regs))
6247 		return 0;
6248 
6249 	return 1;
6250 }
6251 
6252 static inline u64 swevent_hash(u64 type, u32 event_id)
6253 {
6254 	u64 val = event_id | (type << 32);
6255 
6256 	return hash_64(val, SWEVENT_HLIST_BITS);
6257 }
6258 
6259 static inline struct hlist_head *
6260 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
6261 {
6262 	u64 hash = swevent_hash(type, event_id);
6263 
6264 	return &hlist->heads[hash];
6265 }
6266 
6267 /* For the read side: events when they trigger */
6268 static inline struct hlist_head *
6269 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
6270 {
6271 	struct swevent_hlist *hlist;
6272 
6273 	hlist = rcu_dereference(swhash->swevent_hlist);
6274 	if (!hlist)
6275 		return NULL;
6276 
6277 	return __find_swevent_head(hlist, type, event_id);
6278 }
6279 
6280 /* For the event head insertion and removal in the hlist */
6281 static inline struct hlist_head *
6282 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
6283 {
6284 	struct swevent_hlist *hlist;
6285 	u32 event_id = event->attr.config;
6286 	u64 type = event->attr.type;
6287 
6288 	/*
6289 	 * Event scheduling is always serialized against hlist allocation
6290 	 * and release. Which makes the protected version suitable here.
6291 	 * The context lock guarantees that.
6292 	 */
6293 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
6294 					  lockdep_is_held(&event->ctx->lock));
6295 	if (!hlist)
6296 		return NULL;
6297 
6298 	return __find_swevent_head(hlist, type, event_id);
6299 }
6300 
6301 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
6302 				    u64 nr,
6303 				    struct perf_sample_data *data,
6304 				    struct pt_regs *regs)
6305 {
6306 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6307 	struct perf_event *event;
6308 	struct hlist_head *head;
6309 
6310 	rcu_read_lock();
6311 	head = find_swevent_head_rcu(swhash, type, event_id);
6312 	if (!head)
6313 		goto end;
6314 
6315 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
6316 		if (perf_swevent_match(event, type, event_id, data, regs))
6317 			perf_swevent_event(event, nr, data, regs);
6318 	}
6319 end:
6320 	rcu_read_unlock();
6321 }
6322 
6323 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
6324 
6325 int perf_swevent_get_recursion_context(void)
6326 {
6327 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6328 
6329 	return get_recursion_context(swhash->recursion);
6330 }
6331 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
6332 
6333 inline void perf_swevent_put_recursion_context(int rctx)
6334 {
6335 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6336 
6337 	put_recursion_context(swhash->recursion, rctx);
6338 }
6339 
6340 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6341 {
6342 	struct perf_sample_data data;
6343 
6344 	if (WARN_ON_ONCE(!regs))
6345 		return;
6346 
6347 	perf_sample_data_init(&data, addr, 0);
6348 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
6349 }
6350 
6351 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6352 {
6353 	int rctx;
6354 
6355 	preempt_disable_notrace();
6356 	rctx = perf_swevent_get_recursion_context();
6357 	if (unlikely(rctx < 0))
6358 		goto fail;
6359 
6360 	___perf_sw_event(event_id, nr, regs, addr);
6361 
6362 	perf_swevent_put_recursion_context(rctx);
6363 fail:
6364 	preempt_enable_notrace();
6365 }
6366 
6367 static void perf_swevent_read(struct perf_event *event)
6368 {
6369 }
6370 
6371 static int perf_swevent_add(struct perf_event *event, int flags)
6372 {
6373 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6374 	struct hw_perf_event *hwc = &event->hw;
6375 	struct hlist_head *head;
6376 
6377 	if (is_sampling_event(event)) {
6378 		hwc->last_period = hwc->sample_period;
6379 		perf_swevent_set_period(event);
6380 	}
6381 
6382 	hwc->state = !(flags & PERF_EF_START);
6383 
6384 	head = find_swevent_head(swhash, event);
6385 	if (!head) {
6386 		/*
6387 		 * We can race with cpu hotplug code. Do not
6388 		 * WARN if the cpu just got unplugged.
6389 		 */
6390 		WARN_ON_ONCE(swhash->online);
6391 		return -EINVAL;
6392 	}
6393 
6394 	hlist_add_head_rcu(&event->hlist_entry, head);
6395 	perf_event_update_userpage(event);
6396 
6397 	return 0;
6398 }
6399 
6400 static void perf_swevent_del(struct perf_event *event, int flags)
6401 {
6402 	hlist_del_rcu(&event->hlist_entry);
6403 }
6404 
6405 static void perf_swevent_start(struct perf_event *event, int flags)
6406 {
6407 	event->hw.state = 0;
6408 }
6409 
6410 static void perf_swevent_stop(struct perf_event *event, int flags)
6411 {
6412 	event->hw.state = PERF_HES_STOPPED;
6413 }
6414 
6415 /* Deref the hlist from the update side */
6416 static inline struct swevent_hlist *
6417 swevent_hlist_deref(struct swevent_htable *swhash)
6418 {
6419 	return rcu_dereference_protected(swhash->swevent_hlist,
6420 					 lockdep_is_held(&swhash->hlist_mutex));
6421 }
6422 
6423 static void swevent_hlist_release(struct swevent_htable *swhash)
6424 {
6425 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
6426 
6427 	if (!hlist)
6428 		return;
6429 
6430 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
6431 	kfree_rcu(hlist, rcu_head);
6432 }
6433 
6434 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
6435 {
6436 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6437 
6438 	mutex_lock(&swhash->hlist_mutex);
6439 
6440 	if (!--swhash->hlist_refcount)
6441 		swevent_hlist_release(swhash);
6442 
6443 	mutex_unlock(&swhash->hlist_mutex);
6444 }
6445 
6446 static void swevent_hlist_put(struct perf_event *event)
6447 {
6448 	int cpu;
6449 
6450 	for_each_possible_cpu(cpu)
6451 		swevent_hlist_put_cpu(event, cpu);
6452 }
6453 
6454 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
6455 {
6456 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6457 	int err = 0;
6458 
6459 	mutex_lock(&swhash->hlist_mutex);
6460 
6461 	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
6462 		struct swevent_hlist *hlist;
6463 
6464 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
6465 		if (!hlist) {
6466 			err = -ENOMEM;
6467 			goto exit;
6468 		}
6469 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
6470 	}
6471 	swhash->hlist_refcount++;
6472 exit:
6473 	mutex_unlock(&swhash->hlist_mutex);
6474 
6475 	return err;
6476 }
6477 
6478 static int swevent_hlist_get(struct perf_event *event)
6479 {
6480 	int err;
6481 	int cpu, failed_cpu;
6482 
6483 	get_online_cpus();
6484 	for_each_possible_cpu(cpu) {
6485 		err = swevent_hlist_get_cpu(event, cpu);
6486 		if (err) {
6487 			failed_cpu = cpu;
6488 			goto fail;
6489 		}
6490 	}
6491 	put_online_cpus();
6492 
6493 	return 0;
6494 fail:
6495 	for_each_possible_cpu(cpu) {
6496 		if (cpu == failed_cpu)
6497 			break;
6498 		swevent_hlist_put_cpu(event, cpu);
6499 	}
6500 
6501 	put_online_cpus();
6502 	return err;
6503 }
6504 
6505 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
6506 
6507 static void sw_perf_event_destroy(struct perf_event *event)
6508 {
6509 	u64 event_id = event->attr.config;
6510 
6511 	WARN_ON(event->parent);
6512 
6513 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
6514 	swevent_hlist_put(event);
6515 }
6516 
6517 static int perf_swevent_init(struct perf_event *event)
6518 {
6519 	u64 event_id = event->attr.config;
6520 
6521 	if (event->attr.type != PERF_TYPE_SOFTWARE)
6522 		return -ENOENT;
6523 
6524 	/*
6525 	 * no branch sampling for software events
6526 	 */
6527 	if (has_branch_stack(event))
6528 		return -EOPNOTSUPP;
6529 
6530 	switch (event_id) {
6531 	case PERF_COUNT_SW_CPU_CLOCK:
6532 	case PERF_COUNT_SW_TASK_CLOCK:
6533 		return -ENOENT;
6534 
6535 	default:
6536 		break;
6537 	}
6538 
6539 	if (event_id >= PERF_COUNT_SW_MAX)
6540 		return -ENOENT;
6541 
6542 	if (!event->parent) {
6543 		int err;
6544 
6545 		err = swevent_hlist_get(event);
6546 		if (err)
6547 			return err;
6548 
6549 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
6550 		event->destroy = sw_perf_event_destroy;
6551 	}
6552 
6553 	return 0;
6554 }
6555 
6556 static struct pmu perf_swevent = {
6557 	.task_ctx_nr	= perf_sw_context,
6558 
6559 	.capabilities	= PERF_PMU_CAP_NO_NMI,
6560 
6561 	.event_init	= perf_swevent_init,
6562 	.add		= perf_swevent_add,
6563 	.del		= perf_swevent_del,
6564 	.start		= perf_swevent_start,
6565 	.stop		= perf_swevent_stop,
6566 	.read		= perf_swevent_read,
6567 };
6568 
6569 #ifdef CONFIG_EVENT_TRACING
6570 
6571 static int perf_tp_filter_match(struct perf_event *event,
6572 				struct perf_sample_data *data)
6573 {
6574 	void *record = data->raw->data;
6575 
6576 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
6577 		return 1;
6578 	return 0;
6579 }
6580 
6581 static int perf_tp_event_match(struct perf_event *event,
6582 				struct perf_sample_data *data,
6583 				struct pt_regs *regs)
6584 {
6585 	if (event->hw.state & PERF_HES_STOPPED)
6586 		return 0;
6587 	/*
6588 	 * All tracepoints are from kernel-space.
6589 	 */
6590 	if (event->attr.exclude_kernel)
6591 		return 0;
6592 
6593 	if (!perf_tp_filter_match(event, data))
6594 		return 0;
6595 
6596 	return 1;
6597 }
6598 
6599 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
6600 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
6601 		   struct task_struct *task)
6602 {
6603 	struct perf_sample_data data;
6604 	struct perf_event *event;
6605 
6606 	struct perf_raw_record raw = {
6607 		.size = entry_size,
6608 		.data = record,
6609 	};
6610 
6611 	perf_sample_data_init(&data, addr, 0);
6612 	data.raw = &raw;
6613 
6614 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
6615 		if (perf_tp_event_match(event, &data, regs))
6616 			perf_swevent_event(event, count, &data, regs);
6617 	}
6618 
6619 	/*
6620 	 * If we got specified a target task, also iterate its context and
6621 	 * deliver this event there too.
6622 	 */
6623 	if (task && task != current) {
6624 		struct perf_event_context *ctx;
6625 		struct trace_entry *entry = record;
6626 
6627 		rcu_read_lock();
6628 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
6629 		if (!ctx)
6630 			goto unlock;
6631 
6632 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6633 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
6634 				continue;
6635 			if (event->attr.config != entry->type)
6636 				continue;
6637 			if (perf_tp_event_match(event, &data, regs))
6638 				perf_swevent_event(event, count, &data, regs);
6639 		}
6640 unlock:
6641 		rcu_read_unlock();
6642 	}
6643 
6644 	perf_swevent_put_recursion_context(rctx);
6645 }
6646 EXPORT_SYMBOL_GPL(perf_tp_event);
6647 
6648 static void tp_perf_event_destroy(struct perf_event *event)
6649 {
6650 	perf_trace_destroy(event);
6651 }
6652 
6653 static int perf_tp_event_init(struct perf_event *event)
6654 {
6655 	int err;
6656 
6657 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
6658 		return -ENOENT;
6659 
6660 	/*
6661 	 * no branch sampling for tracepoint events
6662 	 */
6663 	if (has_branch_stack(event))
6664 		return -EOPNOTSUPP;
6665 
6666 	err = perf_trace_init(event);
6667 	if (err)
6668 		return err;
6669 
6670 	event->destroy = tp_perf_event_destroy;
6671 
6672 	return 0;
6673 }
6674 
6675 static struct pmu perf_tracepoint = {
6676 	.task_ctx_nr	= perf_sw_context,
6677 
6678 	.event_init	= perf_tp_event_init,
6679 	.add		= perf_trace_add,
6680 	.del		= perf_trace_del,
6681 	.start		= perf_swevent_start,
6682 	.stop		= perf_swevent_stop,
6683 	.read		= perf_swevent_read,
6684 };
6685 
6686 static inline void perf_tp_register(void)
6687 {
6688 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
6689 }
6690 
6691 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6692 {
6693 	char *filter_str;
6694 	int ret;
6695 
6696 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
6697 		return -EINVAL;
6698 
6699 	filter_str = strndup_user(arg, PAGE_SIZE);
6700 	if (IS_ERR(filter_str))
6701 		return PTR_ERR(filter_str);
6702 
6703 	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
6704 
6705 	kfree(filter_str);
6706 	return ret;
6707 }
6708 
6709 static void perf_event_free_filter(struct perf_event *event)
6710 {
6711 	ftrace_profile_free_filter(event);
6712 }
6713 
6714 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
6715 {
6716 	struct bpf_prog *prog;
6717 
6718 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
6719 		return -EINVAL;
6720 
6721 	if (event->tp_event->prog)
6722 		return -EEXIST;
6723 
6724 	if (!(event->tp_event->flags & TRACE_EVENT_FL_KPROBE))
6725 		/* bpf programs can only be attached to kprobes */
6726 		return -EINVAL;
6727 
6728 	prog = bpf_prog_get(prog_fd);
6729 	if (IS_ERR(prog))
6730 		return PTR_ERR(prog);
6731 
6732 	if (prog->type != BPF_PROG_TYPE_KPROBE) {
6733 		/* valid fd, but invalid bpf program type */
6734 		bpf_prog_put(prog);
6735 		return -EINVAL;
6736 	}
6737 
6738 	event->tp_event->prog = prog;
6739 
6740 	return 0;
6741 }
6742 
6743 static void perf_event_free_bpf_prog(struct perf_event *event)
6744 {
6745 	struct bpf_prog *prog;
6746 
6747 	if (!event->tp_event)
6748 		return;
6749 
6750 	prog = event->tp_event->prog;
6751 	if (prog) {
6752 		event->tp_event->prog = NULL;
6753 		bpf_prog_put(prog);
6754 	}
6755 }
6756 
6757 #else
6758 
6759 static inline void perf_tp_register(void)
6760 {
6761 }
6762 
6763 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6764 {
6765 	return -ENOENT;
6766 }
6767 
6768 static void perf_event_free_filter(struct perf_event *event)
6769 {
6770 }
6771 
6772 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
6773 {
6774 	return -ENOENT;
6775 }
6776 
6777 static void perf_event_free_bpf_prog(struct perf_event *event)
6778 {
6779 }
6780 #endif /* CONFIG_EVENT_TRACING */
6781 
6782 #ifdef CONFIG_HAVE_HW_BREAKPOINT
6783 void perf_bp_event(struct perf_event *bp, void *data)
6784 {
6785 	struct perf_sample_data sample;
6786 	struct pt_regs *regs = data;
6787 
6788 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
6789 
6790 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
6791 		perf_swevent_event(bp, 1, &sample, regs);
6792 }
6793 #endif
6794 
6795 /*
6796  * hrtimer based swevent callback
6797  */
6798 
6799 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
6800 {
6801 	enum hrtimer_restart ret = HRTIMER_RESTART;
6802 	struct perf_sample_data data;
6803 	struct pt_regs *regs;
6804 	struct perf_event *event;
6805 	u64 period;
6806 
6807 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
6808 
6809 	if (event->state != PERF_EVENT_STATE_ACTIVE)
6810 		return HRTIMER_NORESTART;
6811 
6812 	event->pmu->read(event);
6813 
6814 	perf_sample_data_init(&data, 0, event->hw.last_period);
6815 	regs = get_irq_regs();
6816 
6817 	if (regs && !perf_exclude_event(event, regs)) {
6818 		if (!(event->attr.exclude_idle && is_idle_task(current)))
6819 			if (__perf_event_overflow(event, 1, &data, regs))
6820 				ret = HRTIMER_NORESTART;
6821 	}
6822 
6823 	period = max_t(u64, 10000, event->hw.sample_period);
6824 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
6825 
6826 	return ret;
6827 }
6828 
6829 static void perf_swevent_start_hrtimer(struct perf_event *event)
6830 {
6831 	struct hw_perf_event *hwc = &event->hw;
6832 	s64 period;
6833 
6834 	if (!is_sampling_event(event))
6835 		return;
6836 
6837 	period = local64_read(&hwc->period_left);
6838 	if (period) {
6839 		if (period < 0)
6840 			period = 10000;
6841 
6842 		local64_set(&hwc->period_left, 0);
6843 	} else {
6844 		period = max_t(u64, 10000, hwc->sample_period);
6845 	}
6846 	__hrtimer_start_range_ns(&hwc->hrtimer,
6847 				ns_to_ktime(period), 0,
6848 				HRTIMER_MODE_REL_PINNED, 0);
6849 }
6850 
6851 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
6852 {
6853 	struct hw_perf_event *hwc = &event->hw;
6854 
6855 	if (is_sampling_event(event)) {
6856 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
6857 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
6858 
6859 		hrtimer_cancel(&hwc->hrtimer);
6860 	}
6861 }
6862 
6863 static void perf_swevent_init_hrtimer(struct perf_event *event)
6864 {
6865 	struct hw_perf_event *hwc = &event->hw;
6866 
6867 	if (!is_sampling_event(event))
6868 		return;
6869 
6870 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6871 	hwc->hrtimer.function = perf_swevent_hrtimer;
6872 
6873 	/*
6874 	 * Since hrtimers have a fixed rate, we can do a static freq->period
6875 	 * mapping and avoid the whole period adjust feedback stuff.
6876 	 */
6877 	if (event->attr.freq) {
6878 		long freq = event->attr.sample_freq;
6879 
6880 		event->attr.sample_period = NSEC_PER_SEC / freq;
6881 		hwc->sample_period = event->attr.sample_period;
6882 		local64_set(&hwc->period_left, hwc->sample_period);
6883 		hwc->last_period = hwc->sample_period;
6884 		event->attr.freq = 0;
6885 	}
6886 }
6887 
6888 /*
6889  * Software event: cpu wall time clock
6890  */
6891 
6892 static void cpu_clock_event_update(struct perf_event *event)
6893 {
6894 	s64 prev;
6895 	u64 now;
6896 
6897 	now = local_clock();
6898 	prev = local64_xchg(&event->hw.prev_count, now);
6899 	local64_add(now - prev, &event->count);
6900 }
6901 
6902 static void cpu_clock_event_start(struct perf_event *event, int flags)
6903 {
6904 	local64_set(&event->hw.prev_count, local_clock());
6905 	perf_swevent_start_hrtimer(event);
6906 }
6907 
6908 static void cpu_clock_event_stop(struct perf_event *event, int flags)
6909 {
6910 	perf_swevent_cancel_hrtimer(event);
6911 	cpu_clock_event_update(event);
6912 }
6913 
6914 static int cpu_clock_event_add(struct perf_event *event, int flags)
6915 {
6916 	if (flags & PERF_EF_START)
6917 		cpu_clock_event_start(event, flags);
6918 	perf_event_update_userpage(event);
6919 
6920 	return 0;
6921 }
6922 
6923 static void cpu_clock_event_del(struct perf_event *event, int flags)
6924 {
6925 	cpu_clock_event_stop(event, flags);
6926 }
6927 
6928 static void cpu_clock_event_read(struct perf_event *event)
6929 {
6930 	cpu_clock_event_update(event);
6931 }
6932 
6933 static int cpu_clock_event_init(struct perf_event *event)
6934 {
6935 	if (event->attr.type != PERF_TYPE_SOFTWARE)
6936 		return -ENOENT;
6937 
6938 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
6939 		return -ENOENT;
6940 
6941 	/*
6942 	 * no branch sampling for software events
6943 	 */
6944 	if (has_branch_stack(event))
6945 		return -EOPNOTSUPP;
6946 
6947 	perf_swevent_init_hrtimer(event);
6948 
6949 	return 0;
6950 }
6951 
6952 static struct pmu perf_cpu_clock = {
6953 	.task_ctx_nr	= perf_sw_context,
6954 
6955 	.capabilities	= PERF_PMU_CAP_NO_NMI,
6956 
6957 	.event_init	= cpu_clock_event_init,
6958 	.add		= cpu_clock_event_add,
6959 	.del		= cpu_clock_event_del,
6960 	.start		= cpu_clock_event_start,
6961 	.stop		= cpu_clock_event_stop,
6962 	.read		= cpu_clock_event_read,
6963 };
6964 
6965 /*
6966  * Software event: task time clock
6967  */
6968 
6969 static void task_clock_event_update(struct perf_event *event, u64 now)
6970 {
6971 	u64 prev;
6972 	s64 delta;
6973 
6974 	prev = local64_xchg(&event->hw.prev_count, now);
6975 	delta = now - prev;
6976 	local64_add(delta, &event->count);
6977 }
6978 
6979 static void task_clock_event_start(struct perf_event *event, int flags)
6980 {
6981 	local64_set(&event->hw.prev_count, event->ctx->time);
6982 	perf_swevent_start_hrtimer(event);
6983 }
6984 
6985 static void task_clock_event_stop(struct perf_event *event, int flags)
6986 {
6987 	perf_swevent_cancel_hrtimer(event);
6988 	task_clock_event_update(event, event->ctx->time);
6989 }
6990 
6991 static int task_clock_event_add(struct perf_event *event, int flags)
6992 {
6993 	if (flags & PERF_EF_START)
6994 		task_clock_event_start(event, flags);
6995 	perf_event_update_userpage(event);
6996 
6997 	return 0;
6998 }
6999 
7000 static void task_clock_event_del(struct perf_event *event, int flags)
7001 {
7002 	task_clock_event_stop(event, PERF_EF_UPDATE);
7003 }
7004 
7005 static void task_clock_event_read(struct perf_event *event)
7006 {
7007 	u64 now = perf_clock();
7008 	u64 delta = now - event->ctx->timestamp;
7009 	u64 time = event->ctx->time + delta;
7010 
7011 	task_clock_event_update(event, time);
7012 }
7013 
7014 static int task_clock_event_init(struct perf_event *event)
7015 {
7016 	if (event->attr.type != PERF_TYPE_SOFTWARE)
7017 		return -ENOENT;
7018 
7019 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
7020 		return -ENOENT;
7021 
7022 	/*
7023 	 * no branch sampling for software events
7024 	 */
7025 	if (has_branch_stack(event))
7026 		return -EOPNOTSUPP;
7027 
7028 	perf_swevent_init_hrtimer(event);
7029 
7030 	return 0;
7031 }
7032 
7033 static struct pmu perf_task_clock = {
7034 	.task_ctx_nr	= perf_sw_context,
7035 
7036 	.capabilities	= PERF_PMU_CAP_NO_NMI,
7037 
7038 	.event_init	= task_clock_event_init,
7039 	.add		= task_clock_event_add,
7040 	.del		= task_clock_event_del,
7041 	.start		= task_clock_event_start,
7042 	.stop		= task_clock_event_stop,
7043 	.read		= task_clock_event_read,
7044 };
7045 
7046 static void perf_pmu_nop_void(struct pmu *pmu)
7047 {
7048 }
7049 
7050 static int perf_pmu_nop_int(struct pmu *pmu)
7051 {
7052 	return 0;
7053 }
7054 
7055 static void perf_pmu_start_txn(struct pmu *pmu)
7056 {
7057 	perf_pmu_disable(pmu);
7058 }
7059 
7060 static int perf_pmu_commit_txn(struct pmu *pmu)
7061 {
7062 	perf_pmu_enable(pmu);
7063 	return 0;
7064 }
7065 
7066 static void perf_pmu_cancel_txn(struct pmu *pmu)
7067 {
7068 	perf_pmu_enable(pmu);
7069 }
7070 
7071 static int perf_event_idx_default(struct perf_event *event)
7072 {
7073 	return 0;
7074 }
7075 
7076 /*
7077  * Ensures all contexts with the same task_ctx_nr have the same
7078  * pmu_cpu_context too.
7079  */
7080 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
7081 {
7082 	struct pmu *pmu;
7083 
7084 	if (ctxn < 0)
7085 		return NULL;
7086 
7087 	list_for_each_entry(pmu, &pmus, entry) {
7088 		if (pmu->task_ctx_nr == ctxn)
7089 			return pmu->pmu_cpu_context;
7090 	}
7091 
7092 	return NULL;
7093 }
7094 
7095 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
7096 {
7097 	int cpu;
7098 
7099 	for_each_possible_cpu(cpu) {
7100 		struct perf_cpu_context *cpuctx;
7101 
7102 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7103 
7104 		if (cpuctx->unique_pmu == old_pmu)
7105 			cpuctx->unique_pmu = pmu;
7106 	}
7107 }
7108 
7109 static void free_pmu_context(struct pmu *pmu)
7110 {
7111 	struct pmu *i;
7112 
7113 	mutex_lock(&pmus_lock);
7114 	/*
7115 	 * Like a real lame refcount.
7116 	 */
7117 	list_for_each_entry(i, &pmus, entry) {
7118 		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
7119 			update_pmu_context(i, pmu);
7120 			goto out;
7121 		}
7122 	}
7123 
7124 	free_percpu(pmu->pmu_cpu_context);
7125 out:
7126 	mutex_unlock(&pmus_lock);
7127 }
7128 static struct idr pmu_idr;
7129 
7130 static ssize_t
7131 type_show(struct device *dev, struct device_attribute *attr, char *page)
7132 {
7133 	struct pmu *pmu = dev_get_drvdata(dev);
7134 
7135 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
7136 }
7137 static DEVICE_ATTR_RO(type);
7138 
7139 static ssize_t
7140 perf_event_mux_interval_ms_show(struct device *dev,
7141 				struct device_attribute *attr,
7142 				char *page)
7143 {
7144 	struct pmu *pmu = dev_get_drvdata(dev);
7145 
7146 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
7147 }
7148 
7149 static ssize_t
7150 perf_event_mux_interval_ms_store(struct device *dev,
7151 				 struct device_attribute *attr,
7152 				 const char *buf, size_t count)
7153 {
7154 	struct pmu *pmu = dev_get_drvdata(dev);
7155 	int timer, cpu, ret;
7156 
7157 	ret = kstrtoint(buf, 0, &timer);
7158 	if (ret)
7159 		return ret;
7160 
7161 	if (timer < 1)
7162 		return -EINVAL;
7163 
7164 	/* same value, noting to do */
7165 	if (timer == pmu->hrtimer_interval_ms)
7166 		return count;
7167 
7168 	pmu->hrtimer_interval_ms = timer;
7169 
7170 	/* update all cpuctx for this PMU */
7171 	for_each_possible_cpu(cpu) {
7172 		struct perf_cpu_context *cpuctx;
7173 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7174 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
7175 
7176 		if (hrtimer_active(&cpuctx->hrtimer))
7177 			hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
7178 	}
7179 
7180 	return count;
7181 }
7182 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
7183 
7184 static struct attribute *pmu_dev_attrs[] = {
7185 	&dev_attr_type.attr,
7186 	&dev_attr_perf_event_mux_interval_ms.attr,
7187 	NULL,
7188 };
7189 ATTRIBUTE_GROUPS(pmu_dev);
7190 
7191 static int pmu_bus_running;
7192 static struct bus_type pmu_bus = {
7193 	.name		= "event_source",
7194 	.dev_groups	= pmu_dev_groups,
7195 };
7196 
7197 static void pmu_dev_release(struct device *dev)
7198 {
7199 	kfree(dev);
7200 }
7201 
7202 static int pmu_dev_alloc(struct pmu *pmu)
7203 {
7204 	int ret = -ENOMEM;
7205 
7206 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
7207 	if (!pmu->dev)
7208 		goto out;
7209 
7210 	pmu->dev->groups = pmu->attr_groups;
7211 	device_initialize(pmu->dev);
7212 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
7213 	if (ret)
7214 		goto free_dev;
7215 
7216 	dev_set_drvdata(pmu->dev, pmu);
7217 	pmu->dev->bus = &pmu_bus;
7218 	pmu->dev->release = pmu_dev_release;
7219 	ret = device_add(pmu->dev);
7220 	if (ret)
7221 		goto free_dev;
7222 
7223 out:
7224 	return ret;
7225 
7226 free_dev:
7227 	put_device(pmu->dev);
7228 	goto out;
7229 }
7230 
7231 static struct lock_class_key cpuctx_mutex;
7232 static struct lock_class_key cpuctx_lock;
7233 
7234 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
7235 {
7236 	int cpu, ret;
7237 
7238 	mutex_lock(&pmus_lock);
7239 	ret = -ENOMEM;
7240 	pmu->pmu_disable_count = alloc_percpu(int);
7241 	if (!pmu->pmu_disable_count)
7242 		goto unlock;
7243 
7244 	pmu->type = -1;
7245 	if (!name)
7246 		goto skip_type;
7247 	pmu->name = name;
7248 
7249 	if (type < 0) {
7250 		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
7251 		if (type < 0) {
7252 			ret = type;
7253 			goto free_pdc;
7254 		}
7255 	}
7256 	pmu->type = type;
7257 
7258 	if (pmu_bus_running) {
7259 		ret = pmu_dev_alloc(pmu);
7260 		if (ret)
7261 			goto free_idr;
7262 	}
7263 
7264 skip_type:
7265 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
7266 	if (pmu->pmu_cpu_context)
7267 		goto got_cpu_context;
7268 
7269 	ret = -ENOMEM;
7270 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
7271 	if (!pmu->pmu_cpu_context)
7272 		goto free_dev;
7273 
7274 	for_each_possible_cpu(cpu) {
7275 		struct perf_cpu_context *cpuctx;
7276 
7277 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7278 		__perf_event_init_context(&cpuctx->ctx);
7279 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
7280 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
7281 		cpuctx->ctx.pmu = pmu;
7282 
7283 		__perf_cpu_hrtimer_init(cpuctx, cpu);
7284 
7285 		cpuctx->unique_pmu = pmu;
7286 	}
7287 
7288 got_cpu_context:
7289 	if (!pmu->start_txn) {
7290 		if (pmu->pmu_enable) {
7291 			/*
7292 			 * If we have pmu_enable/pmu_disable calls, install
7293 			 * transaction stubs that use that to try and batch
7294 			 * hardware accesses.
7295 			 */
7296 			pmu->start_txn  = perf_pmu_start_txn;
7297 			pmu->commit_txn = perf_pmu_commit_txn;
7298 			pmu->cancel_txn = perf_pmu_cancel_txn;
7299 		} else {
7300 			pmu->start_txn  = perf_pmu_nop_void;
7301 			pmu->commit_txn = perf_pmu_nop_int;
7302 			pmu->cancel_txn = perf_pmu_nop_void;
7303 		}
7304 	}
7305 
7306 	if (!pmu->pmu_enable) {
7307 		pmu->pmu_enable  = perf_pmu_nop_void;
7308 		pmu->pmu_disable = perf_pmu_nop_void;
7309 	}
7310 
7311 	if (!pmu->event_idx)
7312 		pmu->event_idx = perf_event_idx_default;
7313 
7314 	list_add_rcu(&pmu->entry, &pmus);
7315 	atomic_set(&pmu->exclusive_cnt, 0);
7316 	ret = 0;
7317 unlock:
7318 	mutex_unlock(&pmus_lock);
7319 
7320 	return ret;
7321 
7322 free_dev:
7323 	device_del(pmu->dev);
7324 	put_device(pmu->dev);
7325 
7326 free_idr:
7327 	if (pmu->type >= PERF_TYPE_MAX)
7328 		idr_remove(&pmu_idr, pmu->type);
7329 
7330 free_pdc:
7331 	free_percpu(pmu->pmu_disable_count);
7332 	goto unlock;
7333 }
7334 EXPORT_SYMBOL_GPL(perf_pmu_register);
7335 
7336 void perf_pmu_unregister(struct pmu *pmu)
7337 {
7338 	mutex_lock(&pmus_lock);
7339 	list_del_rcu(&pmu->entry);
7340 	mutex_unlock(&pmus_lock);
7341 
7342 	/*
7343 	 * We dereference the pmu list under both SRCU and regular RCU, so
7344 	 * synchronize against both of those.
7345 	 */
7346 	synchronize_srcu(&pmus_srcu);
7347 	synchronize_rcu();
7348 
7349 	free_percpu(pmu->pmu_disable_count);
7350 	if (pmu->type >= PERF_TYPE_MAX)
7351 		idr_remove(&pmu_idr, pmu->type);
7352 	device_del(pmu->dev);
7353 	put_device(pmu->dev);
7354 	free_pmu_context(pmu);
7355 }
7356 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
7357 
7358 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
7359 {
7360 	struct perf_event_context *ctx = NULL;
7361 	int ret;
7362 
7363 	if (!try_module_get(pmu->module))
7364 		return -ENODEV;
7365 
7366 	if (event->group_leader != event) {
7367 		ctx = perf_event_ctx_lock(event->group_leader);
7368 		BUG_ON(!ctx);
7369 	}
7370 
7371 	event->pmu = pmu;
7372 	ret = pmu->event_init(event);
7373 
7374 	if (ctx)
7375 		perf_event_ctx_unlock(event->group_leader, ctx);
7376 
7377 	if (ret)
7378 		module_put(pmu->module);
7379 
7380 	return ret;
7381 }
7382 
7383 struct pmu *perf_init_event(struct perf_event *event)
7384 {
7385 	struct pmu *pmu = NULL;
7386 	int idx;
7387 	int ret;
7388 
7389 	idx = srcu_read_lock(&pmus_srcu);
7390 
7391 	rcu_read_lock();
7392 	pmu = idr_find(&pmu_idr, event->attr.type);
7393 	rcu_read_unlock();
7394 	if (pmu) {
7395 		ret = perf_try_init_event(pmu, event);
7396 		if (ret)
7397 			pmu = ERR_PTR(ret);
7398 		goto unlock;
7399 	}
7400 
7401 	list_for_each_entry_rcu(pmu, &pmus, entry) {
7402 		ret = perf_try_init_event(pmu, event);
7403 		if (!ret)
7404 			goto unlock;
7405 
7406 		if (ret != -ENOENT) {
7407 			pmu = ERR_PTR(ret);
7408 			goto unlock;
7409 		}
7410 	}
7411 	pmu = ERR_PTR(-ENOENT);
7412 unlock:
7413 	srcu_read_unlock(&pmus_srcu, idx);
7414 
7415 	return pmu;
7416 }
7417 
7418 static void account_event_cpu(struct perf_event *event, int cpu)
7419 {
7420 	if (event->parent)
7421 		return;
7422 
7423 	if (is_cgroup_event(event))
7424 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
7425 }
7426 
7427 static void account_event(struct perf_event *event)
7428 {
7429 	if (event->parent)
7430 		return;
7431 
7432 	if (event->attach_state & PERF_ATTACH_TASK)
7433 		static_key_slow_inc(&perf_sched_events.key);
7434 	if (event->attr.mmap || event->attr.mmap_data)
7435 		atomic_inc(&nr_mmap_events);
7436 	if (event->attr.comm)
7437 		atomic_inc(&nr_comm_events);
7438 	if (event->attr.task)
7439 		atomic_inc(&nr_task_events);
7440 	if (event->attr.freq) {
7441 		if (atomic_inc_return(&nr_freq_events) == 1)
7442 			tick_nohz_full_kick_all();
7443 	}
7444 	if (has_branch_stack(event))
7445 		static_key_slow_inc(&perf_sched_events.key);
7446 	if (is_cgroup_event(event))
7447 		static_key_slow_inc(&perf_sched_events.key);
7448 
7449 	account_event_cpu(event, event->cpu);
7450 }
7451 
7452 /*
7453  * Allocate and initialize a event structure
7454  */
7455 static struct perf_event *
7456 perf_event_alloc(struct perf_event_attr *attr, int cpu,
7457 		 struct task_struct *task,
7458 		 struct perf_event *group_leader,
7459 		 struct perf_event *parent_event,
7460 		 perf_overflow_handler_t overflow_handler,
7461 		 void *context, int cgroup_fd)
7462 {
7463 	struct pmu *pmu;
7464 	struct perf_event *event;
7465 	struct hw_perf_event *hwc;
7466 	long err = -EINVAL;
7467 
7468 	if ((unsigned)cpu >= nr_cpu_ids) {
7469 		if (!task || cpu != -1)
7470 			return ERR_PTR(-EINVAL);
7471 	}
7472 
7473 	event = kzalloc(sizeof(*event), GFP_KERNEL);
7474 	if (!event)
7475 		return ERR_PTR(-ENOMEM);
7476 
7477 	/*
7478 	 * Single events are their own group leaders, with an
7479 	 * empty sibling list:
7480 	 */
7481 	if (!group_leader)
7482 		group_leader = event;
7483 
7484 	mutex_init(&event->child_mutex);
7485 	INIT_LIST_HEAD(&event->child_list);
7486 
7487 	INIT_LIST_HEAD(&event->group_entry);
7488 	INIT_LIST_HEAD(&event->event_entry);
7489 	INIT_LIST_HEAD(&event->sibling_list);
7490 	INIT_LIST_HEAD(&event->rb_entry);
7491 	INIT_LIST_HEAD(&event->active_entry);
7492 	INIT_HLIST_NODE(&event->hlist_entry);
7493 
7494 
7495 	init_waitqueue_head(&event->waitq);
7496 	init_irq_work(&event->pending, perf_pending_event);
7497 
7498 	mutex_init(&event->mmap_mutex);
7499 
7500 	atomic_long_set(&event->refcount, 1);
7501 	event->cpu		= cpu;
7502 	event->attr		= *attr;
7503 	event->group_leader	= group_leader;
7504 	event->pmu		= NULL;
7505 	event->oncpu		= -1;
7506 
7507 	event->parent		= parent_event;
7508 
7509 	event->ns		= get_pid_ns(task_active_pid_ns(current));
7510 	event->id		= atomic64_inc_return(&perf_event_id);
7511 
7512 	event->state		= PERF_EVENT_STATE_INACTIVE;
7513 
7514 	if (task) {
7515 		event->attach_state = PERF_ATTACH_TASK;
7516 		/*
7517 		 * XXX pmu::event_init needs to know what task to account to
7518 		 * and we cannot use the ctx information because we need the
7519 		 * pmu before we get a ctx.
7520 		 */
7521 		event->hw.target = task;
7522 	}
7523 
7524 	event->clock = &local_clock;
7525 	if (parent_event)
7526 		event->clock = parent_event->clock;
7527 
7528 	if (!overflow_handler && parent_event) {
7529 		overflow_handler = parent_event->overflow_handler;
7530 		context = parent_event->overflow_handler_context;
7531 	}
7532 
7533 	event->overflow_handler	= overflow_handler;
7534 	event->overflow_handler_context = context;
7535 
7536 	perf_event__state_init(event);
7537 
7538 	pmu = NULL;
7539 
7540 	hwc = &event->hw;
7541 	hwc->sample_period = attr->sample_period;
7542 	if (attr->freq && attr->sample_freq)
7543 		hwc->sample_period = 1;
7544 	hwc->last_period = hwc->sample_period;
7545 
7546 	local64_set(&hwc->period_left, hwc->sample_period);
7547 
7548 	/*
7549 	 * we currently do not support PERF_FORMAT_GROUP on inherited events
7550 	 */
7551 	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
7552 		goto err_ns;
7553 
7554 	if (!has_branch_stack(event))
7555 		event->attr.branch_sample_type = 0;
7556 
7557 	if (cgroup_fd != -1) {
7558 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
7559 		if (err)
7560 			goto err_ns;
7561 	}
7562 
7563 	pmu = perf_init_event(event);
7564 	if (!pmu)
7565 		goto err_ns;
7566 	else if (IS_ERR(pmu)) {
7567 		err = PTR_ERR(pmu);
7568 		goto err_ns;
7569 	}
7570 
7571 	err = exclusive_event_init(event);
7572 	if (err)
7573 		goto err_pmu;
7574 
7575 	if (!event->parent) {
7576 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
7577 			err = get_callchain_buffers();
7578 			if (err)
7579 				goto err_per_task;
7580 		}
7581 	}
7582 
7583 	return event;
7584 
7585 err_per_task:
7586 	exclusive_event_destroy(event);
7587 
7588 err_pmu:
7589 	if (event->destroy)
7590 		event->destroy(event);
7591 	module_put(pmu->module);
7592 err_ns:
7593 	if (is_cgroup_event(event))
7594 		perf_detach_cgroup(event);
7595 	if (event->ns)
7596 		put_pid_ns(event->ns);
7597 	kfree(event);
7598 
7599 	return ERR_PTR(err);
7600 }
7601 
7602 static int perf_copy_attr(struct perf_event_attr __user *uattr,
7603 			  struct perf_event_attr *attr)
7604 {
7605 	u32 size;
7606 	int ret;
7607 
7608 	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
7609 		return -EFAULT;
7610 
7611 	/*
7612 	 * zero the full structure, so that a short copy will be nice.
7613 	 */
7614 	memset(attr, 0, sizeof(*attr));
7615 
7616 	ret = get_user(size, &uattr->size);
7617 	if (ret)
7618 		return ret;
7619 
7620 	if (size > PAGE_SIZE)	/* silly large */
7621 		goto err_size;
7622 
7623 	if (!size)		/* abi compat */
7624 		size = PERF_ATTR_SIZE_VER0;
7625 
7626 	if (size < PERF_ATTR_SIZE_VER0)
7627 		goto err_size;
7628 
7629 	/*
7630 	 * If we're handed a bigger struct than we know of,
7631 	 * ensure all the unknown bits are 0 - i.e. new
7632 	 * user-space does not rely on any kernel feature
7633 	 * extensions we dont know about yet.
7634 	 */
7635 	if (size > sizeof(*attr)) {
7636 		unsigned char __user *addr;
7637 		unsigned char __user *end;
7638 		unsigned char val;
7639 
7640 		addr = (void __user *)uattr + sizeof(*attr);
7641 		end  = (void __user *)uattr + size;
7642 
7643 		for (; addr < end; addr++) {
7644 			ret = get_user(val, addr);
7645 			if (ret)
7646 				return ret;
7647 			if (val)
7648 				goto err_size;
7649 		}
7650 		size = sizeof(*attr);
7651 	}
7652 
7653 	ret = copy_from_user(attr, uattr, size);
7654 	if (ret)
7655 		return -EFAULT;
7656 
7657 	if (attr->__reserved_1)
7658 		return -EINVAL;
7659 
7660 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
7661 		return -EINVAL;
7662 
7663 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
7664 		return -EINVAL;
7665 
7666 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
7667 		u64 mask = attr->branch_sample_type;
7668 
7669 		/* only using defined bits */
7670 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
7671 			return -EINVAL;
7672 
7673 		/* at least one branch bit must be set */
7674 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
7675 			return -EINVAL;
7676 
7677 		/* propagate priv level, when not set for branch */
7678 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
7679 
7680 			/* exclude_kernel checked on syscall entry */
7681 			if (!attr->exclude_kernel)
7682 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
7683 
7684 			if (!attr->exclude_user)
7685 				mask |= PERF_SAMPLE_BRANCH_USER;
7686 
7687 			if (!attr->exclude_hv)
7688 				mask |= PERF_SAMPLE_BRANCH_HV;
7689 			/*
7690 			 * adjust user setting (for HW filter setup)
7691 			 */
7692 			attr->branch_sample_type = mask;
7693 		}
7694 		/* privileged levels capture (kernel, hv): check permissions */
7695 		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
7696 		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
7697 			return -EACCES;
7698 	}
7699 
7700 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
7701 		ret = perf_reg_validate(attr->sample_regs_user);
7702 		if (ret)
7703 			return ret;
7704 	}
7705 
7706 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
7707 		if (!arch_perf_have_user_stack_dump())
7708 			return -ENOSYS;
7709 
7710 		/*
7711 		 * We have __u32 type for the size, but so far
7712 		 * we can only use __u16 as maximum due to the
7713 		 * __u16 sample size limit.
7714 		 */
7715 		if (attr->sample_stack_user >= USHRT_MAX)
7716 			ret = -EINVAL;
7717 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
7718 			ret = -EINVAL;
7719 	}
7720 
7721 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
7722 		ret = perf_reg_validate(attr->sample_regs_intr);
7723 out:
7724 	return ret;
7725 
7726 err_size:
7727 	put_user(sizeof(*attr), &uattr->size);
7728 	ret = -E2BIG;
7729 	goto out;
7730 }
7731 
7732 static int
7733 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
7734 {
7735 	struct ring_buffer *rb = NULL;
7736 	int ret = -EINVAL;
7737 
7738 	if (!output_event)
7739 		goto set;
7740 
7741 	/* don't allow circular references */
7742 	if (event == output_event)
7743 		goto out;
7744 
7745 	/*
7746 	 * Don't allow cross-cpu buffers
7747 	 */
7748 	if (output_event->cpu != event->cpu)
7749 		goto out;
7750 
7751 	/*
7752 	 * If its not a per-cpu rb, it must be the same task.
7753 	 */
7754 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
7755 		goto out;
7756 
7757 	/*
7758 	 * Mixing clocks in the same buffer is trouble you don't need.
7759 	 */
7760 	if (output_event->clock != event->clock)
7761 		goto out;
7762 
7763 	/*
7764 	 * If both events generate aux data, they must be on the same PMU
7765 	 */
7766 	if (has_aux(event) && has_aux(output_event) &&
7767 	    event->pmu != output_event->pmu)
7768 		goto out;
7769 
7770 set:
7771 	mutex_lock(&event->mmap_mutex);
7772 	/* Can't redirect output if we've got an active mmap() */
7773 	if (atomic_read(&event->mmap_count))
7774 		goto unlock;
7775 
7776 	if (output_event) {
7777 		/* get the rb we want to redirect to */
7778 		rb = ring_buffer_get(output_event);
7779 		if (!rb)
7780 			goto unlock;
7781 	}
7782 
7783 	ring_buffer_attach(event, rb);
7784 
7785 	ret = 0;
7786 unlock:
7787 	mutex_unlock(&event->mmap_mutex);
7788 
7789 out:
7790 	return ret;
7791 }
7792 
7793 static void mutex_lock_double(struct mutex *a, struct mutex *b)
7794 {
7795 	if (b < a)
7796 		swap(a, b);
7797 
7798 	mutex_lock(a);
7799 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
7800 }
7801 
7802 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
7803 {
7804 	bool nmi_safe = false;
7805 
7806 	switch (clk_id) {
7807 	case CLOCK_MONOTONIC:
7808 		event->clock = &ktime_get_mono_fast_ns;
7809 		nmi_safe = true;
7810 		break;
7811 
7812 	case CLOCK_MONOTONIC_RAW:
7813 		event->clock = &ktime_get_raw_fast_ns;
7814 		nmi_safe = true;
7815 		break;
7816 
7817 	case CLOCK_REALTIME:
7818 		event->clock = &ktime_get_real_ns;
7819 		break;
7820 
7821 	case CLOCK_BOOTTIME:
7822 		event->clock = &ktime_get_boot_ns;
7823 		break;
7824 
7825 	case CLOCK_TAI:
7826 		event->clock = &ktime_get_tai_ns;
7827 		break;
7828 
7829 	default:
7830 		return -EINVAL;
7831 	}
7832 
7833 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
7834 		return -EINVAL;
7835 
7836 	return 0;
7837 }
7838 
7839 /**
7840  * sys_perf_event_open - open a performance event, associate it to a task/cpu
7841  *
7842  * @attr_uptr:	event_id type attributes for monitoring/sampling
7843  * @pid:		target pid
7844  * @cpu:		target cpu
7845  * @group_fd:		group leader event fd
7846  */
7847 SYSCALL_DEFINE5(perf_event_open,
7848 		struct perf_event_attr __user *, attr_uptr,
7849 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
7850 {
7851 	struct perf_event *group_leader = NULL, *output_event = NULL;
7852 	struct perf_event *event, *sibling;
7853 	struct perf_event_attr attr;
7854 	struct perf_event_context *ctx, *uninitialized_var(gctx);
7855 	struct file *event_file = NULL;
7856 	struct fd group = {NULL, 0};
7857 	struct task_struct *task = NULL;
7858 	struct pmu *pmu;
7859 	int event_fd;
7860 	int move_group = 0;
7861 	int err;
7862 	int f_flags = O_RDWR;
7863 	int cgroup_fd = -1;
7864 
7865 	/* for future expandability... */
7866 	if (flags & ~PERF_FLAG_ALL)
7867 		return -EINVAL;
7868 
7869 	err = perf_copy_attr(attr_uptr, &attr);
7870 	if (err)
7871 		return err;
7872 
7873 	if (!attr.exclude_kernel) {
7874 		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
7875 			return -EACCES;
7876 	}
7877 
7878 	if (attr.freq) {
7879 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
7880 			return -EINVAL;
7881 	} else {
7882 		if (attr.sample_period & (1ULL << 63))
7883 			return -EINVAL;
7884 	}
7885 
7886 	/*
7887 	 * In cgroup mode, the pid argument is used to pass the fd
7888 	 * opened to the cgroup directory in cgroupfs. The cpu argument
7889 	 * designates the cpu on which to monitor threads from that
7890 	 * cgroup.
7891 	 */
7892 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
7893 		return -EINVAL;
7894 
7895 	if (flags & PERF_FLAG_FD_CLOEXEC)
7896 		f_flags |= O_CLOEXEC;
7897 
7898 	event_fd = get_unused_fd_flags(f_flags);
7899 	if (event_fd < 0)
7900 		return event_fd;
7901 
7902 	if (group_fd != -1) {
7903 		err = perf_fget_light(group_fd, &group);
7904 		if (err)
7905 			goto err_fd;
7906 		group_leader = group.file->private_data;
7907 		if (flags & PERF_FLAG_FD_OUTPUT)
7908 			output_event = group_leader;
7909 		if (flags & PERF_FLAG_FD_NO_GROUP)
7910 			group_leader = NULL;
7911 	}
7912 
7913 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
7914 		task = find_lively_task_by_vpid(pid);
7915 		if (IS_ERR(task)) {
7916 			err = PTR_ERR(task);
7917 			goto err_group_fd;
7918 		}
7919 	}
7920 
7921 	if (task && group_leader &&
7922 	    group_leader->attr.inherit != attr.inherit) {
7923 		err = -EINVAL;
7924 		goto err_task;
7925 	}
7926 
7927 	get_online_cpus();
7928 
7929 	if (flags & PERF_FLAG_PID_CGROUP)
7930 		cgroup_fd = pid;
7931 
7932 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
7933 				 NULL, NULL, cgroup_fd);
7934 	if (IS_ERR(event)) {
7935 		err = PTR_ERR(event);
7936 		goto err_cpus;
7937 	}
7938 
7939 	if (is_sampling_event(event)) {
7940 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
7941 			err = -ENOTSUPP;
7942 			goto err_alloc;
7943 		}
7944 	}
7945 
7946 	account_event(event);
7947 
7948 	/*
7949 	 * Special case software events and allow them to be part of
7950 	 * any hardware group.
7951 	 */
7952 	pmu = event->pmu;
7953 
7954 	if (attr.use_clockid) {
7955 		err = perf_event_set_clock(event, attr.clockid);
7956 		if (err)
7957 			goto err_alloc;
7958 	}
7959 
7960 	if (group_leader &&
7961 	    (is_software_event(event) != is_software_event(group_leader))) {
7962 		if (is_software_event(event)) {
7963 			/*
7964 			 * If event and group_leader are not both a software
7965 			 * event, and event is, then group leader is not.
7966 			 *
7967 			 * Allow the addition of software events to !software
7968 			 * groups, this is safe because software events never
7969 			 * fail to schedule.
7970 			 */
7971 			pmu = group_leader->pmu;
7972 		} else if (is_software_event(group_leader) &&
7973 			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
7974 			/*
7975 			 * In case the group is a pure software group, and we
7976 			 * try to add a hardware event, move the whole group to
7977 			 * the hardware context.
7978 			 */
7979 			move_group = 1;
7980 		}
7981 	}
7982 
7983 	/*
7984 	 * Get the target context (task or percpu):
7985 	 */
7986 	ctx = find_get_context(pmu, task, event);
7987 	if (IS_ERR(ctx)) {
7988 		err = PTR_ERR(ctx);
7989 		goto err_alloc;
7990 	}
7991 
7992 	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
7993 		err = -EBUSY;
7994 		goto err_context;
7995 	}
7996 
7997 	if (task) {
7998 		put_task_struct(task);
7999 		task = NULL;
8000 	}
8001 
8002 	/*
8003 	 * Look up the group leader (we will attach this event to it):
8004 	 */
8005 	if (group_leader) {
8006 		err = -EINVAL;
8007 
8008 		/*
8009 		 * Do not allow a recursive hierarchy (this new sibling
8010 		 * becoming part of another group-sibling):
8011 		 */
8012 		if (group_leader->group_leader != group_leader)
8013 			goto err_context;
8014 
8015 		/* All events in a group should have the same clock */
8016 		if (group_leader->clock != event->clock)
8017 			goto err_context;
8018 
8019 		/*
8020 		 * Do not allow to attach to a group in a different
8021 		 * task or CPU context:
8022 		 */
8023 		if (move_group) {
8024 			/*
8025 			 * Make sure we're both on the same task, or both
8026 			 * per-cpu events.
8027 			 */
8028 			if (group_leader->ctx->task != ctx->task)
8029 				goto err_context;
8030 
8031 			/*
8032 			 * Make sure we're both events for the same CPU;
8033 			 * grouping events for different CPUs is broken; since
8034 			 * you can never concurrently schedule them anyhow.
8035 			 */
8036 			if (group_leader->cpu != event->cpu)
8037 				goto err_context;
8038 		} else {
8039 			if (group_leader->ctx != ctx)
8040 				goto err_context;
8041 		}
8042 
8043 		/*
8044 		 * Only a group leader can be exclusive or pinned
8045 		 */
8046 		if (attr.exclusive || attr.pinned)
8047 			goto err_context;
8048 	}
8049 
8050 	if (output_event) {
8051 		err = perf_event_set_output(event, output_event);
8052 		if (err)
8053 			goto err_context;
8054 	}
8055 
8056 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
8057 					f_flags);
8058 	if (IS_ERR(event_file)) {
8059 		err = PTR_ERR(event_file);
8060 		goto err_context;
8061 	}
8062 
8063 	if (move_group) {
8064 		gctx = group_leader->ctx;
8065 
8066 		/*
8067 		 * See perf_event_ctx_lock() for comments on the details
8068 		 * of swizzling perf_event::ctx.
8069 		 */
8070 		mutex_lock_double(&gctx->mutex, &ctx->mutex);
8071 
8072 		perf_remove_from_context(group_leader, false);
8073 
8074 		list_for_each_entry(sibling, &group_leader->sibling_list,
8075 				    group_entry) {
8076 			perf_remove_from_context(sibling, false);
8077 			put_ctx(gctx);
8078 		}
8079 	} else {
8080 		mutex_lock(&ctx->mutex);
8081 	}
8082 
8083 	WARN_ON_ONCE(ctx->parent_ctx);
8084 
8085 	if (move_group) {
8086 		/*
8087 		 * Wait for everybody to stop referencing the events through
8088 		 * the old lists, before installing it on new lists.
8089 		 */
8090 		synchronize_rcu();
8091 
8092 		/*
8093 		 * Install the group siblings before the group leader.
8094 		 *
8095 		 * Because a group leader will try and install the entire group
8096 		 * (through the sibling list, which is still in-tact), we can
8097 		 * end up with siblings installed in the wrong context.
8098 		 *
8099 		 * By installing siblings first we NO-OP because they're not
8100 		 * reachable through the group lists.
8101 		 */
8102 		list_for_each_entry(sibling, &group_leader->sibling_list,
8103 				    group_entry) {
8104 			perf_event__state_init(sibling);
8105 			perf_install_in_context(ctx, sibling, sibling->cpu);
8106 			get_ctx(ctx);
8107 		}
8108 
8109 		/*
8110 		 * Removing from the context ends up with disabled
8111 		 * event. What we want here is event in the initial
8112 		 * startup state, ready to be add into new context.
8113 		 */
8114 		perf_event__state_init(group_leader);
8115 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
8116 		get_ctx(ctx);
8117 	}
8118 
8119 	if (!exclusive_event_installable(event, ctx)) {
8120 		err = -EBUSY;
8121 		mutex_unlock(&ctx->mutex);
8122 		fput(event_file);
8123 		goto err_context;
8124 	}
8125 
8126 	perf_install_in_context(ctx, event, event->cpu);
8127 	perf_unpin_context(ctx);
8128 
8129 	if (move_group) {
8130 		mutex_unlock(&gctx->mutex);
8131 		put_ctx(gctx);
8132 	}
8133 	mutex_unlock(&ctx->mutex);
8134 
8135 	put_online_cpus();
8136 
8137 	event->owner = current;
8138 
8139 	mutex_lock(&current->perf_event_mutex);
8140 	list_add_tail(&event->owner_entry, &current->perf_event_list);
8141 	mutex_unlock(&current->perf_event_mutex);
8142 
8143 	/*
8144 	 * Precalculate sample_data sizes
8145 	 */
8146 	perf_event__header_size(event);
8147 	perf_event__id_header_size(event);
8148 
8149 	/*
8150 	 * Drop the reference on the group_event after placing the
8151 	 * new event on the sibling_list. This ensures destruction
8152 	 * of the group leader will find the pointer to itself in
8153 	 * perf_group_detach().
8154 	 */
8155 	fdput(group);
8156 	fd_install(event_fd, event_file);
8157 	return event_fd;
8158 
8159 err_context:
8160 	perf_unpin_context(ctx);
8161 	put_ctx(ctx);
8162 err_alloc:
8163 	free_event(event);
8164 err_cpus:
8165 	put_online_cpus();
8166 err_task:
8167 	if (task)
8168 		put_task_struct(task);
8169 err_group_fd:
8170 	fdput(group);
8171 err_fd:
8172 	put_unused_fd(event_fd);
8173 	return err;
8174 }
8175 
8176 /**
8177  * perf_event_create_kernel_counter
8178  *
8179  * @attr: attributes of the counter to create
8180  * @cpu: cpu in which the counter is bound
8181  * @task: task to profile (NULL for percpu)
8182  */
8183 struct perf_event *
8184 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
8185 				 struct task_struct *task,
8186 				 perf_overflow_handler_t overflow_handler,
8187 				 void *context)
8188 {
8189 	struct perf_event_context *ctx;
8190 	struct perf_event *event;
8191 	int err;
8192 
8193 	/*
8194 	 * Get the target context (task or percpu):
8195 	 */
8196 
8197 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
8198 				 overflow_handler, context, -1);
8199 	if (IS_ERR(event)) {
8200 		err = PTR_ERR(event);
8201 		goto err;
8202 	}
8203 
8204 	/* Mark owner so we could distinguish it from user events. */
8205 	event->owner = EVENT_OWNER_KERNEL;
8206 
8207 	account_event(event);
8208 
8209 	ctx = find_get_context(event->pmu, task, event);
8210 	if (IS_ERR(ctx)) {
8211 		err = PTR_ERR(ctx);
8212 		goto err_free;
8213 	}
8214 
8215 	WARN_ON_ONCE(ctx->parent_ctx);
8216 	mutex_lock(&ctx->mutex);
8217 	if (!exclusive_event_installable(event, ctx)) {
8218 		mutex_unlock(&ctx->mutex);
8219 		perf_unpin_context(ctx);
8220 		put_ctx(ctx);
8221 		err = -EBUSY;
8222 		goto err_free;
8223 	}
8224 
8225 	perf_install_in_context(ctx, event, cpu);
8226 	perf_unpin_context(ctx);
8227 	mutex_unlock(&ctx->mutex);
8228 
8229 	return event;
8230 
8231 err_free:
8232 	free_event(event);
8233 err:
8234 	return ERR_PTR(err);
8235 }
8236 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
8237 
8238 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
8239 {
8240 	struct perf_event_context *src_ctx;
8241 	struct perf_event_context *dst_ctx;
8242 	struct perf_event *event, *tmp;
8243 	LIST_HEAD(events);
8244 
8245 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
8246 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
8247 
8248 	/*
8249 	 * See perf_event_ctx_lock() for comments on the details
8250 	 * of swizzling perf_event::ctx.
8251 	 */
8252 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
8253 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
8254 				 event_entry) {
8255 		perf_remove_from_context(event, false);
8256 		unaccount_event_cpu(event, src_cpu);
8257 		put_ctx(src_ctx);
8258 		list_add(&event->migrate_entry, &events);
8259 	}
8260 
8261 	/*
8262 	 * Wait for the events to quiesce before re-instating them.
8263 	 */
8264 	synchronize_rcu();
8265 
8266 	/*
8267 	 * Re-instate events in 2 passes.
8268 	 *
8269 	 * Skip over group leaders and only install siblings on this first
8270 	 * pass, siblings will not get enabled without a leader, however a
8271 	 * leader will enable its siblings, even if those are still on the old
8272 	 * context.
8273 	 */
8274 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8275 		if (event->group_leader == event)
8276 			continue;
8277 
8278 		list_del(&event->migrate_entry);
8279 		if (event->state >= PERF_EVENT_STATE_OFF)
8280 			event->state = PERF_EVENT_STATE_INACTIVE;
8281 		account_event_cpu(event, dst_cpu);
8282 		perf_install_in_context(dst_ctx, event, dst_cpu);
8283 		get_ctx(dst_ctx);
8284 	}
8285 
8286 	/*
8287 	 * Once all the siblings are setup properly, install the group leaders
8288 	 * to make it go.
8289 	 */
8290 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8291 		list_del(&event->migrate_entry);
8292 		if (event->state >= PERF_EVENT_STATE_OFF)
8293 			event->state = PERF_EVENT_STATE_INACTIVE;
8294 		account_event_cpu(event, dst_cpu);
8295 		perf_install_in_context(dst_ctx, event, dst_cpu);
8296 		get_ctx(dst_ctx);
8297 	}
8298 	mutex_unlock(&dst_ctx->mutex);
8299 	mutex_unlock(&src_ctx->mutex);
8300 }
8301 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
8302 
8303 static void sync_child_event(struct perf_event *child_event,
8304 			       struct task_struct *child)
8305 {
8306 	struct perf_event *parent_event = child_event->parent;
8307 	u64 child_val;
8308 
8309 	if (child_event->attr.inherit_stat)
8310 		perf_event_read_event(child_event, child);
8311 
8312 	child_val = perf_event_count(child_event);
8313 
8314 	/*
8315 	 * Add back the child's count to the parent's count:
8316 	 */
8317 	atomic64_add(child_val, &parent_event->child_count);
8318 	atomic64_add(child_event->total_time_enabled,
8319 		     &parent_event->child_total_time_enabled);
8320 	atomic64_add(child_event->total_time_running,
8321 		     &parent_event->child_total_time_running);
8322 
8323 	/*
8324 	 * Remove this event from the parent's list
8325 	 */
8326 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8327 	mutex_lock(&parent_event->child_mutex);
8328 	list_del_init(&child_event->child_list);
8329 	mutex_unlock(&parent_event->child_mutex);
8330 
8331 	/*
8332 	 * Make sure user/parent get notified, that we just
8333 	 * lost one event.
8334 	 */
8335 	perf_event_wakeup(parent_event);
8336 
8337 	/*
8338 	 * Release the parent event, if this was the last
8339 	 * reference to it.
8340 	 */
8341 	put_event(parent_event);
8342 }
8343 
8344 static void
8345 __perf_event_exit_task(struct perf_event *child_event,
8346 			 struct perf_event_context *child_ctx,
8347 			 struct task_struct *child)
8348 {
8349 	/*
8350 	 * Do not destroy the 'original' grouping; because of the context
8351 	 * switch optimization the original events could've ended up in a
8352 	 * random child task.
8353 	 *
8354 	 * If we were to destroy the original group, all group related
8355 	 * operations would cease to function properly after this random
8356 	 * child dies.
8357 	 *
8358 	 * Do destroy all inherited groups, we don't care about those
8359 	 * and being thorough is better.
8360 	 */
8361 	perf_remove_from_context(child_event, !!child_event->parent);
8362 
8363 	/*
8364 	 * It can happen that the parent exits first, and has events
8365 	 * that are still around due to the child reference. These
8366 	 * events need to be zapped.
8367 	 */
8368 	if (child_event->parent) {
8369 		sync_child_event(child_event, child);
8370 		free_event(child_event);
8371 	} else {
8372 		child_event->state = PERF_EVENT_STATE_EXIT;
8373 		perf_event_wakeup(child_event);
8374 	}
8375 }
8376 
8377 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
8378 {
8379 	struct perf_event *child_event, *next;
8380 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
8381 	unsigned long flags;
8382 
8383 	if (likely(!child->perf_event_ctxp[ctxn])) {
8384 		perf_event_task(child, NULL, 0);
8385 		return;
8386 	}
8387 
8388 	local_irq_save(flags);
8389 	/*
8390 	 * We can't reschedule here because interrupts are disabled,
8391 	 * and either child is current or it is a task that can't be
8392 	 * scheduled, so we are now safe from rescheduling changing
8393 	 * our context.
8394 	 */
8395 	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
8396 
8397 	/*
8398 	 * Take the context lock here so that if find_get_context is
8399 	 * reading child->perf_event_ctxp, we wait until it has
8400 	 * incremented the context's refcount before we do put_ctx below.
8401 	 */
8402 	raw_spin_lock(&child_ctx->lock);
8403 	task_ctx_sched_out(child_ctx);
8404 	child->perf_event_ctxp[ctxn] = NULL;
8405 
8406 	/*
8407 	 * If this context is a clone; unclone it so it can't get
8408 	 * swapped to another process while we're removing all
8409 	 * the events from it.
8410 	 */
8411 	clone_ctx = unclone_ctx(child_ctx);
8412 	update_context_time(child_ctx);
8413 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
8414 
8415 	if (clone_ctx)
8416 		put_ctx(clone_ctx);
8417 
8418 	/*
8419 	 * Report the task dead after unscheduling the events so that we
8420 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
8421 	 * get a few PERF_RECORD_READ events.
8422 	 */
8423 	perf_event_task(child, child_ctx, 0);
8424 
8425 	/*
8426 	 * We can recurse on the same lock type through:
8427 	 *
8428 	 *   __perf_event_exit_task()
8429 	 *     sync_child_event()
8430 	 *       put_event()
8431 	 *         mutex_lock(&ctx->mutex)
8432 	 *
8433 	 * But since its the parent context it won't be the same instance.
8434 	 */
8435 	mutex_lock(&child_ctx->mutex);
8436 
8437 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8438 		__perf_event_exit_task(child_event, child_ctx, child);
8439 
8440 	mutex_unlock(&child_ctx->mutex);
8441 
8442 	put_ctx(child_ctx);
8443 }
8444 
8445 /*
8446  * When a child task exits, feed back event values to parent events.
8447  */
8448 void perf_event_exit_task(struct task_struct *child)
8449 {
8450 	struct perf_event *event, *tmp;
8451 	int ctxn;
8452 
8453 	mutex_lock(&child->perf_event_mutex);
8454 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
8455 				 owner_entry) {
8456 		list_del_init(&event->owner_entry);
8457 
8458 		/*
8459 		 * Ensure the list deletion is visible before we clear
8460 		 * the owner, closes a race against perf_release() where
8461 		 * we need to serialize on the owner->perf_event_mutex.
8462 		 */
8463 		smp_wmb();
8464 		event->owner = NULL;
8465 	}
8466 	mutex_unlock(&child->perf_event_mutex);
8467 
8468 	for_each_task_context_nr(ctxn)
8469 		perf_event_exit_task_context(child, ctxn);
8470 }
8471 
8472 static void perf_free_event(struct perf_event *event,
8473 			    struct perf_event_context *ctx)
8474 {
8475 	struct perf_event *parent = event->parent;
8476 
8477 	if (WARN_ON_ONCE(!parent))
8478 		return;
8479 
8480 	mutex_lock(&parent->child_mutex);
8481 	list_del_init(&event->child_list);
8482 	mutex_unlock(&parent->child_mutex);
8483 
8484 	put_event(parent);
8485 
8486 	raw_spin_lock_irq(&ctx->lock);
8487 	perf_group_detach(event);
8488 	list_del_event(event, ctx);
8489 	raw_spin_unlock_irq(&ctx->lock);
8490 	free_event(event);
8491 }
8492 
8493 /*
8494  * Free an unexposed, unused context as created by inheritance by
8495  * perf_event_init_task below, used by fork() in case of fail.
8496  *
8497  * Not all locks are strictly required, but take them anyway to be nice and
8498  * help out with the lockdep assertions.
8499  */
8500 void perf_event_free_task(struct task_struct *task)
8501 {
8502 	struct perf_event_context *ctx;
8503 	struct perf_event *event, *tmp;
8504 	int ctxn;
8505 
8506 	for_each_task_context_nr(ctxn) {
8507 		ctx = task->perf_event_ctxp[ctxn];
8508 		if (!ctx)
8509 			continue;
8510 
8511 		mutex_lock(&ctx->mutex);
8512 again:
8513 		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
8514 				group_entry)
8515 			perf_free_event(event, ctx);
8516 
8517 		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
8518 				group_entry)
8519 			perf_free_event(event, ctx);
8520 
8521 		if (!list_empty(&ctx->pinned_groups) ||
8522 				!list_empty(&ctx->flexible_groups))
8523 			goto again;
8524 
8525 		mutex_unlock(&ctx->mutex);
8526 
8527 		put_ctx(ctx);
8528 	}
8529 }
8530 
8531 void perf_event_delayed_put(struct task_struct *task)
8532 {
8533 	int ctxn;
8534 
8535 	for_each_task_context_nr(ctxn)
8536 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
8537 }
8538 
8539 /*
8540  * inherit a event from parent task to child task:
8541  */
8542 static struct perf_event *
8543 inherit_event(struct perf_event *parent_event,
8544 	      struct task_struct *parent,
8545 	      struct perf_event_context *parent_ctx,
8546 	      struct task_struct *child,
8547 	      struct perf_event *group_leader,
8548 	      struct perf_event_context *child_ctx)
8549 {
8550 	enum perf_event_active_state parent_state = parent_event->state;
8551 	struct perf_event *child_event;
8552 	unsigned long flags;
8553 
8554 	/*
8555 	 * Instead of creating recursive hierarchies of events,
8556 	 * we link inherited events back to the original parent,
8557 	 * which has a filp for sure, which we use as the reference
8558 	 * count:
8559 	 */
8560 	if (parent_event->parent)
8561 		parent_event = parent_event->parent;
8562 
8563 	child_event = perf_event_alloc(&parent_event->attr,
8564 					   parent_event->cpu,
8565 					   child,
8566 					   group_leader, parent_event,
8567 					   NULL, NULL, -1);
8568 	if (IS_ERR(child_event))
8569 		return child_event;
8570 
8571 	if (is_orphaned_event(parent_event) ||
8572 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
8573 		free_event(child_event);
8574 		return NULL;
8575 	}
8576 
8577 	get_ctx(child_ctx);
8578 
8579 	/*
8580 	 * Make the child state follow the state of the parent event,
8581 	 * not its attr.disabled bit.  We hold the parent's mutex,
8582 	 * so we won't race with perf_event_{en, dis}able_family.
8583 	 */
8584 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
8585 		child_event->state = PERF_EVENT_STATE_INACTIVE;
8586 	else
8587 		child_event->state = PERF_EVENT_STATE_OFF;
8588 
8589 	if (parent_event->attr.freq) {
8590 		u64 sample_period = parent_event->hw.sample_period;
8591 		struct hw_perf_event *hwc = &child_event->hw;
8592 
8593 		hwc->sample_period = sample_period;
8594 		hwc->last_period   = sample_period;
8595 
8596 		local64_set(&hwc->period_left, sample_period);
8597 	}
8598 
8599 	child_event->ctx = child_ctx;
8600 	child_event->overflow_handler = parent_event->overflow_handler;
8601 	child_event->overflow_handler_context
8602 		= parent_event->overflow_handler_context;
8603 
8604 	/*
8605 	 * Precalculate sample_data sizes
8606 	 */
8607 	perf_event__header_size(child_event);
8608 	perf_event__id_header_size(child_event);
8609 
8610 	/*
8611 	 * Link it up in the child's context:
8612 	 */
8613 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
8614 	add_event_to_ctx(child_event, child_ctx);
8615 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
8616 
8617 	/*
8618 	 * Link this into the parent event's child list
8619 	 */
8620 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8621 	mutex_lock(&parent_event->child_mutex);
8622 	list_add_tail(&child_event->child_list, &parent_event->child_list);
8623 	mutex_unlock(&parent_event->child_mutex);
8624 
8625 	return child_event;
8626 }
8627 
8628 static int inherit_group(struct perf_event *parent_event,
8629 	      struct task_struct *parent,
8630 	      struct perf_event_context *parent_ctx,
8631 	      struct task_struct *child,
8632 	      struct perf_event_context *child_ctx)
8633 {
8634 	struct perf_event *leader;
8635 	struct perf_event *sub;
8636 	struct perf_event *child_ctr;
8637 
8638 	leader = inherit_event(parent_event, parent, parent_ctx,
8639 				 child, NULL, child_ctx);
8640 	if (IS_ERR(leader))
8641 		return PTR_ERR(leader);
8642 	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
8643 		child_ctr = inherit_event(sub, parent, parent_ctx,
8644 					    child, leader, child_ctx);
8645 		if (IS_ERR(child_ctr))
8646 			return PTR_ERR(child_ctr);
8647 	}
8648 	return 0;
8649 }
8650 
8651 static int
8652 inherit_task_group(struct perf_event *event, struct task_struct *parent,
8653 		   struct perf_event_context *parent_ctx,
8654 		   struct task_struct *child, int ctxn,
8655 		   int *inherited_all)
8656 {
8657 	int ret;
8658 	struct perf_event_context *child_ctx;
8659 
8660 	if (!event->attr.inherit) {
8661 		*inherited_all = 0;
8662 		return 0;
8663 	}
8664 
8665 	child_ctx = child->perf_event_ctxp[ctxn];
8666 	if (!child_ctx) {
8667 		/*
8668 		 * This is executed from the parent task context, so
8669 		 * inherit events that have been marked for cloning.
8670 		 * First allocate and initialize a context for the
8671 		 * child.
8672 		 */
8673 
8674 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
8675 		if (!child_ctx)
8676 			return -ENOMEM;
8677 
8678 		child->perf_event_ctxp[ctxn] = child_ctx;
8679 	}
8680 
8681 	ret = inherit_group(event, parent, parent_ctx,
8682 			    child, child_ctx);
8683 
8684 	if (ret)
8685 		*inherited_all = 0;
8686 
8687 	return ret;
8688 }
8689 
8690 /*
8691  * Initialize the perf_event context in task_struct
8692  */
8693 static int perf_event_init_context(struct task_struct *child, int ctxn)
8694 {
8695 	struct perf_event_context *child_ctx, *parent_ctx;
8696 	struct perf_event_context *cloned_ctx;
8697 	struct perf_event *event;
8698 	struct task_struct *parent = current;
8699 	int inherited_all = 1;
8700 	unsigned long flags;
8701 	int ret = 0;
8702 
8703 	if (likely(!parent->perf_event_ctxp[ctxn]))
8704 		return 0;
8705 
8706 	/*
8707 	 * If the parent's context is a clone, pin it so it won't get
8708 	 * swapped under us.
8709 	 */
8710 	parent_ctx = perf_pin_task_context(parent, ctxn);
8711 	if (!parent_ctx)
8712 		return 0;
8713 
8714 	/*
8715 	 * No need to check if parent_ctx != NULL here; since we saw
8716 	 * it non-NULL earlier, the only reason for it to become NULL
8717 	 * is if we exit, and since we're currently in the middle of
8718 	 * a fork we can't be exiting at the same time.
8719 	 */
8720 
8721 	/*
8722 	 * Lock the parent list. No need to lock the child - not PID
8723 	 * hashed yet and not running, so nobody can access it.
8724 	 */
8725 	mutex_lock(&parent_ctx->mutex);
8726 
8727 	/*
8728 	 * We dont have to disable NMIs - we are only looking at
8729 	 * the list, not manipulating it:
8730 	 */
8731 	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8732 		ret = inherit_task_group(event, parent, parent_ctx,
8733 					 child, ctxn, &inherited_all);
8734 		if (ret)
8735 			break;
8736 	}
8737 
8738 	/*
8739 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
8740 	 * to allocations, but we need to prevent rotation because
8741 	 * rotate_ctx() will change the list from interrupt context.
8742 	 */
8743 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
8744 	parent_ctx->rotate_disable = 1;
8745 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
8746 
8747 	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8748 		ret = inherit_task_group(event, parent, parent_ctx,
8749 					 child, ctxn, &inherited_all);
8750 		if (ret)
8751 			break;
8752 	}
8753 
8754 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
8755 	parent_ctx->rotate_disable = 0;
8756 
8757 	child_ctx = child->perf_event_ctxp[ctxn];
8758 
8759 	if (child_ctx && inherited_all) {
8760 		/*
8761 		 * Mark the child context as a clone of the parent
8762 		 * context, or of whatever the parent is a clone of.
8763 		 *
8764 		 * Note that if the parent is a clone, the holding of
8765 		 * parent_ctx->lock avoids it from being uncloned.
8766 		 */
8767 		cloned_ctx = parent_ctx->parent_ctx;
8768 		if (cloned_ctx) {
8769 			child_ctx->parent_ctx = cloned_ctx;
8770 			child_ctx->parent_gen = parent_ctx->parent_gen;
8771 		} else {
8772 			child_ctx->parent_ctx = parent_ctx;
8773 			child_ctx->parent_gen = parent_ctx->generation;
8774 		}
8775 		get_ctx(child_ctx->parent_ctx);
8776 	}
8777 
8778 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
8779 	mutex_unlock(&parent_ctx->mutex);
8780 
8781 	perf_unpin_context(parent_ctx);
8782 	put_ctx(parent_ctx);
8783 
8784 	return ret;
8785 }
8786 
8787 /*
8788  * Initialize the perf_event context in task_struct
8789  */
8790 int perf_event_init_task(struct task_struct *child)
8791 {
8792 	int ctxn, ret;
8793 
8794 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
8795 	mutex_init(&child->perf_event_mutex);
8796 	INIT_LIST_HEAD(&child->perf_event_list);
8797 
8798 	for_each_task_context_nr(ctxn) {
8799 		ret = perf_event_init_context(child, ctxn);
8800 		if (ret) {
8801 			perf_event_free_task(child);
8802 			return ret;
8803 		}
8804 	}
8805 
8806 	return 0;
8807 }
8808 
8809 static void __init perf_event_init_all_cpus(void)
8810 {
8811 	struct swevent_htable *swhash;
8812 	int cpu;
8813 
8814 	for_each_possible_cpu(cpu) {
8815 		swhash = &per_cpu(swevent_htable, cpu);
8816 		mutex_init(&swhash->hlist_mutex);
8817 		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
8818 	}
8819 }
8820 
8821 static void perf_event_init_cpu(int cpu)
8822 {
8823 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8824 
8825 	mutex_lock(&swhash->hlist_mutex);
8826 	swhash->online = true;
8827 	if (swhash->hlist_refcount > 0) {
8828 		struct swevent_hlist *hlist;
8829 
8830 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
8831 		WARN_ON(!hlist);
8832 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
8833 	}
8834 	mutex_unlock(&swhash->hlist_mutex);
8835 }
8836 
8837 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
8838 static void __perf_event_exit_context(void *__info)
8839 {
8840 	struct remove_event re = { .detach_group = true };
8841 	struct perf_event_context *ctx = __info;
8842 
8843 	rcu_read_lock();
8844 	list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
8845 		__perf_remove_from_context(&re);
8846 	rcu_read_unlock();
8847 }
8848 
8849 static void perf_event_exit_cpu_context(int cpu)
8850 {
8851 	struct perf_event_context *ctx;
8852 	struct pmu *pmu;
8853 	int idx;
8854 
8855 	idx = srcu_read_lock(&pmus_srcu);
8856 	list_for_each_entry_rcu(pmu, &pmus, entry) {
8857 		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
8858 
8859 		mutex_lock(&ctx->mutex);
8860 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
8861 		mutex_unlock(&ctx->mutex);
8862 	}
8863 	srcu_read_unlock(&pmus_srcu, idx);
8864 }
8865 
8866 static void perf_event_exit_cpu(int cpu)
8867 {
8868 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8869 
8870 	perf_event_exit_cpu_context(cpu);
8871 
8872 	mutex_lock(&swhash->hlist_mutex);
8873 	swhash->online = false;
8874 	swevent_hlist_release(swhash);
8875 	mutex_unlock(&swhash->hlist_mutex);
8876 }
8877 #else
8878 static inline void perf_event_exit_cpu(int cpu) { }
8879 #endif
8880 
8881 static int
8882 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
8883 {
8884 	int cpu;
8885 
8886 	for_each_online_cpu(cpu)
8887 		perf_event_exit_cpu(cpu);
8888 
8889 	return NOTIFY_OK;
8890 }
8891 
8892 /*
8893  * Run the perf reboot notifier at the very last possible moment so that
8894  * the generic watchdog code runs as long as possible.
8895  */
8896 static struct notifier_block perf_reboot_notifier = {
8897 	.notifier_call = perf_reboot,
8898 	.priority = INT_MIN,
8899 };
8900 
8901 static int
8902 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
8903 {
8904 	unsigned int cpu = (long)hcpu;
8905 
8906 	switch (action & ~CPU_TASKS_FROZEN) {
8907 
8908 	case CPU_UP_PREPARE:
8909 	case CPU_DOWN_FAILED:
8910 		perf_event_init_cpu(cpu);
8911 		break;
8912 
8913 	case CPU_UP_CANCELED:
8914 	case CPU_DOWN_PREPARE:
8915 		perf_event_exit_cpu(cpu);
8916 		break;
8917 	default:
8918 		break;
8919 	}
8920 
8921 	return NOTIFY_OK;
8922 }
8923 
8924 void __init perf_event_init(void)
8925 {
8926 	int ret;
8927 
8928 	idr_init(&pmu_idr);
8929 
8930 	perf_event_init_all_cpus();
8931 	init_srcu_struct(&pmus_srcu);
8932 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
8933 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
8934 	perf_pmu_register(&perf_task_clock, NULL, -1);
8935 	perf_tp_register();
8936 	perf_cpu_notifier(perf_cpu_notify);
8937 	register_reboot_notifier(&perf_reboot_notifier);
8938 
8939 	ret = init_hw_breakpoint();
8940 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
8941 
8942 	/* do not patch jump label more than once per second */
8943 	jump_label_rate_limit(&perf_sched_events, HZ);
8944 
8945 	/*
8946 	 * Build time assertion that we keep the data_head at the intended
8947 	 * location.  IOW, validation we got the __reserved[] size right.
8948 	 */
8949 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
8950 		     != 1024);
8951 }
8952 
8953 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
8954 			      char *page)
8955 {
8956 	struct perf_pmu_events_attr *pmu_attr =
8957 		container_of(attr, struct perf_pmu_events_attr, attr);
8958 
8959 	if (pmu_attr->event_str)
8960 		return sprintf(page, "%s\n", pmu_attr->event_str);
8961 
8962 	return 0;
8963 }
8964 
8965 static int __init perf_event_sysfs_init(void)
8966 {
8967 	struct pmu *pmu;
8968 	int ret;
8969 
8970 	mutex_lock(&pmus_lock);
8971 
8972 	ret = bus_register(&pmu_bus);
8973 	if (ret)
8974 		goto unlock;
8975 
8976 	list_for_each_entry(pmu, &pmus, entry) {
8977 		if (!pmu->name || pmu->type < 0)
8978 			continue;
8979 
8980 		ret = pmu_dev_alloc(pmu);
8981 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
8982 	}
8983 	pmu_bus_running = 1;
8984 	ret = 0;
8985 
8986 unlock:
8987 	mutex_unlock(&pmus_lock);
8988 
8989 	return ret;
8990 }
8991 device_initcall(perf_event_sysfs_init);
8992 
8993 #ifdef CONFIG_CGROUP_PERF
8994 static struct cgroup_subsys_state *
8995 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8996 {
8997 	struct perf_cgroup *jc;
8998 
8999 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
9000 	if (!jc)
9001 		return ERR_PTR(-ENOMEM);
9002 
9003 	jc->info = alloc_percpu(struct perf_cgroup_info);
9004 	if (!jc->info) {
9005 		kfree(jc);
9006 		return ERR_PTR(-ENOMEM);
9007 	}
9008 
9009 	return &jc->css;
9010 }
9011 
9012 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
9013 {
9014 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
9015 
9016 	free_percpu(jc->info);
9017 	kfree(jc);
9018 }
9019 
9020 static int __perf_cgroup_move(void *info)
9021 {
9022 	struct task_struct *task = info;
9023 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
9024 	return 0;
9025 }
9026 
9027 static void perf_cgroup_attach(struct cgroup_subsys_state *css,
9028 			       struct cgroup_taskset *tset)
9029 {
9030 	struct task_struct *task;
9031 
9032 	cgroup_taskset_for_each(task, tset)
9033 		task_function_call(task, __perf_cgroup_move, task);
9034 }
9035 
9036 static void perf_cgroup_exit(struct cgroup_subsys_state *css,
9037 			     struct cgroup_subsys_state *old_css,
9038 			     struct task_struct *task)
9039 {
9040 	/*
9041 	 * cgroup_exit() is called in the copy_process() failure path.
9042 	 * Ignore this case since the task hasn't ran yet, this avoids
9043 	 * trying to poke a half freed task state from generic code.
9044 	 */
9045 	if (!(task->flags & PF_EXITING))
9046 		return;
9047 
9048 	task_function_call(task, __perf_cgroup_move, task);
9049 }
9050 
9051 struct cgroup_subsys perf_event_cgrp_subsys = {
9052 	.css_alloc	= perf_cgroup_css_alloc,
9053 	.css_free	= perf_cgroup_css_free,
9054 	.exit		= perf_cgroup_exit,
9055 	.attach		= perf_cgroup_attach,
9056 };
9057 #endif /* CONFIG_CGROUP_PERF */
9058