xref: /openbmc/linux/kernel/events/core.c (revision 9726bfcd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10 
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/rculist.h>
32 #include <linux/uaccess.h>
33 #include <linux/syscalls.h>
34 #include <linux/anon_inodes.h>
35 #include <linux/kernel_stat.h>
36 #include <linux/cgroup.h>
37 #include <linux/perf_event.h>
38 #include <linux/trace_events.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/mm_types.h>
41 #include <linux/module.h>
42 #include <linux/mman.h>
43 #include <linux/compat.h>
44 #include <linux/bpf.h>
45 #include <linux/filter.h>
46 #include <linux/namei.h>
47 #include <linux/parser.h>
48 #include <linux/sched/clock.h>
49 #include <linux/sched/mm.h>
50 #include <linux/proc_ns.h>
51 #include <linux/mount.h>
52 
53 #include "internal.h"
54 
55 #include <asm/irq_regs.h>
56 
57 typedef int (*remote_function_f)(void *);
58 
59 struct remote_function_call {
60 	struct task_struct	*p;
61 	remote_function_f	func;
62 	void			*info;
63 	int			ret;
64 };
65 
66 static void remote_function(void *data)
67 {
68 	struct remote_function_call *tfc = data;
69 	struct task_struct *p = tfc->p;
70 
71 	if (p) {
72 		/* -EAGAIN */
73 		if (task_cpu(p) != smp_processor_id())
74 			return;
75 
76 		/*
77 		 * Now that we're on right CPU with IRQs disabled, we can test
78 		 * if we hit the right task without races.
79 		 */
80 
81 		tfc->ret = -ESRCH; /* No such (running) process */
82 		if (p != current)
83 			return;
84 	}
85 
86 	tfc->ret = tfc->func(tfc->info);
87 }
88 
89 /**
90  * task_function_call - call a function on the cpu on which a task runs
91  * @p:		the task to evaluate
92  * @func:	the function to be called
93  * @info:	the function call argument
94  *
95  * Calls the function @func when the task is currently running. This might
96  * be on the current CPU, which just calls the function directly
97  *
98  * returns: @func return value, or
99  *	    -ESRCH  - when the process isn't running
100  *	    -EAGAIN - when the process moved away
101  */
102 static int
103 task_function_call(struct task_struct *p, remote_function_f func, void *info)
104 {
105 	struct remote_function_call data = {
106 		.p	= p,
107 		.func	= func,
108 		.info	= info,
109 		.ret	= -EAGAIN,
110 	};
111 	int ret;
112 
113 	do {
114 		ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
115 		if (!ret)
116 			ret = data.ret;
117 	} while (ret == -EAGAIN);
118 
119 	return ret;
120 }
121 
122 /**
123  * cpu_function_call - call a function on the cpu
124  * @func:	the function to be called
125  * @info:	the function call argument
126  *
127  * Calls the function @func on the remote cpu.
128  *
129  * returns: @func return value or -ENXIO when the cpu is offline
130  */
131 static int cpu_function_call(int cpu, remote_function_f func, void *info)
132 {
133 	struct remote_function_call data = {
134 		.p	= NULL,
135 		.func	= func,
136 		.info	= info,
137 		.ret	= -ENXIO, /* No such CPU */
138 	};
139 
140 	smp_call_function_single(cpu, remote_function, &data, 1);
141 
142 	return data.ret;
143 }
144 
145 static inline struct perf_cpu_context *
146 __get_cpu_context(struct perf_event_context *ctx)
147 {
148 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
149 }
150 
151 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
152 			  struct perf_event_context *ctx)
153 {
154 	raw_spin_lock(&cpuctx->ctx.lock);
155 	if (ctx)
156 		raw_spin_lock(&ctx->lock);
157 }
158 
159 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
160 			    struct perf_event_context *ctx)
161 {
162 	if (ctx)
163 		raw_spin_unlock(&ctx->lock);
164 	raw_spin_unlock(&cpuctx->ctx.lock);
165 }
166 
167 #define TASK_TOMBSTONE ((void *)-1L)
168 
169 static bool is_kernel_event(struct perf_event *event)
170 {
171 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
172 }
173 
174 /*
175  * On task ctx scheduling...
176  *
177  * When !ctx->nr_events a task context will not be scheduled. This means
178  * we can disable the scheduler hooks (for performance) without leaving
179  * pending task ctx state.
180  *
181  * This however results in two special cases:
182  *
183  *  - removing the last event from a task ctx; this is relatively straight
184  *    forward and is done in __perf_remove_from_context.
185  *
186  *  - adding the first event to a task ctx; this is tricky because we cannot
187  *    rely on ctx->is_active and therefore cannot use event_function_call().
188  *    See perf_install_in_context().
189  *
190  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
191  */
192 
193 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
194 			struct perf_event_context *, void *);
195 
196 struct event_function_struct {
197 	struct perf_event *event;
198 	event_f func;
199 	void *data;
200 };
201 
202 static int event_function(void *info)
203 {
204 	struct event_function_struct *efs = info;
205 	struct perf_event *event = efs->event;
206 	struct perf_event_context *ctx = event->ctx;
207 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
208 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
209 	int ret = 0;
210 
211 	lockdep_assert_irqs_disabled();
212 
213 	perf_ctx_lock(cpuctx, task_ctx);
214 	/*
215 	 * Since we do the IPI call without holding ctx->lock things can have
216 	 * changed, double check we hit the task we set out to hit.
217 	 */
218 	if (ctx->task) {
219 		if (ctx->task != current) {
220 			ret = -ESRCH;
221 			goto unlock;
222 		}
223 
224 		/*
225 		 * We only use event_function_call() on established contexts,
226 		 * and event_function() is only ever called when active (or
227 		 * rather, we'll have bailed in task_function_call() or the
228 		 * above ctx->task != current test), therefore we must have
229 		 * ctx->is_active here.
230 		 */
231 		WARN_ON_ONCE(!ctx->is_active);
232 		/*
233 		 * And since we have ctx->is_active, cpuctx->task_ctx must
234 		 * match.
235 		 */
236 		WARN_ON_ONCE(task_ctx != ctx);
237 	} else {
238 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
239 	}
240 
241 	efs->func(event, cpuctx, ctx, efs->data);
242 unlock:
243 	perf_ctx_unlock(cpuctx, task_ctx);
244 
245 	return ret;
246 }
247 
248 static void event_function_call(struct perf_event *event, event_f func, void *data)
249 {
250 	struct perf_event_context *ctx = event->ctx;
251 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
252 	struct event_function_struct efs = {
253 		.event = event,
254 		.func = func,
255 		.data = data,
256 	};
257 
258 	if (!event->parent) {
259 		/*
260 		 * If this is a !child event, we must hold ctx::mutex to
261 		 * stabilize the the event->ctx relation. See
262 		 * perf_event_ctx_lock().
263 		 */
264 		lockdep_assert_held(&ctx->mutex);
265 	}
266 
267 	if (!task) {
268 		cpu_function_call(event->cpu, event_function, &efs);
269 		return;
270 	}
271 
272 	if (task == TASK_TOMBSTONE)
273 		return;
274 
275 again:
276 	if (!task_function_call(task, event_function, &efs))
277 		return;
278 
279 	raw_spin_lock_irq(&ctx->lock);
280 	/*
281 	 * Reload the task pointer, it might have been changed by
282 	 * a concurrent perf_event_context_sched_out().
283 	 */
284 	task = ctx->task;
285 	if (task == TASK_TOMBSTONE) {
286 		raw_spin_unlock_irq(&ctx->lock);
287 		return;
288 	}
289 	if (ctx->is_active) {
290 		raw_spin_unlock_irq(&ctx->lock);
291 		goto again;
292 	}
293 	func(event, NULL, ctx, data);
294 	raw_spin_unlock_irq(&ctx->lock);
295 }
296 
297 /*
298  * Similar to event_function_call() + event_function(), but hard assumes IRQs
299  * are already disabled and we're on the right CPU.
300  */
301 static void event_function_local(struct perf_event *event, event_f func, void *data)
302 {
303 	struct perf_event_context *ctx = event->ctx;
304 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
305 	struct task_struct *task = READ_ONCE(ctx->task);
306 	struct perf_event_context *task_ctx = NULL;
307 
308 	lockdep_assert_irqs_disabled();
309 
310 	if (task) {
311 		if (task == TASK_TOMBSTONE)
312 			return;
313 
314 		task_ctx = ctx;
315 	}
316 
317 	perf_ctx_lock(cpuctx, task_ctx);
318 
319 	task = ctx->task;
320 	if (task == TASK_TOMBSTONE)
321 		goto unlock;
322 
323 	if (task) {
324 		/*
325 		 * We must be either inactive or active and the right task,
326 		 * otherwise we're screwed, since we cannot IPI to somewhere
327 		 * else.
328 		 */
329 		if (ctx->is_active) {
330 			if (WARN_ON_ONCE(task != current))
331 				goto unlock;
332 
333 			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
334 				goto unlock;
335 		}
336 	} else {
337 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
338 	}
339 
340 	func(event, cpuctx, ctx, data);
341 unlock:
342 	perf_ctx_unlock(cpuctx, task_ctx);
343 }
344 
345 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
346 		       PERF_FLAG_FD_OUTPUT  |\
347 		       PERF_FLAG_PID_CGROUP |\
348 		       PERF_FLAG_FD_CLOEXEC)
349 
350 /*
351  * branch priv levels that need permission checks
352  */
353 #define PERF_SAMPLE_BRANCH_PERM_PLM \
354 	(PERF_SAMPLE_BRANCH_KERNEL |\
355 	 PERF_SAMPLE_BRANCH_HV)
356 
357 enum event_type_t {
358 	EVENT_FLEXIBLE = 0x1,
359 	EVENT_PINNED = 0x2,
360 	EVENT_TIME = 0x4,
361 	/* see ctx_resched() for details */
362 	EVENT_CPU = 0x8,
363 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
364 };
365 
366 /*
367  * perf_sched_events : >0 events exist
368  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
369  */
370 
371 static void perf_sched_delayed(struct work_struct *work);
372 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
373 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
374 static DEFINE_MUTEX(perf_sched_mutex);
375 static atomic_t perf_sched_count;
376 
377 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
378 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
379 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
380 
381 static atomic_t nr_mmap_events __read_mostly;
382 static atomic_t nr_comm_events __read_mostly;
383 static atomic_t nr_namespaces_events __read_mostly;
384 static atomic_t nr_task_events __read_mostly;
385 static atomic_t nr_freq_events __read_mostly;
386 static atomic_t nr_switch_events __read_mostly;
387 static atomic_t nr_ksymbol_events __read_mostly;
388 static atomic_t nr_bpf_events __read_mostly;
389 
390 static LIST_HEAD(pmus);
391 static DEFINE_MUTEX(pmus_lock);
392 static struct srcu_struct pmus_srcu;
393 static cpumask_var_t perf_online_mask;
394 
395 /*
396  * perf event paranoia level:
397  *  -1 - not paranoid at all
398  *   0 - disallow raw tracepoint access for unpriv
399  *   1 - disallow cpu events for unpriv
400  *   2 - disallow kernel profiling for unpriv
401  */
402 int sysctl_perf_event_paranoid __read_mostly = 2;
403 
404 /* Minimum for 512 kiB + 1 user control page */
405 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
406 
407 /*
408  * max perf event sample rate
409  */
410 #define DEFAULT_MAX_SAMPLE_RATE		100000
411 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
412 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
413 
414 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
415 
416 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
417 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
418 
419 static int perf_sample_allowed_ns __read_mostly =
420 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
421 
422 static void update_perf_cpu_limits(void)
423 {
424 	u64 tmp = perf_sample_period_ns;
425 
426 	tmp *= sysctl_perf_cpu_time_max_percent;
427 	tmp = div_u64(tmp, 100);
428 	if (!tmp)
429 		tmp = 1;
430 
431 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
432 }
433 
434 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
435 
436 int perf_proc_update_handler(struct ctl_table *table, int write,
437 		void __user *buffer, size_t *lenp,
438 		loff_t *ppos)
439 {
440 	int ret;
441 	int perf_cpu = sysctl_perf_cpu_time_max_percent;
442 	/*
443 	 * If throttling is disabled don't allow the write:
444 	 */
445 	if (write && (perf_cpu == 100 || perf_cpu == 0))
446 		return -EINVAL;
447 
448 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
449 	if (ret || !write)
450 		return ret;
451 
452 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
453 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
454 	update_perf_cpu_limits();
455 
456 	return 0;
457 }
458 
459 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
460 
461 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
462 				void __user *buffer, size_t *lenp,
463 				loff_t *ppos)
464 {
465 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
466 
467 	if (ret || !write)
468 		return ret;
469 
470 	if (sysctl_perf_cpu_time_max_percent == 100 ||
471 	    sysctl_perf_cpu_time_max_percent == 0) {
472 		printk(KERN_WARNING
473 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
474 		WRITE_ONCE(perf_sample_allowed_ns, 0);
475 	} else {
476 		update_perf_cpu_limits();
477 	}
478 
479 	return 0;
480 }
481 
482 /*
483  * perf samples are done in some very critical code paths (NMIs).
484  * If they take too much CPU time, the system can lock up and not
485  * get any real work done.  This will drop the sample rate when
486  * we detect that events are taking too long.
487  */
488 #define NR_ACCUMULATED_SAMPLES 128
489 static DEFINE_PER_CPU(u64, running_sample_length);
490 
491 static u64 __report_avg;
492 static u64 __report_allowed;
493 
494 static void perf_duration_warn(struct irq_work *w)
495 {
496 	printk_ratelimited(KERN_INFO
497 		"perf: interrupt took too long (%lld > %lld), lowering "
498 		"kernel.perf_event_max_sample_rate to %d\n",
499 		__report_avg, __report_allowed,
500 		sysctl_perf_event_sample_rate);
501 }
502 
503 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
504 
505 void perf_sample_event_took(u64 sample_len_ns)
506 {
507 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
508 	u64 running_len;
509 	u64 avg_len;
510 	u32 max;
511 
512 	if (max_len == 0)
513 		return;
514 
515 	/* Decay the counter by 1 average sample. */
516 	running_len = __this_cpu_read(running_sample_length);
517 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
518 	running_len += sample_len_ns;
519 	__this_cpu_write(running_sample_length, running_len);
520 
521 	/*
522 	 * Note: this will be biased artifically low until we have
523 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
524 	 * from having to maintain a count.
525 	 */
526 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
527 	if (avg_len <= max_len)
528 		return;
529 
530 	__report_avg = avg_len;
531 	__report_allowed = max_len;
532 
533 	/*
534 	 * Compute a throttle threshold 25% below the current duration.
535 	 */
536 	avg_len += avg_len / 4;
537 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
538 	if (avg_len < max)
539 		max /= (u32)avg_len;
540 	else
541 		max = 1;
542 
543 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
544 	WRITE_ONCE(max_samples_per_tick, max);
545 
546 	sysctl_perf_event_sample_rate = max * HZ;
547 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
548 
549 	if (!irq_work_queue(&perf_duration_work)) {
550 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
551 			     "kernel.perf_event_max_sample_rate to %d\n",
552 			     __report_avg, __report_allowed,
553 			     sysctl_perf_event_sample_rate);
554 	}
555 }
556 
557 static atomic64_t perf_event_id;
558 
559 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
560 			      enum event_type_t event_type);
561 
562 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
563 			     enum event_type_t event_type,
564 			     struct task_struct *task);
565 
566 static void update_context_time(struct perf_event_context *ctx);
567 static u64 perf_event_time(struct perf_event *event);
568 
569 void __weak perf_event_print_debug(void)	{ }
570 
571 extern __weak const char *perf_pmu_name(void)
572 {
573 	return "pmu";
574 }
575 
576 static inline u64 perf_clock(void)
577 {
578 	return local_clock();
579 }
580 
581 static inline u64 perf_event_clock(struct perf_event *event)
582 {
583 	return event->clock();
584 }
585 
586 /*
587  * State based event timekeeping...
588  *
589  * The basic idea is to use event->state to determine which (if any) time
590  * fields to increment with the current delta. This means we only need to
591  * update timestamps when we change state or when they are explicitly requested
592  * (read).
593  *
594  * Event groups make things a little more complicated, but not terribly so. The
595  * rules for a group are that if the group leader is OFF the entire group is
596  * OFF, irrespecive of what the group member states are. This results in
597  * __perf_effective_state().
598  *
599  * A futher ramification is that when a group leader flips between OFF and
600  * !OFF, we need to update all group member times.
601  *
602  *
603  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
604  * need to make sure the relevant context time is updated before we try and
605  * update our timestamps.
606  */
607 
608 static __always_inline enum perf_event_state
609 __perf_effective_state(struct perf_event *event)
610 {
611 	struct perf_event *leader = event->group_leader;
612 
613 	if (leader->state <= PERF_EVENT_STATE_OFF)
614 		return leader->state;
615 
616 	return event->state;
617 }
618 
619 static __always_inline void
620 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
621 {
622 	enum perf_event_state state = __perf_effective_state(event);
623 	u64 delta = now - event->tstamp;
624 
625 	*enabled = event->total_time_enabled;
626 	if (state >= PERF_EVENT_STATE_INACTIVE)
627 		*enabled += delta;
628 
629 	*running = event->total_time_running;
630 	if (state >= PERF_EVENT_STATE_ACTIVE)
631 		*running += delta;
632 }
633 
634 static void perf_event_update_time(struct perf_event *event)
635 {
636 	u64 now = perf_event_time(event);
637 
638 	__perf_update_times(event, now, &event->total_time_enabled,
639 					&event->total_time_running);
640 	event->tstamp = now;
641 }
642 
643 static void perf_event_update_sibling_time(struct perf_event *leader)
644 {
645 	struct perf_event *sibling;
646 
647 	for_each_sibling_event(sibling, leader)
648 		perf_event_update_time(sibling);
649 }
650 
651 static void
652 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
653 {
654 	if (event->state == state)
655 		return;
656 
657 	perf_event_update_time(event);
658 	/*
659 	 * If a group leader gets enabled/disabled all its siblings
660 	 * are affected too.
661 	 */
662 	if ((event->state < 0) ^ (state < 0))
663 		perf_event_update_sibling_time(event);
664 
665 	WRITE_ONCE(event->state, state);
666 }
667 
668 #ifdef CONFIG_CGROUP_PERF
669 
670 static inline bool
671 perf_cgroup_match(struct perf_event *event)
672 {
673 	struct perf_event_context *ctx = event->ctx;
674 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
675 
676 	/* @event doesn't care about cgroup */
677 	if (!event->cgrp)
678 		return true;
679 
680 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
681 	if (!cpuctx->cgrp)
682 		return false;
683 
684 	/*
685 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
686 	 * also enabled for all its descendant cgroups.  If @cpuctx's
687 	 * cgroup is a descendant of @event's (the test covers identity
688 	 * case), it's a match.
689 	 */
690 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
691 				    event->cgrp->css.cgroup);
692 }
693 
694 static inline void perf_detach_cgroup(struct perf_event *event)
695 {
696 	css_put(&event->cgrp->css);
697 	event->cgrp = NULL;
698 }
699 
700 static inline int is_cgroup_event(struct perf_event *event)
701 {
702 	return event->cgrp != NULL;
703 }
704 
705 static inline u64 perf_cgroup_event_time(struct perf_event *event)
706 {
707 	struct perf_cgroup_info *t;
708 
709 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
710 	return t->time;
711 }
712 
713 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
714 {
715 	struct perf_cgroup_info *info;
716 	u64 now;
717 
718 	now = perf_clock();
719 
720 	info = this_cpu_ptr(cgrp->info);
721 
722 	info->time += now - info->timestamp;
723 	info->timestamp = now;
724 }
725 
726 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
727 {
728 	struct perf_cgroup *cgrp = cpuctx->cgrp;
729 	struct cgroup_subsys_state *css;
730 
731 	if (cgrp) {
732 		for (css = &cgrp->css; css; css = css->parent) {
733 			cgrp = container_of(css, struct perf_cgroup, css);
734 			__update_cgrp_time(cgrp);
735 		}
736 	}
737 }
738 
739 static inline void update_cgrp_time_from_event(struct perf_event *event)
740 {
741 	struct perf_cgroup *cgrp;
742 
743 	/*
744 	 * ensure we access cgroup data only when needed and
745 	 * when we know the cgroup is pinned (css_get)
746 	 */
747 	if (!is_cgroup_event(event))
748 		return;
749 
750 	cgrp = perf_cgroup_from_task(current, event->ctx);
751 	/*
752 	 * Do not update time when cgroup is not active
753 	 */
754 	if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
755 		__update_cgrp_time(event->cgrp);
756 }
757 
758 static inline void
759 perf_cgroup_set_timestamp(struct task_struct *task,
760 			  struct perf_event_context *ctx)
761 {
762 	struct perf_cgroup *cgrp;
763 	struct perf_cgroup_info *info;
764 	struct cgroup_subsys_state *css;
765 
766 	/*
767 	 * ctx->lock held by caller
768 	 * ensure we do not access cgroup data
769 	 * unless we have the cgroup pinned (css_get)
770 	 */
771 	if (!task || !ctx->nr_cgroups)
772 		return;
773 
774 	cgrp = perf_cgroup_from_task(task, ctx);
775 
776 	for (css = &cgrp->css; css; css = css->parent) {
777 		cgrp = container_of(css, struct perf_cgroup, css);
778 		info = this_cpu_ptr(cgrp->info);
779 		info->timestamp = ctx->timestamp;
780 	}
781 }
782 
783 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
784 
785 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
786 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
787 
788 /*
789  * reschedule events based on the cgroup constraint of task.
790  *
791  * mode SWOUT : schedule out everything
792  * mode SWIN : schedule in based on cgroup for next
793  */
794 static void perf_cgroup_switch(struct task_struct *task, int mode)
795 {
796 	struct perf_cpu_context *cpuctx;
797 	struct list_head *list;
798 	unsigned long flags;
799 
800 	/*
801 	 * Disable interrupts and preemption to avoid this CPU's
802 	 * cgrp_cpuctx_entry to change under us.
803 	 */
804 	local_irq_save(flags);
805 
806 	list = this_cpu_ptr(&cgrp_cpuctx_list);
807 	list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
808 		WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
809 
810 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
811 		perf_pmu_disable(cpuctx->ctx.pmu);
812 
813 		if (mode & PERF_CGROUP_SWOUT) {
814 			cpu_ctx_sched_out(cpuctx, EVENT_ALL);
815 			/*
816 			 * must not be done before ctxswout due
817 			 * to event_filter_match() in event_sched_out()
818 			 */
819 			cpuctx->cgrp = NULL;
820 		}
821 
822 		if (mode & PERF_CGROUP_SWIN) {
823 			WARN_ON_ONCE(cpuctx->cgrp);
824 			/*
825 			 * set cgrp before ctxsw in to allow
826 			 * event_filter_match() to not have to pass
827 			 * task around
828 			 * we pass the cpuctx->ctx to perf_cgroup_from_task()
829 			 * because cgorup events are only per-cpu
830 			 */
831 			cpuctx->cgrp = perf_cgroup_from_task(task,
832 							     &cpuctx->ctx);
833 			cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
834 		}
835 		perf_pmu_enable(cpuctx->ctx.pmu);
836 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
837 	}
838 
839 	local_irq_restore(flags);
840 }
841 
842 static inline void perf_cgroup_sched_out(struct task_struct *task,
843 					 struct task_struct *next)
844 {
845 	struct perf_cgroup *cgrp1;
846 	struct perf_cgroup *cgrp2 = NULL;
847 
848 	rcu_read_lock();
849 	/*
850 	 * we come here when we know perf_cgroup_events > 0
851 	 * we do not need to pass the ctx here because we know
852 	 * we are holding the rcu lock
853 	 */
854 	cgrp1 = perf_cgroup_from_task(task, NULL);
855 	cgrp2 = perf_cgroup_from_task(next, NULL);
856 
857 	/*
858 	 * only schedule out current cgroup events if we know
859 	 * that we are switching to a different cgroup. Otherwise,
860 	 * do no touch the cgroup events.
861 	 */
862 	if (cgrp1 != cgrp2)
863 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
864 
865 	rcu_read_unlock();
866 }
867 
868 static inline void perf_cgroup_sched_in(struct task_struct *prev,
869 					struct task_struct *task)
870 {
871 	struct perf_cgroup *cgrp1;
872 	struct perf_cgroup *cgrp2 = NULL;
873 
874 	rcu_read_lock();
875 	/*
876 	 * we come here when we know perf_cgroup_events > 0
877 	 * we do not need to pass the ctx here because we know
878 	 * we are holding the rcu lock
879 	 */
880 	cgrp1 = perf_cgroup_from_task(task, NULL);
881 	cgrp2 = perf_cgroup_from_task(prev, NULL);
882 
883 	/*
884 	 * only need to schedule in cgroup events if we are changing
885 	 * cgroup during ctxsw. Cgroup events were not scheduled
886 	 * out of ctxsw out if that was not the case.
887 	 */
888 	if (cgrp1 != cgrp2)
889 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
890 
891 	rcu_read_unlock();
892 }
893 
894 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
895 				      struct perf_event_attr *attr,
896 				      struct perf_event *group_leader)
897 {
898 	struct perf_cgroup *cgrp;
899 	struct cgroup_subsys_state *css;
900 	struct fd f = fdget(fd);
901 	int ret = 0;
902 
903 	if (!f.file)
904 		return -EBADF;
905 
906 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
907 					 &perf_event_cgrp_subsys);
908 	if (IS_ERR(css)) {
909 		ret = PTR_ERR(css);
910 		goto out;
911 	}
912 
913 	cgrp = container_of(css, struct perf_cgroup, css);
914 	event->cgrp = cgrp;
915 
916 	/*
917 	 * all events in a group must monitor
918 	 * the same cgroup because a task belongs
919 	 * to only one perf cgroup at a time
920 	 */
921 	if (group_leader && group_leader->cgrp != cgrp) {
922 		perf_detach_cgroup(event);
923 		ret = -EINVAL;
924 	}
925 out:
926 	fdput(f);
927 	return ret;
928 }
929 
930 static inline void
931 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
932 {
933 	struct perf_cgroup_info *t;
934 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
935 	event->shadow_ctx_time = now - t->timestamp;
936 }
937 
938 /*
939  * Update cpuctx->cgrp so that it is set when first cgroup event is added and
940  * cleared when last cgroup event is removed.
941  */
942 static inline void
943 list_update_cgroup_event(struct perf_event *event,
944 			 struct perf_event_context *ctx, bool add)
945 {
946 	struct perf_cpu_context *cpuctx;
947 	struct list_head *cpuctx_entry;
948 
949 	if (!is_cgroup_event(event))
950 		return;
951 
952 	/*
953 	 * Because cgroup events are always per-cpu events,
954 	 * this will always be called from the right CPU.
955 	 */
956 	cpuctx = __get_cpu_context(ctx);
957 
958 	/*
959 	 * Since setting cpuctx->cgrp is conditional on the current @cgrp
960 	 * matching the event's cgroup, we must do this for every new event,
961 	 * because if the first would mismatch, the second would not try again
962 	 * and we would leave cpuctx->cgrp unset.
963 	 */
964 	if (add && !cpuctx->cgrp) {
965 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
966 
967 		if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
968 			cpuctx->cgrp = cgrp;
969 	}
970 
971 	if (add && ctx->nr_cgroups++)
972 		return;
973 	else if (!add && --ctx->nr_cgroups)
974 		return;
975 
976 	/* no cgroup running */
977 	if (!add)
978 		cpuctx->cgrp = NULL;
979 
980 	cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
981 	if (add)
982 		list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
983 	else
984 		list_del(cpuctx_entry);
985 }
986 
987 #else /* !CONFIG_CGROUP_PERF */
988 
989 static inline bool
990 perf_cgroup_match(struct perf_event *event)
991 {
992 	return true;
993 }
994 
995 static inline void perf_detach_cgroup(struct perf_event *event)
996 {}
997 
998 static inline int is_cgroup_event(struct perf_event *event)
999 {
1000 	return 0;
1001 }
1002 
1003 static inline void update_cgrp_time_from_event(struct perf_event *event)
1004 {
1005 }
1006 
1007 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1008 {
1009 }
1010 
1011 static inline void perf_cgroup_sched_out(struct task_struct *task,
1012 					 struct task_struct *next)
1013 {
1014 }
1015 
1016 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1017 					struct task_struct *task)
1018 {
1019 }
1020 
1021 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1022 				      struct perf_event_attr *attr,
1023 				      struct perf_event *group_leader)
1024 {
1025 	return -EINVAL;
1026 }
1027 
1028 static inline void
1029 perf_cgroup_set_timestamp(struct task_struct *task,
1030 			  struct perf_event_context *ctx)
1031 {
1032 }
1033 
1034 void
1035 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1036 {
1037 }
1038 
1039 static inline void
1040 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1041 {
1042 }
1043 
1044 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1045 {
1046 	return 0;
1047 }
1048 
1049 static inline void
1050 list_update_cgroup_event(struct perf_event *event,
1051 			 struct perf_event_context *ctx, bool add)
1052 {
1053 }
1054 
1055 #endif
1056 
1057 /*
1058  * set default to be dependent on timer tick just
1059  * like original code
1060  */
1061 #define PERF_CPU_HRTIMER (1000 / HZ)
1062 /*
1063  * function must be called with interrupts disabled
1064  */
1065 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1066 {
1067 	struct perf_cpu_context *cpuctx;
1068 	bool rotations;
1069 
1070 	lockdep_assert_irqs_disabled();
1071 
1072 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1073 	rotations = perf_rotate_context(cpuctx);
1074 
1075 	raw_spin_lock(&cpuctx->hrtimer_lock);
1076 	if (rotations)
1077 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1078 	else
1079 		cpuctx->hrtimer_active = 0;
1080 	raw_spin_unlock(&cpuctx->hrtimer_lock);
1081 
1082 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1083 }
1084 
1085 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1086 {
1087 	struct hrtimer *timer = &cpuctx->hrtimer;
1088 	struct pmu *pmu = cpuctx->ctx.pmu;
1089 	u64 interval;
1090 
1091 	/* no multiplexing needed for SW PMU */
1092 	if (pmu->task_ctx_nr == perf_sw_context)
1093 		return;
1094 
1095 	/*
1096 	 * check default is sane, if not set then force to
1097 	 * default interval (1/tick)
1098 	 */
1099 	interval = pmu->hrtimer_interval_ms;
1100 	if (interval < 1)
1101 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1102 
1103 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1104 
1105 	raw_spin_lock_init(&cpuctx->hrtimer_lock);
1106 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1107 	timer->function = perf_mux_hrtimer_handler;
1108 }
1109 
1110 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1111 {
1112 	struct hrtimer *timer = &cpuctx->hrtimer;
1113 	struct pmu *pmu = cpuctx->ctx.pmu;
1114 	unsigned long flags;
1115 
1116 	/* not for SW PMU */
1117 	if (pmu->task_ctx_nr == perf_sw_context)
1118 		return 0;
1119 
1120 	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1121 	if (!cpuctx->hrtimer_active) {
1122 		cpuctx->hrtimer_active = 1;
1123 		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1124 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1125 	}
1126 	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1127 
1128 	return 0;
1129 }
1130 
1131 void perf_pmu_disable(struct pmu *pmu)
1132 {
1133 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1134 	if (!(*count)++)
1135 		pmu->pmu_disable(pmu);
1136 }
1137 
1138 void perf_pmu_enable(struct pmu *pmu)
1139 {
1140 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1141 	if (!--(*count))
1142 		pmu->pmu_enable(pmu);
1143 }
1144 
1145 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1146 
1147 /*
1148  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1149  * perf_event_task_tick() are fully serialized because they're strictly cpu
1150  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1151  * disabled, while perf_event_task_tick is called from IRQ context.
1152  */
1153 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1154 {
1155 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
1156 
1157 	lockdep_assert_irqs_disabled();
1158 
1159 	WARN_ON(!list_empty(&ctx->active_ctx_list));
1160 
1161 	list_add(&ctx->active_ctx_list, head);
1162 }
1163 
1164 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1165 {
1166 	lockdep_assert_irqs_disabled();
1167 
1168 	WARN_ON(list_empty(&ctx->active_ctx_list));
1169 
1170 	list_del_init(&ctx->active_ctx_list);
1171 }
1172 
1173 static void get_ctx(struct perf_event_context *ctx)
1174 {
1175 	refcount_inc(&ctx->refcount);
1176 }
1177 
1178 static void free_ctx(struct rcu_head *head)
1179 {
1180 	struct perf_event_context *ctx;
1181 
1182 	ctx = container_of(head, struct perf_event_context, rcu_head);
1183 	kfree(ctx->task_ctx_data);
1184 	kfree(ctx);
1185 }
1186 
1187 static void put_ctx(struct perf_event_context *ctx)
1188 {
1189 	if (refcount_dec_and_test(&ctx->refcount)) {
1190 		if (ctx->parent_ctx)
1191 			put_ctx(ctx->parent_ctx);
1192 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1193 			put_task_struct(ctx->task);
1194 		call_rcu(&ctx->rcu_head, free_ctx);
1195 	}
1196 }
1197 
1198 /*
1199  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1200  * perf_pmu_migrate_context() we need some magic.
1201  *
1202  * Those places that change perf_event::ctx will hold both
1203  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1204  *
1205  * Lock ordering is by mutex address. There are two other sites where
1206  * perf_event_context::mutex nests and those are:
1207  *
1208  *  - perf_event_exit_task_context()	[ child , 0 ]
1209  *      perf_event_exit_event()
1210  *        put_event()			[ parent, 1 ]
1211  *
1212  *  - perf_event_init_context()		[ parent, 0 ]
1213  *      inherit_task_group()
1214  *        inherit_group()
1215  *          inherit_event()
1216  *            perf_event_alloc()
1217  *              perf_init_event()
1218  *                perf_try_init_event()	[ child , 1 ]
1219  *
1220  * While it appears there is an obvious deadlock here -- the parent and child
1221  * nesting levels are inverted between the two. This is in fact safe because
1222  * life-time rules separate them. That is an exiting task cannot fork, and a
1223  * spawning task cannot (yet) exit.
1224  *
1225  * But remember that that these are parent<->child context relations, and
1226  * migration does not affect children, therefore these two orderings should not
1227  * interact.
1228  *
1229  * The change in perf_event::ctx does not affect children (as claimed above)
1230  * because the sys_perf_event_open() case will install a new event and break
1231  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1232  * concerned with cpuctx and that doesn't have children.
1233  *
1234  * The places that change perf_event::ctx will issue:
1235  *
1236  *   perf_remove_from_context();
1237  *   synchronize_rcu();
1238  *   perf_install_in_context();
1239  *
1240  * to affect the change. The remove_from_context() + synchronize_rcu() should
1241  * quiesce the event, after which we can install it in the new location. This
1242  * means that only external vectors (perf_fops, prctl) can perturb the event
1243  * while in transit. Therefore all such accessors should also acquire
1244  * perf_event_context::mutex to serialize against this.
1245  *
1246  * However; because event->ctx can change while we're waiting to acquire
1247  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1248  * function.
1249  *
1250  * Lock order:
1251  *    cred_guard_mutex
1252  *	task_struct::perf_event_mutex
1253  *	  perf_event_context::mutex
1254  *	    perf_event::child_mutex;
1255  *	      perf_event_context::lock
1256  *	    perf_event::mmap_mutex
1257  *	    mmap_sem
1258  *	      perf_addr_filters_head::lock
1259  *
1260  *    cpu_hotplug_lock
1261  *      pmus_lock
1262  *	  cpuctx->mutex / perf_event_context::mutex
1263  */
1264 static struct perf_event_context *
1265 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1266 {
1267 	struct perf_event_context *ctx;
1268 
1269 again:
1270 	rcu_read_lock();
1271 	ctx = READ_ONCE(event->ctx);
1272 	if (!refcount_inc_not_zero(&ctx->refcount)) {
1273 		rcu_read_unlock();
1274 		goto again;
1275 	}
1276 	rcu_read_unlock();
1277 
1278 	mutex_lock_nested(&ctx->mutex, nesting);
1279 	if (event->ctx != ctx) {
1280 		mutex_unlock(&ctx->mutex);
1281 		put_ctx(ctx);
1282 		goto again;
1283 	}
1284 
1285 	return ctx;
1286 }
1287 
1288 static inline struct perf_event_context *
1289 perf_event_ctx_lock(struct perf_event *event)
1290 {
1291 	return perf_event_ctx_lock_nested(event, 0);
1292 }
1293 
1294 static void perf_event_ctx_unlock(struct perf_event *event,
1295 				  struct perf_event_context *ctx)
1296 {
1297 	mutex_unlock(&ctx->mutex);
1298 	put_ctx(ctx);
1299 }
1300 
1301 /*
1302  * This must be done under the ctx->lock, such as to serialize against
1303  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1304  * calling scheduler related locks and ctx->lock nests inside those.
1305  */
1306 static __must_check struct perf_event_context *
1307 unclone_ctx(struct perf_event_context *ctx)
1308 {
1309 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1310 
1311 	lockdep_assert_held(&ctx->lock);
1312 
1313 	if (parent_ctx)
1314 		ctx->parent_ctx = NULL;
1315 	ctx->generation++;
1316 
1317 	return parent_ctx;
1318 }
1319 
1320 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1321 				enum pid_type type)
1322 {
1323 	u32 nr;
1324 	/*
1325 	 * only top level events have the pid namespace they were created in
1326 	 */
1327 	if (event->parent)
1328 		event = event->parent;
1329 
1330 	nr = __task_pid_nr_ns(p, type, event->ns);
1331 	/* avoid -1 if it is idle thread or runs in another ns */
1332 	if (!nr && !pid_alive(p))
1333 		nr = -1;
1334 	return nr;
1335 }
1336 
1337 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1338 {
1339 	return perf_event_pid_type(event, p, PIDTYPE_TGID);
1340 }
1341 
1342 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1343 {
1344 	return perf_event_pid_type(event, p, PIDTYPE_PID);
1345 }
1346 
1347 /*
1348  * If we inherit events we want to return the parent event id
1349  * to userspace.
1350  */
1351 static u64 primary_event_id(struct perf_event *event)
1352 {
1353 	u64 id = event->id;
1354 
1355 	if (event->parent)
1356 		id = event->parent->id;
1357 
1358 	return id;
1359 }
1360 
1361 /*
1362  * Get the perf_event_context for a task and lock it.
1363  *
1364  * This has to cope with with the fact that until it is locked,
1365  * the context could get moved to another task.
1366  */
1367 static struct perf_event_context *
1368 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1369 {
1370 	struct perf_event_context *ctx;
1371 
1372 retry:
1373 	/*
1374 	 * One of the few rules of preemptible RCU is that one cannot do
1375 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1376 	 * part of the read side critical section was irqs-enabled -- see
1377 	 * rcu_read_unlock_special().
1378 	 *
1379 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1380 	 * side critical section has interrupts disabled.
1381 	 */
1382 	local_irq_save(*flags);
1383 	rcu_read_lock();
1384 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1385 	if (ctx) {
1386 		/*
1387 		 * If this context is a clone of another, it might
1388 		 * get swapped for another underneath us by
1389 		 * perf_event_task_sched_out, though the
1390 		 * rcu_read_lock() protects us from any context
1391 		 * getting freed.  Lock the context and check if it
1392 		 * got swapped before we could get the lock, and retry
1393 		 * if so.  If we locked the right context, then it
1394 		 * can't get swapped on us any more.
1395 		 */
1396 		raw_spin_lock(&ctx->lock);
1397 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1398 			raw_spin_unlock(&ctx->lock);
1399 			rcu_read_unlock();
1400 			local_irq_restore(*flags);
1401 			goto retry;
1402 		}
1403 
1404 		if (ctx->task == TASK_TOMBSTONE ||
1405 		    !refcount_inc_not_zero(&ctx->refcount)) {
1406 			raw_spin_unlock(&ctx->lock);
1407 			ctx = NULL;
1408 		} else {
1409 			WARN_ON_ONCE(ctx->task != task);
1410 		}
1411 	}
1412 	rcu_read_unlock();
1413 	if (!ctx)
1414 		local_irq_restore(*flags);
1415 	return ctx;
1416 }
1417 
1418 /*
1419  * Get the context for a task and increment its pin_count so it
1420  * can't get swapped to another task.  This also increments its
1421  * reference count so that the context can't get freed.
1422  */
1423 static struct perf_event_context *
1424 perf_pin_task_context(struct task_struct *task, int ctxn)
1425 {
1426 	struct perf_event_context *ctx;
1427 	unsigned long flags;
1428 
1429 	ctx = perf_lock_task_context(task, ctxn, &flags);
1430 	if (ctx) {
1431 		++ctx->pin_count;
1432 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1433 	}
1434 	return ctx;
1435 }
1436 
1437 static void perf_unpin_context(struct perf_event_context *ctx)
1438 {
1439 	unsigned long flags;
1440 
1441 	raw_spin_lock_irqsave(&ctx->lock, flags);
1442 	--ctx->pin_count;
1443 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1444 }
1445 
1446 /*
1447  * Update the record of the current time in a context.
1448  */
1449 static void update_context_time(struct perf_event_context *ctx)
1450 {
1451 	u64 now = perf_clock();
1452 
1453 	ctx->time += now - ctx->timestamp;
1454 	ctx->timestamp = now;
1455 }
1456 
1457 static u64 perf_event_time(struct perf_event *event)
1458 {
1459 	struct perf_event_context *ctx = event->ctx;
1460 
1461 	if (is_cgroup_event(event))
1462 		return perf_cgroup_event_time(event);
1463 
1464 	return ctx ? ctx->time : 0;
1465 }
1466 
1467 static enum event_type_t get_event_type(struct perf_event *event)
1468 {
1469 	struct perf_event_context *ctx = event->ctx;
1470 	enum event_type_t event_type;
1471 
1472 	lockdep_assert_held(&ctx->lock);
1473 
1474 	/*
1475 	 * It's 'group type', really, because if our group leader is
1476 	 * pinned, so are we.
1477 	 */
1478 	if (event->group_leader != event)
1479 		event = event->group_leader;
1480 
1481 	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1482 	if (!ctx->task)
1483 		event_type |= EVENT_CPU;
1484 
1485 	return event_type;
1486 }
1487 
1488 /*
1489  * Helper function to initialize event group nodes.
1490  */
1491 static void init_event_group(struct perf_event *event)
1492 {
1493 	RB_CLEAR_NODE(&event->group_node);
1494 	event->group_index = 0;
1495 }
1496 
1497 /*
1498  * Extract pinned or flexible groups from the context
1499  * based on event attrs bits.
1500  */
1501 static struct perf_event_groups *
1502 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1503 {
1504 	if (event->attr.pinned)
1505 		return &ctx->pinned_groups;
1506 	else
1507 		return &ctx->flexible_groups;
1508 }
1509 
1510 /*
1511  * Helper function to initializes perf_event_group trees.
1512  */
1513 static void perf_event_groups_init(struct perf_event_groups *groups)
1514 {
1515 	groups->tree = RB_ROOT;
1516 	groups->index = 0;
1517 }
1518 
1519 /*
1520  * Compare function for event groups;
1521  *
1522  * Implements complex key that first sorts by CPU and then by virtual index
1523  * which provides ordering when rotating groups for the same CPU.
1524  */
1525 static bool
1526 perf_event_groups_less(struct perf_event *left, struct perf_event *right)
1527 {
1528 	if (left->cpu < right->cpu)
1529 		return true;
1530 	if (left->cpu > right->cpu)
1531 		return false;
1532 
1533 	if (left->group_index < right->group_index)
1534 		return true;
1535 	if (left->group_index > right->group_index)
1536 		return false;
1537 
1538 	return false;
1539 }
1540 
1541 /*
1542  * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1543  * key (see perf_event_groups_less). This places it last inside the CPU
1544  * subtree.
1545  */
1546 static void
1547 perf_event_groups_insert(struct perf_event_groups *groups,
1548 			 struct perf_event *event)
1549 {
1550 	struct perf_event *node_event;
1551 	struct rb_node *parent;
1552 	struct rb_node **node;
1553 
1554 	event->group_index = ++groups->index;
1555 
1556 	node = &groups->tree.rb_node;
1557 	parent = *node;
1558 
1559 	while (*node) {
1560 		parent = *node;
1561 		node_event = container_of(*node, struct perf_event, group_node);
1562 
1563 		if (perf_event_groups_less(event, node_event))
1564 			node = &parent->rb_left;
1565 		else
1566 			node = &parent->rb_right;
1567 	}
1568 
1569 	rb_link_node(&event->group_node, parent, node);
1570 	rb_insert_color(&event->group_node, &groups->tree);
1571 }
1572 
1573 /*
1574  * Helper function to insert event into the pinned or flexible groups.
1575  */
1576 static void
1577 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1578 {
1579 	struct perf_event_groups *groups;
1580 
1581 	groups = get_event_groups(event, ctx);
1582 	perf_event_groups_insert(groups, event);
1583 }
1584 
1585 /*
1586  * Delete a group from a tree.
1587  */
1588 static void
1589 perf_event_groups_delete(struct perf_event_groups *groups,
1590 			 struct perf_event *event)
1591 {
1592 	WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1593 		     RB_EMPTY_ROOT(&groups->tree));
1594 
1595 	rb_erase(&event->group_node, &groups->tree);
1596 	init_event_group(event);
1597 }
1598 
1599 /*
1600  * Helper function to delete event from its groups.
1601  */
1602 static void
1603 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1604 {
1605 	struct perf_event_groups *groups;
1606 
1607 	groups = get_event_groups(event, ctx);
1608 	perf_event_groups_delete(groups, event);
1609 }
1610 
1611 /*
1612  * Get the leftmost event in the @cpu subtree.
1613  */
1614 static struct perf_event *
1615 perf_event_groups_first(struct perf_event_groups *groups, int cpu)
1616 {
1617 	struct perf_event *node_event = NULL, *match = NULL;
1618 	struct rb_node *node = groups->tree.rb_node;
1619 
1620 	while (node) {
1621 		node_event = container_of(node, struct perf_event, group_node);
1622 
1623 		if (cpu < node_event->cpu) {
1624 			node = node->rb_left;
1625 		} else if (cpu > node_event->cpu) {
1626 			node = node->rb_right;
1627 		} else {
1628 			match = node_event;
1629 			node = node->rb_left;
1630 		}
1631 	}
1632 
1633 	return match;
1634 }
1635 
1636 /*
1637  * Like rb_entry_next_safe() for the @cpu subtree.
1638  */
1639 static struct perf_event *
1640 perf_event_groups_next(struct perf_event *event)
1641 {
1642 	struct perf_event *next;
1643 
1644 	next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node);
1645 	if (next && next->cpu == event->cpu)
1646 		return next;
1647 
1648 	return NULL;
1649 }
1650 
1651 /*
1652  * Iterate through the whole groups tree.
1653  */
1654 #define perf_event_groups_for_each(event, groups)			\
1655 	for (event = rb_entry_safe(rb_first(&((groups)->tree)),		\
1656 				typeof(*event), group_node); event;	\
1657 		event = rb_entry_safe(rb_next(&event->group_node),	\
1658 				typeof(*event), group_node))
1659 
1660 /*
1661  * Add an event from the lists for its context.
1662  * Must be called with ctx->mutex and ctx->lock held.
1663  */
1664 static void
1665 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1666 {
1667 	lockdep_assert_held(&ctx->lock);
1668 
1669 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1670 	event->attach_state |= PERF_ATTACH_CONTEXT;
1671 
1672 	event->tstamp = perf_event_time(event);
1673 
1674 	/*
1675 	 * If we're a stand alone event or group leader, we go to the context
1676 	 * list, group events are kept attached to the group so that
1677 	 * perf_group_detach can, at all times, locate all siblings.
1678 	 */
1679 	if (event->group_leader == event) {
1680 		event->group_caps = event->event_caps;
1681 		add_event_to_groups(event, ctx);
1682 	}
1683 
1684 	list_update_cgroup_event(event, ctx, true);
1685 
1686 	list_add_rcu(&event->event_entry, &ctx->event_list);
1687 	ctx->nr_events++;
1688 	if (event->attr.inherit_stat)
1689 		ctx->nr_stat++;
1690 
1691 	ctx->generation++;
1692 }
1693 
1694 /*
1695  * Initialize event state based on the perf_event_attr::disabled.
1696  */
1697 static inline void perf_event__state_init(struct perf_event *event)
1698 {
1699 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1700 					      PERF_EVENT_STATE_INACTIVE;
1701 }
1702 
1703 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1704 {
1705 	int entry = sizeof(u64); /* value */
1706 	int size = 0;
1707 	int nr = 1;
1708 
1709 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1710 		size += sizeof(u64);
1711 
1712 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1713 		size += sizeof(u64);
1714 
1715 	if (event->attr.read_format & PERF_FORMAT_ID)
1716 		entry += sizeof(u64);
1717 
1718 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1719 		nr += nr_siblings;
1720 		size += sizeof(u64);
1721 	}
1722 
1723 	size += entry * nr;
1724 	event->read_size = size;
1725 }
1726 
1727 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1728 {
1729 	struct perf_sample_data *data;
1730 	u16 size = 0;
1731 
1732 	if (sample_type & PERF_SAMPLE_IP)
1733 		size += sizeof(data->ip);
1734 
1735 	if (sample_type & PERF_SAMPLE_ADDR)
1736 		size += sizeof(data->addr);
1737 
1738 	if (sample_type & PERF_SAMPLE_PERIOD)
1739 		size += sizeof(data->period);
1740 
1741 	if (sample_type & PERF_SAMPLE_WEIGHT)
1742 		size += sizeof(data->weight);
1743 
1744 	if (sample_type & PERF_SAMPLE_READ)
1745 		size += event->read_size;
1746 
1747 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1748 		size += sizeof(data->data_src.val);
1749 
1750 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1751 		size += sizeof(data->txn);
1752 
1753 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1754 		size += sizeof(data->phys_addr);
1755 
1756 	event->header_size = size;
1757 }
1758 
1759 /*
1760  * Called at perf_event creation and when events are attached/detached from a
1761  * group.
1762  */
1763 static void perf_event__header_size(struct perf_event *event)
1764 {
1765 	__perf_event_read_size(event,
1766 			       event->group_leader->nr_siblings);
1767 	__perf_event_header_size(event, event->attr.sample_type);
1768 }
1769 
1770 static void perf_event__id_header_size(struct perf_event *event)
1771 {
1772 	struct perf_sample_data *data;
1773 	u64 sample_type = event->attr.sample_type;
1774 	u16 size = 0;
1775 
1776 	if (sample_type & PERF_SAMPLE_TID)
1777 		size += sizeof(data->tid_entry);
1778 
1779 	if (sample_type & PERF_SAMPLE_TIME)
1780 		size += sizeof(data->time);
1781 
1782 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1783 		size += sizeof(data->id);
1784 
1785 	if (sample_type & PERF_SAMPLE_ID)
1786 		size += sizeof(data->id);
1787 
1788 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1789 		size += sizeof(data->stream_id);
1790 
1791 	if (sample_type & PERF_SAMPLE_CPU)
1792 		size += sizeof(data->cpu_entry);
1793 
1794 	event->id_header_size = size;
1795 }
1796 
1797 static bool perf_event_validate_size(struct perf_event *event)
1798 {
1799 	/*
1800 	 * The values computed here will be over-written when we actually
1801 	 * attach the event.
1802 	 */
1803 	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1804 	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1805 	perf_event__id_header_size(event);
1806 
1807 	/*
1808 	 * Sum the lot; should not exceed the 64k limit we have on records.
1809 	 * Conservative limit to allow for callchains and other variable fields.
1810 	 */
1811 	if (event->read_size + event->header_size +
1812 	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1813 		return false;
1814 
1815 	return true;
1816 }
1817 
1818 static void perf_group_attach(struct perf_event *event)
1819 {
1820 	struct perf_event *group_leader = event->group_leader, *pos;
1821 
1822 	lockdep_assert_held(&event->ctx->lock);
1823 
1824 	/*
1825 	 * We can have double attach due to group movement in perf_event_open.
1826 	 */
1827 	if (event->attach_state & PERF_ATTACH_GROUP)
1828 		return;
1829 
1830 	event->attach_state |= PERF_ATTACH_GROUP;
1831 
1832 	if (group_leader == event)
1833 		return;
1834 
1835 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1836 
1837 	group_leader->group_caps &= event->event_caps;
1838 
1839 	list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1840 	group_leader->nr_siblings++;
1841 
1842 	perf_event__header_size(group_leader);
1843 
1844 	for_each_sibling_event(pos, group_leader)
1845 		perf_event__header_size(pos);
1846 }
1847 
1848 /*
1849  * Remove an event from the lists for its context.
1850  * Must be called with ctx->mutex and ctx->lock held.
1851  */
1852 static void
1853 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1854 {
1855 	WARN_ON_ONCE(event->ctx != ctx);
1856 	lockdep_assert_held(&ctx->lock);
1857 
1858 	/*
1859 	 * We can have double detach due to exit/hot-unplug + close.
1860 	 */
1861 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1862 		return;
1863 
1864 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1865 
1866 	list_update_cgroup_event(event, ctx, false);
1867 
1868 	ctx->nr_events--;
1869 	if (event->attr.inherit_stat)
1870 		ctx->nr_stat--;
1871 
1872 	list_del_rcu(&event->event_entry);
1873 
1874 	if (event->group_leader == event)
1875 		del_event_from_groups(event, ctx);
1876 
1877 	/*
1878 	 * If event was in error state, then keep it
1879 	 * that way, otherwise bogus counts will be
1880 	 * returned on read(). The only way to get out
1881 	 * of error state is by explicit re-enabling
1882 	 * of the event
1883 	 */
1884 	if (event->state > PERF_EVENT_STATE_OFF)
1885 		perf_event_set_state(event, PERF_EVENT_STATE_OFF);
1886 
1887 	ctx->generation++;
1888 }
1889 
1890 static void perf_group_detach(struct perf_event *event)
1891 {
1892 	struct perf_event *sibling, *tmp;
1893 	struct perf_event_context *ctx = event->ctx;
1894 
1895 	lockdep_assert_held(&ctx->lock);
1896 
1897 	/*
1898 	 * We can have double detach due to exit/hot-unplug + close.
1899 	 */
1900 	if (!(event->attach_state & PERF_ATTACH_GROUP))
1901 		return;
1902 
1903 	event->attach_state &= ~PERF_ATTACH_GROUP;
1904 
1905 	/*
1906 	 * If this is a sibling, remove it from its group.
1907 	 */
1908 	if (event->group_leader != event) {
1909 		list_del_init(&event->sibling_list);
1910 		event->group_leader->nr_siblings--;
1911 		goto out;
1912 	}
1913 
1914 	/*
1915 	 * If this was a group event with sibling events then
1916 	 * upgrade the siblings to singleton events by adding them
1917 	 * to whatever list we are on.
1918 	 */
1919 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
1920 
1921 		sibling->group_leader = sibling;
1922 		list_del_init(&sibling->sibling_list);
1923 
1924 		/* Inherit group flags from the previous leader */
1925 		sibling->group_caps = event->group_caps;
1926 
1927 		if (!RB_EMPTY_NODE(&event->group_node)) {
1928 			add_event_to_groups(sibling, event->ctx);
1929 
1930 			if (sibling->state == PERF_EVENT_STATE_ACTIVE) {
1931 				struct list_head *list = sibling->attr.pinned ?
1932 					&ctx->pinned_active : &ctx->flexible_active;
1933 
1934 				list_add_tail(&sibling->active_list, list);
1935 			}
1936 		}
1937 
1938 		WARN_ON_ONCE(sibling->ctx != event->ctx);
1939 	}
1940 
1941 out:
1942 	perf_event__header_size(event->group_leader);
1943 
1944 	for_each_sibling_event(tmp, event->group_leader)
1945 		perf_event__header_size(tmp);
1946 }
1947 
1948 static bool is_orphaned_event(struct perf_event *event)
1949 {
1950 	return event->state == PERF_EVENT_STATE_DEAD;
1951 }
1952 
1953 static inline int __pmu_filter_match(struct perf_event *event)
1954 {
1955 	struct pmu *pmu = event->pmu;
1956 	return pmu->filter_match ? pmu->filter_match(event) : 1;
1957 }
1958 
1959 /*
1960  * Check whether we should attempt to schedule an event group based on
1961  * PMU-specific filtering. An event group can consist of HW and SW events,
1962  * potentially with a SW leader, so we must check all the filters, to
1963  * determine whether a group is schedulable:
1964  */
1965 static inline int pmu_filter_match(struct perf_event *event)
1966 {
1967 	struct perf_event *sibling;
1968 
1969 	if (!__pmu_filter_match(event))
1970 		return 0;
1971 
1972 	for_each_sibling_event(sibling, event) {
1973 		if (!__pmu_filter_match(sibling))
1974 			return 0;
1975 	}
1976 
1977 	return 1;
1978 }
1979 
1980 static inline int
1981 event_filter_match(struct perf_event *event)
1982 {
1983 	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1984 	       perf_cgroup_match(event) && pmu_filter_match(event);
1985 }
1986 
1987 static void
1988 event_sched_out(struct perf_event *event,
1989 		  struct perf_cpu_context *cpuctx,
1990 		  struct perf_event_context *ctx)
1991 {
1992 	enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
1993 
1994 	WARN_ON_ONCE(event->ctx != ctx);
1995 	lockdep_assert_held(&ctx->lock);
1996 
1997 	if (event->state != PERF_EVENT_STATE_ACTIVE)
1998 		return;
1999 
2000 	/*
2001 	 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2002 	 * we can schedule events _OUT_ individually through things like
2003 	 * __perf_remove_from_context().
2004 	 */
2005 	list_del_init(&event->active_list);
2006 
2007 	perf_pmu_disable(event->pmu);
2008 
2009 	event->pmu->del(event, 0);
2010 	event->oncpu = -1;
2011 
2012 	if (READ_ONCE(event->pending_disable) >= 0) {
2013 		WRITE_ONCE(event->pending_disable, -1);
2014 		state = PERF_EVENT_STATE_OFF;
2015 	}
2016 	perf_event_set_state(event, state);
2017 
2018 	if (!is_software_event(event))
2019 		cpuctx->active_oncpu--;
2020 	if (!--ctx->nr_active)
2021 		perf_event_ctx_deactivate(ctx);
2022 	if (event->attr.freq && event->attr.sample_freq)
2023 		ctx->nr_freq--;
2024 	if (event->attr.exclusive || !cpuctx->active_oncpu)
2025 		cpuctx->exclusive = 0;
2026 
2027 	perf_pmu_enable(event->pmu);
2028 }
2029 
2030 static void
2031 group_sched_out(struct perf_event *group_event,
2032 		struct perf_cpu_context *cpuctx,
2033 		struct perf_event_context *ctx)
2034 {
2035 	struct perf_event *event;
2036 
2037 	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2038 		return;
2039 
2040 	perf_pmu_disable(ctx->pmu);
2041 
2042 	event_sched_out(group_event, cpuctx, ctx);
2043 
2044 	/*
2045 	 * Schedule out siblings (if any):
2046 	 */
2047 	for_each_sibling_event(event, group_event)
2048 		event_sched_out(event, cpuctx, ctx);
2049 
2050 	perf_pmu_enable(ctx->pmu);
2051 
2052 	if (group_event->attr.exclusive)
2053 		cpuctx->exclusive = 0;
2054 }
2055 
2056 #define DETACH_GROUP	0x01UL
2057 
2058 /*
2059  * Cross CPU call to remove a performance event
2060  *
2061  * We disable the event on the hardware level first. After that we
2062  * remove it from the context list.
2063  */
2064 static void
2065 __perf_remove_from_context(struct perf_event *event,
2066 			   struct perf_cpu_context *cpuctx,
2067 			   struct perf_event_context *ctx,
2068 			   void *info)
2069 {
2070 	unsigned long flags = (unsigned long)info;
2071 
2072 	if (ctx->is_active & EVENT_TIME) {
2073 		update_context_time(ctx);
2074 		update_cgrp_time_from_cpuctx(cpuctx);
2075 	}
2076 
2077 	event_sched_out(event, cpuctx, ctx);
2078 	if (flags & DETACH_GROUP)
2079 		perf_group_detach(event);
2080 	list_del_event(event, ctx);
2081 
2082 	if (!ctx->nr_events && ctx->is_active) {
2083 		ctx->is_active = 0;
2084 		if (ctx->task) {
2085 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2086 			cpuctx->task_ctx = NULL;
2087 		}
2088 	}
2089 }
2090 
2091 /*
2092  * Remove the event from a task's (or a CPU's) list of events.
2093  *
2094  * If event->ctx is a cloned context, callers must make sure that
2095  * every task struct that event->ctx->task could possibly point to
2096  * remains valid.  This is OK when called from perf_release since
2097  * that only calls us on the top-level context, which can't be a clone.
2098  * When called from perf_event_exit_task, it's OK because the
2099  * context has been detached from its task.
2100  */
2101 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2102 {
2103 	struct perf_event_context *ctx = event->ctx;
2104 
2105 	lockdep_assert_held(&ctx->mutex);
2106 
2107 	event_function_call(event, __perf_remove_from_context, (void *)flags);
2108 
2109 	/*
2110 	 * The above event_function_call() can NO-OP when it hits
2111 	 * TASK_TOMBSTONE. In that case we must already have been detached
2112 	 * from the context (by perf_event_exit_event()) but the grouping
2113 	 * might still be in-tact.
2114 	 */
2115 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
2116 	if ((flags & DETACH_GROUP) &&
2117 	    (event->attach_state & PERF_ATTACH_GROUP)) {
2118 		/*
2119 		 * Since in that case we cannot possibly be scheduled, simply
2120 		 * detach now.
2121 		 */
2122 		raw_spin_lock_irq(&ctx->lock);
2123 		perf_group_detach(event);
2124 		raw_spin_unlock_irq(&ctx->lock);
2125 	}
2126 }
2127 
2128 /*
2129  * Cross CPU call to disable a performance event
2130  */
2131 static void __perf_event_disable(struct perf_event *event,
2132 				 struct perf_cpu_context *cpuctx,
2133 				 struct perf_event_context *ctx,
2134 				 void *info)
2135 {
2136 	if (event->state < PERF_EVENT_STATE_INACTIVE)
2137 		return;
2138 
2139 	if (ctx->is_active & EVENT_TIME) {
2140 		update_context_time(ctx);
2141 		update_cgrp_time_from_event(event);
2142 	}
2143 
2144 	if (event == event->group_leader)
2145 		group_sched_out(event, cpuctx, ctx);
2146 	else
2147 		event_sched_out(event, cpuctx, ctx);
2148 
2149 	perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2150 }
2151 
2152 /*
2153  * Disable an event.
2154  *
2155  * If event->ctx is a cloned context, callers must make sure that
2156  * every task struct that event->ctx->task could possibly point to
2157  * remains valid.  This condition is satisifed when called through
2158  * perf_event_for_each_child or perf_event_for_each because they
2159  * hold the top-level event's child_mutex, so any descendant that
2160  * goes to exit will block in perf_event_exit_event().
2161  *
2162  * When called from perf_pending_event it's OK because event->ctx
2163  * is the current context on this CPU and preemption is disabled,
2164  * hence we can't get into perf_event_task_sched_out for this context.
2165  */
2166 static void _perf_event_disable(struct perf_event *event)
2167 {
2168 	struct perf_event_context *ctx = event->ctx;
2169 
2170 	raw_spin_lock_irq(&ctx->lock);
2171 	if (event->state <= PERF_EVENT_STATE_OFF) {
2172 		raw_spin_unlock_irq(&ctx->lock);
2173 		return;
2174 	}
2175 	raw_spin_unlock_irq(&ctx->lock);
2176 
2177 	event_function_call(event, __perf_event_disable, NULL);
2178 }
2179 
2180 void perf_event_disable_local(struct perf_event *event)
2181 {
2182 	event_function_local(event, __perf_event_disable, NULL);
2183 }
2184 
2185 /*
2186  * Strictly speaking kernel users cannot create groups and therefore this
2187  * interface does not need the perf_event_ctx_lock() magic.
2188  */
2189 void perf_event_disable(struct perf_event *event)
2190 {
2191 	struct perf_event_context *ctx;
2192 
2193 	ctx = perf_event_ctx_lock(event);
2194 	_perf_event_disable(event);
2195 	perf_event_ctx_unlock(event, ctx);
2196 }
2197 EXPORT_SYMBOL_GPL(perf_event_disable);
2198 
2199 void perf_event_disable_inatomic(struct perf_event *event)
2200 {
2201 	WRITE_ONCE(event->pending_disable, smp_processor_id());
2202 	/* can fail, see perf_pending_event_disable() */
2203 	irq_work_queue(&event->pending);
2204 }
2205 
2206 static void perf_set_shadow_time(struct perf_event *event,
2207 				 struct perf_event_context *ctx)
2208 {
2209 	/*
2210 	 * use the correct time source for the time snapshot
2211 	 *
2212 	 * We could get by without this by leveraging the
2213 	 * fact that to get to this function, the caller
2214 	 * has most likely already called update_context_time()
2215 	 * and update_cgrp_time_xx() and thus both timestamp
2216 	 * are identical (or very close). Given that tstamp is,
2217 	 * already adjusted for cgroup, we could say that:
2218 	 *    tstamp - ctx->timestamp
2219 	 * is equivalent to
2220 	 *    tstamp - cgrp->timestamp.
2221 	 *
2222 	 * Then, in perf_output_read(), the calculation would
2223 	 * work with no changes because:
2224 	 * - event is guaranteed scheduled in
2225 	 * - no scheduled out in between
2226 	 * - thus the timestamp would be the same
2227 	 *
2228 	 * But this is a bit hairy.
2229 	 *
2230 	 * So instead, we have an explicit cgroup call to remain
2231 	 * within the time time source all along. We believe it
2232 	 * is cleaner and simpler to understand.
2233 	 */
2234 	if (is_cgroup_event(event))
2235 		perf_cgroup_set_shadow_time(event, event->tstamp);
2236 	else
2237 		event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2238 }
2239 
2240 #define MAX_INTERRUPTS (~0ULL)
2241 
2242 static void perf_log_throttle(struct perf_event *event, int enable);
2243 static void perf_log_itrace_start(struct perf_event *event);
2244 
2245 static int
2246 event_sched_in(struct perf_event *event,
2247 		 struct perf_cpu_context *cpuctx,
2248 		 struct perf_event_context *ctx)
2249 {
2250 	int ret = 0;
2251 
2252 	lockdep_assert_held(&ctx->lock);
2253 
2254 	if (event->state <= PERF_EVENT_STATE_OFF)
2255 		return 0;
2256 
2257 	WRITE_ONCE(event->oncpu, smp_processor_id());
2258 	/*
2259 	 * Order event::oncpu write to happen before the ACTIVE state is
2260 	 * visible. This allows perf_event_{stop,read}() to observe the correct
2261 	 * ->oncpu if it sees ACTIVE.
2262 	 */
2263 	smp_wmb();
2264 	perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2265 
2266 	/*
2267 	 * Unthrottle events, since we scheduled we might have missed several
2268 	 * ticks already, also for a heavily scheduling task there is little
2269 	 * guarantee it'll get a tick in a timely manner.
2270 	 */
2271 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2272 		perf_log_throttle(event, 1);
2273 		event->hw.interrupts = 0;
2274 	}
2275 
2276 	perf_pmu_disable(event->pmu);
2277 
2278 	perf_set_shadow_time(event, ctx);
2279 
2280 	perf_log_itrace_start(event);
2281 
2282 	if (event->pmu->add(event, PERF_EF_START)) {
2283 		perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2284 		event->oncpu = -1;
2285 		ret = -EAGAIN;
2286 		goto out;
2287 	}
2288 
2289 	if (!is_software_event(event))
2290 		cpuctx->active_oncpu++;
2291 	if (!ctx->nr_active++)
2292 		perf_event_ctx_activate(ctx);
2293 	if (event->attr.freq && event->attr.sample_freq)
2294 		ctx->nr_freq++;
2295 
2296 	if (event->attr.exclusive)
2297 		cpuctx->exclusive = 1;
2298 
2299 out:
2300 	perf_pmu_enable(event->pmu);
2301 
2302 	return ret;
2303 }
2304 
2305 static int
2306 group_sched_in(struct perf_event *group_event,
2307 	       struct perf_cpu_context *cpuctx,
2308 	       struct perf_event_context *ctx)
2309 {
2310 	struct perf_event *event, *partial_group = NULL;
2311 	struct pmu *pmu = ctx->pmu;
2312 
2313 	if (group_event->state == PERF_EVENT_STATE_OFF)
2314 		return 0;
2315 
2316 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2317 
2318 	if (event_sched_in(group_event, cpuctx, ctx)) {
2319 		pmu->cancel_txn(pmu);
2320 		perf_mux_hrtimer_restart(cpuctx);
2321 		return -EAGAIN;
2322 	}
2323 
2324 	/*
2325 	 * Schedule in siblings as one group (if any):
2326 	 */
2327 	for_each_sibling_event(event, group_event) {
2328 		if (event_sched_in(event, cpuctx, ctx)) {
2329 			partial_group = event;
2330 			goto group_error;
2331 		}
2332 	}
2333 
2334 	if (!pmu->commit_txn(pmu))
2335 		return 0;
2336 
2337 group_error:
2338 	/*
2339 	 * Groups can be scheduled in as one unit only, so undo any
2340 	 * partial group before returning:
2341 	 * The events up to the failed event are scheduled out normally.
2342 	 */
2343 	for_each_sibling_event(event, group_event) {
2344 		if (event == partial_group)
2345 			break;
2346 
2347 		event_sched_out(event, cpuctx, ctx);
2348 	}
2349 	event_sched_out(group_event, cpuctx, ctx);
2350 
2351 	pmu->cancel_txn(pmu);
2352 
2353 	perf_mux_hrtimer_restart(cpuctx);
2354 
2355 	return -EAGAIN;
2356 }
2357 
2358 /*
2359  * Work out whether we can put this event group on the CPU now.
2360  */
2361 static int group_can_go_on(struct perf_event *event,
2362 			   struct perf_cpu_context *cpuctx,
2363 			   int can_add_hw)
2364 {
2365 	/*
2366 	 * Groups consisting entirely of software events can always go on.
2367 	 */
2368 	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2369 		return 1;
2370 	/*
2371 	 * If an exclusive group is already on, no other hardware
2372 	 * events can go on.
2373 	 */
2374 	if (cpuctx->exclusive)
2375 		return 0;
2376 	/*
2377 	 * If this group is exclusive and there are already
2378 	 * events on the CPU, it can't go on.
2379 	 */
2380 	if (event->attr.exclusive && cpuctx->active_oncpu)
2381 		return 0;
2382 	/*
2383 	 * Otherwise, try to add it if all previous groups were able
2384 	 * to go on.
2385 	 */
2386 	return can_add_hw;
2387 }
2388 
2389 static void add_event_to_ctx(struct perf_event *event,
2390 			       struct perf_event_context *ctx)
2391 {
2392 	list_add_event(event, ctx);
2393 	perf_group_attach(event);
2394 }
2395 
2396 static void ctx_sched_out(struct perf_event_context *ctx,
2397 			  struct perf_cpu_context *cpuctx,
2398 			  enum event_type_t event_type);
2399 static void
2400 ctx_sched_in(struct perf_event_context *ctx,
2401 	     struct perf_cpu_context *cpuctx,
2402 	     enum event_type_t event_type,
2403 	     struct task_struct *task);
2404 
2405 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2406 			       struct perf_event_context *ctx,
2407 			       enum event_type_t event_type)
2408 {
2409 	if (!cpuctx->task_ctx)
2410 		return;
2411 
2412 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2413 		return;
2414 
2415 	ctx_sched_out(ctx, cpuctx, event_type);
2416 }
2417 
2418 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2419 				struct perf_event_context *ctx,
2420 				struct task_struct *task)
2421 {
2422 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2423 	if (ctx)
2424 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2425 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2426 	if (ctx)
2427 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2428 }
2429 
2430 /*
2431  * We want to maintain the following priority of scheduling:
2432  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2433  *  - task pinned (EVENT_PINNED)
2434  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2435  *  - task flexible (EVENT_FLEXIBLE).
2436  *
2437  * In order to avoid unscheduling and scheduling back in everything every
2438  * time an event is added, only do it for the groups of equal priority and
2439  * below.
2440  *
2441  * This can be called after a batch operation on task events, in which case
2442  * event_type is a bit mask of the types of events involved. For CPU events,
2443  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2444  */
2445 static void ctx_resched(struct perf_cpu_context *cpuctx,
2446 			struct perf_event_context *task_ctx,
2447 			enum event_type_t event_type)
2448 {
2449 	enum event_type_t ctx_event_type;
2450 	bool cpu_event = !!(event_type & EVENT_CPU);
2451 
2452 	/*
2453 	 * If pinned groups are involved, flexible groups also need to be
2454 	 * scheduled out.
2455 	 */
2456 	if (event_type & EVENT_PINNED)
2457 		event_type |= EVENT_FLEXIBLE;
2458 
2459 	ctx_event_type = event_type & EVENT_ALL;
2460 
2461 	perf_pmu_disable(cpuctx->ctx.pmu);
2462 	if (task_ctx)
2463 		task_ctx_sched_out(cpuctx, task_ctx, event_type);
2464 
2465 	/*
2466 	 * Decide which cpu ctx groups to schedule out based on the types
2467 	 * of events that caused rescheduling:
2468 	 *  - EVENT_CPU: schedule out corresponding groups;
2469 	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2470 	 *  - otherwise, do nothing more.
2471 	 */
2472 	if (cpu_event)
2473 		cpu_ctx_sched_out(cpuctx, ctx_event_type);
2474 	else if (ctx_event_type & EVENT_PINNED)
2475 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2476 
2477 	perf_event_sched_in(cpuctx, task_ctx, current);
2478 	perf_pmu_enable(cpuctx->ctx.pmu);
2479 }
2480 
2481 void perf_pmu_resched(struct pmu *pmu)
2482 {
2483 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2484 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2485 
2486 	perf_ctx_lock(cpuctx, task_ctx);
2487 	ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2488 	perf_ctx_unlock(cpuctx, task_ctx);
2489 }
2490 
2491 /*
2492  * Cross CPU call to install and enable a performance event
2493  *
2494  * Very similar to remote_function() + event_function() but cannot assume that
2495  * things like ctx->is_active and cpuctx->task_ctx are set.
2496  */
2497 static int  __perf_install_in_context(void *info)
2498 {
2499 	struct perf_event *event = info;
2500 	struct perf_event_context *ctx = event->ctx;
2501 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2502 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2503 	bool reprogram = true;
2504 	int ret = 0;
2505 
2506 	raw_spin_lock(&cpuctx->ctx.lock);
2507 	if (ctx->task) {
2508 		raw_spin_lock(&ctx->lock);
2509 		task_ctx = ctx;
2510 
2511 		reprogram = (ctx->task == current);
2512 
2513 		/*
2514 		 * If the task is running, it must be running on this CPU,
2515 		 * otherwise we cannot reprogram things.
2516 		 *
2517 		 * If its not running, we don't care, ctx->lock will
2518 		 * serialize against it becoming runnable.
2519 		 */
2520 		if (task_curr(ctx->task) && !reprogram) {
2521 			ret = -ESRCH;
2522 			goto unlock;
2523 		}
2524 
2525 		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2526 	} else if (task_ctx) {
2527 		raw_spin_lock(&task_ctx->lock);
2528 	}
2529 
2530 #ifdef CONFIG_CGROUP_PERF
2531 	if (is_cgroup_event(event)) {
2532 		/*
2533 		 * If the current cgroup doesn't match the event's
2534 		 * cgroup, we should not try to schedule it.
2535 		 */
2536 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2537 		reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2538 					event->cgrp->css.cgroup);
2539 	}
2540 #endif
2541 
2542 	if (reprogram) {
2543 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2544 		add_event_to_ctx(event, ctx);
2545 		ctx_resched(cpuctx, task_ctx, get_event_type(event));
2546 	} else {
2547 		add_event_to_ctx(event, ctx);
2548 	}
2549 
2550 unlock:
2551 	perf_ctx_unlock(cpuctx, task_ctx);
2552 
2553 	return ret;
2554 }
2555 
2556 static bool exclusive_event_installable(struct perf_event *event,
2557 					struct perf_event_context *ctx);
2558 
2559 /*
2560  * Attach a performance event to a context.
2561  *
2562  * Very similar to event_function_call, see comment there.
2563  */
2564 static void
2565 perf_install_in_context(struct perf_event_context *ctx,
2566 			struct perf_event *event,
2567 			int cpu)
2568 {
2569 	struct task_struct *task = READ_ONCE(ctx->task);
2570 
2571 	lockdep_assert_held(&ctx->mutex);
2572 
2573 	WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2574 
2575 	if (event->cpu != -1)
2576 		event->cpu = cpu;
2577 
2578 	/*
2579 	 * Ensures that if we can observe event->ctx, both the event and ctx
2580 	 * will be 'complete'. See perf_iterate_sb_cpu().
2581 	 */
2582 	smp_store_release(&event->ctx, ctx);
2583 
2584 	if (!task) {
2585 		cpu_function_call(cpu, __perf_install_in_context, event);
2586 		return;
2587 	}
2588 
2589 	/*
2590 	 * Should not happen, we validate the ctx is still alive before calling.
2591 	 */
2592 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2593 		return;
2594 
2595 	/*
2596 	 * Installing events is tricky because we cannot rely on ctx->is_active
2597 	 * to be set in case this is the nr_events 0 -> 1 transition.
2598 	 *
2599 	 * Instead we use task_curr(), which tells us if the task is running.
2600 	 * However, since we use task_curr() outside of rq::lock, we can race
2601 	 * against the actual state. This means the result can be wrong.
2602 	 *
2603 	 * If we get a false positive, we retry, this is harmless.
2604 	 *
2605 	 * If we get a false negative, things are complicated. If we are after
2606 	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2607 	 * value must be correct. If we're before, it doesn't matter since
2608 	 * perf_event_context_sched_in() will program the counter.
2609 	 *
2610 	 * However, this hinges on the remote context switch having observed
2611 	 * our task->perf_event_ctxp[] store, such that it will in fact take
2612 	 * ctx::lock in perf_event_context_sched_in().
2613 	 *
2614 	 * We do this by task_function_call(), if the IPI fails to hit the task
2615 	 * we know any future context switch of task must see the
2616 	 * perf_event_ctpx[] store.
2617 	 */
2618 
2619 	/*
2620 	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2621 	 * task_cpu() load, such that if the IPI then does not find the task
2622 	 * running, a future context switch of that task must observe the
2623 	 * store.
2624 	 */
2625 	smp_mb();
2626 again:
2627 	if (!task_function_call(task, __perf_install_in_context, event))
2628 		return;
2629 
2630 	raw_spin_lock_irq(&ctx->lock);
2631 	task = ctx->task;
2632 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2633 		/*
2634 		 * Cannot happen because we already checked above (which also
2635 		 * cannot happen), and we hold ctx->mutex, which serializes us
2636 		 * against perf_event_exit_task_context().
2637 		 */
2638 		raw_spin_unlock_irq(&ctx->lock);
2639 		return;
2640 	}
2641 	/*
2642 	 * If the task is not running, ctx->lock will avoid it becoming so,
2643 	 * thus we can safely install the event.
2644 	 */
2645 	if (task_curr(task)) {
2646 		raw_spin_unlock_irq(&ctx->lock);
2647 		goto again;
2648 	}
2649 	add_event_to_ctx(event, ctx);
2650 	raw_spin_unlock_irq(&ctx->lock);
2651 }
2652 
2653 /*
2654  * Cross CPU call to enable a performance event
2655  */
2656 static void __perf_event_enable(struct perf_event *event,
2657 				struct perf_cpu_context *cpuctx,
2658 				struct perf_event_context *ctx,
2659 				void *info)
2660 {
2661 	struct perf_event *leader = event->group_leader;
2662 	struct perf_event_context *task_ctx;
2663 
2664 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2665 	    event->state <= PERF_EVENT_STATE_ERROR)
2666 		return;
2667 
2668 	if (ctx->is_active)
2669 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2670 
2671 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2672 
2673 	if (!ctx->is_active)
2674 		return;
2675 
2676 	if (!event_filter_match(event)) {
2677 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2678 		return;
2679 	}
2680 
2681 	/*
2682 	 * If the event is in a group and isn't the group leader,
2683 	 * then don't put it on unless the group is on.
2684 	 */
2685 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2686 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2687 		return;
2688 	}
2689 
2690 	task_ctx = cpuctx->task_ctx;
2691 	if (ctx->task)
2692 		WARN_ON_ONCE(task_ctx != ctx);
2693 
2694 	ctx_resched(cpuctx, task_ctx, get_event_type(event));
2695 }
2696 
2697 /*
2698  * Enable an event.
2699  *
2700  * If event->ctx is a cloned context, callers must make sure that
2701  * every task struct that event->ctx->task could possibly point to
2702  * remains valid.  This condition is satisfied when called through
2703  * perf_event_for_each_child or perf_event_for_each as described
2704  * for perf_event_disable.
2705  */
2706 static void _perf_event_enable(struct perf_event *event)
2707 {
2708 	struct perf_event_context *ctx = event->ctx;
2709 
2710 	raw_spin_lock_irq(&ctx->lock);
2711 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2712 	    event->state <  PERF_EVENT_STATE_ERROR) {
2713 		raw_spin_unlock_irq(&ctx->lock);
2714 		return;
2715 	}
2716 
2717 	/*
2718 	 * If the event is in error state, clear that first.
2719 	 *
2720 	 * That way, if we see the event in error state below, we know that it
2721 	 * has gone back into error state, as distinct from the task having
2722 	 * been scheduled away before the cross-call arrived.
2723 	 */
2724 	if (event->state == PERF_EVENT_STATE_ERROR)
2725 		event->state = PERF_EVENT_STATE_OFF;
2726 	raw_spin_unlock_irq(&ctx->lock);
2727 
2728 	event_function_call(event, __perf_event_enable, NULL);
2729 }
2730 
2731 /*
2732  * See perf_event_disable();
2733  */
2734 void perf_event_enable(struct perf_event *event)
2735 {
2736 	struct perf_event_context *ctx;
2737 
2738 	ctx = perf_event_ctx_lock(event);
2739 	_perf_event_enable(event);
2740 	perf_event_ctx_unlock(event, ctx);
2741 }
2742 EXPORT_SYMBOL_GPL(perf_event_enable);
2743 
2744 struct stop_event_data {
2745 	struct perf_event	*event;
2746 	unsigned int		restart;
2747 };
2748 
2749 static int __perf_event_stop(void *info)
2750 {
2751 	struct stop_event_data *sd = info;
2752 	struct perf_event *event = sd->event;
2753 
2754 	/* if it's already INACTIVE, do nothing */
2755 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2756 		return 0;
2757 
2758 	/* matches smp_wmb() in event_sched_in() */
2759 	smp_rmb();
2760 
2761 	/*
2762 	 * There is a window with interrupts enabled before we get here,
2763 	 * so we need to check again lest we try to stop another CPU's event.
2764 	 */
2765 	if (READ_ONCE(event->oncpu) != smp_processor_id())
2766 		return -EAGAIN;
2767 
2768 	event->pmu->stop(event, PERF_EF_UPDATE);
2769 
2770 	/*
2771 	 * May race with the actual stop (through perf_pmu_output_stop()),
2772 	 * but it is only used for events with AUX ring buffer, and such
2773 	 * events will refuse to restart because of rb::aux_mmap_count==0,
2774 	 * see comments in perf_aux_output_begin().
2775 	 *
2776 	 * Since this is happening on an event-local CPU, no trace is lost
2777 	 * while restarting.
2778 	 */
2779 	if (sd->restart)
2780 		event->pmu->start(event, 0);
2781 
2782 	return 0;
2783 }
2784 
2785 static int perf_event_stop(struct perf_event *event, int restart)
2786 {
2787 	struct stop_event_data sd = {
2788 		.event		= event,
2789 		.restart	= restart,
2790 	};
2791 	int ret = 0;
2792 
2793 	do {
2794 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2795 			return 0;
2796 
2797 		/* matches smp_wmb() in event_sched_in() */
2798 		smp_rmb();
2799 
2800 		/*
2801 		 * We only want to restart ACTIVE events, so if the event goes
2802 		 * inactive here (event->oncpu==-1), there's nothing more to do;
2803 		 * fall through with ret==-ENXIO.
2804 		 */
2805 		ret = cpu_function_call(READ_ONCE(event->oncpu),
2806 					__perf_event_stop, &sd);
2807 	} while (ret == -EAGAIN);
2808 
2809 	return ret;
2810 }
2811 
2812 /*
2813  * In order to contain the amount of racy and tricky in the address filter
2814  * configuration management, it is a two part process:
2815  *
2816  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2817  *      we update the addresses of corresponding vmas in
2818  *	event::addr_filter_ranges array and bump the event::addr_filters_gen;
2819  * (p2) when an event is scheduled in (pmu::add), it calls
2820  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2821  *      if the generation has changed since the previous call.
2822  *
2823  * If (p1) happens while the event is active, we restart it to force (p2).
2824  *
2825  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2826  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2827  *     ioctl;
2828  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2829  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2830  *     for reading;
2831  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2832  *     of exec.
2833  */
2834 void perf_event_addr_filters_sync(struct perf_event *event)
2835 {
2836 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2837 
2838 	if (!has_addr_filter(event))
2839 		return;
2840 
2841 	raw_spin_lock(&ifh->lock);
2842 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2843 		event->pmu->addr_filters_sync(event);
2844 		event->hw.addr_filters_gen = event->addr_filters_gen;
2845 	}
2846 	raw_spin_unlock(&ifh->lock);
2847 }
2848 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2849 
2850 static int _perf_event_refresh(struct perf_event *event, int refresh)
2851 {
2852 	/*
2853 	 * not supported on inherited events
2854 	 */
2855 	if (event->attr.inherit || !is_sampling_event(event))
2856 		return -EINVAL;
2857 
2858 	atomic_add(refresh, &event->event_limit);
2859 	_perf_event_enable(event);
2860 
2861 	return 0;
2862 }
2863 
2864 /*
2865  * See perf_event_disable()
2866  */
2867 int perf_event_refresh(struct perf_event *event, int refresh)
2868 {
2869 	struct perf_event_context *ctx;
2870 	int ret;
2871 
2872 	ctx = perf_event_ctx_lock(event);
2873 	ret = _perf_event_refresh(event, refresh);
2874 	perf_event_ctx_unlock(event, ctx);
2875 
2876 	return ret;
2877 }
2878 EXPORT_SYMBOL_GPL(perf_event_refresh);
2879 
2880 static int perf_event_modify_breakpoint(struct perf_event *bp,
2881 					 struct perf_event_attr *attr)
2882 {
2883 	int err;
2884 
2885 	_perf_event_disable(bp);
2886 
2887 	err = modify_user_hw_breakpoint_check(bp, attr, true);
2888 
2889 	if (!bp->attr.disabled)
2890 		_perf_event_enable(bp);
2891 
2892 	return err;
2893 }
2894 
2895 static int perf_event_modify_attr(struct perf_event *event,
2896 				  struct perf_event_attr *attr)
2897 {
2898 	if (event->attr.type != attr->type)
2899 		return -EINVAL;
2900 
2901 	switch (event->attr.type) {
2902 	case PERF_TYPE_BREAKPOINT:
2903 		return perf_event_modify_breakpoint(event, attr);
2904 	default:
2905 		/* Place holder for future additions. */
2906 		return -EOPNOTSUPP;
2907 	}
2908 }
2909 
2910 static void ctx_sched_out(struct perf_event_context *ctx,
2911 			  struct perf_cpu_context *cpuctx,
2912 			  enum event_type_t event_type)
2913 {
2914 	struct perf_event *event, *tmp;
2915 	int is_active = ctx->is_active;
2916 
2917 	lockdep_assert_held(&ctx->lock);
2918 
2919 	if (likely(!ctx->nr_events)) {
2920 		/*
2921 		 * See __perf_remove_from_context().
2922 		 */
2923 		WARN_ON_ONCE(ctx->is_active);
2924 		if (ctx->task)
2925 			WARN_ON_ONCE(cpuctx->task_ctx);
2926 		return;
2927 	}
2928 
2929 	ctx->is_active &= ~event_type;
2930 	if (!(ctx->is_active & EVENT_ALL))
2931 		ctx->is_active = 0;
2932 
2933 	if (ctx->task) {
2934 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2935 		if (!ctx->is_active)
2936 			cpuctx->task_ctx = NULL;
2937 	}
2938 
2939 	/*
2940 	 * Always update time if it was set; not only when it changes.
2941 	 * Otherwise we can 'forget' to update time for any but the last
2942 	 * context we sched out. For example:
2943 	 *
2944 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2945 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
2946 	 *
2947 	 * would only update time for the pinned events.
2948 	 */
2949 	if (is_active & EVENT_TIME) {
2950 		/* update (and stop) ctx time */
2951 		update_context_time(ctx);
2952 		update_cgrp_time_from_cpuctx(cpuctx);
2953 	}
2954 
2955 	is_active ^= ctx->is_active; /* changed bits */
2956 
2957 	if (!ctx->nr_active || !(is_active & EVENT_ALL))
2958 		return;
2959 
2960 	/*
2961 	 * If we had been multiplexing, no rotations are necessary, now no events
2962 	 * are active.
2963 	 */
2964 	ctx->rotate_necessary = 0;
2965 
2966 	perf_pmu_disable(ctx->pmu);
2967 	if (is_active & EVENT_PINNED) {
2968 		list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
2969 			group_sched_out(event, cpuctx, ctx);
2970 	}
2971 
2972 	if (is_active & EVENT_FLEXIBLE) {
2973 		list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
2974 			group_sched_out(event, cpuctx, ctx);
2975 	}
2976 	perf_pmu_enable(ctx->pmu);
2977 }
2978 
2979 /*
2980  * Test whether two contexts are equivalent, i.e. whether they have both been
2981  * cloned from the same version of the same context.
2982  *
2983  * Equivalence is measured using a generation number in the context that is
2984  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2985  * and list_del_event().
2986  */
2987 static int context_equiv(struct perf_event_context *ctx1,
2988 			 struct perf_event_context *ctx2)
2989 {
2990 	lockdep_assert_held(&ctx1->lock);
2991 	lockdep_assert_held(&ctx2->lock);
2992 
2993 	/* Pinning disables the swap optimization */
2994 	if (ctx1->pin_count || ctx2->pin_count)
2995 		return 0;
2996 
2997 	/* If ctx1 is the parent of ctx2 */
2998 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2999 		return 1;
3000 
3001 	/* If ctx2 is the parent of ctx1 */
3002 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3003 		return 1;
3004 
3005 	/*
3006 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
3007 	 * hierarchy, see perf_event_init_context().
3008 	 */
3009 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3010 			ctx1->parent_gen == ctx2->parent_gen)
3011 		return 1;
3012 
3013 	/* Unmatched */
3014 	return 0;
3015 }
3016 
3017 static void __perf_event_sync_stat(struct perf_event *event,
3018 				     struct perf_event *next_event)
3019 {
3020 	u64 value;
3021 
3022 	if (!event->attr.inherit_stat)
3023 		return;
3024 
3025 	/*
3026 	 * Update the event value, we cannot use perf_event_read()
3027 	 * because we're in the middle of a context switch and have IRQs
3028 	 * disabled, which upsets smp_call_function_single(), however
3029 	 * we know the event must be on the current CPU, therefore we
3030 	 * don't need to use it.
3031 	 */
3032 	if (event->state == PERF_EVENT_STATE_ACTIVE)
3033 		event->pmu->read(event);
3034 
3035 	perf_event_update_time(event);
3036 
3037 	/*
3038 	 * In order to keep per-task stats reliable we need to flip the event
3039 	 * values when we flip the contexts.
3040 	 */
3041 	value = local64_read(&next_event->count);
3042 	value = local64_xchg(&event->count, value);
3043 	local64_set(&next_event->count, value);
3044 
3045 	swap(event->total_time_enabled, next_event->total_time_enabled);
3046 	swap(event->total_time_running, next_event->total_time_running);
3047 
3048 	/*
3049 	 * Since we swizzled the values, update the user visible data too.
3050 	 */
3051 	perf_event_update_userpage(event);
3052 	perf_event_update_userpage(next_event);
3053 }
3054 
3055 static void perf_event_sync_stat(struct perf_event_context *ctx,
3056 				   struct perf_event_context *next_ctx)
3057 {
3058 	struct perf_event *event, *next_event;
3059 
3060 	if (!ctx->nr_stat)
3061 		return;
3062 
3063 	update_context_time(ctx);
3064 
3065 	event = list_first_entry(&ctx->event_list,
3066 				   struct perf_event, event_entry);
3067 
3068 	next_event = list_first_entry(&next_ctx->event_list,
3069 					struct perf_event, event_entry);
3070 
3071 	while (&event->event_entry != &ctx->event_list &&
3072 	       &next_event->event_entry != &next_ctx->event_list) {
3073 
3074 		__perf_event_sync_stat(event, next_event);
3075 
3076 		event = list_next_entry(event, event_entry);
3077 		next_event = list_next_entry(next_event, event_entry);
3078 	}
3079 }
3080 
3081 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3082 					 struct task_struct *next)
3083 {
3084 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3085 	struct perf_event_context *next_ctx;
3086 	struct perf_event_context *parent, *next_parent;
3087 	struct perf_cpu_context *cpuctx;
3088 	int do_switch = 1;
3089 
3090 	if (likely(!ctx))
3091 		return;
3092 
3093 	cpuctx = __get_cpu_context(ctx);
3094 	if (!cpuctx->task_ctx)
3095 		return;
3096 
3097 	rcu_read_lock();
3098 	next_ctx = next->perf_event_ctxp[ctxn];
3099 	if (!next_ctx)
3100 		goto unlock;
3101 
3102 	parent = rcu_dereference(ctx->parent_ctx);
3103 	next_parent = rcu_dereference(next_ctx->parent_ctx);
3104 
3105 	/* If neither context have a parent context; they cannot be clones. */
3106 	if (!parent && !next_parent)
3107 		goto unlock;
3108 
3109 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3110 		/*
3111 		 * Looks like the two contexts are clones, so we might be
3112 		 * able to optimize the context switch.  We lock both
3113 		 * contexts and check that they are clones under the
3114 		 * lock (including re-checking that neither has been
3115 		 * uncloned in the meantime).  It doesn't matter which
3116 		 * order we take the locks because no other cpu could
3117 		 * be trying to lock both of these tasks.
3118 		 */
3119 		raw_spin_lock(&ctx->lock);
3120 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3121 		if (context_equiv(ctx, next_ctx)) {
3122 			WRITE_ONCE(ctx->task, next);
3123 			WRITE_ONCE(next_ctx->task, task);
3124 
3125 			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3126 
3127 			/*
3128 			 * RCU_INIT_POINTER here is safe because we've not
3129 			 * modified the ctx and the above modification of
3130 			 * ctx->task and ctx->task_ctx_data are immaterial
3131 			 * since those values are always verified under
3132 			 * ctx->lock which we're now holding.
3133 			 */
3134 			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3135 			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3136 
3137 			do_switch = 0;
3138 
3139 			perf_event_sync_stat(ctx, next_ctx);
3140 		}
3141 		raw_spin_unlock(&next_ctx->lock);
3142 		raw_spin_unlock(&ctx->lock);
3143 	}
3144 unlock:
3145 	rcu_read_unlock();
3146 
3147 	if (do_switch) {
3148 		raw_spin_lock(&ctx->lock);
3149 		task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3150 		raw_spin_unlock(&ctx->lock);
3151 	}
3152 }
3153 
3154 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3155 
3156 void perf_sched_cb_dec(struct pmu *pmu)
3157 {
3158 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3159 
3160 	this_cpu_dec(perf_sched_cb_usages);
3161 
3162 	if (!--cpuctx->sched_cb_usage)
3163 		list_del(&cpuctx->sched_cb_entry);
3164 }
3165 
3166 
3167 void perf_sched_cb_inc(struct pmu *pmu)
3168 {
3169 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3170 
3171 	if (!cpuctx->sched_cb_usage++)
3172 		list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3173 
3174 	this_cpu_inc(perf_sched_cb_usages);
3175 }
3176 
3177 /*
3178  * This function provides the context switch callback to the lower code
3179  * layer. It is invoked ONLY when the context switch callback is enabled.
3180  *
3181  * This callback is relevant even to per-cpu events; for example multi event
3182  * PEBS requires this to provide PID/TID information. This requires we flush
3183  * all queued PEBS records before we context switch to a new task.
3184  */
3185 static void perf_pmu_sched_task(struct task_struct *prev,
3186 				struct task_struct *next,
3187 				bool sched_in)
3188 {
3189 	struct perf_cpu_context *cpuctx;
3190 	struct pmu *pmu;
3191 
3192 	if (prev == next)
3193 		return;
3194 
3195 	list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3196 		pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3197 
3198 		if (WARN_ON_ONCE(!pmu->sched_task))
3199 			continue;
3200 
3201 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3202 		perf_pmu_disable(pmu);
3203 
3204 		pmu->sched_task(cpuctx->task_ctx, sched_in);
3205 
3206 		perf_pmu_enable(pmu);
3207 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3208 	}
3209 }
3210 
3211 static void perf_event_switch(struct task_struct *task,
3212 			      struct task_struct *next_prev, bool sched_in);
3213 
3214 #define for_each_task_context_nr(ctxn)					\
3215 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3216 
3217 /*
3218  * Called from scheduler to remove the events of the current task,
3219  * with interrupts disabled.
3220  *
3221  * We stop each event and update the event value in event->count.
3222  *
3223  * This does not protect us against NMI, but disable()
3224  * sets the disabled bit in the control field of event _before_
3225  * accessing the event control register. If a NMI hits, then it will
3226  * not restart the event.
3227  */
3228 void __perf_event_task_sched_out(struct task_struct *task,
3229 				 struct task_struct *next)
3230 {
3231 	int ctxn;
3232 
3233 	if (__this_cpu_read(perf_sched_cb_usages))
3234 		perf_pmu_sched_task(task, next, false);
3235 
3236 	if (atomic_read(&nr_switch_events))
3237 		perf_event_switch(task, next, false);
3238 
3239 	for_each_task_context_nr(ctxn)
3240 		perf_event_context_sched_out(task, ctxn, next);
3241 
3242 	/*
3243 	 * if cgroup events exist on this CPU, then we need
3244 	 * to check if we have to switch out PMU state.
3245 	 * cgroup event are system-wide mode only
3246 	 */
3247 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3248 		perf_cgroup_sched_out(task, next);
3249 }
3250 
3251 /*
3252  * Called with IRQs disabled
3253  */
3254 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3255 			      enum event_type_t event_type)
3256 {
3257 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3258 }
3259 
3260 static int visit_groups_merge(struct perf_event_groups *groups, int cpu,
3261 			      int (*func)(struct perf_event *, void *), void *data)
3262 {
3263 	struct perf_event **evt, *evt1, *evt2;
3264 	int ret;
3265 
3266 	evt1 = perf_event_groups_first(groups, -1);
3267 	evt2 = perf_event_groups_first(groups, cpu);
3268 
3269 	while (evt1 || evt2) {
3270 		if (evt1 && evt2) {
3271 			if (evt1->group_index < evt2->group_index)
3272 				evt = &evt1;
3273 			else
3274 				evt = &evt2;
3275 		} else if (evt1) {
3276 			evt = &evt1;
3277 		} else {
3278 			evt = &evt2;
3279 		}
3280 
3281 		ret = func(*evt, data);
3282 		if (ret)
3283 			return ret;
3284 
3285 		*evt = perf_event_groups_next(*evt);
3286 	}
3287 
3288 	return 0;
3289 }
3290 
3291 struct sched_in_data {
3292 	struct perf_event_context *ctx;
3293 	struct perf_cpu_context *cpuctx;
3294 	int can_add_hw;
3295 };
3296 
3297 static int pinned_sched_in(struct perf_event *event, void *data)
3298 {
3299 	struct sched_in_data *sid = data;
3300 
3301 	if (event->state <= PERF_EVENT_STATE_OFF)
3302 		return 0;
3303 
3304 	if (!event_filter_match(event))
3305 		return 0;
3306 
3307 	if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3308 		if (!group_sched_in(event, sid->cpuctx, sid->ctx))
3309 			list_add_tail(&event->active_list, &sid->ctx->pinned_active);
3310 	}
3311 
3312 	/*
3313 	 * If this pinned group hasn't been scheduled,
3314 	 * put it in error state.
3315 	 */
3316 	if (event->state == PERF_EVENT_STATE_INACTIVE)
3317 		perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3318 
3319 	return 0;
3320 }
3321 
3322 static int flexible_sched_in(struct perf_event *event, void *data)
3323 {
3324 	struct sched_in_data *sid = data;
3325 
3326 	if (event->state <= PERF_EVENT_STATE_OFF)
3327 		return 0;
3328 
3329 	if (!event_filter_match(event))
3330 		return 0;
3331 
3332 	if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3333 		int ret = group_sched_in(event, sid->cpuctx, sid->ctx);
3334 		if (ret) {
3335 			sid->can_add_hw = 0;
3336 			sid->ctx->rotate_necessary = 1;
3337 			return 0;
3338 		}
3339 		list_add_tail(&event->active_list, &sid->ctx->flexible_active);
3340 	}
3341 
3342 	return 0;
3343 }
3344 
3345 static void
3346 ctx_pinned_sched_in(struct perf_event_context *ctx,
3347 		    struct perf_cpu_context *cpuctx)
3348 {
3349 	struct sched_in_data sid = {
3350 		.ctx = ctx,
3351 		.cpuctx = cpuctx,
3352 		.can_add_hw = 1,
3353 	};
3354 
3355 	visit_groups_merge(&ctx->pinned_groups,
3356 			   smp_processor_id(),
3357 			   pinned_sched_in, &sid);
3358 }
3359 
3360 static void
3361 ctx_flexible_sched_in(struct perf_event_context *ctx,
3362 		      struct perf_cpu_context *cpuctx)
3363 {
3364 	struct sched_in_data sid = {
3365 		.ctx = ctx,
3366 		.cpuctx = cpuctx,
3367 		.can_add_hw = 1,
3368 	};
3369 
3370 	visit_groups_merge(&ctx->flexible_groups,
3371 			   smp_processor_id(),
3372 			   flexible_sched_in, &sid);
3373 }
3374 
3375 static void
3376 ctx_sched_in(struct perf_event_context *ctx,
3377 	     struct perf_cpu_context *cpuctx,
3378 	     enum event_type_t event_type,
3379 	     struct task_struct *task)
3380 {
3381 	int is_active = ctx->is_active;
3382 	u64 now;
3383 
3384 	lockdep_assert_held(&ctx->lock);
3385 
3386 	if (likely(!ctx->nr_events))
3387 		return;
3388 
3389 	ctx->is_active |= (event_type | EVENT_TIME);
3390 	if (ctx->task) {
3391 		if (!is_active)
3392 			cpuctx->task_ctx = ctx;
3393 		else
3394 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3395 	}
3396 
3397 	is_active ^= ctx->is_active; /* changed bits */
3398 
3399 	if (is_active & EVENT_TIME) {
3400 		/* start ctx time */
3401 		now = perf_clock();
3402 		ctx->timestamp = now;
3403 		perf_cgroup_set_timestamp(task, ctx);
3404 	}
3405 
3406 	/*
3407 	 * First go through the list and put on any pinned groups
3408 	 * in order to give them the best chance of going on.
3409 	 */
3410 	if (is_active & EVENT_PINNED)
3411 		ctx_pinned_sched_in(ctx, cpuctx);
3412 
3413 	/* Then walk through the lower prio flexible groups */
3414 	if (is_active & EVENT_FLEXIBLE)
3415 		ctx_flexible_sched_in(ctx, cpuctx);
3416 }
3417 
3418 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3419 			     enum event_type_t event_type,
3420 			     struct task_struct *task)
3421 {
3422 	struct perf_event_context *ctx = &cpuctx->ctx;
3423 
3424 	ctx_sched_in(ctx, cpuctx, event_type, task);
3425 }
3426 
3427 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3428 					struct task_struct *task)
3429 {
3430 	struct perf_cpu_context *cpuctx;
3431 
3432 	cpuctx = __get_cpu_context(ctx);
3433 	if (cpuctx->task_ctx == ctx)
3434 		return;
3435 
3436 	perf_ctx_lock(cpuctx, ctx);
3437 	/*
3438 	 * We must check ctx->nr_events while holding ctx->lock, such
3439 	 * that we serialize against perf_install_in_context().
3440 	 */
3441 	if (!ctx->nr_events)
3442 		goto unlock;
3443 
3444 	perf_pmu_disable(ctx->pmu);
3445 	/*
3446 	 * We want to keep the following priority order:
3447 	 * cpu pinned (that don't need to move), task pinned,
3448 	 * cpu flexible, task flexible.
3449 	 *
3450 	 * However, if task's ctx is not carrying any pinned
3451 	 * events, no need to flip the cpuctx's events around.
3452 	 */
3453 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3454 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3455 	perf_event_sched_in(cpuctx, ctx, task);
3456 	perf_pmu_enable(ctx->pmu);
3457 
3458 unlock:
3459 	perf_ctx_unlock(cpuctx, ctx);
3460 }
3461 
3462 /*
3463  * Called from scheduler to add the events of the current task
3464  * with interrupts disabled.
3465  *
3466  * We restore the event value and then enable it.
3467  *
3468  * This does not protect us against NMI, but enable()
3469  * sets the enabled bit in the control field of event _before_
3470  * accessing the event control register. If a NMI hits, then it will
3471  * keep the event running.
3472  */
3473 void __perf_event_task_sched_in(struct task_struct *prev,
3474 				struct task_struct *task)
3475 {
3476 	struct perf_event_context *ctx;
3477 	int ctxn;
3478 
3479 	/*
3480 	 * If cgroup events exist on this CPU, then we need to check if we have
3481 	 * to switch in PMU state; cgroup event are system-wide mode only.
3482 	 *
3483 	 * Since cgroup events are CPU events, we must schedule these in before
3484 	 * we schedule in the task events.
3485 	 */
3486 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3487 		perf_cgroup_sched_in(prev, task);
3488 
3489 	for_each_task_context_nr(ctxn) {
3490 		ctx = task->perf_event_ctxp[ctxn];
3491 		if (likely(!ctx))
3492 			continue;
3493 
3494 		perf_event_context_sched_in(ctx, task);
3495 	}
3496 
3497 	if (atomic_read(&nr_switch_events))
3498 		perf_event_switch(task, prev, true);
3499 
3500 	if (__this_cpu_read(perf_sched_cb_usages))
3501 		perf_pmu_sched_task(prev, task, true);
3502 }
3503 
3504 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3505 {
3506 	u64 frequency = event->attr.sample_freq;
3507 	u64 sec = NSEC_PER_SEC;
3508 	u64 divisor, dividend;
3509 
3510 	int count_fls, nsec_fls, frequency_fls, sec_fls;
3511 
3512 	count_fls = fls64(count);
3513 	nsec_fls = fls64(nsec);
3514 	frequency_fls = fls64(frequency);
3515 	sec_fls = 30;
3516 
3517 	/*
3518 	 * We got @count in @nsec, with a target of sample_freq HZ
3519 	 * the target period becomes:
3520 	 *
3521 	 *             @count * 10^9
3522 	 * period = -------------------
3523 	 *          @nsec * sample_freq
3524 	 *
3525 	 */
3526 
3527 	/*
3528 	 * Reduce accuracy by one bit such that @a and @b converge
3529 	 * to a similar magnitude.
3530 	 */
3531 #define REDUCE_FLS(a, b)		\
3532 do {					\
3533 	if (a##_fls > b##_fls) {	\
3534 		a >>= 1;		\
3535 		a##_fls--;		\
3536 	} else {			\
3537 		b >>= 1;		\
3538 		b##_fls--;		\
3539 	}				\
3540 } while (0)
3541 
3542 	/*
3543 	 * Reduce accuracy until either term fits in a u64, then proceed with
3544 	 * the other, so that finally we can do a u64/u64 division.
3545 	 */
3546 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3547 		REDUCE_FLS(nsec, frequency);
3548 		REDUCE_FLS(sec, count);
3549 	}
3550 
3551 	if (count_fls + sec_fls > 64) {
3552 		divisor = nsec * frequency;
3553 
3554 		while (count_fls + sec_fls > 64) {
3555 			REDUCE_FLS(count, sec);
3556 			divisor >>= 1;
3557 		}
3558 
3559 		dividend = count * sec;
3560 	} else {
3561 		dividend = count * sec;
3562 
3563 		while (nsec_fls + frequency_fls > 64) {
3564 			REDUCE_FLS(nsec, frequency);
3565 			dividend >>= 1;
3566 		}
3567 
3568 		divisor = nsec * frequency;
3569 	}
3570 
3571 	if (!divisor)
3572 		return dividend;
3573 
3574 	return div64_u64(dividend, divisor);
3575 }
3576 
3577 static DEFINE_PER_CPU(int, perf_throttled_count);
3578 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3579 
3580 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3581 {
3582 	struct hw_perf_event *hwc = &event->hw;
3583 	s64 period, sample_period;
3584 	s64 delta;
3585 
3586 	period = perf_calculate_period(event, nsec, count);
3587 
3588 	delta = (s64)(period - hwc->sample_period);
3589 	delta = (delta + 7) / 8; /* low pass filter */
3590 
3591 	sample_period = hwc->sample_period + delta;
3592 
3593 	if (!sample_period)
3594 		sample_period = 1;
3595 
3596 	hwc->sample_period = sample_period;
3597 
3598 	if (local64_read(&hwc->period_left) > 8*sample_period) {
3599 		if (disable)
3600 			event->pmu->stop(event, PERF_EF_UPDATE);
3601 
3602 		local64_set(&hwc->period_left, 0);
3603 
3604 		if (disable)
3605 			event->pmu->start(event, PERF_EF_RELOAD);
3606 	}
3607 }
3608 
3609 /*
3610  * combine freq adjustment with unthrottling to avoid two passes over the
3611  * events. At the same time, make sure, having freq events does not change
3612  * the rate of unthrottling as that would introduce bias.
3613  */
3614 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3615 					   int needs_unthr)
3616 {
3617 	struct perf_event *event;
3618 	struct hw_perf_event *hwc;
3619 	u64 now, period = TICK_NSEC;
3620 	s64 delta;
3621 
3622 	/*
3623 	 * only need to iterate over all events iff:
3624 	 * - context have events in frequency mode (needs freq adjust)
3625 	 * - there are events to unthrottle on this cpu
3626 	 */
3627 	if (!(ctx->nr_freq || needs_unthr))
3628 		return;
3629 
3630 	raw_spin_lock(&ctx->lock);
3631 	perf_pmu_disable(ctx->pmu);
3632 
3633 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3634 		if (event->state != PERF_EVENT_STATE_ACTIVE)
3635 			continue;
3636 
3637 		if (!event_filter_match(event))
3638 			continue;
3639 
3640 		perf_pmu_disable(event->pmu);
3641 
3642 		hwc = &event->hw;
3643 
3644 		if (hwc->interrupts == MAX_INTERRUPTS) {
3645 			hwc->interrupts = 0;
3646 			perf_log_throttle(event, 1);
3647 			event->pmu->start(event, 0);
3648 		}
3649 
3650 		if (!event->attr.freq || !event->attr.sample_freq)
3651 			goto next;
3652 
3653 		/*
3654 		 * stop the event and update event->count
3655 		 */
3656 		event->pmu->stop(event, PERF_EF_UPDATE);
3657 
3658 		now = local64_read(&event->count);
3659 		delta = now - hwc->freq_count_stamp;
3660 		hwc->freq_count_stamp = now;
3661 
3662 		/*
3663 		 * restart the event
3664 		 * reload only if value has changed
3665 		 * we have stopped the event so tell that
3666 		 * to perf_adjust_period() to avoid stopping it
3667 		 * twice.
3668 		 */
3669 		if (delta > 0)
3670 			perf_adjust_period(event, period, delta, false);
3671 
3672 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3673 	next:
3674 		perf_pmu_enable(event->pmu);
3675 	}
3676 
3677 	perf_pmu_enable(ctx->pmu);
3678 	raw_spin_unlock(&ctx->lock);
3679 }
3680 
3681 /*
3682  * Move @event to the tail of the @ctx's elegible events.
3683  */
3684 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
3685 {
3686 	/*
3687 	 * Rotate the first entry last of non-pinned groups. Rotation might be
3688 	 * disabled by the inheritance code.
3689 	 */
3690 	if (ctx->rotate_disable)
3691 		return;
3692 
3693 	perf_event_groups_delete(&ctx->flexible_groups, event);
3694 	perf_event_groups_insert(&ctx->flexible_groups, event);
3695 }
3696 
3697 static inline struct perf_event *
3698 ctx_first_active(struct perf_event_context *ctx)
3699 {
3700 	return list_first_entry_or_null(&ctx->flexible_active,
3701 					struct perf_event, active_list);
3702 }
3703 
3704 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
3705 {
3706 	struct perf_event *cpu_event = NULL, *task_event = NULL;
3707 	struct perf_event_context *task_ctx = NULL;
3708 	int cpu_rotate, task_rotate;
3709 
3710 	/*
3711 	 * Since we run this from IRQ context, nobody can install new
3712 	 * events, thus the event count values are stable.
3713 	 */
3714 
3715 	cpu_rotate = cpuctx->ctx.rotate_necessary;
3716 	task_ctx = cpuctx->task_ctx;
3717 	task_rotate = task_ctx ? task_ctx->rotate_necessary : 0;
3718 
3719 	if (!(cpu_rotate || task_rotate))
3720 		return false;
3721 
3722 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3723 	perf_pmu_disable(cpuctx->ctx.pmu);
3724 
3725 	if (task_rotate)
3726 		task_event = ctx_first_active(task_ctx);
3727 	if (cpu_rotate)
3728 		cpu_event = ctx_first_active(&cpuctx->ctx);
3729 
3730 	/*
3731 	 * As per the order given at ctx_resched() first 'pop' task flexible
3732 	 * and then, if needed CPU flexible.
3733 	 */
3734 	if (task_event || (task_ctx && cpu_event))
3735 		ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE);
3736 	if (cpu_event)
3737 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3738 
3739 	if (task_event)
3740 		rotate_ctx(task_ctx, task_event);
3741 	if (cpu_event)
3742 		rotate_ctx(&cpuctx->ctx, cpu_event);
3743 
3744 	perf_event_sched_in(cpuctx, task_ctx, current);
3745 
3746 	perf_pmu_enable(cpuctx->ctx.pmu);
3747 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3748 
3749 	return true;
3750 }
3751 
3752 void perf_event_task_tick(void)
3753 {
3754 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
3755 	struct perf_event_context *ctx, *tmp;
3756 	int throttled;
3757 
3758 	lockdep_assert_irqs_disabled();
3759 
3760 	__this_cpu_inc(perf_throttled_seq);
3761 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
3762 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3763 
3764 	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3765 		perf_adjust_freq_unthr_context(ctx, throttled);
3766 }
3767 
3768 static int event_enable_on_exec(struct perf_event *event,
3769 				struct perf_event_context *ctx)
3770 {
3771 	if (!event->attr.enable_on_exec)
3772 		return 0;
3773 
3774 	event->attr.enable_on_exec = 0;
3775 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
3776 		return 0;
3777 
3778 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
3779 
3780 	return 1;
3781 }
3782 
3783 /*
3784  * Enable all of a task's events that have been marked enable-on-exec.
3785  * This expects task == current.
3786  */
3787 static void perf_event_enable_on_exec(int ctxn)
3788 {
3789 	struct perf_event_context *ctx, *clone_ctx = NULL;
3790 	enum event_type_t event_type = 0;
3791 	struct perf_cpu_context *cpuctx;
3792 	struct perf_event *event;
3793 	unsigned long flags;
3794 	int enabled = 0;
3795 
3796 	local_irq_save(flags);
3797 	ctx = current->perf_event_ctxp[ctxn];
3798 	if (!ctx || !ctx->nr_events)
3799 		goto out;
3800 
3801 	cpuctx = __get_cpu_context(ctx);
3802 	perf_ctx_lock(cpuctx, ctx);
3803 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3804 	list_for_each_entry(event, &ctx->event_list, event_entry) {
3805 		enabled |= event_enable_on_exec(event, ctx);
3806 		event_type |= get_event_type(event);
3807 	}
3808 
3809 	/*
3810 	 * Unclone and reschedule this context if we enabled any event.
3811 	 */
3812 	if (enabled) {
3813 		clone_ctx = unclone_ctx(ctx);
3814 		ctx_resched(cpuctx, ctx, event_type);
3815 	} else {
3816 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3817 	}
3818 	perf_ctx_unlock(cpuctx, ctx);
3819 
3820 out:
3821 	local_irq_restore(flags);
3822 
3823 	if (clone_ctx)
3824 		put_ctx(clone_ctx);
3825 }
3826 
3827 struct perf_read_data {
3828 	struct perf_event *event;
3829 	bool group;
3830 	int ret;
3831 };
3832 
3833 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3834 {
3835 	u16 local_pkg, event_pkg;
3836 
3837 	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3838 		int local_cpu = smp_processor_id();
3839 
3840 		event_pkg = topology_physical_package_id(event_cpu);
3841 		local_pkg = topology_physical_package_id(local_cpu);
3842 
3843 		if (event_pkg == local_pkg)
3844 			return local_cpu;
3845 	}
3846 
3847 	return event_cpu;
3848 }
3849 
3850 /*
3851  * Cross CPU call to read the hardware event
3852  */
3853 static void __perf_event_read(void *info)
3854 {
3855 	struct perf_read_data *data = info;
3856 	struct perf_event *sub, *event = data->event;
3857 	struct perf_event_context *ctx = event->ctx;
3858 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3859 	struct pmu *pmu = event->pmu;
3860 
3861 	/*
3862 	 * If this is a task context, we need to check whether it is
3863 	 * the current task context of this cpu.  If not it has been
3864 	 * scheduled out before the smp call arrived.  In that case
3865 	 * event->count would have been updated to a recent sample
3866 	 * when the event was scheduled out.
3867 	 */
3868 	if (ctx->task && cpuctx->task_ctx != ctx)
3869 		return;
3870 
3871 	raw_spin_lock(&ctx->lock);
3872 	if (ctx->is_active & EVENT_TIME) {
3873 		update_context_time(ctx);
3874 		update_cgrp_time_from_event(event);
3875 	}
3876 
3877 	perf_event_update_time(event);
3878 	if (data->group)
3879 		perf_event_update_sibling_time(event);
3880 
3881 	if (event->state != PERF_EVENT_STATE_ACTIVE)
3882 		goto unlock;
3883 
3884 	if (!data->group) {
3885 		pmu->read(event);
3886 		data->ret = 0;
3887 		goto unlock;
3888 	}
3889 
3890 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3891 
3892 	pmu->read(event);
3893 
3894 	for_each_sibling_event(sub, event) {
3895 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3896 			/*
3897 			 * Use sibling's PMU rather than @event's since
3898 			 * sibling could be on different (eg: software) PMU.
3899 			 */
3900 			sub->pmu->read(sub);
3901 		}
3902 	}
3903 
3904 	data->ret = pmu->commit_txn(pmu);
3905 
3906 unlock:
3907 	raw_spin_unlock(&ctx->lock);
3908 }
3909 
3910 static inline u64 perf_event_count(struct perf_event *event)
3911 {
3912 	return local64_read(&event->count) + atomic64_read(&event->child_count);
3913 }
3914 
3915 /*
3916  * NMI-safe method to read a local event, that is an event that
3917  * is:
3918  *   - either for the current task, or for this CPU
3919  *   - does not have inherit set, for inherited task events
3920  *     will not be local and we cannot read them atomically
3921  *   - must not have a pmu::count method
3922  */
3923 int perf_event_read_local(struct perf_event *event, u64 *value,
3924 			  u64 *enabled, u64 *running)
3925 {
3926 	unsigned long flags;
3927 	int ret = 0;
3928 
3929 	/*
3930 	 * Disabling interrupts avoids all counter scheduling (context
3931 	 * switches, timer based rotation and IPIs).
3932 	 */
3933 	local_irq_save(flags);
3934 
3935 	/*
3936 	 * It must not be an event with inherit set, we cannot read
3937 	 * all child counters from atomic context.
3938 	 */
3939 	if (event->attr.inherit) {
3940 		ret = -EOPNOTSUPP;
3941 		goto out;
3942 	}
3943 
3944 	/* If this is a per-task event, it must be for current */
3945 	if ((event->attach_state & PERF_ATTACH_TASK) &&
3946 	    event->hw.target != current) {
3947 		ret = -EINVAL;
3948 		goto out;
3949 	}
3950 
3951 	/* If this is a per-CPU event, it must be for this CPU */
3952 	if (!(event->attach_state & PERF_ATTACH_TASK) &&
3953 	    event->cpu != smp_processor_id()) {
3954 		ret = -EINVAL;
3955 		goto out;
3956 	}
3957 
3958 	/* If this is a pinned event it must be running on this CPU */
3959 	if (event->attr.pinned && event->oncpu != smp_processor_id()) {
3960 		ret = -EBUSY;
3961 		goto out;
3962 	}
3963 
3964 	/*
3965 	 * If the event is currently on this CPU, its either a per-task event,
3966 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3967 	 * oncpu == -1).
3968 	 */
3969 	if (event->oncpu == smp_processor_id())
3970 		event->pmu->read(event);
3971 
3972 	*value = local64_read(&event->count);
3973 	if (enabled || running) {
3974 		u64 now = event->shadow_ctx_time + perf_clock();
3975 		u64 __enabled, __running;
3976 
3977 		__perf_update_times(event, now, &__enabled, &__running);
3978 		if (enabled)
3979 			*enabled = __enabled;
3980 		if (running)
3981 			*running = __running;
3982 	}
3983 out:
3984 	local_irq_restore(flags);
3985 
3986 	return ret;
3987 }
3988 
3989 static int perf_event_read(struct perf_event *event, bool group)
3990 {
3991 	enum perf_event_state state = READ_ONCE(event->state);
3992 	int event_cpu, ret = 0;
3993 
3994 	/*
3995 	 * If event is enabled and currently active on a CPU, update the
3996 	 * value in the event structure:
3997 	 */
3998 again:
3999 	if (state == PERF_EVENT_STATE_ACTIVE) {
4000 		struct perf_read_data data;
4001 
4002 		/*
4003 		 * Orders the ->state and ->oncpu loads such that if we see
4004 		 * ACTIVE we must also see the right ->oncpu.
4005 		 *
4006 		 * Matches the smp_wmb() from event_sched_in().
4007 		 */
4008 		smp_rmb();
4009 
4010 		event_cpu = READ_ONCE(event->oncpu);
4011 		if ((unsigned)event_cpu >= nr_cpu_ids)
4012 			return 0;
4013 
4014 		data = (struct perf_read_data){
4015 			.event = event,
4016 			.group = group,
4017 			.ret = 0,
4018 		};
4019 
4020 		preempt_disable();
4021 		event_cpu = __perf_event_read_cpu(event, event_cpu);
4022 
4023 		/*
4024 		 * Purposely ignore the smp_call_function_single() return
4025 		 * value.
4026 		 *
4027 		 * If event_cpu isn't a valid CPU it means the event got
4028 		 * scheduled out and that will have updated the event count.
4029 		 *
4030 		 * Therefore, either way, we'll have an up-to-date event count
4031 		 * after this.
4032 		 */
4033 		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4034 		preempt_enable();
4035 		ret = data.ret;
4036 
4037 	} else if (state == PERF_EVENT_STATE_INACTIVE) {
4038 		struct perf_event_context *ctx = event->ctx;
4039 		unsigned long flags;
4040 
4041 		raw_spin_lock_irqsave(&ctx->lock, flags);
4042 		state = event->state;
4043 		if (state != PERF_EVENT_STATE_INACTIVE) {
4044 			raw_spin_unlock_irqrestore(&ctx->lock, flags);
4045 			goto again;
4046 		}
4047 
4048 		/*
4049 		 * May read while context is not active (e.g., thread is
4050 		 * blocked), in that case we cannot update context time
4051 		 */
4052 		if (ctx->is_active & EVENT_TIME) {
4053 			update_context_time(ctx);
4054 			update_cgrp_time_from_event(event);
4055 		}
4056 
4057 		perf_event_update_time(event);
4058 		if (group)
4059 			perf_event_update_sibling_time(event);
4060 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4061 	}
4062 
4063 	return ret;
4064 }
4065 
4066 /*
4067  * Initialize the perf_event context in a task_struct:
4068  */
4069 static void __perf_event_init_context(struct perf_event_context *ctx)
4070 {
4071 	raw_spin_lock_init(&ctx->lock);
4072 	mutex_init(&ctx->mutex);
4073 	INIT_LIST_HEAD(&ctx->active_ctx_list);
4074 	perf_event_groups_init(&ctx->pinned_groups);
4075 	perf_event_groups_init(&ctx->flexible_groups);
4076 	INIT_LIST_HEAD(&ctx->event_list);
4077 	INIT_LIST_HEAD(&ctx->pinned_active);
4078 	INIT_LIST_HEAD(&ctx->flexible_active);
4079 	refcount_set(&ctx->refcount, 1);
4080 }
4081 
4082 static struct perf_event_context *
4083 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4084 {
4085 	struct perf_event_context *ctx;
4086 
4087 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4088 	if (!ctx)
4089 		return NULL;
4090 
4091 	__perf_event_init_context(ctx);
4092 	if (task) {
4093 		ctx->task = task;
4094 		get_task_struct(task);
4095 	}
4096 	ctx->pmu = pmu;
4097 
4098 	return ctx;
4099 }
4100 
4101 static struct task_struct *
4102 find_lively_task_by_vpid(pid_t vpid)
4103 {
4104 	struct task_struct *task;
4105 
4106 	rcu_read_lock();
4107 	if (!vpid)
4108 		task = current;
4109 	else
4110 		task = find_task_by_vpid(vpid);
4111 	if (task)
4112 		get_task_struct(task);
4113 	rcu_read_unlock();
4114 
4115 	if (!task)
4116 		return ERR_PTR(-ESRCH);
4117 
4118 	return task;
4119 }
4120 
4121 /*
4122  * Returns a matching context with refcount and pincount.
4123  */
4124 static struct perf_event_context *
4125 find_get_context(struct pmu *pmu, struct task_struct *task,
4126 		struct perf_event *event)
4127 {
4128 	struct perf_event_context *ctx, *clone_ctx = NULL;
4129 	struct perf_cpu_context *cpuctx;
4130 	void *task_ctx_data = NULL;
4131 	unsigned long flags;
4132 	int ctxn, err;
4133 	int cpu = event->cpu;
4134 
4135 	if (!task) {
4136 		/* Must be root to operate on a CPU event: */
4137 		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
4138 			return ERR_PTR(-EACCES);
4139 
4140 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4141 		ctx = &cpuctx->ctx;
4142 		get_ctx(ctx);
4143 		++ctx->pin_count;
4144 
4145 		return ctx;
4146 	}
4147 
4148 	err = -EINVAL;
4149 	ctxn = pmu->task_ctx_nr;
4150 	if (ctxn < 0)
4151 		goto errout;
4152 
4153 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4154 		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
4155 		if (!task_ctx_data) {
4156 			err = -ENOMEM;
4157 			goto errout;
4158 		}
4159 	}
4160 
4161 retry:
4162 	ctx = perf_lock_task_context(task, ctxn, &flags);
4163 	if (ctx) {
4164 		clone_ctx = unclone_ctx(ctx);
4165 		++ctx->pin_count;
4166 
4167 		if (task_ctx_data && !ctx->task_ctx_data) {
4168 			ctx->task_ctx_data = task_ctx_data;
4169 			task_ctx_data = NULL;
4170 		}
4171 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4172 
4173 		if (clone_ctx)
4174 			put_ctx(clone_ctx);
4175 	} else {
4176 		ctx = alloc_perf_context(pmu, task);
4177 		err = -ENOMEM;
4178 		if (!ctx)
4179 			goto errout;
4180 
4181 		if (task_ctx_data) {
4182 			ctx->task_ctx_data = task_ctx_data;
4183 			task_ctx_data = NULL;
4184 		}
4185 
4186 		err = 0;
4187 		mutex_lock(&task->perf_event_mutex);
4188 		/*
4189 		 * If it has already passed perf_event_exit_task().
4190 		 * we must see PF_EXITING, it takes this mutex too.
4191 		 */
4192 		if (task->flags & PF_EXITING)
4193 			err = -ESRCH;
4194 		else if (task->perf_event_ctxp[ctxn])
4195 			err = -EAGAIN;
4196 		else {
4197 			get_ctx(ctx);
4198 			++ctx->pin_count;
4199 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4200 		}
4201 		mutex_unlock(&task->perf_event_mutex);
4202 
4203 		if (unlikely(err)) {
4204 			put_ctx(ctx);
4205 
4206 			if (err == -EAGAIN)
4207 				goto retry;
4208 			goto errout;
4209 		}
4210 	}
4211 
4212 	kfree(task_ctx_data);
4213 	return ctx;
4214 
4215 errout:
4216 	kfree(task_ctx_data);
4217 	return ERR_PTR(err);
4218 }
4219 
4220 static void perf_event_free_filter(struct perf_event *event);
4221 static void perf_event_free_bpf_prog(struct perf_event *event);
4222 
4223 static void free_event_rcu(struct rcu_head *head)
4224 {
4225 	struct perf_event *event;
4226 
4227 	event = container_of(head, struct perf_event, rcu_head);
4228 	if (event->ns)
4229 		put_pid_ns(event->ns);
4230 	perf_event_free_filter(event);
4231 	kfree(event);
4232 }
4233 
4234 static void ring_buffer_attach(struct perf_event *event,
4235 			       struct ring_buffer *rb);
4236 
4237 static void detach_sb_event(struct perf_event *event)
4238 {
4239 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4240 
4241 	raw_spin_lock(&pel->lock);
4242 	list_del_rcu(&event->sb_list);
4243 	raw_spin_unlock(&pel->lock);
4244 }
4245 
4246 static bool is_sb_event(struct perf_event *event)
4247 {
4248 	struct perf_event_attr *attr = &event->attr;
4249 
4250 	if (event->parent)
4251 		return false;
4252 
4253 	if (event->attach_state & PERF_ATTACH_TASK)
4254 		return false;
4255 
4256 	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4257 	    attr->comm || attr->comm_exec ||
4258 	    attr->task || attr->ksymbol ||
4259 	    attr->context_switch ||
4260 	    attr->bpf_event)
4261 		return true;
4262 	return false;
4263 }
4264 
4265 static void unaccount_pmu_sb_event(struct perf_event *event)
4266 {
4267 	if (is_sb_event(event))
4268 		detach_sb_event(event);
4269 }
4270 
4271 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4272 {
4273 	if (event->parent)
4274 		return;
4275 
4276 	if (is_cgroup_event(event))
4277 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4278 }
4279 
4280 #ifdef CONFIG_NO_HZ_FULL
4281 static DEFINE_SPINLOCK(nr_freq_lock);
4282 #endif
4283 
4284 static void unaccount_freq_event_nohz(void)
4285 {
4286 #ifdef CONFIG_NO_HZ_FULL
4287 	spin_lock(&nr_freq_lock);
4288 	if (atomic_dec_and_test(&nr_freq_events))
4289 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4290 	spin_unlock(&nr_freq_lock);
4291 #endif
4292 }
4293 
4294 static void unaccount_freq_event(void)
4295 {
4296 	if (tick_nohz_full_enabled())
4297 		unaccount_freq_event_nohz();
4298 	else
4299 		atomic_dec(&nr_freq_events);
4300 }
4301 
4302 static void unaccount_event(struct perf_event *event)
4303 {
4304 	bool dec = false;
4305 
4306 	if (event->parent)
4307 		return;
4308 
4309 	if (event->attach_state & PERF_ATTACH_TASK)
4310 		dec = true;
4311 	if (event->attr.mmap || event->attr.mmap_data)
4312 		atomic_dec(&nr_mmap_events);
4313 	if (event->attr.comm)
4314 		atomic_dec(&nr_comm_events);
4315 	if (event->attr.namespaces)
4316 		atomic_dec(&nr_namespaces_events);
4317 	if (event->attr.task)
4318 		atomic_dec(&nr_task_events);
4319 	if (event->attr.freq)
4320 		unaccount_freq_event();
4321 	if (event->attr.context_switch) {
4322 		dec = true;
4323 		atomic_dec(&nr_switch_events);
4324 	}
4325 	if (is_cgroup_event(event))
4326 		dec = true;
4327 	if (has_branch_stack(event))
4328 		dec = true;
4329 	if (event->attr.ksymbol)
4330 		atomic_dec(&nr_ksymbol_events);
4331 	if (event->attr.bpf_event)
4332 		atomic_dec(&nr_bpf_events);
4333 
4334 	if (dec) {
4335 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
4336 			schedule_delayed_work(&perf_sched_work, HZ);
4337 	}
4338 
4339 	unaccount_event_cpu(event, event->cpu);
4340 
4341 	unaccount_pmu_sb_event(event);
4342 }
4343 
4344 static void perf_sched_delayed(struct work_struct *work)
4345 {
4346 	mutex_lock(&perf_sched_mutex);
4347 	if (atomic_dec_and_test(&perf_sched_count))
4348 		static_branch_disable(&perf_sched_events);
4349 	mutex_unlock(&perf_sched_mutex);
4350 }
4351 
4352 /*
4353  * The following implement mutual exclusion of events on "exclusive" pmus
4354  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4355  * at a time, so we disallow creating events that might conflict, namely:
4356  *
4357  *  1) cpu-wide events in the presence of per-task events,
4358  *  2) per-task events in the presence of cpu-wide events,
4359  *  3) two matching events on the same context.
4360  *
4361  * The former two cases are handled in the allocation path (perf_event_alloc(),
4362  * _free_event()), the latter -- before the first perf_install_in_context().
4363  */
4364 static int exclusive_event_init(struct perf_event *event)
4365 {
4366 	struct pmu *pmu = event->pmu;
4367 
4368 	if (!is_exclusive_pmu(pmu))
4369 		return 0;
4370 
4371 	/*
4372 	 * Prevent co-existence of per-task and cpu-wide events on the
4373 	 * same exclusive pmu.
4374 	 *
4375 	 * Negative pmu::exclusive_cnt means there are cpu-wide
4376 	 * events on this "exclusive" pmu, positive means there are
4377 	 * per-task events.
4378 	 *
4379 	 * Since this is called in perf_event_alloc() path, event::ctx
4380 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4381 	 * to mean "per-task event", because unlike other attach states it
4382 	 * never gets cleared.
4383 	 */
4384 	if (event->attach_state & PERF_ATTACH_TASK) {
4385 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4386 			return -EBUSY;
4387 	} else {
4388 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4389 			return -EBUSY;
4390 	}
4391 
4392 	return 0;
4393 }
4394 
4395 static void exclusive_event_destroy(struct perf_event *event)
4396 {
4397 	struct pmu *pmu = event->pmu;
4398 
4399 	if (!is_exclusive_pmu(pmu))
4400 		return;
4401 
4402 	/* see comment in exclusive_event_init() */
4403 	if (event->attach_state & PERF_ATTACH_TASK)
4404 		atomic_dec(&pmu->exclusive_cnt);
4405 	else
4406 		atomic_inc(&pmu->exclusive_cnt);
4407 }
4408 
4409 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4410 {
4411 	if ((e1->pmu == e2->pmu) &&
4412 	    (e1->cpu == e2->cpu ||
4413 	     e1->cpu == -1 ||
4414 	     e2->cpu == -1))
4415 		return true;
4416 	return false;
4417 }
4418 
4419 static bool exclusive_event_installable(struct perf_event *event,
4420 					struct perf_event_context *ctx)
4421 {
4422 	struct perf_event *iter_event;
4423 	struct pmu *pmu = event->pmu;
4424 
4425 	lockdep_assert_held(&ctx->mutex);
4426 
4427 	if (!is_exclusive_pmu(pmu))
4428 		return true;
4429 
4430 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4431 		if (exclusive_event_match(iter_event, event))
4432 			return false;
4433 	}
4434 
4435 	return true;
4436 }
4437 
4438 static void perf_addr_filters_splice(struct perf_event *event,
4439 				       struct list_head *head);
4440 
4441 static void _free_event(struct perf_event *event)
4442 {
4443 	irq_work_sync(&event->pending);
4444 
4445 	unaccount_event(event);
4446 
4447 	if (event->rb) {
4448 		/*
4449 		 * Can happen when we close an event with re-directed output.
4450 		 *
4451 		 * Since we have a 0 refcount, perf_mmap_close() will skip
4452 		 * over us; possibly making our ring_buffer_put() the last.
4453 		 */
4454 		mutex_lock(&event->mmap_mutex);
4455 		ring_buffer_attach(event, NULL);
4456 		mutex_unlock(&event->mmap_mutex);
4457 	}
4458 
4459 	if (is_cgroup_event(event))
4460 		perf_detach_cgroup(event);
4461 
4462 	if (!event->parent) {
4463 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4464 			put_callchain_buffers();
4465 	}
4466 
4467 	perf_event_free_bpf_prog(event);
4468 	perf_addr_filters_splice(event, NULL);
4469 	kfree(event->addr_filter_ranges);
4470 
4471 	if (event->destroy)
4472 		event->destroy(event);
4473 
4474 	/*
4475 	 * Must be after ->destroy(), due to uprobe_perf_close() using
4476 	 * hw.target.
4477 	 */
4478 	if (event->hw.target)
4479 		put_task_struct(event->hw.target);
4480 
4481 	/*
4482 	 * perf_event_free_task() relies on put_ctx() being 'last', in particular
4483 	 * all task references must be cleaned up.
4484 	 */
4485 	if (event->ctx)
4486 		put_ctx(event->ctx);
4487 
4488 	exclusive_event_destroy(event);
4489 	module_put(event->pmu->module);
4490 
4491 	call_rcu(&event->rcu_head, free_event_rcu);
4492 }
4493 
4494 /*
4495  * Used to free events which have a known refcount of 1, such as in error paths
4496  * where the event isn't exposed yet and inherited events.
4497  */
4498 static void free_event(struct perf_event *event)
4499 {
4500 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4501 				"unexpected event refcount: %ld; ptr=%p\n",
4502 				atomic_long_read(&event->refcount), event)) {
4503 		/* leak to avoid use-after-free */
4504 		return;
4505 	}
4506 
4507 	_free_event(event);
4508 }
4509 
4510 /*
4511  * Remove user event from the owner task.
4512  */
4513 static void perf_remove_from_owner(struct perf_event *event)
4514 {
4515 	struct task_struct *owner;
4516 
4517 	rcu_read_lock();
4518 	/*
4519 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
4520 	 * observe !owner it means the list deletion is complete and we can
4521 	 * indeed free this event, otherwise we need to serialize on
4522 	 * owner->perf_event_mutex.
4523 	 */
4524 	owner = READ_ONCE(event->owner);
4525 	if (owner) {
4526 		/*
4527 		 * Since delayed_put_task_struct() also drops the last
4528 		 * task reference we can safely take a new reference
4529 		 * while holding the rcu_read_lock().
4530 		 */
4531 		get_task_struct(owner);
4532 	}
4533 	rcu_read_unlock();
4534 
4535 	if (owner) {
4536 		/*
4537 		 * If we're here through perf_event_exit_task() we're already
4538 		 * holding ctx->mutex which would be an inversion wrt. the
4539 		 * normal lock order.
4540 		 *
4541 		 * However we can safely take this lock because its the child
4542 		 * ctx->mutex.
4543 		 */
4544 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4545 
4546 		/*
4547 		 * We have to re-check the event->owner field, if it is cleared
4548 		 * we raced with perf_event_exit_task(), acquiring the mutex
4549 		 * ensured they're done, and we can proceed with freeing the
4550 		 * event.
4551 		 */
4552 		if (event->owner) {
4553 			list_del_init(&event->owner_entry);
4554 			smp_store_release(&event->owner, NULL);
4555 		}
4556 		mutex_unlock(&owner->perf_event_mutex);
4557 		put_task_struct(owner);
4558 	}
4559 }
4560 
4561 static void put_event(struct perf_event *event)
4562 {
4563 	if (!atomic_long_dec_and_test(&event->refcount))
4564 		return;
4565 
4566 	_free_event(event);
4567 }
4568 
4569 /*
4570  * Kill an event dead; while event:refcount will preserve the event
4571  * object, it will not preserve its functionality. Once the last 'user'
4572  * gives up the object, we'll destroy the thing.
4573  */
4574 int perf_event_release_kernel(struct perf_event *event)
4575 {
4576 	struct perf_event_context *ctx = event->ctx;
4577 	struct perf_event *child, *tmp;
4578 	LIST_HEAD(free_list);
4579 
4580 	/*
4581 	 * If we got here through err_file: fput(event_file); we will not have
4582 	 * attached to a context yet.
4583 	 */
4584 	if (!ctx) {
4585 		WARN_ON_ONCE(event->attach_state &
4586 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4587 		goto no_ctx;
4588 	}
4589 
4590 	if (!is_kernel_event(event))
4591 		perf_remove_from_owner(event);
4592 
4593 	ctx = perf_event_ctx_lock(event);
4594 	WARN_ON_ONCE(ctx->parent_ctx);
4595 	perf_remove_from_context(event, DETACH_GROUP);
4596 
4597 	raw_spin_lock_irq(&ctx->lock);
4598 	/*
4599 	 * Mark this event as STATE_DEAD, there is no external reference to it
4600 	 * anymore.
4601 	 *
4602 	 * Anybody acquiring event->child_mutex after the below loop _must_
4603 	 * also see this, most importantly inherit_event() which will avoid
4604 	 * placing more children on the list.
4605 	 *
4606 	 * Thus this guarantees that we will in fact observe and kill _ALL_
4607 	 * child events.
4608 	 */
4609 	event->state = PERF_EVENT_STATE_DEAD;
4610 	raw_spin_unlock_irq(&ctx->lock);
4611 
4612 	perf_event_ctx_unlock(event, ctx);
4613 
4614 again:
4615 	mutex_lock(&event->child_mutex);
4616 	list_for_each_entry(child, &event->child_list, child_list) {
4617 
4618 		/*
4619 		 * Cannot change, child events are not migrated, see the
4620 		 * comment with perf_event_ctx_lock_nested().
4621 		 */
4622 		ctx = READ_ONCE(child->ctx);
4623 		/*
4624 		 * Since child_mutex nests inside ctx::mutex, we must jump
4625 		 * through hoops. We start by grabbing a reference on the ctx.
4626 		 *
4627 		 * Since the event cannot get freed while we hold the
4628 		 * child_mutex, the context must also exist and have a !0
4629 		 * reference count.
4630 		 */
4631 		get_ctx(ctx);
4632 
4633 		/*
4634 		 * Now that we have a ctx ref, we can drop child_mutex, and
4635 		 * acquire ctx::mutex without fear of it going away. Then we
4636 		 * can re-acquire child_mutex.
4637 		 */
4638 		mutex_unlock(&event->child_mutex);
4639 		mutex_lock(&ctx->mutex);
4640 		mutex_lock(&event->child_mutex);
4641 
4642 		/*
4643 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
4644 		 * state, if child is still the first entry, it didn't get freed
4645 		 * and we can continue doing so.
4646 		 */
4647 		tmp = list_first_entry_or_null(&event->child_list,
4648 					       struct perf_event, child_list);
4649 		if (tmp == child) {
4650 			perf_remove_from_context(child, DETACH_GROUP);
4651 			list_move(&child->child_list, &free_list);
4652 			/*
4653 			 * This matches the refcount bump in inherit_event();
4654 			 * this can't be the last reference.
4655 			 */
4656 			put_event(event);
4657 		}
4658 
4659 		mutex_unlock(&event->child_mutex);
4660 		mutex_unlock(&ctx->mutex);
4661 		put_ctx(ctx);
4662 		goto again;
4663 	}
4664 	mutex_unlock(&event->child_mutex);
4665 
4666 	list_for_each_entry_safe(child, tmp, &free_list, child_list) {
4667 		void *var = &child->ctx->refcount;
4668 
4669 		list_del(&child->child_list);
4670 		free_event(child);
4671 
4672 		/*
4673 		 * Wake any perf_event_free_task() waiting for this event to be
4674 		 * freed.
4675 		 */
4676 		smp_mb(); /* pairs with wait_var_event() */
4677 		wake_up_var(var);
4678 	}
4679 
4680 no_ctx:
4681 	put_event(event); /* Must be the 'last' reference */
4682 	return 0;
4683 }
4684 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4685 
4686 /*
4687  * Called when the last reference to the file is gone.
4688  */
4689 static int perf_release(struct inode *inode, struct file *file)
4690 {
4691 	perf_event_release_kernel(file->private_data);
4692 	return 0;
4693 }
4694 
4695 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4696 {
4697 	struct perf_event *child;
4698 	u64 total = 0;
4699 
4700 	*enabled = 0;
4701 	*running = 0;
4702 
4703 	mutex_lock(&event->child_mutex);
4704 
4705 	(void)perf_event_read(event, false);
4706 	total += perf_event_count(event);
4707 
4708 	*enabled += event->total_time_enabled +
4709 			atomic64_read(&event->child_total_time_enabled);
4710 	*running += event->total_time_running +
4711 			atomic64_read(&event->child_total_time_running);
4712 
4713 	list_for_each_entry(child, &event->child_list, child_list) {
4714 		(void)perf_event_read(child, false);
4715 		total += perf_event_count(child);
4716 		*enabled += child->total_time_enabled;
4717 		*running += child->total_time_running;
4718 	}
4719 	mutex_unlock(&event->child_mutex);
4720 
4721 	return total;
4722 }
4723 
4724 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4725 {
4726 	struct perf_event_context *ctx;
4727 	u64 count;
4728 
4729 	ctx = perf_event_ctx_lock(event);
4730 	count = __perf_event_read_value(event, enabled, running);
4731 	perf_event_ctx_unlock(event, ctx);
4732 
4733 	return count;
4734 }
4735 EXPORT_SYMBOL_GPL(perf_event_read_value);
4736 
4737 static int __perf_read_group_add(struct perf_event *leader,
4738 					u64 read_format, u64 *values)
4739 {
4740 	struct perf_event_context *ctx = leader->ctx;
4741 	struct perf_event *sub;
4742 	unsigned long flags;
4743 	int n = 1; /* skip @nr */
4744 	int ret;
4745 
4746 	ret = perf_event_read(leader, true);
4747 	if (ret)
4748 		return ret;
4749 
4750 	raw_spin_lock_irqsave(&ctx->lock, flags);
4751 
4752 	/*
4753 	 * Since we co-schedule groups, {enabled,running} times of siblings
4754 	 * will be identical to those of the leader, so we only publish one
4755 	 * set.
4756 	 */
4757 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4758 		values[n++] += leader->total_time_enabled +
4759 			atomic64_read(&leader->child_total_time_enabled);
4760 	}
4761 
4762 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4763 		values[n++] += leader->total_time_running +
4764 			atomic64_read(&leader->child_total_time_running);
4765 	}
4766 
4767 	/*
4768 	 * Write {count,id} tuples for every sibling.
4769 	 */
4770 	values[n++] += perf_event_count(leader);
4771 	if (read_format & PERF_FORMAT_ID)
4772 		values[n++] = primary_event_id(leader);
4773 
4774 	for_each_sibling_event(sub, leader) {
4775 		values[n++] += perf_event_count(sub);
4776 		if (read_format & PERF_FORMAT_ID)
4777 			values[n++] = primary_event_id(sub);
4778 	}
4779 
4780 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
4781 	return 0;
4782 }
4783 
4784 static int perf_read_group(struct perf_event *event,
4785 				   u64 read_format, char __user *buf)
4786 {
4787 	struct perf_event *leader = event->group_leader, *child;
4788 	struct perf_event_context *ctx = leader->ctx;
4789 	int ret;
4790 	u64 *values;
4791 
4792 	lockdep_assert_held(&ctx->mutex);
4793 
4794 	values = kzalloc(event->read_size, GFP_KERNEL);
4795 	if (!values)
4796 		return -ENOMEM;
4797 
4798 	values[0] = 1 + leader->nr_siblings;
4799 
4800 	/*
4801 	 * By locking the child_mutex of the leader we effectively
4802 	 * lock the child list of all siblings.. XXX explain how.
4803 	 */
4804 	mutex_lock(&leader->child_mutex);
4805 
4806 	ret = __perf_read_group_add(leader, read_format, values);
4807 	if (ret)
4808 		goto unlock;
4809 
4810 	list_for_each_entry(child, &leader->child_list, child_list) {
4811 		ret = __perf_read_group_add(child, read_format, values);
4812 		if (ret)
4813 			goto unlock;
4814 	}
4815 
4816 	mutex_unlock(&leader->child_mutex);
4817 
4818 	ret = event->read_size;
4819 	if (copy_to_user(buf, values, event->read_size))
4820 		ret = -EFAULT;
4821 	goto out;
4822 
4823 unlock:
4824 	mutex_unlock(&leader->child_mutex);
4825 out:
4826 	kfree(values);
4827 	return ret;
4828 }
4829 
4830 static int perf_read_one(struct perf_event *event,
4831 				 u64 read_format, char __user *buf)
4832 {
4833 	u64 enabled, running;
4834 	u64 values[4];
4835 	int n = 0;
4836 
4837 	values[n++] = __perf_event_read_value(event, &enabled, &running);
4838 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4839 		values[n++] = enabled;
4840 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4841 		values[n++] = running;
4842 	if (read_format & PERF_FORMAT_ID)
4843 		values[n++] = primary_event_id(event);
4844 
4845 	if (copy_to_user(buf, values, n * sizeof(u64)))
4846 		return -EFAULT;
4847 
4848 	return n * sizeof(u64);
4849 }
4850 
4851 static bool is_event_hup(struct perf_event *event)
4852 {
4853 	bool no_children;
4854 
4855 	if (event->state > PERF_EVENT_STATE_EXIT)
4856 		return false;
4857 
4858 	mutex_lock(&event->child_mutex);
4859 	no_children = list_empty(&event->child_list);
4860 	mutex_unlock(&event->child_mutex);
4861 	return no_children;
4862 }
4863 
4864 /*
4865  * Read the performance event - simple non blocking version for now
4866  */
4867 static ssize_t
4868 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4869 {
4870 	u64 read_format = event->attr.read_format;
4871 	int ret;
4872 
4873 	/*
4874 	 * Return end-of-file for a read on an event that is in
4875 	 * error state (i.e. because it was pinned but it couldn't be
4876 	 * scheduled on to the CPU at some point).
4877 	 */
4878 	if (event->state == PERF_EVENT_STATE_ERROR)
4879 		return 0;
4880 
4881 	if (count < event->read_size)
4882 		return -ENOSPC;
4883 
4884 	WARN_ON_ONCE(event->ctx->parent_ctx);
4885 	if (read_format & PERF_FORMAT_GROUP)
4886 		ret = perf_read_group(event, read_format, buf);
4887 	else
4888 		ret = perf_read_one(event, read_format, buf);
4889 
4890 	return ret;
4891 }
4892 
4893 static ssize_t
4894 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4895 {
4896 	struct perf_event *event = file->private_data;
4897 	struct perf_event_context *ctx;
4898 	int ret;
4899 
4900 	ctx = perf_event_ctx_lock(event);
4901 	ret = __perf_read(event, buf, count);
4902 	perf_event_ctx_unlock(event, ctx);
4903 
4904 	return ret;
4905 }
4906 
4907 static __poll_t perf_poll(struct file *file, poll_table *wait)
4908 {
4909 	struct perf_event *event = file->private_data;
4910 	struct ring_buffer *rb;
4911 	__poll_t events = EPOLLHUP;
4912 
4913 	poll_wait(file, &event->waitq, wait);
4914 
4915 	if (is_event_hup(event))
4916 		return events;
4917 
4918 	/*
4919 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
4920 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4921 	 */
4922 	mutex_lock(&event->mmap_mutex);
4923 	rb = event->rb;
4924 	if (rb)
4925 		events = atomic_xchg(&rb->poll, 0);
4926 	mutex_unlock(&event->mmap_mutex);
4927 	return events;
4928 }
4929 
4930 static void _perf_event_reset(struct perf_event *event)
4931 {
4932 	(void)perf_event_read(event, false);
4933 	local64_set(&event->count, 0);
4934 	perf_event_update_userpage(event);
4935 }
4936 
4937 /*
4938  * Holding the top-level event's child_mutex means that any
4939  * descendant process that has inherited this event will block
4940  * in perf_event_exit_event() if it goes to exit, thus satisfying the
4941  * task existence requirements of perf_event_enable/disable.
4942  */
4943 static void perf_event_for_each_child(struct perf_event *event,
4944 					void (*func)(struct perf_event *))
4945 {
4946 	struct perf_event *child;
4947 
4948 	WARN_ON_ONCE(event->ctx->parent_ctx);
4949 
4950 	mutex_lock(&event->child_mutex);
4951 	func(event);
4952 	list_for_each_entry(child, &event->child_list, child_list)
4953 		func(child);
4954 	mutex_unlock(&event->child_mutex);
4955 }
4956 
4957 static void perf_event_for_each(struct perf_event *event,
4958 				  void (*func)(struct perf_event *))
4959 {
4960 	struct perf_event_context *ctx = event->ctx;
4961 	struct perf_event *sibling;
4962 
4963 	lockdep_assert_held(&ctx->mutex);
4964 
4965 	event = event->group_leader;
4966 
4967 	perf_event_for_each_child(event, func);
4968 	for_each_sibling_event(sibling, event)
4969 		perf_event_for_each_child(sibling, func);
4970 }
4971 
4972 static void __perf_event_period(struct perf_event *event,
4973 				struct perf_cpu_context *cpuctx,
4974 				struct perf_event_context *ctx,
4975 				void *info)
4976 {
4977 	u64 value = *((u64 *)info);
4978 	bool active;
4979 
4980 	if (event->attr.freq) {
4981 		event->attr.sample_freq = value;
4982 	} else {
4983 		event->attr.sample_period = value;
4984 		event->hw.sample_period = value;
4985 	}
4986 
4987 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
4988 	if (active) {
4989 		perf_pmu_disable(ctx->pmu);
4990 		/*
4991 		 * We could be throttled; unthrottle now to avoid the tick
4992 		 * trying to unthrottle while we already re-started the event.
4993 		 */
4994 		if (event->hw.interrupts == MAX_INTERRUPTS) {
4995 			event->hw.interrupts = 0;
4996 			perf_log_throttle(event, 1);
4997 		}
4998 		event->pmu->stop(event, PERF_EF_UPDATE);
4999 	}
5000 
5001 	local64_set(&event->hw.period_left, 0);
5002 
5003 	if (active) {
5004 		event->pmu->start(event, PERF_EF_RELOAD);
5005 		perf_pmu_enable(ctx->pmu);
5006 	}
5007 }
5008 
5009 static int perf_event_check_period(struct perf_event *event, u64 value)
5010 {
5011 	return event->pmu->check_period(event, value);
5012 }
5013 
5014 static int perf_event_period(struct perf_event *event, u64 __user *arg)
5015 {
5016 	u64 value;
5017 
5018 	if (!is_sampling_event(event))
5019 		return -EINVAL;
5020 
5021 	if (copy_from_user(&value, arg, sizeof(value)))
5022 		return -EFAULT;
5023 
5024 	if (!value)
5025 		return -EINVAL;
5026 
5027 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5028 		return -EINVAL;
5029 
5030 	if (perf_event_check_period(event, value))
5031 		return -EINVAL;
5032 
5033 	if (!event->attr.freq && (value & (1ULL << 63)))
5034 		return -EINVAL;
5035 
5036 	event_function_call(event, __perf_event_period, &value);
5037 
5038 	return 0;
5039 }
5040 
5041 static const struct file_operations perf_fops;
5042 
5043 static inline int perf_fget_light(int fd, struct fd *p)
5044 {
5045 	struct fd f = fdget(fd);
5046 	if (!f.file)
5047 		return -EBADF;
5048 
5049 	if (f.file->f_op != &perf_fops) {
5050 		fdput(f);
5051 		return -EBADF;
5052 	}
5053 	*p = f;
5054 	return 0;
5055 }
5056 
5057 static int perf_event_set_output(struct perf_event *event,
5058 				 struct perf_event *output_event);
5059 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5060 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
5061 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5062 			  struct perf_event_attr *attr);
5063 
5064 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5065 {
5066 	void (*func)(struct perf_event *);
5067 	u32 flags = arg;
5068 
5069 	switch (cmd) {
5070 	case PERF_EVENT_IOC_ENABLE:
5071 		func = _perf_event_enable;
5072 		break;
5073 	case PERF_EVENT_IOC_DISABLE:
5074 		func = _perf_event_disable;
5075 		break;
5076 	case PERF_EVENT_IOC_RESET:
5077 		func = _perf_event_reset;
5078 		break;
5079 
5080 	case PERF_EVENT_IOC_REFRESH:
5081 		return _perf_event_refresh(event, arg);
5082 
5083 	case PERF_EVENT_IOC_PERIOD:
5084 		return perf_event_period(event, (u64 __user *)arg);
5085 
5086 	case PERF_EVENT_IOC_ID:
5087 	{
5088 		u64 id = primary_event_id(event);
5089 
5090 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5091 			return -EFAULT;
5092 		return 0;
5093 	}
5094 
5095 	case PERF_EVENT_IOC_SET_OUTPUT:
5096 	{
5097 		int ret;
5098 		if (arg != -1) {
5099 			struct perf_event *output_event;
5100 			struct fd output;
5101 			ret = perf_fget_light(arg, &output);
5102 			if (ret)
5103 				return ret;
5104 			output_event = output.file->private_data;
5105 			ret = perf_event_set_output(event, output_event);
5106 			fdput(output);
5107 		} else {
5108 			ret = perf_event_set_output(event, NULL);
5109 		}
5110 		return ret;
5111 	}
5112 
5113 	case PERF_EVENT_IOC_SET_FILTER:
5114 		return perf_event_set_filter(event, (void __user *)arg);
5115 
5116 	case PERF_EVENT_IOC_SET_BPF:
5117 		return perf_event_set_bpf_prog(event, arg);
5118 
5119 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5120 		struct ring_buffer *rb;
5121 
5122 		rcu_read_lock();
5123 		rb = rcu_dereference(event->rb);
5124 		if (!rb || !rb->nr_pages) {
5125 			rcu_read_unlock();
5126 			return -EINVAL;
5127 		}
5128 		rb_toggle_paused(rb, !!arg);
5129 		rcu_read_unlock();
5130 		return 0;
5131 	}
5132 
5133 	case PERF_EVENT_IOC_QUERY_BPF:
5134 		return perf_event_query_prog_array(event, (void __user *)arg);
5135 
5136 	case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5137 		struct perf_event_attr new_attr;
5138 		int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5139 					 &new_attr);
5140 
5141 		if (err)
5142 			return err;
5143 
5144 		return perf_event_modify_attr(event,  &new_attr);
5145 	}
5146 	default:
5147 		return -ENOTTY;
5148 	}
5149 
5150 	if (flags & PERF_IOC_FLAG_GROUP)
5151 		perf_event_for_each(event, func);
5152 	else
5153 		perf_event_for_each_child(event, func);
5154 
5155 	return 0;
5156 }
5157 
5158 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5159 {
5160 	struct perf_event *event = file->private_data;
5161 	struct perf_event_context *ctx;
5162 	long ret;
5163 
5164 	ctx = perf_event_ctx_lock(event);
5165 	ret = _perf_ioctl(event, cmd, arg);
5166 	perf_event_ctx_unlock(event, ctx);
5167 
5168 	return ret;
5169 }
5170 
5171 #ifdef CONFIG_COMPAT
5172 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5173 				unsigned long arg)
5174 {
5175 	switch (_IOC_NR(cmd)) {
5176 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5177 	case _IOC_NR(PERF_EVENT_IOC_ID):
5178 	case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5179 	case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5180 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5181 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5182 			cmd &= ~IOCSIZE_MASK;
5183 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5184 		}
5185 		break;
5186 	}
5187 	return perf_ioctl(file, cmd, arg);
5188 }
5189 #else
5190 # define perf_compat_ioctl NULL
5191 #endif
5192 
5193 int perf_event_task_enable(void)
5194 {
5195 	struct perf_event_context *ctx;
5196 	struct perf_event *event;
5197 
5198 	mutex_lock(&current->perf_event_mutex);
5199 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5200 		ctx = perf_event_ctx_lock(event);
5201 		perf_event_for_each_child(event, _perf_event_enable);
5202 		perf_event_ctx_unlock(event, ctx);
5203 	}
5204 	mutex_unlock(&current->perf_event_mutex);
5205 
5206 	return 0;
5207 }
5208 
5209 int perf_event_task_disable(void)
5210 {
5211 	struct perf_event_context *ctx;
5212 	struct perf_event *event;
5213 
5214 	mutex_lock(&current->perf_event_mutex);
5215 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5216 		ctx = perf_event_ctx_lock(event);
5217 		perf_event_for_each_child(event, _perf_event_disable);
5218 		perf_event_ctx_unlock(event, ctx);
5219 	}
5220 	mutex_unlock(&current->perf_event_mutex);
5221 
5222 	return 0;
5223 }
5224 
5225 static int perf_event_index(struct perf_event *event)
5226 {
5227 	if (event->hw.state & PERF_HES_STOPPED)
5228 		return 0;
5229 
5230 	if (event->state != PERF_EVENT_STATE_ACTIVE)
5231 		return 0;
5232 
5233 	return event->pmu->event_idx(event);
5234 }
5235 
5236 static void calc_timer_values(struct perf_event *event,
5237 				u64 *now,
5238 				u64 *enabled,
5239 				u64 *running)
5240 {
5241 	u64 ctx_time;
5242 
5243 	*now = perf_clock();
5244 	ctx_time = event->shadow_ctx_time + *now;
5245 	__perf_update_times(event, ctx_time, enabled, running);
5246 }
5247 
5248 static void perf_event_init_userpage(struct perf_event *event)
5249 {
5250 	struct perf_event_mmap_page *userpg;
5251 	struct ring_buffer *rb;
5252 
5253 	rcu_read_lock();
5254 	rb = rcu_dereference(event->rb);
5255 	if (!rb)
5256 		goto unlock;
5257 
5258 	userpg = rb->user_page;
5259 
5260 	/* Allow new userspace to detect that bit 0 is deprecated */
5261 	userpg->cap_bit0_is_deprecated = 1;
5262 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5263 	userpg->data_offset = PAGE_SIZE;
5264 	userpg->data_size = perf_data_size(rb);
5265 
5266 unlock:
5267 	rcu_read_unlock();
5268 }
5269 
5270 void __weak arch_perf_update_userpage(
5271 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5272 {
5273 }
5274 
5275 /*
5276  * Callers need to ensure there can be no nesting of this function, otherwise
5277  * the seqlock logic goes bad. We can not serialize this because the arch
5278  * code calls this from NMI context.
5279  */
5280 void perf_event_update_userpage(struct perf_event *event)
5281 {
5282 	struct perf_event_mmap_page *userpg;
5283 	struct ring_buffer *rb;
5284 	u64 enabled, running, now;
5285 
5286 	rcu_read_lock();
5287 	rb = rcu_dereference(event->rb);
5288 	if (!rb)
5289 		goto unlock;
5290 
5291 	/*
5292 	 * compute total_time_enabled, total_time_running
5293 	 * based on snapshot values taken when the event
5294 	 * was last scheduled in.
5295 	 *
5296 	 * we cannot simply called update_context_time()
5297 	 * because of locking issue as we can be called in
5298 	 * NMI context
5299 	 */
5300 	calc_timer_values(event, &now, &enabled, &running);
5301 
5302 	userpg = rb->user_page;
5303 	/*
5304 	 * Disable preemption to guarantee consistent time stamps are stored to
5305 	 * the user page.
5306 	 */
5307 	preempt_disable();
5308 	++userpg->lock;
5309 	barrier();
5310 	userpg->index = perf_event_index(event);
5311 	userpg->offset = perf_event_count(event);
5312 	if (userpg->index)
5313 		userpg->offset -= local64_read(&event->hw.prev_count);
5314 
5315 	userpg->time_enabled = enabled +
5316 			atomic64_read(&event->child_total_time_enabled);
5317 
5318 	userpg->time_running = running +
5319 			atomic64_read(&event->child_total_time_running);
5320 
5321 	arch_perf_update_userpage(event, userpg, now);
5322 
5323 	barrier();
5324 	++userpg->lock;
5325 	preempt_enable();
5326 unlock:
5327 	rcu_read_unlock();
5328 }
5329 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5330 
5331 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
5332 {
5333 	struct perf_event *event = vmf->vma->vm_file->private_data;
5334 	struct ring_buffer *rb;
5335 	vm_fault_t ret = VM_FAULT_SIGBUS;
5336 
5337 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
5338 		if (vmf->pgoff == 0)
5339 			ret = 0;
5340 		return ret;
5341 	}
5342 
5343 	rcu_read_lock();
5344 	rb = rcu_dereference(event->rb);
5345 	if (!rb)
5346 		goto unlock;
5347 
5348 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5349 		goto unlock;
5350 
5351 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5352 	if (!vmf->page)
5353 		goto unlock;
5354 
5355 	get_page(vmf->page);
5356 	vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5357 	vmf->page->index   = vmf->pgoff;
5358 
5359 	ret = 0;
5360 unlock:
5361 	rcu_read_unlock();
5362 
5363 	return ret;
5364 }
5365 
5366 static void ring_buffer_attach(struct perf_event *event,
5367 			       struct ring_buffer *rb)
5368 {
5369 	struct ring_buffer *old_rb = NULL;
5370 	unsigned long flags;
5371 
5372 	if (event->rb) {
5373 		/*
5374 		 * Should be impossible, we set this when removing
5375 		 * event->rb_entry and wait/clear when adding event->rb_entry.
5376 		 */
5377 		WARN_ON_ONCE(event->rcu_pending);
5378 
5379 		old_rb = event->rb;
5380 		spin_lock_irqsave(&old_rb->event_lock, flags);
5381 		list_del_rcu(&event->rb_entry);
5382 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
5383 
5384 		event->rcu_batches = get_state_synchronize_rcu();
5385 		event->rcu_pending = 1;
5386 	}
5387 
5388 	if (rb) {
5389 		if (event->rcu_pending) {
5390 			cond_synchronize_rcu(event->rcu_batches);
5391 			event->rcu_pending = 0;
5392 		}
5393 
5394 		spin_lock_irqsave(&rb->event_lock, flags);
5395 		list_add_rcu(&event->rb_entry, &rb->event_list);
5396 		spin_unlock_irqrestore(&rb->event_lock, flags);
5397 	}
5398 
5399 	/*
5400 	 * Avoid racing with perf_mmap_close(AUX): stop the event
5401 	 * before swizzling the event::rb pointer; if it's getting
5402 	 * unmapped, its aux_mmap_count will be 0 and it won't
5403 	 * restart. See the comment in __perf_pmu_output_stop().
5404 	 *
5405 	 * Data will inevitably be lost when set_output is done in
5406 	 * mid-air, but then again, whoever does it like this is
5407 	 * not in for the data anyway.
5408 	 */
5409 	if (has_aux(event))
5410 		perf_event_stop(event, 0);
5411 
5412 	rcu_assign_pointer(event->rb, rb);
5413 
5414 	if (old_rb) {
5415 		ring_buffer_put(old_rb);
5416 		/*
5417 		 * Since we detached before setting the new rb, so that we
5418 		 * could attach the new rb, we could have missed a wakeup.
5419 		 * Provide it now.
5420 		 */
5421 		wake_up_all(&event->waitq);
5422 	}
5423 }
5424 
5425 static void ring_buffer_wakeup(struct perf_event *event)
5426 {
5427 	struct ring_buffer *rb;
5428 
5429 	rcu_read_lock();
5430 	rb = rcu_dereference(event->rb);
5431 	if (rb) {
5432 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5433 			wake_up_all(&event->waitq);
5434 	}
5435 	rcu_read_unlock();
5436 }
5437 
5438 struct ring_buffer *ring_buffer_get(struct perf_event *event)
5439 {
5440 	struct ring_buffer *rb;
5441 
5442 	rcu_read_lock();
5443 	rb = rcu_dereference(event->rb);
5444 	if (rb) {
5445 		if (!refcount_inc_not_zero(&rb->refcount))
5446 			rb = NULL;
5447 	}
5448 	rcu_read_unlock();
5449 
5450 	return rb;
5451 }
5452 
5453 void ring_buffer_put(struct ring_buffer *rb)
5454 {
5455 	if (!refcount_dec_and_test(&rb->refcount))
5456 		return;
5457 
5458 	WARN_ON_ONCE(!list_empty(&rb->event_list));
5459 
5460 	call_rcu(&rb->rcu_head, rb_free_rcu);
5461 }
5462 
5463 static void perf_mmap_open(struct vm_area_struct *vma)
5464 {
5465 	struct perf_event *event = vma->vm_file->private_data;
5466 
5467 	atomic_inc(&event->mmap_count);
5468 	atomic_inc(&event->rb->mmap_count);
5469 
5470 	if (vma->vm_pgoff)
5471 		atomic_inc(&event->rb->aux_mmap_count);
5472 
5473 	if (event->pmu->event_mapped)
5474 		event->pmu->event_mapped(event, vma->vm_mm);
5475 }
5476 
5477 static void perf_pmu_output_stop(struct perf_event *event);
5478 
5479 /*
5480  * A buffer can be mmap()ed multiple times; either directly through the same
5481  * event, or through other events by use of perf_event_set_output().
5482  *
5483  * In order to undo the VM accounting done by perf_mmap() we need to destroy
5484  * the buffer here, where we still have a VM context. This means we need
5485  * to detach all events redirecting to us.
5486  */
5487 static void perf_mmap_close(struct vm_area_struct *vma)
5488 {
5489 	struct perf_event *event = vma->vm_file->private_data;
5490 
5491 	struct ring_buffer *rb = ring_buffer_get(event);
5492 	struct user_struct *mmap_user = rb->mmap_user;
5493 	int mmap_locked = rb->mmap_locked;
5494 	unsigned long size = perf_data_size(rb);
5495 
5496 	if (event->pmu->event_unmapped)
5497 		event->pmu->event_unmapped(event, vma->vm_mm);
5498 
5499 	/*
5500 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
5501 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
5502 	 * serialize with perf_mmap here.
5503 	 */
5504 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5505 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5506 		/*
5507 		 * Stop all AUX events that are writing to this buffer,
5508 		 * so that we can free its AUX pages and corresponding PMU
5509 		 * data. Note that after rb::aux_mmap_count dropped to zero,
5510 		 * they won't start any more (see perf_aux_output_begin()).
5511 		 */
5512 		perf_pmu_output_stop(event);
5513 
5514 		/* now it's safe to free the pages */
5515 		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5516 		atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
5517 
5518 		/* this has to be the last one */
5519 		rb_free_aux(rb);
5520 		WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
5521 
5522 		mutex_unlock(&event->mmap_mutex);
5523 	}
5524 
5525 	atomic_dec(&rb->mmap_count);
5526 
5527 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5528 		goto out_put;
5529 
5530 	ring_buffer_attach(event, NULL);
5531 	mutex_unlock(&event->mmap_mutex);
5532 
5533 	/* If there's still other mmap()s of this buffer, we're done. */
5534 	if (atomic_read(&rb->mmap_count))
5535 		goto out_put;
5536 
5537 	/*
5538 	 * No other mmap()s, detach from all other events that might redirect
5539 	 * into the now unreachable buffer. Somewhat complicated by the
5540 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5541 	 */
5542 again:
5543 	rcu_read_lock();
5544 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5545 		if (!atomic_long_inc_not_zero(&event->refcount)) {
5546 			/*
5547 			 * This event is en-route to free_event() which will
5548 			 * detach it and remove it from the list.
5549 			 */
5550 			continue;
5551 		}
5552 		rcu_read_unlock();
5553 
5554 		mutex_lock(&event->mmap_mutex);
5555 		/*
5556 		 * Check we didn't race with perf_event_set_output() which can
5557 		 * swizzle the rb from under us while we were waiting to
5558 		 * acquire mmap_mutex.
5559 		 *
5560 		 * If we find a different rb; ignore this event, a next
5561 		 * iteration will no longer find it on the list. We have to
5562 		 * still restart the iteration to make sure we're not now
5563 		 * iterating the wrong list.
5564 		 */
5565 		if (event->rb == rb)
5566 			ring_buffer_attach(event, NULL);
5567 
5568 		mutex_unlock(&event->mmap_mutex);
5569 		put_event(event);
5570 
5571 		/*
5572 		 * Restart the iteration; either we're on the wrong list or
5573 		 * destroyed its integrity by doing a deletion.
5574 		 */
5575 		goto again;
5576 	}
5577 	rcu_read_unlock();
5578 
5579 	/*
5580 	 * It could be there's still a few 0-ref events on the list; they'll
5581 	 * get cleaned up by free_event() -- they'll also still have their
5582 	 * ref on the rb and will free it whenever they are done with it.
5583 	 *
5584 	 * Aside from that, this buffer is 'fully' detached and unmapped,
5585 	 * undo the VM accounting.
5586 	 */
5587 
5588 	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5589 	atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
5590 	free_uid(mmap_user);
5591 
5592 out_put:
5593 	ring_buffer_put(rb); /* could be last */
5594 }
5595 
5596 static const struct vm_operations_struct perf_mmap_vmops = {
5597 	.open		= perf_mmap_open,
5598 	.close		= perf_mmap_close, /* non mergeable */
5599 	.fault		= perf_mmap_fault,
5600 	.page_mkwrite	= perf_mmap_fault,
5601 };
5602 
5603 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5604 {
5605 	struct perf_event *event = file->private_data;
5606 	unsigned long user_locked, user_lock_limit;
5607 	struct user_struct *user = current_user();
5608 	unsigned long locked, lock_limit;
5609 	struct ring_buffer *rb = NULL;
5610 	unsigned long vma_size;
5611 	unsigned long nr_pages;
5612 	long user_extra = 0, extra = 0;
5613 	int ret = 0, flags = 0;
5614 
5615 	/*
5616 	 * Don't allow mmap() of inherited per-task counters. This would
5617 	 * create a performance issue due to all children writing to the
5618 	 * same rb.
5619 	 */
5620 	if (event->cpu == -1 && event->attr.inherit)
5621 		return -EINVAL;
5622 
5623 	if (!(vma->vm_flags & VM_SHARED))
5624 		return -EINVAL;
5625 
5626 	vma_size = vma->vm_end - vma->vm_start;
5627 
5628 	if (vma->vm_pgoff == 0) {
5629 		nr_pages = (vma_size / PAGE_SIZE) - 1;
5630 	} else {
5631 		/*
5632 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5633 		 * mapped, all subsequent mappings should have the same size
5634 		 * and offset. Must be above the normal perf buffer.
5635 		 */
5636 		u64 aux_offset, aux_size;
5637 
5638 		if (!event->rb)
5639 			return -EINVAL;
5640 
5641 		nr_pages = vma_size / PAGE_SIZE;
5642 
5643 		mutex_lock(&event->mmap_mutex);
5644 		ret = -EINVAL;
5645 
5646 		rb = event->rb;
5647 		if (!rb)
5648 			goto aux_unlock;
5649 
5650 		aux_offset = READ_ONCE(rb->user_page->aux_offset);
5651 		aux_size = READ_ONCE(rb->user_page->aux_size);
5652 
5653 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5654 			goto aux_unlock;
5655 
5656 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5657 			goto aux_unlock;
5658 
5659 		/* already mapped with a different offset */
5660 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5661 			goto aux_unlock;
5662 
5663 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5664 			goto aux_unlock;
5665 
5666 		/* already mapped with a different size */
5667 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5668 			goto aux_unlock;
5669 
5670 		if (!is_power_of_2(nr_pages))
5671 			goto aux_unlock;
5672 
5673 		if (!atomic_inc_not_zero(&rb->mmap_count))
5674 			goto aux_unlock;
5675 
5676 		if (rb_has_aux(rb)) {
5677 			atomic_inc(&rb->aux_mmap_count);
5678 			ret = 0;
5679 			goto unlock;
5680 		}
5681 
5682 		atomic_set(&rb->aux_mmap_count, 1);
5683 		user_extra = nr_pages;
5684 
5685 		goto accounting;
5686 	}
5687 
5688 	/*
5689 	 * If we have rb pages ensure they're a power-of-two number, so we
5690 	 * can do bitmasks instead of modulo.
5691 	 */
5692 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
5693 		return -EINVAL;
5694 
5695 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
5696 		return -EINVAL;
5697 
5698 	WARN_ON_ONCE(event->ctx->parent_ctx);
5699 again:
5700 	mutex_lock(&event->mmap_mutex);
5701 	if (event->rb) {
5702 		if (event->rb->nr_pages != nr_pages) {
5703 			ret = -EINVAL;
5704 			goto unlock;
5705 		}
5706 
5707 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5708 			/*
5709 			 * Raced against perf_mmap_close() through
5710 			 * perf_event_set_output(). Try again, hope for better
5711 			 * luck.
5712 			 */
5713 			mutex_unlock(&event->mmap_mutex);
5714 			goto again;
5715 		}
5716 
5717 		goto unlock;
5718 	}
5719 
5720 	user_extra = nr_pages + 1;
5721 
5722 accounting:
5723 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5724 
5725 	/*
5726 	 * Increase the limit linearly with more CPUs:
5727 	 */
5728 	user_lock_limit *= num_online_cpus();
5729 
5730 	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5731 
5732 	if (user_locked > user_lock_limit)
5733 		extra = user_locked - user_lock_limit;
5734 
5735 	lock_limit = rlimit(RLIMIT_MEMLOCK);
5736 	lock_limit >>= PAGE_SHIFT;
5737 	locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
5738 
5739 	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5740 		!capable(CAP_IPC_LOCK)) {
5741 		ret = -EPERM;
5742 		goto unlock;
5743 	}
5744 
5745 	WARN_ON(!rb && event->rb);
5746 
5747 	if (vma->vm_flags & VM_WRITE)
5748 		flags |= RING_BUFFER_WRITABLE;
5749 
5750 	if (!rb) {
5751 		rb = rb_alloc(nr_pages,
5752 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
5753 			      event->cpu, flags);
5754 
5755 		if (!rb) {
5756 			ret = -ENOMEM;
5757 			goto unlock;
5758 		}
5759 
5760 		atomic_set(&rb->mmap_count, 1);
5761 		rb->mmap_user = get_current_user();
5762 		rb->mmap_locked = extra;
5763 
5764 		ring_buffer_attach(event, rb);
5765 
5766 		perf_event_init_userpage(event);
5767 		perf_event_update_userpage(event);
5768 	} else {
5769 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5770 				   event->attr.aux_watermark, flags);
5771 		if (!ret)
5772 			rb->aux_mmap_locked = extra;
5773 	}
5774 
5775 unlock:
5776 	if (!ret) {
5777 		atomic_long_add(user_extra, &user->locked_vm);
5778 		atomic64_add(extra, &vma->vm_mm->pinned_vm);
5779 
5780 		atomic_inc(&event->mmap_count);
5781 	} else if (rb) {
5782 		atomic_dec(&rb->mmap_count);
5783 	}
5784 aux_unlock:
5785 	mutex_unlock(&event->mmap_mutex);
5786 
5787 	/*
5788 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
5789 	 * vma.
5790 	 */
5791 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5792 	vma->vm_ops = &perf_mmap_vmops;
5793 
5794 	if (event->pmu->event_mapped)
5795 		event->pmu->event_mapped(event, vma->vm_mm);
5796 
5797 	return ret;
5798 }
5799 
5800 static int perf_fasync(int fd, struct file *filp, int on)
5801 {
5802 	struct inode *inode = file_inode(filp);
5803 	struct perf_event *event = filp->private_data;
5804 	int retval;
5805 
5806 	inode_lock(inode);
5807 	retval = fasync_helper(fd, filp, on, &event->fasync);
5808 	inode_unlock(inode);
5809 
5810 	if (retval < 0)
5811 		return retval;
5812 
5813 	return 0;
5814 }
5815 
5816 static const struct file_operations perf_fops = {
5817 	.llseek			= no_llseek,
5818 	.release		= perf_release,
5819 	.read			= perf_read,
5820 	.poll			= perf_poll,
5821 	.unlocked_ioctl		= perf_ioctl,
5822 	.compat_ioctl		= perf_compat_ioctl,
5823 	.mmap			= perf_mmap,
5824 	.fasync			= perf_fasync,
5825 };
5826 
5827 /*
5828  * Perf event wakeup
5829  *
5830  * If there's data, ensure we set the poll() state and publish everything
5831  * to user-space before waking everybody up.
5832  */
5833 
5834 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5835 {
5836 	/* only the parent has fasync state */
5837 	if (event->parent)
5838 		event = event->parent;
5839 	return &event->fasync;
5840 }
5841 
5842 void perf_event_wakeup(struct perf_event *event)
5843 {
5844 	ring_buffer_wakeup(event);
5845 
5846 	if (event->pending_kill) {
5847 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5848 		event->pending_kill = 0;
5849 	}
5850 }
5851 
5852 static void perf_pending_event_disable(struct perf_event *event)
5853 {
5854 	int cpu = READ_ONCE(event->pending_disable);
5855 
5856 	if (cpu < 0)
5857 		return;
5858 
5859 	if (cpu == smp_processor_id()) {
5860 		WRITE_ONCE(event->pending_disable, -1);
5861 		perf_event_disable_local(event);
5862 		return;
5863 	}
5864 
5865 	/*
5866 	 *  CPU-A			CPU-B
5867 	 *
5868 	 *  perf_event_disable_inatomic()
5869 	 *    @pending_disable = CPU-A;
5870 	 *    irq_work_queue();
5871 	 *
5872 	 *  sched-out
5873 	 *    @pending_disable = -1;
5874 	 *
5875 	 *				sched-in
5876 	 *				perf_event_disable_inatomic()
5877 	 *				  @pending_disable = CPU-B;
5878 	 *				  irq_work_queue(); // FAILS
5879 	 *
5880 	 *  irq_work_run()
5881 	 *    perf_pending_event()
5882 	 *
5883 	 * But the event runs on CPU-B and wants disabling there.
5884 	 */
5885 	irq_work_queue_on(&event->pending, cpu);
5886 }
5887 
5888 static void perf_pending_event(struct irq_work *entry)
5889 {
5890 	struct perf_event *event = container_of(entry, struct perf_event, pending);
5891 	int rctx;
5892 
5893 	rctx = perf_swevent_get_recursion_context();
5894 	/*
5895 	 * If we 'fail' here, that's OK, it means recursion is already disabled
5896 	 * and we won't recurse 'further'.
5897 	 */
5898 
5899 	perf_pending_event_disable(event);
5900 
5901 	if (event->pending_wakeup) {
5902 		event->pending_wakeup = 0;
5903 		perf_event_wakeup(event);
5904 	}
5905 
5906 	if (rctx >= 0)
5907 		perf_swevent_put_recursion_context(rctx);
5908 }
5909 
5910 /*
5911  * We assume there is only KVM supporting the callbacks.
5912  * Later on, we might change it to a list if there is
5913  * another virtualization implementation supporting the callbacks.
5914  */
5915 struct perf_guest_info_callbacks *perf_guest_cbs;
5916 
5917 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5918 {
5919 	perf_guest_cbs = cbs;
5920 	return 0;
5921 }
5922 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5923 
5924 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5925 {
5926 	perf_guest_cbs = NULL;
5927 	return 0;
5928 }
5929 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5930 
5931 static void
5932 perf_output_sample_regs(struct perf_output_handle *handle,
5933 			struct pt_regs *regs, u64 mask)
5934 {
5935 	int bit;
5936 	DECLARE_BITMAP(_mask, 64);
5937 
5938 	bitmap_from_u64(_mask, mask);
5939 	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5940 		u64 val;
5941 
5942 		val = perf_reg_value(regs, bit);
5943 		perf_output_put(handle, val);
5944 	}
5945 }
5946 
5947 static void perf_sample_regs_user(struct perf_regs *regs_user,
5948 				  struct pt_regs *regs,
5949 				  struct pt_regs *regs_user_copy)
5950 {
5951 	if (user_mode(regs)) {
5952 		regs_user->abi = perf_reg_abi(current);
5953 		regs_user->regs = regs;
5954 	} else if (!(current->flags & PF_KTHREAD)) {
5955 		perf_get_regs_user(regs_user, regs, regs_user_copy);
5956 	} else {
5957 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5958 		regs_user->regs = NULL;
5959 	}
5960 }
5961 
5962 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5963 				  struct pt_regs *regs)
5964 {
5965 	regs_intr->regs = regs;
5966 	regs_intr->abi  = perf_reg_abi(current);
5967 }
5968 
5969 
5970 /*
5971  * Get remaining task size from user stack pointer.
5972  *
5973  * It'd be better to take stack vma map and limit this more
5974  * precisly, but there's no way to get it safely under interrupt,
5975  * so using TASK_SIZE as limit.
5976  */
5977 static u64 perf_ustack_task_size(struct pt_regs *regs)
5978 {
5979 	unsigned long addr = perf_user_stack_pointer(regs);
5980 
5981 	if (!addr || addr >= TASK_SIZE)
5982 		return 0;
5983 
5984 	return TASK_SIZE - addr;
5985 }
5986 
5987 static u16
5988 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5989 			struct pt_regs *regs)
5990 {
5991 	u64 task_size;
5992 
5993 	/* No regs, no stack pointer, no dump. */
5994 	if (!regs)
5995 		return 0;
5996 
5997 	/*
5998 	 * Check if we fit in with the requested stack size into the:
5999 	 * - TASK_SIZE
6000 	 *   If we don't, we limit the size to the TASK_SIZE.
6001 	 *
6002 	 * - remaining sample size
6003 	 *   If we don't, we customize the stack size to
6004 	 *   fit in to the remaining sample size.
6005 	 */
6006 
6007 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6008 	stack_size = min(stack_size, (u16) task_size);
6009 
6010 	/* Current header size plus static size and dynamic size. */
6011 	header_size += 2 * sizeof(u64);
6012 
6013 	/* Do we fit in with the current stack dump size? */
6014 	if ((u16) (header_size + stack_size) < header_size) {
6015 		/*
6016 		 * If we overflow the maximum size for the sample,
6017 		 * we customize the stack dump size to fit in.
6018 		 */
6019 		stack_size = USHRT_MAX - header_size - sizeof(u64);
6020 		stack_size = round_up(stack_size, sizeof(u64));
6021 	}
6022 
6023 	return stack_size;
6024 }
6025 
6026 static void
6027 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6028 			  struct pt_regs *regs)
6029 {
6030 	/* Case of a kernel thread, nothing to dump */
6031 	if (!regs) {
6032 		u64 size = 0;
6033 		perf_output_put(handle, size);
6034 	} else {
6035 		unsigned long sp;
6036 		unsigned int rem;
6037 		u64 dyn_size;
6038 		mm_segment_t fs;
6039 
6040 		/*
6041 		 * We dump:
6042 		 * static size
6043 		 *   - the size requested by user or the best one we can fit
6044 		 *     in to the sample max size
6045 		 * data
6046 		 *   - user stack dump data
6047 		 * dynamic size
6048 		 *   - the actual dumped size
6049 		 */
6050 
6051 		/* Static size. */
6052 		perf_output_put(handle, dump_size);
6053 
6054 		/* Data. */
6055 		sp = perf_user_stack_pointer(regs);
6056 		fs = get_fs();
6057 		set_fs(USER_DS);
6058 		rem = __output_copy_user(handle, (void *) sp, dump_size);
6059 		set_fs(fs);
6060 		dyn_size = dump_size - rem;
6061 
6062 		perf_output_skip(handle, rem);
6063 
6064 		/* Dynamic size. */
6065 		perf_output_put(handle, dyn_size);
6066 	}
6067 }
6068 
6069 static void __perf_event_header__init_id(struct perf_event_header *header,
6070 					 struct perf_sample_data *data,
6071 					 struct perf_event *event)
6072 {
6073 	u64 sample_type = event->attr.sample_type;
6074 
6075 	data->type = sample_type;
6076 	header->size += event->id_header_size;
6077 
6078 	if (sample_type & PERF_SAMPLE_TID) {
6079 		/* namespace issues */
6080 		data->tid_entry.pid = perf_event_pid(event, current);
6081 		data->tid_entry.tid = perf_event_tid(event, current);
6082 	}
6083 
6084 	if (sample_type & PERF_SAMPLE_TIME)
6085 		data->time = perf_event_clock(event);
6086 
6087 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6088 		data->id = primary_event_id(event);
6089 
6090 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6091 		data->stream_id = event->id;
6092 
6093 	if (sample_type & PERF_SAMPLE_CPU) {
6094 		data->cpu_entry.cpu	 = raw_smp_processor_id();
6095 		data->cpu_entry.reserved = 0;
6096 	}
6097 }
6098 
6099 void perf_event_header__init_id(struct perf_event_header *header,
6100 				struct perf_sample_data *data,
6101 				struct perf_event *event)
6102 {
6103 	if (event->attr.sample_id_all)
6104 		__perf_event_header__init_id(header, data, event);
6105 }
6106 
6107 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6108 					   struct perf_sample_data *data)
6109 {
6110 	u64 sample_type = data->type;
6111 
6112 	if (sample_type & PERF_SAMPLE_TID)
6113 		perf_output_put(handle, data->tid_entry);
6114 
6115 	if (sample_type & PERF_SAMPLE_TIME)
6116 		perf_output_put(handle, data->time);
6117 
6118 	if (sample_type & PERF_SAMPLE_ID)
6119 		perf_output_put(handle, data->id);
6120 
6121 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6122 		perf_output_put(handle, data->stream_id);
6123 
6124 	if (sample_type & PERF_SAMPLE_CPU)
6125 		perf_output_put(handle, data->cpu_entry);
6126 
6127 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
6128 		perf_output_put(handle, data->id);
6129 }
6130 
6131 void perf_event__output_id_sample(struct perf_event *event,
6132 				  struct perf_output_handle *handle,
6133 				  struct perf_sample_data *sample)
6134 {
6135 	if (event->attr.sample_id_all)
6136 		__perf_event__output_id_sample(handle, sample);
6137 }
6138 
6139 static void perf_output_read_one(struct perf_output_handle *handle,
6140 				 struct perf_event *event,
6141 				 u64 enabled, u64 running)
6142 {
6143 	u64 read_format = event->attr.read_format;
6144 	u64 values[4];
6145 	int n = 0;
6146 
6147 	values[n++] = perf_event_count(event);
6148 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6149 		values[n++] = enabled +
6150 			atomic64_read(&event->child_total_time_enabled);
6151 	}
6152 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6153 		values[n++] = running +
6154 			atomic64_read(&event->child_total_time_running);
6155 	}
6156 	if (read_format & PERF_FORMAT_ID)
6157 		values[n++] = primary_event_id(event);
6158 
6159 	__output_copy(handle, values, n * sizeof(u64));
6160 }
6161 
6162 static void perf_output_read_group(struct perf_output_handle *handle,
6163 			    struct perf_event *event,
6164 			    u64 enabled, u64 running)
6165 {
6166 	struct perf_event *leader = event->group_leader, *sub;
6167 	u64 read_format = event->attr.read_format;
6168 	u64 values[5];
6169 	int n = 0;
6170 
6171 	values[n++] = 1 + leader->nr_siblings;
6172 
6173 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6174 		values[n++] = enabled;
6175 
6176 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6177 		values[n++] = running;
6178 
6179 	if ((leader != event) &&
6180 	    (leader->state == PERF_EVENT_STATE_ACTIVE))
6181 		leader->pmu->read(leader);
6182 
6183 	values[n++] = perf_event_count(leader);
6184 	if (read_format & PERF_FORMAT_ID)
6185 		values[n++] = primary_event_id(leader);
6186 
6187 	__output_copy(handle, values, n * sizeof(u64));
6188 
6189 	for_each_sibling_event(sub, leader) {
6190 		n = 0;
6191 
6192 		if ((sub != event) &&
6193 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
6194 			sub->pmu->read(sub);
6195 
6196 		values[n++] = perf_event_count(sub);
6197 		if (read_format & PERF_FORMAT_ID)
6198 			values[n++] = primary_event_id(sub);
6199 
6200 		__output_copy(handle, values, n * sizeof(u64));
6201 	}
6202 }
6203 
6204 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6205 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
6206 
6207 /*
6208  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6209  *
6210  * The problem is that its both hard and excessively expensive to iterate the
6211  * child list, not to mention that its impossible to IPI the children running
6212  * on another CPU, from interrupt/NMI context.
6213  */
6214 static void perf_output_read(struct perf_output_handle *handle,
6215 			     struct perf_event *event)
6216 {
6217 	u64 enabled = 0, running = 0, now;
6218 	u64 read_format = event->attr.read_format;
6219 
6220 	/*
6221 	 * compute total_time_enabled, total_time_running
6222 	 * based on snapshot values taken when the event
6223 	 * was last scheduled in.
6224 	 *
6225 	 * we cannot simply called update_context_time()
6226 	 * because of locking issue as we are called in
6227 	 * NMI context
6228 	 */
6229 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
6230 		calc_timer_values(event, &now, &enabled, &running);
6231 
6232 	if (event->attr.read_format & PERF_FORMAT_GROUP)
6233 		perf_output_read_group(handle, event, enabled, running);
6234 	else
6235 		perf_output_read_one(handle, event, enabled, running);
6236 }
6237 
6238 void perf_output_sample(struct perf_output_handle *handle,
6239 			struct perf_event_header *header,
6240 			struct perf_sample_data *data,
6241 			struct perf_event *event)
6242 {
6243 	u64 sample_type = data->type;
6244 
6245 	perf_output_put(handle, *header);
6246 
6247 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
6248 		perf_output_put(handle, data->id);
6249 
6250 	if (sample_type & PERF_SAMPLE_IP)
6251 		perf_output_put(handle, data->ip);
6252 
6253 	if (sample_type & PERF_SAMPLE_TID)
6254 		perf_output_put(handle, data->tid_entry);
6255 
6256 	if (sample_type & PERF_SAMPLE_TIME)
6257 		perf_output_put(handle, data->time);
6258 
6259 	if (sample_type & PERF_SAMPLE_ADDR)
6260 		perf_output_put(handle, data->addr);
6261 
6262 	if (sample_type & PERF_SAMPLE_ID)
6263 		perf_output_put(handle, data->id);
6264 
6265 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6266 		perf_output_put(handle, data->stream_id);
6267 
6268 	if (sample_type & PERF_SAMPLE_CPU)
6269 		perf_output_put(handle, data->cpu_entry);
6270 
6271 	if (sample_type & PERF_SAMPLE_PERIOD)
6272 		perf_output_put(handle, data->period);
6273 
6274 	if (sample_type & PERF_SAMPLE_READ)
6275 		perf_output_read(handle, event);
6276 
6277 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6278 		int size = 1;
6279 
6280 		size += data->callchain->nr;
6281 		size *= sizeof(u64);
6282 		__output_copy(handle, data->callchain, size);
6283 	}
6284 
6285 	if (sample_type & PERF_SAMPLE_RAW) {
6286 		struct perf_raw_record *raw = data->raw;
6287 
6288 		if (raw) {
6289 			struct perf_raw_frag *frag = &raw->frag;
6290 
6291 			perf_output_put(handle, raw->size);
6292 			do {
6293 				if (frag->copy) {
6294 					__output_custom(handle, frag->copy,
6295 							frag->data, frag->size);
6296 				} else {
6297 					__output_copy(handle, frag->data,
6298 						      frag->size);
6299 				}
6300 				if (perf_raw_frag_last(frag))
6301 					break;
6302 				frag = frag->next;
6303 			} while (1);
6304 			if (frag->pad)
6305 				__output_skip(handle, NULL, frag->pad);
6306 		} else {
6307 			struct {
6308 				u32	size;
6309 				u32	data;
6310 			} raw = {
6311 				.size = sizeof(u32),
6312 				.data = 0,
6313 			};
6314 			perf_output_put(handle, raw);
6315 		}
6316 	}
6317 
6318 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6319 		if (data->br_stack) {
6320 			size_t size;
6321 
6322 			size = data->br_stack->nr
6323 			     * sizeof(struct perf_branch_entry);
6324 
6325 			perf_output_put(handle, data->br_stack->nr);
6326 			perf_output_copy(handle, data->br_stack->entries, size);
6327 		} else {
6328 			/*
6329 			 * we always store at least the value of nr
6330 			 */
6331 			u64 nr = 0;
6332 			perf_output_put(handle, nr);
6333 		}
6334 	}
6335 
6336 	if (sample_type & PERF_SAMPLE_REGS_USER) {
6337 		u64 abi = data->regs_user.abi;
6338 
6339 		/*
6340 		 * If there are no regs to dump, notice it through
6341 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6342 		 */
6343 		perf_output_put(handle, abi);
6344 
6345 		if (abi) {
6346 			u64 mask = event->attr.sample_regs_user;
6347 			perf_output_sample_regs(handle,
6348 						data->regs_user.regs,
6349 						mask);
6350 		}
6351 	}
6352 
6353 	if (sample_type & PERF_SAMPLE_STACK_USER) {
6354 		perf_output_sample_ustack(handle,
6355 					  data->stack_user_size,
6356 					  data->regs_user.regs);
6357 	}
6358 
6359 	if (sample_type & PERF_SAMPLE_WEIGHT)
6360 		perf_output_put(handle, data->weight);
6361 
6362 	if (sample_type & PERF_SAMPLE_DATA_SRC)
6363 		perf_output_put(handle, data->data_src.val);
6364 
6365 	if (sample_type & PERF_SAMPLE_TRANSACTION)
6366 		perf_output_put(handle, data->txn);
6367 
6368 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
6369 		u64 abi = data->regs_intr.abi;
6370 		/*
6371 		 * If there are no regs to dump, notice it through
6372 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6373 		 */
6374 		perf_output_put(handle, abi);
6375 
6376 		if (abi) {
6377 			u64 mask = event->attr.sample_regs_intr;
6378 
6379 			perf_output_sample_regs(handle,
6380 						data->regs_intr.regs,
6381 						mask);
6382 		}
6383 	}
6384 
6385 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6386 		perf_output_put(handle, data->phys_addr);
6387 
6388 	if (!event->attr.watermark) {
6389 		int wakeup_events = event->attr.wakeup_events;
6390 
6391 		if (wakeup_events) {
6392 			struct ring_buffer *rb = handle->rb;
6393 			int events = local_inc_return(&rb->events);
6394 
6395 			if (events >= wakeup_events) {
6396 				local_sub(wakeup_events, &rb->events);
6397 				local_inc(&rb->wakeup);
6398 			}
6399 		}
6400 	}
6401 }
6402 
6403 static u64 perf_virt_to_phys(u64 virt)
6404 {
6405 	u64 phys_addr = 0;
6406 	struct page *p = NULL;
6407 
6408 	if (!virt)
6409 		return 0;
6410 
6411 	if (virt >= TASK_SIZE) {
6412 		/* If it's vmalloc()d memory, leave phys_addr as 0 */
6413 		if (virt_addr_valid((void *)(uintptr_t)virt) &&
6414 		    !(virt >= VMALLOC_START && virt < VMALLOC_END))
6415 			phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6416 	} else {
6417 		/*
6418 		 * Walking the pages tables for user address.
6419 		 * Interrupts are disabled, so it prevents any tear down
6420 		 * of the page tables.
6421 		 * Try IRQ-safe __get_user_pages_fast first.
6422 		 * If failed, leave phys_addr as 0.
6423 		 */
6424 		if ((current->mm != NULL) &&
6425 		    (__get_user_pages_fast(virt, 1, 0, &p) == 1))
6426 			phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6427 
6428 		if (p)
6429 			put_page(p);
6430 	}
6431 
6432 	return phys_addr;
6433 }
6434 
6435 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
6436 
6437 struct perf_callchain_entry *
6438 perf_callchain(struct perf_event *event, struct pt_regs *regs)
6439 {
6440 	bool kernel = !event->attr.exclude_callchain_kernel;
6441 	bool user   = !event->attr.exclude_callchain_user;
6442 	/* Disallow cross-task user callchains. */
6443 	bool crosstask = event->ctx->task && event->ctx->task != current;
6444 	const u32 max_stack = event->attr.sample_max_stack;
6445 	struct perf_callchain_entry *callchain;
6446 
6447 	if (!kernel && !user)
6448 		return &__empty_callchain;
6449 
6450 	callchain = get_perf_callchain(regs, 0, kernel, user,
6451 				       max_stack, crosstask, true);
6452 	return callchain ?: &__empty_callchain;
6453 }
6454 
6455 void perf_prepare_sample(struct perf_event_header *header,
6456 			 struct perf_sample_data *data,
6457 			 struct perf_event *event,
6458 			 struct pt_regs *regs)
6459 {
6460 	u64 sample_type = event->attr.sample_type;
6461 
6462 	header->type = PERF_RECORD_SAMPLE;
6463 	header->size = sizeof(*header) + event->header_size;
6464 
6465 	header->misc = 0;
6466 	header->misc |= perf_misc_flags(regs);
6467 
6468 	__perf_event_header__init_id(header, data, event);
6469 
6470 	if (sample_type & PERF_SAMPLE_IP)
6471 		data->ip = perf_instruction_pointer(regs);
6472 
6473 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6474 		int size = 1;
6475 
6476 		if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
6477 			data->callchain = perf_callchain(event, regs);
6478 
6479 		size += data->callchain->nr;
6480 
6481 		header->size += size * sizeof(u64);
6482 	}
6483 
6484 	if (sample_type & PERF_SAMPLE_RAW) {
6485 		struct perf_raw_record *raw = data->raw;
6486 		int size;
6487 
6488 		if (raw) {
6489 			struct perf_raw_frag *frag = &raw->frag;
6490 			u32 sum = 0;
6491 
6492 			do {
6493 				sum += frag->size;
6494 				if (perf_raw_frag_last(frag))
6495 					break;
6496 				frag = frag->next;
6497 			} while (1);
6498 
6499 			size = round_up(sum + sizeof(u32), sizeof(u64));
6500 			raw->size = size - sizeof(u32);
6501 			frag->pad = raw->size - sum;
6502 		} else {
6503 			size = sizeof(u64);
6504 		}
6505 
6506 		header->size += size;
6507 	}
6508 
6509 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6510 		int size = sizeof(u64); /* nr */
6511 		if (data->br_stack) {
6512 			size += data->br_stack->nr
6513 			      * sizeof(struct perf_branch_entry);
6514 		}
6515 		header->size += size;
6516 	}
6517 
6518 	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6519 		perf_sample_regs_user(&data->regs_user, regs,
6520 				      &data->regs_user_copy);
6521 
6522 	if (sample_type & PERF_SAMPLE_REGS_USER) {
6523 		/* regs dump ABI info */
6524 		int size = sizeof(u64);
6525 
6526 		if (data->regs_user.regs) {
6527 			u64 mask = event->attr.sample_regs_user;
6528 			size += hweight64(mask) * sizeof(u64);
6529 		}
6530 
6531 		header->size += size;
6532 	}
6533 
6534 	if (sample_type & PERF_SAMPLE_STACK_USER) {
6535 		/*
6536 		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6537 		 * processed as the last one or have additional check added
6538 		 * in case new sample type is added, because we could eat
6539 		 * up the rest of the sample size.
6540 		 */
6541 		u16 stack_size = event->attr.sample_stack_user;
6542 		u16 size = sizeof(u64);
6543 
6544 		stack_size = perf_sample_ustack_size(stack_size, header->size,
6545 						     data->regs_user.regs);
6546 
6547 		/*
6548 		 * If there is something to dump, add space for the dump
6549 		 * itself and for the field that tells the dynamic size,
6550 		 * which is how many have been actually dumped.
6551 		 */
6552 		if (stack_size)
6553 			size += sizeof(u64) + stack_size;
6554 
6555 		data->stack_user_size = stack_size;
6556 		header->size += size;
6557 	}
6558 
6559 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
6560 		/* regs dump ABI info */
6561 		int size = sizeof(u64);
6562 
6563 		perf_sample_regs_intr(&data->regs_intr, regs);
6564 
6565 		if (data->regs_intr.regs) {
6566 			u64 mask = event->attr.sample_regs_intr;
6567 
6568 			size += hweight64(mask) * sizeof(u64);
6569 		}
6570 
6571 		header->size += size;
6572 	}
6573 
6574 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6575 		data->phys_addr = perf_virt_to_phys(data->addr);
6576 }
6577 
6578 static __always_inline int
6579 __perf_event_output(struct perf_event *event,
6580 		    struct perf_sample_data *data,
6581 		    struct pt_regs *regs,
6582 		    int (*output_begin)(struct perf_output_handle *,
6583 					struct perf_event *,
6584 					unsigned int))
6585 {
6586 	struct perf_output_handle handle;
6587 	struct perf_event_header header;
6588 	int err;
6589 
6590 	/* protect the callchain buffers */
6591 	rcu_read_lock();
6592 
6593 	perf_prepare_sample(&header, data, event, regs);
6594 
6595 	err = output_begin(&handle, event, header.size);
6596 	if (err)
6597 		goto exit;
6598 
6599 	perf_output_sample(&handle, &header, data, event);
6600 
6601 	perf_output_end(&handle);
6602 
6603 exit:
6604 	rcu_read_unlock();
6605 	return err;
6606 }
6607 
6608 void
6609 perf_event_output_forward(struct perf_event *event,
6610 			 struct perf_sample_data *data,
6611 			 struct pt_regs *regs)
6612 {
6613 	__perf_event_output(event, data, regs, perf_output_begin_forward);
6614 }
6615 
6616 void
6617 perf_event_output_backward(struct perf_event *event,
6618 			   struct perf_sample_data *data,
6619 			   struct pt_regs *regs)
6620 {
6621 	__perf_event_output(event, data, regs, perf_output_begin_backward);
6622 }
6623 
6624 int
6625 perf_event_output(struct perf_event *event,
6626 		  struct perf_sample_data *data,
6627 		  struct pt_regs *regs)
6628 {
6629 	return __perf_event_output(event, data, regs, perf_output_begin);
6630 }
6631 
6632 /*
6633  * read event_id
6634  */
6635 
6636 struct perf_read_event {
6637 	struct perf_event_header	header;
6638 
6639 	u32				pid;
6640 	u32				tid;
6641 };
6642 
6643 static void
6644 perf_event_read_event(struct perf_event *event,
6645 			struct task_struct *task)
6646 {
6647 	struct perf_output_handle handle;
6648 	struct perf_sample_data sample;
6649 	struct perf_read_event read_event = {
6650 		.header = {
6651 			.type = PERF_RECORD_READ,
6652 			.misc = 0,
6653 			.size = sizeof(read_event) + event->read_size,
6654 		},
6655 		.pid = perf_event_pid(event, task),
6656 		.tid = perf_event_tid(event, task),
6657 	};
6658 	int ret;
6659 
6660 	perf_event_header__init_id(&read_event.header, &sample, event);
6661 	ret = perf_output_begin(&handle, event, read_event.header.size);
6662 	if (ret)
6663 		return;
6664 
6665 	perf_output_put(&handle, read_event);
6666 	perf_output_read(&handle, event);
6667 	perf_event__output_id_sample(event, &handle, &sample);
6668 
6669 	perf_output_end(&handle);
6670 }
6671 
6672 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6673 
6674 static void
6675 perf_iterate_ctx(struct perf_event_context *ctx,
6676 		   perf_iterate_f output,
6677 		   void *data, bool all)
6678 {
6679 	struct perf_event *event;
6680 
6681 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6682 		if (!all) {
6683 			if (event->state < PERF_EVENT_STATE_INACTIVE)
6684 				continue;
6685 			if (!event_filter_match(event))
6686 				continue;
6687 		}
6688 
6689 		output(event, data);
6690 	}
6691 }
6692 
6693 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6694 {
6695 	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6696 	struct perf_event *event;
6697 
6698 	list_for_each_entry_rcu(event, &pel->list, sb_list) {
6699 		/*
6700 		 * Skip events that are not fully formed yet; ensure that
6701 		 * if we observe event->ctx, both event and ctx will be
6702 		 * complete enough. See perf_install_in_context().
6703 		 */
6704 		if (!smp_load_acquire(&event->ctx))
6705 			continue;
6706 
6707 		if (event->state < PERF_EVENT_STATE_INACTIVE)
6708 			continue;
6709 		if (!event_filter_match(event))
6710 			continue;
6711 		output(event, data);
6712 	}
6713 }
6714 
6715 /*
6716  * Iterate all events that need to receive side-band events.
6717  *
6718  * For new callers; ensure that account_pmu_sb_event() includes
6719  * your event, otherwise it might not get delivered.
6720  */
6721 static void
6722 perf_iterate_sb(perf_iterate_f output, void *data,
6723 	       struct perf_event_context *task_ctx)
6724 {
6725 	struct perf_event_context *ctx;
6726 	int ctxn;
6727 
6728 	rcu_read_lock();
6729 	preempt_disable();
6730 
6731 	/*
6732 	 * If we have task_ctx != NULL we only notify the task context itself.
6733 	 * The task_ctx is set only for EXIT events before releasing task
6734 	 * context.
6735 	 */
6736 	if (task_ctx) {
6737 		perf_iterate_ctx(task_ctx, output, data, false);
6738 		goto done;
6739 	}
6740 
6741 	perf_iterate_sb_cpu(output, data);
6742 
6743 	for_each_task_context_nr(ctxn) {
6744 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6745 		if (ctx)
6746 			perf_iterate_ctx(ctx, output, data, false);
6747 	}
6748 done:
6749 	preempt_enable();
6750 	rcu_read_unlock();
6751 }
6752 
6753 /*
6754  * Clear all file-based filters at exec, they'll have to be
6755  * re-instated when/if these objects are mmapped again.
6756  */
6757 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6758 {
6759 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6760 	struct perf_addr_filter *filter;
6761 	unsigned int restart = 0, count = 0;
6762 	unsigned long flags;
6763 
6764 	if (!has_addr_filter(event))
6765 		return;
6766 
6767 	raw_spin_lock_irqsave(&ifh->lock, flags);
6768 	list_for_each_entry(filter, &ifh->list, entry) {
6769 		if (filter->path.dentry) {
6770 			event->addr_filter_ranges[count].start = 0;
6771 			event->addr_filter_ranges[count].size = 0;
6772 			restart++;
6773 		}
6774 
6775 		count++;
6776 	}
6777 
6778 	if (restart)
6779 		event->addr_filters_gen++;
6780 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
6781 
6782 	if (restart)
6783 		perf_event_stop(event, 1);
6784 }
6785 
6786 void perf_event_exec(void)
6787 {
6788 	struct perf_event_context *ctx;
6789 	int ctxn;
6790 
6791 	rcu_read_lock();
6792 	for_each_task_context_nr(ctxn) {
6793 		ctx = current->perf_event_ctxp[ctxn];
6794 		if (!ctx)
6795 			continue;
6796 
6797 		perf_event_enable_on_exec(ctxn);
6798 
6799 		perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6800 				   true);
6801 	}
6802 	rcu_read_unlock();
6803 }
6804 
6805 struct remote_output {
6806 	struct ring_buffer	*rb;
6807 	int			err;
6808 };
6809 
6810 static void __perf_event_output_stop(struct perf_event *event, void *data)
6811 {
6812 	struct perf_event *parent = event->parent;
6813 	struct remote_output *ro = data;
6814 	struct ring_buffer *rb = ro->rb;
6815 	struct stop_event_data sd = {
6816 		.event	= event,
6817 	};
6818 
6819 	if (!has_aux(event))
6820 		return;
6821 
6822 	if (!parent)
6823 		parent = event;
6824 
6825 	/*
6826 	 * In case of inheritance, it will be the parent that links to the
6827 	 * ring-buffer, but it will be the child that's actually using it.
6828 	 *
6829 	 * We are using event::rb to determine if the event should be stopped,
6830 	 * however this may race with ring_buffer_attach() (through set_output),
6831 	 * which will make us skip the event that actually needs to be stopped.
6832 	 * So ring_buffer_attach() has to stop an aux event before re-assigning
6833 	 * its rb pointer.
6834 	 */
6835 	if (rcu_dereference(parent->rb) == rb)
6836 		ro->err = __perf_event_stop(&sd);
6837 }
6838 
6839 static int __perf_pmu_output_stop(void *info)
6840 {
6841 	struct perf_event *event = info;
6842 	struct pmu *pmu = event->pmu;
6843 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6844 	struct remote_output ro = {
6845 		.rb	= event->rb,
6846 	};
6847 
6848 	rcu_read_lock();
6849 	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6850 	if (cpuctx->task_ctx)
6851 		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6852 				   &ro, false);
6853 	rcu_read_unlock();
6854 
6855 	return ro.err;
6856 }
6857 
6858 static void perf_pmu_output_stop(struct perf_event *event)
6859 {
6860 	struct perf_event *iter;
6861 	int err, cpu;
6862 
6863 restart:
6864 	rcu_read_lock();
6865 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6866 		/*
6867 		 * For per-CPU events, we need to make sure that neither they
6868 		 * nor their children are running; for cpu==-1 events it's
6869 		 * sufficient to stop the event itself if it's active, since
6870 		 * it can't have children.
6871 		 */
6872 		cpu = iter->cpu;
6873 		if (cpu == -1)
6874 			cpu = READ_ONCE(iter->oncpu);
6875 
6876 		if (cpu == -1)
6877 			continue;
6878 
6879 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6880 		if (err == -EAGAIN) {
6881 			rcu_read_unlock();
6882 			goto restart;
6883 		}
6884 	}
6885 	rcu_read_unlock();
6886 }
6887 
6888 /*
6889  * task tracking -- fork/exit
6890  *
6891  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6892  */
6893 
6894 struct perf_task_event {
6895 	struct task_struct		*task;
6896 	struct perf_event_context	*task_ctx;
6897 
6898 	struct {
6899 		struct perf_event_header	header;
6900 
6901 		u32				pid;
6902 		u32				ppid;
6903 		u32				tid;
6904 		u32				ptid;
6905 		u64				time;
6906 	} event_id;
6907 };
6908 
6909 static int perf_event_task_match(struct perf_event *event)
6910 {
6911 	return event->attr.comm  || event->attr.mmap ||
6912 	       event->attr.mmap2 || event->attr.mmap_data ||
6913 	       event->attr.task;
6914 }
6915 
6916 static void perf_event_task_output(struct perf_event *event,
6917 				   void *data)
6918 {
6919 	struct perf_task_event *task_event = data;
6920 	struct perf_output_handle handle;
6921 	struct perf_sample_data	sample;
6922 	struct task_struct *task = task_event->task;
6923 	int ret, size = task_event->event_id.header.size;
6924 
6925 	if (!perf_event_task_match(event))
6926 		return;
6927 
6928 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6929 
6930 	ret = perf_output_begin(&handle, event,
6931 				task_event->event_id.header.size);
6932 	if (ret)
6933 		goto out;
6934 
6935 	task_event->event_id.pid = perf_event_pid(event, task);
6936 	task_event->event_id.ppid = perf_event_pid(event, current);
6937 
6938 	task_event->event_id.tid = perf_event_tid(event, task);
6939 	task_event->event_id.ptid = perf_event_tid(event, current);
6940 
6941 	task_event->event_id.time = perf_event_clock(event);
6942 
6943 	perf_output_put(&handle, task_event->event_id);
6944 
6945 	perf_event__output_id_sample(event, &handle, &sample);
6946 
6947 	perf_output_end(&handle);
6948 out:
6949 	task_event->event_id.header.size = size;
6950 }
6951 
6952 static void perf_event_task(struct task_struct *task,
6953 			      struct perf_event_context *task_ctx,
6954 			      int new)
6955 {
6956 	struct perf_task_event task_event;
6957 
6958 	if (!atomic_read(&nr_comm_events) &&
6959 	    !atomic_read(&nr_mmap_events) &&
6960 	    !atomic_read(&nr_task_events))
6961 		return;
6962 
6963 	task_event = (struct perf_task_event){
6964 		.task	  = task,
6965 		.task_ctx = task_ctx,
6966 		.event_id    = {
6967 			.header = {
6968 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6969 				.misc = 0,
6970 				.size = sizeof(task_event.event_id),
6971 			},
6972 			/* .pid  */
6973 			/* .ppid */
6974 			/* .tid  */
6975 			/* .ptid */
6976 			/* .time */
6977 		},
6978 	};
6979 
6980 	perf_iterate_sb(perf_event_task_output,
6981 		       &task_event,
6982 		       task_ctx);
6983 }
6984 
6985 void perf_event_fork(struct task_struct *task)
6986 {
6987 	perf_event_task(task, NULL, 1);
6988 	perf_event_namespaces(task);
6989 }
6990 
6991 /*
6992  * comm tracking
6993  */
6994 
6995 struct perf_comm_event {
6996 	struct task_struct	*task;
6997 	char			*comm;
6998 	int			comm_size;
6999 
7000 	struct {
7001 		struct perf_event_header	header;
7002 
7003 		u32				pid;
7004 		u32				tid;
7005 	} event_id;
7006 };
7007 
7008 static int perf_event_comm_match(struct perf_event *event)
7009 {
7010 	return event->attr.comm;
7011 }
7012 
7013 static void perf_event_comm_output(struct perf_event *event,
7014 				   void *data)
7015 {
7016 	struct perf_comm_event *comm_event = data;
7017 	struct perf_output_handle handle;
7018 	struct perf_sample_data sample;
7019 	int size = comm_event->event_id.header.size;
7020 	int ret;
7021 
7022 	if (!perf_event_comm_match(event))
7023 		return;
7024 
7025 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
7026 	ret = perf_output_begin(&handle, event,
7027 				comm_event->event_id.header.size);
7028 
7029 	if (ret)
7030 		goto out;
7031 
7032 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
7033 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
7034 
7035 	perf_output_put(&handle, comm_event->event_id);
7036 	__output_copy(&handle, comm_event->comm,
7037 				   comm_event->comm_size);
7038 
7039 	perf_event__output_id_sample(event, &handle, &sample);
7040 
7041 	perf_output_end(&handle);
7042 out:
7043 	comm_event->event_id.header.size = size;
7044 }
7045 
7046 static void perf_event_comm_event(struct perf_comm_event *comm_event)
7047 {
7048 	char comm[TASK_COMM_LEN];
7049 	unsigned int size;
7050 
7051 	memset(comm, 0, sizeof(comm));
7052 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
7053 	size = ALIGN(strlen(comm)+1, sizeof(u64));
7054 
7055 	comm_event->comm = comm;
7056 	comm_event->comm_size = size;
7057 
7058 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
7059 
7060 	perf_iterate_sb(perf_event_comm_output,
7061 		       comm_event,
7062 		       NULL);
7063 }
7064 
7065 void perf_event_comm(struct task_struct *task, bool exec)
7066 {
7067 	struct perf_comm_event comm_event;
7068 
7069 	if (!atomic_read(&nr_comm_events))
7070 		return;
7071 
7072 	comm_event = (struct perf_comm_event){
7073 		.task	= task,
7074 		/* .comm      */
7075 		/* .comm_size */
7076 		.event_id  = {
7077 			.header = {
7078 				.type = PERF_RECORD_COMM,
7079 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
7080 				/* .size */
7081 			},
7082 			/* .pid */
7083 			/* .tid */
7084 		},
7085 	};
7086 
7087 	perf_event_comm_event(&comm_event);
7088 }
7089 
7090 /*
7091  * namespaces tracking
7092  */
7093 
7094 struct perf_namespaces_event {
7095 	struct task_struct		*task;
7096 
7097 	struct {
7098 		struct perf_event_header	header;
7099 
7100 		u32				pid;
7101 		u32				tid;
7102 		u64				nr_namespaces;
7103 		struct perf_ns_link_info	link_info[NR_NAMESPACES];
7104 	} event_id;
7105 };
7106 
7107 static int perf_event_namespaces_match(struct perf_event *event)
7108 {
7109 	return event->attr.namespaces;
7110 }
7111 
7112 static void perf_event_namespaces_output(struct perf_event *event,
7113 					 void *data)
7114 {
7115 	struct perf_namespaces_event *namespaces_event = data;
7116 	struct perf_output_handle handle;
7117 	struct perf_sample_data sample;
7118 	u16 header_size = namespaces_event->event_id.header.size;
7119 	int ret;
7120 
7121 	if (!perf_event_namespaces_match(event))
7122 		return;
7123 
7124 	perf_event_header__init_id(&namespaces_event->event_id.header,
7125 				   &sample, event);
7126 	ret = perf_output_begin(&handle, event,
7127 				namespaces_event->event_id.header.size);
7128 	if (ret)
7129 		goto out;
7130 
7131 	namespaces_event->event_id.pid = perf_event_pid(event,
7132 							namespaces_event->task);
7133 	namespaces_event->event_id.tid = perf_event_tid(event,
7134 							namespaces_event->task);
7135 
7136 	perf_output_put(&handle, namespaces_event->event_id);
7137 
7138 	perf_event__output_id_sample(event, &handle, &sample);
7139 
7140 	perf_output_end(&handle);
7141 out:
7142 	namespaces_event->event_id.header.size = header_size;
7143 }
7144 
7145 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
7146 				   struct task_struct *task,
7147 				   const struct proc_ns_operations *ns_ops)
7148 {
7149 	struct path ns_path;
7150 	struct inode *ns_inode;
7151 	void *error;
7152 
7153 	error = ns_get_path(&ns_path, task, ns_ops);
7154 	if (!error) {
7155 		ns_inode = ns_path.dentry->d_inode;
7156 		ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
7157 		ns_link_info->ino = ns_inode->i_ino;
7158 		path_put(&ns_path);
7159 	}
7160 }
7161 
7162 void perf_event_namespaces(struct task_struct *task)
7163 {
7164 	struct perf_namespaces_event namespaces_event;
7165 	struct perf_ns_link_info *ns_link_info;
7166 
7167 	if (!atomic_read(&nr_namespaces_events))
7168 		return;
7169 
7170 	namespaces_event = (struct perf_namespaces_event){
7171 		.task	= task,
7172 		.event_id  = {
7173 			.header = {
7174 				.type = PERF_RECORD_NAMESPACES,
7175 				.misc = 0,
7176 				.size = sizeof(namespaces_event.event_id),
7177 			},
7178 			/* .pid */
7179 			/* .tid */
7180 			.nr_namespaces = NR_NAMESPACES,
7181 			/* .link_info[NR_NAMESPACES] */
7182 		},
7183 	};
7184 
7185 	ns_link_info = namespaces_event.event_id.link_info;
7186 
7187 	perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
7188 			       task, &mntns_operations);
7189 
7190 #ifdef CONFIG_USER_NS
7191 	perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
7192 			       task, &userns_operations);
7193 #endif
7194 #ifdef CONFIG_NET_NS
7195 	perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
7196 			       task, &netns_operations);
7197 #endif
7198 #ifdef CONFIG_UTS_NS
7199 	perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
7200 			       task, &utsns_operations);
7201 #endif
7202 #ifdef CONFIG_IPC_NS
7203 	perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
7204 			       task, &ipcns_operations);
7205 #endif
7206 #ifdef CONFIG_PID_NS
7207 	perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
7208 			       task, &pidns_operations);
7209 #endif
7210 #ifdef CONFIG_CGROUPS
7211 	perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
7212 			       task, &cgroupns_operations);
7213 #endif
7214 
7215 	perf_iterate_sb(perf_event_namespaces_output,
7216 			&namespaces_event,
7217 			NULL);
7218 }
7219 
7220 /*
7221  * mmap tracking
7222  */
7223 
7224 struct perf_mmap_event {
7225 	struct vm_area_struct	*vma;
7226 
7227 	const char		*file_name;
7228 	int			file_size;
7229 	int			maj, min;
7230 	u64			ino;
7231 	u64			ino_generation;
7232 	u32			prot, flags;
7233 
7234 	struct {
7235 		struct perf_event_header	header;
7236 
7237 		u32				pid;
7238 		u32				tid;
7239 		u64				start;
7240 		u64				len;
7241 		u64				pgoff;
7242 	} event_id;
7243 };
7244 
7245 static int perf_event_mmap_match(struct perf_event *event,
7246 				 void *data)
7247 {
7248 	struct perf_mmap_event *mmap_event = data;
7249 	struct vm_area_struct *vma = mmap_event->vma;
7250 	int executable = vma->vm_flags & VM_EXEC;
7251 
7252 	return (!executable && event->attr.mmap_data) ||
7253 	       (executable && (event->attr.mmap || event->attr.mmap2));
7254 }
7255 
7256 static void perf_event_mmap_output(struct perf_event *event,
7257 				   void *data)
7258 {
7259 	struct perf_mmap_event *mmap_event = data;
7260 	struct perf_output_handle handle;
7261 	struct perf_sample_data sample;
7262 	int size = mmap_event->event_id.header.size;
7263 	u32 type = mmap_event->event_id.header.type;
7264 	int ret;
7265 
7266 	if (!perf_event_mmap_match(event, data))
7267 		return;
7268 
7269 	if (event->attr.mmap2) {
7270 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
7271 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
7272 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
7273 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
7274 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
7275 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
7276 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
7277 	}
7278 
7279 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
7280 	ret = perf_output_begin(&handle, event,
7281 				mmap_event->event_id.header.size);
7282 	if (ret)
7283 		goto out;
7284 
7285 	mmap_event->event_id.pid = perf_event_pid(event, current);
7286 	mmap_event->event_id.tid = perf_event_tid(event, current);
7287 
7288 	perf_output_put(&handle, mmap_event->event_id);
7289 
7290 	if (event->attr.mmap2) {
7291 		perf_output_put(&handle, mmap_event->maj);
7292 		perf_output_put(&handle, mmap_event->min);
7293 		perf_output_put(&handle, mmap_event->ino);
7294 		perf_output_put(&handle, mmap_event->ino_generation);
7295 		perf_output_put(&handle, mmap_event->prot);
7296 		perf_output_put(&handle, mmap_event->flags);
7297 	}
7298 
7299 	__output_copy(&handle, mmap_event->file_name,
7300 				   mmap_event->file_size);
7301 
7302 	perf_event__output_id_sample(event, &handle, &sample);
7303 
7304 	perf_output_end(&handle);
7305 out:
7306 	mmap_event->event_id.header.size = size;
7307 	mmap_event->event_id.header.type = type;
7308 }
7309 
7310 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
7311 {
7312 	struct vm_area_struct *vma = mmap_event->vma;
7313 	struct file *file = vma->vm_file;
7314 	int maj = 0, min = 0;
7315 	u64 ino = 0, gen = 0;
7316 	u32 prot = 0, flags = 0;
7317 	unsigned int size;
7318 	char tmp[16];
7319 	char *buf = NULL;
7320 	char *name;
7321 
7322 	if (vma->vm_flags & VM_READ)
7323 		prot |= PROT_READ;
7324 	if (vma->vm_flags & VM_WRITE)
7325 		prot |= PROT_WRITE;
7326 	if (vma->vm_flags & VM_EXEC)
7327 		prot |= PROT_EXEC;
7328 
7329 	if (vma->vm_flags & VM_MAYSHARE)
7330 		flags = MAP_SHARED;
7331 	else
7332 		flags = MAP_PRIVATE;
7333 
7334 	if (vma->vm_flags & VM_DENYWRITE)
7335 		flags |= MAP_DENYWRITE;
7336 	if (vma->vm_flags & VM_MAYEXEC)
7337 		flags |= MAP_EXECUTABLE;
7338 	if (vma->vm_flags & VM_LOCKED)
7339 		flags |= MAP_LOCKED;
7340 	if (vma->vm_flags & VM_HUGETLB)
7341 		flags |= MAP_HUGETLB;
7342 
7343 	if (file) {
7344 		struct inode *inode;
7345 		dev_t dev;
7346 
7347 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
7348 		if (!buf) {
7349 			name = "//enomem";
7350 			goto cpy_name;
7351 		}
7352 		/*
7353 		 * d_path() works from the end of the rb backwards, so we
7354 		 * need to add enough zero bytes after the string to handle
7355 		 * the 64bit alignment we do later.
7356 		 */
7357 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
7358 		if (IS_ERR(name)) {
7359 			name = "//toolong";
7360 			goto cpy_name;
7361 		}
7362 		inode = file_inode(vma->vm_file);
7363 		dev = inode->i_sb->s_dev;
7364 		ino = inode->i_ino;
7365 		gen = inode->i_generation;
7366 		maj = MAJOR(dev);
7367 		min = MINOR(dev);
7368 
7369 		goto got_name;
7370 	} else {
7371 		if (vma->vm_ops && vma->vm_ops->name) {
7372 			name = (char *) vma->vm_ops->name(vma);
7373 			if (name)
7374 				goto cpy_name;
7375 		}
7376 
7377 		name = (char *)arch_vma_name(vma);
7378 		if (name)
7379 			goto cpy_name;
7380 
7381 		if (vma->vm_start <= vma->vm_mm->start_brk &&
7382 				vma->vm_end >= vma->vm_mm->brk) {
7383 			name = "[heap]";
7384 			goto cpy_name;
7385 		}
7386 		if (vma->vm_start <= vma->vm_mm->start_stack &&
7387 				vma->vm_end >= vma->vm_mm->start_stack) {
7388 			name = "[stack]";
7389 			goto cpy_name;
7390 		}
7391 
7392 		name = "//anon";
7393 		goto cpy_name;
7394 	}
7395 
7396 cpy_name:
7397 	strlcpy(tmp, name, sizeof(tmp));
7398 	name = tmp;
7399 got_name:
7400 	/*
7401 	 * Since our buffer works in 8 byte units we need to align our string
7402 	 * size to a multiple of 8. However, we must guarantee the tail end is
7403 	 * zero'd out to avoid leaking random bits to userspace.
7404 	 */
7405 	size = strlen(name)+1;
7406 	while (!IS_ALIGNED(size, sizeof(u64)))
7407 		name[size++] = '\0';
7408 
7409 	mmap_event->file_name = name;
7410 	mmap_event->file_size = size;
7411 	mmap_event->maj = maj;
7412 	mmap_event->min = min;
7413 	mmap_event->ino = ino;
7414 	mmap_event->ino_generation = gen;
7415 	mmap_event->prot = prot;
7416 	mmap_event->flags = flags;
7417 
7418 	if (!(vma->vm_flags & VM_EXEC))
7419 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
7420 
7421 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
7422 
7423 	perf_iterate_sb(perf_event_mmap_output,
7424 		       mmap_event,
7425 		       NULL);
7426 
7427 	kfree(buf);
7428 }
7429 
7430 /*
7431  * Check whether inode and address range match filter criteria.
7432  */
7433 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
7434 				     struct file *file, unsigned long offset,
7435 				     unsigned long size)
7436 {
7437 	/* d_inode(NULL) won't be equal to any mapped user-space file */
7438 	if (!filter->path.dentry)
7439 		return false;
7440 
7441 	if (d_inode(filter->path.dentry) != file_inode(file))
7442 		return false;
7443 
7444 	if (filter->offset > offset + size)
7445 		return false;
7446 
7447 	if (filter->offset + filter->size < offset)
7448 		return false;
7449 
7450 	return true;
7451 }
7452 
7453 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
7454 					struct vm_area_struct *vma,
7455 					struct perf_addr_filter_range *fr)
7456 {
7457 	unsigned long vma_size = vma->vm_end - vma->vm_start;
7458 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
7459 	struct file *file = vma->vm_file;
7460 
7461 	if (!perf_addr_filter_match(filter, file, off, vma_size))
7462 		return false;
7463 
7464 	if (filter->offset < off) {
7465 		fr->start = vma->vm_start;
7466 		fr->size = min(vma_size, filter->size - (off - filter->offset));
7467 	} else {
7468 		fr->start = vma->vm_start + filter->offset - off;
7469 		fr->size = min(vma->vm_end - fr->start, filter->size);
7470 	}
7471 
7472 	return true;
7473 }
7474 
7475 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
7476 {
7477 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7478 	struct vm_area_struct *vma = data;
7479 	struct perf_addr_filter *filter;
7480 	unsigned int restart = 0, count = 0;
7481 	unsigned long flags;
7482 
7483 	if (!has_addr_filter(event))
7484 		return;
7485 
7486 	if (!vma->vm_file)
7487 		return;
7488 
7489 	raw_spin_lock_irqsave(&ifh->lock, flags);
7490 	list_for_each_entry(filter, &ifh->list, entry) {
7491 		if (perf_addr_filter_vma_adjust(filter, vma,
7492 						&event->addr_filter_ranges[count]))
7493 			restart++;
7494 
7495 		count++;
7496 	}
7497 
7498 	if (restart)
7499 		event->addr_filters_gen++;
7500 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
7501 
7502 	if (restart)
7503 		perf_event_stop(event, 1);
7504 }
7505 
7506 /*
7507  * Adjust all task's events' filters to the new vma
7508  */
7509 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7510 {
7511 	struct perf_event_context *ctx;
7512 	int ctxn;
7513 
7514 	/*
7515 	 * Data tracing isn't supported yet and as such there is no need
7516 	 * to keep track of anything that isn't related to executable code:
7517 	 */
7518 	if (!(vma->vm_flags & VM_EXEC))
7519 		return;
7520 
7521 	rcu_read_lock();
7522 	for_each_task_context_nr(ctxn) {
7523 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7524 		if (!ctx)
7525 			continue;
7526 
7527 		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7528 	}
7529 	rcu_read_unlock();
7530 }
7531 
7532 void perf_event_mmap(struct vm_area_struct *vma)
7533 {
7534 	struct perf_mmap_event mmap_event;
7535 
7536 	if (!atomic_read(&nr_mmap_events))
7537 		return;
7538 
7539 	mmap_event = (struct perf_mmap_event){
7540 		.vma	= vma,
7541 		/* .file_name */
7542 		/* .file_size */
7543 		.event_id  = {
7544 			.header = {
7545 				.type = PERF_RECORD_MMAP,
7546 				.misc = PERF_RECORD_MISC_USER,
7547 				/* .size */
7548 			},
7549 			/* .pid */
7550 			/* .tid */
7551 			.start  = vma->vm_start,
7552 			.len    = vma->vm_end - vma->vm_start,
7553 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
7554 		},
7555 		/* .maj (attr_mmap2 only) */
7556 		/* .min (attr_mmap2 only) */
7557 		/* .ino (attr_mmap2 only) */
7558 		/* .ino_generation (attr_mmap2 only) */
7559 		/* .prot (attr_mmap2 only) */
7560 		/* .flags (attr_mmap2 only) */
7561 	};
7562 
7563 	perf_addr_filters_adjust(vma);
7564 	perf_event_mmap_event(&mmap_event);
7565 }
7566 
7567 void perf_event_aux_event(struct perf_event *event, unsigned long head,
7568 			  unsigned long size, u64 flags)
7569 {
7570 	struct perf_output_handle handle;
7571 	struct perf_sample_data sample;
7572 	struct perf_aux_event {
7573 		struct perf_event_header	header;
7574 		u64				offset;
7575 		u64				size;
7576 		u64				flags;
7577 	} rec = {
7578 		.header = {
7579 			.type = PERF_RECORD_AUX,
7580 			.misc = 0,
7581 			.size = sizeof(rec),
7582 		},
7583 		.offset		= head,
7584 		.size		= size,
7585 		.flags		= flags,
7586 	};
7587 	int ret;
7588 
7589 	perf_event_header__init_id(&rec.header, &sample, event);
7590 	ret = perf_output_begin(&handle, event, rec.header.size);
7591 
7592 	if (ret)
7593 		return;
7594 
7595 	perf_output_put(&handle, rec);
7596 	perf_event__output_id_sample(event, &handle, &sample);
7597 
7598 	perf_output_end(&handle);
7599 }
7600 
7601 /*
7602  * Lost/dropped samples logging
7603  */
7604 void perf_log_lost_samples(struct perf_event *event, u64 lost)
7605 {
7606 	struct perf_output_handle handle;
7607 	struct perf_sample_data sample;
7608 	int ret;
7609 
7610 	struct {
7611 		struct perf_event_header	header;
7612 		u64				lost;
7613 	} lost_samples_event = {
7614 		.header = {
7615 			.type = PERF_RECORD_LOST_SAMPLES,
7616 			.misc = 0,
7617 			.size = sizeof(lost_samples_event),
7618 		},
7619 		.lost		= lost,
7620 	};
7621 
7622 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7623 
7624 	ret = perf_output_begin(&handle, event,
7625 				lost_samples_event.header.size);
7626 	if (ret)
7627 		return;
7628 
7629 	perf_output_put(&handle, lost_samples_event);
7630 	perf_event__output_id_sample(event, &handle, &sample);
7631 	perf_output_end(&handle);
7632 }
7633 
7634 /*
7635  * context_switch tracking
7636  */
7637 
7638 struct perf_switch_event {
7639 	struct task_struct	*task;
7640 	struct task_struct	*next_prev;
7641 
7642 	struct {
7643 		struct perf_event_header	header;
7644 		u32				next_prev_pid;
7645 		u32				next_prev_tid;
7646 	} event_id;
7647 };
7648 
7649 static int perf_event_switch_match(struct perf_event *event)
7650 {
7651 	return event->attr.context_switch;
7652 }
7653 
7654 static void perf_event_switch_output(struct perf_event *event, void *data)
7655 {
7656 	struct perf_switch_event *se = data;
7657 	struct perf_output_handle handle;
7658 	struct perf_sample_data sample;
7659 	int ret;
7660 
7661 	if (!perf_event_switch_match(event))
7662 		return;
7663 
7664 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
7665 	if (event->ctx->task) {
7666 		se->event_id.header.type = PERF_RECORD_SWITCH;
7667 		se->event_id.header.size = sizeof(se->event_id.header);
7668 	} else {
7669 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7670 		se->event_id.header.size = sizeof(se->event_id);
7671 		se->event_id.next_prev_pid =
7672 					perf_event_pid(event, se->next_prev);
7673 		se->event_id.next_prev_tid =
7674 					perf_event_tid(event, se->next_prev);
7675 	}
7676 
7677 	perf_event_header__init_id(&se->event_id.header, &sample, event);
7678 
7679 	ret = perf_output_begin(&handle, event, se->event_id.header.size);
7680 	if (ret)
7681 		return;
7682 
7683 	if (event->ctx->task)
7684 		perf_output_put(&handle, se->event_id.header);
7685 	else
7686 		perf_output_put(&handle, se->event_id);
7687 
7688 	perf_event__output_id_sample(event, &handle, &sample);
7689 
7690 	perf_output_end(&handle);
7691 }
7692 
7693 static void perf_event_switch(struct task_struct *task,
7694 			      struct task_struct *next_prev, bool sched_in)
7695 {
7696 	struct perf_switch_event switch_event;
7697 
7698 	/* N.B. caller checks nr_switch_events != 0 */
7699 
7700 	switch_event = (struct perf_switch_event){
7701 		.task		= task,
7702 		.next_prev	= next_prev,
7703 		.event_id	= {
7704 			.header = {
7705 				/* .type */
7706 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7707 				/* .size */
7708 			},
7709 			/* .next_prev_pid */
7710 			/* .next_prev_tid */
7711 		},
7712 	};
7713 
7714 	if (!sched_in && task->state == TASK_RUNNING)
7715 		switch_event.event_id.header.misc |=
7716 				PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
7717 
7718 	perf_iterate_sb(perf_event_switch_output,
7719 		       &switch_event,
7720 		       NULL);
7721 }
7722 
7723 /*
7724  * IRQ throttle logging
7725  */
7726 
7727 static void perf_log_throttle(struct perf_event *event, int enable)
7728 {
7729 	struct perf_output_handle handle;
7730 	struct perf_sample_data sample;
7731 	int ret;
7732 
7733 	struct {
7734 		struct perf_event_header	header;
7735 		u64				time;
7736 		u64				id;
7737 		u64				stream_id;
7738 	} throttle_event = {
7739 		.header = {
7740 			.type = PERF_RECORD_THROTTLE,
7741 			.misc = 0,
7742 			.size = sizeof(throttle_event),
7743 		},
7744 		.time		= perf_event_clock(event),
7745 		.id		= primary_event_id(event),
7746 		.stream_id	= event->id,
7747 	};
7748 
7749 	if (enable)
7750 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7751 
7752 	perf_event_header__init_id(&throttle_event.header, &sample, event);
7753 
7754 	ret = perf_output_begin(&handle, event,
7755 				throttle_event.header.size);
7756 	if (ret)
7757 		return;
7758 
7759 	perf_output_put(&handle, throttle_event);
7760 	perf_event__output_id_sample(event, &handle, &sample);
7761 	perf_output_end(&handle);
7762 }
7763 
7764 /*
7765  * ksymbol register/unregister tracking
7766  */
7767 
7768 struct perf_ksymbol_event {
7769 	const char	*name;
7770 	int		name_len;
7771 	struct {
7772 		struct perf_event_header        header;
7773 		u64				addr;
7774 		u32				len;
7775 		u16				ksym_type;
7776 		u16				flags;
7777 	} event_id;
7778 };
7779 
7780 static int perf_event_ksymbol_match(struct perf_event *event)
7781 {
7782 	return event->attr.ksymbol;
7783 }
7784 
7785 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
7786 {
7787 	struct perf_ksymbol_event *ksymbol_event = data;
7788 	struct perf_output_handle handle;
7789 	struct perf_sample_data sample;
7790 	int ret;
7791 
7792 	if (!perf_event_ksymbol_match(event))
7793 		return;
7794 
7795 	perf_event_header__init_id(&ksymbol_event->event_id.header,
7796 				   &sample, event);
7797 	ret = perf_output_begin(&handle, event,
7798 				ksymbol_event->event_id.header.size);
7799 	if (ret)
7800 		return;
7801 
7802 	perf_output_put(&handle, ksymbol_event->event_id);
7803 	__output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
7804 	perf_event__output_id_sample(event, &handle, &sample);
7805 
7806 	perf_output_end(&handle);
7807 }
7808 
7809 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
7810 			const char *sym)
7811 {
7812 	struct perf_ksymbol_event ksymbol_event;
7813 	char name[KSYM_NAME_LEN];
7814 	u16 flags = 0;
7815 	int name_len;
7816 
7817 	if (!atomic_read(&nr_ksymbol_events))
7818 		return;
7819 
7820 	if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
7821 	    ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
7822 		goto err;
7823 
7824 	strlcpy(name, sym, KSYM_NAME_LEN);
7825 	name_len = strlen(name) + 1;
7826 	while (!IS_ALIGNED(name_len, sizeof(u64)))
7827 		name[name_len++] = '\0';
7828 	BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
7829 
7830 	if (unregister)
7831 		flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
7832 
7833 	ksymbol_event = (struct perf_ksymbol_event){
7834 		.name = name,
7835 		.name_len = name_len,
7836 		.event_id = {
7837 			.header = {
7838 				.type = PERF_RECORD_KSYMBOL,
7839 				.size = sizeof(ksymbol_event.event_id) +
7840 					name_len,
7841 			},
7842 			.addr = addr,
7843 			.len = len,
7844 			.ksym_type = ksym_type,
7845 			.flags = flags,
7846 		},
7847 	};
7848 
7849 	perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
7850 	return;
7851 err:
7852 	WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
7853 }
7854 
7855 /*
7856  * bpf program load/unload tracking
7857  */
7858 
7859 struct perf_bpf_event {
7860 	struct bpf_prog	*prog;
7861 	struct {
7862 		struct perf_event_header        header;
7863 		u16				type;
7864 		u16				flags;
7865 		u32				id;
7866 		u8				tag[BPF_TAG_SIZE];
7867 	} event_id;
7868 };
7869 
7870 static int perf_event_bpf_match(struct perf_event *event)
7871 {
7872 	return event->attr.bpf_event;
7873 }
7874 
7875 static void perf_event_bpf_output(struct perf_event *event, void *data)
7876 {
7877 	struct perf_bpf_event *bpf_event = data;
7878 	struct perf_output_handle handle;
7879 	struct perf_sample_data sample;
7880 	int ret;
7881 
7882 	if (!perf_event_bpf_match(event))
7883 		return;
7884 
7885 	perf_event_header__init_id(&bpf_event->event_id.header,
7886 				   &sample, event);
7887 	ret = perf_output_begin(&handle, event,
7888 				bpf_event->event_id.header.size);
7889 	if (ret)
7890 		return;
7891 
7892 	perf_output_put(&handle, bpf_event->event_id);
7893 	perf_event__output_id_sample(event, &handle, &sample);
7894 
7895 	perf_output_end(&handle);
7896 }
7897 
7898 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
7899 					 enum perf_bpf_event_type type)
7900 {
7901 	bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
7902 	char sym[KSYM_NAME_LEN];
7903 	int i;
7904 
7905 	if (prog->aux->func_cnt == 0) {
7906 		bpf_get_prog_name(prog, sym);
7907 		perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
7908 				   (u64)(unsigned long)prog->bpf_func,
7909 				   prog->jited_len, unregister, sym);
7910 	} else {
7911 		for (i = 0; i < prog->aux->func_cnt; i++) {
7912 			struct bpf_prog *subprog = prog->aux->func[i];
7913 
7914 			bpf_get_prog_name(subprog, sym);
7915 			perf_event_ksymbol(
7916 				PERF_RECORD_KSYMBOL_TYPE_BPF,
7917 				(u64)(unsigned long)subprog->bpf_func,
7918 				subprog->jited_len, unregister, sym);
7919 		}
7920 	}
7921 }
7922 
7923 void perf_event_bpf_event(struct bpf_prog *prog,
7924 			  enum perf_bpf_event_type type,
7925 			  u16 flags)
7926 {
7927 	struct perf_bpf_event bpf_event;
7928 
7929 	if (type <= PERF_BPF_EVENT_UNKNOWN ||
7930 	    type >= PERF_BPF_EVENT_MAX)
7931 		return;
7932 
7933 	switch (type) {
7934 	case PERF_BPF_EVENT_PROG_LOAD:
7935 	case PERF_BPF_EVENT_PROG_UNLOAD:
7936 		if (atomic_read(&nr_ksymbol_events))
7937 			perf_event_bpf_emit_ksymbols(prog, type);
7938 		break;
7939 	default:
7940 		break;
7941 	}
7942 
7943 	if (!atomic_read(&nr_bpf_events))
7944 		return;
7945 
7946 	bpf_event = (struct perf_bpf_event){
7947 		.prog = prog,
7948 		.event_id = {
7949 			.header = {
7950 				.type = PERF_RECORD_BPF_EVENT,
7951 				.size = sizeof(bpf_event.event_id),
7952 			},
7953 			.type = type,
7954 			.flags = flags,
7955 			.id = prog->aux->id,
7956 		},
7957 	};
7958 
7959 	BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
7960 
7961 	memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
7962 	perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
7963 }
7964 
7965 void perf_event_itrace_started(struct perf_event *event)
7966 {
7967 	event->attach_state |= PERF_ATTACH_ITRACE;
7968 }
7969 
7970 static void perf_log_itrace_start(struct perf_event *event)
7971 {
7972 	struct perf_output_handle handle;
7973 	struct perf_sample_data sample;
7974 	struct perf_aux_event {
7975 		struct perf_event_header        header;
7976 		u32				pid;
7977 		u32				tid;
7978 	} rec;
7979 	int ret;
7980 
7981 	if (event->parent)
7982 		event = event->parent;
7983 
7984 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7985 	    event->attach_state & PERF_ATTACH_ITRACE)
7986 		return;
7987 
7988 	rec.header.type	= PERF_RECORD_ITRACE_START;
7989 	rec.header.misc	= 0;
7990 	rec.header.size	= sizeof(rec);
7991 	rec.pid	= perf_event_pid(event, current);
7992 	rec.tid	= perf_event_tid(event, current);
7993 
7994 	perf_event_header__init_id(&rec.header, &sample, event);
7995 	ret = perf_output_begin(&handle, event, rec.header.size);
7996 
7997 	if (ret)
7998 		return;
7999 
8000 	perf_output_put(&handle, rec);
8001 	perf_event__output_id_sample(event, &handle, &sample);
8002 
8003 	perf_output_end(&handle);
8004 }
8005 
8006 static int
8007 __perf_event_account_interrupt(struct perf_event *event, int throttle)
8008 {
8009 	struct hw_perf_event *hwc = &event->hw;
8010 	int ret = 0;
8011 	u64 seq;
8012 
8013 	seq = __this_cpu_read(perf_throttled_seq);
8014 	if (seq != hwc->interrupts_seq) {
8015 		hwc->interrupts_seq = seq;
8016 		hwc->interrupts = 1;
8017 	} else {
8018 		hwc->interrupts++;
8019 		if (unlikely(throttle
8020 			     && hwc->interrupts >= max_samples_per_tick)) {
8021 			__this_cpu_inc(perf_throttled_count);
8022 			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
8023 			hwc->interrupts = MAX_INTERRUPTS;
8024 			perf_log_throttle(event, 0);
8025 			ret = 1;
8026 		}
8027 	}
8028 
8029 	if (event->attr.freq) {
8030 		u64 now = perf_clock();
8031 		s64 delta = now - hwc->freq_time_stamp;
8032 
8033 		hwc->freq_time_stamp = now;
8034 
8035 		if (delta > 0 && delta < 2*TICK_NSEC)
8036 			perf_adjust_period(event, delta, hwc->last_period, true);
8037 	}
8038 
8039 	return ret;
8040 }
8041 
8042 int perf_event_account_interrupt(struct perf_event *event)
8043 {
8044 	return __perf_event_account_interrupt(event, 1);
8045 }
8046 
8047 /*
8048  * Generic event overflow handling, sampling.
8049  */
8050 
8051 static int __perf_event_overflow(struct perf_event *event,
8052 				   int throttle, struct perf_sample_data *data,
8053 				   struct pt_regs *regs)
8054 {
8055 	int events = atomic_read(&event->event_limit);
8056 	int ret = 0;
8057 
8058 	/*
8059 	 * Non-sampling counters might still use the PMI to fold short
8060 	 * hardware counters, ignore those.
8061 	 */
8062 	if (unlikely(!is_sampling_event(event)))
8063 		return 0;
8064 
8065 	ret = __perf_event_account_interrupt(event, throttle);
8066 
8067 	/*
8068 	 * XXX event_limit might not quite work as expected on inherited
8069 	 * events
8070 	 */
8071 
8072 	event->pending_kill = POLL_IN;
8073 	if (events && atomic_dec_and_test(&event->event_limit)) {
8074 		ret = 1;
8075 		event->pending_kill = POLL_HUP;
8076 
8077 		perf_event_disable_inatomic(event);
8078 	}
8079 
8080 	READ_ONCE(event->overflow_handler)(event, data, regs);
8081 
8082 	if (*perf_event_fasync(event) && event->pending_kill) {
8083 		event->pending_wakeup = 1;
8084 		irq_work_queue(&event->pending);
8085 	}
8086 
8087 	return ret;
8088 }
8089 
8090 int perf_event_overflow(struct perf_event *event,
8091 			  struct perf_sample_data *data,
8092 			  struct pt_regs *regs)
8093 {
8094 	return __perf_event_overflow(event, 1, data, regs);
8095 }
8096 
8097 /*
8098  * Generic software event infrastructure
8099  */
8100 
8101 struct swevent_htable {
8102 	struct swevent_hlist		*swevent_hlist;
8103 	struct mutex			hlist_mutex;
8104 	int				hlist_refcount;
8105 
8106 	/* Recursion avoidance in each contexts */
8107 	int				recursion[PERF_NR_CONTEXTS];
8108 };
8109 
8110 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
8111 
8112 /*
8113  * We directly increment event->count and keep a second value in
8114  * event->hw.period_left to count intervals. This period event
8115  * is kept in the range [-sample_period, 0] so that we can use the
8116  * sign as trigger.
8117  */
8118 
8119 u64 perf_swevent_set_period(struct perf_event *event)
8120 {
8121 	struct hw_perf_event *hwc = &event->hw;
8122 	u64 period = hwc->last_period;
8123 	u64 nr, offset;
8124 	s64 old, val;
8125 
8126 	hwc->last_period = hwc->sample_period;
8127 
8128 again:
8129 	old = val = local64_read(&hwc->period_left);
8130 	if (val < 0)
8131 		return 0;
8132 
8133 	nr = div64_u64(period + val, period);
8134 	offset = nr * period;
8135 	val -= offset;
8136 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
8137 		goto again;
8138 
8139 	return nr;
8140 }
8141 
8142 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
8143 				    struct perf_sample_data *data,
8144 				    struct pt_regs *regs)
8145 {
8146 	struct hw_perf_event *hwc = &event->hw;
8147 	int throttle = 0;
8148 
8149 	if (!overflow)
8150 		overflow = perf_swevent_set_period(event);
8151 
8152 	if (hwc->interrupts == MAX_INTERRUPTS)
8153 		return;
8154 
8155 	for (; overflow; overflow--) {
8156 		if (__perf_event_overflow(event, throttle,
8157 					    data, regs)) {
8158 			/*
8159 			 * We inhibit the overflow from happening when
8160 			 * hwc->interrupts == MAX_INTERRUPTS.
8161 			 */
8162 			break;
8163 		}
8164 		throttle = 1;
8165 	}
8166 }
8167 
8168 static void perf_swevent_event(struct perf_event *event, u64 nr,
8169 			       struct perf_sample_data *data,
8170 			       struct pt_regs *regs)
8171 {
8172 	struct hw_perf_event *hwc = &event->hw;
8173 
8174 	local64_add(nr, &event->count);
8175 
8176 	if (!regs)
8177 		return;
8178 
8179 	if (!is_sampling_event(event))
8180 		return;
8181 
8182 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
8183 		data->period = nr;
8184 		return perf_swevent_overflow(event, 1, data, regs);
8185 	} else
8186 		data->period = event->hw.last_period;
8187 
8188 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
8189 		return perf_swevent_overflow(event, 1, data, regs);
8190 
8191 	if (local64_add_negative(nr, &hwc->period_left))
8192 		return;
8193 
8194 	perf_swevent_overflow(event, 0, data, regs);
8195 }
8196 
8197 static int perf_exclude_event(struct perf_event *event,
8198 			      struct pt_regs *regs)
8199 {
8200 	if (event->hw.state & PERF_HES_STOPPED)
8201 		return 1;
8202 
8203 	if (regs) {
8204 		if (event->attr.exclude_user && user_mode(regs))
8205 			return 1;
8206 
8207 		if (event->attr.exclude_kernel && !user_mode(regs))
8208 			return 1;
8209 	}
8210 
8211 	return 0;
8212 }
8213 
8214 static int perf_swevent_match(struct perf_event *event,
8215 				enum perf_type_id type,
8216 				u32 event_id,
8217 				struct perf_sample_data *data,
8218 				struct pt_regs *regs)
8219 {
8220 	if (event->attr.type != type)
8221 		return 0;
8222 
8223 	if (event->attr.config != event_id)
8224 		return 0;
8225 
8226 	if (perf_exclude_event(event, regs))
8227 		return 0;
8228 
8229 	return 1;
8230 }
8231 
8232 static inline u64 swevent_hash(u64 type, u32 event_id)
8233 {
8234 	u64 val = event_id | (type << 32);
8235 
8236 	return hash_64(val, SWEVENT_HLIST_BITS);
8237 }
8238 
8239 static inline struct hlist_head *
8240 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
8241 {
8242 	u64 hash = swevent_hash(type, event_id);
8243 
8244 	return &hlist->heads[hash];
8245 }
8246 
8247 /* For the read side: events when they trigger */
8248 static inline struct hlist_head *
8249 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
8250 {
8251 	struct swevent_hlist *hlist;
8252 
8253 	hlist = rcu_dereference(swhash->swevent_hlist);
8254 	if (!hlist)
8255 		return NULL;
8256 
8257 	return __find_swevent_head(hlist, type, event_id);
8258 }
8259 
8260 /* For the event head insertion and removal in the hlist */
8261 static inline struct hlist_head *
8262 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
8263 {
8264 	struct swevent_hlist *hlist;
8265 	u32 event_id = event->attr.config;
8266 	u64 type = event->attr.type;
8267 
8268 	/*
8269 	 * Event scheduling is always serialized against hlist allocation
8270 	 * and release. Which makes the protected version suitable here.
8271 	 * The context lock guarantees that.
8272 	 */
8273 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
8274 					  lockdep_is_held(&event->ctx->lock));
8275 	if (!hlist)
8276 		return NULL;
8277 
8278 	return __find_swevent_head(hlist, type, event_id);
8279 }
8280 
8281 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
8282 				    u64 nr,
8283 				    struct perf_sample_data *data,
8284 				    struct pt_regs *regs)
8285 {
8286 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8287 	struct perf_event *event;
8288 	struct hlist_head *head;
8289 
8290 	rcu_read_lock();
8291 	head = find_swevent_head_rcu(swhash, type, event_id);
8292 	if (!head)
8293 		goto end;
8294 
8295 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
8296 		if (perf_swevent_match(event, type, event_id, data, regs))
8297 			perf_swevent_event(event, nr, data, regs);
8298 	}
8299 end:
8300 	rcu_read_unlock();
8301 }
8302 
8303 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
8304 
8305 int perf_swevent_get_recursion_context(void)
8306 {
8307 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8308 
8309 	return get_recursion_context(swhash->recursion);
8310 }
8311 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
8312 
8313 void perf_swevent_put_recursion_context(int rctx)
8314 {
8315 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8316 
8317 	put_recursion_context(swhash->recursion, rctx);
8318 }
8319 
8320 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8321 {
8322 	struct perf_sample_data data;
8323 
8324 	if (WARN_ON_ONCE(!regs))
8325 		return;
8326 
8327 	perf_sample_data_init(&data, addr, 0);
8328 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
8329 }
8330 
8331 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8332 {
8333 	int rctx;
8334 
8335 	preempt_disable_notrace();
8336 	rctx = perf_swevent_get_recursion_context();
8337 	if (unlikely(rctx < 0))
8338 		goto fail;
8339 
8340 	___perf_sw_event(event_id, nr, regs, addr);
8341 
8342 	perf_swevent_put_recursion_context(rctx);
8343 fail:
8344 	preempt_enable_notrace();
8345 }
8346 
8347 static void perf_swevent_read(struct perf_event *event)
8348 {
8349 }
8350 
8351 static int perf_swevent_add(struct perf_event *event, int flags)
8352 {
8353 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8354 	struct hw_perf_event *hwc = &event->hw;
8355 	struct hlist_head *head;
8356 
8357 	if (is_sampling_event(event)) {
8358 		hwc->last_period = hwc->sample_period;
8359 		perf_swevent_set_period(event);
8360 	}
8361 
8362 	hwc->state = !(flags & PERF_EF_START);
8363 
8364 	head = find_swevent_head(swhash, event);
8365 	if (WARN_ON_ONCE(!head))
8366 		return -EINVAL;
8367 
8368 	hlist_add_head_rcu(&event->hlist_entry, head);
8369 	perf_event_update_userpage(event);
8370 
8371 	return 0;
8372 }
8373 
8374 static void perf_swevent_del(struct perf_event *event, int flags)
8375 {
8376 	hlist_del_rcu(&event->hlist_entry);
8377 }
8378 
8379 static void perf_swevent_start(struct perf_event *event, int flags)
8380 {
8381 	event->hw.state = 0;
8382 }
8383 
8384 static void perf_swevent_stop(struct perf_event *event, int flags)
8385 {
8386 	event->hw.state = PERF_HES_STOPPED;
8387 }
8388 
8389 /* Deref the hlist from the update side */
8390 static inline struct swevent_hlist *
8391 swevent_hlist_deref(struct swevent_htable *swhash)
8392 {
8393 	return rcu_dereference_protected(swhash->swevent_hlist,
8394 					 lockdep_is_held(&swhash->hlist_mutex));
8395 }
8396 
8397 static void swevent_hlist_release(struct swevent_htable *swhash)
8398 {
8399 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
8400 
8401 	if (!hlist)
8402 		return;
8403 
8404 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
8405 	kfree_rcu(hlist, rcu_head);
8406 }
8407 
8408 static void swevent_hlist_put_cpu(int cpu)
8409 {
8410 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8411 
8412 	mutex_lock(&swhash->hlist_mutex);
8413 
8414 	if (!--swhash->hlist_refcount)
8415 		swevent_hlist_release(swhash);
8416 
8417 	mutex_unlock(&swhash->hlist_mutex);
8418 }
8419 
8420 static void swevent_hlist_put(void)
8421 {
8422 	int cpu;
8423 
8424 	for_each_possible_cpu(cpu)
8425 		swevent_hlist_put_cpu(cpu);
8426 }
8427 
8428 static int swevent_hlist_get_cpu(int cpu)
8429 {
8430 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8431 	int err = 0;
8432 
8433 	mutex_lock(&swhash->hlist_mutex);
8434 	if (!swevent_hlist_deref(swhash) &&
8435 	    cpumask_test_cpu(cpu, perf_online_mask)) {
8436 		struct swevent_hlist *hlist;
8437 
8438 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
8439 		if (!hlist) {
8440 			err = -ENOMEM;
8441 			goto exit;
8442 		}
8443 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
8444 	}
8445 	swhash->hlist_refcount++;
8446 exit:
8447 	mutex_unlock(&swhash->hlist_mutex);
8448 
8449 	return err;
8450 }
8451 
8452 static int swevent_hlist_get(void)
8453 {
8454 	int err, cpu, failed_cpu;
8455 
8456 	mutex_lock(&pmus_lock);
8457 	for_each_possible_cpu(cpu) {
8458 		err = swevent_hlist_get_cpu(cpu);
8459 		if (err) {
8460 			failed_cpu = cpu;
8461 			goto fail;
8462 		}
8463 	}
8464 	mutex_unlock(&pmus_lock);
8465 	return 0;
8466 fail:
8467 	for_each_possible_cpu(cpu) {
8468 		if (cpu == failed_cpu)
8469 			break;
8470 		swevent_hlist_put_cpu(cpu);
8471 	}
8472 	mutex_unlock(&pmus_lock);
8473 	return err;
8474 }
8475 
8476 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
8477 
8478 static void sw_perf_event_destroy(struct perf_event *event)
8479 {
8480 	u64 event_id = event->attr.config;
8481 
8482 	WARN_ON(event->parent);
8483 
8484 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
8485 	swevent_hlist_put();
8486 }
8487 
8488 static int perf_swevent_init(struct perf_event *event)
8489 {
8490 	u64 event_id = event->attr.config;
8491 
8492 	if (event->attr.type != PERF_TYPE_SOFTWARE)
8493 		return -ENOENT;
8494 
8495 	/*
8496 	 * no branch sampling for software events
8497 	 */
8498 	if (has_branch_stack(event))
8499 		return -EOPNOTSUPP;
8500 
8501 	switch (event_id) {
8502 	case PERF_COUNT_SW_CPU_CLOCK:
8503 	case PERF_COUNT_SW_TASK_CLOCK:
8504 		return -ENOENT;
8505 
8506 	default:
8507 		break;
8508 	}
8509 
8510 	if (event_id >= PERF_COUNT_SW_MAX)
8511 		return -ENOENT;
8512 
8513 	if (!event->parent) {
8514 		int err;
8515 
8516 		err = swevent_hlist_get();
8517 		if (err)
8518 			return err;
8519 
8520 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
8521 		event->destroy = sw_perf_event_destroy;
8522 	}
8523 
8524 	return 0;
8525 }
8526 
8527 static struct pmu perf_swevent = {
8528 	.task_ctx_nr	= perf_sw_context,
8529 
8530 	.capabilities	= PERF_PMU_CAP_NO_NMI,
8531 
8532 	.event_init	= perf_swevent_init,
8533 	.add		= perf_swevent_add,
8534 	.del		= perf_swevent_del,
8535 	.start		= perf_swevent_start,
8536 	.stop		= perf_swevent_stop,
8537 	.read		= perf_swevent_read,
8538 };
8539 
8540 #ifdef CONFIG_EVENT_TRACING
8541 
8542 static int perf_tp_filter_match(struct perf_event *event,
8543 				struct perf_sample_data *data)
8544 {
8545 	void *record = data->raw->frag.data;
8546 
8547 	/* only top level events have filters set */
8548 	if (event->parent)
8549 		event = event->parent;
8550 
8551 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
8552 		return 1;
8553 	return 0;
8554 }
8555 
8556 static int perf_tp_event_match(struct perf_event *event,
8557 				struct perf_sample_data *data,
8558 				struct pt_regs *regs)
8559 {
8560 	if (event->hw.state & PERF_HES_STOPPED)
8561 		return 0;
8562 	/*
8563 	 * If exclude_kernel, only trace user-space tracepoints (uprobes)
8564 	 */
8565 	if (event->attr.exclude_kernel && !user_mode(regs))
8566 		return 0;
8567 
8568 	if (!perf_tp_filter_match(event, data))
8569 		return 0;
8570 
8571 	return 1;
8572 }
8573 
8574 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
8575 			       struct trace_event_call *call, u64 count,
8576 			       struct pt_regs *regs, struct hlist_head *head,
8577 			       struct task_struct *task)
8578 {
8579 	if (bpf_prog_array_valid(call)) {
8580 		*(struct pt_regs **)raw_data = regs;
8581 		if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
8582 			perf_swevent_put_recursion_context(rctx);
8583 			return;
8584 		}
8585 	}
8586 	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
8587 		      rctx, task);
8588 }
8589 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
8590 
8591 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
8592 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
8593 		   struct task_struct *task)
8594 {
8595 	struct perf_sample_data data;
8596 	struct perf_event *event;
8597 
8598 	struct perf_raw_record raw = {
8599 		.frag = {
8600 			.size = entry_size,
8601 			.data = record,
8602 		},
8603 	};
8604 
8605 	perf_sample_data_init(&data, 0, 0);
8606 	data.raw = &raw;
8607 
8608 	perf_trace_buf_update(record, event_type);
8609 
8610 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
8611 		if (perf_tp_event_match(event, &data, regs))
8612 			perf_swevent_event(event, count, &data, regs);
8613 	}
8614 
8615 	/*
8616 	 * If we got specified a target task, also iterate its context and
8617 	 * deliver this event there too.
8618 	 */
8619 	if (task && task != current) {
8620 		struct perf_event_context *ctx;
8621 		struct trace_entry *entry = record;
8622 
8623 		rcu_read_lock();
8624 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
8625 		if (!ctx)
8626 			goto unlock;
8627 
8628 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
8629 			if (event->cpu != smp_processor_id())
8630 				continue;
8631 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
8632 				continue;
8633 			if (event->attr.config != entry->type)
8634 				continue;
8635 			if (perf_tp_event_match(event, &data, regs))
8636 				perf_swevent_event(event, count, &data, regs);
8637 		}
8638 unlock:
8639 		rcu_read_unlock();
8640 	}
8641 
8642 	perf_swevent_put_recursion_context(rctx);
8643 }
8644 EXPORT_SYMBOL_GPL(perf_tp_event);
8645 
8646 static void tp_perf_event_destroy(struct perf_event *event)
8647 {
8648 	perf_trace_destroy(event);
8649 }
8650 
8651 static int perf_tp_event_init(struct perf_event *event)
8652 {
8653 	int err;
8654 
8655 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
8656 		return -ENOENT;
8657 
8658 	/*
8659 	 * no branch sampling for tracepoint events
8660 	 */
8661 	if (has_branch_stack(event))
8662 		return -EOPNOTSUPP;
8663 
8664 	err = perf_trace_init(event);
8665 	if (err)
8666 		return err;
8667 
8668 	event->destroy = tp_perf_event_destroy;
8669 
8670 	return 0;
8671 }
8672 
8673 static struct pmu perf_tracepoint = {
8674 	.task_ctx_nr	= perf_sw_context,
8675 
8676 	.event_init	= perf_tp_event_init,
8677 	.add		= perf_trace_add,
8678 	.del		= perf_trace_del,
8679 	.start		= perf_swevent_start,
8680 	.stop		= perf_swevent_stop,
8681 	.read		= perf_swevent_read,
8682 };
8683 
8684 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
8685 /*
8686  * Flags in config, used by dynamic PMU kprobe and uprobe
8687  * The flags should match following PMU_FORMAT_ATTR().
8688  *
8689  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
8690  *                               if not set, create kprobe/uprobe
8691  *
8692  * The following values specify a reference counter (or semaphore in the
8693  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
8694  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
8695  *
8696  * PERF_UPROBE_REF_CTR_OFFSET_BITS	# of bits in config as th offset
8697  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT	# of bits to shift left
8698  */
8699 enum perf_probe_config {
8700 	PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
8701 	PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
8702 	PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
8703 };
8704 
8705 PMU_FORMAT_ATTR(retprobe, "config:0");
8706 #endif
8707 
8708 #ifdef CONFIG_KPROBE_EVENTS
8709 static struct attribute *kprobe_attrs[] = {
8710 	&format_attr_retprobe.attr,
8711 	NULL,
8712 };
8713 
8714 static struct attribute_group kprobe_format_group = {
8715 	.name = "format",
8716 	.attrs = kprobe_attrs,
8717 };
8718 
8719 static const struct attribute_group *kprobe_attr_groups[] = {
8720 	&kprobe_format_group,
8721 	NULL,
8722 };
8723 
8724 static int perf_kprobe_event_init(struct perf_event *event);
8725 static struct pmu perf_kprobe = {
8726 	.task_ctx_nr	= perf_sw_context,
8727 	.event_init	= perf_kprobe_event_init,
8728 	.add		= perf_trace_add,
8729 	.del		= perf_trace_del,
8730 	.start		= perf_swevent_start,
8731 	.stop		= perf_swevent_stop,
8732 	.read		= perf_swevent_read,
8733 	.attr_groups	= kprobe_attr_groups,
8734 };
8735 
8736 static int perf_kprobe_event_init(struct perf_event *event)
8737 {
8738 	int err;
8739 	bool is_retprobe;
8740 
8741 	if (event->attr.type != perf_kprobe.type)
8742 		return -ENOENT;
8743 
8744 	if (!capable(CAP_SYS_ADMIN))
8745 		return -EACCES;
8746 
8747 	/*
8748 	 * no branch sampling for probe events
8749 	 */
8750 	if (has_branch_stack(event))
8751 		return -EOPNOTSUPP;
8752 
8753 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8754 	err = perf_kprobe_init(event, is_retprobe);
8755 	if (err)
8756 		return err;
8757 
8758 	event->destroy = perf_kprobe_destroy;
8759 
8760 	return 0;
8761 }
8762 #endif /* CONFIG_KPROBE_EVENTS */
8763 
8764 #ifdef CONFIG_UPROBE_EVENTS
8765 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
8766 
8767 static struct attribute *uprobe_attrs[] = {
8768 	&format_attr_retprobe.attr,
8769 	&format_attr_ref_ctr_offset.attr,
8770 	NULL,
8771 };
8772 
8773 static struct attribute_group uprobe_format_group = {
8774 	.name = "format",
8775 	.attrs = uprobe_attrs,
8776 };
8777 
8778 static const struct attribute_group *uprobe_attr_groups[] = {
8779 	&uprobe_format_group,
8780 	NULL,
8781 };
8782 
8783 static int perf_uprobe_event_init(struct perf_event *event);
8784 static struct pmu perf_uprobe = {
8785 	.task_ctx_nr	= perf_sw_context,
8786 	.event_init	= perf_uprobe_event_init,
8787 	.add		= perf_trace_add,
8788 	.del		= perf_trace_del,
8789 	.start		= perf_swevent_start,
8790 	.stop		= perf_swevent_stop,
8791 	.read		= perf_swevent_read,
8792 	.attr_groups	= uprobe_attr_groups,
8793 };
8794 
8795 static int perf_uprobe_event_init(struct perf_event *event)
8796 {
8797 	int err;
8798 	unsigned long ref_ctr_offset;
8799 	bool is_retprobe;
8800 
8801 	if (event->attr.type != perf_uprobe.type)
8802 		return -ENOENT;
8803 
8804 	if (!capable(CAP_SYS_ADMIN))
8805 		return -EACCES;
8806 
8807 	/*
8808 	 * no branch sampling for probe events
8809 	 */
8810 	if (has_branch_stack(event))
8811 		return -EOPNOTSUPP;
8812 
8813 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8814 	ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
8815 	err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
8816 	if (err)
8817 		return err;
8818 
8819 	event->destroy = perf_uprobe_destroy;
8820 
8821 	return 0;
8822 }
8823 #endif /* CONFIG_UPROBE_EVENTS */
8824 
8825 static inline void perf_tp_register(void)
8826 {
8827 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
8828 #ifdef CONFIG_KPROBE_EVENTS
8829 	perf_pmu_register(&perf_kprobe, "kprobe", -1);
8830 #endif
8831 #ifdef CONFIG_UPROBE_EVENTS
8832 	perf_pmu_register(&perf_uprobe, "uprobe", -1);
8833 #endif
8834 }
8835 
8836 static void perf_event_free_filter(struct perf_event *event)
8837 {
8838 	ftrace_profile_free_filter(event);
8839 }
8840 
8841 #ifdef CONFIG_BPF_SYSCALL
8842 static void bpf_overflow_handler(struct perf_event *event,
8843 				 struct perf_sample_data *data,
8844 				 struct pt_regs *regs)
8845 {
8846 	struct bpf_perf_event_data_kern ctx = {
8847 		.data = data,
8848 		.event = event,
8849 	};
8850 	int ret = 0;
8851 
8852 	ctx.regs = perf_arch_bpf_user_pt_regs(regs);
8853 	preempt_disable();
8854 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8855 		goto out;
8856 	rcu_read_lock();
8857 	ret = BPF_PROG_RUN(event->prog, &ctx);
8858 	rcu_read_unlock();
8859 out:
8860 	__this_cpu_dec(bpf_prog_active);
8861 	preempt_enable();
8862 	if (!ret)
8863 		return;
8864 
8865 	event->orig_overflow_handler(event, data, regs);
8866 }
8867 
8868 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8869 {
8870 	struct bpf_prog *prog;
8871 
8872 	if (event->overflow_handler_context)
8873 		/* hw breakpoint or kernel counter */
8874 		return -EINVAL;
8875 
8876 	if (event->prog)
8877 		return -EEXIST;
8878 
8879 	prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8880 	if (IS_ERR(prog))
8881 		return PTR_ERR(prog);
8882 
8883 	event->prog = prog;
8884 	event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8885 	WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8886 	return 0;
8887 }
8888 
8889 static void perf_event_free_bpf_handler(struct perf_event *event)
8890 {
8891 	struct bpf_prog *prog = event->prog;
8892 
8893 	if (!prog)
8894 		return;
8895 
8896 	WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8897 	event->prog = NULL;
8898 	bpf_prog_put(prog);
8899 }
8900 #else
8901 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8902 {
8903 	return -EOPNOTSUPP;
8904 }
8905 static void perf_event_free_bpf_handler(struct perf_event *event)
8906 {
8907 }
8908 #endif
8909 
8910 /*
8911  * returns true if the event is a tracepoint, or a kprobe/upprobe created
8912  * with perf_event_open()
8913  */
8914 static inline bool perf_event_is_tracing(struct perf_event *event)
8915 {
8916 	if (event->pmu == &perf_tracepoint)
8917 		return true;
8918 #ifdef CONFIG_KPROBE_EVENTS
8919 	if (event->pmu == &perf_kprobe)
8920 		return true;
8921 #endif
8922 #ifdef CONFIG_UPROBE_EVENTS
8923 	if (event->pmu == &perf_uprobe)
8924 		return true;
8925 #endif
8926 	return false;
8927 }
8928 
8929 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8930 {
8931 	bool is_kprobe, is_tracepoint, is_syscall_tp;
8932 	struct bpf_prog *prog;
8933 	int ret;
8934 
8935 	if (!perf_event_is_tracing(event))
8936 		return perf_event_set_bpf_handler(event, prog_fd);
8937 
8938 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8939 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
8940 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
8941 	if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
8942 		/* bpf programs can only be attached to u/kprobe or tracepoint */
8943 		return -EINVAL;
8944 
8945 	prog = bpf_prog_get(prog_fd);
8946 	if (IS_ERR(prog))
8947 		return PTR_ERR(prog);
8948 
8949 	if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
8950 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
8951 	    (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
8952 		/* valid fd, but invalid bpf program type */
8953 		bpf_prog_put(prog);
8954 		return -EINVAL;
8955 	}
8956 
8957 	/* Kprobe override only works for kprobes, not uprobes. */
8958 	if (prog->kprobe_override &&
8959 	    !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
8960 		bpf_prog_put(prog);
8961 		return -EINVAL;
8962 	}
8963 
8964 	if (is_tracepoint || is_syscall_tp) {
8965 		int off = trace_event_get_offsets(event->tp_event);
8966 
8967 		if (prog->aux->max_ctx_offset > off) {
8968 			bpf_prog_put(prog);
8969 			return -EACCES;
8970 		}
8971 	}
8972 
8973 	ret = perf_event_attach_bpf_prog(event, prog);
8974 	if (ret)
8975 		bpf_prog_put(prog);
8976 	return ret;
8977 }
8978 
8979 static void perf_event_free_bpf_prog(struct perf_event *event)
8980 {
8981 	if (!perf_event_is_tracing(event)) {
8982 		perf_event_free_bpf_handler(event);
8983 		return;
8984 	}
8985 	perf_event_detach_bpf_prog(event);
8986 }
8987 
8988 #else
8989 
8990 static inline void perf_tp_register(void)
8991 {
8992 }
8993 
8994 static void perf_event_free_filter(struct perf_event *event)
8995 {
8996 }
8997 
8998 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8999 {
9000 	return -ENOENT;
9001 }
9002 
9003 static void perf_event_free_bpf_prog(struct perf_event *event)
9004 {
9005 }
9006 #endif /* CONFIG_EVENT_TRACING */
9007 
9008 #ifdef CONFIG_HAVE_HW_BREAKPOINT
9009 void perf_bp_event(struct perf_event *bp, void *data)
9010 {
9011 	struct perf_sample_data sample;
9012 	struct pt_regs *regs = data;
9013 
9014 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
9015 
9016 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
9017 		perf_swevent_event(bp, 1, &sample, regs);
9018 }
9019 #endif
9020 
9021 /*
9022  * Allocate a new address filter
9023  */
9024 static struct perf_addr_filter *
9025 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
9026 {
9027 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
9028 	struct perf_addr_filter *filter;
9029 
9030 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
9031 	if (!filter)
9032 		return NULL;
9033 
9034 	INIT_LIST_HEAD(&filter->entry);
9035 	list_add_tail(&filter->entry, filters);
9036 
9037 	return filter;
9038 }
9039 
9040 static void free_filters_list(struct list_head *filters)
9041 {
9042 	struct perf_addr_filter *filter, *iter;
9043 
9044 	list_for_each_entry_safe(filter, iter, filters, entry) {
9045 		path_put(&filter->path);
9046 		list_del(&filter->entry);
9047 		kfree(filter);
9048 	}
9049 }
9050 
9051 /*
9052  * Free existing address filters and optionally install new ones
9053  */
9054 static void perf_addr_filters_splice(struct perf_event *event,
9055 				     struct list_head *head)
9056 {
9057 	unsigned long flags;
9058 	LIST_HEAD(list);
9059 
9060 	if (!has_addr_filter(event))
9061 		return;
9062 
9063 	/* don't bother with children, they don't have their own filters */
9064 	if (event->parent)
9065 		return;
9066 
9067 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
9068 
9069 	list_splice_init(&event->addr_filters.list, &list);
9070 	if (head)
9071 		list_splice(head, &event->addr_filters.list);
9072 
9073 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
9074 
9075 	free_filters_list(&list);
9076 }
9077 
9078 /*
9079  * Scan through mm's vmas and see if one of them matches the
9080  * @filter; if so, adjust filter's address range.
9081  * Called with mm::mmap_sem down for reading.
9082  */
9083 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
9084 				   struct mm_struct *mm,
9085 				   struct perf_addr_filter_range *fr)
9086 {
9087 	struct vm_area_struct *vma;
9088 
9089 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
9090 		if (!vma->vm_file)
9091 			continue;
9092 
9093 		if (perf_addr_filter_vma_adjust(filter, vma, fr))
9094 			return;
9095 	}
9096 }
9097 
9098 /*
9099  * Update event's address range filters based on the
9100  * task's existing mappings, if any.
9101  */
9102 static void perf_event_addr_filters_apply(struct perf_event *event)
9103 {
9104 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
9105 	struct task_struct *task = READ_ONCE(event->ctx->task);
9106 	struct perf_addr_filter *filter;
9107 	struct mm_struct *mm = NULL;
9108 	unsigned int count = 0;
9109 	unsigned long flags;
9110 
9111 	/*
9112 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
9113 	 * will stop on the parent's child_mutex that our caller is also holding
9114 	 */
9115 	if (task == TASK_TOMBSTONE)
9116 		return;
9117 
9118 	if (ifh->nr_file_filters) {
9119 		mm = get_task_mm(event->ctx->task);
9120 		if (!mm)
9121 			goto restart;
9122 
9123 		down_read(&mm->mmap_sem);
9124 	}
9125 
9126 	raw_spin_lock_irqsave(&ifh->lock, flags);
9127 	list_for_each_entry(filter, &ifh->list, entry) {
9128 		if (filter->path.dentry) {
9129 			/*
9130 			 * Adjust base offset if the filter is associated to a
9131 			 * binary that needs to be mapped:
9132 			 */
9133 			event->addr_filter_ranges[count].start = 0;
9134 			event->addr_filter_ranges[count].size = 0;
9135 
9136 			perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
9137 		} else {
9138 			event->addr_filter_ranges[count].start = filter->offset;
9139 			event->addr_filter_ranges[count].size  = filter->size;
9140 		}
9141 
9142 		count++;
9143 	}
9144 
9145 	event->addr_filters_gen++;
9146 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
9147 
9148 	if (ifh->nr_file_filters) {
9149 		up_read(&mm->mmap_sem);
9150 
9151 		mmput(mm);
9152 	}
9153 
9154 restart:
9155 	perf_event_stop(event, 1);
9156 }
9157 
9158 /*
9159  * Address range filtering: limiting the data to certain
9160  * instruction address ranges. Filters are ioctl()ed to us from
9161  * userspace as ascii strings.
9162  *
9163  * Filter string format:
9164  *
9165  * ACTION RANGE_SPEC
9166  * where ACTION is one of the
9167  *  * "filter": limit the trace to this region
9168  *  * "start": start tracing from this address
9169  *  * "stop": stop tracing at this address/region;
9170  * RANGE_SPEC is
9171  *  * for kernel addresses: <start address>[/<size>]
9172  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
9173  *
9174  * if <size> is not specified or is zero, the range is treated as a single
9175  * address; not valid for ACTION=="filter".
9176  */
9177 enum {
9178 	IF_ACT_NONE = -1,
9179 	IF_ACT_FILTER,
9180 	IF_ACT_START,
9181 	IF_ACT_STOP,
9182 	IF_SRC_FILE,
9183 	IF_SRC_KERNEL,
9184 	IF_SRC_FILEADDR,
9185 	IF_SRC_KERNELADDR,
9186 };
9187 
9188 enum {
9189 	IF_STATE_ACTION = 0,
9190 	IF_STATE_SOURCE,
9191 	IF_STATE_END,
9192 };
9193 
9194 static const match_table_t if_tokens = {
9195 	{ IF_ACT_FILTER,	"filter" },
9196 	{ IF_ACT_START,		"start" },
9197 	{ IF_ACT_STOP,		"stop" },
9198 	{ IF_SRC_FILE,		"%u/%u@%s" },
9199 	{ IF_SRC_KERNEL,	"%u/%u" },
9200 	{ IF_SRC_FILEADDR,	"%u@%s" },
9201 	{ IF_SRC_KERNELADDR,	"%u" },
9202 	{ IF_ACT_NONE,		NULL },
9203 };
9204 
9205 /*
9206  * Address filter string parser
9207  */
9208 static int
9209 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
9210 			     struct list_head *filters)
9211 {
9212 	struct perf_addr_filter *filter = NULL;
9213 	char *start, *orig, *filename = NULL;
9214 	substring_t args[MAX_OPT_ARGS];
9215 	int state = IF_STATE_ACTION, token;
9216 	unsigned int kernel = 0;
9217 	int ret = -EINVAL;
9218 
9219 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
9220 	if (!fstr)
9221 		return -ENOMEM;
9222 
9223 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
9224 		static const enum perf_addr_filter_action_t actions[] = {
9225 			[IF_ACT_FILTER]	= PERF_ADDR_FILTER_ACTION_FILTER,
9226 			[IF_ACT_START]	= PERF_ADDR_FILTER_ACTION_START,
9227 			[IF_ACT_STOP]	= PERF_ADDR_FILTER_ACTION_STOP,
9228 		};
9229 		ret = -EINVAL;
9230 
9231 		if (!*start)
9232 			continue;
9233 
9234 		/* filter definition begins */
9235 		if (state == IF_STATE_ACTION) {
9236 			filter = perf_addr_filter_new(event, filters);
9237 			if (!filter)
9238 				goto fail;
9239 		}
9240 
9241 		token = match_token(start, if_tokens, args);
9242 		switch (token) {
9243 		case IF_ACT_FILTER:
9244 		case IF_ACT_START:
9245 		case IF_ACT_STOP:
9246 			if (state != IF_STATE_ACTION)
9247 				goto fail;
9248 
9249 			filter->action = actions[token];
9250 			state = IF_STATE_SOURCE;
9251 			break;
9252 
9253 		case IF_SRC_KERNELADDR:
9254 		case IF_SRC_KERNEL:
9255 			kernel = 1;
9256 			/* fall through */
9257 
9258 		case IF_SRC_FILEADDR:
9259 		case IF_SRC_FILE:
9260 			if (state != IF_STATE_SOURCE)
9261 				goto fail;
9262 
9263 			*args[0].to = 0;
9264 			ret = kstrtoul(args[0].from, 0, &filter->offset);
9265 			if (ret)
9266 				goto fail;
9267 
9268 			if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
9269 				*args[1].to = 0;
9270 				ret = kstrtoul(args[1].from, 0, &filter->size);
9271 				if (ret)
9272 					goto fail;
9273 			}
9274 
9275 			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
9276 				int fpos = token == IF_SRC_FILE ? 2 : 1;
9277 
9278 				filename = match_strdup(&args[fpos]);
9279 				if (!filename) {
9280 					ret = -ENOMEM;
9281 					goto fail;
9282 				}
9283 			}
9284 
9285 			state = IF_STATE_END;
9286 			break;
9287 
9288 		default:
9289 			goto fail;
9290 		}
9291 
9292 		/*
9293 		 * Filter definition is fully parsed, validate and install it.
9294 		 * Make sure that it doesn't contradict itself or the event's
9295 		 * attribute.
9296 		 */
9297 		if (state == IF_STATE_END) {
9298 			ret = -EINVAL;
9299 			if (kernel && event->attr.exclude_kernel)
9300 				goto fail;
9301 
9302 			/*
9303 			 * ACTION "filter" must have a non-zero length region
9304 			 * specified.
9305 			 */
9306 			if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
9307 			    !filter->size)
9308 				goto fail;
9309 
9310 			if (!kernel) {
9311 				if (!filename)
9312 					goto fail;
9313 
9314 				/*
9315 				 * For now, we only support file-based filters
9316 				 * in per-task events; doing so for CPU-wide
9317 				 * events requires additional context switching
9318 				 * trickery, since same object code will be
9319 				 * mapped at different virtual addresses in
9320 				 * different processes.
9321 				 */
9322 				ret = -EOPNOTSUPP;
9323 				if (!event->ctx->task)
9324 					goto fail_free_name;
9325 
9326 				/* look up the path and grab its inode */
9327 				ret = kern_path(filename, LOOKUP_FOLLOW,
9328 						&filter->path);
9329 				if (ret)
9330 					goto fail_free_name;
9331 
9332 				kfree(filename);
9333 				filename = NULL;
9334 
9335 				ret = -EINVAL;
9336 				if (!filter->path.dentry ||
9337 				    !S_ISREG(d_inode(filter->path.dentry)
9338 					     ->i_mode))
9339 					goto fail;
9340 
9341 				event->addr_filters.nr_file_filters++;
9342 			}
9343 
9344 			/* ready to consume more filters */
9345 			state = IF_STATE_ACTION;
9346 			filter = NULL;
9347 		}
9348 	}
9349 
9350 	if (state != IF_STATE_ACTION)
9351 		goto fail;
9352 
9353 	kfree(orig);
9354 
9355 	return 0;
9356 
9357 fail_free_name:
9358 	kfree(filename);
9359 fail:
9360 	free_filters_list(filters);
9361 	kfree(orig);
9362 
9363 	return ret;
9364 }
9365 
9366 static int
9367 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
9368 {
9369 	LIST_HEAD(filters);
9370 	int ret;
9371 
9372 	/*
9373 	 * Since this is called in perf_ioctl() path, we're already holding
9374 	 * ctx::mutex.
9375 	 */
9376 	lockdep_assert_held(&event->ctx->mutex);
9377 
9378 	if (WARN_ON_ONCE(event->parent))
9379 		return -EINVAL;
9380 
9381 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
9382 	if (ret)
9383 		goto fail_clear_files;
9384 
9385 	ret = event->pmu->addr_filters_validate(&filters);
9386 	if (ret)
9387 		goto fail_free_filters;
9388 
9389 	/* remove existing filters, if any */
9390 	perf_addr_filters_splice(event, &filters);
9391 
9392 	/* install new filters */
9393 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
9394 
9395 	return ret;
9396 
9397 fail_free_filters:
9398 	free_filters_list(&filters);
9399 
9400 fail_clear_files:
9401 	event->addr_filters.nr_file_filters = 0;
9402 
9403 	return ret;
9404 }
9405 
9406 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
9407 {
9408 	int ret = -EINVAL;
9409 	char *filter_str;
9410 
9411 	filter_str = strndup_user(arg, PAGE_SIZE);
9412 	if (IS_ERR(filter_str))
9413 		return PTR_ERR(filter_str);
9414 
9415 #ifdef CONFIG_EVENT_TRACING
9416 	if (perf_event_is_tracing(event)) {
9417 		struct perf_event_context *ctx = event->ctx;
9418 
9419 		/*
9420 		 * Beware, here be dragons!!
9421 		 *
9422 		 * the tracepoint muck will deadlock against ctx->mutex, but
9423 		 * the tracepoint stuff does not actually need it. So
9424 		 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
9425 		 * already have a reference on ctx.
9426 		 *
9427 		 * This can result in event getting moved to a different ctx,
9428 		 * but that does not affect the tracepoint state.
9429 		 */
9430 		mutex_unlock(&ctx->mutex);
9431 		ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
9432 		mutex_lock(&ctx->mutex);
9433 	} else
9434 #endif
9435 	if (has_addr_filter(event))
9436 		ret = perf_event_set_addr_filter(event, filter_str);
9437 
9438 	kfree(filter_str);
9439 	return ret;
9440 }
9441 
9442 /*
9443  * hrtimer based swevent callback
9444  */
9445 
9446 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
9447 {
9448 	enum hrtimer_restart ret = HRTIMER_RESTART;
9449 	struct perf_sample_data data;
9450 	struct pt_regs *regs;
9451 	struct perf_event *event;
9452 	u64 period;
9453 
9454 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
9455 
9456 	if (event->state != PERF_EVENT_STATE_ACTIVE)
9457 		return HRTIMER_NORESTART;
9458 
9459 	event->pmu->read(event);
9460 
9461 	perf_sample_data_init(&data, 0, event->hw.last_period);
9462 	regs = get_irq_regs();
9463 
9464 	if (regs && !perf_exclude_event(event, regs)) {
9465 		if (!(event->attr.exclude_idle && is_idle_task(current)))
9466 			if (__perf_event_overflow(event, 1, &data, regs))
9467 				ret = HRTIMER_NORESTART;
9468 	}
9469 
9470 	period = max_t(u64, 10000, event->hw.sample_period);
9471 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
9472 
9473 	return ret;
9474 }
9475 
9476 static void perf_swevent_start_hrtimer(struct perf_event *event)
9477 {
9478 	struct hw_perf_event *hwc = &event->hw;
9479 	s64 period;
9480 
9481 	if (!is_sampling_event(event))
9482 		return;
9483 
9484 	period = local64_read(&hwc->period_left);
9485 	if (period) {
9486 		if (period < 0)
9487 			period = 10000;
9488 
9489 		local64_set(&hwc->period_left, 0);
9490 	} else {
9491 		period = max_t(u64, 10000, hwc->sample_period);
9492 	}
9493 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
9494 		      HRTIMER_MODE_REL_PINNED);
9495 }
9496 
9497 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
9498 {
9499 	struct hw_perf_event *hwc = &event->hw;
9500 
9501 	if (is_sampling_event(event)) {
9502 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
9503 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
9504 
9505 		hrtimer_cancel(&hwc->hrtimer);
9506 	}
9507 }
9508 
9509 static void perf_swevent_init_hrtimer(struct perf_event *event)
9510 {
9511 	struct hw_perf_event *hwc = &event->hw;
9512 
9513 	if (!is_sampling_event(event))
9514 		return;
9515 
9516 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
9517 	hwc->hrtimer.function = perf_swevent_hrtimer;
9518 
9519 	/*
9520 	 * Since hrtimers have a fixed rate, we can do a static freq->period
9521 	 * mapping and avoid the whole period adjust feedback stuff.
9522 	 */
9523 	if (event->attr.freq) {
9524 		long freq = event->attr.sample_freq;
9525 
9526 		event->attr.sample_period = NSEC_PER_SEC / freq;
9527 		hwc->sample_period = event->attr.sample_period;
9528 		local64_set(&hwc->period_left, hwc->sample_period);
9529 		hwc->last_period = hwc->sample_period;
9530 		event->attr.freq = 0;
9531 	}
9532 }
9533 
9534 /*
9535  * Software event: cpu wall time clock
9536  */
9537 
9538 static void cpu_clock_event_update(struct perf_event *event)
9539 {
9540 	s64 prev;
9541 	u64 now;
9542 
9543 	now = local_clock();
9544 	prev = local64_xchg(&event->hw.prev_count, now);
9545 	local64_add(now - prev, &event->count);
9546 }
9547 
9548 static void cpu_clock_event_start(struct perf_event *event, int flags)
9549 {
9550 	local64_set(&event->hw.prev_count, local_clock());
9551 	perf_swevent_start_hrtimer(event);
9552 }
9553 
9554 static void cpu_clock_event_stop(struct perf_event *event, int flags)
9555 {
9556 	perf_swevent_cancel_hrtimer(event);
9557 	cpu_clock_event_update(event);
9558 }
9559 
9560 static int cpu_clock_event_add(struct perf_event *event, int flags)
9561 {
9562 	if (flags & PERF_EF_START)
9563 		cpu_clock_event_start(event, flags);
9564 	perf_event_update_userpage(event);
9565 
9566 	return 0;
9567 }
9568 
9569 static void cpu_clock_event_del(struct perf_event *event, int flags)
9570 {
9571 	cpu_clock_event_stop(event, flags);
9572 }
9573 
9574 static void cpu_clock_event_read(struct perf_event *event)
9575 {
9576 	cpu_clock_event_update(event);
9577 }
9578 
9579 static int cpu_clock_event_init(struct perf_event *event)
9580 {
9581 	if (event->attr.type != PERF_TYPE_SOFTWARE)
9582 		return -ENOENT;
9583 
9584 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
9585 		return -ENOENT;
9586 
9587 	/*
9588 	 * no branch sampling for software events
9589 	 */
9590 	if (has_branch_stack(event))
9591 		return -EOPNOTSUPP;
9592 
9593 	perf_swevent_init_hrtimer(event);
9594 
9595 	return 0;
9596 }
9597 
9598 static struct pmu perf_cpu_clock = {
9599 	.task_ctx_nr	= perf_sw_context,
9600 
9601 	.capabilities	= PERF_PMU_CAP_NO_NMI,
9602 
9603 	.event_init	= cpu_clock_event_init,
9604 	.add		= cpu_clock_event_add,
9605 	.del		= cpu_clock_event_del,
9606 	.start		= cpu_clock_event_start,
9607 	.stop		= cpu_clock_event_stop,
9608 	.read		= cpu_clock_event_read,
9609 };
9610 
9611 /*
9612  * Software event: task time clock
9613  */
9614 
9615 static void task_clock_event_update(struct perf_event *event, u64 now)
9616 {
9617 	u64 prev;
9618 	s64 delta;
9619 
9620 	prev = local64_xchg(&event->hw.prev_count, now);
9621 	delta = now - prev;
9622 	local64_add(delta, &event->count);
9623 }
9624 
9625 static void task_clock_event_start(struct perf_event *event, int flags)
9626 {
9627 	local64_set(&event->hw.prev_count, event->ctx->time);
9628 	perf_swevent_start_hrtimer(event);
9629 }
9630 
9631 static void task_clock_event_stop(struct perf_event *event, int flags)
9632 {
9633 	perf_swevent_cancel_hrtimer(event);
9634 	task_clock_event_update(event, event->ctx->time);
9635 }
9636 
9637 static int task_clock_event_add(struct perf_event *event, int flags)
9638 {
9639 	if (flags & PERF_EF_START)
9640 		task_clock_event_start(event, flags);
9641 	perf_event_update_userpage(event);
9642 
9643 	return 0;
9644 }
9645 
9646 static void task_clock_event_del(struct perf_event *event, int flags)
9647 {
9648 	task_clock_event_stop(event, PERF_EF_UPDATE);
9649 }
9650 
9651 static void task_clock_event_read(struct perf_event *event)
9652 {
9653 	u64 now = perf_clock();
9654 	u64 delta = now - event->ctx->timestamp;
9655 	u64 time = event->ctx->time + delta;
9656 
9657 	task_clock_event_update(event, time);
9658 }
9659 
9660 static int task_clock_event_init(struct perf_event *event)
9661 {
9662 	if (event->attr.type != PERF_TYPE_SOFTWARE)
9663 		return -ENOENT;
9664 
9665 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
9666 		return -ENOENT;
9667 
9668 	/*
9669 	 * no branch sampling for software events
9670 	 */
9671 	if (has_branch_stack(event))
9672 		return -EOPNOTSUPP;
9673 
9674 	perf_swevent_init_hrtimer(event);
9675 
9676 	return 0;
9677 }
9678 
9679 static struct pmu perf_task_clock = {
9680 	.task_ctx_nr	= perf_sw_context,
9681 
9682 	.capabilities	= PERF_PMU_CAP_NO_NMI,
9683 
9684 	.event_init	= task_clock_event_init,
9685 	.add		= task_clock_event_add,
9686 	.del		= task_clock_event_del,
9687 	.start		= task_clock_event_start,
9688 	.stop		= task_clock_event_stop,
9689 	.read		= task_clock_event_read,
9690 };
9691 
9692 static void perf_pmu_nop_void(struct pmu *pmu)
9693 {
9694 }
9695 
9696 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
9697 {
9698 }
9699 
9700 static int perf_pmu_nop_int(struct pmu *pmu)
9701 {
9702 	return 0;
9703 }
9704 
9705 static int perf_event_nop_int(struct perf_event *event, u64 value)
9706 {
9707 	return 0;
9708 }
9709 
9710 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
9711 
9712 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
9713 {
9714 	__this_cpu_write(nop_txn_flags, flags);
9715 
9716 	if (flags & ~PERF_PMU_TXN_ADD)
9717 		return;
9718 
9719 	perf_pmu_disable(pmu);
9720 }
9721 
9722 static int perf_pmu_commit_txn(struct pmu *pmu)
9723 {
9724 	unsigned int flags = __this_cpu_read(nop_txn_flags);
9725 
9726 	__this_cpu_write(nop_txn_flags, 0);
9727 
9728 	if (flags & ~PERF_PMU_TXN_ADD)
9729 		return 0;
9730 
9731 	perf_pmu_enable(pmu);
9732 	return 0;
9733 }
9734 
9735 static void perf_pmu_cancel_txn(struct pmu *pmu)
9736 {
9737 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
9738 
9739 	__this_cpu_write(nop_txn_flags, 0);
9740 
9741 	if (flags & ~PERF_PMU_TXN_ADD)
9742 		return;
9743 
9744 	perf_pmu_enable(pmu);
9745 }
9746 
9747 static int perf_event_idx_default(struct perf_event *event)
9748 {
9749 	return 0;
9750 }
9751 
9752 /*
9753  * Ensures all contexts with the same task_ctx_nr have the same
9754  * pmu_cpu_context too.
9755  */
9756 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
9757 {
9758 	struct pmu *pmu;
9759 
9760 	if (ctxn < 0)
9761 		return NULL;
9762 
9763 	list_for_each_entry(pmu, &pmus, entry) {
9764 		if (pmu->task_ctx_nr == ctxn)
9765 			return pmu->pmu_cpu_context;
9766 	}
9767 
9768 	return NULL;
9769 }
9770 
9771 static void free_pmu_context(struct pmu *pmu)
9772 {
9773 	/*
9774 	 * Static contexts such as perf_sw_context have a global lifetime
9775 	 * and may be shared between different PMUs. Avoid freeing them
9776 	 * when a single PMU is going away.
9777 	 */
9778 	if (pmu->task_ctx_nr > perf_invalid_context)
9779 		return;
9780 
9781 	free_percpu(pmu->pmu_cpu_context);
9782 }
9783 
9784 /*
9785  * Let userspace know that this PMU supports address range filtering:
9786  */
9787 static ssize_t nr_addr_filters_show(struct device *dev,
9788 				    struct device_attribute *attr,
9789 				    char *page)
9790 {
9791 	struct pmu *pmu = dev_get_drvdata(dev);
9792 
9793 	return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
9794 }
9795 DEVICE_ATTR_RO(nr_addr_filters);
9796 
9797 static struct idr pmu_idr;
9798 
9799 static ssize_t
9800 type_show(struct device *dev, struct device_attribute *attr, char *page)
9801 {
9802 	struct pmu *pmu = dev_get_drvdata(dev);
9803 
9804 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
9805 }
9806 static DEVICE_ATTR_RO(type);
9807 
9808 static ssize_t
9809 perf_event_mux_interval_ms_show(struct device *dev,
9810 				struct device_attribute *attr,
9811 				char *page)
9812 {
9813 	struct pmu *pmu = dev_get_drvdata(dev);
9814 
9815 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
9816 }
9817 
9818 static DEFINE_MUTEX(mux_interval_mutex);
9819 
9820 static ssize_t
9821 perf_event_mux_interval_ms_store(struct device *dev,
9822 				 struct device_attribute *attr,
9823 				 const char *buf, size_t count)
9824 {
9825 	struct pmu *pmu = dev_get_drvdata(dev);
9826 	int timer, cpu, ret;
9827 
9828 	ret = kstrtoint(buf, 0, &timer);
9829 	if (ret)
9830 		return ret;
9831 
9832 	if (timer < 1)
9833 		return -EINVAL;
9834 
9835 	/* same value, noting to do */
9836 	if (timer == pmu->hrtimer_interval_ms)
9837 		return count;
9838 
9839 	mutex_lock(&mux_interval_mutex);
9840 	pmu->hrtimer_interval_ms = timer;
9841 
9842 	/* update all cpuctx for this PMU */
9843 	cpus_read_lock();
9844 	for_each_online_cpu(cpu) {
9845 		struct perf_cpu_context *cpuctx;
9846 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9847 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9848 
9849 		cpu_function_call(cpu,
9850 			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
9851 	}
9852 	cpus_read_unlock();
9853 	mutex_unlock(&mux_interval_mutex);
9854 
9855 	return count;
9856 }
9857 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
9858 
9859 static struct attribute *pmu_dev_attrs[] = {
9860 	&dev_attr_type.attr,
9861 	&dev_attr_perf_event_mux_interval_ms.attr,
9862 	NULL,
9863 };
9864 ATTRIBUTE_GROUPS(pmu_dev);
9865 
9866 static int pmu_bus_running;
9867 static struct bus_type pmu_bus = {
9868 	.name		= "event_source",
9869 	.dev_groups	= pmu_dev_groups,
9870 };
9871 
9872 static void pmu_dev_release(struct device *dev)
9873 {
9874 	kfree(dev);
9875 }
9876 
9877 static int pmu_dev_alloc(struct pmu *pmu)
9878 {
9879 	int ret = -ENOMEM;
9880 
9881 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
9882 	if (!pmu->dev)
9883 		goto out;
9884 
9885 	pmu->dev->groups = pmu->attr_groups;
9886 	device_initialize(pmu->dev);
9887 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
9888 	if (ret)
9889 		goto free_dev;
9890 
9891 	dev_set_drvdata(pmu->dev, pmu);
9892 	pmu->dev->bus = &pmu_bus;
9893 	pmu->dev->release = pmu_dev_release;
9894 	ret = device_add(pmu->dev);
9895 	if (ret)
9896 		goto free_dev;
9897 
9898 	/* For PMUs with address filters, throw in an extra attribute: */
9899 	if (pmu->nr_addr_filters)
9900 		ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
9901 
9902 	if (ret)
9903 		goto del_dev;
9904 
9905 	if (pmu->attr_update)
9906 		ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
9907 
9908 	if (ret)
9909 		goto del_dev;
9910 
9911 out:
9912 	return ret;
9913 
9914 del_dev:
9915 	device_del(pmu->dev);
9916 
9917 free_dev:
9918 	put_device(pmu->dev);
9919 	goto out;
9920 }
9921 
9922 static struct lock_class_key cpuctx_mutex;
9923 static struct lock_class_key cpuctx_lock;
9924 
9925 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
9926 {
9927 	int cpu, ret;
9928 
9929 	mutex_lock(&pmus_lock);
9930 	ret = -ENOMEM;
9931 	pmu->pmu_disable_count = alloc_percpu(int);
9932 	if (!pmu->pmu_disable_count)
9933 		goto unlock;
9934 
9935 	pmu->type = -1;
9936 	if (!name)
9937 		goto skip_type;
9938 	pmu->name = name;
9939 
9940 	if (type < 0) {
9941 		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9942 		if (type < 0) {
9943 			ret = type;
9944 			goto free_pdc;
9945 		}
9946 	}
9947 	pmu->type = type;
9948 
9949 	if (pmu_bus_running) {
9950 		ret = pmu_dev_alloc(pmu);
9951 		if (ret)
9952 			goto free_idr;
9953 	}
9954 
9955 skip_type:
9956 	if (pmu->task_ctx_nr == perf_hw_context) {
9957 		static int hw_context_taken = 0;
9958 
9959 		/*
9960 		 * Other than systems with heterogeneous CPUs, it never makes
9961 		 * sense for two PMUs to share perf_hw_context. PMUs which are
9962 		 * uncore must use perf_invalid_context.
9963 		 */
9964 		if (WARN_ON_ONCE(hw_context_taken &&
9965 		    !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
9966 			pmu->task_ctx_nr = perf_invalid_context;
9967 
9968 		hw_context_taken = 1;
9969 	}
9970 
9971 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9972 	if (pmu->pmu_cpu_context)
9973 		goto got_cpu_context;
9974 
9975 	ret = -ENOMEM;
9976 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9977 	if (!pmu->pmu_cpu_context)
9978 		goto free_dev;
9979 
9980 	for_each_possible_cpu(cpu) {
9981 		struct perf_cpu_context *cpuctx;
9982 
9983 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9984 		__perf_event_init_context(&cpuctx->ctx);
9985 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
9986 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
9987 		cpuctx->ctx.pmu = pmu;
9988 		cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9989 
9990 		__perf_mux_hrtimer_init(cpuctx, cpu);
9991 	}
9992 
9993 got_cpu_context:
9994 	if (!pmu->start_txn) {
9995 		if (pmu->pmu_enable) {
9996 			/*
9997 			 * If we have pmu_enable/pmu_disable calls, install
9998 			 * transaction stubs that use that to try and batch
9999 			 * hardware accesses.
10000 			 */
10001 			pmu->start_txn  = perf_pmu_start_txn;
10002 			pmu->commit_txn = perf_pmu_commit_txn;
10003 			pmu->cancel_txn = perf_pmu_cancel_txn;
10004 		} else {
10005 			pmu->start_txn  = perf_pmu_nop_txn;
10006 			pmu->commit_txn = perf_pmu_nop_int;
10007 			pmu->cancel_txn = perf_pmu_nop_void;
10008 		}
10009 	}
10010 
10011 	if (!pmu->pmu_enable) {
10012 		pmu->pmu_enable  = perf_pmu_nop_void;
10013 		pmu->pmu_disable = perf_pmu_nop_void;
10014 	}
10015 
10016 	if (!pmu->check_period)
10017 		pmu->check_period = perf_event_nop_int;
10018 
10019 	if (!pmu->event_idx)
10020 		pmu->event_idx = perf_event_idx_default;
10021 
10022 	list_add_rcu(&pmu->entry, &pmus);
10023 	atomic_set(&pmu->exclusive_cnt, 0);
10024 	ret = 0;
10025 unlock:
10026 	mutex_unlock(&pmus_lock);
10027 
10028 	return ret;
10029 
10030 free_dev:
10031 	device_del(pmu->dev);
10032 	put_device(pmu->dev);
10033 
10034 free_idr:
10035 	if (pmu->type >= PERF_TYPE_MAX)
10036 		idr_remove(&pmu_idr, pmu->type);
10037 
10038 free_pdc:
10039 	free_percpu(pmu->pmu_disable_count);
10040 	goto unlock;
10041 }
10042 EXPORT_SYMBOL_GPL(perf_pmu_register);
10043 
10044 void perf_pmu_unregister(struct pmu *pmu)
10045 {
10046 	mutex_lock(&pmus_lock);
10047 	list_del_rcu(&pmu->entry);
10048 
10049 	/*
10050 	 * We dereference the pmu list under both SRCU and regular RCU, so
10051 	 * synchronize against both of those.
10052 	 */
10053 	synchronize_srcu(&pmus_srcu);
10054 	synchronize_rcu();
10055 
10056 	free_percpu(pmu->pmu_disable_count);
10057 	if (pmu->type >= PERF_TYPE_MAX)
10058 		idr_remove(&pmu_idr, pmu->type);
10059 	if (pmu_bus_running) {
10060 		if (pmu->nr_addr_filters)
10061 			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
10062 		device_del(pmu->dev);
10063 		put_device(pmu->dev);
10064 	}
10065 	free_pmu_context(pmu);
10066 	mutex_unlock(&pmus_lock);
10067 }
10068 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
10069 
10070 static inline bool has_extended_regs(struct perf_event *event)
10071 {
10072 	return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
10073 	       (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
10074 }
10075 
10076 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
10077 {
10078 	struct perf_event_context *ctx = NULL;
10079 	int ret;
10080 
10081 	if (!try_module_get(pmu->module))
10082 		return -ENODEV;
10083 
10084 	/*
10085 	 * A number of pmu->event_init() methods iterate the sibling_list to,
10086 	 * for example, validate if the group fits on the PMU. Therefore,
10087 	 * if this is a sibling event, acquire the ctx->mutex to protect
10088 	 * the sibling_list.
10089 	 */
10090 	if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
10091 		/*
10092 		 * This ctx->mutex can nest when we're called through
10093 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
10094 		 */
10095 		ctx = perf_event_ctx_lock_nested(event->group_leader,
10096 						 SINGLE_DEPTH_NESTING);
10097 		BUG_ON(!ctx);
10098 	}
10099 
10100 	event->pmu = pmu;
10101 	ret = pmu->event_init(event);
10102 
10103 	if (ctx)
10104 		perf_event_ctx_unlock(event->group_leader, ctx);
10105 
10106 	if (!ret) {
10107 		if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
10108 		    has_extended_regs(event))
10109 			ret = -EOPNOTSUPP;
10110 
10111 		if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
10112 		    event_has_any_exclude_flag(event))
10113 			ret = -EINVAL;
10114 
10115 		if (ret && event->destroy)
10116 			event->destroy(event);
10117 	}
10118 
10119 	if (ret)
10120 		module_put(pmu->module);
10121 
10122 	return ret;
10123 }
10124 
10125 static struct pmu *perf_init_event(struct perf_event *event)
10126 {
10127 	struct pmu *pmu;
10128 	int idx;
10129 	int ret;
10130 
10131 	idx = srcu_read_lock(&pmus_srcu);
10132 
10133 	/* Try parent's PMU first: */
10134 	if (event->parent && event->parent->pmu) {
10135 		pmu = event->parent->pmu;
10136 		ret = perf_try_init_event(pmu, event);
10137 		if (!ret)
10138 			goto unlock;
10139 	}
10140 
10141 	rcu_read_lock();
10142 	pmu = idr_find(&pmu_idr, event->attr.type);
10143 	rcu_read_unlock();
10144 	if (pmu) {
10145 		ret = perf_try_init_event(pmu, event);
10146 		if (ret)
10147 			pmu = ERR_PTR(ret);
10148 		goto unlock;
10149 	}
10150 
10151 	list_for_each_entry_rcu(pmu, &pmus, entry) {
10152 		ret = perf_try_init_event(pmu, event);
10153 		if (!ret)
10154 			goto unlock;
10155 
10156 		if (ret != -ENOENT) {
10157 			pmu = ERR_PTR(ret);
10158 			goto unlock;
10159 		}
10160 	}
10161 	pmu = ERR_PTR(-ENOENT);
10162 unlock:
10163 	srcu_read_unlock(&pmus_srcu, idx);
10164 
10165 	return pmu;
10166 }
10167 
10168 static void attach_sb_event(struct perf_event *event)
10169 {
10170 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
10171 
10172 	raw_spin_lock(&pel->lock);
10173 	list_add_rcu(&event->sb_list, &pel->list);
10174 	raw_spin_unlock(&pel->lock);
10175 }
10176 
10177 /*
10178  * We keep a list of all !task (and therefore per-cpu) events
10179  * that need to receive side-band records.
10180  *
10181  * This avoids having to scan all the various PMU per-cpu contexts
10182  * looking for them.
10183  */
10184 static void account_pmu_sb_event(struct perf_event *event)
10185 {
10186 	if (is_sb_event(event))
10187 		attach_sb_event(event);
10188 }
10189 
10190 static void account_event_cpu(struct perf_event *event, int cpu)
10191 {
10192 	if (event->parent)
10193 		return;
10194 
10195 	if (is_cgroup_event(event))
10196 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
10197 }
10198 
10199 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
10200 static void account_freq_event_nohz(void)
10201 {
10202 #ifdef CONFIG_NO_HZ_FULL
10203 	/* Lock so we don't race with concurrent unaccount */
10204 	spin_lock(&nr_freq_lock);
10205 	if (atomic_inc_return(&nr_freq_events) == 1)
10206 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
10207 	spin_unlock(&nr_freq_lock);
10208 #endif
10209 }
10210 
10211 static void account_freq_event(void)
10212 {
10213 	if (tick_nohz_full_enabled())
10214 		account_freq_event_nohz();
10215 	else
10216 		atomic_inc(&nr_freq_events);
10217 }
10218 
10219 
10220 static void account_event(struct perf_event *event)
10221 {
10222 	bool inc = false;
10223 
10224 	if (event->parent)
10225 		return;
10226 
10227 	if (event->attach_state & PERF_ATTACH_TASK)
10228 		inc = true;
10229 	if (event->attr.mmap || event->attr.mmap_data)
10230 		atomic_inc(&nr_mmap_events);
10231 	if (event->attr.comm)
10232 		atomic_inc(&nr_comm_events);
10233 	if (event->attr.namespaces)
10234 		atomic_inc(&nr_namespaces_events);
10235 	if (event->attr.task)
10236 		atomic_inc(&nr_task_events);
10237 	if (event->attr.freq)
10238 		account_freq_event();
10239 	if (event->attr.context_switch) {
10240 		atomic_inc(&nr_switch_events);
10241 		inc = true;
10242 	}
10243 	if (has_branch_stack(event))
10244 		inc = true;
10245 	if (is_cgroup_event(event))
10246 		inc = true;
10247 	if (event->attr.ksymbol)
10248 		atomic_inc(&nr_ksymbol_events);
10249 	if (event->attr.bpf_event)
10250 		atomic_inc(&nr_bpf_events);
10251 
10252 	if (inc) {
10253 		/*
10254 		 * We need the mutex here because static_branch_enable()
10255 		 * must complete *before* the perf_sched_count increment
10256 		 * becomes visible.
10257 		 */
10258 		if (atomic_inc_not_zero(&perf_sched_count))
10259 			goto enabled;
10260 
10261 		mutex_lock(&perf_sched_mutex);
10262 		if (!atomic_read(&perf_sched_count)) {
10263 			static_branch_enable(&perf_sched_events);
10264 			/*
10265 			 * Guarantee that all CPUs observe they key change and
10266 			 * call the perf scheduling hooks before proceeding to
10267 			 * install events that need them.
10268 			 */
10269 			synchronize_rcu();
10270 		}
10271 		/*
10272 		 * Now that we have waited for the sync_sched(), allow further
10273 		 * increments to by-pass the mutex.
10274 		 */
10275 		atomic_inc(&perf_sched_count);
10276 		mutex_unlock(&perf_sched_mutex);
10277 	}
10278 enabled:
10279 
10280 	account_event_cpu(event, event->cpu);
10281 
10282 	account_pmu_sb_event(event);
10283 }
10284 
10285 /*
10286  * Allocate and initialize an event structure
10287  */
10288 static struct perf_event *
10289 perf_event_alloc(struct perf_event_attr *attr, int cpu,
10290 		 struct task_struct *task,
10291 		 struct perf_event *group_leader,
10292 		 struct perf_event *parent_event,
10293 		 perf_overflow_handler_t overflow_handler,
10294 		 void *context, int cgroup_fd)
10295 {
10296 	struct pmu *pmu;
10297 	struct perf_event *event;
10298 	struct hw_perf_event *hwc;
10299 	long err = -EINVAL;
10300 
10301 	if ((unsigned)cpu >= nr_cpu_ids) {
10302 		if (!task || cpu != -1)
10303 			return ERR_PTR(-EINVAL);
10304 	}
10305 
10306 	event = kzalloc(sizeof(*event), GFP_KERNEL);
10307 	if (!event)
10308 		return ERR_PTR(-ENOMEM);
10309 
10310 	/*
10311 	 * Single events are their own group leaders, with an
10312 	 * empty sibling list:
10313 	 */
10314 	if (!group_leader)
10315 		group_leader = event;
10316 
10317 	mutex_init(&event->child_mutex);
10318 	INIT_LIST_HEAD(&event->child_list);
10319 
10320 	INIT_LIST_HEAD(&event->event_entry);
10321 	INIT_LIST_HEAD(&event->sibling_list);
10322 	INIT_LIST_HEAD(&event->active_list);
10323 	init_event_group(event);
10324 	INIT_LIST_HEAD(&event->rb_entry);
10325 	INIT_LIST_HEAD(&event->active_entry);
10326 	INIT_LIST_HEAD(&event->addr_filters.list);
10327 	INIT_HLIST_NODE(&event->hlist_entry);
10328 
10329 
10330 	init_waitqueue_head(&event->waitq);
10331 	event->pending_disable = -1;
10332 	init_irq_work(&event->pending, perf_pending_event);
10333 
10334 	mutex_init(&event->mmap_mutex);
10335 	raw_spin_lock_init(&event->addr_filters.lock);
10336 
10337 	atomic_long_set(&event->refcount, 1);
10338 	event->cpu		= cpu;
10339 	event->attr		= *attr;
10340 	event->group_leader	= group_leader;
10341 	event->pmu		= NULL;
10342 	event->oncpu		= -1;
10343 
10344 	event->parent		= parent_event;
10345 
10346 	event->ns		= get_pid_ns(task_active_pid_ns(current));
10347 	event->id		= atomic64_inc_return(&perf_event_id);
10348 
10349 	event->state		= PERF_EVENT_STATE_INACTIVE;
10350 
10351 	if (task) {
10352 		event->attach_state = PERF_ATTACH_TASK;
10353 		/*
10354 		 * XXX pmu::event_init needs to know what task to account to
10355 		 * and we cannot use the ctx information because we need the
10356 		 * pmu before we get a ctx.
10357 		 */
10358 		get_task_struct(task);
10359 		event->hw.target = task;
10360 	}
10361 
10362 	event->clock = &local_clock;
10363 	if (parent_event)
10364 		event->clock = parent_event->clock;
10365 
10366 	if (!overflow_handler && parent_event) {
10367 		overflow_handler = parent_event->overflow_handler;
10368 		context = parent_event->overflow_handler_context;
10369 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
10370 		if (overflow_handler == bpf_overflow_handler) {
10371 			struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
10372 
10373 			if (IS_ERR(prog)) {
10374 				err = PTR_ERR(prog);
10375 				goto err_ns;
10376 			}
10377 			event->prog = prog;
10378 			event->orig_overflow_handler =
10379 				parent_event->orig_overflow_handler;
10380 		}
10381 #endif
10382 	}
10383 
10384 	if (overflow_handler) {
10385 		event->overflow_handler	= overflow_handler;
10386 		event->overflow_handler_context = context;
10387 	} else if (is_write_backward(event)){
10388 		event->overflow_handler = perf_event_output_backward;
10389 		event->overflow_handler_context = NULL;
10390 	} else {
10391 		event->overflow_handler = perf_event_output_forward;
10392 		event->overflow_handler_context = NULL;
10393 	}
10394 
10395 	perf_event__state_init(event);
10396 
10397 	pmu = NULL;
10398 
10399 	hwc = &event->hw;
10400 	hwc->sample_period = attr->sample_period;
10401 	if (attr->freq && attr->sample_freq)
10402 		hwc->sample_period = 1;
10403 	hwc->last_period = hwc->sample_period;
10404 
10405 	local64_set(&hwc->period_left, hwc->sample_period);
10406 
10407 	/*
10408 	 * We currently do not support PERF_SAMPLE_READ on inherited events.
10409 	 * See perf_output_read().
10410 	 */
10411 	if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
10412 		goto err_ns;
10413 
10414 	if (!has_branch_stack(event))
10415 		event->attr.branch_sample_type = 0;
10416 
10417 	if (cgroup_fd != -1) {
10418 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
10419 		if (err)
10420 			goto err_ns;
10421 	}
10422 
10423 	pmu = perf_init_event(event);
10424 	if (IS_ERR(pmu)) {
10425 		err = PTR_ERR(pmu);
10426 		goto err_ns;
10427 	}
10428 
10429 	err = exclusive_event_init(event);
10430 	if (err)
10431 		goto err_pmu;
10432 
10433 	if (has_addr_filter(event)) {
10434 		event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
10435 						    sizeof(struct perf_addr_filter_range),
10436 						    GFP_KERNEL);
10437 		if (!event->addr_filter_ranges) {
10438 			err = -ENOMEM;
10439 			goto err_per_task;
10440 		}
10441 
10442 		/*
10443 		 * Clone the parent's vma offsets: they are valid until exec()
10444 		 * even if the mm is not shared with the parent.
10445 		 */
10446 		if (event->parent) {
10447 			struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10448 
10449 			raw_spin_lock_irq(&ifh->lock);
10450 			memcpy(event->addr_filter_ranges,
10451 			       event->parent->addr_filter_ranges,
10452 			       pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
10453 			raw_spin_unlock_irq(&ifh->lock);
10454 		}
10455 
10456 		/* force hw sync on the address filters */
10457 		event->addr_filters_gen = 1;
10458 	}
10459 
10460 	if (!event->parent) {
10461 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
10462 			err = get_callchain_buffers(attr->sample_max_stack);
10463 			if (err)
10464 				goto err_addr_filters;
10465 		}
10466 	}
10467 
10468 	/* symmetric to unaccount_event() in _free_event() */
10469 	account_event(event);
10470 
10471 	return event;
10472 
10473 err_addr_filters:
10474 	kfree(event->addr_filter_ranges);
10475 
10476 err_per_task:
10477 	exclusive_event_destroy(event);
10478 
10479 err_pmu:
10480 	if (event->destroy)
10481 		event->destroy(event);
10482 	module_put(pmu->module);
10483 err_ns:
10484 	if (is_cgroup_event(event))
10485 		perf_detach_cgroup(event);
10486 	if (event->ns)
10487 		put_pid_ns(event->ns);
10488 	if (event->hw.target)
10489 		put_task_struct(event->hw.target);
10490 	kfree(event);
10491 
10492 	return ERR_PTR(err);
10493 }
10494 
10495 static int perf_copy_attr(struct perf_event_attr __user *uattr,
10496 			  struct perf_event_attr *attr)
10497 {
10498 	u32 size;
10499 	int ret;
10500 
10501 	if (!access_ok(uattr, PERF_ATTR_SIZE_VER0))
10502 		return -EFAULT;
10503 
10504 	/*
10505 	 * zero the full structure, so that a short copy will be nice.
10506 	 */
10507 	memset(attr, 0, sizeof(*attr));
10508 
10509 	ret = get_user(size, &uattr->size);
10510 	if (ret)
10511 		return ret;
10512 
10513 	if (size > PAGE_SIZE)	/* silly large */
10514 		goto err_size;
10515 
10516 	if (!size)		/* abi compat */
10517 		size = PERF_ATTR_SIZE_VER0;
10518 
10519 	if (size < PERF_ATTR_SIZE_VER0)
10520 		goto err_size;
10521 
10522 	/*
10523 	 * If we're handed a bigger struct than we know of,
10524 	 * ensure all the unknown bits are 0 - i.e. new
10525 	 * user-space does not rely on any kernel feature
10526 	 * extensions we dont know about yet.
10527 	 */
10528 	if (size > sizeof(*attr)) {
10529 		unsigned char __user *addr;
10530 		unsigned char __user *end;
10531 		unsigned char val;
10532 
10533 		addr = (void __user *)uattr + sizeof(*attr);
10534 		end  = (void __user *)uattr + size;
10535 
10536 		for (; addr < end; addr++) {
10537 			ret = get_user(val, addr);
10538 			if (ret)
10539 				return ret;
10540 			if (val)
10541 				goto err_size;
10542 		}
10543 		size = sizeof(*attr);
10544 	}
10545 
10546 	ret = copy_from_user(attr, uattr, size);
10547 	if (ret)
10548 		return -EFAULT;
10549 
10550 	attr->size = size;
10551 
10552 	if (attr->__reserved_1)
10553 		return -EINVAL;
10554 
10555 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
10556 		return -EINVAL;
10557 
10558 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
10559 		return -EINVAL;
10560 
10561 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
10562 		u64 mask = attr->branch_sample_type;
10563 
10564 		/* only using defined bits */
10565 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
10566 			return -EINVAL;
10567 
10568 		/* at least one branch bit must be set */
10569 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
10570 			return -EINVAL;
10571 
10572 		/* propagate priv level, when not set for branch */
10573 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
10574 
10575 			/* exclude_kernel checked on syscall entry */
10576 			if (!attr->exclude_kernel)
10577 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
10578 
10579 			if (!attr->exclude_user)
10580 				mask |= PERF_SAMPLE_BRANCH_USER;
10581 
10582 			if (!attr->exclude_hv)
10583 				mask |= PERF_SAMPLE_BRANCH_HV;
10584 			/*
10585 			 * adjust user setting (for HW filter setup)
10586 			 */
10587 			attr->branch_sample_type = mask;
10588 		}
10589 		/* privileged levels capture (kernel, hv): check permissions */
10590 		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
10591 		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10592 			return -EACCES;
10593 	}
10594 
10595 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
10596 		ret = perf_reg_validate(attr->sample_regs_user);
10597 		if (ret)
10598 			return ret;
10599 	}
10600 
10601 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
10602 		if (!arch_perf_have_user_stack_dump())
10603 			return -ENOSYS;
10604 
10605 		/*
10606 		 * We have __u32 type for the size, but so far
10607 		 * we can only use __u16 as maximum due to the
10608 		 * __u16 sample size limit.
10609 		 */
10610 		if (attr->sample_stack_user >= USHRT_MAX)
10611 			return -EINVAL;
10612 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
10613 			return -EINVAL;
10614 	}
10615 
10616 	if (!attr->sample_max_stack)
10617 		attr->sample_max_stack = sysctl_perf_event_max_stack;
10618 
10619 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
10620 		ret = perf_reg_validate(attr->sample_regs_intr);
10621 out:
10622 	return ret;
10623 
10624 err_size:
10625 	put_user(sizeof(*attr), &uattr->size);
10626 	ret = -E2BIG;
10627 	goto out;
10628 }
10629 
10630 static int
10631 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
10632 {
10633 	struct ring_buffer *rb = NULL;
10634 	int ret = -EINVAL;
10635 
10636 	if (!output_event)
10637 		goto set;
10638 
10639 	/* don't allow circular references */
10640 	if (event == output_event)
10641 		goto out;
10642 
10643 	/*
10644 	 * Don't allow cross-cpu buffers
10645 	 */
10646 	if (output_event->cpu != event->cpu)
10647 		goto out;
10648 
10649 	/*
10650 	 * If its not a per-cpu rb, it must be the same task.
10651 	 */
10652 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
10653 		goto out;
10654 
10655 	/*
10656 	 * Mixing clocks in the same buffer is trouble you don't need.
10657 	 */
10658 	if (output_event->clock != event->clock)
10659 		goto out;
10660 
10661 	/*
10662 	 * Either writing ring buffer from beginning or from end.
10663 	 * Mixing is not allowed.
10664 	 */
10665 	if (is_write_backward(output_event) != is_write_backward(event))
10666 		goto out;
10667 
10668 	/*
10669 	 * If both events generate aux data, they must be on the same PMU
10670 	 */
10671 	if (has_aux(event) && has_aux(output_event) &&
10672 	    event->pmu != output_event->pmu)
10673 		goto out;
10674 
10675 set:
10676 	mutex_lock(&event->mmap_mutex);
10677 	/* Can't redirect output if we've got an active mmap() */
10678 	if (atomic_read(&event->mmap_count))
10679 		goto unlock;
10680 
10681 	if (output_event) {
10682 		/* get the rb we want to redirect to */
10683 		rb = ring_buffer_get(output_event);
10684 		if (!rb)
10685 			goto unlock;
10686 	}
10687 
10688 	ring_buffer_attach(event, rb);
10689 
10690 	ret = 0;
10691 unlock:
10692 	mutex_unlock(&event->mmap_mutex);
10693 
10694 out:
10695 	return ret;
10696 }
10697 
10698 static void mutex_lock_double(struct mutex *a, struct mutex *b)
10699 {
10700 	if (b < a)
10701 		swap(a, b);
10702 
10703 	mutex_lock(a);
10704 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
10705 }
10706 
10707 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
10708 {
10709 	bool nmi_safe = false;
10710 
10711 	switch (clk_id) {
10712 	case CLOCK_MONOTONIC:
10713 		event->clock = &ktime_get_mono_fast_ns;
10714 		nmi_safe = true;
10715 		break;
10716 
10717 	case CLOCK_MONOTONIC_RAW:
10718 		event->clock = &ktime_get_raw_fast_ns;
10719 		nmi_safe = true;
10720 		break;
10721 
10722 	case CLOCK_REALTIME:
10723 		event->clock = &ktime_get_real_ns;
10724 		break;
10725 
10726 	case CLOCK_BOOTTIME:
10727 		event->clock = &ktime_get_boottime_ns;
10728 		break;
10729 
10730 	case CLOCK_TAI:
10731 		event->clock = &ktime_get_clocktai_ns;
10732 		break;
10733 
10734 	default:
10735 		return -EINVAL;
10736 	}
10737 
10738 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
10739 		return -EINVAL;
10740 
10741 	return 0;
10742 }
10743 
10744 /*
10745  * Variation on perf_event_ctx_lock_nested(), except we take two context
10746  * mutexes.
10747  */
10748 static struct perf_event_context *
10749 __perf_event_ctx_lock_double(struct perf_event *group_leader,
10750 			     struct perf_event_context *ctx)
10751 {
10752 	struct perf_event_context *gctx;
10753 
10754 again:
10755 	rcu_read_lock();
10756 	gctx = READ_ONCE(group_leader->ctx);
10757 	if (!refcount_inc_not_zero(&gctx->refcount)) {
10758 		rcu_read_unlock();
10759 		goto again;
10760 	}
10761 	rcu_read_unlock();
10762 
10763 	mutex_lock_double(&gctx->mutex, &ctx->mutex);
10764 
10765 	if (group_leader->ctx != gctx) {
10766 		mutex_unlock(&ctx->mutex);
10767 		mutex_unlock(&gctx->mutex);
10768 		put_ctx(gctx);
10769 		goto again;
10770 	}
10771 
10772 	return gctx;
10773 }
10774 
10775 /**
10776  * sys_perf_event_open - open a performance event, associate it to a task/cpu
10777  *
10778  * @attr_uptr:	event_id type attributes for monitoring/sampling
10779  * @pid:		target pid
10780  * @cpu:		target cpu
10781  * @group_fd:		group leader event fd
10782  */
10783 SYSCALL_DEFINE5(perf_event_open,
10784 		struct perf_event_attr __user *, attr_uptr,
10785 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
10786 {
10787 	struct perf_event *group_leader = NULL, *output_event = NULL;
10788 	struct perf_event *event, *sibling;
10789 	struct perf_event_attr attr;
10790 	struct perf_event_context *ctx, *uninitialized_var(gctx);
10791 	struct file *event_file = NULL;
10792 	struct fd group = {NULL, 0};
10793 	struct task_struct *task = NULL;
10794 	struct pmu *pmu;
10795 	int event_fd;
10796 	int move_group = 0;
10797 	int err;
10798 	int f_flags = O_RDWR;
10799 	int cgroup_fd = -1;
10800 
10801 	/* for future expandability... */
10802 	if (flags & ~PERF_FLAG_ALL)
10803 		return -EINVAL;
10804 
10805 	err = perf_copy_attr(attr_uptr, &attr);
10806 	if (err)
10807 		return err;
10808 
10809 	if (!attr.exclude_kernel) {
10810 		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10811 			return -EACCES;
10812 	}
10813 
10814 	if (attr.namespaces) {
10815 		if (!capable(CAP_SYS_ADMIN))
10816 			return -EACCES;
10817 	}
10818 
10819 	if (attr.freq) {
10820 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
10821 			return -EINVAL;
10822 	} else {
10823 		if (attr.sample_period & (1ULL << 63))
10824 			return -EINVAL;
10825 	}
10826 
10827 	/* Only privileged users can get physical addresses */
10828 	if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) &&
10829 	    perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10830 		return -EACCES;
10831 
10832 	/*
10833 	 * In cgroup mode, the pid argument is used to pass the fd
10834 	 * opened to the cgroup directory in cgroupfs. The cpu argument
10835 	 * designates the cpu on which to monitor threads from that
10836 	 * cgroup.
10837 	 */
10838 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
10839 		return -EINVAL;
10840 
10841 	if (flags & PERF_FLAG_FD_CLOEXEC)
10842 		f_flags |= O_CLOEXEC;
10843 
10844 	event_fd = get_unused_fd_flags(f_flags);
10845 	if (event_fd < 0)
10846 		return event_fd;
10847 
10848 	if (group_fd != -1) {
10849 		err = perf_fget_light(group_fd, &group);
10850 		if (err)
10851 			goto err_fd;
10852 		group_leader = group.file->private_data;
10853 		if (flags & PERF_FLAG_FD_OUTPUT)
10854 			output_event = group_leader;
10855 		if (flags & PERF_FLAG_FD_NO_GROUP)
10856 			group_leader = NULL;
10857 	}
10858 
10859 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
10860 		task = find_lively_task_by_vpid(pid);
10861 		if (IS_ERR(task)) {
10862 			err = PTR_ERR(task);
10863 			goto err_group_fd;
10864 		}
10865 	}
10866 
10867 	if (task && group_leader &&
10868 	    group_leader->attr.inherit != attr.inherit) {
10869 		err = -EINVAL;
10870 		goto err_task;
10871 	}
10872 
10873 	if (task) {
10874 		err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
10875 		if (err)
10876 			goto err_task;
10877 
10878 		/*
10879 		 * Reuse ptrace permission checks for now.
10880 		 *
10881 		 * We must hold cred_guard_mutex across this and any potential
10882 		 * perf_install_in_context() call for this new event to
10883 		 * serialize against exec() altering our credentials (and the
10884 		 * perf_event_exit_task() that could imply).
10885 		 */
10886 		err = -EACCES;
10887 		if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
10888 			goto err_cred;
10889 	}
10890 
10891 	if (flags & PERF_FLAG_PID_CGROUP)
10892 		cgroup_fd = pid;
10893 
10894 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
10895 				 NULL, NULL, cgroup_fd);
10896 	if (IS_ERR(event)) {
10897 		err = PTR_ERR(event);
10898 		goto err_cred;
10899 	}
10900 
10901 	if (is_sampling_event(event)) {
10902 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
10903 			err = -EOPNOTSUPP;
10904 			goto err_alloc;
10905 		}
10906 	}
10907 
10908 	/*
10909 	 * Special case software events and allow them to be part of
10910 	 * any hardware group.
10911 	 */
10912 	pmu = event->pmu;
10913 
10914 	if (attr.use_clockid) {
10915 		err = perf_event_set_clock(event, attr.clockid);
10916 		if (err)
10917 			goto err_alloc;
10918 	}
10919 
10920 	if (pmu->task_ctx_nr == perf_sw_context)
10921 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
10922 
10923 	if (group_leader) {
10924 		if (is_software_event(event) &&
10925 		    !in_software_context(group_leader)) {
10926 			/*
10927 			 * If the event is a sw event, but the group_leader
10928 			 * is on hw context.
10929 			 *
10930 			 * Allow the addition of software events to hw
10931 			 * groups, this is safe because software events
10932 			 * never fail to schedule.
10933 			 */
10934 			pmu = group_leader->ctx->pmu;
10935 		} else if (!is_software_event(event) &&
10936 			   is_software_event(group_leader) &&
10937 			   (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10938 			/*
10939 			 * In case the group is a pure software group, and we
10940 			 * try to add a hardware event, move the whole group to
10941 			 * the hardware context.
10942 			 */
10943 			move_group = 1;
10944 		}
10945 	}
10946 
10947 	/*
10948 	 * Get the target context (task or percpu):
10949 	 */
10950 	ctx = find_get_context(pmu, task, event);
10951 	if (IS_ERR(ctx)) {
10952 		err = PTR_ERR(ctx);
10953 		goto err_alloc;
10954 	}
10955 
10956 	/*
10957 	 * Look up the group leader (we will attach this event to it):
10958 	 */
10959 	if (group_leader) {
10960 		err = -EINVAL;
10961 
10962 		/*
10963 		 * Do not allow a recursive hierarchy (this new sibling
10964 		 * becoming part of another group-sibling):
10965 		 */
10966 		if (group_leader->group_leader != group_leader)
10967 			goto err_context;
10968 
10969 		/* All events in a group should have the same clock */
10970 		if (group_leader->clock != event->clock)
10971 			goto err_context;
10972 
10973 		/*
10974 		 * Make sure we're both events for the same CPU;
10975 		 * grouping events for different CPUs is broken; since
10976 		 * you can never concurrently schedule them anyhow.
10977 		 */
10978 		if (group_leader->cpu != event->cpu)
10979 			goto err_context;
10980 
10981 		/*
10982 		 * Make sure we're both on the same task, or both
10983 		 * per-CPU events.
10984 		 */
10985 		if (group_leader->ctx->task != ctx->task)
10986 			goto err_context;
10987 
10988 		/*
10989 		 * Do not allow to attach to a group in a different task
10990 		 * or CPU context. If we're moving SW events, we'll fix
10991 		 * this up later, so allow that.
10992 		 */
10993 		if (!move_group && group_leader->ctx != ctx)
10994 			goto err_context;
10995 
10996 		/*
10997 		 * Only a group leader can be exclusive or pinned
10998 		 */
10999 		if (attr.exclusive || attr.pinned)
11000 			goto err_context;
11001 	}
11002 
11003 	if (output_event) {
11004 		err = perf_event_set_output(event, output_event);
11005 		if (err)
11006 			goto err_context;
11007 	}
11008 
11009 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
11010 					f_flags);
11011 	if (IS_ERR(event_file)) {
11012 		err = PTR_ERR(event_file);
11013 		event_file = NULL;
11014 		goto err_context;
11015 	}
11016 
11017 	if (move_group) {
11018 		gctx = __perf_event_ctx_lock_double(group_leader, ctx);
11019 
11020 		if (gctx->task == TASK_TOMBSTONE) {
11021 			err = -ESRCH;
11022 			goto err_locked;
11023 		}
11024 
11025 		/*
11026 		 * Check if we raced against another sys_perf_event_open() call
11027 		 * moving the software group underneath us.
11028 		 */
11029 		if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
11030 			/*
11031 			 * If someone moved the group out from under us, check
11032 			 * if this new event wound up on the same ctx, if so
11033 			 * its the regular !move_group case, otherwise fail.
11034 			 */
11035 			if (gctx != ctx) {
11036 				err = -EINVAL;
11037 				goto err_locked;
11038 			} else {
11039 				perf_event_ctx_unlock(group_leader, gctx);
11040 				move_group = 0;
11041 			}
11042 		}
11043 
11044 		/*
11045 		 * Failure to create exclusive events returns -EBUSY.
11046 		 */
11047 		err = -EBUSY;
11048 		if (!exclusive_event_installable(group_leader, ctx))
11049 			goto err_locked;
11050 
11051 		for_each_sibling_event(sibling, group_leader) {
11052 			if (!exclusive_event_installable(sibling, ctx))
11053 				goto err_locked;
11054 		}
11055 	} else {
11056 		mutex_lock(&ctx->mutex);
11057 	}
11058 
11059 	if (ctx->task == TASK_TOMBSTONE) {
11060 		err = -ESRCH;
11061 		goto err_locked;
11062 	}
11063 
11064 	if (!perf_event_validate_size(event)) {
11065 		err = -E2BIG;
11066 		goto err_locked;
11067 	}
11068 
11069 	if (!task) {
11070 		/*
11071 		 * Check if the @cpu we're creating an event for is online.
11072 		 *
11073 		 * We use the perf_cpu_context::ctx::mutex to serialize against
11074 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11075 		 */
11076 		struct perf_cpu_context *cpuctx =
11077 			container_of(ctx, struct perf_cpu_context, ctx);
11078 
11079 		if (!cpuctx->online) {
11080 			err = -ENODEV;
11081 			goto err_locked;
11082 		}
11083 	}
11084 
11085 
11086 	/*
11087 	 * Must be under the same ctx::mutex as perf_install_in_context(),
11088 	 * because we need to serialize with concurrent event creation.
11089 	 */
11090 	if (!exclusive_event_installable(event, ctx)) {
11091 		err = -EBUSY;
11092 		goto err_locked;
11093 	}
11094 
11095 	WARN_ON_ONCE(ctx->parent_ctx);
11096 
11097 	/*
11098 	 * This is the point on no return; we cannot fail hereafter. This is
11099 	 * where we start modifying current state.
11100 	 */
11101 
11102 	if (move_group) {
11103 		/*
11104 		 * See perf_event_ctx_lock() for comments on the details
11105 		 * of swizzling perf_event::ctx.
11106 		 */
11107 		perf_remove_from_context(group_leader, 0);
11108 		put_ctx(gctx);
11109 
11110 		for_each_sibling_event(sibling, group_leader) {
11111 			perf_remove_from_context(sibling, 0);
11112 			put_ctx(gctx);
11113 		}
11114 
11115 		/*
11116 		 * Wait for everybody to stop referencing the events through
11117 		 * the old lists, before installing it on new lists.
11118 		 */
11119 		synchronize_rcu();
11120 
11121 		/*
11122 		 * Install the group siblings before the group leader.
11123 		 *
11124 		 * Because a group leader will try and install the entire group
11125 		 * (through the sibling list, which is still in-tact), we can
11126 		 * end up with siblings installed in the wrong context.
11127 		 *
11128 		 * By installing siblings first we NO-OP because they're not
11129 		 * reachable through the group lists.
11130 		 */
11131 		for_each_sibling_event(sibling, group_leader) {
11132 			perf_event__state_init(sibling);
11133 			perf_install_in_context(ctx, sibling, sibling->cpu);
11134 			get_ctx(ctx);
11135 		}
11136 
11137 		/*
11138 		 * Removing from the context ends up with disabled
11139 		 * event. What we want here is event in the initial
11140 		 * startup state, ready to be add into new context.
11141 		 */
11142 		perf_event__state_init(group_leader);
11143 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
11144 		get_ctx(ctx);
11145 	}
11146 
11147 	/*
11148 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
11149 	 * that we're serialized against further additions and before
11150 	 * perf_install_in_context() which is the point the event is active and
11151 	 * can use these values.
11152 	 */
11153 	perf_event__header_size(event);
11154 	perf_event__id_header_size(event);
11155 
11156 	event->owner = current;
11157 
11158 	perf_install_in_context(ctx, event, event->cpu);
11159 	perf_unpin_context(ctx);
11160 
11161 	if (move_group)
11162 		perf_event_ctx_unlock(group_leader, gctx);
11163 	mutex_unlock(&ctx->mutex);
11164 
11165 	if (task) {
11166 		mutex_unlock(&task->signal->cred_guard_mutex);
11167 		put_task_struct(task);
11168 	}
11169 
11170 	mutex_lock(&current->perf_event_mutex);
11171 	list_add_tail(&event->owner_entry, &current->perf_event_list);
11172 	mutex_unlock(&current->perf_event_mutex);
11173 
11174 	/*
11175 	 * Drop the reference on the group_event after placing the
11176 	 * new event on the sibling_list. This ensures destruction
11177 	 * of the group leader will find the pointer to itself in
11178 	 * perf_group_detach().
11179 	 */
11180 	fdput(group);
11181 	fd_install(event_fd, event_file);
11182 	return event_fd;
11183 
11184 err_locked:
11185 	if (move_group)
11186 		perf_event_ctx_unlock(group_leader, gctx);
11187 	mutex_unlock(&ctx->mutex);
11188 /* err_file: */
11189 	fput(event_file);
11190 err_context:
11191 	perf_unpin_context(ctx);
11192 	put_ctx(ctx);
11193 err_alloc:
11194 	/*
11195 	 * If event_file is set, the fput() above will have called ->release()
11196 	 * and that will take care of freeing the event.
11197 	 */
11198 	if (!event_file)
11199 		free_event(event);
11200 err_cred:
11201 	if (task)
11202 		mutex_unlock(&task->signal->cred_guard_mutex);
11203 err_task:
11204 	if (task)
11205 		put_task_struct(task);
11206 err_group_fd:
11207 	fdput(group);
11208 err_fd:
11209 	put_unused_fd(event_fd);
11210 	return err;
11211 }
11212 
11213 /**
11214  * perf_event_create_kernel_counter
11215  *
11216  * @attr: attributes of the counter to create
11217  * @cpu: cpu in which the counter is bound
11218  * @task: task to profile (NULL for percpu)
11219  */
11220 struct perf_event *
11221 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
11222 				 struct task_struct *task,
11223 				 perf_overflow_handler_t overflow_handler,
11224 				 void *context)
11225 {
11226 	struct perf_event_context *ctx;
11227 	struct perf_event *event;
11228 	int err;
11229 
11230 	/*
11231 	 * Get the target context (task or percpu):
11232 	 */
11233 
11234 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
11235 				 overflow_handler, context, -1);
11236 	if (IS_ERR(event)) {
11237 		err = PTR_ERR(event);
11238 		goto err;
11239 	}
11240 
11241 	/* Mark owner so we could distinguish it from user events. */
11242 	event->owner = TASK_TOMBSTONE;
11243 
11244 	ctx = find_get_context(event->pmu, task, event);
11245 	if (IS_ERR(ctx)) {
11246 		err = PTR_ERR(ctx);
11247 		goto err_free;
11248 	}
11249 
11250 	WARN_ON_ONCE(ctx->parent_ctx);
11251 	mutex_lock(&ctx->mutex);
11252 	if (ctx->task == TASK_TOMBSTONE) {
11253 		err = -ESRCH;
11254 		goto err_unlock;
11255 	}
11256 
11257 	if (!task) {
11258 		/*
11259 		 * Check if the @cpu we're creating an event for is online.
11260 		 *
11261 		 * We use the perf_cpu_context::ctx::mutex to serialize against
11262 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11263 		 */
11264 		struct perf_cpu_context *cpuctx =
11265 			container_of(ctx, struct perf_cpu_context, ctx);
11266 		if (!cpuctx->online) {
11267 			err = -ENODEV;
11268 			goto err_unlock;
11269 		}
11270 	}
11271 
11272 	if (!exclusive_event_installable(event, ctx)) {
11273 		err = -EBUSY;
11274 		goto err_unlock;
11275 	}
11276 
11277 	perf_install_in_context(ctx, event, event->cpu);
11278 	perf_unpin_context(ctx);
11279 	mutex_unlock(&ctx->mutex);
11280 
11281 	return event;
11282 
11283 err_unlock:
11284 	mutex_unlock(&ctx->mutex);
11285 	perf_unpin_context(ctx);
11286 	put_ctx(ctx);
11287 err_free:
11288 	free_event(event);
11289 err:
11290 	return ERR_PTR(err);
11291 }
11292 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
11293 
11294 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
11295 {
11296 	struct perf_event_context *src_ctx;
11297 	struct perf_event_context *dst_ctx;
11298 	struct perf_event *event, *tmp;
11299 	LIST_HEAD(events);
11300 
11301 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
11302 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
11303 
11304 	/*
11305 	 * See perf_event_ctx_lock() for comments on the details
11306 	 * of swizzling perf_event::ctx.
11307 	 */
11308 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
11309 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
11310 				 event_entry) {
11311 		perf_remove_from_context(event, 0);
11312 		unaccount_event_cpu(event, src_cpu);
11313 		put_ctx(src_ctx);
11314 		list_add(&event->migrate_entry, &events);
11315 	}
11316 
11317 	/*
11318 	 * Wait for the events to quiesce before re-instating them.
11319 	 */
11320 	synchronize_rcu();
11321 
11322 	/*
11323 	 * Re-instate events in 2 passes.
11324 	 *
11325 	 * Skip over group leaders and only install siblings on this first
11326 	 * pass, siblings will not get enabled without a leader, however a
11327 	 * leader will enable its siblings, even if those are still on the old
11328 	 * context.
11329 	 */
11330 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
11331 		if (event->group_leader == event)
11332 			continue;
11333 
11334 		list_del(&event->migrate_entry);
11335 		if (event->state >= PERF_EVENT_STATE_OFF)
11336 			event->state = PERF_EVENT_STATE_INACTIVE;
11337 		account_event_cpu(event, dst_cpu);
11338 		perf_install_in_context(dst_ctx, event, dst_cpu);
11339 		get_ctx(dst_ctx);
11340 	}
11341 
11342 	/*
11343 	 * Once all the siblings are setup properly, install the group leaders
11344 	 * to make it go.
11345 	 */
11346 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
11347 		list_del(&event->migrate_entry);
11348 		if (event->state >= PERF_EVENT_STATE_OFF)
11349 			event->state = PERF_EVENT_STATE_INACTIVE;
11350 		account_event_cpu(event, dst_cpu);
11351 		perf_install_in_context(dst_ctx, event, dst_cpu);
11352 		get_ctx(dst_ctx);
11353 	}
11354 	mutex_unlock(&dst_ctx->mutex);
11355 	mutex_unlock(&src_ctx->mutex);
11356 }
11357 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
11358 
11359 static void sync_child_event(struct perf_event *child_event,
11360 			       struct task_struct *child)
11361 {
11362 	struct perf_event *parent_event = child_event->parent;
11363 	u64 child_val;
11364 
11365 	if (child_event->attr.inherit_stat)
11366 		perf_event_read_event(child_event, child);
11367 
11368 	child_val = perf_event_count(child_event);
11369 
11370 	/*
11371 	 * Add back the child's count to the parent's count:
11372 	 */
11373 	atomic64_add(child_val, &parent_event->child_count);
11374 	atomic64_add(child_event->total_time_enabled,
11375 		     &parent_event->child_total_time_enabled);
11376 	atomic64_add(child_event->total_time_running,
11377 		     &parent_event->child_total_time_running);
11378 }
11379 
11380 static void
11381 perf_event_exit_event(struct perf_event *child_event,
11382 		      struct perf_event_context *child_ctx,
11383 		      struct task_struct *child)
11384 {
11385 	struct perf_event *parent_event = child_event->parent;
11386 
11387 	/*
11388 	 * Do not destroy the 'original' grouping; because of the context
11389 	 * switch optimization the original events could've ended up in a
11390 	 * random child task.
11391 	 *
11392 	 * If we were to destroy the original group, all group related
11393 	 * operations would cease to function properly after this random
11394 	 * child dies.
11395 	 *
11396 	 * Do destroy all inherited groups, we don't care about those
11397 	 * and being thorough is better.
11398 	 */
11399 	raw_spin_lock_irq(&child_ctx->lock);
11400 	WARN_ON_ONCE(child_ctx->is_active);
11401 
11402 	if (parent_event)
11403 		perf_group_detach(child_event);
11404 	list_del_event(child_event, child_ctx);
11405 	perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
11406 	raw_spin_unlock_irq(&child_ctx->lock);
11407 
11408 	/*
11409 	 * Parent events are governed by their filedesc, retain them.
11410 	 */
11411 	if (!parent_event) {
11412 		perf_event_wakeup(child_event);
11413 		return;
11414 	}
11415 	/*
11416 	 * Child events can be cleaned up.
11417 	 */
11418 
11419 	sync_child_event(child_event, child);
11420 
11421 	/*
11422 	 * Remove this event from the parent's list
11423 	 */
11424 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
11425 	mutex_lock(&parent_event->child_mutex);
11426 	list_del_init(&child_event->child_list);
11427 	mutex_unlock(&parent_event->child_mutex);
11428 
11429 	/*
11430 	 * Kick perf_poll() for is_event_hup().
11431 	 */
11432 	perf_event_wakeup(parent_event);
11433 	free_event(child_event);
11434 	put_event(parent_event);
11435 }
11436 
11437 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
11438 {
11439 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
11440 	struct perf_event *child_event, *next;
11441 
11442 	WARN_ON_ONCE(child != current);
11443 
11444 	child_ctx = perf_pin_task_context(child, ctxn);
11445 	if (!child_ctx)
11446 		return;
11447 
11448 	/*
11449 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
11450 	 * ctx::mutex over the entire thing. This serializes against almost
11451 	 * everything that wants to access the ctx.
11452 	 *
11453 	 * The exception is sys_perf_event_open() /
11454 	 * perf_event_create_kernel_count() which does find_get_context()
11455 	 * without ctx::mutex (it cannot because of the move_group double mutex
11456 	 * lock thing). See the comments in perf_install_in_context().
11457 	 */
11458 	mutex_lock(&child_ctx->mutex);
11459 
11460 	/*
11461 	 * In a single ctx::lock section, de-schedule the events and detach the
11462 	 * context from the task such that we cannot ever get it scheduled back
11463 	 * in.
11464 	 */
11465 	raw_spin_lock_irq(&child_ctx->lock);
11466 	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
11467 
11468 	/*
11469 	 * Now that the context is inactive, destroy the task <-> ctx relation
11470 	 * and mark the context dead.
11471 	 */
11472 	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
11473 	put_ctx(child_ctx); /* cannot be last */
11474 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
11475 	put_task_struct(current); /* cannot be last */
11476 
11477 	clone_ctx = unclone_ctx(child_ctx);
11478 	raw_spin_unlock_irq(&child_ctx->lock);
11479 
11480 	if (clone_ctx)
11481 		put_ctx(clone_ctx);
11482 
11483 	/*
11484 	 * Report the task dead after unscheduling the events so that we
11485 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
11486 	 * get a few PERF_RECORD_READ events.
11487 	 */
11488 	perf_event_task(child, child_ctx, 0);
11489 
11490 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
11491 		perf_event_exit_event(child_event, child_ctx, child);
11492 
11493 	mutex_unlock(&child_ctx->mutex);
11494 
11495 	put_ctx(child_ctx);
11496 }
11497 
11498 /*
11499  * When a child task exits, feed back event values to parent events.
11500  *
11501  * Can be called with cred_guard_mutex held when called from
11502  * install_exec_creds().
11503  */
11504 void perf_event_exit_task(struct task_struct *child)
11505 {
11506 	struct perf_event *event, *tmp;
11507 	int ctxn;
11508 
11509 	mutex_lock(&child->perf_event_mutex);
11510 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
11511 				 owner_entry) {
11512 		list_del_init(&event->owner_entry);
11513 
11514 		/*
11515 		 * Ensure the list deletion is visible before we clear
11516 		 * the owner, closes a race against perf_release() where
11517 		 * we need to serialize on the owner->perf_event_mutex.
11518 		 */
11519 		smp_store_release(&event->owner, NULL);
11520 	}
11521 	mutex_unlock(&child->perf_event_mutex);
11522 
11523 	for_each_task_context_nr(ctxn)
11524 		perf_event_exit_task_context(child, ctxn);
11525 
11526 	/*
11527 	 * The perf_event_exit_task_context calls perf_event_task
11528 	 * with child's task_ctx, which generates EXIT events for
11529 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
11530 	 * At this point we need to send EXIT events to cpu contexts.
11531 	 */
11532 	perf_event_task(child, NULL, 0);
11533 }
11534 
11535 static void perf_free_event(struct perf_event *event,
11536 			    struct perf_event_context *ctx)
11537 {
11538 	struct perf_event *parent = event->parent;
11539 
11540 	if (WARN_ON_ONCE(!parent))
11541 		return;
11542 
11543 	mutex_lock(&parent->child_mutex);
11544 	list_del_init(&event->child_list);
11545 	mutex_unlock(&parent->child_mutex);
11546 
11547 	put_event(parent);
11548 
11549 	raw_spin_lock_irq(&ctx->lock);
11550 	perf_group_detach(event);
11551 	list_del_event(event, ctx);
11552 	raw_spin_unlock_irq(&ctx->lock);
11553 	free_event(event);
11554 }
11555 
11556 /*
11557  * Free a context as created by inheritance by perf_event_init_task() below,
11558  * used by fork() in case of fail.
11559  *
11560  * Even though the task has never lived, the context and events have been
11561  * exposed through the child_list, so we must take care tearing it all down.
11562  */
11563 void perf_event_free_task(struct task_struct *task)
11564 {
11565 	struct perf_event_context *ctx;
11566 	struct perf_event *event, *tmp;
11567 	int ctxn;
11568 
11569 	for_each_task_context_nr(ctxn) {
11570 		ctx = task->perf_event_ctxp[ctxn];
11571 		if (!ctx)
11572 			continue;
11573 
11574 		mutex_lock(&ctx->mutex);
11575 		raw_spin_lock_irq(&ctx->lock);
11576 		/*
11577 		 * Destroy the task <-> ctx relation and mark the context dead.
11578 		 *
11579 		 * This is important because even though the task hasn't been
11580 		 * exposed yet the context has been (through child_list).
11581 		 */
11582 		RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
11583 		WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
11584 		put_task_struct(task); /* cannot be last */
11585 		raw_spin_unlock_irq(&ctx->lock);
11586 
11587 		list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
11588 			perf_free_event(event, ctx);
11589 
11590 		mutex_unlock(&ctx->mutex);
11591 
11592 		/*
11593 		 * perf_event_release_kernel() could've stolen some of our
11594 		 * child events and still have them on its free_list. In that
11595 		 * case we must wait for these events to have been freed (in
11596 		 * particular all their references to this task must've been
11597 		 * dropped).
11598 		 *
11599 		 * Without this copy_process() will unconditionally free this
11600 		 * task (irrespective of its reference count) and
11601 		 * _free_event()'s put_task_struct(event->hw.target) will be a
11602 		 * use-after-free.
11603 		 *
11604 		 * Wait for all events to drop their context reference.
11605 		 */
11606 		wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
11607 		put_ctx(ctx); /* must be last */
11608 	}
11609 }
11610 
11611 void perf_event_delayed_put(struct task_struct *task)
11612 {
11613 	int ctxn;
11614 
11615 	for_each_task_context_nr(ctxn)
11616 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
11617 }
11618 
11619 struct file *perf_event_get(unsigned int fd)
11620 {
11621 	struct file *file = fget(fd);
11622 	if (!file)
11623 		return ERR_PTR(-EBADF);
11624 
11625 	if (file->f_op != &perf_fops) {
11626 		fput(file);
11627 		return ERR_PTR(-EBADF);
11628 	}
11629 
11630 	return file;
11631 }
11632 
11633 const struct perf_event *perf_get_event(struct file *file)
11634 {
11635 	if (file->f_op != &perf_fops)
11636 		return ERR_PTR(-EINVAL);
11637 
11638 	return file->private_data;
11639 }
11640 
11641 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
11642 {
11643 	if (!event)
11644 		return ERR_PTR(-EINVAL);
11645 
11646 	return &event->attr;
11647 }
11648 
11649 /*
11650  * Inherit an event from parent task to child task.
11651  *
11652  * Returns:
11653  *  - valid pointer on success
11654  *  - NULL for orphaned events
11655  *  - IS_ERR() on error
11656  */
11657 static struct perf_event *
11658 inherit_event(struct perf_event *parent_event,
11659 	      struct task_struct *parent,
11660 	      struct perf_event_context *parent_ctx,
11661 	      struct task_struct *child,
11662 	      struct perf_event *group_leader,
11663 	      struct perf_event_context *child_ctx)
11664 {
11665 	enum perf_event_state parent_state = parent_event->state;
11666 	struct perf_event *child_event;
11667 	unsigned long flags;
11668 
11669 	/*
11670 	 * Instead of creating recursive hierarchies of events,
11671 	 * we link inherited events back to the original parent,
11672 	 * which has a filp for sure, which we use as the reference
11673 	 * count:
11674 	 */
11675 	if (parent_event->parent)
11676 		parent_event = parent_event->parent;
11677 
11678 	child_event = perf_event_alloc(&parent_event->attr,
11679 					   parent_event->cpu,
11680 					   child,
11681 					   group_leader, parent_event,
11682 					   NULL, NULL, -1);
11683 	if (IS_ERR(child_event))
11684 		return child_event;
11685 
11686 
11687 	if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
11688 	    !child_ctx->task_ctx_data) {
11689 		struct pmu *pmu = child_event->pmu;
11690 
11691 		child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size,
11692 						   GFP_KERNEL);
11693 		if (!child_ctx->task_ctx_data) {
11694 			free_event(child_event);
11695 			return NULL;
11696 		}
11697 	}
11698 
11699 	/*
11700 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
11701 	 * must be under the same lock in order to serialize against
11702 	 * perf_event_release_kernel(), such that either we must observe
11703 	 * is_orphaned_event() or they will observe us on the child_list.
11704 	 */
11705 	mutex_lock(&parent_event->child_mutex);
11706 	if (is_orphaned_event(parent_event) ||
11707 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
11708 		mutex_unlock(&parent_event->child_mutex);
11709 		/* task_ctx_data is freed with child_ctx */
11710 		free_event(child_event);
11711 		return NULL;
11712 	}
11713 
11714 	get_ctx(child_ctx);
11715 
11716 	/*
11717 	 * Make the child state follow the state of the parent event,
11718 	 * not its attr.disabled bit.  We hold the parent's mutex,
11719 	 * so we won't race with perf_event_{en, dis}able_family.
11720 	 */
11721 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
11722 		child_event->state = PERF_EVENT_STATE_INACTIVE;
11723 	else
11724 		child_event->state = PERF_EVENT_STATE_OFF;
11725 
11726 	if (parent_event->attr.freq) {
11727 		u64 sample_period = parent_event->hw.sample_period;
11728 		struct hw_perf_event *hwc = &child_event->hw;
11729 
11730 		hwc->sample_period = sample_period;
11731 		hwc->last_period   = sample_period;
11732 
11733 		local64_set(&hwc->period_left, sample_period);
11734 	}
11735 
11736 	child_event->ctx = child_ctx;
11737 	child_event->overflow_handler = parent_event->overflow_handler;
11738 	child_event->overflow_handler_context
11739 		= parent_event->overflow_handler_context;
11740 
11741 	/*
11742 	 * Precalculate sample_data sizes
11743 	 */
11744 	perf_event__header_size(child_event);
11745 	perf_event__id_header_size(child_event);
11746 
11747 	/*
11748 	 * Link it up in the child's context:
11749 	 */
11750 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
11751 	add_event_to_ctx(child_event, child_ctx);
11752 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
11753 
11754 	/*
11755 	 * Link this into the parent event's child list
11756 	 */
11757 	list_add_tail(&child_event->child_list, &parent_event->child_list);
11758 	mutex_unlock(&parent_event->child_mutex);
11759 
11760 	return child_event;
11761 }
11762 
11763 /*
11764  * Inherits an event group.
11765  *
11766  * This will quietly suppress orphaned events; !inherit_event() is not an error.
11767  * This matches with perf_event_release_kernel() removing all child events.
11768  *
11769  * Returns:
11770  *  - 0 on success
11771  *  - <0 on error
11772  */
11773 static int inherit_group(struct perf_event *parent_event,
11774 	      struct task_struct *parent,
11775 	      struct perf_event_context *parent_ctx,
11776 	      struct task_struct *child,
11777 	      struct perf_event_context *child_ctx)
11778 {
11779 	struct perf_event *leader;
11780 	struct perf_event *sub;
11781 	struct perf_event *child_ctr;
11782 
11783 	leader = inherit_event(parent_event, parent, parent_ctx,
11784 				 child, NULL, child_ctx);
11785 	if (IS_ERR(leader))
11786 		return PTR_ERR(leader);
11787 	/*
11788 	 * @leader can be NULL here because of is_orphaned_event(). In this
11789 	 * case inherit_event() will create individual events, similar to what
11790 	 * perf_group_detach() would do anyway.
11791 	 */
11792 	for_each_sibling_event(sub, parent_event) {
11793 		child_ctr = inherit_event(sub, parent, parent_ctx,
11794 					    child, leader, child_ctx);
11795 		if (IS_ERR(child_ctr))
11796 			return PTR_ERR(child_ctr);
11797 	}
11798 	return 0;
11799 }
11800 
11801 /*
11802  * Creates the child task context and tries to inherit the event-group.
11803  *
11804  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
11805  * inherited_all set when we 'fail' to inherit an orphaned event; this is
11806  * consistent with perf_event_release_kernel() removing all child events.
11807  *
11808  * Returns:
11809  *  - 0 on success
11810  *  - <0 on error
11811  */
11812 static int
11813 inherit_task_group(struct perf_event *event, struct task_struct *parent,
11814 		   struct perf_event_context *parent_ctx,
11815 		   struct task_struct *child, int ctxn,
11816 		   int *inherited_all)
11817 {
11818 	int ret;
11819 	struct perf_event_context *child_ctx;
11820 
11821 	if (!event->attr.inherit) {
11822 		*inherited_all = 0;
11823 		return 0;
11824 	}
11825 
11826 	child_ctx = child->perf_event_ctxp[ctxn];
11827 	if (!child_ctx) {
11828 		/*
11829 		 * This is executed from the parent task context, so
11830 		 * inherit events that have been marked for cloning.
11831 		 * First allocate and initialize a context for the
11832 		 * child.
11833 		 */
11834 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
11835 		if (!child_ctx)
11836 			return -ENOMEM;
11837 
11838 		child->perf_event_ctxp[ctxn] = child_ctx;
11839 	}
11840 
11841 	ret = inherit_group(event, parent, parent_ctx,
11842 			    child, child_ctx);
11843 
11844 	if (ret)
11845 		*inherited_all = 0;
11846 
11847 	return ret;
11848 }
11849 
11850 /*
11851  * Initialize the perf_event context in task_struct
11852  */
11853 static int perf_event_init_context(struct task_struct *child, int ctxn)
11854 {
11855 	struct perf_event_context *child_ctx, *parent_ctx;
11856 	struct perf_event_context *cloned_ctx;
11857 	struct perf_event *event;
11858 	struct task_struct *parent = current;
11859 	int inherited_all = 1;
11860 	unsigned long flags;
11861 	int ret = 0;
11862 
11863 	if (likely(!parent->perf_event_ctxp[ctxn]))
11864 		return 0;
11865 
11866 	/*
11867 	 * If the parent's context is a clone, pin it so it won't get
11868 	 * swapped under us.
11869 	 */
11870 	parent_ctx = perf_pin_task_context(parent, ctxn);
11871 	if (!parent_ctx)
11872 		return 0;
11873 
11874 	/*
11875 	 * No need to check if parent_ctx != NULL here; since we saw
11876 	 * it non-NULL earlier, the only reason for it to become NULL
11877 	 * is if we exit, and since we're currently in the middle of
11878 	 * a fork we can't be exiting at the same time.
11879 	 */
11880 
11881 	/*
11882 	 * Lock the parent list. No need to lock the child - not PID
11883 	 * hashed yet and not running, so nobody can access it.
11884 	 */
11885 	mutex_lock(&parent_ctx->mutex);
11886 
11887 	/*
11888 	 * We dont have to disable NMIs - we are only looking at
11889 	 * the list, not manipulating it:
11890 	 */
11891 	perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
11892 		ret = inherit_task_group(event, parent, parent_ctx,
11893 					 child, ctxn, &inherited_all);
11894 		if (ret)
11895 			goto out_unlock;
11896 	}
11897 
11898 	/*
11899 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
11900 	 * to allocations, but we need to prevent rotation because
11901 	 * rotate_ctx() will change the list from interrupt context.
11902 	 */
11903 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11904 	parent_ctx->rotate_disable = 1;
11905 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11906 
11907 	perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
11908 		ret = inherit_task_group(event, parent, parent_ctx,
11909 					 child, ctxn, &inherited_all);
11910 		if (ret)
11911 			goto out_unlock;
11912 	}
11913 
11914 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11915 	parent_ctx->rotate_disable = 0;
11916 
11917 	child_ctx = child->perf_event_ctxp[ctxn];
11918 
11919 	if (child_ctx && inherited_all) {
11920 		/*
11921 		 * Mark the child context as a clone of the parent
11922 		 * context, or of whatever the parent is a clone of.
11923 		 *
11924 		 * Note that if the parent is a clone, the holding of
11925 		 * parent_ctx->lock avoids it from being uncloned.
11926 		 */
11927 		cloned_ctx = parent_ctx->parent_ctx;
11928 		if (cloned_ctx) {
11929 			child_ctx->parent_ctx = cloned_ctx;
11930 			child_ctx->parent_gen = parent_ctx->parent_gen;
11931 		} else {
11932 			child_ctx->parent_ctx = parent_ctx;
11933 			child_ctx->parent_gen = parent_ctx->generation;
11934 		}
11935 		get_ctx(child_ctx->parent_ctx);
11936 	}
11937 
11938 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11939 out_unlock:
11940 	mutex_unlock(&parent_ctx->mutex);
11941 
11942 	perf_unpin_context(parent_ctx);
11943 	put_ctx(parent_ctx);
11944 
11945 	return ret;
11946 }
11947 
11948 /*
11949  * Initialize the perf_event context in task_struct
11950  */
11951 int perf_event_init_task(struct task_struct *child)
11952 {
11953 	int ctxn, ret;
11954 
11955 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
11956 	mutex_init(&child->perf_event_mutex);
11957 	INIT_LIST_HEAD(&child->perf_event_list);
11958 
11959 	for_each_task_context_nr(ctxn) {
11960 		ret = perf_event_init_context(child, ctxn);
11961 		if (ret) {
11962 			perf_event_free_task(child);
11963 			return ret;
11964 		}
11965 	}
11966 
11967 	return 0;
11968 }
11969 
11970 static void __init perf_event_init_all_cpus(void)
11971 {
11972 	struct swevent_htable *swhash;
11973 	int cpu;
11974 
11975 	zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
11976 
11977 	for_each_possible_cpu(cpu) {
11978 		swhash = &per_cpu(swevent_htable, cpu);
11979 		mutex_init(&swhash->hlist_mutex);
11980 		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
11981 
11982 		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
11983 		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
11984 
11985 #ifdef CONFIG_CGROUP_PERF
11986 		INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
11987 #endif
11988 		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
11989 	}
11990 }
11991 
11992 static void perf_swevent_init_cpu(unsigned int cpu)
11993 {
11994 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
11995 
11996 	mutex_lock(&swhash->hlist_mutex);
11997 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
11998 		struct swevent_hlist *hlist;
11999 
12000 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
12001 		WARN_ON(!hlist);
12002 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
12003 	}
12004 	mutex_unlock(&swhash->hlist_mutex);
12005 }
12006 
12007 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
12008 static void __perf_event_exit_context(void *__info)
12009 {
12010 	struct perf_event_context *ctx = __info;
12011 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
12012 	struct perf_event *event;
12013 
12014 	raw_spin_lock(&ctx->lock);
12015 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
12016 	list_for_each_entry(event, &ctx->event_list, event_entry)
12017 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
12018 	raw_spin_unlock(&ctx->lock);
12019 }
12020 
12021 static void perf_event_exit_cpu_context(int cpu)
12022 {
12023 	struct perf_cpu_context *cpuctx;
12024 	struct perf_event_context *ctx;
12025 	struct pmu *pmu;
12026 
12027 	mutex_lock(&pmus_lock);
12028 	list_for_each_entry(pmu, &pmus, entry) {
12029 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
12030 		ctx = &cpuctx->ctx;
12031 
12032 		mutex_lock(&ctx->mutex);
12033 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
12034 		cpuctx->online = 0;
12035 		mutex_unlock(&ctx->mutex);
12036 	}
12037 	cpumask_clear_cpu(cpu, perf_online_mask);
12038 	mutex_unlock(&pmus_lock);
12039 }
12040 #else
12041 
12042 static void perf_event_exit_cpu_context(int cpu) { }
12043 
12044 #endif
12045 
12046 int perf_event_init_cpu(unsigned int cpu)
12047 {
12048 	struct perf_cpu_context *cpuctx;
12049 	struct perf_event_context *ctx;
12050 	struct pmu *pmu;
12051 
12052 	perf_swevent_init_cpu(cpu);
12053 
12054 	mutex_lock(&pmus_lock);
12055 	cpumask_set_cpu(cpu, perf_online_mask);
12056 	list_for_each_entry(pmu, &pmus, entry) {
12057 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
12058 		ctx = &cpuctx->ctx;
12059 
12060 		mutex_lock(&ctx->mutex);
12061 		cpuctx->online = 1;
12062 		mutex_unlock(&ctx->mutex);
12063 	}
12064 	mutex_unlock(&pmus_lock);
12065 
12066 	return 0;
12067 }
12068 
12069 int perf_event_exit_cpu(unsigned int cpu)
12070 {
12071 	perf_event_exit_cpu_context(cpu);
12072 	return 0;
12073 }
12074 
12075 static int
12076 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
12077 {
12078 	int cpu;
12079 
12080 	for_each_online_cpu(cpu)
12081 		perf_event_exit_cpu(cpu);
12082 
12083 	return NOTIFY_OK;
12084 }
12085 
12086 /*
12087  * Run the perf reboot notifier at the very last possible moment so that
12088  * the generic watchdog code runs as long as possible.
12089  */
12090 static struct notifier_block perf_reboot_notifier = {
12091 	.notifier_call = perf_reboot,
12092 	.priority = INT_MIN,
12093 };
12094 
12095 void __init perf_event_init(void)
12096 {
12097 	int ret;
12098 
12099 	idr_init(&pmu_idr);
12100 
12101 	perf_event_init_all_cpus();
12102 	init_srcu_struct(&pmus_srcu);
12103 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
12104 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
12105 	perf_pmu_register(&perf_task_clock, NULL, -1);
12106 	perf_tp_register();
12107 	perf_event_init_cpu(smp_processor_id());
12108 	register_reboot_notifier(&perf_reboot_notifier);
12109 
12110 	ret = init_hw_breakpoint();
12111 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
12112 
12113 	/*
12114 	 * Build time assertion that we keep the data_head at the intended
12115 	 * location.  IOW, validation we got the __reserved[] size right.
12116 	 */
12117 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
12118 		     != 1024);
12119 }
12120 
12121 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
12122 			      char *page)
12123 {
12124 	struct perf_pmu_events_attr *pmu_attr =
12125 		container_of(attr, struct perf_pmu_events_attr, attr);
12126 
12127 	if (pmu_attr->event_str)
12128 		return sprintf(page, "%s\n", pmu_attr->event_str);
12129 
12130 	return 0;
12131 }
12132 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
12133 
12134 static int __init perf_event_sysfs_init(void)
12135 {
12136 	struct pmu *pmu;
12137 	int ret;
12138 
12139 	mutex_lock(&pmus_lock);
12140 
12141 	ret = bus_register(&pmu_bus);
12142 	if (ret)
12143 		goto unlock;
12144 
12145 	list_for_each_entry(pmu, &pmus, entry) {
12146 		if (!pmu->name || pmu->type < 0)
12147 			continue;
12148 
12149 		ret = pmu_dev_alloc(pmu);
12150 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
12151 	}
12152 	pmu_bus_running = 1;
12153 	ret = 0;
12154 
12155 unlock:
12156 	mutex_unlock(&pmus_lock);
12157 
12158 	return ret;
12159 }
12160 device_initcall(perf_event_sysfs_init);
12161 
12162 #ifdef CONFIG_CGROUP_PERF
12163 static struct cgroup_subsys_state *
12164 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
12165 {
12166 	struct perf_cgroup *jc;
12167 
12168 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
12169 	if (!jc)
12170 		return ERR_PTR(-ENOMEM);
12171 
12172 	jc->info = alloc_percpu(struct perf_cgroup_info);
12173 	if (!jc->info) {
12174 		kfree(jc);
12175 		return ERR_PTR(-ENOMEM);
12176 	}
12177 
12178 	return &jc->css;
12179 }
12180 
12181 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
12182 {
12183 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
12184 
12185 	free_percpu(jc->info);
12186 	kfree(jc);
12187 }
12188 
12189 static int __perf_cgroup_move(void *info)
12190 {
12191 	struct task_struct *task = info;
12192 	rcu_read_lock();
12193 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
12194 	rcu_read_unlock();
12195 	return 0;
12196 }
12197 
12198 static void perf_cgroup_attach(struct cgroup_taskset *tset)
12199 {
12200 	struct task_struct *task;
12201 	struct cgroup_subsys_state *css;
12202 
12203 	cgroup_taskset_for_each(task, css, tset)
12204 		task_function_call(task, __perf_cgroup_move, task);
12205 }
12206 
12207 struct cgroup_subsys perf_event_cgrp_subsys = {
12208 	.css_alloc	= perf_cgroup_css_alloc,
12209 	.css_free	= perf_cgroup_css_free,
12210 	.attach		= perf_cgroup_attach,
12211 	/*
12212 	 * Implicitly enable on dfl hierarchy so that perf events can
12213 	 * always be filtered by cgroup2 path as long as perf_event
12214 	 * controller is not mounted on a legacy hierarchy.
12215 	 */
12216 	.implicit_on_dfl = true,
12217 	.threaded	= true,
12218 };
12219 #endif /* CONFIG_CGROUP_PERF */
12220