xref: /openbmc/linux/kernel/events/core.c (revision 95e9fd10)
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11 
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/rculist.h>
32 #include <linux/uaccess.h>
33 #include <linux/syscalls.h>
34 #include <linux/anon_inodes.h>
35 #include <linux/kernel_stat.h>
36 #include <linux/perf_event.h>
37 #include <linux/ftrace_event.h>
38 #include <linux/hw_breakpoint.h>
39 
40 #include "internal.h"
41 
42 #include <asm/irq_regs.h>
43 
44 struct remote_function_call {
45 	struct task_struct	*p;
46 	int			(*func)(void *info);
47 	void			*info;
48 	int			ret;
49 };
50 
51 static void remote_function(void *data)
52 {
53 	struct remote_function_call *tfc = data;
54 	struct task_struct *p = tfc->p;
55 
56 	if (p) {
57 		tfc->ret = -EAGAIN;
58 		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
59 			return;
60 	}
61 
62 	tfc->ret = tfc->func(tfc->info);
63 }
64 
65 /**
66  * task_function_call - call a function on the cpu on which a task runs
67  * @p:		the task to evaluate
68  * @func:	the function to be called
69  * @info:	the function call argument
70  *
71  * Calls the function @func when the task is currently running. This might
72  * be on the current CPU, which just calls the function directly
73  *
74  * returns: @func return value, or
75  *	    -ESRCH  - when the process isn't running
76  *	    -EAGAIN - when the process moved away
77  */
78 static int
79 task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
80 {
81 	struct remote_function_call data = {
82 		.p	= p,
83 		.func	= func,
84 		.info	= info,
85 		.ret	= -ESRCH, /* No such (running) process */
86 	};
87 
88 	if (task_curr(p))
89 		smp_call_function_single(task_cpu(p), remote_function, &data, 1);
90 
91 	return data.ret;
92 }
93 
94 /**
95  * cpu_function_call - call a function on the cpu
96  * @func:	the function to be called
97  * @info:	the function call argument
98  *
99  * Calls the function @func on the remote cpu.
100  *
101  * returns: @func return value or -ENXIO when the cpu is offline
102  */
103 static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
104 {
105 	struct remote_function_call data = {
106 		.p	= NULL,
107 		.func	= func,
108 		.info	= info,
109 		.ret	= -ENXIO, /* No such CPU */
110 	};
111 
112 	smp_call_function_single(cpu, remote_function, &data, 1);
113 
114 	return data.ret;
115 }
116 
117 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
118 		       PERF_FLAG_FD_OUTPUT  |\
119 		       PERF_FLAG_PID_CGROUP)
120 
121 /*
122  * branch priv levels that need permission checks
123  */
124 #define PERF_SAMPLE_BRANCH_PERM_PLM \
125 	(PERF_SAMPLE_BRANCH_KERNEL |\
126 	 PERF_SAMPLE_BRANCH_HV)
127 
128 enum event_type_t {
129 	EVENT_FLEXIBLE = 0x1,
130 	EVENT_PINNED = 0x2,
131 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
132 };
133 
134 /*
135  * perf_sched_events : >0 events exist
136  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
137  */
138 struct static_key_deferred perf_sched_events __read_mostly;
139 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
140 static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
141 
142 static atomic_t nr_mmap_events __read_mostly;
143 static atomic_t nr_comm_events __read_mostly;
144 static atomic_t nr_task_events __read_mostly;
145 
146 static LIST_HEAD(pmus);
147 static DEFINE_MUTEX(pmus_lock);
148 static struct srcu_struct pmus_srcu;
149 
150 /*
151  * perf event paranoia level:
152  *  -1 - not paranoid at all
153  *   0 - disallow raw tracepoint access for unpriv
154  *   1 - disallow cpu events for unpriv
155  *   2 - disallow kernel profiling for unpriv
156  */
157 int sysctl_perf_event_paranoid __read_mostly = 1;
158 
159 /* Minimum for 512 kiB + 1 user control page */
160 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
161 
162 /*
163  * max perf event sample rate
164  */
165 #define DEFAULT_MAX_SAMPLE_RATE 100000
166 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
167 static int max_samples_per_tick __read_mostly =
168 	DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
169 
170 int perf_proc_update_handler(struct ctl_table *table, int write,
171 		void __user *buffer, size_t *lenp,
172 		loff_t *ppos)
173 {
174 	int ret = proc_dointvec(table, write, buffer, lenp, ppos);
175 
176 	if (ret || !write)
177 		return ret;
178 
179 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
180 
181 	return 0;
182 }
183 
184 static atomic64_t perf_event_id;
185 
186 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
187 			      enum event_type_t event_type);
188 
189 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
190 			     enum event_type_t event_type,
191 			     struct task_struct *task);
192 
193 static void update_context_time(struct perf_event_context *ctx);
194 static u64 perf_event_time(struct perf_event *event);
195 
196 static void ring_buffer_attach(struct perf_event *event,
197 			       struct ring_buffer *rb);
198 
199 void __weak perf_event_print_debug(void)	{ }
200 
201 extern __weak const char *perf_pmu_name(void)
202 {
203 	return "pmu";
204 }
205 
206 static inline u64 perf_clock(void)
207 {
208 	return local_clock();
209 }
210 
211 static inline struct perf_cpu_context *
212 __get_cpu_context(struct perf_event_context *ctx)
213 {
214 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
215 }
216 
217 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
218 			  struct perf_event_context *ctx)
219 {
220 	raw_spin_lock(&cpuctx->ctx.lock);
221 	if (ctx)
222 		raw_spin_lock(&ctx->lock);
223 }
224 
225 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
226 			    struct perf_event_context *ctx)
227 {
228 	if (ctx)
229 		raw_spin_unlock(&ctx->lock);
230 	raw_spin_unlock(&cpuctx->ctx.lock);
231 }
232 
233 #ifdef CONFIG_CGROUP_PERF
234 
235 /*
236  * Must ensure cgroup is pinned (css_get) before calling
237  * this function. In other words, we cannot call this function
238  * if there is no cgroup event for the current CPU context.
239  */
240 static inline struct perf_cgroup *
241 perf_cgroup_from_task(struct task_struct *task)
242 {
243 	return container_of(task_subsys_state(task, perf_subsys_id),
244 			struct perf_cgroup, css);
245 }
246 
247 static inline bool
248 perf_cgroup_match(struct perf_event *event)
249 {
250 	struct perf_event_context *ctx = event->ctx;
251 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
252 
253 	return !event->cgrp || event->cgrp == cpuctx->cgrp;
254 }
255 
256 static inline bool perf_tryget_cgroup(struct perf_event *event)
257 {
258 	return css_tryget(&event->cgrp->css);
259 }
260 
261 static inline void perf_put_cgroup(struct perf_event *event)
262 {
263 	css_put(&event->cgrp->css);
264 }
265 
266 static inline void perf_detach_cgroup(struct perf_event *event)
267 {
268 	perf_put_cgroup(event);
269 	event->cgrp = NULL;
270 }
271 
272 static inline int is_cgroup_event(struct perf_event *event)
273 {
274 	return event->cgrp != NULL;
275 }
276 
277 static inline u64 perf_cgroup_event_time(struct perf_event *event)
278 {
279 	struct perf_cgroup_info *t;
280 
281 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
282 	return t->time;
283 }
284 
285 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
286 {
287 	struct perf_cgroup_info *info;
288 	u64 now;
289 
290 	now = perf_clock();
291 
292 	info = this_cpu_ptr(cgrp->info);
293 
294 	info->time += now - info->timestamp;
295 	info->timestamp = now;
296 }
297 
298 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
299 {
300 	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
301 	if (cgrp_out)
302 		__update_cgrp_time(cgrp_out);
303 }
304 
305 static inline void update_cgrp_time_from_event(struct perf_event *event)
306 {
307 	struct perf_cgroup *cgrp;
308 
309 	/*
310 	 * ensure we access cgroup data only when needed and
311 	 * when we know the cgroup is pinned (css_get)
312 	 */
313 	if (!is_cgroup_event(event))
314 		return;
315 
316 	cgrp = perf_cgroup_from_task(current);
317 	/*
318 	 * Do not update time when cgroup is not active
319 	 */
320 	if (cgrp == event->cgrp)
321 		__update_cgrp_time(event->cgrp);
322 }
323 
324 static inline void
325 perf_cgroup_set_timestamp(struct task_struct *task,
326 			  struct perf_event_context *ctx)
327 {
328 	struct perf_cgroup *cgrp;
329 	struct perf_cgroup_info *info;
330 
331 	/*
332 	 * ctx->lock held by caller
333 	 * ensure we do not access cgroup data
334 	 * unless we have the cgroup pinned (css_get)
335 	 */
336 	if (!task || !ctx->nr_cgroups)
337 		return;
338 
339 	cgrp = perf_cgroup_from_task(task);
340 	info = this_cpu_ptr(cgrp->info);
341 	info->timestamp = ctx->timestamp;
342 }
343 
344 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
345 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
346 
347 /*
348  * reschedule events based on the cgroup constraint of task.
349  *
350  * mode SWOUT : schedule out everything
351  * mode SWIN : schedule in based on cgroup for next
352  */
353 void perf_cgroup_switch(struct task_struct *task, int mode)
354 {
355 	struct perf_cpu_context *cpuctx;
356 	struct pmu *pmu;
357 	unsigned long flags;
358 
359 	/*
360 	 * disable interrupts to avoid geting nr_cgroup
361 	 * changes via __perf_event_disable(). Also
362 	 * avoids preemption.
363 	 */
364 	local_irq_save(flags);
365 
366 	/*
367 	 * we reschedule only in the presence of cgroup
368 	 * constrained events.
369 	 */
370 	rcu_read_lock();
371 
372 	list_for_each_entry_rcu(pmu, &pmus, entry) {
373 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
374 
375 		/*
376 		 * perf_cgroup_events says at least one
377 		 * context on this CPU has cgroup events.
378 		 *
379 		 * ctx->nr_cgroups reports the number of cgroup
380 		 * events for a context.
381 		 */
382 		if (cpuctx->ctx.nr_cgroups > 0) {
383 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
384 			perf_pmu_disable(cpuctx->ctx.pmu);
385 
386 			if (mode & PERF_CGROUP_SWOUT) {
387 				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
388 				/*
389 				 * must not be done before ctxswout due
390 				 * to event_filter_match() in event_sched_out()
391 				 */
392 				cpuctx->cgrp = NULL;
393 			}
394 
395 			if (mode & PERF_CGROUP_SWIN) {
396 				WARN_ON_ONCE(cpuctx->cgrp);
397 				/* set cgrp before ctxsw in to
398 				 * allow event_filter_match() to not
399 				 * have to pass task around
400 				 */
401 				cpuctx->cgrp = perf_cgroup_from_task(task);
402 				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
403 			}
404 			perf_pmu_enable(cpuctx->ctx.pmu);
405 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
406 		}
407 	}
408 
409 	rcu_read_unlock();
410 
411 	local_irq_restore(flags);
412 }
413 
414 static inline void perf_cgroup_sched_out(struct task_struct *task,
415 					 struct task_struct *next)
416 {
417 	struct perf_cgroup *cgrp1;
418 	struct perf_cgroup *cgrp2 = NULL;
419 
420 	/*
421 	 * we come here when we know perf_cgroup_events > 0
422 	 */
423 	cgrp1 = perf_cgroup_from_task(task);
424 
425 	/*
426 	 * next is NULL when called from perf_event_enable_on_exec()
427 	 * that will systematically cause a cgroup_switch()
428 	 */
429 	if (next)
430 		cgrp2 = perf_cgroup_from_task(next);
431 
432 	/*
433 	 * only schedule out current cgroup events if we know
434 	 * that we are switching to a different cgroup. Otherwise,
435 	 * do no touch the cgroup events.
436 	 */
437 	if (cgrp1 != cgrp2)
438 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
439 }
440 
441 static inline void perf_cgroup_sched_in(struct task_struct *prev,
442 					struct task_struct *task)
443 {
444 	struct perf_cgroup *cgrp1;
445 	struct perf_cgroup *cgrp2 = NULL;
446 
447 	/*
448 	 * we come here when we know perf_cgroup_events > 0
449 	 */
450 	cgrp1 = perf_cgroup_from_task(task);
451 
452 	/* prev can never be NULL */
453 	cgrp2 = perf_cgroup_from_task(prev);
454 
455 	/*
456 	 * only need to schedule in cgroup events if we are changing
457 	 * cgroup during ctxsw. Cgroup events were not scheduled
458 	 * out of ctxsw out if that was not the case.
459 	 */
460 	if (cgrp1 != cgrp2)
461 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
462 }
463 
464 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
465 				      struct perf_event_attr *attr,
466 				      struct perf_event *group_leader)
467 {
468 	struct perf_cgroup *cgrp;
469 	struct cgroup_subsys_state *css;
470 	struct file *file;
471 	int ret = 0, fput_needed;
472 
473 	file = fget_light(fd, &fput_needed);
474 	if (!file)
475 		return -EBADF;
476 
477 	css = cgroup_css_from_dir(file, perf_subsys_id);
478 	if (IS_ERR(css)) {
479 		ret = PTR_ERR(css);
480 		goto out;
481 	}
482 
483 	cgrp = container_of(css, struct perf_cgroup, css);
484 	event->cgrp = cgrp;
485 
486 	/* must be done before we fput() the file */
487 	if (!perf_tryget_cgroup(event)) {
488 		event->cgrp = NULL;
489 		ret = -ENOENT;
490 		goto out;
491 	}
492 
493 	/*
494 	 * all events in a group must monitor
495 	 * the same cgroup because a task belongs
496 	 * to only one perf cgroup at a time
497 	 */
498 	if (group_leader && group_leader->cgrp != cgrp) {
499 		perf_detach_cgroup(event);
500 		ret = -EINVAL;
501 	}
502 out:
503 	fput_light(file, fput_needed);
504 	return ret;
505 }
506 
507 static inline void
508 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
509 {
510 	struct perf_cgroup_info *t;
511 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
512 	event->shadow_ctx_time = now - t->timestamp;
513 }
514 
515 static inline void
516 perf_cgroup_defer_enabled(struct perf_event *event)
517 {
518 	/*
519 	 * when the current task's perf cgroup does not match
520 	 * the event's, we need to remember to call the
521 	 * perf_mark_enable() function the first time a task with
522 	 * a matching perf cgroup is scheduled in.
523 	 */
524 	if (is_cgroup_event(event) && !perf_cgroup_match(event))
525 		event->cgrp_defer_enabled = 1;
526 }
527 
528 static inline void
529 perf_cgroup_mark_enabled(struct perf_event *event,
530 			 struct perf_event_context *ctx)
531 {
532 	struct perf_event *sub;
533 	u64 tstamp = perf_event_time(event);
534 
535 	if (!event->cgrp_defer_enabled)
536 		return;
537 
538 	event->cgrp_defer_enabled = 0;
539 
540 	event->tstamp_enabled = tstamp - event->total_time_enabled;
541 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
542 		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
543 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
544 			sub->cgrp_defer_enabled = 0;
545 		}
546 	}
547 }
548 #else /* !CONFIG_CGROUP_PERF */
549 
550 static inline bool
551 perf_cgroup_match(struct perf_event *event)
552 {
553 	return true;
554 }
555 
556 static inline void perf_detach_cgroup(struct perf_event *event)
557 {}
558 
559 static inline int is_cgroup_event(struct perf_event *event)
560 {
561 	return 0;
562 }
563 
564 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
565 {
566 	return 0;
567 }
568 
569 static inline void update_cgrp_time_from_event(struct perf_event *event)
570 {
571 }
572 
573 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
574 {
575 }
576 
577 static inline void perf_cgroup_sched_out(struct task_struct *task,
578 					 struct task_struct *next)
579 {
580 }
581 
582 static inline void perf_cgroup_sched_in(struct task_struct *prev,
583 					struct task_struct *task)
584 {
585 }
586 
587 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
588 				      struct perf_event_attr *attr,
589 				      struct perf_event *group_leader)
590 {
591 	return -EINVAL;
592 }
593 
594 static inline void
595 perf_cgroup_set_timestamp(struct task_struct *task,
596 			  struct perf_event_context *ctx)
597 {
598 }
599 
600 void
601 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
602 {
603 }
604 
605 static inline void
606 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
607 {
608 }
609 
610 static inline u64 perf_cgroup_event_time(struct perf_event *event)
611 {
612 	return 0;
613 }
614 
615 static inline void
616 perf_cgroup_defer_enabled(struct perf_event *event)
617 {
618 }
619 
620 static inline void
621 perf_cgroup_mark_enabled(struct perf_event *event,
622 			 struct perf_event_context *ctx)
623 {
624 }
625 #endif
626 
627 void perf_pmu_disable(struct pmu *pmu)
628 {
629 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
630 	if (!(*count)++)
631 		pmu->pmu_disable(pmu);
632 }
633 
634 void perf_pmu_enable(struct pmu *pmu)
635 {
636 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
637 	if (!--(*count))
638 		pmu->pmu_enable(pmu);
639 }
640 
641 static DEFINE_PER_CPU(struct list_head, rotation_list);
642 
643 /*
644  * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
645  * because they're strictly cpu affine and rotate_start is called with IRQs
646  * disabled, while rotate_context is called from IRQ context.
647  */
648 static void perf_pmu_rotate_start(struct pmu *pmu)
649 {
650 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
651 	struct list_head *head = &__get_cpu_var(rotation_list);
652 
653 	WARN_ON(!irqs_disabled());
654 
655 	if (list_empty(&cpuctx->rotation_list))
656 		list_add(&cpuctx->rotation_list, head);
657 }
658 
659 static void get_ctx(struct perf_event_context *ctx)
660 {
661 	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
662 }
663 
664 static void put_ctx(struct perf_event_context *ctx)
665 {
666 	if (atomic_dec_and_test(&ctx->refcount)) {
667 		if (ctx->parent_ctx)
668 			put_ctx(ctx->parent_ctx);
669 		if (ctx->task)
670 			put_task_struct(ctx->task);
671 		kfree_rcu(ctx, rcu_head);
672 	}
673 }
674 
675 static void unclone_ctx(struct perf_event_context *ctx)
676 {
677 	if (ctx->parent_ctx) {
678 		put_ctx(ctx->parent_ctx);
679 		ctx->parent_ctx = NULL;
680 	}
681 }
682 
683 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
684 {
685 	/*
686 	 * only top level events have the pid namespace they were created in
687 	 */
688 	if (event->parent)
689 		event = event->parent;
690 
691 	return task_tgid_nr_ns(p, event->ns);
692 }
693 
694 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
695 {
696 	/*
697 	 * only top level events have the pid namespace they were created in
698 	 */
699 	if (event->parent)
700 		event = event->parent;
701 
702 	return task_pid_nr_ns(p, event->ns);
703 }
704 
705 /*
706  * If we inherit events we want to return the parent event id
707  * to userspace.
708  */
709 static u64 primary_event_id(struct perf_event *event)
710 {
711 	u64 id = event->id;
712 
713 	if (event->parent)
714 		id = event->parent->id;
715 
716 	return id;
717 }
718 
719 /*
720  * Get the perf_event_context for a task and lock it.
721  * This has to cope with with the fact that until it is locked,
722  * the context could get moved to another task.
723  */
724 static struct perf_event_context *
725 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
726 {
727 	struct perf_event_context *ctx;
728 
729 	rcu_read_lock();
730 retry:
731 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
732 	if (ctx) {
733 		/*
734 		 * If this context is a clone of another, it might
735 		 * get swapped for another underneath us by
736 		 * perf_event_task_sched_out, though the
737 		 * rcu_read_lock() protects us from any context
738 		 * getting freed.  Lock the context and check if it
739 		 * got swapped before we could get the lock, and retry
740 		 * if so.  If we locked the right context, then it
741 		 * can't get swapped on us any more.
742 		 */
743 		raw_spin_lock_irqsave(&ctx->lock, *flags);
744 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
745 			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
746 			goto retry;
747 		}
748 
749 		if (!atomic_inc_not_zero(&ctx->refcount)) {
750 			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
751 			ctx = NULL;
752 		}
753 	}
754 	rcu_read_unlock();
755 	return ctx;
756 }
757 
758 /*
759  * Get the context for a task and increment its pin_count so it
760  * can't get swapped to another task.  This also increments its
761  * reference count so that the context can't get freed.
762  */
763 static struct perf_event_context *
764 perf_pin_task_context(struct task_struct *task, int ctxn)
765 {
766 	struct perf_event_context *ctx;
767 	unsigned long flags;
768 
769 	ctx = perf_lock_task_context(task, ctxn, &flags);
770 	if (ctx) {
771 		++ctx->pin_count;
772 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
773 	}
774 	return ctx;
775 }
776 
777 static void perf_unpin_context(struct perf_event_context *ctx)
778 {
779 	unsigned long flags;
780 
781 	raw_spin_lock_irqsave(&ctx->lock, flags);
782 	--ctx->pin_count;
783 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
784 }
785 
786 /*
787  * Update the record of the current time in a context.
788  */
789 static void update_context_time(struct perf_event_context *ctx)
790 {
791 	u64 now = perf_clock();
792 
793 	ctx->time += now - ctx->timestamp;
794 	ctx->timestamp = now;
795 }
796 
797 static u64 perf_event_time(struct perf_event *event)
798 {
799 	struct perf_event_context *ctx = event->ctx;
800 
801 	if (is_cgroup_event(event))
802 		return perf_cgroup_event_time(event);
803 
804 	return ctx ? ctx->time : 0;
805 }
806 
807 /*
808  * Update the total_time_enabled and total_time_running fields for a event.
809  * The caller of this function needs to hold the ctx->lock.
810  */
811 static void update_event_times(struct perf_event *event)
812 {
813 	struct perf_event_context *ctx = event->ctx;
814 	u64 run_end;
815 
816 	if (event->state < PERF_EVENT_STATE_INACTIVE ||
817 	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
818 		return;
819 	/*
820 	 * in cgroup mode, time_enabled represents
821 	 * the time the event was enabled AND active
822 	 * tasks were in the monitored cgroup. This is
823 	 * independent of the activity of the context as
824 	 * there may be a mix of cgroup and non-cgroup events.
825 	 *
826 	 * That is why we treat cgroup events differently
827 	 * here.
828 	 */
829 	if (is_cgroup_event(event))
830 		run_end = perf_cgroup_event_time(event);
831 	else if (ctx->is_active)
832 		run_end = ctx->time;
833 	else
834 		run_end = event->tstamp_stopped;
835 
836 	event->total_time_enabled = run_end - event->tstamp_enabled;
837 
838 	if (event->state == PERF_EVENT_STATE_INACTIVE)
839 		run_end = event->tstamp_stopped;
840 	else
841 		run_end = perf_event_time(event);
842 
843 	event->total_time_running = run_end - event->tstamp_running;
844 
845 }
846 
847 /*
848  * Update total_time_enabled and total_time_running for all events in a group.
849  */
850 static void update_group_times(struct perf_event *leader)
851 {
852 	struct perf_event *event;
853 
854 	update_event_times(leader);
855 	list_for_each_entry(event, &leader->sibling_list, group_entry)
856 		update_event_times(event);
857 }
858 
859 static struct list_head *
860 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
861 {
862 	if (event->attr.pinned)
863 		return &ctx->pinned_groups;
864 	else
865 		return &ctx->flexible_groups;
866 }
867 
868 /*
869  * Add a event from the lists for its context.
870  * Must be called with ctx->mutex and ctx->lock held.
871  */
872 static void
873 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
874 {
875 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
876 	event->attach_state |= PERF_ATTACH_CONTEXT;
877 
878 	/*
879 	 * If we're a stand alone event or group leader, we go to the context
880 	 * list, group events are kept attached to the group so that
881 	 * perf_group_detach can, at all times, locate all siblings.
882 	 */
883 	if (event->group_leader == event) {
884 		struct list_head *list;
885 
886 		if (is_software_event(event))
887 			event->group_flags |= PERF_GROUP_SOFTWARE;
888 
889 		list = ctx_group_list(event, ctx);
890 		list_add_tail(&event->group_entry, list);
891 	}
892 
893 	if (is_cgroup_event(event))
894 		ctx->nr_cgroups++;
895 
896 	if (has_branch_stack(event))
897 		ctx->nr_branch_stack++;
898 
899 	list_add_rcu(&event->event_entry, &ctx->event_list);
900 	if (!ctx->nr_events)
901 		perf_pmu_rotate_start(ctx->pmu);
902 	ctx->nr_events++;
903 	if (event->attr.inherit_stat)
904 		ctx->nr_stat++;
905 }
906 
907 /*
908  * Called at perf_event creation and when events are attached/detached from a
909  * group.
910  */
911 static void perf_event__read_size(struct perf_event *event)
912 {
913 	int entry = sizeof(u64); /* value */
914 	int size = 0;
915 	int nr = 1;
916 
917 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
918 		size += sizeof(u64);
919 
920 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
921 		size += sizeof(u64);
922 
923 	if (event->attr.read_format & PERF_FORMAT_ID)
924 		entry += sizeof(u64);
925 
926 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
927 		nr += event->group_leader->nr_siblings;
928 		size += sizeof(u64);
929 	}
930 
931 	size += entry * nr;
932 	event->read_size = size;
933 }
934 
935 static void perf_event__header_size(struct perf_event *event)
936 {
937 	struct perf_sample_data *data;
938 	u64 sample_type = event->attr.sample_type;
939 	u16 size = 0;
940 
941 	perf_event__read_size(event);
942 
943 	if (sample_type & PERF_SAMPLE_IP)
944 		size += sizeof(data->ip);
945 
946 	if (sample_type & PERF_SAMPLE_ADDR)
947 		size += sizeof(data->addr);
948 
949 	if (sample_type & PERF_SAMPLE_PERIOD)
950 		size += sizeof(data->period);
951 
952 	if (sample_type & PERF_SAMPLE_READ)
953 		size += event->read_size;
954 
955 	event->header_size = size;
956 }
957 
958 static void perf_event__id_header_size(struct perf_event *event)
959 {
960 	struct perf_sample_data *data;
961 	u64 sample_type = event->attr.sample_type;
962 	u16 size = 0;
963 
964 	if (sample_type & PERF_SAMPLE_TID)
965 		size += sizeof(data->tid_entry);
966 
967 	if (sample_type & PERF_SAMPLE_TIME)
968 		size += sizeof(data->time);
969 
970 	if (sample_type & PERF_SAMPLE_ID)
971 		size += sizeof(data->id);
972 
973 	if (sample_type & PERF_SAMPLE_STREAM_ID)
974 		size += sizeof(data->stream_id);
975 
976 	if (sample_type & PERF_SAMPLE_CPU)
977 		size += sizeof(data->cpu_entry);
978 
979 	event->id_header_size = size;
980 }
981 
982 static void perf_group_attach(struct perf_event *event)
983 {
984 	struct perf_event *group_leader = event->group_leader, *pos;
985 
986 	/*
987 	 * We can have double attach due to group movement in perf_event_open.
988 	 */
989 	if (event->attach_state & PERF_ATTACH_GROUP)
990 		return;
991 
992 	event->attach_state |= PERF_ATTACH_GROUP;
993 
994 	if (group_leader == event)
995 		return;
996 
997 	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
998 			!is_software_event(event))
999 		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1000 
1001 	list_add_tail(&event->group_entry, &group_leader->sibling_list);
1002 	group_leader->nr_siblings++;
1003 
1004 	perf_event__header_size(group_leader);
1005 
1006 	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1007 		perf_event__header_size(pos);
1008 }
1009 
1010 /*
1011  * Remove a event from the lists for its context.
1012  * Must be called with ctx->mutex and ctx->lock held.
1013  */
1014 static void
1015 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1016 {
1017 	struct perf_cpu_context *cpuctx;
1018 	/*
1019 	 * We can have double detach due to exit/hot-unplug + close.
1020 	 */
1021 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1022 		return;
1023 
1024 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1025 
1026 	if (is_cgroup_event(event)) {
1027 		ctx->nr_cgroups--;
1028 		cpuctx = __get_cpu_context(ctx);
1029 		/*
1030 		 * if there are no more cgroup events
1031 		 * then cler cgrp to avoid stale pointer
1032 		 * in update_cgrp_time_from_cpuctx()
1033 		 */
1034 		if (!ctx->nr_cgroups)
1035 			cpuctx->cgrp = NULL;
1036 	}
1037 
1038 	if (has_branch_stack(event))
1039 		ctx->nr_branch_stack--;
1040 
1041 	ctx->nr_events--;
1042 	if (event->attr.inherit_stat)
1043 		ctx->nr_stat--;
1044 
1045 	list_del_rcu(&event->event_entry);
1046 
1047 	if (event->group_leader == event)
1048 		list_del_init(&event->group_entry);
1049 
1050 	update_group_times(event);
1051 
1052 	/*
1053 	 * If event was in error state, then keep it
1054 	 * that way, otherwise bogus counts will be
1055 	 * returned on read(). The only way to get out
1056 	 * of error state is by explicit re-enabling
1057 	 * of the event
1058 	 */
1059 	if (event->state > PERF_EVENT_STATE_OFF)
1060 		event->state = PERF_EVENT_STATE_OFF;
1061 }
1062 
1063 static void perf_group_detach(struct perf_event *event)
1064 {
1065 	struct perf_event *sibling, *tmp;
1066 	struct list_head *list = NULL;
1067 
1068 	/*
1069 	 * We can have double detach due to exit/hot-unplug + close.
1070 	 */
1071 	if (!(event->attach_state & PERF_ATTACH_GROUP))
1072 		return;
1073 
1074 	event->attach_state &= ~PERF_ATTACH_GROUP;
1075 
1076 	/*
1077 	 * If this is a sibling, remove it from its group.
1078 	 */
1079 	if (event->group_leader != event) {
1080 		list_del_init(&event->group_entry);
1081 		event->group_leader->nr_siblings--;
1082 		goto out;
1083 	}
1084 
1085 	if (!list_empty(&event->group_entry))
1086 		list = &event->group_entry;
1087 
1088 	/*
1089 	 * If this was a group event with sibling events then
1090 	 * upgrade the siblings to singleton events by adding them
1091 	 * to whatever list we are on.
1092 	 */
1093 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1094 		if (list)
1095 			list_move_tail(&sibling->group_entry, list);
1096 		sibling->group_leader = sibling;
1097 
1098 		/* Inherit group flags from the previous leader */
1099 		sibling->group_flags = event->group_flags;
1100 	}
1101 
1102 out:
1103 	perf_event__header_size(event->group_leader);
1104 
1105 	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1106 		perf_event__header_size(tmp);
1107 }
1108 
1109 static inline int
1110 event_filter_match(struct perf_event *event)
1111 {
1112 	return (event->cpu == -1 || event->cpu == smp_processor_id())
1113 	    && perf_cgroup_match(event);
1114 }
1115 
1116 static void
1117 event_sched_out(struct perf_event *event,
1118 		  struct perf_cpu_context *cpuctx,
1119 		  struct perf_event_context *ctx)
1120 {
1121 	u64 tstamp = perf_event_time(event);
1122 	u64 delta;
1123 	/*
1124 	 * An event which could not be activated because of
1125 	 * filter mismatch still needs to have its timings
1126 	 * maintained, otherwise bogus information is return
1127 	 * via read() for time_enabled, time_running:
1128 	 */
1129 	if (event->state == PERF_EVENT_STATE_INACTIVE
1130 	    && !event_filter_match(event)) {
1131 		delta = tstamp - event->tstamp_stopped;
1132 		event->tstamp_running += delta;
1133 		event->tstamp_stopped = tstamp;
1134 	}
1135 
1136 	if (event->state != PERF_EVENT_STATE_ACTIVE)
1137 		return;
1138 
1139 	event->state = PERF_EVENT_STATE_INACTIVE;
1140 	if (event->pending_disable) {
1141 		event->pending_disable = 0;
1142 		event->state = PERF_EVENT_STATE_OFF;
1143 	}
1144 	event->tstamp_stopped = tstamp;
1145 	event->pmu->del(event, 0);
1146 	event->oncpu = -1;
1147 
1148 	if (!is_software_event(event))
1149 		cpuctx->active_oncpu--;
1150 	ctx->nr_active--;
1151 	if (event->attr.freq && event->attr.sample_freq)
1152 		ctx->nr_freq--;
1153 	if (event->attr.exclusive || !cpuctx->active_oncpu)
1154 		cpuctx->exclusive = 0;
1155 }
1156 
1157 static void
1158 group_sched_out(struct perf_event *group_event,
1159 		struct perf_cpu_context *cpuctx,
1160 		struct perf_event_context *ctx)
1161 {
1162 	struct perf_event *event;
1163 	int state = group_event->state;
1164 
1165 	event_sched_out(group_event, cpuctx, ctx);
1166 
1167 	/*
1168 	 * Schedule out siblings (if any):
1169 	 */
1170 	list_for_each_entry(event, &group_event->sibling_list, group_entry)
1171 		event_sched_out(event, cpuctx, ctx);
1172 
1173 	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1174 		cpuctx->exclusive = 0;
1175 }
1176 
1177 /*
1178  * Cross CPU call to remove a performance event
1179  *
1180  * We disable the event on the hardware level first. After that we
1181  * remove it from the context list.
1182  */
1183 static int __perf_remove_from_context(void *info)
1184 {
1185 	struct perf_event *event = info;
1186 	struct perf_event_context *ctx = event->ctx;
1187 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1188 
1189 	raw_spin_lock(&ctx->lock);
1190 	event_sched_out(event, cpuctx, ctx);
1191 	list_del_event(event, ctx);
1192 	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1193 		ctx->is_active = 0;
1194 		cpuctx->task_ctx = NULL;
1195 	}
1196 	raw_spin_unlock(&ctx->lock);
1197 
1198 	return 0;
1199 }
1200 
1201 
1202 /*
1203  * Remove the event from a task's (or a CPU's) list of events.
1204  *
1205  * CPU events are removed with a smp call. For task events we only
1206  * call when the task is on a CPU.
1207  *
1208  * If event->ctx is a cloned context, callers must make sure that
1209  * every task struct that event->ctx->task could possibly point to
1210  * remains valid.  This is OK when called from perf_release since
1211  * that only calls us on the top-level context, which can't be a clone.
1212  * When called from perf_event_exit_task, it's OK because the
1213  * context has been detached from its task.
1214  */
1215 static void perf_remove_from_context(struct perf_event *event)
1216 {
1217 	struct perf_event_context *ctx = event->ctx;
1218 	struct task_struct *task = ctx->task;
1219 
1220 	lockdep_assert_held(&ctx->mutex);
1221 
1222 	if (!task) {
1223 		/*
1224 		 * Per cpu events are removed via an smp call and
1225 		 * the removal is always successful.
1226 		 */
1227 		cpu_function_call(event->cpu, __perf_remove_from_context, event);
1228 		return;
1229 	}
1230 
1231 retry:
1232 	if (!task_function_call(task, __perf_remove_from_context, event))
1233 		return;
1234 
1235 	raw_spin_lock_irq(&ctx->lock);
1236 	/*
1237 	 * If we failed to find a running task, but find the context active now
1238 	 * that we've acquired the ctx->lock, retry.
1239 	 */
1240 	if (ctx->is_active) {
1241 		raw_spin_unlock_irq(&ctx->lock);
1242 		goto retry;
1243 	}
1244 
1245 	/*
1246 	 * Since the task isn't running, its safe to remove the event, us
1247 	 * holding the ctx->lock ensures the task won't get scheduled in.
1248 	 */
1249 	list_del_event(event, ctx);
1250 	raw_spin_unlock_irq(&ctx->lock);
1251 }
1252 
1253 /*
1254  * Cross CPU call to disable a performance event
1255  */
1256 static int __perf_event_disable(void *info)
1257 {
1258 	struct perf_event *event = info;
1259 	struct perf_event_context *ctx = event->ctx;
1260 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1261 
1262 	/*
1263 	 * If this is a per-task event, need to check whether this
1264 	 * event's task is the current task on this cpu.
1265 	 *
1266 	 * Can trigger due to concurrent perf_event_context_sched_out()
1267 	 * flipping contexts around.
1268 	 */
1269 	if (ctx->task && cpuctx->task_ctx != ctx)
1270 		return -EINVAL;
1271 
1272 	raw_spin_lock(&ctx->lock);
1273 
1274 	/*
1275 	 * If the event is on, turn it off.
1276 	 * If it is in error state, leave it in error state.
1277 	 */
1278 	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1279 		update_context_time(ctx);
1280 		update_cgrp_time_from_event(event);
1281 		update_group_times(event);
1282 		if (event == event->group_leader)
1283 			group_sched_out(event, cpuctx, ctx);
1284 		else
1285 			event_sched_out(event, cpuctx, ctx);
1286 		event->state = PERF_EVENT_STATE_OFF;
1287 	}
1288 
1289 	raw_spin_unlock(&ctx->lock);
1290 
1291 	return 0;
1292 }
1293 
1294 /*
1295  * Disable a event.
1296  *
1297  * If event->ctx is a cloned context, callers must make sure that
1298  * every task struct that event->ctx->task could possibly point to
1299  * remains valid.  This condition is satisifed when called through
1300  * perf_event_for_each_child or perf_event_for_each because they
1301  * hold the top-level event's child_mutex, so any descendant that
1302  * goes to exit will block in sync_child_event.
1303  * When called from perf_pending_event it's OK because event->ctx
1304  * is the current context on this CPU and preemption is disabled,
1305  * hence we can't get into perf_event_task_sched_out for this context.
1306  */
1307 void perf_event_disable(struct perf_event *event)
1308 {
1309 	struct perf_event_context *ctx = event->ctx;
1310 	struct task_struct *task = ctx->task;
1311 
1312 	if (!task) {
1313 		/*
1314 		 * Disable the event on the cpu that it's on
1315 		 */
1316 		cpu_function_call(event->cpu, __perf_event_disable, event);
1317 		return;
1318 	}
1319 
1320 retry:
1321 	if (!task_function_call(task, __perf_event_disable, event))
1322 		return;
1323 
1324 	raw_spin_lock_irq(&ctx->lock);
1325 	/*
1326 	 * If the event is still active, we need to retry the cross-call.
1327 	 */
1328 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1329 		raw_spin_unlock_irq(&ctx->lock);
1330 		/*
1331 		 * Reload the task pointer, it might have been changed by
1332 		 * a concurrent perf_event_context_sched_out().
1333 		 */
1334 		task = ctx->task;
1335 		goto retry;
1336 	}
1337 
1338 	/*
1339 	 * Since we have the lock this context can't be scheduled
1340 	 * in, so we can change the state safely.
1341 	 */
1342 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
1343 		update_group_times(event);
1344 		event->state = PERF_EVENT_STATE_OFF;
1345 	}
1346 	raw_spin_unlock_irq(&ctx->lock);
1347 }
1348 EXPORT_SYMBOL_GPL(perf_event_disable);
1349 
1350 static void perf_set_shadow_time(struct perf_event *event,
1351 				 struct perf_event_context *ctx,
1352 				 u64 tstamp)
1353 {
1354 	/*
1355 	 * use the correct time source for the time snapshot
1356 	 *
1357 	 * We could get by without this by leveraging the
1358 	 * fact that to get to this function, the caller
1359 	 * has most likely already called update_context_time()
1360 	 * and update_cgrp_time_xx() and thus both timestamp
1361 	 * are identical (or very close). Given that tstamp is,
1362 	 * already adjusted for cgroup, we could say that:
1363 	 *    tstamp - ctx->timestamp
1364 	 * is equivalent to
1365 	 *    tstamp - cgrp->timestamp.
1366 	 *
1367 	 * Then, in perf_output_read(), the calculation would
1368 	 * work with no changes because:
1369 	 * - event is guaranteed scheduled in
1370 	 * - no scheduled out in between
1371 	 * - thus the timestamp would be the same
1372 	 *
1373 	 * But this is a bit hairy.
1374 	 *
1375 	 * So instead, we have an explicit cgroup call to remain
1376 	 * within the time time source all along. We believe it
1377 	 * is cleaner and simpler to understand.
1378 	 */
1379 	if (is_cgroup_event(event))
1380 		perf_cgroup_set_shadow_time(event, tstamp);
1381 	else
1382 		event->shadow_ctx_time = tstamp - ctx->timestamp;
1383 }
1384 
1385 #define MAX_INTERRUPTS (~0ULL)
1386 
1387 static void perf_log_throttle(struct perf_event *event, int enable);
1388 
1389 static int
1390 event_sched_in(struct perf_event *event,
1391 		 struct perf_cpu_context *cpuctx,
1392 		 struct perf_event_context *ctx)
1393 {
1394 	u64 tstamp = perf_event_time(event);
1395 
1396 	if (event->state <= PERF_EVENT_STATE_OFF)
1397 		return 0;
1398 
1399 	event->state = PERF_EVENT_STATE_ACTIVE;
1400 	event->oncpu = smp_processor_id();
1401 
1402 	/*
1403 	 * Unthrottle events, since we scheduled we might have missed several
1404 	 * ticks already, also for a heavily scheduling task there is little
1405 	 * guarantee it'll get a tick in a timely manner.
1406 	 */
1407 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1408 		perf_log_throttle(event, 1);
1409 		event->hw.interrupts = 0;
1410 	}
1411 
1412 	/*
1413 	 * The new state must be visible before we turn it on in the hardware:
1414 	 */
1415 	smp_wmb();
1416 
1417 	if (event->pmu->add(event, PERF_EF_START)) {
1418 		event->state = PERF_EVENT_STATE_INACTIVE;
1419 		event->oncpu = -1;
1420 		return -EAGAIN;
1421 	}
1422 
1423 	event->tstamp_running += tstamp - event->tstamp_stopped;
1424 
1425 	perf_set_shadow_time(event, ctx, tstamp);
1426 
1427 	if (!is_software_event(event))
1428 		cpuctx->active_oncpu++;
1429 	ctx->nr_active++;
1430 	if (event->attr.freq && event->attr.sample_freq)
1431 		ctx->nr_freq++;
1432 
1433 	if (event->attr.exclusive)
1434 		cpuctx->exclusive = 1;
1435 
1436 	return 0;
1437 }
1438 
1439 static int
1440 group_sched_in(struct perf_event *group_event,
1441 	       struct perf_cpu_context *cpuctx,
1442 	       struct perf_event_context *ctx)
1443 {
1444 	struct perf_event *event, *partial_group = NULL;
1445 	struct pmu *pmu = group_event->pmu;
1446 	u64 now = ctx->time;
1447 	bool simulate = false;
1448 
1449 	if (group_event->state == PERF_EVENT_STATE_OFF)
1450 		return 0;
1451 
1452 	pmu->start_txn(pmu);
1453 
1454 	if (event_sched_in(group_event, cpuctx, ctx)) {
1455 		pmu->cancel_txn(pmu);
1456 		return -EAGAIN;
1457 	}
1458 
1459 	/*
1460 	 * Schedule in siblings as one group (if any):
1461 	 */
1462 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1463 		if (event_sched_in(event, cpuctx, ctx)) {
1464 			partial_group = event;
1465 			goto group_error;
1466 		}
1467 	}
1468 
1469 	if (!pmu->commit_txn(pmu))
1470 		return 0;
1471 
1472 group_error:
1473 	/*
1474 	 * Groups can be scheduled in as one unit only, so undo any
1475 	 * partial group before returning:
1476 	 * The events up to the failed event are scheduled out normally,
1477 	 * tstamp_stopped will be updated.
1478 	 *
1479 	 * The failed events and the remaining siblings need to have
1480 	 * their timings updated as if they had gone thru event_sched_in()
1481 	 * and event_sched_out(). This is required to get consistent timings
1482 	 * across the group. This also takes care of the case where the group
1483 	 * could never be scheduled by ensuring tstamp_stopped is set to mark
1484 	 * the time the event was actually stopped, such that time delta
1485 	 * calculation in update_event_times() is correct.
1486 	 */
1487 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1488 		if (event == partial_group)
1489 			simulate = true;
1490 
1491 		if (simulate) {
1492 			event->tstamp_running += now - event->tstamp_stopped;
1493 			event->tstamp_stopped = now;
1494 		} else {
1495 			event_sched_out(event, cpuctx, ctx);
1496 		}
1497 	}
1498 	event_sched_out(group_event, cpuctx, ctx);
1499 
1500 	pmu->cancel_txn(pmu);
1501 
1502 	return -EAGAIN;
1503 }
1504 
1505 /*
1506  * Work out whether we can put this event group on the CPU now.
1507  */
1508 static int group_can_go_on(struct perf_event *event,
1509 			   struct perf_cpu_context *cpuctx,
1510 			   int can_add_hw)
1511 {
1512 	/*
1513 	 * Groups consisting entirely of software events can always go on.
1514 	 */
1515 	if (event->group_flags & PERF_GROUP_SOFTWARE)
1516 		return 1;
1517 	/*
1518 	 * If an exclusive group is already on, no other hardware
1519 	 * events can go on.
1520 	 */
1521 	if (cpuctx->exclusive)
1522 		return 0;
1523 	/*
1524 	 * If this group is exclusive and there are already
1525 	 * events on the CPU, it can't go on.
1526 	 */
1527 	if (event->attr.exclusive && cpuctx->active_oncpu)
1528 		return 0;
1529 	/*
1530 	 * Otherwise, try to add it if all previous groups were able
1531 	 * to go on.
1532 	 */
1533 	return can_add_hw;
1534 }
1535 
1536 static void add_event_to_ctx(struct perf_event *event,
1537 			       struct perf_event_context *ctx)
1538 {
1539 	u64 tstamp = perf_event_time(event);
1540 
1541 	list_add_event(event, ctx);
1542 	perf_group_attach(event);
1543 	event->tstamp_enabled = tstamp;
1544 	event->tstamp_running = tstamp;
1545 	event->tstamp_stopped = tstamp;
1546 }
1547 
1548 static void task_ctx_sched_out(struct perf_event_context *ctx);
1549 static void
1550 ctx_sched_in(struct perf_event_context *ctx,
1551 	     struct perf_cpu_context *cpuctx,
1552 	     enum event_type_t event_type,
1553 	     struct task_struct *task);
1554 
1555 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1556 				struct perf_event_context *ctx,
1557 				struct task_struct *task)
1558 {
1559 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1560 	if (ctx)
1561 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1562 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1563 	if (ctx)
1564 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1565 }
1566 
1567 /*
1568  * Cross CPU call to install and enable a performance event
1569  *
1570  * Must be called with ctx->mutex held
1571  */
1572 static int  __perf_install_in_context(void *info)
1573 {
1574 	struct perf_event *event = info;
1575 	struct perf_event_context *ctx = event->ctx;
1576 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1577 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
1578 	struct task_struct *task = current;
1579 
1580 	perf_ctx_lock(cpuctx, task_ctx);
1581 	perf_pmu_disable(cpuctx->ctx.pmu);
1582 
1583 	/*
1584 	 * If there was an active task_ctx schedule it out.
1585 	 */
1586 	if (task_ctx)
1587 		task_ctx_sched_out(task_ctx);
1588 
1589 	/*
1590 	 * If the context we're installing events in is not the
1591 	 * active task_ctx, flip them.
1592 	 */
1593 	if (ctx->task && task_ctx != ctx) {
1594 		if (task_ctx)
1595 			raw_spin_unlock(&task_ctx->lock);
1596 		raw_spin_lock(&ctx->lock);
1597 		task_ctx = ctx;
1598 	}
1599 
1600 	if (task_ctx) {
1601 		cpuctx->task_ctx = task_ctx;
1602 		task = task_ctx->task;
1603 	}
1604 
1605 	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
1606 
1607 	update_context_time(ctx);
1608 	/*
1609 	 * update cgrp time only if current cgrp
1610 	 * matches event->cgrp. Must be done before
1611 	 * calling add_event_to_ctx()
1612 	 */
1613 	update_cgrp_time_from_event(event);
1614 
1615 	add_event_to_ctx(event, ctx);
1616 
1617 	/*
1618 	 * Schedule everything back in
1619 	 */
1620 	perf_event_sched_in(cpuctx, task_ctx, task);
1621 
1622 	perf_pmu_enable(cpuctx->ctx.pmu);
1623 	perf_ctx_unlock(cpuctx, task_ctx);
1624 
1625 	return 0;
1626 }
1627 
1628 /*
1629  * Attach a performance event to a context
1630  *
1631  * First we add the event to the list with the hardware enable bit
1632  * in event->hw_config cleared.
1633  *
1634  * If the event is attached to a task which is on a CPU we use a smp
1635  * call to enable it in the task context. The task might have been
1636  * scheduled away, but we check this in the smp call again.
1637  */
1638 static void
1639 perf_install_in_context(struct perf_event_context *ctx,
1640 			struct perf_event *event,
1641 			int cpu)
1642 {
1643 	struct task_struct *task = ctx->task;
1644 
1645 	lockdep_assert_held(&ctx->mutex);
1646 
1647 	event->ctx = ctx;
1648 	if (event->cpu != -1)
1649 		event->cpu = cpu;
1650 
1651 	if (!task) {
1652 		/*
1653 		 * Per cpu events are installed via an smp call and
1654 		 * the install is always successful.
1655 		 */
1656 		cpu_function_call(cpu, __perf_install_in_context, event);
1657 		return;
1658 	}
1659 
1660 retry:
1661 	if (!task_function_call(task, __perf_install_in_context, event))
1662 		return;
1663 
1664 	raw_spin_lock_irq(&ctx->lock);
1665 	/*
1666 	 * If we failed to find a running task, but find the context active now
1667 	 * that we've acquired the ctx->lock, retry.
1668 	 */
1669 	if (ctx->is_active) {
1670 		raw_spin_unlock_irq(&ctx->lock);
1671 		goto retry;
1672 	}
1673 
1674 	/*
1675 	 * Since the task isn't running, its safe to add the event, us holding
1676 	 * the ctx->lock ensures the task won't get scheduled in.
1677 	 */
1678 	add_event_to_ctx(event, ctx);
1679 	raw_spin_unlock_irq(&ctx->lock);
1680 }
1681 
1682 /*
1683  * Put a event into inactive state and update time fields.
1684  * Enabling the leader of a group effectively enables all
1685  * the group members that aren't explicitly disabled, so we
1686  * have to update their ->tstamp_enabled also.
1687  * Note: this works for group members as well as group leaders
1688  * since the non-leader members' sibling_lists will be empty.
1689  */
1690 static void __perf_event_mark_enabled(struct perf_event *event)
1691 {
1692 	struct perf_event *sub;
1693 	u64 tstamp = perf_event_time(event);
1694 
1695 	event->state = PERF_EVENT_STATE_INACTIVE;
1696 	event->tstamp_enabled = tstamp - event->total_time_enabled;
1697 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
1698 		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1699 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
1700 	}
1701 }
1702 
1703 /*
1704  * Cross CPU call to enable a performance event
1705  */
1706 static int __perf_event_enable(void *info)
1707 {
1708 	struct perf_event *event = info;
1709 	struct perf_event_context *ctx = event->ctx;
1710 	struct perf_event *leader = event->group_leader;
1711 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1712 	int err;
1713 
1714 	if (WARN_ON_ONCE(!ctx->is_active))
1715 		return -EINVAL;
1716 
1717 	raw_spin_lock(&ctx->lock);
1718 	update_context_time(ctx);
1719 
1720 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1721 		goto unlock;
1722 
1723 	/*
1724 	 * set current task's cgroup time reference point
1725 	 */
1726 	perf_cgroup_set_timestamp(current, ctx);
1727 
1728 	__perf_event_mark_enabled(event);
1729 
1730 	if (!event_filter_match(event)) {
1731 		if (is_cgroup_event(event))
1732 			perf_cgroup_defer_enabled(event);
1733 		goto unlock;
1734 	}
1735 
1736 	/*
1737 	 * If the event is in a group and isn't the group leader,
1738 	 * then don't put it on unless the group is on.
1739 	 */
1740 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1741 		goto unlock;
1742 
1743 	if (!group_can_go_on(event, cpuctx, 1)) {
1744 		err = -EEXIST;
1745 	} else {
1746 		if (event == leader)
1747 			err = group_sched_in(event, cpuctx, ctx);
1748 		else
1749 			err = event_sched_in(event, cpuctx, ctx);
1750 	}
1751 
1752 	if (err) {
1753 		/*
1754 		 * If this event can't go on and it's part of a
1755 		 * group, then the whole group has to come off.
1756 		 */
1757 		if (leader != event)
1758 			group_sched_out(leader, cpuctx, ctx);
1759 		if (leader->attr.pinned) {
1760 			update_group_times(leader);
1761 			leader->state = PERF_EVENT_STATE_ERROR;
1762 		}
1763 	}
1764 
1765 unlock:
1766 	raw_spin_unlock(&ctx->lock);
1767 
1768 	return 0;
1769 }
1770 
1771 /*
1772  * Enable a event.
1773  *
1774  * If event->ctx is a cloned context, callers must make sure that
1775  * every task struct that event->ctx->task could possibly point to
1776  * remains valid.  This condition is satisfied when called through
1777  * perf_event_for_each_child or perf_event_for_each as described
1778  * for perf_event_disable.
1779  */
1780 void perf_event_enable(struct perf_event *event)
1781 {
1782 	struct perf_event_context *ctx = event->ctx;
1783 	struct task_struct *task = ctx->task;
1784 
1785 	if (!task) {
1786 		/*
1787 		 * Enable the event on the cpu that it's on
1788 		 */
1789 		cpu_function_call(event->cpu, __perf_event_enable, event);
1790 		return;
1791 	}
1792 
1793 	raw_spin_lock_irq(&ctx->lock);
1794 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1795 		goto out;
1796 
1797 	/*
1798 	 * If the event is in error state, clear that first.
1799 	 * That way, if we see the event in error state below, we
1800 	 * know that it has gone back into error state, as distinct
1801 	 * from the task having been scheduled away before the
1802 	 * cross-call arrived.
1803 	 */
1804 	if (event->state == PERF_EVENT_STATE_ERROR)
1805 		event->state = PERF_EVENT_STATE_OFF;
1806 
1807 retry:
1808 	if (!ctx->is_active) {
1809 		__perf_event_mark_enabled(event);
1810 		goto out;
1811 	}
1812 
1813 	raw_spin_unlock_irq(&ctx->lock);
1814 
1815 	if (!task_function_call(task, __perf_event_enable, event))
1816 		return;
1817 
1818 	raw_spin_lock_irq(&ctx->lock);
1819 
1820 	/*
1821 	 * If the context is active and the event is still off,
1822 	 * we need to retry the cross-call.
1823 	 */
1824 	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
1825 		/*
1826 		 * task could have been flipped by a concurrent
1827 		 * perf_event_context_sched_out()
1828 		 */
1829 		task = ctx->task;
1830 		goto retry;
1831 	}
1832 
1833 out:
1834 	raw_spin_unlock_irq(&ctx->lock);
1835 }
1836 EXPORT_SYMBOL_GPL(perf_event_enable);
1837 
1838 int perf_event_refresh(struct perf_event *event, int refresh)
1839 {
1840 	/*
1841 	 * not supported on inherited events
1842 	 */
1843 	if (event->attr.inherit || !is_sampling_event(event))
1844 		return -EINVAL;
1845 
1846 	atomic_add(refresh, &event->event_limit);
1847 	perf_event_enable(event);
1848 
1849 	return 0;
1850 }
1851 EXPORT_SYMBOL_GPL(perf_event_refresh);
1852 
1853 static void ctx_sched_out(struct perf_event_context *ctx,
1854 			  struct perf_cpu_context *cpuctx,
1855 			  enum event_type_t event_type)
1856 {
1857 	struct perf_event *event;
1858 	int is_active = ctx->is_active;
1859 
1860 	ctx->is_active &= ~event_type;
1861 	if (likely(!ctx->nr_events))
1862 		return;
1863 
1864 	update_context_time(ctx);
1865 	update_cgrp_time_from_cpuctx(cpuctx);
1866 	if (!ctx->nr_active)
1867 		return;
1868 
1869 	perf_pmu_disable(ctx->pmu);
1870 	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
1871 		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1872 			group_sched_out(event, cpuctx, ctx);
1873 	}
1874 
1875 	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
1876 		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1877 			group_sched_out(event, cpuctx, ctx);
1878 	}
1879 	perf_pmu_enable(ctx->pmu);
1880 }
1881 
1882 /*
1883  * Test whether two contexts are equivalent, i.e. whether they
1884  * have both been cloned from the same version of the same context
1885  * and they both have the same number of enabled events.
1886  * If the number of enabled events is the same, then the set
1887  * of enabled events should be the same, because these are both
1888  * inherited contexts, therefore we can't access individual events
1889  * in them directly with an fd; we can only enable/disable all
1890  * events via prctl, or enable/disable all events in a family
1891  * via ioctl, which will have the same effect on both contexts.
1892  */
1893 static int context_equiv(struct perf_event_context *ctx1,
1894 			 struct perf_event_context *ctx2)
1895 {
1896 	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1897 		&& ctx1->parent_gen == ctx2->parent_gen
1898 		&& !ctx1->pin_count && !ctx2->pin_count;
1899 }
1900 
1901 static void __perf_event_sync_stat(struct perf_event *event,
1902 				     struct perf_event *next_event)
1903 {
1904 	u64 value;
1905 
1906 	if (!event->attr.inherit_stat)
1907 		return;
1908 
1909 	/*
1910 	 * Update the event value, we cannot use perf_event_read()
1911 	 * because we're in the middle of a context switch and have IRQs
1912 	 * disabled, which upsets smp_call_function_single(), however
1913 	 * we know the event must be on the current CPU, therefore we
1914 	 * don't need to use it.
1915 	 */
1916 	switch (event->state) {
1917 	case PERF_EVENT_STATE_ACTIVE:
1918 		event->pmu->read(event);
1919 		/* fall-through */
1920 
1921 	case PERF_EVENT_STATE_INACTIVE:
1922 		update_event_times(event);
1923 		break;
1924 
1925 	default:
1926 		break;
1927 	}
1928 
1929 	/*
1930 	 * In order to keep per-task stats reliable we need to flip the event
1931 	 * values when we flip the contexts.
1932 	 */
1933 	value = local64_read(&next_event->count);
1934 	value = local64_xchg(&event->count, value);
1935 	local64_set(&next_event->count, value);
1936 
1937 	swap(event->total_time_enabled, next_event->total_time_enabled);
1938 	swap(event->total_time_running, next_event->total_time_running);
1939 
1940 	/*
1941 	 * Since we swizzled the values, update the user visible data too.
1942 	 */
1943 	perf_event_update_userpage(event);
1944 	perf_event_update_userpage(next_event);
1945 }
1946 
1947 #define list_next_entry(pos, member) \
1948 	list_entry(pos->member.next, typeof(*pos), member)
1949 
1950 static void perf_event_sync_stat(struct perf_event_context *ctx,
1951 				   struct perf_event_context *next_ctx)
1952 {
1953 	struct perf_event *event, *next_event;
1954 
1955 	if (!ctx->nr_stat)
1956 		return;
1957 
1958 	update_context_time(ctx);
1959 
1960 	event = list_first_entry(&ctx->event_list,
1961 				   struct perf_event, event_entry);
1962 
1963 	next_event = list_first_entry(&next_ctx->event_list,
1964 					struct perf_event, event_entry);
1965 
1966 	while (&event->event_entry != &ctx->event_list &&
1967 	       &next_event->event_entry != &next_ctx->event_list) {
1968 
1969 		__perf_event_sync_stat(event, next_event);
1970 
1971 		event = list_next_entry(event, event_entry);
1972 		next_event = list_next_entry(next_event, event_entry);
1973 	}
1974 }
1975 
1976 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
1977 					 struct task_struct *next)
1978 {
1979 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1980 	struct perf_event_context *next_ctx;
1981 	struct perf_event_context *parent;
1982 	struct perf_cpu_context *cpuctx;
1983 	int do_switch = 1;
1984 
1985 	if (likely(!ctx))
1986 		return;
1987 
1988 	cpuctx = __get_cpu_context(ctx);
1989 	if (!cpuctx->task_ctx)
1990 		return;
1991 
1992 	rcu_read_lock();
1993 	parent = rcu_dereference(ctx->parent_ctx);
1994 	next_ctx = next->perf_event_ctxp[ctxn];
1995 	if (parent && next_ctx &&
1996 	    rcu_dereference(next_ctx->parent_ctx) == parent) {
1997 		/*
1998 		 * Looks like the two contexts are clones, so we might be
1999 		 * able to optimize the context switch.  We lock both
2000 		 * contexts and check that they are clones under the
2001 		 * lock (including re-checking that neither has been
2002 		 * uncloned in the meantime).  It doesn't matter which
2003 		 * order we take the locks because no other cpu could
2004 		 * be trying to lock both of these tasks.
2005 		 */
2006 		raw_spin_lock(&ctx->lock);
2007 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2008 		if (context_equiv(ctx, next_ctx)) {
2009 			/*
2010 			 * XXX do we need a memory barrier of sorts
2011 			 * wrt to rcu_dereference() of perf_event_ctxp
2012 			 */
2013 			task->perf_event_ctxp[ctxn] = next_ctx;
2014 			next->perf_event_ctxp[ctxn] = ctx;
2015 			ctx->task = next;
2016 			next_ctx->task = task;
2017 			do_switch = 0;
2018 
2019 			perf_event_sync_stat(ctx, next_ctx);
2020 		}
2021 		raw_spin_unlock(&next_ctx->lock);
2022 		raw_spin_unlock(&ctx->lock);
2023 	}
2024 	rcu_read_unlock();
2025 
2026 	if (do_switch) {
2027 		raw_spin_lock(&ctx->lock);
2028 		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2029 		cpuctx->task_ctx = NULL;
2030 		raw_spin_unlock(&ctx->lock);
2031 	}
2032 }
2033 
2034 #define for_each_task_context_nr(ctxn)					\
2035 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2036 
2037 /*
2038  * Called from scheduler to remove the events of the current task,
2039  * with interrupts disabled.
2040  *
2041  * We stop each event and update the event value in event->count.
2042  *
2043  * This does not protect us against NMI, but disable()
2044  * sets the disabled bit in the control field of event _before_
2045  * accessing the event control register. If a NMI hits, then it will
2046  * not restart the event.
2047  */
2048 void __perf_event_task_sched_out(struct task_struct *task,
2049 				 struct task_struct *next)
2050 {
2051 	int ctxn;
2052 
2053 	for_each_task_context_nr(ctxn)
2054 		perf_event_context_sched_out(task, ctxn, next);
2055 
2056 	/*
2057 	 * if cgroup events exist on this CPU, then we need
2058 	 * to check if we have to switch out PMU state.
2059 	 * cgroup event are system-wide mode only
2060 	 */
2061 	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2062 		perf_cgroup_sched_out(task, next);
2063 }
2064 
2065 static void task_ctx_sched_out(struct perf_event_context *ctx)
2066 {
2067 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2068 
2069 	if (!cpuctx->task_ctx)
2070 		return;
2071 
2072 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2073 		return;
2074 
2075 	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2076 	cpuctx->task_ctx = NULL;
2077 }
2078 
2079 /*
2080  * Called with IRQs disabled
2081  */
2082 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2083 			      enum event_type_t event_type)
2084 {
2085 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2086 }
2087 
2088 static void
2089 ctx_pinned_sched_in(struct perf_event_context *ctx,
2090 		    struct perf_cpu_context *cpuctx)
2091 {
2092 	struct perf_event *event;
2093 
2094 	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2095 		if (event->state <= PERF_EVENT_STATE_OFF)
2096 			continue;
2097 		if (!event_filter_match(event))
2098 			continue;
2099 
2100 		/* may need to reset tstamp_enabled */
2101 		if (is_cgroup_event(event))
2102 			perf_cgroup_mark_enabled(event, ctx);
2103 
2104 		if (group_can_go_on(event, cpuctx, 1))
2105 			group_sched_in(event, cpuctx, ctx);
2106 
2107 		/*
2108 		 * If this pinned group hasn't been scheduled,
2109 		 * put it in error state.
2110 		 */
2111 		if (event->state == PERF_EVENT_STATE_INACTIVE) {
2112 			update_group_times(event);
2113 			event->state = PERF_EVENT_STATE_ERROR;
2114 		}
2115 	}
2116 }
2117 
2118 static void
2119 ctx_flexible_sched_in(struct perf_event_context *ctx,
2120 		      struct perf_cpu_context *cpuctx)
2121 {
2122 	struct perf_event *event;
2123 	int can_add_hw = 1;
2124 
2125 	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2126 		/* Ignore events in OFF or ERROR state */
2127 		if (event->state <= PERF_EVENT_STATE_OFF)
2128 			continue;
2129 		/*
2130 		 * Listen to the 'cpu' scheduling filter constraint
2131 		 * of events:
2132 		 */
2133 		if (!event_filter_match(event))
2134 			continue;
2135 
2136 		/* may need to reset tstamp_enabled */
2137 		if (is_cgroup_event(event))
2138 			perf_cgroup_mark_enabled(event, ctx);
2139 
2140 		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2141 			if (group_sched_in(event, cpuctx, ctx))
2142 				can_add_hw = 0;
2143 		}
2144 	}
2145 }
2146 
2147 static void
2148 ctx_sched_in(struct perf_event_context *ctx,
2149 	     struct perf_cpu_context *cpuctx,
2150 	     enum event_type_t event_type,
2151 	     struct task_struct *task)
2152 {
2153 	u64 now;
2154 	int is_active = ctx->is_active;
2155 
2156 	ctx->is_active |= event_type;
2157 	if (likely(!ctx->nr_events))
2158 		return;
2159 
2160 	now = perf_clock();
2161 	ctx->timestamp = now;
2162 	perf_cgroup_set_timestamp(task, ctx);
2163 	/*
2164 	 * First go through the list and put on any pinned groups
2165 	 * in order to give them the best chance of going on.
2166 	 */
2167 	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2168 		ctx_pinned_sched_in(ctx, cpuctx);
2169 
2170 	/* Then walk through the lower prio flexible groups */
2171 	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2172 		ctx_flexible_sched_in(ctx, cpuctx);
2173 }
2174 
2175 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2176 			     enum event_type_t event_type,
2177 			     struct task_struct *task)
2178 {
2179 	struct perf_event_context *ctx = &cpuctx->ctx;
2180 
2181 	ctx_sched_in(ctx, cpuctx, event_type, task);
2182 }
2183 
2184 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2185 					struct task_struct *task)
2186 {
2187 	struct perf_cpu_context *cpuctx;
2188 
2189 	cpuctx = __get_cpu_context(ctx);
2190 	if (cpuctx->task_ctx == ctx)
2191 		return;
2192 
2193 	perf_ctx_lock(cpuctx, ctx);
2194 	perf_pmu_disable(ctx->pmu);
2195 	/*
2196 	 * We want to keep the following priority order:
2197 	 * cpu pinned (that don't need to move), task pinned,
2198 	 * cpu flexible, task flexible.
2199 	 */
2200 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2201 
2202 	if (ctx->nr_events)
2203 		cpuctx->task_ctx = ctx;
2204 
2205 	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2206 
2207 	perf_pmu_enable(ctx->pmu);
2208 	perf_ctx_unlock(cpuctx, ctx);
2209 
2210 	/*
2211 	 * Since these rotations are per-cpu, we need to ensure the
2212 	 * cpu-context we got scheduled on is actually rotating.
2213 	 */
2214 	perf_pmu_rotate_start(ctx->pmu);
2215 }
2216 
2217 /*
2218  * When sampling the branck stack in system-wide, it may be necessary
2219  * to flush the stack on context switch. This happens when the branch
2220  * stack does not tag its entries with the pid of the current task.
2221  * Otherwise it becomes impossible to associate a branch entry with a
2222  * task. This ambiguity is more likely to appear when the branch stack
2223  * supports priv level filtering and the user sets it to monitor only
2224  * at the user level (which could be a useful measurement in system-wide
2225  * mode). In that case, the risk is high of having a branch stack with
2226  * branch from multiple tasks. Flushing may mean dropping the existing
2227  * entries or stashing them somewhere in the PMU specific code layer.
2228  *
2229  * This function provides the context switch callback to the lower code
2230  * layer. It is invoked ONLY when there is at least one system-wide context
2231  * with at least one active event using taken branch sampling.
2232  */
2233 static void perf_branch_stack_sched_in(struct task_struct *prev,
2234 				       struct task_struct *task)
2235 {
2236 	struct perf_cpu_context *cpuctx;
2237 	struct pmu *pmu;
2238 	unsigned long flags;
2239 
2240 	/* no need to flush branch stack if not changing task */
2241 	if (prev == task)
2242 		return;
2243 
2244 	local_irq_save(flags);
2245 
2246 	rcu_read_lock();
2247 
2248 	list_for_each_entry_rcu(pmu, &pmus, entry) {
2249 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2250 
2251 		/*
2252 		 * check if the context has at least one
2253 		 * event using PERF_SAMPLE_BRANCH_STACK
2254 		 */
2255 		if (cpuctx->ctx.nr_branch_stack > 0
2256 		    && pmu->flush_branch_stack) {
2257 
2258 			pmu = cpuctx->ctx.pmu;
2259 
2260 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2261 
2262 			perf_pmu_disable(pmu);
2263 
2264 			pmu->flush_branch_stack();
2265 
2266 			perf_pmu_enable(pmu);
2267 
2268 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2269 		}
2270 	}
2271 
2272 	rcu_read_unlock();
2273 
2274 	local_irq_restore(flags);
2275 }
2276 
2277 /*
2278  * Called from scheduler to add the events of the current task
2279  * with interrupts disabled.
2280  *
2281  * We restore the event value and then enable it.
2282  *
2283  * This does not protect us against NMI, but enable()
2284  * sets the enabled bit in the control field of event _before_
2285  * accessing the event control register. If a NMI hits, then it will
2286  * keep the event running.
2287  */
2288 void __perf_event_task_sched_in(struct task_struct *prev,
2289 				struct task_struct *task)
2290 {
2291 	struct perf_event_context *ctx;
2292 	int ctxn;
2293 
2294 	for_each_task_context_nr(ctxn) {
2295 		ctx = task->perf_event_ctxp[ctxn];
2296 		if (likely(!ctx))
2297 			continue;
2298 
2299 		perf_event_context_sched_in(ctx, task);
2300 	}
2301 	/*
2302 	 * if cgroup events exist on this CPU, then we need
2303 	 * to check if we have to switch in PMU state.
2304 	 * cgroup event are system-wide mode only
2305 	 */
2306 	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2307 		perf_cgroup_sched_in(prev, task);
2308 
2309 	/* check for system-wide branch_stack events */
2310 	if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
2311 		perf_branch_stack_sched_in(prev, task);
2312 }
2313 
2314 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2315 {
2316 	u64 frequency = event->attr.sample_freq;
2317 	u64 sec = NSEC_PER_SEC;
2318 	u64 divisor, dividend;
2319 
2320 	int count_fls, nsec_fls, frequency_fls, sec_fls;
2321 
2322 	count_fls = fls64(count);
2323 	nsec_fls = fls64(nsec);
2324 	frequency_fls = fls64(frequency);
2325 	sec_fls = 30;
2326 
2327 	/*
2328 	 * We got @count in @nsec, with a target of sample_freq HZ
2329 	 * the target period becomes:
2330 	 *
2331 	 *             @count * 10^9
2332 	 * period = -------------------
2333 	 *          @nsec * sample_freq
2334 	 *
2335 	 */
2336 
2337 	/*
2338 	 * Reduce accuracy by one bit such that @a and @b converge
2339 	 * to a similar magnitude.
2340 	 */
2341 #define REDUCE_FLS(a, b)		\
2342 do {					\
2343 	if (a##_fls > b##_fls) {	\
2344 		a >>= 1;		\
2345 		a##_fls--;		\
2346 	} else {			\
2347 		b >>= 1;		\
2348 		b##_fls--;		\
2349 	}				\
2350 } while (0)
2351 
2352 	/*
2353 	 * Reduce accuracy until either term fits in a u64, then proceed with
2354 	 * the other, so that finally we can do a u64/u64 division.
2355 	 */
2356 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2357 		REDUCE_FLS(nsec, frequency);
2358 		REDUCE_FLS(sec, count);
2359 	}
2360 
2361 	if (count_fls + sec_fls > 64) {
2362 		divisor = nsec * frequency;
2363 
2364 		while (count_fls + sec_fls > 64) {
2365 			REDUCE_FLS(count, sec);
2366 			divisor >>= 1;
2367 		}
2368 
2369 		dividend = count * sec;
2370 	} else {
2371 		dividend = count * sec;
2372 
2373 		while (nsec_fls + frequency_fls > 64) {
2374 			REDUCE_FLS(nsec, frequency);
2375 			dividend >>= 1;
2376 		}
2377 
2378 		divisor = nsec * frequency;
2379 	}
2380 
2381 	if (!divisor)
2382 		return dividend;
2383 
2384 	return div64_u64(dividend, divisor);
2385 }
2386 
2387 static DEFINE_PER_CPU(int, perf_throttled_count);
2388 static DEFINE_PER_CPU(u64, perf_throttled_seq);
2389 
2390 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2391 {
2392 	struct hw_perf_event *hwc = &event->hw;
2393 	s64 period, sample_period;
2394 	s64 delta;
2395 
2396 	period = perf_calculate_period(event, nsec, count);
2397 
2398 	delta = (s64)(period - hwc->sample_period);
2399 	delta = (delta + 7) / 8; /* low pass filter */
2400 
2401 	sample_period = hwc->sample_period + delta;
2402 
2403 	if (!sample_period)
2404 		sample_period = 1;
2405 
2406 	hwc->sample_period = sample_period;
2407 
2408 	if (local64_read(&hwc->period_left) > 8*sample_period) {
2409 		if (disable)
2410 			event->pmu->stop(event, PERF_EF_UPDATE);
2411 
2412 		local64_set(&hwc->period_left, 0);
2413 
2414 		if (disable)
2415 			event->pmu->start(event, PERF_EF_RELOAD);
2416 	}
2417 }
2418 
2419 /*
2420  * combine freq adjustment with unthrottling to avoid two passes over the
2421  * events. At the same time, make sure, having freq events does not change
2422  * the rate of unthrottling as that would introduce bias.
2423  */
2424 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2425 					   int needs_unthr)
2426 {
2427 	struct perf_event *event;
2428 	struct hw_perf_event *hwc;
2429 	u64 now, period = TICK_NSEC;
2430 	s64 delta;
2431 
2432 	/*
2433 	 * only need to iterate over all events iff:
2434 	 * - context have events in frequency mode (needs freq adjust)
2435 	 * - there are events to unthrottle on this cpu
2436 	 */
2437 	if (!(ctx->nr_freq || needs_unthr))
2438 		return;
2439 
2440 	raw_spin_lock(&ctx->lock);
2441 	perf_pmu_disable(ctx->pmu);
2442 
2443 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2444 		if (event->state != PERF_EVENT_STATE_ACTIVE)
2445 			continue;
2446 
2447 		if (!event_filter_match(event))
2448 			continue;
2449 
2450 		hwc = &event->hw;
2451 
2452 		if (needs_unthr && hwc->interrupts == MAX_INTERRUPTS) {
2453 			hwc->interrupts = 0;
2454 			perf_log_throttle(event, 1);
2455 			event->pmu->start(event, 0);
2456 		}
2457 
2458 		if (!event->attr.freq || !event->attr.sample_freq)
2459 			continue;
2460 
2461 		/*
2462 		 * stop the event and update event->count
2463 		 */
2464 		event->pmu->stop(event, PERF_EF_UPDATE);
2465 
2466 		now = local64_read(&event->count);
2467 		delta = now - hwc->freq_count_stamp;
2468 		hwc->freq_count_stamp = now;
2469 
2470 		/*
2471 		 * restart the event
2472 		 * reload only if value has changed
2473 		 * we have stopped the event so tell that
2474 		 * to perf_adjust_period() to avoid stopping it
2475 		 * twice.
2476 		 */
2477 		if (delta > 0)
2478 			perf_adjust_period(event, period, delta, false);
2479 
2480 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2481 	}
2482 
2483 	perf_pmu_enable(ctx->pmu);
2484 	raw_spin_unlock(&ctx->lock);
2485 }
2486 
2487 /*
2488  * Round-robin a context's events:
2489  */
2490 static void rotate_ctx(struct perf_event_context *ctx)
2491 {
2492 	/*
2493 	 * Rotate the first entry last of non-pinned groups. Rotation might be
2494 	 * disabled by the inheritance code.
2495 	 */
2496 	if (!ctx->rotate_disable)
2497 		list_rotate_left(&ctx->flexible_groups);
2498 }
2499 
2500 /*
2501  * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2502  * because they're strictly cpu affine and rotate_start is called with IRQs
2503  * disabled, while rotate_context is called from IRQ context.
2504  */
2505 static void perf_rotate_context(struct perf_cpu_context *cpuctx)
2506 {
2507 	struct perf_event_context *ctx = NULL;
2508 	int rotate = 0, remove = 1;
2509 
2510 	if (cpuctx->ctx.nr_events) {
2511 		remove = 0;
2512 		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2513 			rotate = 1;
2514 	}
2515 
2516 	ctx = cpuctx->task_ctx;
2517 	if (ctx && ctx->nr_events) {
2518 		remove = 0;
2519 		if (ctx->nr_events != ctx->nr_active)
2520 			rotate = 1;
2521 	}
2522 
2523 	if (!rotate)
2524 		goto done;
2525 
2526 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2527 	perf_pmu_disable(cpuctx->ctx.pmu);
2528 
2529 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2530 	if (ctx)
2531 		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
2532 
2533 	rotate_ctx(&cpuctx->ctx);
2534 	if (ctx)
2535 		rotate_ctx(ctx);
2536 
2537 	perf_event_sched_in(cpuctx, ctx, current);
2538 
2539 	perf_pmu_enable(cpuctx->ctx.pmu);
2540 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2541 done:
2542 	if (remove)
2543 		list_del_init(&cpuctx->rotation_list);
2544 }
2545 
2546 void perf_event_task_tick(void)
2547 {
2548 	struct list_head *head = &__get_cpu_var(rotation_list);
2549 	struct perf_cpu_context *cpuctx, *tmp;
2550 	struct perf_event_context *ctx;
2551 	int throttled;
2552 
2553 	WARN_ON(!irqs_disabled());
2554 
2555 	__this_cpu_inc(perf_throttled_seq);
2556 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
2557 
2558 	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2559 		ctx = &cpuctx->ctx;
2560 		perf_adjust_freq_unthr_context(ctx, throttled);
2561 
2562 		ctx = cpuctx->task_ctx;
2563 		if (ctx)
2564 			perf_adjust_freq_unthr_context(ctx, throttled);
2565 
2566 		if (cpuctx->jiffies_interval == 1 ||
2567 				!(jiffies % cpuctx->jiffies_interval))
2568 			perf_rotate_context(cpuctx);
2569 	}
2570 }
2571 
2572 static int event_enable_on_exec(struct perf_event *event,
2573 				struct perf_event_context *ctx)
2574 {
2575 	if (!event->attr.enable_on_exec)
2576 		return 0;
2577 
2578 	event->attr.enable_on_exec = 0;
2579 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2580 		return 0;
2581 
2582 	__perf_event_mark_enabled(event);
2583 
2584 	return 1;
2585 }
2586 
2587 /*
2588  * Enable all of a task's events that have been marked enable-on-exec.
2589  * This expects task == current.
2590  */
2591 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2592 {
2593 	struct perf_event *event;
2594 	unsigned long flags;
2595 	int enabled = 0;
2596 	int ret;
2597 
2598 	local_irq_save(flags);
2599 	if (!ctx || !ctx->nr_events)
2600 		goto out;
2601 
2602 	/*
2603 	 * We must ctxsw out cgroup events to avoid conflict
2604 	 * when invoking perf_task_event_sched_in() later on
2605 	 * in this function. Otherwise we end up trying to
2606 	 * ctxswin cgroup events which are already scheduled
2607 	 * in.
2608 	 */
2609 	perf_cgroup_sched_out(current, NULL);
2610 
2611 	raw_spin_lock(&ctx->lock);
2612 	task_ctx_sched_out(ctx);
2613 
2614 	list_for_each_entry(event, &ctx->event_list, event_entry) {
2615 		ret = event_enable_on_exec(event, ctx);
2616 		if (ret)
2617 			enabled = 1;
2618 	}
2619 
2620 	/*
2621 	 * Unclone this context if we enabled any event.
2622 	 */
2623 	if (enabled)
2624 		unclone_ctx(ctx);
2625 
2626 	raw_spin_unlock(&ctx->lock);
2627 
2628 	/*
2629 	 * Also calls ctxswin for cgroup events, if any:
2630 	 */
2631 	perf_event_context_sched_in(ctx, ctx->task);
2632 out:
2633 	local_irq_restore(flags);
2634 }
2635 
2636 /*
2637  * Cross CPU call to read the hardware event
2638  */
2639 static void __perf_event_read(void *info)
2640 {
2641 	struct perf_event *event = info;
2642 	struct perf_event_context *ctx = event->ctx;
2643 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2644 
2645 	/*
2646 	 * If this is a task context, we need to check whether it is
2647 	 * the current task context of this cpu.  If not it has been
2648 	 * scheduled out before the smp call arrived.  In that case
2649 	 * event->count would have been updated to a recent sample
2650 	 * when the event was scheduled out.
2651 	 */
2652 	if (ctx->task && cpuctx->task_ctx != ctx)
2653 		return;
2654 
2655 	raw_spin_lock(&ctx->lock);
2656 	if (ctx->is_active) {
2657 		update_context_time(ctx);
2658 		update_cgrp_time_from_event(event);
2659 	}
2660 	update_event_times(event);
2661 	if (event->state == PERF_EVENT_STATE_ACTIVE)
2662 		event->pmu->read(event);
2663 	raw_spin_unlock(&ctx->lock);
2664 }
2665 
2666 static inline u64 perf_event_count(struct perf_event *event)
2667 {
2668 	return local64_read(&event->count) + atomic64_read(&event->child_count);
2669 }
2670 
2671 static u64 perf_event_read(struct perf_event *event)
2672 {
2673 	/*
2674 	 * If event is enabled and currently active on a CPU, update the
2675 	 * value in the event structure:
2676 	 */
2677 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
2678 		smp_call_function_single(event->oncpu,
2679 					 __perf_event_read, event, 1);
2680 	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2681 		struct perf_event_context *ctx = event->ctx;
2682 		unsigned long flags;
2683 
2684 		raw_spin_lock_irqsave(&ctx->lock, flags);
2685 		/*
2686 		 * may read while context is not active
2687 		 * (e.g., thread is blocked), in that case
2688 		 * we cannot update context time
2689 		 */
2690 		if (ctx->is_active) {
2691 			update_context_time(ctx);
2692 			update_cgrp_time_from_event(event);
2693 		}
2694 		update_event_times(event);
2695 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
2696 	}
2697 
2698 	return perf_event_count(event);
2699 }
2700 
2701 /*
2702  * Initialize the perf_event context in a task_struct:
2703  */
2704 static void __perf_event_init_context(struct perf_event_context *ctx)
2705 {
2706 	raw_spin_lock_init(&ctx->lock);
2707 	mutex_init(&ctx->mutex);
2708 	INIT_LIST_HEAD(&ctx->pinned_groups);
2709 	INIT_LIST_HEAD(&ctx->flexible_groups);
2710 	INIT_LIST_HEAD(&ctx->event_list);
2711 	atomic_set(&ctx->refcount, 1);
2712 }
2713 
2714 static struct perf_event_context *
2715 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2716 {
2717 	struct perf_event_context *ctx;
2718 
2719 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2720 	if (!ctx)
2721 		return NULL;
2722 
2723 	__perf_event_init_context(ctx);
2724 	if (task) {
2725 		ctx->task = task;
2726 		get_task_struct(task);
2727 	}
2728 	ctx->pmu = pmu;
2729 
2730 	return ctx;
2731 }
2732 
2733 static struct task_struct *
2734 find_lively_task_by_vpid(pid_t vpid)
2735 {
2736 	struct task_struct *task;
2737 	int err;
2738 
2739 	rcu_read_lock();
2740 	if (!vpid)
2741 		task = current;
2742 	else
2743 		task = find_task_by_vpid(vpid);
2744 	if (task)
2745 		get_task_struct(task);
2746 	rcu_read_unlock();
2747 
2748 	if (!task)
2749 		return ERR_PTR(-ESRCH);
2750 
2751 	/* Reuse ptrace permission checks for now. */
2752 	err = -EACCES;
2753 	if (!ptrace_may_access(task, PTRACE_MODE_READ))
2754 		goto errout;
2755 
2756 	return task;
2757 errout:
2758 	put_task_struct(task);
2759 	return ERR_PTR(err);
2760 
2761 }
2762 
2763 /*
2764  * Returns a matching context with refcount and pincount.
2765  */
2766 static struct perf_event_context *
2767 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
2768 {
2769 	struct perf_event_context *ctx;
2770 	struct perf_cpu_context *cpuctx;
2771 	unsigned long flags;
2772 	int ctxn, err;
2773 
2774 	if (!task) {
2775 		/* Must be root to operate on a CPU event: */
2776 		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2777 			return ERR_PTR(-EACCES);
2778 
2779 		/*
2780 		 * We could be clever and allow to attach a event to an
2781 		 * offline CPU and activate it when the CPU comes up, but
2782 		 * that's for later.
2783 		 */
2784 		if (!cpu_online(cpu))
2785 			return ERR_PTR(-ENODEV);
2786 
2787 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2788 		ctx = &cpuctx->ctx;
2789 		get_ctx(ctx);
2790 		++ctx->pin_count;
2791 
2792 		return ctx;
2793 	}
2794 
2795 	err = -EINVAL;
2796 	ctxn = pmu->task_ctx_nr;
2797 	if (ctxn < 0)
2798 		goto errout;
2799 
2800 retry:
2801 	ctx = perf_lock_task_context(task, ctxn, &flags);
2802 	if (ctx) {
2803 		unclone_ctx(ctx);
2804 		++ctx->pin_count;
2805 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
2806 	} else {
2807 		ctx = alloc_perf_context(pmu, task);
2808 		err = -ENOMEM;
2809 		if (!ctx)
2810 			goto errout;
2811 
2812 		err = 0;
2813 		mutex_lock(&task->perf_event_mutex);
2814 		/*
2815 		 * If it has already passed perf_event_exit_task().
2816 		 * we must see PF_EXITING, it takes this mutex too.
2817 		 */
2818 		if (task->flags & PF_EXITING)
2819 			err = -ESRCH;
2820 		else if (task->perf_event_ctxp[ctxn])
2821 			err = -EAGAIN;
2822 		else {
2823 			get_ctx(ctx);
2824 			++ctx->pin_count;
2825 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
2826 		}
2827 		mutex_unlock(&task->perf_event_mutex);
2828 
2829 		if (unlikely(err)) {
2830 			put_ctx(ctx);
2831 
2832 			if (err == -EAGAIN)
2833 				goto retry;
2834 			goto errout;
2835 		}
2836 	}
2837 
2838 	return ctx;
2839 
2840 errout:
2841 	return ERR_PTR(err);
2842 }
2843 
2844 static void perf_event_free_filter(struct perf_event *event);
2845 
2846 static void free_event_rcu(struct rcu_head *head)
2847 {
2848 	struct perf_event *event;
2849 
2850 	event = container_of(head, struct perf_event, rcu_head);
2851 	if (event->ns)
2852 		put_pid_ns(event->ns);
2853 	perf_event_free_filter(event);
2854 	kfree(event);
2855 }
2856 
2857 static void ring_buffer_put(struct ring_buffer *rb);
2858 
2859 static void free_event(struct perf_event *event)
2860 {
2861 	irq_work_sync(&event->pending);
2862 
2863 	if (!event->parent) {
2864 		if (event->attach_state & PERF_ATTACH_TASK)
2865 			static_key_slow_dec_deferred(&perf_sched_events);
2866 		if (event->attr.mmap || event->attr.mmap_data)
2867 			atomic_dec(&nr_mmap_events);
2868 		if (event->attr.comm)
2869 			atomic_dec(&nr_comm_events);
2870 		if (event->attr.task)
2871 			atomic_dec(&nr_task_events);
2872 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
2873 			put_callchain_buffers();
2874 		if (is_cgroup_event(event)) {
2875 			atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
2876 			static_key_slow_dec_deferred(&perf_sched_events);
2877 		}
2878 
2879 		if (has_branch_stack(event)) {
2880 			static_key_slow_dec_deferred(&perf_sched_events);
2881 			/* is system-wide event */
2882 			if (!(event->attach_state & PERF_ATTACH_TASK))
2883 				atomic_dec(&per_cpu(perf_branch_stack_events,
2884 						    event->cpu));
2885 		}
2886 	}
2887 
2888 	if (event->rb) {
2889 		ring_buffer_put(event->rb);
2890 		event->rb = NULL;
2891 	}
2892 
2893 	if (is_cgroup_event(event))
2894 		perf_detach_cgroup(event);
2895 
2896 	if (event->destroy)
2897 		event->destroy(event);
2898 
2899 	if (event->ctx)
2900 		put_ctx(event->ctx);
2901 
2902 	call_rcu(&event->rcu_head, free_event_rcu);
2903 }
2904 
2905 int perf_event_release_kernel(struct perf_event *event)
2906 {
2907 	struct perf_event_context *ctx = event->ctx;
2908 
2909 	WARN_ON_ONCE(ctx->parent_ctx);
2910 	/*
2911 	 * There are two ways this annotation is useful:
2912 	 *
2913 	 *  1) there is a lock recursion from perf_event_exit_task
2914 	 *     see the comment there.
2915 	 *
2916 	 *  2) there is a lock-inversion with mmap_sem through
2917 	 *     perf_event_read_group(), which takes faults while
2918 	 *     holding ctx->mutex, however this is called after
2919 	 *     the last filedesc died, so there is no possibility
2920 	 *     to trigger the AB-BA case.
2921 	 */
2922 	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2923 	raw_spin_lock_irq(&ctx->lock);
2924 	perf_group_detach(event);
2925 	raw_spin_unlock_irq(&ctx->lock);
2926 	perf_remove_from_context(event);
2927 	mutex_unlock(&ctx->mutex);
2928 
2929 	free_event(event);
2930 
2931 	return 0;
2932 }
2933 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
2934 
2935 /*
2936  * Called when the last reference to the file is gone.
2937  */
2938 static int perf_release(struct inode *inode, struct file *file)
2939 {
2940 	struct perf_event *event = file->private_data;
2941 	struct task_struct *owner;
2942 
2943 	file->private_data = NULL;
2944 
2945 	rcu_read_lock();
2946 	owner = ACCESS_ONCE(event->owner);
2947 	/*
2948 	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
2949 	 * !owner it means the list deletion is complete and we can indeed
2950 	 * free this event, otherwise we need to serialize on
2951 	 * owner->perf_event_mutex.
2952 	 */
2953 	smp_read_barrier_depends();
2954 	if (owner) {
2955 		/*
2956 		 * Since delayed_put_task_struct() also drops the last
2957 		 * task reference we can safely take a new reference
2958 		 * while holding the rcu_read_lock().
2959 		 */
2960 		get_task_struct(owner);
2961 	}
2962 	rcu_read_unlock();
2963 
2964 	if (owner) {
2965 		mutex_lock(&owner->perf_event_mutex);
2966 		/*
2967 		 * We have to re-check the event->owner field, if it is cleared
2968 		 * we raced with perf_event_exit_task(), acquiring the mutex
2969 		 * ensured they're done, and we can proceed with freeing the
2970 		 * event.
2971 		 */
2972 		if (event->owner)
2973 			list_del_init(&event->owner_entry);
2974 		mutex_unlock(&owner->perf_event_mutex);
2975 		put_task_struct(owner);
2976 	}
2977 
2978 	return perf_event_release_kernel(event);
2979 }
2980 
2981 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2982 {
2983 	struct perf_event *child;
2984 	u64 total = 0;
2985 
2986 	*enabled = 0;
2987 	*running = 0;
2988 
2989 	mutex_lock(&event->child_mutex);
2990 	total += perf_event_read(event);
2991 	*enabled += event->total_time_enabled +
2992 			atomic64_read(&event->child_total_time_enabled);
2993 	*running += event->total_time_running +
2994 			atomic64_read(&event->child_total_time_running);
2995 
2996 	list_for_each_entry(child, &event->child_list, child_list) {
2997 		total += perf_event_read(child);
2998 		*enabled += child->total_time_enabled;
2999 		*running += child->total_time_running;
3000 	}
3001 	mutex_unlock(&event->child_mutex);
3002 
3003 	return total;
3004 }
3005 EXPORT_SYMBOL_GPL(perf_event_read_value);
3006 
3007 static int perf_event_read_group(struct perf_event *event,
3008 				   u64 read_format, char __user *buf)
3009 {
3010 	struct perf_event *leader = event->group_leader, *sub;
3011 	int n = 0, size = 0, ret = -EFAULT;
3012 	struct perf_event_context *ctx = leader->ctx;
3013 	u64 values[5];
3014 	u64 count, enabled, running;
3015 
3016 	mutex_lock(&ctx->mutex);
3017 	count = perf_event_read_value(leader, &enabled, &running);
3018 
3019 	values[n++] = 1 + leader->nr_siblings;
3020 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3021 		values[n++] = enabled;
3022 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3023 		values[n++] = running;
3024 	values[n++] = count;
3025 	if (read_format & PERF_FORMAT_ID)
3026 		values[n++] = primary_event_id(leader);
3027 
3028 	size = n * sizeof(u64);
3029 
3030 	if (copy_to_user(buf, values, size))
3031 		goto unlock;
3032 
3033 	ret = size;
3034 
3035 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3036 		n = 0;
3037 
3038 		values[n++] = perf_event_read_value(sub, &enabled, &running);
3039 		if (read_format & PERF_FORMAT_ID)
3040 			values[n++] = primary_event_id(sub);
3041 
3042 		size = n * sizeof(u64);
3043 
3044 		if (copy_to_user(buf + ret, values, size)) {
3045 			ret = -EFAULT;
3046 			goto unlock;
3047 		}
3048 
3049 		ret += size;
3050 	}
3051 unlock:
3052 	mutex_unlock(&ctx->mutex);
3053 
3054 	return ret;
3055 }
3056 
3057 static int perf_event_read_one(struct perf_event *event,
3058 				 u64 read_format, char __user *buf)
3059 {
3060 	u64 enabled, running;
3061 	u64 values[4];
3062 	int n = 0;
3063 
3064 	values[n++] = perf_event_read_value(event, &enabled, &running);
3065 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3066 		values[n++] = enabled;
3067 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3068 		values[n++] = running;
3069 	if (read_format & PERF_FORMAT_ID)
3070 		values[n++] = primary_event_id(event);
3071 
3072 	if (copy_to_user(buf, values, n * sizeof(u64)))
3073 		return -EFAULT;
3074 
3075 	return n * sizeof(u64);
3076 }
3077 
3078 /*
3079  * Read the performance event - simple non blocking version for now
3080  */
3081 static ssize_t
3082 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
3083 {
3084 	u64 read_format = event->attr.read_format;
3085 	int ret;
3086 
3087 	/*
3088 	 * Return end-of-file for a read on a event that is in
3089 	 * error state (i.e. because it was pinned but it couldn't be
3090 	 * scheduled on to the CPU at some point).
3091 	 */
3092 	if (event->state == PERF_EVENT_STATE_ERROR)
3093 		return 0;
3094 
3095 	if (count < event->read_size)
3096 		return -ENOSPC;
3097 
3098 	WARN_ON_ONCE(event->ctx->parent_ctx);
3099 	if (read_format & PERF_FORMAT_GROUP)
3100 		ret = perf_event_read_group(event, read_format, buf);
3101 	else
3102 		ret = perf_event_read_one(event, read_format, buf);
3103 
3104 	return ret;
3105 }
3106 
3107 static ssize_t
3108 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3109 {
3110 	struct perf_event *event = file->private_data;
3111 
3112 	return perf_read_hw(event, buf, count);
3113 }
3114 
3115 static unsigned int perf_poll(struct file *file, poll_table *wait)
3116 {
3117 	struct perf_event *event = file->private_data;
3118 	struct ring_buffer *rb;
3119 	unsigned int events = POLL_HUP;
3120 
3121 	/*
3122 	 * Race between perf_event_set_output() and perf_poll(): perf_poll()
3123 	 * grabs the rb reference but perf_event_set_output() overrides it.
3124 	 * Here is the timeline for two threads T1, T2:
3125 	 * t0: T1, rb = rcu_dereference(event->rb)
3126 	 * t1: T2, old_rb = event->rb
3127 	 * t2: T2, event->rb = new rb
3128 	 * t3: T2, ring_buffer_detach(old_rb)
3129 	 * t4: T1, ring_buffer_attach(rb1)
3130 	 * t5: T1, poll_wait(event->waitq)
3131 	 *
3132 	 * To avoid this problem, we grab mmap_mutex in perf_poll()
3133 	 * thereby ensuring that the assignment of the new ring buffer
3134 	 * and the detachment of the old buffer appear atomic to perf_poll()
3135 	 */
3136 	mutex_lock(&event->mmap_mutex);
3137 
3138 	rcu_read_lock();
3139 	rb = rcu_dereference(event->rb);
3140 	if (rb) {
3141 		ring_buffer_attach(event, rb);
3142 		events = atomic_xchg(&rb->poll, 0);
3143 	}
3144 	rcu_read_unlock();
3145 
3146 	mutex_unlock(&event->mmap_mutex);
3147 
3148 	poll_wait(file, &event->waitq, wait);
3149 
3150 	return events;
3151 }
3152 
3153 static void perf_event_reset(struct perf_event *event)
3154 {
3155 	(void)perf_event_read(event);
3156 	local64_set(&event->count, 0);
3157 	perf_event_update_userpage(event);
3158 }
3159 
3160 /*
3161  * Holding the top-level event's child_mutex means that any
3162  * descendant process that has inherited this event will block
3163  * in sync_child_event if it goes to exit, thus satisfying the
3164  * task existence requirements of perf_event_enable/disable.
3165  */
3166 static void perf_event_for_each_child(struct perf_event *event,
3167 					void (*func)(struct perf_event *))
3168 {
3169 	struct perf_event *child;
3170 
3171 	WARN_ON_ONCE(event->ctx->parent_ctx);
3172 	mutex_lock(&event->child_mutex);
3173 	func(event);
3174 	list_for_each_entry(child, &event->child_list, child_list)
3175 		func(child);
3176 	mutex_unlock(&event->child_mutex);
3177 }
3178 
3179 static void perf_event_for_each(struct perf_event *event,
3180 				  void (*func)(struct perf_event *))
3181 {
3182 	struct perf_event_context *ctx = event->ctx;
3183 	struct perf_event *sibling;
3184 
3185 	WARN_ON_ONCE(ctx->parent_ctx);
3186 	mutex_lock(&ctx->mutex);
3187 	event = event->group_leader;
3188 
3189 	perf_event_for_each_child(event, func);
3190 	list_for_each_entry(sibling, &event->sibling_list, group_entry)
3191 		perf_event_for_each_child(sibling, func);
3192 	mutex_unlock(&ctx->mutex);
3193 }
3194 
3195 static int perf_event_period(struct perf_event *event, u64 __user *arg)
3196 {
3197 	struct perf_event_context *ctx = event->ctx;
3198 	int ret = 0;
3199 	u64 value;
3200 
3201 	if (!is_sampling_event(event))
3202 		return -EINVAL;
3203 
3204 	if (copy_from_user(&value, arg, sizeof(value)))
3205 		return -EFAULT;
3206 
3207 	if (!value)
3208 		return -EINVAL;
3209 
3210 	raw_spin_lock_irq(&ctx->lock);
3211 	if (event->attr.freq) {
3212 		if (value > sysctl_perf_event_sample_rate) {
3213 			ret = -EINVAL;
3214 			goto unlock;
3215 		}
3216 
3217 		event->attr.sample_freq = value;
3218 	} else {
3219 		event->attr.sample_period = value;
3220 		event->hw.sample_period = value;
3221 	}
3222 unlock:
3223 	raw_spin_unlock_irq(&ctx->lock);
3224 
3225 	return ret;
3226 }
3227 
3228 static const struct file_operations perf_fops;
3229 
3230 static struct perf_event *perf_fget_light(int fd, int *fput_needed)
3231 {
3232 	struct file *file;
3233 
3234 	file = fget_light(fd, fput_needed);
3235 	if (!file)
3236 		return ERR_PTR(-EBADF);
3237 
3238 	if (file->f_op != &perf_fops) {
3239 		fput_light(file, *fput_needed);
3240 		*fput_needed = 0;
3241 		return ERR_PTR(-EBADF);
3242 	}
3243 
3244 	return file->private_data;
3245 }
3246 
3247 static int perf_event_set_output(struct perf_event *event,
3248 				 struct perf_event *output_event);
3249 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3250 
3251 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3252 {
3253 	struct perf_event *event = file->private_data;
3254 	void (*func)(struct perf_event *);
3255 	u32 flags = arg;
3256 
3257 	switch (cmd) {
3258 	case PERF_EVENT_IOC_ENABLE:
3259 		func = perf_event_enable;
3260 		break;
3261 	case PERF_EVENT_IOC_DISABLE:
3262 		func = perf_event_disable;
3263 		break;
3264 	case PERF_EVENT_IOC_RESET:
3265 		func = perf_event_reset;
3266 		break;
3267 
3268 	case PERF_EVENT_IOC_REFRESH:
3269 		return perf_event_refresh(event, arg);
3270 
3271 	case PERF_EVENT_IOC_PERIOD:
3272 		return perf_event_period(event, (u64 __user *)arg);
3273 
3274 	case PERF_EVENT_IOC_SET_OUTPUT:
3275 	{
3276 		struct perf_event *output_event = NULL;
3277 		int fput_needed = 0;
3278 		int ret;
3279 
3280 		if (arg != -1) {
3281 			output_event = perf_fget_light(arg, &fput_needed);
3282 			if (IS_ERR(output_event))
3283 				return PTR_ERR(output_event);
3284 		}
3285 
3286 		ret = perf_event_set_output(event, output_event);
3287 		if (output_event)
3288 			fput_light(output_event->filp, fput_needed);
3289 
3290 		return ret;
3291 	}
3292 
3293 	case PERF_EVENT_IOC_SET_FILTER:
3294 		return perf_event_set_filter(event, (void __user *)arg);
3295 
3296 	default:
3297 		return -ENOTTY;
3298 	}
3299 
3300 	if (flags & PERF_IOC_FLAG_GROUP)
3301 		perf_event_for_each(event, func);
3302 	else
3303 		perf_event_for_each_child(event, func);
3304 
3305 	return 0;
3306 }
3307 
3308 int perf_event_task_enable(void)
3309 {
3310 	struct perf_event *event;
3311 
3312 	mutex_lock(&current->perf_event_mutex);
3313 	list_for_each_entry(event, &current->perf_event_list, owner_entry)
3314 		perf_event_for_each_child(event, perf_event_enable);
3315 	mutex_unlock(&current->perf_event_mutex);
3316 
3317 	return 0;
3318 }
3319 
3320 int perf_event_task_disable(void)
3321 {
3322 	struct perf_event *event;
3323 
3324 	mutex_lock(&current->perf_event_mutex);
3325 	list_for_each_entry(event, &current->perf_event_list, owner_entry)
3326 		perf_event_for_each_child(event, perf_event_disable);
3327 	mutex_unlock(&current->perf_event_mutex);
3328 
3329 	return 0;
3330 }
3331 
3332 static int perf_event_index(struct perf_event *event)
3333 {
3334 	if (event->hw.state & PERF_HES_STOPPED)
3335 		return 0;
3336 
3337 	if (event->state != PERF_EVENT_STATE_ACTIVE)
3338 		return 0;
3339 
3340 	return event->pmu->event_idx(event);
3341 }
3342 
3343 static void calc_timer_values(struct perf_event *event,
3344 				u64 *now,
3345 				u64 *enabled,
3346 				u64 *running)
3347 {
3348 	u64 ctx_time;
3349 
3350 	*now = perf_clock();
3351 	ctx_time = event->shadow_ctx_time + *now;
3352 	*enabled = ctx_time - event->tstamp_enabled;
3353 	*running = ctx_time - event->tstamp_running;
3354 }
3355 
3356 void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
3357 {
3358 }
3359 
3360 /*
3361  * Callers need to ensure there can be no nesting of this function, otherwise
3362  * the seqlock logic goes bad. We can not serialize this because the arch
3363  * code calls this from NMI context.
3364  */
3365 void perf_event_update_userpage(struct perf_event *event)
3366 {
3367 	struct perf_event_mmap_page *userpg;
3368 	struct ring_buffer *rb;
3369 	u64 enabled, running, now;
3370 
3371 	rcu_read_lock();
3372 	/*
3373 	 * compute total_time_enabled, total_time_running
3374 	 * based on snapshot values taken when the event
3375 	 * was last scheduled in.
3376 	 *
3377 	 * we cannot simply called update_context_time()
3378 	 * because of locking issue as we can be called in
3379 	 * NMI context
3380 	 */
3381 	calc_timer_values(event, &now, &enabled, &running);
3382 	rb = rcu_dereference(event->rb);
3383 	if (!rb)
3384 		goto unlock;
3385 
3386 	userpg = rb->user_page;
3387 
3388 	/*
3389 	 * Disable preemption so as to not let the corresponding user-space
3390 	 * spin too long if we get preempted.
3391 	 */
3392 	preempt_disable();
3393 	++userpg->lock;
3394 	barrier();
3395 	userpg->index = perf_event_index(event);
3396 	userpg->offset = perf_event_count(event);
3397 	if (userpg->index)
3398 		userpg->offset -= local64_read(&event->hw.prev_count);
3399 
3400 	userpg->time_enabled = enabled +
3401 			atomic64_read(&event->child_total_time_enabled);
3402 
3403 	userpg->time_running = running +
3404 			atomic64_read(&event->child_total_time_running);
3405 
3406 	arch_perf_update_userpage(userpg, now);
3407 
3408 	barrier();
3409 	++userpg->lock;
3410 	preempt_enable();
3411 unlock:
3412 	rcu_read_unlock();
3413 }
3414 
3415 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3416 {
3417 	struct perf_event *event = vma->vm_file->private_data;
3418 	struct ring_buffer *rb;
3419 	int ret = VM_FAULT_SIGBUS;
3420 
3421 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
3422 		if (vmf->pgoff == 0)
3423 			ret = 0;
3424 		return ret;
3425 	}
3426 
3427 	rcu_read_lock();
3428 	rb = rcu_dereference(event->rb);
3429 	if (!rb)
3430 		goto unlock;
3431 
3432 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3433 		goto unlock;
3434 
3435 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3436 	if (!vmf->page)
3437 		goto unlock;
3438 
3439 	get_page(vmf->page);
3440 	vmf->page->mapping = vma->vm_file->f_mapping;
3441 	vmf->page->index   = vmf->pgoff;
3442 
3443 	ret = 0;
3444 unlock:
3445 	rcu_read_unlock();
3446 
3447 	return ret;
3448 }
3449 
3450 static void ring_buffer_attach(struct perf_event *event,
3451 			       struct ring_buffer *rb)
3452 {
3453 	unsigned long flags;
3454 
3455 	if (!list_empty(&event->rb_entry))
3456 		return;
3457 
3458 	spin_lock_irqsave(&rb->event_lock, flags);
3459 	if (!list_empty(&event->rb_entry))
3460 		goto unlock;
3461 
3462 	list_add(&event->rb_entry, &rb->event_list);
3463 unlock:
3464 	spin_unlock_irqrestore(&rb->event_lock, flags);
3465 }
3466 
3467 static void ring_buffer_detach(struct perf_event *event,
3468 			       struct ring_buffer *rb)
3469 {
3470 	unsigned long flags;
3471 
3472 	if (list_empty(&event->rb_entry))
3473 		return;
3474 
3475 	spin_lock_irqsave(&rb->event_lock, flags);
3476 	list_del_init(&event->rb_entry);
3477 	wake_up_all(&event->waitq);
3478 	spin_unlock_irqrestore(&rb->event_lock, flags);
3479 }
3480 
3481 static void ring_buffer_wakeup(struct perf_event *event)
3482 {
3483 	struct ring_buffer *rb;
3484 
3485 	rcu_read_lock();
3486 	rb = rcu_dereference(event->rb);
3487 	if (!rb)
3488 		goto unlock;
3489 
3490 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
3491 		wake_up_all(&event->waitq);
3492 
3493 unlock:
3494 	rcu_read_unlock();
3495 }
3496 
3497 static void rb_free_rcu(struct rcu_head *rcu_head)
3498 {
3499 	struct ring_buffer *rb;
3500 
3501 	rb = container_of(rcu_head, struct ring_buffer, rcu_head);
3502 	rb_free(rb);
3503 }
3504 
3505 static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3506 {
3507 	struct ring_buffer *rb;
3508 
3509 	rcu_read_lock();
3510 	rb = rcu_dereference(event->rb);
3511 	if (rb) {
3512 		if (!atomic_inc_not_zero(&rb->refcount))
3513 			rb = NULL;
3514 	}
3515 	rcu_read_unlock();
3516 
3517 	return rb;
3518 }
3519 
3520 static void ring_buffer_put(struct ring_buffer *rb)
3521 {
3522 	struct perf_event *event, *n;
3523 	unsigned long flags;
3524 
3525 	if (!atomic_dec_and_test(&rb->refcount))
3526 		return;
3527 
3528 	spin_lock_irqsave(&rb->event_lock, flags);
3529 	list_for_each_entry_safe(event, n, &rb->event_list, rb_entry) {
3530 		list_del_init(&event->rb_entry);
3531 		wake_up_all(&event->waitq);
3532 	}
3533 	spin_unlock_irqrestore(&rb->event_lock, flags);
3534 
3535 	call_rcu(&rb->rcu_head, rb_free_rcu);
3536 }
3537 
3538 static void perf_mmap_open(struct vm_area_struct *vma)
3539 {
3540 	struct perf_event *event = vma->vm_file->private_data;
3541 
3542 	atomic_inc(&event->mmap_count);
3543 }
3544 
3545 static void perf_mmap_close(struct vm_area_struct *vma)
3546 {
3547 	struct perf_event *event = vma->vm_file->private_data;
3548 
3549 	if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
3550 		unsigned long size = perf_data_size(event->rb);
3551 		struct user_struct *user = event->mmap_user;
3552 		struct ring_buffer *rb = event->rb;
3553 
3554 		atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
3555 		vma->vm_mm->pinned_vm -= event->mmap_locked;
3556 		rcu_assign_pointer(event->rb, NULL);
3557 		ring_buffer_detach(event, rb);
3558 		mutex_unlock(&event->mmap_mutex);
3559 
3560 		ring_buffer_put(rb);
3561 		free_uid(user);
3562 	}
3563 }
3564 
3565 static const struct vm_operations_struct perf_mmap_vmops = {
3566 	.open		= perf_mmap_open,
3567 	.close		= perf_mmap_close,
3568 	.fault		= perf_mmap_fault,
3569 	.page_mkwrite	= perf_mmap_fault,
3570 };
3571 
3572 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3573 {
3574 	struct perf_event *event = file->private_data;
3575 	unsigned long user_locked, user_lock_limit;
3576 	struct user_struct *user = current_user();
3577 	unsigned long locked, lock_limit;
3578 	struct ring_buffer *rb;
3579 	unsigned long vma_size;
3580 	unsigned long nr_pages;
3581 	long user_extra, extra;
3582 	int ret = 0, flags = 0;
3583 
3584 	/*
3585 	 * Don't allow mmap() of inherited per-task counters. This would
3586 	 * create a performance issue due to all children writing to the
3587 	 * same rb.
3588 	 */
3589 	if (event->cpu == -1 && event->attr.inherit)
3590 		return -EINVAL;
3591 
3592 	if (!(vma->vm_flags & VM_SHARED))
3593 		return -EINVAL;
3594 
3595 	vma_size = vma->vm_end - vma->vm_start;
3596 	nr_pages = (vma_size / PAGE_SIZE) - 1;
3597 
3598 	/*
3599 	 * If we have rb pages ensure they're a power-of-two number, so we
3600 	 * can do bitmasks instead of modulo.
3601 	 */
3602 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
3603 		return -EINVAL;
3604 
3605 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
3606 		return -EINVAL;
3607 
3608 	if (vma->vm_pgoff != 0)
3609 		return -EINVAL;
3610 
3611 	WARN_ON_ONCE(event->ctx->parent_ctx);
3612 	mutex_lock(&event->mmap_mutex);
3613 	if (event->rb) {
3614 		if (event->rb->nr_pages == nr_pages)
3615 			atomic_inc(&event->rb->refcount);
3616 		else
3617 			ret = -EINVAL;
3618 		goto unlock;
3619 	}
3620 
3621 	user_extra = nr_pages + 1;
3622 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
3623 
3624 	/*
3625 	 * Increase the limit linearly with more CPUs:
3626 	 */
3627 	user_lock_limit *= num_online_cpus();
3628 
3629 	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3630 
3631 	extra = 0;
3632 	if (user_locked > user_lock_limit)
3633 		extra = user_locked - user_lock_limit;
3634 
3635 	lock_limit = rlimit(RLIMIT_MEMLOCK);
3636 	lock_limit >>= PAGE_SHIFT;
3637 	locked = vma->vm_mm->pinned_vm + extra;
3638 
3639 	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3640 		!capable(CAP_IPC_LOCK)) {
3641 		ret = -EPERM;
3642 		goto unlock;
3643 	}
3644 
3645 	WARN_ON(event->rb);
3646 
3647 	if (vma->vm_flags & VM_WRITE)
3648 		flags |= RING_BUFFER_WRITABLE;
3649 
3650 	rb = rb_alloc(nr_pages,
3651 		event->attr.watermark ? event->attr.wakeup_watermark : 0,
3652 		event->cpu, flags);
3653 
3654 	if (!rb) {
3655 		ret = -ENOMEM;
3656 		goto unlock;
3657 	}
3658 	rcu_assign_pointer(event->rb, rb);
3659 
3660 	atomic_long_add(user_extra, &user->locked_vm);
3661 	event->mmap_locked = extra;
3662 	event->mmap_user = get_current_user();
3663 	vma->vm_mm->pinned_vm += event->mmap_locked;
3664 
3665 	perf_event_update_userpage(event);
3666 
3667 unlock:
3668 	if (!ret)
3669 		atomic_inc(&event->mmap_count);
3670 	mutex_unlock(&event->mmap_mutex);
3671 
3672 	vma->vm_flags |= VM_RESERVED;
3673 	vma->vm_ops = &perf_mmap_vmops;
3674 
3675 	return ret;
3676 }
3677 
3678 static int perf_fasync(int fd, struct file *filp, int on)
3679 {
3680 	struct inode *inode = filp->f_path.dentry->d_inode;
3681 	struct perf_event *event = filp->private_data;
3682 	int retval;
3683 
3684 	mutex_lock(&inode->i_mutex);
3685 	retval = fasync_helper(fd, filp, on, &event->fasync);
3686 	mutex_unlock(&inode->i_mutex);
3687 
3688 	if (retval < 0)
3689 		return retval;
3690 
3691 	return 0;
3692 }
3693 
3694 static const struct file_operations perf_fops = {
3695 	.llseek			= no_llseek,
3696 	.release		= perf_release,
3697 	.read			= perf_read,
3698 	.poll			= perf_poll,
3699 	.unlocked_ioctl		= perf_ioctl,
3700 	.compat_ioctl		= perf_ioctl,
3701 	.mmap			= perf_mmap,
3702 	.fasync			= perf_fasync,
3703 };
3704 
3705 /*
3706  * Perf event wakeup
3707  *
3708  * If there's data, ensure we set the poll() state and publish everything
3709  * to user-space before waking everybody up.
3710  */
3711 
3712 void perf_event_wakeup(struct perf_event *event)
3713 {
3714 	ring_buffer_wakeup(event);
3715 
3716 	if (event->pending_kill) {
3717 		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
3718 		event->pending_kill = 0;
3719 	}
3720 }
3721 
3722 static void perf_pending_event(struct irq_work *entry)
3723 {
3724 	struct perf_event *event = container_of(entry,
3725 			struct perf_event, pending);
3726 
3727 	if (event->pending_disable) {
3728 		event->pending_disable = 0;
3729 		__perf_event_disable(event);
3730 	}
3731 
3732 	if (event->pending_wakeup) {
3733 		event->pending_wakeup = 0;
3734 		perf_event_wakeup(event);
3735 	}
3736 }
3737 
3738 /*
3739  * We assume there is only KVM supporting the callbacks.
3740  * Later on, we might change it to a list if there is
3741  * another virtualization implementation supporting the callbacks.
3742  */
3743 struct perf_guest_info_callbacks *perf_guest_cbs;
3744 
3745 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3746 {
3747 	perf_guest_cbs = cbs;
3748 	return 0;
3749 }
3750 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3751 
3752 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3753 {
3754 	perf_guest_cbs = NULL;
3755 	return 0;
3756 }
3757 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3758 
3759 static void __perf_event_header__init_id(struct perf_event_header *header,
3760 					 struct perf_sample_data *data,
3761 					 struct perf_event *event)
3762 {
3763 	u64 sample_type = event->attr.sample_type;
3764 
3765 	data->type = sample_type;
3766 	header->size += event->id_header_size;
3767 
3768 	if (sample_type & PERF_SAMPLE_TID) {
3769 		/* namespace issues */
3770 		data->tid_entry.pid = perf_event_pid(event, current);
3771 		data->tid_entry.tid = perf_event_tid(event, current);
3772 	}
3773 
3774 	if (sample_type & PERF_SAMPLE_TIME)
3775 		data->time = perf_clock();
3776 
3777 	if (sample_type & PERF_SAMPLE_ID)
3778 		data->id = primary_event_id(event);
3779 
3780 	if (sample_type & PERF_SAMPLE_STREAM_ID)
3781 		data->stream_id = event->id;
3782 
3783 	if (sample_type & PERF_SAMPLE_CPU) {
3784 		data->cpu_entry.cpu	 = raw_smp_processor_id();
3785 		data->cpu_entry.reserved = 0;
3786 	}
3787 }
3788 
3789 void perf_event_header__init_id(struct perf_event_header *header,
3790 				struct perf_sample_data *data,
3791 				struct perf_event *event)
3792 {
3793 	if (event->attr.sample_id_all)
3794 		__perf_event_header__init_id(header, data, event);
3795 }
3796 
3797 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
3798 					   struct perf_sample_data *data)
3799 {
3800 	u64 sample_type = data->type;
3801 
3802 	if (sample_type & PERF_SAMPLE_TID)
3803 		perf_output_put(handle, data->tid_entry);
3804 
3805 	if (sample_type & PERF_SAMPLE_TIME)
3806 		perf_output_put(handle, data->time);
3807 
3808 	if (sample_type & PERF_SAMPLE_ID)
3809 		perf_output_put(handle, data->id);
3810 
3811 	if (sample_type & PERF_SAMPLE_STREAM_ID)
3812 		perf_output_put(handle, data->stream_id);
3813 
3814 	if (sample_type & PERF_SAMPLE_CPU)
3815 		perf_output_put(handle, data->cpu_entry);
3816 }
3817 
3818 void perf_event__output_id_sample(struct perf_event *event,
3819 				  struct perf_output_handle *handle,
3820 				  struct perf_sample_data *sample)
3821 {
3822 	if (event->attr.sample_id_all)
3823 		__perf_event__output_id_sample(handle, sample);
3824 }
3825 
3826 static void perf_output_read_one(struct perf_output_handle *handle,
3827 				 struct perf_event *event,
3828 				 u64 enabled, u64 running)
3829 {
3830 	u64 read_format = event->attr.read_format;
3831 	u64 values[4];
3832 	int n = 0;
3833 
3834 	values[n++] = perf_event_count(event);
3835 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3836 		values[n++] = enabled +
3837 			atomic64_read(&event->child_total_time_enabled);
3838 	}
3839 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3840 		values[n++] = running +
3841 			atomic64_read(&event->child_total_time_running);
3842 	}
3843 	if (read_format & PERF_FORMAT_ID)
3844 		values[n++] = primary_event_id(event);
3845 
3846 	__output_copy(handle, values, n * sizeof(u64));
3847 }
3848 
3849 /*
3850  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3851  */
3852 static void perf_output_read_group(struct perf_output_handle *handle,
3853 			    struct perf_event *event,
3854 			    u64 enabled, u64 running)
3855 {
3856 	struct perf_event *leader = event->group_leader, *sub;
3857 	u64 read_format = event->attr.read_format;
3858 	u64 values[5];
3859 	int n = 0;
3860 
3861 	values[n++] = 1 + leader->nr_siblings;
3862 
3863 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3864 		values[n++] = enabled;
3865 
3866 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3867 		values[n++] = running;
3868 
3869 	if (leader != event)
3870 		leader->pmu->read(leader);
3871 
3872 	values[n++] = perf_event_count(leader);
3873 	if (read_format & PERF_FORMAT_ID)
3874 		values[n++] = primary_event_id(leader);
3875 
3876 	__output_copy(handle, values, n * sizeof(u64));
3877 
3878 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3879 		n = 0;
3880 
3881 		if (sub != event)
3882 			sub->pmu->read(sub);
3883 
3884 		values[n++] = perf_event_count(sub);
3885 		if (read_format & PERF_FORMAT_ID)
3886 			values[n++] = primary_event_id(sub);
3887 
3888 		__output_copy(handle, values, n * sizeof(u64));
3889 	}
3890 }
3891 
3892 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
3893 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
3894 
3895 static void perf_output_read(struct perf_output_handle *handle,
3896 			     struct perf_event *event)
3897 {
3898 	u64 enabled = 0, running = 0, now;
3899 	u64 read_format = event->attr.read_format;
3900 
3901 	/*
3902 	 * compute total_time_enabled, total_time_running
3903 	 * based on snapshot values taken when the event
3904 	 * was last scheduled in.
3905 	 *
3906 	 * we cannot simply called update_context_time()
3907 	 * because of locking issue as we are called in
3908 	 * NMI context
3909 	 */
3910 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
3911 		calc_timer_values(event, &now, &enabled, &running);
3912 
3913 	if (event->attr.read_format & PERF_FORMAT_GROUP)
3914 		perf_output_read_group(handle, event, enabled, running);
3915 	else
3916 		perf_output_read_one(handle, event, enabled, running);
3917 }
3918 
3919 void perf_output_sample(struct perf_output_handle *handle,
3920 			struct perf_event_header *header,
3921 			struct perf_sample_data *data,
3922 			struct perf_event *event)
3923 {
3924 	u64 sample_type = data->type;
3925 
3926 	perf_output_put(handle, *header);
3927 
3928 	if (sample_type & PERF_SAMPLE_IP)
3929 		perf_output_put(handle, data->ip);
3930 
3931 	if (sample_type & PERF_SAMPLE_TID)
3932 		perf_output_put(handle, data->tid_entry);
3933 
3934 	if (sample_type & PERF_SAMPLE_TIME)
3935 		perf_output_put(handle, data->time);
3936 
3937 	if (sample_type & PERF_SAMPLE_ADDR)
3938 		perf_output_put(handle, data->addr);
3939 
3940 	if (sample_type & PERF_SAMPLE_ID)
3941 		perf_output_put(handle, data->id);
3942 
3943 	if (sample_type & PERF_SAMPLE_STREAM_ID)
3944 		perf_output_put(handle, data->stream_id);
3945 
3946 	if (sample_type & PERF_SAMPLE_CPU)
3947 		perf_output_put(handle, data->cpu_entry);
3948 
3949 	if (sample_type & PERF_SAMPLE_PERIOD)
3950 		perf_output_put(handle, data->period);
3951 
3952 	if (sample_type & PERF_SAMPLE_READ)
3953 		perf_output_read(handle, event);
3954 
3955 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3956 		if (data->callchain) {
3957 			int size = 1;
3958 
3959 			if (data->callchain)
3960 				size += data->callchain->nr;
3961 
3962 			size *= sizeof(u64);
3963 
3964 			__output_copy(handle, data->callchain, size);
3965 		} else {
3966 			u64 nr = 0;
3967 			perf_output_put(handle, nr);
3968 		}
3969 	}
3970 
3971 	if (sample_type & PERF_SAMPLE_RAW) {
3972 		if (data->raw) {
3973 			perf_output_put(handle, data->raw->size);
3974 			__output_copy(handle, data->raw->data,
3975 					   data->raw->size);
3976 		} else {
3977 			struct {
3978 				u32	size;
3979 				u32	data;
3980 			} raw = {
3981 				.size = sizeof(u32),
3982 				.data = 0,
3983 			};
3984 			perf_output_put(handle, raw);
3985 		}
3986 	}
3987 
3988 	if (!event->attr.watermark) {
3989 		int wakeup_events = event->attr.wakeup_events;
3990 
3991 		if (wakeup_events) {
3992 			struct ring_buffer *rb = handle->rb;
3993 			int events = local_inc_return(&rb->events);
3994 
3995 			if (events >= wakeup_events) {
3996 				local_sub(wakeup_events, &rb->events);
3997 				local_inc(&rb->wakeup);
3998 			}
3999 		}
4000 	}
4001 
4002 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4003 		if (data->br_stack) {
4004 			size_t size;
4005 
4006 			size = data->br_stack->nr
4007 			     * sizeof(struct perf_branch_entry);
4008 
4009 			perf_output_put(handle, data->br_stack->nr);
4010 			perf_output_copy(handle, data->br_stack->entries, size);
4011 		} else {
4012 			/*
4013 			 * we always store at least the value of nr
4014 			 */
4015 			u64 nr = 0;
4016 			perf_output_put(handle, nr);
4017 		}
4018 	}
4019 }
4020 
4021 void perf_prepare_sample(struct perf_event_header *header,
4022 			 struct perf_sample_data *data,
4023 			 struct perf_event *event,
4024 			 struct pt_regs *regs)
4025 {
4026 	u64 sample_type = event->attr.sample_type;
4027 
4028 	header->type = PERF_RECORD_SAMPLE;
4029 	header->size = sizeof(*header) + event->header_size;
4030 
4031 	header->misc = 0;
4032 	header->misc |= perf_misc_flags(regs);
4033 
4034 	__perf_event_header__init_id(header, data, event);
4035 
4036 	if (sample_type & PERF_SAMPLE_IP)
4037 		data->ip = perf_instruction_pointer(regs);
4038 
4039 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4040 		int size = 1;
4041 
4042 		data->callchain = perf_callchain(event, regs);
4043 
4044 		if (data->callchain)
4045 			size += data->callchain->nr;
4046 
4047 		header->size += size * sizeof(u64);
4048 	}
4049 
4050 	if (sample_type & PERF_SAMPLE_RAW) {
4051 		int size = sizeof(u32);
4052 
4053 		if (data->raw)
4054 			size += data->raw->size;
4055 		else
4056 			size += sizeof(u32);
4057 
4058 		WARN_ON_ONCE(size & (sizeof(u64)-1));
4059 		header->size += size;
4060 	}
4061 
4062 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4063 		int size = sizeof(u64); /* nr */
4064 		if (data->br_stack) {
4065 			size += data->br_stack->nr
4066 			      * sizeof(struct perf_branch_entry);
4067 		}
4068 		header->size += size;
4069 	}
4070 }
4071 
4072 static void perf_event_output(struct perf_event *event,
4073 				struct perf_sample_data *data,
4074 				struct pt_regs *regs)
4075 {
4076 	struct perf_output_handle handle;
4077 	struct perf_event_header header;
4078 
4079 	/* protect the callchain buffers */
4080 	rcu_read_lock();
4081 
4082 	perf_prepare_sample(&header, data, event, regs);
4083 
4084 	if (perf_output_begin(&handle, event, header.size))
4085 		goto exit;
4086 
4087 	perf_output_sample(&handle, &header, data, event);
4088 
4089 	perf_output_end(&handle);
4090 
4091 exit:
4092 	rcu_read_unlock();
4093 }
4094 
4095 /*
4096  * read event_id
4097  */
4098 
4099 struct perf_read_event {
4100 	struct perf_event_header	header;
4101 
4102 	u32				pid;
4103 	u32				tid;
4104 };
4105 
4106 static void
4107 perf_event_read_event(struct perf_event *event,
4108 			struct task_struct *task)
4109 {
4110 	struct perf_output_handle handle;
4111 	struct perf_sample_data sample;
4112 	struct perf_read_event read_event = {
4113 		.header = {
4114 			.type = PERF_RECORD_READ,
4115 			.misc = 0,
4116 			.size = sizeof(read_event) + event->read_size,
4117 		},
4118 		.pid = perf_event_pid(event, task),
4119 		.tid = perf_event_tid(event, task),
4120 	};
4121 	int ret;
4122 
4123 	perf_event_header__init_id(&read_event.header, &sample, event);
4124 	ret = perf_output_begin(&handle, event, read_event.header.size);
4125 	if (ret)
4126 		return;
4127 
4128 	perf_output_put(&handle, read_event);
4129 	perf_output_read(&handle, event);
4130 	perf_event__output_id_sample(event, &handle, &sample);
4131 
4132 	perf_output_end(&handle);
4133 }
4134 
4135 /*
4136  * task tracking -- fork/exit
4137  *
4138  * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
4139  */
4140 
4141 struct perf_task_event {
4142 	struct task_struct		*task;
4143 	struct perf_event_context	*task_ctx;
4144 
4145 	struct {
4146 		struct perf_event_header	header;
4147 
4148 		u32				pid;
4149 		u32				ppid;
4150 		u32				tid;
4151 		u32				ptid;
4152 		u64				time;
4153 	} event_id;
4154 };
4155 
4156 static void perf_event_task_output(struct perf_event *event,
4157 				     struct perf_task_event *task_event)
4158 {
4159 	struct perf_output_handle handle;
4160 	struct perf_sample_data	sample;
4161 	struct task_struct *task = task_event->task;
4162 	int ret, size = task_event->event_id.header.size;
4163 
4164 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
4165 
4166 	ret = perf_output_begin(&handle, event,
4167 				task_event->event_id.header.size);
4168 	if (ret)
4169 		goto out;
4170 
4171 	task_event->event_id.pid = perf_event_pid(event, task);
4172 	task_event->event_id.ppid = perf_event_pid(event, current);
4173 
4174 	task_event->event_id.tid = perf_event_tid(event, task);
4175 	task_event->event_id.ptid = perf_event_tid(event, current);
4176 
4177 	perf_output_put(&handle, task_event->event_id);
4178 
4179 	perf_event__output_id_sample(event, &handle, &sample);
4180 
4181 	perf_output_end(&handle);
4182 out:
4183 	task_event->event_id.header.size = size;
4184 }
4185 
4186 static int perf_event_task_match(struct perf_event *event)
4187 {
4188 	if (event->state < PERF_EVENT_STATE_INACTIVE)
4189 		return 0;
4190 
4191 	if (!event_filter_match(event))
4192 		return 0;
4193 
4194 	if (event->attr.comm || event->attr.mmap ||
4195 	    event->attr.mmap_data || event->attr.task)
4196 		return 1;
4197 
4198 	return 0;
4199 }
4200 
4201 static void perf_event_task_ctx(struct perf_event_context *ctx,
4202 				  struct perf_task_event *task_event)
4203 {
4204 	struct perf_event *event;
4205 
4206 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4207 		if (perf_event_task_match(event))
4208 			perf_event_task_output(event, task_event);
4209 	}
4210 }
4211 
4212 static void perf_event_task_event(struct perf_task_event *task_event)
4213 {
4214 	struct perf_cpu_context *cpuctx;
4215 	struct perf_event_context *ctx;
4216 	struct pmu *pmu;
4217 	int ctxn;
4218 
4219 	rcu_read_lock();
4220 	list_for_each_entry_rcu(pmu, &pmus, entry) {
4221 		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4222 		if (cpuctx->active_pmu != pmu)
4223 			goto next;
4224 		perf_event_task_ctx(&cpuctx->ctx, task_event);
4225 
4226 		ctx = task_event->task_ctx;
4227 		if (!ctx) {
4228 			ctxn = pmu->task_ctx_nr;
4229 			if (ctxn < 0)
4230 				goto next;
4231 			ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4232 		}
4233 		if (ctx)
4234 			perf_event_task_ctx(ctx, task_event);
4235 next:
4236 		put_cpu_ptr(pmu->pmu_cpu_context);
4237 	}
4238 	rcu_read_unlock();
4239 }
4240 
4241 static void perf_event_task(struct task_struct *task,
4242 			      struct perf_event_context *task_ctx,
4243 			      int new)
4244 {
4245 	struct perf_task_event task_event;
4246 
4247 	if (!atomic_read(&nr_comm_events) &&
4248 	    !atomic_read(&nr_mmap_events) &&
4249 	    !atomic_read(&nr_task_events))
4250 		return;
4251 
4252 	task_event = (struct perf_task_event){
4253 		.task	  = task,
4254 		.task_ctx = task_ctx,
4255 		.event_id    = {
4256 			.header = {
4257 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4258 				.misc = 0,
4259 				.size = sizeof(task_event.event_id),
4260 			},
4261 			/* .pid  */
4262 			/* .ppid */
4263 			/* .tid  */
4264 			/* .ptid */
4265 			.time = perf_clock(),
4266 		},
4267 	};
4268 
4269 	perf_event_task_event(&task_event);
4270 }
4271 
4272 void perf_event_fork(struct task_struct *task)
4273 {
4274 	perf_event_task(task, NULL, 1);
4275 }
4276 
4277 /*
4278  * comm tracking
4279  */
4280 
4281 struct perf_comm_event {
4282 	struct task_struct	*task;
4283 	char			*comm;
4284 	int			comm_size;
4285 
4286 	struct {
4287 		struct perf_event_header	header;
4288 
4289 		u32				pid;
4290 		u32				tid;
4291 	} event_id;
4292 };
4293 
4294 static void perf_event_comm_output(struct perf_event *event,
4295 				     struct perf_comm_event *comm_event)
4296 {
4297 	struct perf_output_handle handle;
4298 	struct perf_sample_data sample;
4299 	int size = comm_event->event_id.header.size;
4300 	int ret;
4301 
4302 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
4303 	ret = perf_output_begin(&handle, event,
4304 				comm_event->event_id.header.size);
4305 
4306 	if (ret)
4307 		goto out;
4308 
4309 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
4310 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4311 
4312 	perf_output_put(&handle, comm_event->event_id);
4313 	__output_copy(&handle, comm_event->comm,
4314 				   comm_event->comm_size);
4315 
4316 	perf_event__output_id_sample(event, &handle, &sample);
4317 
4318 	perf_output_end(&handle);
4319 out:
4320 	comm_event->event_id.header.size = size;
4321 }
4322 
4323 static int perf_event_comm_match(struct perf_event *event)
4324 {
4325 	if (event->state < PERF_EVENT_STATE_INACTIVE)
4326 		return 0;
4327 
4328 	if (!event_filter_match(event))
4329 		return 0;
4330 
4331 	if (event->attr.comm)
4332 		return 1;
4333 
4334 	return 0;
4335 }
4336 
4337 static void perf_event_comm_ctx(struct perf_event_context *ctx,
4338 				  struct perf_comm_event *comm_event)
4339 {
4340 	struct perf_event *event;
4341 
4342 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4343 		if (perf_event_comm_match(event))
4344 			perf_event_comm_output(event, comm_event);
4345 	}
4346 }
4347 
4348 static void perf_event_comm_event(struct perf_comm_event *comm_event)
4349 {
4350 	struct perf_cpu_context *cpuctx;
4351 	struct perf_event_context *ctx;
4352 	char comm[TASK_COMM_LEN];
4353 	unsigned int size;
4354 	struct pmu *pmu;
4355 	int ctxn;
4356 
4357 	memset(comm, 0, sizeof(comm));
4358 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
4359 	size = ALIGN(strlen(comm)+1, sizeof(u64));
4360 
4361 	comm_event->comm = comm;
4362 	comm_event->comm_size = size;
4363 
4364 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4365 	rcu_read_lock();
4366 	list_for_each_entry_rcu(pmu, &pmus, entry) {
4367 		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4368 		if (cpuctx->active_pmu != pmu)
4369 			goto next;
4370 		perf_event_comm_ctx(&cpuctx->ctx, comm_event);
4371 
4372 		ctxn = pmu->task_ctx_nr;
4373 		if (ctxn < 0)
4374 			goto next;
4375 
4376 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4377 		if (ctx)
4378 			perf_event_comm_ctx(ctx, comm_event);
4379 next:
4380 		put_cpu_ptr(pmu->pmu_cpu_context);
4381 	}
4382 	rcu_read_unlock();
4383 }
4384 
4385 void perf_event_comm(struct task_struct *task)
4386 {
4387 	struct perf_comm_event comm_event;
4388 	struct perf_event_context *ctx;
4389 	int ctxn;
4390 
4391 	for_each_task_context_nr(ctxn) {
4392 		ctx = task->perf_event_ctxp[ctxn];
4393 		if (!ctx)
4394 			continue;
4395 
4396 		perf_event_enable_on_exec(ctx);
4397 	}
4398 
4399 	if (!atomic_read(&nr_comm_events))
4400 		return;
4401 
4402 	comm_event = (struct perf_comm_event){
4403 		.task	= task,
4404 		/* .comm      */
4405 		/* .comm_size */
4406 		.event_id  = {
4407 			.header = {
4408 				.type = PERF_RECORD_COMM,
4409 				.misc = 0,
4410 				/* .size */
4411 			},
4412 			/* .pid */
4413 			/* .tid */
4414 		},
4415 	};
4416 
4417 	perf_event_comm_event(&comm_event);
4418 }
4419 
4420 /*
4421  * mmap tracking
4422  */
4423 
4424 struct perf_mmap_event {
4425 	struct vm_area_struct	*vma;
4426 
4427 	const char		*file_name;
4428 	int			file_size;
4429 
4430 	struct {
4431 		struct perf_event_header	header;
4432 
4433 		u32				pid;
4434 		u32				tid;
4435 		u64				start;
4436 		u64				len;
4437 		u64				pgoff;
4438 	} event_id;
4439 };
4440 
4441 static void perf_event_mmap_output(struct perf_event *event,
4442 				     struct perf_mmap_event *mmap_event)
4443 {
4444 	struct perf_output_handle handle;
4445 	struct perf_sample_data sample;
4446 	int size = mmap_event->event_id.header.size;
4447 	int ret;
4448 
4449 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
4450 	ret = perf_output_begin(&handle, event,
4451 				mmap_event->event_id.header.size);
4452 	if (ret)
4453 		goto out;
4454 
4455 	mmap_event->event_id.pid = perf_event_pid(event, current);
4456 	mmap_event->event_id.tid = perf_event_tid(event, current);
4457 
4458 	perf_output_put(&handle, mmap_event->event_id);
4459 	__output_copy(&handle, mmap_event->file_name,
4460 				   mmap_event->file_size);
4461 
4462 	perf_event__output_id_sample(event, &handle, &sample);
4463 
4464 	perf_output_end(&handle);
4465 out:
4466 	mmap_event->event_id.header.size = size;
4467 }
4468 
4469 static int perf_event_mmap_match(struct perf_event *event,
4470 				   struct perf_mmap_event *mmap_event,
4471 				   int executable)
4472 {
4473 	if (event->state < PERF_EVENT_STATE_INACTIVE)
4474 		return 0;
4475 
4476 	if (!event_filter_match(event))
4477 		return 0;
4478 
4479 	if ((!executable && event->attr.mmap_data) ||
4480 	    (executable && event->attr.mmap))
4481 		return 1;
4482 
4483 	return 0;
4484 }
4485 
4486 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4487 				  struct perf_mmap_event *mmap_event,
4488 				  int executable)
4489 {
4490 	struct perf_event *event;
4491 
4492 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4493 		if (perf_event_mmap_match(event, mmap_event, executable))
4494 			perf_event_mmap_output(event, mmap_event);
4495 	}
4496 }
4497 
4498 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4499 {
4500 	struct perf_cpu_context *cpuctx;
4501 	struct perf_event_context *ctx;
4502 	struct vm_area_struct *vma = mmap_event->vma;
4503 	struct file *file = vma->vm_file;
4504 	unsigned int size;
4505 	char tmp[16];
4506 	char *buf = NULL;
4507 	const char *name;
4508 	struct pmu *pmu;
4509 	int ctxn;
4510 
4511 	memset(tmp, 0, sizeof(tmp));
4512 
4513 	if (file) {
4514 		/*
4515 		 * d_path works from the end of the rb backwards, so we
4516 		 * need to add enough zero bytes after the string to handle
4517 		 * the 64bit alignment we do later.
4518 		 */
4519 		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4520 		if (!buf) {
4521 			name = strncpy(tmp, "//enomem", sizeof(tmp));
4522 			goto got_name;
4523 		}
4524 		name = d_path(&file->f_path, buf, PATH_MAX);
4525 		if (IS_ERR(name)) {
4526 			name = strncpy(tmp, "//toolong", sizeof(tmp));
4527 			goto got_name;
4528 		}
4529 	} else {
4530 		if (arch_vma_name(mmap_event->vma)) {
4531 			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4532 				       sizeof(tmp));
4533 			goto got_name;
4534 		}
4535 
4536 		if (!vma->vm_mm) {
4537 			name = strncpy(tmp, "[vdso]", sizeof(tmp));
4538 			goto got_name;
4539 		} else if (vma->vm_start <= vma->vm_mm->start_brk &&
4540 				vma->vm_end >= vma->vm_mm->brk) {
4541 			name = strncpy(tmp, "[heap]", sizeof(tmp));
4542 			goto got_name;
4543 		} else if (vma->vm_start <= vma->vm_mm->start_stack &&
4544 				vma->vm_end >= vma->vm_mm->start_stack) {
4545 			name = strncpy(tmp, "[stack]", sizeof(tmp));
4546 			goto got_name;
4547 		}
4548 
4549 		name = strncpy(tmp, "//anon", sizeof(tmp));
4550 		goto got_name;
4551 	}
4552 
4553 got_name:
4554 	size = ALIGN(strlen(name)+1, sizeof(u64));
4555 
4556 	mmap_event->file_name = name;
4557 	mmap_event->file_size = size;
4558 
4559 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4560 
4561 	rcu_read_lock();
4562 	list_for_each_entry_rcu(pmu, &pmus, entry) {
4563 		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4564 		if (cpuctx->active_pmu != pmu)
4565 			goto next;
4566 		perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
4567 					vma->vm_flags & VM_EXEC);
4568 
4569 		ctxn = pmu->task_ctx_nr;
4570 		if (ctxn < 0)
4571 			goto next;
4572 
4573 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4574 		if (ctx) {
4575 			perf_event_mmap_ctx(ctx, mmap_event,
4576 					vma->vm_flags & VM_EXEC);
4577 		}
4578 next:
4579 		put_cpu_ptr(pmu->pmu_cpu_context);
4580 	}
4581 	rcu_read_unlock();
4582 
4583 	kfree(buf);
4584 }
4585 
4586 void perf_event_mmap(struct vm_area_struct *vma)
4587 {
4588 	struct perf_mmap_event mmap_event;
4589 
4590 	if (!atomic_read(&nr_mmap_events))
4591 		return;
4592 
4593 	mmap_event = (struct perf_mmap_event){
4594 		.vma	= vma,
4595 		/* .file_name */
4596 		/* .file_size */
4597 		.event_id  = {
4598 			.header = {
4599 				.type = PERF_RECORD_MMAP,
4600 				.misc = PERF_RECORD_MISC_USER,
4601 				/* .size */
4602 			},
4603 			/* .pid */
4604 			/* .tid */
4605 			.start  = vma->vm_start,
4606 			.len    = vma->vm_end - vma->vm_start,
4607 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
4608 		},
4609 	};
4610 
4611 	perf_event_mmap_event(&mmap_event);
4612 }
4613 
4614 /*
4615  * IRQ throttle logging
4616  */
4617 
4618 static void perf_log_throttle(struct perf_event *event, int enable)
4619 {
4620 	struct perf_output_handle handle;
4621 	struct perf_sample_data sample;
4622 	int ret;
4623 
4624 	struct {
4625 		struct perf_event_header	header;
4626 		u64				time;
4627 		u64				id;
4628 		u64				stream_id;
4629 	} throttle_event = {
4630 		.header = {
4631 			.type = PERF_RECORD_THROTTLE,
4632 			.misc = 0,
4633 			.size = sizeof(throttle_event),
4634 		},
4635 		.time		= perf_clock(),
4636 		.id		= primary_event_id(event),
4637 		.stream_id	= event->id,
4638 	};
4639 
4640 	if (enable)
4641 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4642 
4643 	perf_event_header__init_id(&throttle_event.header, &sample, event);
4644 
4645 	ret = perf_output_begin(&handle, event,
4646 				throttle_event.header.size);
4647 	if (ret)
4648 		return;
4649 
4650 	perf_output_put(&handle, throttle_event);
4651 	perf_event__output_id_sample(event, &handle, &sample);
4652 	perf_output_end(&handle);
4653 }
4654 
4655 /*
4656  * Generic event overflow handling, sampling.
4657  */
4658 
4659 static int __perf_event_overflow(struct perf_event *event,
4660 				   int throttle, struct perf_sample_data *data,
4661 				   struct pt_regs *regs)
4662 {
4663 	int events = atomic_read(&event->event_limit);
4664 	struct hw_perf_event *hwc = &event->hw;
4665 	u64 seq;
4666 	int ret = 0;
4667 
4668 	/*
4669 	 * Non-sampling counters might still use the PMI to fold short
4670 	 * hardware counters, ignore those.
4671 	 */
4672 	if (unlikely(!is_sampling_event(event)))
4673 		return 0;
4674 
4675 	seq = __this_cpu_read(perf_throttled_seq);
4676 	if (seq != hwc->interrupts_seq) {
4677 		hwc->interrupts_seq = seq;
4678 		hwc->interrupts = 1;
4679 	} else {
4680 		hwc->interrupts++;
4681 		if (unlikely(throttle
4682 			     && hwc->interrupts >= max_samples_per_tick)) {
4683 			__this_cpu_inc(perf_throttled_count);
4684 			hwc->interrupts = MAX_INTERRUPTS;
4685 			perf_log_throttle(event, 0);
4686 			ret = 1;
4687 		}
4688 	}
4689 
4690 	if (event->attr.freq) {
4691 		u64 now = perf_clock();
4692 		s64 delta = now - hwc->freq_time_stamp;
4693 
4694 		hwc->freq_time_stamp = now;
4695 
4696 		if (delta > 0 && delta < 2*TICK_NSEC)
4697 			perf_adjust_period(event, delta, hwc->last_period, true);
4698 	}
4699 
4700 	/*
4701 	 * XXX event_limit might not quite work as expected on inherited
4702 	 * events
4703 	 */
4704 
4705 	event->pending_kill = POLL_IN;
4706 	if (events && atomic_dec_and_test(&event->event_limit)) {
4707 		ret = 1;
4708 		event->pending_kill = POLL_HUP;
4709 		event->pending_disable = 1;
4710 		irq_work_queue(&event->pending);
4711 	}
4712 
4713 	if (event->overflow_handler)
4714 		event->overflow_handler(event, data, regs);
4715 	else
4716 		perf_event_output(event, data, regs);
4717 
4718 	if (event->fasync && event->pending_kill) {
4719 		event->pending_wakeup = 1;
4720 		irq_work_queue(&event->pending);
4721 	}
4722 
4723 	return ret;
4724 }
4725 
4726 int perf_event_overflow(struct perf_event *event,
4727 			  struct perf_sample_data *data,
4728 			  struct pt_regs *regs)
4729 {
4730 	return __perf_event_overflow(event, 1, data, regs);
4731 }
4732 
4733 /*
4734  * Generic software event infrastructure
4735  */
4736 
4737 struct swevent_htable {
4738 	struct swevent_hlist		*swevent_hlist;
4739 	struct mutex			hlist_mutex;
4740 	int				hlist_refcount;
4741 
4742 	/* Recursion avoidance in each contexts */
4743 	int				recursion[PERF_NR_CONTEXTS];
4744 };
4745 
4746 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
4747 
4748 /*
4749  * We directly increment event->count and keep a second value in
4750  * event->hw.period_left to count intervals. This period event
4751  * is kept in the range [-sample_period, 0] so that we can use the
4752  * sign as trigger.
4753  */
4754 
4755 static u64 perf_swevent_set_period(struct perf_event *event)
4756 {
4757 	struct hw_perf_event *hwc = &event->hw;
4758 	u64 period = hwc->last_period;
4759 	u64 nr, offset;
4760 	s64 old, val;
4761 
4762 	hwc->last_period = hwc->sample_period;
4763 
4764 again:
4765 	old = val = local64_read(&hwc->period_left);
4766 	if (val < 0)
4767 		return 0;
4768 
4769 	nr = div64_u64(period + val, period);
4770 	offset = nr * period;
4771 	val -= offset;
4772 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4773 		goto again;
4774 
4775 	return nr;
4776 }
4777 
4778 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4779 				    struct perf_sample_data *data,
4780 				    struct pt_regs *regs)
4781 {
4782 	struct hw_perf_event *hwc = &event->hw;
4783 	int throttle = 0;
4784 
4785 	if (!overflow)
4786 		overflow = perf_swevent_set_period(event);
4787 
4788 	if (hwc->interrupts == MAX_INTERRUPTS)
4789 		return;
4790 
4791 	for (; overflow; overflow--) {
4792 		if (__perf_event_overflow(event, throttle,
4793 					    data, regs)) {
4794 			/*
4795 			 * We inhibit the overflow from happening when
4796 			 * hwc->interrupts == MAX_INTERRUPTS.
4797 			 */
4798 			break;
4799 		}
4800 		throttle = 1;
4801 	}
4802 }
4803 
4804 static void perf_swevent_event(struct perf_event *event, u64 nr,
4805 			       struct perf_sample_data *data,
4806 			       struct pt_regs *regs)
4807 {
4808 	struct hw_perf_event *hwc = &event->hw;
4809 
4810 	local64_add(nr, &event->count);
4811 
4812 	if (!regs)
4813 		return;
4814 
4815 	if (!is_sampling_event(event))
4816 		return;
4817 
4818 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
4819 		data->period = nr;
4820 		return perf_swevent_overflow(event, 1, data, regs);
4821 	} else
4822 		data->period = event->hw.last_period;
4823 
4824 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4825 		return perf_swevent_overflow(event, 1, data, regs);
4826 
4827 	if (local64_add_negative(nr, &hwc->period_left))
4828 		return;
4829 
4830 	perf_swevent_overflow(event, 0, data, regs);
4831 }
4832 
4833 static int perf_exclude_event(struct perf_event *event,
4834 			      struct pt_regs *regs)
4835 {
4836 	if (event->hw.state & PERF_HES_STOPPED)
4837 		return 1;
4838 
4839 	if (regs) {
4840 		if (event->attr.exclude_user && user_mode(regs))
4841 			return 1;
4842 
4843 		if (event->attr.exclude_kernel && !user_mode(regs))
4844 			return 1;
4845 	}
4846 
4847 	return 0;
4848 }
4849 
4850 static int perf_swevent_match(struct perf_event *event,
4851 				enum perf_type_id type,
4852 				u32 event_id,
4853 				struct perf_sample_data *data,
4854 				struct pt_regs *regs)
4855 {
4856 	if (event->attr.type != type)
4857 		return 0;
4858 
4859 	if (event->attr.config != event_id)
4860 		return 0;
4861 
4862 	if (perf_exclude_event(event, regs))
4863 		return 0;
4864 
4865 	return 1;
4866 }
4867 
4868 static inline u64 swevent_hash(u64 type, u32 event_id)
4869 {
4870 	u64 val = event_id | (type << 32);
4871 
4872 	return hash_64(val, SWEVENT_HLIST_BITS);
4873 }
4874 
4875 static inline struct hlist_head *
4876 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4877 {
4878 	u64 hash = swevent_hash(type, event_id);
4879 
4880 	return &hlist->heads[hash];
4881 }
4882 
4883 /* For the read side: events when they trigger */
4884 static inline struct hlist_head *
4885 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
4886 {
4887 	struct swevent_hlist *hlist;
4888 
4889 	hlist = rcu_dereference(swhash->swevent_hlist);
4890 	if (!hlist)
4891 		return NULL;
4892 
4893 	return __find_swevent_head(hlist, type, event_id);
4894 }
4895 
4896 /* For the event head insertion and removal in the hlist */
4897 static inline struct hlist_head *
4898 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
4899 {
4900 	struct swevent_hlist *hlist;
4901 	u32 event_id = event->attr.config;
4902 	u64 type = event->attr.type;
4903 
4904 	/*
4905 	 * Event scheduling is always serialized against hlist allocation
4906 	 * and release. Which makes the protected version suitable here.
4907 	 * The context lock guarantees that.
4908 	 */
4909 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
4910 					  lockdep_is_held(&event->ctx->lock));
4911 	if (!hlist)
4912 		return NULL;
4913 
4914 	return __find_swevent_head(hlist, type, event_id);
4915 }
4916 
4917 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4918 				    u64 nr,
4919 				    struct perf_sample_data *data,
4920 				    struct pt_regs *regs)
4921 {
4922 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4923 	struct perf_event *event;
4924 	struct hlist_node *node;
4925 	struct hlist_head *head;
4926 
4927 	rcu_read_lock();
4928 	head = find_swevent_head_rcu(swhash, type, event_id);
4929 	if (!head)
4930 		goto end;
4931 
4932 	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4933 		if (perf_swevent_match(event, type, event_id, data, regs))
4934 			perf_swevent_event(event, nr, data, regs);
4935 	}
4936 end:
4937 	rcu_read_unlock();
4938 }
4939 
4940 int perf_swevent_get_recursion_context(void)
4941 {
4942 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4943 
4944 	return get_recursion_context(swhash->recursion);
4945 }
4946 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4947 
4948 inline void perf_swevent_put_recursion_context(int rctx)
4949 {
4950 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4951 
4952 	put_recursion_context(swhash->recursion, rctx);
4953 }
4954 
4955 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
4956 {
4957 	struct perf_sample_data data;
4958 	int rctx;
4959 
4960 	preempt_disable_notrace();
4961 	rctx = perf_swevent_get_recursion_context();
4962 	if (rctx < 0)
4963 		return;
4964 
4965 	perf_sample_data_init(&data, addr, 0);
4966 
4967 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
4968 
4969 	perf_swevent_put_recursion_context(rctx);
4970 	preempt_enable_notrace();
4971 }
4972 
4973 static void perf_swevent_read(struct perf_event *event)
4974 {
4975 }
4976 
4977 static int perf_swevent_add(struct perf_event *event, int flags)
4978 {
4979 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4980 	struct hw_perf_event *hwc = &event->hw;
4981 	struct hlist_head *head;
4982 
4983 	if (is_sampling_event(event)) {
4984 		hwc->last_period = hwc->sample_period;
4985 		perf_swevent_set_period(event);
4986 	}
4987 
4988 	hwc->state = !(flags & PERF_EF_START);
4989 
4990 	head = find_swevent_head(swhash, event);
4991 	if (WARN_ON_ONCE(!head))
4992 		return -EINVAL;
4993 
4994 	hlist_add_head_rcu(&event->hlist_entry, head);
4995 
4996 	return 0;
4997 }
4998 
4999 static void perf_swevent_del(struct perf_event *event, int flags)
5000 {
5001 	hlist_del_rcu(&event->hlist_entry);
5002 }
5003 
5004 static void perf_swevent_start(struct perf_event *event, int flags)
5005 {
5006 	event->hw.state = 0;
5007 }
5008 
5009 static void perf_swevent_stop(struct perf_event *event, int flags)
5010 {
5011 	event->hw.state = PERF_HES_STOPPED;
5012 }
5013 
5014 /* Deref the hlist from the update side */
5015 static inline struct swevent_hlist *
5016 swevent_hlist_deref(struct swevent_htable *swhash)
5017 {
5018 	return rcu_dereference_protected(swhash->swevent_hlist,
5019 					 lockdep_is_held(&swhash->hlist_mutex));
5020 }
5021 
5022 static void swevent_hlist_release(struct swevent_htable *swhash)
5023 {
5024 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5025 
5026 	if (!hlist)
5027 		return;
5028 
5029 	rcu_assign_pointer(swhash->swevent_hlist, NULL);
5030 	kfree_rcu(hlist, rcu_head);
5031 }
5032 
5033 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
5034 {
5035 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5036 
5037 	mutex_lock(&swhash->hlist_mutex);
5038 
5039 	if (!--swhash->hlist_refcount)
5040 		swevent_hlist_release(swhash);
5041 
5042 	mutex_unlock(&swhash->hlist_mutex);
5043 }
5044 
5045 static void swevent_hlist_put(struct perf_event *event)
5046 {
5047 	int cpu;
5048 
5049 	if (event->cpu != -1) {
5050 		swevent_hlist_put_cpu(event, event->cpu);
5051 		return;
5052 	}
5053 
5054 	for_each_possible_cpu(cpu)
5055 		swevent_hlist_put_cpu(event, cpu);
5056 }
5057 
5058 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
5059 {
5060 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5061 	int err = 0;
5062 
5063 	mutex_lock(&swhash->hlist_mutex);
5064 
5065 	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5066 		struct swevent_hlist *hlist;
5067 
5068 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5069 		if (!hlist) {
5070 			err = -ENOMEM;
5071 			goto exit;
5072 		}
5073 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
5074 	}
5075 	swhash->hlist_refcount++;
5076 exit:
5077 	mutex_unlock(&swhash->hlist_mutex);
5078 
5079 	return err;
5080 }
5081 
5082 static int swevent_hlist_get(struct perf_event *event)
5083 {
5084 	int err;
5085 	int cpu, failed_cpu;
5086 
5087 	if (event->cpu != -1)
5088 		return swevent_hlist_get_cpu(event, event->cpu);
5089 
5090 	get_online_cpus();
5091 	for_each_possible_cpu(cpu) {
5092 		err = swevent_hlist_get_cpu(event, cpu);
5093 		if (err) {
5094 			failed_cpu = cpu;
5095 			goto fail;
5096 		}
5097 	}
5098 	put_online_cpus();
5099 
5100 	return 0;
5101 fail:
5102 	for_each_possible_cpu(cpu) {
5103 		if (cpu == failed_cpu)
5104 			break;
5105 		swevent_hlist_put_cpu(event, cpu);
5106 	}
5107 
5108 	put_online_cpus();
5109 	return err;
5110 }
5111 
5112 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5113 
5114 static void sw_perf_event_destroy(struct perf_event *event)
5115 {
5116 	u64 event_id = event->attr.config;
5117 
5118 	WARN_ON(event->parent);
5119 
5120 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
5121 	swevent_hlist_put(event);
5122 }
5123 
5124 static int perf_swevent_init(struct perf_event *event)
5125 {
5126 	int event_id = event->attr.config;
5127 
5128 	if (event->attr.type != PERF_TYPE_SOFTWARE)
5129 		return -ENOENT;
5130 
5131 	/*
5132 	 * no branch sampling for software events
5133 	 */
5134 	if (has_branch_stack(event))
5135 		return -EOPNOTSUPP;
5136 
5137 	switch (event_id) {
5138 	case PERF_COUNT_SW_CPU_CLOCK:
5139 	case PERF_COUNT_SW_TASK_CLOCK:
5140 		return -ENOENT;
5141 
5142 	default:
5143 		break;
5144 	}
5145 
5146 	if (event_id >= PERF_COUNT_SW_MAX)
5147 		return -ENOENT;
5148 
5149 	if (!event->parent) {
5150 		int err;
5151 
5152 		err = swevent_hlist_get(event);
5153 		if (err)
5154 			return err;
5155 
5156 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
5157 		event->destroy = sw_perf_event_destroy;
5158 	}
5159 
5160 	return 0;
5161 }
5162 
5163 static int perf_swevent_event_idx(struct perf_event *event)
5164 {
5165 	return 0;
5166 }
5167 
5168 static struct pmu perf_swevent = {
5169 	.task_ctx_nr	= perf_sw_context,
5170 
5171 	.event_init	= perf_swevent_init,
5172 	.add		= perf_swevent_add,
5173 	.del		= perf_swevent_del,
5174 	.start		= perf_swevent_start,
5175 	.stop		= perf_swevent_stop,
5176 	.read		= perf_swevent_read,
5177 
5178 	.event_idx	= perf_swevent_event_idx,
5179 };
5180 
5181 #ifdef CONFIG_EVENT_TRACING
5182 
5183 static int perf_tp_filter_match(struct perf_event *event,
5184 				struct perf_sample_data *data)
5185 {
5186 	void *record = data->raw->data;
5187 
5188 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
5189 		return 1;
5190 	return 0;
5191 }
5192 
5193 static int perf_tp_event_match(struct perf_event *event,
5194 				struct perf_sample_data *data,
5195 				struct pt_regs *regs)
5196 {
5197 	if (event->hw.state & PERF_HES_STOPPED)
5198 		return 0;
5199 	/*
5200 	 * All tracepoints are from kernel-space.
5201 	 */
5202 	if (event->attr.exclude_kernel)
5203 		return 0;
5204 
5205 	if (!perf_tp_filter_match(event, data))
5206 		return 0;
5207 
5208 	return 1;
5209 }
5210 
5211 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5212 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
5213 		   struct task_struct *task)
5214 {
5215 	struct perf_sample_data data;
5216 	struct perf_event *event;
5217 	struct hlist_node *node;
5218 
5219 	struct perf_raw_record raw = {
5220 		.size = entry_size,
5221 		.data = record,
5222 	};
5223 
5224 	perf_sample_data_init(&data, addr, 0);
5225 	data.raw = &raw;
5226 
5227 	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
5228 		if (perf_tp_event_match(event, &data, regs))
5229 			perf_swevent_event(event, count, &data, regs);
5230 	}
5231 
5232 	/*
5233 	 * If we got specified a target task, also iterate its context and
5234 	 * deliver this event there too.
5235 	 */
5236 	if (task && task != current) {
5237 		struct perf_event_context *ctx;
5238 		struct trace_entry *entry = record;
5239 
5240 		rcu_read_lock();
5241 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
5242 		if (!ctx)
5243 			goto unlock;
5244 
5245 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5246 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
5247 				continue;
5248 			if (event->attr.config != entry->type)
5249 				continue;
5250 			if (perf_tp_event_match(event, &data, regs))
5251 				perf_swevent_event(event, count, &data, regs);
5252 		}
5253 unlock:
5254 		rcu_read_unlock();
5255 	}
5256 
5257 	perf_swevent_put_recursion_context(rctx);
5258 }
5259 EXPORT_SYMBOL_GPL(perf_tp_event);
5260 
5261 static void tp_perf_event_destroy(struct perf_event *event)
5262 {
5263 	perf_trace_destroy(event);
5264 }
5265 
5266 static int perf_tp_event_init(struct perf_event *event)
5267 {
5268 	int err;
5269 
5270 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
5271 		return -ENOENT;
5272 
5273 	/*
5274 	 * no branch sampling for tracepoint events
5275 	 */
5276 	if (has_branch_stack(event))
5277 		return -EOPNOTSUPP;
5278 
5279 	err = perf_trace_init(event);
5280 	if (err)
5281 		return err;
5282 
5283 	event->destroy = tp_perf_event_destroy;
5284 
5285 	return 0;
5286 }
5287 
5288 static struct pmu perf_tracepoint = {
5289 	.task_ctx_nr	= perf_sw_context,
5290 
5291 	.event_init	= perf_tp_event_init,
5292 	.add		= perf_trace_add,
5293 	.del		= perf_trace_del,
5294 	.start		= perf_swevent_start,
5295 	.stop		= perf_swevent_stop,
5296 	.read		= perf_swevent_read,
5297 
5298 	.event_idx	= perf_swevent_event_idx,
5299 };
5300 
5301 static inline void perf_tp_register(void)
5302 {
5303 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5304 }
5305 
5306 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5307 {
5308 	char *filter_str;
5309 	int ret;
5310 
5311 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
5312 		return -EINVAL;
5313 
5314 	filter_str = strndup_user(arg, PAGE_SIZE);
5315 	if (IS_ERR(filter_str))
5316 		return PTR_ERR(filter_str);
5317 
5318 	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
5319 
5320 	kfree(filter_str);
5321 	return ret;
5322 }
5323 
5324 static void perf_event_free_filter(struct perf_event *event)
5325 {
5326 	ftrace_profile_free_filter(event);
5327 }
5328 
5329 #else
5330 
5331 static inline void perf_tp_register(void)
5332 {
5333 }
5334 
5335 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5336 {
5337 	return -ENOENT;
5338 }
5339 
5340 static void perf_event_free_filter(struct perf_event *event)
5341 {
5342 }
5343 
5344 #endif /* CONFIG_EVENT_TRACING */
5345 
5346 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5347 void perf_bp_event(struct perf_event *bp, void *data)
5348 {
5349 	struct perf_sample_data sample;
5350 	struct pt_regs *regs = data;
5351 
5352 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
5353 
5354 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
5355 		perf_swevent_event(bp, 1, &sample, regs);
5356 }
5357 #endif
5358 
5359 /*
5360  * hrtimer based swevent callback
5361  */
5362 
5363 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5364 {
5365 	enum hrtimer_restart ret = HRTIMER_RESTART;
5366 	struct perf_sample_data data;
5367 	struct pt_regs *regs;
5368 	struct perf_event *event;
5369 	u64 period;
5370 
5371 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
5372 
5373 	if (event->state != PERF_EVENT_STATE_ACTIVE)
5374 		return HRTIMER_NORESTART;
5375 
5376 	event->pmu->read(event);
5377 
5378 	perf_sample_data_init(&data, 0, event->hw.last_period);
5379 	regs = get_irq_regs();
5380 
5381 	if (regs && !perf_exclude_event(event, regs)) {
5382 		if (!(event->attr.exclude_idle && is_idle_task(current)))
5383 			if (__perf_event_overflow(event, 1, &data, regs))
5384 				ret = HRTIMER_NORESTART;
5385 	}
5386 
5387 	period = max_t(u64, 10000, event->hw.sample_period);
5388 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5389 
5390 	return ret;
5391 }
5392 
5393 static void perf_swevent_start_hrtimer(struct perf_event *event)
5394 {
5395 	struct hw_perf_event *hwc = &event->hw;
5396 	s64 period;
5397 
5398 	if (!is_sampling_event(event))
5399 		return;
5400 
5401 	period = local64_read(&hwc->period_left);
5402 	if (period) {
5403 		if (period < 0)
5404 			period = 10000;
5405 
5406 		local64_set(&hwc->period_left, 0);
5407 	} else {
5408 		period = max_t(u64, 10000, hwc->sample_period);
5409 	}
5410 	__hrtimer_start_range_ns(&hwc->hrtimer,
5411 				ns_to_ktime(period), 0,
5412 				HRTIMER_MODE_REL_PINNED, 0);
5413 }
5414 
5415 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5416 {
5417 	struct hw_perf_event *hwc = &event->hw;
5418 
5419 	if (is_sampling_event(event)) {
5420 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
5421 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
5422 
5423 		hrtimer_cancel(&hwc->hrtimer);
5424 	}
5425 }
5426 
5427 static void perf_swevent_init_hrtimer(struct perf_event *event)
5428 {
5429 	struct hw_perf_event *hwc = &event->hw;
5430 
5431 	if (!is_sampling_event(event))
5432 		return;
5433 
5434 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5435 	hwc->hrtimer.function = perf_swevent_hrtimer;
5436 
5437 	/*
5438 	 * Since hrtimers have a fixed rate, we can do a static freq->period
5439 	 * mapping and avoid the whole period adjust feedback stuff.
5440 	 */
5441 	if (event->attr.freq) {
5442 		long freq = event->attr.sample_freq;
5443 
5444 		event->attr.sample_period = NSEC_PER_SEC / freq;
5445 		hwc->sample_period = event->attr.sample_period;
5446 		local64_set(&hwc->period_left, hwc->sample_period);
5447 		event->attr.freq = 0;
5448 	}
5449 }
5450 
5451 /*
5452  * Software event: cpu wall time clock
5453  */
5454 
5455 static void cpu_clock_event_update(struct perf_event *event)
5456 {
5457 	s64 prev;
5458 	u64 now;
5459 
5460 	now = local_clock();
5461 	prev = local64_xchg(&event->hw.prev_count, now);
5462 	local64_add(now - prev, &event->count);
5463 }
5464 
5465 static void cpu_clock_event_start(struct perf_event *event, int flags)
5466 {
5467 	local64_set(&event->hw.prev_count, local_clock());
5468 	perf_swevent_start_hrtimer(event);
5469 }
5470 
5471 static void cpu_clock_event_stop(struct perf_event *event, int flags)
5472 {
5473 	perf_swevent_cancel_hrtimer(event);
5474 	cpu_clock_event_update(event);
5475 }
5476 
5477 static int cpu_clock_event_add(struct perf_event *event, int flags)
5478 {
5479 	if (flags & PERF_EF_START)
5480 		cpu_clock_event_start(event, flags);
5481 
5482 	return 0;
5483 }
5484 
5485 static void cpu_clock_event_del(struct perf_event *event, int flags)
5486 {
5487 	cpu_clock_event_stop(event, flags);
5488 }
5489 
5490 static void cpu_clock_event_read(struct perf_event *event)
5491 {
5492 	cpu_clock_event_update(event);
5493 }
5494 
5495 static int cpu_clock_event_init(struct perf_event *event)
5496 {
5497 	if (event->attr.type != PERF_TYPE_SOFTWARE)
5498 		return -ENOENT;
5499 
5500 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
5501 		return -ENOENT;
5502 
5503 	/*
5504 	 * no branch sampling for software events
5505 	 */
5506 	if (has_branch_stack(event))
5507 		return -EOPNOTSUPP;
5508 
5509 	perf_swevent_init_hrtimer(event);
5510 
5511 	return 0;
5512 }
5513 
5514 static struct pmu perf_cpu_clock = {
5515 	.task_ctx_nr	= perf_sw_context,
5516 
5517 	.event_init	= cpu_clock_event_init,
5518 	.add		= cpu_clock_event_add,
5519 	.del		= cpu_clock_event_del,
5520 	.start		= cpu_clock_event_start,
5521 	.stop		= cpu_clock_event_stop,
5522 	.read		= cpu_clock_event_read,
5523 
5524 	.event_idx	= perf_swevent_event_idx,
5525 };
5526 
5527 /*
5528  * Software event: task time clock
5529  */
5530 
5531 static void task_clock_event_update(struct perf_event *event, u64 now)
5532 {
5533 	u64 prev;
5534 	s64 delta;
5535 
5536 	prev = local64_xchg(&event->hw.prev_count, now);
5537 	delta = now - prev;
5538 	local64_add(delta, &event->count);
5539 }
5540 
5541 static void task_clock_event_start(struct perf_event *event, int flags)
5542 {
5543 	local64_set(&event->hw.prev_count, event->ctx->time);
5544 	perf_swevent_start_hrtimer(event);
5545 }
5546 
5547 static void task_clock_event_stop(struct perf_event *event, int flags)
5548 {
5549 	perf_swevent_cancel_hrtimer(event);
5550 	task_clock_event_update(event, event->ctx->time);
5551 }
5552 
5553 static int task_clock_event_add(struct perf_event *event, int flags)
5554 {
5555 	if (flags & PERF_EF_START)
5556 		task_clock_event_start(event, flags);
5557 
5558 	return 0;
5559 }
5560 
5561 static void task_clock_event_del(struct perf_event *event, int flags)
5562 {
5563 	task_clock_event_stop(event, PERF_EF_UPDATE);
5564 }
5565 
5566 static void task_clock_event_read(struct perf_event *event)
5567 {
5568 	u64 now = perf_clock();
5569 	u64 delta = now - event->ctx->timestamp;
5570 	u64 time = event->ctx->time + delta;
5571 
5572 	task_clock_event_update(event, time);
5573 }
5574 
5575 static int task_clock_event_init(struct perf_event *event)
5576 {
5577 	if (event->attr.type != PERF_TYPE_SOFTWARE)
5578 		return -ENOENT;
5579 
5580 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
5581 		return -ENOENT;
5582 
5583 	/*
5584 	 * no branch sampling for software events
5585 	 */
5586 	if (has_branch_stack(event))
5587 		return -EOPNOTSUPP;
5588 
5589 	perf_swevent_init_hrtimer(event);
5590 
5591 	return 0;
5592 }
5593 
5594 static struct pmu perf_task_clock = {
5595 	.task_ctx_nr	= perf_sw_context,
5596 
5597 	.event_init	= task_clock_event_init,
5598 	.add		= task_clock_event_add,
5599 	.del		= task_clock_event_del,
5600 	.start		= task_clock_event_start,
5601 	.stop		= task_clock_event_stop,
5602 	.read		= task_clock_event_read,
5603 
5604 	.event_idx	= perf_swevent_event_idx,
5605 };
5606 
5607 static void perf_pmu_nop_void(struct pmu *pmu)
5608 {
5609 }
5610 
5611 static int perf_pmu_nop_int(struct pmu *pmu)
5612 {
5613 	return 0;
5614 }
5615 
5616 static void perf_pmu_start_txn(struct pmu *pmu)
5617 {
5618 	perf_pmu_disable(pmu);
5619 }
5620 
5621 static int perf_pmu_commit_txn(struct pmu *pmu)
5622 {
5623 	perf_pmu_enable(pmu);
5624 	return 0;
5625 }
5626 
5627 static void perf_pmu_cancel_txn(struct pmu *pmu)
5628 {
5629 	perf_pmu_enable(pmu);
5630 }
5631 
5632 static int perf_event_idx_default(struct perf_event *event)
5633 {
5634 	return event->hw.idx + 1;
5635 }
5636 
5637 /*
5638  * Ensures all contexts with the same task_ctx_nr have the same
5639  * pmu_cpu_context too.
5640  */
5641 static void *find_pmu_context(int ctxn)
5642 {
5643 	struct pmu *pmu;
5644 
5645 	if (ctxn < 0)
5646 		return NULL;
5647 
5648 	list_for_each_entry(pmu, &pmus, entry) {
5649 		if (pmu->task_ctx_nr == ctxn)
5650 			return pmu->pmu_cpu_context;
5651 	}
5652 
5653 	return NULL;
5654 }
5655 
5656 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
5657 {
5658 	int cpu;
5659 
5660 	for_each_possible_cpu(cpu) {
5661 		struct perf_cpu_context *cpuctx;
5662 
5663 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5664 
5665 		if (cpuctx->active_pmu == old_pmu)
5666 			cpuctx->active_pmu = pmu;
5667 	}
5668 }
5669 
5670 static void free_pmu_context(struct pmu *pmu)
5671 {
5672 	struct pmu *i;
5673 
5674 	mutex_lock(&pmus_lock);
5675 	/*
5676 	 * Like a real lame refcount.
5677 	 */
5678 	list_for_each_entry(i, &pmus, entry) {
5679 		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
5680 			update_pmu_context(i, pmu);
5681 			goto out;
5682 		}
5683 	}
5684 
5685 	free_percpu(pmu->pmu_cpu_context);
5686 out:
5687 	mutex_unlock(&pmus_lock);
5688 }
5689 static struct idr pmu_idr;
5690 
5691 static ssize_t
5692 type_show(struct device *dev, struct device_attribute *attr, char *page)
5693 {
5694 	struct pmu *pmu = dev_get_drvdata(dev);
5695 
5696 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
5697 }
5698 
5699 static struct device_attribute pmu_dev_attrs[] = {
5700        __ATTR_RO(type),
5701        __ATTR_NULL,
5702 };
5703 
5704 static int pmu_bus_running;
5705 static struct bus_type pmu_bus = {
5706 	.name		= "event_source",
5707 	.dev_attrs	= pmu_dev_attrs,
5708 };
5709 
5710 static void pmu_dev_release(struct device *dev)
5711 {
5712 	kfree(dev);
5713 }
5714 
5715 static int pmu_dev_alloc(struct pmu *pmu)
5716 {
5717 	int ret = -ENOMEM;
5718 
5719 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
5720 	if (!pmu->dev)
5721 		goto out;
5722 
5723 	pmu->dev->groups = pmu->attr_groups;
5724 	device_initialize(pmu->dev);
5725 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
5726 	if (ret)
5727 		goto free_dev;
5728 
5729 	dev_set_drvdata(pmu->dev, pmu);
5730 	pmu->dev->bus = &pmu_bus;
5731 	pmu->dev->release = pmu_dev_release;
5732 	ret = device_add(pmu->dev);
5733 	if (ret)
5734 		goto free_dev;
5735 
5736 out:
5737 	return ret;
5738 
5739 free_dev:
5740 	put_device(pmu->dev);
5741 	goto out;
5742 }
5743 
5744 static struct lock_class_key cpuctx_mutex;
5745 static struct lock_class_key cpuctx_lock;
5746 
5747 int perf_pmu_register(struct pmu *pmu, char *name, int type)
5748 {
5749 	int cpu, ret;
5750 
5751 	mutex_lock(&pmus_lock);
5752 	ret = -ENOMEM;
5753 	pmu->pmu_disable_count = alloc_percpu(int);
5754 	if (!pmu->pmu_disable_count)
5755 		goto unlock;
5756 
5757 	pmu->type = -1;
5758 	if (!name)
5759 		goto skip_type;
5760 	pmu->name = name;
5761 
5762 	if (type < 0) {
5763 		int err = idr_pre_get(&pmu_idr, GFP_KERNEL);
5764 		if (!err)
5765 			goto free_pdc;
5766 
5767 		err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type);
5768 		if (err) {
5769 			ret = err;
5770 			goto free_pdc;
5771 		}
5772 	}
5773 	pmu->type = type;
5774 
5775 	if (pmu_bus_running) {
5776 		ret = pmu_dev_alloc(pmu);
5777 		if (ret)
5778 			goto free_idr;
5779 	}
5780 
5781 skip_type:
5782 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
5783 	if (pmu->pmu_cpu_context)
5784 		goto got_cpu_context;
5785 
5786 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
5787 	if (!pmu->pmu_cpu_context)
5788 		goto free_dev;
5789 
5790 	for_each_possible_cpu(cpu) {
5791 		struct perf_cpu_context *cpuctx;
5792 
5793 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5794 		__perf_event_init_context(&cpuctx->ctx);
5795 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
5796 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
5797 		cpuctx->ctx.type = cpu_context;
5798 		cpuctx->ctx.pmu = pmu;
5799 		cpuctx->jiffies_interval = 1;
5800 		INIT_LIST_HEAD(&cpuctx->rotation_list);
5801 		cpuctx->active_pmu = pmu;
5802 	}
5803 
5804 got_cpu_context:
5805 	if (!pmu->start_txn) {
5806 		if (pmu->pmu_enable) {
5807 			/*
5808 			 * If we have pmu_enable/pmu_disable calls, install
5809 			 * transaction stubs that use that to try and batch
5810 			 * hardware accesses.
5811 			 */
5812 			pmu->start_txn  = perf_pmu_start_txn;
5813 			pmu->commit_txn = perf_pmu_commit_txn;
5814 			pmu->cancel_txn = perf_pmu_cancel_txn;
5815 		} else {
5816 			pmu->start_txn  = perf_pmu_nop_void;
5817 			pmu->commit_txn = perf_pmu_nop_int;
5818 			pmu->cancel_txn = perf_pmu_nop_void;
5819 		}
5820 	}
5821 
5822 	if (!pmu->pmu_enable) {
5823 		pmu->pmu_enable  = perf_pmu_nop_void;
5824 		pmu->pmu_disable = perf_pmu_nop_void;
5825 	}
5826 
5827 	if (!pmu->event_idx)
5828 		pmu->event_idx = perf_event_idx_default;
5829 
5830 	list_add_rcu(&pmu->entry, &pmus);
5831 	ret = 0;
5832 unlock:
5833 	mutex_unlock(&pmus_lock);
5834 
5835 	return ret;
5836 
5837 free_dev:
5838 	device_del(pmu->dev);
5839 	put_device(pmu->dev);
5840 
5841 free_idr:
5842 	if (pmu->type >= PERF_TYPE_MAX)
5843 		idr_remove(&pmu_idr, pmu->type);
5844 
5845 free_pdc:
5846 	free_percpu(pmu->pmu_disable_count);
5847 	goto unlock;
5848 }
5849 
5850 void perf_pmu_unregister(struct pmu *pmu)
5851 {
5852 	mutex_lock(&pmus_lock);
5853 	list_del_rcu(&pmu->entry);
5854 	mutex_unlock(&pmus_lock);
5855 
5856 	/*
5857 	 * We dereference the pmu list under both SRCU and regular RCU, so
5858 	 * synchronize against both of those.
5859 	 */
5860 	synchronize_srcu(&pmus_srcu);
5861 	synchronize_rcu();
5862 
5863 	free_percpu(pmu->pmu_disable_count);
5864 	if (pmu->type >= PERF_TYPE_MAX)
5865 		idr_remove(&pmu_idr, pmu->type);
5866 	device_del(pmu->dev);
5867 	put_device(pmu->dev);
5868 	free_pmu_context(pmu);
5869 }
5870 
5871 struct pmu *perf_init_event(struct perf_event *event)
5872 {
5873 	struct pmu *pmu = NULL;
5874 	int idx;
5875 	int ret;
5876 
5877 	idx = srcu_read_lock(&pmus_srcu);
5878 
5879 	rcu_read_lock();
5880 	pmu = idr_find(&pmu_idr, event->attr.type);
5881 	rcu_read_unlock();
5882 	if (pmu) {
5883 		event->pmu = pmu;
5884 		ret = pmu->event_init(event);
5885 		if (ret)
5886 			pmu = ERR_PTR(ret);
5887 		goto unlock;
5888 	}
5889 
5890 	list_for_each_entry_rcu(pmu, &pmus, entry) {
5891 		event->pmu = pmu;
5892 		ret = pmu->event_init(event);
5893 		if (!ret)
5894 			goto unlock;
5895 
5896 		if (ret != -ENOENT) {
5897 			pmu = ERR_PTR(ret);
5898 			goto unlock;
5899 		}
5900 	}
5901 	pmu = ERR_PTR(-ENOENT);
5902 unlock:
5903 	srcu_read_unlock(&pmus_srcu, idx);
5904 
5905 	return pmu;
5906 }
5907 
5908 /*
5909  * Allocate and initialize a event structure
5910  */
5911 static struct perf_event *
5912 perf_event_alloc(struct perf_event_attr *attr, int cpu,
5913 		 struct task_struct *task,
5914 		 struct perf_event *group_leader,
5915 		 struct perf_event *parent_event,
5916 		 perf_overflow_handler_t overflow_handler,
5917 		 void *context)
5918 {
5919 	struct pmu *pmu;
5920 	struct perf_event *event;
5921 	struct hw_perf_event *hwc;
5922 	long err;
5923 
5924 	if ((unsigned)cpu >= nr_cpu_ids) {
5925 		if (!task || cpu != -1)
5926 			return ERR_PTR(-EINVAL);
5927 	}
5928 
5929 	event = kzalloc(sizeof(*event), GFP_KERNEL);
5930 	if (!event)
5931 		return ERR_PTR(-ENOMEM);
5932 
5933 	/*
5934 	 * Single events are their own group leaders, with an
5935 	 * empty sibling list:
5936 	 */
5937 	if (!group_leader)
5938 		group_leader = event;
5939 
5940 	mutex_init(&event->child_mutex);
5941 	INIT_LIST_HEAD(&event->child_list);
5942 
5943 	INIT_LIST_HEAD(&event->group_entry);
5944 	INIT_LIST_HEAD(&event->event_entry);
5945 	INIT_LIST_HEAD(&event->sibling_list);
5946 	INIT_LIST_HEAD(&event->rb_entry);
5947 
5948 	init_waitqueue_head(&event->waitq);
5949 	init_irq_work(&event->pending, perf_pending_event);
5950 
5951 	mutex_init(&event->mmap_mutex);
5952 
5953 	event->cpu		= cpu;
5954 	event->attr		= *attr;
5955 	event->group_leader	= group_leader;
5956 	event->pmu		= NULL;
5957 	event->oncpu		= -1;
5958 
5959 	event->parent		= parent_event;
5960 
5961 	event->ns		= get_pid_ns(current->nsproxy->pid_ns);
5962 	event->id		= atomic64_inc_return(&perf_event_id);
5963 
5964 	event->state		= PERF_EVENT_STATE_INACTIVE;
5965 
5966 	if (task) {
5967 		event->attach_state = PERF_ATTACH_TASK;
5968 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5969 		/*
5970 		 * hw_breakpoint is a bit difficult here..
5971 		 */
5972 		if (attr->type == PERF_TYPE_BREAKPOINT)
5973 			event->hw.bp_target = task;
5974 #endif
5975 	}
5976 
5977 	if (!overflow_handler && parent_event) {
5978 		overflow_handler = parent_event->overflow_handler;
5979 		context = parent_event->overflow_handler_context;
5980 	}
5981 
5982 	event->overflow_handler	= overflow_handler;
5983 	event->overflow_handler_context = context;
5984 
5985 	if (attr->disabled)
5986 		event->state = PERF_EVENT_STATE_OFF;
5987 
5988 	pmu = NULL;
5989 
5990 	hwc = &event->hw;
5991 	hwc->sample_period = attr->sample_period;
5992 	if (attr->freq && attr->sample_freq)
5993 		hwc->sample_period = 1;
5994 	hwc->last_period = hwc->sample_period;
5995 
5996 	local64_set(&hwc->period_left, hwc->sample_period);
5997 
5998 	/*
5999 	 * we currently do not support PERF_FORMAT_GROUP on inherited events
6000 	 */
6001 	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
6002 		goto done;
6003 
6004 	pmu = perf_init_event(event);
6005 
6006 done:
6007 	err = 0;
6008 	if (!pmu)
6009 		err = -EINVAL;
6010 	else if (IS_ERR(pmu))
6011 		err = PTR_ERR(pmu);
6012 
6013 	if (err) {
6014 		if (event->ns)
6015 			put_pid_ns(event->ns);
6016 		kfree(event);
6017 		return ERR_PTR(err);
6018 	}
6019 
6020 	if (!event->parent) {
6021 		if (event->attach_state & PERF_ATTACH_TASK)
6022 			static_key_slow_inc(&perf_sched_events.key);
6023 		if (event->attr.mmap || event->attr.mmap_data)
6024 			atomic_inc(&nr_mmap_events);
6025 		if (event->attr.comm)
6026 			atomic_inc(&nr_comm_events);
6027 		if (event->attr.task)
6028 			atomic_inc(&nr_task_events);
6029 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
6030 			err = get_callchain_buffers();
6031 			if (err) {
6032 				free_event(event);
6033 				return ERR_PTR(err);
6034 			}
6035 		}
6036 		if (has_branch_stack(event)) {
6037 			static_key_slow_inc(&perf_sched_events.key);
6038 			if (!(event->attach_state & PERF_ATTACH_TASK))
6039 				atomic_inc(&per_cpu(perf_branch_stack_events,
6040 						    event->cpu));
6041 		}
6042 	}
6043 
6044 	return event;
6045 }
6046 
6047 static int perf_copy_attr(struct perf_event_attr __user *uattr,
6048 			  struct perf_event_attr *attr)
6049 {
6050 	u32 size;
6051 	int ret;
6052 
6053 	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
6054 		return -EFAULT;
6055 
6056 	/*
6057 	 * zero the full structure, so that a short copy will be nice.
6058 	 */
6059 	memset(attr, 0, sizeof(*attr));
6060 
6061 	ret = get_user(size, &uattr->size);
6062 	if (ret)
6063 		return ret;
6064 
6065 	if (size > PAGE_SIZE)	/* silly large */
6066 		goto err_size;
6067 
6068 	if (!size)		/* abi compat */
6069 		size = PERF_ATTR_SIZE_VER0;
6070 
6071 	if (size < PERF_ATTR_SIZE_VER0)
6072 		goto err_size;
6073 
6074 	/*
6075 	 * If we're handed a bigger struct than we know of,
6076 	 * ensure all the unknown bits are 0 - i.e. new
6077 	 * user-space does not rely on any kernel feature
6078 	 * extensions we dont know about yet.
6079 	 */
6080 	if (size > sizeof(*attr)) {
6081 		unsigned char __user *addr;
6082 		unsigned char __user *end;
6083 		unsigned char val;
6084 
6085 		addr = (void __user *)uattr + sizeof(*attr);
6086 		end  = (void __user *)uattr + size;
6087 
6088 		for (; addr < end; addr++) {
6089 			ret = get_user(val, addr);
6090 			if (ret)
6091 				return ret;
6092 			if (val)
6093 				goto err_size;
6094 		}
6095 		size = sizeof(*attr);
6096 	}
6097 
6098 	ret = copy_from_user(attr, uattr, size);
6099 	if (ret)
6100 		return -EFAULT;
6101 
6102 	if (attr->__reserved_1)
6103 		return -EINVAL;
6104 
6105 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
6106 		return -EINVAL;
6107 
6108 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
6109 		return -EINVAL;
6110 
6111 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
6112 		u64 mask = attr->branch_sample_type;
6113 
6114 		/* only using defined bits */
6115 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
6116 			return -EINVAL;
6117 
6118 		/* at least one branch bit must be set */
6119 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
6120 			return -EINVAL;
6121 
6122 		/* kernel level capture: check permissions */
6123 		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
6124 		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6125 			return -EACCES;
6126 
6127 		/* propagate priv level, when not set for branch */
6128 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
6129 
6130 			/* exclude_kernel checked on syscall entry */
6131 			if (!attr->exclude_kernel)
6132 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
6133 
6134 			if (!attr->exclude_user)
6135 				mask |= PERF_SAMPLE_BRANCH_USER;
6136 
6137 			if (!attr->exclude_hv)
6138 				mask |= PERF_SAMPLE_BRANCH_HV;
6139 			/*
6140 			 * adjust user setting (for HW filter setup)
6141 			 */
6142 			attr->branch_sample_type = mask;
6143 		}
6144 	}
6145 out:
6146 	return ret;
6147 
6148 err_size:
6149 	put_user(sizeof(*attr), &uattr->size);
6150 	ret = -E2BIG;
6151 	goto out;
6152 }
6153 
6154 static int
6155 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
6156 {
6157 	struct ring_buffer *rb = NULL, *old_rb = NULL;
6158 	int ret = -EINVAL;
6159 
6160 	if (!output_event)
6161 		goto set;
6162 
6163 	/* don't allow circular references */
6164 	if (event == output_event)
6165 		goto out;
6166 
6167 	/*
6168 	 * Don't allow cross-cpu buffers
6169 	 */
6170 	if (output_event->cpu != event->cpu)
6171 		goto out;
6172 
6173 	/*
6174 	 * If its not a per-cpu rb, it must be the same task.
6175 	 */
6176 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
6177 		goto out;
6178 
6179 set:
6180 	mutex_lock(&event->mmap_mutex);
6181 	/* Can't redirect output if we've got an active mmap() */
6182 	if (atomic_read(&event->mmap_count))
6183 		goto unlock;
6184 
6185 	if (output_event) {
6186 		/* get the rb we want to redirect to */
6187 		rb = ring_buffer_get(output_event);
6188 		if (!rb)
6189 			goto unlock;
6190 	}
6191 
6192 	old_rb = event->rb;
6193 	rcu_assign_pointer(event->rb, rb);
6194 	if (old_rb)
6195 		ring_buffer_detach(event, old_rb);
6196 	ret = 0;
6197 unlock:
6198 	mutex_unlock(&event->mmap_mutex);
6199 
6200 	if (old_rb)
6201 		ring_buffer_put(old_rb);
6202 out:
6203 	return ret;
6204 }
6205 
6206 /**
6207  * sys_perf_event_open - open a performance event, associate it to a task/cpu
6208  *
6209  * @attr_uptr:	event_id type attributes for monitoring/sampling
6210  * @pid:		target pid
6211  * @cpu:		target cpu
6212  * @group_fd:		group leader event fd
6213  */
6214 SYSCALL_DEFINE5(perf_event_open,
6215 		struct perf_event_attr __user *, attr_uptr,
6216 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
6217 {
6218 	struct perf_event *group_leader = NULL, *output_event = NULL;
6219 	struct perf_event *event, *sibling;
6220 	struct perf_event_attr attr;
6221 	struct perf_event_context *ctx;
6222 	struct file *event_file = NULL;
6223 	struct file *group_file = NULL;
6224 	struct task_struct *task = NULL;
6225 	struct pmu *pmu;
6226 	int event_fd;
6227 	int move_group = 0;
6228 	int fput_needed = 0;
6229 	int err;
6230 
6231 	/* for future expandability... */
6232 	if (flags & ~PERF_FLAG_ALL)
6233 		return -EINVAL;
6234 
6235 	err = perf_copy_attr(attr_uptr, &attr);
6236 	if (err)
6237 		return err;
6238 
6239 	if (!attr.exclude_kernel) {
6240 		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6241 			return -EACCES;
6242 	}
6243 
6244 	if (attr.freq) {
6245 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
6246 			return -EINVAL;
6247 	}
6248 
6249 	/*
6250 	 * In cgroup mode, the pid argument is used to pass the fd
6251 	 * opened to the cgroup directory in cgroupfs. The cpu argument
6252 	 * designates the cpu on which to monitor threads from that
6253 	 * cgroup.
6254 	 */
6255 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
6256 		return -EINVAL;
6257 
6258 	event_fd = get_unused_fd_flags(O_RDWR);
6259 	if (event_fd < 0)
6260 		return event_fd;
6261 
6262 	if (group_fd != -1) {
6263 		group_leader = perf_fget_light(group_fd, &fput_needed);
6264 		if (IS_ERR(group_leader)) {
6265 			err = PTR_ERR(group_leader);
6266 			goto err_fd;
6267 		}
6268 		group_file = group_leader->filp;
6269 		if (flags & PERF_FLAG_FD_OUTPUT)
6270 			output_event = group_leader;
6271 		if (flags & PERF_FLAG_FD_NO_GROUP)
6272 			group_leader = NULL;
6273 	}
6274 
6275 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
6276 		task = find_lively_task_by_vpid(pid);
6277 		if (IS_ERR(task)) {
6278 			err = PTR_ERR(task);
6279 			goto err_group_fd;
6280 		}
6281 	}
6282 
6283 	get_online_cpus();
6284 
6285 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
6286 				 NULL, NULL);
6287 	if (IS_ERR(event)) {
6288 		err = PTR_ERR(event);
6289 		goto err_task;
6290 	}
6291 
6292 	if (flags & PERF_FLAG_PID_CGROUP) {
6293 		err = perf_cgroup_connect(pid, event, &attr, group_leader);
6294 		if (err)
6295 			goto err_alloc;
6296 		/*
6297 		 * one more event:
6298 		 * - that has cgroup constraint on event->cpu
6299 		 * - that may need work on context switch
6300 		 */
6301 		atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
6302 		static_key_slow_inc(&perf_sched_events.key);
6303 	}
6304 
6305 	/*
6306 	 * Special case software events and allow them to be part of
6307 	 * any hardware group.
6308 	 */
6309 	pmu = event->pmu;
6310 
6311 	if (group_leader &&
6312 	    (is_software_event(event) != is_software_event(group_leader))) {
6313 		if (is_software_event(event)) {
6314 			/*
6315 			 * If event and group_leader are not both a software
6316 			 * event, and event is, then group leader is not.
6317 			 *
6318 			 * Allow the addition of software events to !software
6319 			 * groups, this is safe because software events never
6320 			 * fail to schedule.
6321 			 */
6322 			pmu = group_leader->pmu;
6323 		} else if (is_software_event(group_leader) &&
6324 			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
6325 			/*
6326 			 * In case the group is a pure software group, and we
6327 			 * try to add a hardware event, move the whole group to
6328 			 * the hardware context.
6329 			 */
6330 			move_group = 1;
6331 		}
6332 	}
6333 
6334 	/*
6335 	 * Get the target context (task or percpu):
6336 	 */
6337 	ctx = find_get_context(pmu, task, event->cpu);
6338 	if (IS_ERR(ctx)) {
6339 		err = PTR_ERR(ctx);
6340 		goto err_alloc;
6341 	}
6342 
6343 	if (task) {
6344 		put_task_struct(task);
6345 		task = NULL;
6346 	}
6347 
6348 	/*
6349 	 * Look up the group leader (we will attach this event to it):
6350 	 */
6351 	if (group_leader) {
6352 		err = -EINVAL;
6353 
6354 		/*
6355 		 * Do not allow a recursive hierarchy (this new sibling
6356 		 * becoming part of another group-sibling):
6357 		 */
6358 		if (group_leader->group_leader != group_leader)
6359 			goto err_context;
6360 		/*
6361 		 * Do not allow to attach to a group in a different
6362 		 * task or CPU context:
6363 		 */
6364 		if (move_group) {
6365 			if (group_leader->ctx->type != ctx->type)
6366 				goto err_context;
6367 		} else {
6368 			if (group_leader->ctx != ctx)
6369 				goto err_context;
6370 		}
6371 
6372 		/*
6373 		 * Only a group leader can be exclusive or pinned
6374 		 */
6375 		if (attr.exclusive || attr.pinned)
6376 			goto err_context;
6377 	}
6378 
6379 	if (output_event) {
6380 		err = perf_event_set_output(event, output_event);
6381 		if (err)
6382 			goto err_context;
6383 	}
6384 
6385 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
6386 	if (IS_ERR(event_file)) {
6387 		err = PTR_ERR(event_file);
6388 		goto err_context;
6389 	}
6390 
6391 	if (move_group) {
6392 		struct perf_event_context *gctx = group_leader->ctx;
6393 
6394 		mutex_lock(&gctx->mutex);
6395 		perf_remove_from_context(group_leader);
6396 		list_for_each_entry(sibling, &group_leader->sibling_list,
6397 				    group_entry) {
6398 			perf_remove_from_context(sibling);
6399 			put_ctx(gctx);
6400 		}
6401 		mutex_unlock(&gctx->mutex);
6402 		put_ctx(gctx);
6403 	}
6404 
6405 	event->filp = event_file;
6406 	WARN_ON_ONCE(ctx->parent_ctx);
6407 	mutex_lock(&ctx->mutex);
6408 
6409 	if (move_group) {
6410 		synchronize_rcu();
6411 		perf_install_in_context(ctx, group_leader, event->cpu);
6412 		get_ctx(ctx);
6413 		list_for_each_entry(sibling, &group_leader->sibling_list,
6414 				    group_entry) {
6415 			perf_install_in_context(ctx, sibling, event->cpu);
6416 			get_ctx(ctx);
6417 		}
6418 	}
6419 
6420 	perf_install_in_context(ctx, event, event->cpu);
6421 	++ctx->generation;
6422 	perf_unpin_context(ctx);
6423 	mutex_unlock(&ctx->mutex);
6424 
6425 	put_online_cpus();
6426 
6427 	event->owner = current;
6428 
6429 	mutex_lock(&current->perf_event_mutex);
6430 	list_add_tail(&event->owner_entry, &current->perf_event_list);
6431 	mutex_unlock(&current->perf_event_mutex);
6432 
6433 	/*
6434 	 * Precalculate sample_data sizes
6435 	 */
6436 	perf_event__header_size(event);
6437 	perf_event__id_header_size(event);
6438 
6439 	/*
6440 	 * Drop the reference on the group_event after placing the
6441 	 * new event on the sibling_list. This ensures destruction
6442 	 * of the group leader will find the pointer to itself in
6443 	 * perf_group_detach().
6444 	 */
6445 	fput_light(group_file, fput_needed);
6446 	fd_install(event_fd, event_file);
6447 	return event_fd;
6448 
6449 err_context:
6450 	perf_unpin_context(ctx);
6451 	put_ctx(ctx);
6452 err_alloc:
6453 	free_event(event);
6454 err_task:
6455 	put_online_cpus();
6456 	if (task)
6457 		put_task_struct(task);
6458 err_group_fd:
6459 	fput_light(group_file, fput_needed);
6460 err_fd:
6461 	put_unused_fd(event_fd);
6462 	return err;
6463 }
6464 
6465 /**
6466  * perf_event_create_kernel_counter
6467  *
6468  * @attr: attributes of the counter to create
6469  * @cpu: cpu in which the counter is bound
6470  * @task: task to profile (NULL for percpu)
6471  */
6472 struct perf_event *
6473 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
6474 				 struct task_struct *task,
6475 				 perf_overflow_handler_t overflow_handler,
6476 				 void *context)
6477 {
6478 	struct perf_event_context *ctx;
6479 	struct perf_event *event;
6480 	int err;
6481 
6482 	/*
6483 	 * Get the target context (task or percpu):
6484 	 */
6485 
6486 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
6487 				 overflow_handler, context);
6488 	if (IS_ERR(event)) {
6489 		err = PTR_ERR(event);
6490 		goto err;
6491 	}
6492 
6493 	ctx = find_get_context(event->pmu, task, cpu);
6494 	if (IS_ERR(ctx)) {
6495 		err = PTR_ERR(ctx);
6496 		goto err_free;
6497 	}
6498 
6499 	event->filp = NULL;
6500 	WARN_ON_ONCE(ctx->parent_ctx);
6501 	mutex_lock(&ctx->mutex);
6502 	perf_install_in_context(ctx, event, cpu);
6503 	++ctx->generation;
6504 	perf_unpin_context(ctx);
6505 	mutex_unlock(&ctx->mutex);
6506 
6507 	return event;
6508 
6509 err_free:
6510 	free_event(event);
6511 err:
6512 	return ERR_PTR(err);
6513 }
6514 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
6515 
6516 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
6517 {
6518 	struct perf_event_context *src_ctx;
6519 	struct perf_event_context *dst_ctx;
6520 	struct perf_event *event, *tmp;
6521 	LIST_HEAD(events);
6522 
6523 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
6524 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
6525 
6526 	mutex_lock(&src_ctx->mutex);
6527 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
6528 				 event_entry) {
6529 		perf_remove_from_context(event);
6530 		put_ctx(src_ctx);
6531 		list_add(&event->event_entry, &events);
6532 	}
6533 	mutex_unlock(&src_ctx->mutex);
6534 
6535 	synchronize_rcu();
6536 
6537 	mutex_lock(&dst_ctx->mutex);
6538 	list_for_each_entry_safe(event, tmp, &events, event_entry) {
6539 		list_del(&event->event_entry);
6540 		if (event->state >= PERF_EVENT_STATE_OFF)
6541 			event->state = PERF_EVENT_STATE_INACTIVE;
6542 		perf_install_in_context(dst_ctx, event, dst_cpu);
6543 		get_ctx(dst_ctx);
6544 	}
6545 	mutex_unlock(&dst_ctx->mutex);
6546 }
6547 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
6548 
6549 static void sync_child_event(struct perf_event *child_event,
6550 			       struct task_struct *child)
6551 {
6552 	struct perf_event *parent_event = child_event->parent;
6553 	u64 child_val;
6554 
6555 	if (child_event->attr.inherit_stat)
6556 		perf_event_read_event(child_event, child);
6557 
6558 	child_val = perf_event_count(child_event);
6559 
6560 	/*
6561 	 * Add back the child's count to the parent's count:
6562 	 */
6563 	atomic64_add(child_val, &parent_event->child_count);
6564 	atomic64_add(child_event->total_time_enabled,
6565 		     &parent_event->child_total_time_enabled);
6566 	atomic64_add(child_event->total_time_running,
6567 		     &parent_event->child_total_time_running);
6568 
6569 	/*
6570 	 * Remove this event from the parent's list
6571 	 */
6572 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6573 	mutex_lock(&parent_event->child_mutex);
6574 	list_del_init(&child_event->child_list);
6575 	mutex_unlock(&parent_event->child_mutex);
6576 
6577 	/*
6578 	 * Release the parent event, if this was the last
6579 	 * reference to it.
6580 	 */
6581 	fput(parent_event->filp);
6582 }
6583 
6584 static void
6585 __perf_event_exit_task(struct perf_event *child_event,
6586 			 struct perf_event_context *child_ctx,
6587 			 struct task_struct *child)
6588 {
6589 	if (child_event->parent) {
6590 		raw_spin_lock_irq(&child_ctx->lock);
6591 		perf_group_detach(child_event);
6592 		raw_spin_unlock_irq(&child_ctx->lock);
6593 	}
6594 
6595 	perf_remove_from_context(child_event);
6596 
6597 	/*
6598 	 * It can happen that the parent exits first, and has events
6599 	 * that are still around due to the child reference. These
6600 	 * events need to be zapped.
6601 	 */
6602 	if (child_event->parent) {
6603 		sync_child_event(child_event, child);
6604 		free_event(child_event);
6605 	}
6606 }
6607 
6608 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
6609 {
6610 	struct perf_event *child_event, *tmp;
6611 	struct perf_event_context *child_ctx;
6612 	unsigned long flags;
6613 
6614 	if (likely(!child->perf_event_ctxp[ctxn])) {
6615 		perf_event_task(child, NULL, 0);
6616 		return;
6617 	}
6618 
6619 	local_irq_save(flags);
6620 	/*
6621 	 * We can't reschedule here because interrupts are disabled,
6622 	 * and either child is current or it is a task that can't be
6623 	 * scheduled, so we are now safe from rescheduling changing
6624 	 * our context.
6625 	 */
6626 	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
6627 
6628 	/*
6629 	 * Take the context lock here so that if find_get_context is
6630 	 * reading child->perf_event_ctxp, we wait until it has
6631 	 * incremented the context's refcount before we do put_ctx below.
6632 	 */
6633 	raw_spin_lock(&child_ctx->lock);
6634 	task_ctx_sched_out(child_ctx);
6635 	child->perf_event_ctxp[ctxn] = NULL;
6636 	/*
6637 	 * If this context is a clone; unclone it so it can't get
6638 	 * swapped to another process while we're removing all
6639 	 * the events from it.
6640 	 */
6641 	unclone_ctx(child_ctx);
6642 	update_context_time(child_ctx);
6643 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6644 
6645 	/*
6646 	 * Report the task dead after unscheduling the events so that we
6647 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
6648 	 * get a few PERF_RECORD_READ events.
6649 	 */
6650 	perf_event_task(child, child_ctx, 0);
6651 
6652 	/*
6653 	 * We can recurse on the same lock type through:
6654 	 *
6655 	 *   __perf_event_exit_task()
6656 	 *     sync_child_event()
6657 	 *       fput(parent_event->filp)
6658 	 *         perf_release()
6659 	 *           mutex_lock(&ctx->mutex)
6660 	 *
6661 	 * But since its the parent context it won't be the same instance.
6662 	 */
6663 	mutex_lock(&child_ctx->mutex);
6664 
6665 again:
6666 	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
6667 				 group_entry)
6668 		__perf_event_exit_task(child_event, child_ctx, child);
6669 
6670 	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
6671 				 group_entry)
6672 		__perf_event_exit_task(child_event, child_ctx, child);
6673 
6674 	/*
6675 	 * If the last event was a group event, it will have appended all
6676 	 * its siblings to the list, but we obtained 'tmp' before that which
6677 	 * will still point to the list head terminating the iteration.
6678 	 */
6679 	if (!list_empty(&child_ctx->pinned_groups) ||
6680 	    !list_empty(&child_ctx->flexible_groups))
6681 		goto again;
6682 
6683 	mutex_unlock(&child_ctx->mutex);
6684 
6685 	put_ctx(child_ctx);
6686 }
6687 
6688 /*
6689  * When a child task exits, feed back event values to parent events.
6690  */
6691 void perf_event_exit_task(struct task_struct *child)
6692 {
6693 	struct perf_event *event, *tmp;
6694 	int ctxn;
6695 
6696 	mutex_lock(&child->perf_event_mutex);
6697 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
6698 				 owner_entry) {
6699 		list_del_init(&event->owner_entry);
6700 
6701 		/*
6702 		 * Ensure the list deletion is visible before we clear
6703 		 * the owner, closes a race against perf_release() where
6704 		 * we need to serialize on the owner->perf_event_mutex.
6705 		 */
6706 		smp_wmb();
6707 		event->owner = NULL;
6708 	}
6709 	mutex_unlock(&child->perf_event_mutex);
6710 
6711 	for_each_task_context_nr(ctxn)
6712 		perf_event_exit_task_context(child, ctxn);
6713 }
6714 
6715 static void perf_free_event(struct perf_event *event,
6716 			    struct perf_event_context *ctx)
6717 {
6718 	struct perf_event *parent = event->parent;
6719 
6720 	if (WARN_ON_ONCE(!parent))
6721 		return;
6722 
6723 	mutex_lock(&parent->child_mutex);
6724 	list_del_init(&event->child_list);
6725 	mutex_unlock(&parent->child_mutex);
6726 
6727 	fput(parent->filp);
6728 
6729 	perf_group_detach(event);
6730 	list_del_event(event, ctx);
6731 	free_event(event);
6732 }
6733 
6734 /*
6735  * free an unexposed, unused context as created by inheritance by
6736  * perf_event_init_task below, used by fork() in case of fail.
6737  */
6738 void perf_event_free_task(struct task_struct *task)
6739 {
6740 	struct perf_event_context *ctx;
6741 	struct perf_event *event, *tmp;
6742 	int ctxn;
6743 
6744 	for_each_task_context_nr(ctxn) {
6745 		ctx = task->perf_event_ctxp[ctxn];
6746 		if (!ctx)
6747 			continue;
6748 
6749 		mutex_lock(&ctx->mutex);
6750 again:
6751 		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
6752 				group_entry)
6753 			perf_free_event(event, ctx);
6754 
6755 		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
6756 				group_entry)
6757 			perf_free_event(event, ctx);
6758 
6759 		if (!list_empty(&ctx->pinned_groups) ||
6760 				!list_empty(&ctx->flexible_groups))
6761 			goto again;
6762 
6763 		mutex_unlock(&ctx->mutex);
6764 
6765 		put_ctx(ctx);
6766 	}
6767 }
6768 
6769 void perf_event_delayed_put(struct task_struct *task)
6770 {
6771 	int ctxn;
6772 
6773 	for_each_task_context_nr(ctxn)
6774 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
6775 }
6776 
6777 /*
6778  * inherit a event from parent task to child task:
6779  */
6780 static struct perf_event *
6781 inherit_event(struct perf_event *parent_event,
6782 	      struct task_struct *parent,
6783 	      struct perf_event_context *parent_ctx,
6784 	      struct task_struct *child,
6785 	      struct perf_event *group_leader,
6786 	      struct perf_event_context *child_ctx)
6787 {
6788 	struct perf_event *child_event;
6789 	unsigned long flags;
6790 
6791 	/*
6792 	 * Instead of creating recursive hierarchies of events,
6793 	 * we link inherited events back to the original parent,
6794 	 * which has a filp for sure, which we use as the reference
6795 	 * count:
6796 	 */
6797 	if (parent_event->parent)
6798 		parent_event = parent_event->parent;
6799 
6800 	child_event = perf_event_alloc(&parent_event->attr,
6801 					   parent_event->cpu,
6802 					   child,
6803 					   group_leader, parent_event,
6804 				           NULL, NULL);
6805 	if (IS_ERR(child_event))
6806 		return child_event;
6807 	get_ctx(child_ctx);
6808 
6809 	/*
6810 	 * Make the child state follow the state of the parent event,
6811 	 * not its attr.disabled bit.  We hold the parent's mutex,
6812 	 * so we won't race with perf_event_{en, dis}able_family.
6813 	 */
6814 	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
6815 		child_event->state = PERF_EVENT_STATE_INACTIVE;
6816 	else
6817 		child_event->state = PERF_EVENT_STATE_OFF;
6818 
6819 	if (parent_event->attr.freq) {
6820 		u64 sample_period = parent_event->hw.sample_period;
6821 		struct hw_perf_event *hwc = &child_event->hw;
6822 
6823 		hwc->sample_period = sample_period;
6824 		hwc->last_period   = sample_period;
6825 
6826 		local64_set(&hwc->period_left, sample_period);
6827 	}
6828 
6829 	child_event->ctx = child_ctx;
6830 	child_event->overflow_handler = parent_event->overflow_handler;
6831 	child_event->overflow_handler_context
6832 		= parent_event->overflow_handler_context;
6833 
6834 	/*
6835 	 * Precalculate sample_data sizes
6836 	 */
6837 	perf_event__header_size(child_event);
6838 	perf_event__id_header_size(child_event);
6839 
6840 	/*
6841 	 * Link it up in the child's context:
6842 	 */
6843 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
6844 	add_event_to_ctx(child_event, child_ctx);
6845 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6846 
6847 	/*
6848 	 * Get a reference to the parent filp - we will fput it
6849 	 * when the child event exits. This is safe to do because
6850 	 * we are in the parent and we know that the filp still
6851 	 * exists and has a nonzero count:
6852 	 */
6853 	atomic_long_inc(&parent_event->filp->f_count);
6854 
6855 	/*
6856 	 * Link this into the parent event's child list
6857 	 */
6858 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6859 	mutex_lock(&parent_event->child_mutex);
6860 	list_add_tail(&child_event->child_list, &parent_event->child_list);
6861 	mutex_unlock(&parent_event->child_mutex);
6862 
6863 	return child_event;
6864 }
6865 
6866 static int inherit_group(struct perf_event *parent_event,
6867 	      struct task_struct *parent,
6868 	      struct perf_event_context *parent_ctx,
6869 	      struct task_struct *child,
6870 	      struct perf_event_context *child_ctx)
6871 {
6872 	struct perf_event *leader;
6873 	struct perf_event *sub;
6874 	struct perf_event *child_ctr;
6875 
6876 	leader = inherit_event(parent_event, parent, parent_ctx,
6877 				 child, NULL, child_ctx);
6878 	if (IS_ERR(leader))
6879 		return PTR_ERR(leader);
6880 	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
6881 		child_ctr = inherit_event(sub, parent, parent_ctx,
6882 					    child, leader, child_ctx);
6883 		if (IS_ERR(child_ctr))
6884 			return PTR_ERR(child_ctr);
6885 	}
6886 	return 0;
6887 }
6888 
6889 static int
6890 inherit_task_group(struct perf_event *event, struct task_struct *parent,
6891 		   struct perf_event_context *parent_ctx,
6892 		   struct task_struct *child, int ctxn,
6893 		   int *inherited_all)
6894 {
6895 	int ret;
6896 	struct perf_event_context *child_ctx;
6897 
6898 	if (!event->attr.inherit) {
6899 		*inherited_all = 0;
6900 		return 0;
6901 	}
6902 
6903 	child_ctx = child->perf_event_ctxp[ctxn];
6904 	if (!child_ctx) {
6905 		/*
6906 		 * This is executed from the parent task context, so
6907 		 * inherit events that have been marked for cloning.
6908 		 * First allocate and initialize a context for the
6909 		 * child.
6910 		 */
6911 
6912 		child_ctx = alloc_perf_context(event->pmu, child);
6913 		if (!child_ctx)
6914 			return -ENOMEM;
6915 
6916 		child->perf_event_ctxp[ctxn] = child_ctx;
6917 	}
6918 
6919 	ret = inherit_group(event, parent, parent_ctx,
6920 			    child, child_ctx);
6921 
6922 	if (ret)
6923 		*inherited_all = 0;
6924 
6925 	return ret;
6926 }
6927 
6928 /*
6929  * Initialize the perf_event context in task_struct
6930  */
6931 int perf_event_init_context(struct task_struct *child, int ctxn)
6932 {
6933 	struct perf_event_context *child_ctx, *parent_ctx;
6934 	struct perf_event_context *cloned_ctx;
6935 	struct perf_event *event;
6936 	struct task_struct *parent = current;
6937 	int inherited_all = 1;
6938 	unsigned long flags;
6939 	int ret = 0;
6940 
6941 	if (likely(!parent->perf_event_ctxp[ctxn]))
6942 		return 0;
6943 
6944 	/*
6945 	 * If the parent's context is a clone, pin it so it won't get
6946 	 * swapped under us.
6947 	 */
6948 	parent_ctx = perf_pin_task_context(parent, ctxn);
6949 
6950 	/*
6951 	 * No need to check if parent_ctx != NULL here; since we saw
6952 	 * it non-NULL earlier, the only reason for it to become NULL
6953 	 * is if we exit, and since we're currently in the middle of
6954 	 * a fork we can't be exiting at the same time.
6955 	 */
6956 
6957 	/*
6958 	 * Lock the parent list. No need to lock the child - not PID
6959 	 * hashed yet and not running, so nobody can access it.
6960 	 */
6961 	mutex_lock(&parent_ctx->mutex);
6962 
6963 	/*
6964 	 * We dont have to disable NMIs - we are only looking at
6965 	 * the list, not manipulating it:
6966 	 */
6967 	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
6968 		ret = inherit_task_group(event, parent, parent_ctx,
6969 					 child, ctxn, &inherited_all);
6970 		if (ret)
6971 			break;
6972 	}
6973 
6974 	/*
6975 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
6976 	 * to allocations, but we need to prevent rotation because
6977 	 * rotate_ctx() will change the list from interrupt context.
6978 	 */
6979 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
6980 	parent_ctx->rotate_disable = 1;
6981 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6982 
6983 	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
6984 		ret = inherit_task_group(event, parent, parent_ctx,
6985 					 child, ctxn, &inherited_all);
6986 		if (ret)
6987 			break;
6988 	}
6989 
6990 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
6991 	parent_ctx->rotate_disable = 0;
6992 
6993 	child_ctx = child->perf_event_ctxp[ctxn];
6994 
6995 	if (child_ctx && inherited_all) {
6996 		/*
6997 		 * Mark the child context as a clone of the parent
6998 		 * context, or of whatever the parent is a clone of.
6999 		 *
7000 		 * Note that if the parent is a clone, the holding of
7001 		 * parent_ctx->lock avoids it from being uncloned.
7002 		 */
7003 		cloned_ctx = parent_ctx->parent_ctx;
7004 		if (cloned_ctx) {
7005 			child_ctx->parent_ctx = cloned_ctx;
7006 			child_ctx->parent_gen = parent_ctx->parent_gen;
7007 		} else {
7008 			child_ctx->parent_ctx = parent_ctx;
7009 			child_ctx->parent_gen = parent_ctx->generation;
7010 		}
7011 		get_ctx(child_ctx->parent_ctx);
7012 	}
7013 
7014 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7015 	mutex_unlock(&parent_ctx->mutex);
7016 
7017 	perf_unpin_context(parent_ctx);
7018 	put_ctx(parent_ctx);
7019 
7020 	return ret;
7021 }
7022 
7023 /*
7024  * Initialize the perf_event context in task_struct
7025  */
7026 int perf_event_init_task(struct task_struct *child)
7027 {
7028 	int ctxn, ret;
7029 
7030 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
7031 	mutex_init(&child->perf_event_mutex);
7032 	INIT_LIST_HEAD(&child->perf_event_list);
7033 
7034 	for_each_task_context_nr(ctxn) {
7035 		ret = perf_event_init_context(child, ctxn);
7036 		if (ret)
7037 			return ret;
7038 	}
7039 
7040 	return 0;
7041 }
7042 
7043 static void __init perf_event_init_all_cpus(void)
7044 {
7045 	struct swevent_htable *swhash;
7046 	int cpu;
7047 
7048 	for_each_possible_cpu(cpu) {
7049 		swhash = &per_cpu(swevent_htable, cpu);
7050 		mutex_init(&swhash->hlist_mutex);
7051 		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
7052 	}
7053 }
7054 
7055 static void __cpuinit perf_event_init_cpu(int cpu)
7056 {
7057 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7058 
7059 	mutex_lock(&swhash->hlist_mutex);
7060 	if (swhash->hlist_refcount > 0) {
7061 		struct swevent_hlist *hlist;
7062 
7063 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
7064 		WARN_ON(!hlist);
7065 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7066 	}
7067 	mutex_unlock(&swhash->hlist_mutex);
7068 }
7069 
7070 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
7071 static void perf_pmu_rotate_stop(struct pmu *pmu)
7072 {
7073 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7074 
7075 	WARN_ON(!irqs_disabled());
7076 
7077 	list_del_init(&cpuctx->rotation_list);
7078 }
7079 
7080 static void __perf_event_exit_context(void *__info)
7081 {
7082 	struct perf_event_context *ctx = __info;
7083 	struct perf_event *event, *tmp;
7084 
7085 	perf_pmu_rotate_stop(ctx->pmu);
7086 
7087 	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
7088 		__perf_remove_from_context(event);
7089 	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
7090 		__perf_remove_from_context(event);
7091 }
7092 
7093 static void perf_event_exit_cpu_context(int cpu)
7094 {
7095 	struct perf_event_context *ctx;
7096 	struct pmu *pmu;
7097 	int idx;
7098 
7099 	idx = srcu_read_lock(&pmus_srcu);
7100 	list_for_each_entry_rcu(pmu, &pmus, entry) {
7101 		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
7102 
7103 		mutex_lock(&ctx->mutex);
7104 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
7105 		mutex_unlock(&ctx->mutex);
7106 	}
7107 	srcu_read_unlock(&pmus_srcu, idx);
7108 }
7109 
7110 static void perf_event_exit_cpu(int cpu)
7111 {
7112 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7113 
7114 	mutex_lock(&swhash->hlist_mutex);
7115 	swevent_hlist_release(swhash);
7116 	mutex_unlock(&swhash->hlist_mutex);
7117 
7118 	perf_event_exit_cpu_context(cpu);
7119 }
7120 #else
7121 static inline void perf_event_exit_cpu(int cpu) { }
7122 #endif
7123 
7124 static int
7125 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
7126 {
7127 	int cpu;
7128 
7129 	for_each_online_cpu(cpu)
7130 		perf_event_exit_cpu(cpu);
7131 
7132 	return NOTIFY_OK;
7133 }
7134 
7135 /*
7136  * Run the perf reboot notifier at the very last possible moment so that
7137  * the generic watchdog code runs as long as possible.
7138  */
7139 static struct notifier_block perf_reboot_notifier = {
7140 	.notifier_call = perf_reboot,
7141 	.priority = INT_MIN,
7142 };
7143 
7144 static int __cpuinit
7145 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
7146 {
7147 	unsigned int cpu = (long)hcpu;
7148 
7149 	switch (action & ~CPU_TASKS_FROZEN) {
7150 
7151 	case CPU_UP_PREPARE:
7152 	case CPU_DOWN_FAILED:
7153 		perf_event_init_cpu(cpu);
7154 		break;
7155 
7156 	case CPU_UP_CANCELED:
7157 	case CPU_DOWN_PREPARE:
7158 		perf_event_exit_cpu(cpu);
7159 		break;
7160 
7161 	default:
7162 		break;
7163 	}
7164 
7165 	return NOTIFY_OK;
7166 }
7167 
7168 void __init perf_event_init(void)
7169 {
7170 	int ret;
7171 
7172 	idr_init(&pmu_idr);
7173 
7174 	perf_event_init_all_cpus();
7175 	init_srcu_struct(&pmus_srcu);
7176 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
7177 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
7178 	perf_pmu_register(&perf_task_clock, NULL, -1);
7179 	perf_tp_register();
7180 	perf_cpu_notifier(perf_cpu_notify);
7181 	register_reboot_notifier(&perf_reboot_notifier);
7182 
7183 	ret = init_hw_breakpoint();
7184 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
7185 
7186 	/* do not patch jump label more than once per second */
7187 	jump_label_rate_limit(&perf_sched_events, HZ);
7188 
7189 	/*
7190 	 * Build time assertion that we keep the data_head at the intended
7191 	 * location.  IOW, validation we got the __reserved[] size right.
7192 	 */
7193 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
7194 		     != 1024);
7195 }
7196 
7197 static int __init perf_event_sysfs_init(void)
7198 {
7199 	struct pmu *pmu;
7200 	int ret;
7201 
7202 	mutex_lock(&pmus_lock);
7203 
7204 	ret = bus_register(&pmu_bus);
7205 	if (ret)
7206 		goto unlock;
7207 
7208 	list_for_each_entry(pmu, &pmus, entry) {
7209 		if (!pmu->name || pmu->type < 0)
7210 			continue;
7211 
7212 		ret = pmu_dev_alloc(pmu);
7213 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
7214 	}
7215 	pmu_bus_running = 1;
7216 	ret = 0;
7217 
7218 unlock:
7219 	mutex_unlock(&pmus_lock);
7220 
7221 	return ret;
7222 }
7223 device_initcall(perf_event_sysfs_init);
7224 
7225 #ifdef CONFIG_CGROUP_PERF
7226 static struct cgroup_subsys_state *perf_cgroup_create(struct cgroup *cont)
7227 {
7228 	struct perf_cgroup *jc;
7229 
7230 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
7231 	if (!jc)
7232 		return ERR_PTR(-ENOMEM);
7233 
7234 	jc->info = alloc_percpu(struct perf_cgroup_info);
7235 	if (!jc->info) {
7236 		kfree(jc);
7237 		return ERR_PTR(-ENOMEM);
7238 	}
7239 
7240 	return &jc->css;
7241 }
7242 
7243 static void perf_cgroup_destroy(struct cgroup *cont)
7244 {
7245 	struct perf_cgroup *jc;
7246 	jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
7247 			  struct perf_cgroup, css);
7248 	free_percpu(jc->info);
7249 	kfree(jc);
7250 }
7251 
7252 static int __perf_cgroup_move(void *info)
7253 {
7254 	struct task_struct *task = info;
7255 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
7256 	return 0;
7257 }
7258 
7259 static void perf_cgroup_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
7260 {
7261 	struct task_struct *task;
7262 
7263 	cgroup_taskset_for_each(task, cgrp, tset)
7264 		task_function_call(task, __perf_cgroup_move, task);
7265 }
7266 
7267 static void perf_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7268 			     struct task_struct *task)
7269 {
7270 	/*
7271 	 * cgroup_exit() is called in the copy_process() failure path.
7272 	 * Ignore this case since the task hasn't ran yet, this avoids
7273 	 * trying to poke a half freed task state from generic code.
7274 	 */
7275 	if (!(task->flags & PF_EXITING))
7276 		return;
7277 
7278 	task_function_call(task, __perf_cgroup_move, task);
7279 }
7280 
7281 struct cgroup_subsys perf_subsys = {
7282 	.name		= "perf_event",
7283 	.subsys_id	= perf_subsys_id,
7284 	.create		= perf_cgroup_create,
7285 	.destroy	= perf_cgroup_destroy,
7286 	.exit		= perf_cgroup_exit,
7287 	.attach		= perf_cgroup_attach,
7288 };
7289 #endif /* CONFIG_CGROUP_PERF */
7290