1 /* 2 * Performance events core code: 3 * 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 8 * 9 * For licensing details see kernel-base/COPYING 10 */ 11 12 #include <linux/fs.h> 13 #include <linux/mm.h> 14 #include <linux/cpu.h> 15 #include <linux/smp.h> 16 #include <linux/idr.h> 17 #include <linux/file.h> 18 #include <linux/poll.h> 19 #include <linux/slab.h> 20 #include <linux/hash.h> 21 #include <linux/sysfs.h> 22 #include <linux/dcache.h> 23 #include <linux/percpu.h> 24 #include <linux/ptrace.h> 25 #include <linux/reboot.h> 26 #include <linux/vmstat.h> 27 #include <linux/device.h> 28 #include <linux/export.h> 29 #include <linux/vmalloc.h> 30 #include <linux/hardirq.h> 31 #include <linux/rculist.h> 32 #include <linux/uaccess.h> 33 #include <linux/syscalls.h> 34 #include <linux/anon_inodes.h> 35 #include <linux/kernel_stat.h> 36 #include <linux/perf_event.h> 37 #include <linux/ftrace_event.h> 38 #include <linux/hw_breakpoint.h> 39 40 #include "internal.h" 41 42 #include <asm/irq_regs.h> 43 44 struct remote_function_call { 45 struct task_struct *p; 46 int (*func)(void *info); 47 void *info; 48 int ret; 49 }; 50 51 static void remote_function(void *data) 52 { 53 struct remote_function_call *tfc = data; 54 struct task_struct *p = tfc->p; 55 56 if (p) { 57 tfc->ret = -EAGAIN; 58 if (task_cpu(p) != smp_processor_id() || !task_curr(p)) 59 return; 60 } 61 62 tfc->ret = tfc->func(tfc->info); 63 } 64 65 /** 66 * task_function_call - call a function on the cpu on which a task runs 67 * @p: the task to evaluate 68 * @func: the function to be called 69 * @info: the function call argument 70 * 71 * Calls the function @func when the task is currently running. This might 72 * be on the current CPU, which just calls the function directly 73 * 74 * returns: @func return value, or 75 * -ESRCH - when the process isn't running 76 * -EAGAIN - when the process moved away 77 */ 78 static int 79 task_function_call(struct task_struct *p, int (*func) (void *info), void *info) 80 { 81 struct remote_function_call data = { 82 .p = p, 83 .func = func, 84 .info = info, 85 .ret = -ESRCH, /* No such (running) process */ 86 }; 87 88 if (task_curr(p)) 89 smp_call_function_single(task_cpu(p), remote_function, &data, 1); 90 91 return data.ret; 92 } 93 94 /** 95 * cpu_function_call - call a function on the cpu 96 * @func: the function to be called 97 * @info: the function call argument 98 * 99 * Calls the function @func on the remote cpu. 100 * 101 * returns: @func return value or -ENXIO when the cpu is offline 102 */ 103 static int cpu_function_call(int cpu, int (*func) (void *info), void *info) 104 { 105 struct remote_function_call data = { 106 .p = NULL, 107 .func = func, 108 .info = info, 109 .ret = -ENXIO, /* No such CPU */ 110 }; 111 112 smp_call_function_single(cpu, remote_function, &data, 1); 113 114 return data.ret; 115 } 116 117 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 118 PERF_FLAG_FD_OUTPUT |\ 119 PERF_FLAG_PID_CGROUP) 120 121 /* 122 * branch priv levels that need permission checks 123 */ 124 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 125 (PERF_SAMPLE_BRANCH_KERNEL |\ 126 PERF_SAMPLE_BRANCH_HV) 127 128 enum event_type_t { 129 EVENT_FLEXIBLE = 0x1, 130 EVENT_PINNED = 0x2, 131 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 132 }; 133 134 /* 135 * perf_sched_events : >0 events exist 136 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu 137 */ 138 struct static_key_deferred perf_sched_events __read_mostly; 139 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); 140 static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events); 141 142 static atomic_t nr_mmap_events __read_mostly; 143 static atomic_t nr_comm_events __read_mostly; 144 static atomic_t nr_task_events __read_mostly; 145 146 static LIST_HEAD(pmus); 147 static DEFINE_MUTEX(pmus_lock); 148 static struct srcu_struct pmus_srcu; 149 150 /* 151 * perf event paranoia level: 152 * -1 - not paranoid at all 153 * 0 - disallow raw tracepoint access for unpriv 154 * 1 - disallow cpu events for unpriv 155 * 2 - disallow kernel profiling for unpriv 156 */ 157 int sysctl_perf_event_paranoid __read_mostly = 1; 158 159 /* Minimum for 512 kiB + 1 user control page */ 160 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 161 162 /* 163 * max perf event sample rate 164 */ 165 #define DEFAULT_MAX_SAMPLE_RATE 100000 166 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 167 static int max_samples_per_tick __read_mostly = 168 DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 169 170 int perf_proc_update_handler(struct ctl_table *table, int write, 171 void __user *buffer, size_t *lenp, 172 loff_t *ppos) 173 { 174 int ret = proc_dointvec(table, write, buffer, lenp, ppos); 175 176 if (ret || !write) 177 return ret; 178 179 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 180 181 return 0; 182 } 183 184 static atomic64_t perf_event_id; 185 186 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 187 enum event_type_t event_type); 188 189 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 190 enum event_type_t event_type, 191 struct task_struct *task); 192 193 static void update_context_time(struct perf_event_context *ctx); 194 static u64 perf_event_time(struct perf_event *event); 195 196 static void ring_buffer_attach(struct perf_event *event, 197 struct ring_buffer *rb); 198 199 void __weak perf_event_print_debug(void) { } 200 201 extern __weak const char *perf_pmu_name(void) 202 { 203 return "pmu"; 204 } 205 206 static inline u64 perf_clock(void) 207 { 208 return local_clock(); 209 } 210 211 static inline struct perf_cpu_context * 212 __get_cpu_context(struct perf_event_context *ctx) 213 { 214 return this_cpu_ptr(ctx->pmu->pmu_cpu_context); 215 } 216 217 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 218 struct perf_event_context *ctx) 219 { 220 raw_spin_lock(&cpuctx->ctx.lock); 221 if (ctx) 222 raw_spin_lock(&ctx->lock); 223 } 224 225 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 226 struct perf_event_context *ctx) 227 { 228 if (ctx) 229 raw_spin_unlock(&ctx->lock); 230 raw_spin_unlock(&cpuctx->ctx.lock); 231 } 232 233 #ifdef CONFIG_CGROUP_PERF 234 235 /* 236 * Must ensure cgroup is pinned (css_get) before calling 237 * this function. In other words, we cannot call this function 238 * if there is no cgroup event for the current CPU context. 239 */ 240 static inline struct perf_cgroup * 241 perf_cgroup_from_task(struct task_struct *task) 242 { 243 return container_of(task_subsys_state(task, perf_subsys_id), 244 struct perf_cgroup, css); 245 } 246 247 static inline bool 248 perf_cgroup_match(struct perf_event *event) 249 { 250 struct perf_event_context *ctx = event->ctx; 251 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 252 253 return !event->cgrp || event->cgrp == cpuctx->cgrp; 254 } 255 256 static inline bool perf_tryget_cgroup(struct perf_event *event) 257 { 258 return css_tryget(&event->cgrp->css); 259 } 260 261 static inline void perf_put_cgroup(struct perf_event *event) 262 { 263 css_put(&event->cgrp->css); 264 } 265 266 static inline void perf_detach_cgroup(struct perf_event *event) 267 { 268 perf_put_cgroup(event); 269 event->cgrp = NULL; 270 } 271 272 static inline int is_cgroup_event(struct perf_event *event) 273 { 274 return event->cgrp != NULL; 275 } 276 277 static inline u64 perf_cgroup_event_time(struct perf_event *event) 278 { 279 struct perf_cgroup_info *t; 280 281 t = per_cpu_ptr(event->cgrp->info, event->cpu); 282 return t->time; 283 } 284 285 static inline void __update_cgrp_time(struct perf_cgroup *cgrp) 286 { 287 struct perf_cgroup_info *info; 288 u64 now; 289 290 now = perf_clock(); 291 292 info = this_cpu_ptr(cgrp->info); 293 294 info->time += now - info->timestamp; 295 info->timestamp = now; 296 } 297 298 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 299 { 300 struct perf_cgroup *cgrp_out = cpuctx->cgrp; 301 if (cgrp_out) 302 __update_cgrp_time(cgrp_out); 303 } 304 305 static inline void update_cgrp_time_from_event(struct perf_event *event) 306 { 307 struct perf_cgroup *cgrp; 308 309 /* 310 * ensure we access cgroup data only when needed and 311 * when we know the cgroup is pinned (css_get) 312 */ 313 if (!is_cgroup_event(event)) 314 return; 315 316 cgrp = perf_cgroup_from_task(current); 317 /* 318 * Do not update time when cgroup is not active 319 */ 320 if (cgrp == event->cgrp) 321 __update_cgrp_time(event->cgrp); 322 } 323 324 static inline void 325 perf_cgroup_set_timestamp(struct task_struct *task, 326 struct perf_event_context *ctx) 327 { 328 struct perf_cgroup *cgrp; 329 struct perf_cgroup_info *info; 330 331 /* 332 * ctx->lock held by caller 333 * ensure we do not access cgroup data 334 * unless we have the cgroup pinned (css_get) 335 */ 336 if (!task || !ctx->nr_cgroups) 337 return; 338 339 cgrp = perf_cgroup_from_task(task); 340 info = this_cpu_ptr(cgrp->info); 341 info->timestamp = ctx->timestamp; 342 } 343 344 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */ 345 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */ 346 347 /* 348 * reschedule events based on the cgroup constraint of task. 349 * 350 * mode SWOUT : schedule out everything 351 * mode SWIN : schedule in based on cgroup for next 352 */ 353 void perf_cgroup_switch(struct task_struct *task, int mode) 354 { 355 struct perf_cpu_context *cpuctx; 356 struct pmu *pmu; 357 unsigned long flags; 358 359 /* 360 * disable interrupts to avoid geting nr_cgroup 361 * changes via __perf_event_disable(). Also 362 * avoids preemption. 363 */ 364 local_irq_save(flags); 365 366 /* 367 * we reschedule only in the presence of cgroup 368 * constrained events. 369 */ 370 rcu_read_lock(); 371 372 list_for_each_entry_rcu(pmu, &pmus, entry) { 373 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 374 375 /* 376 * perf_cgroup_events says at least one 377 * context on this CPU has cgroup events. 378 * 379 * ctx->nr_cgroups reports the number of cgroup 380 * events for a context. 381 */ 382 if (cpuctx->ctx.nr_cgroups > 0) { 383 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 384 perf_pmu_disable(cpuctx->ctx.pmu); 385 386 if (mode & PERF_CGROUP_SWOUT) { 387 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 388 /* 389 * must not be done before ctxswout due 390 * to event_filter_match() in event_sched_out() 391 */ 392 cpuctx->cgrp = NULL; 393 } 394 395 if (mode & PERF_CGROUP_SWIN) { 396 WARN_ON_ONCE(cpuctx->cgrp); 397 /* set cgrp before ctxsw in to 398 * allow event_filter_match() to not 399 * have to pass task around 400 */ 401 cpuctx->cgrp = perf_cgroup_from_task(task); 402 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task); 403 } 404 perf_pmu_enable(cpuctx->ctx.pmu); 405 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 406 } 407 } 408 409 rcu_read_unlock(); 410 411 local_irq_restore(flags); 412 } 413 414 static inline void perf_cgroup_sched_out(struct task_struct *task, 415 struct task_struct *next) 416 { 417 struct perf_cgroup *cgrp1; 418 struct perf_cgroup *cgrp2 = NULL; 419 420 /* 421 * we come here when we know perf_cgroup_events > 0 422 */ 423 cgrp1 = perf_cgroup_from_task(task); 424 425 /* 426 * next is NULL when called from perf_event_enable_on_exec() 427 * that will systematically cause a cgroup_switch() 428 */ 429 if (next) 430 cgrp2 = perf_cgroup_from_task(next); 431 432 /* 433 * only schedule out current cgroup events if we know 434 * that we are switching to a different cgroup. Otherwise, 435 * do no touch the cgroup events. 436 */ 437 if (cgrp1 != cgrp2) 438 perf_cgroup_switch(task, PERF_CGROUP_SWOUT); 439 } 440 441 static inline void perf_cgroup_sched_in(struct task_struct *prev, 442 struct task_struct *task) 443 { 444 struct perf_cgroup *cgrp1; 445 struct perf_cgroup *cgrp2 = NULL; 446 447 /* 448 * we come here when we know perf_cgroup_events > 0 449 */ 450 cgrp1 = perf_cgroup_from_task(task); 451 452 /* prev can never be NULL */ 453 cgrp2 = perf_cgroup_from_task(prev); 454 455 /* 456 * only need to schedule in cgroup events if we are changing 457 * cgroup during ctxsw. Cgroup events were not scheduled 458 * out of ctxsw out if that was not the case. 459 */ 460 if (cgrp1 != cgrp2) 461 perf_cgroup_switch(task, PERF_CGROUP_SWIN); 462 } 463 464 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 465 struct perf_event_attr *attr, 466 struct perf_event *group_leader) 467 { 468 struct perf_cgroup *cgrp; 469 struct cgroup_subsys_state *css; 470 struct file *file; 471 int ret = 0, fput_needed; 472 473 file = fget_light(fd, &fput_needed); 474 if (!file) 475 return -EBADF; 476 477 css = cgroup_css_from_dir(file, perf_subsys_id); 478 if (IS_ERR(css)) { 479 ret = PTR_ERR(css); 480 goto out; 481 } 482 483 cgrp = container_of(css, struct perf_cgroup, css); 484 event->cgrp = cgrp; 485 486 /* must be done before we fput() the file */ 487 if (!perf_tryget_cgroup(event)) { 488 event->cgrp = NULL; 489 ret = -ENOENT; 490 goto out; 491 } 492 493 /* 494 * all events in a group must monitor 495 * the same cgroup because a task belongs 496 * to only one perf cgroup at a time 497 */ 498 if (group_leader && group_leader->cgrp != cgrp) { 499 perf_detach_cgroup(event); 500 ret = -EINVAL; 501 } 502 out: 503 fput_light(file, fput_needed); 504 return ret; 505 } 506 507 static inline void 508 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 509 { 510 struct perf_cgroup_info *t; 511 t = per_cpu_ptr(event->cgrp->info, event->cpu); 512 event->shadow_ctx_time = now - t->timestamp; 513 } 514 515 static inline void 516 perf_cgroup_defer_enabled(struct perf_event *event) 517 { 518 /* 519 * when the current task's perf cgroup does not match 520 * the event's, we need to remember to call the 521 * perf_mark_enable() function the first time a task with 522 * a matching perf cgroup is scheduled in. 523 */ 524 if (is_cgroup_event(event) && !perf_cgroup_match(event)) 525 event->cgrp_defer_enabled = 1; 526 } 527 528 static inline void 529 perf_cgroup_mark_enabled(struct perf_event *event, 530 struct perf_event_context *ctx) 531 { 532 struct perf_event *sub; 533 u64 tstamp = perf_event_time(event); 534 535 if (!event->cgrp_defer_enabled) 536 return; 537 538 event->cgrp_defer_enabled = 0; 539 540 event->tstamp_enabled = tstamp - event->total_time_enabled; 541 list_for_each_entry(sub, &event->sibling_list, group_entry) { 542 if (sub->state >= PERF_EVENT_STATE_INACTIVE) { 543 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 544 sub->cgrp_defer_enabled = 0; 545 } 546 } 547 } 548 #else /* !CONFIG_CGROUP_PERF */ 549 550 static inline bool 551 perf_cgroup_match(struct perf_event *event) 552 { 553 return true; 554 } 555 556 static inline void perf_detach_cgroup(struct perf_event *event) 557 {} 558 559 static inline int is_cgroup_event(struct perf_event *event) 560 { 561 return 0; 562 } 563 564 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event) 565 { 566 return 0; 567 } 568 569 static inline void update_cgrp_time_from_event(struct perf_event *event) 570 { 571 } 572 573 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 574 { 575 } 576 577 static inline void perf_cgroup_sched_out(struct task_struct *task, 578 struct task_struct *next) 579 { 580 } 581 582 static inline void perf_cgroup_sched_in(struct task_struct *prev, 583 struct task_struct *task) 584 { 585 } 586 587 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 588 struct perf_event_attr *attr, 589 struct perf_event *group_leader) 590 { 591 return -EINVAL; 592 } 593 594 static inline void 595 perf_cgroup_set_timestamp(struct task_struct *task, 596 struct perf_event_context *ctx) 597 { 598 } 599 600 void 601 perf_cgroup_switch(struct task_struct *task, struct task_struct *next) 602 { 603 } 604 605 static inline void 606 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 607 { 608 } 609 610 static inline u64 perf_cgroup_event_time(struct perf_event *event) 611 { 612 return 0; 613 } 614 615 static inline void 616 perf_cgroup_defer_enabled(struct perf_event *event) 617 { 618 } 619 620 static inline void 621 perf_cgroup_mark_enabled(struct perf_event *event, 622 struct perf_event_context *ctx) 623 { 624 } 625 #endif 626 627 void perf_pmu_disable(struct pmu *pmu) 628 { 629 int *count = this_cpu_ptr(pmu->pmu_disable_count); 630 if (!(*count)++) 631 pmu->pmu_disable(pmu); 632 } 633 634 void perf_pmu_enable(struct pmu *pmu) 635 { 636 int *count = this_cpu_ptr(pmu->pmu_disable_count); 637 if (!--(*count)) 638 pmu->pmu_enable(pmu); 639 } 640 641 static DEFINE_PER_CPU(struct list_head, rotation_list); 642 643 /* 644 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized 645 * because they're strictly cpu affine and rotate_start is called with IRQs 646 * disabled, while rotate_context is called from IRQ context. 647 */ 648 static void perf_pmu_rotate_start(struct pmu *pmu) 649 { 650 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 651 struct list_head *head = &__get_cpu_var(rotation_list); 652 653 WARN_ON(!irqs_disabled()); 654 655 if (list_empty(&cpuctx->rotation_list)) 656 list_add(&cpuctx->rotation_list, head); 657 } 658 659 static void get_ctx(struct perf_event_context *ctx) 660 { 661 WARN_ON(!atomic_inc_not_zero(&ctx->refcount)); 662 } 663 664 static void put_ctx(struct perf_event_context *ctx) 665 { 666 if (atomic_dec_and_test(&ctx->refcount)) { 667 if (ctx->parent_ctx) 668 put_ctx(ctx->parent_ctx); 669 if (ctx->task) 670 put_task_struct(ctx->task); 671 kfree_rcu(ctx, rcu_head); 672 } 673 } 674 675 static void unclone_ctx(struct perf_event_context *ctx) 676 { 677 if (ctx->parent_ctx) { 678 put_ctx(ctx->parent_ctx); 679 ctx->parent_ctx = NULL; 680 } 681 } 682 683 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 684 { 685 /* 686 * only top level events have the pid namespace they were created in 687 */ 688 if (event->parent) 689 event = event->parent; 690 691 return task_tgid_nr_ns(p, event->ns); 692 } 693 694 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 695 { 696 /* 697 * only top level events have the pid namespace they were created in 698 */ 699 if (event->parent) 700 event = event->parent; 701 702 return task_pid_nr_ns(p, event->ns); 703 } 704 705 /* 706 * If we inherit events we want to return the parent event id 707 * to userspace. 708 */ 709 static u64 primary_event_id(struct perf_event *event) 710 { 711 u64 id = event->id; 712 713 if (event->parent) 714 id = event->parent->id; 715 716 return id; 717 } 718 719 /* 720 * Get the perf_event_context for a task and lock it. 721 * This has to cope with with the fact that until it is locked, 722 * the context could get moved to another task. 723 */ 724 static struct perf_event_context * 725 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) 726 { 727 struct perf_event_context *ctx; 728 729 rcu_read_lock(); 730 retry: 731 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); 732 if (ctx) { 733 /* 734 * If this context is a clone of another, it might 735 * get swapped for another underneath us by 736 * perf_event_task_sched_out, though the 737 * rcu_read_lock() protects us from any context 738 * getting freed. Lock the context and check if it 739 * got swapped before we could get the lock, and retry 740 * if so. If we locked the right context, then it 741 * can't get swapped on us any more. 742 */ 743 raw_spin_lock_irqsave(&ctx->lock, *flags); 744 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { 745 raw_spin_unlock_irqrestore(&ctx->lock, *flags); 746 goto retry; 747 } 748 749 if (!atomic_inc_not_zero(&ctx->refcount)) { 750 raw_spin_unlock_irqrestore(&ctx->lock, *flags); 751 ctx = NULL; 752 } 753 } 754 rcu_read_unlock(); 755 return ctx; 756 } 757 758 /* 759 * Get the context for a task and increment its pin_count so it 760 * can't get swapped to another task. This also increments its 761 * reference count so that the context can't get freed. 762 */ 763 static struct perf_event_context * 764 perf_pin_task_context(struct task_struct *task, int ctxn) 765 { 766 struct perf_event_context *ctx; 767 unsigned long flags; 768 769 ctx = perf_lock_task_context(task, ctxn, &flags); 770 if (ctx) { 771 ++ctx->pin_count; 772 raw_spin_unlock_irqrestore(&ctx->lock, flags); 773 } 774 return ctx; 775 } 776 777 static void perf_unpin_context(struct perf_event_context *ctx) 778 { 779 unsigned long flags; 780 781 raw_spin_lock_irqsave(&ctx->lock, flags); 782 --ctx->pin_count; 783 raw_spin_unlock_irqrestore(&ctx->lock, flags); 784 } 785 786 /* 787 * Update the record of the current time in a context. 788 */ 789 static void update_context_time(struct perf_event_context *ctx) 790 { 791 u64 now = perf_clock(); 792 793 ctx->time += now - ctx->timestamp; 794 ctx->timestamp = now; 795 } 796 797 static u64 perf_event_time(struct perf_event *event) 798 { 799 struct perf_event_context *ctx = event->ctx; 800 801 if (is_cgroup_event(event)) 802 return perf_cgroup_event_time(event); 803 804 return ctx ? ctx->time : 0; 805 } 806 807 /* 808 * Update the total_time_enabled and total_time_running fields for a event. 809 * The caller of this function needs to hold the ctx->lock. 810 */ 811 static void update_event_times(struct perf_event *event) 812 { 813 struct perf_event_context *ctx = event->ctx; 814 u64 run_end; 815 816 if (event->state < PERF_EVENT_STATE_INACTIVE || 817 event->group_leader->state < PERF_EVENT_STATE_INACTIVE) 818 return; 819 /* 820 * in cgroup mode, time_enabled represents 821 * the time the event was enabled AND active 822 * tasks were in the monitored cgroup. This is 823 * independent of the activity of the context as 824 * there may be a mix of cgroup and non-cgroup events. 825 * 826 * That is why we treat cgroup events differently 827 * here. 828 */ 829 if (is_cgroup_event(event)) 830 run_end = perf_cgroup_event_time(event); 831 else if (ctx->is_active) 832 run_end = ctx->time; 833 else 834 run_end = event->tstamp_stopped; 835 836 event->total_time_enabled = run_end - event->tstamp_enabled; 837 838 if (event->state == PERF_EVENT_STATE_INACTIVE) 839 run_end = event->tstamp_stopped; 840 else 841 run_end = perf_event_time(event); 842 843 event->total_time_running = run_end - event->tstamp_running; 844 845 } 846 847 /* 848 * Update total_time_enabled and total_time_running for all events in a group. 849 */ 850 static void update_group_times(struct perf_event *leader) 851 { 852 struct perf_event *event; 853 854 update_event_times(leader); 855 list_for_each_entry(event, &leader->sibling_list, group_entry) 856 update_event_times(event); 857 } 858 859 static struct list_head * 860 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx) 861 { 862 if (event->attr.pinned) 863 return &ctx->pinned_groups; 864 else 865 return &ctx->flexible_groups; 866 } 867 868 /* 869 * Add a event from the lists for its context. 870 * Must be called with ctx->mutex and ctx->lock held. 871 */ 872 static void 873 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 874 { 875 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 876 event->attach_state |= PERF_ATTACH_CONTEXT; 877 878 /* 879 * If we're a stand alone event or group leader, we go to the context 880 * list, group events are kept attached to the group so that 881 * perf_group_detach can, at all times, locate all siblings. 882 */ 883 if (event->group_leader == event) { 884 struct list_head *list; 885 886 if (is_software_event(event)) 887 event->group_flags |= PERF_GROUP_SOFTWARE; 888 889 list = ctx_group_list(event, ctx); 890 list_add_tail(&event->group_entry, list); 891 } 892 893 if (is_cgroup_event(event)) 894 ctx->nr_cgroups++; 895 896 if (has_branch_stack(event)) 897 ctx->nr_branch_stack++; 898 899 list_add_rcu(&event->event_entry, &ctx->event_list); 900 if (!ctx->nr_events) 901 perf_pmu_rotate_start(ctx->pmu); 902 ctx->nr_events++; 903 if (event->attr.inherit_stat) 904 ctx->nr_stat++; 905 } 906 907 /* 908 * Called at perf_event creation and when events are attached/detached from a 909 * group. 910 */ 911 static void perf_event__read_size(struct perf_event *event) 912 { 913 int entry = sizeof(u64); /* value */ 914 int size = 0; 915 int nr = 1; 916 917 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 918 size += sizeof(u64); 919 920 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 921 size += sizeof(u64); 922 923 if (event->attr.read_format & PERF_FORMAT_ID) 924 entry += sizeof(u64); 925 926 if (event->attr.read_format & PERF_FORMAT_GROUP) { 927 nr += event->group_leader->nr_siblings; 928 size += sizeof(u64); 929 } 930 931 size += entry * nr; 932 event->read_size = size; 933 } 934 935 static void perf_event__header_size(struct perf_event *event) 936 { 937 struct perf_sample_data *data; 938 u64 sample_type = event->attr.sample_type; 939 u16 size = 0; 940 941 perf_event__read_size(event); 942 943 if (sample_type & PERF_SAMPLE_IP) 944 size += sizeof(data->ip); 945 946 if (sample_type & PERF_SAMPLE_ADDR) 947 size += sizeof(data->addr); 948 949 if (sample_type & PERF_SAMPLE_PERIOD) 950 size += sizeof(data->period); 951 952 if (sample_type & PERF_SAMPLE_READ) 953 size += event->read_size; 954 955 event->header_size = size; 956 } 957 958 static void perf_event__id_header_size(struct perf_event *event) 959 { 960 struct perf_sample_data *data; 961 u64 sample_type = event->attr.sample_type; 962 u16 size = 0; 963 964 if (sample_type & PERF_SAMPLE_TID) 965 size += sizeof(data->tid_entry); 966 967 if (sample_type & PERF_SAMPLE_TIME) 968 size += sizeof(data->time); 969 970 if (sample_type & PERF_SAMPLE_ID) 971 size += sizeof(data->id); 972 973 if (sample_type & PERF_SAMPLE_STREAM_ID) 974 size += sizeof(data->stream_id); 975 976 if (sample_type & PERF_SAMPLE_CPU) 977 size += sizeof(data->cpu_entry); 978 979 event->id_header_size = size; 980 } 981 982 static void perf_group_attach(struct perf_event *event) 983 { 984 struct perf_event *group_leader = event->group_leader, *pos; 985 986 /* 987 * We can have double attach due to group movement in perf_event_open. 988 */ 989 if (event->attach_state & PERF_ATTACH_GROUP) 990 return; 991 992 event->attach_state |= PERF_ATTACH_GROUP; 993 994 if (group_leader == event) 995 return; 996 997 if (group_leader->group_flags & PERF_GROUP_SOFTWARE && 998 !is_software_event(event)) 999 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE; 1000 1001 list_add_tail(&event->group_entry, &group_leader->sibling_list); 1002 group_leader->nr_siblings++; 1003 1004 perf_event__header_size(group_leader); 1005 1006 list_for_each_entry(pos, &group_leader->sibling_list, group_entry) 1007 perf_event__header_size(pos); 1008 } 1009 1010 /* 1011 * Remove a event from the lists for its context. 1012 * Must be called with ctx->mutex and ctx->lock held. 1013 */ 1014 static void 1015 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 1016 { 1017 struct perf_cpu_context *cpuctx; 1018 /* 1019 * We can have double detach due to exit/hot-unplug + close. 1020 */ 1021 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 1022 return; 1023 1024 event->attach_state &= ~PERF_ATTACH_CONTEXT; 1025 1026 if (is_cgroup_event(event)) { 1027 ctx->nr_cgroups--; 1028 cpuctx = __get_cpu_context(ctx); 1029 /* 1030 * if there are no more cgroup events 1031 * then cler cgrp to avoid stale pointer 1032 * in update_cgrp_time_from_cpuctx() 1033 */ 1034 if (!ctx->nr_cgroups) 1035 cpuctx->cgrp = NULL; 1036 } 1037 1038 if (has_branch_stack(event)) 1039 ctx->nr_branch_stack--; 1040 1041 ctx->nr_events--; 1042 if (event->attr.inherit_stat) 1043 ctx->nr_stat--; 1044 1045 list_del_rcu(&event->event_entry); 1046 1047 if (event->group_leader == event) 1048 list_del_init(&event->group_entry); 1049 1050 update_group_times(event); 1051 1052 /* 1053 * If event was in error state, then keep it 1054 * that way, otherwise bogus counts will be 1055 * returned on read(). The only way to get out 1056 * of error state is by explicit re-enabling 1057 * of the event 1058 */ 1059 if (event->state > PERF_EVENT_STATE_OFF) 1060 event->state = PERF_EVENT_STATE_OFF; 1061 } 1062 1063 static void perf_group_detach(struct perf_event *event) 1064 { 1065 struct perf_event *sibling, *tmp; 1066 struct list_head *list = NULL; 1067 1068 /* 1069 * We can have double detach due to exit/hot-unplug + close. 1070 */ 1071 if (!(event->attach_state & PERF_ATTACH_GROUP)) 1072 return; 1073 1074 event->attach_state &= ~PERF_ATTACH_GROUP; 1075 1076 /* 1077 * If this is a sibling, remove it from its group. 1078 */ 1079 if (event->group_leader != event) { 1080 list_del_init(&event->group_entry); 1081 event->group_leader->nr_siblings--; 1082 goto out; 1083 } 1084 1085 if (!list_empty(&event->group_entry)) 1086 list = &event->group_entry; 1087 1088 /* 1089 * If this was a group event with sibling events then 1090 * upgrade the siblings to singleton events by adding them 1091 * to whatever list we are on. 1092 */ 1093 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) { 1094 if (list) 1095 list_move_tail(&sibling->group_entry, list); 1096 sibling->group_leader = sibling; 1097 1098 /* Inherit group flags from the previous leader */ 1099 sibling->group_flags = event->group_flags; 1100 } 1101 1102 out: 1103 perf_event__header_size(event->group_leader); 1104 1105 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry) 1106 perf_event__header_size(tmp); 1107 } 1108 1109 static inline int 1110 event_filter_match(struct perf_event *event) 1111 { 1112 return (event->cpu == -1 || event->cpu == smp_processor_id()) 1113 && perf_cgroup_match(event); 1114 } 1115 1116 static void 1117 event_sched_out(struct perf_event *event, 1118 struct perf_cpu_context *cpuctx, 1119 struct perf_event_context *ctx) 1120 { 1121 u64 tstamp = perf_event_time(event); 1122 u64 delta; 1123 /* 1124 * An event which could not be activated because of 1125 * filter mismatch still needs to have its timings 1126 * maintained, otherwise bogus information is return 1127 * via read() for time_enabled, time_running: 1128 */ 1129 if (event->state == PERF_EVENT_STATE_INACTIVE 1130 && !event_filter_match(event)) { 1131 delta = tstamp - event->tstamp_stopped; 1132 event->tstamp_running += delta; 1133 event->tstamp_stopped = tstamp; 1134 } 1135 1136 if (event->state != PERF_EVENT_STATE_ACTIVE) 1137 return; 1138 1139 event->state = PERF_EVENT_STATE_INACTIVE; 1140 if (event->pending_disable) { 1141 event->pending_disable = 0; 1142 event->state = PERF_EVENT_STATE_OFF; 1143 } 1144 event->tstamp_stopped = tstamp; 1145 event->pmu->del(event, 0); 1146 event->oncpu = -1; 1147 1148 if (!is_software_event(event)) 1149 cpuctx->active_oncpu--; 1150 ctx->nr_active--; 1151 if (event->attr.freq && event->attr.sample_freq) 1152 ctx->nr_freq--; 1153 if (event->attr.exclusive || !cpuctx->active_oncpu) 1154 cpuctx->exclusive = 0; 1155 } 1156 1157 static void 1158 group_sched_out(struct perf_event *group_event, 1159 struct perf_cpu_context *cpuctx, 1160 struct perf_event_context *ctx) 1161 { 1162 struct perf_event *event; 1163 int state = group_event->state; 1164 1165 event_sched_out(group_event, cpuctx, ctx); 1166 1167 /* 1168 * Schedule out siblings (if any): 1169 */ 1170 list_for_each_entry(event, &group_event->sibling_list, group_entry) 1171 event_sched_out(event, cpuctx, ctx); 1172 1173 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive) 1174 cpuctx->exclusive = 0; 1175 } 1176 1177 /* 1178 * Cross CPU call to remove a performance event 1179 * 1180 * We disable the event on the hardware level first. After that we 1181 * remove it from the context list. 1182 */ 1183 static int __perf_remove_from_context(void *info) 1184 { 1185 struct perf_event *event = info; 1186 struct perf_event_context *ctx = event->ctx; 1187 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1188 1189 raw_spin_lock(&ctx->lock); 1190 event_sched_out(event, cpuctx, ctx); 1191 list_del_event(event, ctx); 1192 if (!ctx->nr_events && cpuctx->task_ctx == ctx) { 1193 ctx->is_active = 0; 1194 cpuctx->task_ctx = NULL; 1195 } 1196 raw_spin_unlock(&ctx->lock); 1197 1198 return 0; 1199 } 1200 1201 1202 /* 1203 * Remove the event from a task's (or a CPU's) list of events. 1204 * 1205 * CPU events are removed with a smp call. For task events we only 1206 * call when the task is on a CPU. 1207 * 1208 * If event->ctx is a cloned context, callers must make sure that 1209 * every task struct that event->ctx->task could possibly point to 1210 * remains valid. This is OK when called from perf_release since 1211 * that only calls us on the top-level context, which can't be a clone. 1212 * When called from perf_event_exit_task, it's OK because the 1213 * context has been detached from its task. 1214 */ 1215 static void perf_remove_from_context(struct perf_event *event) 1216 { 1217 struct perf_event_context *ctx = event->ctx; 1218 struct task_struct *task = ctx->task; 1219 1220 lockdep_assert_held(&ctx->mutex); 1221 1222 if (!task) { 1223 /* 1224 * Per cpu events are removed via an smp call and 1225 * the removal is always successful. 1226 */ 1227 cpu_function_call(event->cpu, __perf_remove_from_context, event); 1228 return; 1229 } 1230 1231 retry: 1232 if (!task_function_call(task, __perf_remove_from_context, event)) 1233 return; 1234 1235 raw_spin_lock_irq(&ctx->lock); 1236 /* 1237 * If we failed to find a running task, but find the context active now 1238 * that we've acquired the ctx->lock, retry. 1239 */ 1240 if (ctx->is_active) { 1241 raw_spin_unlock_irq(&ctx->lock); 1242 goto retry; 1243 } 1244 1245 /* 1246 * Since the task isn't running, its safe to remove the event, us 1247 * holding the ctx->lock ensures the task won't get scheduled in. 1248 */ 1249 list_del_event(event, ctx); 1250 raw_spin_unlock_irq(&ctx->lock); 1251 } 1252 1253 /* 1254 * Cross CPU call to disable a performance event 1255 */ 1256 static int __perf_event_disable(void *info) 1257 { 1258 struct perf_event *event = info; 1259 struct perf_event_context *ctx = event->ctx; 1260 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1261 1262 /* 1263 * If this is a per-task event, need to check whether this 1264 * event's task is the current task on this cpu. 1265 * 1266 * Can trigger due to concurrent perf_event_context_sched_out() 1267 * flipping contexts around. 1268 */ 1269 if (ctx->task && cpuctx->task_ctx != ctx) 1270 return -EINVAL; 1271 1272 raw_spin_lock(&ctx->lock); 1273 1274 /* 1275 * If the event is on, turn it off. 1276 * If it is in error state, leave it in error state. 1277 */ 1278 if (event->state >= PERF_EVENT_STATE_INACTIVE) { 1279 update_context_time(ctx); 1280 update_cgrp_time_from_event(event); 1281 update_group_times(event); 1282 if (event == event->group_leader) 1283 group_sched_out(event, cpuctx, ctx); 1284 else 1285 event_sched_out(event, cpuctx, ctx); 1286 event->state = PERF_EVENT_STATE_OFF; 1287 } 1288 1289 raw_spin_unlock(&ctx->lock); 1290 1291 return 0; 1292 } 1293 1294 /* 1295 * Disable a event. 1296 * 1297 * If event->ctx is a cloned context, callers must make sure that 1298 * every task struct that event->ctx->task could possibly point to 1299 * remains valid. This condition is satisifed when called through 1300 * perf_event_for_each_child or perf_event_for_each because they 1301 * hold the top-level event's child_mutex, so any descendant that 1302 * goes to exit will block in sync_child_event. 1303 * When called from perf_pending_event it's OK because event->ctx 1304 * is the current context on this CPU and preemption is disabled, 1305 * hence we can't get into perf_event_task_sched_out for this context. 1306 */ 1307 void perf_event_disable(struct perf_event *event) 1308 { 1309 struct perf_event_context *ctx = event->ctx; 1310 struct task_struct *task = ctx->task; 1311 1312 if (!task) { 1313 /* 1314 * Disable the event on the cpu that it's on 1315 */ 1316 cpu_function_call(event->cpu, __perf_event_disable, event); 1317 return; 1318 } 1319 1320 retry: 1321 if (!task_function_call(task, __perf_event_disable, event)) 1322 return; 1323 1324 raw_spin_lock_irq(&ctx->lock); 1325 /* 1326 * If the event is still active, we need to retry the cross-call. 1327 */ 1328 if (event->state == PERF_EVENT_STATE_ACTIVE) { 1329 raw_spin_unlock_irq(&ctx->lock); 1330 /* 1331 * Reload the task pointer, it might have been changed by 1332 * a concurrent perf_event_context_sched_out(). 1333 */ 1334 task = ctx->task; 1335 goto retry; 1336 } 1337 1338 /* 1339 * Since we have the lock this context can't be scheduled 1340 * in, so we can change the state safely. 1341 */ 1342 if (event->state == PERF_EVENT_STATE_INACTIVE) { 1343 update_group_times(event); 1344 event->state = PERF_EVENT_STATE_OFF; 1345 } 1346 raw_spin_unlock_irq(&ctx->lock); 1347 } 1348 EXPORT_SYMBOL_GPL(perf_event_disable); 1349 1350 static void perf_set_shadow_time(struct perf_event *event, 1351 struct perf_event_context *ctx, 1352 u64 tstamp) 1353 { 1354 /* 1355 * use the correct time source for the time snapshot 1356 * 1357 * We could get by without this by leveraging the 1358 * fact that to get to this function, the caller 1359 * has most likely already called update_context_time() 1360 * and update_cgrp_time_xx() and thus both timestamp 1361 * are identical (or very close). Given that tstamp is, 1362 * already adjusted for cgroup, we could say that: 1363 * tstamp - ctx->timestamp 1364 * is equivalent to 1365 * tstamp - cgrp->timestamp. 1366 * 1367 * Then, in perf_output_read(), the calculation would 1368 * work with no changes because: 1369 * - event is guaranteed scheduled in 1370 * - no scheduled out in between 1371 * - thus the timestamp would be the same 1372 * 1373 * But this is a bit hairy. 1374 * 1375 * So instead, we have an explicit cgroup call to remain 1376 * within the time time source all along. We believe it 1377 * is cleaner and simpler to understand. 1378 */ 1379 if (is_cgroup_event(event)) 1380 perf_cgroup_set_shadow_time(event, tstamp); 1381 else 1382 event->shadow_ctx_time = tstamp - ctx->timestamp; 1383 } 1384 1385 #define MAX_INTERRUPTS (~0ULL) 1386 1387 static void perf_log_throttle(struct perf_event *event, int enable); 1388 1389 static int 1390 event_sched_in(struct perf_event *event, 1391 struct perf_cpu_context *cpuctx, 1392 struct perf_event_context *ctx) 1393 { 1394 u64 tstamp = perf_event_time(event); 1395 1396 if (event->state <= PERF_EVENT_STATE_OFF) 1397 return 0; 1398 1399 event->state = PERF_EVENT_STATE_ACTIVE; 1400 event->oncpu = smp_processor_id(); 1401 1402 /* 1403 * Unthrottle events, since we scheduled we might have missed several 1404 * ticks already, also for a heavily scheduling task there is little 1405 * guarantee it'll get a tick in a timely manner. 1406 */ 1407 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 1408 perf_log_throttle(event, 1); 1409 event->hw.interrupts = 0; 1410 } 1411 1412 /* 1413 * The new state must be visible before we turn it on in the hardware: 1414 */ 1415 smp_wmb(); 1416 1417 if (event->pmu->add(event, PERF_EF_START)) { 1418 event->state = PERF_EVENT_STATE_INACTIVE; 1419 event->oncpu = -1; 1420 return -EAGAIN; 1421 } 1422 1423 event->tstamp_running += tstamp - event->tstamp_stopped; 1424 1425 perf_set_shadow_time(event, ctx, tstamp); 1426 1427 if (!is_software_event(event)) 1428 cpuctx->active_oncpu++; 1429 ctx->nr_active++; 1430 if (event->attr.freq && event->attr.sample_freq) 1431 ctx->nr_freq++; 1432 1433 if (event->attr.exclusive) 1434 cpuctx->exclusive = 1; 1435 1436 return 0; 1437 } 1438 1439 static int 1440 group_sched_in(struct perf_event *group_event, 1441 struct perf_cpu_context *cpuctx, 1442 struct perf_event_context *ctx) 1443 { 1444 struct perf_event *event, *partial_group = NULL; 1445 struct pmu *pmu = group_event->pmu; 1446 u64 now = ctx->time; 1447 bool simulate = false; 1448 1449 if (group_event->state == PERF_EVENT_STATE_OFF) 1450 return 0; 1451 1452 pmu->start_txn(pmu); 1453 1454 if (event_sched_in(group_event, cpuctx, ctx)) { 1455 pmu->cancel_txn(pmu); 1456 return -EAGAIN; 1457 } 1458 1459 /* 1460 * Schedule in siblings as one group (if any): 1461 */ 1462 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 1463 if (event_sched_in(event, cpuctx, ctx)) { 1464 partial_group = event; 1465 goto group_error; 1466 } 1467 } 1468 1469 if (!pmu->commit_txn(pmu)) 1470 return 0; 1471 1472 group_error: 1473 /* 1474 * Groups can be scheduled in as one unit only, so undo any 1475 * partial group before returning: 1476 * The events up to the failed event are scheduled out normally, 1477 * tstamp_stopped will be updated. 1478 * 1479 * The failed events and the remaining siblings need to have 1480 * their timings updated as if they had gone thru event_sched_in() 1481 * and event_sched_out(). This is required to get consistent timings 1482 * across the group. This also takes care of the case where the group 1483 * could never be scheduled by ensuring tstamp_stopped is set to mark 1484 * the time the event was actually stopped, such that time delta 1485 * calculation in update_event_times() is correct. 1486 */ 1487 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 1488 if (event == partial_group) 1489 simulate = true; 1490 1491 if (simulate) { 1492 event->tstamp_running += now - event->tstamp_stopped; 1493 event->tstamp_stopped = now; 1494 } else { 1495 event_sched_out(event, cpuctx, ctx); 1496 } 1497 } 1498 event_sched_out(group_event, cpuctx, ctx); 1499 1500 pmu->cancel_txn(pmu); 1501 1502 return -EAGAIN; 1503 } 1504 1505 /* 1506 * Work out whether we can put this event group on the CPU now. 1507 */ 1508 static int group_can_go_on(struct perf_event *event, 1509 struct perf_cpu_context *cpuctx, 1510 int can_add_hw) 1511 { 1512 /* 1513 * Groups consisting entirely of software events can always go on. 1514 */ 1515 if (event->group_flags & PERF_GROUP_SOFTWARE) 1516 return 1; 1517 /* 1518 * If an exclusive group is already on, no other hardware 1519 * events can go on. 1520 */ 1521 if (cpuctx->exclusive) 1522 return 0; 1523 /* 1524 * If this group is exclusive and there are already 1525 * events on the CPU, it can't go on. 1526 */ 1527 if (event->attr.exclusive && cpuctx->active_oncpu) 1528 return 0; 1529 /* 1530 * Otherwise, try to add it if all previous groups were able 1531 * to go on. 1532 */ 1533 return can_add_hw; 1534 } 1535 1536 static void add_event_to_ctx(struct perf_event *event, 1537 struct perf_event_context *ctx) 1538 { 1539 u64 tstamp = perf_event_time(event); 1540 1541 list_add_event(event, ctx); 1542 perf_group_attach(event); 1543 event->tstamp_enabled = tstamp; 1544 event->tstamp_running = tstamp; 1545 event->tstamp_stopped = tstamp; 1546 } 1547 1548 static void task_ctx_sched_out(struct perf_event_context *ctx); 1549 static void 1550 ctx_sched_in(struct perf_event_context *ctx, 1551 struct perf_cpu_context *cpuctx, 1552 enum event_type_t event_type, 1553 struct task_struct *task); 1554 1555 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 1556 struct perf_event_context *ctx, 1557 struct task_struct *task) 1558 { 1559 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task); 1560 if (ctx) 1561 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task); 1562 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task); 1563 if (ctx) 1564 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task); 1565 } 1566 1567 /* 1568 * Cross CPU call to install and enable a performance event 1569 * 1570 * Must be called with ctx->mutex held 1571 */ 1572 static int __perf_install_in_context(void *info) 1573 { 1574 struct perf_event *event = info; 1575 struct perf_event_context *ctx = event->ctx; 1576 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1577 struct perf_event_context *task_ctx = cpuctx->task_ctx; 1578 struct task_struct *task = current; 1579 1580 perf_ctx_lock(cpuctx, task_ctx); 1581 perf_pmu_disable(cpuctx->ctx.pmu); 1582 1583 /* 1584 * If there was an active task_ctx schedule it out. 1585 */ 1586 if (task_ctx) 1587 task_ctx_sched_out(task_ctx); 1588 1589 /* 1590 * If the context we're installing events in is not the 1591 * active task_ctx, flip them. 1592 */ 1593 if (ctx->task && task_ctx != ctx) { 1594 if (task_ctx) 1595 raw_spin_unlock(&task_ctx->lock); 1596 raw_spin_lock(&ctx->lock); 1597 task_ctx = ctx; 1598 } 1599 1600 if (task_ctx) { 1601 cpuctx->task_ctx = task_ctx; 1602 task = task_ctx->task; 1603 } 1604 1605 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 1606 1607 update_context_time(ctx); 1608 /* 1609 * update cgrp time only if current cgrp 1610 * matches event->cgrp. Must be done before 1611 * calling add_event_to_ctx() 1612 */ 1613 update_cgrp_time_from_event(event); 1614 1615 add_event_to_ctx(event, ctx); 1616 1617 /* 1618 * Schedule everything back in 1619 */ 1620 perf_event_sched_in(cpuctx, task_ctx, task); 1621 1622 perf_pmu_enable(cpuctx->ctx.pmu); 1623 perf_ctx_unlock(cpuctx, task_ctx); 1624 1625 return 0; 1626 } 1627 1628 /* 1629 * Attach a performance event to a context 1630 * 1631 * First we add the event to the list with the hardware enable bit 1632 * in event->hw_config cleared. 1633 * 1634 * If the event is attached to a task which is on a CPU we use a smp 1635 * call to enable it in the task context. The task might have been 1636 * scheduled away, but we check this in the smp call again. 1637 */ 1638 static void 1639 perf_install_in_context(struct perf_event_context *ctx, 1640 struct perf_event *event, 1641 int cpu) 1642 { 1643 struct task_struct *task = ctx->task; 1644 1645 lockdep_assert_held(&ctx->mutex); 1646 1647 event->ctx = ctx; 1648 if (event->cpu != -1) 1649 event->cpu = cpu; 1650 1651 if (!task) { 1652 /* 1653 * Per cpu events are installed via an smp call and 1654 * the install is always successful. 1655 */ 1656 cpu_function_call(cpu, __perf_install_in_context, event); 1657 return; 1658 } 1659 1660 retry: 1661 if (!task_function_call(task, __perf_install_in_context, event)) 1662 return; 1663 1664 raw_spin_lock_irq(&ctx->lock); 1665 /* 1666 * If we failed to find a running task, but find the context active now 1667 * that we've acquired the ctx->lock, retry. 1668 */ 1669 if (ctx->is_active) { 1670 raw_spin_unlock_irq(&ctx->lock); 1671 goto retry; 1672 } 1673 1674 /* 1675 * Since the task isn't running, its safe to add the event, us holding 1676 * the ctx->lock ensures the task won't get scheduled in. 1677 */ 1678 add_event_to_ctx(event, ctx); 1679 raw_spin_unlock_irq(&ctx->lock); 1680 } 1681 1682 /* 1683 * Put a event into inactive state and update time fields. 1684 * Enabling the leader of a group effectively enables all 1685 * the group members that aren't explicitly disabled, so we 1686 * have to update their ->tstamp_enabled also. 1687 * Note: this works for group members as well as group leaders 1688 * since the non-leader members' sibling_lists will be empty. 1689 */ 1690 static void __perf_event_mark_enabled(struct perf_event *event) 1691 { 1692 struct perf_event *sub; 1693 u64 tstamp = perf_event_time(event); 1694 1695 event->state = PERF_EVENT_STATE_INACTIVE; 1696 event->tstamp_enabled = tstamp - event->total_time_enabled; 1697 list_for_each_entry(sub, &event->sibling_list, group_entry) { 1698 if (sub->state >= PERF_EVENT_STATE_INACTIVE) 1699 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 1700 } 1701 } 1702 1703 /* 1704 * Cross CPU call to enable a performance event 1705 */ 1706 static int __perf_event_enable(void *info) 1707 { 1708 struct perf_event *event = info; 1709 struct perf_event_context *ctx = event->ctx; 1710 struct perf_event *leader = event->group_leader; 1711 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1712 int err; 1713 1714 if (WARN_ON_ONCE(!ctx->is_active)) 1715 return -EINVAL; 1716 1717 raw_spin_lock(&ctx->lock); 1718 update_context_time(ctx); 1719 1720 if (event->state >= PERF_EVENT_STATE_INACTIVE) 1721 goto unlock; 1722 1723 /* 1724 * set current task's cgroup time reference point 1725 */ 1726 perf_cgroup_set_timestamp(current, ctx); 1727 1728 __perf_event_mark_enabled(event); 1729 1730 if (!event_filter_match(event)) { 1731 if (is_cgroup_event(event)) 1732 perf_cgroup_defer_enabled(event); 1733 goto unlock; 1734 } 1735 1736 /* 1737 * If the event is in a group and isn't the group leader, 1738 * then don't put it on unless the group is on. 1739 */ 1740 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) 1741 goto unlock; 1742 1743 if (!group_can_go_on(event, cpuctx, 1)) { 1744 err = -EEXIST; 1745 } else { 1746 if (event == leader) 1747 err = group_sched_in(event, cpuctx, ctx); 1748 else 1749 err = event_sched_in(event, cpuctx, ctx); 1750 } 1751 1752 if (err) { 1753 /* 1754 * If this event can't go on and it's part of a 1755 * group, then the whole group has to come off. 1756 */ 1757 if (leader != event) 1758 group_sched_out(leader, cpuctx, ctx); 1759 if (leader->attr.pinned) { 1760 update_group_times(leader); 1761 leader->state = PERF_EVENT_STATE_ERROR; 1762 } 1763 } 1764 1765 unlock: 1766 raw_spin_unlock(&ctx->lock); 1767 1768 return 0; 1769 } 1770 1771 /* 1772 * Enable a event. 1773 * 1774 * If event->ctx is a cloned context, callers must make sure that 1775 * every task struct that event->ctx->task could possibly point to 1776 * remains valid. This condition is satisfied when called through 1777 * perf_event_for_each_child or perf_event_for_each as described 1778 * for perf_event_disable. 1779 */ 1780 void perf_event_enable(struct perf_event *event) 1781 { 1782 struct perf_event_context *ctx = event->ctx; 1783 struct task_struct *task = ctx->task; 1784 1785 if (!task) { 1786 /* 1787 * Enable the event on the cpu that it's on 1788 */ 1789 cpu_function_call(event->cpu, __perf_event_enable, event); 1790 return; 1791 } 1792 1793 raw_spin_lock_irq(&ctx->lock); 1794 if (event->state >= PERF_EVENT_STATE_INACTIVE) 1795 goto out; 1796 1797 /* 1798 * If the event is in error state, clear that first. 1799 * That way, if we see the event in error state below, we 1800 * know that it has gone back into error state, as distinct 1801 * from the task having been scheduled away before the 1802 * cross-call arrived. 1803 */ 1804 if (event->state == PERF_EVENT_STATE_ERROR) 1805 event->state = PERF_EVENT_STATE_OFF; 1806 1807 retry: 1808 if (!ctx->is_active) { 1809 __perf_event_mark_enabled(event); 1810 goto out; 1811 } 1812 1813 raw_spin_unlock_irq(&ctx->lock); 1814 1815 if (!task_function_call(task, __perf_event_enable, event)) 1816 return; 1817 1818 raw_spin_lock_irq(&ctx->lock); 1819 1820 /* 1821 * If the context is active and the event is still off, 1822 * we need to retry the cross-call. 1823 */ 1824 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) { 1825 /* 1826 * task could have been flipped by a concurrent 1827 * perf_event_context_sched_out() 1828 */ 1829 task = ctx->task; 1830 goto retry; 1831 } 1832 1833 out: 1834 raw_spin_unlock_irq(&ctx->lock); 1835 } 1836 EXPORT_SYMBOL_GPL(perf_event_enable); 1837 1838 int perf_event_refresh(struct perf_event *event, int refresh) 1839 { 1840 /* 1841 * not supported on inherited events 1842 */ 1843 if (event->attr.inherit || !is_sampling_event(event)) 1844 return -EINVAL; 1845 1846 atomic_add(refresh, &event->event_limit); 1847 perf_event_enable(event); 1848 1849 return 0; 1850 } 1851 EXPORT_SYMBOL_GPL(perf_event_refresh); 1852 1853 static void ctx_sched_out(struct perf_event_context *ctx, 1854 struct perf_cpu_context *cpuctx, 1855 enum event_type_t event_type) 1856 { 1857 struct perf_event *event; 1858 int is_active = ctx->is_active; 1859 1860 ctx->is_active &= ~event_type; 1861 if (likely(!ctx->nr_events)) 1862 return; 1863 1864 update_context_time(ctx); 1865 update_cgrp_time_from_cpuctx(cpuctx); 1866 if (!ctx->nr_active) 1867 return; 1868 1869 perf_pmu_disable(ctx->pmu); 1870 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) { 1871 list_for_each_entry(event, &ctx->pinned_groups, group_entry) 1872 group_sched_out(event, cpuctx, ctx); 1873 } 1874 1875 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) { 1876 list_for_each_entry(event, &ctx->flexible_groups, group_entry) 1877 group_sched_out(event, cpuctx, ctx); 1878 } 1879 perf_pmu_enable(ctx->pmu); 1880 } 1881 1882 /* 1883 * Test whether two contexts are equivalent, i.e. whether they 1884 * have both been cloned from the same version of the same context 1885 * and they both have the same number of enabled events. 1886 * If the number of enabled events is the same, then the set 1887 * of enabled events should be the same, because these are both 1888 * inherited contexts, therefore we can't access individual events 1889 * in them directly with an fd; we can only enable/disable all 1890 * events via prctl, or enable/disable all events in a family 1891 * via ioctl, which will have the same effect on both contexts. 1892 */ 1893 static int context_equiv(struct perf_event_context *ctx1, 1894 struct perf_event_context *ctx2) 1895 { 1896 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx 1897 && ctx1->parent_gen == ctx2->parent_gen 1898 && !ctx1->pin_count && !ctx2->pin_count; 1899 } 1900 1901 static void __perf_event_sync_stat(struct perf_event *event, 1902 struct perf_event *next_event) 1903 { 1904 u64 value; 1905 1906 if (!event->attr.inherit_stat) 1907 return; 1908 1909 /* 1910 * Update the event value, we cannot use perf_event_read() 1911 * because we're in the middle of a context switch and have IRQs 1912 * disabled, which upsets smp_call_function_single(), however 1913 * we know the event must be on the current CPU, therefore we 1914 * don't need to use it. 1915 */ 1916 switch (event->state) { 1917 case PERF_EVENT_STATE_ACTIVE: 1918 event->pmu->read(event); 1919 /* fall-through */ 1920 1921 case PERF_EVENT_STATE_INACTIVE: 1922 update_event_times(event); 1923 break; 1924 1925 default: 1926 break; 1927 } 1928 1929 /* 1930 * In order to keep per-task stats reliable we need to flip the event 1931 * values when we flip the contexts. 1932 */ 1933 value = local64_read(&next_event->count); 1934 value = local64_xchg(&event->count, value); 1935 local64_set(&next_event->count, value); 1936 1937 swap(event->total_time_enabled, next_event->total_time_enabled); 1938 swap(event->total_time_running, next_event->total_time_running); 1939 1940 /* 1941 * Since we swizzled the values, update the user visible data too. 1942 */ 1943 perf_event_update_userpage(event); 1944 perf_event_update_userpage(next_event); 1945 } 1946 1947 #define list_next_entry(pos, member) \ 1948 list_entry(pos->member.next, typeof(*pos), member) 1949 1950 static void perf_event_sync_stat(struct perf_event_context *ctx, 1951 struct perf_event_context *next_ctx) 1952 { 1953 struct perf_event *event, *next_event; 1954 1955 if (!ctx->nr_stat) 1956 return; 1957 1958 update_context_time(ctx); 1959 1960 event = list_first_entry(&ctx->event_list, 1961 struct perf_event, event_entry); 1962 1963 next_event = list_first_entry(&next_ctx->event_list, 1964 struct perf_event, event_entry); 1965 1966 while (&event->event_entry != &ctx->event_list && 1967 &next_event->event_entry != &next_ctx->event_list) { 1968 1969 __perf_event_sync_stat(event, next_event); 1970 1971 event = list_next_entry(event, event_entry); 1972 next_event = list_next_entry(next_event, event_entry); 1973 } 1974 } 1975 1976 static void perf_event_context_sched_out(struct task_struct *task, int ctxn, 1977 struct task_struct *next) 1978 { 1979 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; 1980 struct perf_event_context *next_ctx; 1981 struct perf_event_context *parent; 1982 struct perf_cpu_context *cpuctx; 1983 int do_switch = 1; 1984 1985 if (likely(!ctx)) 1986 return; 1987 1988 cpuctx = __get_cpu_context(ctx); 1989 if (!cpuctx->task_ctx) 1990 return; 1991 1992 rcu_read_lock(); 1993 parent = rcu_dereference(ctx->parent_ctx); 1994 next_ctx = next->perf_event_ctxp[ctxn]; 1995 if (parent && next_ctx && 1996 rcu_dereference(next_ctx->parent_ctx) == parent) { 1997 /* 1998 * Looks like the two contexts are clones, so we might be 1999 * able to optimize the context switch. We lock both 2000 * contexts and check that they are clones under the 2001 * lock (including re-checking that neither has been 2002 * uncloned in the meantime). It doesn't matter which 2003 * order we take the locks because no other cpu could 2004 * be trying to lock both of these tasks. 2005 */ 2006 raw_spin_lock(&ctx->lock); 2007 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 2008 if (context_equiv(ctx, next_ctx)) { 2009 /* 2010 * XXX do we need a memory barrier of sorts 2011 * wrt to rcu_dereference() of perf_event_ctxp 2012 */ 2013 task->perf_event_ctxp[ctxn] = next_ctx; 2014 next->perf_event_ctxp[ctxn] = ctx; 2015 ctx->task = next; 2016 next_ctx->task = task; 2017 do_switch = 0; 2018 2019 perf_event_sync_stat(ctx, next_ctx); 2020 } 2021 raw_spin_unlock(&next_ctx->lock); 2022 raw_spin_unlock(&ctx->lock); 2023 } 2024 rcu_read_unlock(); 2025 2026 if (do_switch) { 2027 raw_spin_lock(&ctx->lock); 2028 ctx_sched_out(ctx, cpuctx, EVENT_ALL); 2029 cpuctx->task_ctx = NULL; 2030 raw_spin_unlock(&ctx->lock); 2031 } 2032 } 2033 2034 #define for_each_task_context_nr(ctxn) \ 2035 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) 2036 2037 /* 2038 * Called from scheduler to remove the events of the current task, 2039 * with interrupts disabled. 2040 * 2041 * We stop each event and update the event value in event->count. 2042 * 2043 * This does not protect us against NMI, but disable() 2044 * sets the disabled bit in the control field of event _before_ 2045 * accessing the event control register. If a NMI hits, then it will 2046 * not restart the event. 2047 */ 2048 void __perf_event_task_sched_out(struct task_struct *task, 2049 struct task_struct *next) 2050 { 2051 int ctxn; 2052 2053 for_each_task_context_nr(ctxn) 2054 perf_event_context_sched_out(task, ctxn, next); 2055 2056 /* 2057 * if cgroup events exist on this CPU, then we need 2058 * to check if we have to switch out PMU state. 2059 * cgroup event are system-wide mode only 2060 */ 2061 if (atomic_read(&__get_cpu_var(perf_cgroup_events))) 2062 perf_cgroup_sched_out(task, next); 2063 } 2064 2065 static void task_ctx_sched_out(struct perf_event_context *ctx) 2066 { 2067 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2068 2069 if (!cpuctx->task_ctx) 2070 return; 2071 2072 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2073 return; 2074 2075 ctx_sched_out(ctx, cpuctx, EVENT_ALL); 2076 cpuctx->task_ctx = NULL; 2077 } 2078 2079 /* 2080 * Called with IRQs disabled 2081 */ 2082 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 2083 enum event_type_t event_type) 2084 { 2085 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); 2086 } 2087 2088 static void 2089 ctx_pinned_sched_in(struct perf_event_context *ctx, 2090 struct perf_cpu_context *cpuctx) 2091 { 2092 struct perf_event *event; 2093 2094 list_for_each_entry(event, &ctx->pinned_groups, group_entry) { 2095 if (event->state <= PERF_EVENT_STATE_OFF) 2096 continue; 2097 if (!event_filter_match(event)) 2098 continue; 2099 2100 /* may need to reset tstamp_enabled */ 2101 if (is_cgroup_event(event)) 2102 perf_cgroup_mark_enabled(event, ctx); 2103 2104 if (group_can_go_on(event, cpuctx, 1)) 2105 group_sched_in(event, cpuctx, ctx); 2106 2107 /* 2108 * If this pinned group hasn't been scheduled, 2109 * put it in error state. 2110 */ 2111 if (event->state == PERF_EVENT_STATE_INACTIVE) { 2112 update_group_times(event); 2113 event->state = PERF_EVENT_STATE_ERROR; 2114 } 2115 } 2116 } 2117 2118 static void 2119 ctx_flexible_sched_in(struct perf_event_context *ctx, 2120 struct perf_cpu_context *cpuctx) 2121 { 2122 struct perf_event *event; 2123 int can_add_hw = 1; 2124 2125 list_for_each_entry(event, &ctx->flexible_groups, group_entry) { 2126 /* Ignore events in OFF or ERROR state */ 2127 if (event->state <= PERF_EVENT_STATE_OFF) 2128 continue; 2129 /* 2130 * Listen to the 'cpu' scheduling filter constraint 2131 * of events: 2132 */ 2133 if (!event_filter_match(event)) 2134 continue; 2135 2136 /* may need to reset tstamp_enabled */ 2137 if (is_cgroup_event(event)) 2138 perf_cgroup_mark_enabled(event, ctx); 2139 2140 if (group_can_go_on(event, cpuctx, can_add_hw)) { 2141 if (group_sched_in(event, cpuctx, ctx)) 2142 can_add_hw = 0; 2143 } 2144 } 2145 } 2146 2147 static void 2148 ctx_sched_in(struct perf_event_context *ctx, 2149 struct perf_cpu_context *cpuctx, 2150 enum event_type_t event_type, 2151 struct task_struct *task) 2152 { 2153 u64 now; 2154 int is_active = ctx->is_active; 2155 2156 ctx->is_active |= event_type; 2157 if (likely(!ctx->nr_events)) 2158 return; 2159 2160 now = perf_clock(); 2161 ctx->timestamp = now; 2162 perf_cgroup_set_timestamp(task, ctx); 2163 /* 2164 * First go through the list and put on any pinned groups 2165 * in order to give them the best chance of going on. 2166 */ 2167 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) 2168 ctx_pinned_sched_in(ctx, cpuctx); 2169 2170 /* Then walk through the lower prio flexible groups */ 2171 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) 2172 ctx_flexible_sched_in(ctx, cpuctx); 2173 } 2174 2175 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 2176 enum event_type_t event_type, 2177 struct task_struct *task) 2178 { 2179 struct perf_event_context *ctx = &cpuctx->ctx; 2180 2181 ctx_sched_in(ctx, cpuctx, event_type, task); 2182 } 2183 2184 static void perf_event_context_sched_in(struct perf_event_context *ctx, 2185 struct task_struct *task) 2186 { 2187 struct perf_cpu_context *cpuctx; 2188 2189 cpuctx = __get_cpu_context(ctx); 2190 if (cpuctx->task_ctx == ctx) 2191 return; 2192 2193 perf_ctx_lock(cpuctx, ctx); 2194 perf_pmu_disable(ctx->pmu); 2195 /* 2196 * We want to keep the following priority order: 2197 * cpu pinned (that don't need to move), task pinned, 2198 * cpu flexible, task flexible. 2199 */ 2200 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2201 2202 if (ctx->nr_events) 2203 cpuctx->task_ctx = ctx; 2204 2205 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task); 2206 2207 perf_pmu_enable(ctx->pmu); 2208 perf_ctx_unlock(cpuctx, ctx); 2209 2210 /* 2211 * Since these rotations are per-cpu, we need to ensure the 2212 * cpu-context we got scheduled on is actually rotating. 2213 */ 2214 perf_pmu_rotate_start(ctx->pmu); 2215 } 2216 2217 /* 2218 * When sampling the branck stack in system-wide, it may be necessary 2219 * to flush the stack on context switch. This happens when the branch 2220 * stack does not tag its entries with the pid of the current task. 2221 * Otherwise it becomes impossible to associate a branch entry with a 2222 * task. This ambiguity is more likely to appear when the branch stack 2223 * supports priv level filtering and the user sets it to monitor only 2224 * at the user level (which could be a useful measurement in system-wide 2225 * mode). In that case, the risk is high of having a branch stack with 2226 * branch from multiple tasks. Flushing may mean dropping the existing 2227 * entries or stashing them somewhere in the PMU specific code layer. 2228 * 2229 * This function provides the context switch callback to the lower code 2230 * layer. It is invoked ONLY when there is at least one system-wide context 2231 * with at least one active event using taken branch sampling. 2232 */ 2233 static void perf_branch_stack_sched_in(struct task_struct *prev, 2234 struct task_struct *task) 2235 { 2236 struct perf_cpu_context *cpuctx; 2237 struct pmu *pmu; 2238 unsigned long flags; 2239 2240 /* no need to flush branch stack if not changing task */ 2241 if (prev == task) 2242 return; 2243 2244 local_irq_save(flags); 2245 2246 rcu_read_lock(); 2247 2248 list_for_each_entry_rcu(pmu, &pmus, entry) { 2249 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 2250 2251 /* 2252 * check if the context has at least one 2253 * event using PERF_SAMPLE_BRANCH_STACK 2254 */ 2255 if (cpuctx->ctx.nr_branch_stack > 0 2256 && pmu->flush_branch_stack) { 2257 2258 pmu = cpuctx->ctx.pmu; 2259 2260 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 2261 2262 perf_pmu_disable(pmu); 2263 2264 pmu->flush_branch_stack(); 2265 2266 perf_pmu_enable(pmu); 2267 2268 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 2269 } 2270 } 2271 2272 rcu_read_unlock(); 2273 2274 local_irq_restore(flags); 2275 } 2276 2277 /* 2278 * Called from scheduler to add the events of the current task 2279 * with interrupts disabled. 2280 * 2281 * We restore the event value and then enable it. 2282 * 2283 * This does not protect us against NMI, but enable() 2284 * sets the enabled bit in the control field of event _before_ 2285 * accessing the event control register. If a NMI hits, then it will 2286 * keep the event running. 2287 */ 2288 void __perf_event_task_sched_in(struct task_struct *prev, 2289 struct task_struct *task) 2290 { 2291 struct perf_event_context *ctx; 2292 int ctxn; 2293 2294 for_each_task_context_nr(ctxn) { 2295 ctx = task->perf_event_ctxp[ctxn]; 2296 if (likely(!ctx)) 2297 continue; 2298 2299 perf_event_context_sched_in(ctx, task); 2300 } 2301 /* 2302 * if cgroup events exist on this CPU, then we need 2303 * to check if we have to switch in PMU state. 2304 * cgroup event are system-wide mode only 2305 */ 2306 if (atomic_read(&__get_cpu_var(perf_cgroup_events))) 2307 perf_cgroup_sched_in(prev, task); 2308 2309 /* check for system-wide branch_stack events */ 2310 if (atomic_read(&__get_cpu_var(perf_branch_stack_events))) 2311 perf_branch_stack_sched_in(prev, task); 2312 } 2313 2314 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 2315 { 2316 u64 frequency = event->attr.sample_freq; 2317 u64 sec = NSEC_PER_SEC; 2318 u64 divisor, dividend; 2319 2320 int count_fls, nsec_fls, frequency_fls, sec_fls; 2321 2322 count_fls = fls64(count); 2323 nsec_fls = fls64(nsec); 2324 frequency_fls = fls64(frequency); 2325 sec_fls = 30; 2326 2327 /* 2328 * We got @count in @nsec, with a target of sample_freq HZ 2329 * the target period becomes: 2330 * 2331 * @count * 10^9 2332 * period = ------------------- 2333 * @nsec * sample_freq 2334 * 2335 */ 2336 2337 /* 2338 * Reduce accuracy by one bit such that @a and @b converge 2339 * to a similar magnitude. 2340 */ 2341 #define REDUCE_FLS(a, b) \ 2342 do { \ 2343 if (a##_fls > b##_fls) { \ 2344 a >>= 1; \ 2345 a##_fls--; \ 2346 } else { \ 2347 b >>= 1; \ 2348 b##_fls--; \ 2349 } \ 2350 } while (0) 2351 2352 /* 2353 * Reduce accuracy until either term fits in a u64, then proceed with 2354 * the other, so that finally we can do a u64/u64 division. 2355 */ 2356 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 2357 REDUCE_FLS(nsec, frequency); 2358 REDUCE_FLS(sec, count); 2359 } 2360 2361 if (count_fls + sec_fls > 64) { 2362 divisor = nsec * frequency; 2363 2364 while (count_fls + sec_fls > 64) { 2365 REDUCE_FLS(count, sec); 2366 divisor >>= 1; 2367 } 2368 2369 dividend = count * sec; 2370 } else { 2371 dividend = count * sec; 2372 2373 while (nsec_fls + frequency_fls > 64) { 2374 REDUCE_FLS(nsec, frequency); 2375 dividend >>= 1; 2376 } 2377 2378 divisor = nsec * frequency; 2379 } 2380 2381 if (!divisor) 2382 return dividend; 2383 2384 return div64_u64(dividend, divisor); 2385 } 2386 2387 static DEFINE_PER_CPU(int, perf_throttled_count); 2388 static DEFINE_PER_CPU(u64, perf_throttled_seq); 2389 2390 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 2391 { 2392 struct hw_perf_event *hwc = &event->hw; 2393 s64 period, sample_period; 2394 s64 delta; 2395 2396 period = perf_calculate_period(event, nsec, count); 2397 2398 delta = (s64)(period - hwc->sample_period); 2399 delta = (delta + 7) / 8; /* low pass filter */ 2400 2401 sample_period = hwc->sample_period + delta; 2402 2403 if (!sample_period) 2404 sample_period = 1; 2405 2406 hwc->sample_period = sample_period; 2407 2408 if (local64_read(&hwc->period_left) > 8*sample_period) { 2409 if (disable) 2410 event->pmu->stop(event, PERF_EF_UPDATE); 2411 2412 local64_set(&hwc->period_left, 0); 2413 2414 if (disable) 2415 event->pmu->start(event, PERF_EF_RELOAD); 2416 } 2417 } 2418 2419 /* 2420 * combine freq adjustment with unthrottling to avoid two passes over the 2421 * events. At the same time, make sure, having freq events does not change 2422 * the rate of unthrottling as that would introduce bias. 2423 */ 2424 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx, 2425 int needs_unthr) 2426 { 2427 struct perf_event *event; 2428 struct hw_perf_event *hwc; 2429 u64 now, period = TICK_NSEC; 2430 s64 delta; 2431 2432 /* 2433 * only need to iterate over all events iff: 2434 * - context have events in frequency mode (needs freq adjust) 2435 * - there are events to unthrottle on this cpu 2436 */ 2437 if (!(ctx->nr_freq || needs_unthr)) 2438 return; 2439 2440 raw_spin_lock(&ctx->lock); 2441 perf_pmu_disable(ctx->pmu); 2442 2443 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 2444 if (event->state != PERF_EVENT_STATE_ACTIVE) 2445 continue; 2446 2447 if (!event_filter_match(event)) 2448 continue; 2449 2450 hwc = &event->hw; 2451 2452 if (needs_unthr && hwc->interrupts == MAX_INTERRUPTS) { 2453 hwc->interrupts = 0; 2454 perf_log_throttle(event, 1); 2455 event->pmu->start(event, 0); 2456 } 2457 2458 if (!event->attr.freq || !event->attr.sample_freq) 2459 continue; 2460 2461 /* 2462 * stop the event and update event->count 2463 */ 2464 event->pmu->stop(event, PERF_EF_UPDATE); 2465 2466 now = local64_read(&event->count); 2467 delta = now - hwc->freq_count_stamp; 2468 hwc->freq_count_stamp = now; 2469 2470 /* 2471 * restart the event 2472 * reload only if value has changed 2473 * we have stopped the event so tell that 2474 * to perf_adjust_period() to avoid stopping it 2475 * twice. 2476 */ 2477 if (delta > 0) 2478 perf_adjust_period(event, period, delta, false); 2479 2480 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 2481 } 2482 2483 perf_pmu_enable(ctx->pmu); 2484 raw_spin_unlock(&ctx->lock); 2485 } 2486 2487 /* 2488 * Round-robin a context's events: 2489 */ 2490 static void rotate_ctx(struct perf_event_context *ctx) 2491 { 2492 /* 2493 * Rotate the first entry last of non-pinned groups. Rotation might be 2494 * disabled by the inheritance code. 2495 */ 2496 if (!ctx->rotate_disable) 2497 list_rotate_left(&ctx->flexible_groups); 2498 } 2499 2500 /* 2501 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized 2502 * because they're strictly cpu affine and rotate_start is called with IRQs 2503 * disabled, while rotate_context is called from IRQ context. 2504 */ 2505 static void perf_rotate_context(struct perf_cpu_context *cpuctx) 2506 { 2507 struct perf_event_context *ctx = NULL; 2508 int rotate = 0, remove = 1; 2509 2510 if (cpuctx->ctx.nr_events) { 2511 remove = 0; 2512 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active) 2513 rotate = 1; 2514 } 2515 2516 ctx = cpuctx->task_ctx; 2517 if (ctx && ctx->nr_events) { 2518 remove = 0; 2519 if (ctx->nr_events != ctx->nr_active) 2520 rotate = 1; 2521 } 2522 2523 if (!rotate) 2524 goto done; 2525 2526 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 2527 perf_pmu_disable(cpuctx->ctx.pmu); 2528 2529 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2530 if (ctx) 2531 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE); 2532 2533 rotate_ctx(&cpuctx->ctx); 2534 if (ctx) 2535 rotate_ctx(ctx); 2536 2537 perf_event_sched_in(cpuctx, ctx, current); 2538 2539 perf_pmu_enable(cpuctx->ctx.pmu); 2540 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 2541 done: 2542 if (remove) 2543 list_del_init(&cpuctx->rotation_list); 2544 } 2545 2546 void perf_event_task_tick(void) 2547 { 2548 struct list_head *head = &__get_cpu_var(rotation_list); 2549 struct perf_cpu_context *cpuctx, *tmp; 2550 struct perf_event_context *ctx; 2551 int throttled; 2552 2553 WARN_ON(!irqs_disabled()); 2554 2555 __this_cpu_inc(perf_throttled_seq); 2556 throttled = __this_cpu_xchg(perf_throttled_count, 0); 2557 2558 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) { 2559 ctx = &cpuctx->ctx; 2560 perf_adjust_freq_unthr_context(ctx, throttled); 2561 2562 ctx = cpuctx->task_ctx; 2563 if (ctx) 2564 perf_adjust_freq_unthr_context(ctx, throttled); 2565 2566 if (cpuctx->jiffies_interval == 1 || 2567 !(jiffies % cpuctx->jiffies_interval)) 2568 perf_rotate_context(cpuctx); 2569 } 2570 } 2571 2572 static int event_enable_on_exec(struct perf_event *event, 2573 struct perf_event_context *ctx) 2574 { 2575 if (!event->attr.enable_on_exec) 2576 return 0; 2577 2578 event->attr.enable_on_exec = 0; 2579 if (event->state >= PERF_EVENT_STATE_INACTIVE) 2580 return 0; 2581 2582 __perf_event_mark_enabled(event); 2583 2584 return 1; 2585 } 2586 2587 /* 2588 * Enable all of a task's events that have been marked enable-on-exec. 2589 * This expects task == current. 2590 */ 2591 static void perf_event_enable_on_exec(struct perf_event_context *ctx) 2592 { 2593 struct perf_event *event; 2594 unsigned long flags; 2595 int enabled = 0; 2596 int ret; 2597 2598 local_irq_save(flags); 2599 if (!ctx || !ctx->nr_events) 2600 goto out; 2601 2602 /* 2603 * We must ctxsw out cgroup events to avoid conflict 2604 * when invoking perf_task_event_sched_in() later on 2605 * in this function. Otherwise we end up trying to 2606 * ctxswin cgroup events which are already scheduled 2607 * in. 2608 */ 2609 perf_cgroup_sched_out(current, NULL); 2610 2611 raw_spin_lock(&ctx->lock); 2612 task_ctx_sched_out(ctx); 2613 2614 list_for_each_entry(event, &ctx->event_list, event_entry) { 2615 ret = event_enable_on_exec(event, ctx); 2616 if (ret) 2617 enabled = 1; 2618 } 2619 2620 /* 2621 * Unclone this context if we enabled any event. 2622 */ 2623 if (enabled) 2624 unclone_ctx(ctx); 2625 2626 raw_spin_unlock(&ctx->lock); 2627 2628 /* 2629 * Also calls ctxswin for cgroup events, if any: 2630 */ 2631 perf_event_context_sched_in(ctx, ctx->task); 2632 out: 2633 local_irq_restore(flags); 2634 } 2635 2636 /* 2637 * Cross CPU call to read the hardware event 2638 */ 2639 static void __perf_event_read(void *info) 2640 { 2641 struct perf_event *event = info; 2642 struct perf_event_context *ctx = event->ctx; 2643 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2644 2645 /* 2646 * If this is a task context, we need to check whether it is 2647 * the current task context of this cpu. If not it has been 2648 * scheduled out before the smp call arrived. In that case 2649 * event->count would have been updated to a recent sample 2650 * when the event was scheduled out. 2651 */ 2652 if (ctx->task && cpuctx->task_ctx != ctx) 2653 return; 2654 2655 raw_spin_lock(&ctx->lock); 2656 if (ctx->is_active) { 2657 update_context_time(ctx); 2658 update_cgrp_time_from_event(event); 2659 } 2660 update_event_times(event); 2661 if (event->state == PERF_EVENT_STATE_ACTIVE) 2662 event->pmu->read(event); 2663 raw_spin_unlock(&ctx->lock); 2664 } 2665 2666 static inline u64 perf_event_count(struct perf_event *event) 2667 { 2668 return local64_read(&event->count) + atomic64_read(&event->child_count); 2669 } 2670 2671 static u64 perf_event_read(struct perf_event *event) 2672 { 2673 /* 2674 * If event is enabled and currently active on a CPU, update the 2675 * value in the event structure: 2676 */ 2677 if (event->state == PERF_EVENT_STATE_ACTIVE) { 2678 smp_call_function_single(event->oncpu, 2679 __perf_event_read, event, 1); 2680 } else if (event->state == PERF_EVENT_STATE_INACTIVE) { 2681 struct perf_event_context *ctx = event->ctx; 2682 unsigned long flags; 2683 2684 raw_spin_lock_irqsave(&ctx->lock, flags); 2685 /* 2686 * may read while context is not active 2687 * (e.g., thread is blocked), in that case 2688 * we cannot update context time 2689 */ 2690 if (ctx->is_active) { 2691 update_context_time(ctx); 2692 update_cgrp_time_from_event(event); 2693 } 2694 update_event_times(event); 2695 raw_spin_unlock_irqrestore(&ctx->lock, flags); 2696 } 2697 2698 return perf_event_count(event); 2699 } 2700 2701 /* 2702 * Initialize the perf_event context in a task_struct: 2703 */ 2704 static void __perf_event_init_context(struct perf_event_context *ctx) 2705 { 2706 raw_spin_lock_init(&ctx->lock); 2707 mutex_init(&ctx->mutex); 2708 INIT_LIST_HEAD(&ctx->pinned_groups); 2709 INIT_LIST_HEAD(&ctx->flexible_groups); 2710 INIT_LIST_HEAD(&ctx->event_list); 2711 atomic_set(&ctx->refcount, 1); 2712 } 2713 2714 static struct perf_event_context * 2715 alloc_perf_context(struct pmu *pmu, struct task_struct *task) 2716 { 2717 struct perf_event_context *ctx; 2718 2719 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 2720 if (!ctx) 2721 return NULL; 2722 2723 __perf_event_init_context(ctx); 2724 if (task) { 2725 ctx->task = task; 2726 get_task_struct(task); 2727 } 2728 ctx->pmu = pmu; 2729 2730 return ctx; 2731 } 2732 2733 static struct task_struct * 2734 find_lively_task_by_vpid(pid_t vpid) 2735 { 2736 struct task_struct *task; 2737 int err; 2738 2739 rcu_read_lock(); 2740 if (!vpid) 2741 task = current; 2742 else 2743 task = find_task_by_vpid(vpid); 2744 if (task) 2745 get_task_struct(task); 2746 rcu_read_unlock(); 2747 2748 if (!task) 2749 return ERR_PTR(-ESRCH); 2750 2751 /* Reuse ptrace permission checks for now. */ 2752 err = -EACCES; 2753 if (!ptrace_may_access(task, PTRACE_MODE_READ)) 2754 goto errout; 2755 2756 return task; 2757 errout: 2758 put_task_struct(task); 2759 return ERR_PTR(err); 2760 2761 } 2762 2763 /* 2764 * Returns a matching context with refcount and pincount. 2765 */ 2766 static struct perf_event_context * 2767 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu) 2768 { 2769 struct perf_event_context *ctx; 2770 struct perf_cpu_context *cpuctx; 2771 unsigned long flags; 2772 int ctxn, err; 2773 2774 if (!task) { 2775 /* Must be root to operate on a CPU event: */ 2776 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) 2777 return ERR_PTR(-EACCES); 2778 2779 /* 2780 * We could be clever and allow to attach a event to an 2781 * offline CPU and activate it when the CPU comes up, but 2782 * that's for later. 2783 */ 2784 if (!cpu_online(cpu)) 2785 return ERR_PTR(-ENODEV); 2786 2787 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 2788 ctx = &cpuctx->ctx; 2789 get_ctx(ctx); 2790 ++ctx->pin_count; 2791 2792 return ctx; 2793 } 2794 2795 err = -EINVAL; 2796 ctxn = pmu->task_ctx_nr; 2797 if (ctxn < 0) 2798 goto errout; 2799 2800 retry: 2801 ctx = perf_lock_task_context(task, ctxn, &flags); 2802 if (ctx) { 2803 unclone_ctx(ctx); 2804 ++ctx->pin_count; 2805 raw_spin_unlock_irqrestore(&ctx->lock, flags); 2806 } else { 2807 ctx = alloc_perf_context(pmu, task); 2808 err = -ENOMEM; 2809 if (!ctx) 2810 goto errout; 2811 2812 err = 0; 2813 mutex_lock(&task->perf_event_mutex); 2814 /* 2815 * If it has already passed perf_event_exit_task(). 2816 * we must see PF_EXITING, it takes this mutex too. 2817 */ 2818 if (task->flags & PF_EXITING) 2819 err = -ESRCH; 2820 else if (task->perf_event_ctxp[ctxn]) 2821 err = -EAGAIN; 2822 else { 2823 get_ctx(ctx); 2824 ++ctx->pin_count; 2825 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); 2826 } 2827 mutex_unlock(&task->perf_event_mutex); 2828 2829 if (unlikely(err)) { 2830 put_ctx(ctx); 2831 2832 if (err == -EAGAIN) 2833 goto retry; 2834 goto errout; 2835 } 2836 } 2837 2838 return ctx; 2839 2840 errout: 2841 return ERR_PTR(err); 2842 } 2843 2844 static void perf_event_free_filter(struct perf_event *event); 2845 2846 static void free_event_rcu(struct rcu_head *head) 2847 { 2848 struct perf_event *event; 2849 2850 event = container_of(head, struct perf_event, rcu_head); 2851 if (event->ns) 2852 put_pid_ns(event->ns); 2853 perf_event_free_filter(event); 2854 kfree(event); 2855 } 2856 2857 static void ring_buffer_put(struct ring_buffer *rb); 2858 2859 static void free_event(struct perf_event *event) 2860 { 2861 irq_work_sync(&event->pending); 2862 2863 if (!event->parent) { 2864 if (event->attach_state & PERF_ATTACH_TASK) 2865 static_key_slow_dec_deferred(&perf_sched_events); 2866 if (event->attr.mmap || event->attr.mmap_data) 2867 atomic_dec(&nr_mmap_events); 2868 if (event->attr.comm) 2869 atomic_dec(&nr_comm_events); 2870 if (event->attr.task) 2871 atomic_dec(&nr_task_events); 2872 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 2873 put_callchain_buffers(); 2874 if (is_cgroup_event(event)) { 2875 atomic_dec(&per_cpu(perf_cgroup_events, event->cpu)); 2876 static_key_slow_dec_deferred(&perf_sched_events); 2877 } 2878 2879 if (has_branch_stack(event)) { 2880 static_key_slow_dec_deferred(&perf_sched_events); 2881 /* is system-wide event */ 2882 if (!(event->attach_state & PERF_ATTACH_TASK)) 2883 atomic_dec(&per_cpu(perf_branch_stack_events, 2884 event->cpu)); 2885 } 2886 } 2887 2888 if (event->rb) { 2889 ring_buffer_put(event->rb); 2890 event->rb = NULL; 2891 } 2892 2893 if (is_cgroup_event(event)) 2894 perf_detach_cgroup(event); 2895 2896 if (event->destroy) 2897 event->destroy(event); 2898 2899 if (event->ctx) 2900 put_ctx(event->ctx); 2901 2902 call_rcu(&event->rcu_head, free_event_rcu); 2903 } 2904 2905 int perf_event_release_kernel(struct perf_event *event) 2906 { 2907 struct perf_event_context *ctx = event->ctx; 2908 2909 WARN_ON_ONCE(ctx->parent_ctx); 2910 /* 2911 * There are two ways this annotation is useful: 2912 * 2913 * 1) there is a lock recursion from perf_event_exit_task 2914 * see the comment there. 2915 * 2916 * 2) there is a lock-inversion with mmap_sem through 2917 * perf_event_read_group(), which takes faults while 2918 * holding ctx->mutex, however this is called after 2919 * the last filedesc died, so there is no possibility 2920 * to trigger the AB-BA case. 2921 */ 2922 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING); 2923 raw_spin_lock_irq(&ctx->lock); 2924 perf_group_detach(event); 2925 raw_spin_unlock_irq(&ctx->lock); 2926 perf_remove_from_context(event); 2927 mutex_unlock(&ctx->mutex); 2928 2929 free_event(event); 2930 2931 return 0; 2932 } 2933 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 2934 2935 /* 2936 * Called when the last reference to the file is gone. 2937 */ 2938 static int perf_release(struct inode *inode, struct file *file) 2939 { 2940 struct perf_event *event = file->private_data; 2941 struct task_struct *owner; 2942 2943 file->private_data = NULL; 2944 2945 rcu_read_lock(); 2946 owner = ACCESS_ONCE(event->owner); 2947 /* 2948 * Matches the smp_wmb() in perf_event_exit_task(). If we observe 2949 * !owner it means the list deletion is complete and we can indeed 2950 * free this event, otherwise we need to serialize on 2951 * owner->perf_event_mutex. 2952 */ 2953 smp_read_barrier_depends(); 2954 if (owner) { 2955 /* 2956 * Since delayed_put_task_struct() also drops the last 2957 * task reference we can safely take a new reference 2958 * while holding the rcu_read_lock(). 2959 */ 2960 get_task_struct(owner); 2961 } 2962 rcu_read_unlock(); 2963 2964 if (owner) { 2965 mutex_lock(&owner->perf_event_mutex); 2966 /* 2967 * We have to re-check the event->owner field, if it is cleared 2968 * we raced with perf_event_exit_task(), acquiring the mutex 2969 * ensured they're done, and we can proceed with freeing the 2970 * event. 2971 */ 2972 if (event->owner) 2973 list_del_init(&event->owner_entry); 2974 mutex_unlock(&owner->perf_event_mutex); 2975 put_task_struct(owner); 2976 } 2977 2978 return perf_event_release_kernel(event); 2979 } 2980 2981 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 2982 { 2983 struct perf_event *child; 2984 u64 total = 0; 2985 2986 *enabled = 0; 2987 *running = 0; 2988 2989 mutex_lock(&event->child_mutex); 2990 total += perf_event_read(event); 2991 *enabled += event->total_time_enabled + 2992 atomic64_read(&event->child_total_time_enabled); 2993 *running += event->total_time_running + 2994 atomic64_read(&event->child_total_time_running); 2995 2996 list_for_each_entry(child, &event->child_list, child_list) { 2997 total += perf_event_read(child); 2998 *enabled += child->total_time_enabled; 2999 *running += child->total_time_running; 3000 } 3001 mutex_unlock(&event->child_mutex); 3002 3003 return total; 3004 } 3005 EXPORT_SYMBOL_GPL(perf_event_read_value); 3006 3007 static int perf_event_read_group(struct perf_event *event, 3008 u64 read_format, char __user *buf) 3009 { 3010 struct perf_event *leader = event->group_leader, *sub; 3011 int n = 0, size = 0, ret = -EFAULT; 3012 struct perf_event_context *ctx = leader->ctx; 3013 u64 values[5]; 3014 u64 count, enabled, running; 3015 3016 mutex_lock(&ctx->mutex); 3017 count = perf_event_read_value(leader, &enabled, &running); 3018 3019 values[n++] = 1 + leader->nr_siblings; 3020 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 3021 values[n++] = enabled; 3022 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 3023 values[n++] = running; 3024 values[n++] = count; 3025 if (read_format & PERF_FORMAT_ID) 3026 values[n++] = primary_event_id(leader); 3027 3028 size = n * sizeof(u64); 3029 3030 if (copy_to_user(buf, values, size)) 3031 goto unlock; 3032 3033 ret = size; 3034 3035 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 3036 n = 0; 3037 3038 values[n++] = perf_event_read_value(sub, &enabled, &running); 3039 if (read_format & PERF_FORMAT_ID) 3040 values[n++] = primary_event_id(sub); 3041 3042 size = n * sizeof(u64); 3043 3044 if (copy_to_user(buf + ret, values, size)) { 3045 ret = -EFAULT; 3046 goto unlock; 3047 } 3048 3049 ret += size; 3050 } 3051 unlock: 3052 mutex_unlock(&ctx->mutex); 3053 3054 return ret; 3055 } 3056 3057 static int perf_event_read_one(struct perf_event *event, 3058 u64 read_format, char __user *buf) 3059 { 3060 u64 enabled, running; 3061 u64 values[4]; 3062 int n = 0; 3063 3064 values[n++] = perf_event_read_value(event, &enabled, &running); 3065 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 3066 values[n++] = enabled; 3067 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 3068 values[n++] = running; 3069 if (read_format & PERF_FORMAT_ID) 3070 values[n++] = primary_event_id(event); 3071 3072 if (copy_to_user(buf, values, n * sizeof(u64))) 3073 return -EFAULT; 3074 3075 return n * sizeof(u64); 3076 } 3077 3078 /* 3079 * Read the performance event - simple non blocking version for now 3080 */ 3081 static ssize_t 3082 perf_read_hw(struct perf_event *event, char __user *buf, size_t count) 3083 { 3084 u64 read_format = event->attr.read_format; 3085 int ret; 3086 3087 /* 3088 * Return end-of-file for a read on a event that is in 3089 * error state (i.e. because it was pinned but it couldn't be 3090 * scheduled on to the CPU at some point). 3091 */ 3092 if (event->state == PERF_EVENT_STATE_ERROR) 3093 return 0; 3094 3095 if (count < event->read_size) 3096 return -ENOSPC; 3097 3098 WARN_ON_ONCE(event->ctx->parent_ctx); 3099 if (read_format & PERF_FORMAT_GROUP) 3100 ret = perf_event_read_group(event, read_format, buf); 3101 else 3102 ret = perf_event_read_one(event, read_format, buf); 3103 3104 return ret; 3105 } 3106 3107 static ssize_t 3108 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 3109 { 3110 struct perf_event *event = file->private_data; 3111 3112 return perf_read_hw(event, buf, count); 3113 } 3114 3115 static unsigned int perf_poll(struct file *file, poll_table *wait) 3116 { 3117 struct perf_event *event = file->private_data; 3118 struct ring_buffer *rb; 3119 unsigned int events = POLL_HUP; 3120 3121 /* 3122 * Race between perf_event_set_output() and perf_poll(): perf_poll() 3123 * grabs the rb reference but perf_event_set_output() overrides it. 3124 * Here is the timeline for two threads T1, T2: 3125 * t0: T1, rb = rcu_dereference(event->rb) 3126 * t1: T2, old_rb = event->rb 3127 * t2: T2, event->rb = new rb 3128 * t3: T2, ring_buffer_detach(old_rb) 3129 * t4: T1, ring_buffer_attach(rb1) 3130 * t5: T1, poll_wait(event->waitq) 3131 * 3132 * To avoid this problem, we grab mmap_mutex in perf_poll() 3133 * thereby ensuring that the assignment of the new ring buffer 3134 * and the detachment of the old buffer appear atomic to perf_poll() 3135 */ 3136 mutex_lock(&event->mmap_mutex); 3137 3138 rcu_read_lock(); 3139 rb = rcu_dereference(event->rb); 3140 if (rb) { 3141 ring_buffer_attach(event, rb); 3142 events = atomic_xchg(&rb->poll, 0); 3143 } 3144 rcu_read_unlock(); 3145 3146 mutex_unlock(&event->mmap_mutex); 3147 3148 poll_wait(file, &event->waitq, wait); 3149 3150 return events; 3151 } 3152 3153 static void perf_event_reset(struct perf_event *event) 3154 { 3155 (void)perf_event_read(event); 3156 local64_set(&event->count, 0); 3157 perf_event_update_userpage(event); 3158 } 3159 3160 /* 3161 * Holding the top-level event's child_mutex means that any 3162 * descendant process that has inherited this event will block 3163 * in sync_child_event if it goes to exit, thus satisfying the 3164 * task existence requirements of perf_event_enable/disable. 3165 */ 3166 static void perf_event_for_each_child(struct perf_event *event, 3167 void (*func)(struct perf_event *)) 3168 { 3169 struct perf_event *child; 3170 3171 WARN_ON_ONCE(event->ctx->parent_ctx); 3172 mutex_lock(&event->child_mutex); 3173 func(event); 3174 list_for_each_entry(child, &event->child_list, child_list) 3175 func(child); 3176 mutex_unlock(&event->child_mutex); 3177 } 3178 3179 static void perf_event_for_each(struct perf_event *event, 3180 void (*func)(struct perf_event *)) 3181 { 3182 struct perf_event_context *ctx = event->ctx; 3183 struct perf_event *sibling; 3184 3185 WARN_ON_ONCE(ctx->parent_ctx); 3186 mutex_lock(&ctx->mutex); 3187 event = event->group_leader; 3188 3189 perf_event_for_each_child(event, func); 3190 list_for_each_entry(sibling, &event->sibling_list, group_entry) 3191 perf_event_for_each_child(sibling, func); 3192 mutex_unlock(&ctx->mutex); 3193 } 3194 3195 static int perf_event_period(struct perf_event *event, u64 __user *arg) 3196 { 3197 struct perf_event_context *ctx = event->ctx; 3198 int ret = 0; 3199 u64 value; 3200 3201 if (!is_sampling_event(event)) 3202 return -EINVAL; 3203 3204 if (copy_from_user(&value, arg, sizeof(value))) 3205 return -EFAULT; 3206 3207 if (!value) 3208 return -EINVAL; 3209 3210 raw_spin_lock_irq(&ctx->lock); 3211 if (event->attr.freq) { 3212 if (value > sysctl_perf_event_sample_rate) { 3213 ret = -EINVAL; 3214 goto unlock; 3215 } 3216 3217 event->attr.sample_freq = value; 3218 } else { 3219 event->attr.sample_period = value; 3220 event->hw.sample_period = value; 3221 } 3222 unlock: 3223 raw_spin_unlock_irq(&ctx->lock); 3224 3225 return ret; 3226 } 3227 3228 static const struct file_operations perf_fops; 3229 3230 static struct perf_event *perf_fget_light(int fd, int *fput_needed) 3231 { 3232 struct file *file; 3233 3234 file = fget_light(fd, fput_needed); 3235 if (!file) 3236 return ERR_PTR(-EBADF); 3237 3238 if (file->f_op != &perf_fops) { 3239 fput_light(file, *fput_needed); 3240 *fput_needed = 0; 3241 return ERR_PTR(-EBADF); 3242 } 3243 3244 return file->private_data; 3245 } 3246 3247 static int perf_event_set_output(struct perf_event *event, 3248 struct perf_event *output_event); 3249 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 3250 3251 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 3252 { 3253 struct perf_event *event = file->private_data; 3254 void (*func)(struct perf_event *); 3255 u32 flags = arg; 3256 3257 switch (cmd) { 3258 case PERF_EVENT_IOC_ENABLE: 3259 func = perf_event_enable; 3260 break; 3261 case PERF_EVENT_IOC_DISABLE: 3262 func = perf_event_disable; 3263 break; 3264 case PERF_EVENT_IOC_RESET: 3265 func = perf_event_reset; 3266 break; 3267 3268 case PERF_EVENT_IOC_REFRESH: 3269 return perf_event_refresh(event, arg); 3270 3271 case PERF_EVENT_IOC_PERIOD: 3272 return perf_event_period(event, (u64 __user *)arg); 3273 3274 case PERF_EVENT_IOC_SET_OUTPUT: 3275 { 3276 struct perf_event *output_event = NULL; 3277 int fput_needed = 0; 3278 int ret; 3279 3280 if (arg != -1) { 3281 output_event = perf_fget_light(arg, &fput_needed); 3282 if (IS_ERR(output_event)) 3283 return PTR_ERR(output_event); 3284 } 3285 3286 ret = perf_event_set_output(event, output_event); 3287 if (output_event) 3288 fput_light(output_event->filp, fput_needed); 3289 3290 return ret; 3291 } 3292 3293 case PERF_EVENT_IOC_SET_FILTER: 3294 return perf_event_set_filter(event, (void __user *)arg); 3295 3296 default: 3297 return -ENOTTY; 3298 } 3299 3300 if (flags & PERF_IOC_FLAG_GROUP) 3301 perf_event_for_each(event, func); 3302 else 3303 perf_event_for_each_child(event, func); 3304 3305 return 0; 3306 } 3307 3308 int perf_event_task_enable(void) 3309 { 3310 struct perf_event *event; 3311 3312 mutex_lock(¤t->perf_event_mutex); 3313 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) 3314 perf_event_for_each_child(event, perf_event_enable); 3315 mutex_unlock(¤t->perf_event_mutex); 3316 3317 return 0; 3318 } 3319 3320 int perf_event_task_disable(void) 3321 { 3322 struct perf_event *event; 3323 3324 mutex_lock(¤t->perf_event_mutex); 3325 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) 3326 perf_event_for_each_child(event, perf_event_disable); 3327 mutex_unlock(¤t->perf_event_mutex); 3328 3329 return 0; 3330 } 3331 3332 static int perf_event_index(struct perf_event *event) 3333 { 3334 if (event->hw.state & PERF_HES_STOPPED) 3335 return 0; 3336 3337 if (event->state != PERF_EVENT_STATE_ACTIVE) 3338 return 0; 3339 3340 return event->pmu->event_idx(event); 3341 } 3342 3343 static void calc_timer_values(struct perf_event *event, 3344 u64 *now, 3345 u64 *enabled, 3346 u64 *running) 3347 { 3348 u64 ctx_time; 3349 3350 *now = perf_clock(); 3351 ctx_time = event->shadow_ctx_time + *now; 3352 *enabled = ctx_time - event->tstamp_enabled; 3353 *running = ctx_time - event->tstamp_running; 3354 } 3355 3356 void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now) 3357 { 3358 } 3359 3360 /* 3361 * Callers need to ensure there can be no nesting of this function, otherwise 3362 * the seqlock logic goes bad. We can not serialize this because the arch 3363 * code calls this from NMI context. 3364 */ 3365 void perf_event_update_userpage(struct perf_event *event) 3366 { 3367 struct perf_event_mmap_page *userpg; 3368 struct ring_buffer *rb; 3369 u64 enabled, running, now; 3370 3371 rcu_read_lock(); 3372 /* 3373 * compute total_time_enabled, total_time_running 3374 * based on snapshot values taken when the event 3375 * was last scheduled in. 3376 * 3377 * we cannot simply called update_context_time() 3378 * because of locking issue as we can be called in 3379 * NMI context 3380 */ 3381 calc_timer_values(event, &now, &enabled, &running); 3382 rb = rcu_dereference(event->rb); 3383 if (!rb) 3384 goto unlock; 3385 3386 userpg = rb->user_page; 3387 3388 /* 3389 * Disable preemption so as to not let the corresponding user-space 3390 * spin too long if we get preempted. 3391 */ 3392 preempt_disable(); 3393 ++userpg->lock; 3394 barrier(); 3395 userpg->index = perf_event_index(event); 3396 userpg->offset = perf_event_count(event); 3397 if (userpg->index) 3398 userpg->offset -= local64_read(&event->hw.prev_count); 3399 3400 userpg->time_enabled = enabled + 3401 atomic64_read(&event->child_total_time_enabled); 3402 3403 userpg->time_running = running + 3404 atomic64_read(&event->child_total_time_running); 3405 3406 arch_perf_update_userpage(userpg, now); 3407 3408 barrier(); 3409 ++userpg->lock; 3410 preempt_enable(); 3411 unlock: 3412 rcu_read_unlock(); 3413 } 3414 3415 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 3416 { 3417 struct perf_event *event = vma->vm_file->private_data; 3418 struct ring_buffer *rb; 3419 int ret = VM_FAULT_SIGBUS; 3420 3421 if (vmf->flags & FAULT_FLAG_MKWRITE) { 3422 if (vmf->pgoff == 0) 3423 ret = 0; 3424 return ret; 3425 } 3426 3427 rcu_read_lock(); 3428 rb = rcu_dereference(event->rb); 3429 if (!rb) 3430 goto unlock; 3431 3432 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 3433 goto unlock; 3434 3435 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 3436 if (!vmf->page) 3437 goto unlock; 3438 3439 get_page(vmf->page); 3440 vmf->page->mapping = vma->vm_file->f_mapping; 3441 vmf->page->index = vmf->pgoff; 3442 3443 ret = 0; 3444 unlock: 3445 rcu_read_unlock(); 3446 3447 return ret; 3448 } 3449 3450 static void ring_buffer_attach(struct perf_event *event, 3451 struct ring_buffer *rb) 3452 { 3453 unsigned long flags; 3454 3455 if (!list_empty(&event->rb_entry)) 3456 return; 3457 3458 spin_lock_irqsave(&rb->event_lock, flags); 3459 if (!list_empty(&event->rb_entry)) 3460 goto unlock; 3461 3462 list_add(&event->rb_entry, &rb->event_list); 3463 unlock: 3464 spin_unlock_irqrestore(&rb->event_lock, flags); 3465 } 3466 3467 static void ring_buffer_detach(struct perf_event *event, 3468 struct ring_buffer *rb) 3469 { 3470 unsigned long flags; 3471 3472 if (list_empty(&event->rb_entry)) 3473 return; 3474 3475 spin_lock_irqsave(&rb->event_lock, flags); 3476 list_del_init(&event->rb_entry); 3477 wake_up_all(&event->waitq); 3478 spin_unlock_irqrestore(&rb->event_lock, flags); 3479 } 3480 3481 static void ring_buffer_wakeup(struct perf_event *event) 3482 { 3483 struct ring_buffer *rb; 3484 3485 rcu_read_lock(); 3486 rb = rcu_dereference(event->rb); 3487 if (!rb) 3488 goto unlock; 3489 3490 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 3491 wake_up_all(&event->waitq); 3492 3493 unlock: 3494 rcu_read_unlock(); 3495 } 3496 3497 static void rb_free_rcu(struct rcu_head *rcu_head) 3498 { 3499 struct ring_buffer *rb; 3500 3501 rb = container_of(rcu_head, struct ring_buffer, rcu_head); 3502 rb_free(rb); 3503 } 3504 3505 static struct ring_buffer *ring_buffer_get(struct perf_event *event) 3506 { 3507 struct ring_buffer *rb; 3508 3509 rcu_read_lock(); 3510 rb = rcu_dereference(event->rb); 3511 if (rb) { 3512 if (!atomic_inc_not_zero(&rb->refcount)) 3513 rb = NULL; 3514 } 3515 rcu_read_unlock(); 3516 3517 return rb; 3518 } 3519 3520 static void ring_buffer_put(struct ring_buffer *rb) 3521 { 3522 struct perf_event *event, *n; 3523 unsigned long flags; 3524 3525 if (!atomic_dec_and_test(&rb->refcount)) 3526 return; 3527 3528 spin_lock_irqsave(&rb->event_lock, flags); 3529 list_for_each_entry_safe(event, n, &rb->event_list, rb_entry) { 3530 list_del_init(&event->rb_entry); 3531 wake_up_all(&event->waitq); 3532 } 3533 spin_unlock_irqrestore(&rb->event_lock, flags); 3534 3535 call_rcu(&rb->rcu_head, rb_free_rcu); 3536 } 3537 3538 static void perf_mmap_open(struct vm_area_struct *vma) 3539 { 3540 struct perf_event *event = vma->vm_file->private_data; 3541 3542 atomic_inc(&event->mmap_count); 3543 } 3544 3545 static void perf_mmap_close(struct vm_area_struct *vma) 3546 { 3547 struct perf_event *event = vma->vm_file->private_data; 3548 3549 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) { 3550 unsigned long size = perf_data_size(event->rb); 3551 struct user_struct *user = event->mmap_user; 3552 struct ring_buffer *rb = event->rb; 3553 3554 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm); 3555 vma->vm_mm->pinned_vm -= event->mmap_locked; 3556 rcu_assign_pointer(event->rb, NULL); 3557 ring_buffer_detach(event, rb); 3558 mutex_unlock(&event->mmap_mutex); 3559 3560 ring_buffer_put(rb); 3561 free_uid(user); 3562 } 3563 } 3564 3565 static const struct vm_operations_struct perf_mmap_vmops = { 3566 .open = perf_mmap_open, 3567 .close = perf_mmap_close, 3568 .fault = perf_mmap_fault, 3569 .page_mkwrite = perf_mmap_fault, 3570 }; 3571 3572 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 3573 { 3574 struct perf_event *event = file->private_data; 3575 unsigned long user_locked, user_lock_limit; 3576 struct user_struct *user = current_user(); 3577 unsigned long locked, lock_limit; 3578 struct ring_buffer *rb; 3579 unsigned long vma_size; 3580 unsigned long nr_pages; 3581 long user_extra, extra; 3582 int ret = 0, flags = 0; 3583 3584 /* 3585 * Don't allow mmap() of inherited per-task counters. This would 3586 * create a performance issue due to all children writing to the 3587 * same rb. 3588 */ 3589 if (event->cpu == -1 && event->attr.inherit) 3590 return -EINVAL; 3591 3592 if (!(vma->vm_flags & VM_SHARED)) 3593 return -EINVAL; 3594 3595 vma_size = vma->vm_end - vma->vm_start; 3596 nr_pages = (vma_size / PAGE_SIZE) - 1; 3597 3598 /* 3599 * If we have rb pages ensure they're a power-of-two number, so we 3600 * can do bitmasks instead of modulo. 3601 */ 3602 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 3603 return -EINVAL; 3604 3605 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 3606 return -EINVAL; 3607 3608 if (vma->vm_pgoff != 0) 3609 return -EINVAL; 3610 3611 WARN_ON_ONCE(event->ctx->parent_ctx); 3612 mutex_lock(&event->mmap_mutex); 3613 if (event->rb) { 3614 if (event->rb->nr_pages == nr_pages) 3615 atomic_inc(&event->rb->refcount); 3616 else 3617 ret = -EINVAL; 3618 goto unlock; 3619 } 3620 3621 user_extra = nr_pages + 1; 3622 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 3623 3624 /* 3625 * Increase the limit linearly with more CPUs: 3626 */ 3627 user_lock_limit *= num_online_cpus(); 3628 3629 user_locked = atomic_long_read(&user->locked_vm) + user_extra; 3630 3631 extra = 0; 3632 if (user_locked > user_lock_limit) 3633 extra = user_locked - user_lock_limit; 3634 3635 lock_limit = rlimit(RLIMIT_MEMLOCK); 3636 lock_limit >>= PAGE_SHIFT; 3637 locked = vma->vm_mm->pinned_vm + extra; 3638 3639 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() && 3640 !capable(CAP_IPC_LOCK)) { 3641 ret = -EPERM; 3642 goto unlock; 3643 } 3644 3645 WARN_ON(event->rb); 3646 3647 if (vma->vm_flags & VM_WRITE) 3648 flags |= RING_BUFFER_WRITABLE; 3649 3650 rb = rb_alloc(nr_pages, 3651 event->attr.watermark ? event->attr.wakeup_watermark : 0, 3652 event->cpu, flags); 3653 3654 if (!rb) { 3655 ret = -ENOMEM; 3656 goto unlock; 3657 } 3658 rcu_assign_pointer(event->rb, rb); 3659 3660 atomic_long_add(user_extra, &user->locked_vm); 3661 event->mmap_locked = extra; 3662 event->mmap_user = get_current_user(); 3663 vma->vm_mm->pinned_vm += event->mmap_locked; 3664 3665 perf_event_update_userpage(event); 3666 3667 unlock: 3668 if (!ret) 3669 atomic_inc(&event->mmap_count); 3670 mutex_unlock(&event->mmap_mutex); 3671 3672 vma->vm_flags |= VM_RESERVED; 3673 vma->vm_ops = &perf_mmap_vmops; 3674 3675 return ret; 3676 } 3677 3678 static int perf_fasync(int fd, struct file *filp, int on) 3679 { 3680 struct inode *inode = filp->f_path.dentry->d_inode; 3681 struct perf_event *event = filp->private_data; 3682 int retval; 3683 3684 mutex_lock(&inode->i_mutex); 3685 retval = fasync_helper(fd, filp, on, &event->fasync); 3686 mutex_unlock(&inode->i_mutex); 3687 3688 if (retval < 0) 3689 return retval; 3690 3691 return 0; 3692 } 3693 3694 static const struct file_operations perf_fops = { 3695 .llseek = no_llseek, 3696 .release = perf_release, 3697 .read = perf_read, 3698 .poll = perf_poll, 3699 .unlocked_ioctl = perf_ioctl, 3700 .compat_ioctl = perf_ioctl, 3701 .mmap = perf_mmap, 3702 .fasync = perf_fasync, 3703 }; 3704 3705 /* 3706 * Perf event wakeup 3707 * 3708 * If there's data, ensure we set the poll() state and publish everything 3709 * to user-space before waking everybody up. 3710 */ 3711 3712 void perf_event_wakeup(struct perf_event *event) 3713 { 3714 ring_buffer_wakeup(event); 3715 3716 if (event->pending_kill) { 3717 kill_fasync(&event->fasync, SIGIO, event->pending_kill); 3718 event->pending_kill = 0; 3719 } 3720 } 3721 3722 static void perf_pending_event(struct irq_work *entry) 3723 { 3724 struct perf_event *event = container_of(entry, 3725 struct perf_event, pending); 3726 3727 if (event->pending_disable) { 3728 event->pending_disable = 0; 3729 __perf_event_disable(event); 3730 } 3731 3732 if (event->pending_wakeup) { 3733 event->pending_wakeup = 0; 3734 perf_event_wakeup(event); 3735 } 3736 } 3737 3738 /* 3739 * We assume there is only KVM supporting the callbacks. 3740 * Later on, we might change it to a list if there is 3741 * another virtualization implementation supporting the callbacks. 3742 */ 3743 struct perf_guest_info_callbacks *perf_guest_cbs; 3744 3745 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 3746 { 3747 perf_guest_cbs = cbs; 3748 return 0; 3749 } 3750 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 3751 3752 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 3753 { 3754 perf_guest_cbs = NULL; 3755 return 0; 3756 } 3757 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 3758 3759 static void __perf_event_header__init_id(struct perf_event_header *header, 3760 struct perf_sample_data *data, 3761 struct perf_event *event) 3762 { 3763 u64 sample_type = event->attr.sample_type; 3764 3765 data->type = sample_type; 3766 header->size += event->id_header_size; 3767 3768 if (sample_type & PERF_SAMPLE_TID) { 3769 /* namespace issues */ 3770 data->tid_entry.pid = perf_event_pid(event, current); 3771 data->tid_entry.tid = perf_event_tid(event, current); 3772 } 3773 3774 if (sample_type & PERF_SAMPLE_TIME) 3775 data->time = perf_clock(); 3776 3777 if (sample_type & PERF_SAMPLE_ID) 3778 data->id = primary_event_id(event); 3779 3780 if (sample_type & PERF_SAMPLE_STREAM_ID) 3781 data->stream_id = event->id; 3782 3783 if (sample_type & PERF_SAMPLE_CPU) { 3784 data->cpu_entry.cpu = raw_smp_processor_id(); 3785 data->cpu_entry.reserved = 0; 3786 } 3787 } 3788 3789 void perf_event_header__init_id(struct perf_event_header *header, 3790 struct perf_sample_data *data, 3791 struct perf_event *event) 3792 { 3793 if (event->attr.sample_id_all) 3794 __perf_event_header__init_id(header, data, event); 3795 } 3796 3797 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 3798 struct perf_sample_data *data) 3799 { 3800 u64 sample_type = data->type; 3801 3802 if (sample_type & PERF_SAMPLE_TID) 3803 perf_output_put(handle, data->tid_entry); 3804 3805 if (sample_type & PERF_SAMPLE_TIME) 3806 perf_output_put(handle, data->time); 3807 3808 if (sample_type & PERF_SAMPLE_ID) 3809 perf_output_put(handle, data->id); 3810 3811 if (sample_type & PERF_SAMPLE_STREAM_ID) 3812 perf_output_put(handle, data->stream_id); 3813 3814 if (sample_type & PERF_SAMPLE_CPU) 3815 perf_output_put(handle, data->cpu_entry); 3816 } 3817 3818 void perf_event__output_id_sample(struct perf_event *event, 3819 struct perf_output_handle *handle, 3820 struct perf_sample_data *sample) 3821 { 3822 if (event->attr.sample_id_all) 3823 __perf_event__output_id_sample(handle, sample); 3824 } 3825 3826 static void perf_output_read_one(struct perf_output_handle *handle, 3827 struct perf_event *event, 3828 u64 enabled, u64 running) 3829 { 3830 u64 read_format = event->attr.read_format; 3831 u64 values[4]; 3832 int n = 0; 3833 3834 values[n++] = perf_event_count(event); 3835 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 3836 values[n++] = enabled + 3837 atomic64_read(&event->child_total_time_enabled); 3838 } 3839 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 3840 values[n++] = running + 3841 atomic64_read(&event->child_total_time_running); 3842 } 3843 if (read_format & PERF_FORMAT_ID) 3844 values[n++] = primary_event_id(event); 3845 3846 __output_copy(handle, values, n * sizeof(u64)); 3847 } 3848 3849 /* 3850 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult. 3851 */ 3852 static void perf_output_read_group(struct perf_output_handle *handle, 3853 struct perf_event *event, 3854 u64 enabled, u64 running) 3855 { 3856 struct perf_event *leader = event->group_leader, *sub; 3857 u64 read_format = event->attr.read_format; 3858 u64 values[5]; 3859 int n = 0; 3860 3861 values[n++] = 1 + leader->nr_siblings; 3862 3863 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 3864 values[n++] = enabled; 3865 3866 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 3867 values[n++] = running; 3868 3869 if (leader != event) 3870 leader->pmu->read(leader); 3871 3872 values[n++] = perf_event_count(leader); 3873 if (read_format & PERF_FORMAT_ID) 3874 values[n++] = primary_event_id(leader); 3875 3876 __output_copy(handle, values, n * sizeof(u64)); 3877 3878 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 3879 n = 0; 3880 3881 if (sub != event) 3882 sub->pmu->read(sub); 3883 3884 values[n++] = perf_event_count(sub); 3885 if (read_format & PERF_FORMAT_ID) 3886 values[n++] = primary_event_id(sub); 3887 3888 __output_copy(handle, values, n * sizeof(u64)); 3889 } 3890 } 3891 3892 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 3893 PERF_FORMAT_TOTAL_TIME_RUNNING) 3894 3895 static void perf_output_read(struct perf_output_handle *handle, 3896 struct perf_event *event) 3897 { 3898 u64 enabled = 0, running = 0, now; 3899 u64 read_format = event->attr.read_format; 3900 3901 /* 3902 * compute total_time_enabled, total_time_running 3903 * based on snapshot values taken when the event 3904 * was last scheduled in. 3905 * 3906 * we cannot simply called update_context_time() 3907 * because of locking issue as we are called in 3908 * NMI context 3909 */ 3910 if (read_format & PERF_FORMAT_TOTAL_TIMES) 3911 calc_timer_values(event, &now, &enabled, &running); 3912 3913 if (event->attr.read_format & PERF_FORMAT_GROUP) 3914 perf_output_read_group(handle, event, enabled, running); 3915 else 3916 perf_output_read_one(handle, event, enabled, running); 3917 } 3918 3919 void perf_output_sample(struct perf_output_handle *handle, 3920 struct perf_event_header *header, 3921 struct perf_sample_data *data, 3922 struct perf_event *event) 3923 { 3924 u64 sample_type = data->type; 3925 3926 perf_output_put(handle, *header); 3927 3928 if (sample_type & PERF_SAMPLE_IP) 3929 perf_output_put(handle, data->ip); 3930 3931 if (sample_type & PERF_SAMPLE_TID) 3932 perf_output_put(handle, data->tid_entry); 3933 3934 if (sample_type & PERF_SAMPLE_TIME) 3935 perf_output_put(handle, data->time); 3936 3937 if (sample_type & PERF_SAMPLE_ADDR) 3938 perf_output_put(handle, data->addr); 3939 3940 if (sample_type & PERF_SAMPLE_ID) 3941 perf_output_put(handle, data->id); 3942 3943 if (sample_type & PERF_SAMPLE_STREAM_ID) 3944 perf_output_put(handle, data->stream_id); 3945 3946 if (sample_type & PERF_SAMPLE_CPU) 3947 perf_output_put(handle, data->cpu_entry); 3948 3949 if (sample_type & PERF_SAMPLE_PERIOD) 3950 perf_output_put(handle, data->period); 3951 3952 if (sample_type & PERF_SAMPLE_READ) 3953 perf_output_read(handle, event); 3954 3955 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 3956 if (data->callchain) { 3957 int size = 1; 3958 3959 if (data->callchain) 3960 size += data->callchain->nr; 3961 3962 size *= sizeof(u64); 3963 3964 __output_copy(handle, data->callchain, size); 3965 } else { 3966 u64 nr = 0; 3967 perf_output_put(handle, nr); 3968 } 3969 } 3970 3971 if (sample_type & PERF_SAMPLE_RAW) { 3972 if (data->raw) { 3973 perf_output_put(handle, data->raw->size); 3974 __output_copy(handle, data->raw->data, 3975 data->raw->size); 3976 } else { 3977 struct { 3978 u32 size; 3979 u32 data; 3980 } raw = { 3981 .size = sizeof(u32), 3982 .data = 0, 3983 }; 3984 perf_output_put(handle, raw); 3985 } 3986 } 3987 3988 if (!event->attr.watermark) { 3989 int wakeup_events = event->attr.wakeup_events; 3990 3991 if (wakeup_events) { 3992 struct ring_buffer *rb = handle->rb; 3993 int events = local_inc_return(&rb->events); 3994 3995 if (events >= wakeup_events) { 3996 local_sub(wakeup_events, &rb->events); 3997 local_inc(&rb->wakeup); 3998 } 3999 } 4000 } 4001 4002 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 4003 if (data->br_stack) { 4004 size_t size; 4005 4006 size = data->br_stack->nr 4007 * sizeof(struct perf_branch_entry); 4008 4009 perf_output_put(handle, data->br_stack->nr); 4010 perf_output_copy(handle, data->br_stack->entries, size); 4011 } else { 4012 /* 4013 * we always store at least the value of nr 4014 */ 4015 u64 nr = 0; 4016 perf_output_put(handle, nr); 4017 } 4018 } 4019 } 4020 4021 void perf_prepare_sample(struct perf_event_header *header, 4022 struct perf_sample_data *data, 4023 struct perf_event *event, 4024 struct pt_regs *regs) 4025 { 4026 u64 sample_type = event->attr.sample_type; 4027 4028 header->type = PERF_RECORD_SAMPLE; 4029 header->size = sizeof(*header) + event->header_size; 4030 4031 header->misc = 0; 4032 header->misc |= perf_misc_flags(regs); 4033 4034 __perf_event_header__init_id(header, data, event); 4035 4036 if (sample_type & PERF_SAMPLE_IP) 4037 data->ip = perf_instruction_pointer(regs); 4038 4039 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 4040 int size = 1; 4041 4042 data->callchain = perf_callchain(event, regs); 4043 4044 if (data->callchain) 4045 size += data->callchain->nr; 4046 4047 header->size += size * sizeof(u64); 4048 } 4049 4050 if (sample_type & PERF_SAMPLE_RAW) { 4051 int size = sizeof(u32); 4052 4053 if (data->raw) 4054 size += data->raw->size; 4055 else 4056 size += sizeof(u32); 4057 4058 WARN_ON_ONCE(size & (sizeof(u64)-1)); 4059 header->size += size; 4060 } 4061 4062 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 4063 int size = sizeof(u64); /* nr */ 4064 if (data->br_stack) { 4065 size += data->br_stack->nr 4066 * sizeof(struct perf_branch_entry); 4067 } 4068 header->size += size; 4069 } 4070 } 4071 4072 static void perf_event_output(struct perf_event *event, 4073 struct perf_sample_data *data, 4074 struct pt_regs *regs) 4075 { 4076 struct perf_output_handle handle; 4077 struct perf_event_header header; 4078 4079 /* protect the callchain buffers */ 4080 rcu_read_lock(); 4081 4082 perf_prepare_sample(&header, data, event, regs); 4083 4084 if (perf_output_begin(&handle, event, header.size)) 4085 goto exit; 4086 4087 perf_output_sample(&handle, &header, data, event); 4088 4089 perf_output_end(&handle); 4090 4091 exit: 4092 rcu_read_unlock(); 4093 } 4094 4095 /* 4096 * read event_id 4097 */ 4098 4099 struct perf_read_event { 4100 struct perf_event_header header; 4101 4102 u32 pid; 4103 u32 tid; 4104 }; 4105 4106 static void 4107 perf_event_read_event(struct perf_event *event, 4108 struct task_struct *task) 4109 { 4110 struct perf_output_handle handle; 4111 struct perf_sample_data sample; 4112 struct perf_read_event read_event = { 4113 .header = { 4114 .type = PERF_RECORD_READ, 4115 .misc = 0, 4116 .size = sizeof(read_event) + event->read_size, 4117 }, 4118 .pid = perf_event_pid(event, task), 4119 .tid = perf_event_tid(event, task), 4120 }; 4121 int ret; 4122 4123 perf_event_header__init_id(&read_event.header, &sample, event); 4124 ret = perf_output_begin(&handle, event, read_event.header.size); 4125 if (ret) 4126 return; 4127 4128 perf_output_put(&handle, read_event); 4129 perf_output_read(&handle, event); 4130 perf_event__output_id_sample(event, &handle, &sample); 4131 4132 perf_output_end(&handle); 4133 } 4134 4135 /* 4136 * task tracking -- fork/exit 4137 * 4138 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task 4139 */ 4140 4141 struct perf_task_event { 4142 struct task_struct *task; 4143 struct perf_event_context *task_ctx; 4144 4145 struct { 4146 struct perf_event_header header; 4147 4148 u32 pid; 4149 u32 ppid; 4150 u32 tid; 4151 u32 ptid; 4152 u64 time; 4153 } event_id; 4154 }; 4155 4156 static void perf_event_task_output(struct perf_event *event, 4157 struct perf_task_event *task_event) 4158 { 4159 struct perf_output_handle handle; 4160 struct perf_sample_data sample; 4161 struct task_struct *task = task_event->task; 4162 int ret, size = task_event->event_id.header.size; 4163 4164 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 4165 4166 ret = perf_output_begin(&handle, event, 4167 task_event->event_id.header.size); 4168 if (ret) 4169 goto out; 4170 4171 task_event->event_id.pid = perf_event_pid(event, task); 4172 task_event->event_id.ppid = perf_event_pid(event, current); 4173 4174 task_event->event_id.tid = perf_event_tid(event, task); 4175 task_event->event_id.ptid = perf_event_tid(event, current); 4176 4177 perf_output_put(&handle, task_event->event_id); 4178 4179 perf_event__output_id_sample(event, &handle, &sample); 4180 4181 perf_output_end(&handle); 4182 out: 4183 task_event->event_id.header.size = size; 4184 } 4185 4186 static int perf_event_task_match(struct perf_event *event) 4187 { 4188 if (event->state < PERF_EVENT_STATE_INACTIVE) 4189 return 0; 4190 4191 if (!event_filter_match(event)) 4192 return 0; 4193 4194 if (event->attr.comm || event->attr.mmap || 4195 event->attr.mmap_data || event->attr.task) 4196 return 1; 4197 4198 return 0; 4199 } 4200 4201 static void perf_event_task_ctx(struct perf_event_context *ctx, 4202 struct perf_task_event *task_event) 4203 { 4204 struct perf_event *event; 4205 4206 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 4207 if (perf_event_task_match(event)) 4208 perf_event_task_output(event, task_event); 4209 } 4210 } 4211 4212 static void perf_event_task_event(struct perf_task_event *task_event) 4213 { 4214 struct perf_cpu_context *cpuctx; 4215 struct perf_event_context *ctx; 4216 struct pmu *pmu; 4217 int ctxn; 4218 4219 rcu_read_lock(); 4220 list_for_each_entry_rcu(pmu, &pmus, entry) { 4221 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context); 4222 if (cpuctx->active_pmu != pmu) 4223 goto next; 4224 perf_event_task_ctx(&cpuctx->ctx, task_event); 4225 4226 ctx = task_event->task_ctx; 4227 if (!ctx) { 4228 ctxn = pmu->task_ctx_nr; 4229 if (ctxn < 0) 4230 goto next; 4231 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 4232 } 4233 if (ctx) 4234 perf_event_task_ctx(ctx, task_event); 4235 next: 4236 put_cpu_ptr(pmu->pmu_cpu_context); 4237 } 4238 rcu_read_unlock(); 4239 } 4240 4241 static void perf_event_task(struct task_struct *task, 4242 struct perf_event_context *task_ctx, 4243 int new) 4244 { 4245 struct perf_task_event task_event; 4246 4247 if (!atomic_read(&nr_comm_events) && 4248 !atomic_read(&nr_mmap_events) && 4249 !atomic_read(&nr_task_events)) 4250 return; 4251 4252 task_event = (struct perf_task_event){ 4253 .task = task, 4254 .task_ctx = task_ctx, 4255 .event_id = { 4256 .header = { 4257 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 4258 .misc = 0, 4259 .size = sizeof(task_event.event_id), 4260 }, 4261 /* .pid */ 4262 /* .ppid */ 4263 /* .tid */ 4264 /* .ptid */ 4265 .time = perf_clock(), 4266 }, 4267 }; 4268 4269 perf_event_task_event(&task_event); 4270 } 4271 4272 void perf_event_fork(struct task_struct *task) 4273 { 4274 perf_event_task(task, NULL, 1); 4275 } 4276 4277 /* 4278 * comm tracking 4279 */ 4280 4281 struct perf_comm_event { 4282 struct task_struct *task; 4283 char *comm; 4284 int comm_size; 4285 4286 struct { 4287 struct perf_event_header header; 4288 4289 u32 pid; 4290 u32 tid; 4291 } event_id; 4292 }; 4293 4294 static void perf_event_comm_output(struct perf_event *event, 4295 struct perf_comm_event *comm_event) 4296 { 4297 struct perf_output_handle handle; 4298 struct perf_sample_data sample; 4299 int size = comm_event->event_id.header.size; 4300 int ret; 4301 4302 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 4303 ret = perf_output_begin(&handle, event, 4304 comm_event->event_id.header.size); 4305 4306 if (ret) 4307 goto out; 4308 4309 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 4310 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 4311 4312 perf_output_put(&handle, comm_event->event_id); 4313 __output_copy(&handle, comm_event->comm, 4314 comm_event->comm_size); 4315 4316 perf_event__output_id_sample(event, &handle, &sample); 4317 4318 perf_output_end(&handle); 4319 out: 4320 comm_event->event_id.header.size = size; 4321 } 4322 4323 static int perf_event_comm_match(struct perf_event *event) 4324 { 4325 if (event->state < PERF_EVENT_STATE_INACTIVE) 4326 return 0; 4327 4328 if (!event_filter_match(event)) 4329 return 0; 4330 4331 if (event->attr.comm) 4332 return 1; 4333 4334 return 0; 4335 } 4336 4337 static void perf_event_comm_ctx(struct perf_event_context *ctx, 4338 struct perf_comm_event *comm_event) 4339 { 4340 struct perf_event *event; 4341 4342 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 4343 if (perf_event_comm_match(event)) 4344 perf_event_comm_output(event, comm_event); 4345 } 4346 } 4347 4348 static void perf_event_comm_event(struct perf_comm_event *comm_event) 4349 { 4350 struct perf_cpu_context *cpuctx; 4351 struct perf_event_context *ctx; 4352 char comm[TASK_COMM_LEN]; 4353 unsigned int size; 4354 struct pmu *pmu; 4355 int ctxn; 4356 4357 memset(comm, 0, sizeof(comm)); 4358 strlcpy(comm, comm_event->task->comm, sizeof(comm)); 4359 size = ALIGN(strlen(comm)+1, sizeof(u64)); 4360 4361 comm_event->comm = comm; 4362 comm_event->comm_size = size; 4363 4364 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 4365 rcu_read_lock(); 4366 list_for_each_entry_rcu(pmu, &pmus, entry) { 4367 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context); 4368 if (cpuctx->active_pmu != pmu) 4369 goto next; 4370 perf_event_comm_ctx(&cpuctx->ctx, comm_event); 4371 4372 ctxn = pmu->task_ctx_nr; 4373 if (ctxn < 0) 4374 goto next; 4375 4376 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 4377 if (ctx) 4378 perf_event_comm_ctx(ctx, comm_event); 4379 next: 4380 put_cpu_ptr(pmu->pmu_cpu_context); 4381 } 4382 rcu_read_unlock(); 4383 } 4384 4385 void perf_event_comm(struct task_struct *task) 4386 { 4387 struct perf_comm_event comm_event; 4388 struct perf_event_context *ctx; 4389 int ctxn; 4390 4391 for_each_task_context_nr(ctxn) { 4392 ctx = task->perf_event_ctxp[ctxn]; 4393 if (!ctx) 4394 continue; 4395 4396 perf_event_enable_on_exec(ctx); 4397 } 4398 4399 if (!atomic_read(&nr_comm_events)) 4400 return; 4401 4402 comm_event = (struct perf_comm_event){ 4403 .task = task, 4404 /* .comm */ 4405 /* .comm_size */ 4406 .event_id = { 4407 .header = { 4408 .type = PERF_RECORD_COMM, 4409 .misc = 0, 4410 /* .size */ 4411 }, 4412 /* .pid */ 4413 /* .tid */ 4414 }, 4415 }; 4416 4417 perf_event_comm_event(&comm_event); 4418 } 4419 4420 /* 4421 * mmap tracking 4422 */ 4423 4424 struct perf_mmap_event { 4425 struct vm_area_struct *vma; 4426 4427 const char *file_name; 4428 int file_size; 4429 4430 struct { 4431 struct perf_event_header header; 4432 4433 u32 pid; 4434 u32 tid; 4435 u64 start; 4436 u64 len; 4437 u64 pgoff; 4438 } event_id; 4439 }; 4440 4441 static void perf_event_mmap_output(struct perf_event *event, 4442 struct perf_mmap_event *mmap_event) 4443 { 4444 struct perf_output_handle handle; 4445 struct perf_sample_data sample; 4446 int size = mmap_event->event_id.header.size; 4447 int ret; 4448 4449 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 4450 ret = perf_output_begin(&handle, event, 4451 mmap_event->event_id.header.size); 4452 if (ret) 4453 goto out; 4454 4455 mmap_event->event_id.pid = perf_event_pid(event, current); 4456 mmap_event->event_id.tid = perf_event_tid(event, current); 4457 4458 perf_output_put(&handle, mmap_event->event_id); 4459 __output_copy(&handle, mmap_event->file_name, 4460 mmap_event->file_size); 4461 4462 perf_event__output_id_sample(event, &handle, &sample); 4463 4464 perf_output_end(&handle); 4465 out: 4466 mmap_event->event_id.header.size = size; 4467 } 4468 4469 static int perf_event_mmap_match(struct perf_event *event, 4470 struct perf_mmap_event *mmap_event, 4471 int executable) 4472 { 4473 if (event->state < PERF_EVENT_STATE_INACTIVE) 4474 return 0; 4475 4476 if (!event_filter_match(event)) 4477 return 0; 4478 4479 if ((!executable && event->attr.mmap_data) || 4480 (executable && event->attr.mmap)) 4481 return 1; 4482 4483 return 0; 4484 } 4485 4486 static void perf_event_mmap_ctx(struct perf_event_context *ctx, 4487 struct perf_mmap_event *mmap_event, 4488 int executable) 4489 { 4490 struct perf_event *event; 4491 4492 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 4493 if (perf_event_mmap_match(event, mmap_event, executable)) 4494 perf_event_mmap_output(event, mmap_event); 4495 } 4496 } 4497 4498 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 4499 { 4500 struct perf_cpu_context *cpuctx; 4501 struct perf_event_context *ctx; 4502 struct vm_area_struct *vma = mmap_event->vma; 4503 struct file *file = vma->vm_file; 4504 unsigned int size; 4505 char tmp[16]; 4506 char *buf = NULL; 4507 const char *name; 4508 struct pmu *pmu; 4509 int ctxn; 4510 4511 memset(tmp, 0, sizeof(tmp)); 4512 4513 if (file) { 4514 /* 4515 * d_path works from the end of the rb backwards, so we 4516 * need to add enough zero bytes after the string to handle 4517 * the 64bit alignment we do later. 4518 */ 4519 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL); 4520 if (!buf) { 4521 name = strncpy(tmp, "//enomem", sizeof(tmp)); 4522 goto got_name; 4523 } 4524 name = d_path(&file->f_path, buf, PATH_MAX); 4525 if (IS_ERR(name)) { 4526 name = strncpy(tmp, "//toolong", sizeof(tmp)); 4527 goto got_name; 4528 } 4529 } else { 4530 if (arch_vma_name(mmap_event->vma)) { 4531 name = strncpy(tmp, arch_vma_name(mmap_event->vma), 4532 sizeof(tmp)); 4533 goto got_name; 4534 } 4535 4536 if (!vma->vm_mm) { 4537 name = strncpy(tmp, "[vdso]", sizeof(tmp)); 4538 goto got_name; 4539 } else if (vma->vm_start <= vma->vm_mm->start_brk && 4540 vma->vm_end >= vma->vm_mm->brk) { 4541 name = strncpy(tmp, "[heap]", sizeof(tmp)); 4542 goto got_name; 4543 } else if (vma->vm_start <= vma->vm_mm->start_stack && 4544 vma->vm_end >= vma->vm_mm->start_stack) { 4545 name = strncpy(tmp, "[stack]", sizeof(tmp)); 4546 goto got_name; 4547 } 4548 4549 name = strncpy(tmp, "//anon", sizeof(tmp)); 4550 goto got_name; 4551 } 4552 4553 got_name: 4554 size = ALIGN(strlen(name)+1, sizeof(u64)); 4555 4556 mmap_event->file_name = name; 4557 mmap_event->file_size = size; 4558 4559 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 4560 4561 rcu_read_lock(); 4562 list_for_each_entry_rcu(pmu, &pmus, entry) { 4563 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context); 4564 if (cpuctx->active_pmu != pmu) 4565 goto next; 4566 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event, 4567 vma->vm_flags & VM_EXEC); 4568 4569 ctxn = pmu->task_ctx_nr; 4570 if (ctxn < 0) 4571 goto next; 4572 4573 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 4574 if (ctx) { 4575 perf_event_mmap_ctx(ctx, mmap_event, 4576 vma->vm_flags & VM_EXEC); 4577 } 4578 next: 4579 put_cpu_ptr(pmu->pmu_cpu_context); 4580 } 4581 rcu_read_unlock(); 4582 4583 kfree(buf); 4584 } 4585 4586 void perf_event_mmap(struct vm_area_struct *vma) 4587 { 4588 struct perf_mmap_event mmap_event; 4589 4590 if (!atomic_read(&nr_mmap_events)) 4591 return; 4592 4593 mmap_event = (struct perf_mmap_event){ 4594 .vma = vma, 4595 /* .file_name */ 4596 /* .file_size */ 4597 .event_id = { 4598 .header = { 4599 .type = PERF_RECORD_MMAP, 4600 .misc = PERF_RECORD_MISC_USER, 4601 /* .size */ 4602 }, 4603 /* .pid */ 4604 /* .tid */ 4605 .start = vma->vm_start, 4606 .len = vma->vm_end - vma->vm_start, 4607 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 4608 }, 4609 }; 4610 4611 perf_event_mmap_event(&mmap_event); 4612 } 4613 4614 /* 4615 * IRQ throttle logging 4616 */ 4617 4618 static void perf_log_throttle(struct perf_event *event, int enable) 4619 { 4620 struct perf_output_handle handle; 4621 struct perf_sample_data sample; 4622 int ret; 4623 4624 struct { 4625 struct perf_event_header header; 4626 u64 time; 4627 u64 id; 4628 u64 stream_id; 4629 } throttle_event = { 4630 .header = { 4631 .type = PERF_RECORD_THROTTLE, 4632 .misc = 0, 4633 .size = sizeof(throttle_event), 4634 }, 4635 .time = perf_clock(), 4636 .id = primary_event_id(event), 4637 .stream_id = event->id, 4638 }; 4639 4640 if (enable) 4641 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 4642 4643 perf_event_header__init_id(&throttle_event.header, &sample, event); 4644 4645 ret = perf_output_begin(&handle, event, 4646 throttle_event.header.size); 4647 if (ret) 4648 return; 4649 4650 perf_output_put(&handle, throttle_event); 4651 perf_event__output_id_sample(event, &handle, &sample); 4652 perf_output_end(&handle); 4653 } 4654 4655 /* 4656 * Generic event overflow handling, sampling. 4657 */ 4658 4659 static int __perf_event_overflow(struct perf_event *event, 4660 int throttle, struct perf_sample_data *data, 4661 struct pt_regs *regs) 4662 { 4663 int events = atomic_read(&event->event_limit); 4664 struct hw_perf_event *hwc = &event->hw; 4665 u64 seq; 4666 int ret = 0; 4667 4668 /* 4669 * Non-sampling counters might still use the PMI to fold short 4670 * hardware counters, ignore those. 4671 */ 4672 if (unlikely(!is_sampling_event(event))) 4673 return 0; 4674 4675 seq = __this_cpu_read(perf_throttled_seq); 4676 if (seq != hwc->interrupts_seq) { 4677 hwc->interrupts_seq = seq; 4678 hwc->interrupts = 1; 4679 } else { 4680 hwc->interrupts++; 4681 if (unlikely(throttle 4682 && hwc->interrupts >= max_samples_per_tick)) { 4683 __this_cpu_inc(perf_throttled_count); 4684 hwc->interrupts = MAX_INTERRUPTS; 4685 perf_log_throttle(event, 0); 4686 ret = 1; 4687 } 4688 } 4689 4690 if (event->attr.freq) { 4691 u64 now = perf_clock(); 4692 s64 delta = now - hwc->freq_time_stamp; 4693 4694 hwc->freq_time_stamp = now; 4695 4696 if (delta > 0 && delta < 2*TICK_NSEC) 4697 perf_adjust_period(event, delta, hwc->last_period, true); 4698 } 4699 4700 /* 4701 * XXX event_limit might not quite work as expected on inherited 4702 * events 4703 */ 4704 4705 event->pending_kill = POLL_IN; 4706 if (events && atomic_dec_and_test(&event->event_limit)) { 4707 ret = 1; 4708 event->pending_kill = POLL_HUP; 4709 event->pending_disable = 1; 4710 irq_work_queue(&event->pending); 4711 } 4712 4713 if (event->overflow_handler) 4714 event->overflow_handler(event, data, regs); 4715 else 4716 perf_event_output(event, data, regs); 4717 4718 if (event->fasync && event->pending_kill) { 4719 event->pending_wakeup = 1; 4720 irq_work_queue(&event->pending); 4721 } 4722 4723 return ret; 4724 } 4725 4726 int perf_event_overflow(struct perf_event *event, 4727 struct perf_sample_data *data, 4728 struct pt_regs *regs) 4729 { 4730 return __perf_event_overflow(event, 1, data, regs); 4731 } 4732 4733 /* 4734 * Generic software event infrastructure 4735 */ 4736 4737 struct swevent_htable { 4738 struct swevent_hlist *swevent_hlist; 4739 struct mutex hlist_mutex; 4740 int hlist_refcount; 4741 4742 /* Recursion avoidance in each contexts */ 4743 int recursion[PERF_NR_CONTEXTS]; 4744 }; 4745 4746 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 4747 4748 /* 4749 * We directly increment event->count and keep a second value in 4750 * event->hw.period_left to count intervals. This period event 4751 * is kept in the range [-sample_period, 0] so that we can use the 4752 * sign as trigger. 4753 */ 4754 4755 static u64 perf_swevent_set_period(struct perf_event *event) 4756 { 4757 struct hw_perf_event *hwc = &event->hw; 4758 u64 period = hwc->last_period; 4759 u64 nr, offset; 4760 s64 old, val; 4761 4762 hwc->last_period = hwc->sample_period; 4763 4764 again: 4765 old = val = local64_read(&hwc->period_left); 4766 if (val < 0) 4767 return 0; 4768 4769 nr = div64_u64(period + val, period); 4770 offset = nr * period; 4771 val -= offset; 4772 if (local64_cmpxchg(&hwc->period_left, old, val) != old) 4773 goto again; 4774 4775 return nr; 4776 } 4777 4778 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 4779 struct perf_sample_data *data, 4780 struct pt_regs *regs) 4781 { 4782 struct hw_perf_event *hwc = &event->hw; 4783 int throttle = 0; 4784 4785 if (!overflow) 4786 overflow = perf_swevent_set_period(event); 4787 4788 if (hwc->interrupts == MAX_INTERRUPTS) 4789 return; 4790 4791 for (; overflow; overflow--) { 4792 if (__perf_event_overflow(event, throttle, 4793 data, regs)) { 4794 /* 4795 * We inhibit the overflow from happening when 4796 * hwc->interrupts == MAX_INTERRUPTS. 4797 */ 4798 break; 4799 } 4800 throttle = 1; 4801 } 4802 } 4803 4804 static void perf_swevent_event(struct perf_event *event, u64 nr, 4805 struct perf_sample_data *data, 4806 struct pt_regs *regs) 4807 { 4808 struct hw_perf_event *hwc = &event->hw; 4809 4810 local64_add(nr, &event->count); 4811 4812 if (!regs) 4813 return; 4814 4815 if (!is_sampling_event(event)) 4816 return; 4817 4818 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 4819 data->period = nr; 4820 return perf_swevent_overflow(event, 1, data, regs); 4821 } else 4822 data->period = event->hw.last_period; 4823 4824 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 4825 return perf_swevent_overflow(event, 1, data, regs); 4826 4827 if (local64_add_negative(nr, &hwc->period_left)) 4828 return; 4829 4830 perf_swevent_overflow(event, 0, data, regs); 4831 } 4832 4833 static int perf_exclude_event(struct perf_event *event, 4834 struct pt_regs *regs) 4835 { 4836 if (event->hw.state & PERF_HES_STOPPED) 4837 return 1; 4838 4839 if (regs) { 4840 if (event->attr.exclude_user && user_mode(regs)) 4841 return 1; 4842 4843 if (event->attr.exclude_kernel && !user_mode(regs)) 4844 return 1; 4845 } 4846 4847 return 0; 4848 } 4849 4850 static int perf_swevent_match(struct perf_event *event, 4851 enum perf_type_id type, 4852 u32 event_id, 4853 struct perf_sample_data *data, 4854 struct pt_regs *regs) 4855 { 4856 if (event->attr.type != type) 4857 return 0; 4858 4859 if (event->attr.config != event_id) 4860 return 0; 4861 4862 if (perf_exclude_event(event, regs)) 4863 return 0; 4864 4865 return 1; 4866 } 4867 4868 static inline u64 swevent_hash(u64 type, u32 event_id) 4869 { 4870 u64 val = event_id | (type << 32); 4871 4872 return hash_64(val, SWEVENT_HLIST_BITS); 4873 } 4874 4875 static inline struct hlist_head * 4876 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 4877 { 4878 u64 hash = swevent_hash(type, event_id); 4879 4880 return &hlist->heads[hash]; 4881 } 4882 4883 /* For the read side: events when they trigger */ 4884 static inline struct hlist_head * 4885 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 4886 { 4887 struct swevent_hlist *hlist; 4888 4889 hlist = rcu_dereference(swhash->swevent_hlist); 4890 if (!hlist) 4891 return NULL; 4892 4893 return __find_swevent_head(hlist, type, event_id); 4894 } 4895 4896 /* For the event head insertion and removal in the hlist */ 4897 static inline struct hlist_head * 4898 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 4899 { 4900 struct swevent_hlist *hlist; 4901 u32 event_id = event->attr.config; 4902 u64 type = event->attr.type; 4903 4904 /* 4905 * Event scheduling is always serialized against hlist allocation 4906 * and release. Which makes the protected version suitable here. 4907 * The context lock guarantees that. 4908 */ 4909 hlist = rcu_dereference_protected(swhash->swevent_hlist, 4910 lockdep_is_held(&event->ctx->lock)); 4911 if (!hlist) 4912 return NULL; 4913 4914 return __find_swevent_head(hlist, type, event_id); 4915 } 4916 4917 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 4918 u64 nr, 4919 struct perf_sample_data *data, 4920 struct pt_regs *regs) 4921 { 4922 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); 4923 struct perf_event *event; 4924 struct hlist_node *node; 4925 struct hlist_head *head; 4926 4927 rcu_read_lock(); 4928 head = find_swevent_head_rcu(swhash, type, event_id); 4929 if (!head) 4930 goto end; 4931 4932 hlist_for_each_entry_rcu(event, node, head, hlist_entry) { 4933 if (perf_swevent_match(event, type, event_id, data, regs)) 4934 perf_swevent_event(event, nr, data, regs); 4935 } 4936 end: 4937 rcu_read_unlock(); 4938 } 4939 4940 int perf_swevent_get_recursion_context(void) 4941 { 4942 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); 4943 4944 return get_recursion_context(swhash->recursion); 4945 } 4946 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 4947 4948 inline void perf_swevent_put_recursion_context(int rctx) 4949 { 4950 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); 4951 4952 put_recursion_context(swhash->recursion, rctx); 4953 } 4954 4955 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 4956 { 4957 struct perf_sample_data data; 4958 int rctx; 4959 4960 preempt_disable_notrace(); 4961 rctx = perf_swevent_get_recursion_context(); 4962 if (rctx < 0) 4963 return; 4964 4965 perf_sample_data_init(&data, addr, 0); 4966 4967 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 4968 4969 perf_swevent_put_recursion_context(rctx); 4970 preempt_enable_notrace(); 4971 } 4972 4973 static void perf_swevent_read(struct perf_event *event) 4974 { 4975 } 4976 4977 static int perf_swevent_add(struct perf_event *event, int flags) 4978 { 4979 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); 4980 struct hw_perf_event *hwc = &event->hw; 4981 struct hlist_head *head; 4982 4983 if (is_sampling_event(event)) { 4984 hwc->last_period = hwc->sample_period; 4985 perf_swevent_set_period(event); 4986 } 4987 4988 hwc->state = !(flags & PERF_EF_START); 4989 4990 head = find_swevent_head(swhash, event); 4991 if (WARN_ON_ONCE(!head)) 4992 return -EINVAL; 4993 4994 hlist_add_head_rcu(&event->hlist_entry, head); 4995 4996 return 0; 4997 } 4998 4999 static void perf_swevent_del(struct perf_event *event, int flags) 5000 { 5001 hlist_del_rcu(&event->hlist_entry); 5002 } 5003 5004 static void perf_swevent_start(struct perf_event *event, int flags) 5005 { 5006 event->hw.state = 0; 5007 } 5008 5009 static void perf_swevent_stop(struct perf_event *event, int flags) 5010 { 5011 event->hw.state = PERF_HES_STOPPED; 5012 } 5013 5014 /* Deref the hlist from the update side */ 5015 static inline struct swevent_hlist * 5016 swevent_hlist_deref(struct swevent_htable *swhash) 5017 { 5018 return rcu_dereference_protected(swhash->swevent_hlist, 5019 lockdep_is_held(&swhash->hlist_mutex)); 5020 } 5021 5022 static void swevent_hlist_release(struct swevent_htable *swhash) 5023 { 5024 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 5025 5026 if (!hlist) 5027 return; 5028 5029 rcu_assign_pointer(swhash->swevent_hlist, NULL); 5030 kfree_rcu(hlist, rcu_head); 5031 } 5032 5033 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu) 5034 { 5035 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 5036 5037 mutex_lock(&swhash->hlist_mutex); 5038 5039 if (!--swhash->hlist_refcount) 5040 swevent_hlist_release(swhash); 5041 5042 mutex_unlock(&swhash->hlist_mutex); 5043 } 5044 5045 static void swevent_hlist_put(struct perf_event *event) 5046 { 5047 int cpu; 5048 5049 if (event->cpu != -1) { 5050 swevent_hlist_put_cpu(event, event->cpu); 5051 return; 5052 } 5053 5054 for_each_possible_cpu(cpu) 5055 swevent_hlist_put_cpu(event, cpu); 5056 } 5057 5058 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu) 5059 { 5060 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 5061 int err = 0; 5062 5063 mutex_lock(&swhash->hlist_mutex); 5064 5065 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) { 5066 struct swevent_hlist *hlist; 5067 5068 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 5069 if (!hlist) { 5070 err = -ENOMEM; 5071 goto exit; 5072 } 5073 rcu_assign_pointer(swhash->swevent_hlist, hlist); 5074 } 5075 swhash->hlist_refcount++; 5076 exit: 5077 mutex_unlock(&swhash->hlist_mutex); 5078 5079 return err; 5080 } 5081 5082 static int swevent_hlist_get(struct perf_event *event) 5083 { 5084 int err; 5085 int cpu, failed_cpu; 5086 5087 if (event->cpu != -1) 5088 return swevent_hlist_get_cpu(event, event->cpu); 5089 5090 get_online_cpus(); 5091 for_each_possible_cpu(cpu) { 5092 err = swevent_hlist_get_cpu(event, cpu); 5093 if (err) { 5094 failed_cpu = cpu; 5095 goto fail; 5096 } 5097 } 5098 put_online_cpus(); 5099 5100 return 0; 5101 fail: 5102 for_each_possible_cpu(cpu) { 5103 if (cpu == failed_cpu) 5104 break; 5105 swevent_hlist_put_cpu(event, cpu); 5106 } 5107 5108 put_online_cpus(); 5109 return err; 5110 } 5111 5112 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 5113 5114 static void sw_perf_event_destroy(struct perf_event *event) 5115 { 5116 u64 event_id = event->attr.config; 5117 5118 WARN_ON(event->parent); 5119 5120 static_key_slow_dec(&perf_swevent_enabled[event_id]); 5121 swevent_hlist_put(event); 5122 } 5123 5124 static int perf_swevent_init(struct perf_event *event) 5125 { 5126 int event_id = event->attr.config; 5127 5128 if (event->attr.type != PERF_TYPE_SOFTWARE) 5129 return -ENOENT; 5130 5131 /* 5132 * no branch sampling for software events 5133 */ 5134 if (has_branch_stack(event)) 5135 return -EOPNOTSUPP; 5136 5137 switch (event_id) { 5138 case PERF_COUNT_SW_CPU_CLOCK: 5139 case PERF_COUNT_SW_TASK_CLOCK: 5140 return -ENOENT; 5141 5142 default: 5143 break; 5144 } 5145 5146 if (event_id >= PERF_COUNT_SW_MAX) 5147 return -ENOENT; 5148 5149 if (!event->parent) { 5150 int err; 5151 5152 err = swevent_hlist_get(event); 5153 if (err) 5154 return err; 5155 5156 static_key_slow_inc(&perf_swevent_enabled[event_id]); 5157 event->destroy = sw_perf_event_destroy; 5158 } 5159 5160 return 0; 5161 } 5162 5163 static int perf_swevent_event_idx(struct perf_event *event) 5164 { 5165 return 0; 5166 } 5167 5168 static struct pmu perf_swevent = { 5169 .task_ctx_nr = perf_sw_context, 5170 5171 .event_init = perf_swevent_init, 5172 .add = perf_swevent_add, 5173 .del = perf_swevent_del, 5174 .start = perf_swevent_start, 5175 .stop = perf_swevent_stop, 5176 .read = perf_swevent_read, 5177 5178 .event_idx = perf_swevent_event_idx, 5179 }; 5180 5181 #ifdef CONFIG_EVENT_TRACING 5182 5183 static int perf_tp_filter_match(struct perf_event *event, 5184 struct perf_sample_data *data) 5185 { 5186 void *record = data->raw->data; 5187 5188 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 5189 return 1; 5190 return 0; 5191 } 5192 5193 static int perf_tp_event_match(struct perf_event *event, 5194 struct perf_sample_data *data, 5195 struct pt_regs *regs) 5196 { 5197 if (event->hw.state & PERF_HES_STOPPED) 5198 return 0; 5199 /* 5200 * All tracepoints are from kernel-space. 5201 */ 5202 if (event->attr.exclude_kernel) 5203 return 0; 5204 5205 if (!perf_tp_filter_match(event, data)) 5206 return 0; 5207 5208 return 1; 5209 } 5210 5211 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size, 5212 struct pt_regs *regs, struct hlist_head *head, int rctx, 5213 struct task_struct *task) 5214 { 5215 struct perf_sample_data data; 5216 struct perf_event *event; 5217 struct hlist_node *node; 5218 5219 struct perf_raw_record raw = { 5220 .size = entry_size, 5221 .data = record, 5222 }; 5223 5224 perf_sample_data_init(&data, addr, 0); 5225 data.raw = &raw; 5226 5227 hlist_for_each_entry_rcu(event, node, head, hlist_entry) { 5228 if (perf_tp_event_match(event, &data, regs)) 5229 perf_swevent_event(event, count, &data, regs); 5230 } 5231 5232 /* 5233 * If we got specified a target task, also iterate its context and 5234 * deliver this event there too. 5235 */ 5236 if (task && task != current) { 5237 struct perf_event_context *ctx; 5238 struct trace_entry *entry = record; 5239 5240 rcu_read_lock(); 5241 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]); 5242 if (!ctx) 5243 goto unlock; 5244 5245 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 5246 if (event->attr.type != PERF_TYPE_TRACEPOINT) 5247 continue; 5248 if (event->attr.config != entry->type) 5249 continue; 5250 if (perf_tp_event_match(event, &data, regs)) 5251 perf_swevent_event(event, count, &data, regs); 5252 } 5253 unlock: 5254 rcu_read_unlock(); 5255 } 5256 5257 perf_swevent_put_recursion_context(rctx); 5258 } 5259 EXPORT_SYMBOL_GPL(perf_tp_event); 5260 5261 static void tp_perf_event_destroy(struct perf_event *event) 5262 { 5263 perf_trace_destroy(event); 5264 } 5265 5266 static int perf_tp_event_init(struct perf_event *event) 5267 { 5268 int err; 5269 5270 if (event->attr.type != PERF_TYPE_TRACEPOINT) 5271 return -ENOENT; 5272 5273 /* 5274 * no branch sampling for tracepoint events 5275 */ 5276 if (has_branch_stack(event)) 5277 return -EOPNOTSUPP; 5278 5279 err = perf_trace_init(event); 5280 if (err) 5281 return err; 5282 5283 event->destroy = tp_perf_event_destroy; 5284 5285 return 0; 5286 } 5287 5288 static struct pmu perf_tracepoint = { 5289 .task_ctx_nr = perf_sw_context, 5290 5291 .event_init = perf_tp_event_init, 5292 .add = perf_trace_add, 5293 .del = perf_trace_del, 5294 .start = perf_swevent_start, 5295 .stop = perf_swevent_stop, 5296 .read = perf_swevent_read, 5297 5298 .event_idx = perf_swevent_event_idx, 5299 }; 5300 5301 static inline void perf_tp_register(void) 5302 { 5303 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 5304 } 5305 5306 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 5307 { 5308 char *filter_str; 5309 int ret; 5310 5311 if (event->attr.type != PERF_TYPE_TRACEPOINT) 5312 return -EINVAL; 5313 5314 filter_str = strndup_user(arg, PAGE_SIZE); 5315 if (IS_ERR(filter_str)) 5316 return PTR_ERR(filter_str); 5317 5318 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 5319 5320 kfree(filter_str); 5321 return ret; 5322 } 5323 5324 static void perf_event_free_filter(struct perf_event *event) 5325 { 5326 ftrace_profile_free_filter(event); 5327 } 5328 5329 #else 5330 5331 static inline void perf_tp_register(void) 5332 { 5333 } 5334 5335 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 5336 { 5337 return -ENOENT; 5338 } 5339 5340 static void perf_event_free_filter(struct perf_event *event) 5341 { 5342 } 5343 5344 #endif /* CONFIG_EVENT_TRACING */ 5345 5346 #ifdef CONFIG_HAVE_HW_BREAKPOINT 5347 void perf_bp_event(struct perf_event *bp, void *data) 5348 { 5349 struct perf_sample_data sample; 5350 struct pt_regs *regs = data; 5351 5352 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 5353 5354 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 5355 perf_swevent_event(bp, 1, &sample, regs); 5356 } 5357 #endif 5358 5359 /* 5360 * hrtimer based swevent callback 5361 */ 5362 5363 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 5364 { 5365 enum hrtimer_restart ret = HRTIMER_RESTART; 5366 struct perf_sample_data data; 5367 struct pt_regs *regs; 5368 struct perf_event *event; 5369 u64 period; 5370 5371 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 5372 5373 if (event->state != PERF_EVENT_STATE_ACTIVE) 5374 return HRTIMER_NORESTART; 5375 5376 event->pmu->read(event); 5377 5378 perf_sample_data_init(&data, 0, event->hw.last_period); 5379 regs = get_irq_regs(); 5380 5381 if (regs && !perf_exclude_event(event, regs)) { 5382 if (!(event->attr.exclude_idle && is_idle_task(current))) 5383 if (__perf_event_overflow(event, 1, &data, regs)) 5384 ret = HRTIMER_NORESTART; 5385 } 5386 5387 period = max_t(u64, 10000, event->hw.sample_period); 5388 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 5389 5390 return ret; 5391 } 5392 5393 static void perf_swevent_start_hrtimer(struct perf_event *event) 5394 { 5395 struct hw_perf_event *hwc = &event->hw; 5396 s64 period; 5397 5398 if (!is_sampling_event(event)) 5399 return; 5400 5401 period = local64_read(&hwc->period_left); 5402 if (period) { 5403 if (period < 0) 5404 period = 10000; 5405 5406 local64_set(&hwc->period_left, 0); 5407 } else { 5408 period = max_t(u64, 10000, hwc->sample_period); 5409 } 5410 __hrtimer_start_range_ns(&hwc->hrtimer, 5411 ns_to_ktime(period), 0, 5412 HRTIMER_MODE_REL_PINNED, 0); 5413 } 5414 5415 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 5416 { 5417 struct hw_perf_event *hwc = &event->hw; 5418 5419 if (is_sampling_event(event)) { 5420 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 5421 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 5422 5423 hrtimer_cancel(&hwc->hrtimer); 5424 } 5425 } 5426 5427 static void perf_swevent_init_hrtimer(struct perf_event *event) 5428 { 5429 struct hw_perf_event *hwc = &event->hw; 5430 5431 if (!is_sampling_event(event)) 5432 return; 5433 5434 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 5435 hwc->hrtimer.function = perf_swevent_hrtimer; 5436 5437 /* 5438 * Since hrtimers have a fixed rate, we can do a static freq->period 5439 * mapping and avoid the whole period adjust feedback stuff. 5440 */ 5441 if (event->attr.freq) { 5442 long freq = event->attr.sample_freq; 5443 5444 event->attr.sample_period = NSEC_PER_SEC / freq; 5445 hwc->sample_period = event->attr.sample_period; 5446 local64_set(&hwc->period_left, hwc->sample_period); 5447 event->attr.freq = 0; 5448 } 5449 } 5450 5451 /* 5452 * Software event: cpu wall time clock 5453 */ 5454 5455 static void cpu_clock_event_update(struct perf_event *event) 5456 { 5457 s64 prev; 5458 u64 now; 5459 5460 now = local_clock(); 5461 prev = local64_xchg(&event->hw.prev_count, now); 5462 local64_add(now - prev, &event->count); 5463 } 5464 5465 static void cpu_clock_event_start(struct perf_event *event, int flags) 5466 { 5467 local64_set(&event->hw.prev_count, local_clock()); 5468 perf_swevent_start_hrtimer(event); 5469 } 5470 5471 static void cpu_clock_event_stop(struct perf_event *event, int flags) 5472 { 5473 perf_swevent_cancel_hrtimer(event); 5474 cpu_clock_event_update(event); 5475 } 5476 5477 static int cpu_clock_event_add(struct perf_event *event, int flags) 5478 { 5479 if (flags & PERF_EF_START) 5480 cpu_clock_event_start(event, flags); 5481 5482 return 0; 5483 } 5484 5485 static void cpu_clock_event_del(struct perf_event *event, int flags) 5486 { 5487 cpu_clock_event_stop(event, flags); 5488 } 5489 5490 static void cpu_clock_event_read(struct perf_event *event) 5491 { 5492 cpu_clock_event_update(event); 5493 } 5494 5495 static int cpu_clock_event_init(struct perf_event *event) 5496 { 5497 if (event->attr.type != PERF_TYPE_SOFTWARE) 5498 return -ENOENT; 5499 5500 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 5501 return -ENOENT; 5502 5503 /* 5504 * no branch sampling for software events 5505 */ 5506 if (has_branch_stack(event)) 5507 return -EOPNOTSUPP; 5508 5509 perf_swevent_init_hrtimer(event); 5510 5511 return 0; 5512 } 5513 5514 static struct pmu perf_cpu_clock = { 5515 .task_ctx_nr = perf_sw_context, 5516 5517 .event_init = cpu_clock_event_init, 5518 .add = cpu_clock_event_add, 5519 .del = cpu_clock_event_del, 5520 .start = cpu_clock_event_start, 5521 .stop = cpu_clock_event_stop, 5522 .read = cpu_clock_event_read, 5523 5524 .event_idx = perf_swevent_event_idx, 5525 }; 5526 5527 /* 5528 * Software event: task time clock 5529 */ 5530 5531 static void task_clock_event_update(struct perf_event *event, u64 now) 5532 { 5533 u64 prev; 5534 s64 delta; 5535 5536 prev = local64_xchg(&event->hw.prev_count, now); 5537 delta = now - prev; 5538 local64_add(delta, &event->count); 5539 } 5540 5541 static void task_clock_event_start(struct perf_event *event, int flags) 5542 { 5543 local64_set(&event->hw.prev_count, event->ctx->time); 5544 perf_swevent_start_hrtimer(event); 5545 } 5546 5547 static void task_clock_event_stop(struct perf_event *event, int flags) 5548 { 5549 perf_swevent_cancel_hrtimer(event); 5550 task_clock_event_update(event, event->ctx->time); 5551 } 5552 5553 static int task_clock_event_add(struct perf_event *event, int flags) 5554 { 5555 if (flags & PERF_EF_START) 5556 task_clock_event_start(event, flags); 5557 5558 return 0; 5559 } 5560 5561 static void task_clock_event_del(struct perf_event *event, int flags) 5562 { 5563 task_clock_event_stop(event, PERF_EF_UPDATE); 5564 } 5565 5566 static void task_clock_event_read(struct perf_event *event) 5567 { 5568 u64 now = perf_clock(); 5569 u64 delta = now - event->ctx->timestamp; 5570 u64 time = event->ctx->time + delta; 5571 5572 task_clock_event_update(event, time); 5573 } 5574 5575 static int task_clock_event_init(struct perf_event *event) 5576 { 5577 if (event->attr.type != PERF_TYPE_SOFTWARE) 5578 return -ENOENT; 5579 5580 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 5581 return -ENOENT; 5582 5583 /* 5584 * no branch sampling for software events 5585 */ 5586 if (has_branch_stack(event)) 5587 return -EOPNOTSUPP; 5588 5589 perf_swevent_init_hrtimer(event); 5590 5591 return 0; 5592 } 5593 5594 static struct pmu perf_task_clock = { 5595 .task_ctx_nr = perf_sw_context, 5596 5597 .event_init = task_clock_event_init, 5598 .add = task_clock_event_add, 5599 .del = task_clock_event_del, 5600 .start = task_clock_event_start, 5601 .stop = task_clock_event_stop, 5602 .read = task_clock_event_read, 5603 5604 .event_idx = perf_swevent_event_idx, 5605 }; 5606 5607 static void perf_pmu_nop_void(struct pmu *pmu) 5608 { 5609 } 5610 5611 static int perf_pmu_nop_int(struct pmu *pmu) 5612 { 5613 return 0; 5614 } 5615 5616 static void perf_pmu_start_txn(struct pmu *pmu) 5617 { 5618 perf_pmu_disable(pmu); 5619 } 5620 5621 static int perf_pmu_commit_txn(struct pmu *pmu) 5622 { 5623 perf_pmu_enable(pmu); 5624 return 0; 5625 } 5626 5627 static void perf_pmu_cancel_txn(struct pmu *pmu) 5628 { 5629 perf_pmu_enable(pmu); 5630 } 5631 5632 static int perf_event_idx_default(struct perf_event *event) 5633 { 5634 return event->hw.idx + 1; 5635 } 5636 5637 /* 5638 * Ensures all contexts with the same task_ctx_nr have the same 5639 * pmu_cpu_context too. 5640 */ 5641 static void *find_pmu_context(int ctxn) 5642 { 5643 struct pmu *pmu; 5644 5645 if (ctxn < 0) 5646 return NULL; 5647 5648 list_for_each_entry(pmu, &pmus, entry) { 5649 if (pmu->task_ctx_nr == ctxn) 5650 return pmu->pmu_cpu_context; 5651 } 5652 5653 return NULL; 5654 } 5655 5656 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu) 5657 { 5658 int cpu; 5659 5660 for_each_possible_cpu(cpu) { 5661 struct perf_cpu_context *cpuctx; 5662 5663 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 5664 5665 if (cpuctx->active_pmu == old_pmu) 5666 cpuctx->active_pmu = pmu; 5667 } 5668 } 5669 5670 static void free_pmu_context(struct pmu *pmu) 5671 { 5672 struct pmu *i; 5673 5674 mutex_lock(&pmus_lock); 5675 /* 5676 * Like a real lame refcount. 5677 */ 5678 list_for_each_entry(i, &pmus, entry) { 5679 if (i->pmu_cpu_context == pmu->pmu_cpu_context) { 5680 update_pmu_context(i, pmu); 5681 goto out; 5682 } 5683 } 5684 5685 free_percpu(pmu->pmu_cpu_context); 5686 out: 5687 mutex_unlock(&pmus_lock); 5688 } 5689 static struct idr pmu_idr; 5690 5691 static ssize_t 5692 type_show(struct device *dev, struct device_attribute *attr, char *page) 5693 { 5694 struct pmu *pmu = dev_get_drvdata(dev); 5695 5696 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); 5697 } 5698 5699 static struct device_attribute pmu_dev_attrs[] = { 5700 __ATTR_RO(type), 5701 __ATTR_NULL, 5702 }; 5703 5704 static int pmu_bus_running; 5705 static struct bus_type pmu_bus = { 5706 .name = "event_source", 5707 .dev_attrs = pmu_dev_attrs, 5708 }; 5709 5710 static void pmu_dev_release(struct device *dev) 5711 { 5712 kfree(dev); 5713 } 5714 5715 static int pmu_dev_alloc(struct pmu *pmu) 5716 { 5717 int ret = -ENOMEM; 5718 5719 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 5720 if (!pmu->dev) 5721 goto out; 5722 5723 pmu->dev->groups = pmu->attr_groups; 5724 device_initialize(pmu->dev); 5725 ret = dev_set_name(pmu->dev, "%s", pmu->name); 5726 if (ret) 5727 goto free_dev; 5728 5729 dev_set_drvdata(pmu->dev, pmu); 5730 pmu->dev->bus = &pmu_bus; 5731 pmu->dev->release = pmu_dev_release; 5732 ret = device_add(pmu->dev); 5733 if (ret) 5734 goto free_dev; 5735 5736 out: 5737 return ret; 5738 5739 free_dev: 5740 put_device(pmu->dev); 5741 goto out; 5742 } 5743 5744 static struct lock_class_key cpuctx_mutex; 5745 static struct lock_class_key cpuctx_lock; 5746 5747 int perf_pmu_register(struct pmu *pmu, char *name, int type) 5748 { 5749 int cpu, ret; 5750 5751 mutex_lock(&pmus_lock); 5752 ret = -ENOMEM; 5753 pmu->pmu_disable_count = alloc_percpu(int); 5754 if (!pmu->pmu_disable_count) 5755 goto unlock; 5756 5757 pmu->type = -1; 5758 if (!name) 5759 goto skip_type; 5760 pmu->name = name; 5761 5762 if (type < 0) { 5763 int err = idr_pre_get(&pmu_idr, GFP_KERNEL); 5764 if (!err) 5765 goto free_pdc; 5766 5767 err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type); 5768 if (err) { 5769 ret = err; 5770 goto free_pdc; 5771 } 5772 } 5773 pmu->type = type; 5774 5775 if (pmu_bus_running) { 5776 ret = pmu_dev_alloc(pmu); 5777 if (ret) 5778 goto free_idr; 5779 } 5780 5781 skip_type: 5782 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); 5783 if (pmu->pmu_cpu_context) 5784 goto got_cpu_context; 5785 5786 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); 5787 if (!pmu->pmu_cpu_context) 5788 goto free_dev; 5789 5790 for_each_possible_cpu(cpu) { 5791 struct perf_cpu_context *cpuctx; 5792 5793 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 5794 __perf_event_init_context(&cpuctx->ctx); 5795 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 5796 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 5797 cpuctx->ctx.type = cpu_context; 5798 cpuctx->ctx.pmu = pmu; 5799 cpuctx->jiffies_interval = 1; 5800 INIT_LIST_HEAD(&cpuctx->rotation_list); 5801 cpuctx->active_pmu = pmu; 5802 } 5803 5804 got_cpu_context: 5805 if (!pmu->start_txn) { 5806 if (pmu->pmu_enable) { 5807 /* 5808 * If we have pmu_enable/pmu_disable calls, install 5809 * transaction stubs that use that to try and batch 5810 * hardware accesses. 5811 */ 5812 pmu->start_txn = perf_pmu_start_txn; 5813 pmu->commit_txn = perf_pmu_commit_txn; 5814 pmu->cancel_txn = perf_pmu_cancel_txn; 5815 } else { 5816 pmu->start_txn = perf_pmu_nop_void; 5817 pmu->commit_txn = perf_pmu_nop_int; 5818 pmu->cancel_txn = perf_pmu_nop_void; 5819 } 5820 } 5821 5822 if (!pmu->pmu_enable) { 5823 pmu->pmu_enable = perf_pmu_nop_void; 5824 pmu->pmu_disable = perf_pmu_nop_void; 5825 } 5826 5827 if (!pmu->event_idx) 5828 pmu->event_idx = perf_event_idx_default; 5829 5830 list_add_rcu(&pmu->entry, &pmus); 5831 ret = 0; 5832 unlock: 5833 mutex_unlock(&pmus_lock); 5834 5835 return ret; 5836 5837 free_dev: 5838 device_del(pmu->dev); 5839 put_device(pmu->dev); 5840 5841 free_idr: 5842 if (pmu->type >= PERF_TYPE_MAX) 5843 idr_remove(&pmu_idr, pmu->type); 5844 5845 free_pdc: 5846 free_percpu(pmu->pmu_disable_count); 5847 goto unlock; 5848 } 5849 5850 void perf_pmu_unregister(struct pmu *pmu) 5851 { 5852 mutex_lock(&pmus_lock); 5853 list_del_rcu(&pmu->entry); 5854 mutex_unlock(&pmus_lock); 5855 5856 /* 5857 * We dereference the pmu list under both SRCU and regular RCU, so 5858 * synchronize against both of those. 5859 */ 5860 synchronize_srcu(&pmus_srcu); 5861 synchronize_rcu(); 5862 5863 free_percpu(pmu->pmu_disable_count); 5864 if (pmu->type >= PERF_TYPE_MAX) 5865 idr_remove(&pmu_idr, pmu->type); 5866 device_del(pmu->dev); 5867 put_device(pmu->dev); 5868 free_pmu_context(pmu); 5869 } 5870 5871 struct pmu *perf_init_event(struct perf_event *event) 5872 { 5873 struct pmu *pmu = NULL; 5874 int idx; 5875 int ret; 5876 5877 idx = srcu_read_lock(&pmus_srcu); 5878 5879 rcu_read_lock(); 5880 pmu = idr_find(&pmu_idr, event->attr.type); 5881 rcu_read_unlock(); 5882 if (pmu) { 5883 event->pmu = pmu; 5884 ret = pmu->event_init(event); 5885 if (ret) 5886 pmu = ERR_PTR(ret); 5887 goto unlock; 5888 } 5889 5890 list_for_each_entry_rcu(pmu, &pmus, entry) { 5891 event->pmu = pmu; 5892 ret = pmu->event_init(event); 5893 if (!ret) 5894 goto unlock; 5895 5896 if (ret != -ENOENT) { 5897 pmu = ERR_PTR(ret); 5898 goto unlock; 5899 } 5900 } 5901 pmu = ERR_PTR(-ENOENT); 5902 unlock: 5903 srcu_read_unlock(&pmus_srcu, idx); 5904 5905 return pmu; 5906 } 5907 5908 /* 5909 * Allocate and initialize a event structure 5910 */ 5911 static struct perf_event * 5912 perf_event_alloc(struct perf_event_attr *attr, int cpu, 5913 struct task_struct *task, 5914 struct perf_event *group_leader, 5915 struct perf_event *parent_event, 5916 perf_overflow_handler_t overflow_handler, 5917 void *context) 5918 { 5919 struct pmu *pmu; 5920 struct perf_event *event; 5921 struct hw_perf_event *hwc; 5922 long err; 5923 5924 if ((unsigned)cpu >= nr_cpu_ids) { 5925 if (!task || cpu != -1) 5926 return ERR_PTR(-EINVAL); 5927 } 5928 5929 event = kzalloc(sizeof(*event), GFP_KERNEL); 5930 if (!event) 5931 return ERR_PTR(-ENOMEM); 5932 5933 /* 5934 * Single events are their own group leaders, with an 5935 * empty sibling list: 5936 */ 5937 if (!group_leader) 5938 group_leader = event; 5939 5940 mutex_init(&event->child_mutex); 5941 INIT_LIST_HEAD(&event->child_list); 5942 5943 INIT_LIST_HEAD(&event->group_entry); 5944 INIT_LIST_HEAD(&event->event_entry); 5945 INIT_LIST_HEAD(&event->sibling_list); 5946 INIT_LIST_HEAD(&event->rb_entry); 5947 5948 init_waitqueue_head(&event->waitq); 5949 init_irq_work(&event->pending, perf_pending_event); 5950 5951 mutex_init(&event->mmap_mutex); 5952 5953 event->cpu = cpu; 5954 event->attr = *attr; 5955 event->group_leader = group_leader; 5956 event->pmu = NULL; 5957 event->oncpu = -1; 5958 5959 event->parent = parent_event; 5960 5961 event->ns = get_pid_ns(current->nsproxy->pid_ns); 5962 event->id = atomic64_inc_return(&perf_event_id); 5963 5964 event->state = PERF_EVENT_STATE_INACTIVE; 5965 5966 if (task) { 5967 event->attach_state = PERF_ATTACH_TASK; 5968 #ifdef CONFIG_HAVE_HW_BREAKPOINT 5969 /* 5970 * hw_breakpoint is a bit difficult here.. 5971 */ 5972 if (attr->type == PERF_TYPE_BREAKPOINT) 5973 event->hw.bp_target = task; 5974 #endif 5975 } 5976 5977 if (!overflow_handler && parent_event) { 5978 overflow_handler = parent_event->overflow_handler; 5979 context = parent_event->overflow_handler_context; 5980 } 5981 5982 event->overflow_handler = overflow_handler; 5983 event->overflow_handler_context = context; 5984 5985 if (attr->disabled) 5986 event->state = PERF_EVENT_STATE_OFF; 5987 5988 pmu = NULL; 5989 5990 hwc = &event->hw; 5991 hwc->sample_period = attr->sample_period; 5992 if (attr->freq && attr->sample_freq) 5993 hwc->sample_period = 1; 5994 hwc->last_period = hwc->sample_period; 5995 5996 local64_set(&hwc->period_left, hwc->sample_period); 5997 5998 /* 5999 * we currently do not support PERF_FORMAT_GROUP on inherited events 6000 */ 6001 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP)) 6002 goto done; 6003 6004 pmu = perf_init_event(event); 6005 6006 done: 6007 err = 0; 6008 if (!pmu) 6009 err = -EINVAL; 6010 else if (IS_ERR(pmu)) 6011 err = PTR_ERR(pmu); 6012 6013 if (err) { 6014 if (event->ns) 6015 put_pid_ns(event->ns); 6016 kfree(event); 6017 return ERR_PTR(err); 6018 } 6019 6020 if (!event->parent) { 6021 if (event->attach_state & PERF_ATTACH_TASK) 6022 static_key_slow_inc(&perf_sched_events.key); 6023 if (event->attr.mmap || event->attr.mmap_data) 6024 atomic_inc(&nr_mmap_events); 6025 if (event->attr.comm) 6026 atomic_inc(&nr_comm_events); 6027 if (event->attr.task) 6028 atomic_inc(&nr_task_events); 6029 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 6030 err = get_callchain_buffers(); 6031 if (err) { 6032 free_event(event); 6033 return ERR_PTR(err); 6034 } 6035 } 6036 if (has_branch_stack(event)) { 6037 static_key_slow_inc(&perf_sched_events.key); 6038 if (!(event->attach_state & PERF_ATTACH_TASK)) 6039 atomic_inc(&per_cpu(perf_branch_stack_events, 6040 event->cpu)); 6041 } 6042 } 6043 6044 return event; 6045 } 6046 6047 static int perf_copy_attr(struct perf_event_attr __user *uattr, 6048 struct perf_event_attr *attr) 6049 { 6050 u32 size; 6051 int ret; 6052 6053 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0)) 6054 return -EFAULT; 6055 6056 /* 6057 * zero the full structure, so that a short copy will be nice. 6058 */ 6059 memset(attr, 0, sizeof(*attr)); 6060 6061 ret = get_user(size, &uattr->size); 6062 if (ret) 6063 return ret; 6064 6065 if (size > PAGE_SIZE) /* silly large */ 6066 goto err_size; 6067 6068 if (!size) /* abi compat */ 6069 size = PERF_ATTR_SIZE_VER0; 6070 6071 if (size < PERF_ATTR_SIZE_VER0) 6072 goto err_size; 6073 6074 /* 6075 * If we're handed a bigger struct than we know of, 6076 * ensure all the unknown bits are 0 - i.e. new 6077 * user-space does not rely on any kernel feature 6078 * extensions we dont know about yet. 6079 */ 6080 if (size > sizeof(*attr)) { 6081 unsigned char __user *addr; 6082 unsigned char __user *end; 6083 unsigned char val; 6084 6085 addr = (void __user *)uattr + sizeof(*attr); 6086 end = (void __user *)uattr + size; 6087 6088 for (; addr < end; addr++) { 6089 ret = get_user(val, addr); 6090 if (ret) 6091 return ret; 6092 if (val) 6093 goto err_size; 6094 } 6095 size = sizeof(*attr); 6096 } 6097 6098 ret = copy_from_user(attr, uattr, size); 6099 if (ret) 6100 return -EFAULT; 6101 6102 if (attr->__reserved_1) 6103 return -EINVAL; 6104 6105 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 6106 return -EINVAL; 6107 6108 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 6109 return -EINVAL; 6110 6111 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 6112 u64 mask = attr->branch_sample_type; 6113 6114 /* only using defined bits */ 6115 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 6116 return -EINVAL; 6117 6118 /* at least one branch bit must be set */ 6119 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 6120 return -EINVAL; 6121 6122 /* kernel level capture: check permissions */ 6123 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM) 6124 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 6125 return -EACCES; 6126 6127 /* propagate priv level, when not set for branch */ 6128 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 6129 6130 /* exclude_kernel checked on syscall entry */ 6131 if (!attr->exclude_kernel) 6132 mask |= PERF_SAMPLE_BRANCH_KERNEL; 6133 6134 if (!attr->exclude_user) 6135 mask |= PERF_SAMPLE_BRANCH_USER; 6136 6137 if (!attr->exclude_hv) 6138 mask |= PERF_SAMPLE_BRANCH_HV; 6139 /* 6140 * adjust user setting (for HW filter setup) 6141 */ 6142 attr->branch_sample_type = mask; 6143 } 6144 } 6145 out: 6146 return ret; 6147 6148 err_size: 6149 put_user(sizeof(*attr), &uattr->size); 6150 ret = -E2BIG; 6151 goto out; 6152 } 6153 6154 static int 6155 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 6156 { 6157 struct ring_buffer *rb = NULL, *old_rb = NULL; 6158 int ret = -EINVAL; 6159 6160 if (!output_event) 6161 goto set; 6162 6163 /* don't allow circular references */ 6164 if (event == output_event) 6165 goto out; 6166 6167 /* 6168 * Don't allow cross-cpu buffers 6169 */ 6170 if (output_event->cpu != event->cpu) 6171 goto out; 6172 6173 /* 6174 * If its not a per-cpu rb, it must be the same task. 6175 */ 6176 if (output_event->cpu == -1 && output_event->ctx != event->ctx) 6177 goto out; 6178 6179 set: 6180 mutex_lock(&event->mmap_mutex); 6181 /* Can't redirect output if we've got an active mmap() */ 6182 if (atomic_read(&event->mmap_count)) 6183 goto unlock; 6184 6185 if (output_event) { 6186 /* get the rb we want to redirect to */ 6187 rb = ring_buffer_get(output_event); 6188 if (!rb) 6189 goto unlock; 6190 } 6191 6192 old_rb = event->rb; 6193 rcu_assign_pointer(event->rb, rb); 6194 if (old_rb) 6195 ring_buffer_detach(event, old_rb); 6196 ret = 0; 6197 unlock: 6198 mutex_unlock(&event->mmap_mutex); 6199 6200 if (old_rb) 6201 ring_buffer_put(old_rb); 6202 out: 6203 return ret; 6204 } 6205 6206 /** 6207 * sys_perf_event_open - open a performance event, associate it to a task/cpu 6208 * 6209 * @attr_uptr: event_id type attributes for monitoring/sampling 6210 * @pid: target pid 6211 * @cpu: target cpu 6212 * @group_fd: group leader event fd 6213 */ 6214 SYSCALL_DEFINE5(perf_event_open, 6215 struct perf_event_attr __user *, attr_uptr, 6216 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 6217 { 6218 struct perf_event *group_leader = NULL, *output_event = NULL; 6219 struct perf_event *event, *sibling; 6220 struct perf_event_attr attr; 6221 struct perf_event_context *ctx; 6222 struct file *event_file = NULL; 6223 struct file *group_file = NULL; 6224 struct task_struct *task = NULL; 6225 struct pmu *pmu; 6226 int event_fd; 6227 int move_group = 0; 6228 int fput_needed = 0; 6229 int err; 6230 6231 /* for future expandability... */ 6232 if (flags & ~PERF_FLAG_ALL) 6233 return -EINVAL; 6234 6235 err = perf_copy_attr(attr_uptr, &attr); 6236 if (err) 6237 return err; 6238 6239 if (!attr.exclude_kernel) { 6240 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 6241 return -EACCES; 6242 } 6243 6244 if (attr.freq) { 6245 if (attr.sample_freq > sysctl_perf_event_sample_rate) 6246 return -EINVAL; 6247 } 6248 6249 /* 6250 * In cgroup mode, the pid argument is used to pass the fd 6251 * opened to the cgroup directory in cgroupfs. The cpu argument 6252 * designates the cpu on which to monitor threads from that 6253 * cgroup. 6254 */ 6255 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 6256 return -EINVAL; 6257 6258 event_fd = get_unused_fd_flags(O_RDWR); 6259 if (event_fd < 0) 6260 return event_fd; 6261 6262 if (group_fd != -1) { 6263 group_leader = perf_fget_light(group_fd, &fput_needed); 6264 if (IS_ERR(group_leader)) { 6265 err = PTR_ERR(group_leader); 6266 goto err_fd; 6267 } 6268 group_file = group_leader->filp; 6269 if (flags & PERF_FLAG_FD_OUTPUT) 6270 output_event = group_leader; 6271 if (flags & PERF_FLAG_FD_NO_GROUP) 6272 group_leader = NULL; 6273 } 6274 6275 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 6276 task = find_lively_task_by_vpid(pid); 6277 if (IS_ERR(task)) { 6278 err = PTR_ERR(task); 6279 goto err_group_fd; 6280 } 6281 } 6282 6283 get_online_cpus(); 6284 6285 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 6286 NULL, NULL); 6287 if (IS_ERR(event)) { 6288 err = PTR_ERR(event); 6289 goto err_task; 6290 } 6291 6292 if (flags & PERF_FLAG_PID_CGROUP) { 6293 err = perf_cgroup_connect(pid, event, &attr, group_leader); 6294 if (err) 6295 goto err_alloc; 6296 /* 6297 * one more event: 6298 * - that has cgroup constraint on event->cpu 6299 * - that may need work on context switch 6300 */ 6301 atomic_inc(&per_cpu(perf_cgroup_events, event->cpu)); 6302 static_key_slow_inc(&perf_sched_events.key); 6303 } 6304 6305 /* 6306 * Special case software events and allow them to be part of 6307 * any hardware group. 6308 */ 6309 pmu = event->pmu; 6310 6311 if (group_leader && 6312 (is_software_event(event) != is_software_event(group_leader))) { 6313 if (is_software_event(event)) { 6314 /* 6315 * If event and group_leader are not both a software 6316 * event, and event is, then group leader is not. 6317 * 6318 * Allow the addition of software events to !software 6319 * groups, this is safe because software events never 6320 * fail to schedule. 6321 */ 6322 pmu = group_leader->pmu; 6323 } else if (is_software_event(group_leader) && 6324 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) { 6325 /* 6326 * In case the group is a pure software group, and we 6327 * try to add a hardware event, move the whole group to 6328 * the hardware context. 6329 */ 6330 move_group = 1; 6331 } 6332 } 6333 6334 /* 6335 * Get the target context (task or percpu): 6336 */ 6337 ctx = find_get_context(pmu, task, event->cpu); 6338 if (IS_ERR(ctx)) { 6339 err = PTR_ERR(ctx); 6340 goto err_alloc; 6341 } 6342 6343 if (task) { 6344 put_task_struct(task); 6345 task = NULL; 6346 } 6347 6348 /* 6349 * Look up the group leader (we will attach this event to it): 6350 */ 6351 if (group_leader) { 6352 err = -EINVAL; 6353 6354 /* 6355 * Do not allow a recursive hierarchy (this new sibling 6356 * becoming part of another group-sibling): 6357 */ 6358 if (group_leader->group_leader != group_leader) 6359 goto err_context; 6360 /* 6361 * Do not allow to attach to a group in a different 6362 * task or CPU context: 6363 */ 6364 if (move_group) { 6365 if (group_leader->ctx->type != ctx->type) 6366 goto err_context; 6367 } else { 6368 if (group_leader->ctx != ctx) 6369 goto err_context; 6370 } 6371 6372 /* 6373 * Only a group leader can be exclusive or pinned 6374 */ 6375 if (attr.exclusive || attr.pinned) 6376 goto err_context; 6377 } 6378 6379 if (output_event) { 6380 err = perf_event_set_output(event, output_event); 6381 if (err) 6382 goto err_context; 6383 } 6384 6385 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR); 6386 if (IS_ERR(event_file)) { 6387 err = PTR_ERR(event_file); 6388 goto err_context; 6389 } 6390 6391 if (move_group) { 6392 struct perf_event_context *gctx = group_leader->ctx; 6393 6394 mutex_lock(&gctx->mutex); 6395 perf_remove_from_context(group_leader); 6396 list_for_each_entry(sibling, &group_leader->sibling_list, 6397 group_entry) { 6398 perf_remove_from_context(sibling); 6399 put_ctx(gctx); 6400 } 6401 mutex_unlock(&gctx->mutex); 6402 put_ctx(gctx); 6403 } 6404 6405 event->filp = event_file; 6406 WARN_ON_ONCE(ctx->parent_ctx); 6407 mutex_lock(&ctx->mutex); 6408 6409 if (move_group) { 6410 synchronize_rcu(); 6411 perf_install_in_context(ctx, group_leader, event->cpu); 6412 get_ctx(ctx); 6413 list_for_each_entry(sibling, &group_leader->sibling_list, 6414 group_entry) { 6415 perf_install_in_context(ctx, sibling, event->cpu); 6416 get_ctx(ctx); 6417 } 6418 } 6419 6420 perf_install_in_context(ctx, event, event->cpu); 6421 ++ctx->generation; 6422 perf_unpin_context(ctx); 6423 mutex_unlock(&ctx->mutex); 6424 6425 put_online_cpus(); 6426 6427 event->owner = current; 6428 6429 mutex_lock(¤t->perf_event_mutex); 6430 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 6431 mutex_unlock(¤t->perf_event_mutex); 6432 6433 /* 6434 * Precalculate sample_data sizes 6435 */ 6436 perf_event__header_size(event); 6437 perf_event__id_header_size(event); 6438 6439 /* 6440 * Drop the reference on the group_event after placing the 6441 * new event on the sibling_list. This ensures destruction 6442 * of the group leader will find the pointer to itself in 6443 * perf_group_detach(). 6444 */ 6445 fput_light(group_file, fput_needed); 6446 fd_install(event_fd, event_file); 6447 return event_fd; 6448 6449 err_context: 6450 perf_unpin_context(ctx); 6451 put_ctx(ctx); 6452 err_alloc: 6453 free_event(event); 6454 err_task: 6455 put_online_cpus(); 6456 if (task) 6457 put_task_struct(task); 6458 err_group_fd: 6459 fput_light(group_file, fput_needed); 6460 err_fd: 6461 put_unused_fd(event_fd); 6462 return err; 6463 } 6464 6465 /** 6466 * perf_event_create_kernel_counter 6467 * 6468 * @attr: attributes of the counter to create 6469 * @cpu: cpu in which the counter is bound 6470 * @task: task to profile (NULL for percpu) 6471 */ 6472 struct perf_event * 6473 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 6474 struct task_struct *task, 6475 perf_overflow_handler_t overflow_handler, 6476 void *context) 6477 { 6478 struct perf_event_context *ctx; 6479 struct perf_event *event; 6480 int err; 6481 6482 /* 6483 * Get the target context (task or percpu): 6484 */ 6485 6486 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 6487 overflow_handler, context); 6488 if (IS_ERR(event)) { 6489 err = PTR_ERR(event); 6490 goto err; 6491 } 6492 6493 ctx = find_get_context(event->pmu, task, cpu); 6494 if (IS_ERR(ctx)) { 6495 err = PTR_ERR(ctx); 6496 goto err_free; 6497 } 6498 6499 event->filp = NULL; 6500 WARN_ON_ONCE(ctx->parent_ctx); 6501 mutex_lock(&ctx->mutex); 6502 perf_install_in_context(ctx, event, cpu); 6503 ++ctx->generation; 6504 perf_unpin_context(ctx); 6505 mutex_unlock(&ctx->mutex); 6506 6507 return event; 6508 6509 err_free: 6510 free_event(event); 6511 err: 6512 return ERR_PTR(err); 6513 } 6514 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 6515 6516 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 6517 { 6518 struct perf_event_context *src_ctx; 6519 struct perf_event_context *dst_ctx; 6520 struct perf_event *event, *tmp; 6521 LIST_HEAD(events); 6522 6523 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx; 6524 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx; 6525 6526 mutex_lock(&src_ctx->mutex); 6527 list_for_each_entry_safe(event, tmp, &src_ctx->event_list, 6528 event_entry) { 6529 perf_remove_from_context(event); 6530 put_ctx(src_ctx); 6531 list_add(&event->event_entry, &events); 6532 } 6533 mutex_unlock(&src_ctx->mutex); 6534 6535 synchronize_rcu(); 6536 6537 mutex_lock(&dst_ctx->mutex); 6538 list_for_each_entry_safe(event, tmp, &events, event_entry) { 6539 list_del(&event->event_entry); 6540 if (event->state >= PERF_EVENT_STATE_OFF) 6541 event->state = PERF_EVENT_STATE_INACTIVE; 6542 perf_install_in_context(dst_ctx, event, dst_cpu); 6543 get_ctx(dst_ctx); 6544 } 6545 mutex_unlock(&dst_ctx->mutex); 6546 } 6547 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 6548 6549 static void sync_child_event(struct perf_event *child_event, 6550 struct task_struct *child) 6551 { 6552 struct perf_event *parent_event = child_event->parent; 6553 u64 child_val; 6554 6555 if (child_event->attr.inherit_stat) 6556 perf_event_read_event(child_event, child); 6557 6558 child_val = perf_event_count(child_event); 6559 6560 /* 6561 * Add back the child's count to the parent's count: 6562 */ 6563 atomic64_add(child_val, &parent_event->child_count); 6564 atomic64_add(child_event->total_time_enabled, 6565 &parent_event->child_total_time_enabled); 6566 atomic64_add(child_event->total_time_running, 6567 &parent_event->child_total_time_running); 6568 6569 /* 6570 * Remove this event from the parent's list 6571 */ 6572 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 6573 mutex_lock(&parent_event->child_mutex); 6574 list_del_init(&child_event->child_list); 6575 mutex_unlock(&parent_event->child_mutex); 6576 6577 /* 6578 * Release the parent event, if this was the last 6579 * reference to it. 6580 */ 6581 fput(parent_event->filp); 6582 } 6583 6584 static void 6585 __perf_event_exit_task(struct perf_event *child_event, 6586 struct perf_event_context *child_ctx, 6587 struct task_struct *child) 6588 { 6589 if (child_event->parent) { 6590 raw_spin_lock_irq(&child_ctx->lock); 6591 perf_group_detach(child_event); 6592 raw_spin_unlock_irq(&child_ctx->lock); 6593 } 6594 6595 perf_remove_from_context(child_event); 6596 6597 /* 6598 * It can happen that the parent exits first, and has events 6599 * that are still around due to the child reference. These 6600 * events need to be zapped. 6601 */ 6602 if (child_event->parent) { 6603 sync_child_event(child_event, child); 6604 free_event(child_event); 6605 } 6606 } 6607 6608 static void perf_event_exit_task_context(struct task_struct *child, int ctxn) 6609 { 6610 struct perf_event *child_event, *tmp; 6611 struct perf_event_context *child_ctx; 6612 unsigned long flags; 6613 6614 if (likely(!child->perf_event_ctxp[ctxn])) { 6615 perf_event_task(child, NULL, 0); 6616 return; 6617 } 6618 6619 local_irq_save(flags); 6620 /* 6621 * We can't reschedule here because interrupts are disabled, 6622 * and either child is current or it is a task that can't be 6623 * scheduled, so we are now safe from rescheduling changing 6624 * our context. 6625 */ 6626 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]); 6627 6628 /* 6629 * Take the context lock here so that if find_get_context is 6630 * reading child->perf_event_ctxp, we wait until it has 6631 * incremented the context's refcount before we do put_ctx below. 6632 */ 6633 raw_spin_lock(&child_ctx->lock); 6634 task_ctx_sched_out(child_ctx); 6635 child->perf_event_ctxp[ctxn] = NULL; 6636 /* 6637 * If this context is a clone; unclone it so it can't get 6638 * swapped to another process while we're removing all 6639 * the events from it. 6640 */ 6641 unclone_ctx(child_ctx); 6642 update_context_time(child_ctx); 6643 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 6644 6645 /* 6646 * Report the task dead after unscheduling the events so that we 6647 * won't get any samples after PERF_RECORD_EXIT. We can however still 6648 * get a few PERF_RECORD_READ events. 6649 */ 6650 perf_event_task(child, child_ctx, 0); 6651 6652 /* 6653 * We can recurse on the same lock type through: 6654 * 6655 * __perf_event_exit_task() 6656 * sync_child_event() 6657 * fput(parent_event->filp) 6658 * perf_release() 6659 * mutex_lock(&ctx->mutex) 6660 * 6661 * But since its the parent context it won't be the same instance. 6662 */ 6663 mutex_lock(&child_ctx->mutex); 6664 6665 again: 6666 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups, 6667 group_entry) 6668 __perf_event_exit_task(child_event, child_ctx, child); 6669 6670 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups, 6671 group_entry) 6672 __perf_event_exit_task(child_event, child_ctx, child); 6673 6674 /* 6675 * If the last event was a group event, it will have appended all 6676 * its siblings to the list, but we obtained 'tmp' before that which 6677 * will still point to the list head terminating the iteration. 6678 */ 6679 if (!list_empty(&child_ctx->pinned_groups) || 6680 !list_empty(&child_ctx->flexible_groups)) 6681 goto again; 6682 6683 mutex_unlock(&child_ctx->mutex); 6684 6685 put_ctx(child_ctx); 6686 } 6687 6688 /* 6689 * When a child task exits, feed back event values to parent events. 6690 */ 6691 void perf_event_exit_task(struct task_struct *child) 6692 { 6693 struct perf_event *event, *tmp; 6694 int ctxn; 6695 6696 mutex_lock(&child->perf_event_mutex); 6697 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 6698 owner_entry) { 6699 list_del_init(&event->owner_entry); 6700 6701 /* 6702 * Ensure the list deletion is visible before we clear 6703 * the owner, closes a race against perf_release() where 6704 * we need to serialize on the owner->perf_event_mutex. 6705 */ 6706 smp_wmb(); 6707 event->owner = NULL; 6708 } 6709 mutex_unlock(&child->perf_event_mutex); 6710 6711 for_each_task_context_nr(ctxn) 6712 perf_event_exit_task_context(child, ctxn); 6713 } 6714 6715 static void perf_free_event(struct perf_event *event, 6716 struct perf_event_context *ctx) 6717 { 6718 struct perf_event *parent = event->parent; 6719 6720 if (WARN_ON_ONCE(!parent)) 6721 return; 6722 6723 mutex_lock(&parent->child_mutex); 6724 list_del_init(&event->child_list); 6725 mutex_unlock(&parent->child_mutex); 6726 6727 fput(parent->filp); 6728 6729 perf_group_detach(event); 6730 list_del_event(event, ctx); 6731 free_event(event); 6732 } 6733 6734 /* 6735 * free an unexposed, unused context as created by inheritance by 6736 * perf_event_init_task below, used by fork() in case of fail. 6737 */ 6738 void perf_event_free_task(struct task_struct *task) 6739 { 6740 struct perf_event_context *ctx; 6741 struct perf_event *event, *tmp; 6742 int ctxn; 6743 6744 for_each_task_context_nr(ctxn) { 6745 ctx = task->perf_event_ctxp[ctxn]; 6746 if (!ctx) 6747 continue; 6748 6749 mutex_lock(&ctx->mutex); 6750 again: 6751 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, 6752 group_entry) 6753 perf_free_event(event, ctx); 6754 6755 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, 6756 group_entry) 6757 perf_free_event(event, ctx); 6758 6759 if (!list_empty(&ctx->pinned_groups) || 6760 !list_empty(&ctx->flexible_groups)) 6761 goto again; 6762 6763 mutex_unlock(&ctx->mutex); 6764 6765 put_ctx(ctx); 6766 } 6767 } 6768 6769 void perf_event_delayed_put(struct task_struct *task) 6770 { 6771 int ctxn; 6772 6773 for_each_task_context_nr(ctxn) 6774 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); 6775 } 6776 6777 /* 6778 * inherit a event from parent task to child task: 6779 */ 6780 static struct perf_event * 6781 inherit_event(struct perf_event *parent_event, 6782 struct task_struct *parent, 6783 struct perf_event_context *parent_ctx, 6784 struct task_struct *child, 6785 struct perf_event *group_leader, 6786 struct perf_event_context *child_ctx) 6787 { 6788 struct perf_event *child_event; 6789 unsigned long flags; 6790 6791 /* 6792 * Instead of creating recursive hierarchies of events, 6793 * we link inherited events back to the original parent, 6794 * which has a filp for sure, which we use as the reference 6795 * count: 6796 */ 6797 if (parent_event->parent) 6798 parent_event = parent_event->parent; 6799 6800 child_event = perf_event_alloc(&parent_event->attr, 6801 parent_event->cpu, 6802 child, 6803 group_leader, parent_event, 6804 NULL, NULL); 6805 if (IS_ERR(child_event)) 6806 return child_event; 6807 get_ctx(child_ctx); 6808 6809 /* 6810 * Make the child state follow the state of the parent event, 6811 * not its attr.disabled bit. We hold the parent's mutex, 6812 * so we won't race with perf_event_{en, dis}able_family. 6813 */ 6814 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE) 6815 child_event->state = PERF_EVENT_STATE_INACTIVE; 6816 else 6817 child_event->state = PERF_EVENT_STATE_OFF; 6818 6819 if (parent_event->attr.freq) { 6820 u64 sample_period = parent_event->hw.sample_period; 6821 struct hw_perf_event *hwc = &child_event->hw; 6822 6823 hwc->sample_period = sample_period; 6824 hwc->last_period = sample_period; 6825 6826 local64_set(&hwc->period_left, sample_period); 6827 } 6828 6829 child_event->ctx = child_ctx; 6830 child_event->overflow_handler = parent_event->overflow_handler; 6831 child_event->overflow_handler_context 6832 = parent_event->overflow_handler_context; 6833 6834 /* 6835 * Precalculate sample_data sizes 6836 */ 6837 perf_event__header_size(child_event); 6838 perf_event__id_header_size(child_event); 6839 6840 /* 6841 * Link it up in the child's context: 6842 */ 6843 raw_spin_lock_irqsave(&child_ctx->lock, flags); 6844 add_event_to_ctx(child_event, child_ctx); 6845 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 6846 6847 /* 6848 * Get a reference to the parent filp - we will fput it 6849 * when the child event exits. This is safe to do because 6850 * we are in the parent and we know that the filp still 6851 * exists and has a nonzero count: 6852 */ 6853 atomic_long_inc(&parent_event->filp->f_count); 6854 6855 /* 6856 * Link this into the parent event's child list 6857 */ 6858 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 6859 mutex_lock(&parent_event->child_mutex); 6860 list_add_tail(&child_event->child_list, &parent_event->child_list); 6861 mutex_unlock(&parent_event->child_mutex); 6862 6863 return child_event; 6864 } 6865 6866 static int inherit_group(struct perf_event *parent_event, 6867 struct task_struct *parent, 6868 struct perf_event_context *parent_ctx, 6869 struct task_struct *child, 6870 struct perf_event_context *child_ctx) 6871 { 6872 struct perf_event *leader; 6873 struct perf_event *sub; 6874 struct perf_event *child_ctr; 6875 6876 leader = inherit_event(parent_event, parent, parent_ctx, 6877 child, NULL, child_ctx); 6878 if (IS_ERR(leader)) 6879 return PTR_ERR(leader); 6880 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) { 6881 child_ctr = inherit_event(sub, parent, parent_ctx, 6882 child, leader, child_ctx); 6883 if (IS_ERR(child_ctr)) 6884 return PTR_ERR(child_ctr); 6885 } 6886 return 0; 6887 } 6888 6889 static int 6890 inherit_task_group(struct perf_event *event, struct task_struct *parent, 6891 struct perf_event_context *parent_ctx, 6892 struct task_struct *child, int ctxn, 6893 int *inherited_all) 6894 { 6895 int ret; 6896 struct perf_event_context *child_ctx; 6897 6898 if (!event->attr.inherit) { 6899 *inherited_all = 0; 6900 return 0; 6901 } 6902 6903 child_ctx = child->perf_event_ctxp[ctxn]; 6904 if (!child_ctx) { 6905 /* 6906 * This is executed from the parent task context, so 6907 * inherit events that have been marked for cloning. 6908 * First allocate and initialize a context for the 6909 * child. 6910 */ 6911 6912 child_ctx = alloc_perf_context(event->pmu, child); 6913 if (!child_ctx) 6914 return -ENOMEM; 6915 6916 child->perf_event_ctxp[ctxn] = child_ctx; 6917 } 6918 6919 ret = inherit_group(event, parent, parent_ctx, 6920 child, child_ctx); 6921 6922 if (ret) 6923 *inherited_all = 0; 6924 6925 return ret; 6926 } 6927 6928 /* 6929 * Initialize the perf_event context in task_struct 6930 */ 6931 int perf_event_init_context(struct task_struct *child, int ctxn) 6932 { 6933 struct perf_event_context *child_ctx, *parent_ctx; 6934 struct perf_event_context *cloned_ctx; 6935 struct perf_event *event; 6936 struct task_struct *parent = current; 6937 int inherited_all = 1; 6938 unsigned long flags; 6939 int ret = 0; 6940 6941 if (likely(!parent->perf_event_ctxp[ctxn])) 6942 return 0; 6943 6944 /* 6945 * If the parent's context is a clone, pin it so it won't get 6946 * swapped under us. 6947 */ 6948 parent_ctx = perf_pin_task_context(parent, ctxn); 6949 6950 /* 6951 * No need to check if parent_ctx != NULL here; since we saw 6952 * it non-NULL earlier, the only reason for it to become NULL 6953 * is if we exit, and since we're currently in the middle of 6954 * a fork we can't be exiting at the same time. 6955 */ 6956 6957 /* 6958 * Lock the parent list. No need to lock the child - not PID 6959 * hashed yet and not running, so nobody can access it. 6960 */ 6961 mutex_lock(&parent_ctx->mutex); 6962 6963 /* 6964 * We dont have to disable NMIs - we are only looking at 6965 * the list, not manipulating it: 6966 */ 6967 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) { 6968 ret = inherit_task_group(event, parent, parent_ctx, 6969 child, ctxn, &inherited_all); 6970 if (ret) 6971 break; 6972 } 6973 6974 /* 6975 * We can't hold ctx->lock when iterating the ->flexible_group list due 6976 * to allocations, but we need to prevent rotation because 6977 * rotate_ctx() will change the list from interrupt context. 6978 */ 6979 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 6980 parent_ctx->rotate_disable = 1; 6981 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 6982 6983 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) { 6984 ret = inherit_task_group(event, parent, parent_ctx, 6985 child, ctxn, &inherited_all); 6986 if (ret) 6987 break; 6988 } 6989 6990 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 6991 parent_ctx->rotate_disable = 0; 6992 6993 child_ctx = child->perf_event_ctxp[ctxn]; 6994 6995 if (child_ctx && inherited_all) { 6996 /* 6997 * Mark the child context as a clone of the parent 6998 * context, or of whatever the parent is a clone of. 6999 * 7000 * Note that if the parent is a clone, the holding of 7001 * parent_ctx->lock avoids it from being uncloned. 7002 */ 7003 cloned_ctx = parent_ctx->parent_ctx; 7004 if (cloned_ctx) { 7005 child_ctx->parent_ctx = cloned_ctx; 7006 child_ctx->parent_gen = parent_ctx->parent_gen; 7007 } else { 7008 child_ctx->parent_ctx = parent_ctx; 7009 child_ctx->parent_gen = parent_ctx->generation; 7010 } 7011 get_ctx(child_ctx->parent_ctx); 7012 } 7013 7014 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 7015 mutex_unlock(&parent_ctx->mutex); 7016 7017 perf_unpin_context(parent_ctx); 7018 put_ctx(parent_ctx); 7019 7020 return ret; 7021 } 7022 7023 /* 7024 * Initialize the perf_event context in task_struct 7025 */ 7026 int perf_event_init_task(struct task_struct *child) 7027 { 7028 int ctxn, ret; 7029 7030 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); 7031 mutex_init(&child->perf_event_mutex); 7032 INIT_LIST_HEAD(&child->perf_event_list); 7033 7034 for_each_task_context_nr(ctxn) { 7035 ret = perf_event_init_context(child, ctxn); 7036 if (ret) 7037 return ret; 7038 } 7039 7040 return 0; 7041 } 7042 7043 static void __init perf_event_init_all_cpus(void) 7044 { 7045 struct swevent_htable *swhash; 7046 int cpu; 7047 7048 for_each_possible_cpu(cpu) { 7049 swhash = &per_cpu(swevent_htable, cpu); 7050 mutex_init(&swhash->hlist_mutex); 7051 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu)); 7052 } 7053 } 7054 7055 static void __cpuinit perf_event_init_cpu(int cpu) 7056 { 7057 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 7058 7059 mutex_lock(&swhash->hlist_mutex); 7060 if (swhash->hlist_refcount > 0) { 7061 struct swevent_hlist *hlist; 7062 7063 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 7064 WARN_ON(!hlist); 7065 rcu_assign_pointer(swhash->swevent_hlist, hlist); 7066 } 7067 mutex_unlock(&swhash->hlist_mutex); 7068 } 7069 7070 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC 7071 static void perf_pmu_rotate_stop(struct pmu *pmu) 7072 { 7073 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 7074 7075 WARN_ON(!irqs_disabled()); 7076 7077 list_del_init(&cpuctx->rotation_list); 7078 } 7079 7080 static void __perf_event_exit_context(void *__info) 7081 { 7082 struct perf_event_context *ctx = __info; 7083 struct perf_event *event, *tmp; 7084 7085 perf_pmu_rotate_stop(ctx->pmu); 7086 7087 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry) 7088 __perf_remove_from_context(event); 7089 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry) 7090 __perf_remove_from_context(event); 7091 } 7092 7093 static void perf_event_exit_cpu_context(int cpu) 7094 { 7095 struct perf_event_context *ctx; 7096 struct pmu *pmu; 7097 int idx; 7098 7099 idx = srcu_read_lock(&pmus_srcu); 7100 list_for_each_entry_rcu(pmu, &pmus, entry) { 7101 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx; 7102 7103 mutex_lock(&ctx->mutex); 7104 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 7105 mutex_unlock(&ctx->mutex); 7106 } 7107 srcu_read_unlock(&pmus_srcu, idx); 7108 } 7109 7110 static void perf_event_exit_cpu(int cpu) 7111 { 7112 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 7113 7114 mutex_lock(&swhash->hlist_mutex); 7115 swevent_hlist_release(swhash); 7116 mutex_unlock(&swhash->hlist_mutex); 7117 7118 perf_event_exit_cpu_context(cpu); 7119 } 7120 #else 7121 static inline void perf_event_exit_cpu(int cpu) { } 7122 #endif 7123 7124 static int 7125 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 7126 { 7127 int cpu; 7128 7129 for_each_online_cpu(cpu) 7130 perf_event_exit_cpu(cpu); 7131 7132 return NOTIFY_OK; 7133 } 7134 7135 /* 7136 * Run the perf reboot notifier at the very last possible moment so that 7137 * the generic watchdog code runs as long as possible. 7138 */ 7139 static struct notifier_block perf_reboot_notifier = { 7140 .notifier_call = perf_reboot, 7141 .priority = INT_MIN, 7142 }; 7143 7144 static int __cpuinit 7145 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu) 7146 { 7147 unsigned int cpu = (long)hcpu; 7148 7149 switch (action & ~CPU_TASKS_FROZEN) { 7150 7151 case CPU_UP_PREPARE: 7152 case CPU_DOWN_FAILED: 7153 perf_event_init_cpu(cpu); 7154 break; 7155 7156 case CPU_UP_CANCELED: 7157 case CPU_DOWN_PREPARE: 7158 perf_event_exit_cpu(cpu); 7159 break; 7160 7161 default: 7162 break; 7163 } 7164 7165 return NOTIFY_OK; 7166 } 7167 7168 void __init perf_event_init(void) 7169 { 7170 int ret; 7171 7172 idr_init(&pmu_idr); 7173 7174 perf_event_init_all_cpus(); 7175 init_srcu_struct(&pmus_srcu); 7176 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 7177 perf_pmu_register(&perf_cpu_clock, NULL, -1); 7178 perf_pmu_register(&perf_task_clock, NULL, -1); 7179 perf_tp_register(); 7180 perf_cpu_notifier(perf_cpu_notify); 7181 register_reboot_notifier(&perf_reboot_notifier); 7182 7183 ret = init_hw_breakpoint(); 7184 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 7185 7186 /* do not patch jump label more than once per second */ 7187 jump_label_rate_limit(&perf_sched_events, HZ); 7188 7189 /* 7190 * Build time assertion that we keep the data_head at the intended 7191 * location. IOW, validation we got the __reserved[] size right. 7192 */ 7193 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 7194 != 1024); 7195 } 7196 7197 static int __init perf_event_sysfs_init(void) 7198 { 7199 struct pmu *pmu; 7200 int ret; 7201 7202 mutex_lock(&pmus_lock); 7203 7204 ret = bus_register(&pmu_bus); 7205 if (ret) 7206 goto unlock; 7207 7208 list_for_each_entry(pmu, &pmus, entry) { 7209 if (!pmu->name || pmu->type < 0) 7210 continue; 7211 7212 ret = pmu_dev_alloc(pmu); 7213 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 7214 } 7215 pmu_bus_running = 1; 7216 ret = 0; 7217 7218 unlock: 7219 mutex_unlock(&pmus_lock); 7220 7221 return ret; 7222 } 7223 device_initcall(perf_event_sysfs_init); 7224 7225 #ifdef CONFIG_CGROUP_PERF 7226 static struct cgroup_subsys_state *perf_cgroup_create(struct cgroup *cont) 7227 { 7228 struct perf_cgroup *jc; 7229 7230 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 7231 if (!jc) 7232 return ERR_PTR(-ENOMEM); 7233 7234 jc->info = alloc_percpu(struct perf_cgroup_info); 7235 if (!jc->info) { 7236 kfree(jc); 7237 return ERR_PTR(-ENOMEM); 7238 } 7239 7240 return &jc->css; 7241 } 7242 7243 static void perf_cgroup_destroy(struct cgroup *cont) 7244 { 7245 struct perf_cgroup *jc; 7246 jc = container_of(cgroup_subsys_state(cont, perf_subsys_id), 7247 struct perf_cgroup, css); 7248 free_percpu(jc->info); 7249 kfree(jc); 7250 } 7251 7252 static int __perf_cgroup_move(void *info) 7253 { 7254 struct task_struct *task = info; 7255 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN); 7256 return 0; 7257 } 7258 7259 static void perf_cgroup_attach(struct cgroup *cgrp, struct cgroup_taskset *tset) 7260 { 7261 struct task_struct *task; 7262 7263 cgroup_taskset_for_each(task, cgrp, tset) 7264 task_function_call(task, __perf_cgroup_move, task); 7265 } 7266 7267 static void perf_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp, 7268 struct task_struct *task) 7269 { 7270 /* 7271 * cgroup_exit() is called in the copy_process() failure path. 7272 * Ignore this case since the task hasn't ran yet, this avoids 7273 * trying to poke a half freed task state from generic code. 7274 */ 7275 if (!(task->flags & PF_EXITING)) 7276 return; 7277 7278 task_function_call(task, __perf_cgroup_move, task); 7279 } 7280 7281 struct cgroup_subsys perf_subsys = { 7282 .name = "perf_event", 7283 .subsys_id = perf_subsys_id, 7284 .create = perf_cgroup_create, 7285 .destroy = perf_cgroup_destroy, 7286 .exit = perf_cgroup_exit, 7287 .attach = perf_cgroup_attach, 7288 }; 7289 #endif /* CONFIG_CGROUP_PERF */ 7290