xref: /openbmc/linux/kernel/events/core.c (revision 94c7b6fc)
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11 
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/perf_event.h>
38 #include <linux/ftrace_event.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/mm_types.h>
41 #include <linux/cgroup.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 
45 #include "internal.h"
46 
47 #include <asm/irq_regs.h>
48 
49 struct remote_function_call {
50 	struct task_struct	*p;
51 	int			(*func)(void *info);
52 	void			*info;
53 	int			ret;
54 };
55 
56 static void remote_function(void *data)
57 {
58 	struct remote_function_call *tfc = data;
59 	struct task_struct *p = tfc->p;
60 
61 	if (p) {
62 		tfc->ret = -EAGAIN;
63 		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
64 			return;
65 	}
66 
67 	tfc->ret = tfc->func(tfc->info);
68 }
69 
70 /**
71  * task_function_call - call a function on the cpu on which a task runs
72  * @p:		the task to evaluate
73  * @func:	the function to be called
74  * @info:	the function call argument
75  *
76  * Calls the function @func when the task is currently running. This might
77  * be on the current CPU, which just calls the function directly
78  *
79  * returns: @func return value, or
80  *	    -ESRCH  - when the process isn't running
81  *	    -EAGAIN - when the process moved away
82  */
83 static int
84 task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
85 {
86 	struct remote_function_call data = {
87 		.p	= p,
88 		.func	= func,
89 		.info	= info,
90 		.ret	= -ESRCH, /* No such (running) process */
91 	};
92 
93 	if (task_curr(p))
94 		smp_call_function_single(task_cpu(p), remote_function, &data, 1);
95 
96 	return data.ret;
97 }
98 
99 /**
100  * cpu_function_call - call a function on the cpu
101  * @func:	the function to be called
102  * @info:	the function call argument
103  *
104  * Calls the function @func on the remote cpu.
105  *
106  * returns: @func return value or -ENXIO when the cpu is offline
107  */
108 static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
109 {
110 	struct remote_function_call data = {
111 		.p	= NULL,
112 		.func	= func,
113 		.info	= info,
114 		.ret	= -ENXIO, /* No such CPU */
115 	};
116 
117 	smp_call_function_single(cpu, remote_function, &data, 1);
118 
119 	return data.ret;
120 }
121 
122 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
123 		       PERF_FLAG_FD_OUTPUT  |\
124 		       PERF_FLAG_PID_CGROUP |\
125 		       PERF_FLAG_FD_CLOEXEC)
126 
127 /*
128  * branch priv levels that need permission checks
129  */
130 #define PERF_SAMPLE_BRANCH_PERM_PLM \
131 	(PERF_SAMPLE_BRANCH_KERNEL |\
132 	 PERF_SAMPLE_BRANCH_HV)
133 
134 enum event_type_t {
135 	EVENT_FLEXIBLE = 0x1,
136 	EVENT_PINNED = 0x2,
137 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
138 };
139 
140 /*
141  * perf_sched_events : >0 events exist
142  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
143  */
144 struct static_key_deferred perf_sched_events __read_mostly;
145 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
146 static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
147 
148 static atomic_t nr_mmap_events __read_mostly;
149 static atomic_t nr_comm_events __read_mostly;
150 static atomic_t nr_task_events __read_mostly;
151 static atomic_t nr_freq_events __read_mostly;
152 
153 static LIST_HEAD(pmus);
154 static DEFINE_MUTEX(pmus_lock);
155 static struct srcu_struct pmus_srcu;
156 
157 /*
158  * perf event paranoia level:
159  *  -1 - not paranoid at all
160  *   0 - disallow raw tracepoint access for unpriv
161  *   1 - disallow cpu events for unpriv
162  *   2 - disallow kernel profiling for unpriv
163  */
164 int sysctl_perf_event_paranoid __read_mostly = 1;
165 
166 /* Minimum for 512 kiB + 1 user control page */
167 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
168 
169 /*
170  * max perf event sample rate
171  */
172 #define DEFAULT_MAX_SAMPLE_RATE		100000
173 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
174 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
175 
176 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
177 
178 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
179 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
180 
181 static int perf_sample_allowed_ns __read_mostly =
182 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
183 
184 void update_perf_cpu_limits(void)
185 {
186 	u64 tmp = perf_sample_period_ns;
187 
188 	tmp *= sysctl_perf_cpu_time_max_percent;
189 	do_div(tmp, 100);
190 	ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
191 }
192 
193 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
194 
195 int perf_proc_update_handler(struct ctl_table *table, int write,
196 		void __user *buffer, size_t *lenp,
197 		loff_t *ppos)
198 {
199 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
200 
201 	if (ret || !write)
202 		return ret;
203 
204 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
205 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
206 	update_perf_cpu_limits();
207 
208 	return 0;
209 }
210 
211 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
212 
213 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
214 				void __user *buffer, size_t *lenp,
215 				loff_t *ppos)
216 {
217 	int ret = proc_dointvec(table, write, buffer, lenp, ppos);
218 
219 	if (ret || !write)
220 		return ret;
221 
222 	update_perf_cpu_limits();
223 
224 	return 0;
225 }
226 
227 /*
228  * perf samples are done in some very critical code paths (NMIs).
229  * If they take too much CPU time, the system can lock up and not
230  * get any real work done.  This will drop the sample rate when
231  * we detect that events are taking too long.
232  */
233 #define NR_ACCUMULATED_SAMPLES 128
234 static DEFINE_PER_CPU(u64, running_sample_length);
235 
236 static void perf_duration_warn(struct irq_work *w)
237 {
238 	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
239 	u64 avg_local_sample_len;
240 	u64 local_samples_len;
241 
242 	local_samples_len = __get_cpu_var(running_sample_length);
243 	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
244 
245 	printk_ratelimited(KERN_WARNING
246 			"perf interrupt took too long (%lld > %lld), lowering "
247 			"kernel.perf_event_max_sample_rate to %d\n",
248 			avg_local_sample_len, allowed_ns >> 1,
249 			sysctl_perf_event_sample_rate);
250 }
251 
252 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
253 
254 void perf_sample_event_took(u64 sample_len_ns)
255 {
256 	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
257 	u64 avg_local_sample_len;
258 	u64 local_samples_len;
259 
260 	if (allowed_ns == 0)
261 		return;
262 
263 	/* decay the counter by 1 average sample */
264 	local_samples_len = __get_cpu_var(running_sample_length);
265 	local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
266 	local_samples_len += sample_len_ns;
267 	__get_cpu_var(running_sample_length) = local_samples_len;
268 
269 	/*
270 	 * note: this will be biased artifically low until we have
271 	 * seen NR_ACCUMULATED_SAMPLES.  Doing it this way keeps us
272 	 * from having to maintain a count.
273 	 */
274 	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
275 
276 	if (avg_local_sample_len <= allowed_ns)
277 		return;
278 
279 	if (max_samples_per_tick <= 1)
280 		return;
281 
282 	max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
283 	sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
284 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
285 
286 	update_perf_cpu_limits();
287 
288 	if (!irq_work_queue(&perf_duration_work)) {
289 		early_printk("perf interrupt took too long (%lld > %lld), lowering "
290 			     "kernel.perf_event_max_sample_rate to %d\n",
291 			     avg_local_sample_len, allowed_ns >> 1,
292 			     sysctl_perf_event_sample_rate);
293 	}
294 }
295 
296 static atomic64_t perf_event_id;
297 
298 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
299 			      enum event_type_t event_type);
300 
301 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
302 			     enum event_type_t event_type,
303 			     struct task_struct *task);
304 
305 static void update_context_time(struct perf_event_context *ctx);
306 static u64 perf_event_time(struct perf_event *event);
307 
308 void __weak perf_event_print_debug(void)	{ }
309 
310 extern __weak const char *perf_pmu_name(void)
311 {
312 	return "pmu";
313 }
314 
315 static inline u64 perf_clock(void)
316 {
317 	return local_clock();
318 }
319 
320 static inline struct perf_cpu_context *
321 __get_cpu_context(struct perf_event_context *ctx)
322 {
323 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
324 }
325 
326 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
327 			  struct perf_event_context *ctx)
328 {
329 	raw_spin_lock(&cpuctx->ctx.lock);
330 	if (ctx)
331 		raw_spin_lock(&ctx->lock);
332 }
333 
334 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
335 			    struct perf_event_context *ctx)
336 {
337 	if (ctx)
338 		raw_spin_unlock(&ctx->lock);
339 	raw_spin_unlock(&cpuctx->ctx.lock);
340 }
341 
342 #ifdef CONFIG_CGROUP_PERF
343 
344 /*
345  * perf_cgroup_info keeps track of time_enabled for a cgroup.
346  * This is a per-cpu dynamically allocated data structure.
347  */
348 struct perf_cgroup_info {
349 	u64				time;
350 	u64				timestamp;
351 };
352 
353 struct perf_cgroup {
354 	struct cgroup_subsys_state	css;
355 	struct perf_cgroup_info	__percpu *info;
356 };
357 
358 /*
359  * Must ensure cgroup is pinned (css_get) before calling
360  * this function. In other words, we cannot call this function
361  * if there is no cgroup event for the current CPU context.
362  */
363 static inline struct perf_cgroup *
364 perf_cgroup_from_task(struct task_struct *task)
365 {
366 	return container_of(task_css(task, perf_event_cgrp_id),
367 			    struct perf_cgroup, css);
368 }
369 
370 static inline bool
371 perf_cgroup_match(struct perf_event *event)
372 {
373 	struct perf_event_context *ctx = event->ctx;
374 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
375 
376 	/* @event doesn't care about cgroup */
377 	if (!event->cgrp)
378 		return true;
379 
380 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
381 	if (!cpuctx->cgrp)
382 		return false;
383 
384 	/*
385 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
386 	 * also enabled for all its descendant cgroups.  If @cpuctx's
387 	 * cgroup is a descendant of @event's (the test covers identity
388 	 * case), it's a match.
389 	 */
390 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
391 				    event->cgrp->css.cgroup);
392 }
393 
394 static inline void perf_put_cgroup(struct perf_event *event)
395 {
396 	css_put(&event->cgrp->css);
397 }
398 
399 static inline void perf_detach_cgroup(struct perf_event *event)
400 {
401 	perf_put_cgroup(event);
402 	event->cgrp = NULL;
403 }
404 
405 static inline int is_cgroup_event(struct perf_event *event)
406 {
407 	return event->cgrp != NULL;
408 }
409 
410 static inline u64 perf_cgroup_event_time(struct perf_event *event)
411 {
412 	struct perf_cgroup_info *t;
413 
414 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
415 	return t->time;
416 }
417 
418 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
419 {
420 	struct perf_cgroup_info *info;
421 	u64 now;
422 
423 	now = perf_clock();
424 
425 	info = this_cpu_ptr(cgrp->info);
426 
427 	info->time += now - info->timestamp;
428 	info->timestamp = now;
429 }
430 
431 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
432 {
433 	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
434 	if (cgrp_out)
435 		__update_cgrp_time(cgrp_out);
436 }
437 
438 static inline void update_cgrp_time_from_event(struct perf_event *event)
439 {
440 	struct perf_cgroup *cgrp;
441 
442 	/*
443 	 * ensure we access cgroup data only when needed and
444 	 * when we know the cgroup is pinned (css_get)
445 	 */
446 	if (!is_cgroup_event(event))
447 		return;
448 
449 	cgrp = perf_cgroup_from_task(current);
450 	/*
451 	 * Do not update time when cgroup is not active
452 	 */
453 	if (cgrp == event->cgrp)
454 		__update_cgrp_time(event->cgrp);
455 }
456 
457 static inline void
458 perf_cgroup_set_timestamp(struct task_struct *task,
459 			  struct perf_event_context *ctx)
460 {
461 	struct perf_cgroup *cgrp;
462 	struct perf_cgroup_info *info;
463 
464 	/*
465 	 * ctx->lock held by caller
466 	 * ensure we do not access cgroup data
467 	 * unless we have the cgroup pinned (css_get)
468 	 */
469 	if (!task || !ctx->nr_cgroups)
470 		return;
471 
472 	cgrp = perf_cgroup_from_task(task);
473 	info = this_cpu_ptr(cgrp->info);
474 	info->timestamp = ctx->timestamp;
475 }
476 
477 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
478 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
479 
480 /*
481  * reschedule events based on the cgroup constraint of task.
482  *
483  * mode SWOUT : schedule out everything
484  * mode SWIN : schedule in based on cgroup for next
485  */
486 void perf_cgroup_switch(struct task_struct *task, int mode)
487 {
488 	struct perf_cpu_context *cpuctx;
489 	struct pmu *pmu;
490 	unsigned long flags;
491 
492 	/*
493 	 * disable interrupts to avoid geting nr_cgroup
494 	 * changes via __perf_event_disable(). Also
495 	 * avoids preemption.
496 	 */
497 	local_irq_save(flags);
498 
499 	/*
500 	 * we reschedule only in the presence of cgroup
501 	 * constrained events.
502 	 */
503 	rcu_read_lock();
504 
505 	list_for_each_entry_rcu(pmu, &pmus, entry) {
506 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
507 		if (cpuctx->unique_pmu != pmu)
508 			continue; /* ensure we process each cpuctx once */
509 
510 		/*
511 		 * perf_cgroup_events says at least one
512 		 * context on this CPU has cgroup events.
513 		 *
514 		 * ctx->nr_cgroups reports the number of cgroup
515 		 * events for a context.
516 		 */
517 		if (cpuctx->ctx.nr_cgroups > 0) {
518 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
519 			perf_pmu_disable(cpuctx->ctx.pmu);
520 
521 			if (mode & PERF_CGROUP_SWOUT) {
522 				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
523 				/*
524 				 * must not be done before ctxswout due
525 				 * to event_filter_match() in event_sched_out()
526 				 */
527 				cpuctx->cgrp = NULL;
528 			}
529 
530 			if (mode & PERF_CGROUP_SWIN) {
531 				WARN_ON_ONCE(cpuctx->cgrp);
532 				/*
533 				 * set cgrp before ctxsw in to allow
534 				 * event_filter_match() to not have to pass
535 				 * task around
536 				 */
537 				cpuctx->cgrp = perf_cgroup_from_task(task);
538 				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
539 			}
540 			perf_pmu_enable(cpuctx->ctx.pmu);
541 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
542 		}
543 	}
544 
545 	rcu_read_unlock();
546 
547 	local_irq_restore(flags);
548 }
549 
550 static inline void perf_cgroup_sched_out(struct task_struct *task,
551 					 struct task_struct *next)
552 {
553 	struct perf_cgroup *cgrp1;
554 	struct perf_cgroup *cgrp2 = NULL;
555 
556 	/*
557 	 * we come here when we know perf_cgroup_events > 0
558 	 */
559 	cgrp1 = perf_cgroup_from_task(task);
560 
561 	/*
562 	 * next is NULL when called from perf_event_enable_on_exec()
563 	 * that will systematically cause a cgroup_switch()
564 	 */
565 	if (next)
566 		cgrp2 = perf_cgroup_from_task(next);
567 
568 	/*
569 	 * only schedule out current cgroup events if we know
570 	 * that we are switching to a different cgroup. Otherwise,
571 	 * do no touch the cgroup events.
572 	 */
573 	if (cgrp1 != cgrp2)
574 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
575 }
576 
577 static inline void perf_cgroup_sched_in(struct task_struct *prev,
578 					struct task_struct *task)
579 {
580 	struct perf_cgroup *cgrp1;
581 	struct perf_cgroup *cgrp2 = NULL;
582 
583 	/*
584 	 * we come here when we know perf_cgroup_events > 0
585 	 */
586 	cgrp1 = perf_cgroup_from_task(task);
587 
588 	/* prev can never be NULL */
589 	cgrp2 = perf_cgroup_from_task(prev);
590 
591 	/*
592 	 * only need to schedule in cgroup events if we are changing
593 	 * cgroup during ctxsw. Cgroup events were not scheduled
594 	 * out of ctxsw out if that was not the case.
595 	 */
596 	if (cgrp1 != cgrp2)
597 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
598 }
599 
600 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
601 				      struct perf_event_attr *attr,
602 				      struct perf_event *group_leader)
603 {
604 	struct perf_cgroup *cgrp;
605 	struct cgroup_subsys_state *css;
606 	struct fd f = fdget(fd);
607 	int ret = 0;
608 
609 	if (!f.file)
610 		return -EBADF;
611 
612 	css = css_tryget_online_from_dir(f.file->f_dentry,
613 					 &perf_event_cgrp_subsys);
614 	if (IS_ERR(css)) {
615 		ret = PTR_ERR(css);
616 		goto out;
617 	}
618 
619 	cgrp = container_of(css, struct perf_cgroup, css);
620 	event->cgrp = cgrp;
621 
622 	/*
623 	 * all events in a group must monitor
624 	 * the same cgroup because a task belongs
625 	 * to only one perf cgroup at a time
626 	 */
627 	if (group_leader && group_leader->cgrp != cgrp) {
628 		perf_detach_cgroup(event);
629 		ret = -EINVAL;
630 	}
631 out:
632 	fdput(f);
633 	return ret;
634 }
635 
636 static inline void
637 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
638 {
639 	struct perf_cgroup_info *t;
640 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
641 	event->shadow_ctx_time = now - t->timestamp;
642 }
643 
644 static inline void
645 perf_cgroup_defer_enabled(struct perf_event *event)
646 {
647 	/*
648 	 * when the current task's perf cgroup does not match
649 	 * the event's, we need to remember to call the
650 	 * perf_mark_enable() function the first time a task with
651 	 * a matching perf cgroup is scheduled in.
652 	 */
653 	if (is_cgroup_event(event) && !perf_cgroup_match(event))
654 		event->cgrp_defer_enabled = 1;
655 }
656 
657 static inline void
658 perf_cgroup_mark_enabled(struct perf_event *event,
659 			 struct perf_event_context *ctx)
660 {
661 	struct perf_event *sub;
662 	u64 tstamp = perf_event_time(event);
663 
664 	if (!event->cgrp_defer_enabled)
665 		return;
666 
667 	event->cgrp_defer_enabled = 0;
668 
669 	event->tstamp_enabled = tstamp - event->total_time_enabled;
670 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
671 		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
672 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
673 			sub->cgrp_defer_enabled = 0;
674 		}
675 	}
676 }
677 #else /* !CONFIG_CGROUP_PERF */
678 
679 static inline bool
680 perf_cgroup_match(struct perf_event *event)
681 {
682 	return true;
683 }
684 
685 static inline void perf_detach_cgroup(struct perf_event *event)
686 {}
687 
688 static inline int is_cgroup_event(struct perf_event *event)
689 {
690 	return 0;
691 }
692 
693 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
694 {
695 	return 0;
696 }
697 
698 static inline void update_cgrp_time_from_event(struct perf_event *event)
699 {
700 }
701 
702 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
703 {
704 }
705 
706 static inline void perf_cgroup_sched_out(struct task_struct *task,
707 					 struct task_struct *next)
708 {
709 }
710 
711 static inline void perf_cgroup_sched_in(struct task_struct *prev,
712 					struct task_struct *task)
713 {
714 }
715 
716 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
717 				      struct perf_event_attr *attr,
718 				      struct perf_event *group_leader)
719 {
720 	return -EINVAL;
721 }
722 
723 static inline void
724 perf_cgroup_set_timestamp(struct task_struct *task,
725 			  struct perf_event_context *ctx)
726 {
727 }
728 
729 void
730 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
731 {
732 }
733 
734 static inline void
735 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
736 {
737 }
738 
739 static inline u64 perf_cgroup_event_time(struct perf_event *event)
740 {
741 	return 0;
742 }
743 
744 static inline void
745 perf_cgroup_defer_enabled(struct perf_event *event)
746 {
747 }
748 
749 static inline void
750 perf_cgroup_mark_enabled(struct perf_event *event,
751 			 struct perf_event_context *ctx)
752 {
753 }
754 #endif
755 
756 /*
757  * set default to be dependent on timer tick just
758  * like original code
759  */
760 #define PERF_CPU_HRTIMER (1000 / HZ)
761 /*
762  * function must be called with interrupts disbled
763  */
764 static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
765 {
766 	struct perf_cpu_context *cpuctx;
767 	enum hrtimer_restart ret = HRTIMER_NORESTART;
768 	int rotations = 0;
769 
770 	WARN_ON(!irqs_disabled());
771 
772 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
773 
774 	rotations = perf_rotate_context(cpuctx);
775 
776 	/*
777 	 * arm timer if needed
778 	 */
779 	if (rotations) {
780 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
781 		ret = HRTIMER_RESTART;
782 	}
783 
784 	return ret;
785 }
786 
787 /* CPU is going down */
788 void perf_cpu_hrtimer_cancel(int cpu)
789 {
790 	struct perf_cpu_context *cpuctx;
791 	struct pmu *pmu;
792 	unsigned long flags;
793 
794 	if (WARN_ON(cpu != smp_processor_id()))
795 		return;
796 
797 	local_irq_save(flags);
798 
799 	rcu_read_lock();
800 
801 	list_for_each_entry_rcu(pmu, &pmus, entry) {
802 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
803 
804 		if (pmu->task_ctx_nr == perf_sw_context)
805 			continue;
806 
807 		hrtimer_cancel(&cpuctx->hrtimer);
808 	}
809 
810 	rcu_read_unlock();
811 
812 	local_irq_restore(flags);
813 }
814 
815 static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
816 {
817 	struct hrtimer *hr = &cpuctx->hrtimer;
818 	struct pmu *pmu = cpuctx->ctx.pmu;
819 	int timer;
820 
821 	/* no multiplexing needed for SW PMU */
822 	if (pmu->task_ctx_nr == perf_sw_context)
823 		return;
824 
825 	/*
826 	 * check default is sane, if not set then force to
827 	 * default interval (1/tick)
828 	 */
829 	timer = pmu->hrtimer_interval_ms;
830 	if (timer < 1)
831 		timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
832 
833 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
834 
835 	hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
836 	hr->function = perf_cpu_hrtimer_handler;
837 }
838 
839 static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
840 {
841 	struct hrtimer *hr = &cpuctx->hrtimer;
842 	struct pmu *pmu = cpuctx->ctx.pmu;
843 
844 	/* not for SW PMU */
845 	if (pmu->task_ctx_nr == perf_sw_context)
846 		return;
847 
848 	if (hrtimer_active(hr))
849 		return;
850 
851 	if (!hrtimer_callback_running(hr))
852 		__hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
853 					 0, HRTIMER_MODE_REL_PINNED, 0);
854 }
855 
856 void perf_pmu_disable(struct pmu *pmu)
857 {
858 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
859 	if (!(*count)++)
860 		pmu->pmu_disable(pmu);
861 }
862 
863 void perf_pmu_enable(struct pmu *pmu)
864 {
865 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
866 	if (!--(*count))
867 		pmu->pmu_enable(pmu);
868 }
869 
870 static DEFINE_PER_CPU(struct list_head, rotation_list);
871 
872 /*
873  * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
874  * because they're strictly cpu affine and rotate_start is called with IRQs
875  * disabled, while rotate_context is called from IRQ context.
876  */
877 static void perf_pmu_rotate_start(struct pmu *pmu)
878 {
879 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
880 	struct list_head *head = &__get_cpu_var(rotation_list);
881 
882 	WARN_ON(!irqs_disabled());
883 
884 	if (list_empty(&cpuctx->rotation_list))
885 		list_add(&cpuctx->rotation_list, head);
886 }
887 
888 static void get_ctx(struct perf_event_context *ctx)
889 {
890 	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
891 }
892 
893 static void put_ctx(struct perf_event_context *ctx)
894 {
895 	if (atomic_dec_and_test(&ctx->refcount)) {
896 		if (ctx->parent_ctx)
897 			put_ctx(ctx->parent_ctx);
898 		if (ctx->task)
899 			put_task_struct(ctx->task);
900 		kfree_rcu(ctx, rcu_head);
901 	}
902 }
903 
904 static void unclone_ctx(struct perf_event_context *ctx)
905 {
906 	if (ctx->parent_ctx) {
907 		put_ctx(ctx->parent_ctx);
908 		ctx->parent_ctx = NULL;
909 	}
910 	ctx->generation++;
911 }
912 
913 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
914 {
915 	/*
916 	 * only top level events have the pid namespace they were created in
917 	 */
918 	if (event->parent)
919 		event = event->parent;
920 
921 	return task_tgid_nr_ns(p, event->ns);
922 }
923 
924 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
925 {
926 	/*
927 	 * only top level events have the pid namespace they were created in
928 	 */
929 	if (event->parent)
930 		event = event->parent;
931 
932 	return task_pid_nr_ns(p, event->ns);
933 }
934 
935 /*
936  * If we inherit events we want to return the parent event id
937  * to userspace.
938  */
939 static u64 primary_event_id(struct perf_event *event)
940 {
941 	u64 id = event->id;
942 
943 	if (event->parent)
944 		id = event->parent->id;
945 
946 	return id;
947 }
948 
949 /*
950  * Get the perf_event_context for a task and lock it.
951  * This has to cope with with the fact that until it is locked,
952  * the context could get moved to another task.
953  */
954 static struct perf_event_context *
955 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
956 {
957 	struct perf_event_context *ctx;
958 
959 retry:
960 	/*
961 	 * One of the few rules of preemptible RCU is that one cannot do
962 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
963 	 * part of the read side critical section was preemptible -- see
964 	 * rcu_read_unlock_special().
965 	 *
966 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
967 	 * side critical section is non-preemptible.
968 	 */
969 	preempt_disable();
970 	rcu_read_lock();
971 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
972 	if (ctx) {
973 		/*
974 		 * If this context is a clone of another, it might
975 		 * get swapped for another underneath us by
976 		 * perf_event_task_sched_out, though the
977 		 * rcu_read_lock() protects us from any context
978 		 * getting freed.  Lock the context and check if it
979 		 * got swapped before we could get the lock, and retry
980 		 * if so.  If we locked the right context, then it
981 		 * can't get swapped on us any more.
982 		 */
983 		raw_spin_lock_irqsave(&ctx->lock, *flags);
984 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
985 			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
986 			rcu_read_unlock();
987 			preempt_enable();
988 			goto retry;
989 		}
990 
991 		if (!atomic_inc_not_zero(&ctx->refcount)) {
992 			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
993 			ctx = NULL;
994 		}
995 	}
996 	rcu_read_unlock();
997 	preempt_enable();
998 	return ctx;
999 }
1000 
1001 /*
1002  * Get the context for a task and increment its pin_count so it
1003  * can't get swapped to another task.  This also increments its
1004  * reference count so that the context can't get freed.
1005  */
1006 static struct perf_event_context *
1007 perf_pin_task_context(struct task_struct *task, int ctxn)
1008 {
1009 	struct perf_event_context *ctx;
1010 	unsigned long flags;
1011 
1012 	ctx = perf_lock_task_context(task, ctxn, &flags);
1013 	if (ctx) {
1014 		++ctx->pin_count;
1015 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1016 	}
1017 	return ctx;
1018 }
1019 
1020 static void perf_unpin_context(struct perf_event_context *ctx)
1021 {
1022 	unsigned long flags;
1023 
1024 	raw_spin_lock_irqsave(&ctx->lock, flags);
1025 	--ctx->pin_count;
1026 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1027 }
1028 
1029 /*
1030  * Update the record of the current time in a context.
1031  */
1032 static void update_context_time(struct perf_event_context *ctx)
1033 {
1034 	u64 now = perf_clock();
1035 
1036 	ctx->time += now - ctx->timestamp;
1037 	ctx->timestamp = now;
1038 }
1039 
1040 static u64 perf_event_time(struct perf_event *event)
1041 {
1042 	struct perf_event_context *ctx = event->ctx;
1043 
1044 	if (is_cgroup_event(event))
1045 		return perf_cgroup_event_time(event);
1046 
1047 	return ctx ? ctx->time : 0;
1048 }
1049 
1050 /*
1051  * Update the total_time_enabled and total_time_running fields for a event.
1052  * The caller of this function needs to hold the ctx->lock.
1053  */
1054 static void update_event_times(struct perf_event *event)
1055 {
1056 	struct perf_event_context *ctx = event->ctx;
1057 	u64 run_end;
1058 
1059 	if (event->state < PERF_EVENT_STATE_INACTIVE ||
1060 	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1061 		return;
1062 	/*
1063 	 * in cgroup mode, time_enabled represents
1064 	 * the time the event was enabled AND active
1065 	 * tasks were in the monitored cgroup. This is
1066 	 * independent of the activity of the context as
1067 	 * there may be a mix of cgroup and non-cgroup events.
1068 	 *
1069 	 * That is why we treat cgroup events differently
1070 	 * here.
1071 	 */
1072 	if (is_cgroup_event(event))
1073 		run_end = perf_cgroup_event_time(event);
1074 	else if (ctx->is_active)
1075 		run_end = ctx->time;
1076 	else
1077 		run_end = event->tstamp_stopped;
1078 
1079 	event->total_time_enabled = run_end - event->tstamp_enabled;
1080 
1081 	if (event->state == PERF_EVENT_STATE_INACTIVE)
1082 		run_end = event->tstamp_stopped;
1083 	else
1084 		run_end = perf_event_time(event);
1085 
1086 	event->total_time_running = run_end - event->tstamp_running;
1087 
1088 }
1089 
1090 /*
1091  * Update total_time_enabled and total_time_running for all events in a group.
1092  */
1093 static void update_group_times(struct perf_event *leader)
1094 {
1095 	struct perf_event *event;
1096 
1097 	update_event_times(leader);
1098 	list_for_each_entry(event, &leader->sibling_list, group_entry)
1099 		update_event_times(event);
1100 }
1101 
1102 static struct list_head *
1103 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1104 {
1105 	if (event->attr.pinned)
1106 		return &ctx->pinned_groups;
1107 	else
1108 		return &ctx->flexible_groups;
1109 }
1110 
1111 /*
1112  * Add a event from the lists for its context.
1113  * Must be called with ctx->mutex and ctx->lock held.
1114  */
1115 static void
1116 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1117 {
1118 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1119 	event->attach_state |= PERF_ATTACH_CONTEXT;
1120 
1121 	/*
1122 	 * If we're a stand alone event or group leader, we go to the context
1123 	 * list, group events are kept attached to the group so that
1124 	 * perf_group_detach can, at all times, locate all siblings.
1125 	 */
1126 	if (event->group_leader == event) {
1127 		struct list_head *list;
1128 
1129 		if (is_software_event(event))
1130 			event->group_flags |= PERF_GROUP_SOFTWARE;
1131 
1132 		list = ctx_group_list(event, ctx);
1133 		list_add_tail(&event->group_entry, list);
1134 	}
1135 
1136 	if (is_cgroup_event(event))
1137 		ctx->nr_cgroups++;
1138 
1139 	if (has_branch_stack(event))
1140 		ctx->nr_branch_stack++;
1141 
1142 	list_add_rcu(&event->event_entry, &ctx->event_list);
1143 	if (!ctx->nr_events)
1144 		perf_pmu_rotate_start(ctx->pmu);
1145 	ctx->nr_events++;
1146 	if (event->attr.inherit_stat)
1147 		ctx->nr_stat++;
1148 
1149 	ctx->generation++;
1150 }
1151 
1152 /*
1153  * Initialize event state based on the perf_event_attr::disabled.
1154  */
1155 static inline void perf_event__state_init(struct perf_event *event)
1156 {
1157 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1158 					      PERF_EVENT_STATE_INACTIVE;
1159 }
1160 
1161 /*
1162  * Called at perf_event creation and when events are attached/detached from a
1163  * group.
1164  */
1165 static void perf_event__read_size(struct perf_event *event)
1166 {
1167 	int entry = sizeof(u64); /* value */
1168 	int size = 0;
1169 	int nr = 1;
1170 
1171 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1172 		size += sizeof(u64);
1173 
1174 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1175 		size += sizeof(u64);
1176 
1177 	if (event->attr.read_format & PERF_FORMAT_ID)
1178 		entry += sizeof(u64);
1179 
1180 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1181 		nr += event->group_leader->nr_siblings;
1182 		size += sizeof(u64);
1183 	}
1184 
1185 	size += entry * nr;
1186 	event->read_size = size;
1187 }
1188 
1189 static void perf_event__header_size(struct perf_event *event)
1190 {
1191 	struct perf_sample_data *data;
1192 	u64 sample_type = event->attr.sample_type;
1193 	u16 size = 0;
1194 
1195 	perf_event__read_size(event);
1196 
1197 	if (sample_type & PERF_SAMPLE_IP)
1198 		size += sizeof(data->ip);
1199 
1200 	if (sample_type & PERF_SAMPLE_ADDR)
1201 		size += sizeof(data->addr);
1202 
1203 	if (sample_type & PERF_SAMPLE_PERIOD)
1204 		size += sizeof(data->period);
1205 
1206 	if (sample_type & PERF_SAMPLE_WEIGHT)
1207 		size += sizeof(data->weight);
1208 
1209 	if (sample_type & PERF_SAMPLE_READ)
1210 		size += event->read_size;
1211 
1212 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1213 		size += sizeof(data->data_src.val);
1214 
1215 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1216 		size += sizeof(data->txn);
1217 
1218 	event->header_size = size;
1219 }
1220 
1221 static void perf_event__id_header_size(struct perf_event *event)
1222 {
1223 	struct perf_sample_data *data;
1224 	u64 sample_type = event->attr.sample_type;
1225 	u16 size = 0;
1226 
1227 	if (sample_type & PERF_SAMPLE_TID)
1228 		size += sizeof(data->tid_entry);
1229 
1230 	if (sample_type & PERF_SAMPLE_TIME)
1231 		size += sizeof(data->time);
1232 
1233 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1234 		size += sizeof(data->id);
1235 
1236 	if (sample_type & PERF_SAMPLE_ID)
1237 		size += sizeof(data->id);
1238 
1239 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1240 		size += sizeof(data->stream_id);
1241 
1242 	if (sample_type & PERF_SAMPLE_CPU)
1243 		size += sizeof(data->cpu_entry);
1244 
1245 	event->id_header_size = size;
1246 }
1247 
1248 static void perf_group_attach(struct perf_event *event)
1249 {
1250 	struct perf_event *group_leader = event->group_leader, *pos;
1251 
1252 	/*
1253 	 * We can have double attach due to group movement in perf_event_open.
1254 	 */
1255 	if (event->attach_state & PERF_ATTACH_GROUP)
1256 		return;
1257 
1258 	event->attach_state |= PERF_ATTACH_GROUP;
1259 
1260 	if (group_leader == event)
1261 		return;
1262 
1263 	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1264 			!is_software_event(event))
1265 		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1266 
1267 	list_add_tail(&event->group_entry, &group_leader->sibling_list);
1268 	group_leader->nr_siblings++;
1269 
1270 	perf_event__header_size(group_leader);
1271 
1272 	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1273 		perf_event__header_size(pos);
1274 }
1275 
1276 /*
1277  * Remove a event from the lists for its context.
1278  * Must be called with ctx->mutex and ctx->lock held.
1279  */
1280 static void
1281 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1282 {
1283 	struct perf_cpu_context *cpuctx;
1284 	/*
1285 	 * We can have double detach due to exit/hot-unplug + close.
1286 	 */
1287 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1288 		return;
1289 
1290 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1291 
1292 	if (is_cgroup_event(event)) {
1293 		ctx->nr_cgroups--;
1294 		cpuctx = __get_cpu_context(ctx);
1295 		/*
1296 		 * if there are no more cgroup events
1297 		 * then cler cgrp to avoid stale pointer
1298 		 * in update_cgrp_time_from_cpuctx()
1299 		 */
1300 		if (!ctx->nr_cgroups)
1301 			cpuctx->cgrp = NULL;
1302 	}
1303 
1304 	if (has_branch_stack(event))
1305 		ctx->nr_branch_stack--;
1306 
1307 	ctx->nr_events--;
1308 	if (event->attr.inherit_stat)
1309 		ctx->nr_stat--;
1310 
1311 	list_del_rcu(&event->event_entry);
1312 
1313 	if (event->group_leader == event)
1314 		list_del_init(&event->group_entry);
1315 
1316 	update_group_times(event);
1317 
1318 	/*
1319 	 * If event was in error state, then keep it
1320 	 * that way, otherwise bogus counts will be
1321 	 * returned on read(). The only way to get out
1322 	 * of error state is by explicit re-enabling
1323 	 * of the event
1324 	 */
1325 	if (event->state > PERF_EVENT_STATE_OFF)
1326 		event->state = PERF_EVENT_STATE_OFF;
1327 
1328 	ctx->generation++;
1329 }
1330 
1331 static void perf_group_detach(struct perf_event *event)
1332 {
1333 	struct perf_event *sibling, *tmp;
1334 	struct list_head *list = NULL;
1335 
1336 	/*
1337 	 * We can have double detach due to exit/hot-unplug + close.
1338 	 */
1339 	if (!(event->attach_state & PERF_ATTACH_GROUP))
1340 		return;
1341 
1342 	event->attach_state &= ~PERF_ATTACH_GROUP;
1343 
1344 	/*
1345 	 * If this is a sibling, remove it from its group.
1346 	 */
1347 	if (event->group_leader != event) {
1348 		list_del_init(&event->group_entry);
1349 		event->group_leader->nr_siblings--;
1350 		goto out;
1351 	}
1352 
1353 	if (!list_empty(&event->group_entry))
1354 		list = &event->group_entry;
1355 
1356 	/*
1357 	 * If this was a group event with sibling events then
1358 	 * upgrade the siblings to singleton events by adding them
1359 	 * to whatever list we are on.
1360 	 */
1361 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1362 		if (list)
1363 			list_move_tail(&sibling->group_entry, list);
1364 		sibling->group_leader = sibling;
1365 
1366 		/* Inherit group flags from the previous leader */
1367 		sibling->group_flags = event->group_flags;
1368 	}
1369 
1370 out:
1371 	perf_event__header_size(event->group_leader);
1372 
1373 	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1374 		perf_event__header_size(tmp);
1375 }
1376 
1377 static inline int
1378 event_filter_match(struct perf_event *event)
1379 {
1380 	return (event->cpu == -1 || event->cpu == smp_processor_id())
1381 	    && perf_cgroup_match(event);
1382 }
1383 
1384 static void
1385 event_sched_out(struct perf_event *event,
1386 		  struct perf_cpu_context *cpuctx,
1387 		  struct perf_event_context *ctx)
1388 {
1389 	u64 tstamp = perf_event_time(event);
1390 	u64 delta;
1391 	/*
1392 	 * An event which could not be activated because of
1393 	 * filter mismatch still needs to have its timings
1394 	 * maintained, otherwise bogus information is return
1395 	 * via read() for time_enabled, time_running:
1396 	 */
1397 	if (event->state == PERF_EVENT_STATE_INACTIVE
1398 	    && !event_filter_match(event)) {
1399 		delta = tstamp - event->tstamp_stopped;
1400 		event->tstamp_running += delta;
1401 		event->tstamp_stopped = tstamp;
1402 	}
1403 
1404 	if (event->state != PERF_EVENT_STATE_ACTIVE)
1405 		return;
1406 
1407 	perf_pmu_disable(event->pmu);
1408 
1409 	event->state = PERF_EVENT_STATE_INACTIVE;
1410 	if (event->pending_disable) {
1411 		event->pending_disable = 0;
1412 		event->state = PERF_EVENT_STATE_OFF;
1413 	}
1414 	event->tstamp_stopped = tstamp;
1415 	event->pmu->del(event, 0);
1416 	event->oncpu = -1;
1417 
1418 	if (!is_software_event(event))
1419 		cpuctx->active_oncpu--;
1420 	ctx->nr_active--;
1421 	if (event->attr.freq && event->attr.sample_freq)
1422 		ctx->nr_freq--;
1423 	if (event->attr.exclusive || !cpuctx->active_oncpu)
1424 		cpuctx->exclusive = 0;
1425 
1426 	perf_pmu_enable(event->pmu);
1427 }
1428 
1429 static void
1430 group_sched_out(struct perf_event *group_event,
1431 		struct perf_cpu_context *cpuctx,
1432 		struct perf_event_context *ctx)
1433 {
1434 	struct perf_event *event;
1435 	int state = group_event->state;
1436 
1437 	event_sched_out(group_event, cpuctx, ctx);
1438 
1439 	/*
1440 	 * Schedule out siblings (if any):
1441 	 */
1442 	list_for_each_entry(event, &group_event->sibling_list, group_entry)
1443 		event_sched_out(event, cpuctx, ctx);
1444 
1445 	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1446 		cpuctx->exclusive = 0;
1447 }
1448 
1449 struct remove_event {
1450 	struct perf_event *event;
1451 	bool detach_group;
1452 };
1453 
1454 /*
1455  * Cross CPU call to remove a performance event
1456  *
1457  * We disable the event on the hardware level first. After that we
1458  * remove it from the context list.
1459  */
1460 static int __perf_remove_from_context(void *info)
1461 {
1462 	struct remove_event *re = info;
1463 	struct perf_event *event = re->event;
1464 	struct perf_event_context *ctx = event->ctx;
1465 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1466 
1467 	raw_spin_lock(&ctx->lock);
1468 	event_sched_out(event, cpuctx, ctx);
1469 	if (re->detach_group)
1470 		perf_group_detach(event);
1471 	list_del_event(event, ctx);
1472 	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1473 		ctx->is_active = 0;
1474 		cpuctx->task_ctx = NULL;
1475 	}
1476 	raw_spin_unlock(&ctx->lock);
1477 
1478 	return 0;
1479 }
1480 
1481 
1482 /*
1483  * Remove the event from a task's (or a CPU's) list of events.
1484  *
1485  * CPU events are removed with a smp call. For task events we only
1486  * call when the task is on a CPU.
1487  *
1488  * If event->ctx is a cloned context, callers must make sure that
1489  * every task struct that event->ctx->task could possibly point to
1490  * remains valid.  This is OK when called from perf_release since
1491  * that only calls us on the top-level context, which can't be a clone.
1492  * When called from perf_event_exit_task, it's OK because the
1493  * context has been detached from its task.
1494  */
1495 static void perf_remove_from_context(struct perf_event *event, bool detach_group)
1496 {
1497 	struct perf_event_context *ctx = event->ctx;
1498 	struct task_struct *task = ctx->task;
1499 	struct remove_event re = {
1500 		.event = event,
1501 		.detach_group = detach_group,
1502 	};
1503 
1504 	lockdep_assert_held(&ctx->mutex);
1505 
1506 	if (!task) {
1507 		/*
1508 		 * Per cpu events are removed via an smp call and
1509 		 * the removal is always successful.
1510 		 */
1511 		cpu_function_call(event->cpu, __perf_remove_from_context, &re);
1512 		return;
1513 	}
1514 
1515 retry:
1516 	if (!task_function_call(task, __perf_remove_from_context, &re))
1517 		return;
1518 
1519 	raw_spin_lock_irq(&ctx->lock);
1520 	/*
1521 	 * If we failed to find a running task, but find the context active now
1522 	 * that we've acquired the ctx->lock, retry.
1523 	 */
1524 	if (ctx->is_active) {
1525 		raw_spin_unlock_irq(&ctx->lock);
1526 		goto retry;
1527 	}
1528 
1529 	/*
1530 	 * Since the task isn't running, its safe to remove the event, us
1531 	 * holding the ctx->lock ensures the task won't get scheduled in.
1532 	 */
1533 	if (detach_group)
1534 		perf_group_detach(event);
1535 	list_del_event(event, ctx);
1536 	raw_spin_unlock_irq(&ctx->lock);
1537 }
1538 
1539 /*
1540  * Cross CPU call to disable a performance event
1541  */
1542 int __perf_event_disable(void *info)
1543 {
1544 	struct perf_event *event = info;
1545 	struct perf_event_context *ctx = event->ctx;
1546 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1547 
1548 	/*
1549 	 * If this is a per-task event, need to check whether this
1550 	 * event's task is the current task on this cpu.
1551 	 *
1552 	 * Can trigger due to concurrent perf_event_context_sched_out()
1553 	 * flipping contexts around.
1554 	 */
1555 	if (ctx->task && cpuctx->task_ctx != ctx)
1556 		return -EINVAL;
1557 
1558 	raw_spin_lock(&ctx->lock);
1559 
1560 	/*
1561 	 * If the event is on, turn it off.
1562 	 * If it is in error state, leave it in error state.
1563 	 */
1564 	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1565 		update_context_time(ctx);
1566 		update_cgrp_time_from_event(event);
1567 		update_group_times(event);
1568 		if (event == event->group_leader)
1569 			group_sched_out(event, cpuctx, ctx);
1570 		else
1571 			event_sched_out(event, cpuctx, ctx);
1572 		event->state = PERF_EVENT_STATE_OFF;
1573 	}
1574 
1575 	raw_spin_unlock(&ctx->lock);
1576 
1577 	return 0;
1578 }
1579 
1580 /*
1581  * Disable a event.
1582  *
1583  * If event->ctx is a cloned context, callers must make sure that
1584  * every task struct that event->ctx->task could possibly point to
1585  * remains valid.  This condition is satisifed when called through
1586  * perf_event_for_each_child or perf_event_for_each because they
1587  * hold the top-level event's child_mutex, so any descendant that
1588  * goes to exit will block in sync_child_event.
1589  * When called from perf_pending_event it's OK because event->ctx
1590  * is the current context on this CPU and preemption is disabled,
1591  * hence we can't get into perf_event_task_sched_out for this context.
1592  */
1593 void perf_event_disable(struct perf_event *event)
1594 {
1595 	struct perf_event_context *ctx = event->ctx;
1596 	struct task_struct *task = ctx->task;
1597 
1598 	if (!task) {
1599 		/*
1600 		 * Disable the event on the cpu that it's on
1601 		 */
1602 		cpu_function_call(event->cpu, __perf_event_disable, event);
1603 		return;
1604 	}
1605 
1606 retry:
1607 	if (!task_function_call(task, __perf_event_disable, event))
1608 		return;
1609 
1610 	raw_spin_lock_irq(&ctx->lock);
1611 	/*
1612 	 * If the event is still active, we need to retry the cross-call.
1613 	 */
1614 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1615 		raw_spin_unlock_irq(&ctx->lock);
1616 		/*
1617 		 * Reload the task pointer, it might have been changed by
1618 		 * a concurrent perf_event_context_sched_out().
1619 		 */
1620 		task = ctx->task;
1621 		goto retry;
1622 	}
1623 
1624 	/*
1625 	 * Since we have the lock this context can't be scheduled
1626 	 * in, so we can change the state safely.
1627 	 */
1628 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
1629 		update_group_times(event);
1630 		event->state = PERF_EVENT_STATE_OFF;
1631 	}
1632 	raw_spin_unlock_irq(&ctx->lock);
1633 }
1634 EXPORT_SYMBOL_GPL(perf_event_disable);
1635 
1636 static void perf_set_shadow_time(struct perf_event *event,
1637 				 struct perf_event_context *ctx,
1638 				 u64 tstamp)
1639 {
1640 	/*
1641 	 * use the correct time source for the time snapshot
1642 	 *
1643 	 * We could get by without this by leveraging the
1644 	 * fact that to get to this function, the caller
1645 	 * has most likely already called update_context_time()
1646 	 * and update_cgrp_time_xx() and thus both timestamp
1647 	 * are identical (or very close). Given that tstamp is,
1648 	 * already adjusted for cgroup, we could say that:
1649 	 *    tstamp - ctx->timestamp
1650 	 * is equivalent to
1651 	 *    tstamp - cgrp->timestamp.
1652 	 *
1653 	 * Then, in perf_output_read(), the calculation would
1654 	 * work with no changes because:
1655 	 * - event is guaranteed scheduled in
1656 	 * - no scheduled out in between
1657 	 * - thus the timestamp would be the same
1658 	 *
1659 	 * But this is a bit hairy.
1660 	 *
1661 	 * So instead, we have an explicit cgroup call to remain
1662 	 * within the time time source all along. We believe it
1663 	 * is cleaner and simpler to understand.
1664 	 */
1665 	if (is_cgroup_event(event))
1666 		perf_cgroup_set_shadow_time(event, tstamp);
1667 	else
1668 		event->shadow_ctx_time = tstamp - ctx->timestamp;
1669 }
1670 
1671 #define MAX_INTERRUPTS (~0ULL)
1672 
1673 static void perf_log_throttle(struct perf_event *event, int enable);
1674 
1675 static int
1676 event_sched_in(struct perf_event *event,
1677 		 struct perf_cpu_context *cpuctx,
1678 		 struct perf_event_context *ctx)
1679 {
1680 	u64 tstamp = perf_event_time(event);
1681 	int ret = 0;
1682 
1683 	lockdep_assert_held(&ctx->lock);
1684 
1685 	if (event->state <= PERF_EVENT_STATE_OFF)
1686 		return 0;
1687 
1688 	event->state = PERF_EVENT_STATE_ACTIVE;
1689 	event->oncpu = smp_processor_id();
1690 
1691 	/*
1692 	 * Unthrottle events, since we scheduled we might have missed several
1693 	 * ticks already, also for a heavily scheduling task there is little
1694 	 * guarantee it'll get a tick in a timely manner.
1695 	 */
1696 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1697 		perf_log_throttle(event, 1);
1698 		event->hw.interrupts = 0;
1699 	}
1700 
1701 	/*
1702 	 * The new state must be visible before we turn it on in the hardware:
1703 	 */
1704 	smp_wmb();
1705 
1706 	perf_pmu_disable(event->pmu);
1707 
1708 	if (event->pmu->add(event, PERF_EF_START)) {
1709 		event->state = PERF_EVENT_STATE_INACTIVE;
1710 		event->oncpu = -1;
1711 		ret = -EAGAIN;
1712 		goto out;
1713 	}
1714 
1715 	event->tstamp_running += tstamp - event->tstamp_stopped;
1716 
1717 	perf_set_shadow_time(event, ctx, tstamp);
1718 
1719 	if (!is_software_event(event))
1720 		cpuctx->active_oncpu++;
1721 	ctx->nr_active++;
1722 	if (event->attr.freq && event->attr.sample_freq)
1723 		ctx->nr_freq++;
1724 
1725 	if (event->attr.exclusive)
1726 		cpuctx->exclusive = 1;
1727 
1728 out:
1729 	perf_pmu_enable(event->pmu);
1730 
1731 	return ret;
1732 }
1733 
1734 static int
1735 group_sched_in(struct perf_event *group_event,
1736 	       struct perf_cpu_context *cpuctx,
1737 	       struct perf_event_context *ctx)
1738 {
1739 	struct perf_event *event, *partial_group = NULL;
1740 	struct pmu *pmu = ctx->pmu;
1741 	u64 now = ctx->time;
1742 	bool simulate = false;
1743 
1744 	if (group_event->state == PERF_EVENT_STATE_OFF)
1745 		return 0;
1746 
1747 	pmu->start_txn(pmu);
1748 
1749 	if (event_sched_in(group_event, cpuctx, ctx)) {
1750 		pmu->cancel_txn(pmu);
1751 		perf_cpu_hrtimer_restart(cpuctx);
1752 		return -EAGAIN;
1753 	}
1754 
1755 	/*
1756 	 * Schedule in siblings as one group (if any):
1757 	 */
1758 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1759 		if (event_sched_in(event, cpuctx, ctx)) {
1760 			partial_group = event;
1761 			goto group_error;
1762 		}
1763 	}
1764 
1765 	if (!pmu->commit_txn(pmu))
1766 		return 0;
1767 
1768 group_error:
1769 	/*
1770 	 * Groups can be scheduled in as one unit only, so undo any
1771 	 * partial group before returning:
1772 	 * The events up to the failed event are scheduled out normally,
1773 	 * tstamp_stopped will be updated.
1774 	 *
1775 	 * The failed events and the remaining siblings need to have
1776 	 * their timings updated as if they had gone thru event_sched_in()
1777 	 * and event_sched_out(). This is required to get consistent timings
1778 	 * across the group. This also takes care of the case where the group
1779 	 * could never be scheduled by ensuring tstamp_stopped is set to mark
1780 	 * the time the event was actually stopped, such that time delta
1781 	 * calculation in update_event_times() is correct.
1782 	 */
1783 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1784 		if (event == partial_group)
1785 			simulate = true;
1786 
1787 		if (simulate) {
1788 			event->tstamp_running += now - event->tstamp_stopped;
1789 			event->tstamp_stopped = now;
1790 		} else {
1791 			event_sched_out(event, cpuctx, ctx);
1792 		}
1793 	}
1794 	event_sched_out(group_event, cpuctx, ctx);
1795 
1796 	pmu->cancel_txn(pmu);
1797 
1798 	perf_cpu_hrtimer_restart(cpuctx);
1799 
1800 	return -EAGAIN;
1801 }
1802 
1803 /*
1804  * Work out whether we can put this event group on the CPU now.
1805  */
1806 static int group_can_go_on(struct perf_event *event,
1807 			   struct perf_cpu_context *cpuctx,
1808 			   int can_add_hw)
1809 {
1810 	/*
1811 	 * Groups consisting entirely of software events can always go on.
1812 	 */
1813 	if (event->group_flags & PERF_GROUP_SOFTWARE)
1814 		return 1;
1815 	/*
1816 	 * If an exclusive group is already on, no other hardware
1817 	 * events can go on.
1818 	 */
1819 	if (cpuctx->exclusive)
1820 		return 0;
1821 	/*
1822 	 * If this group is exclusive and there are already
1823 	 * events on the CPU, it can't go on.
1824 	 */
1825 	if (event->attr.exclusive && cpuctx->active_oncpu)
1826 		return 0;
1827 	/*
1828 	 * Otherwise, try to add it if all previous groups were able
1829 	 * to go on.
1830 	 */
1831 	return can_add_hw;
1832 }
1833 
1834 static void add_event_to_ctx(struct perf_event *event,
1835 			       struct perf_event_context *ctx)
1836 {
1837 	u64 tstamp = perf_event_time(event);
1838 
1839 	list_add_event(event, ctx);
1840 	perf_group_attach(event);
1841 	event->tstamp_enabled = tstamp;
1842 	event->tstamp_running = tstamp;
1843 	event->tstamp_stopped = tstamp;
1844 }
1845 
1846 static void task_ctx_sched_out(struct perf_event_context *ctx);
1847 static void
1848 ctx_sched_in(struct perf_event_context *ctx,
1849 	     struct perf_cpu_context *cpuctx,
1850 	     enum event_type_t event_type,
1851 	     struct task_struct *task);
1852 
1853 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1854 				struct perf_event_context *ctx,
1855 				struct task_struct *task)
1856 {
1857 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1858 	if (ctx)
1859 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1860 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1861 	if (ctx)
1862 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1863 }
1864 
1865 /*
1866  * Cross CPU call to install and enable a performance event
1867  *
1868  * Must be called with ctx->mutex held
1869  */
1870 static int  __perf_install_in_context(void *info)
1871 {
1872 	struct perf_event *event = info;
1873 	struct perf_event_context *ctx = event->ctx;
1874 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1875 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
1876 	struct task_struct *task = current;
1877 
1878 	perf_ctx_lock(cpuctx, task_ctx);
1879 	perf_pmu_disable(cpuctx->ctx.pmu);
1880 
1881 	/*
1882 	 * If there was an active task_ctx schedule it out.
1883 	 */
1884 	if (task_ctx)
1885 		task_ctx_sched_out(task_ctx);
1886 
1887 	/*
1888 	 * If the context we're installing events in is not the
1889 	 * active task_ctx, flip them.
1890 	 */
1891 	if (ctx->task && task_ctx != ctx) {
1892 		if (task_ctx)
1893 			raw_spin_unlock(&task_ctx->lock);
1894 		raw_spin_lock(&ctx->lock);
1895 		task_ctx = ctx;
1896 	}
1897 
1898 	if (task_ctx) {
1899 		cpuctx->task_ctx = task_ctx;
1900 		task = task_ctx->task;
1901 	}
1902 
1903 	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
1904 
1905 	update_context_time(ctx);
1906 	/*
1907 	 * update cgrp time only if current cgrp
1908 	 * matches event->cgrp. Must be done before
1909 	 * calling add_event_to_ctx()
1910 	 */
1911 	update_cgrp_time_from_event(event);
1912 
1913 	add_event_to_ctx(event, ctx);
1914 
1915 	/*
1916 	 * Schedule everything back in
1917 	 */
1918 	perf_event_sched_in(cpuctx, task_ctx, task);
1919 
1920 	perf_pmu_enable(cpuctx->ctx.pmu);
1921 	perf_ctx_unlock(cpuctx, task_ctx);
1922 
1923 	return 0;
1924 }
1925 
1926 /*
1927  * Attach a performance event to a context
1928  *
1929  * First we add the event to the list with the hardware enable bit
1930  * in event->hw_config cleared.
1931  *
1932  * If the event is attached to a task which is on a CPU we use a smp
1933  * call to enable it in the task context. The task might have been
1934  * scheduled away, but we check this in the smp call again.
1935  */
1936 static void
1937 perf_install_in_context(struct perf_event_context *ctx,
1938 			struct perf_event *event,
1939 			int cpu)
1940 {
1941 	struct task_struct *task = ctx->task;
1942 
1943 	lockdep_assert_held(&ctx->mutex);
1944 
1945 	event->ctx = ctx;
1946 	if (event->cpu != -1)
1947 		event->cpu = cpu;
1948 
1949 	if (!task) {
1950 		/*
1951 		 * Per cpu events are installed via an smp call and
1952 		 * the install is always successful.
1953 		 */
1954 		cpu_function_call(cpu, __perf_install_in_context, event);
1955 		return;
1956 	}
1957 
1958 retry:
1959 	if (!task_function_call(task, __perf_install_in_context, event))
1960 		return;
1961 
1962 	raw_spin_lock_irq(&ctx->lock);
1963 	/*
1964 	 * If we failed to find a running task, but find the context active now
1965 	 * that we've acquired the ctx->lock, retry.
1966 	 */
1967 	if (ctx->is_active) {
1968 		raw_spin_unlock_irq(&ctx->lock);
1969 		goto retry;
1970 	}
1971 
1972 	/*
1973 	 * Since the task isn't running, its safe to add the event, us holding
1974 	 * the ctx->lock ensures the task won't get scheduled in.
1975 	 */
1976 	add_event_to_ctx(event, ctx);
1977 	raw_spin_unlock_irq(&ctx->lock);
1978 }
1979 
1980 /*
1981  * Put a event into inactive state and update time fields.
1982  * Enabling the leader of a group effectively enables all
1983  * the group members that aren't explicitly disabled, so we
1984  * have to update their ->tstamp_enabled also.
1985  * Note: this works for group members as well as group leaders
1986  * since the non-leader members' sibling_lists will be empty.
1987  */
1988 static void __perf_event_mark_enabled(struct perf_event *event)
1989 {
1990 	struct perf_event *sub;
1991 	u64 tstamp = perf_event_time(event);
1992 
1993 	event->state = PERF_EVENT_STATE_INACTIVE;
1994 	event->tstamp_enabled = tstamp - event->total_time_enabled;
1995 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
1996 		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1997 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
1998 	}
1999 }
2000 
2001 /*
2002  * Cross CPU call to enable a performance event
2003  */
2004 static int __perf_event_enable(void *info)
2005 {
2006 	struct perf_event *event = info;
2007 	struct perf_event_context *ctx = event->ctx;
2008 	struct perf_event *leader = event->group_leader;
2009 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2010 	int err;
2011 
2012 	/*
2013 	 * There's a time window between 'ctx->is_active' check
2014 	 * in perf_event_enable function and this place having:
2015 	 *   - IRQs on
2016 	 *   - ctx->lock unlocked
2017 	 *
2018 	 * where the task could be killed and 'ctx' deactivated
2019 	 * by perf_event_exit_task.
2020 	 */
2021 	if (!ctx->is_active)
2022 		return -EINVAL;
2023 
2024 	raw_spin_lock(&ctx->lock);
2025 	update_context_time(ctx);
2026 
2027 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2028 		goto unlock;
2029 
2030 	/*
2031 	 * set current task's cgroup time reference point
2032 	 */
2033 	perf_cgroup_set_timestamp(current, ctx);
2034 
2035 	__perf_event_mark_enabled(event);
2036 
2037 	if (!event_filter_match(event)) {
2038 		if (is_cgroup_event(event))
2039 			perf_cgroup_defer_enabled(event);
2040 		goto unlock;
2041 	}
2042 
2043 	/*
2044 	 * If the event is in a group and isn't the group leader,
2045 	 * then don't put it on unless the group is on.
2046 	 */
2047 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2048 		goto unlock;
2049 
2050 	if (!group_can_go_on(event, cpuctx, 1)) {
2051 		err = -EEXIST;
2052 	} else {
2053 		if (event == leader)
2054 			err = group_sched_in(event, cpuctx, ctx);
2055 		else
2056 			err = event_sched_in(event, cpuctx, ctx);
2057 	}
2058 
2059 	if (err) {
2060 		/*
2061 		 * If this event can't go on and it's part of a
2062 		 * group, then the whole group has to come off.
2063 		 */
2064 		if (leader != event) {
2065 			group_sched_out(leader, cpuctx, ctx);
2066 			perf_cpu_hrtimer_restart(cpuctx);
2067 		}
2068 		if (leader->attr.pinned) {
2069 			update_group_times(leader);
2070 			leader->state = PERF_EVENT_STATE_ERROR;
2071 		}
2072 	}
2073 
2074 unlock:
2075 	raw_spin_unlock(&ctx->lock);
2076 
2077 	return 0;
2078 }
2079 
2080 /*
2081  * Enable a event.
2082  *
2083  * If event->ctx is a cloned context, callers must make sure that
2084  * every task struct that event->ctx->task could possibly point to
2085  * remains valid.  This condition is satisfied when called through
2086  * perf_event_for_each_child or perf_event_for_each as described
2087  * for perf_event_disable.
2088  */
2089 void perf_event_enable(struct perf_event *event)
2090 {
2091 	struct perf_event_context *ctx = event->ctx;
2092 	struct task_struct *task = ctx->task;
2093 
2094 	if (!task) {
2095 		/*
2096 		 * Enable the event on the cpu that it's on
2097 		 */
2098 		cpu_function_call(event->cpu, __perf_event_enable, event);
2099 		return;
2100 	}
2101 
2102 	raw_spin_lock_irq(&ctx->lock);
2103 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2104 		goto out;
2105 
2106 	/*
2107 	 * If the event is in error state, clear that first.
2108 	 * That way, if we see the event in error state below, we
2109 	 * know that it has gone back into error state, as distinct
2110 	 * from the task having been scheduled away before the
2111 	 * cross-call arrived.
2112 	 */
2113 	if (event->state == PERF_EVENT_STATE_ERROR)
2114 		event->state = PERF_EVENT_STATE_OFF;
2115 
2116 retry:
2117 	if (!ctx->is_active) {
2118 		__perf_event_mark_enabled(event);
2119 		goto out;
2120 	}
2121 
2122 	raw_spin_unlock_irq(&ctx->lock);
2123 
2124 	if (!task_function_call(task, __perf_event_enable, event))
2125 		return;
2126 
2127 	raw_spin_lock_irq(&ctx->lock);
2128 
2129 	/*
2130 	 * If the context is active and the event is still off,
2131 	 * we need to retry the cross-call.
2132 	 */
2133 	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
2134 		/*
2135 		 * task could have been flipped by a concurrent
2136 		 * perf_event_context_sched_out()
2137 		 */
2138 		task = ctx->task;
2139 		goto retry;
2140 	}
2141 
2142 out:
2143 	raw_spin_unlock_irq(&ctx->lock);
2144 }
2145 EXPORT_SYMBOL_GPL(perf_event_enable);
2146 
2147 int perf_event_refresh(struct perf_event *event, int refresh)
2148 {
2149 	/*
2150 	 * not supported on inherited events
2151 	 */
2152 	if (event->attr.inherit || !is_sampling_event(event))
2153 		return -EINVAL;
2154 
2155 	atomic_add(refresh, &event->event_limit);
2156 	perf_event_enable(event);
2157 
2158 	return 0;
2159 }
2160 EXPORT_SYMBOL_GPL(perf_event_refresh);
2161 
2162 static void ctx_sched_out(struct perf_event_context *ctx,
2163 			  struct perf_cpu_context *cpuctx,
2164 			  enum event_type_t event_type)
2165 {
2166 	struct perf_event *event;
2167 	int is_active = ctx->is_active;
2168 
2169 	ctx->is_active &= ~event_type;
2170 	if (likely(!ctx->nr_events))
2171 		return;
2172 
2173 	update_context_time(ctx);
2174 	update_cgrp_time_from_cpuctx(cpuctx);
2175 	if (!ctx->nr_active)
2176 		return;
2177 
2178 	perf_pmu_disable(ctx->pmu);
2179 	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2180 		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2181 			group_sched_out(event, cpuctx, ctx);
2182 	}
2183 
2184 	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2185 		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2186 			group_sched_out(event, cpuctx, ctx);
2187 	}
2188 	perf_pmu_enable(ctx->pmu);
2189 }
2190 
2191 /*
2192  * Test whether two contexts are equivalent, i.e. whether they have both been
2193  * cloned from the same version of the same context.
2194  *
2195  * Equivalence is measured using a generation number in the context that is
2196  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2197  * and list_del_event().
2198  */
2199 static int context_equiv(struct perf_event_context *ctx1,
2200 			 struct perf_event_context *ctx2)
2201 {
2202 	/* Pinning disables the swap optimization */
2203 	if (ctx1->pin_count || ctx2->pin_count)
2204 		return 0;
2205 
2206 	/* If ctx1 is the parent of ctx2 */
2207 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2208 		return 1;
2209 
2210 	/* If ctx2 is the parent of ctx1 */
2211 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2212 		return 1;
2213 
2214 	/*
2215 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
2216 	 * hierarchy, see perf_event_init_context().
2217 	 */
2218 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2219 			ctx1->parent_gen == ctx2->parent_gen)
2220 		return 1;
2221 
2222 	/* Unmatched */
2223 	return 0;
2224 }
2225 
2226 static void __perf_event_sync_stat(struct perf_event *event,
2227 				     struct perf_event *next_event)
2228 {
2229 	u64 value;
2230 
2231 	if (!event->attr.inherit_stat)
2232 		return;
2233 
2234 	/*
2235 	 * Update the event value, we cannot use perf_event_read()
2236 	 * because we're in the middle of a context switch and have IRQs
2237 	 * disabled, which upsets smp_call_function_single(), however
2238 	 * we know the event must be on the current CPU, therefore we
2239 	 * don't need to use it.
2240 	 */
2241 	switch (event->state) {
2242 	case PERF_EVENT_STATE_ACTIVE:
2243 		event->pmu->read(event);
2244 		/* fall-through */
2245 
2246 	case PERF_EVENT_STATE_INACTIVE:
2247 		update_event_times(event);
2248 		break;
2249 
2250 	default:
2251 		break;
2252 	}
2253 
2254 	/*
2255 	 * In order to keep per-task stats reliable we need to flip the event
2256 	 * values when we flip the contexts.
2257 	 */
2258 	value = local64_read(&next_event->count);
2259 	value = local64_xchg(&event->count, value);
2260 	local64_set(&next_event->count, value);
2261 
2262 	swap(event->total_time_enabled, next_event->total_time_enabled);
2263 	swap(event->total_time_running, next_event->total_time_running);
2264 
2265 	/*
2266 	 * Since we swizzled the values, update the user visible data too.
2267 	 */
2268 	perf_event_update_userpage(event);
2269 	perf_event_update_userpage(next_event);
2270 }
2271 
2272 static void perf_event_sync_stat(struct perf_event_context *ctx,
2273 				   struct perf_event_context *next_ctx)
2274 {
2275 	struct perf_event *event, *next_event;
2276 
2277 	if (!ctx->nr_stat)
2278 		return;
2279 
2280 	update_context_time(ctx);
2281 
2282 	event = list_first_entry(&ctx->event_list,
2283 				   struct perf_event, event_entry);
2284 
2285 	next_event = list_first_entry(&next_ctx->event_list,
2286 					struct perf_event, event_entry);
2287 
2288 	while (&event->event_entry != &ctx->event_list &&
2289 	       &next_event->event_entry != &next_ctx->event_list) {
2290 
2291 		__perf_event_sync_stat(event, next_event);
2292 
2293 		event = list_next_entry(event, event_entry);
2294 		next_event = list_next_entry(next_event, event_entry);
2295 	}
2296 }
2297 
2298 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2299 					 struct task_struct *next)
2300 {
2301 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2302 	struct perf_event_context *next_ctx;
2303 	struct perf_event_context *parent, *next_parent;
2304 	struct perf_cpu_context *cpuctx;
2305 	int do_switch = 1;
2306 
2307 	if (likely(!ctx))
2308 		return;
2309 
2310 	cpuctx = __get_cpu_context(ctx);
2311 	if (!cpuctx->task_ctx)
2312 		return;
2313 
2314 	rcu_read_lock();
2315 	next_ctx = next->perf_event_ctxp[ctxn];
2316 	if (!next_ctx)
2317 		goto unlock;
2318 
2319 	parent = rcu_dereference(ctx->parent_ctx);
2320 	next_parent = rcu_dereference(next_ctx->parent_ctx);
2321 
2322 	/* If neither context have a parent context; they cannot be clones. */
2323 	if (!parent && !next_parent)
2324 		goto unlock;
2325 
2326 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2327 		/*
2328 		 * Looks like the two contexts are clones, so we might be
2329 		 * able to optimize the context switch.  We lock both
2330 		 * contexts and check that they are clones under the
2331 		 * lock (including re-checking that neither has been
2332 		 * uncloned in the meantime).  It doesn't matter which
2333 		 * order we take the locks because no other cpu could
2334 		 * be trying to lock both of these tasks.
2335 		 */
2336 		raw_spin_lock(&ctx->lock);
2337 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2338 		if (context_equiv(ctx, next_ctx)) {
2339 			/*
2340 			 * XXX do we need a memory barrier of sorts
2341 			 * wrt to rcu_dereference() of perf_event_ctxp
2342 			 */
2343 			task->perf_event_ctxp[ctxn] = next_ctx;
2344 			next->perf_event_ctxp[ctxn] = ctx;
2345 			ctx->task = next;
2346 			next_ctx->task = task;
2347 			do_switch = 0;
2348 
2349 			perf_event_sync_stat(ctx, next_ctx);
2350 		}
2351 		raw_spin_unlock(&next_ctx->lock);
2352 		raw_spin_unlock(&ctx->lock);
2353 	}
2354 unlock:
2355 	rcu_read_unlock();
2356 
2357 	if (do_switch) {
2358 		raw_spin_lock(&ctx->lock);
2359 		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2360 		cpuctx->task_ctx = NULL;
2361 		raw_spin_unlock(&ctx->lock);
2362 	}
2363 }
2364 
2365 #define for_each_task_context_nr(ctxn)					\
2366 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2367 
2368 /*
2369  * Called from scheduler to remove the events of the current task,
2370  * with interrupts disabled.
2371  *
2372  * We stop each event and update the event value in event->count.
2373  *
2374  * This does not protect us against NMI, but disable()
2375  * sets the disabled bit in the control field of event _before_
2376  * accessing the event control register. If a NMI hits, then it will
2377  * not restart the event.
2378  */
2379 void __perf_event_task_sched_out(struct task_struct *task,
2380 				 struct task_struct *next)
2381 {
2382 	int ctxn;
2383 
2384 	for_each_task_context_nr(ctxn)
2385 		perf_event_context_sched_out(task, ctxn, next);
2386 
2387 	/*
2388 	 * if cgroup events exist on this CPU, then we need
2389 	 * to check if we have to switch out PMU state.
2390 	 * cgroup event are system-wide mode only
2391 	 */
2392 	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2393 		perf_cgroup_sched_out(task, next);
2394 }
2395 
2396 static void task_ctx_sched_out(struct perf_event_context *ctx)
2397 {
2398 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2399 
2400 	if (!cpuctx->task_ctx)
2401 		return;
2402 
2403 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2404 		return;
2405 
2406 	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2407 	cpuctx->task_ctx = NULL;
2408 }
2409 
2410 /*
2411  * Called with IRQs disabled
2412  */
2413 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2414 			      enum event_type_t event_type)
2415 {
2416 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2417 }
2418 
2419 static void
2420 ctx_pinned_sched_in(struct perf_event_context *ctx,
2421 		    struct perf_cpu_context *cpuctx)
2422 {
2423 	struct perf_event *event;
2424 
2425 	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2426 		if (event->state <= PERF_EVENT_STATE_OFF)
2427 			continue;
2428 		if (!event_filter_match(event))
2429 			continue;
2430 
2431 		/* may need to reset tstamp_enabled */
2432 		if (is_cgroup_event(event))
2433 			perf_cgroup_mark_enabled(event, ctx);
2434 
2435 		if (group_can_go_on(event, cpuctx, 1))
2436 			group_sched_in(event, cpuctx, ctx);
2437 
2438 		/*
2439 		 * If this pinned group hasn't been scheduled,
2440 		 * put it in error state.
2441 		 */
2442 		if (event->state == PERF_EVENT_STATE_INACTIVE) {
2443 			update_group_times(event);
2444 			event->state = PERF_EVENT_STATE_ERROR;
2445 		}
2446 	}
2447 }
2448 
2449 static void
2450 ctx_flexible_sched_in(struct perf_event_context *ctx,
2451 		      struct perf_cpu_context *cpuctx)
2452 {
2453 	struct perf_event *event;
2454 	int can_add_hw = 1;
2455 
2456 	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2457 		/* Ignore events in OFF or ERROR state */
2458 		if (event->state <= PERF_EVENT_STATE_OFF)
2459 			continue;
2460 		/*
2461 		 * Listen to the 'cpu' scheduling filter constraint
2462 		 * of events:
2463 		 */
2464 		if (!event_filter_match(event))
2465 			continue;
2466 
2467 		/* may need to reset tstamp_enabled */
2468 		if (is_cgroup_event(event))
2469 			perf_cgroup_mark_enabled(event, ctx);
2470 
2471 		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2472 			if (group_sched_in(event, cpuctx, ctx))
2473 				can_add_hw = 0;
2474 		}
2475 	}
2476 }
2477 
2478 static void
2479 ctx_sched_in(struct perf_event_context *ctx,
2480 	     struct perf_cpu_context *cpuctx,
2481 	     enum event_type_t event_type,
2482 	     struct task_struct *task)
2483 {
2484 	u64 now;
2485 	int is_active = ctx->is_active;
2486 
2487 	ctx->is_active |= event_type;
2488 	if (likely(!ctx->nr_events))
2489 		return;
2490 
2491 	now = perf_clock();
2492 	ctx->timestamp = now;
2493 	perf_cgroup_set_timestamp(task, ctx);
2494 	/*
2495 	 * First go through the list and put on any pinned groups
2496 	 * in order to give them the best chance of going on.
2497 	 */
2498 	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2499 		ctx_pinned_sched_in(ctx, cpuctx);
2500 
2501 	/* Then walk through the lower prio flexible groups */
2502 	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2503 		ctx_flexible_sched_in(ctx, cpuctx);
2504 }
2505 
2506 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2507 			     enum event_type_t event_type,
2508 			     struct task_struct *task)
2509 {
2510 	struct perf_event_context *ctx = &cpuctx->ctx;
2511 
2512 	ctx_sched_in(ctx, cpuctx, event_type, task);
2513 }
2514 
2515 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2516 					struct task_struct *task)
2517 {
2518 	struct perf_cpu_context *cpuctx;
2519 
2520 	cpuctx = __get_cpu_context(ctx);
2521 	if (cpuctx->task_ctx == ctx)
2522 		return;
2523 
2524 	perf_ctx_lock(cpuctx, ctx);
2525 	perf_pmu_disable(ctx->pmu);
2526 	/*
2527 	 * We want to keep the following priority order:
2528 	 * cpu pinned (that don't need to move), task pinned,
2529 	 * cpu flexible, task flexible.
2530 	 */
2531 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2532 
2533 	if (ctx->nr_events)
2534 		cpuctx->task_ctx = ctx;
2535 
2536 	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2537 
2538 	perf_pmu_enable(ctx->pmu);
2539 	perf_ctx_unlock(cpuctx, ctx);
2540 
2541 	/*
2542 	 * Since these rotations are per-cpu, we need to ensure the
2543 	 * cpu-context we got scheduled on is actually rotating.
2544 	 */
2545 	perf_pmu_rotate_start(ctx->pmu);
2546 }
2547 
2548 /*
2549  * When sampling the branck stack in system-wide, it may be necessary
2550  * to flush the stack on context switch. This happens when the branch
2551  * stack does not tag its entries with the pid of the current task.
2552  * Otherwise it becomes impossible to associate a branch entry with a
2553  * task. This ambiguity is more likely to appear when the branch stack
2554  * supports priv level filtering and the user sets it to monitor only
2555  * at the user level (which could be a useful measurement in system-wide
2556  * mode). In that case, the risk is high of having a branch stack with
2557  * branch from multiple tasks. Flushing may mean dropping the existing
2558  * entries or stashing them somewhere in the PMU specific code layer.
2559  *
2560  * This function provides the context switch callback to the lower code
2561  * layer. It is invoked ONLY when there is at least one system-wide context
2562  * with at least one active event using taken branch sampling.
2563  */
2564 static void perf_branch_stack_sched_in(struct task_struct *prev,
2565 				       struct task_struct *task)
2566 {
2567 	struct perf_cpu_context *cpuctx;
2568 	struct pmu *pmu;
2569 	unsigned long flags;
2570 
2571 	/* no need to flush branch stack if not changing task */
2572 	if (prev == task)
2573 		return;
2574 
2575 	local_irq_save(flags);
2576 
2577 	rcu_read_lock();
2578 
2579 	list_for_each_entry_rcu(pmu, &pmus, entry) {
2580 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2581 
2582 		/*
2583 		 * check if the context has at least one
2584 		 * event using PERF_SAMPLE_BRANCH_STACK
2585 		 */
2586 		if (cpuctx->ctx.nr_branch_stack > 0
2587 		    && pmu->flush_branch_stack) {
2588 
2589 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2590 
2591 			perf_pmu_disable(pmu);
2592 
2593 			pmu->flush_branch_stack();
2594 
2595 			perf_pmu_enable(pmu);
2596 
2597 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2598 		}
2599 	}
2600 
2601 	rcu_read_unlock();
2602 
2603 	local_irq_restore(flags);
2604 }
2605 
2606 /*
2607  * Called from scheduler to add the events of the current task
2608  * with interrupts disabled.
2609  *
2610  * We restore the event value and then enable it.
2611  *
2612  * This does not protect us against NMI, but enable()
2613  * sets the enabled bit in the control field of event _before_
2614  * accessing the event control register. If a NMI hits, then it will
2615  * keep the event running.
2616  */
2617 void __perf_event_task_sched_in(struct task_struct *prev,
2618 				struct task_struct *task)
2619 {
2620 	struct perf_event_context *ctx;
2621 	int ctxn;
2622 
2623 	for_each_task_context_nr(ctxn) {
2624 		ctx = task->perf_event_ctxp[ctxn];
2625 		if (likely(!ctx))
2626 			continue;
2627 
2628 		perf_event_context_sched_in(ctx, task);
2629 	}
2630 	/*
2631 	 * if cgroup events exist on this CPU, then we need
2632 	 * to check if we have to switch in PMU state.
2633 	 * cgroup event are system-wide mode only
2634 	 */
2635 	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2636 		perf_cgroup_sched_in(prev, task);
2637 
2638 	/* check for system-wide branch_stack events */
2639 	if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
2640 		perf_branch_stack_sched_in(prev, task);
2641 }
2642 
2643 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2644 {
2645 	u64 frequency = event->attr.sample_freq;
2646 	u64 sec = NSEC_PER_SEC;
2647 	u64 divisor, dividend;
2648 
2649 	int count_fls, nsec_fls, frequency_fls, sec_fls;
2650 
2651 	count_fls = fls64(count);
2652 	nsec_fls = fls64(nsec);
2653 	frequency_fls = fls64(frequency);
2654 	sec_fls = 30;
2655 
2656 	/*
2657 	 * We got @count in @nsec, with a target of sample_freq HZ
2658 	 * the target period becomes:
2659 	 *
2660 	 *             @count * 10^9
2661 	 * period = -------------------
2662 	 *          @nsec * sample_freq
2663 	 *
2664 	 */
2665 
2666 	/*
2667 	 * Reduce accuracy by one bit such that @a and @b converge
2668 	 * to a similar magnitude.
2669 	 */
2670 #define REDUCE_FLS(a, b)		\
2671 do {					\
2672 	if (a##_fls > b##_fls) {	\
2673 		a >>= 1;		\
2674 		a##_fls--;		\
2675 	} else {			\
2676 		b >>= 1;		\
2677 		b##_fls--;		\
2678 	}				\
2679 } while (0)
2680 
2681 	/*
2682 	 * Reduce accuracy until either term fits in a u64, then proceed with
2683 	 * the other, so that finally we can do a u64/u64 division.
2684 	 */
2685 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2686 		REDUCE_FLS(nsec, frequency);
2687 		REDUCE_FLS(sec, count);
2688 	}
2689 
2690 	if (count_fls + sec_fls > 64) {
2691 		divisor = nsec * frequency;
2692 
2693 		while (count_fls + sec_fls > 64) {
2694 			REDUCE_FLS(count, sec);
2695 			divisor >>= 1;
2696 		}
2697 
2698 		dividend = count * sec;
2699 	} else {
2700 		dividend = count * sec;
2701 
2702 		while (nsec_fls + frequency_fls > 64) {
2703 			REDUCE_FLS(nsec, frequency);
2704 			dividend >>= 1;
2705 		}
2706 
2707 		divisor = nsec * frequency;
2708 	}
2709 
2710 	if (!divisor)
2711 		return dividend;
2712 
2713 	return div64_u64(dividend, divisor);
2714 }
2715 
2716 static DEFINE_PER_CPU(int, perf_throttled_count);
2717 static DEFINE_PER_CPU(u64, perf_throttled_seq);
2718 
2719 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2720 {
2721 	struct hw_perf_event *hwc = &event->hw;
2722 	s64 period, sample_period;
2723 	s64 delta;
2724 
2725 	period = perf_calculate_period(event, nsec, count);
2726 
2727 	delta = (s64)(period - hwc->sample_period);
2728 	delta = (delta + 7) / 8; /* low pass filter */
2729 
2730 	sample_period = hwc->sample_period + delta;
2731 
2732 	if (!sample_period)
2733 		sample_period = 1;
2734 
2735 	hwc->sample_period = sample_period;
2736 
2737 	if (local64_read(&hwc->period_left) > 8*sample_period) {
2738 		if (disable)
2739 			event->pmu->stop(event, PERF_EF_UPDATE);
2740 
2741 		local64_set(&hwc->period_left, 0);
2742 
2743 		if (disable)
2744 			event->pmu->start(event, PERF_EF_RELOAD);
2745 	}
2746 }
2747 
2748 /*
2749  * combine freq adjustment with unthrottling to avoid two passes over the
2750  * events. At the same time, make sure, having freq events does not change
2751  * the rate of unthrottling as that would introduce bias.
2752  */
2753 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2754 					   int needs_unthr)
2755 {
2756 	struct perf_event *event;
2757 	struct hw_perf_event *hwc;
2758 	u64 now, period = TICK_NSEC;
2759 	s64 delta;
2760 
2761 	/*
2762 	 * only need to iterate over all events iff:
2763 	 * - context have events in frequency mode (needs freq adjust)
2764 	 * - there are events to unthrottle on this cpu
2765 	 */
2766 	if (!(ctx->nr_freq || needs_unthr))
2767 		return;
2768 
2769 	raw_spin_lock(&ctx->lock);
2770 	perf_pmu_disable(ctx->pmu);
2771 
2772 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2773 		if (event->state != PERF_EVENT_STATE_ACTIVE)
2774 			continue;
2775 
2776 		if (!event_filter_match(event))
2777 			continue;
2778 
2779 		perf_pmu_disable(event->pmu);
2780 
2781 		hwc = &event->hw;
2782 
2783 		if (hwc->interrupts == MAX_INTERRUPTS) {
2784 			hwc->interrupts = 0;
2785 			perf_log_throttle(event, 1);
2786 			event->pmu->start(event, 0);
2787 		}
2788 
2789 		if (!event->attr.freq || !event->attr.sample_freq)
2790 			goto next;
2791 
2792 		/*
2793 		 * stop the event and update event->count
2794 		 */
2795 		event->pmu->stop(event, PERF_EF_UPDATE);
2796 
2797 		now = local64_read(&event->count);
2798 		delta = now - hwc->freq_count_stamp;
2799 		hwc->freq_count_stamp = now;
2800 
2801 		/*
2802 		 * restart the event
2803 		 * reload only if value has changed
2804 		 * we have stopped the event so tell that
2805 		 * to perf_adjust_period() to avoid stopping it
2806 		 * twice.
2807 		 */
2808 		if (delta > 0)
2809 			perf_adjust_period(event, period, delta, false);
2810 
2811 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2812 	next:
2813 		perf_pmu_enable(event->pmu);
2814 	}
2815 
2816 	perf_pmu_enable(ctx->pmu);
2817 	raw_spin_unlock(&ctx->lock);
2818 }
2819 
2820 /*
2821  * Round-robin a context's events:
2822  */
2823 static void rotate_ctx(struct perf_event_context *ctx)
2824 {
2825 	/*
2826 	 * Rotate the first entry last of non-pinned groups. Rotation might be
2827 	 * disabled by the inheritance code.
2828 	 */
2829 	if (!ctx->rotate_disable)
2830 		list_rotate_left(&ctx->flexible_groups);
2831 }
2832 
2833 /*
2834  * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2835  * because they're strictly cpu affine and rotate_start is called with IRQs
2836  * disabled, while rotate_context is called from IRQ context.
2837  */
2838 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
2839 {
2840 	struct perf_event_context *ctx = NULL;
2841 	int rotate = 0, remove = 1;
2842 
2843 	if (cpuctx->ctx.nr_events) {
2844 		remove = 0;
2845 		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2846 			rotate = 1;
2847 	}
2848 
2849 	ctx = cpuctx->task_ctx;
2850 	if (ctx && ctx->nr_events) {
2851 		remove = 0;
2852 		if (ctx->nr_events != ctx->nr_active)
2853 			rotate = 1;
2854 	}
2855 
2856 	if (!rotate)
2857 		goto done;
2858 
2859 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2860 	perf_pmu_disable(cpuctx->ctx.pmu);
2861 
2862 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2863 	if (ctx)
2864 		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
2865 
2866 	rotate_ctx(&cpuctx->ctx);
2867 	if (ctx)
2868 		rotate_ctx(ctx);
2869 
2870 	perf_event_sched_in(cpuctx, ctx, current);
2871 
2872 	perf_pmu_enable(cpuctx->ctx.pmu);
2873 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2874 done:
2875 	if (remove)
2876 		list_del_init(&cpuctx->rotation_list);
2877 
2878 	return rotate;
2879 }
2880 
2881 #ifdef CONFIG_NO_HZ_FULL
2882 bool perf_event_can_stop_tick(void)
2883 {
2884 	if (atomic_read(&nr_freq_events) ||
2885 	    __this_cpu_read(perf_throttled_count))
2886 		return false;
2887 	else
2888 		return true;
2889 }
2890 #endif
2891 
2892 void perf_event_task_tick(void)
2893 {
2894 	struct list_head *head = &__get_cpu_var(rotation_list);
2895 	struct perf_cpu_context *cpuctx, *tmp;
2896 	struct perf_event_context *ctx;
2897 	int throttled;
2898 
2899 	WARN_ON(!irqs_disabled());
2900 
2901 	__this_cpu_inc(perf_throttled_seq);
2902 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
2903 
2904 	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2905 		ctx = &cpuctx->ctx;
2906 		perf_adjust_freq_unthr_context(ctx, throttled);
2907 
2908 		ctx = cpuctx->task_ctx;
2909 		if (ctx)
2910 			perf_adjust_freq_unthr_context(ctx, throttled);
2911 	}
2912 }
2913 
2914 static int event_enable_on_exec(struct perf_event *event,
2915 				struct perf_event_context *ctx)
2916 {
2917 	if (!event->attr.enable_on_exec)
2918 		return 0;
2919 
2920 	event->attr.enable_on_exec = 0;
2921 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2922 		return 0;
2923 
2924 	__perf_event_mark_enabled(event);
2925 
2926 	return 1;
2927 }
2928 
2929 /*
2930  * Enable all of a task's events that have been marked enable-on-exec.
2931  * This expects task == current.
2932  */
2933 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2934 {
2935 	struct perf_event *event;
2936 	unsigned long flags;
2937 	int enabled = 0;
2938 	int ret;
2939 
2940 	local_irq_save(flags);
2941 	if (!ctx || !ctx->nr_events)
2942 		goto out;
2943 
2944 	/*
2945 	 * We must ctxsw out cgroup events to avoid conflict
2946 	 * when invoking perf_task_event_sched_in() later on
2947 	 * in this function. Otherwise we end up trying to
2948 	 * ctxswin cgroup events which are already scheduled
2949 	 * in.
2950 	 */
2951 	perf_cgroup_sched_out(current, NULL);
2952 
2953 	raw_spin_lock(&ctx->lock);
2954 	task_ctx_sched_out(ctx);
2955 
2956 	list_for_each_entry(event, &ctx->event_list, event_entry) {
2957 		ret = event_enable_on_exec(event, ctx);
2958 		if (ret)
2959 			enabled = 1;
2960 	}
2961 
2962 	/*
2963 	 * Unclone this context if we enabled any event.
2964 	 */
2965 	if (enabled)
2966 		unclone_ctx(ctx);
2967 
2968 	raw_spin_unlock(&ctx->lock);
2969 
2970 	/*
2971 	 * Also calls ctxswin for cgroup events, if any:
2972 	 */
2973 	perf_event_context_sched_in(ctx, ctx->task);
2974 out:
2975 	local_irq_restore(flags);
2976 }
2977 
2978 void perf_event_exec(void)
2979 {
2980 	struct perf_event_context *ctx;
2981 	int ctxn;
2982 
2983 	rcu_read_lock();
2984 	for_each_task_context_nr(ctxn) {
2985 		ctx = current->perf_event_ctxp[ctxn];
2986 		if (!ctx)
2987 			continue;
2988 
2989 		perf_event_enable_on_exec(ctx);
2990 	}
2991 	rcu_read_unlock();
2992 }
2993 
2994 /*
2995  * Cross CPU call to read the hardware event
2996  */
2997 static void __perf_event_read(void *info)
2998 {
2999 	struct perf_event *event = info;
3000 	struct perf_event_context *ctx = event->ctx;
3001 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3002 
3003 	/*
3004 	 * If this is a task context, we need to check whether it is
3005 	 * the current task context of this cpu.  If not it has been
3006 	 * scheduled out before the smp call arrived.  In that case
3007 	 * event->count would have been updated to a recent sample
3008 	 * when the event was scheduled out.
3009 	 */
3010 	if (ctx->task && cpuctx->task_ctx != ctx)
3011 		return;
3012 
3013 	raw_spin_lock(&ctx->lock);
3014 	if (ctx->is_active) {
3015 		update_context_time(ctx);
3016 		update_cgrp_time_from_event(event);
3017 	}
3018 	update_event_times(event);
3019 	if (event->state == PERF_EVENT_STATE_ACTIVE)
3020 		event->pmu->read(event);
3021 	raw_spin_unlock(&ctx->lock);
3022 }
3023 
3024 static inline u64 perf_event_count(struct perf_event *event)
3025 {
3026 	return local64_read(&event->count) + atomic64_read(&event->child_count);
3027 }
3028 
3029 static u64 perf_event_read(struct perf_event *event)
3030 {
3031 	/*
3032 	 * If event is enabled and currently active on a CPU, update the
3033 	 * value in the event structure:
3034 	 */
3035 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
3036 		smp_call_function_single(event->oncpu,
3037 					 __perf_event_read, event, 1);
3038 	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3039 		struct perf_event_context *ctx = event->ctx;
3040 		unsigned long flags;
3041 
3042 		raw_spin_lock_irqsave(&ctx->lock, flags);
3043 		/*
3044 		 * may read while context is not active
3045 		 * (e.g., thread is blocked), in that case
3046 		 * we cannot update context time
3047 		 */
3048 		if (ctx->is_active) {
3049 			update_context_time(ctx);
3050 			update_cgrp_time_from_event(event);
3051 		}
3052 		update_event_times(event);
3053 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3054 	}
3055 
3056 	return perf_event_count(event);
3057 }
3058 
3059 /*
3060  * Initialize the perf_event context in a task_struct:
3061  */
3062 static void __perf_event_init_context(struct perf_event_context *ctx)
3063 {
3064 	raw_spin_lock_init(&ctx->lock);
3065 	mutex_init(&ctx->mutex);
3066 	INIT_LIST_HEAD(&ctx->pinned_groups);
3067 	INIT_LIST_HEAD(&ctx->flexible_groups);
3068 	INIT_LIST_HEAD(&ctx->event_list);
3069 	atomic_set(&ctx->refcount, 1);
3070 }
3071 
3072 static struct perf_event_context *
3073 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3074 {
3075 	struct perf_event_context *ctx;
3076 
3077 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3078 	if (!ctx)
3079 		return NULL;
3080 
3081 	__perf_event_init_context(ctx);
3082 	if (task) {
3083 		ctx->task = task;
3084 		get_task_struct(task);
3085 	}
3086 	ctx->pmu = pmu;
3087 
3088 	return ctx;
3089 }
3090 
3091 static struct task_struct *
3092 find_lively_task_by_vpid(pid_t vpid)
3093 {
3094 	struct task_struct *task;
3095 	int err;
3096 
3097 	rcu_read_lock();
3098 	if (!vpid)
3099 		task = current;
3100 	else
3101 		task = find_task_by_vpid(vpid);
3102 	if (task)
3103 		get_task_struct(task);
3104 	rcu_read_unlock();
3105 
3106 	if (!task)
3107 		return ERR_PTR(-ESRCH);
3108 
3109 	/* Reuse ptrace permission checks for now. */
3110 	err = -EACCES;
3111 	if (!ptrace_may_access(task, PTRACE_MODE_READ))
3112 		goto errout;
3113 
3114 	return task;
3115 errout:
3116 	put_task_struct(task);
3117 	return ERR_PTR(err);
3118 
3119 }
3120 
3121 /*
3122  * Returns a matching context with refcount and pincount.
3123  */
3124 static struct perf_event_context *
3125 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
3126 {
3127 	struct perf_event_context *ctx;
3128 	struct perf_cpu_context *cpuctx;
3129 	unsigned long flags;
3130 	int ctxn, err;
3131 
3132 	if (!task) {
3133 		/* Must be root to operate on a CPU event: */
3134 		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3135 			return ERR_PTR(-EACCES);
3136 
3137 		/*
3138 		 * We could be clever and allow to attach a event to an
3139 		 * offline CPU and activate it when the CPU comes up, but
3140 		 * that's for later.
3141 		 */
3142 		if (!cpu_online(cpu))
3143 			return ERR_PTR(-ENODEV);
3144 
3145 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3146 		ctx = &cpuctx->ctx;
3147 		get_ctx(ctx);
3148 		++ctx->pin_count;
3149 
3150 		return ctx;
3151 	}
3152 
3153 	err = -EINVAL;
3154 	ctxn = pmu->task_ctx_nr;
3155 	if (ctxn < 0)
3156 		goto errout;
3157 
3158 retry:
3159 	ctx = perf_lock_task_context(task, ctxn, &flags);
3160 	if (ctx) {
3161 		unclone_ctx(ctx);
3162 		++ctx->pin_count;
3163 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3164 	} else {
3165 		ctx = alloc_perf_context(pmu, task);
3166 		err = -ENOMEM;
3167 		if (!ctx)
3168 			goto errout;
3169 
3170 		err = 0;
3171 		mutex_lock(&task->perf_event_mutex);
3172 		/*
3173 		 * If it has already passed perf_event_exit_task().
3174 		 * we must see PF_EXITING, it takes this mutex too.
3175 		 */
3176 		if (task->flags & PF_EXITING)
3177 			err = -ESRCH;
3178 		else if (task->perf_event_ctxp[ctxn])
3179 			err = -EAGAIN;
3180 		else {
3181 			get_ctx(ctx);
3182 			++ctx->pin_count;
3183 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3184 		}
3185 		mutex_unlock(&task->perf_event_mutex);
3186 
3187 		if (unlikely(err)) {
3188 			put_ctx(ctx);
3189 
3190 			if (err == -EAGAIN)
3191 				goto retry;
3192 			goto errout;
3193 		}
3194 	}
3195 
3196 	return ctx;
3197 
3198 errout:
3199 	return ERR_PTR(err);
3200 }
3201 
3202 static void perf_event_free_filter(struct perf_event *event);
3203 
3204 static void free_event_rcu(struct rcu_head *head)
3205 {
3206 	struct perf_event *event;
3207 
3208 	event = container_of(head, struct perf_event, rcu_head);
3209 	if (event->ns)
3210 		put_pid_ns(event->ns);
3211 	perf_event_free_filter(event);
3212 	kfree(event);
3213 }
3214 
3215 static void ring_buffer_put(struct ring_buffer *rb);
3216 static void ring_buffer_attach(struct perf_event *event,
3217 			       struct ring_buffer *rb);
3218 
3219 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3220 {
3221 	if (event->parent)
3222 		return;
3223 
3224 	if (has_branch_stack(event)) {
3225 		if (!(event->attach_state & PERF_ATTACH_TASK))
3226 			atomic_dec(&per_cpu(perf_branch_stack_events, cpu));
3227 	}
3228 	if (is_cgroup_event(event))
3229 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3230 }
3231 
3232 static void unaccount_event(struct perf_event *event)
3233 {
3234 	if (event->parent)
3235 		return;
3236 
3237 	if (event->attach_state & PERF_ATTACH_TASK)
3238 		static_key_slow_dec_deferred(&perf_sched_events);
3239 	if (event->attr.mmap || event->attr.mmap_data)
3240 		atomic_dec(&nr_mmap_events);
3241 	if (event->attr.comm)
3242 		atomic_dec(&nr_comm_events);
3243 	if (event->attr.task)
3244 		atomic_dec(&nr_task_events);
3245 	if (event->attr.freq)
3246 		atomic_dec(&nr_freq_events);
3247 	if (is_cgroup_event(event))
3248 		static_key_slow_dec_deferred(&perf_sched_events);
3249 	if (has_branch_stack(event))
3250 		static_key_slow_dec_deferred(&perf_sched_events);
3251 
3252 	unaccount_event_cpu(event, event->cpu);
3253 }
3254 
3255 static void __free_event(struct perf_event *event)
3256 {
3257 	if (!event->parent) {
3258 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3259 			put_callchain_buffers();
3260 	}
3261 
3262 	if (event->destroy)
3263 		event->destroy(event);
3264 
3265 	if (event->ctx)
3266 		put_ctx(event->ctx);
3267 
3268 	if (event->pmu)
3269 		module_put(event->pmu->module);
3270 
3271 	call_rcu(&event->rcu_head, free_event_rcu);
3272 }
3273 
3274 static void _free_event(struct perf_event *event)
3275 {
3276 	irq_work_sync(&event->pending);
3277 
3278 	unaccount_event(event);
3279 
3280 	if (event->rb) {
3281 		/*
3282 		 * Can happen when we close an event with re-directed output.
3283 		 *
3284 		 * Since we have a 0 refcount, perf_mmap_close() will skip
3285 		 * over us; possibly making our ring_buffer_put() the last.
3286 		 */
3287 		mutex_lock(&event->mmap_mutex);
3288 		ring_buffer_attach(event, NULL);
3289 		mutex_unlock(&event->mmap_mutex);
3290 	}
3291 
3292 	if (is_cgroup_event(event))
3293 		perf_detach_cgroup(event);
3294 
3295 	__free_event(event);
3296 }
3297 
3298 /*
3299  * Used to free events which have a known refcount of 1, such as in error paths
3300  * where the event isn't exposed yet and inherited events.
3301  */
3302 static void free_event(struct perf_event *event)
3303 {
3304 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3305 				"unexpected event refcount: %ld; ptr=%p\n",
3306 				atomic_long_read(&event->refcount), event)) {
3307 		/* leak to avoid use-after-free */
3308 		return;
3309 	}
3310 
3311 	_free_event(event);
3312 }
3313 
3314 /*
3315  * Called when the last reference to the file is gone.
3316  */
3317 static void put_event(struct perf_event *event)
3318 {
3319 	struct perf_event_context *ctx = event->ctx;
3320 	struct task_struct *owner;
3321 
3322 	if (!atomic_long_dec_and_test(&event->refcount))
3323 		return;
3324 
3325 	rcu_read_lock();
3326 	owner = ACCESS_ONCE(event->owner);
3327 	/*
3328 	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3329 	 * !owner it means the list deletion is complete and we can indeed
3330 	 * free this event, otherwise we need to serialize on
3331 	 * owner->perf_event_mutex.
3332 	 */
3333 	smp_read_barrier_depends();
3334 	if (owner) {
3335 		/*
3336 		 * Since delayed_put_task_struct() also drops the last
3337 		 * task reference we can safely take a new reference
3338 		 * while holding the rcu_read_lock().
3339 		 */
3340 		get_task_struct(owner);
3341 	}
3342 	rcu_read_unlock();
3343 
3344 	if (owner) {
3345 		mutex_lock(&owner->perf_event_mutex);
3346 		/*
3347 		 * We have to re-check the event->owner field, if it is cleared
3348 		 * we raced with perf_event_exit_task(), acquiring the mutex
3349 		 * ensured they're done, and we can proceed with freeing the
3350 		 * event.
3351 		 */
3352 		if (event->owner)
3353 			list_del_init(&event->owner_entry);
3354 		mutex_unlock(&owner->perf_event_mutex);
3355 		put_task_struct(owner);
3356 	}
3357 
3358 	WARN_ON_ONCE(ctx->parent_ctx);
3359 	/*
3360 	 * There are two ways this annotation is useful:
3361 	 *
3362 	 *  1) there is a lock recursion from perf_event_exit_task
3363 	 *     see the comment there.
3364 	 *
3365 	 *  2) there is a lock-inversion with mmap_sem through
3366 	 *     perf_event_read_group(), which takes faults while
3367 	 *     holding ctx->mutex, however this is called after
3368 	 *     the last filedesc died, so there is no possibility
3369 	 *     to trigger the AB-BA case.
3370 	 */
3371 	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
3372 	perf_remove_from_context(event, true);
3373 	mutex_unlock(&ctx->mutex);
3374 
3375 	_free_event(event);
3376 }
3377 
3378 int perf_event_release_kernel(struct perf_event *event)
3379 {
3380 	put_event(event);
3381 	return 0;
3382 }
3383 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3384 
3385 static int perf_release(struct inode *inode, struct file *file)
3386 {
3387 	put_event(file->private_data);
3388 	return 0;
3389 }
3390 
3391 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3392 {
3393 	struct perf_event *child;
3394 	u64 total = 0;
3395 
3396 	*enabled = 0;
3397 	*running = 0;
3398 
3399 	mutex_lock(&event->child_mutex);
3400 	total += perf_event_read(event);
3401 	*enabled += event->total_time_enabled +
3402 			atomic64_read(&event->child_total_time_enabled);
3403 	*running += event->total_time_running +
3404 			atomic64_read(&event->child_total_time_running);
3405 
3406 	list_for_each_entry(child, &event->child_list, child_list) {
3407 		total += perf_event_read(child);
3408 		*enabled += child->total_time_enabled;
3409 		*running += child->total_time_running;
3410 	}
3411 	mutex_unlock(&event->child_mutex);
3412 
3413 	return total;
3414 }
3415 EXPORT_SYMBOL_GPL(perf_event_read_value);
3416 
3417 static int perf_event_read_group(struct perf_event *event,
3418 				   u64 read_format, char __user *buf)
3419 {
3420 	struct perf_event *leader = event->group_leader, *sub;
3421 	int n = 0, size = 0, ret = -EFAULT;
3422 	struct perf_event_context *ctx = leader->ctx;
3423 	u64 values[5];
3424 	u64 count, enabled, running;
3425 
3426 	mutex_lock(&ctx->mutex);
3427 	count = perf_event_read_value(leader, &enabled, &running);
3428 
3429 	values[n++] = 1 + leader->nr_siblings;
3430 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3431 		values[n++] = enabled;
3432 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3433 		values[n++] = running;
3434 	values[n++] = count;
3435 	if (read_format & PERF_FORMAT_ID)
3436 		values[n++] = primary_event_id(leader);
3437 
3438 	size = n * sizeof(u64);
3439 
3440 	if (copy_to_user(buf, values, size))
3441 		goto unlock;
3442 
3443 	ret = size;
3444 
3445 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3446 		n = 0;
3447 
3448 		values[n++] = perf_event_read_value(sub, &enabled, &running);
3449 		if (read_format & PERF_FORMAT_ID)
3450 			values[n++] = primary_event_id(sub);
3451 
3452 		size = n * sizeof(u64);
3453 
3454 		if (copy_to_user(buf + ret, values, size)) {
3455 			ret = -EFAULT;
3456 			goto unlock;
3457 		}
3458 
3459 		ret += size;
3460 	}
3461 unlock:
3462 	mutex_unlock(&ctx->mutex);
3463 
3464 	return ret;
3465 }
3466 
3467 static int perf_event_read_one(struct perf_event *event,
3468 				 u64 read_format, char __user *buf)
3469 {
3470 	u64 enabled, running;
3471 	u64 values[4];
3472 	int n = 0;
3473 
3474 	values[n++] = perf_event_read_value(event, &enabled, &running);
3475 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3476 		values[n++] = enabled;
3477 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3478 		values[n++] = running;
3479 	if (read_format & PERF_FORMAT_ID)
3480 		values[n++] = primary_event_id(event);
3481 
3482 	if (copy_to_user(buf, values, n * sizeof(u64)))
3483 		return -EFAULT;
3484 
3485 	return n * sizeof(u64);
3486 }
3487 
3488 /*
3489  * Read the performance event - simple non blocking version for now
3490  */
3491 static ssize_t
3492 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
3493 {
3494 	u64 read_format = event->attr.read_format;
3495 	int ret;
3496 
3497 	/*
3498 	 * Return end-of-file for a read on a event that is in
3499 	 * error state (i.e. because it was pinned but it couldn't be
3500 	 * scheduled on to the CPU at some point).
3501 	 */
3502 	if (event->state == PERF_EVENT_STATE_ERROR)
3503 		return 0;
3504 
3505 	if (count < event->read_size)
3506 		return -ENOSPC;
3507 
3508 	WARN_ON_ONCE(event->ctx->parent_ctx);
3509 	if (read_format & PERF_FORMAT_GROUP)
3510 		ret = perf_event_read_group(event, read_format, buf);
3511 	else
3512 		ret = perf_event_read_one(event, read_format, buf);
3513 
3514 	return ret;
3515 }
3516 
3517 static ssize_t
3518 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3519 {
3520 	struct perf_event *event = file->private_data;
3521 
3522 	return perf_read_hw(event, buf, count);
3523 }
3524 
3525 static unsigned int perf_poll(struct file *file, poll_table *wait)
3526 {
3527 	struct perf_event *event = file->private_data;
3528 	struct ring_buffer *rb;
3529 	unsigned int events = POLL_HUP;
3530 
3531 	/*
3532 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
3533 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
3534 	 */
3535 	mutex_lock(&event->mmap_mutex);
3536 	rb = event->rb;
3537 	if (rb)
3538 		events = atomic_xchg(&rb->poll, 0);
3539 	mutex_unlock(&event->mmap_mutex);
3540 
3541 	poll_wait(file, &event->waitq, wait);
3542 
3543 	return events;
3544 }
3545 
3546 static void perf_event_reset(struct perf_event *event)
3547 {
3548 	(void)perf_event_read(event);
3549 	local64_set(&event->count, 0);
3550 	perf_event_update_userpage(event);
3551 }
3552 
3553 /*
3554  * Holding the top-level event's child_mutex means that any
3555  * descendant process that has inherited this event will block
3556  * in sync_child_event if it goes to exit, thus satisfying the
3557  * task existence requirements of perf_event_enable/disable.
3558  */
3559 static void perf_event_for_each_child(struct perf_event *event,
3560 					void (*func)(struct perf_event *))
3561 {
3562 	struct perf_event *child;
3563 
3564 	WARN_ON_ONCE(event->ctx->parent_ctx);
3565 	mutex_lock(&event->child_mutex);
3566 	func(event);
3567 	list_for_each_entry(child, &event->child_list, child_list)
3568 		func(child);
3569 	mutex_unlock(&event->child_mutex);
3570 }
3571 
3572 static void perf_event_for_each(struct perf_event *event,
3573 				  void (*func)(struct perf_event *))
3574 {
3575 	struct perf_event_context *ctx = event->ctx;
3576 	struct perf_event *sibling;
3577 
3578 	WARN_ON_ONCE(ctx->parent_ctx);
3579 	mutex_lock(&ctx->mutex);
3580 	event = event->group_leader;
3581 
3582 	perf_event_for_each_child(event, func);
3583 	list_for_each_entry(sibling, &event->sibling_list, group_entry)
3584 		perf_event_for_each_child(sibling, func);
3585 	mutex_unlock(&ctx->mutex);
3586 }
3587 
3588 static int perf_event_period(struct perf_event *event, u64 __user *arg)
3589 {
3590 	struct perf_event_context *ctx = event->ctx;
3591 	int ret = 0, active;
3592 	u64 value;
3593 
3594 	if (!is_sampling_event(event))
3595 		return -EINVAL;
3596 
3597 	if (copy_from_user(&value, arg, sizeof(value)))
3598 		return -EFAULT;
3599 
3600 	if (!value)
3601 		return -EINVAL;
3602 
3603 	raw_spin_lock_irq(&ctx->lock);
3604 	if (event->attr.freq) {
3605 		if (value > sysctl_perf_event_sample_rate) {
3606 			ret = -EINVAL;
3607 			goto unlock;
3608 		}
3609 
3610 		event->attr.sample_freq = value;
3611 	} else {
3612 		event->attr.sample_period = value;
3613 		event->hw.sample_period = value;
3614 	}
3615 
3616 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
3617 	if (active) {
3618 		perf_pmu_disable(ctx->pmu);
3619 		event->pmu->stop(event, PERF_EF_UPDATE);
3620 	}
3621 
3622 	local64_set(&event->hw.period_left, 0);
3623 
3624 	if (active) {
3625 		event->pmu->start(event, PERF_EF_RELOAD);
3626 		perf_pmu_enable(ctx->pmu);
3627 	}
3628 
3629 unlock:
3630 	raw_spin_unlock_irq(&ctx->lock);
3631 
3632 	return ret;
3633 }
3634 
3635 static const struct file_operations perf_fops;
3636 
3637 static inline int perf_fget_light(int fd, struct fd *p)
3638 {
3639 	struct fd f = fdget(fd);
3640 	if (!f.file)
3641 		return -EBADF;
3642 
3643 	if (f.file->f_op != &perf_fops) {
3644 		fdput(f);
3645 		return -EBADF;
3646 	}
3647 	*p = f;
3648 	return 0;
3649 }
3650 
3651 static int perf_event_set_output(struct perf_event *event,
3652 				 struct perf_event *output_event);
3653 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3654 
3655 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3656 {
3657 	struct perf_event *event = file->private_data;
3658 	void (*func)(struct perf_event *);
3659 	u32 flags = arg;
3660 
3661 	switch (cmd) {
3662 	case PERF_EVENT_IOC_ENABLE:
3663 		func = perf_event_enable;
3664 		break;
3665 	case PERF_EVENT_IOC_DISABLE:
3666 		func = perf_event_disable;
3667 		break;
3668 	case PERF_EVENT_IOC_RESET:
3669 		func = perf_event_reset;
3670 		break;
3671 
3672 	case PERF_EVENT_IOC_REFRESH:
3673 		return perf_event_refresh(event, arg);
3674 
3675 	case PERF_EVENT_IOC_PERIOD:
3676 		return perf_event_period(event, (u64 __user *)arg);
3677 
3678 	case PERF_EVENT_IOC_ID:
3679 	{
3680 		u64 id = primary_event_id(event);
3681 
3682 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
3683 			return -EFAULT;
3684 		return 0;
3685 	}
3686 
3687 	case PERF_EVENT_IOC_SET_OUTPUT:
3688 	{
3689 		int ret;
3690 		if (arg != -1) {
3691 			struct perf_event *output_event;
3692 			struct fd output;
3693 			ret = perf_fget_light(arg, &output);
3694 			if (ret)
3695 				return ret;
3696 			output_event = output.file->private_data;
3697 			ret = perf_event_set_output(event, output_event);
3698 			fdput(output);
3699 		} else {
3700 			ret = perf_event_set_output(event, NULL);
3701 		}
3702 		return ret;
3703 	}
3704 
3705 	case PERF_EVENT_IOC_SET_FILTER:
3706 		return perf_event_set_filter(event, (void __user *)arg);
3707 
3708 	default:
3709 		return -ENOTTY;
3710 	}
3711 
3712 	if (flags & PERF_IOC_FLAG_GROUP)
3713 		perf_event_for_each(event, func);
3714 	else
3715 		perf_event_for_each_child(event, func);
3716 
3717 	return 0;
3718 }
3719 
3720 int perf_event_task_enable(void)
3721 {
3722 	struct perf_event *event;
3723 
3724 	mutex_lock(&current->perf_event_mutex);
3725 	list_for_each_entry(event, &current->perf_event_list, owner_entry)
3726 		perf_event_for_each_child(event, perf_event_enable);
3727 	mutex_unlock(&current->perf_event_mutex);
3728 
3729 	return 0;
3730 }
3731 
3732 int perf_event_task_disable(void)
3733 {
3734 	struct perf_event *event;
3735 
3736 	mutex_lock(&current->perf_event_mutex);
3737 	list_for_each_entry(event, &current->perf_event_list, owner_entry)
3738 		perf_event_for_each_child(event, perf_event_disable);
3739 	mutex_unlock(&current->perf_event_mutex);
3740 
3741 	return 0;
3742 }
3743 
3744 static int perf_event_index(struct perf_event *event)
3745 {
3746 	if (event->hw.state & PERF_HES_STOPPED)
3747 		return 0;
3748 
3749 	if (event->state != PERF_EVENT_STATE_ACTIVE)
3750 		return 0;
3751 
3752 	return event->pmu->event_idx(event);
3753 }
3754 
3755 static void calc_timer_values(struct perf_event *event,
3756 				u64 *now,
3757 				u64 *enabled,
3758 				u64 *running)
3759 {
3760 	u64 ctx_time;
3761 
3762 	*now = perf_clock();
3763 	ctx_time = event->shadow_ctx_time + *now;
3764 	*enabled = ctx_time - event->tstamp_enabled;
3765 	*running = ctx_time - event->tstamp_running;
3766 }
3767 
3768 static void perf_event_init_userpage(struct perf_event *event)
3769 {
3770 	struct perf_event_mmap_page *userpg;
3771 	struct ring_buffer *rb;
3772 
3773 	rcu_read_lock();
3774 	rb = rcu_dereference(event->rb);
3775 	if (!rb)
3776 		goto unlock;
3777 
3778 	userpg = rb->user_page;
3779 
3780 	/* Allow new userspace to detect that bit 0 is deprecated */
3781 	userpg->cap_bit0_is_deprecated = 1;
3782 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
3783 
3784 unlock:
3785 	rcu_read_unlock();
3786 }
3787 
3788 void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
3789 {
3790 }
3791 
3792 /*
3793  * Callers need to ensure there can be no nesting of this function, otherwise
3794  * the seqlock logic goes bad. We can not serialize this because the arch
3795  * code calls this from NMI context.
3796  */
3797 void perf_event_update_userpage(struct perf_event *event)
3798 {
3799 	struct perf_event_mmap_page *userpg;
3800 	struct ring_buffer *rb;
3801 	u64 enabled, running, now;
3802 
3803 	rcu_read_lock();
3804 	rb = rcu_dereference(event->rb);
3805 	if (!rb)
3806 		goto unlock;
3807 
3808 	/*
3809 	 * compute total_time_enabled, total_time_running
3810 	 * based on snapshot values taken when the event
3811 	 * was last scheduled in.
3812 	 *
3813 	 * we cannot simply called update_context_time()
3814 	 * because of locking issue as we can be called in
3815 	 * NMI context
3816 	 */
3817 	calc_timer_values(event, &now, &enabled, &running);
3818 
3819 	userpg = rb->user_page;
3820 	/*
3821 	 * Disable preemption so as to not let the corresponding user-space
3822 	 * spin too long if we get preempted.
3823 	 */
3824 	preempt_disable();
3825 	++userpg->lock;
3826 	barrier();
3827 	userpg->index = perf_event_index(event);
3828 	userpg->offset = perf_event_count(event);
3829 	if (userpg->index)
3830 		userpg->offset -= local64_read(&event->hw.prev_count);
3831 
3832 	userpg->time_enabled = enabled +
3833 			atomic64_read(&event->child_total_time_enabled);
3834 
3835 	userpg->time_running = running +
3836 			atomic64_read(&event->child_total_time_running);
3837 
3838 	arch_perf_update_userpage(userpg, now);
3839 
3840 	barrier();
3841 	++userpg->lock;
3842 	preempt_enable();
3843 unlock:
3844 	rcu_read_unlock();
3845 }
3846 
3847 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3848 {
3849 	struct perf_event *event = vma->vm_file->private_data;
3850 	struct ring_buffer *rb;
3851 	int ret = VM_FAULT_SIGBUS;
3852 
3853 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
3854 		if (vmf->pgoff == 0)
3855 			ret = 0;
3856 		return ret;
3857 	}
3858 
3859 	rcu_read_lock();
3860 	rb = rcu_dereference(event->rb);
3861 	if (!rb)
3862 		goto unlock;
3863 
3864 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3865 		goto unlock;
3866 
3867 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3868 	if (!vmf->page)
3869 		goto unlock;
3870 
3871 	get_page(vmf->page);
3872 	vmf->page->mapping = vma->vm_file->f_mapping;
3873 	vmf->page->index   = vmf->pgoff;
3874 
3875 	ret = 0;
3876 unlock:
3877 	rcu_read_unlock();
3878 
3879 	return ret;
3880 }
3881 
3882 static void ring_buffer_attach(struct perf_event *event,
3883 			       struct ring_buffer *rb)
3884 {
3885 	struct ring_buffer *old_rb = NULL;
3886 	unsigned long flags;
3887 
3888 	if (event->rb) {
3889 		/*
3890 		 * Should be impossible, we set this when removing
3891 		 * event->rb_entry and wait/clear when adding event->rb_entry.
3892 		 */
3893 		WARN_ON_ONCE(event->rcu_pending);
3894 
3895 		old_rb = event->rb;
3896 		event->rcu_batches = get_state_synchronize_rcu();
3897 		event->rcu_pending = 1;
3898 
3899 		spin_lock_irqsave(&old_rb->event_lock, flags);
3900 		list_del_rcu(&event->rb_entry);
3901 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
3902 	}
3903 
3904 	if (event->rcu_pending && rb) {
3905 		cond_synchronize_rcu(event->rcu_batches);
3906 		event->rcu_pending = 0;
3907 	}
3908 
3909 	if (rb) {
3910 		spin_lock_irqsave(&rb->event_lock, flags);
3911 		list_add_rcu(&event->rb_entry, &rb->event_list);
3912 		spin_unlock_irqrestore(&rb->event_lock, flags);
3913 	}
3914 
3915 	rcu_assign_pointer(event->rb, rb);
3916 
3917 	if (old_rb) {
3918 		ring_buffer_put(old_rb);
3919 		/*
3920 		 * Since we detached before setting the new rb, so that we
3921 		 * could attach the new rb, we could have missed a wakeup.
3922 		 * Provide it now.
3923 		 */
3924 		wake_up_all(&event->waitq);
3925 	}
3926 }
3927 
3928 static void ring_buffer_wakeup(struct perf_event *event)
3929 {
3930 	struct ring_buffer *rb;
3931 
3932 	rcu_read_lock();
3933 	rb = rcu_dereference(event->rb);
3934 	if (rb) {
3935 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
3936 			wake_up_all(&event->waitq);
3937 	}
3938 	rcu_read_unlock();
3939 }
3940 
3941 static void rb_free_rcu(struct rcu_head *rcu_head)
3942 {
3943 	struct ring_buffer *rb;
3944 
3945 	rb = container_of(rcu_head, struct ring_buffer, rcu_head);
3946 	rb_free(rb);
3947 }
3948 
3949 static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3950 {
3951 	struct ring_buffer *rb;
3952 
3953 	rcu_read_lock();
3954 	rb = rcu_dereference(event->rb);
3955 	if (rb) {
3956 		if (!atomic_inc_not_zero(&rb->refcount))
3957 			rb = NULL;
3958 	}
3959 	rcu_read_unlock();
3960 
3961 	return rb;
3962 }
3963 
3964 static void ring_buffer_put(struct ring_buffer *rb)
3965 {
3966 	if (!atomic_dec_and_test(&rb->refcount))
3967 		return;
3968 
3969 	WARN_ON_ONCE(!list_empty(&rb->event_list));
3970 
3971 	call_rcu(&rb->rcu_head, rb_free_rcu);
3972 }
3973 
3974 static void perf_mmap_open(struct vm_area_struct *vma)
3975 {
3976 	struct perf_event *event = vma->vm_file->private_data;
3977 
3978 	atomic_inc(&event->mmap_count);
3979 	atomic_inc(&event->rb->mmap_count);
3980 }
3981 
3982 /*
3983  * A buffer can be mmap()ed multiple times; either directly through the same
3984  * event, or through other events by use of perf_event_set_output().
3985  *
3986  * In order to undo the VM accounting done by perf_mmap() we need to destroy
3987  * the buffer here, where we still have a VM context. This means we need
3988  * to detach all events redirecting to us.
3989  */
3990 static void perf_mmap_close(struct vm_area_struct *vma)
3991 {
3992 	struct perf_event *event = vma->vm_file->private_data;
3993 
3994 	struct ring_buffer *rb = ring_buffer_get(event);
3995 	struct user_struct *mmap_user = rb->mmap_user;
3996 	int mmap_locked = rb->mmap_locked;
3997 	unsigned long size = perf_data_size(rb);
3998 
3999 	atomic_dec(&rb->mmap_count);
4000 
4001 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4002 		goto out_put;
4003 
4004 	ring_buffer_attach(event, NULL);
4005 	mutex_unlock(&event->mmap_mutex);
4006 
4007 	/* If there's still other mmap()s of this buffer, we're done. */
4008 	if (atomic_read(&rb->mmap_count))
4009 		goto out_put;
4010 
4011 	/*
4012 	 * No other mmap()s, detach from all other events that might redirect
4013 	 * into the now unreachable buffer. Somewhat complicated by the
4014 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4015 	 */
4016 again:
4017 	rcu_read_lock();
4018 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4019 		if (!atomic_long_inc_not_zero(&event->refcount)) {
4020 			/*
4021 			 * This event is en-route to free_event() which will
4022 			 * detach it and remove it from the list.
4023 			 */
4024 			continue;
4025 		}
4026 		rcu_read_unlock();
4027 
4028 		mutex_lock(&event->mmap_mutex);
4029 		/*
4030 		 * Check we didn't race with perf_event_set_output() which can
4031 		 * swizzle the rb from under us while we were waiting to
4032 		 * acquire mmap_mutex.
4033 		 *
4034 		 * If we find a different rb; ignore this event, a next
4035 		 * iteration will no longer find it on the list. We have to
4036 		 * still restart the iteration to make sure we're not now
4037 		 * iterating the wrong list.
4038 		 */
4039 		if (event->rb == rb)
4040 			ring_buffer_attach(event, NULL);
4041 
4042 		mutex_unlock(&event->mmap_mutex);
4043 		put_event(event);
4044 
4045 		/*
4046 		 * Restart the iteration; either we're on the wrong list or
4047 		 * destroyed its integrity by doing a deletion.
4048 		 */
4049 		goto again;
4050 	}
4051 	rcu_read_unlock();
4052 
4053 	/*
4054 	 * It could be there's still a few 0-ref events on the list; they'll
4055 	 * get cleaned up by free_event() -- they'll also still have their
4056 	 * ref on the rb and will free it whenever they are done with it.
4057 	 *
4058 	 * Aside from that, this buffer is 'fully' detached and unmapped,
4059 	 * undo the VM accounting.
4060 	 */
4061 
4062 	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4063 	vma->vm_mm->pinned_vm -= mmap_locked;
4064 	free_uid(mmap_user);
4065 
4066 out_put:
4067 	ring_buffer_put(rb); /* could be last */
4068 }
4069 
4070 static const struct vm_operations_struct perf_mmap_vmops = {
4071 	.open		= perf_mmap_open,
4072 	.close		= perf_mmap_close,
4073 	.fault		= perf_mmap_fault,
4074 	.page_mkwrite	= perf_mmap_fault,
4075 };
4076 
4077 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4078 {
4079 	struct perf_event *event = file->private_data;
4080 	unsigned long user_locked, user_lock_limit;
4081 	struct user_struct *user = current_user();
4082 	unsigned long locked, lock_limit;
4083 	struct ring_buffer *rb;
4084 	unsigned long vma_size;
4085 	unsigned long nr_pages;
4086 	long user_extra, extra;
4087 	int ret = 0, flags = 0;
4088 
4089 	/*
4090 	 * Don't allow mmap() of inherited per-task counters. This would
4091 	 * create a performance issue due to all children writing to the
4092 	 * same rb.
4093 	 */
4094 	if (event->cpu == -1 && event->attr.inherit)
4095 		return -EINVAL;
4096 
4097 	if (!(vma->vm_flags & VM_SHARED))
4098 		return -EINVAL;
4099 
4100 	vma_size = vma->vm_end - vma->vm_start;
4101 	nr_pages = (vma_size / PAGE_SIZE) - 1;
4102 
4103 	/*
4104 	 * If we have rb pages ensure they're a power-of-two number, so we
4105 	 * can do bitmasks instead of modulo.
4106 	 */
4107 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
4108 		return -EINVAL;
4109 
4110 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
4111 		return -EINVAL;
4112 
4113 	if (vma->vm_pgoff != 0)
4114 		return -EINVAL;
4115 
4116 	WARN_ON_ONCE(event->ctx->parent_ctx);
4117 again:
4118 	mutex_lock(&event->mmap_mutex);
4119 	if (event->rb) {
4120 		if (event->rb->nr_pages != nr_pages) {
4121 			ret = -EINVAL;
4122 			goto unlock;
4123 		}
4124 
4125 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4126 			/*
4127 			 * Raced against perf_mmap_close() through
4128 			 * perf_event_set_output(). Try again, hope for better
4129 			 * luck.
4130 			 */
4131 			mutex_unlock(&event->mmap_mutex);
4132 			goto again;
4133 		}
4134 
4135 		goto unlock;
4136 	}
4137 
4138 	user_extra = nr_pages + 1;
4139 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
4140 
4141 	/*
4142 	 * Increase the limit linearly with more CPUs:
4143 	 */
4144 	user_lock_limit *= num_online_cpus();
4145 
4146 	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4147 
4148 	extra = 0;
4149 	if (user_locked > user_lock_limit)
4150 		extra = user_locked - user_lock_limit;
4151 
4152 	lock_limit = rlimit(RLIMIT_MEMLOCK);
4153 	lock_limit >>= PAGE_SHIFT;
4154 	locked = vma->vm_mm->pinned_vm + extra;
4155 
4156 	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4157 		!capable(CAP_IPC_LOCK)) {
4158 		ret = -EPERM;
4159 		goto unlock;
4160 	}
4161 
4162 	WARN_ON(event->rb);
4163 
4164 	if (vma->vm_flags & VM_WRITE)
4165 		flags |= RING_BUFFER_WRITABLE;
4166 
4167 	rb = rb_alloc(nr_pages,
4168 		event->attr.watermark ? event->attr.wakeup_watermark : 0,
4169 		event->cpu, flags);
4170 
4171 	if (!rb) {
4172 		ret = -ENOMEM;
4173 		goto unlock;
4174 	}
4175 
4176 	atomic_set(&rb->mmap_count, 1);
4177 	rb->mmap_locked = extra;
4178 	rb->mmap_user = get_current_user();
4179 
4180 	atomic_long_add(user_extra, &user->locked_vm);
4181 	vma->vm_mm->pinned_vm += extra;
4182 
4183 	ring_buffer_attach(event, rb);
4184 
4185 	perf_event_init_userpage(event);
4186 	perf_event_update_userpage(event);
4187 
4188 unlock:
4189 	if (!ret)
4190 		atomic_inc(&event->mmap_count);
4191 	mutex_unlock(&event->mmap_mutex);
4192 
4193 	/*
4194 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
4195 	 * vma.
4196 	 */
4197 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4198 	vma->vm_ops = &perf_mmap_vmops;
4199 
4200 	return ret;
4201 }
4202 
4203 static int perf_fasync(int fd, struct file *filp, int on)
4204 {
4205 	struct inode *inode = file_inode(filp);
4206 	struct perf_event *event = filp->private_data;
4207 	int retval;
4208 
4209 	mutex_lock(&inode->i_mutex);
4210 	retval = fasync_helper(fd, filp, on, &event->fasync);
4211 	mutex_unlock(&inode->i_mutex);
4212 
4213 	if (retval < 0)
4214 		return retval;
4215 
4216 	return 0;
4217 }
4218 
4219 static const struct file_operations perf_fops = {
4220 	.llseek			= no_llseek,
4221 	.release		= perf_release,
4222 	.read			= perf_read,
4223 	.poll			= perf_poll,
4224 	.unlocked_ioctl		= perf_ioctl,
4225 	.compat_ioctl		= perf_ioctl,
4226 	.mmap			= perf_mmap,
4227 	.fasync			= perf_fasync,
4228 };
4229 
4230 /*
4231  * Perf event wakeup
4232  *
4233  * If there's data, ensure we set the poll() state and publish everything
4234  * to user-space before waking everybody up.
4235  */
4236 
4237 void perf_event_wakeup(struct perf_event *event)
4238 {
4239 	ring_buffer_wakeup(event);
4240 
4241 	if (event->pending_kill) {
4242 		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
4243 		event->pending_kill = 0;
4244 	}
4245 }
4246 
4247 static void perf_pending_event(struct irq_work *entry)
4248 {
4249 	struct perf_event *event = container_of(entry,
4250 			struct perf_event, pending);
4251 
4252 	if (event->pending_disable) {
4253 		event->pending_disable = 0;
4254 		__perf_event_disable(event);
4255 	}
4256 
4257 	if (event->pending_wakeup) {
4258 		event->pending_wakeup = 0;
4259 		perf_event_wakeup(event);
4260 	}
4261 }
4262 
4263 /*
4264  * We assume there is only KVM supporting the callbacks.
4265  * Later on, we might change it to a list if there is
4266  * another virtualization implementation supporting the callbacks.
4267  */
4268 struct perf_guest_info_callbacks *perf_guest_cbs;
4269 
4270 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4271 {
4272 	perf_guest_cbs = cbs;
4273 	return 0;
4274 }
4275 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4276 
4277 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4278 {
4279 	perf_guest_cbs = NULL;
4280 	return 0;
4281 }
4282 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4283 
4284 static void
4285 perf_output_sample_regs(struct perf_output_handle *handle,
4286 			struct pt_regs *regs, u64 mask)
4287 {
4288 	int bit;
4289 
4290 	for_each_set_bit(bit, (const unsigned long *) &mask,
4291 			 sizeof(mask) * BITS_PER_BYTE) {
4292 		u64 val;
4293 
4294 		val = perf_reg_value(regs, bit);
4295 		perf_output_put(handle, val);
4296 	}
4297 }
4298 
4299 static void perf_sample_regs_user(struct perf_regs_user *regs_user,
4300 				  struct pt_regs *regs)
4301 {
4302 	if (!user_mode(regs)) {
4303 		if (current->mm)
4304 			regs = task_pt_regs(current);
4305 		else
4306 			regs = NULL;
4307 	}
4308 
4309 	if (regs) {
4310 		regs_user->regs = regs;
4311 		regs_user->abi  = perf_reg_abi(current);
4312 	}
4313 }
4314 
4315 /*
4316  * Get remaining task size from user stack pointer.
4317  *
4318  * It'd be better to take stack vma map and limit this more
4319  * precisly, but there's no way to get it safely under interrupt,
4320  * so using TASK_SIZE as limit.
4321  */
4322 static u64 perf_ustack_task_size(struct pt_regs *regs)
4323 {
4324 	unsigned long addr = perf_user_stack_pointer(regs);
4325 
4326 	if (!addr || addr >= TASK_SIZE)
4327 		return 0;
4328 
4329 	return TASK_SIZE - addr;
4330 }
4331 
4332 static u16
4333 perf_sample_ustack_size(u16 stack_size, u16 header_size,
4334 			struct pt_regs *regs)
4335 {
4336 	u64 task_size;
4337 
4338 	/* No regs, no stack pointer, no dump. */
4339 	if (!regs)
4340 		return 0;
4341 
4342 	/*
4343 	 * Check if we fit in with the requested stack size into the:
4344 	 * - TASK_SIZE
4345 	 *   If we don't, we limit the size to the TASK_SIZE.
4346 	 *
4347 	 * - remaining sample size
4348 	 *   If we don't, we customize the stack size to
4349 	 *   fit in to the remaining sample size.
4350 	 */
4351 
4352 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
4353 	stack_size = min(stack_size, (u16) task_size);
4354 
4355 	/* Current header size plus static size and dynamic size. */
4356 	header_size += 2 * sizeof(u64);
4357 
4358 	/* Do we fit in with the current stack dump size? */
4359 	if ((u16) (header_size + stack_size) < header_size) {
4360 		/*
4361 		 * If we overflow the maximum size for the sample,
4362 		 * we customize the stack dump size to fit in.
4363 		 */
4364 		stack_size = USHRT_MAX - header_size - sizeof(u64);
4365 		stack_size = round_up(stack_size, sizeof(u64));
4366 	}
4367 
4368 	return stack_size;
4369 }
4370 
4371 static void
4372 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
4373 			  struct pt_regs *regs)
4374 {
4375 	/* Case of a kernel thread, nothing to dump */
4376 	if (!regs) {
4377 		u64 size = 0;
4378 		perf_output_put(handle, size);
4379 	} else {
4380 		unsigned long sp;
4381 		unsigned int rem;
4382 		u64 dyn_size;
4383 
4384 		/*
4385 		 * We dump:
4386 		 * static size
4387 		 *   - the size requested by user or the best one we can fit
4388 		 *     in to the sample max size
4389 		 * data
4390 		 *   - user stack dump data
4391 		 * dynamic size
4392 		 *   - the actual dumped size
4393 		 */
4394 
4395 		/* Static size. */
4396 		perf_output_put(handle, dump_size);
4397 
4398 		/* Data. */
4399 		sp = perf_user_stack_pointer(regs);
4400 		rem = __output_copy_user(handle, (void *) sp, dump_size);
4401 		dyn_size = dump_size - rem;
4402 
4403 		perf_output_skip(handle, rem);
4404 
4405 		/* Dynamic size. */
4406 		perf_output_put(handle, dyn_size);
4407 	}
4408 }
4409 
4410 static void __perf_event_header__init_id(struct perf_event_header *header,
4411 					 struct perf_sample_data *data,
4412 					 struct perf_event *event)
4413 {
4414 	u64 sample_type = event->attr.sample_type;
4415 
4416 	data->type = sample_type;
4417 	header->size += event->id_header_size;
4418 
4419 	if (sample_type & PERF_SAMPLE_TID) {
4420 		/* namespace issues */
4421 		data->tid_entry.pid = perf_event_pid(event, current);
4422 		data->tid_entry.tid = perf_event_tid(event, current);
4423 	}
4424 
4425 	if (sample_type & PERF_SAMPLE_TIME)
4426 		data->time = perf_clock();
4427 
4428 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
4429 		data->id = primary_event_id(event);
4430 
4431 	if (sample_type & PERF_SAMPLE_STREAM_ID)
4432 		data->stream_id = event->id;
4433 
4434 	if (sample_type & PERF_SAMPLE_CPU) {
4435 		data->cpu_entry.cpu	 = raw_smp_processor_id();
4436 		data->cpu_entry.reserved = 0;
4437 	}
4438 }
4439 
4440 void perf_event_header__init_id(struct perf_event_header *header,
4441 				struct perf_sample_data *data,
4442 				struct perf_event *event)
4443 {
4444 	if (event->attr.sample_id_all)
4445 		__perf_event_header__init_id(header, data, event);
4446 }
4447 
4448 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
4449 					   struct perf_sample_data *data)
4450 {
4451 	u64 sample_type = data->type;
4452 
4453 	if (sample_type & PERF_SAMPLE_TID)
4454 		perf_output_put(handle, data->tid_entry);
4455 
4456 	if (sample_type & PERF_SAMPLE_TIME)
4457 		perf_output_put(handle, data->time);
4458 
4459 	if (sample_type & PERF_SAMPLE_ID)
4460 		perf_output_put(handle, data->id);
4461 
4462 	if (sample_type & PERF_SAMPLE_STREAM_ID)
4463 		perf_output_put(handle, data->stream_id);
4464 
4465 	if (sample_type & PERF_SAMPLE_CPU)
4466 		perf_output_put(handle, data->cpu_entry);
4467 
4468 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
4469 		perf_output_put(handle, data->id);
4470 }
4471 
4472 void perf_event__output_id_sample(struct perf_event *event,
4473 				  struct perf_output_handle *handle,
4474 				  struct perf_sample_data *sample)
4475 {
4476 	if (event->attr.sample_id_all)
4477 		__perf_event__output_id_sample(handle, sample);
4478 }
4479 
4480 static void perf_output_read_one(struct perf_output_handle *handle,
4481 				 struct perf_event *event,
4482 				 u64 enabled, u64 running)
4483 {
4484 	u64 read_format = event->attr.read_format;
4485 	u64 values[4];
4486 	int n = 0;
4487 
4488 	values[n++] = perf_event_count(event);
4489 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4490 		values[n++] = enabled +
4491 			atomic64_read(&event->child_total_time_enabled);
4492 	}
4493 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4494 		values[n++] = running +
4495 			atomic64_read(&event->child_total_time_running);
4496 	}
4497 	if (read_format & PERF_FORMAT_ID)
4498 		values[n++] = primary_event_id(event);
4499 
4500 	__output_copy(handle, values, n * sizeof(u64));
4501 }
4502 
4503 /*
4504  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4505  */
4506 static void perf_output_read_group(struct perf_output_handle *handle,
4507 			    struct perf_event *event,
4508 			    u64 enabled, u64 running)
4509 {
4510 	struct perf_event *leader = event->group_leader, *sub;
4511 	u64 read_format = event->attr.read_format;
4512 	u64 values[5];
4513 	int n = 0;
4514 
4515 	values[n++] = 1 + leader->nr_siblings;
4516 
4517 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4518 		values[n++] = enabled;
4519 
4520 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4521 		values[n++] = running;
4522 
4523 	if (leader != event)
4524 		leader->pmu->read(leader);
4525 
4526 	values[n++] = perf_event_count(leader);
4527 	if (read_format & PERF_FORMAT_ID)
4528 		values[n++] = primary_event_id(leader);
4529 
4530 	__output_copy(handle, values, n * sizeof(u64));
4531 
4532 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4533 		n = 0;
4534 
4535 		if ((sub != event) &&
4536 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
4537 			sub->pmu->read(sub);
4538 
4539 		values[n++] = perf_event_count(sub);
4540 		if (read_format & PERF_FORMAT_ID)
4541 			values[n++] = primary_event_id(sub);
4542 
4543 		__output_copy(handle, values, n * sizeof(u64));
4544 	}
4545 }
4546 
4547 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
4548 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
4549 
4550 static void perf_output_read(struct perf_output_handle *handle,
4551 			     struct perf_event *event)
4552 {
4553 	u64 enabled = 0, running = 0, now;
4554 	u64 read_format = event->attr.read_format;
4555 
4556 	/*
4557 	 * compute total_time_enabled, total_time_running
4558 	 * based on snapshot values taken when the event
4559 	 * was last scheduled in.
4560 	 *
4561 	 * we cannot simply called update_context_time()
4562 	 * because of locking issue as we are called in
4563 	 * NMI context
4564 	 */
4565 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
4566 		calc_timer_values(event, &now, &enabled, &running);
4567 
4568 	if (event->attr.read_format & PERF_FORMAT_GROUP)
4569 		perf_output_read_group(handle, event, enabled, running);
4570 	else
4571 		perf_output_read_one(handle, event, enabled, running);
4572 }
4573 
4574 void perf_output_sample(struct perf_output_handle *handle,
4575 			struct perf_event_header *header,
4576 			struct perf_sample_data *data,
4577 			struct perf_event *event)
4578 {
4579 	u64 sample_type = data->type;
4580 
4581 	perf_output_put(handle, *header);
4582 
4583 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
4584 		perf_output_put(handle, data->id);
4585 
4586 	if (sample_type & PERF_SAMPLE_IP)
4587 		perf_output_put(handle, data->ip);
4588 
4589 	if (sample_type & PERF_SAMPLE_TID)
4590 		perf_output_put(handle, data->tid_entry);
4591 
4592 	if (sample_type & PERF_SAMPLE_TIME)
4593 		perf_output_put(handle, data->time);
4594 
4595 	if (sample_type & PERF_SAMPLE_ADDR)
4596 		perf_output_put(handle, data->addr);
4597 
4598 	if (sample_type & PERF_SAMPLE_ID)
4599 		perf_output_put(handle, data->id);
4600 
4601 	if (sample_type & PERF_SAMPLE_STREAM_ID)
4602 		perf_output_put(handle, data->stream_id);
4603 
4604 	if (sample_type & PERF_SAMPLE_CPU)
4605 		perf_output_put(handle, data->cpu_entry);
4606 
4607 	if (sample_type & PERF_SAMPLE_PERIOD)
4608 		perf_output_put(handle, data->period);
4609 
4610 	if (sample_type & PERF_SAMPLE_READ)
4611 		perf_output_read(handle, event);
4612 
4613 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4614 		if (data->callchain) {
4615 			int size = 1;
4616 
4617 			if (data->callchain)
4618 				size += data->callchain->nr;
4619 
4620 			size *= sizeof(u64);
4621 
4622 			__output_copy(handle, data->callchain, size);
4623 		} else {
4624 			u64 nr = 0;
4625 			perf_output_put(handle, nr);
4626 		}
4627 	}
4628 
4629 	if (sample_type & PERF_SAMPLE_RAW) {
4630 		if (data->raw) {
4631 			perf_output_put(handle, data->raw->size);
4632 			__output_copy(handle, data->raw->data,
4633 					   data->raw->size);
4634 		} else {
4635 			struct {
4636 				u32	size;
4637 				u32	data;
4638 			} raw = {
4639 				.size = sizeof(u32),
4640 				.data = 0,
4641 			};
4642 			perf_output_put(handle, raw);
4643 		}
4644 	}
4645 
4646 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4647 		if (data->br_stack) {
4648 			size_t size;
4649 
4650 			size = data->br_stack->nr
4651 			     * sizeof(struct perf_branch_entry);
4652 
4653 			perf_output_put(handle, data->br_stack->nr);
4654 			perf_output_copy(handle, data->br_stack->entries, size);
4655 		} else {
4656 			/*
4657 			 * we always store at least the value of nr
4658 			 */
4659 			u64 nr = 0;
4660 			perf_output_put(handle, nr);
4661 		}
4662 	}
4663 
4664 	if (sample_type & PERF_SAMPLE_REGS_USER) {
4665 		u64 abi = data->regs_user.abi;
4666 
4667 		/*
4668 		 * If there are no regs to dump, notice it through
4669 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
4670 		 */
4671 		perf_output_put(handle, abi);
4672 
4673 		if (abi) {
4674 			u64 mask = event->attr.sample_regs_user;
4675 			perf_output_sample_regs(handle,
4676 						data->regs_user.regs,
4677 						mask);
4678 		}
4679 	}
4680 
4681 	if (sample_type & PERF_SAMPLE_STACK_USER) {
4682 		perf_output_sample_ustack(handle,
4683 					  data->stack_user_size,
4684 					  data->regs_user.regs);
4685 	}
4686 
4687 	if (sample_type & PERF_SAMPLE_WEIGHT)
4688 		perf_output_put(handle, data->weight);
4689 
4690 	if (sample_type & PERF_SAMPLE_DATA_SRC)
4691 		perf_output_put(handle, data->data_src.val);
4692 
4693 	if (sample_type & PERF_SAMPLE_TRANSACTION)
4694 		perf_output_put(handle, data->txn);
4695 
4696 	if (!event->attr.watermark) {
4697 		int wakeup_events = event->attr.wakeup_events;
4698 
4699 		if (wakeup_events) {
4700 			struct ring_buffer *rb = handle->rb;
4701 			int events = local_inc_return(&rb->events);
4702 
4703 			if (events >= wakeup_events) {
4704 				local_sub(wakeup_events, &rb->events);
4705 				local_inc(&rb->wakeup);
4706 			}
4707 		}
4708 	}
4709 }
4710 
4711 void perf_prepare_sample(struct perf_event_header *header,
4712 			 struct perf_sample_data *data,
4713 			 struct perf_event *event,
4714 			 struct pt_regs *regs)
4715 {
4716 	u64 sample_type = event->attr.sample_type;
4717 
4718 	header->type = PERF_RECORD_SAMPLE;
4719 	header->size = sizeof(*header) + event->header_size;
4720 
4721 	header->misc = 0;
4722 	header->misc |= perf_misc_flags(regs);
4723 
4724 	__perf_event_header__init_id(header, data, event);
4725 
4726 	if (sample_type & PERF_SAMPLE_IP)
4727 		data->ip = perf_instruction_pointer(regs);
4728 
4729 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4730 		int size = 1;
4731 
4732 		data->callchain = perf_callchain(event, regs);
4733 
4734 		if (data->callchain)
4735 			size += data->callchain->nr;
4736 
4737 		header->size += size * sizeof(u64);
4738 	}
4739 
4740 	if (sample_type & PERF_SAMPLE_RAW) {
4741 		int size = sizeof(u32);
4742 
4743 		if (data->raw)
4744 			size += data->raw->size;
4745 		else
4746 			size += sizeof(u32);
4747 
4748 		WARN_ON_ONCE(size & (sizeof(u64)-1));
4749 		header->size += size;
4750 	}
4751 
4752 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4753 		int size = sizeof(u64); /* nr */
4754 		if (data->br_stack) {
4755 			size += data->br_stack->nr
4756 			      * sizeof(struct perf_branch_entry);
4757 		}
4758 		header->size += size;
4759 	}
4760 
4761 	if (sample_type & PERF_SAMPLE_REGS_USER) {
4762 		/* regs dump ABI info */
4763 		int size = sizeof(u64);
4764 
4765 		perf_sample_regs_user(&data->regs_user, regs);
4766 
4767 		if (data->regs_user.regs) {
4768 			u64 mask = event->attr.sample_regs_user;
4769 			size += hweight64(mask) * sizeof(u64);
4770 		}
4771 
4772 		header->size += size;
4773 	}
4774 
4775 	if (sample_type & PERF_SAMPLE_STACK_USER) {
4776 		/*
4777 		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
4778 		 * processed as the last one or have additional check added
4779 		 * in case new sample type is added, because we could eat
4780 		 * up the rest of the sample size.
4781 		 */
4782 		struct perf_regs_user *uregs = &data->regs_user;
4783 		u16 stack_size = event->attr.sample_stack_user;
4784 		u16 size = sizeof(u64);
4785 
4786 		if (!uregs->abi)
4787 			perf_sample_regs_user(uregs, regs);
4788 
4789 		stack_size = perf_sample_ustack_size(stack_size, header->size,
4790 						     uregs->regs);
4791 
4792 		/*
4793 		 * If there is something to dump, add space for the dump
4794 		 * itself and for the field that tells the dynamic size,
4795 		 * which is how many have been actually dumped.
4796 		 */
4797 		if (stack_size)
4798 			size += sizeof(u64) + stack_size;
4799 
4800 		data->stack_user_size = stack_size;
4801 		header->size += size;
4802 	}
4803 }
4804 
4805 static void perf_event_output(struct perf_event *event,
4806 				struct perf_sample_data *data,
4807 				struct pt_regs *regs)
4808 {
4809 	struct perf_output_handle handle;
4810 	struct perf_event_header header;
4811 
4812 	/* protect the callchain buffers */
4813 	rcu_read_lock();
4814 
4815 	perf_prepare_sample(&header, data, event, regs);
4816 
4817 	if (perf_output_begin(&handle, event, header.size))
4818 		goto exit;
4819 
4820 	perf_output_sample(&handle, &header, data, event);
4821 
4822 	perf_output_end(&handle);
4823 
4824 exit:
4825 	rcu_read_unlock();
4826 }
4827 
4828 /*
4829  * read event_id
4830  */
4831 
4832 struct perf_read_event {
4833 	struct perf_event_header	header;
4834 
4835 	u32				pid;
4836 	u32				tid;
4837 };
4838 
4839 static void
4840 perf_event_read_event(struct perf_event *event,
4841 			struct task_struct *task)
4842 {
4843 	struct perf_output_handle handle;
4844 	struct perf_sample_data sample;
4845 	struct perf_read_event read_event = {
4846 		.header = {
4847 			.type = PERF_RECORD_READ,
4848 			.misc = 0,
4849 			.size = sizeof(read_event) + event->read_size,
4850 		},
4851 		.pid = perf_event_pid(event, task),
4852 		.tid = perf_event_tid(event, task),
4853 	};
4854 	int ret;
4855 
4856 	perf_event_header__init_id(&read_event.header, &sample, event);
4857 	ret = perf_output_begin(&handle, event, read_event.header.size);
4858 	if (ret)
4859 		return;
4860 
4861 	perf_output_put(&handle, read_event);
4862 	perf_output_read(&handle, event);
4863 	perf_event__output_id_sample(event, &handle, &sample);
4864 
4865 	perf_output_end(&handle);
4866 }
4867 
4868 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
4869 
4870 static void
4871 perf_event_aux_ctx(struct perf_event_context *ctx,
4872 		   perf_event_aux_output_cb output,
4873 		   void *data)
4874 {
4875 	struct perf_event *event;
4876 
4877 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4878 		if (event->state < PERF_EVENT_STATE_INACTIVE)
4879 			continue;
4880 		if (!event_filter_match(event))
4881 			continue;
4882 		output(event, data);
4883 	}
4884 }
4885 
4886 static void
4887 perf_event_aux(perf_event_aux_output_cb output, void *data,
4888 	       struct perf_event_context *task_ctx)
4889 {
4890 	struct perf_cpu_context *cpuctx;
4891 	struct perf_event_context *ctx;
4892 	struct pmu *pmu;
4893 	int ctxn;
4894 
4895 	rcu_read_lock();
4896 	list_for_each_entry_rcu(pmu, &pmus, entry) {
4897 		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4898 		if (cpuctx->unique_pmu != pmu)
4899 			goto next;
4900 		perf_event_aux_ctx(&cpuctx->ctx, output, data);
4901 		if (task_ctx)
4902 			goto next;
4903 		ctxn = pmu->task_ctx_nr;
4904 		if (ctxn < 0)
4905 			goto next;
4906 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4907 		if (ctx)
4908 			perf_event_aux_ctx(ctx, output, data);
4909 next:
4910 		put_cpu_ptr(pmu->pmu_cpu_context);
4911 	}
4912 
4913 	if (task_ctx) {
4914 		preempt_disable();
4915 		perf_event_aux_ctx(task_ctx, output, data);
4916 		preempt_enable();
4917 	}
4918 	rcu_read_unlock();
4919 }
4920 
4921 /*
4922  * task tracking -- fork/exit
4923  *
4924  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
4925  */
4926 
4927 struct perf_task_event {
4928 	struct task_struct		*task;
4929 	struct perf_event_context	*task_ctx;
4930 
4931 	struct {
4932 		struct perf_event_header	header;
4933 
4934 		u32				pid;
4935 		u32				ppid;
4936 		u32				tid;
4937 		u32				ptid;
4938 		u64				time;
4939 	} event_id;
4940 };
4941 
4942 static int perf_event_task_match(struct perf_event *event)
4943 {
4944 	return event->attr.comm  || event->attr.mmap ||
4945 	       event->attr.mmap2 || event->attr.mmap_data ||
4946 	       event->attr.task;
4947 }
4948 
4949 static void perf_event_task_output(struct perf_event *event,
4950 				   void *data)
4951 {
4952 	struct perf_task_event *task_event = data;
4953 	struct perf_output_handle handle;
4954 	struct perf_sample_data	sample;
4955 	struct task_struct *task = task_event->task;
4956 	int ret, size = task_event->event_id.header.size;
4957 
4958 	if (!perf_event_task_match(event))
4959 		return;
4960 
4961 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
4962 
4963 	ret = perf_output_begin(&handle, event,
4964 				task_event->event_id.header.size);
4965 	if (ret)
4966 		goto out;
4967 
4968 	task_event->event_id.pid = perf_event_pid(event, task);
4969 	task_event->event_id.ppid = perf_event_pid(event, current);
4970 
4971 	task_event->event_id.tid = perf_event_tid(event, task);
4972 	task_event->event_id.ptid = perf_event_tid(event, current);
4973 
4974 	perf_output_put(&handle, task_event->event_id);
4975 
4976 	perf_event__output_id_sample(event, &handle, &sample);
4977 
4978 	perf_output_end(&handle);
4979 out:
4980 	task_event->event_id.header.size = size;
4981 }
4982 
4983 static void perf_event_task(struct task_struct *task,
4984 			      struct perf_event_context *task_ctx,
4985 			      int new)
4986 {
4987 	struct perf_task_event task_event;
4988 
4989 	if (!atomic_read(&nr_comm_events) &&
4990 	    !atomic_read(&nr_mmap_events) &&
4991 	    !atomic_read(&nr_task_events))
4992 		return;
4993 
4994 	task_event = (struct perf_task_event){
4995 		.task	  = task,
4996 		.task_ctx = task_ctx,
4997 		.event_id    = {
4998 			.header = {
4999 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5000 				.misc = 0,
5001 				.size = sizeof(task_event.event_id),
5002 			},
5003 			/* .pid  */
5004 			/* .ppid */
5005 			/* .tid  */
5006 			/* .ptid */
5007 			.time = perf_clock(),
5008 		},
5009 	};
5010 
5011 	perf_event_aux(perf_event_task_output,
5012 		       &task_event,
5013 		       task_ctx);
5014 }
5015 
5016 void perf_event_fork(struct task_struct *task)
5017 {
5018 	perf_event_task(task, NULL, 1);
5019 }
5020 
5021 /*
5022  * comm tracking
5023  */
5024 
5025 struct perf_comm_event {
5026 	struct task_struct	*task;
5027 	char			*comm;
5028 	int			comm_size;
5029 
5030 	struct {
5031 		struct perf_event_header	header;
5032 
5033 		u32				pid;
5034 		u32				tid;
5035 	} event_id;
5036 };
5037 
5038 static int perf_event_comm_match(struct perf_event *event)
5039 {
5040 	return event->attr.comm;
5041 }
5042 
5043 static void perf_event_comm_output(struct perf_event *event,
5044 				   void *data)
5045 {
5046 	struct perf_comm_event *comm_event = data;
5047 	struct perf_output_handle handle;
5048 	struct perf_sample_data sample;
5049 	int size = comm_event->event_id.header.size;
5050 	int ret;
5051 
5052 	if (!perf_event_comm_match(event))
5053 		return;
5054 
5055 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5056 	ret = perf_output_begin(&handle, event,
5057 				comm_event->event_id.header.size);
5058 
5059 	if (ret)
5060 		goto out;
5061 
5062 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5063 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5064 
5065 	perf_output_put(&handle, comm_event->event_id);
5066 	__output_copy(&handle, comm_event->comm,
5067 				   comm_event->comm_size);
5068 
5069 	perf_event__output_id_sample(event, &handle, &sample);
5070 
5071 	perf_output_end(&handle);
5072 out:
5073 	comm_event->event_id.header.size = size;
5074 }
5075 
5076 static void perf_event_comm_event(struct perf_comm_event *comm_event)
5077 {
5078 	char comm[TASK_COMM_LEN];
5079 	unsigned int size;
5080 
5081 	memset(comm, 0, sizeof(comm));
5082 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
5083 	size = ALIGN(strlen(comm)+1, sizeof(u64));
5084 
5085 	comm_event->comm = comm;
5086 	comm_event->comm_size = size;
5087 
5088 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
5089 
5090 	perf_event_aux(perf_event_comm_output,
5091 		       comm_event,
5092 		       NULL);
5093 }
5094 
5095 void perf_event_comm(struct task_struct *task, bool exec)
5096 {
5097 	struct perf_comm_event comm_event;
5098 
5099 	if (!atomic_read(&nr_comm_events))
5100 		return;
5101 
5102 	comm_event = (struct perf_comm_event){
5103 		.task	= task,
5104 		/* .comm      */
5105 		/* .comm_size */
5106 		.event_id  = {
5107 			.header = {
5108 				.type = PERF_RECORD_COMM,
5109 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5110 				/* .size */
5111 			},
5112 			/* .pid */
5113 			/* .tid */
5114 		},
5115 	};
5116 
5117 	perf_event_comm_event(&comm_event);
5118 }
5119 
5120 /*
5121  * mmap tracking
5122  */
5123 
5124 struct perf_mmap_event {
5125 	struct vm_area_struct	*vma;
5126 
5127 	const char		*file_name;
5128 	int			file_size;
5129 	int			maj, min;
5130 	u64			ino;
5131 	u64			ino_generation;
5132 	u32			prot, flags;
5133 
5134 	struct {
5135 		struct perf_event_header	header;
5136 
5137 		u32				pid;
5138 		u32				tid;
5139 		u64				start;
5140 		u64				len;
5141 		u64				pgoff;
5142 	} event_id;
5143 };
5144 
5145 static int perf_event_mmap_match(struct perf_event *event,
5146 				 void *data)
5147 {
5148 	struct perf_mmap_event *mmap_event = data;
5149 	struct vm_area_struct *vma = mmap_event->vma;
5150 	int executable = vma->vm_flags & VM_EXEC;
5151 
5152 	return (!executable && event->attr.mmap_data) ||
5153 	       (executable && (event->attr.mmap || event->attr.mmap2));
5154 }
5155 
5156 static void perf_event_mmap_output(struct perf_event *event,
5157 				   void *data)
5158 {
5159 	struct perf_mmap_event *mmap_event = data;
5160 	struct perf_output_handle handle;
5161 	struct perf_sample_data sample;
5162 	int size = mmap_event->event_id.header.size;
5163 	int ret;
5164 
5165 	if (!perf_event_mmap_match(event, data))
5166 		return;
5167 
5168 	if (event->attr.mmap2) {
5169 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5170 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5171 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
5172 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5173 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5174 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
5175 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
5176 	}
5177 
5178 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5179 	ret = perf_output_begin(&handle, event,
5180 				mmap_event->event_id.header.size);
5181 	if (ret)
5182 		goto out;
5183 
5184 	mmap_event->event_id.pid = perf_event_pid(event, current);
5185 	mmap_event->event_id.tid = perf_event_tid(event, current);
5186 
5187 	perf_output_put(&handle, mmap_event->event_id);
5188 
5189 	if (event->attr.mmap2) {
5190 		perf_output_put(&handle, mmap_event->maj);
5191 		perf_output_put(&handle, mmap_event->min);
5192 		perf_output_put(&handle, mmap_event->ino);
5193 		perf_output_put(&handle, mmap_event->ino_generation);
5194 		perf_output_put(&handle, mmap_event->prot);
5195 		perf_output_put(&handle, mmap_event->flags);
5196 	}
5197 
5198 	__output_copy(&handle, mmap_event->file_name,
5199 				   mmap_event->file_size);
5200 
5201 	perf_event__output_id_sample(event, &handle, &sample);
5202 
5203 	perf_output_end(&handle);
5204 out:
5205 	mmap_event->event_id.header.size = size;
5206 }
5207 
5208 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5209 {
5210 	struct vm_area_struct *vma = mmap_event->vma;
5211 	struct file *file = vma->vm_file;
5212 	int maj = 0, min = 0;
5213 	u64 ino = 0, gen = 0;
5214 	u32 prot = 0, flags = 0;
5215 	unsigned int size;
5216 	char tmp[16];
5217 	char *buf = NULL;
5218 	char *name;
5219 
5220 	if (file) {
5221 		struct inode *inode;
5222 		dev_t dev;
5223 
5224 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
5225 		if (!buf) {
5226 			name = "//enomem";
5227 			goto cpy_name;
5228 		}
5229 		/*
5230 		 * d_path() works from the end of the rb backwards, so we
5231 		 * need to add enough zero bytes after the string to handle
5232 		 * the 64bit alignment we do later.
5233 		 */
5234 		name = d_path(&file->f_path, buf, PATH_MAX - sizeof(u64));
5235 		if (IS_ERR(name)) {
5236 			name = "//toolong";
5237 			goto cpy_name;
5238 		}
5239 		inode = file_inode(vma->vm_file);
5240 		dev = inode->i_sb->s_dev;
5241 		ino = inode->i_ino;
5242 		gen = inode->i_generation;
5243 		maj = MAJOR(dev);
5244 		min = MINOR(dev);
5245 
5246 		if (vma->vm_flags & VM_READ)
5247 			prot |= PROT_READ;
5248 		if (vma->vm_flags & VM_WRITE)
5249 			prot |= PROT_WRITE;
5250 		if (vma->vm_flags & VM_EXEC)
5251 			prot |= PROT_EXEC;
5252 
5253 		if (vma->vm_flags & VM_MAYSHARE)
5254 			flags = MAP_SHARED;
5255 		else
5256 			flags = MAP_PRIVATE;
5257 
5258 		if (vma->vm_flags & VM_DENYWRITE)
5259 			flags |= MAP_DENYWRITE;
5260 		if (vma->vm_flags & VM_MAYEXEC)
5261 			flags |= MAP_EXECUTABLE;
5262 		if (vma->vm_flags & VM_LOCKED)
5263 			flags |= MAP_LOCKED;
5264 		if (vma->vm_flags & VM_HUGETLB)
5265 			flags |= MAP_HUGETLB;
5266 
5267 		goto got_name;
5268 	} else {
5269 		name = (char *)arch_vma_name(vma);
5270 		if (name)
5271 			goto cpy_name;
5272 
5273 		if (vma->vm_start <= vma->vm_mm->start_brk &&
5274 				vma->vm_end >= vma->vm_mm->brk) {
5275 			name = "[heap]";
5276 			goto cpy_name;
5277 		}
5278 		if (vma->vm_start <= vma->vm_mm->start_stack &&
5279 				vma->vm_end >= vma->vm_mm->start_stack) {
5280 			name = "[stack]";
5281 			goto cpy_name;
5282 		}
5283 
5284 		name = "//anon";
5285 		goto cpy_name;
5286 	}
5287 
5288 cpy_name:
5289 	strlcpy(tmp, name, sizeof(tmp));
5290 	name = tmp;
5291 got_name:
5292 	/*
5293 	 * Since our buffer works in 8 byte units we need to align our string
5294 	 * size to a multiple of 8. However, we must guarantee the tail end is
5295 	 * zero'd out to avoid leaking random bits to userspace.
5296 	 */
5297 	size = strlen(name)+1;
5298 	while (!IS_ALIGNED(size, sizeof(u64)))
5299 		name[size++] = '\0';
5300 
5301 	mmap_event->file_name = name;
5302 	mmap_event->file_size = size;
5303 	mmap_event->maj = maj;
5304 	mmap_event->min = min;
5305 	mmap_event->ino = ino;
5306 	mmap_event->ino_generation = gen;
5307 	mmap_event->prot = prot;
5308 	mmap_event->flags = flags;
5309 
5310 	if (!(vma->vm_flags & VM_EXEC))
5311 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
5312 
5313 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
5314 
5315 	perf_event_aux(perf_event_mmap_output,
5316 		       mmap_event,
5317 		       NULL);
5318 
5319 	kfree(buf);
5320 }
5321 
5322 void perf_event_mmap(struct vm_area_struct *vma)
5323 {
5324 	struct perf_mmap_event mmap_event;
5325 
5326 	if (!atomic_read(&nr_mmap_events))
5327 		return;
5328 
5329 	mmap_event = (struct perf_mmap_event){
5330 		.vma	= vma,
5331 		/* .file_name */
5332 		/* .file_size */
5333 		.event_id  = {
5334 			.header = {
5335 				.type = PERF_RECORD_MMAP,
5336 				.misc = PERF_RECORD_MISC_USER,
5337 				/* .size */
5338 			},
5339 			/* .pid */
5340 			/* .tid */
5341 			.start  = vma->vm_start,
5342 			.len    = vma->vm_end - vma->vm_start,
5343 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
5344 		},
5345 		/* .maj (attr_mmap2 only) */
5346 		/* .min (attr_mmap2 only) */
5347 		/* .ino (attr_mmap2 only) */
5348 		/* .ino_generation (attr_mmap2 only) */
5349 		/* .prot (attr_mmap2 only) */
5350 		/* .flags (attr_mmap2 only) */
5351 	};
5352 
5353 	perf_event_mmap_event(&mmap_event);
5354 }
5355 
5356 /*
5357  * IRQ throttle logging
5358  */
5359 
5360 static void perf_log_throttle(struct perf_event *event, int enable)
5361 {
5362 	struct perf_output_handle handle;
5363 	struct perf_sample_data sample;
5364 	int ret;
5365 
5366 	struct {
5367 		struct perf_event_header	header;
5368 		u64				time;
5369 		u64				id;
5370 		u64				stream_id;
5371 	} throttle_event = {
5372 		.header = {
5373 			.type = PERF_RECORD_THROTTLE,
5374 			.misc = 0,
5375 			.size = sizeof(throttle_event),
5376 		},
5377 		.time		= perf_clock(),
5378 		.id		= primary_event_id(event),
5379 		.stream_id	= event->id,
5380 	};
5381 
5382 	if (enable)
5383 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
5384 
5385 	perf_event_header__init_id(&throttle_event.header, &sample, event);
5386 
5387 	ret = perf_output_begin(&handle, event,
5388 				throttle_event.header.size);
5389 	if (ret)
5390 		return;
5391 
5392 	perf_output_put(&handle, throttle_event);
5393 	perf_event__output_id_sample(event, &handle, &sample);
5394 	perf_output_end(&handle);
5395 }
5396 
5397 /*
5398  * Generic event overflow handling, sampling.
5399  */
5400 
5401 static int __perf_event_overflow(struct perf_event *event,
5402 				   int throttle, struct perf_sample_data *data,
5403 				   struct pt_regs *regs)
5404 {
5405 	int events = atomic_read(&event->event_limit);
5406 	struct hw_perf_event *hwc = &event->hw;
5407 	u64 seq;
5408 	int ret = 0;
5409 
5410 	/*
5411 	 * Non-sampling counters might still use the PMI to fold short
5412 	 * hardware counters, ignore those.
5413 	 */
5414 	if (unlikely(!is_sampling_event(event)))
5415 		return 0;
5416 
5417 	seq = __this_cpu_read(perf_throttled_seq);
5418 	if (seq != hwc->interrupts_seq) {
5419 		hwc->interrupts_seq = seq;
5420 		hwc->interrupts = 1;
5421 	} else {
5422 		hwc->interrupts++;
5423 		if (unlikely(throttle
5424 			     && hwc->interrupts >= max_samples_per_tick)) {
5425 			__this_cpu_inc(perf_throttled_count);
5426 			hwc->interrupts = MAX_INTERRUPTS;
5427 			perf_log_throttle(event, 0);
5428 			tick_nohz_full_kick();
5429 			ret = 1;
5430 		}
5431 	}
5432 
5433 	if (event->attr.freq) {
5434 		u64 now = perf_clock();
5435 		s64 delta = now - hwc->freq_time_stamp;
5436 
5437 		hwc->freq_time_stamp = now;
5438 
5439 		if (delta > 0 && delta < 2*TICK_NSEC)
5440 			perf_adjust_period(event, delta, hwc->last_period, true);
5441 	}
5442 
5443 	/*
5444 	 * XXX event_limit might not quite work as expected on inherited
5445 	 * events
5446 	 */
5447 
5448 	event->pending_kill = POLL_IN;
5449 	if (events && atomic_dec_and_test(&event->event_limit)) {
5450 		ret = 1;
5451 		event->pending_kill = POLL_HUP;
5452 		event->pending_disable = 1;
5453 		irq_work_queue(&event->pending);
5454 	}
5455 
5456 	if (event->overflow_handler)
5457 		event->overflow_handler(event, data, regs);
5458 	else
5459 		perf_event_output(event, data, regs);
5460 
5461 	if (event->fasync && event->pending_kill) {
5462 		event->pending_wakeup = 1;
5463 		irq_work_queue(&event->pending);
5464 	}
5465 
5466 	return ret;
5467 }
5468 
5469 int perf_event_overflow(struct perf_event *event,
5470 			  struct perf_sample_data *data,
5471 			  struct pt_regs *regs)
5472 {
5473 	return __perf_event_overflow(event, 1, data, regs);
5474 }
5475 
5476 /*
5477  * Generic software event infrastructure
5478  */
5479 
5480 struct swevent_htable {
5481 	struct swevent_hlist		*swevent_hlist;
5482 	struct mutex			hlist_mutex;
5483 	int				hlist_refcount;
5484 
5485 	/* Recursion avoidance in each contexts */
5486 	int				recursion[PERF_NR_CONTEXTS];
5487 
5488 	/* Keeps track of cpu being initialized/exited */
5489 	bool				online;
5490 };
5491 
5492 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
5493 
5494 /*
5495  * We directly increment event->count and keep a second value in
5496  * event->hw.period_left to count intervals. This period event
5497  * is kept in the range [-sample_period, 0] so that we can use the
5498  * sign as trigger.
5499  */
5500 
5501 u64 perf_swevent_set_period(struct perf_event *event)
5502 {
5503 	struct hw_perf_event *hwc = &event->hw;
5504 	u64 period = hwc->last_period;
5505 	u64 nr, offset;
5506 	s64 old, val;
5507 
5508 	hwc->last_period = hwc->sample_period;
5509 
5510 again:
5511 	old = val = local64_read(&hwc->period_left);
5512 	if (val < 0)
5513 		return 0;
5514 
5515 	nr = div64_u64(period + val, period);
5516 	offset = nr * period;
5517 	val -= offset;
5518 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
5519 		goto again;
5520 
5521 	return nr;
5522 }
5523 
5524 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
5525 				    struct perf_sample_data *data,
5526 				    struct pt_regs *regs)
5527 {
5528 	struct hw_perf_event *hwc = &event->hw;
5529 	int throttle = 0;
5530 
5531 	if (!overflow)
5532 		overflow = perf_swevent_set_period(event);
5533 
5534 	if (hwc->interrupts == MAX_INTERRUPTS)
5535 		return;
5536 
5537 	for (; overflow; overflow--) {
5538 		if (__perf_event_overflow(event, throttle,
5539 					    data, regs)) {
5540 			/*
5541 			 * We inhibit the overflow from happening when
5542 			 * hwc->interrupts == MAX_INTERRUPTS.
5543 			 */
5544 			break;
5545 		}
5546 		throttle = 1;
5547 	}
5548 }
5549 
5550 static void perf_swevent_event(struct perf_event *event, u64 nr,
5551 			       struct perf_sample_data *data,
5552 			       struct pt_regs *regs)
5553 {
5554 	struct hw_perf_event *hwc = &event->hw;
5555 
5556 	local64_add(nr, &event->count);
5557 
5558 	if (!regs)
5559 		return;
5560 
5561 	if (!is_sampling_event(event))
5562 		return;
5563 
5564 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
5565 		data->period = nr;
5566 		return perf_swevent_overflow(event, 1, data, regs);
5567 	} else
5568 		data->period = event->hw.last_period;
5569 
5570 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
5571 		return perf_swevent_overflow(event, 1, data, regs);
5572 
5573 	if (local64_add_negative(nr, &hwc->period_left))
5574 		return;
5575 
5576 	perf_swevent_overflow(event, 0, data, regs);
5577 }
5578 
5579 static int perf_exclude_event(struct perf_event *event,
5580 			      struct pt_regs *regs)
5581 {
5582 	if (event->hw.state & PERF_HES_STOPPED)
5583 		return 1;
5584 
5585 	if (regs) {
5586 		if (event->attr.exclude_user && user_mode(regs))
5587 			return 1;
5588 
5589 		if (event->attr.exclude_kernel && !user_mode(regs))
5590 			return 1;
5591 	}
5592 
5593 	return 0;
5594 }
5595 
5596 static int perf_swevent_match(struct perf_event *event,
5597 				enum perf_type_id type,
5598 				u32 event_id,
5599 				struct perf_sample_data *data,
5600 				struct pt_regs *regs)
5601 {
5602 	if (event->attr.type != type)
5603 		return 0;
5604 
5605 	if (event->attr.config != event_id)
5606 		return 0;
5607 
5608 	if (perf_exclude_event(event, regs))
5609 		return 0;
5610 
5611 	return 1;
5612 }
5613 
5614 static inline u64 swevent_hash(u64 type, u32 event_id)
5615 {
5616 	u64 val = event_id | (type << 32);
5617 
5618 	return hash_64(val, SWEVENT_HLIST_BITS);
5619 }
5620 
5621 static inline struct hlist_head *
5622 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5623 {
5624 	u64 hash = swevent_hash(type, event_id);
5625 
5626 	return &hlist->heads[hash];
5627 }
5628 
5629 /* For the read side: events when they trigger */
5630 static inline struct hlist_head *
5631 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
5632 {
5633 	struct swevent_hlist *hlist;
5634 
5635 	hlist = rcu_dereference(swhash->swevent_hlist);
5636 	if (!hlist)
5637 		return NULL;
5638 
5639 	return __find_swevent_head(hlist, type, event_id);
5640 }
5641 
5642 /* For the event head insertion and removal in the hlist */
5643 static inline struct hlist_head *
5644 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
5645 {
5646 	struct swevent_hlist *hlist;
5647 	u32 event_id = event->attr.config;
5648 	u64 type = event->attr.type;
5649 
5650 	/*
5651 	 * Event scheduling is always serialized against hlist allocation
5652 	 * and release. Which makes the protected version suitable here.
5653 	 * The context lock guarantees that.
5654 	 */
5655 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
5656 					  lockdep_is_held(&event->ctx->lock));
5657 	if (!hlist)
5658 		return NULL;
5659 
5660 	return __find_swevent_head(hlist, type, event_id);
5661 }
5662 
5663 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
5664 				    u64 nr,
5665 				    struct perf_sample_data *data,
5666 				    struct pt_regs *regs)
5667 {
5668 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5669 	struct perf_event *event;
5670 	struct hlist_head *head;
5671 
5672 	rcu_read_lock();
5673 	head = find_swevent_head_rcu(swhash, type, event_id);
5674 	if (!head)
5675 		goto end;
5676 
5677 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
5678 		if (perf_swevent_match(event, type, event_id, data, regs))
5679 			perf_swevent_event(event, nr, data, regs);
5680 	}
5681 end:
5682 	rcu_read_unlock();
5683 }
5684 
5685 int perf_swevent_get_recursion_context(void)
5686 {
5687 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5688 
5689 	return get_recursion_context(swhash->recursion);
5690 }
5691 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
5692 
5693 inline void perf_swevent_put_recursion_context(int rctx)
5694 {
5695 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5696 
5697 	put_recursion_context(swhash->recursion, rctx);
5698 }
5699 
5700 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
5701 {
5702 	struct perf_sample_data data;
5703 	int rctx;
5704 
5705 	preempt_disable_notrace();
5706 	rctx = perf_swevent_get_recursion_context();
5707 	if (rctx < 0)
5708 		return;
5709 
5710 	perf_sample_data_init(&data, addr, 0);
5711 
5712 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
5713 
5714 	perf_swevent_put_recursion_context(rctx);
5715 	preempt_enable_notrace();
5716 }
5717 
5718 static void perf_swevent_read(struct perf_event *event)
5719 {
5720 }
5721 
5722 static int perf_swevent_add(struct perf_event *event, int flags)
5723 {
5724 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5725 	struct hw_perf_event *hwc = &event->hw;
5726 	struct hlist_head *head;
5727 
5728 	if (is_sampling_event(event)) {
5729 		hwc->last_period = hwc->sample_period;
5730 		perf_swevent_set_period(event);
5731 	}
5732 
5733 	hwc->state = !(flags & PERF_EF_START);
5734 
5735 	head = find_swevent_head(swhash, event);
5736 	if (!head) {
5737 		/*
5738 		 * We can race with cpu hotplug code. Do not
5739 		 * WARN if the cpu just got unplugged.
5740 		 */
5741 		WARN_ON_ONCE(swhash->online);
5742 		return -EINVAL;
5743 	}
5744 
5745 	hlist_add_head_rcu(&event->hlist_entry, head);
5746 
5747 	return 0;
5748 }
5749 
5750 static void perf_swevent_del(struct perf_event *event, int flags)
5751 {
5752 	hlist_del_rcu(&event->hlist_entry);
5753 }
5754 
5755 static void perf_swevent_start(struct perf_event *event, int flags)
5756 {
5757 	event->hw.state = 0;
5758 }
5759 
5760 static void perf_swevent_stop(struct perf_event *event, int flags)
5761 {
5762 	event->hw.state = PERF_HES_STOPPED;
5763 }
5764 
5765 /* Deref the hlist from the update side */
5766 static inline struct swevent_hlist *
5767 swevent_hlist_deref(struct swevent_htable *swhash)
5768 {
5769 	return rcu_dereference_protected(swhash->swevent_hlist,
5770 					 lockdep_is_held(&swhash->hlist_mutex));
5771 }
5772 
5773 static void swevent_hlist_release(struct swevent_htable *swhash)
5774 {
5775 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5776 
5777 	if (!hlist)
5778 		return;
5779 
5780 	rcu_assign_pointer(swhash->swevent_hlist, NULL);
5781 	kfree_rcu(hlist, rcu_head);
5782 }
5783 
5784 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
5785 {
5786 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5787 
5788 	mutex_lock(&swhash->hlist_mutex);
5789 
5790 	if (!--swhash->hlist_refcount)
5791 		swevent_hlist_release(swhash);
5792 
5793 	mutex_unlock(&swhash->hlist_mutex);
5794 }
5795 
5796 static void swevent_hlist_put(struct perf_event *event)
5797 {
5798 	int cpu;
5799 
5800 	for_each_possible_cpu(cpu)
5801 		swevent_hlist_put_cpu(event, cpu);
5802 }
5803 
5804 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
5805 {
5806 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5807 	int err = 0;
5808 
5809 	mutex_lock(&swhash->hlist_mutex);
5810 
5811 	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5812 		struct swevent_hlist *hlist;
5813 
5814 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5815 		if (!hlist) {
5816 			err = -ENOMEM;
5817 			goto exit;
5818 		}
5819 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
5820 	}
5821 	swhash->hlist_refcount++;
5822 exit:
5823 	mutex_unlock(&swhash->hlist_mutex);
5824 
5825 	return err;
5826 }
5827 
5828 static int swevent_hlist_get(struct perf_event *event)
5829 {
5830 	int err;
5831 	int cpu, failed_cpu;
5832 
5833 	get_online_cpus();
5834 	for_each_possible_cpu(cpu) {
5835 		err = swevent_hlist_get_cpu(event, cpu);
5836 		if (err) {
5837 			failed_cpu = cpu;
5838 			goto fail;
5839 		}
5840 	}
5841 	put_online_cpus();
5842 
5843 	return 0;
5844 fail:
5845 	for_each_possible_cpu(cpu) {
5846 		if (cpu == failed_cpu)
5847 			break;
5848 		swevent_hlist_put_cpu(event, cpu);
5849 	}
5850 
5851 	put_online_cpus();
5852 	return err;
5853 }
5854 
5855 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5856 
5857 static void sw_perf_event_destroy(struct perf_event *event)
5858 {
5859 	u64 event_id = event->attr.config;
5860 
5861 	WARN_ON(event->parent);
5862 
5863 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
5864 	swevent_hlist_put(event);
5865 }
5866 
5867 static int perf_swevent_init(struct perf_event *event)
5868 {
5869 	u64 event_id = event->attr.config;
5870 
5871 	if (event->attr.type != PERF_TYPE_SOFTWARE)
5872 		return -ENOENT;
5873 
5874 	/*
5875 	 * no branch sampling for software events
5876 	 */
5877 	if (has_branch_stack(event))
5878 		return -EOPNOTSUPP;
5879 
5880 	switch (event_id) {
5881 	case PERF_COUNT_SW_CPU_CLOCK:
5882 	case PERF_COUNT_SW_TASK_CLOCK:
5883 		return -ENOENT;
5884 
5885 	default:
5886 		break;
5887 	}
5888 
5889 	if (event_id >= PERF_COUNT_SW_MAX)
5890 		return -ENOENT;
5891 
5892 	if (!event->parent) {
5893 		int err;
5894 
5895 		err = swevent_hlist_get(event);
5896 		if (err)
5897 			return err;
5898 
5899 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
5900 		event->destroy = sw_perf_event_destroy;
5901 	}
5902 
5903 	return 0;
5904 }
5905 
5906 static int perf_swevent_event_idx(struct perf_event *event)
5907 {
5908 	return 0;
5909 }
5910 
5911 static struct pmu perf_swevent = {
5912 	.task_ctx_nr	= perf_sw_context,
5913 
5914 	.event_init	= perf_swevent_init,
5915 	.add		= perf_swevent_add,
5916 	.del		= perf_swevent_del,
5917 	.start		= perf_swevent_start,
5918 	.stop		= perf_swevent_stop,
5919 	.read		= perf_swevent_read,
5920 
5921 	.event_idx	= perf_swevent_event_idx,
5922 };
5923 
5924 #ifdef CONFIG_EVENT_TRACING
5925 
5926 static int perf_tp_filter_match(struct perf_event *event,
5927 				struct perf_sample_data *data)
5928 {
5929 	void *record = data->raw->data;
5930 
5931 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
5932 		return 1;
5933 	return 0;
5934 }
5935 
5936 static int perf_tp_event_match(struct perf_event *event,
5937 				struct perf_sample_data *data,
5938 				struct pt_regs *regs)
5939 {
5940 	if (event->hw.state & PERF_HES_STOPPED)
5941 		return 0;
5942 	/*
5943 	 * All tracepoints are from kernel-space.
5944 	 */
5945 	if (event->attr.exclude_kernel)
5946 		return 0;
5947 
5948 	if (!perf_tp_filter_match(event, data))
5949 		return 0;
5950 
5951 	return 1;
5952 }
5953 
5954 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5955 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
5956 		   struct task_struct *task)
5957 {
5958 	struct perf_sample_data data;
5959 	struct perf_event *event;
5960 
5961 	struct perf_raw_record raw = {
5962 		.size = entry_size,
5963 		.data = record,
5964 	};
5965 
5966 	perf_sample_data_init(&data, addr, 0);
5967 	data.raw = &raw;
5968 
5969 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
5970 		if (perf_tp_event_match(event, &data, regs))
5971 			perf_swevent_event(event, count, &data, regs);
5972 	}
5973 
5974 	/*
5975 	 * If we got specified a target task, also iterate its context and
5976 	 * deliver this event there too.
5977 	 */
5978 	if (task && task != current) {
5979 		struct perf_event_context *ctx;
5980 		struct trace_entry *entry = record;
5981 
5982 		rcu_read_lock();
5983 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
5984 		if (!ctx)
5985 			goto unlock;
5986 
5987 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5988 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
5989 				continue;
5990 			if (event->attr.config != entry->type)
5991 				continue;
5992 			if (perf_tp_event_match(event, &data, regs))
5993 				perf_swevent_event(event, count, &data, regs);
5994 		}
5995 unlock:
5996 		rcu_read_unlock();
5997 	}
5998 
5999 	perf_swevent_put_recursion_context(rctx);
6000 }
6001 EXPORT_SYMBOL_GPL(perf_tp_event);
6002 
6003 static void tp_perf_event_destroy(struct perf_event *event)
6004 {
6005 	perf_trace_destroy(event);
6006 }
6007 
6008 static int perf_tp_event_init(struct perf_event *event)
6009 {
6010 	int err;
6011 
6012 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
6013 		return -ENOENT;
6014 
6015 	/*
6016 	 * no branch sampling for tracepoint events
6017 	 */
6018 	if (has_branch_stack(event))
6019 		return -EOPNOTSUPP;
6020 
6021 	err = perf_trace_init(event);
6022 	if (err)
6023 		return err;
6024 
6025 	event->destroy = tp_perf_event_destroy;
6026 
6027 	return 0;
6028 }
6029 
6030 static struct pmu perf_tracepoint = {
6031 	.task_ctx_nr	= perf_sw_context,
6032 
6033 	.event_init	= perf_tp_event_init,
6034 	.add		= perf_trace_add,
6035 	.del		= perf_trace_del,
6036 	.start		= perf_swevent_start,
6037 	.stop		= perf_swevent_stop,
6038 	.read		= perf_swevent_read,
6039 
6040 	.event_idx	= perf_swevent_event_idx,
6041 };
6042 
6043 static inline void perf_tp_register(void)
6044 {
6045 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
6046 }
6047 
6048 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6049 {
6050 	char *filter_str;
6051 	int ret;
6052 
6053 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
6054 		return -EINVAL;
6055 
6056 	filter_str = strndup_user(arg, PAGE_SIZE);
6057 	if (IS_ERR(filter_str))
6058 		return PTR_ERR(filter_str);
6059 
6060 	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
6061 
6062 	kfree(filter_str);
6063 	return ret;
6064 }
6065 
6066 static void perf_event_free_filter(struct perf_event *event)
6067 {
6068 	ftrace_profile_free_filter(event);
6069 }
6070 
6071 #else
6072 
6073 static inline void perf_tp_register(void)
6074 {
6075 }
6076 
6077 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6078 {
6079 	return -ENOENT;
6080 }
6081 
6082 static void perf_event_free_filter(struct perf_event *event)
6083 {
6084 }
6085 
6086 #endif /* CONFIG_EVENT_TRACING */
6087 
6088 #ifdef CONFIG_HAVE_HW_BREAKPOINT
6089 void perf_bp_event(struct perf_event *bp, void *data)
6090 {
6091 	struct perf_sample_data sample;
6092 	struct pt_regs *regs = data;
6093 
6094 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
6095 
6096 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
6097 		perf_swevent_event(bp, 1, &sample, regs);
6098 }
6099 #endif
6100 
6101 /*
6102  * hrtimer based swevent callback
6103  */
6104 
6105 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
6106 {
6107 	enum hrtimer_restart ret = HRTIMER_RESTART;
6108 	struct perf_sample_data data;
6109 	struct pt_regs *regs;
6110 	struct perf_event *event;
6111 	u64 period;
6112 
6113 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
6114 
6115 	if (event->state != PERF_EVENT_STATE_ACTIVE)
6116 		return HRTIMER_NORESTART;
6117 
6118 	event->pmu->read(event);
6119 
6120 	perf_sample_data_init(&data, 0, event->hw.last_period);
6121 	regs = get_irq_regs();
6122 
6123 	if (regs && !perf_exclude_event(event, regs)) {
6124 		if (!(event->attr.exclude_idle && is_idle_task(current)))
6125 			if (__perf_event_overflow(event, 1, &data, regs))
6126 				ret = HRTIMER_NORESTART;
6127 	}
6128 
6129 	period = max_t(u64, 10000, event->hw.sample_period);
6130 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
6131 
6132 	return ret;
6133 }
6134 
6135 static void perf_swevent_start_hrtimer(struct perf_event *event)
6136 {
6137 	struct hw_perf_event *hwc = &event->hw;
6138 	s64 period;
6139 
6140 	if (!is_sampling_event(event))
6141 		return;
6142 
6143 	period = local64_read(&hwc->period_left);
6144 	if (period) {
6145 		if (period < 0)
6146 			period = 10000;
6147 
6148 		local64_set(&hwc->period_left, 0);
6149 	} else {
6150 		period = max_t(u64, 10000, hwc->sample_period);
6151 	}
6152 	__hrtimer_start_range_ns(&hwc->hrtimer,
6153 				ns_to_ktime(period), 0,
6154 				HRTIMER_MODE_REL_PINNED, 0);
6155 }
6156 
6157 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
6158 {
6159 	struct hw_perf_event *hwc = &event->hw;
6160 
6161 	if (is_sampling_event(event)) {
6162 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
6163 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
6164 
6165 		hrtimer_cancel(&hwc->hrtimer);
6166 	}
6167 }
6168 
6169 static void perf_swevent_init_hrtimer(struct perf_event *event)
6170 {
6171 	struct hw_perf_event *hwc = &event->hw;
6172 
6173 	if (!is_sampling_event(event))
6174 		return;
6175 
6176 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6177 	hwc->hrtimer.function = perf_swevent_hrtimer;
6178 
6179 	/*
6180 	 * Since hrtimers have a fixed rate, we can do a static freq->period
6181 	 * mapping and avoid the whole period adjust feedback stuff.
6182 	 */
6183 	if (event->attr.freq) {
6184 		long freq = event->attr.sample_freq;
6185 
6186 		event->attr.sample_period = NSEC_PER_SEC / freq;
6187 		hwc->sample_period = event->attr.sample_period;
6188 		local64_set(&hwc->period_left, hwc->sample_period);
6189 		hwc->last_period = hwc->sample_period;
6190 		event->attr.freq = 0;
6191 	}
6192 }
6193 
6194 /*
6195  * Software event: cpu wall time clock
6196  */
6197 
6198 static void cpu_clock_event_update(struct perf_event *event)
6199 {
6200 	s64 prev;
6201 	u64 now;
6202 
6203 	now = local_clock();
6204 	prev = local64_xchg(&event->hw.prev_count, now);
6205 	local64_add(now - prev, &event->count);
6206 }
6207 
6208 static void cpu_clock_event_start(struct perf_event *event, int flags)
6209 {
6210 	local64_set(&event->hw.prev_count, local_clock());
6211 	perf_swevent_start_hrtimer(event);
6212 }
6213 
6214 static void cpu_clock_event_stop(struct perf_event *event, int flags)
6215 {
6216 	perf_swevent_cancel_hrtimer(event);
6217 	cpu_clock_event_update(event);
6218 }
6219 
6220 static int cpu_clock_event_add(struct perf_event *event, int flags)
6221 {
6222 	if (flags & PERF_EF_START)
6223 		cpu_clock_event_start(event, flags);
6224 
6225 	return 0;
6226 }
6227 
6228 static void cpu_clock_event_del(struct perf_event *event, int flags)
6229 {
6230 	cpu_clock_event_stop(event, flags);
6231 }
6232 
6233 static void cpu_clock_event_read(struct perf_event *event)
6234 {
6235 	cpu_clock_event_update(event);
6236 }
6237 
6238 static int cpu_clock_event_init(struct perf_event *event)
6239 {
6240 	if (event->attr.type != PERF_TYPE_SOFTWARE)
6241 		return -ENOENT;
6242 
6243 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
6244 		return -ENOENT;
6245 
6246 	/*
6247 	 * no branch sampling for software events
6248 	 */
6249 	if (has_branch_stack(event))
6250 		return -EOPNOTSUPP;
6251 
6252 	perf_swevent_init_hrtimer(event);
6253 
6254 	return 0;
6255 }
6256 
6257 static struct pmu perf_cpu_clock = {
6258 	.task_ctx_nr	= perf_sw_context,
6259 
6260 	.event_init	= cpu_clock_event_init,
6261 	.add		= cpu_clock_event_add,
6262 	.del		= cpu_clock_event_del,
6263 	.start		= cpu_clock_event_start,
6264 	.stop		= cpu_clock_event_stop,
6265 	.read		= cpu_clock_event_read,
6266 
6267 	.event_idx	= perf_swevent_event_idx,
6268 };
6269 
6270 /*
6271  * Software event: task time clock
6272  */
6273 
6274 static void task_clock_event_update(struct perf_event *event, u64 now)
6275 {
6276 	u64 prev;
6277 	s64 delta;
6278 
6279 	prev = local64_xchg(&event->hw.prev_count, now);
6280 	delta = now - prev;
6281 	local64_add(delta, &event->count);
6282 }
6283 
6284 static void task_clock_event_start(struct perf_event *event, int flags)
6285 {
6286 	local64_set(&event->hw.prev_count, event->ctx->time);
6287 	perf_swevent_start_hrtimer(event);
6288 }
6289 
6290 static void task_clock_event_stop(struct perf_event *event, int flags)
6291 {
6292 	perf_swevent_cancel_hrtimer(event);
6293 	task_clock_event_update(event, event->ctx->time);
6294 }
6295 
6296 static int task_clock_event_add(struct perf_event *event, int flags)
6297 {
6298 	if (flags & PERF_EF_START)
6299 		task_clock_event_start(event, flags);
6300 
6301 	return 0;
6302 }
6303 
6304 static void task_clock_event_del(struct perf_event *event, int flags)
6305 {
6306 	task_clock_event_stop(event, PERF_EF_UPDATE);
6307 }
6308 
6309 static void task_clock_event_read(struct perf_event *event)
6310 {
6311 	u64 now = perf_clock();
6312 	u64 delta = now - event->ctx->timestamp;
6313 	u64 time = event->ctx->time + delta;
6314 
6315 	task_clock_event_update(event, time);
6316 }
6317 
6318 static int task_clock_event_init(struct perf_event *event)
6319 {
6320 	if (event->attr.type != PERF_TYPE_SOFTWARE)
6321 		return -ENOENT;
6322 
6323 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
6324 		return -ENOENT;
6325 
6326 	/*
6327 	 * no branch sampling for software events
6328 	 */
6329 	if (has_branch_stack(event))
6330 		return -EOPNOTSUPP;
6331 
6332 	perf_swevent_init_hrtimer(event);
6333 
6334 	return 0;
6335 }
6336 
6337 static struct pmu perf_task_clock = {
6338 	.task_ctx_nr	= perf_sw_context,
6339 
6340 	.event_init	= task_clock_event_init,
6341 	.add		= task_clock_event_add,
6342 	.del		= task_clock_event_del,
6343 	.start		= task_clock_event_start,
6344 	.stop		= task_clock_event_stop,
6345 	.read		= task_clock_event_read,
6346 
6347 	.event_idx	= perf_swevent_event_idx,
6348 };
6349 
6350 static void perf_pmu_nop_void(struct pmu *pmu)
6351 {
6352 }
6353 
6354 static int perf_pmu_nop_int(struct pmu *pmu)
6355 {
6356 	return 0;
6357 }
6358 
6359 static void perf_pmu_start_txn(struct pmu *pmu)
6360 {
6361 	perf_pmu_disable(pmu);
6362 }
6363 
6364 static int perf_pmu_commit_txn(struct pmu *pmu)
6365 {
6366 	perf_pmu_enable(pmu);
6367 	return 0;
6368 }
6369 
6370 static void perf_pmu_cancel_txn(struct pmu *pmu)
6371 {
6372 	perf_pmu_enable(pmu);
6373 }
6374 
6375 static int perf_event_idx_default(struct perf_event *event)
6376 {
6377 	return event->hw.idx + 1;
6378 }
6379 
6380 /*
6381  * Ensures all contexts with the same task_ctx_nr have the same
6382  * pmu_cpu_context too.
6383  */
6384 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
6385 {
6386 	struct pmu *pmu;
6387 
6388 	if (ctxn < 0)
6389 		return NULL;
6390 
6391 	list_for_each_entry(pmu, &pmus, entry) {
6392 		if (pmu->task_ctx_nr == ctxn)
6393 			return pmu->pmu_cpu_context;
6394 	}
6395 
6396 	return NULL;
6397 }
6398 
6399 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
6400 {
6401 	int cpu;
6402 
6403 	for_each_possible_cpu(cpu) {
6404 		struct perf_cpu_context *cpuctx;
6405 
6406 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6407 
6408 		if (cpuctx->unique_pmu == old_pmu)
6409 			cpuctx->unique_pmu = pmu;
6410 	}
6411 }
6412 
6413 static void free_pmu_context(struct pmu *pmu)
6414 {
6415 	struct pmu *i;
6416 
6417 	mutex_lock(&pmus_lock);
6418 	/*
6419 	 * Like a real lame refcount.
6420 	 */
6421 	list_for_each_entry(i, &pmus, entry) {
6422 		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
6423 			update_pmu_context(i, pmu);
6424 			goto out;
6425 		}
6426 	}
6427 
6428 	free_percpu(pmu->pmu_cpu_context);
6429 out:
6430 	mutex_unlock(&pmus_lock);
6431 }
6432 static struct idr pmu_idr;
6433 
6434 static ssize_t
6435 type_show(struct device *dev, struct device_attribute *attr, char *page)
6436 {
6437 	struct pmu *pmu = dev_get_drvdata(dev);
6438 
6439 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
6440 }
6441 static DEVICE_ATTR_RO(type);
6442 
6443 static ssize_t
6444 perf_event_mux_interval_ms_show(struct device *dev,
6445 				struct device_attribute *attr,
6446 				char *page)
6447 {
6448 	struct pmu *pmu = dev_get_drvdata(dev);
6449 
6450 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
6451 }
6452 
6453 static ssize_t
6454 perf_event_mux_interval_ms_store(struct device *dev,
6455 				 struct device_attribute *attr,
6456 				 const char *buf, size_t count)
6457 {
6458 	struct pmu *pmu = dev_get_drvdata(dev);
6459 	int timer, cpu, ret;
6460 
6461 	ret = kstrtoint(buf, 0, &timer);
6462 	if (ret)
6463 		return ret;
6464 
6465 	if (timer < 1)
6466 		return -EINVAL;
6467 
6468 	/* same value, noting to do */
6469 	if (timer == pmu->hrtimer_interval_ms)
6470 		return count;
6471 
6472 	pmu->hrtimer_interval_ms = timer;
6473 
6474 	/* update all cpuctx for this PMU */
6475 	for_each_possible_cpu(cpu) {
6476 		struct perf_cpu_context *cpuctx;
6477 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6478 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
6479 
6480 		if (hrtimer_active(&cpuctx->hrtimer))
6481 			hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
6482 	}
6483 
6484 	return count;
6485 }
6486 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
6487 
6488 static struct attribute *pmu_dev_attrs[] = {
6489 	&dev_attr_type.attr,
6490 	&dev_attr_perf_event_mux_interval_ms.attr,
6491 	NULL,
6492 };
6493 ATTRIBUTE_GROUPS(pmu_dev);
6494 
6495 static int pmu_bus_running;
6496 static struct bus_type pmu_bus = {
6497 	.name		= "event_source",
6498 	.dev_groups	= pmu_dev_groups,
6499 };
6500 
6501 static void pmu_dev_release(struct device *dev)
6502 {
6503 	kfree(dev);
6504 }
6505 
6506 static int pmu_dev_alloc(struct pmu *pmu)
6507 {
6508 	int ret = -ENOMEM;
6509 
6510 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
6511 	if (!pmu->dev)
6512 		goto out;
6513 
6514 	pmu->dev->groups = pmu->attr_groups;
6515 	device_initialize(pmu->dev);
6516 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
6517 	if (ret)
6518 		goto free_dev;
6519 
6520 	dev_set_drvdata(pmu->dev, pmu);
6521 	pmu->dev->bus = &pmu_bus;
6522 	pmu->dev->release = pmu_dev_release;
6523 	ret = device_add(pmu->dev);
6524 	if (ret)
6525 		goto free_dev;
6526 
6527 out:
6528 	return ret;
6529 
6530 free_dev:
6531 	put_device(pmu->dev);
6532 	goto out;
6533 }
6534 
6535 static struct lock_class_key cpuctx_mutex;
6536 static struct lock_class_key cpuctx_lock;
6537 
6538 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
6539 {
6540 	int cpu, ret;
6541 
6542 	mutex_lock(&pmus_lock);
6543 	ret = -ENOMEM;
6544 	pmu->pmu_disable_count = alloc_percpu(int);
6545 	if (!pmu->pmu_disable_count)
6546 		goto unlock;
6547 
6548 	pmu->type = -1;
6549 	if (!name)
6550 		goto skip_type;
6551 	pmu->name = name;
6552 
6553 	if (type < 0) {
6554 		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
6555 		if (type < 0) {
6556 			ret = type;
6557 			goto free_pdc;
6558 		}
6559 	}
6560 	pmu->type = type;
6561 
6562 	if (pmu_bus_running) {
6563 		ret = pmu_dev_alloc(pmu);
6564 		if (ret)
6565 			goto free_idr;
6566 	}
6567 
6568 skip_type:
6569 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
6570 	if (pmu->pmu_cpu_context)
6571 		goto got_cpu_context;
6572 
6573 	ret = -ENOMEM;
6574 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
6575 	if (!pmu->pmu_cpu_context)
6576 		goto free_dev;
6577 
6578 	for_each_possible_cpu(cpu) {
6579 		struct perf_cpu_context *cpuctx;
6580 
6581 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6582 		__perf_event_init_context(&cpuctx->ctx);
6583 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
6584 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
6585 		cpuctx->ctx.type = cpu_context;
6586 		cpuctx->ctx.pmu = pmu;
6587 
6588 		__perf_cpu_hrtimer_init(cpuctx, cpu);
6589 
6590 		INIT_LIST_HEAD(&cpuctx->rotation_list);
6591 		cpuctx->unique_pmu = pmu;
6592 	}
6593 
6594 got_cpu_context:
6595 	if (!pmu->start_txn) {
6596 		if (pmu->pmu_enable) {
6597 			/*
6598 			 * If we have pmu_enable/pmu_disable calls, install
6599 			 * transaction stubs that use that to try and batch
6600 			 * hardware accesses.
6601 			 */
6602 			pmu->start_txn  = perf_pmu_start_txn;
6603 			pmu->commit_txn = perf_pmu_commit_txn;
6604 			pmu->cancel_txn = perf_pmu_cancel_txn;
6605 		} else {
6606 			pmu->start_txn  = perf_pmu_nop_void;
6607 			pmu->commit_txn = perf_pmu_nop_int;
6608 			pmu->cancel_txn = perf_pmu_nop_void;
6609 		}
6610 	}
6611 
6612 	if (!pmu->pmu_enable) {
6613 		pmu->pmu_enable  = perf_pmu_nop_void;
6614 		pmu->pmu_disable = perf_pmu_nop_void;
6615 	}
6616 
6617 	if (!pmu->event_idx)
6618 		pmu->event_idx = perf_event_idx_default;
6619 
6620 	list_add_rcu(&pmu->entry, &pmus);
6621 	ret = 0;
6622 unlock:
6623 	mutex_unlock(&pmus_lock);
6624 
6625 	return ret;
6626 
6627 free_dev:
6628 	device_del(pmu->dev);
6629 	put_device(pmu->dev);
6630 
6631 free_idr:
6632 	if (pmu->type >= PERF_TYPE_MAX)
6633 		idr_remove(&pmu_idr, pmu->type);
6634 
6635 free_pdc:
6636 	free_percpu(pmu->pmu_disable_count);
6637 	goto unlock;
6638 }
6639 EXPORT_SYMBOL_GPL(perf_pmu_register);
6640 
6641 void perf_pmu_unregister(struct pmu *pmu)
6642 {
6643 	mutex_lock(&pmus_lock);
6644 	list_del_rcu(&pmu->entry);
6645 	mutex_unlock(&pmus_lock);
6646 
6647 	/*
6648 	 * We dereference the pmu list under both SRCU and regular RCU, so
6649 	 * synchronize against both of those.
6650 	 */
6651 	synchronize_srcu(&pmus_srcu);
6652 	synchronize_rcu();
6653 
6654 	free_percpu(pmu->pmu_disable_count);
6655 	if (pmu->type >= PERF_TYPE_MAX)
6656 		idr_remove(&pmu_idr, pmu->type);
6657 	device_del(pmu->dev);
6658 	put_device(pmu->dev);
6659 	free_pmu_context(pmu);
6660 }
6661 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
6662 
6663 struct pmu *perf_init_event(struct perf_event *event)
6664 {
6665 	struct pmu *pmu = NULL;
6666 	int idx;
6667 	int ret;
6668 
6669 	idx = srcu_read_lock(&pmus_srcu);
6670 
6671 	rcu_read_lock();
6672 	pmu = idr_find(&pmu_idr, event->attr.type);
6673 	rcu_read_unlock();
6674 	if (pmu) {
6675 		if (!try_module_get(pmu->module)) {
6676 			pmu = ERR_PTR(-ENODEV);
6677 			goto unlock;
6678 		}
6679 		event->pmu = pmu;
6680 		ret = pmu->event_init(event);
6681 		if (ret)
6682 			pmu = ERR_PTR(ret);
6683 		goto unlock;
6684 	}
6685 
6686 	list_for_each_entry_rcu(pmu, &pmus, entry) {
6687 		if (!try_module_get(pmu->module)) {
6688 			pmu = ERR_PTR(-ENODEV);
6689 			goto unlock;
6690 		}
6691 		event->pmu = pmu;
6692 		ret = pmu->event_init(event);
6693 		if (!ret)
6694 			goto unlock;
6695 
6696 		if (ret != -ENOENT) {
6697 			pmu = ERR_PTR(ret);
6698 			goto unlock;
6699 		}
6700 	}
6701 	pmu = ERR_PTR(-ENOENT);
6702 unlock:
6703 	srcu_read_unlock(&pmus_srcu, idx);
6704 
6705 	return pmu;
6706 }
6707 
6708 static void account_event_cpu(struct perf_event *event, int cpu)
6709 {
6710 	if (event->parent)
6711 		return;
6712 
6713 	if (has_branch_stack(event)) {
6714 		if (!(event->attach_state & PERF_ATTACH_TASK))
6715 			atomic_inc(&per_cpu(perf_branch_stack_events, cpu));
6716 	}
6717 	if (is_cgroup_event(event))
6718 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
6719 }
6720 
6721 static void account_event(struct perf_event *event)
6722 {
6723 	if (event->parent)
6724 		return;
6725 
6726 	if (event->attach_state & PERF_ATTACH_TASK)
6727 		static_key_slow_inc(&perf_sched_events.key);
6728 	if (event->attr.mmap || event->attr.mmap_data)
6729 		atomic_inc(&nr_mmap_events);
6730 	if (event->attr.comm)
6731 		atomic_inc(&nr_comm_events);
6732 	if (event->attr.task)
6733 		atomic_inc(&nr_task_events);
6734 	if (event->attr.freq) {
6735 		if (atomic_inc_return(&nr_freq_events) == 1)
6736 			tick_nohz_full_kick_all();
6737 	}
6738 	if (has_branch_stack(event))
6739 		static_key_slow_inc(&perf_sched_events.key);
6740 	if (is_cgroup_event(event))
6741 		static_key_slow_inc(&perf_sched_events.key);
6742 
6743 	account_event_cpu(event, event->cpu);
6744 }
6745 
6746 /*
6747  * Allocate and initialize a event structure
6748  */
6749 static struct perf_event *
6750 perf_event_alloc(struct perf_event_attr *attr, int cpu,
6751 		 struct task_struct *task,
6752 		 struct perf_event *group_leader,
6753 		 struct perf_event *parent_event,
6754 		 perf_overflow_handler_t overflow_handler,
6755 		 void *context)
6756 {
6757 	struct pmu *pmu;
6758 	struct perf_event *event;
6759 	struct hw_perf_event *hwc;
6760 	long err = -EINVAL;
6761 
6762 	if ((unsigned)cpu >= nr_cpu_ids) {
6763 		if (!task || cpu != -1)
6764 			return ERR_PTR(-EINVAL);
6765 	}
6766 
6767 	event = kzalloc(sizeof(*event), GFP_KERNEL);
6768 	if (!event)
6769 		return ERR_PTR(-ENOMEM);
6770 
6771 	/*
6772 	 * Single events are their own group leaders, with an
6773 	 * empty sibling list:
6774 	 */
6775 	if (!group_leader)
6776 		group_leader = event;
6777 
6778 	mutex_init(&event->child_mutex);
6779 	INIT_LIST_HEAD(&event->child_list);
6780 
6781 	INIT_LIST_HEAD(&event->group_entry);
6782 	INIT_LIST_HEAD(&event->event_entry);
6783 	INIT_LIST_HEAD(&event->sibling_list);
6784 	INIT_LIST_HEAD(&event->rb_entry);
6785 	INIT_LIST_HEAD(&event->active_entry);
6786 	INIT_HLIST_NODE(&event->hlist_entry);
6787 
6788 
6789 	init_waitqueue_head(&event->waitq);
6790 	init_irq_work(&event->pending, perf_pending_event);
6791 
6792 	mutex_init(&event->mmap_mutex);
6793 
6794 	atomic_long_set(&event->refcount, 1);
6795 	event->cpu		= cpu;
6796 	event->attr		= *attr;
6797 	event->group_leader	= group_leader;
6798 	event->pmu		= NULL;
6799 	event->oncpu		= -1;
6800 
6801 	event->parent		= parent_event;
6802 
6803 	event->ns		= get_pid_ns(task_active_pid_ns(current));
6804 	event->id		= atomic64_inc_return(&perf_event_id);
6805 
6806 	event->state		= PERF_EVENT_STATE_INACTIVE;
6807 
6808 	if (task) {
6809 		event->attach_state = PERF_ATTACH_TASK;
6810 
6811 		if (attr->type == PERF_TYPE_TRACEPOINT)
6812 			event->hw.tp_target = task;
6813 #ifdef CONFIG_HAVE_HW_BREAKPOINT
6814 		/*
6815 		 * hw_breakpoint is a bit difficult here..
6816 		 */
6817 		else if (attr->type == PERF_TYPE_BREAKPOINT)
6818 			event->hw.bp_target = task;
6819 #endif
6820 	}
6821 
6822 	if (!overflow_handler && parent_event) {
6823 		overflow_handler = parent_event->overflow_handler;
6824 		context = parent_event->overflow_handler_context;
6825 	}
6826 
6827 	event->overflow_handler	= overflow_handler;
6828 	event->overflow_handler_context = context;
6829 
6830 	perf_event__state_init(event);
6831 
6832 	pmu = NULL;
6833 
6834 	hwc = &event->hw;
6835 	hwc->sample_period = attr->sample_period;
6836 	if (attr->freq && attr->sample_freq)
6837 		hwc->sample_period = 1;
6838 	hwc->last_period = hwc->sample_period;
6839 
6840 	local64_set(&hwc->period_left, hwc->sample_period);
6841 
6842 	/*
6843 	 * we currently do not support PERF_FORMAT_GROUP on inherited events
6844 	 */
6845 	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
6846 		goto err_ns;
6847 
6848 	pmu = perf_init_event(event);
6849 	if (!pmu)
6850 		goto err_ns;
6851 	else if (IS_ERR(pmu)) {
6852 		err = PTR_ERR(pmu);
6853 		goto err_ns;
6854 	}
6855 
6856 	if (!event->parent) {
6857 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
6858 			err = get_callchain_buffers();
6859 			if (err)
6860 				goto err_pmu;
6861 		}
6862 	}
6863 
6864 	return event;
6865 
6866 err_pmu:
6867 	if (event->destroy)
6868 		event->destroy(event);
6869 	module_put(pmu->module);
6870 err_ns:
6871 	if (event->ns)
6872 		put_pid_ns(event->ns);
6873 	kfree(event);
6874 
6875 	return ERR_PTR(err);
6876 }
6877 
6878 static int perf_copy_attr(struct perf_event_attr __user *uattr,
6879 			  struct perf_event_attr *attr)
6880 {
6881 	u32 size;
6882 	int ret;
6883 
6884 	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
6885 		return -EFAULT;
6886 
6887 	/*
6888 	 * zero the full structure, so that a short copy will be nice.
6889 	 */
6890 	memset(attr, 0, sizeof(*attr));
6891 
6892 	ret = get_user(size, &uattr->size);
6893 	if (ret)
6894 		return ret;
6895 
6896 	if (size > PAGE_SIZE)	/* silly large */
6897 		goto err_size;
6898 
6899 	if (!size)		/* abi compat */
6900 		size = PERF_ATTR_SIZE_VER0;
6901 
6902 	if (size < PERF_ATTR_SIZE_VER0)
6903 		goto err_size;
6904 
6905 	/*
6906 	 * If we're handed a bigger struct than we know of,
6907 	 * ensure all the unknown bits are 0 - i.e. new
6908 	 * user-space does not rely on any kernel feature
6909 	 * extensions we dont know about yet.
6910 	 */
6911 	if (size > sizeof(*attr)) {
6912 		unsigned char __user *addr;
6913 		unsigned char __user *end;
6914 		unsigned char val;
6915 
6916 		addr = (void __user *)uattr + sizeof(*attr);
6917 		end  = (void __user *)uattr + size;
6918 
6919 		for (; addr < end; addr++) {
6920 			ret = get_user(val, addr);
6921 			if (ret)
6922 				return ret;
6923 			if (val)
6924 				goto err_size;
6925 		}
6926 		size = sizeof(*attr);
6927 	}
6928 
6929 	ret = copy_from_user(attr, uattr, size);
6930 	if (ret)
6931 		return -EFAULT;
6932 
6933 	if (attr->__reserved_1)
6934 		return -EINVAL;
6935 
6936 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
6937 		return -EINVAL;
6938 
6939 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
6940 		return -EINVAL;
6941 
6942 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
6943 		u64 mask = attr->branch_sample_type;
6944 
6945 		/* only using defined bits */
6946 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
6947 			return -EINVAL;
6948 
6949 		/* at least one branch bit must be set */
6950 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
6951 			return -EINVAL;
6952 
6953 		/* propagate priv level, when not set for branch */
6954 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
6955 
6956 			/* exclude_kernel checked on syscall entry */
6957 			if (!attr->exclude_kernel)
6958 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
6959 
6960 			if (!attr->exclude_user)
6961 				mask |= PERF_SAMPLE_BRANCH_USER;
6962 
6963 			if (!attr->exclude_hv)
6964 				mask |= PERF_SAMPLE_BRANCH_HV;
6965 			/*
6966 			 * adjust user setting (for HW filter setup)
6967 			 */
6968 			attr->branch_sample_type = mask;
6969 		}
6970 		/* privileged levels capture (kernel, hv): check permissions */
6971 		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
6972 		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6973 			return -EACCES;
6974 	}
6975 
6976 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
6977 		ret = perf_reg_validate(attr->sample_regs_user);
6978 		if (ret)
6979 			return ret;
6980 	}
6981 
6982 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
6983 		if (!arch_perf_have_user_stack_dump())
6984 			return -ENOSYS;
6985 
6986 		/*
6987 		 * We have __u32 type for the size, but so far
6988 		 * we can only use __u16 as maximum due to the
6989 		 * __u16 sample size limit.
6990 		 */
6991 		if (attr->sample_stack_user >= USHRT_MAX)
6992 			ret = -EINVAL;
6993 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
6994 			ret = -EINVAL;
6995 	}
6996 
6997 out:
6998 	return ret;
6999 
7000 err_size:
7001 	put_user(sizeof(*attr), &uattr->size);
7002 	ret = -E2BIG;
7003 	goto out;
7004 }
7005 
7006 static int
7007 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
7008 {
7009 	struct ring_buffer *rb = NULL;
7010 	int ret = -EINVAL;
7011 
7012 	if (!output_event)
7013 		goto set;
7014 
7015 	/* don't allow circular references */
7016 	if (event == output_event)
7017 		goto out;
7018 
7019 	/*
7020 	 * Don't allow cross-cpu buffers
7021 	 */
7022 	if (output_event->cpu != event->cpu)
7023 		goto out;
7024 
7025 	/*
7026 	 * If its not a per-cpu rb, it must be the same task.
7027 	 */
7028 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
7029 		goto out;
7030 
7031 set:
7032 	mutex_lock(&event->mmap_mutex);
7033 	/* Can't redirect output if we've got an active mmap() */
7034 	if (atomic_read(&event->mmap_count))
7035 		goto unlock;
7036 
7037 	if (output_event) {
7038 		/* get the rb we want to redirect to */
7039 		rb = ring_buffer_get(output_event);
7040 		if (!rb)
7041 			goto unlock;
7042 	}
7043 
7044 	ring_buffer_attach(event, rb);
7045 
7046 	ret = 0;
7047 unlock:
7048 	mutex_unlock(&event->mmap_mutex);
7049 
7050 out:
7051 	return ret;
7052 }
7053 
7054 /**
7055  * sys_perf_event_open - open a performance event, associate it to a task/cpu
7056  *
7057  * @attr_uptr:	event_id type attributes for monitoring/sampling
7058  * @pid:		target pid
7059  * @cpu:		target cpu
7060  * @group_fd:		group leader event fd
7061  */
7062 SYSCALL_DEFINE5(perf_event_open,
7063 		struct perf_event_attr __user *, attr_uptr,
7064 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
7065 {
7066 	struct perf_event *group_leader = NULL, *output_event = NULL;
7067 	struct perf_event *event, *sibling;
7068 	struct perf_event_attr attr;
7069 	struct perf_event_context *ctx;
7070 	struct file *event_file = NULL;
7071 	struct fd group = {NULL, 0};
7072 	struct task_struct *task = NULL;
7073 	struct pmu *pmu;
7074 	int event_fd;
7075 	int move_group = 0;
7076 	int err;
7077 	int f_flags = O_RDWR;
7078 
7079 	/* for future expandability... */
7080 	if (flags & ~PERF_FLAG_ALL)
7081 		return -EINVAL;
7082 
7083 	err = perf_copy_attr(attr_uptr, &attr);
7084 	if (err)
7085 		return err;
7086 
7087 	if (!attr.exclude_kernel) {
7088 		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
7089 			return -EACCES;
7090 	}
7091 
7092 	if (attr.freq) {
7093 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
7094 			return -EINVAL;
7095 	} else {
7096 		if (attr.sample_period & (1ULL << 63))
7097 			return -EINVAL;
7098 	}
7099 
7100 	/*
7101 	 * In cgroup mode, the pid argument is used to pass the fd
7102 	 * opened to the cgroup directory in cgroupfs. The cpu argument
7103 	 * designates the cpu on which to monitor threads from that
7104 	 * cgroup.
7105 	 */
7106 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
7107 		return -EINVAL;
7108 
7109 	if (flags & PERF_FLAG_FD_CLOEXEC)
7110 		f_flags |= O_CLOEXEC;
7111 
7112 	event_fd = get_unused_fd_flags(f_flags);
7113 	if (event_fd < 0)
7114 		return event_fd;
7115 
7116 	if (group_fd != -1) {
7117 		err = perf_fget_light(group_fd, &group);
7118 		if (err)
7119 			goto err_fd;
7120 		group_leader = group.file->private_data;
7121 		if (flags & PERF_FLAG_FD_OUTPUT)
7122 			output_event = group_leader;
7123 		if (flags & PERF_FLAG_FD_NO_GROUP)
7124 			group_leader = NULL;
7125 	}
7126 
7127 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
7128 		task = find_lively_task_by_vpid(pid);
7129 		if (IS_ERR(task)) {
7130 			err = PTR_ERR(task);
7131 			goto err_group_fd;
7132 		}
7133 	}
7134 
7135 	if (task && group_leader &&
7136 	    group_leader->attr.inherit != attr.inherit) {
7137 		err = -EINVAL;
7138 		goto err_task;
7139 	}
7140 
7141 	get_online_cpus();
7142 
7143 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
7144 				 NULL, NULL);
7145 	if (IS_ERR(event)) {
7146 		err = PTR_ERR(event);
7147 		goto err_cpus;
7148 	}
7149 
7150 	if (flags & PERF_FLAG_PID_CGROUP) {
7151 		err = perf_cgroup_connect(pid, event, &attr, group_leader);
7152 		if (err) {
7153 			__free_event(event);
7154 			goto err_cpus;
7155 		}
7156 	}
7157 
7158 	if (is_sampling_event(event)) {
7159 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
7160 			err = -ENOTSUPP;
7161 			goto err_alloc;
7162 		}
7163 	}
7164 
7165 	account_event(event);
7166 
7167 	/*
7168 	 * Special case software events and allow them to be part of
7169 	 * any hardware group.
7170 	 */
7171 	pmu = event->pmu;
7172 
7173 	if (group_leader &&
7174 	    (is_software_event(event) != is_software_event(group_leader))) {
7175 		if (is_software_event(event)) {
7176 			/*
7177 			 * If event and group_leader are not both a software
7178 			 * event, and event is, then group leader is not.
7179 			 *
7180 			 * Allow the addition of software events to !software
7181 			 * groups, this is safe because software events never
7182 			 * fail to schedule.
7183 			 */
7184 			pmu = group_leader->pmu;
7185 		} else if (is_software_event(group_leader) &&
7186 			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
7187 			/*
7188 			 * In case the group is a pure software group, and we
7189 			 * try to add a hardware event, move the whole group to
7190 			 * the hardware context.
7191 			 */
7192 			move_group = 1;
7193 		}
7194 	}
7195 
7196 	/*
7197 	 * Get the target context (task or percpu):
7198 	 */
7199 	ctx = find_get_context(pmu, task, event->cpu);
7200 	if (IS_ERR(ctx)) {
7201 		err = PTR_ERR(ctx);
7202 		goto err_alloc;
7203 	}
7204 
7205 	if (task) {
7206 		put_task_struct(task);
7207 		task = NULL;
7208 	}
7209 
7210 	/*
7211 	 * Look up the group leader (we will attach this event to it):
7212 	 */
7213 	if (group_leader) {
7214 		err = -EINVAL;
7215 
7216 		/*
7217 		 * Do not allow a recursive hierarchy (this new sibling
7218 		 * becoming part of another group-sibling):
7219 		 */
7220 		if (group_leader->group_leader != group_leader)
7221 			goto err_context;
7222 		/*
7223 		 * Do not allow to attach to a group in a different
7224 		 * task or CPU context:
7225 		 */
7226 		if (move_group) {
7227 			if (group_leader->ctx->type != ctx->type)
7228 				goto err_context;
7229 		} else {
7230 			if (group_leader->ctx != ctx)
7231 				goto err_context;
7232 		}
7233 
7234 		/*
7235 		 * Only a group leader can be exclusive or pinned
7236 		 */
7237 		if (attr.exclusive || attr.pinned)
7238 			goto err_context;
7239 	}
7240 
7241 	if (output_event) {
7242 		err = perf_event_set_output(event, output_event);
7243 		if (err)
7244 			goto err_context;
7245 	}
7246 
7247 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
7248 					f_flags);
7249 	if (IS_ERR(event_file)) {
7250 		err = PTR_ERR(event_file);
7251 		goto err_context;
7252 	}
7253 
7254 	if (move_group) {
7255 		struct perf_event_context *gctx = group_leader->ctx;
7256 
7257 		mutex_lock(&gctx->mutex);
7258 		perf_remove_from_context(group_leader, false);
7259 
7260 		/*
7261 		 * Removing from the context ends up with disabled
7262 		 * event. What we want here is event in the initial
7263 		 * startup state, ready to be add into new context.
7264 		 */
7265 		perf_event__state_init(group_leader);
7266 		list_for_each_entry(sibling, &group_leader->sibling_list,
7267 				    group_entry) {
7268 			perf_remove_from_context(sibling, false);
7269 			perf_event__state_init(sibling);
7270 			put_ctx(gctx);
7271 		}
7272 		mutex_unlock(&gctx->mutex);
7273 		put_ctx(gctx);
7274 	}
7275 
7276 	WARN_ON_ONCE(ctx->parent_ctx);
7277 	mutex_lock(&ctx->mutex);
7278 
7279 	if (move_group) {
7280 		synchronize_rcu();
7281 		perf_install_in_context(ctx, group_leader, event->cpu);
7282 		get_ctx(ctx);
7283 		list_for_each_entry(sibling, &group_leader->sibling_list,
7284 				    group_entry) {
7285 			perf_install_in_context(ctx, sibling, event->cpu);
7286 			get_ctx(ctx);
7287 		}
7288 	}
7289 
7290 	perf_install_in_context(ctx, event, event->cpu);
7291 	perf_unpin_context(ctx);
7292 	mutex_unlock(&ctx->mutex);
7293 
7294 	put_online_cpus();
7295 
7296 	event->owner = current;
7297 
7298 	mutex_lock(&current->perf_event_mutex);
7299 	list_add_tail(&event->owner_entry, &current->perf_event_list);
7300 	mutex_unlock(&current->perf_event_mutex);
7301 
7302 	/*
7303 	 * Precalculate sample_data sizes
7304 	 */
7305 	perf_event__header_size(event);
7306 	perf_event__id_header_size(event);
7307 
7308 	/*
7309 	 * Drop the reference on the group_event after placing the
7310 	 * new event on the sibling_list. This ensures destruction
7311 	 * of the group leader will find the pointer to itself in
7312 	 * perf_group_detach().
7313 	 */
7314 	fdput(group);
7315 	fd_install(event_fd, event_file);
7316 	return event_fd;
7317 
7318 err_context:
7319 	perf_unpin_context(ctx);
7320 	put_ctx(ctx);
7321 err_alloc:
7322 	free_event(event);
7323 err_cpus:
7324 	put_online_cpus();
7325 err_task:
7326 	if (task)
7327 		put_task_struct(task);
7328 err_group_fd:
7329 	fdput(group);
7330 err_fd:
7331 	put_unused_fd(event_fd);
7332 	return err;
7333 }
7334 
7335 /**
7336  * perf_event_create_kernel_counter
7337  *
7338  * @attr: attributes of the counter to create
7339  * @cpu: cpu in which the counter is bound
7340  * @task: task to profile (NULL for percpu)
7341  */
7342 struct perf_event *
7343 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
7344 				 struct task_struct *task,
7345 				 perf_overflow_handler_t overflow_handler,
7346 				 void *context)
7347 {
7348 	struct perf_event_context *ctx;
7349 	struct perf_event *event;
7350 	int err;
7351 
7352 	/*
7353 	 * Get the target context (task or percpu):
7354 	 */
7355 
7356 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
7357 				 overflow_handler, context);
7358 	if (IS_ERR(event)) {
7359 		err = PTR_ERR(event);
7360 		goto err;
7361 	}
7362 
7363 	account_event(event);
7364 
7365 	ctx = find_get_context(event->pmu, task, cpu);
7366 	if (IS_ERR(ctx)) {
7367 		err = PTR_ERR(ctx);
7368 		goto err_free;
7369 	}
7370 
7371 	WARN_ON_ONCE(ctx->parent_ctx);
7372 	mutex_lock(&ctx->mutex);
7373 	perf_install_in_context(ctx, event, cpu);
7374 	perf_unpin_context(ctx);
7375 	mutex_unlock(&ctx->mutex);
7376 
7377 	return event;
7378 
7379 err_free:
7380 	free_event(event);
7381 err:
7382 	return ERR_PTR(err);
7383 }
7384 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
7385 
7386 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
7387 {
7388 	struct perf_event_context *src_ctx;
7389 	struct perf_event_context *dst_ctx;
7390 	struct perf_event *event, *tmp;
7391 	LIST_HEAD(events);
7392 
7393 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
7394 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
7395 
7396 	mutex_lock(&src_ctx->mutex);
7397 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
7398 				 event_entry) {
7399 		perf_remove_from_context(event, false);
7400 		unaccount_event_cpu(event, src_cpu);
7401 		put_ctx(src_ctx);
7402 		list_add(&event->migrate_entry, &events);
7403 	}
7404 	mutex_unlock(&src_ctx->mutex);
7405 
7406 	synchronize_rcu();
7407 
7408 	mutex_lock(&dst_ctx->mutex);
7409 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
7410 		list_del(&event->migrate_entry);
7411 		if (event->state >= PERF_EVENT_STATE_OFF)
7412 			event->state = PERF_EVENT_STATE_INACTIVE;
7413 		account_event_cpu(event, dst_cpu);
7414 		perf_install_in_context(dst_ctx, event, dst_cpu);
7415 		get_ctx(dst_ctx);
7416 	}
7417 	mutex_unlock(&dst_ctx->mutex);
7418 }
7419 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
7420 
7421 static void sync_child_event(struct perf_event *child_event,
7422 			       struct task_struct *child)
7423 {
7424 	struct perf_event *parent_event = child_event->parent;
7425 	u64 child_val;
7426 
7427 	if (child_event->attr.inherit_stat)
7428 		perf_event_read_event(child_event, child);
7429 
7430 	child_val = perf_event_count(child_event);
7431 
7432 	/*
7433 	 * Add back the child's count to the parent's count:
7434 	 */
7435 	atomic64_add(child_val, &parent_event->child_count);
7436 	atomic64_add(child_event->total_time_enabled,
7437 		     &parent_event->child_total_time_enabled);
7438 	atomic64_add(child_event->total_time_running,
7439 		     &parent_event->child_total_time_running);
7440 
7441 	/*
7442 	 * Remove this event from the parent's list
7443 	 */
7444 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7445 	mutex_lock(&parent_event->child_mutex);
7446 	list_del_init(&child_event->child_list);
7447 	mutex_unlock(&parent_event->child_mutex);
7448 
7449 	/*
7450 	 * Release the parent event, if this was the last
7451 	 * reference to it.
7452 	 */
7453 	put_event(parent_event);
7454 }
7455 
7456 static void
7457 __perf_event_exit_task(struct perf_event *child_event,
7458 			 struct perf_event_context *child_ctx,
7459 			 struct task_struct *child)
7460 {
7461 	perf_remove_from_context(child_event, true);
7462 
7463 	/*
7464 	 * It can happen that the parent exits first, and has events
7465 	 * that are still around due to the child reference. These
7466 	 * events need to be zapped.
7467 	 */
7468 	if (child_event->parent) {
7469 		sync_child_event(child_event, child);
7470 		free_event(child_event);
7471 	}
7472 }
7473 
7474 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
7475 {
7476 	struct perf_event *child_event, *next;
7477 	struct perf_event_context *child_ctx;
7478 	unsigned long flags;
7479 
7480 	if (likely(!child->perf_event_ctxp[ctxn])) {
7481 		perf_event_task(child, NULL, 0);
7482 		return;
7483 	}
7484 
7485 	local_irq_save(flags);
7486 	/*
7487 	 * We can't reschedule here because interrupts are disabled,
7488 	 * and either child is current or it is a task that can't be
7489 	 * scheduled, so we are now safe from rescheduling changing
7490 	 * our context.
7491 	 */
7492 	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
7493 
7494 	/*
7495 	 * Take the context lock here so that if find_get_context is
7496 	 * reading child->perf_event_ctxp, we wait until it has
7497 	 * incremented the context's refcount before we do put_ctx below.
7498 	 */
7499 	raw_spin_lock(&child_ctx->lock);
7500 	task_ctx_sched_out(child_ctx);
7501 	child->perf_event_ctxp[ctxn] = NULL;
7502 	/*
7503 	 * If this context is a clone; unclone it so it can't get
7504 	 * swapped to another process while we're removing all
7505 	 * the events from it.
7506 	 */
7507 	unclone_ctx(child_ctx);
7508 	update_context_time(child_ctx);
7509 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
7510 
7511 	/*
7512 	 * Report the task dead after unscheduling the events so that we
7513 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
7514 	 * get a few PERF_RECORD_READ events.
7515 	 */
7516 	perf_event_task(child, child_ctx, 0);
7517 
7518 	/*
7519 	 * We can recurse on the same lock type through:
7520 	 *
7521 	 *   __perf_event_exit_task()
7522 	 *     sync_child_event()
7523 	 *       put_event()
7524 	 *         mutex_lock(&ctx->mutex)
7525 	 *
7526 	 * But since its the parent context it won't be the same instance.
7527 	 */
7528 	mutex_lock(&child_ctx->mutex);
7529 
7530 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
7531 		__perf_event_exit_task(child_event, child_ctx, child);
7532 
7533 	mutex_unlock(&child_ctx->mutex);
7534 
7535 	put_ctx(child_ctx);
7536 }
7537 
7538 /*
7539  * When a child task exits, feed back event values to parent events.
7540  */
7541 void perf_event_exit_task(struct task_struct *child)
7542 {
7543 	struct perf_event *event, *tmp;
7544 	int ctxn;
7545 
7546 	mutex_lock(&child->perf_event_mutex);
7547 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
7548 				 owner_entry) {
7549 		list_del_init(&event->owner_entry);
7550 
7551 		/*
7552 		 * Ensure the list deletion is visible before we clear
7553 		 * the owner, closes a race against perf_release() where
7554 		 * we need to serialize on the owner->perf_event_mutex.
7555 		 */
7556 		smp_wmb();
7557 		event->owner = NULL;
7558 	}
7559 	mutex_unlock(&child->perf_event_mutex);
7560 
7561 	for_each_task_context_nr(ctxn)
7562 		perf_event_exit_task_context(child, ctxn);
7563 }
7564 
7565 static void perf_free_event(struct perf_event *event,
7566 			    struct perf_event_context *ctx)
7567 {
7568 	struct perf_event *parent = event->parent;
7569 
7570 	if (WARN_ON_ONCE(!parent))
7571 		return;
7572 
7573 	mutex_lock(&parent->child_mutex);
7574 	list_del_init(&event->child_list);
7575 	mutex_unlock(&parent->child_mutex);
7576 
7577 	put_event(parent);
7578 
7579 	perf_group_detach(event);
7580 	list_del_event(event, ctx);
7581 	free_event(event);
7582 }
7583 
7584 /*
7585  * free an unexposed, unused context as created by inheritance by
7586  * perf_event_init_task below, used by fork() in case of fail.
7587  */
7588 void perf_event_free_task(struct task_struct *task)
7589 {
7590 	struct perf_event_context *ctx;
7591 	struct perf_event *event, *tmp;
7592 	int ctxn;
7593 
7594 	for_each_task_context_nr(ctxn) {
7595 		ctx = task->perf_event_ctxp[ctxn];
7596 		if (!ctx)
7597 			continue;
7598 
7599 		mutex_lock(&ctx->mutex);
7600 again:
7601 		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
7602 				group_entry)
7603 			perf_free_event(event, ctx);
7604 
7605 		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
7606 				group_entry)
7607 			perf_free_event(event, ctx);
7608 
7609 		if (!list_empty(&ctx->pinned_groups) ||
7610 				!list_empty(&ctx->flexible_groups))
7611 			goto again;
7612 
7613 		mutex_unlock(&ctx->mutex);
7614 
7615 		put_ctx(ctx);
7616 	}
7617 }
7618 
7619 void perf_event_delayed_put(struct task_struct *task)
7620 {
7621 	int ctxn;
7622 
7623 	for_each_task_context_nr(ctxn)
7624 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
7625 }
7626 
7627 /*
7628  * inherit a event from parent task to child task:
7629  */
7630 static struct perf_event *
7631 inherit_event(struct perf_event *parent_event,
7632 	      struct task_struct *parent,
7633 	      struct perf_event_context *parent_ctx,
7634 	      struct task_struct *child,
7635 	      struct perf_event *group_leader,
7636 	      struct perf_event_context *child_ctx)
7637 {
7638 	struct perf_event *child_event;
7639 	unsigned long flags;
7640 
7641 	/*
7642 	 * Instead of creating recursive hierarchies of events,
7643 	 * we link inherited events back to the original parent,
7644 	 * which has a filp for sure, which we use as the reference
7645 	 * count:
7646 	 */
7647 	if (parent_event->parent)
7648 		parent_event = parent_event->parent;
7649 
7650 	child_event = perf_event_alloc(&parent_event->attr,
7651 					   parent_event->cpu,
7652 					   child,
7653 					   group_leader, parent_event,
7654 				           NULL, NULL);
7655 	if (IS_ERR(child_event))
7656 		return child_event;
7657 
7658 	if (!atomic_long_inc_not_zero(&parent_event->refcount)) {
7659 		free_event(child_event);
7660 		return NULL;
7661 	}
7662 
7663 	get_ctx(child_ctx);
7664 
7665 	/*
7666 	 * Make the child state follow the state of the parent event,
7667 	 * not its attr.disabled bit.  We hold the parent's mutex,
7668 	 * so we won't race with perf_event_{en, dis}able_family.
7669 	 */
7670 	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
7671 		child_event->state = PERF_EVENT_STATE_INACTIVE;
7672 	else
7673 		child_event->state = PERF_EVENT_STATE_OFF;
7674 
7675 	if (parent_event->attr.freq) {
7676 		u64 sample_period = parent_event->hw.sample_period;
7677 		struct hw_perf_event *hwc = &child_event->hw;
7678 
7679 		hwc->sample_period = sample_period;
7680 		hwc->last_period   = sample_period;
7681 
7682 		local64_set(&hwc->period_left, sample_period);
7683 	}
7684 
7685 	child_event->ctx = child_ctx;
7686 	child_event->overflow_handler = parent_event->overflow_handler;
7687 	child_event->overflow_handler_context
7688 		= parent_event->overflow_handler_context;
7689 
7690 	/*
7691 	 * Precalculate sample_data sizes
7692 	 */
7693 	perf_event__header_size(child_event);
7694 	perf_event__id_header_size(child_event);
7695 
7696 	/*
7697 	 * Link it up in the child's context:
7698 	 */
7699 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
7700 	add_event_to_ctx(child_event, child_ctx);
7701 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
7702 
7703 	/*
7704 	 * Link this into the parent event's child list
7705 	 */
7706 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7707 	mutex_lock(&parent_event->child_mutex);
7708 	list_add_tail(&child_event->child_list, &parent_event->child_list);
7709 	mutex_unlock(&parent_event->child_mutex);
7710 
7711 	return child_event;
7712 }
7713 
7714 static int inherit_group(struct perf_event *parent_event,
7715 	      struct task_struct *parent,
7716 	      struct perf_event_context *parent_ctx,
7717 	      struct task_struct *child,
7718 	      struct perf_event_context *child_ctx)
7719 {
7720 	struct perf_event *leader;
7721 	struct perf_event *sub;
7722 	struct perf_event *child_ctr;
7723 
7724 	leader = inherit_event(parent_event, parent, parent_ctx,
7725 				 child, NULL, child_ctx);
7726 	if (IS_ERR(leader))
7727 		return PTR_ERR(leader);
7728 	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
7729 		child_ctr = inherit_event(sub, parent, parent_ctx,
7730 					    child, leader, child_ctx);
7731 		if (IS_ERR(child_ctr))
7732 			return PTR_ERR(child_ctr);
7733 	}
7734 	return 0;
7735 }
7736 
7737 static int
7738 inherit_task_group(struct perf_event *event, struct task_struct *parent,
7739 		   struct perf_event_context *parent_ctx,
7740 		   struct task_struct *child, int ctxn,
7741 		   int *inherited_all)
7742 {
7743 	int ret;
7744 	struct perf_event_context *child_ctx;
7745 
7746 	if (!event->attr.inherit) {
7747 		*inherited_all = 0;
7748 		return 0;
7749 	}
7750 
7751 	child_ctx = child->perf_event_ctxp[ctxn];
7752 	if (!child_ctx) {
7753 		/*
7754 		 * This is executed from the parent task context, so
7755 		 * inherit events that have been marked for cloning.
7756 		 * First allocate and initialize a context for the
7757 		 * child.
7758 		 */
7759 
7760 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
7761 		if (!child_ctx)
7762 			return -ENOMEM;
7763 
7764 		child->perf_event_ctxp[ctxn] = child_ctx;
7765 	}
7766 
7767 	ret = inherit_group(event, parent, parent_ctx,
7768 			    child, child_ctx);
7769 
7770 	if (ret)
7771 		*inherited_all = 0;
7772 
7773 	return ret;
7774 }
7775 
7776 /*
7777  * Initialize the perf_event context in task_struct
7778  */
7779 int perf_event_init_context(struct task_struct *child, int ctxn)
7780 {
7781 	struct perf_event_context *child_ctx, *parent_ctx;
7782 	struct perf_event_context *cloned_ctx;
7783 	struct perf_event *event;
7784 	struct task_struct *parent = current;
7785 	int inherited_all = 1;
7786 	unsigned long flags;
7787 	int ret = 0;
7788 
7789 	if (likely(!parent->perf_event_ctxp[ctxn]))
7790 		return 0;
7791 
7792 	/*
7793 	 * If the parent's context is a clone, pin it so it won't get
7794 	 * swapped under us.
7795 	 */
7796 	parent_ctx = perf_pin_task_context(parent, ctxn);
7797 	if (!parent_ctx)
7798 		return 0;
7799 
7800 	/*
7801 	 * No need to check if parent_ctx != NULL here; since we saw
7802 	 * it non-NULL earlier, the only reason for it to become NULL
7803 	 * is if we exit, and since we're currently in the middle of
7804 	 * a fork we can't be exiting at the same time.
7805 	 */
7806 
7807 	/*
7808 	 * Lock the parent list. No need to lock the child - not PID
7809 	 * hashed yet and not running, so nobody can access it.
7810 	 */
7811 	mutex_lock(&parent_ctx->mutex);
7812 
7813 	/*
7814 	 * We dont have to disable NMIs - we are only looking at
7815 	 * the list, not manipulating it:
7816 	 */
7817 	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
7818 		ret = inherit_task_group(event, parent, parent_ctx,
7819 					 child, ctxn, &inherited_all);
7820 		if (ret)
7821 			break;
7822 	}
7823 
7824 	/*
7825 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
7826 	 * to allocations, but we need to prevent rotation because
7827 	 * rotate_ctx() will change the list from interrupt context.
7828 	 */
7829 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7830 	parent_ctx->rotate_disable = 1;
7831 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7832 
7833 	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
7834 		ret = inherit_task_group(event, parent, parent_ctx,
7835 					 child, ctxn, &inherited_all);
7836 		if (ret)
7837 			break;
7838 	}
7839 
7840 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7841 	parent_ctx->rotate_disable = 0;
7842 
7843 	child_ctx = child->perf_event_ctxp[ctxn];
7844 
7845 	if (child_ctx && inherited_all) {
7846 		/*
7847 		 * Mark the child context as a clone of the parent
7848 		 * context, or of whatever the parent is a clone of.
7849 		 *
7850 		 * Note that if the parent is a clone, the holding of
7851 		 * parent_ctx->lock avoids it from being uncloned.
7852 		 */
7853 		cloned_ctx = parent_ctx->parent_ctx;
7854 		if (cloned_ctx) {
7855 			child_ctx->parent_ctx = cloned_ctx;
7856 			child_ctx->parent_gen = parent_ctx->parent_gen;
7857 		} else {
7858 			child_ctx->parent_ctx = parent_ctx;
7859 			child_ctx->parent_gen = parent_ctx->generation;
7860 		}
7861 		get_ctx(child_ctx->parent_ctx);
7862 	}
7863 
7864 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7865 	mutex_unlock(&parent_ctx->mutex);
7866 
7867 	perf_unpin_context(parent_ctx);
7868 	put_ctx(parent_ctx);
7869 
7870 	return ret;
7871 }
7872 
7873 /*
7874  * Initialize the perf_event context in task_struct
7875  */
7876 int perf_event_init_task(struct task_struct *child)
7877 {
7878 	int ctxn, ret;
7879 
7880 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
7881 	mutex_init(&child->perf_event_mutex);
7882 	INIT_LIST_HEAD(&child->perf_event_list);
7883 
7884 	for_each_task_context_nr(ctxn) {
7885 		ret = perf_event_init_context(child, ctxn);
7886 		if (ret)
7887 			return ret;
7888 	}
7889 
7890 	return 0;
7891 }
7892 
7893 static void __init perf_event_init_all_cpus(void)
7894 {
7895 	struct swevent_htable *swhash;
7896 	int cpu;
7897 
7898 	for_each_possible_cpu(cpu) {
7899 		swhash = &per_cpu(swevent_htable, cpu);
7900 		mutex_init(&swhash->hlist_mutex);
7901 		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
7902 	}
7903 }
7904 
7905 static void perf_event_init_cpu(int cpu)
7906 {
7907 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7908 
7909 	mutex_lock(&swhash->hlist_mutex);
7910 	swhash->online = true;
7911 	if (swhash->hlist_refcount > 0) {
7912 		struct swevent_hlist *hlist;
7913 
7914 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
7915 		WARN_ON(!hlist);
7916 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7917 	}
7918 	mutex_unlock(&swhash->hlist_mutex);
7919 }
7920 
7921 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
7922 static void perf_pmu_rotate_stop(struct pmu *pmu)
7923 {
7924 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7925 
7926 	WARN_ON(!irqs_disabled());
7927 
7928 	list_del_init(&cpuctx->rotation_list);
7929 }
7930 
7931 static void __perf_event_exit_context(void *__info)
7932 {
7933 	struct remove_event re = { .detach_group = false };
7934 	struct perf_event_context *ctx = __info;
7935 
7936 	perf_pmu_rotate_stop(ctx->pmu);
7937 
7938 	rcu_read_lock();
7939 	list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
7940 		__perf_remove_from_context(&re);
7941 	rcu_read_unlock();
7942 }
7943 
7944 static void perf_event_exit_cpu_context(int cpu)
7945 {
7946 	struct perf_event_context *ctx;
7947 	struct pmu *pmu;
7948 	int idx;
7949 
7950 	idx = srcu_read_lock(&pmus_srcu);
7951 	list_for_each_entry_rcu(pmu, &pmus, entry) {
7952 		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
7953 
7954 		mutex_lock(&ctx->mutex);
7955 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
7956 		mutex_unlock(&ctx->mutex);
7957 	}
7958 	srcu_read_unlock(&pmus_srcu, idx);
7959 }
7960 
7961 static void perf_event_exit_cpu(int cpu)
7962 {
7963 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7964 
7965 	perf_event_exit_cpu_context(cpu);
7966 
7967 	mutex_lock(&swhash->hlist_mutex);
7968 	swhash->online = false;
7969 	swevent_hlist_release(swhash);
7970 	mutex_unlock(&swhash->hlist_mutex);
7971 }
7972 #else
7973 static inline void perf_event_exit_cpu(int cpu) { }
7974 #endif
7975 
7976 static int
7977 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
7978 {
7979 	int cpu;
7980 
7981 	for_each_online_cpu(cpu)
7982 		perf_event_exit_cpu(cpu);
7983 
7984 	return NOTIFY_OK;
7985 }
7986 
7987 /*
7988  * Run the perf reboot notifier at the very last possible moment so that
7989  * the generic watchdog code runs as long as possible.
7990  */
7991 static struct notifier_block perf_reboot_notifier = {
7992 	.notifier_call = perf_reboot,
7993 	.priority = INT_MIN,
7994 };
7995 
7996 static int
7997 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
7998 {
7999 	unsigned int cpu = (long)hcpu;
8000 
8001 	switch (action & ~CPU_TASKS_FROZEN) {
8002 
8003 	case CPU_UP_PREPARE:
8004 	case CPU_DOWN_FAILED:
8005 		perf_event_init_cpu(cpu);
8006 		break;
8007 
8008 	case CPU_UP_CANCELED:
8009 	case CPU_DOWN_PREPARE:
8010 		perf_event_exit_cpu(cpu);
8011 		break;
8012 	default:
8013 		break;
8014 	}
8015 
8016 	return NOTIFY_OK;
8017 }
8018 
8019 void __init perf_event_init(void)
8020 {
8021 	int ret;
8022 
8023 	idr_init(&pmu_idr);
8024 
8025 	perf_event_init_all_cpus();
8026 	init_srcu_struct(&pmus_srcu);
8027 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
8028 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
8029 	perf_pmu_register(&perf_task_clock, NULL, -1);
8030 	perf_tp_register();
8031 	perf_cpu_notifier(perf_cpu_notify);
8032 	register_reboot_notifier(&perf_reboot_notifier);
8033 
8034 	ret = init_hw_breakpoint();
8035 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
8036 
8037 	/* do not patch jump label more than once per second */
8038 	jump_label_rate_limit(&perf_sched_events, HZ);
8039 
8040 	/*
8041 	 * Build time assertion that we keep the data_head at the intended
8042 	 * location.  IOW, validation we got the __reserved[] size right.
8043 	 */
8044 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
8045 		     != 1024);
8046 }
8047 
8048 static int __init perf_event_sysfs_init(void)
8049 {
8050 	struct pmu *pmu;
8051 	int ret;
8052 
8053 	mutex_lock(&pmus_lock);
8054 
8055 	ret = bus_register(&pmu_bus);
8056 	if (ret)
8057 		goto unlock;
8058 
8059 	list_for_each_entry(pmu, &pmus, entry) {
8060 		if (!pmu->name || pmu->type < 0)
8061 			continue;
8062 
8063 		ret = pmu_dev_alloc(pmu);
8064 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
8065 	}
8066 	pmu_bus_running = 1;
8067 	ret = 0;
8068 
8069 unlock:
8070 	mutex_unlock(&pmus_lock);
8071 
8072 	return ret;
8073 }
8074 device_initcall(perf_event_sysfs_init);
8075 
8076 #ifdef CONFIG_CGROUP_PERF
8077 static struct cgroup_subsys_state *
8078 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8079 {
8080 	struct perf_cgroup *jc;
8081 
8082 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
8083 	if (!jc)
8084 		return ERR_PTR(-ENOMEM);
8085 
8086 	jc->info = alloc_percpu(struct perf_cgroup_info);
8087 	if (!jc->info) {
8088 		kfree(jc);
8089 		return ERR_PTR(-ENOMEM);
8090 	}
8091 
8092 	return &jc->css;
8093 }
8094 
8095 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
8096 {
8097 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
8098 
8099 	free_percpu(jc->info);
8100 	kfree(jc);
8101 }
8102 
8103 static int __perf_cgroup_move(void *info)
8104 {
8105 	struct task_struct *task = info;
8106 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
8107 	return 0;
8108 }
8109 
8110 static void perf_cgroup_attach(struct cgroup_subsys_state *css,
8111 			       struct cgroup_taskset *tset)
8112 {
8113 	struct task_struct *task;
8114 
8115 	cgroup_taskset_for_each(task, tset)
8116 		task_function_call(task, __perf_cgroup_move, task);
8117 }
8118 
8119 static void perf_cgroup_exit(struct cgroup_subsys_state *css,
8120 			     struct cgroup_subsys_state *old_css,
8121 			     struct task_struct *task)
8122 {
8123 	/*
8124 	 * cgroup_exit() is called in the copy_process() failure path.
8125 	 * Ignore this case since the task hasn't ran yet, this avoids
8126 	 * trying to poke a half freed task state from generic code.
8127 	 */
8128 	if (!(task->flags & PF_EXITING))
8129 		return;
8130 
8131 	task_function_call(task, __perf_cgroup_move, task);
8132 }
8133 
8134 struct cgroup_subsys perf_event_cgrp_subsys = {
8135 	.css_alloc	= perf_cgroup_css_alloc,
8136 	.css_free	= perf_cgroup_css_free,
8137 	.exit		= perf_cgroup_exit,
8138 	.attach		= perf_cgroup_attach,
8139 };
8140 #endif /* CONFIG_CGROUP_PERF */
8141