1 /* 2 * Performance events core code: 3 * 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 8 * 9 * For licensing details see kernel-base/COPYING 10 */ 11 12 #include <linux/fs.h> 13 #include <linux/mm.h> 14 #include <linux/cpu.h> 15 #include <linux/smp.h> 16 #include <linux/idr.h> 17 #include <linux/file.h> 18 #include <linux/poll.h> 19 #include <linux/slab.h> 20 #include <linux/hash.h> 21 #include <linux/tick.h> 22 #include <linux/sysfs.h> 23 #include <linux/dcache.h> 24 #include <linux/percpu.h> 25 #include <linux/ptrace.h> 26 #include <linux/reboot.h> 27 #include <linux/vmstat.h> 28 #include <linux/device.h> 29 #include <linux/export.h> 30 #include <linux/vmalloc.h> 31 #include <linux/hardirq.h> 32 #include <linux/rculist.h> 33 #include <linux/uaccess.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/cgroup.h> 38 #include <linux/perf_event.h> 39 #include <linux/trace_events.h> 40 #include <linux/hw_breakpoint.h> 41 #include <linux/mm_types.h> 42 #include <linux/module.h> 43 #include <linux/mman.h> 44 #include <linux/compat.h> 45 #include <linux/bpf.h> 46 #include <linux/filter.h> 47 #include <linux/namei.h> 48 #include <linux/parser.h> 49 #include <linux/sched/clock.h> 50 #include <linux/sched/mm.h> 51 #include <linux/proc_ns.h> 52 #include <linux/mount.h> 53 54 #include "internal.h" 55 56 #include <asm/irq_regs.h> 57 58 typedef int (*remote_function_f)(void *); 59 60 struct remote_function_call { 61 struct task_struct *p; 62 remote_function_f func; 63 void *info; 64 int ret; 65 }; 66 67 static void remote_function(void *data) 68 { 69 struct remote_function_call *tfc = data; 70 struct task_struct *p = tfc->p; 71 72 if (p) { 73 /* -EAGAIN */ 74 if (task_cpu(p) != smp_processor_id()) 75 return; 76 77 /* 78 * Now that we're on right CPU with IRQs disabled, we can test 79 * if we hit the right task without races. 80 */ 81 82 tfc->ret = -ESRCH; /* No such (running) process */ 83 if (p != current) 84 return; 85 } 86 87 tfc->ret = tfc->func(tfc->info); 88 } 89 90 /** 91 * task_function_call - call a function on the cpu on which a task runs 92 * @p: the task to evaluate 93 * @func: the function to be called 94 * @info: the function call argument 95 * 96 * Calls the function @func when the task is currently running. This might 97 * be on the current CPU, which just calls the function directly 98 * 99 * returns: @func return value, or 100 * -ESRCH - when the process isn't running 101 * -EAGAIN - when the process moved away 102 */ 103 static int 104 task_function_call(struct task_struct *p, remote_function_f func, void *info) 105 { 106 struct remote_function_call data = { 107 .p = p, 108 .func = func, 109 .info = info, 110 .ret = -EAGAIN, 111 }; 112 int ret; 113 114 do { 115 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1); 116 if (!ret) 117 ret = data.ret; 118 } while (ret == -EAGAIN); 119 120 return ret; 121 } 122 123 /** 124 * cpu_function_call - call a function on the cpu 125 * @func: the function to be called 126 * @info: the function call argument 127 * 128 * Calls the function @func on the remote cpu. 129 * 130 * returns: @func return value or -ENXIO when the cpu is offline 131 */ 132 static int cpu_function_call(int cpu, remote_function_f func, void *info) 133 { 134 struct remote_function_call data = { 135 .p = NULL, 136 .func = func, 137 .info = info, 138 .ret = -ENXIO, /* No such CPU */ 139 }; 140 141 smp_call_function_single(cpu, remote_function, &data, 1); 142 143 return data.ret; 144 } 145 146 static inline struct perf_cpu_context * 147 __get_cpu_context(struct perf_event_context *ctx) 148 { 149 return this_cpu_ptr(ctx->pmu->pmu_cpu_context); 150 } 151 152 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 153 struct perf_event_context *ctx) 154 { 155 raw_spin_lock(&cpuctx->ctx.lock); 156 if (ctx) 157 raw_spin_lock(&ctx->lock); 158 } 159 160 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 161 struct perf_event_context *ctx) 162 { 163 if (ctx) 164 raw_spin_unlock(&ctx->lock); 165 raw_spin_unlock(&cpuctx->ctx.lock); 166 } 167 168 #define TASK_TOMBSTONE ((void *)-1L) 169 170 static bool is_kernel_event(struct perf_event *event) 171 { 172 return READ_ONCE(event->owner) == TASK_TOMBSTONE; 173 } 174 175 /* 176 * On task ctx scheduling... 177 * 178 * When !ctx->nr_events a task context will not be scheduled. This means 179 * we can disable the scheduler hooks (for performance) without leaving 180 * pending task ctx state. 181 * 182 * This however results in two special cases: 183 * 184 * - removing the last event from a task ctx; this is relatively straight 185 * forward and is done in __perf_remove_from_context. 186 * 187 * - adding the first event to a task ctx; this is tricky because we cannot 188 * rely on ctx->is_active and therefore cannot use event_function_call(). 189 * See perf_install_in_context(). 190 * 191 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set. 192 */ 193 194 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *, 195 struct perf_event_context *, void *); 196 197 struct event_function_struct { 198 struct perf_event *event; 199 event_f func; 200 void *data; 201 }; 202 203 static int event_function(void *info) 204 { 205 struct event_function_struct *efs = info; 206 struct perf_event *event = efs->event; 207 struct perf_event_context *ctx = event->ctx; 208 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 209 struct perf_event_context *task_ctx = cpuctx->task_ctx; 210 int ret = 0; 211 212 lockdep_assert_irqs_disabled(); 213 214 perf_ctx_lock(cpuctx, task_ctx); 215 /* 216 * Since we do the IPI call without holding ctx->lock things can have 217 * changed, double check we hit the task we set out to hit. 218 */ 219 if (ctx->task) { 220 if (ctx->task != current) { 221 ret = -ESRCH; 222 goto unlock; 223 } 224 225 /* 226 * We only use event_function_call() on established contexts, 227 * and event_function() is only ever called when active (or 228 * rather, we'll have bailed in task_function_call() or the 229 * above ctx->task != current test), therefore we must have 230 * ctx->is_active here. 231 */ 232 WARN_ON_ONCE(!ctx->is_active); 233 /* 234 * And since we have ctx->is_active, cpuctx->task_ctx must 235 * match. 236 */ 237 WARN_ON_ONCE(task_ctx != ctx); 238 } else { 239 WARN_ON_ONCE(&cpuctx->ctx != ctx); 240 } 241 242 efs->func(event, cpuctx, ctx, efs->data); 243 unlock: 244 perf_ctx_unlock(cpuctx, task_ctx); 245 246 return ret; 247 } 248 249 static void event_function_call(struct perf_event *event, event_f func, void *data) 250 { 251 struct perf_event_context *ctx = event->ctx; 252 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */ 253 struct event_function_struct efs = { 254 .event = event, 255 .func = func, 256 .data = data, 257 }; 258 259 if (!event->parent) { 260 /* 261 * If this is a !child event, we must hold ctx::mutex to 262 * stabilize the the event->ctx relation. See 263 * perf_event_ctx_lock(). 264 */ 265 lockdep_assert_held(&ctx->mutex); 266 } 267 268 if (!task) { 269 cpu_function_call(event->cpu, event_function, &efs); 270 return; 271 } 272 273 if (task == TASK_TOMBSTONE) 274 return; 275 276 again: 277 if (!task_function_call(task, event_function, &efs)) 278 return; 279 280 raw_spin_lock_irq(&ctx->lock); 281 /* 282 * Reload the task pointer, it might have been changed by 283 * a concurrent perf_event_context_sched_out(). 284 */ 285 task = ctx->task; 286 if (task == TASK_TOMBSTONE) { 287 raw_spin_unlock_irq(&ctx->lock); 288 return; 289 } 290 if (ctx->is_active) { 291 raw_spin_unlock_irq(&ctx->lock); 292 goto again; 293 } 294 func(event, NULL, ctx, data); 295 raw_spin_unlock_irq(&ctx->lock); 296 } 297 298 /* 299 * Similar to event_function_call() + event_function(), but hard assumes IRQs 300 * are already disabled and we're on the right CPU. 301 */ 302 static void event_function_local(struct perf_event *event, event_f func, void *data) 303 { 304 struct perf_event_context *ctx = event->ctx; 305 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 306 struct task_struct *task = READ_ONCE(ctx->task); 307 struct perf_event_context *task_ctx = NULL; 308 309 lockdep_assert_irqs_disabled(); 310 311 if (task) { 312 if (task == TASK_TOMBSTONE) 313 return; 314 315 task_ctx = ctx; 316 } 317 318 perf_ctx_lock(cpuctx, task_ctx); 319 320 task = ctx->task; 321 if (task == TASK_TOMBSTONE) 322 goto unlock; 323 324 if (task) { 325 /* 326 * We must be either inactive or active and the right task, 327 * otherwise we're screwed, since we cannot IPI to somewhere 328 * else. 329 */ 330 if (ctx->is_active) { 331 if (WARN_ON_ONCE(task != current)) 332 goto unlock; 333 334 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx)) 335 goto unlock; 336 } 337 } else { 338 WARN_ON_ONCE(&cpuctx->ctx != ctx); 339 } 340 341 func(event, cpuctx, ctx, data); 342 unlock: 343 perf_ctx_unlock(cpuctx, task_ctx); 344 } 345 346 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 347 PERF_FLAG_FD_OUTPUT |\ 348 PERF_FLAG_PID_CGROUP |\ 349 PERF_FLAG_FD_CLOEXEC) 350 351 /* 352 * branch priv levels that need permission checks 353 */ 354 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 355 (PERF_SAMPLE_BRANCH_KERNEL |\ 356 PERF_SAMPLE_BRANCH_HV) 357 358 enum event_type_t { 359 EVENT_FLEXIBLE = 0x1, 360 EVENT_PINNED = 0x2, 361 EVENT_TIME = 0x4, 362 /* see ctx_resched() for details */ 363 EVENT_CPU = 0x8, 364 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 365 }; 366 367 /* 368 * perf_sched_events : >0 events exist 369 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu 370 */ 371 372 static void perf_sched_delayed(struct work_struct *work); 373 DEFINE_STATIC_KEY_FALSE(perf_sched_events); 374 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed); 375 static DEFINE_MUTEX(perf_sched_mutex); 376 static atomic_t perf_sched_count; 377 378 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); 379 static DEFINE_PER_CPU(int, perf_sched_cb_usages); 380 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events); 381 382 static atomic_t nr_mmap_events __read_mostly; 383 static atomic_t nr_comm_events __read_mostly; 384 static atomic_t nr_namespaces_events __read_mostly; 385 static atomic_t nr_task_events __read_mostly; 386 static atomic_t nr_freq_events __read_mostly; 387 static atomic_t nr_switch_events __read_mostly; 388 389 static LIST_HEAD(pmus); 390 static DEFINE_MUTEX(pmus_lock); 391 static struct srcu_struct pmus_srcu; 392 static cpumask_var_t perf_online_mask; 393 394 /* 395 * perf event paranoia level: 396 * -1 - not paranoid at all 397 * 0 - disallow raw tracepoint access for unpriv 398 * 1 - disallow cpu events for unpriv 399 * 2 - disallow kernel profiling for unpriv 400 */ 401 int sysctl_perf_event_paranoid __read_mostly = 2; 402 403 /* Minimum for 512 kiB + 1 user control page */ 404 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 405 406 /* 407 * max perf event sample rate 408 */ 409 #define DEFAULT_MAX_SAMPLE_RATE 100000 410 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 411 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 412 413 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 414 415 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 416 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 417 418 static int perf_sample_allowed_ns __read_mostly = 419 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 420 421 static void update_perf_cpu_limits(void) 422 { 423 u64 tmp = perf_sample_period_ns; 424 425 tmp *= sysctl_perf_cpu_time_max_percent; 426 tmp = div_u64(tmp, 100); 427 if (!tmp) 428 tmp = 1; 429 430 WRITE_ONCE(perf_sample_allowed_ns, tmp); 431 } 432 433 static bool perf_rotate_context(struct perf_cpu_context *cpuctx); 434 435 int perf_proc_update_handler(struct ctl_table *table, int write, 436 void __user *buffer, size_t *lenp, 437 loff_t *ppos) 438 { 439 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 440 441 if (ret || !write) 442 return ret; 443 444 /* 445 * If throttling is disabled don't allow the write: 446 */ 447 if (sysctl_perf_cpu_time_max_percent == 100 || 448 sysctl_perf_cpu_time_max_percent == 0) 449 return -EINVAL; 450 451 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 452 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 453 update_perf_cpu_limits(); 454 455 return 0; 456 } 457 458 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 459 460 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 461 void __user *buffer, size_t *lenp, 462 loff_t *ppos) 463 { 464 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 465 466 if (ret || !write) 467 return ret; 468 469 if (sysctl_perf_cpu_time_max_percent == 100 || 470 sysctl_perf_cpu_time_max_percent == 0) { 471 printk(KERN_WARNING 472 "perf: Dynamic interrupt throttling disabled, can hang your system!\n"); 473 WRITE_ONCE(perf_sample_allowed_ns, 0); 474 } else { 475 update_perf_cpu_limits(); 476 } 477 478 return 0; 479 } 480 481 /* 482 * perf samples are done in some very critical code paths (NMIs). 483 * If they take too much CPU time, the system can lock up and not 484 * get any real work done. This will drop the sample rate when 485 * we detect that events are taking too long. 486 */ 487 #define NR_ACCUMULATED_SAMPLES 128 488 static DEFINE_PER_CPU(u64, running_sample_length); 489 490 static u64 __report_avg; 491 static u64 __report_allowed; 492 493 static void perf_duration_warn(struct irq_work *w) 494 { 495 printk_ratelimited(KERN_INFO 496 "perf: interrupt took too long (%lld > %lld), lowering " 497 "kernel.perf_event_max_sample_rate to %d\n", 498 __report_avg, __report_allowed, 499 sysctl_perf_event_sample_rate); 500 } 501 502 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 503 504 void perf_sample_event_took(u64 sample_len_ns) 505 { 506 u64 max_len = READ_ONCE(perf_sample_allowed_ns); 507 u64 running_len; 508 u64 avg_len; 509 u32 max; 510 511 if (max_len == 0) 512 return; 513 514 /* Decay the counter by 1 average sample. */ 515 running_len = __this_cpu_read(running_sample_length); 516 running_len -= running_len/NR_ACCUMULATED_SAMPLES; 517 running_len += sample_len_ns; 518 __this_cpu_write(running_sample_length, running_len); 519 520 /* 521 * Note: this will be biased artifically low until we have 522 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 523 * from having to maintain a count. 524 */ 525 avg_len = running_len/NR_ACCUMULATED_SAMPLES; 526 if (avg_len <= max_len) 527 return; 528 529 __report_avg = avg_len; 530 __report_allowed = max_len; 531 532 /* 533 * Compute a throttle threshold 25% below the current duration. 534 */ 535 avg_len += avg_len / 4; 536 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent; 537 if (avg_len < max) 538 max /= (u32)avg_len; 539 else 540 max = 1; 541 542 WRITE_ONCE(perf_sample_allowed_ns, avg_len); 543 WRITE_ONCE(max_samples_per_tick, max); 544 545 sysctl_perf_event_sample_rate = max * HZ; 546 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 547 548 if (!irq_work_queue(&perf_duration_work)) { 549 early_printk("perf: interrupt took too long (%lld > %lld), lowering " 550 "kernel.perf_event_max_sample_rate to %d\n", 551 __report_avg, __report_allowed, 552 sysctl_perf_event_sample_rate); 553 } 554 } 555 556 static atomic64_t perf_event_id; 557 558 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 559 enum event_type_t event_type); 560 561 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 562 enum event_type_t event_type, 563 struct task_struct *task); 564 565 static void update_context_time(struct perf_event_context *ctx); 566 static u64 perf_event_time(struct perf_event *event); 567 568 void __weak perf_event_print_debug(void) { } 569 570 extern __weak const char *perf_pmu_name(void) 571 { 572 return "pmu"; 573 } 574 575 static inline u64 perf_clock(void) 576 { 577 return local_clock(); 578 } 579 580 static inline u64 perf_event_clock(struct perf_event *event) 581 { 582 return event->clock(); 583 } 584 585 /* 586 * State based event timekeeping... 587 * 588 * The basic idea is to use event->state to determine which (if any) time 589 * fields to increment with the current delta. This means we only need to 590 * update timestamps when we change state or when they are explicitly requested 591 * (read). 592 * 593 * Event groups make things a little more complicated, but not terribly so. The 594 * rules for a group are that if the group leader is OFF the entire group is 595 * OFF, irrespecive of what the group member states are. This results in 596 * __perf_effective_state(). 597 * 598 * A futher ramification is that when a group leader flips between OFF and 599 * !OFF, we need to update all group member times. 600 * 601 * 602 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we 603 * need to make sure the relevant context time is updated before we try and 604 * update our timestamps. 605 */ 606 607 static __always_inline enum perf_event_state 608 __perf_effective_state(struct perf_event *event) 609 { 610 struct perf_event *leader = event->group_leader; 611 612 if (leader->state <= PERF_EVENT_STATE_OFF) 613 return leader->state; 614 615 return event->state; 616 } 617 618 static __always_inline void 619 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running) 620 { 621 enum perf_event_state state = __perf_effective_state(event); 622 u64 delta = now - event->tstamp; 623 624 *enabled = event->total_time_enabled; 625 if (state >= PERF_EVENT_STATE_INACTIVE) 626 *enabled += delta; 627 628 *running = event->total_time_running; 629 if (state >= PERF_EVENT_STATE_ACTIVE) 630 *running += delta; 631 } 632 633 static void perf_event_update_time(struct perf_event *event) 634 { 635 u64 now = perf_event_time(event); 636 637 __perf_update_times(event, now, &event->total_time_enabled, 638 &event->total_time_running); 639 event->tstamp = now; 640 } 641 642 static void perf_event_update_sibling_time(struct perf_event *leader) 643 { 644 struct perf_event *sibling; 645 646 for_each_sibling_event(sibling, leader) 647 perf_event_update_time(sibling); 648 } 649 650 static void 651 perf_event_set_state(struct perf_event *event, enum perf_event_state state) 652 { 653 if (event->state == state) 654 return; 655 656 perf_event_update_time(event); 657 /* 658 * If a group leader gets enabled/disabled all its siblings 659 * are affected too. 660 */ 661 if ((event->state < 0) ^ (state < 0)) 662 perf_event_update_sibling_time(event); 663 664 WRITE_ONCE(event->state, state); 665 } 666 667 #ifdef CONFIG_CGROUP_PERF 668 669 static inline bool 670 perf_cgroup_match(struct perf_event *event) 671 { 672 struct perf_event_context *ctx = event->ctx; 673 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 674 675 /* @event doesn't care about cgroup */ 676 if (!event->cgrp) 677 return true; 678 679 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 680 if (!cpuctx->cgrp) 681 return false; 682 683 /* 684 * Cgroup scoping is recursive. An event enabled for a cgroup is 685 * also enabled for all its descendant cgroups. If @cpuctx's 686 * cgroup is a descendant of @event's (the test covers identity 687 * case), it's a match. 688 */ 689 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 690 event->cgrp->css.cgroup); 691 } 692 693 static inline void perf_detach_cgroup(struct perf_event *event) 694 { 695 css_put(&event->cgrp->css); 696 event->cgrp = NULL; 697 } 698 699 static inline int is_cgroup_event(struct perf_event *event) 700 { 701 return event->cgrp != NULL; 702 } 703 704 static inline u64 perf_cgroup_event_time(struct perf_event *event) 705 { 706 struct perf_cgroup_info *t; 707 708 t = per_cpu_ptr(event->cgrp->info, event->cpu); 709 return t->time; 710 } 711 712 static inline void __update_cgrp_time(struct perf_cgroup *cgrp) 713 { 714 struct perf_cgroup_info *info; 715 u64 now; 716 717 now = perf_clock(); 718 719 info = this_cpu_ptr(cgrp->info); 720 721 info->time += now - info->timestamp; 722 info->timestamp = now; 723 } 724 725 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 726 { 727 struct perf_cgroup *cgrp = cpuctx->cgrp; 728 struct cgroup_subsys_state *css; 729 730 if (cgrp) { 731 for (css = &cgrp->css; css; css = css->parent) { 732 cgrp = container_of(css, struct perf_cgroup, css); 733 __update_cgrp_time(cgrp); 734 } 735 } 736 } 737 738 static inline void update_cgrp_time_from_event(struct perf_event *event) 739 { 740 struct perf_cgroup *cgrp; 741 742 /* 743 * ensure we access cgroup data only when needed and 744 * when we know the cgroup is pinned (css_get) 745 */ 746 if (!is_cgroup_event(event)) 747 return; 748 749 cgrp = perf_cgroup_from_task(current, event->ctx); 750 /* 751 * Do not update time when cgroup is not active 752 */ 753 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup)) 754 __update_cgrp_time(event->cgrp); 755 } 756 757 static inline void 758 perf_cgroup_set_timestamp(struct task_struct *task, 759 struct perf_event_context *ctx) 760 { 761 struct perf_cgroup *cgrp; 762 struct perf_cgroup_info *info; 763 struct cgroup_subsys_state *css; 764 765 /* 766 * ctx->lock held by caller 767 * ensure we do not access cgroup data 768 * unless we have the cgroup pinned (css_get) 769 */ 770 if (!task || !ctx->nr_cgroups) 771 return; 772 773 cgrp = perf_cgroup_from_task(task, ctx); 774 775 for (css = &cgrp->css; css; css = css->parent) { 776 cgrp = container_of(css, struct perf_cgroup, css); 777 info = this_cpu_ptr(cgrp->info); 778 info->timestamp = ctx->timestamp; 779 } 780 } 781 782 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list); 783 784 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */ 785 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */ 786 787 /* 788 * reschedule events based on the cgroup constraint of task. 789 * 790 * mode SWOUT : schedule out everything 791 * mode SWIN : schedule in based on cgroup for next 792 */ 793 static void perf_cgroup_switch(struct task_struct *task, int mode) 794 { 795 struct perf_cpu_context *cpuctx; 796 struct list_head *list; 797 unsigned long flags; 798 799 /* 800 * Disable interrupts and preemption to avoid this CPU's 801 * cgrp_cpuctx_entry to change under us. 802 */ 803 local_irq_save(flags); 804 805 list = this_cpu_ptr(&cgrp_cpuctx_list); 806 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) { 807 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0); 808 809 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 810 perf_pmu_disable(cpuctx->ctx.pmu); 811 812 if (mode & PERF_CGROUP_SWOUT) { 813 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 814 /* 815 * must not be done before ctxswout due 816 * to event_filter_match() in event_sched_out() 817 */ 818 cpuctx->cgrp = NULL; 819 } 820 821 if (mode & PERF_CGROUP_SWIN) { 822 WARN_ON_ONCE(cpuctx->cgrp); 823 /* 824 * set cgrp before ctxsw in to allow 825 * event_filter_match() to not have to pass 826 * task around 827 * we pass the cpuctx->ctx to perf_cgroup_from_task() 828 * because cgorup events are only per-cpu 829 */ 830 cpuctx->cgrp = perf_cgroup_from_task(task, 831 &cpuctx->ctx); 832 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task); 833 } 834 perf_pmu_enable(cpuctx->ctx.pmu); 835 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 836 } 837 838 local_irq_restore(flags); 839 } 840 841 static inline void perf_cgroup_sched_out(struct task_struct *task, 842 struct task_struct *next) 843 { 844 struct perf_cgroup *cgrp1; 845 struct perf_cgroup *cgrp2 = NULL; 846 847 rcu_read_lock(); 848 /* 849 * we come here when we know perf_cgroup_events > 0 850 * we do not need to pass the ctx here because we know 851 * we are holding the rcu lock 852 */ 853 cgrp1 = perf_cgroup_from_task(task, NULL); 854 cgrp2 = perf_cgroup_from_task(next, NULL); 855 856 /* 857 * only schedule out current cgroup events if we know 858 * that we are switching to a different cgroup. Otherwise, 859 * do no touch the cgroup events. 860 */ 861 if (cgrp1 != cgrp2) 862 perf_cgroup_switch(task, PERF_CGROUP_SWOUT); 863 864 rcu_read_unlock(); 865 } 866 867 static inline void perf_cgroup_sched_in(struct task_struct *prev, 868 struct task_struct *task) 869 { 870 struct perf_cgroup *cgrp1; 871 struct perf_cgroup *cgrp2 = NULL; 872 873 rcu_read_lock(); 874 /* 875 * we come here when we know perf_cgroup_events > 0 876 * we do not need to pass the ctx here because we know 877 * we are holding the rcu lock 878 */ 879 cgrp1 = perf_cgroup_from_task(task, NULL); 880 cgrp2 = perf_cgroup_from_task(prev, NULL); 881 882 /* 883 * only need to schedule in cgroup events if we are changing 884 * cgroup during ctxsw. Cgroup events were not scheduled 885 * out of ctxsw out if that was not the case. 886 */ 887 if (cgrp1 != cgrp2) 888 perf_cgroup_switch(task, PERF_CGROUP_SWIN); 889 890 rcu_read_unlock(); 891 } 892 893 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 894 struct perf_event_attr *attr, 895 struct perf_event *group_leader) 896 { 897 struct perf_cgroup *cgrp; 898 struct cgroup_subsys_state *css; 899 struct fd f = fdget(fd); 900 int ret = 0; 901 902 if (!f.file) 903 return -EBADF; 904 905 css = css_tryget_online_from_dir(f.file->f_path.dentry, 906 &perf_event_cgrp_subsys); 907 if (IS_ERR(css)) { 908 ret = PTR_ERR(css); 909 goto out; 910 } 911 912 cgrp = container_of(css, struct perf_cgroup, css); 913 event->cgrp = cgrp; 914 915 /* 916 * all events in a group must monitor 917 * the same cgroup because a task belongs 918 * to only one perf cgroup at a time 919 */ 920 if (group_leader && group_leader->cgrp != cgrp) { 921 perf_detach_cgroup(event); 922 ret = -EINVAL; 923 } 924 out: 925 fdput(f); 926 return ret; 927 } 928 929 static inline void 930 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 931 { 932 struct perf_cgroup_info *t; 933 t = per_cpu_ptr(event->cgrp->info, event->cpu); 934 event->shadow_ctx_time = now - t->timestamp; 935 } 936 937 /* 938 * Update cpuctx->cgrp so that it is set when first cgroup event is added and 939 * cleared when last cgroup event is removed. 940 */ 941 static inline void 942 list_update_cgroup_event(struct perf_event *event, 943 struct perf_event_context *ctx, bool add) 944 { 945 struct perf_cpu_context *cpuctx; 946 struct list_head *cpuctx_entry; 947 948 if (!is_cgroup_event(event)) 949 return; 950 951 /* 952 * Because cgroup events are always per-cpu events, 953 * this will always be called from the right CPU. 954 */ 955 cpuctx = __get_cpu_context(ctx); 956 957 /* 958 * Since setting cpuctx->cgrp is conditional on the current @cgrp 959 * matching the event's cgroup, we must do this for every new event, 960 * because if the first would mismatch, the second would not try again 961 * and we would leave cpuctx->cgrp unset. 962 */ 963 if (add && !cpuctx->cgrp) { 964 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 965 966 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup)) 967 cpuctx->cgrp = cgrp; 968 } 969 970 if (add && ctx->nr_cgroups++) 971 return; 972 else if (!add && --ctx->nr_cgroups) 973 return; 974 975 /* no cgroup running */ 976 if (!add) 977 cpuctx->cgrp = NULL; 978 979 cpuctx_entry = &cpuctx->cgrp_cpuctx_entry; 980 if (add) 981 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list)); 982 else 983 list_del(cpuctx_entry); 984 } 985 986 #else /* !CONFIG_CGROUP_PERF */ 987 988 static inline bool 989 perf_cgroup_match(struct perf_event *event) 990 { 991 return true; 992 } 993 994 static inline void perf_detach_cgroup(struct perf_event *event) 995 {} 996 997 static inline int is_cgroup_event(struct perf_event *event) 998 { 999 return 0; 1000 } 1001 1002 static inline void update_cgrp_time_from_event(struct perf_event *event) 1003 { 1004 } 1005 1006 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 1007 { 1008 } 1009 1010 static inline void perf_cgroup_sched_out(struct task_struct *task, 1011 struct task_struct *next) 1012 { 1013 } 1014 1015 static inline void perf_cgroup_sched_in(struct task_struct *prev, 1016 struct task_struct *task) 1017 { 1018 } 1019 1020 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 1021 struct perf_event_attr *attr, 1022 struct perf_event *group_leader) 1023 { 1024 return -EINVAL; 1025 } 1026 1027 static inline void 1028 perf_cgroup_set_timestamp(struct task_struct *task, 1029 struct perf_event_context *ctx) 1030 { 1031 } 1032 1033 void 1034 perf_cgroup_switch(struct task_struct *task, struct task_struct *next) 1035 { 1036 } 1037 1038 static inline void 1039 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 1040 { 1041 } 1042 1043 static inline u64 perf_cgroup_event_time(struct perf_event *event) 1044 { 1045 return 0; 1046 } 1047 1048 static inline void 1049 list_update_cgroup_event(struct perf_event *event, 1050 struct perf_event_context *ctx, bool add) 1051 { 1052 } 1053 1054 #endif 1055 1056 /* 1057 * set default to be dependent on timer tick just 1058 * like original code 1059 */ 1060 #define PERF_CPU_HRTIMER (1000 / HZ) 1061 /* 1062 * function must be called with interrupts disabled 1063 */ 1064 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) 1065 { 1066 struct perf_cpu_context *cpuctx; 1067 bool rotations; 1068 1069 lockdep_assert_irqs_disabled(); 1070 1071 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer); 1072 rotations = perf_rotate_context(cpuctx); 1073 1074 raw_spin_lock(&cpuctx->hrtimer_lock); 1075 if (rotations) 1076 hrtimer_forward_now(hr, cpuctx->hrtimer_interval); 1077 else 1078 cpuctx->hrtimer_active = 0; 1079 raw_spin_unlock(&cpuctx->hrtimer_lock); 1080 1081 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; 1082 } 1083 1084 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu) 1085 { 1086 struct hrtimer *timer = &cpuctx->hrtimer; 1087 struct pmu *pmu = cpuctx->ctx.pmu; 1088 u64 interval; 1089 1090 /* no multiplexing needed for SW PMU */ 1091 if (pmu->task_ctx_nr == perf_sw_context) 1092 return; 1093 1094 /* 1095 * check default is sane, if not set then force to 1096 * default interval (1/tick) 1097 */ 1098 interval = pmu->hrtimer_interval_ms; 1099 if (interval < 1) 1100 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 1101 1102 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 1103 1104 raw_spin_lock_init(&cpuctx->hrtimer_lock); 1105 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 1106 timer->function = perf_mux_hrtimer_handler; 1107 } 1108 1109 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx) 1110 { 1111 struct hrtimer *timer = &cpuctx->hrtimer; 1112 struct pmu *pmu = cpuctx->ctx.pmu; 1113 unsigned long flags; 1114 1115 /* not for SW PMU */ 1116 if (pmu->task_ctx_nr == perf_sw_context) 1117 return 0; 1118 1119 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags); 1120 if (!cpuctx->hrtimer_active) { 1121 cpuctx->hrtimer_active = 1; 1122 hrtimer_forward_now(timer, cpuctx->hrtimer_interval); 1123 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 1124 } 1125 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags); 1126 1127 return 0; 1128 } 1129 1130 void perf_pmu_disable(struct pmu *pmu) 1131 { 1132 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1133 if (!(*count)++) 1134 pmu->pmu_disable(pmu); 1135 } 1136 1137 void perf_pmu_enable(struct pmu *pmu) 1138 { 1139 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1140 if (!--(*count)) 1141 pmu->pmu_enable(pmu); 1142 } 1143 1144 static DEFINE_PER_CPU(struct list_head, active_ctx_list); 1145 1146 /* 1147 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and 1148 * perf_event_task_tick() are fully serialized because they're strictly cpu 1149 * affine and perf_event_ctx{activate,deactivate} are called with IRQs 1150 * disabled, while perf_event_task_tick is called from IRQ context. 1151 */ 1152 static void perf_event_ctx_activate(struct perf_event_context *ctx) 1153 { 1154 struct list_head *head = this_cpu_ptr(&active_ctx_list); 1155 1156 lockdep_assert_irqs_disabled(); 1157 1158 WARN_ON(!list_empty(&ctx->active_ctx_list)); 1159 1160 list_add(&ctx->active_ctx_list, head); 1161 } 1162 1163 static void perf_event_ctx_deactivate(struct perf_event_context *ctx) 1164 { 1165 lockdep_assert_irqs_disabled(); 1166 1167 WARN_ON(list_empty(&ctx->active_ctx_list)); 1168 1169 list_del_init(&ctx->active_ctx_list); 1170 } 1171 1172 static void get_ctx(struct perf_event_context *ctx) 1173 { 1174 WARN_ON(!atomic_inc_not_zero(&ctx->refcount)); 1175 } 1176 1177 static void free_ctx(struct rcu_head *head) 1178 { 1179 struct perf_event_context *ctx; 1180 1181 ctx = container_of(head, struct perf_event_context, rcu_head); 1182 kfree(ctx->task_ctx_data); 1183 kfree(ctx); 1184 } 1185 1186 static void put_ctx(struct perf_event_context *ctx) 1187 { 1188 if (atomic_dec_and_test(&ctx->refcount)) { 1189 if (ctx->parent_ctx) 1190 put_ctx(ctx->parent_ctx); 1191 if (ctx->task && ctx->task != TASK_TOMBSTONE) 1192 put_task_struct(ctx->task); 1193 call_rcu(&ctx->rcu_head, free_ctx); 1194 } 1195 } 1196 1197 /* 1198 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 1199 * perf_pmu_migrate_context() we need some magic. 1200 * 1201 * Those places that change perf_event::ctx will hold both 1202 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 1203 * 1204 * Lock ordering is by mutex address. There are two other sites where 1205 * perf_event_context::mutex nests and those are: 1206 * 1207 * - perf_event_exit_task_context() [ child , 0 ] 1208 * perf_event_exit_event() 1209 * put_event() [ parent, 1 ] 1210 * 1211 * - perf_event_init_context() [ parent, 0 ] 1212 * inherit_task_group() 1213 * inherit_group() 1214 * inherit_event() 1215 * perf_event_alloc() 1216 * perf_init_event() 1217 * perf_try_init_event() [ child , 1 ] 1218 * 1219 * While it appears there is an obvious deadlock here -- the parent and child 1220 * nesting levels are inverted between the two. This is in fact safe because 1221 * life-time rules separate them. That is an exiting task cannot fork, and a 1222 * spawning task cannot (yet) exit. 1223 * 1224 * But remember that that these are parent<->child context relations, and 1225 * migration does not affect children, therefore these two orderings should not 1226 * interact. 1227 * 1228 * The change in perf_event::ctx does not affect children (as claimed above) 1229 * because the sys_perf_event_open() case will install a new event and break 1230 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 1231 * concerned with cpuctx and that doesn't have children. 1232 * 1233 * The places that change perf_event::ctx will issue: 1234 * 1235 * perf_remove_from_context(); 1236 * synchronize_rcu(); 1237 * perf_install_in_context(); 1238 * 1239 * to affect the change. The remove_from_context() + synchronize_rcu() should 1240 * quiesce the event, after which we can install it in the new location. This 1241 * means that only external vectors (perf_fops, prctl) can perturb the event 1242 * while in transit. Therefore all such accessors should also acquire 1243 * perf_event_context::mutex to serialize against this. 1244 * 1245 * However; because event->ctx can change while we're waiting to acquire 1246 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 1247 * function. 1248 * 1249 * Lock order: 1250 * cred_guard_mutex 1251 * task_struct::perf_event_mutex 1252 * perf_event_context::mutex 1253 * perf_event::child_mutex; 1254 * perf_event_context::lock 1255 * perf_event::mmap_mutex 1256 * mmap_sem 1257 * 1258 * cpu_hotplug_lock 1259 * pmus_lock 1260 * cpuctx->mutex / perf_event_context::mutex 1261 */ 1262 static struct perf_event_context * 1263 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 1264 { 1265 struct perf_event_context *ctx; 1266 1267 again: 1268 rcu_read_lock(); 1269 ctx = READ_ONCE(event->ctx); 1270 if (!atomic_inc_not_zero(&ctx->refcount)) { 1271 rcu_read_unlock(); 1272 goto again; 1273 } 1274 rcu_read_unlock(); 1275 1276 mutex_lock_nested(&ctx->mutex, nesting); 1277 if (event->ctx != ctx) { 1278 mutex_unlock(&ctx->mutex); 1279 put_ctx(ctx); 1280 goto again; 1281 } 1282 1283 return ctx; 1284 } 1285 1286 static inline struct perf_event_context * 1287 perf_event_ctx_lock(struct perf_event *event) 1288 { 1289 return perf_event_ctx_lock_nested(event, 0); 1290 } 1291 1292 static void perf_event_ctx_unlock(struct perf_event *event, 1293 struct perf_event_context *ctx) 1294 { 1295 mutex_unlock(&ctx->mutex); 1296 put_ctx(ctx); 1297 } 1298 1299 /* 1300 * This must be done under the ctx->lock, such as to serialize against 1301 * context_equiv(), therefore we cannot call put_ctx() since that might end up 1302 * calling scheduler related locks and ctx->lock nests inside those. 1303 */ 1304 static __must_check struct perf_event_context * 1305 unclone_ctx(struct perf_event_context *ctx) 1306 { 1307 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1308 1309 lockdep_assert_held(&ctx->lock); 1310 1311 if (parent_ctx) 1312 ctx->parent_ctx = NULL; 1313 ctx->generation++; 1314 1315 return parent_ctx; 1316 } 1317 1318 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p, 1319 enum pid_type type) 1320 { 1321 u32 nr; 1322 /* 1323 * only top level events have the pid namespace they were created in 1324 */ 1325 if (event->parent) 1326 event = event->parent; 1327 1328 nr = __task_pid_nr_ns(p, type, event->ns); 1329 /* avoid -1 if it is idle thread or runs in another ns */ 1330 if (!nr && !pid_alive(p)) 1331 nr = -1; 1332 return nr; 1333 } 1334 1335 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1336 { 1337 return perf_event_pid_type(event, p, PIDTYPE_TGID); 1338 } 1339 1340 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1341 { 1342 return perf_event_pid_type(event, p, PIDTYPE_PID); 1343 } 1344 1345 /* 1346 * If we inherit events we want to return the parent event id 1347 * to userspace. 1348 */ 1349 static u64 primary_event_id(struct perf_event *event) 1350 { 1351 u64 id = event->id; 1352 1353 if (event->parent) 1354 id = event->parent->id; 1355 1356 return id; 1357 } 1358 1359 /* 1360 * Get the perf_event_context for a task and lock it. 1361 * 1362 * This has to cope with with the fact that until it is locked, 1363 * the context could get moved to another task. 1364 */ 1365 static struct perf_event_context * 1366 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) 1367 { 1368 struct perf_event_context *ctx; 1369 1370 retry: 1371 /* 1372 * One of the few rules of preemptible RCU is that one cannot do 1373 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1374 * part of the read side critical section was irqs-enabled -- see 1375 * rcu_read_unlock_special(). 1376 * 1377 * Since ctx->lock nests under rq->lock we must ensure the entire read 1378 * side critical section has interrupts disabled. 1379 */ 1380 local_irq_save(*flags); 1381 rcu_read_lock(); 1382 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); 1383 if (ctx) { 1384 /* 1385 * If this context is a clone of another, it might 1386 * get swapped for another underneath us by 1387 * perf_event_task_sched_out, though the 1388 * rcu_read_lock() protects us from any context 1389 * getting freed. Lock the context and check if it 1390 * got swapped before we could get the lock, and retry 1391 * if so. If we locked the right context, then it 1392 * can't get swapped on us any more. 1393 */ 1394 raw_spin_lock(&ctx->lock); 1395 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { 1396 raw_spin_unlock(&ctx->lock); 1397 rcu_read_unlock(); 1398 local_irq_restore(*flags); 1399 goto retry; 1400 } 1401 1402 if (ctx->task == TASK_TOMBSTONE || 1403 !atomic_inc_not_zero(&ctx->refcount)) { 1404 raw_spin_unlock(&ctx->lock); 1405 ctx = NULL; 1406 } else { 1407 WARN_ON_ONCE(ctx->task != task); 1408 } 1409 } 1410 rcu_read_unlock(); 1411 if (!ctx) 1412 local_irq_restore(*flags); 1413 return ctx; 1414 } 1415 1416 /* 1417 * Get the context for a task and increment its pin_count so it 1418 * can't get swapped to another task. This also increments its 1419 * reference count so that the context can't get freed. 1420 */ 1421 static struct perf_event_context * 1422 perf_pin_task_context(struct task_struct *task, int ctxn) 1423 { 1424 struct perf_event_context *ctx; 1425 unsigned long flags; 1426 1427 ctx = perf_lock_task_context(task, ctxn, &flags); 1428 if (ctx) { 1429 ++ctx->pin_count; 1430 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1431 } 1432 return ctx; 1433 } 1434 1435 static void perf_unpin_context(struct perf_event_context *ctx) 1436 { 1437 unsigned long flags; 1438 1439 raw_spin_lock_irqsave(&ctx->lock, flags); 1440 --ctx->pin_count; 1441 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1442 } 1443 1444 /* 1445 * Update the record of the current time in a context. 1446 */ 1447 static void update_context_time(struct perf_event_context *ctx) 1448 { 1449 u64 now = perf_clock(); 1450 1451 ctx->time += now - ctx->timestamp; 1452 ctx->timestamp = now; 1453 } 1454 1455 static u64 perf_event_time(struct perf_event *event) 1456 { 1457 struct perf_event_context *ctx = event->ctx; 1458 1459 if (is_cgroup_event(event)) 1460 return perf_cgroup_event_time(event); 1461 1462 return ctx ? ctx->time : 0; 1463 } 1464 1465 static enum event_type_t get_event_type(struct perf_event *event) 1466 { 1467 struct perf_event_context *ctx = event->ctx; 1468 enum event_type_t event_type; 1469 1470 lockdep_assert_held(&ctx->lock); 1471 1472 /* 1473 * It's 'group type', really, because if our group leader is 1474 * pinned, so are we. 1475 */ 1476 if (event->group_leader != event) 1477 event = event->group_leader; 1478 1479 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE; 1480 if (!ctx->task) 1481 event_type |= EVENT_CPU; 1482 1483 return event_type; 1484 } 1485 1486 /* 1487 * Helper function to initialize event group nodes. 1488 */ 1489 static void init_event_group(struct perf_event *event) 1490 { 1491 RB_CLEAR_NODE(&event->group_node); 1492 event->group_index = 0; 1493 } 1494 1495 /* 1496 * Extract pinned or flexible groups from the context 1497 * based on event attrs bits. 1498 */ 1499 static struct perf_event_groups * 1500 get_event_groups(struct perf_event *event, struct perf_event_context *ctx) 1501 { 1502 if (event->attr.pinned) 1503 return &ctx->pinned_groups; 1504 else 1505 return &ctx->flexible_groups; 1506 } 1507 1508 /* 1509 * Helper function to initializes perf_event_group trees. 1510 */ 1511 static void perf_event_groups_init(struct perf_event_groups *groups) 1512 { 1513 groups->tree = RB_ROOT; 1514 groups->index = 0; 1515 } 1516 1517 /* 1518 * Compare function for event groups; 1519 * 1520 * Implements complex key that first sorts by CPU and then by virtual index 1521 * which provides ordering when rotating groups for the same CPU. 1522 */ 1523 static bool 1524 perf_event_groups_less(struct perf_event *left, struct perf_event *right) 1525 { 1526 if (left->cpu < right->cpu) 1527 return true; 1528 if (left->cpu > right->cpu) 1529 return false; 1530 1531 if (left->group_index < right->group_index) 1532 return true; 1533 if (left->group_index > right->group_index) 1534 return false; 1535 1536 return false; 1537 } 1538 1539 /* 1540 * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for 1541 * key (see perf_event_groups_less). This places it last inside the CPU 1542 * subtree. 1543 */ 1544 static void 1545 perf_event_groups_insert(struct perf_event_groups *groups, 1546 struct perf_event *event) 1547 { 1548 struct perf_event *node_event; 1549 struct rb_node *parent; 1550 struct rb_node **node; 1551 1552 event->group_index = ++groups->index; 1553 1554 node = &groups->tree.rb_node; 1555 parent = *node; 1556 1557 while (*node) { 1558 parent = *node; 1559 node_event = container_of(*node, struct perf_event, group_node); 1560 1561 if (perf_event_groups_less(event, node_event)) 1562 node = &parent->rb_left; 1563 else 1564 node = &parent->rb_right; 1565 } 1566 1567 rb_link_node(&event->group_node, parent, node); 1568 rb_insert_color(&event->group_node, &groups->tree); 1569 } 1570 1571 /* 1572 * Helper function to insert event into the pinned or flexible groups. 1573 */ 1574 static void 1575 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx) 1576 { 1577 struct perf_event_groups *groups; 1578 1579 groups = get_event_groups(event, ctx); 1580 perf_event_groups_insert(groups, event); 1581 } 1582 1583 /* 1584 * Delete a group from a tree. 1585 */ 1586 static void 1587 perf_event_groups_delete(struct perf_event_groups *groups, 1588 struct perf_event *event) 1589 { 1590 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) || 1591 RB_EMPTY_ROOT(&groups->tree)); 1592 1593 rb_erase(&event->group_node, &groups->tree); 1594 init_event_group(event); 1595 } 1596 1597 /* 1598 * Helper function to delete event from its groups. 1599 */ 1600 static void 1601 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx) 1602 { 1603 struct perf_event_groups *groups; 1604 1605 groups = get_event_groups(event, ctx); 1606 perf_event_groups_delete(groups, event); 1607 } 1608 1609 /* 1610 * Get the leftmost event in the @cpu subtree. 1611 */ 1612 static struct perf_event * 1613 perf_event_groups_first(struct perf_event_groups *groups, int cpu) 1614 { 1615 struct perf_event *node_event = NULL, *match = NULL; 1616 struct rb_node *node = groups->tree.rb_node; 1617 1618 while (node) { 1619 node_event = container_of(node, struct perf_event, group_node); 1620 1621 if (cpu < node_event->cpu) { 1622 node = node->rb_left; 1623 } else if (cpu > node_event->cpu) { 1624 node = node->rb_right; 1625 } else { 1626 match = node_event; 1627 node = node->rb_left; 1628 } 1629 } 1630 1631 return match; 1632 } 1633 1634 /* 1635 * Like rb_entry_next_safe() for the @cpu subtree. 1636 */ 1637 static struct perf_event * 1638 perf_event_groups_next(struct perf_event *event) 1639 { 1640 struct perf_event *next; 1641 1642 next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node); 1643 if (next && next->cpu == event->cpu) 1644 return next; 1645 1646 return NULL; 1647 } 1648 1649 /* 1650 * Iterate through the whole groups tree. 1651 */ 1652 #define perf_event_groups_for_each(event, groups) \ 1653 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \ 1654 typeof(*event), group_node); event; \ 1655 event = rb_entry_safe(rb_next(&event->group_node), \ 1656 typeof(*event), group_node)) 1657 1658 /* 1659 * Add an event from the lists for its context. 1660 * Must be called with ctx->mutex and ctx->lock held. 1661 */ 1662 static void 1663 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1664 { 1665 lockdep_assert_held(&ctx->lock); 1666 1667 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1668 event->attach_state |= PERF_ATTACH_CONTEXT; 1669 1670 event->tstamp = perf_event_time(event); 1671 1672 /* 1673 * If we're a stand alone event or group leader, we go to the context 1674 * list, group events are kept attached to the group so that 1675 * perf_group_detach can, at all times, locate all siblings. 1676 */ 1677 if (event->group_leader == event) { 1678 event->group_caps = event->event_caps; 1679 add_event_to_groups(event, ctx); 1680 } 1681 1682 list_update_cgroup_event(event, ctx, true); 1683 1684 list_add_rcu(&event->event_entry, &ctx->event_list); 1685 ctx->nr_events++; 1686 if (event->attr.inherit_stat) 1687 ctx->nr_stat++; 1688 1689 ctx->generation++; 1690 } 1691 1692 /* 1693 * Initialize event state based on the perf_event_attr::disabled. 1694 */ 1695 static inline void perf_event__state_init(struct perf_event *event) 1696 { 1697 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1698 PERF_EVENT_STATE_INACTIVE; 1699 } 1700 1701 static void __perf_event_read_size(struct perf_event *event, int nr_siblings) 1702 { 1703 int entry = sizeof(u64); /* value */ 1704 int size = 0; 1705 int nr = 1; 1706 1707 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1708 size += sizeof(u64); 1709 1710 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1711 size += sizeof(u64); 1712 1713 if (event->attr.read_format & PERF_FORMAT_ID) 1714 entry += sizeof(u64); 1715 1716 if (event->attr.read_format & PERF_FORMAT_GROUP) { 1717 nr += nr_siblings; 1718 size += sizeof(u64); 1719 } 1720 1721 size += entry * nr; 1722 event->read_size = size; 1723 } 1724 1725 static void __perf_event_header_size(struct perf_event *event, u64 sample_type) 1726 { 1727 struct perf_sample_data *data; 1728 u16 size = 0; 1729 1730 if (sample_type & PERF_SAMPLE_IP) 1731 size += sizeof(data->ip); 1732 1733 if (sample_type & PERF_SAMPLE_ADDR) 1734 size += sizeof(data->addr); 1735 1736 if (sample_type & PERF_SAMPLE_PERIOD) 1737 size += sizeof(data->period); 1738 1739 if (sample_type & PERF_SAMPLE_WEIGHT) 1740 size += sizeof(data->weight); 1741 1742 if (sample_type & PERF_SAMPLE_READ) 1743 size += event->read_size; 1744 1745 if (sample_type & PERF_SAMPLE_DATA_SRC) 1746 size += sizeof(data->data_src.val); 1747 1748 if (sample_type & PERF_SAMPLE_TRANSACTION) 1749 size += sizeof(data->txn); 1750 1751 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 1752 size += sizeof(data->phys_addr); 1753 1754 event->header_size = size; 1755 } 1756 1757 /* 1758 * Called at perf_event creation and when events are attached/detached from a 1759 * group. 1760 */ 1761 static void perf_event__header_size(struct perf_event *event) 1762 { 1763 __perf_event_read_size(event, 1764 event->group_leader->nr_siblings); 1765 __perf_event_header_size(event, event->attr.sample_type); 1766 } 1767 1768 static void perf_event__id_header_size(struct perf_event *event) 1769 { 1770 struct perf_sample_data *data; 1771 u64 sample_type = event->attr.sample_type; 1772 u16 size = 0; 1773 1774 if (sample_type & PERF_SAMPLE_TID) 1775 size += sizeof(data->tid_entry); 1776 1777 if (sample_type & PERF_SAMPLE_TIME) 1778 size += sizeof(data->time); 1779 1780 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1781 size += sizeof(data->id); 1782 1783 if (sample_type & PERF_SAMPLE_ID) 1784 size += sizeof(data->id); 1785 1786 if (sample_type & PERF_SAMPLE_STREAM_ID) 1787 size += sizeof(data->stream_id); 1788 1789 if (sample_type & PERF_SAMPLE_CPU) 1790 size += sizeof(data->cpu_entry); 1791 1792 event->id_header_size = size; 1793 } 1794 1795 static bool perf_event_validate_size(struct perf_event *event) 1796 { 1797 /* 1798 * The values computed here will be over-written when we actually 1799 * attach the event. 1800 */ 1801 __perf_event_read_size(event, event->group_leader->nr_siblings + 1); 1802 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ); 1803 perf_event__id_header_size(event); 1804 1805 /* 1806 * Sum the lot; should not exceed the 64k limit we have on records. 1807 * Conservative limit to allow for callchains and other variable fields. 1808 */ 1809 if (event->read_size + event->header_size + 1810 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024) 1811 return false; 1812 1813 return true; 1814 } 1815 1816 static void perf_group_attach(struct perf_event *event) 1817 { 1818 struct perf_event *group_leader = event->group_leader, *pos; 1819 1820 lockdep_assert_held(&event->ctx->lock); 1821 1822 /* 1823 * We can have double attach due to group movement in perf_event_open. 1824 */ 1825 if (event->attach_state & PERF_ATTACH_GROUP) 1826 return; 1827 1828 event->attach_state |= PERF_ATTACH_GROUP; 1829 1830 if (group_leader == event) 1831 return; 1832 1833 WARN_ON_ONCE(group_leader->ctx != event->ctx); 1834 1835 group_leader->group_caps &= event->event_caps; 1836 1837 list_add_tail(&event->sibling_list, &group_leader->sibling_list); 1838 group_leader->nr_siblings++; 1839 1840 perf_event__header_size(group_leader); 1841 1842 for_each_sibling_event(pos, group_leader) 1843 perf_event__header_size(pos); 1844 } 1845 1846 /* 1847 * Remove an event from the lists for its context. 1848 * Must be called with ctx->mutex and ctx->lock held. 1849 */ 1850 static void 1851 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 1852 { 1853 WARN_ON_ONCE(event->ctx != ctx); 1854 lockdep_assert_held(&ctx->lock); 1855 1856 /* 1857 * We can have double detach due to exit/hot-unplug + close. 1858 */ 1859 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 1860 return; 1861 1862 event->attach_state &= ~PERF_ATTACH_CONTEXT; 1863 1864 list_update_cgroup_event(event, ctx, false); 1865 1866 ctx->nr_events--; 1867 if (event->attr.inherit_stat) 1868 ctx->nr_stat--; 1869 1870 list_del_rcu(&event->event_entry); 1871 1872 if (event->group_leader == event) 1873 del_event_from_groups(event, ctx); 1874 1875 /* 1876 * If event was in error state, then keep it 1877 * that way, otherwise bogus counts will be 1878 * returned on read(). The only way to get out 1879 * of error state is by explicit re-enabling 1880 * of the event 1881 */ 1882 if (event->state > PERF_EVENT_STATE_OFF) 1883 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 1884 1885 ctx->generation++; 1886 } 1887 1888 static void perf_group_detach(struct perf_event *event) 1889 { 1890 struct perf_event *sibling, *tmp; 1891 struct perf_event_context *ctx = event->ctx; 1892 1893 lockdep_assert_held(&ctx->lock); 1894 1895 /* 1896 * We can have double detach due to exit/hot-unplug + close. 1897 */ 1898 if (!(event->attach_state & PERF_ATTACH_GROUP)) 1899 return; 1900 1901 event->attach_state &= ~PERF_ATTACH_GROUP; 1902 1903 /* 1904 * If this is a sibling, remove it from its group. 1905 */ 1906 if (event->group_leader != event) { 1907 list_del_init(&event->sibling_list); 1908 event->group_leader->nr_siblings--; 1909 goto out; 1910 } 1911 1912 /* 1913 * If this was a group event with sibling events then 1914 * upgrade the siblings to singleton events by adding them 1915 * to whatever list we are on. 1916 */ 1917 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) { 1918 1919 sibling->group_leader = sibling; 1920 list_del_init(&sibling->sibling_list); 1921 1922 /* Inherit group flags from the previous leader */ 1923 sibling->group_caps = event->group_caps; 1924 1925 if (!RB_EMPTY_NODE(&event->group_node)) { 1926 add_event_to_groups(sibling, event->ctx); 1927 1928 if (sibling->state == PERF_EVENT_STATE_ACTIVE) { 1929 struct list_head *list = sibling->attr.pinned ? 1930 &ctx->pinned_active : &ctx->flexible_active; 1931 1932 list_add_tail(&sibling->active_list, list); 1933 } 1934 } 1935 1936 WARN_ON_ONCE(sibling->ctx != event->ctx); 1937 } 1938 1939 out: 1940 perf_event__header_size(event->group_leader); 1941 1942 for_each_sibling_event(tmp, event->group_leader) 1943 perf_event__header_size(tmp); 1944 } 1945 1946 static bool is_orphaned_event(struct perf_event *event) 1947 { 1948 return event->state == PERF_EVENT_STATE_DEAD; 1949 } 1950 1951 static inline int __pmu_filter_match(struct perf_event *event) 1952 { 1953 struct pmu *pmu = event->pmu; 1954 return pmu->filter_match ? pmu->filter_match(event) : 1; 1955 } 1956 1957 /* 1958 * Check whether we should attempt to schedule an event group based on 1959 * PMU-specific filtering. An event group can consist of HW and SW events, 1960 * potentially with a SW leader, so we must check all the filters, to 1961 * determine whether a group is schedulable: 1962 */ 1963 static inline int pmu_filter_match(struct perf_event *event) 1964 { 1965 struct perf_event *sibling; 1966 1967 if (!__pmu_filter_match(event)) 1968 return 0; 1969 1970 for_each_sibling_event(sibling, event) { 1971 if (!__pmu_filter_match(sibling)) 1972 return 0; 1973 } 1974 1975 return 1; 1976 } 1977 1978 static inline int 1979 event_filter_match(struct perf_event *event) 1980 { 1981 return (event->cpu == -1 || event->cpu == smp_processor_id()) && 1982 perf_cgroup_match(event) && pmu_filter_match(event); 1983 } 1984 1985 static void 1986 event_sched_out(struct perf_event *event, 1987 struct perf_cpu_context *cpuctx, 1988 struct perf_event_context *ctx) 1989 { 1990 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE; 1991 1992 WARN_ON_ONCE(event->ctx != ctx); 1993 lockdep_assert_held(&ctx->lock); 1994 1995 if (event->state != PERF_EVENT_STATE_ACTIVE) 1996 return; 1997 1998 /* 1999 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but 2000 * we can schedule events _OUT_ individually through things like 2001 * __perf_remove_from_context(). 2002 */ 2003 list_del_init(&event->active_list); 2004 2005 perf_pmu_disable(event->pmu); 2006 2007 event->pmu->del(event, 0); 2008 event->oncpu = -1; 2009 2010 if (event->pending_disable) { 2011 event->pending_disable = 0; 2012 state = PERF_EVENT_STATE_OFF; 2013 } 2014 perf_event_set_state(event, state); 2015 2016 if (!is_software_event(event)) 2017 cpuctx->active_oncpu--; 2018 if (!--ctx->nr_active) 2019 perf_event_ctx_deactivate(ctx); 2020 if (event->attr.freq && event->attr.sample_freq) 2021 ctx->nr_freq--; 2022 if (event->attr.exclusive || !cpuctx->active_oncpu) 2023 cpuctx->exclusive = 0; 2024 2025 perf_pmu_enable(event->pmu); 2026 } 2027 2028 static void 2029 group_sched_out(struct perf_event *group_event, 2030 struct perf_cpu_context *cpuctx, 2031 struct perf_event_context *ctx) 2032 { 2033 struct perf_event *event; 2034 2035 if (group_event->state != PERF_EVENT_STATE_ACTIVE) 2036 return; 2037 2038 perf_pmu_disable(ctx->pmu); 2039 2040 event_sched_out(group_event, cpuctx, ctx); 2041 2042 /* 2043 * Schedule out siblings (if any): 2044 */ 2045 for_each_sibling_event(event, group_event) 2046 event_sched_out(event, cpuctx, ctx); 2047 2048 perf_pmu_enable(ctx->pmu); 2049 2050 if (group_event->attr.exclusive) 2051 cpuctx->exclusive = 0; 2052 } 2053 2054 #define DETACH_GROUP 0x01UL 2055 2056 /* 2057 * Cross CPU call to remove a performance event 2058 * 2059 * We disable the event on the hardware level first. After that we 2060 * remove it from the context list. 2061 */ 2062 static void 2063 __perf_remove_from_context(struct perf_event *event, 2064 struct perf_cpu_context *cpuctx, 2065 struct perf_event_context *ctx, 2066 void *info) 2067 { 2068 unsigned long flags = (unsigned long)info; 2069 2070 if (ctx->is_active & EVENT_TIME) { 2071 update_context_time(ctx); 2072 update_cgrp_time_from_cpuctx(cpuctx); 2073 } 2074 2075 event_sched_out(event, cpuctx, ctx); 2076 if (flags & DETACH_GROUP) 2077 perf_group_detach(event); 2078 list_del_event(event, ctx); 2079 2080 if (!ctx->nr_events && ctx->is_active) { 2081 ctx->is_active = 0; 2082 if (ctx->task) { 2083 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2084 cpuctx->task_ctx = NULL; 2085 } 2086 } 2087 } 2088 2089 /* 2090 * Remove the event from a task's (or a CPU's) list of events. 2091 * 2092 * If event->ctx is a cloned context, callers must make sure that 2093 * every task struct that event->ctx->task could possibly point to 2094 * remains valid. This is OK when called from perf_release since 2095 * that only calls us on the top-level context, which can't be a clone. 2096 * When called from perf_event_exit_task, it's OK because the 2097 * context has been detached from its task. 2098 */ 2099 static void perf_remove_from_context(struct perf_event *event, unsigned long flags) 2100 { 2101 struct perf_event_context *ctx = event->ctx; 2102 2103 lockdep_assert_held(&ctx->mutex); 2104 2105 event_function_call(event, __perf_remove_from_context, (void *)flags); 2106 2107 /* 2108 * The above event_function_call() can NO-OP when it hits 2109 * TASK_TOMBSTONE. In that case we must already have been detached 2110 * from the context (by perf_event_exit_event()) but the grouping 2111 * might still be in-tact. 2112 */ 2113 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 2114 if ((flags & DETACH_GROUP) && 2115 (event->attach_state & PERF_ATTACH_GROUP)) { 2116 /* 2117 * Since in that case we cannot possibly be scheduled, simply 2118 * detach now. 2119 */ 2120 raw_spin_lock_irq(&ctx->lock); 2121 perf_group_detach(event); 2122 raw_spin_unlock_irq(&ctx->lock); 2123 } 2124 } 2125 2126 /* 2127 * Cross CPU call to disable a performance event 2128 */ 2129 static void __perf_event_disable(struct perf_event *event, 2130 struct perf_cpu_context *cpuctx, 2131 struct perf_event_context *ctx, 2132 void *info) 2133 { 2134 if (event->state < PERF_EVENT_STATE_INACTIVE) 2135 return; 2136 2137 if (ctx->is_active & EVENT_TIME) { 2138 update_context_time(ctx); 2139 update_cgrp_time_from_event(event); 2140 } 2141 2142 if (event == event->group_leader) 2143 group_sched_out(event, cpuctx, ctx); 2144 else 2145 event_sched_out(event, cpuctx, ctx); 2146 2147 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2148 } 2149 2150 /* 2151 * Disable an event. 2152 * 2153 * If event->ctx is a cloned context, callers must make sure that 2154 * every task struct that event->ctx->task could possibly point to 2155 * remains valid. This condition is satisifed when called through 2156 * perf_event_for_each_child or perf_event_for_each because they 2157 * hold the top-level event's child_mutex, so any descendant that 2158 * goes to exit will block in perf_event_exit_event(). 2159 * 2160 * When called from perf_pending_event it's OK because event->ctx 2161 * is the current context on this CPU and preemption is disabled, 2162 * hence we can't get into perf_event_task_sched_out for this context. 2163 */ 2164 static void _perf_event_disable(struct perf_event *event) 2165 { 2166 struct perf_event_context *ctx = event->ctx; 2167 2168 raw_spin_lock_irq(&ctx->lock); 2169 if (event->state <= PERF_EVENT_STATE_OFF) { 2170 raw_spin_unlock_irq(&ctx->lock); 2171 return; 2172 } 2173 raw_spin_unlock_irq(&ctx->lock); 2174 2175 event_function_call(event, __perf_event_disable, NULL); 2176 } 2177 2178 void perf_event_disable_local(struct perf_event *event) 2179 { 2180 event_function_local(event, __perf_event_disable, NULL); 2181 } 2182 2183 /* 2184 * Strictly speaking kernel users cannot create groups and therefore this 2185 * interface does not need the perf_event_ctx_lock() magic. 2186 */ 2187 void perf_event_disable(struct perf_event *event) 2188 { 2189 struct perf_event_context *ctx; 2190 2191 ctx = perf_event_ctx_lock(event); 2192 _perf_event_disable(event); 2193 perf_event_ctx_unlock(event, ctx); 2194 } 2195 EXPORT_SYMBOL_GPL(perf_event_disable); 2196 2197 void perf_event_disable_inatomic(struct perf_event *event) 2198 { 2199 event->pending_disable = 1; 2200 irq_work_queue(&event->pending); 2201 } 2202 2203 static void perf_set_shadow_time(struct perf_event *event, 2204 struct perf_event_context *ctx) 2205 { 2206 /* 2207 * use the correct time source for the time snapshot 2208 * 2209 * We could get by without this by leveraging the 2210 * fact that to get to this function, the caller 2211 * has most likely already called update_context_time() 2212 * and update_cgrp_time_xx() and thus both timestamp 2213 * are identical (or very close). Given that tstamp is, 2214 * already adjusted for cgroup, we could say that: 2215 * tstamp - ctx->timestamp 2216 * is equivalent to 2217 * tstamp - cgrp->timestamp. 2218 * 2219 * Then, in perf_output_read(), the calculation would 2220 * work with no changes because: 2221 * - event is guaranteed scheduled in 2222 * - no scheduled out in between 2223 * - thus the timestamp would be the same 2224 * 2225 * But this is a bit hairy. 2226 * 2227 * So instead, we have an explicit cgroup call to remain 2228 * within the time time source all along. We believe it 2229 * is cleaner and simpler to understand. 2230 */ 2231 if (is_cgroup_event(event)) 2232 perf_cgroup_set_shadow_time(event, event->tstamp); 2233 else 2234 event->shadow_ctx_time = event->tstamp - ctx->timestamp; 2235 } 2236 2237 #define MAX_INTERRUPTS (~0ULL) 2238 2239 static void perf_log_throttle(struct perf_event *event, int enable); 2240 static void perf_log_itrace_start(struct perf_event *event); 2241 2242 static int 2243 event_sched_in(struct perf_event *event, 2244 struct perf_cpu_context *cpuctx, 2245 struct perf_event_context *ctx) 2246 { 2247 int ret = 0; 2248 2249 lockdep_assert_held(&ctx->lock); 2250 2251 if (event->state <= PERF_EVENT_STATE_OFF) 2252 return 0; 2253 2254 WRITE_ONCE(event->oncpu, smp_processor_id()); 2255 /* 2256 * Order event::oncpu write to happen before the ACTIVE state is 2257 * visible. This allows perf_event_{stop,read}() to observe the correct 2258 * ->oncpu if it sees ACTIVE. 2259 */ 2260 smp_wmb(); 2261 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE); 2262 2263 /* 2264 * Unthrottle events, since we scheduled we might have missed several 2265 * ticks already, also for a heavily scheduling task there is little 2266 * guarantee it'll get a tick in a timely manner. 2267 */ 2268 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 2269 perf_log_throttle(event, 1); 2270 event->hw.interrupts = 0; 2271 } 2272 2273 perf_pmu_disable(event->pmu); 2274 2275 perf_set_shadow_time(event, ctx); 2276 2277 perf_log_itrace_start(event); 2278 2279 if (event->pmu->add(event, PERF_EF_START)) { 2280 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2281 event->oncpu = -1; 2282 ret = -EAGAIN; 2283 goto out; 2284 } 2285 2286 if (!is_software_event(event)) 2287 cpuctx->active_oncpu++; 2288 if (!ctx->nr_active++) 2289 perf_event_ctx_activate(ctx); 2290 if (event->attr.freq && event->attr.sample_freq) 2291 ctx->nr_freq++; 2292 2293 if (event->attr.exclusive) 2294 cpuctx->exclusive = 1; 2295 2296 out: 2297 perf_pmu_enable(event->pmu); 2298 2299 return ret; 2300 } 2301 2302 static int 2303 group_sched_in(struct perf_event *group_event, 2304 struct perf_cpu_context *cpuctx, 2305 struct perf_event_context *ctx) 2306 { 2307 struct perf_event *event, *partial_group = NULL; 2308 struct pmu *pmu = ctx->pmu; 2309 2310 if (group_event->state == PERF_EVENT_STATE_OFF) 2311 return 0; 2312 2313 pmu->start_txn(pmu, PERF_PMU_TXN_ADD); 2314 2315 if (event_sched_in(group_event, cpuctx, ctx)) { 2316 pmu->cancel_txn(pmu); 2317 perf_mux_hrtimer_restart(cpuctx); 2318 return -EAGAIN; 2319 } 2320 2321 /* 2322 * Schedule in siblings as one group (if any): 2323 */ 2324 for_each_sibling_event(event, group_event) { 2325 if (event_sched_in(event, cpuctx, ctx)) { 2326 partial_group = event; 2327 goto group_error; 2328 } 2329 } 2330 2331 if (!pmu->commit_txn(pmu)) 2332 return 0; 2333 2334 group_error: 2335 /* 2336 * Groups can be scheduled in as one unit only, so undo any 2337 * partial group before returning: 2338 * The events up to the failed event are scheduled out normally. 2339 */ 2340 for_each_sibling_event(event, group_event) { 2341 if (event == partial_group) 2342 break; 2343 2344 event_sched_out(event, cpuctx, ctx); 2345 } 2346 event_sched_out(group_event, cpuctx, ctx); 2347 2348 pmu->cancel_txn(pmu); 2349 2350 perf_mux_hrtimer_restart(cpuctx); 2351 2352 return -EAGAIN; 2353 } 2354 2355 /* 2356 * Work out whether we can put this event group on the CPU now. 2357 */ 2358 static int group_can_go_on(struct perf_event *event, 2359 struct perf_cpu_context *cpuctx, 2360 int can_add_hw) 2361 { 2362 /* 2363 * Groups consisting entirely of software events can always go on. 2364 */ 2365 if (event->group_caps & PERF_EV_CAP_SOFTWARE) 2366 return 1; 2367 /* 2368 * If an exclusive group is already on, no other hardware 2369 * events can go on. 2370 */ 2371 if (cpuctx->exclusive) 2372 return 0; 2373 /* 2374 * If this group is exclusive and there are already 2375 * events on the CPU, it can't go on. 2376 */ 2377 if (event->attr.exclusive && cpuctx->active_oncpu) 2378 return 0; 2379 /* 2380 * Otherwise, try to add it if all previous groups were able 2381 * to go on. 2382 */ 2383 return can_add_hw; 2384 } 2385 2386 static void add_event_to_ctx(struct perf_event *event, 2387 struct perf_event_context *ctx) 2388 { 2389 list_add_event(event, ctx); 2390 perf_group_attach(event); 2391 } 2392 2393 static void ctx_sched_out(struct perf_event_context *ctx, 2394 struct perf_cpu_context *cpuctx, 2395 enum event_type_t event_type); 2396 static void 2397 ctx_sched_in(struct perf_event_context *ctx, 2398 struct perf_cpu_context *cpuctx, 2399 enum event_type_t event_type, 2400 struct task_struct *task); 2401 2402 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx, 2403 struct perf_event_context *ctx, 2404 enum event_type_t event_type) 2405 { 2406 if (!cpuctx->task_ctx) 2407 return; 2408 2409 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2410 return; 2411 2412 ctx_sched_out(ctx, cpuctx, event_type); 2413 } 2414 2415 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2416 struct perf_event_context *ctx, 2417 struct task_struct *task) 2418 { 2419 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task); 2420 if (ctx) 2421 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task); 2422 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task); 2423 if (ctx) 2424 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task); 2425 } 2426 2427 /* 2428 * We want to maintain the following priority of scheduling: 2429 * - CPU pinned (EVENT_CPU | EVENT_PINNED) 2430 * - task pinned (EVENT_PINNED) 2431 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE) 2432 * - task flexible (EVENT_FLEXIBLE). 2433 * 2434 * In order to avoid unscheduling and scheduling back in everything every 2435 * time an event is added, only do it for the groups of equal priority and 2436 * below. 2437 * 2438 * This can be called after a batch operation on task events, in which case 2439 * event_type is a bit mask of the types of events involved. For CPU events, 2440 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE. 2441 */ 2442 static void ctx_resched(struct perf_cpu_context *cpuctx, 2443 struct perf_event_context *task_ctx, 2444 enum event_type_t event_type) 2445 { 2446 enum event_type_t ctx_event_type; 2447 bool cpu_event = !!(event_type & EVENT_CPU); 2448 2449 /* 2450 * If pinned groups are involved, flexible groups also need to be 2451 * scheduled out. 2452 */ 2453 if (event_type & EVENT_PINNED) 2454 event_type |= EVENT_FLEXIBLE; 2455 2456 ctx_event_type = event_type & EVENT_ALL; 2457 2458 perf_pmu_disable(cpuctx->ctx.pmu); 2459 if (task_ctx) 2460 task_ctx_sched_out(cpuctx, task_ctx, event_type); 2461 2462 /* 2463 * Decide which cpu ctx groups to schedule out based on the types 2464 * of events that caused rescheduling: 2465 * - EVENT_CPU: schedule out corresponding groups; 2466 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups; 2467 * - otherwise, do nothing more. 2468 */ 2469 if (cpu_event) 2470 cpu_ctx_sched_out(cpuctx, ctx_event_type); 2471 else if (ctx_event_type & EVENT_PINNED) 2472 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2473 2474 perf_event_sched_in(cpuctx, task_ctx, current); 2475 perf_pmu_enable(cpuctx->ctx.pmu); 2476 } 2477 2478 /* 2479 * Cross CPU call to install and enable a performance event 2480 * 2481 * Very similar to remote_function() + event_function() but cannot assume that 2482 * things like ctx->is_active and cpuctx->task_ctx are set. 2483 */ 2484 static int __perf_install_in_context(void *info) 2485 { 2486 struct perf_event *event = info; 2487 struct perf_event_context *ctx = event->ctx; 2488 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2489 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2490 bool reprogram = true; 2491 int ret = 0; 2492 2493 raw_spin_lock(&cpuctx->ctx.lock); 2494 if (ctx->task) { 2495 raw_spin_lock(&ctx->lock); 2496 task_ctx = ctx; 2497 2498 reprogram = (ctx->task == current); 2499 2500 /* 2501 * If the task is running, it must be running on this CPU, 2502 * otherwise we cannot reprogram things. 2503 * 2504 * If its not running, we don't care, ctx->lock will 2505 * serialize against it becoming runnable. 2506 */ 2507 if (task_curr(ctx->task) && !reprogram) { 2508 ret = -ESRCH; 2509 goto unlock; 2510 } 2511 2512 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx); 2513 } else if (task_ctx) { 2514 raw_spin_lock(&task_ctx->lock); 2515 } 2516 2517 #ifdef CONFIG_CGROUP_PERF 2518 if (is_cgroup_event(event)) { 2519 /* 2520 * If the current cgroup doesn't match the event's 2521 * cgroup, we should not try to schedule it. 2522 */ 2523 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 2524 reprogram = cgroup_is_descendant(cgrp->css.cgroup, 2525 event->cgrp->css.cgroup); 2526 } 2527 #endif 2528 2529 if (reprogram) { 2530 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2531 add_event_to_ctx(event, ctx); 2532 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2533 } else { 2534 add_event_to_ctx(event, ctx); 2535 } 2536 2537 unlock: 2538 perf_ctx_unlock(cpuctx, task_ctx); 2539 2540 return ret; 2541 } 2542 2543 /* 2544 * Attach a performance event to a context. 2545 * 2546 * Very similar to event_function_call, see comment there. 2547 */ 2548 static void 2549 perf_install_in_context(struct perf_event_context *ctx, 2550 struct perf_event *event, 2551 int cpu) 2552 { 2553 struct task_struct *task = READ_ONCE(ctx->task); 2554 2555 lockdep_assert_held(&ctx->mutex); 2556 2557 if (event->cpu != -1) 2558 event->cpu = cpu; 2559 2560 /* 2561 * Ensures that if we can observe event->ctx, both the event and ctx 2562 * will be 'complete'. See perf_iterate_sb_cpu(). 2563 */ 2564 smp_store_release(&event->ctx, ctx); 2565 2566 if (!task) { 2567 cpu_function_call(cpu, __perf_install_in_context, event); 2568 return; 2569 } 2570 2571 /* 2572 * Should not happen, we validate the ctx is still alive before calling. 2573 */ 2574 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) 2575 return; 2576 2577 /* 2578 * Installing events is tricky because we cannot rely on ctx->is_active 2579 * to be set in case this is the nr_events 0 -> 1 transition. 2580 * 2581 * Instead we use task_curr(), which tells us if the task is running. 2582 * However, since we use task_curr() outside of rq::lock, we can race 2583 * against the actual state. This means the result can be wrong. 2584 * 2585 * If we get a false positive, we retry, this is harmless. 2586 * 2587 * If we get a false negative, things are complicated. If we are after 2588 * perf_event_context_sched_in() ctx::lock will serialize us, and the 2589 * value must be correct. If we're before, it doesn't matter since 2590 * perf_event_context_sched_in() will program the counter. 2591 * 2592 * However, this hinges on the remote context switch having observed 2593 * our task->perf_event_ctxp[] store, such that it will in fact take 2594 * ctx::lock in perf_event_context_sched_in(). 2595 * 2596 * We do this by task_function_call(), if the IPI fails to hit the task 2597 * we know any future context switch of task must see the 2598 * perf_event_ctpx[] store. 2599 */ 2600 2601 /* 2602 * This smp_mb() orders the task->perf_event_ctxp[] store with the 2603 * task_cpu() load, such that if the IPI then does not find the task 2604 * running, a future context switch of that task must observe the 2605 * store. 2606 */ 2607 smp_mb(); 2608 again: 2609 if (!task_function_call(task, __perf_install_in_context, event)) 2610 return; 2611 2612 raw_spin_lock_irq(&ctx->lock); 2613 task = ctx->task; 2614 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) { 2615 /* 2616 * Cannot happen because we already checked above (which also 2617 * cannot happen), and we hold ctx->mutex, which serializes us 2618 * against perf_event_exit_task_context(). 2619 */ 2620 raw_spin_unlock_irq(&ctx->lock); 2621 return; 2622 } 2623 /* 2624 * If the task is not running, ctx->lock will avoid it becoming so, 2625 * thus we can safely install the event. 2626 */ 2627 if (task_curr(task)) { 2628 raw_spin_unlock_irq(&ctx->lock); 2629 goto again; 2630 } 2631 add_event_to_ctx(event, ctx); 2632 raw_spin_unlock_irq(&ctx->lock); 2633 } 2634 2635 /* 2636 * Cross CPU call to enable a performance event 2637 */ 2638 static void __perf_event_enable(struct perf_event *event, 2639 struct perf_cpu_context *cpuctx, 2640 struct perf_event_context *ctx, 2641 void *info) 2642 { 2643 struct perf_event *leader = event->group_leader; 2644 struct perf_event_context *task_ctx; 2645 2646 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2647 event->state <= PERF_EVENT_STATE_ERROR) 2648 return; 2649 2650 if (ctx->is_active) 2651 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2652 2653 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2654 2655 if (!ctx->is_active) 2656 return; 2657 2658 if (!event_filter_match(event)) { 2659 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2660 return; 2661 } 2662 2663 /* 2664 * If the event is in a group and isn't the group leader, 2665 * then don't put it on unless the group is on. 2666 */ 2667 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) { 2668 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2669 return; 2670 } 2671 2672 task_ctx = cpuctx->task_ctx; 2673 if (ctx->task) 2674 WARN_ON_ONCE(task_ctx != ctx); 2675 2676 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2677 } 2678 2679 /* 2680 * Enable an event. 2681 * 2682 * If event->ctx is a cloned context, callers must make sure that 2683 * every task struct that event->ctx->task could possibly point to 2684 * remains valid. This condition is satisfied when called through 2685 * perf_event_for_each_child or perf_event_for_each as described 2686 * for perf_event_disable. 2687 */ 2688 static void _perf_event_enable(struct perf_event *event) 2689 { 2690 struct perf_event_context *ctx = event->ctx; 2691 2692 raw_spin_lock_irq(&ctx->lock); 2693 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2694 event->state < PERF_EVENT_STATE_ERROR) { 2695 raw_spin_unlock_irq(&ctx->lock); 2696 return; 2697 } 2698 2699 /* 2700 * If the event is in error state, clear that first. 2701 * 2702 * That way, if we see the event in error state below, we know that it 2703 * has gone back into error state, as distinct from the task having 2704 * been scheduled away before the cross-call arrived. 2705 */ 2706 if (event->state == PERF_EVENT_STATE_ERROR) 2707 event->state = PERF_EVENT_STATE_OFF; 2708 raw_spin_unlock_irq(&ctx->lock); 2709 2710 event_function_call(event, __perf_event_enable, NULL); 2711 } 2712 2713 /* 2714 * See perf_event_disable(); 2715 */ 2716 void perf_event_enable(struct perf_event *event) 2717 { 2718 struct perf_event_context *ctx; 2719 2720 ctx = perf_event_ctx_lock(event); 2721 _perf_event_enable(event); 2722 perf_event_ctx_unlock(event, ctx); 2723 } 2724 EXPORT_SYMBOL_GPL(perf_event_enable); 2725 2726 struct stop_event_data { 2727 struct perf_event *event; 2728 unsigned int restart; 2729 }; 2730 2731 static int __perf_event_stop(void *info) 2732 { 2733 struct stop_event_data *sd = info; 2734 struct perf_event *event = sd->event; 2735 2736 /* if it's already INACTIVE, do nothing */ 2737 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 2738 return 0; 2739 2740 /* matches smp_wmb() in event_sched_in() */ 2741 smp_rmb(); 2742 2743 /* 2744 * There is a window with interrupts enabled before we get here, 2745 * so we need to check again lest we try to stop another CPU's event. 2746 */ 2747 if (READ_ONCE(event->oncpu) != smp_processor_id()) 2748 return -EAGAIN; 2749 2750 event->pmu->stop(event, PERF_EF_UPDATE); 2751 2752 /* 2753 * May race with the actual stop (through perf_pmu_output_stop()), 2754 * but it is only used for events with AUX ring buffer, and such 2755 * events will refuse to restart because of rb::aux_mmap_count==0, 2756 * see comments in perf_aux_output_begin(). 2757 * 2758 * Since this is happening on an event-local CPU, no trace is lost 2759 * while restarting. 2760 */ 2761 if (sd->restart) 2762 event->pmu->start(event, 0); 2763 2764 return 0; 2765 } 2766 2767 static int perf_event_stop(struct perf_event *event, int restart) 2768 { 2769 struct stop_event_data sd = { 2770 .event = event, 2771 .restart = restart, 2772 }; 2773 int ret = 0; 2774 2775 do { 2776 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 2777 return 0; 2778 2779 /* matches smp_wmb() in event_sched_in() */ 2780 smp_rmb(); 2781 2782 /* 2783 * We only want to restart ACTIVE events, so if the event goes 2784 * inactive here (event->oncpu==-1), there's nothing more to do; 2785 * fall through with ret==-ENXIO. 2786 */ 2787 ret = cpu_function_call(READ_ONCE(event->oncpu), 2788 __perf_event_stop, &sd); 2789 } while (ret == -EAGAIN); 2790 2791 return ret; 2792 } 2793 2794 /* 2795 * In order to contain the amount of racy and tricky in the address filter 2796 * configuration management, it is a two part process: 2797 * 2798 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below, 2799 * we update the addresses of corresponding vmas in 2800 * event::addr_filters_offs array and bump the event::addr_filters_gen; 2801 * (p2) when an event is scheduled in (pmu::add), it calls 2802 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync() 2803 * if the generation has changed since the previous call. 2804 * 2805 * If (p1) happens while the event is active, we restart it to force (p2). 2806 * 2807 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on 2808 * pre-existing mappings, called once when new filters arrive via SET_FILTER 2809 * ioctl; 2810 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly 2811 * registered mapping, called for every new mmap(), with mm::mmap_sem down 2812 * for reading; 2813 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process 2814 * of exec. 2815 */ 2816 void perf_event_addr_filters_sync(struct perf_event *event) 2817 { 2818 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 2819 2820 if (!has_addr_filter(event)) 2821 return; 2822 2823 raw_spin_lock(&ifh->lock); 2824 if (event->addr_filters_gen != event->hw.addr_filters_gen) { 2825 event->pmu->addr_filters_sync(event); 2826 event->hw.addr_filters_gen = event->addr_filters_gen; 2827 } 2828 raw_spin_unlock(&ifh->lock); 2829 } 2830 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync); 2831 2832 static int _perf_event_refresh(struct perf_event *event, int refresh) 2833 { 2834 /* 2835 * not supported on inherited events 2836 */ 2837 if (event->attr.inherit || !is_sampling_event(event)) 2838 return -EINVAL; 2839 2840 atomic_add(refresh, &event->event_limit); 2841 _perf_event_enable(event); 2842 2843 return 0; 2844 } 2845 2846 /* 2847 * See perf_event_disable() 2848 */ 2849 int perf_event_refresh(struct perf_event *event, int refresh) 2850 { 2851 struct perf_event_context *ctx; 2852 int ret; 2853 2854 ctx = perf_event_ctx_lock(event); 2855 ret = _perf_event_refresh(event, refresh); 2856 perf_event_ctx_unlock(event, ctx); 2857 2858 return ret; 2859 } 2860 EXPORT_SYMBOL_GPL(perf_event_refresh); 2861 2862 static int perf_event_modify_breakpoint(struct perf_event *bp, 2863 struct perf_event_attr *attr) 2864 { 2865 int err; 2866 2867 _perf_event_disable(bp); 2868 2869 err = modify_user_hw_breakpoint_check(bp, attr, true); 2870 if (err) { 2871 if (!bp->attr.disabled) 2872 _perf_event_enable(bp); 2873 2874 return err; 2875 } 2876 2877 if (!attr->disabled) 2878 _perf_event_enable(bp); 2879 return 0; 2880 } 2881 2882 static int perf_event_modify_attr(struct perf_event *event, 2883 struct perf_event_attr *attr) 2884 { 2885 if (event->attr.type != attr->type) 2886 return -EINVAL; 2887 2888 switch (event->attr.type) { 2889 case PERF_TYPE_BREAKPOINT: 2890 return perf_event_modify_breakpoint(event, attr); 2891 default: 2892 /* Place holder for future additions. */ 2893 return -EOPNOTSUPP; 2894 } 2895 } 2896 2897 static void ctx_sched_out(struct perf_event_context *ctx, 2898 struct perf_cpu_context *cpuctx, 2899 enum event_type_t event_type) 2900 { 2901 struct perf_event *event, *tmp; 2902 int is_active = ctx->is_active; 2903 2904 lockdep_assert_held(&ctx->lock); 2905 2906 if (likely(!ctx->nr_events)) { 2907 /* 2908 * See __perf_remove_from_context(). 2909 */ 2910 WARN_ON_ONCE(ctx->is_active); 2911 if (ctx->task) 2912 WARN_ON_ONCE(cpuctx->task_ctx); 2913 return; 2914 } 2915 2916 ctx->is_active &= ~event_type; 2917 if (!(ctx->is_active & EVENT_ALL)) 2918 ctx->is_active = 0; 2919 2920 if (ctx->task) { 2921 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2922 if (!ctx->is_active) 2923 cpuctx->task_ctx = NULL; 2924 } 2925 2926 /* 2927 * Always update time if it was set; not only when it changes. 2928 * Otherwise we can 'forget' to update time for any but the last 2929 * context we sched out. For example: 2930 * 2931 * ctx_sched_out(.event_type = EVENT_FLEXIBLE) 2932 * ctx_sched_out(.event_type = EVENT_PINNED) 2933 * 2934 * would only update time for the pinned events. 2935 */ 2936 if (is_active & EVENT_TIME) { 2937 /* update (and stop) ctx time */ 2938 update_context_time(ctx); 2939 update_cgrp_time_from_cpuctx(cpuctx); 2940 } 2941 2942 is_active ^= ctx->is_active; /* changed bits */ 2943 2944 if (!ctx->nr_active || !(is_active & EVENT_ALL)) 2945 return; 2946 2947 perf_pmu_disable(ctx->pmu); 2948 if (is_active & EVENT_PINNED) { 2949 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list) 2950 group_sched_out(event, cpuctx, ctx); 2951 } 2952 2953 if (is_active & EVENT_FLEXIBLE) { 2954 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list) 2955 group_sched_out(event, cpuctx, ctx); 2956 } 2957 perf_pmu_enable(ctx->pmu); 2958 } 2959 2960 /* 2961 * Test whether two contexts are equivalent, i.e. whether they have both been 2962 * cloned from the same version of the same context. 2963 * 2964 * Equivalence is measured using a generation number in the context that is 2965 * incremented on each modification to it; see unclone_ctx(), list_add_event() 2966 * and list_del_event(). 2967 */ 2968 static int context_equiv(struct perf_event_context *ctx1, 2969 struct perf_event_context *ctx2) 2970 { 2971 lockdep_assert_held(&ctx1->lock); 2972 lockdep_assert_held(&ctx2->lock); 2973 2974 /* Pinning disables the swap optimization */ 2975 if (ctx1->pin_count || ctx2->pin_count) 2976 return 0; 2977 2978 /* If ctx1 is the parent of ctx2 */ 2979 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 2980 return 1; 2981 2982 /* If ctx2 is the parent of ctx1 */ 2983 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 2984 return 1; 2985 2986 /* 2987 * If ctx1 and ctx2 have the same parent; we flatten the parent 2988 * hierarchy, see perf_event_init_context(). 2989 */ 2990 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 2991 ctx1->parent_gen == ctx2->parent_gen) 2992 return 1; 2993 2994 /* Unmatched */ 2995 return 0; 2996 } 2997 2998 static void __perf_event_sync_stat(struct perf_event *event, 2999 struct perf_event *next_event) 3000 { 3001 u64 value; 3002 3003 if (!event->attr.inherit_stat) 3004 return; 3005 3006 /* 3007 * Update the event value, we cannot use perf_event_read() 3008 * because we're in the middle of a context switch and have IRQs 3009 * disabled, which upsets smp_call_function_single(), however 3010 * we know the event must be on the current CPU, therefore we 3011 * don't need to use it. 3012 */ 3013 if (event->state == PERF_EVENT_STATE_ACTIVE) 3014 event->pmu->read(event); 3015 3016 perf_event_update_time(event); 3017 3018 /* 3019 * In order to keep per-task stats reliable we need to flip the event 3020 * values when we flip the contexts. 3021 */ 3022 value = local64_read(&next_event->count); 3023 value = local64_xchg(&event->count, value); 3024 local64_set(&next_event->count, value); 3025 3026 swap(event->total_time_enabled, next_event->total_time_enabled); 3027 swap(event->total_time_running, next_event->total_time_running); 3028 3029 /* 3030 * Since we swizzled the values, update the user visible data too. 3031 */ 3032 perf_event_update_userpage(event); 3033 perf_event_update_userpage(next_event); 3034 } 3035 3036 static void perf_event_sync_stat(struct perf_event_context *ctx, 3037 struct perf_event_context *next_ctx) 3038 { 3039 struct perf_event *event, *next_event; 3040 3041 if (!ctx->nr_stat) 3042 return; 3043 3044 update_context_time(ctx); 3045 3046 event = list_first_entry(&ctx->event_list, 3047 struct perf_event, event_entry); 3048 3049 next_event = list_first_entry(&next_ctx->event_list, 3050 struct perf_event, event_entry); 3051 3052 while (&event->event_entry != &ctx->event_list && 3053 &next_event->event_entry != &next_ctx->event_list) { 3054 3055 __perf_event_sync_stat(event, next_event); 3056 3057 event = list_next_entry(event, event_entry); 3058 next_event = list_next_entry(next_event, event_entry); 3059 } 3060 } 3061 3062 static void perf_event_context_sched_out(struct task_struct *task, int ctxn, 3063 struct task_struct *next) 3064 { 3065 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; 3066 struct perf_event_context *next_ctx; 3067 struct perf_event_context *parent, *next_parent; 3068 struct perf_cpu_context *cpuctx; 3069 int do_switch = 1; 3070 3071 if (likely(!ctx)) 3072 return; 3073 3074 cpuctx = __get_cpu_context(ctx); 3075 if (!cpuctx->task_ctx) 3076 return; 3077 3078 rcu_read_lock(); 3079 next_ctx = next->perf_event_ctxp[ctxn]; 3080 if (!next_ctx) 3081 goto unlock; 3082 3083 parent = rcu_dereference(ctx->parent_ctx); 3084 next_parent = rcu_dereference(next_ctx->parent_ctx); 3085 3086 /* If neither context have a parent context; they cannot be clones. */ 3087 if (!parent && !next_parent) 3088 goto unlock; 3089 3090 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 3091 /* 3092 * Looks like the two contexts are clones, so we might be 3093 * able to optimize the context switch. We lock both 3094 * contexts and check that they are clones under the 3095 * lock (including re-checking that neither has been 3096 * uncloned in the meantime). It doesn't matter which 3097 * order we take the locks because no other cpu could 3098 * be trying to lock both of these tasks. 3099 */ 3100 raw_spin_lock(&ctx->lock); 3101 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 3102 if (context_equiv(ctx, next_ctx)) { 3103 WRITE_ONCE(ctx->task, next); 3104 WRITE_ONCE(next_ctx->task, task); 3105 3106 swap(ctx->task_ctx_data, next_ctx->task_ctx_data); 3107 3108 /* 3109 * RCU_INIT_POINTER here is safe because we've not 3110 * modified the ctx and the above modification of 3111 * ctx->task and ctx->task_ctx_data are immaterial 3112 * since those values are always verified under 3113 * ctx->lock which we're now holding. 3114 */ 3115 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx); 3116 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx); 3117 3118 do_switch = 0; 3119 3120 perf_event_sync_stat(ctx, next_ctx); 3121 } 3122 raw_spin_unlock(&next_ctx->lock); 3123 raw_spin_unlock(&ctx->lock); 3124 } 3125 unlock: 3126 rcu_read_unlock(); 3127 3128 if (do_switch) { 3129 raw_spin_lock(&ctx->lock); 3130 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL); 3131 raw_spin_unlock(&ctx->lock); 3132 } 3133 } 3134 3135 static DEFINE_PER_CPU(struct list_head, sched_cb_list); 3136 3137 void perf_sched_cb_dec(struct pmu *pmu) 3138 { 3139 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 3140 3141 this_cpu_dec(perf_sched_cb_usages); 3142 3143 if (!--cpuctx->sched_cb_usage) 3144 list_del(&cpuctx->sched_cb_entry); 3145 } 3146 3147 3148 void perf_sched_cb_inc(struct pmu *pmu) 3149 { 3150 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 3151 3152 if (!cpuctx->sched_cb_usage++) 3153 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list)); 3154 3155 this_cpu_inc(perf_sched_cb_usages); 3156 } 3157 3158 /* 3159 * This function provides the context switch callback to the lower code 3160 * layer. It is invoked ONLY when the context switch callback is enabled. 3161 * 3162 * This callback is relevant even to per-cpu events; for example multi event 3163 * PEBS requires this to provide PID/TID information. This requires we flush 3164 * all queued PEBS records before we context switch to a new task. 3165 */ 3166 static void perf_pmu_sched_task(struct task_struct *prev, 3167 struct task_struct *next, 3168 bool sched_in) 3169 { 3170 struct perf_cpu_context *cpuctx; 3171 struct pmu *pmu; 3172 3173 if (prev == next) 3174 return; 3175 3176 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) { 3177 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */ 3178 3179 if (WARN_ON_ONCE(!pmu->sched_task)) 3180 continue; 3181 3182 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3183 perf_pmu_disable(pmu); 3184 3185 pmu->sched_task(cpuctx->task_ctx, sched_in); 3186 3187 perf_pmu_enable(pmu); 3188 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3189 } 3190 } 3191 3192 static void perf_event_switch(struct task_struct *task, 3193 struct task_struct *next_prev, bool sched_in); 3194 3195 #define for_each_task_context_nr(ctxn) \ 3196 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) 3197 3198 /* 3199 * Called from scheduler to remove the events of the current task, 3200 * with interrupts disabled. 3201 * 3202 * We stop each event and update the event value in event->count. 3203 * 3204 * This does not protect us against NMI, but disable() 3205 * sets the disabled bit in the control field of event _before_ 3206 * accessing the event control register. If a NMI hits, then it will 3207 * not restart the event. 3208 */ 3209 void __perf_event_task_sched_out(struct task_struct *task, 3210 struct task_struct *next) 3211 { 3212 int ctxn; 3213 3214 if (__this_cpu_read(perf_sched_cb_usages)) 3215 perf_pmu_sched_task(task, next, false); 3216 3217 if (atomic_read(&nr_switch_events)) 3218 perf_event_switch(task, next, false); 3219 3220 for_each_task_context_nr(ctxn) 3221 perf_event_context_sched_out(task, ctxn, next); 3222 3223 /* 3224 * if cgroup events exist on this CPU, then we need 3225 * to check if we have to switch out PMU state. 3226 * cgroup event are system-wide mode only 3227 */ 3228 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3229 perf_cgroup_sched_out(task, next); 3230 } 3231 3232 /* 3233 * Called with IRQs disabled 3234 */ 3235 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 3236 enum event_type_t event_type) 3237 { 3238 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); 3239 } 3240 3241 static int visit_groups_merge(struct perf_event_groups *groups, int cpu, 3242 int (*func)(struct perf_event *, void *), void *data) 3243 { 3244 struct perf_event **evt, *evt1, *evt2; 3245 int ret; 3246 3247 evt1 = perf_event_groups_first(groups, -1); 3248 evt2 = perf_event_groups_first(groups, cpu); 3249 3250 while (evt1 || evt2) { 3251 if (evt1 && evt2) { 3252 if (evt1->group_index < evt2->group_index) 3253 evt = &evt1; 3254 else 3255 evt = &evt2; 3256 } else if (evt1) { 3257 evt = &evt1; 3258 } else { 3259 evt = &evt2; 3260 } 3261 3262 ret = func(*evt, data); 3263 if (ret) 3264 return ret; 3265 3266 *evt = perf_event_groups_next(*evt); 3267 } 3268 3269 return 0; 3270 } 3271 3272 struct sched_in_data { 3273 struct perf_event_context *ctx; 3274 struct perf_cpu_context *cpuctx; 3275 int can_add_hw; 3276 }; 3277 3278 static int pinned_sched_in(struct perf_event *event, void *data) 3279 { 3280 struct sched_in_data *sid = data; 3281 3282 if (event->state <= PERF_EVENT_STATE_OFF) 3283 return 0; 3284 3285 if (!event_filter_match(event)) 3286 return 0; 3287 3288 if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) { 3289 if (!group_sched_in(event, sid->cpuctx, sid->ctx)) 3290 list_add_tail(&event->active_list, &sid->ctx->pinned_active); 3291 } 3292 3293 /* 3294 * If this pinned group hasn't been scheduled, 3295 * put it in error state. 3296 */ 3297 if (event->state == PERF_EVENT_STATE_INACTIVE) 3298 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 3299 3300 return 0; 3301 } 3302 3303 static int flexible_sched_in(struct perf_event *event, void *data) 3304 { 3305 struct sched_in_data *sid = data; 3306 3307 if (event->state <= PERF_EVENT_STATE_OFF) 3308 return 0; 3309 3310 if (!event_filter_match(event)) 3311 return 0; 3312 3313 if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) { 3314 if (!group_sched_in(event, sid->cpuctx, sid->ctx)) 3315 list_add_tail(&event->active_list, &sid->ctx->flexible_active); 3316 else 3317 sid->can_add_hw = 0; 3318 } 3319 3320 return 0; 3321 } 3322 3323 static void 3324 ctx_pinned_sched_in(struct perf_event_context *ctx, 3325 struct perf_cpu_context *cpuctx) 3326 { 3327 struct sched_in_data sid = { 3328 .ctx = ctx, 3329 .cpuctx = cpuctx, 3330 .can_add_hw = 1, 3331 }; 3332 3333 visit_groups_merge(&ctx->pinned_groups, 3334 smp_processor_id(), 3335 pinned_sched_in, &sid); 3336 } 3337 3338 static void 3339 ctx_flexible_sched_in(struct perf_event_context *ctx, 3340 struct perf_cpu_context *cpuctx) 3341 { 3342 struct sched_in_data sid = { 3343 .ctx = ctx, 3344 .cpuctx = cpuctx, 3345 .can_add_hw = 1, 3346 }; 3347 3348 visit_groups_merge(&ctx->flexible_groups, 3349 smp_processor_id(), 3350 flexible_sched_in, &sid); 3351 } 3352 3353 static void 3354 ctx_sched_in(struct perf_event_context *ctx, 3355 struct perf_cpu_context *cpuctx, 3356 enum event_type_t event_type, 3357 struct task_struct *task) 3358 { 3359 int is_active = ctx->is_active; 3360 u64 now; 3361 3362 lockdep_assert_held(&ctx->lock); 3363 3364 if (likely(!ctx->nr_events)) 3365 return; 3366 3367 ctx->is_active |= (event_type | EVENT_TIME); 3368 if (ctx->task) { 3369 if (!is_active) 3370 cpuctx->task_ctx = ctx; 3371 else 3372 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3373 } 3374 3375 is_active ^= ctx->is_active; /* changed bits */ 3376 3377 if (is_active & EVENT_TIME) { 3378 /* start ctx time */ 3379 now = perf_clock(); 3380 ctx->timestamp = now; 3381 perf_cgroup_set_timestamp(task, ctx); 3382 } 3383 3384 /* 3385 * First go through the list and put on any pinned groups 3386 * in order to give them the best chance of going on. 3387 */ 3388 if (is_active & EVENT_PINNED) 3389 ctx_pinned_sched_in(ctx, cpuctx); 3390 3391 /* Then walk through the lower prio flexible groups */ 3392 if (is_active & EVENT_FLEXIBLE) 3393 ctx_flexible_sched_in(ctx, cpuctx); 3394 } 3395 3396 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 3397 enum event_type_t event_type, 3398 struct task_struct *task) 3399 { 3400 struct perf_event_context *ctx = &cpuctx->ctx; 3401 3402 ctx_sched_in(ctx, cpuctx, event_type, task); 3403 } 3404 3405 static void perf_event_context_sched_in(struct perf_event_context *ctx, 3406 struct task_struct *task) 3407 { 3408 struct perf_cpu_context *cpuctx; 3409 3410 cpuctx = __get_cpu_context(ctx); 3411 if (cpuctx->task_ctx == ctx) 3412 return; 3413 3414 perf_ctx_lock(cpuctx, ctx); 3415 /* 3416 * We must check ctx->nr_events while holding ctx->lock, such 3417 * that we serialize against perf_install_in_context(). 3418 */ 3419 if (!ctx->nr_events) 3420 goto unlock; 3421 3422 perf_pmu_disable(ctx->pmu); 3423 /* 3424 * We want to keep the following priority order: 3425 * cpu pinned (that don't need to move), task pinned, 3426 * cpu flexible, task flexible. 3427 * 3428 * However, if task's ctx is not carrying any pinned 3429 * events, no need to flip the cpuctx's events around. 3430 */ 3431 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) 3432 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3433 perf_event_sched_in(cpuctx, ctx, task); 3434 perf_pmu_enable(ctx->pmu); 3435 3436 unlock: 3437 perf_ctx_unlock(cpuctx, ctx); 3438 } 3439 3440 /* 3441 * Called from scheduler to add the events of the current task 3442 * with interrupts disabled. 3443 * 3444 * We restore the event value and then enable it. 3445 * 3446 * This does not protect us against NMI, but enable() 3447 * sets the enabled bit in the control field of event _before_ 3448 * accessing the event control register. If a NMI hits, then it will 3449 * keep the event running. 3450 */ 3451 void __perf_event_task_sched_in(struct task_struct *prev, 3452 struct task_struct *task) 3453 { 3454 struct perf_event_context *ctx; 3455 int ctxn; 3456 3457 /* 3458 * If cgroup events exist on this CPU, then we need to check if we have 3459 * to switch in PMU state; cgroup event are system-wide mode only. 3460 * 3461 * Since cgroup events are CPU events, we must schedule these in before 3462 * we schedule in the task events. 3463 */ 3464 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3465 perf_cgroup_sched_in(prev, task); 3466 3467 for_each_task_context_nr(ctxn) { 3468 ctx = task->perf_event_ctxp[ctxn]; 3469 if (likely(!ctx)) 3470 continue; 3471 3472 perf_event_context_sched_in(ctx, task); 3473 } 3474 3475 if (atomic_read(&nr_switch_events)) 3476 perf_event_switch(task, prev, true); 3477 3478 if (__this_cpu_read(perf_sched_cb_usages)) 3479 perf_pmu_sched_task(prev, task, true); 3480 } 3481 3482 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 3483 { 3484 u64 frequency = event->attr.sample_freq; 3485 u64 sec = NSEC_PER_SEC; 3486 u64 divisor, dividend; 3487 3488 int count_fls, nsec_fls, frequency_fls, sec_fls; 3489 3490 count_fls = fls64(count); 3491 nsec_fls = fls64(nsec); 3492 frequency_fls = fls64(frequency); 3493 sec_fls = 30; 3494 3495 /* 3496 * We got @count in @nsec, with a target of sample_freq HZ 3497 * the target period becomes: 3498 * 3499 * @count * 10^9 3500 * period = ------------------- 3501 * @nsec * sample_freq 3502 * 3503 */ 3504 3505 /* 3506 * Reduce accuracy by one bit such that @a and @b converge 3507 * to a similar magnitude. 3508 */ 3509 #define REDUCE_FLS(a, b) \ 3510 do { \ 3511 if (a##_fls > b##_fls) { \ 3512 a >>= 1; \ 3513 a##_fls--; \ 3514 } else { \ 3515 b >>= 1; \ 3516 b##_fls--; \ 3517 } \ 3518 } while (0) 3519 3520 /* 3521 * Reduce accuracy until either term fits in a u64, then proceed with 3522 * the other, so that finally we can do a u64/u64 division. 3523 */ 3524 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 3525 REDUCE_FLS(nsec, frequency); 3526 REDUCE_FLS(sec, count); 3527 } 3528 3529 if (count_fls + sec_fls > 64) { 3530 divisor = nsec * frequency; 3531 3532 while (count_fls + sec_fls > 64) { 3533 REDUCE_FLS(count, sec); 3534 divisor >>= 1; 3535 } 3536 3537 dividend = count * sec; 3538 } else { 3539 dividend = count * sec; 3540 3541 while (nsec_fls + frequency_fls > 64) { 3542 REDUCE_FLS(nsec, frequency); 3543 dividend >>= 1; 3544 } 3545 3546 divisor = nsec * frequency; 3547 } 3548 3549 if (!divisor) 3550 return dividend; 3551 3552 return div64_u64(dividend, divisor); 3553 } 3554 3555 static DEFINE_PER_CPU(int, perf_throttled_count); 3556 static DEFINE_PER_CPU(u64, perf_throttled_seq); 3557 3558 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 3559 { 3560 struct hw_perf_event *hwc = &event->hw; 3561 s64 period, sample_period; 3562 s64 delta; 3563 3564 period = perf_calculate_period(event, nsec, count); 3565 3566 delta = (s64)(period - hwc->sample_period); 3567 delta = (delta + 7) / 8; /* low pass filter */ 3568 3569 sample_period = hwc->sample_period + delta; 3570 3571 if (!sample_period) 3572 sample_period = 1; 3573 3574 hwc->sample_period = sample_period; 3575 3576 if (local64_read(&hwc->period_left) > 8*sample_period) { 3577 if (disable) 3578 event->pmu->stop(event, PERF_EF_UPDATE); 3579 3580 local64_set(&hwc->period_left, 0); 3581 3582 if (disable) 3583 event->pmu->start(event, PERF_EF_RELOAD); 3584 } 3585 } 3586 3587 /* 3588 * combine freq adjustment with unthrottling to avoid two passes over the 3589 * events. At the same time, make sure, having freq events does not change 3590 * the rate of unthrottling as that would introduce bias. 3591 */ 3592 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx, 3593 int needs_unthr) 3594 { 3595 struct perf_event *event; 3596 struct hw_perf_event *hwc; 3597 u64 now, period = TICK_NSEC; 3598 s64 delta; 3599 3600 /* 3601 * only need to iterate over all events iff: 3602 * - context have events in frequency mode (needs freq adjust) 3603 * - there are events to unthrottle on this cpu 3604 */ 3605 if (!(ctx->nr_freq || needs_unthr)) 3606 return; 3607 3608 raw_spin_lock(&ctx->lock); 3609 perf_pmu_disable(ctx->pmu); 3610 3611 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 3612 if (event->state != PERF_EVENT_STATE_ACTIVE) 3613 continue; 3614 3615 if (!event_filter_match(event)) 3616 continue; 3617 3618 perf_pmu_disable(event->pmu); 3619 3620 hwc = &event->hw; 3621 3622 if (hwc->interrupts == MAX_INTERRUPTS) { 3623 hwc->interrupts = 0; 3624 perf_log_throttle(event, 1); 3625 event->pmu->start(event, 0); 3626 } 3627 3628 if (!event->attr.freq || !event->attr.sample_freq) 3629 goto next; 3630 3631 /* 3632 * stop the event and update event->count 3633 */ 3634 event->pmu->stop(event, PERF_EF_UPDATE); 3635 3636 now = local64_read(&event->count); 3637 delta = now - hwc->freq_count_stamp; 3638 hwc->freq_count_stamp = now; 3639 3640 /* 3641 * restart the event 3642 * reload only if value has changed 3643 * we have stopped the event so tell that 3644 * to perf_adjust_period() to avoid stopping it 3645 * twice. 3646 */ 3647 if (delta > 0) 3648 perf_adjust_period(event, period, delta, false); 3649 3650 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 3651 next: 3652 perf_pmu_enable(event->pmu); 3653 } 3654 3655 perf_pmu_enable(ctx->pmu); 3656 raw_spin_unlock(&ctx->lock); 3657 } 3658 3659 /* 3660 * Move @event to the tail of the @ctx's elegible events. 3661 */ 3662 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event) 3663 { 3664 /* 3665 * Rotate the first entry last of non-pinned groups. Rotation might be 3666 * disabled by the inheritance code. 3667 */ 3668 if (ctx->rotate_disable) 3669 return; 3670 3671 perf_event_groups_delete(&ctx->flexible_groups, event); 3672 perf_event_groups_insert(&ctx->flexible_groups, event); 3673 } 3674 3675 static inline struct perf_event * 3676 ctx_first_active(struct perf_event_context *ctx) 3677 { 3678 return list_first_entry_or_null(&ctx->flexible_active, 3679 struct perf_event, active_list); 3680 } 3681 3682 static bool perf_rotate_context(struct perf_cpu_context *cpuctx) 3683 { 3684 struct perf_event *cpu_event = NULL, *task_event = NULL; 3685 bool cpu_rotate = false, task_rotate = false; 3686 struct perf_event_context *ctx = NULL; 3687 3688 /* 3689 * Since we run this from IRQ context, nobody can install new 3690 * events, thus the event count values are stable. 3691 */ 3692 3693 if (cpuctx->ctx.nr_events) { 3694 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active) 3695 cpu_rotate = true; 3696 } 3697 3698 ctx = cpuctx->task_ctx; 3699 if (ctx && ctx->nr_events) { 3700 if (ctx->nr_events != ctx->nr_active) 3701 task_rotate = true; 3702 } 3703 3704 if (!(cpu_rotate || task_rotate)) 3705 return false; 3706 3707 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3708 perf_pmu_disable(cpuctx->ctx.pmu); 3709 3710 if (task_rotate) 3711 task_event = ctx_first_active(ctx); 3712 if (cpu_rotate) 3713 cpu_event = ctx_first_active(&cpuctx->ctx); 3714 3715 /* 3716 * As per the order given at ctx_resched() first 'pop' task flexible 3717 * and then, if needed CPU flexible. 3718 */ 3719 if (task_event || (ctx && cpu_event)) 3720 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE); 3721 if (cpu_event) 3722 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3723 3724 if (task_event) 3725 rotate_ctx(ctx, task_event); 3726 if (cpu_event) 3727 rotate_ctx(&cpuctx->ctx, cpu_event); 3728 3729 perf_event_sched_in(cpuctx, ctx, current); 3730 3731 perf_pmu_enable(cpuctx->ctx.pmu); 3732 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3733 3734 return true; 3735 } 3736 3737 void perf_event_task_tick(void) 3738 { 3739 struct list_head *head = this_cpu_ptr(&active_ctx_list); 3740 struct perf_event_context *ctx, *tmp; 3741 int throttled; 3742 3743 lockdep_assert_irqs_disabled(); 3744 3745 __this_cpu_inc(perf_throttled_seq); 3746 throttled = __this_cpu_xchg(perf_throttled_count, 0); 3747 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 3748 3749 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list) 3750 perf_adjust_freq_unthr_context(ctx, throttled); 3751 } 3752 3753 static int event_enable_on_exec(struct perf_event *event, 3754 struct perf_event_context *ctx) 3755 { 3756 if (!event->attr.enable_on_exec) 3757 return 0; 3758 3759 event->attr.enable_on_exec = 0; 3760 if (event->state >= PERF_EVENT_STATE_INACTIVE) 3761 return 0; 3762 3763 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 3764 3765 return 1; 3766 } 3767 3768 /* 3769 * Enable all of a task's events that have been marked enable-on-exec. 3770 * This expects task == current. 3771 */ 3772 static void perf_event_enable_on_exec(int ctxn) 3773 { 3774 struct perf_event_context *ctx, *clone_ctx = NULL; 3775 enum event_type_t event_type = 0; 3776 struct perf_cpu_context *cpuctx; 3777 struct perf_event *event; 3778 unsigned long flags; 3779 int enabled = 0; 3780 3781 local_irq_save(flags); 3782 ctx = current->perf_event_ctxp[ctxn]; 3783 if (!ctx || !ctx->nr_events) 3784 goto out; 3785 3786 cpuctx = __get_cpu_context(ctx); 3787 perf_ctx_lock(cpuctx, ctx); 3788 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 3789 list_for_each_entry(event, &ctx->event_list, event_entry) { 3790 enabled |= event_enable_on_exec(event, ctx); 3791 event_type |= get_event_type(event); 3792 } 3793 3794 /* 3795 * Unclone and reschedule this context if we enabled any event. 3796 */ 3797 if (enabled) { 3798 clone_ctx = unclone_ctx(ctx); 3799 ctx_resched(cpuctx, ctx, event_type); 3800 } else { 3801 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 3802 } 3803 perf_ctx_unlock(cpuctx, ctx); 3804 3805 out: 3806 local_irq_restore(flags); 3807 3808 if (clone_ctx) 3809 put_ctx(clone_ctx); 3810 } 3811 3812 struct perf_read_data { 3813 struct perf_event *event; 3814 bool group; 3815 int ret; 3816 }; 3817 3818 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu) 3819 { 3820 u16 local_pkg, event_pkg; 3821 3822 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) { 3823 int local_cpu = smp_processor_id(); 3824 3825 event_pkg = topology_physical_package_id(event_cpu); 3826 local_pkg = topology_physical_package_id(local_cpu); 3827 3828 if (event_pkg == local_pkg) 3829 return local_cpu; 3830 } 3831 3832 return event_cpu; 3833 } 3834 3835 /* 3836 * Cross CPU call to read the hardware event 3837 */ 3838 static void __perf_event_read(void *info) 3839 { 3840 struct perf_read_data *data = info; 3841 struct perf_event *sub, *event = data->event; 3842 struct perf_event_context *ctx = event->ctx; 3843 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 3844 struct pmu *pmu = event->pmu; 3845 3846 /* 3847 * If this is a task context, we need to check whether it is 3848 * the current task context of this cpu. If not it has been 3849 * scheduled out before the smp call arrived. In that case 3850 * event->count would have been updated to a recent sample 3851 * when the event was scheduled out. 3852 */ 3853 if (ctx->task && cpuctx->task_ctx != ctx) 3854 return; 3855 3856 raw_spin_lock(&ctx->lock); 3857 if (ctx->is_active & EVENT_TIME) { 3858 update_context_time(ctx); 3859 update_cgrp_time_from_event(event); 3860 } 3861 3862 perf_event_update_time(event); 3863 if (data->group) 3864 perf_event_update_sibling_time(event); 3865 3866 if (event->state != PERF_EVENT_STATE_ACTIVE) 3867 goto unlock; 3868 3869 if (!data->group) { 3870 pmu->read(event); 3871 data->ret = 0; 3872 goto unlock; 3873 } 3874 3875 pmu->start_txn(pmu, PERF_PMU_TXN_READ); 3876 3877 pmu->read(event); 3878 3879 for_each_sibling_event(sub, event) { 3880 if (sub->state == PERF_EVENT_STATE_ACTIVE) { 3881 /* 3882 * Use sibling's PMU rather than @event's since 3883 * sibling could be on different (eg: software) PMU. 3884 */ 3885 sub->pmu->read(sub); 3886 } 3887 } 3888 3889 data->ret = pmu->commit_txn(pmu); 3890 3891 unlock: 3892 raw_spin_unlock(&ctx->lock); 3893 } 3894 3895 static inline u64 perf_event_count(struct perf_event *event) 3896 { 3897 return local64_read(&event->count) + atomic64_read(&event->child_count); 3898 } 3899 3900 /* 3901 * NMI-safe method to read a local event, that is an event that 3902 * is: 3903 * - either for the current task, or for this CPU 3904 * - does not have inherit set, for inherited task events 3905 * will not be local and we cannot read them atomically 3906 * - must not have a pmu::count method 3907 */ 3908 int perf_event_read_local(struct perf_event *event, u64 *value, 3909 u64 *enabled, u64 *running) 3910 { 3911 unsigned long flags; 3912 int ret = 0; 3913 3914 /* 3915 * Disabling interrupts avoids all counter scheduling (context 3916 * switches, timer based rotation and IPIs). 3917 */ 3918 local_irq_save(flags); 3919 3920 /* 3921 * It must not be an event with inherit set, we cannot read 3922 * all child counters from atomic context. 3923 */ 3924 if (event->attr.inherit) { 3925 ret = -EOPNOTSUPP; 3926 goto out; 3927 } 3928 3929 /* If this is a per-task event, it must be for current */ 3930 if ((event->attach_state & PERF_ATTACH_TASK) && 3931 event->hw.target != current) { 3932 ret = -EINVAL; 3933 goto out; 3934 } 3935 3936 /* If this is a per-CPU event, it must be for this CPU */ 3937 if (!(event->attach_state & PERF_ATTACH_TASK) && 3938 event->cpu != smp_processor_id()) { 3939 ret = -EINVAL; 3940 goto out; 3941 } 3942 3943 /* 3944 * If the event is currently on this CPU, its either a per-task event, 3945 * or local to this CPU. Furthermore it means its ACTIVE (otherwise 3946 * oncpu == -1). 3947 */ 3948 if (event->oncpu == smp_processor_id()) 3949 event->pmu->read(event); 3950 3951 *value = local64_read(&event->count); 3952 if (enabled || running) { 3953 u64 now = event->shadow_ctx_time + perf_clock(); 3954 u64 __enabled, __running; 3955 3956 __perf_update_times(event, now, &__enabled, &__running); 3957 if (enabled) 3958 *enabled = __enabled; 3959 if (running) 3960 *running = __running; 3961 } 3962 out: 3963 local_irq_restore(flags); 3964 3965 return ret; 3966 } 3967 3968 static int perf_event_read(struct perf_event *event, bool group) 3969 { 3970 enum perf_event_state state = READ_ONCE(event->state); 3971 int event_cpu, ret = 0; 3972 3973 /* 3974 * If event is enabled and currently active on a CPU, update the 3975 * value in the event structure: 3976 */ 3977 again: 3978 if (state == PERF_EVENT_STATE_ACTIVE) { 3979 struct perf_read_data data; 3980 3981 /* 3982 * Orders the ->state and ->oncpu loads such that if we see 3983 * ACTIVE we must also see the right ->oncpu. 3984 * 3985 * Matches the smp_wmb() from event_sched_in(). 3986 */ 3987 smp_rmb(); 3988 3989 event_cpu = READ_ONCE(event->oncpu); 3990 if ((unsigned)event_cpu >= nr_cpu_ids) 3991 return 0; 3992 3993 data = (struct perf_read_data){ 3994 .event = event, 3995 .group = group, 3996 .ret = 0, 3997 }; 3998 3999 preempt_disable(); 4000 event_cpu = __perf_event_read_cpu(event, event_cpu); 4001 4002 /* 4003 * Purposely ignore the smp_call_function_single() return 4004 * value. 4005 * 4006 * If event_cpu isn't a valid CPU it means the event got 4007 * scheduled out and that will have updated the event count. 4008 * 4009 * Therefore, either way, we'll have an up-to-date event count 4010 * after this. 4011 */ 4012 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1); 4013 preempt_enable(); 4014 ret = data.ret; 4015 4016 } else if (state == PERF_EVENT_STATE_INACTIVE) { 4017 struct perf_event_context *ctx = event->ctx; 4018 unsigned long flags; 4019 4020 raw_spin_lock_irqsave(&ctx->lock, flags); 4021 state = event->state; 4022 if (state != PERF_EVENT_STATE_INACTIVE) { 4023 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4024 goto again; 4025 } 4026 4027 /* 4028 * May read while context is not active (e.g., thread is 4029 * blocked), in that case we cannot update context time 4030 */ 4031 if (ctx->is_active & EVENT_TIME) { 4032 update_context_time(ctx); 4033 update_cgrp_time_from_event(event); 4034 } 4035 4036 perf_event_update_time(event); 4037 if (group) 4038 perf_event_update_sibling_time(event); 4039 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4040 } 4041 4042 return ret; 4043 } 4044 4045 /* 4046 * Initialize the perf_event context in a task_struct: 4047 */ 4048 static void __perf_event_init_context(struct perf_event_context *ctx) 4049 { 4050 raw_spin_lock_init(&ctx->lock); 4051 mutex_init(&ctx->mutex); 4052 INIT_LIST_HEAD(&ctx->active_ctx_list); 4053 perf_event_groups_init(&ctx->pinned_groups); 4054 perf_event_groups_init(&ctx->flexible_groups); 4055 INIT_LIST_HEAD(&ctx->event_list); 4056 INIT_LIST_HEAD(&ctx->pinned_active); 4057 INIT_LIST_HEAD(&ctx->flexible_active); 4058 atomic_set(&ctx->refcount, 1); 4059 } 4060 4061 static struct perf_event_context * 4062 alloc_perf_context(struct pmu *pmu, struct task_struct *task) 4063 { 4064 struct perf_event_context *ctx; 4065 4066 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 4067 if (!ctx) 4068 return NULL; 4069 4070 __perf_event_init_context(ctx); 4071 if (task) { 4072 ctx->task = task; 4073 get_task_struct(task); 4074 } 4075 ctx->pmu = pmu; 4076 4077 return ctx; 4078 } 4079 4080 static struct task_struct * 4081 find_lively_task_by_vpid(pid_t vpid) 4082 { 4083 struct task_struct *task; 4084 4085 rcu_read_lock(); 4086 if (!vpid) 4087 task = current; 4088 else 4089 task = find_task_by_vpid(vpid); 4090 if (task) 4091 get_task_struct(task); 4092 rcu_read_unlock(); 4093 4094 if (!task) 4095 return ERR_PTR(-ESRCH); 4096 4097 return task; 4098 } 4099 4100 /* 4101 * Returns a matching context with refcount and pincount. 4102 */ 4103 static struct perf_event_context * 4104 find_get_context(struct pmu *pmu, struct task_struct *task, 4105 struct perf_event *event) 4106 { 4107 struct perf_event_context *ctx, *clone_ctx = NULL; 4108 struct perf_cpu_context *cpuctx; 4109 void *task_ctx_data = NULL; 4110 unsigned long flags; 4111 int ctxn, err; 4112 int cpu = event->cpu; 4113 4114 if (!task) { 4115 /* Must be root to operate on a CPU event: */ 4116 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) 4117 return ERR_PTR(-EACCES); 4118 4119 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 4120 ctx = &cpuctx->ctx; 4121 get_ctx(ctx); 4122 ++ctx->pin_count; 4123 4124 return ctx; 4125 } 4126 4127 err = -EINVAL; 4128 ctxn = pmu->task_ctx_nr; 4129 if (ctxn < 0) 4130 goto errout; 4131 4132 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 4133 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL); 4134 if (!task_ctx_data) { 4135 err = -ENOMEM; 4136 goto errout; 4137 } 4138 } 4139 4140 retry: 4141 ctx = perf_lock_task_context(task, ctxn, &flags); 4142 if (ctx) { 4143 clone_ctx = unclone_ctx(ctx); 4144 ++ctx->pin_count; 4145 4146 if (task_ctx_data && !ctx->task_ctx_data) { 4147 ctx->task_ctx_data = task_ctx_data; 4148 task_ctx_data = NULL; 4149 } 4150 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4151 4152 if (clone_ctx) 4153 put_ctx(clone_ctx); 4154 } else { 4155 ctx = alloc_perf_context(pmu, task); 4156 err = -ENOMEM; 4157 if (!ctx) 4158 goto errout; 4159 4160 if (task_ctx_data) { 4161 ctx->task_ctx_data = task_ctx_data; 4162 task_ctx_data = NULL; 4163 } 4164 4165 err = 0; 4166 mutex_lock(&task->perf_event_mutex); 4167 /* 4168 * If it has already passed perf_event_exit_task(). 4169 * we must see PF_EXITING, it takes this mutex too. 4170 */ 4171 if (task->flags & PF_EXITING) 4172 err = -ESRCH; 4173 else if (task->perf_event_ctxp[ctxn]) 4174 err = -EAGAIN; 4175 else { 4176 get_ctx(ctx); 4177 ++ctx->pin_count; 4178 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); 4179 } 4180 mutex_unlock(&task->perf_event_mutex); 4181 4182 if (unlikely(err)) { 4183 put_ctx(ctx); 4184 4185 if (err == -EAGAIN) 4186 goto retry; 4187 goto errout; 4188 } 4189 } 4190 4191 kfree(task_ctx_data); 4192 return ctx; 4193 4194 errout: 4195 kfree(task_ctx_data); 4196 return ERR_PTR(err); 4197 } 4198 4199 static void perf_event_free_filter(struct perf_event *event); 4200 static void perf_event_free_bpf_prog(struct perf_event *event); 4201 4202 static void free_event_rcu(struct rcu_head *head) 4203 { 4204 struct perf_event *event; 4205 4206 event = container_of(head, struct perf_event, rcu_head); 4207 if (event->ns) 4208 put_pid_ns(event->ns); 4209 perf_event_free_filter(event); 4210 kfree(event); 4211 } 4212 4213 static void ring_buffer_attach(struct perf_event *event, 4214 struct ring_buffer *rb); 4215 4216 static void detach_sb_event(struct perf_event *event) 4217 { 4218 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 4219 4220 raw_spin_lock(&pel->lock); 4221 list_del_rcu(&event->sb_list); 4222 raw_spin_unlock(&pel->lock); 4223 } 4224 4225 static bool is_sb_event(struct perf_event *event) 4226 { 4227 struct perf_event_attr *attr = &event->attr; 4228 4229 if (event->parent) 4230 return false; 4231 4232 if (event->attach_state & PERF_ATTACH_TASK) 4233 return false; 4234 4235 if (attr->mmap || attr->mmap_data || attr->mmap2 || 4236 attr->comm || attr->comm_exec || 4237 attr->task || 4238 attr->context_switch) 4239 return true; 4240 return false; 4241 } 4242 4243 static void unaccount_pmu_sb_event(struct perf_event *event) 4244 { 4245 if (is_sb_event(event)) 4246 detach_sb_event(event); 4247 } 4248 4249 static void unaccount_event_cpu(struct perf_event *event, int cpu) 4250 { 4251 if (event->parent) 4252 return; 4253 4254 if (is_cgroup_event(event)) 4255 atomic_dec(&per_cpu(perf_cgroup_events, cpu)); 4256 } 4257 4258 #ifdef CONFIG_NO_HZ_FULL 4259 static DEFINE_SPINLOCK(nr_freq_lock); 4260 #endif 4261 4262 static void unaccount_freq_event_nohz(void) 4263 { 4264 #ifdef CONFIG_NO_HZ_FULL 4265 spin_lock(&nr_freq_lock); 4266 if (atomic_dec_and_test(&nr_freq_events)) 4267 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS); 4268 spin_unlock(&nr_freq_lock); 4269 #endif 4270 } 4271 4272 static void unaccount_freq_event(void) 4273 { 4274 if (tick_nohz_full_enabled()) 4275 unaccount_freq_event_nohz(); 4276 else 4277 atomic_dec(&nr_freq_events); 4278 } 4279 4280 static void unaccount_event(struct perf_event *event) 4281 { 4282 bool dec = false; 4283 4284 if (event->parent) 4285 return; 4286 4287 if (event->attach_state & PERF_ATTACH_TASK) 4288 dec = true; 4289 if (event->attr.mmap || event->attr.mmap_data) 4290 atomic_dec(&nr_mmap_events); 4291 if (event->attr.comm) 4292 atomic_dec(&nr_comm_events); 4293 if (event->attr.namespaces) 4294 atomic_dec(&nr_namespaces_events); 4295 if (event->attr.task) 4296 atomic_dec(&nr_task_events); 4297 if (event->attr.freq) 4298 unaccount_freq_event(); 4299 if (event->attr.context_switch) { 4300 dec = true; 4301 atomic_dec(&nr_switch_events); 4302 } 4303 if (is_cgroup_event(event)) 4304 dec = true; 4305 if (has_branch_stack(event)) 4306 dec = true; 4307 4308 if (dec) { 4309 if (!atomic_add_unless(&perf_sched_count, -1, 1)) 4310 schedule_delayed_work(&perf_sched_work, HZ); 4311 } 4312 4313 unaccount_event_cpu(event, event->cpu); 4314 4315 unaccount_pmu_sb_event(event); 4316 } 4317 4318 static void perf_sched_delayed(struct work_struct *work) 4319 { 4320 mutex_lock(&perf_sched_mutex); 4321 if (atomic_dec_and_test(&perf_sched_count)) 4322 static_branch_disable(&perf_sched_events); 4323 mutex_unlock(&perf_sched_mutex); 4324 } 4325 4326 /* 4327 * The following implement mutual exclusion of events on "exclusive" pmus 4328 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 4329 * at a time, so we disallow creating events that might conflict, namely: 4330 * 4331 * 1) cpu-wide events in the presence of per-task events, 4332 * 2) per-task events in the presence of cpu-wide events, 4333 * 3) two matching events on the same context. 4334 * 4335 * The former two cases are handled in the allocation path (perf_event_alloc(), 4336 * _free_event()), the latter -- before the first perf_install_in_context(). 4337 */ 4338 static int exclusive_event_init(struct perf_event *event) 4339 { 4340 struct pmu *pmu = event->pmu; 4341 4342 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 4343 return 0; 4344 4345 /* 4346 * Prevent co-existence of per-task and cpu-wide events on the 4347 * same exclusive pmu. 4348 * 4349 * Negative pmu::exclusive_cnt means there are cpu-wide 4350 * events on this "exclusive" pmu, positive means there are 4351 * per-task events. 4352 * 4353 * Since this is called in perf_event_alloc() path, event::ctx 4354 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 4355 * to mean "per-task event", because unlike other attach states it 4356 * never gets cleared. 4357 */ 4358 if (event->attach_state & PERF_ATTACH_TASK) { 4359 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 4360 return -EBUSY; 4361 } else { 4362 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 4363 return -EBUSY; 4364 } 4365 4366 return 0; 4367 } 4368 4369 static void exclusive_event_destroy(struct perf_event *event) 4370 { 4371 struct pmu *pmu = event->pmu; 4372 4373 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 4374 return; 4375 4376 /* see comment in exclusive_event_init() */ 4377 if (event->attach_state & PERF_ATTACH_TASK) 4378 atomic_dec(&pmu->exclusive_cnt); 4379 else 4380 atomic_inc(&pmu->exclusive_cnt); 4381 } 4382 4383 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 4384 { 4385 if ((e1->pmu == e2->pmu) && 4386 (e1->cpu == e2->cpu || 4387 e1->cpu == -1 || 4388 e2->cpu == -1)) 4389 return true; 4390 return false; 4391 } 4392 4393 /* Called under the same ctx::mutex as perf_install_in_context() */ 4394 static bool exclusive_event_installable(struct perf_event *event, 4395 struct perf_event_context *ctx) 4396 { 4397 struct perf_event *iter_event; 4398 struct pmu *pmu = event->pmu; 4399 4400 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 4401 return true; 4402 4403 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 4404 if (exclusive_event_match(iter_event, event)) 4405 return false; 4406 } 4407 4408 return true; 4409 } 4410 4411 static void perf_addr_filters_splice(struct perf_event *event, 4412 struct list_head *head); 4413 4414 static void _free_event(struct perf_event *event) 4415 { 4416 irq_work_sync(&event->pending); 4417 4418 unaccount_event(event); 4419 4420 if (event->rb) { 4421 /* 4422 * Can happen when we close an event with re-directed output. 4423 * 4424 * Since we have a 0 refcount, perf_mmap_close() will skip 4425 * over us; possibly making our ring_buffer_put() the last. 4426 */ 4427 mutex_lock(&event->mmap_mutex); 4428 ring_buffer_attach(event, NULL); 4429 mutex_unlock(&event->mmap_mutex); 4430 } 4431 4432 if (is_cgroup_event(event)) 4433 perf_detach_cgroup(event); 4434 4435 if (!event->parent) { 4436 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 4437 put_callchain_buffers(); 4438 } 4439 4440 perf_event_free_bpf_prog(event); 4441 perf_addr_filters_splice(event, NULL); 4442 kfree(event->addr_filters_offs); 4443 4444 if (event->destroy) 4445 event->destroy(event); 4446 4447 if (event->ctx) 4448 put_ctx(event->ctx); 4449 4450 if (event->hw.target) 4451 put_task_struct(event->hw.target); 4452 4453 exclusive_event_destroy(event); 4454 module_put(event->pmu->module); 4455 4456 call_rcu(&event->rcu_head, free_event_rcu); 4457 } 4458 4459 /* 4460 * Used to free events which have a known refcount of 1, such as in error paths 4461 * where the event isn't exposed yet and inherited events. 4462 */ 4463 static void free_event(struct perf_event *event) 4464 { 4465 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 4466 "unexpected event refcount: %ld; ptr=%p\n", 4467 atomic_long_read(&event->refcount), event)) { 4468 /* leak to avoid use-after-free */ 4469 return; 4470 } 4471 4472 _free_event(event); 4473 } 4474 4475 /* 4476 * Remove user event from the owner task. 4477 */ 4478 static void perf_remove_from_owner(struct perf_event *event) 4479 { 4480 struct task_struct *owner; 4481 4482 rcu_read_lock(); 4483 /* 4484 * Matches the smp_store_release() in perf_event_exit_task(). If we 4485 * observe !owner it means the list deletion is complete and we can 4486 * indeed free this event, otherwise we need to serialize on 4487 * owner->perf_event_mutex. 4488 */ 4489 owner = READ_ONCE(event->owner); 4490 if (owner) { 4491 /* 4492 * Since delayed_put_task_struct() also drops the last 4493 * task reference we can safely take a new reference 4494 * while holding the rcu_read_lock(). 4495 */ 4496 get_task_struct(owner); 4497 } 4498 rcu_read_unlock(); 4499 4500 if (owner) { 4501 /* 4502 * If we're here through perf_event_exit_task() we're already 4503 * holding ctx->mutex which would be an inversion wrt. the 4504 * normal lock order. 4505 * 4506 * However we can safely take this lock because its the child 4507 * ctx->mutex. 4508 */ 4509 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 4510 4511 /* 4512 * We have to re-check the event->owner field, if it is cleared 4513 * we raced with perf_event_exit_task(), acquiring the mutex 4514 * ensured they're done, and we can proceed with freeing the 4515 * event. 4516 */ 4517 if (event->owner) { 4518 list_del_init(&event->owner_entry); 4519 smp_store_release(&event->owner, NULL); 4520 } 4521 mutex_unlock(&owner->perf_event_mutex); 4522 put_task_struct(owner); 4523 } 4524 } 4525 4526 static void put_event(struct perf_event *event) 4527 { 4528 if (!atomic_long_dec_and_test(&event->refcount)) 4529 return; 4530 4531 _free_event(event); 4532 } 4533 4534 /* 4535 * Kill an event dead; while event:refcount will preserve the event 4536 * object, it will not preserve its functionality. Once the last 'user' 4537 * gives up the object, we'll destroy the thing. 4538 */ 4539 int perf_event_release_kernel(struct perf_event *event) 4540 { 4541 struct perf_event_context *ctx = event->ctx; 4542 struct perf_event *child, *tmp; 4543 LIST_HEAD(free_list); 4544 4545 /* 4546 * If we got here through err_file: fput(event_file); we will not have 4547 * attached to a context yet. 4548 */ 4549 if (!ctx) { 4550 WARN_ON_ONCE(event->attach_state & 4551 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP)); 4552 goto no_ctx; 4553 } 4554 4555 if (!is_kernel_event(event)) 4556 perf_remove_from_owner(event); 4557 4558 ctx = perf_event_ctx_lock(event); 4559 WARN_ON_ONCE(ctx->parent_ctx); 4560 perf_remove_from_context(event, DETACH_GROUP); 4561 4562 raw_spin_lock_irq(&ctx->lock); 4563 /* 4564 * Mark this event as STATE_DEAD, there is no external reference to it 4565 * anymore. 4566 * 4567 * Anybody acquiring event->child_mutex after the below loop _must_ 4568 * also see this, most importantly inherit_event() which will avoid 4569 * placing more children on the list. 4570 * 4571 * Thus this guarantees that we will in fact observe and kill _ALL_ 4572 * child events. 4573 */ 4574 event->state = PERF_EVENT_STATE_DEAD; 4575 raw_spin_unlock_irq(&ctx->lock); 4576 4577 perf_event_ctx_unlock(event, ctx); 4578 4579 again: 4580 mutex_lock(&event->child_mutex); 4581 list_for_each_entry(child, &event->child_list, child_list) { 4582 4583 /* 4584 * Cannot change, child events are not migrated, see the 4585 * comment with perf_event_ctx_lock_nested(). 4586 */ 4587 ctx = READ_ONCE(child->ctx); 4588 /* 4589 * Since child_mutex nests inside ctx::mutex, we must jump 4590 * through hoops. We start by grabbing a reference on the ctx. 4591 * 4592 * Since the event cannot get freed while we hold the 4593 * child_mutex, the context must also exist and have a !0 4594 * reference count. 4595 */ 4596 get_ctx(ctx); 4597 4598 /* 4599 * Now that we have a ctx ref, we can drop child_mutex, and 4600 * acquire ctx::mutex without fear of it going away. Then we 4601 * can re-acquire child_mutex. 4602 */ 4603 mutex_unlock(&event->child_mutex); 4604 mutex_lock(&ctx->mutex); 4605 mutex_lock(&event->child_mutex); 4606 4607 /* 4608 * Now that we hold ctx::mutex and child_mutex, revalidate our 4609 * state, if child is still the first entry, it didn't get freed 4610 * and we can continue doing so. 4611 */ 4612 tmp = list_first_entry_or_null(&event->child_list, 4613 struct perf_event, child_list); 4614 if (tmp == child) { 4615 perf_remove_from_context(child, DETACH_GROUP); 4616 list_move(&child->child_list, &free_list); 4617 /* 4618 * This matches the refcount bump in inherit_event(); 4619 * this can't be the last reference. 4620 */ 4621 put_event(event); 4622 } 4623 4624 mutex_unlock(&event->child_mutex); 4625 mutex_unlock(&ctx->mutex); 4626 put_ctx(ctx); 4627 goto again; 4628 } 4629 mutex_unlock(&event->child_mutex); 4630 4631 list_for_each_entry_safe(child, tmp, &free_list, child_list) { 4632 list_del(&child->child_list); 4633 free_event(child); 4634 } 4635 4636 no_ctx: 4637 put_event(event); /* Must be the 'last' reference */ 4638 return 0; 4639 } 4640 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 4641 4642 /* 4643 * Called when the last reference to the file is gone. 4644 */ 4645 static int perf_release(struct inode *inode, struct file *file) 4646 { 4647 perf_event_release_kernel(file->private_data); 4648 return 0; 4649 } 4650 4651 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 4652 { 4653 struct perf_event *child; 4654 u64 total = 0; 4655 4656 *enabled = 0; 4657 *running = 0; 4658 4659 mutex_lock(&event->child_mutex); 4660 4661 (void)perf_event_read(event, false); 4662 total += perf_event_count(event); 4663 4664 *enabled += event->total_time_enabled + 4665 atomic64_read(&event->child_total_time_enabled); 4666 *running += event->total_time_running + 4667 atomic64_read(&event->child_total_time_running); 4668 4669 list_for_each_entry(child, &event->child_list, child_list) { 4670 (void)perf_event_read(child, false); 4671 total += perf_event_count(child); 4672 *enabled += child->total_time_enabled; 4673 *running += child->total_time_running; 4674 } 4675 mutex_unlock(&event->child_mutex); 4676 4677 return total; 4678 } 4679 4680 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 4681 { 4682 struct perf_event_context *ctx; 4683 u64 count; 4684 4685 ctx = perf_event_ctx_lock(event); 4686 count = __perf_event_read_value(event, enabled, running); 4687 perf_event_ctx_unlock(event, ctx); 4688 4689 return count; 4690 } 4691 EXPORT_SYMBOL_GPL(perf_event_read_value); 4692 4693 static int __perf_read_group_add(struct perf_event *leader, 4694 u64 read_format, u64 *values) 4695 { 4696 struct perf_event_context *ctx = leader->ctx; 4697 struct perf_event *sub; 4698 unsigned long flags; 4699 int n = 1; /* skip @nr */ 4700 int ret; 4701 4702 ret = perf_event_read(leader, true); 4703 if (ret) 4704 return ret; 4705 4706 raw_spin_lock_irqsave(&ctx->lock, flags); 4707 4708 /* 4709 * Since we co-schedule groups, {enabled,running} times of siblings 4710 * will be identical to those of the leader, so we only publish one 4711 * set. 4712 */ 4713 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 4714 values[n++] += leader->total_time_enabled + 4715 atomic64_read(&leader->child_total_time_enabled); 4716 } 4717 4718 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 4719 values[n++] += leader->total_time_running + 4720 atomic64_read(&leader->child_total_time_running); 4721 } 4722 4723 /* 4724 * Write {count,id} tuples for every sibling. 4725 */ 4726 values[n++] += perf_event_count(leader); 4727 if (read_format & PERF_FORMAT_ID) 4728 values[n++] = primary_event_id(leader); 4729 4730 for_each_sibling_event(sub, leader) { 4731 values[n++] += perf_event_count(sub); 4732 if (read_format & PERF_FORMAT_ID) 4733 values[n++] = primary_event_id(sub); 4734 } 4735 4736 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4737 return 0; 4738 } 4739 4740 static int perf_read_group(struct perf_event *event, 4741 u64 read_format, char __user *buf) 4742 { 4743 struct perf_event *leader = event->group_leader, *child; 4744 struct perf_event_context *ctx = leader->ctx; 4745 int ret; 4746 u64 *values; 4747 4748 lockdep_assert_held(&ctx->mutex); 4749 4750 values = kzalloc(event->read_size, GFP_KERNEL); 4751 if (!values) 4752 return -ENOMEM; 4753 4754 values[0] = 1 + leader->nr_siblings; 4755 4756 /* 4757 * By locking the child_mutex of the leader we effectively 4758 * lock the child list of all siblings.. XXX explain how. 4759 */ 4760 mutex_lock(&leader->child_mutex); 4761 4762 ret = __perf_read_group_add(leader, read_format, values); 4763 if (ret) 4764 goto unlock; 4765 4766 list_for_each_entry(child, &leader->child_list, child_list) { 4767 ret = __perf_read_group_add(child, read_format, values); 4768 if (ret) 4769 goto unlock; 4770 } 4771 4772 mutex_unlock(&leader->child_mutex); 4773 4774 ret = event->read_size; 4775 if (copy_to_user(buf, values, event->read_size)) 4776 ret = -EFAULT; 4777 goto out; 4778 4779 unlock: 4780 mutex_unlock(&leader->child_mutex); 4781 out: 4782 kfree(values); 4783 return ret; 4784 } 4785 4786 static int perf_read_one(struct perf_event *event, 4787 u64 read_format, char __user *buf) 4788 { 4789 u64 enabled, running; 4790 u64 values[4]; 4791 int n = 0; 4792 4793 values[n++] = __perf_event_read_value(event, &enabled, &running); 4794 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 4795 values[n++] = enabled; 4796 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 4797 values[n++] = running; 4798 if (read_format & PERF_FORMAT_ID) 4799 values[n++] = primary_event_id(event); 4800 4801 if (copy_to_user(buf, values, n * sizeof(u64))) 4802 return -EFAULT; 4803 4804 return n * sizeof(u64); 4805 } 4806 4807 static bool is_event_hup(struct perf_event *event) 4808 { 4809 bool no_children; 4810 4811 if (event->state > PERF_EVENT_STATE_EXIT) 4812 return false; 4813 4814 mutex_lock(&event->child_mutex); 4815 no_children = list_empty(&event->child_list); 4816 mutex_unlock(&event->child_mutex); 4817 return no_children; 4818 } 4819 4820 /* 4821 * Read the performance event - simple non blocking version for now 4822 */ 4823 static ssize_t 4824 __perf_read(struct perf_event *event, char __user *buf, size_t count) 4825 { 4826 u64 read_format = event->attr.read_format; 4827 int ret; 4828 4829 /* 4830 * Return end-of-file for a read on an event that is in 4831 * error state (i.e. because it was pinned but it couldn't be 4832 * scheduled on to the CPU at some point). 4833 */ 4834 if (event->state == PERF_EVENT_STATE_ERROR) 4835 return 0; 4836 4837 if (count < event->read_size) 4838 return -ENOSPC; 4839 4840 WARN_ON_ONCE(event->ctx->parent_ctx); 4841 if (read_format & PERF_FORMAT_GROUP) 4842 ret = perf_read_group(event, read_format, buf); 4843 else 4844 ret = perf_read_one(event, read_format, buf); 4845 4846 return ret; 4847 } 4848 4849 static ssize_t 4850 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 4851 { 4852 struct perf_event *event = file->private_data; 4853 struct perf_event_context *ctx; 4854 int ret; 4855 4856 ctx = perf_event_ctx_lock(event); 4857 ret = __perf_read(event, buf, count); 4858 perf_event_ctx_unlock(event, ctx); 4859 4860 return ret; 4861 } 4862 4863 static __poll_t perf_poll(struct file *file, poll_table *wait) 4864 { 4865 struct perf_event *event = file->private_data; 4866 struct ring_buffer *rb; 4867 __poll_t events = EPOLLHUP; 4868 4869 poll_wait(file, &event->waitq, wait); 4870 4871 if (is_event_hup(event)) 4872 return events; 4873 4874 /* 4875 * Pin the event->rb by taking event->mmap_mutex; otherwise 4876 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 4877 */ 4878 mutex_lock(&event->mmap_mutex); 4879 rb = event->rb; 4880 if (rb) 4881 events = atomic_xchg(&rb->poll, 0); 4882 mutex_unlock(&event->mmap_mutex); 4883 return events; 4884 } 4885 4886 static void _perf_event_reset(struct perf_event *event) 4887 { 4888 (void)perf_event_read(event, false); 4889 local64_set(&event->count, 0); 4890 perf_event_update_userpage(event); 4891 } 4892 4893 /* 4894 * Holding the top-level event's child_mutex means that any 4895 * descendant process that has inherited this event will block 4896 * in perf_event_exit_event() if it goes to exit, thus satisfying the 4897 * task existence requirements of perf_event_enable/disable. 4898 */ 4899 static void perf_event_for_each_child(struct perf_event *event, 4900 void (*func)(struct perf_event *)) 4901 { 4902 struct perf_event *child; 4903 4904 WARN_ON_ONCE(event->ctx->parent_ctx); 4905 4906 mutex_lock(&event->child_mutex); 4907 func(event); 4908 list_for_each_entry(child, &event->child_list, child_list) 4909 func(child); 4910 mutex_unlock(&event->child_mutex); 4911 } 4912 4913 static void perf_event_for_each(struct perf_event *event, 4914 void (*func)(struct perf_event *)) 4915 { 4916 struct perf_event_context *ctx = event->ctx; 4917 struct perf_event *sibling; 4918 4919 lockdep_assert_held(&ctx->mutex); 4920 4921 event = event->group_leader; 4922 4923 perf_event_for_each_child(event, func); 4924 for_each_sibling_event(sibling, event) 4925 perf_event_for_each_child(sibling, func); 4926 } 4927 4928 static void __perf_event_period(struct perf_event *event, 4929 struct perf_cpu_context *cpuctx, 4930 struct perf_event_context *ctx, 4931 void *info) 4932 { 4933 u64 value = *((u64 *)info); 4934 bool active; 4935 4936 if (event->attr.freq) { 4937 event->attr.sample_freq = value; 4938 } else { 4939 event->attr.sample_period = value; 4940 event->hw.sample_period = value; 4941 } 4942 4943 active = (event->state == PERF_EVENT_STATE_ACTIVE); 4944 if (active) { 4945 perf_pmu_disable(ctx->pmu); 4946 /* 4947 * We could be throttled; unthrottle now to avoid the tick 4948 * trying to unthrottle while we already re-started the event. 4949 */ 4950 if (event->hw.interrupts == MAX_INTERRUPTS) { 4951 event->hw.interrupts = 0; 4952 perf_log_throttle(event, 1); 4953 } 4954 event->pmu->stop(event, PERF_EF_UPDATE); 4955 } 4956 4957 local64_set(&event->hw.period_left, 0); 4958 4959 if (active) { 4960 event->pmu->start(event, PERF_EF_RELOAD); 4961 perf_pmu_enable(ctx->pmu); 4962 } 4963 } 4964 4965 static int perf_event_period(struct perf_event *event, u64 __user *arg) 4966 { 4967 u64 value; 4968 4969 if (!is_sampling_event(event)) 4970 return -EINVAL; 4971 4972 if (copy_from_user(&value, arg, sizeof(value))) 4973 return -EFAULT; 4974 4975 if (!value) 4976 return -EINVAL; 4977 4978 if (event->attr.freq && value > sysctl_perf_event_sample_rate) 4979 return -EINVAL; 4980 4981 event_function_call(event, __perf_event_period, &value); 4982 4983 return 0; 4984 } 4985 4986 static const struct file_operations perf_fops; 4987 4988 static inline int perf_fget_light(int fd, struct fd *p) 4989 { 4990 struct fd f = fdget(fd); 4991 if (!f.file) 4992 return -EBADF; 4993 4994 if (f.file->f_op != &perf_fops) { 4995 fdput(f); 4996 return -EBADF; 4997 } 4998 *p = f; 4999 return 0; 5000 } 5001 5002 static int perf_event_set_output(struct perf_event *event, 5003 struct perf_event *output_event); 5004 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 5005 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd); 5006 static int perf_copy_attr(struct perf_event_attr __user *uattr, 5007 struct perf_event_attr *attr); 5008 5009 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 5010 { 5011 void (*func)(struct perf_event *); 5012 u32 flags = arg; 5013 5014 switch (cmd) { 5015 case PERF_EVENT_IOC_ENABLE: 5016 func = _perf_event_enable; 5017 break; 5018 case PERF_EVENT_IOC_DISABLE: 5019 func = _perf_event_disable; 5020 break; 5021 case PERF_EVENT_IOC_RESET: 5022 func = _perf_event_reset; 5023 break; 5024 5025 case PERF_EVENT_IOC_REFRESH: 5026 return _perf_event_refresh(event, arg); 5027 5028 case PERF_EVENT_IOC_PERIOD: 5029 return perf_event_period(event, (u64 __user *)arg); 5030 5031 case PERF_EVENT_IOC_ID: 5032 { 5033 u64 id = primary_event_id(event); 5034 5035 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 5036 return -EFAULT; 5037 return 0; 5038 } 5039 5040 case PERF_EVENT_IOC_SET_OUTPUT: 5041 { 5042 int ret; 5043 if (arg != -1) { 5044 struct perf_event *output_event; 5045 struct fd output; 5046 ret = perf_fget_light(arg, &output); 5047 if (ret) 5048 return ret; 5049 output_event = output.file->private_data; 5050 ret = perf_event_set_output(event, output_event); 5051 fdput(output); 5052 } else { 5053 ret = perf_event_set_output(event, NULL); 5054 } 5055 return ret; 5056 } 5057 5058 case PERF_EVENT_IOC_SET_FILTER: 5059 return perf_event_set_filter(event, (void __user *)arg); 5060 5061 case PERF_EVENT_IOC_SET_BPF: 5062 return perf_event_set_bpf_prog(event, arg); 5063 5064 case PERF_EVENT_IOC_PAUSE_OUTPUT: { 5065 struct ring_buffer *rb; 5066 5067 rcu_read_lock(); 5068 rb = rcu_dereference(event->rb); 5069 if (!rb || !rb->nr_pages) { 5070 rcu_read_unlock(); 5071 return -EINVAL; 5072 } 5073 rb_toggle_paused(rb, !!arg); 5074 rcu_read_unlock(); 5075 return 0; 5076 } 5077 5078 case PERF_EVENT_IOC_QUERY_BPF: 5079 return perf_event_query_prog_array(event, (void __user *)arg); 5080 5081 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: { 5082 struct perf_event_attr new_attr; 5083 int err = perf_copy_attr((struct perf_event_attr __user *)arg, 5084 &new_attr); 5085 5086 if (err) 5087 return err; 5088 5089 return perf_event_modify_attr(event, &new_attr); 5090 } 5091 default: 5092 return -ENOTTY; 5093 } 5094 5095 if (flags & PERF_IOC_FLAG_GROUP) 5096 perf_event_for_each(event, func); 5097 else 5098 perf_event_for_each_child(event, func); 5099 5100 return 0; 5101 } 5102 5103 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5104 { 5105 struct perf_event *event = file->private_data; 5106 struct perf_event_context *ctx; 5107 long ret; 5108 5109 ctx = perf_event_ctx_lock(event); 5110 ret = _perf_ioctl(event, cmd, arg); 5111 perf_event_ctx_unlock(event, ctx); 5112 5113 return ret; 5114 } 5115 5116 #ifdef CONFIG_COMPAT 5117 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 5118 unsigned long arg) 5119 { 5120 switch (_IOC_NR(cmd)) { 5121 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 5122 case _IOC_NR(PERF_EVENT_IOC_ID): 5123 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF): 5124 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES): 5125 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 5126 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 5127 cmd &= ~IOCSIZE_MASK; 5128 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 5129 } 5130 break; 5131 } 5132 return perf_ioctl(file, cmd, arg); 5133 } 5134 #else 5135 # define perf_compat_ioctl NULL 5136 #endif 5137 5138 int perf_event_task_enable(void) 5139 { 5140 struct perf_event_context *ctx; 5141 struct perf_event *event; 5142 5143 mutex_lock(¤t->perf_event_mutex); 5144 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 5145 ctx = perf_event_ctx_lock(event); 5146 perf_event_for_each_child(event, _perf_event_enable); 5147 perf_event_ctx_unlock(event, ctx); 5148 } 5149 mutex_unlock(¤t->perf_event_mutex); 5150 5151 return 0; 5152 } 5153 5154 int perf_event_task_disable(void) 5155 { 5156 struct perf_event_context *ctx; 5157 struct perf_event *event; 5158 5159 mutex_lock(¤t->perf_event_mutex); 5160 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 5161 ctx = perf_event_ctx_lock(event); 5162 perf_event_for_each_child(event, _perf_event_disable); 5163 perf_event_ctx_unlock(event, ctx); 5164 } 5165 mutex_unlock(¤t->perf_event_mutex); 5166 5167 return 0; 5168 } 5169 5170 static int perf_event_index(struct perf_event *event) 5171 { 5172 if (event->hw.state & PERF_HES_STOPPED) 5173 return 0; 5174 5175 if (event->state != PERF_EVENT_STATE_ACTIVE) 5176 return 0; 5177 5178 return event->pmu->event_idx(event); 5179 } 5180 5181 static void calc_timer_values(struct perf_event *event, 5182 u64 *now, 5183 u64 *enabled, 5184 u64 *running) 5185 { 5186 u64 ctx_time; 5187 5188 *now = perf_clock(); 5189 ctx_time = event->shadow_ctx_time + *now; 5190 __perf_update_times(event, ctx_time, enabled, running); 5191 } 5192 5193 static void perf_event_init_userpage(struct perf_event *event) 5194 { 5195 struct perf_event_mmap_page *userpg; 5196 struct ring_buffer *rb; 5197 5198 rcu_read_lock(); 5199 rb = rcu_dereference(event->rb); 5200 if (!rb) 5201 goto unlock; 5202 5203 userpg = rb->user_page; 5204 5205 /* Allow new userspace to detect that bit 0 is deprecated */ 5206 userpg->cap_bit0_is_deprecated = 1; 5207 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 5208 userpg->data_offset = PAGE_SIZE; 5209 userpg->data_size = perf_data_size(rb); 5210 5211 unlock: 5212 rcu_read_unlock(); 5213 } 5214 5215 void __weak arch_perf_update_userpage( 5216 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 5217 { 5218 } 5219 5220 /* 5221 * Callers need to ensure there can be no nesting of this function, otherwise 5222 * the seqlock logic goes bad. We can not serialize this because the arch 5223 * code calls this from NMI context. 5224 */ 5225 void perf_event_update_userpage(struct perf_event *event) 5226 { 5227 struct perf_event_mmap_page *userpg; 5228 struct ring_buffer *rb; 5229 u64 enabled, running, now; 5230 5231 rcu_read_lock(); 5232 rb = rcu_dereference(event->rb); 5233 if (!rb) 5234 goto unlock; 5235 5236 /* 5237 * compute total_time_enabled, total_time_running 5238 * based on snapshot values taken when the event 5239 * was last scheduled in. 5240 * 5241 * we cannot simply called update_context_time() 5242 * because of locking issue as we can be called in 5243 * NMI context 5244 */ 5245 calc_timer_values(event, &now, &enabled, &running); 5246 5247 userpg = rb->user_page; 5248 /* 5249 * Disable preemption to guarantee consistent time stamps are stored to 5250 * the user page. 5251 */ 5252 preempt_disable(); 5253 ++userpg->lock; 5254 barrier(); 5255 userpg->index = perf_event_index(event); 5256 userpg->offset = perf_event_count(event); 5257 if (userpg->index) 5258 userpg->offset -= local64_read(&event->hw.prev_count); 5259 5260 userpg->time_enabled = enabled + 5261 atomic64_read(&event->child_total_time_enabled); 5262 5263 userpg->time_running = running + 5264 atomic64_read(&event->child_total_time_running); 5265 5266 arch_perf_update_userpage(event, userpg, now); 5267 5268 barrier(); 5269 ++userpg->lock; 5270 preempt_enable(); 5271 unlock: 5272 rcu_read_unlock(); 5273 } 5274 EXPORT_SYMBOL_GPL(perf_event_update_userpage); 5275 5276 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf) 5277 { 5278 struct perf_event *event = vmf->vma->vm_file->private_data; 5279 struct ring_buffer *rb; 5280 vm_fault_t ret = VM_FAULT_SIGBUS; 5281 5282 if (vmf->flags & FAULT_FLAG_MKWRITE) { 5283 if (vmf->pgoff == 0) 5284 ret = 0; 5285 return ret; 5286 } 5287 5288 rcu_read_lock(); 5289 rb = rcu_dereference(event->rb); 5290 if (!rb) 5291 goto unlock; 5292 5293 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 5294 goto unlock; 5295 5296 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 5297 if (!vmf->page) 5298 goto unlock; 5299 5300 get_page(vmf->page); 5301 vmf->page->mapping = vmf->vma->vm_file->f_mapping; 5302 vmf->page->index = vmf->pgoff; 5303 5304 ret = 0; 5305 unlock: 5306 rcu_read_unlock(); 5307 5308 return ret; 5309 } 5310 5311 static void ring_buffer_attach(struct perf_event *event, 5312 struct ring_buffer *rb) 5313 { 5314 struct ring_buffer *old_rb = NULL; 5315 unsigned long flags; 5316 5317 if (event->rb) { 5318 /* 5319 * Should be impossible, we set this when removing 5320 * event->rb_entry and wait/clear when adding event->rb_entry. 5321 */ 5322 WARN_ON_ONCE(event->rcu_pending); 5323 5324 old_rb = event->rb; 5325 spin_lock_irqsave(&old_rb->event_lock, flags); 5326 list_del_rcu(&event->rb_entry); 5327 spin_unlock_irqrestore(&old_rb->event_lock, flags); 5328 5329 event->rcu_batches = get_state_synchronize_rcu(); 5330 event->rcu_pending = 1; 5331 } 5332 5333 if (rb) { 5334 if (event->rcu_pending) { 5335 cond_synchronize_rcu(event->rcu_batches); 5336 event->rcu_pending = 0; 5337 } 5338 5339 spin_lock_irqsave(&rb->event_lock, flags); 5340 list_add_rcu(&event->rb_entry, &rb->event_list); 5341 spin_unlock_irqrestore(&rb->event_lock, flags); 5342 } 5343 5344 /* 5345 * Avoid racing with perf_mmap_close(AUX): stop the event 5346 * before swizzling the event::rb pointer; if it's getting 5347 * unmapped, its aux_mmap_count will be 0 and it won't 5348 * restart. See the comment in __perf_pmu_output_stop(). 5349 * 5350 * Data will inevitably be lost when set_output is done in 5351 * mid-air, but then again, whoever does it like this is 5352 * not in for the data anyway. 5353 */ 5354 if (has_aux(event)) 5355 perf_event_stop(event, 0); 5356 5357 rcu_assign_pointer(event->rb, rb); 5358 5359 if (old_rb) { 5360 ring_buffer_put(old_rb); 5361 /* 5362 * Since we detached before setting the new rb, so that we 5363 * could attach the new rb, we could have missed a wakeup. 5364 * Provide it now. 5365 */ 5366 wake_up_all(&event->waitq); 5367 } 5368 } 5369 5370 static void ring_buffer_wakeup(struct perf_event *event) 5371 { 5372 struct ring_buffer *rb; 5373 5374 rcu_read_lock(); 5375 rb = rcu_dereference(event->rb); 5376 if (rb) { 5377 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 5378 wake_up_all(&event->waitq); 5379 } 5380 rcu_read_unlock(); 5381 } 5382 5383 struct ring_buffer *ring_buffer_get(struct perf_event *event) 5384 { 5385 struct ring_buffer *rb; 5386 5387 rcu_read_lock(); 5388 rb = rcu_dereference(event->rb); 5389 if (rb) { 5390 if (!atomic_inc_not_zero(&rb->refcount)) 5391 rb = NULL; 5392 } 5393 rcu_read_unlock(); 5394 5395 return rb; 5396 } 5397 5398 void ring_buffer_put(struct ring_buffer *rb) 5399 { 5400 if (!atomic_dec_and_test(&rb->refcount)) 5401 return; 5402 5403 WARN_ON_ONCE(!list_empty(&rb->event_list)); 5404 5405 call_rcu(&rb->rcu_head, rb_free_rcu); 5406 } 5407 5408 static void perf_mmap_open(struct vm_area_struct *vma) 5409 { 5410 struct perf_event *event = vma->vm_file->private_data; 5411 5412 atomic_inc(&event->mmap_count); 5413 atomic_inc(&event->rb->mmap_count); 5414 5415 if (vma->vm_pgoff) 5416 atomic_inc(&event->rb->aux_mmap_count); 5417 5418 if (event->pmu->event_mapped) 5419 event->pmu->event_mapped(event, vma->vm_mm); 5420 } 5421 5422 static void perf_pmu_output_stop(struct perf_event *event); 5423 5424 /* 5425 * A buffer can be mmap()ed multiple times; either directly through the same 5426 * event, or through other events by use of perf_event_set_output(). 5427 * 5428 * In order to undo the VM accounting done by perf_mmap() we need to destroy 5429 * the buffer here, where we still have a VM context. This means we need 5430 * to detach all events redirecting to us. 5431 */ 5432 static void perf_mmap_close(struct vm_area_struct *vma) 5433 { 5434 struct perf_event *event = vma->vm_file->private_data; 5435 5436 struct ring_buffer *rb = ring_buffer_get(event); 5437 struct user_struct *mmap_user = rb->mmap_user; 5438 int mmap_locked = rb->mmap_locked; 5439 unsigned long size = perf_data_size(rb); 5440 5441 if (event->pmu->event_unmapped) 5442 event->pmu->event_unmapped(event, vma->vm_mm); 5443 5444 /* 5445 * rb->aux_mmap_count will always drop before rb->mmap_count and 5446 * event->mmap_count, so it is ok to use event->mmap_mutex to 5447 * serialize with perf_mmap here. 5448 */ 5449 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 5450 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) { 5451 /* 5452 * Stop all AUX events that are writing to this buffer, 5453 * so that we can free its AUX pages and corresponding PMU 5454 * data. Note that after rb::aux_mmap_count dropped to zero, 5455 * they won't start any more (see perf_aux_output_begin()). 5456 */ 5457 perf_pmu_output_stop(event); 5458 5459 /* now it's safe to free the pages */ 5460 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm); 5461 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked; 5462 5463 /* this has to be the last one */ 5464 rb_free_aux(rb); 5465 WARN_ON_ONCE(atomic_read(&rb->aux_refcount)); 5466 5467 mutex_unlock(&event->mmap_mutex); 5468 } 5469 5470 atomic_dec(&rb->mmap_count); 5471 5472 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 5473 goto out_put; 5474 5475 ring_buffer_attach(event, NULL); 5476 mutex_unlock(&event->mmap_mutex); 5477 5478 /* If there's still other mmap()s of this buffer, we're done. */ 5479 if (atomic_read(&rb->mmap_count)) 5480 goto out_put; 5481 5482 /* 5483 * No other mmap()s, detach from all other events that might redirect 5484 * into the now unreachable buffer. Somewhat complicated by the 5485 * fact that rb::event_lock otherwise nests inside mmap_mutex. 5486 */ 5487 again: 5488 rcu_read_lock(); 5489 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 5490 if (!atomic_long_inc_not_zero(&event->refcount)) { 5491 /* 5492 * This event is en-route to free_event() which will 5493 * detach it and remove it from the list. 5494 */ 5495 continue; 5496 } 5497 rcu_read_unlock(); 5498 5499 mutex_lock(&event->mmap_mutex); 5500 /* 5501 * Check we didn't race with perf_event_set_output() which can 5502 * swizzle the rb from under us while we were waiting to 5503 * acquire mmap_mutex. 5504 * 5505 * If we find a different rb; ignore this event, a next 5506 * iteration will no longer find it on the list. We have to 5507 * still restart the iteration to make sure we're not now 5508 * iterating the wrong list. 5509 */ 5510 if (event->rb == rb) 5511 ring_buffer_attach(event, NULL); 5512 5513 mutex_unlock(&event->mmap_mutex); 5514 put_event(event); 5515 5516 /* 5517 * Restart the iteration; either we're on the wrong list or 5518 * destroyed its integrity by doing a deletion. 5519 */ 5520 goto again; 5521 } 5522 rcu_read_unlock(); 5523 5524 /* 5525 * It could be there's still a few 0-ref events on the list; they'll 5526 * get cleaned up by free_event() -- they'll also still have their 5527 * ref on the rb and will free it whenever they are done with it. 5528 * 5529 * Aside from that, this buffer is 'fully' detached and unmapped, 5530 * undo the VM accounting. 5531 */ 5532 5533 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm); 5534 vma->vm_mm->pinned_vm -= mmap_locked; 5535 free_uid(mmap_user); 5536 5537 out_put: 5538 ring_buffer_put(rb); /* could be last */ 5539 } 5540 5541 static const struct vm_operations_struct perf_mmap_vmops = { 5542 .open = perf_mmap_open, 5543 .close = perf_mmap_close, /* non mergable */ 5544 .fault = perf_mmap_fault, 5545 .page_mkwrite = perf_mmap_fault, 5546 }; 5547 5548 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 5549 { 5550 struct perf_event *event = file->private_data; 5551 unsigned long user_locked, user_lock_limit; 5552 struct user_struct *user = current_user(); 5553 unsigned long locked, lock_limit; 5554 struct ring_buffer *rb = NULL; 5555 unsigned long vma_size; 5556 unsigned long nr_pages; 5557 long user_extra = 0, extra = 0; 5558 int ret = 0, flags = 0; 5559 5560 /* 5561 * Don't allow mmap() of inherited per-task counters. This would 5562 * create a performance issue due to all children writing to the 5563 * same rb. 5564 */ 5565 if (event->cpu == -1 && event->attr.inherit) 5566 return -EINVAL; 5567 5568 if (!(vma->vm_flags & VM_SHARED)) 5569 return -EINVAL; 5570 5571 vma_size = vma->vm_end - vma->vm_start; 5572 5573 if (vma->vm_pgoff == 0) { 5574 nr_pages = (vma_size / PAGE_SIZE) - 1; 5575 } else { 5576 /* 5577 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 5578 * mapped, all subsequent mappings should have the same size 5579 * and offset. Must be above the normal perf buffer. 5580 */ 5581 u64 aux_offset, aux_size; 5582 5583 if (!event->rb) 5584 return -EINVAL; 5585 5586 nr_pages = vma_size / PAGE_SIZE; 5587 5588 mutex_lock(&event->mmap_mutex); 5589 ret = -EINVAL; 5590 5591 rb = event->rb; 5592 if (!rb) 5593 goto aux_unlock; 5594 5595 aux_offset = READ_ONCE(rb->user_page->aux_offset); 5596 aux_size = READ_ONCE(rb->user_page->aux_size); 5597 5598 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 5599 goto aux_unlock; 5600 5601 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 5602 goto aux_unlock; 5603 5604 /* already mapped with a different offset */ 5605 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 5606 goto aux_unlock; 5607 5608 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) 5609 goto aux_unlock; 5610 5611 /* already mapped with a different size */ 5612 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 5613 goto aux_unlock; 5614 5615 if (!is_power_of_2(nr_pages)) 5616 goto aux_unlock; 5617 5618 if (!atomic_inc_not_zero(&rb->mmap_count)) 5619 goto aux_unlock; 5620 5621 if (rb_has_aux(rb)) { 5622 atomic_inc(&rb->aux_mmap_count); 5623 ret = 0; 5624 goto unlock; 5625 } 5626 5627 atomic_set(&rb->aux_mmap_count, 1); 5628 user_extra = nr_pages; 5629 5630 goto accounting; 5631 } 5632 5633 /* 5634 * If we have rb pages ensure they're a power-of-two number, so we 5635 * can do bitmasks instead of modulo. 5636 */ 5637 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 5638 return -EINVAL; 5639 5640 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 5641 return -EINVAL; 5642 5643 WARN_ON_ONCE(event->ctx->parent_ctx); 5644 again: 5645 mutex_lock(&event->mmap_mutex); 5646 if (event->rb) { 5647 if (event->rb->nr_pages != nr_pages) { 5648 ret = -EINVAL; 5649 goto unlock; 5650 } 5651 5652 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 5653 /* 5654 * Raced against perf_mmap_close() through 5655 * perf_event_set_output(). Try again, hope for better 5656 * luck. 5657 */ 5658 mutex_unlock(&event->mmap_mutex); 5659 goto again; 5660 } 5661 5662 goto unlock; 5663 } 5664 5665 user_extra = nr_pages + 1; 5666 5667 accounting: 5668 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 5669 5670 /* 5671 * Increase the limit linearly with more CPUs: 5672 */ 5673 user_lock_limit *= num_online_cpus(); 5674 5675 user_locked = atomic_long_read(&user->locked_vm) + user_extra; 5676 5677 if (user_locked > user_lock_limit) 5678 extra = user_locked - user_lock_limit; 5679 5680 lock_limit = rlimit(RLIMIT_MEMLOCK); 5681 lock_limit >>= PAGE_SHIFT; 5682 locked = vma->vm_mm->pinned_vm + extra; 5683 5684 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() && 5685 !capable(CAP_IPC_LOCK)) { 5686 ret = -EPERM; 5687 goto unlock; 5688 } 5689 5690 WARN_ON(!rb && event->rb); 5691 5692 if (vma->vm_flags & VM_WRITE) 5693 flags |= RING_BUFFER_WRITABLE; 5694 5695 if (!rb) { 5696 rb = rb_alloc(nr_pages, 5697 event->attr.watermark ? event->attr.wakeup_watermark : 0, 5698 event->cpu, flags); 5699 5700 if (!rb) { 5701 ret = -ENOMEM; 5702 goto unlock; 5703 } 5704 5705 atomic_set(&rb->mmap_count, 1); 5706 rb->mmap_user = get_current_user(); 5707 rb->mmap_locked = extra; 5708 5709 ring_buffer_attach(event, rb); 5710 5711 perf_event_init_userpage(event); 5712 perf_event_update_userpage(event); 5713 } else { 5714 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 5715 event->attr.aux_watermark, flags); 5716 if (!ret) 5717 rb->aux_mmap_locked = extra; 5718 } 5719 5720 unlock: 5721 if (!ret) { 5722 atomic_long_add(user_extra, &user->locked_vm); 5723 vma->vm_mm->pinned_vm += extra; 5724 5725 atomic_inc(&event->mmap_count); 5726 } else if (rb) { 5727 atomic_dec(&rb->mmap_count); 5728 } 5729 aux_unlock: 5730 mutex_unlock(&event->mmap_mutex); 5731 5732 /* 5733 * Since pinned accounting is per vm we cannot allow fork() to copy our 5734 * vma. 5735 */ 5736 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP; 5737 vma->vm_ops = &perf_mmap_vmops; 5738 5739 if (event->pmu->event_mapped) 5740 event->pmu->event_mapped(event, vma->vm_mm); 5741 5742 return ret; 5743 } 5744 5745 static int perf_fasync(int fd, struct file *filp, int on) 5746 { 5747 struct inode *inode = file_inode(filp); 5748 struct perf_event *event = filp->private_data; 5749 int retval; 5750 5751 inode_lock(inode); 5752 retval = fasync_helper(fd, filp, on, &event->fasync); 5753 inode_unlock(inode); 5754 5755 if (retval < 0) 5756 return retval; 5757 5758 return 0; 5759 } 5760 5761 static const struct file_operations perf_fops = { 5762 .llseek = no_llseek, 5763 .release = perf_release, 5764 .read = perf_read, 5765 .poll = perf_poll, 5766 .unlocked_ioctl = perf_ioctl, 5767 .compat_ioctl = perf_compat_ioctl, 5768 .mmap = perf_mmap, 5769 .fasync = perf_fasync, 5770 }; 5771 5772 /* 5773 * Perf event wakeup 5774 * 5775 * If there's data, ensure we set the poll() state and publish everything 5776 * to user-space before waking everybody up. 5777 */ 5778 5779 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event) 5780 { 5781 /* only the parent has fasync state */ 5782 if (event->parent) 5783 event = event->parent; 5784 return &event->fasync; 5785 } 5786 5787 void perf_event_wakeup(struct perf_event *event) 5788 { 5789 ring_buffer_wakeup(event); 5790 5791 if (event->pending_kill) { 5792 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); 5793 event->pending_kill = 0; 5794 } 5795 } 5796 5797 static void perf_pending_event(struct irq_work *entry) 5798 { 5799 struct perf_event *event = container_of(entry, 5800 struct perf_event, pending); 5801 int rctx; 5802 5803 rctx = perf_swevent_get_recursion_context(); 5804 /* 5805 * If we 'fail' here, that's OK, it means recursion is already disabled 5806 * and we won't recurse 'further'. 5807 */ 5808 5809 if (event->pending_disable) { 5810 event->pending_disable = 0; 5811 perf_event_disable_local(event); 5812 } 5813 5814 if (event->pending_wakeup) { 5815 event->pending_wakeup = 0; 5816 perf_event_wakeup(event); 5817 } 5818 5819 if (rctx >= 0) 5820 perf_swevent_put_recursion_context(rctx); 5821 } 5822 5823 /* 5824 * We assume there is only KVM supporting the callbacks. 5825 * Later on, we might change it to a list if there is 5826 * another virtualization implementation supporting the callbacks. 5827 */ 5828 struct perf_guest_info_callbacks *perf_guest_cbs; 5829 5830 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 5831 { 5832 perf_guest_cbs = cbs; 5833 return 0; 5834 } 5835 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 5836 5837 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 5838 { 5839 perf_guest_cbs = NULL; 5840 return 0; 5841 } 5842 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 5843 5844 static void 5845 perf_output_sample_regs(struct perf_output_handle *handle, 5846 struct pt_regs *regs, u64 mask) 5847 { 5848 int bit; 5849 DECLARE_BITMAP(_mask, 64); 5850 5851 bitmap_from_u64(_mask, mask); 5852 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) { 5853 u64 val; 5854 5855 val = perf_reg_value(regs, bit); 5856 perf_output_put(handle, val); 5857 } 5858 } 5859 5860 static void perf_sample_regs_user(struct perf_regs *regs_user, 5861 struct pt_regs *regs, 5862 struct pt_regs *regs_user_copy) 5863 { 5864 if (user_mode(regs)) { 5865 regs_user->abi = perf_reg_abi(current); 5866 regs_user->regs = regs; 5867 } else if (current->mm) { 5868 perf_get_regs_user(regs_user, regs, regs_user_copy); 5869 } else { 5870 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 5871 regs_user->regs = NULL; 5872 } 5873 } 5874 5875 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 5876 struct pt_regs *regs) 5877 { 5878 regs_intr->regs = regs; 5879 regs_intr->abi = perf_reg_abi(current); 5880 } 5881 5882 5883 /* 5884 * Get remaining task size from user stack pointer. 5885 * 5886 * It'd be better to take stack vma map and limit this more 5887 * precisly, but there's no way to get it safely under interrupt, 5888 * so using TASK_SIZE as limit. 5889 */ 5890 static u64 perf_ustack_task_size(struct pt_regs *regs) 5891 { 5892 unsigned long addr = perf_user_stack_pointer(regs); 5893 5894 if (!addr || addr >= TASK_SIZE) 5895 return 0; 5896 5897 return TASK_SIZE - addr; 5898 } 5899 5900 static u16 5901 perf_sample_ustack_size(u16 stack_size, u16 header_size, 5902 struct pt_regs *regs) 5903 { 5904 u64 task_size; 5905 5906 /* No regs, no stack pointer, no dump. */ 5907 if (!regs) 5908 return 0; 5909 5910 /* 5911 * Check if we fit in with the requested stack size into the: 5912 * - TASK_SIZE 5913 * If we don't, we limit the size to the TASK_SIZE. 5914 * 5915 * - remaining sample size 5916 * If we don't, we customize the stack size to 5917 * fit in to the remaining sample size. 5918 */ 5919 5920 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 5921 stack_size = min(stack_size, (u16) task_size); 5922 5923 /* Current header size plus static size and dynamic size. */ 5924 header_size += 2 * sizeof(u64); 5925 5926 /* Do we fit in with the current stack dump size? */ 5927 if ((u16) (header_size + stack_size) < header_size) { 5928 /* 5929 * If we overflow the maximum size for the sample, 5930 * we customize the stack dump size to fit in. 5931 */ 5932 stack_size = USHRT_MAX - header_size - sizeof(u64); 5933 stack_size = round_up(stack_size, sizeof(u64)); 5934 } 5935 5936 return stack_size; 5937 } 5938 5939 static void 5940 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 5941 struct pt_regs *regs) 5942 { 5943 /* Case of a kernel thread, nothing to dump */ 5944 if (!regs) { 5945 u64 size = 0; 5946 perf_output_put(handle, size); 5947 } else { 5948 unsigned long sp; 5949 unsigned int rem; 5950 u64 dyn_size; 5951 5952 /* 5953 * We dump: 5954 * static size 5955 * - the size requested by user or the best one we can fit 5956 * in to the sample max size 5957 * data 5958 * - user stack dump data 5959 * dynamic size 5960 * - the actual dumped size 5961 */ 5962 5963 /* Static size. */ 5964 perf_output_put(handle, dump_size); 5965 5966 /* Data. */ 5967 sp = perf_user_stack_pointer(regs); 5968 rem = __output_copy_user(handle, (void *) sp, dump_size); 5969 dyn_size = dump_size - rem; 5970 5971 perf_output_skip(handle, rem); 5972 5973 /* Dynamic size. */ 5974 perf_output_put(handle, dyn_size); 5975 } 5976 } 5977 5978 static void __perf_event_header__init_id(struct perf_event_header *header, 5979 struct perf_sample_data *data, 5980 struct perf_event *event) 5981 { 5982 u64 sample_type = event->attr.sample_type; 5983 5984 data->type = sample_type; 5985 header->size += event->id_header_size; 5986 5987 if (sample_type & PERF_SAMPLE_TID) { 5988 /* namespace issues */ 5989 data->tid_entry.pid = perf_event_pid(event, current); 5990 data->tid_entry.tid = perf_event_tid(event, current); 5991 } 5992 5993 if (sample_type & PERF_SAMPLE_TIME) 5994 data->time = perf_event_clock(event); 5995 5996 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 5997 data->id = primary_event_id(event); 5998 5999 if (sample_type & PERF_SAMPLE_STREAM_ID) 6000 data->stream_id = event->id; 6001 6002 if (sample_type & PERF_SAMPLE_CPU) { 6003 data->cpu_entry.cpu = raw_smp_processor_id(); 6004 data->cpu_entry.reserved = 0; 6005 } 6006 } 6007 6008 void perf_event_header__init_id(struct perf_event_header *header, 6009 struct perf_sample_data *data, 6010 struct perf_event *event) 6011 { 6012 if (event->attr.sample_id_all) 6013 __perf_event_header__init_id(header, data, event); 6014 } 6015 6016 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 6017 struct perf_sample_data *data) 6018 { 6019 u64 sample_type = data->type; 6020 6021 if (sample_type & PERF_SAMPLE_TID) 6022 perf_output_put(handle, data->tid_entry); 6023 6024 if (sample_type & PERF_SAMPLE_TIME) 6025 perf_output_put(handle, data->time); 6026 6027 if (sample_type & PERF_SAMPLE_ID) 6028 perf_output_put(handle, data->id); 6029 6030 if (sample_type & PERF_SAMPLE_STREAM_ID) 6031 perf_output_put(handle, data->stream_id); 6032 6033 if (sample_type & PERF_SAMPLE_CPU) 6034 perf_output_put(handle, data->cpu_entry); 6035 6036 if (sample_type & PERF_SAMPLE_IDENTIFIER) 6037 perf_output_put(handle, data->id); 6038 } 6039 6040 void perf_event__output_id_sample(struct perf_event *event, 6041 struct perf_output_handle *handle, 6042 struct perf_sample_data *sample) 6043 { 6044 if (event->attr.sample_id_all) 6045 __perf_event__output_id_sample(handle, sample); 6046 } 6047 6048 static void perf_output_read_one(struct perf_output_handle *handle, 6049 struct perf_event *event, 6050 u64 enabled, u64 running) 6051 { 6052 u64 read_format = event->attr.read_format; 6053 u64 values[4]; 6054 int n = 0; 6055 6056 values[n++] = perf_event_count(event); 6057 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 6058 values[n++] = enabled + 6059 atomic64_read(&event->child_total_time_enabled); 6060 } 6061 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 6062 values[n++] = running + 6063 atomic64_read(&event->child_total_time_running); 6064 } 6065 if (read_format & PERF_FORMAT_ID) 6066 values[n++] = primary_event_id(event); 6067 6068 __output_copy(handle, values, n * sizeof(u64)); 6069 } 6070 6071 static void perf_output_read_group(struct perf_output_handle *handle, 6072 struct perf_event *event, 6073 u64 enabled, u64 running) 6074 { 6075 struct perf_event *leader = event->group_leader, *sub; 6076 u64 read_format = event->attr.read_format; 6077 u64 values[5]; 6078 int n = 0; 6079 6080 values[n++] = 1 + leader->nr_siblings; 6081 6082 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 6083 values[n++] = enabled; 6084 6085 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 6086 values[n++] = running; 6087 6088 if ((leader != event) && 6089 (leader->state == PERF_EVENT_STATE_ACTIVE)) 6090 leader->pmu->read(leader); 6091 6092 values[n++] = perf_event_count(leader); 6093 if (read_format & PERF_FORMAT_ID) 6094 values[n++] = primary_event_id(leader); 6095 6096 __output_copy(handle, values, n * sizeof(u64)); 6097 6098 for_each_sibling_event(sub, leader) { 6099 n = 0; 6100 6101 if ((sub != event) && 6102 (sub->state == PERF_EVENT_STATE_ACTIVE)) 6103 sub->pmu->read(sub); 6104 6105 values[n++] = perf_event_count(sub); 6106 if (read_format & PERF_FORMAT_ID) 6107 values[n++] = primary_event_id(sub); 6108 6109 __output_copy(handle, values, n * sizeof(u64)); 6110 } 6111 } 6112 6113 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 6114 PERF_FORMAT_TOTAL_TIME_RUNNING) 6115 6116 /* 6117 * XXX PERF_SAMPLE_READ vs inherited events seems difficult. 6118 * 6119 * The problem is that its both hard and excessively expensive to iterate the 6120 * child list, not to mention that its impossible to IPI the children running 6121 * on another CPU, from interrupt/NMI context. 6122 */ 6123 static void perf_output_read(struct perf_output_handle *handle, 6124 struct perf_event *event) 6125 { 6126 u64 enabled = 0, running = 0, now; 6127 u64 read_format = event->attr.read_format; 6128 6129 /* 6130 * compute total_time_enabled, total_time_running 6131 * based on snapshot values taken when the event 6132 * was last scheduled in. 6133 * 6134 * we cannot simply called update_context_time() 6135 * because of locking issue as we are called in 6136 * NMI context 6137 */ 6138 if (read_format & PERF_FORMAT_TOTAL_TIMES) 6139 calc_timer_values(event, &now, &enabled, &running); 6140 6141 if (event->attr.read_format & PERF_FORMAT_GROUP) 6142 perf_output_read_group(handle, event, enabled, running); 6143 else 6144 perf_output_read_one(handle, event, enabled, running); 6145 } 6146 6147 void perf_output_sample(struct perf_output_handle *handle, 6148 struct perf_event_header *header, 6149 struct perf_sample_data *data, 6150 struct perf_event *event) 6151 { 6152 u64 sample_type = data->type; 6153 6154 perf_output_put(handle, *header); 6155 6156 if (sample_type & PERF_SAMPLE_IDENTIFIER) 6157 perf_output_put(handle, data->id); 6158 6159 if (sample_type & PERF_SAMPLE_IP) 6160 perf_output_put(handle, data->ip); 6161 6162 if (sample_type & PERF_SAMPLE_TID) 6163 perf_output_put(handle, data->tid_entry); 6164 6165 if (sample_type & PERF_SAMPLE_TIME) 6166 perf_output_put(handle, data->time); 6167 6168 if (sample_type & PERF_SAMPLE_ADDR) 6169 perf_output_put(handle, data->addr); 6170 6171 if (sample_type & PERF_SAMPLE_ID) 6172 perf_output_put(handle, data->id); 6173 6174 if (sample_type & PERF_SAMPLE_STREAM_ID) 6175 perf_output_put(handle, data->stream_id); 6176 6177 if (sample_type & PERF_SAMPLE_CPU) 6178 perf_output_put(handle, data->cpu_entry); 6179 6180 if (sample_type & PERF_SAMPLE_PERIOD) 6181 perf_output_put(handle, data->period); 6182 6183 if (sample_type & PERF_SAMPLE_READ) 6184 perf_output_read(handle, event); 6185 6186 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 6187 int size = 1; 6188 6189 size += data->callchain->nr; 6190 size *= sizeof(u64); 6191 __output_copy(handle, data->callchain, size); 6192 } 6193 6194 if (sample_type & PERF_SAMPLE_RAW) { 6195 struct perf_raw_record *raw = data->raw; 6196 6197 if (raw) { 6198 struct perf_raw_frag *frag = &raw->frag; 6199 6200 perf_output_put(handle, raw->size); 6201 do { 6202 if (frag->copy) { 6203 __output_custom(handle, frag->copy, 6204 frag->data, frag->size); 6205 } else { 6206 __output_copy(handle, frag->data, 6207 frag->size); 6208 } 6209 if (perf_raw_frag_last(frag)) 6210 break; 6211 frag = frag->next; 6212 } while (1); 6213 if (frag->pad) 6214 __output_skip(handle, NULL, frag->pad); 6215 } else { 6216 struct { 6217 u32 size; 6218 u32 data; 6219 } raw = { 6220 .size = sizeof(u32), 6221 .data = 0, 6222 }; 6223 perf_output_put(handle, raw); 6224 } 6225 } 6226 6227 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 6228 if (data->br_stack) { 6229 size_t size; 6230 6231 size = data->br_stack->nr 6232 * sizeof(struct perf_branch_entry); 6233 6234 perf_output_put(handle, data->br_stack->nr); 6235 perf_output_copy(handle, data->br_stack->entries, size); 6236 } else { 6237 /* 6238 * we always store at least the value of nr 6239 */ 6240 u64 nr = 0; 6241 perf_output_put(handle, nr); 6242 } 6243 } 6244 6245 if (sample_type & PERF_SAMPLE_REGS_USER) { 6246 u64 abi = data->regs_user.abi; 6247 6248 /* 6249 * If there are no regs to dump, notice it through 6250 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 6251 */ 6252 perf_output_put(handle, abi); 6253 6254 if (abi) { 6255 u64 mask = event->attr.sample_regs_user; 6256 perf_output_sample_regs(handle, 6257 data->regs_user.regs, 6258 mask); 6259 } 6260 } 6261 6262 if (sample_type & PERF_SAMPLE_STACK_USER) { 6263 perf_output_sample_ustack(handle, 6264 data->stack_user_size, 6265 data->regs_user.regs); 6266 } 6267 6268 if (sample_type & PERF_SAMPLE_WEIGHT) 6269 perf_output_put(handle, data->weight); 6270 6271 if (sample_type & PERF_SAMPLE_DATA_SRC) 6272 perf_output_put(handle, data->data_src.val); 6273 6274 if (sample_type & PERF_SAMPLE_TRANSACTION) 6275 perf_output_put(handle, data->txn); 6276 6277 if (sample_type & PERF_SAMPLE_REGS_INTR) { 6278 u64 abi = data->regs_intr.abi; 6279 /* 6280 * If there are no regs to dump, notice it through 6281 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 6282 */ 6283 perf_output_put(handle, abi); 6284 6285 if (abi) { 6286 u64 mask = event->attr.sample_regs_intr; 6287 6288 perf_output_sample_regs(handle, 6289 data->regs_intr.regs, 6290 mask); 6291 } 6292 } 6293 6294 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 6295 perf_output_put(handle, data->phys_addr); 6296 6297 if (!event->attr.watermark) { 6298 int wakeup_events = event->attr.wakeup_events; 6299 6300 if (wakeup_events) { 6301 struct ring_buffer *rb = handle->rb; 6302 int events = local_inc_return(&rb->events); 6303 6304 if (events >= wakeup_events) { 6305 local_sub(wakeup_events, &rb->events); 6306 local_inc(&rb->wakeup); 6307 } 6308 } 6309 } 6310 } 6311 6312 static u64 perf_virt_to_phys(u64 virt) 6313 { 6314 u64 phys_addr = 0; 6315 struct page *p = NULL; 6316 6317 if (!virt) 6318 return 0; 6319 6320 if (virt >= TASK_SIZE) { 6321 /* If it's vmalloc()d memory, leave phys_addr as 0 */ 6322 if (virt_addr_valid((void *)(uintptr_t)virt) && 6323 !(virt >= VMALLOC_START && virt < VMALLOC_END)) 6324 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt); 6325 } else { 6326 /* 6327 * Walking the pages tables for user address. 6328 * Interrupts are disabled, so it prevents any tear down 6329 * of the page tables. 6330 * Try IRQ-safe __get_user_pages_fast first. 6331 * If failed, leave phys_addr as 0. 6332 */ 6333 if ((current->mm != NULL) && 6334 (__get_user_pages_fast(virt, 1, 0, &p) == 1)) 6335 phys_addr = page_to_phys(p) + virt % PAGE_SIZE; 6336 6337 if (p) 6338 put_page(p); 6339 } 6340 6341 return phys_addr; 6342 } 6343 6344 static struct perf_callchain_entry __empty_callchain = { .nr = 0, }; 6345 6346 struct perf_callchain_entry * 6347 perf_callchain(struct perf_event *event, struct pt_regs *regs) 6348 { 6349 bool kernel = !event->attr.exclude_callchain_kernel; 6350 bool user = !event->attr.exclude_callchain_user; 6351 /* Disallow cross-task user callchains. */ 6352 bool crosstask = event->ctx->task && event->ctx->task != current; 6353 const u32 max_stack = event->attr.sample_max_stack; 6354 struct perf_callchain_entry *callchain; 6355 6356 if (!kernel && !user) 6357 return &__empty_callchain; 6358 6359 callchain = get_perf_callchain(regs, 0, kernel, user, 6360 max_stack, crosstask, true); 6361 return callchain ?: &__empty_callchain; 6362 } 6363 6364 void perf_prepare_sample(struct perf_event_header *header, 6365 struct perf_sample_data *data, 6366 struct perf_event *event, 6367 struct pt_regs *regs) 6368 { 6369 u64 sample_type = event->attr.sample_type; 6370 6371 header->type = PERF_RECORD_SAMPLE; 6372 header->size = sizeof(*header) + event->header_size; 6373 6374 header->misc = 0; 6375 header->misc |= perf_misc_flags(regs); 6376 6377 __perf_event_header__init_id(header, data, event); 6378 6379 if (sample_type & PERF_SAMPLE_IP) 6380 data->ip = perf_instruction_pointer(regs); 6381 6382 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 6383 int size = 1; 6384 6385 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY)) 6386 data->callchain = perf_callchain(event, regs); 6387 6388 size += data->callchain->nr; 6389 6390 header->size += size * sizeof(u64); 6391 } 6392 6393 if (sample_type & PERF_SAMPLE_RAW) { 6394 struct perf_raw_record *raw = data->raw; 6395 int size; 6396 6397 if (raw) { 6398 struct perf_raw_frag *frag = &raw->frag; 6399 u32 sum = 0; 6400 6401 do { 6402 sum += frag->size; 6403 if (perf_raw_frag_last(frag)) 6404 break; 6405 frag = frag->next; 6406 } while (1); 6407 6408 size = round_up(sum + sizeof(u32), sizeof(u64)); 6409 raw->size = size - sizeof(u32); 6410 frag->pad = raw->size - sum; 6411 } else { 6412 size = sizeof(u64); 6413 } 6414 6415 header->size += size; 6416 } 6417 6418 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 6419 int size = sizeof(u64); /* nr */ 6420 if (data->br_stack) { 6421 size += data->br_stack->nr 6422 * sizeof(struct perf_branch_entry); 6423 } 6424 header->size += size; 6425 } 6426 6427 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER)) 6428 perf_sample_regs_user(&data->regs_user, regs, 6429 &data->regs_user_copy); 6430 6431 if (sample_type & PERF_SAMPLE_REGS_USER) { 6432 /* regs dump ABI info */ 6433 int size = sizeof(u64); 6434 6435 if (data->regs_user.regs) { 6436 u64 mask = event->attr.sample_regs_user; 6437 size += hweight64(mask) * sizeof(u64); 6438 } 6439 6440 header->size += size; 6441 } 6442 6443 if (sample_type & PERF_SAMPLE_STACK_USER) { 6444 /* 6445 * Either we need PERF_SAMPLE_STACK_USER bit to be allways 6446 * processed as the last one or have additional check added 6447 * in case new sample type is added, because we could eat 6448 * up the rest of the sample size. 6449 */ 6450 u16 stack_size = event->attr.sample_stack_user; 6451 u16 size = sizeof(u64); 6452 6453 stack_size = perf_sample_ustack_size(stack_size, header->size, 6454 data->regs_user.regs); 6455 6456 /* 6457 * If there is something to dump, add space for the dump 6458 * itself and for the field that tells the dynamic size, 6459 * which is how many have been actually dumped. 6460 */ 6461 if (stack_size) 6462 size += sizeof(u64) + stack_size; 6463 6464 data->stack_user_size = stack_size; 6465 header->size += size; 6466 } 6467 6468 if (sample_type & PERF_SAMPLE_REGS_INTR) { 6469 /* regs dump ABI info */ 6470 int size = sizeof(u64); 6471 6472 perf_sample_regs_intr(&data->regs_intr, regs); 6473 6474 if (data->regs_intr.regs) { 6475 u64 mask = event->attr.sample_regs_intr; 6476 6477 size += hweight64(mask) * sizeof(u64); 6478 } 6479 6480 header->size += size; 6481 } 6482 6483 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 6484 data->phys_addr = perf_virt_to_phys(data->addr); 6485 } 6486 6487 static __always_inline void 6488 __perf_event_output(struct perf_event *event, 6489 struct perf_sample_data *data, 6490 struct pt_regs *regs, 6491 int (*output_begin)(struct perf_output_handle *, 6492 struct perf_event *, 6493 unsigned int)) 6494 { 6495 struct perf_output_handle handle; 6496 struct perf_event_header header; 6497 6498 /* protect the callchain buffers */ 6499 rcu_read_lock(); 6500 6501 perf_prepare_sample(&header, data, event, regs); 6502 6503 if (output_begin(&handle, event, header.size)) 6504 goto exit; 6505 6506 perf_output_sample(&handle, &header, data, event); 6507 6508 perf_output_end(&handle); 6509 6510 exit: 6511 rcu_read_unlock(); 6512 } 6513 6514 void 6515 perf_event_output_forward(struct perf_event *event, 6516 struct perf_sample_data *data, 6517 struct pt_regs *regs) 6518 { 6519 __perf_event_output(event, data, regs, perf_output_begin_forward); 6520 } 6521 6522 void 6523 perf_event_output_backward(struct perf_event *event, 6524 struct perf_sample_data *data, 6525 struct pt_regs *regs) 6526 { 6527 __perf_event_output(event, data, regs, perf_output_begin_backward); 6528 } 6529 6530 void 6531 perf_event_output(struct perf_event *event, 6532 struct perf_sample_data *data, 6533 struct pt_regs *regs) 6534 { 6535 __perf_event_output(event, data, regs, perf_output_begin); 6536 } 6537 6538 /* 6539 * read event_id 6540 */ 6541 6542 struct perf_read_event { 6543 struct perf_event_header header; 6544 6545 u32 pid; 6546 u32 tid; 6547 }; 6548 6549 static void 6550 perf_event_read_event(struct perf_event *event, 6551 struct task_struct *task) 6552 { 6553 struct perf_output_handle handle; 6554 struct perf_sample_data sample; 6555 struct perf_read_event read_event = { 6556 .header = { 6557 .type = PERF_RECORD_READ, 6558 .misc = 0, 6559 .size = sizeof(read_event) + event->read_size, 6560 }, 6561 .pid = perf_event_pid(event, task), 6562 .tid = perf_event_tid(event, task), 6563 }; 6564 int ret; 6565 6566 perf_event_header__init_id(&read_event.header, &sample, event); 6567 ret = perf_output_begin(&handle, event, read_event.header.size); 6568 if (ret) 6569 return; 6570 6571 perf_output_put(&handle, read_event); 6572 perf_output_read(&handle, event); 6573 perf_event__output_id_sample(event, &handle, &sample); 6574 6575 perf_output_end(&handle); 6576 } 6577 6578 typedef void (perf_iterate_f)(struct perf_event *event, void *data); 6579 6580 static void 6581 perf_iterate_ctx(struct perf_event_context *ctx, 6582 perf_iterate_f output, 6583 void *data, bool all) 6584 { 6585 struct perf_event *event; 6586 6587 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 6588 if (!all) { 6589 if (event->state < PERF_EVENT_STATE_INACTIVE) 6590 continue; 6591 if (!event_filter_match(event)) 6592 continue; 6593 } 6594 6595 output(event, data); 6596 } 6597 } 6598 6599 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data) 6600 { 6601 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events); 6602 struct perf_event *event; 6603 6604 list_for_each_entry_rcu(event, &pel->list, sb_list) { 6605 /* 6606 * Skip events that are not fully formed yet; ensure that 6607 * if we observe event->ctx, both event and ctx will be 6608 * complete enough. See perf_install_in_context(). 6609 */ 6610 if (!smp_load_acquire(&event->ctx)) 6611 continue; 6612 6613 if (event->state < PERF_EVENT_STATE_INACTIVE) 6614 continue; 6615 if (!event_filter_match(event)) 6616 continue; 6617 output(event, data); 6618 } 6619 } 6620 6621 /* 6622 * Iterate all events that need to receive side-band events. 6623 * 6624 * For new callers; ensure that account_pmu_sb_event() includes 6625 * your event, otherwise it might not get delivered. 6626 */ 6627 static void 6628 perf_iterate_sb(perf_iterate_f output, void *data, 6629 struct perf_event_context *task_ctx) 6630 { 6631 struct perf_event_context *ctx; 6632 int ctxn; 6633 6634 rcu_read_lock(); 6635 preempt_disable(); 6636 6637 /* 6638 * If we have task_ctx != NULL we only notify the task context itself. 6639 * The task_ctx is set only for EXIT events before releasing task 6640 * context. 6641 */ 6642 if (task_ctx) { 6643 perf_iterate_ctx(task_ctx, output, data, false); 6644 goto done; 6645 } 6646 6647 perf_iterate_sb_cpu(output, data); 6648 6649 for_each_task_context_nr(ctxn) { 6650 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 6651 if (ctx) 6652 perf_iterate_ctx(ctx, output, data, false); 6653 } 6654 done: 6655 preempt_enable(); 6656 rcu_read_unlock(); 6657 } 6658 6659 /* 6660 * Clear all file-based filters at exec, they'll have to be 6661 * re-instated when/if these objects are mmapped again. 6662 */ 6663 static void perf_event_addr_filters_exec(struct perf_event *event, void *data) 6664 { 6665 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 6666 struct perf_addr_filter *filter; 6667 unsigned int restart = 0, count = 0; 6668 unsigned long flags; 6669 6670 if (!has_addr_filter(event)) 6671 return; 6672 6673 raw_spin_lock_irqsave(&ifh->lock, flags); 6674 list_for_each_entry(filter, &ifh->list, entry) { 6675 if (filter->path.dentry) { 6676 event->addr_filters_offs[count] = 0; 6677 restart++; 6678 } 6679 6680 count++; 6681 } 6682 6683 if (restart) 6684 event->addr_filters_gen++; 6685 raw_spin_unlock_irqrestore(&ifh->lock, flags); 6686 6687 if (restart) 6688 perf_event_stop(event, 1); 6689 } 6690 6691 void perf_event_exec(void) 6692 { 6693 struct perf_event_context *ctx; 6694 int ctxn; 6695 6696 rcu_read_lock(); 6697 for_each_task_context_nr(ctxn) { 6698 ctx = current->perf_event_ctxp[ctxn]; 6699 if (!ctx) 6700 continue; 6701 6702 perf_event_enable_on_exec(ctxn); 6703 6704 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, 6705 true); 6706 } 6707 rcu_read_unlock(); 6708 } 6709 6710 struct remote_output { 6711 struct ring_buffer *rb; 6712 int err; 6713 }; 6714 6715 static void __perf_event_output_stop(struct perf_event *event, void *data) 6716 { 6717 struct perf_event *parent = event->parent; 6718 struct remote_output *ro = data; 6719 struct ring_buffer *rb = ro->rb; 6720 struct stop_event_data sd = { 6721 .event = event, 6722 }; 6723 6724 if (!has_aux(event)) 6725 return; 6726 6727 if (!parent) 6728 parent = event; 6729 6730 /* 6731 * In case of inheritance, it will be the parent that links to the 6732 * ring-buffer, but it will be the child that's actually using it. 6733 * 6734 * We are using event::rb to determine if the event should be stopped, 6735 * however this may race with ring_buffer_attach() (through set_output), 6736 * which will make us skip the event that actually needs to be stopped. 6737 * So ring_buffer_attach() has to stop an aux event before re-assigning 6738 * its rb pointer. 6739 */ 6740 if (rcu_dereference(parent->rb) == rb) 6741 ro->err = __perf_event_stop(&sd); 6742 } 6743 6744 static int __perf_pmu_output_stop(void *info) 6745 { 6746 struct perf_event *event = info; 6747 struct pmu *pmu = event->pmu; 6748 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 6749 struct remote_output ro = { 6750 .rb = event->rb, 6751 }; 6752 6753 rcu_read_lock(); 6754 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false); 6755 if (cpuctx->task_ctx) 6756 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop, 6757 &ro, false); 6758 rcu_read_unlock(); 6759 6760 return ro.err; 6761 } 6762 6763 static void perf_pmu_output_stop(struct perf_event *event) 6764 { 6765 struct perf_event *iter; 6766 int err, cpu; 6767 6768 restart: 6769 rcu_read_lock(); 6770 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) { 6771 /* 6772 * For per-CPU events, we need to make sure that neither they 6773 * nor their children are running; for cpu==-1 events it's 6774 * sufficient to stop the event itself if it's active, since 6775 * it can't have children. 6776 */ 6777 cpu = iter->cpu; 6778 if (cpu == -1) 6779 cpu = READ_ONCE(iter->oncpu); 6780 6781 if (cpu == -1) 6782 continue; 6783 6784 err = cpu_function_call(cpu, __perf_pmu_output_stop, event); 6785 if (err == -EAGAIN) { 6786 rcu_read_unlock(); 6787 goto restart; 6788 } 6789 } 6790 rcu_read_unlock(); 6791 } 6792 6793 /* 6794 * task tracking -- fork/exit 6795 * 6796 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 6797 */ 6798 6799 struct perf_task_event { 6800 struct task_struct *task; 6801 struct perf_event_context *task_ctx; 6802 6803 struct { 6804 struct perf_event_header header; 6805 6806 u32 pid; 6807 u32 ppid; 6808 u32 tid; 6809 u32 ptid; 6810 u64 time; 6811 } event_id; 6812 }; 6813 6814 static int perf_event_task_match(struct perf_event *event) 6815 { 6816 return event->attr.comm || event->attr.mmap || 6817 event->attr.mmap2 || event->attr.mmap_data || 6818 event->attr.task; 6819 } 6820 6821 static void perf_event_task_output(struct perf_event *event, 6822 void *data) 6823 { 6824 struct perf_task_event *task_event = data; 6825 struct perf_output_handle handle; 6826 struct perf_sample_data sample; 6827 struct task_struct *task = task_event->task; 6828 int ret, size = task_event->event_id.header.size; 6829 6830 if (!perf_event_task_match(event)) 6831 return; 6832 6833 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 6834 6835 ret = perf_output_begin(&handle, event, 6836 task_event->event_id.header.size); 6837 if (ret) 6838 goto out; 6839 6840 task_event->event_id.pid = perf_event_pid(event, task); 6841 task_event->event_id.ppid = perf_event_pid(event, current); 6842 6843 task_event->event_id.tid = perf_event_tid(event, task); 6844 task_event->event_id.ptid = perf_event_tid(event, current); 6845 6846 task_event->event_id.time = perf_event_clock(event); 6847 6848 perf_output_put(&handle, task_event->event_id); 6849 6850 perf_event__output_id_sample(event, &handle, &sample); 6851 6852 perf_output_end(&handle); 6853 out: 6854 task_event->event_id.header.size = size; 6855 } 6856 6857 static void perf_event_task(struct task_struct *task, 6858 struct perf_event_context *task_ctx, 6859 int new) 6860 { 6861 struct perf_task_event task_event; 6862 6863 if (!atomic_read(&nr_comm_events) && 6864 !atomic_read(&nr_mmap_events) && 6865 !atomic_read(&nr_task_events)) 6866 return; 6867 6868 task_event = (struct perf_task_event){ 6869 .task = task, 6870 .task_ctx = task_ctx, 6871 .event_id = { 6872 .header = { 6873 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 6874 .misc = 0, 6875 .size = sizeof(task_event.event_id), 6876 }, 6877 /* .pid */ 6878 /* .ppid */ 6879 /* .tid */ 6880 /* .ptid */ 6881 /* .time */ 6882 }, 6883 }; 6884 6885 perf_iterate_sb(perf_event_task_output, 6886 &task_event, 6887 task_ctx); 6888 } 6889 6890 void perf_event_fork(struct task_struct *task) 6891 { 6892 perf_event_task(task, NULL, 1); 6893 perf_event_namespaces(task); 6894 } 6895 6896 /* 6897 * comm tracking 6898 */ 6899 6900 struct perf_comm_event { 6901 struct task_struct *task; 6902 char *comm; 6903 int comm_size; 6904 6905 struct { 6906 struct perf_event_header header; 6907 6908 u32 pid; 6909 u32 tid; 6910 } event_id; 6911 }; 6912 6913 static int perf_event_comm_match(struct perf_event *event) 6914 { 6915 return event->attr.comm; 6916 } 6917 6918 static void perf_event_comm_output(struct perf_event *event, 6919 void *data) 6920 { 6921 struct perf_comm_event *comm_event = data; 6922 struct perf_output_handle handle; 6923 struct perf_sample_data sample; 6924 int size = comm_event->event_id.header.size; 6925 int ret; 6926 6927 if (!perf_event_comm_match(event)) 6928 return; 6929 6930 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 6931 ret = perf_output_begin(&handle, event, 6932 comm_event->event_id.header.size); 6933 6934 if (ret) 6935 goto out; 6936 6937 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 6938 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 6939 6940 perf_output_put(&handle, comm_event->event_id); 6941 __output_copy(&handle, comm_event->comm, 6942 comm_event->comm_size); 6943 6944 perf_event__output_id_sample(event, &handle, &sample); 6945 6946 perf_output_end(&handle); 6947 out: 6948 comm_event->event_id.header.size = size; 6949 } 6950 6951 static void perf_event_comm_event(struct perf_comm_event *comm_event) 6952 { 6953 char comm[TASK_COMM_LEN]; 6954 unsigned int size; 6955 6956 memset(comm, 0, sizeof(comm)); 6957 strlcpy(comm, comm_event->task->comm, sizeof(comm)); 6958 size = ALIGN(strlen(comm)+1, sizeof(u64)); 6959 6960 comm_event->comm = comm; 6961 comm_event->comm_size = size; 6962 6963 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 6964 6965 perf_iterate_sb(perf_event_comm_output, 6966 comm_event, 6967 NULL); 6968 } 6969 6970 void perf_event_comm(struct task_struct *task, bool exec) 6971 { 6972 struct perf_comm_event comm_event; 6973 6974 if (!atomic_read(&nr_comm_events)) 6975 return; 6976 6977 comm_event = (struct perf_comm_event){ 6978 .task = task, 6979 /* .comm */ 6980 /* .comm_size */ 6981 .event_id = { 6982 .header = { 6983 .type = PERF_RECORD_COMM, 6984 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 6985 /* .size */ 6986 }, 6987 /* .pid */ 6988 /* .tid */ 6989 }, 6990 }; 6991 6992 perf_event_comm_event(&comm_event); 6993 } 6994 6995 /* 6996 * namespaces tracking 6997 */ 6998 6999 struct perf_namespaces_event { 7000 struct task_struct *task; 7001 7002 struct { 7003 struct perf_event_header header; 7004 7005 u32 pid; 7006 u32 tid; 7007 u64 nr_namespaces; 7008 struct perf_ns_link_info link_info[NR_NAMESPACES]; 7009 } event_id; 7010 }; 7011 7012 static int perf_event_namespaces_match(struct perf_event *event) 7013 { 7014 return event->attr.namespaces; 7015 } 7016 7017 static void perf_event_namespaces_output(struct perf_event *event, 7018 void *data) 7019 { 7020 struct perf_namespaces_event *namespaces_event = data; 7021 struct perf_output_handle handle; 7022 struct perf_sample_data sample; 7023 u16 header_size = namespaces_event->event_id.header.size; 7024 int ret; 7025 7026 if (!perf_event_namespaces_match(event)) 7027 return; 7028 7029 perf_event_header__init_id(&namespaces_event->event_id.header, 7030 &sample, event); 7031 ret = perf_output_begin(&handle, event, 7032 namespaces_event->event_id.header.size); 7033 if (ret) 7034 goto out; 7035 7036 namespaces_event->event_id.pid = perf_event_pid(event, 7037 namespaces_event->task); 7038 namespaces_event->event_id.tid = perf_event_tid(event, 7039 namespaces_event->task); 7040 7041 perf_output_put(&handle, namespaces_event->event_id); 7042 7043 perf_event__output_id_sample(event, &handle, &sample); 7044 7045 perf_output_end(&handle); 7046 out: 7047 namespaces_event->event_id.header.size = header_size; 7048 } 7049 7050 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info, 7051 struct task_struct *task, 7052 const struct proc_ns_operations *ns_ops) 7053 { 7054 struct path ns_path; 7055 struct inode *ns_inode; 7056 void *error; 7057 7058 error = ns_get_path(&ns_path, task, ns_ops); 7059 if (!error) { 7060 ns_inode = ns_path.dentry->d_inode; 7061 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev); 7062 ns_link_info->ino = ns_inode->i_ino; 7063 path_put(&ns_path); 7064 } 7065 } 7066 7067 void perf_event_namespaces(struct task_struct *task) 7068 { 7069 struct perf_namespaces_event namespaces_event; 7070 struct perf_ns_link_info *ns_link_info; 7071 7072 if (!atomic_read(&nr_namespaces_events)) 7073 return; 7074 7075 namespaces_event = (struct perf_namespaces_event){ 7076 .task = task, 7077 .event_id = { 7078 .header = { 7079 .type = PERF_RECORD_NAMESPACES, 7080 .misc = 0, 7081 .size = sizeof(namespaces_event.event_id), 7082 }, 7083 /* .pid */ 7084 /* .tid */ 7085 .nr_namespaces = NR_NAMESPACES, 7086 /* .link_info[NR_NAMESPACES] */ 7087 }, 7088 }; 7089 7090 ns_link_info = namespaces_event.event_id.link_info; 7091 7092 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX], 7093 task, &mntns_operations); 7094 7095 #ifdef CONFIG_USER_NS 7096 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX], 7097 task, &userns_operations); 7098 #endif 7099 #ifdef CONFIG_NET_NS 7100 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX], 7101 task, &netns_operations); 7102 #endif 7103 #ifdef CONFIG_UTS_NS 7104 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX], 7105 task, &utsns_operations); 7106 #endif 7107 #ifdef CONFIG_IPC_NS 7108 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX], 7109 task, &ipcns_operations); 7110 #endif 7111 #ifdef CONFIG_PID_NS 7112 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX], 7113 task, &pidns_operations); 7114 #endif 7115 #ifdef CONFIG_CGROUPS 7116 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX], 7117 task, &cgroupns_operations); 7118 #endif 7119 7120 perf_iterate_sb(perf_event_namespaces_output, 7121 &namespaces_event, 7122 NULL); 7123 } 7124 7125 /* 7126 * mmap tracking 7127 */ 7128 7129 struct perf_mmap_event { 7130 struct vm_area_struct *vma; 7131 7132 const char *file_name; 7133 int file_size; 7134 int maj, min; 7135 u64 ino; 7136 u64 ino_generation; 7137 u32 prot, flags; 7138 7139 struct { 7140 struct perf_event_header header; 7141 7142 u32 pid; 7143 u32 tid; 7144 u64 start; 7145 u64 len; 7146 u64 pgoff; 7147 } event_id; 7148 }; 7149 7150 static int perf_event_mmap_match(struct perf_event *event, 7151 void *data) 7152 { 7153 struct perf_mmap_event *mmap_event = data; 7154 struct vm_area_struct *vma = mmap_event->vma; 7155 int executable = vma->vm_flags & VM_EXEC; 7156 7157 return (!executable && event->attr.mmap_data) || 7158 (executable && (event->attr.mmap || event->attr.mmap2)); 7159 } 7160 7161 static void perf_event_mmap_output(struct perf_event *event, 7162 void *data) 7163 { 7164 struct perf_mmap_event *mmap_event = data; 7165 struct perf_output_handle handle; 7166 struct perf_sample_data sample; 7167 int size = mmap_event->event_id.header.size; 7168 int ret; 7169 7170 if (!perf_event_mmap_match(event, data)) 7171 return; 7172 7173 if (event->attr.mmap2) { 7174 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 7175 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 7176 mmap_event->event_id.header.size += sizeof(mmap_event->min); 7177 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 7178 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 7179 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 7180 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 7181 } 7182 7183 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 7184 ret = perf_output_begin(&handle, event, 7185 mmap_event->event_id.header.size); 7186 if (ret) 7187 goto out; 7188 7189 mmap_event->event_id.pid = perf_event_pid(event, current); 7190 mmap_event->event_id.tid = perf_event_tid(event, current); 7191 7192 perf_output_put(&handle, mmap_event->event_id); 7193 7194 if (event->attr.mmap2) { 7195 perf_output_put(&handle, mmap_event->maj); 7196 perf_output_put(&handle, mmap_event->min); 7197 perf_output_put(&handle, mmap_event->ino); 7198 perf_output_put(&handle, mmap_event->ino_generation); 7199 perf_output_put(&handle, mmap_event->prot); 7200 perf_output_put(&handle, mmap_event->flags); 7201 } 7202 7203 __output_copy(&handle, mmap_event->file_name, 7204 mmap_event->file_size); 7205 7206 perf_event__output_id_sample(event, &handle, &sample); 7207 7208 perf_output_end(&handle); 7209 out: 7210 mmap_event->event_id.header.size = size; 7211 } 7212 7213 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 7214 { 7215 struct vm_area_struct *vma = mmap_event->vma; 7216 struct file *file = vma->vm_file; 7217 int maj = 0, min = 0; 7218 u64 ino = 0, gen = 0; 7219 u32 prot = 0, flags = 0; 7220 unsigned int size; 7221 char tmp[16]; 7222 char *buf = NULL; 7223 char *name; 7224 7225 if (vma->vm_flags & VM_READ) 7226 prot |= PROT_READ; 7227 if (vma->vm_flags & VM_WRITE) 7228 prot |= PROT_WRITE; 7229 if (vma->vm_flags & VM_EXEC) 7230 prot |= PROT_EXEC; 7231 7232 if (vma->vm_flags & VM_MAYSHARE) 7233 flags = MAP_SHARED; 7234 else 7235 flags = MAP_PRIVATE; 7236 7237 if (vma->vm_flags & VM_DENYWRITE) 7238 flags |= MAP_DENYWRITE; 7239 if (vma->vm_flags & VM_MAYEXEC) 7240 flags |= MAP_EXECUTABLE; 7241 if (vma->vm_flags & VM_LOCKED) 7242 flags |= MAP_LOCKED; 7243 if (vma->vm_flags & VM_HUGETLB) 7244 flags |= MAP_HUGETLB; 7245 7246 if (file) { 7247 struct inode *inode; 7248 dev_t dev; 7249 7250 buf = kmalloc(PATH_MAX, GFP_KERNEL); 7251 if (!buf) { 7252 name = "//enomem"; 7253 goto cpy_name; 7254 } 7255 /* 7256 * d_path() works from the end of the rb backwards, so we 7257 * need to add enough zero bytes after the string to handle 7258 * the 64bit alignment we do later. 7259 */ 7260 name = file_path(file, buf, PATH_MAX - sizeof(u64)); 7261 if (IS_ERR(name)) { 7262 name = "//toolong"; 7263 goto cpy_name; 7264 } 7265 inode = file_inode(vma->vm_file); 7266 dev = inode->i_sb->s_dev; 7267 ino = inode->i_ino; 7268 gen = inode->i_generation; 7269 maj = MAJOR(dev); 7270 min = MINOR(dev); 7271 7272 goto got_name; 7273 } else { 7274 if (vma->vm_ops && vma->vm_ops->name) { 7275 name = (char *) vma->vm_ops->name(vma); 7276 if (name) 7277 goto cpy_name; 7278 } 7279 7280 name = (char *)arch_vma_name(vma); 7281 if (name) 7282 goto cpy_name; 7283 7284 if (vma->vm_start <= vma->vm_mm->start_brk && 7285 vma->vm_end >= vma->vm_mm->brk) { 7286 name = "[heap]"; 7287 goto cpy_name; 7288 } 7289 if (vma->vm_start <= vma->vm_mm->start_stack && 7290 vma->vm_end >= vma->vm_mm->start_stack) { 7291 name = "[stack]"; 7292 goto cpy_name; 7293 } 7294 7295 name = "//anon"; 7296 goto cpy_name; 7297 } 7298 7299 cpy_name: 7300 strlcpy(tmp, name, sizeof(tmp)); 7301 name = tmp; 7302 got_name: 7303 /* 7304 * Since our buffer works in 8 byte units we need to align our string 7305 * size to a multiple of 8. However, we must guarantee the tail end is 7306 * zero'd out to avoid leaking random bits to userspace. 7307 */ 7308 size = strlen(name)+1; 7309 while (!IS_ALIGNED(size, sizeof(u64))) 7310 name[size++] = '\0'; 7311 7312 mmap_event->file_name = name; 7313 mmap_event->file_size = size; 7314 mmap_event->maj = maj; 7315 mmap_event->min = min; 7316 mmap_event->ino = ino; 7317 mmap_event->ino_generation = gen; 7318 mmap_event->prot = prot; 7319 mmap_event->flags = flags; 7320 7321 if (!(vma->vm_flags & VM_EXEC)) 7322 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 7323 7324 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 7325 7326 perf_iterate_sb(perf_event_mmap_output, 7327 mmap_event, 7328 NULL); 7329 7330 kfree(buf); 7331 } 7332 7333 /* 7334 * Check whether inode and address range match filter criteria. 7335 */ 7336 static bool perf_addr_filter_match(struct perf_addr_filter *filter, 7337 struct file *file, unsigned long offset, 7338 unsigned long size) 7339 { 7340 /* d_inode(NULL) won't be equal to any mapped user-space file */ 7341 if (!filter->path.dentry) 7342 return false; 7343 7344 if (d_inode(filter->path.dentry) != file_inode(file)) 7345 return false; 7346 7347 if (filter->offset > offset + size) 7348 return false; 7349 7350 if (filter->offset + filter->size < offset) 7351 return false; 7352 7353 return true; 7354 } 7355 7356 static void __perf_addr_filters_adjust(struct perf_event *event, void *data) 7357 { 7358 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 7359 struct vm_area_struct *vma = data; 7360 unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags; 7361 struct file *file = vma->vm_file; 7362 struct perf_addr_filter *filter; 7363 unsigned int restart = 0, count = 0; 7364 7365 if (!has_addr_filter(event)) 7366 return; 7367 7368 if (!file) 7369 return; 7370 7371 raw_spin_lock_irqsave(&ifh->lock, flags); 7372 list_for_each_entry(filter, &ifh->list, entry) { 7373 if (perf_addr_filter_match(filter, file, off, 7374 vma->vm_end - vma->vm_start)) { 7375 event->addr_filters_offs[count] = vma->vm_start; 7376 restart++; 7377 } 7378 7379 count++; 7380 } 7381 7382 if (restart) 7383 event->addr_filters_gen++; 7384 raw_spin_unlock_irqrestore(&ifh->lock, flags); 7385 7386 if (restart) 7387 perf_event_stop(event, 1); 7388 } 7389 7390 /* 7391 * Adjust all task's events' filters to the new vma 7392 */ 7393 static void perf_addr_filters_adjust(struct vm_area_struct *vma) 7394 { 7395 struct perf_event_context *ctx; 7396 int ctxn; 7397 7398 /* 7399 * Data tracing isn't supported yet and as such there is no need 7400 * to keep track of anything that isn't related to executable code: 7401 */ 7402 if (!(vma->vm_flags & VM_EXEC)) 7403 return; 7404 7405 rcu_read_lock(); 7406 for_each_task_context_nr(ctxn) { 7407 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 7408 if (!ctx) 7409 continue; 7410 7411 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true); 7412 } 7413 rcu_read_unlock(); 7414 } 7415 7416 void perf_event_mmap(struct vm_area_struct *vma) 7417 { 7418 struct perf_mmap_event mmap_event; 7419 7420 if (!atomic_read(&nr_mmap_events)) 7421 return; 7422 7423 mmap_event = (struct perf_mmap_event){ 7424 .vma = vma, 7425 /* .file_name */ 7426 /* .file_size */ 7427 .event_id = { 7428 .header = { 7429 .type = PERF_RECORD_MMAP, 7430 .misc = PERF_RECORD_MISC_USER, 7431 /* .size */ 7432 }, 7433 /* .pid */ 7434 /* .tid */ 7435 .start = vma->vm_start, 7436 .len = vma->vm_end - vma->vm_start, 7437 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 7438 }, 7439 /* .maj (attr_mmap2 only) */ 7440 /* .min (attr_mmap2 only) */ 7441 /* .ino (attr_mmap2 only) */ 7442 /* .ino_generation (attr_mmap2 only) */ 7443 /* .prot (attr_mmap2 only) */ 7444 /* .flags (attr_mmap2 only) */ 7445 }; 7446 7447 perf_addr_filters_adjust(vma); 7448 perf_event_mmap_event(&mmap_event); 7449 } 7450 7451 void perf_event_aux_event(struct perf_event *event, unsigned long head, 7452 unsigned long size, u64 flags) 7453 { 7454 struct perf_output_handle handle; 7455 struct perf_sample_data sample; 7456 struct perf_aux_event { 7457 struct perf_event_header header; 7458 u64 offset; 7459 u64 size; 7460 u64 flags; 7461 } rec = { 7462 .header = { 7463 .type = PERF_RECORD_AUX, 7464 .misc = 0, 7465 .size = sizeof(rec), 7466 }, 7467 .offset = head, 7468 .size = size, 7469 .flags = flags, 7470 }; 7471 int ret; 7472 7473 perf_event_header__init_id(&rec.header, &sample, event); 7474 ret = perf_output_begin(&handle, event, rec.header.size); 7475 7476 if (ret) 7477 return; 7478 7479 perf_output_put(&handle, rec); 7480 perf_event__output_id_sample(event, &handle, &sample); 7481 7482 perf_output_end(&handle); 7483 } 7484 7485 /* 7486 * Lost/dropped samples logging 7487 */ 7488 void perf_log_lost_samples(struct perf_event *event, u64 lost) 7489 { 7490 struct perf_output_handle handle; 7491 struct perf_sample_data sample; 7492 int ret; 7493 7494 struct { 7495 struct perf_event_header header; 7496 u64 lost; 7497 } lost_samples_event = { 7498 .header = { 7499 .type = PERF_RECORD_LOST_SAMPLES, 7500 .misc = 0, 7501 .size = sizeof(lost_samples_event), 7502 }, 7503 .lost = lost, 7504 }; 7505 7506 perf_event_header__init_id(&lost_samples_event.header, &sample, event); 7507 7508 ret = perf_output_begin(&handle, event, 7509 lost_samples_event.header.size); 7510 if (ret) 7511 return; 7512 7513 perf_output_put(&handle, lost_samples_event); 7514 perf_event__output_id_sample(event, &handle, &sample); 7515 perf_output_end(&handle); 7516 } 7517 7518 /* 7519 * context_switch tracking 7520 */ 7521 7522 struct perf_switch_event { 7523 struct task_struct *task; 7524 struct task_struct *next_prev; 7525 7526 struct { 7527 struct perf_event_header header; 7528 u32 next_prev_pid; 7529 u32 next_prev_tid; 7530 } event_id; 7531 }; 7532 7533 static int perf_event_switch_match(struct perf_event *event) 7534 { 7535 return event->attr.context_switch; 7536 } 7537 7538 static void perf_event_switch_output(struct perf_event *event, void *data) 7539 { 7540 struct perf_switch_event *se = data; 7541 struct perf_output_handle handle; 7542 struct perf_sample_data sample; 7543 int ret; 7544 7545 if (!perf_event_switch_match(event)) 7546 return; 7547 7548 /* Only CPU-wide events are allowed to see next/prev pid/tid */ 7549 if (event->ctx->task) { 7550 se->event_id.header.type = PERF_RECORD_SWITCH; 7551 se->event_id.header.size = sizeof(se->event_id.header); 7552 } else { 7553 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE; 7554 se->event_id.header.size = sizeof(se->event_id); 7555 se->event_id.next_prev_pid = 7556 perf_event_pid(event, se->next_prev); 7557 se->event_id.next_prev_tid = 7558 perf_event_tid(event, se->next_prev); 7559 } 7560 7561 perf_event_header__init_id(&se->event_id.header, &sample, event); 7562 7563 ret = perf_output_begin(&handle, event, se->event_id.header.size); 7564 if (ret) 7565 return; 7566 7567 if (event->ctx->task) 7568 perf_output_put(&handle, se->event_id.header); 7569 else 7570 perf_output_put(&handle, se->event_id); 7571 7572 perf_event__output_id_sample(event, &handle, &sample); 7573 7574 perf_output_end(&handle); 7575 } 7576 7577 static void perf_event_switch(struct task_struct *task, 7578 struct task_struct *next_prev, bool sched_in) 7579 { 7580 struct perf_switch_event switch_event; 7581 7582 /* N.B. caller checks nr_switch_events != 0 */ 7583 7584 switch_event = (struct perf_switch_event){ 7585 .task = task, 7586 .next_prev = next_prev, 7587 .event_id = { 7588 .header = { 7589 /* .type */ 7590 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT, 7591 /* .size */ 7592 }, 7593 /* .next_prev_pid */ 7594 /* .next_prev_tid */ 7595 }, 7596 }; 7597 7598 if (!sched_in && task->state == TASK_RUNNING) 7599 switch_event.event_id.header.misc |= 7600 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT; 7601 7602 perf_iterate_sb(perf_event_switch_output, 7603 &switch_event, 7604 NULL); 7605 } 7606 7607 /* 7608 * IRQ throttle logging 7609 */ 7610 7611 static void perf_log_throttle(struct perf_event *event, int enable) 7612 { 7613 struct perf_output_handle handle; 7614 struct perf_sample_data sample; 7615 int ret; 7616 7617 struct { 7618 struct perf_event_header header; 7619 u64 time; 7620 u64 id; 7621 u64 stream_id; 7622 } throttle_event = { 7623 .header = { 7624 .type = PERF_RECORD_THROTTLE, 7625 .misc = 0, 7626 .size = sizeof(throttle_event), 7627 }, 7628 .time = perf_event_clock(event), 7629 .id = primary_event_id(event), 7630 .stream_id = event->id, 7631 }; 7632 7633 if (enable) 7634 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 7635 7636 perf_event_header__init_id(&throttle_event.header, &sample, event); 7637 7638 ret = perf_output_begin(&handle, event, 7639 throttle_event.header.size); 7640 if (ret) 7641 return; 7642 7643 perf_output_put(&handle, throttle_event); 7644 perf_event__output_id_sample(event, &handle, &sample); 7645 perf_output_end(&handle); 7646 } 7647 7648 void perf_event_itrace_started(struct perf_event *event) 7649 { 7650 event->attach_state |= PERF_ATTACH_ITRACE; 7651 } 7652 7653 static void perf_log_itrace_start(struct perf_event *event) 7654 { 7655 struct perf_output_handle handle; 7656 struct perf_sample_data sample; 7657 struct perf_aux_event { 7658 struct perf_event_header header; 7659 u32 pid; 7660 u32 tid; 7661 } rec; 7662 int ret; 7663 7664 if (event->parent) 7665 event = event->parent; 7666 7667 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || 7668 event->attach_state & PERF_ATTACH_ITRACE) 7669 return; 7670 7671 rec.header.type = PERF_RECORD_ITRACE_START; 7672 rec.header.misc = 0; 7673 rec.header.size = sizeof(rec); 7674 rec.pid = perf_event_pid(event, current); 7675 rec.tid = perf_event_tid(event, current); 7676 7677 perf_event_header__init_id(&rec.header, &sample, event); 7678 ret = perf_output_begin(&handle, event, rec.header.size); 7679 7680 if (ret) 7681 return; 7682 7683 perf_output_put(&handle, rec); 7684 perf_event__output_id_sample(event, &handle, &sample); 7685 7686 perf_output_end(&handle); 7687 } 7688 7689 static int 7690 __perf_event_account_interrupt(struct perf_event *event, int throttle) 7691 { 7692 struct hw_perf_event *hwc = &event->hw; 7693 int ret = 0; 7694 u64 seq; 7695 7696 seq = __this_cpu_read(perf_throttled_seq); 7697 if (seq != hwc->interrupts_seq) { 7698 hwc->interrupts_seq = seq; 7699 hwc->interrupts = 1; 7700 } else { 7701 hwc->interrupts++; 7702 if (unlikely(throttle 7703 && hwc->interrupts >= max_samples_per_tick)) { 7704 __this_cpu_inc(perf_throttled_count); 7705 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 7706 hwc->interrupts = MAX_INTERRUPTS; 7707 perf_log_throttle(event, 0); 7708 ret = 1; 7709 } 7710 } 7711 7712 if (event->attr.freq) { 7713 u64 now = perf_clock(); 7714 s64 delta = now - hwc->freq_time_stamp; 7715 7716 hwc->freq_time_stamp = now; 7717 7718 if (delta > 0 && delta < 2*TICK_NSEC) 7719 perf_adjust_period(event, delta, hwc->last_period, true); 7720 } 7721 7722 return ret; 7723 } 7724 7725 int perf_event_account_interrupt(struct perf_event *event) 7726 { 7727 return __perf_event_account_interrupt(event, 1); 7728 } 7729 7730 /* 7731 * Generic event overflow handling, sampling. 7732 */ 7733 7734 static int __perf_event_overflow(struct perf_event *event, 7735 int throttle, struct perf_sample_data *data, 7736 struct pt_regs *regs) 7737 { 7738 int events = atomic_read(&event->event_limit); 7739 int ret = 0; 7740 7741 /* 7742 * Non-sampling counters might still use the PMI to fold short 7743 * hardware counters, ignore those. 7744 */ 7745 if (unlikely(!is_sampling_event(event))) 7746 return 0; 7747 7748 ret = __perf_event_account_interrupt(event, throttle); 7749 7750 /* 7751 * XXX event_limit might not quite work as expected on inherited 7752 * events 7753 */ 7754 7755 event->pending_kill = POLL_IN; 7756 if (events && atomic_dec_and_test(&event->event_limit)) { 7757 ret = 1; 7758 event->pending_kill = POLL_HUP; 7759 7760 perf_event_disable_inatomic(event); 7761 } 7762 7763 READ_ONCE(event->overflow_handler)(event, data, regs); 7764 7765 if (*perf_event_fasync(event) && event->pending_kill) { 7766 event->pending_wakeup = 1; 7767 irq_work_queue(&event->pending); 7768 } 7769 7770 return ret; 7771 } 7772 7773 int perf_event_overflow(struct perf_event *event, 7774 struct perf_sample_data *data, 7775 struct pt_regs *regs) 7776 { 7777 return __perf_event_overflow(event, 1, data, regs); 7778 } 7779 7780 /* 7781 * Generic software event infrastructure 7782 */ 7783 7784 struct swevent_htable { 7785 struct swevent_hlist *swevent_hlist; 7786 struct mutex hlist_mutex; 7787 int hlist_refcount; 7788 7789 /* Recursion avoidance in each contexts */ 7790 int recursion[PERF_NR_CONTEXTS]; 7791 }; 7792 7793 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 7794 7795 /* 7796 * We directly increment event->count and keep a second value in 7797 * event->hw.period_left to count intervals. This period event 7798 * is kept in the range [-sample_period, 0] so that we can use the 7799 * sign as trigger. 7800 */ 7801 7802 u64 perf_swevent_set_period(struct perf_event *event) 7803 { 7804 struct hw_perf_event *hwc = &event->hw; 7805 u64 period = hwc->last_period; 7806 u64 nr, offset; 7807 s64 old, val; 7808 7809 hwc->last_period = hwc->sample_period; 7810 7811 again: 7812 old = val = local64_read(&hwc->period_left); 7813 if (val < 0) 7814 return 0; 7815 7816 nr = div64_u64(period + val, period); 7817 offset = nr * period; 7818 val -= offset; 7819 if (local64_cmpxchg(&hwc->period_left, old, val) != old) 7820 goto again; 7821 7822 return nr; 7823 } 7824 7825 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 7826 struct perf_sample_data *data, 7827 struct pt_regs *regs) 7828 { 7829 struct hw_perf_event *hwc = &event->hw; 7830 int throttle = 0; 7831 7832 if (!overflow) 7833 overflow = perf_swevent_set_period(event); 7834 7835 if (hwc->interrupts == MAX_INTERRUPTS) 7836 return; 7837 7838 for (; overflow; overflow--) { 7839 if (__perf_event_overflow(event, throttle, 7840 data, regs)) { 7841 /* 7842 * We inhibit the overflow from happening when 7843 * hwc->interrupts == MAX_INTERRUPTS. 7844 */ 7845 break; 7846 } 7847 throttle = 1; 7848 } 7849 } 7850 7851 static void perf_swevent_event(struct perf_event *event, u64 nr, 7852 struct perf_sample_data *data, 7853 struct pt_regs *regs) 7854 { 7855 struct hw_perf_event *hwc = &event->hw; 7856 7857 local64_add(nr, &event->count); 7858 7859 if (!regs) 7860 return; 7861 7862 if (!is_sampling_event(event)) 7863 return; 7864 7865 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 7866 data->period = nr; 7867 return perf_swevent_overflow(event, 1, data, regs); 7868 } else 7869 data->period = event->hw.last_period; 7870 7871 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 7872 return perf_swevent_overflow(event, 1, data, regs); 7873 7874 if (local64_add_negative(nr, &hwc->period_left)) 7875 return; 7876 7877 perf_swevent_overflow(event, 0, data, regs); 7878 } 7879 7880 static int perf_exclude_event(struct perf_event *event, 7881 struct pt_regs *regs) 7882 { 7883 if (event->hw.state & PERF_HES_STOPPED) 7884 return 1; 7885 7886 if (regs) { 7887 if (event->attr.exclude_user && user_mode(regs)) 7888 return 1; 7889 7890 if (event->attr.exclude_kernel && !user_mode(regs)) 7891 return 1; 7892 } 7893 7894 return 0; 7895 } 7896 7897 static int perf_swevent_match(struct perf_event *event, 7898 enum perf_type_id type, 7899 u32 event_id, 7900 struct perf_sample_data *data, 7901 struct pt_regs *regs) 7902 { 7903 if (event->attr.type != type) 7904 return 0; 7905 7906 if (event->attr.config != event_id) 7907 return 0; 7908 7909 if (perf_exclude_event(event, regs)) 7910 return 0; 7911 7912 return 1; 7913 } 7914 7915 static inline u64 swevent_hash(u64 type, u32 event_id) 7916 { 7917 u64 val = event_id | (type << 32); 7918 7919 return hash_64(val, SWEVENT_HLIST_BITS); 7920 } 7921 7922 static inline struct hlist_head * 7923 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 7924 { 7925 u64 hash = swevent_hash(type, event_id); 7926 7927 return &hlist->heads[hash]; 7928 } 7929 7930 /* For the read side: events when they trigger */ 7931 static inline struct hlist_head * 7932 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 7933 { 7934 struct swevent_hlist *hlist; 7935 7936 hlist = rcu_dereference(swhash->swevent_hlist); 7937 if (!hlist) 7938 return NULL; 7939 7940 return __find_swevent_head(hlist, type, event_id); 7941 } 7942 7943 /* For the event head insertion and removal in the hlist */ 7944 static inline struct hlist_head * 7945 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 7946 { 7947 struct swevent_hlist *hlist; 7948 u32 event_id = event->attr.config; 7949 u64 type = event->attr.type; 7950 7951 /* 7952 * Event scheduling is always serialized against hlist allocation 7953 * and release. Which makes the protected version suitable here. 7954 * The context lock guarantees that. 7955 */ 7956 hlist = rcu_dereference_protected(swhash->swevent_hlist, 7957 lockdep_is_held(&event->ctx->lock)); 7958 if (!hlist) 7959 return NULL; 7960 7961 return __find_swevent_head(hlist, type, event_id); 7962 } 7963 7964 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 7965 u64 nr, 7966 struct perf_sample_data *data, 7967 struct pt_regs *regs) 7968 { 7969 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 7970 struct perf_event *event; 7971 struct hlist_head *head; 7972 7973 rcu_read_lock(); 7974 head = find_swevent_head_rcu(swhash, type, event_id); 7975 if (!head) 7976 goto end; 7977 7978 hlist_for_each_entry_rcu(event, head, hlist_entry) { 7979 if (perf_swevent_match(event, type, event_id, data, regs)) 7980 perf_swevent_event(event, nr, data, regs); 7981 } 7982 end: 7983 rcu_read_unlock(); 7984 } 7985 7986 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); 7987 7988 int perf_swevent_get_recursion_context(void) 7989 { 7990 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 7991 7992 return get_recursion_context(swhash->recursion); 7993 } 7994 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 7995 7996 void perf_swevent_put_recursion_context(int rctx) 7997 { 7998 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 7999 8000 put_recursion_context(swhash->recursion, rctx); 8001 } 8002 8003 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 8004 { 8005 struct perf_sample_data data; 8006 8007 if (WARN_ON_ONCE(!regs)) 8008 return; 8009 8010 perf_sample_data_init(&data, addr, 0); 8011 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 8012 } 8013 8014 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 8015 { 8016 int rctx; 8017 8018 preempt_disable_notrace(); 8019 rctx = perf_swevent_get_recursion_context(); 8020 if (unlikely(rctx < 0)) 8021 goto fail; 8022 8023 ___perf_sw_event(event_id, nr, regs, addr); 8024 8025 perf_swevent_put_recursion_context(rctx); 8026 fail: 8027 preempt_enable_notrace(); 8028 } 8029 8030 static void perf_swevent_read(struct perf_event *event) 8031 { 8032 } 8033 8034 static int perf_swevent_add(struct perf_event *event, int flags) 8035 { 8036 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 8037 struct hw_perf_event *hwc = &event->hw; 8038 struct hlist_head *head; 8039 8040 if (is_sampling_event(event)) { 8041 hwc->last_period = hwc->sample_period; 8042 perf_swevent_set_period(event); 8043 } 8044 8045 hwc->state = !(flags & PERF_EF_START); 8046 8047 head = find_swevent_head(swhash, event); 8048 if (WARN_ON_ONCE(!head)) 8049 return -EINVAL; 8050 8051 hlist_add_head_rcu(&event->hlist_entry, head); 8052 perf_event_update_userpage(event); 8053 8054 return 0; 8055 } 8056 8057 static void perf_swevent_del(struct perf_event *event, int flags) 8058 { 8059 hlist_del_rcu(&event->hlist_entry); 8060 } 8061 8062 static void perf_swevent_start(struct perf_event *event, int flags) 8063 { 8064 event->hw.state = 0; 8065 } 8066 8067 static void perf_swevent_stop(struct perf_event *event, int flags) 8068 { 8069 event->hw.state = PERF_HES_STOPPED; 8070 } 8071 8072 /* Deref the hlist from the update side */ 8073 static inline struct swevent_hlist * 8074 swevent_hlist_deref(struct swevent_htable *swhash) 8075 { 8076 return rcu_dereference_protected(swhash->swevent_hlist, 8077 lockdep_is_held(&swhash->hlist_mutex)); 8078 } 8079 8080 static void swevent_hlist_release(struct swevent_htable *swhash) 8081 { 8082 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 8083 8084 if (!hlist) 8085 return; 8086 8087 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 8088 kfree_rcu(hlist, rcu_head); 8089 } 8090 8091 static void swevent_hlist_put_cpu(int cpu) 8092 { 8093 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 8094 8095 mutex_lock(&swhash->hlist_mutex); 8096 8097 if (!--swhash->hlist_refcount) 8098 swevent_hlist_release(swhash); 8099 8100 mutex_unlock(&swhash->hlist_mutex); 8101 } 8102 8103 static void swevent_hlist_put(void) 8104 { 8105 int cpu; 8106 8107 for_each_possible_cpu(cpu) 8108 swevent_hlist_put_cpu(cpu); 8109 } 8110 8111 static int swevent_hlist_get_cpu(int cpu) 8112 { 8113 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 8114 int err = 0; 8115 8116 mutex_lock(&swhash->hlist_mutex); 8117 if (!swevent_hlist_deref(swhash) && 8118 cpumask_test_cpu(cpu, perf_online_mask)) { 8119 struct swevent_hlist *hlist; 8120 8121 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 8122 if (!hlist) { 8123 err = -ENOMEM; 8124 goto exit; 8125 } 8126 rcu_assign_pointer(swhash->swevent_hlist, hlist); 8127 } 8128 swhash->hlist_refcount++; 8129 exit: 8130 mutex_unlock(&swhash->hlist_mutex); 8131 8132 return err; 8133 } 8134 8135 static int swevent_hlist_get(void) 8136 { 8137 int err, cpu, failed_cpu; 8138 8139 mutex_lock(&pmus_lock); 8140 for_each_possible_cpu(cpu) { 8141 err = swevent_hlist_get_cpu(cpu); 8142 if (err) { 8143 failed_cpu = cpu; 8144 goto fail; 8145 } 8146 } 8147 mutex_unlock(&pmus_lock); 8148 return 0; 8149 fail: 8150 for_each_possible_cpu(cpu) { 8151 if (cpu == failed_cpu) 8152 break; 8153 swevent_hlist_put_cpu(cpu); 8154 } 8155 mutex_unlock(&pmus_lock); 8156 return err; 8157 } 8158 8159 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 8160 8161 static void sw_perf_event_destroy(struct perf_event *event) 8162 { 8163 u64 event_id = event->attr.config; 8164 8165 WARN_ON(event->parent); 8166 8167 static_key_slow_dec(&perf_swevent_enabled[event_id]); 8168 swevent_hlist_put(); 8169 } 8170 8171 static int perf_swevent_init(struct perf_event *event) 8172 { 8173 u64 event_id = event->attr.config; 8174 8175 if (event->attr.type != PERF_TYPE_SOFTWARE) 8176 return -ENOENT; 8177 8178 /* 8179 * no branch sampling for software events 8180 */ 8181 if (has_branch_stack(event)) 8182 return -EOPNOTSUPP; 8183 8184 switch (event_id) { 8185 case PERF_COUNT_SW_CPU_CLOCK: 8186 case PERF_COUNT_SW_TASK_CLOCK: 8187 return -ENOENT; 8188 8189 default: 8190 break; 8191 } 8192 8193 if (event_id >= PERF_COUNT_SW_MAX) 8194 return -ENOENT; 8195 8196 if (!event->parent) { 8197 int err; 8198 8199 err = swevent_hlist_get(); 8200 if (err) 8201 return err; 8202 8203 static_key_slow_inc(&perf_swevent_enabled[event_id]); 8204 event->destroy = sw_perf_event_destroy; 8205 } 8206 8207 return 0; 8208 } 8209 8210 static struct pmu perf_swevent = { 8211 .task_ctx_nr = perf_sw_context, 8212 8213 .capabilities = PERF_PMU_CAP_NO_NMI, 8214 8215 .event_init = perf_swevent_init, 8216 .add = perf_swevent_add, 8217 .del = perf_swevent_del, 8218 .start = perf_swevent_start, 8219 .stop = perf_swevent_stop, 8220 .read = perf_swevent_read, 8221 }; 8222 8223 #ifdef CONFIG_EVENT_TRACING 8224 8225 static int perf_tp_filter_match(struct perf_event *event, 8226 struct perf_sample_data *data) 8227 { 8228 void *record = data->raw->frag.data; 8229 8230 /* only top level events have filters set */ 8231 if (event->parent) 8232 event = event->parent; 8233 8234 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 8235 return 1; 8236 return 0; 8237 } 8238 8239 static int perf_tp_event_match(struct perf_event *event, 8240 struct perf_sample_data *data, 8241 struct pt_regs *regs) 8242 { 8243 if (event->hw.state & PERF_HES_STOPPED) 8244 return 0; 8245 /* 8246 * All tracepoints are from kernel-space. 8247 */ 8248 if (event->attr.exclude_kernel) 8249 return 0; 8250 8251 if (!perf_tp_filter_match(event, data)) 8252 return 0; 8253 8254 return 1; 8255 } 8256 8257 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx, 8258 struct trace_event_call *call, u64 count, 8259 struct pt_regs *regs, struct hlist_head *head, 8260 struct task_struct *task) 8261 { 8262 if (bpf_prog_array_valid(call)) { 8263 *(struct pt_regs **)raw_data = regs; 8264 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) { 8265 perf_swevent_put_recursion_context(rctx); 8266 return; 8267 } 8268 } 8269 perf_tp_event(call->event.type, count, raw_data, size, regs, head, 8270 rctx, task); 8271 } 8272 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit); 8273 8274 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size, 8275 struct pt_regs *regs, struct hlist_head *head, int rctx, 8276 struct task_struct *task) 8277 { 8278 struct perf_sample_data data; 8279 struct perf_event *event; 8280 8281 struct perf_raw_record raw = { 8282 .frag = { 8283 .size = entry_size, 8284 .data = record, 8285 }, 8286 }; 8287 8288 perf_sample_data_init(&data, 0, 0); 8289 data.raw = &raw; 8290 8291 perf_trace_buf_update(record, event_type); 8292 8293 hlist_for_each_entry_rcu(event, head, hlist_entry) { 8294 if (perf_tp_event_match(event, &data, regs)) 8295 perf_swevent_event(event, count, &data, regs); 8296 } 8297 8298 /* 8299 * If we got specified a target task, also iterate its context and 8300 * deliver this event there too. 8301 */ 8302 if (task && task != current) { 8303 struct perf_event_context *ctx; 8304 struct trace_entry *entry = record; 8305 8306 rcu_read_lock(); 8307 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]); 8308 if (!ctx) 8309 goto unlock; 8310 8311 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 8312 if (event->attr.type != PERF_TYPE_TRACEPOINT) 8313 continue; 8314 if (event->attr.config != entry->type) 8315 continue; 8316 if (perf_tp_event_match(event, &data, regs)) 8317 perf_swevent_event(event, count, &data, regs); 8318 } 8319 unlock: 8320 rcu_read_unlock(); 8321 } 8322 8323 perf_swevent_put_recursion_context(rctx); 8324 } 8325 EXPORT_SYMBOL_GPL(perf_tp_event); 8326 8327 static void tp_perf_event_destroy(struct perf_event *event) 8328 { 8329 perf_trace_destroy(event); 8330 } 8331 8332 static int perf_tp_event_init(struct perf_event *event) 8333 { 8334 int err; 8335 8336 if (event->attr.type != PERF_TYPE_TRACEPOINT) 8337 return -ENOENT; 8338 8339 /* 8340 * no branch sampling for tracepoint events 8341 */ 8342 if (has_branch_stack(event)) 8343 return -EOPNOTSUPP; 8344 8345 err = perf_trace_init(event); 8346 if (err) 8347 return err; 8348 8349 event->destroy = tp_perf_event_destroy; 8350 8351 return 0; 8352 } 8353 8354 static struct pmu perf_tracepoint = { 8355 .task_ctx_nr = perf_sw_context, 8356 8357 .event_init = perf_tp_event_init, 8358 .add = perf_trace_add, 8359 .del = perf_trace_del, 8360 .start = perf_swevent_start, 8361 .stop = perf_swevent_stop, 8362 .read = perf_swevent_read, 8363 }; 8364 8365 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS) 8366 /* 8367 * Flags in config, used by dynamic PMU kprobe and uprobe 8368 * The flags should match following PMU_FORMAT_ATTR(). 8369 * 8370 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe 8371 * if not set, create kprobe/uprobe 8372 */ 8373 enum perf_probe_config { 8374 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */ 8375 }; 8376 8377 PMU_FORMAT_ATTR(retprobe, "config:0"); 8378 8379 static struct attribute *probe_attrs[] = { 8380 &format_attr_retprobe.attr, 8381 NULL, 8382 }; 8383 8384 static struct attribute_group probe_format_group = { 8385 .name = "format", 8386 .attrs = probe_attrs, 8387 }; 8388 8389 static const struct attribute_group *probe_attr_groups[] = { 8390 &probe_format_group, 8391 NULL, 8392 }; 8393 #endif 8394 8395 #ifdef CONFIG_KPROBE_EVENTS 8396 static int perf_kprobe_event_init(struct perf_event *event); 8397 static struct pmu perf_kprobe = { 8398 .task_ctx_nr = perf_sw_context, 8399 .event_init = perf_kprobe_event_init, 8400 .add = perf_trace_add, 8401 .del = perf_trace_del, 8402 .start = perf_swevent_start, 8403 .stop = perf_swevent_stop, 8404 .read = perf_swevent_read, 8405 .attr_groups = probe_attr_groups, 8406 }; 8407 8408 static int perf_kprobe_event_init(struct perf_event *event) 8409 { 8410 int err; 8411 bool is_retprobe; 8412 8413 if (event->attr.type != perf_kprobe.type) 8414 return -ENOENT; 8415 8416 if (!capable(CAP_SYS_ADMIN)) 8417 return -EACCES; 8418 8419 /* 8420 * no branch sampling for probe events 8421 */ 8422 if (has_branch_stack(event)) 8423 return -EOPNOTSUPP; 8424 8425 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 8426 err = perf_kprobe_init(event, is_retprobe); 8427 if (err) 8428 return err; 8429 8430 event->destroy = perf_kprobe_destroy; 8431 8432 return 0; 8433 } 8434 #endif /* CONFIG_KPROBE_EVENTS */ 8435 8436 #ifdef CONFIG_UPROBE_EVENTS 8437 static int perf_uprobe_event_init(struct perf_event *event); 8438 static struct pmu perf_uprobe = { 8439 .task_ctx_nr = perf_sw_context, 8440 .event_init = perf_uprobe_event_init, 8441 .add = perf_trace_add, 8442 .del = perf_trace_del, 8443 .start = perf_swevent_start, 8444 .stop = perf_swevent_stop, 8445 .read = perf_swevent_read, 8446 .attr_groups = probe_attr_groups, 8447 }; 8448 8449 static int perf_uprobe_event_init(struct perf_event *event) 8450 { 8451 int err; 8452 bool is_retprobe; 8453 8454 if (event->attr.type != perf_uprobe.type) 8455 return -ENOENT; 8456 8457 if (!capable(CAP_SYS_ADMIN)) 8458 return -EACCES; 8459 8460 /* 8461 * no branch sampling for probe events 8462 */ 8463 if (has_branch_stack(event)) 8464 return -EOPNOTSUPP; 8465 8466 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 8467 err = perf_uprobe_init(event, is_retprobe); 8468 if (err) 8469 return err; 8470 8471 event->destroy = perf_uprobe_destroy; 8472 8473 return 0; 8474 } 8475 #endif /* CONFIG_UPROBE_EVENTS */ 8476 8477 static inline void perf_tp_register(void) 8478 { 8479 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 8480 #ifdef CONFIG_KPROBE_EVENTS 8481 perf_pmu_register(&perf_kprobe, "kprobe", -1); 8482 #endif 8483 #ifdef CONFIG_UPROBE_EVENTS 8484 perf_pmu_register(&perf_uprobe, "uprobe", -1); 8485 #endif 8486 } 8487 8488 static void perf_event_free_filter(struct perf_event *event) 8489 { 8490 ftrace_profile_free_filter(event); 8491 } 8492 8493 #ifdef CONFIG_BPF_SYSCALL 8494 static void bpf_overflow_handler(struct perf_event *event, 8495 struct perf_sample_data *data, 8496 struct pt_regs *regs) 8497 { 8498 struct bpf_perf_event_data_kern ctx = { 8499 .data = data, 8500 .event = event, 8501 }; 8502 int ret = 0; 8503 8504 ctx.regs = perf_arch_bpf_user_pt_regs(regs); 8505 preempt_disable(); 8506 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) 8507 goto out; 8508 rcu_read_lock(); 8509 ret = BPF_PROG_RUN(event->prog, &ctx); 8510 rcu_read_unlock(); 8511 out: 8512 __this_cpu_dec(bpf_prog_active); 8513 preempt_enable(); 8514 if (!ret) 8515 return; 8516 8517 event->orig_overflow_handler(event, data, regs); 8518 } 8519 8520 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd) 8521 { 8522 struct bpf_prog *prog; 8523 8524 if (event->overflow_handler_context) 8525 /* hw breakpoint or kernel counter */ 8526 return -EINVAL; 8527 8528 if (event->prog) 8529 return -EEXIST; 8530 8531 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT); 8532 if (IS_ERR(prog)) 8533 return PTR_ERR(prog); 8534 8535 event->prog = prog; 8536 event->orig_overflow_handler = READ_ONCE(event->overflow_handler); 8537 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler); 8538 return 0; 8539 } 8540 8541 static void perf_event_free_bpf_handler(struct perf_event *event) 8542 { 8543 struct bpf_prog *prog = event->prog; 8544 8545 if (!prog) 8546 return; 8547 8548 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler); 8549 event->prog = NULL; 8550 bpf_prog_put(prog); 8551 } 8552 #else 8553 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd) 8554 { 8555 return -EOPNOTSUPP; 8556 } 8557 static void perf_event_free_bpf_handler(struct perf_event *event) 8558 { 8559 } 8560 #endif 8561 8562 /* 8563 * returns true if the event is a tracepoint, or a kprobe/upprobe created 8564 * with perf_event_open() 8565 */ 8566 static inline bool perf_event_is_tracing(struct perf_event *event) 8567 { 8568 if (event->pmu == &perf_tracepoint) 8569 return true; 8570 #ifdef CONFIG_KPROBE_EVENTS 8571 if (event->pmu == &perf_kprobe) 8572 return true; 8573 #endif 8574 #ifdef CONFIG_UPROBE_EVENTS 8575 if (event->pmu == &perf_uprobe) 8576 return true; 8577 #endif 8578 return false; 8579 } 8580 8581 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 8582 { 8583 bool is_kprobe, is_tracepoint, is_syscall_tp; 8584 struct bpf_prog *prog; 8585 int ret; 8586 8587 if (!perf_event_is_tracing(event)) 8588 return perf_event_set_bpf_handler(event, prog_fd); 8589 8590 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE; 8591 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT; 8592 is_syscall_tp = is_syscall_trace_event(event->tp_event); 8593 if (!is_kprobe && !is_tracepoint && !is_syscall_tp) 8594 /* bpf programs can only be attached to u/kprobe or tracepoint */ 8595 return -EINVAL; 8596 8597 prog = bpf_prog_get(prog_fd); 8598 if (IS_ERR(prog)) 8599 return PTR_ERR(prog); 8600 8601 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) || 8602 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) || 8603 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) { 8604 /* valid fd, but invalid bpf program type */ 8605 bpf_prog_put(prog); 8606 return -EINVAL; 8607 } 8608 8609 /* Kprobe override only works for kprobes, not uprobes. */ 8610 if (prog->kprobe_override && 8611 !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) { 8612 bpf_prog_put(prog); 8613 return -EINVAL; 8614 } 8615 8616 if (is_tracepoint || is_syscall_tp) { 8617 int off = trace_event_get_offsets(event->tp_event); 8618 8619 if (prog->aux->max_ctx_offset > off) { 8620 bpf_prog_put(prog); 8621 return -EACCES; 8622 } 8623 } 8624 8625 ret = perf_event_attach_bpf_prog(event, prog); 8626 if (ret) 8627 bpf_prog_put(prog); 8628 return ret; 8629 } 8630 8631 static void perf_event_free_bpf_prog(struct perf_event *event) 8632 { 8633 if (!perf_event_is_tracing(event)) { 8634 perf_event_free_bpf_handler(event); 8635 return; 8636 } 8637 perf_event_detach_bpf_prog(event); 8638 } 8639 8640 #else 8641 8642 static inline void perf_tp_register(void) 8643 { 8644 } 8645 8646 static void perf_event_free_filter(struct perf_event *event) 8647 { 8648 } 8649 8650 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 8651 { 8652 return -ENOENT; 8653 } 8654 8655 static void perf_event_free_bpf_prog(struct perf_event *event) 8656 { 8657 } 8658 #endif /* CONFIG_EVENT_TRACING */ 8659 8660 #ifdef CONFIG_HAVE_HW_BREAKPOINT 8661 void perf_bp_event(struct perf_event *bp, void *data) 8662 { 8663 struct perf_sample_data sample; 8664 struct pt_regs *regs = data; 8665 8666 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 8667 8668 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 8669 perf_swevent_event(bp, 1, &sample, regs); 8670 } 8671 #endif 8672 8673 /* 8674 * Allocate a new address filter 8675 */ 8676 static struct perf_addr_filter * 8677 perf_addr_filter_new(struct perf_event *event, struct list_head *filters) 8678 { 8679 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu); 8680 struct perf_addr_filter *filter; 8681 8682 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node); 8683 if (!filter) 8684 return NULL; 8685 8686 INIT_LIST_HEAD(&filter->entry); 8687 list_add_tail(&filter->entry, filters); 8688 8689 return filter; 8690 } 8691 8692 static void free_filters_list(struct list_head *filters) 8693 { 8694 struct perf_addr_filter *filter, *iter; 8695 8696 list_for_each_entry_safe(filter, iter, filters, entry) { 8697 path_put(&filter->path); 8698 list_del(&filter->entry); 8699 kfree(filter); 8700 } 8701 } 8702 8703 /* 8704 * Free existing address filters and optionally install new ones 8705 */ 8706 static void perf_addr_filters_splice(struct perf_event *event, 8707 struct list_head *head) 8708 { 8709 unsigned long flags; 8710 LIST_HEAD(list); 8711 8712 if (!has_addr_filter(event)) 8713 return; 8714 8715 /* don't bother with children, they don't have their own filters */ 8716 if (event->parent) 8717 return; 8718 8719 raw_spin_lock_irqsave(&event->addr_filters.lock, flags); 8720 8721 list_splice_init(&event->addr_filters.list, &list); 8722 if (head) 8723 list_splice(head, &event->addr_filters.list); 8724 8725 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags); 8726 8727 free_filters_list(&list); 8728 } 8729 8730 /* 8731 * Scan through mm's vmas and see if one of them matches the 8732 * @filter; if so, adjust filter's address range. 8733 * Called with mm::mmap_sem down for reading. 8734 */ 8735 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter, 8736 struct mm_struct *mm) 8737 { 8738 struct vm_area_struct *vma; 8739 8740 for (vma = mm->mmap; vma; vma = vma->vm_next) { 8741 struct file *file = vma->vm_file; 8742 unsigned long off = vma->vm_pgoff << PAGE_SHIFT; 8743 unsigned long vma_size = vma->vm_end - vma->vm_start; 8744 8745 if (!file) 8746 continue; 8747 8748 if (!perf_addr_filter_match(filter, file, off, vma_size)) 8749 continue; 8750 8751 return vma->vm_start; 8752 } 8753 8754 return 0; 8755 } 8756 8757 /* 8758 * Update event's address range filters based on the 8759 * task's existing mappings, if any. 8760 */ 8761 static void perf_event_addr_filters_apply(struct perf_event *event) 8762 { 8763 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 8764 struct task_struct *task = READ_ONCE(event->ctx->task); 8765 struct perf_addr_filter *filter; 8766 struct mm_struct *mm = NULL; 8767 unsigned int count = 0; 8768 unsigned long flags; 8769 8770 /* 8771 * We may observe TASK_TOMBSTONE, which means that the event tear-down 8772 * will stop on the parent's child_mutex that our caller is also holding 8773 */ 8774 if (task == TASK_TOMBSTONE) 8775 return; 8776 8777 if (!ifh->nr_file_filters) 8778 return; 8779 8780 mm = get_task_mm(event->ctx->task); 8781 if (!mm) 8782 goto restart; 8783 8784 down_read(&mm->mmap_sem); 8785 8786 raw_spin_lock_irqsave(&ifh->lock, flags); 8787 list_for_each_entry(filter, &ifh->list, entry) { 8788 event->addr_filters_offs[count] = 0; 8789 8790 /* 8791 * Adjust base offset if the filter is associated to a binary 8792 * that needs to be mapped: 8793 */ 8794 if (filter->path.dentry) 8795 event->addr_filters_offs[count] = 8796 perf_addr_filter_apply(filter, mm); 8797 8798 count++; 8799 } 8800 8801 event->addr_filters_gen++; 8802 raw_spin_unlock_irqrestore(&ifh->lock, flags); 8803 8804 up_read(&mm->mmap_sem); 8805 8806 mmput(mm); 8807 8808 restart: 8809 perf_event_stop(event, 1); 8810 } 8811 8812 /* 8813 * Address range filtering: limiting the data to certain 8814 * instruction address ranges. Filters are ioctl()ed to us from 8815 * userspace as ascii strings. 8816 * 8817 * Filter string format: 8818 * 8819 * ACTION RANGE_SPEC 8820 * where ACTION is one of the 8821 * * "filter": limit the trace to this region 8822 * * "start": start tracing from this address 8823 * * "stop": stop tracing at this address/region; 8824 * RANGE_SPEC is 8825 * * for kernel addresses: <start address>[/<size>] 8826 * * for object files: <start address>[/<size>]@</path/to/object/file> 8827 * 8828 * if <size> is not specified or is zero, the range is treated as a single 8829 * address; not valid for ACTION=="filter". 8830 */ 8831 enum { 8832 IF_ACT_NONE = -1, 8833 IF_ACT_FILTER, 8834 IF_ACT_START, 8835 IF_ACT_STOP, 8836 IF_SRC_FILE, 8837 IF_SRC_KERNEL, 8838 IF_SRC_FILEADDR, 8839 IF_SRC_KERNELADDR, 8840 }; 8841 8842 enum { 8843 IF_STATE_ACTION = 0, 8844 IF_STATE_SOURCE, 8845 IF_STATE_END, 8846 }; 8847 8848 static const match_table_t if_tokens = { 8849 { IF_ACT_FILTER, "filter" }, 8850 { IF_ACT_START, "start" }, 8851 { IF_ACT_STOP, "stop" }, 8852 { IF_SRC_FILE, "%u/%u@%s" }, 8853 { IF_SRC_KERNEL, "%u/%u" }, 8854 { IF_SRC_FILEADDR, "%u@%s" }, 8855 { IF_SRC_KERNELADDR, "%u" }, 8856 { IF_ACT_NONE, NULL }, 8857 }; 8858 8859 /* 8860 * Address filter string parser 8861 */ 8862 static int 8863 perf_event_parse_addr_filter(struct perf_event *event, char *fstr, 8864 struct list_head *filters) 8865 { 8866 struct perf_addr_filter *filter = NULL; 8867 char *start, *orig, *filename = NULL; 8868 substring_t args[MAX_OPT_ARGS]; 8869 int state = IF_STATE_ACTION, token; 8870 unsigned int kernel = 0; 8871 int ret = -EINVAL; 8872 8873 orig = fstr = kstrdup(fstr, GFP_KERNEL); 8874 if (!fstr) 8875 return -ENOMEM; 8876 8877 while ((start = strsep(&fstr, " ,\n")) != NULL) { 8878 static const enum perf_addr_filter_action_t actions[] = { 8879 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER, 8880 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START, 8881 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP, 8882 }; 8883 ret = -EINVAL; 8884 8885 if (!*start) 8886 continue; 8887 8888 /* filter definition begins */ 8889 if (state == IF_STATE_ACTION) { 8890 filter = perf_addr_filter_new(event, filters); 8891 if (!filter) 8892 goto fail; 8893 } 8894 8895 token = match_token(start, if_tokens, args); 8896 switch (token) { 8897 case IF_ACT_FILTER: 8898 case IF_ACT_START: 8899 case IF_ACT_STOP: 8900 if (state != IF_STATE_ACTION) 8901 goto fail; 8902 8903 filter->action = actions[token]; 8904 state = IF_STATE_SOURCE; 8905 break; 8906 8907 case IF_SRC_KERNELADDR: 8908 case IF_SRC_KERNEL: 8909 kernel = 1; 8910 8911 case IF_SRC_FILEADDR: 8912 case IF_SRC_FILE: 8913 if (state != IF_STATE_SOURCE) 8914 goto fail; 8915 8916 *args[0].to = 0; 8917 ret = kstrtoul(args[0].from, 0, &filter->offset); 8918 if (ret) 8919 goto fail; 8920 8921 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) { 8922 *args[1].to = 0; 8923 ret = kstrtoul(args[1].from, 0, &filter->size); 8924 if (ret) 8925 goto fail; 8926 } 8927 8928 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) { 8929 int fpos = token == IF_SRC_FILE ? 2 : 1; 8930 8931 filename = match_strdup(&args[fpos]); 8932 if (!filename) { 8933 ret = -ENOMEM; 8934 goto fail; 8935 } 8936 } 8937 8938 state = IF_STATE_END; 8939 break; 8940 8941 default: 8942 goto fail; 8943 } 8944 8945 /* 8946 * Filter definition is fully parsed, validate and install it. 8947 * Make sure that it doesn't contradict itself or the event's 8948 * attribute. 8949 */ 8950 if (state == IF_STATE_END) { 8951 ret = -EINVAL; 8952 if (kernel && event->attr.exclude_kernel) 8953 goto fail; 8954 8955 /* 8956 * ACTION "filter" must have a non-zero length region 8957 * specified. 8958 */ 8959 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER && 8960 !filter->size) 8961 goto fail; 8962 8963 if (!kernel) { 8964 if (!filename) 8965 goto fail; 8966 8967 /* 8968 * For now, we only support file-based filters 8969 * in per-task events; doing so for CPU-wide 8970 * events requires additional context switching 8971 * trickery, since same object code will be 8972 * mapped at different virtual addresses in 8973 * different processes. 8974 */ 8975 ret = -EOPNOTSUPP; 8976 if (!event->ctx->task) 8977 goto fail_free_name; 8978 8979 /* look up the path and grab its inode */ 8980 ret = kern_path(filename, LOOKUP_FOLLOW, 8981 &filter->path); 8982 if (ret) 8983 goto fail_free_name; 8984 8985 kfree(filename); 8986 filename = NULL; 8987 8988 ret = -EINVAL; 8989 if (!filter->path.dentry || 8990 !S_ISREG(d_inode(filter->path.dentry) 8991 ->i_mode)) 8992 goto fail; 8993 8994 event->addr_filters.nr_file_filters++; 8995 } 8996 8997 /* ready to consume more filters */ 8998 state = IF_STATE_ACTION; 8999 filter = NULL; 9000 } 9001 } 9002 9003 if (state != IF_STATE_ACTION) 9004 goto fail; 9005 9006 kfree(orig); 9007 9008 return 0; 9009 9010 fail_free_name: 9011 kfree(filename); 9012 fail: 9013 free_filters_list(filters); 9014 kfree(orig); 9015 9016 return ret; 9017 } 9018 9019 static int 9020 perf_event_set_addr_filter(struct perf_event *event, char *filter_str) 9021 { 9022 LIST_HEAD(filters); 9023 int ret; 9024 9025 /* 9026 * Since this is called in perf_ioctl() path, we're already holding 9027 * ctx::mutex. 9028 */ 9029 lockdep_assert_held(&event->ctx->mutex); 9030 9031 if (WARN_ON_ONCE(event->parent)) 9032 return -EINVAL; 9033 9034 ret = perf_event_parse_addr_filter(event, filter_str, &filters); 9035 if (ret) 9036 goto fail_clear_files; 9037 9038 ret = event->pmu->addr_filters_validate(&filters); 9039 if (ret) 9040 goto fail_free_filters; 9041 9042 /* remove existing filters, if any */ 9043 perf_addr_filters_splice(event, &filters); 9044 9045 /* install new filters */ 9046 perf_event_for_each_child(event, perf_event_addr_filters_apply); 9047 9048 return ret; 9049 9050 fail_free_filters: 9051 free_filters_list(&filters); 9052 9053 fail_clear_files: 9054 event->addr_filters.nr_file_filters = 0; 9055 9056 return ret; 9057 } 9058 9059 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 9060 { 9061 int ret = -EINVAL; 9062 char *filter_str; 9063 9064 filter_str = strndup_user(arg, PAGE_SIZE); 9065 if (IS_ERR(filter_str)) 9066 return PTR_ERR(filter_str); 9067 9068 #ifdef CONFIG_EVENT_TRACING 9069 if (perf_event_is_tracing(event)) { 9070 struct perf_event_context *ctx = event->ctx; 9071 9072 /* 9073 * Beware, here be dragons!! 9074 * 9075 * the tracepoint muck will deadlock against ctx->mutex, but 9076 * the tracepoint stuff does not actually need it. So 9077 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we 9078 * already have a reference on ctx. 9079 * 9080 * This can result in event getting moved to a different ctx, 9081 * but that does not affect the tracepoint state. 9082 */ 9083 mutex_unlock(&ctx->mutex); 9084 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 9085 mutex_lock(&ctx->mutex); 9086 } else 9087 #endif 9088 if (has_addr_filter(event)) 9089 ret = perf_event_set_addr_filter(event, filter_str); 9090 9091 kfree(filter_str); 9092 return ret; 9093 } 9094 9095 /* 9096 * hrtimer based swevent callback 9097 */ 9098 9099 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 9100 { 9101 enum hrtimer_restart ret = HRTIMER_RESTART; 9102 struct perf_sample_data data; 9103 struct pt_regs *regs; 9104 struct perf_event *event; 9105 u64 period; 9106 9107 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 9108 9109 if (event->state != PERF_EVENT_STATE_ACTIVE) 9110 return HRTIMER_NORESTART; 9111 9112 event->pmu->read(event); 9113 9114 perf_sample_data_init(&data, 0, event->hw.last_period); 9115 regs = get_irq_regs(); 9116 9117 if (regs && !perf_exclude_event(event, regs)) { 9118 if (!(event->attr.exclude_idle && is_idle_task(current))) 9119 if (__perf_event_overflow(event, 1, &data, regs)) 9120 ret = HRTIMER_NORESTART; 9121 } 9122 9123 period = max_t(u64, 10000, event->hw.sample_period); 9124 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 9125 9126 return ret; 9127 } 9128 9129 static void perf_swevent_start_hrtimer(struct perf_event *event) 9130 { 9131 struct hw_perf_event *hwc = &event->hw; 9132 s64 period; 9133 9134 if (!is_sampling_event(event)) 9135 return; 9136 9137 period = local64_read(&hwc->period_left); 9138 if (period) { 9139 if (period < 0) 9140 period = 10000; 9141 9142 local64_set(&hwc->period_left, 0); 9143 } else { 9144 period = max_t(u64, 10000, hwc->sample_period); 9145 } 9146 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), 9147 HRTIMER_MODE_REL_PINNED); 9148 } 9149 9150 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 9151 { 9152 struct hw_perf_event *hwc = &event->hw; 9153 9154 if (is_sampling_event(event)) { 9155 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 9156 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 9157 9158 hrtimer_cancel(&hwc->hrtimer); 9159 } 9160 } 9161 9162 static void perf_swevent_init_hrtimer(struct perf_event *event) 9163 { 9164 struct hw_perf_event *hwc = &event->hw; 9165 9166 if (!is_sampling_event(event)) 9167 return; 9168 9169 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 9170 hwc->hrtimer.function = perf_swevent_hrtimer; 9171 9172 /* 9173 * Since hrtimers have a fixed rate, we can do a static freq->period 9174 * mapping and avoid the whole period adjust feedback stuff. 9175 */ 9176 if (event->attr.freq) { 9177 long freq = event->attr.sample_freq; 9178 9179 event->attr.sample_period = NSEC_PER_SEC / freq; 9180 hwc->sample_period = event->attr.sample_period; 9181 local64_set(&hwc->period_left, hwc->sample_period); 9182 hwc->last_period = hwc->sample_period; 9183 event->attr.freq = 0; 9184 } 9185 } 9186 9187 /* 9188 * Software event: cpu wall time clock 9189 */ 9190 9191 static void cpu_clock_event_update(struct perf_event *event) 9192 { 9193 s64 prev; 9194 u64 now; 9195 9196 now = local_clock(); 9197 prev = local64_xchg(&event->hw.prev_count, now); 9198 local64_add(now - prev, &event->count); 9199 } 9200 9201 static void cpu_clock_event_start(struct perf_event *event, int flags) 9202 { 9203 local64_set(&event->hw.prev_count, local_clock()); 9204 perf_swevent_start_hrtimer(event); 9205 } 9206 9207 static void cpu_clock_event_stop(struct perf_event *event, int flags) 9208 { 9209 perf_swevent_cancel_hrtimer(event); 9210 cpu_clock_event_update(event); 9211 } 9212 9213 static int cpu_clock_event_add(struct perf_event *event, int flags) 9214 { 9215 if (flags & PERF_EF_START) 9216 cpu_clock_event_start(event, flags); 9217 perf_event_update_userpage(event); 9218 9219 return 0; 9220 } 9221 9222 static void cpu_clock_event_del(struct perf_event *event, int flags) 9223 { 9224 cpu_clock_event_stop(event, flags); 9225 } 9226 9227 static void cpu_clock_event_read(struct perf_event *event) 9228 { 9229 cpu_clock_event_update(event); 9230 } 9231 9232 static int cpu_clock_event_init(struct perf_event *event) 9233 { 9234 if (event->attr.type != PERF_TYPE_SOFTWARE) 9235 return -ENOENT; 9236 9237 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 9238 return -ENOENT; 9239 9240 /* 9241 * no branch sampling for software events 9242 */ 9243 if (has_branch_stack(event)) 9244 return -EOPNOTSUPP; 9245 9246 perf_swevent_init_hrtimer(event); 9247 9248 return 0; 9249 } 9250 9251 static struct pmu perf_cpu_clock = { 9252 .task_ctx_nr = perf_sw_context, 9253 9254 .capabilities = PERF_PMU_CAP_NO_NMI, 9255 9256 .event_init = cpu_clock_event_init, 9257 .add = cpu_clock_event_add, 9258 .del = cpu_clock_event_del, 9259 .start = cpu_clock_event_start, 9260 .stop = cpu_clock_event_stop, 9261 .read = cpu_clock_event_read, 9262 }; 9263 9264 /* 9265 * Software event: task time clock 9266 */ 9267 9268 static void task_clock_event_update(struct perf_event *event, u64 now) 9269 { 9270 u64 prev; 9271 s64 delta; 9272 9273 prev = local64_xchg(&event->hw.prev_count, now); 9274 delta = now - prev; 9275 local64_add(delta, &event->count); 9276 } 9277 9278 static void task_clock_event_start(struct perf_event *event, int flags) 9279 { 9280 local64_set(&event->hw.prev_count, event->ctx->time); 9281 perf_swevent_start_hrtimer(event); 9282 } 9283 9284 static void task_clock_event_stop(struct perf_event *event, int flags) 9285 { 9286 perf_swevent_cancel_hrtimer(event); 9287 task_clock_event_update(event, event->ctx->time); 9288 } 9289 9290 static int task_clock_event_add(struct perf_event *event, int flags) 9291 { 9292 if (flags & PERF_EF_START) 9293 task_clock_event_start(event, flags); 9294 perf_event_update_userpage(event); 9295 9296 return 0; 9297 } 9298 9299 static void task_clock_event_del(struct perf_event *event, int flags) 9300 { 9301 task_clock_event_stop(event, PERF_EF_UPDATE); 9302 } 9303 9304 static void task_clock_event_read(struct perf_event *event) 9305 { 9306 u64 now = perf_clock(); 9307 u64 delta = now - event->ctx->timestamp; 9308 u64 time = event->ctx->time + delta; 9309 9310 task_clock_event_update(event, time); 9311 } 9312 9313 static int task_clock_event_init(struct perf_event *event) 9314 { 9315 if (event->attr.type != PERF_TYPE_SOFTWARE) 9316 return -ENOENT; 9317 9318 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 9319 return -ENOENT; 9320 9321 /* 9322 * no branch sampling for software events 9323 */ 9324 if (has_branch_stack(event)) 9325 return -EOPNOTSUPP; 9326 9327 perf_swevent_init_hrtimer(event); 9328 9329 return 0; 9330 } 9331 9332 static struct pmu perf_task_clock = { 9333 .task_ctx_nr = perf_sw_context, 9334 9335 .capabilities = PERF_PMU_CAP_NO_NMI, 9336 9337 .event_init = task_clock_event_init, 9338 .add = task_clock_event_add, 9339 .del = task_clock_event_del, 9340 .start = task_clock_event_start, 9341 .stop = task_clock_event_stop, 9342 .read = task_clock_event_read, 9343 }; 9344 9345 static void perf_pmu_nop_void(struct pmu *pmu) 9346 { 9347 } 9348 9349 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags) 9350 { 9351 } 9352 9353 static int perf_pmu_nop_int(struct pmu *pmu) 9354 { 9355 return 0; 9356 } 9357 9358 static DEFINE_PER_CPU(unsigned int, nop_txn_flags); 9359 9360 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags) 9361 { 9362 __this_cpu_write(nop_txn_flags, flags); 9363 9364 if (flags & ~PERF_PMU_TXN_ADD) 9365 return; 9366 9367 perf_pmu_disable(pmu); 9368 } 9369 9370 static int perf_pmu_commit_txn(struct pmu *pmu) 9371 { 9372 unsigned int flags = __this_cpu_read(nop_txn_flags); 9373 9374 __this_cpu_write(nop_txn_flags, 0); 9375 9376 if (flags & ~PERF_PMU_TXN_ADD) 9377 return 0; 9378 9379 perf_pmu_enable(pmu); 9380 return 0; 9381 } 9382 9383 static void perf_pmu_cancel_txn(struct pmu *pmu) 9384 { 9385 unsigned int flags = __this_cpu_read(nop_txn_flags); 9386 9387 __this_cpu_write(nop_txn_flags, 0); 9388 9389 if (flags & ~PERF_PMU_TXN_ADD) 9390 return; 9391 9392 perf_pmu_enable(pmu); 9393 } 9394 9395 static int perf_event_idx_default(struct perf_event *event) 9396 { 9397 return 0; 9398 } 9399 9400 /* 9401 * Ensures all contexts with the same task_ctx_nr have the same 9402 * pmu_cpu_context too. 9403 */ 9404 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn) 9405 { 9406 struct pmu *pmu; 9407 9408 if (ctxn < 0) 9409 return NULL; 9410 9411 list_for_each_entry(pmu, &pmus, entry) { 9412 if (pmu->task_ctx_nr == ctxn) 9413 return pmu->pmu_cpu_context; 9414 } 9415 9416 return NULL; 9417 } 9418 9419 static void free_pmu_context(struct pmu *pmu) 9420 { 9421 /* 9422 * Static contexts such as perf_sw_context have a global lifetime 9423 * and may be shared between different PMUs. Avoid freeing them 9424 * when a single PMU is going away. 9425 */ 9426 if (pmu->task_ctx_nr > perf_invalid_context) 9427 return; 9428 9429 mutex_lock(&pmus_lock); 9430 free_percpu(pmu->pmu_cpu_context); 9431 mutex_unlock(&pmus_lock); 9432 } 9433 9434 /* 9435 * Let userspace know that this PMU supports address range filtering: 9436 */ 9437 static ssize_t nr_addr_filters_show(struct device *dev, 9438 struct device_attribute *attr, 9439 char *page) 9440 { 9441 struct pmu *pmu = dev_get_drvdata(dev); 9442 9443 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters); 9444 } 9445 DEVICE_ATTR_RO(nr_addr_filters); 9446 9447 static struct idr pmu_idr; 9448 9449 static ssize_t 9450 type_show(struct device *dev, struct device_attribute *attr, char *page) 9451 { 9452 struct pmu *pmu = dev_get_drvdata(dev); 9453 9454 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); 9455 } 9456 static DEVICE_ATTR_RO(type); 9457 9458 static ssize_t 9459 perf_event_mux_interval_ms_show(struct device *dev, 9460 struct device_attribute *attr, 9461 char *page) 9462 { 9463 struct pmu *pmu = dev_get_drvdata(dev); 9464 9465 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms); 9466 } 9467 9468 static DEFINE_MUTEX(mux_interval_mutex); 9469 9470 static ssize_t 9471 perf_event_mux_interval_ms_store(struct device *dev, 9472 struct device_attribute *attr, 9473 const char *buf, size_t count) 9474 { 9475 struct pmu *pmu = dev_get_drvdata(dev); 9476 int timer, cpu, ret; 9477 9478 ret = kstrtoint(buf, 0, &timer); 9479 if (ret) 9480 return ret; 9481 9482 if (timer < 1) 9483 return -EINVAL; 9484 9485 /* same value, noting to do */ 9486 if (timer == pmu->hrtimer_interval_ms) 9487 return count; 9488 9489 mutex_lock(&mux_interval_mutex); 9490 pmu->hrtimer_interval_ms = timer; 9491 9492 /* update all cpuctx for this PMU */ 9493 cpus_read_lock(); 9494 for_each_online_cpu(cpu) { 9495 struct perf_cpu_context *cpuctx; 9496 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 9497 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 9498 9499 cpu_function_call(cpu, 9500 (remote_function_f)perf_mux_hrtimer_restart, cpuctx); 9501 } 9502 cpus_read_unlock(); 9503 mutex_unlock(&mux_interval_mutex); 9504 9505 return count; 9506 } 9507 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 9508 9509 static struct attribute *pmu_dev_attrs[] = { 9510 &dev_attr_type.attr, 9511 &dev_attr_perf_event_mux_interval_ms.attr, 9512 NULL, 9513 }; 9514 ATTRIBUTE_GROUPS(pmu_dev); 9515 9516 static int pmu_bus_running; 9517 static struct bus_type pmu_bus = { 9518 .name = "event_source", 9519 .dev_groups = pmu_dev_groups, 9520 }; 9521 9522 static void pmu_dev_release(struct device *dev) 9523 { 9524 kfree(dev); 9525 } 9526 9527 static int pmu_dev_alloc(struct pmu *pmu) 9528 { 9529 int ret = -ENOMEM; 9530 9531 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 9532 if (!pmu->dev) 9533 goto out; 9534 9535 pmu->dev->groups = pmu->attr_groups; 9536 device_initialize(pmu->dev); 9537 ret = dev_set_name(pmu->dev, "%s", pmu->name); 9538 if (ret) 9539 goto free_dev; 9540 9541 dev_set_drvdata(pmu->dev, pmu); 9542 pmu->dev->bus = &pmu_bus; 9543 pmu->dev->release = pmu_dev_release; 9544 ret = device_add(pmu->dev); 9545 if (ret) 9546 goto free_dev; 9547 9548 /* For PMUs with address filters, throw in an extra attribute: */ 9549 if (pmu->nr_addr_filters) 9550 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters); 9551 9552 if (ret) 9553 goto del_dev; 9554 9555 out: 9556 return ret; 9557 9558 del_dev: 9559 device_del(pmu->dev); 9560 9561 free_dev: 9562 put_device(pmu->dev); 9563 goto out; 9564 } 9565 9566 static struct lock_class_key cpuctx_mutex; 9567 static struct lock_class_key cpuctx_lock; 9568 9569 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 9570 { 9571 int cpu, ret; 9572 9573 mutex_lock(&pmus_lock); 9574 ret = -ENOMEM; 9575 pmu->pmu_disable_count = alloc_percpu(int); 9576 if (!pmu->pmu_disable_count) 9577 goto unlock; 9578 9579 pmu->type = -1; 9580 if (!name) 9581 goto skip_type; 9582 pmu->name = name; 9583 9584 if (type < 0) { 9585 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL); 9586 if (type < 0) { 9587 ret = type; 9588 goto free_pdc; 9589 } 9590 } 9591 pmu->type = type; 9592 9593 if (pmu_bus_running) { 9594 ret = pmu_dev_alloc(pmu); 9595 if (ret) 9596 goto free_idr; 9597 } 9598 9599 skip_type: 9600 if (pmu->task_ctx_nr == perf_hw_context) { 9601 static int hw_context_taken = 0; 9602 9603 /* 9604 * Other than systems with heterogeneous CPUs, it never makes 9605 * sense for two PMUs to share perf_hw_context. PMUs which are 9606 * uncore must use perf_invalid_context. 9607 */ 9608 if (WARN_ON_ONCE(hw_context_taken && 9609 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS))) 9610 pmu->task_ctx_nr = perf_invalid_context; 9611 9612 hw_context_taken = 1; 9613 } 9614 9615 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); 9616 if (pmu->pmu_cpu_context) 9617 goto got_cpu_context; 9618 9619 ret = -ENOMEM; 9620 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); 9621 if (!pmu->pmu_cpu_context) 9622 goto free_dev; 9623 9624 for_each_possible_cpu(cpu) { 9625 struct perf_cpu_context *cpuctx; 9626 9627 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 9628 __perf_event_init_context(&cpuctx->ctx); 9629 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 9630 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 9631 cpuctx->ctx.pmu = pmu; 9632 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask); 9633 9634 __perf_mux_hrtimer_init(cpuctx, cpu); 9635 } 9636 9637 got_cpu_context: 9638 if (!pmu->start_txn) { 9639 if (pmu->pmu_enable) { 9640 /* 9641 * If we have pmu_enable/pmu_disable calls, install 9642 * transaction stubs that use that to try and batch 9643 * hardware accesses. 9644 */ 9645 pmu->start_txn = perf_pmu_start_txn; 9646 pmu->commit_txn = perf_pmu_commit_txn; 9647 pmu->cancel_txn = perf_pmu_cancel_txn; 9648 } else { 9649 pmu->start_txn = perf_pmu_nop_txn; 9650 pmu->commit_txn = perf_pmu_nop_int; 9651 pmu->cancel_txn = perf_pmu_nop_void; 9652 } 9653 } 9654 9655 if (!pmu->pmu_enable) { 9656 pmu->pmu_enable = perf_pmu_nop_void; 9657 pmu->pmu_disable = perf_pmu_nop_void; 9658 } 9659 9660 if (!pmu->event_idx) 9661 pmu->event_idx = perf_event_idx_default; 9662 9663 list_add_rcu(&pmu->entry, &pmus); 9664 atomic_set(&pmu->exclusive_cnt, 0); 9665 ret = 0; 9666 unlock: 9667 mutex_unlock(&pmus_lock); 9668 9669 return ret; 9670 9671 free_dev: 9672 device_del(pmu->dev); 9673 put_device(pmu->dev); 9674 9675 free_idr: 9676 if (pmu->type >= PERF_TYPE_MAX) 9677 idr_remove(&pmu_idr, pmu->type); 9678 9679 free_pdc: 9680 free_percpu(pmu->pmu_disable_count); 9681 goto unlock; 9682 } 9683 EXPORT_SYMBOL_GPL(perf_pmu_register); 9684 9685 void perf_pmu_unregister(struct pmu *pmu) 9686 { 9687 int remove_device; 9688 9689 mutex_lock(&pmus_lock); 9690 remove_device = pmu_bus_running; 9691 list_del_rcu(&pmu->entry); 9692 mutex_unlock(&pmus_lock); 9693 9694 /* 9695 * We dereference the pmu list under both SRCU and regular RCU, so 9696 * synchronize against both of those. 9697 */ 9698 synchronize_srcu(&pmus_srcu); 9699 synchronize_rcu(); 9700 9701 free_percpu(pmu->pmu_disable_count); 9702 if (pmu->type >= PERF_TYPE_MAX) 9703 idr_remove(&pmu_idr, pmu->type); 9704 if (remove_device) { 9705 if (pmu->nr_addr_filters) 9706 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters); 9707 device_del(pmu->dev); 9708 put_device(pmu->dev); 9709 } 9710 free_pmu_context(pmu); 9711 } 9712 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 9713 9714 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) 9715 { 9716 struct perf_event_context *ctx = NULL; 9717 int ret; 9718 9719 if (!try_module_get(pmu->module)) 9720 return -ENODEV; 9721 9722 /* 9723 * A number of pmu->event_init() methods iterate the sibling_list to, 9724 * for example, validate if the group fits on the PMU. Therefore, 9725 * if this is a sibling event, acquire the ctx->mutex to protect 9726 * the sibling_list. 9727 */ 9728 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) { 9729 /* 9730 * This ctx->mutex can nest when we're called through 9731 * inheritance. See the perf_event_ctx_lock_nested() comment. 9732 */ 9733 ctx = perf_event_ctx_lock_nested(event->group_leader, 9734 SINGLE_DEPTH_NESTING); 9735 BUG_ON(!ctx); 9736 } 9737 9738 event->pmu = pmu; 9739 ret = pmu->event_init(event); 9740 9741 if (ctx) 9742 perf_event_ctx_unlock(event->group_leader, ctx); 9743 9744 if (ret) 9745 module_put(pmu->module); 9746 9747 return ret; 9748 } 9749 9750 static struct pmu *perf_init_event(struct perf_event *event) 9751 { 9752 struct pmu *pmu; 9753 int idx; 9754 int ret; 9755 9756 idx = srcu_read_lock(&pmus_srcu); 9757 9758 /* Try parent's PMU first: */ 9759 if (event->parent && event->parent->pmu) { 9760 pmu = event->parent->pmu; 9761 ret = perf_try_init_event(pmu, event); 9762 if (!ret) 9763 goto unlock; 9764 } 9765 9766 rcu_read_lock(); 9767 pmu = idr_find(&pmu_idr, event->attr.type); 9768 rcu_read_unlock(); 9769 if (pmu) { 9770 ret = perf_try_init_event(pmu, event); 9771 if (ret) 9772 pmu = ERR_PTR(ret); 9773 goto unlock; 9774 } 9775 9776 list_for_each_entry_rcu(pmu, &pmus, entry) { 9777 ret = perf_try_init_event(pmu, event); 9778 if (!ret) 9779 goto unlock; 9780 9781 if (ret != -ENOENT) { 9782 pmu = ERR_PTR(ret); 9783 goto unlock; 9784 } 9785 } 9786 pmu = ERR_PTR(-ENOENT); 9787 unlock: 9788 srcu_read_unlock(&pmus_srcu, idx); 9789 9790 return pmu; 9791 } 9792 9793 static void attach_sb_event(struct perf_event *event) 9794 { 9795 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 9796 9797 raw_spin_lock(&pel->lock); 9798 list_add_rcu(&event->sb_list, &pel->list); 9799 raw_spin_unlock(&pel->lock); 9800 } 9801 9802 /* 9803 * We keep a list of all !task (and therefore per-cpu) events 9804 * that need to receive side-band records. 9805 * 9806 * This avoids having to scan all the various PMU per-cpu contexts 9807 * looking for them. 9808 */ 9809 static void account_pmu_sb_event(struct perf_event *event) 9810 { 9811 if (is_sb_event(event)) 9812 attach_sb_event(event); 9813 } 9814 9815 static void account_event_cpu(struct perf_event *event, int cpu) 9816 { 9817 if (event->parent) 9818 return; 9819 9820 if (is_cgroup_event(event)) 9821 atomic_inc(&per_cpu(perf_cgroup_events, cpu)); 9822 } 9823 9824 /* Freq events need the tick to stay alive (see perf_event_task_tick). */ 9825 static void account_freq_event_nohz(void) 9826 { 9827 #ifdef CONFIG_NO_HZ_FULL 9828 /* Lock so we don't race with concurrent unaccount */ 9829 spin_lock(&nr_freq_lock); 9830 if (atomic_inc_return(&nr_freq_events) == 1) 9831 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS); 9832 spin_unlock(&nr_freq_lock); 9833 #endif 9834 } 9835 9836 static void account_freq_event(void) 9837 { 9838 if (tick_nohz_full_enabled()) 9839 account_freq_event_nohz(); 9840 else 9841 atomic_inc(&nr_freq_events); 9842 } 9843 9844 9845 static void account_event(struct perf_event *event) 9846 { 9847 bool inc = false; 9848 9849 if (event->parent) 9850 return; 9851 9852 if (event->attach_state & PERF_ATTACH_TASK) 9853 inc = true; 9854 if (event->attr.mmap || event->attr.mmap_data) 9855 atomic_inc(&nr_mmap_events); 9856 if (event->attr.comm) 9857 atomic_inc(&nr_comm_events); 9858 if (event->attr.namespaces) 9859 atomic_inc(&nr_namespaces_events); 9860 if (event->attr.task) 9861 atomic_inc(&nr_task_events); 9862 if (event->attr.freq) 9863 account_freq_event(); 9864 if (event->attr.context_switch) { 9865 atomic_inc(&nr_switch_events); 9866 inc = true; 9867 } 9868 if (has_branch_stack(event)) 9869 inc = true; 9870 if (is_cgroup_event(event)) 9871 inc = true; 9872 9873 if (inc) { 9874 /* 9875 * We need the mutex here because static_branch_enable() 9876 * must complete *before* the perf_sched_count increment 9877 * becomes visible. 9878 */ 9879 if (atomic_inc_not_zero(&perf_sched_count)) 9880 goto enabled; 9881 9882 mutex_lock(&perf_sched_mutex); 9883 if (!atomic_read(&perf_sched_count)) { 9884 static_branch_enable(&perf_sched_events); 9885 /* 9886 * Guarantee that all CPUs observe they key change and 9887 * call the perf scheduling hooks before proceeding to 9888 * install events that need them. 9889 */ 9890 synchronize_sched(); 9891 } 9892 /* 9893 * Now that we have waited for the sync_sched(), allow further 9894 * increments to by-pass the mutex. 9895 */ 9896 atomic_inc(&perf_sched_count); 9897 mutex_unlock(&perf_sched_mutex); 9898 } 9899 enabled: 9900 9901 account_event_cpu(event, event->cpu); 9902 9903 account_pmu_sb_event(event); 9904 } 9905 9906 /* 9907 * Allocate and initialize an event structure 9908 */ 9909 static struct perf_event * 9910 perf_event_alloc(struct perf_event_attr *attr, int cpu, 9911 struct task_struct *task, 9912 struct perf_event *group_leader, 9913 struct perf_event *parent_event, 9914 perf_overflow_handler_t overflow_handler, 9915 void *context, int cgroup_fd) 9916 { 9917 struct pmu *pmu; 9918 struct perf_event *event; 9919 struct hw_perf_event *hwc; 9920 long err = -EINVAL; 9921 9922 if ((unsigned)cpu >= nr_cpu_ids) { 9923 if (!task || cpu != -1) 9924 return ERR_PTR(-EINVAL); 9925 } 9926 9927 event = kzalloc(sizeof(*event), GFP_KERNEL); 9928 if (!event) 9929 return ERR_PTR(-ENOMEM); 9930 9931 /* 9932 * Single events are their own group leaders, with an 9933 * empty sibling list: 9934 */ 9935 if (!group_leader) 9936 group_leader = event; 9937 9938 mutex_init(&event->child_mutex); 9939 INIT_LIST_HEAD(&event->child_list); 9940 9941 INIT_LIST_HEAD(&event->event_entry); 9942 INIT_LIST_HEAD(&event->sibling_list); 9943 INIT_LIST_HEAD(&event->active_list); 9944 init_event_group(event); 9945 INIT_LIST_HEAD(&event->rb_entry); 9946 INIT_LIST_HEAD(&event->active_entry); 9947 INIT_LIST_HEAD(&event->addr_filters.list); 9948 INIT_HLIST_NODE(&event->hlist_entry); 9949 9950 9951 init_waitqueue_head(&event->waitq); 9952 init_irq_work(&event->pending, perf_pending_event); 9953 9954 mutex_init(&event->mmap_mutex); 9955 raw_spin_lock_init(&event->addr_filters.lock); 9956 9957 atomic_long_set(&event->refcount, 1); 9958 event->cpu = cpu; 9959 event->attr = *attr; 9960 event->group_leader = group_leader; 9961 event->pmu = NULL; 9962 event->oncpu = -1; 9963 9964 event->parent = parent_event; 9965 9966 event->ns = get_pid_ns(task_active_pid_ns(current)); 9967 event->id = atomic64_inc_return(&perf_event_id); 9968 9969 event->state = PERF_EVENT_STATE_INACTIVE; 9970 9971 if (task) { 9972 event->attach_state = PERF_ATTACH_TASK; 9973 /* 9974 * XXX pmu::event_init needs to know what task to account to 9975 * and we cannot use the ctx information because we need the 9976 * pmu before we get a ctx. 9977 */ 9978 get_task_struct(task); 9979 event->hw.target = task; 9980 } 9981 9982 event->clock = &local_clock; 9983 if (parent_event) 9984 event->clock = parent_event->clock; 9985 9986 if (!overflow_handler && parent_event) { 9987 overflow_handler = parent_event->overflow_handler; 9988 context = parent_event->overflow_handler_context; 9989 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING) 9990 if (overflow_handler == bpf_overflow_handler) { 9991 struct bpf_prog *prog = bpf_prog_inc(parent_event->prog); 9992 9993 if (IS_ERR(prog)) { 9994 err = PTR_ERR(prog); 9995 goto err_ns; 9996 } 9997 event->prog = prog; 9998 event->orig_overflow_handler = 9999 parent_event->orig_overflow_handler; 10000 } 10001 #endif 10002 } 10003 10004 if (overflow_handler) { 10005 event->overflow_handler = overflow_handler; 10006 event->overflow_handler_context = context; 10007 } else if (is_write_backward(event)){ 10008 event->overflow_handler = perf_event_output_backward; 10009 event->overflow_handler_context = NULL; 10010 } else { 10011 event->overflow_handler = perf_event_output_forward; 10012 event->overflow_handler_context = NULL; 10013 } 10014 10015 perf_event__state_init(event); 10016 10017 pmu = NULL; 10018 10019 hwc = &event->hw; 10020 hwc->sample_period = attr->sample_period; 10021 if (attr->freq && attr->sample_freq) 10022 hwc->sample_period = 1; 10023 hwc->last_period = hwc->sample_period; 10024 10025 local64_set(&hwc->period_left, hwc->sample_period); 10026 10027 /* 10028 * We currently do not support PERF_SAMPLE_READ on inherited events. 10029 * See perf_output_read(). 10030 */ 10031 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ)) 10032 goto err_ns; 10033 10034 if (!has_branch_stack(event)) 10035 event->attr.branch_sample_type = 0; 10036 10037 if (cgroup_fd != -1) { 10038 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); 10039 if (err) 10040 goto err_ns; 10041 } 10042 10043 pmu = perf_init_event(event); 10044 if (IS_ERR(pmu)) { 10045 err = PTR_ERR(pmu); 10046 goto err_ns; 10047 } 10048 10049 err = exclusive_event_init(event); 10050 if (err) 10051 goto err_pmu; 10052 10053 if (has_addr_filter(event)) { 10054 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters, 10055 sizeof(unsigned long), 10056 GFP_KERNEL); 10057 if (!event->addr_filters_offs) { 10058 err = -ENOMEM; 10059 goto err_per_task; 10060 } 10061 10062 /* force hw sync on the address filters */ 10063 event->addr_filters_gen = 1; 10064 } 10065 10066 if (!event->parent) { 10067 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 10068 err = get_callchain_buffers(attr->sample_max_stack); 10069 if (err) 10070 goto err_addr_filters; 10071 } 10072 } 10073 10074 /* symmetric to unaccount_event() in _free_event() */ 10075 account_event(event); 10076 10077 return event; 10078 10079 err_addr_filters: 10080 kfree(event->addr_filters_offs); 10081 10082 err_per_task: 10083 exclusive_event_destroy(event); 10084 10085 err_pmu: 10086 if (event->destroy) 10087 event->destroy(event); 10088 module_put(pmu->module); 10089 err_ns: 10090 if (is_cgroup_event(event)) 10091 perf_detach_cgroup(event); 10092 if (event->ns) 10093 put_pid_ns(event->ns); 10094 if (event->hw.target) 10095 put_task_struct(event->hw.target); 10096 kfree(event); 10097 10098 return ERR_PTR(err); 10099 } 10100 10101 static int perf_copy_attr(struct perf_event_attr __user *uattr, 10102 struct perf_event_attr *attr) 10103 { 10104 u32 size; 10105 int ret; 10106 10107 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0)) 10108 return -EFAULT; 10109 10110 /* 10111 * zero the full structure, so that a short copy will be nice. 10112 */ 10113 memset(attr, 0, sizeof(*attr)); 10114 10115 ret = get_user(size, &uattr->size); 10116 if (ret) 10117 return ret; 10118 10119 if (size > PAGE_SIZE) /* silly large */ 10120 goto err_size; 10121 10122 if (!size) /* abi compat */ 10123 size = PERF_ATTR_SIZE_VER0; 10124 10125 if (size < PERF_ATTR_SIZE_VER0) 10126 goto err_size; 10127 10128 /* 10129 * If we're handed a bigger struct than we know of, 10130 * ensure all the unknown bits are 0 - i.e. new 10131 * user-space does not rely on any kernel feature 10132 * extensions we dont know about yet. 10133 */ 10134 if (size > sizeof(*attr)) { 10135 unsigned char __user *addr; 10136 unsigned char __user *end; 10137 unsigned char val; 10138 10139 addr = (void __user *)uattr + sizeof(*attr); 10140 end = (void __user *)uattr + size; 10141 10142 for (; addr < end; addr++) { 10143 ret = get_user(val, addr); 10144 if (ret) 10145 return ret; 10146 if (val) 10147 goto err_size; 10148 } 10149 size = sizeof(*attr); 10150 } 10151 10152 ret = copy_from_user(attr, uattr, size); 10153 if (ret) 10154 return -EFAULT; 10155 10156 attr->size = size; 10157 10158 if (attr->__reserved_1) 10159 return -EINVAL; 10160 10161 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 10162 return -EINVAL; 10163 10164 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 10165 return -EINVAL; 10166 10167 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 10168 u64 mask = attr->branch_sample_type; 10169 10170 /* only using defined bits */ 10171 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 10172 return -EINVAL; 10173 10174 /* at least one branch bit must be set */ 10175 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 10176 return -EINVAL; 10177 10178 /* propagate priv level, when not set for branch */ 10179 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 10180 10181 /* exclude_kernel checked on syscall entry */ 10182 if (!attr->exclude_kernel) 10183 mask |= PERF_SAMPLE_BRANCH_KERNEL; 10184 10185 if (!attr->exclude_user) 10186 mask |= PERF_SAMPLE_BRANCH_USER; 10187 10188 if (!attr->exclude_hv) 10189 mask |= PERF_SAMPLE_BRANCH_HV; 10190 /* 10191 * adjust user setting (for HW filter setup) 10192 */ 10193 attr->branch_sample_type = mask; 10194 } 10195 /* privileged levels capture (kernel, hv): check permissions */ 10196 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM) 10197 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 10198 return -EACCES; 10199 } 10200 10201 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 10202 ret = perf_reg_validate(attr->sample_regs_user); 10203 if (ret) 10204 return ret; 10205 } 10206 10207 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 10208 if (!arch_perf_have_user_stack_dump()) 10209 return -ENOSYS; 10210 10211 /* 10212 * We have __u32 type for the size, but so far 10213 * we can only use __u16 as maximum due to the 10214 * __u16 sample size limit. 10215 */ 10216 if (attr->sample_stack_user >= USHRT_MAX) 10217 return -EINVAL; 10218 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 10219 return -EINVAL; 10220 } 10221 10222 if (!attr->sample_max_stack) 10223 attr->sample_max_stack = sysctl_perf_event_max_stack; 10224 10225 if (attr->sample_type & PERF_SAMPLE_REGS_INTR) 10226 ret = perf_reg_validate(attr->sample_regs_intr); 10227 out: 10228 return ret; 10229 10230 err_size: 10231 put_user(sizeof(*attr), &uattr->size); 10232 ret = -E2BIG; 10233 goto out; 10234 } 10235 10236 static int 10237 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 10238 { 10239 struct ring_buffer *rb = NULL; 10240 int ret = -EINVAL; 10241 10242 if (!output_event) 10243 goto set; 10244 10245 /* don't allow circular references */ 10246 if (event == output_event) 10247 goto out; 10248 10249 /* 10250 * Don't allow cross-cpu buffers 10251 */ 10252 if (output_event->cpu != event->cpu) 10253 goto out; 10254 10255 /* 10256 * If its not a per-cpu rb, it must be the same task. 10257 */ 10258 if (output_event->cpu == -1 && output_event->ctx != event->ctx) 10259 goto out; 10260 10261 /* 10262 * Mixing clocks in the same buffer is trouble you don't need. 10263 */ 10264 if (output_event->clock != event->clock) 10265 goto out; 10266 10267 /* 10268 * Either writing ring buffer from beginning or from end. 10269 * Mixing is not allowed. 10270 */ 10271 if (is_write_backward(output_event) != is_write_backward(event)) 10272 goto out; 10273 10274 /* 10275 * If both events generate aux data, they must be on the same PMU 10276 */ 10277 if (has_aux(event) && has_aux(output_event) && 10278 event->pmu != output_event->pmu) 10279 goto out; 10280 10281 set: 10282 mutex_lock(&event->mmap_mutex); 10283 /* Can't redirect output if we've got an active mmap() */ 10284 if (atomic_read(&event->mmap_count)) 10285 goto unlock; 10286 10287 if (output_event) { 10288 /* get the rb we want to redirect to */ 10289 rb = ring_buffer_get(output_event); 10290 if (!rb) 10291 goto unlock; 10292 } 10293 10294 ring_buffer_attach(event, rb); 10295 10296 ret = 0; 10297 unlock: 10298 mutex_unlock(&event->mmap_mutex); 10299 10300 out: 10301 return ret; 10302 } 10303 10304 static void mutex_lock_double(struct mutex *a, struct mutex *b) 10305 { 10306 if (b < a) 10307 swap(a, b); 10308 10309 mutex_lock(a); 10310 mutex_lock_nested(b, SINGLE_DEPTH_NESTING); 10311 } 10312 10313 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) 10314 { 10315 bool nmi_safe = false; 10316 10317 switch (clk_id) { 10318 case CLOCK_MONOTONIC: 10319 event->clock = &ktime_get_mono_fast_ns; 10320 nmi_safe = true; 10321 break; 10322 10323 case CLOCK_MONOTONIC_RAW: 10324 event->clock = &ktime_get_raw_fast_ns; 10325 nmi_safe = true; 10326 break; 10327 10328 case CLOCK_REALTIME: 10329 event->clock = &ktime_get_real_ns; 10330 break; 10331 10332 case CLOCK_BOOTTIME: 10333 event->clock = &ktime_get_boot_ns; 10334 break; 10335 10336 case CLOCK_TAI: 10337 event->clock = &ktime_get_tai_ns; 10338 break; 10339 10340 default: 10341 return -EINVAL; 10342 } 10343 10344 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) 10345 return -EINVAL; 10346 10347 return 0; 10348 } 10349 10350 /* 10351 * Variation on perf_event_ctx_lock_nested(), except we take two context 10352 * mutexes. 10353 */ 10354 static struct perf_event_context * 10355 __perf_event_ctx_lock_double(struct perf_event *group_leader, 10356 struct perf_event_context *ctx) 10357 { 10358 struct perf_event_context *gctx; 10359 10360 again: 10361 rcu_read_lock(); 10362 gctx = READ_ONCE(group_leader->ctx); 10363 if (!atomic_inc_not_zero(&gctx->refcount)) { 10364 rcu_read_unlock(); 10365 goto again; 10366 } 10367 rcu_read_unlock(); 10368 10369 mutex_lock_double(&gctx->mutex, &ctx->mutex); 10370 10371 if (group_leader->ctx != gctx) { 10372 mutex_unlock(&ctx->mutex); 10373 mutex_unlock(&gctx->mutex); 10374 put_ctx(gctx); 10375 goto again; 10376 } 10377 10378 return gctx; 10379 } 10380 10381 /** 10382 * sys_perf_event_open - open a performance event, associate it to a task/cpu 10383 * 10384 * @attr_uptr: event_id type attributes for monitoring/sampling 10385 * @pid: target pid 10386 * @cpu: target cpu 10387 * @group_fd: group leader event fd 10388 */ 10389 SYSCALL_DEFINE5(perf_event_open, 10390 struct perf_event_attr __user *, attr_uptr, 10391 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 10392 { 10393 struct perf_event *group_leader = NULL, *output_event = NULL; 10394 struct perf_event *event, *sibling; 10395 struct perf_event_attr attr; 10396 struct perf_event_context *ctx, *uninitialized_var(gctx); 10397 struct file *event_file = NULL; 10398 struct fd group = {NULL, 0}; 10399 struct task_struct *task = NULL; 10400 struct pmu *pmu; 10401 int event_fd; 10402 int move_group = 0; 10403 int err; 10404 int f_flags = O_RDWR; 10405 int cgroup_fd = -1; 10406 10407 /* for future expandability... */ 10408 if (flags & ~PERF_FLAG_ALL) 10409 return -EINVAL; 10410 10411 err = perf_copy_attr(attr_uptr, &attr); 10412 if (err) 10413 return err; 10414 10415 if (!attr.exclude_kernel) { 10416 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 10417 return -EACCES; 10418 } 10419 10420 if (attr.namespaces) { 10421 if (!capable(CAP_SYS_ADMIN)) 10422 return -EACCES; 10423 } 10424 10425 if (attr.freq) { 10426 if (attr.sample_freq > sysctl_perf_event_sample_rate) 10427 return -EINVAL; 10428 } else { 10429 if (attr.sample_period & (1ULL << 63)) 10430 return -EINVAL; 10431 } 10432 10433 /* Only privileged users can get physical addresses */ 10434 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) && 10435 perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 10436 return -EACCES; 10437 10438 /* 10439 * In cgroup mode, the pid argument is used to pass the fd 10440 * opened to the cgroup directory in cgroupfs. The cpu argument 10441 * designates the cpu on which to monitor threads from that 10442 * cgroup. 10443 */ 10444 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 10445 return -EINVAL; 10446 10447 if (flags & PERF_FLAG_FD_CLOEXEC) 10448 f_flags |= O_CLOEXEC; 10449 10450 event_fd = get_unused_fd_flags(f_flags); 10451 if (event_fd < 0) 10452 return event_fd; 10453 10454 if (group_fd != -1) { 10455 err = perf_fget_light(group_fd, &group); 10456 if (err) 10457 goto err_fd; 10458 group_leader = group.file->private_data; 10459 if (flags & PERF_FLAG_FD_OUTPUT) 10460 output_event = group_leader; 10461 if (flags & PERF_FLAG_FD_NO_GROUP) 10462 group_leader = NULL; 10463 } 10464 10465 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 10466 task = find_lively_task_by_vpid(pid); 10467 if (IS_ERR(task)) { 10468 err = PTR_ERR(task); 10469 goto err_group_fd; 10470 } 10471 } 10472 10473 if (task && group_leader && 10474 group_leader->attr.inherit != attr.inherit) { 10475 err = -EINVAL; 10476 goto err_task; 10477 } 10478 10479 if (task) { 10480 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex); 10481 if (err) 10482 goto err_task; 10483 10484 /* 10485 * Reuse ptrace permission checks for now. 10486 * 10487 * We must hold cred_guard_mutex across this and any potential 10488 * perf_install_in_context() call for this new event to 10489 * serialize against exec() altering our credentials (and the 10490 * perf_event_exit_task() that could imply). 10491 */ 10492 err = -EACCES; 10493 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) 10494 goto err_cred; 10495 } 10496 10497 if (flags & PERF_FLAG_PID_CGROUP) 10498 cgroup_fd = pid; 10499 10500 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 10501 NULL, NULL, cgroup_fd); 10502 if (IS_ERR(event)) { 10503 err = PTR_ERR(event); 10504 goto err_cred; 10505 } 10506 10507 if (is_sampling_event(event)) { 10508 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 10509 err = -EOPNOTSUPP; 10510 goto err_alloc; 10511 } 10512 } 10513 10514 /* 10515 * Special case software events and allow them to be part of 10516 * any hardware group. 10517 */ 10518 pmu = event->pmu; 10519 10520 if (attr.use_clockid) { 10521 err = perf_event_set_clock(event, attr.clockid); 10522 if (err) 10523 goto err_alloc; 10524 } 10525 10526 if (pmu->task_ctx_nr == perf_sw_context) 10527 event->event_caps |= PERF_EV_CAP_SOFTWARE; 10528 10529 if (group_leader) { 10530 if (is_software_event(event) && 10531 !in_software_context(group_leader)) { 10532 /* 10533 * If the event is a sw event, but the group_leader 10534 * is on hw context. 10535 * 10536 * Allow the addition of software events to hw 10537 * groups, this is safe because software events 10538 * never fail to schedule. 10539 */ 10540 pmu = group_leader->ctx->pmu; 10541 } else if (!is_software_event(event) && 10542 is_software_event(group_leader) && 10543 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 10544 /* 10545 * In case the group is a pure software group, and we 10546 * try to add a hardware event, move the whole group to 10547 * the hardware context. 10548 */ 10549 move_group = 1; 10550 } 10551 } 10552 10553 /* 10554 * Get the target context (task or percpu): 10555 */ 10556 ctx = find_get_context(pmu, task, event); 10557 if (IS_ERR(ctx)) { 10558 err = PTR_ERR(ctx); 10559 goto err_alloc; 10560 } 10561 10562 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) { 10563 err = -EBUSY; 10564 goto err_context; 10565 } 10566 10567 /* 10568 * Look up the group leader (we will attach this event to it): 10569 */ 10570 if (group_leader) { 10571 err = -EINVAL; 10572 10573 /* 10574 * Do not allow a recursive hierarchy (this new sibling 10575 * becoming part of another group-sibling): 10576 */ 10577 if (group_leader->group_leader != group_leader) 10578 goto err_context; 10579 10580 /* All events in a group should have the same clock */ 10581 if (group_leader->clock != event->clock) 10582 goto err_context; 10583 10584 /* 10585 * Make sure we're both events for the same CPU; 10586 * grouping events for different CPUs is broken; since 10587 * you can never concurrently schedule them anyhow. 10588 */ 10589 if (group_leader->cpu != event->cpu) 10590 goto err_context; 10591 10592 /* 10593 * Make sure we're both on the same task, or both 10594 * per-CPU events. 10595 */ 10596 if (group_leader->ctx->task != ctx->task) 10597 goto err_context; 10598 10599 /* 10600 * Do not allow to attach to a group in a different task 10601 * or CPU context. If we're moving SW events, we'll fix 10602 * this up later, so allow that. 10603 */ 10604 if (!move_group && group_leader->ctx != ctx) 10605 goto err_context; 10606 10607 /* 10608 * Only a group leader can be exclusive or pinned 10609 */ 10610 if (attr.exclusive || attr.pinned) 10611 goto err_context; 10612 } 10613 10614 if (output_event) { 10615 err = perf_event_set_output(event, output_event); 10616 if (err) 10617 goto err_context; 10618 } 10619 10620 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, 10621 f_flags); 10622 if (IS_ERR(event_file)) { 10623 err = PTR_ERR(event_file); 10624 event_file = NULL; 10625 goto err_context; 10626 } 10627 10628 if (move_group) { 10629 gctx = __perf_event_ctx_lock_double(group_leader, ctx); 10630 10631 if (gctx->task == TASK_TOMBSTONE) { 10632 err = -ESRCH; 10633 goto err_locked; 10634 } 10635 10636 /* 10637 * Check if we raced against another sys_perf_event_open() call 10638 * moving the software group underneath us. 10639 */ 10640 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 10641 /* 10642 * If someone moved the group out from under us, check 10643 * if this new event wound up on the same ctx, if so 10644 * its the regular !move_group case, otherwise fail. 10645 */ 10646 if (gctx != ctx) { 10647 err = -EINVAL; 10648 goto err_locked; 10649 } else { 10650 perf_event_ctx_unlock(group_leader, gctx); 10651 move_group = 0; 10652 } 10653 } 10654 } else { 10655 mutex_lock(&ctx->mutex); 10656 } 10657 10658 if (ctx->task == TASK_TOMBSTONE) { 10659 err = -ESRCH; 10660 goto err_locked; 10661 } 10662 10663 if (!perf_event_validate_size(event)) { 10664 err = -E2BIG; 10665 goto err_locked; 10666 } 10667 10668 if (!task) { 10669 /* 10670 * Check if the @cpu we're creating an event for is online. 10671 * 10672 * We use the perf_cpu_context::ctx::mutex to serialize against 10673 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 10674 */ 10675 struct perf_cpu_context *cpuctx = 10676 container_of(ctx, struct perf_cpu_context, ctx); 10677 10678 if (!cpuctx->online) { 10679 err = -ENODEV; 10680 goto err_locked; 10681 } 10682 } 10683 10684 10685 /* 10686 * Must be under the same ctx::mutex as perf_install_in_context(), 10687 * because we need to serialize with concurrent event creation. 10688 */ 10689 if (!exclusive_event_installable(event, ctx)) { 10690 /* exclusive and group stuff are assumed mutually exclusive */ 10691 WARN_ON_ONCE(move_group); 10692 10693 err = -EBUSY; 10694 goto err_locked; 10695 } 10696 10697 WARN_ON_ONCE(ctx->parent_ctx); 10698 10699 /* 10700 * This is the point on no return; we cannot fail hereafter. This is 10701 * where we start modifying current state. 10702 */ 10703 10704 if (move_group) { 10705 /* 10706 * See perf_event_ctx_lock() for comments on the details 10707 * of swizzling perf_event::ctx. 10708 */ 10709 perf_remove_from_context(group_leader, 0); 10710 put_ctx(gctx); 10711 10712 for_each_sibling_event(sibling, group_leader) { 10713 perf_remove_from_context(sibling, 0); 10714 put_ctx(gctx); 10715 } 10716 10717 /* 10718 * Wait for everybody to stop referencing the events through 10719 * the old lists, before installing it on new lists. 10720 */ 10721 synchronize_rcu(); 10722 10723 /* 10724 * Install the group siblings before the group leader. 10725 * 10726 * Because a group leader will try and install the entire group 10727 * (through the sibling list, which is still in-tact), we can 10728 * end up with siblings installed in the wrong context. 10729 * 10730 * By installing siblings first we NO-OP because they're not 10731 * reachable through the group lists. 10732 */ 10733 for_each_sibling_event(sibling, group_leader) { 10734 perf_event__state_init(sibling); 10735 perf_install_in_context(ctx, sibling, sibling->cpu); 10736 get_ctx(ctx); 10737 } 10738 10739 /* 10740 * Removing from the context ends up with disabled 10741 * event. What we want here is event in the initial 10742 * startup state, ready to be add into new context. 10743 */ 10744 perf_event__state_init(group_leader); 10745 perf_install_in_context(ctx, group_leader, group_leader->cpu); 10746 get_ctx(ctx); 10747 } 10748 10749 /* 10750 * Precalculate sample_data sizes; do while holding ctx::mutex such 10751 * that we're serialized against further additions and before 10752 * perf_install_in_context() which is the point the event is active and 10753 * can use these values. 10754 */ 10755 perf_event__header_size(event); 10756 perf_event__id_header_size(event); 10757 10758 event->owner = current; 10759 10760 perf_install_in_context(ctx, event, event->cpu); 10761 perf_unpin_context(ctx); 10762 10763 if (move_group) 10764 perf_event_ctx_unlock(group_leader, gctx); 10765 mutex_unlock(&ctx->mutex); 10766 10767 if (task) { 10768 mutex_unlock(&task->signal->cred_guard_mutex); 10769 put_task_struct(task); 10770 } 10771 10772 mutex_lock(¤t->perf_event_mutex); 10773 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 10774 mutex_unlock(¤t->perf_event_mutex); 10775 10776 /* 10777 * Drop the reference on the group_event after placing the 10778 * new event on the sibling_list. This ensures destruction 10779 * of the group leader will find the pointer to itself in 10780 * perf_group_detach(). 10781 */ 10782 fdput(group); 10783 fd_install(event_fd, event_file); 10784 return event_fd; 10785 10786 err_locked: 10787 if (move_group) 10788 perf_event_ctx_unlock(group_leader, gctx); 10789 mutex_unlock(&ctx->mutex); 10790 /* err_file: */ 10791 fput(event_file); 10792 err_context: 10793 perf_unpin_context(ctx); 10794 put_ctx(ctx); 10795 err_alloc: 10796 /* 10797 * If event_file is set, the fput() above will have called ->release() 10798 * and that will take care of freeing the event. 10799 */ 10800 if (!event_file) 10801 free_event(event); 10802 err_cred: 10803 if (task) 10804 mutex_unlock(&task->signal->cred_guard_mutex); 10805 err_task: 10806 if (task) 10807 put_task_struct(task); 10808 err_group_fd: 10809 fdput(group); 10810 err_fd: 10811 put_unused_fd(event_fd); 10812 return err; 10813 } 10814 10815 /** 10816 * perf_event_create_kernel_counter 10817 * 10818 * @attr: attributes of the counter to create 10819 * @cpu: cpu in which the counter is bound 10820 * @task: task to profile (NULL for percpu) 10821 */ 10822 struct perf_event * 10823 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 10824 struct task_struct *task, 10825 perf_overflow_handler_t overflow_handler, 10826 void *context) 10827 { 10828 struct perf_event_context *ctx; 10829 struct perf_event *event; 10830 int err; 10831 10832 /* 10833 * Get the target context (task or percpu): 10834 */ 10835 10836 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 10837 overflow_handler, context, -1); 10838 if (IS_ERR(event)) { 10839 err = PTR_ERR(event); 10840 goto err; 10841 } 10842 10843 /* Mark owner so we could distinguish it from user events. */ 10844 event->owner = TASK_TOMBSTONE; 10845 10846 ctx = find_get_context(event->pmu, task, event); 10847 if (IS_ERR(ctx)) { 10848 err = PTR_ERR(ctx); 10849 goto err_free; 10850 } 10851 10852 WARN_ON_ONCE(ctx->parent_ctx); 10853 mutex_lock(&ctx->mutex); 10854 if (ctx->task == TASK_TOMBSTONE) { 10855 err = -ESRCH; 10856 goto err_unlock; 10857 } 10858 10859 if (!task) { 10860 /* 10861 * Check if the @cpu we're creating an event for is online. 10862 * 10863 * We use the perf_cpu_context::ctx::mutex to serialize against 10864 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 10865 */ 10866 struct perf_cpu_context *cpuctx = 10867 container_of(ctx, struct perf_cpu_context, ctx); 10868 if (!cpuctx->online) { 10869 err = -ENODEV; 10870 goto err_unlock; 10871 } 10872 } 10873 10874 if (!exclusive_event_installable(event, ctx)) { 10875 err = -EBUSY; 10876 goto err_unlock; 10877 } 10878 10879 perf_install_in_context(ctx, event, cpu); 10880 perf_unpin_context(ctx); 10881 mutex_unlock(&ctx->mutex); 10882 10883 return event; 10884 10885 err_unlock: 10886 mutex_unlock(&ctx->mutex); 10887 perf_unpin_context(ctx); 10888 put_ctx(ctx); 10889 err_free: 10890 free_event(event); 10891 err: 10892 return ERR_PTR(err); 10893 } 10894 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 10895 10896 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 10897 { 10898 struct perf_event_context *src_ctx; 10899 struct perf_event_context *dst_ctx; 10900 struct perf_event *event, *tmp; 10901 LIST_HEAD(events); 10902 10903 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx; 10904 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx; 10905 10906 /* 10907 * See perf_event_ctx_lock() for comments on the details 10908 * of swizzling perf_event::ctx. 10909 */ 10910 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); 10911 list_for_each_entry_safe(event, tmp, &src_ctx->event_list, 10912 event_entry) { 10913 perf_remove_from_context(event, 0); 10914 unaccount_event_cpu(event, src_cpu); 10915 put_ctx(src_ctx); 10916 list_add(&event->migrate_entry, &events); 10917 } 10918 10919 /* 10920 * Wait for the events to quiesce before re-instating them. 10921 */ 10922 synchronize_rcu(); 10923 10924 /* 10925 * Re-instate events in 2 passes. 10926 * 10927 * Skip over group leaders and only install siblings on this first 10928 * pass, siblings will not get enabled without a leader, however a 10929 * leader will enable its siblings, even if those are still on the old 10930 * context. 10931 */ 10932 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 10933 if (event->group_leader == event) 10934 continue; 10935 10936 list_del(&event->migrate_entry); 10937 if (event->state >= PERF_EVENT_STATE_OFF) 10938 event->state = PERF_EVENT_STATE_INACTIVE; 10939 account_event_cpu(event, dst_cpu); 10940 perf_install_in_context(dst_ctx, event, dst_cpu); 10941 get_ctx(dst_ctx); 10942 } 10943 10944 /* 10945 * Once all the siblings are setup properly, install the group leaders 10946 * to make it go. 10947 */ 10948 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 10949 list_del(&event->migrate_entry); 10950 if (event->state >= PERF_EVENT_STATE_OFF) 10951 event->state = PERF_EVENT_STATE_INACTIVE; 10952 account_event_cpu(event, dst_cpu); 10953 perf_install_in_context(dst_ctx, event, dst_cpu); 10954 get_ctx(dst_ctx); 10955 } 10956 mutex_unlock(&dst_ctx->mutex); 10957 mutex_unlock(&src_ctx->mutex); 10958 } 10959 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 10960 10961 static void sync_child_event(struct perf_event *child_event, 10962 struct task_struct *child) 10963 { 10964 struct perf_event *parent_event = child_event->parent; 10965 u64 child_val; 10966 10967 if (child_event->attr.inherit_stat) 10968 perf_event_read_event(child_event, child); 10969 10970 child_val = perf_event_count(child_event); 10971 10972 /* 10973 * Add back the child's count to the parent's count: 10974 */ 10975 atomic64_add(child_val, &parent_event->child_count); 10976 atomic64_add(child_event->total_time_enabled, 10977 &parent_event->child_total_time_enabled); 10978 atomic64_add(child_event->total_time_running, 10979 &parent_event->child_total_time_running); 10980 } 10981 10982 static void 10983 perf_event_exit_event(struct perf_event *child_event, 10984 struct perf_event_context *child_ctx, 10985 struct task_struct *child) 10986 { 10987 struct perf_event *parent_event = child_event->parent; 10988 10989 /* 10990 * Do not destroy the 'original' grouping; because of the context 10991 * switch optimization the original events could've ended up in a 10992 * random child task. 10993 * 10994 * If we were to destroy the original group, all group related 10995 * operations would cease to function properly after this random 10996 * child dies. 10997 * 10998 * Do destroy all inherited groups, we don't care about those 10999 * and being thorough is better. 11000 */ 11001 raw_spin_lock_irq(&child_ctx->lock); 11002 WARN_ON_ONCE(child_ctx->is_active); 11003 11004 if (parent_event) 11005 perf_group_detach(child_event); 11006 list_del_event(child_event, child_ctx); 11007 perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */ 11008 raw_spin_unlock_irq(&child_ctx->lock); 11009 11010 /* 11011 * Parent events are governed by their filedesc, retain them. 11012 */ 11013 if (!parent_event) { 11014 perf_event_wakeup(child_event); 11015 return; 11016 } 11017 /* 11018 * Child events can be cleaned up. 11019 */ 11020 11021 sync_child_event(child_event, child); 11022 11023 /* 11024 * Remove this event from the parent's list 11025 */ 11026 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 11027 mutex_lock(&parent_event->child_mutex); 11028 list_del_init(&child_event->child_list); 11029 mutex_unlock(&parent_event->child_mutex); 11030 11031 /* 11032 * Kick perf_poll() for is_event_hup(). 11033 */ 11034 perf_event_wakeup(parent_event); 11035 free_event(child_event); 11036 put_event(parent_event); 11037 } 11038 11039 static void perf_event_exit_task_context(struct task_struct *child, int ctxn) 11040 { 11041 struct perf_event_context *child_ctx, *clone_ctx = NULL; 11042 struct perf_event *child_event, *next; 11043 11044 WARN_ON_ONCE(child != current); 11045 11046 child_ctx = perf_pin_task_context(child, ctxn); 11047 if (!child_ctx) 11048 return; 11049 11050 /* 11051 * In order to reduce the amount of tricky in ctx tear-down, we hold 11052 * ctx::mutex over the entire thing. This serializes against almost 11053 * everything that wants to access the ctx. 11054 * 11055 * The exception is sys_perf_event_open() / 11056 * perf_event_create_kernel_count() which does find_get_context() 11057 * without ctx::mutex (it cannot because of the move_group double mutex 11058 * lock thing). See the comments in perf_install_in_context(). 11059 */ 11060 mutex_lock(&child_ctx->mutex); 11061 11062 /* 11063 * In a single ctx::lock section, de-schedule the events and detach the 11064 * context from the task such that we cannot ever get it scheduled back 11065 * in. 11066 */ 11067 raw_spin_lock_irq(&child_ctx->lock); 11068 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL); 11069 11070 /* 11071 * Now that the context is inactive, destroy the task <-> ctx relation 11072 * and mark the context dead. 11073 */ 11074 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL); 11075 put_ctx(child_ctx); /* cannot be last */ 11076 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE); 11077 put_task_struct(current); /* cannot be last */ 11078 11079 clone_ctx = unclone_ctx(child_ctx); 11080 raw_spin_unlock_irq(&child_ctx->lock); 11081 11082 if (clone_ctx) 11083 put_ctx(clone_ctx); 11084 11085 /* 11086 * Report the task dead after unscheduling the events so that we 11087 * won't get any samples after PERF_RECORD_EXIT. We can however still 11088 * get a few PERF_RECORD_READ events. 11089 */ 11090 perf_event_task(child, child_ctx, 0); 11091 11092 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) 11093 perf_event_exit_event(child_event, child_ctx, child); 11094 11095 mutex_unlock(&child_ctx->mutex); 11096 11097 put_ctx(child_ctx); 11098 } 11099 11100 /* 11101 * When a child task exits, feed back event values to parent events. 11102 * 11103 * Can be called with cred_guard_mutex held when called from 11104 * install_exec_creds(). 11105 */ 11106 void perf_event_exit_task(struct task_struct *child) 11107 { 11108 struct perf_event *event, *tmp; 11109 int ctxn; 11110 11111 mutex_lock(&child->perf_event_mutex); 11112 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 11113 owner_entry) { 11114 list_del_init(&event->owner_entry); 11115 11116 /* 11117 * Ensure the list deletion is visible before we clear 11118 * the owner, closes a race against perf_release() where 11119 * we need to serialize on the owner->perf_event_mutex. 11120 */ 11121 smp_store_release(&event->owner, NULL); 11122 } 11123 mutex_unlock(&child->perf_event_mutex); 11124 11125 for_each_task_context_nr(ctxn) 11126 perf_event_exit_task_context(child, ctxn); 11127 11128 /* 11129 * The perf_event_exit_task_context calls perf_event_task 11130 * with child's task_ctx, which generates EXIT events for 11131 * child contexts and sets child->perf_event_ctxp[] to NULL. 11132 * At this point we need to send EXIT events to cpu contexts. 11133 */ 11134 perf_event_task(child, NULL, 0); 11135 } 11136 11137 static void perf_free_event(struct perf_event *event, 11138 struct perf_event_context *ctx) 11139 { 11140 struct perf_event *parent = event->parent; 11141 11142 if (WARN_ON_ONCE(!parent)) 11143 return; 11144 11145 mutex_lock(&parent->child_mutex); 11146 list_del_init(&event->child_list); 11147 mutex_unlock(&parent->child_mutex); 11148 11149 put_event(parent); 11150 11151 raw_spin_lock_irq(&ctx->lock); 11152 perf_group_detach(event); 11153 list_del_event(event, ctx); 11154 raw_spin_unlock_irq(&ctx->lock); 11155 free_event(event); 11156 } 11157 11158 /* 11159 * Free an unexposed, unused context as created by inheritance by 11160 * perf_event_init_task below, used by fork() in case of fail. 11161 * 11162 * Not all locks are strictly required, but take them anyway to be nice and 11163 * help out with the lockdep assertions. 11164 */ 11165 void perf_event_free_task(struct task_struct *task) 11166 { 11167 struct perf_event_context *ctx; 11168 struct perf_event *event, *tmp; 11169 int ctxn; 11170 11171 for_each_task_context_nr(ctxn) { 11172 ctx = task->perf_event_ctxp[ctxn]; 11173 if (!ctx) 11174 continue; 11175 11176 mutex_lock(&ctx->mutex); 11177 raw_spin_lock_irq(&ctx->lock); 11178 /* 11179 * Destroy the task <-> ctx relation and mark the context dead. 11180 * 11181 * This is important because even though the task hasn't been 11182 * exposed yet the context has been (through child_list). 11183 */ 11184 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL); 11185 WRITE_ONCE(ctx->task, TASK_TOMBSTONE); 11186 put_task_struct(task); /* cannot be last */ 11187 raw_spin_unlock_irq(&ctx->lock); 11188 11189 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) 11190 perf_free_event(event, ctx); 11191 11192 mutex_unlock(&ctx->mutex); 11193 put_ctx(ctx); 11194 } 11195 } 11196 11197 void perf_event_delayed_put(struct task_struct *task) 11198 { 11199 int ctxn; 11200 11201 for_each_task_context_nr(ctxn) 11202 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); 11203 } 11204 11205 struct file *perf_event_get(unsigned int fd) 11206 { 11207 struct file *file; 11208 11209 file = fget_raw(fd); 11210 if (!file) 11211 return ERR_PTR(-EBADF); 11212 11213 if (file->f_op != &perf_fops) { 11214 fput(file); 11215 return ERR_PTR(-EBADF); 11216 } 11217 11218 return file; 11219 } 11220 11221 const struct perf_event *perf_get_event(struct file *file) 11222 { 11223 if (file->f_op != &perf_fops) 11224 return ERR_PTR(-EINVAL); 11225 11226 return file->private_data; 11227 } 11228 11229 const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 11230 { 11231 if (!event) 11232 return ERR_PTR(-EINVAL); 11233 11234 return &event->attr; 11235 } 11236 11237 /* 11238 * Inherit an event from parent task to child task. 11239 * 11240 * Returns: 11241 * - valid pointer on success 11242 * - NULL for orphaned events 11243 * - IS_ERR() on error 11244 */ 11245 static struct perf_event * 11246 inherit_event(struct perf_event *parent_event, 11247 struct task_struct *parent, 11248 struct perf_event_context *parent_ctx, 11249 struct task_struct *child, 11250 struct perf_event *group_leader, 11251 struct perf_event_context *child_ctx) 11252 { 11253 enum perf_event_state parent_state = parent_event->state; 11254 struct perf_event *child_event; 11255 unsigned long flags; 11256 11257 /* 11258 * Instead of creating recursive hierarchies of events, 11259 * we link inherited events back to the original parent, 11260 * which has a filp for sure, which we use as the reference 11261 * count: 11262 */ 11263 if (parent_event->parent) 11264 parent_event = parent_event->parent; 11265 11266 child_event = perf_event_alloc(&parent_event->attr, 11267 parent_event->cpu, 11268 child, 11269 group_leader, parent_event, 11270 NULL, NULL, -1); 11271 if (IS_ERR(child_event)) 11272 return child_event; 11273 11274 11275 if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) && 11276 !child_ctx->task_ctx_data) { 11277 struct pmu *pmu = child_event->pmu; 11278 11279 child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size, 11280 GFP_KERNEL); 11281 if (!child_ctx->task_ctx_data) { 11282 free_event(child_event); 11283 return NULL; 11284 } 11285 } 11286 11287 /* 11288 * is_orphaned_event() and list_add_tail(&parent_event->child_list) 11289 * must be under the same lock in order to serialize against 11290 * perf_event_release_kernel(), such that either we must observe 11291 * is_orphaned_event() or they will observe us on the child_list. 11292 */ 11293 mutex_lock(&parent_event->child_mutex); 11294 if (is_orphaned_event(parent_event) || 11295 !atomic_long_inc_not_zero(&parent_event->refcount)) { 11296 mutex_unlock(&parent_event->child_mutex); 11297 /* task_ctx_data is freed with child_ctx */ 11298 free_event(child_event); 11299 return NULL; 11300 } 11301 11302 get_ctx(child_ctx); 11303 11304 /* 11305 * Make the child state follow the state of the parent event, 11306 * not its attr.disabled bit. We hold the parent's mutex, 11307 * so we won't race with perf_event_{en, dis}able_family. 11308 */ 11309 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 11310 child_event->state = PERF_EVENT_STATE_INACTIVE; 11311 else 11312 child_event->state = PERF_EVENT_STATE_OFF; 11313 11314 if (parent_event->attr.freq) { 11315 u64 sample_period = parent_event->hw.sample_period; 11316 struct hw_perf_event *hwc = &child_event->hw; 11317 11318 hwc->sample_period = sample_period; 11319 hwc->last_period = sample_period; 11320 11321 local64_set(&hwc->period_left, sample_period); 11322 } 11323 11324 child_event->ctx = child_ctx; 11325 child_event->overflow_handler = parent_event->overflow_handler; 11326 child_event->overflow_handler_context 11327 = parent_event->overflow_handler_context; 11328 11329 /* 11330 * Precalculate sample_data sizes 11331 */ 11332 perf_event__header_size(child_event); 11333 perf_event__id_header_size(child_event); 11334 11335 /* 11336 * Link it up in the child's context: 11337 */ 11338 raw_spin_lock_irqsave(&child_ctx->lock, flags); 11339 add_event_to_ctx(child_event, child_ctx); 11340 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 11341 11342 /* 11343 * Link this into the parent event's child list 11344 */ 11345 list_add_tail(&child_event->child_list, &parent_event->child_list); 11346 mutex_unlock(&parent_event->child_mutex); 11347 11348 return child_event; 11349 } 11350 11351 /* 11352 * Inherits an event group. 11353 * 11354 * This will quietly suppress orphaned events; !inherit_event() is not an error. 11355 * This matches with perf_event_release_kernel() removing all child events. 11356 * 11357 * Returns: 11358 * - 0 on success 11359 * - <0 on error 11360 */ 11361 static int inherit_group(struct perf_event *parent_event, 11362 struct task_struct *parent, 11363 struct perf_event_context *parent_ctx, 11364 struct task_struct *child, 11365 struct perf_event_context *child_ctx) 11366 { 11367 struct perf_event *leader; 11368 struct perf_event *sub; 11369 struct perf_event *child_ctr; 11370 11371 leader = inherit_event(parent_event, parent, parent_ctx, 11372 child, NULL, child_ctx); 11373 if (IS_ERR(leader)) 11374 return PTR_ERR(leader); 11375 /* 11376 * @leader can be NULL here because of is_orphaned_event(). In this 11377 * case inherit_event() will create individual events, similar to what 11378 * perf_group_detach() would do anyway. 11379 */ 11380 for_each_sibling_event(sub, parent_event) { 11381 child_ctr = inherit_event(sub, parent, parent_ctx, 11382 child, leader, child_ctx); 11383 if (IS_ERR(child_ctr)) 11384 return PTR_ERR(child_ctr); 11385 } 11386 return 0; 11387 } 11388 11389 /* 11390 * Creates the child task context and tries to inherit the event-group. 11391 * 11392 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave 11393 * inherited_all set when we 'fail' to inherit an orphaned event; this is 11394 * consistent with perf_event_release_kernel() removing all child events. 11395 * 11396 * Returns: 11397 * - 0 on success 11398 * - <0 on error 11399 */ 11400 static int 11401 inherit_task_group(struct perf_event *event, struct task_struct *parent, 11402 struct perf_event_context *parent_ctx, 11403 struct task_struct *child, int ctxn, 11404 int *inherited_all) 11405 { 11406 int ret; 11407 struct perf_event_context *child_ctx; 11408 11409 if (!event->attr.inherit) { 11410 *inherited_all = 0; 11411 return 0; 11412 } 11413 11414 child_ctx = child->perf_event_ctxp[ctxn]; 11415 if (!child_ctx) { 11416 /* 11417 * This is executed from the parent task context, so 11418 * inherit events that have been marked for cloning. 11419 * First allocate and initialize a context for the 11420 * child. 11421 */ 11422 child_ctx = alloc_perf_context(parent_ctx->pmu, child); 11423 if (!child_ctx) 11424 return -ENOMEM; 11425 11426 child->perf_event_ctxp[ctxn] = child_ctx; 11427 } 11428 11429 ret = inherit_group(event, parent, parent_ctx, 11430 child, child_ctx); 11431 11432 if (ret) 11433 *inherited_all = 0; 11434 11435 return ret; 11436 } 11437 11438 /* 11439 * Initialize the perf_event context in task_struct 11440 */ 11441 static int perf_event_init_context(struct task_struct *child, int ctxn) 11442 { 11443 struct perf_event_context *child_ctx, *parent_ctx; 11444 struct perf_event_context *cloned_ctx; 11445 struct perf_event *event; 11446 struct task_struct *parent = current; 11447 int inherited_all = 1; 11448 unsigned long flags; 11449 int ret = 0; 11450 11451 if (likely(!parent->perf_event_ctxp[ctxn])) 11452 return 0; 11453 11454 /* 11455 * If the parent's context is a clone, pin it so it won't get 11456 * swapped under us. 11457 */ 11458 parent_ctx = perf_pin_task_context(parent, ctxn); 11459 if (!parent_ctx) 11460 return 0; 11461 11462 /* 11463 * No need to check if parent_ctx != NULL here; since we saw 11464 * it non-NULL earlier, the only reason for it to become NULL 11465 * is if we exit, and since we're currently in the middle of 11466 * a fork we can't be exiting at the same time. 11467 */ 11468 11469 /* 11470 * Lock the parent list. No need to lock the child - not PID 11471 * hashed yet and not running, so nobody can access it. 11472 */ 11473 mutex_lock(&parent_ctx->mutex); 11474 11475 /* 11476 * We dont have to disable NMIs - we are only looking at 11477 * the list, not manipulating it: 11478 */ 11479 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) { 11480 ret = inherit_task_group(event, parent, parent_ctx, 11481 child, ctxn, &inherited_all); 11482 if (ret) 11483 goto out_unlock; 11484 } 11485 11486 /* 11487 * We can't hold ctx->lock when iterating the ->flexible_group list due 11488 * to allocations, but we need to prevent rotation because 11489 * rotate_ctx() will change the list from interrupt context. 11490 */ 11491 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 11492 parent_ctx->rotate_disable = 1; 11493 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 11494 11495 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) { 11496 ret = inherit_task_group(event, parent, parent_ctx, 11497 child, ctxn, &inherited_all); 11498 if (ret) 11499 goto out_unlock; 11500 } 11501 11502 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 11503 parent_ctx->rotate_disable = 0; 11504 11505 child_ctx = child->perf_event_ctxp[ctxn]; 11506 11507 if (child_ctx && inherited_all) { 11508 /* 11509 * Mark the child context as a clone of the parent 11510 * context, or of whatever the parent is a clone of. 11511 * 11512 * Note that if the parent is a clone, the holding of 11513 * parent_ctx->lock avoids it from being uncloned. 11514 */ 11515 cloned_ctx = parent_ctx->parent_ctx; 11516 if (cloned_ctx) { 11517 child_ctx->parent_ctx = cloned_ctx; 11518 child_ctx->parent_gen = parent_ctx->parent_gen; 11519 } else { 11520 child_ctx->parent_ctx = parent_ctx; 11521 child_ctx->parent_gen = parent_ctx->generation; 11522 } 11523 get_ctx(child_ctx->parent_ctx); 11524 } 11525 11526 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 11527 out_unlock: 11528 mutex_unlock(&parent_ctx->mutex); 11529 11530 perf_unpin_context(parent_ctx); 11531 put_ctx(parent_ctx); 11532 11533 return ret; 11534 } 11535 11536 /* 11537 * Initialize the perf_event context in task_struct 11538 */ 11539 int perf_event_init_task(struct task_struct *child) 11540 { 11541 int ctxn, ret; 11542 11543 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); 11544 mutex_init(&child->perf_event_mutex); 11545 INIT_LIST_HEAD(&child->perf_event_list); 11546 11547 for_each_task_context_nr(ctxn) { 11548 ret = perf_event_init_context(child, ctxn); 11549 if (ret) { 11550 perf_event_free_task(child); 11551 return ret; 11552 } 11553 } 11554 11555 return 0; 11556 } 11557 11558 static void __init perf_event_init_all_cpus(void) 11559 { 11560 struct swevent_htable *swhash; 11561 int cpu; 11562 11563 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL); 11564 11565 for_each_possible_cpu(cpu) { 11566 swhash = &per_cpu(swevent_htable, cpu); 11567 mutex_init(&swhash->hlist_mutex); 11568 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu)); 11569 11570 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu)); 11571 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu)); 11572 11573 #ifdef CONFIG_CGROUP_PERF 11574 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu)); 11575 #endif 11576 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu)); 11577 } 11578 } 11579 11580 void perf_swevent_init_cpu(unsigned int cpu) 11581 { 11582 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 11583 11584 mutex_lock(&swhash->hlist_mutex); 11585 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) { 11586 struct swevent_hlist *hlist; 11587 11588 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 11589 WARN_ON(!hlist); 11590 rcu_assign_pointer(swhash->swevent_hlist, hlist); 11591 } 11592 mutex_unlock(&swhash->hlist_mutex); 11593 } 11594 11595 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE 11596 static void __perf_event_exit_context(void *__info) 11597 { 11598 struct perf_event_context *ctx = __info; 11599 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 11600 struct perf_event *event; 11601 11602 raw_spin_lock(&ctx->lock); 11603 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 11604 list_for_each_entry(event, &ctx->event_list, event_entry) 11605 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP); 11606 raw_spin_unlock(&ctx->lock); 11607 } 11608 11609 static void perf_event_exit_cpu_context(int cpu) 11610 { 11611 struct perf_cpu_context *cpuctx; 11612 struct perf_event_context *ctx; 11613 struct pmu *pmu; 11614 11615 mutex_lock(&pmus_lock); 11616 list_for_each_entry(pmu, &pmus, entry) { 11617 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 11618 ctx = &cpuctx->ctx; 11619 11620 mutex_lock(&ctx->mutex); 11621 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 11622 cpuctx->online = 0; 11623 mutex_unlock(&ctx->mutex); 11624 } 11625 cpumask_clear_cpu(cpu, perf_online_mask); 11626 mutex_unlock(&pmus_lock); 11627 } 11628 #else 11629 11630 static void perf_event_exit_cpu_context(int cpu) { } 11631 11632 #endif 11633 11634 int perf_event_init_cpu(unsigned int cpu) 11635 { 11636 struct perf_cpu_context *cpuctx; 11637 struct perf_event_context *ctx; 11638 struct pmu *pmu; 11639 11640 perf_swevent_init_cpu(cpu); 11641 11642 mutex_lock(&pmus_lock); 11643 cpumask_set_cpu(cpu, perf_online_mask); 11644 list_for_each_entry(pmu, &pmus, entry) { 11645 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 11646 ctx = &cpuctx->ctx; 11647 11648 mutex_lock(&ctx->mutex); 11649 cpuctx->online = 1; 11650 mutex_unlock(&ctx->mutex); 11651 } 11652 mutex_unlock(&pmus_lock); 11653 11654 return 0; 11655 } 11656 11657 int perf_event_exit_cpu(unsigned int cpu) 11658 { 11659 perf_event_exit_cpu_context(cpu); 11660 return 0; 11661 } 11662 11663 static int 11664 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 11665 { 11666 int cpu; 11667 11668 for_each_online_cpu(cpu) 11669 perf_event_exit_cpu(cpu); 11670 11671 return NOTIFY_OK; 11672 } 11673 11674 /* 11675 * Run the perf reboot notifier at the very last possible moment so that 11676 * the generic watchdog code runs as long as possible. 11677 */ 11678 static struct notifier_block perf_reboot_notifier = { 11679 .notifier_call = perf_reboot, 11680 .priority = INT_MIN, 11681 }; 11682 11683 void __init perf_event_init(void) 11684 { 11685 int ret; 11686 11687 idr_init(&pmu_idr); 11688 11689 perf_event_init_all_cpus(); 11690 init_srcu_struct(&pmus_srcu); 11691 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 11692 perf_pmu_register(&perf_cpu_clock, NULL, -1); 11693 perf_pmu_register(&perf_task_clock, NULL, -1); 11694 perf_tp_register(); 11695 perf_event_init_cpu(smp_processor_id()); 11696 register_reboot_notifier(&perf_reboot_notifier); 11697 11698 ret = init_hw_breakpoint(); 11699 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 11700 11701 /* 11702 * Build time assertion that we keep the data_head at the intended 11703 * location. IOW, validation we got the __reserved[] size right. 11704 */ 11705 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 11706 != 1024); 11707 } 11708 11709 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 11710 char *page) 11711 { 11712 struct perf_pmu_events_attr *pmu_attr = 11713 container_of(attr, struct perf_pmu_events_attr, attr); 11714 11715 if (pmu_attr->event_str) 11716 return sprintf(page, "%s\n", pmu_attr->event_str); 11717 11718 return 0; 11719 } 11720 EXPORT_SYMBOL_GPL(perf_event_sysfs_show); 11721 11722 static int __init perf_event_sysfs_init(void) 11723 { 11724 struct pmu *pmu; 11725 int ret; 11726 11727 mutex_lock(&pmus_lock); 11728 11729 ret = bus_register(&pmu_bus); 11730 if (ret) 11731 goto unlock; 11732 11733 list_for_each_entry(pmu, &pmus, entry) { 11734 if (!pmu->name || pmu->type < 0) 11735 continue; 11736 11737 ret = pmu_dev_alloc(pmu); 11738 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 11739 } 11740 pmu_bus_running = 1; 11741 ret = 0; 11742 11743 unlock: 11744 mutex_unlock(&pmus_lock); 11745 11746 return ret; 11747 } 11748 device_initcall(perf_event_sysfs_init); 11749 11750 #ifdef CONFIG_CGROUP_PERF 11751 static struct cgroup_subsys_state * 11752 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 11753 { 11754 struct perf_cgroup *jc; 11755 11756 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 11757 if (!jc) 11758 return ERR_PTR(-ENOMEM); 11759 11760 jc->info = alloc_percpu(struct perf_cgroup_info); 11761 if (!jc->info) { 11762 kfree(jc); 11763 return ERR_PTR(-ENOMEM); 11764 } 11765 11766 return &jc->css; 11767 } 11768 11769 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 11770 { 11771 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 11772 11773 free_percpu(jc->info); 11774 kfree(jc); 11775 } 11776 11777 static int __perf_cgroup_move(void *info) 11778 { 11779 struct task_struct *task = info; 11780 rcu_read_lock(); 11781 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN); 11782 rcu_read_unlock(); 11783 return 0; 11784 } 11785 11786 static void perf_cgroup_attach(struct cgroup_taskset *tset) 11787 { 11788 struct task_struct *task; 11789 struct cgroup_subsys_state *css; 11790 11791 cgroup_taskset_for_each(task, css, tset) 11792 task_function_call(task, __perf_cgroup_move, task); 11793 } 11794 11795 struct cgroup_subsys perf_event_cgrp_subsys = { 11796 .css_alloc = perf_cgroup_css_alloc, 11797 .css_free = perf_cgroup_css_free, 11798 .attach = perf_cgroup_attach, 11799 /* 11800 * Implicitly enable on dfl hierarchy so that perf events can 11801 * always be filtered by cgroup2 path as long as perf_event 11802 * controller is not mounted on a legacy hierarchy. 11803 */ 11804 .implicit_on_dfl = true, 11805 .threaded = true, 11806 }; 11807 #endif /* CONFIG_CGROUP_PERF */ 11808