xref: /openbmc/linux/kernel/events/core.c (revision 93df8a1e)
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11 
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 
48 #include "internal.h"
49 
50 #include <asm/irq_regs.h>
51 
52 static struct workqueue_struct *perf_wq;
53 
54 typedef int (*remote_function_f)(void *);
55 
56 struct remote_function_call {
57 	struct task_struct	*p;
58 	remote_function_f	func;
59 	void			*info;
60 	int			ret;
61 };
62 
63 static void remote_function(void *data)
64 {
65 	struct remote_function_call *tfc = data;
66 	struct task_struct *p = tfc->p;
67 
68 	if (p) {
69 		tfc->ret = -EAGAIN;
70 		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
71 			return;
72 	}
73 
74 	tfc->ret = tfc->func(tfc->info);
75 }
76 
77 /**
78  * task_function_call - call a function on the cpu on which a task runs
79  * @p:		the task to evaluate
80  * @func:	the function to be called
81  * @info:	the function call argument
82  *
83  * Calls the function @func when the task is currently running. This might
84  * be on the current CPU, which just calls the function directly
85  *
86  * returns: @func return value, or
87  *	    -ESRCH  - when the process isn't running
88  *	    -EAGAIN - when the process moved away
89  */
90 static int
91 task_function_call(struct task_struct *p, remote_function_f func, void *info)
92 {
93 	struct remote_function_call data = {
94 		.p	= p,
95 		.func	= func,
96 		.info	= info,
97 		.ret	= -ESRCH, /* No such (running) process */
98 	};
99 
100 	if (task_curr(p))
101 		smp_call_function_single(task_cpu(p), remote_function, &data, 1);
102 
103 	return data.ret;
104 }
105 
106 /**
107  * cpu_function_call - call a function on the cpu
108  * @func:	the function to be called
109  * @info:	the function call argument
110  *
111  * Calls the function @func on the remote cpu.
112  *
113  * returns: @func return value or -ENXIO when the cpu is offline
114  */
115 static int cpu_function_call(int cpu, remote_function_f func, void *info)
116 {
117 	struct remote_function_call data = {
118 		.p	= NULL,
119 		.func	= func,
120 		.info	= info,
121 		.ret	= -ENXIO, /* No such CPU */
122 	};
123 
124 	smp_call_function_single(cpu, remote_function, &data, 1);
125 
126 	return data.ret;
127 }
128 
129 #define EVENT_OWNER_KERNEL ((void *) -1)
130 
131 static bool is_kernel_event(struct perf_event *event)
132 {
133 	return event->owner == EVENT_OWNER_KERNEL;
134 }
135 
136 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
137 		       PERF_FLAG_FD_OUTPUT  |\
138 		       PERF_FLAG_PID_CGROUP |\
139 		       PERF_FLAG_FD_CLOEXEC)
140 
141 /*
142  * branch priv levels that need permission checks
143  */
144 #define PERF_SAMPLE_BRANCH_PERM_PLM \
145 	(PERF_SAMPLE_BRANCH_KERNEL |\
146 	 PERF_SAMPLE_BRANCH_HV)
147 
148 enum event_type_t {
149 	EVENT_FLEXIBLE = 0x1,
150 	EVENT_PINNED = 0x2,
151 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
152 };
153 
154 /*
155  * perf_sched_events : >0 events exist
156  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
157  */
158 struct static_key_deferred perf_sched_events __read_mostly;
159 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
160 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
161 
162 static atomic_t nr_mmap_events __read_mostly;
163 static atomic_t nr_comm_events __read_mostly;
164 static atomic_t nr_task_events __read_mostly;
165 static atomic_t nr_freq_events __read_mostly;
166 static atomic_t nr_switch_events __read_mostly;
167 
168 static LIST_HEAD(pmus);
169 static DEFINE_MUTEX(pmus_lock);
170 static struct srcu_struct pmus_srcu;
171 
172 /*
173  * perf event paranoia level:
174  *  -1 - not paranoid at all
175  *   0 - disallow raw tracepoint access for unpriv
176  *   1 - disallow cpu events for unpriv
177  *   2 - disallow kernel profiling for unpriv
178  */
179 int sysctl_perf_event_paranoid __read_mostly = 1;
180 
181 /* Minimum for 512 kiB + 1 user control page */
182 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
183 
184 /*
185  * max perf event sample rate
186  */
187 #define DEFAULT_MAX_SAMPLE_RATE		100000
188 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
189 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
190 
191 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
192 
193 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
194 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
195 
196 static int perf_sample_allowed_ns __read_mostly =
197 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
198 
199 void update_perf_cpu_limits(void)
200 {
201 	u64 tmp = perf_sample_period_ns;
202 
203 	tmp *= sysctl_perf_cpu_time_max_percent;
204 	do_div(tmp, 100);
205 	ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
206 }
207 
208 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
209 
210 int perf_proc_update_handler(struct ctl_table *table, int write,
211 		void __user *buffer, size_t *lenp,
212 		loff_t *ppos)
213 {
214 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
215 
216 	if (ret || !write)
217 		return ret;
218 
219 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
220 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
221 	update_perf_cpu_limits();
222 
223 	return 0;
224 }
225 
226 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
227 
228 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
229 				void __user *buffer, size_t *lenp,
230 				loff_t *ppos)
231 {
232 	int ret = proc_dointvec(table, write, buffer, lenp, ppos);
233 
234 	if (ret || !write)
235 		return ret;
236 
237 	update_perf_cpu_limits();
238 
239 	return 0;
240 }
241 
242 /*
243  * perf samples are done in some very critical code paths (NMIs).
244  * If they take too much CPU time, the system can lock up and not
245  * get any real work done.  This will drop the sample rate when
246  * we detect that events are taking too long.
247  */
248 #define NR_ACCUMULATED_SAMPLES 128
249 static DEFINE_PER_CPU(u64, running_sample_length);
250 
251 static void perf_duration_warn(struct irq_work *w)
252 {
253 	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
254 	u64 avg_local_sample_len;
255 	u64 local_samples_len;
256 
257 	local_samples_len = __this_cpu_read(running_sample_length);
258 	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
259 
260 	printk_ratelimited(KERN_WARNING
261 			"perf interrupt took too long (%lld > %lld), lowering "
262 			"kernel.perf_event_max_sample_rate to %d\n",
263 			avg_local_sample_len, allowed_ns >> 1,
264 			sysctl_perf_event_sample_rate);
265 }
266 
267 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
268 
269 void perf_sample_event_took(u64 sample_len_ns)
270 {
271 	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
272 	u64 avg_local_sample_len;
273 	u64 local_samples_len;
274 
275 	if (allowed_ns == 0)
276 		return;
277 
278 	/* decay the counter by 1 average sample */
279 	local_samples_len = __this_cpu_read(running_sample_length);
280 	local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
281 	local_samples_len += sample_len_ns;
282 	__this_cpu_write(running_sample_length, local_samples_len);
283 
284 	/*
285 	 * note: this will be biased artifically low until we have
286 	 * seen NR_ACCUMULATED_SAMPLES.  Doing it this way keeps us
287 	 * from having to maintain a count.
288 	 */
289 	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
290 
291 	if (avg_local_sample_len <= allowed_ns)
292 		return;
293 
294 	if (max_samples_per_tick <= 1)
295 		return;
296 
297 	max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
298 	sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
299 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
300 
301 	update_perf_cpu_limits();
302 
303 	if (!irq_work_queue(&perf_duration_work)) {
304 		early_printk("perf interrupt took too long (%lld > %lld), lowering "
305 			     "kernel.perf_event_max_sample_rate to %d\n",
306 			     avg_local_sample_len, allowed_ns >> 1,
307 			     sysctl_perf_event_sample_rate);
308 	}
309 }
310 
311 static atomic64_t perf_event_id;
312 
313 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
314 			      enum event_type_t event_type);
315 
316 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
317 			     enum event_type_t event_type,
318 			     struct task_struct *task);
319 
320 static void update_context_time(struct perf_event_context *ctx);
321 static u64 perf_event_time(struct perf_event *event);
322 
323 void __weak perf_event_print_debug(void)	{ }
324 
325 extern __weak const char *perf_pmu_name(void)
326 {
327 	return "pmu";
328 }
329 
330 static inline u64 perf_clock(void)
331 {
332 	return local_clock();
333 }
334 
335 static inline u64 perf_event_clock(struct perf_event *event)
336 {
337 	return event->clock();
338 }
339 
340 static inline struct perf_cpu_context *
341 __get_cpu_context(struct perf_event_context *ctx)
342 {
343 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
344 }
345 
346 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
347 			  struct perf_event_context *ctx)
348 {
349 	raw_spin_lock(&cpuctx->ctx.lock);
350 	if (ctx)
351 		raw_spin_lock(&ctx->lock);
352 }
353 
354 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
355 			    struct perf_event_context *ctx)
356 {
357 	if (ctx)
358 		raw_spin_unlock(&ctx->lock);
359 	raw_spin_unlock(&cpuctx->ctx.lock);
360 }
361 
362 #ifdef CONFIG_CGROUP_PERF
363 
364 static inline bool
365 perf_cgroup_match(struct perf_event *event)
366 {
367 	struct perf_event_context *ctx = event->ctx;
368 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
369 
370 	/* @event doesn't care about cgroup */
371 	if (!event->cgrp)
372 		return true;
373 
374 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
375 	if (!cpuctx->cgrp)
376 		return false;
377 
378 	/*
379 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
380 	 * also enabled for all its descendant cgroups.  If @cpuctx's
381 	 * cgroup is a descendant of @event's (the test covers identity
382 	 * case), it's a match.
383 	 */
384 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
385 				    event->cgrp->css.cgroup);
386 }
387 
388 static inline void perf_detach_cgroup(struct perf_event *event)
389 {
390 	css_put(&event->cgrp->css);
391 	event->cgrp = NULL;
392 }
393 
394 static inline int is_cgroup_event(struct perf_event *event)
395 {
396 	return event->cgrp != NULL;
397 }
398 
399 static inline u64 perf_cgroup_event_time(struct perf_event *event)
400 {
401 	struct perf_cgroup_info *t;
402 
403 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
404 	return t->time;
405 }
406 
407 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
408 {
409 	struct perf_cgroup_info *info;
410 	u64 now;
411 
412 	now = perf_clock();
413 
414 	info = this_cpu_ptr(cgrp->info);
415 
416 	info->time += now - info->timestamp;
417 	info->timestamp = now;
418 }
419 
420 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
421 {
422 	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
423 	if (cgrp_out)
424 		__update_cgrp_time(cgrp_out);
425 }
426 
427 static inline void update_cgrp_time_from_event(struct perf_event *event)
428 {
429 	struct perf_cgroup *cgrp;
430 
431 	/*
432 	 * ensure we access cgroup data only when needed and
433 	 * when we know the cgroup is pinned (css_get)
434 	 */
435 	if (!is_cgroup_event(event))
436 		return;
437 
438 	cgrp = perf_cgroup_from_task(current);
439 	/*
440 	 * Do not update time when cgroup is not active
441 	 */
442 	if (cgrp == event->cgrp)
443 		__update_cgrp_time(event->cgrp);
444 }
445 
446 static inline void
447 perf_cgroup_set_timestamp(struct task_struct *task,
448 			  struct perf_event_context *ctx)
449 {
450 	struct perf_cgroup *cgrp;
451 	struct perf_cgroup_info *info;
452 
453 	/*
454 	 * ctx->lock held by caller
455 	 * ensure we do not access cgroup data
456 	 * unless we have the cgroup pinned (css_get)
457 	 */
458 	if (!task || !ctx->nr_cgroups)
459 		return;
460 
461 	cgrp = perf_cgroup_from_task(task);
462 	info = this_cpu_ptr(cgrp->info);
463 	info->timestamp = ctx->timestamp;
464 }
465 
466 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
467 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
468 
469 /*
470  * reschedule events based on the cgroup constraint of task.
471  *
472  * mode SWOUT : schedule out everything
473  * mode SWIN : schedule in based on cgroup for next
474  */
475 void perf_cgroup_switch(struct task_struct *task, int mode)
476 {
477 	struct perf_cpu_context *cpuctx;
478 	struct pmu *pmu;
479 	unsigned long flags;
480 
481 	/*
482 	 * disable interrupts to avoid geting nr_cgroup
483 	 * changes via __perf_event_disable(). Also
484 	 * avoids preemption.
485 	 */
486 	local_irq_save(flags);
487 
488 	/*
489 	 * we reschedule only in the presence of cgroup
490 	 * constrained events.
491 	 */
492 	rcu_read_lock();
493 
494 	list_for_each_entry_rcu(pmu, &pmus, entry) {
495 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
496 		if (cpuctx->unique_pmu != pmu)
497 			continue; /* ensure we process each cpuctx once */
498 
499 		/*
500 		 * perf_cgroup_events says at least one
501 		 * context on this CPU has cgroup events.
502 		 *
503 		 * ctx->nr_cgroups reports the number of cgroup
504 		 * events for a context.
505 		 */
506 		if (cpuctx->ctx.nr_cgroups > 0) {
507 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
508 			perf_pmu_disable(cpuctx->ctx.pmu);
509 
510 			if (mode & PERF_CGROUP_SWOUT) {
511 				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
512 				/*
513 				 * must not be done before ctxswout due
514 				 * to event_filter_match() in event_sched_out()
515 				 */
516 				cpuctx->cgrp = NULL;
517 			}
518 
519 			if (mode & PERF_CGROUP_SWIN) {
520 				WARN_ON_ONCE(cpuctx->cgrp);
521 				/*
522 				 * set cgrp before ctxsw in to allow
523 				 * event_filter_match() to not have to pass
524 				 * task around
525 				 */
526 				cpuctx->cgrp = perf_cgroup_from_task(task);
527 				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
528 			}
529 			perf_pmu_enable(cpuctx->ctx.pmu);
530 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
531 		}
532 	}
533 
534 	rcu_read_unlock();
535 
536 	local_irq_restore(flags);
537 }
538 
539 static inline void perf_cgroup_sched_out(struct task_struct *task,
540 					 struct task_struct *next)
541 {
542 	struct perf_cgroup *cgrp1;
543 	struct perf_cgroup *cgrp2 = NULL;
544 
545 	/*
546 	 * we come here when we know perf_cgroup_events > 0
547 	 */
548 	cgrp1 = perf_cgroup_from_task(task);
549 
550 	/*
551 	 * next is NULL when called from perf_event_enable_on_exec()
552 	 * that will systematically cause a cgroup_switch()
553 	 */
554 	if (next)
555 		cgrp2 = perf_cgroup_from_task(next);
556 
557 	/*
558 	 * only schedule out current cgroup events if we know
559 	 * that we are switching to a different cgroup. Otherwise,
560 	 * do no touch the cgroup events.
561 	 */
562 	if (cgrp1 != cgrp2)
563 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
564 }
565 
566 static inline void perf_cgroup_sched_in(struct task_struct *prev,
567 					struct task_struct *task)
568 {
569 	struct perf_cgroup *cgrp1;
570 	struct perf_cgroup *cgrp2 = NULL;
571 
572 	/*
573 	 * we come here when we know perf_cgroup_events > 0
574 	 */
575 	cgrp1 = perf_cgroup_from_task(task);
576 
577 	/* prev can never be NULL */
578 	cgrp2 = perf_cgroup_from_task(prev);
579 
580 	/*
581 	 * only need to schedule in cgroup events if we are changing
582 	 * cgroup during ctxsw. Cgroup events were not scheduled
583 	 * out of ctxsw out if that was not the case.
584 	 */
585 	if (cgrp1 != cgrp2)
586 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
587 }
588 
589 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
590 				      struct perf_event_attr *attr,
591 				      struct perf_event *group_leader)
592 {
593 	struct perf_cgroup *cgrp;
594 	struct cgroup_subsys_state *css;
595 	struct fd f = fdget(fd);
596 	int ret = 0;
597 
598 	if (!f.file)
599 		return -EBADF;
600 
601 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
602 					 &perf_event_cgrp_subsys);
603 	if (IS_ERR(css)) {
604 		ret = PTR_ERR(css);
605 		goto out;
606 	}
607 
608 	cgrp = container_of(css, struct perf_cgroup, css);
609 	event->cgrp = cgrp;
610 
611 	/*
612 	 * all events in a group must monitor
613 	 * the same cgroup because a task belongs
614 	 * to only one perf cgroup at a time
615 	 */
616 	if (group_leader && group_leader->cgrp != cgrp) {
617 		perf_detach_cgroup(event);
618 		ret = -EINVAL;
619 	}
620 out:
621 	fdput(f);
622 	return ret;
623 }
624 
625 static inline void
626 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
627 {
628 	struct perf_cgroup_info *t;
629 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
630 	event->shadow_ctx_time = now - t->timestamp;
631 }
632 
633 static inline void
634 perf_cgroup_defer_enabled(struct perf_event *event)
635 {
636 	/*
637 	 * when the current task's perf cgroup does not match
638 	 * the event's, we need to remember to call the
639 	 * perf_mark_enable() function the first time a task with
640 	 * a matching perf cgroup is scheduled in.
641 	 */
642 	if (is_cgroup_event(event) && !perf_cgroup_match(event))
643 		event->cgrp_defer_enabled = 1;
644 }
645 
646 static inline void
647 perf_cgroup_mark_enabled(struct perf_event *event,
648 			 struct perf_event_context *ctx)
649 {
650 	struct perf_event *sub;
651 	u64 tstamp = perf_event_time(event);
652 
653 	if (!event->cgrp_defer_enabled)
654 		return;
655 
656 	event->cgrp_defer_enabled = 0;
657 
658 	event->tstamp_enabled = tstamp - event->total_time_enabled;
659 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
660 		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
661 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
662 			sub->cgrp_defer_enabled = 0;
663 		}
664 	}
665 }
666 #else /* !CONFIG_CGROUP_PERF */
667 
668 static inline bool
669 perf_cgroup_match(struct perf_event *event)
670 {
671 	return true;
672 }
673 
674 static inline void perf_detach_cgroup(struct perf_event *event)
675 {}
676 
677 static inline int is_cgroup_event(struct perf_event *event)
678 {
679 	return 0;
680 }
681 
682 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
683 {
684 	return 0;
685 }
686 
687 static inline void update_cgrp_time_from_event(struct perf_event *event)
688 {
689 }
690 
691 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
692 {
693 }
694 
695 static inline void perf_cgroup_sched_out(struct task_struct *task,
696 					 struct task_struct *next)
697 {
698 }
699 
700 static inline void perf_cgroup_sched_in(struct task_struct *prev,
701 					struct task_struct *task)
702 {
703 }
704 
705 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
706 				      struct perf_event_attr *attr,
707 				      struct perf_event *group_leader)
708 {
709 	return -EINVAL;
710 }
711 
712 static inline void
713 perf_cgroup_set_timestamp(struct task_struct *task,
714 			  struct perf_event_context *ctx)
715 {
716 }
717 
718 void
719 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
720 {
721 }
722 
723 static inline void
724 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
725 {
726 }
727 
728 static inline u64 perf_cgroup_event_time(struct perf_event *event)
729 {
730 	return 0;
731 }
732 
733 static inline void
734 perf_cgroup_defer_enabled(struct perf_event *event)
735 {
736 }
737 
738 static inline void
739 perf_cgroup_mark_enabled(struct perf_event *event,
740 			 struct perf_event_context *ctx)
741 {
742 }
743 #endif
744 
745 /*
746  * set default to be dependent on timer tick just
747  * like original code
748  */
749 #define PERF_CPU_HRTIMER (1000 / HZ)
750 /*
751  * function must be called with interrupts disbled
752  */
753 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
754 {
755 	struct perf_cpu_context *cpuctx;
756 	int rotations = 0;
757 
758 	WARN_ON(!irqs_disabled());
759 
760 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
761 	rotations = perf_rotate_context(cpuctx);
762 
763 	raw_spin_lock(&cpuctx->hrtimer_lock);
764 	if (rotations)
765 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
766 	else
767 		cpuctx->hrtimer_active = 0;
768 	raw_spin_unlock(&cpuctx->hrtimer_lock);
769 
770 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
771 }
772 
773 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
774 {
775 	struct hrtimer *timer = &cpuctx->hrtimer;
776 	struct pmu *pmu = cpuctx->ctx.pmu;
777 	u64 interval;
778 
779 	/* no multiplexing needed for SW PMU */
780 	if (pmu->task_ctx_nr == perf_sw_context)
781 		return;
782 
783 	/*
784 	 * check default is sane, if not set then force to
785 	 * default interval (1/tick)
786 	 */
787 	interval = pmu->hrtimer_interval_ms;
788 	if (interval < 1)
789 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
790 
791 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
792 
793 	raw_spin_lock_init(&cpuctx->hrtimer_lock);
794 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
795 	timer->function = perf_mux_hrtimer_handler;
796 }
797 
798 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
799 {
800 	struct hrtimer *timer = &cpuctx->hrtimer;
801 	struct pmu *pmu = cpuctx->ctx.pmu;
802 	unsigned long flags;
803 
804 	/* not for SW PMU */
805 	if (pmu->task_ctx_nr == perf_sw_context)
806 		return 0;
807 
808 	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
809 	if (!cpuctx->hrtimer_active) {
810 		cpuctx->hrtimer_active = 1;
811 		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
812 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
813 	}
814 	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
815 
816 	return 0;
817 }
818 
819 void perf_pmu_disable(struct pmu *pmu)
820 {
821 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
822 	if (!(*count)++)
823 		pmu->pmu_disable(pmu);
824 }
825 
826 void perf_pmu_enable(struct pmu *pmu)
827 {
828 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
829 	if (!--(*count))
830 		pmu->pmu_enable(pmu);
831 }
832 
833 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
834 
835 /*
836  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
837  * perf_event_task_tick() are fully serialized because they're strictly cpu
838  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
839  * disabled, while perf_event_task_tick is called from IRQ context.
840  */
841 static void perf_event_ctx_activate(struct perf_event_context *ctx)
842 {
843 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
844 
845 	WARN_ON(!irqs_disabled());
846 
847 	WARN_ON(!list_empty(&ctx->active_ctx_list));
848 
849 	list_add(&ctx->active_ctx_list, head);
850 }
851 
852 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
853 {
854 	WARN_ON(!irqs_disabled());
855 
856 	WARN_ON(list_empty(&ctx->active_ctx_list));
857 
858 	list_del_init(&ctx->active_ctx_list);
859 }
860 
861 static void get_ctx(struct perf_event_context *ctx)
862 {
863 	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
864 }
865 
866 static void free_ctx(struct rcu_head *head)
867 {
868 	struct perf_event_context *ctx;
869 
870 	ctx = container_of(head, struct perf_event_context, rcu_head);
871 	kfree(ctx->task_ctx_data);
872 	kfree(ctx);
873 }
874 
875 static void put_ctx(struct perf_event_context *ctx)
876 {
877 	if (atomic_dec_and_test(&ctx->refcount)) {
878 		if (ctx->parent_ctx)
879 			put_ctx(ctx->parent_ctx);
880 		if (ctx->task)
881 			put_task_struct(ctx->task);
882 		call_rcu(&ctx->rcu_head, free_ctx);
883 	}
884 }
885 
886 /*
887  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
888  * perf_pmu_migrate_context() we need some magic.
889  *
890  * Those places that change perf_event::ctx will hold both
891  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
892  *
893  * Lock ordering is by mutex address. There are two other sites where
894  * perf_event_context::mutex nests and those are:
895  *
896  *  - perf_event_exit_task_context()	[ child , 0 ]
897  *      __perf_event_exit_task()
898  *        sync_child_event()
899  *          put_event()			[ parent, 1 ]
900  *
901  *  - perf_event_init_context()		[ parent, 0 ]
902  *      inherit_task_group()
903  *        inherit_group()
904  *          inherit_event()
905  *            perf_event_alloc()
906  *              perf_init_event()
907  *                perf_try_init_event()	[ child , 1 ]
908  *
909  * While it appears there is an obvious deadlock here -- the parent and child
910  * nesting levels are inverted between the two. This is in fact safe because
911  * life-time rules separate them. That is an exiting task cannot fork, and a
912  * spawning task cannot (yet) exit.
913  *
914  * But remember that that these are parent<->child context relations, and
915  * migration does not affect children, therefore these two orderings should not
916  * interact.
917  *
918  * The change in perf_event::ctx does not affect children (as claimed above)
919  * because the sys_perf_event_open() case will install a new event and break
920  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
921  * concerned with cpuctx and that doesn't have children.
922  *
923  * The places that change perf_event::ctx will issue:
924  *
925  *   perf_remove_from_context();
926  *   synchronize_rcu();
927  *   perf_install_in_context();
928  *
929  * to affect the change. The remove_from_context() + synchronize_rcu() should
930  * quiesce the event, after which we can install it in the new location. This
931  * means that only external vectors (perf_fops, prctl) can perturb the event
932  * while in transit. Therefore all such accessors should also acquire
933  * perf_event_context::mutex to serialize against this.
934  *
935  * However; because event->ctx can change while we're waiting to acquire
936  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
937  * function.
938  *
939  * Lock order:
940  *	task_struct::perf_event_mutex
941  *	  perf_event_context::mutex
942  *	    perf_event_context::lock
943  *	    perf_event::child_mutex;
944  *	    perf_event::mmap_mutex
945  *	    mmap_sem
946  */
947 static struct perf_event_context *
948 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
949 {
950 	struct perf_event_context *ctx;
951 
952 again:
953 	rcu_read_lock();
954 	ctx = ACCESS_ONCE(event->ctx);
955 	if (!atomic_inc_not_zero(&ctx->refcount)) {
956 		rcu_read_unlock();
957 		goto again;
958 	}
959 	rcu_read_unlock();
960 
961 	mutex_lock_nested(&ctx->mutex, nesting);
962 	if (event->ctx != ctx) {
963 		mutex_unlock(&ctx->mutex);
964 		put_ctx(ctx);
965 		goto again;
966 	}
967 
968 	return ctx;
969 }
970 
971 static inline struct perf_event_context *
972 perf_event_ctx_lock(struct perf_event *event)
973 {
974 	return perf_event_ctx_lock_nested(event, 0);
975 }
976 
977 static void perf_event_ctx_unlock(struct perf_event *event,
978 				  struct perf_event_context *ctx)
979 {
980 	mutex_unlock(&ctx->mutex);
981 	put_ctx(ctx);
982 }
983 
984 /*
985  * This must be done under the ctx->lock, such as to serialize against
986  * context_equiv(), therefore we cannot call put_ctx() since that might end up
987  * calling scheduler related locks and ctx->lock nests inside those.
988  */
989 static __must_check struct perf_event_context *
990 unclone_ctx(struct perf_event_context *ctx)
991 {
992 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
993 
994 	lockdep_assert_held(&ctx->lock);
995 
996 	if (parent_ctx)
997 		ctx->parent_ctx = NULL;
998 	ctx->generation++;
999 
1000 	return parent_ctx;
1001 }
1002 
1003 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1004 {
1005 	/*
1006 	 * only top level events have the pid namespace they were created in
1007 	 */
1008 	if (event->parent)
1009 		event = event->parent;
1010 
1011 	return task_tgid_nr_ns(p, event->ns);
1012 }
1013 
1014 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1015 {
1016 	/*
1017 	 * only top level events have the pid namespace they were created in
1018 	 */
1019 	if (event->parent)
1020 		event = event->parent;
1021 
1022 	return task_pid_nr_ns(p, event->ns);
1023 }
1024 
1025 /*
1026  * If we inherit events we want to return the parent event id
1027  * to userspace.
1028  */
1029 static u64 primary_event_id(struct perf_event *event)
1030 {
1031 	u64 id = event->id;
1032 
1033 	if (event->parent)
1034 		id = event->parent->id;
1035 
1036 	return id;
1037 }
1038 
1039 /*
1040  * Get the perf_event_context for a task and lock it.
1041  * This has to cope with with the fact that until it is locked,
1042  * the context could get moved to another task.
1043  */
1044 static struct perf_event_context *
1045 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1046 {
1047 	struct perf_event_context *ctx;
1048 
1049 retry:
1050 	/*
1051 	 * One of the few rules of preemptible RCU is that one cannot do
1052 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1053 	 * part of the read side critical section was preemptible -- see
1054 	 * rcu_read_unlock_special().
1055 	 *
1056 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1057 	 * side critical section is non-preemptible.
1058 	 */
1059 	preempt_disable();
1060 	rcu_read_lock();
1061 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1062 	if (ctx) {
1063 		/*
1064 		 * If this context is a clone of another, it might
1065 		 * get swapped for another underneath us by
1066 		 * perf_event_task_sched_out, though the
1067 		 * rcu_read_lock() protects us from any context
1068 		 * getting freed.  Lock the context and check if it
1069 		 * got swapped before we could get the lock, and retry
1070 		 * if so.  If we locked the right context, then it
1071 		 * can't get swapped on us any more.
1072 		 */
1073 		raw_spin_lock_irqsave(&ctx->lock, *flags);
1074 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1075 			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1076 			rcu_read_unlock();
1077 			preempt_enable();
1078 			goto retry;
1079 		}
1080 
1081 		if (!atomic_inc_not_zero(&ctx->refcount)) {
1082 			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1083 			ctx = NULL;
1084 		}
1085 	}
1086 	rcu_read_unlock();
1087 	preempt_enable();
1088 	return ctx;
1089 }
1090 
1091 /*
1092  * Get the context for a task and increment its pin_count so it
1093  * can't get swapped to another task.  This also increments its
1094  * reference count so that the context can't get freed.
1095  */
1096 static struct perf_event_context *
1097 perf_pin_task_context(struct task_struct *task, int ctxn)
1098 {
1099 	struct perf_event_context *ctx;
1100 	unsigned long flags;
1101 
1102 	ctx = perf_lock_task_context(task, ctxn, &flags);
1103 	if (ctx) {
1104 		++ctx->pin_count;
1105 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1106 	}
1107 	return ctx;
1108 }
1109 
1110 static void perf_unpin_context(struct perf_event_context *ctx)
1111 {
1112 	unsigned long flags;
1113 
1114 	raw_spin_lock_irqsave(&ctx->lock, flags);
1115 	--ctx->pin_count;
1116 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1117 }
1118 
1119 /*
1120  * Update the record of the current time in a context.
1121  */
1122 static void update_context_time(struct perf_event_context *ctx)
1123 {
1124 	u64 now = perf_clock();
1125 
1126 	ctx->time += now - ctx->timestamp;
1127 	ctx->timestamp = now;
1128 }
1129 
1130 static u64 perf_event_time(struct perf_event *event)
1131 {
1132 	struct perf_event_context *ctx = event->ctx;
1133 
1134 	if (is_cgroup_event(event))
1135 		return perf_cgroup_event_time(event);
1136 
1137 	return ctx ? ctx->time : 0;
1138 }
1139 
1140 /*
1141  * Update the total_time_enabled and total_time_running fields for a event.
1142  * The caller of this function needs to hold the ctx->lock.
1143  */
1144 static void update_event_times(struct perf_event *event)
1145 {
1146 	struct perf_event_context *ctx = event->ctx;
1147 	u64 run_end;
1148 
1149 	if (event->state < PERF_EVENT_STATE_INACTIVE ||
1150 	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1151 		return;
1152 	/*
1153 	 * in cgroup mode, time_enabled represents
1154 	 * the time the event was enabled AND active
1155 	 * tasks were in the monitored cgroup. This is
1156 	 * independent of the activity of the context as
1157 	 * there may be a mix of cgroup and non-cgroup events.
1158 	 *
1159 	 * That is why we treat cgroup events differently
1160 	 * here.
1161 	 */
1162 	if (is_cgroup_event(event))
1163 		run_end = perf_cgroup_event_time(event);
1164 	else if (ctx->is_active)
1165 		run_end = ctx->time;
1166 	else
1167 		run_end = event->tstamp_stopped;
1168 
1169 	event->total_time_enabled = run_end - event->tstamp_enabled;
1170 
1171 	if (event->state == PERF_EVENT_STATE_INACTIVE)
1172 		run_end = event->tstamp_stopped;
1173 	else
1174 		run_end = perf_event_time(event);
1175 
1176 	event->total_time_running = run_end - event->tstamp_running;
1177 
1178 }
1179 
1180 /*
1181  * Update total_time_enabled and total_time_running for all events in a group.
1182  */
1183 static void update_group_times(struct perf_event *leader)
1184 {
1185 	struct perf_event *event;
1186 
1187 	update_event_times(leader);
1188 	list_for_each_entry(event, &leader->sibling_list, group_entry)
1189 		update_event_times(event);
1190 }
1191 
1192 static struct list_head *
1193 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1194 {
1195 	if (event->attr.pinned)
1196 		return &ctx->pinned_groups;
1197 	else
1198 		return &ctx->flexible_groups;
1199 }
1200 
1201 /*
1202  * Add a event from the lists for its context.
1203  * Must be called with ctx->mutex and ctx->lock held.
1204  */
1205 static void
1206 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1207 {
1208 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1209 	event->attach_state |= PERF_ATTACH_CONTEXT;
1210 
1211 	/*
1212 	 * If we're a stand alone event or group leader, we go to the context
1213 	 * list, group events are kept attached to the group so that
1214 	 * perf_group_detach can, at all times, locate all siblings.
1215 	 */
1216 	if (event->group_leader == event) {
1217 		struct list_head *list;
1218 
1219 		if (is_software_event(event))
1220 			event->group_flags |= PERF_GROUP_SOFTWARE;
1221 
1222 		list = ctx_group_list(event, ctx);
1223 		list_add_tail(&event->group_entry, list);
1224 	}
1225 
1226 	if (is_cgroup_event(event))
1227 		ctx->nr_cgroups++;
1228 
1229 	list_add_rcu(&event->event_entry, &ctx->event_list);
1230 	ctx->nr_events++;
1231 	if (event->attr.inherit_stat)
1232 		ctx->nr_stat++;
1233 
1234 	ctx->generation++;
1235 }
1236 
1237 /*
1238  * Initialize event state based on the perf_event_attr::disabled.
1239  */
1240 static inline void perf_event__state_init(struct perf_event *event)
1241 {
1242 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1243 					      PERF_EVENT_STATE_INACTIVE;
1244 }
1245 
1246 /*
1247  * Called at perf_event creation and when events are attached/detached from a
1248  * group.
1249  */
1250 static void perf_event__read_size(struct perf_event *event)
1251 {
1252 	int entry = sizeof(u64); /* value */
1253 	int size = 0;
1254 	int nr = 1;
1255 
1256 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1257 		size += sizeof(u64);
1258 
1259 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1260 		size += sizeof(u64);
1261 
1262 	if (event->attr.read_format & PERF_FORMAT_ID)
1263 		entry += sizeof(u64);
1264 
1265 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1266 		nr += event->group_leader->nr_siblings;
1267 		size += sizeof(u64);
1268 	}
1269 
1270 	size += entry * nr;
1271 	event->read_size = size;
1272 }
1273 
1274 static void perf_event__header_size(struct perf_event *event)
1275 {
1276 	struct perf_sample_data *data;
1277 	u64 sample_type = event->attr.sample_type;
1278 	u16 size = 0;
1279 
1280 	perf_event__read_size(event);
1281 
1282 	if (sample_type & PERF_SAMPLE_IP)
1283 		size += sizeof(data->ip);
1284 
1285 	if (sample_type & PERF_SAMPLE_ADDR)
1286 		size += sizeof(data->addr);
1287 
1288 	if (sample_type & PERF_SAMPLE_PERIOD)
1289 		size += sizeof(data->period);
1290 
1291 	if (sample_type & PERF_SAMPLE_WEIGHT)
1292 		size += sizeof(data->weight);
1293 
1294 	if (sample_type & PERF_SAMPLE_READ)
1295 		size += event->read_size;
1296 
1297 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1298 		size += sizeof(data->data_src.val);
1299 
1300 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1301 		size += sizeof(data->txn);
1302 
1303 	event->header_size = size;
1304 }
1305 
1306 static void perf_event__id_header_size(struct perf_event *event)
1307 {
1308 	struct perf_sample_data *data;
1309 	u64 sample_type = event->attr.sample_type;
1310 	u16 size = 0;
1311 
1312 	if (sample_type & PERF_SAMPLE_TID)
1313 		size += sizeof(data->tid_entry);
1314 
1315 	if (sample_type & PERF_SAMPLE_TIME)
1316 		size += sizeof(data->time);
1317 
1318 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1319 		size += sizeof(data->id);
1320 
1321 	if (sample_type & PERF_SAMPLE_ID)
1322 		size += sizeof(data->id);
1323 
1324 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1325 		size += sizeof(data->stream_id);
1326 
1327 	if (sample_type & PERF_SAMPLE_CPU)
1328 		size += sizeof(data->cpu_entry);
1329 
1330 	event->id_header_size = size;
1331 }
1332 
1333 static void perf_group_attach(struct perf_event *event)
1334 {
1335 	struct perf_event *group_leader = event->group_leader, *pos;
1336 
1337 	/*
1338 	 * We can have double attach due to group movement in perf_event_open.
1339 	 */
1340 	if (event->attach_state & PERF_ATTACH_GROUP)
1341 		return;
1342 
1343 	event->attach_state |= PERF_ATTACH_GROUP;
1344 
1345 	if (group_leader == event)
1346 		return;
1347 
1348 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1349 
1350 	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1351 			!is_software_event(event))
1352 		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1353 
1354 	list_add_tail(&event->group_entry, &group_leader->sibling_list);
1355 	group_leader->nr_siblings++;
1356 
1357 	perf_event__header_size(group_leader);
1358 
1359 	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1360 		perf_event__header_size(pos);
1361 }
1362 
1363 /*
1364  * Remove a event from the lists for its context.
1365  * Must be called with ctx->mutex and ctx->lock held.
1366  */
1367 static void
1368 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1369 {
1370 	struct perf_cpu_context *cpuctx;
1371 
1372 	WARN_ON_ONCE(event->ctx != ctx);
1373 	lockdep_assert_held(&ctx->lock);
1374 
1375 	/*
1376 	 * We can have double detach due to exit/hot-unplug + close.
1377 	 */
1378 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1379 		return;
1380 
1381 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1382 
1383 	if (is_cgroup_event(event)) {
1384 		ctx->nr_cgroups--;
1385 		cpuctx = __get_cpu_context(ctx);
1386 		/*
1387 		 * if there are no more cgroup events
1388 		 * then cler cgrp to avoid stale pointer
1389 		 * in update_cgrp_time_from_cpuctx()
1390 		 */
1391 		if (!ctx->nr_cgroups)
1392 			cpuctx->cgrp = NULL;
1393 	}
1394 
1395 	ctx->nr_events--;
1396 	if (event->attr.inherit_stat)
1397 		ctx->nr_stat--;
1398 
1399 	list_del_rcu(&event->event_entry);
1400 
1401 	if (event->group_leader == event)
1402 		list_del_init(&event->group_entry);
1403 
1404 	update_group_times(event);
1405 
1406 	/*
1407 	 * If event was in error state, then keep it
1408 	 * that way, otherwise bogus counts will be
1409 	 * returned on read(). The only way to get out
1410 	 * of error state is by explicit re-enabling
1411 	 * of the event
1412 	 */
1413 	if (event->state > PERF_EVENT_STATE_OFF)
1414 		event->state = PERF_EVENT_STATE_OFF;
1415 
1416 	ctx->generation++;
1417 }
1418 
1419 static void perf_group_detach(struct perf_event *event)
1420 {
1421 	struct perf_event *sibling, *tmp;
1422 	struct list_head *list = NULL;
1423 
1424 	/*
1425 	 * We can have double detach due to exit/hot-unplug + close.
1426 	 */
1427 	if (!(event->attach_state & PERF_ATTACH_GROUP))
1428 		return;
1429 
1430 	event->attach_state &= ~PERF_ATTACH_GROUP;
1431 
1432 	/*
1433 	 * If this is a sibling, remove it from its group.
1434 	 */
1435 	if (event->group_leader != event) {
1436 		list_del_init(&event->group_entry);
1437 		event->group_leader->nr_siblings--;
1438 		goto out;
1439 	}
1440 
1441 	if (!list_empty(&event->group_entry))
1442 		list = &event->group_entry;
1443 
1444 	/*
1445 	 * If this was a group event with sibling events then
1446 	 * upgrade the siblings to singleton events by adding them
1447 	 * to whatever list we are on.
1448 	 */
1449 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1450 		if (list)
1451 			list_move_tail(&sibling->group_entry, list);
1452 		sibling->group_leader = sibling;
1453 
1454 		/* Inherit group flags from the previous leader */
1455 		sibling->group_flags = event->group_flags;
1456 
1457 		WARN_ON_ONCE(sibling->ctx != event->ctx);
1458 	}
1459 
1460 out:
1461 	perf_event__header_size(event->group_leader);
1462 
1463 	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1464 		perf_event__header_size(tmp);
1465 }
1466 
1467 /*
1468  * User event without the task.
1469  */
1470 static bool is_orphaned_event(struct perf_event *event)
1471 {
1472 	return event && !is_kernel_event(event) && !event->owner;
1473 }
1474 
1475 /*
1476  * Event has a parent but parent's task finished and it's
1477  * alive only because of children holding refference.
1478  */
1479 static bool is_orphaned_child(struct perf_event *event)
1480 {
1481 	return is_orphaned_event(event->parent);
1482 }
1483 
1484 static void orphans_remove_work(struct work_struct *work);
1485 
1486 static void schedule_orphans_remove(struct perf_event_context *ctx)
1487 {
1488 	if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
1489 		return;
1490 
1491 	if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
1492 		get_ctx(ctx);
1493 		ctx->orphans_remove_sched = true;
1494 	}
1495 }
1496 
1497 static int __init perf_workqueue_init(void)
1498 {
1499 	perf_wq = create_singlethread_workqueue("perf");
1500 	WARN(!perf_wq, "failed to create perf workqueue\n");
1501 	return perf_wq ? 0 : -1;
1502 }
1503 
1504 core_initcall(perf_workqueue_init);
1505 
1506 static inline int pmu_filter_match(struct perf_event *event)
1507 {
1508 	struct pmu *pmu = event->pmu;
1509 	return pmu->filter_match ? pmu->filter_match(event) : 1;
1510 }
1511 
1512 static inline int
1513 event_filter_match(struct perf_event *event)
1514 {
1515 	return (event->cpu == -1 || event->cpu == smp_processor_id())
1516 	    && perf_cgroup_match(event) && pmu_filter_match(event);
1517 }
1518 
1519 static void
1520 event_sched_out(struct perf_event *event,
1521 		  struct perf_cpu_context *cpuctx,
1522 		  struct perf_event_context *ctx)
1523 {
1524 	u64 tstamp = perf_event_time(event);
1525 	u64 delta;
1526 
1527 	WARN_ON_ONCE(event->ctx != ctx);
1528 	lockdep_assert_held(&ctx->lock);
1529 
1530 	/*
1531 	 * An event which could not be activated because of
1532 	 * filter mismatch still needs to have its timings
1533 	 * maintained, otherwise bogus information is return
1534 	 * via read() for time_enabled, time_running:
1535 	 */
1536 	if (event->state == PERF_EVENT_STATE_INACTIVE
1537 	    && !event_filter_match(event)) {
1538 		delta = tstamp - event->tstamp_stopped;
1539 		event->tstamp_running += delta;
1540 		event->tstamp_stopped = tstamp;
1541 	}
1542 
1543 	if (event->state != PERF_EVENT_STATE_ACTIVE)
1544 		return;
1545 
1546 	perf_pmu_disable(event->pmu);
1547 
1548 	event->state = PERF_EVENT_STATE_INACTIVE;
1549 	if (event->pending_disable) {
1550 		event->pending_disable = 0;
1551 		event->state = PERF_EVENT_STATE_OFF;
1552 	}
1553 	event->tstamp_stopped = tstamp;
1554 	event->pmu->del(event, 0);
1555 	event->oncpu = -1;
1556 
1557 	if (!is_software_event(event))
1558 		cpuctx->active_oncpu--;
1559 	if (!--ctx->nr_active)
1560 		perf_event_ctx_deactivate(ctx);
1561 	if (event->attr.freq && event->attr.sample_freq)
1562 		ctx->nr_freq--;
1563 	if (event->attr.exclusive || !cpuctx->active_oncpu)
1564 		cpuctx->exclusive = 0;
1565 
1566 	if (is_orphaned_child(event))
1567 		schedule_orphans_remove(ctx);
1568 
1569 	perf_pmu_enable(event->pmu);
1570 }
1571 
1572 static void
1573 group_sched_out(struct perf_event *group_event,
1574 		struct perf_cpu_context *cpuctx,
1575 		struct perf_event_context *ctx)
1576 {
1577 	struct perf_event *event;
1578 	int state = group_event->state;
1579 
1580 	event_sched_out(group_event, cpuctx, ctx);
1581 
1582 	/*
1583 	 * Schedule out siblings (if any):
1584 	 */
1585 	list_for_each_entry(event, &group_event->sibling_list, group_entry)
1586 		event_sched_out(event, cpuctx, ctx);
1587 
1588 	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1589 		cpuctx->exclusive = 0;
1590 }
1591 
1592 struct remove_event {
1593 	struct perf_event *event;
1594 	bool detach_group;
1595 };
1596 
1597 /*
1598  * Cross CPU call to remove a performance event
1599  *
1600  * We disable the event on the hardware level first. After that we
1601  * remove it from the context list.
1602  */
1603 static int __perf_remove_from_context(void *info)
1604 {
1605 	struct remove_event *re = info;
1606 	struct perf_event *event = re->event;
1607 	struct perf_event_context *ctx = event->ctx;
1608 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1609 
1610 	raw_spin_lock(&ctx->lock);
1611 	event_sched_out(event, cpuctx, ctx);
1612 	if (re->detach_group)
1613 		perf_group_detach(event);
1614 	list_del_event(event, ctx);
1615 	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1616 		ctx->is_active = 0;
1617 		cpuctx->task_ctx = NULL;
1618 	}
1619 	raw_spin_unlock(&ctx->lock);
1620 
1621 	return 0;
1622 }
1623 
1624 
1625 /*
1626  * Remove the event from a task's (or a CPU's) list of events.
1627  *
1628  * CPU events are removed with a smp call. For task events we only
1629  * call when the task is on a CPU.
1630  *
1631  * If event->ctx is a cloned context, callers must make sure that
1632  * every task struct that event->ctx->task could possibly point to
1633  * remains valid.  This is OK when called from perf_release since
1634  * that only calls us on the top-level context, which can't be a clone.
1635  * When called from perf_event_exit_task, it's OK because the
1636  * context has been detached from its task.
1637  */
1638 static void perf_remove_from_context(struct perf_event *event, bool detach_group)
1639 {
1640 	struct perf_event_context *ctx = event->ctx;
1641 	struct task_struct *task = ctx->task;
1642 	struct remove_event re = {
1643 		.event = event,
1644 		.detach_group = detach_group,
1645 	};
1646 
1647 	lockdep_assert_held(&ctx->mutex);
1648 
1649 	if (!task) {
1650 		/*
1651 		 * Per cpu events are removed via an smp call. The removal can
1652 		 * fail if the CPU is currently offline, but in that case we
1653 		 * already called __perf_remove_from_context from
1654 		 * perf_event_exit_cpu.
1655 		 */
1656 		cpu_function_call(event->cpu, __perf_remove_from_context, &re);
1657 		return;
1658 	}
1659 
1660 retry:
1661 	if (!task_function_call(task, __perf_remove_from_context, &re))
1662 		return;
1663 
1664 	raw_spin_lock_irq(&ctx->lock);
1665 	/*
1666 	 * If we failed to find a running task, but find the context active now
1667 	 * that we've acquired the ctx->lock, retry.
1668 	 */
1669 	if (ctx->is_active) {
1670 		raw_spin_unlock_irq(&ctx->lock);
1671 		/*
1672 		 * Reload the task pointer, it might have been changed by
1673 		 * a concurrent perf_event_context_sched_out().
1674 		 */
1675 		task = ctx->task;
1676 		goto retry;
1677 	}
1678 
1679 	/*
1680 	 * Since the task isn't running, its safe to remove the event, us
1681 	 * holding the ctx->lock ensures the task won't get scheduled in.
1682 	 */
1683 	if (detach_group)
1684 		perf_group_detach(event);
1685 	list_del_event(event, ctx);
1686 	raw_spin_unlock_irq(&ctx->lock);
1687 }
1688 
1689 /*
1690  * Cross CPU call to disable a performance event
1691  */
1692 int __perf_event_disable(void *info)
1693 {
1694 	struct perf_event *event = info;
1695 	struct perf_event_context *ctx = event->ctx;
1696 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1697 
1698 	/*
1699 	 * If this is a per-task event, need to check whether this
1700 	 * event's task is the current task on this cpu.
1701 	 *
1702 	 * Can trigger due to concurrent perf_event_context_sched_out()
1703 	 * flipping contexts around.
1704 	 */
1705 	if (ctx->task && cpuctx->task_ctx != ctx)
1706 		return -EINVAL;
1707 
1708 	raw_spin_lock(&ctx->lock);
1709 
1710 	/*
1711 	 * If the event is on, turn it off.
1712 	 * If it is in error state, leave it in error state.
1713 	 */
1714 	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1715 		update_context_time(ctx);
1716 		update_cgrp_time_from_event(event);
1717 		update_group_times(event);
1718 		if (event == event->group_leader)
1719 			group_sched_out(event, cpuctx, ctx);
1720 		else
1721 			event_sched_out(event, cpuctx, ctx);
1722 		event->state = PERF_EVENT_STATE_OFF;
1723 	}
1724 
1725 	raw_spin_unlock(&ctx->lock);
1726 
1727 	return 0;
1728 }
1729 
1730 /*
1731  * Disable a event.
1732  *
1733  * If event->ctx is a cloned context, callers must make sure that
1734  * every task struct that event->ctx->task could possibly point to
1735  * remains valid.  This condition is satisifed when called through
1736  * perf_event_for_each_child or perf_event_for_each because they
1737  * hold the top-level event's child_mutex, so any descendant that
1738  * goes to exit will block in sync_child_event.
1739  * When called from perf_pending_event it's OK because event->ctx
1740  * is the current context on this CPU and preemption is disabled,
1741  * hence we can't get into perf_event_task_sched_out for this context.
1742  */
1743 static void _perf_event_disable(struct perf_event *event)
1744 {
1745 	struct perf_event_context *ctx = event->ctx;
1746 	struct task_struct *task = ctx->task;
1747 
1748 	if (!task) {
1749 		/*
1750 		 * Disable the event on the cpu that it's on
1751 		 */
1752 		cpu_function_call(event->cpu, __perf_event_disable, event);
1753 		return;
1754 	}
1755 
1756 retry:
1757 	if (!task_function_call(task, __perf_event_disable, event))
1758 		return;
1759 
1760 	raw_spin_lock_irq(&ctx->lock);
1761 	/*
1762 	 * If the event is still active, we need to retry the cross-call.
1763 	 */
1764 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1765 		raw_spin_unlock_irq(&ctx->lock);
1766 		/*
1767 		 * Reload the task pointer, it might have been changed by
1768 		 * a concurrent perf_event_context_sched_out().
1769 		 */
1770 		task = ctx->task;
1771 		goto retry;
1772 	}
1773 
1774 	/*
1775 	 * Since we have the lock this context can't be scheduled
1776 	 * in, so we can change the state safely.
1777 	 */
1778 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
1779 		update_group_times(event);
1780 		event->state = PERF_EVENT_STATE_OFF;
1781 	}
1782 	raw_spin_unlock_irq(&ctx->lock);
1783 }
1784 
1785 /*
1786  * Strictly speaking kernel users cannot create groups and therefore this
1787  * interface does not need the perf_event_ctx_lock() magic.
1788  */
1789 void perf_event_disable(struct perf_event *event)
1790 {
1791 	struct perf_event_context *ctx;
1792 
1793 	ctx = perf_event_ctx_lock(event);
1794 	_perf_event_disable(event);
1795 	perf_event_ctx_unlock(event, ctx);
1796 }
1797 EXPORT_SYMBOL_GPL(perf_event_disable);
1798 
1799 static void perf_set_shadow_time(struct perf_event *event,
1800 				 struct perf_event_context *ctx,
1801 				 u64 tstamp)
1802 {
1803 	/*
1804 	 * use the correct time source for the time snapshot
1805 	 *
1806 	 * We could get by without this by leveraging the
1807 	 * fact that to get to this function, the caller
1808 	 * has most likely already called update_context_time()
1809 	 * and update_cgrp_time_xx() and thus both timestamp
1810 	 * are identical (or very close). Given that tstamp is,
1811 	 * already adjusted for cgroup, we could say that:
1812 	 *    tstamp - ctx->timestamp
1813 	 * is equivalent to
1814 	 *    tstamp - cgrp->timestamp.
1815 	 *
1816 	 * Then, in perf_output_read(), the calculation would
1817 	 * work with no changes because:
1818 	 * - event is guaranteed scheduled in
1819 	 * - no scheduled out in between
1820 	 * - thus the timestamp would be the same
1821 	 *
1822 	 * But this is a bit hairy.
1823 	 *
1824 	 * So instead, we have an explicit cgroup call to remain
1825 	 * within the time time source all along. We believe it
1826 	 * is cleaner and simpler to understand.
1827 	 */
1828 	if (is_cgroup_event(event))
1829 		perf_cgroup_set_shadow_time(event, tstamp);
1830 	else
1831 		event->shadow_ctx_time = tstamp - ctx->timestamp;
1832 }
1833 
1834 #define MAX_INTERRUPTS (~0ULL)
1835 
1836 static void perf_log_throttle(struct perf_event *event, int enable);
1837 static void perf_log_itrace_start(struct perf_event *event);
1838 
1839 static int
1840 event_sched_in(struct perf_event *event,
1841 		 struct perf_cpu_context *cpuctx,
1842 		 struct perf_event_context *ctx)
1843 {
1844 	u64 tstamp = perf_event_time(event);
1845 	int ret = 0;
1846 
1847 	lockdep_assert_held(&ctx->lock);
1848 
1849 	if (event->state <= PERF_EVENT_STATE_OFF)
1850 		return 0;
1851 
1852 	event->state = PERF_EVENT_STATE_ACTIVE;
1853 	event->oncpu = smp_processor_id();
1854 
1855 	/*
1856 	 * Unthrottle events, since we scheduled we might have missed several
1857 	 * ticks already, also for a heavily scheduling task there is little
1858 	 * guarantee it'll get a tick in a timely manner.
1859 	 */
1860 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1861 		perf_log_throttle(event, 1);
1862 		event->hw.interrupts = 0;
1863 	}
1864 
1865 	/*
1866 	 * The new state must be visible before we turn it on in the hardware:
1867 	 */
1868 	smp_wmb();
1869 
1870 	perf_pmu_disable(event->pmu);
1871 
1872 	perf_set_shadow_time(event, ctx, tstamp);
1873 
1874 	perf_log_itrace_start(event);
1875 
1876 	if (event->pmu->add(event, PERF_EF_START)) {
1877 		event->state = PERF_EVENT_STATE_INACTIVE;
1878 		event->oncpu = -1;
1879 		ret = -EAGAIN;
1880 		goto out;
1881 	}
1882 
1883 	event->tstamp_running += tstamp - event->tstamp_stopped;
1884 
1885 	if (!is_software_event(event))
1886 		cpuctx->active_oncpu++;
1887 	if (!ctx->nr_active++)
1888 		perf_event_ctx_activate(ctx);
1889 	if (event->attr.freq && event->attr.sample_freq)
1890 		ctx->nr_freq++;
1891 
1892 	if (event->attr.exclusive)
1893 		cpuctx->exclusive = 1;
1894 
1895 	if (is_orphaned_child(event))
1896 		schedule_orphans_remove(ctx);
1897 
1898 out:
1899 	perf_pmu_enable(event->pmu);
1900 
1901 	return ret;
1902 }
1903 
1904 static int
1905 group_sched_in(struct perf_event *group_event,
1906 	       struct perf_cpu_context *cpuctx,
1907 	       struct perf_event_context *ctx)
1908 {
1909 	struct perf_event *event, *partial_group = NULL;
1910 	struct pmu *pmu = ctx->pmu;
1911 	u64 now = ctx->time;
1912 	bool simulate = false;
1913 
1914 	if (group_event->state == PERF_EVENT_STATE_OFF)
1915 		return 0;
1916 
1917 	pmu->start_txn(pmu);
1918 
1919 	if (event_sched_in(group_event, cpuctx, ctx)) {
1920 		pmu->cancel_txn(pmu);
1921 		perf_mux_hrtimer_restart(cpuctx);
1922 		return -EAGAIN;
1923 	}
1924 
1925 	/*
1926 	 * Schedule in siblings as one group (if any):
1927 	 */
1928 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1929 		if (event_sched_in(event, cpuctx, ctx)) {
1930 			partial_group = event;
1931 			goto group_error;
1932 		}
1933 	}
1934 
1935 	if (!pmu->commit_txn(pmu))
1936 		return 0;
1937 
1938 group_error:
1939 	/*
1940 	 * Groups can be scheduled in as one unit only, so undo any
1941 	 * partial group before returning:
1942 	 * The events up to the failed event are scheduled out normally,
1943 	 * tstamp_stopped will be updated.
1944 	 *
1945 	 * The failed events and the remaining siblings need to have
1946 	 * their timings updated as if they had gone thru event_sched_in()
1947 	 * and event_sched_out(). This is required to get consistent timings
1948 	 * across the group. This also takes care of the case where the group
1949 	 * could never be scheduled by ensuring tstamp_stopped is set to mark
1950 	 * the time the event was actually stopped, such that time delta
1951 	 * calculation in update_event_times() is correct.
1952 	 */
1953 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1954 		if (event == partial_group)
1955 			simulate = true;
1956 
1957 		if (simulate) {
1958 			event->tstamp_running += now - event->tstamp_stopped;
1959 			event->tstamp_stopped = now;
1960 		} else {
1961 			event_sched_out(event, cpuctx, ctx);
1962 		}
1963 	}
1964 	event_sched_out(group_event, cpuctx, ctx);
1965 
1966 	pmu->cancel_txn(pmu);
1967 
1968 	perf_mux_hrtimer_restart(cpuctx);
1969 
1970 	return -EAGAIN;
1971 }
1972 
1973 /*
1974  * Work out whether we can put this event group on the CPU now.
1975  */
1976 static int group_can_go_on(struct perf_event *event,
1977 			   struct perf_cpu_context *cpuctx,
1978 			   int can_add_hw)
1979 {
1980 	/*
1981 	 * Groups consisting entirely of software events can always go on.
1982 	 */
1983 	if (event->group_flags & PERF_GROUP_SOFTWARE)
1984 		return 1;
1985 	/*
1986 	 * If an exclusive group is already on, no other hardware
1987 	 * events can go on.
1988 	 */
1989 	if (cpuctx->exclusive)
1990 		return 0;
1991 	/*
1992 	 * If this group is exclusive and there are already
1993 	 * events on the CPU, it can't go on.
1994 	 */
1995 	if (event->attr.exclusive && cpuctx->active_oncpu)
1996 		return 0;
1997 	/*
1998 	 * Otherwise, try to add it if all previous groups were able
1999 	 * to go on.
2000 	 */
2001 	return can_add_hw;
2002 }
2003 
2004 static void add_event_to_ctx(struct perf_event *event,
2005 			       struct perf_event_context *ctx)
2006 {
2007 	u64 tstamp = perf_event_time(event);
2008 
2009 	list_add_event(event, ctx);
2010 	perf_group_attach(event);
2011 	event->tstamp_enabled = tstamp;
2012 	event->tstamp_running = tstamp;
2013 	event->tstamp_stopped = tstamp;
2014 }
2015 
2016 static void task_ctx_sched_out(struct perf_event_context *ctx);
2017 static void
2018 ctx_sched_in(struct perf_event_context *ctx,
2019 	     struct perf_cpu_context *cpuctx,
2020 	     enum event_type_t event_type,
2021 	     struct task_struct *task);
2022 
2023 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2024 				struct perf_event_context *ctx,
2025 				struct task_struct *task)
2026 {
2027 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2028 	if (ctx)
2029 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2030 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2031 	if (ctx)
2032 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2033 }
2034 
2035 /*
2036  * Cross CPU call to install and enable a performance event
2037  *
2038  * Must be called with ctx->mutex held
2039  */
2040 static int  __perf_install_in_context(void *info)
2041 {
2042 	struct perf_event *event = info;
2043 	struct perf_event_context *ctx = event->ctx;
2044 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2045 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2046 	struct task_struct *task = current;
2047 
2048 	perf_ctx_lock(cpuctx, task_ctx);
2049 	perf_pmu_disable(cpuctx->ctx.pmu);
2050 
2051 	/*
2052 	 * If there was an active task_ctx schedule it out.
2053 	 */
2054 	if (task_ctx)
2055 		task_ctx_sched_out(task_ctx);
2056 
2057 	/*
2058 	 * If the context we're installing events in is not the
2059 	 * active task_ctx, flip them.
2060 	 */
2061 	if (ctx->task && task_ctx != ctx) {
2062 		if (task_ctx)
2063 			raw_spin_unlock(&task_ctx->lock);
2064 		raw_spin_lock(&ctx->lock);
2065 		task_ctx = ctx;
2066 	}
2067 
2068 	if (task_ctx) {
2069 		cpuctx->task_ctx = task_ctx;
2070 		task = task_ctx->task;
2071 	}
2072 
2073 	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2074 
2075 	update_context_time(ctx);
2076 	/*
2077 	 * update cgrp time only if current cgrp
2078 	 * matches event->cgrp. Must be done before
2079 	 * calling add_event_to_ctx()
2080 	 */
2081 	update_cgrp_time_from_event(event);
2082 
2083 	add_event_to_ctx(event, ctx);
2084 
2085 	/*
2086 	 * Schedule everything back in
2087 	 */
2088 	perf_event_sched_in(cpuctx, task_ctx, task);
2089 
2090 	perf_pmu_enable(cpuctx->ctx.pmu);
2091 	perf_ctx_unlock(cpuctx, task_ctx);
2092 
2093 	return 0;
2094 }
2095 
2096 /*
2097  * Attach a performance event to a context
2098  *
2099  * First we add the event to the list with the hardware enable bit
2100  * in event->hw_config cleared.
2101  *
2102  * If the event is attached to a task which is on a CPU we use a smp
2103  * call to enable it in the task context. The task might have been
2104  * scheduled away, but we check this in the smp call again.
2105  */
2106 static void
2107 perf_install_in_context(struct perf_event_context *ctx,
2108 			struct perf_event *event,
2109 			int cpu)
2110 {
2111 	struct task_struct *task = ctx->task;
2112 
2113 	lockdep_assert_held(&ctx->mutex);
2114 
2115 	event->ctx = ctx;
2116 	if (event->cpu != -1)
2117 		event->cpu = cpu;
2118 
2119 	if (!task) {
2120 		/*
2121 		 * Per cpu events are installed via an smp call and
2122 		 * the install is always successful.
2123 		 */
2124 		cpu_function_call(cpu, __perf_install_in_context, event);
2125 		return;
2126 	}
2127 
2128 retry:
2129 	if (!task_function_call(task, __perf_install_in_context, event))
2130 		return;
2131 
2132 	raw_spin_lock_irq(&ctx->lock);
2133 	/*
2134 	 * If we failed to find a running task, but find the context active now
2135 	 * that we've acquired the ctx->lock, retry.
2136 	 */
2137 	if (ctx->is_active) {
2138 		raw_spin_unlock_irq(&ctx->lock);
2139 		/*
2140 		 * Reload the task pointer, it might have been changed by
2141 		 * a concurrent perf_event_context_sched_out().
2142 		 */
2143 		task = ctx->task;
2144 		goto retry;
2145 	}
2146 
2147 	/*
2148 	 * Since the task isn't running, its safe to add the event, us holding
2149 	 * the ctx->lock ensures the task won't get scheduled in.
2150 	 */
2151 	add_event_to_ctx(event, ctx);
2152 	raw_spin_unlock_irq(&ctx->lock);
2153 }
2154 
2155 /*
2156  * Put a event into inactive state and update time fields.
2157  * Enabling the leader of a group effectively enables all
2158  * the group members that aren't explicitly disabled, so we
2159  * have to update their ->tstamp_enabled also.
2160  * Note: this works for group members as well as group leaders
2161  * since the non-leader members' sibling_lists will be empty.
2162  */
2163 static void __perf_event_mark_enabled(struct perf_event *event)
2164 {
2165 	struct perf_event *sub;
2166 	u64 tstamp = perf_event_time(event);
2167 
2168 	event->state = PERF_EVENT_STATE_INACTIVE;
2169 	event->tstamp_enabled = tstamp - event->total_time_enabled;
2170 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2171 		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2172 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2173 	}
2174 }
2175 
2176 /*
2177  * Cross CPU call to enable a performance event
2178  */
2179 static int __perf_event_enable(void *info)
2180 {
2181 	struct perf_event *event = info;
2182 	struct perf_event_context *ctx = event->ctx;
2183 	struct perf_event *leader = event->group_leader;
2184 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2185 	int err;
2186 
2187 	/*
2188 	 * There's a time window between 'ctx->is_active' check
2189 	 * in perf_event_enable function and this place having:
2190 	 *   - IRQs on
2191 	 *   - ctx->lock unlocked
2192 	 *
2193 	 * where the task could be killed and 'ctx' deactivated
2194 	 * by perf_event_exit_task.
2195 	 */
2196 	if (!ctx->is_active)
2197 		return -EINVAL;
2198 
2199 	raw_spin_lock(&ctx->lock);
2200 	update_context_time(ctx);
2201 
2202 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2203 		goto unlock;
2204 
2205 	/*
2206 	 * set current task's cgroup time reference point
2207 	 */
2208 	perf_cgroup_set_timestamp(current, ctx);
2209 
2210 	__perf_event_mark_enabled(event);
2211 
2212 	if (!event_filter_match(event)) {
2213 		if (is_cgroup_event(event))
2214 			perf_cgroup_defer_enabled(event);
2215 		goto unlock;
2216 	}
2217 
2218 	/*
2219 	 * If the event is in a group and isn't the group leader,
2220 	 * then don't put it on unless the group is on.
2221 	 */
2222 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2223 		goto unlock;
2224 
2225 	if (!group_can_go_on(event, cpuctx, 1)) {
2226 		err = -EEXIST;
2227 	} else {
2228 		if (event == leader)
2229 			err = group_sched_in(event, cpuctx, ctx);
2230 		else
2231 			err = event_sched_in(event, cpuctx, ctx);
2232 	}
2233 
2234 	if (err) {
2235 		/*
2236 		 * If this event can't go on and it's part of a
2237 		 * group, then the whole group has to come off.
2238 		 */
2239 		if (leader != event) {
2240 			group_sched_out(leader, cpuctx, ctx);
2241 			perf_mux_hrtimer_restart(cpuctx);
2242 		}
2243 		if (leader->attr.pinned) {
2244 			update_group_times(leader);
2245 			leader->state = PERF_EVENT_STATE_ERROR;
2246 		}
2247 	}
2248 
2249 unlock:
2250 	raw_spin_unlock(&ctx->lock);
2251 
2252 	return 0;
2253 }
2254 
2255 /*
2256  * Enable a event.
2257  *
2258  * If event->ctx is a cloned context, callers must make sure that
2259  * every task struct that event->ctx->task could possibly point to
2260  * remains valid.  This condition is satisfied when called through
2261  * perf_event_for_each_child or perf_event_for_each as described
2262  * for perf_event_disable.
2263  */
2264 static void _perf_event_enable(struct perf_event *event)
2265 {
2266 	struct perf_event_context *ctx = event->ctx;
2267 	struct task_struct *task = ctx->task;
2268 
2269 	if (!task) {
2270 		/*
2271 		 * Enable the event on the cpu that it's on
2272 		 */
2273 		cpu_function_call(event->cpu, __perf_event_enable, event);
2274 		return;
2275 	}
2276 
2277 	raw_spin_lock_irq(&ctx->lock);
2278 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2279 		goto out;
2280 
2281 	/*
2282 	 * If the event is in error state, clear that first.
2283 	 * That way, if we see the event in error state below, we
2284 	 * know that it has gone back into error state, as distinct
2285 	 * from the task having been scheduled away before the
2286 	 * cross-call arrived.
2287 	 */
2288 	if (event->state == PERF_EVENT_STATE_ERROR)
2289 		event->state = PERF_EVENT_STATE_OFF;
2290 
2291 retry:
2292 	if (!ctx->is_active) {
2293 		__perf_event_mark_enabled(event);
2294 		goto out;
2295 	}
2296 
2297 	raw_spin_unlock_irq(&ctx->lock);
2298 
2299 	if (!task_function_call(task, __perf_event_enable, event))
2300 		return;
2301 
2302 	raw_spin_lock_irq(&ctx->lock);
2303 
2304 	/*
2305 	 * If the context is active and the event is still off,
2306 	 * we need to retry the cross-call.
2307 	 */
2308 	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
2309 		/*
2310 		 * task could have been flipped by a concurrent
2311 		 * perf_event_context_sched_out()
2312 		 */
2313 		task = ctx->task;
2314 		goto retry;
2315 	}
2316 
2317 out:
2318 	raw_spin_unlock_irq(&ctx->lock);
2319 }
2320 
2321 /*
2322  * See perf_event_disable();
2323  */
2324 void perf_event_enable(struct perf_event *event)
2325 {
2326 	struct perf_event_context *ctx;
2327 
2328 	ctx = perf_event_ctx_lock(event);
2329 	_perf_event_enable(event);
2330 	perf_event_ctx_unlock(event, ctx);
2331 }
2332 EXPORT_SYMBOL_GPL(perf_event_enable);
2333 
2334 static int _perf_event_refresh(struct perf_event *event, int refresh)
2335 {
2336 	/*
2337 	 * not supported on inherited events
2338 	 */
2339 	if (event->attr.inherit || !is_sampling_event(event))
2340 		return -EINVAL;
2341 
2342 	atomic_add(refresh, &event->event_limit);
2343 	_perf_event_enable(event);
2344 
2345 	return 0;
2346 }
2347 
2348 /*
2349  * See perf_event_disable()
2350  */
2351 int perf_event_refresh(struct perf_event *event, int refresh)
2352 {
2353 	struct perf_event_context *ctx;
2354 	int ret;
2355 
2356 	ctx = perf_event_ctx_lock(event);
2357 	ret = _perf_event_refresh(event, refresh);
2358 	perf_event_ctx_unlock(event, ctx);
2359 
2360 	return ret;
2361 }
2362 EXPORT_SYMBOL_GPL(perf_event_refresh);
2363 
2364 static void ctx_sched_out(struct perf_event_context *ctx,
2365 			  struct perf_cpu_context *cpuctx,
2366 			  enum event_type_t event_type)
2367 {
2368 	struct perf_event *event;
2369 	int is_active = ctx->is_active;
2370 
2371 	ctx->is_active &= ~event_type;
2372 	if (likely(!ctx->nr_events))
2373 		return;
2374 
2375 	update_context_time(ctx);
2376 	update_cgrp_time_from_cpuctx(cpuctx);
2377 	if (!ctx->nr_active)
2378 		return;
2379 
2380 	perf_pmu_disable(ctx->pmu);
2381 	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2382 		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2383 			group_sched_out(event, cpuctx, ctx);
2384 	}
2385 
2386 	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2387 		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2388 			group_sched_out(event, cpuctx, ctx);
2389 	}
2390 	perf_pmu_enable(ctx->pmu);
2391 }
2392 
2393 /*
2394  * Test whether two contexts are equivalent, i.e. whether they have both been
2395  * cloned from the same version of the same context.
2396  *
2397  * Equivalence is measured using a generation number in the context that is
2398  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2399  * and list_del_event().
2400  */
2401 static int context_equiv(struct perf_event_context *ctx1,
2402 			 struct perf_event_context *ctx2)
2403 {
2404 	lockdep_assert_held(&ctx1->lock);
2405 	lockdep_assert_held(&ctx2->lock);
2406 
2407 	/* Pinning disables the swap optimization */
2408 	if (ctx1->pin_count || ctx2->pin_count)
2409 		return 0;
2410 
2411 	/* If ctx1 is the parent of ctx2 */
2412 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2413 		return 1;
2414 
2415 	/* If ctx2 is the parent of ctx1 */
2416 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2417 		return 1;
2418 
2419 	/*
2420 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
2421 	 * hierarchy, see perf_event_init_context().
2422 	 */
2423 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2424 			ctx1->parent_gen == ctx2->parent_gen)
2425 		return 1;
2426 
2427 	/* Unmatched */
2428 	return 0;
2429 }
2430 
2431 static void __perf_event_sync_stat(struct perf_event *event,
2432 				     struct perf_event *next_event)
2433 {
2434 	u64 value;
2435 
2436 	if (!event->attr.inherit_stat)
2437 		return;
2438 
2439 	/*
2440 	 * Update the event value, we cannot use perf_event_read()
2441 	 * because we're in the middle of a context switch and have IRQs
2442 	 * disabled, which upsets smp_call_function_single(), however
2443 	 * we know the event must be on the current CPU, therefore we
2444 	 * don't need to use it.
2445 	 */
2446 	switch (event->state) {
2447 	case PERF_EVENT_STATE_ACTIVE:
2448 		event->pmu->read(event);
2449 		/* fall-through */
2450 
2451 	case PERF_EVENT_STATE_INACTIVE:
2452 		update_event_times(event);
2453 		break;
2454 
2455 	default:
2456 		break;
2457 	}
2458 
2459 	/*
2460 	 * In order to keep per-task stats reliable we need to flip the event
2461 	 * values when we flip the contexts.
2462 	 */
2463 	value = local64_read(&next_event->count);
2464 	value = local64_xchg(&event->count, value);
2465 	local64_set(&next_event->count, value);
2466 
2467 	swap(event->total_time_enabled, next_event->total_time_enabled);
2468 	swap(event->total_time_running, next_event->total_time_running);
2469 
2470 	/*
2471 	 * Since we swizzled the values, update the user visible data too.
2472 	 */
2473 	perf_event_update_userpage(event);
2474 	perf_event_update_userpage(next_event);
2475 }
2476 
2477 static void perf_event_sync_stat(struct perf_event_context *ctx,
2478 				   struct perf_event_context *next_ctx)
2479 {
2480 	struct perf_event *event, *next_event;
2481 
2482 	if (!ctx->nr_stat)
2483 		return;
2484 
2485 	update_context_time(ctx);
2486 
2487 	event = list_first_entry(&ctx->event_list,
2488 				   struct perf_event, event_entry);
2489 
2490 	next_event = list_first_entry(&next_ctx->event_list,
2491 					struct perf_event, event_entry);
2492 
2493 	while (&event->event_entry != &ctx->event_list &&
2494 	       &next_event->event_entry != &next_ctx->event_list) {
2495 
2496 		__perf_event_sync_stat(event, next_event);
2497 
2498 		event = list_next_entry(event, event_entry);
2499 		next_event = list_next_entry(next_event, event_entry);
2500 	}
2501 }
2502 
2503 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2504 					 struct task_struct *next)
2505 {
2506 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2507 	struct perf_event_context *next_ctx;
2508 	struct perf_event_context *parent, *next_parent;
2509 	struct perf_cpu_context *cpuctx;
2510 	int do_switch = 1;
2511 
2512 	if (likely(!ctx))
2513 		return;
2514 
2515 	cpuctx = __get_cpu_context(ctx);
2516 	if (!cpuctx->task_ctx)
2517 		return;
2518 
2519 	rcu_read_lock();
2520 	next_ctx = next->perf_event_ctxp[ctxn];
2521 	if (!next_ctx)
2522 		goto unlock;
2523 
2524 	parent = rcu_dereference(ctx->parent_ctx);
2525 	next_parent = rcu_dereference(next_ctx->parent_ctx);
2526 
2527 	/* If neither context have a parent context; they cannot be clones. */
2528 	if (!parent && !next_parent)
2529 		goto unlock;
2530 
2531 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2532 		/*
2533 		 * Looks like the two contexts are clones, so we might be
2534 		 * able to optimize the context switch.  We lock both
2535 		 * contexts and check that they are clones under the
2536 		 * lock (including re-checking that neither has been
2537 		 * uncloned in the meantime).  It doesn't matter which
2538 		 * order we take the locks because no other cpu could
2539 		 * be trying to lock both of these tasks.
2540 		 */
2541 		raw_spin_lock(&ctx->lock);
2542 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2543 		if (context_equiv(ctx, next_ctx)) {
2544 			/*
2545 			 * XXX do we need a memory barrier of sorts
2546 			 * wrt to rcu_dereference() of perf_event_ctxp
2547 			 */
2548 			task->perf_event_ctxp[ctxn] = next_ctx;
2549 			next->perf_event_ctxp[ctxn] = ctx;
2550 			ctx->task = next;
2551 			next_ctx->task = task;
2552 
2553 			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2554 
2555 			do_switch = 0;
2556 
2557 			perf_event_sync_stat(ctx, next_ctx);
2558 		}
2559 		raw_spin_unlock(&next_ctx->lock);
2560 		raw_spin_unlock(&ctx->lock);
2561 	}
2562 unlock:
2563 	rcu_read_unlock();
2564 
2565 	if (do_switch) {
2566 		raw_spin_lock(&ctx->lock);
2567 		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2568 		cpuctx->task_ctx = NULL;
2569 		raw_spin_unlock(&ctx->lock);
2570 	}
2571 }
2572 
2573 void perf_sched_cb_dec(struct pmu *pmu)
2574 {
2575 	this_cpu_dec(perf_sched_cb_usages);
2576 }
2577 
2578 void perf_sched_cb_inc(struct pmu *pmu)
2579 {
2580 	this_cpu_inc(perf_sched_cb_usages);
2581 }
2582 
2583 /*
2584  * This function provides the context switch callback to the lower code
2585  * layer. It is invoked ONLY when the context switch callback is enabled.
2586  */
2587 static void perf_pmu_sched_task(struct task_struct *prev,
2588 				struct task_struct *next,
2589 				bool sched_in)
2590 {
2591 	struct perf_cpu_context *cpuctx;
2592 	struct pmu *pmu;
2593 	unsigned long flags;
2594 
2595 	if (prev == next)
2596 		return;
2597 
2598 	local_irq_save(flags);
2599 
2600 	rcu_read_lock();
2601 
2602 	list_for_each_entry_rcu(pmu, &pmus, entry) {
2603 		if (pmu->sched_task) {
2604 			cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2605 
2606 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2607 
2608 			perf_pmu_disable(pmu);
2609 
2610 			pmu->sched_task(cpuctx->task_ctx, sched_in);
2611 
2612 			perf_pmu_enable(pmu);
2613 
2614 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2615 		}
2616 	}
2617 
2618 	rcu_read_unlock();
2619 
2620 	local_irq_restore(flags);
2621 }
2622 
2623 static void perf_event_switch(struct task_struct *task,
2624 			      struct task_struct *next_prev, bool sched_in);
2625 
2626 #define for_each_task_context_nr(ctxn)					\
2627 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2628 
2629 /*
2630  * Called from scheduler to remove the events of the current task,
2631  * with interrupts disabled.
2632  *
2633  * We stop each event and update the event value in event->count.
2634  *
2635  * This does not protect us against NMI, but disable()
2636  * sets the disabled bit in the control field of event _before_
2637  * accessing the event control register. If a NMI hits, then it will
2638  * not restart the event.
2639  */
2640 void __perf_event_task_sched_out(struct task_struct *task,
2641 				 struct task_struct *next)
2642 {
2643 	int ctxn;
2644 
2645 	if (__this_cpu_read(perf_sched_cb_usages))
2646 		perf_pmu_sched_task(task, next, false);
2647 
2648 	if (atomic_read(&nr_switch_events))
2649 		perf_event_switch(task, next, false);
2650 
2651 	for_each_task_context_nr(ctxn)
2652 		perf_event_context_sched_out(task, ctxn, next);
2653 
2654 	/*
2655 	 * if cgroup events exist on this CPU, then we need
2656 	 * to check if we have to switch out PMU state.
2657 	 * cgroup event are system-wide mode only
2658 	 */
2659 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2660 		perf_cgroup_sched_out(task, next);
2661 }
2662 
2663 static void task_ctx_sched_out(struct perf_event_context *ctx)
2664 {
2665 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2666 
2667 	if (!cpuctx->task_ctx)
2668 		return;
2669 
2670 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2671 		return;
2672 
2673 	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2674 	cpuctx->task_ctx = NULL;
2675 }
2676 
2677 /*
2678  * Called with IRQs disabled
2679  */
2680 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2681 			      enum event_type_t event_type)
2682 {
2683 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2684 }
2685 
2686 static void
2687 ctx_pinned_sched_in(struct perf_event_context *ctx,
2688 		    struct perf_cpu_context *cpuctx)
2689 {
2690 	struct perf_event *event;
2691 
2692 	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2693 		if (event->state <= PERF_EVENT_STATE_OFF)
2694 			continue;
2695 		if (!event_filter_match(event))
2696 			continue;
2697 
2698 		/* may need to reset tstamp_enabled */
2699 		if (is_cgroup_event(event))
2700 			perf_cgroup_mark_enabled(event, ctx);
2701 
2702 		if (group_can_go_on(event, cpuctx, 1))
2703 			group_sched_in(event, cpuctx, ctx);
2704 
2705 		/*
2706 		 * If this pinned group hasn't been scheduled,
2707 		 * put it in error state.
2708 		 */
2709 		if (event->state == PERF_EVENT_STATE_INACTIVE) {
2710 			update_group_times(event);
2711 			event->state = PERF_EVENT_STATE_ERROR;
2712 		}
2713 	}
2714 }
2715 
2716 static void
2717 ctx_flexible_sched_in(struct perf_event_context *ctx,
2718 		      struct perf_cpu_context *cpuctx)
2719 {
2720 	struct perf_event *event;
2721 	int can_add_hw = 1;
2722 
2723 	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2724 		/* Ignore events in OFF or ERROR state */
2725 		if (event->state <= PERF_EVENT_STATE_OFF)
2726 			continue;
2727 		/*
2728 		 * Listen to the 'cpu' scheduling filter constraint
2729 		 * of events:
2730 		 */
2731 		if (!event_filter_match(event))
2732 			continue;
2733 
2734 		/* may need to reset tstamp_enabled */
2735 		if (is_cgroup_event(event))
2736 			perf_cgroup_mark_enabled(event, ctx);
2737 
2738 		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2739 			if (group_sched_in(event, cpuctx, ctx))
2740 				can_add_hw = 0;
2741 		}
2742 	}
2743 }
2744 
2745 static void
2746 ctx_sched_in(struct perf_event_context *ctx,
2747 	     struct perf_cpu_context *cpuctx,
2748 	     enum event_type_t event_type,
2749 	     struct task_struct *task)
2750 {
2751 	u64 now;
2752 	int is_active = ctx->is_active;
2753 
2754 	ctx->is_active |= event_type;
2755 	if (likely(!ctx->nr_events))
2756 		return;
2757 
2758 	now = perf_clock();
2759 	ctx->timestamp = now;
2760 	perf_cgroup_set_timestamp(task, ctx);
2761 	/*
2762 	 * First go through the list and put on any pinned groups
2763 	 * in order to give them the best chance of going on.
2764 	 */
2765 	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2766 		ctx_pinned_sched_in(ctx, cpuctx);
2767 
2768 	/* Then walk through the lower prio flexible groups */
2769 	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2770 		ctx_flexible_sched_in(ctx, cpuctx);
2771 }
2772 
2773 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2774 			     enum event_type_t event_type,
2775 			     struct task_struct *task)
2776 {
2777 	struct perf_event_context *ctx = &cpuctx->ctx;
2778 
2779 	ctx_sched_in(ctx, cpuctx, event_type, task);
2780 }
2781 
2782 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2783 					struct task_struct *task)
2784 {
2785 	struct perf_cpu_context *cpuctx;
2786 
2787 	cpuctx = __get_cpu_context(ctx);
2788 	if (cpuctx->task_ctx == ctx)
2789 		return;
2790 
2791 	perf_ctx_lock(cpuctx, ctx);
2792 	perf_pmu_disable(ctx->pmu);
2793 	/*
2794 	 * We want to keep the following priority order:
2795 	 * cpu pinned (that don't need to move), task pinned,
2796 	 * cpu flexible, task flexible.
2797 	 */
2798 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2799 
2800 	if (ctx->nr_events)
2801 		cpuctx->task_ctx = ctx;
2802 
2803 	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2804 
2805 	perf_pmu_enable(ctx->pmu);
2806 	perf_ctx_unlock(cpuctx, ctx);
2807 }
2808 
2809 /*
2810  * Called from scheduler to add the events of the current task
2811  * with interrupts disabled.
2812  *
2813  * We restore the event value and then enable it.
2814  *
2815  * This does not protect us against NMI, but enable()
2816  * sets the enabled bit in the control field of event _before_
2817  * accessing the event control register. If a NMI hits, then it will
2818  * keep the event running.
2819  */
2820 void __perf_event_task_sched_in(struct task_struct *prev,
2821 				struct task_struct *task)
2822 {
2823 	struct perf_event_context *ctx;
2824 	int ctxn;
2825 
2826 	for_each_task_context_nr(ctxn) {
2827 		ctx = task->perf_event_ctxp[ctxn];
2828 		if (likely(!ctx))
2829 			continue;
2830 
2831 		perf_event_context_sched_in(ctx, task);
2832 	}
2833 	/*
2834 	 * if cgroup events exist on this CPU, then we need
2835 	 * to check if we have to switch in PMU state.
2836 	 * cgroup event are system-wide mode only
2837 	 */
2838 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2839 		perf_cgroup_sched_in(prev, task);
2840 
2841 	if (atomic_read(&nr_switch_events))
2842 		perf_event_switch(task, prev, true);
2843 
2844 	if (__this_cpu_read(perf_sched_cb_usages))
2845 		perf_pmu_sched_task(prev, task, true);
2846 }
2847 
2848 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2849 {
2850 	u64 frequency = event->attr.sample_freq;
2851 	u64 sec = NSEC_PER_SEC;
2852 	u64 divisor, dividend;
2853 
2854 	int count_fls, nsec_fls, frequency_fls, sec_fls;
2855 
2856 	count_fls = fls64(count);
2857 	nsec_fls = fls64(nsec);
2858 	frequency_fls = fls64(frequency);
2859 	sec_fls = 30;
2860 
2861 	/*
2862 	 * We got @count in @nsec, with a target of sample_freq HZ
2863 	 * the target period becomes:
2864 	 *
2865 	 *             @count * 10^9
2866 	 * period = -------------------
2867 	 *          @nsec * sample_freq
2868 	 *
2869 	 */
2870 
2871 	/*
2872 	 * Reduce accuracy by one bit such that @a and @b converge
2873 	 * to a similar magnitude.
2874 	 */
2875 #define REDUCE_FLS(a, b)		\
2876 do {					\
2877 	if (a##_fls > b##_fls) {	\
2878 		a >>= 1;		\
2879 		a##_fls--;		\
2880 	} else {			\
2881 		b >>= 1;		\
2882 		b##_fls--;		\
2883 	}				\
2884 } while (0)
2885 
2886 	/*
2887 	 * Reduce accuracy until either term fits in a u64, then proceed with
2888 	 * the other, so that finally we can do a u64/u64 division.
2889 	 */
2890 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2891 		REDUCE_FLS(nsec, frequency);
2892 		REDUCE_FLS(sec, count);
2893 	}
2894 
2895 	if (count_fls + sec_fls > 64) {
2896 		divisor = nsec * frequency;
2897 
2898 		while (count_fls + sec_fls > 64) {
2899 			REDUCE_FLS(count, sec);
2900 			divisor >>= 1;
2901 		}
2902 
2903 		dividend = count * sec;
2904 	} else {
2905 		dividend = count * sec;
2906 
2907 		while (nsec_fls + frequency_fls > 64) {
2908 			REDUCE_FLS(nsec, frequency);
2909 			dividend >>= 1;
2910 		}
2911 
2912 		divisor = nsec * frequency;
2913 	}
2914 
2915 	if (!divisor)
2916 		return dividend;
2917 
2918 	return div64_u64(dividend, divisor);
2919 }
2920 
2921 static DEFINE_PER_CPU(int, perf_throttled_count);
2922 static DEFINE_PER_CPU(u64, perf_throttled_seq);
2923 
2924 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2925 {
2926 	struct hw_perf_event *hwc = &event->hw;
2927 	s64 period, sample_period;
2928 	s64 delta;
2929 
2930 	period = perf_calculate_period(event, nsec, count);
2931 
2932 	delta = (s64)(period - hwc->sample_period);
2933 	delta = (delta + 7) / 8; /* low pass filter */
2934 
2935 	sample_period = hwc->sample_period + delta;
2936 
2937 	if (!sample_period)
2938 		sample_period = 1;
2939 
2940 	hwc->sample_period = sample_period;
2941 
2942 	if (local64_read(&hwc->period_left) > 8*sample_period) {
2943 		if (disable)
2944 			event->pmu->stop(event, PERF_EF_UPDATE);
2945 
2946 		local64_set(&hwc->period_left, 0);
2947 
2948 		if (disable)
2949 			event->pmu->start(event, PERF_EF_RELOAD);
2950 	}
2951 }
2952 
2953 /*
2954  * combine freq adjustment with unthrottling to avoid two passes over the
2955  * events. At the same time, make sure, having freq events does not change
2956  * the rate of unthrottling as that would introduce bias.
2957  */
2958 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2959 					   int needs_unthr)
2960 {
2961 	struct perf_event *event;
2962 	struct hw_perf_event *hwc;
2963 	u64 now, period = TICK_NSEC;
2964 	s64 delta;
2965 
2966 	/*
2967 	 * only need to iterate over all events iff:
2968 	 * - context have events in frequency mode (needs freq adjust)
2969 	 * - there are events to unthrottle on this cpu
2970 	 */
2971 	if (!(ctx->nr_freq || needs_unthr))
2972 		return;
2973 
2974 	raw_spin_lock(&ctx->lock);
2975 	perf_pmu_disable(ctx->pmu);
2976 
2977 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2978 		if (event->state != PERF_EVENT_STATE_ACTIVE)
2979 			continue;
2980 
2981 		if (!event_filter_match(event))
2982 			continue;
2983 
2984 		perf_pmu_disable(event->pmu);
2985 
2986 		hwc = &event->hw;
2987 
2988 		if (hwc->interrupts == MAX_INTERRUPTS) {
2989 			hwc->interrupts = 0;
2990 			perf_log_throttle(event, 1);
2991 			event->pmu->start(event, 0);
2992 		}
2993 
2994 		if (!event->attr.freq || !event->attr.sample_freq)
2995 			goto next;
2996 
2997 		/*
2998 		 * stop the event and update event->count
2999 		 */
3000 		event->pmu->stop(event, PERF_EF_UPDATE);
3001 
3002 		now = local64_read(&event->count);
3003 		delta = now - hwc->freq_count_stamp;
3004 		hwc->freq_count_stamp = now;
3005 
3006 		/*
3007 		 * restart the event
3008 		 * reload only if value has changed
3009 		 * we have stopped the event so tell that
3010 		 * to perf_adjust_period() to avoid stopping it
3011 		 * twice.
3012 		 */
3013 		if (delta > 0)
3014 			perf_adjust_period(event, period, delta, false);
3015 
3016 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3017 	next:
3018 		perf_pmu_enable(event->pmu);
3019 	}
3020 
3021 	perf_pmu_enable(ctx->pmu);
3022 	raw_spin_unlock(&ctx->lock);
3023 }
3024 
3025 /*
3026  * Round-robin a context's events:
3027  */
3028 static void rotate_ctx(struct perf_event_context *ctx)
3029 {
3030 	/*
3031 	 * Rotate the first entry last of non-pinned groups. Rotation might be
3032 	 * disabled by the inheritance code.
3033 	 */
3034 	if (!ctx->rotate_disable)
3035 		list_rotate_left(&ctx->flexible_groups);
3036 }
3037 
3038 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3039 {
3040 	struct perf_event_context *ctx = NULL;
3041 	int rotate = 0;
3042 
3043 	if (cpuctx->ctx.nr_events) {
3044 		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3045 			rotate = 1;
3046 	}
3047 
3048 	ctx = cpuctx->task_ctx;
3049 	if (ctx && ctx->nr_events) {
3050 		if (ctx->nr_events != ctx->nr_active)
3051 			rotate = 1;
3052 	}
3053 
3054 	if (!rotate)
3055 		goto done;
3056 
3057 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3058 	perf_pmu_disable(cpuctx->ctx.pmu);
3059 
3060 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3061 	if (ctx)
3062 		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3063 
3064 	rotate_ctx(&cpuctx->ctx);
3065 	if (ctx)
3066 		rotate_ctx(ctx);
3067 
3068 	perf_event_sched_in(cpuctx, ctx, current);
3069 
3070 	perf_pmu_enable(cpuctx->ctx.pmu);
3071 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3072 done:
3073 
3074 	return rotate;
3075 }
3076 
3077 #ifdef CONFIG_NO_HZ_FULL
3078 bool perf_event_can_stop_tick(void)
3079 {
3080 	if (atomic_read(&nr_freq_events) ||
3081 	    __this_cpu_read(perf_throttled_count))
3082 		return false;
3083 	else
3084 		return true;
3085 }
3086 #endif
3087 
3088 void perf_event_task_tick(void)
3089 {
3090 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
3091 	struct perf_event_context *ctx, *tmp;
3092 	int throttled;
3093 
3094 	WARN_ON(!irqs_disabled());
3095 
3096 	__this_cpu_inc(perf_throttled_seq);
3097 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
3098 
3099 	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3100 		perf_adjust_freq_unthr_context(ctx, throttled);
3101 }
3102 
3103 static int event_enable_on_exec(struct perf_event *event,
3104 				struct perf_event_context *ctx)
3105 {
3106 	if (!event->attr.enable_on_exec)
3107 		return 0;
3108 
3109 	event->attr.enable_on_exec = 0;
3110 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
3111 		return 0;
3112 
3113 	__perf_event_mark_enabled(event);
3114 
3115 	return 1;
3116 }
3117 
3118 /*
3119  * Enable all of a task's events that have been marked enable-on-exec.
3120  * This expects task == current.
3121  */
3122 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
3123 {
3124 	struct perf_event_context *clone_ctx = NULL;
3125 	struct perf_event *event;
3126 	unsigned long flags;
3127 	int enabled = 0;
3128 	int ret;
3129 
3130 	local_irq_save(flags);
3131 	if (!ctx || !ctx->nr_events)
3132 		goto out;
3133 
3134 	/*
3135 	 * We must ctxsw out cgroup events to avoid conflict
3136 	 * when invoking perf_task_event_sched_in() later on
3137 	 * in this function. Otherwise we end up trying to
3138 	 * ctxswin cgroup events which are already scheduled
3139 	 * in.
3140 	 */
3141 	perf_cgroup_sched_out(current, NULL);
3142 
3143 	raw_spin_lock(&ctx->lock);
3144 	task_ctx_sched_out(ctx);
3145 
3146 	list_for_each_entry(event, &ctx->event_list, event_entry) {
3147 		ret = event_enable_on_exec(event, ctx);
3148 		if (ret)
3149 			enabled = 1;
3150 	}
3151 
3152 	/*
3153 	 * Unclone this context if we enabled any event.
3154 	 */
3155 	if (enabled)
3156 		clone_ctx = unclone_ctx(ctx);
3157 
3158 	raw_spin_unlock(&ctx->lock);
3159 
3160 	/*
3161 	 * Also calls ctxswin for cgroup events, if any:
3162 	 */
3163 	perf_event_context_sched_in(ctx, ctx->task);
3164 out:
3165 	local_irq_restore(flags);
3166 
3167 	if (clone_ctx)
3168 		put_ctx(clone_ctx);
3169 }
3170 
3171 void perf_event_exec(void)
3172 {
3173 	struct perf_event_context *ctx;
3174 	int ctxn;
3175 
3176 	rcu_read_lock();
3177 	for_each_task_context_nr(ctxn) {
3178 		ctx = current->perf_event_ctxp[ctxn];
3179 		if (!ctx)
3180 			continue;
3181 
3182 		perf_event_enable_on_exec(ctx);
3183 	}
3184 	rcu_read_unlock();
3185 }
3186 
3187 /*
3188  * Cross CPU call to read the hardware event
3189  */
3190 static void __perf_event_read(void *info)
3191 {
3192 	struct perf_event *event = info;
3193 	struct perf_event_context *ctx = event->ctx;
3194 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3195 
3196 	/*
3197 	 * If this is a task context, we need to check whether it is
3198 	 * the current task context of this cpu.  If not it has been
3199 	 * scheduled out before the smp call arrived.  In that case
3200 	 * event->count would have been updated to a recent sample
3201 	 * when the event was scheduled out.
3202 	 */
3203 	if (ctx->task && cpuctx->task_ctx != ctx)
3204 		return;
3205 
3206 	raw_spin_lock(&ctx->lock);
3207 	if (ctx->is_active) {
3208 		update_context_time(ctx);
3209 		update_cgrp_time_from_event(event);
3210 	}
3211 	update_event_times(event);
3212 	if (event->state == PERF_EVENT_STATE_ACTIVE)
3213 		event->pmu->read(event);
3214 	raw_spin_unlock(&ctx->lock);
3215 }
3216 
3217 static inline u64 perf_event_count(struct perf_event *event)
3218 {
3219 	if (event->pmu->count)
3220 		return event->pmu->count(event);
3221 
3222 	return __perf_event_count(event);
3223 }
3224 
3225 static u64 perf_event_read(struct perf_event *event)
3226 {
3227 	/*
3228 	 * If event is enabled and currently active on a CPU, update the
3229 	 * value in the event structure:
3230 	 */
3231 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
3232 		smp_call_function_single(event->oncpu,
3233 					 __perf_event_read, event, 1);
3234 	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3235 		struct perf_event_context *ctx = event->ctx;
3236 		unsigned long flags;
3237 
3238 		raw_spin_lock_irqsave(&ctx->lock, flags);
3239 		/*
3240 		 * may read while context is not active
3241 		 * (e.g., thread is blocked), in that case
3242 		 * we cannot update context time
3243 		 */
3244 		if (ctx->is_active) {
3245 			update_context_time(ctx);
3246 			update_cgrp_time_from_event(event);
3247 		}
3248 		update_event_times(event);
3249 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3250 	}
3251 
3252 	return perf_event_count(event);
3253 }
3254 
3255 /*
3256  * Initialize the perf_event context in a task_struct:
3257  */
3258 static void __perf_event_init_context(struct perf_event_context *ctx)
3259 {
3260 	raw_spin_lock_init(&ctx->lock);
3261 	mutex_init(&ctx->mutex);
3262 	INIT_LIST_HEAD(&ctx->active_ctx_list);
3263 	INIT_LIST_HEAD(&ctx->pinned_groups);
3264 	INIT_LIST_HEAD(&ctx->flexible_groups);
3265 	INIT_LIST_HEAD(&ctx->event_list);
3266 	atomic_set(&ctx->refcount, 1);
3267 	INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
3268 }
3269 
3270 static struct perf_event_context *
3271 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3272 {
3273 	struct perf_event_context *ctx;
3274 
3275 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3276 	if (!ctx)
3277 		return NULL;
3278 
3279 	__perf_event_init_context(ctx);
3280 	if (task) {
3281 		ctx->task = task;
3282 		get_task_struct(task);
3283 	}
3284 	ctx->pmu = pmu;
3285 
3286 	return ctx;
3287 }
3288 
3289 static struct task_struct *
3290 find_lively_task_by_vpid(pid_t vpid)
3291 {
3292 	struct task_struct *task;
3293 	int err;
3294 
3295 	rcu_read_lock();
3296 	if (!vpid)
3297 		task = current;
3298 	else
3299 		task = find_task_by_vpid(vpid);
3300 	if (task)
3301 		get_task_struct(task);
3302 	rcu_read_unlock();
3303 
3304 	if (!task)
3305 		return ERR_PTR(-ESRCH);
3306 
3307 	/* Reuse ptrace permission checks for now. */
3308 	err = -EACCES;
3309 	if (!ptrace_may_access(task, PTRACE_MODE_READ))
3310 		goto errout;
3311 
3312 	return task;
3313 errout:
3314 	put_task_struct(task);
3315 	return ERR_PTR(err);
3316 
3317 }
3318 
3319 /*
3320  * Returns a matching context with refcount and pincount.
3321  */
3322 static struct perf_event_context *
3323 find_get_context(struct pmu *pmu, struct task_struct *task,
3324 		struct perf_event *event)
3325 {
3326 	struct perf_event_context *ctx, *clone_ctx = NULL;
3327 	struct perf_cpu_context *cpuctx;
3328 	void *task_ctx_data = NULL;
3329 	unsigned long flags;
3330 	int ctxn, err;
3331 	int cpu = event->cpu;
3332 
3333 	if (!task) {
3334 		/* Must be root to operate on a CPU event: */
3335 		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3336 			return ERR_PTR(-EACCES);
3337 
3338 		/*
3339 		 * We could be clever and allow to attach a event to an
3340 		 * offline CPU and activate it when the CPU comes up, but
3341 		 * that's for later.
3342 		 */
3343 		if (!cpu_online(cpu))
3344 			return ERR_PTR(-ENODEV);
3345 
3346 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3347 		ctx = &cpuctx->ctx;
3348 		get_ctx(ctx);
3349 		++ctx->pin_count;
3350 
3351 		return ctx;
3352 	}
3353 
3354 	err = -EINVAL;
3355 	ctxn = pmu->task_ctx_nr;
3356 	if (ctxn < 0)
3357 		goto errout;
3358 
3359 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3360 		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3361 		if (!task_ctx_data) {
3362 			err = -ENOMEM;
3363 			goto errout;
3364 		}
3365 	}
3366 
3367 retry:
3368 	ctx = perf_lock_task_context(task, ctxn, &flags);
3369 	if (ctx) {
3370 		clone_ctx = unclone_ctx(ctx);
3371 		++ctx->pin_count;
3372 
3373 		if (task_ctx_data && !ctx->task_ctx_data) {
3374 			ctx->task_ctx_data = task_ctx_data;
3375 			task_ctx_data = NULL;
3376 		}
3377 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3378 
3379 		if (clone_ctx)
3380 			put_ctx(clone_ctx);
3381 	} else {
3382 		ctx = alloc_perf_context(pmu, task);
3383 		err = -ENOMEM;
3384 		if (!ctx)
3385 			goto errout;
3386 
3387 		if (task_ctx_data) {
3388 			ctx->task_ctx_data = task_ctx_data;
3389 			task_ctx_data = NULL;
3390 		}
3391 
3392 		err = 0;
3393 		mutex_lock(&task->perf_event_mutex);
3394 		/*
3395 		 * If it has already passed perf_event_exit_task().
3396 		 * we must see PF_EXITING, it takes this mutex too.
3397 		 */
3398 		if (task->flags & PF_EXITING)
3399 			err = -ESRCH;
3400 		else if (task->perf_event_ctxp[ctxn])
3401 			err = -EAGAIN;
3402 		else {
3403 			get_ctx(ctx);
3404 			++ctx->pin_count;
3405 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3406 		}
3407 		mutex_unlock(&task->perf_event_mutex);
3408 
3409 		if (unlikely(err)) {
3410 			put_ctx(ctx);
3411 
3412 			if (err == -EAGAIN)
3413 				goto retry;
3414 			goto errout;
3415 		}
3416 	}
3417 
3418 	kfree(task_ctx_data);
3419 	return ctx;
3420 
3421 errout:
3422 	kfree(task_ctx_data);
3423 	return ERR_PTR(err);
3424 }
3425 
3426 static void perf_event_free_filter(struct perf_event *event);
3427 static void perf_event_free_bpf_prog(struct perf_event *event);
3428 
3429 static void free_event_rcu(struct rcu_head *head)
3430 {
3431 	struct perf_event *event;
3432 
3433 	event = container_of(head, struct perf_event, rcu_head);
3434 	if (event->ns)
3435 		put_pid_ns(event->ns);
3436 	perf_event_free_filter(event);
3437 	kfree(event);
3438 }
3439 
3440 static void ring_buffer_attach(struct perf_event *event,
3441 			       struct ring_buffer *rb);
3442 
3443 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3444 {
3445 	if (event->parent)
3446 		return;
3447 
3448 	if (is_cgroup_event(event))
3449 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3450 }
3451 
3452 static void unaccount_event(struct perf_event *event)
3453 {
3454 	if (event->parent)
3455 		return;
3456 
3457 	if (event->attach_state & PERF_ATTACH_TASK)
3458 		static_key_slow_dec_deferred(&perf_sched_events);
3459 	if (event->attr.mmap || event->attr.mmap_data)
3460 		atomic_dec(&nr_mmap_events);
3461 	if (event->attr.comm)
3462 		atomic_dec(&nr_comm_events);
3463 	if (event->attr.task)
3464 		atomic_dec(&nr_task_events);
3465 	if (event->attr.freq)
3466 		atomic_dec(&nr_freq_events);
3467 	if (event->attr.context_switch) {
3468 		static_key_slow_dec_deferred(&perf_sched_events);
3469 		atomic_dec(&nr_switch_events);
3470 	}
3471 	if (is_cgroup_event(event))
3472 		static_key_slow_dec_deferred(&perf_sched_events);
3473 	if (has_branch_stack(event))
3474 		static_key_slow_dec_deferred(&perf_sched_events);
3475 
3476 	unaccount_event_cpu(event, event->cpu);
3477 }
3478 
3479 /*
3480  * The following implement mutual exclusion of events on "exclusive" pmus
3481  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3482  * at a time, so we disallow creating events that might conflict, namely:
3483  *
3484  *  1) cpu-wide events in the presence of per-task events,
3485  *  2) per-task events in the presence of cpu-wide events,
3486  *  3) two matching events on the same context.
3487  *
3488  * The former two cases are handled in the allocation path (perf_event_alloc(),
3489  * __free_event()), the latter -- before the first perf_install_in_context().
3490  */
3491 static int exclusive_event_init(struct perf_event *event)
3492 {
3493 	struct pmu *pmu = event->pmu;
3494 
3495 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3496 		return 0;
3497 
3498 	/*
3499 	 * Prevent co-existence of per-task and cpu-wide events on the
3500 	 * same exclusive pmu.
3501 	 *
3502 	 * Negative pmu::exclusive_cnt means there are cpu-wide
3503 	 * events on this "exclusive" pmu, positive means there are
3504 	 * per-task events.
3505 	 *
3506 	 * Since this is called in perf_event_alloc() path, event::ctx
3507 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3508 	 * to mean "per-task event", because unlike other attach states it
3509 	 * never gets cleared.
3510 	 */
3511 	if (event->attach_state & PERF_ATTACH_TASK) {
3512 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3513 			return -EBUSY;
3514 	} else {
3515 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3516 			return -EBUSY;
3517 	}
3518 
3519 	return 0;
3520 }
3521 
3522 static void exclusive_event_destroy(struct perf_event *event)
3523 {
3524 	struct pmu *pmu = event->pmu;
3525 
3526 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3527 		return;
3528 
3529 	/* see comment in exclusive_event_init() */
3530 	if (event->attach_state & PERF_ATTACH_TASK)
3531 		atomic_dec(&pmu->exclusive_cnt);
3532 	else
3533 		atomic_inc(&pmu->exclusive_cnt);
3534 }
3535 
3536 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3537 {
3538 	if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
3539 	    (e1->cpu == e2->cpu ||
3540 	     e1->cpu == -1 ||
3541 	     e2->cpu == -1))
3542 		return true;
3543 	return false;
3544 }
3545 
3546 /* Called under the same ctx::mutex as perf_install_in_context() */
3547 static bool exclusive_event_installable(struct perf_event *event,
3548 					struct perf_event_context *ctx)
3549 {
3550 	struct perf_event *iter_event;
3551 	struct pmu *pmu = event->pmu;
3552 
3553 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3554 		return true;
3555 
3556 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3557 		if (exclusive_event_match(iter_event, event))
3558 			return false;
3559 	}
3560 
3561 	return true;
3562 }
3563 
3564 static void __free_event(struct perf_event *event)
3565 {
3566 	if (!event->parent) {
3567 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3568 			put_callchain_buffers();
3569 	}
3570 
3571 	perf_event_free_bpf_prog(event);
3572 
3573 	if (event->destroy)
3574 		event->destroy(event);
3575 
3576 	if (event->ctx)
3577 		put_ctx(event->ctx);
3578 
3579 	if (event->pmu) {
3580 		exclusive_event_destroy(event);
3581 		module_put(event->pmu->module);
3582 	}
3583 
3584 	call_rcu(&event->rcu_head, free_event_rcu);
3585 }
3586 
3587 static void _free_event(struct perf_event *event)
3588 {
3589 	irq_work_sync(&event->pending);
3590 
3591 	unaccount_event(event);
3592 
3593 	if (event->rb) {
3594 		/*
3595 		 * Can happen when we close an event with re-directed output.
3596 		 *
3597 		 * Since we have a 0 refcount, perf_mmap_close() will skip
3598 		 * over us; possibly making our ring_buffer_put() the last.
3599 		 */
3600 		mutex_lock(&event->mmap_mutex);
3601 		ring_buffer_attach(event, NULL);
3602 		mutex_unlock(&event->mmap_mutex);
3603 	}
3604 
3605 	if (is_cgroup_event(event))
3606 		perf_detach_cgroup(event);
3607 
3608 	__free_event(event);
3609 }
3610 
3611 /*
3612  * Used to free events which have a known refcount of 1, such as in error paths
3613  * where the event isn't exposed yet and inherited events.
3614  */
3615 static void free_event(struct perf_event *event)
3616 {
3617 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3618 				"unexpected event refcount: %ld; ptr=%p\n",
3619 				atomic_long_read(&event->refcount), event)) {
3620 		/* leak to avoid use-after-free */
3621 		return;
3622 	}
3623 
3624 	_free_event(event);
3625 }
3626 
3627 /*
3628  * Remove user event from the owner task.
3629  */
3630 static void perf_remove_from_owner(struct perf_event *event)
3631 {
3632 	struct task_struct *owner;
3633 
3634 	rcu_read_lock();
3635 	owner = ACCESS_ONCE(event->owner);
3636 	/*
3637 	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3638 	 * !owner it means the list deletion is complete and we can indeed
3639 	 * free this event, otherwise we need to serialize on
3640 	 * owner->perf_event_mutex.
3641 	 */
3642 	smp_read_barrier_depends();
3643 	if (owner) {
3644 		/*
3645 		 * Since delayed_put_task_struct() also drops the last
3646 		 * task reference we can safely take a new reference
3647 		 * while holding the rcu_read_lock().
3648 		 */
3649 		get_task_struct(owner);
3650 	}
3651 	rcu_read_unlock();
3652 
3653 	if (owner) {
3654 		/*
3655 		 * If we're here through perf_event_exit_task() we're already
3656 		 * holding ctx->mutex which would be an inversion wrt. the
3657 		 * normal lock order.
3658 		 *
3659 		 * However we can safely take this lock because its the child
3660 		 * ctx->mutex.
3661 		 */
3662 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
3663 
3664 		/*
3665 		 * We have to re-check the event->owner field, if it is cleared
3666 		 * we raced with perf_event_exit_task(), acquiring the mutex
3667 		 * ensured they're done, and we can proceed with freeing the
3668 		 * event.
3669 		 */
3670 		if (event->owner)
3671 			list_del_init(&event->owner_entry);
3672 		mutex_unlock(&owner->perf_event_mutex);
3673 		put_task_struct(owner);
3674 	}
3675 }
3676 
3677 static void put_event(struct perf_event *event)
3678 {
3679 	struct perf_event_context *ctx;
3680 
3681 	if (!atomic_long_dec_and_test(&event->refcount))
3682 		return;
3683 
3684 	if (!is_kernel_event(event))
3685 		perf_remove_from_owner(event);
3686 
3687 	/*
3688 	 * There are two ways this annotation is useful:
3689 	 *
3690 	 *  1) there is a lock recursion from perf_event_exit_task
3691 	 *     see the comment there.
3692 	 *
3693 	 *  2) there is a lock-inversion with mmap_sem through
3694 	 *     perf_event_read_group(), which takes faults while
3695 	 *     holding ctx->mutex, however this is called after
3696 	 *     the last filedesc died, so there is no possibility
3697 	 *     to trigger the AB-BA case.
3698 	 */
3699 	ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING);
3700 	WARN_ON_ONCE(ctx->parent_ctx);
3701 	perf_remove_from_context(event, true);
3702 	perf_event_ctx_unlock(event, ctx);
3703 
3704 	_free_event(event);
3705 }
3706 
3707 int perf_event_release_kernel(struct perf_event *event)
3708 {
3709 	put_event(event);
3710 	return 0;
3711 }
3712 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3713 
3714 /*
3715  * Called when the last reference to the file is gone.
3716  */
3717 static int perf_release(struct inode *inode, struct file *file)
3718 {
3719 	put_event(file->private_data);
3720 	return 0;
3721 }
3722 
3723 /*
3724  * Remove all orphanes events from the context.
3725  */
3726 static void orphans_remove_work(struct work_struct *work)
3727 {
3728 	struct perf_event_context *ctx;
3729 	struct perf_event *event, *tmp;
3730 
3731 	ctx = container_of(work, struct perf_event_context,
3732 			   orphans_remove.work);
3733 
3734 	mutex_lock(&ctx->mutex);
3735 	list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
3736 		struct perf_event *parent_event = event->parent;
3737 
3738 		if (!is_orphaned_child(event))
3739 			continue;
3740 
3741 		perf_remove_from_context(event, true);
3742 
3743 		mutex_lock(&parent_event->child_mutex);
3744 		list_del_init(&event->child_list);
3745 		mutex_unlock(&parent_event->child_mutex);
3746 
3747 		free_event(event);
3748 		put_event(parent_event);
3749 	}
3750 
3751 	raw_spin_lock_irq(&ctx->lock);
3752 	ctx->orphans_remove_sched = false;
3753 	raw_spin_unlock_irq(&ctx->lock);
3754 	mutex_unlock(&ctx->mutex);
3755 
3756 	put_ctx(ctx);
3757 }
3758 
3759 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3760 {
3761 	struct perf_event *child;
3762 	u64 total = 0;
3763 
3764 	*enabled = 0;
3765 	*running = 0;
3766 
3767 	mutex_lock(&event->child_mutex);
3768 	total += perf_event_read(event);
3769 	*enabled += event->total_time_enabled +
3770 			atomic64_read(&event->child_total_time_enabled);
3771 	*running += event->total_time_running +
3772 			atomic64_read(&event->child_total_time_running);
3773 
3774 	list_for_each_entry(child, &event->child_list, child_list) {
3775 		total += perf_event_read(child);
3776 		*enabled += child->total_time_enabled;
3777 		*running += child->total_time_running;
3778 	}
3779 	mutex_unlock(&event->child_mutex);
3780 
3781 	return total;
3782 }
3783 EXPORT_SYMBOL_GPL(perf_event_read_value);
3784 
3785 static int perf_event_read_group(struct perf_event *event,
3786 				   u64 read_format, char __user *buf)
3787 {
3788 	struct perf_event *leader = event->group_leader, *sub;
3789 	struct perf_event_context *ctx = leader->ctx;
3790 	int n = 0, size = 0, ret;
3791 	u64 count, enabled, running;
3792 	u64 values[5];
3793 
3794 	lockdep_assert_held(&ctx->mutex);
3795 
3796 	count = perf_event_read_value(leader, &enabled, &running);
3797 
3798 	values[n++] = 1 + leader->nr_siblings;
3799 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3800 		values[n++] = enabled;
3801 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3802 		values[n++] = running;
3803 	values[n++] = count;
3804 	if (read_format & PERF_FORMAT_ID)
3805 		values[n++] = primary_event_id(leader);
3806 
3807 	size = n * sizeof(u64);
3808 
3809 	if (copy_to_user(buf, values, size))
3810 		return -EFAULT;
3811 
3812 	ret = size;
3813 
3814 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3815 		n = 0;
3816 
3817 		values[n++] = perf_event_read_value(sub, &enabled, &running);
3818 		if (read_format & PERF_FORMAT_ID)
3819 			values[n++] = primary_event_id(sub);
3820 
3821 		size = n * sizeof(u64);
3822 
3823 		if (copy_to_user(buf + ret, values, size)) {
3824 			return -EFAULT;
3825 		}
3826 
3827 		ret += size;
3828 	}
3829 
3830 	return ret;
3831 }
3832 
3833 static int perf_event_read_one(struct perf_event *event,
3834 				 u64 read_format, char __user *buf)
3835 {
3836 	u64 enabled, running;
3837 	u64 values[4];
3838 	int n = 0;
3839 
3840 	values[n++] = perf_event_read_value(event, &enabled, &running);
3841 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3842 		values[n++] = enabled;
3843 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3844 		values[n++] = running;
3845 	if (read_format & PERF_FORMAT_ID)
3846 		values[n++] = primary_event_id(event);
3847 
3848 	if (copy_to_user(buf, values, n * sizeof(u64)))
3849 		return -EFAULT;
3850 
3851 	return n * sizeof(u64);
3852 }
3853 
3854 static bool is_event_hup(struct perf_event *event)
3855 {
3856 	bool no_children;
3857 
3858 	if (event->state != PERF_EVENT_STATE_EXIT)
3859 		return false;
3860 
3861 	mutex_lock(&event->child_mutex);
3862 	no_children = list_empty(&event->child_list);
3863 	mutex_unlock(&event->child_mutex);
3864 	return no_children;
3865 }
3866 
3867 /*
3868  * Read the performance event - simple non blocking version for now
3869  */
3870 static ssize_t
3871 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
3872 {
3873 	u64 read_format = event->attr.read_format;
3874 	int ret;
3875 
3876 	/*
3877 	 * Return end-of-file for a read on a event that is in
3878 	 * error state (i.e. because it was pinned but it couldn't be
3879 	 * scheduled on to the CPU at some point).
3880 	 */
3881 	if (event->state == PERF_EVENT_STATE_ERROR)
3882 		return 0;
3883 
3884 	if (count < event->read_size)
3885 		return -ENOSPC;
3886 
3887 	WARN_ON_ONCE(event->ctx->parent_ctx);
3888 	if (read_format & PERF_FORMAT_GROUP)
3889 		ret = perf_event_read_group(event, read_format, buf);
3890 	else
3891 		ret = perf_event_read_one(event, read_format, buf);
3892 
3893 	return ret;
3894 }
3895 
3896 static ssize_t
3897 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3898 {
3899 	struct perf_event *event = file->private_data;
3900 	struct perf_event_context *ctx;
3901 	int ret;
3902 
3903 	ctx = perf_event_ctx_lock(event);
3904 	ret = perf_read_hw(event, buf, count);
3905 	perf_event_ctx_unlock(event, ctx);
3906 
3907 	return ret;
3908 }
3909 
3910 static unsigned int perf_poll(struct file *file, poll_table *wait)
3911 {
3912 	struct perf_event *event = file->private_data;
3913 	struct ring_buffer *rb;
3914 	unsigned int events = POLLHUP;
3915 
3916 	poll_wait(file, &event->waitq, wait);
3917 
3918 	if (is_event_hup(event))
3919 		return events;
3920 
3921 	/*
3922 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
3923 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
3924 	 */
3925 	mutex_lock(&event->mmap_mutex);
3926 	rb = event->rb;
3927 	if (rb)
3928 		events = atomic_xchg(&rb->poll, 0);
3929 	mutex_unlock(&event->mmap_mutex);
3930 	return events;
3931 }
3932 
3933 static void _perf_event_reset(struct perf_event *event)
3934 {
3935 	(void)perf_event_read(event);
3936 	local64_set(&event->count, 0);
3937 	perf_event_update_userpage(event);
3938 }
3939 
3940 /*
3941  * Holding the top-level event's child_mutex means that any
3942  * descendant process that has inherited this event will block
3943  * in sync_child_event if it goes to exit, thus satisfying the
3944  * task existence requirements of perf_event_enable/disable.
3945  */
3946 static void perf_event_for_each_child(struct perf_event *event,
3947 					void (*func)(struct perf_event *))
3948 {
3949 	struct perf_event *child;
3950 
3951 	WARN_ON_ONCE(event->ctx->parent_ctx);
3952 
3953 	mutex_lock(&event->child_mutex);
3954 	func(event);
3955 	list_for_each_entry(child, &event->child_list, child_list)
3956 		func(child);
3957 	mutex_unlock(&event->child_mutex);
3958 }
3959 
3960 static void perf_event_for_each(struct perf_event *event,
3961 				  void (*func)(struct perf_event *))
3962 {
3963 	struct perf_event_context *ctx = event->ctx;
3964 	struct perf_event *sibling;
3965 
3966 	lockdep_assert_held(&ctx->mutex);
3967 
3968 	event = event->group_leader;
3969 
3970 	perf_event_for_each_child(event, func);
3971 	list_for_each_entry(sibling, &event->sibling_list, group_entry)
3972 		perf_event_for_each_child(sibling, func);
3973 }
3974 
3975 static int perf_event_period(struct perf_event *event, u64 __user *arg)
3976 {
3977 	struct perf_event_context *ctx = event->ctx;
3978 	int ret = 0, active;
3979 	u64 value;
3980 
3981 	if (!is_sampling_event(event))
3982 		return -EINVAL;
3983 
3984 	if (copy_from_user(&value, arg, sizeof(value)))
3985 		return -EFAULT;
3986 
3987 	if (!value)
3988 		return -EINVAL;
3989 
3990 	raw_spin_lock_irq(&ctx->lock);
3991 	if (event->attr.freq) {
3992 		if (value > sysctl_perf_event_sample_rate) {
3993 			ret = -EINVAL;
3994 			goto unlock;
3995 		}
3996 
3997 		event->attr.sample_freq = value;
3998 	} else {
3999 		event->attr.sample_period = value;
4000 		event->hw.sample_period = value;
4001 	}
4002 
4003 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
4004 	if (active) {
4005 		perf_pmu_disable(ctx->pmu);
4006 		event->pmu->stop(event, PERF_EF_UPDATE);
4007 	}
4008 
4009 	local64_set(&event->hw.period_left, 0);
4010 
4011 	if (active) {
4012 		event->pmu->start(event, PERF_EF_RELOAD);
4013 		perf_pmu_enable(ctx->pmu);
4014 	}
4015 
4016 unlock:
4017 	raw_spin_unlock_irq(&ctx->lock);
4018 
4019 	return ret;
4020 }
4021 
4022 static const struct file_operations perf_fops;
4023 
4024 static inline int perf_fget_light(int fd, struct fd *p)
4025 {
4026 	struct fd f = fdget(fd);
4027 	if (!f.file)
4028 		return -EBADF;
4029 
4030 	if (f.file->f_op != &perf_fops) {
4031 		fdput(f);
4032 		return -EBADF;
4033 	}
4034 	*p = f;
4035 	return 0;
4036 }
4037 
4038 static int perf_event_set_output(struct perf_event *event,
4039 				 struct perf_event *output_event);
4040 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4041 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4042 
4043 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4044 {
4045 	void (*func)(struct perf_event *);
4046 	u32 flags = arg;
4047 
4048 	switch (cmd) {
4049 	case PERF_EVENT_IOC_ENABLE:
4050 		func = _perf_event_enable;
4051 		break;
4052 	case PERF_EVENT_IOC_DISABLE:
4053 		func = _perf_event_disable;
4054 		break;
4055 	case PERF_EVENT_IOC_RESET:
4056 		func = _perf_event_reset;
4057 		break;
4058 
4059 	case PERF_EVENT_IOC_REFRESH:
4060 		return _perf_event_refresh(event, arg);
4061 
4062 	case PERF_EVENT_IOC_PERIOD:
4063 		return perf_event_period(event, (u64 __user *)arg);
4064 
4065 	case PERF_EVENT_IOC_ID:
4066 	{
4067 		u64 id = primary_event_id(event);
4068 
4069 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4070 			return -EFAULT;
4071 		return 0;
4072 	}
4073 
4074 	case PERF_EVENT_IOC_SET_OUTPUT:
4075 	{
4076 		int ret;
4077 		if (arg != -1) {
4078 			struct perf_event *output_event;
4079 			struct fd output;
4080 			ret = perf_fget_light(arg, &output);
4081 			if (ret)
4082 				return ret;
4083 			output_event = output.file->private_data;
4084 			ret = perf_event_set_output(event, output_event);
4085 			fdput(output);
4086 		} else {
4087 			ret = perf_event_set_output(event, NULL);
4088 		}
4089 		return ret;
4090 	}
4091 
4092 	case PERF_EVENT_IOC_SET_FILTER:
4093 		return perf_event_set_filter(event, (void __user *)arg);
4094 
4095 	case PERF_EVENT_IOC_SET_BPF:
4096 		return perf_event_set_bpf_prog(event, arg);
4097 
4098 	default:
4099 		return -ENOTTY;
4100 	}
4101 
4102 	if (flags & PERF_IOC_FLAG_GROUP)
4103 		perf_event_for_each(event, func);
4104 	else
4105 		perf_event_for_each_child(event, func);
4106 
4107 	return 0;
4108 }
4109 
4110 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4111 {
4112 	struct perf_event *event = file->private_data;
4113 	struct perf_event_context *ctx;
4114 	long ret;
4115 
4116 	ctx = perf_event_ctx_lock(event);
4117 	ret = _perf_ioctl(event, cmd, arg);
4118 	perf_event_ctx_unlock(event, ctx);
4119 
4120 	return ret;
4121 }
4122 
4123 #ifdef CONFIG_COMPAT
4124 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4125 				unsigned long arg)
4126 {
4127 	switch (_IOC_NR(cmd)) {
4128 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4129 	case _IOC_NR(PERF_EVENT_IOC_ID):
4130 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4131 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4132 			cmd &= ~IOCSIZE_MASK;
4133 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4134 		}
4135 		break;
4136 	}
4137 	return perf_ioctl(file, cmd, arg);
4138 }
4139 #else
4140 # define perf_compat_ioctl NULL
4141 #endif
4142 
4143 int perf_event_task_enable(void)
4144 {
4145 	struct perf_event_context *ctx;
4146 	struct perf_event *event;
4147 
4148 	mutex_lock(&current->perf_event_mutex);
4149 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4150 		ctx = perf_event_ctx_lock(event);
4151 		perf_event_for_each_child(event, _perf_event_enable);
4152 		perf_event_ctx_unlock(event, ctx);
4153 	}
4154 	mutex_unlock(&current->perf_event_mutex);
4155 
4156 	return 0;
4157 }
4158 
4159 int perf_event_task_disable(void)
4160 {
4161 	struct perf_event_context *ctx;
4162 	struct perf_event *event;
4163 
4164 	mutex_lock(&current->perf_event_mutex);
4165 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4166 		ctx = perf_event_ctx_lock(event);
4167 		perf_event_for_each_child(event, _perf_event_disable);
4168 		perf_event_ctx_unlock(event, ctx);
4169 	}
4170 	mutex_unlock(&current->perf_event_mutex);
4171 
4172 	return 0;
4173 }
4174 
4175 static int perf_event_index(struct perf_event *event)
4176 {
4177 	if (event->hw.state & PERF_HES_STOPPED)
4178 		return 0;
4179 
4180 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4181 		return 0;
4182 
4183 	return event->pmu->event_idx(event);
4184 }
4185 
4186 static void calc_timer_values(struct perf_event *event,
4187 				u64 *now,
4188 				u64 *enabled,
4189 				u64 *running)
4190 {
4191 	u64 ctx_time;
4192 
4193 	*now = perf_clock();
4194 	ctx_time = event->shadow_ctx_time + *now;
4195 	*enabled = ctx_time - event->tstamp_enabled;
4196 	*running = ctx_time - event->tstamp_running;
4197 }
4198 
4199 static void perf_event_init_userpage(struct perf_event *event)
4200 {
4201 	struct perf_event_mmap_page *userpg;
4202 	struct ring_buffer *rb;
4203 
4204 	rcu_read_lock();
4205 	rb = rcu_dereference(event->rb);
4206 	if (!rb)
4207 		goto unlock;
4208 
4209 	userpg = rb->user_page;
4210 
4211 	/* Allow new userspace to detect that bit 0 is deprecated */
4212 	userpg->cap_bit0_is_deprecated = 1;
4213 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4214 	userpg->data_offset = PAGE_SIZE;
4215 	userpg->data_size = perf_data_size(rb);
4216 
4217 unlock:
4218 	rcu_read_unlock();
4219 }
4220 
4221 void __weak arch_perf_update_userpage(
4222 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4223 {
4224 }
4225 
4226 /*
4227  * Callers need to ensure there can be no nesting of this function, otherwise
4228  * the seqlock logic goes bad. We can not serialize this because the arch
4229  * code calls this from NMI context.
4230  */
4231 void perf_event_update_userpage(struct perf_event *event)
4232 {
4233 	struct perf_event_mmap_page *userpg;
4234 	struct ring_buffer *rb;
4235 	u64 enabled, running, now;
4236 
4237 	rcu_read_lock();
4238 	rb = rcu_dereference(event->rb);
4239 	if (!rb)
4240 		goto unlock;
4241 
4242 	/*
4243 	 * compute total_time_enabled, total_time_running
4244 	 * based on snapshot values taken when the event
4245 	 * was last scheduled in.
4246 	 *
4247 	 * we cannot simply called update_context_time()
4248 	 * because of locking issue as we can be called in
4249 	 * NMI context
4250 	 */
4251 	calc_timer_values(event, &now, &enabled, &running);
4252 
4253 	userpg = rb->user_page;
4254 	/*
4255 	 * Disable preemption so as to not let the corresponding user-space
4256 	 * spin too long if we get preempted.
4257 	 */
4258 	preempt_disable();
4259 	++userpg->lock;
4260 	barrier();
4261 	userpg->index = perf_event_index(event);
4262 	userpg->offset = perf_event_count(event);
4263 	if (userpg->index)
4264 		userpg->offset -= local64_read(&event->hw.prev_count);
4265 
4266 	userpg->time_enabled = enabled +
4267 			atomic64_read(&event->child_total_time_enabled);
4268 
4269 	userpg->time_running = running +
4270 			atomic64_read(&event->child_total_time_running);
4271 
4272 	arch_perf_update_userpage(event, userpg, now);
4273 
4274 	barrier();
4275 	++userpg->lock;
4276 	preempt_enable();
4277 unlock:
4278 	rcu_read_unlock();
4279 }
4280 
4281 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4282 {
4283 	struct perf_event *event = vma->vm_file->private_data;
4284 	struct ring_buffer *rb;
4285 	int ret = VM_FAULT_SIGBUS;
4286 
4287 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
4288 		if (vmf->pgoff == 0)
4289 			ret = 0;
4290 		return ret;
4291 	}
4292 
4293 	rcu_read_lock();
4294 	rb = rcu_dereference(event->rb);
4295 	if (!rb)
4296 		goto unlock;
4297 
4298 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4299 		goto unlock;
4300 
4301 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4302 	if (!vmf->page)
4303 		goto unlock;
4304 
4305 	get_page(vmf->page);
4306 	vmf->page->mapping = vma->vm_file->f_mapping;
4307 	vmf->page->index   = vmf->pgoff;
4308 
4309 	ret = 0;
4310 unlock:
4311 	rcu_read_unlock();
4312 
4313 	return ret;
4314 }
4315 
4316 static void ring_buffer_attach(struct perf_event *event,
4317 			       struct ring_buffer *rb)
4318 {
4319 	struct ring_buffer *old_rb = NULL;
4320 	unsigned long flags;
4321 
4322 	if (event->rb) {
4323 		/*
4324 		 * Should be impossible, we set this when removing
4325 		 * event->rb_entry and wait/clear when adding event->rb_entry.
4326 		 */
4327 		WARN_ON_ONCE(event->rcu_pending);
4328 
4329 		old_rb = event->rb;
4330 		spin_lock_irqsave(&old_rb->event_lock, flags);
4331 		list_del_rcu(&event->rb_entry);
4332 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
4333 
4334 		event->rcu_batches = get_state_synchronize_rcu();
4335 		event->rcu_pending = 1;
4336 	}
4337 
4338 	if (rb) {
4339 		if (event->rcu_pending) {
4340 			cond_synchronize_rcu(event->rcu_batches);
4341 			event->rcu_pending = 0;
4342 		}
4343 
4344 		spin_lock_irqsave(&rb->event_lock, flags);
4345 		list_add_rcu(&event->rb_entry, &rb->event_list);
4346 		spin_unlock_irqrestore(&rb->event_lock, flags);
4347 	}
4348 
4349 	rcu_assign_pointer(event->rb, rb);
4350 
4351 	if (old_rb) {
4352 		ring_buffer_put(old_rb);
4353 		/*
4354 		 * Since we detached before setting the new rb, so that we
4355 		 * could attach the new rb, we could have missed a wakeup.
4356 		 * Provide it now.
4357 		 */
4358 		wake_up_all(&event->waitq);
4359 	}
4360 }
4361 
4362 static void ring_buffer_wakeup(struct perf_event *event)
4363 {
4364 	struct ring_buffer *rb;
4365 
4366 	rcu_read_lock();
4367 	rb = rcu_dereference(event->rb);
4368 	if (rb) {
4369 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4370 			wake_up_all(&event->waitq);
4371 	}
4372 	rcu_read_unlock();
4373 }
4374 
4375 struct ring_buffer *ring_buffer_get(struct perf_event *event)
4376 {
4377 	struct ring_buffer *rb;
4378 
4379 	rcu_read_lock();
4380 	rb = rcu_dereference(event->rb);
4381 	if (rb) {
4382 		if (!atomic_inc_not_zero(&rb->refcount))
4383 			rb = NULL;
4384 	}
4385 	rcu_read_unlock();
4386 
4387 	return rb;
4388 }
4389 
4390 void ring_buffer_put(struct ring_buffer *rb)
4391 {
4392 	if (!atomic_dec_and_test(&rb->refcount))
4393 		return;
4394 
4395 	WARN_ON_ONCE(!list_empty(&rb->event_list));
4396 
4397 	call_rcu(&rb->rcu_head, rb_free_rcu);
4398 }
4399 
4400 static void perf_mmap_open(struct vm_area_struct *vma)
4401 {
4402 	struct perf_event *event = vma->vm_file->private_data;
4403 
4404 	atomic_inc(&event->mmap_count);
4405 	atomic_inc(&event->rb->mmap_count);
4406 
4407 	if (vma->vm_pgoff)
4408 		atomic_inc(&event->rb->aux_mmap_count);
4409 
4410 	if (event->pmu->event_mapped)
4411 		event->pmu->event_mapped(event);
4412 }
4413 
4414 /*
4415  * A buffer can be mmap()ed multiple times; either directly through the same
4416  * event, or through other events by use of perf_event_set_output().
4417  *
4418  * In order to undo the VM accounting done by perf_mmap() we need to destroy
4419  * the buffer here, where we still have a VM context. This means we need
4420  * to detach all events redirecting to us.
4421  */
4422 static void perf_mmap_close(struct vm_area_struct *vma)
4423 {
4424 	struct perf_event *event = vma->vm_file->private_data;
4425 
4426 	struct ring_buffer *rb = ring_buffer_get(event);
4427 	struct user_struct *mmap_user = rb->mmap_user;
4428 	int mmap_locked = rb->mmap_locked;
4429 	unsigned long size = perf_data_size(rb);
4430 
4431 	if (event->pmu->event_unmapped)
4432 		event->pmu->event_unmapped(event);
4433 
4434 	/*
4435 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
4436 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
4437 	 * serialize with perf_mmap here.
4438 	 */
4439 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4440 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4441 		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4442 		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4443 
4444 		rb_free_aux(rb);
4445 		mutex_unlock(&event->mmap_mutex);
4446 	}
4447 
4448 	atomic_dec(&rb->mmap_count);
4449 
4450 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4451 		goto out_put;
4452 
4453 	ring_buffer_attach(event, NULL);
4454 	mutex_unlock(&event->mmap_mutex);
4455 
4456 	/* If there's still other mmap()s of this buffer, we're done. */
4457 	if (atomic_read(&rb->mmap_count))
4458 		goto out_put;
4459 
4460 	/*
4461 	 * No other mmap()s, detach from all other events that might redirect
4462 	 * into the now unreachable buffer. Somewhat complicated by the
4463 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4464 	 */
4465 again:
4466 	rcu_read_lock();
4467 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4468 		if (!atomic_long_inc_not_zero(&event->refcount)) {
4469 			/*
4470 			 * This event is en-route to free_event() which will
4471 			 * detach it and remove it from the list.
4472 			 */
4473 			continue;
4474 		}
4475 		rcu_read_unlock();
4476 
4477 		mutex_lock(&event->mmap_mutex);
4478 		/*
4479 		 * Check we didn't race with perf_event_set_output() which can
4480 		 * swizzle the rb from under us while we were waiting to
4481 		 * acquire mmap_mutex.
4482 		 *
4483 		 * If we find a different rb; ignore this event, a next
4484 		 * iteration will no longer find it on the list. We have to
4485 		 * still restart the iteration to make sure we're not now
4486 		 * iterating the wrong list.
4487 		 */
4488 		if (event->rb == rb)
4489 			ring_buffer_attach(event, NULL);
4490 
4491 		mutex_unlock(&event->mmap_mutex);
4492 		put_event(event);
4493 
4494 		/*
4495 		 * Restart the iteration; either we're on the wrong list or
4496 		 * destroyed its integrity by doing a deletion.
4497 		 */
4498 		goto again;
4499 	}
4500 	rcu_read_unlock();
4501 
4502 	/*
4503 	 * It could be there's still a few 0-ref events on the list; they'll
4504 	 * get cleaned up by free_event() -- they'll also still have their
4505 	 * ref on the rb and will free it whenever they are done with it.
4506 	 *
4507 	 * Aside from that, this buffer is 'fully' detached and unmapped,
4508 	 * undo the VM accounting.
4509 	 */
4510 
4511 	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4512 	vma->vm_mm->pinned_vm -= mmap_locked;
4513 	free_uid(mmap_user);
4514 
4515 out_put:
4516 	ring_buffer_put(rb); /* could be last */
4517 }
4518 
4519 static const struct vm_operations_struct perf_mmap_vmops = {
4520 	.open		= perf_mmap_open,
4521 	.close		= perf_mmap_close, /* non mergable */
4522 	.fault		= perf_mmap_fault,
4523 	.page_mkwrite	= perf_mmap_fault,
4524 };
4525 
4526 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4527 {
4528 	struct perf_event *event = file->private_data;
4529 	unsigned long user_locked, user_lock_limit;
4530 	struct user_struct *user = current_user();
4531 	unsigned long locked, lock_limit;
4532 	struct ring_buffer *rb = NULL;
4533 	unsigned long vma_size;
4534 	unsigned long nr_pages;
4535 	long user_extra = 0, extra = 0;
4536 	int ret = 0, flags = 0;
4537 
4538 	/*
4539 	 * Don't allow mmap() of inherited per-task counters. This would
4540 	 * create a performance issue due to all children writing to the
4541 	 * same rb.
4542 	 */
4543 	if (event->cpu == -1 && event->attr.inherit)
4544 		return -EINVAL;
4545 
4546 	if (!(vma->vm_flags & VM_SHARED))
4547 		return -EINVAL;
4548 
4549 	vma_size = vma->vm_end - vma->vm_start;
4550 
4551 	if (vma->vm_pgoff == 0) {
4552 		nr_pages = (vma_size / PAGE_SIZE) - 1;
4553 	} else {
4554 		/*
4555 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
4556 		 * mapped, all subsequent mappings should have the same size
4557 		 * and offset. Must be above the normal perf buffer.
4558 		 */
4559 		u64 aux_offset, aux_size;
4560 
4561 		if (!event->rb)
4562 			return -EINVAL;
4563 
4564 		nr_pages = vma_size / PAGE_SIZE;
4565 
4566 		mutex_lock(&event->mmap_mutex);
4567 		ret = -EINVAL;
4568 
4569 		rb = event->rb;
4570 		if (!rb)
4571 			goto aux_unlock;
4572 
4573 		aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
4574 		aux_size = ACCESS_ONCE(rb->user_page->aux_size);
4575 
4576 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
4577 			goto aux_unlock;
4578 
4579 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
4580 			goto aux_unlock;
4581 
4582 		/* already mapped with a different offset */
4583 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
4584 			goto aux_unlock;
4585 
4586 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
4587 			goto aux_unlock;
4588 
4589 		/* already mapped with a different size */
4590 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
4591 			goto aux_unlock;
4592 
4593 		if (!is_power_of_2(nr_pages))
4594 			goto aux_unlock;
4595 
4596 		if (!atomic_inc_not_zero(&rb->mmap_count))
4597 			goto aux_unlock;
4598 
4599 		if (rb_has_aux(rb)) {
4600 			atomic_inc(&rb->aux_mmap_count);
4601 			ret = 0;
4602 			goto unlock;
4603 		}
4604 
4605 		atomic_set(&rb->aux_mmap_count, 1);
4606 		user_extra = nr_pages;
4607 
4608 		goto accounting;
4609 	}
4610 
4611 	/*
4612 	 * If we have rb pages ensure they're a power-of-two number, so we
4613 	 * can do bitmasks instead of modulo.
4614 	 */
4615 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
4616 		return -EINVAL;
4617 
4618 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
4619 		return -EINVAL;
4620 
4621 	WARN_ON_ONCE(event->ctx->parent_ctx);
4622 again:
4623 	mutex_lock(&event->mmap_mutex);
4624 	if (event->rb) {
4625 		if (event->rb->nr_pages != nr_pages) {
4626 			ret = -EINVAL;
4627 			goto unlock;
4628 		}
4629 
4630 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4631 			/*
4632 			 * Raced against perf_mmap_close() through
4633 			 * perf_event_set_output(). Try again, hope for better
4634 			 * luck.
4635 			 */
4636 			mutex_unlock(&event->mmap_mutex);
4637 			goto again;
4638 		}
4639 
4640 		goto unlock;
4641 	}
4642 
4643 	user_extra = nr_pages + 1;
4644 
4645 accounting:
4646 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
4647 
4648 	/*
4649 	 * Increase the limit linearly with more CPUs:
4650 	 */
4651 	user_lock_limit *= num_online_cpus();
4652 
4653 	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4654 
4655 	if (user_locked > user_lock_limit)
4656 		extra = user_locked - user_lock_limit;
4657 
4658 	lock_limit = rlimit(RLIMIT_MEMLOCK);
4659 	lock_limit >>= PAGE_SHIFT;
4660 	locked = vma->vm_mm->pinned_vm + extra;
4661 
4662 	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4663 		!capable(CAP_IPC_LOCK)) {
4664 		ret = -EPERM;
4665 		goto unlock;
4666 	}
4667 
4668 	WARN_ON(!rb && event->rb);
4669 
4670 	if (vma->vm_flags & VM_WRITE)
4671 		flags |= RING_BUFFER_WRITABLE;
4672 
4673 	if (!rb) {
4674 		rb = rb_alloc(nr_pages,
4675 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
4676 			      event->cpu, flags);
4677 
4678 		if (!rb) {
4679 			ret = -ENOMEM;
4680 			goto unlock;
4681 		}
4682 
4683 		atomic_set(&rb->mmap_count, 1);
4684 		rb->mmap_user = get_current_user();
4685 		rb->mmap_locked = extra;
4686 
4687 		ring_buffer_attach(event, rb);
4688 
4689 		perf_event_init_userpage(event);
4690 		perf_event_update_userpage(event);
4691 	} else {
4692 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
4693 				   event->attr.aux_watermark, flags);
4694 		if (!ret)
4695 			rb->aux_mmap_locked = extra;
4696 	}
4697 
4698 unlock:
4699 	if (!ret) {
4700 		atomic_long_add(user_extra, &user->locked_vm);
4701 		vma->vm_mm->pinned_vm += extra;
4702 
4703 		atomic_inc(&event->mmap_count);
4704 	} else if (rb) {
4705 		atomic_dec(&rb->mmap_count);
4706 	}
4707 aux_unlock:
4708 	mutex_unlock(&event->mmap_mutex);
4709 
4710 	/*
4711 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
4712 	 * vma.
4713 	 */
4714 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4715 	vma->vm_ops = &perf_mmap_vmops;
4716 
4717 	if (event->pmu->event_mapped)
4718 		event->pmu->event_mapped(event);
4719 
4720 	return ret;
4721 }
4722 
4723 static int perf_fasync(int fd, struct file *filp, int on)
4724 {
4725 	struct inode *inode = file_inode(filp);
4726 	struct perf_event *event = filp->private_data;
4727 	int retval;
4728 
4729 	mutex_lock(&inode->i_mutex);
4730 	retval = fasync_helper(fd, filp, on, &event->fasync);
4731 	mutex_unlock(&inode->i_mutex);
4732 
4733 	if (retval < 0)
4734 		return retval;
4735 
4736 	return 0;
4737 }
4738 
4739 static const struct file_operations perf_fops = {
4740 	.llseek			= no_llseek,
4741 	.release		= perf_release,
4742 	.read			= perf_read,
4743 	.poll			= perf_poll,
4744 	.unlocked_ioctl		= perf_ioctl,
4745 	.compat_ioctl		= perf_compat_ioctl,
4746 	.mmap			= perf_mmap,
4747 	.fasync			= perf_fasync,
4748 };
4749 
4750 /*
4751  * Perf event wakeup
4752  *
4753  * If there's data, ensure we set the poll() state and publish everything
4754  * to user-space before waking everybody up.
4755  */
4756 
4757 void perf_event_wakeup(struct perf_event *event)
4758 {
4759 	ring_buffer_wakeup(event);
4760 
4761 	if (event->pending_kill) {
4762 		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
4763 		event->pending_kill = 0;
4764 	}
4765 }
4766 
4767 static void perf_pending_event(struct irq_work *entry)
4768 {
4769 	struct perf_event *event = container_of(entry,
4770 			struct perf_event, pending);
4771 	int rctx;
4772 
4773 	rctx = perf_swevent_get_recursion_context();
4774 	/*
4775 	 * If we 'fail' here, that's OK, it means recursion is already disabled
4776 	 * and we won't recurse 'further'.
4777 	 */
4778 
4779 	if (event->pending_disable) {
4780 		event->pending_disable = 0;
4781 		__perf_event_disable(event);
4782 	}
4783 
4784 	if (event->pending_wakeup) {
4785 		event->pending_wakeup = 0;
4786 		perf_event_wakeup(event);
4787 	}
4788 
4789 	if (rctx >= 0)
4790 		perf_swevent_put_recursion_context(rctx);
4791 }
4792 
4793 /*
4794  * We assume there is only KVM supporting the callbacks.
4795  * Later on, we might change it to a list if there is
4796  * another virtualization implementation supporting the callbacks.
4797  */
4798 struct perf_guest_info_callbacks *perf_guest_cbs;
4799 
4800 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4801 {
4802 	perf_guest_cbs = cbs;
4803 	return 0;
4804 }
4805 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4806 
4807 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4808 {
4809 	perf_guest_cbs = NULL;
4810 	return 0;
4811 }
4812 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4813 
4814 static void
4815 perf_output_sample_regs(struct perf_output_handle *handle,
4816 			struct pt_regs *regs, u64 mask)
4817 {
4818 	int bit;
4819 
4820 	for_each_set_bit(bit, (const unsigned long *) &mask,
4821 			 sizeof(mask) * BITS_PER_BYTE) {
4822 		u64 val;
4823 
4824 		val = perf_reg_value(regs, bit);
4825 		perf_output_put(handle, val);
4826 	}
4827 }
4828 
4829 static void perf_sample_regs_user(struct perf_regs *regs_user,
4830 				  struct pt_regs *regs,
4831 				  struct pt_regs *regs_user_copy)
4832 {
4833 	if (user_mode(regs)) {
4834 		regs_user->abi = perf_reg_abi(current);
4835 		regs_user->regs = regs;
4836 	} else if (current->mm) {
4837 		perf_get_regs_user(regs_user, regs, regs_user_copy);
4838 	} else {
4839 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
4840 		regs_user->regs = NULL;
4841 	}
4842 }
4843 
4844 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
4845 				  struct pt_regs *regs)
4846 {
4847 	regs_intr->regs = regs;
4848 	regs_intr->abi  = perf_reg_abi(current);
4849 }
4850 
4851 
4852 /*
4853  * Get remaining task size from user stack pointer.
4854  *
4855  * It'd be better to take stack vma map and limit this more
4856  * precisly, but there's no way to get it safely under interrupt,
4857  * so using TASK_SIZE as limit.
4858  */
4859 static u64 perf_ustack_task_size(struct pt_regs *regs)
4860 {
4861 	unsigned long addr = perf_user_stack_pointer(regs);
4862 
4863 	if (!addr || addr >= TASK_SIZE)
4864 		return 0;
4865 
4866 	return TASK_SIZE - addr;
4867 }
4868 
4869 static u16
4870 perf_sample_ustack_size(u16 stack_size, u16 header_size,
4871 			struct pt_regs *regs)
4872 {
4873 	u64 task_size;
4874 
4875 	/* No regs, no stack pointer, no dump. */
4876 	if (!regs)
4877 		return 0;
4878 
4879 	/*
4880 	 * Check if we fit in with the requested stack size into the:
4881 	 * - TASK_SIZE
4882 	 *   If we don't, we limit the size to the TASK_SIZE.
4883 	 *
4884 	 * - remaining sample size
4885 	 *   If we don't, we customize the stack size to
4886 	 *   fit in to the remaining sample size.
4887 	 */
4888 
4889 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
4890 	stack_size = min(stack_size, (u16) task_size);
4891 
4892 	/* Current header size plus static size and dynamic size. */
4893 	header_size += 2 * sizeof(u64);
4894 
4895 	/* Do we fit in with the current stack dump size? */
4896 	if ((u16) (header_size + stack_size) < header_size) {
4897 		/*
4898 		 * If we overflow the maximum size for the sample,
4899 		 * we customize the stack dump size to fit in.
4900 		 */
4901 		stack_size = USHRT_MAX - header_size - sizeof(u64);
4902 		stack_size = round_up(stack_size, sizeof(u64));
4903 	}
4904 
4905 	return stack_size;
4906 }
4907 
4908 static void
4909 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
4910 			  struct pt_regs *regs)
4911 {
4912 	/* Case of a kernel thread, nothing to dump */
4913 	if (!regs) {
4914 		u64 size = 0;
4915 		perf_output_put(handle, size);
4916 	} else {
4917 		unsigned long sp;
4918 		unsigned int rem;
4919 		u64 dyn_size;
4920 
4921 		/*
4922 		 * We dump:
4923 		 * static size
4924 		 *   - the size requested by user or the best one we can fit
4925 		 *     in to the sample max size
4926 		 * data
4927 		 *   - user stack dump data
4928 		 * dynamic size
4929 		 *   - the actual dumped size
4930 		 */
4931 
4932 		/* Static size. */
4933 		perf_output_put(handle, dump_size);
4934 
4935 		/* Data. */
4936 		sp = perf_user_stack_pointer(regs);
4937 		rem = __output_copy_user(handle, (void *) sp, dump_size);
4938 		dyn_size = dump_size - rem;
4939 
4940 		perf_output_skip(handle, rem);
4941 
4942 		/* Dynamic size. */
4943 		perf_output_put(handle, dyn_size);
4944 	}
4945 }
4946 
4947 static void __perf_event_header__init_id(struct perf_event_header *header,
4948 					 struct perf_sample_data *data,
4949 					 struct perf_event *event)
4950 {
4951 	u64 sample_type = event->attr.sample_type;
4952 
4953 	data->type = sample_type;
4954 	header->size += event->id_header_size;
4955 
4956 	if (sample_type & PERF_SAMPLE_TID) {
4957 		/* namespace issues */
4958 		data->tid_entry.pid = perf_event_pid(event, current);
4959 		data->tid_entry.tid = perf_event_tid(event, current);
4960 	}
4961 
4962 	if (sample_type & PERF_SAMPLE_TIME)
4963 		data->time = perf_event_clock(event);
4964 
4965 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
4966 		data->id = primary_event_id(event);
4967 
4968 	if (sample_type & PERF_SAMPLE_STREAM_ID)
4969 		data->stream_id = event->id;
4970 
4971 	if (sample_type & PERF_SAMPLE_CPU) {
4972 		data->cpu_entry.cpu	 = raw_smp_processor_id();
4973 		data->cpu_entry.reserved = 0;
4974 	}
4975 }
4976 
4977 void perf_event_header__init_id(struct perf_event_header *header,
4978 				struct perf_sample_data *data,
4979 				struct perf_event *event)
4980 {
4981 	if (event->attr.sample_id_all)
4982 		__perf_event_header__init_id(header, data, event);
4983 }
4984 
4985 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
4986 					   struct perf_sample_data *data)
4987 {
4988 	u64 sample_type = data->type;
4989 
4990 	if (sample_type & PERF_SAMPLE_TID)
4991 		perf_output_put(handle, data->tid_entry);
4992 
4993 	if (sample_type & PERF_SAMPLE_TIME)
4994 		perf_output_put(handle, data->time);
4995 
4996 	if (sample_type & PERF_SAMPLE_ID)
4997 		perf_output_put(handle, data->id);
4998 
4999 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5000 		perf_output_put(handle, data->stream_id);
5001 
5002 	if (sample_type & PERF_SAMPLE_CPU)
5003 		perf_output_put(handle, data->cpu_entry);
5004 
5005 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
5006 		perf_output_put(handle, data->id);
5007 }
5008 
5009 void perf_event__output_id_sample(struct perf_event *event,
5010 				  struct perf_output_handle *handle,
5011 				  struct perf_sample_data *sample)
5012 {
5013 	if (event->attr.sample_id_all)
5014 		__perf_event__output_id_sample(handle, sample);
5015 }
5016 
5017 static void perf_output_read_one(struct perf_output_handle *handle,
5018 				 struct perf_event *event,
5019 				 u64 enabled, u64 running)
5020 {
5021 	u64 read_format = event->attr.read_format;
5022 	u64 values[4];
5023 	int n = 0;
5024 
5025 	values[n++] = perf_event_count(event);
5026 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5027 		values[n++] = enabled +
5028 			atomic64_read(&event->child_total_time_enabled);
5029 	}
5030 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5031 		values[n++] = running +
5032 			atomic64_read(&event->child_total_time_running);
5033 	}
5034 	if (read_format & PERF_FORMAT_ID)
5035 		values[n++] = primary_event_id(event);
5036 
5037 	__output_copy(handle, values, n * sizeof(u64));
5038 }
5039 
5040 /*
5041  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5042  */
5043 static void perf_output_read_group(struct perf_output_handle *handle,
5044 			    struct perf_event *event,
5045 			    u64 enabled, u64 running)
5046 {
5047 	struct perf_event *leader = event->group_leader, *sub;
5048 	u64 read_format = event->attr.read_format;
5049 	u64 values[5];
5050 	int n = 0;
5051 
5052 	values[n++] = 1 + leader->nr_siblings;
5053 
5054 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5055 		values[n++] = enabled;
5056 
5057 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5058 		values[n++] = running;
5059 
5060 	if (leader != event)
5061 		leader->pmu->read(leader);
5062 
5063 	values[n++] = perf_event_count(leader);
5064 	if (read_format & PERF_FORMAT_ID)
5065 		values[n++] = primary_event_id(leader);
5066 
5067 	__output_copy(handle, values, n * sizeof(u64));
5068 
5069 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5070 		n = 0;
5071 
5072 		if ((sub != event) &&
5073 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
5074 			sub->pmu->read(sub);
5075 
5076 		values[n++] = perf_event_count(sub);
5077 		if (read_format & PERF_FORMAT_ID)
5078 			values[n++] = primary_event_id(sub);
5079 
5080 		__output_copy(handle, values, n * sizeof(u64));
5081 	}
5082 }
5083 
5084 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5085 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
5086 
5087 static void perf_output_read(struct perf_output_handle *handle,
5088 			     struct perf_event *event)
5089 {
5090 	u64 enabled = 0, running = 0, now;
5091 	u64 read_format = event->attr.read_format;
5092 
5093 	/*
5094 	 * compute total_time_enabled, total_time_running
5095 	 * based on snapshot values taken when the event
5096 	 * was last scheduled in.
5097 	 *
5098 	 * we cannot simply called update_context_time()
5099 	 * because of locking issue as we are called in
5100 	 * NMI context
5101 	 */
5102 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
5103 		calc_timer_values(event, &now, &enabled, &running);
5104 
5105 	if (event->attr.read_format & PERF_FORMAT_GROUP)
5106 		perf_output_read_group(handle, event, enabled, running);
5107 	else
5108 		perf_output_read_one(handle, event, enabled, running);
5109 }
5110 
5111 void perf_output_sample(struct perf_output_handle *handle,
5112 			struct perf_event_header *header,
5113 			struct perf_sample_data *data,
5114 			struct perf_event *event)
5115 {
5116 	u64 sample_type = data->type;
5117 
5118 	perf_output_put(handle, *header);
5119 
5120 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
5121 		perf_output_put(handle, data->id);
5122 
5123 	if (sample_type & PERF_SAMPLE_IP)
5124 		perf_output_put(handle, data->ip);
5125 
5126 	if (sample_type & PERF_SAMPLE_TID)
5127 		perf_output_put(handle, data->tid_entry);
5128 
5129 	if (sample_type & PERF_SAMPLE_TIME)
5130 		perf_output_put(handle, data->time);
5131 
5132 	if (sample_type & PERF_SAMPLE_ADDR)
5133 		perf_output_put(handle, data->addr);
5134 
5135 	if (sample_type & PERF_SAMPLE_ID)
5136 		perf_output_put(handle, data->id);
5137 
5138 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5139 		perf_output_put(handle, data->stream_id);
5140 
5141 	if (sample_type & PERF_SAMPLE_CPU)
5142 		perf_output_put(handle, data->cpu_entry);
5143 
5144 	if (sample_type & PERF_SAMPLE_PERIOD)
5145 		perf_output_put(handle, data->period);
5146 
5147 	if (sample_type & PERF_SAMPLE_READ)
5148 		perf_output_read(handle, event);
5149 
5150 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5151 		if (data->callchain) {
5152 			int size = 1;
5153 
5154 			if (data->callchain)
5155 				size += data->callchain->nr;
5156 
5157 			size *= sizeof(u64);
5158 
5159 			__output_copy(handle, data->callchain, size);
5160 		} else {
5161 			u64 nr = 0;
5162 			perf_output_put(handle, nr);
5163 		}
5164 	}
5165 
5166 	if (sample_type & PERF_SAMPLE_RAW) {
5167 		if (data->raw) {
5168 			perf_output_put(handle, data->raw->size);
5169 			__output_copy(handle, data->raw->data,
5170 					   data->raw->size);
5171 		} else {
5172 			struct {
5173 				u32	size;
5174 				u32	data;
5175 			} raw = {
5176 				.size = sizeof(u32),
5177 				.data = 0,
5178 			};
5179 			perf_output_put(handle, raw);
5180 		}
5181 	}
5182 
5183 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5184 		if (data->br_stack) {
5185 			size_t size;
5186 
5187 			size = data->br_stack->nr
5188 			     * sizeof(struct perf_branch_entry);
5189 
5190 			perf_output_put(handle, data->br_stack->nr);
5191 			perf_output_copy(handle, data->br_stack->entries, size);
5192 		} else {
5193 			/*
5194 			 * we always store at least the value of nr
5195 			 */
5196 			u64 nr = 0;
5197 			perf_output_put(handle, nr);
5198 		}
5199 	}
5200 
5201 	if (sample_type & PERF_SAMPLE_REGS_USER) {
5202 		u64 abi = data->regs_user.abi;
5203 
5204 		/*
5205 		 * If there are no regs to dump, notice it through
5206 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5207 		 */
5208 		perf_output_put(handle, abi);
5209 
5210 		if (abi) {
5211 			u64 mask = event->attr.sample_regs_user;
5212 			perf_output_sample_regs(handle,
5213 						data->regs_user.regs,
5214 						mask);
5215 		}
5216 	}
5217 
5218 	if (sample_type & PERF_SAMPLE_STACK_USER) {
5219 		perf_output_sample_ustack(handle,
5220 					  data->stack_user_size,
5221 					  data->regs_user.regs);
5222 	}
5223 
5224 	if (sample_type & PERF_SAMPLE_WEIGHT)
5225 		perf_output_put(handle, data->weight);
5226 
5227 	if (sample_type & PERF_SAMPLE_DATA_SRC)
5228 		perf_output_put(handle, data->data_src.val);
5229 
5230 	if (sample_type & PERF_SAMPLE_TRANSACTION)
5231 		perf_output_put(handle, data->txn);
5232 
5233 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
5234 		u64 abi = data->regs_intr.abi;
5235 		/*
5236 		 * If there are no regs to dump, notice it through
5237 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5238 		 */
5239 		perf_output_put(handle, abi);
5240 
5241 		if (abi) {
5242 			u64 mask = event->attr.sample_regs_intr;
5243 
5244 			perf_output_sample_regs(handle,
5245 						data->regs_intr.regs,
5246 						mask);
5247 		}
5248 	}
5249 
5250 	if (!event->attr.watermark) {
5251 		int wakeup_events = event->attr.wakeup_events;
5252 
5253 		if (wakeup_events) {
5254 			struct ring_buffer *rb = handle->rb;
5255 			int events = local_inc_return(&rb->events);
5256 
5257 			if (events >= wakeup_events) {
5258 				local_sub(wakeup_events, &rb->events);
5259 				local_inc(&rb->wakeup);
5260 			}
5261 		}
5262 	}
5263 }
5264 
5265 void perf_prepare_sample(struct perf_event_header *header,
5266 			 struct perf_sample_data *data,
5267 			 struct perf_event *event,
5268 			 struct pt_regs *regs)
5269 {
5270 	u64 sample_type = event->attr.sample_type;
5271 
5272 	header->type = PERF_RECORD_SAMPLE;
5273 	header->size = sizeof(*header) + event->header_size;
5274 
5275 	header->misc = 0;
5276 	header->misc |= perf_misc_flags(regs);
5277 
5278 	__perf_event_header__init_id(header, data, event);
5279 
5280 	if (sample_type & PERF_SAMPLE_IP)
5281 		data->ip = perf_instruction_pointer(regs);
5282 
5283 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5284 		int size = 1;
5285 
5286 		data->callchain = perf_callchain(event, regs);
5287 
5288 		if (data->callchain)
5289 			size += data->callchain->nr;
5290 
5291 		header->size += size * sizeof(u64);
5292 	}
5293 
5294 	if (sample_type & PERF_SAMPLE_RAW) {
5295 		int size = sizeof(u32);
5296 
5297 		if (data->raw)
5298 			size += data->raw->size;
5299 		else
5300 			size += sizeof(u32);
5301 
5302 		WARN_ON_ONCE(size & (sizeof(u64)-1));
5303 		header->size += size;
5304 	}
5305 
5306 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5307 		int size = sizeof(u64); /* nr */
5308 		if (data->br_stack) {
5309 			size += data->br_stack->nr
5310 			      * sizeof(struct perf_branch_entry);
5311 		}
5312 		header->size += size;
5313 	}
5314 
5315 	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5316 		perf_sample_regs_user(&data->regs_user, regs,
5317 				      &data->regs_user_copy);
5318 
5319 	if (sample_type & PERF_SAMPLE_REGS_USER) {
5320 		/* regs dump ABI info */
5321 		int size = sizeof(u64);
5322 
5323 		if (data->regs_user.regs) {
5324 			u64 mask = event->attr.sample_regs_user;
5325 			size += hweight64(mask) * sizeof(u64);
5326 		}
5327 
5328 		header->size += size;
5329 	}
5330 
5331 	if (sample_type & PERF_SAMPLE_STACK_USER) {
5332 		/*
5333 		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5334 		 * processed as the last one or have additional check added
5335 		 * in case new sample type is added, because we could eat
5336 		 * up the rest of the sample size.
5337 		 */
5338 		u16 stack_size = event->attr.sample_stack_user;
5339 		u16 size = sizeof(u64);
5340 
5341 		stack_size = perf_sample_ustack_size(stack_size, header->size,
5342 						     data->regs_user.regs);
5343 
5344 		/*
5345 		 * If there is something to dump, add space for the dump
5346 		 * itself and for the field that tells the dynamic size,
5347 		 * which is how many have been actually dumped.
5348 		 */
5349 		if (stack_size)
5350 			size += sizeof(u64) + stack_size;
5351 
5352 		data->stack_user_size = stack_size;
5353 		header->size += size;
5354 	}
5355 
5356 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
5357 		/* regs dump ABI info */
5358 		int size = sizeof(u64);
5359 
5360 		perf_sample_regs_intr(&data->regs_intr, regs);
5361 
5362 		if (data->regs_intr.regs) {
5363 			u64 mask = event->attr.sample_regs_intr;
5364 
5365 			size += hweight64(mask) * sizeof(u64);
5366 		}
5367 
5368 		header->size += size;
5369 	}
5370 }
5371 
5372 void perf_event_output(struct perf_event *event,
5373 			struct perf_sample_data *data,
5374 			struct pt_regs *regs)
5375 {
5376 	struct perf_output_handle handle;
5377 	struct perf_event_header header;
5378 
5379 	/* protect the callchain buffers */
5380 	rcu_read_lock();
5381 
5382 	perf_prepare_sample(&header, data, event, regs);
5383 
5384 	if (perf_output_begin(&handle, event, header.size))
5385 		goto exit;
5386 
5387 	perf_output_sample(&handle, &header, data, event);
5388 
5389 	perf_output_end(&handle);
5390 
5391 exit:
5392 	rcu_read_unlock();
5393 }
5394 
5395 /*
5396  * read event_id
5397  */
5398 
5399 struct perf_read_event {
5400 	struct perf_event_header	header;
5401 
5402 	u32				pid;
5403 	u32				tid;
5404 };
5405 
5406 static void
5407 perf_event_read_event(struct perf_event *event,
5408 			struct task_struct *task)
5409 {
5410 	struct perf_output_handle handle;
5411 	struct perf_sample_data sample;
5412 	struct perf_read_event read_event = {
5413 		.header = {
5414 			.type = PERF_RECORD_READ,
5415 			.misc = 0,
5416 			.size = sizeof(read_event) + event->read_size,
5417 		},
5418 		.pid = perf_event_pid(event, task),
5419 		.tid = perf_event_tid(event, task),
5420 	};
5421 	int ret;
5422 
5423 	perf_event_header__init_id(&read_event.header, &sample, event);
5424 	ret = perf_output_begin(&handle, event, read_event.header.size);
5425 	if (ret)
5426 		return;
5427 
5428 	perf_output_put(&handle, read_event);
5429 	perf_output_read(&handle, event);
5430 	perf_event__output_id_sample(event, &handle, &sample);
5431 
5432 	perf_output_end(&handle);
5433 }
5434 
5435 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
5436 
5437 static void
5438 perf_event_aux_ctx(struct perf_event_context *ctx,
5439 		   perf_event_aux_output_cb output,
5440 		   void *data)
5441 {
5442 	struct perf_event *event;
5443 
5444 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5445 		if (event->state < PERF_EVENT_STATE_INACTIVE)
5446 			continue;
5447 		if (!event_filter_match(event))
5448 			continue;
5449 		output(event, data);
5450 	}
5451 }
5452 
5453 static void
5454 perf_event_aux(perf_event_aux_output_cb output, void *data,
5455 	       struct perf_event_context *task_ctx)
5456 {
5457 	struct perf_cpu_context *cpuctx;
5458 	struct perf_event_context *ctx;
5459 	struct pmu *pmu;
5460 	int ctxn;
5461 
5462 	rcu_read_lock();
5463 	list_for_each_entry_rcu(pmu, &pmus, entry) {
5464 		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5465 		if (cpuctx->unique_pmu != pmu)
5466 			goto next;
5467 		perf_event_aux_ctx(&cpuctx->ctx, output, data);
5468 		if (task_ctx)
5469 			goto next;
5470 		ctxn = pmu->task_ctx_nr;
5471 		if (ctxn < 0)
5472 			goto next;
5473 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5474 		if (ctx)
5475 			perf_event_aux_ctx(ctx, output, data);
5476 next:
5477 		put_cpu_ptr(pmu->pmu_cpu_context);
5478 	}
5479 
5480 	if (task_ctx) {
5481 		preempt_disable();
5482 		perf_event_aux_ctx(task_ctx, output, data);
5483 		preempt_enable();
5484 	}
5485 	rcu_read_unlock();
5486 }
5487 
5488 /*
5489  * task tracking -- fork/exit
5490  *
5491  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
5492  */
5493 
5494 struct perf_task_event {
5495 	struct task_struct		*task;
5496 	struct perf_event_context	*task_ctx;
5497 
5498 	struct {
5499 		struct perf_event_header	header;
5500 
5501 		u32				pid;
5502 		u32				ppid;
5503 		u32				tid;
5504 		u32				ptid;
5505 		u64				time;
5506 	} event_id;
5507 };
5508 
5509 static int perf_event_task_match(struct perf_event *event)
5510 {
5511 	return event->attr.comm  || event->attr.mmap ||
5512 	       event->attr.mmap2 || event->attr.mmap_data ||
5513 	       event->attr.task;
5514 }
5515 
5516 static void perf_event_task_output(struct perf_event *event,
5517 				   void *data)
5518 {
5519 	struct perf_task_event *task_event = data;
5520 	struct perf_output_handle handle;
5521 	struct perf_sample_data	sample;
5522 	struct task_struct *task = task_event->task;
5523 	int ret, size = task_event->event_id.header.size;
5524 
5525 	if (!perf_event_task_match(event))
5526 		return;
5527 
5528 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
5529 
5530 	ret = perf_output_begin(&handle, event,
5531 				task_event->event_id.header.size);
5532 	if (ret)
5533 		goto out;
5534 
5535 	task_event->event_id.pid = perf_event_pid(event, task);
5536 	task_event->event_id.ppid = perf_event_pid(event, current);
5537 
5538 	task_event->event_id.tid = perf_event_tid(event, task);
5539 	task_event->event_id.ptid = perf_event_tid(event, current);
5540 
5541 	task_event->event_id.time = perf_event_clock(event);
5542 
5543 	perf_output_put(&handle, task_event->event_id);
5544 
5545 	perf_event__output_id_sample(event, &handle, &sample);
5546 
5547 	perf_output_end(&handle);
5548 out:
5549 	task_event->event_id.header.size = size;
5550 }
5551 
5552 static void perf_event_task(struct task_struct *task,
5553 			      struct perf_event_context *task_ctx,
5554 			      int new)
5555 {
5556 	struct perf_task_event task_event;
5557 
5558 	if (!atomic_read(&nr_comm_events) &&
5559 	    !atomic_read(&nr_mmap_events) &&
5560 	    !atomic_read(&nr_task_events))
5561 		return;
5562 
5563 	task_event = (struct perf_task_event){
5564 		.task	  = task,
5565 		.task_ctx = task_ctx,
5566 		.event_id    = {
5567 			.header = {
5568 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5569 				.misc = 0,
5570 				.size = sizeof(task_event.event_id),
5571 			},
5572 			/* .pid  */
5573 			/* .ppid */
5574 			/* .tid  */
5575 			/* .ptid */
5576 			/* .time */
5577 		},
5578 	};
5579 
5580 	perf_event_aux(perf_event_task_output,
5581 		       &task_event,
5582 		       task_ctx);
5583 }
5584 
5585 void perf_event_fork(struct task_struct *task)
5586 {
5587 	perf_event_task(task, NULL, 1);
5588 }
5589 
5590 /*
5591  * comm tracking
5592  */
5593 
5594 struct perf_comm_event {
5595 	struct task_struct	*task;
5596 	char			*comm;
5597 	int			comm_size;
5598 
5599 	struct {
5600 		struct perf_event_header	header;
5601 
5602 		u32				pid;
5603 		u32				tid;
5604 	} event_id;
5605 };
5606 
5607 static int perf_event_comm_match(struct perf_event *event)
5608 {
5609 	return event->attr.comm;
5610 }
5611 
5612 static void perf_event_comm_output(struct perf_event *event,
5613 				   void *data)
5614 {
5615 	struct perf_comm_event *comm_event = data;
5616 	struct perf_output_handle handle;
5617 	struct perf_sample_data sample;
5618 	int size = comm_event->event_id.header.size;
5619 	int ret;
5620 
5621 	if (!perf_event_comm_match(event))
5622 		return;
5623 
5624 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5625 	ret = perf_output_begin(&handle, event,
5626 				comm_event->event_id.header.size);
5627 
5628 	if (ret)
5629 		goto out;
5630 
5631 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5632 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5633 
5634 	perf_output_put(&handle, comm_event->event_id);
5635 	__output_copy(&handle, comm_event->comm,
5636 				   comm_event->comm_size);
5637 
5638 	perf_event__output_id_sample(event, &handle, &sample);
5639 
5640 	perf_output_end(&handle);
5641 out:
5642 	comm_event->event_id.header.size = size;
5643 }
5644 
5645 static void perf_event_comm_event(struct perf_comm_event *comm_event)
5646 {
5647 	char comm[TASK_COMM_LEN];
5648 	unsigned int size;
5649 
5650 	memset(comm, 0, sizeof(comm));
5651 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
5652 	size = ALIGN(strlen(comm)+1, sizeof(u64));
5653 
5654 	comm_event->comm = comm;
5655 	comm_event->comm_size = size;
5656 
5657 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
5658 
5659 	perf_event_aux(perf_event_comm_output,
5660 		       comm_event,
5661 		       NULL);
5662 }
5663 
5664 void perf_event_comm(struct task_struct *task, bool exec)
5665 {
5666 	struct perf_comm_event comm_event;
5667 
5668 	if (!atomic_read(&nr_comm_events))
5669 		return;
5670 
5671 	comm_event = (struct perf_comm_event){
5672 		.task	= task,
5673 		/* .comm      */
5674 		/* .comm_size */
5675 		.event_id  = {
5676 			.header = {
5677 				.type = PERF_RECORD_COMM,
5678 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5679 				/* .size */
5680 			},
5681 			/* .pid */
5682 			/* .tid */
5683 		},
5684 	};
5685 
5686 	perf_event_comm_event(&comm_event);
5687 }
5688 
5689 /*
5690  * mmap tracking
5691  */
5692 
5693 struct perf_mmap_event {
5694 	struct vm_area_struct	*vma;
5695 
5696 	const char		*file_name;
5697 	int			file_size;
5698 	int			maj, min;
5699 	u64			ino;
5700 	u64			ino_generation;
5701 	u32			prot, flags;
5702 
5703 	struct {
5704 		struct perf_event_header	header;
5705 
5706 		u32				pid;
5707 		u32				tid;
5708 		u64				start;
5709 		u64				len;
5710 		u64				pgoff;
5711 	} event_id;
5712 };
5713 
5714 static int perf_event_mmap_match(struct perf_event *event,
5715 				 void *data)
5716 {
5717 	struct perf_mmap_event *mmap_event = data;
5718 	struct vm_area_struct *vma = mmap_event->vma;
5719 	int executable = vma->vm_flags & VM_EXEC;
5720 
5721 	return (!executable && event->attr.mmap_data) ||
5722 	       (executable && (event->attr.mmap || event->attr.mmap2));
5723 }
5724 
5725 static void perf_event_mmap_output(struct perf_event *event,
5726 				   void *data)
5727 {
5728 	struct perf_mmap_event *mmap_event = data;
5729 	struct perf_output_handle handle;
5730 	struct perf_sample_data sample;
5731 	int size = mmap_event->event_id.header.size;
5732 	int ret;
5733 
5734 	if (!perf_event_mmap_match(event, data))
5735 		return;
5736 
5737 	if (event->attr.mmap2) {
5738 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5739 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5740 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
5741 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5742 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5743 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
5744 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
5745 	}
5746 
5747 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5748 	ret = perf_output_begin(&handle, event,
5749 				mmap_event->event_id.header.size);
5750 	if (ret)
5751 		goto out;
5752 
5753 	mmap_event->event_id.pid = perf_event_pid(event, current);
5754 	mmap_event->event_id.tid = perf_event_tid(event, current);
5755 
5756 	perf_output_put(&handle, mmap_event->event_id);
5757 
5758 	if (event->attr.mmap2) {
5759 		perf_output_put(&handle, mmap_event->maj);
5760 		perf_output_put(&handle, mmap_event->min);
5761 		perf_output_put(&handle, mmap_event->ino);
5762 		perf_output_put(&handle, mmap_event->ino_generation);
5763 		perf_output_put(&handle, mmap_event->prot);
5764 		perf_output_put(&handle, mmap_event->flags);
5765 	}
5766 
5767 	__output_copy(&handle, mmap_event->file_name,
5768 				   mmap_event->file_size);
5769 
5770 	perf_event__output_id_sample(event, &handle, &sample);
5771 
5772 	perf_output_end(&handle);
5773 out:
5774 	mmap_event->event_id.header.size = size;
5775 }
5776 
5777 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5778 {
5779 	struct vm_area_struct *vma = mmap_event->vma;
5780 	struct file *file = vma->vm_file;
5781 	int maj = 0, min = 0;
5782 	u64 ino = 0, gen = 0;
5783 	u32 prot = 0, flags = 0;
5784 	unsigned int size;
5785 	char tmp[16];
5786 	char *buf = NULL;
5787 	char *name;
5788 
5789 	if (file) {
5790 		struct inode *inode;
5791 		dev_t dev;
5792 
5793 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
5794 		if (!buf) {
5795 			name = "//enomem";
5796 			goto cpy_name;
5797 		}
5798 		/*
5799 		 * d_path() works from the end of the rb backwards, so we
5800 		 * need to add enough zero bytes after the string to handle
5801 		 * the 64bit alignment we do later.
5802 		 */
5803 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
5804 		if (IS_ERR(name)) {
5805 			name = "//toolong";
5806 			goto cpy_name;
5807 		}
5808 		inode = file_inode(vma->vm_file);
5809 		dev = inode->i_sb->s_dev;
5810 		ino = inode->i_ino;
5811 		gen = inode->i_generation;
5812 		maj = MAJOR(dev);
5813 		min = MINOR(dev);
5814 
5815 		if (vma->vm_flags & VM_READ)
5816 			prot |= PROT_READ;
5817 		if (vma->vm_flags & VM_WRITE)
5818 			prot |= PROT_WRITE;
5819 		if (vma->vm_flags & VM_EXEC)
5820 			prot |= PROT_EXEC;
5821 
5822 		if (vma->vm_flags & VM_MAYSHARE)
5823 			flags = MAP_SHARED;
5824 		else
5825 			flags = MAP_PRIVATE;
5826 
5827 		if (vma->vm_flags & VM_DENYWRITE)
5828 			flags |= MAP_DENYWRITE;
5829 		if (vma->vm_flags & VM_MAYEXEC)
5830 			flags |= MAP_EXECUTABLE;
5831 		if (vma->vm_flags & VM_LOCKED)
5832 			flags |= MAP_LOCKED;
5833 		if (vma->vm_flags & VM_HUGETLB)
5834 			flags |= MAP_HUGETLB;
5835 
5836 		goto got_name;
5837 	} else {
5838 		if (vma->vm_ops && vma->vm_ops->name) {
5839 			name = (char *) vma->vm_ops->name(vma);
5840 			if (name)
5841 				goto cpy_name;
5842 		}
5843 
5844 		name = (char *)arch_vma_name(vma);
5845 		if (name)
5846 			goto cpy_name;
5847 
5848 		if (vma->vm_start <= vma->vm_mm->start_brk &&
5849 				vma->vm_end >= vma->vm_mm->brk) {
5850 			name = "[heap]";
5851 			goto cpy_name;
5852 		}
5853 		if (vma->vm_start <= vma->vm_mm->start_stack &&
5854 				vma->vm_end >= vma->vm_mm->start_stack) {
5855 			name = "[stack]";
5856 			goto cpy_name;
5857 		}
5858 
5859 		name = "//anon";
5860 		goto cpy_name;
5861 	}
5862 
5863 cpy_name:
5864 	strlcpy(tmp, name, sizeof(tmp));
5865 	name = tmp;
5866 got_name:
5867 	/*
5868 	 * Since our buffer works in 8 byte units we need to align our string
5869 	 * size to a multiple of 8. However, we must guarantee the tail end is
5870 	 * zero'd out to avoid leaking random bits to userspace.
5871 	 */
5872 	size = strlen(name)+1;
5873 	while (!IS_ALIGNED(size, sizeof(u64)))
5874 		name[size++] = '\0';
5875 
5876 	mmap_event->file_name = name;
5877 	mmap_event->file_size = size;
5878 	mmap_event->maj = maj;
5879 	mmap_event->min = min;
5880 	mmap_event->ino = ino;
5881 	mmap_event->ino_generation = gen;
5882 	mmap_event->prot = prot;
5883 	mmap_event->flags = flags;
5884 
5885 	if (!(vma->vm_flags & VM_EXEC))
5886 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
5887 
5888 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
5889 
5890 	perf_event_aux(perf_event_mmap_output,
5891 		       mmap_event,
5892 		       NULL);
5893 
5894 	kfree(buf);
5895 }
5896 
5897 void perf_event_mmap(struct vm_area_struct *vma)
5898 {
5899 	struct perf_mmap_event mmap_event;
5900 
5901 	if (!atomic_read(&nr_mmap_events))
5902 		return;
5903 
5904 	mmap_event = (struct perf_mmap_event){
5905 		.vma	= vma,
5906 		/* .file_name */
5907 		/* .file_size */
5908 		.event_id  = {
5909 			.header = {
5910 				.type = PERF_RECORD_MMAP,
5911 				.misc = PERF_RECORD_MISC_USER,
5912 				/* .size */
5913 			},
5914 			/* .pid */
5915 			/* .tid */
5916 			.start  = vma->vm_start,
5917 			.len    = vma->vm_end - vma->vm_start,
5918 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
5919 		},
5920 		/* .maj (attr_mmap2 only) */
5921 		/* .min (attr_mmap2 only) */
5922 		/* .ino (attr_mmap2 only) */
5923 		/* .ino_generation (attr_mmap2 only) */
5924 		/* .prot (attr_mmap2 only) */
5925 		/* .flags (attr_mmap2 only) */
5926 	};
5927 
5928 	perf_event_mmap_event(&mmap_event);
5929 }
5930 
5931 void perf_event_aux_event(struct perf_event *event, unsigned long head,
5932 			  unsigned long size, u64 flags)
5933 {
5934 	struct perf_output_handle handle;
5935 	struct perf_sample_data sample;
5936 	struct perf_aux_event {
5937 		struct perf_event_header	header;
5938 		u64				offset;
5939 		u64				size;
5940 		u64				flags;
5941 	} rec = {
5942 		.header = {
5943 			.type = PERF_RECORD_AUX,
5944 			.misc = 0,
5945 			.size = sizeof(rec),
5946 		},
5947 		.offset		= head,
5948 		.size		= size,
5949 		.flags		= flags,
5950 	};
5951 	int ret;
5952 
5953 	perf_event_header__init_id(&rec.header, &sample, event);
5954 	ret = perf_output_begin(&handle, event, rec.header.size);
5955 
5956 	if (ret)
5957 		return;
5958 
5959 	perf_output_put(&handle, rec);
5960 	perf_event__output_id_sample(event, &handle, &sample);
5961 
5962 	perf_output_end(&handle);
5963 }
5964 
5965 /*
5966  * Lost/dropped samples logging
5967  */
5968 void perf_log_lost_samples(struct perf_event *event, u64 lost)
5969 {
5970 	struct perf_output_handle handle;
5971 	struct perf_sample_data sample;
5972 	int ret;
5973 
5974 	struct {
5975 		struct perf_event_header	header;
5976 		u64				lost;
5977 	} lost_samples_event = {
5978 		.header = {
5979 			.type = PERF_RECORD_LOST_SAMPLES,
5980 			.misc = 0,
5981 			.size = sizeof(lost_samples_event),
5982 		},
5983 		.lost		= lost,
5984 	};
5985 
5986 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
5987 
5988 	ret = perf_output_begin(&handle, event,
5989 				lost_samples_event.header.size);
5990 	if (ret)
5991 		return;
5992 
5993 	perf_output_put(&handle, lost_samples_event);
5994 	perf_event__output_id_sample(event, &handle, &sample);
5995 	perf_output_end(&handle);
5996 }
5997 
5998 /*
5999  * context_switch tracking
6000  */
6001 
6002 struct perf_switch_event {
6003 	struct task_struct	*task;
6004 	struct task_struct	*next_prev;
6005 
6006 	struct {
6007 		struct perf_event_header	header;
6008 		u32				next_prev_pid;
6009 		u32				next_prev_tid;
6010 	} event_id;
6011 };
6012 
6013 static int perf_event_switch_match(struct perf_event *event)
6014 {
6015 	return event->attr.context_switch;
6016 }
6017 
6018 static void perf_event_switch_output(struct perf_event *event, void *data)
6019 {
6020 	struct perf_switch_event *se = data;
6021 	struct perf_output_handle handle;
6022 	struct perf_sample_data sample;
6023 	int ret;
6024 
6025 	if (!perf_event_switch_match(event))
6026 		return;
6027 
6028 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
6029 	if (event->ctx->task) {
6030 		se->event_id.header.type = PERF_RECORD_SWITCH;
6031 		se->event_id.header.size = sizeof(se->event_id.header);
6032 	} else {
6033 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6034 		se->event_id.header.size = sizeof(se->event_id);
6035 		se->event_id.next_prev_pid =
6036 					perf_event_pid(event, se->next_prev);
6037 		se->event_id.next_prev_tid =
6038 					perf_event_tid(event, se->next_prev);
6039 	}
6040 
6041 	perf_event_header__init_id(&se->event_id.header, &sample, event);
6042 
6043 	ret = perf_output_begin(&handle, event, se->event_id.header.size);
6044 	if (ret)
6045 		return;
6046 
6047 	if (event->ctx->task)
6048 		perf_output_put(&handle, se->event_id.header);
6049 	else
6050 		perf_output_put(&handle, se->event_id);
6051 
6052 	perf_event__output_id_sample(event, &handle, &sample);
6053 
6054 	perf_output_end(&handle);
6055 }
6056 
6057 static void perf_event_switch(struct task_struct *task,
6058 			      struct task_struct *next_prev, bool sched_in)
6059 {
6060 	struct perf_switch_event switch_event;
6061 
6062 	/* N.B. caller checks nr_switch_events != 0 */
6063 
6064 	switch_event = (struct perf_switch_event){
6065 		.task		= task,
6066 		.next_prev	= next_prev,
6067 		.event_id	= {
6068 			.header = {
6069 				/* .type */
6070 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6071 				/* .size */
6072 			},
6073 			/* .next_prev_pid */
6074 			/* .next_prev_tid */
6075 		},
6076 	};
6077 
6078 	perf_event_aux(perf_event_switch_output,
6079 		       &switch_event,
6080 		       NULL);
6081 }
6082 
6083 /*
6084  * IRQ throttle logging
6085  */
6086 
6087 static void perf_log_throttle(struct perf_event *event, int enable)
6088 {
6089 	struct perf_output_handle handle;
6090 	struct perf_sample_data sample;
6091 	int ret;
6092 
6093 	struct {
6094 		struct perf_event_header	header;
6095 		u64				time;
6096 		u64				id;
6097 		u64				stream_id;
6098 	} throttle_event = {
6099 		.header = {
6100 			.type = PERF_RECORD_THROTTLE,
6101 			.misc = 0,
6102 			.size = sizeof(throttle_event),
6103 		},
6104 		.time		= perf_event_clock(event),
6105 		.id		= primary_event_id(event),
6106 		.stream_id	= event->id,
6107 	};
6108 
6109 	if (enable)
6110 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6111 
6112 	perf_event_header__init_id(&throttle_event.header, &sample, event);
6113 
6114 	ret = perf_output_begin(&handle, event,
6115 				throttle_event.header.size);
6116 	if (ret)
6117 		return;
6118 
6119 	perf_output_put(&handle, throttle_event);
6120 	perf_event__output_id_sample(event, &handle, &sample);
6121 	perf_output_end(&handle);
6122 }
6123 
6124 static void perf_log_itrace_start(struct perf_event *event)
6125 {
6126 	struct perf_output_handle handle;
6127 	struct perf_sample_data sample;
6128 	struct perf_aux_event {
6129 		struct perf_event_header        header;
6130 		u32				pid;
6131 		u32				tid;
6132 	} rec;
6133 	int ret;
6134 
6135 	if (event->parent)
6136 		event = event->parent;
6137 
6138 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
6139 	    event->hw.itrace_started)
6140 		return;
6141 
6142 	rec.header.type	= PERF_RECORD_ITRACE_START;
6143 	rec.header.misc	= 0;
6144 	rec.header.size	= sizeof(rec);
6145 	rec.pid	= perf_event_pid(event, current);
6146 	rec.tid	= perf_event_tid(event, current);
6147 
6148 	perf_event_header__init_id(&rec.header, &sample, event);
6149 	ret = perf_output_begin(&handle, event, rec.header.size);
6150 
6151 	if (ret)
6152 		return;
6153 
6154 	perf_output_put(&handle, rec);
6155 	perf_event__output_id_sample(event, &handle, &sample);
6156 
6157 	perf_output_end(&handle);
6158 }
6159 
6160 /*
6161  * Generic event overflow handling, sampling.
6162  */
6163 
6164 static int __perf_event_overflow(struct perf_event *event,
6165 				   int throttle, struct perf_sample_data *data,
6166 				   struct pt_regs *regs)
6167 {
6168 	int events = atomic_read(&event->event_limit);
6169 	struct hw_perf_event *hwc = &event->hw;
6170 	u64 seq;
6171 	int ret = 0;
6172 
6173 	/*
6174 	 * Non-sampling counters might still use the PMI to fold short
6175 	 * hardware counters, ignore those.
6176 	 */
6177 	if (unlikely(!is_sampling_event(event)))
6178 		return 0;
6179 
6180 	seq = __this_cpu_read(perf_throttled_seq);
6181 	if (seq != hwc->interrupts_seq) {
6182 		hwc->interrupts_seq = seq;
6183 		hwc->interrupts = 1;
6184 	} else {
6185 		hwc->interrupts++;
6186 		if (unlikely(throttle
6187 			     && hwc->interrupts >= max_samples_per_tick)) {
6188 			__this_cpu_inc(perf_throttled_count);
6189 			hwc->interrupts = MAX_INTERRUPTS;
6190 			perf_log_throttle(event, 0);
6191 			tick_nohz_full_kick();
6192 			ret = 1;
6193 		}
6194 	}
6195 
6196 	if (event->attr.freq) {
6197 		u64 now = perf_clock();
6198 		s64 delta = now - hwc->freq_time_stamp;
6199 
6200 		hwc->freq_time_stamp = now;
6201 
6202 		if (delta > 0 && delta < 2*TICK_NSEC)
6203 			perf_adjust_period(event, delta, hwc->last_period, true);
6204 	}
6205 
6206 	/*
6207 	 * XXX event_limit might not quite work as expected on inherited
6208 	 * events
6209 	 */
6210 
6211 	event->pending_kill = POLL_IN;
6212 	if (events && atomic_dec_and_test(&event->event_limit)) {
6213 		ret = 1;
6214 		event->pending_kill = POLL_HUP;
6215 		event->pending_disable = 1;
6216 		irq_work_queue(&event->pending);
6217 	}
6218 
6219 	if (event->overflow_handler)
6220 		event->overflow_handler(event, data, regs);
6221 	else
6222 		perf_event_output(event, data, regs);
6223 
6224 	if (event->fasync && event->pending_kill) {
6225 		event->pending_wakeup = 1;
6226 		irq_work_queue(&event->pending);
6227 	}
6228 
6229 	return ret;
6230 }
6231 
6232 int perf_event_overflow(struct perf_event *event,
6233 			  struct perf_sample_data *data,
6234 			  struct pt_regs *regs)
6235 {
6236 	return __perf_event_overflow(event, 1, data, regs);
6237 }
6238 
6239 /*
6240  * Generic software event infrastructure
6241  */
6242 
6243 struct swevent_htable {
6244 	struct swevent_hlist		*swevent_hlist;
6245 	struct mutex			hlist_mutex;
6246 	int				hlist_refcount;
6247 
6248 	/* Recursion avoidance in each contexts */
6249 	int				recursion[PERF_NR_CONTEXTS];
6250 
6251 	/* Keeps track of cpu being initialized/exited */
6252 	bool				online;
6253 };
6254 
6255 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
6256 
6257 /*
6258  * We directly increment event->count and keep a second value in
6259  * event->hw.period_left to count intervals. This period event
6260  * is kept in the range [-sample_period, 0] so that we can use the
6261  * sign as trigger.
6262  */
6263 
6264 u64 perf_swevent_set_period(struct perf_event *event)
6265 {
6266 	struct hw_perf_event *hwc = &event->hw;
6267 	u64 period = hwc->last_period;
6268 	u64 nr, offset;
6269 	s64 old, val;
6270 
6271 	hwc->last_period = hwc->sample_period;
6272 
6273 again:
6274 	old = val = local64_read(&hwc->period_left);
6275 	if (val < 0)
6276 		return 0;
6277 
6278 	nr = div64_u64(period + val, period);
6279 	offset = nr * period;
6280 	val -= offset;
6281 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
6282 		goto again;
6283 
6284 	return nr;
6285 }
6286 
6287 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
6288 				    struct perf_sample_data *data,
6289 				    struct pt_regs *regs)
6290 {
6291 	struct hw_perf_event *hwc = &event->hw;
6292 	int throttle = 0;
6293 
6294 	if (!overflow)
6295 		overflow = perf_swevent_set_period(event);
6296 
6297 	if (hwc->interrupts == MAX_INTERRUPTS)
6298 		return;
6299 
6300 	for (; overflow; overflow--) {
6301 		if (__perf_event_overflow(event, throttle,
6302 					    data, regs)) {
6303 			/*
6304 			 * We inhibit the overflow from happening when
6305 			 * hwc->interrupts == MAX_INTERRUPTS.
6306 			 */
6307 			break;
6308 		}
6309 		throttle = 1;
6310 	}
6311 }
6312 
6313 static void perf_swevent_event(struct perf_event *event, u64 nr,
6314 			       struct perf_sample_data *data,
6315 			       struct pt_regs *regs)
6316 {
6317 	struct hw_perf_event *hwc = &event->hw;
6318 
6319 	local64_add(nr, &event->count);
6320 
6321 	if (!regs)
6322 		return;
6323 
6324 	if (!is_sampling_event(event))
6325 		return;
6326 
6327 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
6328 		data->period = nr;
6329 		return perf_swevent_overflow(event, 1, data, regs);
6330 	} else
6331 		data->period = event->hw.last_period;
6332 
6333 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
6334 		return perf_swevent_overflow(event, 1, data, regs);
6335 
6336 	if (local64_add_negative(nr, &hwc->period_left))
6337 		return;
6338 
6339 	perf_swevent_overflow(event, 0, data, regs);
6340 }
6341 
6342 static int perf_exclude_event(struct perf_event *event,
6343 			      struct pt_regs *regs)
6344 {
6345 	if (event->hw.state & PERF_HES_STOPPED)
6346 		return 1;
6347 
6348 	if (regs) {
6349 		if (event->attr.exclude_user && user_mode(regs))
6350 			return 1;
6351 
6352 		if (event->attr.exclude_kernel && !user_mode(regs))
6353 			return 1;
6354 	}
6355 
6356 	return 0;
6357 }
6358 
6359 static int perf_swevent_match(struct perf_event *event,
6360 				enum perf_type_id type,
6361 				u32 event_id,
6362 				struct perf_sample_data *data,
6363 				struct pt_regs *regs)
6364 {
6365 	if (event->attr.type != type)
6366 		return 0;
6367 
6368 	if (event->attr.config != event_id)
6369 		return 0;
6370 
6371 	if (perf_exclude_event(event, regs))
6372 		return 0;
6373 
6374 	return 1;
6375 }
6376 
6377 static inline u64 swevent_hash(u64 type, u32 event_id)
6378 {
6379 	u64 val = event_id | (type << 32);
6380 
6381 	return hash_64(val, SWEVENT_HLIST_BITS);
6382 }
6383 
6384 static inline struct hlist_head *
6385 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
6386 {
6387 	u64 hash = swevent_hash(type, event_id);
6388 
6389 	return &hlist->heads[hash];
6390 }
6391 
6392 /* For the read side: events when they trigger */
6393 static inline struct hlist_head *
6394 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
6395 {
6396 	struct swevent_hlist *hlist;
6397 
6398 	hlist = rcu_dereference(swhash->swevent_hlist);
6399 	if (!hlist)
6400 		return NULL;
6401 
6402 	return __find_swevent_head(hlist, type, event_id);
6403 }
6404 
6405 /* For the event head insertion and removal in the hlist */
6406 static inline struct hlist_head *
6407 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
6408 {
6409 	struct swevent_hlist *hlist;
6410 	u32 event_id = event->attr.config;
6411 	u64 type = event->attr.type;
6412 
6413 	/*
6414 	 * Event scheduling is always serialized against hlist allocation
6415 	 * and release. Which makes the protected version suitable here.
6416 	 * The context lock guarantees that.
6417 	 */
6418 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
6419 					  lockdep_is_held(&event->ctx->lock));
6420 	if (!hlist)
6421 		return NULL;
6422 
6423 	return __find_swevent_head(hlist, type, event_id);
6424 }
6425 
6426 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
6427 				    u64 nr,
6428 				    struct perf_sample_data *data,
6429 				    struct pt_regs *regs)
6430 {
6431 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6432 	struct perf_event *event;
6433 	struct hlist_head *head;
6434 
6435 	rcu_read_lock();
6436 	head = find_swevent_head_rcu(swhash, type, event_id);
6437 	if (!head)
6438 		goto end;
6439 
6440 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
6441 		if (perf_swevent_match(event, type, event_id, data, regs))
6442 			perf_swevent_event(event, nr, data, regs);
6443 	}
6444 end:
6445 	rcu_read_unlock();
6446 }
6447 
6448 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
6449 
6450 int perf_swevent_get_recursion_context(void)
6451 {
6452 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6453 
6454 	return get_recursion_context(swhash->recursion);
6455 }
6456 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
6457 
6458 inline void perf_swevent_put_recursion_context(int rctx)
6459 {
6460 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6461 
6462 	put_recursion_context(swhash->recursion, rctx);
6463 }
6464 
6465 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6466 {
6467 	struct perf_sample_data data;
6468 
6469 	if (WARN_ON_ONCE(!regs))
6470 		return;
6471 
6472 	perf_sample_data_init(&data, addr, 0);
6473 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
6474 }
6475 
6476 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6477 {
6478 	int rctx;
6479 
6480 	preempt_disable_notrace();
6481 	rctx = perf_swevent_get_recursion_context();
6482 	if (unlikely(rctx < 0))
6483 		goto fail;
6484 
6485 	___perf_sw_event(event_id, nr, regs, addr);
6486 
6487 	perf_swevent_put_recursion_context(rctx);
6488 fail:
6489 	preempt_enable_notrace();
6490 }
6491 
6492 static void perf_swevent_read(struct perf_event *event)
6493 {
6494 }
6495 
6496 static int perf_swevent_add(struct perf_event *event, int flags)
6497 {
6498 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6499 	struct hw_perf_event *hwc = &event->hw;
6500 	struct hlist_head *head;
6501 
6502 	if (is_sampling_event(event)) {
6503 		hwc->last_period = hwc->sample_period;
6504 		perf_swevent_set_period(event);
6505 	}
6506 
6507 	hwc->state = !(flags & PERF_EF_START);
6508 
6509 	head = find_swevent_head(swhash, event);
6510 	if (!head) {
6511 		/*
6512 		 * We can race with cpu hotplug code. Do not
6513 		 * WARN if the cpu just got unplugged.
6514 		 */
6515 		WARN_ON_ONCE(swhash->online);
6516 		return -EINVAL;
6517 	}
6518 
6519 	hlist_add_head_rcu(&event->hlist_entry, head);
6520 	perf_event_update_userpage(event);
6521 
6522 	return 0;
6523 }
6524 
6525 static void perf_swevent_del(struct perf_event *event, int flags)
6526 {
6527 	hlist_del_rcu(&event->hlist_entry);
6528 }
6529 
6530 static void perf_swevent_start(struct perf_event *event, int flags)
6531 {
6532 	event->hw.state = 0;
6533 }
6534 
6535 static void perf_swevent_stop(struct perf_event *event, int flags)
6536 {
6537 	event->hw.state = PERF_HES_STOPPED;
6538 }
6539 
6540 /* Deref the hlist from the update side */
6541 static inline struct swevent_hlist *
6542 swevent_hlist_deref(struct swevent_htable *swhash)
6543 {
6544 	return rcu_dereference_protected(swhash->swevent_hlist,
6545 					 lockdep_is_held(&swhash->hlist_mutex));
6546 }
6547 
6548 static void swevent_hlist_release(struct swevent_htable *swhash)
6549 {
6550 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
6551 
6552 	if (!hlist)
6553 		return;
6554 
6555 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
6556 	kfree_rcu(hlist, rcu_head);
6557 }
6558 
6559 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
6560 {
6561 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6562 
6563 	mutex_lock(&swhash->hlist_mutex);
6564 
6565 	if (!--swhash->hlist_refcount)
6566 		swevent_hlist_release(swhash);
6567 
6568 	mutex_unlock(&swhash->hlist_mutex);
6569 }
6570 
6571 static void swevent_hlist_put(struct perf_event *event)
6572 {
6573 	int cpu;
6574 
6575 	for_each_possible_cpu(cpu)
6576 		swevent_hlist_put_cpu(event, cpu);
6577 }
6578 
6579 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
6580 {
6581 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6582 	int err = 0;
6583 
6584 	mutex_lock(&swhash->hlist_mutex);
6585 
6586 	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
6587 		struct swevent_hlist *hlist;
6588 
6589 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
6590 		if (!hlist) {
6591 			err = -ENOMEM;
6592 			goto exit;
6593 		}
6594 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
6595 	}
6596 	swhash->hlist_refcount++;
6597 exit:
6598 	mutex_unlock(&swhash->hlist_mutex);
6599 
6600 	return err;
6601 }
6602 
6603 static int swevent_hlist_get(struct perf_event *event)
6604 {
6605 	int err;
6606 	int cpu, failed_cpu;
6607 
6608 	get_online_cpus();
6609 	for_each_possible_cpu(cpu) {
6610 		err = swevent_hlist_get_cpu(event, cpu);
6611 		if (err) {
6612 			failed_cpu = cpu;
6613 			goto fail;
6614 		}
6615 	}
6616 	put_online_cpus();
6617 
6618 	return 0;
6619 fail:
6620 	for_each_possible_cpu(cpu) {
6621 		if (cpu == failed_cpu)
6622 			break;
6623 		swevent_hlist_put_cpu(event, cpu);
6624 	}
6625 
6626 	put_online_cpus();
6627 	return err;
6628 }
6629 
6630 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
6631 
6632 static void sw_perf_event_destroy(struct perf_event *event)
6633 {
6634 	u64 event_id = event->attr.config;
6635 
6636 	WARN_ON(event->parent);
6637 
6638 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
6639 	swevent_hlist_put(event);
6640 }
6641 
6642 static int perf_swevent_init(struct perf_event *event)
6643 {
6644 	u64 event_id = event->attr.config;
6645 
6646 	if (event->attr.type != PERF_TYPE_SOFTWARE)
6647 		return -ENOENT;
6648 
6649 	/*
6650 	 * no branch sampling for software events
6651 	 */
6652 	if (has_branch_stack(event))
6653 		return -EOPNOTSUPP;
6654 
6655 	switch (event_id) {
6656 	case PERF_COUNT_SW_CPU_CLOCK:
6657 	case PERF_COUNT_SW_TASK_CLOCK:
6658 		return -ENOENT;
6659 
6660 	default:
6661 		break;
6662 	}
6663 
6664 	if (event_id >= PERF_COUNT_SW_MAX)
6665 		return -ENOENT;
6666 
6667 	if (!event->parent) {
6668 		int err;
6669 
6670 		err = swevent_hlist_get(event);
6671 		if (err)
6672 			return err;
6673 
6674 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
6675 		event->destroy = sw_perf_event_destroy;
6676 	}
6677 
6678 	return 0;
6679 }
6680 
6681 static struct pmu perf_swevent = {
6682 	.task_ctx_nr	= perf_sw_context,
6683 
6684 	.capabilities	= PERF_PMU_CAP_NO_NMI,
6685 
6686 	.event_init	= perf_swevent_init,
6687 	.add		= perf_swevent_add,
6688 	.del		= perf_swevent_del,
6689 	.start		= perf_swevent_start,
6690 	.stop		= perf_swevent_stop,
6691 	.read		= perf_swevent_read,
6692 };
6693 
6694 #ifdef CONFIG_EVENT_TRACING
6695 
6696 static int perf_tp_filter_match(struct perf_event *event,
6697 				struct perf_sample_data *data)
6698 {
6699 	void *record = data->raw->data;
6700 
6701 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
6702 		return 1;
6703 	return 0;
6704 }
6705 
6706 static int perf_tp_event_match(struct perf_event *event,
6707 				struct perf_sample_data *data,
6708 				struct pt_regs *regs)
6709 {
6710 	if (event->hw.state & PERF_HES_STOPPED)
6711 		return 0;
6712 	/*
6713 	 * All tracepoints are from kernel-space.
6714 	 */
6715 	if (event->attr.exclude_kernel)
6716 		return 0;
6717 
6718 	if (!perf_tp_filter_match(event, data))
6719 		return 0;
6720 
6721 	return 1;
6722 }
6723 
6724 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
6725 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
6726 		   struct task_struct *task)
6727 {
6728 	struct perf_sample_data data;
6729 	struct perf_event *event;
6730 
6731 	struct perf_raw_record raw = {
6732 		.size = entry_size,
6733 		.data = record,
6734 	};
6735 
6736 	perf_sample_data_init(&data, addr, 0);
6737 	data.raw = &raw;
6738 
6739 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
6740 		if (perf_tp_event_match(event, &data, regs))
6741 			perf_swevent_event(event, count, &data, regs);
6742 	}
6743 
6744 	/*
6745 	 * If we got specified a target task, also iterate its context and
6746 	 * deliver this event there too.
6747 	 */
6748 	if (task && task != current) {
6749 		struct perf_event_context *ctx;
6750 		struct trace_entry *entry = record;
6751 
6752 		rcu_read_lock();
6753 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
6754 		if (!ctx)
6755 			goto unlock;
6756 
6757 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6758 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
6759 				continue;
6760 			if (event->attr.config != entry->type)
6761 				continue;
6762 			if (perf_tp_event_match(event, &data, regs))
6763 				perf_swevent_event(event, count, &data, regs);
6764 		}
6765 unlock:
6766 		rcu_read_unlock();
6767 	}
6768 
6769 	perf_swevent_put_recursion_context(rctx);
6770 }
6771 EXPORT_SYMBOL_GPL(perf_tp_event);
6772 
6773 static void tp_perf_event_destroy(struct perf_event *event)
6774 {
6775 	perf_trace_destroy(event);
6776 }
6777 
6778 static int perf_tp_event_init(struct perf_event *event)
6779 {
6780 	int err;
6781 
6782 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
6783 		return -ENOENT;
6784 
6785 	/*
6786 	 * no branch sampling for tracepoint events
6787 	 */
6788 	if (has_branch_stack(event))
6789 		return -EOPNOTSUPP;
6790 
6791 	err = perf_trace_init(event);
6792 	if (err)
6793 		return err;
6794 
6795 	event->destroy = tp_perf_event_destroy;
6796 
6797 	return 0;
6798 }
6799 
6800 static struct pmu perf_tracepoint = {
6801 	.task_ctx_nr	= perf_sw_context,
6802 
6803 	.event_init	= perf_tp_event_init,
6804 	.add		= perf_trace_add,
6805 	.del		= perf_trace_del,
6806 	.start		= perf_swevent_start,
6807 	.stop		= perf_swevent_stop,
6808 	.read		= perf_swevent_read,
6809 };
6810 
6811 static inline void perf_tp_register(void)
6812 {
6813 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
6814 }
6815 
6816 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6817 {
6818 	char *filter_str;
6819 	int ret;
6820 
6821 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
6822 		return -EINVAL;
6823 
6824 	filter_str = strndup_user(arg, PAGE_SIZE);
6825 	if (IS_ERR(filter_str))
6826 		return PTR_ERR(filter_str);
6827 
6828 	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
6829 
6830 	kfree(filter_str);
6831 	return ret;
6832 }
6833 
6834 static void perf_event_free_filter(struct perf_event *event)
6835 {
6836 	ftrace_profile_free_filter(event);
6837 }
6838 
6839 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
6840 {
6841 	struct bpf_prog *prog;
6842 
6843 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
6844 		return -EINVAL;
6845 
6846 	if (event->tp_event->prog)
6847 		return -EEXIST;
6848 
6849 	if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE))
6850 		/* bpf programs can only be attached to u/kprobes */
6851 		return -EINVAL;
6852 
6853 	prog = bpf_prog_get(prog_fd);
6854 	if (IS_ERR(prog))
6855 		return PTR_ERR(prog);
6856 
6857 	if (prog->type != BPF_PROG_TYPE_KPROBE) {
6858 		/* valid fd, but invalid bpf program type */
6859 		bpf_prog_put(prog);
6860 		return -EINVAL;
6861 	}
6862 
6863 	event->tp_event->prog = prog;
6864 
6865 	return 0;
6866 }
6867 
6868 static void perf_event_free_bpf_prog(struct perf_event *event)
6869 {
6870 	struct bpf_prog *prog;
6871 
6872 	if (!event->tp_event)
6873 		return;
6874 
6875 	prog = event->tp_event->prog;
6876 	if (prog) {
6877 		event->tp_event->prog = NULL;
6878 		bpf_prog_put(prog);
6879 	}
6880 }
6881 
6882 #else
6883 
6884 static inline void perf_tp_register(void)
6885 {
6886 }
6887 
6888 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6889 {
6890 	return -ENOENT;
6891 }
6892 
6893 static void perf_event_free_filter(struct perf_event *event)
6894 {
6895 }
6896 
6897 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
6898 {
6899 	return -ENOENT;
6900 }
6901 
6902 static void perf_event_free_bpf_prog(struct perf_event *event)
6903 {
6904 }
6905 #endif /* CONFIG_EVENT_TRACING */
6906 
6907 #ifdef CONFIG_HAVE_HW_BREAKPOINT
6908 void perf_bp_event(struct perf_event *bp, void *data)
6909 {
6910 	struct perf_sample_data sample;
6911 	struct pt_regs *regs = data;
6912 
6913 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
6914 
6915 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
6916 		perf_swevent_event(bp, 1, &sample, regs);
6917 }
6918 #endif
6919 
6920 /*
6921  * hrtimer based swevent callback
6922  */
6923 
6924 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
6925 {
6926 	enum hrtimer_restart ret = HRTIMER_RESTART;
6927 	struct perf_sample_data data;
6928 	struct pt_regs *regs;
6929 	struct perf_event *event;
6930 	u64 period;
6931 
6932 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
6933 
6934 	if (event->state != PERF_EVENT_STATE_ACTIVE)
6935 		return HRTIMER_NORESTART;
6936 
6937 	event->pmu->read(event);
6938 
6939 	perf_sample_data_init(&data, 0, event->hw.last_period);
6940 	regs = get_irq_regs();
6941 
6942 	if (regs && !perf_exclude_event(event, regs)) {
6943 		if (!(event->attr.exclude_idle && is_idle_task(current)))
6944 			if (__perf_event_overflow(event, 1, &data, regs))
6945 				ret = HRTIMER_NORESTART;
6946 	}
6947 
6948 	period = max_t(u64, 10000, event->hw.sample_period);
6949 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
6950 
6951 	return ret;
6952 }
6953 
6954 static void perf_swevent_start_hrtimer(struct perf_event *event)
6955 {
6956 	struct hw_perf_event *hwc = &event->hw;
6957 	s64 period;
6958 
6959 	if (!is_sampling_event(event))
6960 		return;
6961 
6962 	period = local64_read(&hwc->period_left);
6963 	if (period) {
6964 		if (period < 0)
6965 			period = 10000;
6966 
6967 		local64_set(&hwc->period_left, 0);
6968 	} else {
6969 		period = max_t(u64, 10000, hwc->sample_period);
6970 	}
6971 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
6972 		      HRTIMER_MODE_REL_PINNED);
6973 }
6974 
6975 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
6976 {
6977 	struct hw_perf_event *hwc = &event->hw;
6978 
6979 	if (is_sampling_event(event)) {
6980 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
6981 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
6982 
6983 		hrtimer_cancel(&hwc->hrtimer);
6984 	}
6985 }
6986 
6987 static void perf_swevent_init_hrtimer(struct perf_event *event)
6988 {
6989 	struct hw_perf_event *hwc = &event->hw;
6990 
6991 	if (!is_sampling_event(event))
6992 		return;
6993 
6994 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6995 	hwc->hrtimer.function = perf_swevent_hrtimer;
6996 
6997 	/*
6998 	 * Since hrtimers have a fixed rate, we can do a static freq->period
6999 	 * mapping and avoid the whole period adjust feedback stuff.
7000 	 */
7001 	if (event->attr.freq) {
7002 		long freq = event->attr.sample_freq;
7003 
7004 		event->attr.sample_period = NSEC_PER_SEC / freq;
7005 		hwc->sample_period = event->attr.sample_period;
7006 		local64_set(&hwc->period_left, hwc->sample_period);
7007 		hwc->last_period = hwc->sample_period;
7008 		event->attr.freq = 0;
7009 	}
7010 }
7011 
7012 /*
7013  * Software event: cpu wall time clock
7014  */
7015 
7016 static void cpu_clock_event_update(struct perf_event *event)
7017 {
7018 	s64 prev;
7019 	u64 now;
7020 
7021 	now = local_clock();
7022 	prev = local64_xchg(&event->hw.prev_count, now);
7023 	local64_add(now - prev, &event->count);
7024 }
7025 
7026 static void cpu_clock_event_start(struct perf_event *event, int flags)
7027 {
7028 	local64_set(&event->hw.prev_count, local_clock());
7029 	perf_swevent_start_hrtimer(event);
7030 }
7031 
7032 static void cpu_clock_event_stop(struct perf_event *event, int flags)
7033 {
7034 	perf_swevent_cancel_hrtimer(event);
7035 	cpu_clock_event_update(event);
7036 }
7037 
7038 static int cpu_clock_event_add(struct perf_event *event, int flags)
7039 {
7040 	if (flags & PERF_EF_START)
7041 		cpu_clock_event_start(event, flags);
7042 	perf_event_update_userpage(event);
7043 
7044 	return 0;
7045 }
7046 
7047 static void cpu_clock_event_del(struct perf_event *event, int flags)
7048 {
7049 	cpu_clock_event_stop(event, flags);
7050 }
7051 
7052 static void cpu_clock_event_read(struct perf_event *event)
7053 {
7054 	cpu_clock_event_update(event);
7055 }
7056 
7057 static int cpu_clock_event_init(struct perf_event *event)
7058 {
7059 	if (event->attr.type != PERF_TYPE_SOFTWARE)
7060 		return -ENOENT;
7061 
7062 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
7063 		return -ENOENT;
7064 
7065 	/*
7066 	 * no branch sampling for software events
7067 	 */
7068 	if (has_branch_stack(event))
7069 		return -EOPNOTSUPP;
7070 
7071 	perf_swevent_init_hrtimer(event);
7072 
7073 	return 0;
7074 }
7075 
7076 static struct pmu perf_cpu_clock = {
7077 	.task_ctx_nr	= perf_sw_context,
7078 
7079 	.capabilities	= PERF_PMU_CAP_NO_NMI,
7080 
7081 	.event_init	= cpu_clock_event_init,
7082 	.add		= cpu_clock_event_add,
7083 	.del		= cpu_clock_event_del,
7084 	.start		= cpu_clock_event_start,
7085 	.stop		= cpu_clock_event_stop,
7086 	.read		= cpu_clock_event_read,
7087 };
7088 
7089 /*
7090  * Software event: task time clock
7091  */
7092 
7093 static void task_clock_event_update(struct perf_event *event, u64 now)
7094 {
7095 	u64 prev;
7096 	s64 delta;
7097 
7098 	prev = local64_xchg(&event->hw.prev_count, now);
7099 	delta = now - prev;
7100 	local64_add(delta, &event->count);
7101 }
7102 
7103 static void task_clock_event_start(struct perf_event *event, int flags)
7104 {
7105 	local64_set(&event->hw.prev_count, event->ctx->time);
7106 	perf_swevent_start_hrtimer(event);
7107 }
7108 
7109 static void task_clock_event_stop(struct perf_event *event, int flags)
7110 {
7111 	perf_swevent_cancel_hrtimer(event);
7112 	task_clock_event_update(event, event->ctx->time);
7113 }
7114 
7115 static int task_clock_event_add(struct perf_event *event, int flags)
7116 {
7117 	if (flags & PERF_EF_START)
7118 		task_clock_event_start(event, flags);
7119 	perf_event_update_userpage(event);
7120 
7121 	return 0;
7122 }
7123 
7124 static void task_clock_event_del(struct perf_event *event, int flags)
7125 {
7126 	task_clock_event_stop(event, PERF_EF_UPDATE);
7127 }
7128 
7129 static void task_clock_event_read(struct perf_event *event)
7130 {
7131 	u64 now = perf_clock();
7132 	u64 delta = now - event->ctx->timestamp;
7133 	u64 time = event->ctx->time + delta;
7134 
7135 	task_clock_event_update(event, time);
7136 }
7137 
7138 static int task_clock_event_init(struct perf_event *event)
7139 {
7140 	if (event->attr.type != PERF_TYPE_SOFTWARE)
7141 		return -ENOENT;
7142 
7143 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
7144 		return -ENOENT;
7145 
7146 	/*
7147 	 * no branch sampling for software events
7148 	 */
7149 	if (has_branch_stack(event))
7150 		return -EOPNOTSUPP;
7151 
7152 	perf_swevent_init_hrtimer(event);
7153 
7154 	return 0;
7155 }
7156 
7157 static struct pmu perf_task_clock = {
7158 	.task_ctx_nr	= perf_sw_context,
7159 
7160 	.capabilities	= PERF_PMU_CAP_NO_NMI,
7161 
7162 	.event_init	= task_clock_event_init,
7163 	.add		= task_clock_event_add,
7164 	.del		= task_clock_event_del,
7165 	.start		= task_clock_event_start,
7166 	.stop		= task_clock_event_stop,
7167 	.read		= task_clock_event_read,
7168 };
7169 
7170 static void perf_pmu_nop_void(struct pmu *pmu)
7171 {
7172 }
7173 
7174 static int perf_pmu_nop_int(struct pmu *pmu)
7175 {
7176 	return 0;
7177 }
7178 
7179 static void perf_pmu_start_txn(struct pmu *pmu)
7180 {
7181 	perf_pmu_disable(pmu);
7182 }
7183 
7184 static int perf_pmu_commit_txn(struct pmu *pmu)
7185 {
7186 	perf_pmu_enable(pmu);
7187 	return 0;
7188 }
7189 
7190 static void perf_pmu_cancel_txn(struct pmu *pmu)
7191 {
7192 	perf_pmu_enable(pmu);
7193 }
7194 
7195 static int perf_event_idx_default(struct perf_event *event)
7196 {
7197 	return 0;
7198 }
7199 
7200 /*
7201  * Ensures all contexts with the same task_ctx_nr have the same
7202  * pmu_cpu_context too.
7203  */
7204 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
7205 {
7206 	struct pmu *pmu;
7207 
7208 	if (ctxn < 0)
7209 		return NULL;
7210 
7211 	list_for_each_entry(pmu, &pmus, entry) {
7212 		if (pmu->task_ctx_nr == ctxn)
7213 			return pmu->pmu_cpu_context;
7214 	}
7215 
7216 	return NULL;
7217 }
7218 
7219 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
7220 {
7221 	int cpu;
7222 
7223 	for_each_possible_cpu(cpu) {
7224 		struct perf_cpu_context *cpuctx;
7225 
7226 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7227 
7228 		if (cpuctx->unique_pmu == old_pmu)
7229 			cpuctx->unique_pmu = pmu;
7230 	}
7231 }
7232 
7233 static void free_pmu_context(struct pmu *pmu)
7234 {
7235 	struct pmu *i;
7236 
7237 	mutex_lock(&pmus_lock);
7238 	/*
7239 	 * Like a real lame refcount.
7240 	 */
7241 	list_for_each_entry(i, &pmus, entry) {
7242 		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
7243 			update_pmu_context(i, pmu);
7244 			goto out;
7245 		}
7246 	}
7247 
7248 	free_percpu(pmu->pmu_cpu_context);
7249 out:
7250 	mutex_unlock(&pmus_lock);
7251 }
7252 static struct idr pmu_idr;
7253 
7254 static ssize_t
7255 type_show(struct device *dev, struct device_attribute *attr, char *page)
7256 {
7257 	struct pmu *pmu = dev_get_drvdata(dev);
7258 
7259 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
7260 }
7261 static DEVICE_ATTR_RO(type);
7262 
7263 static ssize_t
7264 perf_event_mux_interval_ms_show(struct device *dev,
7265 				struct device_attribute *attr,
7266 				char *page)
7267 {
7268 	struct pmu *pmu = dev_get_drvdata(dev);
7269 
7270 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
7271 }
7272 
7273 static DEFINE_MUTEX(mux_interval_mutex);
7274 
7275 static ssize_t
7276 perf_event_mux_interval_ms_store(struct device *dev,
7277 				 struct device_attribute *attr,
7278 				 const char *buf, size_t count)
7279 {
7280 	struct pmu *pmu = dev_get_drvdata(dev);
7281 	int timer, cpu, ret;
7282 
7283 	ret = kstrtoint(buf, 0, &timer);
7284 	if (ret)
7285 		return ret;
7286 
7287 	if (timer < 1)
7288 		return -EINVAL;
7289 
7290 	/* same value, noting to do */
7291 	if (timer == pmu->hrtimer_interval_ms)
7292 		return count;
7293 
7294 	mutex_lock(&mux_interval_mutex);
7295 	pmu->hrtimer_interval_ms = timer;
7296 
7297 	/* update all cpuctx for this PMU */
7298 	get_online_cpus();
7299 	for_each_online_cpu(cpu) {
7300 		struct perf_cpu_context *cpuctx;
7301 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7302 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
7303 
7304 		cpu_function_call(cpu,
7305 			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
7306 	}
7307 	put_online_cpus();
7308 	mutex_unlock(&mux_interval_mutex);
7309 
7310 	return count;
7311 }
7312 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
7313 
7314 static struct attribute *pmu_dev_attrs[] = {
7315 	&dev_attr_type.attr,
7316 	&dev_attr_perf_event_mux_interval_ms.attr,
7317 	NULL,
7318 };
7319 ATTRIBUTE_GROUPS(pmu_dev);
7320 
7321 static int pmu_bus_running;
7322 static struct bus_type pmu_bus = {
7323 	.name		= "event_source",
7324 	.dev_groups	= pmu_dev_groups,
7325 };
7326 
7327 static void pmu_dev_release(struct device *dev)
7328 {
7329 	kfree(dev);
7330 }
7331 
7332 static int pmu_dev_alloc(struct pmu *pmu)
7333 {
7334 	int ret = -ENOMEM;
7335 
7336 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
7337 	if (!pmu->dev)
7338 		goto out;
7339 
7340 	pmu->dev->groups = pmu->attr_groups;
7341 	device_initialize(pmu->dev);
7342 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
7343 	if (ret)
7344 		goto free_dev;
7345 
7346 	dev_set_drvdata(pmu->dev, pmu);
7347 	pmu->dev->bus = &pmu_bus;
7348 	pmu->dev->release = pmu_dev_release;
7349 	ret = device_add(pmu->dev);
7350 	if (ret)
7351 		goto free_dev;
7352 
7353 out:
7354 	return ret;
7355 
7356 free_dev:
7357 	put_device(pmu->dev);
7358 	goto out;
7359 }
7360 
7361 static struct lock_class_key cpuctx_mutex;
7362 static struct lock_class_key cpuctx_lock;
7363 
7364 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
7365 {
7366 	int cpu, ret;
7367 
7368 	mutex_lock(&pmus_lock);
7369 	ret = -ENOMEM;
7370 	pmu->pmu_disable_count = alloc_percpu(int);
7371 	if (!pmu->pmu_disable_count)
7372 		goto unlock;
7373 
7374 	pmu->type = -1;
7375 	if (!name)
7376 		goto skip_type;
7377 	pmu->name = name;
7378 
7379 	if (type < 0) {
7380 		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
7381 		if (type < 0) {
7382 			ret = type;
7383 			goto free_pdc;
7384 		}
7385 	}
7386 	pmu->type = type;
7387 
7388 	if (pmu_bus_running) {
7389 		ret = pmu_dev_alloc(pmu);
7390 		if (ret)
7391 			goto free_idr;
7392 	}
7393 
7394 skip_type:
7395 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
7396 	if (pmu->pmu_cpu_context)
7397 		goto got_cpu_context;
7398 
7399 	ret = -ENOMEM;
7400 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
7401 	if (!pmu->pmu_cpu_context)
7402 		goto free_dev;
7403 
7404 	for_each_possible_cpu(cpu) {
7405 		struct perf_cpu_context *cpuctx;
7406 
7407 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7408 		__perf_event_init_context(&cpuctx->ctx);
7409 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
7410 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
7411 		cpuctx->ctx.pmu = pmu;
7412 
7413 		__perf_mux_hrtimer_init(cpuctx, cpu);
7414 
7415 		cpuctx->unique_pmu = pmu;
7416 	}
7417 
7418 got_cpu_context:
7419 	if (!pmu->start_txn) {
7420 		if (pmu->pmu_enable) {
7421 			/*
7422 			 * If we have pmu_enable/pmu_disable calls, install
7423 			 * transaction stubs that use that to try and batch
7424 			 * hardware accesses.
7425 			 */
7426 			pmu->start_txn  = perf_pmu_start_txn;
7427 			pmu->commit_txn = perf_pmu_commit_txn;
7428 			pmu->cancel_txn = perf_pmu_cancel_txn;
7429 		} else {
7430 			pmu->start_txn  = perf_pmu_nop_void;
7431 			pmu->commit_txn = perf_pmu_nop_int;
7432 			pmu->cancel_txn = perf_pmu_nop_void;
7433 		}
7434 	}
7435 
7436 	if (!pmu->pmu_enable) {
7437 		pmu->pmu_enable  = perf_pmu_nop_void;
7438 		pmu->pmu_disable = perf_pmu_nop_void;
7439 	}
7440 
7441 	if (!pmu->event_idx)
7442 		pmu->event_idx = perf_event_idx_default;
7443 
7444 	list_add_rcu(&pmu->entry, &pmus);
7445 	atomic_set(&pmu->exclusive_cnt, 0);
7446 	ret = 0;
7447 unlock:
7448 	mutex_unlock(&pmus_lock);
7449 
7450 	return ret;
7451 
7452 free_dev:
7453 	device_del(pmu->dev);
7454 	put_device(pmu->dev);
7455 
7456 free_idr:
7457 	if (pmu->type >= PERF_TYPE_MAX)
7458 		idr_remove(&pmu_idr, pmu->type);
7459 
7460 free_pdc:
7461 	free_percpu(pmu->pmu_disable_count);
7462 	goto unlock;
7463 }
7464 EXPORT_SYMBOL_GPL(perf_pmu_register);
7465 
7466 void perf_pmu_unregister(struct pmu *pmu)
7467 {
7468 	mutex_lock(&pmus_lock);
7469 	list_del_rcu(&pmu->entry);
7470 	mutex_unlock(&pmus_lock);
7471 
7472 	/*
7473 	 * We dereference the pmu list under both SRCU and regular RCU, so
7474 	 * synchronize against both of those.
7475 	 */
7476 	synchronize_srcu(&pmus_srcu);
7477 	synchronize_rcu();
7478 
7479 	free_percpu(pmu->pmu_disable_count);
7480 	if (pmu->type >= PERF_TYPE_MAX)
7481 		idr_remove(&pmu_idr, pmu->type);
7482 	device_del(pmu->dev);
7483 	put_device(pmu->dev);
7484 	free_pmu_context(pmu);
7485 }
7486 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
7487 
7488 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
7489 {
7490 	struct perf_event_context *ctx = NULL;
7491 	int ret;
7492 
7493 	if (!try_module_get(pmu->module))
7494 		return -ENODEV;
7495 
7496 	if (event->group_leader != event) {
7497 		/*
7498 		 * This ctx->mutex can nest when we're called through
7499 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
7500 		 */
7501 		ctx = perf_event_ctx_lock_nested(event->group_leader,
7502 						 SINGLE_DEPTH_NESTING);
7503 		BUG_ON(!ctx);
7504 	}
7505 
7506 	event->pmu = pmu;
7507 	ret = pmu->event_init(event);
7508 
7509 	if (ctx)
7510 		perf_event_ctx_unlock(event->group_leader, ctx);
7511 
7512 	if (ret)
7513 		module_put(pmu->module);
7514 
7515 	return ret;
7516 }
7517 
7518 struct pmu *perf_init_event(struct perf_event *event)
7519 {
7520 	struct pmu *pmu = NULL;
7521 	int idx;
7522 	int ret;
7523 
7524 	idx = srcu_read_lock(&pmus_srcu);
7525 
7526 	rcu_read_lock();
7527 	pmu = idr_find(&pmu_idr, event->attr.type);
7528 	rcu_read_unlock();
7529 	if (pmu) {
7530 		ret = perf_try_init_event(pmu, event);
7531 		if (ret)
7532 			pmu = ERR_PTR(ret);
7533 		goto unlock;
7534 	}
7535 
7536 	list_for_each_entry_rcu(pmu, &pmus, entry) {
7537 		ret = perf_try_init_event(pmu, event);
7538 		if (!ret)
7539 			goto unlock;
7540 
7541 		if (ret != -ENOENT) {
7542 			pmu = ERR_PTR(ret);
7543 			goto unlock;
7544 		}
7545 	}
7546 	pmu = ERR_PTR(-ENOENT);
7547 unlock:
7548 	srcu_read_unlock(&pmus_srcu, idx);
7549 
7550 	return pmu;
7551 }
7552 
7553 static void account_event_cpu(struct perf_event *event, int cpu)
7554 {
7555 	if (event->parent)
7556 		return;
7557 
7558 	if (is_cgroup_event(event))
7559 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
7560 }
7561 
7562 static void account_event(struct perf_event *event)
7563 {
7564 	if (event->parent)
7565 		return;
7566 
7567 	if (event->attach_state & PERF_ATTACH_TASK)
7568 		static_key_slow_inc(&perf_sched_events.key);
7569 	if (event->attr.mmap || event->attr.mmap_data)
7570 		atomic_inc(&nr_mmap_events);
7571 	if (event->attr.comm)
7572 		atomic_inc(&nr_comm_events);
7573 	if (event->attr.task)
7574 		atomic_inc(&nr_task_events);
7575 	if (event->attr.freq) {
7576 		if (atomic_inc_return(&nr_freq_events) == 1)
7577 			tick_nohz_full_kick_all();
7578 	}
7579 	if (event->attr.context_switch) {
7580 		atomic_inc(&nr_switch_events);
7581 		static_key_slow_inc(&perf_sched_events.key);
7582 	}
7583 	if (has_branch_stack(event))
7584 		static_key_slow_inc(&perf_sched_events.key);
7585 	if (is_cgroup_event(event))
7586 		static_key_slow_inc(&perf_sched_events.key);
7587 
7588 	account_event_cpu(event, event->cpu);
7589 }
7590 
7591 /*
7592  * Allocate and initialize a event structure
7593  */
7594 static struct perf_event *
7595 perf_event_alloc(struct perf_event_attr *attr, int cpu,
7596 		 struct task_struct *task,
7597 		 struct perf_event *group_leader,
7598 		 struct perf_event *parent_event,
7599 		 perf_overflow_handler_t overflow_handler,
7600 		 void *context, int cgroup_fd)
7601 {
7602 	struct pmu *pmu;
7603 	struct perf_event *event;
7604 	struct hw_perf_event *hwc;
7605 	long err = -EINVAL;
7606 
7607 	if ((unsigned)cpu >= nr_cpu_ids) {
7608 		if (!task || cpu != -1)
7609 			return ERR_PTR(-EINVAL);
7610 	}
7611 
7612 	event = kzalloc(sizeof(*event), GFP_KERNEL);
7613 	if (!event)
7614 		return ERR_PTR(-ENOMEM);
7615 
7616 	/*
7617 	 * Single events are their own group leaders, with an
7618 	 * empty sibling list:
7619 	 */
7620 	if (!group_leader)
7621 		group_leader = event;
7622 
7623 	mutex_init(&event->child_mutex);
7624 	INIT_LIST_HEAD(&event->child_list);
7625 
7626 	INIT_LIST_HEAD(&event->group_entry);
7627 	INIT_LIST_HEAD(&event->event_entry);
7628 	INIT_LIST_HEAD(&event->sibling_list);
7629 	INIT_LIST_HEAD(&event->rb_entry);
7630 	INIT_LIST_HEAD(&event->active_entry);
7631 	INIT_HLIST_NODE(&event->hlist_entry);
7632 
7633 
7634 	init_waitqueue_head(&event->waitq);
7635 	init_irq_work(&event->pending, perf_pending_event);
7636 
7637 	mutex_init(&event->mmap_mutex);
7638 
7639 	atomic_long_set(&event->refcount, 1);
7640 	event->cpu		= cpu;
7641 	event->attr		= *attr;
7642 	event->group_leader	= group_leader;
7643 	event->pmu		= NULL;
7644 	event->oncpu		= -1;
7645 
7646 	event->parent		= parent_event;
7647 
7648 	event->ns		= get_pid_ns(task_active_pid_ns(current));
7649 	event->id		= atomic64_inc_return(&perf_event_id);
7650 
7651 	event->state		= PERF_EVENT_STATE_INACTIVE;
7652 
7653 	if (task) {
7654 		event->attach_state = PERF_ATTACH_TASK;
7655 		/*
7656 		 * XXX pmu::event_init needs to know what task to account to
7657 		 * and we cannot use the ctx information because we need the
7658 		 * pmu before we get a ctx.
7659 		 */
7660 		event->hw.target = task;
7661 	}
7662 
7663 	event->clock = &local_clock;
7664 	if (parent_event)
7665 		event->clock = parent_event->clock;
7666 
7667 	if (!overflow_handler && parent_event) {
7668 		overflow_handler = parent_event->overflow_handler;
7669 		context = parent_event->overflow_handler_context;
7670 	}
7671 
7672 	event->overflow_handler	= overflow_handler;
7673 	event->overflow_handler_context = context;
7674 
7675 	perf_event__state_init(event);
7676 
7677 	pmu = NULL;
7678 
7679 	hwc = &event->hw;
7680 	hwc->sample_period = attr->sample_period;
7681 	if (attr->freq && attr->sample_freq)
7682 		hwc->sample_period = 1;
7683 	hwc->last_period = hwc->sample_period;
7684 
7685 	local64_set(&hwc->period_left, hwc->sample_period);
7686 
7687 	/*
7688 	 * we currently do not support PERF_FORMAT_GROUP on inherited events
7689 	 */
7690 	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
7691 		goto err_ns;
7692 
7693 	if (!has_branch_stack(event))
7694 		event->attr.branch_sample_type = 0;
7695 
7696 	if (cgroup_fd != -1) {
7697 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
7698 		if (err)
7699 			goto err_ns;
7700 	}
7701 
7702 	pmu = perf_init_event(event);
7703 	if (!pmu)
7704 		goto err_ns;
7705 	else if (IS_ERR(pmu)) {
7706 		err = PTR_ERR(pmu);
7707 		goto err_ns;
7708 	}
7709 
7710 	err = exclusive_event_init(event);
7711 	if (err)
7712 		goto err_pmu;
7713 
7714 	if (!event->parent) {
7715 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
7716 			err = get_callchain_buffers();
7717 			if (err)
7718 				goto err_per_task;
7719 		}
7720 	}
7721 
7722 	return event;
7723 
7724 err_per_task:
7725 	exclusive_event_destroy(event);
7726 
7727 err_pmu:
7728 	if (event->destroy)
7729 		event->destroy(event);
7730 	module_put(pmu->module);
7731 err_ns:
7732 	if (is_cgroup_event(event))
7733 		perf_detach_cgroup(event);
7734 	if (event->ns)
7735 		put_pid_ns(event->ns);
7736 	kfree(event);
7737 
7738 	return ERR_PTR(err);
7739 }
7740 
7741 static int perf_copy_attr(struct perf_event_attr __user *uattr,
7742 			  struct perf_event_attr *attr)
7743 {
7744 	u32 size;
7745 	int ret;
7746 
7747 	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
7748 		return -EFAULT;
7749 
7750 	/*
7751 	 * zero the full structure, so that a short copy will be nice.
7752 	 */
7753 	memset(attr, 0, sizeof(*attr));
7754 
7755 	ret = get_user(size, &uattr->size);
7756 	if (ret)
7757 		return ret;
7758 
7759 	if (size > PAGE_SIZE)	/* silly large */
7760 		goto err_size;
7761 
7762 	if (!size)		/* abi compat */
7763 		size = PERF_ATTR_SIZE_VER0;
7764 
7765 	if (size < PERF_ATTR_SIZE_VER0)
7766 		goto err_size;
7767 
7768 	/*
7769 	 * If we're handed a bigger struct than we know of,
7770 	 * ensure all the unknown bits are 0 - i.e. new
7771 	 * user-space does not rely on any kernel feature
7772 	 * extensions we dont know about yet.
7773 	 */
7774 	if (size > sizeof(*attr)) {
7775 		unsigned char __user *addr;
7776 		unsigned char __user *end;
7777 		unsigned char val;
7778 
7779 		addr = (void __user *)uattr + sizeof(*attr);
7780 		end  = (void __user *)uattr + size;
7781 
7782 		for (; addr < end; addr++) {
7783 			ret = get_user(val, addr);
7784 			if (ret)
7785 				return ret;
7786 			if (val)
7787 				goto err_size;
7788 		}
7789 		size = sizeof(*attr);
7790 	}
7791 
7792 	ret = copy_from_user(attr, uattr, size);
7793 	if (ret)
7794 		return -EFAULT;
7795 
7796 	if (attr->__reserved_1)
7797 		return -EINVAL;
7798 
7799 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
7800 		return -EINVAL;
7801 
7802 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
7803 		return -EINVAL;
7804 
7805 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
7806 		u64 mask = attr->branch_sample_type;
7807 
7808 		/* only using defined bits */
7809 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
7810 			return -EINVAL;
7811 
7812 		/* at least one branch bit must be set */
7813 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
7814 			return -EINVAL;
7815 
7816 		/* propagate priv level, when not set for branch */
7817 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
7818 
7819 			/* exclude_kernel checked on syscall entry */
7820 			if (!attr->exclude_kernel)
7821 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
7822 
7823 			if (!attr->exclude_user)
7824 				mask |= PERF_SAMPLE_BRANCH_USER;
7825 
7826 			if (!attr->exclude_hv)
7827 				mask |= PERF_SAMPLE_BRANCH_HV;
7828 			/*
7829 			 * adjust user setting (for HW filter setup)
7830 			 */
7831 			attr->branch_sample_type = mask;
7832 		}
7833 		/* privileged levels capture (kernel, hv): check permissions */
7834 		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
7835 		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
7836 			return -EACCES;
7837 	}
7838 
7839 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
7840 		ret = perf_reg_validate(attr->sample_regs_user);
7841 		if (ret)
7842 			return ret;
7843 	}
7844 
7845 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
7846 		if (!arch_perf_have_user_stack_dump())
7847 			return -ENOSYS;
7848 
7849 		/*
7850 		 * We have __u32 type for the size, but so far
7851 		 * we can only use __u16 as maximum due to the
7852 		 * __u16 sample size limit.
7853 		 */
7854 		if (attr->sample_stack_user >= USHRT_MAX)
7855 			ret = -EINVAL;
7856 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
7857 			ret = -EINVAL;
7858 	}
7859 
7860 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
7861 		ret = perf_reg_validate(attr->sample_regs_intr);
7862 out:
7863 	return ret;
7864 
7865 err_size:
7866 	put_user(sizeof(*attr), &uattr->size);
7867 	ret = -E2BIG;
7868 	goto out;
7869 }
7870 
7871 static int
7872 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
7873 {
7874 	struct ring_buffer *rb = NULL;
7875 	int ret = -EINVAL;
7876 
7877 	if (!output_event)
7878 		goto set;
7879 
7880 	/* don't allow circular references */
7881 	if (event == output_event)
7882 		goto out;
7883 
7884 	/*
7885 	 * Don't allow cross-cpu buffers
7886 	 */
7887 	if (output_event->cpu != event->cpu)
7888 		goto out;
7889 
7890 	/*
7891 	 * If its not a per-cpu rb, it must be the same task.
7892 	 */
7893 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
7894 		goto out;
7895 
7896 	/*
7897 	 * Mixing clocks in the same buffer is trouble you don't need.
7898 	 */
7899 	if (output_event->clock != event->clock)
7900 		goto out;
7901 
7902 	/*
7903 	 * If both events generate aux data, they must be on the same PMU
7904 	 */
7905 	if (has_aux(event) && has_aux(output_event) &&
7906 	    event->pmu != output_event->pmu)
7907 		goto out;
7908 
7909 set:
7910 	mutex_lock(&event->mmap_mutex);
7911 	/* Can't redirect output if we've got an active mmap() */
7912 	if (atomic_read(&event->mmap_count))
7913 		goto unlock;
7914 
7915 	if (output_event) {
7916 		/* get the rb we want to redirect to */
7917 		rb = ring_buffer_get(output_event);
7918 		if (!rb)
7919 			goto unlock;
7920 	}
7921 
7922 	ring_buffer_attach(event, rb);
7923 
7924 	ret = 0;
7925 unlock:
7926 	mutex_unlock(&event->mmap_mutex);
7927 
7928 out:
7929 	return ret;
7930 }
7931 
7932 static void mutex_lock_double(struct mutex *a, struct mutex *b)
7933 {
7934 	if (b < a)
7935 		swap(a, b);
7936 
7937 	mutex_lock(a);
7938 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
7939 }
7940 
7941 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
7942 {
7943 	bool nmi_safe = false;
7944 
7945 	switch (clk_id) {
7946 	case CLOCK_MONOTONIC:
7947 		event->clock = &ktime_get_mono_fast_ns;
7948 		nmi_safe = true;
7949 		break;
7950 
7951 	case CLOCK_MONOTONIC_RAW:
7952 		event->clock = &ktime_get_raw_fast_ns;
7953 		nmi_safe = true;
7954 		break;
7955 
7956 	case CLOCK_REALTIME:
7957 		event->clock = &ktime_get_real_ns;
7958 		break;
7959 
7960 	case CLOCK_BOOTTIME:
7961 		event->clock = &ktime_get_boot_ns;
7962 		break;
7963 
7964 	case CLOCK_TAI:
7965 		event->clock = &ktime_get_tai_ns;
7966 		break;
7967 
7968 	default:
7969 		return -EINVAL;
7970 	}
7971 
7972 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
7973 		return -EINVAL;
7974 
7975 	return 0;
7976 }
7977 
7978 /**
7979  * sys_perf_event_open - open a performance event, associate it to a task/cpu
7980  *
7981  * @attr_uptr:	event_id type attributes for monitoring/sampling
7982  * @pid:		target pid
7983  * @cpu:		target cpu
7984  * @group_fd:		group leader event fd
7985  */
7986 SYSCALL_DEFINE5(perf_event_open,
7987 		struct perf_event_attr __user *, attr_uptr,
7988 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
7989 {
7990 	struct perf_event *group_leader = NULL, *output_event = NULL;
7991 	struct perf_event *event, *sibling;
7992 	struct perf_event_attr attr;
7993 	struct perf_event_context *ctx, *uninitialized_var(gctx);
7994 	struct file *event_file = NULL;
7995 	struct fd group = {NULL, 0};
7996 	struct task_struct *task = NULL;
7997 	struct pmu *pmu;
7998 	int event_fd;
7999 	int move_group = 0;
8000 	int err;
8001 	int f_flags = O_RDWR;
8002 	int cgroup_fd = -1;
8003 
8004 	/* for future expandability... */
8005 	if (flags & ~PERF_FLAG_ALL)
8006 		return -EINVAL;
8007 
8008 	err = perf_copy_attr(attr_uptr, &attr);
8009 	if (err)
8010 		return err;
8011 
8012 	if (!attr.exclude_kernel) {
8013 		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8014 			return -EACCES;
8015 	}
8016 
8017 	if (attr.freq) {
8018 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
8019 			return -EINVAL;
8020 	} else {
8021 		if (attr.sample_period & (1ULL << 63))
8022 			return -EINVAL;
8023 	}
8024 
8025 	/*
8026 	 * In cgroup mode, the pid argument is used to pass the fd
8027 	 * opened to the cgroup directory in cgroupfs. The cpu argument
8028 	 * designates the cpu on which to monitor threads from that
8029 	 * cgroup.
8030 	 */
8031 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
8032 		return -EINVAL;
8033 
8034 	if (flags & PERF_FLAG_FD_CLOEXEC)
8035 		f_flags |= O_CLOEXEC;
8036 
8037 	event_fd = get_unused_fd_flags(f_flags);
8038 	if (event_fd < 0)
8039 		return event_fd;
8040 
8041 	if (group_fd != -1) {
8042 		err = perf_fget_light(group_fd, &group);
8043 		if (err)
8044 			goto err_fd;
8045 		group_leader = group.file->private_data;
8046 		if (flags & PERF_FLAG_FD_OUTPUT)
8047 			output_event = group_leader;
8048 		if (flags & PERF_FLAG_FD_NO_GROUP)
8049 			group_leader = NULL;
8050 	}
8051 
8052 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
8053 		task = find_lively_task_by_vpid(pid);
8054 		if (IS_ERR(task)) {
8055 			err = PTR_ERR(task);
8056 			goto err_group_fd;
8057 		}
8058 	}
8059 
8060 	if (task && group_leader &&
8061 	    group_leader->attr.inherit != attr.inherit) {
8062 		err = -EINVAL;
8063 		goto err_task;
8064 	}
8065 
8066 	get_online_cpus();
8067 
8068 	if (flags & PERF_FLAG_PID_CGROUP)
8069 		cgroup_fd = pid;
8070 
8071 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
8072 				 NULL, NULL, cgroup_fd);
8073 	if (IS_ERR(event)) {
8074 		err = PTR_ERR(event);
8075 		goto err_cpus;
8076 	}
8077 
8078 	if (is_sampling_event(event)) {
8079 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
8080 			err = -ENOTSUPP;
8081 			goto err_alloc;
8082 		}
8083 	}
8084 
8085 	account_event(event);
8086 
8087 	/*
8088 	 * Special case software events and allow them to be part of
8089 	 * any hardware group.
8090 	 */
8091 	pmu = event->pmu;
8092 
8093 	if (attr.use_clockid) {
8094 		err = perf_event_set_clock(event, attr.clockid);
8095 		if (err)
8096 			goto err_alloc;
8097 	}
8098 
8099 	if (group_leader &&
8100 	    (is_software_event(event) != is_software_event(group_leader))) {
8101 		if (is_software_event(event)) {
8102 			/*
8103 			 * If event and group_leader are not both a software
8104 			 * event, and event is, then group leader is not.
8105 			 *
8106 			 * Allow the addition of software events to !software
8107 			 * groups, this is safe because software events never
8108 			 * fail to schedule.
8109 			 */
8110 			pmu = group_leader->pmu;
8111 		} else if (is_software_event(group_leader) &&
8112 			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
8113 			/*
8114 			 * In case the group is a pure software group, and we
8115 			 * try to add a hardware event, move the whole group to
8116 			 * the hardware context.
8117 			 */
8118 			move_group = 1;
8119 		}
8120 	}
8121 
8122 	/*
8123 	 * Get the target context (task or percpu):
8124 	 */
8125 	ctx = find_get_context(pmu, task, event);
8126 	if (IS_ERR(ctx)) {
8127 		err = PTR_ERR(ctx);
8128 		goto err_alloc;
8129 	}
8130 
8131 	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
8132 		err = -EBUSY;
8133 		goto err_context;
8134 	}
8135 
8136 	if (task) {
8137 		put_task_struct(task);
8138 		task = NULL;
8139 	}
8140 
8141 	/*
8142 	 * Look up the group leader (we will attach this event to it):
8143 	 */
8144 	if (group_leader) {
8145 		err = -EINVAL;
8146 
8147 		/*
8148 		 * Do not allow a recursive hierarchy (this new sibling
8149 		 * becoming part of another group-sibling):
8150 		 */
8151 		if (group_leader->group_leader != group_leader)
8152 			goto err_context;
8153 
8154 		/* All events in a group should have the same clock */
8155 		if (group_leader->clock != event->clock)
8156 			goto err_context;
8157 
8158 		/*
8159 		 * Do not allow to attach to a group in a different
8160 		 * task or CPU context:
8161 		 */
8162 		if (move_group) {
8163 			/*
8164 			 * Make sure we're both on the same task, or both
8165 			 * per-cpu events.
8166 			 */
8167 			if (group_leader->ctx->task != ctx->task)
8168 				goto err_context;
8169 
8170 			/*
8171 			 * Make sure we're both events for the same CPU;
8172 			 * grouping events for different CPUs is broken; since
8173 			 * you can never concurrently schedule them anyhow.
8174 			 */
8175 			if (group_leader->cpu != event->cpu)
8176 				goto err_context;
8177 		} else {
8178 			if (group_leader->ctx != ctx)
8179 				goto err_context;
8180 		}
8181 
8182 		/*
8183 		 * Only a group leader can be exclusive or pinned
8184 		 */
8185 		if (attr.exclusive || attr.pinned)
8186 			goto err_context;
8187 	}
8188 
8189 	if (output_event) {
8190 		err = perf_event_set_output(event, output_event);
8191 		if (err)
8192 			goto err_context;
8193 	}
8194 
8195 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
8196 					f_flags);
8197 	if (IS_ERR(event_file)) {
8198 		err = PTR_ERR(event_file);
8199 		goto err_context;
8200 	}
8201 
8202 	if (move_group) {
8203 		gctx = group_leader->ctx;
8204 
8205 		/*
8206 		 * See perf_event_ctx_lock() for comments on the details
8207 		 * of swizzling perf_event::ctx.
8208 		 */
8209 		mutex_lock_double(&gctx->mutex, &ctx->mutex);
8210 
8211 		perf_remove_from_context(group_leader, false);
8212 
8213 		list_for_each_entry(sibling, &group_leader->sibling_list,
8214 				    group_entry) {
8215 			perf_remove_from_context(sibling, false);
8216 			put_ctx(gctx);
8217 		}
8218 	} else {
8219 		mutex_lock(&ctx->mutex);
8220 	}
8221 
8222 	WARN_ON_ONCE(ctx->parent_ctx);
8223 
8224 	if (move_group) {
8225 		/*
8226 		 * Wait for everybody to stop referencing the events through
8227 		 * the old lists, before installing it on new lists.
8228 		 */
8229 		synchronize_rcu();
8230 
8231 		/*
8232 		 * Install the group siblings before the group leader.
8233 		 *
8234 		 * Because a group leader will try and install the entire group
8235 		 * (through the sibling list, which is still in-tact), we can
8236 		 * end up with siblings installed in the wrong context.
8237 		 *
8238 		 * By installing siblings first we NO-OP because they're not
8239 		 * reachable through the group lists.
8240 		 */
8241 		list_for_each_entry(sibling, &group_leader->sibling_list,
8242 				    group_entry) {
8243 			perf_event__state_init(sibling);
8244 			perf_install_in_context(ctx, sibling, sibling->cpu);
8245 			get_ctx(ctx);
8246 		}
8247 
8248 		/*
8249 		 * Removing from the context ends up with disabled
8250 		 * event. What we want here is event in the initial
8251 		 * startup state, ready to be add into new context.
8252 		 */
8253 		perf_event__state_init(group_leader);
8254 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
8255 		get_ctx(ctx);
8256 	}
8257 
8258 	if (!exclusive_event_installable(event, ctx)) {
8259 		err = -EBUSY;
8260 		mutex_unlock(&ctx->mutex);
8261 		fput(event_file);
8262 		goto err_context;
8263 	}
8264 
8265 	perf_install_in_context(ctx, event, event->cpu);
8266 	perf_unpin_context(ctx);
8267 
8268 	if (move_group) {
8269 		mutex_unlock(&gctx->mutex);
8270 		put_ctx(gctx);
8271 	}
8272 	mutex_unlock(&ctx->mutex);
8273 
8274 	put_online_cpus();
8275 
8276 	event->owner = current;
8277 
8278 	mutex_lock(&current->perf_event_mutex);
8279 	list_add_tail(&event->owner_entry, &current->perf_event_list);
8280 	mutex_unlock(&current->perf_event_mutex);
8281 
8282 	/*
8283 	 * Precalculate sample_data sizes
8284 	 */
8285 	perf_event__header_size(event);
8286 	perf_event__id_header_size(event);
8287 
8288 	/*
8289 	 * Drop the reference on the group_event after placing the
8290 	 * new event on the sibling_list. This ensures destruction
8291 	 * of the group leader will find the pointer to itself in
8292 	 * perf_group_detach().
8293 	 */
8294 	fdput(group);
8295 	fd_install(event_fd, event_file);
8296 	return event_fd;
8297 
8298 err_context:
8299 	perf_unpin_context(ctx);
8300 	put_ctx(ctx);
8301 err_alloc:
8302 	free_event(event);
8303 err_cpus:
8304 	put_online_cpus();
8305 err_task:
8306 	if (task)
8307 		put_task_struct(task);
8308 err_group_fd:
8309 	fdput(group);
8310 err_fd:
8311 	put_unused_fd(event_fd);
8312 	return err;
8313 }
8314 
8315 /**
8316  * perf_event_create_kernel_counter
8317  *
8318  * @attr: attributes of the counter to create
8319  * @cpu: cpu in which the counter is bound
8320  * @task: task to profile (NULL for percpu)
8321  */
8322 struct perf_event *
8323 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
8324 				 struct task_struct *task,
8325 				 perf_overflow_handler_t overflow_handler,
8326 				 void *context)
8327 {
8328 	struct perf_event_context *ctx;
8329 	struct perf_event *event;
8330 	int err;
8331 
8332 	/*
8333 	 * Get the target context (task or percpu):
8334 	 */
8335 
8336 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
8337 				 overflow_handler, context, -1);
8338 	if (IS_ERR(event)) {
8339 		err = PTR_ERR(event);
8340 		goto err;
8341 	}
8342 
8343 	/* Mark owner so we could distinguish it from user events. */
8344 	event->owner = EVENT_OWNER_KERNEL;
8345 
8346 	account_event(event);
8347 
8348 	ctx = find_get_context(event->pmu, task, event);
8349 	if (IS_ERR(ctx)) {
8350 		err = PTR_ERR(ctx);
8351 		goto err_free;
8352 	}
8353 
8354 	WARN_ON_ONCE(ctx->parent_ctx);
8355 	mutex_lock(&ctx->mutex);
8356 	if (!exclusive_event_installable(event, ctx)) {
8357 		mutex_unlock(&ctx->mutex);
8358 		perf_unpin_context(ctx);
8359 		put_ctx(ctx);
8360 		err = -EBUSY;
8361 		goto err_free;
8362 	}
8363 
8364 	perf_install_in_context(ctx, event, cpu);
8365 	perf_unpin_context(ctx);
8366 	mutex_unlock(&ctx->mutex);
8367 
8368 	return event;
8369 
8370 err_free:
8371 	free_event(event);
8372 err:
8373 	return ERR_PTR(err);
8374 }
8375 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
8376 
8377 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
8378 {
8379 	struct perf_event_context *src_ctx;
8380 	struct perf_event_context *dst_ctx;
8381 	struct perf_event *event, *tmp;
8382 	LIST_HEAD(events);
8383 
8384 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
8385 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
8386 
8387 	/*
8388 	 * See perf_event_ctx_lock() for comments on the details
8389 	 * of swizzling perf_event::ctx.
8390 	 */
8391 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
8392 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
8393 				 event_entry) {
8394 		perf_remove_from_context(event, false);
8395 		unaccount_event_cpu(event, src_cpu);
8396 		put_ctx(src_ctx);
8397 		list_add(&event->migrate_entry, &events);
8398 	}
8399 
8400 	/*
8401 	 * Wait for the events to quiesce before re-instating them.
8402 	 */
8403 	synchronize_rcu();
8404 
8405 	/*
8406 	 * Re-instate events in 2 passes.
8407 	 *
8408 	 * Skip over group leaders and only install siblings on this first
8409 	 * pass, siblings will not get enabled without a leader, however a
8410 	 * leader will enable its siblings, even if those are still on the old
8411 	 * context.
8412 	 */
8413 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8414 		if (event->group_leader == event)
8415 			continue;
8416 
8417 		list_del(&event->migrate_entry);
8418 		if (event->state >= PERF_EVENT_STATE_OFF)
8419 			event->state = PERF_EVENT_STATE_INACTIVE;
8420 		account_event_cpu(event, dst_cpu);
8421 		perf_install_in_context(dst_ctx, event, dst_cpu);
8422 		get_ctx(dst_ctx);
8423 	}
8424 
8425 	/*
8426 	 * Once all the siblings are setup properly, install the group leaders
8427 	 * to make it go.
8428 	 */
8429 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8430 		list_del(&event->migrate_entry);
8431 		if (event->state >= PERF_EVENT_STATE_OFF)
8432 			event->state = PERF_EVENT_STATE_INACTIVE;
8433 		account_event_cpu(event, dst_cpu);
8434 		perf_install_in_context(dst_ctx, event, dst_cpu);
8435 		get_ctx(dst_ctx);
8436 	}
8437 	mutex_unlock(&dst_ctx->mutex);
8438 	mutex_unlock(&src_ctx->mutex);
8439 }
8440 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
8441 
8442 static void sync_child_event(struct perf_event *child_event,
8443 			       struct task_struct *child)
8444 {
8445 	struct perf_event *parent_event = child_event->parent;
8446 	u64 child_val;
8447 
8448 	if (child_event->attr.inherit_stat)
8449 		perf_event_read_event(child_event, child);
8450 
8451 	child_val = perf_event_count(child_event);
8452 
8453 	/*
8454 	 * Add back the child's count to the parent's count:
8455 	 */
8456 	atomic64_add(child_val, &parent_event->child_count);
8457 	atomic64_add(child_event->total_time_enabled,
8458 		     &parent_event->child_total_time_enabled);
8459 	atomic64_add(child_event->total_time_running,
8460 		     &parent_event->child_total_time_running);
8461 
8462 	/*
8463 	 * Remove this event from the parent's list
8464 	 */
8465 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8466 	mutex_lock(&parent_event->child_mutex);
8467 	list_del_init(&child_event->child_list);
8468 	mutex_unlock(&parent_event->child_mutex);
8469 
8470 	/*
8471 	 * Make sure user/parent get notified, that we just
8472 	 * lost one event.
8473 	 */
8474 	perf_event_wakeup(parent_event);
8475 
8476 	/*
8477 	 * Release the parent event, if this was the last
8478 	 * reference to it.
8479 	 */
8480 	put_event(parent_event);
8481 }
8482 
8483 static void
8484 __perf_event_exit_task(struct perf_event *child_event,
8485 			 struct perf_event_context *child_ctx,
8486 			 struct task_struct *child)
8487 {
8488 	/*
8489 	 * Do not destroy the 'original' grouping; because of the context
8490 	 * switch optimization the original events could've ended up in a
8491 	 * random child task.
8492 	 *
8493 	 * If we were to destroy the original group, all group related
8494 	 * operations would cease to function properly after this random
8495 	 * child dies.
8496 	 *
8497 	 * Do destroy all inherited groups, we don't care about those
8498 	 * and being thorough is better.
8499 	 */
8500 	perf_remove_from_context(child_event, !!child_event->parent);
8501 
8502 	/*
8503 	 * It can happen that the parent exits first, and has events
8504 	 * that are still around due to the child reference. These
8505 	 * events need to be zapped.
8506 	 */
8507 	if (child_event->parent) {
8508 		sync_child_event(child_event, child);
8509 		free_event(child_event);
8510 	} else {
8511 		child_event->state = PERF_EVENT_STATE_EXIT;
8512 		perf_event_wakeup(child_event);
8513 	}
8514 }
8515 
8516 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
8517 {
8518 	struct perf_event *child_event, *next;
8519 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
8520 	unsigned long flags;
8521 
8522 	if (likely(!child->perf_event_ctxp[ctxn])) {
8523 		perf_event_task(child, NULL, 0);
8524 		return;
8525 	}
8526 
8527 	local_irq_save(flags);
8528 	/*
8529 	 * We can't reschedule here because interrupts are disabled,
8530 	 * and either child is current or it is a task that can't be
8531 	 * scheduled, so we are now safe from rescheduling changing
8532 	 * our context.
8533 	 */
8534 	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
8535 
8536 	/*
8537 	 * Take the context lock here so that if find_get_context is
8538 	 * reading child->perf_event_ctxp, we wait until it has
8539 	 * incremented the context's refcount before we do put_ctx below.
8540 	 */
8541 	raw_spin_lock(&child_ctx->lock);
8542 	task_ctx_sched_out(child_ctx);
8543 	child->perf_event_ctxp[ctxn] = NULL;
8544 
8545 	/*
8546 	 * If this context is a clone; unclone it so it can't get
8547 	 * swapped to another process while we're removing all
8548 	 * the events from it.
8549 	 */
8550 	clone_ctx = unclone_ctx(child_ctx);
8551 	update_context_time(child_ctx);
8552 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
8553 
8554 	if (clone_ctx)
8555 		put_ctx(clone_ctx);
8556 
8557 	/*
8558 	 * Report the task dead after unscheduling the events so that we
8559 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
8560 	 * get a few PERF_RECORD_READ events.
8561 	 */
8562 	perf_event_task(child, child_ctx, 0);
8563 
8564 	/*
8565 	 * We can recurse on the same lock type through:
8566 	 *
8567 	 *   __perf_event_exit_task()
8568 	 *     sync_child_event()
8569 	 *       put_event()
8570 	 *         mutex_lock(&ctx->mutex)
8571 	 *
8572 	 * But since its the parent context it won't be the same instance.
8573 	 */
8574 	mutex_lock(&child_ctx->mutex);
8575 
8576 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8577 		__perf_event_exit_task(child_event, child_ctx, child);
8578 
8579 	mutex_unlock(&child_ctx->mutex);
8580 
8581 	put_ctx(child_ctx);
8582 }
8583 
8584 /*
8585  * When a child task exits, feed back event values to parent events.
8586  */
8587 void perf_event_exit_task(struct task_struct *child)
8588 {
8589 	struct perf_event *event, *tmp;
8590 	int ctxn;
8591 
8592 	mutex_lock(&child->perf_event_mutex);
8593 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
8594 				 owner_entry) {
8595 		list_del_init(&event->owner_entry);
8596 
8597 		/*
8598 		 * Ensure the list deletion is visible before we clear
8599 		 * the owner, closes a race against perf_release() where
8600 		 * we need to serialize on the owner->perf_event_mutex.
8601 		 */
8602 		smp_wmb();
8603 		event->owner = NULL;
8604 	}
8605 	mutex_unlock(&child->perf_event_mutex);
8606 
8607 	for_each_task_context_nr(ctxn)
8608 		perf_event_exit_task_context(child, ctxn);
8609 }
8610 
8611 static void perf_free_event(struct perf_event *event,
8612 			    struct perf_event_context *ctx)
8613 {
8614 	struct perf_event *parent = event->parent;
8615 
8616 	if (WARN_ON_ONCE(!parent))
8617 		return;
8618 
8619 	mutex_lock(&parent->child_mutex);
8620 	list_del_init(&event->child_list);
8621 	mutex_unlock(&parent->child_mutex);
8622 
8623 	put_event(parent);
8624 
8625 	raw_spin_lock_irq(&ctx->lock);
8626 	perf_group_detach(event);
8627 	list_del_event(event, ctx);
8628 	raw_spin_unlock_irq(&ctx->lock);
8629 	free_event(event);
8630 }
8631 
8632 /*
8633  * Free an unexposed, unused context as created by inheritance by
8634  * perf_event_init_task below, used by fork() in case of fail.
8635  *
8636  * Not all locks are strictly required, but take them anyway to be nice and
8637  * help out with the lockdep assertions.
8638  */
8639 void perf_event_free_task(struct task_struct *task)
8640 {
8641 	struct perf_event_context *ctx;
8642 	struct perf_event *event, *tmp;
8643 	int ctxn;
8644 
8645 	for_each_task_context_nr(ctxn) {
8646 		ctx = task->perf_event_ctxp[ctxn];
8647 		if (!ctx)
8648 			continue;
8649 
8650 		mutex_lock(&ctx->mutex);
8651 again:
8652 		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
8653 				group_entry)
8654 			perf_free_event(event, ctx);
8655 
8656 		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
8657 				group_entry)
8658 			perf_free_event(event, ctx);
8659 
8660 		if (!list_empty(&ctx->pinned_groups) ||
8661 				!list_empty(&ctx->flexible_groups))
8662 			goto again;
8663 
8664 		mutex_unlock(&ctx->mutex);
8665 
8666 		put_ctx(ctx);
8667 	}
8668 }
8669 
8670 void perf_event_delayed_put(struct task_struct *task)
8671 {
8672 	int ctxn;
8673 
8674 	for_each_task_context_nr(ctxn)
8675 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
8676 }
8677 
8678 /*
8679  * inherit a event from parent task to child task:
8680  */
8681 static struct perf_event *
8682 inherit_event(struct perf_event *parent_event,
8683 	      struct task_struct *parent,
8684 	      struct perf_event_context *parent_ctx,
8685 	      struct task_struct *child,
8686 	      struct perf_event *group_leader,
8687 	      struct perf_event_context *child_ctx)
8688 {
8689 	enum perf_event_active_state parent_state = parent_event->state;
8690 	struct perf_event *child_event;
8691 	unsigned long flags;
8692 
8693 	/*
8694 	 * Instead of creating recursive hierarchies of events,
8695 	 * we link inherited events back to the original parent,
8696 	 * which has a filp for sure, which we use as the reference
8697 	 * count:
8698 	 */
8699 	if (parent_event->parent)
8700 		parent_event = parent_event->parent;
8701 
8702 	child_event = perf_event_alloc(&parent_event->attr,
8703 					   parent_event->cpu,
8704 					   child,
8705 					   group_leader, parent_event,
8706 					   NULL, NULL, -1);
8707 	if (IS_ERR(child_event))
8708 		return child_event;
8709 
8710 	if (is_orphaned_event(parent_event) ||
8711 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
8712 		free_event(child_event);
8713 		return NULL;
8714 	}
8715 
8716 	get_ctx(child_ctx);
8717 
8718 	/*
8719 	 * Make the child state follow the state of the parent event,
8720 	 * not its attr.disabled bit.  We hold the parent's mutex,
8721 	 * so we won't race with perf_event_{en, dis}able_family.
8722 	 */
8723 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
8724 		child_event->state = PERF_EVENT_STATE_INACTIVE;
8725 	else
8726 		child_event->state = PERF_EVENT_STATE_OFF;
8727 
8728 	if (parent_event->attr.freq) {
8729 		u64 sample_period = parent_event->hw.sample_period;
8730 		struct hw_perf_event *hwc = &child_event->hw;
8731 
8732 		hwc->sample_period = sample_period;
8733 		hwc->last_period   = sample_period;
8734 
8735 		local64_set(&hwc->period_left, sample_period);
8736 	}
8737 
8738 	child_event->ctx = child_ctx;
8739 	child_event->overflow_handler = parent_event->overflow_handler;
8740 	child_event->overflow_handler_context
8741 		= parent_event->overflow_handler_context;
8742 
8743 	/*
8744 	 * Precalculate sample_data sizes
8745 	 */
8746 	perf_event__header_size(child_event);
8747 	perf_event__id_header_size(child_event);
8748 
8749 	/*
8750 	 * Link it up in the child's context:
8751 	 */
8752 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
8753 	add_event_to_ctx(child_event, child_ctx);
8754 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
8755 
8756 	/*
8757 	 * Link this into the parent event's child list
8758 	 */
8759 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8760 	mutex_lock(&parent_event->child_mutex);
8761 	list_add_tail(&child_event->child_list, &parent_event->child_list);
8762 	mutex_unlock(&parent_event->child_mutex);
8763 
8764 	return child_event;
8765 }
8766 
8767 static int inherit_group(struct perf_event *parent_event,
8768 	      struct task_struct *parent,
8769 	      struct perf_event_context *parent_ctx,
8770 	      struct task_struct *child,
8771 	      struct perf_event_context *child_ctx)
8772 {
8773 	struct perf_event *leader;
8774 	struct perf_event *sub;
8775 	struct perf_event *child_ctr;
8776 
8777 	leader = inherit_event(parent_event, parent, parent_ctx,
8778 				 child, NULL, child_ctx);
8779 	if (IS_ERR(leader))
8780 		return PTR_ERR(leader);
8781 	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
8782 		child_ctr = inherit_event(sub, parent, parent_ctx,
8783 					    child, leader, child_ctx);
8784 		if (IS_ERR(child_ctr))
8785 			return PTR_ERR(child_ctr);
8786 	}
8787 	return 0;
8788 }
8789 
8790 static int
8791 inherit_task_group(struct perf_event *event, struct task_struct *parent,
8792 		   struct perf_event_context *parent_ctx,
8793 		   struct task_struct *child, int ctxn,
8794 		   int *inherited_all)
8795 {
8796 	int ret;
8797 	struct perf_event_context *child_ctx;
8798 
8799 	if (!event->attr.inherit) {
8800 		*inherited_all = 0;
8801 		return 0;
8802 	}
8803 
8804 	child_ctx = child->perf_event_ctxp[ctxn];
8805 	if (!child_ctx) {
8806 		/*
8807 		 * This is executed from the parent task context, so
8808 		 * inherit events that have been marked for cloning.
8809 		 * First allocate and initialize a context for the
8810 		 * child.
8811 		 */
8812 
8813 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
8814 		if (!child_ctx)
8815 			return -ENOMEM;
8816 
8817 		child->perf_event_ctxp[ctxn] = child_ctx;
8818 	}
8819 
8820 	ret = inherit_group(event, parent, parent_ctx,
8821 			    child, child_ctx);
8822 
8823 	if (ret)
8824 		*inherited_all = 0;
8825 
8826 	return ret;
8827 }
8828 
8829 /*
8830  * Initialize the perf_event context in task_struct
8831  */
8832 static int perf_event_init_context(struct task_struct *child, int ctxn)
8833 {
8834 	struct perf_event_context *child_ctx, *parent_ctx;
8835 	struct perf_event_context *cloned_ctx;
8836 	struct perf_event *event;
8837 	struct task_struct *parent = current;
8838 	int inherited_all = 1;
8839 	unsigned long flags;
8840 	int ret = 0;
8841 
8842 	if (likely(!parent->perf_event_ctxp[ctxn]))
8843 		return 0;
8844 
8845 	/*
8846 	 * If the parent's context is a clone, pin it so it won't get
8847 	 * swapped under us.
8848 	 */
8849 	parent_ctx = perf_pin_task_context(parent, ctxn);
8850 	if (!parent_ctx)
8851 		return 0;
8852 
8853 	/*
8854 	 * No need to check if parent_ctx != NULL here; since we saw
8855 	 * it non-NULL earlier, the only reason for it to become NULL
8856 	 * is if we exit, and since we're currently in the middle of
8857 	 * a fork we can't be exiting at the same time.
8858 	 */
8859 
8860 	/*
8861 	 * Lock the parent list. No need to lock the child - not PID
8862 	 * hashed yet and not running, so nobody can access it.
8863 	 */
8864 	mutex_lock(&parent_ctx->mutex);
8865 
8866 	/*
8867 	 * We dont have to disable NMIs - we are only looking at
8868 	 * the list, not manipulating it:
8869 	 */
8870 	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8871 		ret = inherit_task_group(event, parent, parent_ctx,
8872 					 child, ctxn, &inherited_all);
8873 		if (ret)
8874 			break;
8875 	}
8876 
8877 	/*
8878 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
8879 	 * to allocations, but we need to prevent rotation because
8880 	 * rotate_ctx() will change the list from interrupt context.
8881 	 */
8882 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
8883 	parent_ctx->rotate_disable = 1;
8884 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
8885 
8886 	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8887 		ret = inherit_task_group(event, parent, parent_ctx,
8888 					 child, ctxn, &inherited_all);
8889 		if (ret)
8890 			break;
8891 	}
8892 
8893 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
8894 	parent_ctx->rotate_disable = 0;
8895 
8896 	child_ctx = child->perf_event_ctxp[ctxn];
8897 
8898 	if (child_ctx && inherited_all) {
8899 		/*
8900 		 * Mark the child context as a clone of the parent
8901 		 * context, or of whatever the parent is a clone of.
8902 		 *
8903 		 * Note that if the parent is a clone, the holding of
8904 		 * parent_ctx->lock avoids it from being uncloned.
8905 		 */
8906 		cloned_ctx = parent_ctx->parent_ctx;
8907 		if (cloned_ctx) {
8908 			child_ctx->parent_ctx = cloned_ctx;
8909 			child_ctx->parent_gen = parent_ctx->parent_gen;
8910 		} else {
8911 			child_ctx->parent_ctx = parent_ctx;
8912 			child_ctx->parent_gen = parent_ctx->generation;
8913 		}
8914 		get_ctx(child_ctx->parent_ctx);
8915 	}
8916 
8917 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
8918 	mutex_unlock(&parent_ctx->mutex);
8919 
8920 	perf_unpin_context(parent_ctx);
8921 	put_ctx(parent_ctx);
8922 
8923 	return ret;
8924 }
8925 
8926 /*
8927  * Initialize the perf_event context in task_struct
8928  */
8929 int perf_event_init_task(struct task_struct *child)
8930 {
8931 	int ctxn, ret;
8932 
8933 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
8934 	mutex_init(&child->perf_event_mutex);
8935 	INIT_LIST_HEAD(&child->perf_event_list);
8936 
8937 	for_each_task_context_nr(ctxn) {
8938 		ret = perf_event_init_context(child, ctxn);
8939 		if (ret) {
8940 			perf_event_free_task(child);
8941 			return ret;
8942 		}
8943 	}
8944 
8945 	return 0;
8946 }
8947 
8948 static void __init perf_event_init_all_cpus(void)
8949 {
8950 	struct swevent_htable *swhash;
8951 	int cpu;
8952 
8953 	for_each_possible_cpu(cpu) {
8954 		swhash = &per_cpu(swevent_htable, cpu);
8955 		mutex_init(&swhash->hlist_mutex);
8956 		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
8957 	}
8958 }
8959 
8960 static void perf_event_init_cpu(int cpu)
8961 {
8962 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8963 
8964 	mutex_lock(&swhash->hlist_mutex);
8965 	swhash->online = true;
8966 	if (swhash->hlist_refcount > 0) {
8967 		struct swevent_hlist *hlist;
8968 
8969 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
8970 		WARN_ON(!hlist);
8971 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
8972 	}
8973 	mutex_unlock(&swhash->hlist_mutex);
8974 }
8975 
8976 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
8977 static void __perf_event_exit_context(void *__info)
8978 {
8979 	struct remove_event re = { .detach_group = true };
8980 	struct perf_event_context *ctx = __info;
8981 
8982 	rcu_read_lock();
8983 	list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
8984 		__perf_remove_from_context(&re);
8985 	rcu_read_unlock();
8986 }
8987 
8988 static void perf_event_exit_cpu_context(int cpu)
8989 {
8990 	struct perf_event_context *ctx;
8991 	struct pmu *pmu;
8992 	int idx;
8993 
8994 	idx = srcu_read_lock(&pmus_srcu);
8995 	list_for_each_entry_rcu(pmu, &pmus, entry) {
8996 		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
8997 
8998 		mutex_lock(&ctx->mutex);
8999 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
9000 		mutex_unlock(&ctx->mutex);
9001 	}
9002 	srcu_read_unlock(&pmus_srcu, idx);
9003 }
9004 
9005 static void perf_event_exit_cpu(int cpu)
9006 {
9007 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9008 
9009 	perf_event_exit_cpu_context(cpu);
9010 
9011 	mutex_lock(&swhash->hlist_mutex);
9012 	swhash->online = false;
9013 	swevent_hlist_release(swhash);
9014 	mutex_unlock(&swhash->hlist_mutex);
9015 }
9016 #else
9017 static inline void perf_event_exit_cpu(int cpu) { }
9018 #endif
9019 
9020 static int
9021 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
9022 {
9023 	int cpu;
9024 
9025 	for_each_online_cpu(cpu)
9026 		perf_event_exit_cpu(cpu);
9027 
9028 	return NOTIFY_OK;
9029 }
9030 
9031 /*
9032  * Run the perf reboot notifier at the very last possible moment so that
9033  * the generic watchdog code runs as long as possible.
9034  */
9035 static struct notifier_block perf_reboot_notifier = {
9036 	.notifier_call = perf_reboot,
9037 	.priority = INT_MIN,
9038 };
9039 
9040 static int
9041 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
9042 {
9043 	unsigned int cpu = (long)hcpu;
9044 
9045 	switch (action & ~CPU_TASKS_FROZEN) {
9046 
9047 	case CPU_UP_PREPARE:
9048 	case CPU_DOWN_FAILED:
9049 		perf_event_init_cpu(cpu);
9050 		break;
9051 
9052 	case CPU_UP_CANCELED:
9053 	case CPU_DOWN_PREPARE:
9054 		perf_event_exit_cpu(cpu);
9055 		break;
9056 	default:
9057 		break;
9058 	}
9059 
9060 	return NOTIFY_OK;
9061 }
9062 
9063 void __init perf_event_init(void)
9064 {
9065 	int ret;
9066 
9067 	idr_init(&pmu_idr);
9068 
9069 	perf_event_init_all_cpus();
9070 	init_srcu_struct(&pmus_srcu);
9071 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
9072 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
9073 	perf_pmu_register(&perf_task_clock, NULL, -1);
9074 	perf_tp_register();
9075 	perf_cpu_notifier(perf_cpu_notify);
9076 	register_reboot_notifier(&perf_reboot_notifier);
9077 
9078 	ret = init_hw_breakpoint();
9079 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
9080 
9081 	/* do not patch jump label more than once per second */
9082 	jump_label_rate_limit(&perf_sched_events, HZ);
9083 
9084 	/*
9085 	 * Build time assertion that we keep the data_head at the intended
9086 	 * location.  IOW, validation we got the __reserved[] size right.
9087 	 */
9088 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
9089 		     != 1024);
9090 }
9091 
9092 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
9093 			      char *page)
9094 {
9095 	struct perf_pmu_events_attr *pmu_attr =
9096 		container_of(attr, struct perf_pmu_events_attr, attr);
9097 
9098 	if (pmu_attr->event_str)
9099 		return sprintf(page, "%s\n", pmu_attr->event_str);
9100 
9101 	return 0;
9102 }
9103 
9104 static int __init perf_event_sysfs_init(void)
9105 {
9106 	struct pmu *pmu;
9107 	int ret;
9108 
9109 	mutex_lock(&pmus_lock);
9110 
9111 	ret = bus_register(&pmu_bus);
9112 	if (ret)
9113 		goto unlock;
9114 
9115 	list_for_each_entry(pmu, &pmus, entry) {
9116 		if (!pmu->name || pmu->type < 0)
9117 			continue;
9118 
9119 		ret = pmu_dev_alloc(pmu);
9120 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
9121 	}
9122 	pmu_bus_running = 1;
9123 	ret = 0;
9124 
9125 unlock:
9126 	mutex_unlock(&pmus_lock);
9127 
9128 	return ret;
9129 }
9130 device_initcall(perf_event_sysfs_init);
9131 
9132 #ifdef CONFIG_CGROUP_PERF
9133 static struct cgroup_subsys_state *
9134 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
9135 {
9136 	struct perf_cgroup *jc;
9137 
9138 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
9139 	if (!jc)
9140 		return ERR_PTR(-ENOMEM);
9141 
9142 	jc->info = alloc_percpu(struct perf_cgroup_info);
9143 	if (!jc->info) {
9144 		kfree(jc);
9145 		return ERR_PTR(-ENOMEM);
9146 	}
9147 
9148 	return &jc->css;
9149 }
9150 
9151 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
9152 {
9153 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
9154 
9155 	free_percpu(jc->info);
9156 	kfree(jc);
9157 }
9158 
9159 static int __perf_cgroup_move(void *info)
9160 {
9161 	struct task_struct *task = info;
9162 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
9163 	return 0;
9164 }
9165 
9166 static void perf_cgroup_attach(struct cgroup_subsys_state *css,
9167 			       struct cgroup_taskset *tset)
9168 {
9169 	struct task_struct *task;
9170 
9171 	cgroup_taskset_for_each(task, tset)
9172 		task_function_call(task, __perf_cgroup_move, task);
9173 }
9174 
9175 static void perf_cgroup_exit(struct cgroup_subsys_state *css,
9176 			     struct cgroup_subsys_state *old_css,
9177 			     struct task_struct *task)
9178 {
9179 	/*
9180 	 * cgroup_exit() is called in the copy_process() failure path.
9181 	 * Ignore this case since the task hasn't ran yet, this avoids
9182 	 * trying to poke a half freed task state from generic code.
9183 	 */
9184 	if (!(task->flags & PF_EXITING))
9185 		return;
9186 
9187 	task_function_call(task, __perf_cgroup_move, task);
9188 }
9189 
9190 struct cgroup_subsys perf_event_cgrp_subsys = {
9191 	.css_alloc	= perf_cgroup_css_alloc,
9192 	.css_free	= perf_cgroup_css_free,
9193 	.exit		= perf_cgroup_exit,
9194 	.attach		= perf_cgroup_attach,
9195 };
9196 #endif /* CONFIG_CGROUP_PERF */
9197