1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Performance events core code: 4 * 5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 9 */ 10 11 #include <linux/fs.h> 12 #include <linux/mm.h> 13 #include <linux/cpu.h> 14 #include <linux/smp.h> 15 #include <linux/idr.h> 16 #include <linux/file.h> 17 #include <linux/poll.h> 18 #include <linux/slab.h> 19 #include <linux/hash.h> 20 #include <linux/tick.h> 21 #include <linux/sysfs.h> 22 #include <linux/dcache.h> 23 #include <linux/percpu.h> 24 #include <linux/ptrace.h> 25 #include <linux/reboot.h> 26 #include <linux/vmstat.h> 27 #include <linux/device.h> 28 #include <linux/export.h> 29 #include <linux/vmalloc.h> 30 #include <linux/hardirq.h> 31 #include <linux/hugetlb.h> 32 #include <linux/rculist.h> 33 #include <linux/uaccess.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/cgroup.h> 38 #include <linux/perf_event.h> 39 #include <linux/trace_events.h> 40 #include <linux/hw_breakpoint.h> 41 #include <linux/mm_types.h> 42 #include <linux/module.h> 43 #include <linux/mman.h> 44 #include <linux/compat.h> 45 #include <linux/bpf.h> 46 #include <linux/filter.h> 47 #include <linux/namei.h> 48 #include <linux/parser.h> 49 #include <linux/sched/clock.h> 50 #include <linux/sched/mm.h> 51 #include <linux/proc_ns.h> 52 #include <linux/mount.h> 53 #include <linux/min_heap.h> 54 #include <linux/highmem.h> 55 #include <linux/pgtable.h> 56 #include <linux/buildid.h> 57 #include <linux/task_work.h> 58 59 #include "internal.h" 60 61 #include <asm/irq_regs.h> 62 63 typedef int (*remote_function_f)(void *); 64 65 struct remote_function_call { 66 struct task_struct *p; 67 remote_function_f func; 68 void *info; 69 int ret; 70 }; 71 72 static void remote_function(void *data) 73 { 74 struct remote_function_call *tfc = data; 75 struct task_struct *p = tfc->p; 76 77 if (p) { 78 /* -EAGAIN */ 79 if (task_cpu(p) != smp_processor_id()) 80 return; 81 82 /* 83 * Now that we're on right CPU with IRQs disabled, we can test 84 * if we hit the right task without races. 85 */ 86 87 tfc->ret = -ESRCH; /* No such (running) process */ 88 if (p != current) 89 return; 90 } 91 92 tfc->ret = tfc->func(tfc->info); 93 } 94 95 /** 96 * task_function_call - call a function on the cpu on which a task runs 97 * @p: the task to evaluate 98 * @func: the function to be called 99 * @info: the function call argument 100 * 101 * Calls the function @func when the task is currently running. This might 102 * be on the current CPU, which just calls the function directly. This will 103 * retry due to any failures in smp_call_function_single(), such as if the 104 * task_cpu() goes offline concurrently. 105 * 106 * returns @func return value or -ESRCH or -ENXIO when the process isn't running 107 */ 108 static int 109 task_function_call(struct task_struct *p, remote_function_f func, void *info) 110 { 111 struct remote_function_call data = { 112 .p = p, 113 .func = func, 114 .info = info, 115 .ret = -EAGAIN, 116 }; 117 int ret; 118 119 for (;;) { 120 ret = smp_call_function_single(task_cpu(p), remote_function, 121 &data, 1); 122 if (!ret) 123 ret = data.ret; 124 125 if (ret != -EAGAIN) 126 break; 127 128 cond_resched(); 129 } 130 131 return ret; 132 } 133 134 /** 135 * cpu_function_call - call a function on the cpu 136 * @cpu: target cpu to queue this function 137 * @func: the function to be called 138 * @info: the function call argument 139 * 140 * Calls the function @func on the remote cpu. 141 * 142 * returns: @func return value or -ENXIO when the cpu is offline 143 */ 144 static int cpu_function_call(int cpu, remote_function_f func, void *info) 145 { 146 struct remote_function_call data = { 147 .p = NULL, 148 .func = func, 149 .info = info, 150 .ret = -ENXIO, /* No such CPU */ 151 }; 152 153 smp_call_function_single(cpu, remote_function, &data, 1); 154 155 return data.ret; 156 } 157 158 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 159 struct perf_event_context *ctx) 160 { 161 raw_spin_lock(&cpuctx->ctx.lock); 162 if (ctx) 163 raw_spin_lock(&ctx->lock); 164 } 165 166 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 167 struct perf_event_context *ctx) 168 { 169 if (ctx) 170 raw_spin_unlock(&ctx->lock); 171 raw_spin_unlock(&cpuctx->ctx.lock); 172 } 173 174 #define TASK_TOMBSTONE ((void *)-1L) 175 176 static bool is_kernel_event(struct perf_event *event) 177 { 178 return READ_ONCE(event->owner) == TASK_TOMBSTONE; 179 } 180 181 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context); 182 183 struct perf_event_context *perf_cpu_task_ctx(void) 184 { 185 lockdep_assert_irqs_disabled(); 186 return this_cpu_ptr(&perf_cpu_context)->task_ctx; 187 } 188 189 /* 190 * On task ctx scheduling... 191 * 192 * When !ctx->nr_events a task context will not be scheduled. This means 193 * we can disable the scheduler hooks (for performance) without leaving 194 * pending task ctx state. 195 * 196 * This however results in two special cases: 197 * 198 * - removing the last event from a task ctx; this is relatively straight 199 * forward and is done in __perf_remove_from_context. 200 * 201 * - adding the first event to a task ctx; this is tricky because we cannot 202 * rely on ctx->is_active and therefore cannot use event_function_call(). 203 * See perf_install_in_context(). 204 * 205 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set. 206 */ 207 208 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *, 209 struct perf_event_context *, void *); 210 211 struct event_function_struct { 212 struct perf_event *event; 213 event_f func; 214 void *data; 215 }; 216 217 static int event_function(void *info) 218 { 219 struct event_function_struct *efs = info; 220 struct perf_event *event = efs->event; 221 struct perf_event_context *ctx = event->ctx; 222 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 223 struct perf_event_context *task_ctx = cpuctx->task_ctx; 224 int ret = 0; 225 226 lockdep_assert_irqs_disabled(); 227 228 perf_ctx_lock(cpuctx, task_ctx); 229 /* 230 * Since we do the IPI call without holding ctx->lock things can have 231 * changed, double check we hit the task we set out to hit. 232 */ 233 if (ctx->task) { 234 if (ctx->task != current) { 235 ret = -ESRCH; 236 goto unlock; 237 } 238 239 /* 240 * We only use event_function_call() on established contexts, 241 * and event_function() is only ever called when active (or 242 * rather, we'll have bailed in task_function_call() or the 243 * above ctx->task != current test), therefore we must have 244 * ctx->is_active here. 245 */ 246 WARN_ON_ONCE(!ctx->is_active); 247 /* 248 * And since we have ctx->is_active, cpuctx->task_ctx must 249 * match. 250 */ 251 WARN_ON_ONCE(task_ctx != ctx); 252 } else { 253 WARN_ON_ONCE(&cpuctx->ctx != ctx); 254 } 255 256 efs->func(event, cpuctx, ctx, efs->data); 257 unlock: 258 perf_ctx_unlock(cpuctx, task_ctx); 259 260 return ret; 261 } 262 263 static void event_function_call(struct perf_event *event, event_f func, void *data) 264 { 265 struct perf_event_context *ctx = event->ctx; 266 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */ 267 struct event_function_struct efs = { 268 .event = event, 269 .func = func, 270 .data = data, 271 }; 272 273 if (!event->parent) { 274 /* 275 * If this is a !child event, we must hold ctx::mutex to 276 * stabilize the event->ctx relation. See 277 * perf_event_ctx_lock(). 278 */ 279 lockdep_assert_held(&ctx->mutex); 280 } 281 282 if (!task) { 283 cpu_function_call(event->cpu, event_function, &efs); 284 return; 285 } 286 287 if (task == TASK_TOMBSTONE) 288 return; 289 290 again: 291 if (!task_function_call(task, event_function, &efs)) 292 return; 293 294 raw_spin_lock_irq(&ctx->lock); 295 /* 296 * Reload the task pointer, it might have been changed by 297 * a concurrent perf_event_context_sched_out(). 298 */ 299 task = ctx->task; 300 if (task == TASK_TOMBSTONE) { 301 raw_spin_unlock_irq(&ctx->lock); 302 return; 303 } 304 if (ctx->is_active) { 305 raw_spin_unlock_irq(&ctx->lock); 306 goto again; 307 } 308 func(event, NULL, ctx, data); 309 raw_spin_unlock_irq(&ctx->lock); 310 } 311 312 /* 313 * Similar to event_function_call() + event_function(), but hard assumes IRQs 314 * are already disabled and we're on the right CPU. 315 */ 316 static void event_function_local(struct perf_event *event, event_f func, void *data) 317 { 318 struct perf_event_context *ctx = event->ctx; 319 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 320 struct task_struct *task = READ_ONCE(ctx->task); 321 struct perf_event_context *task_ctx = NULL; 322 323 lockdep_assert_irqs_disabled(); 324 325 if (task) { 326 if (task == TASK_TOMBSTONE) 327 return; 328 329 task_ctx = ctx; 330 } 331 332 perf_ctx_lock(cpuctx, task_ctx); 333 334 task = ctx->task; 335 if (task == TASK_TOMBSTONE) 336 goto unlock; 337 338 if (task) { 339 /* 340 * We must be either inactive or active and the right task, 341 * otherwise we're screwed, since we cannot IPI to somewhere 342 * else. 343 */ 344 if (ctx->is_active) { 345 if (WARN_ON_ONCE(task != current)) 346 goto unlock; 347 348 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx)) 349 goto unlock; 350 } 351 } else { 352 WARN_ON_ONCE(&cpuctx->ctx != ctx); 353 } 354 355 func(event, cpuctx, ctx, data); 356 unlock: 357 perf_ctx_unlock(cpuctx, task_ctx); 358 } 359 360 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 361 PERF_FLAG_FD_OUTPUT |\ 362 PERF_FLAG_PID_CGROUP |\ 363 PERF_FLAG_FD_CLOEXEC) 364 365 /* 366 * branch priv levels that need permission checks 367 */ 368 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 369 (PERF_SAMPLE_BRANCH_KERNEL |\ 370 PERF_SAMPLE_BRANCH_HV) 371 372 enum event_type_t { 373 EVENT_FLEXIBLE = 0x1, 374 EVENT_PINNED = 0x2, 375 EVENT_TIME = 0x4, 376 /* see ctx_resched() for details */ 377 EVENT_CPU = 0x8, 378 EVENT_CGROUP = 0x10, 379 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 380 }; 381 382 /* 383 * perf_sched_events : >0 events exist 384 */ 385 386 static void perf_sched_delayed(struct work_struct *work); 387 DEFINE_STATIC_KEY_FALSE(perf_sched_events); 388 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed); 389 static DEFINE_MUTEX(perf_sched_mutex); 390 static atomic_t perf_sched_count; 391 392 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events); 393 394 static atomic_t nr_mmap_events __read_mostly; 395 static atomic_t nr_comm_events __read_mostly; 396 static atomic_t nr_namespaces_events __read_mostly; 397 static atomic_t nr_task_events __read_mostly; 398 static atomic_t nr_freq_events __read_mostly; 399 static atomic_t nr_switch_events __read_mostly; 400 static atomic_t nr_ksymbol_events __read_mostly; 401 static atomic_t nr_bpf_events __read_mostly; 402 static atomic_t nr_cgroup_events __read_mostly; 403 static atomic_t nr_text_poke_events __read_mostly; 404 static atomic_t nr_build_id_events __read_mostly; 405 406 static LIST_HEAD(pmus); 407 static DEFINE_MUTEX(pmus_lock); 408 static struct srcu_struct pmus_srcu; 409 static cpumask_var_t perf_online_mask; 410 static struct kmem_cache *perf_event_cache; 411 412 /* 413 * perf event paranoia level: 414 * -1 - not paranoid at all 415 * 0 - disallow raw tracepoint access for unpriv 416 * 1 - disallow cpu events for unpriv 417 * 2 - disallow kernel profiling for unpriv 418 */ 419 int sysctl_perf_event_paranoid __read_mostly = 2; 420 421 /* Minimum for 512 kiB + 1 user control page */ 422 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 423 424 /* 425 * max perf event sample rate 426 */ 427 #define DEFAULT_MAX_SAMPLE_RATE 100000 428 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 429 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 430 431 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 432 433 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 434 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 435 436 static int perf_sample_allowed_ns __read_mostly = 437 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 438 439 static void update_perf_cpu_limits(void) 440 { 441 u64 tmp = perf_sample_period_ns; 442 443 tmp *= sysctl_perf_cpu_time_max_percent; 444 tmp = div_u64(tmp, 100); 445 if (!tmp) 446 tmp = 1; 447 448 WRITE_ONCE(perf_sample_allowed_ns, tmp); 449 } 450 451 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc); 452 453 int perf_proc_update_handler(struct ctl_table *table, int write, 454 void *buffer, size_t *lenp, loff_t *ppos) 455 { 456 int ret; 457 int perf_cpu = sysctl_perf_cpu_time_max_percent; 458 /* 459 * If throttling is disabled don't allow the write: 460 */ 461 if (write && (perf_cpu == 100 || perf_cpu == 0)) 462 return -EINVAL; 463 464 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 465 if (ret || !write) 466 return ret; 467 468 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 469 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 470 update_perf_cpu_limits(); 471 472 return 0; 473 } 474 475 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 476 477 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 478 void *buffer, size_t *lenp, loff_t *ppos) 479 { 480 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 481 482 if (ret || !write) 483 return ret; 484 485 if (sysctl_perf_cpu_time_max_percent == 100 || 486 sysctl_perf_cpu_time_max_percent == 0) { 487 printk(KERN_WARNING 488 "perf: Dynamic interrupt throttling disabled, can hang your system!\n"); 489 WRITE_ONCE(perf_sample_allowed_ns, 0); 490 } else { 491 update_perf_cpu_limits(); 492 } 493 494 return 0; 495 } 496 497 /* 498 * perf samples are done in some very critical code paths (NMIs). 499 * If they take too much CPU time, the system can lock up and not 500 * get any real work done. This will drop the sample rate when 501 * we detect that events are taking too long. 502 */ 503 #define NR_ACCUMULATED_SAMPLES 128 504 static DEFINE_PER_CPU(u64, running_sample_length); 505 506 static u64 __report_avg; 507 static u64 __report_allowed; 508 509 static void perf_duration_warn(struct irq_work *w) 510 { 511 printk_ratelimited(KERN_INFO 512 "perf: interrupt took too long (%lld > %lld), lowering " 513 "kernel.perf_event_max_sample_rate to %d\n", 514 __report_avg, __report_allowed, 515 sysctl_perf_event_sample_rate); 516 } 517 518 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 519 520 void perf_sample_event_took(u64 sample_len_ns) 521 { 522 u64 max_len = READ_ONCE(perf_sample_allowed_ns); 523 u64 running_len; 524 u64 avg_len; 525 u32 max; 526 527 if (max_len == 0) 528 return; 529 530 /* Decay the counter by 1 average sample. */ 531 running_len = __this_cpu_read(running_sample_length); 532 running_len -= running_len/NR_ACCUMULATED_SAMPLES; 533 running_len += sample_len_ns; 534 __this_cpu_write(running_sample_length, running_len); 535 536 /* 537 * Note: this will be biased artifically low until we have 538 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 539 * from having to maintain a count. 540 */ 541 avg_len = running_len/NR_ACCUMULATED_SAMPLES; 542 if (avg_len <= max_len) 543 return; 544 545 __report_avg = avg_len; 546 __report_allowed = max_len; 547 548 /* 549 * Compute a throttle threshold 25% below the current duration. 550 */ 551 avg_len += avg_len / 4; 552 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent; 553 if (avg_len < max) 554 max /= (u32)avg_len; 555 else 556 max = 1; 557 558 WRITE_ONCE(perf_sample_allowed_ns, avg_len); 559 WRITE_ONCE(max_samples_per_tick, max); 560 561 sysctl_perf_event_sample_rate = max * HZ; 562 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 563 564 if (!irq_work_queue(&perf_duration_work)) { 565 early_printk("perf: interrupt took too long (%lld > %lld), lowering " 566 "kernel.perf_event_max_sample_rate to %d\n", 567 __report_avg, __report_allowed, 568 sysctl_perf_event_sample_rate); 569 } 570 } 571 572 static atomic64_t perf_event_id; 573 574 static void update_context_time(struct perf_event_context *ctx); 575 static u64 perf_event_time(struct perf_event *event); 576 577 void __weak perf_event_print_debug(void) { } 578 579 static inline u64 perf_clock(void) 580 { 581 return local_clock(); 582 } 583 584 static inline u64 perf_event_clock(struct perf_event *event) 585 { 586 return event->clock(); 587 } 588 589 /* 590 * State based event timekeeping... 591 * 592 * The basic idea is to use event->state to determine which (if any) time 593 * fields to increment with the current delta. This means we only need to 594 * update timestamps when we change state or when they are explicitly requested 595 * (read). 596 * 597 * Event groups make things a little more complicated, but not terribly so. The 598 * rules for a group are that if the group leader is OFF the entire group is 599 * OFF, irrespecive of what the group member states are. This results in 600 * __perf_effective_state(). 601 * 602 * A futher ramification is that when a group leader flips between OFF and 603 * !OFF, we need to update all group member times. 604 * 605 * 606 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we 607 * need to make sure the relevant context time is updated before we try and 608 * update our timestamps. 609 */ 610 611 static __always_inline enum perf_event_state 612 __perf_effective_state(struct perf_event *event) 613 { 614 struct perf_event *leader = event->group_leader; 615 616 if (leader->state <= PERF_EVENT_STATE_OFF) 617 return leader->state; 618 619 return event->state; 620 } 621 622 static __always_inline void 623 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running) 624 { 625 enum perf_event_state state = __perf_effective_state(event); 626 u64 delta = now - event->tstamp; 627 628 *enabled = event->total_time_enabled; 629 if (state >= PERF_EVENT_STATE_INACTIVE) 630 *enabled += delta; 631 632 *running = event->total_time_running; 633 if (state >= PERF_EVENT_STATE_ACTIVE) 634 *running += delta; 635 } 636 637 static void perf_event_update_time(struct perf_event *event) 638 { 639 u64 now = perf_event_time(event); 640 641 __perf_update_times(event, now, &event->total_time_enabled, 642 &event->total_time_running); 643 event->tstamp = now; 644 } 645 646 static void perf_event_update_sibling_time(struct perf_event *leader) 647 { 648 struct perf_event *sibling; 649 650 for_each_sibling_event(sibling, leader) 651 perf_event_update_time(sibling); 652 } 653 654 static void 655 perf_event_set_state(struct perf_event *event, enum perf_event_state state) 656 { 657 if (event->state == state) 658 return; 659 660 perf_event_update_time(event); 661 /* 662 * If a group leader gets enabled/disabled all its siblings 663 * are affected too. 664 */ 665 if ((event->state < 0) ^ (state < 0)) 666 perf_event_update_sibling_time(event); 667 668 WRITE_ONCE(event->state, state); 669 } 670 671 /* 672 * UP store-release, load-acquire 673 */ 674 675 #define __store_release(ptr, val) \ 676 do { \ 677 barrier(); \ 678 WRITE_ONCE(*(ptr), (val)); \ 679 } while (0) 680 681 #define __load_acquire(ptr) \ 682 ({ \ 683 __unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr)); \ 684 barrier(); \ 685 ___p; \ 686 }) 687 688 static void perf_ctx_disable(struct perf_event_context *ctx, bool cgroup) 689 { 690 struct perf_event_pmu_context *pmu_ctx; 691 692 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 693 if (cgroup && !pmu_ctx->nr_cgroups) 694 continue; 695 perf_pmu_disable(pmu_ctx->pmu); 696 } 697 } 698 699 static void perf_ctx_enable(struct perf_event_context *ctx, bool cgroup) 700 { 701 struct perf_event_pmu_context *pmu_ctx; 702 703 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 704 if (cgroup && !pmu_ctx->nr_cgroups) 705 continue; 706 perf_pmu_enable(pmu_ctx->pmu); 707 } 708 } 709 710 static void ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type); 711 static void ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type); 712 713 #ifdef CONFIG_CGROUP_PERF 714 715 static inline bool 716 perf_cgroup_match(struct perf_event *event) 717 { 718 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 719 720 /* @event doesn't care about cgroup */ 721 if (!event->cgrp) 722 return true; 723 724 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 725 if (!cpuctx->cgrp) 726 return false; 727 728 /* 729 * Cgroup scoping is recursive. An event enabled for a cgroup is 730 * also enabled for all its descendant cgroups. If @cpuctx's 731 * cgroup is a descendant of @event's (the test covers identity 732 * case), it's a match. 733 */ 734 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 735 event->cgrp->css.cgroup); 736 } 737 738 static inline void perf_detach_cgroup(struct perf_event *event) 739 { 740 css_put(&event->cgrp->css); 741 event->cgrp = NULL; 742 } 743 744 static inline int is_cgroup_event(struct perf_event *event) 745 { 746 return event->cgrp != NULL; 747 } 748 749 static inline u64 perf_cgroup_event_time(struct perf_event *event) 750 { 751 struct perf_cgroup_info *t; 752 753 t = per_cpu_ptr(event->cgrp->info, event->cpu); 754 return t->time; 755 } 756 757 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now) 758 { 759 struct perf_cgroup_info *t; 760 761 t = per_cpu_ptr(event->cgrp->info, event->cpu); 762 if (!__load_acquire(&t->active)) 763 return t->time; 764 now += READ_ONCE(t->timeoffset); 765 return now; 766 } 767 768 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv) 769 { 770 if (adv) 771 info->time += now - info->timestamp; 772 info->timestamp = now; 773 /* 774 * see update_context_time() 775 */ 776 WRITE_ONCE(info->timeoffset, info->time - info->timestamp); 777 } 778 779 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final) 780 { 781 struct perf_cgroup *cgrp = cpuctx->cgrp; 782 struct cgroup_subsys_state *css; 783 struct perf_cgroup_info *info; 784 785 if (cgrp) { 786 u64 now = perf_clock(); 787 788 for (css = &cgrp->css; css; css = css->parent) { 789 cgrp = container_of(css, struct perf_cgroup, css); 790 info = this_cpu_ptr(cgrp->info); 791 792 __update_cgrp_time(info, now, true); 793 if (final) 794 __store_release(&info->active, 0); 795 } 796 } 797 } 798 799 static inline void update_cgrp_time_from_event(struct perf_event *event) 800 { 801 struct perf_cgroup_info *info; 802 803 /* 804 * ensure we access cgroup data only when needed and 805 * when we know the cgroup is pinned (css_get) 806 */ 807 if (!is_cgroup_event(event)) 808 return; 809 810 info = this_cpu_ptr(event->cgrp->info); 811 /* 812 * Do not update time when cgroup is not active 813 */ 814 if (info->active) 815 __update_cgrp_time(info, perf_clock(), true); 816 } 817 818 static inline void 819 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx) 820 { 821 struct perf_event_context *ctx = &cpuctx->ctx; 822 struct perf_cgroup *cgrp = cpuctx->cgrp; 823 struct perf_cgroup_info *info; 824 struct cgroup_subsys_state *css; 825 826 /* 827 * ctx->lock held by caller 828 * ensure we do not access cgroup data 829 * unless we have the cgroup pinned (css_get) 830 */ 831 if (!cgrp) 832 return; 833 834 WARN_ON_ONCE(!ctx->nr_cgroups); 835 836 for (css = &cgrp->css; css; css = css->parent) { 837 cgrp = container_of(css, struct perf_cgroup, css); 838 info = this_cpu_ptr(cgrp->info); 839 __update_cgrp_time(info, ctx->timestamp, false); 840 __store_release(&info->active, 1); 841 } 842 } 843 844 /* 845 * reschedule events based on the cgroup constraint of task. 846 */ 847 static void perf_cgroup_switch(struct task_struct *task) 848 { 849 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 850 struct perf_cgroup *cgrp; 851 852 /* 853 * cpuctx->cgrp is set when the first cgroup event enabled, 854 * and is cleared when the last cgroup event disabled. 855 */ 856 if (READ_ONCE(cpuctx->cgrp) == NULL) 857 return; 858 859 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0); 860 861 cgrp = perf_cgroup_from_task(task, NULL); 862 if (READ_ONCE(cpuctx->cgrp) == cgrp) 863 return; 864 865 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 866 perf_ctx_disable(&cpuctx->ctx, true); 867 868 ctx_sched_out(&cpuctx->ctx, EVENT_ALL|EVENT_CGROUP); 869 /* 870 * must not be done before ctxswout due 871 * to update_cgrp_time_from_cpuctx() in 872 * ctx_sched_out() 873 */ 874 cpuctx->cgrp = cgrp; 875 /* 876 * set cgrp before ctxsw in to allow 877 * perf_cgroup_set_timestamp() in ctx_sched_in() 878 * to not have to pass task around 879 */ 880 ctx_sched_in(&cpuctx->ctx, EVENT_ALL|EVENT_CGROUP); 881 882 perf_ctx_enable(&cpuctx->ctx, true); 883 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 884 } 885 886 static int perf_cgroup_ensure_storage(struct perf_event *event, 887 struct cgroup_subsys_state *css) 888 { 889 struct perf_cpu_context *cpuctx; 890 struct perf_event **storage; 891 int cpu, heap_size, ret = 0; 892 893 /* 894 * Allow storage to have sufficent space for an iterator for each 895 * possibly nested cgroup plus an iterator for events with no cgroup. 896 */ 897 for (heap_size = 1; css; css = css->parent) 898 heap_size++; 899 900 for_each_possible_cpu(cpu) { 901 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 902 if (heap_size <= cpuctx->heap_size) 903 continue; 904 905 storage = kmalloc_node(heap_size * sizeof(struct perf_event *), 906 GFP_KERNEL, cpu_to_node(cpu)); 907 if (!storage) { 908 ret = -ENOMEM; 909 break; 910 } 911 912 raw_spin_lock_irq(&cpuctx->ctx.lock); 913 if (cpuctx->heap_size < heap_size) { 914 swap(cpuctx->heap, storage); 915 if (storage == cpuctx->heap_default) 916 storage = NULL; 917 cpuctx->heap_size = heap_size; 918 } 919 raw_spin_unlock_irq(&cpuctx->ctx.lock); 920 921 kfree(storage); 922 } 923 924 return ret; 925 } 926 927 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 928 struct perf_event_attr *attr, 929 struct perf_event *group_leader) 930 { 931 struct perf_cgroup *cgrp; 932 struct cgroup_subsys_state *css; 933 struct fd f = fdget(fd); 934 int ret = 0; 935 936 if (!f.file) 937 return -EBADF; 938 939 css = css_tryget_online_from_dir(f.file->f_path.dentry, 940 &perf_event_cgrp_subsys); 941 if (IS_ERR(css)) { 942 ret = PTR_ERR(css); 943 goto out; 944 } 945 946 ret = perf_cgroup_ensure_storage(event, css); 947 if (ret) 948 goto out; 949 950 cgrp = container_of(css, struct perf_cgroup, css); 951 event->cgrp = cgrp; 952 953 /* 954 * all events in a group must monitor 955 * the same cgroup because a task belongs 956 * to only one perf cgroup at a time 957 */ 958 if (group_leader && group_leader->cgrp != cgrp) { 959 perf_detach_cgroup(event); 960 ret = -EINVAL; 961 } 962 out: 963 fdput(f); 964 return ret; 965 } 966 967 static inline void 968 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 969 { 970 struct perf_cpu_context *cpuctx; 971 972 if (!is_cgroup_event(event)) 973 return; 974 975 event->pmu_ctx->nr_cgroups++; 976 977 /* 978 * Because cgroup events are always per-cpu events, 979 * @ctx == &cpuctx->ctx. 980 */ 981 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 982 983 if (ctx->nr_cgroups++) 984 return; 985 986 cpuctx->cgrp = perf_cgroup_from_task(current, ctx); 987 } 988 989 static inline void 990 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 991 { 992 struct perf_cpu_context *cpuctx; 993 994 if (!is_cgroup_event(event)) 995 return; 996 997 event->pmu_ctx->nr_cgroups--; 998 999 /* 1000 * Because cgroup events are always per-cpu events, 1001 * @ctx == &cpuctx->ctx. 1002 */ 1003 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 1004 1005 if (--ctx->nr_cgroups) 1006 return; 1007 1008 cpuctx->cgrp = NULL; 1009 } 1010 1011 #else /* !CONFIG_CGROUP_PERF */ 1012 1013 static inline bool 1014 perf_cgroup_match(struct perf_event *event) 1015 { 1016 return true; 1017 } 1018 1019 static inline void perf_detach_cgroup(struct perf_event *event) 1020 {} 1021 1022 static inline int is_cgroup_event(struct perf_event *event) 1023 { 1024 return 0; 1025 } 1026 1027 static inline void update_cgrp_time_from_event(struct perf_event *event) 1028 { 1029 } 1030 1031 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, 1032 bool final) 1033 { 1034 } 1035 1036 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 1037 struct perf_event_attr *attr, 1038 struct perf_event *group_leader) 1039 { 1040 return -EINVAL; 1041 } 1042 1043 static inline void 1044 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx) 1045 { 1046 } 1047 1048 static inline u64 perf_cgroup_event_time(struct perf_event *event) 1049 { 1050 return 0; 1051 } 1052 1053 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now) 1054 { 1055 return 0; 1056 } 1057 1058 static inline void 1059 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 1060 { 1061 } 1062 1063 static inline void 1064 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 1065 { 1066 } 1067 1068 static void perf_cgroup_switch(struct task_struct *task) 1069 { 1070 } 1071 #endif 1072 1073 /* 1074 * set default to be dependent on timer tick just 1075 * like original code 1076 */ 1077 #define PERF_CPU_HRTIMER (1000 / HZ) 1078 /* 1079 * function must be called with interrupts disabled 1080 */ 1081 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) 1082 { 1083 struct perf_cpu_pmu_context *cpc; 1084 bool rotations; 1085 1086 lockdep_assert_irqs_disabled(); 1087 1088 cpc = container_of(hr, struct perf_cpu_pmu_context, hrtimer); 1089 rotations = perf_rotate_context(cpc); 1090 1091 raw_spin_lock(&cpc->hrtimer_lock); 1092 if (rotations) 1093 hrtimer_forward_now(hr, cpc->hrtimer_interval); 1094 else 1095 cpc->hrtimer_active = 0; 1096 raw_spin_unlock(&cpc->hrtimer_lock); 1097 1098 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; 1099 } 1100 1101 static void __perf_mux_hrtimer_init(struct perf_cpu_pmu_context *cpc, int cpu) 1102 { 1103 struct hrtimer *timer = &cpc->hrtimer; 1104 struct pmu *pmu = cpc->epc.pmu; 1105 u64 interval; 1106 1107 /* 1108 * check default is sane, if not set then force to 1109 * default interval (1/tick) 1110 */ 1111 interval = pmu->hrtimer_interval_ms; 1112 if (interval < 1) 1113 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 1114 1115 cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 1116 1117 raw_spin_lock_init(&cpc->hrtimer_lock); 1118 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD); 1119 timer->function = perf_mux_hrtimer_handler; 1120 } 1121 1122 static int perf_mux_hrtimer_restart(struct perf_cpu_pmu_context *cpc) 1123 { 1124 struct hrtimer *timer = &cpc->hrtimer; 1125 unsigned long flags; 1126 1127 raw_spin_lock_irqsave(&cpc->hrtimer_lock, flags); 1128 if (!cpc->hrtimer_active) { 1129 cpc->hrtimer_active = 1; 1130 hrtimer_forward_now(timer, cpc->hrtimer_interval); 1131 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD); 1132 } 1133 raw_spin_unlock_irqrestore(&cpc->hrtimer_lock, flags); 1134 1135 return 0; 1136 } 1137 1138 static int perf_mux_hrtimer_restart_ipi(void *arg) 1139 { 1140 return perf_mux_hrtimer_restart(arg); 1141 } 1142 1143 void perf_pmu_disable(struct pmu *pmu) 1144 { 1145 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1146 if (!(*count)++) 1147 pmu->pmu_disable(pmu); 1148 } 1149 1150 void perf_pmu_enable(struct pmu *pmu) 1151 { 1152 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1153 if (!--(*count)) 1154 pmu->pmu_enable(pmu); 1155 } 1156 1157 static void perf_assert_pmu_disabled(struct pmu *pmu) 1158 { 1159 WARN_ON_ONCE(*this_cpu_ptr(pmu->pmu_disable_count) == 0); 1160 } 1161 1162 static void get_ctx(struct perf_event_context *ctx) 1163 { 1164 refcount_inc(&ctx->refcount); 1165 } 1166 1167 static void *alloc_task_ctx_data(struct pmu *pmu) 1168 { 1169 if (pmu->task_ctx_cache) 1170 return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL); 1171 1172 return NULL; 1173 } 1174 1175 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data) 1176 { 1177 if (pmu->task_ctx_cache && task_ctx_data) 1178 kmem_cache_free(pmu->task_ctx_cache, task_ctx_data); 1179 } 1180 1181 static void free_ctx(struct rcu_head *head) 1182 { 1183 struct perf_event_context *ctx; 1184 1185 ctx = container_of(head, struct perf_event_context, rcu_head); 1186 kfree(ctx); 1187 } 1188 1189 static void put_ctx(struct perf_event_context *ctx) 1190 { 1191 if (refcount_dec_and_test(&ctx->refcount)) { 1192 if (ctx->parent_ctx) 1193 put_ctx(ctx->parent_ctx); 1194 if (ctx->task && ctx->task != TASK_TOMBSTONE) 1195 put_task_struct(ctx->task); 1196 call_rcu(&ctx->rcu_head, free_ctx); 1197 } 1198 } 1199 1200 /* 1201 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 1202 * perf_pmu_migrate_context() we need some magic. 1203 * 1204 * Those places that change perf_event::ctx will hold both 1205 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 1206 * 1207 * Lock ordering is by mutex address. There are two other sites where 1208 * perf_event_context::mutex nests and those are: 1209 * 1210 * - perf_event_exit_task_context() [ child , 0 ] 1211 * perf_event_exit_event() 1212 * put_event() [ parent, 1 ] 1213 * 1214 * - perf_event_init_context() [ parent, 0 ] 1215 * inherit_task_group() 1216 * inherit_group() 1217 * inherit_event() 1218 * perf_event_alloc() 1219 * perf_init_event() 1220 * perf_try_init_event() [ child , 1 ] 1221 * 1222 * While it appears there is an obvious deadlock here -- the parent and child 1223 * nesting levels are inverted between the two. This is in fact safe because 1224 * life-time rules separate them. That is an exiting task cannot fork, and a 1225 * spawning task cannot (yet) exit. 1226 * 1227 * But remember that these are parent<->child context relations, and 1228 * migration does not affect children, therefore these two orderings should not 1229 * interact. 1230 * 1231 * The change in perf_event::ctx does not affect children (as claimed above) 1232 * because the sys_perf_event_open() case will install a new event and break 1233 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 1234 * concerned with cpuctx and that doesn't have children. 1235 * 1236 * The places that change perf_event::ctx will issue: 1237 * 1238 * perf_remove_from_context(); 1239 * synchronize_rcu(); 1240 * perf_install_in_context(); 1241 * 1242 * to affect the change. The remove_from_context() + synchronize_rcu() should 1243 * quiesce the event, after which we can install it in the new location. This 1244 * means that only external vectors (perf_fops, prctl) can perturb the event 1245 * while in transit. Therefore all such accessors should also acquire 1246 * perf_event_context::mutex to serialize against this. 1247 * 1248 * However; because event->ctx can change while we're waiting to acquire 1249 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 1250 * function. 1251 * 1252 * Lock order: 1253 * exec_update_lock 1254 * task_struct::perf_event_mutex 1255 * perf_event_context::mutex 1256 * perf_event::child_mutex; 1257 * perf_event_context::lock 1258 * perf_event::mmap_mutex 1259 * mmap_lock 1260 * perf_addr_filters_head::lock 1261 * 1262 * cpu_hotplug_lock 1263 * pmus_lock 1264 * cpuctx->mutex / perf_event_context::mutex 1265 */ 1266 static struct perf_event_context * 1267 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 1268 { 1269 struct perf_event_context *ctx; 1270 1271 again: 1272 rcu_read_lock(); 1273 ctx = READ_ONCE(event->ctx); 1274 if (!refcount_inc_not_zero(&ctx->refcount)) { 1275 rcu_read_unlock(); 1276 goto again; 1277 } 1278 rcu_read_unlock(); 1279 1280 mutex_lock_nested(&ctx->mutex, nesting); 1281 if (event->ctx != ctx) { 1282 mutex_unlock(&ctx->mutex); 1283 put_ctx(ctx); 1284 goto again; 1285 } 1286 1287 return ctx; 1288 } 1289 1290 static inline struct perf_event_context * 1291 perf_event_ctx_lock(struct perf_event *event) 1292 { 1293 return perf_event_ctx_lock_nested(event, 0); 1294 } 1295 1296 static void perf_event_ctx_unlock(struct perf_event *event, 1297 struct perf_event_context *ctx) 1298 { 1299 mutex_unlock(&ctx->mutex); 1300 put_ctx(ctx); 1301 } 1302 1303 /* 1304 * This must be done under the ctx->lock, such as to serialize against 1305 * context_equiv(), therefore we cannot call put_ctx() since that might end up 1306 * calling scheduler related locks and ctx->lock nests inside those. 1307 */ 1308 static __must_check struct perf_event_context * 1309 unclone_ctx(struct perf_event_context *ctx) 1310 { 1311 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1312 1313 lockdep_assert_held(&ctx->lock); 1314 1315 if (parent_ctx) 1316 ctx->parent_ctx = NULL; 1317 ctx->generation++; 1318 1319 return parent_ctx; 1320 } 1321 1322 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p, 1323 enum pid_type type) 1324 { 1325 u32 nr; 1326 /* 1327 * only top level events have the pid namespace they were created in 1328 */ 1329 if (event->parent) 1330 event = event->parent; 1331 1332 nr = __task_pid_nr_ns(p, type, event->ns); 1333 /* avoid -1 if it is idle thread or runs in another ns */ 1334 if (!nr && !pid_alive(p)) 1335 nr = -1; 1336 return nr; 1337 } 1338 1339 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1340 { 1341 return perf_event_pid_type(event, p, PIDTYPE_TGID); 1342 } 1343 1344 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1345 { 1346 return perf_event_pid_type(event, p, PIDTYPE_PID); 1347 } 1348 1349 /* 1350 * If we inherit events we want to return the parent event id 1351 * to userspace. 1352 */ 1353 static u64 primary_event_id(struct perf_event *event) 1354 { 1355 u64 id = event->id; 1356 1357 if (event->parent) 1358 id = event->parent->id; 1359 1360 return id; 1361 } 1362 1363 /* 1364 * Get the perf_event_context for a task and lock it. 1365 * 1366 * This has to cope with the fact that until it is locked, 1367 * the context could get moved to another task. 1368 */ 1369 static struct perf_event_context * 1370 perf_lock_task_context(struct task_struct *task, unsigned long *flags) 1371 { 1372 struct perf_event_context *ctx; 1373 1374 retry: 1375 /* 1376 * One of the few rules of preemptible RCU is that one cannot do 1377 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1378 * part of the read side critical section was irqs-enabled -- see 1379 * rcu_read_unlock_special(). 1380 * 1381 * Since ctx->lock nests under rq->lock we must ensure the entire read 1382 * side critical section has interrupts disabled. 1383 */ 1384 local_irq_save(*flags); 1385 rcu_read_lock(); 1386 ctx = rcu_dereference(task->perf_event_ctxp); 1387 if (ctx) { 1388 /* 1389 * If this context is a clone of another, it might 1390 * get swapped for another underneath us by 1391 * perf_event_task_sched_out, though the 1392 * rcu_read_lock() protects us from any context 1393 * getting freed. Lock the context and check if it 1394 * got swapped before we could get the lock, and retry 1395 * if so. If we locked the right context, then it 1396 * can't get swapped on us any more. 1397 */ 1398 raw_spin_lock(&ctx->lock); 1399 if (ctx != rcu_dereference(task->perf_event_ctxp)) { 1400 raw_spin_unlock(&ctx->lock); 1401 rcu_read_unlock(); 1402 local_irq_restore(*flags); 1403 goto retry; 1404 } 1405 1406 if (ctx->task == TASK_TOMBSTONE || 1407 !refcount_inc_not_zero(&ctx->refcount)) { 1408 raw_spin_unlock(&ctx->lock); 1409 ctx = NULL; 1410 } else { 1411 WARN_ON_ONCE(ctx->task != task); 1412 } 1413 } 1414 rcu_read_unlock(); 1415 if (!ctx) 1416 local_irq_restore(*flags); 1417 return ctx; 1418 } 1419 1420 /* 1421 * Get the context for a task and increment its pin_count so it 1422 * can't get swapped to another task. This also increments its 1423 * reference count so that the context can't get freed. 1424 */ 1425 static struct perf_event_context * 1426 perf_pin_task_context(struct task_struct *task) 1427 { 1428 struct perf_event_context *ctx; 1429 unsigned long flags; 1430 1431 ctx = perf_lock_task_context(task, &flags); 1432 if (ctx) { 1433 ++ctx->pin_count; 1434 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1435 } 1436 return ctx; 1437 } 1438 1439 static void perf_unpin_context(struct perf_event_context *ctx) 1440 { 1441 unsigned long flags; 1442 1443 raw_spin_lock_irqsave(&ctx->lock, flags); 1444 --ctx->pin_count; 1445 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1446 } 1447 1448 /* 1449 * Update the record of the current time in a context. 1450 */ 1451 static void __update_context_time(struct perf_event_context *ctx, bool adv) 1452 { 1453 u64 now = perf_clock(); 1454 1455 lockdep_assert_held(&ctx->lock); 1456 1457 if (adv) 1458 ctx->time += now - ctx->timestamp; 1459 ctx->timestamp = now; 1460 1461 /* 1462 * The above: time' = time + (now - timestamp), can be re-arranged 1463 * into: time` = now + (time - timestamp), which gives a single value 1464 * offset to compute future time without locks on. 1465 * 1466 * See perf_event_time_now(), which can be used from NMI context where 1467 * it's (obviously) not possible to acquire ctx->lock in order to read 1468 * both the above values in a consistent manner. 1469 */ 1470 WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp); 1471 } 1472 1473 static void update_context_time(struct perf_event_context *ctx) 1474 { 1475 __update_context_time(ctx, true); 1476 } 1477 1478 static u64 perf_event_time(struct perf_event *event) 1479 { 1480 struct perf_event_context *ctx = event->ctx; 1481 1482 if (unlikely(!ctx)) 1483 return 0; 1484 1485 if (is_cgroup_event(event)) 1486 return perf_cgroup_event_time(event); 1487 1488 return ctx->time; 1489 } 1490 1491 static u64 perf_event_time_now(struct perf_event *event, u64 now) 1492 { 1493 struct perf_event_context *ctx = event->ctx; 1494 1495 if (unlikely(!ctx)) 1496 return 0; 1497 1498 if (is_cgroup_event(event)) 1499 return perf_cgroup_event_time_now(event, now); 1500 1501 if (!(__load_acquire(&ctx->is_active) & EVENT_TIME)) 1502 return ctx->time; 1503 1504 now += READ_ONCE(ctx->timeoffset); 1505 return now; 1506 } 1507 1508 static enum event_type_t get_event_type(struct perf_event *event) 1509 { 1510 struct perf_event_context *ctx = event->ctx; 1511 enum event_type_t event_type; 1512 1513 lockdep_assert_held(&ctx->lock); 1514 1515 /* 1516 * It's 'group type', really, because if our group leader is 1517 * pinned, so are we. 1518 */ 1519 if (event->group_leader != event) 1520 event = event->group_leader; 1521 1522 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE; 1523 if (!ctx->task) 1524 event_type |= EVENT_CPU; 1525 1526 return event_type; 1527 } 1528 1529 /* 1530 * Helper function to initialize event group nodes. 1531 */ 1532 static void init_event_group(struct perf_event *event) 1533 { 1534 RB_CLEAR_NODE(&event->group_node); 1535 event->group_index = 0; 1536 } 1537 1538 /* 1539 * Extract pinned or flexible groups from the context 1540 * based on event attrs bits. 1541 */ 1542 static struct perf_event_groups * 1543 get_event_groups(struct perf_event *event, struct perf_event_context *ctx) 1544 { 1545 if (event->attr.pinned) 1546 return &ctx->pinned_groups; 1547 else 1548 return &ctx->flexible_groups; 1549 } 1550 1551 /* 1552 * Helper function to initializes perf_event_group trees. 1553 */ 1554 static void perf_event_groups_init(struct perf_event_groups *groups) 1555 { 1556 groups->tree = RB_ROOT; 1557 groups->index = 0; 1558 } 1559 1560 static inline struct cgroup *event_cgroup(const struct perf_event *event) 1561 { 1562 struct cgroup *cgroup = NULL; 1563 1564 #ifdef CONFIG_CGROUP_PERF 1565 if (event->cgrp) 1566 cgroup = event->cgrp->css.cgroup; 1567 #endif 1568 1569 return cgroup; 1570 } 1571 1572 /* 1573 * Compare function for event groups; 1574 * 1575 * Implements complex key that first sorts by CPU and then by virtual index 1576 * which provides ordering when rotating groups for the same CPU. 1577 */ 1578 static __always_inline int 1579 perf_event_groups_cmp(const int left_cpu, const struct pmu *left_pmu, 1580 const struct cgroup *left_cgroup, const u64 left_group_index, 1581 const struct perf_event *right) 1582 { 1583 if (left_cpu < right->cpu) 1584 return -1; 1585 if (left_cpu > right->cpu) 1586 return 1; 1587 1588 if (left_pmu) { 1589 if (left_pmu < right->pmu_ctx->pmu) 1590 return -1; 1591 if (left_pmu > right->pmu_ctx->pmu) 1592 return 1; 1593 } 1594 1595 #ifdef CONFIG_CGROUP_PERF 1596 { 1597 const struct cgroup *right_cgroup = event_cgroup(right); 1598 1599 if (left_cgroup != right_cgroup) { 1600 if (!left_cgroup) { 1601 /* 1602 * Left has no cgroup but right does, no 1603 * cgroups come first. 1604 */ 1605 return -1; 1606 } 1607 if (!right_cgroup) { 1608 /* 1609 * Right has no cgroup but left does, no 1610 * cgroups come first. 1611 */ 1612 return 1; 1613 } 1614 /* Two dissimilar cgroups, order by id. */ 1615 if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup)) 1616 return -1; 1617 1618 return 1; 1619 } 1620 } 1621 #endif 1622 1623 if (left_group_index < right->group_index) 1624 return -1; 1625 if (left_group_index > right->group_index) 1626 return 1; 1627 1628 return 0; 1629 } 1630 1631 #define __node_2_pe(node) \ 1632 rb_entry((node), struct perf_event, group_node) 1633 1634 static inline bool __group_less(struct rb_node *a, const struct rb_node *b) 1635 { 1636 struct perf_event *e = __node_2_pe(a); 1637 return perf_event_groups_cmp(e->cpu, e->pmu_ctx->pmu, event_cgroup(e), 1638 e->group_index, __node_2_pe(b)) < 0; 1639 } 1640 1641 struct __group_key { 1642 int cpu; 1643 struct pmu *pmu; 1644 struct cgroup *cgroup; 1645 }; 1646 1647 static inline int __group_cmp(const void *key, const struct rb_node *node) 1648 { 1649 const struct __group_key *a = key; 1650 const struct perf_event *b = __node_2_pe(node); 1651 1652 /* partial/subtree match: @cpu, @pmu, @cgroup; ignore: @group_index */ 1653 return perf_event_groups_cmp(a->cpu, a->pmu, a->cgroup, b->group_index, b); 1654 } 1655 1656 static inline int 1657 __group_cmp_ignore_cgroup(const void *key, const struct rb_node *node) 1658 { 1659 const struct __group_key *a = key; 1660 const struct perf_event *b = __node_2_pe(node); 1661 1662 /* partial/subtree match: @cpu, @pmu, ignore: @cgroup, @group_index */ 1663 return perf_event_groups_cmp(a->cpu, a->pmu, event_cgroup(b), 1664 b->group_index, b); 1665 } 1666 1667 /* 1668 * Insert @event into @groups' tree; using 1669 * {@event->cpu, @event->pmu_ctx->pmu, event_cgroup(@event), ++@groups->index} 1670 * as key. This places it last inside the {cpu,pmu,cgroup} subtree. 1671 */ 1672 static void 1673 perf_event_groups_insert(struct perf_event_groups *groups, 1674 struct perf_event *event) 1675 { 1676 event->group_index = ++groups->index; 1677 1678 rb_add(&event->group_node, &groups->tree, __group_less); 1679 } 1680 1681 /* 1682 * Helper function to insert event into the pinned or flexible groups. 1683 */ 1684 static void 1685 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx) 1686 { 1687 struct perf_event_groups *groups; 1688 1689 groups = get_event_groups(event, ctx); 1690 perf_event_groups_insert(groups, event); 1691 } 1692 1693 /* 1694 * Delete a group from a tree. 1695 */ 1696 static void 1697 perf_event_groups_delete(struct perf_event_groups *groups, 1698 struct perf_event *event) 1699 { 1700 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) || 1701 RB_EMPTY_ROOT(&groups->tree)); 1702 1703 rb_erase(&event->group_node, &groups->tree); 1704 init_event_group(event); 1705 } 1706 1707 /* 1708 * Helper function to delete event from its groups. 1709 */ 1710 static void 1711 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx) 1712 { 1713 struct perf_event_groups *groups; 1714 1715 groups = get_event_groups(event, ctx); 1716 perf_event_groups_delete(groups, event); 1717 } 1718 1719 /* 1720 * Get the leftmost event in the {cpu,pmu,cgroup} subtree. 1721 */ 1722 static struct perf_event * 1723 perf_event_groups_first(struct perf_event_groups *groups, int cpu, 1724 struct pmu *pmu, struct cgroup *cgrp) 1725 { 1726 struct __group_key key = { 1727 .cpu = cpu, 1728 .pmu = pmu, 1729 .cgroup = cgrp, 1730 }; 1731 struct rb_node *node; 1732 1733 node = rb_find_first(&key, &groups->tree, __group_cmp); 1734 if (node) 1735 return __node_2_pe(node); 1736 1737 return NULL; 1738 } 1739 1740 static struct perf_event * 1741 perf_event_groups_next(struct perf_event *event, struct pmu *pmu) 1742 { 1743 struct __group_key key = { 1744 .cpu = event->cpu, 1745 .pmu = pmu, 1746 .cgroup = event_cgroup(event), 1747 }; 1748 struct rb_node *next; 1749 1750 next = rb_next_match(&key, &event->group_node, __group_cmp); 1751 if (next) 1752 return __node_2_pe(next); 1753 1754 return NULL; 1755 } 1756 1757 #define perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) \ 1758 for (event = perf_event_groups_first(groups, cpu, pmu, NULL); \ 1759 event; event = perf_event_groups_next(event, pmu)) 1760 1761 /* 1762 * Iterate through the whole groups tree. 1763 */ 1764 #define perf_event_groups_for_each(event, groups) \ 1765 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \ 1766 typeof(*event), group_node); event; \ 1767 event = rb_entry_safe(rb_next(&event->group_node), \ 1768 typeof(*event), group_node)) 1769 1770 /* 1771 * Add an event from the lists for its context. 1772 * Must be called with ctx->mutex and ctx->lock held. 1773 */ 1774 static void 1775 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1776 { 1777 lockdep_assert_held(&ctx->lock); 1778 1779 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1780 event->attach_state |= PERF_ATTACH_CONTEXT; 1781 1782 event->tstamp = perf_event_time(event); 1783 1784 /* 1785 * If we're a stand alone event or group leader, we go to the context 1786 * list, group events are kept attached to the group so that 1787 * perf_group_detach can, at all times, locate all siblings. 1788 */ 1789 if (event->group_leader == event) { 1790 event->group_caps = event->event_caps; 1791 add_event_to_groups(event, ctx); 1792 } 1793 1794 list_add_rcu(&event->event_entry, &ctx->event_list); 1795 ctx->nr_events++; 1796 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT) 1797 ctx->nr_user++; 1798 if (event->attr.inherit_stat) 1799 ctx->nr_stat++; 1800 1801 if (event->state > PERF_EVENT_STATE_OFF) 1802 perf_cgroup_event_enable(event, ctx); 1803 1804 ctx->generation++; 1805 event->pmu_ctx->nr_events++; 1806 } 1807 1808 /* 1809 * Initialize event state based on the perf_event_attr::disabled. 1810 */ 1811 static inline void perf_event__state_init(struct perf_event *event) 1812 { 1813 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1814 PERF_EVENT_STATE_INACTIVE; 1815 } 1816 1817 static int __perf_event_read_size(u64 read_format, int nr_siblings) 1818 { 1819 int entry = sizeof(u64); /* value */ 1820 int size = 0; 1821 int nr = 1; 1822 1823 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1824 size += sizeof(u64); 1825 1826 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1827 size += sizeof(u64); 1828 1829 if (read_format & PERF_FORMAT_ID) 1830 entry += sizeof(u64); 1831 1832 if (read_format & PERF_FORMAT_LOST) 1833 entry += sizeof(u64); 1834 1835 if (read_format & PERF_FORMAT_GROUP) { 1836 nr += nr_siblings; 1837 size += sizeof(u64); 1838 } 1839 1840 /* 1841 * Since perf_event_validate_size() limits this to 16k and inhibits 1842 * adding more siblings, this will never overflow. 1843 */ 1844 return size + nr * entry; 1845 } 1846 1847 static void __perf_event_header_size(struct perf_event *event, u64 sample_type) 1848 { 1849 struct perf_sample_data *data; 1850 u16 size = 0; 1851 1852 if (sample_type & PERF_SAMPLE_IP) 1853 size += sizeof(data->ip); 1854 1855 if (sample_type & PERF_SAMPLE_ADDR) 1856 size += sizeof(data->addr); 1857 1858 if (sample_type & PERF_SAMPLE_PERIOD) 1859 size += sizeof(data->period); 1860 1861 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) 1862 size += sizeof(data->weight.full); 1863 1864 if (sample_type & PERF_SAMPLE_READ) 1865 size += event->read_size; 1866 1867 if (sample_type & PERF_SAMPLE_DATA_SRC) 1868 size += sizeof(data->data_src.val); 1869 1870 if (sample_type & PERF_SAMPLE_TRANSACTION) 1871 size += sizeof(data->txn); 1872 1873 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 1874 size += sizeof(data->phys_addr); 1875 1876 if (sample_type & PERF_SAMPLE_CGROUP) 1877 size += sizeof(data->cgroup); 1878 1879 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 1880 size += sizeof(data->data_page_size); 1881 1882 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 1883 size += sizeof(data->code_page_size); 1884 1885 event->header_size = size; 1886 } 1887 1888 /* 1889 * Called at perf_event creation and when events are attached/detached from a 1890 * group. 1891 */ 1892 static void perf_event__header_size(struct perf_event *event) 1893 { 1894 event->read_size = 1895 __perf_event_read_size(event->attr.read_format, 1896 event->group_leader->nr_siblings); 1897 __perf_event_header_size(event, event->attr.sample_type); 1898 } 1899 1900 static void perf_event__id_header_size(struct perf_event *event) 1901 { 1902 struct perf_sample_data *data; 1903 u64 sample_type = event->attr.sample_type; 1904 u16 size = 0; 1905 1906 if (sample_type & PERF_SAMPLE_TID) 1907 size += sizeof(data->tid_entry); 1908 1909 if (sample_type & PERF_SAMPLE_TIME) 1910 size += sizeof(data->time); 1911 1912 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1913 size += sizeof(data->id); 1914 1915 if (sample_type & PERF_SAMPLE_ID) 1916 size += sizeof(data->id); 1917 1918 if (sample_type & PERF_SAMPLE_STREAM_ID) 1919 size += sizeof(data->stream_id); 1920 1921 if (sample_type & PERF_SAMPLE_CPU) 1922 size += sizeof(data->cpu_entry); 1923 1924 event->id_header_size = size; 1925 } 1926 1927 /* 1928 * Check that adding an event to the group does not result in anybody 1929 * overflowing the 64k event limit imposed by the output buffer. 1930 * 1931 * Specifically, check that the read_size for the event does not exceed 16k, 1932 * read_size being the one term that grows with groups size. Since read_size 1933 * depends on per-event read_format, also (re)check the existing events. 1934 * 1935 * This leaves 48k for the constant size fields and things like callchains, 1936 * branch stacks and register sets. 1937 */ 1938 static bool perf_event_validate_size(struct perf_event *event) 1939 { 1940 struct perf_event *sibling, *group_leader = event->group_leader; 1941 1942 if (__perf_event_read_size(event->attr.read_format, 1943 group_leader->nr_siblings + 1) > 16*1024) 1944 return false; 1945 1946 if (__perf_event_read_size(group_leader->attr.read_format, 1947 group_leader->nr_siblings + 1) > 16*1024) 1948 return false; 1949 1950 /* 1951 * When creating a new group leader, group_leader->ctx is initialized 1952 * after the size has been validated, but we cannot safely use 1953 * for_each_sibling_event() until group_leader->ctx is set. A new group 1954 * leader cannot have any siblings yet, so we can safely skip checking 1955 * the non-existent siblings. 1956 */ 1957 if (event == group_leader) 1958 return true; 1959 1960 for_each_sibling_event(sibling, group_leader) { 1961 if (__perf_event_read_size(sibling->attr.read_format, 1962 group_leader->nr_siblings + 1) > 16*1024) 1963 return false; 1964 } 1965 1966 return true; 1967 } 1968 1969 static void perf_group_attach(struct perf_event *event) 1970 { 1971 struct perf_event *group_leader = event->group_leader, *pos; 1972 1973 lockdep_assert_held(&event->ctx->lock); 1974 1975 /* 1976 * We can have double attach due to group movement (move_group) in 1977 * perf_event_open(). 1978 */ 1979 if (event->attach_state & PERF_ATTACH_GROUP) 1980 return; 1981 1982 event->attach_state |= PERF_ATTACH_GROUP; 1983 1984 if (group_leader == event) 1985 return; 1986 1987 WARN_ON_ONCE(group_leader->ctx != event->ctx); 1988 1989 group_leader->group_caps &= event->event_caps; 1990 1991 list_add_tail(&event->sibling_list, &group_leader->sibling_list); 1992 group_leader->nr_siblings++; 1993 group_leader->group_generation++; 1994 1995 perf_event__header_size(group_leader); 1996 1997 for_each_sibling_event(pos, group_leader) 1998 perf_event__header_size(pos); 1999 } 2000 2001 /* 2002 * Remove an event from the lists for its context. 2003 * Must be called with ctx->mutex and ctx->lock held. 2004 */ 2005 static void 2006 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 2007 { 2008 WARN_ON_ONCE(event->ctx != ctx); 2009 lockdep_assert_held(&ctx->lock); 2010 2011 /* 2012 * We can have double detach due to exit/hot-unplug + close. 2013 */ 2014 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 2015 return; 2016 2017 event->attach_state &= ~PERF_ATTACH_CONTEXT; 2018 2019 ctx->nr_events--; 2020 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT) 2021 ctx->nr_user--; 2022 if (event->attr.inherit_stat) 2023 ctx->nr_stat--; 2024 2025 list_del_rcu(&event->event_entry); 2026 2027 if (event->group_leader == event) 2028 del_event_from_groups(event, ctx); 2029 2030 /* 2031 * If event was in error state, then keep it 2032 * that way, otherwise bogus counts will be 2033 * returned on read(). The only way to get out 2034 * of error state is by explicit re-enabling 2035 * of the event 2036 */ 2037 if (event->state > PERF_EVENT_STATE_OFF) { 2038 perf_cgroup_event_disable(event, ctx); 2039 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2040 } 2041 2042 ctx->generation++; 2043 event->pmu_ctx->nr_events--; 2044 } 2045 2046 static int 2047 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event) 2048 { 2049 if (!has_aux(aux_event)) 2050 return 0; 2051 2052 if (!event->pmu->aux_output_match) 2053 return 0; 2054 2055 return event->pmu->aux_output_match(aux_event); 2056 } 2057 2058 static void put_event(struct perf_event *event); 2059 static void event_sched_out(struct perf_event *event, 2060 struct perf_event_context *ctx); 2061 2062 static void perf_put_aux_event(struct perf_event *event) 2063 { 2064 struct perf_event_context *ctx = event->ctx; 2065 struct perf_event *iter; 2066 2067 /* 2068 * If event uses aux_event tear down the link 2069 */ 2070 if (event->aux_event) { 2071 iter = event->aux_event; 2072 event->aux_event = NULL; 2073 put_event(iter); 2074 return; 2075 } 2076 2077 /* 2078 * If the event is an aux_event, tear down all links to 2079 * it from other events. 2080 */ 2081 for_each_sibling_event(iter, event->group_leader) { 2082 if (iter->aux_event != event) 2083 continue; 2084 2085 iter->aux_event = NULL; 2086 put_event(event); 2087 2088 /* 2089 * If it's ACTIVE, schedule it out and put it into ERROR 2090 * state so that we don't try to schedule it again. Note 2091 * that perf_event_enable() will clear the ERROR status. 2092 */ 2093 event_sched_out(iter, ctx); 2094 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 2095 } 2096 } 2097 2098 static bool perf_need_aux_event(struct perf_event *event) 2099 { 2100 return !!event->attr.aux_output || !!event->attr.aux_sample_size; 2101 } 2102 2103 static int perf_get_aux_event(struct perf_event *event, 2104 struct perf_event *group_leader) 2105 { 2106 /* 2107 * Our group leader must be an aux event if we want to be 2108 * an aux_output. This way, the aux event will precede its 2109 * aux_output events in the group, and therefore will always 2110 * schedule first. 2111 */ 2112 if (!group_leader) 2113 return 0; 2114 2115 /* 2116 * aux_output and aux_sample_size are mutually exclusive. 2117 */ 2118 if (event->attr.aux_output && event->attr.aux_sample_size) 2119 return 0; 2120 2121 if (event->attr.aux_output && 2122 !perf_aux_output_match(event, group_leader)) 2123 return 0; 2124 2125 if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux) 2126 return 0; 2127 2128 if (!atomic_long_inc_not_zero(&group_leader->refcount)) 2129 return 0; 2130 2131 /* 2132 * Link aux_outputs to their aux event; this is undone in 2133 * perf_group_detach() by perf_put_aux_event(). When the 2134 * group in torn down, the aux_output events loose their 2135 * link to the aux_event and can't schedule any more. 2136 */ 2137 event->aux_event = group_leader; 2138 2139 return 1; 2140 } 2141 2142 static inline struct list_head *get_event_list(struct perf_event *event) 2143 { 2144 return event->attr.pinned ? &event->pmu_ctx->pinned_active : 2145 &event->pmu_ctx->flexible_active; 2146 } 2147 2148 /* 2149 * Events that have PERF_EV_CAP_SIBLING require being part of a group and 2150 * cannot exist on their own, schedule them out and move them into the ERROR 2151 * state. Also see _perf_event_enable(), it will not be able to recover 2152 * this ERROR state. 2153 */ 2154 static inline void perf_remove_sibling_event(struct perf_event *event) 2155 { 2156 event_sched_out(event, event->ctx); 2157 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 2158 } 2159 2160 static void perf_group_detach(struct perf_event *event) 2161 { 2162 struct perf_event *leader = event->group_leader; 2163 struct perf_event *sibling, *tmp; 2164 struct perf_event_context *ctx = event->ctx; 2165 2166 lockdep_assert_held(&ctx->lock); 2167 2168 /* 2169 * We can have double detach due to exit/hot-unplug + close. 2170 */ 2171 if (!(event->attach_state & PERF_ATTACH_GROUP)) 2172 return; 2173 2174 event->attach_state &= ~PERF_ATTACH_GROUP; 2175 2176 perf_put_aux_event(event); 2177 2178 /* 2179 * If this is a sibling, remove it from its group. 2180 */ 2181 if (leader != event) { 2182 list_del_init(&event->sibling_list); 2183 event->group_leader->nr_siblings--; 2184 event->group_leader->group_generation++; 2185 goto out; 2186 } 2187 2188 /* 2189 * If this was a group event with sibling events then 2190 * upgrade the siblings to singleton events by adding them 2191 * to whatever list we are on. 2192 */ 2193 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) { 2194 2195 if (sibling->event_caps & PERF_EV_CAP_SIBLING) 2196 perf_remove_sibling_event(sibling); 2197 2198 sibling->group_leader = sibling; 2199 list_del_init(&sibling->sibling_list); 2200 2201 /* Inherit group flags from the previous leader */ 2202 sibling->group_caps = event->group_caps; 2203 2204 if (sibling->attach_state & PERF_ATTACH_CONTEXT) { 2205 add_event_to_groups(sibling, event->ctx); 2206 2207 if (sibling->state == PERF_EVENT_STATE_ACTIVE) 2208 list_add_tail(&sibling->active_list, get_event_list(sibling)); 2209 } 2210 2211 WARN_ON_ONCE(sibling->ctx != event->ctx); 2212 } 2213 2214 out: 2215 for_each_sibling_event(tmp, leader) 2216 perf_event__header_size(tmp); 2217 2218 perf_event__header_size(leader); 2219 } 2220 2221 static void sync_child_event(struct perf_event *child_event); 2222 2223 static void perf_child_detach(struct perf_event *event) 2224 { 2225 struct perf_event *parent_event = event->parent; 2226 2227 if (!(event->attach_state & PERF_ATTACH_CHILD)) 2228 return; 2229 2230 event->attach_state &= ~PERF_ATTACH_CHILD; 2231 2232 if (WARN_ON_ONCE(!parent_event)) 2233 return; 2234 2235 lockdep_assert_held(&parent_event->child_mutex); 2236 2237 sync_child_event(event); 2238 list_del_init(&event->child_list); 2239 } 2240 2241 static bool is_orphaned_event(struct perf_event *event) 2242 { 2243 return event->state == PERF_EVENT_STATE_DEAD; 2244 } 2245 2246 static inline int 2247 event_filter_match(struct perf_event *event) 2248 { 2249 return (event->cpu == -1 || event->cpu == smp_processor_id()) && 2250 perf_cgroup_match(event); 2251 } 2252 2253 static void 2254 event_sched_out(struct perf_event *event, struct perf_event_context *ctx) 2255 { 2256 struct perf_event_pmu_context *epc = event->pmu_ctx; 2257 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context); 2258 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE; 2259 2260 // XXX cpc serialization, probably per-cpu IRQ disabled 2261 2262 WARN_ON_ONCE(event->ctx != ctx); 2263 lockdep_assert_held(&ctx->lock); 2264 2265 if (event->state != PERF_EVENT_STATE_ACTIVE) 2266 return; 2267 2268 /* 2269 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but 2270 * we can schedule events _OUT_ individually through things like 2271 * __perf_remove_from_context(). 2272 */ 2273 list_del_init(&event->active_list); 2274 2275 perf_pmu_disable(event->pmu); 2276 2277 event->pmu->del(event, 0); 2278 event->oncpu = -1; 2279 2280 if (event->pending_disable) { 2281 event->pending_disable = 0; 2282 perf_cgroup_event_disable(event, ctx); 2283 state = PERF_EVENT_STATE_OFF; 2284 } 2285 2286 if (event->pending_sigtrap) { 2287 event->pending_sigtrap = 0; 2288 if (state != PERF_EVENT_STATE_OFF && 2289 !event->pending_work && 2290 !task_work_add(current, &event->pending_task, TWA_RESUME)) { 2291 event->pending_work = 1; 2292 } else { 2293 local_dec(&event->ctx->nr_pending); 2294 } 2295 } 2296 2297 perf_event_set_state(event, state); 2298 2299 if (!is_software_event(event)) 2300 cpc->active_oncpu--; 2301 if (event->attr.freq && event->attr.sample_freq) 2302 ctx->nr_freq--; 2303 if (event->attr.exclusive || !cpc->active_oncpu) 2304 cpc->exclusive = 0; 2305 2306 perf_pmu_enable(event->pmu); 2307 } 2308 2309 static void 2310 group_sched_out(struct perf_event *group_event, struct perf_event_context *ctx) 2311 { 2312 struct perf_event *event; 2313 2314 if (group_event->state != PERF_EVENT_STATE_ACTIVE) 2315 return; 2316 2317 perf_assert_pmu_disabled(group_event->pmu_ctx->pmu); 2318 2319 event_sched_out(group_event, ctx); 2320 2321 /* 2322 * Schedule out siblings (if any): 2323 */ 2324 for_each_sibling_event(event, group_event) 2325 event_sched_out(event, ctx); 2326 } 2327 2328 #define DETACH_GROUP 0x01UL 2329 #define DETACH_CHILD 0x02UL 2330 #define DETACH_DEAD 0x04UL 2331 2332 /* 2333 * Cross CPU call to remove a performance event 2334 * 2335 * We disable the event on the hardware level first. After that we 2336 * remove it from the context list. 2337 */ 2338 static void 2339 __perf_remove_from_context(struct perf_event *event, 2340 struct perf_cpu_context *cpuctx, 2341 struct perf_event_context *ctx, 2342 void *info) 2343 { 2344 struct perf_event_pmu_context *pmu_ctx = event->pmu_ctx; 2345 unsigned long flags = (unsigned long)info; 2346 2347 if (ctx->is_active & EVENT_TIME) { 2348 update_context_time(ctx); 2349 update_cgrp_time_from_cpuctx(cpuctx, false); 2350 } 2351 2352 /* 2353 * Ensure event_sched_out() switches to OFF, at the very least 2354 * this avoids raising perf_pending_task() at this time. 2355 */ 2356 if (flags & DETACH_DEAD) 2357 event->pending_disable = 1; 2358 event_sched_out(event, ctx); 2359 if (flags & DETACH_GROUP) 2360 perf_group_detach(event); 2361 if (flags & DETACH_CHILD) 2362 perf_child_detach(event); 2363 list_del_event(event, ctx); 2364 if (flags & DETACH_DEAD) 2365 event->state = PERF_EVENT_STATE_DEAD; 2366 2367 if (!pmu_ctx->nr_events) { 2368 pmu_ctx->rotate_necessary = 0; 2369 2370 if (ctx->task && ctx->is_active) { 2371 struct perf_cpu_pmu_context *cpc; 2372 2373 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context); 2374 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx); 2375 cpc->task_epc = NULL; 2376 } 2377 } 2378 2379 if (!ctx->nr_events && ctx->is_active) { 2380 if (ctx == &cpuctx->ctx) 2381 update_cgrp_time_from_cpuctx(cpuctx, true); 2382 2383 ctx->is_active = 0; 2384 if (ctx->task) { 2385 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2386 cpuctx->task_ctx = NULL; 2387 } 2388 } 2389 } 2390 2391 /* 2392 * Remove the event from a task's (or a CPU's) list of events. 2393 * 2394 * If event->ctx is a cloned context, callers must make sure that 2395 * every task struct that event->ctx->task could possibly point to 2396 * remains valid. This is OK when called from perf_release since 2397 * that only calls us on the top-level context, which can't be a clone. 2398 * When called from perf_event_exit_task, it's OK because the 2399 * context has been detached from its task. 2400 */ 2401 static void perf_remove_from_context(struct perf_event *event, unsigned long flags) 2402 { 2403 struct perf_event_context *ctx = event->ctx; 2404 2405 lockdep_assert_held(&ctx->mutex); 2406 2407 /* 2408 * Because of perf_event_exit_task(), perf_remove_from_context() ought 2409 * to work in the face of TASK_TOMBSTONE, unlike every other 2410 * event_function_call() user. 2411 */ 2412 raw_spin_lock_irq(&ctx->lock); 2413 if (!ctx->is_active) { 2414 __perf_remove_from_context(event, this_cpu_ptr(&perf_cpu_context), 2415 ctx, (void *)flags); 2416 raw_spin_unlock_irq(&ctx->lock); 2417 return; 2418 } 2419 raw_spin_unlock_irq(&ctx->lock); 2420 2421 event_function_call(event, __perf_remove_from_context, (void *)flags); 2422 } 2423 2424 /* 2425 * Cross CPU call to disable a performance event 2426 */ 2427 static void __perf_event_disable(struct perf_event *event, 2428 struct perf_cpu_context *cpuctx, 2429 struct perf_event_context *ctx, 2430 void *info) 2431 { 2432 if (event->state < PERF_EVENT_STATE_INACTIVE) 2433 return; 2434 2435 if (ctx->is_active & EVENT_TIME) { 2436 update_context_time(ctx); 2437 update_cgrp_time_from_event(event); 2438 } 2439 2440 perf_pmu_disable(event->pmu_ctx->pmu); 2441 2442 if (event == event->group_leader) 2443 group_sched_out(event, ctx); 2444 else 2445 event_sched_out(event, ctx); 2446 2447 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2448 perf_cgroup_event_disable(event, ctx); 2449 2450 perf_pmu_enable(event->pmu_ctx->pmu); 2451 } 2452 2453 /* 2454 * Disable an event. 2455 * 2456 * If event->ctx is a cloned context, callers must make sure that 2457 * every task struct that event->ctx->task could possibly point to 2458 * remains valid. This condition is satisfied when called through 2459 * perf_event_for_each_child or perf_event_for_each because they 2460 * hold the top-level event's child_mutex, so any descendant that 2461 * goes to exit will block in perf_event_exit_event(). 2462 * 2463 * When called from perf_pending_irq it's OK because event->ctx 2464 * is the current context on this CPU and preemption is disabled, 2465 * hence we can't get into perf_event_task_sched_out for this context. 2466 */ 2467 static void _perf_event_disable(struct perf_event *event) 2468 { 2469 struct perf_event_context *ctx = event->ctx; 2470 2471 raw_spin_lock_irq(&ctx->lock); 2472 if (event->state <= PERF_EVENT_STATE_OFF) { 2473 raw_spin_unlock_irq(&ctx->lock); 2474 return; 2475 } 2476 raw_spin_unlock_irq(&ctx->lock); 2477 2478 event_function_call(event, __perf_event_disable, NULL); 2479 } 2480 2481 void perf_event_disable_local(struct perf_event *event) 2482 { 2483 event_function_local(event, __perf_event_disable, NULL); 2484 } 2485 2486 /* 2487 * Strictly speaking kernel users cannot create groups and therefore this 2488 * interface does not need the perf_event_ctx_lock() magic. 2489 */ 2490 void perf_event_disable(struct perf_event *event) 2491 { 2492 struct perf_event_context *ctx; 2493 2494 ctx = perf_event_ctx_lock(event); 2495 _perf_event_disable(event); 2496 perf_event_ctx_unlock(event, ctx); 2497 } 2498 EXPORT_SYMBOL_GPL(perf_event_disable); 2499 2500 void perf_event_disable_inatomic(struct perf_event *event) 2501 { 2502 event->pending_disable = 1; 2503 irq_work_queue(&event->pending_irq); 2504 } 2505 2506 #define MAX_INTERRUPTS (~0ULL) 2507 2508 static void perf_log_throttle(struct perf_event *event, int enable); 2509 static void perf_log_itrace_start(struct perf_event *event); 2510 2511 static int 2512 event_sched_in(struct perf_event *event, struct perf_event_context *ctx) 2513 { 2514 struct perf_event_pmu_context *epc = event->pmu_ctx; 2515 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context); 2516 int ret = 0; 2517 2518 WARN_ON_ONCE(event->ctx != ctx); 2519 2520 lockdep_assert_held(&ctx->lock); 2521 2522 if (event->state <= PERF_EVENT_STATE_OFF) 2523 return 0; 2524 2525 WRITE_ONCE(event->oncpu, smp_processor_id()); 2526 /* 2527 * Order event::oncpu write to happen before the ACTIVE state is 2528 * visible. This allows perf_event_{stop,read}() to observe the correct 2529 * ->oncpu if it sees ACTIVE. 2530 */ 2531 smp_wmb(); 2532 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE); 2533 2534 /* 2535 * Unthrottle events, since we scheduled we might have missed several 2536 * ticks already, also for a heavily scheduling task there is little 2537 * guarantee it'll get a tick in a timely manner. 2538 */ 2539 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 2540 perf_log_throttle(event, 1); 2541 event->hw.interrupts = 0; 2542 } 2543 2544 perf_pmu_disable(event->pmu); 2545 2546 perf_log_itrace_start(event); 2547 2548 if (event->pmu->add(event, PERF_EF_START)) { 2549 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2550 event->oncpu = -1; 2551 ret = -EAGAIN; 2552 goto out; 2553 } 2554 2555 if (!is_software_event(event)) 2556 cpc->active_oncpu++; 2557 if (event->attr.freq && event->attr.sample_freq) 2558 ctx->nr_freq++; 2559 2560 if (event->attr.exclusive) 2561 cpc->exclusive = 1; 2562 2563 out: 2564 perf_pmu_enable(event->pmu); 2565 2566 return ret; 2567 } 2568 2569 static int 2570 group_sched_in(struct perf_event *group_event, struct perf_event_context *ctx) 2571 { 2572 struct perf_event *event, *partial_group = NULL; 2573 struct pmu *pmu = group_event->pmu_ctx->pmu; 2574 2575 if (group_event->state == PERF_EVENT_STATE_OFF) 2576 return 0; 2577 2578 pmu->start_txn(pmu, PERF_PMU_TXN_ADD); 2579 2580 if (event_sched_in(group_event, ctx)) 2581 goto error; 2582 2583 /* 2584 * Schedule in siblings as one group (if any): 2585 */ 2586 for_each_sibling_event(event, group_event) { 2587 if (event_sched_in(event, ctx)) { 2588 partial_group = event; 2589 goto group_error; 2590 } 2591 } 2592 2593 if (!pmu->commit_txn(pmu)) 2594 return 0; 2595 2596 group_error: 2597 /* 2598 * Groups can be scheduled in as one unit only, so undo any 2599 * partial group before returning: 2600 * The events up to the failed event are scheduled out normally. 2601 */ 2602 for_each_sibling_event(event, group_event) { 2603 if (event == partial_group) 2604 break; 2605 2606 event_sched_out(event, ctx); 2607 } 2608 event_sched_out(group_event, ctx); 2609 2610 error: 2611 pmu->cancel_txn(pmu); 2612 return -EAGAIN; 2613 } 2614 2615 /* 2616 * Work out whether we can put this event group on the CPU now. 2617 */ 2618 static int group_can_go_on(struct perf_event *event, int can_add_hw) 2619 { 2620 struct perf_event_pmu_context *epc = event->pmu_ctx; 2621 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context); 2622 2623 /* 2624 * Groups consisting entirely of software events can always go on. 2625 */ 2626 if (event->group_caps & PERF_EV_CAP_SOFTWARE) 2627 return 1; 2628 /* 2629 * If an exclusive group is already on, no other hardware 2630 * events can go on. 2631 */ 2632 if (cpc->exclusive) 2633 return 0; 2634 /* 2635 * If this group is exclusive and there are already 2636 * events on the CPU, it can't go on. 2637 */ 2638 if (event->attr.exclusive && !list_empty(get_event_list(event))) 2639 return 0; 2640 /* 2641 * Otherwise, try to add it if all previous groups were able 2642 * to go on. 2643 */ 2644 return can_add_hw; 2645 } 2646 2647 static void add_event_to_ctx(struct perf_event *event, 2648 struct perf_event_context *ctx) 2649 { 2650 list_add_event(event, ctx); 2651 perf_group_attach(event); 2652 } 2653 2654 static void task_ctx_sched_out(struct perf_event_context *ctx, 2655 enum event_type_t event_type) 2656 { 2657 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 2658 2659 if (!cpuctx->task_ctx) 2660 return; 2661 2662 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2663 return; 2664 2665 ctx_sched_out(ctx, event_type); 2666 } 2667 2668 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2669 struct perf_event_context *ctx) 2670 { 2671 ctx_sched_in(&cpuctx->ctx, EVENT_PINNED); 2672 if (ctx) 2673 ctx_sched_in(ctx, EVENT_PINNED); 2674 ctx_sched_in(&cpuctx->ctx, EVENT_FLEXIBLE); 2675 if (ctx) 2676 ctx_sched_in(ctx, EVENT_FLEXIBLE); 2677 } 2678 2679 /* 2680 * We want to maintain the following priority of scheduling: 2681 * - CPU pinned (EVENT_CPU | EVENT_PINNED) 2682 * - task pinned (EVENT_PINNED) 2683 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE) 2684 * - task flexible (EVENT_FLEXIBLE). 2685 * 2686 * In order to avoid unscheduling and scheduling back in everything every 2687 * time an event is added, only do it for the groups of equal priority and 2688 * below. 2689 * 2690 * This can be called after a batch operation on task events, in which case 2691 * event_type is a bit mask of the types of events involved. For CPU events, 2692 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE. 2693 */ 2694 /* 2695 * XXX: ctx_resched() reschedule entire perf_event_context while adding new 2696 * event to the context or enabling existing event in the context. We can 2697 * probably optimize it by rescheduling only affected pmu_ctx. 2698 */ 2699 static void ctx_resched(struct perf_cpu_context *cpuctx, 2700 struct perf_event_context *task_ctx, 2701 enum event_type_t event_type) 2702 { 2703 bool cpu_event = !!(event_type & EVENT_CPU); 2704 2705 /* 2706 * If pinned groups are involved, flexible groups also need to be 2707 * scheduled out. 2708 */ 2709 if (event_type & EVENT_PINNED) 2710 event_type |= EVENT_FLEXIBLE; 2711 2712 event_type &= EVENT_ALL; 2713 2714 perf_ctx_disable(&cpuctx->ctx, false); 2715 if (task_ctx) { 2716 perf_ctx_disable(task_ctx, false); 2717 task_ctx_sched_out(task_ctx, event_type); 2718 } 2719 2720 /* 2721 * Decide which cpu ctx groups to schedule out based on the types 2722 * of events that caused rescheduling: 2723 * - EVENT_CPU: schedule out corresponding groups; 2724 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups; 2725 * - otherwise, do nothing more. 2726 */ 2727 if (cpu_event) 2728 ctx_sched_out(&cpuctx->ctx, event_type); 2729 else if (event_type & EVENT_PINNED) 2730 ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE); 2731 2732 perf_event_sched_in(cpuctx, task_ctx); 2733 2734 perf_ctx_enable(&cpuctx->ctx, false); 2735 if (task_ctx) 2736 perf_ctx_enable(task_ctx, false); 2737 } 2738 2739 void perf_pmu_resched(struct pmu *pmu) 2740 { 2741 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 2742 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2743 2744 perf_ctx_lock(cpuctx, task_ctx); 2745 ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU); 2746 perf_ctx_unlock(cpuctx, task_ctx); 2747 } 2748 2749 /* 2750 * Cross CPU call to install and enable a performance event 2751 * 2752 * Very similar to remote_function() + event_function() but cannot assume that 2753 * things like ctx->is_active and cpuctx->task_ctx are set. 2754 */ 2755 static int __perf_install_in_context(void *info) 2756 { 2757 struct perf_event *event = info; 2758 struct perf_event_context *ctx = event->ctx; 2759 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 2760 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2761 bool reprogram = true; 2762 int ret = 0; 2763 2764 raw_spin_lock(&cpuctx->ctx.lock); 2765 if (ctx->task) { 2766 raw_spin_lock(&ctx->lock); 2767 task_ctx = ctx; 2768 2769 reprogram = (ctx->task == current); 2770 2771 /* 2772 * If the task is running, it must be running on this CPU, 2773 * otherwise we cannot reprogram things. 2774 * 2775 * If its not running, we don't care, ctx->lock will 2776 * serialize against it becoming runnable. 2777 */ 2778 if (task_curr(ctx->task) && !reprogram) { 2779 ret = -ESRCH; 2780 goto unlock; 2781 } 2782 2783 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx); 2784 } else if (task_ctx) { 2785 raw_spin_lock(&task_ctx->lock); 2786 } 2787 2788 #ifdef CONFIG_CGROUP_PERF 2789 if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) { 2790 /* 2791 * If the current cgroup doesn't match the event's 2792 * cgroup, we should not try to schedule it. 2793 */ 2794 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 2795 reprogram = cgroup_is_descendant(cgrp->css.cgroup, 2796 event->cgrp->css.cgroup); 2797 } 2798 #endif 2799 2800 if (reprogram) { 2801 ctx_sched_out(ctx, EVENT_TIME); 2802 add_event_to_ctx(event, ctx); 2803 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2804 } else { 2805 add_event_to_ctx(event, ctx); 2806 } 2807 2808 unlock: 2809 perf_ctx_unlock(cpuctx, task_ctx); 2810 2811 return ret; 2812 } 2813 2814 static bool exclusive_event_installable(struct perf_event *event, 2815 struct perf_event_context *ctx); 2816 2817 /* 2818 * Attach a performance event to a context. 2819 * 2820 * Very similar to event_function_call, see comment there. 2821 */ 2822 static void 2823 perf_install_in_context(struct perf_event_context *ctx, 2824 struct perf_event *event, 2825 int cpu) 2826 { 2827 struct task_struct *task = READ_ONCE(ctx->task); 2828 2829 lockdep_assert_held(&ctx->mutex); 2830 2831 WARN_ON_ONCE(!exclusive_event_installable(event, ctx)); 2832 2833 if (event->cpu != -1) 2834 WARN_ON_ONCE(event->cpu != cpu); 2835 2836 /* 2837 * Ensures that if we can observe event->ctx, both the event and ctx 2838 * will be 'complete'. See perf_iterate_sb_cpu(). 2839 */ 2840 smp_store_release(&event->ctx, ctx); 2841 2842 /* 2843 * perf_event_attr::disabled events will not run and can be initialized 2844 * without IPI. Except when this is the first event for the context, in 2845 * that case we need the magic of the IPI to set ctx->is_active. 2846 * 2847 * The IOC_ENABLE that is sure to follow the creation of a disabled 2848 * event will issue the IPI and reprogram the hardware. 2849 */ 2850 if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && 2851 ctx->nr_events && !is_cgroup_event(event)) { 2852 raw_spin_lock_irq(&ctx->lock); 2853 if (ctx->task == TASK_TOMBSTONE) { 2854 raw_spin_unlock_irq(&ctx->lock); 2855 return; 2856 } 2857 add_event_to_ctx(event, ctx); 2858 raw_spin_unlock_irq(&ctx->lock); 2859 return; 2860 } 2861 2862 if (!task) { 2863 cpu_function_call(cpu, __perf_install_in_context, event); 2864 return; 2865 } 2866 2867 /* 2868 * Should not happen, we validate the ctx is still alive before calling. 2869 */ 2870 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) 2871 return; 2872 2873 /* 2874 * Installing events is tricky because we cannot rely on ctx->is_active 2875 * to be set in case this is the nr_events 0 -> 1 transition. 2876 * 2877 * Instead we use task_curr(), which tells us if the task is running. 2878 * However, since we use task_curr() outside of rq::lock, we can race 2879 * against the actual state. This means the result can be wrong. 2880 * 2881 * If we get a false positive, we retry, this is harmless. 2882 * 2883 * If we get a false negative, things are complicated. If we are after 2884 * perf_event_context_sched_in() ctx::lock will serialize us, and the 2885 * value must be correct. If we're before, it doesn't matter since 2886 * perf_event_context_sched_in() will program the counter. 2887 * 2888 * However, this hinges on the remote context switch having observed 2889 * our task->perf_event_ctxp[] store, such that it will in fact take 2890 * ctx::lock in perf_event_context_sched_in(). 2891 * 2892 * We do this by task_function_call(), if the IPI fails to hit the task 2893 * we know any future context switch of task must see the 2894 * perf_event_ctpx[] store. 2895 */ 2896 2897 /* 2898 * This smp_mb() orders the task->perf_event_ctxp[] store with the 2899 * task_cpu() load, such that if the IPI then does not find the task 2900 * running, a future context switch of that task must observe the 2901 * store. 2902 */ 2903 smp_mb(); 2904 again: 2905 if (!task_function_call(task, __perf_install_in_context, event)) 2906 return; 2907 2908 raw_spin_lock_irq(&ctx->lock); 2909 task = ctx->task; 2910 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) { 2911 /* 2912 * Cannot happen because we already checked above (which also 2913 * cannot happen), and we hold ctx->mutex, which serializes us 2914 * against perf_event_exit_task_context(). 2915 */ 2916 raw_spin_unlock_irq(&ctx->lock); 2917 return; 2918 } 2919 /* 2920 * If the task is not running, ctx->lock will avoid it becoming so, 2921 * thus we can safely install the event. 2922 */ 2923 if (task_curr(task)) { 2924 raw_spin_unlock_irq(&ctx->lock); 2925 goto again; 2926 } 2927 add_event_to_ctx(event, ctx); 2928 raw_spin_unlock_irq(&ctx->lock); 2929 } 2930 2931 /* 2932 * Cross CPU call to enable a performance event 2933 */ 2934 static void __perf_event_enable(struct perf_event *event, 2935 struct perf_cpu_context *cpuctx, 2936 struct perf_event_context *ctx, 2937 void *info) 2938 { 2939 struct perf_event *leader = event->group_leader; 2940 struct perf_event_context *task_ctx; 2941 2942 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2943 event->state <= PERF_EVENT_STATE_ERROR) 2944 return; 2945 2946 if (ctx->is_active) 2947 ctx_sched_out(ctx, EVENT_TIME); 2948 2949 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2950 perf_cgroup_event_enable(event, ctx); 2951 2952 if (!ctx->is_active) 2953 return; 2954 2955 if (!event_filter_match(event)) { 2956 ctx_sched_in(ctx, EVENT_TIME); 2957 return; 2958 } 2959 2960 /* 2961 * If the event is in a group and isn't the group leader, 2962 * then don't put it on unless the group is on. 2963 */ 2964 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) { 2965 ctx_sched_in(ctx, EVENT_TIME); 2966 return; 2967 } 2968 2969 task_ctx = cpuctx->task_ctx; 2970 if (ctx->task) 2971 WARN_ON_ONCE(task_ctx != ctx); 2972 2973 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2974 } 2975 2976 /* 2977 * Enable an event. 2978 * 2979 * If event->ctx is a cloned context, callers must make sure that 2980 * every task struct that event->ctx->task could possibly point to 2981 * remains valid. This condition is satisfied when called through 2982 * perf_event_for_each_child or perf_event_for_each as described 2983 * for perf_event_disable. 2984 */ 2985 static void _perf_event_enable(struct perf_event *event) 2986 { 2987 struct perf_event_context *ctx = event->ctx; 2988 2989 raw_spin_lock_irq(&ctx->lock); 2990 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2991 event->state < PERF_EVENT_STATE_ERROR) { 2992 out: 2993 raw_spin_unlock_irq(&ctx->lock); 2994 return; 2995 } 2996 2997 /* 2998 * If the event is in error state, clear that first. 2999 * 3000 * That way, if we see the event in error state below, we know that it 3001 * has gone back into error state, as distinct from the task having 3002 * been scheduled away before the cross-call arrived. 3003 */ 3004 if (event->state == PERF_EVENT_STATE_ERROR) { 3005 /* 3006 * Detached SIBLING events cannot leave ERROR state. 3007 */ 3008 if (event->event_caps & PERF_EV_CAP_SIBLING && 3009 event->group_leader == event) 3010 goto out; 3011 3012 event->state = PERF_EVENT_STATE_OFF; 3013 } 3014 raw_spin_unlock_irq(&ctx->lock); 3015 3016 event_function_call(event, __perf_event_enable, NULL); 3017 } 3018 3019 /* 3020 * See perf_event_disable(); 3021 */ 3022 void perf_event_enable(struct perf_event *event) 3023 { 3024 struct perf_event_context *ctx; 3025 3026 ctx = perf_event_ctx_lock(event); 3027 _perf_event_enable(event); 3028 perf_event_ctx_unlock(event, ctx); 3029 } 3030 EXPORT_SYMBOL_GPL(perf_event_enable); 3031 3032 struct stop_event_data { 3033 struct perf_event *event; 3034 unsigned int restart; 3035 }; 3036 3037 static int __perf_event_stop(void *info) 3038 { 3039 struct stop_event_data *sd = info; 3040 struct perf_event *event = sd->event; 3041 3042 /* if it's already INACTIVE, do nothing */ 3043 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3044 return 0; 3045 3046 /* matches smp_wmb() in event_sched_in() */ 3047 smp_rmb(); 3048 3049 /* 3050 * There is a window with interrupts enabled before we get here, 3051 * so we need to check again lest we try to stop another CPU's event. 3052 */ 3053 if (READ_ONCE(event->oncpu) != smp_processor_id()) 3054 return -EAGAIN; 3055 3056 event->pmu->stop(event, PERF_EF_UPDATE); 3057 3058 /* 3059 * May race with the actual stop (through perf_pmu_output_stop()), 3060 * but it is only used for events with AUX ring buffer, and such 3061 * events will refuse to restart because of rb::aux_mmap_count==0, 3062 * see comments in perf_aux_output_begin(). 3063 * 3064 * Since this is happening on an event-local CPU, no trace is lost 3065 * while restarting. 3066 */ 3067 if (sd->restart) 3068 event->pmu->start(event, 0); 3069 3070 return 0; 3071 } 3072 3073 static int perf_event_stop(struct perf_event *event, int restart) 3074 { 3075 struct stop_event_data sd = { 3076 .event = event, 3077 .restart = restart, 3078 }; 3079 int ret = 0; 3080 3081 do { 3082 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3083 return 0; 3084 3085 /* matches smp_wmb() in event_sched_in() */ 3086 smp_rmb(); 3087 3088 /* 3089 * We only want to restart ACTIVE events, so if the event goes 3090 * inactive here (event->oncpu==-1), there's nothing more to do; 3091 * fall through with ret==-ENXIO. 3092 */ 3093 ret = cpu_function_call(READ_ONCE(event->oncpu), 3094 __perf_event_stop, &sd); 3095 } while (ret == -EAGAIN); 3096 3097 return ret; 3098 } 3099 3100 /* 3101 * In order to contain the amount of racy and tricky in the address filter 3102 * configuration management, it is a two part process: 3103 * 3104 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below, 3105 * we update the addresses of corresponding vmas in 3106 * event::addr_filter_ranges array and bump the event::addr_filters_gen; 3107 * (p2) when an event is scheduled in (pmu::add), it calls 3108 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync() 3109 * if the generation has changed since the previous call. 3110 * 3111 * If (p1) happens while the event is active, we restart it to force (p2). 3112 * 3113 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on 3114 * pre-existing mappings, called once when new filters arrive via SET_FILTER 3115 * ioctl; 3116 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly 3117 * registered mapping, called for every new mmap(), with mm::mmap_lock down 3118 * for reading; 3119 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process 3120 * of exec. 3121 */ 3122 void perf_event_addr_filters_sync(struct perf_event *event) 3123 { 3124 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 3125 3126 if (!has_addr_filter(event)) 3127 return; 3128 3129 raw_spin_lock(&ifh->lock); 3130 if (event->addr_filters_gen != event->hw.addr_filters_gen) { 3131 event->pmu->addr_filters_sync(event); 3132 event->hw.addr_filters_gen = event->addr_filters_gen; 3133 } 3134 raw_spin_unlock(&ifh->lock); 3135 } 3136 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync); 3137 3138 static int _perf_event_refresh(struct perf_event *event, int refresh) 3139 { 3140 /* 3141 * not supported on inherited events 3142 */ 3143 if (event->attr.inherit || !is_sampling_event(event)) 3144 return -EINVAL; 3145 3146 atomic_add(refresh, &event->event_limit); 3147 _perf_event_enable(event); 3148 3149 return 0; 3150 } 3151 3152 /* 3153 * See perf_event_disable() 3154 */ 3155 int perf_event_refresh(struct perf_event *event, int refresh) 3156 { 3157 struct perf_event_context *ctx; 3158 int ret; 3159 3160 ctx = perf_event_ctx_lock(event); 3161 ret = _perf_event_refresh(event, refresh); 3162 perf_event_ctx_unlock(event, ctx); 3163 3164 return ret; 3165 } 3166 EXPORT_SYMBOL_GPL(perf_event_refresh); 3167 3168 static int perf_event_modify_breakpoint(struct perf_event *bp, 3169 struct perf_event_attr *attr) 3170 { 3171 int err; 3172 3173 _perf_event_disable(bp); 3174 3175 err = modify_user_hw_breakpoint_check(bp, attr, true); 3176 3177 if (!bp->attr.disabled) 3178 _perf_event_enable(bp); 3179 3180 return err; 3181 } 3182 3183 /* 3184 * Copy event-type-independent attributes that may be modified. 3185 */ 3186 static void perf_event_modify_copy_attr(struct perf_event_attr *to, 3187 const struct perf_event_attr *from) 3188 { 3189 to->sig_data = from->sig_data; 3190 } 3191 3192 static int perf_event_modify_attr(struct perf_event *event, 3193 struct perf_event_attr *attr) 3194 { 3195 int (*func)(struct perf_event *, struct perf_event_attr *); 3196 struct perf_event *child; 3197 int err; 3198 3199 if (event->attr.type != attr->type) 3200 return -EINVAL; 3201 3202 switch (event->attr.type) { 3203 case PERF_TYPE_BREAKPOINT: 3204 func = perf_event_modify_breakpoint; 3205 break; 3206 default: 3207 /* Place holder for future additions. */ 3208 return -EOPNOTSUPP; 3209 } 3210 3211 WARN_ON_ONCE(event->ctx->parent_ctx); 3212 3213 mutex_lock(&event->child_mutex); 3214 /* 3215 * Event-type-independent attributes must be copied before event-type 3216 * modification, which will validate that final attributes match the 3217 * source attributes after all relevant attributes have been copied. 3218 */ 3219 perf_event_modify_copy_attr(&event->attr, attr); 3220 err = func(event, attr); 3221 if (err) 3222 goto out; 3223 list_for_each_entry(child, &event->child_list, child_list) { 3224 perf_event_modify_copy_attr(&child->attr, attr); 3225 err = func(child, attr); 3226 if (err) 3227 goto out; 3228 } 3229 out: 3230 mutex_unlock(&event->child_mutex); 3231 return err; 3232 } 3233 3234 static void __pmu_ctx_sched_out(struct perf_event_pmu_context *pmu_ctx, 3235 enum event_type_t event_type) 3236 { 3237 struct perf_event_context *ctx = pmu_ctx->ctx; 3238 struct perf_event *event, *tmp; 3239 struct pmu *pmu = pmu_ctx->pmu; 3240 3241 if (ctx->task && !ctx->is_active) { 3242 struct perf_cpu_pmu_context *cpc; 3243 3244 cpc = this_cpu_ptr(pmu->cpu_pmu_context); 3245 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx); 3246 cpc->task_epc = NULL; 3247 } 3248 3249 if (!event_type) 3250 return; 3251 3252 perf_pmu_disable(pmu); 3253 if (event_type & EVENT_PINNED) { 3254 list_for_each_entry_safe(event, tmp, 3255 &pmu_ctx->pinned_active, 3256 active_list) 3257 group_sched_out(event, ctx); 3258 } 3259 3260 if (event_type & EVENT_FLEXIBLE) { 3261 list_for_each_entry_safe(event, tmp, 3262 &pmu_ctx->flexible_active, 3263 active_list) 3264 group_sched_out(event, ctx); 3265 /* 3266 * Since we cleared EVENT_FLEXIBLE, also clear 3267 * rotate_necessary, is will be reset by 3268 * ctx_flexible_sched_in() when needed. 3269 */ 3270 pmu_ctx->rotate_necessary = 0; 3271 } 3272 perf_pmu_enable(pmu); 3273 } 3274 3275 static void 3276 ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type) 3277 { 3278 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3279 struct perf_event_pmu_context *pmu_ctx; 3280 int is_active = ctx->is_active; 3281 bool cgroup = event_type & EVENT_CGROUP; 3282 3283 event_type &= ~EVENT_CGROUP; 3284 3285 lockdep_assert_held(&ctx->lock); 3286 3287 if (likely(!ctx->nr_events)) { 3288 /* 3289 * See __perf_remove_from_context(). 3290 */ 3291 WARN_ON_ONCE(ctx->is_active); 3292 if (ctx->task) 3293 WARN_ON_ONCE(cpuctx->task_ctx); 3294 return; 3295 } 3296 3297 /* 3298 * Always update time if it was set; not only when it changes. 3299 * Otherwise we can 'forget' to update time for any but the last 3300 * context we sched out. For example: 3301 * 3302 * ctx_sched_out(.event_type = EVENT_FLEXIBLE) 3303 * ctx_sched_out(.event_type = EVENT_PINNED) 3304 * 3305 * would only update time for the pinned events. 3306 */ 3307 if (is_active & EVENT_TIME) { 3308 /* update (and stop) ctx time */ 3309 update_context_time(ctx); 3310 update_cgrp_time_from_cpuctx(cpuctx, ctx == &cpuctx->ctx); 3311 /* 3312 * CPU-release for the below ->is_active store, 3313 * see __load_acquire() in perf_event_time_now() 3314 */ 3315 barrier(); 3316 } 3317 3318 ctx->is_active &= ~event_type; 3319 if (!(ctx->is_active & EVENT_ALL)) 3320 ctx->is_active = 0; 3321 3322 if (ctx->task) { 3323 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3324 if (!ctx->is_active) 3325 cpuctx->task_ctx = NULL; 3326 } 3327 3328 is_active ^= ctx->is_active; /* changed bits */ 3329 3330 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 3331 if (cgroup && !pmu_ctx->nr_cgroups) 3332 continue; 3333 __pmu_ctx_sched_out(pmu_ctx, is_active); 3334 } 3335 } 3336 3337 /* 3338 * Test whether two contexts are equivalent, i.e. whether they have both been 3339 * cloned from the same version of the same context. 3340 * 3341 * Equivalence is measured using a generation number in the context that is 3342 * incremented on each modification to it; see unclone_ctx(), list_add_event() 3343 * and list_del_event(). 3344 */ 3345 static int context_equiv(struct perf_event_context *ctx1, 3346 struct perf_event_context *ctx2) 3347 { 3348 lockdep_assert_held(&ctx1->lock); 3349 lockdep_assert_held(&ctx2->lock); 3350 3351 /* Pinning disables the swap optimization */ 3352 if (ctx1->pin_count || ctx2->pin_count) 3353 return 0; 3354 3355 /* If ctx1 is the parent of ctx2 */ 3356 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 3357 return 1; 3358 3359 /* If ctx2 is the parent of ctx1 */ 3360 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 3361 return 1; 3362 3363 /* 3364 * If ctx1 and ctx2 have the same parent; we flatten the parent 3365 * hierarchy, see perf_event_init_context(). 3366 */ 3367 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 3368 ctx1->parent_gen == ctx2->parent_gen) 3369 return 1; 3370 3371 /* Unmatched */ 3372 return 0; 3373 } 3374 3375 static void __perf_event_sync_stat(struct perf_event *event, 3376 struct perf_event *next_event) 3377 { 3378 u64 value; 3379 3380 if (!event->attr.inherit_stat) 3381 return; 3382 3383 /* 3384 * Update the event value, we cannot use perf_event_read() 3385 * because we're in the middle of a context switch and have IRQs 3386 * disabled, which upsets smp_call_function_single(), however 3387 * we know the event must be on the current CPU, therefore we 3388 * don't need to use it. 3389 */ 3390 if (event->state == PERF_EVENT_STATE_ACTIVE) 3391 event->pmu->read(event); 3392 3393 perf_event_update_time(event); 3394 3395 /* 3396 * In order to keep per-task stats reliable we need to flip the event 3397 * values when we flip the contexts. 3398 */ 3399 value = local64_read(&next_event->count); 3400 value = local64_xchg(&event->count, value); 3401 local64_set(&next_event->count, value); 3402 3403 swap(event->total_time_enabled, next_event->total_time_enabled); 3404 swap(event->total_time_running, next_event->total_time_running); 3405 3406 /* 3407 * Since we swizzled the values, update the user visible data too. 3408 */ 3409 perf_event_update_userpage(event); 3410 perf_event_update_userpage(next_event); 3411 } 3412 3413 static void perf_event_sync_stat(struct perf_event_context *ctx, 3414 struct perf_event_context *next_ctx) 3415 { 3416 struct perf_event *event, *next_event; 3417 3418 if (!ctx->nr_stat) 3419 return; 3420 3421 update_context_time(ctx); 3422 3423 event = list_first_entry(&ctx->event_list, 3424 struct perf_event, event_entry); 3425 3426 next_event = list_first_entry(&next_ctx->event_list, 3427 struct perf_event, event_entry); 3428 3429 while (&event->event_entry != &ctx->event_list && 3430 &next_event->event_entry != &next_ctx->event_list) { 3431 3432 __perf_event_sync_stat(event, next_event); 3433 3434 event = list_next_entry(event, event_entry); 3435 next_event = list_next_entry(next_event, event_entry); 3436 } 3437 } 3438 3439 #define double_list_for_each_entry(pos1, pos2, head1, head2, member) \ 3440 for (pos1 = list_first_entry(head1, typeof(*pos1), member), \ 3441 pos2 = list_first_entry(head2, typeof(*pos2), member); \ 3442 !list_entry_is_head(pos1, head1, member) && \ 3443 !list_entry_is_head(pos2, head2, member); \ 3444 pos1 = list_next_entry(pos1, member), \ 3445 pos2 = list_next_entry(pos2, member)) 3446 3447 static void perf_event_swap_task_ctx_data(struct perf_event_context *prev_ctx, 3448 struct perf_event_context *next_ctx) 3449 { 3450 struct perf_event_pmu_context *prev_epc, *next_epc; 3451 3452 if (!prev_ctx->nr_task_data) 3453 return; 3454 3455 double_list_for_each_entry(prev_epc, next_epc, 3456 &prev_ctx->pmu_ctx_list, &next_ctx->pmu_ctx_list, 3457 pmu_ctx_entry) { 3458 3459 if (WARN_ON_ONCE(prev_epc->pmu != next_epc->pmu)) 3460 continue; 3461 3462 /* 3463 * PMU specific parts of task perf context can require 3464 * additional synchronization. As an example of such 3465 * synchronization see implementation details of Intel 3466 * LBR call stack data profiling; 3467 */ 3468 if (prev_epc->pmu->swap_task_ctx) 3469 prev_epc->pmu->swap_task_ctx(prev_epc, next_epc); 3470 else 3471 swap(prev_epc->task_ctx_data, next_epc->task_ctx_data); 3472 } 3473 } 3474 3475 static void perf_ctx_sched_task_cb(struct perf_event_context *ctx, bool sched_in) 3476 { 3477 struct perf_event_pmu_context *pmu_ctx; 3478 struct perf_cpu_pmu_context *cpc; 3479 3480 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 3481 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context); 3482 3483 if (cpc->sched_cb_usage && pmu_ctx->pmu->sched_task) 3484 pmu_ctx->pmu->sched_task(pmu_ctx, sched_in); 3485 } 3486 } 3487 3488 static void 3489 perf_event_context_sched_out(struct task_struct *task, struct task_struct *next) 3490 { 3491 struct perf_event_context *ctx = task->perf_event_ctxp; 3492 struct perf_event_context *next_ctx; 3493 struct perf_event_context *parent, *next_parent; 3494 int do_switch = 1; 3495 3496 if (likely(!ctx)) 3497 return; 3498 3499 rcu_read_lock(); 3500 next_ctx = rcu_dereference(next->perf_event_ctxp); 3501 if (!next_ctx) 3502 goto unlock; 3503 3504 parent = rcu_dereference(ctx->parent_ctx); 3505 next_parent = rcu_dereference(next_ctx->parent_ctx); 3506 3507 /* If neither context have a parent context; they cannot be clones. */ 3508 if (!parent && !next_parent) 3509 goto unlock; 3510 3511 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 3512 /* 3513 * Looks like the two contexts are clones, so we might be 3514 * able to optimize the context switch. We lock both 3515 * contexts and check that they are clones under the 3516 * lock (including re-checking that neither has been 3517 * uncloned in the meantime). It doesn't matter which 3518 * order we take the locks because no other cpu could 3519 * be trying to lock both of these tasks. 3520 */ 3521 raw_spin_lock(&ctx->lock); 3522 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 3523 if (context_equiv(ctx, next_ctx)) { 3524 3525 perf_ctx_disable(ctx, false); 3526 3527 /* PMIs are disabled; ctx->nr_pending is stable. */ 3528 if (local_read(&ctx->nr_pending) || 3529 local_read(&next_ctx->nr_pending)) { 3530 /* 3531 * Must not swap out ctx when there's pending 3532 * events that rely on the ctx->task relation. 3533 */ 3534 raw_spin_unlock(&next_ctx->lock); 3535 rcu_read_unlock(); 3536 goto inside_switch; 3537 } 3538 3539 WRITE_ONCE(ctx->task, next); 3540 WRITE_ONCE(next_ctx->task, task); 3541 3542 perf_ctx_sched_task_cb(ctx, false); 3543 perf_event_swap_task_ctx_data(ctx, next_ctx); 3544 3545 perf_ctx_enable(ctx, false); 3546 3547 /* 3548 * RCU_INIT_POINTER here is safe because we've not 3549 * modified the ctx and the above modification of 3550 * ctx->task and ctx->task_ctx_data are immaterial 3551 * since those values are always verified under 3552 * ctx->lock which we're now holding. 3553 */ 3554 RCU_INIT_POINTER(task->perf_event_ctxp, next_ctx); 3555 RCU_INIT_POINTER(next->perf_event_ctxp, ctx); 3556 3557 do_switch = 0; 3558 3559 perf_event_sync_stat(ctx, next_ctx); 3560 } 3561 raw_spin_unlock(&next_ctx->lock); 3562 raw_spin_unlock(&ctx->lock); 3563 } 3564 unlock: 3565 rcu_read_unlock(); 3566 3567 if (do_switch) { 3568 raw_spin_lock(&ctx->lock); 3569 perf_ctx_disable(ctx, false); 3570 3571 inside_switch: 3572 perf_ctx_sched_task_cb(ctx, false); 3573 task_ctx_sched_out(ctx, EVENT_ALL); 3574 3575 perf_ctx_enable(ctx, false); 3576 raw_spin_unlock(&ctx->lock); 3577 } 3578 } 3579 3580 static DEFINE_PER_CPU(struct list_head, sched_cb_list); 3581 static DEFINE_PER_CPU(int, perf_sched_cb_usages); 3582 3583 void perf_sched_cb_dec(struct pmu *pmu) 3584 { 3585 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context); 3586 3587 this_cpu_dec(perf_sched_cb_usages); 3588 barrier(); 3589 3590 if (!--cpc->sched_cb_usage) 3591 list_del(&cpc->sched_cb_entry); 3592 } 3593 3594 3595 void perf_sched_cb_inc(struct pmu *pmu) 3596 { 3597 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context); 3598 3599 if (!cpc->sched_cb_usage++) 3600 list_add(&cpc->sched_cb_entry, this_cpu_ptr(&sched_cb_list)); 3601 3602 barrier(); 3603 this_cpu_inc(perf_sched_cb_usages); 3604 } 3605 3606 /* 3607 * This function provides the context switch callback to the lower code 3608 * layer. It is invoked ONLY when the context switch callback is enabled. 3609 * 3610 * This callback is relevant even to per-cpu events; for example multi event 3611 * PEBS requires this to provide PID/TID information. This requires we flush 3612 * all queued PEBS records before we context switch to a new task. 3613 */ 3614 static void __perf_pmu_sched_task(struct perf_cpu_pmu_context *cpc, bool sched_in) 3615 { 3616 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3617 struct pmu *pmu; 3618 3619 pmu = cpc->epc.pmu; 3620 3621 /* software PMUs will not have sched_task */ 3622 if (WARN_ON_ONCE(!pmu->sched_task)) 3623 return; 3624 3625 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3626 perf_pmu_disable(pmu); 3627 3628 pmu->sched_task(cpc->task_epc, sched_in); 3629 3630 perf_pmu_enable(pmu); 3631 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3632 } 3633 3634 static void perf_pmu_sched_task(struct task_struct *prev, 3635 struct task_struct *next, 3636 bool sched_in) 3637 { 3638 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3639 struct perf_cpu_pmu_context *cpc; 3640 3641 /* cpuctx->task_ctx will be handled in perf_event_context_sched_in/out */ 3642 if (prev == next || cpuctx->task_ctx) 3643 return; 3644 3645 list_for_each_entry(cpc, this_cpu_ptr(&sched_cb_list), sched_cb_entry) 3646 __perf_pmu_sched_task(cpc, sched_in); 3647 } 3648 3649 static void perf_event_switch(struct task_struct *task, 3650 struct task_struct *next_prev, bool sched_in); 3651 3652 /* 3653 * Called from scheduler to remove the events of the current task, 3654 * with interrupts disabled. 3655 * 3656 * We stop each event and update the event value in event->count. 3657 * 3658 * This does not protect us against NMI, but disable() 3659 * sets the disabled bit in the control field of event _before_ 3660 * accessing the event control register. If a NMI hits, then it will 3661 * not restart the event. 3662 */ 3663 void __perf_event_task_sched_out(struct task_struct *task, 3664 struct task_struct *next) 3665 { 3666 if (__this_cpu_read(perf_sched_cb_usages)) 3667 perf_pmu_sched_task(task, next, false); 3668 3669 if (atomic_read(&nr_switch_events)) 3670 perf_event_switch(task, next, false); 3671 3672 perf_event_context_sched_out(task, next); 3673 3674 /* 3675 * if cgroup events exist on this CPU, then we need 3676 * to check if we have to switch out PMU state. 3677 * cgroup event are system-wide mode only 3678 */ 3679 perf_cgroup_switch(next); 3680 } 3681 3682 static bool perf_less_group_idx(const void *l, const void *r) 3683 { 3684 const struct perf_event *le = *(const struct perf_event **)l; 3685 const struct perf_event *re = *(const struct perf_event **)r; 3686 3687 return le->group_index < re->group_index; 3688 } 3689 3690 static void swap_ptr(void *l, void *r) 3691 { 3692 void **lp = l, **rp = r; 3693 3694 swap(*lp, *rp); 3695 } 3696 3697 static const struct min_heap_callbacks perf_min_heap = { 3698 .elem_size = sizeof(struct perf_event *), 3699 .less = perf_less_group_idx, 3700 .swp = swap_ptr, 3701 }; 3702 3703 static void __heap_add(struct min_heap *heap, struct perf_event *event) 3704 { 3705 struct perf_event **itrs = heap->data; 3706 3707 if (event) { 3708 itrs[heap->nr] = event; 3709 heap->nr++; 3710 } 3711 } 3712 3713 static void __link_epc(struct perf_event_pmu_context *pmu_ctx) 3714 { 3715 struct perf_cpu_pmu_context *cpc; 3716 3717 if (!pmu_ctx->ctx->task) 3718 return; 3719 3720 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context); 3721 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx); 3722 cpc->task_epc = pmu_ctx; 3723 } 3724 3725 static noinline int visit_groups_merge(struct perf_event_context *ctx, 3726 struct perf_event_groups *groups, int cpu, 3727 struct pmu *pmu, 3728 int (*func)(struct perf_event *, void *), 3729 void *data) 3730 { 3731 #ifdef CONFIG_CGROUP_PERF 3732 struct cgroup_subsys_state *css = NULL; 3733 #endif 3734 struct perf_cpu_context *cpuctx = NULL; 3735 /* Space for per CPU and/or any CPU event iterators. */ 3736 struct perf_event *itrs[2]; 3737 struct min_heap event_heap; 3738 struct perf_event **evt; 3739 int ret; 3740 3741 if (pmu->filter && pmu->filter(pmu, cpu)) 3742 return 0; 3743 3744 if (!ctx->task) { 3745 cpuctx = this_cpu_ptr(&perf_cpu_context); 3746 event_heap = (struct min_heap){ 3747 .data = cpuctx->heap, 3748 .nr = 0, 3749 .size = cpuctx->heap_size, 3750 }; 3751 3752 lockdep_assert_held(&cpuctx->ctx.lock); 3753 3754 #ifdef CONFIG_CGROUP_PERF 3755 if (cpuctx->cgrp) 3756 css = &cpuctx->cgrp->css; 3757 #endif 3758 } else { 3759 event_heap = (struct min_heap){ 3760 .data = itrs, 3761 .nr = 0, 3762 .size = ARRAY_SIZE(itrs), 3763 }; 3764 /* Events not within a CPU context may be on any CPU. */ 3765 __heap_add(&event_heap, perf_event_groups_first(groups, -1, pmu, NULL)); 3766 } 3767 evt = event_heap.data; 3768 3769 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, NULL)); 3770 3771 #ifdef CONFIG_CGROUP_PERF 3772 for (; css; css = css->parent) 3773 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, css->cgroup)); 3774 #endif 3775 3776 if (event_heap.nr) { 3777 __link_epc((*evt)->pmu_ctx); 3778 perf_assert_pmu_disabled((*evt)->pmu_ctx->pmu); 3779 } 3780 3781 min_heapify_all(&event_heap, &perf_min_heap); 3782 3783 while (event_heap.nr) { 3784 ret = func(*evt, data); 3785 if (ret) 3786 return ret; 3787 3788 *evt = perf_event_groups_next(*evt, pmu); 3789 if (*evt) 3790 min_heapify(&event_heap, 0, &perf_min_heap); 3791 else 3792 min_heap_pop(&event_heap, &perf_min_heap); 3793 } 3794 3795 return 0; 3796 } 3797 3798 /* 3799 * Because the userpage is strictly per-event (there is no concept of context, 3800 * so there cannot be a context indirection), every userpage must be updated 3801 * when context time starts :-( 3802 * 3803 * IOW, we must not miss EVENT_TIME edges. 3804 */ 3805 static inline bool event_update_userpage(struct perf_event *event) 3806 { 3807 if (likely(!atomic_read(&event->mmap_count))) 3808 return false; 3809 3810 perf_event_update_time(event); 3811 perf_event_update_userpage(event); 3812 3813 return true; 3814 } 3815 3816 static inline void group_update_userpage(struct perf_event *group_event) 3817 { 3818 struct perf_event *event; 3819 3820 if (!event_update_userpage(group_event)) 3821 return; 3822 3823 for_each_sibling_event(event, group_event) 3824 event_update_userpage(event); 3825 } 3826 3827 static int merge_sched_in(struct perf_event *event, void *data) 3828 { 3829 struct perf_event_context *ctx = event->ctx; 3830 int *can_add_hw = data; 3831 3832 if (event->state <= PERF_EVENT_STATE_OFF) 3833 return 0; 3834 3835 if (!event_filter_match(event)) 3836 return 0; 3837 3838 if (group_can_go_on(event, *can_add_hw)) { 3839 if (!group_sched_in(event, ctx)) 3840 list_add_tail(&event->active_list, get_event_list(event)); 3841 } 3842 3843 if (event->state == PERF_EVENT_STATE_INACTIVE) { 3844 *can_add_hw = 0; 3845 if (event->attr.pinned) { 3846 perf_cgroup_event_disable(event, ctx); 3847 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 3848 } else { 3849 struct perf_cpu_pmu_context *cpc; 3850 3851 event->pmu_ctx->rotate_necessary = 1; 3852 cpc = this_cpu_ptr(event->pmu_ctx->pmu->cpu_pmu_context); 3853 perf_mux_hrtimer_restart(cpc); 3854 group_update_userpage(event); 3855 } 3856 } 3857 3858 return 0; 3859 } 3860 3861 static void pmu_groups_sched_in(struct perf_event_context *ctx, 3862 struct perf_event_groups *groups, 3863 struct pmu *pmu) 3864 { 3865 int can_add_hw = 1; 3866 visit_groups_merge(ctx, groups, smp_processor_id(), pmu, 3867 merge_sched_in, &can_add_hw); 3868 } 3869 3870 static void ctx_groups_sched_in(struct perf_event_context *ctx, 3871 struct perf_event_groups *groups, 3872 bool cgroup) 3873 { 3874 struct perf_event_pmu_context *pmu_ctx; 3875 3876 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 3877 if (cgroup && !pmu_ctx->nr_cgroups) 3878 continue; 3879 pmu_groups_sched_in(ctx, groups, pmu_ctx->pmu); 3880 } 3881 } 3882 3883 static void __pmu_ctx_sched_in(struct perf_event_context *ctx, 3884 struct pmu *pmu) 3885 { 3886 pmu_groups_sched_in(ctx, &ctx->flexible_groups, pmu); 3887 } 3888 3889 static void 3890 ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type) 3891 { 3892 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3893 int is_active = ctx->is_active; 3894 bool cgroup = event_type & EVENT_CGROUP; 3895 3896 event_type &= ~EVENT_CGROUP; 3897 3898 lockdep_assert_held(&ctx->lock); 3899 3900 if (likely(!ctx->nr_events)) 3901 return; 3902 3903 if (!(is_active & EVENT_TIME)) { 3904 /* start ctx time */ 3905 __update_context_time(ctx, false); 3906 perf_cgroup_set_timestamp(cpuctx); 3907 /* 3908 * CPU-release for the below ->is_active store, 3909 * see __load_acquire() in perf_event_time_now() 3910 */ 3911 barrier(); 3912 } 3913 3914 ctx->is_active |= (event_type | EVENT_TIME); 3915 if (ctx->task) { 3916 if (!is_active) 3917 cpuctx->task_ctx = ctx; 3918 else 3919 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3920 } 3921 3922 is_active ^= ctx->is_active; /* changed bits */ 3923 3924 /* 3925 * First go through the list and put on any pinned groups 3926 * in order to give them the best chance of going on. 3927 */ 3928 if (is_active & EVENT_PINNED) 3929 ctx_groups_sched_in(ctx, &ctx->pinned_groups, cgroup); 3930 3931 /* Then walk through the lower prio flexible groups */ 3932 if (is_active & EVENT_FLEXIBLE) 3933 ctx_groups_sched_in(ctx, &ctx->flexible_groups, cgroup); 3934 } 3935 3936 static void perf_event_context_sched_in(struct task_struct *task) 3937 { 3938 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3939 struct perf_event_context *ctx; 3940 3941 rcu_read_lock(); 3942 ctx = rcu_dereference(task->perf_event_ctxp); 3943 if (!ctx) 3944 goto rcu_unlock; 3945 3946 if (cpuctx->task_ctx == ctx) { 3947 perf_ctx_lock(cpuctx, ctx); 3948 perf_ctx_disable(ctx, false); 3949 3950 perf_ctx_sched_task_cb(ctx, true); 3951 3952 perf_ctx_enable(ctx, false); 3953 perf_ctx_unlock(cpuctx, ctx); 3954 goto rcu_unlock; 3955 } 3956 3957 perf_ctx_lock(cpuctx, ctx); 3958 /* 3959 * We must check ctx->nr_events while holding ctx->lock, such 3960 * that we serialize against perf_install_in_context(). 3961 */ 3962 if (!ctx->nr_events) 3963 goto unlock; 3964 3965 perf_ctx_disable(ctx, false); 3966 /* 3967 * We want to keep the following priority order: 3968 * cpu pinned (that don't need to move), task pinned, 3969 * cpu flexible, task flexible. 3970 * 3971 * However, if task's ctx is not carrying any pinned 3972 * events, no need to flip the cpuctx's events around. 3973 */ 3974 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) { 3975 perf_ctx_disable(&cpuctx->ctx, false); 3976 ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE); 3977 } 3978 3979 perf_event_sched_in(cpuctx, ctx); 3980 3981 perf_ctx_sched_task_cb(cpuctx->task_ctx, true); 3982 3983 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) 3984 perf_ctx_enable(&cpuctx->ctx, false); 3985 3986 perf_ctx_enable(ctx, false); 3987 3988 unlock: 3989 perf_ctx_unlock(cpuctx, ctx); 3990 rcu_unlock: 3991 rcu_read_unlock(); 3992 } 3993 3994 /* 3995 * Called from scheduler to add the events of the current task 3996 * with interrupts disabled. 3997 * 3998 * We restore the event value and then enable it. 3999 * 4000 * This does not protect us against NMI, but enable() 4001 * sets the enabled bit in the control field of event _before_ 4002 * accessing the event control register. If a NMI hits, then it will 4003 * keep the event running. 4004 */ 4005 void __perf_event_task_sched_in(struct task_struct *prev, 4006 struct task_struct *task) 4007 { 4008 perf_event_context_sched_in(task); 4009 4010 if (atomic_read(&nr_switch_events)) 4011 perf_event_switch(task, prev, true); 4012 4013 if (__this_cpu_read(perf_sched_cb_usages)) 4014 perf_pmu_sched_task(prev, task, true); 4015 } 4016 4017 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 4018 { 4019 u64 frequency = event->attr.sample_freq; 4020 u64 sec = NSEC_PER_SEC; 4021 u64 divisor, dividend; 4022 4023 int count_fls, nsec_fls, frequency_fls, sec_fls; 4024 4025 count_fls = fls64(count); 4026 nsec_fls = fls64(nsec); 4027 frequency_fls = fls64(frequency); 4028 sec_fls = 30; 4029 4030 /* 4031 * We got @count in @nsec, with a target of sample_freq HZ 4032 * the target period becomes: 4033 * 4034 * @count * 10^9 4035 * period = ------------------- 4036 * @nsec * sample_freq 4037 * 4038 */ 4039 4040 /* 4041 * Reduce accuracy by one bit such that @a and @b converge 4042 * to a similar magnitude. 4043 */ 4044 #define REDUCE_FLS(a, b) \ 4045 do { \ 4046 if (a##_fls > b##_fls) { \ 4047 a >>= 1; \ 4048 a##_fls--; \ 4049 } else { \ 4050 b >>= 1; \ 4051 b##_fls--; \ 4052 } \ 4053 } while (0) 4054 4055 /* 4056 * Reduce accuracy until either term fits in a u64, then proceed with 4057 * the other, so that finally we can do a u64/u64 division. 4058 */ 4059 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 4060 REDUCE_FLS(nsec, frequency); 4061 REDUCE_FLS(sec, count); 4062 } 4063 4064 if (count_fls + sec_fls > 64) { 4065 divisor = nsec * frequency; 4066 4067 while (count_fls + sec_fls > 64) { 4068 REDUCE_FLS(count, sec); 4069 divisor >>= 1; 4070 } 4071 4072 dividend = count * sec; 4073 } else { 4074 dividend = count * sec; 4075 4076 while (nsec_fls + frequency_fls > 64) { 4077 REDUCE_FLS(nsec, frequency); 4078 dividend >>= 1; 4079 } 4080 4081 divisor = nsec * frequency; 4082 } 4083 4084 if (!divisor) 4085 return dividend; 4086 4087 return div64_u64(dividend, divisor); 4088 } 4089 4090 static DEFINE_PER_CPU(int, perf_throttled_count); 4091 static DEFINE_PER_CPU(u64, perf_throttled_seq); 4092 4093 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 4094 { 4095 struct hw_perf_event *hwc = &event->hw; 4096 s64 period, sample_period; 4097 s64 delta; 4098 4099 period = perf_calculate_period(event, nsec, count); 4100 4101 delta = (s64)(period - hwc->sample_period); 4102 delta = (delta + 7) / 8; /* low pass filter */ 4103 4104 sample_period = hwc->sample_period + delta; 4105 4106 if (!sample_period) 4107 sample_period = 1; 4108 4109 hwc->sample_period = sample_period; 4110 4111 if (local64_read(&hwc->period_left) > 8*sample_period) { 4112 if (disable) 4113 event->pmu->stop(event, PERF_EF_UPDATE); 4114 4115 local64_set(&hwc->period_left, 0); 4116 4117 if (disable) 4118 event->pmu->start(event, PERF_EF_RELOAD); 4119 } 4120 } 4121 4122 /* 4123 * combine freq adjustment with unthrottling to avoid two passes over the 4124 * events. At the same time, make sure, having freq events does not change 4125 * the rate of unthrottling as that would introduce bias. 4126 */ 4127 static void 4128 perf_adjust_freq_unthr_context(struct perf_event_context *ctx, bool unthrottle) 4129 { 4130 struct perf_event *event; 4131 struct hw_perf_event *hwc; 4132 u64 now, period = TICK_NSEC; 4133 s64 delta; 4134 4135 /* 4136 * only need to iterate over all events iff: 4137 * - context have events in frequency mode (needs freq adjust) 4138 * - there are events to unthrottle on this cpu 4139 */ 4140 if (!(ctx->nr_freq || unthrottle)) 4141 return; 4142 4143 raw_spin_lock(&ctx->lock); 4144 4145 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 4146 if (event->state != PERF_EVENT_STATE_ACTIVE) 4147 continue; 4148 4149 // XXX use visit thingy to avoid the -1,cpu match 4150 if (!event_filter_match(event)) 4151 continue; 4152 4153 perf_pmu_disable(event->pmu); 4154 4155 hwc = &event->hw; 4156 4157 if (hwc->interrupts == MAX_INTERRUPTS) { 4158 hwc->interrupts = 0; 4159 perf_log_throttle(event, 1); 4160 event->pmu->start(event, 0); 4161 } 4162 4163 if (!event->attr.freq || !event->attr.sample_freq) 4164 goto next; 4165 4166 /* 4167 * stop the event and update event->count 4168 */ 4169 event->pmu->stop(event, PERF_EF_UPDATE); 4170 4171 now = local64_read(&event->count); 4172 delta = now - hwc->freq_count_stamp; 4173 hwc->freq_count_stamp = now; 4174 4175 /* 4176 * restart the event 4177 * reload only if value has changed 4178 * we have stopped the event so tell that 4179 * to perf_adjust_period() to avoid stopping it 4180 * twice. 4181 */ 4182 if (delta > 0) 4183 perf_adjust_period(event, period, delta, false); 4184 4185 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 4186 next: 4187 perf_pmu_enable(event->pmu); 4188 } 4189 4190 raw_spin_unlock(&ctx->lock); 4191 } 4192 4193 /* 4194 * Move @event to the tail of the @ctx's elegible events. 4195 */ 4196 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event) 4197 { 4198 /* 4199 * Rotate the first entry last of non-pinned groups. Rotation might be 4200 * disabled by the inheritance code. 4201 */ 4202 if (ctx->rotate_disable) 4203 return; 4204 4205 perf_event_groups_delete(&ctx->flexible_groups, event); 4206 perf_event_groups_insert(&ctx->flexible_groups, event); 4207 } 4208 4209 /* pick an event from the flexible_groups to rotate */ 4210 static inline struct perf_event * 4211 ctx_event_to_rotate(struct perf_event_pmu_context *pmu_ctx) 4212 { 4213 struct perf_event *event; 4214 struct rb_node *node; 4215 struct rb_root *tree; 4216 struct __group_key key = { 4217 .pmu = pmu_ctx->pmu, 4218 }; 4219 4220 /* pick the first active flexible event */ 4221 event = list_first_entry_or_null(&pmu_ctx->flexible_active, 4222 struct perf_event, active_list); 4223 if (event) 4224 goto out; 4225 4226 /* if no active flexible event, pick the first event */ 4227 tree = &pmu_ctx->ctx->flexible_groups.tree; 4228 4229 if (!pmu_ctx->ctx->task) { 4230 key.cpu = smp_processor_id(); 4231 4232 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup); 4233 if (node) 4234 event = __node_2_pe(node); 4235 goto out; 4236 } 4237 4238 key.cpu = -1; 4239 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup); 4240 if (node) { 4241 event = __node_2_pe(node); 4242 goto out; 4243 } 4244 4245 key.cpu = smp_processor_id(); 4246 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup); 4247 if (node) 4248 event = __node_2_pe(node); 4249 4250 out: 4251 /* 4252 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in() 4253 * finds there are unschedulable events, it will set it again. 4254 */ 4255 pmu_ctx->rotate_necessary = 0; 4256 4257 return event; 4258 } 4259 4260 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc) 4261 { 4262 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4263 struct perf_event_pmu_context *cpu_epc, *task_epc = NULL; 4264 struct perf_event *cpu_event = NULL, *task_event = NULL; 4265 int cpu_rotate, task_rotate; 4266 struct pmu *pmu; 4267 4268 /* 4269 * Since we run this from IRQ context, nobody can install new 4270 * events, thus the event count values are stable. 4271 */ 4272 4273 cpu_epc = &cpc->epc; 4274 pmu = cpu_epc->pmu; 4275 task_epc = cpc->task_epc; 4276 4277 cpu_rotate = cpu_epc->rotate_necessary; 4278 task_rotate = task_epc ? task_epc->rotate_necessary : 0; 4279 4280 if (!(cpu_rotate || task_rotate)) 4281 return false; 4282 4283 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 4284 perf_pmu_disable(pmu); 4285 4286 if (task_rotate) 4287 task_event = ctx_event_to_rotate(task_epc); 4288 if (cpu_rotate) 4289 cpu_event = ctx_event_to_rotate(cpu_epc); 4290 4291 /* 4292 * As per the order given at ctx_resched() first 'pop' task flexible 4293 * and then, if needed CPU flexible. 4294 */ 4295 if (task_event || (task_epc && cpu_event)) { 4296 update_context_time(task_epc->ctx); 4297 __pmu_ctx_sched_out(task_epc, EVENT_FLEXIBLE); 4298 } 4299 4300 if (cpu_event) { 4301 update_context_time(&cpuctx->ctx); 4302 __pmu_ctx_sched_out(cpu_epc, EVENT_FLEXIBLE); 4303 rotate_ctx(&cpuctx->ctx, cpu_event); 4304 __pmu_ctx_sched_in(&cpuctx->ctx, pmu); 4305 } 4306 4307 if (task_event) 4308 rotate_ctx(task_epc->ctx, task_event); 4309 4310 if (task_event || (task_epc && cpu_event)) 4311 __pmu_ctx_sched_in(task_epc->ctx, pmu); 4312 4313 perf_pmu_enable(pmu); 4314 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 4315 4316 return true; 4317 } 4318 4319 void perf_event_task_tick(void) 4320 { 4321 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4322 struct perf_event_context *ctx; 4323 int throttled; 4324 4325 lockdep_assert_irqs_disabled(); 4326 4327 __this_cpu_inc(perf_throttled_seq); 4328 throttled = __this_cpu_xchg(perf_throttled_count, 0); 4329 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 4330 4331 perf_adjust_freq_unthr_context(&cpuctx->ctx, !!throttled); 4332 4333 rcu_read_lock(); 4334 ctx = rcu_dereference(current->perf_event_ctxp); 4335 if (ctx) 4336 perf_adjust_freq_unthr_context(ctx, !!throttled); 4337 rcu_read_unlock(); 4338 } 4339 4340 static int event_enable_on_exec(struct perf_event *event, 4341 struct perf_event_context *ctx) 4342 { 4343 if (!event->attr.enable_on_exec) 4344 return 0; 4345 4346 event->attr.enable_on_exec = 0; 4347 if (event->state >= PERF_EVENT_STATE_INACTIVE) 4348 return 0; 4349 4350 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 4351 4352 return 1; 4353 } 4354 4355 /* 4356 * Enable all of a task's events that have been marked enable-on-exec. 4357 * This expects task == current. 4358 */ 4359 static void perf_event_enable_on_exec(struct perf_event_context *ctx) 4360 { 4361 struct perf_event_context *clone_ctx = NULL; 4362 enum event_type_t event_type = 0; 4363 struct perf_cpu_context *cpuctx; 4364 struct perf_event *event; 4365 unsigned long flags; 4366 int enabled = 0; 4367 4368 local_irq_save(flags); 4369 if (WARN_ON_ONCE(current->perf_event_ctxp != ctx)) 4370 goto out; 4371 4372 if (!ctx->nr_events) 4373 goto out; 4374 4375 cpuctx = this_cpu_ptr(&perf_cpu_context); 4376 perf_ctx_lock(cpuctx, ctx); 4377 ctx_sched_out(ctx, EVENT_TIME); 4378 4379 list_for_each_entry(event, &ctx->event_list, event_entry) { 4380 enabled |= event_enable_on_exec(event, ctx); 4381 event_type |= get_event_type(event); 4382 } 4383 4384 /* 4385 * Unclone and reschedule this context if we enabled any event. 4386 */ 4387 if (enabled) { 4388 clone_ctx = unclone_ctx(ctx); 4389 ctx_resched(cpuctx, ctx, event_type); 4390 } else { 4391 ctx_sched_in(ctx, EVENT_TIME); 4392 } 4393 perf_ctx_unlock(cpuctx, ctx); 4394 4395 out: 4396 local_irq_restore(flags); 4397 4398 if (clone_ctx) 4399 put_ctx(clone_ctx); 4400 } 4401 4402 static void perf_remove_from_owner(struct perf_event *event); 4403 static void perf_event_exit_event(struct perf_event *event, 4404 struct perf_event_context *ctx); 4405 4406 /* 4407 * Removes all events from the current task that have been marked 4408 * remove-on-exec, and feeds their values back to parent events. 4409 */ 4410 static void perf_event_remove_on_exec(struct perf_event_context *ctx) 4411 { 4412 struct perf_event_context *clone_ctx = NULL; 4413 struct perf_event *event, *next; 4414 unsigned long flags; 4415 bool modified = false; 4416 4417 mutex_lock(&ctx->mutex); 4418 4419 if (WARN_ON_ONCE(ctx->task != current)) 4420 goto unlock; 4421 4422 list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) { 4423 if (!event->attr.remove_on_exec) 4424 continue; 4425 4426 if (!is_kernel_event(event)) 4427 perf_remove_from_owner(event); 4428 4429 modified = true; 4430 4431 perf_event_exit_event(event, ctx); 4432 } 4433 4434 raw_spin_lock_irqsave(&ctx->lock, flags); 4435 if (modified) 4436 clone_ctx = unclone_ctx(ctx); 4437 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4438 4439 unlock: 4440 mutex_unlock(&ctx->mutex); 4441 4442 if (clone_ctx) 4443 put_ctx(clone_ctx); 4444 } 4445 4446 struct perf_read_data { 4447 struct perf_event *event; 4448 bool group; 4449 int ret; 4450 }; 4451 4452 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu) 4453 { 4454 u16 local_pkg, event_pkg; 4455 4456 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) { 4457 int local_cpu = smp_processor_id(); 4458 4459 event_pkg = topology_physical_package_id(event_cpu); 4460 local_pkg = topology_physical_package_id(local_cpu); 4461 4462 if (event_pkg == local_pkg) 4463 return local_cpu; 4464 } 4465 4466 return event_cpu; 4467 } 4468 4469 /* 4470 * Cross CPU call to read the hardware event 4471 */ 4472 static void __perf_event_read(void *info) 4473 { 4474 struct perf_read_data *data = info; 4475 struct perf_event *sub, *event = data->event; 4476 struct perf_event_context *ctx = event->ctx; 4477 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4478 struct pmu *pmu = event->pmu; 4479 4480 /* 4481 * If this is a task context, we need to check whether it is 4482 * the current task context of this cpu. If not it has been 4483 * scheduled out before the smp call arrived. In that case 4484 * event->count would have been updated to a recent sample 4485 * when the event was scheduled out. 4486 */ 4487 if (ctx->task && cpuctx->task_ctx != ctx) 4488 return; 4489 4490 raw_spin_lock(&ctx->lock); 4491 if (ctx->is_active & EVENT_TIME) { 4492 update_context_time(ctx); 4493 update_cgrp_time_from_event(event); 4494 } 4495 4496 perf_event_update_time(event); 4497 if (data->group) 4498 perf_event_update_sibling_time(event); 4499 4500 if (event->state != PERF_EVENT_STATE_ACTIVE) 4501 goto unlock; 4502 4503 if (!data->group) { 4504 pmu->read(event); 4505 data->ret = 0; 4506 goto unlock; 4507 } 4508 4509 pmu->start_txn(pmu, PERF_PMU_TXN_READ); 4510 4511 pmu->read(event); 4512 4513 for_each_sibling_event(sub, event) { 4514 if (sub->state == PERF_EVENT_STATE_ACTIVE) { 4515 /* 4516 * Use sibling's PMU rather than @event's since 4517 * sibling could be on different (eg: software) PMU. 4518 */ 4519 sub->pmu->read(sub); 4520 } 4521 } 4522 4523 data->ret = pmu->commit_txn(pmu); 4524 4525 unlock: 4526 raw_spin_unlock(&ctx->lock); 4527 } 4528 4529 static inline u64 perf_event_count(struct perf_event *event) 4530 { 4531 return local64_read(&event->count) + atomic64_read(&event->child_count); 4532 } 4533 4534 static void calc_timer_values(struct perf_event *event, 4535 u64 *now, 4536 u64 *enabled, 4537 u64 *running) 4538 { 4539 u64 ctx_time; 4540 4541 *now = perf_clock(); 4542 ctx_time = perf_event_time_now(event, *now); 4543 __perf_update_times(event, ctx_time, enabled, running); 4544 } 4545 4546 /* 4547 * NMI-safe method to read a local event, that is an event that 4548 * is: 4549 * - either for the current task, or for this CPU 4550 * - does not have inherit set, for inherited task events 4551 * will not be local and we cannot read them atomically 4552 * - must not have a pmu::count method 4553 */ 4554 int perf_event_read_local(struct perf_event *event, u64 *value, 4555 u64 *enabled, u64 *running) 4556 { 4557 unsigned long flags; 4558 int ret = 0; 4559 4560 /* 4561 * Disabling interrupts avoids all counter scheduling (context 4562 * switches, timer based rotation and IPIs). 4563 */ 4564 local_irq_save(flags); 4565 4566 /* 4567 * It must not be an event with inherit set, we cannot read 4568 * all child counters from atomic context. 4569 */ 4570 if (event->attr.inherit) { 4571 ret = -EOPNOTSUPP; 4572 goto out; 4573 } 4574 4575 /* If this is a per-task event, it must be for current */ 4576 if ((event->attach_state & PERF_ATTACH_TASK) && 4577 event->hw.target != current) { 4578 ret = -EINVAL; 4579 goto out; 4580 } 4581 4582 /* If this is a per-CPU event, it must be for this CPU */ 4583 if (!(event->attach_state & PERF_ATTACH_TASK) && 4584 event->cpu != smp_processor_id()) { 4585 ret = -EINVAL; 4586 goto out; 4587 } 4588 4589 /* If this is a pinned event it must be running on this CPU */ 4590 if (event->attr.pinned && event->oncpu != smp_processor_id()) { 4591 ret = -EBUSY; 4592 goto out; 4593 } 4594 4595 /* 4596 * If the event is currently on this CPU, its either a per-task event, 4597 * or local to this CPU. Furthermore it means its ACTIVE (otherwise 4598 * oncpu == -1). 4599 */ 4600 if (event->oncpu == smp_processor_id()) 4601 event->pmu->read(event); 4602 4603 *value = local64_read(&event->count); 4604 if (enabled || running) { 4605 u64 __enabled, __running, __now; 4606 4607 calc_timer_values(event, &__now, &__enabled, &__running); 4608 if (enabled) 4609 *enabled = __enabled; 4610 if (running) 4611 *running = __running; 4612 } 4613 out: 4614 local_irq_restore(flags); 4615 4616 return ret; 4617 } 4618 4619 static int perf_event_read(struct perf_event *event, bool group) 4620 { 4621 enum perf_event_state state = READ_ONCE(event->state); 4622 int event_cpu, ret = 0; 4623 4624 /* 4625 * If event is enabled and currently active on a CPU, update the 4626 * value in the event structure: 4627 */ 4628 again: 4629 if (state == PERF_EVENT_STATE_ACTIVE) { 4630 struct perf_read_data data; 4631 4632 /* 4633 * Orders the ->state and ->oncpu loads such that if we see 4634 * ACTIVE we must also see the right ->oncpu. 4635 * 4636 * Matches the smp_wmb() from event_sched_in(). 4637 */ 4638 smp_rmb(); 4639 4640 event_cpu = READ_ONCE(event->oncpu); 4641 if ((unsigned)event_cpu >= nr_cpu_ids) 4642 return 0; 4643 4644 data = (struct perf_read_data){ 4645 .event = event, 4646 .group = group, 4647 .ret = 0, 4648 }; 4649 4650 preempt_disable(); 4651 event_cpu = __perf_event_read_cpu(event, event_cpu); 4652 4653 /* 4654 * Purposely ignore the smp_call_function_single() return 4655 * value. 4656 * 4657 * If event_cpu isn't a valid CPU it means the event got 4658 * scheduled out and that will have updated the event count. 4659 * 4660 * Therefore, either way, we'll have an up-to-date event count 4661 * after this. 4662 */ 4663 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1); 4664 preempt_enable(); 4665 ret = data.ret; 4666 4667 } else if (state == PERF_EVENT_STATE_INACTIVE) { 4668 struct perf_event_context *ctx = event->ctx; 4669 unsigned long flags; 4670 4671 raw_spin_lock_irqsave(&ctx->lock, flags); 4672 state = event->state; 4673 if (state != PERF_EVENT_STATE_INACTIVE) { 4674 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4675 goto again; 4676 } 4677 4678 /* 4679 * May read while context is not active (e.g., thread is 4680 * blocked), in that case we cannot update context time 4681 */ 4682 if (ctx->is_active & EVENT_TIME) { 4683 update_context_time(ctx); 4684 update_cgrp_time_from_event(event); 4685 } 4686 4687 perf_event_update_time(event); 4688 if (group) 4689 perf_event_update_sibling_time(event); 4690 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4691 } 4692 4693 return ret; 4694 } 4695 4696 /* 4697 * Initialize the perf_event context in a task_struct: 4698 */ 4699 static void __perf_event_init_context(struct perf_event_context *ctx) 4700 { 4701 raw_spin_lock_init(&ctx->lock); 4702 mutex_init(&ctx->mutex); 4703 INIT_LIST_HEAD(&ctx->pmu_ctx_list); 4704 perf_event_groups_init(&ctx->pinned_groups); 4705 perf_event_groups_init(&ctx->flexible_groups); 4706 INIT_LIST_HEAD(&ctx->event_list); 4707 refcount_set(&ctx->refcount, 1); 4708 } 4709 4710 static void 4711 __perf_init_event_pmu_context(struct perf_event_pmu_context *epc, struct pmu *pmu) 4712 { 4713 epc->pmu = pmu; 4714 INIT_LIST_HEAD(&epc->pmu_ctx_entry); 4715 INIT_LIST_HEAD(&epc->pinned_active); 4716 INIT_LIST_HEAD(&epc->flexible_active); 4717 atomic_set(&epc->refcount, 1); 4718 } 4719 4720 static struct perf_event_context * 4721 alloc_perf_context(struct task_struct *task) 4722 { 4723 struct perf_event_context *ctx; 4724 4725 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 4726 if (!ctx) 4727 return NULL; 4728 4729 __perf_event_init_context(ctx); 4730 if (task) 4731 ctx->task = get_task_struct(task); 4732 4733 return ctx; 4734 } 4735 4736 static struct task_struct * 4737 find_lively_task_by_vpid(pid_t vpid) 4738 { 4739 struct task_struct *task; 4740 4741 rcu_read_lock(); 4742 if (!vpid) 4743 task = current; 4744 else 4745 task = find_task_by_vpid(vpid); 4746 if (task) 4747 get_task_struct(task); 4748 rcu_read_unlock(); 4749 4750 if (!task) 4751 return ERR_PTR(-ESRCH); 4752 4753 return task; 4754 } 4755 4756 /* 4757 * Returns a matching context with refcount and pincount. 4758 */ 4759 static struct perf_event_context * 4760 find_get_context(struct task_struct *task, struct perf_event *event) 4761 { 4762 struct perf_event_context *ctx, *clone_ctx = NULL; 4763 struct perf_cpu_context *cpuctx; 4764 unsigned long flags; 4765 int err; 4766 4767 if (!task) { 4768 /* Must be root to operate on a CPU event: */ 4769 err = perf_allow_cpu(&event->attr); 4770 if (err) 4771 return ERR_PTR(err); 4772 4773 cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu); 4774 ctx = &cpuctx->ctx; 4775 get_ctx(ctx); 4776 raw_spin_lock_irqsave(&ctx->lock, flags); 4777 ++ctx->pin_count; 4778 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4779 4780 return ctx; 4781 } 4782 4783 err = -EINVAL; 4784 retry: 4785 ctx = perf_lock_task_context(task, &flags); 4786 if (ctx) { 4787 clone_ctx = unclone_ctx(ctx); 4788 ++ctx->pin_count; 4789 4790 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4791 4792 if (clone_ctx) 4793 put_ctx(clone_ctx); 4794 } else { 4795 ctx = alloc_perf_context(task); 4796 err = -ENOMEM; 4797 if (!ctx) 4798 goto errout; 4799 4800 err = 0; 4801 mutex_lock(&task->perf_event_mutex); 4802 /* 4803 * If it has already passed perf_event_exit_task(). 4804 * we must see PF_EXITING, it takes this mutex too. 4805 */ 4806 if (task->flags & PF_EXITING) 4807 err = -ESRCH; 4808 else if (task->perf_event_ctxp) 4809 err = -EAGAIN; 4810 else { 4811 get_ctx(ctx); 4812 ++ctx->pin_count; 4813 rcu_assign_pointer(task->perf_event_ctxp, ctx); 4814 } 4815 mutex_unlock(&task->perf_event_mutex); 4816 4817 if (unlikely(err)) { 4818 put_ctx(ctx); 4819 4820 if (err == -EAGAIN) 4821 goto retry; 4822 goto errout; 4823 } 4824 } 4825 4826 return ctx; 4827 4828 errout: 4829 return ERR_PTR(err); 4830 } 4831 4832 static struct perf_event_pmu_context * 4833 find_get_pmu_context(struct pmu *pmu, struct perf_event_context *ctx, 4834 struct perf_event *event) 4835 { 4836 struct perf_event_pmu_context *new = NULL, *epc; 4837 void *task_ctx_data = NULL; 4838 4839 if (!ctx->task) { 4840 /* 4841 * perf_pmu_migrate_context() / __perf_pmu_install_event() 4842 * relies on the fact that find_get_pmu_context() cannot fail 4843 * for CPU contexts. 4844 */ 4845 struct perf_cpu_pmu_context *cpc; 4846 4847 cpc = per_cpu_ptr(pmu->cpu_pmu_context, event->cpu); 4848 epc = &cpc->epc; 4849 raw_spin_lock_irq(&ctx->lock); 4850 if (!epc->ctx) { 4851 atomic_set(&epc->refcount, 1); 4852 epc->embedded = 1; 4853 list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list); 4854 epc->ctx = ctx; 4855 } else { 4856 WARN_ON_ONCE(epc->ctx != ctx); 4857 atomic_inc(&epc->refcount); 4858 } 4859 raw_spin_unlock_irq(&ctx->lock); 4860 return epc; 4861 } 4862 4863 new = kzalloc(sizeof(*epc), GFP_KERNEL); 4864 if (!new) 4865 return ERR_PTR(-ENOMEM); 4866 4867 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 4868 task_ctx_data = alloc_task_ctx_data(pmu); 4869 if (!task_ctx_data) { 4870 kfree(new); 4871 return ERR_PTR(-ENOMEM); 4872 } 4873 } 4874 4875 __perf_init_event_pmu_context(new, pmu); 4876 4877 /* 4878 * XXX 4879 * 4880 * lockdep_assert_held(&ctx->mutex); 4881 * 4882 * can't because perf_event_init_task() doesn't actually hold the 4883 * child_ctx->mutex. 4884 */ 4885 4886 raw_spin_lock_irq(&ctx->lock); 4887 list_for_each_entry(epc, &ctx->pmu_ctx_list, pmu_ctx_entry) { 4888 if (epc->pmu == pmu) { 4889 WARN_ON_ONCE(epc->ctx != ctx); 4890 atomic_inc(&epc->refcount); 4891 goto found_epc; 4892 } 4893 } 4894 4895 epc = new; 4896 new = NULL; 4897 4898 list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list); 4899 epc->ctx = ctx; 4900 4901 found_epc: 4902 if (task_ctx_data && !epc->task_ctx_data) { 4903 epc->task_ctx_data = task_ctx_data; 4904 task_ctx_data = NULL; 4905 ctx->nr_task_data++; 4906 } 4907 raw_spin_unlock_irq(&ctx->lock); 4908 4909 free_task_ctx_data(pmu, task_ctx_data); 4910 kfree(new); 4911 4912 return epc; 4913 } 4914 4915 static void get_pmu_ctx(struct perf_event_pmu_context *epc) 4916 { 4917 WARN_ON_ONCE(!atomic_inc_not_zero(&epc->refcount)); 4918 } 4919 4920 static void free_epc_rcu(struct rcu_head *head) 4921 { 4922 struct perf_event_pmu_context *epc = container_of(head, typeof(*epc), rcu_head); 4923 4924 kfree(epc->task_ctx_data); 4925 kfree(epc); 4926 } 4927 4928 static void put_pmu_ctx(struct perf_event_pmu_context *epc) 4929 { 4930 struct perf_event_context *ctx = epc->ctx; 4931 unsigned long flags; 4932 4933 /* 4934 * XXX 4935 * 4936 * lockdep_assert_held(&ctx->mutex); 4937 * 4938 * can't because of the call-site in _free_event()/put_event() 4939 * which isn't always called under ctx->mutex. 4940 */ 4941 if (!atomic_dec_and_raw_lock_irqsave(&epc->refcount, &ctx->lock, flags)) 4942 return; 4943 4944 WARN_ON_ONCE(list_empty(&epc->pmu_ctx_entry)); 4945 4946 list_del_init(&epc->pmu_ctx_entry); 4947 epc->ctx = NULL; 4948 4949 WARN_ON_ONCE(!list_empty(&epc->pinned_active)); 4950 WARN_ON_ONCE(!list_empty(&epc->flexible_active)); 4951 4952 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4953 4954 if (epc->embedded) 4955 return; 4956 4957 call_rcu(&epc->rcu_head, free_epc_rcu); 4958 } 4959 4960 static void perf_event_free_filter(struct perf_event *event); 4961 4962 static void free_event_rcu(struct rcu_head *head) 4963 { 4964 struct perf_event *event = container_of(head, typeof(*event), rcu_head); 4965 4966 if (event->ns) 4967 put_pid_ns(event->ns); 4968 perf_event_free_filter(event); 4969 kmem_cache_free(perf_event_cache, event); 4970 } 4971 4972 static void ring_buffer_attach(struct perf_event *event, 4973 struct perf_buffer *rb); 4974 4975 static void detach_sb_event(struct perf_event *event) 4976 { 4977 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 4978 4979 raw_spin_lock(&pel->lock); 4980 list_del_rcu(&event->sb_list); 4981 raw_spin_unlock(&pel->lock); 4982 } 4983 4984 static bool is_sb_event(struct perf_event *event) 4985 { 4986 struct perf_event_attr *attr = &event->attr; 4987 4988 if (event->parent) 4989 return false; 4990 4991 if (event->attach_state & PERF_ATTACH_TASK) 4992 return false; 4993 4994 if (attr->mmap || attr->mmap_data || attr->mmap2 || 4995 attr->comm || attr->comm_exec || 4996 attr->task || attr->ksymbol || 4997 attr->context_switch || attr->text_poke || 4998 attr->bpf_event) 4999 return true; 5000 return false; 5001 } 5002 5003 static void unaccount_pmu_sb_event(struct perf_event *event) 5004 { 5005 if (is_sb_event(event)) 5006 detach_sb_event(event); 5007 } 5008 5009 #ifdef CONFIG_NO_HZ_FULL 5010 static DEFINE_SPINLOCK(nr_freq_lock); 5011 #endif 5012 5013 static void unaccount_freq_event_nohz(void) 5014 { 5015 #ifdef CONFIG_NO_HZ_FULL 5016 spin_lock(&nr_freq_lock); 5017 if (atomic_dec_and_test(&nr_freq_events)) 5018 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS); 5019 spin_unlock(&nr_freq_lock); 5020 #endif 5021 } 5022 5023 static void unaccount_freq_event(void) 5024 { 5025 if (tick_nohz_full_enabled()) 5026 unaccount_freq_event_nohz(); 5027 else 5028 atomic_dec(&nr_freq_events); 5029 } 5030 5031 static void unaccount_event(struct perf_event *event) 5032 { 5033 bool dec = false; 5034 5035 if (event->parent) 5036 return; 5037 5038 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB)) 5039 dec = true; 5040 if (event->attr.mmap || event->attr.mmap_data) 5041 atomic_dec(&nr_mmap_events); 5042 if (event->attr.build_id) 5043 atomic_dec(&nr_build_id_events); 5044 if (event->attr.comm) 5045 atomic_dec(&nr_comm_events); 5046 if (event->attr.namespaces) 5047 atomic_dec(&nr_namespaces_events); 5048 if (event->attr.cgroup) 5049 atomic_dec(&nr_cgroup_events); 5050 if (event->attr.task) 5051 atomic_dec(&nr_task_events); 5052 if (event->attr.freq) 5053 unaccount_freq_event(); 5054 if (event->attr.context_switch) { 5055 dec = true; 5056 atomic_dec(&nr_switch_events); 5057 } 5058 if (is_cgroup_event(event)) 5059 dec = true; 5060 if (has_branch_stack(event)) 5061 dec = true; 5062 if (event->attr.ksymbol) 5063 atomic_dec(&nr_ksymbol_events); 5064 if (event->attr.bpf_event) 5065 atomic_dec(&nr_bpf_events); 5066 if (event->attr.text_poke) 5067 atomic_dec(&nr_text_poke_events); 5068 5069 if (dec) { 5070 if (!atomic_add_unless(&perf_sched_count, -1, 1)) 5071 schedule_delayed_work(&perf_sched_work, HZ); 5072 } 5073 5074 unaccount_pmu_sb_event(event); 5075 } 5076 5077 static void perf_sched_delayed(struct work_struct *work) 5078 { 5079 mutex_lock(&perf_sched_mutex); 5080 if (atomic_dec_and_test(&perf_sched_count)) 5081 static_branch_disable(&perf_sched_events); 5082 mutex_unlock(&perf_sched_mutex); 5083 } 5084 5085 /* 5086 * The following implement mutual exclusion of events on "exclusive" pmus 5087 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 5088 * at a time, so we disallow creating events that might conflict, namely: 5089 * 5090 * 1) cpu-wide events in the presence of per-task events, 5091 * 2) per-task events in the presence of cpu-wide events, 5092 * 3) two matching events on the same perf_event_context. 5093 * 5094 * The former two cases are handled in the allocation path (perf_event_alloc(), 5095 * _free_event()), the latter -- before the first perf_install_in_context(). 5096 */ 5097 static int exclusive_event_init(struct perf_event *event) 5098 { 5099 struct pmu *pmu = event->pmu; 5100 5101 if (!is_exclusive_pmu(pmu)) 5102 return 0; 5103 5104 /* 5105 * Prevent co-existence of per-task and cpu-wide events on the 5106 * same exclusive pmu. 5107 * 5108 * Negative pmu::exclusive_cnt means there are cpu-wide 5109 * events on this "exclusive" pmu, positive means there are 5110 * per-task events. 5111 * 5112 * Since this is called in perf_event_alloc() path, event::ctx 5113 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 5114 * to mean "per-task event", because unlike other attach states it 5115 * never gets cleared. 5116 */ 5117 if (event->attach_state & PERF_ATTACH_TASK) { 5118 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 5119 return -EBUSY; 5120 } else { 5121 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 5122 return -EBUSY; 5123 } 5124 5125 return 0; 5126 } 5127 5128 static void exclusive_event_destroy(struct perf_event *event) 5129 { 5130 struct pmu *pmu = event->pmu; 5131 5132 if (!is_exclusive_pmu(pmu)) 5133 return; 5134 5135 /* see comment in exclusive_event_init() */ 5136 if (event->attach_state & PERF_ATTACH_TASK) 5137 atomic_dec(&pmu->exclusive_cnt); 5138 else 5139 atomic_inc(&pmu->exclusive_cnt); 5140 } 5141 5142 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 5143 { 5144 if ((e1->pmu == e2->pmu) && 5145 (e1->cpu == e2->cpu || 5146 e1->cpu == -1 || 5147 e2->cpu == -1)) 5148 return true; 5149 return false; 5150 } 5151 5152 static bool exclusive_event_installable(struct perf_event *event, 5153 struct perf_event_context *ctx) 5154 { 5155 struct perf_event *iter_event; 5156 struct pmu *pmu = event->pmu; 5157 5158 lockdep_assert_held(&ctx->mutex); 5159 5160 if (!is_exclusive_pmu(pmu)) 5161 return true; 5162 5163 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 5164 if (exclusive_event_match(iter_event, event)) 5165 return false; 5166 } 5167 5168 return true; 5169 } 5170 5171 static void perf_addr_filters_splice(struct perf_event *event, 5172 struct list_head *head); 5173 5174 static void perf_pending_task_sync(struct perf_event *event) 5175 { 5176 struct callback_head *head = &event->pending_task; 5177 5178 if (!event->pending_work) 5179 return; 5180 /* 5181 * If the task is queued to the current task's queue, we 5182 * obviously can't wait for it to complete. Simply cancel it. 5183 */ 5184 if (task_work_cancel(current, head)) { 5185 event->pending_work = 0; 5186 local_dec(&event->ctx->nr_pending); 5187 return; 5188 } 5189 5190 /* 5191 * All accesses related to the event are within the same 5192 * non-preemptible section in perf_pending_task(). The RCU 5193 * grace period before the event is freed will make sure all 5194 * those accesses are complete by then. 5195 */ 5196 rcuwait_wait_event(&event->pending_work_wait, !event->pending_work, TASK_UNINTERRUPTIBLE); 5197 } 5198 5199 static void _free_event(struct perf_event *event) 5200 { 5201 irq_work_sync(&event->pending_irq); 5202 perf_pending_task_sync(event); 5203 5204 unaccount_event(event); 5205 5206 security_perf_event_free(event); 5207 5208 if (event->rb) { 5209 /* 5210 * Can happen when we close an event with re-directed output. 5211 * 5212 * Since we have a 0 refcount, perf_mmap_close() will skip 5213 * over us; possibly making our ring_buffer_put() the last. 5214 */ 5215 mutex_lock(&event->mmap_mutex); 5216 ring_buffer_attach(event, NULL); 5217 mutex_unlock(&event->mmap_mutex); 5218 } 5219 5220 if (is_cgroup_event(event)) 5221 perf_detach_cgroup(event); 5222 5223 if (!event->parent) { 5224 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 5225 put_callchain_buffers(); 5226 } 5227 5228 perf_event_free_bpf_prog(event); 5229 perf_addr_filters_splice(event, NULL); 5230 kfree(event->addr_filter_ranges); 5231 5232 if (event->destroy) 5233 event->destroy(event); 5234 5235 /* 5236 * Must be after ->destroy(), due to uprobe_perf_close() using 5237 * hw.target. 5238 */ 5239 if (event->hw.target) 5240 put_task_struct(event->hw.target); 5241 5242 if (event->pmu_ctx) 5243 put_pmu_ctx(event->pmu_ctx); 5244 5245 /* 5246 * perf_event_free_task() relies on put_ctx() being 'last', in particular 5247 * all task references must be cleaned up. 5248 */ 5249 if (event->ctx) 5250 put_ctx(event->ctx); 5251 5252 exclusive_event_destroy(event); 5253 module_put(event->pmu->module); 5254 5255 call_rcu(&event->rcu_head, free_event_rcu); 5256 } 5257 5258 /* 5259 * Used to free events which have a known refcount of 1, such as in error paths 5260 * where the event isn't exposed yet and inherited events. 5261 */ 5262 static void free_event(struct perf_event *event) 5263 { 5264 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 5265 "unexpected event refcount: %ld; ptr=%p\n", 5266 atomic_long_read(&event->refcount), event)) { 5267 /* leak to avoid use-after-free */ 5268 return; 5269 } 5270 5271 _free_event(event); 5272 } 5273 5274 /* 5275 * Remove user event from the owner task. 5276 */ 5277 static void perf_remove_from_owner(struct perf_event *event) 5278 { 5279 struct task_struct *owner; 5280 5281 rcu_read_lock(); 5282 /* 5283 * Matches the smp_store_release() in perf_event_exit_task(). If we 5284 * observe !owner it means the list deletion is complete and we can 5285 * indeed free this event, otherwise we need to serialize on 5286 * owner->perf_event_mutex. 5287 */ 5288 owner = READ_ONCE(event->owner); 5289 if (owner) { 5290 /* 5291 * Since delayed_put_task_struct() also drops the last 5292 * task reference we can safely take a new reference 5293 * while holding the rcu_read_lock(). 5294 */ 5295 get_task_struct(owner); 5296 } 5297 rcu_read_unlock(); 5298 5299 if (owner) { 5300 /* 5301 * If we're here through perf_event_exit_task() we're already 5302 * holding ctx->mutex which would be an inversion wrt. the 5303 * normal lock order. 5304 * 5305 * However we can safely take this lock because its the child 5306 * ctx->mutex. 5307 */ 5308 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 5309 5310 /* 5311 * We have to re-check the event->owner field, if it is cleared 5312 * we raced with perf_event_exit_task(), acquiring the mutex 5313 * ensured they're done, and we can proceed with freeing the 5314 * event. 5315 */ 5316 if (event->owner) { 5317 list_del_init(&event->owner_entry); 5318 smp_store_release(&event->owner, NULL); 5319 } 5320 mutex_unlock(&owner->perf_event_mutex); 5321 put_task_struct(owner); 5322 } 5323 } 5324 5325 static void put_event(struct perf_event *event) 5326 { 5327 if (!atomic_long_dec_and_test(&event->refcount)) 5328 return; 5329 5330 _free_event(event); 5331 } 5332 5333 /* 5334 * Kill an event dead; while event:refcount will preserve the event 5335 * object, it will not preserve its functionality. Once the last 'user' 5336 * gives up the object, we'll destroy the thing. 5337 */ 5338 int perf_event_release_kernel(struct perf_event *event) 5339 { 5340 struct perf_event_context *ctx = event->ctx; 5341 struct perf_event *child, *tmp; 5342 LIST_HEAD(free_list); 5343 5344 /* 5345 * If we got here through err_alloc: free_event(event); we will not 5346 * have attached to a context yet. 5347 */ 5348 if (!ctx) { 5349 WARN_ON_ONCE(event->attach_state & 5350 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP)); 5351 goto no_ctx; 5352 } 5353 5354 if (!is_kernel_event(event)) 5355 perf_remove_from_owner(event); 5356 5357 ctx = perf_event_ctx_lock(event); 5358 WARN_ON_ONCE(ctx->parent_ctx); 5359 5360 /* 5361 * Mark this event as STATE_DEAD, there is no external reference to it 5362 * anymore. 5363 * 5364 * Anybody acquiring event->child_mutex after the below loop _must_ 5365 * also see this, most importantly inherit_event() which will avoid 5366 * placing more children on the list. 5367 * 5368 * Thus this guarantees that we will in fact observe and kill _ALL_ 5369 * child events. 5370 */ 5371 perf_remove_from_context(event, DETACH_GROUP|DETACH_DEAD); 5372 5373 perf_event_ctx_unlock(event, ctx); 5374 5375 again: 5376 mutex_lock(&event->child_mutex); 5377 list_for_each_entry(child, &event->child_list, child_list) { 5378 void *var = NULL; 5379 5380 /* 5381 * Cannot change, child events are not migrated, see the 5382 * comment with perf_event_ctx_lock_nested(). 5383 */ 5384 ctx = READ_ONCE(child->ctx); 5385 /* 5386 * Since child_mutex nests inside ctx::mutex, we must jump 5387 * through hoops. We start by grabbing a reference on the ctx. 5388 * 5389 * Since the event cannot get freed while we hold the 5390 * child_mutex, the context must also exist and have a !0 5391 * reference count. 5392 */ 5393 get_ctx(ctx); 5394 5395 /* 5396 * Now that we have a ctx ref, we can drop child_mutex, and 5397 * acquire ctx::mutex without fear of it going away. Then we 5398 * can re-acquire child_mutex. 5399 */ 5400 mutex_unlock(&event->child_mutex); 5401 mutex_lock(&ctx->mutex); 5402 mutex_lock(&event->child_mutex); 5403 5404 /* 5405 * Now that we hold ctx::mutex and child_mutex, revalidate our 5406 * state, if child is still the first entry, it didn't get freed 5407 * and we can continue doing so. 5408 */ 5409 tmp = list_first_entry_or_null(&event->child_list, 5410 struct perf_event, child_list); 5411 if (tmp == child) { 5412 perf_remove_from_context(child, DETACH_GROUP); 5413 list_move(&child->child_list, &free_list); 5414 /* 5415 * This matches the refcount bump in inherit_event(); 5416 * this can't be the last reference. 5417 */ 5418 put_event(event); 5419 } else { 5420 var = &ctx->refcount; 5421 } 5422 5423 mutex_unlock(&event->child_mutex); 5424 mutex_unlock(&ctx->mutex); 5425 put_ctx(ctx); 5426 5427 if (var) { 5428 /* 5429 * If perf_event_free_task() has deleted all events from the 5430 * ctx while the child_mutex got released above, make sure to 5431 * notify about the preceding put_ctx(). 5432 */ 5433 smp_mb(); /* pairs with wait_var_event() */ 5434 wake_up_var(var); 5435 } 5436 goto again; 5437 } 5438 mutex_unlock(&event->child_mutex); 5439 5440 list_for_each_entry_safe(child, tmp, &free_list, child_list) { 5441 void *var = &child->ctx->refcount; 5442 5443 list_del(&child->child_list); 5444 free_event(child); 5445 5446 /* 5447 * Wake any perf_event_free_task() waiting for this event to be 5448 * freed. 5449 */ 5450 smp_mb(); /* pairs with wait_var_event() */ 5451 wake_up_var(var); 5452 } 5453 5454 no_ctx: 5455 put_event(event); /* Must be the 'last' reference */ 5456 return 0; 5457 } 5458 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 5459 5460 /* 5461 * Called when the last reference to the file is gone. 5462 */ 5463 static int perf_release(struct inode *inode, struct file *file) 5464 { 5465 perf_event_release_kernel(file->private_data); 5466 return 0; 5467 } 5468 5469 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5470 { 5471 struct perf_event *child; 5472 u64 total = 0; 5473 5474 *enabled = 0; 5475 *running = 0; 5476 5477 mutex_lock(&event->child_mutex); 5478 5479 (void)perf_event_read(event, false); 5480 total += perf_event_count(event); 5481 5482 *enabled += event->total_time_enabled + 5483 atomic64_read(&event->child_total_time_enabled); 5484 *running += event->total_time_running + 5485 atomic64_read(&event->child_total_time_running); 5486 5487 list_for_each_entry(child, &event->child_list, child_list) { 5488 (void)perf_event_read(child, false); 5489 total += perf_event_count(child); 5490 *enabled += child->total_time_enabled; 5491 *running += child->total_time_running; 5492 } 5493 mutex_unlock(&event->child_mutex); 5494 5495 return total; 5496 } 5497 5498 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5499 { 5500 struct perf_event_context *ctx; 5501 u64 count; 5502 5503 ctx = perf_event_ctx_lock(event); 5504 count = __perf_event_read_value(event, enabled, running); 5505 perf_event_ctx_unlock(event, ctx); 5506 5507 return count; 5508 } 5509 EXPORT_SYMBOL_GPL(perf_event_read_value); 5510 5511 static int __perf_read_group_add(struct perf_event *leader, 5512 u64 read_format, u64 *values) 5513 { 5514 struct perf_event_context *ctx = leader->ctx; 5515 struct perf_event *sub, *parent; 5516 unsigned long flags; 5517 int n = 1; /* skip @nr */ 5518 int ret; 5519 5520 ret = perf_event_read(leader, true); 5521 if (ret) 5522 return ret; 5523 5524 raw_spin_lock_irqsave(&ctx->lock, flags); 5525 /* 5526 * Verify the grouping between the parent and child (inherited) 5527 * events is still in tact. 5528 * 5529 * Specifically: 5530 * - leader->ctx->lock pins leader->sibling_list 5531 * - parent->child_mutex pins parent->child_list 5532 * - parent->ctx->mutex pins parent->sibling_list 5533 * 5534 * Because parent->ctx != leader->ctx (and child_list nests inside 5535 * ctx->mutex), group destruction is not atomic between children, also 5536 * see perf_event_release_kernel(). Additionally, parent can grow the 5537 * group. 5538 * 5539 * Therefore it is possible to have parent and child groups in a 5540 * different configuration and summing over such a beast makes no sense 5541 * what so ever. 5542 * 5543 * Reject this. 5544 */ 5545 parent = leader->parent; 5546 if (parent && 5547 (parent->group_generation != leader->group_generation || 5548 parent->nr_siblings != leader->nr_siblings)) { 5549 ret = -ECHILD; 5550 goto unlock; 5551 } 5552 5553 /* 5554 * Since we co-schedule groups, {enabled,running} times of siblings 5555 * will be identical to those of the leader, so we only publish one 5556 * set. 5557 */ 5558 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 5559 values[n++] += leader->total_time_enabled + 5560 atomic64_read(&leader->child_total_time_enabled); 5561 } 5562 5563 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 5564 values[n++] += leader->total_time_running + 5565 atomic64_read(&leader->child_total_time_running); 5566 } 5567 5568 /* 5569 * Write {count,id} tuples for every sibling. 5570 */ 5571 values[n++] += perf_event_count(leader); 5572 if (read_format & PERF_FORMAT_ID) 5573 values[n++] = primary_event_id(leader); 5574 if (read_format & PERF_FORMAT_LOST) 5575 values[n++] = atomic64_read(&leader->lost_samples); 5576 5577 for_each_sibling_event(sub, leader) { 5578 values[n++] += perf_event_count(sub); 5579 if (read_format & PERF_FORMAT_ID) 5580 values[n++] = primary_event_id(sub); 5581 if (read_format & PERF_FORMAT_LOST) 5582 values[n++] = atomic64_read(&sub->lost_samples); 5583 } 5584 5585 unlock: 5586 raw_spin_unlock_irqrestore(&ctx->lock, flags); 5587 return ret; 5588 } 5589 5590 static int perf_read_group(struct perf_event *event, 5591 u64 read_format, char __user *buf) 5592 { 5593 struct perf_event *leader = event->group_leader, *child; 5594 struct perf_event_context *ctx = leader->ctx; 5595 int ret; 5596 u64 *values; 5597 5598 lockdep_assert_held(&ctx->mutex); 5599 5600 values = kzalloc(event->read_size, GFP_KERNEL); 5601 if (!values) 5602 return -ENOMEM; 5603 5604 values[0] = 1 + leader->nr_siblings; 5605 5606 mutex_lock(&leader->child_mutex); 5607 5608 ret = __perf_read_group_add(leader, read_format, values); 5609 if (ret) 5610 goto unlock; 5611 5612 list_for_each_entry(child, &leader->child_list, child_list) { 5613 ret = __perf_read_group_add(child, read_format, values); 5614 if (ret) 5615 goto unlock; 5616 } 5617 5618 mutex_unlock(&leader->child_mutex); 5619 5620 ret = event->read_size; 5621 if (copy_to_user(buf, values, event->read_size)) 5622 ret = -EFAULT; 5623 goto out; 5624 5625 unlock: 5626 mutex_unlock(&leader->child_mutex); 5627 out: 5628 kfree(values); 5629 return ret; 5630 } 5631 5632 static int perf_read_one(struct perf_event *event, 5633 u64 read_format, char __user *buf) 5634 { 5635 u64 enabled, running; 5636 u64 values[5]; 5637 int n = 0; 5638 5639 values[n++] = __perf_event_read_value(event, &enabled, &running); 5640 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 5641 values[n++] = enabled; 5642 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 5643 values[n++] = running; 5644 if (read_format & PERF_FORMAT_ID) 5645 values[n++] = primary_event_id(event); 5646 if (read_format & PERF_FORMAT_LOST) 5647 values[n++] = atomic64_read(&event->lost_samples); 5648 5649 if (copy_to_user(buf, values, n * sizeof(u64))) 5650 return -EFAULT; 5651 5652 return n * sizeof(u64); 5653 } 5654 5655 static bool is_event_hup(struct perf_event *event) 5656 { 5657 bool no_children; 5658 5659 if (event->state > PERF_EVENT_STATE_EXIT) 5660 return false; 5661 5662 mutex_lock(&event->child_mutex); 5663 no_children = list_empty(&event->child_list); 5664 mutex_unlock(&event->child_mutex); 5665 return no_children; 5666 } 5667 5668 /* 5669 * Read the performance event - simple non blocking version for now 5670 */ 5671 static ssize_t 5672 __perf_read(struct perf_event *event, char __user *buf, size_t count) 5673 { 5674 u64 read_format = event->attr.read_format; 5675 int ret; 5676 5677 /* 5678 * Return end-of-file for a read on an event that is in 5679 * error state (i.e. because it was pinned but it couldn't be 5680 * scheduled on to the CPU at some point). 5681 */ 5682 if (event->state == PERF_EVENT_STATE_ERROR) 5683 return 0; 5684 5685 if (count < event->read_size) 5686 return -ENOSPC; 5687 5688 WARN_ON_ONCE(event->ctx->parent_ctx); 5689 if (read_format & PERF_FORMAT_GROUP) 5690 ret = perf_read_group(event, read_format, buf); 5691 else 5692 ret = perf_read_one(event, read_format, buf); 5693 5694 return ret; 5695 } 5696 5697 static ssize_t 5698 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 5699 { 5700 struct perf_event *event = file->private_data; 5701 struct perf_event_context *ctx; 5702 int ret; 5703 5704 ret = security_perf_event_read(event); 5705 if (ret) 5706 return ret; 5707 5708 ctx = perf_event_ctx_lock(event); 5709 ret = __perf_read(event, buf, count); 5710 perf_event_ctx_unlock(event, ctx); 5711 5712 return ret; 5713 } 5714 5715 static __poll_t perf_poll(struct file *file, poll_table *wait) 5716 { 5717 struct perf_event *event = file->private_data; 5718 struct perf_buffer *rb; 5719 __poll_t events = EPOLLHUP; 5720 5721 poll_wait(file, &event->waitq, wait); 5722 5723 if (is_event_hup(event)) 5724 return events; 5725 5726 /* 5727 * Pin the event->rb by taking event->mmap_mutex; otherwise 5728 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 5729 */ 5730 mutex_lock(&event->mmap_mutex); 5731 rb = event->rb; 5732 if (rb) 5733 events = atomic_xchg(&rb->poll, 0); 5734 mutex_unlock(&event->mmap_mutex); 5735 return events; 5736 } 5737 5738 static void _perf_event_reset(struct perf_event *event) 5739 { 5740 (void)perf_event_read(event, false); 5741 local64_set(&event->count, 0); 5742 perf_event_update_userpage(event); 5743 } 5744 5745 /* Assume it's not an event with inherit set. */ 5746 u64 perf_event_pause(struct perf_event *event, bool reset) 5747 { 5748 struct perf_event_context *ctx; 5749 u64 count; 5750 5751 ctx = perf_event_ctx_lock(event); 5752 WARN_ON_ONCE(event->attr.inherit); 5753 _perf_event_disable(event); 5754 count = local64_read(&event->count); 5755 if (reset) 5756 local64_set(&event->count, 0); 5757 perf_event_ctx_unlock(event, ctx); 5758 5759 return count; 5760 } 5761 EXPORT_SYMBOL_GPL(perf_event_pause); 5762 5763 /* 5764 * Holding the top-level event's child_mutex means that any 5765 * descendant process that has inherited this event will block 5766 * in perf_event_exit_event() if it goes to exit, thus satisfying the 5767 * task existence requirements of perf_event_enable/disable. 5768 */ 5769 static void perf_event_for_each_child(struct perf_event *event, 5770 void (*func)(struct perf_event *)) 5771 { 5772 struct perf_event *child; 5773 5774 WARN_ON_ONCE(event->ctx->parent_ctx); 5775 5776 mutex_lock(&event->child_mutex); 5777 func(event); 5778 list_for_each_entry(child, &event->child_list, child_list) 5779 func(child); 5780 mutex_unlock(&event->child_mutex); 5781 } 5782 5783 static void perf_event_for_each(struct perf_event *event, 5784 void (*func)(struct perf_event *)) 5785 { 5786 struct perf_event_context *ctx = event->ctx; 5787 struct perf_event *sibling; 5788 5789 lockdep_assert_held(&ctx->mutex); 5790 5791 event = event->group_leader; 5792 5793 perf_event_for_each_child(event, func); 5794 for_each_sibling_event(sibling, event) 5795 perf_event_for_each_child(sibling, func); 5796 } 5797 5798 static void __perf_event_period(struct perf_event *event, 5799 struct perf_cpu_context *cpuctx, 5800 struct perf_event_context *ctx, 5801 void *info) 5802 { 5803 u64 value = *((u64 *)info); 5804 bool active; 5805 5806 if (event->attr.freq) { 5807 event->attr.sample_freq = value; 5808 } else { 5809 event->attr.sample_period = value; 5810 event->hw.sample_period = value; 5811 } 5812 5813 active = (event->state == PERF_EVENT_STATE_ACTIVE); 5814 if (active) { 5815 perf_pmu_disable(event->pmu); 5816 /* 5817 * We could be throttled; unthrottle now to avoid the tick 5818 * trying to unthrottle while we already re-started the event. 5819 */ 5820 if (event->hw.interrupts == MAX_INTERRUPTS) { 5821 event->hw.interrupts = 0; 5822 perf_log_throttle(event, 1); 5823 } 5824 event->pmu->stop(event, PERF_EF_UPDATE); 5825 } 5826 5827 local64_set(&event->hw.period_left, 0); 5828 5829 if (active) { 5830 event->pmu->start(event, PERF_EF_RELOAD); 5831 perf_pmu_enable(event->pmu); 5832 } 5833 } 5834 5835 static int perf_event_check_period(struct perf_event *event, u64 value) 5836 { 5837 return event->pmu->check_period(event, value); 5838 } 5839 5840 static int _perf_event_period(struct perf_event *event, u64 value) 5841 { 5842 if (!is_sampling_event(event)) 5843 return -EINVAL; 5844 5845 if (!value) 5846 return -EINVAL; 5847 5848 if (event->attr.freq && value > sysctl_perf_event_sample_rate) 5849 return -EINVAL; 5850 5851 if (perf_event_check_period(event, value)) 5852 return -EINVAL; 5853 5854 if (!event->attr.freq && (value & (1ULL << 63))) 5855 return -EINVAL; 5856 5857 event_function_call(event, __perf_event_period, &value); 5858 5859 return 0; 5860 } 5861 5862 int perf_event_period(struct perf_event *event, u64 value) 5863 { 5864 struct perf_event_context *ctx; 5865 int ret; 5866 5867 ctx = perf_event_ctx_lock(event); 5868 ret = _perf_event_period(event, value); 5869 perf_event_ctx_unlock(event, ctx); 5870 5871 return ret; 5872 } 5873 EXPORT_SYMBOL_GPL(perf_event_period); 5874 5875 static const struct file_operations perf_fops; 5876 5877 static inline int perf_fget_light(int fd, struct fd *p) 5878 { 5879 struct fd f = fdget(fd); 5880 if (!f.file) 5881 return -EBADF; 5882 5883 if (f.file->f_op != &perf_fops) { 5884 fdput(f); 5885 return -EBADF; 5886 } 5887 *p = f; 5888 return 0; 5889 } 5890 5891 static int perf_event_set_output(struct perf_event *event, 5892 struct perf_event *output_event); 5893 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 5894 static int perf_copy_attr(struct perf_event_attr __user *uattr, 5895 struct perf_event_attr *attr); 5896 5897 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 5898 { 5899 void (*func)(struct perf_event *); 5900 u32 flags = arg; 5901 5902 switch (cmd) { 5903 case PERF_EVENT_IOC_ENABLE: 5904 func = _perf_event_enable; 5905 break; 5906 case PERF_EVENT_IOC_DISABLE: 5907 func = _perf_event_disable; 5908 break; 5909 case PERF_EVENT_IOC_RESET: 5910 func = _perf_event_reset; 5911 break; 5912 5913 case PERF_EVENT_IOC_REFRESH: 5914 return _perf_event_refresh(event, arg); 5915 5916 case PERF_EVENT_IOC_PERIOD: 5917 { 5918 u64 value; 5919 5920 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value))) 5921 return -EFAULT; 5922 5923 return _perf_event_period(event, value); 5924 } 5925 case PERF_EVENT_IOC_ID: 5926 { 5927 u64 id = primary_event_id(event); 5928 5929 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 5930 return -EFAULT; 5931 return 0; 5932 } 5933 5934 case PERF_EVENT_IOC_SET_OUTPUT: 5935 { 5936 int ret; 5937 if (arg != -1) { 5938 struct perf_event *output_event; 5939 struct fd output; 5940 ret = perf_fget_light(arg, &output); 5941 if (ret) 5942 return ret; 5943 output_event = output.file->private_data; 5944 ret = perf_event_set_output(event, output_event); 5945 fdput(output); 5946 } else { 5947 ret = perf_event_set_output(event, NULL); 5948 } 5949 return ret; 5950 } 5951 5952 case PERF_EVENT_IOC_SET_FILTER: 5953 return perf_event_set_filter(event, (void __user *)arg); 5954 5955 case PERF_EVENT_IOC_SET_BPF: 5956 { 5957 struct bpf_prog *prog; 5958 int err; 5959 5960 prog = bpf_prog_get(arg); 5961 if (IS_ERR(prog)) 5962 return PTR_ERR(prog); 5963 5964 err = perf_event_set_bpf_prog(event, prog, 0); 5965 if (err) { 5966 bpf_prog_put(prog); 5967 return err; 5968 } 5969 5970 return 0; 5971 } 5972 5973 case PERF_EVENT_IOC_PAUSE_OUTPUT: { 5974 struct perf_buffer *rb; 5975 5976 rcu_read_lock(); 5977 rb = rcu_dereference(event->rb); 5978 if (!rb || !rb->nr_pages) { 5979 rcu_read_unlock(); 5980 return -EINVAL; 5981 } 5982 rb_toggle_paused(rb, !!arg); 5983 rcu_read_unlock(); 5984 return 0; 5985 } 5986 5987 case PERF_EVENT_IOC_QUERY_BPF: 5988 return perf_event_query_prog_array(event, (void __user *)arg); 5989 5990 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: { 5991 struct perf_event_attr new_attr; 5992 int err = perf_copy_attr((struct perf_event_attr __user *)arg, 5993 &new_attr); 5994 5995 if (err) 5996 return err; 5997 5998 return perf_event_modify_attr(event, &new_attr); 5999 } 6000 default: 6001 return -ENOTTY; 6002 } 6003 6004 if (flags & PERF_IOC_FLAG_GROUP) 6005 perf_event_for_each(event, func); 6006 else 6007 perf_event_for_each_child(event, func); 6008 6009 return 0; 6010 } 6011 6012 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 6013 { 6014 struct perf_event *event = file->private_data; 6015 struct perf_event_context *ctx; 6016 long ret; 6017 6018 /* Treat ioctl like writes as it is likely a mutating operation. */ 6019 ret = security_perf_event_write(event); 6020 if (ret) 6021 return ret; 6022 6023 ctx = perf_event_ctx_lock(event); 6024 ret = _perf_ioctl(event, cmd, arg); 6025 perf_event_ctx_unlock(event, ctx); 6026 6027 return ret; 6028 } 6029 6030 #ifdef CONFIG_COMPAT 6031 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 6032 unsigned long arg) 6033 { 6034 switch (_IOC_NR(cmd)) { 6035 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 6036 case _IOC_NR(PERF_EVENT_IOC_ID): 6037 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF): 6038 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES): 6039 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 6040 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 6041 cmd &= ~IOCSIZE_MASK; 6042 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 6043 } 6044 break; 6045 } 6046 return perf_ioctl(file, cmd, arg); 6047 } 6048 #else 6049 # define perf_compat_ioctl NULL 6050 #endif 6051 6052 int perf_event_task_enable(void) 6053 { 6054 struct perf_event_context *ctx; 6055 struct perf_event *event; 6056 6057 mutex_lock(¤t->perf_event_mutex); 6058 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 6059 ctx = perf_event_ctx_lock(event); 6060 perf_event_for_each_child(event, _perf_event_enable); 6061 perf_event_ctx_unlock(event, ctx); 6062 } 6063 mutex_unlock(¤t->perf_event_mutex); 6064 6065 return 0; 6066 } 6067 6068 int perf_event_task_disable(void) 6069 { 6070 struct perf_event_context *ctx; 6071 struct perf_event *event; 6072 6073 mutex_lock(¤t->perf_event_mutex); 6074 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 6075 ctx = perf_event_ctx_lock(event); 6076 perf_event_for_each_child(event, _perf_event_disable); 6077 perf_event_ctx_unlock(event, ctx); 6078 } 6079 mutex_unlock(¤t->perf_event_mutex); 6080 6081 return 0; 6082 } 6083 6084 static int perf_event_index(struct perf_event *event) 6085 { 6086 if (event->hw.state & PERF_HES_STOPPED) 6087 return 0; 6088 6089 if (event->state != PERF_EVENT_STATE_ACTIVE) 6090 return 0; 6091 6092 return event->pmu->event_idx(event); 6093 } 6094 6095 static void perf_event_init_userpage(struct perf_event *event) 6096 { 6097 struct perf_event_mmap_page *userpg; 6098 struct perf_buffer *rb; 6099 6100 rcu_read_lock(); 6101 rb = rcu_dereference(event->rb); 6102 if (!rb) 6103 goto unlock; 6104 6105 userpg = rb->user_page; 6106 6107 /* Allow new userspace to detect that bit 0 is deprecated */ 6108 userpg->cap_bit0_is_deprecated = 1; 6109 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 6110 userpg->data_offset = PAGE_SIZE; 6111 userpg->data_size = perf_data_size(rb); 6112 6113 unlock: 6114 rcu_read_unlock(); 6115 } 6116 6117 void __weak arch_perf_update_userpage( 6118 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 6119 { 6120 } 6121 6122 /* 6123 * Callers need to ensure there can be no nesting of this function, otherwise 6124 * the seqlock logic goes bad. We can not serialize this because the arch 6125 * code calls this from NMI context. 6126 */ 6127 void perf_event_update_userpage(struct perf_event *event) 6128 { 6129 struct perf_event_mmap_page *userpg; 6130 struct perf_buffer *rb; 6131 u64 enabled, running, now; 6132 6133 rcu_read_lock(); 6134 rb = rcu_dereference(event->rb); 6135 if (!rb) 6136 goto unlock; 6137 6138 /* 6139 * compute total_time_enabled, total_time_running 6140 * based on snapshot values taken when the event 6141 * was last scheduled in. 6142 * 6143 * we cannot simply called update_context_time() 6144 * because of locking issue as we can be called in 6145 * NMI context 6146 */ 6147 calc_timer_values(event, &now, &enabled, &running); 6148 6149 userpg = rb->user_page; 6150 /* 6151 * Disable preemption to guarantee consistent time stamps are stored to 6152 * the user page. 6153 */ 6154 preempt_disable(); 6155 ++userpg->lock; 6156 barrier(); 6157 userpg->index = perf_event_index(event); 6158 userpg->offset = perf_event_count(event); 6159 if (userpg->index) 6160 userpg->offset -= local64_read(&event->hw.prev_count); 6161 6162 userpg->time_enabled = enabled + 6163 atomic64_read(&event->child_total_time_enabled); 6164 6165 userpg->time_running = running + 6166 atomic64_read(&event->child_total_time_running); 6167 6168 arch_perf_update_userpage(event, userpg, now); 6169 6170 barrier(); 6171 ++userpg->lock; 6172 preempt_enable(); 6173 unlock: 6174 rcu_read_unlock(); 6175 } 6176 EXPORT_SYMBOL_GPL(perf_event_update_userpage); 6177 6178 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf) 6179 { 6180 struct perf_event *event = vmf->vma->vm_file->private_data; 6181 struct perf_buffer *rb; 6182 vm_fault_t ret = VM_FAULT_SIGBUS; 6183 6184 if (vmf->flags & FAULT_FLAG_MKWRITE) { 6185 if (vmf->pgoff == 0) 6186 ret = 0; 6187 return ret; 6188 } 6189 6190 rcu_read_lock(); 6191 rb = rcu_dereference(event->rb); 6192 if (!rb) 6193 goto unlock; 6194 6195 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 6196 goto unlock; 6197 6198 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 6199 if (!vmf->page) 6200 goto unlock; 6201 6202 get_page(vmf->page); 6203 vmf->page->mapping = vmf->vma->vm_file->f_mapping; 6204 vmf->page->index = vmf->pgoff; 6205 6206 ret = 0; 6207 unlock: 6208 rcu_read_unlock(); 6209 6210 return ret; 6211 } 6212 6213 static void ring_buffer_attach(struct perf_event *event, 6214 struct perf_buffer *rb) 6215 { 6216 struct perf_buffer *old_rb = NULL; 6217 unsigned long flags; 6218 6219 WARN_ON_ONCE(event->parent); 6220 6221 if (event->rb) { 6222 /* 6223 * Should be impossible, we set this when removing 6224 * event->rb_entry and wait/clear when adding event->rb_entry. 6225 */ 6226 WARN_ON_ONCE(event->rcu_pending); 6227 6228 old_rb = event->rb; 6229 spin_lock_irqsave(&old_rb->event_lock, flags); 6230 list_del_rcu(&event->rb_entry); 6231 spin_unlock_irqrestore(&old_rb->event_lock, flags); 6232 6233 event->rcu_batches = get_state_synchronize_rcu(); 6234 event->rcu_pending = 1; 6235 } 6236 6237 if (rb) { 6238 if (event->rcu_pending) { 6239 cond_synchronize_rcu(event->rcu_batches); 6240 event->rcu_pending = 0; 6241 } 6242 6243 spin_lock_irqsave(&rb->event_lock, flags); 6244 list_add_rcu(&event->rb_entry, &rb->event_list); 6245 spin_unlock_irqrestore(&rb->event_lock, flags); 6246 } 6247 6248 /* 6249 * Avoid racing with perf_mmap_close(AUX): stop the event 6250 * before swizzling the event::rb pointer; if it's getting 6251 * unmapped, its aux_mmap_count will be 0 and it won't 6252 * restart. See the comment in __perf_pmu_output_stop(). 6253 * 6254 * Data will inevitably be lost when set_output is done in 6255 * mid-air, but then again, whoever does it like this is 6256 * not in for the data anyway. 6257 */ 6258 if (has_aux(event)) 6259 perf_event_stop(event, 0); 6260 6261 rcu_assign_pointer(event->rb, rb); 6262 6263 if (old_rb) { 6264 ring_buffer_put(old_rb); 6265 /* 6266 * Since we detached before setting the new rb, so that we 6267 * could attach the new rb, we could have missed a wakeup. 6268 * Provide it now. 6269 */ 6270 wake_up_all(&event->waitq); 6271 } 6272 } 6273 6274 static void ring_buffer_wakeup(struct perf_event *event) 6275 { 6276 struct perf_buffer *rb; 6277 6278 if (event->parent) 6279 event = event->parent; 6280 6281 rcu_read_lock(); 6282 rb = rcu_dereference(event->rb); 6283 if (rb) { 6284 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 6285 wake_up_all(&event->waitq); 6286 } 6287 rcu_read_unlock(); 6288 } 6289 6290 struct perf_buffer *ring_buffer_get(struct perf_event *event) 6291 { 6292 struct perf_buffer *rb; 6293 6294 if (event->parent) 6295 event = event->parent; 6296 6297 rcu_read_lock(); 6298 rb = rcu_dereference(event->rb); 6299 if (rb) { 6300 if (!refcount_inc_not_zero(&rb->refcount)) 6301 rb = NULL; 6302 } 6303 rcu_read_unlock(); 6304 6305 return rb; 6306 } 6307 6308 void ring_buffer_put(struct perf_buffer *rb) 6309 { 6310 if (!refcount_dec_and_test(&rb->refcount)) 6311 return; 6312 6313 WARN_ON_ONCE(!list_empty(&rb->event_list)); 6314 6315 call_rcu(&rb->rcu_head, rb_free_rcu); 6316 } 6317 6318 static void perf_mmap_open(struct vm_area_struct *vma) 6319 { 6320 struct perf_event *event = vma->vm_file->private_data; 6321 6322 atomic_inc(&event->mmap_count); 6323 atomic_inc(&event->rb->mmap_count); 6324 6325 if (vma->vm_pgoff) 6326 atomic_inc(&event->rb->aux_mmap_count); 6327 6328 if (event->pmu->event_mapped) 6329 event->pmu->event_mapped(event, vma->vm_mm); 6330 } 6331 6332 static void perf_pmu_output_stop(struct perf_event *event); 6333 6334 /* 6335 * A buffer can be mmap()ed multiple times; either directly through the same 6336 * event, or through other events by use of perf_event_set_output(). 6337 * 6338 * In order to undo the VM accounting done by perf_mmap() we need to destroy 6339 * the buffer here, where we still have a VM context. This means we need 6340 * to detach all events redirecting to us. 6341 */ 6342 static void perf_mmap_close(struct vm_area_struct *vma) 6343 { 6344 struct perf_event *event = vma->vm_file->private_data; 6345 struct perf_buffer *rb = ring_buffer_get(event); 6346 struct user_struct *mmap_user = rb->mmap_user; 6347 int mmap_locked = rb->mmap_locked; 6348 unsigned long size = perf_data_size(rb); 6349 bool detach_rest = false; 6350 6351 if (event->pmu->event_unmapped) 6352 event->pmu->event_unmapped(event, vma->vm_mm); 6353 6354 /* 6355 * rb->aux_mmap_count will always drop before rb->mmap_count and 6356 * event->mmap_count, so it is ok to use event->mmap_mutex to 6357 * serialize with perf_mmap here. 6358 */ 6359 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 6360 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) { 6361 /* 6362 * Stop all AUX events that are writing to this buffer, 6363 * so that we can free its AUX pages and corresponding PMU 6364 * data. Note that after rb::aux_mmap_count dropped to zero, 6365 * they won't start any more (see perf_aux_output_begin()). 6366 */ 6367 perf_pmu_output_stop(event); 6368 6369 /* now it's safe to free the pages */ 6370 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm); 6371 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm); 6372 6373 /* this has to be the last one */ 6374 rb_free_aux(rb); 6375 WARN_ON_ONCE(refcount_read(&rb->aux_refcount)); 6376 6377 mutex_unlock(&event->mmap_mutex); 6378 } 6379 6380 if (atomic_dec_and_test(&rb->mmap_count)) 6381 detach_rest = true; 6382 6383 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 6384 goto out_put; 6385 6386 ring_buffer_attach(event, NULL); 6387 mutex_unlock(&event->mmap_mutex); 6388 6389 /* If there's still other mmap()s of this buffer, we're done. */ 6390 if (!detach_rest) 6391 goto out_put; 6392 6393 /* 6394 * No other mmap()s, detach from all other events that might redirect 6395 * into the now unreachable buffer. Somewhat complicated by the 6396 * fact that rb::event_lock otherwise nests inside mmap_mutex. 6397 */ 6398 again: 6399 rcu_read_lock(); 6400 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 6401 if (!atomic_long_inc_not_zero(&event->refcount)) { 6402 /* 6403 * This event is en-route to free_event() which will 6404 * detach it and remove it from the list. 6405 */ 6406 continue; 6407 } 6408 rcu_read_unlock(); 6409 6410 mutex_lock(&event->mmap_mutex); 6411 /* 6412 * Check we didn't race with perf_event_set_output() which can 6413 * swizzle the rb from under us while we were waiting to 6414 * acquire mmap_mutex. 6415 * 6416 * If we find a different rb; ignore this event, a next 6417 * iteration will no longer find it on the list. We have to 6418 * still restart the iteration to make sure we're not now 6419 * iterating the wrong list. 6420 */ 6421 if (event->rb == rb) 6422 ring_buffer_attach(event, NULL); 6423 6424 mutex_unlock(&event->mmap_mutex); 6425 put_event(event); 6426 6427 /* 6428 * Restart the iteration; either we're on the wrong list or 6429 * destroyed its integrity by doing a deletion. 6430 */ 6431 goto again; 6432 } 6433 rcu_read_unlock(); 6434 6435 /* 6436 * It could be there's still a few 0-ref events on the list; they'll 6437 * get cleaned up by free_event() -- they'll also still have their 6438 * ref on the rb and will free it whenever they are done with it. 6439 * 6440 * Aside from that, this buffer is 'fully' detached and unmapped, 6441 * undo the VM accounting. 6442 */ 6443 6444 atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked, 6445 &mmap_user->locked_vm); 6446 atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm); 6447 free_uid(mmap_user); 6448 6449 out_put: 6450 ring_buffer_put(rb); /* could be last */ 6451 } 6452 6453 static const struct vm_operations_struct perf_mmap_vmops = { 6454 .open = perf_mmap_open, 6455 .close = perf_mmap_close, /* non mergeable */ 6456 .fault = perf_mmap_fault, 6457 .page_mkwrite = perf_mmap_fault, 6458 }; 6459 6460 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 6461 { 6462 struct perf_event *event = file->private_data; 6463 unsigned long user_locked, user_lock_limit; 6464 struct user_struct *user = current_user(); 6465 struct perf_buffer *rb = NULL; 6466 unsigned long locked, lock_limit; 6467 unsigned long vma_size; 6468 unsigned long nr_pages; 6469 long user_extra = 0, extra = 0; 6470 int ret = 0, flags = 0; 6471 6472 /* 6473 * Don't allow mmap() of inherited per-task counters. This would 6474 * create a performance issue due to all children writing to the 6475 * same rb. 6476 */ 6477 if (event->cpu == -1 && event->attr.inherit) 6478 return -EINVAL; 6479 6480 if (!(vma->vm_flags & VM_SHARED)) 6481 return -EINVAL; 6482 6483 ret = security_perf_event_read(event); 6484 if (ret) 6485 return ret; 6486 6487 vma_size = vma->vm_end - vma->vm_start; 6488 6489 if (vma->vm_pgoff == 0) { 6490 nr_pages = (vma_size / PAGE_SIZE) - 1; 6491 } else { 6492 /* 6493 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 6494 * mapped, all subsequent mappings should have the same size 6495 * and offset. Must be above the normal perf buffer. 6496 */ 6497 u64 aux_offset, aux_size; 6498 6499 if (!event->rb) 6500 return -EINVAL; 6501 6502 nr_pages = vma_size / PAGE_SIZE; 6503 if (nr_pages > INT_MAX) 6504 return -ENOMEM; 6505 6506 mutex_lock(&event->mmap_mutex); 6507 ret = -EINVAL; 6508 6509 rb = event->rb; 6510 if (!rb) 6511 goto aux_unlock; 6512 6513 aux_offset = READ_ONCE(rb->user_page->aux_offset); 6514 aux_size = READ_ONCE(rb->user_page->aux_size); 6515 6516 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 6517 goto aux_unlock; 6518 6519 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 6520 goto aux_unlock; 6521 6522 /* already mapped with a different offset */ 6523 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 6524 goto aux_unlock; 6525 6526 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) 6527 goto aux_unlock; 6528 6529 /* already mapped with a different size */ 6530 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 6531 goto aux_unlock; 6532 6533 if (!is_power_of_2(nr_pages)) 6534 goto aux_unlock; 6535 6536 if (!atomic_inc_not_zero(&rb->mmap_count)) 6537 goto aux_unlock; 6538 6539 if (rb_has_aux(rb)) { 6540 atomic_inc(&rb->aux_mmap_count); 6541 ret = 0; 6542 goto unlock; 6543 } 6544 6545 atomic_set(&rb->aux_mmap_count, 1); 6546 user_extra = nr_pages; 6547 6548 goto accounting; 6549 } 6550 6551 /* 6552 * If we have rb pages ensure they're a power-of-two number, so we 6553 * can do bitmasks instead of modulo. 6554 */ 6555 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 6556 return -EINVAL; 6557 6558 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 6559 return -EINVAL; 6560 6561 WARN_ON_ONCE(event->ctx->parent_ctx); 6562 again: 6563 mutex_lock(&event->mmap_mutex); 6564 if (event->rb) { 6565 if (data_page_nr(event->rb) != nr_pages) { 6566 ret = -EINVAL; 6567 goto unlock; 6568 } 6569 6570 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 6571 /* 6572 * Raced against perf_mmap_close(); remove the 6573 * event and try again. 6574 */ 6575 ring_buffer_attach(event, NULL); 6576 mutex_unlock(&event->mmap_mutex); 6577 goto again; 6578 } 6579 6580 goto unlock; 6581 } 6582 6583 user_extra = nr_pages + 1; 6584 6585 accounting: 6586 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 6587 6588 /* 6589 * Increase the limit linearly with more CPUs: 6590 */ 6591 user_lock_limit *= num_online_cpus(); 6592 6593 user_locked = atomic_long_read(&user->locked_vm); 6594 6595 /* 6596 * sysctl_perf_event_mlock may have changed, so that 6597 * user->locked_vm > user_lock_limit 6598 */ 6599 if (user_locked > user_lock_limit) 6600 user_locked = user_lock_limit; 6601 user_locked += user_extra; 6602 6603 if (user_locked > user_lock_limit) { 6604 /* 6605 * charge locked_vm until it hits user_lock_limit; 6606 * charge the rest from pinned_vm 6607 */ 6608 extra = user_locked - user_lock_limit; 6609 user_extra -= extra; 6610 } 6611 6612 lock_limit = rlimit(RLIMIT_MEMLOCK); 6613 lock_limit >>= PAGE_SHIFT; 6614 locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra; 6615 6616 if ((locked > lock_limit) && perf_is_paranoid() && 6617 !capable(CAP_IPC_LOCK)) { 6618 ret = -EPERM; 6619 goto unlock; 6620 } 6621 6622 WARN_ON(!rb && event->rb); 6623 6624 if (vma->vm_flags & VM_WRITE) 6625 flags |= RING_BUFFER_WRITABLE; 6626 6627 if (!rb) { 6628 rb = rb_alloc(nr_pages, 6629 event->attr.watermark ? event->attr.wakeup_watermark : 0, 6630 event->cpu, flags); 6631 6632 if (!rb) { 6633 ret = -ENOMEM; 6634 goto unlock; 6635 } 6636 6637 atomic_set(&rb->mmap_count, 1); 6638 rb->mmap_user = get_current_user(); 6639 rb->mmap_locked = extra; 6640 6641 ring_buffer_attach(event, rb); 6642 6643 perf_event_update_time(event); 6644 perf_event_init_userpage(event); 6645 perf_event_update_userpage(event); 6646 } else { 6647 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 6648 event->attr.aux_watermark, flags); 6649 if (!ret) 6650 rb->aux_mmap_locked = extra; 6651 } 6652 6653 unlock: 6654 if (!ret) { 6655 atomic_long_add(user_extra, &user->locked_vm); 6656 atomic64_add(extra, &vma->vm_mm->pinned_vm); 6657 6658 atomic_inc(&event->mmap_count); 6659 } else if (rb) { 6660 atomic_dec(&rb->mmap_count); 6661 } 6662 aux_unlock: 6663 mutex_unlock(&event->mmap_mutex); 6664 6665 /* 6666 * Since pinned accounting is per vm we cannot allow fork() to copy our 6667 * vma. 6668 */ 6669 vm_flags_set(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP); 6670 vma->vm_ops = &perf_mmap_vmops; 6671 6672 if (event->pmu->event_mapped) 6673 event->pmu->event_mapped(event, vma->vm_mm); 6674 6675 return ret; 6676 } 6677 6678 static int perf_fasync(int fd, struct file *filp, int on) 6679 { 6680 struct inode *inode = file_inode(filp); 6681 struct perf_event *event = filp->private_data; 6682 int retval; 6683 6684 inode_lock(inode); 6685 retval = fasync_helper(fd, filp, on, &event->fasync); 6686 inode_unlock(inode); 6687 6688 if (retval < 0) 6689 return retval; 6690 6691 return 0; 6692 } 6693 6694 static const struct file_operations perf_fops = { 6695 .llseek = no_llseek, 6696 .release = perf_release, 6697 .read = perf_read, 6698 .poll = perf_poll, 6699 .unlocked_ioctl = perf_ioctl, 6700 .compat_ioctl = perf_compat_ioctl, 6701 .mmap = perf_mmap, 6702 .fasync = perf_fasync, 6703 }; 6704 6705 /* 6706 * Perf event wakeup 6707 * 6708 * If there's data, ensure we set the poll() state and publish everything 6709 * to user-space before waking everybody up. 6710 */ 6711 6712 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event) 6713 { 6714 /* only the parent has fasync state */ 6715 if (event->parent) 6716 event = event->parent; 6717 return &event->fasync; 6718 } 6719 6720 void perf_event_wakeup(struct perf_event *event) 6721 { 6722 ring_buffer_wakeup(event); 6723 6724 if (event->pending_kill) { 6725 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); 6726 event->pending_kill = 0; 6727 } 6728 } 6729 6730 static void perf_sigtrap(struct perf_event *event) 6731 { 6732 /* 6733 * We'd expect this to only occur if the irq_work is delayed and either 6734 * ctx->task or current has changed in the meantime. This can be the 6735 * case on architectures that do not implement arch_irq_work_raise(). 6736 */ 6737 if (WARN_ON_ONCE(event->ctx->task != current)) 6738 return; 6739 6740 /* 6741 * Both perf_pending_task() and perf_pending_irq() can race with the 6742 * task exiting. 6743 */ 6744 if (current->flags & PF_EXITING) 6745 return; 6746 6747 send_sig_perf((void __user *)event->pending_addr, 6748 event->orig_type, event->attr.sig_data); 6749 } 6750 6751 /* 6752 * Deliver the pending work in-event-context or follow the context. 6753 */ 6754 static void __perf_pending_irq(struct perf_event *event) 6755 { 6756 int cpu = READ_ONCE(event->oncpu); 6757 6758 /* 6759 * If the event isn't running; we done. event_sched_out() will have 6760 * taken care of things. 6761 */ 6762 if (cpu < 0) 6763 return; 6764 6765 /* 6766 * Yay, we hit home and are in the context of the event. 6767 */ 6768 if (cpu == smp_processor_id()) { 6769 if (event->pending_sigtrap) { 6770 event->pending_sigtrap = 0; 6771 perf_sigtrap(event); 6772 local_dec(&event->ctx->nr_pending); 6773 } 6774 if (event->pending_disable) { 6775 event->pending_disable = 0; 6776 perf_event_disable_local(event); 6777 } 6778 return; 6779 } 6780 6781 /* 6782 * CPU-A CPU-B 6783 * 6784 * perf_event_disable_inatomic() 6785 * @pending_disable = CPU-A; 6786 * irq_work_queue(); 6787 * 6788 * sched-out 6789 * @pending_disable = -1; 6790 * 6791 * sched-in 6792 * perf_event_disable_inatomic() 6793 * @pending_disable = CPU-B; 6794 * irq_work_queue(); // FAILS 6795 * 6796 * irq_work_run() 6797 * perf_pending_irq() 6798 * 6799 * But the event runs on CPU-B and wants disabling there. 6800 */ 6801 irq_work_queue_on(&event->pending_irq, cpu); 6802 } 6803 6804 static void perf_pending_irq(struct irq_work *entry) 6805 { 6806 struct perf_event *event = container_of(entry, struct perf_event, pending_irq); 6807 int rctx; 6808 6809 /* 6810 * If we 'fail' here, that's OK, it means recursion is already disabled 6811 * and we won't recurse 'further'. 6812 */ 6813 rctx = perf_swevent_get_recursion_context(); 6814 6815 /* 6816 * The wakeup isn't bound to the context of the event -- it can happen 6817 * irrespective of where the event is. 6818 */ 6819 if (event->pending_wakeup) { 6820 event->pending_wakeup = 0; 6821 perf_event_wakeup(event); 6822 } 6823 6824 __perf_pending_irq(event); 6825 6826 if (rctx >= 0) 6827 perf_swevent_put_recursion_context(rctx); 6828 } 6829 6830 static void perf_pending_task(struct callback_head *head) 6831 { 6832 struct perf_event *event = container_of(head, struct perf_event, pending_task); 6833 int rctx; 6834 6835 /* 6836 * All accesses to the event must belong to the same implicit RCU read-side 6837 * critical section as the ->pending_work reset. See comment in 6838 * perf_pending_task_sync(). 6839 */ 6840 preempt_disable_notrace(); 6841 /* 6842 * If we 'fail' here, that's OK, it means recursion is already disabled 6843 * and we won't recurse 'further'. 6844 */ 6845 rctx = perf_swevent_get_recursion_context(); 6846 6847 if (event->pending_work) { 6848 event->pending_work = 0; 6849 perf_sigtrap(event); 6850 local_dec(&event->ctx->nr_pending); 6851 rcuwait_wake_up(&event->pending_work_wait); 6852 } 6853 6854 if (rctx >= 0) 6855 perf_swevent_put_recursion_context(rctx); 6856 preempt_enable_notrace(); 6857 } 6858 6859 #ifdef CONFIG_GUEST_PERF_EVENTS 6860 struct perf_guest_info_callbacks __rcu *perf_guest_cbs; 6861 6862 DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state); 6863 DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip); 6864 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr); 6865 6866 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 6867 { 6868 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs))) 6869 return; 6870 6871 rcu_assign_pointer(perf_guest_cbs, cbs); 6872 static_call_update(__perf_guest_state, cbs->state); 6873 static_call_update(__perf_guest_get_ip, cbs->get_ip); 6874 6875 /* Implementing ->handle_intel_pt_intr is optional. */ 6876 if (cbs->handle_intel_pt_intr) 6877 static_call_update(__perf_guest_handle_intel_pt_intr, 6878 cbs->handle_intel_pt_intr); 6879 } 6880 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 6881 6882 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 6883 { 6884 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs)) 6885 return; 6886 6887 rcu_assign_pointer(perf_guest_cbs, NULL); 6888 static_call_update(__perf_guest_state, (void *)&__static_call_return0); 6889 static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0); 6890 static_call_update(__perf_guest_handle_intel_pt_intr, 6891 (void *)&__static_call_return0); 6892 synchronize_rcu(); 6893 } 6894 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 6895 #endif 6896 6897 static void 6898 perf_output_sample_regs(struct perf_output_handle *handle, 6899 struct pt_regs *regs, u64 mask) 6900 { 6901 int bit; 6902 DECLARE_BITMAP(_mask, 64); 6903 6904 bitmap_from_u64(_mask, mask); 6905 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) { 6906 u64 val; 6907 6908 val = perf_reg_value(regs, bit); 6909 perf_output_put(handle, val); 6910 } 6911 } 6912 6913 static void perf_sample_regs_user(struct perf_regs *regs_user, 6914 struct pt_regs *regs) 6915 { 6916 if (user_mode(regs)) { 6917 regs_user->abi = perf_reg_abi(current); 6918 regs_user->regs = regs; 6919 } else if (!(current->flags & PF_KTHREAD)) { 6920 perf_get_regs_user(regs_user, regs); 6921 } else { 6922 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 6923 regs_user->regs = NULL; 6924 } 6925 } 6926 6927 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 6928 struct pt_regs *regs) 6929 { 6930 regs_intr->regs = regs; 6931 regs_intr->abi = perf_reg_abi(current); 6932 } 6933 6934 6935 /* 6936 * Get remaining task size from user stack pointer. 6937 * 6938 * It'd be better to take stack vma map and limit this more 6939 * precisely, but there's no way to get it safely under interrupt, 6940 * so using TASK_SIZE as limit. 6941 */ 6942 static u64 perf_ustack_task_size(struct pt_regs *regs) 6943 { 6944 unsigned long addr = perf_user_stack_pointer(regs); 6945 6946 if (!addr || addr >= TASK_SIZE) 6947 return 0; 6948 6949 return TASK_SIZE - addr; 6950 } 6951 6952 static u16 6953 perf_sample_ustack_size(u16 stack_size, u16 header_size, 6954 struct pt_regs *regs) 6955 { 6956 u64 task_size; 6957 6958 /* No regs, no stack pointer, no dump. */ 6959 if (!regs) 6960 return 0; 6961 6962 /* 6963 * Check if we fit in with the requested stack size into the: 6964 * - TASK_SIZE 6965 * If we don't, we limit the size to the TASK_SIZE. 6966 * 6967 * - remaining sample size 6968 * If we don't, we customize the stack size to 6969 * fit in to the remaining sample size. 6970 */ 6971 6972 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 6973 stack_size = min(stack_size, (u16) task_size); 6974 6975 /* Current header size plus static size and dynamic size. */ 6976 header_size += 2 * sizeof(u64); 6977 6978 /* Do we fit in with the current stack dump size? */ 6979 if ((u16) (header_size + stack_size) < header_size) { 6980 /* 6981 * If we overflow the maximum size for the sample, 6982 * we customize the stack dump size to fit in. 6983 */ 6984 stack_size = USHRT_MAX - header_size - sizeof(u64); 6985 stack_size = round_up(stack_size, sizeof(u64)); 6986 } 6987 6988 return stack_size; 6989 } 6990 6991 static void 6992 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 6993 struct pt_regs *regs) 6994 { 6995 /* Case of a kernel thread, nothing to dump */ 6996 if (!regs) { 6997 u64 size = 0; 6998 perf_output_put(handle, size); 6999 } else { 7000 unsigned long sp; 7001 unsigned int rem; 7002 u64 dyn_size; 7003 7004 /* 7005 * We dump: 7006 * static size 7007 * - the size requested by user or the best one we can fit 7008 * in to the sample max size 7009 * data 7010 * - user stack dump data 7011 * dynamic size 7012 * - the actual dumped size 7013 */ 7014 7015 /* Static size. */ 7016 perf_output_put(handle, dump_size); 7017 7018 /* Data. */ 7019 sp = perf_user_stack_pointer(regs); 7020 rem = __output_copy_user(handle, (void *) sp, dump_size); 7021 dyn_size = dump_size - rem; 7022 7023 perf_output_skip(handle, rem); 7024 7025 /* Dynamic size. */ 7026 perf_output_put(handle, dyn_size); 7027 } 7028 } 7029 7030 static unsigned long perf_prepare_sample_aux(struct perf_event *event, 7031 struct perf_sample_data *data, 7032 size_t size) 7033 { 7034 struct perf_event *sampler = event->aux_event; 7035 struct perf_buffer *rb; 7036 7037 data->aux_size = 0; 7038 7039 if (!sampler) 7040 goto out; 7041 7042 if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE)) 7043 goto out; 7044 7045 if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id())) 7046 goto out; 7047 7048 rb = ring_buffer_get(sampler); 7049 if (!rb) 7050 goto out; 7051 7052 /* 7053 * If this is an NMI hit inside sampling code, don't take 7054 * the sample. See also perf_aux_sample_output(). 7055 */ 7056 if (READ_ONCE(rb->aux_in_sampling)) { 7057 data->aux_size = 0; 7058 } else { 7059 size = min_t(size_t, size, perf_aux_size(rb)); 7060 data->aux_size = ALIGN(size, sizeof(u64)); 7061 } 7062 ring_buffer_put(rb); 7063 7064 out: 7065 return data->aux_size; 7066 } 7067 7068 static long perf_pmu_snapshot_aux(struct perf_buffer *rb, 7069 struct perf_event *event, 7070 struct perf_output_handle *handle, 7071 unsigned long size) 7072 { 7073 unsigned long flags; 7074 long ret; 7075 7076 /* 7077 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler 7078 * paths. If we start calling them in NMI context, they may race with 7079 * the IRQ ones, that is, for example, re-starting an event that's just 7080 * been stopped, which is why we're using a separate callback that 7081 * doesn't change the event state. 7082 * 7083 * IRQs need to be disabled to prevent IPIs from racing with us. 7084 */ 7085 local_irq_save(flags); 7086 /* 7087 * Guard against NMI hits inside the critical section; 7088 * see also perf_prepare_sample_aux(). 7089 */ 7090 WRITE_ONCE(rb->aux_in_sampling, 1); 7091 barrier(); 7092 7093 ret = event->pmu->snapshot_aux(event, handle, size); 7094 7095 barrier(); 7096 WRITE_ONCE(rb->aux_in_sampling, 0); 7097 local_irq_restore(flags); 7098 7099 return ret; 7100 } 7101 7102 static void perf_aux_sample_output(struct perf_event *event, 7103 struct perf_output_handle *handle, 7104 struct perf_sample_data *data) 7105 { 7106 struct perf_event *sampler = event->aux_event; 7107 struct perf_buffer *rb; 7108 unsigned long pad; 7109 long size; 7110 7111 if (WARN_ON_ONCE(!sampler || !data->aux_size)) 7112 return; 7113 7114 rb = ring_buffer_get(sampler); 7115 if (!rb) 7116 return; 7117 7118 size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size); 7119 7120 /* 7121 * An error here means that perf_output_copy() failed (returned a 7122 * non-zero surplus that it didn't copy), which in its current 7123 * enlightened implementation is not possible. If that changes, we'd 7124 * like to know. 7125 */ 7126 if (WARN_ON_ONCE(size < 0)) 7127 goto out_put; 7128 7129 /* 7130 * The pad comes from ALIGN()ing data->aux_size up to u64 in 7131 * perf_prepare_sample_aux(), so should not be more than that. 7132 */ 7133 pad = data->aux_size - size; 7134 if (WARN_ON_ONCE(pad >= sizeof(u64))) 7135 pad = 8; 7136 7137 if (pad) { 7138 u64 zero = 0; 7139 perf_output_copy(handle, &zero, pad); 7140 } 7141 7142 out_put: 7143 ring_buffer_put(rb); 7144 } 7145 7146 /* 7147 * A set of common sample data types saved even for non-sample records 7148 * when event->attr.sample_id_all is set. 7149 */ 7150 #define PERF_SAMPLE_ID_ALL (PERF_SAMPLE_TID | PERF_SAMPLE_TIME | \ 7151 PERF_SAMPLE_ID | PERF_SAMPLE_STREAM_ID | \ 7152 PERF_SAMPLE_CPU | PERF_SAMPLE_IDENTIFIER) 7153 7154 static void __perf_event_header__init_id(struct perf_sample_data *data, 7155 struct perf_event *event, 7156 u64 sample_type) 7157 { 7158 data->type = event->attr.sample_type; 7159 data->sample_flags |= data->type & PERF_SAMPLE_ID_ALL; 7160 7161 if (sample_type & PERF_SAMPLE_TID) { 7162 /* namespace issues */ 7163 data->tid_entry.pid = perf_event_pid(event, current); 7164 data->tid_entry.tid = perf_event_tid(event, current); 7165 } 7166 7167 if (sample_type & PERF_SAMPLE_TIME) 7168 data->time = perf_event_clock(event); 7169 7170 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 7171 data->id = primary_event_id(event); 7172 7173 if (sample_type & PERF_SAMPLE_STREAM_ID) 7174 data->stream_id = event->id; 7175 7176 if (sample_type & PERF_SAMPLE_CPU) { 7177 data->cpu_entry.cpu = raw_smp_processor_id(); 7178 data->cpu_entry.reserved = 0; 7179 } 7180 } 7181 7182 void perf_event_header__init_id(struct perf_event_header *header, 7183 struct perf_sample_data *data, 7184 struct perf_event *event) 7185 { 7186 if (event->attr.sample_id_all) { 7187 header->size += event->id_header_size; 7188 __perf_event_header__init_id(data, event, event->attr.sample_type); 7189 } 7190 } 7191 7192 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 7193 struct perf_sample_data *data) 7194 { 7195 u64 sample_type = data->type; 7196 7197 if (sample_type & PERF_SAMPLE_TID) 7198 perf_output_put(handle, data->tid_entry); 7199 7200 if (sample_type & PERF_SAMPLE_TIME) 7201 perf_output_put(handle, data->time); 7202 7203 if (sample_type & PERF_SAMPLE_ID) 7204 perf_output_put(handle, data->id); 7205 7206 if (sample_type & PERF_SAMPLE_STREAM_ID) 7207 perf_output_put(handle, data->stream_id); 7208 7209 if (sample_type & PERF_SAMPLE_CPU) 7210 perf_output_put(handle, data->cpu_entry); 7211 7212 if (sample_type & PERF_SAMPLE_IDENTIFIER) 7213 perf_output_put(handle, data->id); 7214 } 7215 7216 void perf_event__output_id_sample(struct perf_event *event, 7217 struct perf_output_handle *handle, 7218 struct perf_sample_data *sample) 7219 { 7220 if (event->attr.sample_id_all) 7221 __perf_event__output_id_sample(handle, sample); 7222 } 7223 7224 static void perf_output_read_one(struct perf_output_handle *handle, 7225 struct perf_event *event, 7226 u64 enabled, u64 running) 7227 { 7228 u64 read_format = event->attr.read_format; 7229 u64 values[5]; 7230 int n = 0; 7231 7232 values[n++] = perf_event_count(event); 7233 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 7234 values[n++] = enabled + 7235 atomic64_read(&event->child_total_time_enabled); 7236 } 7237 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 7238 values[n++] = running + 7239 atomic64_read(&event->child_total_time_running); 7240 } 7241 if (read_format & PERF_FORMAT_ID) 7242 values[n++] = primary_event_id(event); 7243 if (read_format & PERF_FORMAT_LOST) 7244 values[n++] = atomic64_read(&event->lost_samples); 7245 7246 __output_copy(handle, values, n * sizeof(u64)); 7247 } 7248 7249 static void perf_output_read_group(struct perf_output_handle *handle, 7250 struct perf_event *event, 7251 u64 enabled, u64 running) 7252 { 7253 struct perf_event *leader = event->group_leader, *sub; 7254 u64 read_format = event->attr.read_format; 7255 unsigned long flags; 7256 u64 values[6]; 7257 int n = 0; 7258 7259 /* 7260 * Disabling interrupts avoids all counter scheduling 7261 * (context switches, timer based rotation and IPIs). 7262 */ 7263 local_irq_save(flags); 7264 7265 values[n++] = 1 + leader->nr_siblings; 7266 7267 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 7268 values[n++] = enabled; 7269 7270 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 7271 values[n++] = running; 7272 7273 if ((leader != event) && 7274 (leader->state == PERF_EVENT_STATE_ACTIVE)) 7275 leader->pmu->read(leader); 7276 7277 values[n++] = perf_event_count(leader); 7278 if (read_format & PERF_FORMAT_ID) 7279 values[n++] = primary_event_id(leader); 7280 if (read_format & PERF_FORMAT_LOST) 7281 values[n++] = atomic64_read(&leader->lost_samples); 7282 7283 __output_copy(handle, values, n * sizeof(u64)); 7284 7285 for_each_sibling_event(sub, leader) { 7286 n = 0; 7287 7288 if ((sub != event) && 7289 (sub->state == PERF_EVENT_STATE_ACTIVE)) 7290 sub->pmu->read(sub); 7291 7292 values[n++] = perf_event_count(sub); 7293 if (read_format & PERF_FORMAT_ID) 7294 values[n++] = primary_event_id(sub); 7295 if (read_format & PERF_FORMAT_LOST) 7296 values[n++] = atomic64_read(&sub->lost_samples); 7297 7298 __output_copy(handle, values, n * sizeof(u64)); 7299 } 7300 7301 local_irq_restore(flags); 7302 } 7303 7304 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 7305 PERF_FORMAT_TOTAL_TIME_RUNNING) 7306 7307 /* 7308 * XXX PERF_SAMPLE_READ vs inherited events seems difficult. 7309 * 7310 * The problem is that its both hard and excessively expensive to iterate the 7311 * child list, not to mention that its impossible to IPI the children running 7312 * on another CPU, from interrupt/NMI context. 7313 */ 7314 static void perf_output_read(struct perf_output_handle *handle, 7315 struct perf_event *event) 7316 { 7317 u64 enabled = 0, running = 0, now; 7318 u64 read_format = event->attr.read_format; 7319 7320 /* 7321 * compute total_time_enabled, total_time_running 7322 * based on snapshot values taken when the event 7323 * was last scheduled in. 7324 * 7325 * we cannot simply called update_context_time() 7326 * because of locking issue as we are called in 7327 * NMI context 7328 */ 7329 if (read_format & PERF_FORMAT_TOTAL_TIMES) 7330 calc_timer_values(event, &now, &enabled, &running); 7331 7332 if (event->attr.read_format & PERF_FORMAT_GROUP) 7333 perf_output_read_group(handle, event, enabled, running); 7334 else 7335 perf_output_read_one(handle, event, enabled, running); 7336 } 7337 7338 void perf_output_sample(struct perf_output_handle *handle, 7339 struct perf_event_header *header, 7340 struct perf_sample_data *data, 7341 struct perf_event *event) 7342 { 7343 u64 sample_type = data->type; 7344 7345 perf_output_put(handle, *header); 7346 7347 if (sample_type & PERF_SAMPLE_IDENTIFIER) 7348 perf_output_put(handle, data->id); 7349 7350 if (sample_type & PERF_SAMPLE_IP) 7351 perf_output_put(handle, data->ip); 7352 7353 if (sample_type & PERF_SAMPLE_TID) 7354 perf_output_put(handle, data->tid_entry); 7355 7356 if (sample_type & PERF_SAMPLE_TIME) 7357 perf_output_put(handle, data->time); 7358 7359 if (sample_type & PERF_SAMPLE_ADDR) 7360 perf_output_put(handle, data->addr); 7361 7362 if (sample_type & PERF_SAMPLE_ID) 7363 perf_output_put(handle, data->id); 7364 7365 if (sample_type & PERF_SAMPLE_STREAM_ID) 7366 perf_output_put(handle, data->stream_id); 7367 7368 if (sample_type & PERF_SAMPLE_CPU) 7369 perf_output_put(handle, data->cpu_entry); 7370 7371 if (sample_type & PERF_SAMPLE_PERIOD) 7372 perf_output_put(handle, data->period); 7373 7374 if (sample_type & PERF_SAMPLE_READ) 7375 perf_output_read(handle, event); 7376 7377 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 7378 int size = 1; 7379 7380 size += data->callchain->nr; 7381 size *= sizeof(u64); 7382 __output_copy(handle, data->callchain, size); 7383 } 7384 7385 if (sample_type & PERF_SAMPLE_RAW) { 7386 struct perf_raw_record *raw = data->raw; 7387 7388 if (raw) { 7389 struct perf_raw_frag *frag = &raw->frag; 7390 7391 perf_output_put(handle, raw->size); 7392 do { 7393 if (frag->copy) { 7394 __output_custom(handle, frag->copy, 7395 frag->data, frag->size); 7396 } else { 7397 __output_copy(handle, frag->data, 7398 frag->size); 7399 } 7400 if (perf_raw_frag_last(frag)) 7401 break; 7402 frag = frag->next; 7403 } while (1); 7404 if (frag->pad) 7405 __output_skip(handle, NULL, frag->pad); 7406 } else { 7407 struct { 7408 u32 size; 7409 u32 data; 7410 } raw = { 7411 .size = sizeof(u32), 7412 .data = 0, 7413 }; 7414 perf_output_put(handle, raw); 7415 } 7416 } 7417 7418 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 7419 if (data->br_stack) { 7420 size_t size; 7421 7422 size = data->br_stack->nr 7423 * sizeof(struct perf_branch_entry); 7424 7425 perf_output_put(handle, data->br_stack->nr); 7426 if (branch_sample_hw_index(event)) 7427 perf_output_put(handle, data->br_stack->hw_idx); 7428 perf_output_copy(handle, data->br_stack->entries, size); 7429 } else { 7430 /* 7431 * we always store at least the value of nr 7432 */ 7433 u64 nr = 0; 7434 perf_output_put(handle, nr); 7435 } 7436 } 7437 7438 if (sample_type & PERF_SAMPLE_REGS_USER) { 7439 u64 abi = data->regs_user.abi; 7440 7441 /* 7442 * If there are no regs to dump, notice it through 7443 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 7444 */ 7445 perf_output_put(handle, abi); 7446 7447 if (abi) { 7448 u64 mask = event->attr.sample_regs_user; 7449 perf_output_sample_regs(handle, 7450 data->regs_user.regs, 7451 mask); 7452 } 7453 } 7454 7455 if (sample_type & PERF_SAMPLE_STACK_USER) { 7456 perf_output_sample_ustack(handle, 7457 data->stack_user_size, 7458 data->regs_user.regs); 7459 } 7460 7461 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) 7462 perf_output_put(handle, data->weight.full); 7463 7464 if (sample_type & PERF_SAMPLE_DATA_SRC) 7465 perf_output_put(handle, data->data_src.val); 7466 7467 if (sample_type & PERF_SAMPLE_TRANSACTION) 7468 perf_output_put(handle, data->txn); 7469 7470 if (sample_type & PERF_SAMPLE_REGS_INTR) { 7471 u64 abi = data->regs_intr.abi; 7472 /* 7473 * If there are no regs to dump, notice it through 7474 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 7475 */ 7476 perf_output_put(handle, abi); 7477 7478 if (abi) { 7479 u64 mask = event->attr.sample_regs_intr; 7480 7481 perf_output_sample_regs(handle, 7482 data->regs_intr.regs, 7483 mask); 7484 } 7485 } 7486 7487 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 7488 perf_output_put(handle, data->phys_addr); 7489 7490 if (sample_type & PERF_SAMPLE_CGROUP) 7491 perf_output_put(handle, data->cgroup); 7492 7493 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 7494 perf_output_put(handle, data->data_page_size); 7495 7496 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 7497 perf_output_put(handle, data->code_page_size); 7498 7499 if (sample_type & PERF_SAMPLE_AUX) { 7500 perf_output_put(handle, data->aux_size); 7501 7502 if (data->aux_size) 7503 perf_aux_sample_output(event, handle, data); 7504 } 7505 7506 if (!event->attr.watermark) { 7507 int wakeup_events = event->attr.wakeup_events; 7508 7509 if (wakeup_events) { 7510 struct perf_buffer *rb = handle->rb; 7511 int events = local_inc_return(&rb->events); 7512 7513 if (events >= wakeup_events) { 7514 local_sub(wakeup_events, &rb->events); 7515 local_inc(&rb->wakeup); 7516 } 7517 } 7518 } 7519 } 7520 7521 static u64 perf_virt_to_phys(u64 virt) 7522 { 7523 u64 phys_addr = 0; 7524 7525 if (!virt) 7526 return 0; 7527 7528 if (virt >= TASK_SIZE) { 7529 /* If it's vmalloc()d memory, leave phys_addr as 0 */ 7530 if (virt_addr_valid((void *)(uintptr_t)virt) && 7531 !(virt >= VMALLOC_START && virt < VMALLOC_END)) 7532 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt); 7533 } else { 7534 /* 7535 * Walking the pages tables for user address. 7536 * Interrupts are disabled, so it prevents any tear down 7537 * of the page tables. 7538 * Try IRQ-safe get_user_page_fast_only first. 7539 * If failed, leave phys_addr as 0. 7540 */ 7541 if (current->mm != NULL) { 7542 struct page *p; 7543 7544 pagefault_disable(); 7545 if (get_user_page_fast_only(virt, 0, &p)) { 7546 phys_addr = page_to_phys(p) + virt % PAGE_SIZE; 7547 put_page(p); 7548 } 7549 pagefault_enable(); 7550 } 7551 } 7552 7553 return phys_addr; 7554 } 7555 7556 /* 7557 * Return the pagetable size of a given virtual address. 7558 */ 7559 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr) 7560 { 7561 u64 size = 0; 7562 7563 #ifdef CONFIG_HAVE_FAST_GUP 7564 pgd_t *pgdp, pgd; 7565 p4d_t *p4dp, p4d; 7566 pud_t *pudp, pud; 7567 pmd_t *pmdp, pmd; 7568 pte_t *ptep, pte; 7569 7570 pgdp = pgd_offset(mm, addr); 7571 pgd = READ_ONCE(*pgdp); 7572 if (pgd_none(pgd)) 7573 return 0; 7574 7575 if (pgd_leaf(pgd)) 7576 return pgd_leaf_size(pgd); 7577 7578 p4dp = p4d_offset_lockless(pgdp, pgd, addr); 7579 p4d = READ_ONCE(*p4dp); 7580 if (!p4d_present(p4d)) 7581 return 0; 7582 7583 if (p4d_leaf(p4d)) 7584 return p4d_leaf_size(p4d); 7585 7586 pudp = pud_offset_lockless(p4dp, p4d, addr); 7587 pud = READ_ONCE(*pudp); 7588 if (!pud_present(pud)) 7589 return 0; 7590 7591 if (pud_leaf(pud)) 7592 return pud_leaf_size(pud); 7593 7594 pmdp = pmd_offset_lockless(pudp, pud, addr); 7595 again: 7596 pmd = pmdp_get_lockless(pmdp); 7597 if (!pmd_present(pmd)) 7598 return 0; 7599 7600 if (pmd_leaf(pmd)) 7601 return pmd_leaf_size(pmd); 7602 7603 ptep = pte_offset_map(&pmd, addr); 7604 if (!ptep) 7605 goto again; 7606 7607 pte = ptep_get_lockless(ptep); 7608 if (pte_present(pte)) 7609 size = pte_leaf_size(pte); 7610 pte_unmap(ptep); 7611 #endif /* CONFIG_HAVE_FAST_GUP */ 7612 7613 return size; 7614 } 7615 7616 static u64 perf_get_page_size(unsigned long addr) 7617 { 7618 struct mm_struct *mm; 7619 unsigned long flags; 7620 u64 size; 7621 7622 if (!addr) 7623 return 0; 7624 7625 /* 7626 * Software page-table walkers must disable IRQs, 7627 * which prevents any tear down of the page tables. 7628 */ 7629 local_irq_save(flags); 7630 7631 mm = current->mm; 7632 if (!mm) { 7633 /* 7634 * For kernel threads and the like, use init_mm so that 7635 * we can find kernel memory. 7636 */ 7637 mm = &init_mm; 7638 } 7639 7640 size = perf_get_pgtable_size(mm, addr); 7641 7642 local_irq_restore(flags); 7643 7644 return size; 7645 } 7646 7647 static struct perf_callchain_entry __empty_callchain = { .nr = 0, }; 7648 7649 struct perf_callchain_entry * 7650 perf_callchain(struct perf_event *event, struct pt_regs *regs) 7651 { 7652 bool kernel = !event->attr.exclude_callchain_kernel; 7653 bool user = !event->attr.exclude_callchain_user; 7654 /* Disallow cross-task user callchains. */ 7655 bool crosstask = event->ctx->task && event->ctx->task != current; 7656 const u32 max_stack = event->attr.sample_max_stack; 7657 struct perf_callchain_entry *callchain; 7658 7659 if (!kernel && !user) 7660 return &__empty_callchain; 7661 7662 callchain = get_perf_callchain(regs, 0, kernel, user, 7663 max_stack, crosstask, true); 7664 return callchain ?: &__empty_callchain; 7665 } 7666 7667 static __always_inline u64 __cond_set(u64 flags, u64 s, u64 d) 7668 { 7669 return d * !!(flags & s); 7670 } 7671 7672 void perf_prepare_sample(struct perf_sample_data *data, 7673 struct perf_event *event, 7674 struct pt_regs *regs) 7675 { 7676 u64 sample_type = event->attr.sample_type; 7677 u64 filtered_sample_type; 7678 7679 /* 7680 * Add the sample flags that are dependent to others. And clear the 7681 * sample flags that have already been done by the PMU driver. 7682 */ 7683 filtered_sample_type = sample_type; 7684 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_CODE_PAGE_SIZE, 7685 PERF_SAMPLE_IP); 7686 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_DATA_PAGE_SIZE | 7687 PERF_SAMPLE_PHYS_ADDR, PERF_SAMPLE_ADDR); 7688 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_STACK_USER, 7689 PERF_SAMPLE_REGS_USER); 7690 filtered_sample_type &= ~data->sample_flags; 7691 7692 if (filtered_sample_type == 0) { 7693 /* Make sure it has the correct data->type for output */ 7694 data->type = event->attr.sample_type; 7695 return; 7696 } 7697 7698 __perf_event_header__init_id(data, event, filtered_sample_type); 7699 7700 if (filtered_sample_type & PERF_SAMPLE_IP) { 7701 data->ip = perf_instruction_pointer(regs); 7702 data->sample_flags |= PERF_SAMPLE_IP; 7703 } 7704 7705 if (filtered_sample_type & PERF_SAMPLE_CALLCHAIN) 7706 perf_sample_save_callchain(data, event, regs); 7707 7708 if (filtered_sample_type & PERF_SAMPLE_RAW) { 7709 data->raw = NULL; 7710 data->dyn_size += sizeof(u64); 7711 data->sample_flags |= PERF_SAMPLE_RAW; 7712 } 7713 7714 if (filtered_sample_type & PERF_SAMPLE_BRANCH_STACK) { 7715 data->br_stack = NULL; 7716 data->dyn_size += sizeof(u64); 7717 data->sample_flags |= PERF_SAMPLE_BRANCH_STACK; 7718 } 7719 7720 if (filtered_sample_type & PERF_SAMPLE_REGS_USER) 7721 perf_sample_regs_user(&data->regs_user, regs); 7722 7723 /* 7724 * It cannot use the filtered_sample_type here as REGS_USER can be set 7725 * by STACK_USER (using __cond_set() above) and we don't want to update 7726 * the dyn_size if it's not requested by users. 7727 */ 7728 if ((sample_type & ~data->sample_flags) & PERF_SAMPLE_REGS_USER) { 7729 /* regs dump ABI info */ 7730 int size = sizeof(u64); 7731 7732 if (data->regs_user.regs) { 7733 u64 mask = event->attr.sample_regs_user; 7734 size += hweight64(mask) * sizeof(u64); 7735 } 7736 7737 data->dyn_size += size; 7738 data->sample_flags |= PERF_SAMPLE_REGS_USER; 7739 } 7740 7741 if (filtered_sample_type & PERF_SAMPLE_STACK_USER) { 7742 /* 7743 * Either we need PERF_SAMPLE_STACK_USER bit to be always 7744 * processed as the last one or have additional check added 7745 * in case new sample type is added, because we could eat 7746 * up the rest of the sample size. 7747 */ 7748 u16 stack_size = event->attr.sample_stack_user; 7749 u16 header_size = perf_sample_data_size(data, event); 7750 u16 size = sizeof(u64); 7751 7752 stack_size = perf_sample_ustack_size(stack_size, header_size, 7753 data->regs_user.regs); 7754 7755 /* 7756 * If there is something to dump, add space for the dump 7757 * itself and for the field that tells the dynamic size, 7758 * which is how many have been actually dumped. 7759 */ 7760 if (stack_size) 7761 size += sizeof(u64) + stack_size; 7762 7763 data->stack_user_size = stack_size; 7764 data->dyn_size += size; 7765 data->sample_flags |= PERF_SAMPLE_STACK_USER; 7766 } 7767 7768 if (filtered_sample_type & PERF_SAMPLE_WEIGHT_TYPE) { 7769 data->weight.full = 0; 7770 data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE; 7771 } 7772 7773 if (filtered_sample_type & PERF_SAMPLE_DATA_SRC) { 7774 data->data_src.val = PERF_MEM_NA; 7775 data->sample_flags |= PERF_SAMPLE_DATA_SRC; 7776 } 7777 7778 if (filtered_sample_type & PERF_SAMPLE_TRANSACTION) { 7779 data->txn = 0; 7780 data->sample_flags |= PERF_SAMPLE_TRANSACTION; 7781 } 7782 7783 if (filtered_sample_type & PERF_SAMPLE_ADDR) { 7784 data->addr = 0; 7785 data->sample_flags |= PERF_SAMPLE_ADDR; 7786 } 7787 7788 if (filtered_sample_type & PERF_SAMPLE_REGS_INTR) { 7789 /* regs dump ABI info */ 7790 int size = sizeof(u64); 7791 7792 perf_sample_regs_intr(&data->regs_intr, regs); 7793 7794 if (data->regs_intr.regs) { 7795 u64 mask = event->attr.sample_regs_intr; 7796 7797 size += hweight64(mask) * sizeof(u64); 7798 } 7799 7800 data->dyn_size += size; 7801 data->sample_flags |= PERF_SAMPLE_REGS_INTR; 7802 } 7803 7804 if (filtered_sample_type & PERF_SAMPLE_PHYS_ADDR) { 7805 data->phys_addr = perf_virt_to_phys(data->addr); 7806 data->sample_flags |= PERF_SAMPLE_PHYS_ADDR; 7807 } 7808 7809 #ifdef CONFIG_CGROUP_PERF 7810 if (filtered_sample_type & PERF_SAMPLE_CGROUP) { 7811 struct cgroup *cgrp; 7812 7813 /* protected by RCU */ 7814 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup; 7815 data->cgroup = cgroup_id(cgrp); 7816 data->sample_flags |= PERF_SAMPLE_CGROUP; 7817 } 7818 #endif 7819 7820 /* 7821 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't 7822 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr, 7823 * but the value will not dump to the userspace. 7824 */ 7825 if (filtered_sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) { 7826 data->data_page_size = perf_get_page_size(data->addr); 7827 data->sample_flags |= PERF_SAMPLE_DATA_PAGE_SIZE; 7828 } 7829 7830 if (filtered_sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) { 7831 data->code_page_size = perf_get_page_size(data->ip); 7832 data->sample_flags |= PERF_SAMPLE_CODE_PAGE_SIZE; 7833 } 7834 7835 if (filtered_sample_type & PERF_SAMPLE_AUX) { 7836 u64 size; 7837 u16 header_size = perf_sample_data_size(data, event); 7838 7839 header_size += sizeof(u64); /* size */ 7840 7841 /* 7842 * Given the 16bit nature of header::size, an AUX sample can 7843 * easily overflow it, what with all the preceding sample bits. 7844 * Make sure this doesn't happen by using up to U16_MAX bytes 7845 * per sample in total (rounded down to 8 byte boundary). 7846 */ 7847 size = min_t(size_t, U16_MAX - header_size, 7848 event->attr.aux_sample_size); 7849 size = rounddown(size, 8); 7850 size = perf_prepare_sample_aux(event, data, size); 7851 7852 WARN_ON_ONCE(size + header_size > U16_MAX); 7853 data->dyn_size += size + sizeof(u64); /* size above */ 7854 data->sample_flags |= PERF_SAMPLE_AUX; 7855 } 7856 } 7857 7858 void perf_prepare_header(struct perf_event_header *header, 7859 struct perf_sample_data *data, 7860 struct perf_event *event, 7861 struct pt_regs *regs) 7862 { 7863 header->type = PERF_RECORD_SAMPLE; 7864 header->size = perf_sample_data_size(data, event); 7865 header->misc = perf_misc_flags(regs); 7866 7867 /* 7868 * If you're adding more sample types here, you likely need to do 7869 * something about the overflowing header::size, like repurpose the 7870 * lowest 3 bits of size, which should be always zero at the moment. 7871 * This raises a more important question, do we really need 512k sized 7872 * samples and why, so good argumentation is in order for whatever you 7873 * do here next. 7874 */ 7875 WARN_ON_ONCE(header->size & 7); 7876 } 7877 7878 static __always_inline int 7879 __perf_event_output(struct perf_event *event, 7880 struct perf_sample_data *data, 7881 struct pt_regs *regs, 7882 int (*output_begin)(struct perf_output_handle *, 7883 struct perf_sample_data *, 7884 struct perf_event *, 7885 unsigned int)) 7886 { 7887 struct perf_output_handle handle; 7888 struct perf_event_header header; 7889 int err; 7890 7891 /* protect the callchain buffers */ 7892 rcu_read_lock(); 7893 7894 perf_prepare_sample(data, event, regs); 7895 perf_prepare_header(&header, data, event, regs); 7896 7897 err = output_begin(&handle, data, event, header.size); 7898 if (err) 7899 goto exit; 7900 7901 perf_output_sample(&handle, &header, data, event); 7902 7903 perf_output_end(&handle); 7904 7905 exit: 7906 rcu_read_unlock(); 7907 return err; 7908 } 7909 7910 void 7911 perf_event_output_forward(struct perf_event *event, 7912 struct perf_sample_data *data, 7913 struct pt_regs *regs) 7914 { 7915 __perf_event_output(event, data, regs, perf_output_begin_forward); 7916 } 7917 7918 void 7919 perf_event_output_backward(struct perf_event *event, 7920 struct perf_sample_data *data, 7921 struct pt_regs *regs) 7922 { 7923 __perf_event_output(event, data, regs, perf_output_begin_backward); 7924 } 7925 7926 int 7927 perf_event_output(struct perf_event *event, 7928 struct perf_sample_data *data, 7929 struct pt_regs *regs) 7930 { 7931 return __perf_event_output(event, data, regs, perf_output_begin); 7932 } 7933 7934 /* 7935 * read event_id 7936 */ 7937 7938 struct perf_read_event { 7939 struct perf_event_header header; 7940 7941 u32 pid; 7942 u32 tid; 7943 }; 7944 7945 static void 7946 perf_event_read_event(struct perf_event *event, 7947 struct task_struct *task) 7948 { 7949 struct perf_output_handle handle; 7950 struct perf_sample_data sample; 7951 struct perf_read_event read_event = { 7952 .header = { 7953 .type = PERF_RECORD_READ, 7954 .misc = 0, 7955 .size = sizeof(read_event) + event->read_size, 7956 }, 7957 .pid = perf_event_pid(event, task), 7958 .tid = perf_event_tid(event, task), 7959 }; 7960 int ret; 7961 7962 perf_event_header__init_id(&read_event.header, &sample, event); 7963 ret = perf_output_begin(&handle, &sample, event, read_event.header.size); 7964 if (ret) 7965 return; 7966 7967 perf_output_put(&handle, read_event); 7968 perf_output_read(&handle, event); 7969 perf_event__output_id_sample(event, &handle, &sample); 7970 7971 perf_output_end(&handle); 7972 } 7973 7974 typedef void (perf_iterate_f)(struct perf_event *event, void *data); 7975 7976 static void 7977 perf_iterate_ctx(struct perf_event_context *ctx, 7978 perf_iterate_f output, 7979 void *data, bool all) 7980 { 7981 struct perf_event *event; 7982 7983 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 7984 if (!all) { 7985 if (event->state < PERF_EVENT_STATE_INACTIVE) 7986 continue; 7987 if (!event_filter_match(event)) 7988 continue; 7989 } 7990 7991 output(event, data); 7992 } 7993 } 7994 7995 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data) 7996 { 7997 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events); 7998 struct perf_event *event; 7999 8000 list_for_each_entry_rcu(event, &pel->list, sb_list) { 8001 /* 8002 * Skip events that are not fully formed yet; ensure that 8003 * if we observe event->ctx, both event and ctx will be 8004 * complete enough. See perf_install_in_context(). 8005 */ 8006 if (!smp_load_acquire(&event->ctx)) 8007 continue; 8008 8009 if (event->state < PERF_EVENT_STATE_INACTIVE) 8010 continue; 8011 if (!event_filter_match(event)) 8012 continue; 8013 output(event, data); 8014 } 8015 } 8016 8017 /* 8018 * Iterate all events that need to receive side-band events. 8019 * 8020 * For new callers; ensure that account_pmu_sb_event() includes 8021 * your event, otherwise it might not get delivered. 8022 */ 8023 static void 8024 perf_iterate_sb(perf_iterate_f output, void *data, 8025 struct perf_event_context *task_ctx) 8026 { 8027 struct perf_event_context *ctx; 8028 8029 rcu_read_lock(); 8030 preempt_disable(); 8031 8032 /* 8033 * If we have task_ctx != NULL we only notify the task context itself. 8034 * The task_ctx is set only for EXIT events before releasing task 8035 * context. 8036 */ 8037 if (task_ctx) { 8038 perf_iterate_ctx(task_ctx, output, data, false); 8039 goto done; 8040 } 8041 8042 perf_iterate_sb_cpu(output, data); 8043 8044 ctx = rcu_dereference(current->perf_event_ctxp); 8045 if (ctx) 8046 perf_iterate_ctx(ctx, output, data, false); 8047 done: 8048 preempt_enable(); 8049 rcu_read_unlock(); 8050 } 8051 8052 /* 8053 * Clear all file-based filters at exec, they'll have to be 8054 * re-instated when/if these objects are mmapped again. 8055 */ 8056 static void perf_event_addr_filters_exec(struct perf_event *event, void *data) 8057 { 8058 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 8059 struct perf_addr_filter *filter; 8060 unsigned int restart = 0, count = 0; 8061 unsigned long flags; 8062 8063 if (!has_addr_filter(event)) 8064 return; 8065 8066 raw_spin_lock_irqsave(&ifh->lock, flags); 8067 list_for_each_entry(filter, &ifh->list, entry) { 8068 if (filter->path.dentry) { 8069 event->addr_filter_ranges[count].start = 0; 8070 event->addr_filter_ranges[count].size = 0; 8071 restart++; 8072 } 8073 8074 count++; 8075 } 8076 8077 if (restart) 8078 event->addr_filters_gen++; 8079 raw_spin_unlock_irqrestore(&ifh->lock, flags); 8080 8081 if (restart) 8082 perf_event_stop(event, 1); 8083 } 8084 8085 void perf_event_exec(void) 8086 { 8087 struct perf_event_context *ctx; 8088 8089 ctx = perf_pin_task_context(current); 8090 if (!ctx) 8091 return; 8092 8093 perf_event_enable_on_exec(ctx); 8094 perf_event_remove_on_exec(ctx); 8095 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, true); 8096 8097 perf_unpin_context(ctx); 8098 put_ctx(ctx); 8099 } 8100 8101 struct remote_output { 8102 struct perf_buffer *rb; 8103 int err; 8104 }; 8105 8106 static void __perf_event_output_stop(struct perf_event *event, void *data) 8107 { 8108 struct perf_event *parent = event->parent; 8109 struct remote_output *ro = data; 8110 struct perf_buffer *rb = ro->rb; 8111 struct stop_event_data sd = { 8112 .event = event, 8113 }; 8114 8115 if (!has_aux(event)) 8116 return; 8117 8118 if (!parent) 8119 parent = event; 8120 8121 /* 8122 * In case of inheritance, it will be the parent that links to the 8123 * ring-buffer, but it will be the child that's actually using it. 8124 * 8125 * We are using event::rb to determine if the event should be stopped, 8126 * however this may race with ring_buffer_attach() (through set_output), 8127 * which will make us skip the event that actually needs to be stopped. 8128 * So ring_buffer_attach() has to stop an aux event before re-assigning 8129 * its rb pointer. 8130 */ 8131 if (rcu_dereference(parent->rb) == rb) 8132 ro->err = __perf_event_stop(&sd); 8133 } 8134 8135 static int __perf_pmu_output_stop(void *info) 8136 { 8137 struct perf_event *event = info; 8138 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 8139 struct remote_output ro = { 8140 .rb = event->rb, 8141 }; 8142 8143 rcu_read_lock(); 8144 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false); 8145 if (cpuctx->task_ctx) 8146 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop, 8147 &ro, false); 8148 rcu_read_unlock(); 8149 8150 return ro.err; 8151 } 8152 8153 static void perf_pmu_output_stop(struct perf_event *event) 8154 { 8155 struct perf_event *iter; 8156 int err, cpu; 8157 8158 restart: 8159 rcu_read_lock(); 8160 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) { 8161 /* 8162 * For per-CPU events, we need to make sure that neither they 8163 * nor their children are running; for cpu==-1 events it's 8164 * sufficient to stop the event itself if it's active, since 8165 * it can't have children. 8166 */ 8167 cpu = iter->cpu; 8168 if (cpu == -1) 8169 cpu = READ_ONCE(iter->oncpu); 8170 8171 if (cpu == -1) 8172 continue; 8173 8174 err = cpu_function_call(cpu, __perf_pmu_output_stop, event); 8175 if (err == -EAGAIN) { 8176 rcu_read_unlock(); 8177 goto restart; 8178 } 8179 } 8180 rcu_read_unlock(); 8181 } 8182 8183 /* 8184 * task tracking -- fork/exit 8185 * 8186 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 8187 */ 8188 8189 struct perf_task_event { 8190 struct task_struct *task; 8191 struct perf_event_context *task_ctx; 8192 8193 struct { 8194 struct perf_event_header header; 8195 8196 u32 pid; 8197 u32 ppid; 8198 u32 tid; 8199 u32 ptid; 8200 u64 time; 8201 } event_id; 8202 }; 8203 8204 static int perf_event_task_match(struct perf_event *event) 8205 { 8206 return event->attr.comm || event->attr.mmap || 8207 event->attr.mmap2 || event->attr.mmap_data || 8208 event->attr.task; 8209 } 8210 8211 static void perf_event_task_output(struct perf_event *event, 8212 void *data) 8213 { 8214 struct perf_task_event *task_event = data; 8215 struct perf_output_handle handle; 8216 struct perf_sample_data sample; 8217 struct task_struct *task = task_event->task; 8218 int ret, size = task_event->event_id.header.size; 8219 8220 if (!perf_event_task_match(event)) 8221 return; 8222 8223 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 8224 8225 ret = perf_output_begin(&handle, &sample, event, 8226 task_event->event_id.header.size); 8227 if (ret) 8228 goto out; 8229 8230 task_event->event_id.pid = perf_event_pid(event, task); 8231 task_event->event_id.tid = perf_event_tid(event, task); 8232 8233 if (task_event->event_id.header.type == PERF_RECORD_EXIT) { 8234 task_event->event_id.ppid = perf_event_pid(event, 8235 task->real_parent); 8236 task_event->event_id.ptid = perf_event_pid(event, 8237 task->real_parent); 8238 } else { /* PERF_RECORD_FORK */ 8239 task_event->event_id.ppid = perf_event_pid(event, current); 8240 task_event->event_id.ptid = perf_event_tid(event, current); 8241 } 8242 8243 task_event->event_id.time = perf_event_clock(event); 8244 8245 perf_output_put(&handle, task_event->event_id); 8246 8247 perf_event__output_id_sample(event, &handle, &sample); 8248 8249 perf_output_end(&handle); 8250 out: 8251 task_event->event_id.header.size = size; 8252 } 8253 8254 static void perf_event_task(struct task_struct *task, 8255 struct perf_event_context *task_ctx, 8256 int new) 8257 { 8258 struct perf_task_event task_event; 8259 8260 if (!atomic_read(&nr_comm_events) && 8261 !atomic_read(&nr_mmap_events) && 8262 !atomic_read(&nr_task_events)) 8263 return; 8264 8265 task_event = (struct perf_task_event){ 8266 .task = task, 8267 .task_ctx = task_ctx, 8268 .event_id = { 8269 .header = { 8270 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 8271 .misc = 0, 8272 .size = sizeof(task_event.event_id), 8273 }, 8274 /* .pid */ 8275 /* .ppid */ 8276 /* .tid */ 8277 /* .ptid */ 8278 /* .time */ 8279 }, 8280 }; 8281 8282 perf_iterate_sb(perf_event_task_output, 8283 &task_event, 8284 task_ctx); 8285 } 8286 8287 void perf_event_fork(struct task_struct *task) 8288 { 8289 perf_event_task(task, NULL, 1); 8290 perf_event_namespaces(task); 8291 } 8292 8293 /* 8294 * comm tracking 8295 */ 8296 8297 struct perf_comm_event { 8298 struct task_struct *task; 8299 char *comm; 8300 int comm_size; 8301 8302 struct { 8303 struct perf_event_header header; 8304 8305 u32 pid; 8306 u32 tid; 8307 } event_id; 8308 }; 8309 8310 static int perf_event_comm_match(struct perf_event *event) 8311 { 8312 return event->attr.comm; 8313 } 8314 8315 static void perf_event_comm_output(struct perf_event *event, 8316 void *data) 8317 { 8318 struct perf_comm_event *comm_event = data; 8319 struct perf_output_handle handle; 8320 struct perf_sample_data sample; 8321 int size = comm_event->event_id.header.size; 8322 int ret; 8323 8324 if (!perf_event_comm_match(event)) 8325 return; 8326 8327 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 8328 ret = perf_output_begin(&handle, &sample, event, 8329 comm_event->event_id.header.size); 8330 8331 if (ret) 8332 goto out; 8333 8334 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 8335 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 8336 8337 perf_output_put(&handle, comm_event->event_id); 8338 __output_copy(&handle, comm_event->comm, 8339 comm_event->comm_size); 8340 8341 perf_event__output_id_sample(event, &handle, &sample); 8342 8343 perf_output_end(&handle); 8344 out: 8345 comm_event->event_id.header.size = size; 8346 } 8347 8348 static void perf_event_comm_event(struct perf_comm_event *comm_event) 8349 { 8350 char comm[TASK_COMM_LEN]; 8351 unsigned int size; 8352 8353 memset(comm, 0, sizeof(comm)); 8354 strscpy(comm, comm_event->task->comm, sizeof(comm)); 8355 size = ALIGN(strlen(comm)+1, sizeof(u64)); 8356 8357 comm_event->comm = comm; 8358 comm_event->comm_size = size; 8359 8360 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 8361 8362 perf_iterate_sb(perf_event_comm_output, 8363 comm_event, 8364 NULL); 8365 } 8366 8367 void perf_event_comm(struct task_struct *task, bool exec) 8368 { 8369 struct perf_comm_event comm_event; 8370 8371 if (!atomic_read(&nr_comm_events)) 8372 return; 8373 8374 comm_event = (struct perf_comm_event){ 8375 .task = task, 8376 /* .comm */ 8377 /* .comm_size */ 8378 .event_id = { 8379 .header = { 8380 .type = PERF_RECORD_COMM, 8381 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 8382 /* .size */ 8383 }, 8384 /* .pid */ 8385 /* .tid */ 8386 }, 8387 }; 8388 8389 perf_event_comm_event(&comm_event); 8390 } 8391 8392 /* 8393 * namespaces tracking 8394 */ 8395 8396 struct perf_namespaces_event { 8397 struct task_struct *task; 8398 8399 struct { 8400 struct perf_event_header header; 8401 8402 u32 pid; 8403 u32 tid; 8404 u64 nr_namespaces; 8405 struct perf_ns_link_info link_info[NR_NAMESPACES]; 8406 } event_id; 8407 }; 8408 8409 static int perf_event_namespaces_match(struct perf_event *event) 8410 { 8411 return event->attr.namespaces; 8412 } 8413 8414 static void perf_event_namespaces_output(struct perf_event *event, 8415 void *data) 8416 { 8417 struct perf_namespaces_event *namespaces_event = data; 8418 struct perf_output_handle handle; 8419 struct perf_sample_data sample; 8420 u16 header_size = namespaces_event->event_id.header.size; 8421 int ret; 8422 8423 if (!perf_event_namespaces_match(event)) 8424 return; 8425 8426 perf_event_header__init_id(&namespaces_event->event_id.header, 8427 &sample, event); 8428 ret = perf_output_begin(&handle, &sample, event, 8429 namespaces_event->event_id.header.size); 8430 if (ret) 8431 goto out; 8432 8433 namespaces_event->event_id.pid = perf_event_pid(event, 8434 namespaces_event->task); 8435 namespaces_event->event_id.tid = perf_event_tid(event, 8436 namespaces_event->task); 8437 8438 perf_output_put(&handle, namespaces_event->event_id); 8439 8440 perf_event__output_id_sample(event, &handle, &sample); 8441 8442 perf_output_end(&handle); 8443 out: 8444 namespaces_event->event_id.header.size = header_size; 8445 } 8446 8447 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info, 8448 struct task_struct *task, 8449 const struct proc_ns_operations *ns_ops) 8450 { 8451 struct path ns_path; 8452 struct inode *ns_inode; 8453 int error; 8454 8455 error = ns_get_path(&ns_path, task, ns_ops); 8456 if (!error) { 8457 ns_inode = ns_path.dentry->d_inode; 8458 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev); 8459 ns_link_info->ino = ns_inode->i_ino; 8460 path_put(&ns_path); 8461 } 8462 } 8463 8464 void perf_event_namespaces(struct task_struct *task) 8465 { 8466 struct perf_namespaces_event namespaces_event; 8467 struct perf_ns_link_info *ns_link_info; 8468 8469 if (!atomic_read(&nr_namespaces_events)) 8470 return; 8471 8472 namespaces_event = (struct perf_namespaces_event){ 8473 .task = task, 8474 .event_id = { 8475 .header = { 8476 .type = PERF_RECORD_NAMESPACES, 8477 .misc = 0, 8478 .size = sizeof(namespaces_event.event_id), 8479 }, 8480 /* .pid */ 8481 /* .tid */ 8482 .nr_namespaces = NR_NAMESPACES, 8483 /* .link_info[NR_NAMESPACES] */ 8484 }, 8485 }; 8486 8487 ns_link_info = namespaces_event.event_id.link_info; 8488 8489 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX], 8490 task, &mntns_operations); 8491 8492 #ifdef CONFIG_USER_NS 8493 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX], 8494 task, &userns_operations); 8495 #endif 8496 #ifdef CONFIG_NET_NS 8497 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX], 8498 task, &netns_operations); 8499 #endif 8500 #ifdef CONFIG_UTS_NS 8501 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX], 8502 task, &utsns_operations); 8503 #endif 8504 #ifdef CONFIG_IPC_NS 8505 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX], 8506 task, &ipcns_operations); 8507 #endif 8508 #ifdef CONFIG_PID_NS 8509 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX], 8510 task, &pidns_operations); 8511 #endif 8512 #ifdef CONFIG_CGROUPS 8513 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX], 8514 task, &cgroupns_operations); 8515 #endif 8516 8517 perf_iterate_sb(perf_event_namespaces_output, 8518 &namespaces_event, 8519 NULL); 8520 } 8521 8522 /* 8523 * cgroup tracking 8524 */ 8525 #ifdef CONFIG_CGROUP_PERF 8526 8527 struct perf_cgroup_event { 8528 char *path; 8529 int path_size; 8530 struct { 8531 struct perf_event_header header; 8532 u64 id; 8533 char path[]; 8534 } event_id; 8535 }; 8536 8537 static int perf_event_cgroup_match(struct perf_event *event) 8538 { 8539 return event->attr.cgroup; 8540 } 8541 8542 static void perf_event_cgroup_output(struct perf_event *event, void *data) 8543 { 8544 struct perf_cgroup_event *cgroup_event = data; 8545 struct perf_output_handle handle; 8546 struct perf_sample_data sample; 8547 u16 header_size = cgroup_event->event_id.header.size; 8548 int ret; 8549 8550 if (!perf_event_cgroup_match(event)) 8551 return; 8552 8553 perf_event_header__init_id(&cgroup_event->event_id.header, 8554 &sample, event); 8555 ret = perf_output_begin(&handle, &sample, event, 8556 cgroup_event->event_id.header.size); 8557 if (ret) 8558 goto out; 8559 8560 perf_output_put(&handle, cgroup_event->event_id); 8561 __output_copy(&handle, cgroup_event->path, cgroup_event->path_size); 8562 8563 perf_event__output_id_sample(event, &handle, &sample); 8564 8565 perf_output_end(&handle); 8566 out: 8567 cgroup_event->event_id.header.size = header_size; 8568 } 8569 8570 static void perf_event_cgroup(struct cgroup *cgrp) 8571 { 8572 struct perf_cgroup_event cgroup_event; 8573 char path_enomem[16] = "//enomem"; 8574 char *pathname; 8575 size_t size; 8576 8577 if (!atomic_read(&nr_cgroup_events)) 8578 return; 8579 8580 cgroup_event = (struct perf_cgroup_event){ 8581 .event_id = { 8582 .header = { 8583 .type = PERF_RECORD_CGROUP, 8584 .misc = 0, 8585 .size = sizeof(cgroup_event.event_id), 8586 }, 8587 .id = cgroup_id(cgrp), 8588 }, 8589 }; 8590 8591 pathname = kmalloc(PATH_MAX, GFP_KERNEL); 8592 if (pathname == NULL) { 8593 cgroup_event.path = path_enomem; 8594 } else { 8595 /* just to be sure to have enough space for alignment */ 8596 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64)); 8597 cgroup_event.path = pathname; 8598 } 8599 8600 /* 8601 * Since our buffer works in 8 byte units we need to align our string 8602 * size to a multiple of 8. However, we must guarantee the tail end is 8603 * zero'd out to avoid leaking random bits to userspace. 8604 */ 8605 size = strlen(cgroup_event.path) + 1; 8606 while (!IS_ALIGNED(size, sizeof(u64))) 8607 cgroup_event.path[size++] = '\0'; 8608 8609 cgroup_event.event_id.header.size += size; 8610 cgroup_event.path_size = size; 8611 8612 perf_iterate_sb(perf_event_cgroup_output, 8613 &cgroup_event, 8614 NULL); 8615 8616 kfree(pathname); 8617 } 8618 8619 #endif 8620 8621 /* 8622 * mmap tracking 8623 */ 8624 8625 struct perf_mmap_event { 8626 struct vm_area_struct *vma; 8627 8628 const char *file_name; 8629 int file_size; 8630 int maj, min; 8631 u64 ino; 8632 u64 ino_generation; 8633 u32 prot, flags; 8634 u8 build_id[BUILD_ID_SIZE_MAX]; 8635 u32 build_id_size; 8636 8637 struct { 8638 struct perf_event_header header; 8639 8640 u32 pid; 8641 u32 tid; 8642 u64 start; 8643 u64 len; 8644 u64 pgoff; 8645 } event_id; 8646 }; 8647 8648 static int perf_event_mmap_match(struct perf_event *event, 8649 void *data) 8650 { 8651 struct perf_mmap_event *mmap_event = data; 8652 struct vm_area_struct *vma = mmap_event->vma; 8653 int executable = vma->vm_flags & VM_EXEC; 8654 8655 return (!executable && event->attr.mmap_data) || 8656 (executable && (event->attr.mmap || event->attr.mmap2)); 8657 } 8658 8659 static void perf_event_mmap_output(struct perf_event *event, 8660 void *data) 8661 { 8662 struct perf_mmap_event *mmap_event = data; 8663 struct perf_output_handle handle; 8664 struct perf_sample_data sample; 8665 int size = mmap_event->event_id.header.size; 8666 u32 type = mmap_event->event_id.header.type; 8667 bool use_build_id; 8668 int ret; 8669 8670 if (!perf_event_mmap_match(event, data)) 8671 return; 8672 8673 if (event->attr.mmap2) { 8674 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 8675 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 8676 mmap_event->event_id.header.size += sizeof(mmap_event->min); 8677 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 8678 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 8679 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 8680 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 8681 } 8682 8683 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 8684 ret = perf_output_begin(&handle, &sample, event, 8685 mmap_event->event_id.header.size); 8686 if (ret) 8687 goto out; 8688 8689 mmap_event->event_id.pid = perf_event_pid(event, current); 8690 mmap_event->event_id.tid = perf_event_tid(event, current); 8691 8692 use_build_id = event->attr.build_id && mmap_event->build_id_size; 8693 8694 if (event->attr.mmap2 && use_build_id) 8695 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID; 8696 8697 perf_output_put(&handle, mmap_event->event_id); 8698 8699 if (event->attr.mmap2) { 8700 if (use_build_id) { 8701 u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 }; 8702 8703 __output_copy(&handle, size, 4); 8704 __output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX); 8705 } else { 8706 perf_output_put(&handle, mmap_event->maj); 8707 perf_output_put(&handle, mmap_event->min); 8708 perf_output_put(&handle, mmap_event->ino); 8709 perf_output_put(&handle, mmap_event->ino_generation); 8710 } 8711 perf_output_put(&handle, mmap_event->prot); 8712 perf_output_put(&handle, mmap_event->flags); 8713 } 8714 8715 __output_copy(&handle, mmap_event->file_name, 8716 mmap_event->file_size); 8717 8718 perf_event__output_id_sample(event, &handle, &sample); 8719 8720 perf_output_end(&handle); 8721 out: 8722 mmap_event->event_id.header.size = size; 8723 mmap_event->event_id.header.type = type; 8724 } 8725 8726 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 8727 { 8728 struct vm_area_struct *vma = mmap_event->vma; 8729 struct file *file = vma->vm_file; 8730 int maj = 0, min = 0; 8731 u64 ino = 0, gen = 0; 8732 u32 prot = 0, flags = 0; 8733 unsigned int size; 8734 char tmp[16]; 8735 char *buf = NULL; 8736 char *name = NULL; 8737 8738 if (vma->vm_flags & VM_READ) 8739 prot |= PROT_READ; 8740 if (vma->vm_flags & VM_WRITE) 8741 prot |= PROT_WRITE; 8742 if (vma->vm_flags & VM_EXEC) 8743 prot |= PROT_EXEC; 8744 8745 if (vma->vm_flags & VM_MAYSHARE) 8746 flags = MAP_SHARED; 8747 else 8748 flags = MAP_PRIVATE; 8749 8750 if (vma->vm_flags & VM_LOCKED) 8751 flags |= MAP_LOCKED; 8752 if (is_vm_hugetlb_page(vma)) 8753 flags |= MAP_HUGETLB; 8754 8755 if (file) { 8756 struct inode *inode; 8757 dev_t dev; 8758 8759 buf = kmalloc(PATH_MAX, GFP_KERNEL); 8760 if (!buf) { 8761 name = "//enomem"; 8762 goto cpy_name; 8763 } 8764 /* 8765 * d_path() works from the end of the rb backwards, so we 8766 * need to add enough zero bytes after the string to handle 8767 * the 64bit alignment we do later. 8768 */ 8769 name = file_path(file, buf, PATH_MAX - sizeof(u64)); 8770 if (IS_ERR(name)) { 8771 name = "//toolong"; 8772 goto cpy_name; 8773 } 8774 inode = file_inode(vma->vm_file); 8775 dev = inode->i_sb->s_dev; 8776 ino = inode->i_ino; 8777 gen = inode->i_generation; 8778 maj = MAJOR(dev); 8779 min = MINOR(dev); 8780 8781 goto got_name; 8782 } else { 8783 if (vma->vm_ops && vma->vm_ops->name) 8784 name = (char *) vma->vm_ops->name(vma); 8785 if (!name) 8786 name = (char *)arch_vma_name(vma); 8787 if (!name) { 8788 if (vma_is_initial_heap(vma)) 8789 name = "[heap]"; 8790 else if (vma_is_initial_stack(vma)) 8791 name = "[stack]"; 8792 else 8793 name = "//anon"; 8794 } 8795 } 8796 8797 cpy_name: 8798 strscpy(tmp, name, sizeof(tmp)); 8799 name = tmp; 8800 got_name: 8801 /* 8802 * Since our buffer works in 8 byte units we need to align our string 8803 * size to a multiple of 8. However, we must guarantee the tail end is 8804 * zero'd out to avoid leaking random bits to userspace. 8805 */ 8806 size = strlen(name)+1; 8807 while (!IS_ALIGNED(size, sizeof(u64))) 8808 name[size++] = '\0'; 8809 8810 mmap_event->file_name = name; 8811 mmap_event->file_size = size; 8812 mmap_event->maj = maj; 8813 mmap_event->min = min; 8814 mmap_event->ino = ino; 8815 mmap_event->ino_generation = gen; 8816 mmap_event->prot = prot; 8817 mmap_event->flags = flags; 8818 8819 if (!(vma->vm_flags & VM_EXEC)) 8820 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 8821 8822 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 8823 8824 if (atomic_read(&nr_build_id_events)) 8825 build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size); 8826 8827 perf_iterate_sb(perf_event_mmap_output, 8828 mmap_event, 8829 NULL); 8830 8831 kfree(buf); 8832 } 8833 8834 /* 8835 * Check whether inode and address range match filter criteria. 8836 */ 8837 static bool perf_addr_filter_match(struct perf_addr_filter *filter, 8838 struct file *file, unsigned long offset, 8839 unsigned long size) 8840 { 8841 /* d_inode(NULL) won't be equal to any mapped user-space file */ 8842 if (!filter->path.dentry) 8843 return false; 8844 8845 if (d_inode(filter->path.dentry) != file_inode(file)) 8846 return false; 8847 8848 if (filter->offset > offset + size) 8849 return false; 8850 8851 if (filter->offset + filter->size < offset) 8852 return false; 8853 8854 return true; 8855 } 8856 8857 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter, 8858 struct vm_area_struct *vma, 8859 struct perf_addr_filter_range *fr) 8860 { 8861 unsigned long vma_size = vma->vm_end - vma->vm_start; 8862 unsigned long off = vma->vm_pgoff << PAGE_SHIFT; 8863 struct file *file = vma->vm_file; 8864 8865 if (!perf_addr_filter_match(filter, file, off, vma_size)) 8866 return false; 8867 8868 if (filter->offset < off) { 8869 fr->start = vma->vm_start; 8870 fr->size = min(vma_size, filter->size - (off - filter->offset)); 8871 } else { 8872 fr->start = vma->vm_start + filter->offset - off; 8873 fr->size = min(vma->vm_end - fr->start, filter->size); 8874 } 8875 8876 return true; 8877 } 8878 8879 static void __perf_addr_filters_adjust(struct perf_event *event, void *data) 8880 { 8881 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 8882 struct vm_area_struct *vma = data; 8883 struct perf_addr_filter *filter; 8884 unsigned int restart = 0, count = 0; 8885 unsigned long flags; 8886 8887 if (!has_addr_filter(event)) 8888 return; 8889 8890 if (!vma->vm_file) 8891 return; 8892 8893 raw_spin_lock_irqsave(&ifh->lock, flags); 8894 list_for_each_entry(filter, &ifh->list, entry) { 8895 if (perf_addr_filter_vma_adjust(filter, vma, 8896 &event->addr_filter_ranges[count])) 8897 restart++; 8898 8899 count++; 8900 } 8901 8902 if (restart) 8903 event->addr_filters_gen++; 8904 raw_spin_unlock_irqrestore(&ifh->lock, flags); 8905 8906 if (restart) 8907 perf_event_stop(event, 1); 8908 } 8909 8910 /* 8911 * Adjust all task's events' filters to the new vma 8912 */ 8913 static void perf_addr_filters_adjust(struct vm_area_struct *vma) 8914 { 8915 struct perf_event_context *ctx; 8916 8917 /* 8918 * Data tracing isn't supported yet and as such there is no need 8919 * to keep track of anything that isn't related to executable code: 8920 */ 8921 if (!(vma->vm_flags & VM_EXEC)) 8922 return; 8923 8924 rcu_read_lock(); 8925 ctx = rcu_dereference(current->perf_event_ctxp); 8926 if (ctx) 8927 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true); 8928 rcu_read_unlock(); 8929 } 8930 8931 void perf_event_mmap(struct vm_area_struct *vma) 8932 { 8933 struct perf_mmap_event mmap_event; 8934 8935 if (!atomic_read(&nr_mmap_events)) 8936 return; 8937 8938 mmap_event = (struct perf_mmap_event){ 8939 .vma = vma, 8940 /* .file_name */ 8941 /* .file_size */ 8942 .event_id = { 8943 .header = { 8944 .type = PERF_RECORD_MMAP, 8945 .misc = PERF_RECORD_MISC_USER, 8946 /* .size */ 8947 }, 8948 /* .pid */ 8949 /* .tid */ 8950 .start = vma->vm_start, 8951 .len = vma->vm_end - vma->vm_start, 8952 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 8953 }, 8954 /* .maj (attr_mmap2 only) */ 8955 /* .min (attr_mmap2 only) */ 8956 /* .ino (attr_mmap2 only) */ 8957 /* .ino_generation (attr_mmap2 only) */ 8958 /* .prot (attr_mmap2 only) */ 8959 /* .flags (attr_mmap2 only) */ 8960 }; 8961 8962 perf_addr_filters_adjust(vma); 8963 perf_event_mmap_event(&mmap_event); 8964 } 8965 8966 void perf_event_aux_event(struct perf_event *event, unsigned long head, 8967 unsigned long size, u64 flags) 8968 { 8969 struct perf_output_handle handle; 8970 struct perf_sample_data sample; 8971 struct perf_aux_event { 8972 struct perf_event_header header; 8973 u64 offset; 8974 u64 size; 8975 u64 flags; 8976 } rec = { 8977 .header = { 8978 .type = PERF_RECORD_AUX, 8979 .misc = 0, 8980 .size = sizeof(rec), 8981 }, 8982 .offset = head, 8983 .size = size, 8984 .flags = flags, 8985 }; 8986 int ret; 8987 8988 perf_event_header__init_id(&rec.header, &sample, event); 8989 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 8990 8991 if (ret) 8992 return; 8993 8994 perf_output_put(&handle, rec); 8995 perf_event__output_id_sample(event, &handle, &sample); 8996 8997 perf_output_end(&handle); 8998 } 8999 9000 /* 9001 * Lost/dropped samples logging 9002 */ 9003 void perf_log_lost_samples(struct perf_event *event, u64 lost) 9004 { 9005 struct perf_output_handle handle; 9006 struct perf_sample_data sample; 9007 int ret; 9008 9009 struct { 9010 struct perf_event_header header; 9011 u64 lost; 9012 } lost_samples_event = { 9013 .header = { 9014 .type = PERF_RECORD_LOST_SAMPLES, 9015 .misc = 0, 9016 .size = sizeof(lost_samples_event), 9017 }, 9018 .lost = lost, 9019 }; 9020 9021 perf_event_header__init_id(&lost_samples_event.header, &sample, event); 9022 9023 ret = perf_output_begin(&handle, &sample, event, 9024 lost_samples_event.header.size); 9025 if (ret) 9026 return; 9027 9028 perf_output_put(&handle, lost_samples_event); 9029 perf_event__output_id_sample(event, &handle, &sample); 9030 perf_output_end(&handle); 9031 } 9032 9033 /* 9034 * context_switch tracking 9035 */ 9036 9037 struct perf_switch_event { 9038 struct task_struct *task; 9039 struct task_struct *next_prev; 9040 9041 struct { 9042 struct perf_event_header header; 9043 u32 next_prev_pid; 9044 u32 next_prev_tid; 9045 } event_id; 9046 }; 9047 9048 static int perf_event_switch_match(struct perf_event *event) 9049 { 9050 return event->attr.context_switch; 9051 } 9052 9053 static void perf_event_switch_output(struct perf_event *event, void *data) 9054 { 9055 struct perf_switch_event *se = data; 9056 struct perf_output_handle handle; 9057 struct perf_sample_data sample; 9058 int ret; 9059 9060 if (!perf_event_switch_match(event)) 9061 return; 9062 9063 /* Only CPU-wide events are allowed to see next/prev pid/tid */ 9064 if (event->ctx->task) { 9065 se->event_id.header.type = PERF_RECORD_SWITCH; 9066 se->event_id.header.size = sizeof(se->event_id.header); 9067 } else { 9068 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE; 9069 se->event_id.header.size = sizeof(se->event_id); 9070 se->event_id.next_prev_pid = 9071 perf_event_pid(event, se->next_prev); 9072 se->event_id.next_prev_tid = 9073 perf_event_tid(event, se->next_prev); 9074 } 9075 9076 perf_event_header__init_id(&se->event_id.header, &sample, event); 9077 9078 ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size); 9079 if (ret) 9080 return; 9081 9082 if (event->ctx->task) 9083 perf_output_put(&handle, se->event_id.header); 9084 else 9085 perf_output_put(&handle, se->event_id); 9086 9087 perf_event__output_id_sample(event, &handle, &sample); 9088 9089 perf_output_end(&handle); 9090 } 9091 9092 static void perf_event_switch(struct task_struct *task, 9093 struct task_struct *next_prev, bool sched_in) 9094 { 9095 struct perf_switch_event switch_event; 9096 9097 /* N.B. caller checks nr_switch_events != 0 */ 9098 9099 switch_event = (struct perf_switch_event){ 9100 .task = task, 9101 .next_prev = next_prev, 9102 .event_id = { 9103 .header = { 9104 /* .type */ 9105 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT, 9106 /* .size */ 9107 }, 9108 /* .next_prev_pid */ 9109 /* .next_prev_tid */ 9110 }, 9111 }; 9112 9113 if (!sched_in && task->on_rq) { 9114 switch_event.event_id.header.misc |= 9115 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT; 9116 } 9117 9118 perf_iterate_sb(perf_event_switch_output, &switch_event, NULL); 9119 } 9120 9121 /* 9122 * IRQ throttle logging 9123 */ 9124 9125 static void perf_log_throttle(struct perf_event *event, int enable) 9126 { 9127 struct perf_output_handle handle; 9128 struct perf_sample_data sample; 9129 int ret; 9130 9131 struct { 9132 struct perf_event_header header; 9133 u64 time; 9134 u64 id; 9135 u64 stream_id; 9136 } throttle_event = { 9137 .header = { 9138 .type = PERF_RECORD_THROTTLE, 9139 .misc = 0, 9140 .size = sizeof(throttle_event), 9141 }, 9142 .time = perf_event_clock(event), 9143 .id = primary_event_id(event), 9144 .stream_id = event->id, 9145 }; 9146 9147 if (enable) 9148 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 9149 9150 perf_event_header__init_id(&throttle_event.header, &sample, event); 9151 9152 ret = perf_output_begin(&handle, &sample, event, 9153 throttle_event.header.size); 9154 if (ret) 9155 return; 9156 9157 perf_output_put(&handle, throttle_event); 9158 perf_event__output_id_sample(event, &handle, &sample); 9159 perf_output_end(&handle); 9160 } 9161 9162 /* 9163 * ksymbol register/unregister tracking 9164 */ 9165 9166 struct perf_ksymbol_event { 9167 const char *name; 9168 int name_len; 9169 struct { 9170 struct perf_event_header header; 9171 u64 addr; 9172 u32 len; 9173 u16 ksym_type; 9174 u16 flags; 9175 } event_id; 9176 }; 9177 9178 static int perf_event_ksymbol_match(struct perf_event *event) 9179 { 9180 return event->attr.ksymbol; 9181 } 9182 9183 static void perf_event_ksymbol_output(struct perf_event *event, void *data) 9184 { 9185 struct perf_ksymbol_event *ksymbol_event = data; 9186 struct perf_output_handle handle; 9187 struct perf_sample_data sample; 9188 int ret; 9189 9190 if (!perf_event_ksymbol_match(event)) 9191 return; 9192 9193 perf_event_header__init_id(&ksymbol_event->event_id.header, 9194 &sample, event); 9195 ret = perf_output_begin(&handle, &sample, event, 9196 ksymbol_event->event_id.header.size); 9197 if (ret) 9198 return; 9199 9200 perf_output_put(&handle, ksymbol_event->event_id); 9201 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len); 9202 perf_event__output_id_sample(event, &handle, &sample); 9203 9204 perf_output_end(&handle); 9205 } 9206 9207 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister, 9208 const char *sym) 9209 { 9210 struct perf_ksymbol_event ksymbol_event; 9211 char name[KSYM_NAME_LEN]; 9212 u16 flags = 0; 9213 int name_len; 9214 9215 if (!atomic_read(&nr_ksymbol_events)) 9216 return; 9217 9218 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX || 9219 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN) 9220 goto err; 9221 9222 strscpy(name, sym, KSYM_NAME_LEN); 9223 name_len = strlen(name) + 1; 9224 while (!IS_ALIGNED(name_len, sizeof(u64))) 9225 name[name_len++] = '\0'; 9226 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64)); 9227 9228 if (unregister) 9229 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER; 9230 9231 ksymbol_event = (struct perf_ksymbol_event){ 9232 .name = name, 9233 .name_len = name_len, 9234 .event_id = { 9235 .header = { 9236 .type = PERF_RECORD_KSYMBOL, 9237 .size = sizeof(ksymbol_event.event_id) + 9238 name_len, 9239 }, 9240 .addr = addr, 9241 .len = len, 9242 .ksym_type = ksym_type, 9243 .flags = flags, 9244 }, 9245 }; 9246 9247 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL); 9248 return; 9249 err: 9250 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type); 9251 } 9252 9253 /* 9254 * bpf program load/unload tracking 9255 */ 9256 9257 struct perf_bpf_event { 9258 struct bpf_prog *prog; 9259 struct { 9260 struct perf_event_header header; 9261 u16 type; 9262 u16 flags; 9263 u32 id; 9264 u8 tag[BPF_TAG_SIZE]; 9265 } event_id; 9266 }; 9267 9268 static int perf_event_bpf_match(struct perf_event *event) 9269 { 9270 return event->attr.bpf_event; 9271 } 9272 9273 static void perf_event_bpf_output(struct perf_event *event, void *data) 9274 { 9275 struct perf_bpf_event *bpf_event = data; 9276 struct perf_output_handle handle; 9277 struct perf_sample_data sample; 9278 int ret; 9279 9280 if (!perf_event_bpf_match(event)) 9281 return; 9282 9283 perf_event_header__init_id(&bpf_event->event_id.header, 9284 &sample, event); 9285 ret = perf_output_begin(&handle, &sample, event, 9286 bpf_event->event_id.header.size); 9287 if (ret) 9288 return; 9289 9290 perf_output_put(&handle, bpf_event->event_id); 9291 perf_event__output_id_sample(event, &handle, &sample); 9292 9293 perf_output_end(&handle); 9294 } 9295 9296 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog, 9297 enum perf_bpf_event_type type) 9298 { 9299 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD; 9300 int i; 9301 9302 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF, 9303 (u64)(unsigned long)prog->bpf_func, 9304 prog->jited_len, unregister, 9305 prog->aux->ksym.name); 9306 9307 for (i = 1; i < prog->aux->func_cnt; i++) { 9308 struct bpf_prog *subprog = prog->aux->func[i]; 9309 9310 perf_event_ksymbol( 9311 PERF_RECORD_KSYMBOL_TYPE_BPF, 9312 (u64)(unsigned long)subprog->bpf_func, 9313 subprog->jited_len, unregister, 9314 subprog->aux->ksym.name); 9315 } 9316 } 9317 9318 void perf_event_bpf_event(struct bpf_prog *prog, 9319 enum perf_bpf_event_type type, 9320 u16 flags) 9321 { 9322 struct perf_bpf_event bpf_event; 9323 9324 if (type <= PERF_BPF_EVENT_UNKNOWN || 9325 type >= PERF_BPF_EVENT_MAX) 9326 return; 9327 9328 switch (type) { 9329 case PERF_BPF_EVENT_PROG_LOAD: 9330 case PERF_BPF_EVENT_PROG_UNLOAD: 9331 if (atomic_read(&nr_ksymbol_events)) 9332 perf_event_bpf_emit_ksymbols(prog, type); 9333 break; 9334 default: 9335 break; 9336 } 9337 9338 if (!atomic_read(&nr_bpf_events)) 9339 return; 9340 9341 bpf_event = (struct perf_bpf_event){ 9342 .prog = prog, 9343 .event_id = { 9344 .header = { 9345 .type = PERF_RECORD_BPF_EVENT, 9346 .size = sizeof(bpf_event.event_id), 9347 }, 9348 .type = type, 9349 .flags = flags, 9350 .id = prog->aux->id, 9351 }, 9352 }; 9353 9354 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64)); 9355 9356 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE); 9357 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL); 9358 } 9359 9360 struct perf_text_poke_event { 9361 const void *old_bytes; 9362 const void *new_bytes; 9363 size_t pad; 9364 u16 old_len; 9365 u16 new_len; 9366 9367 struct { 9368 struct perf_event_header header; 9369 9370 u64 addr; 9371 } event_id; 9372 }; 9373 9374 static int perf_event_text_poke_match(struct perf_event *event) 9375 { 9376 return event->attr.text_poke; 9377 } 9378 9379 static void perf_event_text_poke_output(struct perf_event *event, void *data) 9380 { 9381 struct perf_text_poke_event *text_poke_event = data; 9382 struct perf_output_handle handle; 9383 struct perf_sample_data sample; 9384 u64 padding = 0; 9385 int ret; 9386 9387 if (!perf_event_text_poke_match(event)) 9388 return; 9389 9390 perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event); 9391 9392 ret = perf_output_begin(&handle, &sample, event, 9393 text_poke_event->event_id.header.size); 9394 if (ret) 9395 return; 9396 9397 perf_output_put(&handle, text_poke_event->event_id); 9398 perf_output_put(&handle, text_poke_event->old_len); 9399 perf_output_put(&handle, text_poke_event->new_len); 9400 9401 __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len); 9402 __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len); 9403 9404 if (text_poke_event->pad) 9405 __output_copy(&handle, &padding, text_poke_event->pad); 9406 9407 perf_event__output_id_sample(event, &handle, &sample); 9408 9409 perf_output_end(&handle); 9410 } 9411 9412 void perf_event_text_poke(const void *addr, const void *old_bytes, 9413 size_t old_len, const void *new_bytes, size_t new_len) 9414 { 9415 struct perf_text_poke_event text_poke_event; 9416 size_t tot, pad; 9417 9418 if (!atomic_read(&nr_text_poke_events)) 9419 return; 9420 9421 tot = sizeof(text_poke_event.old_len) + old_len; 9422 tot += sizeof(text_poke_event.new_len) + new_len; 9423 pad = ALIGN(tot, sizeof(u64)) - tot; 9424 9425 text_poke_event = (struct perf_text_poke_event){ 9426 .old_bytes = old_bytes, 9427 .new_bytes = new_bytes, 9428 .pad = pad, 9429 .old_len = old_len, 9430 .new_len = new_len, 9431 .event_id = { 9432 .header = { 9433 .type = PERF_RECORD_TEXT_POKE, 9434 .misc = PERF_RECORD_MISC_KERNEL, 9435 .size = sizeof(text_poke_event.event_id) + tot + pad, 9436 }, 9437 .addr = (unsigned long)addr, 9438 }, 9439 }; 9440 9441 perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL); 9442 } 9443 9444 void perf_event_itrace_started(struct perf_event *event) 9445 { 9446 event->attach_state |= PERF_ATTACH_ITRACE; 9447 } 9448 9449 static void perf_log_itrace_start(struct perf_event *event) 9450 { 9451 struct perf_output_handle handle; 9452 struct perf_sample_data sample; 9453 struct perf_aux_event { 9454 struct perf_event_header header; 9455 u32 pid; 9456 u32 tid; 9457 } rec; 9458 int ret; 9459 9460 if (event->parent) 9461 event = event->parent; 9462 9463 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || 9464 event->attach_state & PERF_ATTACH_ITRACE) 9465 return; 9466 9467 rec.header.type = PERF_RECORD_ITRACE_START; 9468 rec.header.misc = 0; 9469 rec.header.size = sizeof(rec); 9470 rec.pid = perf_event_pid(event, current); 9471 rec.tid = perf_event_tid(event, current); 9472 9473 perf_event_header__init_id(&rec.header, &sample, event); 9474 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 9475 9476 if (ret) 9477 return; 9478 9479 perf_output_put(&handle, rec); 9480 perf_event__output_id_sample(event, &handle, &sample); 9481 9482 perf_output_end(&handle); 9483 } 9484 9485 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id) 9486 { 9487 struct perf_output_handle handle; 9488 struct perf_sample_data sample; 9489 struct perf_aux_event { 9490 struct perf_event_header header; 9491 u64 hw_id; 9492 } rec; 9493 int ret; 9494 9495 if (event->parent) 9496 event = event->parent; 9497 9498 rec.header.type = PERF_RECORD_AUX_OUTPUT_HW_ID; 9499 rec.header.misc = 0; 9500 rec.header.size = sizeof(rec); 9501 rec.hw_id = hw_id; 9502 9503 perf_event_header__init_id(&rec.header, &sample, event); 9504 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 9505 9506 if (ret) 9507 return; 9508 9509 perf_output_put(&handle, rec); 9510 perf_event__output_id_sample(event, &handle, &sample); 9511 9512 perf_output_end(&handle); 9513 } 9514 EXPORT_SYMBOL_GPL(perf_report_aux_output_id); 9515 9516 static int 9517 __perf_event_account_interrupt(struct perf_event *event, int throttle) 9518 { 9519 struct hw_perf_event *hwc = &event->hw; 9520 int ret = 0; 9521 u64 seq; 9522 9523 seq = __this_cpu_read(perf_throttled_seq); 9524 if (seq != hwc->interrupts_seq) { 9525 hwc->interrupts_seq = seq; 9526 hwc->interrupts = 1; 9527 } else { 9528 hwc->interrupts++; 9529 if (unlikely(throttle && 9530 hwc->interrupts > max_samples_per_tick)) { 9531 __this_cpu_inc(perf_throttled_count); 9532 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 9533 hwc->interrupts = MAX_INTERRUPTS; 9534 perf_log_throttle(event, 0); 9535 ret = 1; 9536 } 9537 } 9538 9539 if (event->attr.freq) { 9540 u64 now = perf_clock(); 9541 s64 delta = now - hwc->freq_time_stamp; 9542 9543 hwc->freq_time_stamp = now; 9544 9545 if (delta > 0 && delta < 2*TICK_NSEC) 9546 perf_adjust_period(event, delta, hwc->last_period, true); 9547 } 9548 9549 return ret; 9550 } 9551 9552 int perf_event_account_interrupt(struct perf_event *event) 9553 { 9554 return __perf_event_account_interrupt(event, 1); 9555 } 9556 9557 static inline bool sample_is_allowed(struct perf_event *event, struct pt_regs *regs) 9558 { 9559 /* 9560 * Due to interrupt latency (AKA "skid"), we may enter the 9561 * kernel before taking an overflow, even if the PMU is only 9562 * counting user events. 9563 */ 9564 if (event->attr.exclude_kernel && !user_mode(regs)) 9565 return false; 9566 9567 return true; 9568 } 9569 9570 /* 9571 * Generic event overflow handling, sampling. 9572 */ 9573 9574 static int __perf_event_overflow(struct perf_event *event, 9575 int throttle, struct perf_sample_data *data, 9576 struct pt_regs *regs) 9577 { 9578 int events = atomic_read(&event->event_limit); 9579 int ret = 0; 9580 9581 /* 9582 * Non-sampling counters might still use the PMI to fold short 9583 * hardware counters, ignore those. 9584 */ 9585 if (unlikely(!is_sampling_event(event))) 9586 return 0; 9587 9588 ret = __perf_event_account_interrupt(event, throttle); 9589 9590 /* 9591 * XXX event_limit might not quite work as expected on inherited 9592 * events 9593 */ 9594 9595 event->pending_kill = POLL_IN; 9596 if (events && atomic_dec_and_test(&event->event_limit)) { 9597 ret = 1; 9598 event->pending_kill = POLL_HUP; 9599 perf_event_disable_inatomic(event); 9600 } 9601 9602 if (event->attr.sigtrap) { 9603 /* 9604 * The desired behaviour of sigtrap vs invalid samples is a bit 9605 * tricky; on the one hand, one should not loose the SIGTRAP if 9606 * it is the first event, on the other hand, we should also not 9607 * trigger the WARN or override the data address. 9608 */ 9609 bool valid_sample = sample_is_allowed(event, regs); 9610 unsigned int pending_id = 1; 9611 9612 if (regs) 9613 pending_id = hash32_ptr((void *)instruction_pointer(regs)) ?: 1; 9614 if (!event->pending_sigtrap) { 9615 event->pending_sigtrap = pending_id; 9616 local_inc(&event->ctx->nr_pending); 9617 } else if (event->attr.exclude_kernel && valid_sample) { 9618 /* 9619 * Should not be able to return to user space without 9620 * consuming pending_sigtrap; with exceptions: 9621 * 9622 * 1. Where !exclude_kernel, events can overflow again 9623 * in the kernel without returning to user space. 9624 * 9625 * 2. Events that can overflow again before the IRQ- 9626 * work without user space progress (e.g. hrtimer). 9627 * To approximate progress (with false negatives), 9628 * check 32-bit hash of the current IP. 9629 */ 9630 WARN_ON_ONCE(event->pending_sigtrap != pending_id); 9631 } 9632 9633 event->pending_addr = 0; 9634 if (valid_sample && (data->sample_flags & PERF_SAMPLE_ADDR)) 9635 event->pending_addr = data->addr; 9636 irq_work_queue(&event->pending_irq); 9637 } 9638 9639 READ_ONCE(event->overflow_handler)(event, data, regs); 9640 9641 if (*perf_event_fasync(event) && event->pending_kill) { 9642 event->pending_wakeup = 1; 9643 irq_work_queue(&event->pending_irq); 9644 } 9645 9646 return ret; 9647 } 9648 9649 int perf_event_overflow(struct perf_event *event, 9650 struct perf_sample_data *data, 9651 struct pt_regs *regs) 9652 { 9653 return __perf_event_overflow(event, 1, data, regs); 9654 } 9655 9656 /* 9657 * Generic software event infrastructure 9658 */ 9659 9660 struct swevent_htable { 9661 struct swevent_hlist *swevent_hlist; 9662 struct mutex hlist_mutex; 9663 int hlist_refcount; 9664 9665 /* Recursion avoidance in each contexts */ 9666 int recursion[PERF_NR_CONTEXTS]; 9667 }; 9668 9669 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 9670 9671 /* 9672 * We directly increment event->count and keep a second value in 9673 * event->hw.period_left to count intervals. This period event 9674 * is kept in the range [-sample_period, 0] so that we can use the 9675 * sign as trigger. 9676 */ 9677 9678 u64 perf_swevent_set_period(struct perf_event *event) 9679 { 9680 struct hw_perf_event *hwc = &event->hw; 9681 u64 period = hwc->last_period; 9682 u64 nr, offset; 9683 s64 old, val; 9684 9685 hwc->last_period = hwc->sample_period; 9686 9687 old = local64_read(&hwc->period_left); 9688 do { 9689 val = old; 9690 if (val < 0) 9691 return 0; 9692 9693 nr = div64_u64(period + val, period); 9694 offset = nr * period; 9695 val -= offset; 9696 } while (!local64_try_cmpxchg(&hwc->period_left, &old, val)); 9697 9698 return nr; 9699 } 9700 9701 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 9702 struct perf_sample_data *data, 9703 struct pt_regs *regs) 9704 { 9705 struct hw_perf_event *hwc = &event->hw; 9706 int throttle = 0; 9707 9708 if (!overflow) 9709 overflow = perf_swevent_set_period(event); 9710 9711 if (hwc->interrupts == MAX_INTERRUPTS) 9712 return; 9713 9714 for (; overflow; overflow--) { 9715 if (__perf_event_overflow(event, throttle, 9716 data, regs)) { 9717 /* 9718 * We inhibit the overflow from happening when 9719 * hwc->interrupts == MAX_INTERRUPTS. 9720 */ 9721 break; 9722 } 9723 throttle = 1; 9724 } 9725 } 9726 9727 static void perf_swevent_event(struct perf_event *event, u64 nr, 9728 struct perf_sample_data *data, 9729 struct pt_regs *regs) 9730 { 9731 struct hw_perf_event *hwc = &event->hw; 9732 9733 local64_add(nr, &event->count); 9734 9735 if (!regs) 9736 return; 9737 9738 if (!is_sampling_event(event)) 9739 return; 9740 9741 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 9742 data->period = nr; 9743 return perf_swevent_overflow(event, 1, data, regs); 9744 } else 9745 data->period = event->hw.last_period; 9746 9747 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 9748 return perf_swevent_overflow(event, 1, data, regs); 9749 9750 if (local64_add_negative(nr, &hwc->period_left)) 9751 return; 9752 9753 perf_swevent_overflow(event, 0, data, regs); 9754 } 9755 9756 static int perf_exclude_event(struct perf_event *event, 9757 struct pt_regs *regs) 9758 { 9759 if (event->hw.state & PERF_HES_STOPPED) 9760 return 1; 9761 9762 if (regs) { 9763 if (event->attr.exclude_user && user_mode(regs)) 9764 return 1; 9765 9766 if (event->attr.exclude_kernel && !user_mode(regs)) 9767 return 1; 9768 } 9769 9770 return 0; 9771 } 9772 9773 static int perf_swevent_match(struct perf_event *event, 9774 enum perf_type_id type, 9775 u32 event_id, 9776 struct perf_sample_data *data, 9777 struct pt_regs *regs) 9778 { 9779 if (event->attr.type != type) 9780 return 0; 9781 9782 if (event->attr.config != event_id) 9783 return 0; 9784 9785 if (perf_exclude_event(event, regs)) 9786 return 0; 9787 9788 return 1; 9789 } 9790 9791 static inline u64 swevent_hash(u64 type, u32 event_id) 9792 { 9793 u64 val = event_id | (type << 32); 9794 9795 return hash_64(val, SWEVENT_HLIST_BITS); 9796 } 9797 9798 static inline struct hlist_head * 9799 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 9800 { 9801 u64 hash = swevent_hash(type, event_id); 9802 9803 return &hlist->heads[hash]; 9804 } 9805 9806 /* For the read side: events when they trigger */ 9807 static inline struct hlist_head * 9808 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 9809 { 9810 struct swevent_hlist *hlist; 9811 9812 hlist = rcu_dereference(swhash->swevent_hlist); 9813 if (!hlist) 9814 return NULL; 9815 9816 return __find_swevent_head(hlist, type, event_id); 9817 } 9818 9819 /* For the event head insertion and removal in the hlist */ 9820 static inline struct hlist_head * 9821 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 9822 { 9823 struct swevent_hlist *hlist; 9824 u32 event_id = event->attr.config; 9825 u64 type = event->attr.type; 9826 9827 /* 9828 * Event scheduling is always serialized against hlist allocation 9829 * and release. Which makes the protected version suitable here. 9830 * The context lock guarantees that. 9831 */ 9832 hlist = rcu_dereference_protected(swhash->swevent_hlist, 9833 lockdep_is_held(&event->ctx->lock)); 9834 if (!hlist) 9835 return NULL; 9836 9837 return __find_swevent_head(hlist, type, event_id); 9838 } 9839 9840 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 9841 u64 nr, 9842 struct perf_sample_data *data, 9843 struct pt_regs *regs) 9844 { 9845 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9846 struct perf_event *event; 9847 struct hlist_head *head; 9848 9849 rcu_read_lock(); 9850 head = find_swevent_head_rcu(swhash, type, event_id); 9851 if (!head) 9852 goto end; 9853 9854 hlist_for_each_entry_rcu(event, head, hlist_entry) { 9855 if (perf_swevent_match(event, type, event_id, data, regs)) 9856 perf_swevent_event(event, nr, data, regs); 9857 } 9858 end: 9859 rcu_read_unlock(); 9860 } 9861 9862 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); 9863 9864 int perf_swevent_get_recursion_context(void) 9865 { 9866 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9867 9868 return get_recursion_context(swhash->recursion); 9869 } 9870 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 9871 9872 void perf_swevent_put_recursion_context(int rctx) 9873 { 9874 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9875 9876 put_recursion_context(swhash->recursion, rctx); 9877 } 9878 9879 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 9880 { 9881 struct perf_sample_data data; 9882 9883 if (WARN_ON_ONCE(!regs)) 9884 return; 9885 9886 perf_sample_data_init(&data, addr, 0); 9887 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 9888 } 9889 9890 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 9891 { 9892 int rctx; 9893 9894 preempt_disable_notrace(); 9895 rctx = perf_swevent_get_recursion_context(); 9896 if (unlikely(rctx < 0)) 9897 goto fail; 9898 9899 ___perf_sw_event(event_id, nr, regs, addr); 9900 9901 perf_swevent_put_recursion_context(rctx); 9902 fail: 9903 preempt_enable_notrace(); 9904 } 9905 9906 static void perf_swevent_read(struct perf_event *event) 9907 { 9908 } 9909 9910 static int perf_swevent_add(struct perf_event *event, int flags) 9911 { 9912 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9913 struct hw_perf_event *hwc = &event->hw; 9914 struct hlist_head *head; 9915 9916 if (is_sampling_event(event)) { 9917 hwc->last_period = hwc->sample_period; 9918 perf_swevent_set_period(event); 9919 } 9920 9921 hwc->state = !(flags & PERF_EF_START); 9922 9923 head = find_swevent_head(swhash, event); 9924 if (WARN_ON_ONCE(!head)) 9925 return -EINVAL; 9926 9927 hlist_add_head_rcu(&event->hlist_entry, head); 9928 perf_event_update_userpage(event); 9929 9930 return 0; 9931 } 9932 9933 static void perf_swevent_del(struct perf_event *event, int flags) 9934 { 9935 hlist_del_rcu(&event->hlist_entry); 9936 } 9937 9938 static void perf_swevent_start(struct perf_event *event, int flags) 9939 { 9940 event->hw.state = 0; 9941 } 9942 9943 static void perf_swevent_stop(struct perf_event *event, int flags) 9944 { 9945 event->hw.state = PERF_HES_STOPPED; 9946 } 9947 9948 /* Deref the hlist from the update side */ 9949 static inline struct swevent_hlist * 9950 swevent_hlist_deref(struct swevent_htable *swhash) 9951 { 9952 return rcu_dereference_protected(swhash->swevent_hlist, 9953 lockdep_is_held(&swhash->hlist_mutex)); 9954 } 9955 9956 static void swevent_hlist_release(struct swevent_htable *swhash) 9957 { 9958 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 9959 9960 if (!hlist) 9961 return; 9962 9963 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 9964 kfree_rcu(hlist, rcu_head); 9965 } 9966 9967 static void swevent_hlist_put_cpu(int cpu) 9968 { 9969 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 9970 9971 mutex_lock(&swhash->hlist_mutex); 9972 9973 if (!--swhash->hlist_refcount) 9974 swevent_hlist_release(swhash); 9975 9976 mutex_unlock(&swhash->hlist_mutex); 9977 } 9978 9979 static void swevent_hlist_put(void) 9980 { 9981 int cpu; 9982 9983 for_each_possible_cpu(cpu) 9984 swevent_hlist_put_cpu(cpu); 9985 } 9986 9987 static int swevent_hlist_get_cpu(int cpu) 9988 { 9989 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 9990 int err = 0; 9991 9992 mutex_lock(&swhash->hlist_mutex); 9993 if (!swevent_hlist_deref(swhash) && 9994 cpumask_test_cpu(cpu, perf_online_mask)) { 9995 struct swevent_hlist *hlist; 9996 9997 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 9998 if (!hlist) { 9999 err = -ENOMEM; 10000 goto exit; 10001 } 10002 rcu_assign_pointer(swhash->swevent_hlist, hlist); 10003 } 10004 swhash->hlist_refcount++; 10005 exit: 10006 mutex_unlock(&swhash->hlist_mutex); 10007 10008 return err; 10009 } 10010 10011 static int swevent_hlist_get(void) 10012 { 10013 int err, cpu, failed_cpu; 10014 10015 mutex_lock(&pmus_lock); 10016 for_each_possible_cpu(cpu) { 10017 err = swevent_hlist_get_cpu(cpu); 10018 if (err) { 10019 failed_cpu = cpu; 10020 goto fail; 10021 } 10022 } 10023 mutex_unlock(&pmus_lock); 10024 return 0; 10025 fail: 10026 for_each_possible_cpu(cpu) { 10027 if (cpu == failed_cpu) 10028 break; 10029 swevent_hlist_put_cpu(cpu); 10030 } 10031 mutex_unlock(&pmus_lock); 10032 return err; 10033 } 10034 10035 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 10036 10037 static void sw_perf_event_destroy(struct perf_event *event) 10038 { 10039 u64 event_id = event->attr.config; 10040 10041 WARN_ON(event->parent); 10042 10043 static_key_slow_dec(&perf_swevent_enabled[event_id]); 10044 swevent_hlist_put(); 10045 } 10046 10047 static struct pmu perf_cpu_clock; /* fwd declaration */ 10048 static struct pmu perf_task_clock; 10049 10050 static int perf_swevent_init(struct perf_event *event) 10051 { 10052 u64 event_id = event->attr.config; 10053 10054 if (event->attr.type != PERF_TYPE_SOFTWARE) 10055 return -ENOENT; 10056 10057 /* 10058 * no branch sampling for software events 10059 */ 10060 if (has_branch_stack(event)) 10061 return -EOPNOTSUPP; 10062 10063 switch (event_id) { 10064 case PERF_COUNT_SW_CPU_CLOCK: 10065 event->attr.type = perf_cpu_clock.type; 10066 return -ENOENT; 10067 case PERF_COUNT_SW_TASK_CLOCK: 10068 event->attr.type = perf_task_clock.type; 10069 return -ENOENT; 10070 10071 default: 10072 break; 10073 } 10074 10075 if (event_id >= PERF_COUNT_SW_MAX) 10076 return -ENOENT; 10077 10078 if (!event->parent) { 10079 int err; 10080 10081 err = swevent_hlist_get(); 10082 if (err) 10083 return err; 10084 10085 static_key_slow_inc(&perf_swevent_enabled[event_id]); 10086 event->destroy = sw_perf_event_destroy; 10087 } 10088 10089 return 0; 10090 } 10091 10092 static struct pmu perf_swevent = { 10093 .task_ctx_nr = perf_sw_context, 10094 10095 .capabilities = PERF_PMU_CAP_NO_NMI, 10096 10097 .event_init = perf_swevent_init, 10098 .add = perf_swevent_add, 10099 .del = perf_swevent_del, 10100 .start = perf_swevent_start, 10101 .stop = perf_swevent_stop, 10102 .read = perf_swevent_read, 10103 }; 10104 10105 #ifdef CONFIG_EVENT_TRACING 10106 10107 static void tp_perf_event_destroy(struct perf_event *event) 10108 { 10109 perf_trace_destroy(event); 10110 } 10111 10112 static int perf_tp_event_init(struct perf_event *event) 10113 { 10114 int err; 10115 10116 if (event->attr.type != PERF_TYPE_TRACEPOINT) 10117 return -ENOENT; 10118 10119 /* 10120 * no branch sampling for tracepoint events 10121 */ 10122 if (has_branch_stack(event)) 10123 return -EOPNOTSUPP; 10124 10125 err = perf_trace_init(event); 10126 if (err) 10127 return err; 10128 10129 event->destroy = tp_perf_event_destroy; 10130 10131 return 0; 10132 } 10133 10134 static struct pmu perf_tracepoint = { 10135 .task_ctx_nr = perf_sw_context, 10136 10137 .event_init = perf_tp_event_init, 10138 .add = perf_trace_add, 10139 .del = perf_trace_del, 10140 .start = perf_swevent_start, 10141 .stop = perf_swevent_stop, 10142 .read = perf_swevent_read, 10143 }; 10144 10145 static int perf_tp_filter_match(struct perf_event *event, 10146 struct perf_sample_data *data) 10147 { 10148 void *record = data->raw->frag.data; 10149 10150 /* only top level events have filters set */ 10151 if (event->parent) 10152 event = event->parent; 10153 10154 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 10155 return 1; 10156 return 0; 10157 } 10158 10159 static int perf_tp_event_match(struct perf_event *event, 10160 struct perf_sample_data *data, 10161 struct pt_regs *regs) 10162 { 10163 if (event->hw.state & PERF_HES_STOPPED) 10164 return 0; 10165 /* 10166 * If exclude_kernel, only trace user-space tracepoints (uprobes) 10167 */ 10168 if (event->attr.exclude_kernel && !user_mode(regs)) 10169 return 0; 10170 10171 if (!perf_tp_filter_match(event, data)) 10172 return 0; 10173 10174 return 1; 10175 } 10176 10177 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx, 10178 struct trace_event_call *call, u64 count, 10179 struct pt_regs *regs, struct hlist_head *head, 10180 struct task_struct *task) 10181 { 10182 if (bpf_prog_array_valid(call)) { 10183 *(struct pt_regs **)raw_data = regs; 10184 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) { 10185 perf_swevent_put_recursion_context(rctx); 10186 return; 10187 } 10188 } 10189 perf_tp_event(call->event.type, count, raw_data, size, regs, head, 10190 rctx, task); 10191 } 10192 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit); 10193 10194 static void __perf_tp_event_target_task(u64 count, void *record, 10195 struct pt_regs *regs, 10196 struct perf_sample_data *data, 10197 struct perf_event *event) 10198 { 10199 struct trace_entry *entry = record; 10200 10201 if (event->attr.config != entry->type) 10202 return; 10203 /* Cannot deliver synchronous signal to other task. */ 10204 if (event->attr.sigtrap) 10205 return; 10206 if (perf_tp_event_match(event, data, regs)) 10207 perf_swevent_event(event, count, data, regs); 10208 } 10209 10210 static void perf_tp_event_target_task(u64 count, void *record, 10211 struct pt_regs *regs, 10212 struct perf_sample_data *data, 10213 struct perf_event_context *ctx) 10214 { 10215 unsigned int cpu = smp_processor_id(); 10216 struct pmu *pmu = &perf_tracepoint; 10217 struct perf_event *event, *sibling; 10218 10219 perf_event_groups_for_cpu_pmu(event, &ctx->pinned_groups, cpu, pmu) { 10220 __perf_tp_event_target_task(count, record, regs, data, event); 10221 for_each_sibling_event(sibling, event) 10222 __perf_tp_event_target_task(count, record, regs, data, sibling); 10223 } 10224 10225 perf_event_groups_for_cpu_pmu(event, &ctx->flexible_groups, cpu, pmu) { 10226 __perf_tp_event_target_task(count, record, regs, data, event); 10227 for_each_sibling_event(sibling, event) 10228 __perf_tp_event_target_task(count, record, regs, data, sibling); 10229 } 10230 } 10231 10232 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size, 10233 struct pt_regs *regs, struct hlist_head *head, int rctx, 10234 struct task_struct *task) 10235 { 10236 struct perf_sample_data data; 10237 struct perf_event *event; 10238 10239 struct perf_raw_record raw = { 10240 .frag = { 10241 .size = entry_size, 10242 .data = record, 10243 }, 10244 }; 10245 10246 perf_sample_data_init(&data, 0, 0); 10247 perf_sample_save_raw_data(&data, &raw); 10248 10249 perf_trace_buf_update(record, event_type); 10250 10251 hlist_for_each_entry_rcu(event, head, hlist_entry) { 10252 if (perf_tp_event_match(event, &data, regs)) { 10253 perf_swevent_event(event, count, &data, regs); 10254 10255 /* 10256 * Here use the same on-stack perf_sample_data, 10257 * some members in data are event-specific and 10258 * need to be re-computed for different sweveents. 10259 * Re-initialize data->sample_flags safely to avoid 10260 * the problem that next event skips preparing data 10261 * because data->sample_flags is set. 10262 */ 10263 perf_sample_data_init(&data, 0, 0); 10264 perf_sample_save_raw_data(&data, &raw); 10265 } 10266 } 10267 10268 /* 10269 * If we got specified a target task, also iterate its context and 10270 * deliver this event there too. 10271 */ 10272 if (task && task != current) { 10273 struct perf_event_context *ctx; 10274 10275 rcu_read_lock(); 10276 ctx = rcu_dereference(task->perf_event_ctxp); 10277 if (!ctx) 10278 goto unlock; 10279 10280 raw_spin_lock(&ctx->lock); 10281 perf_tp_event_target_task(count, record, regs, &data, ctx); 10282 raw_spin_unlock(&ctx->lock); 10283 unlock: 10284 rcu_read_unlock(); 10285 } 10286 10287 perf_swevent_put_recursion_context(rctx); 10288 } 10289 EXPORT_SYMBOL_GPL(perf_tp_event); 10290 10291 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS) 10292 /* 10293 * Flags in config, used by dynamic PMU kprobe and uprobe 10294 * The flags should match following PMU_FORMAT_ATTR(). 10295 * 10296 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe 10297 * if not set, create kprobe/uprobe 10298 * 10299 * The following values specify a reference counter (or semaphore in the 10300 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically 10301 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset. 10302 * 10303 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset 10304 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left 10305 */ 10306 enum perf_probe_config { 10307 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */ 10308 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32, 10309 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS, 10310 }; 10311 10312 PMU_FORMAT_ATTR(retprobe, "config:0"); 10313 #endif 10314 10315 #ifdef CONFIG_KPROBE_EVENTS 10316 static struct attribute *kprobe_attrs[] = { 10317 &format_attr_retprobe.attr, 10318 NULL, 10319 }; 10320 10321 static struct attribute_group kprobe_format_group = { 10322 .name = "format", 10323 .attrs = kprobe_attrs, 10324 }; 10325 10326 static const struct attribute_group *kprobe_attr_groups[] = { 10327 &kprobe_format_group, 10328 NULL, 10329 }; 10330 10331 static int perf_kprobe_event_init(struct perf_event *event); 10332 static struct pmu perf_kprobe = { 10333 .task_ctx_nr = perf_sw_context, 10334 .event_init = perf_kprobe_event_init, 10335 .add = perf_trace_add, 10336 .del = perf_trace_del, 10337 .start = perf_swevent_start, 10338 .stop = perf_swevent_stop, 10339 .read = perf_swevent_read, 10340 .attr_groups = kprobe_attr_groups, 10341 }; 10342 10343 static int perf_kprobe_event_init(struct perf_event *event) 10344 { 10345 int err; 10346 bool is_retprobe; 10347 10348 if (event->attr.type != perf_kprobe.type) 10349 return -ENOENT; 10350 10351 if (!perfmon_capable()) 10352 return -EACCES; 10353 10354 /* 10355 * no branch sampling for probe events 10356 */ 10357 if (has_branch_stack(event)) 10358 return -EOPNOTSUPP; 10359 10360 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 10361 err = perf_kprobe_init(event, is_retprobe); 10362 if (err) 10363 return err; 10364 10365 event->destroy = perf_kprobe_destroy; 10366 10367 return 0; 10368 } 10369 #endif /* CONFIG_KPROBE_EVENTS */ 10370 10371 #ifdef CONFIG_UPROBE_EVENTS 10372 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63"); 10373 10374 static struct attribute *uprobe_attrs[] = { 10375 &format_attr_retprobe.attr, 10376 &format_attr_ref_ctr_offset.attr, 10377 NULL, 10378 }; 10379 10380 static struct attribute_group uprobe_format_group = { 10381 .name = "format", 10382 .attrs = uprobe_attrs, 10383 }; 10384 10385 static const struct attribute_group *uprobe_attr_groups[] = { 10386 &uprobe_format_group, 10387 NULL, 10388 }; 10389 10390 static int perf_uprobe_event_init(struct perf_event *event); 10391 static struct pmu perf_uprobe = { 10392 .task_ctx_nr = perf_sw_context, 10393 .event_init = perf_uprobe_event_init, 10394 .add = perf_trace_add, 10395 .del = perf_trace_del, 10396 .start = perf_swevent_start, 10397 .stop = perf_swevent_stop, 10398 .read = perf_swevent_read, 10399 .attr_groups = uprobe_attr_groups, 10400 }; 10401 10402 static int perf_uprobe_event_init(struct perf_event *event) 10403 { 10404 int err; 10405 unsigned long ref_ctr_offset; 10406 bool is_retprobe; 10407 10408 if (event->attr.type != perf_uprobe.type) 10409 return -ENOENT; 10410 10411 if (!perfmon_capable()) 10412 return -EACCES; 10413 10414 /* 10415 * no branch sampling for probe events 10416 */ 10417 if (has_branch_stack(event)) 10418 return -EOPNOTSUPP; 10419 10420 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 10421 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 10422 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe); 10423 if (err) 10424 return err; 10425 10426 event->destroy = perf_uprobe_destroy; 10427 10428 return 0; 10429 } 10430 #endif /* CONFIG_UPROBE_EVENTS */ 10431 10432 static inline void perf_tp_register(void) 10433 { 10434 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 10435 #ifdef CONFIG_KPROBE_EVENTS 10436 perf_pmu_register(&perf_kprobe, "kprobe", -1); 10437 #endif 10438 #ifdef CONFIG_UPROBE_EVENTS 10439 perf_pmu_register(&perf_uprobe, "uprobe", -1); 10440 #endif 10441 } 10442 10443 static void perf_event_free_filter(struct perf_event *event) 10444 { 10445 ftrace_profile_free_filter(event); 10446 } 10447 10448 #ifdef CONFIG_BPF_SYSCALL 10449 static void bpf_overflow_handler(struct perf_event *event, 10450 struct perf_sample_data *data, 10451 struct pt_regs *regs) 10452 { 10453 struct bpf_perf_event_data_kern ctx = { 10454 .data = data, 10455 .event = event, 10456 }; 10457 struct bpf_prog *prog; 10458 int ret = 0; 10459 10460 ctx.regs = perf_arch_bpf_user_pt_regs(regs); 10461 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) 10462 goto out; 10463 rcu_read_lock(); 10464 prog = READ_ONCE(event->prog); 10465 if (prog) { 10466 perf_prepare_sample(data, event, regs); 10467 ret = bpf_prog_run(prog, &ctx); 10468 } 10469 rcu_read_unlock(); 10470 out: 10471 __this_cpu_dec(bpf_prog_active); 10472 if (!ret) 10473 return; 10474 10475 event->orig_overflow_handler(event, data, regs); 10476 } 10477 10478 static int perf_event_set_bpf_handler(struct perf_event *event, 10479 struct bpf_prog *prog, 10480 u64 bpf_cookie) 10481 { 10482 if (event->overflow_handler_context) 10483 /* hw breakpoint or kernel counter */ 10484 return -EINVAL; 10485 10486 if (event->prog) 10487 return -EEXIST; 10488 10489 if (prog->type != BPF_PROG_TYPE_PERF_EVENT) 10490 return -EINVAL; 10491 10492 if (event->attr.precise_ip && 10493 prog->call_get_stack && 10494 (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) || 10495 event->attr.exclude_callchain_kernel || 10496 event->attr.exclude_callchain_user)) { 10497 /* 10498 * On perf_event with precise_ip, calling bpf_get_stack() 10499 * may trigger unwinder warnings and occasional crashes. 10500 * bpf_get_[stack|stackid] works around this issue by using 10501 * callchain attached to perf_sample_data. If the 10502 * perf_event does not full (kernel and user) callchain 10503 * attached to perf_sample_data, do not allow attaching BPF 10504 * program that calls bpf_get_[stack|stackid]. 10505 */ 10506 return -EPROTO; 10507 } 10508 10509 event->prog = prog; 10510 event->bpf_cookie = bpf_cookie; 10511 event->orig_overflow_handler = READ_ONCE(event->overflow_handler); 10512 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler); 10513 return 0; 10514 } 10515 10516 static void perf_event_free_bpf_handler(struct perf_event *event) 10517 { 10518 struct bpf_prog *prog = event->prog; 10519 10520 if (!prog) 10521 return; 10522 10523 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler); 10524 event->prog = NULL; 10525 bpf_prog_put(prog); 10526 } 10527 #else 10528 static int perf_event_set_bpf_handler(struct perf_event *event, 10529 struct bpf_prog *prog, 10530 u64 bpf_cookie) 10531 { 10532 return -EOPNOTSUPP; 10533 } 10534 static void perf_event_free_bpf_handler(struct perf_event *event) 10535 { 10536 } 10537 #endif 10538 10539 /* 10540 * returns true if the event is a tracepoint, or a kprobe/upprobe created 10541 * with perf_event_open() 10542 */ 10543 static inline bool perf_event_is_tracing(struct perf_event *event) 10544 { 10545 if (event->pmu == &perf_tracepoint) 10546 return true; 10547 #ifdef CONFIG_KPROBE_EVENTS 10548 if (event->pmu == &perf_kprobe) 10549 return true; 10550 #endif 10551 #ifdef CONFIG_UPROBE_EVENTS 10552 if (event->pmu == &perf_uprobe) 10553 return true; 10554 #endif 10555 return false; 10556 } 10557 10558 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog, 10559 u64 bpf_cookie) 10560 { 10561 bool is_kprobe, is_uprobe, is_tracepoint, is_syscall_tp; 10562 10563 if (!perf_event_is_tracing(event)) 10564 return perf_event_set_bpf_handler(event, prog, bpf_cookie); 10565 10566 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_KPROBE; 10567 is_uprobe = event->tp_event->flags & TRACE_EVENT_FL_UPROBE; 10568 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT; 10569 is_syscall_tp = is_syscall_trace_event(event->tp_event); 10570 if (!is_kprobe && !is_uprobe && !is_tracepoint && !is_syscall_tp) 10571 /* bpf programs can only be attached to u/kprobe or tracepoint */ 10572 return -EINVAL; 10573 10574 if (((is_kprobe || is_uprobe) && prog->type != BPF_PROG_TYPE_KPROBE) || 10575 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) || 10576 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) 10577 return -EINVAL; 10578 10579 if (prog->type == BPF_PROG_TYPE_KPROBE && prog->aux->sleepable && !is_uprobe) 10580 /* only uprobe programs are allowed to be sleepable */ 10581 return -EINVAL; 10582 10583 /* Kprobe override only works for kprobes, not uprobes. */ 10584 if (prog->kprobe_override && !is_kprobe) 10585 return -EINVAL; 10586 10587 if (is_tracepoint || is_syscall_tp) { 10588 int off = trace_event_get_offsets(event->tp_event); 10589 10590 if (prog->aux->max_ctx_offset > off) 10591 return -EACCES; 10592 } 10593 10594 return perf_event_attach_bpf_prog(event, prog, bpf_cookie); 10595 } 10596 10597 void perf_event_free_bpf_prog(struct perf_event *event) 10598 { 10599 if (!perf_event_is_tracing(event)) { 10600 perf_event_free_bpf_handler(event); 10601 return; 10602 } 10603 perf_event_detach_bpf_prog(event); 10604 } 10605 10606 #else 10607 10608 static inline void perf_tp_register(void) 10609 { 10610 } 10611 10612 static void perf_event_free_filter(struct perf_event *event) 10613 { 10614 } 10615 10616 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog, 10617 u64 bpf_cookie) 10618 { 10619 return -ENOENT; 10620 } 10621 10622 void perf_event_free_bpf_prog(struct perf_event *event) 10623 { 10624 } 10625 #endif /* CONFIG_EVENT_TRACING */ 10626 10627 #ifdef CONFIG_HAVE_HW_BREAKPOINT 10628 void perf_bp_event(struct perf_event *bp, void *data) 10629 { 10630 struct perf_sample_data sample; 10631 struct pt_regs *regs = data; 10632 10633 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 10634 10635 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 10636 perf_swevent_event(bp, 1, &sample, regs); 10637 } 10638 #endif 10639 10640 /* 10641 * Allocate a new address filter 10642 */ 10643 static struct perf_addr_filter * 10644 perf_addr_filter_new(struct perf_event *event, struct list_head *filters) 10645 { 10646 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu); 10647 struct perf_addr_filter *filter; 10648 10649 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node); 10650 if (!filter) 10651 return NULL; 10652 10653 INIT_LIST_HEAD(&filter->entry); 10654 list_add_tail(&filter->entry, filters); 10655 10656 return filter; 10657 } 10658 10659 static void free_filters_list(struct list_head *filters) 10660 { 10661 struct perf_addr_filter *filter, *iter; 10662 10663 list_for_each_entry_safe(filter, iter, filters, entry) { 10664 path_put(&filter->path); 10665 list_del(&filter->entry); 10666 kfree(filter); 10667 } 10668 } 10669 10670 /* 10671 * Free existing address filters and optionally install new ones 10672 */ 10673 static void perf_addr_filters_splice(struct perf_event *event, 10674 struct list_head *head) 10675 { 10676 unsigned long flags; 10677 LIST_HEAD(list); 10678 10679 if (!has_addr_filter(event)) 10680 return; 10681 10682 /* don't bother with children, they don't have their own filters */ 10683 if (event->parent) 10684 return; 10685 10686 raw_spin_lock_irqsave(&event->addr_filters.lock, flags); 10687 10688 list_splice_init(&event->addr_filters.list, &list); 10689 if (head) 10690 list_splice(head, &event->addr_filters.list); 10691 10692 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags); 10693 10694 free_filters_list(&list); 10695 } 10696 10697 /* 10698 * Scan through mm's vmas and see if one of them matches the 10699 * @filter; if so, adjust filter's address range. 10700 * Called with mm::mmap_lock down for reading. 10701 */ 10702 static void perf_addr_filter_apply(struct perf_addr_filter *filter, 10703 struct mm_struct *mm, 10704 struct perf_addr_filter_range *fr) 10705 { 10706 struct vm_area_struct *vma; 10707 VMA_ITERATOR(vmi, mm, 0); 10708 10709 for_each_vma(vmi, vma) { 10710 if (!vma->vm_file) 10711 continue; 10712 10713 if (perf_addr_filter_vma_adjust(filter, vma, fr)) 10714 return; 10715 } 10716 } 10717 10718 /* 10719 * Update event's address range filters based on the 10720 * task's existing mappings, if any. 10721 */ 10722 static void perf_event_addr_filters_apply(struct perf_event *event) 10723 { 10724 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 10725 struct task_struct *task = READ_ONCE(event->ctx->task); 10726 struct perf_addr_filter *filter; 10727 struct mm_struct *mm = NULL; 10728 unsigned int count = 0; 10729 unsigned long flags; 10730 10731 /* 10732 * We may observe TASK_TOMBSTONE, which means that the event tear-down 10733 * will stop on the parent's child_mutex that our caller is also holding 10734 */ 10735 if (task == TASK_TOMBSTONE) 10736 return; 10737 10738 if (ifh->nr_file_filters) { 10739 mm = get_task_mm(task); 10740 if (!mm) 10741 goto restart; 10742 10743 mmap_read_lock(mm); 10744 } 10745 10746 raw_spin_lock_irqsave(&ifh->lock, flags); 10747 list_for_each_entry(filter, &ifh->list, entry) { 10748 if (filter->path.dentry) { 10749 /* 10750 * Adjust base offset if the filter is associated to a 10751 * binary that needs to be mapped: 10752 */ 10753 event->addr_filter_ranges[count].start = 0; 10754 event->addr_filter_ranges[count].size = 0; 10755 10756 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]); 10757 } else { 10758 event->addr_filter_ranges[count].start = filter->offset; 10759 event->addr_filter_ranges[count].size = filter->size; 10760 } 10761 10762 count++; 10763 } 10764 10765 event->addr_filters_gen++; 10766 raw_spin_unlock_irqrestore(&ifh->lock, flags); 10767 10768 if (ifh->nr_file_filters) { 10769 mmap_read_unlock(mm); 10770 10771 mmput(mm); 10772 } 10773 10774 restart: 10775 perf_event_stop(event, 1); 10776 } 10777 10778 /* 10779 * Address range filtering: limiting the data to certain 10780 * instruction address ranges. Filters are ioctl()ed to us from 10781 * userspace as ascii strings. 10782 * 10783 * Filter string format: 10784 * 10785 * ACTION RANGE_SPEC 10786 * where ACTION is one of the 10787 * * "filter": limit the trace to this region 10788 * * "start": start tracing from this address 10789 * * "stop": stop tracing at this address/region; 10790 * RANGE_SPEC is 10791 * * for kernel addresses: <start address>[/<size>] 10792 * * for object files: <start address>[/<size>]@</path/to/object/file> 10793 * 10794 * if <size> is not specified or is zero, the range is treated as a single 10795 * address; not valid for ACTION=="filter". 10796 */ 10797 enum { 10798 IF_ACT_NONE = -1, 10799 IF_ACT_FILTER, 10800 IF_ACT_START, 10801 IF_ACT_STOP, 10802 IF_SRC_FILE, 10803 IF_SRC_KERNEL, 10804 IF_SRC_FILEADDR, 10805 IF_SRC_KERNELADDR, 10806 }; 10807 10808 enum { 10809 IF_STATE_ACTION = 0, 10810 IF_STATE_SOURCE, 10811 IF_STATE_END, 10812 }; 10813 10814 static const match_table_t if_tokens = { 10815 { IF_ACT_FILTER, "filter" }, 10816 { IF_ACT_START, "start" }, 10817 { IF_ACT_STOP, "stop" }, 10818 { IF_SRC_FILE, "%u/%u@%s" }, 10819 { IF_SRC_KERNEL, "%u/%u" }, 10820 { IF_SRC_FILEADDR, "%u@%s" }, 10821 { IF_SRC_KERNELADDR, "%u" }, 10822 { IF_ACT_NONE, NULL }, 10823 }; 10824 10825 /* 10826 * Address filter string parser 10827 */ 10828 static int 10829 perf_event_parse_addr_filter(struct perf_event *event, char *fstr, 10830 struct list_head *filters) 10831 { 10832 struct perf_addr_filter *filter = NULL; 10833 char *start, *orig, *filename = NULL; 10834 substring_t args[MAX_OPT_ARGS]; 10835 int state = IF_STATE_ACTION, token; 10836 unsigned int kernel = 0; 10837 int ret = -EINVAL; 10838 10839 orig = fstr = kstrdup(fstr, GFP_KERNEL); 10840 if (!fstr) 10841 return -ENOMEM; 10842 10843 while ((start = strsep(&fstr, " ,\n")) != NULL) { 10844 static const enum perf_addr_filter_action_t actions[] = { 10845 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER, 10846 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START, 10847 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP, 10848 }; 10849 ret = -EINVAL; 10850 10851 if (!*start) 10852 continue; 10853 10854 /* filter definition begins */ 10855 if (state == IF_STATE_ACTION) { 10856 filter = perf_addr_filter_new(event, filters); 10857 if (!filter) 10858 goto fail; 10859 } 10860 10861 token = match_token(start, if_tokens, args); 10862 switch (token) { 10863 case IF_ACT_FILTER: 10864 case IF_ACT_START: 10865 case IF_ACT_STOP: 10866 if (state != IF_STATE_ACTION) 10867 goto fail; 10868 10869 filter->action = actions[token]; 10870 state = IF_STATE_SOURCE; 10871 break; 10872 10873 case IF_SRC_KERNELADDR: 10874 case IF_SRC_KERNEL: 10875 kernel = 1; 10876 fallthrough; 10877 10878 case IF_SRC_FILEADDR: 10879 case IF_SRC_FILE: 10880 if (state != IF_STATE_SOURCE) 10881 goto fail; 10882 10883 *args[0].to = 0; 10884 ret = kstrtoul(args[0].from, 0, &filter->offset); 10885 if (ret) 10886 goto fail; 10887 10888 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) { 10889 *args[1].to = 0; 10890 ret = kstrtoul(args[1].from, 0, &filter->size); 10891 if (ret) 10892 goto fail; 10893 } 10894 10895 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) { 10896 int fpos = token == IF_SRC_FILE ? 2 : 1; 10897 10898 kfree(filename); 10899 filename = match_strdup(&args[fpos]); 10900 if (!filename) { 10901 ret = -ENOMEM; 10902 goto fail; 10903 } 10904 } 10905 10906 state = IF_STATE_END; 10907 break; 10908 10909 default: 10910 goto fail; 10911 } 10912 10913 /* 10914 * Filter definition is fully parsed, validate and install it. 10915 * Make sure that it doesn't contradict itself or the event's 10916 * attribute. 10917 */ 10918 if (state == IF_STATE_END) { 10919 ret = -EINVAL; 10920 10921 /* 10922 * ACTION "filter" must have a non-zero length region 10923 * specified. 10924 */ 10925 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER && 10926 !filter->size) 10927 goto fail; 10928 10929 if (!kernel) { 10930 if (!filename) 10931 goto fail; 10932 10933 /* 10934 * For now, we only support file-based filters 10935 * in per-task events; doing so for CPU-wide 10936 * events requires additional context switching 10937 * trickery, since same object code will be 10938 * mapped at different virtual addresses in 10939 * different processes. 10940 */ 10941 ret = -EOPNOTSUPP; 10942 if (!event->ctx->task) 10943 goto fail; 10944 10945 /* look up the path and grab its inode */ 10946 ret = kern_path(filename, LOOKUP_FOLLOW, 10947 &filter->path); 10948 if (ret) 10949 goto fail; 10950 10951 ret = -EINVAL; 10952 if (!filter->path.dentry || 10953 !S_ISREG(d_inode(filter->path.dentry) 10954 ->i_mode)) 10955 goto fail; 10956 10957 event->addr_filters.nr_file_filters++; 10958 } 10959 10960 /* ready to consume more filters */ 10961 kfree(filename); 10962 filename = NULL; 10963 state = IF_STATE_ACTION; 10964 filter = NULL; 10965 kernel = 0; 10966 } 10967 } 10968 10969 if (state != IF_STATE_ACTION) 10970 goto fail; 10971 10972 kfree(filename); 10973 kfree(orig); 10974 10975 return 0; 10976 10977 fail: 10978 kfree(filename); 10979 free_filters_list(filters); 10980 kfree(orig); 10981 10982 return ret; 10983 } 10984 10985 static int 10986 perf_event_set_addr_filter(struct perf_event *event, char *filter_str) 10987 { 10988 LIST_HEAD(filters); 10989 int ret; 10990 10991 /* 10992 * Since this is called in perf_ioctl() path, we're already holding 10993 * ctx::mutex. 10994 */ 10995 lockdep_assert_held(&event->ctx->mutex); 10996 10997 if (WARN_ON_ONCE(event->parent)) 10998 return -EINVAL; 10999 11000 ret = perf_event_parse_addr_filter(event, filter_str, &filters); 11001 if (ret) 11002 goto fail_clear_files; 11003 11004 ret = event->pmu->addr_filters_validate(&filters); 11005 if (ret) 11006 goto fail_free_filters; 11007 11008 /* remove existing filters, if any */ 11009 perf_addr_filters_splice(event, &filters); 11010 11011 /* install new filters */ 11012 perf_event_for_each_child(event, perf_event_addr_filters_apply); 11013 11014 return ret; 11015 11016 fail_free_filters: 11017 free_filters_list(&filters); 11018 11019 fail_clear_files: 11020 event->addr_filters.nr_file_filters = 0; 11021 11022 return ret; 11023 } 11024 11025 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 11026 { 11027 int ret = -EINVAL; 11028 char *filter_str; 11029 11030 filter_str = strndup_user(arg, PAGE_SIZE); 11031 if (IS_ERR(filter_str)) 11032 return PTR_ERR(filter_str); 11033 11034 #ifdef CONFIG_EVENT_TRACING 11035 if (perf_event_is_tracing(event)) { 11036 struct perf_event_context *ctx = event->ctx; 11037 11038 /* 11039 * Beware, here be dragons!! 11040 * 11041 * the tracepoint muck will deadlock against ctx->mutex, but 11042 * the tracepoint stuff does not actually need it. So 11043 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we 11044 * already have a reference on ctx. 11045 * 11046 * This can result in event getting moved to a different ctx, 11047 * but that does not affect the tracepoint state. 11048 */ 11049 mutex_unlock(&ctx->mutex); 11050 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 11051 mutex_lock(&ctx->mutex); 11052 } else 11053 #endif 11054 if (has_addr_filter(event)) 11055 ret = perf_event_set_addr_filter(event, filter_str); 11056 11057 kfree(filter_str); 11058 return ret; 11059 } 11060 11061 /* 11062 * hrtimer based swevent callback 11063 */ 11064 11065 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 11066 { 11067 enum hrtimer_restart ret = HRTIMER_RESTART; 11068 struct perf_sample_data data; 11069 struct pt_regs *regs; 11070 struct perf_event *event; 11071 u64 period; 11072 11073 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 11074 11075 if (event->state != PERF_EVENT_STATE_ACTIVE) 11076 return HRTIMER_NORESTART; 11077 11078 event->pmu->read(event); 11079 11080 perf_sample_data_init(&data, 0, event->hw.last_period); 11081 regs = get_irq_regs(); 11082 11083 if (regs && !perf_exclude_event(event, regs)) { 11084 if (!(event->attr.exclude_idle && is_idle_task(current))) 11085 if (__perf_event_overflow(event, 1, &data, regs)) 11086 ret = HRTIMER_NORESTART; 11087 } 11088 11089 period = max_t(u64, 10000, event->hw.sample_period); 11090 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 11091 11092 return ret; 11093 } 11094 11095 static void perf_swevent_start_hrtimer(struct perf_event *event) 11096 { 11097 struct hw_perf_event *hwc = &event->hw; 11098 s64 period; 11099 11100 if (!is_sampling_event(event)) 11101 return; 11102 11103 period = local64_read(&hwc->period_left); 11104 if (period) { 11105 if (period < 0) 11106 period = 10000; 11107 11108 local64_set(&hwc->period_left, 0); 11109 } else { 11110 period = max_t(u64, 10000, hwc->sample_period); 11111 } 11112 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), 11113 HRTIMER_MODE_REL_PINNED_HARD); 11114 } 11115 11116 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 11117 { 11118 struct hw_perf_event *hwc = &event->hw; 11119 11120 if (is_sampling_event(event)) { 11121 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 11122 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 11123 11124 hrtimer_cancel(&hwc->hrtimer); 11125 } 11126 } 11127 11128 static void perf_swevent_init_hrtimer(struct perf_event *event) 11129 { 11130 struct hw_perf_event *hwc = &event->hw; 11131 11132 if (!is_sampling_event(event)) 11133 return; 11134 11135 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 11136 hwc->hrtimer.function = perf_swevent_hrtimer; 11137 11138 /* 11139 * Since hrtimers have a fixed rate, we can do a static freq->period 11140 * mapping and avoid the whole period adjust feedback stuff. 11141 */ 11142 if (event->attr.freq) { 11143 long freq = event->attr.sample_freq; 11144 11145 event->attr.sample_period = NSEC_PER_SEC / freq; 11146 hwc->sample_period = event->attr.sample_period; 11147 local64_set(&hwc->period_left, hwc->sample_period); 11148 hwc->last_period = hwc->sample_period; 11149 event->attr.freq = 0; 11150 } 11151 } 11152 11153 /* 11154 * Software event: cpu wall time clock 11155 */ 11156 11157 static void cpu_clock_event_update(struct perf_event *event) 11158 { 11159 s64 prev; 11160 u64 now; 11161 11162 now = local_clock(); 11163 prev = local64_xchg(&event->hw.prev_count, now); 11164 local64_add(now - prev, &event->count); 11165 } 11166 11167 static void cpu_clock_event_start(struct perf_event *event, int flags) 11168 { 11169 local64_set(&event->hw.prev_count, local_clock()); 11170 perf_swevent_start_hrtimer(event); 11171 } 11172 11173 static void cpu_clock_event_stop(struct perf_event *event, int flags) 11174 { 11175 perf_swevent_cancel_hrtimer(event); 11176 cpu_clock_event_update(event); 11177 } 11178 11179 static int cpu_clock_event_add(struct perf_event *event, int flags) 11180 { 11181 if (flags & PERF_EF_START) 11182 cpu_clock_event_start(event, flags); 11183 perf_event_update_userpage(event); 11184 11185 return 0; 11186 } 11187 11188 static void cpu_clock_event_del(struct perf_event *event, int flags) 11189 { 11190 cpu_clock_event_stop(event, flags); 11191 } 11192 11193 static void cpu_clock_event_read(struct perf_event *event) 11194 { 11195 cpu_clock_event_update(event); 11196 } 11197 11198 static int cpu_clock_event_init(struct perf_event *event) 11199 { 11200 if (event->attr.type != perf_cpu_clock.type) 11201 return -ENOENT; 11202 11203 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 11204 return -ENOENT; 11205 11206 /* 11207 * no branch sampling for software events 11208 */ 11209 if (has_branch_stack(event)) 11210 return -EOPNOTSUPP; 11211 11212 perf_swevent_init_hrtimer(event); 11213 11214 return 0; 11215 } 11216 11217 static struct pmu perf_cpu_clock = { 11218 .task_ctx_nr = perf_sw_context, 11219 11220 .capabilities = PERF_PMU_CAP_NO_NMI, 11221 .dev = PMU_NULL_DEV, 11222 11223 .event_init = cpu_clock_event_init, 11224 .add = cpu_clock_event_add, 11225 .del = cpu_clock_event_del, 11226 .start = cpu_clock_event_start, 11227 .stop = cpu_clock_event_stop, 11228 .read = cpu_clock_event_read, 11229 }; 11230 11231 /* 11232 * Software event: task time clock 11233 */ 11234 11235 static void task_clock_event_update(struct perf_event *event, u64 now) 11236 { 11237 u64 prev; 11238 s64 delta; 11239 11240 prev = local64_xchg(&event->hw.prev_count, now); 11241 delta = now - prev; 11242 local64_add(delta, &event->count); 11243 } 11244 11245 static void task_clock_event_start(struct perf_event *event, int flags) 11246 { 11247 local64_set(&event->hw.prev_count, event->ctx->time); 11248 perf_swevent_start_hrtimer(event); 11249 } 11250 11251 static void task_clock_event_stop(struct perf_event *event, int flags) 11252 { 11253 perf_swevent_cancel_hrtimer(event); 11254 task_clock_event_update(event, event->ctx->time); 11255 } 11256 11257 static int task_clock_event_add(struct perf_event *event, int flags) 11258 { 11259 if (flags & PERF_EF_START) 11260 task_clock_event_start(event, flags); 11261 perf_event_update_userpage(event); 11262 11263 return 0; 11264 } 11265 11266 static void task_clock_event_del(struct perf_event *event, int flags) 11267 { 11268 task_clock_event_stop(event, PERF_EF_UPDATE); 11269 } 11270 11271 static void task_clock_event_read(struct perf_event *event) 11272 { 11273 u64 now = perf_clock(); 11274 u64 delta = now - event->ctx->timestamp; 11275 u64 time = event->ctx->time + delta; 11276 11277 task_clock_event_update(event, time); 11278 } 11279 11280 static int task_clock_event_init(struct perf_event *event) 11281 { 11282 if (event->attr.type != perf_task_clock.type) 11283 return -ENOENT; 11284 11285 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 11286 return -ENOENT; 11287 11288 /* 11289 * no branch sampling for software events 11290 */ 11291 if (has_branch_stack(event)) 11292 return -EOPNOTSUPP; 11293 11294 perf_swevent_init_hrtimer(event); 11295 11296 return 0; 11297 } 11298 11299 static struct pmu perf_task_clock = { 11300 .task_ctx_nr = perf_sw_context, 11301 11302 .capabilities = PERF_PMU_CAP_NO_NMI, 11303 .dev = PMU_NULL_DEV, 11304 11305 .event_init = task_clock_event_init, 11306 .add = task_clock_event_add, 11307 .del = task_clock_event_del, 11308 .start = task_clock_event_start, 11309 .stop = task_clock_event_stop, 11310 .read = task_clock_event_read, 11311 }; 11312 11313 static void perf_pmu_nop_void(struct pmu *pmu) 11314 { 11315 } 11316 11317 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags) 11318 { 11319 } 11320 11321 static int perf_pmu_nop_int(struct pmu *pmu) 11322 { 11323 return 0; 11324 } 11325 11326 static int perf_event_nop_int(struct perf_event *event, u64 value) 11327 { 11328 return 0; 11329 } 11330 11331 static DEFINE_PER_CPU(unsigned int, nop_txn_flags); 11332 11333 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags) 11334 { 11335 __this_cpu_write(nop_txn_flags, flags); 11336 11337 if (flags & ~PERF_PMU_TXN_ADD) 11338 return; 11339 11340 perf_pmu_disable(pmu); 11341 } 11342 11343 static int perf_pmu_commit_txn(struct pmu *pmu) 11344 { 11345 unsigned int flags = __this_cpu_read(nop_txn_flags); 11346 11347 __this_cpu_write(nop_txn_flags, 0); 11348 11349 if (flags & ~PERF_PMU_TXN_ADD) 11350 return 0; 11351 11352 perf_pmu_enable(pmu); 11353 return 0; 11354 } 11355 11356 static void perf_pmu_cancel_txn(struct pmu *pmu) 11357 { 11358 unsigned int flags = __this_cpu_read(nop_txn_flags); 11359 11360 __this_cpu_write(nop_txn_flags, 0); 11361 11362 if (flags & ~PERF_PMU_TXN_ADD) 11363 return; 11364 11365 perf_pmu_enable(pmu); 11366 } 11367 11368 static int perf_event_idx_default(struct perf_event *event) 11369 { 11370 return 0; 11371 } 11372 11373 static void free_pmu_context(struct pmu *pmu) 11374 { 11375 free_percpu(pmu->cpu_pmu_context); 11376 } 11377 11378 /* 11379 * Let userspace know that this PMU supports address range filtering: 11380 */ 11381 static ssize_t nr_addr_filters_show(struct device *dev, 11382 struct device_attribute *attr, 11383 char *page) 11384 { 11385 struct pmu *pmu = dev_get_drvdata(dev); 11386 11387 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters); 11388 } 11389 DEVICE_ATTR_RO(nr_addr_filters); 11390 11391 static struct idr pmu_idr; 11392 11393 static ssize_t 11394 type_show(struct device *dev, struct device_attribute *attr, char *page) 11395 { 11396 struct pmu *pmu = dev_get_drvdata(dev); 11397 11398 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->type); 11399 } 11400 static DEVICE_ATTR_RO(type); 11401 11402 static ssize_t 11403 perf_event_mux_interval_ms_show(struct device *dev, 11404 struct device_attribute *attr, 11405 char *page) 11406 { 11407 struct pmu *pmu = dev_get_drvdata(dev); 11408 11409 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->hrtimer_interval_ms); 11410 } 11411 11412 static DEFINE_MUTEX(mux_interval_mutex); 11413 11414 static ssize_t 11415 perf_event_mux_interval_ms_store(struct device *dev, 11416 struct device_attribute *attr, 11417 const char *buf, size_t count) 11418 { 11419 struct pmu *pmu = dev_get_drvdata(dev); 11420 int timer, cpu, ret; 11421 11422 ret = kstrtoint(buf, 0, &timer); 11423 if (ret) 11424 return ret; 11425 11426 if (timer < 1) 11427 return -EINVAL; 11428 11429 /* same value, noting to do */ 11430 if (timer == pmu->hrtimer_interval_ms) 11431 return count; 11432 11433 mutex_lock(&mux_interval_mutex); 11434 pmu->hrtimer_interval_ms = timer; 11435 11436 /* update all cpuctx for this PMU */ 11437 cpus_read_lock(); 11438 for_each_online_cpu(cpu) { 11439 struct perf_cpu_pmu_context *cpc; 11440 cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu); 11441 cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 11442 11443 cpu_function_call(cpu, perf_mux_hrtimer_restart_ipi, cpc); 11444 } 11445 cpus_read_unlock(); 11446 mutex_unlock(&mux_interval_mutex); 11447 11448 return count; 11449 } 11450 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 11451 11452 static struct attribute *pmu_dev_attrs[] = { 11453 &dev_attr_type.attr, 11454 &dev_attr_perf_event_mux_interval_ms.attr, 11455 &dev_attr_nr_addr_filters.attr, 11456 NULL, 11457 }; 11458 11459 static umode_t pmu_dev_is_visible(struct kobject *kobj, struct attribute *a, int n) 11460 { 11461 struct device *dev = kobj_to_dev(kobj); 11462 struct pmu *pmu = dev_get_drvdata(dev); 11463 11464 if (n == 2 && !pmu->nr_addr_filters) 11465 return 0; 11466 11467 return a->mode; 11468 } 11469 11470 static struct attribute_group pmu_dev_attr_group = { 11471 .is_visible = pmu_dev_is_visible, 11472 .attrs = pmu_dev_attrs, 11473 }; 11474 11475 static const struct attribute_group *pmu_dev_groups[] = { 11476 &pmu_dev_attr_group, 11477 NULL, 11478 }; 11479 11480 static int pmu_bus_running; 11481 static struct bus_type pmu_bus = { 11482 .name = "event_source", 11483 .dev_groups = pmu_dev_groups, 11484 }; 11485 11486 static void pmu_dev_release(struct device *dev) 11487 { 11488 kfree(dev); 11489 } 11490 11491 static int pmu_dev_alloc(struct pmu *pmu) 11492 { 11493 int ret = -ENOMEM; 11494 11495 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 11496 if (!pmu->dev) 11497 goto out; 11498 11499 pmu->dev->groups = pmu->attr_groups; 11500 device_initialize(pmu->dev); 11501 11502 dev_set_drvdata(pmu->dev, pmu); 11503 pmu->dev->bus = &pmu_bus; 11504 pmu->dev->parent = pmu->parent; 11505 pmu->dev->release = pmu_dev_release; 11506 11507 ret = dev_set_name(pmu->dev, "%s", pmu->name); 11508 if (ret) 11509 goto free_dev; 11510 11511 ret = device_add(pmu->dev); 11512 if (ret) 11513 goto free_dev; 11514 11515 if (pmu->attr_update) { 11516 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update); 11517 if (ret) 11518 goto del_dev; 11519 } 11520 11521 out: 11522 return ret; 11523 11524 del_dev: 11525 device_del(pmu->dev); 11526 11527 free_dev: 11528 put_device(pmu->dev); 11529 goto out; 11530 } 11531 11532 static struct lock_class_key cpuctx_mutex; 11533 static struct lock_class_key cpuctx_lock; 11534 11535 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 11536 { 11537 int cpu, ret, max = PERF_TYPE_MAX; 11538 11539 mutex_lock(&pmus_lock); 11540 ret = -ENOMEM; 11541 pmu->pmu_disable_count = alloc_percpu(int); 11542 if (!pmu->pmu_disable_count) 11543 goto unlock; 11544 11545 pmu->type = -1; 11546 if (WARN_ONCE(!name, "Can not register anonymous pmu.\n")) { 11547 ret = -EINVAL; 11548 goto free_pdc; 11549 } 11550 11551 pmu->name = name; 11552 11553 if (type >= 0) 11554 max = type; 11555 11556 ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL); 11557 if (ret < 0) 11558 goto free_pdc; 11559 11560 WARN_ON(type >= 0 && ret != type); 11561 11562 type = ret; 11563 pmu->type = type; 11564 11565 if (pmu_bus_running && !pmu->dev) { 11566 ret = pmu_dev_alloc(pmu); 11567 if (ret) 11568 goto free_idr; 11569 } 11570 11571 ret = -ENOMEM; 11572 pmu->cpu_pmu_context = alloc_percpu(struct perf_cpu_pmu_context); 11573 if (!pmu->cpu_pmu_context) 11574 goto free_dev; 11575 11576 for_each_possible_cpu(cpu) { 11577 struct perf_cpu_pmu_context *cpc; 11578 11579 cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu); 11580 __perf_init_event_pmu_context(&cpc->epc, pmu); 11581 __perf_mux_hrtimer_init(cpc, cpu); 11582 } 11583 11584 if (!pmu->start_txn) { 11585 if (pmu->pmu_enable) { 11586 /* 11587 * If we have pmu_enable/pmu_disable calls, install 11588 * transaction stubs that use that to try and batch 11589 * hardware accesses. 11590 */ 11591 pmu->start_txn = perf_pmu_start_txn; 11592 pmu->commit_txn = perf_pmu_commit_txn; 11593 pmu->cancel_txn = perf_pmu_cancel_txn; 11594 } else { 11595 pmu->start_txn = perf_pmu_nop_txn; 11596 pmu->commit_txn = perf_pmu_nop_int; 11597 pmu->cancel_txn = perf_pmu_nop_void; 11598 } 11599 } 11600 11601 if (!pmu->pmu_enable) { 11602 pmu->pmu_enable = perf_pmu_nop_void; 11603 pmu->pmu_disable = perf_pmu_nop_void; 11604 } 11605 11606 if (!pmu->check_period) 11607 pmu->check_period = perf_event_nop_int; 11608 11609 if (!pmu->event_idx) 11610 pmu->event_idx = perf_event_idx_default; 11611 11612 list_add_rcu(&pmu->entry, &pmus); 11613 atomic_set(&pmu->exclusive_cnt, 0); 11614 ret = 0; 11615 unlock: 11616 mutex_unlock(&pmus_lock); 11617 11618 return ret; 11619 11620 free_dev: 11621 if (pmu->dev && pmu->dev != PMU_NULL_DEV) { 11622 device_del(pmu->dev); 11623 put_device(pmu->dev); 11624 } 11625 11626 free_idr: 11627 idr_remove(&pmu_idr, pmu->type); 11628 11629 free_pdc: 11630 free_percpu(pmu->pmu_disable_count); 11631 goto unlock; 11632 } 11633 EXPORT_SYMBOL_GPL(perf_pmu_register); 11634 11635 void perf_pmu_unregister(struct pmu *pmu) 11636 { 11637 mutex_lock(&pmus_lock); 11638 list_del_rcu(&pmu->entry); 11639 11640 /* 11641 * We dereference the pmu list under both SRCU and regular RCU, so 11642 * synchronize against both of those. 11643 */ 11644 synchronize_srcu(&pmus_srcu); 11645 synchronize_rcu(); 11646 11647 free_percpu(pmu->pmu_disable_count); 11648 idr_remove(&pmu_idr, pmu->type); 11649 if (pmu_bus_running && pmu->dev && pmu->dev != PMU_NULL_DEV) { 11650 if (pmu->nr_addr_filters) 11651 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters); 11652 device_del(pmu->dev); 11653 put_device(pmu->dev); 11654 } 11655 free_pmu_context(pmu); 11656 mutex_unlock(&pmus_lock); 11657 } 11658 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 11659 11660 static inline bool has_extended_regs(struct perf_event *event) 11661 { 11662 return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) || 11663 (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK); 11664 } 11665 11666 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) 11667 { 11668 struct perf_event_context *ctx = NULL; 11669 int ret; 11670 11671 if (!try_module_get(pmu->module)) 11672 return -ENODEV; 11673 11674 /* 11675 * A number of pmu->event_init() methods iterate the sibling_list to, 11676 * for example, validate if the group fits on the PMU. Therefore, 11677 * if this is a sibling event, acquire the ctx->mutex to protect 11678 * the sibling_list. 11679 */ 11680 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) { 11681 /* 11682 * This ctx->mutex can nest when we're called through 11683 * inheritance. See the perf_event_ctx_lock_nested() comment. 11684 */ 11685 ctx = perf_event_ctx_lock_nested(event->group_leader, 11686 SINGLE_DEPTH_NESTING); 11687 BUG_ON(!ctx); 11688 } 11689 11690 event->pmu = pmu; 11691 ret = pmu->event_init(event); 11692 11693 if (ctx) 11694 perf_event_ctx_unlock(event->group_leader, ctx); 11695 11696 if (!ret) { 11697 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) && 11698 has_extended_regs(event)) 11699 ret = -EOPNOTSUPP; 11700 11701 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE && 11702 event_has_any_exclude_flag(event)) 11703 ret = -EINVAL; 11704 11705 if (ret && event->destroy) 11706 event->destroy(event); 11707 } 11708 11709 if (ret) 11710 module_put(pmu->module); 11711 11712 return ret; 11713 } 11714 11715 static struct pmu *perf_init_event(struct perf_event *event) 11716 { 11717 bool extended_type = false; 11718 int idx, type, ret; 11719 struct pmu *pmu; 11720 11721 idx = srcu_read_lock(&pmus_srcu); 11722 11723 /* 11724 * Save original type before calling pmu->event_init() since certain 11725 * pmus overwrites event->attr.type to forward event to another pmu. 11726 */ 11727 event->orig_type = event->attr.type; 11728 11729 /* Try parent's PMU first: */ 11730 if (event->parent && event->parent->pmu) { 11731 pmu = event->parent->pmu; 11732 ret = perf_try_init_event(pmu, event); 11733 if (!ret) 11734 goto unlock; 11735 } 11736 11737 /* 11738 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE 11739 * are often aliases for PERF_TYPE_RAW. 11740 */ 11741 type = event->attr.type; 11742 if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) { 11743 type = event->attr.config >> PERF_PMU_TYPE_SHIFT; 11744 if (!type) { 11745 type = PERF_TYPE_RAW; 11746 } else { 11747 extended_type = true; 11748 event->attr.config &= PERF_HW_EVENT_MASK; 11749 } 11750 } 11751 11752 again: 11753 rcu_read_lock(); 11754 pmu = idr_find(&pmu_idr, type); 11755 rcu_read_unlock(); 11756 if (pmu) { 11757 if (event->attr.type != type && type != PERF_TYPE_RAW && 11758 !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE)) 11759 goto fail; 11760 11761 ret = perf_try_init_event(pmu, event); 11762 if (ret == -ENOENT && event->attr.type != type && !extended_type) { 11763 type = event->attr.type; 11764 goto again; 11765 } 11766 11767 if (ret) 11768 pmu = ERR_PTR(ret); 11769 11770 goto unlock; 11771 } 11772 11773 list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) { 11774 ret = perf_try_init_event(pmu, event); 11775 if (!ret) 11776 goto unlock; 11777 11778 if (ret != -ENOENT) { 11779 pmu = ERR_PTR(ret); 11780 goto unlock; 11781 } 11782 } 11783 fail: 11784 pmu = ERR_PTR(-ENOENT); 11785 unlock: 11786 srcu_read_unlock(&pmus_srcu, idx); 11787 11788 return pmu; 11789 } 11790 11791 static void attach_sb_event(struct perf_event *event) 11792 { 11793 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 11794 11795 raw_spin_lock(&pel->lock); 11796 list_add_rcu(&event->sb_list, &pel->list); 11797 raw_spin_unlock(&pel->lock); 11798 } 11799 11800 /* 11801 * We keep a list of all !task (and therefore per-cpu) events 11802 * that need to receive side-band records. 11803 * 11804 * This avoids having to scan all the various PMU per-cpu contexts 11805 * looking for them. 11806 */ 11807 static void account_pmu_sb_event(struct perf_event *event) 11808 { 11809 if (is_sb_event(event)) 11810 attach_sb_event(event); 11811 } 11812 11813 /* Freq events need the tick to stay alive (see perf_event_task_tick). */ 11814 static void account_freq_event_nohz(void) 11815 { 11816 #ifdef CONFIG_NO_HZ_FULL 11817 /* Lock so we don't race with concurrent unaccount */ 11818 spin_lock(&nr_freq_lock); 11819 if (atomic_inc_return(&nr_freq_events) == 1) 11820 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS); 11821 spin_unlock(&nr_freq_lock); 11822 #endif 11823 } 11824 11825 static void account_freq_event(void) 11826 { 11827 if (tick_nohz_full_enabled()) 11828 account_freq_event_nohz(); 11829 else 11830 atomic_inc(&nr_freq_events); 11831 } 11832 11833 11834 static void account_event(struct perf_event *event) 11835 { 11836 bool inc = false; 11837 11838 if (event->parent) 11839 return; 11840 11841 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB)) 11842 inc = true; 11843 if (event->attr.mmap || event->attr.mmap_data) 11844 atomic_inc(&nr_mmap_events); 11845 if (event->attr.build_id) 11846 atomic_inc(&nr_build_id_events); 11847 if (event->attr.comm) 11848 atomic_inc(&nr_comm_events); 11849 if (event->attr.namespaces) 11850 atomic_inc(&nr_namespaces_events); 11851 if (event->attr.cgroup) 11852 atomic_inc(&nr_cgroup_events); 11853 if (event->attr.task) 11854 atomic_inc(&nr_task_events); 11855 if (event->attr.freq) 11856 account_freq_event(); 11857 if (event->attr.context_switch) { 11858 atomic_inc(&nr_switch_events); 11859 inc = true; 11860 } 11861 if (has_branch_stack(event)) 11862 inc = true; 11863 if (is_cgroup_event(event)) 11864 inc = true; 11865 if (event->attr.ksymbol) 11866 atomic_inc(&nr_ksymbol_events); 11867 if (event->attr.bpf_event) 11868 atomic_inc(&nr_bpf_events); 11869 if (event->attr.text_poke) 11870 atomic_inc(&nr_text_poke_events); 11871 11872 if (inc) { 11873 /* 11874 * We need the mutex here because static_branch_enable() 11875 * must complete *before* the perf_sched_count increment 11876 * becomes visible. 11877 */ 11878 if (atomic_inc_not_zero(&perf_sched_count)) 11879 goto enabled; 11880 11881 mutex_lock(&perf_sched_mutex); 11882 if (!atomic_read(&perf_sched_count)) { 11883 static_branch_enable(&perf_sched_events); 11884 /* 11885 * Guarantee that all CPUs observe they key change and 11886 * call the perf scheduling hooks before proceeding to 11887 * install events that need them. 11888 */ 11889 synchronize_rcu(); 11890 } 11891 /* 11892 * Now that we have waited for the sync_sched(), allow further 11893 * increments to by-pass the mutex. 11894 */ 11895 atomic_inc(&perf_sched_count); 11896 mutex_unlock(&perf_sched_mutex); 11897 } 11898 enabled: 11899 11900 account_pmu_sb_event(event); 11901 } 11902 11903 /* 11904 * Allocate and initialize an event structure 11905 */ 11906 static struct perf_event * 11907 perf_event_alloc(struct perf_event_attr *attr, int cpu, 11908 struct task_struct *task, 11909 struct perf_event *group_leader, 11910 struct perf_event *parent_event, 11911 perf_overflow_handler_t overflow_handler, 11912 void *context, int cgroup_fd) 11913 { 11914 struct pmu *pmu; 11915 struct perf_event *event; 11916 struct hw_perf_event *hwc; 11917 long err = -EINVAL; 11918 int node; 11919 11920 if ((unsigned)cpu >= nr_cpu_ids) { 11921 if (!task || cpu != -1) 11922 return ERR_PTR(-EINVAL); 11923 } 11924 if (attr->sigtrap && !task) { 11925 /* Requires a task: avoid signalling random tasks. */ 11926 return ERR_PTR(-EINVAL); 11927 } 11928 11929 node = (cpu >= 0) ? cpu_to_node(cpu) : -1; 11930 event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO, 11931 node); 11932 if (!event) 11933 return ERR_PTR(-ENOMEM); 11934 11935 /* 11936 * Single events are their own group leaders, with an 11937 * empty sibling list: 11938 */ 11939 if (!group_leader) 11940 group_leader = event; 11941 11942 mutex_init(&event->child_mutex); 11943 INIT_LIST_HEAD(&event->child_list); 11944 11945 INIT_LIST_HEAD(&event->event_entry); 11946 INIT_LIST_HEAD(&event->sibling_list); 11947 INIT_LIST_HEAD(&event->active_list); 11948 init_event_group(event); 11949 INIT_LIST_HEAD(&event->rb_entry); 11950 INIT_LIST_HEAD(&event->active_entry); 11951 INIT_LIST_HEAD(&event->addr_filters.list); 11952 INIT_HLIST_NODE(&event->hlist_entry); 11953 11954 11955 init_waitqueue_head(&event->waitq); 11956 init_irq_work(&event->pending_irq, perf_pending_irq); 11957 init_task_work(&event->pending_task, perf_pending_task); 11958 rcuwait_init(&event->pending_work_wait); 11959 11960 mutex_init(&event->mmap_mutex); 11961 raw_spin_lock_init(&event->addr_filters.lock); 11962 11963 atomic_long_set(&event->refcount, 1); 11964 event->cpu = cpu; 11965 event->attr = *attr; 11966 event->group_leader = group_leader; 11967 event->pmu = NULL; 11968 event->oncpu = -1; 11969 11970 event->parent = parent_event; 11971 11972 event->ns = get_pid_ns(task_active_pid_ns(current)); 11973 event->id = atomic64_inc_return(&perf_event_id); 11974 11975 event->state = PERF_EVENT_STATE_INACTIVE; 11976 11977 if (parent_event) 11978 event->event_caps = parent_event->event_caps; 11979 11980 if (task) { 11981 event->attach_state = PERF_ATTACH_TASK; 11982 /* 11983 * XXX pmu::event_init needs to know what task to account to 11984 * and we cannot use the ctx information because we need the 11985 * pmu before we get a ctx. 11986 */ 11987 event->hw.target = get_task_struct(task); 11988 } 11989 11990 event->clock = &local_clock; 11991 if (parent_event) 11992 event->clock = parent_event->clock; 11993 11994 if (!overflow_handler && parent_event) { 11995 overflow_handler = parent_event->overflow_handler; 11996 context = parent_event->overflow_handler_context; 11997 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING) 11998 if (overflow_handler == bpf_overflow_handler) { 11999 struct bpf_prog *prog = parent_event->prog; 12000 12001 bpf_prog_inc(prog); 12002 event->prog = prog; 12003 event->orig_overflow_handler = 12004 parent_event->orig_overflow_handler; 12005 } 12006 #endif 12007 } 12008 12009 if (overflow_handler) { 12010 event->overflow_handler = overflow_handler; 12011 event->overflow_handler_context = context; 12012 } else if (is_write_backward(event)){ 12013 event->overflow_handler = perf_event_output_backward; 12014 event->overflow_handler_context = NULL; 12015 } else { 12016 event->overflow_handler = perf_event_output_forward; 12017 event->overflow_handler_context = NULL; 12018 } 12019 12020 perf_event__state_init(event); 12021 12022 pmu = NULL; 12023 12024 hwc = &event->hw; 12025 hwc->sample_period = attr->sample_period; 12026 if (attr->freq && attr->sample_freq) 12027 hwc->sample_period = 1; 12028 hwc->last_period = hwc->sample_period; 12029 12030 local64_set(&hwc->period_left, hwc->sample_period); 12031 12032 /* 12033 * We currently do not support PERF_SAMPLE_READ on inherited events. 12034 * See perf_output_read(). 12035 */ 12036 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ)) 12037 goto err_ns; 12038 12039 if (!has_branch_stack(event)) 12040 event->attr.branch_sample_type = 0; 12041 12042 pmu = perf_init_event(event); 12043 if (IS_ERR(pmu)) { 12044 err = PTR_ERR(pmu); 12045 goto err_ns; 12046 } 12047 12048 /* 12049 * Disallow uncore-task events. Similarly, disallow uncore-cgroup 12050 * events (they don't make sense as the cgroup will be different 12051 * on other CPUs in the uncore mask). 12052 */ 12053 if (pmu->task_ctx_nr == perf_invalid_context && (task || cgroup_fd != -1)) { 12054 err = -EINVAL; 12055 goto err_pmu; 12056 } 12057 12058 if (event->attr.aux_output && 12059 !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) { 12060 err = -EOPNOTSUPP; 12061 goto err_pmu; 12062 } 12063 12064 if (cgroup_fd != -1) { 12065 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); 12066 if (err) 12067 goto err_pmu; 12068 } 12069 12070 err = exclusive_event_init(event); 12071 if (err) 12072 goto err_pmu; 12073 12074 if (has_addr_filter(event)) { 12075 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters, 12076 sizeof(struct perf_addr_filter_range), 12077 GFP_KERNEL); 12078 if (!event->addr_filter_ranges) { 12079 err = -ENOMEM; 12080 goto err_per_task; 12081 } 12082 12083 /* 12084 * Clone the parent's vma offsets: they are valid until exec() 12085 * even if the mm is not shared with the parent. 12086 */ 12087 if (event->parent) { 12088 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 12089 12090 raw_spin_lock_irq(&ifh->lock); 12091 memcpy(event->addr_filter_ranges, 12092 event->parent->addr_filter_ranges, 12093 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range)); 12094 raw_spin_unlock_irq(&ifh->lock); 12095 } 12096 12097 /* force hw sync on the address filters */ 12098 event->addr_filters_gen = 1; 12099 } 12100 12101 if (!event->parent) { 12102 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 12103 err = get_callchain_buffers(attr->sample_max_stack); 12104 if (err) 12105 goto err_addr_filters; 12106 } 12107 } 12108 12109 err = security_perf_event_alloc(event); 12110 if (err) 12111 goto err_callchain_buffer; 12112 12113 /* symmetric to unaccount_event() in _free_event() */ 12114 account_event(event); 12115 12116 return event; 12117 12118 err_callchain_buffer: 12119 if (!event->parent) { 12120 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 12121 put_callchain_buffers(); 12122 } 12123 err_addr_filters: 12124 kfree(event->addr_filter_ranges); 12125 12126 err_per_task: 12127 exclusive_event_destroy(event); 12128 12129 err_pmu: 12130 if (is_cgroup_event(event)) 12131 perf_detach_cgroup(event); 12132 if (event->destroy) 12133 event->destroy(event); 12134 module_put(pmu->module); 12135 err_ns: 12136 if (event->hw.target) 12137 put_task_struct(event->hw.target); 12138 call_rcu(&event->rcu_head, free_event_rcu); 12139 12140 return ERR_PTR(err); 12141 } 12142 12143 static int perf_copy_attr(struct perf_event_attr __user *uattr, 12144 struct perf_event_attr *attr) 12145 { 12146 u32 size; 12147 int ret; 12148 12149 /* Zero the full structure, so that a short copy will be nice. */ 12150 memset(attr, 0, sizeof(*attr)); 12151 12152 ret = get_user(size, &uattr->size); 12153 if (ret) 12154 return ret; 12155 12156 /* ABI compatibility quirk: */ 12157 if (!size) 12158 size = PERF_ATTR_SIZE_VER0; 12159 if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE) 12160 goto err_size; 12161 12162 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); 12163 if (ret) { 12164 if (ret == -E2BIG) 12165 goto err_size; 12166 return ret; 12167 } 12168 12169 attr->size = size; 12170 12171 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) 12172 return -EINVAL; 12173 12174 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 12175 return -EINVAL; 12176 12177 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 12178 return -EINVAL; 12179 12180 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 12181 u64 mask = attr->branch_sample_type; 12182 12183 /* only using defined bits */ 12184 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 12185 return -EINVAL; 12186 12187 /* at least one branch bit must be set */ 12188 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 12189 return -EINVAL; 12190 12191 /* propagate priv level, when not set for branch */ 12192 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 12193 12194 /* exclude_kernel checked on syscall entry */ 12195 if (!attr->exclude_kernel) 12196 mask |= PERF_SAMPLE_BRANCH_KERNEL; 12197 12198 if (!attr->exclude_user) 12199 mask |= PERF_SAMPLE_BRANCH_USER; 12200 12201 if (!attr->exclude_hv) 12202 mask |= PERF_SAMPLE_BRANCH_HV; 12203 /* 12204 * adjust user setting (for HW filter setup) 12205 */ 12206 attr->branch_sample_type = mask; 12207 } 12208 /* privileged levels capture (kernel, hv): check permissions */ 12209 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) { 12210 ret = perf_allow_kernel(attr); 12211 if (ret) 12212 return ret; 12213 } 12214 } 12215 12216 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 12217 ret = perf_reg_validate(attr->sample_regs_user); 12218 if (ret) 12219 return ret; 12220 } 12221 12222 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 12223 if (!arch_perf_have_user_stack_dump()) 12224 return -ENOSYS; 12225 12226 /* 12227 * We have __u32 type for the size, but so far 12228 * we can only use __u16 as maximum due to the 12229 * __u16 sample size limit. 12230 */ 12231 if (attr->sample_stack_user >= USHRT_MAX) 12232 return -EINVAL; 12233 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 12234 return -EINVAL; 12235 } 12236 12237 if (!attr->sample_max_stack) 12238 attr->sample_max_stack = sysctl_perf_event_max_stack; 12239 12240 if (attr->sample_type & PERF_SAMPLE_REGS_INTR) 12241 ret = perf_reg_validate(attr->sample_regs_intr); 12242 12243 #ifndef CONFIG_CGROUP_PERF 12244 if (attr->sample_type & PERF_SAMPLE_CGROUP) 12245 return -EINVAL; 12246 #endif 12247 if ((attr->sample_type & PERF_SAMPLE_WEIGHT) && 12248 (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT)) 12249 return -EINVAL; 12250 12251 if (!attr->inherit && attr->inherit_thread) 12252 return -EINVAL; 12253 12254 if (attr->remove_on_exec && attr->enable_on_exec) 12255 return -EINVAL; 12256 12257 if (attr->sigtrap && !attr->remove_on_exec) 12258 return -EINVAL; 12259 12260 out: 12261 return ret; 12262 12263 err_size: 12264 put_user(sizeof(*attr), &uattr->size); 12265 ret = -E2BIG; 12266 goto out; 12267 } 12268 12269 static void mutex_lock_double(struct mutex *a, struct mutex *b) 12270 { 12271 if (b < a) 12272 swap(a, b); 12273 12274 mutex_lock(a); 12275 mutex_lock_nested(b, SINGLE_DEPTH_NESTING); 12276 } 12277 12278 static int 12279 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 12280 { 12281 struct perf_buffer *rb = NULL; 12282 int ret = -EINVAL; 12283 12284 if (!output_event) { 12285 mutex_lock(&event->mmap_mutex); 12286 goto set; 12287 } 12288 12289 /* don't allow circular references */ 12290 if (event == output_event) 12291 goto out; 12292 12293 /* 12294 * Don't allow cross-cpu buffers 12295 */ 12296 if (output_event->cpu != event->cpu) 12297 goto out; 12298 12299 /* 12300 * If its not a per-cpu rb, it must be the same task. 12301 */ 12302 if (output_event->cpu == -1 && output_event->hw.target != event->hw.target) 12303 goto out; 12304 12305 /* 12306 * Mixing clocks in the same buffer is trouble you don't need. 12307 */ 12308 if (output_event->clock != event->clock) 12309 goto out; 12310 12311 /* 12312 * Either writing ring buffer from beginning or from end. 12313 * Mixing is not allowed. 12314 */ 12315 if (is_write_backward(output_event) != is_write_backward(event)) 12316 goto out; 12317 12318 /* 12319 * If both events generate aux data, they must be on the same PMU 12320 */ 12321 if (has_aux(event) && has_aux(output_event) && 12322 event->pmu != output_event->pmu) 12323 goto out; 12324 12325 /* 12326 * Hold both mmap_mutex to serialize against perf_mmap_close(). Since 12327 * output_event is already on rb->event_list, and the list iteration 12328 * restarts after every removal, it is guaranteed this new event is 12329 * observed *OR* if output_event is already removed, it's guaranteed we 12330 * observe !rb->mmap_count. 12331 */ 12332 mutex_lock_double(&event->mmap_mutex, &output_event->mmap_mutex); 12333 set: 12334 /* Can't redirect output if we've got an active mmap() */ 12335 if (atomic_read(&event->mmap_count)) 12336 goto unlock; 12337 12338 if (output_event) { 12339 /* get the rb we want to redirect to */ 12340 rb = ring_buffer_get(output_event); 12341 if (!rb) 12342 goto unlock; 12343 12344 /* did we race against perf_mmap_close() */ 12345 if (!atomic_read(&rb->mmap_count)) { 12346 ring_buffer_put(rb); 12347 goto unlock; 12348 } 12349 } 12350 12351 ring_buffer_attach(event, rb); 12352 12353 ret = 0; 12354 unlock: 12355 mutex_unlock(&event->mmap_mutex); 12356 if (output_event) 12357 mutex_unlock(&output_event->mmap_mutex); 12358 12359 out: 12360 return ret; 12361 } 12362 12363 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) 12364 { 12365 bool nmi_safe = false; 12366 12367 switch (clk_id) { 12368 case CLOCK_MONOTONIC: 12369 event->clock = &ktime_get_mono_fast_ns; 12370 nmi_safe = true; 12371 break; 12372 12373 case CLOCK_MONOTONIC_RAW: 12374 event->clock = &ktime_get_raw_fast_ns; 12375 nmi_safe = true; 12376 break; 12377 12378 case CLOCK_REALTIME: 12379 event->clock = &ktime_get_real_ns; 12380 break; 12381 12382 case CLOCK_BOOTTIME: 12383 event->clock = &ktime_get_boottime_ns; 12384 break; 12385 12386 case CLOCK_TAI: 12387 event->clock = &ktime_get_clocktai_ns; 12388 break; 12389 12390 default: 12391 return -EINVAL; 12392 } 12393 12394 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) 12395 return -EINVAL; 12396 12397 return 0; 12398 } 12399 12400 static bool 12401 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task) 12402 { 12403 unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS; 12404 bool is_capable = perfmon_capable(); 12405 12406 if (attr->sigtrap) { 12407 /* 12408 * perf_event_attr::sigtrap sends signals to the other task. 12409 * Require the current task to also have CAP_KILL. 12410 */ 12411 rcu_read_lock(); 12412 is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL); 12413 rcu_read_unlock(); 12414 12415 /* 12416 * If the required capabilities aren't available, checks for 12417 * ptrace permissions: upgrade to ATTACH, since sending signals 12418 * can effectively change the target task. 12419 */ 12420 ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS; 12421 } 12422 12423 /* 12424 * Preserve ptrace permission check for backwards compatibility. The 12425 * ptrace check also includes checks that the current task and other 12426 * task have matching uids, and is therefore not done here explicitly. 12427 */ 12428 return is_capable || ptrace_may_access(task, ptrace_mode); 12429 } 12430 12431 /** 12432 * sys_perf_event_open - open a performance event, associate it to a task/cpu 12433 * 12434 * @attr_uptr: event_id type attributes for monitoring/sampling 12435 * @pid: target pid 12436 * @cpu: target cpu 12437 * @group_fd: group leader event fd 12438 * @flags: perf event open flags 12439 */ 12440 SYSCALL_DEFINE5(perf_event_open, 12441 struct perf_event_attr __user *, attr_uptr, 12442 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 12443 { 12444 struct perf_event *group_leader = NULL, *output_event = NULL; 12445 struct perf_event_pmu_context *pmu_ctx; 12446 struct perf_event *event, *sibling; 12447 struct perf_event_attr attr; 12448 struct perf_event_context *ctx; 12449 struct file *event_file = NULL; 12450 struct fd group = {NULL, 0}; 12451 struct task_struct *task = NULL; 12452 struct pmu *pmu; 12453 int event_fd; 12454 int move_group = 0; 12455 int err; 12456 int f_flags = O_RDWR; 12457 int cgroup_fd = -1; 12458 12459 /* for future expandability... */ 12460 if (flags & ~PERF_FLAG_ALL) 12461 return -EINVAL; 12462 12463 err = perf_copy_attr(attr_uptr, &attr); 12464 if (err) 12465 return err; 12466 12467 /* Do we allow access to perf_event_open(2) ? */ 12468 err = security_perf_event_open(&attr, PERF_SECURITY_OPEN); 12469 if (err) 12470 return err; 12471 12472 if (!attr.exclude_kernel) { 12473 err = perf_allow_kernel(&attr); 12474 if (err) 12475 return err; 12476 } 12477 12478 if (attr.namespaces) { 12479 if (!perfmon_capable()) 12480 return -EACCES; 12481 } 12482 12483 if (attr.freq) { 12484 if (attr.sample_freq > sysctl_perf_event_sample_rate) 12485 return -EINVAL; 12486 } else { 12487 if (attr.sample_period & (1ULL << 63)) 12488 return -EINVAL; 12489 } 12490 12491 /* Only privileged users can get physical addresses */ 12492 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) { 12493 err = perf_allow_kernel(&attr); 12494 if (err) 12495 return err; 12496 } 12497 12498 /* REGS_INTR can leak data, lockdown must prevent this */ 12499 if (attr.sample_type & PERF_SAMPLE_REGS_INTR) { 12500 err = security_locked_down(LOCKDOWN_PERF); 12501 if (err) 12502 return err; 12503 } 12504 12505 /* 12506 * In cgroup mode, the pid argument is used to pass the fd 12507 * opened to the cgroup directory in cgroupfs. The cpu argument 12508 * designates the cpu on which to monitor threads from that 12509 * cgroup. 12510 */ 12511 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 12512 return -EINVAL; 12513 12514 if (flags & PERF_FLAG_FD_CLOEXEC) 12515 f_flags |= O_CLOEXEC; 12516 12517 event_fd = get_unused_fd_flags(f_flags); 12518 if (event_fd < 0) 12519 return event_fd; 12520 12521 if (group_fd != -1) { 12522 err = perf_fget_light(group_fd, &group); 12523 if (err) 12524 goto err_fd; 12525 group_leader = group.file->private_data; 12526 if (flags & PERF_FLAG_FD_OUTPUT) 12527 output_event = group_leader; 12528 if (flags & PERF_FLAG_FD_NO_GROUP) 12529 group_leader = NULL; 12530 } 12531 12532 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 12533 task = find_lively_task_by_vpid(pid); 12534 if (IS_ERR(task)) { 12535 err = PTR_ERR(task); 12536 goto err_group_fd; 12537 } 12538 } 12539 12540 if (task && group_leader && 12541 group_leader->attr.inherit != attr.inherit) { 12542 err = -EINVAL; 12543 goto err_task; 12544 } 12545 12546 if (flags & PERF_FLAG_PID_CGROUP) 12547 cgroup_fd = pid; 12548 12549 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 12550 NULL, NULL, cgroup_fd); 12551 if (IS_ERR(event)) { 12552 err = PTR_ERR(event); 12553 goto err_task; 12554 } 12555 12556 if (is_sampling_event(event)) { 12557 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 12558 err = -EOPNOTSUPP; 12559 goto err_alloc; 12560 } 12561 } 12562 12563 /* 12564 * Special case software events and allow them to be part of 12565 * any hardware group. 12566 */ 12567 pmu = event->pmu; 12568 12569 if (attr.use_clockid) { 12570 err = perf_event_set_clock(event, attr.clockid); 12571 if (err) 12572 goto err_alloc; 12573 } 12574 12575 if (pmu->task_ctx_nr == perf_sw_context) 12576 event->event_caps |= PERF_EV_CAP_SOFTWARE; 12577 12578 if (task) { 12579 err = down_read_interruptible(&task->signal->exec_update_lock); 12580 if (err) 12581 goto err_alloc; 12582 12583 /* 12584 * We must hold exec_update_lock across this and any potential 12585 * perf_install_in_context() call for this new event to 12586 * serialize against exec() altering our credentials (and the 12587 * perf_event_exit_task() that could imply). 12588 */ 12589 err = -EACCES; 12590 if (!perf_check_permission(&attr, task)) 12591 goto err_cred; 12592 } 12593 12594 /* 12595 * Get the target context (task or percpu): 12596 */ 12597 ctx = find_get_context(task, event); 12598 if (IS_ERR(ctx)) { 12599 err = PTR_ERR(ctx); 12600 goto err_cred; 12601 } 12602 12603 mutex_lock(&ctx->mutex); 12604 12605 if (ctx->task == TASK_TOMBSTONE) { 12606 err = -ESRCH; 12607 goto err_locked; 12608 } 12609 12610 if (!task) { 12611 /* 12612 * Check if the @cpu we're creating an event for is online. 12613 * 12614 * We use the perf_cpu_context::ctx::mutex to serialize against 12615 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 12616 */ 12617 struct perf_cpu_context *cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu); 12618 12619 if (!cpuctx->online) { 12620 err = -ENODEV; 12621 goto err_locked; 12622 } 12623 } 12624 12625 if (group_leader) { 12626 err = -EINVAL; 12627 12628 /* 12629 * Do not allow a recursive hierarchy (this new sibling 12630 * becoming part of another group-sibling): 12631 */ 12632 if (group_leader->group_leader != group_leader) 12633 goto err_locked; 12634 12635 /* All events in a group should have the same clock */ 12636 if (group_leader->clock != event->clock) 12637 goto err_locked; 12638 12639 /* 12640 * Make sure we're both events for the same CPU; 12641 * grouping events for different CPUs is broken; since 12642 * you can never concurrently schedule them anyhow. 12643 */ 12644 if (group_leader->cpu != event->cpu) 12645 goto err_locked; 12646 12647 /* 12648 * Make sure we're both on the same context; either task or cpu. 12649 */ 12650 if (group_leader->ctx != ctx) 12651 goto err_locked; 12652 12653 /* 12654 * Only a group leader can be exclusive or pinned 12655 */ 12656 if (attr.exclusive || attr.pinned) 12657 goto err_locked; 12658 12659 if (is_software_event(event) && 12660 !in_software_context(group_leader)) { 12661 /* 12662 * If the event is a sw event, but the group_leader 12663 * is on hw context. 12664 * 12665 * Allow the addition of software events to hw 12666 * groups, this is safe because software events 12667 * never fail to schedule. 12668 * 12669 * Note the comment that goes with struct 12670 * perf_event_pmu_context. 12671 */ 12672 pmu = group_leader->pmu_ctx->pmu; 12673 } else if (!is_software_event(event)) { 12674 if (is_software_event(group_leader) && 12675 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 12676 /* 12677 * In case the group is a pure software group, and we 12678 * try to add a hardware event, move the whole group to 12679 * the hardware context. 12680 */ 12681 move_group = 1; 12682 } 12683 12684 /* Don't allow group of multiple hw events from different pmus */ 12685 if (!in_software_context(group_leader) && 12686 group_leader->pmu_ctx->pmu != pmu) 12687 goto err_locked; 12688 } 12689 } 12690 12691 /* 12692 * Now that we're certain of the pmu; find the pmu_ctx. 12693 */ 12694 pmu_ctx = find_get_pmu_context(pmu, ctx, event); 12695 if (IS_ERR(pmu_ctx)) { 12696 err = PTR_ERR(pmu_ctx); 12697 goto err_locked; 12698 } 12699 event->pmu_ctx = pmu_ctx; 12700 12701 if (output_event) { 12702 err = perf_event_set_output(event, output_event); 12703 if (err) 12704 goto err_context; 12705 } 12706 12707 if (!perf_event_validate_size(event)) { 12708 err = -E2BIG; 12709 goto err_context; 12710 } 12711 12712 if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) { 12713 err = -EINVAL; 12714 goto err_context; 12715 } 12716 12717 /* 12718 * Must be under the same ctx::mutex as perf_install_in_context(), 12719 * because we need to serialize with concurrent event creation. 12720 */ 12721 if (!exclusive_event_installable(event, ctx)) { 12722 err = -EBUSY; 12723 goto err_context; 12724 } 12725 12726 WARN_ON_ONCE(ctx->parent_ctx); 12727 12728 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, f_flags); 12729 if (IS_ERR(event_file)) { 12730 err = PTR_ERR(event_file); 12731 event_file = NULL; 12732 goto err_context; 12733 } 12734 12735 /* 12736 * This is the point on no return; we cannot fail hereafter. This is 12737 * where we start modifying current state. 12738 */ 12739 12740 if (move_group) { 12741 perf_remove_from_context(group_leader, 0); 12742 put_pmu_ctx(group_leader->pmu_ctx); 12743 12744 for_each_sibling_event(sibling, group_leader) { 12745 perf_remove_from_context(sibling, 0); 12746 put_pmu_ctx(sibling->pmu_ctx); 12747 } 12748 12749 /* 12750 * Install the group siblings before the group leader. 12751 * 12752 * Because a group leader will try and install the entire group 12753 * (through the sibling list, which is still in-tact), we can 12754 * end up with siblings installed in the wrong context. 12755 * 12756 * By installing siblings first we NO-OP because they're not 12757 * reachable through the group lists. 12758 */ 12759 for_each_sibling_event(sibling, group_leader) { 12760 sibling->pmu_ctx = pmu_ctx; 12761 get_pmu_ctx(pmu_ctx); 12762 perf_event__state_init(sibling); 12763 perf_install_in_context(ctx, sibling, sibling->cpu); 12764 } 12765 12766 /* 12767 * Removing from the context ends up with disabled 12768 * event. What we want here is event in the initial 12769 * startup state, ready to be add into new context. 12770 */ 12771 group_leader->pmu_ctx = pmu_ctx; 12772 get_pmu_ctx(pmu_ctx); 12773 perf_event__state_init(group_leader); 12774 perf_install_in_context(ctx, group_leader, group_leader->cpu); 12775 } 12776 12777 /* 12778 * Precalculate sample_data sizes; do while holding ctx::mutex such 12779 * that we're serialized against further additions and before 12780 * perf_install_in_context() which is the point the event is active and 12781 * can use these values. 12782 */ 12783 perf_event__header_size(event); 12784 perf_event__id_header_size(event); 12785 12786 event->owner = current; 12787 12788 perf_install_in_context(ctx, event, event->cpu); 12789 perf_unpin_context(ctx); 12790 12791 mutex_unlock(&ctx->mutex); 12792 12793 if (task) { 12794 up_read(&task->signal->exec_update_lock); 12795 put_task_struct(task); 12796 } 12797 12798 mutex_lock(¤t->perf_event_mutex); 12799 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 12800 mutex_unlock(¤t->perf_event_mutex); 12801 12802 /* 12803 * Drop the reference on the group_event after placing the 12804 * new event on the sibling_list. This ensures destruction 12805 * of the group leader will find the pointer to itself in 12806 * perf_group_detach(). 12807 */ 12808 fdput(group); 12809 fd_install(event_fd, event_file); 12810 return event_fd; 12811 12812 err_context: 12813 put_pmu_ctx(event->pmu_ctx); 12814 event->pmu_ctx = NULL; /* _free_event() */ 12815 err_locked: 12816 mutex_unlock(&ctx->mutex); 12817 perf_unpin_context(ctx); 12818 put_ctx(ctx); 12819 err_cred: 12820 if (task) 12821 up_read(&task->signal->exec_update_lock); 12822 err_alloc: 12823 free_event(event); 12824 err_task: 12825 if (task) 12826 put_task_struct(task); 12827 err_group_fd: 12828 fdput(group); 12829 err_fd: 12830 put_unused_fd(event_fd); 12831 return err; 12832 } 12833 12834 /** 12835 * perf_event_create_kernel_counter 12836 * 12837 * @attr: attributes of the counter to create 12838 * @cpu: cpu in which the counter is bound 12839 * @task: task to profile (NULL for percpu) 12840 * @overflow_handler: callback to trigger when we hit the event 12841 * @context: context data could be used in overflow_handler callback 12842 */ 12843 struct perf_event * 12844 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 12845 struct task_struct *task, 12846 perf_overflow_handler_t overflow_handler, 12847 void *context) 12848 { 12849 struct perf_event_pmu_context *pmu_ctx; 12850 struct perf_event_context *ctx; 12851 struct perf_event *event; 12852 struct pmu *pmu; 12853 int err; 12854 12855 /* 12856 * Grouping is not supported for kernel events, neither is 'AUX', 12857 * make sure the caller's intentions are adjusted. 12858 */ 12859 if (attr->aux_output) 12860 return ERR_PTR(-EINVAL); 12861 12862 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 12863 overflow_handler, context, -1); 12864 if (IS_ERR(event)) { 12865 err = PTR_ERR(event); 12866 goto err; 12867 } 12868 12869 /* Mark owner so we could distinguish it from user events. */ 12870 event->owner = TASK_TOMBSTONE; 12871 pmu = event->pmu; 12872 12873 if (pmu->task_ctx_nr == perf_sw_context) 12874 event->event_caps |= PERF_EV_CAP_SOFTWARE; 12875 12876 /* 12877 * Get the target context (task or percpu): 12878 */ 12879 ctx = find_get_context(task, event); 12880 if (IS_ERR(ctx)) { 12881 err = PTR_ERR(ctx); 12882 goto err_alloc; 12883 } 12884 12885 WARN_ON_ONCE(ctx->parent_ctx); 12886 mutex_lock(&ctx->mutex); 12887 if (ctx->task == TASK_TOMBSTONE) { 12888 err = -ESRCH; 12889 goto err_unlock; 12890 } 12891 12892 pmu_ctx = find_get_pmu_context(pmu, ctx, event); 12893 if (IS_ERR(pmu_ctx)) { 12894 err = PTR_ERR(pmu_ctx); 12895 goto err_unlock; 12896 } 12897 event->pmu_ctx = pmu_ctx; 12898 12899 if (!task) { 12900 /* 12901 * Check if the @cpu we're creating an event for is online. 12902 * 12903 * We use the perf_cpu_context::ctx::mutex to serialize against 12904 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 12905 */ 12906 struct perf_cpu_context *cpuctx = 12907 container_of(ctx, struct perf_cpu_context, ctx); 12908 if (!cpuctx->online) { 12909 err = -ENODEV; 12910 goto err_pmu_ctx; 12911 } 12912 } 12913 12914 if (!exclusive_event_installable(event, ctx)) { 12915 err = -EBUSY; 12916 goto err_pmu_ctx; 12917 } 12918 12919 perf_install_in_context(ctx, event, event->cpu); 12920 perf_unpin_context(ctx); 12921 mutex_unlock(&ctx->mutex); 12922 12923 return event; 12924 12925 err_pmu_ctx: 12926 put_pmu_ctx(pmu_ctx); 12927 event->pmu_ctx = NULL; /* _free_event() */ 12928 err_unlock: 12929 mutex_unlock(&ctx->mutex); 12930 perf_unpin_context(ctx); 12931 put_ctx(ctx); 12932 err_alloc: 12933 free_event(event); 12934 err: 12935 return ERR_PTR(err); 12936 } 12937 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 12938 12939 static void __perf_pmu_remove(struct perf_event_context *ctx, 12940 int cpu, struct pmu *pmu, 12941 struct perf_event_groups *groups, 12942 struct list_head *events) 12943 { 12944 struct perf_event *event, *sibling; 12945 12946 perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) { 12947 perf_remove_from_context(event, 0); 12948 put_pmu_ctx(event->pmu_ctx); 12949 list_add(&event->migrate_entry, events); 12950 12951 for_each_sibling_event(sibling, event) { 12952 perf_remove_from_context(sibling, 0); 12953 put_pmu_ctx(sibling->pmu_ctx); 12954 list_add(&sibling->migrate_entry, events); 12955 } 12956 } 12957 } 12958 12959 static void __perf_pmu_install_event(struct pmu *pmu, 12960 struct perf_event_context *ctx, 12961 int cpu, struct perf_event *event) 12962 { 12963 struct perf_event_pmu_context *epc; 12964 struct perf_event_context *old_ctx = event->ctx; 12965 12966 get_ctx(ctx); /* normally find_get_context() */ 12967 12968 event->cpu = cpu; 12969 epc = find_get_pmu_context(pmu, ctx, event); 12970 event->pmu_ctx = epc; 12971 12972 if (event->state >= PERF_EVENT_STATE_OFF) 12973 event->state = PERF_EVENT_STATE_INACTIVE; 12974 perf_install_in_context(ctx, event, cpu); 12975 12976 /* 12977 * Now that event->ctx is updated and visible, put the old ctx. 12978 */ 12979 put_ctx(old_ctx); 12980 } 12981 12982 static void __perf_pmu_install(struct perf_event_context *ctx, 12983 int cpu, struct pmu *pmu, struct list_head *events) 12984 { 12985 struct perf_event *event, *tmp; 12986 12987 /* 12988 * Re-instate events in 2 passes. 12989 * 12990 * Skip over group leaders and only install siblings on this first 12991 * pass, siblings will not get enabled without a leader, however a 12992 * leader will enable its siblings, even if those are still on the old 12993 * context. 12994 */ 12995 list_for_each_entry_safe(event, tmp, events, migrate_entry) { 12996 if (event->group_leader == event) 12997 continue; 12998 12999 list_del(&event->migrate_entry); 13000 __perf_pmu_install_event(pmu, ctx, cpu, event); 13001 } 13002 13003 /* 13004 * Once all the siblings are setup properly, install the group leaders 13005 * to make it go. 13006 */ 13007 list_for_each_entry_safe(event, tmp, events, migrate_entry) { 13008 list_del(&event->migrate_entry); 13009 __perf_pmu_install_event(pmu, ctx, cpu, event); 13010 } 13011 } 13012 13013 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 13014 { 13015 struct perf_event_context *src_ctx, *dst_ctx; 13016 LIST_HEAD(events); 13017 13018 /* 13019 * Since per-cpu context is persistent, no need to grab an extra 13020 * reference. 13021 */ 13022 src_ctx = &per_cpu_ptr(&perf_cpu_context, src_cpu)->ctx; 13023 dst_ctx = &per_cpu_ptr(&perf_cpu_context, dst_cpu)->ctx; 13024 13025 /* 13026 * See perf_event_ctx_lock() for comments on the details 13027 * of swizzling perf_event::ctx. 13028 */ 13029 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); 13030 13031 __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->pinned_groups, &events); 13032 __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->flexible_groups, &events); 13033 13034 if (!list_empty(&events)) { 13035 /* 13036 * Wait for the events to quiesce before re-instating them. 13037 */ 13038 synchronize_rcu(); 13039 13040 __perf_pmu_install(dst_ctx, dst_cpu, pmu, &events); 13041 } 13042 13043 mutex_unlock(&dst_ctx->mutex); 13044 mutex_unlock(&src_ctx->mutex); 13045 } 13046 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 13047 13048 static void sync_child_event(struct perf_event *child_event) 13049 { 13050 struct perf_event *parent_event = child_event->parent; 13051 u64 child_val; 13052 13053 if (child_event->attr.inherit_stat) { 13054 struct task_struct *task = child_event->ctx->task; 13055 13056 if (task && task != TASK_TOMBSTONE) 13057 perf_event_read_event(child_event, task); 13058 } 13059 13060 child_val = perf_event_count(child_event); 13061 13062 /* 13063 * Add back the child's count to the parent's count: 13064 */ 13065 atomic64_add(child_val, &parent_event->child_count); 13066 atomic64_add(child_event->total_time_enabled, 13067 &parent_event->child_total_time_enabled); 13068 atomic64_add(child_event->total_time_running, 13069 &parent_event->child_total_time_running); 13070 } 13071 13072 static void 13073 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx) 13074 { 13075 struct perf_event *parent_event = event->parent; 13076 unsigned long detach_flags = 0; 13077 13078 if (parent_event) { 13079 /* 13080 * Do not destroy the 'original' grouping; because of the 13081 * context switch optimization the original events could've 13082 * ended up in a random child task. 13083 * 13084 * If we were to destroy the original group, all group related 13085 * operations would cease to function properly after this 13086 * random child dies. 13087 * 13088 * Do destroy all inherited groups, we don't care about those 13089 * and being thorough is better. 13090 */ 13091 detach_flags = DETACH_GROUP | DETACH_CHILD; 13092 mutex_lock(&parent_event->child_mutex); 13093 } 13094 13095 perf_remove_from_context(event, detach_flags); 13096 13097 raw_spin_lock_irq(&ctx->lock); 13098 if (event->state > PERF_EVENT_STATE_EXIT) 13099 perf_event_set_state(event, PERF_EVENT_STATE_EXIT); 13100 raw_spin_unlock_irq(&ctx->lock); 13101 13102 /* 13103 * Child events can be freed. 13104 */ 13105 if (parent_event) { 13106 mutex_unlock(&parent_event->child_mutex); 13107 /* 13108 * Kick perf_poll() for is_event_hup(); 13109 */ 13110 perf_event_wakeup(parent_event); 13111 free_event(event); 13112 put_event(parent_event); 13113 return; 13114 } 13115 13116 /* 13117 * Parent events are governed by their filedesc, retain them. 13118 */ 13119 perf_event_wakeup(event); 13120 } 13121 13122 static void perf_event_exit_task_context(struct task_struct *child) 13123 { 13124 struct perf_event_context *child_ctx, *clone_ctx = NULL; 13125 struct perf_event *child_event, *next; 13126 13127 WARN_ON_ONCE(child != current); 13128 13129 child_ctx = perf_pin_task_context(child); 13130 if (!child_ctx) 13131 return; 13132 13133 /* 13134 * In order to reduce the amount of tricky in ctx tear-down, we hold 13135 * ctx::mutex over the entire thing. This serializes against almost 13136 * everything that wants to access the ctx. 13137 * 13138 * The exception is sys_perf_event_open() / 13139 * perf_event_create_kernel_count() which does find_get_context() 13140 * without ctx::mutex (it cannot because of the move_group double mutex 13141 * lock thing). See the comments in perf_install_in_context(). 13142 */ 13143 mutex_lock(&child_ctx->mutex); 13144 13145 /* 13146 * In a single ctx::lock section, de-schedule the events and detach the 13147 * context from the task such that we cannot ever get it scheduled back 13148 * in. 13149 */ 13150 raw_spin_lock_irq(&child_ctx->lock); 13151 task_ctx_sched_out(child_ctx, EVENT_ALL); 13152 13153 /* 13154 * Now that the context is inactive, destroy the task <-> ctx relation 13155 * and mark the context dead. 13156 */ 13157 RCU_INIT_POINTER(child->perf_event_ctxp, NULL); 13158 put_ctx(child_ctx); /* cannot be last */ 13159 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE); 13160 put_task_struct(current); /* cannot be last */ 13161 13162 clone_ctx = unclone_ctx(child_ctx); 13163 raw_spin_unlock_irq(&child_ctx->lock); 13164 13165 if (clone_ctx) 13166 put_ctx(clone_ctx); 13167 13168 /* 13169 * Report the task dead after unscheduling the events so that we 13170 * won't get any samples after PERF_RECORD_EXIT. We can however still 13171 * get a few PERF_RECORD_READ events. 13172 */ 13173 perf_event_task(child, child_ctx, 0); 13174 13175 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) 13176 perf_event_exit_event(child_event, child_ctx); 13177 13178 mutex_unlock(&child_ctx->mutex); 13179 13180 put_ctx(child_ctx); 13181 } 13182 13183 /* 13184 * When a child task exits, feed back event values to parent events. 13185 * 13186 * Can be called with exec_update_lock held when called from 13187 * setup_new_exec(). 13188 */ 13189 void perf_event_exit_task(struct task_struct *child) 13190 { 13191 struct perf_event *event, *tmp; 13192 13193 mutex_lock(&child->perf_event_mutex); 13194 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 13195 owner_entry) { 13196 list_del_init(&event->owner_entry); 13197 13198 /* 13199 * Ensure the list deletion is visible before we clear 13200 * the owner, closes a race against perf_release() where 13201 * we need to serialize on the owner->perf_event_mutex. 13202 */ 13203 smp_store_release(&event->owner, NULL); 13204 } 13205 mutex_unlock(&child->perf_event_mutex); 13206 13207 perf_event_exit_task_context(child); 13208 13209 /* 13210 * The perf_event_exit_task_context calls perf_event_task 13211 * with child's task_ctx, which generates EXIT events for 13212 * child contexts and sets child->perf_event_ctxp[] to NULL. 13213 * At this point we need to send EXIT events to cpu contexts. 13214 */ 13215 perf_event_task(child, NULL, 0); 13216 } 13217 13218 static void perf_free_event(struct perf_event *event, 13219 struct perf_event_context *ctx) 13220 { 13221 struct perf_event *parent = event->parent; 13222 13223 if (WARN_ON_ONCE(!parent)) 13224 return; 13225 13226 mutex_lock(&parent->child_mutex); 13227 list_del_init(&event->child_list); 13228 mutex_unlock(&parent->child_mutex); 13229 13230 put_event(parent); 13231 13232 raw_spin_lock_irq(&ctx->lock); 13233 perf_group_detach(event); 13234 list_del_event(event, ctx); 13235 raw_spin_unlock_irq(&ctx->lock); 13236 free_event(event); 13237 } 13238 13239 /* 13240 * Free a context as created by inheritance by perf_event_init_task() below, 13241 * used by fork() in case of fail. 13242 * 13243 * Even though the task has never lived, the context and events have been 13244 * exposed through the child_list, so we must take care tearing it all down. 13245 */ 13246 void perf_event_free_task(struct task_struct *task) 13247 { 13248 struct perf_event_context *ctx; 13249 struct perf_event *event, *tmp; 13250 13251 ctx = rcu_access_pointer(task->perf_event_ctxp); 13252 if (!ctx) 13253 return; 13254 13255 mutex_lock(&ctx->mutex); 13256 raw_spin_lock_irq(&ctx->lock); 13257 /* 13258 * Destroy the task <-> ctx relation and mark the context dead. 13259 * 13260 * This is important because even though the task hasn't been 13261 * exposed yet the context has been (through child_list). 13262 */ 13263 RCU_INIT_POINTER(task->perf_event_ctxp, NULL); 13264 WRITE_ONCE(ctx->task, TASK_TOMBSTONE); 13265 put_task_struct(task); /* cannot be last */ 13266 raw_spin_unlock_irq(&ctx->lock); 13267 13268 13269 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) 13270 perf_free_event(event, ctx); 13271 13272 mutex_unlock(&ctx->mutex); 13273 13274 /* 13275 * perf_event_release_kernel() could've stolen some of our 13276 * child events and still have them on its free_list. In that 13277 * case we must wait for these events to have been freed (in 13278 * particular all their references to this task must've been 13279 * dropped). 13280 * 13281 * Without this copy_process() will unconditionally free this 13282 * task (irrespective of its reference count) and 13283 * _free_event()'s put_task_struct(event->hw.target) will be a 13284 * use-after-free. 13285 * 13286 * Wait for all events to drop their context reference. 13287 */ 13288 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1); 13289 put_ctx(ctx); /* must be last */ 13290 } 13291 13292 void perf_event_delayed_put(struct task_struct *task) 13293 { 13294 WARN_ON_ONCE(task->perf_event_ctxp); 13295 } 13296 13297 struct file *perf_event_get(unsigned int fd) 13298 { 13299 struct file *file = fget(fd); 13300 if (!file) 13301 return ERR_PTR(-EBADF); 13302 13303 if (file->f_op != &perf_fops) { 13304 fput(file); 13305 return ERR_PTR(-EBADF); 13306 } 13307 13308 return file; 13309 } 13310 13311 const struct perf_event *perf_get_event(struct file *file) 13312 { 13313 if (file->f_op != &perf_fops) 13314 return ERR_PTR(-EINVAL); 13315 13316 return file->private_data; 13317 } 13318 13319 const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 13320 { 13321 if (!event) 13322 return ERR_PTR(-EINVAL); 13323 13324 return &event->attr; 13325 } 13326 13327 /* 13328 * Inherit an event from parent task to child task. 13329 * 13330 * Returns: 13331 * - valid pointer on success 13332 * - NULL for orphaned events 13333 * - IS_ERR() on error 13334 */ 13335 static struct perf_event * 13336 inherit_event(struct perf_event *parent_event, 13337 struct task_struct *parent, 13338 struct perf_event_context *parent_ctx, 13339 struct task_struct *child, 13340 struct perf_event *group_leader, 13341 struct perf_event_context *child_ctx) 13342 { 13343 enum perf_event_state parent_state = parent_event->state; 13344 struct perf_event_pmu_context *pmu_ctx; 13345 struct perf_event *child_event; 13346 unsigned long flags; 13347 13348 /* 13349 * Instead of creating recursive hierarchies of events, 13350 * we link inherited events back to the original parent, 13351 * which has a filp for sure, which we use as the reference 13352 * count: 13353 */ 13354 if (parent_event->parent) 13355 parent_event = parent_event->parent; 13356 13357 child_event = perf_event_alloc(&parent_event->attr, 13358 parent_event->cpu, 13359 child, 13360 group_leader, parent_event, 13361 NULL, NULL, -1); 13362 if (IS_ERR(child_event)) 13363 return child_event; 13364 13365 pmu_ctx = find_get_pmu_context(child_event->pmu, child_ctx, child_event); 13366 if (IS_ERR(pmu_ctx)) { 13367 free_event(child_event); 13368 return ERR_CAST(pmu_ctx); 13369 } 13370 child_event->pmu_ctx = pmu_ctx; 13371 13372 /* 13373 * is_orphaned_event() and list_add_tail(&parent_event->child_list) 13374 * must be under the same lock in order to serialize against 13375 * perf_event_release_kernel(), such that either we must observe 13376 * is_orphaned_event() or they will observe us on the child_list. 13377 */ 13378 mutex_lock(&parent_event->child_mutex); 13379 if (is_orphaned_event(parent_event) || 13380 !atomic_long_inc_not_zero(&parent_event->refcount)) { 13381 mutex_unlock(&parent_event->child_mutex); 13382 /* task_ctx_data is freed with child_ctx */ 13383 free_event(child_event); 13384 return NULL; 13385 } 13386 13387 get_ctx(child_ctx); 13388 13389 /* 13390 * Make the child state follow the state of the parent event, 13391 * not its attr.disabled bit. We hold the parent's mutex, 13392 * so we won't race with perf_event_{en, dis}able_family. 13393 */ 13394 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 13395 child_event->state = PERF_EVENT_STATE_INACTIVE; 13396 else 13397 child_event->state = PERF_EVENT_STATE_OFF; 13398 13399 if (parent_event->attr.freq) { 13400 u64 sample_period = parent_event->hw.sample_period; 13401 struct hw_perf_event *hwc = &child_event->hw; 13402 13403 hwc->sample_period = sample_period; 13404 hwc->last_period = sample_period; 13405 13406 local64_set(&hwc->period_left, sample_period); 13407 } 13408 13409 child_event->ctx = child_ctx; 13410 child_event->overflow_handler = parent_event->overflow_handler; 13411 child_event->overflow_handler_context 13412 = parent_event->overflow_handler_context; 13413 13414 /* 13415 * Precalculate sample_data sizes 13416 */ 13417 perf_event__header_size(child_event); 13418 perf_event__id_header_size(child_event); 13419 13420 /* 13421 * Link it up in the child's context: 13422 */ 13423 raw_spin_lock_irqsave(&child_ctx->lock, flags); 13424 add_event_to_ctx(child_event, child_ctx); 13425 child_event->attach_state |= PERF_ATTACH_CHILD; 13426 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 13427 13428 /* 13429 * Link this into the parent event's child list 13430 */ 13431 list_add_tail(&child_event->child_list, &parent_event->child_list); 13432 mutex_unlock(&parent_event->child_mutex); 13433 13434 return child_event; 13435 } 13436 13437 /* 13438 * Inherits an event group. 13439 * 13440 * This will quietly suppress orphaned events; !inherit_event() is not an error. 13441 * This matches with perf_event_release_kernel() removing all child events. 13442 * 13443 * Returns: 13444 * - 0 on success 13445 * - <0 on error 13446 */ 13447 static int inherit_group(struct perf_event *parent_event, 13448 struct task_struct *parent, 13449 struct perf_event_context *parent_ctx, 13450 struct task_struct *child, 13451 struct perf_event_context *child_ctx) 13452 { 13453 struct perf_event *leader; 13454 struct perf_event *sub; 13455 struct perf_event *child_ctr; 13456 13457 leader = inherit_event(parent_event, parent, parent_ctx, 13458 child, NULL, child_ctx); 13459 if (IS_ERR(leader)) 13460 return PTR_ERR(leader); 13461 /* 13462 * @leader can be NULL here because of is_orphaned_event(). In this 13463 * case inherit_event() will create individual events, similar to what 13464 * perf_group_detach() would do anyway. 13465 */ 13466 for_each_sibling_event(sub, parent_event) { 13467 child_ctr = inherit_event(sub, parent, parent_ctx, 13468 child, leader, child_ctx); 13469 if (IS_ERR(child_ctr)) 13470 return PTR_ERR(child_ctr); 13471 13472 if (sub->aux_event == parent_event && child_ctr && 13473 !perf_get_aux_event(child_ctr, leader)) 13474 return -EINVAL; 13475 } 13476 if (leader) 13477 leader->group_generation = parent_event->group_generation; 13478 return 0; 13479 } 13480 13481 /* 13482 * Creates the child task context and tries to inherit the event-group. 13483 * 13484 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave 13485 * inherited_all set when we 'fail' to inherit an orphaned event; this is 13486 * consistent with perf_event_release_kernel() removing all child events. 13487 * 13488 * Returns: 13489 * - 0 on success 13490 * - <0 on error 13491 */ 13492 static int 13493 inherit_task_group(struct perf_event *event, struct task_struct *parent, 13494 struct perf_event_context *parent_ctx, 13495 struct task_struct *child, 13496 u64 clone_flags, int *inherited_all) 13497 { 13498 struct perf_event_context *child_ctx; 13499 int ret; 13500 13501 if (!event->attr.inherit || 13502 (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) || 13503 /* Do not inherit if sigtrap and signal handlers were cleared. */ 13504 (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) { 13505 *inherited_all = 0; 13506 return 0; 13507 } 13508 13509 child_ctx = child->perf_event_ctxp; 13510 if (!child_ctx) { 13511 /* 13512 * This is executed from the parent task context, so 13513 * inherit events that have been marked for cloning. 13514 * First allocate and initialize a context for the 13515 * child. 13516 */ 13517 child_ctx = alloc_perf_context(child); 13518 if (!child_ctx) 13519 return -ENOMEM; 13520 13521 child->perf_event_ctxp = child_ctx; 13522 } 13523 13524 ret = inherit_group(event, parent, parent_ctx, child, child_ctx); 13525 if (ret) 13526 *inherited_all = 0; 13527 13528 return ret; 13529 } 13530 13531 /* 13532 * Initialize the perf_event context in task_struct 13533 */ 13534 static int perf_event_init_context(struct task_struct *child, u64 clone_flags) 13535 { 13536 struct perf_event_context *child_ctx, *parent_ctx; 13537 struct perf_event_context *cloned_ctx; 13538 struct perf_event *event; 13539 struct task_struct *parent = current; 13540 int inherited_all = 1; 13541 unsigned long flags; 13542 int ret = 0; 13543 13544 if (likely(!parent->perf_event_ctxp)) 13545 return 0; 13546 13547 /* 13548 * If the parent's context is a clone, pin it so it won't get 13549 * swapped under us. 13550 */ 13551 parent_ctx = perf_pin_task_context(parent); 13552 if (!parent_ctx) 13553 return 0; 13554 13555 /* 13556 * No need to check if parent_ctx != NULL here; since we saw 13557 * it non-NULL earlier, the only reason for it to become NULL 13558 * is if we exit, and since we're currently in the middle of 13559 * a fork we can't be exiting at the same time. 13560 */ 13561 13562 /* 13563 * Lock the parent list. No need to lock the child - not PID 13564 * hashed yet and not running, so nobody can access it. 13565 */ 13566 mutex_lock(&parent_ctx->mutex); 13567 13568 /* 13569 * We dont have to disable NMIs - we are only looking at 13570 * the list, not manipulating it: 13571 */ 13572 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) { 13573 ret = inherit_task_group(event, parent, parent_ctx, 13574 child, clone_flags, &inherited_all); 13575 if (ret) 13576 goto out_unlock; 13577 } 13578 13579 /* 13580 * We can't hold ctx->lock when iterating the ->flexible_group list due 13581 * to allocations, but we need to prevent rotation because 13582 * rotate_ctx() will change the list from interrupt context. 13583 */ 13584 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 13585 parent_ctx->rotate_disable = 1; 13586 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 13587 13588 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) { 13589 ret = inherit_task_group(event, parent, parent_ctx, 13590 child, clone_flags, &inherited_all); 13591 if (ret) 13592 goto out_unlock; 13593 } 13594 13595 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 13596 parent_ctx->rotate_disable = 0; 13597 13598 child_ctx = child->perf_event_ctxp; 13599 13600 if (child_ctx && inherited_all) { 13601 /* 13602 * Mark the child context as a clone of the parent 13603 * context, or of whatever the parent is a clone of. 13604 * 13605 * Note that if the parent is a clone, the holding of 13606 * parent_ctx->lock avoids it from being uncloned. 13607 */ 13608 cloned_ctx = parent_ctx->parent_ctx; 13609 if (cloned_ctx) { 13610 child_ctx->parent_ctx = cloned_ctx; 13611 child_ctx->parent_gen = parent_ctx->parent_gen; 13612 } else { 13613 child_ctx->parent_ctx = parent_ctx; 13614 child_ctx->parent_gen = parent_ctx->generation; 13615 } 13616 get_ctx(child_ctx->parent_ctx); 13617 } 13618 13619 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 13620 out_unlock: 13621 mutex_unlock(&parent_ctx->mutex); 13622 13623 perf_unpin_context(parent_ctx); 13624 put_ctx(parent_ctx); 13625 13626 return ret; 13627 } 13628 13629 /* 13630 * Initialize the perf_event context in task_struct 13631 */ 13632 int perf_event_init_task(struct task_struct *child, u64 clone_flags) 13633 { 13634 int ret; 13635 13636 child->perf_event_ctxp = NULL; 13637 mutex_init(&child->perf_event_mutex); 13638 INIT_LIST_HEAD(&child->perf_event_list); 13639 13640 ret = perf_event_init_context(child, clone_flags); 13641 if (ret) { 13642 perf_event_free_task(child); 13643 return ret; 13644 } 13645 13646 return 0; 13647 } 13648 13649 static void __init perf_event_init_all_cpus(void) 13650 { 13651 struct swevent_htable *swhash; 13652 struct perf_cpu_context *cpuctx; 13653 int cpu; 13654 13655 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL); 13656 13657 for_each_possible_cpu(cpu) { 13658 swhash = &per_cpu(swevent_htable, cpu); 13659 mutex_init(&swhash->hlist_mutex); 13660 13661 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu)); 13662 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu)); 13663 13664 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu)); 13665 13666 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 13667 __perf_event_init_context(&cpuctx->ctx); 13668 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 13669 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 13670 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask); 13671 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default); 13672 cpuctx->heap = cpuctx->heap_default; 13673 } 13674 } 13675 13676 static void perf_swevent_init_cpu(unsigned int cpu) 13677 { 13678 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 13679 13680 mutex_lock(&swhash->hlist_mutex); 13681 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) { 13682 struct swevent_hlist *hlist; 13683 13684 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 13685 WARN_ON(!hlist); 13686 rcu_assign_pointer(swhash->swevent_hlist, hlist); 13687 } 13688 mutex_unlock(&swhash->hlist_mutex); 13689 } 13690 13691 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE 13692 static void __perf_event_exit_context(void *__info) 13693 { 13694 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 13695 struct perf_event_context *ctx = __info; 13696 struct perf_event *event; 13697 13698 raw_spin_lock(&ctx->lock); 13699 ctx_sched_out(ctx, EVENT_TIME); 13700 list_for_each_entry(event, &ctx->event_list, event_entry) 13701 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP); 13702 raw_spin_unlock(&ctx->lock); 13703 } 13704 13705 static void perf_event_exit_cpu_context(int cpu) 13706 { 13707 struct perf_cpu_context *cpuctx; 13708 struct perf_event_context *ctx; 13709 13710 // XXX simplify cpuctx->online 13711 mutex_lock(&pmus_lock); 13712 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 13713 ctx = &cpuctx->ctx; 13714 13715 mutex_lock(&ctx->mutex); 13716 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 13717 cpuctx->online = 0; 13718 mutex_unlock(&ctx->mutex); 13719 cpumask_clear_cpu(cpu, perf_online_mask); 13720 mutex_unlock(&pmus_lock); 13721 } 13722 #else 13723 13724 static void perf_event_exit_cpu_context(int cpu) { } 13725 13726 #endif 13727 13728 int perf_event_init_cpu(unsigned int cpu) 13729 { 13730 struct perf_cpu_context *cpuctx; 13731 struct perf_event_context *ctx; 13732 13733 perf_swevent_init_cpu(cpu); 13734 13735 mutex_lock(&pmus_lock); 13736 cpumask_set_cpu(cpu, perf_online_mask); 13737 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 13738 ctx = &cpuctx->ctx; 13739 13740 mutex_lock(&ctx->mutex); 13741 cpuctx->online = 1; 13742 mutex_unlock(&ctx->mutex); 13743 mutex_unlock(&pmus_lock); 13744 13745 return 0; 13746 } 13747 13748 int perf_event_exit_cpu(unsigned int cpu) 13749 { 13750 perf_event_exit_cpu_context(cpu); 13751 return 0; 13752 } 13753 13754 static int 13755 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 13756 { 13757 int cpu; 13758 13759 for_each_online_cpu(cpu) 13760 perf_event_exit_cpu(cpu); 13761 13762 return NOTIFY_OK; 13763 } 13764 13765 /* 13766 * Run the perf reboot notifier at the very last possible moment so that 13767 * the generic watchdog code runs as long as possible. 13768 */ 13769 static struct notifier_block perf_reboot_notifier = { 13770 .notifier_call = perf_reboot, 13771 .priority = INT_MIN, 13772 }; 13773 13774 void __init perf_event_init(void) 13775 { 13776 int ret; 13777 13778 idr_init(&pmu_idr); 13779 13780 perf_event_init_all_cpus(); 13781 init_srcu_struct(&pmus_srcu); 13782 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 13783 perf_pmu_register(&perf_cpu_clock, "cpu_clock", -1); 13784 perf_pmu_register(&perf_task_clock, "task_clock", -1); 13785 perf_tp_register(); 13786 perf_event_init_cpu(smp_processor_id()); 13787 register_reboot_notifier(&perf_reboot_notifier); 13788 13789 ret = init_hw_breakpoint(); 13790 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 13791 13792 perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC); 13793 13794 /* 13795 * Build time assertion that we keep the data_head at the intended 13796 * location. IOW, validation we got the __reserved[] size right. 13797 */ 13798 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 13799 != 1024); 13800 } 13801 13802 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 13803 char *page) 13804 { 13805 struct perf_pmu_events_attr *pmu_attr = 13806 container_of(attr, struct perf_pmu_events_attr, attr); 13807 13808 if (pmu_attr->event_str) 13809 return sprintf(page, "%s\n", pmu_attr->event_str); 13810 13811 return 0; 13812 } 13813 EXPORT_SYMBOL_GPL(perf_event_sysfs_show); 13814 13815 static int __init perf_event_sysfs_init(void) 13816 { 13817 struct pmu *pmu; 13818 int ret; 13819 13820 mutex_lock(&pmus_lock); 13821 13822 ret = bus_register(&pmu_bus); 13823 if (ret) 13824 goto unlock; 13825 13826 list_for_each_entry(pmu, &pmus, entry) { 13827 if (pmu->dev) 13828 continue; 13829 13830 ret = pmu_dev_alloc(pmu); 13831 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 13832 } 13833 pmu_bus_running = 1; 13834 ret = 0; 13835 13836 unlock: 13837 mutex_unlock(&pmus_lock); 13838 13839 return ret; 13840 } 13841 device_initcall(perf_event_sysfs_init); 13842 13843 #ifdef CONFIG_CGROUP_PERF 13844 static struct cgroup_subsys_state * 13845 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 13846 { 13847 struct perf_cgroup *jc; 13848 13849 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 13850 if (!jc) 13851 return ERR_PTR(-ENOMEM); 13852 13853 jc->info = alloc_percpu(struct perf_cgroup_info); 13854 if (!jc->info) { 13855 kfree(jc); 13856 return ERR_PTR(-ENOMEM); 13857 } 13858 13859 return &jc->css; 13860 } 13861 13862 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 13863 { 13864 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 13865 13866 free_percpu(jc->info); 13867 kfree(jc); 13868 } 13869 13870 static int perf_cgroup_css_online(struct cgroup_subsys_state *css) 13871 { 13872 perf_event_cgroup(css->cgroup); 13873 return 0; 13874 } 13875 13876 static int __perf_cgroup_move(void *info) 13877 { 13878 struct task_struct *task = info; 13879 13880 preempt_disable(); 13881 perf_cgroup_switch(task); 13882 preempt_enable(); 13883 13884 return 0; 13885 } 13886 13887 static void perf_cgroup_attach(struct cgroup_taskset *tset) 13888 { 13889 struct task_struct *task; 13890 struct cgroup_subsys_state *css; 13891 13892 cgroup_taskset_for_each(task, css, tset) 13893 task_function_call(task, __perf_cgroup_move, task); 13894 } 13895 13896 struct cgroup_subsys perf_event_cgrp_subsys = { 13897 .css_alloc = perf_cgroup_css_alloc, 13898 .css_free = perf_cgroup_css_free, 13899 .css_online = perf_cgroup_css_online, 13900 .attach = perf_cgroup_attach, 13901 /* 13902 * Implicitly enable on dfl hierarchy so that perf events can 13903 * always be filtered by cgroup2 path as long as perf_event 13904 * controller is not mounted on a legacy hierarchy. 13905 */ 13906 .implicit_on_dfl = true, 13907 .threaded = true, 13908 }; 13909 #endif /* CONFIG_CGROUP_PERF */ 13910 13911 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t); 13912