xref: /openbmc/linux/kernel/events/core.c (revision 92a2c6b2)
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11 
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/perf_event.h>
38 #include <linux/ftrace_event.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/mm_types.h>
41 #include <linux/cgroup.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 
46 #include "internal.h"
47 
48 #include <asm/irq_regs.h>
49 
50 static struct workqueue_struct *perf_wq;
51 
52 struct remote_function_call {
53 	struct task_struct	*p;
54 	int			(*func)(void *info);
55 	void			*info;
56 	int			ret;
57 };
58 
59 static void remote_function(void *data)
60 {
61 	struct remote_function_call *tfc = data;
62 	struct task_struct *p = tfc->p;
63 
64 	if (p) {
65 		tfc->ret = -EAGAIN;
66 		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
67 			return;
68 	}
69 
70 	tfc->ret = tfc->func(tfc->info);
71 }
72 
73 /**
74  * task_function_call - call a function on the cpu on which a task runs
75  * @p:		the task to evaluate
76  * @func:	the function to be called
77  * @info:	the function call argument
78  *
79  * Calls the function @func when the task is currently running. This might
80  * be on the current CPU, which just calls the function directly
81  *
82  * returns: @func return value, or
83  *	    -ESRCH  - when the process isn't running
84  *	    -EAGAIN - when the process moved away
85  */
86 static int
87 task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
88 {
89 	struct remote_function_call data = {
90 		.p	= p,
91 		.func	= func,
92 		.info	= info,
93 		.ret	= -ESRCH, /* No such (running) process */
94 	};
95 
96 	if (task_curr(p))
97 		smp_call_function_single(task_cpu(p), remote_function, &data, 1);
98 
99 	return data.ret;
100 }
101 
102 /**
103  * cpu_function_call - call a function on the cpu
104  * @func:	the function to be called
105  * @info:	the function call argument
106  *
107  * Calls the function @func on the remote cpu.
108  *
109  * returns: @func return value or -ENXIO when the cpu is offline
110  */
111 static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
112 {
113 	struct remote_function_call data = {
114 		.p	= NULL,
115 		.func	= func,
116 		.info	= info,
117 		.ret	= -ENXIO, /* No such CPU */
118 	};
119 
120 	smp_call_function_single(cpu, remote_function, &data, 1);
121 
122 	return data.ret;
123 }
124 
125 #define EVENT_OWNER_KERNEL ((void *) -1)
126 
127 static bool is_kernel_event(struct perf_event *event)
128 {
129 	return event->owner == EVENT_OWNER_KERNEL;
130 }
131 
132 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
133 		       PERF_FLAG_FD_OUTPUT  |\
134 		       PERF_FLAG_PID_CGROUP |\
135 		       PERF_FLAG_FD_CLOEXEC)
136 
137 /*
138  * branch priv levels that need permission checks
139  */
140 #define PERF_SAMPLE_BRANCH_PERM_PLM \
141 	(PERF_SAMPLE_BRANCH_KERNEL |\
142 	 PERF_SAMPLE_BRANCH_HV)
143 
144 enum event_type_t {
145 	EVENT_FLEXIBLE = 0x1,
146 	EVENT_PINNED = 0x2,
147 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
148 };
149 
150 /*
151  * perf_sched_events : >0 events exist
152  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
153  */
154 struct static_key_deferred perf_sched_events __read_mostly;
155 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
156 static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
157 
158 static atomic_t nr_mmap_events __read_mostly;
159 static atomic_t nr_comm_events __read_mostly;
160 static atomic_t nr_task_events __read_mostly;
161 static atomic_t nr_freq_events __read_mostly;
162 
163 static LIST_HEAD(pmus);
164 static DEFINE_MUTEX(pmus_lock);
165 static struct srcu_struct pmus_srcu;
166 
167 /*
168  * perf event paranoia level:
169  *  -1 - not paranoid at all
170  *   0 - disallow raw tracepoint access for unpriv
171  *   1 - disallow cpu events for unpriv
172  *   2 - disallow kernel profiling for unpriv
173  */
174 int sysctl_perf_event_paranoid __read_mostly = 1;
175 
176 /* Minimum for 512 kiB + 1 user control page */
177 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
178 
179 /*
180  * max perf event sample rate
181  */
182 #define DEFAULT_MAX_SAMPLE_RATE		100000
183 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
184 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
185 
186 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
187 
188 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
189 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
190 
191 static int perf_sample_allowed_ns __read_mostly =
192 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
193 
194 void update_perf_cpu_limits(void)
195 {
196 	u64 tmp = perf_sample_period_ns;
197 
198 	tmp *= sysctl_perf_cpu_time_max_percent;
199 	do_div(tmp, 100);
200 	ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
201 }
202 
203 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
204 
205 int perf_proc_update_handler(struct ctl_table *table, int write,
206 		void __user *buffer, size_t *lenp,
207 		loff_t *ppos)
208 {
209 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
210 
211 	if (ret || !write)
212 		return ret;
213 
214 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
215 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
216 	update_perf_cpu_limits();
217 
218 	return 0;
219 }
220 
221 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
222 
223 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
224 				void __user *buffer, size_t *lenp,
225 				loff_t *ppos)
226 {
227 	int ret = proc_dointvec(table, write, buffer, lenp, ppos);
228 
229 	if (ret || !write)
230 		return ret;
231 
232 	update_perf_cpu_limits();
233 
234 	return 0;
235 }
236 
237 /*
238  * perf samples are done in some very critical code paths (NMIs).
239  * If they take too much CPU time, the system can lock up and not
240  * get any real work done.  This will drop the sample rate when
241  * we detect that events are taking too long.
242  */
243 #define NR_ACCUMULATED_SAMPLES 128
244 static DEFINE_PER_CPU(u64, running_sample_length);
245 
246 static void perf_duration_warn(struct irq_work *w)
247 {
248 	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
249 	u64 avg_local_sample_len;
250 	u64 local_samples_len;
251 
252 	local_samples_len = __this_cpu_read(running_sample_length);
253 	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
254 
255 	printk_ratelimited(KERN_WARNING
256 			"perf interrupt took too long (%lld > %lld), lowering "
257 			"kernel.perf_event_max_sample_rate to %d\n",
258 			avg_local_sample_len, allowed_ns >> 1,
259 			sysctl_perf_event_sample_rate);
260 }
261 
262 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
263 
264 void perf_sample_event_took(u64 sample_len_ns)
265 {
266 	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
267 	u64 avg_local_sample_len;
268 	u64 local_samples_len;
269 
270 	if (allowed_ns == 0)
271 		return;
272 
273 	/* decay the counter by 1 average sample */
274 	local_samples_len = __this_cpu_read(running_sample_length);
275 	local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
276 	local_samples_len += sample_len_ns;
277 	__this_cpu_write(running_sample_length, local_samples_len);
278 
279 	/*
280 	 * note: this will be biased artifically low until we have
281 	 * seen NR_ACCUMULATED_SAMPLES.  Doing it this way keeps us
282 	 * from having to maintain a count.
283 	 */
284 	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
285 
286 	if (avg_local_sample_len <= allowed_ns)
287 		return;
288 
289 	if (max_samples_per_tick <= 1)
290 		return;
291 
292 	max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
293 	sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
294 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
295 
296 	update_perf_cpu_limits();
297 
298 	if (!irq_work_queue(&perf_duration_work)) {
299 		early_printk("perf interrupt took too long (%lld > %lld), lowering "
300 			     "kernel.perf_event_max_sample_rate to %d\n",
301 			     avg_local_sample_len, allowed_ns >> 1,
302 			     sysctl_perf_event_sample_rate);
303 	}
304 }
305 
306 static atomic64_t perf_event_id;
307 
308 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
309 			      enum event_type_t event_type);
310 
311 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
312 			     enum event_type_t event_type,
313 			     struct task_struct *task);
314 
315 static void update_context_time(struct perf_event_context *ctx);
316 static u64 perf_event_time(struct perf_event *event);
317 
318 void __weak perf_event_print_debug(void)	{ }
319 
320 extern __weak const char *perf_pmu_name(void)
321 {
322 	return "pmu";
323 }
324 
325 static inline u64 perf_clock(void)
326 {
327 	return local_clock();
328 }
329 
330 static inline struct perf_cpu_context *
331 __get_cpu_context(struct perf_event_context *ctx)
332 {
333 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
334 }
335 
336 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
337 			  struct perf_event_context *ctx)
338 {
339 	raw_spin_lock(&cpuctx->ctx.lock);
340 	if (ctx)
341 		raw_spin_lock(&ctx->lock);
342 }
343 
344 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
345 			    struct perf_event_context *ctx)
346 {
347 	if (ctx)
348 		raw_spin_unlock(&ctx->lock);
349 	raw_spin_unlock(&cpuctx->ctx.lock);
350 }
351 
352 #ifdef CONFIG_CGROUP_PERF
353 
354 /*
355  * perf_cgroup_info keeps track of time_enabled for a cgroup.
356  * This is a per-cpu dynamically allocated data structure.
357  */
358 struct perf_cgroup_info {
359 	u64				time;
360 	u64				timestamp;
361 };
362 
363 struct perf_cgroup {
364 	struct cgroup_subsys_state	css;
365 	struct perf_cgroup_info	__percpu *info;
366 };
367 
368 /*
369  * Must ensure cgroup is pinned (css_get) before calling
370  * this function. In other words, we cannot call this function
371  * if there is no cgroup event for the current CPU context.
372  */
373 static inline struct perf_cgroup *
374 perf_cgroup_from_task(struct task_struct *task)
375 {
376 	return container_of(task_css(task, perf_event_cgrp_id),
377 			    struct perf_cgroup, css);
378 }
379 
380 static inline bool
381 perf_cgroup_match(struct perf_event *event)
382 {
383 	struct perf_event_context *ctx = event->ctx;
384 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
385 
386 	/* @event doesn't care about cgroup */
387 	if (!event->cgrp)
388 		return true;
389 
390 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
391 	if (!cpuctx->cgrp)
392 		return false;
393 
394 	/*
395 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
396 	 * also enabled for all its descendant cgroups.  If @cpuctx's
397 	 * cgroup is a descendant of @event's (the test covers identity
398 	 * case), it's a match.
399 	 */
400 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
401 				    event->cgrp->css.cgroup);
402 }
403 
404 static inline void perf_detach_cgroup(struct perf_event *event)
405 {
406 	css_put(&event->cgrp->css);
407 	event->cgrp = NULL;
408 }
409 
410 static inline int is_cgroup_event(struct perf_event *event)
411 {
412 	return event->cgrp != NULL;
413 }
414 
415 static inline u64 perf_cgroup_event_time(struct perf_event *event)
416 {
417 	struct perf_cgroup_info *t;
418 
419 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
420 	return t->time;
421 }
422 
423 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
424 {
425 	struct perf_cgroup_info *info;
426 	u64 now;
427 
428 	now = perf_clock();
429 
430 	info = this_cpu_ptr(cgrp->info);
431 
432 	info->time += now - info->timestamp;
433 	info->timestamp = now;
434 }
435 
436 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
437 {
438 	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
439 	if (cgrp_out)
440 		__update_cgrp_time(cgrp_out);
441 }
442 
443 static inline void update_cgrp_time_from_event(struct perf_event *event)
444 {
445 	struct perf_cgroup *cgrp;
446 
447 	/*
448 	 * ensure we access cgroup data only when needed and
449 	 * when we know the cgroup is pinned (css_get)
450 	 */
451 	if (!is_cgroup_event(event))
452 		return;
453 
454 	cgrp = perf_cgroup_from_task(current);
455 	/*
456 	 * Do not update time when cgroup is not active
457 	 */
458 	if (cgrp == event->cgrp)
459 		__update_cgrp_time(event->cgrp);
460 }
461 
462 static inline void
463 perf_cgroup_set_timestamp(struct task_struct *task,
464 			  struct perf_event_context *ctx)
465 {
466 	struct perf_cgroup *cgrp;
467 	struct perf_cgroup_info *info;
468 
469 	/*
470 	 * ctx->lock held by caller
471 	 * ensure we do not access cgroup data
472 	 * unless we have the cgroup pinned (css_get)
473 	 */
474 	if (!task || !ctx->nr_cgroups)
475 		return;
476 
477 	cgrp = perf_cgroup_from_task(task);
478 	info = this_cpu_ptr(cgrp->info);
479 	info->timestamp = ctx->timestamp;
480 }
481 
482 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
483 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
484 
485 /*
486  * reschedule events based on the cgroup constraint of task.
487  *
488  * mode SWOUT : schedule out everything
489  * mode SWIN : schedule in based on cgroup for next
490  */
491 void perf_cgroup_switch(struct task_struct *task, int mode)
492 {
493 	struct perf_cpu_context *cpuctx;
494 	struct pmu *pmu;
495 	unsigned long flags;
496 
497 	/*
498 	 * disable interrupts to avoid geting nr_cgroup
499 	 * changes via __perf_event_disable(). Also
500 	 * avoids preemption.
501 	 */
502 	local_irq_save(flags);
503 
504 	/*
505 	 * we reschedule only in the presence of cgroup
506 	 * constrained events.
507 	 */
508 	rcu_read_lock();
509 
510 	list_for_each_entry_rcu(pmu, &pmus, entry) {
511 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
512 		if (cpuctx->unique_pmu != pmu)
513 			continue; /* ensure we process each cpuctx once */
514 
515 		/*
516 		 * perf_cgroup_events says at least one
517 		 * context on this CPU has cgroup events.
518 		 *
519 		 * ctx->nr_cgroups reports the number of cgroup
520 		 * events for a context.
521 		 */
522 		if (cpuctx->ctx.nr_cgroups > 0) {
523 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
524 			perf_pmu_disable(cpuctx->ctx.pmu);
525 
526 			if (mode & PERF_CGROUP_SWOUT) {
527 				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
528 				/*
529 				 * must not be done before ctxswout due
530 				 * to event_filter_match() in event_sched_out()
531 				 */
532 				cpuctx->cgrp = NULL;
533 			}
534 
535 			if (mode & PERF_CGROUP_SWIN) {
536 				WARN_ON_ONCE(cpuctx->cgrp);
537 				/*
538 				 * set cgrp before ctxsw in to allow
539 				 * event_filter_match() to not have to pass
540 				 * task around
541 				 */
542 				cpuctx->cgrp = perf_cgroup_from_task(task);
543 				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
544 			}
545 			perf_pmu_enable(cpuctx->ctx.pmu);
546 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
547 		}
548 	}
549 
550 	rcu_read_unlock();
551 
552 	local_irq_restore(flags);
553 }
554 
555 static inline void perf_cgroup_sched_out(struct task_struct *task,
556 					 struct task_struct *next)
557 {
558 	struct perf_cgroup *cgrp1;
559 	struct perf_cgroup *cgrp2 = NULL;
560 
561 	/*
562 	 * we come here when we know perf_cgroup_events > 0
563 	 */
564 	cgrp1 = perf_cgroup_from_task(task);
565 
566 	/*
567 	 * next is NULL when called from perf_event_enable_on_exec()
568 	 * that will systematically cause a cgroup_switch()
569 	 */
570 	if (next)
571 		cgrp2 = perf_cgroup_from_task(next);
572 
573 	/*
574 	 * only schedule out current cgroup events if we know
575 	 * that we are switching to a different cgroup. Otherwise,
576 	 * do no touch the cgroup events.
577 	 */
578 	if (cgrp1 != cgrp2)
579 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
580 }
581 
582 static inline void perf_cgroup_sched_in(struct task_struct *prev,
583 					struct task_struct *task)
584 {
585 	struct perf_cgroup *cgrp1;
586 	struct perf_cgroup *cgrp2 = NULL;
587 
588 	/*
589 	 * we come here when we know perf_cgroup_events > 0
590 	 */
591 	cgrp1 = perf_cgroup_from_task(task);
592 
593 	/* prev can never be NULL */
594 	cgrp2 = perf_cgroup_from_task(prev);
595 
596 	/*
597 	 * only need to schedule in cgroup events if we are changing
598 	 * cgroup during ctxsw. Cgroup events were not scheduled
599 	 * out of ctxsw out if that was not the case.
600 	 */
601 	if (cgrp1 != cgrp2)
602 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
603 }
604 
605 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
606 				      struct perf_event_attr *attr,
607 				      struct perf_event *group_leader)
608 {
609 	struct perf_cgroup *cgrp;
610 	struct cgroup_subsys_state *css;
611 	struct fd f = fdget(fd);
612 	int ret = 0;
613 
614 	if (!f.file)
615 		return -EBADF;
616 
617 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
618 					 &perf_event_cgrp_subsys);
619 	if (IS_ERR(css)) {
620 		ret = PTR_ERR(css);
621 		goto out;
622 	}
623 
624 	cgrp = container_of(css, struct perf_cgroup, css);
625 	event->cgrp = cgrp;
626 
627 	/*
628 	 * all events in a group must monitor
629 	 * the same cgroup because a task belongs
630 	 * to only one perf cgroup at a time
631 	 */
632 	if (group_leader && group_leader->cgrp != cgrp) {
633 		perf_detach_cgroup(event);
634 		ret = -EINVAL;
635 	}
636 out:
637 	fdput(f);
638 	return ret;
639 }
640 
641 static inline void
642 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
643 {
644 	struct perf_cgroup_info *t;
645 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
646 	event->shadow_ctx_time = now - t->timestamp;
647 }
648 
649 static inline void
650 perf_cgroup_defer_enabled(struct perf_event *event)
651 {
652 	/*
653 	 * when the current task's perf cgroup does not match
654 	 * the event's, we need to remember to call the
655 	 * perf_mark_enable() function the first time a task with
656 	 * a matching perf cgroup is scheduled in.
657 	 */
658 	if (is_cgroup_event(event) && !perf_cgroup_match(event))
659 		event->cgrp_defer_enabled = 1;
660 }
661 
662 static inline void
663 perf_cgroup_mark_enabled(struct perf_event *event,
664 			 struct perf_event_context *ctx)
665 {
666 	struct perf_event *sub;
667 	u64 tstamp = perf_event_time(event);
668 
669 	if (!event->cgrp_defer_enabled)
670 		return;
671 
672 	event->cgrp_defer_enabled = 0;
673 
674 	event->tstamp_enabled = tstamp - event->total_time_enabled;
675 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
676 		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
677 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
678 			sub->cgrp_defer_enabled = 0;
679 		}
680 	}
681 }
682 #else /* !CONFIG_CGROUP_PERF */
683 
684 static inline bool
685 perf_cgroup_match(struct perf_event *event)
686 {
687 	return true;
688 }
689 
690 static inline void perf_detach_cgroup(struct perf_event *event)
691 {}
692 
693 static inline int is_cgroup_event(struct perf_event *event)
694 {
695 	return 0;
696 }
697 
698 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
699 {
700 	return 0;
701 }
702 
703 static inline void update_cgrp_time_from_event(struct perf_event *event)
704 {
705 }
706 
707 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
708 {
709 }
710 
711 static inline void perf_cgroup_sched_out(struct task_struct *task,
712 					 struct task_struct *next)
713 {
714 }
715 
716 static inline void perf_cgroup_sched_in(struct task_struct *prev,
717 					struct task_struct *task)
718 {
719 }
720 
721 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
722 				      struct perf_event_attr *attr,
723 				      struct perf_event *group_leader)
724 {
725 	return -EINVAL;
726 }
727 
728 static inline void
729 perf_cgroup_set_timestamp(struct task_struct *task,
730 			  struct perf_event_context *ctx)
731 {
732 }
733 
734 void
735 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
736 {
737 }
738 
739 static inline void
740 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
741 {
742 }
743 
744 static inline u64 perf_cgroup_event_time(struct perf_event *event)
745 {
746 	return 0;
747 }
748 
749 static inline void
750 perf_cgroup_defer_enabled(struct perf_event *event)
751 {
752 }
753 
754 static inline void
755 perf_cgroup_mark_enabled(struct perf_event *event,
756 			 struct perf_event_context *ctx)
757 {
758 }
759 #endif
760 
761 /*
762  * set default to be dependent on timer tick just
763  * like original code
764  */
765 #define PERF_CPU_HRTIMER (1000 / HZ)
766 /*
767  * function must be called with interrupts disbled
768  */
769 static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
770 {
771 	struct perf_cpu_context *cpuctx;
772 	enum hrtimer_restart ret = HRTIMER_NORESTART;
773 	int rotations = 0;
774 
775 	WARN_ON(!irqs_disabled());
776 
777 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
778 
779 	rotations = perf_rotate_context(cpuctx);
780 
781 	/*
782 	 * arm timer if needed
783 	 */
784 	if (rotations) {
785 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
786 		ret = HRTIMER_RESTART;
787 	}
788 
789 	return ret;
790 }
791 
792 /* CPU is going down */
793 void perf_cpu_hrtimer_cancel(int cpu)
794 {
795 	struct perf_cpu_context *cpuctx;
796 	struct pmu *pmu;
797 	unsigned long flags;
798 
799 	if (WARN_ON(cpu != smp_processor_id()))
800 		return;
801 
802 	local_irq_save(flags);
803 
804 	rcu_read_lock();
805 
806 	list_for_each_entry_rcu(pmu, &pmus, entry) {
807 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
808 
809 		if (pmu->task_ctx_nr == perf_sw_context)
810 			continue;
811 
812 		hrtimer_cancel(&cpuctx->hrtimer);
813 	}
814 
815 	rcu_read_unlock();
816 
817 	local_irq_restore(flags);
818 }
819 
820 static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
821 {
822 	struct hrtimer *hr = &cpuctx->hrtimer;
823 	struct pmu *pmu = cpuctx->ctx.pmu;
824 	int timer;
825 
826 	/* no multiplexing needed for SW PMU */
827 	if (pmu->task_ctx_nr == perf_sw_context)
828 		return;
829 
830 	/*
831 	 * check default is sane, if not set then force to
832 	 * default interval (1/tick)
833 	 */
834 	timer = pmu->hrtimer_interval_ms;
835 	if (timer < 1)
836 		timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
837 
838 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
839 
840 	hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
841 	hr->function = perf_cpu_hrtimer_handler;
842 }
843 
844 static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
845 {
846 	struct hrtimer *hr = &cpuctx->hrtimer;
847 	struct pmu *pmu = cpuctx->ctx.pmu;
848 
849 	/* not for SW PMU */
850 	if (pmu->task_ctx_nr == perf_sw_context)
851 		return;
852 
853 	if (hrtimer_active(hr))
854 		return;
855 
856 	if (!hrtimer_callback_running(hr))
857 		__hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
858 					 0, HRTIMER_MODE_REL_PINNED, 0);
859 }
860 
861 void perf_pmu_disable(struct pmu *pmu)
862 {
863 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
864 	if (!(*count)++)
865 		pmu->pmu_disable(pmu);
866 }
867 
868 void perf_pmu_enable(struct pmu *pmu)
869 {
870 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
871 	if (!--(*count))
872 		pmu->pmu_enable(pmu);
873 }
874 
875 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
876 
877 /*
878  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
879  * perf_event_task_tick() are fully serialized because they're strictly cpu
880  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
881  * disabled, while perf_event_task_tick is called from IRQ context.
882  */
883 static void perf_event_ctx_activate(struct perf_event_context *ctx)
884 {
885 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
886 
887 	WARN_ON(!irqs_disabled());
888 
889 	WARN_ON(!list_empty(&ctx->active_ctx_list));
890 
891 	list_add(&ctx->active_ctx_list, head);
892 }
893 
894 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
895 {
896 	WARN_ON(!irqs_disabled());
897 
898 	WARN_ON(list_empty(&ctx->active_ctx_list));
899 
900 	list_del_init(&ctx->active_ctx_list);
901 }
902 
903 static void get_ctx(struct perf_event_context *ctx)
904 {
905 	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
906 }
907 
908 static void put_ctx(struct perf_event_context *ctx)
909 {
910 	if (atomic_dec_and_test(&ctx->refcount)) {
911 		if (ctx->parent_ctx)
912 			put_ctx(ctx->parent_ctx);
913 		if (ctx->task)
914 			put_task_struct(ctx->task);
915 		kfree_rcu(ctx, rcu_head);
916 	}
917 }
918 
919 /*
920  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
921  * perf_pmu_migrate_context() we need some magic.
922  *
923  * Those places that change perf_event::ctx will hold both
924  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
925  *
926  * Lock ordering is by mutex address. There is one other site where
927  * perf_event_context::mutex nests and that is put_event(). But remember that
928  * that is a parent<->child context relation, and migration does not affect
929  * children, therefore these two orderings should not interact.
930  *
931  * The change in perf_event::ctx does not affect children (as claimed above)
932  * because the sys_perf_event_open() case will install a new event and break
933  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
934  * concerned with cpuctx and that doesn't have children.
935  *
936  * The places that change perf_event::ctx will issue:
937  *
938  *   perf_remove_from_context();
939  *   synchronize_rcu();
940  *   perf_install_in_context();
941  *
942  * to affect the change. The remove_from_context() + synchronize_rcu() should
943  * quiesce the event, after which we can install it in the new location. This
944  * means that only external vectors (perf_fops, prctl) can perturb the event
945  * while in transit. Therefore all such accessors should also acquire
946  * perf_event_context::mutex to serialize against this.
947  *
948  * However; because event->ctx can change while we're waiting to acquire
949  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
950  * function.
951  *
952  * Lock order:
953  *	task_struct::perf_event_mutex
954  *	  perf_event_context::mutex
955  *	    perf_event_context::lock
956  *	    perf_event::child_mutex;
957  *	    perf_event::mmap_mutex
958  *	    mmap_sem
959  */
960 static struct perf_event_context *
961 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
962 {
963 	struct perf_event_context *ctx;
964 
965 again:
966 	rcu_read_lock();
967 	ctx = ACCESS_ONCE(event->ctx);
968 	if (!atomic_inc_not_zero(&ctx->refcount)) {
969 		rcu_read_unlock();
970 		goto again;
971 	}
972 	rcu_read_unlock();
973 
974 	mutex_lock_nested(&ctx->mutex, nesting);
975 	if (event->ctx != ctx) {
976 		mutex_unlock(&ctx->mutex);
977 		put_ctx(ctx);
978 		goto again;
979 	}
980 
981 	return ctx;
982 }
983 
984 static inline struct perf_event_context *
985 perf_event_ctx_lock(struct perf_event *event)
986 {
987 	return perf_event_ctx_lock_nested(event, 0);
988 }
989 
990 static void perf_event_ctx_unlock(struct perf_event *event,
991 				  struct perf_event_context *ctx)
992 {
993 	mutex_unlock(&ctx->mutex);
994 	put_ctx(ctx);
995 }
996 
997 /*
998  * This must be done under the ctx->lock, such as to serialize against
999  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1000  * calling scheduler related locks and ctx->lock nests inside those.
1001  */
1002 static __must_check struct perf_event_context *
1003 unclone_ctx(struct perf_event_context *ctx)
1004 {
1005 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1006 
1007 	lockdep_assert_held(&ctx->lock);
1008 
1009 	if (parent_ctx)
1010 		ctx->parent_ctx = NULL;
1011 	ctx->generation++;
1012 
1013 	return parent_ctx;
1014 }
1015 
1016 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1017 {
1018 	/*
1019 	 * only top level events have the pid namespace they were created in
1020 	 */
1021 	if (event->parent)
1022 		event = event->parent;
1023 
1024 	return task_tgid_nr_ns(p, event->ns);
1025 }
1026 
1027 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1028 {
1029 	/*
1030 	 * only top level events have the pid namespace they were created in
1031 	 */
1032 	if (event->parent)
1033 		event = event->parent;
1034 
1035 	return task_pid_nr_ns(p, event->ns);
1036 }
1037 
1038 /*
1039  * If we inherit events we want to return the parent event id
1040  * to userspace.
1041  */
1042 static u64 primary_event_id(struct perf_event *event)
1043 {
1044 	u64 id = event->id;
1045 
1046 	if (event->parent)
1047 		id = event->parent->id;
1048 
1049 	return id;
1050 }
1051 
1052 /*
1053  * Get the perf_event_context for a task and lock it.
1054  * This has to cope with with the fact that until it is locked,
1055  * the context could get moved to another task.
1056  */
1057 static struct perf_event_context *
1058 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1059 {
1060 	struct perf_event_context *ctx;
1061 
1062 retry:
1063 	/*
1064 	 * One of the few rules of preemptible RCU is that one cannot do
1065 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1066 	 * part of the read side critical section was preemptible -- see
1067 	 * rcu_read_unlock_special().
1068 	 *
1069 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1070 	 * side critical section is non-preemptible.
1071 	 */
1072 	preempt_disable();
1073 	rcu_read_lock();
1074 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1075 	if (ctx) {
1076 		/*
1077 		 * If this context is a clone of another, it might
1078 		 * get swapped for another underneath us by
1079 		 * perf_event_task_sched_out, though the
1080 		 * rcu_read_lock() protects us from any context
1081 		 * getting freed.  Lock the context and check if it
1082 		 * got swapped before we could get the lock, and retry
1083 		 * if so.  If we locked the right context, then it
1084 		 * can't get swapped on us any more.
1085 		 */
1086 		raw_spin_lock_irqsave(&ctx->lock, *flags);
1087 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1088 			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1089 			rcu_read_unlock();
1090 			preempt_enable();
1091 			goto retry;
1092 		}
1093 
1094 		if (!atomic_inc_not_zero(&ctx->refcount)) {
1095 			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1096 			ctx = NULL;
1097 		}
1098 	}
1099 	rcu_read_unlock();
1100 	preempt_enable();
1101 	return ctx;
1102 }
1103 
1104 /*
1105  * Get the context for a task and increment its pin_count so it
1106  * can't get swapped to another task.  This also increments its
1107  * reference count so that the context can't get freed.
1108  */
1109 static struct perf_event_context *
1110 perf_pin_task_context(struct task_struct *task, int ctxn)
1111 {
1112 	struct perf_event_context *ctx;
1113 	unsigned long flags;
1114 
1115 	ctx = perf_lock_task_context(task, ctxn, &flags);
1116 	if (ctx) {
1117 		++ctx->pin_count;
1118 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1119 	}
1120 	return ctx;
1121 }
1122 
1123 static void perf_unpin_context(struct perf_event_context *ctx)
1124 {
1125 	unsigned long flags;
1126 
1127 	raw_spin_lock_irqsave(&ctx->lock, flags);
1128 	--ctx->pin_count;
1129 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1130 }
1131 
1132 /*
1133  * Update the record of the current time in a context.
1134  */
1135 static void update_context_time(struct perf_event_context *ctx)
1136 {
1137 	u64 now = perf_clock();
1138 
1139 	ctx->time += now - ctx->timestamp;
1140 	ctx->timestamp = now;
1141 }
1142 
1143 static u64 perf_event_time(struct perf_event *event)
1144 {
1145 	struct perf_event_context *ctx = event->ctx;
1146 
1147 	if (is_cgroup_event(event))
1148 		return perf_cgroup_event_time(event);
1149 
1150 	return ctx ? ctx->time : 0;
1151 }
1152 
1153 /*
1154  * Update the total_time_enabled and total_time_running fields for a event.
1155  * The caller of this function needs to hold the ctx->lock.
1156  */
1157 static void update_event_times(struct perf_event *event)
1158 {
1159 	struct perf_event_context *ctx = event->ctx;
1160 	u64 run_end;
1161 
1162 	if (event->state < PERF_EVENT_STATE_INACTIVE ||
1163 	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1164 		return;
1165 	/*
1166 	 * in cgroup mode, time_enabled represents
1167 	 * the time the event was enabled AND active
1168 	 * tasks were in the monitored cgroup. This is
1169 	 * independent of the activity of the context as
1170 	 * there may be a mix of cgroup and non-cgroup events.
1171 	 *
1172 	 * That is why we treat cgroup events differently
1173 	 * here.
1174 	 */
1175 	if (is_cgroup_event(event))
1176 		run_end = perf_cgroup_event_time(event);
1177 	else if (ctx->is_active)
1178 		run_end = ctx->time;
1179 	else
1180 		run_end = event->tstamp_stopped;
1181 
1182 	event->total_time_enabled = run_end - event->tstamp_enabled;
1183 
1184 	if (event->state == PERF_EVENT_STATE_INACTIVE)
1185 		run_end = event->tstamp_stopped;
1186 	else
1187 		run_end = perf_event_time(event);
1188 
1189 	event->total_time_running = run_end - event->tstamp_running;
1190 
1191 }
1192 
1193 /*
1194  * Update total_time_enabled and total_time_running for all events in a group.
1195  */
1196 static void update_group_times(struct perf_event *leader)
1197 {
1198 	struct perf_event *event;
1199 
1200 	update_event_times(leader);
1201 	list_for_each_entry(event, &leader->sibling_list, group_entry)
1202 		update_event_times(event);
1203 }
1204 
1205 static struct list_head *
1206 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1207 {
1208 	if (event->attr.pinned)
1209 		return &ctx->pinned_groups;
1210 	else
1211 		return &ctx->flexible_groups;
1212 }
1213 
1214 /*
1215  * Add a event from the lists for its context.
1216  * Must be called with ctx->mutex and ctx->lock held.
1217  */
1218 static void
1219 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1220 {
1221 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1222 	event->attach_state |= PERF_ATTACH_CONTEXT;
1223 
1224 	/*
1225 	 * If we're a stand alone event or group leader, we go to the context
1226 	 * list, group events are kept attached to the group so that
1227 	 * perf_group_detach can, at all times, locate all siblings.
1228 	 */
1229 	if (event->group_leader == event) {
1230 		struct list_head *list;
1231 
1232 		if (is_software_event(event))
1233 			event->group_flags |= PERF_GROUP_SOFTWARE;
1234 
1235 		list = ctx_group_list(event, ctx);
1236 		list_add_tail(&event->group_entry, list);
1237 	}
1238 
1239 	if (is_cgroup_event(event))
1240 		ctx->nr_cgroups++;
1241 
1242 	if (has_branch_stack(event))
1243 		ctx->nr_branch_stack++;
1244 
1245 	list_add_rcu(&event->event_entry, &ctx->event_list);
1246 	ctx->nr_events++;
1247 	if (event->attr.inherit_stat)
1248 		ctx->nr_stat++;
1249 
1250 	ctx->generation++;
1251 }
1252 
1253 /*
1254  * Initialize event state based on the perf_event_attr::disabled.
1255  */
1256 static inline void perf_event__state_init(struct perf_event *event)
1257 {
1258 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1259 					      PERF_EVENT_STATE_INACTIVE;
1260 }
1261 
1262 /*
1263  * Called at perf_event creation and when events are attached/detached from a
1264  * group.
1265  */
1266 static void perf_event__read_size(struct perf_event *event)
1267 {
1268 	int entry = sizeof(u64); /* value */
1269 	int size = 0;
1270 	int nr = 1;
1271 
1272 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1273 		size += sizeof(u64);
1274 
1275 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1276 		size += sizeof(u64);
1277 
1278 	if (event->attr.read_format & PERF_FORMAT_ID)
1279 		entry += sizeof(u64);
1280 
1281 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1282 		nr += event->group_leader->nr_siblings;
1283 		size += sizeof(u64);
1284 	}
1285 
1286 	size += entry * nr;
1287 	event->read_size = size;
1288 }
1289 
1290 static void perf_event__header_size(struct perf_event *event)
1291 {
1292 	struct perf_sample_data *data;
1293 	u64 sample_type = event->attr.sample_type;
1294 	u16 size = 0;
1295 
1296 	perf_event__read_size(event);
1297 
1298 	if (sample_type & PERF_SAMPLE_IP)
1299 		size += sizeof(data->ip);
1300 
1301 	if (sample_type & PERF_SAMPLE_ADDR)
1302 		size += sizeof(data->addr);
1303 
1304 	if (sample_type & PERF_SAMPLE_PERIOD)
1305 		size += sizeof(data->period);
1306 
1307 	if (sample_type & PERF_SAMPLE_WEIGHT)
1308 		size += sizeof(data->weight);
1309 
1310 	if (sample_type & PERF_SAMPLE_READ)
1311 		size += event->read_size;
1312 
1313 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1314 		size += sizeof(data->data_src.val);
1315 
1316 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1317 		size += sizeof(data->txn);
1318 
1319 	event->header_size = size;
1320 }
1321 
1322 static void perf_event__id_header_size(struct perf_event *event)
1323 {
1324 	struct perf_sample_data *data;
1325 	u64 sample_type = event->attr.sample_type;
1326 	u16 size = 0;
1327 
1328 	if (sample_type & PERF_SAMPLE_TID)
1329 		size += sizeof(data->tid_entry);
1330 
1331 	if (sample_type & PERF_SAMPLE_TIME)
1332 		size += sizeof(data->time);
1333 
1334 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1335 		size += sizeof(data->id);
1336 
1337 	if (sample_type & PERF_SAMPLE_ID)
1338 		size += sizeof(data->id);
1339 
1340 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1341 		size += sizeof(data->stream_id);
1342 
1343 	if (sample_type & PERF_SAMPLE_CPU)
1344 		size += sizeof(data->cpu_entry);
1345 
1346 	event->id_header_size = size;
1347 }
1348 
1349 static void perf_group_attach(struct perf_event *event)
1350 {
1351 	struct perf_event *group_leader = event->group_leader, *pos;
1352 
1353 	/*
1354 	 * We can have double attach due to group movement in perf_event_open.
1355 	 */
1356 	if (event->attach_state & PERF_ATTACH_GROUP)
1357 		return;
1358 
1359 	event->attach_state |= PERF_ATTACH_GROUP;
1360 
1361 	if (group_leader == event)
1362 		return;
1363 
1364 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1365 
1366 	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1367 			!is_software_event(event))
1368 		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1369 
1370 	list_add_tail(&event->group_entry, &group_leader->sibling_list);
1371 	group_leader->nr_siblings++;
1372 
1373 	perf_event__header_size(group_leader);
1374 
1375 	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1376 		perf_event__header_size(pos);
1377 }
1378 
1379 /*
1380  * Remove a event from the lists for its context.
1381  * Must be called with ctx->mutex and ctx->lock held.
1382  */
1383 static void
1384 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1385 {
1386 	struct perf_cpu_context *cpuctx;
1387 
1388 	WARN_ON_ONCE(event->ctx != ctx);
1389 	lockdep_assert_held(&ctx->lock);
1390 
1391 	/*
1392 	 * We can have double detach due to exit/hot-unplug + close.
1393 	 */
1394 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1395 		return;
1396 
1397 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1398 
1399 	if (is_cgroup_event(event)) {
1400 		ctx->nr_cgroups--;
1401 		cpuctx = __get_cpu_context(ctx);
1402 		/*
1403 		 * if there are no more cgroup events
1404 		 * then cler cgrp to avoid stale pointer
1405 		 * in update_cgrp_time_from_cpuctx()
1406 		 */
1407 		if (!ctx->nr_cgroups)
1408 			cpuctx->cgrp = NULL;
1409 	}
1410 
1411 	if (has_branch_stack(event))
1412 		ctx->nr_branch_stack--;
1413 
1414 	ctx->nr_events--;
1415 	if (event->attr.inherit_stat)
1416 		ctx->nr_stat--;
1417 
1418 	list_del_rcu(&event->event_entry);
1419 
1420 	if (event->group_leader == event)
1421 		list_del_init(&event->group_entry);
1422 
1423 	update_group_times(event);
1424 
1425 	/*
1426 	 * If event was in error state, then keep it
1427 	 * that way, otherwise bogus counts will be
1428 	 * returned on read(). The only way to get out
1429 	 * of error state is by explicit re-enabling
1430 	 * of the event
1431 	 */
1432 	if (event->state > PERF_EVENT_STATE_OFF)
1433 		event->state = PERF_EVENT_STATE_OFF;
1434 
1435 	ctx->generation++;
1436 }
1437 
1438 static void perf_group_detach(struct perf_event *event)
1439 {
1440 	struct perf_event *sibling, *tmp;
1441 	struct list_head *list = NULL;
1442 
1443 	/*
1444 	 * We can have double detach due to exit/hot-unplug + close.
1445 	 */
1446 	if (!(event->attach_state & PERF_ATTACH_GROUP))
1447 		return;
1448 
1449 	event->attach_state &= ~PERF_ATTACH_GROUP;
1450 
1451 	/*
1452 	 * If this is a sibling, remove it from its group.
1453 	 */
1454 	if (event->group_leader != event) {
1455 		list_del_init(&event->group_entry);
1456 		event->group_leader->nr_siblings--;
1457 		goto out;
1458 	}
1459 
1460 	if (!list_empty(&event->group_entry))
1461 		list = &event->group_entry;
1462 
1463 	/*
1464 	 * If this was a group event with sibling events then
1465 	 * upgrade the siblings to singleton events by adding them
1466 	 * to whatever list we are on.
1467 	 */
1468 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1469 		if (list)
1470 			list_move_tail(&sibling->group_entry, list);
1471 		sibling->group_leader = sibling;
1472 
1473 		/* Inherit group flags from the previous leader */
1474 		sibling->group_flags = event->group_flags;
1475 
1476 		WARN_ON_ONCE(sibling->ctx != event->ctx);
1477 	}
1478 
1479 out:
1480 	perf_event__header_size(event->group_leader);
1481 
1482 	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1483 		perf_event__header_size(tmp);
1484 }
1485 
1486 /*
1487  * User event without the task.
1488  */
1489 static bool is_orphaned_event(struct perf_event *event)
1490 {
1491 	return event && !is_kernel_event(event) && !event->owner;
1492 }
1493 
1494 /*
1495  * Event has a parent but parent's task finished and it's
1496  * alive only because of children holding refference.
1497  */
1498 static bool is_orphaned_child(struct perf_event *event)
1499 {
1500 	return is_orphaned_event(event->parent);
1501 }
1502 
1503 static void orphans_remove_work(struct work_struct *work);
1504 
1505 static void schedule_orphans_remove(struct perf_event_context *ctx)
1506 {
1507 	if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
1508 		return;
1509 
1510 	if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
1511 		get_ctx(ctx);
1512 		ctx->orphans_remove_sched = true;
1513 	}
1514 }
1515 
1516 static int __init perf_workqueue_init(void)
1517 {
1518 	perf_wq = create_singlethread_workqueue("perf");
1519 	WARN(!perf_wq, "failed to create perf workqueue\n");
1520 	return perf_wq ? 0 : -1;
1521 }
1522 
1523 core_initcall(perf_workqueue_init);
1524 
1525 static inline int
1526 event_filter_match(struct perf_event *event)
1527 {
1528 	return (event->cpu == -1 || event->cpu == smp_processor_id())
1529 	    && perf_cgroup_match(event);
1530 }
1531 
1532 static void
1533 event_sched_out(struct perf_event *event,
1534 		  struct perf_cpu_context *cpuctx,
1535 		  struct perf_event_context *ctx)
1536 {
1537 	u64 tstamp = perf_event_time(event);
1538 	u64 delta;
1539 
1540 	WARN_ON_ONCE(event->ctx != ctx);
1541 	lockdep_assert_held(&ctx->lock);
1542 
1543 	/*
1544 	 * An event which could not be activated because of
1545 	 * filter mismatch still needs to have its timings
1546 	 * maintained, otherwise bogus information is return
1547 	 * via read() for time_enabled, time_running:
1548 	 */
1549 	if (event->state == PERF_EVENT_STATE_INACTIVE
1550 	    && !event_filter_match(event)) {
1551 		delta = tstamp - event->tstamp_stopped;
1552 		event->tstamp_running += delta;
1553 		event->tstamp_stopped = tstamp;
1554 	}
1555 
1556 	if (event->state != PERF_EVENT_STATE_ACTIVE)
1557 		return;
1558 
1559 	perf_pmu_disable(event->pmu);
1560 
1561 	event->state = PERF_EVENT_STATE_INACTIVE;
1562 	if (event->pending_disable) {
1563 		event->pending_disable = 0;
1564 		event->state = PERF_EVENT_STATE_OFF;
1565 	}
1566 	event->tstamp_stopped = tstamp;
1567 	event->pmu->del(event, 0);
1568 	event->oncpu = -1;
1569 
1570 	if (!is_software_event(event))
1571 		cpuctx->active_oncpu--;
1572 	if (!--ctx->nr_active)
1573 		perf_event_ctx_deactivate(ctx);
1574 	if (event->attr.freq && event->attr.sample_freq)
1575 		ctx->nr_freq--;
1576 	if (event->attr.exclusive || !cpuctx->active_oncpu)
1577 		cpuctx->exclusive = 0;
1578 
1579 	if (is_orphaned_child(event))
1580 		schedule_orphans_remove(ctx);
1581 
1582 	perf_pmu_enable(event->pmu);
1583 }
1584 
1585 static void
1586 group_sched_out(struct perf_event *group_event,
1587 		struct perf_cpu_context *cpuctx,
1588 		struct perf_event_context *ctx)
1589 {
1590 	struct perf_event *event;
1591 	int state = group_event->state;
1592 
1593 	event_sched_out(group_event, cpuctx, ctx);
1594 
1595 	/*
1596 	 * Schedule out siblings (if any):
1597 	 */
1598 	list_for_each_entry(event, &group_event->sibling_list, group_entry)
1599 		event_sched_out(event, cpuctx, ctx);
1600 
1601 	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1602 		cpuctx->exclusive = 0;
1603 }
1604 
1605 struct remove_event {
1606 	struct perf_event *event;
1607 	bool detach_group;
1608 };
1609 
1610 /*
1611  * Cross CPU call to remove a performance event
1612  *
1613  * We disable the event on the hardware level first. After that we
1614  * remove it from the context list.
1615  */
1616 static int __perf_remove_from_context(void *info)
1617 {
1618 	struct remove_event *re = info;
1619 	struct perf_event *event = re->event;
1620 	struct perf_event_context *ctx = event->ctx;
1621 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1622 
1623 	raw_spin_lock(&ctx->lock);
1624 	event_sched_out(event, cpuctx, ctx);
1625 	if (re->detach_group)
1626 		perf_group_detach(event);
1627 	list_del_event(event, ctx);
1628 	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1629 		ctx->is_active = 0;
1630 		cpuctx->task_ctx = NULL;
1631 	}
1632 	raw_spin_unlock(&ctx->lock);
1633 
1634 	return 0;
1635 }
1636 
1637 
1638 /*
1639  * Remove the event from a task's (or a CPU's) list of events.
1640  *
1641  * CPU events are removed with a smp call. For task events we only
1642  * call when the task is on a CPU.
1643  *
1644  * If event->ctx is a cloned context, callers must make sure that
1645  * every task struct that event->ctx->task could possibly point to
1646  * remains valid.  This is OK when called from perf_release since
1647  * that only calls us on the top-level context, which can't be a clone.
1648  * When called from perf_event_exit_task, it's OK because the
1649  * context has been detached from its task.
1650  */
1651 static void perf_remove_from_context(struct perf_event *event, bool detach_group)
1652 {
1653 	struct perf_event_context *ctx = event->ctx;
1654 	struct task_struct *task = ctx->task;
1655 	struct remove_event re = {
1656 		.event = event,
1657 		.detach_group = detach_group,
1658 	};
1659 
1660 	lockdep_assert_held(&ctx->mutex);
1661 
1662 	if (!task) {
1663 		/*
1664 		 * Per cpu events are removed via an smp call. The removal can
1665 		 * fail if the CPU is currently offline, but in that case we
1666 		 * already called __perf_remove_from_context from
1667 		 * perf_event_exit_cpu.
1668 		 */
1669 		cpu_function_call(event->cpu, __perf_remove_from_context, &re);
1670 		return;
1671 	}
1672 
1673 retry:
1674 	if (!task_function_call(task, __perf_remove_from_context, &re))
1675 		return;
1676 
1677 	raw_spin_lock_irq(&ctx->lock);
1678 	/*
1679 	 * If we failed to find a running task, but find the context active now
1680 	 * that we've acquired the ctx->lock, retry.
1681 	 */
1682 	if (ctx->is_active) {
1683 		raw_spin_unlock_irq(&ctx->lock);
1684 		/*
1685 		 * Reload the task pointer, it might have been changed by
1686 		 * a concurrent perf_event_context_sched_out().
1687 		 */
1688 		task = ctx->task;
1689 		goto retry;
1690 	}
1691 
1692 	/*
1693 	 * Since the task isn't running, its safe to remove the event, us
1694 	 * holding the ctx->lock ensures the task won't get scheduled in.
1695 	 */
1696 	if (detach_group)
1697 		perf_group_detach(event);
1698 	list_del_event(event, ctx);
1699 	raw_spin_unlock_irq(&ctx->lock);
1700 }
1701 
1702 /*
1703  * Cross CPU call to disable a performance event
1704  */
1705 int __perf_event_disable(void *info)
1706 {
1707 	struct perf_event *event = info;
1708 	struct perf_event_context *ctx = event->ctx;
1709 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1710 
1711 	/*
1712 	 * If this is a per-task event, need to check whether this
1713 	 * event's task is the current task on this cpu.
1714 	 *
1715 	 * Can trigger due to concurrent perf_event_context_sched_out()
1716 	 * flipping contexts around.
1717 	 */
1718 	if (ctx->task && cpuctx->task_ctx != ctx)
1719 		return -EINVAL;
1720 
1721 	raw_spin_lock(&ctx->lock);
1722 
1723 	/*
1724 	 * If the event is on, turn it off.
1725 	 * If it is in error state, leave it in error state.
1726 	 */
1727 	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1728 		update_context_time(ctx);
1729 		update_cgrp_time_from_event(event);
1730 		update_group_times(event);
1731 		if (event == event->group_leader)
1732 			group_sched_out(event, cpuctx, ctx);
1733 		else
1734 			event_sched_out(event, cpuctx, ctx);
1735 		event->state = PERF_EVENT_STATE_OFF;
1736 	}
1737 
1738 	raw_spin_unlock(&ctx->lock);
1739 
1740 	return 0;
1741 }
1742 
1743 /*
1744  * Disable a event.
1745  *
1746  * If event->ctx is a cloned context, callers must make sure that
1747  * every task struct that event->ctx->task could possibly point to
1748  * remains valid.  This condition is satisifed when called through
1749  * perf_event_for_each_child or perf_event_for_each because they
1750  * hold the top-level event's child_mutex, so any descendant that
1751  * goes to exit will block in sync_child_event.
1752  * When called from perf_pending_event it's OK because event->ctx
1753  * is the current context on this CPU and preemption is disabled,
1754  * hence we can't get into perf_event_task_sched_out for this context.
1755  */
1756 static void _perf_event_disable(struct perf_event *event)
1757 {
1758 	struct perf_event_context *ctx = event->ctx;
1759 	struct task_struct *task = ctx->task;
1760 
1761 	if (!task) {
1762 		/*
1763 		 * Disable the event on the cpu that it's on
1764 		 */
1765 		cpu_function_call(event->cpu, __perf_event_disable, event);
1766 		return;
1767 	}
1768 
1769 retry:
1770 	if (!task_function_call(task, __perf_event_disable, event))
1771 		return;
1772 
1773 	raw_spin_lock_irq(&ctx->lock);
1774 	/*
1775 	 * If the event is still active, we need to retry the cross-call.
1776 	 */
1777 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1778 		raw_spin_unlock_irq(&ctx->lock);
1779 		/*
1780 		 * Reload the task pointer, it might have been changed by
1781 		 * a concurrent perf_event_context_sched_out().
1782 		 */
1783 		task = ctx->task;
1784 		goto retry;
1785 	}
1786 
1787 	/*
1788 	 * Since we have the lock this context can't be scheduled
1789 	 * in, so we can change the state safely.
1790 	 */
1791 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
1792 		update_group_times(event);
1793 		event->state = PERF_EVENT_STATE_OFF;
1794 	}
1795 	raw_spin_unlock_irq(&ctx->lock);
1796 }
1797 
1798 /*
1799  * Strictly speaking kernel users cannot create groups and therefore this
1800  * interface does not need the perf_event_ctx_lock() magic.
1801  */
1802 void perf_event_disable(struct perf_event *event)
1803 {
1804 	struct perf_event_context *ctx;
1805 
1806 	ctx = perf_event_ctx_lock(event);
1807 	_perf_event_disable(event);
1808 	perf_event_ctx_unlock(event, ctx);
1809 }
1810 EXPORT_SYMBOL_GPL(perf_event_disable);
1811 
1812 static void perf_set_shadow_time(struct perf_event *event,
1813 				 struct perf_event_context *ctx,
1814 				 u64 tstamp)
1815 {
1816 	/*
1817 	 * use the correct time source for the time snapshot
1818 	 *
1819 	 * We could get by without this by leveraging the
1820 	 * fact that to get to this function, the caller
1821 	 * has most likely already called update_context_time()
1822 	 * and update_cgrp_time_xx() and thus both timestamp
1823 	 * are identical (or very close). Given that tstamp is,
1824 	 * already adjusted for cgroup, we could say that:
1825 	 *    tstamp - ctx->timestamp
1826 	 * is equivalent to
1827 	 *    tstamp - cgrp->timestamp.
1828 	 *
1829 	 * Then, in perf_output_read(), the calculation would
1830 	 * work with no changes because:
1831 	 * - event is guaranteed scheduled in
1832 	 * - no scheduled out in between
1833 	 * - thus the timestamp would be the same
1834 	 *
1835 	 * But this is a bit hairy.
1836 	 *
1837 	 * So instead, we have an explicit cgroup call to remain
1838 	 * within the time time source all along. We believe it
1839 	 * is cleaner and simpler to understand.
1840 	 */
1841 	if (is_cgroup_event(event))
1842 		perf_cgroup_set_shadow_time(event, tstamp);
1843 	else
1844 		event->shadow_ctx_time = tstamp - ctx->timestamp;
1845 }
1846 
1847 #define MAX_INTERRUPTS (~0ULL)
1848 
1849 static void perf_log_throttle(struct perf_event *event, int enable);
1850 
1851 static int
1852 event_sched_in(struct perf_event *event,
1853 		 struct perf_cpu_context *cpuctx,
1854 		 struct perf_event_context *ctx)
1855 {
1856 	u64 tstamp = perf_event_time(event);
1857 	int ret = 0;
1858 
1859 	lockdep_assert_held(&ctx->lock);
1860 
1861 	if (event->state <= PERF_EVENT_STATE_OFF)
1862 		return 0;
1863 
1864 	event->state = PERF_EVENT_STATE_ACTIVE;
1865 	event->oncpu = smp_processor_id();
1866 
1867 	/*
1868 	 * Unthrottle events, since we scheduled we might have missed several
1869 	 * ticks already, also for a heavily scheduling task there is little
1870 	 * guarantee it'll get a tick in a timely manner.
1871 	 */
1872 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1873 		perf_log_throttle(event, 1);
1874 		event->hw.interrupts = 0;
1875 	}
1876 
1877 	/*
1878 	 * The new state must be visible before we turn it on in the hardware:
1879 	 */
1880 	smp_wmb();
1881 
1882 	perf_pmu_disable(event->pmu);
1883 
1884 	if (event->pmu->add(event, PERF_EF_START)) {
1885 		event->state = PERF_EVENT_STATE_INACTIVE;
1886 		event->oncpu = -1;
1887 		ret = -EAGAIN;
1888 		goto out;
1889 	}
1890 
1891 	event->tstamp_running += tstamp - event->tstamp_stopped;
1892 
1893 	perf_set_shadow_time(event, ctx, tstamp);
1894 
1895 	if (!is_software_event(event))
1896 		cpuctx->active_oncpu++;
1897 	if (!ctx->nr_active++)
1898 		perf_event_ctx_activate(ctx);
1899 	if (event->attr.freq && event->attr.sample_freq)
1900 		ctx->nr_freq++;
1901 
1902 	if (event->attr.exclusive)
1903 		cpuctx->exclusive = 1;
1904 
1905 	if (is_orphaned_child(event))
1906 		schedule_orphans_remove(ctx);
1907 
1908 out:
1909 	perf_pmu_enable(event->pmu);
1910 
1911 	return ret;
1912 }
1913 
1914 static int
1915 group_sched_in(struct perf_event *group_event,
1916 	       struct perf_cpu_context *cpuctx,
1917 	       struct perf_event_context *ctx)
1918 {
1919 	struct perf_event *event, *partial_group = NULL;
1920 	struct pmu *pmu = ctx->pmu;
1921 	u64 now = ctx->time;
1922 	bool simulate = false;
1923 
1924 	if (group_event->state == PERF_EVENT_STATE_OFF)
1925 		return 0;
1926 
1927 	pmu->start_txn(pmu);
1928 
1929 	if (event_sched_in(group_event, cpuctx, ctx)) {
1930 		pmu->cancel_txn(pmu);
1931 		perf_cpu_hrtimer_restart(cpuctx);
1932 		return -EAGAIN;
1933 	}
1934 
1935 	/*
1936 	 * Schedule in siblings as one group (if any):
1937 	 */
1938 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1939 		if (event_sched_in(event, cpuctx, ctx)) {
1940 			partial_group = event;
1941 			goto group_error;
1942 		}
1943 	}
1944 
1945 	if (!pmu->commit_txn(pmu))
1946 		return 0;
1947 
1948 group_error:
1949 	/*
1950 	 * Groups can be scheduled in as one unit only, so undo any
1951 	 * partial group before returning:
1952 	 * The events up to the failed event are scheduled out normally,
1953 	 * tstamp_stopped will be updated.
1954 	 *
1955 	 * The failed events and the remaining siblings need to have
1956 	 * their timings updated as if they had gone thru event_sched_in()
1957 	 * and event_sched_out(). This is required to get consistent timings
1958 	 * across the group. This also takes care of the case where the group
1959 	 * could never be scheduled by ensuring tstamp_stopped is set to mark
1960 	 * the time the event was actually stopped, such that time delta
1961 	 * calculation in update_event_times() is correct.
1962 	 */
1963 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1964 		if (event == partial_group)
1965 			simulate = true;
1966 
1967 		if (simulate) {
1968 			event->tstamp_running += now - event->tstamp_stopped;
1969 			event->tstamp_stopped = now;
1970 		} else {
1971 			event_sched_out(event, cpuctx, ctx);
1972 		}
1973 	}
1974 	event_sched_out(group_event, cpuctx, ctx);
1975 
1976 	pmu->cancel_txn(pmu);
1977 
1978 	perf_cpu_hrtimer_restart(cpuctx);
1979 
1980 	return -EAGAIN;
1981 }
1982 
1983 /*
1984  * Work out whether we can put this event group on the CPU now.
1985  */
1986 static int group_can_go_on(struct perf_event *event,
1987 			   struct perf_cpu_context *cpuctx,
1988 			   int can_add_hw)
1989 {
1990 	/*
1991 	 * Groups consisting entirely of software events can always go on.
1992 	 */
1993 	if (event->group_flags & PERF_GROUP_SOFTWARE)
1994 		return 1;
1995 	/*
1996 	 * If an exclusive group is already on, no other hardware
1997 	 * events can go on.
1998 	 */
1999 	if (cpuctx->exclusive)
2000 		return 0;
2001 	/*
2002 	 * If this group is exclusive and there are already
2003 	 * events on the CPU, it can't go on.
2004 	 */
2005 	if (event->attr.exclusive && cpuctx->active_oncpu)
2006 		return 0;
2007 	/*
2008 	 * Otherwise, try to add it if all previous groups were able
2009 	 * to go on.
2010 	 */
2011 	return can_add_hw;
2012 }
2013 
2014 static void add_event_to_ctx(struct perf_event *event,
2015 			       struct perf_event_context *ctx)
2016 {
2017 	u64 tstamp = perf_event_time(event);
2018 
2019 	list_add_event(event, ctx);
2020 	perf_group_attach(event);
2021 	event->tstamp_enabled = tstamp;
2022 	event->tstamp_running = tstamp;
2023 	event->tstamp_stopped = tstamp;
2024 }
2025 
2026 static void task_ctx_sched_out(struct perf_event_context *ctx);
2027 static void
2028 ctx_sched_in(struct perf_event_context *ctx,
2029 	     struct perf_cpu_context *cpuctx,
2030 	     enum event_type_t event_type,
2031 	     struct task_struct *task);
2032 
2033 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2034 				struct perf_event_context *ctx,
2035 				struct task_struct *task)
2036 {
2037 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2038 	if (ctx)
2039 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2040 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2041 	if (ctx)
2042 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2043 }
2044 
2045 /*
2046  * Cross CPU call to install and enable a performance event
2047  *
2048  * Must be called with ctx->mutex held
2049  */
2050 static int  __perf_install_in_context(void *info)
2051 {
2052 	struct perf_event *event = info;
2053 	struct perf_event_context *ctx = event->ctx;
2054 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2055 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2056 	struct task_struct *task = current;
2057 
2058 	perf_ctx_lock(cpuctx, task_ctx);
2059 	perf_pmu_disable(cpuctx->ctx.pmu);
2060 
2061 	/*
2062 	 * If there was an active task_ctx schedule it out.
2063 	 */
2064 	if (task_ctx)
2065 		task_ctx_sched_out(task_ctx);
2066 
2067 	/*
2068 	 * If the context we're installing events in is not the
2069 	 * active task_ctx, flip them.
2070 	 */
2071 	if (ctx->task && task_ctx != ctx) {
2072 		if (task_ctx)
2073 			raw_spin_unlock(&task_ctx->lock);
2074 		raw_spin_lock(&ctx->lock);
2075 		task_ctx = ctx;
2076 	}
2077 
2078 	if (task_ctx) {
2079 		cpuctx->task_ctx = task_ctx;
2080 		task = task_ctx->task;
2081 	}
2082 
2083 	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2084 
2085 	update_context_time(ctx);
2086 	/*
2087 	 * update cgrp time only if current cgrp
2088 	 * matches event->cgrp. Must be done before
2089 	 * calling add_event_to_ctx()
2090 	 */
2091 	update_cgrp_time_from_event(event);
2092 
2093 	add_event_to_ctx(event, ctx);
2094 
2095 	/*
2096 	 * Schedule everything back in
2097 	 */
2098 	perf_event_sched_in(cpuctx, task_ctx, task);
2099 
2100 	perf_pmu_enable(cpuctx->ctx.pmu);
2101 	perf_ctx_unlock(cpuctx, task_ctx);
2102 
2103 	return 0;
2104 }
2105 
2106 /*
2107  * Attach a performance event to a context
2108  *
2109  * First we add the event to the list with the hardware enable bit
2110  * in event->hw_config cleared.
2111  *
2112  * If the event is attached to a task which is on a CPU we use a smp
2113  * call to enable it in the task context. The task might have been
2114  * scheduled away, but we check this in the smp call again.
2115  */
2116 static void
2117 perf_install_in_context(struct perf_event_context *ctx,
2118 			struct perf_event *event,
2119 			int cpu)
2120 {
2121 	struct task_struct *task = ctx->task;
2122 
2123 	lockdep_assert_held(&ctx->mutex);
2124 
2125 	event->ctx = ctx;
2126 	if (event->cpu != -1)
2127 		event->cpu = cpu;
2128 
2129 	if (!task) {
2130 		/*
2131 		 * Per cpu events are installed via an smp call and
2132 		 * the install is always successful.
2133 		 */
2134 		cpu_function_call(cpu, __perf_install_in_context, event);
2135 		return;
2136 	}
2137 
2138 retry:
2139 	if (!task_function_call(task, __perf_install_in_context, event))
2140 		return;
2141 
2142 	raw_spin_lock_irq(&ctx->lock);
2143 	/*
2144 	 * If we failed to find a running task, but find the context active now
2145 	 * that we've acquired the ctx->lock, retry.
2146 	 */
2147 	if (ctx->is_active) {
2148 		raw_spin_unlock_irq(&ctx->lock);
2149 		/*
2150 		 * Reload the task pointer, it might have been changed by
2151 		 * a concurrent perf_event_context_sched_out().
2152 		 */
2153 		task = ctx->task;
2154 		goto retry;
2155 	}
2156 
2157 	/*
2158 	 * Since the task isn't running, its safe to add the event, us holding
2159 	 * the ctx->lock ensures the task won't get scheduled in.
2160 	 */
2161 	add_event_to_ctx(event, ctx);
2162 	raw_spin_unlock_irq(&ctx->lock);
2163 }
2164 
2165 /*
2166  * Put a event into inactive state and update time fields.
2167  * Enabling the leader of a group effectively enables all
2168  * the group members that aren't explicitly disabled, so we
2169  * have to update their ->tstamp_enabled also.
2170  * Note: this works for group members as well as group leaders
2171  * since the non-leader members' sibling_lists will be empty.
2172  */
2173 static void __perf_event_mark_enabled(struct perf_event *event)
2174 {
2175 	struct perf_event *sub;
2176 	u64 tstamp = perf_event_time(event);
2177 
2178 	event->state = PERF_EVENT_STATE_INACTIVE;
2179 	event->tstamp_enabled = tstamp - event->total_time_enabled;
2180 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2181 		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2182 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2183 	}
2184 }
2185 
2186 /*
2187  * Cross CPU call to enable a performance event
2188  */
2189 static int __perf_event_enable(void *info)
2190 {
2191 	struct perf_event *event = info;
2192 	struct perf_event_context *ctx = event->ctx;
2193 	struct perf_event *leader = event->group_leader;
2194 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2195 	int err;
2196 
2197 	/*
2198 	 * There's a time window between 'ctx->is_active' check
2199 	 * in perf_event_enable function and this place having:
2200 	 *   - IRQs on
2201 	 *   - ctx->lock unlocked
2202 	 *
2203 	 * where the task could be killed and 'ctx' deactivated
2204 	 * by perf_event_exit_task.
2205 	 */
2206 	if (!ctx->is_active)
2207 		return -EINVAL;
2208 
2209 	raw_spin_lock(&ctx->lock);
2210 	update_context_time(ctx);
2211 
2212 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2213 		goto unlock;
2214 
2215 	/*
2216 	 * set current task's cgroup time reference point
2217 	 */
2218 	perf_cgroup_set_timestamp(current, ctx);
2219 
2220 	__perf_event_mark_enabled(event);
2221 
2222 	if (!event_filter_match(event)) {
2223 		if (is_cgroup_event(event))
2224 			perf_cgroup_defer_enabled(event);
2225 		goto unlock;
2226 	}
2227 
2228 	/*
2229 	 * If the event is in a group and isn't the group leader,
2230 	 * then don't put it on unless the group is on.
2231 	 */
2232 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2233 		goto unlock;
2234 
2235 	if (!group_can_go_on(event, cpuctx, 1)) {
2236 		err = -EEXIST;
2237 	} else {
2238 		if (event == leader)
2239 			err = group_sched_in(event, cpuctx, ctx);
2240 		else
2241 			err = event_sched_in(event, cpuctx, ctx);
2242 	}
2243 
2244 	if (err) {
2245 		/*
2246 		 * If this event can't go on and it's part of a
2247 		 * group, then the whole group has to come off.
2248 		 */
2249 		if (leader != event) {
2250 			group_sched_out(leader, cpuctx, ctx);
2251 			perf_cpu_hrtimer_restart(cpuctx);
2252 		}
2253 		if (leader->attr.pinned) {
2254 			update_group_times(leader);
2255 			leader->state = PERF_EVENT_STATE_ERROR;
2256 		}
2257 	}
2258 
2259 unlock:
2260 	raw_spin_unlock(&ctx->lock);
2261 
2262 	return 0;
2263 }
2264 
2265 /*
2266  * Enable a event.
2267  *
2268  * If event->ctx is a cloned context, callers must make sure that
2269  * every task struct that event->ctx->task could possibly point to
2270  * remains valid.  This condition is satisfied when called through
2271  * perf_event_for_each_child or perf_event_for_each as described
2272  * for perf_event_disable.
2273  */
2274 static void _perf_event_enable(struct perf_event *event)
2275 {
2276 	struct perf_event_context *ctx = event->ctx;
2277 	struct task_struct *task = ctx->task;
2278 
2279 	if (!task) {
2280 		/*
2281 		 * Enable the event on the cpu that it's on
2282 		 */
2283 		cpu_function_call(event->cpu, __perf_event_enable, event);
2284 		return;
2285 	}
2286 
2287 	raw_spin_lock_irq(&ctx->lock);
2288 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2289 		goto out;
2290 
2291 	/*
2292 	 * If the event is in error state, clear that first.
2293 	 * That way, if we see the event in error state below, we
2294 	 * know that it has gone back into error state, as distinct
2295 	 * from the task having been scheduled away before the
2296 	 * cross-call arrived.
2297 	 */
2298 	if (event->state == PERF_EVENT_STATE_ERROR)
2299 		event->state = PERF_EVENT_STATE_OFF;
2300 
2301 retry:
2302 	if (!ctx->is_active) {
2303 		__perf_event_mark_enabled(event);
2304 		goto out;
2305 	}
2306 
2307 	raw_spin_unlock_irq(&ctx->lock);
2308 
2309 	if (!task_function_call(task, __perf_event_enable, event))
2310 		return;
2311 
2312 	raw_spin_lock_irq(&ctx->lock);
2313 
2314 	/*
2315 	 * If the context is active and the event is still off,
2316 	 * we need to retry the cross-call.
2317 	 */
2318 	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
2319 		/*
2320 		 * task could have been flipped by a concurrent
2321 		 * perf_event_context_sched_out()
2322 		 */
2323 		task = ctx->task;
2324 		goto retry;
2325 	}
2326 
2327 out:
2328 	raw_spin_unlock_irq(&ctx->lock);
2329 }
2330 
2331 /*
2332  * See perf_event_disable();
2333  */
2334 void perf_event_enable(struct perf_event *event)
2335 {
2336 	struct perf_event_context *ctx;
2337 
2338 	ctx = perf_event_ctx_lock(event);
2339 	_perf_event_enable(event);
2340 	perf_event_ctx_unlock(event, ctx);
2341 }
2342 EXPORT_SYMBOL_GPL(perf_event_enable);
2343 
2344 static int _perf_event_refresh(struct perf_event *event, int refresh)
2345 {
2346 	/*
2347 	 * not supported on inherited events
2348 	 */
2349 	if (event->attr.inherit || !is_sampling_event(event))
2350 		return -EINVAL;
2351 
2352 	atomic_add(refresh, &event->event_limit);
2353 	_perf_event_enable(event);
2354 
2355 	return 0;
2356 }
2357 
2358 /*
2359  * See perf_event_disable()
2360  */
2361 int perf_event_refresh(struct perf_event *event, int refresh)
2362 {
2363 	struct perf_event_context *ctx;
2364 	int ret;
2365 
2366 	ctx = perf_event_ctx_lock(event);
2367 	ret = _perf_event_refresh(event, refresh);
2368 	perf_event_ctx_unlock(event, ctx);
2369 
2370 	return ret;
2371 }
2372 EXPORT_SYMBOL_GPL(perf_event_refresh);
2373 
2374 static void ctx_sched_out(struct perf_event_context *ctx,
2375 			  struct perf_cpu_context *cpuctx,
2376 			  enum event_type_t event_type)
2377 {
2378 	struct perf_event *event;
2379 	int is_active = ctx->is_active;
2380 
2381 	ctx->is_active &= ~event_type;
2382 	if (likely(!ctx->nr_events))
2383 		return;
2384 
2385 	update_context_time(ctx);
2386 	update_cgrp_time_from_cpuctx(cpuctx);
2387 	if (!ctx->nr_active)
2388 		return;
2389 
2390 	perf_pmu_disable(ctx->pmu);
2391 	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2392 		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2393 			group_sched_out(event, cpuctx, ctx);
2394 	}
2395 
2396 	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2397 		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2398 			group_sched_out(event, cpuctx, ctx);
2399 	}
2400 	perf_pmu_enable(ctx->pmu);
2401 }
2402 
2403 /*
2404  * Test whether two contexts are equivalent, i.e. whether they have both been
2405  * cloned from the same version of the same context.
2406  *
2407  * Equivalence is measured using a generation number in the context that is
2408  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2409  * and list_del_event().
2410  */
2411 static int context_equiv(struct perf_event_context *ctx1,
2412 			 struct perf_event_context *ctx2)
2413 {
2414 	lockdep_assert_held(&ctx1->lock);
2415 	lockdep_assert_held(&ctx2->lock);
2416 
2417 	/* Pinning disables the swap optimization */
2418 	if (ctx1->pin_count || ctx2->pin_count)
2419 		return 0;
2420 
2421 	/* If ctx1 is the parent of ctx2 */
2422 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2423 		return 1;
2424 
2425 	/* If ctx2 is the parent of ctx1 */
2426 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2427 		return 1;
2428 
2429 	/*
2430 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
2431 	 * hierarchy, see perf_event_init_context().
2432 	 */
2433 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2434 			ctx1->parent_gen == ctx2->parent_gen)
2435 		return 1;
2436 
2437 	/* Unmatched */
2438 	return 0;
2439 }
2440 
2441 static void __perf_event_sync_stat(struct perf_event *event,
2442 				     struct perf_event *next_event)
2443 {
2444 	u64 value;
2445 
2446 	if (!event->attr.inherit_stat)
2447 		return;
2448 
2449 	/*
2450 	 * Update the event value, we cannot use perf_event_read()
2451 	 * because we're in the middle of a context switch and have IRQs
2452 	 * disabled, which upsets smp_call_function_single(), however
2453 	 * we know the event must be on the current CPU, therefore we
2454 	 * don't need to use it.
2455 	 */
2456 	switch (event->state) {
2457 	case PERF_EVENT_STATE_ACTIVE:
2458 		event->pmu->read(event);
2459 		/* fall-through */
2460 
2461 	case PERF_EVENT_STATE_INACTIVE:
2462 		update_event_times(event);
2463 		break;
2464 
2465 	default:
2466 		break;
2467 	}
2468 
2469 	/*
2470 	 * In order to keep per-task stats reliable we need to flip the event
2471 	 * values when we flip the contexts.
2472 	 */
2473 	value = local64_read(&next_event->count);
2474 	value = local64_xchg(&event->count, value);
2475 	local64_set(&next_event->count, value);
2476 
2477 	swap(event->total_time_enabled, next_event->total_time_enabled);
2478 	swap(event->total_time_running, next_event->total_time_running);
2479 
2480 	/*
2481 	 * Since we swizzled the values, update the user visible data too.
2482 	 */
2483 	perf_event_update_userpage(event);
2484 	perf_event_update_userpage(next_event);
2485 }
2486 
2487 static void perf_event_sync_stat(struct perf_event_context *ctx,
2488 				   struct perf_event_context *next_ctx)
2489 {
2490 	struct perf_event *event, *next_event;
2491 
2492 	if (!ctx->nr_stat)
2493 		return;
2494 
2495 	update_context_time(ctx);
2496 
2497 	event = list_first_entry(&ctx->event_list,
2498 				   struct perf_event, event_entry);
2499 
2500 	next_event = list_first_entry(&next_ctx->event_list,
2501 					struct perf_event, event_entry);
2502 
2503 	while (&event->event_entry != &ctx->event_list &&
2504 	       &next_event->event_entry != &next_ctx->event_list) {
2505 
2506 		__perf_event_sync_stat(event, next_event);
2507 
2508 		event = list_next_entry(event, event_entry);
2509 		next_event = list_next_entry(next_event, event_entry);
2510 	}
2511 }
2512 
2513 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2514 					 struct task_struct *next)
2515 {
2516 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2517 	struct perf_event_context *next_ctx;
2518 	struct perf_event_context *parent, *next_parent;
2519 	struct perf_cpu_context *cpuctx;
2520 	int do_switch = 1;
2521 
2522 	if (likely(!ctx))
2523 		return;
2524 
2525 	cpuctx = __get_cpu_context(ctx);
2526 	if (!cpuctx->task_ctx)
2527 		return;
2528 
2529 	rcu_read_lock();
2530 	next_ctx = next->perf_event_ctxp[ctxn];
2531 	if (!next_ctx)
2532 		goto unlock;
2533 
2534 	parent = rcu_dereference(ctx->parent_ctx);
2535 	next_parent = rcu_dereference(next_ctx->parent_ctx);
2536 
2537 	/* If neither context have a parent context; they cannot be clones. */
2538 	if (!parent && !next_parent)
2539 		goto unlock;
2540 
2541 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2542 		/*
2543 		 * Looks like the two contexts are clones, so we might be
2544 		 * able to optimize the context switch.  We lock both
2545 		 * contexts and check that they are clones under the
2546 		 * lock (including re-checking that neither has been
2547 		 * uncloned in the meantime).  It doesn't matter which
2548 		 * order we take the locks because no other cpu could
2549 		 * be trying to lock both of these tasks.
2550 		 */
2551 		raw_spin_lock(&ctx->lock);
2552 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2553 		if (context_equiv(ctx, next_ctx)) {
2554 			/*
2555 			 * XXX do we need a memory barrier of sorts
2556 			 * wrt to rcu_dereference() of perf_event_ctxp
2557 			 */
2558 			task->perf_event_ctxp[ctxn] = next_ctx;
2559 			next->perf_event_ctxp[ctxn] = ctx;
2560 			ctx->task = next;
2561 			next_ctx->task = task;
2562 			do_switch = 0;
2563 
2564 			perf_event_sync_stat(ctx, next_ctx);
2565 		}
2566 		raw_spin_unlock(&next_ctx->lock);
2567 		raw_spin_unlock(&ctx->lock);
2568 	}
2569 unlock:
2570 	rcu_read_unlock();
2571 
2572 	if (do_switch) {
2573 		raw_spin_lock(&ctx->lock);
2574 		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2575 		cpuctx->task_ctx = NULL;
2576 		raw_spin_unlock(&ctx->lock);
2577 	}
2578 }
2579 
2580 #define for_each_task_context_nr(ctxn)					\
2581 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2582 
2583 /*
2584  * Called from scheduler to remove the events of the current task,
2585  * with interrupts disabled.
2586  *
2587  * We stop each event and update the event value in event->count.
2588  *
2589  * This does not protect us against NMI, but disable()
2590  * sets the disabled bit in the control field of event _before_
2591  * accessing the event control register. If a NMI hits, then it will
2592  * not restart the event.
2593  */
2594 void __perf_event_task_sched_out(struct task_struct *task,
2595 				 struct task_struct *next)
2596 {
2597 	int ctxn;
2598 
2599 	for_each_task_context_nr(ctxn)
2600 		perf_event_context_sched_out(task, ctxn, next);
2601 
2602 	/*
2603 	 * if cgroup events exist on this CPU, then we need
2604 	 * to check if we have to switch out PMU state.
2605 	 * cgroup event are system-wide mode only
2606 	 */
2607 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2608 		perf_cgroup_sched_out(task, next);
2609 }
2610 
2611 static void task_ctx_sched_out(struct perf_event_context *ctx)
2612 {
2613 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2614 
2615 	if (!cpuctx->task_ctx)
2616 		return;
2617 
2618 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2619 		return;
2620 
2621 	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2622 	cpuctx->task_ctx = NULL;
2623 }
2624 
2625 /*
2626  * Called with IRQs disabled
2627  */
2628 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2629 			      enum event_type_t event_type)
2630 {
2631 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2632 }
2633 
2634 static void
2635 ctx_pinned_sched_in(struct perf_event_context *ctx,
2636 		    struct perf_cpu_context *cpuctx)
2637 {
2638 	struct perf_event *event;
2639 
2640 	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2641 		if (event->state <= PERF_EVENT_STATE_OFF)
2642 			continue;
2643 		if (!event_filter_match(event))
2644 			continue;
2645 
2646 		/* may need to reset tstamp_enabled */
2647 		if (is_cgroup_event(event))
2648 			perf_cgroup_mark_enabled(event, ctx);
2649 
2650 		if (group_can_go_on(event, cpuctx, 1))
2651 			group_sched_in(event, cpuctx, ctx);
2652 
2653 		/*
2654 		 * If this pinned group hasn't been scheduled,
2655 		 * put it in error state.
2656 		 */
2657 		if (event->state == PERF_EVENT_STATE_INACTIVE) {
2658 			update_group_times(event);
2659 			event->state = PERF_EVENT_STATE_ERROR;
2660 		}
2661 	}
2662 }
2663 
2664 static void
2665 ctx_flexible_sched_in(struct perf_event_context *ctx,
2666 		      struct perf_cpu_context *cpuctx)
2667 {
2668 	struct perf_event *event;
2669 	int can_add_hw = 1;
2670 
2671 	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2672 		/* Ignore events in OFF or ERROR state */
2673 		if (event->state <= PERF_EVENT_STATE_OFF)
2674 			continue;
2675 		/*
2676 		 * Listen to the 'cpu' scheduling filter constraint
2677 		 * of events:
2678 		 */
2679 		if (!event_filter_match(event))
2680 			continue;
2681 
2682 		/* may need to reset tstamp_enabled */
2683 		if (is_cgroup_event(event))
2684 			perf_cgroup_mark_enabled(event, ctx);
2685 
2686 		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2687 			if (group_sched_in(event, cpuctx, ctx))
2688 				can_add_hw = 0;
2689 		}
2690 	}
2691 }
2692 
2693 static void
2694 ctx_sched_in(struct perf_event_context *ctx,
2695 	     struct perf_cpu_context *cpuctx,
2696 	     enum event_type_t event_type,
2697 	     struct task_struct *task)
2698 {
2699 	u64 now;
2700 	int is_active = ctx->is_active;
2701 
2702 	ctx->is_active |= event_type;
2703 	if (likely(!ctx->nr_events))
2704 		return;
2705 
2706 	now = perf_clock();
2707 	ctx->timestamp = now;
2708 	perf_cgroup_set_timestamp(task, ctx);
2709 	/*
2710 	 * First go through the list and put on any pinned groups
2711 	 * in order to give them the best chance of going on.
2712 	 */
2713 	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2714 		ctx_pinned_sched_in(ctx, cpuctx);
2715 
2716 	/* Then walk through the lower prio flexible groups */
2717 	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2718 		ctx_flexible_sched_in(ctx, cpuctx);
2719 }
2720 
2721 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2722 			     enum event_type_t event_type,
2723 			     struct task_struct *task)
2724 {
2725 	struct perf_event_context *ctx = &cpuctx->ctx;
2726 
2727 	ctx_sched_in(ctx, cpuctx, event_type, task);
2728 }
2729 
2730 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2731 					struct task_struct *task)
2732 {
2733 	struct perf_cpu_context *cpuctx;
2734 
2735 	cpuctx = __get_cpu_context(ctx);
2736 	if (cpuctx->task_ctx == ctx)
2737 		return;
2738 
2739 	perf_ctx_lock(cpuctx, ctx);
2740 	perf_pmu_disable(ctx->pmu);
2741 	/*
2742 	 * We want to keep the following priority order:
2743 	 * cpu pinned (that don't need to move), task pinned,
2744 	 * cpu flexible, task flexible.
2745 	 */
2746 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2747 
2748 	if (ctx->nr_events)
2749 		cpuctx->task_ctx = ctx;
2750 
2751 	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2752 
2753 	perf_pmu_enable(ctx->pmu);
2754 	perf_ctx_unlock(cpuctx, ctx);
2755 }
2756 
2757 /*
2758  * When sampling the branck stack in system-wide, it may be necessary
2759  * to flush the stack on context switch. This happens when the branch
2760  * stack does not tag its entries with the pid of the current task.
2761  * Otherwise it becomes impossible to associate a branch entry with a
2762  * task. This ambiguity is more likely to appear when the branch stack
2763  * supports priv level filtering and the user sets it to monitor only
2764  * at the user level (which could be a useful measurement in system-wide
2765  * mode). In that case, the risk is high of having a branch stack with
2766  * branch from multiple tasks. Flushing may mean dropping the existing
2767  * entries or stashing them somewhere in the PMU specific code layer.
2768  *
2769  * This function provides the context switch callback to the lower code
2770  * layer. It is invoked ONLY when there is at least one system-wide context
2771  * with at least one active event using taken branch sampling.
2772  */
2773 static void perf_branch_stack_sched_in(struct task_struct *prev,
2774 				       struct task_struct *task)
2775 {
2776 	struct perf_cpu_context *cpuctx;
2777 	struct pmu *pmu;
2778 	unsigned long flags;
2779 
2780 	/* no need to flush branch stack if not changing task */
2781 	if (prev == task)
2782 		return;
2783 
2784 	local_irq_save(flags);
2785 
2786 	rcu_read_lock();
2787 
2788 	list_for_each_entry_rcu(pmu, &pmus, entry) {
2789 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2790 
2791 		/*
2792 		 * check if the context has at least one
2793 		 * event using PERF_SAMPLE_BRANCH_STACK
2794 		 */
2795 		if (cpuctx->ctx.nr_branch_stack > 0
2796 		    && pmu->flush_branch_stack) {
2797 
2798 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2799 
2800 			perf_pmu_disable(pmu);
2801 
2802 			pmu->flush_branch_stack();
2803 
2804 			perf_pmu_enable(pmu);
2805 
2806 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2807 		}
2808 	}
2809 
2810 	rcu_read_unlock();
2811 
2812 	local_irq_restore(flags);
2813 }
2814 
2815 /*
2816  * Called from scheduler to add the events of the current task
2817  * with interrupts disabled.
2818  *
2819  * We restore the event value and then enable it.
2820  *
2821  * This does not protect us against NMI, but enable()
2822  * sets the enabled bit in the control field of event _before_
2823  * accessing the event control register. If a NMI hits, then it will
2824  * keep the event running.
2825  */
2826 void __perf_event_task_sched_in(struct task_struct *prev,
2827 				struct task_struct *task)
2828 {
2829 	struct perf_event_context *ctx;
2830 	int ctxn;
2831 
2832 	for_each_task_context_nr(ctxn) {
2833 		ctx = task->perf_event_ctxp[ctxn];
2834 		if (likely(!ctx))
2835 			continue;
2836 
2837 		perf_event_context_sched_in(ctx, task);
2838 	}
2839 	/*
2840 	 * if cgroup events exist on this CPU, then we need
2841 	 * to check if we have to switch in PMU state.
2842 	 * cgroup event are system-wide mode only
2843 	 */
2844 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2845 		perf_cgroup_sched_in(prev, task);
2846 
2847 	/* check for system-wide branch_stack events */
2848 	if (atomic_read(this_cpu_ptr(&perf_branch_stack_events)))
2849 		perf_branch_stack_sched_in(prev, task);
2850 }
2851 
2852 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2853 {
2854 	u64 frequency = event->attr.sample_freq;
2855 	u64 sec = NSEC_PER_SEC;
2856 	u64 divisor, dividend;
2857 
2858 	int count_fls, nsec_fls, frequency_fls, sec_fls;
2859 
2860 	count_fls = fls64(count);
2861 	nsec_fls = fls64(nsec);
2862 	frequency_fls = fls64(frequency);
2863 	sec_fls = 30;
2864 
2865 	/*
2866 	 * We got @count in @nsec, with a target of sample_freq HZ
2867 	 * the target period becomes:
2868 	 *
2869 	 *             @count * 10^9
2870 	 * period = -------------------
2871 	 *          @nsec * sample_freq
2872 	 *
2873 	 */
2874 
2875 	/*
2876 	 * Reduce accuracy by one bit such that @a and @b converge
2877 	 * to a similar magnitude.
2878 	 */
2879 #define REDUCE_FLS(a, b)		\
2880 do {					\
2881 	if (a##_fls > b##_fls) {	\
2882 		a >>= 1;		\
2883 		a##_fls--;		\
2884 	} else {			\
2885 		b >>= 1;		\
2886 		b##_fls--;		\
2887 	}				\
2888 } while (0)
2889 
2890 	/*
2891 	 * Reduce accuracy until either term fits in a u64, then proceed with
2892 	 * the other, so that finally we can do a u64/u64 division.
2893 	 */
2894 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2895 		REDUCE_FLS(nsec, frequency);
2896 		REDUCE_FLS(sec, count);
2897 	}
2898 
2899 	if (count_fls + sec_fls > 64) {
2900 		divisor = nsec * frequency;
2901 
2902 		while (count_fls + sec_fls > 64) {
2903 			REDUCE_FLS(count, sec);
2904 			divisor >>= 1;
2905 		}
2906 
2907 		dividend = count * sec;
2908 	} else {
2909 		dividend = count * sec;
2910 
2911 		while (nsec_fls + frequency_fls > 64) {
2912 			REDUCE_FLS(nsec, frequency);
2913 			dividend >>= 1;
2914 		}
2915 
2916 		divisor = nsec * frequency;
2917 	}
2918 
2919 	if (!divisor)
2920 		return dividend;
2921 
2922 	return div64_u64(dividend, divisor);
2923 }
2924 
2925 static DEFINE_PER_CPU(int, perf_throttled_count);
2926 static DEFINE_PER_CPU(u64, perf_throttled_seq);
2927 
2928 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2929 {
2930 	struct hw_perf_event *hwc = &event->hw;
2931 	s64 period, sample_period;
2932 	s64 delta;
2933 
2934 	period = perf_calculate_period(event, nsec, count);
2935 
2936 	delta = (s64)(period - hwc->sample_period);
2937 	delta = (delta + 7) / 8; /* low pass filter */
2938 
2939 	sample_period = hwc->sample_period + delta;
2940 
2941 	if (!sample_period)
2942 		sample_period = 1;
2943 
2944 	hwc->sample_period = sample_period;
2945 
2946 	if (local64_read(&hwc->period_left) > 8*sample_period) {
2947 		if (disable)
2948 			event->pmu->stop(event, PERF_EF_UPDATE);
2949 
2950 		local64_set(&hwc->period_left, 0);
2951 
2952 		if (disable)
2953 			event->pmu->start(event, PERF_EF_RELOAD);
2954 	}
2955 }
2956 
2957 /*
2958  * combine freq adjustment with unthrottling to avoid two passes over the
2959  * events. At the same time, make sure, having freq events does not change
2960  * the rate of unthrottling as that would introduce bias.
2961  */
2962 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2963 					   int needs_unthr)
2964 {
2965 	struct perf_event *event;
2966 	struct hw_perf_event *hwc;
2967 	u64 now, period = TICK_NSEC;
2968 	s64 delta;
2969 
2970 	/*
2971 	 * only need to iterate over all events iff:
2972 	 * - context have events in frequency mode (needs freq adjust)
2973 	 * - there are events to unthrottle on this cpu
2974 	 */
2975 	if (!(ctx->nr_freq || needs_unthr))
2976 		return;
2977 
2978 	raw_spin_lock(&ctx->lock);
2979 	perf_pmu_disable(ctx->pmu);
2980 
2981 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2982 		if (event->state != PERF_EVENT_STATE_ACTIVE)
2983 			continue;
2984 
2985 		if (!event_filter_match(event))
2986 			continue;
2987 
2988 		perf_pmu_disable(event->pmu);
2989 
2990 		hwc = &event->hw;
2991 
2992 		if (hwc->interrupts == MAX_INTERRUPTS) {
2993 			hwc->interrupts = 0;
2994 			perf_log_throttle(event, 1);
2995 			event->pmu->start(event, 0);
2996 		}
2997 
2998 		if (!event->attr.freq || !event->attr.sample_freq)
2999 			goto next;
3000 
3001 		/*
3002 		 * stop the event and update event->count
3003 		 */
3004 		event->pmu->stop(event, PERF_EF_UPDATE);
3005 
3006 		now = local64_read(&event->count);
3007 		delta = now - hwc->freq_count_stamp;
3008 		hwc->freq_count_stamp = now;
3009 
3010 		/*
3011 		 * restart the event
3012 		 * reload only if value has changed
3013 		 * we have stopped the event so tell that
3014 		 * to perf_adjust_period() to avoid stopping it
3015 		 * twice.
3016 		 */
3017 		if (delta > 0)
3018 			perf_adjust_period(event, period, delta, false);
3019 
3020 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3021 	next:
3022 		perf_pmu_enable(event->pmu);
3023 	}
3024 
3025 	perf_pmu_enable(ctx->pmu);
3026 	raw_spin_unlock(&ctx->lock);
3027 }
3028 
3029 /*
3030  * Round-robin a context's events:
3031  */
3032 static void rotate_ctx(struct perf_event_context *ctx)
3033 {
3034 	/*
3035 	 * Rotate the first entry last of non-pinned groups. Rotation might be
3036 	 * disabled by the inheritance code.
3037 	 */
3038 	if (!ctx->rotate_disable)
3039 		list_rotate_left(&ctx->flexible_groups);
3040 }
3041 
3042 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3043 {
3044 	struct perf_event_context *ctx = NULL;
3045 	int rotate = 0;
3046 
3047 	if (cpuctx->ctx.nr_events) {
3048 		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3049 			rotate = 1;
3050 	}
3051 
3052 	ctx = cpuctx->task_ctx;
3053 	if (ctx && ctx->nr_events) {
3054 		if (ctx->nr_events != ctx->nr_active)
3055 			rotate = 1;
3056 	}
3057 
3058 	if (!rotate)
3059 		goto done;
3060 
3061 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3062 	perf_pmu_disable(cpuctx->ctx.pmu);
3063 
3064 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3065 	if (ctx)
3066 		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3067 
3068 	rotate_ctx(&cpuctx->ctx);
3069 	if (ctx)
3070 		rotate_ctx(ctx);
3071 
3072 	perf_event_sched_in(cpuctx, ctx, current);
3073 
3074 	perf_pmu_enable(cpuctx->ctx.pmu);
3075 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3076 done:
3077 
3078 	return rotate;
3079 }
3080 
3081 #ifdef CONFIG_NO_HZ_FULL
3082 bool perf_event_can_stop_tick(void)
3083 {
3084 	if (atomic_read(&nr_freq_events) ||
3085 	    __this_cpu_read(perf_throttled_count))
3086 		return false;
3087 	else
3088 		return true;
3089 }
3090 #endif
3091 
3092 void perf_event_task_tick(void)
3093 {
3094 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
3095 	struct perf_event_context *ctx, *tmp;
3096 	int throttled;
3097 
3098 	WARN_ON(!irqs_disabled());
3099 
3100 	__this_cpu_inc(perf_throttled_seq);
3101 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
3102 
3103 	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3104 		perf_adjust_freq_unthr_context(ctx, throttled);
3105 }
3106 
3107 static int event_enable_on_exec(struct perf_event *event,
3108 				struct perf_event_context *ctx)
3109 {
3110 	if (!event->attr.enable_on_exec)
3111 		return 0;
3112 
3113 	event->attr.enable_on_exec = 0;
3114 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
3115 		return 0;
3116 
3117 	__perf_event_mark_enabled(event);
3118 
3119 	return 1;
3120 }
3121 
3122 /*
3123  * Enable all of a task's events that have been marked enable-on-exec.
3124  * This expects task == current.
3125  */
3126 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
3127 {
3128 	struct perf_event_context *clone_ctx = NULL;
3129 	struct perf_event *event;
3130 	unsigned long flags;
3131 	int enabled = 0;
3132 	int ret;
3133 
3134 	local_irq_save(flags);
3135 	if (!ctx || !ctx->nr_events)
3136 		goto out;
3137 
3138 	/*
3139 	 * We must ctxsw out cgroup events to avoid conflict
3140 	 * when invoking perf_task_event_sched_in() later on
3141 	 * in this function. Otherwise we end up trying to
3142 	 * ctxswin cgroup events which are already scheduled
3143 	 * in.
3144 	 */
3145 	perf_cgroup_sched_out(current, NULL);
3146 
3147 	raw_spin_lock(&ctx->lock);
3148 	task_ctx_sched_out(ctx);
3149 
3150 	list_for_each_entry(event, &ctx->event_list, event_entry) {
3151 		ret = event_enable_on_exec(event, ctx);
3152 		if (ret)
3153 			enabled = 1;
3154 	}
3155 
3156 	/*
3157 	 * Unclone this context if we enabled any event.
3158 	 */
3159 	if (enabled)
3160 		clone_ctx = unclone_ctx(ctx);
3161 
3162 	raw_spin_unlock(&ctx->lock);
3163 
3164 	/*
3165 	 * Also calls ctxswin for cgroup events, if any:
3166 	 */
3167 	perf_event_context_sched_in(ctx, ctx->task);
3168 out:
3169 	local_irq_restore(flags);
3170 
3171 	if (clone_ctx)
3172 		put_ctx(clone_ctx);
3173 }
3174 
3175 void perf_event_exec(void)
3176 {
3177 	struct perf_event_context *ctx;
3178 	int ctxn;
3179 
3180 	rcu_read_lock();
3181 	for_each_task_context_nr(ctxn) {
3182 		ctx = current->perf_event_ctxp[ctxn];
3183 		if (!ctx)
3184 			continue;
3185 
3186 		perf_event_enable_on_exec(ctx);
3187 	}
3188 	rcu_read_unlock();
3189 }
3190 
3191 /*
3192  * Cross CPU call to read the hardware event
3193  */
3194 static void __perf_event_read(void *info)
3195 {
3196 	struct perf_event *event = info;
3197 	struct perf_event_context *ctx = event->ctx;
3198 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3199 
3200 	/*
3201 	 * If this is a task context, we need to check whether it is
3202 	 * the current task context of this cpu.  If not it has been
3203 	 * scheduled out before the smp call arrived.  In that case
3204 	 * event->count would have been updated to a recent sample
3205 	 * when the event was scheduled out.
3206 	 */
3207 	if (ctx->task && cpuctx->task_ctx != ctx)
3208 		return;
3209 
3210 	raw_spin_lock(&ctx->lock);
3211 	if (ctx->is_active) {
3212 		update_context_time(ctx);
3213 		update_cgrp_time_from_event(event);
3214 	}
3215 	update_event_times(event);
3216 	if (event->state == PERF_EVENT_STATE_ACTIVE)
3217 		event->pmu->read(event);
3218 	raw_spin_unlock(&ctx->lock);
3219 }
3220 
3221 static inline u64 perf_event_count(struct perf_event *event)
3222 {
3223 	return local64_read(&event->count) + atomic64_read(&event->child_count);
3224 }
3225 
3226 static u64 perf_event_read(struct perf_event *event)
3227 {
3228 	/*
3229 	 * If event is enabled and currently active on a CPU, update the
3230 	 * value in the event structure:
3231 	 */
3232 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
3233 		smp_call_function_single(event->oncpu,
3234 					 __perf_event_read, event, 1);
3235 	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3236 		struct perf_event_context *ctx = event->ctx;
3237 		unsigned long flags;
3238 
3239 		raw_spin_lock_irqsave(&ctx->lock, flags);
3240 		/*
3241 		 * may read while context is not active
3242 		 * (e.g., thread is blocked), in that case
3243 		 * we cannot update context time
3244 		 */
3245 		if (ctx->is_active) {
3246 			update_context_time(ctx);
3247 			update_cgrp_time_from_event(event);
3248 		}
3249 		update_event_times(event);
3250 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3251 	}
3252 
3253 	return perf_event_count(event);
3254 }
3255 
3256 /*
3257  * Initialize the perf_event context in a task_struct:
3258  */
3259 static void __perf_event_init_context(struct perf_event_context *ctx)
3260 {
3261 	raw_spin_lock_init(&ctx->lock);
3262 	mutex_init(&ctx->mutex);
3263 	INIT_LIST_HEAD(&ctx->active_ctx_list);
3264 	INIT_LIST_HEAD(&ctx->pinned_groups);
3265 	INIT_LIST_HEAD(&ctx->flexible_groups);
3266 	INIT_LIST_HEAD(&ctx->event_list);
3267 	atomic_set(&ctx->refcount, 1);
3268 	INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
3269 }
3270 
3271 static struct perf_event_context *
3272 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3273 {
3274 	struct perf_event_context *ctx;
3275 
3276 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3277 	if (!ctx)
3278 		return NULL;
3279 
3280 	__perf_event_init_context(ctx);
3281 	if (task) {
3282 		ctx->task = task;
3283 		get_task_struct(task);
3284 	}
3285 	ctx->pmu = pmu;
3286 
3287 	return ctx;
3288 }
3289 
3290 static struct task_struct *
3291 find_lively_task_by_vpid(pid_t vpid)
3292 {
3293 	struct task_struct *task;
3294 	int err;
3295 
3296 	rcu_read_lock();
3297 	if (!vpid)
3298 		task = current;
3299 	else
3300 		task = find_task_by_vpid(vpid);
3301 	if (task)
3302 		get_task_struct(task);
3303 	rcu_read_unlock();
3304 
3305 	if (!task)
3306 		return ERR_PTR(-ESRCH);
3307 
3308 	/* Reuse ptrace permission checks for now. */
3309 	err = -EACCES;
3310 	if (!ptrace_may_access(task, PTRACE_MODE_READ))
3311 		goto errout;
3312 
3313 	return task;
3314 errout:
3315 	put_task_struct(task);
3316 	return ERR_PTR(err);
3317 
3318 }
3319 
3320 /*
3321  * Returns a matching context with refcount and pincount.
3322  */
3323 static struct perf_event_context *
3324 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
3325 {
3326 	struct perf_event_context *ctx, *clone_ctx = NULL;
3327 	struct perf_cpu_context *cpuctx;
3328 	unsigned long flags;
3329 	int ctxn, err;
3330 
3331 	if (!task) {
3332 		/* Must be root to operate on a CPU event: */
3333 		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3334 			return ERR_PTR(-EACCES);
3335 
3336 		/*
3337 		 * We could be clever and allow to attach a event to an
3338 		 * offline CPU and activate it when the CPU comes up, but
3339 		 * that's for later.
3340 		 */
3341 		if (!cpu_online(cpu))
3342 			return ERR_PTR(-ENODEV);
3343 
3344 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3345 		ctx = &cpuctx->ctx;
3346 		get_ctx(ctx);
3347 		++ctx->pin_count;
3348 
3349 		return ctx;
3350 	}
3351 
3352 	err = -EINVAL;
3353 	ctxn = pmu->task_ctx_nr;
3354 	if (ctxn < 0)
3355 		goto errout;
3356 
3357 retry:
3358 	ctx = perf_lock_task_context(task, ctxn, &flags);
3359 	if (ctx) {
3360 		clone_ctx = unclone_ctx(ctx);
3361 		++ctx->pin_count;
3362 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3363 
3364 		if (clone_ctx)
3365 			put_ctx(clone_ctx);
3366 	} else {
3367 		ctx = alloc_perf_context(pmu, task);
3368 		err = -ENOMEM;
3369 		if (!ctx)
3370 			goto errout;
3371 
3372 		err = 0;
3373 		mutex_lock(&task->perf_event_mutex);
3374 		/*
3375 		 * If it has already passed perf_event_exit_task().
3376 		 * we must see PF_EXITING, it takes this mutex too.
3377 		 */
3378 		if (task->flags & PF_EXITING)
3379 			err = -ESRCH;
3380 		else if (task->perf_event_ctxp[ctxn])
3381 			err = -EAGAIN;
3382 		else {
3383 			get_ctx(ctx);
3384 			++ctx->pin_count;
3385 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3386 		}
3387 		mutex_unlock(&task->perf_event_mutex);
3388 
3389 		if (unlikely(err)) {
3390 			put_ctx(ctx);
3391 
3392 			if (err == -EAGAIN)
3393 				goto retry;
3394 			goto errout;
3395 		}
3396 	}
3397 
3398 	return ctx;
3399 
3400 errout:
3401 	return ERR_PTR(err);
3402 }
3403 
3404 static void perf_event_free_filter(struct perf_event *event);
3405 
3406 static void free_event_rcu(struct rcu_head *head)
3407 {
3408 	struct perf_event *event;
3409 
3410 	event = container_of(head, struct perf_event, rcu_head);
3411 	if (event->ns)
3412 		put_pid_ns(event->ns);
3413 	perf_event_free_filter(event);
3414 	kfree(event);
3415 }
3416 
3417 static void ring_buffer_put(struct ring_buffer *rb);
3418 static void ring_buffer_attach(struct perf_event *event,
3419 			       struct ring_buffer *rb);
3420 
3421 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3422 {
3423 	if (event->parent)
3424 		return;
3425 
3426 	if (has_branch_stack(event)) {
3427 		if (!(event->attach_state & PERF_ATTACH_TASK))
3428 			atomic_dec(&per_cpu(perf_branch_stack_events, cpu));
3429 	}
3430 	if (is_cgroup_event(event))
3431 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3432 }
3433 
3434 static void unaccount_event(struct perf_event *event)
3435 {
3436 	if (event->parent)
3437 		return;
3438 
3439 	if (event->attach_state & PERF_ATTACH_TASK)
3440 		static_key_slow_dec_deferred(&perf_sched_events);
3441 	if (event->attr.mmap || event->attr.mmap_data)
3442 		atomic_dec(&nr_mmap_events);
3443 	if (event->attr.comm)
3444 		atomic_dec(&nr_comm_events);
3445 	if (event->attr.task)
3446 		atomic_dec(&nr_task_events);
3447 	if (event->attr.freq)
3448 		atomic_dec(&nr_freq_events);
3449 	if (is_cgroup_event(event))
3450 		static_key_slow_dec_deferred(&perf_sched_events);
3451 	if (has_branch_stack(event))
3452 		static_key_slow_dec_deferred(&perf_sched_events);
3453 
3454 	unaccount_event_cpu(event, event->cpu);
3455 }
3456 
3457 static void __free_event(struct perf_event *event)
3458 {
3459 	if (!event->parent) {
3460 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3461 			put_callchain_buffers();
3462 	}
3463 
3464 	if (event->destroy)
3465 		event->destroy(event);
3466 
3467 	if (event->ctx)
3468 		put_ctx(event->ctx);
3469 
3470 	if (event->pmu)
3471 		module_put(event->pmu->module);
3472 
3473 	call_rcu(&event->rcu_head, free_event_rcu);
3474 }
3475 
3476 static void _free_event(struct perf_event *event)
3477 {
3478 	irq_work_sync(&event->pending);
3479 
3480 	unaccount_event(event);
3481 
3482 	if (event->rb) {
3483 		/*
3484 		 * Can happen when we close an event with re-directed output.
3485 		 *
3486 		 * Since we have a 0 refcount, perf_mmap_close() will skip
3487 		 * over us; possibly making our ring_buffer_put() the last.
3488 		 */
3489 		mutex_lock(&event->mmap_mutex);
3490 		ring_buffer_attach(event, NULL);
3491 		mutex_unlock(&event->mmap_mutex);
3492 	}
3493 
3494 	if (is_cgroup_event(event))
3495 		perf_detach_cgroup(event);
3496 
3497 	__free_event(event);
3498 }
3499 
3500 /*
3501  * Used to free events which have a known refcount of 1, such as in error paths
3502  * where the event isn't exposed yet and inherited events.
3503  */
3504 static void free_event(struct perf_event *event)
3505 {
3506 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3507 				"unexpected event refcount: %ld; ptr=%p\n",
3508 				atomic_long_read(&event->refcount), event)) {
3509 		/* leak to avoid use-after-free */
3510 		return;
3511 	}
3512 
3513 	_free_event(event);
3514 }
3515 
3516 /*
3517  * Remove user event from the owner task.
3518  */
3519 static void perf_remove_from_owner(struct perf_event *event)
3520 {
3521 	struct task_struct *owner;
3522 
3523 	rcu_read_lock();
3524 	owner = ACCESS_ONCE(event->owner);
3525 	/*
3526 	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3527 	 * !owner it means the list deletion is complete and we can indeed
3528 	 * free this event, otherwise we need to serialize on
3529 	 * owner->perf_event_mutex.
3530 	 */
3531 	smp_read_barrier_depends();
3532 	if (owner) {
3533 		/*
3534 		 * Since delayed_put_task_struct() also drops the last
3535 		 * task reference we can safely take a new reference
3536 		 * while holding the rcu_read_lock().
3537 		 */
3538 		get_task_struct(owner);
3539 	}
3540 	rcu_read_unlock();
3541 
3542 	if (owner) {
3543 		/*
3544 		 * If we're here through perf_event_exit_task() we're already
3545 		 * holding ctx->mutex which would be an inversion wrt. the
3546 		 * normal lock order.
3547 		 *
3548 		 * However we can safely take this lock because its the child
3549 		 * ctx->mutex.
3550 		 */
3551 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
3552 
3553 		/*
3554 		 * We have to re-check the event->owner field, if it is cleared
3555 		 * we raced with perf_event_exit_task(), acquiring the mutex
3556 		 * ensured they're done, and we can proceed with freeing the
3557 		 * event.
3558 		 */
3559 		if (event->owner)
3560 			list_del_init(&event->owner_entry);
3561 		mutex_unlock(&owner->perf_event_mutex);
3562 		put_task_struct(owner);
3563 	}
3564 }
3565 
3566 /*
3567  * Called when the last reference to the file is gone.
3568  */
3569 static void put_event(struct perf_event *event)
3570 {
3571 	struct perf_event_context *ctx;
3572 
3573 	if (!atomic_long_dec_and_test(&event->refcount))
3574 		return;
3575 
3576 	if (!is_kernel_event(event))
3577 		perf_remove_from_owner(event);
3578 
3579 	/*
3580 	 * There are two ways this annotation is useful:
3581 	 *
3582 	 *  1) there is a lock recursion from perf_event_exit_task
3583 	 *     see the comment there.
3584 	 *
3585 	 *  2) there is a lock-inversion with mmap_sem through
3586 	 *     perf_event_read_group(), which takes faults while
3587 	 *     holding ctx->mutex, however this is called after
3588 	 *     the last filedesc died, so there is no possibility
3589 	 *     to trigger the AB-BA case.
3590 	 */
3591 	ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING);
3592 	WARN_ON_ONCE(ctx->parent_ctx);
3593 	perf_remove_from_context(event, true);
3594 	mutex_unlock(&ctx->mutex);
3595 
3596 	_free_event(event);
3597 }
3598 
3599 int perf_event_release_kernel(struct perf_event *event)
3600 {
3601 	put_event(event);
3602 	return 0;
3603 }
3604 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3605 
3606 static int perf_release(struct inode *inode, struct file *file)
3607 {
3608 	put_event(file->private_data);
3609 	return 0;
3610 }
3611 
3612 /*
3613  * Remove all orphanes events from the context.
3614  */
3615 static void orphans_remove_work(struct work_struct *work)
3616 {
3617 	struct perf_event_context *ctx;
3618 	struct perf_event *event, *tmp;
3619 
3620 	ctx = container_of(work, struct perf_event_context,
3621 			   orphans_remove.work);
3622 
3623 	mutex_lock(&ctx->mutex);
3624 	list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
3625 		struct perf_event *parent_event = event->parent;
3626 
3627 		if (!is_orphaned_child(event))
3628 			continue;
3629 
3630 		perf_remove_from_context(event, true);
3631 
3632 		mutex_lock(&parent_event->child_mutex);
3633 		list_del_init(&event->child_list);
3634 		mutex_unlock(&parent_event->child_mutex);
3635 
3636 		free_event(event);
3637 		put_event(parent_event);
3638 	}
3639 
3640 	raw_spin_lock_irq(&ctx->lock);
3641 	ctx->orphans_remove_sched = false;
3642 	raw_spin_unlock_irq(&ctx->lock);
3643 	mutex_unlock(&ctx->mutex);
3644 
3645 	put_ctx(ctx);
3646 }
3647 
3648 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3649 {
3650 	struct perf_event *child;
3651 	u64 total = 0;
3652 
3653 	*enabled = 0;
3654 	*running = 0;
3655 
3656 	mutex_lock(&event->child_mutex);
3657 	total += perf_event_read(event);
3658 	*enabled += event->total_time_enabled +
3659 			atomic64_read(&event->child_total_time_enabled);
3660 	*running += event->total_time_running +
3661 			atomic64_read(&event->child_total_time_running);
3662 
3663 	list_for_each_entry(child, &event->child_list, child_list) {
3664 		total += perf_event_read(child);
3665 		*enabled += child->total_time_enabled;
3666 		*running += child->total_time_running;
3667 	}
3668 	mutex_unlock(&event->child_mutex);
3669 
3670 	return total;
3671 }
3672 EXPORT_SYMBOL_GPL(perf_event_read_value);
3673 
3674 static int perf_event_read_group(struct perf_event *event,
3675 				   u64 read_format, char __user *buf)
3676 {
3677 	struct perf_event *leader = event->group_leader, *sub;
3678 	struct perf_event_context *ctx = leader->ctx;
3679 	int n = 0, size = 0, ret;
3680 	u64 count, enabled, running;
3681 	u64 values[5];
3682 
3683 	lockdep_assert_held(&ctx->mutex);
3684 
3685 	count = perf_event_read_value(leader, &enabled, &running);
3686 
3687 	values[n++] = 1 + leader->nr_siblings;
3688 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3689 		values[n++] = enabled;
3690 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3691 		values[n++] = running;
3692 	values[n++] = count;
3693 	if (read_format & PERF_FORMAT_ID)
3694 		values[n++] = primary_event_id(leader);
3695 
3696 	size = n * sizeof(u64);
3697 
3698 	if (copy_to_user(buf, values, size))
3699 		return -EFAULT;
3700 
3701 	ret = size;
3702 
3703 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3704 		n = 0;
3705 
3706 		values[n++] = perf_event_read_value(sub, &enabled, &running);
3707 		if (read_format & PERF_FORMAT_ID)
3708 			values[n++] = primary_event_id(sub);
3709 
3710 		size = n * sizeof(u64);
3711 
3712 		if (copy_to_user(buf + ret, values, size)) {
3713 			return -EFAULT;
3714 		}
3715 
3716 		ret += size;
3717 	}
3718 
3719 	return ret;
3720 }
3721 
3722 static int perf_event_read_one(struct perf_event *event,
3723 				 u64 read_format, char __user *buf)
3724 {
3725 	u64 enabled, running;
3726 	u64 values[4];
3727 	int n = 0;
3728 
3729 	values[n++] = perf_event_read_value(event, &enabled, &running);
3730 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3731 		values[n++] = enabled;
3732 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3733 		values[n++] = running;
3734 	if (read_format & PERF_FORMAT_ID)
3735 		values[n++] = primary_event_id(event);
3736 
3737 	if (copy_to_user(buf, values, n * sizeof(u64)))
3738 		return -EFAULT;
3739 
3740 	return n * sizeof(u64);
3741 }
3742 
3743 static bool is_event_hup(struct perf_event *event)
3744 {
3745 	bool no_children;
3746 
3747 	if (event->state != PERF_EVENT_STATE_EXIT)
3748 		return false;
3749 
3750 	mutex_lock(&event->child_mutex);
3751 	no_children = list_empty(&event->child_list);
3752 	mutex_unlock(&event->child_mutex);
3753 	return no_children;
3754 }
3755 
3756 /*
3757  * Read the performance event - simple non blocking version for now
3758  */
3759 static ssize_t
3760 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
3761 {
3762 	u64 read_format = event->attr.read_format;
3763 	int ret;
3764 
3765 	/*
3766 	 * Return end-of-file for a read on a event that is in
3767 	 * error state (i.e. because it was pinned but it couldn't be
3768 	 * scheduled on to the CPU at some point).
3769 	 */
3770 	if (event->state == PERF_EVENT_STATE_ERROR)
3771 		return 0;
3772 
3773 	if (count < event->read_size)
3774 		return -ENOSPC;
3775 
3776 	WARN_ON_ONCE(event->ctx->parent_ctx);
3777 	if (read_format & PERF_FORMAT_GROUP)
3778 		ret = perf_event_read_group(event, read_format, buf);
3779 	else
3780 		ret = perf_event_read_one(event, read_format, buf);
3781 
3782 	return ret;
3783 }
3784 
3785 static ssize_t
3786 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3787 {
3788 	struct perf_event *event = file->private_data;
3789 	struct perf_event_context *ctx;
3790 	int ret;
3791 
3792 	ctx = perf_event_ctx_lock(event);
3793 	ret = perf_read_hw(event, buf, count);
3794 	perf_event_ctx_unlock(event, ctx);
3795 
3796 	return ret;
3797 }
3798 
3799 static unsigned int perf_poll(struct file *file, poll_table *wait)
3800 {
3801 	struct perf_event *event = file->private_data;
3802 	struct ring_buffer *rb;
3803 	unsigned int events = POLLHUP;
3804 
3805 	poll_wait(file, &event->waitq, wait);
3806 
3807 	if (is_event_hup(event))
3808 		return events;
3809 
3810 	/*
3811 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
3812 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
3813 	 */
3814 	mutex_lock(&event->mmap_mutex);
3815 	rb = event->rb;
3816 	if (rb)
3817 		events = atomic_xchg(&rb->poll, 0);
3818 	mutex_unlock(&event->mmap_mutex);
3819 	return events;
3820 }
3821 
3822 static void _perf_event_reset(struct perf_event *event)
3823 {
3824 	(void)perf_event_read(event);
3825 	local64_set(&event->count, 0);
3826 	perf_event_update_userpage(event);
3827 }
3828 
3829 /*
3830  * Holding the top-level event's child_mutex means that any
3831  * descendant process that has inherited this event will block
3832  * in sync_child_event if it goes to exit, thus satisfying the
3833  * task existence requirements of perf_event_enable/disable.
3834  */
3835 static void perf_event_for_each_child(struct perf_event *event,
3836 					void (*func)(struct perf_event *))
3837 {
3838 	struct perf_event *child;
3839 
3840 	WARN_ON_ONCE(event->ctx->parent_ctx);
3841 
3842 	mutex_lock(&event->child_mutex);
3843 	func(event);
3844 	list_for_each_entry(child, &event->child_list, child_list)
3845 		func(child);
3846 	mutex_unlock(&event->child_mutex);
3847 }
3848 
3849 static void perf_event_for_each(struct perf_event *event,
3850 				  void (*func)(struct perf_event *))
3851 {
3852 	struct perf_event_context *ctx = event->ctx;
3853 	struct perf_event *sibling;
3854 
3855 	lockdep_assert_held(&ctx->mutex);
3856 
3857 	event = event->group_leader;
3858 
3859 	perf_event_for_each_child(event, func);
3860 	list_for_each_entry(sibling, &event->sibling_list, group_entry)
3861 		perf_event_for_each_child(sibling, func);
3862 }
3863 
3864 static int perf_event_period(struct perf_event *event, u64 __user *arg)
3865 {
3866 	struct perf_event_context *ctx = event->ctx;
3867 	int ret = 0, active;
3868 	u64 value;
3869 
3870 	if (!is_sampling_event(event))
3871 		return -EINVAL;
3872 
3873 	if (copy_from_user(&value, arg, sizeof(value)))
3874 		return -EFAULT;
3875 
3876 	if (!value)
3877 		return -EINVAL;
3878 
3879 	raw_spin_lock_irq(&ctx->lock);
3880 	if (event->attr.freq) {
3881 		if (value > sysctl_perf_event_sample_rate) {
3882 			ret = -EINVAL;
3883 			goto unlock;
3884 		}
3885 
3886 		event->attr.sample_freq = value;
3887 	} else {
3888 		event->attr.sample_period = value;
3889 		event->hw.sample_period = value;
3890 	}
3891 
3892 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
3893 	if (active) {
3894 		perf_pmu_disable(ctx->pmu);
3895 		event->pmu->stop(event, PERF_EF_UPDATE);
3896 	}
3897 
3898 	local64_set(&event->hw.period_left, 0);
3899 
3900 	if (active) {
3901 		event->pmu->start(event, PERF_EF_RELOAD);
3902 		perf_pmu_enable(ctx->pmu);
3903 	}
3904 
3905 unlock:
3906 	raw_spin_unlock_irq(&ctx->lock);
3907 
3908 	return ret;
3909 }
3910 
3911 static const struct file_operations perf_fops;
3912 
3913 static inline int perf_fget_light(int fd, struct fd *p)
3914 {
3915 	struct fd f = fdget(fd);
3916 	if (!f.file)
3917 		return -EBADF;
3918 
3919 	if (f.file->f_op != &perf_fops) {
3920 		fdput(f);
3921 		return -EBADF;
3922 	}
3923 	*p = f;
3924 	return 0;
3925 }
3926 
3927 static int perf_event_set_output(struct perf_event *event,
3928 				 struct perf_event *output_event);
3929 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3930 
3931 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
3932 {
3933 	void (*func)(struct perf_event *);
3934 	u32 flags = arg;
3935 
3936 	switch (cmd) {
3937 	case PERF_EVENT_IOC_ENABLE:
3938 		func = _perf_event_enable;
3939 		break;
3940 	case PERF_EVENT_IOC_DISABLE:
3941 		func = _perf_event_disable;
3942 		break;
3943 	case PERF_EVENT_IOC_RESET:
3944 		func = _perf_event_reset;
3945 		break;
3946 
3947 	case PERF_EVENT_IOC_REFRESH:
3948 		return _perf_event_refresh(event, arg);
3949 
3950 	case PERF_EVENT_IOC_PERIOD:
3951 		return perf_event_period(event, (u64 __user *)arg);
3952 
3953 	case PERF_EVENT_IOC_ID:
3954 	{
3955 		u64 id = primary_event_id(event);
3956 
3957 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
3958 			return -EFAULT;
3959 		return 0;
3960 	}
3961 
3962 	case PERF_EVENT_IOC_SET_OUTPUT:
3963 	{
3964 		int ret;
3965 		if (arg != -1) {
3966 			struct perf_event *output_event;
3967 			struct fd output;
3968 			ret = perf_fget_light(arg, &output);
3969 			if (ret)
3970 				return ret;
3971 			output_event = output.file->private_data;
3972 			ret = perf_event_set_output(event, output_event);
3973 			fdput(output);
3974 		} else {
3975 			ret = perf_event_set_output(event, NULL);
3976 		}
3977 		return ret;
3978 	}
3979 
3980 	case PERF_EVENT_IOC_SET_FILTER:
3981 		return perf_event_set_filter(event, (void __user *)arg);
3982 
3983 	default:
3984 		return -ENOTTY;
3985 	}
3986 
3987 	if (flags & PERF_IOC_FLAG_GROUP)
3988 		perf_event_for_each(event, func);
3989 	else
3990 		perf_event_for_each_child(event, func);
3991 
3992 	return 0;
3993 }
3994 
3995 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3996 {
3997 	struct perf_event *event = file->private_data;
3998 	struct perf_event_context *ctx;
3999 	long ret;
4000 
4001 	ctx = perf_event_ctx_lock(event);
4002 	ret = _perf_ioctl(event, cmd, arg);
4003 	perf_event_ctx_unlock(event, ctx);
4004 
4005 	return ret;
4006 }
4007 
4008 #ifdef CONFIG_COMPAT
4009 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4010 				unsigned long arg)
4011 {
4012 	switch (_IOC_NR(cmd)) {
4013 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4014 	case _IOC_NR(PERF_EVENT_IOC_ID):
4015 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4016 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4017 			cmd &= ~IOCSIZE_MASK;
4018 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4019 		}
4020 		break;
4021 	}
4022 	return perf_ioctl(file, cmd, arg);
4023 }
4024 #else
4025 # define perf_compat_ioctl NULL
4026 #endif
4027 
4028 int perf_event_task_enable(void)
4029 {
4030 	struct perf_event_context *ctx;
4031 	struct perf_event *event;
4032 
4033 	mutex_lock(&current->perf_event_mutex);
4034 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4035 		ctx = perf_event_ctx_lock(event);
4036 		perf_event_for_each_child(event, _perf_event_enable);
4037 		perf_event_ctx_unlock(event, ctx);
4038 	}
4039 	mutex_unlock(&current->perf_event_mutex);
4040 
4041 	return 0;
4042 }
4043 
4044 int perf_event_task_disable(void)
4045 {
4046 	struct perf_event_context *ctx;
4047 	struct perf_event *event;
4048 
4049 	mutex_lock(&current->perf_event_mutex);
4050 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4051 		ctx = perf_event_ctx_lock(event);
4052 		perf_event_for_each_child(event, _perf_event_disable);
4053 		perf_event_ctx_unlock(event, ctx);
4054 	}
4055 	mutex_unlock(&current->perf_event_mutex);
4056 
4057 	return 0;
4058 }
4059 
4060 static int perf_event_index(struct perf_event *event)
4061 {
4062 	if (event->hw.state & PERF_HES_STOPPED)
4063 		return 0;
4064 
4065 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4066 		return 0;
4067 
4068 	return event->pmu->event_idx(event);
4069 }
4070 
4071 static void calc_timer_values(struct perf_event *event,
4072 				u64 *now,
4073 				u64 *enabled,
4074 				u64 *running)
4075 {
4076 	u64 ctx_time;
4077 
4078 	*now = perf_clock();
4079 	ctx_time = event->shadow_ctx_time + *now;
4080 	*enabled = ctx_time - event->tstamp_enabled;
4081 	*running = ctx_time - event->tstamp_running;
4082 }
4083 
4084 static void perf_event_init_userpage(struct perf_event *event)
4085 {
4086 	struct perf_event_mmap_page *userpg;
4087 	struct ring_buffer *rb;
4088 
4089 	rcu_read_lock();
4090 	rb = rcu_dereference(event->rb);
4091 	if (!rb)
4092 		goto unlock;
4093 
4094 	userpg = rb->user_page;
4095 
4096 	/* Allow new userspace to detect that bit 0 is deprecated */
4097 	userpg->cap_bit0_is_deprecated = 1;
4098 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4099 
4100 unlock:
4101 	rcu_read_unlock();
4102 }
4103 
4104 void __weak arch_perf_update_userpage(
4105 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4106 {
4107 }
4108 
4109 /*
4110  * Callers need to ensure there can be no nesting of this function, otherwise
4111  * the seqlock logic goes bad. We can not serialize this because the arch
4112  * code calls this from NMI context.
4113  */
4114 void perf_event_update_userpage(struct perf_event *event)
4115 {
4116 	struct perf_event_mmap_page *userpg;
4117 	struct ring_buffer *rb;
4118 	u64 enabled, running, now;
4119 
4120 	rcu_read_lock();
4121 	rb = rcu_dereference(event->rb);
4122 	if (!rb)
4123 		goto unlock;
4124 
4125 	/*
4126 	 * compute total_time_enabled, total_time_running
4127 	 * based on snapshot values taken when the event
4128 	 * was last scheduled in.
4129 	 *
4130 	 * we cannot simply called update_context_time()
4131 	 * because of locking issue as we can be called in
4132 	 * NMI context
4133 	 */
4134 	calc_timer_values(event, &now, &enabled, &running);
4135 
4136 	userpg = rb->user_page;
4137 	/*
4138 	 * Disable preemption so as to not let the corresponding user-space
4139 	 * spin too long if we get preempted.
4140 	 */
4141 	preempt_disable();
4142 	++userpg->lock;
4143 	barrier();
4144 	userpg->index = perf_event_index(event);
4145 	userpg->offset = perf_event_count(event);
4146 	if (userpg->index)
4147 		userpg->offset -= local64_read(&event->hw.prev_count);
4148 
4149 	userpg->time_enabled = enabled +
4150 			atomic64_read(&event->child_total_time_enabled);
4151 
4152 	userpg->time_running = running +
4153 			atomic64_read(&event->child_total_time_running);
4154 
4155 	arch_perf_update_userpage(event, userpg, now);
4156 
4157 	barrier();
4158 	++userpg->lock;
4159 	preempt_enable();
4160 unlock:
4161 	rcu_read_unlock();
4162 }
4163 
4164 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4165 {
4166 	struct perf_event *event = vma->vm_file->private_data;
4167 	struct ring_buffer *rb;
4168 	int ret = VM_FAULT_SIGBUS;
4169 
4170 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
4171 		if (vmf->pgoff == 0)
4172 			ret = 0;
4173 		return ret;
4174 	}
4175 
4176 	rcu_read_lock();
4177 	rb = rcu_dereference(event->rb);
4178 	if (!rb)
4179 		goto unlock;
4180 
4181 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4182 		goto unlock;
4183 
4184 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4185 	if (!vmf->page)
4186 		goto unlock;
4187 
4188 	get_page(vmf->page);
4189 	vmf->page->mapping = vma->vm_file->f_mapping;
4190 	vmf->page->index   = vmf->pgoff;
4191 
4192 	ret = 0;
4193 unlock:
4194 	rcu_read_unlock();
4195 
4196 	return ret;
4197 }
4198 
4199 static void ring_buffer_attach(struct perf_event *event,
4200 			       struct ring_buffer *rb)
4201 {
4202 	struct ring_buffer *old_rb = NULL;
4203 	unsigned long flags;
4204 
4205 	if (event->rb) {
4206 		/*
4207 		 * Should be impossible, we set this when removing
4208 		 * event->rb_entry and wait/clear when adding event->rb_entry.
4209 		 */
4210 		WARN_ON_ONCE(event->rcu_pending);
4211 
4212 		old_rb = event->rb;
4213 		event->rcu_batches = get_state_synchronize_rcu();
4214 		event->rcu_pending = 1;
4215 
4216 		spin_lock_irqsave(&old_rb->event_lock, flags);
4217 		list_del_rcu(&event->rb_entry);
4218 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
4219 	}
4220 
4221 	if (event->rcu_pending && rb) {
4222 		cond_synchronize_rcu(event->rcu_batches);
4223 		event->rcu_pending = 0;
4224 	}
4225 
4226 	if (rb) {
4227 		spin_lock_irqsave(&rb->event_lock, flags);
4228 		list_add_rcu(&event->rb_entry, &rb->event_list);
4229 		spin_unlock_irqrestore(&rb->event_lock, flags);
4230 	}
4231 
4232 	rcu_assign_pointer(event->rb, rb);
4233 
4234 	if (old_rb) {
4235 		ring_buffer_put(old_rb);
4236 		/*
4237 		 * Since we detached before setting the new rb, so that we
4238 		 * could attach the new rb, we could have missed a wakeup.
4239 		 * Provide it now.
4240 		 */
4241 		wake_up_all(&event->waitq);
4242 	}
4243 }
4244 
4245 static void ring_buffer_wakeup(struct perf_event *event)
4246 {
4247 	struct ring_buffer *rb;
4248 
4249 	rcu_read_lock();
4250 	rb = rcu_dereference(event->rb);
4251 	if (rb) {
4252 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4253 			wake_up_all(&event->waitq);
4254 	}
4255 	rcu_read_unlock();
4256 }
4257 
4258 static void rb_free_rcu(struct rcu_head *rcu_head)
4259 {
4260 	struct ring_buffer *rb;
4261 
4262 	rb = container_of(rcu_head, struct ring_buffer, rcu_head);
4263 	rb_free(rb);
4264 }
4265 
4266 static struct ring_buffer *ring_buffer_get(struct perf_event *event)
4267 {
4268 	struct ring_buffer *rb;
4269 
4270 	rcu_read_lock();
4271 	rb = rcu_dereference(event->rb);
4272 	if (rb) {
4273 		if (!atomic_inc_not_zero(&rb->refcount))
4274 			rb = NULL;
4275 	}
4276 	rcu_read_unlock();
4277 
4278 	return rb;
4279 }
4280 
4281 static void ring_buffer_put(struct ring_buffer *rb)
4282 {
4283 	if (!atomic_dec_and_test(&rb->refcount))
4284 		return;
4285 
4286 	WARN_ON_ONCE(!list_empty(&rb->event_list));
4287 
4288 	call_rcu(&rb->rcu_head, rb_free_rcu);
4289 }
4290 
4291 static void perf_mmap_open(struct vm_area_struct *vma)
4292 {
4293 	struct perf_event *event = vma->vm_file->private_data;
4294 
4295 	atomic_inc(&event->mmap_count);
4296 	atomic_inc(&event->rb->mmap_count);
4297 
4298 	if (event->pmu->event_mapped)
4299 		event->pmu->event_mapped(event);
4300 }
4301 
4302 /*
4303  * A buffer can be mmap()ed multiple times; either directly through the same
4304  * event, or through other events by use of perf_event_set_output().
4305  *
4306  * In order to undo the VM accounting done by perf_mmap() we need to destroy
4307  * the buffer here, where we still have a VM context. This means we need
4308  * to detach all events redirecting to us.
4309  */
4310 static void perf_mmap_close(struct vm_area_struct *vma)
4311 {
4312 	struct perf_event *event = vma->vm_file->private_data;
4313 
4314 	struct ring_buffer *rb = ring_buffer_get(event);
4315 	struct user_struct *mmap_user = rb->mmap_user;
4316 	int mmap_locked = rb->mmap_locked;
4317 	unsigned long size = perf_data_size(rb);
4318 
4319 	if (event->pmu->event_unmapped)
4320 		event->pmu->event_unmapped(event);
4321 
4322 	atomic_dec(&rb->mmap_count);
4323 
4324 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4325 		goto out_put;
4326 
4327 	ring_buffer_attach(event, NULL);
4328 	mutex_unlock(&event->mmap_mutex);
4329 
4330 	/* If there's still other mmap()s of this buffer, we're done. */
4331 	if (atomic_read(&rb->mmap_count))
4332 		goto out_put;
4333 
4334 	/*
4335 	 * No other mmap()s, detach from all other events that might redirect
4336 	 * into the now unreachable buffer. Somewhat complicated by the
4337 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4338 	 */
4339 again:
4340 	rcu_read_lock();
4341 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4342 		if (!atomic_long_inc_not_zero(&event->refcount)) {
4343 			/*
4344 			 * This event is en-route to free_event() which will
4345 			 * detach it and remove it from the list.
4346 			 */
4347 			continue;
4348 		}
4349 		rcu_read_unlock();
4350 
4351 		mutex_lock(&event->mmap_mutex);
4352 		/*
4353 		 * Check we didn't race with perf_event_set_output() which can
4354 		 * swizzle the rb from under us while we were waiting to
4355 		 * acquire mmap_mutex.
4356 		 *
4357 		 * If we find a different rb; ignore this event, a next
4358 		 * iteration will no longer find it on the list. We have to
4359 		 * still restart the iteration to make sure we're not now
4360 		 * iterating the wrong list.
4361 		 */
4362 		if (event->rb == rb)
4363 			ring_buffer_attach(event, NULL);
4364 
4365 		mutex_unlock(&event->mmap_mutex);
4366 		put_event(event);
4367 
4368 		/*
4369 		 * Restart the iteration; either we're on the wrong list or
4370 		 * destroyed its integrity by doing a deletion.
4371 		 */
4372 		goto again;
4373 	}
4374 	rcu_read_unlock();
4375 
4376 	/*
4377 	 * It could be there's still a few 0-ref events on the list; they'll
4378 	 * get cleaned up by free_event() -- they'll also still have their
4379 	 * ref on the rb and will free it whenever they are done with it.
4380 	 *
4381 	 * Aside from that, this buffer is 'fully' detached and unmapped,
4382 	 * undo the VM accounting.
4383 	 */
4384 
4385 	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4386 	vma->vm_mm->pinned_vm -= mmap_locked;
4387 	free_uid(mmap_user);
4388 
4389 out_put:
4390 	ring_buffer_put(rb); /* could be last */
4391 }
4392 
4393 static const struct vm_operations_struct perf_mmap_vmops = {
4394 	.open		= perf_mmap_open,
4395 	.close		= perf_mmap_close,
4396 	.fault		= perf_mmap_fault,
4397 	.page_mkwrite	= perf_mmap_fault,
4398 };
4399 
4400 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4401 {
4402 	struct perf_event *event = file->private_data;
4403 	unsigned long user_locked, user_lock_limit;
4404 	struct user_struct *user = current_user();
4405 	unsigned long locked, lock_limit;
4406 	struct ring_buffer *rb;
4407 	unsigned long vma_size;
4408 	unsigned long nr_pages;
4409 	long user_extra, extra;
4410 	int ret = 0, flags = 0;
4411 
4412 	/*
4413 	 * Don't allow mmap() of inherited per-task counters. This would
4414 	 * create a performance issue due to all children writing to the
4415 	 * same rb.
4416 	 */
4417 	if (event->cpu == -1 && event->attr.inherit)
4418 		return -EINVAL;
4419 
4420 	if (!(vma->vm_flags & VM_SHARED))
4421 		return -EINVAL;
4422 
4423 	vma_size = vma->vm_end - vma->vm_start;
4424 	nr_pages = (vma_size / PAGE_SIZE) - 1;
4425 
4426 	/*
4427 	 * If we have rb pages ensure they're a power-of-two number, so we
4428 	 * can do bitmasks instead of modulo.
4429 	 */
4430 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
4431 		return -EINVAL;
4432 
4433 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
4434 		return -EINVAL;
4435 
4436 	if (vma->vm_pgoff != 0)
4437 		return -EINVAL;
4438 
4439 	WARN_ON_ONCE(event->ctx->parent_ctx);
4440 again:
4441 	mutex_lock(&event->mmap_mutex);
4442 	if (event->rb) {
4443 		if (event->rb->nr_pages != nr_pages) {
4444 			ret = -EINVAL;
4445 			goto unlock;
4446 		}
4447 
4448 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4449 			/*
4450 			 * Raced against perf_mmap_close() through
4451 			 * perf_event_set_output(). Try again, hope for better
4452 			 * luck.
4453 			 */
4454 			mutex_unlock(&event->mmap_mutex);
4455 			goto again;
4456 		}
4457 
4458 		goto unlock;
4459 	}
4460 
4461 	user_extra = nr_pages + 1;
4462 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
4463 
4464 	/*
4465 	 * Increase the limit linearly with more CPUs:
4466 	 */
4467 	user_lock_limit *= num_online_cpus();
4468 
4469 	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4470 
4471 	extra = 0;
4472 	if (user_locked > user_lock_limit)
4473 		extra = user_locked - user_lock_limit;
4474 
4475 	lock_limit = rlimit(RLIMIT_MEMLOCK);
4476 	lock_limit >>= PAGE_SHIFT;
4477 	locked = vma->vm_mm->pinned_vm + extra;
4478 
4479 	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4480 		!capable(CAP_IPC_LOCK)) {
4481 		ret = -EPERM;
4482 		goto unlock;
4483 	}
4484 
4485 	WARN_ON(event->rb);
4486 
4487 	if (vma->vm_flags & VM_WRITE)
4488 		flags |= RING_BUFFER_WRITABLE;
4489 
4490 	rb = rb_alloc(nr_pages,
4491 		event->attr.watermark ? event->attr.wakeup_watermark : 0,
4492 		event->cpu, flags);
4493 
4494 	if (!rb) {
4495 		ret = -ENOMEM;
4496 		goto unlock;
4497 	}
4498 
4499 	atomic_set(&rb->mmap_count, 1);
4500 	rb->mmap_locked = extra;
4501 	rb->mmap_user = get_current_user();
4502 
4503 	atomic_long_add(user_extra, &user->locked_vm);
4504 	vma->vm_mm->pinned_vm += extra;
4505 
4506 	ring_buffer_attach(event, rb);
4507 
4508 	perf_event_init_userpage(event);
4509 	perf_event_update_userpage(event);
4510 
4511 unlock:
4512 	if (!ret)
4513 		atomic_inc(&event->mmap_count);
4514 	mutex_unlock(&event->mmap_mutex);
4515 
4516 	/*
4517 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
4518 	 * vma.
4519 	 */
4520 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4521 	vma->vm_ops = &perf_mmap_vmops;
4522 
4523 	if (event->pmu->event_mapped)
4524 		event->pmu->event_mapped(event);
4525 
4526 	return ret;
4527 }
4528 
4529 static int perf_fasync(int fd, struct file *filp, int on)
4530 {
4531 	struct inode *inode = file_inode(filp);
4532 	struct perf_event *event = filp->private_data;
4533 	int retval;
4534 
4535 	mutex_lock(&inode->i_mutex);
4536 	retval = fasync_helper(fd, filp, on, &event->fasync);
4537 	mutex_unlock(&inode->i_mutex);
4538 
4539 	if (retval < 0)
4540 		return retval;
4541 
4542 	return 0;
4543 }
4544 
4545 static const struct file_operations perf_fops = {
4546 	.llseek			= no_llseek,
4547 	.release		= perf_release,
4548 	.read			= perf_read,
4549 	.poll			= perf_poll,
4550 	.unlocked_ioctl		= perf_ioctl,
4551 	.compat_ioctl		= perf_compat_ioctl,
4552 	.mmap			= perf_mmap,
4553 	.fasync			= perf_fasync,
4554 };
4555 
4556 /*
4557  * Perf event wakeup
4558  *
4559  * If there's data, ensure we set the poll() state and publish everything
4560  * to user-space before waking everybody up.
4561  */
4562 
4563 void perf_event_wakeup(struct perf_event *event)
4564 {
4565 	ring_buffer_wakeup(event);
4566 
4567 	if (event->pending_kill) {
4568 		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
4569 		event->pending_kill = 0;
4570 	}
4571 }
4572 
4573 static void perf_pending_event(struct irq_work *entry)
4574 {
4575 	struct perf_event *event = container_of(entry,
4576 			struct perf_event, pending);
4577 
4578 	if (event->pending_disable) {
4579 		event->pending_disable = 0;
4580 		__perf_event_disable(event);
4581 	}
4582 
4583 	if (event->pending_wakeup) {
4584 		event->pending_wakeup = 0;
4585 		perf_event_wakeup(event);
4586 	}
4587 }
4588 
4589 /*
4590  * We assume there is only KVM supporting the callbacks.
4591  * Later on, we might change it to a list if there is
4592  * another virtualization implementation supporting the callbacks.
4593  */
4594 struct perf_guest_info_callbacks *perf_guest_cbs;
4595 
4596 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4597 {
4598 	perf_guest_cbs = cbs;
4599 	return 0;
4600 }
4601 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4602 
4603 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4604 {
4605 	perf_guest_cbs = NULL;
4606 	return 0;
4607 }
4608 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4609 
4610 static void
4611 perf_output_sample_regs(struct perf_output_handle *handle,
4612 			struct pt_regs *regs, u64 mask)
4613 {
4614 	int bit;
4615 
4616 	for_each_set_bit(bit, (const unsigned long *) &mask,
4617 			 sizeof(mask) * BITS_PER_BYTE) {
4618 		u64 val;
4619 
4620 		val = perf_reg_value(regs, bit);
4621 		perf_output_put(handle, val);
4622 	}
4623 }
4624 
4625 static void perf_sample_regs_user(struct perf_regs *regs_user,
4626 				  struct pt_regs *regs,
4627 				  struct pt_regs *regs_user_copy)
4628 {
4629 	if (user_mode(regs)) {
4630 		regs_user->abi = perf_reg_abi(current);
4631 		regs_user->regs = regs;
4632 	} else if (current->mm) {
4633 		perf_get_regs_user(regs_user, regs, regs_user_copy);
4634 	} else {
4635 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
4636 		regs_user->regs = NULL;
4637 	}
4638 }
4639 
4640 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
4641 				  struct pt_regs *regs)
4642 {
4643 	regs_intr->regs = regs;
4644 	regs_intr->abi  = perf_reg_abi(current);
4645 }
4646 
4647 
4648 /*
4649  * Get remaining task size from user stack pointer.
4650  *
4651  * It'd be better to take stack vma map and limit this more
4652  * precisly, but there's no way to get it safely under interrupt,
4653  * so using TASK_SIZE as limit.
4654  */
4655 static u64 perf_ustack_task_size(struct pt_regs *regs)
4656 {
4657 	unsigned long addr = perf_user_stack_pointer(regs);
4658 
4659 	if (!addr || addr >= TASK_SIZE)
4660 		return 0;
4661 
4662 	return TASK_SIZE - addr;
4663 }
4664 
4665 static u16
4666 perf_sample_ustack_size(u16 stack_size, u16 header_size,
4667 			struct pt_regs *regs)
4668 {
4669 	u64 task_size;
4670 
4671 	/* No regs, no stack pointer, no dump. */
4672 	if (!regs)
4673 		return 0;
4674 
4675 	/*
4676 	 * Check if we fit in with the requested stack size into the:
4677 	 * - TASK_SIZE
4678 	 *   If we don't, we limit the size to the TASK_SIZE.
4679 	 *
4680 	 * - remaining sample size
4681 	 *   If we don't, we customize the stack size to
4682 	 *   fit in to the remaining sample size.
4683 	 */
4684 
4685 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
4686 	stack_size = min(stack_size, (u16) task_size);
4687 
4688 	/* Current header size plus static size and dynamic size. */
4689 	header_size += 2 * sizeof(u64);
4690 
4691 	/* Do we fit in with the current stack dump size? */
4692 	if ((u16) (header_size + stack_size) < header_size) {
4693 		/*
4694 		 * If we overflow the maximum size for the sample,
4695 		 * we customize the stack dump size to fit in.
4696 		 */
4697 		stack_size = USHRT_MAX - header_size - sizeof(u64);
4698 		stack_size = round_up(stack_size, sizeof(u64));
4699 	}
4700 
4701 	return stack_size;
4702 }
4703 
4704 static void
4705 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
4706 			  struct pt_regs *regs)
4707 {
4708 	/* Case of a kernel thread, nothing to dump */
4709 	if (!regs) {
4710 		u64 size = 0;
4711 		perf_output_put(handle, size);
4712 	} else {
4713 		unsigned long sp;
4714 		unsigned int rem;
4715 		u64 dyn_size;
4716 
4717 		/*
4718 		 * We dump:
4719 		 * static size
4720 		 *   - the size requested by user or the best one we can fit
4721 		 *     in to the sample max size
4722 		 * data
4723 		 *   - user stack dump data
4724 		 * dynamic size
4725 		 *   - the actual dumped size
4726 		 */
4727 
4728 		/* Static size. */
4729 		perf_output_put(handle, dump_size);
4730 
4731 		/* Data. */
4732 		sp = perf_user_stack_pointer(regs);
4733 		rem = __output_copy_user(handle, (void *) sp, dump_size);
4734 		dyn_size = dump_size - rem;
4735 
4736 		perf_output_skip(handle, rem);
4737 
4738 		/* Dynamic size. */
4739 		perf_output_put(handle, dyn_size);
4740 	}
4741 }
4742 
4743 static void __perf_event_header__init_id(struct perf_event_header *header,
4744 					 struct perf_sample_data *data,
4745 					 struct perf_event *event)
4746 {
4747 	u64 sample_type = event->attr.sample_type;
4748 
4749 	data->type = sample_type;
4750 	header->size += event->id_header_size;
4751 
4752 	if (sample_type & PERF_SAMPLE_TID) {
4753 		/* namespace issues */
4754 		data->tid_entry.pid = perf_event_pid(event, current);
4755 		data->tid_entry.tid = perf_event_tid(event, current);
4756 	}
4757 
4758 	if (sample_type & PERF_SAMPLE_TIME)
4759 		data->time = perf_clock();
4760 
4761 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
4762 		data->id = primary_event_id(event);
4763 
4764 	if (sample_type & PERF_SAMPLE_STREAM_ID)
4765 		data->stream_id = event->id;
4766 
4767 	if (sample_type & PERF_SAMPLE_CPU) {
4768 		data->cpu_entry.cpu	 = raw_smp_processor_id();
4769 		data->cpu_entry.reserved = 0;
4770 	}
4771 }
4772 
4773 void perf_event_header__init_id(struct perf_event_header *header,
4774 				struct perf_sample_data *data,
4775 				struct perf_event *event)
4776 {
4777 	if (event->attr.sample_id_all)
4778 		__perf_event_header__init_id(header, data, event);
4779 }
4780 
4781 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
4782 					   struct perf_sample_data *data)
4783 {
4784 	u64 sample_type = data->type;
4785 
4786 	if (sample_type & PERF_SAMPLE_TID)
4787 		perf_output_put(handle, data->tid_entry);
4788 
4789 	if (sample_type & PERF_SAMPLE_TIME)
4790 		perf_output_put(handle, data->time);
4791 
4792 	if (sample_type & PERF_SAMPLE_ID)
4793 		perf_output_put(handle, data->id);
4794 
4795 	if (sample_type & PERF_SAMPLE_STREAM_ID)
4796 		perf_output_put(handle, data->stream_id);
4797 
4798 	if (sample_type & PERF_SAMPLE_CPU)
4799 		perf_output_put(handle, data->cpu_entry);
4800 
4801 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
4802 		perf_output_put(handle, data->id);
4803 }
4804 
4805 void perf_event__output_id_sample(struct perf_event *event,
4806 				  struct perf_output_handle *handle,
4807 				  struct perf_sample_data *sample)
4808 {
4809 	if (event->attr.sample_id_all)
4810 		__perf_event__output_id_sample(handle, sample);
4811 }
4812 
4813 static void perf_output_read_one(struct perf_output_handle *handle,
4814 				 struct perf_event *event,
4815 				 u64 enabled, u64 running)
4816 {
4817 	u64 read_format = event->attr.read_format;
4818 	u64 values[4];
4819 	int n = 0;
4820 
4821 	values[n++] = perf_event_count(event);
4822 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4823 		values[n++] = enabled +
4824 			atomic64_read(&event->child_total_time_enabled);
4825 	}
4826 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4827 		values[n++] = running +
4828 			atomic64_read(&event->child_total_time_running);
4829 	}
4830 	if (read_format & PERF_FORMAT_ID)
4831 		values[n++] = primary_event_id(event);
4832 
4833 	__output_copy(handle, values, n * sizeof(u64));
4834 }
4835 
4836 /*
4837  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4838  */
4839 static void perf_output_read_group(struct perf_output_handle *handle,
4840 			    struct perf_event *event,
4841 			    u64 enabled, u64 running)
4842 {
4843 	struct perf_event *leader = event->group_leader, *sub;
4844 	u64 read_format = event->attr.read_format;
4845 	u64 values[5];
4846 	int n = 0;
4847 
4848 	values[n++] = 1 + leader->nr_siblings;
4849 
4850 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4851 		values[n++] = enabled;
4852 
4853 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4854 		values[n++] = running;
4855 
4856 	if (leader != event)
4857 		leader->pmu->read(leader);
4858 
4859 	values[n++] = perf_event_count(leader);
4860 	if (read_format & PERF_FORMAT_ID)
4861 		values[n++] = primary_event_id(leader);
4862 
4863 	__output_copy(handle, values, n * sizeof(u64));
4864 
4865 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4866 		n = 0;
4867 
4868 		if ((sub != event) &&
4869 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
4870 			sub->pmu->read(sub);
4871 
4872 		values[n++] = perf_event_count(sub);
4873 		if (read_format & PERF_FORMAT_ID)
4874 			values[n++] = primary_event_id(sub);
4875 
4876 		__output_copy(handle, values, n * sizeof(u64));
4877 	}
4878 }
4879 
4880 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
4881 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
4882 
4883 static void perf_output_read(struct perf_output_handle *handle,
4884 			     struct perf_event *event)
4885 {
4886 	u64 enabled = 0, running = 0, now;
4887 	u64 read_format = event->attr.read_format;
4888 
4889 	/*
4890 	 * compute total_time_enabled, total_time_running
4891 	 * based on snapshot values taken when the event
4892 	 * was last scheduled in.
4893 	 *
4894 	 * we cannot simply called update_context_time()
4895 	 * because of locking issue as we are called in
4896 	 * NMI context
4897 	 */
4898 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
4899 		calc_timer_values(event, &now, &enabled, &running);
4900 
4901 	if (event->attr.read_format & PERF_FORMAT_GROUP)
4902 		perf_output_read_group(handle, event, enabled, running);
4903 	else
4904 		perf_output_read_one(handle, event, enabled, running);
4905 }
4906 
4907 void perf_output_sample(struct perf_output_handle *handle,
4908 			struct perf_event_header *header,
4909 			struct perf_sample_data *data,
4910 			struct perf_event *event)
4911 {
4912 	u64 sample_type = data->type;
4913 
4914 	perf_output_put(handle, *header);
4915 
4916 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
4917 		perf_output_put(handle, data->id);
4918 
4919 	if (sample_type & PERF_SAMPLE_IP)
4920 		perf_output_put(handle, data->ip);
4921 
4922 	if (sample_type & PERF_SAMPLE_TID)
4923 		perf_output_put(handle, data->tid_entry);
4924 
4925 	if (sample_type & PERF_SAMPLE_TIME)
4926 		perf_output_put(handle, data->time);
4927 
4928 	if (sample_type & PERF_SAMPLE_ADDR)
4929 		perf_output_put(handle, data->addr);
4930 
4931 	if (sample_type & PERF_SAMPLE_ID)
4932 		perf_output_put(handle, data->id);
4933 
4934 	if (sample_type & PERF_SAMPLE_STREAM_ID)
4935 		perf_output_put(handle, data->stream_id);
4936 
4937 	if (sample_type & PERF_SAMPLE_CPU)
4938 		perf_output_put(handle, data->cpu_entry);
4939 
4940 	if (sample_type & PERF_SAMPLE_PERIOD)
4941 		perf_output_put(handle, data->period);
4942 
4943 	if (sample_type & PERF_SAMPLE_READ)
4944 		perf_output_read(handle, event);
4945 
4946 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4947 		if (data->callchain) {
4948 			int size = 1;
4949 
4950 			if (data->callchain)
4951 				size += data->callchain->nr;
4952 
4953 			size *= sizeof(u64);
4954 
4955 			__output_copy(handle, data->callchain, size);
4956 		} else {
4957 			u64 nr = 0;
4958 			perf_output_put(handle, nr);
4959 		}
4960 	}
4961 
4962 	if (sample_type & PERF_SAMPLE_RAW) {
4963 		if (data->raw) {
4964 			perf_output_put(handle, data->raw->size);
4965 			__output_copy(handle, data->raw->data,
4966 					   data->raw->size);
4967 		} else {
4968 			struct {
4969 				u32	size;
4970 				u32	data;
4971 			} raw = {
4972 				.size = sizeof(u32),
4973 				.data = 0,
4974 			};
4975 			perf_output_put(handle, raw);
4976 		}
4977 	}
4978 
4979 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4980 		if (data->br_stack) {
4981 			size_t size;
4982 
4983 			size = data->br_stack->nr
4984 			     * sizeof(struct perf_branch_entry);
4985 
4986 			perf_output_put(handle, data->br_stack->nr);
4987 			perf_output_copy(handle, data->br_stack->entries, size);
4988 		} else {
4989 			/*
4990 			 * we always store at least the value of nr
4991 			 */
4992 			u64 nr = 0;
4993 			perf_output_put(handle, nr);
4994 		}
4995 	}
4996 
4997 	if (sample_type & PERF_SAMPLE_REGS_USER) {
4998 		u64 abi = data->regs_user.abi;
4999 
5000 		/*
5001 		 * If there are no regs to dump, notice it through
5002 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5003 		 */
5004 		perf_output_put(handle, abi);
5005 
5006 		if (abi) {
5007 			u64 mask = event->attr.sample_regs_user;
5008 			perf_output_sample_regs(handle,
5009 						data->regs_user.regs,
5010 						mask);
5011 		}
5012 	}
5013 
5014 	if (sample_type & PERF_SAMPLE_STACK_USER) {
5015 		perf_output_sample_ustack(handle,
5016 					  data->stack_user_size,
5017 					  data->regs_user.regs);
5018 	}
5019 
5020 	if (sample_type & PERF_SAMPLE_WEIGHT)
5021 		perf_output_put(handle, data->weight);
5022 
5023 	if (sample_type & PERF_SAMPLE_DATA_SRC)
5024 		perf_output_put(handle, data->data_src.val);
5025 
5026 	if (sample_type & PERF_SAMPLE_TRANSACTION)
5027 		perf_output_put(handle, data->txn);
5028 
5029 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
5030 		u64 abi = data->regs_intr.abi;
5031 		/*
5032 		 * If there are no regs to dump, notice it through
5033 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5034 		 */
5035 		perf_output_put(handle, abi);
5036 
5037 		if (abi) {
5038 			u64 mask = event->attr.sample_regs_intr;
5039 
5040 			perf_output_sample_regs(handle,
5041 						data->regs_intr.regs,
5042 						mask);
5043 		}
5044 	}
5045 
5046 	if (!event->attr.watermark) {
5047 		int wakeup_events = event->attr.wakeup_events;
5048 
5049 		if (wakeup_events) {
5050 			struct ring_buffer *rb = handle->rb;
5051 			int events = local_inc_return(&rb->events);
5052 
5053 			if (events >= wakeup_events) {
5054 				local_sub(wakeup_events, &rb->events);
5055 				local_inc(&rb->wakeup);
5056 			}
5057 		}
5058 	}
5059 }
5060 
5061 void perf_prepare_sample(struct perf_event_header *header,
5062 			 struct perf_sample_data *data,
5063 			 struct perf_event *event,
5064 			 struct pt_regs *regs)
5065 {
5066 	u64 sample_type = event->attr.sample_type;
5067 
5068 	header->type = PERF_RECORD_SAMPLE;
5069 	header->size = sizeof(*header) + event->header_size;
5070 
5071 	header->misc = 0;
5072 	header->misc |= perf_misc_flags(regs);
5073 
5074 	__perf_event_header__init_id(header, data, event);
5075 
5076 	if (sample_type & PERF_SAMPLE_IP)
5077 		data->ip = perf_instruction_pointer(regs);
5078 
5079 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5080 		int size = 1;
5081 
5082 		data->callchain = perf_callchain(event, regs);
5083 
5084 		if (data->callchain)
5085 			size += data->callchain->nr;
5086 
5087 		header->size += size * sizeof(u64);
5088 	}
5089 
5090 	if (sample_type & PERF_SAMPLE_RAW) {
5091 		int size = sizeof(u32);
5092 
5093 		if (data->raw)
5094 			size += data->raw->size;
5095 		else
5096 			size += sizeof(u32);
5097 
5098 		WARN_ON_ONCE(size & (sizeof(u64)-1));
5099 		header->size += size;
5100 	}
5101 
5102 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5103 		int size = sizeof(u64); /* nr */
5104 		if (data->br_stack) {
5105 			size += data->br_stack->nr
5106 			      * sizeof(struct perf_branch_entry);
5107 		}
5108 		header->size += size;
5109 	}
5110 
5111 	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5112 		perf_sample_regs_user(&data->regs_user, regs,
5113 				      &data->regs_user_copy);
5114 
5115 	if (sample_type & PERF_SAMPLE_REGS_USER) {
5116 		/* regs dump ABI info */
5117 		int size = sizeof(u64);
5118 
5119 		if (data->regs_user.regs) {
5120 			u64 mask = event->attr.sample_regs_user;
5121 			size += hweight64(mask) * sizeof(u64);
5122 		}
5123 
5124 		header->size += size;
5125 	}
5126 
5127 	if (sample_type & PERF_SAMPLE_STACK_USER) {
5128 		/*
5129 		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5130 		 * processed as the last one or have additional check added
5131 		 * in case new sample type is added, because we could eat
5132 		 * up the rest of the sample size.
5133 		 */
5134 		u16 stack_size = event->attr.sample_stack_user;
5135 		u16 size = sizeof(u64);
5136 
5137 		stack_size = perf_sample_ustack_size(stack_size, header->size,
5138 						     data->regs_user.regs);
5139 
5140 		/*
5141 		 * If there is something to dump, add space for the dump
5142 		 * itself and for the field that tells the dynamic size,
5143 		 * which is how many have been actually dumped.
5144 		 */
5145 		if (stack_size)
5146 			size += sizeof(u64) + stack_size;
5147 
5148 		data->stack_user_size = stack_size;
5149 		header->size += size;
5150 	}
5151 
5152 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
5153 		/* regs dump ABI info */
5154 		int size = sizeof(u64);
5155 
5156 		perf_sample_regs_intr(&data->regs_intr, regs);
5157 
5158 		if (data->regs_intr.regs) {
5159 			u64 mask = event->attr.sample_regs_intr;
5160 
5161 			size += hweight64(mask) * sizeof(u64);
5162 		}
5163 
5164 		header->size += size;
5165 	}
5166 }
5167 
5168 static void perf_event_output(struct perf_event *event,
5169 				struct perf_sample_data *data,
5170 				struct pt_regs *regs)
5171 {
5172 	struct perf_output_handle handle;
5173 	struct perf_event_header header;
5174 
5175 	/* protect the callchain buffers */
5176 	rcu_read_lock();
5177 
5178 	perf_prepare_sample(&header, data, event, regs);
5179 
5180 	if (perf_output_begin(&handle, event, header.size))
5181 		goto exit;
5182 
5183 	perf_output_sample(&handle, &header, data, event);
5184 
5185 	perf_output_end(&handle);
5186 
5187 exit:
5188 	rcu_read_unlock();
5189 }
5190 
5191 /*
5192  * read event_id
5193  */
5194 
5195 struct perf_read_event {
5196 	struct perf_event_header	header;
5197 
5198 	u32				pid;
5199 	u32				tid;
5200 };
5201 
5202 static void
5203 perf_event_read_event(struct perf_event *event,
5204 			struct task_struct *task)
5205 {
5206 	struct perf_output_handle handle;
5207 	struct perf_sample_data sample;
5208 	struct perf_read_event read_event = {
5209 		.header = {
5210 			.type = PERF_RECORD_READ,
5211 			.misc = 0,
5212 			.size = sizeof(read_event) + event->read_size,
5213 		},
5214 		.pid = perf_event_pid(event, task),
5215 		.tid = perf_event_tid(event, task),
5216 	};
5217 	int ret;
5218 
5219 	perf_event_header__init_id(&read_event.header, &sample, event);
5220 	ret = perf_output_begin(&handle, event, read_event.header.size);
5221 	if (ret)
5222 		return;
5223 
5224 	perf_output_put(&handle, read_event);
5225 	perf_output_read(&handle, event);
5226 	perf_event__output_id_sample(event, &handle, &sample);
5227 
5228 	perf_output_end(&handle);
5229 }
5230 
5231 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
5232 
5233 static void
5234 perf_event_aux_ctx(struct perf_event_context *ctx,
5235 		   perf_event_aux_output_cb output,
5236 		   void *data)
5237 {
5238 	struct perf_event *event;
5239 
5240 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5241 		if (event->state < PERF_EVENT_STATE_INACTIVE)
5242 			continue;
5243 		if (!event_filter_match(event))
5244 			continue;
5245 		output(event, data);
5246 	}
5247 }
5248 
5249 static void
5250 perf_event_aux(perf_event_aux_output_cb output, void *data,
5251 	       struct perf_event_context *task_ctx)
5252 {
5253 	struct perf_cpu_context *cpuctx;
5254 	struct perf_event_context *ctx;
5255 	struct pmu *pmu;
5256 	int ctxn;
5257 
5258 	rcu_read_lock();
5259 	list_for_each_entry_rcu(pmu, &pmus, entry) {
5260 		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5261 		if (cpuctx->unique_pmu != pmu)
5262 			goto next;
5263 		perf_event_aux_ctx(&cpuctx->ctx, output, data);
5264 		if (task_ctx)
5265 			goto next;
5266 		ctxn = pmu->task_ctx_nr;
5267 		if (ctxn < 0)
5268 			goto next;
5269 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5270 		if (ctx)
5271 			perf_event_aux_ctx(ctx, output, data);
5272 next:
5273 		put_cpu_ptr(pmu->pmu_cpu_context);
5274 	}
5275 
5276 	if (task_ctx) {
5277 		preempt_disable();
5278 		perf_event_aux_ctx(task_ctx, output, data);
5279 		preempt_enable();
5280 	}
5281 	rcu_read_unlock();
5282 }
5283 
5284 /*
5285  * task tracking -- fork/exit
5286  *
5287  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
5288  */
5289 
5290 struct perf_task_event {
5291 	struct task_struct		*task;
5292 	struct perf_event_context	*task_ctx;
5293 
5294 	struct {
5295 		struct perf_event_header	header;
5296 
5297 		u32				pid;
5298 		u32				ppid;
5299 		u32				tid;
5300 		u32				ptid;
5301 		u64				time;
5302 	} event_id;
5303 };
5304 
5305 static int perf_event_task_match(struct perf_event *event)
5306 {
5307 	return event->attr.comm  || event->attr.mmap ||
5308 	       event->attr.mmap2 || event->attr.mmap_data ||
5309 	       event->attr.task;
5310 }
5311 
5312 static void perf_event_task_output(struct perf_event *event,
5313 				   void *data)
5314 {
5315 	struct perf_task_event *task_event = data;
5316 	struct perf_output_handle handle;
5317 	struct perf_sample_data	sample;
5318 	struct task_struct *task = task_event->task;
5319 	int ret, size = task_event->event_id.header.size;
5320 
5321 	if (!perf_event_task_match(event))
5322 		return;
5323 
5324 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
5325 
5326 	ret = perf_output_begin(&handle, event,
5327 				task_event->event_id.header.size);
5328 	if (ret)
5329 		goto out;
5330 
5331 	task_event->event_id.pid = perf_event_pid(event, task);
5332 	task_event->event_id.ppid = perf_event_pid(event, current);
5333 
5334 	task_event->event_id.tid = perf_event_tid(event, task);
5335 	task_event->event_id.ptid = perf_event_tid(event, current);
5336 
5337 	perf_output_put(&handle, task_event->event_id);
5338 
5339 	perf_event__output_id_sample(event, &handle, &sample);
5340 
5341 	perf_output_end(&handle);
5342 out:
5343 	task_event->event_id.header.size = size;
5344 }
5345 
5346 static void perf_event_task(struct task_struct *task,
5347 			      struct perf_event_context *task_ctx,
5348 			      int new)
5349 {
5350 	struct perf_task_event task_event;
5351 
5352 	if (!atomic_read(&nr_comm_events) &&
5353 	    !atomic_read(&nr_mmap_events) &&
5354 	    !atomic_read(&nr_task_events))
5355 		return;
5356 
5357 	task_event = (struct perf_task_event){
5358 		.task	  = task,
5359 		.task_ctx = task_ctx,
5360 		.event_id    = {
5361 			.header = {
5362 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5363 				.misc = 0,
5364 				.size = sizeof(task_event.event_id),
5365 			},
5366 			/* .pid  */
5367 			/* .ppid */
5368 			/* .tid  */
5369 			/* .ptid */
5370 			.time = perf_clock(),
5371 		},
5372 	};
5373 
5374 	perf_event_aux(perf_event_task_output,
5375 		       &task_event,
5376 		       task_ctx);
5377 }
5378 
5379 void perf_event_fork(struct task_struct *task)
5380 {
5381 	perf_event_task(task, NULL, 1);
5382 }
5383 
5384 /*
5385  * comm tracking
5386  */
5387 
5388 struct perf_comm_event {
5389 	struct task_struct	*task;
5390 	char			*comm;
5391 	int			comm_size;
5392 
5393 	struct {
5394 		struct perf_event_header	header;
5395 
5396 		u32				pid;
5397 		u32				tid;
5398 	} event_id;
5399 };
5400 
5401 static int perf_event_comm_match(struct perf_event *event)
5402 {
5403 	return event->attr.comm;
5404 }
5405 
5406 static void perf_event_comm_output(struct perf_event *event,
5407 				   void *data)
5408 {
5409 	struct perf_comm_event *comm_event = data;
5410 	struct perf_output_handle handle;
5411 	struct perf_sample_data sample;
5412 	int size = comm_event->event_id.header.size;
5413 	int ret;
5414 
5415 	if (!perf_event_comm_match(event))
5416 		return;
5417 
5418 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5419 	ret = perf_output_begin(&handle, event,
5420 				comm_event->event_id.header.size);
5421 
5422 	if (ret)
5423 		goto out;
5424 
5425 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5426 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5427 
5428 	perf_output_put(&handle, comm_event->event_id);
5429 	__output_copy(&handle, comm_event->comm,
5430 				   comm_event->comm_size);
5431 
5432 	perf_event__output_id_sample(event, &handle, &sample);
5433 
5434 	perf_output_end(&handle);
5435 out:
5436 	comm_event->event_id.header.size = size;
5437 }
5438 
5439 static void perf_event_comm_event(struct perf_comm_event *comm_event)
5440 {
5441 	char comm[TASK_COMM_LEN];
5442 	unsigned int size;
5443 
5444 	memset(comm, 0, sizeof(comm));
5445 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
5446 	size = ALIGN(strlen(comm)+1, sizeof(u64));
5447 
5448 	comm_event->comm = comm;
5449 	comm_event->comm_size = size;
5450 
5451 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
5452 
5453 	perf_event_aux(perf_event_comm_output,
5454 		       comm_event,
5455 		       NULL);
5456 }
5457 
5458 void perf_event_comm(struct task_struct *task, bool exec)
5459 {
5460 	struct perf_comm_event comm_event;
5461 
5462 	if (!atomic_read(&nr_comm_events))
5463 		return;
5464 
5465 	comm_event = (struct perf_comm_event){
5466 		.task	= task,
5467 		/* .comm      */
5468 		/* .comm_size */
5469 		.event_id  = {
5470 			.header = {
5471 				.type = PERF_RECORD_COMM,
5472 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5473 				/* .size */
5474 			},
5475 			/* .pid */
5476 			/* .tid */
5477 		},
5478 	};
5479 
5480 	perf_event_comm_event(&comm_event);
5481 }
5482 
5483 /*
5484  * mmap tracking
5485  */
5486 
5487 struct perf_mmap_event {
5488 	struct vm_area_struct	*vma;
5489 
5490 	const char		*file_name;
5491 	int			file_size;
5492 	int			maj, min;
5493 	u64			ino;
5494 	u64			ino_generation;
5495 	u32			prot, flags;
5496 
5497 	struct {
5498 		struct perf_event_header	header;
5499 
5500 		u32				pid;
5501 		u32				tid;
5502 		u64				start;
5503 		u64				len;
5504 		u64				pgoff;
5505 	} event_id;
5506 };
5507 
5508 static int perf_event_mmap_match(struct perf_event *event,
5509 				 void *data)
5510 {
5511 	struct perf_mmap_event *mmap_event = data;
5512 	struct vm_area_struct *vma = mmap_event->vma;
5513 	int executable = vma->vm_flags & VM_EXEC;
5514 
5515 	return (!executable && event->attr.mmap_data) ||
5516 	       (executable && (event->attr.mmap || event->attr.mmap2));
5517 }
5518 
5519 static void perf_event_mmap_output(struct perf_event *event,
5520 				   void *data)
5521 {
5522 	struct perf_mmap_event *mmap_event = data;
5523 	struct perf_output_handle handle;
5524 	struct perf_sample_data sample;
5525 	int size = mmap_event->event_id.header.size;
5526 	int ret;
5527 
5528 	if (!perf_event_mmap_match(event, data))
5529 		return;
5530 
5531 	if (event->attr.mmap2) {
5532 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5533 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5534 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
5535 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5536 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5537 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
5538 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
5539 	}
5540 
5541 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5542 	ret = perf_output_begin(&handle, event,
5543 				mmap_event->event_id.header.size);
5544 	if (ret)
5545 		goto out;
5546 
5547 	mmap_event->event_id.pid = perf_event_pid(event, current);
5548 	mmap_event->event_id.tid = perf_event_tid(event, current);
5549 
5550 	perf_output_put(&handle, mmap_event->event_id);
5551 
5552 	if (event->attr.mmap2) {
5553 		perf_output_put(&handle, mmap_event->maj);
5554 		perf_output_put(&handle, mmap_event->min);
5555 		perf_output_put(&handle, mmap_event->ino);
5556 		perf_output_put(&handle, mmap_event->ino_generation);
5557 		perf_output_put(&handle, mmap_event->prot);
5558 		perf_output_put(&handle, mmap_event->flags);
5559 	}
5560 
5561 	__output_copy(&handle, mmap_event->file_name,
5562 				   mmap_event->file_size);
5563 
5564 	perf_event__output_id_sample(event, &handle, &sample);
5565 
5566 	perf_output_end(&handle);
5567 out:
5568 	mmap_event->event_id.header.size = size;
5569 }
5570 
5571 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5572 {
5573 	struct vm_area_struct *vma = mmap_event->vma;
5574 	struct file *file = vma->vm_file;
5575 	int maj = 0, min = 0;
5576 	u64 ino = 0, gen = 0;
5577 	u32 prot = 0, flags = 0;
5578 	unsigned int size;
5579 	char tmp[16];
5580 	char *buf = NULL;
5581 	char *name;
5582 
5583 	if (file) {
5584 		struct inode *inode;
5585 		dev_t dev;
5586 
5587 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
5588 		if (!buf) {
5589 			name = "//enomem";
5590 			goto cpy_name;
5591 		}
5592 		/*
5593 		 * d_path() works from the end of the rb backwards, so we
5594 		 * need to add enough zero bytes after the string to handle
5595 		 * the 64bit alignment we do later.
5596 		 */
5597 		name = d_path(&file->f_path, buf, PATH_MAX - sizeof(u64));
5598 		if (IS_ERR(name)) {
5599 			name = "//toolong";
5600 			goto cpy_name;
5601 		}
5602 		inode = file_inode(vma->vm_file);
5603 		dev = inode->i_sb->s_dev;
5604 		ino = inode->i_ino;
5605 		gen = inode->i_generation;
5606 		maj = MAJOR(dev);
5607 		min = MINOR(dev);
5608 
5609 		if (vma->vm_flags & VM_READ)
5610 			prot |= PROT_READ;
5611 		if (vma->vm_flags & VM_WRITE)
5612 			prot |= PROT_WRITE;
5613 		if (vma->vm_flags & VM_EXEC)
5614 			prot |= PROT_EXEC;
5615 
5616 		if (vma->vm_flags & VM_MAYSHARE)
5617 			flags = MAP_SHARED;
5618 		else
5619 			flags = MAP_PRIVATE;
5620 
5621 		if (vma->vm_flags & VM_DENYWRITE)
5622 			flags |= MAP_DENYWRITE;
5623 		if (vma->vm_flags & VM_MAYEXEC)
5624 			flags |= MAP_EXECUTABLE;
5625 		if (vma->vm_flags & VM_LOCKED)
5626 			flags |= MAP_LOCKED;
5627 		if (vma->vm_flags & VM_HUGETLB)
5628 			flags |= MAP_HUGETLB;
5629 
5630 		goto got_name;
5631 	} else {
5632 		if (vma->vm_ops && vma->vm_ops->name) {
5633 			name = (char *) vma->vm_ops->name(vma);
5634 			if (name)
5635 				goto cpy_name;
5636 		}
5637 
5638 		name = (char *)arch_vma_name(vma);
5639 		if (name)
5640 			goto cpy_name;
5641 
5642 		if (vma->vm_start <= vma->vm_mm->start_brk &&
5643 				vma->vm_end >= vma->vm_mm->brk) {
5644 			name = "[heap]";
5645 			goto cpy_name;
5646 		}
5647 		if (vma->vm_start <= vma->vm_mm->start_stack &&
5648 				vma->vm_end >= vma->vm_mm->start_stack) {
5649 			name = "[stack]";
5650 			goto cpy_name;
5651 		}
5652 
5653 		name = "//anon";
5654 		goto cpy_name;
5655 	}
5656 
5657 cpy_name:
5658 	strlcpy(tmp, name, sizeof(tmp));
5659 	name = tmp;
5660 got_name:
5661 	/*
5662 	 * Since our buffer works in 8 byte units we need to align our string
5663 	 * size to a multiple of 8. However, we must guarantee the tail end is
5664 	 * zero'd out to avoid leaking random bits to userspace.
5665 	 */
5666 	size = strlen(name)+1;
5667 	while (!IS_ALIGNED(size, sizeof(u64)))
5668 		name[size++] = '\0';
5669 
5670 	mmap_event->file_name = name;
5671 	mmap_event->file_size = size;
5672 	mmap_event->maj = maj;
5673 	mmap_event->min = min;
5674 	mmap_event->ino = ino;
5675 	mmap_event->ino_generation = gen;
5676 	mmap_event->prot = prot;
5677 	mmap_event->flags = flags;
5678 
5679 	if (!(vma->vm_flags & VM_EXEC))
5680 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
5681 
5682 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
5683 
5684 	perf_event_aux(perf_event_mmap_output,
5685 		       mmap_event,
5686 		       NULL);
5687 
5688 	kfree(buf);
5689 }
5690 
5691 void perf_event_mmap(struct vm_area_struct *vma)
5692 {
5693 	struct perf_mmap_event mmap_event;
5694 
5695 	if (!atomic_read(&nr_mmap_events))
5696 		return;
5697 
5698 	mmap_event = (struct perf_mmap_event){
5699 		.vma	= vma,
5700 		/* .file_name */
5701 		/* .file_size */
5702 		.event_id  = {
5703 			.header = {
5704 				.type = PERF_RECORD_MMAP,
5705 				.misc = PERF_RECORD_MISC_USER,
5706 				/* .size */
5707 			},
5708 			/* .pid */
5709 			/* .tid */
5710 			.start  = vma->vm_start,
5711 			.len    = vma->vm_end - vma->vm_start,
5712 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
5713 		},
5714 		/* .maj (attr_mmap2 only) */
5715 		/* .min (attr_mmap2 only) */
5716 		/* .ino (attr_mmap2 only) */
5717 		/* .ino_generation (attr_mmap2 only) */
5718 		/* .prot (attr_mmap2 only) */
5719 		/* .flags (attr_mmap2 only) */
5720 	};
5721 
5722 	perf_event_mmap_event(&mmap_event);
5723 }
5724 
5725 /*
5726  * IRQ throttle logging
5727  */
5728 
5729 static void perf_log_throttle(struct perf_event *event, int enable)
5730 {
5731 	struct perf_output_handle handle;
5732 	struct perf_sample_data sample;
5733 	int ret;
5734 
5735 	struct {
5736 		struct perf_event_header	header;
5737 		u64				time;
5738 		u64				id;
5739 		u64				stream_id;
5740 	} throttle_event = {
5741 		.header = {
5742 			.type = PERF_RECORD_THROTTLE,
5743 			.misc = 0,
5744 			.size = sizeof(throttle_event),
5745 		},
5746 		.time		= perf_clock(),
5747 		.id		= primary_event_id(event),
5748 		.stream_id	= event->id,
5749 	};
5750 
5751 	if (enable)
5752 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
5753 
5754 	perf_event_header__init_id(&throttle_event.header, &sample, event);
5755 
5756 	ret = perf_output_begin(&handle, event,
5757 				throttle_event.header.size);
5758 	if (ret)
5759 		return;
5760 
5761 	perf_output_put(&handle, throttle_event);
5762 	perf_event__output_id_sample(event, &handle, &sample);
5763 	perf_output_end(&handle);
5764 }
5765 
5766 /*
5767  * Generic event overflow handling, sampling.
5768  */
5769 
5770 static int __perf_event_overflow(struct perf_event *event,
5771 				   int throttle, struct perf_sample_data *data,
5772 				   struct pt_regs *regs)
5773 {
5774 	int events = atomic_read(&event->event_limit);
5775 	struct hw_perf_event *hwc = &event->hw;
5776 	u64 seq;
5777 	int ret = 0;
5778 
5779 	/*
5780 	 * Non-sampling counters might still use the PMI to fold short
5781 	 * hardware counters, ignore those.
5782 	 */
5783 	if (unlikely(!is_sampling_event(event)))
5784 		return 0;
5785 
5786 	seq = __this_cpu_read(perf_throttled_seq);
5787 	if (seq != hwc->interrupts_seq) {
5788 		hwc->interrupts_seq = seq;
5789 		hwc->interrupts = 1;
5790 	} else {
5791 		hwc->interrupts++;
5792 		if (unlikely(throttle
5793 			     && hwc->interrupts >= max_samples_per_tick)) {
5794 			__this_cpu_inc(perf_throttled_count);
5795 			hwc->interrupts = MAX_INTERRUPTS;
5796 			perf_log_throttle(event, 0);
5797 			tick_nohz_full_kick();
5798 			ret = 1;
5799 		}
5800 	}
5801 
5802 	if (event->attr.freq) {
5803 		u64 now = perf_clock();
5804 		s64 delta = now - hwc->freq_time_stamp;
5805 
5806 		hwc->freq_time_stamp = now;
5807 
5808 		if (delta > 0 && delta < 2*TICK_NSEC)
5809 			perf_adjust_period(event, delta, hwc->last_period, true);
5810 	}
5811 
5812 	/*
5813 	 * XXX event_limit might not quite work as expected on inherited
5814 	 * events
5815 	 */
5816 
5817 	event->pending_kill = POLL_IN;
5818 	if (events && atomic_dec_and_test(&event->event_limit)) {
5819 		ret = 1;
5820 		event->pending_kill = POLL_HUP;
5821 		event->pending_disable = 1;
5822 		irq_work_queue(&event->pending);
5823 	}
5824 
5825 	if (event->overflow_handler)
5826 		event->overflow_handler(event, data, regs);
5827 	else
5828 		perf_event_output(event, data, regs);
5829 
5830 	if (event->fasync && event->pending_kill) {
5831 		event->pending_wakeup = 1;
5832 		irq_work_queue(&event->pending);
5833 	}
5834 
5835 	return ret;
5836 }
5837 
5838 int perf_event_overflow(struct perf_event *event,
5839 			  struct perf_sample_data *data,
5840 			  struct pt_regs *regs)
5841 {
5842 	return __perf_event_overflow(event, 1, data, regs);
5843 }
5844 
5845 /*
5846  * Generic software event infrastructure
5847  */
5848 
5849 struct swevent_htable {
5850 	struct swevent_hlist		*swevent_hlist;
5851 	struct mutex			hlist_mutex;
5852 	int				hlist_refcount;
5853 
5854 	/* Recursion avoidance in each contexts */
5855 	int				recursion[PERF_NR_CONTEXTS];
5856 
5857 	/* Keeps track of cpu being initialized/exited */
5858 	bool				online;
5859 };
5860 
5861 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
5862 
5863 /*
5864  * We directly increment event->count and keep a second value in
5865  * event->hw.period_left to count intervals. This period event
5866  * is kept in the range [-sample_period, 0] so that we can use the
5867  * sign as trigger.
5868  */
5869 
5870 u64 perf_swevent_set_period(struct perf_event *event)
5871 {
5872 	struct hw_perf_event *hwc = &event->hw;
5873 	u64 period = hwc->last_period;
5874 	u64 nr, offset;
5875 	s64 old, val;
5876 
5877 	hwc->last_period = hwc->sample_period;
5878 
5879 again:
5880 	old = val = local64_read(&hwc->period_left);
5881 	if (val < 0)
5882 		return 0;
5883 
5884 	nr = div64_u64(period + val, period);
5885 	offset = nr * period;
5886 	val -= offset;
5887 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
5888 		goto again;
5889 
5890 	return nr;
5891 }
5892 
5893 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
5894 				    struct perf_sample_data *data,
5895 				    struct pt_regs *regs)
5896 {
5897 	struct hw_perf_event *hwc = &event->hw;
5898 	int throttle = 0;
5899 
5900 	if (!overflow)
5901 		overflow = perf_swevent_set_period(event);
5902 
5903 	if (hwc->interrupts == MAX_INTERRUPTS)
5904 		return;
5905 
5906 	for (; overflow; overflow--) {
5907 		if (__perf_event_overflow(event, throttle,
5908 					    data, regs)) {
5909 			/*
5910 			 * We inhibit the overflow from happening when
5911 			 * hwc->interrupts == MAX_INTERRUPTS.
5912 			 */
5913 			break;
5914 		}
5915 		throttle = 1;
5916 	}
5917 }
5918 
5919 static void perf_swevent_event(struct perf_event *event, u64 nr,
5920 			       struct perf_sample_data *data,
5921 			       struct pt_regs *regs)
5922 {
5923 	struct hw_perf_event *hwc = &event->hw;
5924 
5925 	local64_add(nr, &event->count);
5926 
5927 	if (!regs)
5928 		return;
5929 
5930 	if (!is_sampling_event(event))
5931 		return;
5932 
5933 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
5934 		data->period = nr;
5935 		return perf_swevent_overflow(event, 1, data, regs);
5936 	} else
5937 		data->period = event->hw.last_period;
5938 
5939 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
5940 		return perf_swevent_overflow(event, 1, data, regs);
5941 
5942 	if (local64_add_negative(nr, &hwc->period_left))
5943 		return;
5944 
5945 	perf_swevent_overflow(event, 0, data, regs);
5946 }
5947 
5948 static int perf_exclude_event(struct perf_event *event,
5949 			      struct pt_regs *regs)
5950 {
5951 	if (event->hw.state & PERF_HES_STOPPED)
5952 		return 1;
5953 
5954 	if (regs) {
5955 		if (event->attr.exclude_user && user_mode(regs))
5956 			return 1;
5957 
5958 		if (event->attr.exclude_kernel && !user_mode(regs))
5959 			return 1;
5960 	}
5961 
5962 	return 0;
5963 }
5964 
5965 static int perf_swevent_match(struct perf_event *event,
5966 				enum perf_type_id type,
5967 				u32 event_id,
5968 				struct perf_sample_data *data,
5969 				struct pt_regs *regs)
5970 {
5971 	if (event->attr.type != type)
5972 		return 0;
5973 
5974 	if (event->attr.config != event_id)
5975 		return 0;
5976 
5977 	if (perf_exclude_event(event, regs))
5978 		return 0;
5979 
5980 	return 1;
5981 }
5982 
5983 static inline u64 swevent_hash(u64 type, u32 event_id)
5984 {
5985 	u64 val = event_id | (type << 32);
5986 
5987 	return hash_64(val, SWEVENT_HLIST_BITS);
5988 }
5989 
5990 static inline struct hlist_head *
5991 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5992 {
5993 	u64 hash = swevent_hash(type, event_id);
5994 
5995 	return &hlist->heads[hash];
5996 }
5997 
5998 /* For the read side: events when they trigger */
5999 static inline struct hlist_head *
6000 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
6001 {
6002 	struct swevent_hlist *hlist;
6003 
6004 	hlist = rcu_dereference(swhash->swevent_hlist);
6005 	if (!hlist)
6006 		return NULL;
6007 
6008 	return __find_swevent_head(hlist, type, event_id);
6009 }
6010 
6011 /* For the event head insertion and removal in the hlist */
6012 static inline struct hlist_head *
6013 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
6014 {
6015 	struct swevent_hlist *hlist;
6016 	u32 event_id = event->attr.config;
6017 	u64 type = event->attr.type;
6018 
6019 	/*
6020 	 * Event scheduling is always serialized against hlist allocation
6021 	 * and release. Which makes the protected version suitable here.
6022 	 * The context lock guarantees that.
6023 	 */
6024 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
6025 					  lockdep_is_held(&event->ctx->lock));
6026 	if (!hlist)
6027 		return NULL;
6028 
6029 	return __find_swevent_head(hlist, type, event_id);
6030 }
6031 
6032 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
6033 				    u64 nr,
6034 				    struct perf_sample_data *data,
6035 				    struct pt_regs *regs)
6036 {
6037 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6038 	struct perf_event *event;
6039 	struct hlist_head *head;
6040 
6041 	rcu_read_lock();
6042 	head = find_swevent_head_rcu(swhash, type, event_id);
6043 	if (!head)
6044 		goto end;
6045 
6046 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
6047 		if (perf_swevent_match(event, type, event_id, data, regs))
6048 			perf_swevent_event(event, nr, data, regs);
6049 	}
6050 end:
6051 	rcu_read_unlock();
6052 }
6053 
6054 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
6055 
6056 int perf_swevent_get_recursion_context(void)
6057 {
6058 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6059 
6060 	return get_recursion_context(swhash->recursion);
6061 }
6062 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
6063 
6064 inline void perf_swevent_put_recursion_context(int rctx)
6065 {
6066 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6067 
6068 	put_recursion_context(swhash->recursion, rctx);
6069 }
6070 
6071 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6072 {
6073 	struct perf_sample_data data;
6074 
6075 	if (WARN_ON_ONCE(!regs))
6076 		return;
6077 
6078 	perf_sample_data_init(&data, addr, 0);
6079 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
6080 }
6081 
6082 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6083 {
6084 	int rctx;
6085 
6086 	preempt_disable_notrace();
6087 	rctx = perf_swevent_get_recursion_context();
6088 	if (unlikely(rctx < 0))
6089 		goto fail;
6090 
6091 	___perf_sw_event(event_id, nr, regs, addr);
6092 
6093 	perf_swevent_put_recursion_context(rctx);
6094 fail:
6095 	preempt_enable_notrace();
6096 }
6097 
6098 static void perf_swevent_read(struct perf_event *event)
6099 {
6100 }
6101 
6102 static int perf_swevent_add(struct perf_event *event, int flags)
6103 {
6104 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6105 	struct hw_perf_event *hwc = &event->hw;
6106 	struct hlist_head *head;
6107 
6108 	if (is_sampling_event(event)) {
6109 		hwc->last_period = hwc->sample_period;
6110 		perf_swevent_set_period(event);
6111 	}
6112 
6113 	hwc->state = !(flags & PERF_EF_START);
6114 
6115 	head = find_swevent_head(swhash, event);
6116 	if (!head) {
6117 		/*
6118 		 * We can race with cpu hotplug code. Do not
6119 		 * WARN if the cpu just got unplugged.
6120 		 */
6121 		WARN_ON_ONCE(swhash->online);
6122 		return -EINVAL;
6123 	}
6124 
6125 	hlist_add_head_rcu(&event->hlist_entry, head);
6126 
6127 	return 0;
6128 }
6129 
6130 static void perf_swevent_del(struct perf_event *event, int flags)
6131 {
6132 	hlist_del_rcu(&event->hlist_entry);
6133 }
6134 
6135 static void perf_swevent_start(struct perf_event *event, int flags)
6136 {
6137 	event->hw.state = 0;
6138 }
6139 
6140 static void perf_swevent_stop(struct perf_event *event, int flags)
6141 {
6142 	event->hw.state = PERF_HES_STOPPED;
6143 }
6144 
6145 /* Deref the hlist from the update side */
6146 static inline struct swevent_hlist *
6147 swevent_hlist_deref(struct swevent_htable *swhash)
6148 {
6149 	return rcu_dereference_protected(swhash->swevent_hlist,
6150 					 lockdep_is_held(&swhash->hlist_mutex));
6151 }
6152 
6153 static void swevent_hlist_release(struct swevent_htable *swhash)
6154 {
6155 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
6156 
6157 	if (!hlist)
6158 		return;
6159 
6160 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
6161 	kfree_rcu(hlist, rcu_head);
6162 }
6163 
6164 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
6165 {
6166 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6167 
6168 	mutex_lock(&swhash->hlist_mutex);
6169 
6170 	if (!--swhash->hlist_refcount)
6171 		swevent_hlist_release(swhash);
6172 
6173 	mutex_unlock(&swhash->hlist_mutex);
6174 }
6175 
6176 static void swevent_hlist_put(struct perf_event *event)
6177 {
6178 	int cpu;
6179 
6180 	for_each_possible_cpu(cpu)
6181 		swevent_hlist_put_cpu(event, cpu);
6182 }
6183 
6184 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
6185 {
6186 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6187 	int err = 0;
6188 
6189 	mutex_lock(&swhash->hlist_mutex);
6190 
6191 	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
6192 		struct swevent_hlist *hlist;
6193 
6194 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
6195 		if (!hlist) {
6196 			err = -ENOMEM;
6197 			goto exit;
6198 		}
6199 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
6200 	}
6201 	swhash->hlist_refcount++;
6202 exit:
6203 	mutex_unlock(&swhash->hlist_mutex);
6204 
6205 	return err;
6206 }
6207 
6208 static int swevent_hlist_get(struct perf_event *event)
6209 {
6210 	int err;
6211 	int cpu, failed_cpu;
6212 
6213 	get_online_cpus();
6214 	for_each_possible_cpu(cpu) {
6215 		err = swevent_hlist_get_cpu(event, cpu);
6216 		if (err) {
6217 			failed_cpu = cpu;
6218 			goto fail;
6219 		}
6220 	}
6221 	put_online_cpus();
6222 
6223 	return 0;
6224 fail:
6225 	for_each_possible_cpu(cpu) {
6226 		if (cpu == failed_cpu)
6227 			break;
6228 		swevent_hlist_put_cpu(event, cpu);
6229 	}
6230 
6231 	put_online_cpus();
6232 	return err;
6233 }
6234 
6235 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
6236 
6237 static void sw_perf_event_destroy(struct perf_event *event)
6238 {
6239 	u64 event_id = event->attr.config;
6240 
6241 	WARN_ON(event->parent);
6242 
6243 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
6244 	swevent_hlist_put(event);
6245 }
6246 
6247 static int perf_swevent_init(struct perf_event *event)
6248 {
6249 	u64 event_id = event->attr.config;
6250 
6251 	if (event->attr.type != PERF_TYPE_SOFTWARE)
6252 		return -ENOENT;
6253 
6254 	/*
6255 	 * no branch sampling for software events
6256 	 */
6257 	if (has_branch_stack(event))
6258 		return -EOPNOTSUPP;
6259 
6260 	switch (event_id) {
6261 	case PERF_COUNT_SW_CPU_CLOCK:
6262 	case PERF_COUNT_SW_TASK_CLOCK:
6263 		return -ENOENT;
6264 
6265 	default:
6266 		break;
6267 	}
6268 
6269 	if (event_id >= PERF_COUNT_SW_MAX)
6270 		return -ENOENT;
6271 
6272 	if (!event->parent) {
6273 		int err;
6274 
6275 		err = swevent_hlist_get(event);
6276 		if (err)
6277 			return err;
6278 
6279 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
6280 		event->destroy = sw_perf_event_destroy;
6281 	}
6282 
6283 	return 0;
6284 }
6285 
6286 static struct pmu perf_swevent = {
6287 	.task_ctx_nr	= perf_sw_context,
6288 
6289 	.event_init	= perf_swevent_init,
6290 	.add		= perf_swevent_add,
6291 	.del		= perf_swevent_del,
6292 	.start		= perf_swevent_start,
6293 	.stop		= perf_swevent_stop,
6294 	.read		= perf_swevent_read,
6295 };
6296 
6297 #ifdef CONFIG_EVENT_TRACING
6298 
6299 static int perf_tp_filter_match(struct perf_event *event,
6300 				struct perf_sample_data *data)
6301 {
6302 	void *record = data->raw->data;
6303 
6304 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
6305 		return 1;
6306 	return 0;
6307 }
6308 
6309 static int perf_tp_event_match(struct perf_event *event,
6310 				struct perf_sample_data *data,
6311 				struct pt_regs *regs)
6312 {
6313 	if (event->hw.state & PERF_HES_STOPPED)
6314 		return 0;
6315 	/*
6316 	 * All tracepoints are from kernel-space.
6317 	 */
6318 	if (event->attr.exclude_kernel)
6319 		return 0;
6320 
6321 	if (!perf_tp_filter_match(event, data))
6322 		return 0;
6323 
6324 	return 1;
6325 }
6326 
6327 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
6328 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
6329 		   struct task_struct *task)
6330 {
6331 	struct perf_sample_data data;
6332 	struct perf_event *event;
6333 
6334 	struct perf_raw_record raw = {
6335 		.size = entry_size,
6336 		.data = record,
6337 	};
6338 
6339 	perf_sample_data_init(&data, addr, 0);
6340 	data.raw = &raw;
6341 
6342 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
6343 		if (perf_tp_event_match(event, &data, regs))
6344 			perf_swevent_event(event, count, &data, regs);
6345 	}
6346 
6347 	/*
6348 	 * If we got specified a target task, also iterate its context and
6349 	 * deliver this event there too.
6350 	 */
6351 	if (task && task != current) {
6352 		struct perf_event_context *ctx;
6353 		struct trace_entry *entry = record;
6354 
6355 		rcu_read_lock();
6356 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
6357 		if (!ctx)
6358 			goto unlock;
6359 
6360 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6361 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
6362 				continue;
6363 			if (event->attr.config != entry->type)
6364 				continue;
6365 			if (perf_tp_event_match(event, &data, regs))
6366 				perf_swevent_event(event, count, &data, regs);
6367 		}
6368 unlock:
6369 		rcu_read_unlock();
6370 	}
6371 
6372 	perf_swevent_put_recursion_context(rctx);
6373 }
6374 EXPORT_SYMBOL_GPL(perf_tp_event);
6375 
6376 static void tp_perf_event_destroy(struct perf_event *event)
6377 {
6378 	perf_trace_destroy(event);
6379 }
6380 
6381 static int perf_tp_event_init(struct perf_event *event)
6382 {
6383 	int err;
6384 
6385 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
6386 		return -ENOENT;
6387 
6388 	/*
6389 	 * no branch sampling for tracepoint events
6390 	 */
6391 	if (has_branch_stack(event))
6392 		return -EOPNOTSUPP;
6393 
6394 	err = perf_trace_init(event);
6395 	if (err)
6396 		return err;
6397 
6398 	event->destroy = tp_perf_event_destroy;
6399 
6400 	return 0;
6401 }
6402 
6403 static struct pmu perf_tracepoint = {
6404 	.task_ctx_nr	= perf_sw_context,
6405 
6406 	.event_init	= perf_tp_event_init,
6407 	.add		= perf_trace_add,
6408 	.del		= perf_trace_del,
6409 	.start		= perf_swevent_start,
6410 	.stop		= perf_swevent_stop,
6411 	.read		= perf_swevent_read,
6412 };
6413 
6414 static inline void perf_tp_register(void)
6415 {
6416 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
6417 }
6418 
6419 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6420 {
6421 	char *filter_str;
6422 	int ret;
6423 
6424 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
6425 		return -EINVAL;
6426 
6427 	filter_str = strndup_user(arg, PAGE_SIZE);
6428 	if (IS_ERR(filter_str))
6429 		return PTR_ERR(filter_str);
6430 
6431 	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
6432 
6433 	kfree(filter_str);
6434 	return ret;
6435 }
6436 
6437 static void perf_event_free_filter(struct perf_event *event)
6438 {
6439 	ftrace_profile_free_filter(event);
6440 }
6441 
6442 #else
6443 
6444 static inline void perf_tp_register(void)
6445 {
6446 }
6447 
6448 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6449 {
6450 	return -ENOENT;
6451 }
6452 
6453 static void perf_event_free_filter(struct perf_event *event)
6454 {
6455 }
6456 
6457 #endif /* CONFIG_EVENT_TRACING */
6458 
6459 #ifdef CONFIG_HAVE_HW_BREAKPOINT
6460 void perf_bp_event(struct perf_event *bp, void *data)
6461 {
6462 	struct perf_sample_data sample;
6463 	struct pt_regs *regs = data;
6464 
6465 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
6466 
6467 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
6468 		perf_swevent_event(bp, 1, &sample, regs);
6469 }
6470 #endif
6471 
6472 /*
6473  * hrtimer based swevent callback
6474  */
6475 
6476 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
6477 {
6478 	enum hrtimer_restart ret = HRTIMER_RESTART;
6479 	struct perf_sample_data data;
6480 	struct pt_regs *regs;
6481 	struct perf_event *event;
6482 	u64 period;
6483 
6484 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
6485 
6486 	if (event->state != PERF_EVENT_STATE_ACTIVE)
6487 		return HRTIMER_NORESTART;
6488 
6489 	event->pmu->read(event);
6490 
6491 	perf_sample_data_init(&data, 0, event->hw.last_period);
6492 	regs = get_irq_regs();
6493 
6494 	if (regs && !perf_exclude_event(event, regs)) {
6495 		if (!(event->attr.exclude_idle && is_idle_task(current)))
6496 			if (__perf_event_overflow(event, 1, &data, regs))
6497 				ret = HRTIMER_NORESTART;
6498 	}
6499 
6500 	period = max_t(u64, 10000, event->hw.sample_period);
6501 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
6502 
6503 	return ret;
6504 }
6505 
6506 static void perf_swevent_start_hrtimer(struct perf_event *event)
6507 {
6508 	struct hw_perf_event *hwc = &event->hw;
6509 	s64 period;
6510 
6511 	if (!is_sampling_event(event))
6512 		return;
6513 
6514 	period = local64_read(&hwc->period_left);
6515 	if (period) {
6516 		if (period < 0)
6517 			period = 10000;
6518 
6519 		local64_set(&hwc->period_left, 0);
6520 	} else {
6521 		period = max_t(u64, 10000, hwc->sample_period);
6522 	}
6523 	__hrtimer_start_range_ns(&hwc->hrtimer,
6524 				ns_to_ktime(period), 0,
6525 				HRTIMER_MODE_REL_PINNED, 0);
6526 }
6527 
6528 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
6529 {
6530 	struct hw_perf_event *hwc = &event->hw;
6531 
6532 	if (is_sampling_event(event)) {
6533 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
6534 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
6535 
6536 		hrtimer_cancel(&hwc->hrtimer);
6537 	}
6538 }
6539 
6540 static void perf_swevent_init_hrtimer(struct perf_event *event)
6541 {
6542 	struct hw_perf_event *hwc = &event->hw;
6543 
6544 	if (!is_sampling_event(event))
6545 		return;
6546 
6547 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6548 	hwc->hrtimer.function = perf_swevent_hrtimer;
6549 
6550 	/*
6551 	 * Since hrtimers have a fixed rate, we can do a static freq->period
6552 	 * mapping and avoid the whole period adjust feedback stuff.
6553 	 */
6554 	if (event->attr.freq) {
6555 		long freq = event->attr.sample_freq;
6556 
6557 		event->attr.sample_period = NSEC_PER_SEC / freq;
6558 		hwc->sample_period = event->attr.sample_period;
6559 		local64_set(&hwc->period_left, hwc->sample_period);
6560 		hwc->last_period = hwc->sample_period;
6561 		event->attr.freq = 0;
6562 	}
6563 }
6564 
6565 /*
6566  * Software event: cpu wall time clock
6567  */
6568 
6569 static void cpu_clock_event_update(struct perf_event *event)
6570 {
6571 	s64 prev;
6572 	u64 now;
6573 
6574 	now = local_clock();
6575 	prev = local64_xchg(&event->hw.prev_count, now);
6576 	local64_add(now - prev, &event->count);
6577 }
6578 
6579 static void cpu_clock_event_start(struct perf_event *event, int flags)
6580 {
6581 	local64_set(&event->hw.prev_count, local_clock());
6582 	perf_swevent_start_hrtimer(event);
6583 }
6584 
6585 static void cpu_clock_event_stop(struct perf_event *event, int flags)
6586 {
6587 	perf_swevent_cancel_hrtimer(event);
6588 	cpu_clock_event_update(event);
6589 }
6590 
6591 static int cpu_clock_event_add(struct perf_event *event, int flags)
6592 {
6593 	if (flags & PERF_EF_START)
6594 		cpu_clock_event_start(event, flags);
6595 
6596 	return 0;
6597 }
6598 
6599 static void cpu_clock_event_del(struct perf_event *event, int flags)
6600 {
6601 	cpu_clock_event_stop(event, flags);
6602 }
6603 
6604 static void cpu_clock_event_read(struct perf_event *event)
6605 {
6606 	cpu_clock_event_update(event);
6607 }
6608 
6609 static int cpu_clock_event_init(struct perf_event *event)
6610 {
6611 	if (event->attr.type != PERF_TYPE_SOFTWARE)
6612 		return -ENOENT;
6613 
6614 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
6615 		return -ENOENT;
6616 
6617 	/*
6618 	 * no branch sampling for software events
6619 	 */
6620 	if (has_branch_stack(event))
6621 		return -EOPNOTSUPP;
6622 
6623 	perf_swevent_init_hrtimer(event);
6624 
6625 	return 0;
6626 }
6627 
6628 static struct pmu perf_cpu_clock = {
6629 	.task_ctx_nr	= perf_sw_context,
6630 
6631 	.event_init	= cpu_clock_event_init,
6632 	.add		= cpu_clock_event_add,
6633 	.del		= cpu_clock_event_del,
6634 	.start		= cpu_clock_event_start,
6635 	.stop		= cpu_clock_event_stop,
6636 	.read		= cpu_clock_event_read,
6637 };
6638 
6639 /*
6640  * Software event: task time clock
6641  */
6642 
6643 static void task_clock_event_update(struct perf_event *event, u64 now)
6644 {
6645 	u64 prev;
6646 	s64 delta;
6647 
6648 	prev = local64_xchg(&event->hw.prev_count, now);
6649 	delta = now - prev;
6650 	local64_add(delta, &event->count);
6651 }
6652 
6653 static void task_clock_event_start(struct perf_event *event, int flags)
6654 {
6655 	local64_set(&event->hw.prev_count, event->ctx->time);
6656 	perf_swevent_start_hrtimer(event);
6657 }
6658 
6659 static void task_clock_event_stop(struct perf_event *event, int flags)
6660 {
6661 	perf_swevent_cancel_hrtimer(event);
6662 	task_clock_event_update(event, event->ctx->time);
6663 }
6664 
6665 static int task_clock_event_add(struct perf_event *event, int flags)
6666 {
6667 	if (flags & PERF_EF_START)
6668 		task_clock_event_start(event, flags);
6669 
6670 	return 0;
6671 }
6672 
6673 static void task_clock_event_del(struct perf_event *event, int flags)
6674 {
6675 	task_clock_event_stop(event, PERF_EF_UPDATE);
6676 }
6677 
6678 static void task_clock_event_read(struct perf_event *event)
6679 {
6680 	u64 now = perf_clock();
6681 	u64 delta = now - event->ctx->timestamp;
6682 	u64 time = event->ctx->time + delta;
6683 
6684 	task_clock_event_update(event, time);
6685 }
6686 
6687 static int task_clock_event_init(struct perf_event *event)
6688 {
6689 	if (event->attr.type != PERF_TYPE_SOFTWARE)
6690 		return -ENOENT;
6691 
6692 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
6693 		return -ENOENT;
6694 
6695 	/*
6696 	 * no branch sampling for software events
6697 	 */
6698 	if (has_branch_stack(event))
6699 		return -EOPNOTSUPP;
6700 
6701 	perf_swevent_init_hrtimer(event);
6702 
6703 	return 0;
6704 }
6705 
6706 static struct pmu perf_task_clock = {
6707 	.task_ctx_nr	= perf_sw_context,
6708 
6709 	.event_init	= task_clock_event_init,
6710 	.add		= task_clock_event_add,
6711 	.del		= task_clock_event_del,
6712 	.start		= task_clock_event_start,
6713 	.stop		= task_clock_event_stop,
6714 	.read		= task_clock_event_read,
6715 };
6716 
6717 static void perf_pmu_nop_void(struct pmu *pmu)
6718 {
6719 }
6720 
6721 static int perf_pmu_nop_int(struct pmu *pmu)
6722 {
6723 	return 0;
6724 }
6725 
6726 static void perf_pmu_start_txn(struct pmu *pmu)
6727 {
6728 	perf_pmu_disable(pmu);
6729 }
6730 
6731 static int perf_pmu_commit_txn(struct pmu *pmu)
6732 {
6733 	perf_pmu_enable(pmu);
6734 	return 0;
6735 }
6736 
6737 static void perf_pmu_cancel_txn(struct pmu *pmu)
6738 {
6739 	perf_pmu_enable(pmu);
6740 }
6741 
6742 static int perf_event_idx_default(struct perf_event *event)
6743 {
6744 	return 0;
6745 }
6746 
6747 /*
6748  * Ensures all contexts with the same task_ctx_nr have the same
6749  * pmu_cpu_context too.
6750  */
6751 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
6752 {
6753 	struct pmu *pmu;
6754 
6755 	if (ctxn < 0)
6756 		return NULL;
6757 
6758 	list_for_each_entry(pmu, &pmus, entry) {
6759 		if (pmu->task_ctx_nr == ctxn)
6760 			return pmu->pmu_cpu_context;
6761 	}
6762 
6763 	return NULL;
6764 }
6765 
6766 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
6767 {
6768 	int cpu;
6769 
6770 	for_each_possible_cpu(cpu) {
6771 		struct perf_cpu_context *cpuctx;
6772 
6773 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6774 
6775 		if (cpuctx->unique_pmu == old_pmu)
6776 			cpuctx->unique_pmu = pmu;
6777 	}
6778 }
6779 
6780 static void free_pmu_context(struct pmu *pmu)
6781 {
6782 	struct pmu *i;
6783 
6784 	mutex_lock(&pmus_lock);
6785 	/*
6786 	 * Like a real lame refcount.
6787 	 */
6788 	list_for_each_entry(i, &pmus, entry) {
6789 		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
6790 			update_pmu_context(i, pmu);
6791 			goto out;
6792 		}
6793 	}
6794 
6795 	free_percpu(pmu->pmu_cpu_context);
6796 out:
6797 	mutex_unlock(&pmus_lock);
6798 }
6799 static struct idr pmu_idr;
6800 
6801 static ssize_t
6802 type_show(struct device *dev, struct device_attribute *attr, char *page)
6803 {
6804 	struct pmu *pmu = dev_get_drvdata(dev);
6805 
6806 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
6807 }
6808 static DEVICE_ATTR_RO(type);
6809 
6810 static ssize_t
6811 perf_event_mux_interval_ms_show(struct device *dev,
6812 				struct device_attribute *attr,
6813 				char *page)
6814 {
6815 	struct pmu *pmu = dev_get_drvdata(dev);
6816 
6817 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
6818 }
6819 
6820 static ssize_t
6821 perf_event_mux_interval_ms_store(struct device *dev,
6822 				 struct device_attribute *attr,
6823 				 const char *buf, size_t count)
6824 {
6825 	struct pmu *pmu = dev_get_drvdata(dev);
6826 	int timer, cpu, ret;
6827 
6828 	ret = kstrtoint(buf, 0, &timer);
6829 	if (ret)
6830 		return ret;
6831 
6832 	if (timer < 1)
6833 		return -EINVAL;
6834 
6835 	/* same value, noting to do */
6836 	if (timer == pmu->hrtimer_interval_ms)
6837 		return count;
6838 
6839 	pmu->hrtimer_interval_ms = timer;
6840 
6841 	/* update all cpuctx for this PMU */
6842 	for_each_possible_cpu(cpu) {
6843 		struct perf_cpu_context *cpuctx;
6844 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6845 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
6846 
6847 		if (hrtimer_active(&cpuctx->hrtimer))
6848 			hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
6849 	}
6850 
6851 	return count;
6852 }
6853 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
6854 
6855 static struct attribute *pmu_dev_attrs[] = {
6856 	&dev_attr_type.attr,
6857 	&dev_attr_perf_event_mux_interval_ms.attr,
6858 	NULL,
6859 };
6860 ATTRIBUTE_GROUPS(pmu_dev);
6861 
6862 static int pmu_bus_running;
6863 static struct bus_type pmu_bus = {
6864 	.name		= "event_source",
6865 	.dev_groups	= pmu_dev_groups,
6866 };
6867 
6868 static void pmu_dev_release(struct device *dev)
6869 {
6870 	kfree(dev);
6871 }
6872 
6873 static int pmu_dev_alloc(struct pmu *pmu)
6874 {
6875 	int ret = -ENOMEM;
6876 
6877 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
6878 	if (!pmu->dev)
6879 		goto out;
6880 
6881 	pmu->dev->groups = pmu->attr_groups;
6882 	device_initialize(pmu->dev);
6883 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
6884 	if (ret)
6885 		goto free_dev;
6886 
6887 	dev_set_drvdata(pmu->dev, pmu);
6888 	pmu->dev->bus = &pmu_bus;
6889 	pmu->dev->release = pmu_dev_release;
6890 	ret = device_add(pmu->dev);
6891 	if (ret)
6892 		goto free_dev;
6893 
6894 out:
6895 	return ret;
6896 
6897 free_dev:
6898 	put_device(pmu->dev);
6899 	goto out;
6900 }
6901 
6902 static struct lock_class_key cpuctx_mutex;
6903 static struct lock_class_key cpuctx_lock;
6904 
6905 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
6906 {
6907 	int cpu, ret;
6908 
6909 	mutex_lock(&pmus_lock);
6910 	ret = -ENOMEM;
6911 	pmu->pmu_disable_count = alloc_percpu(int);
6912 	if (!pmu->pmu_disable_count)
6913 		goto unlock;
6914 
6915 	pmu->type = -1;
6916 	if (!name)
6917 		goto skip_type;
6918 	pmu->name = name;
6919 
6920 	if (type < 0) {
6921 		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
6922 		if (type < 0) {
6923 			ret = type;
6924 			goto free_pdc;
6925 		}
6926 	}
6927 	pmu->type = type;
6928 
6929 	if (pmu_bus_running) {
6930 		ret = pmu_dev_alloc(pmu);
6931 		if (ret)
6932 			goto free_idr;
6933 	}
6934 
6935 skip_type:
6936 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
6937 	if (pmu->pmu_cpu_context)
6938 		goto got_cpu_context;
6939 
6940 	ret = -ENOMEM;
6941 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
6942 	if (!pmu->pmu_cpu_context)
6943 		goto free_dev;
6944 
6945 	for_each_possible_cpu(cpu) {
6946 		struct perf_cpu_context *cpuctx;
6947 
6948 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6949 		__perf_event_init_context(&cpuctx->ctx);
6950 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
6951 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
6952 		cpuctx->ctx.pmu = pmu;
6953 
6954 		__perf_cpu_hrtimer_init(cpuctx, cpu);
6955 
6956 		cpuctx->unique_pmu = pmu;
6957 	}
6958 
6959 got_cpu_context:
6960 	if (!pmu->start_txn) {
6961 		if (pmu->pmu_enable) {
6962 			/*
6963 			 * If we have pmu_enable/pmu_disable calls, install
6964 			 * transaction stubs that use that to try and batch
6965 			 * hardware accesses.
6966 			 */
6967 			pmu->start_txn  = perf_pmu_start_txn;
6968 			pmu->commit_txn = perf_pmu_commit_txn;
6969 			pmu->cancel_txn = perf_pmu_cancel_txn;
6970 		} else {
6971 			pmu->start_txn  = perf_pmu_nop_void;
6972 			pmu->commit_txn = perf_pmu_nop_int;
6973 			pmu->cancel_txn = perf_pmu_nop_void;
6974 		}
6975 	}
6976 
6977 	if (!pmu->pmu_enable) {
6978 		pmu->pmu_enable  = perf_pmu_nop_void;
6979 		pmu->pmu_disable = perf_pmu_nop_void;
6980 	}
6981 
6982 	if (!pmu->event_idx)
6983 		pmu->event_idx = perf_event_idx_default;
6984 
6985 	list_add_rcu(&pmu->entry, &pmus);
6986 	ret = 0;
6987 unlock:
6988 	mutex_unlock(&pmus_lock);
6989 
6990 	return ret;
6991 
6992 free_dev:
6993 	device_del(pmu->dev);
6994 	put_device(pmu->dev);
6995 
6996 free_idr:
6997 	if (pmu->type >= PERF_TYPE_MAX)
6998 		idr_remove(&pmu_idr, pmu->type);
6999 
7000 free_pdc:
7001 	free_percpu(pmu->pmu_disable_count);
7002 	goto unlock;
7003 }
7004 EXPORT_SYMBOL_GPL(perf_pmu_register);
7005 
7006 void perf_pmu_unregister(struct pmu *pmu)
7007 {
7008 	mutex_lock(&pmus_lock);
7009 	list_del_rcu(&pmu->entry);
7010 	mutex_unlock(&pmus_lock);
7011 
7012 	/*
7013 	 * We dereference the pmu list under both SRCU and regular RCU, so
7014 	 * synchronize against both of those.
7015 	 */
7016 	synchronize_srcu(&pmus_srcu);
7017 	synchronize_rcu();
7018 
7019 	free_percpu(pmu->pmu_disable_count);
7020 	if (pmu->type >= PERF_TYPE_MAX)
7021 		idr_remove(&pmu_idr, pmu->type);
7022 	device_del(pmu->dev);
7023 	put_device(pmu->dev);
7024 	free_pmu_context(pmu);
7025 }
7026 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
7027 
7028 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
7029 {
7030 	int ret;
7031 
7032 	if (!try_module_get(pmu->module))
7033 		return -ENODEV;
7034 	event->pmu = pmu;
7035 	ret = pmu->event_init(event);
7036 	if (ret)
7037 		module_put(pmu->module);
7038 
7039 	return ret;
7040 }
7041 
7042 struct pmu *perf_init_event(struct perf_event *event)
7043 {
7044 	struct pmu *pmu = NULL;
7045 	int idx;
7046 	int ret;
7047 
7048 	idx = srcu_read_lock(&pmus_srcu);
7049 
7050 	rcu_read_lock();
7051 	pmu = idr_find(&pmu_idr, event->attr.type);
7052 	rcu_read_unlock();
7053 	if (pmu) {
7054 		ret = perf_try_init_event(pmu, event);
7055 		if (ret)
7056 			pmu = ERR_PTR(ret);
7057 		goto unlock;
7058 	}
7059 
7060 	list_for_each_entry_rcu(pmu, &pmus, entry) {
7061 		ret = perf_try_init_event(pmu, event);
7062 		if (!ret)
7063 			goto unlock;
7064 
7065 		if (ret != -ENOENT) {
7066 			pmu = ERR_PTR(ret);
7067 			goto unlock;
7068 		}
7069 	}
7070 	pmu = ERR_PTR(-ENOENT);
7071 unlock:
7072 	srcu_read_unlock(&pmus_srcu, idx);
7073 
7074 	return pmu;
7075 }
7076 
7077 static void account_event_cpu(struct perf_event *event, int cpu)
7078 {
7079 	if (event->parent)
7080 		return;
7081 
7082 	if (has_branch_stack(event)) {
7083 		if (!(event->attach_state & PERF_ATTACH_TASK))
7084 			atomic_inc(&per_cpu(perf_branch_stack_events, cpu));
7085 	}
7086 	if (is_cgroup_event(event))
7087 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
7088 }
7089 
7090 static void account_event(struct perf_event *event)
7091 {
7092 	if (event->parent)
7093 		return;
7094 
7095 	if (event->attach_state & PERF_ATTACH_TASK)
7096 		static_key_slow_inc(&perf_sched_events.key);
7097 	if (event->attr.mmap || event->attr.mmap_data)
7098 		atomic_inc(&nr_mmap_events);
7099 	if (event->attr.comm)
7100 		atomic_inc(&nr_comm_events);
7101 	if (event->attr.task)
7102 		atomic_inc(&nr_task_events);
7103 	if (event->attr.freq) {
7104 		if (atomic_inc_return(&nr_freq_events) == 1)
7105 			tick_nohz_full_kick_all();
7106 	}
7107 	if (has_branch_stack(event))
7108 		static_key_slow_inc(&perf_sched_events.key);
7109 	if (is_cgroup_event(event))
7110 		static_key_slow_inc(&perf_sched_events.key);
7111 
7112 	account_event_cpu(event, event->cpu);
7113 }
7114 
7115 /*
7116  * Allocate and initialize a event structure
7117  */
7118 static struct perf_event *
7119 perf_event_alloc(struct perf_event_attr *attr, int cpu,
7120 		 struct task_struct *task,
7121 		 struct perf_event *group_leader,
7122 		 struct perf_event *parent_event,
7123 		 perf_overflow_handler_t overflow_handler,
7124 		 void *context)
7125 {
7126 	struct pmu *pmu;
7127 	struct perf_event *event;
7128 	struct hw_perf_event *hwc;
7129 	long err = -EINVAL;
7130 
7131 	if ((unsigned)cpu >= nr_cpu_ids) {
7132 		if (!task || cpu != -1)
7133 			return ERR_PTR(-EINVAL);
7134 	}
7135 
7136 	event = kzalloc(sizeof(*event), GFP_KERNEL);
7137 	if (!event)
7138 		return ERR_PTR(-ENOMEM);
7139 
7140 	/*
7141 	 * Single events are their own group leaders, with an
7142 	 * empty sibling list:
7143 	 */
7144 	if (!group_leader)
7145 		group_leader = event;
7146 
7147 	mutex_init(&event->child_mutex);
7148 	INIT_LIST_HEAD(&event->child_list);
7149 
7150 	INIT_LIST_HEAD(&event->group_entry);
7151 	INIT_LIST_HEAD(&event->event_entry);
7152 	INIT_LIST_HEAD(&event->sibling_list);
7153 	INIT_LIST_HEAD(&event->rb_entry);
7154 	INIT_LIST_HEAD(&event->active_entry);
7155 	INIT_HLIST_NODE(&event->hlist_entry);
7156 
7157 
7158 	init_waitqueue_head(&event->waitq);
7159 	init_irq_work(&event->pending, perf_pending_event);
7160 
7161 	mutex_init(&event->mmap_mutex);
7162 
7163 	atomic_long_set(&event->refcount, 1);
7164 	event->cpu		= cpu;
7165 	event->attr		= *attr;
7166 	event->group_leader	= group_leader;
7167 	event->pmu		= NULL;
7168 	event->oncpu		= -1;
7169 
7170 	event->parent		= parent_event;
7171 
7172 	event->ns		= get_pid_ns(task_active_pid_ns(current));
7173 	event->id		= atomic64_inc_return(&perf_event_id);
7174 
7175 	event->state		= PERF_EVENT_STATE_INACTIVE;
7176 
7177 	if (task) {
7178 		event->attach_state = PERF_ATTACH_TASK;
7179 
7180 		if (attr->type == PERF_TYPE_TRACEPOINT)
7181 			event->hw.tp_target = task;
7182 #ifdef CONFIG_HAVE_HW_BREAKPOINT
7183 		/*
7184 		 * hw_breakpoint is a bit difficult here..
7185 		 */
7186 		else if (attr->type == PERF_TYPE_BREAKPOINT)
7187 			event->hw.bp_target = task;
7188 #endif
7189 	}
7190 
7191 	if (!overflow_handler && parent_event) {
7192 		overflow_handler = parent_event->overflow_handler;
7193 		context = parent_event->overflow_handler_context;
7194 	}
7195 
7196 	event->overflow_handler	= overflow_handler;
7197 	event->overflow_handler_context = context;
7198 
7199 	perf_event__state_init(event);
7200 
7201 	pmu = NULL;
7202 
7203 	hwc = &event->hw;
7204 	hwc->sample_period = attr->sample_period;
7205 	if (attr->freq && attr->sample_freq)
7206 		hwc->sample_period = 1;
7207 	hwc->last_period = hwc->sample_period;
7208 
7209 	local64_set(&hwc->period_left, hwc->sample_period);
7210 
7211 	/*
7212 	 * we currently do not support PERF_FORMAT_GROUP on inherited events
7213 	 */
7214 	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
7215 		goto err_ns;
7216 
7217 	pmu = perf_init_event(event);
7218 	if (!pmu)
7219 		goto err_ns;
7220 	else if (IS_ERR(pmu)) {
7221 		err = PTR_ERR(pmu);
7222 		goto err_ns;
7223 	}
7224 
7225 	if (!event->parent) {
7226 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
7227 			err = get_callchain_buffers();
7228 			if (err)
7229 				goto err_pmu;
7230 		}
7231 	}
7232 
7233 	return event;
7234 
7235 err_pmu:
7236 	if (event->destroy)
7237 		event->destroy(event);
7238 	module_put(pmu->module);
7239 err_ns:
7240 	if (event->ns)
7241 		put_pid_ns(event->ns);
7242 	kfree(event);
7243 
7244 	return ERR_PTR(err);
7245 }
7246 
7247 static int perf_copy_attr(struct perf_event_attr __user *uattr,
7248 			  struct perf_event_attr *attr)
7249 {
7250 	u32 size;
7251 	int ret;
7252 
7253 	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
7254 		return -EFAULT;
7255 
7256 	/*
7257 	 * zero the full structure, so that a short copy will be nice.
7258 	 */
7259 	memset(attr, 0, sizeof(*attr));
7260 
7261 	ret = get_user(size, &uattr->size);
7262 	if (ret)
7263 		return ret;
7264 
7265 	if (size > PAGE_SIZE)	/* silly large */
7266 		goto err_size;
7267 
7268 	if (!size)		/* abi compat */
7269 		size = PERF_ATTR_SIZE_VER0;
7270 
7271 	if (size < PERF_ATTR_SIZE_VER0)
7272 		goto err_size;
7273 
7274 	/*
7275 	 * If we're handed a bigger struct than we know of,
7276 	 * ensure all the unknown bits are 0 - i.e. new
7277 	 * user-space does not rely on any kernel feature
7278 	 * extensions we dont know about yet.
7279 	 */
7280 	if (size > sizeof(*attr)) {
7281 		unsigned char __user *addr;
7282 		unsigned char __user *end;
7283 		unsigned char val;
7284 
7285 		addr = (void __user *)uattr + sizeof(*attr);
7286 		end  = (void __user *)uattr + size;
7287 
7288 		for (; addr < end; addr++) {
7289 			ret = get_user(val, addr);
7290 			if (ret)
7291 				return ret;
7292 			if (val)
7293 				goto err_size;
7294 		}
7295 		size = sizeof(*attr);
7296 	}
7297 
7298 	ret = copy_from_user(attr, uattr, size);
7299 	if (ret)
7300 		return -EFAULT;
7301 
7302 	if (attr->__reserved_1)
7303 		return -EINVAL;
7304 
7305 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
7306 		return -EINVAL;
7307 
7308 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
7309 		return -EINVAL;
7310 
7311 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
7312 		u64 mask = attr->branch_sample_type;
7313 
7314 		/* only using defined bits */
7315 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
7316 			return -EINVAL;
7317 
7318 		/* at least one branch bit must be set */
7319 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
7320 			return -EINVAL;
7321 
7322 		/* propagate priv level, when not set for branch */
7323 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
7324 
7325 			/* exclude_kernel checked on syscall entry */
7326 			if (!attr->exclude_kernel)
7327 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
7328 
7329 			if (!attr->exclude_user)
7330 				mask |= PERF_SAMPLE_BRANCH_USER;
7331 
7332 			if (!attr->exclude_hv)
7333 				mask |= PERF_SAMPLE_BRANCH_HV;
7334 			/*
7335 			 * adjust user setting (for HW filter setup)
7336 			 */
7337 			attr->branch_sample_type = mask;
7338 		}
7339 		/* privileged levels capture (kernel, hv): check permissions */
7340 		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
7341 		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
7342 			return -EACCES;
7343 	}
7344 
7345 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
7346 		ret = perf_reg_validate(attr->sample_regs_user);
7347 		if (ret)
7348 			return ret;
7349 	}
7350 
7351 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
7352 		if (!arch_perf_have_user_stack_dump())
7353 			return -ENOSYS;
7354 
7355 		/*
7356 		 * We have __u32 type for the size, but so far
7357 		 * we can only use __u16 as maximum due to the
7358 		 * __u16 sample size limit.
7359 		 */
7360 		if (attr->sample_stack_user >= USHRT_MAX)
7361 			ret = -EINVAL;
7362 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
7363 			ret = -EINVAL;
7364 	}
7365 
7366 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
7367 		ret = perf_reg_validate(attr->sample_regs_intr);
7368 out:
7369 	return ret;
7370 
7371 err_size:
7372 	put_user(sizeof(*attr), &uattr->size);
7373 	ret = -E2BIG;
7374 	goto out;
7375 }
7376 
7377 static int
7378 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
7379 {
7380 	struct ring_buffer *rb = NULL;
7381 	int ret = -EINVAL;
7382 
7383 	if (!output_event)
7384 		goto set;
7385 
7386 	/* don't allow circular references */
7387 	if (event == output_event)
7388 		goto out;
7389 
7390 	/*
7391 	 * Don't allow cross-cpu buffers
7392 	 */
7393 	if (output_event->cpu != event->cpu)
7394 		goto out;
7395 
7396 	/*
7397 	 * If its not a per-cpu rb, it must be the same task.
7398 	 */
7399 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
7400 		goto out;
7401 
7402 set:
7403 	mutex_lock(&event->mmap_mutex);
7404 	/* Can't redirect output if we've got an active mmap() */
7405 	if (atomic_read(&event->mmap_count))
7406 		goto unlock;
7407 
7408 	if (output_event) {
7409 		/* get the rb we want to redirect to */
7410 		rb = ring_buffer_get(output_event);
7411 		if (!rb)
7412 			goto unlock;
7413 	}
7414 
7415 	ring_buffer_attach(event, rb);
7416 
7417 	ret = 0;
7418 unlock:
7419 	mutex_unlock(&event->mmap_mutex);
7420 
7421 out:
7422 	return ret;
7423 }
7424 
7425 static void mutex_lock_double(struct mutex *a, struct mutex *b)
7426 {
7427 	if (b < a)
7428 		swap(a, b);
7429 
7430 	mutex_lock(a);
7431 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
7432 }
7433 
7434 /**
7435  * sys_perf_event_open - open a performance event, associate it to a task/cpu
7436  *
7437  * @attr_uptr:	event_id type attributes for monitoring/sampling
7438  * @pid:		target pid
7439  * @cpu:		target cpu
7440  * @group_fd:		group leader event fd
7441  */
7442 SYSCALL_DEFINE5(perf_event_open,
7443 		struct perf_event_attr __user *, attr_uptr,
7444 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
7445 {
7446 	struct perf_event *group_leader = NULL, *output_event = NULL;
7447 	struct perf_event *event, *sibling;
7448 	struct perf_event_attr attr;
7449 	struct perf_event_context *ctx, *uninitialized_var(gctx);
7450 	struct file *event_file = NULL;
7451 	struct fd group = {NULL, 0};
7452 	struct task_struct *task = NULL;
7453 	struct pmu *pmu;
7454 	int event_fd;
7455 	int move_group = 0;
7456 	int err;
7457 	int f_flags = O_RDWR;
7458 
7459 	/* for future expandability... */
7460 	if (flags & ~PERF_FLAG_ALL)
7461 		return -EINVAL;
7462 
7463 	err = perf_copy_attr(attr_uptr, &attr);
7464 	if (err)
7465 		return err;
7466 
7467 	if (!attr.exclude_kernel) {
7468 		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
7469 			return -EACCES;
7470 	}
7471 
7472 	if (attr.freq) {
7473 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
7474 			return -EINVAL;
7475 	} else {
7476 		if (attr.sample_period & (1ULL << 63))
7477 			return -EINVAL;
7478 	}
7479 
7480 	/*
7481 	 * In cgroup mode, the pid argument is used to pass the fd
7482 	 * opened to the cgroup directory in cgroupfs. The cpu argument
7483 	 * designates the cpu on which to monitor threads from that
7484 	 * cgroup.
7485 	 */
7486 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
7487 		return -EINVAL;
7488 
7489 	if (flags & PERF_FLAG_FD_CLOEXEC)
7490 		f_flags |= O_CLOEXEC;
7491 
7492 	event_fd = get_unused_fd_flags(f_flags);
7493 	if (event_fd < 0)
7494 		return event_fd;
7495 
7496 	if (group_fd != -1) {
7497 		err = perf_fget_light(group_fd, &group);
7498 		if (err)
7499 			goto err_fd;
7500 		group_leader = group.file->private_data;
7501 		if (flags & PERF_FLAG_FD_OUTPUT)
7502 			output_event = group_leader;
7503 		if (flags & PERF_FLAG_FD_NO_GROUP)
7504 			group_leader = NULL;
7505 	}
7506 
7507 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
7508 		task = find_lively_task_by_vpid(pid);
7509 		if (IS_ERR(task)) {
7510 			err = PTR_ERR(task);
7511 			goto err_group_fd;
7512 		}
7513 	}
7514 
7515 	if (task && group_leader &&
7516 	    group_leader->attr.inherit != attr.inherit) {
7517 		err = -EINVAL;
7518 		goto err_task;
7519 	}
7520 
7521 	get_online_cpus();
7522 
7523 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
7524 				 NULL, NULL);
7525 	if (IS_ERR(event)) {
7526 		err = PTR_ERR(event);
7527 		goto err_cpus;
7528 	}
7529 
7530 	if (flags & PERF_FLAG_PID_CGROUP) {
7531 		err = perf_cgroup_connect(pid, event, &attr, group_leader);
7532 		if (err) {
7533 			__free_event(event);
7534 			goto err_cpus;
7535 		}
7536 	}
7537 
7538 	if (is_sampling_event(event)) {
7539 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
7540 			err = -ENOTSUPP;
7541 			goto err_alloc;
7542 		}
7543 	}
7544 
7545 	account_event(event);
7546 
7547 	/*
7548 	 * Special case software events and allow them to be part of
7549 	 * any hardware group.
7550 	 */
7551 	pmu = event->pmu;
7552 
7553 	if (group_leader &&
7554 	    (is_software_event(event) != is_software_event(group_leader))) {
7555 		if (is_software_event(event)) {
7556 			/*
7557 			 * If event and group_leader are not both a software
7558 			 * event, and event is, then group leader is not.
7559 			 *
7560 			 * Allow the addition of software events to !software
7561 			 * groups, this is safe because software events never
7562 			 * fail to schedule.
7563 			 */
7564 			pmu = group_leader->pmu;
7565 		} else if (is_software_event(group_leader) &&
7566 			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
7567 			/*
7568 			 * In case the group is a pure software group, and we
7569 			 * try to add a hardware event, move the whole group to
7570 			 * the hardware context.
7571 			 */
7572 			move_group = 1;
7573 		}
7574 	}
7575 
7576 	/*
7577 	 * Get the target context (task or percpu):
7578 	 */
7579 	ctx = find_get_context(pmu, task, event->cpu);
7580 	if (IS_ERR(ctx)) {
7581 		err = PTR_ERR(ctx);
7582 		goto err_alloc;
7583 	}
7584 
7585 	if (task) {
7586 		put_task_struct(task);
7587 		task = NULL;
7588 	}
7589 
7590 	/*
7591 	 * Look up the group leader (we will attach this event to it):
7592 	 */
7593 	if (group_leader) {
7594 		err = -EINVAL;
7595 
7596 		/*
7597 		 * Do not allow a recursive hierarchy (this new sibling
7598 		 * becoming part of another group-sibling):
7599 		 */
7600 		if (group_leader->group_leader != group_leader)
7601 			goto err_context;
7602 		/*
7603 		 * Do not allow to attach to a group in a different
7604 		 * task or CPU context:
7605 		 */
7606 		if (move_group) {
7607 			/*
7608 			 * Make sure we're both on the same task, or both
7609 			 * per-cpu events.
7610 			 */
7611 			if (group_leader->ctx->task != ctx->task)
7612 				goto err_context;
7613 
7614 			/*
7615 			 * Make sure we're both events for the same CPU;
7616 			 * grouping events for different CPUs is broken; since
7617 			 * you can never concurrently schedule them anyhow.
7618 			 */
7619 			if (group_leader->cpu != event->cpu)
7620 				goto err_context;
7621 		} else {
7622 			if (group_leader->ctx != ctx)
7623 				goto err_context;
7624 		}
7625 
7626 		/*
7627 		 * Only a group leader can be exclusive or pinned
7628 		 */
7629 		if (attr.exclusive || attr.pinned)
7630 			goto err_context;
7631 	}
7632 
7633 	if (output_event) {
7634 		err = perf_event_set_output(event, output_event);
7635 		if (err)
7636 			goto err_context;
7637 	}
7638 
7639 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
7640 					f_flags);
7641 	if (IS_ERR(event_file)) {
7642 		err = PTR_ERR(event_file);
7643 		goto err_context;
7644 	}
7645 
7646 	if (move_group) {
7647 		gctx = group_leader->ctx;
7648 
7649 		/*
7650 		 * See perf_event_ctx_lock() for comments on the details
7651 		 * of swizzling perf_event::ctx.
7652 		 */
7653 		mutex_lock_double(&gctx->mutex, &ctx->mutex);
7654 
7655 		perf_remove_from_context(group_leader, false);
7656 
7657 		list_for_each_entry(sibling, &group_leader->sibling_list,
7658 				    group_entry) {
7659 			perf_remove_from_context(sibling, false);
7660 			put_ctx(gctx);
7661 		}
7662 	} else {
7663 		mutex_lock(&ctx->mutex);
7664 	}
7665 
7666 	WARN_ON_ONCE(ctx->parent_ctx);
7667 
7668 	if (move_group) {
7669 		/*
7670 		 * Wait for everybody to stop referencing the events through
7671 		 * the old lists, before installing it on new lists.
7672 		 */
7673 		synchronize_rcu();
7674 
7675 		/*
7676 		 * Install the group siblings before the group leader.
7677 		 *
7678 		 * Because a group leader will try and install the entire group
7679 		 * (through the sibling list, which is still in-tact), we can
7680 		 * end up with siblings installed in the wrong context.
7681 		 *
7682 		 * By installing siblings first we NO-OP because they're not
7683 		 * reachable through the group lists.
7684 		 */
7685 		list_for_each_entry(sibling, &group_leader->sibling_list,
7686 				    group_entry) {
7687 			perf_event__state_init(sibling);
7688 			perf_install_in_context(ctx, sibling, sibling->cpu);
7689 			get_ctx(ctx);
7690 		}
7691 
7692 		/*
7693 		 * Removing from the context ends up with disabled
7694 		 * event. What we want here is event in the initial
7695 		 * startup state, ready to be add into new context.
7696 		 */
7697 		perf_event__state_init(group_leader);
7698 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
7699 		get_ctx(ctx);
7700 	}
7701 
7702 	perf_install_in_context(ctx, event, event->cpu);
7703 	perf_unpin_context(ctx);
7704 
7705 	if (move_group) {
7706 		mutex_unlock(&gctx->mutex);
7707 		put_ctx(gctx);
7708 	}
7709 	mutex_unlock(&ctx->mutex);
7710 
7711 	put_online_cpus();
7712 
7713 	event->owner = current;
7714 
7715 	mutex_lock(&current->perf_event_mutex);
7716 	list_add_tail(&event->owner_entry, &current->perf_event_list);
7717 	mutex_unlock(&current->perf_event_mutex);
7718 
7719 	/*
7720 	 * Precalculate sample_data sizes
7721 	 */
7722 	perf_event__header_size(event);
7723 	perf_event__id_header_size(event);
7724 
7725 	/*
7726 	 * Drop the reference on the group_event after placing the
7727 	 * new event on the sibling_list. This ensures destruction
7728 	 * of the group leader will find the pointer to itself in
7729 	 * perf_group_detach().
7730 	 */
7731 	fdput(group);
7732 	fd_install(event_fd, event_file);
7733 	return event_fd;
7734 
7735 err_context:
7736 	perf_unpin_context(ctx);
7737 	put_ctx(ctx);
7738 err_alloc:
7739 	free_event(event);
7740 err_cpus:
7741 	put_online_cpus();
7742 err_task:
7743 	if (task)
7744 		put_task_struct(task);
7745 err_group_fd:
7746 	fdput(group);
7747 err_fd:
7748 	put_unused_fd(event_fd);
7749 	return err;
7750 }
7751 
7752 /**
7753  * perf_event_create_kernel_counter
7754  *
7755  * @attr: attributes of the counter to create
7756  * @cpu: cpu in which the counter is bound
7757  * @task: task to profile (NULL for percpu)
7758  */
7759 struct perf_event *
7760 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
7761 				 struct task_struct *task,
7762 				 perf_overflow_handler_t overflow_handler,
7763 				 void *context)
7764 {
7765 	struct perf_event_context *ctx;
7766 	struct perf_event *event;
7767 	int err;
7768 
7769 	/*
7770 	 * Get the target context (task or percpu):
7771 	 */
7772 
7773 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
7774 				 overflow_handler, context);
7775 	if (IS_ERR(event)) {
7776 		err = PTR_ERR(event);
7777 		goto err;
7778 	}
7779 
7780 	/* Mark owner so we could distinguish it from user events. */
7781 	event->owner = EVENT_OWNER_KERNEL;
7782 
7783 	account_event(event);
7784 
7785 	ctx = find_get_context(event->pmu, task, cpu);
7786 	if (IS_ERR(ctx)) {
7787 		err = PTR_ERR(ctx);
7788 		goto err_free;
7789 	}
7790 
7791 	WARN_ON_ONCE(ctx->parent_ctx);
7792 	mutex_lock(&ctx->mutex);
7793 	perf_install_in_context(ctx, event, cpu);
7794 	perf_unpin_context(ctx);
7795 	mutex_unlock(&ctx->mutex);
7796 
7797 	return event;
7798 
7799 err_free:
7800 	free_event(event);
7801 err:
7802 	return ERR_PTR(err);
7803 }
7804 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
7805 
7806 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
7807 {
7808 	struct perf_event_context *src_ctx;
7809 	struct perf_event_context *dst_ctx;
7810 	struct perf_event *event, *tmp;
7811 	LIST_HEAD(events);
7812 
7813 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
7814 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
7815 
7816 	/*
7817 	 * See perf_event_ctx_lock() for comments on the details
7818 	 * of swizzling perf_event::ctx.
7819 	 */
7820 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
7821 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
7822 				 event_entry) {
7823 		perf_remove_from_context(event, false);
7824 		unaccount_event_cpu(event, src_cpu);
7825 		put_ctx(src_ctx);
7826 		list_add(&event->migrate_entry, &events);
7827 	}
7828 
7829 	/*
7830 	 * Wait for the events to quiesce before re-instating them.
7831 	 */
7832 	synchronize_rcu();
7833 
7834 	/*
7835 	 * Re-instate events in 2 passes.
7836 	 *
7837 	 * Skip over group leaders and only install siblings on this first
7838 	 * pass, siblings will not get enabled without a leader, however a
7839 	 * leader will enable its siblings, even if those are still on the old
7840 	 * context.
7841 	 */
7842 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
7843 		if (event->group_leader == event)
7844 			continue;
7845 
7846 		list_del(&event->migrate_entry);
7847 		if (event->state >= PERF_EVENT_STATE_OFF)
7848 			event->state = PERF_EVENT_STATE_INACTIVE;
7849 		account_event_cpu(event, dst_cpu);
7850 		perf_install_in_context(dst_ctx, event, dst_cpu);
7851 		get_ctx(dst_ctx);
7852 	}
7853 
7854 	/*
7855 	 * Once all the siblings are setup properly, install the group leaders
7856 	 * to make it go.
7857 	 */
7858 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
7859 		list_del(&event->migrate_entry);
7860 		if (event->state >= PERF_EVENT_STATE_OFF)
7861 			event->state = PERF_EVENT_STATE_INACTIVE;
7862 		account_event_cpu(event, dst_cpu);
7863 		perf_install_in_context(dst_ctx, event, dst_cpu);
7864 		get_ctx(dst_ctx);
7865 	}
7866 	mutex_unlock(&dst_ctx->mutex);
7867 	mutex_unlock(&src_ctx->mutex);
7868 }
7869 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
7870 
7871 static void sync_child_event(struct perf_event *child_event,
7872 			       struct task_struct *child)
7873 {
7874 	struct perf_event *parent_event = child_event->parent;
7875 	u64 child_val;
7876 
7877 	if (child_event->attr.inherit_stat)
7878 		perf_event_read_event(child_event, child);
7879 
7880 	child_val = perf_event_count(child_event);
7881 
7882 	/*
7883 	 * Add back the child's count to the parent's count:
7884 	 */
7885 	atomic64_add(child_val, &parent_event->child_count);
7886 	atomic64_add(child_event->total_time_enabled,
7887 		     &parent_event->child_total_time_enabled);
7888 	atomic64_add(child_event->total_time_running,
7889 		     &parent_event->child_total_time_running);
7890 
7891 	/*
7892 	 * Remove this event from the parent's list
7893 	 */
7894 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7895 	mutex_lock(&parent_event->child_mutex);
7896 	list_del_init(&child_event->child_list);
7897 	mutex_unlock(&parent_event->child_mutex);
7898 
7899 	/*
7900 	 * Make sure user/parent get notified, that we just
7901 	 * lost one event.
7902 	 */
7903 	perf_event_wakeup(parent_event);
7904 
7905 	/*
7906 	 * Release the parent event, if this was the last
7907 	 * reference to it.
7908 	 */
7909 	put_event(parent_event);
7910 }
7911 
7912 static void
7913 __perf_event_exit_task(struct perf_event *child_event,
7914 			 struct perf_event_context *child_ctx,
7915 			 struct task_struct *child)
7916 {
7917 	/*
7918 	 * Do not destroy the 'original' grouping; because of the context
7919 	 * switch optimization the original events could've ended up in a
7920 	 * random child task.
7921 	 *
7922 	 * If we were to destroy the original group, all group related
7923 	 * operations would cease to function properly after this random
7924 	 * child dies.
7925 	 *
7926 	 * Do destroy all inherited groups, we don't care about those
7927 	 * and being thorough is better.
7928 	 */
7929 	perf_remove_from_context(child_event, !!child_event->parent);
7930 
7931 	/*
7932 	 * It can happen that the parent exits first, and has events
7933 	 * that are still around due to the child reference. These
7934 	 * events need to be zapped.
7935 	 */
7936 	if (child_event->parent) {
7937 		sync_child_event(child_event, child);
7938 		free_event(child_event);
7939 	} else {
7940 		child_event->state = PERF_EVENT_STATE_EXIT;
7941 		perf_event_wakeup(child_event);
7942 	}
7943 }
7944 
7945 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
7946 {
7947 	struct perf_event *child_event, *next;
7948 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
7949 	unsigned long flags;
7950 
7951 	if (likely(!child->perf_event_ctxp[ctxn])) {
7952 		perf_event_task(child, NULL, 0);
7953 		return;
7954 	}
7955 
7956 	local_irq_save(flags);
7957 	/*
7958 	 * We can't reschedule here because interrupts are disabled,
7959 	 * and either child is current or it is a task that can't be
7960 	 * scheduled, so we are now safe from rescheduling changing
7961 	 * our context.
7962 	 */
7963 	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
7964 
7965 	/*
7966 	 * Take the context lock here so that if find_get_context is
7967 	 * reading child->perf_event_ctxp, we wait until it has
7968 	 * incremented the context's refcount before we do put_ctx below.
7969 	 */
7970 	raw_spin_lock(&child_ctx->lock);
7971 	task_ctx_sched_out(child_ctx);
7972 	child->perf_event_ctxp[ctxn] = NULL;
7973 
7974 	/*
7975 	 * If this context is a clone; unclone it so it can't get
7976 	 * swapped to another process while we're removing all
7977 	 * the events from it.
7978 	 */
7979 	clone_ctx = unclone_ctx(child_ctx);
7980 	update_context_time(child_ctx);
7981 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
7982 
7983 	if (clone_ctx)
7984 		put_ctx(clone_ctx);
7985 
7986 	/*
7987 	 * Report the task dead after unscheduling the events so that we
7988 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
7989 	 * get a few PERF_RECORD_READ events.
7990 	 */
7991 	perf_event_task(child, child_ctx, 0);
7992 
7993 	/*
7994 	 * We can recurse on the same lock type through:
7995 	 *
7996 	 *   __perf_event_exit_task()
7997 	 *     sync_child_event()
7998 	 *       put_event()
7999 	 *         mutex_lock(&ctx->mutex)
8000 	 *
8001 	 * But since its the parent context it won't be the same instance.
8002 	 */
8003 	mutex_lock(&child_ctx->mutex);
8004 
8005 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8006 		__perf_event_exit_task(child_event, child_ctx, child);
8007 
8008 	mutex_unlock(&child_ctx->mutex);
8009 
8010 	put_ctx(child_ctx);
8011 }
8012 
8013 /*
8014  * When a child task exits, feed back event values to parent events.
8015  */
8016 void perf_event_exit_task(struct task_struct *child)
8017 {
8018 	struct perf_event *event, *tmp;
8019 	int ctxn;
8020 
8021 	mutex_lock(&child->perf_event_mutex);
8022 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
8023 				 owner_entry) {
8024 		list_del_init(&event->owner_entry);
8025 
8026 		/*
8027 		 * Ensure the list deletion is visible before we clear
8028 		 * the owner, closes a race against perf_release() where
8029 		 * we need to serialize on the owner->perf_event_mutex.
8030 		 */
8031 		smp_wmb();
8032 		event->owner = NULL;
8033 	}
8034 	mutex_unlock(&child->perf_event_mutex);
8035 
8036 	for_each_task_context_nr(ctxn)
8037 		perf_event_exit_task_context(child, ctxn);
8038 }
8039 
8040 static void perf_free_event(struct perf_event *event,
8041 			    struct perf_event_context *ctx)
8042 {
8043 	struct perf_event *parent = event->parent;
8044 
8045 	if (WARN_ON_ONCE(!parent))
8046 		return;
8047 
8048 	mutex_lock(&parent->child_mutex);
8049 	list_del_init(&event->child_list);
8050 	mutex_unlock(&parent->child_mutex);
8051 
8052 	put_event(parent);
8053 
8054 	raw_spin_lock_irq(&ctx->lock);
8055 	perf_group_detach(event);
8056 	list_del_event(event, ctx);
8057 	raw_spin_unlock_irq(&ctx->lock);
8058 	free_event(event);
8059 }
8060 
8061 /*
8062  * Free an unexposed, unused context as created by inheritance by
8063  * perf_event_init_task below, used by fork() in case of fail.
8064  *
8065  * Not all locks are strictly required, but take them anyway to be nice and
8066  * help out with the lockdep assertions.
8067  */
8068 void perf_event_free_task(struct task_struct *task)
8069 {
8070 	struct perf_event_context *ctx;
8071 	struct perf_event *event, *tmp;
8072 	int ctxn;
8073 
8074 	for_each_task_context_nr(ctxn) {
8075 		ctx = task->perf_event_ctxp[ctxn];
8076 		if (!ctx)
8077 			continue;
8078 
8079 		mutex_lock(&ctx->mutex);
8080 again:
8081 		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
8082 				group_entry)
8083 			perf_free_event(event, ctx);
8084 
8085 		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
8086 				group_entry)
8087 			perf_free_event(event, ctx);
8088 
8089 		if (!list_empty(&ctx->pinned_groups) ||
8090 				!list_empty(&ctx->flexible_groups))
8091 			goto again;
8092 
8093 		mutex_unlock(&ctx->mutex);
8094 
8095 		put_ctx(ctx);
8096 	}
8097 }
8098 
8099 void perf_event_delayed_put(struct task_struct *task)
8100 {
8101 	int ctxn;
8102 
8103 	for_each_task_context_nr(ctxn)
8104 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
8105 }
8106 
8107 /*
8108  * inherit a event from parent task to child task:
8109  */
8110 static struct perf_event *
8111 inherit_event(struct perf_event *parent_event,
8112 	      struct task_struct *parent,
8113 	      struct perf_event_context *parent_ctx,
8114 	      struct task_struct *child,
8115 	      struct perf_event *group_leader,
8116 	      struct perf_event_context *child_ctx)
8117 {
8118 	enum perf_event_active_state parent_state = parent_event->state;
8119 	struct perf_event *child_event;
8120 	unsigned long flags;
8121 
8122 	/*
8123 	 * Instead of creating recursive hierarchies of events,
8124 	 * we link inherited events back to the original parent,
8125 	 * which has a filp for sure, which we use as the reference
8126 	 * count:
8127 	 */
8128 	if (parent_event->parent)
8129 		parent_event = parent_event->parent;
8130 
8131 	child_event = perf_event_alloc(&parent_event->attr,
8132 					   parent_event->cpu,
8133 					   child,
8134 					   group_leader, parent_event,
8135 				           NULL, NULL);
8136 	if (IS_ERR(child_event))
8137 		return child_event;
8138 
8139 	if (is_orphaned_event(parent_event) ||
8140 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
8141 		free_event(child_event);
8142 		return NULL;
8143 	}
8144 
8145 	get_ctx(child_ctx);
8146 
8147 	/*
8148 	 * Make the child state follow the state of the parent event,
8149 	 * not its attr.disabled bit.  We hold the parent's mutex,
8150 	 * so we won't race with perf_event_{en, dis}able_family.
8151 	 */
8152 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
8153 		child_event->state = PERF_EVENT_STATE_INACTIVE;
8154 	else
8155 		child_event->state = PERF_EVENT_STATE_OFF;
8156 
8157 	if (parent_event->attr.freq) {
8158 		u64 sample_period = parent_event->hw.sample_period;
8159 		struct hw_perf_event *hwc = &child_event->hw;
8160 
8161 		hwc->sample_period = sample_period;
8162 		hwc->last_period   = sample_period;
8163 
8164 		local64_set(&hwc->period_left, sample_period);
8165 	}
8166 
8167 	child_event->ctx = child_ctx;
8168 	child_event->overflow_handler = parent_event->overflow_handler;
8169 	child_event->overflow_handler_context
8170 		= parent_event->overflow_handler_context;
8171 
8172 	/*
8173 	 * Precalculate sample_data sizes
8174 	 */
8175 	perf_event__header_size(child_event);
8176 	perf_event__id_header_size(child_event);
8177 
8178 	/*
8179 	 * Link it up in the child's context:
8180 	 */
8181 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
8182 	add_event_to_ctx(child_event, child_ctx);
8183 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
8184 
8185 	/*
8186 	 * Link this into the parent event's child list
8187 	 */
8188 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8189 	mutex_lock(&parent_event->child_mutex);
8190 	list_add_tail(&child_event->child_list, &parent_event->child_list);
8191 	mutex_unlock(&parent_event->child_mutex);
8192 
8193 	return child_event;
8194 }
8195 
8196 static int inherit_group(struct perf_event *parent_event,
8197 	      struct task_struct *parent,
8198 	      struct perf_event_context *parent_ctx,
8199 	      struct task_struct *child,
8200 	      struct perf_event_context *child_ctx)
8201 {
8202 	struct perf_event *leader;
8203 	struct perf_event *sub;
8204 	struct perf_event *child_ctr;
8205 
8206 	leader = inherit_event(parent_event, parent, parent_ctx,
8207 				 child, NULL, child_ctx);
8208 	if (IS_ERR(leader))
8209 		return PTR_ERR(leader);
8210 	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
8211 		child_ctr = inherit_event(sub, parent, parent_ctx,
8212 					    child, leader, child_ctx);
8213 		if (IS_ERR(child_ctr))
8214 			return PTR_ERR(child_ctr);
8215 	}
8216 	return 0;
8217 }
8218 
8219 static int
8220 inherit_task_group(struct perf_event *event, struct task_struct *parent,
8221 		   struct perf_event_context *parent_ctx,
8222 		   struct task_struct *child, int ctxn,
8223 		   int *inherited_all)
8224 {
8225 	int ret;
8226 	struct perf_event_context *child_ctx;
8227 
8228 	if (!event->attr.inherit) {
8229 		*inherited_all = 0;
8230 		return 0;
8231 	}
8232 
8233 	child_ctx = child->perf_event_ctxp[ctxn];
8234 	if (!child_ctx) {
8235 		/*
8236 		 * This is executed from the parent task context, so
8237 		 * inherit events that have been marked for cloning.
8238 		 * First allocate and initialize a context for the
8239 		 * child.
8240 		 */
8241 
8242 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
8243 		if (!child_ctx)
8244 			return -ENOMEM;
8245 
8246 		child->perf_event_ctxp[ctxn] = child_ctx;
8247 	}
8248 
8249 	ret = inherit_group(event, parent, parent_ctx,
8250 			    child, child_ctx);
8251 
8252 	if (ret)
8253 		*inherited_all = 0;
8254 
8255 	return ret;
8256 }
8257 
8258 /*
8259  * Initialize the perf_event context in task_struct
8260  */
8261 static int perf_event_init_context(struct task_struct *child, int ctxn)
8262 {
8263 	struct perf_event_context *child_ctx, *parent_ctx;
8264 	struct perf_event_context *cloned_ctx;
8265 	struct perf_event *event;
8266 	struct task_struct *parent = current;
8267 	int inherited_all = 1;
8268 	unsigned long flags;
8269 	int ret = 0;
8270 
8271 	if (likely(!parent->perf_event_ctxp[ctxn]))
8272 		return 0;
8273 
8274 	/*
8275 	 * If the parent's context is a clone, pin it so it won't get
8276 	 * swapped under us.
8277 	 */
8278 	parent_ctx = perf_pin_task_context(parent, ctxn);
8279 	if (!parent_ctx)
8280 		return 0;
8281 
8282 	/*
8283 	 * No need to check if parent_ctx != NULL here; since we saw
8284 	 * it non-NULL earlier, the only reason for it to become NULL
8285 	 * is if we exit, and since we're currently in the middle of
8286 	 * a fork we can't be exiting at the same time.
8287 	 */
8288 
8289 	/*
8290 	 * Lock the parent list. No need to lock the child - not PID
8291 	 * hashed yet and not running, so nobody can access it.
8292 	 */
8293 	mutex_lock(&parent_ctx->mutex);
8294 
8295 	/*
8296 	 * We dont have to disable NMIs - we are only looking at
8297 	 * the list, not manipulating it:
8298 	 */
8299 	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8300 		ret = inherit_task_group(event, parent, parent_ctx,
8301 					 child, ctxn, &inherited_all);
8302 		if (ret)
8303 			break;
8304 	}
8305 
8306 	/*
8307 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
8308 	 * to allocations, but we need to prevent rotation because
8309 	 * rotate_ctx() will change the list from interrupt context.
8310 	 */
8311 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
8312 	parent_ctx->rotate_disable = 1;
8313 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
8314 
8315 	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8316 		ret = inherit_task_group(event, parent, parent_ctx,
8317 					 child, ctxn, &inherited_all);
8318 		if (ret)
8319 			break;
8320 	}
8321 
8322 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
8323 	parent_ctx->rotate_disable = 0;
8324 
8325 	child_ctx = child->perf_event_ctxp[ctxn];
8326 
8327 	if (child_ctx && inherited_all) {
8328 		/*
8329 		 * Mark the child context as a clone of the parent
8330 		 * context, or of whatever the parent is a clone of.
8331 		 *
8332 		 * Note that if the parent is a clone, the holding of
8333 		 * parent_ctx->lock avoids it from being uncloned.
8334 		 */
8335 		cloned_ctx = parent_ctx->parent_ctx;
8336 		if (cloned_ctx) {
8337 			child_ctx->parent_ctx = cloned_ctx;
8338 			child_ctx->parent_gen = parent_ctx->parent_gen;
8339 		} else {
8340 			child_ctx->parent_ctx = parent_ctx;
8341 			child_ctx->parent_gen = parent_ctx->generation;
8342 		}
8343 		get_ctx(child_ctx->parent_ctx);
8344 	}
8345 
8346 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
8347 	mutex_unlock(&parent_ctx->mutex);
8348 
8349 	perf_unpin_context(parent_ctx);
8350 	put_ctx(parent_ctx);
8351 
8352 	return ret;
8353 }
8354 
8355 /*
8356  * Initialize the perf_event context in task_struct
8357  */
8358 int perf_event_init_task(struct task_struct *child)
8359 {
8360 	int ctxn, ret;
8361 
8362 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
8363 	mutex_init(&child->perf_event_mutex);
8364 	INIT_LIST_HEAD(&child->perf_event_list);
8365 
8366 	for_each_task_context_nr(ctxn) {
8367 		ret = perf_event_init_context(child, ctxn);
8368 		if (ret) {
8369 			perf_event_free_task(child);
8370 			return ret;
8371 		}
8372 	}
8373 
8374 	return 0;
8375 }
8376 
8377 static void __init perf_event_init_all_cpus(void)
8378 {
8379 	struct swevent_htable *swhash;
8380 	int cpu;
8381 
8382 	for_each_possible_cpu(cpu) {
8383 		swhash = &per_cpu(swevent_htable, cpu);
8384 		mutex_init(&swhash->hlist_mutex);
8385 		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
8386 	}
8387 }
8388 
8389 static void perf_event_init_cpu(int cpu)
8390 {
8391 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8392 
8393 	mutex_lock(&swhash->hlist_mutex);
8394 	swhash->online = true;
8395 	if (swhash->hlist_refcount > 0) {
8396 		struct swevent_hlist *hlist;
8397 
8398 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
8399 		WARN_ON(!hlist);
8400 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
8401 	}
8402 	mutex_unlock(&swhash->hlist_mutex);
8403 }
8404 
8405 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
8406 static void __perf_event_exit_context(void *__info)
8407 {
8408 	struct remove_event re = { .detach_group = true };
8409 	struct perf_event_context *ctx = __info;
8410 
8411 	rcu_read_lock();
8412 	list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
8413 		__perf_remove_from_context(&re);
8414 	rcu_read_unlock();
8415 }
8416 
8417 static void perf_event_exit_cpu_context(int cpu)
8418 {
8419 	struct perf_event_context *ctx;
8420 	struct pmu *pmu;
8421 	int idx;
8422 
8423 	idx = srcu_read_lock(&pmus_srcu);
8424 	list_for_each_entry_rcu(pmu, &pmus, entry) {
8425 		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
8426 
8427 		mutex_lock(&ctx->mutex);
8428 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
8429 		mutex_unlock(&ctx->mutex);
8430 	}
8431 	srcu_read_unlock(&pmus_srcu, idx);
8432 }
8433 
8434 static void perf_event_exit_cpu(int cpu)
8435 {
8436 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8437 
8438 	perf_event_exit_cpu_context(cpu);
8439 
8440 	mutex_lock(&swhash->hlist_mutex);
8441 	swhash->online = false;
8442 	swevent_hlist_release(swhash);
8443 	mutex_unlock(&swhash->hlist_mutex);
8444 }
8445 #else
8446 static inline void perf_event_exit_cpu(int cpu) { }
8447 #endif
8448 
8449 static int
8450 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
8451 {
8452 	int cpu;
8453 
8454 	for_each_online_cpu(cpu)
8455 		perf_event_exit_cpu(cpu);
8456 
8457 	return NOTIFY_OK;
8458 }
8459 
8460 /*
8461  * Run the perf reboot notifier at the very last possible moment so that
8462  * the generic watchdog code runs as long as possible.
8463  */
8464 static struct notifier_block perf_reboot_notifier = {
8465 	.notifier_call = perf_reboot,
8466 	.priority = INT_MIN,
8467 };
8468 
8469 static int
8470 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
8471 {
8472 	unsigned int cpu = (long)hcpu;
8473 
8474 	switch (action & ~CPU_TASKS_FROZEN) {
8475 
8476 	case CPU_UP_PREPARE:
8477 	case CPU_DOWN_FAILED:
8478 		perf_event_init_cpu(cpu);
8479 		break;
8480 
8481 	case CPU_UP_CANCELED:
8482 	case CPU_DOWN_PREPARE:
8483 		perf_event_exit_cpu(cpu);
8484 		break;
8485 	default:
8486 		break;
8487 	}
8488 
8489 	return NOTIFY_OK;
8490 }
8491 
8492 void __init perf_event_init(void)
8493 {
8494 	int ret;
8495 
8496 	idr_init(&pmu_idr);
8497 
8498 	perf_event_init_all_cpus();
8499 	init_srcu_struct(&pmus_srcu);
8500 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
8501 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
8502 	perf_pmu_register(&perf_task_clock, NULL, -1);
8503 	perf_tp_register();
8504 	perf_cpu_notifier(perf_cpu_notify);
8505 	register_reboot_notifier(&perf_reboot_notifier);
8506 
8507 	ret = init_hw_breakpoint();
8508 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
8509 
8510 	/* do not patch jump label more than once per second */
8511 	jump_label_rate_limit(&perf_sched_events, HZ);
8512 
8513 	/*
8514 	 * Build time assertion that we keep the data_head at the intended
8515 	 * location.  IOW, validation we got the __reserved[] size right.
8516 	 */
8517 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
8518 		     != 1024);
8519 }
8520 
8521 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
8522 			      char *page)
8523 {
8524 	struct perf_pmu_events_attr *pmu_attr =
8525 		container_of(attr, struct perf_pmu_events_attr, attr);
8526 
8527 	if (pmu_attr->event_str)
8528 		return sprintf(page, "%s\n", pmu_attr->event_str);
8529 
8530 	return 0;
8531 }
8532 
8533 static int __init perf_event_sysfs_init(void)
8534 {
8535 	struct pmu *pmu;
8536 	int ret;
8537 
8538 	mutex_lock(&pmus_lock);
8539 
8540 	ret = bus_register(&pmu_bus);
8541 	if (ret)
8542 		goto unlock;
8543 
8544 	list_for_each_entry(pmu, &pmus, entry) {
8545 		if (!pmu->name || pmu->type < 0)
8546 			continue;
8547 
8548 		ret = pmu_dev_alloc(pmu);
8549 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
8550 	}
8551 	pmu_bus_running = 1;
8552 	ret = 0;
8553 
8554 unlock:
8555 	mutex_unlock(&pmus_lock);
8556 
8557 	return ret;
8558 }
8559 device_initcall(perf_event_sysfs_init);
8560 
8561 #ifdef CONFIG_CGROUP_PERF
8562 static struct cgroup_subsys_state *
8563 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8564 {
8565 	struct perf_cgroup *jc;
8566 
8567 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
8568 	if (!jc)
8569 		return ERR_PTR(-ENOMEM);
8570 
8571 	jc->info = alloc_percpu(struct perf_cgroup_info);
8572 	if (!jc->info) {
8573 		kfree(jc);
8574 		return ERR_PTR(-ENOMEM);
8575 	}
8576 
8577 	return &jc->css;
8578 }
8579 
8580 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
8581 {
8582 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
8583 
8584 	free_percpu(jc->info);
8585 	kfree(jc);
8586 }
8587 
8588 static int __perf_cgroup_move(void *info)
8589 {
8590 	struct task_struct *task = info;
8591 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
8592 	return 0;
8593 }
8594 
8595 static void perf_cgroup_attach(struct cgroup_subsys_state *css,
8596 			       struct cgroup_taskset *tset)
8597 {
8598 	struct task_struct *task;
8599 
8600 	cgroup_taskset_for_each(task, tset)
8601 		task_function_call(task, __perf_cgroup_move, task);
8602 }
8603 
8604 static void perf_cgroup_exit(struct cgroup_subsys_state *css,
8605 			     struct cgroup_subsys_state *old_css,
8606 			     struct task_struct *task)
8607 {
8608 	/*
8609 	 * cgroup_exit() is called in the copy_process() failure path.
8610 	 * Ignore this case since the task hasn't ran yet, this avoids
8611 	 * trying to poke a half freed task state from generic code.
8612 	 */
8613 	if (!(task->flags & PF_EXITING))
8614 		return;
8615 
8616 	task_function_call(task, __perf_cgroup_move, task);
8617 }
8618 
8619 struct cgroup_subsys perf_event_cgrp_subsys = {
8620 	.css_alloc	= perf_cgroup_css_alloc,
8621 	.css_free	= perf_cgroup_css_free,
8622 	.exit		= perf_cgroup_exit,
8623 	.attach		= perf_cgroup_attach,
8624 };
8625 #endif /* CONFIG_CGROUP_PERF */
8626