1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Performance events core code: 4 * 5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 9 */ 10 11 #include <linux/fs.h> 12 #include <linux/mm.h> 13 #include <linux/cpu.h> 14 #include <linux/smp.h> 15 #include <linux/idr.h> 16 #include <linux/file.h> 17 #include <linux/poll.h> 18 #include <linux/slab.h> 19 #include <linux/hash.h> 20 #include <linux/tick.h> 21 #include <linux/sysfs.h> 22 #include <linux/dcache.h> 23 #include <linux/percpu.h> 24 #include <linux/ptrace.h> 25 #include <linux/reboot.h> 26 #include <linux/vmstat.h> 27 #include <linux/device.h> 28 #include <linux/export.h> 29 #include <linux/vmalloc.h> 30 #include <linux/hardirq.h> 31 #include <linux/hugetlb.h> 32 #include <linux/rculist.h> 33 #include <linux/uaccess.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/cgroup.h> 38 #include <linux/perf_event.h> 39 #include <linux/trace_events.h> 40 #include <linux/hw_breakpoint.h> 41 #include <linux/mm_types.h> 42 #include <linux/module.h> 43 #include <linux/mman.h> 44 #include <linux/compat.h> 45 #include <linux/bpf.h> 46 #include <linux/filter.h> 47 #include <linux/namei.h> 48 #include <linux/parser.h> 49 #include <linux/sched/clock.h> 50 #include <linux/sched/mm.h> 51 #include <linux/proc_ns.h> 52 #include <linux/mount.h> 53 #include <linux/min_heap.h> 54 #include <linux/highmem.h> 55 #include <linux/pgtable.h> 56 #include <linux/buildid.h> 57 58 #include "internal.h" 59 60 #include <asm/irq_regs.h> 61 62 typedef int (*remote_function_f)(void *); 63 64 struct remote_function_call { 65 struct task_struct *p; 66 remote_function_f func; 67 void *info; 68 int ret; 69 }; 70 71 static void remote_function(void *data) 72 { 73 struct remote_function_call *tfc = data; 74 struct task_struct *p = tfc->p; 75 76 if (p) { 77 /* -EAGAIN */ 78 if (task_cpu(p) != smp_processor_id()) 79 return; 80 81 /* 82 * Now that we're on right CPU with IRQs disabled, we can test 83 * if we hit the right task without races. 84 */ 85 86 tfc->ret = -ESRCH; /* No such (running) process */ 87 if (p != current) 88 return; 89 } 90 91 tfc->ret = tfc->func(tfc->info); 92 } 93 94 /** 95 * task_function_call - call a function on the cpu on which a task runs 96 * @p: the task to evaluate 97 * @func: the function to be called 98 * @info: the function call argument 99 * 100 * Calls the function @func when the task is currently running. This might 101 * be on the current CPU, which just calls the function directly. This will 102 * retry due to any failures in smp_call_function_single(), such as if the 103 * task_cpu() goes offline concurrently. 104 * 105 * returns @func return value or -ESRCH or -ENXIO when the process isn't running 106 */ 107 static int 108 task_function_call(struct task_struct *p, remote_function_f func, void *info) 109 { 110 struct remote_function_call data = { 111 .p = p, 112 .func = func, 113 .info = info, 114 .ret = -EAGAIN, 115 }; 116 int ret; 117 118 for (;;) { 119 ret = smp_call_function_single(task_cpu(p), remote_function, 120 &data, 1); 121 if (!ret) 122 ret = data.ret; 123 124 if (ret != -EAGAIN) 125 break; 126 127 cond_resched(); 128 } 129 130 return ret; 131 } 132 133 /** 134 * cpu_function_call - call a function on the cpu 135 * @func: the function to be called 136 * @info: the function call argument 137 * 138 * Calls the function @func on the remote cpu. 139 * 140 * returns: @func return value or -ENXIO when the cpu is offline 141 */ 142 static int cpu_function_call(int cpu, remote_function_f func, void *info) 143 { 144 struct remote_function_call data = { 145 .p = NULL, 146 .func = func, 147 .info = info, 148 .ret = -ENXIO, /* No such CPU */ 149 }; 150 151 smp_call_function_single(cpu, remote_function, &data, 1); 152 153 return data.ret; 154 } 155 156 static inline struct perf_cpu_context * 157 __get_cpu_context(struct perf_event_context *ctx) 158 { 159 return this_cpu_ptr(ctx->pmu->pmu_cpu_context); 160 } 161 162 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 163 struct perf_event_context *ctx) 164 { 165 raw_spin_lock(&cpuctx->ctx.lock); 166 if (ctx) 167 raw_spin_lock(&ctx->lock); 168 } 169 170 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 171 struct perf_event_context *ctx) 172 { 173 if (ctx) 174 raw_spin_unlock(&ctx->lock); 175 raw_spin_unlock(&cpuctx->ctx.lock); 176 } 177 178 #define TASK_TOMBSTONE ((void *)-1L) 179 180 static bool is_kernel_event(struct perf_event *event) 181 { 182 return READ_ONCE(event->owner) == TASK_TOMBSTONE; 183 } 184 185 /* 186 * On task ctx scheduling... 187 * 188 * When !ctx->nr_events a task context will not be scheduled. This means 189 * we can disable the scheduler hooks (for performance) without leaving 190 * pending task ctx state. 191 * 192 * This however results in two special cases: 193 * 194 * - removing the last event from a task ctx; this is relatively straight 195 * forward and is done in __perf_remove_from_context. 196 * 197 * - adding the first event to a task ctx; this is tricky because we cannot 198 * rely on ctx->is_active and therefore cannot use event_function_call(). 199 * See perf_install_in_context(). 200 * 201 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set. 202 */ 203 204 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *, 205 struct perf_event_context *, void *); 206 207 struct event_function_struct { 208 struct perf_event *event; 209 event_f func; 210 void *data; 211 }; 212 213 static int event_function(void *info) 214 { 215 struct event_function_struct *efs = info; 216 struct perf_event *event = efs->event; 217 struct perf_event_context *ctx = event->ctx; 218 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 219 struct perf_event_context *task_ctx = cpuctx->task_ctx; 220 int ret = 0; 221 222 lockdep_assert_irqs_disabled(); 223 224 perf_ctx_lock(cpuctx, task_ctx); 225 /* 226 * Since we do the IPI call without holding ctx->lock things can have 227 * changed, double check we hit the task we set out to hit. 228 */ 229 if (ctx->task) { 230 if (ctx->task != current) { 231 ret = -ESRCH; 232 goto unlock; 233 } 234 235 /* 236 * We only use event_function_call() on established contexts, 237 * and event_function() is only ever called when active (or 238 * rather, we'll have bailed in task_function_call() or the 239 * above ctx->task != current test), therefore we must have 240 * ctx->is_active here. 241 */ 242 WARN_ON_ONCE(!ctx->is_active); 243 /* 244 * And since we have ctx->is_active, cpuctx->task_ctx must 245 * match. 246 */ 247 WARN_ON_ONCE(task_ctx != ctx); 248 } else { 249 WARN_ON_ONCE(&cpuctx->ctx != ctx); 250 } 251 252 efs->func(event, cpuctx, ctx, efs->data); 253 unlock: 254 perf_ctx_unlock(cpuctx, task_ctx); 255 256 return ret; 257 } 258 259 static void event_function_call(struct perf_event *event, event_f func, void *data) 260 { 261 struct perf_event_context *ctx = event->ctx; 262 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */ 263 struct event_function_struct efs = { 264 .event = event, 265 .func = func, 266 .data = data, 267 }; 268 269 if (!event->parent) { 270 /* 271 * If this is a !child event, we must hold ctx::mutex to 272 * stabilize the event->ctx relation. See 273 * perf_event_ctx_lock(). 274 */ 275 lockdep_assert_held(&ctx->mutex); 276 } 277 278 if (!task) { 279 cpu_function_call(event->cpu, event_function, &efs); 280 return; 281 } 282 283 if (task == TASK_TOMBSTONE) 284 return; 285 286 again: 287 if (!task_function_call(task, event_function, &efs)) 288 return; 289 290 raw_spin_lock_irq(&ctx->lock); 291 /* 292 * Reload the task pointer, it might have been changed by 293 * a concurrent perf_event_context_sched_out(). 294 */ 295 task = ctx->task; 296 if (task == TASK_TOMBSTONE) { 297 raw_spin_unlock_irq(&ctx->lock); 298 return; 299 } 300 if (ctx->is_active) { 301 raw_spin_unlock_irq(&ctx->lock); 302 goto again; 303 } 304 func(event, NULL, ctx, data); 305 raw_spin_unlock_irq(&ctx->lock); 306 } 307 308 /* 309 * Similar to event_function_call() + event_function(), but hard assumes IRQs 310 * are already disabled and we're on the right CPU. 311 */ 312 static void event_function_local(struct perf_event *event, event_f func, void *data) 313 { 314 struct perf_event_context *ctx = event->ctx; 315 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 316 struct task_struct *task = READ_ONCE(ctx->task); 317 struct perf_event_context *task_ctx = NULL; 318 319 lockdep_assert_irqs_disabled(); 320 321 if (task) { 322 if (task == TASK_TOMBSTONE) 323 return; 324 325 task_ctx = ctx; 326 } 327 328 perf_ctx_lock(cpuctx, task_ctx); 329 330 task = ctx->task; 331 if (task == TASK_TOMBSTONE) 332 goto unlock; 333 334 if (task) { 335 /* 336 * We must be either inactive or active and the right task, 337 * otherwise we're screwed, since we cannot IPI to somewhere 338 * else. 339 */ 340 if (ctx->is_active) { 341 if (WARN_ON_ONCE(task != current)) 342 goto unlock; 343 344 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx)) 345 goto unlock; 346 } 347 } else { 348 WARN_ON_ONCE(&cpuctx->ctx != ctx); 349 } 350 351 func(event, cpuctx, ctx, data); 352 unlock: 353 perf_ctx_unlock(cpuctx, task_ctx); 354 } 355 356 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 357 PERF_FLAG_FD_OUTPUT |\ 358 PERF_FLAG_PID_CGROUP |\ 359 PERF_FLAG_FD_CLOEXEC) 360 361 /* 362 * branch priv levels that need permission checks 363 */ 364 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 365 (PERF_SAMPLE_BRANCH_KERNEL |\ 366 PERF_SAMPLE_BRANCH_HV) 367 368 enum event_type_t { 369 EVENT_FLEXIBLE = 0x1, 370 EVENT_PINNED = 0x2, 371 EVENT_TIME = 0x4, 372 /* see ctx_resched() for details */ 373 EVENT_CPU = 0x8, 374 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 375 }; 376 377 /* 378 * perf_sched_events : >0 events exist 379 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu 380 */ 381 382 static void perf_sched_delayed(struct work_struct *work); 383 DEFINE_STATIC_KEY_FALSE(perf_sched_events); 384 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed); 385 static DEFINE_MUTEX(perf_sched_mutex); 386 static atomic_t perf_sched_count; 387 388 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); 389 static DEFINE_PER_CPU(int, perf_sched_cb_usages); 390 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events); 391 392 static atomic_t nr_mmap_events __read_mostly; 393 static atomic_t nr_comm_events __read_mostly; 394 static atomic_t nr_namespaces_events __read_mostly; 395 static atomic_t nr_task_events __read_mostly; 396 static atomic_t nr_freq_events __read_mostly; 397 static atomic_t nr_switch_events __read_mostly; 398 static atomic_t nr_ksymbol_events __read_mostly; 399 static atomic_t nr_bpf_events __read_mostly; 400 static atomic_t nr_cgroup_events __read_mostly; 401 static atomic_t nr_text_poke_events __read_mostly; 402 static atomic_t nr_build_id_events __read_mostly; 403 404 static LIST_HEAD(pmus); 405 static DEFINE_MUTEX(pmus_lock); 406 static struct srcu_struct pmus_srcu; 407 static cpumask_var_t perf_online_mask; 408 409 /* 410 * perf event paranoia level: 411 * -1 - not paranoid at all 412 * 0 - disallow raw tracepoint access for unpriv 413 * 1 - disallow cpu events for unpriv 414 * 2 - disallow kernel profiling for unpriv 415 */ 416 int sysctl_perf_event_paranoid __read_mostly = 2; 417 418 /* Minimum for 512 kiB + 1 user control page */ 419 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 420 421 /* 422 * max perf event sample rate 423 */ 424 #define DEFAULT_MAX_SAMPLE_RATE 100000 425 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 426 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 427 428 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 429 430 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 431 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 432 433 static int perf_sample_allowed_ns __read_mostly = 434 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 435 436 static void update_perf_cpu_limits(void) 437 { 438 u64 tmp = perf_sample_period_ns; 439 440 tmp *= sysctl_perf_cpu_time_max_percent; 441 tmp = div_u64(tmp, 100); 442 if (!tmp) 443 tmp = 1; 444 445 WRITE_ONCE(perf_sample_allowed_ns, tmp); 446 } 447 448 static bool perf_rotate_context(struct perf_cpu_context *cpuctx); 449 450 int perf_proc_update_handler(struct ctl_table *table, int write, 451 void *buffer, size_t *lenp, loff_t *ppos) 452 { 453 int ret; 454 int perf_cpu = sysctl_perf_cpu_time_max_percent; 455 /* 456 * If throttling is disabled don't allow the write: 457 */ 458 if (write && (perf_cpu == 100 || perf_cpu == 0)) 459 return -EINVAL; 460 461 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 462 if (ret || !write) 463 return ret; 464 465 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 466 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 467 update_perf_cpu_limits(); 468 469 return 0; 470 } 471 472 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 473 474 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 475 void *buffer, size_t *lenp, loff_t *ppos) 476 { 477 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 478 479 if (ret || !write) 480 return ret; 481 482 if (sysctl_perf_cpu_time_max_percent == 100 || 483 sysctl_perf_cpu_time_max_percent == 0) { 484 printk(KERN_WARNING 485 "perf: Dynamic interrupt throttling disabled, can hang your system!\n"); 486 WRITE_ONCE(perf_sample_allowed_ns, 0); 487 } else { 488 update_perf_cpu_limits(); 489 } 490 491 return 0; 492 } 493 494 /* 495 * perf samples are done in some very critical code paths (NMIs). 496 * If they take too much CPU time, the system can lock up and not 497 * get any real work done. This will drop the sample rate when 498 * we detect that events are taking too long. 499 */ 500 #define NR_ACCUMULATED_SAMPLES 128 501 static DEFINE_PER_CPU(u64, running_sample_length); 502 503 static u64 __report_avg; 504 static u64 __report_allowed; 505 506 static void perf_duration_warn(struct irq_work *w) 507 { 508 printk_ratelimited(KERN_INFO 509 "perf: interrupt took too long (%lld > %lld), lowering " 510 "kernel.perf_event_max_sample_rate to %d\n", 511 __report_avg, __report_allowed, 512 sysctl_perf_event_sample_rate); 513 } 514 515 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 516 517 void perf_sample_event_took(u64 sample_len_ns) 518 { 519 u64 max_len = READ_ONCE(perf_sample_allowed_ns); 520 u64 running_len; 521 u64 avg_len; 522 u32 max; 523 524 if (max_len == 0) 525 return; 526 527 /* Decay the counter by 1 average sample. */ 528 running_len = __this_cpu_read(running_sample_length); 529 running_len -= running_len/NR_ACCUMULATED_SAMPLES; 530 running_len += sample_len_ns; 531 __this_cpu_write(running_sample_length, running_len); 532 533 /* 534 * Note: this will be biased artifically low until we have 535 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 536 * from having to maintain a count. 537 */ 538 avg_len = running_len/NR_ACCUMULATED_SAMPLES; 539 if (avg_len <= max_len) 540 return; 541 542 __report_avg = avg_len; 543 __report_allowed = max_len; 544 545 /* 546 * Compute a throttle threshold 25% below the current duration. 547 */ 548 avg_len += avg_len / 4; 549 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent; 550 if (avg_len < max) 551 max /= (u32)avg_len; 552 else 553 max = 1; 554 555 WRITE_ONCE(perf_sample_allowed_ns, avg_len); 556 WRITE_ONCE(max_samples_per_tick, max); 557 558 sysctl_perf_event_sample_rate = max * HZ; 559 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 560 561 if (!irq_work_queue(&perf_duration_work)) { 562 early_printk("perf: interrupt took too long (%lld > %lld), lowering " 563 "kernel.perf_event_max_sample_rate to %d\n", 564 __report_avg, __report_allowed, 565 sysctl_perf_event_sample_rate); 566 } 567 } 568 569 static atomic64_t perf_event_id; 570 571 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 572 enum event_type_t event_type); 573 574 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 575 enum event_type_t event_type, 576 struct task_struct *task); 577 578 static void update_context_time(struct perf_event_context *ctx); 579 static u64 perf_event_time(struct perf_event *event); 580 581 void __weak perf_event_print_debug(void) { } 582 583 extern __weak const char *perf_pmu_name(void) 584 { 585 return "pmu"; 586 } 587 588 static inline u64 perf_clock(void) 589 { 590 return local_clock(); 591 } 592 593 static inline u64 perf_event_clock(struct perf_event *event) 594 { 595 return event->clock(); 596 } 597 598 /* 599 * State based event timekeeping... 600 * 601 * The basic idea is to use event->state to determine which (if any) time 602 * fields to increment with the current delta. This means we only need to 603 * update timestamps when we change state or when they are explicitly requested 604 * (read). 605 * 606 * Event groups make things a little more complicated, but not terribly so. The 607 * rules for a group are that if the group leader is OFF the entire group is 608 * OFF, irrespecive of what the group member states are. This results in 609 * __perf_effective_state(). 610 * 611 * A futher ramification is that when a group leader flips between OFF and 612 * !OFF, we need to update all group member times. 613 * 614 * 615 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we 616 * need to make sure the relevant context time is updated before we try and 617 * update our timestamps. 618 */ 619 620 static __always_inline enum perf_event_state 621 __perf_effective_state(struct perf_event *event) 622 { 623 struct perf_event *leader = event->group_leader; 624 625 if (leader->state <= PERF_EVENT_STATE_OFF) 626 return leader->state; 627 628 return event->state; 629 } 630 631 static __always_inline void 632 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running) 633 { 634 enum perf_event_state state = __perf_effective_state(event); 635 u64 delta = now - event->tstamp; 636 637 *enabled = event->total_time_enabled; 638 if (state >= PERF_EVENT_STATE_INACTIVE) 639 *enabled += delta; 640 641 *running = event->total_time_running; 642 if (state >= PERF_EVENT_STATE_ACTIVE) 643 *running += delta; 644 } 645 646 static void perf_event_update_time(struct perf_event *event) 647 { 648 u64 now = perf_event_time(event); 649 650 __perf_update_times(event, now, &event->total_time_enabled, 651 &event->total_time_running); 652 event->tstamp = now; 653 } 654 655 static void perf_event_update_sibling_time(struct perf_event *leader) 656 { 657 struct perf_event *sibling; 658 659 for_each_sibling_event(sibling, leader) 660 perf_event_update_time(sibling); 661 } 662 663 static void 664 perf_event_set_state(struct perf_event *event, enum perf_event_state state) 665 { 666 if (event->state == state) 667 return; 668 669 perf_event_update_time(event); 670 /* 671 * If a group leader gets enabled/disabled all its siblings 672 * are affected too. 673 */ 674 if ((event->state < 0) ^ (state < 0)) 675 perf_event_update_sibling_time(event); 676 677 WRITE_ONCE(event->state, state); 678 } 679 680 #ifdef CONFIG_CGROUP_PERF 681 682 static inline bool 683 perf_cgroup_match(struct perf_event *event) 684 { 685 struct perf_event_context *ctx = event->ctx; 686 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 687 688 /* @event doesn't care about cgroup */ 689 if (!event->cgrp) 690 return true; 691 692 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 693 if (!cpuctx->cgrp) 694 return false; 695 696 /* 697 * Cgroup scoping is recursive. An event enabled for a cgroup is 698 * also enabled for all its descendant cgroups. If @cpuctx's 699 * cgroup is a descendant of @event's (the test covers identity 700 * case), it's a match. 701 */ 702 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 703 event->cgrp->css.cgroup); 704 } 705 706 static inline void perf_detach_cgroup(struct perf_event *event) 707 { 708 css_put(&event->cgrp->css); 709 event->cgrp = NULL; 710 } 711 712 static inline int is_cgroup_event(struct perf_event *event) 713 { 714 return event->cgrp != NULL; 715 } 716 717 static inline u64 perf_cgroup_event_time(struct perf_event *event) 718 { 719 struct perf_cgroup_info *t; 720 721 t = per_cpu_ptr(event->cgrp->info, event->cpu); 722 return t->time; 723 } 724 725 static inline void __update_cgrp_time(struct perf_cgroup *cgrp) 726 { 727 struct perf_cgroup_info *info; 728 u64 now; 729 730 now = perf_clock(); 731 732 info = this_cpu_ptr(cgrp->info); 733 734 info->time += now - info->timestamp; 735 info->timestamp = now; 736 } 737 738 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 739 { 740 struct perf_cgroup *cgrp = cpuctx->cgrp; 741 struct cgroup_subsys_state *css; 742 743 if (cgrp) { 744 for (css = &cgrp->css; css; css = css->parent) { 745 cgrp = container_of(css, struct perf_cgroup, css); 746 __update_cgrp_time(cgrp); 747 } 748 } 749 } 750 751 static inline void update_cgrp_time_from_event(struct perf_event *event) 752 { 753 struct perf_cgroup *cgrp; 754 755 /* 756 * ensure we access cgroup data only when needed and 757 * when we know the cgroup is pinned (css_get) 758 */ 759 if (!is_cgroup_event(event)) 760 return; 761 762 cgrp = perf_cgroup_from_task(current, event->ctx); 763 /* 764 * Do not update time when cgroup is not active 765 */ 766 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup)) 767 __update_cgrp_time(event->cgrp); 768 } 769 770 static inline void 771 perf_cgroup_set_timestamp(struct task_struct *task, 772 struct perf_event_context *ctx) 773 { 774 struct perf_cgroup *cgrp; 775 struct perf_cgroup_info *info; 776 struct cgroup_subsys_state *css; 777 778 /* 779 * ctx->lock held by caller 780 * ensure we do not access cgroup data 781 * unless we have the cgroup pinned (css_get) 782 */ 783 if (!task || !ctx->nr_cgroups) 784 return; 785 786 cgrp = perf_cgroup_from_task(task, ctx); 787 788 for (css = &cgrp->css; css; css = css->parent) { 789 cgrp = container_of(css, struct perf_cgroup, css); 790 info = this_cpu_ptr(cgrp->info); 791 info->timestamp = ctx->timestamp; 792 } 793 } 794 795 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list); 796 797 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */ 798 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */ 799 800 /* 801 * reschedule events based on the cgroup constraint of task. 802 * 803 * mode SWOUT : schedule out everything 804 * mode SWIN : schedule in based on cgroup for next 805 */ 806 static void perf_cgroup_switch(struct task_struct *task, int mode) 807 { 808 struct perf_cpu_context *cpuctx; 809 struct list_head *list; 810 unsigned long flags; 811 812 /* 813 * Disable interrupts and preemption to avoid this CPU's 814 * cgrp_cpuctx_entry to change under us. 815 */ 816 local_irq_save(flags); 817 818 list = this_cpu_ptr(&cgrp_cpuctx_list); 819 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) { 820 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0); 821 822 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 823 perf_pmu_disable(cpuctx->ctx.pmu); 824 825 if (mode & PERF_CGROUP_SWOUT) { 826 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 827 /* 828 * must not be done before ctxswout due 829 * to event_filter_match() in event_sched_out() 830 */ 831 cpuctx->cgrp = NULL; 832 } 833 834 if (mode & PERF_CGROUP_SWIN) { 835 WARN_ON_ONCE(cpuctx->cgrp); 836 /* 837 * set cgrp before ctxsw in to allow 838 * event_filter_match() to not have to pass 839 * task around 840 * we pass the cpuctx->ctx to perf_cgroup_from_task() 841 * because cgorup events are only per-cpu 842 */ 843 cpuctx->cgrp = perf_cgroup_from_task(task, 844 &cpuctx->ctx); 845 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task); 846 } 847 perf_pmu_enable(cpuctx->ctx.pmu); 848 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 849 } 850 851 local_irq_restore(flags); 852 } 853 854 static inline void perf_cgroup_sched_out(struct task_struct *task, 855 struct task_struct *next) 856 { 857 struct perf_cgroup *cgrp1; 858 struct perf_cgroup *cgrp2 = NULL; 859 860 rcu_read_lock(); 861 /* 862 * we come here when we know perf_cgroup_events > 0 863 * we do not need to pass the ctx here because we know 864 * we are holding the rcu lock 865 */ 866 cgrp1 = perf_cgroup_from_task(task, NULL); 867 cgrp2 = perf_cgroup_from_task(next, NULL); 868 869 /* 870 * only schedule out current cgroup events if we know 871 * that we are switching to a different cgroup. Otherwise, 872 * do no touch the cgroup events. 873 */ 874 if (cgrp1 != cgrp2) 875 perf_cgroup_switch(task, PERF_CGROUP_SWOUT); 876 877 rcu_read_unlock(); 878 } 879 880 static inline void perf_cgroup_sched_in(struct task_struct *prev, 881 struct task_struct *task) 882 { 883 struct perf_cgroup *cgrp1; 884 struct perf_cgroup *cgrp2 = NULL; 885 886 rcu_read_lock(); 887 /* 888 * we come here when we know perf_cgroup_events > 0 889 * we do not need to pass the ctx here because we know 890 * we are holding the rcu lock 891 */ 892 cgrp1 = perf_cgroup_from_task(task, NULL); 893 cgrp2 = perf_cgroup_from_task(prev, NULL); 894 895 /* 896 * only need to schedule in cgroup events if we are changing 897 * cgroup during ctxsw. Cgroup events were not scheduled 898 * out of ctxsw out if that was not the case. 899 */ 900 if (cgrp1 != cgrp2) 901 perf_cgroup_switch(task, PERF_CGROUP_SWIN); 902 903 rcu_read_unlock(); 904 } 905 906 static int perf_cgroup_ensure_storage(struct perf_event *event, 907 struct cgroup_subsys_state *css) 908 { 909 struct perf_cpu_context *cpuctx; 910 struct perf_event **storage; 911 int cpu, heap_size, ret = 0; 912 913 /* 914 * Allow storage to have sufficent space for an iterator for each 915 * possibly nested cgroup plus an iterator for events with no cgroup. 916 */ 917 for (heap_size = 1; css; css = css->parent) 918 heap_size++; 919 920 for_each_possible_cpu(cpu) { 921 cpuctx = per_cpu_ptr(event->pmu->pmu_cpu_context, cpu); 922 if (heap_size <= cpuctx->heap_size) 923 continue; 924 925 storage = kmalloc_node(heap_size * sizeof(struct perf_event *), 926 GFP_KERNEL, cpu_to_node(cpu)); 927 if (!storage) { 928 ret = -ENOMEM; 929 break; 930 } 931 932 raw_spin_lock_irq(&cpuctx->ctx.lock); 933 if (cpuctx->heap_size < heap_size) { 934 swap(cpuctx->heap, storage); 935 if (storage == cpuctx->heap_default) 936 storage = NULL; 937 cpuctx->heap_size = heap_size; 938 } 939 raw_spin_unlock_irq(&cpuctx->ctx.lock); 940 941 kfree(storage); 942 } 943 944 return ret; 945 } 946 947 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 948 struct perf_event_attr *attr, 949 struct perf_event *group_leader) 950 { 951 struct perf_cgroup *cgrp; 952 struct cgroup_subsys_state *css; 953 struct fd f = fdget(fd); 954 int ret = 0; 955 956 if (!f.file) 957 return -EBADF; 958 959 css = css_tryget_online_from_dir(f.file->f_path.dentry, 960 &perf_event_cgrp_subsys); 961 if (IS_ERR(css)) { 962 ret = PTR_ERR(css); 963 goto out; 964 } 965 966 ret = perf_cgroup_ensure_storage(event, css); 967 if (ret) 968 goto out; 969 970 cgrp = container_of(css, struct perf_cgroup, css); 971 event->cgrp = cgrp; 972 973 /* 974 * all events in a group must monitor 975 * the same cgroup because a task belongs 976 * to only one perf cgroup at a time 977 */ 978 if (group_leader && group_leader->cgrp != cgrp) { 979 perf_detach_cgroup(event); 980 ret = -EINVAL; 981 } 982 out: 983 fdput(f); 984 return ret; 985 } 986 987 static inline void 988 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 989 { 990 struct perf_cgroup_info *t; 991 t = per_cpu_ptr(event->cgrp->info, event->cpu); 992 event->shadow_ctx_time = now - t->timestamp; 993 } 994 995 static inline void 996 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 997 { 998 struct perf_cpu_context *cpuctx; 999 1000 if (!is_cgroup_event(event)) 1001 return; 1002 1003 /* 1004 * Because cgroup events are always per-cpu events, 1005 * @ctx == &cpuctx->ctx. 1006 */ 1007 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 1008 1009 /* 1010 * Since setting cpuctx->cgrp is conditional on the current @cgrp 1011 * matching the event's cgroup, we must do this for every new event, 1012 * because if the first would mismatch, the second would not try again 1013 * and we would leave cpuctx->cgrp unset. 1014 */ 1015 if (ctx->is_active && !cpuctx->cgrp) { 1016 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 1017 1018 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup)) 1019 cpuctx->cgrp = cgrp; 1020 } 1021 1022 if (ctx->nr_cgroups++) 1023 return; 1024 1025 list_add(&cpuctx->cgrp_cpuctx_entry, 1026 per_cpu_ptr(&cgrp_cpuctx_list, event->cpu)); 1027 } 1028 1029 static inline void 1030 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 1031 { 1032 struct perf_cpu_context *cpuctx; 1033 1034 if (!is_cgroup_event(event)) 1035 return; 1036 1037 /* 1038 * Because cgroup events are always per-cpu events, 1039 * @ctx == &cpuctx->ctx. 1040 */ 1041 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 1042 1043 if (--ctx->nr_cgroups) 1044 return; 1045 1046 if (ctx->is_active && cpuctx->cgrp) 1047 cpuctx->cgrp = NULL; 1048 1049 list_del(&cpuctx->cgrp_cpuctx_entry); 1050 } 1051 1052 #else /* !CONFIG_CGROUP_PERF */ 1053 1054 static inline bool 1055 perf_cgroup_match(struct perf_event *event) 1056 { 1057 return true; 1058 } 1059 1060 static inline void perf_detach_cgroup(struct perf_event *event) 1061 {} 1062 1063 static inline int is_cgroup_event(struct perf_event *event) 1064 { 1065 return 0; 1066 } 1067 1068 static inline void update_cgrp_time_from_event(struct perf_event *event) 1069 { 1070 } 1071 1072 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 1073 { 1074 } 1075 1076 static inline void perf_cgroup_sched_out(struct task_struct *task, 1077 struct task_struct *next) 1078 { 1079 } 1080 1081 static inline void perf_cgroup_sched_in(struct task_struct *prev, 1082 struct task_struct *task) 1083 { 1084 } 1085 1086 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 1087 struct perf_event_attr *attr, 1088 struct perf_event *group_leader) 1089 { 1090 return -EINVAL; 1091 } 1092 1093 static inline void 1094 perf_cgroup_set_timestamp(struct task_struct *task, 1095 struct perf_event_context *ctx) 1096 { 1097 } 1098 1099 static inline void 1100 perf_cgroup_switch(struct task_struct *task, struct task_struct *next) 1101 { 1102 } 1103 1104 static inline void 1105 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 1106 { 1107 } 1108 1109 static inline u64 perf_cgroup_event_time(struct perf_event *event) 1110 { 1111 return 0; 1112 } 1113 1114 static inline void 1115 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 1116 { 1117 } 1118 1119 static inline void 1120 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 1121 { 1122 } 1123 #endif 1124 1125 /* 1126 * set default to be dependent on timer tick just 1127 * like original code 1128 */ 1129 #define PERF_CPU_HRTIMER (1000 / HZ) 1130 /* 1131 * function must be called with interrupts disabled 1132 */ 1133 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) 1134 { 1135 struct perf_cpu_context *cpuctx; 1136 bool rotations; 1137 1138 lockdep_assert_irqs_disabled(); 1139 1140 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer); 1141 rotations = perf_rotate_context(cpuctx); 1142 1143 raw_spin_lock(&cpuctx->hrtimer_lock); 1144 if (rotations) 1145 hrtimer_forward_now(hr, cpuctx->hrtimer_interval); 1146 else 1147 cpuctx->hrtimer_active = 0; 1148 raw_spin_unlock(&cpuctx->hrtimer_lock); 1149 1150 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; 1151 } 1152 1153 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu) 1154 { 1155 struct hrtimer *timer = &cpuctx->hrtimer; 1156 struct pmu *pmu = cpuctx->ctx.pmu; 1157 u64 interval; 1158 1159 /* no multiplexing needed for SW PMU */ 1160 if (pmu->task_ctx_nr == perf_sw_context) 1161 return; 1162 1163 /* 1164 * check default is sane, if not set then force to 1165 * default interval (1/tick) 1166 */ 1167 interval = pmu->hrtimer_interval_ms; 1168 if (interval < 1) 1169 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 1170 1171 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 1172 1173 raw_spin_lock_init(&cpuctx->hrtimer_lock); 1174 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD); 1175 timer->function = perf_mux_hrtimer_handler; 1176 } 1177 1178 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx) 1179 { 1180 struct hrtimer *timer = &cpuctx->hrtimer; 1181 struct pmu *pmu = cpuctx->ctx.pmu; 1182 unsigned long flags; 1183 1184 /* not for SW PMU */ 1185 if (pmu->task_ctx_nr == perf_sw_context) 1186 return 0; 1187 1188 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags); 1189 if (!cpuctx->hrtimer_active) { 1190 cpuctx->hrtimer_active = 1; 1191 hrtimer_forward_now(timer, cpuctx->hrtimer_interval); 1192 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD); 1193 } 1194 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags); 1195 1196 return 0; 1197 } 1198 1199 void perf_pmu_disable(struct pmu *pmu) 1200 { 1201 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1202 if (!(*count)++) 1203 pmu->pmu_disable(pmu); 1204 } 1205 1206 void perf_pmu_enable(struct pmu *pmu) 1207 { 1208 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1209 if (!--(*count)) 1210 pmu->pmu_enable(pmu); 1211 } 1212 1213 static DEFINE_PER_CPU(struct list_head, active_ctx_list); 1214 1215 /* 1216 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and 1217 * perf_event_task_tick() are fully serialized because they're strictly cpu 1218 * affine and perf_event_ctx{activate,deactivate} are called with IRQs 1219 * disabled, while perf_event_task_tick is called from IRQ context. 1220 */ 1221 static void perf_event_ctx_activate(struct perf_event_context *ctx) 1222 { 1223 struct list_head *head = this_cpu_ptr(&active_ctx_list); 1224 1225 lockdep_assert_irqs_disabled(); 1226 1227 WARN_ON(!list_empty(&ctx->active_ctx_list)); 1228 1229 list_add(&ctx->active_ctx_list, head); 1230 } 1231 1232 static void perf_event_ctx_deactivate(struct perf_event_context *ctx) 1233 { 1234 lockdep_assert_irqs_disabled(); 1235 1236 WARN_ON(list_empty(&ctx->active_ctx_list)); 1237 1238 list_del_init(&ctx->active_ctx_list); 1239 } 1240 1241 static void get_ctx(struct perf_event_context *ctx) 1242 { 1243 refcount_inc(&ctx->refcount); 1244 } 1245 1246 static void *alloc_task_ctx_data(struct pmu *pmu) 1247 { 1248 if (pmu->task_ctx_cache) 1249 return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL); 1250 1251 return NULL; 1252 } 1253 1254 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data) 1255 { 1256 if (pmu->task_ctx_cache && task_ctx_data) 1257 kmem_cache_free(pmu->task_ctx_cache, task_ctx_data); 1258 } 1259 1260 static void free_ctx(struct rcu_head *head) 1261 { 1262 struct perf_event_context *ctx; 1263 1264 ctx = container_of(head, struct perf_event_context, rcu_head); 1265 free_task_ctx_data(ctx->pmu, ctx->task_ctx_data); 1266 kfree(ctx); 1267 } 1268 1269 static void put_ctx(struct perf_event_context *ctx) 1270 { 1271 if (refcount_dec_and_test(&ctx->refcount)) { 1272 if (ctx->parent_ctx) 1273 put_ctx(ctx->parent_ctx); 1274 if (ctx->task && ctx->task != TASK_TOMBSTONE) 1275 put_task_struct(ctx->task); 1276 call_rcu(&ctx->rcu_head, free_ctx); 1277 } 1278 } 1279 1280 /* 1281 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 1282 * perf_pmu_migrate_context() we need some magic. 1283 * 1284 * Those places that change perf_event::ctx will hold both 1285 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 1286 * 1287 * Lock ordering is by mutex address. There are two other sites where 1288 * perf_event_context::mutex nests and those are: 1289 * 1290 * - perf_event_exit_task_context() [ child , 0 ] 1291 * perf_event_exit_event() 1292 * put_event() [ parent, 1 ] 1293 * 1294 * - perf_event_init_context() [ parent, 0 ] 1295 * inherit_task_group() 1296 * inherit_group() 1297 * inherit_event() 1298 * perf_event_alloc() 1299 * perf_init_event() 1300 * perf_try_init_event() [ child , 1 ] 1301 * 1302 * While it appears there is an obvious deadlock here -- the parent and child 1303 * nesting levels are inverted between the two. This is in fact safe because 1304 * life-time rules separate them. That is an exiting task cannot fork, and a 1305 * spawning task cannot (yet) exit. 1306 * 1307 * But remember that these are parent<->child context relations, and 1308 * migration does not affect children, therefore these two orderings should not 1309 * interact. 1310 * 1311 * The change in perf_event::ctx does not affect children (as claimed above) 1312 * because the sys_perf_event_open() case will install a new event and break 1313 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 1314 * concerned with cpuctx and that doesn't have children. 1315 * 1316 * The places that change perf_event::ctx will issue: 1317 * 1318 * perf_remove_from_context(); 1319 * synchronize_rcu(); 1320 * perf_install_in_context(); 1321 * 1322 * to affect the change. The remove_from_context() + synchronize_rcu() should 1323 * quiesce the event, after which we can install it in the new location. This 1324 * means that only external vectors (perf_fops, prctl) can perturb the event 1325 * while in transit. Therefore all such accessors should also acquire 1326 * perf_event_context::mutex to serialize against this. 1327 * 1328 * However; because event->ctx can change while we're waiting to acquire 1329 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 1330 * function. 1331 * 1332 * Lock order: 1333 * exec_update_lock 1334 * task_struct::perf_event_mutex 1335 * perf_event_context::mutex 1336 * perf_event::child_mutex; 1337 * perf_event_context::lock 1338 * perf_event::mmap_mutex 1339 * mmap_lock 1340 * perf_addr_filters_head::lock 1341 * 1342 * cpu_hotplug_lock 1343 * pmus_lock 1344 * cpuctx->mutex / perf_event_context::mutex 1345 */ 1346 static struct perf_event_context * 1347 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 1348 { 1349 struct perf_event_context *ctx; 1350 1351 again: 1352 rcu_read_lock(); 1353 ctx = READ_ONCE(event->ctx); 1354 if (!refcount_inc_not_zero(&ctx->refcount)) { 1355 rcu_read_unlock(); 1356 goto again; 1357 } 1358 rcu_read_unlock(); 1359 1360 mutex_lock_nested(&ctx->mutex, nesting); 1361 if (event->ctx != ctx) { 1362 mutex_unlock(&ctx->mutex); 1363 put_ctx(ctx); 1364 goto again; 1365 } 1366 1367 return ctx; 1368 } 1369 1370 static inline struct perf_event_context * 1371 perf_event_ctx_lock(struct perf_event *event) 1372 { 1373 return perf_event_ctx_lock_nested(event, 0); 1374 } 1375 1376 static void perf_event_ctx_unlock(struct perf_event *event, 1377 struct perf_event_context *ctx) 1378 { 1379 mutex_unlock(&ctx->mutex); 1380 put_ctx(ctx); 1381 } 1382 1383 /* 1384 * This must be done under the ctx->lock, such as to serialize against 1385 * context_equiv(), therefore we cannot call put_ctx() since that might end up 1386 * calling scheduler related locks and ctx->lock nests inside those. 1387 */ 1388 static __must_check struct perf_event_context * 1389 unclone_ctx(struct perf_event_context *ctx) 1390 { 1391 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1392 1393 lockdep_assert_held(&ctx->lock); 1394 1395 if (parent_ctx) 1396 ctx->parent_ctx = NULL; 1397 ctx->generation++; 1398 1399 return parent_ctx; 1400 } 1401 1402 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p, 1403 enum pid_type type) 1404 { 1405 u32 nr; 1406 /* 1407 * only top level events have the pid namespace they were created in 1408 */ 1409 if (event->parent) 1410 event = event->parent; 1411 1412 nr = __task_pid_nr_ns(p, type, event->ns); 1413 /* avoid -1 if it is idle thread or runs in another ns */ 1414 if (!nr && !pid_alive(p)) 1415 nr = -1; 1416 return nr; 1417 } 1418 1419 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1420 { 1421 return perf_event_pid_type(event, p, PIDTYPE_TGID); 1422 } 1423 1424 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1425 { 1426 return perf_event_pid_type(event, p, PIDTYPE_PID); 1427 } 1428 1429 /* 1430 * If we inherit events we want to return the parent event id 1431 * to userspace. 1432 */ 1433 static u64 primary_event_id(struct perf_event *event) 1434 { 1435 u64 id = event->id; 1436 1437 if (event->parent) 1438 id = event->parent->id; 1439 1440 return id; 1441 } 1442 1443 /* 1444 * Get the perf_event_context for a task and lock it. 1445 * 1446 * This has to cope with the fact that until it is locked, 1447 * the context could get moved to another task. 1448 */ 1449 static struct perf_event_context * 1450 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) 1451 { 1452 struct perf_event_context *ctx; 1453 1454 retry: 1455 /* 1456 * One of the few rules of preemptible RCU is that one cannot do 1457 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1458 * part of the read side critical section was irqs-enabled -- see 1459 * rcu_read_unlock_special(). 1460 * 1461 * Since ctx->lock nests under rq->lock we must ensure the entire read 1462 * side critical section has interrupts disabled. 1463 */ 1464 local_irq_save(*flags); 1465 rcu_read_lock(); 1466 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); 1467 if (ctx) { 1468 /* 1469 * If this context is a clone of another, it might 1470 * get swapped for another underneath us by 1471 * perf_event_task_sched_out, though the 1472 * rcu_read_lock() protects us from any context 1473 * getting freed. Lock the context and check if it 1474 * got swapped before we could get the lock, and retry 1475 * if so. If we locked the right context, then it 1476 * can't get swapped on us any more. 1477 */ 1478 raw_spin_lock(&ctx->lock); 1479 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { 1480 raw_spin_unlock(&ctx->lock); 1481 rcu_read_unlock(); 1482 local_irq_restore(*flags); 1483 goto retry; 1484 } 1485 1486 if (ctx->task == TASK_TOMBSTONE || 1487 !refcount_inc_not_zero(&ctx->refcount)) { 1488 raw_spin_unlock(&ctx->lock); 1489 ctx = NULL; 1490 } else { 1491 WARN_ON_ONCE(ctx->task != task); 1492 } 1493 } 1494 rcu_read_unlock(); 1495 if (!ctx) 1496 local_irq_restore(*flags); 1497 return ctx; 1498 } 1499 1500 /* 1501 * Get the context for a task and increment its pin_count so it 1502 * can't get swapped to another task. This also increments its 1503 * reference count so that the context can't get freed. 1504 */ 1505 static struct perf_event_context * 1506 perf_pin_task_context(struct task_struct *task, int ctxn) 1507 { 1508 struct perf_event_context *ctx; 1509 unsigned long flags; 1510 1511 ctx = perf_lock_task_context(task, ctxn, &flags); 1512 if (ctx) { 1513 ++ctx->pin_count; 1514 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1515 } 1516 return ctx; 1517 } 1518 1519 static void perf_unpin_context(struct perf_event_context *ctx) 1520 { 1521 unsigned long flags; 1522 1523 raw_spin_lock_irqsave(&ctx->lock, flags); 1524 --ctx->pin_count; 1525 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1526 } 1527 1528 /* 1529 * Update the record of the current time in a context. 1530 */ 1531 static void update_context_time(struct perf_event_context *ctx) 1532 { 1533 u64 now = perf_clock(); 1534 1535 ctx->time += now - ctx->timestamp; 1536 ctx->timestamp = now; 1537 } 1538 1539 static u64 perf_event_time(struct perf_event *event) 1540 { 1541 struct perf_event_context *ctx = event->ctx; 1542 1543 if (is_cgroup_event(event)) 1544 return perf_cgroup_event_time(event); 1545 1546 return ctx ? ctx->time : 0; 1547 } 1548 1549 static enum event_type_t get_event_type(struct perf_event *event) 1550 { 1551 struct perf_event_context *ctx = event->ctx; 1552 enum event_type_t event_type; 1553 1554 lockdep_assert_held(&ctx->lock); 1555 1556 /* 1557 * It's 'group type', really, because if our group leader is 1558 * pinned, so are we. 1559 */ 1560 if (event->group_leader != event) 1561 event = event->group_leader; 1562 1563 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE; 1564 if (!ctx->task) 1565 event_type |= EVENT_CPU; 1566 1567 return event_type; 1568 } 1569 1570 /* 1571 * Helper function to initialize event group nodes. 1572 */ 1573 static void init_event_group(struct perf_event *event) 1574 { 1575 RB_CLEAR_NODE(&event->group_node); 1576 event->group_index = 0; 1577 } 1578 1579 /* 1580 * Extract pinned or flexible groups from the context 1581 * based on event attrs bits. 1582 */ 1583 static struct perf_event_groups * 1584 get_event_groups(struct perf_event *event, struct perf_event_context *ctx) 1585 { 1586 if (event->attr.pinned) 1587 return &ctx->pinned_groups; 1588 else 1589 return &ctx->flexible_groups; 1590 } 1591 1592 /* 1593 * Helper function to initializes perf_event_group trees. 1594 */ 1595 static void perf_event_groups_init(struct perf_event_groups *groups) 1596 { 1597 groups->tree = RB_ROOT; 1598 groups->index = 0; 1599 } 1600 1601 static inline struct cgroup *event_cgroup(const struct perf_event *event) 1602 { 1603 struct cgroup *cgroup = NULL; 1604 1605 #ifdef CONFIG_CGROUP_PERF 1606 if (event->cgrp) 1607 cgroup = event->cgrp->css.cgroup; 1608 #endif 1609 1610 return cgroup; 1611 } 1612 1613 /* 1614 * Compare function for event groups; 1615 * 1616 * Implements complex key that first sorts by CPU and then by virtual index 1617 * which provides ordering when rotating groups for the same CPU. 1618 */ 1619 static __always_inline int 1620 perf_event_groups_cmp(const int left_cpu, const struct cgroup *left_cgroup, 1621 const u64 left_group_index, const struct perf_event *right) 1622 { 1623 if (left_cpu < right->cpu) 1624 return -1; 1625 if (left_cpu > right->cpu) 1626 return 1; 1627 1628 #ifdef CONFIG_CGROUP_PERF 1629 { 1630 const struct cgroup *right_cgroup = event_cgroup(right); 1631 1632 if (left_cgroup != right_cgroup) { 1633 if (!left_cgroup) { 1634 /* 1635 * Left has no cgroup but right does, no 1636 * cgroups come first. 1637 */ 1638 return -1; 1639 } 1640 if (!right_cgroup) { 1641 /* 1642 * Right has no cgroup but left does, no 1643 * cgroups come first. 1644 */ 1645 return 1; 1646 } 1647 /* Two dissimilar cgroups, order by id. */ 1648 if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup)) 1649 return -1; 1650 1651 return 1; 1652 } 1653 } 1654 #endif 1655 1656 if (left_group_index < right->group_index) 1657 return -1; 1658 if (left_group_index > right->group_index) 1659 return 1; 1660 1661 return 0; 1662 } 1663 1664 #define __node_2_pe(node) \ 1665 rb_entry((node), struct perf_event, group_node) 1666 1667 static inline bool __group_less(struct rb_node *a, const struct rb_node *b) 1668 { 1669 struct perf_event *e = __node_2_pe(a); 1670 return perf_event_groups_cmp(e->cpu, event_cgroup(e), e->group_index, 1671 __node_2_pe(b)) < 0; 1672 } 1673 1674 struct __group_key { 1675 int cpu; 1676 struct cgroup *cgroup; 1677 }; 1678 1679 static inline int __group_cmp(const void *key, const struct rb_node *node) 1680 { 1681 const struct __group_key *a = key; 1682 const struct perf_event *b = __node_2_pe(node); 1683 1684 /* partial/subtree match: @cpu, @cgroup; ignore: @group_index */ 1685 return perf_event_groups_cmp(a->cpu, a->cgroup, b->group_index, b); 1686 } 1687 1688 /* 1689 * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for 1690 * key (see perf_event_groups_less). This places it last inside the CPU 1691 * subtree. 1692 */ 1693 static void 1694 perf_event_groups_insert(struct perf_event_groups *groups, 1695 struct perf_event *event) 1696 { 1697 event->group_index = ++groups->index; 1698 1699 rb_add(&event->group_node, &groups->tree, __group_less); 1700 } 1701 1702 /* 1703 * Helper function to insert event into the pinned or flexible groups. 1704 */ 1705 static void 1706 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx) 1707 { 1708 struct perf_event_groups *groups; 1709 1710 groups = get_event_groups(event, ctx); 1711 perf_event_groups_insert(groups, event); 1712 } 1713 1714 /* 1715 * Delete a group from a tree. 1716 */ 1717 static void 1718 perf_event_groups_delete(struct perf_event_groups *groups, 1719 struct perf_event *event) 1720 { 1721 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) || 1722 RB_EMPTY_ROOT(&groups->tree)); 1723 1724 rb_erase(&event->group_node, &groups->tree); 1725 init_event_group(event); 1726 } 1727 1728 /* 1729 * Helper function to delete event from its groups. 1730 */ 1731 static void 1732 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx) 1733 { 1734 struct perf_event_groups *groups; 1735 1736 groups = get_event_groups(event, ctx); 1737 perf_event_groups_delete(groups, event); 1738 } 1739 1740 /* 1741 * Get the leftmost event in the cpu/cgroup subtree. 1742 */ 1743 static struct perf_event * 1744 perf_event_groups_first(struct perf_event_groups *groups, int cpu, 1745 struct cgroup *cgrp) 1746 { 1747 struct __group_key key = { 1748 .cpu = cpu, 1749 .cgroup = cgrp, 1750 }; 1751 struct rb_node *node; 1752 1753 node = rb_find_first(&key, &groups->tree, __group_cmp); 1754 if (node) 1755 return __node_2_pe(node); 1756 1757 return NULL; 1758 } 1759 1760 /* 1761 * Like rb_entry_next_safe() for the @cpu subtree. 1762 */ 1763 static struct perf_event * 1764 perf_event_groups_next(struct perf_event *event) 1765 { 1766 struct __group_key key = { 1767 .cpu = event->cpu, 1768 .cgroup = event_cgroup(event), 1769 }; 1770 struct rb_node *next; 1771 1772 next = rb_next_match(&key, &event->group_node, __group_cmp); 1773 if (next) 1774 return __node_2_pe(next); 1775 1776 return NULL; 1777 } 1778 1779 /* 1780 * Iterate through the whole groups tree. 1781 */ 1782 #define perf_event_groups_for_each(event, groups) \ 1783 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \ 1784 typeof(*event), group_node); event; \ 1785 event = rb_entry_safe(rb_next(&event->group_node), \ 1786 typeof(*event), group_node)) 1787 1788 /* 1789 * Add an event from the lists for its context. 1790 * Must be called with ctx->mutex and ctx->lock held. 1791 */ 1792 static void 1793 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1794 { 1795 lockdep_assert_held(&ctx->lock); 1796 1797 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1798 event->attach_state |= PERF_ATTACH_CONTEXT; 1799 1800 event->tstamp = perf_event_time(event); 1801 1802 /* 1803 * If we're a stand alone event or group leader, we go to the context 1804 * list, group events are kept attached to the group so that 1805 * perf_group_detach can, at all times, locate all siblings. 1806 */ 1807 if (event->group_leader == event) { 1808 event->group_caps = event->event_caps; 1809 add_event_to_groups(event, ctx); 1810 } 1811 1812 list_add_rcu(&event->event_entry, &ctx->event_list); 1813 ctx->nr_events++; 1814 if (event->attr.inherit_stat) 1815 ctx->nr_stat++; 1816 1817 if (event->state > PERF_EVENT_STATE_OFF) 1818 perf_cgroup_event_enable(event, ctx); 1819 1820 ctx->generation++; 1821 } 1822 1823 /* 1824 * Initialize event state based on the perf_event_attr::disabled. 1825 */ 1826 static inline void perf_event__state_init(struct perf_event *event) 1827 { 1828 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1829 PERF_EVENT_STATE_INACTIVE; 1830 } 1831 1832 static void __perf_event_read_size(struct perf_event *event, int nr_siblings) 1833 { 1834 int entry = sizeof(u64); /* value */ 1835 int size = 0; 1836 int nr = 1; 1837 1838 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1839 size += sizeof(u64); 1840 1841 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1842 size += sizeof(u64); 1843 1844 if (event->attr.read_format & PERF_FORMAT_ID) 1845 entry += sizeof(u64); 1846 1847 if (event->attr.read_format & PERF_FORMAT_GROUP) { 1848 nr += nr_siblings; 1849 size += sizeof(u64); 1850 } 1851 1852 size += entry * nr; 1853 event->read_size = size; 1854 } 1855 1856 static void __perf_event_header_size(struct perf_event *event, u64 sample_type) 1857 { 1858 struct perf_sample_data *data; 1859 u16 size = 0; 1860 1861 if (sample_type & PERF_SAMPLE_IP) 1862 size += sizeof(data->ip); 1863 1864 if (sample_type & PERF_SAMPLE_ADDR) 1865 size += sizeof(data->addr); 1866 1867 if (sample_type & PERF_SAMPLE_PERIOD) 1868 size += sizeof(data->period); 1869 1870 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) 1871 size += sizeof(data->weight.full); 1872 1873 if (sample_type & PERF_SAMPLE_READ) 1874 size += event->read_size; 1875 1876 if (sample_type & PERF_SAMPLE_DATA_SRC) 1877 size += sizeof(data->data_src.val); 1878 1879 if (sample_type & PERF_SAMPLE_TRANSACTION) 1880 size += sizeof(data->txn); 1881 1882 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 1883 size += sizeof(data->phys_addr); 1884 1885 if (sample_type & PERF_SAMPLE_CGROUP) 1886 size += sizeof(data->cgroup); 1887 1888 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 1889 size += sizeof(data->data_page_size); 1890 1891 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 1892 size += sizeof(data->code_page_size); 1893 1894 event->header_size = size; 1895 } 1896 1897 /* 1898 * Called at perf_event creation and when events are attached/detached from a 1899 * group. 1900 */ 1901 static void perf_event__header_size(struct perf_event *event) 1902 { 1903 __perf_event_read_size(event, 1904 event->group_leader->nr_siblings); 1905 __perf_event_header_size(event, event->attr.sample_type); 1906 } 1907 1908 static void perf_event__id_header_size(struct perf_event *event) 1909 { 1910 struct perf_sample_data *data; 1911 u64 sample_type = event->attr.sample_type; 1912 u16 size = 0; 1913 1914 if (sample_type & PERF_SAMPLE_TID) 1915 size += sizeof(data->tid_entry); 1916 1917 if (sample_type & PERF_SAMPLE_TIME) 1918 size += sizeof(data->time); 1919 1920 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1921 size += sizeof(data->id); 1922 1923 if (sample_type & PERF_SAMPLE_ID) 1924 size += sizeof(data->id); 1925 1926 if (sample_type & PERF_SAMPLE_STREAM_ID) 1927 size += sizeof(data->stream_id); 1928 1929 if (sample_type & PERF_SAMPLE_CPU) 1930 size += sizeof(data->cpu_entry); 1931 1932 event->id_header_size = size; 1933 } 1934 1935 static bool perf_event_validate_size(struct perf_event *event) 1936 { 1937 /* 1938 * The values computed here will be over-written when we actually 1939 * attach the event. 1940 */ 1941 __perf_event_read_size(event, event->group_leader->nr_siblings + 1); 1942 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ); 1943 perf_event__id_header_size(event); 1944 1945 /* 1946 * Sum the lot; should not exceed the 64k limit we have on records. 1947 * Conservative limit to allow for callchains and other variable fields. 1948 */ 1949 if (event->read_size + event->header_size + 1950 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024) 1951 return false; 1952 1953 return true; 1954 } 1955 1956 static void perf_group_attach(struct perf_event *event) 1957 { 1958 struct perf_event *group_leader = event->group_leader, *pos; 1959 1960 lockdep_assert_held(&event->ctx->lock); 1961 1962 /* 1963 * We can have double attach due to group movement in perf_event_open. 1964 */ 1965 if (event->attach_state & PERF_ATTACH_GROUP) 1966 return; 1967 1968 event->attach_state |= PERF_ATTACH_GROUP; 1969 1970 if (group_leader == event) 1971 return; 1972 1973 WARN_ON_ONCE(group_leader->ctx != event->ctx); 1974 1975 group_leader->group_caps &= event->event_caps; 1976 1977 list_add_tail(&event->sibling_list, &group_leader->sibling_list); 1978 group_leader->nr_siblings++; 1979 1980 perf_event__header_size(group_leader); 1981 1982 for_each_sibling_event(pos, group_leader) 1983 perf_event__header_size(pos); 1984 } 1985 1986 /* 1987 * Remove an event from the lists for its context. 1988 * Must be called with ctx->mutex and ctx->lock held. 1989 */ 1990 static void 1991 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 1992 { 1993 WARN_ON_ONCE(event->ctx != ctx); 1994 lockdep_assert_held(&ctx->lock); 1995 1996 /* 1997 * We can have double detach due to exit/hot-unplug + close. 1998 */ 1999 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 2000 return; 2001 2002 event->attach_state &= ~PERF_ATTACH_CONTEXT; 2003 2004 ctx->nr_events--; 2005 if (event->attr.inherit_stat) 2006 ctx->nr_stat--; 2007 2008 list_del_rcu(&event->event_entry); 2009 2010 if (event->group_leader == event) 2011 del_event_from_groups(event, ctx); 2012 2013 /* 2014 * If event was in error state, then keep it 2015 * that way, otherwise bogus counts will be 2016 * returned on read(). The only way to get out 2017 * of error state is by explicit re-enabling 2018 * of the event 2019 */ 2020 if (event->state > PERF_EVENT_STATE_OFF) { 2021 perf_cgroup_event_disable(event, ctx); 2022 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2023 } 2024 2025 ctx->generation++; 2026 } 2027 2028 static int 2029 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event) 2030 { 2031 if (!has_aux(aux_event)) 2032 return 0; 2033 2034 if (!event->pmu->aux_output_match) 2035 return 0; 2036 2037 return event->pmu->aux_output_match(aux_event); 2038 } 2039 2040 static void put_event(struct perf_event *event); 2041 static void event_sched_out(struct perf_event *event, 2042 struct perf_cpu_context *cpuctx, 2043 struct perf_event_context *ctx); 2044 2045 static void perf_put_aux_event(struct perf_event *event) 2046 { 2047 struct perf_event_context *ctx = event->ctx; 2048 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2049 struct perf_event *iter; 2050 2051 /* 2052 * If event uses aux_event tear down the link 2053 */ 2054 if (event->aux_event) { 2055 iter = event->aux_event; 2056 event->aux_event = NULL; 2057 put_event(iter); 2058 return; 2059 } 2060 2061 /* 2062 * If the event is an aux_event, tear down all links to 2063 * it from other events. 2064 */ 2065 for_each_sibling_event(iter, event->group_leader) { 2066 if (iter->aux_event != event) 2067 continue; 2068 2069 iter->aux_event = NULL; 2070 put_event(event); 2071 2072 /* 2073 * If it's ACTIVE, schedule it out and put it into ERROR 2074 * state so that we don't try to schedule it again. Note 2075 * that perf_event_enable() will clear the ERROR status. 2076 */ 2077 event_sched_out(iter, cpuctx, ctx); 2078 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 2079 } 2080 } 2081 2082 static bool perf_need_aux_event(struct perf_event *event) 2083 { 2084 return !!event->attr.aux_output || !!event->attr.aux_sample_size; 2085 } 2086 2087 static int perf_get_aux_event(struct perf_event *event, 2088 struct perf_event *group_leader) 2089 { 2090 /* 2091 * Our group leader must be an aux event if we want to be 2092 * an aux_output. This way, the aux event will precede its 2093 * aux_output events in the group, and therefore will always 2094 * schedule first. 2095 */ 2096 if (!group_leader) 2097 return 0; 2098 2099 /* 2100 * aux_output and aux_sample_size are mutually exclusive. 2101 */ 2102 if (event->attr.aux_output && event->attr.aux_sample_size) 2103 return 0; 2104 2105 if (event->attr.aux_output && 2106 !perf_aux_output_match(event, group_leader)) 2107 return 0; 2108 2109 if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux) 2110 return 0; 2111 2112 if (!atomic_long_inc_not_zero(&group_leader->refcount)) 2113 return 0; 2114 2115 /* 2116 * Link aux_outputs to their aux event; this is undone in 2117 * perf_group_detach() by perf_put_aux_event(). When the 2118 * group in torn down, the aux_output events loose their 2119 * link to the aux_event and can't schedule any more. 2120 */ 2121 event->aux_event = group_leader; 2122 2123 return 1; 2124 } 2125 2126 static inline struct list_head *get_event_list(struct perf_event *event) 2127 { 2128 struct perf_event_context *ctx = event->ctx; 2129 return event->attr.pinned ? &ctx->pinned_active : &ctx->flexible_active; 2130 } 2131 2132 /* 2133 * Events that have PERF_EV_CAP_SIBLING require being part of a group and 2134 * cannot exist on their own, schedule them out and move them into the ERROR 2135 * state. Also see _perf_event_enable(), it will not be able to recover 2136 * this ERROR state. 2137 */ 2138 static inline void perf_remove_sibling_event(struct perf_event *event) 2139 { 2140 struct perf_event_context *ctx = event->ctx; 2141 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2142 2143 event_sched_out(event, cpuctx, ctx); 2144 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 2145 } 2146 2147 static void perf_group_detach(struct perf_event *event) 2148 { 2149 struct perf_event *leader = event->group_leader; 2150 struct perf_event *sibling, *tmp; 2151 struct perf_event_context *ctx = event->ctx; 2152 2153 lockdep_assert_held(&ctx->lock); 2154 2155 /* 2156 * We can have double detach due to exit/hot-unplug + close. 2157 */ 2158 if (!(event->attach_state & PERF_ATTACH_GROUP)) 2159 return; 2160 2161 event->attach_state &= ~PERF_ATTACH_GROUP; 2162 2163 perf_put_aux_event(event); 2164 2165 /* 2166 * If this is a sibling, remove it from its group. 2167 */ 2168 if (leader != event) { 2169 list_del_init(&event->sibling_list); 2170 event->group_leader->nr_siblings--; 2171 goto out; 2172 } 2173 2174 /* 2175 * If this was a group event with sibling events then 2176 * upgrade the siblings to singleton events by adding them 2177 * to whatever list we are on. 2178 */ 2179 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) { 2180 2181 if (sibling->event_caps & PERF_EV_CAP_SIBLING) 2182 perf_remove_sibling_event(sibling); 2183 2184 sibling->group_leader = sibling; 2185 list_del_init(&sibling->sibling_list); 2186 2187 /* Inherit group flags from the previous leader */ 2188 sibling->group_caps = event->group_caps; 2189 2190 if (!RB_EMPTY_NODE(&event->group_node)) { 2191 add_event_to_groups(sibling, event->ctx); 2192 2193 if (sibling->state == PERF_EVENT_STATE_ACTIVE) 2194 list_add_tail(&sibling->active_list, get_event_list(sibling)); 2195 } 2196 2197 WARN_ON_ONCE(sibling->ctx != event->ctx); 2198 } 2199 2200 out: 2201 for_each_sibling_event(tmp, leader) 2202 perf_event__header_size(tmp); 2203 2204 perf_event__header_size(leader); 2205 } 2206 2207 static bool is_orphaned_event(struct perf_event *event) 2208 { 2209 return event->state == PERF_EVENT_STATE_DEAD; 2210 } 2211 2212 static inline int __pmu_filter_match(struct perf_event *event) 2213 { 2214 struct pmu *pmu = event->pmu; 2215 return pmu->filter_match ? pmu->filter_match(event) : 1; 2216 } 2217 2218 /* 2219 * Check whether we should attempt to schedule an event group based on 2220 * PMU-specific filtering. An event group can consist of HW and SW events, 2221 * potentially with a SW leader, so we must check all the filters, to 2222 * determine whether a group is schedulable: 2223 */ 2224 static inline int pmu_filter_match(struct perf_event *event) 2225 { 2226 struct perf_event *sibling; 2227 2228 if (!__pmu_filter_match(event)) 2229 return 0; 2230 2231 for_each_sibling_event(sibling, event) { 2232 if (!__pmu_filter_match(sibling)) 2233 return 0; 2234 } 2235 2236 return 1; 2237 } 2238 2239 static inline int 2240 event_filter_match(struct perf_event *event) 2241 { 2242 return (event->cpu == -1 || event->cpu == smp_processor_id()) && 2243 perf_cgroup_match(event) && pmu_filter_match(event); 2244 } 2245 2246 static void 2247 event_sched_out(struct perf_event *event, 2248 struct perf_cpu_context *cpuctx, 2249 struct perf_event_context *ctx) 2250 { 2251 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE; 2252 2253 WARN_ON_ONCE(event->ctx != ctx); 2254 lockdep_assert_held(&ctx->lock); 2255 2256 if (event->state != PERF_EVENT_STATE_ACTIVE) 2257 return; 2258 2259 /* 2260 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but 2261 * we can schedule events _OUT_ individually through things like 2262 * __perf_remove_from_context(). 2263 */ 2264 list_del_init(&event->active_list); 2265 2266 perf_pmu_disable(event->pmu); 2267 2268 event->pmu->del(event, 0); 2269 event->oncpu = -1; 2270 2271 if (READ_ONCE(event->pending_disable) >= 0) { 2272 WRITE_ONCE(event->pending_disable, -1); 2273 perf_cgroup_event_disable(event, ctx); 2274 state = PERF_EVENT_STATE_OFF; 2275 } 2276 perf_event_set_state(event, state); 2277 2278 if (!is_software_event(event)) 2279 cpuctx->active_oncpu--; 2280 if (!--ctx->nr_active) 2281 perf_event_ctx_deactivate(ctx); 2282 if (event->attr.freq && event->attr.sample_freq) 2283 ctx->nr_freq--; 2284 if (event->attr.exclusive || !cpuctx->active_oncpu) 2285 cpuctx->exclusive = 0; 2286 2287 perf_pmu_enable(event->pmu); 2288 } 2289 2290 static void 2291 group_sched_out(struct perf_event *group_event, 2292 struct perf_cpu_context *cpuctx, 2293 struct perf_event_context *ctx) 2294 { 2295 struct perf_event *event; 2296 2297 if (group_event->state != PERF_EVENT_STATE_ACTIVE) 2298 return; 2299 2300 perf_pmu_disable(ctx->pmu); 2301 2302 event_sched_out(group_event, cpuctx, ctx); 2303 2304 /* 2305 * Schedule out siblings (if any): 2306 */ 2307 for_each_sibling_event(event, group_event) 2308 event_sched_out(event, cpuctx, ctx); 2309 2310 perf_pmu_enable(ctx->pmu); 2311 } 2312 2313 #define DETACH_GROUP 0x01UL 2314 2315 /* 2316 * Cross CPU call to remove a performance event 2317 * 2318 * We disable the event on the hardware level first. After that we 2319 * remove it from the context list. 2320 */ 2321 static void 2322 __perf_remove_from_context(struct perf_event *event, 2323 struct perf_cpu_context *cpuctx, 2324 struct perf_event_context *ctx, 2325 void *info) 2326 { 2327 unsigned long flags = (unsigned long)info; 2328 2329 if (ctx->is_active & EVENT_TIME) { 2330 update_context_time(ctx); 2331 update_cgrp_time_from_cpuctx(cpuctx); 2332 } 2333 2334 event_sched_out(event, cpuctx, ctx); 2335 if (flags & DETACH_GROUP) 2336 perf_group_detach(event); 2337 list_del_event(event, ctx); 2338 2339 if (!ctx->nr_events && ctx->is_active) { 2340 ctx->is_active = 0; 2341 ctx->rotate_necessary = 0; 2342 if (ctx->task) { 2343 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2344 cpuctx->task_ctx = NULL; 2345 } 2346 } 2347 } 2348 2349 /* 2350 * Remove the event from a task's (or a CPU's) list of events. 2351 * 2352 * If event->ctx is a cloned context, callers must make sure that 2353 * every task struct that event->ctx->task could possibly point to 2354 * remains valid. This is OK when called from perf_release since 2355 * that only calls us on the top-level context, which can't be a clone. 2356 * When called from perf_event_exit_task, it's OK because the 2357 * context has been detached from its task. 2358 */ 2359 static void perf_remove_from_context(struct perf_event *event, unsigned long flags) 2360 { 2361 struct perf_event_context *ctx = event->ctx; 2362 2363 lockdep_assert_held(&ctx->mutex); 2364 2365 event_function_call(event, __perf_remove_from_context, (void *)flags); 2366 2367 /* 2368 * The above event_function_call() can NO-OP when it hits 2369 * TASK_TOMBSTONE. In that case we must already have been detached 2370 * from the context (by perf_event_exit_event()) but the grouping 2371 * might still be in-tact. 2372 */ 2373 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 2374 if ((flags & DETACH_GROUP) && 2375 (event->attach_state & PERF_ATTACH_GROUP)) { 2376 /* 2377 * Since in that case we cannot possibly be scheduled, simply 2378 * detach now. 2379 */ 2380 raw_spin_lock_irq(&ctx->lock); 2381 perf_group_detach(event); 2382 raw_spin_unlock_irq(&ctx->lock); 2383 } 2384 } 2385 2386 /* 2387 * Cross CPU call to disable a performance event 2388 */ 2389 static void __perf_event_disable(struct perf_event *event, 2390 struct perf_cpu_context *cpuctx, 2391 struct perf_event_context *ctx, 2392 void *info) 2393 { 2394 if (event->state < PERF_EVENT_STATE_INACTIVE) 2395 return; 2396 2397 if (ctx->is_active & EVENT_TIME) { 2398 update_context_time(ctx); 2399 update_cgrp_time_from_event(event); 2400 } 2401 2402 if (event == event->group_leader) 2403 group_sched_out(event, cpuctx, ctx); 2404 else 2405 event_sched_out(event, cpuctx, ctx); 2406 2407 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2408 perf_cgroup_event_disable(event, ctx); 2409 } 2410 2411 /* 2412 * Disable an event. 2413 * 2414 * If event->ctx is a cloned context, callers must make sure that 2415 * every task struct that event->ctx->task could possibly point to 2416 * remains valid. This condition is satisfied when called through 2417 * perf_event_for_each_child or perf_event_for_each because they 2418 * hold the top-level event's child_mutex, so any descendant that 2419 * goes to exit will block in perf_event_exit_event(). 2420 * 2421 * When called from perf_pending_event it's OK because event->ctx 2422 * is the current context on this CPU and preemption is disabled, 2423 * hence we can't get into perf_event_task_sched_out for this context. 2424 */ 2425 static void _perf_event_disable(struct perf_event *event) 2426 { 2427 struct perf_event_context *ctx = event->ctx; 2428 2429 raw_spin_lock_irq(&ctx->lock); 2430 if (event->state <= PERF_EVENT_STATE_OFF) { 2431 raw_spin_unlock_irq(&ctx->lock); 2432 return; 2433 } 2434 raw_spin_unlock_irq(&ctx->lock); 2435 2436 event_function_call(event, __perf_event_disable, NULL); 2437 } 2438 2439 void perf_event_disable_local(struct perf_event *event) 2440 { 2441 event_function_local(event, __perf_event_disable, NULL); 2442 } 2443 2444 /* 2445 * Strictly speaking kernel users cannot create groups and therefore this 2446 * interface does not need the perf_event_ctx_lock() magic. 2447 */ 2448 void perf_event_disable(struct perf_event *event) 2449 { 2450 struct perf_event_context *ctx; 2451 2452 ctx = perf_event_ctx_lock(event); 2453 _perf_event_disable(event); 2454 perf_event_ctx_unlock(event, ctx); 2455 } 2456 EXPORT_SYMBOL_GPL(perf_event_disable); 2457 2458 void perf_event_disable_inatomic(struct perf_event *event) 2459 { 2460 WRITE_ONCE(event->pending_disable, smp_processor_id()); 2461 /* can fail, see perf_pending_event_disable() */ 2462 irq_work_queue(&event->pending); 2463 } 2464 2465 static void perf_set_shadow_time(struct perf_event *event, 2466 struct perf_event_context *ctx) 2467 { 2468 /* 2469 * use the correct time source for the time snapshot 2470 * 2471 * We could get by without this by leveraging the 2472 * fact that to get to this function, the caller 2473 * has most likely already called update_context_time() 2474 * and update_cgrp_time_xx() and thus both timestamp 2475 * are identical (or very close). Given that tstamp is, 2476 * already adjusted for cgroup, we could say that: 2477 * tstamp - ctx->timestamp 2478 * is equivalent to 2479 * tstamp - cgrp->timestamp. 2480 * 2481 * Then, in perf_output_read(), the calculation would 2482 * work with no changes because: 2483 * - event is guaranteed scheduled in 2484 * - no scheduled out in between 2485 * - thus the timestamp would be the same 2486 * 2487 * But this is a bit hairy. 2488 * 2489 * So instead, we have an explicit cgroup call to remain 2490 * within the time source all along. We believe it 2491 * is cleaner and simpler to understand. 2492 */ 2493 if (is_cgroup_event(event)) 2494 perf_cgroup_set_shadow_time(event, event->tstamp); 2495 else 2496 event->shadow_ctx_time = event->tstamp - ctx->timestamp; 2497 } 2498 2499 #define MAX_INTERRUPTS (~0ULL) 2500 2501 static void perf_log_throttle(struct perf_event *event, int enable); 2502 static void perf_log_itrace_start(struct perf_event *event); 2503 2504 static int 2505 event_sched_in(struct perf_event *event, 2506 struct perf_cpu_context *cpuctx, 2507 struct perf_event_context *ctx) 2508 { 2509 int ret = 0; 2510 2511 WARN_ON_ONCE(event->ctx != ctx); 2512 2513 lockdep_assert_held(&ctx->lock); 2514 2515 if (event->state <= PERF_EVENT_STATE_OFF) 2516 return 0; 2517 2518 WRITE_ONCE(event->oncpu, smp_processor_id()); 2519 /* 2520 * Order event::oncpu write to happen before the ACTIVE state is 2521 * visible. This allows perf_event_{stop,read}() to observe the correct 2522 * ->oncpu if it sees ACTIVE. 2523 */ 2524 smp_wmb(); 2525 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE); 2526 2527 /* 2528 * Unthrottle events, since we scheduled we might have missed several 2529 * ticks already, also for a heavily scheduling task there is little 2530 * guarantee it'll get a tick in a timely manner. 2531 */ 2532 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 2533 perf_log_throttle(event, 1); 2534 event->hw.interrupts = 0; 2535 } 2536 2537 perf_pmu_disable(event->pmu); 2538 2539 perf_set_shadow_time(event, ctx); 2540 2541 perf_log_itrace_start(event); 2542 2543 if (event->pmu->add(event, PERF_EF_START)) { 2544 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2545 event->oncpu = -1; 2546 ret = -EAGAIN; 2547 goto out; 2548 } 2549 2550 if (!is_software_event(event)) 2551 cpuctx->active_oncpu++; 2552 if (!ctx->nr_active++) 2553 perf_event_ctx_activate(ctx); 2554 if (event->attr.freq && event->attr.sample_freq) 2555 ctx->nr_freq++; 2556 2557 if (event->attr.exclusive) 2558 cpuctx->exclusive = 1; 2559 2560 out: 2561 perf_pmu_enable(event->pmu); 2562 2563 return ret; 2564 } 2565 2566 static int 2567 group_sched_in(struct perf_event *group_event, 2568 struct perf_cpu_context *cpuctx, 2569 struct perf_event_context *ctx) 2570 { 2571 struct perf_event *event, *partial_group = NULL; 2572 struct pmu *pmu = ctx->pmu; 2573 2574 if (group_event->state == PERF_EVENT_STATE_OFF) 2575 return 0; 2576 2577 pmu->start_txn(pmu, PERF_PMU_TXN_ADD); 2578 2579 if (event_sched_in(group_event, cpuctx, ctx)) 2580 goto error; 2581 2582 /* 2583 * Schedule in siblings as one group (if any): 2584 */ 2585 for_each_sibling_event(event, group_event) { 2586 if (event_sched_in(event, cpuctx, ctx)) { 2587 partial_group = event; 2588 goto group_error; 2589 } 2590 } 2591 2592 if (!pmu->commit_txn(pmu)) 2593 return 0; 2594 2595 group_error: 2596 /* 2597 * Groups can be scheduled in as one unit only, so undo any 2598 * partial group before returning: 2599 * The events up to the failed event are scheduled out normally. 2600 */ 2601 for_each_sibling_event(event, group_event) { 2602 if (event == partial_group) 2603 break; 2604 2605 event_sched_out(event, cpuctx, ctx); 2606 } 2607 event_sched_out(group_event, cpuctx, ctx); 2608 2609 error: 2610 pmu->cancel_txn(pmu); 2611 return -EAGAIN; 2612 } 2613 2614 /* 2615 * Work out whether we can put this event group on the CPU now. 2616 */ 2617 static int group_can_go_on(struct perf_event *event, 2618 struct perf_cpu_context *cpuctx, 2619 int can_add_hw) 2620 { 2621 /* 2622 * Groups consisting entirely of software events can always go on. 2623 */ 2624 if (event->group_caps & PERF_EV_CAP_SOFTWARE) 2625 return 1; 2626 /* 2627 * If an exclusive group is already on, no other hardware 2628 * events can go on. 2629 */ 2630 if (cpuctx->exclusive) 2631 return 0; 2632 /* 2633 * If this group is exclusive and there are already 2634 * events on the CPU, it can't go on. 2635 */ 2636 if (event->attr.exclusive && !list_empty(get_event_list(event))) 2637 return 0; 2638 /* 2639 * Otherwise, try to add it if all previous groups were able 2640 * to go on. 2641 */ 2642 return can_add_hw; 2643 } 2644 2645 static void add_event_to_ctx(struct perf_event *event, 2646 struct perf_event_context *ctx) 2647 { 2648 list_add_event(event, ctx); 2649 perf_group_attach(event); 2650 } 2651 2652 static void ctx_sched_out(struct perf_event_context *ctx, 2653 struct perf_cpu_context *cpuctx, 2654 enum event_type_t event_type); 2655 static void 2656 ctx_sched_in(struct perf_event_context *ctx, 2657 struct perf_cpu_context *cpuctx, 2658 enum event_type_t event_type, 2659 struct task_struct *task); 2660 2661 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx, 2662 struct perf_event_context *ctx, 2663 enum event_type_t event_type) 2664 { 2665 if (!cpuctx->task_ctx) 2666 return; 2667 2668 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2669 return; 2670 2671 ctx_sched_out(ctx, cpuctx, event_type); 2672 } 2673 2674 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2675 struct perf_event_context *ctx, 2676 struct task_struct *task) 2677 { 2678 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task); 2679 if (ctx) 2680 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task); 2681 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task); 2682 if (ctx) 2683 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task); 2684 } 2685 2686 /* 2687 * We want to maintain the following priority of scheduling: 2688 * - CPU pinned (EVENT_CPU | EVENT_PINNED) 2689 * - task pinned (EVENT_PINNED) 2690 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE) 2691 * - task flexible (EVENT_FLEXIBLE). 2692 * 2693 * In order to avoid unscheduling and scheduling back in everything every 2694 * time an event is added, only do it for the groups of equal priority and 2695 * below. 2696 * 2697 * This can be called after a batch operation on task events, in which case 2698 * event_type is a bit mask of the types of events involved. For CPU events, 2699 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE. 2700 */ 2701 static void ctx_resched(struct perf_cpu_context *cpuctx, 2702 struct perf_event_context *task_ctx, 2703 enum event_type_t event_type) 2704 { 2705 enum event_type_t ctx_event_type; 2706 bool cpu_event = !!(event_type & EVENT_CPU); 2707 2708 /* 2709 * If pinned groups are involved, flexible groups also need to be 2710 * scheduled out. 2711 */ 2712 if (event_type & EVENT_PINNED) 2713 event_type |= EVENT_FLEXIBLE; 2714 2715 ctx_event_type = event_type & EVENT_ALL; 2716 2717 perf_pmu_disable(cpuctx->ctx.pmu); 2718 if (task_ctx) 2719 task_ctx_sched_out(cpuctx, task_ctx, event_type); 2720 2721 /* 2722 * Decide which cpu ctx groups to schedule out based on the types 2723 * of events that caused rescheduling: 2724 * - EVENT_CPU: schedule out corresponding groups; 2725 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups; 2726 * - otherwise, do nothing more. 2727 */ 2728 if (cpu_event) 2729 cpu_ctx_sched_out(cpuctx, ctx_event_type); 2730 else if (ctx_event_type & EVENT_PINNED) 2731 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2732 2733 perf_event_sched_in(cpuctx, task_ctx, current); 2734 perf_pmu_enable(cpuctx->ctx.pmu); 2735 } 2736 2737 void perf_pmu_resched(struct pmu *pmu) 2738 { 2739 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 2740 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2741 2742 perf_ctx_lock(cpuctx, task_ctx); 2743 ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU); 2744 perf_ctx_unlock(cpuctx, task_ctx); 2745 } 2746 2747 /* 2748 * Cross CPU call to install and enable a performance event 2749 * 2750 * Very similar to remote_function() + event_function() but cannot assume that 2751 * things like ctx->is_active and cpuctx->task_ctx are set. 2752 */ 2753 static int __perf_install_in_context(void *info) 2754 { 2755 struct perf_event *event = info; 2756 struct perf_event_context *ctx = event->ctx; 2757 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2758 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2759 bool reprogram = true; 2760 int ret = 0; 2761 2762 raw_spin_lock(&cpuctx->ctx.lock); 2763 if (ctx->task) { 2764 raw_spin_lock(&ctx->lock); 2765 task_ctx = ctx; 2766 2767 reprogram = (ctx->task == current); 2768 2769 /* 2770 * If the task is running, it must be running on this CPU, 2771 * otherwise we cannot reprogram things. 2772 * 2773 * If its not running, we don't care, ctx->lock will 2774 * serialize against it becoming runnable. 2775 */ 2776 if (task_curr(ctx->task) && !reprogram) { 2777 ret = -ESRCH; 2778 goto unlock; 2779 } 2780 2781 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx); 2782 } else if (task_ctx) { 2783 raw_spin_lock(&task_ctx->lock); 2784 } 2785 2786 #ifdef CONFIG_CGROUP_PERF 2787 if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) { 2788 /* 2789 * If the current cgroup doesn't match the event's 2790 * cgroup, we should not try to schedule it. 2791 */ 2792 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 2793 reprogram = cgroup_is_descendant(cgrp->css.cgroup, 2794 event->cgrp->css.cgroup); 2795 } 2796 #endif 2797 2798 if (reprogram) { 2799 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2800 add_event_to_ctx(event, ctx); 2801 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2802 } else { 2803 add_event_to_ctx(event, ctx); 2804 } 2805 2806 unlock: 2807 perf_ctx_unlock(cpuctx, task_ctx); 2808 2809 return ret; 2810 } 2811 2812 static bool exclusive_event_installable(struct perf_event *event, 2813 struct perf_event_context *ctx); 2814 2815 /* 2816 * Attach a performance event to a context. 2817 * 2818 * Very similar to event_function_call, see comment there. 2819 */ 2820 static void 2821 perf_install_in_context(struct perf_event_context *ctx, 2822 struct perf_event *event, 2823 int cpu) 2824 { 2825 struct task_struct *task = READ_ONCE(ctx->task); 2826 2827 lockdep_assert_held(&ctx->mutex); 2828 2829 WARN_ON_ONCE(!exclusive_event_installable(event, ctx)); 2830 2831 if (event->cpu != -1) 2832 event->cpu = cpu; 2833 2834 /* 2835 * Ensures that if we can observe event->ctx, both the event and ctx 2836 * will be 'complete'. See perf_iterate_sb_cpu(). 2837 */ 2838 smp_store_release(&event->ctx, ctx); 2839 2840 /* 2841 * perf_event_attr::disabled events will not run and can be initialized 2842 * without IPI. Except when this is the first event for the context, in 2843 * that case we need the magic of the IPI to set ctx->is_active. 2844 * 2845 * The IOC_ENABLE that is sure to follow the creation of a disabled 2846 * event will issue the IPI and reprogram the hardware. 2847 */ 2848 if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && ctx->nr_events) { 2849 raw_spin_lock_irq(&ctx->lock); 2850 if (ctx->task == TASK_TOMBSTONE) { 2851 raw_spin_unlock_irq(&ctx->lock); 2852 return; 2853 } 2854 add_event_to_ctx(event, ctx); 2855 raw_spin_unlock_irq(&ctx->lock); 2856 return; 2857 } 2858 2859 if (!task) { 2860 cpu_function_call(cpu, __perf_install_in_context, event); 2861 return; 2862 } 2863 2864 /* 2865 * Should not happen, we validate the ctx is still alive before calling. 2866 */ 2867 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) 2868 return; 2869 2870 /* 2871 * Installing events is tricky because we cannot rely on ctx->is_active 2872 * to be set in case this is the nr_events 0 -> 1 transition. 2873 * 2874 * Instead we use task_curr(), which tells us if the task is running. 2875 * However, since we use task_curr() outside of rq::lock, we can race 2876 * against the actual state. This means the result can be wrong. 2877 * 2878 * If we get a false positive, we retry, this is harmless. 2879 * 2880 * If we get a false negative, things are complicated. If we are after 2881 * perf_event_context_sched_in() ctx::lock will serialize us, and the 2882 * value must be correct. If we're before, it doesn't matter since 2883 * perf_event_context_sched_in() will program the counter. 2884 * 2885 * However, this hinges on the remote context switch having observed 2886 * our task->perf_event_ctxp[] store, such that it will in fact take 2887 * ctx::lock in perf_event_context_sched_in(). 2888 * 2889 * We do this by task_function_call(), if the IPI fails to hit the task 2890 * we know any future context switch of task must see the 2891 * perf_event_ctpx[] store. 2892 */ 2893 2894 /* 2895 * This smp_mb() orders the task->perf_event_ctxp[] store with the 2896 * task_cpu() load, such that if the IPI then does not find the task 2897 * running, a future context switch of that task must observe the 2898 * store. 2899 */ 2900 smp_mb(); 2901 again: 2902 if (!task_function_call(task, __perf_install_in_context, event)) 2903 return; 2904 2905 raw_spin_lock_irq(&ctx->lock); 2906 task = ctx->task; 2907 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) { 2908 /* 2909 * Cannot happen because we already checked above (which also 2910 * cannot happen), and we hold ctx->mutex, which serializes us 2911 * against perf_event_exit_task_context(). 2912 */ 2913 raw_spin_unlock_irq(&ctx->lock); 2914 return; 2915 } 2916 /* 2917 * If the task is not running, ctx->lock will avoid it becoming so, 2918 * thus we can safely install the event. 2919 */ 2920 if (task_curr(task)) { 2921 raw_spin_unlock_irq(&ctx->lock); 2922 goto again; 2923 } 2924 add_event_to_ctx(event, ctx); 2925 raw_spin_unlock_irq(&ctx->lock); 2926 } 2927 2928 /* 2929 * Cross CPU call to enable a performance event 2930 */ 2931 static void __perf_event_enable(struct perf_event *event, 2932 struct perf_cpu_context *cpuctx, 2933 struct perf_event_context *ctx, 2934 void *info) 2935 { 2936 struct perf_event *leader = event->group_leader; 2937 struct perf_event_context *task_ctx; 2938 2939 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2940 event->state <= PERF_EVENT_STATE_ERROR) 2941 return; 2942 2943 if (ctx->is_active) 2944 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2945 2946 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2947 perf_cgroup_event_enable(event, ctx); 2948 2949 if (!ctx->is_active) 2950 return; 2951 2952 if (!event_filter_match(event)) { 2953 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2954 return; 2955 } 2956 2957 /* 2958 * If the event is in a group and isn't the group leader, 2959 * then don't put it on unless the group is on. 2960 */ 2961 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) { 2962 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2963 return; 2964 } 2965 2966 task_ctx = cpuctx->task_ctx; 2967 if (ctx->task) 2968 WARN_ON_ONCE(task_ctx != ctx); 2969 2970 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2971 } 2972 2973 /* 2974 * Enable an event. 2975 * 2976 * If event->ctx is a cloned context, callers must make sure that 2977 * every task struct that event->ctx->task could possibly point to 2978 * remains valid. This condition is satisfied when called through 2979 * perf_event_for_each_child or perf_event_for_each as described 2980 * for perf_event_disable. 2981 */ 2982 static void _perf_event_enable(struct perf_event *event) 2983 { 2984 struct perf_event_context *ctx = event->ctx; 2985 2986 raw_spin_lock_irq(&ctx->lock); 2987 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2988 event->state < PERF_EVENT_STATE_ERROR) { 2989 out: 2990 raw_spin_unlock_irq(&ctx->lock); 2991 return; 2992 } 2993 2994 /* 2995 * If the event is in error state, clear that first. 2996 * 2997 * That way, if we see the event in error state below, we know that it 2998 * has gone back into error state, as distinct from the task having 2999 * been scheduled away before the cross-call arrived. 3000 */ 3001 if (event->state == PERF_EVENT_STATE_ERROR) { 3002 /* 3003 * Detached SIBLING events cannot leave ERROR state. 3004 */ 3005 if (event->event_caps & PERF_EV_CAP_SIBLING && 3006 event->group_leader == event) 3007 goto out; 3008 3009 event->state = PERF_EVENT_STATE_OFF; 3010 } 3011 raw_spin_unlock_irq(&ctx->lock); 3012 3013 event_function_call(event, __perf_event_enable, NULL); 3014 } 3015 3016 /* 3017 * See perf_event_disable(); 3018 */ 3019 void perf_event_enable(struct perf_event *event) 3020 { 3021 struct perf_event_context *ctx; 3022 3023 ctx = perf_event_ctx_lock(event); 3024 _perf_event_enable(event); 3025 perf_event_ctx_unlock(event, ctx); 3026 } 3027 EXPORT_SYMBOL_GPL(perf_event_enable); 3028 3029 struct stop_event_data { 3030 struct perf_event *event; 3031 unsigned int restart; 3032 }; 3033 3034 static int __perf_event_stop(void *info) 3035 { 3036 struct stop_event_data *sd = info; 3037 struct perf_event *event = sd->event; 3038 3039 /* if it's already INACTIVE, do nothing */ 3040 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3041 return 0; 3042 3043 /* matches smp_wmb() in event_sched_in() */ 3044 smp_rmb(); 3045 3046 /* 3047 * There is a window with interrupts enabled before we get here, 3048 * so we need to check again lest we try to stop another CPU's event. 3049 */ 3050 if (READ_ONCE(event->oncpu) != smp_processor_id()) 3051 return -EAGAIN; 3052 3053 event->pmu->stop(event, PERF_EF_UPDATE); 3054 3055 /* 3056 * May race with the actual stop (through perf_pmu_output_stop()), 3057 * but it is only used for events with AUX ring buffer, and such 3058 * events will refuse to restart because of rb::aux_mmap_count==0, 3059 * see comments in perf_aux_output_begin(). 3060 * 3061 * Since this is happening on an event-local CPU, no trace is lost 3062 * while restarting. 3063 */ 3064 if (sd->restart) 3065 event->pmu->start(event, 0); 3066 3067 return 0; 3068 } 3069 3070 static int perf_event_stop(struct perf_event *event, int restart) 3071 { 3072 struct stop_event_data sd = { 3073 .event = event, 3074 .restart = restart, 3075 }; 3076 int ret = 0; 3077 3078 do { 3079 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3080 return 0; 3081 3082 /* matches smp_wmb() in event_sched_in() */ 3083 smp_rmb(); 3084 3085 /* 3086 * We only want to restart ACTIVE events, so if the event goes 3087 * inactive here (event->oncpu==-1), there's nothing more to do; 3088 * fall through with ret==-ENXIO. 3089 */ 3090 ret = cpu_function_call(READ_ONCE(event->oncpu), 3091 __perf_event_stop, &sd); 3092 } while (ret == -EAGAIN); 3093 3094 return ret; 3095 } 3096 3097 /* 3098 * In order to contain the amount of racy and tricky in the address filter 3099 * configuration management, it is a two part process: 3100 * 3101 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below, 3102 * we update the addresses of corresponding vmas in 3103 * event::addr_filter_ranges array and bump the event::addr_filters_gen; 3104 * (p2) when an event is scheduled in (pmu::add), it calls 3105 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync() 3106 * if the generation has changed since the previous call. 3107 * 3108 * If (p1) happens while the event is active, we restart it to force (p2). 3109 * 3110 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on 3111 * pre-existing mappings, called once when new filters arrive via SET_FILTER 3112 * ioctl; 3113 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly 3114 * registered mapping, called for every new mmap(), with mm::mmap_lock down 3115 * for reading; 3116 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process 3117 * of exec. 3118 */ 3119 void perf_event_addr_filters_sync(struct perf_event *event) 3120 { 3121 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 3122 3123 if (!has_addr_filter(event)) 3124 return; 3125 3126 raw_spin_lock(&ifh->lock); 3127 if (event->addr_filters_gen != event->hw.addr_filters_gen) { 3128 event->pmu->addr_filters_sync(event); 3129 event->hw.addr_filters_gen = event->addr_filters_gen; 3130 } 3131 raw_spin_unlock(&ifh->lock); 3132 } 3133 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync); 3134 3135 static int _perf_event_refresh(struct perf_event *event, int refresh) 3136 { 3137 /* 3138 * not supported on inherited events 3139 */ 3140 if (event->attr.inherit || !is_sampling_event(event)) 3141 return -EINVAL; 3142 3143 atomic_add(refresh, &event->event_limit); 3144 _perf_event_enable(event); 3145 3146 return 0; 3147 } 3148 3149 /* 3150 * See perf_event_disable() 3151 */ 3152 int perf_event_refresh(struct perf_event *event, int refresh) 3153 { 3154 struct perf_event_context *ctx; 3155 int ret; 3156 3157 ctx = perf_event_ctx_lock(event); 3158 ret = _perf_event_refresh(event, refresh); 3159 perf_event_ctx_unlock(event, ctx); 3160 3161 return ret; 3162 } 3163 EXPORT_SYMBOL_GPL(perf_event_refresh); 3164 3165 static int perf_event_modify_breakpoint(struct perf_event *bp, 3166 struct perf_event_attr *attr) 3167 { 3168 int err; 3169 3170 _perf_event_disable(bp); 3171 3172 err = modify_user_hw_breakpoint_check(bp, attr, true); 3173 3174 if (!bp->attr.disabled) 3175 _perf_event_enable(bp); 3176 3177 return err; 3178 } 3179 3180 static int perf_event_modify_attr(struct perf_event *event, 3181 struct perf_event_attr *attr) 3182 { 3183 if (event->attr.type != attr->type) 3184 return -EINVAL; 3185 3186 switch (event->attr.type) { 3187 case PERF_TYPE_BREAKPOINT: 3188 return perf_event_modify_breakpoint(event, attr); 3189 default: 3190 /* Place holder for future additions. */ 3191 return -EOPNOTSUPP; 3192 } 3193 } 3194 3195 static void ctx_sched_out(struct perf_event_context *ctx, 3196 struct perf_cpu_context *cpuctx, 3197 enum event_type_t event_type) 3198 { 3199 struct perf_event *event, *tmp; 3200 int is_active = ctx->is_active; 3201 3202 lockdep_assert_held(&ctx->lock); 3203 3204 if (likely(!ctx->nr_events)) { 3205 /* 3206 * See __perf_remove_from_context(). 3207 */ 3208 WARN_ON_ONCE(ctx->is_active); 3209 if (ctx->task) 3210 WARN_ON_ONCE(cpuctx->task_ctx); 3211 return; 3212 } 3213 3214 ctx->is_active &= ~event_type; 3215 if (!(ctx->is_active & EVENT_ALL)) 3216 ctx->is_active = 0; 3217 3218 if (ctx->task) { 3219 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3220 if (!ctx->is_active) 3221 cpuctx->task_ctx = NULL; 3222 } 3223 3224 /* 3225 * Always update time if it was set; not only when it changes. 3226 * Otherwise we can 'forget' to update time for any but the last 3227 * context we sched out. For example: 3228 * 3229 * ctx_sched_out(.event_type = EVENT_FLEXIBLE) 3230 * ctx_sched_out(.event_type = EVENT_PINNED) 3231 * 3232 * would only update time for the pinned events. 3233 */ 3234 if (is_active & EVENT_TIME) { 3235 /* update (and stop) ctx time */ 3236 update_context_time(ctx); 3237 update_cgrp_time_from_cpuctx(cpuctx); 3238 } 3239 3240 is_active ^= ctx->is_active; /* changed bits */ 3241 3242 if (!ctx->nr_active || !(is_active & EVENT_ALL)) 3243 return; 3244 3245 perf_pmu_disable(ctx->pmu); 3246 if (is_active & EVENT_PINNED) { 3247 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list) 3248 group_sched_out(event, cpuctx, ctx); 3249 } 3250 3251 if (is_active & EVENT_FLEXIBLE) { 3252 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list) 3253 group_sched_out(event, cpuctx, ctx); 3254 3255 /* 3256 * Since we cleared EVENT_FLEXIBLE, also clear 3257 * rotate_necessary, is will be reset by 3258 * ctx_flexible_sched_in() when needed. 3259 */ 3260 ctx->rotate_necessary = 0; 3261 } 3262 perf_pmu_enable(ctx->pmu); 3263 } 3264 3265 /* 3266 * Test whether two contexts are equivalent, i.e. whether they have both been 3267 * cloned from the same version of the same context. 3268 * 3269 * Equivalence is measured using a generation number in the context that is 3270 * incremented on each modification to it; see unclone_ctx(), list_add_event() 3271 * and list_del_event(). 3272 */ 3273 static int context_equiv(struct perf_event_context *ctx1, 3274 struct perf_event_context *ctx2) 3275 { 3276 lockdep_assert_held(&ctx1->lock); 3277 lockdep_assert_held(&ctx2->lock); 3278 3279 /* Pinning disables the swap optimization */ 3280 if (ctx1->pin_count || ctx2->pin_count) 3281 return 0; 3282 3283 /* If ctx1 is the parent of ctx2 */ 3284 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 3285 return 1; 3286 3287 /* If ctx2 is the parent of ctx1 */ 3288 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 3289 return 1; 3290 3291 /* 3292 * If ctx1 and ctx2 have the same parent; we flatten the parent 3293 * hierarchy, see perf_event_init_context(). 3294 */ 3295 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 3296 ctx1->parent_gen == ctx2->parent_gen) 3297 return 1; 3298 3299 /* Unmatched */ 3300 return 0; 3301 } 3302 3303 static void __perf_event_sync_stat(struct perf_event *event, 3304 struct perf_event *next_event) 3305 { 3306 u64 value; 3307 3308 if (!event->attr.inherit_stat) 3309 return; 3310 3311 /* 3312 * Update the event value, we cannot use perf_event_read() 3313 * because we're in the middle of a context switch and have IRQs 3314 * disabled, which upsets smp_call_function_single(), however 3315 * we know the event must be on the current CPU, therefore we 3316 * don't need to use it. 3317 */ 3318 if (event->state == PERF_EVENT_STATE_ACTIVE) 3319 event->pmu->read(event); 3320 3321 perf_event_update_time(event); 3322 3323 /* 3324 * In order to keep per-task stats reliable we need to flip the event 3325 * values when we flip the contexts. 3326 */ 3327 value = local64_read(&next_event->count); 3328 value = local64_xchg(&event->count, value); 3329 local64_set(&next_event->count, value); 3330 3331 swap(event->total_time_enabled, next_event->total_time_enabled); 3332 swap(event->total_time_running, next_event->total_time_running); 3333 3334 /* 3335 * Since we swizzled the values, update the user visible data too. 3336 */ 3337 perf_event_update_userpage(event); 3338 perf_event_update_userpage(next_event); 3339 } 3340 3341 static void perf_event_sync_stat(struct perf_event_context *ctx, 3342 struct perf_event_context *next_ctx) 3343 { 3344 struct perf_event *event, *next_event; 3345 3346 if (!ctx->nr_stat) 3347 return; 3348 3349 update_context_time(ctx); 3350 3351 event = list_first_entry(&ctx->event_list, 3352 struct perf_event, event_entry); 3353 3354 next_event = list_first_entry(&next_ctx->event_list, 3355 struct perf_event, event_entry); 3356 3357 while (&event->event_entry != &ctx->event_list && 3358 &next_event->event_entry != &next_ctx->event_list) { 3359 3360 __perf_event_sync_stat(event, next_event); 3361 3362 event = list_next_entry(event, event_entry); 3363 next_event = list_next_entry(next_event, event_entry); 3364 } 3365 } 3366 3367 static void perf_event_context_sched_out(struct task_struct *task, int ctxn, 3368 struct task_struct *next) 3369 { 3370 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; 3371 struct perf_event_context *next_ctx; 3372 struct perf_event_context *parent, *next_parent; 3373 struct perf_cpu_context *cpuctx; 3374 int do_switch = 1; 3375 struct pmu *pmu; 3376 3377 if (likely(!ctx)) 3378 return; 3379 3380 pmu = ctx->pmu; 3381 cpuctx = __get_cpu_context(ctx); 3382 if (!cpuctx->task_ctx) 3383 return; 3384 3385 rcu_read_lock(); 3386 next_ctx = next->perf_event_ctxp[ctxn]; 3387 if (!next_ctx) 3388 goto unlock; 3389 3390 parent = rcu_dereference(ctx->parent_ctx); 3391 next_parent = rcu_dereference(next_ctx->parent_ctx); 3392 3393 /* If neither context have a parent context; they cannot be clones. */ 3394 if (!parent && !next_parent) 3395 goto unlock; 3396 3397 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 3398 /* 3399 * Looks like the two contexts are clones, so we might be 3400 * able to optimize the context switch. We lock both 3401 * contexts and check that they are clones under the 3402 * lock (including re-checking that neither has been 3403 * uncloned in the meantime). It doesn't matter which 3404 * order we take the locks because no other cpu could 3405 * be trying to lock both of these tasks. 3406 */ 3407 raw_spin_lock(&ctx->lock); 3408 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 3409 if (context_equiv(ctx, next_ctx)) { 3410 3411 WRITE_ONCE(ctx->task, next); 3412 WRITE_ONCE(next_ctx->task, task); 3413 3414 perf_pmu_disable(pmu); 3415 3416 if (cpuctx->sched_cb_usage && pmu->sched_task) 3417 pmu->sched_task(ctx, false); 3418 3419 /* 3420 * PMU specific parts of task perf context can require 3421 * additional synchronization. As an example of such 3422 * synchronization see implementation details of Intel 3423 * LBR call stack data profiling; 3424 */ 3425 if (pmu->swap_task_ctx) 3426 pmu->swap_task_ctx(ctx, next_ctx); 3427 else 3428 swap(ctx->task_ctx_data, next_ctx->task_ctx_data); 3429 3430 perf_pmu_enable(pmu); 3431 3432 /* 3433 * RCU_INIT_POINTER here is safe because we've not 3434 * modified the ctx and the above modification of 3435 * ctx->task and ctx->task_ctx_data are immaterial 3436 * since those values are always verified under 3437 * ctx->lock which we're now holding. 3438 */ 3439 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx); 3440 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx); 3441 3442 do_switch = 0; 3443 3444 perf_event_sync_stat(ctx, next_ctx); 3445 } 3446 raw_spin_unlock(&next_ctx->lock); 3447 raw_spin_unlock(&ctx->lock); 3448 } 3449 unlock: 3450 rcu_read_unlock(); 3451 3452 if (do_switch) { 3453 raw_spin_lock(&ctx->lock); 3454 perf_pmu_disable(pmu); 3455 3456 if (cpuctx->sched_cb_usage && pmu->sched_task) 3457 pmu->sched_task(ctx, false); 3458 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL); 3459 3460 perf_pmu_enable(pmu); 3461 raw_spin_unlock(&ctx->lock); 3462 } 3463 } 3464 3465 static DEFINE_PER_CPU(struct list_head, sched_cb_list); 3466 3467 void perf_sched_cb_dec(struct pmu *pmu) 3468 { 3469 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 3470 3471 this_cpu_dec(perf_sched_cb_usages); 3472 3473 if (!--cpuctx->sched_cb_usage) 3474 list_del(&cpuctx->sched_cb_entry); 3475 } 3476 3477 3478 void perf_sched_cb_inc(struct pmu *pmu) 3479 { 3480 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 3481 3482 if (!cpuctx->sched_cb_usage++) 3483 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list)); 3484 3485 this_cpu_inc(perf_sched_cb_usages); 3486 } 3487 3488 /* 3489 * This function provides the context switch callback to the lower code 3490 * layer. It is invoked ONLY when the context switch callback is enabled. 3491 * 3492 * This callback is relevant even to per-cpu events; for example multi event 3493 * PEBS requires this to provide PID/TID information. This requires we flush 3494 * all queued PEBS records before we context switch to a new task. 3495 */ 3496 static void __perf_pmu_sched_task(struct perf_cpu_context *cpuctx, bool sched_in) 3497 { 3498 struct pmu *pmu; 3499 3500 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */ 3501 3502 if (WARN_ON_ONCE(!pmu->sched_task)) 3503 return; 3504 3505 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3506 perf_pmu_disable(pmu); 3507 3508 pmu->sched_task(cpuctx->task_ctx, sched_in); 3509 3510 perf_pmu_enable(pmu); 3511 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3512 } 3513 3514 static void perf_pmu_sched_task(struct task_struct *prev, 3515 struct task_struct *next, 3516 bool sched_in) 3517 { 3518 struct perf_cpu_context *cpuctx; 3519 3520 if (prev == next) 3521 return; 3522 3523 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) { 3524 /* will be handled in perf_event_context_sched_in/out */ 3525 if (cpuctx->task_ctx) 3526 continue; 3527 3528 __perf_pmu_sched_task(cpuctx, sched_in); 3529 } 3530 } 3531 3532 static void perf_event_switch(struct task_struct *task, 3533 struct task_struct *next_prev, bool sched_in); 3534 3535 #define for_each_task_context_nr(ctxn) \ 3536 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) 3537 3538 /* 3539 * Called from scheduler to remove the events of the current task, 3540 * with interrupts disabled. 3541 * 3542 * We stop each event and update the event value in event->count. 3543 * 3544 * This does not protect us against NMI, but disable() 3545 * sets the disabled bit in the control field of event _before_ 3546 * accessing the event control register. If a NMI hits, then it will 3547 * not restart the event. 3548 */ 3549 void __perf_event_task_sched_out(struct task_struct *task, 3550 struct task_struct *next) 3551 { 3552 int ctxn; 3553 3554 if (__this_cpu_read(perf_sched_cb_usages)) 3555 perf_pmu_sched_task(task, next, false); 3556 3557 if (atomic_read(&nr_switch_events)) 3558 perf_event_switch(task, next, false); 3559 3560 for_each_task_context_nr(ctxn) 3561 perf_event_context_sched_out(task, ctxn, next); 3562 3563 /* 3564 * if cgroup events exist on this CPU, then we need 3565 * to check if we have to switch out PMU state. 3566 * cgroup event are system-wide mode only 3567 */ 3568 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3569 perf_cgroup_sched_out(task, next); 3570 } 3571 3572 /* 3573 * Called with IRQs disabled 3574 */ 3575 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 3576 enum event_type_t event_type) 3577 { 3578 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); 3579 } 3580 3581 static bool perf_less_group_idx(const void *l, const void *r) 3582 { 3583 const struct perf_event *le = *(const struct perf_event **)l; 3584 const struct perf_event *re = *(const struct perf_event **)r; 3585 3586 return le->group_index < re->group_index; 3587 } 3588 3589 static void swap_ptr(void *l, void *r) 3590 { 3591 void **lp = l, **rp = r; 3592 3593 swap(*lp, *rp); 3594 } 3595 3596 static const struct min_heap_callbacks perf_min_heap = { 3597 .elem_size = sizeof(struct perf_event *), 3598 .less = perf_less_group_idx, 3599 .swp = swap_ptr, 3600 }; 3601 3602 static void __heap_add(struct min_heap *heap, struct perf_event *event) 3603 { 3604 struct perf_event **itrs = heap->data; 3605 3606 if (event) { 3607 itrs[heap->nr] = event; 3608 heap->nr++; 3609 } 3610 } 3611 3612 static noinline int visit_groups_merge(struct perf_cpu_context *cpuctx, 3613 struct perf_event_groups *groups, int cpu, 3614 int (*func)(struct perf_event *, void *), 3615 void *data) 3616 { 3617 #ifdef CONFIG_CGROUP_PERF 3618 struct cgroup_subsys_state *css = NULL; 3619 #endif 3620 /* Space for per CPU and/or any CPU event iterators. */ 3621 struct perf_event *itrs[2]; 3622 struct min_heap event_heap; 3623 struct perf_event **evt; 3624 int ret; 3625 3626 if (cpuctx) { 3627 event_heap = (struct min_heap){ 3628 .data = cpuctx->heap, 3629 .nr = 0, 3630 .size = cpuctx->heap_size, 3631 }; 3632 3633 lockdep_assert_held(&cpuctx->ctx.lock); 3634 3635 #ifdef CONFIG_CGROUP_PERF 3636 if (cpuctx->cgrp) 3637 css = &cpuctx->cgrp->css; 3638 #endif 3639 } else { 3640 event_heap = (struct min_heap){ 3641 .data = itrs, 3642 .nr = 0, 3643 .size = ARRAY_SIZE(itrs), 3644 }; 3645 /* Events not within a CPU context may be on any CPU. */ 3646 __heap_add(&event_heap, perf_event_groups_first(groups, -1, NULL)); 3647 } 3648 evt = event_heap.data; 3649 3650 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, NULL)); 3651 3652 #ifdef CONFIG_CGROUP_PERF 3653 for (; css; css = css->parent) 3654 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, css->cgroup)); 3655 #endif 3656 3657 min_heapify_all(&event_heap, &perf_min_heap); 3658 3659 while (event_heap.nr) { 3660 ret = func(*evt, data); 3661 if (ret) 3662 return ret; 3663 3664 *evt = perf_event_groups_next(*evt); 3665 if (*evt) 3666 min_heapify(&event_heap, 0, &perf_min_heap); 3667 else 3668 min_heap_pop(&event_heap, &perf_min_heap); 3669 } 3670 3671 return 0; 3672 } 3673 3674 static int merge_sched_in(struct perf_event *event, void *data) 3675 { 3676 struct perf_event_context *ctx = event->ctx; 3677 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 3678 int *can_add_hw = data; 3679 3680 if (event->state <= PERF_EVENT_STATE_OFF) 3681 return 0; 3682 3683 if (!event_filter_match(event)) 3684 return 0; 3685 3686 if (group_can_go_on(event, cpuctx, *can_add_hw)) { 3687 if (!group_sched_in(event, cpuctx, ctx)) 3688 list_add_tail(&event->active_list, get_event_list(event)); 3689 } 3690 3691 if (event->state == PERF_EVENT_STATE_INACTIVE) { 3692 if (event->attr.pinned) { 3693 perf_cgroup_event_disable(event, ctx); 3694 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 3695 } 3696 3697 *can_add_hw = 0; 3698 ctx->rotate_necessary = 1; 3699 perf_mux_hrtimer_restart(cpuctx); 3700 } 3701 3702 return 0; 3703 } 3704 3705 static void 3706 ctx_pinned_sched_in(struct perf_event_context *ctx, 3707 struct perf_cpu_context *cpuctx) 3708 { 3709 int can_add_hw = 1; 3710 3711 if (ctx != &cpuctx->ctx) 3712 cpuctx = NULL; 3713 3714 visit_groups_merge(cpuctx, &ctx->pinned_groups, 3715 smp_processor_id(), 3716 merge_sched_in, &can_add_hw); 3717 } 3718 3719 static void 3720 ctx_flexible_sched_in(struct perf_event_context *ctx, 3721 struct perf_cpu_context *cpuctx) 3722 { 3723 int can_add_hw = 1; 3724 3725 if (ctx != &cpuctx->ctx) 3726 cpuctx = NULL; 3727 3728 visit_groups_merge(cpuctx, &ctx->flexible_groups, 3729 smp_processor_id(), 3730 merge_sched_in, &can_add_hw); 3731 } 3732 3733 static void 3734 ctx_sched_in(struct perf_event_context *ctx, 3735 struct perf_cpu_context *cpuctx, 3736 enum event_type_t event_type, 3737 struct task_struct *task) 3738 { 3739 int is_active = ctx->is_active; 3740 u64 now; 3741 3742 lockdep_assert_held(&ctx->lock); 3743 3744 if (likely(!ctx->nr_events)) 3745 return; 3746 3747 ctx->is_active |= (event_type | EVENT_TIME); 3748 if (ctx->task) { 3749 if (!is_active) 3750 cpuctx->task_ctx = ctx; 3751 else 3752 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3753 } 3754 3755 is_active ^= ctx->is_active; /* changed bits */ 3756 3757 if (is_active & EVENT_TIME) { 3758 /* start ctx time */ 3759 now = perf_clock(); 3760 ctx->timestamp = now; 3761 perf_cgroup_set_timestamp(task, ctx); 3762 } 3763 3764 /* 3765 * First go through the list and put on any pinned groups 3766 * in order to give them the best chance of going on. 3767 */ 3768 if (is_active & EVENT_PINNED) 3769 ctx_pinned_sched_in(ctx, cpuctx); 3770 3771 /* Then walk through the lower prio flexible groups */ 3772 if (is_active & EVENT_FLEXIBLE) 3773 ctx_flexible_sched_in(ctx, cpuctx); 3774 } 3775 3776 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 3777 enum event_type_t event_type, 3778 struct task_struct *task) 3779 { 3780 struct perf_event_context *ctx = &cpuctx->ctx; 3781 3782 ctx_sched_in(ctx, cpuctx, event_type, task); 3783 } 3784 3785 static void perf_event_context_sched_in(struct perf_event_context *ctx, 3786 struct task_struct *task) 3787 { 3788 struct perf_cpu_context *cpuctx; 3789 struct pmu *pmu = ctx->pmu; 3790 3791 cpuctx = __get_cpu_context(ctx); 3792 if (cpuctx->task_ctx == ctx) { 3793 if (cpuctx->sched_cb_usage) 3794 __perf_pmu_sched_task(cpuctx, true); 3795 return; 3796 } 3797 3798 perf_ctx_lock(cpuctx, ctx); 3799 /* 3800 * We must check ctx->nr_events while holding ctx->lock, such 3801 * that we serialize against perf_install_in_context(). 3802 */ 3803 if (!ctx->nr_events) 3804 goto unlock; 3805 3806 perf_pmu_disable(pmu); 3807 /* 3808 * We want to keep the following priority order: 3809 * cpu pinned (that don't need to move), task pinned, 3810 * cpu flexible, task flexible. 3811 * 3812 * However, if task's ctx is not carrying any pinned 3813 * events, no need to flip the cpuctx's events around. 3814 */ 3815 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) 3816 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3817 perf_event_sched_in(cpuctx, ctx, task); 3818 3819 if (cpuctx->sched_cb_usage && pmu->sched_task) 3820 pmu->sched_task(cpuctx->task_ctx, true); 3821 3822 perf_pmu_enable(pmu); 3823 3824 unlock: 3825 perf_ctx_unlock(cpuctx, ctx); 3826 } 3827 3828 /* 3829 * Called from scheduler to add the events of the current task 3830 * with interrupts disabled. 3831 * 3832 * We restore the event value and then enable it. 3833 * 3834 * This does not protect us against NMI, but enable() 3835 * sets the enabled bit in the control field of event _before_ 3836 * accessing the event control register. If a NMI hits, then it will 3837 * keep the event running. 3838 */ 3839 void __perf_event_task_sched_in(struct task_struct *prev, 3840 struct task_struct *task) 3841 { 3842 struct perf_event_context *ctx; 3843 int ctxn; 3844 3845 /* 3846 * If cgroup events exist on this CPU, then we need to check if we have 3847 * to switch in PMU state; cgroup event are system-wide mode only. 3848 * 3849 * Since cgroup events are CPU events, we must schedule these in before 3850 * we schedule in the task events. 3851 */ 3852 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3853 perf_cgroup_sched_in(prev, task); 3854 3855 for_each_task_context_nr(ctxn) { 3856 ctx = task->perf_event_ctxp[ctxn]; 3857 if (likely(!ctx)) 3858 continue; 3859 3860 perf_event_context_sched_in(ctx, task); 3861 } 3862 3863 if (atomic_read(&nr_switch_events)) 3864 perf_event_switch(task, prev, true); 3865 3866 if (__this_cpu_read(perf_sched_cb_usages)) 3867 perf_pmu_sched_task(prev, task, true); 3868 } 3869 3870 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 3871 { 3872 u64 frequency = event->attr.sample_freq; 3873 u64 sec = NSEC_PER_SEC; 3874 u64 divisor, dividend; 3875 3876 int count_fls, nsec_fls, frequency_fls, sec_fls; 3877 3878 count_fls = fls64(count); 3879 nsec_fls = fls64(nsec); 3880 frequency_fls = fls64(frequency); 3881 sec_fls = 30; 3882 3883 /* 3884 * We got @count in @nsec, with a target of sample_freq HZ 3885 * the target period becomes: 3886 * 3887 * @count * 10^9 3888 * period = ------------------- 3889 * @nsec * sample_freq 3890 * 3891 */ 3892 3893 /* 3894 * Reduce accuracy by one bit such that @a and @b converge 3895 * to a similar magnitude. 3896 */ 3897 #define REDUCE_FLS(a, b) \ 3898 do { \ 3899 if (a##_fls > b##_fls) { \ 3900 a >>= 1; \ 3901 a##_fls--; \ 3902 } else { \ 3903 b >>= 1; \ 3904 b##_fls--; \ 3905 } \ 3906 } while (0) 3907 3908 /* 3909 * Reduce accuracy until either term fits in a u64, then proceed with 3910 * the other, so that finally we can do a u64/u64 division. 3911 */ 3912 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 3913 REDUCE_FLS(nsec, frequency); 3914 REDUCE_FLS(sec, count); 3915 } 3916 3917 if (count_fls + sec_fls > 64) { 3918 divisor = nsec * frequency; 3919 3920 while (count_fls + sec_fls > 64) { 3921 REDUCE_FLS(count, sec); 3922 divisor >>= 1; 3923 } 3924 3925 dividend = count * sec; 3926 } else { 3927 dividend = count * sec; 3928 3929 while (nsec_fls + frequency_fls > 64) { 3930 REDUCE_FLS(nsec, frequency); 3931 dividend >>= 1; 3932 } 3933 3934 divisor = nsec * frequency; 3935 } 3936 3937 if (!divisor) 3938 return dividend; 3939 3940 return div64_u64(dividend, divisor); 3941 } 3942 3943 static DEFINE_PER_CPU(int, perf_throttled_count); 3944 static DEFINE_PER_CPU(u64, perf_throttled_seq); 3945 3946 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 3947 { 3948 struct hw_perf_event *hwc = &event->hw; 3949 s64 period, sample_period; 3950 s64 delta; 3951 3952 period = perf_calculate_period(event, nsec, count); 3953 3954 delta = (s64)(period - hwc->sample_period); 3955 delta = (delta + 7) / 8; /* low pass filter */ 3956 3957 sample_period = hwc->sample_period + delta; 3958 3959 if (!sample_period) 3960 sample_period = 1; 3961 3962 hwc->sample_period = sample_period; 3963 3964 if (local64_read(&hwc->period_left) > 8*sample_period) { 3965 if (disable) 3966 event->pmu->stop(event, PERF_EF_UPDATE); 3967 3968 local64_set(&hwc->period_left, 0); 3969 3970 if (disable) 3971 event->pmu->start(event, PERF_EF_RELOAD); 3972 } 3973 } 3974 3975 /* 3976 * combine freq adjustment with unthrottling to avoid two passes over the 3977 * events. At the same time, make sure, having freq events does not change 3978 * the rate of unthrottling as that would introduce bias. 3979 */ 3980 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx, 3981 int needs_unthr) 3982 { 3983 struct perf_event *event; 3984 struct hw_perf_event *hwc; 3985 u64 now, period = TICK_NSEC; 3986 s64 delta; 3987 3988 /* 3989 * only need to iterate over all events iff: 3990 * - context have events in frequency mode (needs freq adjust) 3991 * - there are events to unthrottle on this cpu 3992 */ 3993 if (!(ctx->nr_freq || needs_unthr)) 3994 return; 3995 3996 raw_spin_lock(&ctx->lock); 3997 perf_pmu_disable(ctx->pmu); 3998 3999 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 4000 if (event->state != PERF_EVENT_STATE_ACTIVE) 4001 continue; 4002 4003 if (!event_filter_match(event)) 4004 continue; 4005 4006 perf_pmu_disable(event->pmu); 4007 4008 hwc = &event->hw; 4009 4010 if (hwc->interrupts == MAX_INTERRUPTS) { 4011 hwc->interrupts = 0; 4012 perf_log_throttle(event, 1); 4013 event->pmu->start(event, 0); 4014 } 4015 4016 if (!event->attr.freq || !event->attr.sample_freq) 4017 goto next; 4018 4019 /* 4020 * stop the event and update event->count 4021 */ 4022 event->pmu->stop(event, PERF_EF_UPDATE); 4023 4024 now = local64_read(&event->count); 4025 delta = now - hwc->freq_count_stamp; 4026 hwc->freq_count_stamp = now; 4027 4028 /* 4029 * restart the event 4030 * reload only if value has changed 4031 * we have stopped the event so tell that 4032 * to perf_adjust_period() to avoid stopping it 4033 * twice. 4034 */ 4035 if (delta > 0) 4036 perf_adjust_period(event, period, delta, false); 4037 4038 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 4039 next: 4040 perf_pmu_enable(event->pmu); 4041 } 4042 4043 perf_pmu_enable(ctx->pmu); 4044 raw_spin_unlock(&ctx->lock); 4045 } 4046 4047 /* 4048 * Move @event to the tail of the @ctx's elegible events. 4049 */ 4050 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event) 4051 { 4052 /* 4053 * Rotate the first entry last of non-pinned groups. Rotation might be 4054 * disabled by the inheritance code. 4055 */ 4056 if (ctx->rotate_disable) 4057 return; 4058 4059 perf_event_groups_delete(&ctx->flexible_groups, event); 4060 perf_event_groups_insert(&ctx->flexible_groups, event); 4061 } 4062 4063 /* pick an event from the flexible_groups to rotate */ 4064 static inline struct perf_event * 4065 ctx_event_to_rotate(struct perf_event_context *ctx) 4066 { 4067 struct perf_event *event; 4068 4069 /* pick the first active flexible event */ 4070 event = list_first_entry_or_null(&ctx->flexible_active, 4071 struct perf_event, active_list); 4072 4073 /* if no active flexible event, pick the first event */ 4074 if (!event) { 4075 event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree), 4076 typeof(*event), group_node); 4077 } 4078 4079 /* 4080 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in() 4081 * finds there are unschedulable events, it will set it again. 4082 */ 4083 ctx->rotate_necessary = 0; 4084 4085 return event; 4086 } 4087 4088 static bool perf_rotate_context(struct perf_cpu_context *cpuctx) 4089 { 4090 struct perf_event *cpu_event = NULL, *task_event = NULL; 4091 struct perf_event_context *task_ctx = NULL; 4092 int cpu_rotate, task_rotate; 4093 4094 /* 4095 * Since we run this from IRQ context, nobody can install new 4096 * events, thus the event count values are stable. 4097 */ 4098 4099 cpu_rotate = cpuctx->ctx.rotate_necessary; 4100 task_ctx = cpuctx->task_ctx; 4101 task_rotate = task_ctx ? task_ctx->rotate_necessary : 0; 4102 4103 if (!(cpu_rotate || task_rotate)) 4104 return false; 4105 4106 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 4107 perf_pmu_disable(cpuctx->ctx.pmu); 4108 4109 if (task_rotate) 4110 task_event = ctx_event_to_rotate(task_ctx); 4111 if (cpu_rotate) 4112 cpu_event = ctx_event_to_rotate(&cpuctx->ctx); 4113 4114 /* 4115 * As per the order given at ctx_resched() first 'pop' task flexible 4116 * and then, if needed CPU flexible. 4117 */ 4118 if (task_event || (task_ctx && cpu_event)) 4119 ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE); 4120 if (cpu_event) 4121 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 4122 4123 if (task_event) 4124 rotate_ctx(task_ctx, task_event); 4125 if (cpu_event) 4126 rotate_ctx(&cpuctx->ctx, cpu_event); 4127 4128 perf_event_sched_in(cpuctx, task_ctx, current); 4129 4130 perf_pmu_enable(cpuctx->ctx.pmu); 4131 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 4132 4133 return true; 4134 } 4135 4136 void perf_event_task_tick(void) 4137 { 4138 struct list_head *head = this_cpu_ptr(&active_ctx_list); 4139 struct perf_event_context *ctx, *tmp; 4140 int throttled; 4141 4142 lockdep_assert_irqs_disabled(); 4143 4144 __this_cpu_inc(perf_throttled_seq); 4145 throttled = __this_cpu_xchg(perf_throttled_count, 0); 4146 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 4147 4148 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list) 4149 perf_adjust_freq_unthr_context(ctx, throttled); 4150 } 4151 4152 static int event_enable_on_exec(struct perf_event *event, 4153 struct perf_event_context *ctx) 4154 { 4155 if (!event->attr.enable_on_exec) 4156 return 0; 4157 4158 event->attr.enable_on_exec = 0; 4159 if (event->state >= PERF_EVENT_STATE_INACTIVE) 4160 return 0; 4161 4162 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 4163 4164 return 1; 4165 } 4166 4167 /* 4168 * Enable all of a task's events that have been marked enable-on-exec. 4169 * This expects task == current. 4170 */ 4171 static void perf_event_enable_on_exec(int ctxn) 4172 { 4173 struct perf_event_context *ctx, *clone_ctx = NULL; 4174 enum event_type_t event_type = 0; 4175 struct perf_cpu_context *cpuctx; 4176 struct perf_event *event; 4177 unsigned long flags; 4178 int enabled = 0; 4179 4180 local_irq_save(flags); 4181 ctx = current->perf_event_ctxp[ctxn]; 4182 if (!ctx || !ctx->nr_events) 4183 goto out; 4184 4185 cpuctx = __get_cpu_context(ctx); 4186 perf_ctx_lock(cpuctx, ctx); 4187 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 4188 list_for_each_entry(event, &ctx->event_list, event_entry) { 4189 enabled |= event_enable_on_exec(event, ctx); 4190 event_type |= get_event_type(event); 4191 } 4192 4193 /* 4194 * Unclone and reschedule this context if we enabled any event. 4195 */ 4196 if (enabled) { 4197 clone_ctx = unclone_ctx(ctx); 4198 ctx_resched(cpuctx, ctx, event_type); 4199 } else { 4200 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 4201 } 4202 perf_ctx_unlock(cpuctx, ctx); 4203 4204 out: 4205 local_irq_restore(flags); 4206 4207 if (clone_ctx) 4208 put_ctx(clone_ctx); 4209 } 4210 4211 struct perf_read_data { 4212 struct perf_event *event; 4213 bool group; 4214 int ret; 4215 }; 4216 4217 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu) 4218 { 4219 u16 local_pkg, event_pkg; 4220 4221 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) { 4222 int local_cpu = smp_processor_id(); 4223 4224 event_pkg = topology_physical_package_id(event_cpu); 4225 local_pkg = topology_physical_package_id(local_cpu); 4226 4227 if (event_pkg == local_pkg) 4228 return local_cpu; 4229 } 4230 4231 return event_cpu; 4232 } 4233 4234 /* 4235 * Cross CPU call to read the hardware event 4236 */ 4237 static void __perf_event_read(void *info) 4238 { 4239 struct perf_read_data *data = info; 4240 struct perf_event *sub, *event = data->event; 4241 struct perf_event_context *ctx = event->ctx; 4242 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 4243 struct pmu *pmu = event->pmu; 4244 4245 /* 4246 * If this is a task context, we need to check whether it is 4247 * the current task context of this cpu. If not it has been 4248 * scheduled out before the smp call arrived. In that case 4249 * event->count would have been updated to a recent sample 4250 * when the event was scheduled out. 4251 */ 4252 if (ctx->task && cpuctx->task_ctx != ctx) 4253 return; 4254 4255 raw_spin_lock(&ctx->lock); 4256 if (ctx->is_active & EVENT_TIME) { 4257 update_context_time(ctx); 4258 update_cgrp_time_from_event(event); 4259 } 4260 4261 perf_event_update_time(event); 4262 if (data->group) 4263 perf_event_update_sibling_time(event); 4264 4265 if (event->state != PERF_EVENT_STATE_ACTIVE) 4266 goto unlock; 4267 4268 if (!data->group) { 4269 pmu->read(event); 4270 data->ret = 0; 4271 goto unlock; 4272 } 4273 4274 pmu->start_txn(pmu, PERF_PMU_TXN_READ); 4275 4276 pmu->read(event); 4277 4278 for_each_sibling_event(sub, event) { 4279 if (sub->state == PERF_EVENT_STATE_ACTIVE) { 4280 /* 4281 * Use sibling's PMU rather than @event's since 4282 * sibling could be on different (eg: software) PMU. 4283 */ 4284 sub->pmu->read(sub); 4285 } 4286 } 4287 4288 data->ret = pmu->commit_txn(pmu); 4289 4290 unlock: 4291 raw_spin_unlock(&ctx->lock); 4292 } 4293 4294 static inline u64 perf_event_count(struct perf_event *event) 4295 { 4296 return local64_read(&event->count) + atomic64_read(&event->child_count); 4297 } 4298 4299 /* 4300 * NMI-safe method to read a local event, that is an event that 4301 * is: 4302 * - either for the current task, or for this CPU 4303 * - does not have inherit set, for inherited task events 4304 * will not be local and we cannot read them atomically 4305 * - must not have a pmu::count method 4306 */ 4307 int perf_event_read_local(struct perf_event *event, u64 *value, 4308 u64 *enabled, u64 *running) 4309 { 4310 unsigned long flags; 4311 int ret = 0; 4312 4313 /* 4314 * Disabling interrupts avoids all counter scheduling (context 4315 * switches, timer based rotation and IPIs). 4316 */ 4317 local_irq_save(flags); 4318 4319 /* 4320 * It must not be an event with inherit set, we cannot read 4321 * all child counters from atomic context. 4322 */ 4323 if (event->attr.inherit) { 4324 ret = -EOPNOTSUPP; 4325 goto out; 4326 } 4327 4328 /* If this is a per-task event, it must be for current */ 4329 if ((event->attach_state & PERF_ATTACH_TASK) && 4330 event->hw.target != current) { 4331 ret = -EINVAL; 4332 goto out; 4333 } 4334 4335 /* If this is a per-CPU event, it must be for this CPU */ 4336 if (!(event->attach_state & PERF_ATTACH_TASK) && 4337 event->cpu != smp_processor_id()) { 4338 ret = -EINVAL; 4339 goto out; 4340 } 4341 4342 /* If this is a pinned event it must be running on this CPU */ 4343 if (event->attr.pinned && event->oncpu != smp_processor_id()) { 4344 ret = -EBUSY; 4345 goto out; 4346 } 4347 4348 /* 4349 * If the event is currently on this CPU, its either a per-task event, 4350 * or local to this CPU. Furthermore it means its ACTIVE (otherwise 4351 * oncpu == -1). 4352 */ 4353 if (event->oncpu == smp_processor_id()) 4354 event->pmu->read(event); 4355 4356 *value = local64_read(&event->count); 4357 if (enabled || running) { 4358 u64 now = event->shadow_ctx_time + perf_clock(); 4359 u64 __enabled, __running; 4360 4361 __perf_update_times(event, now, &__enabled, &__running); 4362 if (enabled) 4363 *enabled = __enabled; 4364 if (running) 4365 *running = __running; 4366 } 4367 out: 4368 local_irq_restore(flags); 4369 4370 return ret; 4371 } 4372 4373 static int perf_event_read(struct perf_event *event, bool group) 4374 { 4375 enum perf_event_state state = READ_ONCE(event->state); 4376 int event_cpu, ret = 0; 4377 4378 /* 4379 * If event is enabled and currently active on a CPU, update the 4380 * value in the event structure: 4381 */ 4382 again: 4383 if (state == PERF_EVENT_STATE_ACTIVE) { 4384 struct perf_read_data data; 4385 4386 /* 4387 * Orders the ->state and ->oncpu loads such that if we see 4388 * ACTIVE we must also see the right ->oncpu. 4389 * 4390 * Matches the smp_wmb() from event_sched_in(). 4391 */ 4392 smp_rmb(); 4393 4394 event_cpu = READ_ONCE(event->oncpu); 4395 if ((unsigned)event_cpu >= nr_cpu_ids) 4396 return 0; 4397 4398 data = (struct perf_read_data){ 4399 .event = event, 4400 .group = group, 4401 .ret = 0, 4402 }; 4403 4404 preempt_disable(); 4405 event_cpu = __perf_event_read_cpu(event, event_cpu); 4406 4407 /* 4408 * Purposely ignore the smp_call_function_single() return 4409 * value. 4410 * 4411 * If event_cpu isn't a valid CPU it means the event got 4412 * scheduled out and that will have updated the event count. 4413 * 4414 * Therefore, either way, we'll have an up-to-date event count 4415 * after this. 4416 */ 4417 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1); 4418 preempt_enable(); 4419 ret = data.ret; 4420 4421 } else if (state == PERF_EVENT_STATE_INACTIVE) { 4422 struct perf_event_context *ctx = event->ctx; 4423 unsigned long flags; 4424 4425 raw_spin_lock_irqsave(&ctx->lock, flags); 4426 state = event->state; 4427 if (state != PERF_EVENT_STATE_INACTIVE) { 4428 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4429 goto again; 4430 } 4431 4432 /* 4433 * May read while context is not active (e.g., thread is 4434 * blocked), in that case we cannot update context time 4435 */ 4436 if (ctx->is_active & EVENT_TIME) { 4437 update_context_time(ctx); 4438 update_cgrp_time_from_event(event); 4439 } 4440 4441 perf_event_update_time(event); 4442 if (group) 4443 perf_event_update_sibling_time(event); 4444 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4445 } 4446 4447 return ret; 4448 } 4449 4450 /* 4451 * Initialize the perf_event context in a task_struct: 4452 */ 4453 static void __perf_event_init_context(struct perf_event_context *ctx) 4454 { 4455 raw_spin_lock_init(&ctx->lock); 4456 mutex_init(&ctx->mutex); 4457 INIT_LIST_HEAD(&ctx->active_ctx_list); 4458 perf_event_groups_init(&ctx->pinned_groups); 4459 perf_event_groups_init(&ctx->flexible_groups); 4460 INIT_LIST_HEAD(&ctx->event_list); 4461 INIT_LIST_HEAD(&ctx->pinned_active); 4462 INIT_LIST_HEAD(&ctx->flexible_active); 4463 refcount_set(&ctx->refcount, 1); 4464 } 4465 4466 static struct perf_event_context * 4467 alloc_perf_context(struct pmu *pmu, struct task_struct *task) 4468 { 4469 struct perf_event_context *ctx; 4470 4471 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 4472 if (!ctx) 4473 return NULL; 4474 4475 __perf_event_init_context(ctx); 4476 if (task) 4477 ctx->task = get_task_struct(task); 4478 ctx->pmu = pmu; 4479 4480 return ctx; 4481 } 4482 4483 static struct task_struct * 4484 find_lively_task_by_vpid(pid_t vpid) 4485 { 4486 struct task_struct *task; 4487 4488 rcu_read_lock(); 4489 if (!vpid) 4490 task = current; 4491 else 4492 task = find_task_by_vpid(vpid); 4493 if (task) 4494 get_task_struct(task); 4495 rcu_read_unlock(); 4496 4497 if (!task) 4498 return ERR_PTR(-ESRCH); 4499 4500 return task; 4501 } 4502 4503 /* 4504 * Returns a matching context with refcount and pincount. 4505 */ 4506 static struct perf_event_context * 4507 find_get_context(struct pmu *pmu, struct task_struct *task, 4508 struct perf_event *event) 4509 { 4510 struct perf_event_context *ctx, *clone_ctx = NULL; 4511 struct perf_cpu_context *cpuctx; 4512 void *task_ctx_data = NULL; 4513 unsigned long flags; 4514 int ctxn, err; 4515 int cpu = event->cpu; 4516 4517 if (!task) { 4518 /* Must be root to operate on a CPU event: */ 4519 err = perf_allow_cpu(&event->attr); 4520 if (err) 4521 return ERR_PTR(err); 4522 4523 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 4524 ctx = &cpuctx->ctx; 4525 get_ctx(ctx); 4526 ++ctx->pin_count; 4527 4528 return ctx; 4529 } 4530 4531 err = -EINVAL; 4532 ctxn = pmu->task_ctx_nr; 4533 if (ctxn < 0) 4534 goto errout; 4535 4536 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 4537 task_ctx_data = alloc_task_ctx_data(pmu); 4538 if (!task_ctx_data) { 4539 err = -ENOMEM; 4540 goto errout; 4541 } 4542 } 4543 4544 retry: 4545 ctx = perf_lock_task_context(task, ctxn, &flags); 4546 if (ctx) { 4547 clone_ctx = unclone_ctx(ctx); 4548 ++ctx->pin_count; 4549 4550 if (task_ctx_data && !ctx->task_ctx_data) { 4551 ctx->task_ctx_data = task_ctx_data; 4552 task_ctx_data = NULL; 4553 } 4554 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4555 4556 if (clone_ctx) 4557 put_ctx(clone_ctx); 4558 } else { 4559 ctx = alloc_perf_context(pmu, task); 4560 err = -ENOMEM; 4561 if (!ctx) 4562 goto errout; 4563 4564 if (task_ctx_data) { 4565 ctx->task_ctx_data = task_ctx_data; 4566 task_ctx_data = NULL; 4567 } 4568 4569 err = 0; 4570 mutex_lock(&task->perf_event_mutex); 4571 /* 4572 * If it has already passed perf_event_exit_task(). 4573 * we must see PF_EXITING, it takes this mutex too. 4574 */ 4575 if (task->flags & PF_EXITING) 4576 err = -ESRCH; 4577 else if (task->perf_event_ctxp[ctxn]) 4578 err = -EAGAIN; 4579 else { 4580 get_ctx(ctx); 4581 ++ctx->pin_count; 4582 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); 4583 } 4584 mutex_unlock(&task->perf_event_mutex); 4585 4586 if (unlikely(err)) { 4587 put_ctx(ctx); 4588 4589 if (err == -EAGAIN) 4590 goto retry; 4591 goto errout; 4592 } 4593 } 4594 4595 free_task_ctx_data(pmu, task_ctx_data); 4596 return ctx; 4597 4598 errout: 4599 free_task_ctx_data(pmu, task_ctx_data); 4600 return ERR_PTR(err); 4601 } 4602 4603 static void perf_event_free_filter(struct perf_event *event); 4604 static void perf_event_free_bpf_prog(struct perf_event *event); 4605 4606 static void free_event_rcu(struct rcu_head *head) 4607 { 4608 struct perf_event *event; 4609 4610 event = container_of(head, struct perf_event, rcu_head); 4611 if (event->ns) 4612 put_pid_ns(event->ns); 4613 perf_event_free_filter(event); 4614 kfree(event); 4615 } 4616 4617 static void ring_buffer_attach(struct perf_event *event, 4618 struct perf_buffer *rb); 4619 4620 static void detach_sb_event(struct perf_event *event) 4621 { 4622 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 4623 4624 raw_spin_lock(&pel->lock); 4625 list_del_rcu(&event->sb_list); 4626 raw_spin_unlock(&pel->lock); 4627 } 4628 4629 static bool is_sb_event(struct perf_event *event) 4630 { 4631 struct perf_event_attr *attr = &event->attr; 4632 4633 if (event->parent) 4634 return false; 4635 4636 if (event->attach_state & PERF_ATTACH_TASK) 4637 return false; 4638 4639 if (attr->mmap || attr->mmap_data || attr->mmap2 || 4640 attr->comm || attr->comm_exec || 4641 attr->task || attr->ksymbol || 4642 attr->context_switch || attr->text_poke || 4643 attr->bpf_event) 4644 return true; 4645 return false; 4646 } 4647 4648 static void unaccount_pmu_sb_event(struct perf_event *event) 4649 { 4650 if (is_sb_event(event)) 4651 detach_sb_event(event); 4652 } 4653 4654 static void unaccount_event_cpu(struct perf_event *event, int cpu) 4655 { 4656 if (event->parent) 4657 return; 4658 4659 if (is_cgroup_event(event)) 4660 atomic_dec(&per_cpu(perf_cgroup_events, cpu)); 4661 } 4662 4663 #ifdef CONFIG_NO_HZ_FULL 4664 static DEFINE_SPINLOCK(nr_freq_lock); 4665 #endif 4666 4667 static void unaccount_freq_event_nohz(void) 4668 { 4669 #ifdef CONFIG_NO_HZ_FULL 4670 spin_lock(&nr_freq_lock); 4671 if (atomic_dec_and_test(&nr_freq_events)) 4672 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS); 4673 spin_unlock(&nr_freq_lock); 4674 #endif 4675 } 4676 4677 static void unaccount_freq_event(void) 4678 { 4679 if (tick_nohz_full_enabled()) 4680 unaccount_freq_event_nohz(); 4681 else 4682 atomic_dec(&nr_freq_events); 4683 } 4684 4685 static void unaccount_event(struct perf_event *event) 4686 { 4687 bool dec = false; 4688 4689 if (event->parent) 4690 return; 4691 4692 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB)) 4693 dec = true; 4694 if (event->attr.mmap || event->attr.mmap_data) 4695 atomic_dec(&nr_mmap_events); 4696 if (event->attr.build_id) 4697 atomic_dec(&nr_build_id_events); 4698 if (event->attr.comm) 4699 atomic_dec(&nr_comm_events); 4700 if (event->attr.namespaces) 4701 atomic_dec(&nr_namespaces_events); 4702 if (event->attr.cgroup) 4703 atomic_dec(&nr_cgroup_events); 4704 if (event->attr.task) 4705 atomic_dec(&nr_task_events); 4706 if (event->attr.freq) 4707 unaccount_freq_event(); 4708 if (event->attr.context_switch) { 4709 dec = true; 4710 atomic_dec(&nr_switch_events); 4711 } 4712 if (is_cgroup_event(event)) 4713 dec = true; 4714 if (has_branch_stack(event)) 4715 dec = true; 4716 if (event->attr.ksymbol) 4717 atomic_dec(&nr_ksymbol_events); 4718 if (event->attr.bpf_event) 4719 atomic_dec(&nr_bpf_events); 4720 if (event->attr.text_poke) 4721 atomic_dec(&nr_text_poke_events); 4722 4723 if (dec) { 4724 if (!atomic_add_unless(&perf_sched_count, -1, 1)) 4725 schedule_delayed_work(&perf_sched_work, HZ); 4726 } 4727 4728 unaccount_event_cpu(event, event->cpu); 4729 4730 unaccount_pmu_sb_event(event); 4731 } 4732 4733 static void perf_sched_delayed(struct work_struct *work) 4734 { 4735 mutex_lock(&perf_sched_mutex); 4736 if (atomic_dec_and_test(&perf_sched_count)) 4737 static_branch_disable(&perf_sched_events); 4738 mutex_unlock(&perf_sched_mutex); 4739 } 4740 4741 /* 4742 * The following implement mutual exclusion of events on "exclusive" pmus 4743 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 4744 * at a time, so we disallow creating events that might conflict, namely: 4745 * 4746 * 1) cpu-wide events in the presence of per-task events, 4747 * 2) per-task events in the presence of cpu-wide events, 4748 * 3) two matching events on the same context. 4749 * 4750 * The former two cases are handled in the allocation path (perf_event_alloc(), 4751 * _free_event()), the latter -- before the first perf_install_in_context(). 4752 */ 4753 static int exclusive_event_init(struct perf_event *event) 4754 { 4755 struct pmu *pmu = event->pmu; 4756 4757 if (!is_exclusive_pmu(pmu)) 4758 return 0; 4759 4760 /* 4761 * Prevent co-existence of per-task and cpu-wide events on the 4762 * same exclusive pmu. 4763 * 4764 * Negative pmu::exclusive_cnt means there are cpu-wide 4765 * events on this "exclusive" pmu, positive means there are 4766 * per-task events. 4767 * 4768 * Since this is called in perf_event_alloc() path, event::ctx 4769 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 4770 * to mean "per-task event", because unlike other attach states it 4771 * never gets cleared. 4772 */ 4773 if (event->attach_state & PERF_ATTACH_TASK) { 4774 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 4775 return -EBUSY; 4776 } else { 4777 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 4778 return -EBUSY; 4779 } 4780 4781 return 0; 4782 } 4783 4784 static void exclusive_event_destroy(struct perf_event *event) 4785 { 4786 struct pmu *pmu = event->pmu; 4787 4788 if (!is_exclusive_pmu(pmu)) 4789 return; 4790 4791 /* see comment in exclusive_event_init() */ 4792 if (event->attach_state & PERF_ATTACH_TASK) 4793 atomic_dec(&pmu->exclusive_cnt); 4794 else 4795 atomic_inc(&pmu->exclusive_cnt); 4796 } 4797 4798 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 4799 { 4800 if ((e1->pmu == e2->pmu) && 4801 (e1->cpu == e2->cpu || 4802 e1->cpu == -1 || 4803 e2->cpu == -1)) 4804 return true; 4805 return false; 4806 } 4807 4808 static bool exclusive_event_installable(struct perf_event *event, 4809 struct perf_event_context *ctx) 4810 { 4811 struct perf_event *iter_event; 4812 struct pmu *pmu = event->pmu; 4813 4814 lockdep_assert_held(&ctx->mutex); 4815 4816 if (!is_exclusive_pmu(pmu)) 4817 return true; 4818 4819 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 4820 if (exclusive_event_match(iter_event, event)) 4821 return false; 4822 } 4823 4824 return true; 4825 } 4826 4827 static void perf_addr_filters_splice(struct perf_event *event, 4828 struct list_head *head); 4829 4830 static void _free_event(struct perf_event *event) 4831 { 4832 irq_work_sync(&event->pending); 4833 4834 unaccount_event(event); 4835 4836 security_perf_event_free(event); 4837 4838 if (event->rb) { 4839 /* 4840 * Can happen when we close an event with re-directed output. 4841 * 4842 * Since we have a 0 refcount, perf_mmap_close() will skip 4843 * over us; possibly making our ring_buffer_put() the last. 4844 */ 4845 mutex_lock(&event->mmap_mutex); 4846 ring_buffer_attach(event, NULL); 4847 mutex_unlock(&event->mmap_mutex); 4848 } 4849 4850 if (is_cgroup_event(event)) 4851 perf_detach_cgroup(event); 4852 4853 if (!event->parent) { 4854 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 4855 put_callchain_buffers(); 4856 } 4857 4858 perf_event_free_bpf_prog(event); 4859 perf_addr_filters_splice(event, NULL); 4860 kfree(event->addr_filter_ranges); 4861 4862 if (event->destroy) 4863 event->destroy(event); 4864 4865 /* 4866 * Must be after ->destroy(), due to uprobe_perf_close() using 4867 * hw.target. 4868 */ 4869 if (event->hw.target) 4870 put_task_struct(event->hw.target); 4871 4872 /* 4873 * perf_event_free_task() relies on put_ctx() being 'last', in particular 4874 * all task references must be cleaned up. 4875 */ 4876 if (event->ctx) 4877 put_ctx(event->ctx); 4878 4879 exclusive_event_destroy(event); 4880 module_put(event->pmu->module); 4881 4882 call_rcu(&event->rcu_head, free_event_rcu); 4883 } 4884 4885 /* 4886 * Used to free events which have a known refcount of 1, such as in error paths 4887 * where the event isn't exposed yet and inherited events. 4888 */ 4889 static void free_event(struct perf_event *event) 4890 { 4891 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 4892 "unexpected event refcount: %ld; ptr=%p\n", 4893 atomic_long_read(&event->refcount), event)) { 4894 /* leak to avoid use-after-free */ 4895 return; 4896 } 4897 4898 _free_event(event); 4899 } 4900 4901 /* 4902 * Remove user event from the owner task. 4903 */ 4904 static void perf_remove_from_owner(struct perf_event *event) 4905 { 4906 struct task_struct *owner; 4907 4908 rcu_read_lock(); 4909 /* 4910 * Matches the smp_store_release() in perf_event_exit_task(). If we 4911 * observe !owner it means the list deletion is complete and we can 4912 * indeed free this event, otherwise we need to serialize on 4913 * owner->perf_event_mutex. 4914 */ 4915 owner = READ_ONCE(event->owner); 4916 if (owner) { 4917 /* 4918 * Since delayed_put_task_struct() also drops the last 4919 * task reference we can safely take a new reference 4920 * while holding the rcu_read_lock(). 4921 */ 4922 get_task_struct(owner); 4923 } 4924 rcu_read_unlock(); 4925 4926 if (owner) { 4927 /* 4928 * If we're here through perf_event_exit_task() we're already 4929 * holding ctx->mutex which would be an inversion wrt. the 4930 * normal lock order. 4931 * 4932 * However we can safely take this lock because its the child 4933 * ctx->mutex. 4934 */ 4935 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 4936 4937 /* 4938 * We have to re-check the event->owner field, if it is cleared 4939 * we raced with perf_event_exit_task(), acquiring the mutex 4940 * ensured they're done, and we can proceed with freeing the 4941 * event. 4942 */ 4943 if (event->owner) { 4944 list_del_init(&event->owner_entry); 4945 smp_store_release(&event->owner, NULL); 4946 } 4947 mutex_unlock(&owner->perf_event_mutex); 4948 put_task_struct(owner); 4949 } 4950 } 4951 4952 static void put_event(struct perf_event *event) 4953 { 4954 if (!atomic_long_dec_and_test(&event->refcount)) 4955 return; 4956 4957 _free_event(event); 4958 } 4959 4960 /* 4961 * Kill an event dead; while event:refcount will preserve the event 4962 * object, it will not preserve its functionality. Once the last 'user' 4963 * gives up the object, we'll destroy the thing. 4964 */ 4965 int perf_event_release_kernel(struct perf_event *event) 4966 { 4967 struct perf_event_context *ctx = event->ctx; 4968 struct perf_event *child, *tmp; 4969 LIST_HEAD(free_list); 4970 4971 /* 4972 * If we got here through err_file: fput(event_file); we will not have 4973 * attached to a context yet. 4974 */ 4975 if (!ctx) { 4976 WARN_ON_ONCE(event->attach_state & 4977 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP)); 4978 goto no_ctx; 4979 } 4980 4981 if (!is_kernel_event(event)) 4982 perf_remove_from_owner(event); 4983 4984 ctx = perf_event_ctx_lock(event); 4985 WARN_ON_ONCE(ctx->parent_ctx); 4986 perf_remove_from_context(event, DETACH_GROUP); 4987 4988 raw_spin_lock_irq(&ctx->lock); 4989 /* 4990 * Mark this event as STATE_DEAD, there is no external reference to it 4991 * anymore. 4992 * 4993 * Anybody acquiring event->child_mutex after the below loop _must_ 4994 * also see this, most importantly inherit_event() which will avoid 4995 * placing more children on the list. 4996 * 4997 * Thus this guarantees that we will in fact observe and kill _ALL_ 4998 * child events. 4999 */ 5000 event->state = PERF_EVENT_STATE_DEAD; 5001 raw_spin_unlock_irq(&ctx->lock); 5002 5003 perf_event_ctx_unlock(event, ctx); 5004 5005 again: 5006 mutex_lock(&event->child_mutex); 5007 list_for_each_entry(child, &event->child_list, child_list) { 5008 5009 /* 5010 * Cannot change, child events are not migrated, see the 5011 * comment with perf_event_ctx_lock_nested(). 5012 */ 5013 ctx = READ_ONCE(child->ctx); 5014 /* 5015 * Since child_mutex nests inside ctx::mutex, we must jump 5016 * through hoops. We start by grabbing a reference on the ctx. 5017 * 5018 * Since the event cannot get freed while we hold the 5019 * child_mutex, the context must also exist and have a !0 5020 * reference count. 5021 */ 5022 get_ctx(ctx); 5023 5024 /* 5025 * Now that we have a ctx ref, we can drop child_mutex, and 5026 * acquire ctx::mutex without fear of it going away. Then we 5027 * can re-acquire child_mutex. 5028 */ 5029 mutex_unlock(&event->child_mutex); 5030 mutex_lock(&ctx->mutex); 5031 mutex_lock(&event->child_mutex); 5032 5033 /* 5034 * Now that we hold ctx::mutex and child_mutex, revalidate our 5035 * state, if child is still the first entry, it didn't get freed 5036 * and we can continue doing so. 5037 */ 5038 tmp = list_first_entry_or_null(&event->child_list, 5039 struct perf_event, child_list); 5040 if (tmp == child) { 5041 perf_remove_from_context(child, DETACH_GROUP); 5042 list_move(&child->child_list, &free_list); 5043 /* 5044 * This matches the refcount bump in inherit_event(); 5045 * this can't be the last reference. 5046 */ 5047 put_event(event); 5048 } 5049 5050 mutex_unlock(&event->child_mutex); 5051 mutex_unlock(&ctx->mutex); 5052 put_ctx(ctx); 5053 goto again; 5054 } 5055 mutex_unlock(&event->child_mutex); 5056 5057 list_for_each_entry_safe(child, tmp, &free_list, child_list) { 5058 void *var = &child->ctx->refcount; 5059 5060 list_del(&child->child_list); 5061 free_event(child); 5062 5063 /* 5064 * Wake any perf_event_free_task() waiting for this event to be 5065 * freed. 5066 */ 5067 smp_mb(); /* pairs with wait_var_event() */ 5068 wake_up_var(var); 5069 } 5070 5071 no_ctx: 5072 put_event(event); /* Must be the 'last' reference */ 5073 return 0; 5074 } 5075 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 5076 5077 /* 5078 * Called when the last reference to the file is gone. 5079 */ 5080 static int perf_release(struct inode *inode, struct file *file) 5081 { 5082 perf_event_release_kernel(file->private_data); 5083 return 0; 5084 } 5085 5086 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5087 { 5088 struct perf_event *child; 5089 u64 total = 0; 5090 5091 *enabled = 0; 5092 *running = 0; 5093 5094 mutex_lock(&event->child_mutex); 5095 5096 (void)perf_event_read(event, false); 5097 total += perf_event_count(event); 5098 5099 *enabled += event->total_time_enabled + 5100 atomic64_read(&event->child_total_time_enabled); 5101 *running += event->total_time_running + 5102 atomic64_read(&event->child_total_time_running); 5103 5104 list_for_each_entry(child, &event->child_list, child_list) { 5105 (void)perf_event_read(child, false); 5106 total += perf_event_count(child); 5107 *enabled += child->total_time_enabled; 5108 *running += child->total_time_running; 5109 } 5110 mutex_unlock(&event->child_mutex); 5111 5112 return total; 5113 } 5114 5115 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5116 { 5117 struct perf_event_context *ctx; 5118 u64 count; 5119 5120 ctx = perf_event_ctx_lock(event); 5121 count = __perf_event_read_value(event, enabled, running); 5122 perf_event_ctx_unlock(event, ctx); 5123 5124 return count; 5125 } 5126 EXPORT_SYMBOL_GPL(perf_event_read_value); 5127 5128 static int __perf_read_group_add(struct perf_event *leader, 5129 u64 read_format, u64 *values) 5130 { 5131 struct perf_event_context *ctx = leader->ctx; 5132 struct perf_event *sub; 5133 unsigned long flags; 5134 int n = 1; /* skip @nr */ 5135 int ret; 5136 5137 ret = perf_event_read(leader, true); 5138 if (ret) 5139 return ret; 5140 5141 raw_spin_lock_irqsave(&ctx->lock, flags); 5142 5143 /* 5144 * Since we co-schedule groups, {enabled,running} times of siblings 5145 * will be identical to those of the leader, so we only publish one 5146 * set. 5147 */ 5148 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 5149 values[n++] += leader->total_time_enabled + 5150 atomic64_read(&leader->child_total_time_enabled); 5151 } 5152 5153 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 5154 values[n++] += leader->total_time_running + 5155 atomic64_read(&leader->child_total_time_running); 5156 } 5157 5158 /* 5159 * Write {count,id} tuples for every sibling. 5160 */ 5161 values[n++] += perf_event_count(leader); 5162 if (read_format & PERF_FORMAT_ID) 5163 values[n++] = primary_event_id(leader); 5164 5165 for_each_sibling_event(sub, leader) { 5166 values[n++] += perf_event_count(sub); 5167 if (read_format & PERF_FORMAT_ID) 5168 values[n++] = primary_event_id(sub); 5169 } 5170 5171 raw_spin_unlock_irqrestore(&ctx->lock, flags); 5172 return 0; 5173 } 5174 5175 static int perf_read_group(struct perf_event *event, 5176 u64 read_format, char __user *buf) 5177 { 5178 struct perf_event *leader = event->group_leader, *child; 5179 struct perf_event_context *ctx = leader->ctx; 5180 int ret; 5181 u64 *values; 5182 5183 lockdep_assert_held(&ctx->mutex); 5184 5185 values = kzalloc(event->read_size, GFP_KERNEL); 5186 if (!values) 5187 return -ENOMEM; 5188 5189 values[0] = 1 + leader->nr_siblings; 5190 5191 /* 5192 * By locking the child_mutex of the leader we effectively 5193 * lock the child list of all siblings.. XXX explain how. 5194 */ 5195 mutex_lock(&leader->child_mutex); 5196 5197 ret = __perf_read_group_add(leader, read_format, values); 5198 if (ret) 5199 goto unlock; 5200 5201 list_for_each_entry(child, &leader->child_list, child_list) { 5202 ret = __perf_read_group_add(child, read_format, values); 5203 if (ret) 5204 goto unlock; 5205 } 5206 5207 mutex_unlock(&leader->child_mutex); 5208 5209 ret = event->read_size; 5210 if (copy_to_user(buf, values, event->read_size)) 5211 ret = -EFAULT; 5212 goto out; 5213 5214 unlock: 5215 mutex_unlock(&leader->child_mutex); 5216 out: 5217 kfree(values); 5218 return ret; 5219 } 5220 5221 static int perf_read_one(struct perf_event *event, 5222 u64 read_format, char __user *buf) 5223 { 5224 u64 enabled, running; 5225 u64 values[4]; 5226 int n = 0; 5227 5228 values[n++] = __perf_event_read_value(event, &enabled, &running); 5229 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 5230 values[n++] = enabled; 5231 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 5232 values[n++] = running; 5233 if (read_format & PERF_FORMAT_ID) 5234 values[n++] = primary_event_id(event); 5235 5236 if (copy_to_user(buf, values, n * sizeof(u64))) 5237 return -EFAULT; 5238 5239 return n * sizeof(u64); 5240 } 5241 5242 static bool is_event_hup(struct perf_event *event) 5243 { 5244 bool no_children; 5245 5246 if (event->state > PERF_EVENT_STATE_EXIT) 5247 return false; 5248 5249 mutex_lock(&event->child_mutex); 5250 no_children = list_empty(&event->child_list); 5251 mutex_unlock(&event->child_mutex); 5252 return no_children; 5253 } 5254 5255 /* 5256 * Read the performance event - simple non blocking version for now 5257 */ 5258 static ssize_t 5259 __perf_read(struct perf_event *event, char __user *buf, size_t count) 5260 { 5261 u64 read_format = event->attr.read_format; 5262 int ret; 5263 5264 /* 5265 * Return end-of-file for a read on an event that is in 5266 * error state (i.e. because it was pinned but it couldn't be 5267 * scheduled on to the CPU at some point). 5268 */ 5269 if (event->state == PERF_EVENT_STATE_ERROR) 5270 return 0; 5271 5272 if (count < event->read_size) 5273 return -ENOSPC; 5274 5275 WARN_ON_ONCE(event->ctx->parent_ctx); 5276 if (read_format & PERF_FORMAT_GROUP) 5277 ret = perf_read_group(event, read_format, buf); 5278 else 5279 ret = perf_read_one(event, read_format, buf); 5280 5281 return ret; 5282 } 5283 5284 static ssize_t 5285 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 5286 { 5287 struct perf_event *event = file->private_data; 5288 struct perf_event_context *ctx; 5289 int ret; 5290 5291 ret = security_perf_event_read(event); 5292 if (ret) 5293 return ret; 5294 5295 ctx = perf_event_ctx_lock(event); 5296 ret = __perf_read(event, buf, count); 5297 perf_event_ctx_unlock(event, ctx); 5298 5299 return ret; 5300 } 5301 5302 static __poll_t perf_poll(struct file *file, poll_table *wait) 5303 { 5304 struct perf_event *event = file->private_data; 5305 struct perf_buffer *rb; 5306 __poll_t events = EPOLLHUP; 5307 5308 poll_wait(file, &event->waitq, wait); 5309 5310 if (is_event_hup(event)) 5311 return events; 5312 5313 /* 5314 * Pin the event->rb by taking event->mmap_mutex; otherwise 5315 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 5316 */ 5317 mutex_lock(&event->mmap_mutex); 5318 rb = event->rb; 5319 if (rb) 5320 events = atomic_xchg(&rb->poll, 0); 5321 mutex_unlock(&event->mmap_mutex); 5322 return events; 5323 } 5324 5325 static void _perf_event_reset(struct perf_event *event) 5326 { 5327 (void)perf_event_read(event, false); 5328 local64_set(&event->count, 0); 5329 perf_event_update_userpage(event); 5330 } 5331 5332 /* Assume it's not an event with inherit set. */ 5333 u64 perf_event_pause(struct perf_event *event, bool reset) 5334 { 5335 struct perf_event_context *ctx; 5336 u64 count; 5337 5338 ctx = perf_event_ctx_lock(event); 5339 WARN_ON_ONCE(event->attr.inherit); 5340 _perf_event_disable(event); 5341 count = local64_read(&event->count); 5342 if (reset) 5343 local64_set(&event->count, 0); 5344 perf_event_ctx_unlock(event, ctx); 5345 5346 return count; 5347 } 5348 EXPORT_SYMBOL_GPL(perf_event_pause); 5349 5350 /* 5351 * Holding the top-level event's child_mutex means that any 5352 * descendant process that has inherited this event will block 5353 * in perf_event_exit_event() if it goes to exit, thus satisfying the 5354 * task existence requirements of perf_event_enable/disable. 5355 */ 5356 static void perf_event_for_each_child(struct perf_event *event, 5357 void (*func)(struct perf_event *)) 5358 { 5359 struct perf_event *child; 5360 5361 WARN_ON_ONCE(event->ctx->parent_ctx); 5362 5363 mutex_lock(&event->child_mutex); 5364 func(event); 5365 list_for_each_entry(child, &event->child_list, child_list) 5366 func(child); 5367 mutex_unlock(&event->child_mutex); 5368 } 5369 5370 static void perf_event_for_each(struct perf_event *event, 5371 void (*func)(struct perf_event *)) 5372 { 5373 struct perf_event_context *ctx = event->ctx; 5374 struct perf_event *sibling; 5375 5376 lockdep_assert_held(&ctx->mutex); 5377 5378 event = event->group_leader; 5379 5380 perf_event_for_each_child(event, func); 5381 for_each_sibling_event(sibling, event) 5382 perf_event_for_each_child(sibling, func); 5383 } 5384 5385 static void __perf_event_period(struct perf_event *event, 5386 struct perf_cpu_context *cpuctx, 5387 struct perf_event_context *ctx, 5388 void *info) 5389 { 5390 u64 value = *((u64 *)info); 5391 bool active; 5392 5393 if (event->attr.freq) { 5394 event->attr.sample_freq = value; 5395 } else { 5396 event->attr.sample_period = value; 5397 event->hw.sample_period = value; 5398 } 5399 5400 active = (event->state == PERF_EVENT_STATE_ACTIVE); 5401 if (active) { 5402 perf_pmu_disable(ctx->pmu); 5403 /* 5404 * We could be throttled; unthrottle now to avoid the tick 5405 * trying to unthrottle while we already re-started the event. 5406 */ 5407 if (event->hw.interrupts == MAX_INTERRUPTS) { 5408 event->hw.interrupts = 0; 5409 perf_log_throttle(event, 1); 5410 } 5411 event->pmu->stop(event, PERF_EF_UPDATE); 5412 } 5413 5414 local64_set(&event->hw.period_left, 0); 5415 5416 if (active) { 5417 event->pmu->start(event, PERF_EF_RELOAD); 5418 perf_pmu_enable(ctx->pmu); 5419 } 5420 } 5421 5422 static int perf_event_check_period(struct perf_event *event, u64 value) 5423 { 5424 return event->pmu->check_period(event, value); 5425 } 5426 5427 static int _perf_event_period(struct perf_event *event, u64 value) 5428 { 5429 if (!is_sampling_event(event)) 5430 return -EINVAL; 5431 5432 if (!value) 5433 return -EINVAL; 5434 5435 if (event->attr.freq && value > sysctl_perf_event_sample_rate) 5436 return -EINVAL; 5437 5438 if (perf_event_check_period(event, value)) 5439 return -EINVAL; 5440 5441 if (!event->attr.freq && (value & (1ULL << 63))) 5442 return -EINVAL; 5443 5444 event_function_call(event, __perf_event_period, &value); 5445 5446 return 0; 5447 } 5448 5449 int perf_event_period(struct perf_event *event, u64 value) 5450 { 5451 struct perf_event_context *ctx; 5452 int ret; 5453 5454 ctx = perf_event_ctx_lock(event); 5455 ret = _perf_event_period(event, value); 5456 perf_event_ctx_unlock(event, ctx); 5457 5458 return ret; 5459 } 5460 EXPORT_SYMBOL_GPL(perf_event_period); 5461 5462 static const struct file_operations perf_fops; 5463 5464 static inline int perf_fget_light(int fd, struct fd *p) 5465 { 5466 struct fd f = fdget(fd); 5467 if (!f.file) 5468 return -EBADF; 5469 5470 if (f.file->f_op != &perf_fops) { 5471 fdput(f); 5472 return -EBADF; 5473 } 5474 *p = f; 5475 return 0; 5476 } 5477 5478 static int perf_event_set_output(struct perf_event *event, 5479 struct perf_event *output_event); 5480 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 5481 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd); 5482 static int perf_copy_attr(struct perf_event_attr __user *uattr, 5483 struct perf_event_attr *attr); 5484 5485 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 5486 { 5487 void (*func)(struct perf_event *); 5488 u32 flags = arg; 5489 5490 switch (cmd) { 5491 case PERF_EVENT_IOC_ENABLE: 5492 func = _perf_event_enable; 5493 break; 5494 case PERF_EVENT_IOC_DISABLE: 5495 func = _perf_event_disable; 5496 break; 5497 case PERF_EVENT_IOC_RESET: 5498 func = _perf_event_reset; 5499 break; 5500 5501 case PERF_EVENT_IOC_REFRESH: 5502 return _perf_event_refresh(event, arg); 5503 5504 case PERF_EVENT_IOC_PERIOD: 5505 { 5506 u64 value; 5507 5508 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value))) 5509 return -EFAULT; 5510 5511 return _perf_event_period(event, value); 5512 } 5513 case PERF_EVENT_IOC_ID: 5514 { 5515 u64 id = primary_event_id(event); 5516 5517 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 5518 return -EFAULT; 5519 return 0; 5520 } 5521 5522 case PERF_EVENT_IOC_SET_OUTPUT: 5523 { 5524 int ret; 5525 if (arg != -1) { 5526 struct perf_event *output_event; 5527 struct fd output; 5528 ret = perf_fget_light(arg, &output); 5529 if (ret) 5530 return ret; 5531 output_event = output.file->private_data; 5532 ret = perf_event_set_output(event, output_event); 5533 fdput(output); 5534 } else { 5535 ret = perf_event_set_output(event, NULL); 5536 } 5537 return ret; 5538 } 5539 5540 case PERF_EVENT_IOC_SET_FILTER: 5541 return perf_event_set_filter(event, (void __user *)arg); 5542 5543 case PERF_EVENT_IOC_SET_BPF: 5544 return perf_event_set_bpf_prog(event, arg); 5545 5546 case PERF_EVENT_IOC_PAUSE_OUTPUT: { 5547 struct perf_buffer *rb; 5548 5549 rcu_read_lock(); 5550 rb = rcu_dereference(event->rb); 5551 if (!rb || !rb->nr_pages) { 5552 rcu_read_unlock(); 5553 return -EINVAL; 5554 } 5555 rb_toggle_paused(rb, !!arg); 5556 rcu_read_unlock(); 5557 return 0; 5558 } 5559 5560 case PERF_EVENT_IOC_QUERY_BPF: 5561 return perf_event_query_prog_array(event, (void __user *)arg); 5562 5563 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: { 5564 struct perf_event_attr new_attr; 5565 int err = perf_copy_attr((struct perf_event_attr __user *)arg, 5566 &new_attr); 5567 5568 if (err) 5569 return err; 5570 5571 return perf_event_modify_attr(event, &new_attr); 5572 } 5573 default: 5574 return -ENOTTY; 5575 } 5576 5577 if (flags & PERF_IOC_FLAG_GROUP) 5578 perf_event_for_each(event, func); 5579 else 5580 perf_event_for_each_child(event, func); 5581 5582 return 0; 5583 } 5584 5585 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5586 { 5587 struct perf_event *event = file->private_data; 5588 struct perf_event_context *ctx; 5589 long ret; 5590 5591 /* Treat ioctl like writes as it is likely a mutating operation. */ 5592 ret = security_perf_event_write(event); 5593 if (ret) 5594 return ret; 5595 5596 ctx = perf_event_ctx_lock(event); 5597 ret = _perf_ioctl(event, cmd, arg); 5598 perf_event_ctx_unlock(event, ctx); 5599 5600 return ret; 5601 } 5602 5603 #ifdef CONFIG_COMPAT 5604 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 5605 unsigned long arg) 5606 { 5607 switch (_IOC_NR(cmd)) { 5608 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 5609 case _IOC_NR(PERF_EVENT_IOC_ID): 5610 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF): 5611 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES): 5612 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 5613 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 5614 cmd &= ~IOCSIZE_MASK; 5615 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 5616 } 5617 break; 5618 } 5619 return perf_ioctl(file, cmd, arg); 5620 } 5621 #else 5622 # define perf_compat_ioctl NULL 5623 #endif 5624 5625 int perf_event_task_enable(void) 5626 { 5627 struct perf_event_context *ctx; 5628 struct perf_event *event; 5629 5630 mutex_lock(¤t->perf_event_mutex); 5631 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 5632 ctx = perf_event_ctx_lock(event); 5633 perf_event_for_each_child(event, _perf_event_enable); 5634 perf_event_ctx_unlock(event, ctx); 5635 } 5636 mutex_unlock(¤t->perf_event_mutex); 5637 5638 return 0; 5639 } 5640 5641 int perf_event_task_disable(void) 5642 { 5643 struct perf_event_context *ctx; 5644 struct perf_event *event; 5645 5646 mutex_lock(¤t->perf_event_mutex); 5647 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 5648 ctx = perf_event_ctx_lock(event); 5649 perf_event_for_each_child(event, _perf_event_disable); 5650 perf_event_ctx_unlock(event, ctx); 5651 } 5652 mutex_unlock(¤t->perf_event_mutex); 5653 5654 return 0; 5655 } 5656 5657 static int perf_event_index(struct perf_event *event) 5658 { 5659 if (event->hw.state & PERF_HES_STOPPED) 5660 return 0; 5661 5662 if (event->state != PERF_EVENT_STATE_ACTIVE) 5663 return 0; 5664 5665 return event->pmu->event_idx(event); 5666 } 5667 5668 static void calc_timer_values(struct perf_event *event, 5669 u64 *now, 5670 u64 *enabled, 5671 u64 *running) 5672 { 5673 u64 ctx_time; 5674 5675 *now = perf_clock(); 5676 ctx_time = event->shadow_ctx_time + *now; 5677 __perf_update_times(event, ctx_time, enabled, running); 5678 } 5679 5680 static void perf_event_init_userpage(struct perf_event *event) 5681 { 5682 struct perf_event_mmap_page *userpg; 5683 struct perf_buffer *rb; 5684 5685 rcu_read_lock(); 5686 rb = rcu_dereference(event->rb); 5687 if (!rb) 5688 goto unlock; 5689 5690 userpg = rb->user_page; 5691 5692 /* Allow new userspace to detect that bit 0 is deprecated */ 5693 userpg->cap_bit0_is_deprecated = 1; 5694 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 5695 userpg->data_offset = PAGE_SIZE; 5696 userpg->data_size = perf_data_size(rb); 5697 5698 unlock: 5699 rcu_read_unlock(); 5700 } 5701 5702 void __weak arch_perf_update_userpage( 5703 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 5704 { 5705 } 5706 5707 /* 5708 * Callers need to ensure there can be no nesting of this function, otherwise 5709 * the seqlock logic goes bad. We can not serialize this because the arch 5710 * code calls this from NMI context. 5711 */ 5712 void perf_event_update_userpage(struct perf_event *event) 5713 { 5714 struct perf_event_mmap_page *userpg; 5715 struct perf_buffer *rb; 5716 u64 enabled, running, now; 5717 5718 rcu_read_lock(); 5719 rb = rcu_dereference(event->rb); 5720 if (!rb) 5721 goto unlock; 5722 5723 /* 5724 * compute total_time_enabled, total_time_running 5725 * based on snapshot values taken when the event 5726 * was last scheduled in. 5727 * 5728 * we cannot simply called update_context_time() 5729 * because of locking issue as we can be called in 5730 * NMI context 5731 */ 5732 calc_timer_values(event, &now, &enabled, &running); 5733 5734 userpg = rb->user_page; 5735 /* 5736 * Disable preemption to guarantee consistent time stamps are stored to 5737 * the user page. 5738 */ 5739 preempt_disable(); 5740 ++userpg->lock; 5741 barrier(); 5742 userpg->index = perf_event_index(event); 5743 userpg->offset = perf_event_count(event); 5744 if (userpg->index) 5745 userpg->offset -= local64_read(&event->hw.prev_count); 5746 5747 userpg->time_enabled = enabled + 5748 atomic64_read(&event->child_total_time_enabled); 5749 5750 userpg->time_running = running + 5751 atomic64_read(&event->child_total_time_running); 5752 5753 arch_perf_update_userpage(event, userpg, now); 5754 5755 barrier(); 5756 ++userpg->lock; 5757 preempt_enable(); 5758 unlock: 5759 rcu_read_unlock(); 5760 } 5761 EXPORT_SYMBOL_GPL(perf_event_update_userpage); 5762 5763 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf) 5764 { 5765 struct perf_event *event = vmf->vma->vm_file->private_data; 5766 struct perf_buffer *rb; 5767 vm_fault_t ret = VM_FAULT_SIGBUS; 5768 5769 if (vmf->flags & FAULT_FLAG_MKWRITE) { 5770 if (vmf->pgoff == 0) 5771 ret = 0; 5772 return ret; 5773 } 5774 5775 rcu_read_lock(); 5776 rb = rcu_dereference(event->rb); 5777 if (!rb) 5778 goto unlock; 5779 5780 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 5781 goto unlock; 5782 5783 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 5784 if (!vmf->page) 5785 goto unlock; 5786 5787 get_page(vmf->page); 5788 vmf->page->mapping = vmf->vma->vm_file->f_mapping; 5789 vmf->page->index = vmf->pgoff; 5790 5791 ret = 0; 5792 unlock: 5793 rcu_read_unlock(); 5794 5795 return ret; 5796 } 5797 5798 static void ring_buffer_attach(struct perf_event *event, 5799 struct perf_buffer *rb) 5800 { 5801 struct perf_buffer *old_rb = NULL; 5802 unsigned long flags; 5803 5804 if (event->rb) { 5805 /* 5806 * Should be impossible, we set this when removing 5807 * event->rb_entry and wait/clear when adding event->rb_entry. 5808 */ 5809 WARN_ON_ONCE(event->rcu_pending); 5810 5811 old_rb = event->rb; 5812 spin_lock_irqsave(&old_rb->event_lock, flags); 5813 list_del_rcu(&event->rb_entry); 5814 spin_unlock_irqrestore(&old_rb->event_lock, flags); 5815 5816 event->rcu_batches = get_state_synchronize_rcu(); 5817 event->rcu_pending = 1; 5818 } 5819 5820 if (rb) { 5821 if (event->rcu_pending) { 5822 cond_synchronize_rcu(event->rcu_batches); 5823 event->rcu_pending = 0; 5824 } 5825 5826 spin_lock_irqsave(&rb->event_lock, flags); 5827 list_add_rcu(&event->rb_entry, &rb->event_list); 5828 spin_unlock_irqrestore(&rb->event_lock, flags); 5829 } 5830 5831 /* 5832 * Avoid racing with perf_mmap_close(AUX): stop the event 5833 * before swizzling the event::rb pointer; if it's getting 5834 * unmapped, its aux_mmap_count will be 0 and it won't 5835 * restart. See the comment in __perf_pmu_output_stop(). 5836 * 5837 * Data will inevitably be lost when set_output is done in 5838 * mid-air, but then again, whoever does it like this is 5839 * not in for the data anyway. 5840 */ 5841 if (has_aux(event)) 5842 perf_event_stop(event, 0); 5843 5844 rcu_assign_pointer(event->rb, rb); 5845 5846 if (old_rb) { 5847 ring_buffer_put(old_rb); 5848 /* 5849 * Since we detached before setting the new rb, so that we 5850 * could attach the new rb, we could have missed a wakeup. 5851 * Provide it now. 5852 */ 5853 wake_up_all(&event->waitq); 5854 } 5855 } 5856 5857 static void ring_buffer_wakeup(struct perf_event *event) 5858 { 5859 struct perf_buffer *rb; 5860 5861 rcu_read_lock(); 5862 rb = rcu_dereference(event->rb); 5863 if (rb) { 5864 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 5865 wake_up_all(&event->waitq); 5866 } 5867 rcu_read_unlock(); 5868 } 5869 5870 struct perf_buffer *ring_buffer_get(struct perf_event *event) 5871 { 5872 struct perf_buffer *rb; 5873 5874 rcu_read_lock(); 5875 rb = rcu_dereference(event->rb); 5876 if (rb) { 5877 if (!refcount_inc_not_zero(&rb->refcount)) 5878 rb = NULL; 5879 } 5880 rcu_read_unlock(); 5881 5882 return rb; 5883 } 5884 5885 void ring_buffer_put(struct perf_buffer *rb) 5886 { 5887 if (!refcount_dec_and_test(&rb->refcount)) 5888 return; 5889 5890 WARN_ON_ONCE(!list_empty(&rb->event_list)); 5891 5892 call_rcu(&rb->rcu_head, rb_free_rcu); 5893 } 5894 5895 static void perf_mmap_open(struct vm_area_struct *vma) 5896 { 5897 struct perf_event *event = vma->vm_file->private_data; 5898 5899 atomic_inc(&event->mmap_count); 5900 atomic_inc(&event->rb->mmap_count); 5901 5902 if (vma->vm_pgoff) 5903 atomic_inc(&event->rb->aux_mmap_count); 5904 5905 if (event->pmu->event_mapped) 5906 event->pmu->event_mapped(event, vma->vm_mm); 5907 } 5908 5909 static void perf_pmu_output_stop(struct perf_event *event); 5910 5911 /* 5912 * A buffer can be mmap()ed multiple times; either directly through the same 5913 * event, or through other events by use of perf_event_set_output(). 5914 * 5915 * In order to undo the VM accounting done by perf_mmap() we need to destroy 5916 * the buffer here, where we still have a VM context. This means we need 5917 * to detach all events redirecting to us. 5918 */ 5919 static void perf_mmap_close(struct vm_area_struct *vma) 5920 { 5921 struct perf_event *event = vma->vm_file->private_data; 5922 struct perf_buffer *rb = ring_buffer_get(event); 5923 struct user_struct *mmap_user = rb->mmap_user; 5924 int mmap_locked = rb->mmap_locked; 5925 unsigned long size = perf_data_size(rb); 5926 bool detach_rest = false; 5927 5928 if (event->pmu->event_unmapped) 5929 event->pmu->event_unmapped(event, vma->vm_mm); 5930 5931 /* 5932 * rb->aux_mmap_count will always drop before rb->mmap_count and 5933 * event->mmap_count, so it is ok to use event->mmap_mutex to 5934 * serialize with perf_mmap here. 5935 */ 5936 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 5937 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) { 5938 /* 5939 * Stop all AUX events that are writing to this buffer, 5940 * so that we can free its AUX pages and corresponding PMU 5941 * data. Note that after rb::aux_mmap_count dropped to zero, 5942 * they won't start any more (see perf_aux_output_begin()). 5943 */ 5944 perf_pmu_output_stop(event); 5945 5946 /* now it's safe to free the pages */ 5947 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm); 5948 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm); 5949 5950 /* this has to be the last one */ 5951 rb_free_aux(rb); 5952 WARN_ON_ONCE(refcount_read(&rb->aux_refcount)); 5953 5954 mutex_unlock(&event->mmap_mutex); 5955 } 5956 5957 if (atomic_dec_and_test(&rb->mmap_count)) 5958 detach_rest = true; 5959 5960 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 5961 goto out_put; 5962 5963 ring_buffer_attach(event, NULL); 5964 mutex_unlock(&event->mmap_mutex); 5965 5966 /* If there's still other mmap()s of this buffer, we're done. */ 5967 if (!detach_rest) 5968 goto out_put; 5969 5970 /* 5971 * No other mmap()s, detach from all other events that might redirect 5972 * into the now unreachable buffer. Somewhat complicated by the 5973 * fact that rb::event_lock otherwise nests inside mmap_mutex. 5974 */ 5975 again: 5976 rcu_read_lock(); 5977 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 5978 if (!atomic_long_inc_not_zero(&event->refcount)) { 5979 /* 5980 * This event is en-route to free_event() which will 5981 * detach it and remove it from the list. 5982 */ 5983 continue; 5984 } 5985 rcu_read_unlock(); 5986 5987 mutex_lock(&event->mmap_mutex); 5988 /* 5989 * Check we didn't race with perf_event_set_output() which can 5990 * swizzle the rb from under us while we were waiting to 5991 * acquire mmap_mutex. 5992 * 5993 * If we find a different rb; ignore this event, a next 5994 * iteration will no longer find it on the list. We have to 5995 * still restart the iteration to make sure we're not now 5996 * iterating the wrong list. 5997 */ 5998 if (event->rb == rb) 5999 ring_buffer_attach(event, NULL); 6000 6001 mutex_unlock(&event->mmap_mutex); 6002 put_event(event); 6003 6004 /* 6005 * Restart the iteration; either we're on the wrong list or 6006 * destroyed its integrity by doing a deletion. 6007 */ 6008 goto again; 6009 } 6010 rcu_read_unlock(); 6011 6012 /* 6013 * It could be there's still a few 0-ref events on the list; they'll 6014 * get cleaned up by free_event() -- they'll also still have their 6015 * ref on the rb and will free it whenever they are done with it. 6016 * 6017 * Aside from that, this buffer is 'fully' detached and unmapped, 6018 * undo the VM accounting. 6019 */ 6020 6021 atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked, 6022 &mmap_user->locked_vm); 6023 atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm); 6024 free_uid(mmap_user); 6025 6026 out_put: 6027 ring_buffer_put(rb); /* could be last */ 6028 } 6029 6030 static const struct vm_operations_struct perf_mmap_vmops = { 6031 .open = perf_mmap_open, 6032 .close = perf_mmap_close, /* non mergeable */ 6033 .fault = perf_mmap_fault, 6034 .page_mkwrite = perf_mmap_fault, 6035 }; 6036 6037 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 6038 { 6039 struct perf_event *event = file->private_data; 6040 unsigned long user_locked, user_lock_limit; 6041 struct user_struct *user = current_user(); 6042 struct perf_buffer *rb = NULL; 6043 unsigned long locked, lock_limit; 6044 unsigned long vma_size; 6045 unsigned long nr_pages; 6046 long user_extra = 0, extra = 0; 6047 int ret = 0, flags = 0; 6048 6049 /* 6050 * Don't allow mmap() of inherited per-task counters. This would 6051 * create a performance issue due to all children writing to the 6052 * same rb. 6053 */ 6054 if (event->cpu == -1 && event->attr.inherit) 6055 return -EINVAL; 6056 6057 if (!(vma->vm_flags & VM_SHARED)) 6058 return -EINVAL; 6059 6060 ret = security_perf_event_read(event); 6061 if (ret) 6062 return ret; 6063 6064 vma_size = vma->vm_end - vma->vm_start; 6065 6066 if (vma->vm_pgoff == 0) { 6067 nr_pages = (vma_size / PAGE_SIZE) - 1; 6068 } else { 6069 /* 6070 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 6071 * mapped, all subsequent mappings should have the same size 6072 * and offset. Must be above the normal perf buffer. 6073 */ 6074 u64 aux_offset, aux_size; 6075 6076 if (!event->rb) 6077 return -EINVAL; 6078 6079 nr_pages = vma_size / PAGE_SIZE; 6080 6081 mutex_lock(&event->mmap_mutex); 6082 ret = -EINVAL; 6083 6084 rb = event->rb; 6085 if (!rb) 6086 goto aux_unlock; 6087 6088 aux_offset = READ_ONCE(rb->user_page->aux_offset); 6089 aux_size = READ_ONCE(rb->user_page->aux_size); 6090 6091 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 6092 goto aux_unlock; 6093 6094 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 6095 goto aux_unlock; 6096 6097 /* already mapped with a different offset */ 6098 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 6099 goto aux_unlock; 6100 6101 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) 6102 goto aux_unlock; 6103 6104 /* already mapped with a different size */ 6105 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 6106 goto aux_unlock; 6107 6108 if (!is_power_of_2(nr_pages)) 6109 goto aux_unlock; 6110 6111 if (!atomic_inc_not_zero(&rb->mmap_count)) 6112 goto aux_unlock; 6113 6114 if (rb_has_aux(rb)) { 6115 atomic_inc(&rb->aux_mmap_count); 6116 ret = 0; 6117 goto unlock; 6118 } 6119 6120 atomic_set(&rb->aux_mmap_count, 1); 6121 user_extra = nr_pages; 6122 6123 goto accounting; 6124 } 6125 6126 /* 6127 * If we have rb pages ensure they're a power-of-two number, so we 6128 * can do bitmasks instead of modulo. 6129 */ 6130 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 6131 return -EINVAL; 6132 6133 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 6134 return -EINVAL; 6135 6136 WARN_ON_ONCE(event->ctx->parent_ctx); 6137 again: 6138 mutex_lock(&event->mmap_mutex); 6139 if (event->rb) { 6140 if (event->rb->nr_pages != nr_pages) { 6141 ret = -EINVAL; 6142 goto unlock; 6143 } 6144 6145 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 6146 /* 6147 * Raced against perf_mmap_close() through 6148 * perf_event_set_output(). Try again, hope for better 6149 * luck. 6150 */ 6151 mutex_unlock(&event->mmap_mutex); 6152 goto again; 6153 } 6154 6155 goto unlock; 6156 } 6157 6158 user_extra = nr_pages + 1; 6159 6160 accounting: 6161 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 6162 6163 /* 6164 * Increase the limit linearly with more CPUs: 6165 */ 6166 user_lock_limit *= num_online_cpus(); 6167 6168 user_locked = atomic_long_read(&user->locked_vm); 6169 6170 /* 6171 * sysctl_perf_event_mlock may have changed, so that 6172 * user->locked_vm > user_lock_limit 6173 */ 6174 if (user_locked > user_lock_limit) 6175 user_locked = user_lock_limit; 6176 user_locked += user_extra; 6177 6178 if (user_locked > user_lock_limit) { 6179 /* 6180 * charge locked_vm until it hits user_lock_limit; 6181 * charge the rest from pinned_vm 6182 */ 6183 extra = user_locked - user_lock_limit; 6184 user_extra -= extra; 6185 } 6186 6187 lock_limit = rlimit(RLIMIT_MEMLOCK); 6188 lock_limit >>= PAGE_SHIFT; 6189 locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra; 6190 6191 if ((locked > lock_limit) && perf_is_paranoid() && 6192 !capable(CAP_IPC_LOCK)) { 6193 ret = -EPERM; 6194 goto unlock; 6195 } 6196 6197 WARN_ON(!rb && event->rb); 6198 6199 if (vma->vm_flags & VM_WRITE) 6200 flags |= RING_BUFFER_WRITABLE; 6201 6202 if (!rb) { 6203 rb = rb_alloc(nr_pages, 6204 event->attr.watermark ? event->attr.wakeup_watermark : 0, 6205 event->cpu, flags); 6206 6207 if (!rb) { 6208 ret = -ENOMEM; 6209 goto unlock; 6210 } 6211 6212 atomic_set(&rb->mmap_count, 1); 6213 rb->mmap_user = get_current_user(); 6214 rb->mmap_locked = extra; 6215 6216 ring_buffer_attach(event, rb); 6217 6218 perf_event_init_userpage(event); 6219 perf_event_update_userpage(event); 6220 } else { 6221 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 6222 event->attr.aux_watermark, flags); 6223 if (!ret) 6224 rb->aux_mmap_locked = extra; 6225 } 6226 6227 unlock: 6228 if (!ret) { 6229 atomic_long_add(user_extra, &user->locked_vm); 6230 atomic64_add(extra, &vma->vm_mm->pinned_vm); 6231 6232 atomic_inc(&event->mmap_count); 6233 } else if (rb) { 6234 atomic_dec(&rb->mmap_count); 6235 } 6236 aux_unlock: 6237 mutex_unlock(&event->mmap_mutex); 6238 6239 /* 6240 * Since pinned accounting is per vm we cannot allow fork() to copy our 6241 * vma. 6242 */ 6243 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP; 6244 vma->vm_ops = &perf_mmap_vmops; 6245 6246 if (event->pmu->event_mapped) 6247 event->pmu->event_mapped(event, vma->vm_mm); 6248 6249 return ret; 6250 } 6251 6252 static int perf_fasync(int fd, struct file *filp, int on) 6253 { 6254 struct inode *inode = file_inode(filp); 6255 struct perf_event *event = filp->private_data; 6256 int retval; 6257 6258 inode_lock(inode); 6259 retval = fasync_helper(fd, filp, on, &event->fasync); 6260 inode_unlock(inode); 6261 6262 if (retval < 0) 6263 return retval; 6264 6265 return 0; 6266 } 6267 6268 static const struct file_operations perf_fops = { 6269 .llseek = no_llseek, 6270 .release = perf_release, 6271 .read = perf_read, 6272 .poll = perf_poll, 6273 .unlocked_ioctl = perf_ioctl, 6274 .compat_ioctl = perf_compat_ioctl, 6275 .mmap = perf_mmap, 6276 .fasync = perf_fasync, 6277 }; 6278 6279 /* 6280 * Perf event wakeup 6281 * 6282 * If there's data, ensure we set the poll() state and publish everything 6283 * to user-space before waking everybody up. 6284 */ 6285 6286 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event) 6287 { 6288 /* only the parent has fasync state */ 6289 if (event->parent) 6290 event = event->parent; 6291 return &event->fasync; 6292 } 6293 6294 void perf_event_wakeup(struct perf_event *event) 6295 { 6296 ring_buffer_wakeup(event); 6297 6298 if (event->pending_kill) { 6299 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); 6300 event->pending_kill = 0; 6301 } 6302 } 6303 6304 static void perf_pending_event_disable(struct perf_event *event) 6305 { 6306 int cpu = READ_ONCE(event->pending_disable); 6307 6308 if (cpu < 0) 6309 return; 6310 6311 if (cpu == smp_processor_id()) { 6312 WRITE_ONCE(event->pending_disable, -1); 6313 perf_event_disable_local(event); 6314 return; 6315 } 6316 6317 /* 6318 * CPU-A CPU-B 6319 * 6320 * perf_event_disable_inatomic() 6321 * @pending_disable = CPU-A; 6322 * irq_work_queue(); 6323 * 6324 * sched-out 6325 * @pending_disable = -1; 6326 * 6327 * sched-in 6328 * perf_event_disable_inatomic() 6329 * @pending_disable = CPU-B; 6330 * irq_work_queue(); // FAILS 6331 * 6332 * irq_work_run() 6333 * perf_pending_event() 6334 * 6335 * But the event runs on CPU-B and wants disabling there. 6336 */ 6337 irq_work_queue_on(&event->pending, cpu); 6338 } 6339 6340 static void perf_pending_event(struct irq_work *entry) 6341 { 6342 struct perf_event *event = container_of(entry, struct perf_event, pending); 6343 int rctx; 6344 6345 rctx = perf_swevent_get_recursion_context(); 6346 /* 6347 * If we 'fail' here, that's OK, it means recursion is already disabled 6348 * and we won't recurse 'further'. 6349 */ 6350 6351 perf_pending_event_disable(event); 6352 6353 if (event->pending_wakeup) { 6354 event->pending_wakeup = 0; 6355 perf_event_wakeup(event); 6356 } 6357 6358 if (rctx >= 0) 6359 perf_swevent_put_recursion_context(rctx); 6360 } 6361 6362 /* 6363 * We assume there is only KVM supporting the callbacks. 6364 * Later on, we might change it to a list if there is 6365 * another virtualization implementation supporting the callbacks. 6366 */ 6367 struct perf_guest_info_callbacks *perf_guest_cbs; 6368 6369 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 6370 { 6371 perf_guest_cbs = cbs; 6372 return 0; 6373 } 6374 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 6375 6376 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 6377 { 6378 perf_guest_cbs = NULL; 6379 return 0; 6380 } 6381 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 6382 6383 static void 6384 perf_output_sample_regs(struct perf_output_handle *handle, 6385 struct pt_regs *regs, u64 mask) 6386 { 6387 int bit; 6388 DECLARE_BITMAP(_mask, 64); 6389 6390 bitmap_from_u64(_mask, mask); 6391 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) { 6392 u64 val; 6393 6394 val = perf_reg_value(regs, bit); 6395 perf_output_put(handle, val); 6396 } 6397 } 6398 6399 static void perf_sample_regs_user(struct perf_regs *regs_user, 6400 struct pt_regs *regs) 6401 { 6402 if (user_mode(regs)) { 6403 regs_user->abi = perf_reg_abi(current); 6404 regs_user->regs = regs; 6405 } else if (!(current->flags & PF_KTHREAD)) { 6406 perf_get_regs_user(regs_user, regs); 6407 } else { 6408 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 6409 regs_user->regs = NULL; 6410 } 6411 } 6412 6413 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 6414 struct pt_regs *regs) 6415 { 6416 regs_intr->regs = regs; 6417 regs_intr->abi = perf_reg_abi(current); 6418 } 6419 6420 6421 /* 6422 * Get remaining task size from user stack pointer. 6423 * 6424 * It'd be better to take stack vma map and limit this more 6425 * precisely, but there's no way to get it safely under interrupt, 6426 * so using TASK_SIZE as limit. 6427 */ 6428 static u64 perf_ustack_task_size(struct pt_regs *regs) 6429 { 6430 unsigned long addr = perf_user_stack_pointer(regs); 6431 6432 if (!addr || addr >= TASK_SIZE) 6433 return 0; 6434 6435 return TASK_SIZE - addr; 6436 } 6437 6438 static u16 6439 perf_sample_ustack_size(u16 stack_size, u16 header_size, 6440 struct pt_regs *regs) 6441 { 6442 u64 task_size; 6443 6444 /* No regs, no stack pointer, no dump. */ 6445 if (!regs) 6446 return 0; 6447 6448 /* 6449 * Check if we fit in with the requested stack size into the: 6450 * - TASK_SIZE 6451 * If we don't, we limit the size to the TASK_SIZE. 6452 * 6453 * - remaining sample size 6454 * If we don't, we customize the stack size to 6455 * fit in to the remaining sample size. 6456 */ 6457 6458 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 6459 stack_size = min(stack_size, (u16) task_size); 6460 6461 /* Current header size plus static size and dynamic size. */ 6462 header_size += 2 * sizeof(u64); 6463 6464 /* Do we fit in with the current stack dump size? */ 6465 if ((u16) (header_size + stack_size) < header_size) { 6466 /* 6467 * If we overflow the maximum size for the sample, 6468 * we customize the stack dump size to fit in. 6469 */ 6470 stack_size = USHRT_MAX - header_size - sizeof(u64); 6471 stack_size = round_up(stack_size, sizeof(u64)); 6472 } 6473 6474 return stack_size; 6475 } 6476 6477 static void 6478 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 6479 struct pt_regs *regs) 6480 { 6481 /* Case of a kernel thread, nothing to dump */ 6482 if (!regs) { 6483 u64 size = 0; 6484 perf_output_put(handle, size); 6485 } else { 6486 unsigned long sp; 6487 unsigned int rem; 6488 u64 dyn_size; 6489 mm_segment_t fs; 6490 6491 /* 6492 * We dump: 6493 * static size 6494 * - the size requested by user or the best one we can fit 6495 * in to the sample max size 6496 * data 6497 * - user stack dump data 6498 * dynamic size 6499 * - the actual dumped size 6500 */ 6501 6502 /* Static size. */ 6503 perf_output_put(handle, dump_size); 6504 6505 /* Data. */ 6506 sp = perf_user_stack_pointer(regs); 6507 fs = force_uaccess_begin(); 6508 rem = __output_copy_user(handle, (void *) sp, dump_size); 6509 force_uaccess_end(fs); 6510 dyn_size = dump_size - rem; 6511 6512 perf_output_skip(handle, rem); 6513 6514 /* Dynamic size. */ 6515 perf_output_put(handle, dyn_size); 6516 } 6517 } 6518 6519 static unsigned long perf_prepare_sample_aux(struct perf_event *event, 6520 struct perf_sample_data *data, 6521 size_t size) 6522 { 6523 struct perf_event *sampler = event->aux_event; 6524 struct perf_buffer *rb; 6525 6526 data->aux_size = 0; 6527 6528 if (!sampler) 6529 goto out; 6530 6531 if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE)) 6532 goto out; 6533 6534 if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id())) 6535 goto out; 6536 6537 rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler); 6538 if (!rb) 6539 goto out; 6540 6541 /* 6542 * If this is an NMI hit inside sampling code, don't take 6543 * the sample. See also perf_aux_sample_output(). 6544 */ 6545 if (READ_ONCE(rb->aux_in_sampling)) { 6546 data->aux_size = 0; 6547 } else { 6548 size = min_t(size_t, size, perf_aux_size(rb)); 6549 data->aux_size = ALIGN(size, sizeof(u64)); 6550 } 6551 ring_buffer_put(rb); 6552 6553 out: 6554 return data->aux_size; 6555 } 6556 6557 long perf_pmu_snapshot_aux(struct perf_buffer *rb, 6558 struct perf_event *event, 6559 struct perf_output_handle *handle, 6560 unsigned long size) 6561 { 6562 unsigned long flags; 6563 long ret; 6564 6565 /* 6566 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler 6567 * paths. If we start calling them in NMI context, they may race with 6568 * the IRQ ones, that is, for example, re-starting an event that's just 6569 * been stopped, which is why we're using a separate callback that 6570 * doesn't change the event state. 6571 * 6572 * IRQs need to be disabled to prevent IPIs from racing with us. 6573 */ 6574 local_irq_save(flags); 6575 /* 6576 * Guard against NMI hits inside the critical section; 6577 * see also perf_prepare_sample_aux(). 6578 */ 6579 WRITE_ONCE(rb->aux_in_sampling, 1); 6580 barrier(); 6581 6582 ret = event->pmu->snapshot_aux(event, handle, size); 6583 6584 barrier(); 6585 WRITE_ONCE(rb->aux_in_sampling, 0); 6586 local_irq_restore(flags); 6587 6588 return ret; 6589 } 6590 6591 static void perf_aux_sample_output(struct perf_event *event, 6592 struct perf_output_handle *handle, 6593 struct perf_sample_data *data) 6594 { 6595 struct perf_event *sampler = event->aux_event; 6596 struct perf_buffer *rb; 6597 unsigned long pad; 6598 long size; 6599 6600 if (WARN_ON_ONCE(!sampler || !data->aux_size)) 6601 return; 6602 6603 rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler); 6604 if (!rb) 6605 return; 6606 6607 size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size); 6608 6609 /* 6610 * An error here means that perf_output_copy() failed (returned a 6611 * non-zero surplus that it didn't copy), which in its current 6612 * enlightened implementation is not possible. If that changes, we'd 6613 * like to know. 6614 */ 6615 if (WARN_ON_ONCE(size < 0)) 6616 goto out_put; 6617 6618 /* 6619 * The pad comes from ALIGN()ing data->aux_size up to u64 in 6620 * perf_prepare_sample_aux(), so should not be more than that. 6621 */ 6622 pad = data->aux_size - size; 6623 if (WARN_ON_ONCE(pad >= sizeof(u64))) 6624 pad = 8; 6625 6626 if (pad) { 6627 u64 zero = 0; 6628 perf_output_copy(handle, &zero, pad); 6629 } 6630 6631 out_put: 6632 ring_buffer_put(rb); 6633 } 6634 6635 static void __perf_event_header__init_id(struct perf_event_header *header, 6636 struct perf_sample_data *data, 6637 struct perf_event *event) 6638 { 6639 u64 sample_type = event->attr.sample_type; 6640 6641 data->type = sample_type; 6642 header->size += event->id_header_size; 6643 6644 if (sample_type & PERF_SAMPLE_TID) { 6645 /* namespace issues */ 6646 data->tid_entry.pid = perf_event_pid(event, current); 6647 data->tid_entry.tid = perf_event_tid(event, current); 6648 } 6649 6650 if (sample_type & PERF_SAMPLE_TIME) 6651 data->time = perf_event_clock(event); 6652 6653 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 6654 data->id = primary_event_id(event); 6655 6656 if (sample_type & PERF_SAMPLE_STREAM_ID) 6657 data->stream_id = event->id; 6658 6659 if (sample_type & PERF_SAMPLE_CPU) { 6660 data->cpu_entry.cpu = raw_smp_processor_id(); 6661 data->cpu_entry.reserved = 0; 6662 } 6663 } 6664 6665 void perf_event_header__init_id(struct perf_event_header *header, 6666 struct perf_sample_data *data, 6667 struct perf_event *event) 6668 { 6669 if (event->attr.sample_id_all) 6670 __perf_event_header__init_id(header, data, event); 6671 } 6672 6673 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 6674 struct perf_sample_data *data) 6675 { 6676 u64 sample_type = data->type; 6677 6678 if (sample_type & PERF_SAMPLE_TID) 6679 perf_output_put(handle, data->tid_entry); 6680 6681 if (sample_type & PERF_SAMPLE_TIME) 6682 perf_output_put(handle, data->time); 6683 6684 if (sample_type & PERF_SAMPLE_ID) 6685 perf_output_put(handle, data->id); 6686 6687 if (sample_type & PERF_SAMPLE_STREAM_ID) 6688 perf_output_put(handle, data->stream_id); 6689 6690 if (sample_type & PERF_SAMPLE_CPU) 6691 perf_output_put(handle, data->cpu_entry); 6692 6693 if (sample_type & PERF_SAMPLE_IDENTIFIER) 6694 perf_output_put(handle, data->id); 6695 } 6696 6697 void perf_event__output_id_sample(struct perf_event *event, 6698 struct perf_output_handle *handle, 6699 struct perf_sample_data *sample) 6700 { 6701 if (event->attr.sample_id_all) 6702 __perf_event__output_id_sample(handle, sample); 6703 } 6704 6705 static void perf_output_read_one(struct perf_output_handle *handle, 6706 struct perf_event *event, 6707 u64 enabled, u64 running) 6708 { 6709 u64 read_format = event->attr.read_format; 6710 u64 values[4]; 6711 int n = 0; 6712 6713 values[n++] = perf_event_count(event); 6714 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 6715 values[n++] = enabled + 6716 atomic64_read(&event->child_total_time_enabled); 6717 } 6718 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 6719 values[n++] = running + 6720 atomic64_read(&event->child_total_time_running); 6721 } 6722 if (read_format & PERF_FORMAT_ID) 6723 values[n++] = primary_event_id(event); 6724 6725 __output_copy(handle, values, n * sizeof(u64)); 6726 } 6727 6728 static void perf_output_read_group(struct perf_output_handle *handle, 6729 struct perf_event *event, 6730 u64 enabled, u64 running) 6731 { 6732 struct perf_event *leader = event->group_leader, *sub; 6733 u64 read_format = event->attr.read_format; 6734 u64 values[5]; 6735 int n = 0; 6736 6737 values[n++] = 1 + leader->nr_siblings; 6738 6739 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 6740 values[n++] = enabled; 6741 6742 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 6743 values[n++] = running; 6744 6745 if ((leader != event) && 6746 (leader->state == PERF_EVENT_STATE_ACTIVE)) 6747 leader->pmu->read(leader); 6748 6749 values[n++] = perf_event_count(leader); 6750 if (read_format & PERF_FORMAT_ID) 6751 values[n++] = primary_event_id(leader); 6752 6753 __output_copy(handle, values, n * sizeof(u64)); 6754 6755 for_each_sibling_event(sub, leader) { 6756 n = 0; 6757 6758 if ((sub != event) && 6759 (sub->state == PERF_EVENT_STATE_ACTIVE)) 6760 sub->pmu->read(sub); 6761 6762 values[n++] = perf_event_count(sub); 6763 if (read_format & PERF_FORMAT_ID) 6764 values[n++] = primary_event_id(sub); 6765 6766 __output_copy(handle, values, n * sizeof(u64)); 6767 } 6768 } 6769 6770 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 6771 PERF_FORMAT_TOTAL_TIME_RUNNING) 6772 6773 /* 6774 * XXX PERF_SAMPLE_READ vs inherited events seems difficult. 6775 * 6776 * The problem is that its both hard and excessively expensive to iterate the 6777 * child list, not to mention that its impossible to IPI the children running 6778 * on another CPU, from interrupt/NMI context. 6779 */ 6780 static void perf_output_read(struct perf_output_handle *handle, 6781 struct perf_event *event) 6782 { 6783 u64 enabled = 0, running = 0, now; 6784 u64 read_format = event->attr.read_format; 6785 6786 /* 6787 * compute total_time_enabled, total_time_running 6788 * based on snapshot values taken when the event 6789 * was last scheduled in. 6790 * 6791 * we cannot simply called update_context_time() 6792 * because of locking issue as we are called in 6793 * NMI context 6794 */ 6795 if (read_format & PERF_FORMAT_TOTAL_TIMES) 6796 calc_timer_values(event, &now, &enabled, &running); 6797 6798 if (event->attr.read_format & PERF_FORMAT_GROUP) 6799 perf_output_read_group(handle, event, enabled, running); 6800 else 6801 perf_output_read_one(handle, event, enabled, running); 6802 } 6803 6804 static inline bool perf_sample_save_hw_index(struct perf_event *event) 6805 { 6806 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX; 6807 } 6808 6809 void perf_output_sample(struct perf_output_handle *handle, 6810 struct perf_event_header *header, 6811 struct perf_sample_data *data, 6812 struct perf_event *event) 6813 { 6814 u64 sample_type = data->type; 6815 6816 perf_output_put(handle, *header); 6817 6818 if (sample_type & PERF_SAMPLE_IDENTIFIER) 6819 perf_output_put(handle, data->id); 6820 6821 if (sample_type & PERF_SAMPLE_IP) 6822 perf_output_put(handle, data->ip); 6823 6824 if (sample_type & PERF_SAMPLE_TID) 6825 perf_output_put(handle, data->tid_entry); 6826 6827 if (sample_type & PERF_SAMPLE_TIME) 6828 perf_output_put(handle, data->time); 6829 6830 if (sample_type & PERF_SAMPLE_ADDR) 6831 perf_output_put(handle, data->addr); 6832 6833 if (sample_type & PERF_SAMPLE_ID) 6834 perf_output_put(handle, data->id); 6835 6836 if (sample_type & PERF_SAMPLE_STREAM_ID) 6837 perf_output_put(handle, data->stream_id); 6838 6839 if (sample_type & PERF_SAMPLE_CPU) 6840 perf_output_put(handle, data->cpu_entry); 6841 6842 if (sample_type & PERF_SAMPLE_PERIOD) 6843 perf_output_put(handle, data->period); 6844 6845 if (sample_type & PERF_SAMPLE_READ) 6846 perf_output_read(handle, event); 6847 6848 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 6849 int size = 1; 6850 6851 size += data->callchain->nr; 6852 size *= sizeof(u64); 6853 __output_copy(handle, data->callchain, size); 6854 } 6855 6856 if (sample_type & PERF_SAMPLE_RAW) { 6857 struct perf_raw_record *raw = data->raw; 6858 6859 if (raw) { 6860 struct perf_raw_frag *frag = &raw->frag; 6861 6862 perf_output_put(handle, raw->size); 6863 do { 6864 if (frag->copy) { 6865 __output_custom(handle, frag->copy, 6866 frag->data, frag->size); 6867 } else { 6868 __output_copy(handle, frag->data, 6869 frag->size); 6870 } 6871 if (perf_raw_frag_last(frag)) 6872 break; 6873 frag = frag->next; 6874 } while (1); 6875 if (frag->pad) 6876 __output_skip(handle, NULL, frag->pad); 6877 } else { 6878 struct { 6879 u32 size; 6880 u32 data; 6881 } raw = { 6882 .size = sizeof(u32), 6883 .data = 0, 6884 }; 6885 perf_output_put(handle, raw); 6886 } 6887 } 6888 6889 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 6890 if (data->br_stack) { 6891 size_t size; 6892 6893 size = data->br_stack->nr 6894 * sizeof(struct perf_branch_entry); 6895 6896 perf_output_put(handle, data->br_stack->nr); 6897 if (perf_sample_save_hw_index(event)) 6898 perf_output_put(handle, data->br_stack->hw_idx); 6899 perf_output_copy(handle, data->br_stack->entries, size); 6900 } else { 6901 /* 6902 * we always store at least the value of nr 6903 */ 6904 u64 nr = 0; 6905 perf_output_put(handle, nr); 6906 } 6907 } 6908 6909 if (sample_type & PERF_SAMPLE_REGS_USER) { 6910 u64 abi = data->regs_user.abi; 6911 6912 /* 6913 * If there are no regs to dump, notice it through 6914 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 6915 */ 6916 perf_output_put(handle, abi); 6917 6918 if (abi) { 6919 u64 mask = event->attr.sample_regs_user; 6920 perf_output_sample_regs(handle, 6921 data->regs_user.regs, 6922 mask); 6923 } 6924 } 6925 6926 if (sample_type & PERF_SAMPLE_STACK_USER) { 6927 perf_output_sample_ustack(handle, 6928 data->stack_user_size, 6929 data->regs_user.regs); 6930 } 6931 6932 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) 6933 perf_output_put(handle, data->weight.full); 6934 6935 if (sample_type & PERF_SAMPLE_DATA_SRC) 6936 perf_output_put(handle, data->data_src.val); 6937 6938 if (sample_type & PERF_SAMPLE_TRANSACTION) 6939 perf_output_put(handle, data->txn); 6940 6941 if (sample_type & PERF_SAMPLE_REGS_INTR) { 6942 u64 abi = data->regs_intr.abi; 6943 /* 6944 * If there are no regs to dump, notice it through 6945 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 6946 */ 6947 perf_output_put(handle, abi); 6948 6949 if (abi) { 6950 u64 mask = event->attr.sample_regs_intr; 6951 6952 perf_output_sample_regs(handle, 6953 data->regs_intr.regs, 6954 mask); 6955 } 6956 } 6957 6958 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 6959 perf_output_put(handle, data->phys_addr); 6960 6961 if (sample_type & PERF_SAMPLE_CGROUP) 6962 perf_output_put(handle, data->cgroup); 6963 6964 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 6965 perf_output_put(handle, data->data_page_size); 6966 6967 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 6968 perf_output_put(handle, data->code_page_size); 6969 6970 if (sample_type & PERF_SAMPLE_AUX) { 6971 perf_output_put(handle, data->aux_size); 6972 6973 if (data->aux_size) 6974 perf_aux_sample_output(event, handle, data); 6975 } 6976 6977 if (!event->attr.watermark) { 6978 int wakeup_events = event->attr.wakeup_events; 6979 6980 if (wakeup_events) { 6981 struct perf_buffer *rb = handle->rb; 6982 int events = local_inc_return(&rb->events); 6983 6984 if (events >= wakeup_events) { 6985 local_sub(wakeup_events, &rb->events); 6986 local_inc(&rb->wakeup); 6987 } 6988 } 6989 } 6990 } 6991 6992 static u64 perf_virt_to_phys(u64 virt) 6993 { 6994 u64 phys_addr = 0; 6995 struct page *p = NULL; 6996 6997 if (!virt) 6998 return 0; 6999 7000 if (virt >= TASK_SIZE) { 7001 /* If it's vmalloc()d memory, leave phys_addr as 0 */ 7002 if (virt_addr_valid((void *)(uintptr_t)virt) && 7003 !(virt >= VMALLOC_START && virt < VMALLOC_END)) 7004 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt); 7005 } else { 7006 /* 7007 * Walking the pages tables for user address. 7008 * Interrupts are disabled, so it prevents any tear down 7009 * of the page tables. 7010 * Try IRQ-safe get_user_page_fast_only first. 7011 * If failed, leave phys_addr as 0. 7012 */ 7013 if (current->mm != NULL) { 7014 pagefault_disable(); 7015 if (get_user_page_fast_only(virt, 0, &p)) 7016 phys_addr = page_to_phys(p) + virt % PAGE_SIZE; 7017 pagefault_enable(); 7018 } 7019 7020 if (p) 7021 put_page(p); 7022 } 7023 7024 return phys_addr; 7025 } 7026 7027 /* 7028 * Return the pagetable size of a given virtual address. 7029 */ 7030 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr) 7031 { 7032 u64 size = 0; 7033 7034 #ifdef CONFIG_HAVE_FAST_GUP 7035 pgd_t *pgdp, pgd; 7036 p4d_t *p4dp, p4d; 7037 pud_t *pudp, pud; 7038 pmd_t *pmdp, pmd; 7039 pte_t *ptep, pte; 7040 7041 pgdp = pgd_offset(mm, addr); 7042 pgd = READ_ONCE(*pgdp); 7043 if (pgd_none(pgd)) 7044 return 0; 7045 7046 if (pgd_leaf(pgd)) 7047 return pgd_leaf_size(pgd); 7048 7049 p4dp = p4d_offset_lockless(pgdp, pgd, addr); 7050 p4d = READ_ONCE(*p4dp); 7051 if (!p4d_present(p4d)) 7052 return 0; 7053 7054 if (p4d_leaf(p4d)) 7055 return p4d_leaf_size(p4d); 7056 7057 pudp = pud_offset_lockless(p4dp, p4d, addr); 7058 pud = READ_ONCE(*pudp); 7059 if (!pud_present(pud)) 7060 return 0; 7061 7062 if (pud_leaf(pud)) 7063 return pud_leaf_size(pud); 7064 7065 pmdp = pmd_offset_lockless(pudp, pud, addr); 7066 pmd = READ_ONCE(*pmdp); 7067 if (!pmd_present(pmd)) 7068 return 0; 7069 7070 if (pmd_leaf(pmd)) 7071 return pmd_leaf_size(pmd); 7072 7073 ptep = pte_offset_map(&pmd, addr); 7074 pte = ptep_get_lockless(ptep); 7075 if (pte_present(pte)) 7076 size = pte_leaf_size(pte); 7077 pte_unmap(ptep); 7078 #endif /* CONFIG_HAVE_FAST_GUP */ 7079 7080 return size; 7081 } 7082 7083 static u64 perf_get_page_size(unsigned long addr) 7084 { 7085 struct mm_struct *mm; 7086 unsigned long flags; 7087 u64 size; 7088 7089 if (!addr) 7090 return 0; 7091 7092 /* 7093 * Software page-table walkers must disable IRQs, 7094 * which prevents any tear down of the page tables. 7095 */ 7096 local_irq_save(flags); 7097 7098 mm = current->mm; 7099 if (!mm) { 7100 /* 7101 * For kernel threads and the like, use init_mm so that 7102 * we can find kernel memory. 7103 */ 7104 mm = &init_mm; 7105 } 7106 7107 size = perf_get_pgtable_size(mm, addr); 7108 7109 local_irq_restore(flags); 7110 7111 return size; 7112 } 7113 7114 static struct perf_callchain_entry __empty_callchain = { .nr = 0, }; 7115 7116 struct perf_callchain_entry * 7117 perf_callchain(struct perf_event *event, struct pt_regs *regs) 7118 { 7119 bool kernel = !event->attr.exclude_callchain_kernel; 7120 bool user = !event->attr.exclude_callchain_user; 7121 /* Disallow cross-task user callchains. */ 7122 bool crosstask = event->ctx->task && event->ctx->task != current; 7123 const u32 max_stack = event->attr.sample_max_stack; 7124 struct perf_callchain_entry *callchain; 7125 7126 if (!kernel && !user) 7127 return &__empty_callchain; 7128 7129 callchain = get_perf_callchain(regs, 0, kernel, user, 7130 max_stack, crosstask, true); 7131 return callchain ?: &__empty_callchain; 7132 } 7133 7134 void perf_prepare_sample(struct perf_event_header *header, 7135 struct perf_sample_data *data, 7136 struct perf_event *event, 7137 struct pt_regs *regs) 7138 { 7139 u64 sample_type = event->attr.sample_type; 7140 7141 header->type = PERF_RECORD_SAMPLE; 7142 header->size = sizeof(*header) + event->header_size; 7143 7144 header->misc = 0; 7145 header->misc |= perf_misc_flags(regs); 7146 7147 __perf_event_header__init_id(header, data, event); 7148 7149 if (sample_type & (PERF_SAMPLE_IP | PERF_SAMPLE_CODE_PAGE_SIZE)) 7150 data->ip = perf_instruction_pointer(regs); 7151 7152 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 7153 int size = 1; 7154 7155 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY)) 7156 data->callchain = perf_callchain(event, regs); 7157 7158 size += data->callchain->nr; 7159 7160 header->size += size * sizeof(u64); 7161 } 7162 7163 if (sample_type & PERF_SAMPLE_RAW) { 7164 struct perf_raw_record *raw = data->raw; 7165 int size; 7166 7167 if (raw) { 7168 struct perf_raw_frag *frag = &raw->frag; 7169 u32 sum = 0; 7170 7171 do { 7172 sum += frag->size; 7173 if (perf_raw_frag_last(frag)) 7174 break; 7175 frag = frag->next; 7176 } while (1); 7177 7178 size = round_up(sum + sizeof(u32), sizeof(u64)); 7179 raw->size = size - sizeof(u32); 7180 frag->pad = raw->size - sum; 7181 } else { 7182 size = sizeof(u64); 7183 } 7184 7185 header->size += size; 7186 } 7187 7188 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 7189 int size = sizeof(u64); /* nr */ 7190 if (data->br_stack) { 7191 if (perf_sample_save_hw_index(event)) 7192 size += sizeof(u64); 7193 7194 size += data->br_stack->nr 7195 * sizeof(struct perf_branch_entry); 7196 } 7197 header->size += size; 7198 } 7199 7200 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER)) 7201 perf_sample_regs_user(&data->regs_user, regs); 7202 7203 if (sample_type & PERF_SAMPLE_REGS_USER) { 7204 /* regs dump ABI info */ 7205 int size = sizeof(u64); 7206 7207 if (data->regs_user.regs) { 7208 u64 mask = event->attr.sample_regs_user; 7209 size += hweight64(mask) * sizeof(u64); 7210 } 7211 7212 header->size += size; 7213 } 7214 7215 if (sample_type & PERF_SAMPLE_STACK_USER) { 7216 /* 7217 * Either we need PERF_SAMPLE_STACK_USER bit to be always 7218 * processed as the last one or have additional check added 7219 * in case new sample type is added, because we could eat 7220 * up the rest of the sample size. 7221 */ 7222 u16 stack_size = event->attr.sample_stack_user; 7223 u16 size = sizeof(u64); 7224 7225 stack_size = perf_sample_ustack_size(stack_size, header->size, 7226 data->regs_user.regs); 7227 7228 /* 7229 * If there is something to dump, add space for the dump 7230 * itself and for the field that tells the dynamic size, 7231 * which is how many have been actually dumped. 7232 */ 7233 if (stack_size) 7234 size += sizeof(u64) + stack_size; 7235 7236 data->stack_user_size = stack_size; 7237 header->size += size; 7238 } 7239 7240 if (sample_type & PERF_SAMPLE_REGS_INTR) { 7241 /* regs dump ABI info */ 7242 int size = sizeof(u64); 7243 7244 perf_sample_regs_intr(&data->regs_intr, regs); 7245 7246 if (data->regs_intr.regs) { 7247 u64 mask = event->attr.sample_regs_intr; 7248 7249 size += hweight64(mask) * sizeof(u64); 7250 } 7251 7252 header->size += size; 7253 } 7254 7255 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 7256 data->phys_addr = perf_virt_to_phys(data->addr); 7257 7258 #ifdef CONFIG_CGROUP_PERF 7259 if (sample_type & PERF_SAMPLE_CGROUP) { 7260 struct cgroup *cgrp; 7261 7262 /* protected by RCU */ 7263 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup; 7264 data->cgroup = cgroup_id(cgrp); 7265 } 7266 #endif 7267 7268 /* 7269 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't 7270 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr, 7271 * but the value will not dump to the userspace. 7272 */ 7273 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 7274 data->data_page_size = perf_get_page_size(data->addr); 7275 7276 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 7277 data->code_page_size = perf_get_page_size(data->ip); 7278 7279 if (sample_type & PERF_SAMPLE_AUX) { 7280 u64 size; 7281 7282 header->size += sizeof(u64); /* size */ 7283 7284 /* 7285 * Given the 16bit nature of header::size, an AUX sample can 7286 * easily overflow it, what with all the preceding sample bits. 7287 * Make sure this doesn't happen by using up to U16_MAX bytes 7288 * per sample in total (rounded down to 8 byte boundary). 7289 */ 7290 size = min_t(size_t, U16_MAX - header->size, 7291 event->attr.aux_sample_size); 7292 size = rounddown(size, 8); 7293 size = perf_prepare_sample_aux(event, data, size); 7294 7295 WARN_ON_ONCE(size + header->size > U16_MAX); 7296 header->size += size; 7297 } 7298 /* 7299 * If you're adding more sample types here, you likely need to do 7300 * something about the overflowing header::size, like repurpose the 7301 * lowest 3 bits of size, which should be always zero at the moment. 7302 * This raises a more important question, do we really need 512k sized 7303 * samples and why, so good argumentation is in order for whatever you 7304 * do here next. 7305 */ 7306 WARN_ON_ONCE(header->size & 7); 7307 } 7308 7309 static __always_inline int 7310 __perf_event_output(struct perf_event *event, 7311 struct perf_sample_data *data, 7312 struct pt_regs *regs, 7313 int (*output_begin)(struct perf_output_handle *, 7314 struct perf_sample_data *, 7315 struct perf_event *, 7316 unsigned int)) 7317 { 7318 struct perf_output_handle handle; 7319 struct perf_event_header header; 7320 int err; 7321 7322 /* protect the callchain buffers */ 7323 rcu_read_lock(); 7324 7325 perf_prepare_sample(&header, data, event, regs); 7326 7327 err = output_begin(&handle, data, event, header.size); 7328 if (err) 7329 goto exit; 7330 7331 perf_output_sample(&handle, &header, data, event); 7332 7333 perf_output_end(&handle); 7334 7335 exit: 7336 rcu_read_unlock(); 7337 return err; 7338 } 7339 7340 void 7341 perf_event_output_forward(struct perf_event *event, 7342 struct perf_sample_data *data, 7343 struct pt_regs *regs) 7344 { 7345 __perf_event_output(event, data, regs, perf_output_begin_forward); 7346 } 7347 7348 void 7349 perf_event_output_backward(struct perf_event *event, 7350 struct perf_sample_data *data, 7351 struct pt_regs *regs) 7352 { 7353 __perf_event_output(event, data, regs, perf_output_begin_backward); 7354 } 7355 7356 int 7357 perf_event_output(struct perf_event *event, 7358 struct perf_sample_data *data, 7359 struct pt_regs *regs) 7360 { 7361 return __perf_event_output(event, data, regs, perf_output_begin); 7362 } 7363 7364 /* 7365 * read event_id 7366 */ 7367 7368 struct perf_read_event { 7369 struct perf_event_header header; 7370 7371 u32 pid; 7372 u32 tid; 7373 }; 7374 7375 static void 7376 perf_event_read_event(struct perf_event *event, 7377 struct task_struct *task) 7378 { 7379 struct perf_output_handle handle; 7380 struct perf_sample_data sample; 7381 struct perf_read_event read_event = { 7382 .header = { 7383 .type = PERF_RECORD_READ, 7384 .misc = 0, 7385 .size = sizeof(read_event) + event->read_size, 7386 }, 7387 .pid = perf_event_pid(event, task), 7388 .tid = perf_event_tid(event, task), 7389 }; 7390 int ret; 7391 7392 perf_event_header__init_id(&read_event.header, &sample, event); 7393 ret = perf_output_begin(&handle, &sample, event, read_event.header.size); 7394 if (ret) 7395 return; 7396 7397 perf_output_put(&handle, read_event); 7398 perf_output_read(&handle, event); 7399 perf_event__output_id_sample(event, &handle, &sample); 7400 7401 perf_output_end(&handle); 7402 } 7403 7404 typedef void (perf_iterate_f)(struct perf_event *event, void *data); 7405 7406 static void 7407 perf_iterate_ctx(struct perf_event_context *ctx, 7408 perf_iterate_f output, 7409 void *data, bool all) 7410 { 7411 struct perf_event *event; 7412 7413 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 7414 if (!all) { 7415 if (event->state < PERF_EVENT_STATE_INACTIVE) 7416 continue; 7417 if (!event_filter_match(event)) 7418 continue; 7419 } 7420 7421 output(event, data); 7422 } 7423 } 7424 7425 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data) 7426 { 7427 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events); 7428 struct perf_event *event; 7429 7430 list_for_each_entry_rcu(event, &pel->list, sb_list) { 7431 /* 7432 * Skip events that are not fully formed yet; ensure that 7433 * if we observe event->ctx, both event and ctx will be 7434 * complete enough. See perf_install_in_context(). 7435 */ 7436 if (!smp_load_acquire(&event->ctx)) 7437 continue; 7438 7439 if (event->state < PERF_EVENT_STATE_INACTIVE) 7440 continue; 7441 if (!event_filter_match(event)) 7442 continue; 7443 output(event, data); 7444 } 7445 } 7446 7447 /* 7448 * Iterate all events that need to receive side-band events. 7449 * 7450 * For new callers; ensure that account_pmu_sb_event() includes 7451 * your event, otherwise it might not get delivered. 7452 */ 7453 static void 7454 perf_iterate_sb(perf_iterate_f output, void *data, 7455 struct perf_event_context *task_ctx) 7456 { 7457 struct perf_event_context *ctx; 7458 int ctxn; 7459 7460 rcu_read_lock(); 7461 preempt_disable(); 7462 7463 /* 7464 * If we have task_ctx != NULL we only notify the task context itself. 7465 * The task_ctx is set only for EXIT events before releasing task 7466 * context. 7467 */ 7468 if (task_ctx) { 7469 perf_iterate_ctx(task_ctx, output, data, false); 7470 goto done; 7471 } 7472 7473 perf_iterate_sb_cpu(output, data); 7474 7475 for_each_task_context_nr(ctxn) { 7476 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 7477 if (ctx) 7478 perf_iterate_ctx(ctx, output, data, false); 7479 } 7480 done: 7481 preempt_enable(); 7482 rcu_read_unlock(); 7483 } 7484 7485 /* 7486 * Clear all file-based filters at exec, they'll have to be 7487 * re-instated when/if these objects are mmapped again. 7488 */ 7489 static void perf_event_addr_filters_exec(struct perf_event *event, void *data) 7490 { 7491 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 7492 struct perf_addr_filter *filter; 7493 unsigned int restart = 0, count = 0; 7494 unsigned long flags; 7495 7496 if (!has_addr_filter(event)) 7497 return; 7498 7499 raw_spin_lock_irqsave(&ifh->lock, flags); 7500 list_for_each_entry(filter, &ifh->list, entry) { 7501 if (filter->path.dentry) { 7502 event->addr_filter_ranges[count].start = 0; 7503 event->addr_filter_ranges[count].size = 0; 7504 restart++; 7505 } 7506 7507 count++; 7508 } 7509 7510 if (restart) 7511 event->addr_filters_gen++; 7512 raw_spin_unlock_irqrestore(&ifh->lock, flags); 7513 7514 if (restart) 7515 perf_event_stop(event, 1); 7516 } 7517 7518 void perf_event_exec(void) 7519 { 7520 struct perf_event_context *ctx; 7521 int ctxn; 7522 7523 rcu_read_lock(); 7524 for_each_task_context_nr(ctxn) { 7525 ctx = current->perf_event_ctxp[ctxn]; 7526 if (!ctx) 7527 continue; 7528 7529 perf_event_enable_on_exec(ctxn); 7530 7531 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, 7532 true); 7533 } 7534 rcu_read_unlock(); 7535 } 7536 7537 struct remote_output { 7538 struct perf_buffer *rb; 7539 int err; 7540 }; 7541 7542 static void __perf_event_output_stop(struct perf_event *event, void *data) 7543 { 7544 struct perf_event *parent = event->parent; 7545 struct remote_output *ro = data; 7546 struct perf_buffer *rb = ro->rb; 7547 struct stop_event_data sd = { 7548 .event = event, 7549 }; 7550 7551 if (!has_aux(event)) 7552 return; 7553 7554 if (!parent) 7555 parent = event; 7556 7557 /* 7558 * In case of inheritance, it will be the parent that links to the 7559 * ring-buffer, but it will be the child that's actually using it. 7560 * 7561 * We are using event::rb to determine if the event should be stopped, 7562 * however this may race with ring_buffer_attach() (through set_output), 7563 * which will make us skip the event that actually needs to be stopped. 7564 * So ring_buffer_attach() has to stop an aux event before re-assigning 7565 * its rb pointer. 7566 */ 7567 if (rcu_dereference(parent->rb) == rb) 7568 ro->err = __perf_event_stop(&sd); 7569 } 7570 7571 static int __perf_pmu_output_stop(void *info) 7572 { 7573 struct perf_event *event = info; 7574 struct pmu *pmu = event->ctx->pmu; 7575 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 7576 struct remote_output ro = { 7577 .rb = event->rb, 7578 }; 7579 7580 rcu_read_lock(); 7581 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false); 7582 if (cpuctx->task_ctx) 7583 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop, 7584 &ro, false); 7585 rcu_read_unlock(); 7586 7587 return ro.err; 7588 } 7589 7590 static void perf_pmu_output_stop(struct perf_event *event) 7591 { 7592 struct perf_event *iter; 7593 int err, cpu; 7594 7595 restart: 7596 rcu_read_lock(); 7597 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) { 7598 /* 7599 * For per-CPU events, we need to make sure that neither they 7600 * nor their children are running; for cpu==-1 events it's 7601 * sufficient to stop the event itself if it's active, since 7602 * it can't have children. 7603 */ 7604 cpu = iter->cpu; 7605 if (cpu == -1) 7606 cpu = READ_ONCE(iter->oncpu); 7607 7608 if (cpu == -1) 7609 continue; 7610 7611 err = cpu_function_call(cpu, __perf_pmu_output_stop, event); 7612 if (err == -EAGAIN) { 7613 rcu_read_unlock(); 7614 goto restart; 7615 } 7616 } 7617 rcu_read_unlock(); 7618 } 7619 7620 /* 7621 * task tracking -- fork/exit 7622 * 7623 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 7624 */ 7625 7626 struct perf_task_event { 7627 struct task_struct *task; 7628 struct perf_event_context *task_ctx; 7629 7630 struct { 7631 struct perf_event_header header; 7632 7633 u32 pid; 7634 u32 ppid; 7635 u32 tid; 7636 u32 ptid; 7637 u64 time; 7638 } event_id; 7639 }; 7640 7641 static int perf_event_task_match(struct perf_event *event) 7642 { 7643 return event->attr.comm || event->attr.mmap || 7644 event->attr.mmap2 || event->attr.mmap_data || 7645 event->attr.task; 7646 } 7647 7648 static void perf_event_task_output(struct perf_event *event, 7649 void *data) 7650 { 7651 struct perf_task_event *task_event = data; 7652 struct perf_output_handle handle; 7653 struct perf_sample_data sample; 7654 struct task_struct *task = task_event->task; 7655 int ret, size = task_event->event_id.header.size; 7656 7657 if (!perf_event_task_match(event)) 7658 return; 7659 7660 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 7661 7662 ret = perf_output_begin(&handle, &sample, event, 7663 task_event->event_id.header.size); 7664 if (ret) 7665 goto out; 7666 7667 task_event->event_id.pid = perf_event_pid(event, task); 7668 task_event->event_id.tid = perf_event_tid(event, task); 7669 7670 if (task_event->event_id.header.type == PERF_RECORD_EXIT) { 7671 task_event->event_id.ppid = perf_event_pid(event, 7672 task->real_parent); 7673 task_event->event_id.ptid = perf_event_pid(event, 7674 task->real_parent); 7675 } else { /* PERF_RECORD_FORK */ 7676 task_event->event_id.ppid = perf_event_pid(event, current); 7677 task_event->event_id.ptid = perf_event_tid(event, current); 7678 } 7679 7680 task_event->event_id.time = perf_event_clock(event); 7681 7682 perf_output_put(&handle, task_event->event_id); 7683 7684 perf_event__output_id_sample(event, &handle, &sample); 7685 7686 perf_output_end(&handle); 7687 out: 7688 task_event->event_id.header.size = size; 7689 } 7690 7691 static void perf_event_task(struct task_struct *task, 7692 struct perf_event_context *task_ctx, 7693 int new) 7694 { 7695 struct perf_task_event task_event; 7696 7697 if (!atomic_read(&nr_comm_events) && 7698 !atomic_read(&nr_mmap_events) && 7699 !atomic_read(&nr_task_events)) 7700 return; 7701 7702 task_event = (struct perf_task_event){ 7703 .task = task, 7704 .task_ctx = task_ctx, 7705 .event_id = { 7706 .header = { 7707 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 7708 .misc = 0, 7709 .size = sizeof(task_event.event_id), 7710 }, 7711 /* .pid */ 7712 /* .ppid */ 7713 /* .tid */ 7714 /* .ptid */ 7715 /* .time */ 7716 }, 7717 }; 7718 7719 perf_iterate_sb(perf_event_task_output, 7720 &task_event, 7721 task_ctx); 7722 } 7723 7724 void perf_event_fork(struct task_struct *task) 7725 { 7726 perf_event_task(task, NULL, 1); 7727 perf_event_namespaces(task); 7728 } 7729 7730 /* 7731 * comm tracking 7732 */ 7733 7734 struct perf_comm_event { 7735 struct task_struct *task; 7736 char *comm; 7737 int comm_size; 7738 7739 struct { 7740 struct perf_event_header header; 7741 7742 u32 pid; 7743 u32 tid; 7744 } event_id; 7745 }; 7746 7747 static int perf_event_comm_match(struct perf_event *event) 7748 { 7749 return event->attr.comm; 7750 } 7751 7752 static void perf_event_comm_output(struct perf_event *event, 7753 void *data) 7754 { 7755 struct perf_comm_event *comm_event = data; 7756 struct perf_output_handle handle; 7757 struct perf_sample_data sample; 7758 int size = comm_event->event_id.header.size; 7759 int ret; 7760 7761 if (!perf_event_comm_match(event)) 7762 return; 7763 7764 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 7765 ret = perf_output_begin(&handle, &sample, event, 7766 comm_event->event_id.header.size); 7767 7768 if (ret) 7769 goto out; 7770 7771 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 7772 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 7773 7774 perf_output_put(&handle, comm_event->event_id); 7775 __output_copy(&handle, comm_event->comm, 7776 comm_event->comm_size); 7777 7778 perf_event__output_id_sample(event, &handle, &sample); 7779 7780 perf_output_end(&handle); 7781 out: 7782 comm_event->event_id.header.size = size; 7783 } 7784 7785 static void perf_event_comm_event(struct perf_comm_event *comm_event) 7786 { 7787 char comm[TASK_COMM_LEN]; 7788 unsigned int size; 7789 7790 memset(comm, 0, sizeof(comm)); 7791 strlcpy(comm, comm_event->task->comm, sizeof(comm)); 7792 size = ALIGN(strlen(comm)+1, sizeof(u64)); 7793 7794 comm_event->comm = comm; 7795 comm_event->comm_size = size; 7796 7797 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 7798 7799 perf_iterate_sb(perf_event_comm_output, 7800 comm_event, 7801 NULL); 7802 } 7803 7804 void perf_event_comm(struct task_struct *task, bool exec) 7805 { 7806 struct perf_comm_event comm_event; 7807 7808 if (!atomic_read(&nr_comm_events)) 7809 return; 7810 7811 comm_event = (struct perf_comm_event){ 7812 .task = task, 7813 /* .comm */ 7814 /* .comm_size */ 7815 .event_id = { 7816 .header = { 7817 .type = PERF_RECORD_COMM, 7818 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 7819 /* .size */ 7820 }, 7821 /* .pid */ 7822 /* .tid */ 7823 }, 7824 }; 7825 7826 perf_event_comm_event(&comm_event); 7827 } 7828 7829 /* 7830 * namespaces tracking 7831 */ 7832 7833 struct perf_namespaces_event { 7834 struct task_struct *task; 7835 7836 struct { 7837 struct perf_event_header header; 7838 7839 u32 pid; 7840 u32 tid; 7841 u64 nr_namespaces; 7842 struct perf_ns_link_info link_info[NR_NAMESPACES]; 7843 } event_id; 7844 }; 7845 7846 static int perf_event_namespaces_match(struct perf_event *event) 7847 { 7848 return event->attr.namespaces; 7849 } 7850 7851 static void perf_event_namespaces_output(struct perf_event *event, 7852 void *data) 7853 { 7854 struct perf_namespaces_event *namespaces_event = data; 7855 struct perf_output_handle handle; 7856 struct perf_sample_data sample; 7857 u16 header_size = namespaces_event->event_id.header.size; 7858 int ret; 7859 7860 if (!perf_event_namespaces_match(event)) 7861 return; 7862 7863 perf_event_header__init_id(&namespaces_event->event_id.header, 7864 &sample, event); 7865 ret = perf_output_begin(&handle, &sample, event, 7866 namespaces_event->event_id.header.size); 7867 if (ret) 7868 goto out; 7869 7870 namespaces_event->event_id.pid = perf_event_pid(event, 7871 namespaces_event->task); 7872 namespaces_event->event_id.tid = perf_event_tid(event, 7873 namespaces_event->task); 7874 7875 perf_output_put(&handle, namespaces_event->event_id); 7876 7877 perf_event__output_id_sample(event, &handle, &sample); 7878 7879 perf_output_end(&handle); 7880 out: 7881 namespaces_event->event_id.header.size = header_size; 7882 } 7883 7884 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info, 7885 struct task_struct *task, 7886 const struct proc_ns_operations *ns_ops) 7887 { 7888 struct path ns_path; 7889 struct inode *ns_inode; 7890 int error; 7891 7892 error = ns_get_path(&ns_path, task, ns_ops); 7893 if (!error) { 7894 ns_inode = ns_path.dentry->d_inode; 7895 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev); 7896 ns_link_info->ino = ns_inode->i_ino; 7897 path_put(&ns_path); 7898 } 7899 } 7900 7901 void perf_event_namespaces(struct task_struct *task) 7902 { 7903 struct perf_namespaces_event namespaces_event; 7904 struct perf_ns_link_info *ns_link_info; 7905 7906 if (!atomic_read(&nr_namespaces_events)) 7907 return; 7908 7909 namespaces_event = (struct perf_namespaces_event){ 7910 .task = task, 7911 .event_id = { 7912 .header = { 7913 .type = PERF_RECORD_NAMESPACES, 7914 .misc = 0, 7915 .size = sizeof(namespaces_event.event_id), 7916 }, 7917 /* .pid */ 7918 /* .tid */ 7919 .nr_namespaces = NR_NAMESPACES, 7920 /* .link_info[NR_NAMESPACES] */ 7921 }, 7922 }; 7923 7924 ns_link_info = namespaces_event.event_id.link_info; 7925 7926 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX], 7927 task, &mntns_operations); 7928 7929 #ifdef CONFIG_USER_NS 7930 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX], 7931 task, &userns_operations); 7932 #endif 7933 #ifdef CONFIG_NET_NS 7934 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX], 7935 task, &netns_operations); 7936 #endif 7937 #ifdef CONFIG_UTS_NS 7938 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX], 7939 task, &utsns_operations); 7940 #endif 7941 #ifdef CONFIG_IPC_NS 7942 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX], 7943 task, &ipcns_operations); 7944 #endif 7945 #ifdef CONFIG_PID_NS 7946 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX], 7947 task, &pidns_operations); 7948 #endif 7949 #ifdef CONFIG_CGROUPS 7950 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX], 7951 task, &cgroupns_operations); 7952 #endif 7953 7954 perf_iterate_sb(perf_event_namespaces_output, 7955 &namespaces_event, 7956 NULL); 7957 } 7958 7959 /* 7960 * cgroup tracking 7961 */ 7962 #ifdef CONFIG_CGROUP_PERF 7963 7964 struct perf_cgroup_event { 7965 char *path; 7966 int path_size; 7967 struct { 7968 struct perf_event_header header; 7969 u64 id; 7970 char path[]; 7971 } event_id; 7972 }; 7973 7974 static int perf_event_cgroup_match(struct perf_event *event) 7975 { 7976 return event->attr.cgroup; 7977 } 7978 7979 static void perf_event_cgroup_output(struct perf_event *event, void *data) 7980 { 7981 struct perf_cgroup_event *cgroup_event = data; 7982 struct perf_output_handle handle; 7983 struct perf_sample_data sample; 7984 u16 header_size = cgroup_event->event_id.header.size; 7985 int ret; 7986 7987 if (!perf_event_cgroup_match(event)) 7988 return; 7989 7990 perf_event_header__init_id(&cgroup_event->event_id.header, 7991 &sample, event); 7992 ret = perf_output_begin(&handle, &sample, event, 7993 cgroup_event->event_id.header.size); 7994 if (ret) 7995 goto out; 7996 7997 perf_output_put(&handle, cgroup_event->event_id); 7998 __output_copy(&handle, cgroup_event->path, cgroup_event->path_size); 7999 8000 perf_event__output_id_sample(event, &handle, &sample); 8001 8002 perf_output_end(&handle); 8003 out: 8004 cgroup_event->event_id.header.size = header_size; 8005 } 8006 8007 static void perf_event_cgroup(struct cgroup *cgrp) 8008 { 8009 struct perf_cgroup_event cgroup_event; 8010 char path_enomem[16] = "//enomem"; 8011 char *pathname; 8012 size_t size; 8013 8014 if (!atomic_read(&nr_cgroup_events)) 8015 return; 8016 8017 cgroup_event = (struct perf_cgroup_event){ 8018 .event_id = { 8019 .header = { 8020 .type = PERF_RECORD_CGROUP, 8021 .misc = 0, 8022 .size = sizeof(cgroup_event.event_id), 8023 }, 8024 .id = cgroup_id(cgrp), 8025 }, 8026 }; 8027 8028 pathname = kmalloc(PATH_MAX, GFP_KERNEL); 8029 if (pathname == NULL) { 8030 cgroup_event.path = path_enomem; 8031 } else { 8032 /* just to be sure to have enough space for alignment */ 8033 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64)); 8034 cgroup_event.path = pathname; 8035 } 8036 8037 /* 8038 * Since our buffer works in 8 byte units we need to align our string 8039 * size to a multiple of 8. However, we must guarantee the tail end is 8040 * zero'd out to avoid leaking random bits to userspace. 8041 */ 8042 size = strlen(cgroup_event.path) + 1; 8043 while (!IS_ALIGNED(size, sizeof(u64))) 8044 cgroup_event.path[size++] = '\0'; 8045 8046 cgroup_event.event_id.header.size += size; 8047 cgroup_event.path_size = size; 8048 8049 perf_iterate_sb(perf_event_cgroup_output, 8050 &cgroup_event, 8051 NULL); 8052 8053 kfree(pathname); 8054 } 8055 8056 #endif 8057 8058 /* 8059 * mmap tracking 8060 */ 8061 8062 struct perf_mmap_event { 8063 struct vm_area_struct *vma; 8064 8065 const char *file_name; 8066 int file_size; 8067 int maj, min; 8068 u64 ino; 8069 u64 ino_generation; 8070 u32 prot, flags; 8071 u8 build_id[BUILD_ID_SIZE_MAX]; 8072 u32 build_id_size; 8073 8074 struct { 8075 struct perf_event_header header; 8076 8077 u32 pid; 8078 u32 tid; 8079 u64 start; 8080 u64 len; 8081 u64 pgoff; 8082 } event_id; 8083 }; 8084 8085 static int perf_event_mmap_match(struct perf_event *event, 8086 void *data) 8087 { 8088 struct perf_mmap_event *mmap_event = data; 8089 struct vm_area_struct *vma = mmap_event->vma; 8090 int executable = vma->vm_flags & VM_EXEC; 8091 8092 return (!executable && event->attr.mmap_data) || 8093 (executable && (event->attr.mmap || event->attr.mmap2)); 8094 } 8095 8096 static void perf_event_mmap_output(struct perf_event *event, 8097 void *data) 8098 { 8099 struct perf_mmap_event *mmap_event = data; 8100 struct perf_output_handle handle; 8101 struct perf_sample_data sample; 8102 int size = mmap_event->event_id.header.size; 8103 u32 type = mmap_event->event_id.header.type; 8104 bool use_build_id; 8105 int ret; 8106 8107 if (!perf_event_mmap_match(event, data)) 8108 return; 8109 8110 if (event->attr.mmap2) { 8111 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 8112 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 8113 mmap_event->event_id.header.size += sizeof(mmap_event->min); 8114 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 8115 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 8116 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 8117 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 8118 } 8119 8120 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 8121 ret = perf_output_begin(&handle, &sample, event, 8122 mmap_event->event_id.header.size); 8123 if (ret) 8124 goto out; 8125 8126 mmap_event->event_id.pid = perf_event_pid(event, current); 8127 mmap_event->event_id.tid = perf_event_tid(event, current); 8128 8129 use_build_id = event->attr.build_id && mmap_event->build_id_size; 8130 8131 if (event->attr.mmap2 && use_build_id) 8132 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID; 8133 8134 perf_output_put(&handle, mmap_event->event_id); 8135 8136 if (event->attr.mmap2) { 8137 if (use_build_id) { 8138 u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 }; 8139 8140 __output_copy(&handle, size, 4); 8141 __output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX); 8142 } else { 8143 perf_output_put(&handle, mmap_event->maj); 8144 perf_output_put(&handle, mmap_event->min); 8145 perf_output_put(&handle, mmap_event->ino); 8146 perf_output_put(&handle, mmap_event->ino_generation); 8147 } 8148 perf_output_put(&handle, mmap_event->prot); 8149 perf_output_put(&handle, mmap_event->flags); 8150 } 8151 8152 __output_copy(&handle, mmap_event->file_name, 8153 mmap_event->file_size); 8154 8155 perf_event__output_id_sample(event, &handle, &sample); 8156 8157 perf_output_end(&handle); 8158 out: 8159 mmap_event->event_id.header.size = size; 8160 mmap_event->event_id.header.type = type; 8161 } 8162 8163 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 8164 { 8165 struct vm_area_struct *vma = mmap_event->vma; 8166 struct file *file = vma->vm_file; 8167 int maj = 0, min = 0; 8168 u64 ino = 0, gen = 0; 8169 u32 prot = 0, flags = 0; 8170 unsigned int size; 8171 char tmp[16]; 8172 char *buf = NULL; 8173 char *name; 8174 8175 if (vma->vm_flags & VM_READ) 8176 prot |= PROT_READ; 8177 if (vma->vm_flags & VM_WRITE) 8178 prot |= PROT_WRITE; 8179 if (vma->vm_flags & VM_EXEC) 8180 prot |= PROT_EXEC; 8181 8182 if (vma->vm_flags & VM_MAYSHARE) 8183 flags = MAP_SHARED; 8184 else 8185 flags = MAP_PRIVATE; 8186 8187 if (vma->vm_flags & VM_DENYWRITE) 8188 flags |= MAP_DENYWRITE; 8189 if (vma->vm_flags & VM_MAYEXEC) 8190 flags |= MAP_EXECUTABLE; 8191 if (vma->vm_flags & VM_LOCKED) 8192 flags |= MAP_LOCKED; 8193 if (is_vm_hugetlb_page(vma)) 8194 flags |= MAP_HUGETLB; 8195 8196 if (file) { 8197 struct inode *inode; 8198 dev_t dev; 8199 8200 buf = kmalloc(PATH_MAX, GFP_KERNEL); 8201 if (!buf) { 8202 name = "//enomem"; 8203 goto cpy_name; 8204 } 8205 /* 8206 * d_path() works from the end of the rb backwards, so we 8207 * need to add enough zero bytes after the string to handle 8208 * the 64bit alignment we do later. 8209 */ 8210 name = file_path(file, buf, PATH_MAX - sizeof(u64)); 8211 if (IS_ERR(name)) { 8212 name = "//toolong"; 8213 goto cpy_name; 8214 } 8215 inode = file_inode(vma->vm_file); 8216 dev = inode->i_sb->s_dev; 8217 ino = inode->i_ino; 8218 gen = inode->i_generation; 8219 maj = MAJOR(dev); 8220 min = MINOR(dev); 8221 8222 goto got_name; 8223 } else { 8224 if (vma->vm_ops && vma->vm_ops->name) { 8225 name = (char *) vma->vm_ops->name(vma); 8226 if (name) 8227 goto cpy_name; 8228 } 8229 8230 name = (char *)arch_vma_name(vma); 8231 if (name) 8232 goto cpy_name; 8233 8234 if (vma->vm_start <= vma->vm_mm->start_brk && 8235 vma->vm_end >= vma->vm_mm->brk) { 8236 name = "[heap]"; 8237 goto cpy_name; 8238 } 8239 if (vma->vm_start <= vma->vm_mm->start_stack && 8240 vma->vm_end >= vma->vm_mm->start_stack) { 8241 name = "[stack]"; 8242 goto cpy_name; 8243 } 8244 8245 name = "//anon"; 8246 goto cpy_name; 8247 } 8248 8249 cpy_name: 8250 strlcpy(tmp, name, sizeof(tmp)); 8251 name = tmp; 8252 got_name: 8253 /* 8254 * Since our buffer works in 8 byte units we need to align our string 8255 * size to a multiple of 8. However, we must guarantee the tail end is 8256 * zero'd out to avoid leaking random bits to userspace. 8257 */ 8258 size = strlen(name)+1; 8259 while (!IS_ALIGNED(size, sizeof(u64))) 8260 name[size++] = '\0'; 8261 8262 mmap_event->file_name = name; 8263 mmap_event->file_size = size; 8264 mmap_event->maj = maj; 8265 mmap_event->min = min; 8266 mmap_event->ino = ino; 8267 mmap_event->ino_generation = gen; 8268 mmap_event->prot = prot; 8269 mmap_event->flags = flags; 8270 8271 if (!(vma->vm_flags & VM_EXEC)) 8272 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 8273 8274 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 8275 8276 if (atomic_read(&nr_build_id_events)) 8277 build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size); 8278 8279 perf_iterate_sb(perf_event_mmap_output, 8280 mmap_event, 8281 NULL); 8282 8283 kfree(buf); 8284 } 8285 8286 /* 8287 * Check whether inode and address range match filter criteria. 8288 */ 8289 static bool perf_addr_filter_match(struct perf_addr_filter *filter, 8290 struct file *file, unsigned long offset, 8291 unsigned long size) 8292 { 8293 /* d_inode(NULL) won't be equal to any mapped user-space file */ 8294 if (!filter->path.dentry) 8295 return false; 8296 8297 if (d_inode(filter->path.dentry) != file_inode(file)) 8298 return false; 8299 8300 if (filter->offset > offset + size) 8301 return false; 8302 8303 if (filter->offset + filter->size < offset) 8304 return false; 8305 8306 return true; 8307 } 8308 8309 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter, 8310 struct vm_area_struct *vma, 8311 struct perf_addr_filter_range *fr) 8312 { 8313 unsigned long vma_size = vma->vm_end - vma->vm_start; 8314 unsigned long off = vma->vm_pgoff << PAGE_SHIFT; 8315 struct file *file = vma->vm_file; 8316 8317 if (!perf_addr_filter_match(filter, file, off, vma_size)) 8318 return false; 8319 8320 if (filter->offset < off) { 8321 fr->start = vma->vm_start; 8322 fr->size = min(vma_size, filter->size - (off - filter->offset)); 8323 } else { 8324 fr->start = vma->vm_start + filter->offset - off; 8325 fr->size = min(vma->vm_end - fr->start, filter->size); 8326 } 8327 8328 return true; 8329 } 8330 8331 static void __perf_addr_filters_adjust(struct perf_event *event, void *data) 8332 { 8333 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 8334 struct vm_area_struct *vma = data; 8335 struct perf_addr_filter *filter; 8336 unsigned int restart = 0, count = 0; 8337 unsigned long flags; 8338 8339 if (!has_addr_filter(event)) 8340 return; 8341 8342 if (!vma->vm_file) 8343 return; 8344 8345 raw_spin_lock_irqsave(&ifh->lock, flags); 8346 list_for_each_entry(filter, &ifh->list, entry) { 8347 if (perf_addr_filter_vma_adjust(filter, vma, 8348 &event->addr_filter_ranges[count])) 8349 restart++; 8350 8351 count++; 8352 } 8353 8354 if (restart) 8355 event->addr_filters_gen++; 8356 raw_spin_unlock_irqrestore(&ifh->lock, flags); 8357 8358 if (restart) 8359 perf_event_stop(event, 1); 8360 } 8361 8362 /* 8363 * Adjust all task's events' filters to the new vma 8364 */ 8365 static void perf_addr_filters_adjust(struct vm_area_struct *vma) 8366 { 8367 struct perf_event_context *ctx; 8368 int ctxn; 8369 8370 /* 8371 * Data tracing isn't supported yet and as such there is no need 8372 * to keep track of anything that isn't related to executable code: 8373 */ 8374 if (!(vma->vm_flags & VM_EXEC)) 8375 return; 8376 8377 rcu_read_lock(); 8378 for_each_task_context_nr(ctxn) { 8379 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 8380 if (!ctx) 8381 continue; 8382 8383 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true); 8384 } 8385 rcu_read_unlock(); 8386 } 8387 8388 void perf_event_mmap(struct vm_area_struct *vma) 8389 { 8390 struct perf_mmap_event mmap_event; 8391 8392 if (!atomic_read(&nr_mmap_events)) 8393 return; 8394 8395 mmap_event = (struct perf_mmap_event){ 8396 .vma = vma, 8397 /* .file_name */ 8398 /* .file_size */ 8399 .event_id = { 8400 .header = { 8401 .type = PERF_RECORD_MMAP, 8402 .misc = PERF_RECORD_MISC_USER, 8403 /* .size */ 8404 }, 8405 /* .pid */ 8406 /* .tid */ 8407 .start = vma->vm_start, 8408 .len = vma->vm_end - vma->vm_start, 8409 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 8410 }, 8411 /* .maj (attr_mmap2 only) */ 8412 /* .min (attr_mmap2 only) */ 8413 /* .ino (attr_mmap2 only) */ 8414 /* .ino_generation (attr_mmap2 only) */ 8415 /* .prot (attr_mmap2 only) */ 8416 /* .flags (attr_mmap2 only) */ 8417 }; 8418 8419 perf_addr_filters_adjust(vma); 8420 perf_event_mmap_event(&mmap_event); 8421 } 8422 8423 void perf_event_aux_event(struct perf_event *event, unsigned long head, 8424 unsigned long size, u64 flags) 8425 { 8426 struct perf_output_handle handle; 8427 struct perf_sample_data sample; 8428 struct perf_aux_event { 8429 struct perf_event_header header; 8430 u64 offset; 8431 u64 size; 8432 u64 flags; 8433 } rec = { 8434 .header = { 8435 .type = PERF_RECORD_AUX, 8436 .misc = 0, 8437 .size = sizeof(rec), 8438 }, 8439 .offset = head, 8440 .size = size, 8441 .flags = flags, 8442 }; 8443 int ret; 8444 8445 perf_event_header__init_id(&rec.header, &sample, event); 8446 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 8447 8448 if (ret) 8449 return; 8450 8451 perf_output_put(&handle, rec); 8452 perf_event__output_id_sample(event, &handle, &sample); 8453 8454 perf_output_end(&handle); 8455 } 8456 8457 /* 8458 * Lost/dropped samples logging 8459 */ 8460 void perf_log_lost_samples(struct perf_event *event, u64 lost) 8461 { 8462 struct perf_output_handle handle; 8463 struct perf_sample_data sample; 8464 int ret; 8465 8466 struct { 8467 struct perf_event_header header; 8468 u64 lost; 8469 } lost_samples_event = { 8470 .header = { 8471 .type = PERF_RECORD_LOST_SAMPLES, 8472 .misc = 0, 8473 .size = sizeof(lost_samples_event), 8474 }, 8475 .lost = lost, 8476 }; 8477 8478 perf_event_header__init_id(&lost_samples_event.header, &sample, event); 8479 8480 ret = perf_output_begin(&handle, &sample, event, 8481 lost_samples_event.header.size); 8482 if (ret) 8483 return; 8484 8485 perf_output_put(&handle, lost_samples_event); 8486 perf_event__output_id_sample(event, &handle, &sample); 8487 perf_output_end(&handle); 8488 } 8489 8490 /* 8491 * context_switch tracking 8492 */ 8493 8494 struct perf_switch_event { 8495 struct task_struct *task; 8496 struct task_struct *next_prev; 8497 8498 struct { 8499 struct perf_event_header header; 8500 u32 next_prev_pid; 8501 u32 next_prev_tid; 8502 } event_id; 8503 }; 8504 8505 static int perf_event_switch_match(struct perf_event *event) 8506 { 8507 return event->attr.context_switch; 8508 } 8509 8510 static void perf_event_switch_output(struct perf_event *event, void *data) 8511 { 8512 struct perf_switch_event *se = data; 8513 struct perf_output_handle handle; 8514 struct perf_sample_data sample; 8515 int ret; 8516 8517 if (!perf_event_switch_match(event)) 8518 return; 8519 8520 /* Only CPU-wide events are allowed to see next/prev pid/tid */ 8521 if (event->ctx->task) { 8522 se->event_id.header.type = PERF_RECORD_SWITCH; 8523 se->event_id.header.size = sizeof(se->event_id.header); 8524 } else { 8525 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE; 8526 se->event_id.header.size = sizeof(se->event_id); 8527 se->event_id.next_prev_pid = 8528 perf_event_pid(event, se->next_prev); 8529 se->event_id.next_prev_tid = 8530 perf_event_tid(event, se->next_prev); 8531 } 8532 8533 perf_event_header__init_id(&se->event_id.header, &sample, event); 8534 8535 ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size); 8536 if (ret) 8537 return; 8538 8539 if (event->ctx->task) 8540 perf_output_put(&handle, se->event_id.header); 8541 else 8542 perf_output_put(&handle, se->event_id); 8543 8544 perf_event__output_id_sample(event, &handle, &sample); 8545 8546 perf_output_end(&handle); 8547 } 8548 8549 static void perf_event_switch(struct task_struct *task, 8550 struct task_struct *next_prev, bool sched_in) 8551 { 8552 struct perf_switch_event switch_event; 8553 8554 /* N.B. caller checks nr_switch_events != 0 */ 8555 8556 switch_event = (struct perf_switch_event){ 8557 .task = task, 8558 .next_prev = next_prev, 8559 .event_id = { 8560 .header = { 8561 /* .type */ 8562 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT, 8563 /* .size */ 8564 }, 8565 /* .next_prev_pid */ 8566 /* .next_prev_tid */ 8567 }, 8568 }; 8569 8570 if (!sched_in && task->state == TASK_RUNNING) 8571 switch_event.event_id.header.misc |= 8572 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT; 8573 8574 perf_iterate_sb(perf_event_switch_output, 8575 &switch_event, 8576 NULL); 8577 } 8578 8579 /* 8580 * IRQ throttle logging 8581 */ 8582 8583 static void perf_log_throttle(struct perf_event *event, int enable) 8584 { 8585 struct perf_output_handle handle; 8586 struct perf_sample_data sample; 8587 int ret; 8588 8589 struct { 8590 struct perf_event_header header; 8591 u64 time; 8592 u64 id; 8593 u64 stream_id; 8594 } throttle_event = { 8595 .header = { 8596 .type = PERF_RECORD_THROTTLE, 8597 .misc = 0, 8598 .size = sizeof(throttle_event), 8599 }, 8600 .time = perf_event_clock(event), 8601 .id = primary_event_id(event), 8602 .stream_id = event->id, 8603 }; 8604 8605 if (enable) 8606 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 8607 8608 perf_event_header__init_id(&throttle_event.header, &sample, event); 8609 8610 ret = perf_output_begin(&handle, &sample, event, 8611 throttle_event.header.size); 8612 if (ret) 8613 return; 8614 8615 perf_output_put(&handle, throttle_event); 8616 perf_event__output_id_sample(event, &handle, &sample); 8617 perf_output_end(&handle); 8618 } 8619 8620 /* 8621 * ksymbol register/unregister tracking 8622 */ 8623 8624 struct perf_ksymbol_event { 8625 const char *name; 8626 int name_len; 8627 struct { 8628 struct perf_event_header header; 8629 u64 addr; 8630 u32 len; 8631 u16 ksym_type; 8632 u16 flags; 8633 } event_id; 8634 }; 8635 8636 static int perf_event_ksymbol_match(struct perf_event *event) 8637 { 8638 return event->attr.ksymbol; 8639 } 8640 8641 static void perf_event_ksymbol_output(struct perf_event *event, void *data) 8642 { 8643 struct perf_ksymbol_event *ksymbol_event = data; 8644 struct perf_output_handle handle; 8645 struct perf_sample_data sample; 8646 int ret; 8647 8648 if (!perf_event_ksymbol_match(event)) 8649 return; 8650 8651 perf_event_header__init_id(&ksymbol_event->event_id.header, 8652 &sample, event); 8653 ret = perf_output_begin(&handle, &sample, event, 8654 ksymbol_event->event_id.header.size); 8655 if (ret) 8656 return; 8657 8658 perf_output_put(&handle, ksymbol_event->event_id); 8659 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len); 8660 perf_event__output_id_sample(event, &handle, &sample); 8661 8662 perf_output_end(&handle); 8663 } 8664 8665 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister, 8666 const char *sym) 8667 { 8668 struct perf_ksymbol_event ksymbol_event; 8669 char name[KSYM_NAME_LEN]; 8670 u16 flags = 0; 8671 int name_len; 8672 8673 if (!atomic_read(&nr_ksymbol_events)) 8674 return; 8675 8676 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX || 8677 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN) 8678 goto err; 8679 8680 strlcpy(name, sym, KSYM_NAME_LEN); 8681 name_len = strlen(name) + 1; 8682 while (!IS_ALIGNED(name_len, sizeof(u64))) 8683 name[name_len++] = '\0'; 8684 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64)); 8685 8686 if (unregister) 8687 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER; 8688 8689 ksymbol_event = (struct perf_ksymbol_event){ 8690 .name = name, 8691 .name_len = name_len, 8692 .event_id = { 8693 .header = { 8694 .type = PERF_RECORD_KSYMBOL, 8695 .size = sizeof(ksymbol_event.event_id) + 8696 name_len, 8697 }, 8698 .addr = addr, 8699 .len = len, 8700 .ksym_type = ksym_type, 8701 .flags = flags, 8702 }, 8703 }; 8704 8705 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL); 8706 return; 8707 err: 8708 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type); 8709 } 8710 8711 /* 8712 * bpf program load/unload tracking 8713 */ 8714 8715 struct perf_bpf_event { 8716 struct bpf_prog *prog; 8717 struct { 8718 struct perf_event_header header; 8719 u16 type; 8720 u16 flags; 8721 u32 id; 8722 u8 tag[BPF_TAG_SIZE]; 8723 } event_id; 8724 }; 8725 8726 static int perf_event_bpf_match(struct perf_event *event) 8727 { 8728 return event->attr.bpf_event; 8729 } 8730 8731 static void perf_event_bpf_output(struct perf_event *event, void *data) 8732 { 8733 struct perf_bpf_event *bpf_event = data; 8734 struct perf_output_handle handle; 8735 struct perf_sample_data sample; 8736 int ret; 8737 8738 if (!perf_event_bpf_match(event)) 8739 return; 8740 8741 perf_event_header__init_id(&bpf_event->event_id.header, 8742 &sample, event); 8743 ret = perf_output_begin(&handle, data, event, 8744 bpf_event->event_id.header.size); 8745 if (ret) 8746 return; 8747 8748 perf_output_put(&handle, bpf_event->event_id); 8749 perf_event__output_id_sample(event, &handle, &sample); 8750 8751 perf_output_end(&handle); 8752 } 8753 8754 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog, 8755 enum perf_bpf_event_type type) 8756 { 8757 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD; 8758 int i; 8759 8760 if (prog->aux->func_cnt == 0) { 8761 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF, 8762 (u64)(unsigned long)prog->bpf_func, 8763 prog->jited_len, unregister, 8764 prog->aux->ksym.name); 8765 } else { 8766 for (i = 0; i < prog->aux->func_cnt; i++) { 8767 struct bpf_prog *subprog = prog->aux->func[i]; 8768 8769 perf_event_ksymbol( 8770 PERF_RECORD_KSYMBOL_TYPE_BPF, 8771 (u64)(unsigned long)subprog->bpf_func, 8772 subprog->jited_len, unregister, 8773 prog->aux->ksym.name); 8774 } 8775 } 8776 } 8777 8778 void perf_event_bpf_event(struct bpf_prog *prog, 8779 enum perf_bpf_event_type type, 8780 u16 flags) 8781 { 8782 struct perf_bpf_event bpf_event; 8783 8784 if (type <= PERF_BPF_EVENT_UNKNOWN || 8785 type >= PERF_BPF_EVENT_MAX) 8786 return; 8787 8788 switch (type) { 8789 case PERF_BPF_EVENT_PROG_LOAD: 8790 case PERF_BPF_EVENT_PROG_UNLOAD: 8791 if (atomic_read(&nr_ksymbol_events)) 8792 perf_event_bpf_emit_ksymbols(prog, type); 8793 break; 8794 default: 8795 break; 8796 } 8797 8798 if (!atomic_read(&nr_bpf_events)) 8799 return; 8800 8801 bpf_event = (struct perf_bpf_event){ 8802 .prog = prog, 8803 .event_id = { 8804 .header = { 8805 .type = PERF_RECORD_BPF_EVENT, 8806 .size = sizeof(bpf_event.event_id), 8807 }, 8808 .type = type, 8809 .flags = flags, 8810 .id = prog->aux->id, 8811 }, 8812 }; 8813 8814 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64)); 8815 8816 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE); 8817 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL); 8818 } 8819 8820 struct perf_text_poke_event { 8821 const void *old_bytes; 8822 const void *new_bytes; 8823 size_t pad; 8824 u16 old_len; 8825 u16 new_len; 8826 8827 struct { 8828 struct perf_event_header header; 8829 8830 u64 addr; 8831 } event_id; 8832 }; 8833 8834 static int perf_event_text_poke_match(struct perf_event *event) 8835 { 8836 return event->attr.text_poke; 8837 } 8838 8839 static void perf_event_text_poke_output(struct perf_event *event, void *data) 8840 { 8841 struct perf_text_poke_event *text_poke_event = data; 8842 struct perf_output_handle handle; 8843 struct perf_sample_data sample; 8844 u64 padding = 0; 8845 int ret; 8846 8847 if (!perf_event_text_poke_match(event)) 8848 return; 8849 8850 perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event); 8851 8852 ret = perf_output_begin(&handle, &sample, event, 8853 text_poke_event->event_id.header.size); 8854 if (ret) 8855 return; 8856 8857 perf_output_put(&handle, text_poke_event->event_id); 8858 perf_output_put(&handle, text_poke_event->old_len); 8859 perf_output_put(&handle, text_poke_event->new_len); 8860 8861 __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len); 8862 __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len); 8863 8864 if (text_poke_event->pad) 8865 __output_copy(&handle, &padding, text_poke_event->pad); 8866 8867 perf_event__output_id_sample(event, &handle, &sample); 8868 8869 perf_output_end(&handle); 8870 } 8871 8872 void perf_event_text_poke(const void *addr, const void *old_bytes, 8873 size_t old_len, const void *new_bytes, size_t new_len) 8874 { 8875 struct perf_text_poke_event text_poke_event; 8876 size_t tot, pad; 8877 8878 if (!atomic_read(&nr_text_poke_events)) 8879 return; 8880 8881 tot = sizeof(text_poke_event.old_len) + old_len; 8882 tot += sizeof(text_poke_event.new_len) + new_len; 8883 pad = ALIGN(tot, sizeof(u64)) - tot; 8884 8885 text_poke_event = (struct perf_text_poke_event){ 8886 .old_bytes = old_bytes, 8887 .new_bytes = new_bytes, 8888 .pad = pad, 8889 .old_len = old_len, 8890 .new_len = new_len, 8891 .event_id = { 8892 .header = { 8893 .type = PERF_RECORD_TEXT_POKE, 8894 .misc = PERF_RECORD_MISC_KERNEL, 8895 .size = sizeof(text_poke_event.event_id) + tot + pad, 8896 }, 8897 .addr = (unsigned long)addr, 8898 }, 8899 }; 8900 8901 perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL); 8902 } 8903 8904 void perf_event_itrace_started(struct perf_event *event) 8905 { 8906 event->attach_state |= PERF_ATTACH_ITRACE; 8907 } 8908 8909 static void perf_log_itrace_start(struct perf_event *event) 8910 { 8911 struct perf_output_handle handle; 8912 struct perf_sample_data sample; 8913 struct perf_aux_event { 8914 struct perf_event_header header; 8915 u32 pid; 8916 u32 tid; 8917 } rec; 8918 int ret; 8919 8920 if (event->parent) 8921 event = event->parent; 8922 8923 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || 8924 event->attach_state & PERF_ATTACH_ITRACE) 8925 return; 8926 8927 rec.header.type = PERF_RECORD_ITRACE_START; 8928 rec.header.misc = 0; 8929 rec.header.size = sizeof(rec); 8930 rec.pid = perf_event_pid(event, current); 8931 rec.tid = perf_event_tid(event, current); 8932 8933 perf_event_header__init_id(&rec.header, &sample, event); 8934 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 8935 8936 if (ret) 8937 return; 8938 8939 perf_output_put(&handle, rec); 8940 perf_event__output_id_sample(event, &handle, &sample); 8941 8942 perf_output_end(&handle); 8943 } 8944 8945 static int 8946 __perf_event_account_interrupt(struct perf_event *event, int throttle) 8947 { 8948 struct hw_perf_event *hwc = &event->hw; 8949 int ret = 0; 8950 u64 seq; 8951 8952 seq = __this_cpu_read(perf_throttled_seq); 8953 if (seq != hwc->interrupts_seq) { 8954 hwc->interrupts_seq = seq; 8955 hwc->interrupts = 1; 8956 } else { 8957 hwc->interrupts++; 8958 if (unlikely(throttle 8959 && hwc->interrupts >= max_samples_per_tick)) { 8960 __this_cpu_inc(perf_throttled_count); 8961 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 8962 hwc->interrupts = MAX_INTERRUPTS; 8963 perf_log_throttle(event, 0); 8964 ret = 1; 8965 } 8966 } 8967 8968 if (event->attr.freq) { 8969 u64 now = perf_clock(); 8970 s64 delta = now - hwc->freq_time_stamp; 8971 8972 hwc->freq_time_stamp = now; 8973 8974 if (delta > 0 && delta < 2*TICK_NSEC) 8975 perf_adjust_period(event, delta, hwc->last_period, true); 8976 } 8977 8978 return ret; 8979 } 8980 8981 int perf_event_account_interrupt(struct perf_event *event) 8982 { 8983 return __perf_event_account_interrupt(event, 1); 8984 } 8985 8986 /* 8987 * Generic event overflow handling, sampling. 8988 */ 8989 8990 static int __perf_event_overflow(struct perf_event *event, 8991 int throttle, struct perf_sample_data *data, 8992 struct pt_regs *regs) 8993 { 8994 int events = atomic_read(&event->event_limit); 8995 int ret = 0; 8996 8997 /* 8998 * Non-sampling counters might still use the PMI to fold short 8999 * hardware counters, ignore those. 9000 */ 9001 if (unlikely(!is_sampling_event(event))) 9002 return 0; 9003 9004 ret = __perf_event_account_interrupt(event, throttle); 9005 9006 /* 9007 * XXX event_limit might not quite work as expected on inherited 9008 * events 9009 */ 9010 9011 event->pending_kill = POLL_IN; 9012 if (events && atomic_dec_and_test(&event->event_limit)) { 9013 ret = 1; 9014 event->pending_kill = POLL_HUP; 9015 9016 perf_event_disable_inatomic(event); 9017 } 9018 9019 READ_ONCE(event->overflow_handler)(event, data, regs); 9020 9021 if (*perf_event_fasync(event) && event->pending_kill) { 9022 event->pending_wakeup = 1; 9023 irq_work_queue(&event->pending); 9024 } 9025 9026 return ret; 9027 } 9028 9029 int perf_event_overflow(struct perf_event *event, 9030 struct perf_sample_data *data, 9031 struct pt_regs *regs) 9032 { 9033 return __perf_event_overflow(event, 1, data, regs); 9034 } 9035 9036 /* 9037 * Generic software event infrastructure 9038 */ 9039 9040 struct swevent_htable { 9041 struct swevent_hlist *swevent_hlist; 9042 struct mutex hlist_mutex; 9043 int hlist_refcount; 9044 9045 /* Recursion avoidance in each contexts */ 9046 int recursion[PERF_NR_CONTEXTS]; 9047 }; 9048 9049 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 9050 9051 /* 9052 * We directly increment event->count and keep a second value in 9053 * event->hw.period_left to count intervals. This period event 9054 * is kept in the range [-sample_period, 0] so that we can use the 9055 * sign as trigger. 9056 */ 9057 9058 u64 perf_swevent_set_period(struct perf_event *event) 9059 { 9060 struct hw_perf_event *hwc = &event->hw; 9061 u64 period = hwc->last_period; 9062 u64 nr, offset; 9063 s64 old, val; 9064 9065 hwc->last_period = hwc->sample_period; 9066 9067 again: 9068 old = val = local64_read(&hwc->period_left); 9069 if (val < 0) 9070 return 0; 9071 9072 nr = div64_u64(period + val, period); 9073 offset = nr * period; 9074 val -= offset; 9075 if (local64_cmpxchg(&hwc->period_left, old, val) != old) 9076 goto again; 9077 9078 return nr; 9079 } 9080 9081 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 9082 struct perf_sample_data *data, 9083 struct pt_regs *regs) 9084 { 9085 struct hw_perf_event *hwc = &event->hw; 9086 int throttle = 0; 9087 9088 if (!overflow) 9089 overflow = perf_swevent_set_period(event); 9090 9091 if (hwc->interrupts == MAX_INTERRUPTS) 9092 return; 9093 9094 for (; overflow; overflow--) { 9095 if (__perf_event_overflow(event, throttle, 9096 data, regs)) { 9097 /* 9098 * We inhibit the overflow from happening when 9099 * hwc->interrupts == MAX_INTERRUPTS. 9100 */ 9101 break; 9102 } 9103 throttle = 1; 9104 } 9105 } 9106 9107 static void perf_swevent_event(struct perf_event *event, u64 nr, 9108 struct perf_sample_data *data, 9109 struct pt_regs *regs) 9110 { 9111 struct hw_perf_event *hwc = &event->hw; 9112 9113 local64_add(nr, &event->count); 9114 9115 if (!regs) 9116 return; 9117 9118 if (!is_sampling_event(event)) 9119 return; 9120 9121 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 9122 data->period = nr; 9123 return perf_swevent_overflow(event, 1, data, regs); 9124 } else 9125 data->period = event->hw.last_period; 9126 9127 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 9128 return perf_swevent_overflow(event, 1, data, regs); 9129 9130 if (local64_add_negative(nr, &hwc->period_left)) 9131 return; 9132 9133 perf_swevent_overflow(event, 0, data, regs); 9134 } 9135 9136 static int perf_exclude_event(struct perf_event *event, 9137 struct pt_regs *regs) 9138 { 9139 if (event->hw.state & PERF_HES_STOPPED) 9140 return 1; 9141 9142 if (regs) { 9143 if (event->attr.exclude_user && user_mode(regs)) 9144 return 1; 9145 9146 if (event->attr.exclude_kernel && !user_mode(regs)) 9147 return 1; 9148 } 9149 9150 return 0; 9151 } 9152 9153 static int perf_swevent_match(struct perf_event *event, 9154 enum perf_type_id type, 9155 u32 event_id, 9156 struct perf_sample_data *data, 9157 struct pt_regs *regs) 9158 { 9159 if (event->attr.type != type) 9160 return 0; 9161 9162 if (event->attr.config != event_id) 9163 return 0; 9164 9165 if (perf_exclude_event(event, regs)) 9166 return 0; 9167 9168 return 1; 9169 } 9170 9171 static inline u64 swevent_hash(u64 type, u32 event_id) 9172 { 9173 u64 val = event_id | (type << 32); 9174 9175 return hash_64(val, SWEVENT_HLIST_BITS); 9176 } 9177 9178 static inline struct hlist_head * 9179 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 9180 { 9181 u64 hash = swevent_hash(type, event_id); 9182 9183 return &hlist->heads[hash]; 9184 } 9185 9186 /* For the read side: events when they trigger */ 9187 static inline struct hlist_head * 9188 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 9189 { 9190 struct swevent_hlist *hlist; 9191 9192 hlist = rcu_dereference(swhash->swevent_hlist); 9193 if (!hlist) 9194 return NULL; 9195 9196 return __find_swevent_head(hlist, type, event_id); 9197 } 9198 9199 /* For the event head insertion and removal in the hlist */ 9200 static inline struct hlist_head * 9201 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 9202 { 9203 struct swevent_hlist *hlist; 9204 u32 event_id = event->attr.config; 9205 u64 type = event->attr.type; 9206 9207 /* 9208 * Event scheduling is always serialized against hlist allocation 9209 * and release. Which makes the protected version suitable here. 9210 * The context lock guarantees that. 9211 */ 9212 hlist = rcu_dereference_protected(swhash->swevent_hlist, 9213 lockdep_is_held(&event->ctx->lock)); 9214 if (!hlist) 9215 return NULL; 9216 9217 return __find_swevent_head(hlist, type, event_id); 9218 } 9219 9220 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 9221 u64 nr, 9222 struct perf_sample_data *data, 9223 struct pt_regs *regs) 9224 { 9225 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9226 struct perf_event *event; 9227 struct hlist_head *head; 9228 9229 rcu_read_lock(); 9230 head = find_swevent_head_rcu(swhash, type, event_id); 9231 if (!head) 9232 goto end; 9233 9234 hlist_for_each_entry_rcu(event, head, hlist_entry) { 9235 if (perf_swevent_match(event, type, event_id, data, regs)) 9236 perf_swevent_event(event, nr, data, regs); 9237 } 9238 end: 9239 rcu_read_unlock(); 9240 } 9241 9242 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); 9243 9244 int perf_swevent_get_recursion_context(void) 9245 { 9246 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9247 9248 return get_recursion_context(swhash->recursion); 9249 } 9250 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 9251 9252 void perf_swevent_put_recursion_context(int rctx) 9253 { 9254 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9255 9256 put_recursion_context(swhash->recursion, rctx); 9257 } 9258 9259 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 9260 { 9261 struct perf_sample_data data; 9262 9263 if (WARN_ON_ONCE(!regs)) 9264 return; 9265 9266 perf_sample_data_init(&data, addr, 0); 9267 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 9268 } 9269 9270 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 9271 { 9272 int rctx; 9273 9274 preempt_disable_notrace(); 9275 rctx = perf_swevent_get_recursion_context(); 9276 if (unlikely(rctx < 0)) 9277 goto fail; 9278 9279 ___perf_sw_event(event_id, nr, regs, addr); 9280 9281 perf_swevent_put_recursion_context(rctx); 9282 fail: 9283 preempt_enable_notrace(); 9284 } 9285 9286 static void perf_swevent_read(struct perf_event *event) 9287 { 9288 } 9289 9290 static int perf_swevent_add(struct perf_event *event, int flags) 9291 { 9292 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9293 struct hw_perf_event *hwc = &event->hw; 9294 struct hlist_head *head; 9295 9296 if (is_sampling_event(event)) { 9297 hwc->last_period = hwc->sample_period; 9298 perf_swevent_set_period(event); 9299 } 9300 9301 hwc->state = !(flags & PERF_EF_START); 9302 9303 head = find_swevent_head(swhash, event); 9304 if (WARN_ON_ONCE(!head)) 9305 return -EINVAL; 9306 9307 hlist_add_head_rcu(&event->hlist_entry, head); 9308 perf_event_update_userpage(event); 9309 9310 return 0; 9311 } 9312 9313 static void perf_swevent_del(struct perf_event *event, int flags) 9314 { 9315 hlist_del_rcu(&event->hlist_entry); 9316 } 9317 9318 static void perf_swevent_start(struct perf_event *event, int flags) 9319 { 9320 event->hw.state = 0; 9321 } 9322 9323 static void perf_swevent_stop(struct perf_event *event, int flags) 9324 { 9325 event->hw.state = PERF_HES_STOPPED; 9326 } 9327 9328 /* Deref the hlist from the update side */ 9329 static inline struct swevent_hlist * 9330 swevent_hlist_deref(struct swevent_htable *swhash) 9331 { 9332 return rcu_dereference_protected(swhash->swevent_hlist, 9333 lockdep_is_held(&swhash->hlist_mutex)); 9334 } 9335 9336 static void swevent_hlist_release(struct swevent_htable *swhash) 9337 { 9338 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 9339 9340 if (!hlist) 9341 return; 9342 9343 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 9344 kfree_rcu(hlist, rcu_head); 9345 } 9346 9347 static void swevent_hlist_put_cpu(int cpu) 9348 { 9349 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 9350 9351 mutex_lock(&swhash->hlist_mutex); 9352 9353 if (!--swhash->hlist_refcount) 9354 swevent_hlist_release(swhash); 9355 9356 mutex_unlock(&swhash->hlist_mutex); 9357 } 9358 9359 static void swevent_hlist_put(void) 9360 { 9361 int cpu; 9362 9363 for_each_possible_cpu(cpu) 9364 swevent_hlist_put_cpu(cpu); 9365 } 9366 9367 static int swevent_hlist_get_cpu(int cpu) 9368 { 9369 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 9370 int err = 0; 9371 9372 mutex_lock(&swhash->hlist_mutex); 9373 if (!swevent_hlist_deref(swhash) && 9374 cpumask_test_cpu(cpu, perf_online_mask)) { 9375 struct swevent_hlist *hlist; 9376 9377 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 9378 if (!hlist) { 9379 err = -ENOMEM; 9380 goto exit; 9381 } 9382 rcu_assign_pointer(swhash->swevent_hlist, hlist); 9383 } 9384 swhash->hlist_refcount++; 9385 exit: 9386 mutex_unlock(&swhash->hlist_mutex); 9387 9388 return err; 9389 } 9390 9391 static int swevent_hlist_get(void) 9392 { 9393 int err, cpu, failed_cpu; 9394 9395 mutex_lock(&pmus_lock); 9396 for_each_possible_cpu(cpu) { 9397 err = swevent_hlist_get_cpu(cpu); 9398 if (err) { 9399 failed_cpu = cpu; 9400 goto fail; 9401 } 9402 } 9403 mutex_unlock(&pmus_lock); 9404 return 0; 9405 fail: 9406 for_each_possible_cpu(cpu) { 9407 if (cpu == failed_cpu) 9408 break; 9409 swevent_hlist_put_cpu(cpu); 9410 } 9411 mutex_unlock(&pmus_lock); 9412 return err; 9413 } 9414 9415 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 9416 9417 static void sw_perf_event_destroy(struct perf_event *event) 9418 { 9419 u64 event_id = event->attr.config; 9420 9421 WARN_ON(event->parent); 9422 9423 static_key_slow_dec(&perf_swevent_enabled[event_id]); 9424 swevent_hlist_put(); 9425 } 9426 9427 static int perf_swevent_init(struct perf_event *event) 9428 { 9429 u64 event_id = event->attr.config; 9430 9431 if (event->attr.type != PERF_TYPE_SOFTWARE) 9432 return -ENOENT; 9433 9434 /* 9435 * no branch sampling for software events 9436 */ 9437 if (has_branch_stack(event)) 9438 return -EOPNOTSUPP; 9439 9440 switch (event_id) { 9441 case PERF_COUNT_SW_CPU_CLOCK: 9442 case PERF_COUNT_SW_TASK_CLOCK: 9443 return -ENOENT; 9444 9445 default: 9446 break; 9447 } 9448 9449 if (event_id >= PERF_COUNT_SW_MAX) 9450 return -ENOENT; 9451 9452 if (!event->parent) { 9453 int err; 9454 9455 err = swevent_hlist_get(); 9456 if (err) 9457 return err; 9458 9459 static_key_slow_inc(&perf_swevent_enabled[event_id]); 9460 event->destroy = sw_perf_event_destroy; 9461 } 9462 9463 return 0; 9464 } 9465 9466 static struct pmu perf_swevent = { 9467 .task_ctx_nr = perf_sw_context, 9468 9469 .capabilities = PERF_PMU_CAP_NO_NMI, 9470 9471 .event_init = perf_swevent_init, 9472 .add = perf_swevent_add, 9473 .del = perf_swevent_del, 9474 .start = perf_swevent_start, 9475 .stop = perf_swevent_stop, 9476 .read = perf_swevent_read, 9477 }; 9478 9479 #ifdef CONFIG_EVENT_TRACING 9480 9481 static int perf_tp_filter_match(struct perf_event *event, 9482 struct perf_sample_data *data) 9483 { 9484 void *record = data->raw->frag.data; 9485 9486 /* only top level events have filters set */ 9487 if (event->parent) 9488 event = event->parent; 9489 9490 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 9491 return 1; 9492 return 0; 9493 } 9494 9495 static int perf_tp_event_match(struct perf_event *event, 9496 struct perf_sample_data *data, 9497 struct pt_regs *regs) 9498 { 9499 if (event->hw.state & PERF_HES_STOPPED) 9500 return 0; 9501 /* 9502 * If exclude_kernel, only trace user-space tracepoints (uprobes) 9503 */ 9504 if (event->attr.exclude_kernel && !user_mode(regs)) 9505 return 0; 9506 9507 if (!perf_tp_filter_match(event, data)) 9508 return 0; 9509 9510 return 1; 9511 } 9512 9513 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx, 9514 struct trace_event_call *call, u64 count, 9515 struct pt_regs *regs, struct hlist_head *head, 9516 struct task_struct *task) 9517 { 9518 if (bpf_prog_array_valid(call)) { 9519 *(struct pt_regs **)raw_data = regs; 9520 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) { 9521 perf_swevent_put_recursion_context(rctx); 9522 return; 9523 } 9524 } 9525 perf_tp_event(call->event.type, count, raw_data, size, regs, head, 9526 rctx, task); 9527 } 9528 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit); 9529 9530 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size, 9531 struct pt_regs *regs, struct hlist_head *head, int rctx, 9532 struct task_struct *task) 9533 { 9534 struct perf_sample_data data; 9535 struct perf_event *event; 9536 9537 struct perf_raw_record raw = { 9538 .frag = { 9539 .size = entry_size, 9540 .data = record, 9541 }, 9542 }; 9543 9544 perf_sample_data_init(&data, 0, 0); 9545 data.raw = &raw; 9546 9547 perf_trace_buf_update(record, event_type); 9548 9549 hlist_for_each_entry_rcu(event, head, hlist_entry) { 9550 if (perf_tp_event_match(event, &data, regs)) 9551 perf_swevent_event(event, count, &data, regs); 9552 } 9553 9554 /* 9555 * If we got specified a target task, also iterate its context and 9556 * deliver this event there too. 9557 */ 9558 if (task && task != current) { 9559 struct perf_event_context *ctx; 9560 struct trace_entry *entry = record; 9561 9562 rcu_read_lock(); 9563 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]); 9564 if (!ctx) 9565 goto unlock; 9566 9567 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 9568 if (event->cpu != smp_processor_id()) 9569 continue; 9570 if (event->attr.type != PERF_TYPE_TRACEPOINT) 9571 continue; 9572 if (event->attr.config != entry->type) 9573 continue; 9574 if (perf_tp_event_match(event, &data, regs)) 9575 perf_swevent_event(event, count, &data, regs); 9576 } 9577 unlock: 9578 rcu_read_unlock(); 9579 } 9580 9581 perf_swevent_put_recursion_context(rctx); 9582 } 9583 EXPORT_SYMBOL_GPL(perf_tp_event); 9584 9585 static void tp_perf_event_destroy(struct perf_event *event) 9586 { 9587 perf_trace_destroy(event); 9588 } 9589 9590 static int perf_tp_event_init(struct perf_event *event) 9591 { 9592 int err; 9593 9594 if (event->attr.type != PERF_TYPE_TRACEPOINT) 9595 return -ENOENT; 9596 9597 /* 9598 * no branch sampling for tracepoint events 9599 */ 9600 if (has_branch_stack(event)) 9601 return -EOPNOTSUPP; 9602 9603 err = perf_trace_init(event); 9604 if (err) 9605 return err; 9606 9607 event->destroy = tp_perf_event_destroy; 9608 9609 return 0; 9610 } 9611 9612 static struct pmu perf_tracepoint = { 9613 .task_ctx_nr = perf_sw_context, 9614 9615 .event_init = perf_tp_event_init, 9616 .add = perf_trace_add, 9617 .del = perf_trace_del, 9618 .start = perf_swevent_start, 9619 .stop = perf_swevent_stop, 9620 .read = perf_swevent_read, 9621 }; 9622 9623 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS) 9624 /* 9625 * Flags in config, used by dynamic PMU kprobe and uprobe 9626 * The flags should match following PMU_FORMAT_ATTR(). 9627 * 9628 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe 9629 * if not set, create kprobe/uprobe 9630 * 9631 * The following values specify a reference counter (or semaphore in the 9632 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically 9633 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset. 9634 * 9635 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset 9636 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left 9637 */ 9638 enum perf_probe_config { 9639 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */ 9640 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32, 9641 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS, 9642 }; 9643 9644 PMU_FORMAT_ATTR(retprobe, "config:0"); 9645 #endif 9646 9647 #ifdef CONFIG_KPROBE_EVENTS 9648 static struct attribute *kprobe_attrs[] = { 9649 &format_attr_retprobe.attr, 9650 NULL, 9651 }; 9652 9653 static struct attribute_group kprobe_format_group = { 9654 .name = "format", 9655 .attrs = kprobe_attrs, 9656 }; 9657 9658 static const struct attribute_group *kprobe_attr_groups[] = { 9659 &kprobe_format_group, 9660 NULL, 9661 }; 9662 9663 static int perf_kprobe_event_init(struct perf_event *event); 9664 static struct pmu perf_kprobe = { 9665 .task_ctx_nr = perf_sw_context, 9666 .event_init = perf_kprobe_event_init, 9667 .add = perf_trace_add, 9668 .del = perf_trace_del, 9669 .start = perf_swevent_start, 9670 .stop = perf_swevent_stop, 9671 .read = perf_swevent_read, 9672 .attr_groups = kprobe_attr_groups, 9673 }; 9674 9675 static int perf_kprobe_event_init(struct perf_event *event) 9676 { 9677 int err; 9678 bool is_retprobe; 9679 9680 if (event->attr.type != perf_kprobe.type) 9681 return -ENOENT; 9682 9683 if (!perfmon_capable()) 9684 return -EACCES; 9685 9686 /* 9687 * no branch sampling for probe events 9688 */ 9689 if (has_branch_stack(event)) 9690 return -EOPNOTSUPP; 9691 9692 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 9693 err = perf_kprobe_init(event, is_retprobe); 9694 if (err) 9695 return err; 9696 9697 event->destroy = perf_kprobe_destroy; 9698 9699 return 0; 9700 } 9701 #endif /* CONFIG_KPROBE_EVENTS */ 9702 9703 #ifdef CONFIG_UPROBE_EVENTS 9704 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63"); 9705 9706 static struct attribute *uprobe_attrs[] = { 9707 &format_attr_retprobe.attr, 9708 &format_attr_ref_ctr_offset.attr, 9709 NULL, 9710 }; 9711 9712 static struct attribute_group uprobe_format_group = { 9713 .name = "format", 9714 .attrs = uprobe_attrs, 9715 }; 9716 9717 static const struct attribute_group *uprobe_attr_groups[] = { 9718 &uprobe_format_group, 9719 NULL, 9720 }; 9721 9722 static int perf_uprobe_event_init(struct perf_event *event); 9723 static struct pmu perf_uprobe = { 9724 .task_ctx_nr = perf_sw_context, 9725 .event_init = perf_uprobe_event_init, 9726 .add = perf_trace_add, 9727 .del = perf_trace_del, 9728 .start = perf_swevent_start, 9729 .stop = perf_swevent_stop, 9730 .read = perf_swevent_read, 9731 .attr_groups = uprobe_attr_groups, 9732 }; 9733 9734 static int perf_uprobe_event_init(struct perf_event *event) 9735 { 9736 int err; 9737 unsigned long ref_ctr_offset; 9738 bool is_retprobe; 9739 9740 if (event->attr.type != perf_uprobe.type) 9741 return -ENOENT; 9742 9743 if (!perfmon_capable()) 9744 return -EACCES; 9745 9746 /* 9747 * no branch sampling for probe events 9748 */ 9749 if (has_branch_stack(event)) 9750 return -EOPNOTSUPP; 9751 9752 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 9753 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 9754 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe); 9755 if (err) 9756 return err; 9757 9758 event->destroy = perf_uprobe_destroy; 9759 9760 return 0; 9761 } 9762 #endif /* CONFIG_UPROBE_EVENTS */ 9763 9764 static inline void perf_tp_register(void) 9765 { 9766 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 9767 #ifdef CONFIG_KPROBE_EVENTS 9768 perf_pmu_register(&perf_kprobe, "kprobe", -1); 9769 #endif 9770 #ifdef CONFIG_UPROBE_EVENTS 9771 perf_pmu_register(&perf_uprobe, "uprobe", -1); 9772 #endif 9773 } 9774 9775 static void perf_event_free_filter(struct perf_event *event) 9776 { 9777 ftrace_profile_free_filter(event); 9778 } 9779 9780 #ifdef CONFIG_BPF_SYSCALL 9781 static void bpf_overflow_handler(struct perf_event *event, 9782 struct perf_sample_data *data, 9783 struct pt_regs *regs) 9784 { 9785 struct bpf_perf_event_data_kern ctx = { 9786 .data = data, 9787 .event = event, 9788 }; 9789 int ret = 0; 9790 9791 ctx.regs = perf_arch_bpf_user_pt_regs(regs); 9792 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) 9793 goto out; 9794 rcu_read_lock(); 9795 ret = BPF_PROG_RUN(event->prog, &ctx); 9796 rcu_read_unlock(); 9797 out: 9798 __this_cpu_dec(bpf_prog_active); 9799 if (!ret) 9800 return; 9801 9802 event->orig_overflow_handler(event, data, regs); 9803 } 9804 9805 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd) 9806 { 9807 struct bpf_prog *prog; 9808 9809 if (event->overflow_handler_context) 9810 /* hw breakpoint or kernel counter */ 9811 return -EINVAL; 9812 9813 if (event->prog) 9814 return -EEXIST; 9815 9816 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT); 9817 if (IS_ERR(prog)) 9818 return PTR_ERR(prog); 9819 9820 if (event->attr.precise_ip && 9821 prog->call_get_stack && 9822 (!(event->attr.sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY) || 9823 event->attr.exclude_callchain_kernel || 9824 event->attr.exclude_callchain_user)) { 9825 /* 9826 * On perf_event with precise_ip, calling bpf_get_stack() 9827 * may trigger unwinder warnings and occasional crashes. 9828 * bpf_get_[stack|stackid] works around this issue by using 9829 * callchain attached to perf_sample_data. If the 9830 * perf_event does not full (kernel and user) callchain 9831 * attached to perf_sample_data, do not allow attaching BPF 9832 * program that calls bpf_get_[stack|stackid]. 9833 */ 9834 bpf_prog_put(prog); 9835 return -EPROTO; 9836 } 9837 9838 event->prog = prog; 9839 event->orig_overflow_handler = READ_ONCE(event->overflow_handler); 9840 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler); 9841 return 0; 9842 } 9843 9844 static void perf_event_free_bpf_handler(struct perf_event *event) 9845 { 9846 struct bpf_prog *prog = event->prog; 9847 9848 if (!prog) 9849 return; 9850 9851 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler); 9852 event->prog = NULL; 9853 bpf_prog_put(prog); 9854 } 9855 #else 9856 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd) 9857 { 9858 return -EOPNOTSUPP; 9859 } 9860 static void perf_event_free_bpf_handler(struct perf_event *event) 9861 { 9862 } 9863 #endif 9864 9865 /* 9866 * returns true if the event is a tracepoint, or a kprobe/upprobe created 9867 * with perf_event_open() 9868 */ 9869 static inline bool perf_event_is_tracing(struct perf_event *event) 9870 { 9871 if (event->pmu == &perf_tracepoint) 9872 return true; 9873 #ifdef CONFIG_KPROBE_EVENTS 9874 if (event->pmu == &perf_kprobe) 9875 return true; 9876 #endif 9877 #ifdef CONFIG_UPROBE_EVENTS 9878 if (event->pmu == &perf_uprobe) 9879 return true; 9880 #endif 9881 return false; 9882 } 9883 9884 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 9885 { 9886 bool is_kprobe, is_tracepoint, is_syscall_tp; 9887 struct bpf_prog *prog; 9888 int ret; 9889 9890 if (!perf_event_is_tracing(event)) 9891 return perf_event_set_bpf_handler(event, prog_fd); 9892 9893 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE; 9894 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT; 9895 is_syscall_tp = is_syscall_trace_event(event->tp_event); 9896 if (!is_kprobe && !is_tracepoint && !is_syscall_tp) 9897 /* bpf programs can only be attached to u/kprobe or tracepoint */ 9898 return -EINVAL; 9899 9900 prog = bpf_prog_get(prog_fd); 9901 if (IS_ERR(prog)) 9902 return PTR_ERR(prog); 9903 9904 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) || 9905 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) || 9906 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) { 9907 /* valid fd, but invalid bpf program type */ 9908 bpf_prog_put(prog); 9909 return -EINVAL; 9910 } 9911 9912 /* Kprobe override only works for kprobes, not uprobes. */ 9913 if (prog->kprobe_override && 9914 !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) { 9915 bpf_prog_put(prog); 9916 return -EINVAL; 9917 } 9918 9919 if (is_tracepoint || is_syscall_tp) { 9920 int off = trace_event_get_offsets(event->tp_event); 9921 9922 if (prog->aux->max_ctx_offset > off) { 9923 bpf_prog_put(prog); 9924 return -EACCES; 9925 } 9926 } 9927 9928 ret = perf_event_attach_bpf_prog(event, prog); 9929 if (ret) 9930 bpf_prog_put(prog); 9931 return ret; 9932 } 9933 9934 static void perf_event_free_bpf_prog(struct perf_event *event) 9935 { 9936 if (!perf_event_is_tracing(event)) { 9937 perf_event_free_bpf_handler(event); 9938 return; 9939 } 9940 perf_event_detach_bpf_prog(event); 9941 } 9942 9943 #else 9944 9945 static inline void perf_tp_register(void) 9946 { 9947 } 9948 9949 static void perf_event_free_filter(struct perf_event *event) 9950 { 9951 } 9952 9953 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 9954 { 9955 return -ENOENT; 9956 } 9957 9958 static void perf_event_free_bpf_prog(struct perf_event *event) 9959 { 9960 } 9961 #endif /* CONFIG_EVENT_TRACING */ 9962 9963 #ifdef CONFIG_HAVE_HW_BREAKPOINT 9964 void perf_bp_event(struct perf_event *bp, void *data) 9965 { 9966 struct perf_sample_data sample; 9967 struct pt_regs *regs = data; 9968 9969 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 9970 9971 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 9972 perf_swevent_event(bp, 1, &sample, regs); 9973 } 9974 #endif 9975 9976 /* 9977 * Allocate a new address filter 9978 */ 9979 static struct perf_addr_filter * 9980 perf_addr_filter_new(struct perf_event *event, struct list_head *filters) 9981 { 9982 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu); 9983 struct perf_addr_filter *filter; 9984 9985 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node); 9986 if (!filter) 9987 return NULL; 9988 9989 INIT_LIST_HEAD(&filter->entry); 9990 list_add_tail(&filter->entry, filters); 9991 9992 return filter; 9993 } 9994 9995 static void free_filters_list(struct list_head *filters) 9996 { 9997 struct perf_addr_filter *filter, *iter; 9998 9999 list_for_each_entry_safe(filter, iter, filters, entry) { 10000 path_put(&filter->path); 10001 list_del(&filter->entry); 10002 kfree(filter); 10003 } 10004 } 10005 10006 /* 10007 * Free existing address filters and optionally install new ones 10008 */ 10009 static void perf_addr_filters_splice(struct perf_event *event, 10010 struct list_head *head) 10011 { 10012 unsigned long flags; 10013 LIST_HEAD(list); 10014 10015 if (!has_addr_filter(event)) 10016 return; 10017 10018 /* don't bother with children, they don't have their own filters */ 10019 if (event->parent) 10020 return; 10021 10022 raw_spin_lock_irqsave(&event->addr_filters.lock, flags); 10023 10024 list_splice_init(&event->addr_filters.list, &list); 10025 if (head) 10026 list_splice(head, &event->addr_filters.list); 10027 10028 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags); 10029 10030 free_filters_list(&list); 10031 } 10032 10033 /* 10034 * Scan through mm's vmas and see if one of them matches the 10035 * @filter; if so, adjust filter's address range. 10036 * Called with mm::mmap_lock down for reading. 10037 */ 10038 static void perf_addr_filter_apply(struct perf_addr_filter *filter, 10039 struct mm_struct *mm, 10040 struct perf_addr_filter_range *fr) 10041 { 10042 struct vm_area_struct *vma; 10043 10044 for (vma = mm->mmap; vma; vma = vma->vm_next) { 10045 if (!vma->vm_file) 10046 continue; 10047 10048 if (perf_addr_filter_vma_adjust(filter, vma, fr)) 10049 return; 10050 } 10051 } 10052 10053 /* 10054 * Update event's address range filters based on the 10055 * task's existing mappings, if any. 10056 */ 10057 static void perf_event_addr_filters_apply(struct perf_event *event) 10058 { 10059 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 10060 struct task_struct *task = READ_ONCE(event->ctx->task); 10061 struct perf_addr_filter *filter; 10062 struct mm_struct *mm = NULL; 10063 unsigned int count = 0; 10064 unsigned long flags; 10065 10066 /* 10067 * We may observe TASK_TOMBSTONE, which means that the event tear-down 10068 * will stop on the parent's child_mutex that our caller is also holding 10069 */ 10070 if (task == TASK_TOMBSTONE) 10071 return; 10072 10073 if (ifh->nr_file_filters) { 10074 mm = get_task_mm(event->ctx->task); 10075 if (!mm) 10076 goto restart; 10077 10078 mmap_read_lock(mm); 10079 } 10080 10081 raw_spin_lock_irqsave(&ifh->lock, flags); 10082 list_for_each_entry(filter, &ifh->list, entry) { 10083 if (filter->path.dentry) { 10084 /* 10085 * Adjust base offset if the filter is associated to a 10086 * binary that needs to be mapped: 10087 */ 10088 event->addr_filter_ranges[count].start = 0; 10089 event->addr_filter_ranges[count].size = 0; 10090 10091 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]); 10092 } else { 10093 event->addr_filter_ranges[count].start = filter->offset; 10094 event->addr_filter_ranges[count].size = filter->size; 10095 } 10096 10097 count++; 10098 } 10099 10100 event->addr_filters_gen++; 10101 raw_spin_unlock_irqrestore(&ifh->lock, flags); 10102 10103 if (ifh->nr_file_filters) { 10104 mmap_read_unlock(mm); 10105 10106 mmput(mm); 10107 } 10108 10109 restart: 10110 perf_event_stop(event, 1); 10111 } 10112 10113 /* 10114 * Address range filtering: limiting the data to certain 10115 * instruction address ranges. Filters are ioctl()ed to us from 10116 * userspace as ascii strings. 10117 * 10118 * Filter string format: 10119 * 10120 * ACTION RANGE_SPEC 10121 * where ACTION is one of the 10122 * * "filter": limit the trace to this region 10123 * * "start": start tracing from this address 10124 * * "stop": stop tracing at this address/region; 10125 * RANGE_SPEC is 10126 * * for kernel addresses: <start address>[/<size>] 10127 * * for object files: <start address>[/<size>]@</path/to/object/file> 10128 * 10129 * if <size> is not specified or is zero, the range is treated as a single 10130 * address; not valid for ACTION=="filter". 10131 */ 10132 enum { 10133 IF_ACT_NONE = -1, 10134 IF_ACT_FILTER, 10135 IF_ACT_START, 10136 IF_ACT_STOP, 10137 IF_SRC_FILE, 10138 IF_SRC_KERNEL, 10139 IF_SRC_FILEADDR, 10140 IF_SRC_KERNELADDR, 10141 }; 10142 10143 enum { 10144 IF_STATE_ACTION = 0, 10145 IF_STATE_SOURCE, 10146 IF_STATE_END, 10147 }; 10148 10149 static const match_table_t if_tokens = { 10150 { IF_ACT_FILTER, "filter" }, 10151 { IF_ACT_START, "start" }, 10152 { IF_ACT_STOP, "stop" }, 10153 { IF_SRC_FILE, "%u/%u@%s" }, 10154 { IF_SRC_KERNEL, "%u/%u" }, 10155 { IF_SRC_FILEADDR, "%u@%s" }, 10156 { IF_SRC_KERNELADDR, "%u" }, 10157 { IF_ACT_NONE, NULL }, 10158 }; 10159 10160 /* 10161 * Address filter string parser 10162 */ 10163 static int 10164 perf_event_parse_addr_filter(struct perf_event *event, char *fstr, 10165 struct list_head *filters) 10166 { 10167 struct perf_addr_filter *filter = NULL; 10168 char *start, *orig, *filename = NULL; 10169 substring_t args[MAX_OPT_ARGS]; 10170 int state = IF_STATE_ACTION, token; 10171 unsigned int kernel = 0; 10172 int ret = -EINVAL; 10173 10174 orig = fstr = kstrdup(fstr, GFP_KERNEL); 10175 if (!fstr) 10176 return -ENOMEM; 10177 10178 while ((start = strsep(&fstr, " ,\n")) != NULL) { 10179 static const enum perf_addr_filter_action_t actions[] = { 10180 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER, 10181 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START, 10182 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP, 10183 }; 10184 ret = -EINVAL; 10185 10186 if (!*start) 10187 continue; 10188 10189 /* filter definition begins */ 10190 if (state == IF_STATE_ACTION) { 10191 filter = perf_addr_filter_new(event, filters); 10192 if (!filter) 10193 goto fail; 10194 } 10195 10196 token = match_token(start, if_tokens, args); 10197 switch (token) { 10198 case IF_ACT_FILTER: 10199 case IF_ACT_START: 10200 case IF_ACT_STOP: 10201 if (state != IF_STATE_ACTION) 10202 goto fail; 10203 10204 filter->action = actions[token]; 10205 state = IF_STATE_SOURCE; 10206 break; 10207 10208 case IF_SRC_KERNELADDR: 10209 case IF_SRC_KERNEL: 10210 kernel = 1; 10211 fallthrough; 10212 10213 case IF_SRC_FILEADDR: 10214 case IF_SRC_FILE: 10215 if (state != IF_STATE_SOURCE) 10216 goto fail; 10217 10218 *args[0].to = 0; 10219 ret = kstrtoul(args[0].from, 0, &filter->offset); 10220 if (ret) 10221 goto fail; 10222 10223 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) { 10224 *args[1].to = 0; 10225 ret = kstrtoul(args[1].from, 0, &filter->size); 10226 if (ret) 10227 goto fail; 10228 } 10229 10230 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) { 10231 int fpos = token == IF_SRC_FILE ? 2 : 1; 10232 10233 kfree(filename); 10234 filename = match_strdup(&args[fpos]); 10235 if (!filename) { 10236 ret = -ENOMEM; 10237 goto fail; 10238 } 10239 } 10240 10241 state = IF_STATE_END; 10242 break; 10243 10244 default: 10245 goto fail; 10246 } 10247 10248 /* 10249 * Filter definition is fully parsed, validate and install it. 10250 * Make sure that it doesn't contradict itself or the event's 10251 * attribute. 10252 */ 10253 if (state == IF_STATE_END) { 10254 ret = -EINVAL; 10255 if (kernel && event->attr.exclude_kernel) 10256 goto fail; 10257 10258 /* 10259 * ACTION "filter" must have a non-zero length region 10260 * specified. 10261 */ 10262 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER && 10263 !filter->size) 10264 goto fail; 10265 10266 if (!kernel) { 10267 if (!filename) 10268 goto fail; 10269 10270 /* 10271 * For now, we only support file-based filters 10272 * in per-task events; doing so for CPU-wide 10273 * events requires additional context switching 10274 * trickery, since same object code will be 10275 * mapped at different virtual addresses in 10276 * different processes. 10277 */ 10278 ret = -EOPNOTSUPP; 10279 if (!event->ctx->task) 10280 goto fail; 10281 10282 /* look up the path and grab its inode */ 10283 ret = kern_path(filename, LOOKUP_FOLLOW, 10284 &filter->path); 10285 if (ret) 10286 goto fail; 10287 10288 ret = -EINVAL; 10289 if (!filter->path.dentry || 10290 !S_ISREG(d_inode(filter->path.dentry) 10291 ->i_mode)) 10292 goto fail; 10293 10294 event->addr_filters.nr_file_filters++; 10295 } 10296 10297 /* ready to consume more filters */ 10298 state = IF_STATE_ACTION; 10299 filter = NULL; 10300 } 10301 } 10302 10303 if (state != IF_STATE_ACTION) 10304 goto fail; 10305 10306 kfree(filename); 10307 kfree(orig); 10308 10309 return 0; 10310 10311 fail: 10312 kfree(filename); 10313 free_filters_list(filters); 10314 kfree(orig); 10315 10316 return ret; 10317 } 10318 10319 static int 10320 perf_event_set_addr_filter(struct perf_event *event, char *filter_str) 10321 { 10322 LIST_HEAD(filters); 10323 int ret; 10324 10325 /* 10326 * Since this is called in perf_ioctl() path, we're already holding 10327 * ctx::mutex. 10328 */ 10329 lockdep_assert_held(&event->ctx->mutex); 10330 10331 if (WARN_ON_ONCE(event->parent)) 10332 return -EINVAL; 10333 10334 ret = perf_event_parse_addr_filter(event, filter_str, &filters); 10335 if (ret) 10336 goto fail_clear_files; 10337 10338 ret = event->pmu->addr_filters_validate(&filters); 10339 if (ret) 10340 goto fail_free_filters; 10341 10342 /* remove existing filters, if any */ 10343 perf_addr_filters_splice(event, &filters); 10344 10345 /* install new filters */ 10346 perf_event_for_each_child(event, perf_event_addr_filters_apply); 10347 10348 return ret; 10349 10350 fail_free_filters: 10351 free_filters_list(&filters); 10352 10353 fail_clear_files: 10354 event->addr_filters.nr_file_filters = 0; 10355 10356 return ret; 10357 } 10358 10359 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 10360 { 10361 int ret = -EINVAL; 10362 char *filter_str; 10363 10364 filter_str = strndup_user(arg, PAGE_SIZE); 10365 if (IS_ERR(filter_str)) 10366 return PTR_ERR(filter_str); 10367 10368 #ifdef CONFIG_EVENT_TRACING 10369 if (perf_event_is_tracing(event)) { 10370 struct perf_event_context *ctx = event->ctx; 10371 10372 /* 10373 * Beware, here be dragons!! 10374 * 10375 * the tracepoint muck will deadlock against ctx->mutex, but 10376 * the tracepoint stuff does not actually need it. So 10377 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we 10378 * already have a reference on ctx. 10379 * 10380 * This can result in event getting moved to a different ctx, 10381 * but that does not affect the tracepoint state. 10382 */ 10383 mutex_unlock(&ctx->mutex); 10384 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 10385 mutex_lock(&ctx->mutex); 10386 } else 10387 #endif 10388 if (has_addr_filter(event)) 10389 ret = perf_event_set_addr_filter(event, filter_str); 10390 10391 kfree(filter_str); 10392 return ret; 10393 } 10394 10395 /* 10396 * hrtimer based swevent callback 10397 */ 10398 10399 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 10400 { 10401 enum hrtimer_restart ret = HRTIMER_RESTART; 10402 struct perf_sample_data data; 10403 struct pt_regs *regs; 10404 struct perf_event *event; 10405 u64 period; 10406 10407 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 10408 10409 if (event->state != PERF_EVENT_STATE_ACTIVE) 10410 return HRTIMER_NORESTART; 10411 10412 event->pmu->read(event); 10413 10414 perf_sample_data_init(&data, 0, event->hw.last_period); 10415 regs = get_irq_regs(); 10416 10417 if (regs && !perf_exclude_event(event, regs)) { 10418 if (!(event->attr.exclude_idle && is_idle_task(current))) 10419 if (__perf_event_overflow(event, 1, &data, regs)) 10420 ret = HRTIMER_NORESTART; 10421 } 10422 10423 period = max_t(u64, 10000, event->hw.sample_period); 10424 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 10425 10426 return ret; 10427 } 10428 10429 static void perf_swevent_start_hrtimer(struct perf_event *event) 10430 { 10431 struct hw_perf_event *hwc = &event->hw; 10432 s64 period; 10433 10434 if (!is_sampling_event(event)) 10435 return; 10436 10437 period = local64_read(&hwc->period_left); 10438 if (period) { 10439 if (period < 0) 10440 period = 10000; 10441 10442 local64_set(&hwc->period_left, 0); 10443 } else { 10444 period = max_t(u64, 10000, hwc->sample_period); 10445 } 10446 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), 10447 HRTIMER_MODE_REL_PINNED_HARD); 10448 } 10449 10450 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 10451 { 10452 struct hw_perf_event *hwc = &event->hw; 10453 10454 if (is_sampling_event(event)) { 10455 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 10456 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 10457 10458 hrtimer_cancel(&hwc->hrtimer); 10459 } 10460 } 10461 10462 static void perf_swevent_init_hrtimer(struct perf_event *event) 10463 { 10464 struct hw_perf_event *hwc = &event->hw; 10465 10466 if (!is_sampling_event(event)) 10467 return; 10468 10469 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 10470 hwc->hrtimer.function = perf_swevent_hrtimer; 10471 10472 /* 10473 * Since hrtimers have a fixed rate, we can do a static freq->period 10474 * mapping and avoid the whole period adjust feedback stuff. 10475 */ 10476 if (event->attr.freq) { 10477 long freq = event->attr.sample_freq; 10478 10479 event->attr.sample_period = NSEC_PER_SEC / freq; 10480 hwc->sample_period = event->attr.sample_period; 10481 local64_set(&hwc->period_left, hwc->sample_period); 10482 hwc->last_period = hwc->sample_period; 10483 event->attr.freq = 0; 10484 } 10485 } 10486 10487 /* 10488 * Software event: cpu wall time clock 10489 */ 10490 10491 static void cpu_clock_event_update(struct perf_event *event) 10492 { 10493 s64 prev; 10494 u64 now; 10495 10496 now = local_clock(); 10497 prev = local64_xchg(&event->hw.prev_count, now); 10498 local64_add(now - prev, &event->count); 10499 } 10500 10501 static void cpu_clock_event_start(struct perf_event *event, int flags) 10502 { 10503 local64_set(&event->hw.prev_count, local_clock()); 10504 perf_swevent_start_hrtimer(event); 10505 } 10506 10507 static void cpu_clock_event_stop(struct perf_event *event, int flags) 10508 { 10509 perf_swevent_cancel_hrtimer(event); 10510 cpu_clock_event_update(event); 10511 } 10512 10513 static int cpu_clock_event_add(struct perf_event *event, int flags) 10514 { 10515 if (flags & PERF_EF_START) 10516 cpu_clock_event_start(event, flags); 10517 perf_event_update_userpage(event); 10518 10519 return 0; 10520 } 10521 10522 static void cpu_clock_event_del(struct perf_event *event, int flags) 10523 { 10524 cpu_clock_event_stop(event, flags); 10525 } 10526 10527 static void cpu_clock_event_read(struct perf_event *event) 10528 { 10529 cpu_clock_event_update(event); 10530 } 10531 10532 static int cpu_clock_event_init(struct perf_event *event) 10533 { 10534 if (event->attr.type != PERF_TYPE_SOFTWARE) 10535 return -ENOENT; 10536 10537 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 10538 return -ENOENT; 10539 10540 /* 10541 * no branch sampling for software events 10542 */ 10543 if (has_branch_stack(event)) 10544 return -EOPNOTSUPP; 10545 10546 perf_swevent_init_hrtimer(event); 10547 10548 return 0; 10549 } 10550 10551 static struct pmu perf_cpu_clock = { 10552 .task_ctx_nr = perf_sw_context, 10553 10554 .capabilities = PERF_PMU_CAP_NO_NMI, 10555 10556 .event_init = cpu_clock_event_init, 10557 .add = cpu_clock_event_add, 10558 .del = cpu_clock_event_del, 10559 .start = cpu_clock_event_start, 10560 .stop = cpu_clock_event_stop, 10561 .read = cpu_clock_event_read, 10562 }; 10563 10564 /* 10565 * Software event: task time clock 10566 */ 10567 10568 static void task_clock_event_update(struct perf_event *event, u64 now) 10569 { 10570 u64 prev; 10571 s64 delta; 10572 10573 prev = local64_xchg(&event->hw.prev_count, now); 10574 delta = now - prev; 10575 local64_add(delta, &event->count); 10576 } 10577 10578 static void task_clock_event_start(struct perf_event *event, int flags) 10579 { 10580 local64_set(&event->hw.prev_count, event->ctx->time); 10581 perf_swevent_start_hrtimer(event); 10582 } 10583 10584 static void task_clock_event_stop(struct perf_event *event, int flags) 10585 { 10586 perf_swevent_cancel_hrtimer(event); 10587 task_clock_event_update(event, event->ctx->time); 10588 } 10589 10590 static int task_clock_event_add(struct perf_event *event, int flags) 10591 { 10592 if (flags & PERF_EF_START) 10593 task_clock_event_start(event, flags); 10594 perf_event_update_userpage(event); 10595 10596 return 0; 10597 } 10598 10599 static void task_clock_event_del(struct perf_event *event, int flags) 10600 { 10601 task_clock_event_stop(event, PERF_EF_UPDATE); 10602 } 10603 10604 static void task_clock_event_read(struct perf_event *event) 10605 { 10606 u64 now = perf_clock(); 10607 u64 delta = now - event->ctx->timestamp; 10608 u64 time = event->ctx->time + delta; 10609 10610 task_clock_event_update(event, time); 10611 } 10612 10613 static int task_clock_event_init(struct perf_event *event) 10614 { 10615 if (event->attr.type != PERF_TYPE_SOFTWARE) 10616 return -ENOENT; 10617 10618 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 10619 return -ENOENT; 10620 10621 /* 10622 * no branch sampling for software events 10623 */ 10624 if (has_branch_stack(event)) 10625 return -EOPNOTSUPP; 10626 10627 perf_swevent_init_hrtimer(event); 10628 10629 return 0; 10630 } 10631 10632 static struct pmu perf_task_clock = { 10633 .task_ctx_nr = perf_sw_context, 10634 10635 .capabilities = PERF_PMU_CAP_NO_NMI, 10636 10637 .event_init = task_clock_event_init, 10638 .add = task_clock_event_add, 10639 .del = task_clock_event_del, 10640 .start = task_clock_event_start, 10641 .stop = task_clock_event_stop, 10642 .read = task_clock_event_read, 10643 }; 10644 10645 static void perf_pmu_nop_void(struct pmu *pmu) 10646 { 10647 } 10648 10649 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags) 10650 { 10651 } 10652 10653 static int perf_pmu_nop_int(struct pmu *pmu) 10654 { 10655 return 0; 10656 } 10657 10658 static int perf_event_nop_int(struct perf_event *event, u64 value) 10659 { 10660 return 0; 10661 } 10662 10663 static DEFINE_PER_CPU(unsigned int, nop_txn_flags); 10664 10665 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags) 10666 { 10667 __this_cpu_write(nop_txn_flags, flags); 10668 10669 if (flags & ~PERF_PMU_TXN_ADD) 10670 return; 10671 10672 perf_pmu_disable(pmu); 10673 } 10674 10675 static int perf_pmu_commit_txn(struct pmu *pmu) 10676 { 10677 unsigned int flags = __this_cpu_read(nop_txn_flags); 10678 10679 __this_cpu_write(nop_txn_flags, 0); 10680 10681 if (flags & ~PERF_PMU_TXN_ADD) 10682 return 0; 10683 10684 perf_pmu_enable(pmu); 10685 return 0; 10686 } 10687 10688 static void perf_pmu_cancel_txn(struct pmu *pmu) 10689 { 10690 unsigned int flags = __this_cpu_read(nop_txn_flags); 10691 10692 __this_cpu_write(nop_txn_flags, 0); 10693 10694 if (flags & ~PERF_PMU_TXN_ADD) 10695 return; 10696 10697 perf_pmu_enable(pmu); 10698 } 10699 10700 static int perf_event_idx_default(struct perf_event *event) 10701 { 10702 return 0; 10703 } 10704 10705 /* 10706 * Ensures all contexts with the same task_ctx_nr have the same 10707 * pmu_cpu_context too. 10708 */ 10709 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn) 10710 { 10711 struct pmu *pmu; 10712 10713 if (ctxn < 0) 10714 return NULL; 10715 10716 list_for_each_entry(pmu, &pmus, entry) { 10717 if (pmu->task_ctx_nr == ctxn) 10718 return pmu->pmu_cpu_context; 10719 } 10720 10721 return NULL; 10722 } 10723 10724 static void free_pmu_context(struct pmu *pmu) 10725 { 10726 /* 10727 * Static contexts such as perf_sw_context have a global lifetime 10728 * and may be shared between different PMUs. Avoid freeing them 10729 * when a single PMU is going away. 10730 */ 10731 if (pmu->task_ctx_nr > perf_invalid_context) 10732 return; 10733 10734 free_percpu(pmu->pmu_cpu_context); 10735 } 10736 10737 /* 10738 * Let userspace know that this PMU supports address range filtering: 10739 */ 10740 static ssize_t nr_addr_filters_show(struct device *dev, 10741 struct device_attribute *attr, 10742 char *page) 10743 { 10744 struct pmu *pmu = dev_get_drvdata(dev); 10745 10746 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters); 10747 } 10748 DEVICE_ATTR_RO(nr_addr_filters); 10749 10750 static struct idr pmu_idr; 10751 10752 static ssize_t 10753 type_show(struct device *dev, struct device_attribute *attr, char *page) 10754 { 10755 struct pmu *pmu = dev_get_drvdata(dev); 10756 10757 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); 10758 } 10759 static DEVICE_ATTR_RO(type); 10760 10761 static ssize_t 10762 perf_event_mux_interval_ms_show(struct device *dev, 10763 struct device_attribute *attr, 10764 char *page) 10765 { 10766 struct pmu *pmu = dev_get_drvdata(dev); 10767 10768 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms); 10769 } 10770 10771 static DEFINE_MUTEX(mux_interval_mutex); 10772 10773 static ssize_t 10774 perf_event_mux_interval_ms_store(struct device *dev, 10775 struct device_attribute *attr, 10776 const char *buf, size_t count) 10777 { 10778 struct pmu *pmu = dev_get_drvdata(dev); 10779 int timer, cpu, ret; 10780 10781 ret = kstrtoint(buf, 0, &timer); 10782 if (ret) 10783 return ret; 10784 10785 if (timer < 1) 10786 return -EINVAL; 10787 10788 /* same value, noting to do */ 10789 if (timer == pmu->hrtimer_interval_ms) 10790 return count; 10791 10792 mutex_lock(&mux_interval_mutex); 10793 pmu->hrtimer_interval_ms = timer; 10794 10795 /* update all cpuctx for this PMU */ 10796 cpus_read_lock(); 10797 for_each_online_cpu(cpu) { 10798 struct perf_cpu_context *cpuctx; 10799 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 10800 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 10801 10802 cpu_function_call(cpu, 10803 (remote_function_f)perf_mux_hrtimer_restart, cpuctx); 10804 } 10805 cpus_read_unlock(); 10806 mutex_unlock(&mux_interval_mutex); 10807 10808 return count; 10809 } 10810 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 10811 10812 static struct attribute *pmu_dev_attrs[] = { 10813 &dev_attr_type.attr, 10814 &dev_attr_perf_event_mux_interval_ms.attr, 10815 NULL, 10816 }; 10817 ATTRIBUTE_GROUPS(pmu_dev); 10818 10819 static int pmu_bus_running; 10820 static struct bus_type pmu_bus = { 10821 .name = "event_source", 10822 .dev_groups = pmu_dev_groups, 10823 }; 10824 10825 static void pmu_dev_release(struct device *dev) 10826 { 10827 kfree(dev); 10828 } 10829 10830 static int pmu_dev_alloc(struct pmu *pmu) 10831 { 10832 int ret = -ENOMEM; 10833 10834 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 10835 if (!pmu->dev) 10836 goto out; 10837 10838 pmu->dev->groups = pmu->attr_groups; 10839 device_initialize(pmu->dev); 10840 ret = dev_set_name(pmu->dev, "%s", pmu->name); 10841 if (ret) 10842 goto free_dev; 10843 10844 dev_set_drvdata(pmu->dev, pmu); 10845 pmu->dev->bus = &pmu_bus; 10846 pmu->dev->release = pmu_dev_release; 10847 ret = device_add(pmu->dev); 10848 if (ret) 10849 goto free_dev; 10850 10851 /* For PMUs with address filters, throw in an extra attribute: */ 10852 if (pmu->nr_addr_filters) 10853 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters); 10854 10855 if (ret) 10856 goto del_dev; 10857 10858 if (pmu->attr_update) 10859 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update); 10860 10861 if (ret) 10862 goto del_dev; 10863 10864 out: 10865 return ret; 10866 10867 del_dev: 10868 device_del(pmu->dev); 10869 10870 free_dev: 10871 put_device(pmu->dev); 10872 goto out; 10873 } 10874 10875 static struct lock_class_key cpuctx_mutex; 10876 static struct lock_class_key cpuctx_lock; 10877 10878 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 10879 { 10880 int cpu, ret, max = PERF_TYPE_MAX; 10881 10882 mutex_lock(&pmus_lock); 10883 ret = -ENOMEM; 10884 pmu->pmu_disable_count = alloc_percpu(int); 10885 if (!pmu->pmu_disable_count) 10886 goto unlock; 10887 10888 pmu->type = -1; 10889 if (!name) 10890 goto skip_type; 10891 pmu->name = name; 10892 10893 if (type != PERF_TYPE_SOFTWARE) { 10894 if (type >= 0) 10895 max = type; 10896 10897 ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL); 10898 if (ret < 0) 10899 goto free_pdc; 10900 10901 WARN_ON(type >= 0 && ret != type); 10902 10903 type = ret; 10904 } 10905 pmu->type = type; 10906 10907 if (pmu_bus_running) { 10908 ret = pmu_dev_alloc(pmu); 10909 if (ret) 10910 goto free_idr; 10911 } 10912 10913 skip_type: 10914 if (pmu->task_ctx_nr == perf_hw_context) { 10915 static int hw_context_taken = 0; 10916 10917 /* 10918 * Other than systems with heterogeneous CPUs, it never makes 10919 * sense for two PMUs to share perf_hw_context. PMUs which are 10920 * uncore must use perf_invalid_context. 10921 */ 10922 if (WARN_ON_ONCE(hw_context_taken && 10923 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS))) 10924 pmu->task_ctx_nr = perf_invalid_context; 10925 10926 hw_context_taken = 1; 10927 } 10928 10929 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); 10930 if (pmu->pmu_cpu_context) 10931 goto got_cpu_context; 10932 10933 ret = -ENOMEM; 10934 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); 10935 if (!pmu->pmu_cpu_context) 10936 goto free_dev; 10937 10938 for_each_possible_cpu(cpu) { 10939 struct perf_cpu_context *cpuctx; 10940 10941 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 10942 __perf_event_init_context(&cpuctx->ctx); 10943 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 10944 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 10945 cpuctx->ctx.pmu = pmu; 10946 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask); 10947 10948 __perf_mux_hrtimer_init(cpuctx, cpu); 10949 10950 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default); 10951 cpuctx->heap = cpuctx->heap_default; 10952 } 10953 10954 got_cpu_context: 10955 if (!pmu->start_txn) { 10956 if (pmu->pmu_enable) { 10957 /* 10958 * If we have pmu_enable/pmu_disable calls, install 10959 * transaction stubs that use that to try and batch 10960 * hardware accesses. 10961 */ 10962 pmu->start_txn = perf_pmu_start_txn; 10963 pmu->commit_txn = perf_pmu_commit_txn; 10964 pmu->cancel_txn = perf_pmu_cancel_txn; 10965 } else { 10966 pmu->start_txn = perf_pmu_nop_txn; 10967 pmu->commit_txn = perf_pmu_nop_int; 10968 pmu->cancel_txn = perf_pmu_nop_void; 10969 } 10970 } 10971 10972 if (!pmu->pmu_enable) { 10973 pmu->pmu_enable = perf_pmu_nop_void; 10974 pmu->pmu_disable = perf_pmu_nop_void; 10975 } 10976 10977 if (!pmu->check_period) 10978 pmu->check_period = perf_event_nop_int; 10979 10980 if (!pmu->event_idx) 10981 pmu->event_idx = perf_event_idx_default; 10982 10983 /* 10984 * Ensure the TYPE_SOFTWARE PMUs are at the head of the list, 10985 * since these cannot be in the IDR. This way the linear search 10986 * is fast, provided a valid software event is provided. 10987 */ 10988 if (type == PERF_TYPE_SOFTWARE || !name) 10989 list_add_rcu(&pmu->entry, &pmus); 10990 else 10991 list_add_tail_rcu(&pmu->entry, &pmus); 10992 10993 atomic_set(&pmu->exclusive_cnt, 0); 10994 ret = 0; 10995 unlock: 10996 mutex_unlock(&pmus_lock); 10997 10998 return ret; 10999 11000 free_dev: 11001 device_del(pmu->dev); 11002 put_device(pmu->dev); 11003 11004 free_idr: 11005 if (pmu->type != PERF_TYPE_SOFTWARE) 11006 idr_remove(&pmu_idr, pmu->type); 11007 11008 free_pdc: 11009 free_percpu(pmu->pmu_disable_count); 11010 goto unlock; 11011 } 11012 EXPORT_SYMBOL_GPL(perf_pmu_register); 11013 11014 void perf_pmu_unregister(struct pmu *pmu) 11015 { 11016 mutex_lock(&pmus_lock); 11017 list_del_rcu(&pmu->entry); 11018 11019 /* 11020 * We dereference the pmu list under both SRCU and regular RCU, so 11021 * synchronize against both of those. 11022 */ 11023 synchronize_srcu(&pmus_srcu); 11024 synchronize_rcu(); 11025 11026 free_percpu(pmu->pmu_disable_count); 11027 if (pmu->type != PERF_TYPE_SOFTWARE) 11028 idr_remove(&pmu_idr, pmu->type); 11029 if (pmu_bus_running) { 11030 if (pmu->nr_addr_filters) 11031 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters); 11032 device_del(pmu->dev); 11033 put_device(pmu->dev); 11034 } 11035 free_pmu_context(pmu); 11036 mutex_unlock(&pmus_lock); 11037 } 11038 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 11039 11040 static inline bool has_extended_regs(struct perf_event *event) 11041 { 11042 return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) || 11043 (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK); 11044 } 11045 11046 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) 11047 { 11048 struct perf_event_context *ctx = NULL; 11049 int ret; 11050 11051 if (!try_module_get(pmu->module)) 11052 return -ENODEV; 11053 11054 /* 11055 * A number of pmu->event_init() methods iterate the sibling_list to, 11056 * for example, validate if the group fits on the PMU. Therefore, 11057 * if this is a sibling event, acquire the ctx->mutex to protect 11058 * the sibling_list. 11059 */ 11060 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) { 11061 /* 11062 * This ctx->mutex can nest when we're called through 11063 * inheritance. See the perf_event_ctx_lock_nested() comment. 11064 */ 11065 ctx = perf_event_ctx_lock_nested(event->group_leader, 11066 SINGLE_DEPTH_NESTING); 11067 BUG_ON(!ctx); 11068 } 11069 11070 event->pmu = pmu; 11071 ret = pmu->event_init(event); 11072 11073 if (ctx) 11074 perf_event_ctx_unlock(event->group_leader, ctx); 11075 11076 if (!ret) { 11077 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) && 11078 has_extended_regs(event)) 11079 ret = -EOPNOTSUPP; 11080 11081 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE && 11082 event_has_any_exclude_flag(event)) 11083 ret = -EINVAL; 11084 11085 if (ret && event->destroy) 11086 event->destroy(event); 11087 } 11088 11089 if (ret) 11090 module_put(pmu->module); 11091 11092 return ret; 11093 } 11094 11095 static struct pmu *perf_init_event(struct perf_event *event) 11096 { 11097 int idx, type, ret; 11098 struct pmu *pmu; 11099 11100 idx = srcu_read_lock(&pmus_srcu); 11101 11102 /* Try parent's PMU first: */ 11103 if (event->parent && event->parent->pmu) { 11104 pmu = event->parent->pmu; 11105 ret = perf_try_init_event(pmu, event); 11106 if (!ret) 11107 goto unlock; 11108 } 11109 11110 /* 11111 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE 11112 * are often aliases for PERF_TYPE_RAW. 11113 */ 11114 type = event->attr.type; 11115 if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) 11116 type = PERF_TYPE_RAW; 11117 11118 again: 11119 rcu_read_lock(); 11120 pmu = idr_find(&pmu_idr, type); 11121 rcu_read_unlock(); 11122 if (pmu) { 11123 ret = perf_try_init_event(pmu, event); 11124 if (ret == -ENOENT && event->attr.type != type) { 11125 type = event->attr.type; 11126 goto again; 11127 } 11128 11129 if (ret) 11130 pmu = ERR_PTR(ret); 11131 11132 goto unlock; 11133 } 11134 11135 list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) { 11136 ret = perf_try_init_event(pmu, event); 11137 if (!ret) 11138 goto unlock; 11139 11140 if (ret != -ENOENT) { 11141 pmu = ERR_PTR(ret); 11142 goto unlock; 11143 } 11144 } 11145 pmu = ERR_PTR(-ENOENT); 11146 unlock: 11147 srcu_read_unlock(&pmus_srcu, idx); 11148 11149 return pmu; 11150 } 11151 11152 static void attach_sb_event(struct perf_event *event) 11153 { 11154 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 11155 11156 raw_spin_lock(&pel->lock); 11157 list_add_rcu(&event->sb_list, &pel->list); 11158 raw_spin_unlock(&pel->lock); 11159 } 11160 11161 /* 11162 * We keep a list of all !task (and therefore per-cpu) events 11163 * that need to receive side-band records. 11164 * 11165 * This avoids having to scan all the various PMU per-cpu contexts 11166 * looking for them. 11167 */ 11168 static void account_pmu_sb_event(struct perf_event *event) 11169 { 11170 if (is_sb_event(event)) 11171 attach_sb_event(event); 11172 } 11173 11174 static void account_event_cpu(struct perf_event *event, int cpu) 11175 { 11176 if (event->parent) 11177 return; 11178 11179 if (is_cgroup_event(event)) 11180 atomic_inc(&per_cpu(perf_cgroup_events, cpu)); 11181 } 11182 11183 /* Freq events need the tick to stay alive (see perf_event_task_tick). */ 11184 static void account_freq_event_nohz(void) 11185 { 11186 #ifdef CONFIG_NO_HZ_FULL 11187 /* Lock so we don't race with concurrent unaccount */ 11188 spin_lock(&nr_freq_lock); 11189 if (atomic_inc_return(&nr_freq_events) == 1) 11190 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS); 11191 spin_unlock(&nr_freq_lock); 11192 #endif 11193 } 11194 11195 static void account_freq_event(void) 11196 { 11197 if (tick_nohz_full_enabled()) 11198 account_freq_event_nohz(); 11199 else 11200 atomic_inc(&nr_freq_events); 11201 } 11202 11203 11204 static void account_event(struct perf_event *event) 11205 { 11206 bool inc = false; 11207 11208 if (event->parent) 11209 return; 11210 11211 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB)) 11212 inc = true; 11213 if (event->attr.mmap || event->attr.mmap_data) 11214 atomic_inc(&nr_mmap_events); 11215 if (event->attr.build_id) 11216 atomic_inc(&nr_build_id_events); 11217 if (event->attr.comm) 11218 atomic_inc(&nr_comm_events); 11219 if (event->attr.namespaces) 11220 atomic_inc(&nr_namespaces_events); 11221 if (event->attr.cgroup) 11222 atomic_inc(&nr_cgroup_events); 11223 if (event->attr.task) 11224 atomic_inc(&nr_task_events); 11225 if (event->attr.freq) 11226 account_freq_event(); 11227 if (event->attr.context_switch) { 11228 atomic_inc(&nr_switch_events); 11229 inc = true; 11230 } 11231 if (has_branch_stack(event)) 11232 inc = true; 11233 if (is_cgroup_event(event)) 11234 inc = true; 11235 if (event->attr.ksymbol) 11236 atomic_inc(&nr_ksymbol_events); 11237 if (event->attr.bpf_event) 11238 atomic_inc(&nr_bpf_events); 11239 if (event->attr.text_poke) 11240 atomic_inc(&nr_text_poke_events); 11241 11242 if (inc) { 11243 /* 11244 * We need the mutex here because static_branch_enable() 11245 * must complete *before* the perf_sched_count increment 11246 * becomes visible. 11247 */ 11248 if (atomic_inc_not_zero(&perf_sched_count)) 11249 goto enabled; 11250 11251 mutex_lock(&perf_sched_mutex); 11252 if (!atomic_read(&perf_sched_count)) { 11253 static_branch_enable(&perf_sched_events); 11254 /* 11255 * Guarantee that all CPUs observe they key change and 11256 * call the perf scheduling hooks before proceeding to 11257 * install events that need them. 11258 */ 11259 synchronize_rcu(); 11260 } 11261 /* 11262 * Now that we have waited for the sync_sched(), allow further 11263 * increments to by-pass the mutex. 11264 */ 11265 atomic_inc(&perf_sched_count); 11266 mutex_unlock(&perf_sched_mutex); 11267 } 11268 enabled: 11269 11270 account_event_cpu(event, event->cpu); 11271 11272 account_pmu_sb_event(event); 11273 } 11274 11275 /* 11276 * Allocate and initialize an event structure 11277 */ 11278 static struct perf_event * 11279 perf_event_alloc(struct perf_event_attr *attr, int cpu, 11280 struct task_struct *task, 11281 struct perf_event *group_leader, 11282 struct perf_event *parent_event, 11283 perf_overflow_handler_t overflow_handler, 11284 void *context, int cgroup_fd) 11285 { 11286 struct pmu *pmu; 11287 struct perf_event *event; 11288 struct hw_perf_event *hwc; 11289 long err = -EINVAL; 11290 11291 if ((unsigned)cpu >= nr_cpu_ids) { 11292 if (!task || cpu != -1) 11293 return ERR_PTR(-EINVAL); 11294 } 11295 11296 event = kzalloc(sizeof(*event), GFP_KERNEL); 11297 if (!event) 11298 return ERR_PTR(-ENOMEM); 11299 11300 /* 11301 * Single events are their own group leaders, with an 11302 * empty sibling list: 11303 */ 11304 if (!group_leader) 11305 group_leader = event; 11306 11307 mutex_init(&event->child_mutex); 11308 INIT_LIST_HEAD(&event->child_list); 11309 11310 INIT_LIST_HEAD(&event->event_entry); 11311 INIT_LIST_HEAD(&event->sibling_list); 11312 INIT_LIST_HEAD(&event->active_list); 11313 init_event_group(event); 11314 INIT_LIST_HEAD(&event->rb_entry); 11315 INIT_LIST_HEAD(&event->active_entry); 11316 INIT_LIST_HEAD(&event->addr_filters.list); 11317 INIT_HLIST_NODE(&event->hlist_entry); 11318 11319 11320 init_waitqueue_head(&event->waitq); 11321 event->pending_disable = -1; 11322 init_irq_work(&event->pending, perf_pending_event); 11323 11324 mutex_init(&event->mmap_mutex); 11325 raw_spin_lock_init(&event->addr_filters.lock); 11326 11327 atomic_long_set(&event->refcount, 1); 11328 event->cpu = cpu; 11329 event->attr = *attr; 11330 event->group_leader = group_leader; 11331 event->pmu = NULL; 11332 event->oncpu = -1; 11333 11334 event->parent = parent_event; 11335 11336 event->ns = get_pid_ns(task_active_pid_ns(current)); 11337 event->id = atomic64_inc_return(&perf_event_id); 11338 11339 event->state = PERF_EVENT_STATE_INACTIVE; 11340 11341 if (task) { 11342 event->attach_state = PERF_ATTACH_TASK; 11343 /* 11344 * XXX pmu::event_init needs to know what task to account to 11345 * and we cannot use the ctx information because we need the 11346 * pmu before we get a ctx. 11347 */ 11348 event->hw.target = get_task_struct(task); 11349 } 11350 11351 event->clock = &local_clock; 11352 if (parent_event) 11353 event->clock = parent_event->clock; 11354 11355 if (!overflow_handler && parent_event) { 11356 overflow_handler = parent_event->overflow_handler; 11357 context = parent_event->overflow_handler_context; 11358 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING) 11359 if (overflow_handler == bpf_overflow_handler) { 11360 struct bpf_prog *prog = parent_event->prog; 11361 11362 bpf_prog_inc(prog); 11363 event->prog = prog; 11364 event->orig_overflow_handler = 11365 parent_event->orig_overflow_handler; 11366 } 11367 #endif 11368 } 11369 11370 if (overflow_handler) { 11371 event->overflow_handler = overflow_handler; 11372 event->overflow_handler_context = context; 11373 } else if (is_write_backward(event)){ 11374 event->overflow_handler = perf_event_output_backward; 11375 event->overflow_handler_context = NULL; 11376 } else { 11377 event->overflow_handler = perf_event_output_forward; 11378 event->overflow_handler_context = NULL; 11379 } 11380 11381 perf_event__state_init(event); 11382 11383 pmu = NULL; 11384 11385 hwc = &event->hw; 11386 hwc->sample_period = attr->sample_period; 11387 if (attr->freq && attr->sample_freq) 11388 hwc->sample_period = 1; 11389 hwc->last_period = hwc->sample_period; 11390 11391 local64_set(&hwc->period_left, hwc->sample_period); 11392 11393 /* 11394 * We currently do not support PERF_SAMPLE_READ on inherited events. 11395 * See perf_output_read(). 11396 */ 11397 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ)) 11398 goto err_ns; 11399 11400 if (!has_branch_stack(event)) 11401 event->attr.branch_sample_type = 0; 11402 11403 pmu = perf_init_event(event); 11404 if (IS_ERR(pmu)) { 11405 err = PTR_ERR(pmu); 11406 goto err_ns; 11407 } 11408 11409 /* 11410 * Disallow uncore-cgroup events, they don't make sense as the cgroup will 11411 * be different on other CPUs in the uncore mask. 11412 */ 11413 if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) { 11414 err = -EINVAL; 11415 goto err_pmu; 11416 } 11417 11418 if (event->attr.aux_output && 11419 !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) { 11420 err = -EOPNOTSUPP; 11421 goto err_pmu; 11422 } 11423 11424 if (cgroup_fd != -1) { 11425 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); 11426 if (err) 11427 goto err_pmu; 11428 } 11429 11430 err = exclusive_event_init(event); 11431 if (err) 11432 goto err_pmu; 11433 11434 if (has_addr_filter(event)) { 11435 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters, 11436 sizeof(struct perf_addr_filter_range), 11437 GFP_KERNEL); 11438 if (!event->addr_filter_ranges) { 11439 err = -ENOMEM; 11440 goto err_per_task; 11441 } 11442 11443 /* 11444 * Clone the parent's vma offsets: they are valid until exec() 11445 * even if the mm is not shared with the parent. 11446 */ 11447 if (event->parent) { 11448 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 11449 11450 raw_spin_lock_irq(&ifh->lock); 11451 memcpy(event->addr_filter_ranges, 11452 event->parent->addr_filter_ranges, 11453 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range)); 11454 raw_spin_unlock_irq(&ifh->lock); 11455 } 11456 11457 /* force hw sync on the address filters */ 11458 event->addr_filters_gen = 1; 11459 } 11460 11461 if (!event->parent) { 11462 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 11463 err = get_callchain_buffers(attr->sample_max_stack); 11464 if (err) 11465 goto err_addr_filters; 11466 } 11467 } 11468 11469 err = security_perf_event_alloc(event); 11470 if (err) 11471 goto err_callchain_buffer; 11472 11473 /* symmetric to unaccount_event() in _free_event() */ 11474 account_event(event); 11475 11476 return event; 11477 11478 err_callchain_buffer: 11479 if (!event->parent) { 11480 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 11481 put_callchain_buffers(); 11482 } 11483 err_addr_filters: 11484 kfree(event->addr_filter_ranges); 11485 11486 err_per_task: 11487 exclusive_event_destroy(event); 11488 11489 err_pmu: 11490 if (is_cgroup_event(event)) 11491 perf_detach_cgroup(event); 11492 if (event->destroy) 11493 event->destroy(event); 11494 module_put(pmu->module); 11495 err_ns: 11496 if (event->ns) 11497 put_pid_ns(event->ns); 11498 if (event->hw.target) 11499 put_task_struct(event->hw.target); 11500 kfree(event); 11501 11502 return ERR_PTR(err); 11503 } 11504 11505 static int perf_copy_attr(struct perf_event_attr __user *uattr, 11506 struct perf_event_attr *attr) 11507 { 11508 u32 size; 11509 int ret; 11510 11511 /* Zero the full structure, so that a short copy will be nice. */ 11512 memset(attr, 0, sizeof(*attr)); 11513 11514 ret = get_user(size, &uattr->size); 11515 if (ret) 11516 return ret; 11517 11518 /* ABI compatibility quirk: */ 11519 if (!size) 11520 size = PERF_ATTR_SIZE_VER0; 11521 if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE) 11522 goto err_size; 11523 11524 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); 11525 if (ret) { 11526 if (ret == -E2BIG) 11527 goto err_size; 11528 return ret; 11529 } 11530 11531 attr->size = size; 11532 11533 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) 11534 return -EINVAL; 11535 11536 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 11537 return -EINVAL; 11538 11539 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 11540 return -EINVAL; 11541 11542 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 11543 u64 mask = attr->branch_sample_type; 11544 11545 /* only using defined bits */ 11546 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 11547 return -EINVAL; 11548 11549 /* at least one branch bit must be set */ 11550 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 11551 return -EINVAL; 11552 11553 /* propagate priv level, when not set for branch */ 11554 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 11555 11556 /* exclude_kernel checked on syscall entry */ 11557 if (!attr->exclude_kernel) 11558 mask |= PERF_SAMPLE_BRANCH_KERNEL; 11559 11560 if (!attr->exclude_user) 11561 mask |= PERF_SAMPLE_BRANCH_USER; 11562 11563 if (!attr->exclude_hv) 11564 mask |= PERF_SAMPLE_BRANCH_HV; 11565 /* 11566 * adjust user setting (for HW filter setup) 11567 */ 11568 attr->branch_sample_type = mask; 11569 } 11570 /* privileged levels capture (kernel, hv): check permissions */ 11571 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) { 11572 ret = perf_allow_kernel(attr); 11573 if (ret) 11574 return ret; 11575 } 11576 } 11577 11578 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 11579 ret = perf_reg_validate(attr->sample_regs_user); 11580 if (ret) 11581 return ret; 11582 } 11583 11584 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 11585 if (!arch_perf_have_user_stack_dump()) 11586 return -ENOSYS; 11587 11588 /* 11589 * We have __u32 type for the size, but so far 11590 * we can only use __u16 as maximum due to the 11591 * __u16 sample size limit. 11592 */ 11593 if (attr->sample_stack_user >= USHRT_MAX) 11594 return -EINVAL; 11595 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 11596 return -EINVAL; 11597 } 11598 11599 if (!attr->sample_max_stack) 11600 attr->sample_max_stack = sysctl_perf_event_max_stack; 11601 11602 if (attr->sample_type & PERF_SAMPLE_REGS_INTR) 11603 ret = perf_reg_validate(attr->sample_regs_intr); 11604 11605 #ifndef CONFIG_CGROUP_PERF 11606 if (attr->sample_type & PERF_SAMPLE_CGROUP) 11607 return -EINVAL; 11608 #endif 11609 if ((attr->sample_type & PERF_SAMPLE_WEIGHT) && 11610 (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT)) 11611 return -EINVAL; 11612 11613 out: 11614 return ret; 11615 11616 err_size: 11617 put_user(sizeof(*attr), &uattr->size); 11618 ret = -E2BIG; 11619 goto out; 11620 } 11621 11622 static int 11623 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 11624 { 11625 struct perf_buffer *rb = NULL; 11626 int ret = -EINVAL; 11627 11628 if (!output_event) 11629 goto set; 11630 11631 /* don't allow circular references */ 11632 if (event == output_event) 11633 goto out; 11634 11635 /* 11636 * Don't allow cross-cpu buffers 11637 */ 11638 if (output_event->cpu != event->cpu) 11639 goto out; 11640 11641 /* 11642 * If its not a per-cpu rb, it must be the same task. 11643 */ 11644 if (output_event->cpu == -1 && output_event->ctx != event->ctx) 11645 goto out; 11646 11647 /* 11648 * Mixing clocks in the same buffer is trouble you don't need. 11649 */ 11650 if (output_event->clock != event->clock) 11651 goto out; 11652 11653 /* 11654 * Either writing ring buffer from beginning or from end. 11655 * Mixing is not allowed. 11656 */ 11657 if (is_write_backward(output_event) != is_write_backward(event)) 11658 goto out; 11659 11660 /* 11661 * If both events generate aux data, they must be on the same PMU 11662 */ 11663 if (has_aux(event) && has_aux(output_event) && 11664 event->pmu != output_event->pmu) 11665 goto out; 11666 11667 set: 11668 mutex_lock(&event->mmap_mutex); 11669 /* Can't redirect output if we've got an active mmap() */ 11670 if (atomic_read(&event->mmap_count)) 11671 goto unlock; 11672 11673 if (output_event) { 11674 /* get the rb we want to redirect to */ 11675 rb = ring_buffer_get(output_event); 11676 if (!rb) 11677 goto unlock; 11678 } 11679 11680 ring_buffer_attach(event, rb); 11681 11682 ret = 0; 11683 unlock: 11684 mutex_unlock(&event->mmap_mutex); 11685 11686 out: 11687 return ret; 11688 } 11689 11690 static void mutex_lock_double(struct mutex *a, struct mutex *b) 11691 { 11692 if (b < a) 11693 swap(a, b); 11694 11695 mutex_lock(a); 11696 mutex_lock_nested(b, SINGLE_DEPTH_NESTING); 11697 } 11698 11699 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) 11700 { 11701 bool nmi_safe = false; 11702 11703 switch (clk_id) { 11704 case CLOCK_MONOTONIC: 11705 event->clock = &ktime_get_mono_fast_ns; 11706 nmi_safe = true; 11707 break; 11708 11709 case CLOCK_MONOTONIC_RAW: 11710 event->clock = &ktime_get_raw_fast_ns; 11711 nmi_safe = true; 11712 break; 11713 11714 case CLOCK_REALTIME: 11715 event->clock = &ktime_get_real_ns; 11716 break; 11717 11718 case CLOCK_BOOTTIME: 11719 event->clock = &ktime_get_boottime_ns; 11720 break; 11721 11722 case CLOCK_TAI: 11723 event->clock = &ktime_get_clocktai_ns; 11724 break; 11725 11726 default: 11727 return -EINVAL; 11728 } 11729 11730 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) 11731 return -EINVAL; 11732 11733 return 0; 11734 } 11735 11736 /* 11737 * Variation on perf_event_ctx_lock_nested(), except we take two context 11738 * mutexes. 11739 */ 11740 static struct perf_event_context * 11741 __perf_event_ctx_lock_double(struct perf_event *group_leader, 11742 struct perf_event_context *ctx) 11743 { 11744 struct perf_event_context *gctx; 11745 11746 again: 11747 rcu_read_lock(); 11748 gctx = READ_ONCE(group_leader->ctx); 11749 if (!refcount_inc_not_zero(&gctx->refcount)) { 11750 rcu_read_unlock(); 11751 goto again; 11752 } 11753 rcu_read_unlock(); 11754 11755 mutex_lock_double(&gctx->mutex, &ctx->mutex); 11756 11757 if (group_leader->ctx != gctx) { 11758 mutex_unlock(&ctx->mutex); 11759 mutex_unlock(&gctx->mutex); 11760 put_ctx(gctx); 11761 goto again; 11762 } 11763 11764 return gctx; 11765 } 11766 11767 /** 11768 * sys_perf_event_open - open a performance event, associate it to a task/cpu 11769 * 11770 * @attr_uptr: event_id type attributes for monitoring/sampling 11771 * @pid: target pid 11772 * @cpu: target cpu 11773 * @group_fd: group leader event fd 11774 */ 11775 SYSCALL_DEFINE5(perf_event_open, 11776 struct perf_event_attr __user *, attr_uptr, 11777 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 11778 { 11779 struct perf_event *group_leader = NULL, *output_event = NULL; 11780 struct perf_event *event, *sibling; 11781 struct perf_event_attr attr; 11782 struct perf_event_context *ctx, *gctx; 11783 struct file *event_file = NULL; 11784 struct fd group = {NULL, 0}; 11785 struct task_struct *task = NULL; 11786 struct pmu *pmu; 11787 int event_fd; 11788 int move_group = 0; 11789 int err; 11790 int f_flags = O_RDWR; 11791 int cgroup_fd = -1; 11792 11793 /* for future expandability... */ 11794 if (flags & ~PERF_FLAG_ALL) 11795 return -EINVAL; 11796 11797 /* Do we allow access to perf_event_open(2) ? */ 11798 err = security_perf_event_open(&attr, PERF_SECURITY_OPEN); 11799 if (err) 11800 return err; 11801 11802 err = perf_copy_attr(attr_uptr, &attr); 11803 if (err) 11804 return err; 11805 11806 if (!attr.exclude_kernel) { 11807 err = perf_allow_kernel(&attr); 11808 if (err) 11809 return err; 11810 } 11811 11812 if (attr.namespaces) { 11813 if (!perfmon_capable()) 11814 return -EACCES; 11815 } 11816 11817 if (attr.freq) { 11818 if (attr.sample_freq > sysctl_perf_event_sample_rate) 11819 return -EINVAL; 11820 } else { 11821 if (attr.sample_period & (1ULL << 63)) 11822 return -EINVAL; 11823 } 11824 11825 /* Only privileged users can get physical addresses */ 11826 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) { 11827 err = perf_allow_kernel(&attr); 11828 if (err) 11829 return err; 11830 } 11831 11832 err = security_locked_down(LOCKDOWN_PERF); 11833 if (err && (attr.sample_type & PERF_SAMPLE_REGS_INTR)) 11834 /* REGS_INTR can leak data, lockdown must prevent this */ 11835 return err; 11836 11837 err = 0; 11838 11839 /* 11840 * In cgroup mode, the pid argument is used to pass the fd 11841 * opened to the cgroup directory in cgroupfs. The cpu argument 11842 * designates the cpu on which to monitor threads from that 11843 * cgroup. 11844 */ 11845 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 11846 return -EINVAL; 11847 11848 if (flags & PERF_FLAG_FD_CLOEXEC) 11849 f_flags |= O_CLOEXEC; 11850 11851 event_fd = get_unused_fd_flags(f_flags); 11852 if (event_fd < 0) 11853 return event_fd; 11854 11855 if (group_fd != -1) { 11856 err = perf_fget_light(group_fd, &group); 11857 if (err) 11858 goto err_fd; 11859 group_leader = group.file->private_data; 11860 if (flags & PERF_FLAG_FD_OUTPUT) 11861 output_event = group_leader; 11862 if (flags & PERF_FLAG_FD_NO_GROUP) 11863 group_leader = NULL; 11864 } 11865 11866 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 11867 task = find_lively_task_by_vpid(pid); 11868 if (IS_ERR(task)) { 11869 err = PTR_ERR(task); 11870 goto err_group_fd; 11871 } 11872 } 11873 11874 if (task && group_leader && 11875 group_leader->attr.inherit != attr.inherit) { 11876 err = -EINVAL; 11877 goto err_task; 11878 } 11879 11880 if (flags & PERF_FLAG_PID_CGROUP) 11881 cgroup_fd = pid; 11882 11883 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 11884 NULL, NULL, cgroup_fd); 11885 if (IS_ERR(event)) { 11886 err = PTR_ERR(event); 11887 goto err_task; 11888 } 11889 11890 if (is_sampling_event(event)) { 11891 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 11892 err = -EOPNOTSUPP; 11893 goto err_alloc; 11894 } 11895 } 11896 11897 /* 11898 * Special case software events and allow them to be part of 11899 * any hardware group. 11900 */ 11901 pmu = event->pmu; 11902 11903 if (attr.use_clockid) { 11904 err = perf_event_set_clock(event, attr.clockid); 11905 if (err) 11906 goto err_alloc; 11907 } 11908 11909 if (pmu->task_ctx_nr == perf_sw_context) 11910 event->event_caps |= PERF_EV_CAP_SOFTWARE; 11911 11912 if (group_leader) { 11913 if (is_software_event(event) && 11914 !in_software_context(group_leader)) { 11915 /* 11916 * If the event is a sw event, but the group_leader 11917 * is on hw context. 11918 * 11919 * Allow the addition of software events to hw 11920 * groups, this is safe because software events 11921 * never fail to schedule. 11922 */ 11923 pmu = group_leader->ctx->pmu; 11924 } else if (!is_software_event(event) && 11925 is_software_event(group_leader) && 11926 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 11927 /* 11928 * In case the group is a pure software group, and we 11929 * try to add a hardware event, move the whole group to 11930 * the hardware context. 11931 */ 11932 move_group = 1; 11933 } 11934 } 11935 11936 /* 11937 * Get the target context (task or percpu): 11938 */ 11939 ctx = find_get_context(pmu, task, event); 11940 if (IS_ERR(ctx)) { 11941 err = PTR_ERR(ctx); 11942 goto err_alloc; 11943 } 11944 11945 /* 11946 * Look up the group leader (we will attach this event to it): 11947 */ 11948 if (group_leader) { 11949 err = -EINVAL; 11950 11951 /* 11952 * Do not allow a recursive hierarchy (this new sibling 11953 * becoming part of another group-sibling): 11954 */ 11955 if (group_leader->group_leader != group_leader) 11956 goto err_context; 11957 11958 /* All events in a group should have the same clock */ 11959 if (group_leader->clock != event->clock) 11960 goto err_context; 11961 11962 /* 11963 * Make sure we're both events for the same CPU; 11964 * grouping events for different CPUs is broken; since 11965 * you can never concurrently schedule them anyhow. 11966 */ 11967 if (group_leader->cpu != event->cpu) 11968 goto err_context; 11969 11970 /* 11971 * Make sure we're both on the same task, or both 11972 * per-CPU events. 11973 */ 11974 if (group_leader->ctx->task != ctx->task) 11975 goto err_context; 11976 11977 /* 11978 * Do not allow to attach to a group in a different task 11979 * or CPU context. If we're moving SW events, we'll fix 11980 * this up later, so allow that. 11981 */ 11982 if (!move_group && group_leader->ctx != ctx) 11983 goto err_context; 11984 11985 /* 11986 * Only a group leader can be exclusive or pinned 11987 */ 11988 if (attr.exclusive || attr.pinned) 11989 goto err_context; 11990 } 11991 11992 if (output_event) { 11993 err = perf_event_set_output(event, output_event); 11994 if (err) 11995 goto err_context; 11996 } 11997 11998 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, 11999 f_flags); 12000 if (IS_ERR(event_file)) { 12001 err = PTR_ERR(event_file); 12002 event_file = NULL; 12003 goto err_context; 12004 } 12005 12006 if (task) { 12007 err = down_read_interruptible(&task->signal->exec_update_lock); 12008 if (err) 12009 goto err_file; 12010 12011 /* 12012 * Preserve ptrace permission check for backwards compatibility. 12013 * 12014 * We must hold exec_update_lock across this and any potential 12015 * perf_install_in_context() call for this new event to 12016 * serialize against exec() altering our credentials (and the 12017 * perf_event_exit_task() that could imply). 12018 */ 12019 err = -EACCES; 12020 if (!perfmon_capable() && !ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) 12021 goto err_cred; 12022 } 12023 12024 if (move_group) { 12025 gctx = __perf_event_ctx_lock_double(group_leader, ctx); 12026 12027 if (gctx->task == TASK_TOMBSTONE) { 12028 err = -ESRCH; 12029 goto err_locked; 12030 } 12031 12032 /* 12033 * Check if we raced against another sys_perf_event_open() call 12034 * moving the software group underneath us. 12035 */ 12036 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 12037 /* 12038 * If someone moved the group out from under us, check 12039 * if this new event wound up on the same ctx, if so 12040 * its the regular !move_group case, otherwise fail. 12041 */ 12042 if (gctx != ctx) { 12043 err = -EINVAL; 12044 goto err_locked; 12045 } else { 12046 perf_event_ctx_unlock(group_leader, gctx); 12047 move_group = 0; 12048 } 12049 } 12050 12051 /* 12052 * Failure to create exclusive events returns -EBUSY. 12053 */ 12054 err = -EBUSY; 12055 if (!exclusive_event_installable(group_leader, ctx)) 12056 goto err_locked; 12057 12058 for_each_sibling_event(sibling, group_leader) { 12059 if (!exclusive_event_installable(sibling, ctx)) 12060 goto err_locked; 12061 } 12062 } else { 12063 mutex_lock(&ctx->mutex); 12064 } 12065 12066 if (ctx->task == TASK_TOMBSTONE) { 12067 err = -ESRCH; 12068 goto err_locked; 12069 } 12070 12071 if (!perf_event_validate_size(event)) { 12072 err = -E2BIG; 12073 goto err_locked; 12074 } 12075 12076 if (!task) { 12077 /* 12078 * Check if the @cpu we're creating an event for is online. 12079 * 12080 * We use the perf_cpu_context::ctx::mutex to serialize against 12081 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 12082 */ 12083 struct perf_cpu_context *cpuctx = 12084 container_of(ctx, struct perf_cpu_context, ctx); 12085 12086 if (!cpuctx->online) { 12087 err = -ENODEV; 12088 goto err_locked; 12089 } 12090 } 12091 12092 if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) { 12093 err = -EINVAL; 12094 goto err_locked; 12095 } 12096 12097 /* 12098 * Must be under the same ctx::mutex as perf_install_in_context(), 12099 * because we need to serialize with concurrent event creation. 12100 */ 12101 if (!exclusive_event_installable(event, ctx)) { 12102 err = -EBUSY; 12103 goto err_locked; 12104 } 12105 12106 WARN_ON_ONCE(ctx->parent_ctx); 12107 12108 /* 12109 * This is the point on no return; we cannot fail hereafter. This is 12110 * where we start modifying current state. 12111 */ 12112 12113 if (move_group) { 12114 /* 12115 * See perf_event_ctx_lock() for comments on the details 12116 * of swizzling perf_event::ctx. 12117 */ 12118 perf_remove_from_context(group_leader, 0); 12119 put_ctx(gctx); 12120 12121 for_each_sibling_event(sibling, group_leader) { 12122 perf_remove_from_context(sibling, 0); 12123 put_ctx(gctx); 12124 } 12125 12126 /* 12127 * Wait for everybody to stop referencing the events through 12128 * the old lists, before installing it on new lists. 12129 */ 12130 synchronize_rcu(); 12131 12132 /* 12133 * Install the group siblings before the group leader. 12134 * 12135 * Because a group leader will try and install the entire group 12136 * (through the sibling list, which is still in-tact), we can 12137 * end up with siblings installed in the wrong context. 12138 * 12139 * By installing siblings first we NO-OP because they're not 12140 * reachable through the group lists. 12141 */ 12142 for_each_sibling_event(sibling, group_leader) { 12143 perf_event__state_init(sibling); 12144 perf_install_in_context(ctx, sibling, sibling->cpu); 12145 get_ctx(ctx); 12146 } 12147 12148 /* 12149 * Removing from the context ends up with disabled 12150 * event. What we want here is event in the initial 12151 * startup state, ready to be add into new context. 12152 */ 12153 perf_event__state_init(group_leader); 12154 perf_install_in_context(ctx, group_leader, group_leader->cpu); 12155 get_ctx(ctx); 12156 } 12157 12158 /* 12159 * Precalculate sample_data sizes; do while holding ctx::mutex such 12160 * that we're serialized against further additions and before 12161 * perf_install_in_context() which is the point the event is active and 12162 * can use these values. 12163 */ 12164 perf_event__header_size(event); 12165 perf_event__id_header_size(event); 12166 12167 event->owner = current; 12168 12169 perf_install_in_context(ctx, event, event->cpu); 12170 perf_unpin_context(ctx); 12171 12172 if (move_group) 12173 perf_event_ctx_unlock(group_leader, gctx); 12174 mutex_unlock(&ctx->mutex); 12175 12176 if (task) { 12177 up_read(&task->signal->exec_update_lock); 12178 put_task_struct(task); 12179 } 12180 12181 mutex_lock(¤t->perf_event_mutex); 12182 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 12183 mutex_unlock(¤t->perf_event_mutex); 12184 12185 /* 12186 * Drop the reference on the group_event after placing the 12187 * new event on the sibling_list. This ensures destruction 12188 * of the group leader will find the pointer to itself in 12189 * perf_group_detach(). 12190 */ 12191 fdput(group); 12192 fd_install(event_fd, event_file); 12193 return event_fd; 12194 12195 err_locked: 12196 if (move_group) 12197 perf_event_ctx_unlock(group_leader, gctx); 12198 mutex_unlock(&ctx->mutex); 12199 err_cred: 12200 if (task) 12201 up_read(&task->signal->exec_update_lock); 12202 err_file: 12203 fput(event_file); 12204 err_context: 12205 perf_unpin_context(ctx); 12206 put_ctx(ctx); 12207 err_alloc: 12208 /* 12209 * If event_file is set, the fput() above will have called ->release() 12210 * and that will take care of freeing the event. 12211 */ 12212 if (!event_file) 12213 free_event(event); 12214 err_task: 12215 if (task) 12216 put_task_struct(task); 12217 err_group_fd: 12218 fdput(group); 12219 err_fd: 12220 put_unused_fd(event_fd); 12221 return err; 12222 } 12223 12224 /** 12225 * perf_event_create_kernel_counter 12226 * 12227 * @attr: attributes of the counter to create 12228 * @cpu: cpu in which the counter is bound 12229 * @task: task to profile (NULL for percpu) 12230 */ 12231 struct perf_event * 12232 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 12233 struct task_struct *task, 12234 perf_overflow_handler_t overflow_handler, 12235 void *context) 12236 { 12237 struct perf_event_context *ctx; 12238 struct perf_event *event; 12239 int err; 12240 12241 /* 12242 * Grouping is not supported for kernel events, neither is 'AUX', 12243 * make sure the caller's intentions are adjusted. 12244 */ 12245 if (attr->aux_output) 12246 return ERR_PTR(-EINVAL); 12247 12248 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 12249 overflow_handler, context, -1); 12250 if (IS_ERR(event)) { 12251 err = PTR_ERR(event); 12252 goto err; 12253 } 12254 12255 /* Mark owner so we could distinguish it from user events. */ 12256 event->owner = TASK_TOMBSTONE; 12257 12258 /* 12259 * Get the target context (task or percpu): 12260 */ 12261 ctx = find_get_context(event->pmu, task, event); 12262 if (IS_ERR(ctx)) { 12263 err = PTR_ERR(ctx); 12264 goto err_free; 12265 } 12266 12267 WARN_ON_ONCE(ctx->parent_ctx); 12268 mutex_lock(&ctx->mutex); 12269 if (ctx->task == TASK_TOMBSTONE) { 12270 err = -ESRCH; 12271 goto err_unlock; 12272 } 12273 12274 if (!task) { 12275 /* 12276 * Check if the @cpu we're creating an event for is online. 12277 * 12278 * We use the perf_cpu_context::ctx::mutex to serialize against 12279 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 12280 */ 12281 struct perf_cpu_context *cpuctx = 12282 container_of(ctx, struct perf_cpu_context, ctx); 12283 if (!cpuctx->online) { 12284 err = -ENODEV; 12285 goto err_unlock; 12286 } 12287 } 12288 12289 if (!exclusive_event_installable(event, ctx)) { 12290 err = -EBUSY; 12291 goto err_unlock; 12292 } 12293 12294 perf_install_in_context(ctx, event, event->cpu); 12295 perf_unpin_context(ctx); 12296 mutex_unlock(&ctx->mutex); 12297 12298 return event; 12299 12300 err_unlock: 12301 mutex_unlock(&ctx->mutex); 12302 perf_unpin_context(ctx); 12303 put_ctx(ctx); 12304 err_free: 12305 free_event(event); 12306 err: 12307 return ERR_PTR(err); 12308 } 12309 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 12310 12311 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 12312 { 12313 struct perf_event_context *src_ctx; 12314 struct perf_event_context *dst_ctx; 12315 struct perf_event *event, *tmp; 12316 LIST_HEAD(events); 12317 12318 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx; 12319 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx; 12320 12321 /* 12322 * See perf_event_ctx_lock() for comments on the details 12323 * of swizzling perf_event::ctx. 12324 */ 12325 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); 12326 list_for_each_entry_safe(event, tmp, &src_ctx->event_list, 12327 event_entry) { 12328 perf_remove_from_context(event, 0); 12329 unaccount_event_cpu(event, src_cpu); 12330 put_ctx(src_ctx); 12331 list_add(&event->migrate_entry, &events); 12332 } 12333 12334 /* 12335 * Wait for the events to quiesce before re-instating them. 12336 */ 12337 synchronize_rcu(); 12338 12339 /* 12340 * Re-instate events in 2 passes. 12341 * 12342 * Skip over group leaders and only install siblings on this first 12343 * pass, siblings will not get enabled without a leader, however a 12344 * leader will enable its siblings, even if those are still on the old 12345 * context. 12346 */ 12347 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 12348 if (event->group_leader == event) 12349 continue; 12350 12351 list_del(&event->migrate_entry); 12352 if (event->state >= PERF_EVENT_STATE_OFF) 12353 event->state = PERF_EVENT_STATE_INACTIVE; 12354 account_event_cpu(event, dst_cpu); 12355 perf_install_in_context(dst_ctx, event, dst_cpu); 12356 get_ctx(dst_ctx); 12357 } 12358 12359 /* 12360 * Once all the siblings are setup properly, install the group leaders 12361 * to make it go. 12362 */ 12363 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 12364 list_del(&event->migrate_entry); 12365 if (event->state >= PERF_EVENT_STATE_OFF) 12366 event->state = PERF_EVENT_STATE_INACTIVE; 12367 account_event_cpu(event, dst_cpu); 12368 perf_install_in_context(dst_ctx, event, dst_cpu); 12369 get_ctx(dst_ctx); 12370 } 12371 mutex_unlock(&dst_ctx->mutex); 12372 mutex_unlock(&src_ctx->mutex); 12373 } 12374 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 12375 12376 static void sync_child_event(struct perf_event *child_event, 12377 struct task_struct *child) 12378 { 12379 struct perf_event *parent_event = child_event->parent; 12380 u64 child_val; 12381 12382 if (child_event->attr.inherit_stat) 12383 perf_event_read_event(child_event, child); 12384 12385 child_val = perf_event_count(child_event); 12386 12387 /* 12388 * Add back the child's count to the parent's count: 12389 */ 12390 atomic64_add(child_val, &parent_event->child_count); 12391 atomic64_add(child_event->total_time_enabled, 12392 &parent_event->child_total_time_enabled); 12393 atomic64_add(child_event->total_time_running, 12394 &parent_event->child_total_time_running); 12395 } 12396 12397 static void 12398 perf_event_exit_event(struct perf_event *child_event, 12399 struct perf_event_context *child_ctx, 12400 struct task_struct *child) 12401 { 12402 struct perf_event *parent_event = child_event->parent; 12403 12404 /* 12405 * Do not destroy the 'original' grouping; because of the context 12406 * switch optimization the original events could've ended up in a 12407 * random child task. 12408 * 12409 * If we were to destroy the original group, all group related 12410 * operations would cease to function properly after this random 12411 * child dies. 12412 * 12413 * Do destroy all inherited groups, we don't care about those 12414 * and being thorough is better. 12415 */ 12416 raw_spin_lock_irq(&child_ctx->lock); 12417 WARN_ON_ONCE(child_ctx->is_active); 12418 12419 if (parent_event) 12420 perf_group_detach(child_event); 12421 list_del_event(child_event, child_ctx); 12422 perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */ 12423 raw_spin_unlock_irq(&child_ctx->lock); 12424 12425 /* 12426 * Parent events are governed by their filedesc, retain them. 12427 */ 12428 if (!parent_event) { 12429 perf_event_wakeup(child_event); 12430 return; 12431 } 12432 /* 12433 * Child events can be cleaned up. 12434 */ 12435 12436 sync_child_event(child_event, child); 12437 12438 /* 12439 * Remove this event from the parent's list 12440 */ 12441 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 12442 mutex_lock(&parent_event->child_mutex); 12443 list_del_init(&child_event->child_list); 12444 mutex_unlock(&parent_event->child_mutex); 12445 12446 /* 12447 * Kick perf_poll() for is_event_hup(). 12448 */ 12449 perf_event_wakeup(parent_event); 12450 free_event(child_event); 12451 put_event(parent_event); 12452 } 12453 12454 static void perf_event_exit_task_context(struct task_struct *child, int ctxn) 12455 { 12456 struct perf_event_context *child_ctx, *clone_ctx = NULL; 12457 struct perf_event *child_event, *next; 12458 12459 WARN_ON_ONCE(child != current); 12460 12461 child_ctx = perf_pin_task_context(child, ctxn); 12462 if (!child_ctx) 12463 return; 12464 12465 /* 12466 * In order to reduce the amount of tricky in ctx tear-down, we hold 12467 * ctx::mutex over the entire thing. This serializes against almost 12468 * everything that wants to access the ctx. 12469 * 12470 * The exception is sys_perf_event_open() / 12471 * perf_event_create_kernel_count() which does find_get_context() 12472 * without ctx::mutex (it cannot because of the move_group double mutex 12473 * lock thing). See the comments in perf_install_in_context(). 12474 */ 12475 mutex_lock(&child_ctx->mutex); 12476 12477 /* 12478 * In a single ctx::lock section, de-schedule the events and detach the 12479 * context from the task such that we cannot ever get it scheduled back 12480 * in. 12481 */ 12482 raw_spin_lock_irq(&child_ctx->lock); 12483 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL); 12484 12485 /* 12486 * Now that the context is inactive, destroy the task <-> ctx relation 12487 * and mark the context dead. 12488 */ 12489 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL); 12490 put_ctx(child_ctx); /* cannot be last */ 12491 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE); 12492 put_task_struct(current); /* cannot be last */ 12493 12494 clone_ctx = unclone_ctx(child_ctx); 12495 raw_spin_unlock_irq(&child_ctx->lock); 12496 12497 if (clone_ctx) 12498 put_ctx(clone_ctx); 12499 12500 /* 12501 * Report the task dead after unscheduling the events so that we 12502 * won't get any samples after PERF_RECORD_EXIT. We can however still 12503 * get a few PERF_RECORD_READ events. 12504 */ 12505 perf_event_task(child, child_ctx, 0); 12506 12507 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) 12508 perf_event_exit_event(child_event, child_ctx, child); 12509 12510 mutex_unlock(&child_ctx->mutex); 12511 12512 put_ctx(child_ctx); 12513 } 12514 12515 /* 12516 * When a child task exits, feed back event values to parent events. 12517 * 12518 * Can be called with exec_update_lock held when called from 12519 * setup_new_exec(). 12520 */ 12521 void perf_event_exit_task(struct task_struct *child) 12522 { 12523 struct perf_event *event, *tmp; 12524 int ctxn; 12525 12526 mutex_lock(&child->perf_event_mutex); 12527 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 12528 owner_entry) { 12529 list_del_init(&event->owner_entry); 12530 12531 /* 12532 * Ensure the list deletion is visible before we clear 12533 * the owner, closes a race against perf_release() where 12534 * we need to serialize on the owner->perf_event_mutex. 12535 */ 12536 smp_store_release(&event->owner, NULL); 12537 } 12538 mutex_unlock(&child->perf_event_mutex); 12539 12540 for_each_task_context_nr(ctxn) 12541 perf_event_exit_task_context(child, ctxn); 12542 12543 /* 12544 * The perf_event_exit_task_context calls perf_event_task 12545 * with child's task_ctx, which generates EXIT events for 12546 * child contexts and sets child->perf_event_ctxp[] to NULL. 12547 * At this point we need to send EXIT events to cpu contexts. 12548 */ 12549 perf_event_task(child, NULL, 0); 12550 } 12551 12552 static void perf_free_event(struct perf_event *event, 12553 struct perf_event_context *ctx) 12554 { 12555 struct perf_event *parent = event->parent; 12556 12557 if (WARN_ON_ONCE(!parent)) 12558 return; 12559 12560 mutex_lock(&parent->child_mutex); 12561 list_del_init(&event->child_list); 12562 mutex_unlock(&parent->child_mutex); 12563 12564 put_event(parent); 12565 12566 raw_spin_lock_irq(&ctx->lock); 12567 perf_group_detach(event); 12568 list_del_event(event, ctx); 12569 raw_spin_unlock_irq(&ctx->lock); 12570 free_event(event); 12571 } 12572 12573 /* 12574 * Free a context as created by inheritance by perf_event_init_task() below, 12575 * used by fork() in case of fail. 12576 * 12577 * Even though the task has never lived, the context and events have been 12578 * exposed through the child_list, so we must take care tearing it all down. 12579 */ 12580 void perf_event_free_task(struct task_struct *task) 12581 { 12582 struct perf_event_context *ctx; 12583 struct perf_event *event, *tmp; 12584 int ctxn; 12585 12586 for_each_task_context_nr(ctxn) { 12587 ctx = task->perf_event_ctxp[ctxn]; 12588 if (!ctx) 12589 continue; 12590 12591 mutex_lock(&ctx->mutex); 12592 raw_spin_lock_irq(&ctx->lock); 12593 /* 12594 * Destroy the task <-> ctx relation and mark the context dead. 12595 * 12596 * This is important because even though the task hasn't been 12597 * exposed yet the context has been (through child_list). 12598 */ 12599 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL); 12600 WRITE_ONCE(ctx->task, TASK_TOMBSTONE); 12601 put_task_struct(task); /* cannot be last */ 12602 raw_spin_unlock_irq(&ctx->lock); 12603 12604 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) 12605 perf_free_event(event, ctx); 12606 12607 mutex_unlock(&ctx->mutex); 12608 12609 /* 12610 * perf_event_release_kernel() could've stolen some of our 12611 * child events and still have them on its free_list. In that 12612 * case we must wait for these events to have been freed (in 12613 * particular all their references to this task must've been 12614 * dropped). 12615 * 12616 * Without this copy_process() will unconditionally free this 12617 * task (irrespective of its reference count) and 12618 * _free_event()'s put_task_struct(event->hw.target) will be a 12619 * use-after-free. 12620 * 12621 * Wait for all events to drop their context reference. 12622 */ 12623 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1); 12624 put_ctx(ctx); /* must be last */ 12625 } 12626 } 12627 12628 void perf_event_delayed_put(struct task_struct *task) 12629 { 12630 int ctxn; 12631 12632 for_each_task_context_nr(ctxn) 12633 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); 12634 } 12635 12636 struct file *perf_event_get(unsigned int fd) 12637 { 12638 struct file *file = fget(fd); 12639 if (!file) 12640 return ERR_PTR(-EBADF); 12641 12642 if (file->f_op != &perf_fops) { 12643 fput(file); 12644 return ERR_PTR(-EBADF); 12645 } 12646 12647 return file; 12648 } 12649 12650 const struct perf_event *perf_get_event(struct file *file) 12651 { 12652 if (file->f_op != &perf_fops) 12653 return ERR_PTR(-EINVAL); 12654 12655 return file->private_data; 12656 } 12657 12658 const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 12659 { 12660 if (!event) 12661 return ERR_PTR(-EINVAL); 12662 12663 return &event->attr; 12664 } 12665 12666 /* 12667 * Inherit an event from parent task to child task. 12668 * 12669 * Returns: 12670 * - valid pointer on success 12671 * - NULL for orphaned events 12672 * - IS_ERR() on error 12673 */ 12674 static struct perf_event * 12675 inherit_event(struct perf_event *parent_event, 12676 struct task_struct *parent, 12677 struct perf_event_context *parent_ctx, 12678 struct task_struct *child, 12679 struct perf_event *group_leader, 12680 struct perf_event_context *child_ctx) 12681 { 12682 enum perf_event_state parent_state = parent_event->state; 12683 struct perf_event *child_event; 12684 unsigned long flags; 12685 12686 /* 12687 * Instead of creating recursive hierarchies of events, 12688 * we link inherited events back to the original parent, 12689 * which has a filp for sure, which we use as the reference 12690 * count: 12691 */ 12692 if (parent_event->parent) 12693 parent_event = parent_event->parent; 12694 12695 child_event = perf_event_alloc(&parent_event->attr, 12696 parent_event->cpu, 12697 child, 12698 group_leader, parent_event, 12699 NULL, NULL, -1); 12700 if (IS_ERR(child_event)) 12701 return child_event; 12702 12703 12704 if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) && 12705 !child_ctx->task_ctx_data) { 12706 struct pmu *pmu = child_event->pmu; 12707 12708 child_ctx->task_ctx_data = alloc_task_ctx_data(pmu); 12709 if (!child_ctx->task_ctx_data) { 12710 free_event(child_event); 12711 return ERR_PTR(-ENOMEM); 12712 } 12713 } 12714 12715 /* 12716 * is_orphaned_event() and list_add_tail(&parent_event->child_list) 12717 * must be under the same lock in order to serialize against 12718 * perf_event_release_kernel(), such that either we must observe 12719 * is_orphaned_event() or they will observe us on the child_list. 12720 */ 12721 mutex_lock(&parent_event->child_mutex); 12722 if (is_orphaned_event(parent_event) || 12723 !atomic_long_inc_not_zero(&parent_event->refcount)) { 12724 mutex_unlock(&parent_event->child_mutex); 12725 /* task_ctx_data is freed with child_ctx */ 12726 free_event(child_event); 12727 return NULL; 12728 } 12729 12730 get_ctx(child_ctx); 12731 12732 /* 12733 * Make the child state follow the state of the parent event, 12734 * not its attr.disabled bit. We hold the parent's mutex, 12735 * so we won't race with perf_event_{en, dis}able_family. 12736 */ 12737 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 12738 child_event->state = PERF_EVENT_STATE_INACTIVE; 12739 else 12740 child_event->state = PERF_EVENT_STATE_OFF; 12741 12742 if (parent_event->attr.freq) { 12743 u64 sample_period = parent_event->hw.sample_period; 12744 struct hw_perf_event *hwc = &child_event->hw; 12745 12746 hwc->sample_period = sample_period; 12747 hwc->last_period = sample_period; 12748 12749 local64_set(&hwc->period_left, sample_period); 12750 } 12751 12752 child_event->ctx = child_ctx; 12753 child_event->overflow_handler = parent_event->overflow_handler; 12754 child_event->overflow_handler_context 12755 = parent_event->overflow_handler_context; 12756 12757 /* 12758 * Precalculate sample_data sizes 12759 */ 12760 perf_event__header_size(child_event); 12761 perf_event__id_header_size(child_event); 12762 12763 /* 12764 * Link it up in the child's context: 12765 */ 12766 raw_spin_lock_irqsave(&child_ctx->lock, flags); 12767 add_event_to_ctx(child_event, child_ctx); 12768 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 12769 12770 /* 12771 * Link this into the parent event's child list 12772 */ 12773 list_add_tail(&child_event->child_list, &parent_event->child_list); 12774 mutex_unlock(&parent_event->child_mutex); 12775 12776 return child_event; 12777 } 12778 12779 /* 12780 * Inherits an event group. 12781 * 12782 * This will quietly suppress orphaned events; !inherit_event() is not an error. 12783 * This matches with perf_event_release_kernel() removing all child events. 12784 * 12785 * Returns: 12786 * - 0 on success 12787 * - <0 on error 12788 */ 12789 static int inherit_group(struct perf_event *parent_event, 12790 struct task_struct *parent, 12791 struct perf_event_context *parent_ctx, 12792 struct task_struct *child, 12793 struct perf_event_context *child_ctx) 12794 { 12795 struct perf_event *leader; 12796 struct perf_event *sub; 12797 struct perf_event *child_ctr; 12798 12799 leader = inherit_event(parent_event, parent, parent_ctx, 12800 child, NULL, child_ctx); 12801 if (IS_ERR(leader)) 12802 return PTR_ERR(leader); 12803 /* 12804 * @leader can be NULL here because of is_orphaned_event(). In this 12805 * case inherit_event() will create individual events, similar to what 12806 * perf_group_detach() would do anyway. 12807 */ 12808 for_each_sibling_event(sub, parent_event) { 12809 child_ctr = inherit_event(sub, parent, parent_ctx, 12810 child, leader, child_ctx); 12811 if (IS_ERR(child_ctr)) 12812 return PTR_ERR(child_ctr); 12813 12814 if (sub->aux_event == parent_event && child_ctr && 12815 !perf_get_aux_event(child_ctr, leader)) 12816 return -EINVAL; 12817 } 12818 return 0; 12819 } 12820 12821 /* 12822 * Creates the child task context and tries to inherit the event-group. 12823 * 12824 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave 12825 * inherited_all set when we 'fail' to inherit an orphaned event; this is 12826 * consistent with perf_event_release_kernel() removing all child events. 12827 * 12828 * Returns: 12829 * - 0 on success 12830 * - <0 on error 12831 */ 12832 static int 12833 inherit_task_group(struct perf_event *event, struct task_struct *parent, 12834 struct perf_event_context *parent_ctx, 12835 struct task_struct *child, int ctxn, 12836 int *inherited_all) 12837 { 12838 int ret; 12839 struct perf_event_context *child_ctx; 12840 12841 if (!event->attr.inherit) { 12842 *inherited_all = 0; 12843 return 0; 12844 } 12845 12846 child_ctx = child->perf_event_ctxp[ctxn]; 12847 if (!child_ctx) { 12848 /* 12849 * This is executed from the parent task context, so 12850 * inherit events that have been marked for cloning. 12851 * First allocate and initialize a context for the 12852 * child. 12853 */ 12854 child_ctx = alloc_perf_context(parent_ctx->pmu, child); 12855 if (!child_ctx) 12856 return -ENOMEM; 12857 12858 child->perf_event_ctxp[ctxn] = child_ctx; 12859 } 12860 12861 ret = inherit_group(event, parent, parent_ctx, 12862 child, child_ctx); 12863 12864 if (ret) 12865 *inherited_all = 0; 12866 12867 return ret; 12868 } 12869 12870 /* 12871 * Initialize the perf_event context in task_struct 12872 */ 12873 static int perf_event_init_context(struct task_struct *child, int ctxn) 12874 { 12875 struct perf_event_context *child_ctx, *parent_ctx; 12876 struct perf_event_context *cloned_ctx; 12877 struct perf_event *event; 12878 struct task_struct *parent = current; 12879 int inherited_all = 1; 12880 unsigned long flags; 12881 int ret = 0; 12882 12883 if (likely(!parent->perf_event_ctxp[ctxn])) 12884 return 0; 12885 12886 /* 12887 * If the parent's context is a clone, pin it so it won't get 12888 * swapped under us. 12889 */ 12890 parent_ctx = perf_pin_task_context(parent, ctxn); 12891 if (!parent_ctx) 12892 return 0; 12893 12894 /* 12895 * No need to check if parent_ctx != NULL here; since we saw 12896 * it non-NULL earlier, the only reason for it to become NULL 12897 * is if we exit, and since we're currently in the middle of 12898 * a fork we can't be exiting at the same time. 12899 */ 12900 12901 /* 12902 * Lock the parent list. No need to lock the child - not PID 12903 * hashed yet and not running, so nobody can access it. 12904 */ 12905 mutex_lock(&parent_ctx->mutex); 12906 12907 /* 12908 * We dont have to disable NMIs - we are only looking at 12909 * the list, not manipulating it: 12910 */ 12911 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) { 12912 ret = inherit_task_group(event, parent, parent_ctx, 12913 child, ctxn, &inherited_all); 12914 if (ret) 12915 goto out_unlock; 12916 } 12917 12918 /* 12919 * We can't hold ctx->lock when iterating the ->flexible_group list due 12920 * to allocations, but we need to prevent rotation because 12921 * rotate_ctx() will change the list from interrupt context. 12922 */ 12923 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 12924 parent_ctx->rotate_disable = 1; 12925 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 12926 12927 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) { 12928 ret = inherit_task_group(event, parent, parent_ctx, 12929 child, ctxn, &inherited_all); 12930 if (ret) 12931 goto out_unlock; 12932 } 12933 12934 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 12935 parent_ctx->rotate_disable = 0; 12936 12937 child_ctx = child->perf_event_ctxp[ctxn]; 12938 12939 if (child_ctx && inherited_all) { 12940 /* 12941 * Mark the child context as a clone of the parent 12942 * context, or of whatever the parent is a clone of. 12943 * 12944 * Note that if the parent is a clone, the holding of 12945 * parent_ctx->lock avoids it from being uncloned. 12946 */ 12947 cloned_ctx = parent_ctx->parent_ctx; 12948 if (cloned_ctx) { 12949 child_ctx->parent_ctx = cloned_ctx; 12950 child_ctx->parent_gen = parent_ctx->parent_gen; 12951 } else { 12952 child_ctx->parent_ctx = parent_ctx; 12953 child_ctx->parent_gen = parent_ctx->generation; 12954 } 12955 get_ctx(child_ctx->parent_ctx); 12956 } 12957 12958 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 12959 out_unlock: 12960 mutex_unlock(&parent_ctx->mutex); 12961 12962 perf_unpin_context(parent_ctx); 12963 put_ctx(parent_ctx); 12964 12965 return ret; 12966 } 12967 12968 /* 12969 * Initialize the perf_event context in task_struct 12970 */ 12971 int perf_event_init_task(struct task_struct *child) 12972 { 12973 int ctxn, ret; 12974 12975 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); 12976 mutex_init(&child->perf_event_mutex); 12977 INIT_LIST_HEAD(&child->perf_event_list); 12978 12979 for_each_task_context_nr(ctxn) { 12980 ret = perf_event_init_context(child, ctxn); 12981 if (ret) { 12982 perf_event_free_task(child); 12983 return ret; 12984 } 12985 } 12986 12987 return 0; 12988 } 12989 12990 static void __init perf_event_init_all_cpus(void) 12991 { 12992 struct swevent_htable *swhash; 12993 int cpu; 12994 12995 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL); 12996 12997 for_each_possible_cpu(cpu) { 12998 swhash = &per_cpu(swevent_htable, cpu); 12999 mutex_init(&swhash->hlist_mutex); 13000 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu)); 13001 13002 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu)); 13003 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu)); 13004 13005 #ifdef CONFIG_CGROUP_PERF 13006 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu)); 13007 #endif 13008 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu)); 13009 } 13010 } 13011 13012 static void perf_swevent_init_cpu(unsigned int cpu) 13013 { 13014 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 13015 13016 mutex_lock(&swhash->hlist_mutex); 13017 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) { 13018 struct swevent_hlist *hlist; 13019 13020 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 13021 WARN_ON(!hlist); 13022 rcu_assign_pointer(swhash->swevent_hlist, hlist); 13023 } 13024 mutex_unlock(&swhash->hlist_mutex); 13025 } 13026 13027 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE 13028 static void __perf_event_exit_context(void *__info) 13029 { 13030 struct perf_event_context *ctx = __info; 13031 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 13032 struct perf_event *event; 13033 13034 raw_spin_lock(&ctx->lock); 13035 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 13036 list_for_each_entry(event, &ctx->event_list, event_entry) 13037 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP); 13038 raw_spin_unlock(&ctx->lock); 13039 } 13040 13041 static void perf_event_exit_cpu_context(int cpu) 13042 { 13043 struct perf_cpu_context *cpuctx; 13044 struct perf_event_context *ctx; 13045 struct pmu *pmu; 13046 13047 mutex_lock(&pmus_lock); 13048 list_for_each_entry(pmu, &pmus, entry) { 13049 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 13050 ctx = &cpuctx->ctx; 13051 13052 mutex_lock(&ctx->mutex); 13053 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 13054 cpuctx->online = 0; 13055 mutex_unlock(&ctx->mutex); 13056 } 13057 cpumask_clear_cpu(cpu, perf_online_mask); 13058 mutex_unlock(&pmus_lock); 13059 } 13060 #else 13061 13062 static void perf_event_exit_cpu_context(int cpu) { } 13063 13064 #endif 13065 13066 int perf_event_init_cpu(unsigned int cpu) 13067 { 13068 struct perf_cpu_context *cpuctx; 13069 struct perf_event_context *ctx; 13070 struct pmu *pmu; 13071 13072 perf_swevent_init_cpu(cpu); 13073 13074 mutex_lock(&pmus_lock); 13075 cpumask_set_cpu(cpu, perf_online_mask); 13076 list_for_each_entry(pmu, &pmus, entry) { 13077 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 13078 ctx = &cpuctx->ctx; 13079 13080 mutex_lock(&ctx->mutex); 13081 cpuctx->online = 1; 13082 mutex_unlock(&ctx->mutex); 13083 } 13084 mutex_unlock(&pmus_lock); 13085 13086 return 0; 13087 } 13088 13089 int perf_event_exit_cpu(unsigned int cpu) 13090 { 13091 perf_event_exit_cpu_context(cpu); 13092 return 0; 13093 } 13094 13095 static int 13096 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 13097 { 13098 int cpu; 13099 13100 for_each_online_cpu(cpu) 13101 perf_event_exit_cpu(cpu); 13102 13103 return NOTIFY_OK; 13104 } 13105 13106 /* 13107 * Run the perf reboot notifier at the very last possible moment so that 13108 * the generic watchdog code runs as long as possible. 13109 */ 13110 static struct notifier_block perf_reboot_notifier = { 13111 .notifier_call = perf_reboot, 13112 .priority = INT_MIN, 13113 }; 13114 13115 void __init perf_event_init(void) 13116 { 13117 int ret; 13118 13119 idr_init(&pmu_idr); 13120 13121 perf_event_init_all_cpus(); 13122 init_srcu_struct(&pmus_srcu); 13123 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 13124 perf_pmu_register(&perf_cpu_clock, NULL, -1); 13125 perf_pmu_register(&perf_task_clock, NULL, -1); 13126 perf_tp_register(); 13127 perf_event_init_cpu(smp_processor_id()); 13128 register_reboot_notifier(&perf_reboot_notifier); 13129 13130 ret = init_hw_breakpoint(); 13131 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 13132 13133 /* 13134 * Build time assertion that we keep the data_head at the intended 13135 * location. IOW, validation we got the __reserved[] size right. 13136 */ 13137 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 13138 != 1024); 13139 } 13140 13141 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 13142 char *page) 13143 { 13144 struct perf_pmu_events_attr *pmu_attr = 13145 container_of(attr, struct perf_pmu_events_attr, attr); 13146 13147 if (pmu_attr->event_str) 13148 return sprintf(page, "%s\n", pmu_attr->event_str); 13149 13150 return 0; 13151 } 13152 EXPORT_SYMBOL_GPL(perf_event_sysfs_show); 13153 13154 static int __init perf_event_sysfs_init(void) 13155 { 13156 struct pmu *pmu; 13157 int ret; 13158 13159 mutex_lock(&pmus_lock); 13160 13161 ret = bus_register(&pmu_bus); 13162 if (ret) 13163 goto unlock; 13164 13165 list_for_each_entry(pmu, &pmus, entry) { 13166 if (!pmu->name || pmu->type < 0) 13167 continue; 13168 13169 ret = pmu_dev_alloc(pmu); 13170 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 13171 } 13172 pmu_bus_running = 1; 13173 ret = 0; 13174 13175 unlock: 13176 mutex_unlock(&pmus_lock); 13177 13178 return ret; 13179 } 13180 device_initcall(perf_event_sysfs_init); 13181 13182 #ifdef CONFIG_CGROUP_PERF 13183 static struct cgroup_subsys_state * 13184 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 13185 { 13186 struct perf_cgroup *jc; 13187 13188 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 13189 if (!jc) 13190 return ERR_PTR(-ENOMEM); 13191 13192 jc->info = alloc_percpu(struct perf_cgroup_info); 13193 if (!jc->info) { 13194 kfree(jc); 13195 return ERR_PTR(-ENOMEM); 13196 } 13197 13198 return &jc->css; 13199 } 13200 13201 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 13202 { 13203 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 13204 13205 free_percpu(jc->info); 13206 kfree(jc); 13207 } 13208 13209 static int perf_cgroup_css_online(struct cgroup_subsys_state *css) 13210 { 13211 perf_event_cgroup(css->cgroup); 13212 return 0; 13213 } 13214 13215 static int __perf_cgroup_move(void *info) 13216 { 13217 struct task_struct *task = info; 13218 rcu_read_lock(); 13219 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN); 13220 rcu_read_unlock(); 13221 return 0; 13222 } 13223 13224 static void perf_cgroup_attach(struct cgroup_taskset *tset) 13225 { 13226 struct task_struct *task; 13227 struct cgroup_subsys_state *css; 13228 13229 cgroup_taskset_for_each(task, css, tset) 13230 task_function_call(task, __perf_cgroup_move, task); 13231 } 13232 13233 struct cgroup_subsys perf_event_cgrp_subsys = { 13234 .css_alloc = perf_cgroup_css_alloc, 13235 .css_free = perf_cgroup_css_free, 13236 .css_online = perf_cgroup_css_online, 13237 .attach = perf_cgroup_attach, 13238 /* 13239 * Implicitly enable on dfl hierarchy so that perf events can 13240 * always be filtered by cgroup2 path as long as perf_event 13241 * controller is not mounted on a legacy hierarchy. 13242 */ 13243 .implicit_on_dfl = true, 13244 .threaded = true, 13245 }; 13246 #endif /* CONFIG_CGROUP_PERF */ 13247