1 /* 2 * Performance events core code: 3 * 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 8 * 9 * For licensing details see kernel-base/COPYING 10 */ 11 12 #include <linux/fs.h> 13 #include <linux/mm.h> 14 #include <linux/cpu.h> 15 #include <linux/smp.h> 16 #include <linux/idr.h> 17 #include <linux/file.h> 18 #include <linux/poll.h> 19 #include <linux/slab.h> 20 #include <linux/hash.h> 21 #include <linux/tick.h> 22 #include <linux/sysfs.h> 23 #include <linux/dcache.h> 24 #include <linux/percpu.h> 25 #include <linux/ptrace.h> 26 #include <linux/reboot.h> 27 #include <linux/vmstat.h> 28 #include <linux/device.h> 29 #include <linux/export.h> 30 #include <linux/vmalloc.h> 31 #include <linux/hardirq.h> 32 #include <linux/rculist.h> 33 #include <linux/uaccess.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/cgroup.h> 38 #include <linux/perf_event.h> 39 #include <linux/trace_events.h> 40 #include <linux/hw_breakpoint.h> 41 #include <linux/mm_types.h> 42 #include <linux/module.h> 43 #include <linux/mman.h> 44 #include <linux/compat.h> 45 #include <linux/bpf.h> 46 #include <linux/filter.h> 47 #include <linux/namei.h> 48 #include <linux/parser.h> 49 #include <linux/sched/clock.h> 50 #include <linux/sched/mm.h> 51 #include <linux/proc_ns.h> 52 #include <linux/mount.h> 53 54 #include "internal.h" 55 56 #include <asm/irq_regs.h> 57 58 typedef int (*remote_function_f)(void *); 59 60 struct remote_function_call { 61 struct task_struct *p; 62 remote_function_f func; 63 void *info; 64 int ret; 65 }; 66 67 static void remote_function(void *data) 68 { 69 struct remote_function_call *tfc = data; 70 struct task_struct *p = tfc->p; 71 72 if (p) { 73 /* -EAGAIN */ 74 if (task_cpu(p) != smp_processor_id()) 75 return; 76 77 /* 78 * Now that we're on right CPU with IRQs disabled, we can test 79 * if we hit the right task without races. 80 */ 81 82 tfc->ret = -ESRCH; /* No such (running) process */ 83 if (p != current) 84 return; 85 } 86 87 tfc->ret = tfc->func(tfc->info); 88 } 89 90 /** 91 * task_function_call - call a function on the cpu on which a task runs 92 * @p: the task to evaluate 93 * @func: the function to be called 94 * @info: the function call argument 95 * 96 * Calls the function @func when the task is currently running. This might 97 * be on the current CPU, which just calls the function directly 98 * 99 * returns: @func return value, or 100 * -ESRCH - when the process isn't running 101 * -EAGAIN - when the process moved away 102 */ 103 static int 104 task_function_call(struct task_struct *p, remote_function_f func, void *info) 105 { 106 struct remote_function_call data = { 107 .p = p, 108 .func = func, 109 .info = info, 110 .ret = -EAGAIN, 111 }; 112 int ret; 113 114 do { 115 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1); 116 if (!ret) 117 ret = data.ret; 118 } while (ret == -EAGAIN); 119 120 return ret; 121 } 122 123 /** 124 * cpu_function_call - call a function on the cpu 125 * @func: the function to be called 126 * @info: the function call argument 127 * 128 * Calls the function @func on the remote cpu. 129 * 130 * returns: @func return value or -ENXIO when the cpu is offline 131 */ 132 static int cpu_function_call(int cpu, remote_function_f func, void *info) 133 { 134 struct remote_function_call data = { 135 .p = NULL, 136 .func = func, 137 .info = info, 138 .ret = -ENXIO, /* No such CPU */ 139 }; 140 141 smp_call_function_single(cpu, remote_function, &data, 1); 142 143 return data.ret; 144 } 145 146 static inline struct perf_cpu_context * 147 __get_cpu_context(struct perf_event_context *ctx) 148 { 149 return this_cpu_ptr(ctx->pmu->pmu_cpu_context); 150 } 151 152 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 153 struct perf_event_context *ctx) 154 { 155 raw_spin_lock(&cpuctx->ctx.lock); 156 if (ctx) 157 raw_spin_lock(&ctx->lock); 158 } 159 160 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 161 struct perf_event_context *ctx) 162 { 163 if (ctx) 164 raw_spin_unlock(&ctx->lock); 165 raw_spin_unlock(&cpuctx->ctx.lock); 166 } 167 168 #define TASK_TOMBSTONE ((void *)-1L) 169 170 static bool is_kernel_event(struct perf_event *event) 171 { 172 return READ_ONCE(event->owner) == TASK_TOMBSTONE; 173 } 174 175 /* 176 * On task ctx scheduling... 177 * 178 * When !ctx->nr_events a task context will not be scheduled. This means 179 * we can disable the scheduler hooks (for performance) without leaving 180 * pending task ctx state. 181 * 182 * This however results in two special cases: 183 * 184 * - removing the last event from a task ctx; this is relatively straight 185 * forward and is done in __perf_remove_from_context. 186 * 187 * - adding the first event to a task ctx; this is tricky because we cannot 188 * rely on ctx->is_active and therefore cannot use event_function_call(). 189 * See perf_install_in_context(). 190 * 191 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set. 192 */ 193 194 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *, 195 struct perf_event_context *, void *); 196 197 struct event_function_struct { 198 struct perf_event *event; 199 event_f func; 200 void *data; 201 }; 202 203 static int event_function(void *info) 204 { 205 struct event_function_struct *efs = info; 206 struct perf_event *event = efs->event; 207 struct perf_event_context *ctx = event->ctx; 208 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 209 struct perf_event_context *task_ctx = cpuctx->task_ctx; 210 int ret = 0; 211 212 lockdep_assert_irqs_disabled(); 213 214 perf_ctx_lock(cpuctx, task_ctx); 215 /* 216 * Since we do the IPI call without holding ctx->lock things can have 217 * changed, double check we hit the task we set out to hit. 218 */ 219 if (ctx->task) { 220 if (ctx->task != current) { 221 ret = -ESRCH; 222 goto unlock; 223 } 224 225 /* 226 * We only use event_function_call() on established contexts, 227 * and event_function() is only ever called when active (or 228 * rather, we'll have bailed in task_function_call() or the 229 * above ctx->task != current test), therefore we must have 230 * ctx->is_active here. 231 */ 232 WARN_ON_ONCE(!ctx->is_active); 233 /* 234 * And since we have ctx->is_active, cpuctx->task_ctx must 235 * match. 236 */ 237 WARN_ON_ONCE(task_ctx != ctx); 238 } else { 239 WARN_ON_ONCE(&cpuctx->ctx != ctx); 240 } 241 242 efs->func(event, cpuctx, ctx, efs->data); 243 unlock: 244 perf_ctx_unlock(cpuctx, task_ctx); 245 246 return ret; 247 } 248 249 static void event_function_call(struct perf_event *event, event_f func, void *data) 250 { 251 struct perf_event_context *ctx = event->ctx; 252 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */ 253 struct event_function_struct efs = { 254 .event = event, 255 .func = func, 256 .data = data, 257 }; 258 259 if (!event->parent) { 260 /* 261 * If this is a !child event, we must hold ctx::mutex to 262 * stabilize the the event->ctx relation. See 263 * perf_event_ctx_lock(). 264 */ 265 lockdep_assert_held(&ctx->mutex); 266 } 267 268 if (!task) { 269 cpu_function_call(event->cpu, event_function, &efs); 270 return; 271 } 272 273 if (task == TASK_TOMBSTONE) 274 return; 275 276 again: 277 if (!task_function_call(task, event_function, &efs)) 278 return; 279 280 raw_spin_lock_irq(&ctx->lock); 281 /* 282 * Reload the task pointer, it might have been changed by 283 * a concurrent perf_event_context_sched_out(). 284 */ 285 task = ctx->task; 286 if (task == TASK_TOMBSTONE) { 287 raw_spin_unlock_irq(&ctx->lock); 288 return; 289 } 290 if (ctx->is_active) { 291 raw_spin_unlock_irq(&ctx->lock); 292 goto again; 293 } 294 func(event, NULL, ctx, data); 295 raw_spin_unlock_irq(&ctx->lock); 296 } 297 298 /* 299 * Similar to event_function_call() + event_function(), but hard assumes IRQs 300 * are already disabled and we're on the right CPU. 301 */ 302 static void event_function_local(struct perf_event *event, event_f func, void *data) 303 { 304 struct perf_event_context *ctx = event->ctx; 305 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 306 struct task_struct *task = READ_ONCE(ctx->task); 307 struct perf_event_context *task_ctx = NULL; 308 309 lockdep_assert_irqs_disabled(); 310 311 if (task) { 312 if (task == TASK_TOMBSTONE) 313 return; 314 315 task_ctx = ctx; 316 } 317 318 perf_ctx_lock(cpuctx, task_ctx); 319 320 task = ctx->task; 321 if (task == TASK_TOMBSTONE) 322 goto unlock; 323 324 if (task) { 325 /* 326 * We must be either inactive or active and the right task, 327 * otherwise we're screwed, since we cannot IPI to somewhere 328 * else. 329 */ 330 if (ctx->is_active) { 331 if (WARN_ON_ONCE(task != current)) 332 goto unlock; 333 334 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx)) 335 goto unlock; 336 } 337 } else { 338 WARN_ON_ONCE(&cpuctx->ctx != ctx); 339 } 340 341 func(event, cpuctx, ctx, data); 342 unlock: 343 perf_ctx_unlock(cpuctx, task_ctx); 344 } 345 346 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 347 PERF_FLAG_FD_OUTPUT |\ 348 PERF_FLAG_PID_CGROUP |\ 349 PERF_FLAG_FD_CLOEXEC) 350 351 /* 352 * branch priv levels that need permission checks 353 */ 354 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 355 (PERF_SAMPLE_BRANCH_KERNEL |\ 356 PERF_SAMPLE_BRANCH_HV) 357 358 enum event_type_t { 359 EVENT_FLEXIBLE = 0x1, 360 EVENT_PINNED = 0x2, 361 EVENT_TIME = 0x4, 362 /* see ctx_resched() for details */ 363 EVENT_CPU = 0x8, 364 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 365 }; 366 367 /* 368 * perf_sched_events : >0 events exist 369 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu 370 */ 371 372 static void perf_sched_delayed(struct work_struct *work); 373 DEFINE_STATIC_KEY_FALSE(perf_sched_events); 374 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed); 375 static DEFINE_MUTEX(perf_sched_mutex); 376 static atomic_t perf_sched_count; 377 378 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); 379 static DEFINE_PER_CPU(int, perf_sched_cb_usages); 380 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events); 381 382 static atomic_t nr_mmap_events __read_mostly; 383 static atomic_t nr_comm_events __read_mostly; 384 static atomic_t nr_namespaces_events __read_mostly; 385 static atomic_t nr_task_events __read_mostly; 386 static atomic_t nr_freq_events __read_mostly; 387 static atomic_t nr_switch_events __read_mostly; 388 389 static LIST_HEAD(pmus); 390 static DEFINE_MUTEX(pmus_lock); 391 static struct srcu_struct pmus_srcu; 392 static cpumask_var_t perf_online_mask; 393 394 /* 395 * perf event paranoia level: 396 * -1 - not paranoid at all 397 * 0 - disallow raw tracepoint access for unpriv 398 * 1 - disallow cpu events for unpriv 399 * 2 - disallow kernel profiling for unpriv 400 */ 401 int sysctl_perf_event_paranoid __read_mostly = 2; 402 403 /* Minimum for 512 kiB + 1 user control page */ 404 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 405 406 /* 407 * max perf event sample rate 408 */ 409 #define DEFAULT_MAX_SAMPLE_RATE 100000 410 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 411 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 412 413 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 414 415 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 416 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 417 418 static int perf_sample_allowed_ns __read_mostly = 419 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 420 421 static void update_perf_cpu_limits(void) 422 { 423 u64 tmp = perf_sample_period_ns; 424 425 tmp *= sysctl_perf_cpu_time_max_percent; 426 tmp = div_u64(tmp, 100); 427 if (!tmp) 428 tmp = 1; 429 430 WRITE_ONCE(perf_sample_allowed_ns, tmp); 431 } 432 433 static bool perf_rotate_context(struct perf_cpu_context *cpuctx); 434 435 int perf_proc_update_handler(struct ctl_table *table, int write, 436 void __user *buffer, size_t *lenp, 437 loff_t *ppos) 438 { 439 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 440 441 if (ret || !write) 442 return ret; 443 444 /* 445 * If throttling is disabled don't allow the write: 446 */ 447 if (sysctl_perf_cpu_time_max_percent == 100 || 448 sysctl_perf_cpu_time_max_percent == 0) 449 return -EINVAL; 450 451 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 452 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 453 update_perf_cpu_limits(); 454 455 return 0; 456 } 457 458 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 459 460 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 461 void __user *buffer, size_t *lenp, 462 loff_t *ppos) 463 { 464 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 465 466 if (ret || !write) 467 return ret; 468 469 if (sysctl_perf_cpu_time_max_percent == 100 || 470 sysctl_perf_cpu_time_max_percent == 0) { 471 printk(KERN_WARNING 472 "perf: Dynamic interrupt throttling disabled, can hang your system!\n"); 473 WRITE_ONCE(perf_sample_allowed_ns, 0); 474 } else { 475 update_perf_cpu_limits(); 476 } 477 478 return 0; 479 } 480 481 /* 482 * perf samples are done in some very critical code paths (NMIs). 483 * If they take too much CPU time, the system can lock up and not 484 * get any real work done. This will drop the sample rate when 485 * we detect that events are taking too long. 486 */ 487 #define NR_ACCUMULATED_SAMPLES 128 488 static DEFINE_PER_CPU(u64, running_sample_length); 489 490 static u64 __report_avg; 491 static u64 __report_allowed; 492 493 static void perf_duration_warn(struct irq_work *w) 494 { 495 printk_ratelimited(KERN_INFO 496 "perf: interrupt took too long (%lld > %lld), lowering " 497 "kernel.perf_event_max_sample_rate to %d\n", 498 __report_avg, __report_allowed, 499 sysctl_perf_event_sample_rate); 500 } 501 502 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 503 504 void perf_sample_event_took(u64 sample_len_ns) 505 { 506 u64 max_len = READ_ONCE(perf_sample_allowed_ns); 507 u64 running_len; 508 u64 avg_len; 509 u32 max; 510 511 if (max_len == 0) 512 return; 513 514 /* Decay the counter by 1 average sample. */ 515 running_len = __this_cpu_read(running_sample_length); 516 running_len -= running_len/NR_ACCUMULATED_SAMPLES; 517 running_len += sample_len_ns; 518 __this_cpu_write(running_sample_length, running_len); 519 520 /* 521 * Note: this will be biased artifically low until we have 522 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 523 * from having to maintain a count. 524 */ 525 avg_len = running_len/NR_ACCUMULATED_SAMPLES; 526 if (avg_len <= max_len) 527 return; 528 529 __report_avg = avg_len; 530 __report_allowed = max_len; 531 532 /* 533 * Compute a throttle threshold 25% below the current duration. 534 */ 535 avg_len += avg_len / 4; 536 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent; 537 if (avg_len < max) 538 max /= (u32)avg_len; 539 else 540 max = 1; 541 542 WRITE_ONCE(perf_sample_allowed_ns, avg_len); 543 WRITE_ONCE(max_samples_per_tick, max); 544 545 sysctl_perf_event_sample_rate = max * HZ; 546 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 547 548 if (!irq_work_queue(&perf_duration_work)) { 549 early_printk("perf: interrupt took too long (%lld > %lld), lowering " 550 "kernel.perf_event_max_sample_rate to %d\n", 551 __report_avg, __report_allowed, 552 sysctl_perf_event_sample_rate); 553 } 554 } 555 556 static atomic64_t perf_event_id; 557 558 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 559 enum event_type_t event_type); 560 561 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 562 enum event_type_t event_type, 563 struct task_struct *task); 564 565 static void update_context_time(struct perf_event_context *ctx); 566 static u64 perf_event_time(struct perf_event *event); 567 568 void __weak perf_event_print_debug(void) { } 569 570 extern __weak const char *perf_pmu_name(void) 571 { 572 return "pmu"; 573 } 574 575 static inline u64 perf_clock(void) 576 { 577 return local_clock(); 578 } 579 580 static inline u64 perf_event_clock(struct perf_event *event) 581 { 582 return event->clock(); 583 } 584 585 /* 586 * State based event timekeeping... 587 * 588 * The basic idea is to use event->state to determine which (if any) time 589 * fields to increment with the current delta. This means we only need to 590 * update timestamps when we change state or when they are explicitly requested 591 * (read). 592 * 593 * Event groups make things a little more complicated, but not terribly so. The 594 * rules for a group are that if the group leader is OFF the entire group is 595 * OFF, irrespecive of what the group member states are. This results in 596 * __perf_effective_state(). 597 * 598 * A futher ramification is that when a group leader flips between OFF and 599 * !OFF, we need to update all group member times. 600 * 601 * 602 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we 603 * need to make sure the relevant context time is updated before we try and 604 * update our timestamps. 605 */ 606 607 static __always_inline enum perf_event_state 608 __perf_effective_state(struct perf_event *event) 609 { 610 struct perf_event *leader = event->group_leader; 611 612 if (leader->state <= PERF_EVENT_STATE_OFF) 613 return leader->state; 614 615 return event->state; 616 } 617 618 static __always_inline void 619 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running) 620 { 621 enum perf_event_state state = __perf_effective_state(event); 622 u64 delta = now - event->tstamp; 623 624 *enabled = event->total_time_enabled; 625 if (state >= PERF_EVENT_STATE_INACTIVE) 626 *enabled += delta; 627 628 *running = event->total_time_running; 629 if (state >= PERF_EVENT_STATE_ACTIVE) 630 *running += delta; 631 } 632 633 static void perf_event_update_time(struct perf_event *event) 634 { 635 u64 now = perf_event_time(event); 636 637 __perf_update_times(event, now, &event->total_time_enabled, 638 &event->total_time_running); 639 event->tstamp = now; 640 } 641 642 static void perf_event_update_sibling_time(struct perf_event *leader) 643 { 644 struct perf_event *sibling; 645 646 for_each_sibling_event(sibling, leader) 647 perf_event_update_time(sibling); 648 } 649 650 static void 651 perf_event_set_state(struct perf_event *event, enum perf_event_state state) 652 { 653 if (event->state == state) 654 return; 655 656 perf_event_update_time(event); 657 /* 658 * If a group leader gets enabled/disabled all its siblings 659 * are affected too. 660 */ 661 if ((event->state < 0) ^ (state < 0)) 662 perf_event_update_sibling_time(event); 663 664 WRITE_ONCE(event->state, state); 665 } 666 667 #ifdef CONFIG_CGROUP_PERF 668 669 static inline bool 670 perf_cgroup_match(struct perf_event *event) 671 { 672 struct perf_event_context *ctx = event->ctx; 673 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 674 675 /* @event doesn't care about cgroup */ 676 if (!event->cgrp) 677 return true; 678 679 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 680 if (!cpuctx->cgrp) 681 return false; 682 683 /* 684 * Cgroup scoping is recursive. An event enabled for a cgroup is 685 * also enabled for all its descendant cgroups. If @cpuctx's 686 * cgroup is a descendant of @event's (the test covers identity 687 * case), it's a match. 688 */ 689 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 690 event->cgrp->css.cgroup); 691 } 692 693 static inline void perf_detach_cgroup(struct perf_event *event) 694 { 695 css_put(&event->cgrp->css); 696 event->cgrp = NULL; 697 } 698 699 static inline int is_cgroup_event(struct perf_event *event) 700 { 701 return event->cgrp != NULL; 702 } 703 704 static inline u64 perf_cgroup_event_time(struct perf_event *event) 705 { 706 struct perf_cgroup_info *t; 707 708 t = per_cpu_ptr(event->cgrp->info, event->cpu); 709 return t->time; 710 } 711 712 static inline void __update_cgrp_time(struct perf_cgroup *cgrp) 713 { 714 struct perf_cgroup_info *info; 715 u64 now; 716 717 now = perf_clock(); 718 719 info = this_cpu_ptr(cgrp->info); 720 721 info->time += now - info->timestamp; 722 info->timestamp = now; 723 } 724 725 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 726 { 727 struct perf_cgroup *cgrp = cpuctx->cgrp; 728 struct cgroup_subsys_state *css; 729 730 if (cgrp) { 731 for (css = &cgrp->css; css; css = css->parent) { 732 cgrp = container_of(css, struct perf_cgroup, css); 733 __update_cgrp_time(cgrp); 734 } 735 } 736 } 737 738 static inline void update_cgrp_time_from_event(struct perf_event *event) 739 { 740 struct perf_cgroup *cgrp; 741 742 /* 743 * ensure we access cgroup data only when needed and 744 * when we know the cgroup is pinned (css_get) 745 */ 746 if (!is_cgroup_event(event)) 747 return; 748 749 cgrp = perf_cgroup_from_task(current, event->ctx); 750 /* 751 * Do not update time when cgroup is not active 752 */ 753 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup)) 754 __update_cgrp_time(event->cgrp); 755 } 756 757 static inline void 758 perf_cgroup_set_timestamp(struct task_struct *task, 759 struct perf_event_context *ctx) 760 { 761 struct perf_cgroup *cgrp; 762 struct perf_cgroup_info *info; 763 struct cgroup_subsys_state *css; 764 765 /* 766 * ctx->lock held by caller 767 * ensure we do not access cgroup data 768 * unless we have the cgroup pinned (css_get) 769 */ 770 if (!task || !ctx->nr_cgroups) 771 return; 772 773 cgrp = perf_cgroup_from_task(task, ctx); 774 775 for (css = &cgrp->css; css; css = css->parent) { 776 cgrp = container_of(css, struct perf_cgroup, css); 777 info = this_cpu_ptr(cgrp->info); 778 info->timestamp = ctx->timestamp; 779 } 780 } 781 782 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list); 783 784 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */ 785 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */ 786 787 /* 788 * reschedule events based on the cgroup constraint of task. 789 * 790 * mode SWOUT : schedule out everything 791 * mode SWIN : schedule in based on cgroup for next 792 */ 793 static void perf_cgroup_switch(struct task_struct *task, int mode) 794 { 795 struct perf_cpu_context *cpuctx; 796 struct list_head *list; 797 unsigned long flags; 798 799 /* 800 * Disable interrupts and preemption to avoid this CPU's 801 * cgrp_cpuctx_entry to change under us. 802 */ 803 local_irq_save(flags); 804 805 list = this_cpu_ptr(&cgrp_cpuctx_list); 806 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) { 807 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0); 808 809 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 810 perf_pmu_disable(cpuctx->ctx.pmu); 811 812 if (mode & PERF_CGROUP_SWOUT) { 813 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 814 /* 815 * must not be done before ctxswout due 816 * to event_filter_match() in event_sched_out() 817 */ 818 cpuctx->cgrp = NULL; 819 } 820 821 if (mode & PERF_CGROUP_SWIN) { 822 WARN_ON_ONCE(cpuctx->cgrp); 823 /* 824 * set cgrp before ctxsw in to allow 825 * event_filter_match() to not have to pass 826 * task around 827 * we pass the cpuctx->ctx to perf_cgroup_from_task() 828 * because cgorup events are only per-cpu 829 */ 830 cpuctx->cgrp = perf_cgroup_from_task(task, 831 &cpuctx->ctx); 832 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task); 833 } 834 perf_pmu_enable(cpuctx->ctx.pmu); 835 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 836 } 837 838 local_irq_restore(flags); 839 } 840 841 static inline void perf_cgroup_sched_out(struct task_struct *task, 842 struct task_struct *next) 843 { 844 struct perf_cgroup *cgrp1; 845 struct perf_cgroup *cgrp2 = NULL; 846 847 rcu_read_lock(); 848 /* 849 * we come here when we know perf_cgroup_events > 0 850 * we do not need to pass the ctx here because we know 851 * we are holding the rcu lock 852 */ 853 cgrp1 = perf_cgroup_from_task(task, NULL); 854 cgrp2 = perf_cgroup_from_task(next, NULL); 855 856 /* 857 * only schedule out current cgroup events if we know 858 * that we are switching to a different cgroup. Otherwise, 859 * do no touch the cgroup events. 860 */ 861 if (cgrp1 != cgrp2) 862 perf_cgroup_switch(task, PERF_CGROUP_SWOUT); 863 864 rcu_read_unlock(); 865 } 866 867 static inline void perf_cgroup_sched_in(struct task_struct *prev, 868 struct task_struct *task) 869 { 870 struct perf_cgroup *cgrp1; 871 struct perf_cgroup *cgrp2 = NULL; 872 873 rcu_read_lock(); 874 /* 875 * we come here when we know perf_cgroup_events > 0 876 * we do not need to pass the ctx here because we know 877 * we are holding the rcu lock 878 */ 879 cgrp1 = perf_cgroup_from_task(task, NULL); 880 cgrp2 = perf_cgroup_from_task(prev, NULL); 881 882 /* 883 * only need to schedule in cgroup events if we are changing 884 * cgroup during ctxsw. Cgroup events were not scheduled 885 * out of ctxsw out if that was not the case. 886 */ 887 if (cgrp1 != cgrp2) 888 perf_cgroup_switch(task, PERF_CGROUP_SWIN); 889 890 rcu_read_unlock(); 891 } 892 893 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 894 struct perf_event_attr *attr, 895 struct perf_event *group_leader) 896 { 897 struct perf_cgroup *cgrp; 898 struct cgroup_subsys_state *css; 899 struct fd f = fdget(fd); 900 int ret = 0; 901 902 if (!f.file) 903 return -EBADF; 904 905 css = css_tryget_online_from_dir(f.file->f_path.dentry, 906 &perf_event_cgrp_subsys); 907 if (IS_ERR(css)) { 908 ret = PTR_ERR(css); 909 goto out; 910 } 911 912 cgrp = container_of(css, struct perf_cgroup, css); 913 event->cgrp = cgrp; 914 915 /* 916 * all events in a group must monitor 917 * the same cgroup because a task belongs 918 * to only one perf cgroup at a time 919 */ 920 if (group_leader && group_leader->cgrp != cgrp) { 921 perf_detach_cgroup(event); 922 ret = -EINVAL; 923 } 924 out: 925 fdput(f); 926 return ret; 927 } 928 929 static inline void 930 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 931 { 932 struct perf_cgroup_info *t; 933 t = per_cpu_ptr(event->cgrp->info, event->cpu); 934 event->shadow_ctx_time = now - t->timestamp; 935 } 936 937 /* 938 * Update cpuctx->cgrp so that it is set when first cgroup event is added and 939 * cleared when last cgroup event is removed. 940 */ 941 static inline void 942 list_update_cgroup_event(struct perf_event *event, 943 struct perf_event_context *ctx, bool add) 944 { 945 struct perf_cpu_context *cpuctx; 946 struct list_head *cpuctx_entry; 947 948 if (!is_cgroup_event(event)) 949 return; 950 951 /* 952 * Because cgroup events are always per-cpu events, 953 * this will always be called from the right CPU. 954 */ 955 cpuctx = __get_cpu_context(ctx); 956 957 /* 958 * Since setting cpuctx->cgrp is conditional on the current @cgrp 959 * matching the event's cgroup, we must do this for every new event, 960 * because if the first would mismatch, the second would not try again 961 * and we would leave cpuctx->cgrp unset. 962 */ 963 if (add && !cpuctx->cgrp) { 964 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 965 966 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup)) 967 cpuctx->cgrp = cgrp; 968 } 969 970 if (add && ctx->nr_cgroups++) 971 return; 972 else if (!add && --ctx->nr_cgroups) 973 return; 974 975 /* no cgroup running */ 976 if (!add) 977 cpuctx->cgrp = NULL; 978 979 cpuctx_entry = &cpuctx->cgrp_cpuctx_entry; 980 if (add) 981 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list)); 982 else 983 list_del(cpuctx_entry); 984 } 985 986 #else /* !CONFIG_CGROUP_PERF */ 987 988 static inline bool 989 perf_cgroup_match(struct perf_event *event) 990 { 991 return true; 992 } 993 994 static inline void perf_detach_cgroup(struct perf_event *event) 995 {} 996 997 static inline int is_cgroup_event(struct perf_event *event) 998 { 999 return 0; 1000 } 1001 1002 static inline void update_cgrp_time_from_event(struct perf_event *event) 1003 { 1004 } 1005 1006 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 1007 { 1008 } 1009 1010 static inline void perf_cgroup_sched_out(struct task_struct *task, 1011 struct task_struct *next) 1012 { 1013 } 1014 1015 static inline void perf_cgroup_sched_in(struct task_struct *prev, 1016 struct task_struct *task) 1017 { 1018 } 1019 1020 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 1021 struct perf_event_attr *attr, 1022 struct perf_event *group_leader) 1023 { 1024 return -EINVAL; 1025 } 1026 1027 static inline void 1028 perf_cgroup_set_timestamp(struct task_struct *task, 1029 struct perf_event_context *ctx) 1030 { 1031 } 1032 1033 void 1034 perf_cgroup_switch(struct task_struct *task, struct task_struct *next) 1035 { 1036 } 1037 1038 static inline void 1039 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 1040 { 1041 } 1042 1043 static inline u64 perf_cgroup_event_time(struct perf_event *event) 1044 { 1045 return 0; 1046 } 1047 1048 static inline void 1049 list_update_cgroup_event(struct perf_event *event, 1050 struct perf_event_context *ctx, bool add) 1051 { 1052 } 1053 1054 #endif 1055 1056 /* 1057 * set default to be dependent on timer tick just 1058 * like original code 1059 */ 1060 #define PERF_CPU_HRTIMER (1000 / HZ) 1061 /* 1062 * function must be called with interrupts disabled 1063 */ 1064 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) 1065 { 1066 struct perf_cpu_context *cpuctx; 1067 bool rotations; 1068 1069 lockdep_assert_irqs_disabled(); 1070 1071 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer); 1072 rotations = perf_rotate_context(cpuctx); 1073 1074 raw_spin_lock(&cpuctx->hrtimer_lock); 1075 if (rotations) 1076 hrtimer_forward_now(hr, cpuctx->hrtimer_interval); 1077 else 1078 cpuctx->hrtimer_active = 0; 1079 raw_spin_unlock(&cpuctx->hrtimer_lock); 1080 1081 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; 1082 } 1083 1084 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu) 1085 { 1086 struct hrtimer *timer = &cpuctx->hrtimer; 1087 struct pmu *pmu = cpuctx->ctx.pmu; 1088 u64 interval; 1089 1090 /* no multiplexing needed for SW PMU */ 1091 if (pmu->task_ctx_nr == perf_sw_context) 1092 return; 1093 1094 /* 1095 * check default is sane, if not set then force to 1096 * default interval (1/tick) 1097 */ 1098 interval = pmu->hrtimer_interval_ms; 1099 if (interval < 1) 1100 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 1101 1102 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 1103 1104 raw_spin_lock_init(&cpuctx->hrtimer_lock); 1105 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 1106 timer->function = perf_mux_hrtimer_handler; 1107 } 1108 1109 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx) 1110 { 1111 struct hrtimer *timer = &cpuctx->hrtimer; 1112 struct pmu *pmu = cpuctx->ctx.pmu; 1113 unsigned long flags; 1114 1115 /* not for SW PMU */ 1116 if (pmu->task_ctx_nr == perf_sw_context) 1117 return 0; 1118 1119 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags); 1120 if (!cpuctx->hrtimer_active) { 1121 cpuctx->hrtimer_active = 1; 1122 hrtimer_forward_now(timer, cpuctx->hrtimer_interval); 1123 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 1124 } 1125 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags); 1126 1127 return 0; 1128 } 1129 1130 void perf_pmu_disable(struct pmu *pmu) 1131 { 1132 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1133 if (!(*count)++) 1134 pmu->pmu_disable(pmu); 1135 } 1136 1137 void perf_pmu_enable(struct pmu *pmu) 1138 { 1139 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1140 if (!--(*count)) 1141 pmu->pmu_enable(pmu); 1142 } 1143 1144 static DEFINE_PER_CPU(struct list_head, active_ctx_list); 1145 1146 /* 1147 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and 1148 * perf_event_task_tick() are fully serialized because they're strictly cpu 1149 * affine and perf_event_ctx{activate,deactivate} are called with IRQs 1150 * disabled, while perf_event_task_tick is called from IRQ context. 1151 */ 1152 static void perf_event_ctx_activate(struct perf_event_context *ctx) 1153 { 1154 struct list_head *head = this_cpu_ptr(&active_ctx_list); 1155 1156 lockdep_assert_irqs_disabled(); 1157 1158 WARN_ON(!list_empty(&ctx->active_ctx_list)); 1159 1160 list_add(&ctx->active_ctx_list, head); 1161 } 1162 1163 static void perf_event_ctx_deactivate(struct perf_event_context *ctx) 1164 { 1165 lockdep_assert_irqs_disabled(); 1166 1167 WARN_ON(list_empty(&ctx->active_ctx_list)); 1168 1169 list_del_init(&ctx->active_ctx_list); 1170 } 1171 1172 static void get_ctx(struct perf_event_context *ctx) 1173 { 1174 WARN_ON(!atomic_inc_not_zero(&ctx->refcount)); 1175 } 1176 1177 static void free_ctx(struct rcu_head *head) 1178 { 1179 struct perf_event_context *ctx; 1180 1181 ctx = container_of(head, struct perf_event_context, rcu_head); 1182 kfree(ctx->task_ctx_data); 1183 kfree(ctx); 1184 } 1185 1186 static void put_ctx(struct perf_event_context *ctx) 1187 { 1188 if (atomic_dec_and_test(&ctx->refcount)) { 1189 if (ctx->parent_ctx) 1190 put_ctx(ctx->parent_ctx); 1191 if (ctx->task && ctx->task != TASK_TOMBSTONE) 1192 put_task_struct(ctx->task); 1193 call_rcu(&ctx->rcu_head, free_ctx); 1194 } 1195 } 1196 1197 /* 1198 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 1199 * perf_pmu_migrate_context() we need some magic. 1200 * 1201 * Those places that change perf_event::ctx will hold both 1202 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 1203 * 1204 * Lock ordering is by mutex address. There are two other sites where 1205 * perf_event_context::mutex nests and those are: 1206 * 1207 * - perf_event_exit_task_context() [ child , 0 ] 1208 * perf_event_exit_event() 1209 * put_event() [ parent, 1 ] 1210 * 1211 * - perf_event_init_context() [ parent, 0 ] 1212 * inherit_task_group() 1213 * inherit_group() 1214 * inherit_event() 1215 * perf_event_alloc() 1216 * perf_init_event() 1217 * perf_try_init_event() [ child , 1 ] 1218 * 1219 * While it appears there is an obvious deadlock here -- the parent and child 1220 * nesting levels are inverted between the two. This is in fact safe because 1221 * life-time rules separate them. That is an exiting task cannot fork, and a 1222 * spawning task cannot (yet) exit. 1223 * 1224 * But remember that that these are parent<->child context relations, and 1225 * migration does not affect children, therefore these two orderings should not 1226 * interact. 1227 * 1228 * The change in perf_event::ctx does not affect children (as claimed above) 1229 * because the sys_perf_event_open() case will install a new event and break 1230 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 1231 * concerned with cpuctx and that doesn't have children. 1232 * 1233 * The places that change perf_event::ctx will issue: 1234 * 1235 * perf_remove_from_context(); 1236 * synchronize_rcu(); 1237 * perf_install_in_context(); 1238 * 1239 * to affect the change. The remove_from_context() + synchronize_rcu() should 1240 * quiesce the event, after which we can install it in the new location. This 1241 * means that only external vectors (perf_fops, prctl) can perturb the event 1242 * while in transit. Therefore all such accessors should also acquire 1243 * perf_event_context::mutex to serialize against this. 1244 * 1245 * However; because event->ctx can change while we're waiting to acquire 1246 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 1247 * function. 1248 * 1249 * Lock order: 1250 * cred_guard_mutex 1251 * task_struct::perf_event_mutex 1252 * perf_event_context::mutex 1253 * perf_event::child_mutex; 1254 * perf_event_context::lock 1255 * perf_event::mmap_mutex 1256 * mmap_sem 1257 * 1258 * cpu_hotplug_lock 1259 * pmus_lock 1260 * cpuctx->mutex / perf_event_context::mutex 1261 */ 1262 static struct perf_event_context * 1263 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 1264 { 1265 struct perf_event_context *ctx; 1266 1267 again: 1268 rcu_read_lock(); 1269 ctx = READ_ONCE(event->ctx); 1270 if (!atomic_inc_not_zero(&ctx->refcount)) { 1271 rcu_read_unlock(); 1272 goto again; 1273 } 1274 rcu_read_unlock(); 1275 1276 mutex_lock_nested(&ctx->mutex, nesting); 1277 if (event->ctx != ctx) { 1278 mutex_unlock(&ctx->mutex); 1279 put_ctx(ctx); 1280 goto again; 1281 } 1282 1283 return ctx; 1284 } 1285 1286 static inline struct perf_event_context * 1287 perf_event_ctx_lock(struct perf_event *event) 1288 { 1289 return perf_event_ctx_lock_nested(event, 0); 1290 } 1291 1292 static void perf_event_ctx_unlock(struct perf_event *event, 1293 struct perf_event_context *ctx) 1294 { 1295 mutex_unlock(&ctx->mutex); 1296 put_ctx(ctx); 1297 } 1298 1299 /* 1300 * This must be done under the ctx->lock, such as to serialize against 1301 * context_equiv(), therefore we cannot call put_ctx() since that might end up 1302 * calling scheduler related locks and ctx->lock nests inside those. 1303 */ 1304 static __must_check struct perf_event_context * 1305 unclone_ctx(struct perf_event_context *ctx) 1306 { 1307 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1308 1309 lockdep_assert_held(&ctx->lock); 1310 1311 if (parent_ctx) 1312 ctx->parent_ctx = NULL; 1313 ctx->generation++; 1314 1315 return parent_ctx; 1316 } 1317 1318 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p, 1319 enum pid_type type) 1320 { 1321 u32 nr; 1322 /* 1323 * only top level events have the pid namespace they were created in 1324 */ 1325 if (event->parent) 1326 event = event->parent; 1327 1328 nr = __task_pid_nr_ns(p, type, event->ns); 1329 /* avoid -1 if it is idle thread or runs in another ns */ 1330 if (!nr && !pid_alive(p)) 1331 nr = -1; 1332 return nr; 1333 } 1334 1335 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1336 { 1337 return perf_event_pid_type(event, p, PIDTYPE_TGID); 1338 } 1339 1340 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1341 { 1342 return perf_event_pid_type(event, p, PIDTYPE_PID); 1343 } 1344 1345 /* 1346 * If we inherit events we want to return the parent event id 1347 * to userspace. 1348 */ 1349 static u64 primary_event_id(struct perf_event *event) 1350 { 1351 u64 id = event->id; 1352 1353 if (event->parent) 1354 id = event->parent->id; 1355 1356 return id; 1357 } 1358 1359 /* 1360 * Get the perf_event_context for a task and lock it. 1361 * 1362 * This has to cope with with the fact that until it is locked, 1363 * the context could get moved to another task. 1364 */ 1365 static struct perf_event_context * 1366 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) 1367 { 1368 struct perf_event_context *ctx; 1369 1370 retry: 1371 /* 1372 * One of the few rules of preemptible RCU is that one cannot do 1373 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1374 * part of the read side critical section was irqs-enabled -- see 1375 * rcu_read_unlock_special(). 1376 * 1377 * Since ctx->lock nests under rq->lock we must ensure the entire read 1378 * side critical section has interrupts disabled. 1379 */ 1380 local_irq_save(*flags); 1381 rcu_read_lock(); 1382 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); 1383 if (ctx) { 1384 /* 1385 * If this context is a clone of another, it might 1386 * get swapped for another underneath us by 1387 * perf_event_task_sched_out, though the 1388 * rcu_read_lock() protects us from any context 1389 * getting freed. Lock the context and check if it 1390 * got swapped before we could get the lock, and retry 1391 * if so. If we locked the right context, then it 1392 * can't get swapped on us any more. 1393 */ 1394 raw_spin_lock(&ctx->lock); 1395 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { 1396 raw_spin_unlock(&ctx->lock); 1397 rcu_read_unlock(); 1398 local_irq_restore(*flags); 1399 goto retry; 1400 } 1401 1402 if (ctx->task == TASK_TOMBSTONE || 1403 !atomic_inc_not_zero(&ctx->refcount)) { 1404 raw_spin_unlock(&ctx->lock); 1405 ctx = NULL; 1406 } else { 1407 WARN_ON_ONCE(ctx->task != task); 1408 } 1409 } 1410 rcu_read_unlock(); 1411 if (!ctx) 1412 local_irq_restore(*flags); 1413 return ctx; 1414 } 1415 1416 /* 1417 * Get the context for a task and increment its pin_count so it 1418 * can't get swapped to another task. This also increments its 1419 * reference count so that the context can't get freed. 1420 */ 1421 static struct perf_event_context * 1422 perf_pin_task_context(struct task_struct *task, int ctxn) 1423 { 1424 struct perf_event_context *ctx; 1425 unsigned long flags; 1426 1427 ctx = perf_lock_task_context(task, ctxn, &flags); 1428 if (ctx) { 1429 ++ctx->pin_count; 1430 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1431 } 1432 return ctx; 1433 } 1434 1435 static void perf_unpin_context(struct perf_event_context *ctx) 1436 { 1437 unsigned long flags; 1438 1439 raw_spin_lock_irqsave(&ctx->lock, flags); 1440 --ctx->pin_count; 1441 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1442 } 1443 1444 /* 1445 * Update the record of the current time in a context. 1446 */ 1447 static void update_context_time(struct perf_event_context *ctx) 1448 { 1449 u64 now = perf_clock(); 1450 1451 ctx->time += now - ctx->timestamp; 1452 ctx->timestamp = now; 1453 } 1454 1455 static u64 perf_event_time(struct perf_event *event) 1456 { 1457 struct perf_event_context *ctx = event->ctx; 1458 1459 if (is_cgroup_event(event)) 1460 return perf_cgroup_event_time(event); 1461 1462 return ctx ? ctx->time : 0; 1463 } 1464 1465 static enum event_type_t get_event_type(struct perf_event *event) 1466 { 1467 struct perf_event_context *ctx = event->ctx; 1468 enum event_type_t event_type; 1469 1470 lockdep_assert_held(&ctx->lock); 1471 1472 /* 1473 * It's 'group type', really, because if our group leader is 1474 * pinned, so are we. 1475 */ 1476 if (event->group_leader != event) 1477 event = event->group_leader; 1478 1479 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE; 1480 if (!ctx->task) 1481 event_type |= EVENT_CPU; 1482 1483 return event_type; 1484 } 1485 1486 /* 1487 * Helper function to initialize event group nodes. 1488 */ 1489 static void init_event_group(struct perf_event *event) 1490 { 1491 RB_CLEAR_NODE(&event->group_node); 1492 event->group_index = 0; 1493 } 1494 1495 /* 1496 * Extract pinned or flexible groups from the context 1497 * based on event attrs bits. 1498 */ 1499 static struct perf_event_groups * 1500 get_event_groups(struct perf_event *event, struct perf_event_context *ctx) 1501 { 1502 if (event->attr.pinned) 1503 return &ctx->pinned_groups; 1504 else 1505 return &ctx->flexible_groups; 1506 } 1507 1508 /* 1509 * Helper function to initializes perf_event_group trees. 1510 */ 1511 static void perf_event_groups_init(struct perf_event_groups *groups) 1512 { 1513 groups->tree = RB_ROOT; 1514 groups->index = 0; 1515 } 1516 1517 /* 1518 * Compare function for event groups; 1519 * 1520 * Implements complex key that first sorts by CPU and then by virtual index 1521 * which provides ordering when rotating groups for the same CPU. 1522 */ 1523 static bool 1524 perf_event_groups_less(struct perf_event *left, struct perf_event *right) 1525 { 1526 if (left->cpu < right->cpu) 1527 return true; 1528 if (left->cpu > right->cpu) 1529 return false; 1530 1531 if (left->group_index < right->group_index) 1532 return true; 1533 if (left->group_index > right->group_index) 1534 return false; 1535 1536 return false; 1537 } 1538 1539 /* 1540 * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for 1541 * key (see perf_event_groups_less). This places it last inside the CPU 1542 * subtree. 1543 */ 1544 static void 1545 perf_event_groups_insert(struct perf_event_groups *groups, 1546 struct perf_event *event) 1547 { 1548 struct perf_event *node_event; 1549 struct rb_node *parent; 1550 struct rb_node **node; 1551 1552 event->group_index = ++groups->index; 1553 1554 node = &groups->tree.rb_node; 1555 parent = *node; 1556 1557 while (*node) { 1558 parent = *node; 1559 node_event = container_of(*node, struct perf_event, group_node); 1560 1561 if (perf_event_groups_less(event, node_event)) 1562 node = &parent->rb_left; 1563 else 1564 node = &parent->rb_right; 1565 } 1566 1567 rb_link_node(&event->group_node, parent, node); 1568 rb_insert_color(&event->group_node, &groups->tree); 1569 } 1570 1571 /* 1572 * Helper function to insert event into the pinned or flexible groups. 1573 */ 1574 static void 1575 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx) 1576 { 1577 struct perf_event_groups *groups; 1578 1579 groups = get_event_groups(event, ctx); 1580 perf_event_groups_insert(groups, event); 1581 } 1582 1583 /* 1584 * Delete a group from a tree. 1585 */ 1586 static void 1587 perf_event_groups_delete(struct perf_event_groups *groups, 1588 struct perf_event *event) 1589 { 1590 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) || 1591 RB_EMPTY_ROOT(&groups->tree)); 1592 1593 rb_erase(&event->group_node, &groups->tree); 1594 init_event_group(event); 1595 } 1596 1597 /* 1598 * Helper function to delete event from its groups. 1599 */ 1600 static void 1601 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx) 1602 { 1603 struct perf_event_groups *groups; 1604 1605 groups = get_event_groups(event, ctx); 1606 perf_event_groups_delete(groups, event); 1607 } 1608 1609 /* 1610 * Get the leftmost event in the @cpu subtree. 1611 */ 1612 static struct perf_event * 1613 perf_event_groups_first(struct perf_event_groups *groups, int cpu) 1614 { 1615 struct perf_event *node_event = NULL, *match = NULL; 1616 struct rb_node *node = groups->tree.rb_node; 1617 1618 while (node) { 1619 node_event = container_of(node, struct perf_event, group_node); 1620 1621 if (cpu < node_event->cpu) { 1622 node = node->rb_left; 1623 } else if (cpu > node_event->cpu) { 1624 node = node->rb_right; 1625 } else { 1626 match = node_event; 1627 node = node->rb_left; 1628 } 1629 } 1630 1631 return match; 1632 } 1633 1634 /* 1635 * Like rb_entry_next_safe() for the @cpu subtree. 1636 */ 1637 static struct perf_event * 1638 perf_event_groups_next(struct perf_event *event) 1639 { 1640 struct perf_event *next; 1641 1642 next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node); 1643 if (next && next->cpu == event->cpu) 1644 return next; 1645 1646 return NULL; 1647 } 1648 1649 /* 1650 * Iterate through the whole groups tree. 1651 */ 1652 #define perf_event_groups_for_each(event, groups) \ 1653 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \ 1654 typeof(*event), group_node); event; \ 1655 event = rb_entry_safe(rb_next(&event->group_node), \ 1656 typeof(*event), group_node)) 1657 1658 /* 1659 * Add an event from the lists for its context. 1660 * Must be called with ctx->mutex and ctx->lock held. 1661 */ 1662 static void 1663 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1664 { 1665 lockdep_assert_held(&ctx->lock); 1666 1667 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1668 event->attach_state |= PERF_ATTACH_CONTEXT; 1669 1670 event->tstamp = perf_event_time(event); 1671 1672 /* 1673 * If we're a stand alone event or group leader, we go to the context 1674 * list, group events are kept attached to the group so that 1675 * perf_group_detach can, at all times, locate all siblings. 1676 */ 1677 if (event->group_leader == event) { 1678 event->group_caps = event->event_caps; 1679 add_event_to_groups(event, ctx); 1680 } 1681 1682 list_update_cgroup_event(event, ctx, true); 1683 1684 list_add_rcu(&event->event_entry, &ctx->event_list); 1685 ctx->nr_events++; 1686 if (event->attr.inherit_stat) 1687 ctx->nr_stat++; 1688 1689 ctx->generation++; 1690 } 1691 1692 /* 1693 * Initialize event state based on the perf_event_attr::disabled. 1694 */ 1695 static inline void perf_event__state_init(struct perf_event *event) 1696 { 1697 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1698 PERF_EVENT_STATE_INACTIVE; 1699 } 1700 1701 static void __perf_event_read_size(struct perf_event *event, int nr_siblings) 1702 { 1703 int entry = sizeof(u64); /* value */ 1704 int size = 0; 1705 int nr = 1; 1706 1707 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1708 size += sizeof(u64); 1709 1710 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1711 size += sizeof(u64); 1712 1713 if (event->attr.read_format & PERF_FORMAT_ID) 1714 entry += sizeof(u64); 1715 1716 if (event->attr.read_format & PERF_FORMAT_GROUP) { 1717 nr += nr_siblings; 1718 size += sizeof(u64); 1719 } 1720 1721 size += entry * nr; 1722 event->read_size = size; 1723 } 1724 1725 static void __perf_event_header_size(struct perf_event *event, u64 sample_type) 1726 { 1727 struct perf_sample_data *data; 1728 u16 size = 0; 1729 1730 if (sample_type & PERF_SAMPLE_IP) 1731 size += sizeof(data->ip); 1732 1733 if (sample_type & PERF_SAMPLE_ADDR) 1734 size += sizeof(data->addr); 1735 1736 if (sample_type & PERF_SAMPLE_PERIOD) 1737 size += sizeof(data->period); 1738 1739 if (sample_type & PERF_SAMPLE_WEIGHT) 1740 size += sizeof(data->weight); 1741 1742 if (sample_type & PERF_SAMPLE_READ) 1743 size += event->read_size; 1744 1745 if (sample_type & PERF_SAMPLE_DATA_SRC) 1746 size += sizeof(data->data_src.val); 1747 1748 if (sample_type & PERF_SAMPLE_TRANSACTION) 1749 size += sizeof(data->txn); 1750 1751 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 1752 size += sizeof(data->phys_addr); 1753 1754 event->header_size = size; 1755 } 1756 1757 /* 1758 * Called at perf_event creation and when events are attached/detached from a 1759 * group. 1760 */ 1761 static void perf_event__header_size(struct perf_event *event) 1762 { 1763 __perf_event_read_size(event, 1764 event->group_leader->nr_siblings); 1765 __perf_event_header_size(event, event->attr.sample_type); 1766 } 1767 1768 static void perf_event__id_header_size(struct perf_event *event) 1769 { 1770 struct perf_sample_data *data; 1771 u64 sample_type = event->attr.sample_type; 1772 u16 size = 0; 1773 1774 if (sample_type & PERF_SAMPLE_TID) 1775 size += sizeof(data->tid_entry); 1776 1777 if (sample_type & PERF_SAMPLE_TIME) 1778 size += sizeof(data->time); 1779 1780 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1781 size += sizeof(data->id); 1782 1783 if (sample_type & PERF_SAMPLE_ID) 1784 size += sizeof(data->id); 1785 1786 if (sample_type & PERF_SAMPLE_STREAM_ID) 1787 size += sizeof(data->stream_id); 1788 1789 if (sample_type & PERF_SAMPLE_CPU) 1790 size += sizeof(data->cpu_entry); 1791 1792 event->id_header_size = size; 1793 } 1794 1795 static bool perf_event_validate_size(struct perf_event *event) 1796 { 1797 /* 1798 * The values computed here will be over-written when we actually 1799 * attach the event. 1800 */ 1801 __perf_event_read_size(event, event->group_leader->nr_siblings + 1); 1802 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ); 1803 perf_event__id_header_size(event); 1804 1805 /* 1806 * Sum the lot; should not exceed the 64k limit we have on records. 1807 * Conservative limit to allow for callchains and other variable fields. 1808 */ 1809 if (event->read_size + event->header_size + 1810 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024) 1811 return false; 1812 1813 return true; 1814 } 1815 1816 static void perf_group_attach(struct perf_event *event) 1817 { 1818 struct perf_event *group_leader = event->group_leader, *pos; 1819 1820 lockdep_assert_held(&event->ctx->lock); 1821 1822 /* 1823 * We can have double attach due to group movement in perf_event_open. 1824 */ 1825 if (event->attach_state & PERF_ATTACH_GROUP) 1826 return; 1827 1828 event->attach_state |= PERF_ATTACH_GROUP; 1829 1830 if (group_leader == event) 1831 return; 1832 1833 WARN_ON_ONCE(group_leader->ctx != event->ctx); 1834 1835 group_leader->group_caps &= event->event_caps; 1836 1837 list_add_tail(&event->sibling_list, &group_leader->sibling_list); 1838 group_leader->nr_siblings++; 1839 1840 perf_event__header_size(group_leader); 1841 1842 for_each_sibling_event(pos, group_leader) 1843 perf_event__header_size(pos); 1844 } 1845 1846 /* 1847 * Remove an event from the lists for its context. 1848 * Must be called with ctx->mutex and ctx->lock held. 1849 */ 1850 static void 1851 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 1852 { 1853 WARN_ON_ONCE(event->ctx != ctx); 1854 lockdep_assert_held(&ctx->lock); 1855 1856 /* 1857 * We can have double detach due to exit/hot-unplug + close. 1858 */ 1859 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 1860 return; 1861 1862 event->attach_state &= ~PERF_ATTACH_CONTEXT; 1863 1864 list_update_cgroup_event(event, ctx, false); 1865 1866 ctx->nr_events--; 1867 if (event->attr.inherit_stat) 1868 ctx->nr_stat--; 1869 1870 list_del_rcu(&event->event_entry); 1871 1872 if (event->group_leader == event) 1873 del_event_from_groups(event, ctx); 1874 1875 /* 1876 * If event was in error state, then keep it 1877 * that way, otherwise bogus counts will be 1878 * returned on read(). The only way to get out 1879 * of error state is by explicit re-enabling 1880 * of the event 1881 */ 1882 if (event->state > PERF_EVENT_STATE_OFF) 1883 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 1884 1885 ctx->generation++; 1886 } 1887 1888 static void perf_group_detach(struct perf_event *event) 1889 { 1890 struct perf_event *sibling, *tmp; 1891 struct perf_event_context *ctx = event->ctx; 1892 1893 lockdep_assert_held(&ctx->lock); 1894 1895 /* 1896 * We can have double detach due to exit/hot-unplug + close. 1897 */ 1898 if (!(event->attach_state & PERF_ATTACH_GROUP)) 1899 return; 1900 1901 event->attach_state &= ~PERF_ATTACH_GROUP; 1902 1903 /* 1904 * If this is a sibling, remove it from its group. 1905 */ 1906 if (event->group_leader != event) { 1907 list_del_init(&event->sibling_list); 1908 event->group_leader->nr_siblings--; 1909 goto out; 1910 } 1911 1912 /* 1913 * If this was a group event with sibling events then 1914 * upgrade the siblings to singleton events by adding them 1915 * to whatever list we are on. 1916 */ 1917 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) { 1918 1919 sibling->group_leader = sibling; 1920 list_del_init(&sibling->sibling_list); 1921 1922 /* Inherit group flags from the previous leader */ 1923 sibling->group_caps = event->group_caps; 1924 1925 if (!RB_EMPTY_NODE(&event->group_node)) { 1926 add_event_to_groups(sibling, event->ctx); 1927 1928 if (sibling->state == PERF_EVENT_STATE_ACTIVE) { 1929 struct list_head *list = sibling->attr.pinned ? 1930 &ctx->pinned_active : &ctx->flexible_active; 1931 1932 list_add_tail(&sibling->active_list, list); 1933 } 1934 } 1935 1936 WARN_ON_ONCE(sibling->ctx != event->ctx); 1937 } 1938 1939 out: 1940 perf_event__header_size(event->group_leader); 1941 1942 for_each_sibling_event(tmp, event->group_leader) 1943 perf_event__header_size(tmp); 1944 } 1945 1946 static bool is_orphaned_event(struct perf_event *event) 1947 { 1948 return event->state == PERF_EVENT_STATE_DEAD; 1949 } 1950 1951 static inline int __pmu_filter_match(struct perf_event *event) 1952 { 1953 struct pmu *pmu = event->pmu; 1954 return pmu->filter_match ? pmu->filter_match(event) : 1; 1955 } 1956 1957 /* 1958 * Check whether we should attempt to schedule an event group based on 1959 * PMU-specific filtering. An event group can consist of HW and SW events, 1960 * potentially with a SW leader, so we must check all the filters, to 1961 * determine whether a group is schedulable: 1962 */ 1963 static inline int pmu_filter_match(struct perf_event *event) 1964 { 1965 struct perf_event *sibling; 1966 1967 if (!__pmu_filter_match(event)) 1968 return 0; 1969 1970 for_each_sibling_event(sibling, event) { 1971 if (!__pmu_filter_match(sibling)) 1972 return 0; 1973 } 1974 1975 return 1; 1976 } 1977 1978 static inline int 1979 event_filter_match(struct perf_event *event) 1980 { 1981 return (event->cpu == -1 || event->cpu == smp_processor_id()) && 1982 perf_cgroup_match(event) && pmu_filter_match(event); 1983 } 1984 1985 static void 1986 event_sched_out(struct perf_event *event, 1987 struct perf_cpu_context *cpuctx, 1988 struct perf_event_context *ctx) 1989 { 1990 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE; 1991 1992 WARN_ON_ONCE(event->ctx != ctx); 1993 lockdep_assert_held(&ctx->lock); 1994 1995 if (event->state != PERF_EVENT_STATE_ACTIVE) 1996 return; 1997 1998 /* 1999 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but 2000 * we can schedule events _OUT_ individually through things like 2001 * __perf_remove_from_context(). 2002 */ 2003 list_del_init(&event->active_list); 2004 2005 perf_pmu_disable(event->pmu); 2006 2007 event->pmu->del(event, 0); 2008 event->oncpu = -1; 2009 2010 if (event->pending_disable) { 2011 event->pending_disable = 0; 2012 state = PERF_EVENT_STATE_OFF; 2013 } 2014 perf_event_set_state(event, state); 2015 2016 if (!is_software_event(event)) 2017 cpuctx->active_oncpu--; 2018 if (!--ctx->nr_active) 2019 perf_event_ctx_deactivate(ctx); 2020 if (event->attr.freq && event->attr.sample_freq) 2021 ctx->nr_freq--; 2022 if (event->attr.exclusive || !cpuctx->active_oncpu) 2023 cpuctx->exclusive = 0; 2024 2025 perf_pmu_enable(event->pmu); 2026 } 2027 2028 static void 2029 group_sched_out(struct perf_event *group_event, 2030 struct perf_cpu_context *cpuctx, 2031 struct perf_event_context *ctx) 2032 { 2033 struct perf_event *event; 2034 2035 if (group_event->state != PERF_EVENT_STATE_ACTIVE) 2036 return; 2037 2038 perf_pmu_disable(ctx->pmu); 2039 2040 event_sched_out(group_event, cpuctx, ctx); 2041 2042 /* 2043 * Schedule out siblings (if any): 2044 */ 2045 for_each_sibling_event(event, group_event) 2046 event_sched_out(event, cpuctx, ctx); 2047 2048 perf_pmu_enable(ctx->pmu); 2049 2050 if (group_event->attr.exclusive) 2051 cpuctx->exclusive = 0; 2052 } 2053 2054 #define DETACH_GROUP 0x01UL 2055 2056 /* 2057 * Cross CPU call to remove a performance event 2058 * 2059 * We disable the event on the hardware level first. After that we 2060 * remove it from the context list. 2061 */ 2062 static void 2063 __perf_remove_from_context(struct perf_event *event, 2064 struct perf_cpu_context *cpuctx, 2065 struct perf_event_context *ctx, 2066 void *info) 2067 { 2068 unsigned long flags = (unsigned long)info; 2069 2070 if (ctx->is_active & EVENT_TIME) { 2071 update_context_time(ctx); 2072 update_cgrp_time_from_cpuctx(cpuctx); 2073 } 2074 2075 event_sched_out(event, cpuctx, ctx); 2076 if (flags & DETACH_GROUP) 2077 perf_group_detach(event); 2078 list_del_event(event, ctx); 2079 2080 if (!ctx->nr_events && ctx->is_active) { 2081 ctx->is_active = 0; 2082 if (ctx->task) { 2083 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2084 cpuctx->task_ctx = NULL; 2085 } 2086 } 2087 } 2088 2089 /* 2090 * Remove the event from a task's (or a CPU's) list of events. 2091 * 2092 * If event->ctx is a cloned context, callers must make sure that 2093 * every task struct that event->ctx->task could possibly point to 2094 * remains valid. This is OK when called from perf_release since 2095 * that only calls us on the top-level context, which can't be a clone. 2096 * When called from perf_event_exit_task, it's OK because the 2097 * context has been detached from its task. 2098 */ 2099 static void perf_remove_from_context(struct perf_event *event, unsigned long flags) 2100 { 2101 struct perf_event_context *ctx = event->ctx; 2102 2103 lockdep_assert_held(&ctx->mutex); 2104 2105 event_function_call(event, __perf_remove_from_context, (void *)flags); 2106 2107 /* 2108 * The above event_function_call() can NO-OP when it hits 2109 * TASK_TOMBSTONE. In that case we must already have been detached 2110 * from the context (by perf_event_exit_event()) but the grouping 2111 * might still be in-tact. 2112 */ 2113 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 2114 if ((flags & DETACH_GROUP) && 2115 (event->attach_state & PERF_ATTACH_GROUP)) { 2116 /* 2117 * Since in that case we cannot possibly be scheduled, simply 2118 * detach now. 2119 */ 2120 raw_spin_lock_irq(&ctx->lock); 2121 perf_group_detach(event); 2122 raw_spin_unlock_irq(&ctx->lock); 2123 } 2124 } 2125 2126 /* 2127 * Cross CPU call to disable a performance event 2128 */ 2129 static void __perf_event_disable(struct perf_event *event, 2130 struct perf_cpu_context *cpuctx, 2131 struct perf_event_context *ctx, 2132 void *info) 2133 { 2134 if (event->state < PERF_EVENT_STATE_INACTIVE) 2135 return; 2136 2137 if (ctx->is_active & EVENT_TIME) { 2138 update_context_time(ctx); 2139 update_cgrp_time_from_event(event); 2140 } 2141 2142 if (event == event->group_leader) 2143 group_sched_out(event, cpuctx, ctx); 2144 else 2145 event_sched_out(event, cpuctx, ctx); 2146 2147 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2148 } 2149 2150 /* 2151 * Disable an event. 2152 * 2153 * If event->ctx is a cloned context, callers must make sure that 2154 * every task struct that event->ctx->task could possibly point to 2155 * remains valid. This condition is satisifed when called through 2156 * perf_event_for_each_child or perf_event_for_each because they 2157 * hold the top-level event's child_mutex, so any descendant that 2158 * goes to exit will block in perf_event_exit_event(). 2159 * 2160 * When called from perf_pending_event it's OK because event->ctx 2161 * is the current context on this CPU and preemption is disabled, 2162 * hence we can't get into perf_event_task_sched_out for this context. 2163 */ 2164 static void _perf_event_disable(struct perf_event *event) 2165 { 2166 struct perf_event_context *ctx = event->ctx; 2167 2168 raw_spin_lock_irq(&ctx->lock); 2169 if (event->state <= PERF_EVENT_STATE_OFF) { 2170 raw_spin_unlock_irq(&ctx->lock); 2171 return; 2172 } 2173 raw_spin_unlock_irq(&ctx->lock); 2174 2175 event_function_call(event, __perf_event_disable, NULL); 2176 } 2177 2178 void perf_event_disable_local(struct perf_event *event) 2179 { 2180 event_function_local(event, __perf_event_disable, NULL); 2181 } 2182 2183 /* 2184 * Strictly speaking kernel users cannot create groups and therefore this 2185 * interface does not need the perf_event_ctx_lock() magic. 2186 */ 2187 void perf_event_disable(struct perf_event *event) 2188 { 2189 struct perf_event_context *ctx; 2190 2191 ctx = perf_event_ctx_lock(event); 2192 _perf_event_disable(event); 2193 perf_event_ctx_unlock(event, ctx); 2194 } 2195 EXPORT_SYMBOL_GPL(perf_event_disable); 2196 2197 void perf_event_disable_inatomic(struct perf_event *event) 2198 { 2199 event->pending_disable = 1; 2200 irq_work_queue(&event->pending); 2201 } 2202 2203 static void perf_set_shadow_time(struct perf_event *event, 2204 struct perf_event_context *ctx) 2205 { 2206 /* 2207 * use the correct time source for the time snapshot 2208 * 2209 * We could get by without this by leveraging the 2210 * fact that to get to this function, the caller 2211 * has most likely already called update_context_time() 2212 * and update_cgrp_time_xx() and thus both timestamp 2213 * are identical (or very close). Given that tstamp is, 2214 * already adjusted for cgroup, we could say that: 2215 * tstamp - ctx->timestamp 2216 * is equivalent to 2217 * tstamp - cgrp->timestamp. 2218 * 2219 * Then, in perf_output_read(), the calculation would 2220 * work with no changes because: 2221 * - event is guaranteed scheduled in 2222 * - no scheduled out in between 2223 * - thus the timestamp would be the same 2224 * 2225 * But this is a bit hairy. 2226 * 2227 * So instead, we have an explicit cgroup call to remain 2228 * within the time time source all along. We believe it 2229 * is cleaner and simpler to understand. 2230 */ 2231 if (is_cgroup_event(event)) 2232 perf_cgroup_set_shadow_time(event, event->tstamp); 2233 else 2234 event->shadow_ctx_time = event->tstamp - ctx->timestamp; 2235 } 2236 2237 #define MAX_INTERRUPTS (~0ULL) 2238 2239 static void perf_log_throttle(struct perf_event *event, int enable); 2240 static void perf_log_itrace_start(struct perf_event *event); 2241 2242 static int 2243 event_sched_in(struct perf_event *event, 2244 struct perf_cpu_context *cpuctx, 2245 struct perf_event_context *ctx) 2246 { 2247 int ret = 0; 2248 2249 lockdep_assert_held(&ctx->lock); 2250 2251 if (event->state <= PERF_EVENT_STATE_OFF) 2252 return 0; 2253 2254 WRITE_ONCE(event->oncpu, smp_processor_id()); 2255 /* 2256 * Order event::oncpu write to happen before the ACTIVE state is 2257 * visible. This allows perf_event_{stop,read}() to observe the correct 2258 * ->oncpu if it sees ACTIVE. 2259 */ 2260 smp_wmb(); 2261 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE); 2262 2263 /* 2264 * Unthrottle events, since we scheduled we might have missed several 2265 * ticks already, also for a heavily scheduling task there is little 2266 * guarantee it'll get a tick in a timely manner. 2267 */ 2268 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 2269 perf_log_throttle(event, 1); 2270 event->hw.interrupts = 0; 2271 } 2272 2273 perf_pmu_disable(event->pmu); 2274 2275 perf_set_shadow_time(event, ctx); 2276 2277 perf_log_itrace_start(event); 2278 2279 if (event->pmu->add(event, PERF_EF_START)) { 2280 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2281 event->oncpu = -1; 2282 ret = -EAGAIN; 2283 goto out; 2284 } 2285 2286 if (!is_software_event(event)) 2287 cpuctx->active_oncpu++; 2288 if (!ctx->nr_active++) 2289 perf_event_ctx_activate(ctx); 2290 if (event->attr.freq && event->attr.sample_freq) 2291 ctx->nr_freq++; 2292 2293 if (event->attr.exclusive) 2294 cpuctx->exclusive = 1; 2295 2296 out: 2297 perf_pmu_enable(event->pmu); 2298 2299 return ret; 2300 } 2301 2302 static int 2303 group_sched_in(struct perf_event *group_event, 2304 struct perf_cpu_context *cpuctx, 2305 struct perf_event_context *ctx) 2306 { 2307 struct perf_event *event, *partial_group = NULL; 2308 struct pmu *pmu = ctx->pmu; 2309 2310 if (group_event->state == PERF_EVENT_STATE_OFF) 2311 return 0; 2312 2313 pmu->start_txn(pmu, PERF_PMU_TXN_ADD); 2314 2315 if (event_sched_in(group_event, cpuctx, ctx)) { 2316 pmu->cancel_txn(pmu); 2317 perf_mux_hrtimer_restart(cpuctx); 2318 return -EAGAIN; 2319 } 2320 2321 /* 2322 * Schedule in siblings as one group (if any): 2323 */ 2324 for_each_sibling_event(event, group_event) { 2325 if (event_sched_in(event, cpuctx, ctx)) { 2326 partial_group = event; 2327 goto group_error; 2328 } 2329 } 2330 2331 if (!pmu->commit_txn(pmu)) 2332 return 0; 2333 2334 group_error: 2335 /* 2336 * Groups can be scheduled in as one unit only, so undo any 2337 * partial group before returning: 2338 * The events up to the failed event are scheduled out normally. 2339 */ 2340 for_each_sibling_event(event, group_event) { 2341 if (event == partial_group) 2342 break; 2343 2344 event_sched_out(event, cpuctx, ctx); 2345 } 2346 event_sched_out(group_event, cpuctx, ctx); 2347 2348 pmu->cancel_txn(pmu); 2349 2350 perf_mux_hrtimer_restart(cpuctx); 2351 2352 return -EAGAIN; 2353 } 2354 2355 /* 2356 * Work out whether we can put this event group on the CPU now. 2357 */ 2358 static int group_can_go_on(struct perf_event *event, 2359 struct perf_cpu_context *cpuctx, 2360 int can_add_hw) 2361 { 2362 /* 2363 * Groups consisting entirely of software events can always go on. 2364 */ 2365 if (event->group_caps & PERF_EV_CAP_SOFTWARE) 2366 return 1; 2367 /* 2368 * If an exclusive group is already on, no other hardware 2369 * events can go on. 2370 */ 2371 if (cpuctx->exclusive) 2372 return 0; 2373 /* 2374 * If this group is exclusive and there are already 2375 * events on the CPU, it can't go on. 2376 */ 2377 if (event->attr.exclusive && cpuctx->active_oncpu) 2378 return 0; 2379 /* 2380 * Otherwise, try to add it if all previous groups were able 2381 * to go on. 2382 */ 2383 return can_add_hw; 2384 } 2385 2386 static void add_event_to_ctx(struct perf_event *event, 2387 struct perf_event_context *ctx) 2388 { 2389 list_add_event(event, ctx); 2390 perf_group_attach(event); 2391 } 2392 2393 static void ctx_sched_out(struct perf_event_context *ctx, 2394 struct perf_cpu_context *cpuctx, 2395 enum event_type_t event_type); 2396 static void 2397 ctx_sched_in(struct perf_event_context *ctx, 2398 struct perf_cpu_context *cpuctx, 2399 enum event_type_t event_type, 2400 struct task_struct *task); 2401 2402 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx, 2403 struct perf_event_context *ctx, 2404 enum event_type_t event_type) 2405 { 2406 if (!cpuctx->task_ctx) 2407 return; 2408 2409 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2410 return; 2411 2412 ctx_sched_out(ctx, cpuctx, event_type); 2413 } 2414 2415 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2416 struct perf_event_context *ctx, 2417 struct task_struct *task) 2418 { 2419 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task); 2420 if (ctx) 2421 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task); 2422 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task); 2423 if (ctx) 2424 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task); 2425 } 2426 2427 /* 2428 * We want to maintain the following priority of scheduling: 2429 * - CPU pinned (EVENT_CPU | EVENT_PINNED) 2430 * - task pinned (EVENT_PINNED) 2431 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE) 2432 * - task flexible (EVENT_FLEXIBLE). 2433 * 2434 * In order to avoid unscheduling and scheduling back in everything every 2435 * time an event is added, only do it for the groups of equal priority and 2436 * below. 2437 * 2438 * This can be called after a batch operation on task events, in which case 2439 * event_type is a bit mask of the types of events involved. For CPU events, 2440 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE. 2441 */ 2442 static void ctx_resched(struct perf_cpu_context *cpuctx, 2443 struct perf_event_context *task_ctx, 2444 enum event_type_t event_type) 2445 { 2446 enum event_type_t ctx_event_type; 2447 bool cpu_event = !!(event_type & EVENT_CPU); 2448 2449 /* 2450 * If pinned groups are involved, flexible groups also need to be 2451 * scheduled out. 2452 */ 2453 if (event_type & EVENT_PINNED) 2454 event_type |= EVENT_FLEXIBLE; 2455 2456 ctx_event_type = event_type & EVENT_ALL; 2457 2458 perf_pmu_disable(cpuctx->ctx.pmu); 2459 if (task_ctx) 2460 task_ctx_sched_out(cpuctx, task_ctx, event_type); 2461 2462 /* 2463 * Decide which cpu ctx groups to schedule out based on the types 2464 * of events that caused rescheduling: 2465 * - EVENT_CPU: schedule out corresponding groups; 2466 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups; 2467 * - otherwise, do nothing more. 2468 */ 2469 if (cpu_event) 2470 cpu_ctx_sched_out(cpuctx, ctx_event_type); 2471 else if (ctx_event_type & EVENT_PINNED) 2472 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2473 2474 perf_event_sched_in(cpuctx, task_ctx, current); 2475 perf_pmu_enable(cpuctx->ctx.pmu); 2476 } 2477 2478 /* 2479 * Cross CPU call to install and enable a performance event 2480 * 2481 * Very similar to remote_function() + event_function() but cannot assume that 2482 * things like ctx->is_active and cpuctx->task_ctx are set. 2483 */ 2484 static int __perf_install_in_context(void *info) 2485 { 2486 struct perf_event *event = info; 2487 struct perf_event_context *ctx = event->ctx; 2488 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2489 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2490 bool reprogram = true; 2491 int ret = 0; 2492 2493 raw_spin_lock(&cpuctx->ctx.lock); 2494 if (ctx->task) { 2495 raw_spin_lock(&ctx->lock); 2496 task_ctx = ctx; 2497 2498 reprogram = (ctx->task == current); 2499 2500 /* 2501 * If the task is running, it must be running on this CPU, 2502 * otherwise we cannot reprogram things. 2503 * 2504 * If its not running, we don't care, ctx->lock will 2505 * serialize against it becoming runnable. 2506 */ 2507 if (task_curr(ctx->task) && !reprogram) { 2508 ret = -ESRCH; 2509 goto unlock; 2510 } 2511 2512 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx); 2513 } else if (task_ctx) { 2514 raw_spin_lock(&task_ctx->lock); 2515 } 2516 2517 #ifdef CONFIG_CGROUP_PERF 2518 if (is_cgroup_event(event)) { 2519 /* 2520 * If the current cgroup doesn't match the event's 2521 * cgroup, we should not try to schedule it. 2522 */ 2523 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 2524 reprogram = cgroup_is_descendant(cgrp->css.cgroup, 2525 event->cgrp->css.cgroup); 2526 } 2527 #endif 2528 2529 if (reprogram) { 2530 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2531 add_event_to_ctx(event, ctx); 2532 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2533 } else { 2534 add_event_to_ctx(event, ctx); 2535 } 2536 2537 unlock: 2538 perf_ctx_unlock(cpuctx, task_ctx); 2539 2540 return ret; 2541 } 2542 2543 /* 2544 * Attach a performance event to a context. 2545 * 2546 * Very similar to event_function_call, see comment there. 2547 */ 2548 static void 2549 perf_install_in_context(struct perf_event_context *ctx, 2550 struct perf_event *event, 2551 int cpu) 2552 { 2553 struct task_struct *task = READ_ONCE(ctx->task); 2554 2555 lockdep_assert_held(&ctx->mutex); 2556 2557 if (event->cpu != -1) 2558 event->cpu = cpu; 2559 2560 /* 2561 * Ensures that if we can observe event->ctx, both the event and ctx 2562 * will be 'complete'. See perf_iterate_sb_cpu(). 2563 */ 2564 smp_store_release(&event->ctx, ctx); 2565 2566 if (!task) { 2567 cpu_function_call(cpu, __perf_install_in_context, event); 2568 return; 2569 } 2570 2571 /* 2572 * Should not happen, we validate the ctx is still alive before calling. 2573 */ 2574 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) 2575 return; 2576 2577 /* 2578 * Installing events is tricky because we cannot rely on ctx->is_active 2579 * to be set in case this is the nr_events 0 -> 1 transition. 2580 * 2581 * Instead we use task_curr(), which tells us if the task is running. 2582 * However, since we use task_curr() outside of rq::lock, we can race 2583 * against the actual state. This means the result can be wrong. 2584 * 2585 * If we get a false positive, we retry, this is harmless. 2586 * 2587 * If we get a false negative, things are complicated. If we are after 2588 * perf_event_context_sched_in() ctx::lock will serialize us, and the 2589 * value must be correct. If we're before, it doesn't matter since 2590 * perf_event_context_sched_in() will program the counter. 2591 * 2592 * However, this hinges on the remote context switch having observed 2593 * our task->perf_event_ctxp[] store, such that it will in fact take 2594 * ctx::lock in perf_event_context_sched_in(). 2595 * 2596 * We do this by task_function_call(), if the IPI fails to hit the task 2597 * we know any future context switch of task must see the 2598 * perf_event_ctpx[] store. 2599 */ 2600 2601 /* 2602 * This smp_mb() orders the task->perf_event_ctxp[] store with the 2603 * task_cpu() load, such that if the IPI then does not find the task 2604 * running, a future context switch of that task must observe the 2605 * store. 2606 */ 2607 smp_mb(); 2608 again: 2609 if (!task_function_call(task, __perf_install_in_context, event)) 2610 return; 2611 2612 raw_spin_lock_irq(&ctx->lock); 2613 task = ctx->task; 2614 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) { 2615 /* 2616 * Cannot happen because we already checked above (which also 2617 * cannot happen), and we hold ctx->mutex, which serializes us 2618 * against perf_event_exit_task_context(). 2619 */ 2620 raw_spin_unlock_irq(&ctx->lock); 2621 return; 2622 } 2623 /* 2624 * If the task is not running, ctx->lock will avoid it becoming so, 2625 * thus we can safely install the event. 2626 */ 2627 if (task_curr(task)) { 2628 raw_spin_unlock_irq(&ctx->lock); 2629 goto again; 2630 } 2631 add_event_to_ctx(event, ctx); 2632 raw_spin_unlock_irq(&ctx->lock); 2633 } 2634 2635 /* 2636 * Cross CPU call to enable a performance event 2637 */ 2638 static void __perf_event_enable(struct perf_event *event, 2639 struct perf_cpu_context *cpuctx, 2640 struct perf_event_context *ctx, 2641 void *info) 2642 { 2643 struct perf_event *leader = event->group_leader; 2644 struct perf_event_context *task_ctx; 2645 2646 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2647 event->state <= PERF_EVENT_STATE_ERROR) 2648 return; 2649 2650 if (ctx->is_active) 2651 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2652 2653 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2654 2655 if (!ctx->is_active) 2656 return; 2657 2658 if (!event_filter_match(event)) { 2659 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2660 return; 2661 } 2662 2663 /* 2664 * If the event is in a group and isn't the group leader, 2665 * then don't put it on unless the group is on. 2666 */ 2667 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) { 2668 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2669 return; 2670 } 2671 2672 task_ctx = cpuctx->task_ctx; 2673 if (ctx->task) 2674 WARN_ON_ONCE(task_ctx != ctx); 2675 2676 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2677 } 2678 2679 /* 2680 * Enable an event. 2681 * 2682 * If event->ctx is a cloned context, callers must make sure that 2683 * every task struct that event->ctx->task could possibly point to 2684 * remains valid. This condition is satisfied when called through 2685 * perf_event_for_each_child or perf_event_for_each as described 2686 * for perf_event_disable. 2687 */ 2688 static void _perf_event_enable(struct perf_event *event) 2689 { 2690 struct perf_event_context *ctx = event->ctx; 2691 2692 raw_spin_lock_irq(&ctx->lock); 2693 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2694 event->state < PERF_EVENT_STATE_ERROR) { 2695 raw_spin_unlock_irq(&ctx->lock); 2696 return; 2697 } 2698 2699 /* 2700 * If the event is in error state, clear that first. 2701 * 2702 * That way, if we see the event in error state below, we know that it 2703 * has gone back into error state, as distinct from the task having 2704 * been scheduled away before the cross-call arrived. 2705 */ 2706 if (event->state == PERF_EVENT_STATE_ERROR) 2707 event->state = PERF_EVENT_STATE_OFF; 2708 raw_spin_unlock_irq(&ctx->lock); 2709 2710 event_function_call(event, __perf_event_enable, NULL); 2711 } 2712 2713 /* 2714 * See perf_event_disable(); 2715 */ 2716 void perf_event_enable(struct perf_event *event) 2717 { 2718 struct perf_event_context *ctx; 2719 2720 ctx = perf_event_ctx_lock(event); 2721 _perf_event_enable(event); 2722 perf_event_ctx_unlock(event, ctx); 2723 } 2724 EXPORT_SYMBOL_GPL(perf_event_enable); 2725 2726 struct stop_event_data { 2727 struct perf_event *event; 2728 unsigned int restart; 2729 }; 2730 2731 static int __perf_event_stop(void *info) 2732 { 2733 struct stop_event_data *sd = info; 2734 struct perf_event *event = sd->event; 2735 2736 /* if it's already INACTIVE, do nothing */ 2737 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 2738 return 0; 2739 2740 /* matches smp_wmb() in event_sched_in() */ 2741 smp_rmb(); 2742 2743 /* 2744 * There is a window with interrupts enabled before we get here, 2745 * so we need to check again lest we try to stop another CPU's event. 2746 */ 2747 if (READ_ONCE(event->oncpu) != smp_processor_id()) 2748 return -EAGAIN; 2749 2750 event->pmu->stop(event, PERF_EF_UPDATE); 2751 2752 /* 2753 * May race with the actual stop (through perf_pmu_output_stop()), 2754 * but it is only used for events with AUX ring buffer, and such 2755 * events will refuse to restart because of rb::aux_mmap_count==0, 2756 * see comments in perf_aux_output_begin(). 2757 * 2758 * Since this is happening on an event-local CPU, no trace is lost 2759 * while restarting. 2760 */ 2761 if (sd->restart) 2762 event->pmu->start(event, 0); 2763 2764 return 0; 2765 } 2766 2767 static int perf_event_stop(struct perf_event *event, int restart) 2768 { 2769 struct stop_event_data sd = { 2770 .event = event, 2771 .restart = restart, 2772 }; 2773 int ret = 0; 2774 2775 do { 2776 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 2777 return 0; 2778 2779 /* matches smp_wmb() in event_sched_in() */ 2780 smp_rmb(); 2781 2782 /* 2783 * We only want to restart ACTIVE events, so if the event goes 2784 * inactive here (event->oncpu==-1), there's nothing more to do; 2785 * fall through with ret==-ENXIO. 2786 */ 2787 ret = cpu_function_call(READ_ONCE(event->oncpu), 2788 __perf_event_stop, &sd); 2789 } while (ret == -EAGAIN); 2790 2791 return ret; 2792 } 2793 2794 /* 2795 * In order to contain the amount of racy and tricky in the address filter 2796 * configuration management, it is a two part process: 2797 * 2798 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below, 2799 * we update the addresses of corresponding vmas in 2800 * event::addr_filters_offs array and bump the event::addr_filters_gen; 2801 * (p2) when an event is scheduled in (pmu::add), it calls 2802 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync() 2803 * if the generation has changed since the previous call. 2804 * 2805 * If (p1) happens while the event is active, we restart it to force (p2). 2806 * 2807 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on 2808 * pre-existing mappings, called once when new filters arrive via SET_FILTER 2809 * ioctl; 2810 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly 2811 * registered mapping, called for every new mmap(), with mm::mmap_sem down 2812 * for reading; 2813 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process 2814 * of exec. 2815 */ 2816 void perf_event_addr_filters_sync(struct perf_event *event) 2817 { 2818 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 2819 2820 if (!has_addr_filter(event)) 2821 return; 2822 2823 raw_spin_lock(&ifh->lock); 2824 if (event->addr_filters_gen != event->hw.addr_filters_gen) { 2825 event->pmu->addr_filters_sync(event); 2826 event->hw.addr_filters_gen = event->addr_filters_gen; 2827 } 2828 raw_spin_unlock(&ifh->lock); 2829 } 2830 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync); 2831 2832 static int _perf_event_refresh(struct perf_event *event, int refresh) 2833 { 2834 /* 2835 * not supported on inherited events 2836 */ 2837 if (event->attr.inherit || !is_sampling_event(event)) 2838 return -EINVAL; 2839 2840 atomic_add(refresh, &event->event_limit); 2841 _perf_event_enable(event); 2842 2843 return 0; 2844 } 2845 2846 /* 2847 * See perf_event_disable() 2848 */ 2849 int perf_event_refresh(struct perf_event *event, int refresh) 2850 { 2851 struct perf_event_context *ctx; 2852 int ret; 2853 2854 ctx = perf_event_ctx_lock(event); 2855 ret = _perf_event_refresh(event, refresh); 2856 perf_event_ctx_unlock(event, ctx); 2857 2858 return ret; 2859 } 2860 EXPORT_SYMBOL_GPL(perf_event_refresh); 2861 2862 static int perf_event_modify_breakpoint(struct perf_event *bp, 2863 struct perf_event_attr *attr) 2864 { 2865 int err; 2866 2867 _perf_event_disable(bp); 2868 2869 err = modify_user_hw_breakpoint_check(bp, attr, true); 2870 2871 if (!bp->attr.disabled) 2872 _perf_event_enable(bp); 2873 2874 return err; 2875 } 2876 2877 static int perf_event_modify_attr(struct perf_event *event, 2878 struct perf_event_attr *attr) 2879 { 2880 if (event->attr.type != attr->type) 2881 return -EINVAL; 2882 2883 switch (event->attr.type) { 2884 case PERF_TYPE_BREAKPOINT: 2885 return perf_event_modify_breakpoint(event, attr); 2886 default: 2887 /* Place holder for future additions. */ 2888 return -EOPNOTSUPP; 2889 } 2890 } 2891 2892 static void ctx_sched_out(struct perf_event_context *ctx, 2893 struct perf_cpu_context *cpuctx, 2894 enum event_type_t event_type) 2895 { 2896 struct perf_event *event, *tmp; 2897 int is_active = ctx->is_active; 2898 2899 lockdep_assert_held(&ctx->lock); 2900 2901 if (likely(!ctx->nr_events)) { 2902 /* 2903 * See __perf_remove_from_context(). 2904 */ 2905 WARN_ON_ONCE(ctx->is_active); 2906 if (ctx->task) 2907 WARN_ON_ONCE(cpuctx->task_ctx); 2908 return; 2909 } 2910 2911 ctx->is_active &= ~event_type; 2912 if (!(ctx->is_active & EVENT_ALL)) 2913 ctx->is_active = 0; 2914 2915 if (ctx->task) { 2916 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2917 if (!ctx->is_active) 2918 cpuctx->task_ctx = NULL; 2919 } 2920 2921 /* 2922 * Always update time if it was set; not only when it changes. 2923 * Otherwise we can 'forget' to update time for any but the last 2924 * context we sched out. For example: 2925 * 2926 * ctx_sched_out(.event_type = EVENT_FLEXIBLE) 2927 * ctx_sched_out(.event_type = EVENT_PINNED) 2928 * 2929 * would only update time for the pinned events. 2930 */ 2931 if (is_active & EVENT_TIME) { 2932 /* update (and stop) ctx time */ 2933 update_context_time(ctx); 2934 update_cgrp_time_from_cpuctx(cpuctx); 2935 } 2936 2937 is_active ^= ctx->is_active; /* changed bits */ 2938 2939 if (!ctx->nr_active || !(is_active & EVENT_ALL)) 2940 return; 2941 2942 perf_pmu_disable(ctx->pmu); 2943 if (is_active & EVENT_PINNED) { 2944 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list) 2945 group_sched_out(event, cpuctx, ctx); 2946 } 2947 2948 if (is_active & EVENT_FLEXIBLE) { 2949 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list) 2950 group_sched_out(event, cpuctx, ctx); 2951 } 2952 perf_pmu_enable(ctx->pmu); 2953 } 2954 2955 /* 2956 * Test whether two contexts are equivalent, i.e. whether they have both been 2957 * cloned from the same version of the same context. 2958 * 2959 * Equivalence is measured using a generation number in the context that is 2960 * incremented on each modification to it; see unclone_ctx(), list_add_event() 2961 * and list_del_event(). 2962 */ 2963 static int context_equiv(struct perf_event_context *ctx1, 2964 struct perf_event_context *ctx2) 2965 { 2966 lockdep_assert_held(&ctx1->lock); 2967 lockdep_assert_held(&ctx2->lock); 2968 2969 /* Pinning disables the swap optimization */ 2970 if (ctx1->pin_count || ctx2->pin_count) 2971 return 0; 2972 2973 /* If ctx1 is the parent of ctx2 */ 2974 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 2975 return 1; 2976 2977 /* If ctx2 is the parent of ctx1 */ 2978 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 2979 return 1; 2980 2981 /* 2982 * If ctx1 and ctx2 have the same parent; we flatten the parent 2983 * hierarchy, see perf_event_init_context(). 2984 */ 2985 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 2986 ctx1->parent_gen == ctx2->parent_gen) 2987 return 1; 2988 2989 /* Unmatched */ 2990 return 0; 2991 } 2992 2993 static void __perf_event_sync_stat(struct perf_event *event, 2994 struct perf_event *next_event) 2995 { 2996 u64 value; 2997 2998 if (!event->attr.inherit_stat) 2999 return; 3000 3001 /* 3002 * Update the event value, we cannot use perf_event_read() 3003 * because we're in the middle of a context switch and have IRQs 3004 * disabled, which upsets smp_call_function_single(), however 3005 * we know the event must be on the current CPU, therefore we 3006 * don't need to use it. 3007 */ 3008 if (event->state == PERF_EVENT_STATE_ACTIVE) 3009 event->pmu->read(event); 3010 3011 perf_event_update_time(event); 3012 3013 /* 3014 * In order to keep per-task stats reliable we need to flip the event 3015 * values when we flip the contexts. 3016 */ 3017 value = local64_read(&next_event->count); 3018 value = local64_xchg(&event->count, value); 3019 local64_set(&next_event->count, value); 3020 3021 swap(event->total_time_enabled, next_event->total_time_enabled); 3022 swap(event->total_time_running, next_event->total_time_running); 3023 3024 /* 3025 * Since we swizzled the values, update the user visible data too. 3026 */ 3027 perf_event_update_userpage(event); 3028 perf_event_update_userpage(next_event); 3029 } 3030 3031 static void perf_event_sync_stat(struct perf_event_context *ctx, 3032 struct perf_event_context *next_ctx) 3033 { 3034 struct perf_event *event, *next_event; 3035 3036 if (!ctx->nr_stat) 3037 return; 3038 3039 update_context_time(ctx); 3040 3041 event = list_first_entry(&ctx->event_list, 3042 struct perf_event, event_entry); 3043 3044 next_event = list_first_entry(&next_ctx->event_list, 3045 struct perf_event, event_entry); 3046 3047 while (&event->event_entry != &ctx->event_list && 3048 &next_event->event_entry != &next_ctx->event_list) { 3049 3050 __perf_event_sync_stat(event, next_event); 3051 3052 event = list_next_entry(event, event_entry); 3053 next_event = list_next_entry(next_event, event_entry); 3054 } 3055 } 3056 3057 static void perf_event_context_sched_out(struct task_struct *task, int ctxn, 3058 struct task_struct *next) 3059 { 3060 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; 3061 struct perf_event_context *next_ctx; 3062 struct perf_event_context *parent, *next_parent; 3063 struct perf_cpu_context *cpuctx; 3064 int do_switch = 1; 3065 3066 if (likely(!ctx)) 3067 return; 3068 3069 cpuctx = __get_cpu_context(ctx); 3070 if (!cpuctx->task_ctx) 3071 return; 3072 3073 rcu_read_lock(); 3074 next_ctx = next->perf_event_ctxp[ctxn]; 3075 if (!next_ctx) 3076 goto unlock; 3077 3078 parent = rcu_dereference(ctx->parent_ctx); 3079 next_parent = rcu_dereference(next_ctx->parent_ctx); 3080 3081 /* If neither context have a parent context; they cannot be clones. */ 3082 if (!parent && !next_parent) 3083 goto unlock; 3084 3085 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 3086 /* 3087 * Looks like the two contexts are clones, so we might be 3088 * able to optimize the context switch. We lock both 3089 * contexts and check that they are clones under the 3090 * lock (including re-checking that neither has been 3091 * uncloned in the meantime). It doesn't matter which 3092 * order we take the locks because no other cpu could 3093 * be trying to lock both of these tasks. 3094 */ 3095 raw_spin_lock(&ctx->lock); 3096 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 3097 if (context_equiv(ctx, next_ctx)) { 3098 WRITE_ONCE(ctx->task, next); 3099 WRITE_ONCE(next_ctx->task, task); 3100 3101 swap(ctx->task_ctx_data, next_ctx->task_ctx_data); 3102 3103 /* 3104 * RCU_INIT_POINTER here is safe because we've not 3105 * modified the ctx and the above modification of 3106 * ctx->task and ctx->task_ctx_data are immaterial 3107 * since those values are always verified under 3108 * ctx->lock which we're now holding. 3109 */ 3110 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx); 3111 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx); 3112 3113 do_switch = 0; 3114 3115 perf_event_sync_stat(ctx, next_ctx); 3116 } 3117 raw_spin_unlock(&next_ctx->lock); 3118 raw_spin_unlock(&ctx->lock); 3119 } 3120 unlock: 3121 rcu_read_unlock(); 3122 3123 if (do_switch) { 3124 raw_spin_lock(&ctx->lock); 3125 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL); 3126 raw_spin_unlock(&ctx->lock); 3127 } 3128 } 3129 3130 static DEFINE_PER_CPU(struct list_head, sched_cb_list); 3131 3132 void perf_sched_cb_dec(struct pmu *pmu) 3133 { 3134 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 3135 3136 this_cpu_dec(perf_sched_cb_usages); 3137 3138 if (!--cpuctx->sched_cb_usage) 3139 list_del(&cpuctx->sched_cb_entry); 3140 } 3141 3142 3143 void perf_sched_cb_inc(struct pmu *pmu) 3144 { 3145 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 3146 3147 if (!cpuctx->sched_cb_usage++) 3148 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list)); 3149 3150 this_cpu_inc(perf_sched_cb_usages); 3151 } 3152 3153 /* 3154 * This function provides the context switch callback to the lower code 3155 * layer. It is invoked ONLY when the context switch callback is enabled. 3156 * 3157 * This callback is relevant even to per-cpu events; for example multi event 3158 * PEBS requires this to provide PID/TID information. This requires we flush 3159 * all queued PEBS records before we context switch to a new task. 3160 */ 3161 static void perf_pmu_sched_task(struct task_struct *prev, 3162 struct task_struct *next, 3163 bool sched_in) 3164 { 3165 struct perf_cpu_context *cpuctx; 3166 struct pmu *pmu; 3167 3168 if (prev == next) 3169 return; 3170 3171 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) { 3172 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */ 3173 3174 if (WARN_ON_ONCE(!pmu->sched_task)) 3175 continue; 3176 3177 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3178 perf_pmu_disable(pmu); 3179 3180 pmu->sched_task(cpuctx->task_ctx, sched_in); 3181 3182 perf_pmu_enable(pmu); 3183 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3184 } 3185 } 3186 3187 static void perf_event_switch(struct task_struct *task, 3188 struct task_struct *next_prev, bool sched_in); 3189 3190 #define for_each_task_context_nr(ctxn) \ 3191 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) 3192 3193 /* 3194 * Called from scheduler to remove the events of the current task, 3195 * with interrupts disabled. 3196 * 3197 * We stop each event and update the event value in event->count. 3198 * 3199 * This does not protect us against NMI, but disable() 3200 * sets the disabled bit in the control field of event _before_ 3201 * accessing the event control register. If a NMI hits, then it will 3202 * not restart the event. 3203 */ 3204 void __perf_event_task_sched_out(struct task_struct *task, 3205 struct task_struct *next) 3206 { 3207 int ctxn; 3208 3209 if (__this_cpu_read(perf_sched_cb_usages)) 3210 perf_pmu_sched_task(task, next, false); 3211 3212 if (atomic_read(&nr_switch_events)) 3213 perf_event_switch(task, next, false); 3214 3215 for_each_task_context_nr(ctxn) 3216 perf_event_context_sched_out(task, ctxn, next); 3217 3218 /* 3219 * if cgroup events exist on this CPU, then we need 3220 * to check if we have to switch out PMU state. 3221 * cgroup event are system-wide mode only 3222 */ 3223 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3224 perf_cgroup_sched_out(task, next); 3225 } 3226 3227 /* 3228 * Called with IRQs disabled 3229 */ 3230 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 3231 enum event_type_t event_type) 3232 { 3233 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); 3234 } 3235 3236 static int visit_groups_merge(struct perf_event_groups *groups, int cpu, 3237 int (*func)(struct perf_event *, void *), void *data) 3238 { 3239 struct perf_event **evt, *evt1, *evt2; 3240 int ret; 3241 3242 evt1 = perf_event_groups_first(groups, -1); 3243 evt2 = perf_event_groups_first(groups, cpu); 3244 3245 while (evt1 || evt2) { 3246 if (evt1 && evt2) { 3247 if (evt1->group_index < evt2->group_index) 3248 evt = &evt1; 3249 else 3250 evt = &evt2; 3251 } else if (evt1) { 3252 evt = &evt1; 3253 } else { 3254 evt = &evt2; 3255 } 3256 3257 ret = func(*evt, data); 3258 if (ret) 3259 return ret; 3260 3261 *evt = perf_event_groups_next(*evt); 3262 } 3263 3264 return 0; 3265 } 3266 3267 struct sched_in_data { 3268 struct perf_event_context *ctx; 3269 struct perf_cpu_context *cpuctx; 3270 int can_add_hw; 3271 }; 3272 3273 static int pinned_sched_in(struct perf_event *event, void *data) 3274 { 3275 struct sched_in_data *sid = data; 3276 3277 if (event->state <= PERF_EVENT_STATE_OFF) 3278 return 0; 3279 3280 if (!event_filter_match(event)) 3281 return 0; 3282 3283 if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) { 3284 if (!group_sched_in(event, sid->cpuctx, sid->ctx)) 3285 list_add_tail(&event->active_list, &sid->ctx->pinned_active); 3286 } 3287 3288 /* 3289 * If this pinned group hasn't been scheduled, 3290 * put it in error state. 3291 */ 3292 if (event->state == PERF_EVENT_STATE_INACTIVE) 3293 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 3294 3295 return 0; 3296 } 3297 3298 static int flexible_sched_in(struct perf_event *event, void *data) 3299 { 3300 struct sched_in_data *sid = data; 3301 3302 if (event->state <= PERF_EVENT_STATE_OFF) 3303 return 0; 3304 3305 if (!event_filter_match(event)) 3306 return 0; 3307 3308 if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) { 3309 if (!group_sched_in(event, sid->cpuctx, sid->ctx)) 3310 list_add_tail(&event->active_list, &sid->ctx->flexible_active); 3311 else 3312 sid->can_add_hw = 0; 3313 } 3314 3315 return 0; 3316 } 3317 3318 static void 3319 ctx_pinned_sched_in(struct perf_event_context *ctx, 3320 struct perf_cpu_context *cpuctx) 3321 { 3322 struct sched_in_data sid = { 3323 .ctx = ctx, 3324 .cpuctx = cpuctx, 3325 .can_add_hw = 1, 3326 }; 3327 3328 visit_groups_merge(&ctx->pinned_groups, 3329 smp_processor_id(), 3330 pinned_sched_in, &sid); 3331 } 3332 3333 static void 3334 ctx_flexible_sched_in(struct perf_event_context *ctx, 3335 struct perf_cpu_context *cpuctx) 3336 { 3337 struct sched_in_data sid = { 3338 .ctx = ctx, 3339 .cpuctx = cpuctx, 3340 .can_add_hw = 1, 3341 }; 3342 3343 visit_groups_merge(&ctx->flexible_groups, 3344 smp_processor_id(), 3345 flexible_sched_in, &sid); 3346 } 3347 3348 static void 3349 ctx_sched_in(struct perf_event_context *ctx, 3350 struct perf_cpu_context *cpuctx, 3351 enum event_type_t event_type, 3352 struct task_struct *task) 3353 { 3354 int is_active = ctx->is_active; 3355 u64 now; 3356 3357 lockdep_assert_held(&ctx->lock); 3358 3359 if (likely(!ctx->nr_events)) 3360 return; 3361 3362 ctx->is_active |= (event_type | EVENT_TIME); 3363 if (ctx->task) { 3364 if (!is_active) 3365 cpuctx->task_ctx = ctx; 3366 else 3367 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3368 } 3369 3370 is_active ^= ctx->is_active; /* changed bits */ 3371 3372 if (is_active & EVENT_TIME) { 3373 /* start ctx time */ 3374 now = perf_clock(); 3375 ctx->timestamp = now; 3376 perf_cgroup_set_timestamp(task, ctx); 3377 } 3378 3379 /* 3380 * First go through the list and put on any pinned groups 3381 * in order to give them the best chance of going on. 3382 */ 3383 if (is_active & EVENT_PINNED) 3384 ctx_pinned_sched_in(ctx, cpuctx); 3385 3386 /* Then walk through the lower prio flexible groups */ 3387 if (is_active & EVENT_FLEXIBLE) 3388 ctx_flexible_sched_in(ctx, cpuctx); 3389 } 3390 3391 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 3392 enum event_type_t event_type, 3393 struct task_struct *task) 3394 { 3395 struct perf_event_context *ctx = &cpuctx->ctx; 3396 3397 ctx_sched_in(ctx, cpuctx, event_type, task); 3398 } 3399 3400 static void perf_event_context_sched_in(struct perf_event_context *ctx, 3401 struct task_struct *task) 3402 { 3403 struct perf_cpu_context *cpuctx; 3404 3405 cpuctx = __get_cpu_context(ctx); 3406 if (cpuctx->task_ctx == ctx) 3407 return; 3408 3409 perf_ctx_lock(cpuctx, ctx); 3410 /* 3411 * We must check ctx->nr_events while holding ctx->lock, such 3412 * that we serialize against perf_install_in_context(). 3413 */ 3414 if (!ctx->nr_events) 3415 goto unlock; 3416 3417 perf_pmu_disable(ctx->pmu); 3418 /* 3419 * We want to keep the following priority order: 3420 * cpu pinned (that don't need to move), task pinned, 3421 * cpu flexible, task flexible. 3422 * 3423 * However, if task's ctx is not carrying any pinned 3424 * events, no need to flip the cpuctx's events around. 3425 */ 3426 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) 3427 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3428 perf_event_sched_in(cpuctx, ctx, task); 3429 perf_pmu_enable(ctx->pmu); 3430 3431 unlock: 3432 perf_ctx_unlock(cpuctx, ctx); 3433 } 3434 3435 /* 3436 * Called from scheduler to add the events of the current task 3437 * with interrupts disabled. 3438 * 3439 * We restore the event value and then enable it. 3440 * 3441 * This does not protect us against NMI, but enable() 3442 * sets the enabled bit in the control field of event _before_ 3443 * accessing the event control register. If a NMI hits, then it will 3444 * keep the event running. 3445 */ 3446 void __perf_event_task_sched_in(struct task_struct *prev, 3447 struct task_struct *task) 3448 { 3449 struct perf_event_context *ctx; 3450 int ctxn; 3451 3452 /* 3453 * If cgroup events exist on this CPU, then we need to check if we have 3454 * to switch in PMU state; cgroup event are system-wide mode only. 3455 * 3456 * Since cgroup events are CPU events, we must schedule these in before 3457 * we schedule in the task events. 3458 */ 3459 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3460 perf_cgroup_sched_in(prev, task); 3461 3462 for_each_task_context_nr(ctxn) { 3463 ctx = task->perf_event_ctxp[ctxn]; 3464 if (likely(!ctx)) 3465 continue; 3466 3467 perf_event_context_sched_in(ctx, task); 3468 } 3469 3470 if (atomic_read(&nr_switch_events)) 3471 perf_event_switch(task, prev, true); 3472 3473 if (__this_cpu_read(perf_sched_cb_usages)) 3474 perf_pmu_sched_task(prev, task, true); 3475 } 3476 3477 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 3478 { 3479 u64 frequency = event->attr.sample_freq; 3480 u64 sec = NSEC_PER_SEC; 3481 u64 divisor, dividend; 3482 3483 int count_fls, nsec_fls, frequency_fls, sec_fls; 3484 3485 count_fls = fls64(count); 3486 nsec_fls = fls64(nsec); 3487 frequency_fls = fls64(frequency); 3488 sec_fls = 30; 3489 3490 /* 3491 * We got @count in @nsec, with a target of sample_freq HZ 3492 * the target period becomes: 3493 * 3494 * @count * 10^9 3495 * period = ------------------- 3496 * @nsec * sample_freq 3497 * 3498 */ 3499 3500 /* 3501 * Reduce accuracy by one bit such that @a and @b converge 3502 * to a similar magnitude. 3503 */ 3504 #define REDUCE_FLS(a, b) \ 3505 do { \ 3506 if (a##_fls > b##_fls) { \ 3507 a >>= 1; \ 3508 a##_fls--; \ 3509 } else { \ 3510 b >>= 1; \ 3511 b##_fls--; \ 3512 } \ 3513 } while (0) 3514 3515 /* 3516 * Reduce accuracy until either term fits in a u64, then proceed with 3517 * the other, so that finally we can do a u64/u64 division. 3518 */ 3519 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 3520 REDUCE_FLS(nsec, frequency); 3521 REDUCE_FLS(sec, count); 3522 } 3523 3524 if (count_fls + sec_fls > 64) { 3525 divisor = nsec * frequency; 3526 3527 while (count_fls + sec_fls > 64) { 3528 REDUCE_FLS(count, sec); 3529 divisor >>= 1; 3530 } 3531 3532 dividend = count * sec; 3533 } else { 3534 dividend = count * sec; 3535 3536 while (nsec_fls + frequency_fls > 64) { 3537 REDUCE_FLS(nsec, frequency); 3538 dividend >>= 1; 3539 } 3540 3541 divisor = nsec * frequency; 3542 } 3543 3544 if (!divisor) 3545 return dividend; 3546 3547 return div64_u64(dividend, divisor); 3548 } 3549 3550 static DEFINE_PER_CPU(int, perf_throttled_count); 3551 static DEFINE_PER_CPU(u64, perf_throttled_seq); 3552 3553 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 3554 { 3555 struct hw_perf_event *hwc = &event->hw; 3556 s64 period, sample_period; 3557 s64 delta; 3558 3559 period = perf_calculate_period(event, nsec, count); 3560 3561 delta = (s64)(period - hwc->sample_period); 3562 delta = (delta + 7) / 8; /* low pass filter */ 3563 3564 sample_period = hwc->sample_period + delta; 3565 3566 if (!sample_period) 3567 sample_period = 1; 3568 3569 hwc->sample_period = sample_period; 3570 3571 if (local64_read(&hwc->period_left) > 8*sample_period) { 3572 if (disable) 3573 event->pmu->stop(event, PERF_EF_UPDATE); 3574 3575 local64_set(&hwc->period_left, 0); 3576 3577 if (disable) 3578 event->pmu->start(event, PERF_EF_RELOAD); 3579 } 3580 } 3581 3582 /* 3583 * combine freq adjustment with unthrottling to avoid two passes over the 3584 * events. At the same time, make sure, having freq events does not change 3585 * the rate of unthrottling as that would introduce bias. 3586 */ 3587 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx, 3588 int needs_unthr) 3589 { 3590 struct perf_event *event; 3591 struct hw_perf_event *hwc; 3592 u64 now, period = TICK_NSEC; 3593 s64 delta; 3594 3595 /* 3596 * only need to iterate over all events iff: 3597 * - context have events in frequency mode (needs freq adjust) 3598 * - there are events to unthrottle on this cpu 3599 */ 3600 if (!(ctx->nr_freq || needs_unthr)) 3601 return; 3602 3603 raw_spin_lock(&ctx->lock); 3604 perf_pmu_disable(ctx->pmu); 3605 3606 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 3607 if (event->state != PERF_EVENT_STATE_ACTIVE) 3608 continue; 3609 3610 if (!event_filter_match(event)) 3611 continue; 3612 3613 perf_pmu_disable(event->pmu); 3614 3615 hwc = &event->hw; 3616 3617 if (hwc->interrupts == MAX_INTERRUPTS) { 3618 hwc->interrupts = 0; 3619 perf_log_throttle(event, 1); 3620 event->pmu->start(event, 0); 3621 } 3622 3623 if (!event->attr.freq || !event->attr.sample_freq) 3624 goto next; 3625 3626 /* 3627 * stop the event and update event->count 3628 */ 3629 event->pmu->stop(event, PERF_EF_UPDATE); 3630 3631 now = local64_read(&event->count); 3632 delta = now - hwc->freq_count_stamp; 3633 hwc->freq_count_stamp = now; 3634 3635 /* 3636 * restart the event 3637 * reload only if value has changed 3638 * we have stopped the event so tell that 3639 * to perf_adjust_period() to avoid stopping it 3640 * twice. 3641 */ 3642 if (delta > 0) 3643 perf_adjust_period(event, period, delta, false); 3644 3645 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 3646 next: 3647 perf_pmu_enable(event->pmu); 3648 } 3649 3650 perf_pmu_enable(ctx->pmu); 3651 raw_spin_unlock(&ctx->lock); 3652 } 3653 3654 /* 3655 * Move @event to the tail of the @ctx's elegible events. 3656 */ 3657 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event) 3658 { 3659 /* 3660 * Rotate the first entry last of non-pinned groups. Rotation might be 3661 * disabled by the inheritance code. 3662 */ 3663 if (ctx->rotate_disable) 3664 return; 3665 3666 perf_event_groups_delete(&ctx->flexible_groups, event); 3667 perf_event_groups_insert(&ctx->flexible_groups, event); 3668 } 3669 3670 static inline struct perf_event * 3671 ctx_first_active(struct perf_event_context *ctx) 3672 { 3673 return list_first_entry_or_null(&ctx->flexible_active, 3674 struct perf_event, active_list); 3675 } 3676 3677 static bool perf_rotate_context(struct perf_cpu_context *cpuctx) 3678 { 3679 struct perf_event *cpu_event = NULL, *task_event = NULL; 3680 bool cpu_rotate = false, task_rotate = false; 3681 struct perf_event_context *ctx = NULL; 3682 3683 /* 3684 * Since we run this from IRQ context, nobody can install new 3685 * events, thus the event count values are stable. 3686 */ 3687 3688 if (cpuctx->ctx.nr_events) { 3689 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active) 3690 cpu_rotate = true; 3691 } 3692 3693 ctx = cpuctx->task_ctx; 3694 if (ctx && ctx->nr_events) { 3695 if (ctx->nr_events != ctx->nr_active) 3696 task_rotate = true; 3697 } 3698 3699 if (!(cpu_rotate || task_rotate)) 3700 return false; 3701 3702 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3703 perf_pmu_disable(cpuctx->ctx.pmu); 3704 3705 if (task_rotate) 3706 task_event = ctx_first_active(ctx); 3707 if (cpu_rotate) 3708 cpu_event = ctx_first_active(&cpuctx->ctx); 3709 3710 /* 3711 * As per the order given at ctx_resched() first 'pop' task flexible 3712 * and then, if needed CPU flexible. 3713 */ 3714 if (task_event || (ctx && cpu_event)) 3715 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE); 3716 if (cpu_event) 3717 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3718 3719 if (task_event) 3720 rotate_ctx(ctx, task_event); 3721 if (cpu_event) 3722 rotate_ctx(&cpuctx->ctx, cpu_event); 3723 3724 perf_event_sched_in(cpuctx, ctx, current); 3725 3726 perf_pmu_enable(cpuctx->ctx.pmu); 3727 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3728 3729 return true; 3730 } 3731 3732 void perf_event_task_tick(void) 3733 { 3734 struct list_head *head = this_cpu_ptr(&active_ctx_list); 3735 struct perf_event_context *ctx, *tmp; 3736 int throttled; 3737 3738 lockdep_assert_irqs_disabled(); 3739 3740 __this_cpu_inc(perf_throttled_seq); 3741 throttled = __this_cpu_xchg(perf_throttled_count, 0); 3742 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 3743 3744 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list) 3745 perf_adjust_freq_unthr_context(ctx, throttled); 3746 } 3747 3748 static int event_enable_on_exec(struct perf_event *event, 3749 struct perf_event_context *ctx) 3750 { 3751 if (!event->attr.enable_on_exec) 3752 return 0; 3753 3754 event->attr.enable_on_exec = 0; 3755 if (event->state >= PERF_EVENT_STATE_INACTIVE) 3756 return 0; 3757 3758 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 3759 3760 return 1; 3761 } 3762 3763 /* 3764 * Enable all of a task's events that have been marked enable-on-exec. 3765 * This expects task == current. 3766 */ 3767 static void perf_event_enable_on_exec(int ctxn) 3768 { 3769 struct perf_event_context *ctx, *clone_ctx = NULL; 3770 enum event_type_t event_type = 0; 3771 struct perf_cpu_context *cpuctx; 3772 struct perf_event *event; 3773 unsigned long flags; 3774 int enabled = 0; 3775 3776 local_irq_save(flags); 3777 ctx = current->perf_event_ctxp[ctxn]; 3778 if (!ctx || !ctx->nr_events) 3779 goto out; 3780 3781 cpuctx = __get_cpu_context(ctx); 3782 perf_ctx_lock(cpuctx, ctx); 3783 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 3784 list_for_each_entry(event, &ctx->event_list, event_entry) { 3785 enabled |= event_enable_on_exec(event, ctx); 3786 event_type |= get_event_type(event); 3787 } 3788 3789 /* 3790 * Unclone and reschedule this context if we enabled any event. 3791 */ 3792 if (enabled) { 3793 clone_ctx = unclone_ctx(ctx); 3794 ctx_resched(cpuctx, ctx, event_type); 3795 } else { 3796 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 3797 } 3798 perf_ctx_unlock(cpuctx, ctx); 3799 3800 out: 3801 local_irq_restore(flags); 3802 3803 if (clone_ctx) 3804 put_ctx(clone_ctx); 3805 } 3806 3807 struct perf_read_data { 3808 struct perf_event *event; 3809 bool group; 3810 int ret; 3811 }; 3812 3813 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu) 3814 { 3815 u16 local_pkg, event_pkg; 3816 3817 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) { 3818 int local_cpu = smp_processor_id(); 3819 3820 event_pkg = topology_physical_package_id(event_cpu); 3821 local_pkg = topology_physical_package_id(local_cpu); 3822 3823 if (event_pkg == local_pkg) 3824 return local_cpu; 3825 } 3826 3827 return event_cpu; 3828 } 3829 3830 /* 3831 * Cross CPU call to read the hardware event 3832 */ 3833 static void __perf_event_read(void *info) 3834 { 3835 struct perf_read_data *data = info; 3836 struct perf_event *sub, *event = data->event; 3837 struct perf_event_context *ctx = event->ctx; 3838 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 3839 struct pmu *pmu = event->pmu; 3840 3841 /* 3842 * If this is a task context, we need to check whether it is 3843 * the current task context of this cpu. If not it has been 3844 * scheduled out before the smp call arrived. In that case 3845 * event->count would have been updated to a recent sample 3846 * when the event was scheduled out. 3847 */ 3848 if (ctx->task && cpuctx->task_ctx != ctx) 3849 return; 3850 3851 raw_spin_lock(&ctx->lock); 3852 if (ctx->is_active & EVENT_TIME) { 3853 update_context_time(ctx); 3854 update_cgrp_time_from_event(event); 3855 } 3856 3857 perf_event_update_time(event); 3858 if (data->group) 3859 perf_event_update_sibling_time(event); 3860 3861 if (event->state != PERF_EVENT_STATE_ACTIVE) 3862 goto unlock; 3863 3864 if (!data->group) { 3865 pmu->read(event); 3866 data->ret = 0; 3867 goto unlock; 3868 } 3869 3870 pmu->start_txn(pmu, PERF_PMU_TXN_READ); 3871 3872 pmu->read(event); 3873 3874 for_each_sibling_event(sub, event) { 3875 if (sub->state == PERF_EVENT_STATE_ACTIVE) { 3876 /* 3877 * Use sibling's PMU rather than @event's since 3878 * sibling could be on different (eg: software) PMU. 3879 */ 3880 sub->pmu->read(sub); 3881 } 3882 } 3883 3884 data->ret = pmu->commit_txn(pmu); 3885 3886 unlock: 3887 raw_spin_unlock(&ctx->lock); 3888 } 3889 3890 static inline u64 perf_event_count(struct perf_event *event) 3891 { 3892 return local64_read(&event->count) + atomic64_read(&event->child_count); 3893 } 3894 3895 /* 3896 * NMI-safe method to read a local event, that is an event that 3897 * is: 3898 * - either for the current task, or for this CPU 3899 * - does not have inherit set, for inherited task events 3900 * will not be local and we cannot read them atomically 3901 * - must not have a pmu::count method 3902 */ 3903 int perf_event_read_local(struct perf_event *event, u64 *value, 3904 u64 *enabled, u64 *running) 3905 { 3906 unsigned long flags; 3907 int ret = 0; 3908 3909 /* 3910 * Disabling interrupts avoids all counter scheduling (context 3911 * switches, timer based rotation and IPIs). 3912 */ 3913 local_irq_save(flags); 3914 3915 /* 3916 * It must not be an event with inherit set, we cannot read 3917 * all child counters from atomic context. 3918 */ 3919 if (event->attr.inherit) { 3920 ret = -EOPNOTSUPP; 3921 goto out; 3922 } 3923 3924 /* If this is a per-task event, it must be for current */ 3925 if ((event->attach_state & PERF_ATTACH_TASK) && 3926 event->hw.target != current) { 3927 ret = -EINVAL; 3928 goto out; 3929 } 3930 3931 /* If this is a per-CPU event, it must be for this CPU */ 3932 if (!(event->attach_state & PERF_ATTACH_TASK) && 3933 event->cpu != smp_processor_id()) { 3934 ret = -EINVAL; 3935 goto out; 3936 } 3937 3938 /* If this is a pinned event it must be running on this CPU */ 3939 if (event->attr.pinned && event->oncpu != smp_processor_id()) { 3940 ret = -EBUSY; 3941 goto out; 3942 } 3943 3944 /* 3945 * If the event is currently on this CPU, its either a per-task event, 3946 * or local to this CPU. Furthermore it means its ACTIVE (otherwise 3947 * oncpu == -1). 3948 */ 3949 if (event->oncpu == smp_processor_id()) 3950 event->pmu->read(event); 3951 3952 *value = local64_read(&event->count); 3953 if (enabled || running) { 3954 u64 now = event->shadow_ctx_time + perf_clock(); 3955 u64 __enabled, __running; 3956 3957 __perf_update_times(event, now, &__enabled, &__running); 3958 if (enabled) 3959 *enabled = __enabled; 3960 if (running) 3961 *running = __running; 3962 } 3963 out: 3964 local_irq_restore(flags); 3965 3966 return ret; 3967 } 3968 3969 static int perf_event_read(struct perf_event *event, bool group) 3970 { 3971 enum perf_event_state state = READ_ONCE(event->state); 3972 int event_cpu, ret = 0; 3973 3974 /* 3975 * If event is enabled and currently active on a CPU, update the 3976 * value in the event structure: 3977 */ 3978 again: 3979 if (state == PERF_EVENT_STATE_ACTIVE) { 3980 struct perf_read_data data; 3981 3982 /* 3983 * Orders the ->state and ->oncpu loads such that if we see 3984 * ACTIVE we must also see the right ->oncpu. 3985 * 3986 * Matches the smp_wmb() from event_sched_in(). 3987 */ 3988 smp_rmb(); 3989 3990 event_cpu = READ_ONCE(event->oncpu); 3991 if ((unsigned)event_cpu >= nr_cpu_ids) 3992 return 0; 3993 3994 data = (struct perf_read_data){ 3995 .event = event, 3996 .group = group, 3997 .ret = 0, 3998 }; 3999 4000 preempt_disable(); 4001 event_cpu = __perf_event_read_cpu(event, event_cpu); 4002 4003 /* 4004 * Purposely ignore the smp_call_function_single() return 4005 * value. 4006 * 4007 * If event_cpu isn't a valid CPU it means the event got 4008 * scheduled out and that will have updated the event count. 4009 * 4010 * Therefore, either way, we'll have an up-to-date event count 4011 * after this. 4012 */ 4013 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1); 4014 preempt_enable(); 4015 ret = data.ret; 4016 4017 } else if (state == PERF_EVENT_STATE_INACTIVE) { 4018 struct perf_event_context *ctx = event->ctx; 4019 unsigned long flags; 4020 4021 raw_spin_lock_irqsave(&ctx->lock, flags); 4022 state = event->state; 4023 if (state != PERF_EVENT_STATE_INACTIVE) { 4024 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4025 goto again; 4026 } 4027 4028 /* 4029 * May read while context is not active (e.g., thread is 4030 * blocked), in that case we cannot update context time 4031 */ 4032 if (ctx->is_active & EVENT_TIME) { 4033 update_context_time(ctx); 4034 update_cgrp_time_from_event(event); 4035 } 4036 4037 perf_event_update_time(event); 4038 if (group) 4039 perf_event_update_sibling_time(event); 4040 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4041 } 4042 4043 return ret; 4044 } 4045 4046 /* 4047 * Initialize the perf_event context in a task_struct: 4048 */ 4049 static void __perf_event_init_context(struct perf_event_context *ctx) 4050 { 4051 raw_spin_lock_init(&ctx->lock); 4052 mutex_init(&ctx->mutex); 4053 INIT_LIST_HEAD(&ctx->active_ctx_list); 4054 perf_event_groups_init(&ctx->pinned_groups); 4055 perf_event_groups_init(&ctx->flexible_groups); 4056 INIT_LIST_HEAD(&ctx->event_list); 4057 INIT_LIST_HEAD(&ctx->pinned_active); 4058 INIT_LIST_HEAD(&ctx->flexible_active); 4059 atomic_set(&ctx->refcount, 1); 4060 } 4061 4062 static struct perf_event_context * 4063 alloc_perf_context(struct pmu *pmu, struct task_struct *task) 4064 { 4065 struct perf_event_context *ctx; 4066 4067 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 4068 if (!ctx) 4069 return NULL; 4070 4071 __perf_event_init_context(ctx); 4072 if (task) { 4073 ctx->task = task; 4074 get_task_struct(task); 4075 } 4076 ctx->pmu = pmu; 4077 4078 return ctx; 4079 } 4080 4081 static struct task_struct * 4082 find_lively_task_by_vpid(pid_t vpid) 4083 { 4084 struct task_struct *task; 4085 4086 rcu_read_lock(); 4087 if (!vpid) 4088 task = current; 4089 else 4090 task = find_task_by_vpid(vpid); 4091 if (task) 4092 get_task_struct(task); 4093 rcu_read_unlock(); 4094 4095 if (!task) 4096 return ERR_PTR(-ESRCH); 4097 4098 return task; 4099 } 4100 4101 /* 4102 * Returns a matching context with refcount and pincount. 4103 */ 4104 static struct perf_event_context * 4105 find_get_context(struct pmu *pmu, struct task_struct *task, 4106 struct perf_event *event) 4107 { 4108 struct perf_event_context *ctx, *clone_ctx = NULL; 4109 struct perf_cpu_context *cpuctx; 4110 void *task_ctx_data = NULL; 4111 unsigned long flags; 4112 int ctxn, err; 4113 int cpu = event->cpu; 4114 4115 if (!task) { 4116 /* Must be root to operate on a CPU event: */ 4117 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) 4118 return ERR_PTR(-EACCES); 4119 4120 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 4121 ctx = &cpuctx->ctx; 4122 get_ctx(ctx); 4123 ++ctx->pin_count; 4124 4125 return ctx; 4126 } 4127 4128 err = -EINVAL; 4129 ctxn = pmu->task_ctx_nr; 4130 if (ctxn < 0) 4131 goto errout; 4132 4133 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 4134 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL); 4135 if (!task_ctx_data) { 4136 err = -ENOMEM; 4137 goto errout; 4138 } 4139 } 4140 4141 retry: 4142 ctx = perf_lock_task_context(task, ctxn, &flags); 4143 if (ctx) { 4144 clone_ctx = unclone_ctx(ctx); 4145 ++ctx->pin_count; 4146 4147 if (task_ctx_data && !ctx->task_ctx_data) { 4148 ctx->task_ctx_data = task_ctx_data; 4149 task_ctx_data = NULL; 4150 } 4151 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4152 4153 if (clone_ctx) 4154 put_ctx(clone_ctx); 4155 } else { 4156 ctx = alloc_perf_context(pmu, task); 4157 err = -ENOMEM; 4158 if (!ctx) 4159 goto errout; 4160 4161 if (task_ctx_data) { 4162 ctx->task_ctx_data = task_ctx_data; 4163 task_ctx_data = NULL; 4164 } 4165 4166 err = 0; 4167 mutex_lock(&task->perf_event_mutex); 4168 /* 4169 * If it has already passed perf_event_exit_task(). 4170 * we must see PF_EXITING, it takes this mutex too. 4171 */ 4172 if (task->flags & PF_EXITING) 4173 err = -ESRCH; 4174 else if (task->perf_event_ctxp[ctxn]) 4175 err = -EAGAIN; 4176 else { 4177 get_ctx(ctx); 4178 ++ctx->pin_count; 4179 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); 4180 } 4181 mutex_unlock(&task->perf_event_mutex); 4182 4183 if (unlikely(err)) { 4184 put_ctx(ctx); 4185 4186 if (err == -EAGAIN) 4187 goto retry; 4188 goto errout; 4189 } 4190 } 4191 4192 kfree(task_ctx_data); 4193 return ctx; 4194 4195 errout: 4196 kfree(task_ctx_data); 4197 return ERR_PTR(err); 4198 } 4199 4200 static void perf_event_free_filter(struct perf_event *event); 4201 static void perf_event_free_bpf_prog(struct perf_event *event); 4202 4203 static void free_event_rcu(struct rcu_head *head) 4204 { 4205 struct perf_event *event; 4206 4207 event = container_of(head, struct perf_event, rcu_head); 4208 if (event->ns) 4209 put_pid_ns(event->ns); 4210 perf_event_free_filter(event); 4211 kfree(event); 4212 } 4213 4214 static void ring_buffer_attach(struct perf_event *event, 4215 struct ring_buffer *rb); 4216 4217 static void detach_sb_event(struct perf_event *event) 4218 { 4219 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 4220 4221 raw_spin_lock(&pel->lock); 4222 list_del_rcu(&event->sb_list); 4223 raw_spin_unlock(&pel->lock); 4224 } 4225 4226 static bool is_sb_event(struct perf_event *event) 4227 { 4228 struct perf_event_attr *attr = &event->attr; 4229 4230 if (event->parent) 4231 return false; 4232 4233 if (event->attach_state & PERF_ATTACH_TASK) 4234 return false; 4235 4236 if (attr->mmap || attr->mmap_data || attr->mmap2 || 4237 attr->comm || attr->comm_exec || 4238 attr->task || 4239 attr->context_switch) 4240 return true; 4241 return false; 4242 } 4243 4244 static void unaccount_pmu_sb_event(struct perf_event *event) 4245 { 4246 if (is_sb_event(event)) 4247 detach_sb_event(event); 4248 } 4249 4250 static void unaccount_event_cpu(struct perf_event *event, int cpu) 4251 { 4252 if (event->parent) 4253 return; 4254 4255 if (is_cgroup_event(event)) 4256 atomic_dec(&per_cpu(perf_cgroup_events, cpu)); 4257 } 4258 4259 #ifdef CONFIG_NO_HZ_FULL 4260 static DEFINE_SPINLOCK(nr_freq_lock); 4261 #endif 4262 4263 static void unaccount_freq_event_nohz(void) 4264 { 4265 #ifdef CONFIG_NO_HZ_FULL 4266 spin_lock(&nr_freq_lock); 4267 if (atomic_dec_and_test(&nr_freq_events)) 4268 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS); 4269 spin_unlock(&nr_freq_lock); 4270 #endif 4271 } 4272 4273 static void unaccount_freq_event(void) 4274 { 4275 if (tick_nohz_full_enabled()) 4276 unaccount_freq_event_nohz(); 4277 else 4278 atomic_dec(&nr_freq_events); 4279 } 4280 4281 static void unaccount_event(struct perf_event *event) 4282 { 4283 bool dec = false; 4284 4285 if (event->parent) 4286 return; 4287 4288 if (event->attach_state & PERF_ATTACH_TASK) 4289 dec = true; 4290 if (event->attr.mmap || event->attr.mmap_data) 4291 atomic_dec(&nr_mmap_events); 4292 if (event->attr.comm) 4293 atomic_dec(&nr_comm_events); 4294 if (event->attr.namespaces) 4295 atomic_dec(&nr_namespaces_events); 4296 if (event->attr.task) 4297 atomic_dec(&nr_task_events); 4298 if (event->attr.freq) 4299 unaccount_freq_event(); 4300 if (event->attr.context_switch) { 4301 dec = true; 4302 atomic_dec(&nr_switch_events); 4303 } 4304 if (is_cgroup_event(event)) 4305 dec = true; 4306 if (has_branch_stack(event)) 4307 dec = true; 4308 4309 if (dec) { 4310 if (!atomic_add_unless(&perf_sched_count, -1, 1)) 4311 schedule_delayed_work(&perf_sched_work, HZ); 4312 } 4313 4314 unaccount_event_cpu(event, event->cpu); 4315 4316 unaccount_pmu_sb_event(event); 4317 } 4318 4319 static void perf_sched_delayed(struct work_struct *work) 4320 { 4321 mutex_lock(&perf_sched_mutex); 4322 if (atomic_dec_and_test(&perf_sched_count)) 4323 static_branch_disable(&perf_sched_events); 4324 mutex_unlock(&perf_sched_mutex); 4325 } 4326 4327 /* 4328 * The following implement mutual exclusion of events on "exclusive" pmus 4329 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 4330 * at a time, so we disallow creating events that might conflict, namely: 4331 * 4332 * 1) cpu-wide events in the presence of per-task events, 4333 * 2) per-task events in the presence of cpu-wide events, 4334 * 3) two matching events on the same context. 4335 * 4336 * The former two cases are handled in the allocation path (perf_event_alloc(), 4337 * _free_event()), the latter -- before the first perf_install_in_context(). 4338 */ 4339 static int exclusive_event_init(struct perf_event *event) 4340 { 4341 struct pmu *pmu = event->pmu; 4342 4343 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 4344 return 0; 4345 4346 /* 4347 * Prevent co-existence of per-task and cpu-wide events on the 4348 * same exclusive pmu. 4349 * 4350 * Negative pmu::exclusive_cnt means there are cpu-wide 4351 * events on this "exclusive" pmu, positive means there are 4352 * per-task events. 4353 * 4354 * Since this is called in perf_event_alloc() path, event::ctx 4355 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 4356 * to mean "per-task event", because unlike other attach states it 4357 * never gets cleared. 4358 */ 4359 if (event->attach_state & PERF_ATTACH_TASK) { 4360 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 4361 return -EBUSY; 4362 } else { 4363 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 4364 return -EBUSY; 4365 } 4366 4367 return 0; 4368 } 4369 4370 static void exclusive_event_destroy(struct perf_event *event) 4371 { 4372 struct pmu *pmu = event->pmu; 4373 4374 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 4375 return; 4376 4377 /* see comment in exclusive_event_init() */ 4378 if (event->attach_state & PERF_ATTACH_TASK) 4379 atomic_dec(&pmu->exclusive_cnt); 4380 else 4381 atomic_inc(&pmu->exclusive_cnt); 4382 } 4383 4384 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 4385 { 4386 if ((e1->pmu == e2->pmu) && 4387 (e1->cpu == e2->cpu || 4388 e1->cpu == -1 || 4389 e2->cpu == -1)) 4390 return true; 4391 return false; 4392 } 4393 4394 /* Called under the same ctx::mutex as perf_install_in_context() */ 4395 static bool exclusive_event_installable(struct perf_event *event, 4396 struct perf_event_context *ctx) 4397 { 4398 struct perf_event *iter_event; 4399 struct pmu *pmu = event->pmu; 4400 4401 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 4402 return true; 4403 4404 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 4405 if (exclusive_event_match(iter_event, event)) 4406 return false; 4407 } 4408 4409 return true; 4410 } 4411 4412 static void perf_addr_filters_splice(struct perf_event *event, 4413 struct list_head *head); 4414 4415 static void _free_event(struct perf_event *event) 4416 { 4417 irq_work_sync(&event->pending); 4418 4419 unaccount_event(event); 4420 4421 if (event->rb) { 4422 /* 4423 * Can happen when we close an event with re-directed output. 4424 * 4425 * Since we have a 0 refcount, perf_mmap_close() will skip 4426 * over us; possibly making our ring_buffer_put() the last. 4427 */ 4428 mutex_lock(&event->mmap_mutex); 4429 ring_buffer_attach(event, NULL); 4430 mutex_unlock(&event->mmap_mutex); 4431 } 4432 4433 if (is_cgroup_event(event)) 4434 perf_detach_cgroup(event); 4435 4436 if (!event->parent) { 4437 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 4438 put_callchain_buffers(); 4439 } 4440 4441 perf_event_free_bpf_prog(event); 4442 perf_addr_filters_splice(event, NULL); 4443 kfree(event->addr_filters_offs); 4444 4445 if (event->destroy) 4446 event->destroy(event); 4447 4448 if (event->ctx) 4449 put_ctx(event->ctx); 4450 4451 if (event->hw.target) 4452 put_task_struct(event->hw.target); 4453 4454 exclusive_event_destroy(event); 4455 module_put(event->pmu->module); 4456 4457 call_rcu(&event->rcu_head, free_event_rcu); 4458 } 4459 4460 /* 4461 * Used to free events which have a known refcount of 1, such as in error paths 4462 * where the event isn't exposed yet and inherited events. 4463 */ 4464 static void free_event(struct perf_event *event) 4465 { 4466 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 4467 "unexpected event refcount: %ld; ptr=%p\n", 4468 atomic_long_read(&event->refcount), event)) { 4469 /* leak to avoid use-after-free */ 4470 return; 4471 } 4472 4473 _free_event(event); 4474 } 4475 4476 /* 4477 * Remove user event from the owner task. 4478 */ 4479 static void perf_remove_from_owner(struct perf_event *event) 4480 { 4481 struct task_struct *owner; 4482 4483 rcu_read_lock(); 4484 /* 4485 * Matches the smp_store_release() in perf_event_exit_task(). If we 4486 * observe !owner it means the list deletion is complete and we can 4487 * indeed free this event, otherwise we need to serialize on 4488 * owner->perf_event_mutex. 4489 */ 4490 owner = READ_ONCE(event->owner); 4491 if (owner) { 4492 /* 4493 * Since delayed_put_task_struct() also drops the last 4494 * task reference we can safely take a new reference 4495 * while holding the rcu_read_lock(). 4496 */ 4497 get_task_struct(owner); 4498 } 4499 rcu_read_unlock(); 4500 4501 if (owner) { 4502 /* 4503 * If we're here through perf_event_exit_task() we're already 4504 * holding ctx->mutex which would be an inversion wrt. the 4505 * normal lock order. 4506 * 4507 * However we can safely take this lock because its the child 4508 * ctx->mutex. 4509 */ 4510 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 4511 4512 /* 4513 * We have to re-check the event->owner field, if it is cleared 4514 * we raced with perf_event_exit_task(), acquiring the mutex 4515 * ensured they're done, and we can proceed with freeing the 4516 * event. 4517 */ 4518 if (event->owner) { 4519 list_del_init(&event->owner_entry); 4520 smp_store_release(&event->owner, NULL); 4521 } 4522 mutex_unlock(&owner->perf_event_mutex); 4523 put_task_struct(owner); 4524 } 4525 } 4526 4527 static void put_event(struct perf_event *event) 4528 { 4529 if (!atomic_long_dec_and_test(&event->refcount)) 4530 return; 4531 4532 _free_event(event); 4533 } 4534 4535 /* 4536 * Kill an event dead; while event:refcount will preserve the event 4537 * object, it will not preserve its functionality. Once the last 'user' 4538 * gives up the object, we'll destroy the thing. 4539 */ 4540 int perf_event_release_kernel(struct perf_event *event) 4541 { 4542 struct perf_event_context *ctx = event->ctx; 4543 struct perf_event *child, *tmp; 4544 LIST_HEAD(free_list); 4545 4546 /* 4547 * If we got here through err_file: fput(event_file); we will not have 4548 * attached to a context yet. 4549 */ 4550 if (!ctx) { 4551 WARN_ON_ONCE(event->attach_state & 4552 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP)); 4553 goto no_ctx; 4554 } 4555 4556 if (!is_kernel_event(event)) 4557 perf_remove_from_owner(event); 4558 4559 ctx = perf_event_ctx_lock(event); 4560 WARN_ON_ONCE(ctx->parent_ctx); 4561 perf_remove_from_context(event, DETACH_GROUP); 4562 4563 raw_spin_lock_irq(&ctx->lock); 4564 /* 4565 * Mark this event as STATE_DEAD, there is no external reference to it 4566 * anymore. 4567 * 4568 * Anybody acquiring event->child_mutex after the below loop _must_ 4569 * also see this, most importantly inherit_event() which will avoid 4570 * placing more children on the list. 4571 * 4572 * Thus this guarantees that we will in fact observe and kill _ALL_ 4573 * child events. 4574 */ 4575 event->state = PERF_EVENT_STATE_DEAD; 4576 raw_spin_unlock_irq(&ctx->lock); 4577 4578 perf_event_ctx_unlock(event, ctx); 4579 4580 again: 4581 mutex_lock(&event->child_mutex); 4582 list_for_each_entry(child, &event->child_list, child_list) { 4583 4584 /* 4585 * Cannot change, child events are not migrated, see the 4586 * comment with perf_event_ctx_lock_nested(). 4587 */ 4588 ctx = READ_ONCE(child->ctx); 4589 /* 4590 * Since child_mutex nests inside ctx::mutex, we must jump 4591 * through hoops. We start by grabbing a reference on the ctx. 4592 * 4593 * Since the event cannot get freed while we hold the 4594 * child_mutex, the context must also exist and have a !0 4595 * reference count. 4596 */ 4597 get_ctx(ctx); 4598 4599 /* 4600 * Now that we have a ctx ref, we can drop child_mutex, and 4601 * acquire ctx::mutex without fear of it going away. Then we 4602 * can re-acquire child_mutex. 4603 */ 4604 mutex_unlock(&event->child_mutex); 4605 mutex_lock(&ctx->mutex); 4606 mutex_lock(&event->child_mutex); 4607 4608 /* 4609 * Now that we hold ctx::mutex and child_mutex, revalidate our 4610 * state, if child is still the first entry, it didn't get freed 4611 * and we can continue doing so. 4612 */ 4613 tmp = list_first_entry_or_null(&event->child_list, 4614 struct perf_event, child_list); 4615 if (tmp == child) { 4616 perf_remove_from_context(child, DETACH_GROUP); 4617 list_move(&child->child_list, &free_list); 4618 /* 4619 * This matches the refcount bump in inherit_event(); 4620 * this can't be the last reference. 4621 */ 4622 put_event(event); 4623 } 4624 4625 mutex_unlock(&event->child_mutex); 4626 mutex_unlock(&ctx->mutex); 4627 put_ctx(ctx); 4628 goto again; 4629 } 4630 mutex_unlock(&event->child_mutex); 4631 4632 list_for_each_entry_safe(child, tmp, &free_list, child_list) { 4633 list_del(&child->child_list); 4634 free_event(child); 4635 } 4636 4637 no_ctx: 4638 put_event(event); /* Must be the 'last' reference */ 4639 return 0; 4640 } 4641 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 4642 4643 /* 4644 * Called when the last reference to the file is gone. 4645 */ 4646 static int perf_release(struct inode *inode, struct file *file) 4647 { 4648 perf_event_release_kernel(file->private_data); 4649 return 0; 4650 } 4651 4652 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 4653 { 4654 struct perf_event *child; 4655 u64 total = 0; 4656 4657 *enabled = 0; 4658 *running = 0; 4659 4660 mutex_lock(&event->child_mutex); 4661 4662 (void)perf_event_read(event, false); 4663 total += perf_event_count(event); 4664 4665 *enabled += event->total_time_enabled + 4666 atomic64_read(&event->child_total_time_enabled); 4667 *running += event->total_time_running + 4668 atomic64_read(&event->child_total_time_running); 4669 4670 list_for_each_entry(child, &event->child_list, child_list) { 4671 (void)perf_event_read(child, false); 4672 total += perf_event_count(child); 4673 *enabled += child->total_time_enabled; 4674 *running += child->total_time_running; 4675 } 4676 mutex_unlock(&event->child_mutex); 4677 4678 return total; 4679 } 4680 4681 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 4682 { 4683 struct perf_event_context *ctx; 4684 u64 count; 4685 4686 ctx = perf_event_ctx_lock(event); 4687 count = __perf_event_read_value(event, enabled, running); 4688 perf_event_ctx_unlock(event, ctx); 4689 4690 return count; 4691 } 4692 EXPORT_SYMBOL_GPL(perf_event_read_value); 4693 4694 static int __perf_read_group_add(struct perf_event *leader, 4695 u64 read_format, u64 *values) 4696 { 4697 struct perf_event_context *ctx = leader->ctx; 4698 struct perf_event *sub; 4699 unsigned long flags; 4700 int n = 1; /* skip @nr */ 4701 int ret; 4702 4703 ret = perf_event_read(leader, true); 4704 if (ret) 4705 return ret; 4706 4707 raw_spin_lock_irqsave(&ctx->lock, flags); 4708 4709 /* 4710 * Since we co-schedule groups, {enabled,running} times of siblings 4711 * will be identical to those of the leader, so we only publish one 4712 * set. 4713 */ 4714 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 4715 values[n++] += leader->total_time_enabled + 4716 atomic64_read(&leader->child_total_time_enabled); 4717 } 4718 4719 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 4720 values[n++] += leader->total_time_running + 4721 atomic64_read(&leader->child_total_time_running); 4722 } 4723 4724 /* 4725 * Write {count,id} tuples for every sibling. 4726 */ 4727 values[n++] += perf_event_count(leader); 4728 if (read_format & PERF_FORMAT_ID) 4729 values[n++] = primary_event_id(leader); 4730 4731 for_each_sibling_event(sub, leader) { 4732 values[n++] += perf_event_count(sub); 4733 if (read_format & PERF_FORMAT_ID) 4734 values[n++] = primary_event_id(sub); 4735 } 4736 4737 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4738 return 0; 4739 } 4740 4741 static int perf_read_group(struct perf_event *event, 4742 u64 read_format, char __user *buf) 4743 { 4744 struct perf_event *leader = event->group_leader, *child; 4745 struct perf_event_context *ctx = leader->ctx; 4746 int ret; 4747 u64 *values; 4748 4749 lockdep_assert_held(&ctx->mutex); 4750 4751 values = kzalloc(event->read_size, GFP_KERNEL); 4752 if (!values) 4753 return -ENOMEM; 4754 4755 values[0] = 1 + leader->nr_siblings; 4756 4757 /* 4758 * By locking the child_mutex of the leader we effectively 4759 * lock the child list of all siblings.. XXX explain how. 4760 */ 4761 mutex_lock(&leader->child_mutex); 4762 4763 ret = __perf_read_group_add(leader, read_format, values); 4764 if (ret) 4765 goto unlock; 4766 4767 list_for_each_entry(child, &leader->child_list, child_list) { 4768 ret = __perf_read_group_add(child, read_format, values); 4769 if (ret) 4770 goto unlock; 4771 } 4772 4773 mutex_unlock(&leader->child_mutex); 4774 4775 ret = event->read_size; 4776 if (copy_to_user(buf, values, event->read_size)) 4777 ret = -EFAULT; 4778 goto out; 4779 4780 unlock: 4781 mutex_unlock(&leader->child_mutex); 4782 out: 4783 kfree(values); 4784 return ret; 4785 } 4786 4787 static int perf_read_one(struct perf_event *event, 4788 u64 read_format, char __user *buf) 4789 { 4790 u64 enabled, running; 4791 u64 values[4]; 4792 int n = 0; 4793 4794 values[n++] = __perf_event_read_value(event, &enabled, &running); 4795 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 4796 values[n++] = enabled; 4797 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 4798 values[n++] = running; 4799 if (read_format & PERF_FORMAT_ID) 4800 values[n++] = primary_event_id(event); 4801 4802 if (copy_to_user(buf, values, n * sizeof(u64))) 4803 return -EFAULT; 4804 4805 return n * sizeof(u64); 4806 } 4807 4808 static bool is_event_hup(struct perf_event *event) 4809 { 4810 bool no_children; 4811 4812 if (event->state > PERF_EVENT_STATE_EXIT) 4813 return false; 4814 4815 mutex_lock(&event->child_mutex); 4816 no_children = list_empty(&event->child_list); 4817 mutex_unlock(&event->child_mutex); 4818 return no_children; 4819 } 4820 4821 /* 4822 * Read the performance event - simple non blocking version for now 4823 */ 4824 static ssize_t 4825 __perf_read(struct perf_event *event, char __user *buf, size_t count) 4826 { 4827 u64 read_format = event->attr.read_format; 4828 int ret; 4829 4830 /* 4831 * Return end-of-file for a read on an event that is in 4832 * error state (i.e. because it was pinned but it couldn't be 4833 * scheduled on to the CPU at some point). 4834 */ 4835 if (event->state == PERF_EVENT_STATE_ERROR) 4836 return 0; 4837 4838 if (count < event->read_size) 4839 return -ENOSPC; 4840 4841 WARN_ON_ONCE(event->ctx->parent_ctx); 4842 if (read_format & PERF_FORMAT_GROUP) 4843 ret = perf_read_group(event, read_format, buf); 4844 else 4845 ret = perf_read_one(event, read_format, buf); 4846 4847 return ret; 4848 } 4849 4850 static ssize_t 4851 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 4852 { 4853 struct perf_event *event = file->private_data; 4854 struct perf_event_context *ctx; 4855 int ret; 4856 4857 ctx = perf_event_ctx_lock(event); 4858 ret = __perf_read(event, buf, count); 4859 perf_event_ctx_unlock(event, ctx); 4860 4861 return ret; 4862 } 4863 4864 static __poll_t perf_poll(struct file *file, poll_table *wait) 4865 { 4866 struct perf_event *event = file->private_data; 4867 struct ring_buffer *rb; 4868 __poll_t events = EPOLLHUP; 4869 4870 poll_wait(file, &event->waitq, wait); 4871 4872 if (is_event_hup(event)) 4873 return events; 4874 4875 /* 4876 * Pin the event->rb by taking event->mmap_mutex; otherwise 4877 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 4878 */ 4879 mutex_lock(&event->mmap_mutex); 4880 rb = event->rb; 4881 if (rb) 4882 events = atomic_xchg(&rb->poll, 0); 4883 mutex_unlock(&event->mmap_mutex); 4884 return events; 4885 } 4886 4887 static void _perf_event_reset(struct perf_event *event) 4888 { 4889 (void)perf_event_read(event, false); 4890 local64_set(&event->count, 0); 4891 perf_event_update_userpage(event); 4892 } 4893 4894 /* 4895 * Holding the top-level event's child_mutex means that any 4896 * descendant process that has inherited this event will block 4897 * in perf_event_exit_event() if it goes to exit, thus satisfying the 4898 * task existence requirements of perf_event_enable/disable. 4899 */ 4900 static void perf_event_for_each_child(struct perf_event *event, 4901 void (*func)(struct perf_event *)) 4902 { 4903 struct perf_event *child; 4904 4905 WARN_ON_ONCE(event->ctx->parent_ctx); 4906 4907 mutex_lock(&event->child_mutex); 4908 func(event); 4909 list_for_each_entry(child, &event->child_list, child_list) 4910 func(child); 4911 mutex_unlock(&event->child_mutex); 4912 } 4913 4914 static void perf_event_for_each(struct perf_event *event, 4915 void (*func)(struct perf_event *)) 4916 { 4917 struct perf_event_context *ctx = event->ctx; 4918 struct perf_event *sibling; 4919 4920 lockdep_assert_held(&ctx->mutex); 4921 4922 event = event->group_leader; 4923 4924 perf_event_for_each_child(event, func); 4925 for_each_sibling_event(sibling, event) 4926 perf_event_for_each_child(sibling, func); 4927 } 4928 4929 static void __perf_event_period(struct perf_event *event, 4930 struct perf_cpu_context *cpuctx, 4931 struct perf_event_context *ctx, 4932 void *info) 4933 { 4934 u64 value = *((u64 *)info); 4935 bool active; 4936 4937 if (event->attr.freq) { 4938 event->attr.sample_freq = value; 4939 } else { 4940 event->attr.sample_period = value; 4941 event->hw.sample_period = value; 4942 } 4943 4944 active = (event->state == PERF_EVENT_STATE_ACTIVE); 4945 if (active) { 4946 perf_pmu_disable(ctx->pmu); 4947 /* 4948 * We could be throttled; unthrottle now to avoid the tick 4949 * trying to unthrottle while we already re-started the event. 4950 */ 4951 if (event->hw.interrupts == MAX_INTERRUPTS) { 4952 event->hw.interrupts = 0; 4953 perf_log_throttle(event, 1); 4954 } 4955 event->pmu->stop(event, PERF_EF_UPDATE); 4956 } 4957 4958 local64_set(&event->hw.period_left, 0); 4959 4960 if (active) { 4961 event->pmu->start(event, PERF_EF_RELOAD); 4962 perf_pmu_enable(ctx->pmu); 4963 } 4964 } 4965 4966 static int perf_event_period(struct perf_event *event, u64 __user *arg) 4967 { 4968 u64 value; 4969 4970 if (!is_sampling_event(event)) 4971 return -EINVAL; 4972 4973 if (copy_from_user(&value, arg, sizeof(value))) 4974 return -EFAULT; 4975 4976 if (!value) 4977 return -EINVAL; 4978 4979 if (event->attr.freq && value > sysctl_perf_event_sample_rate) 4980 return -EINVAL; 4981 4982 event_function_call(event, __perf_event_period, &value); 4983 4984 return 0; 4985 } 4986 4987 static const struct file_operations perf_fops; 4988 4989 static inline int perf_fget_light(int fd, struct fd *p) 4990 { 4991 struct fd f = fdget(fd); 4992 if (!f.file) 4993 return -EBADF; 4994 4995 if (f.file->f_op != &perf_fops) { 4996 fdput(f); 4997 return -EBADF; 4998 } 4999 *p = f; 5000 return 0; 5001 } 5002 5003 static int perf_event_set_output(struct perf_event *event, 5004 struct perf_event *output_event); 5005 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 5006 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd); 5007 static int perf_copy_attr(struct perf_event_attr __user *uattr, 5008 struct perf_event_attr *attr); 5009 5010 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 5011 { 5012 void (*func)(struct perf_event *); 5013 u32 flags = arg; 5014 5015 switch (cmd) { 5016 case PERF_EVENT_IOC_ENABLE: 5017 func = _perf_event_enable; 5018 break; 5019 case PERF_EVENT_IOC_DISABLE: 5020 func = _perf_event_disable; 5021 break; 5022 case PERF_EVENT_IOC_RESET: 5023 func = _perf_event_reset; 5024 break; 5025 5026 case PERF_EVENT_IOC_REFRESH: 5027 return _perf_event_refresh(event, arg); 5028 5029 case PERF_EVENT_IOC_PERIOD: 5030 return perf_event_period(event, (u64 __user *)arg); 5031 5032 case PERF_EVENT_IOC_ID: 5033 { 5034 u64 id = primary_event_id(event); 5035 5036 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 5037 return -EFAULT; 5038 return 0; 5039 } 5040 5041 case PERF_EVENT_IOC_SET_OUTPUT: 5042 { 5043 int ret; 5044 if (arg != -1) { 5045 struct perf_event *output_event; 5046 struct fd output; 5047 ret = perf_fget_light(arg, &output); 5048 if (ret) 5049 return ret; 5050 output_event = output.file->private_data; 5051 ret = perf_event_set_output(event, output_event); 5052 fdput(output); 5053 } else { 5054 ret = perf_event_set_output(event, NULL); 5055 } 5056 return ret; 5057 } 5058 5059 case PERF_EVENT_IOC_SET_FILTER: 5060 return perf_event_set_filter(event, (void __user *)arg); 5061 5062 case PERF_EVENT_IOC_SET_BPF: 5063 return perf_event_set_bpf_prog(event, arg); 5064 5065 case PERF_EVENT_IOC_PAUSE_OUTPUT: { 5066 struct ring_buffer *rb; 5067 5068 rcu_read_lock(); 5069 rb = rcu_dereference(event->rb); 5070 if (!rb || !rb->nr_pages) { 5071 rcu_read_unlock(); 5072 return -EINVAL; 5073 } 5074 rb_toggle_paused(rb, !!arg); 5075 rcu_read_unlock(); 5076 return 0; 5077 } 5078 5079 case PERF_EVENT_IOC_QUERY_BPF: 5080 return perf_event_query_prog_array(event, (void __user *)arg); 5081 5082 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: { 5083 struct perf_event_attr new_attr; 5084 int err = perf_copy_attr((struct perf_event_attr __user *)arg, 5085 &new_attr); 5086 5087 if (err) 5088 return err; 5089 5090 return perf_event_modify_attr(event, &new_attr); 5091 } 5092 default: 5093 return -ENOTTY; 5094 } 5095 5096 if (flags & PERF_IOC_FLAG_GROUP) 5097 perf_event_for_each(event, func); 5098 else 5099 perf_event_for_each_child(event, func); 5100 5101 return 0; 5102 } 5103 5104 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5105 { 5106 struct perf_event *event = file->private_data; 5107 struct perf_event_context *ctx; 5108 long ret; 5109 5110 ctx = perf_event_ctx_lock(event); 5111 ret = _perf_ioctl(event, cmd, arg); 5112 perf_event_ctx_unlock(event, ctx); 5113 5114 return ret; 5115 } 5116 5117 #ifdef CONFIG_COMPAT 5118 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 5119 unsigned long arg) 5120 { 5121 switch (_IOC_NR(cmd)) { 5122 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 5123 case _IOC_NR(PERF_EVENT_IOC_ID): 5124 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF): 5125 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES): 5126 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 5127 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 5128 cmd &= ~IOCSIZE_MASK; 5129 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 5130 } 5131 break; 5132 } 5133 return perf_ioctl(file, cmd, arg); 5134 } 5135 #else 5136 # define perf_compat_ioctl NULL 5137 #endif 5138 5139 int perf_event_task_enable(void) 5140 { 5141 struct perf_event_context *ctx; 5142 struct perf_event *event; 5143 5144 mutex_lock(¤t->perf_event_mutex); 5145 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 5146 ctx = perf_event_ctx_lock(event); 5147 perf_event_for_each_child(event, _perf_event_enable); 5148 perf_event_ctx_unlock(event, ctx); 5149 } 5150 mutex_unlock(¤t->perf_event_mutex); 5151 5152 return 0; 5153 } 5154 5155 int perf_event_task_disable(void) 5156 { 5157 struct perf_event_context *ctx; 5158 struct perf_event *event; 5159 5160 mutex_lock(¤t->perf_event_mutex); 5161 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 5162 ctx = perf_event_ctx_lock(event); 5163 perf_event_for_each_child(event, _perf_event_disable); 5164 perf_event_ctx_unlock(event, ctx); 5165 } 5166 mutex_unlock(¤t->perf_event_mutex); 5167 5168 return 0; 5169 } 5170 5171 static int perf_event_index(struct perf_event *event) 5172 { 5173 if (event->hw.state & PERF_HES_STOPPED) 5174 return 0; 5175 5176 if (event->state != PERF_EVENT_STATE_ACTIVE) 5177 return 0; 5178 5179 return event->pmu->event_idx(event); 5180 } 5181 5182 static void calc_timer_values(struct perf_event *event, 5183 u64 *now, 5184 u64 *enabled, 5185 u64 *running) 5186 { 5187 u64 ctx_time; 5188 5189 *now = perf_clock(); 5190 ctx_time = event->shadow_ctx_time + *now; 5191 __perf_update_times(event, ctx_time, enabled, running); 5192 } 5193 5194 static void perf_event_init_userpage(struct perf_event *event) 5195 { 5196 struct perf_event_mmap_page *userpg; 5197 struct ring_buffer *rb; 5198 5199 rcu_read_lock(); 5200 rb = rcu_dereference(event->rb); 5201 if (!rb) 5202 goto unlock; 5203 5204 userpg = rb->user_page; 5205 5206 /* Allow new userspace to detect that bit 0 is deprecated */ 5207 userpg->cap_bit0_is_deprecated = 1; 5208 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 5209 userpg->data_offset = PAGE_SIZE; 5210 userpg->data_size = perf_data_size(rb); 5211 5212 unlock: 5213 rcu_read_unlock(); 5214 } 5215 5216 void __weak arch_perf_update_userpage( 5217 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 5218 { 5219 } 5220 5221 /* 5222 * Callers need to ensure there can be no nesting of this function, otherwise 5223 * the seqlock logic goes bad. We can not serialize this because the arch 5224 * code calls this from NMI context. 5225 */ 5226 void perf_event_update_userpage(struct perf_event *event) 5227 { 5228 struct perf_event_mmap_page *userpg; 5229 struct ring_buffer *rb; 5230 u64 enabled, running, now; 5231 5232 rcu_read_lock(); 5233 rb = rcu_dereference(event->rb); 5234 if (!rb) 5235 goto unlock; 5236 5237 /* 5238 * compute total_time_enabled, total_time_running 5239 * based on snapshot values taken when the event 5240 * was last scheduled in. 5241 * 5242 * we cannot simply called update_context_time() 5243 * because of locking issue as we can be called in 5244 * NMI context 5245 */ 5246 calc_timer_values(event, &now, &enabled, &running); 5247 5248 userpg = rb->user_page; 5249 /* 5250 * Disable preemption to guarantee consistent time stamps are stored to 5251 * the user page. 5252 */ 5253 preempt_disable(); 5254 ++userpg->lock; 5255 barrier(); 5256 userpg->index = perf_event_index(event); 5257 userpg->offset = perf_event_count(event); 5258 if (userpg->index) 5259 userpg->offset -= local64_read(&event->hw.prev_count); 5260 5261 userpg->time_enabled = enabled + 5262 atomic64_read(&event->child_total_time_enabled); 5263 5264 userpg->time_running = running + 5265 atomic64_read(&event->child_total_time_running); 5266 5267 arch_perf_update_userpage(event, userpg, now); 5268 5269 barrier(); 5270 ++userpg->lock; 5271 preempt_enable(); 5272 unlock: 5273 rcu_read_unlock(); 5274 } 5275 EXPORT_SYMBOL_GPL(perf_event_update_userpage); 5276 5277 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf) 5278 { 5279 struct perf_event *event = vmf->vma->vm_file->private_data; 5280 struct ring_buffer *rb; 5281 vm_fault_t ret = VM_FAULT_SIGBUS; 5282 5283 if (vmf->flags & FAULT_FLAG_MKWRITE) { 5284 if (vmf->pgoff == 0) 5285 ret = 0; 5286 return ret; 5287 } 5288 5289 rcu_read_lock(); 5290 rb = rcu_dereference(event->rb); 5291 if (!rb) 5292 goto unlock; 5293 5294 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 5295 goto unlock; 5296 5297 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 5298 if (!vmf->page) 5299 goto unlock; 5300 5301 get_page(vmf->page); 5302 vmf->page->mapping = vmf->vma->vm_file->f_mapping; 5303 vmf->page->index = vmf->pgoff; 5304 5305 ret = 0; 5306 unlock: 5307 rcu_read_unlock(); 5308 5309 return ret; 5310 } 5311 5312 static void ring_buffer_attach(struct perf_event *event, 5313 struct ring_buffer *rb) 5314 { 5315 struct ring_buffer *old_rb = NULL; 5316 unsigned long flags; 5317 5318 if (event->rb) { 5319 /* 5320 * Should be impossible, we set this when removing 5321 * event->rb_entry and wait/clear when adding event->rb_entry. 5322 */ 5323 WARN_ON_ONCE(event->rcu_pending); 5324 5325 old_rb = event->rb; 5326 spin_lock_irqsave(&old_rb->event_lock, flags); 5327 list_del_rcu(&event->rb_entry); 5328 spin_unlock_irqrestore(&old_rb->event_lock, flags); 5329 5330 event->rcu_batches = get_state_synchronize_rcu(); 5331 event->rcu_pending = 1; 5332 } 5333 5334 if (rb) { 5335 if (event->rcu_pending) { 5336 cond_synchronize_rcu(event->rcu_batches); 5337 event->rcu_pending = 0; 5338 } 5339 5340 spin_lock_irqsave(&rb->event_lock, flags); 5341 list_add_rcu(&event->rb_entry, &rb->event_list); 5342 spin_unlock_irqrestore(&rb->event_lock, flags); 5343 } 5344 5345 /* 5346 * Avoid racing with perf_mmap_close(AUX): stop the event 5347 * before swizzling the event::rb pointer; if it's getting 5348 * unmapped, its aux_mmap_count will be 0 and it won't 5349 * restart. See the comment in __perf_pmu_output_stop(). 5350 * 5351 * Data will inevitably be lost when set_output is done in 5352 * mid-air, but then again, whoever does it like this is 5353 * not in for the data anyway. 5354 */ 5355 if (has_aux(event)) 5356 perf_event_stop(event, 0); 5357 5358 rcu_assign_pointer(event->rb, rb); 5359 5360 if (old_rb) { 5361 ring_buffer_put(old_rb); 5362 /* 5363 * Since we detached before setting the new rb, so that we 5364 * could attach the new rb, we could have missed a wakeup. 5365 * Provide it now. 5366 */ 5367 wake_up_all(&event->waitq); 5368 } 5369 } 5370 5371 static void ring_buffer_wakeup(struct perf_event *event) 5372 { 5373 struct ring_buffer *rb; 5374 5375 rcu_read_lock(); 5376 rb = rcu_dereference(event->rb); 5377 if (rb) { 5378 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 5379 wake_up_all(&event->waitq); 5380 } 5381 rcu_read_unlock(); 5382 } 5383 5384 struct ring_buffer *ring_buffer_get(struct perf_event *event) 5385 { 5386 struct ring_buffer *rb; 5387 5388 rcu_read_lock(); 5389 rb = rcu_dereference(event->rb); 5390 if (rb) { 5391 if (!atomic_inc_not_zero(&rb->refcount)) 5392 rb = NULL; 5393 } 5394 rcu_read_unlock(); 5395 5396 return rb; 5397 } 5398 5399 void ring_buffer_put(struct ring_buffer *rb) 5400 { 5401 if (!atomic_dec_and_test(&rb->refcount)) 5402 return; 5403 5404 WARN_ON_ONCE(!list_empty(&rb->event_list)); 5405 5406 call_rcu(&rb->rcu_head, rb_free_rcu); 5407 } 5408 5409 static void perf_mmap_open(struct vm_area_struct *vma) 5410 { 5411 struct perf_event *event = vma->vm_file->private_data; 5412 5413 atomic_inc(&event->mmap_count); 5414 atomic_inc(&event->rb->mmap_count); 5415 5416 if (vma->vm_pgoff) 5417 atomic_inc(&event->rb->aux_mmap_count); 5418 5419 if (event->pmu->event_mapped) 5420 event->pmu->event_mapped(event, vma->vm_mm); 5421 } 5422 5423 static void perf_pmu_output_stop(struct perf_event *event); 5424 5425 /* 5426 * A buffer can be mmap()ed multiple times; either directly through the same 5427 * event, or through other events by use of perf_event_set_output(). 5428 * 5429 * In order to undo the VM accounting done by perf_mmap() we need to destroy 5430 * the buffer here, where we still have a VM context. This means we need 5431 * to detach all events redirecting to us. 5432 */ 5433 static void perf_mmap_close(struct vm_area_struct *vma) 5434 { 5435 struct perf_event *event = vma->vm_file->private_data; 5436 5437 struct ring_buffer *rb = ring_buffer_get(event); 5438 struct user_struct *mmap_user = rb->mmap_user; 5439 int mmap_locked = rb->mmap_locked; 5440 unsigned long size = perf_data_size(rb); 5441 5442 if (event->pmu->event_unmapped) 5443 event->pmu->event_unmapped(event, vma->vm_mm); 5444 5445 /* 5446 * rb->aux_mmap_count will always drop before rb->mmap_count and 5447 * event->mmap_count, so it is ok to use event->mmap_mutex to 5448 * serialize with perf_mmap here. 5449 */ 5450 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 5451 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) { 5452 /* 5453 * Stop all AUX events that are writing to this buffer, 5454 * so that we can free its AUX pages and corresponding PMU 5455 * data. Note that after rb::aux_mmap_count dropped to zero, 5456 * they won't start any more (see perf_aux_output_begin()). 5457 */ 5458 perf_pmu_output_stop(event); 5459 5460 /* now it's safe to free the pages */ 5461 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm); 5462 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked; 5463 5464 /* this has to be the last one */ 5465 rb_free_aux(rb); 5466 WARN_ON_ONCE(atomic_read(&rb->aux_refcount)); 5467 5468 mutex_unlock(&event->mmap_mutex); 5469 } 5470 5471 atomic_dec(&rb->mmap_count); 5472 5473 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 5474 goto out_put; 5475 5476 ring_buffer_attach(event, NULL); 5477 mutex_unlock(&event->mmap_mutex); 5478 5479 /* If there's still other mmap()s of this buffer, we're done. */ 5480 if (atomic_read(&rb->mmap_count)) 5481 goto out_put; 5482 5483 /* 5484 * No other mmap()s, detach from all other events that might redirect 5485 * into the now unreachable buffer. Somewhat complicated by the 5486 * fact that rb::event_lock otherwise nests inside mmap_mutex. 5487 */ 5488 again: 5489 rcu_read_lock(); 5490 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 5491 if (!atomic_long_inc_not_zero(&event->refcount)) { 5492 /* 5493 * This event is en-route to free_event() which will 5494 * detach it and remove it from the list. 5495 */ 5496 continue; 5497 } 5498 rcu_read_unlock(); 5499 5500 mutex_lock(&event->mmap_mutex); 5501 /* 5502 * Check we didn't race with perf_event_set_output() which can 5503 * swizzle the rb from under us while we were waiting to 5504 * acquire mmap_mutex. 5505 * 5506 * If we find a different rb; ignore this event, a next 5507 * iteration will no longer find it on the list. We have to 5508 * still restart the iteration to make sure we're not now 5509 * iterating the wrong list. 5510 */ 5511 if (event->rb == rb) 5512 ring_buffer_attach(event, NULL); 5513 5514 mutex_unlock(&event->mmap_mutex); 5515 put_event(event); 5516 5517 /* 5518 * Restart the iteration; either we're on the wrong list or 5519 * destroyed its integrity by doing a deletion. 5520 */ 5521 goto again; 5522 } 5523 rcu_read_unlock(); 5524 5525 /* 5526 * It could be there's still a few 0-ref events on the list; they'll 5527 * get cleaned up by free_event() -- they'll also still have their 5528 * ref on the rb and will free it whenever they are done with it. 5529 * 5530 * Aside from that, this buffer is 'fully' detached and unmapped, 5531 * undo the VM accounting. 5532 */ 5533 5534 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm); 5535 vma->vm_mm->pinned_vm -= mmap_locked; 5536 free_uid(mmap_user); 5537 5538 out_put: 5539 ring_buffer_put(rb); /* could be last */ 5540 } 5541 5542 static const struct vm_operations_struct perf_mmap_vmops = { 5543 .open = perf_mmap_open, 5544 .close = perf_mmap_close, /* non mergable */ 5545 .fault = perf_mmap_fault, 5546 .page_mkwrite = perf_mmap_fault, 5547 }; 5548 5549 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 5550 { 5551 struct perf_event *event = file->private_data; 5552 unsigned long user_locked, user_lock_limit; 5553 struct user_struct *user = current_user(); 5554 unsigned long locked, lock_limit; 5555 struct ring_buffer *rb = NULL; 5556 unsigned long vma_size; 5557 unsigned long nr_pages; 5558 long user_extra = 0, extra = 0; 5559 int ret = 0, flags = 0; 5560 5561 /* 5562 * Don't allow mmap() of inherited per-task counters. This would 5563 * create a performance issue due to all children writing to the 5564 * same rb. 5565 */ 5566 if (event->cpu == -1 && event->attr.inherit) 5567 return -EINVAL; 5568 5569 if (!(vma->vm_flags & VM_SHARED)) 5570 return -EINVAL; 5571 5572 vma_size = vma->vm_end - vma->vm_start; 5573 5574 if (vma->vm_pgoff == 0) { 5575 nr_pages = (vma_size / PAGE_SIZE) - 1; 5576 } else { 5577 /* 5578 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 5579 * mapped, all subsequent mappings should have the same size 5580 * and offset. Must be above the normal perf buffer. 5581 */ 5582 u64 aux_offset, aux_size; 5583 5584 if (!event->rb) 5585 return -EINVAL; 5586 5587 nr_pages = vma_size / PAGE_SIZE; 5588 5589 mutex_lock(&event->mmap_mutex); 5590 ret = -EINVAL; 5591 5592 rb = event->rb; 5593 if (!rb) 5594 goto aux_unlock; 5595 5596 aux_offset = READ_ONCE(rb->user_page->aux_offset); 5597 aux_size = READ_ONCE(rb->user_page->aux_size); 5598 5599 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 5600 goto aux_unlock; 5601 5602 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 5603 goto aux_unlock; 5604 5605 /* already mapped with a different offset */ 5606 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 5607 goto aux_unlock; 5608 5609 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) 5610 goto aux_unlock; 5611 5612 /* already mapped with a different size */ 5613 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 5614 goto aux_unlock; 5615 5616 if (!is_power_of_2(nr_pages)) 5617 goto aux_unlock; 5618 5619 if (!atomic_inc_not_zero(&rb->mmap_count)) 5620 goto aux_unlock; 5621 5622 if (rb_has_aux(rb)) { 5623 atomic_inc(&rb->aux_mmap_count); 5624 ret = 0; 5625 goto unlock; 5626 } 5627 5628 atomic_set(&rb->aux_mmap_count, 1); 5629 user_extra = nr_pages; 5630 5631 goto accounting; 5632 } 5633 5634 /* 5635 * If we have rb pages ensure they're a power-of-two number, so we 5636 * can do bitmasks instead of modulo. 5637 */ 5638 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 5639 return -EINVAL; 5640 5641 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 5642 return -EINVAL; 5643 5644 WARN_ON_ONCE(event->ctx->parent_ctx); 5645 again: 5646 mutex_lock(&event->mmap_mutex); 5647 if (event->rb) { 5648 if (event->rb->nr_pages != nr_pages) { 5649 ret = -EINVAL; 5650 goto unlock; 5651 } 5652 5653 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 5654 /* 5655 * Raced against perf_mmap_close() through 5656 * perf_event_set_output(). Try again, hope for better 5657 * luck. 5658 */ 5659 mutex_unlock(&event->mmap_mutex); 5660 goto again; 5661 } 5662 5663 goto unlock; 5664 } 5665 5666 user_extra = nr_pages + 1; 5667 5668 accounting: 5669 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 5670 5671 /* 5672 * Increase the limit linearly with more CPUs: 5673 */ 5674 user_lock_limit *= num_online_cpus(); 5675 5676 user_locked = atomic_long_read(&user->locked_vm) + user_extra; 5677 5678 if (user_locked > user_lock_limit) 5679 extra = user_locked - user_lock_limit; 5680 5681 lock_limit = rlimit(RLIMIT_MEMLOCK); 5682 lock_limit >>= PAGE_SHIFT; 5683 locked = vma->vm_mm->pinned_vm + extra; 5684 5685 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() && 5686 !capable(CAP_IPC_LOCK)) { 5687 ret = -EPERM; 5688 goto unlock; 5689 } 5690 5691 WARN_ON(!rb && event->rb); 5692 5693 if (vma->vm_flags & VM_WRITE) 5694 flags |= RING_BUFFER_WRITABLE; 5695 5696 if (!rb) { 5697 rb = rb_alloc(nr_pages, 5698 event->attr.watermark ? event->attr.wakeup_watermark : 0, 5699 event->cpu, flags); 5700 5701 if (!rb) { 5702 ret = -ENOMEM; 5703 goto unlock; 5704 } 5705 5706 atomic_set(&rb->mmap_count, 1); 5707 rb->mmap_user = get_current_user(); 5708 rb->mmap_locked = extra; 5709 5710 ring_buffer_attach(event, rb); 5711 5712 perf_event_init_userpage(event); 5713 perf_event_update_userpage(event); 5714 } else { 5715 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 5716 event->attr.aux_watermark, flags); 5717 if (!ret) 5718 rb->aux_mmap_locked = extra; 5719 } 5720 5721 unlock: 5722 if (!ret) { 5723 atomic_long_add(user_extra, &user->locked_vm); 5724 vma->vm_mm->pinned_vm += extra; 5725 5726 atomic_inc(&event->mmap_count); 5727 } else if (rb) { 5728 atomic_dec(&rb->mmap_count); 5729 } 5730 aux_unlock: 5731 mutex_unlock(&event->mmap_mutex); 5732 5733 /* 5734 * Since pinned accounting is per vm we cannot allow fork() to copy our 5735 * vma. 5736 */ 5737 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP; 5738 vma->vm_ops = &perf_mmap_vmops; 5739 5740 if (event->pmu->event_mapped) 5741 event->pmu->event_mapped(event, vma->vm_mm); 5742 5743 return ret; 5744 } 5745 5746 static int perf_fasync(int fd, struct file *filp, int on) 5747 { 5748 struct inode *inode = file_inode(filp); 5749 struct perf_event *event = filp->private_data; 5750 int retval; 5751 5752 inode_lock(inode); 5753 retval = fasync_helper(fd, filp, on, &event->fasync); 5754 inode_unlock(inode); 5755 5756 if (retval < 0) 5757 return retval; 5758 5759 return 0; 5760 } 5761 5762 static const struct file_operations perf_fops = { 5763 .llseek = no_llseek, 5764 .release = perf_release, 5765 .read = perf_read, 5766 .poll = perf_poll, 5767 .unlocked_ioctl = perf_ioctl, 5768 .compat_ioctl = perf_compat_ioctl, 5769 .mmap = perf_mmap, 5770 .fasync = perf_fasync, 5771 }; 5772 5773 /* 5774 * Perf event wakeup 5775 * 5776 * If there's data, ensure we set the poll() state and publish everything 5777 * to user-space before waking everybody up. 5778 */ 5779 5780 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event) 5781 { 5782 /* only the parent has fasync state */ 5783 if (event->parent) 5784 event = event->parent; 5785 return &event->fasync; 5786 } 5787 5788 void perf_event_wakeup(struct perf_event *event) 5789 { 5790 ring_buffer_wakeup(event); 5791 5792 if (event->pending_kill) { 5793 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); 5794 event->pending_kill = 0; 5795 } 5796 } 5797 5798 static void perf_pending_event(struct irq_work *entry) 5799 { 5800 struct perf_event *event = container_of(entry, 5801 struct perf_event, pending); 5802 int rctx; 5803 5804 rctx = perf_swevent_get_recursion_context(); 5805 /* 5806 * If we 'fail' here, that's OK, it means recursion is already disabled 5807 * and we won't recurse 'further'. 5808 */ 5809 5810 if (event->pending_disable) { 5811 event->pending_disable = 0; 5812 perf_event_disable_local(event); 5813 } 5814 5815 if (event->pending_wakeup) { 5816 event->pending_wakeup = 0; 5817 perf_event_wakeup(event); 5818 } 5819 5820 if (rctx >= 0) 5821 perf_swevent_put_recursion_context(rctx); 5822 } 5823 5824 /* 5825 * We assume there is only KVM supporting the callbacks. 5826 * Later on, we might change it to a list if there is 5827 * another virtualization implementation supporting the callbacks. 5828 */ 5829 struct perf_guest_info_callbacks *perf_guest_cbs; 5830 5831 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 5832 { 5833 perf_guest_cbs = cbs; 5834 return 0; 5835 } 5836 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 5837 5838 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 5839 { 5840 perf_guest_cbs = NULL; 5841 return 0; 5842 } 5843 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 5844 5845 static void 5846 perf_output_sample_regs(struct perf_output_handle *handle, 5847 struct pt_regs *regs, u64 mask) 5848 { 5849 int bit; 5850 DECLARE_BITMAP(_mask, 64); 5851 5852 bitmap_from_u64(_mask, mask); 5853 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) { 5854 u64 val; 5855 5856 val = perf_reg_value(regs, bit); 5857 perf_output_put(handle, val); 5858 } 5859 } 5860 5861 static void perf_sample_regs_user(struct perf_regs *regs_user, 5862 struct pt_regs *regs, 5863 struct pt_regs *regs_user_copy) 5864 { 5865 if (user_mode(regs)) { 5866 regs_user->abi = perf_reg_abi(current); 5867 regs_user->regs = regs; 5868 } else if (current->mm) { 5869 perf_get_regs_user(regs_user, regs, regs_user_copy); 5870 } else { 5871 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 5872 regs_user->regs = NULL; 5873 } 5874 } 5875 5876 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 5877 struct pt_regs *regs) 5878 { 5879 regs_intr->regs = regs; 5880 regs_intr->abi = perf_reg_abi(current); 5881 } 5882 5883 5884 /* 5885 * Get remaining task size from user stack pointer. 5886 * 5887 * It'd be better to take stack vma map and limit this more 5888 * precisly, but there's no way to get it safely under interrupt, 5889 * so using TASK_SIZE as limit. 5890 */ 5891 static u64 perf_ustack_task_size(struct pt_regs *regs) 5892 { 5893 unsigned long addr = perf_user_stack_pointer(regs); 5894 5895 if (!addr || addr >= TASK_SIZE) 5896 return 0; 5897 5898 return TASK_SIZE - addr; 5899 } 5900 5901 static u16 5902 perf_sample_ustack_size(u16 stack_size, u16 header_size, 5903 struct pt_regs *regs) 5904 { 5905 u64 task_size; 5906 5907 /* No regs, no stack pointer, no dump. */ 5908 if (!regs) 5909 return 0; 5910 5911 /* 5912 * Check if we fit in with the requested stack size into the: 5913 * - TASK_SIZE 5914 * If we don't, we limit the size to the TASK_SIZE. 5915 * 5916 * - remaining sample size 5917 * If we don't, we customize the stack size to 5918 * fit in to the remaining sample size. 5919 */ 5920 5921 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 5922 stack_size = min(stack_size, (u16) task_size); 5923 5924 /* Current header size plus static size and dynamic size. */ 5925 header_size += 2 * sizeof(u64); 5926 5927 /* Do we fit in with the current stack dump size? */ 5928 if ((u16) (header_size + stack_size) < header_size) { 5929 /* 5930 * If we overflow the maximum size for the sample, 5931 * we customize the stack dump size to fit in. 5932 */ 5933 stack_size = USHRT_MAX - header_size - sizeof(u64); 5934 stack_size = round_up(stack_size, sizeof(u64)); 5935 } 5936 5937 return stack_size; 5938 } 5939 5940 static void 5941 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 5942 struct pt_regs *regs) 5943 { 5944 /* Case of a kernel thread, nothing to dump */ 5945 if (!regs) { 5946 u64 size = 0; 5947 perf_output_put(handle, size); 5948 } else { 5949 unsigned long sp; 5950 unsigned int rem; 5951 u64 dyn_size; 5952 mm_segment_t fs; 5953 5954 /* 5955 * We dump: 5956 * static size 5957 * - the size requested by user or the best one we can fit 5958 * in to the sample max size 5959 * data 5960 * - user stack dump data 5961 * dynamic size 5962 * - the actual dumped size 5963 */ 5964 5965 /* Static size. */ 5966 perf_output_put(handle, dump_size); 5967 5968 /* Data. */ 5969 sp = perf_user_stack_pointer(regs); 5970 fs = get_fs(); 5971 set_fs(USER_DS); 5972 rem = __output_copy_user(handle, (void *) sp, dump_size); 5973 set_fs(fs); 5974 dyn_size = dump_size - rem; 5975 5976 perf_output_skip(handle, rem); 5977 5978 /* Dynamic size. */ 5979 perf_output_put(handle, dyn_size); 5980 } 5981 } 5982 5983 static void __perf_event_header__init_id(struct perf_event_header *header, 5984 struct perf_sample_data *data, 5985 struct perf_event *event) 5986 { 5987 u64 sample_type = event->attr.sample_type; 5988 5989 data->type = sample_type; 5990 header->size += event->id_header_size; 5991 5992 if (sample_type & PERF_SAMPLE_TID) { 5993 /* namespace issues */ 5994 data->tid_entry.pid = perf_event_pid(event, current); 5995 data->tid_entry.tid = perf_event_tid(event, current); 5996 } 5997 5998 if (sample_type & PERF_SAMPLE_TIME) 5999 data->time = perf_event_clock(event); 6000 6001 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 6002 data->id = primary_event_id(event); 6003 6004 if (sample_type & PERF_SAMPLE_STREAM_ID) 6005 data->stream_id = event->id; 6006 6007 if (sample_type & PERF_SAMPLE_CPU) { 6008 data->cpu_entry.cpu = raw_smp_processor_id(); 6009 data->cpu_entry.reserved = 0; 6010 } 6011 } 6012 6013 void perf_event_header__init_id(struct perf_event_header *header, 6014 struct perf_sample_data *data, 6015 struct perf_event *event) 6016 { 6017 if (event->attr.sample_id_all) 6018 __perf_event_header__init_id(header, data, event); 6019 } 6020 6021 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 6022 struct perf_sample_data *data) 6023 { 6024 u64 sample_type = data->type; 6025 6026 if (sample_type & PERF_SAMPLE_TID) 6027 perf_output_put(handle, data->tid_entry); 6028 6029 if (sample_type & PERF_SAMPLE_TIME) 6030 perf_output_put(handle, data->time); 6031 6032 if (sample_type & PERF_SAMPLE_ID) 6033 perf_output_put(handle, data->id); 6034 6035 if (sample_type & PERF_SAMPLE_STREAM_ID) 6036 perf_output_put(handle, data->stream_id); 6037 6038 if (sample_type & PERF_SAMPLE_CPU) 6039 perf_output_put(handle, data->cpu_entry); 6040 6041 if (sample_type & PERF_SAMPLE_IDENTIFIER) 6042 perf_output_put(handle, data->id); 6043 } 6044 6045 void perf_event__output_id_sample(struct perf_event *event, 6046 struct perf_output_handle *handle, 6047 struct perf_sample_data *sample) 6048 { 6049 if (event->attr.sample_id_all) 6050 __perf_event__output_id_sample(handle, sample); 6051 } 6052 6053 static void perf_output_read_one(struct perf_output_handle *handle, 6054 struct perf_event *event, 6055 u64 enabled, u64 running) 6056 { 6057 u64 read_format = event->attr.read_format; 6058 u64 values[4]; 6059 int n = 0; 6060 6061 values[n++] = perf_event_count(event); 6062 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 6063 values[n++] = enabled + 6064 atomic64_read(&event->child_total_time_enabled); 6065 } 6066 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 6067 values[n++] = running + 6068 atomic64_read(&event->child_total_time_running); 6069 } 6070 if (read_format & PERF_FORMAT_ID) 6071 values[n++] = primary_event_id(event); 6072 6073 __output_copy(handle, values, n * sizeof(u64)); 6074 } 6075 6076 static void perf_output_read_group(struct perf_output_handle *handle, 6077 struct perf_event *event, 6078 u64 enabled, u64 running) 6079 { 6080 struct perf_event *leader = event->group_leader, *sub; 6081 u64 read_format = event->attr.read_format; 6082 u64 values[5]; 6083 int n = 0; 6084 6085 values[n++] = 1 + leader->nr_siblings; 6086 6087 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 6088 values[n++] = enabled; 6089 6090 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 6091 values[n++] = running; 6092 6093 if ((leader != event) && 6094 (leader->state == PERF_EVENT_STATE_ACTIVE)) 6095 leader->pmu->read(leader); 6096 6097 values[n++] = perf_event_count(leader); 6098 if (read_format & PERF_FORMAT_ID) 6099 values[n++] = primary_event_id(leader); 6100 6101 __output_copy(handle, values, n * sizeof(u64)); 6102 6103 for_each_sibling_event(sub, leader) { 6104 n = 0; 6105 6106 if ((sub != event) && 6107 (sub->state == PERF_EVENT_STATE_ACTIVE)) 6108 sub->pmu->read(sub); 6109 6110 values[n++] = perf_event_count(sub); 6111 if (read_format & PERF_FORMAT_ID) 6112 values[n++] = primary_event_id(sub); 6113 6114 __output_copy(handle, values, n * sizeof(u64)); 6115 } 6116 } 6117 6118 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 6119 PERF_FORMAT_TOTAL_TIME_RUNNING) 6120 6121 /* 6122 * XXX PERF_SAMPLE_READ vs inherited events seems difficult. 6123 * 6124 * The problem is that its both hard and excessively expensive to iterate the 6125 * child list, not to mention that its impossible to IPI the children running 6126 * on another CPU, from interrupt/NMI context. 6127 */ 6128 static void perf_output_read(struct perf_output_handle *handle, 6129 struct perf_event *event) 6130 { 6131 u64 enabled = 0, running = 0, now; 6132 u64 read_format = event->attr.read_format; 6133 6134 /* 6135 * compute total_time_enabled, total_time_running 6136 * based on snapshot values taken when the event 6137 * was last scheduled in. 6138 * 6139 * we cannot simply called update_context_time() 6140 * because of locking issue as we are called in 6141 * NMI context 6142 */ 6143 if (read_format & PERF_FORMAT_TOTAL_TIMES) 6144 calc_timer_values(event, &now, &enabled, &running); 6145 6146 if (event->attr.read_format & PERF_FORMAT_GROUP) 6147 perf_output_read_group(handle, event, enabled, running); 6148 else 6149 perf_output_read_one(handle, event, enabled, running); 6150 } 6151 6152 void perf_output_sample(struct perf_output_handle *handle, 6153 struct perf_event_header *header, 6154 struct perf_sample_data *data, 6155 struct perf_event *event) 6156 { 6157 u64 sample_type = data->type; 6158 6159 perf_output_put(handle, *header); 6160 6161 if (sample_type & PERF_SAMPLE_IDENTIFIER) 6162 perf_output_put(handle, data->id); 6163 6164 if (sample_type & PERF_SAMPLE_IP) 6165 perf_output_put(handle, data->ip); 6166 6167 if (sample_type & PERF_SAMPLE_TID) 6168 perf_output_put(handle, data->tid_entry); 6169 6170 if (sample_type & PERF_SAMPLE_TIME) 6171 perf_output_put(handle, data->time); 6172 6173 if (sample_type & PERF_SAMPLE_ADDR) 6174 perf_output_put(handle, data->addr); 6175 6176 if (sample_type & PERF_SAMPLE_ID) 6177 perf_output_put(handle, data->id); 6178 6179 if (sample_type & PERF_SAMPLE_STREAM_ID) 6180 perf_output_put(handle, data->stream_id); 6181 6182 if (sample_type & PERF_SAMPLE_CPU) 6183 perf_output_put(handle, data->cpu_entry); 6184 6185 if (sample_type & PERF_SAMPLE_PERIOD) 6186 perf_output_put(handle, data->period); 6187 6188 if (sample_type & PERF_SAMPLE_READ) 6189 perf_output_read(handle, event); 6190 6191 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 6192 int size = 1; 6193 6194 size += data->callchain->nr; 6195 size *= sizeof(u64); 6196 __output_copy(handle, data->callchain, size); 6197 } 6198 6199 if (sample_type & PERF_SAMPLE_RAW) { 6200 struct perf_raw_record *raw = data->raw; 6201 6202 if (raw) { 6203 struct perf_raw_frag *frag = &raw->frag; 6204 6205 perf_output_put(handle, raw->size); 6206 do { 6207 if (frag->copy) { 6208 __output_custom(handle, frag->copy, 6209 frag->data, frag->size); 6210 } else { 6211 __output_copy(handle, frag->data, 6212 frag->size); 6213 } 6214 if (perf_raw_frag_last(frag)) 6215 break; 6216 frag = frag->next; 6217 } while (1); 6218 if (frag->pad) 6219 __output_skip(handle, NULL, frag->pad); 6220 } else { 6221 struct { 6222 u32 size; 6223 u32 data; 6224 } raw = { 6225 .size = sizeof(u32), 6226 .data = 0, 6227 }; 6228 perf_output_put(handle, raw); 6229 } 6230 } 6231 6232 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 6233 if (data->br_stack) { 6234 size_t size; 6235 6236 size = data->br_stack->nr 6237 * sizeof(struct perf_branch_entry); 6238 6239 perf_output_put(handle, data->br_stack->nr); 6240 perf_output_copy(handle, data->br_stack->entries, size); 6241 } else { 6242 /* 6243 * we always store at least the value of nr 6244 */ 6245 u64 nr = 0; 6246 perf_output_put(handle, nr); 6247 } 6248 } 6249 6250 if (sample_type & PERF_SAMPLE_REGS_USER) { 6251 u64 abi = data->regs_user.abi; 6252 6253 /* 6254 * If there are no regs to dump, notice it through 6255 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 6256 */ 6257 perf_output_put(handle, abi); 6258 6259 if (abi) { 6260 u64 mask = event->attr.sample_regs_user; 6261 perf_output_sample_regs(handle, 6262 data->regs_user.regs, 6263 mask); 6264 } 6265 } 6266 6267 if (sample_type & PERF_SAMPLE_STACK_USER) { 6268 perf_output_sample_ustack(handle, 6269 data->stack_user_size, 6270 data->regs_user.regs); 6271 } 6272 6273 if (sample_type & PERF_SAMPLE_WEIGHT) 6274 perf_output_put(handle, data->weight); 6275 6276 if (sample_type & PERF_SAMPLE_DATA_SRC) 6277 perf_output_put(handle, data->data_src.val); 6278 6279 if (sample_type & PERF_SAMPLE_TRANSACTION) 6280 perf_output_put(handle, data->txn); 6281 6282 if (sample_type & PERF_SAMPLE_REGS_INTR) { 6283 u64 abi = data->regs_intr.abi; 6284 /* 6285 * If there are no regs to dump, notice it through 6286 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 6287 */ 6288 perf_output_put(handle, abi); 6289 6290 if (abi) { 6291 u64 mask = event->attr.sample_regs_intr; 6292 6293 perf_output_sample_regs(handle, 6294 data->regs_intr.regs, 6295 mask); 6296 } 6297 } 6298 6299 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 6300 perf_output_put(handle, data->phys_addr); 6301 6302 if (!event->attr.watermark) { 6303 int wakeup_events = event->attr.wakeup_events; 6304 6305 if (wakeup_events) { 6306 struct ring_buffer *rb = handle->rb; 6307 int events = local_inc_return(&rb->events); 6308 6309 if (events >= wakeup_events) { 6310 local_sub(wakeup_events, &rb->events); 6311 local_inc(&rb->wakeup); 6312 } 6313 } 6314 } 6315 } 6316 6317 static u64 perf_virt_to_phys(u64 virt) 6318 { 6319 u64 phys_addr = 0; 6320 struct page *p = NULL; 6321 6322 if (!virt) 6323 return 0; 6324 6325 if (virt >= TASK_SIZE) { 6326 /* If it's vmalloc()d memory, leave phys_addr as 0 */ 6327 if (virt_addr_valid((void *)(uintptr_t)virt) && 6328 !(virt >= VMALLOC_START && virt < VMALLOC_END)) 6329 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt); 6330 } else { 6331 /* 6332 * Walking the pages tables for user address. 6333 * Interrupts are disabled, so it prevents any tear down 6334 * of the page tables. 6335 * Try IRQ-safe __get_user_pages_fast first. 6336 * If failed, leave phys_addr as 0. 6337 */ 6338 if ((current->mm != NULL) && 6339 (__get_user_pages_fast(virt, 1, 0, &p) == 1)) 6340 phys_addr = page_to_phys(p) + virt % PAGE_SIZE; 6341 6342 if (p) 6343 put_page(p); 6344 } 6345 6346 return phys_addr; 6347 } 6348 6349 static struct perf_callchain_entry __empty_callchain = { .nr = 0, }; 6350 6351 struct perf_callchain_entry * 6352 perf_callchain(struct perf_event *event, struct pt_regs *regs) 6353 { 6354 bool kernel = !event->attr.exclude_callchain_kernel; 6355 bool user = !event->attr.exclude_callchain_user; 6356 /* Disallow cross-task user callchains. */ 6357 bool crosstask = event->ctx->task && event->ctx->task != current; 6358 const u32 max_stack = event->attr.sample_max_stack; 6359 struct perf_callchain_entry *callchain; 6360 6361 if (!kernel && !user) 6362 return &__empty_callchain; 6363 6364 callchain = get_perf_callchain(regs, 0, kernel, user, 6365 max_stack, crosstask, true); 6366 return callchain ?: &__empty_callchain; 6367 } 6368 6369 void perf_prepare_sample(struct perf_event_header *header, 6370 struct perf_sample_data *data, 6371 struct perf_event *event, 6372 struct pt_regs *regs) 6373 { 6374 u64 sample_type = event->attr.sample_type; 6375 6376 header->type = PERF_RECORD_SAMPLE; 6377 header->size = sizeof(*header) + event->header_size; 6378 6379 header->misc = 0; 6380 header->misc |= perf_misc_flags(regs); 6381 6382 __perf_event_header__init_id(header, data, event); 6383 6384 if (sample_type & PERF_SAMPLE_IP) 6385 data->ip = perf_instruction_pointer(regs); 6386 6387 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 6388 int size = 1; 6389 6390 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY)) 6391 data->callchain = perf_callchain(event, regs); 6392 6393 size += data->callchain->nr; 6394 6395 header->size += size * sizeof(u64); 6396 } 6397 6398 if (sample_type & PERF_SAMPLE_RAW) { 6399 struct perf_raw_record *raw = data->raw; 6400 int size; 6401 6402 if (raw) { 6403 struct perf_raw_frag *frag = &raw->frag; 6404 u32 sum = 0; 6405 6406 do { 6407 sum += frag->size; 6408 if (perf_raw_frag_last(frag)) 6409 break; 6410 frag = frag->next; 6411 } while (1); 6412 6413 size = round_up(sum + sizeof(u32), sizeof(u64)); 6414 raw->size = size - sizeof(u32); 6415 frag->pad = raw->size - sum; 6416 } else { 6417 size = sizeof(u64); 6418 } 6419 6420 header->size += size; 6421 } 6422 6423 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 6424 int size = sizeof(u64); /* nr */ 6425 if (data->br_stack) { 6426 size += data->br_stack->nr 6427 * sizeof(struct perf_branch_entry); 6428 } 6429 header->size += size; 6430 } 6431 6432 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER)) 6433 perf_sample_regs_user(&data->regs_user, regs, 6434 &data->regs_user_copy); 6435 6436 if (sample_type & PERF_SAMPLE_REGS_USER) { 6437 /* regs dump ABI info */ 6438 int size = sizeof(u64); 6439 6440 if (data->regs_user.regs) { 6441 u64 mask = event->attr.sample_regs_user; 6442 size += hweight64(mask) * sizeof(u64); 6443 } 6444 6445 header->size += size; 6446 } 6447 6448 if (sample_type & PERF_SAMPLE_STACK_USER) { 6449 /* 6450 * Either we need PERF_SAMPLE_STACK_USER bit to be allways 6451 * processed as the last one or have additional check added 6452 * in case new sample type is added, because we could eat 6453 * up the rest of the sample size. 6454 */ 6455 u16 stack_size = event->attr.sample_stack_user; 6456 u16 size = sizeof(u64); 6457 6458 stack_size = perf_sample_ustack_size(stack_size, header->size, 6459 data->regs_user.regs); 6460 6461 /* 6462 * If there is something to dump, add space for the dump 6463 * itself and for the field that tells the dynamic size, 6464 * which is how many have been actually dumped. 6465 */ 6466 if (stack_size) 6467 size += sizeof(u64) + stack_size; 6468 6469 data->stack_user_size = stack_size; 6470 header->size += size; 6471 } 6472 6473 if (sample_type & PERF_SAMPLE_REGS_INTR) { 6474 /* regs dump ABI info */ 6475 int size = sizeof(u64); 6476 6477 perf_sample_regs_intr(&data->regs_intr, regs); 6478 6479 if (data->regs_intr.regs) { 6480 u64 mask = event->attr.sample_regs_intr; 6481 6482 size += hweight64(mask) * sizeof(u64); 6483 } 6484 6485 header->size += size; 6486 } 6487 6488 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 6489 data->phys_addr = perf_virt_to_phys(data->addr); 6490 } 6491 6492 static __always_inline void 6493 __perf_event_output(struct perf_event *event, 6494 struct perf_sample_data *data, 6495 struct pt_regs *regs, 6496 int (*output_begin)(struct perf_output_handle *, 6497 struct perf_event *, 6498 unsigned int)) 6499 { 6500 struct perf_output_handle handle; 6501 struct perf_event_header header; 6502 6503 /* protect the callchain buffers */ 6504 rcu_read_lock(); 6505 6506 perf_prepare_sample(&header, data, event, regs); 6507 6508 if (output_begin(&handle, event, header.size)) 6509 goto exit; 6510 6511 perf_output_sample(&handle, &header, data, event); 6512 6513 perf_output_end(&handle); 6514 6515 exit: 6516 rcu_read_unlock(); 6517 } 6518 6519 void 6520 perf_event_output_forward(struct perf_event *event, 6521 struct perf_sample_data *data, 6522 struct pt_regs *regs) 6523 { 6524 __perf_event_output(event, data, regs, perf_output_begin_forward); 6525 } 6526 6527 void 6528 perf_event_output_backward(struct perf_event *event, 6529 struct perf_sample_data *data, 6530 struct pt_regs *regs) 6531 { 6532 __perf_event_output(event, data, regs, perf_output_begin_backward); 6533 } 6534 6535 void 6536 perf_event_output(struct perf_event *event, 6537 struct perf_sample_data *data, 6538 struct pt_regs *regs) 6539 { 6540 __perf_event_output(event, data, regs, perf_output_begin); 6541 } 6542 6543 /* 6544 * read event_id 6545 */ 6546 6547 struct perf_read_event { 6548 struct perf_event_header header; 6549 6550 u32 pid; 6551 u32 tid; 6552 }; 6553 6554 static void 6555 perf_event_read_event(struct perf_event *event, 6556 struct task_struct *task) 6557 { 6558 struct perf_output_handle handle; 6559 struct perf_sample_data sample; 6560 struct perf_read_event read_event = { 6561 .header = { 6562 .type = PERF_RECORD_READ, 6563 .misc = 0, 6564 .size = sizeof(read_event) + event->read_size, 6565 }, 6566 .pid = perf_event_pid(event, task), 6567 .tid = perf_event_tid(event, task), 6568 }; 6569 int ret; 6570 6571 perf_event_header__init_id(&read_event.header, &sample, event); 6572 ret = perf_output_begin(&handle, event, read_event.header.size); 6573 if (ret) 6574 return; 6575 6576 perf_output_put(&handle, read_event); 6577 perf_output_read(&handle, event); 6578 perf_event__output_id_sample(event, &handle, &sample); 6579 6580 perf_output_end(&handle); 6581 } 6582 6583 typedef void (perf_iterate_f)(struct perf_event *event, void *data); 6584 6585 static void 6586 perf_iterate_ctx(struct perf_event_context *ctx, 6587 perf_iterate_f output, 6588 void *data, bool all) 6589 { 6590 struct perf_event *event; 6591 6592 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 6593 if (!all) { 6594 if (event->state < PERF_EVENT_STATE_INACTIVE) 6595 continue; 6596 if (!event_filter_match(event)) 6597 continue; 6598 } 6599 6600 output(event, data); 6601 } 6602 } 6603 6604 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data) 6605 { 6606 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events); 6607 struct perf_event *event; 6608 6609 list_for_each_entry_rcu(event, &pel->list, sb_list) { 6610 /* 6611 * Skip events that are not fully formed yet; ensure that 6612 * if we observe event->ctx, both event and ctx will be 6613 * complete enough. See perf_install_in_context(). 6614 */ 6615 if (!smp_load_acquire(&event->ctx)) 6616 continue; 6617 6618 if (event->state < PERF_EVENT_STATE_INACTIVE) 6619 continue; 6620 if (!event_filter_match(event)) 6621 continue; 6622 output(event, data); 6623 } 6624 } 6625 6626 /* 6627 * Iterate all events that need to receive side-band events. 6628 * 6629 * For new callers; ensure that account_pmu_sb_event() includes 6630 * your event, otherwise it might not get delivered. 6631 */ 6632 static void 6633 perf_iterate_sb(perf_iterate_f output, void *data, 6634 struct perf_event_context *task_ctx) 6635 { 6636 struct perf_event_context *ctx; 6637 int ctxn; 6638 6639 rcu_read_lock(); 6640 preempt_disable(); 6641 6642 /* 6643 * If we have task_ctx != NULL we only notify the task context itself. 6644 * The task_ctx is set only for EXIT events before releasing task 6645 * context. 6646 */ 6647 if (task_ctx) { 6648 perf_iterate_ctx(task_ctx, output, data, false); 6649 goto done; 6650 } 6651 6652 perf_iterate_sb_cpu(output, data); 6653 6654 for_each_task_context_nr(ctxn) { 6655 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 6656 if (ctx) 6657 perf_iterate_ctx(ctx, output, data, false); 6658 } 6659 done: 6660 preempt_enable(); 6661 rcu_read_unlock(); 6662 } 6663 6664 /* 6665 * Clear all file-based filters at exec, they'll have to be 6666 * re-instated when/if these objects are mmapped again. 6667 */ 6668 static void perf_event_addr_filters_exec(struct perf_event *event, void *data) 6669 { 6670 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 6671 struct perf_addr_filter *filter; 6672 unsigned int restart = 0, count = 0; 6673 unsigned long flags; 6674 6675 if (!has_addr_filter(event)) 6676 return; 6677 6678 raw_spin_lock_irqsave(&ifh->lock, flags); 6679 list_for_each_entry(filter, &ifh->list, entry) { 6680 if (filter->path.dentry) { 6681 event->addr_filters_offs[count] = 0; 6682 restart++; 6683 } 6684 6685 count++; 6686 } 6687 6688 if (restart) 6689 event->addr_filters_gen++; 6690 raw_spin_unlock_irqrestore(&ifh->lock, flags); 6691 6692 if (restart) 6693 perf_event_stop(event, 1); 6694 } 6695 6696 void perf_event_exec(void) 6697 { 6698 struct perf_event_context *ctx; 6699 int ctxn; 6700 6701 rcu_read_lock(); 6702 for_each_task_context_nr(ctxn) { 6703 ctx = current->perf_event_ctxp[ctxn]; 6704 if (!ctx) 6705 continue; 6706 6707 perf_event_enable_on_exec(ctxn); 6708 6709 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, 6710 true); 6711 } 6712 rcu_read_unlock(); 6713 } 6714 6715 struct remote_output { 6716 struct ring_buffer *rb; 6717 int err; 6718 }; 6719 6720 static void __perf_event_output_stop(struct perf_event *event, void *data) 6721 { 6722 struct perf_event *parent = event->parent; 6723 struct remote_output *ro = data; 6724 struct ring_buffer *rb = ro->rb; 6725 struct stop_event_data sd = { 6726 .event = event, 6727 }; 6728 6729 if (!has_aux(event)) 6730 return; 6731 6732 if (!parent) 6733 parent = event; 6734 6735 /* 6736 * In case of inheritance, it will be the parent that links to the 6737 * ring-buffer, but it will be the child that's actually using it. 6738 * 6739 * We are using event::rb to determine if the event should be stopped, 6740 * however this may race with ring_buffer_attach() (through set_output), 6741 * which will make us skip the event that actually needs to be stopped. 6742 * So ring_buffer_attach() has to stop an aux event before re-assigning 6743 * its rb pointer. 6744 */ 6745 if (rcu_dereference(parent->rb) == rb) 6746 ro->err = __perf_event_stop(&sd); 6747 } 6748 6749 static int __perf_pmu_output_stop(void *info) 6750 { 6751 struct perf_event *event = info; 6752 struct pmu *pmu = event->pmu; 6753 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 6754 struct remote_output ro = { 6755 .rb = event->rb, 6756 }; 6757 6758 rcu_read_lock(); 6759 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false); 6760 if (cpuctx->task_ctx) 6761 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop, 6762 &ro, false); 6763 rcu_read_unlock(); 6764 6765 return ro.err; 6766 } 6767 6768 static void perf_pmu_output_stop(struct perf_event *event) 6769 { 6770 struct perf_event *iter; 6771 int err, cpu; 6772 6773 restart: 6774 rcu_read_lock(); 6775 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) { 6776 /* 6777 * For per-CPU events, we need to make sure that neither they 6778 * nor their children are running; for cpu==-1 events it's 6779 * sufficient to stop the event itself if it's active, since 6780 * it can't have children. 6781 */ 6782 cpu = iter->cpu; 6783 if (cpu == -1) 6784 cpu = READ_ONCE(iter->oncpu); 6785 6786 if (cpu == -1) 6787 continue; 6788 6789 err = cpu_function_call(cpu, __perf_pmu_output_stop, event); 6790 if (err == -EAGAIN) { 6791 rcu_read_unlock(); 6792 goto restart; 6793 } 6794 } 6795 rcu_read_unlock(); 6796 } 6797 6798 /* 6799 * task tracking -- fork/exit 6800 * 6801 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 6802 */ 6803 6804 struct perf_task_event { 6805 struct task_struct *task; 6806 struct perf_event_context *task_ctx; 6807 6808 struct { 6809 struct perf_event_header header; 6810 6811 u32 pid; 6812 u32 ppid; 6813 u32 tid; 6814 u32 ptid; 6815 u64 time; 6816 } event_id; 6817 }; 6818 6819 static int perf_event_task_match(struct perf_event *event) 6820 { 6821 return event->attr.comm || event->attr.mmap || 6822 event->attr.mmap2 || event->attr.mmap_data || 6823 event->attr.task; 6824 } 6825 6826 static void perf_event_task_output(struct perf_event *event, 6827 void *data) 6828 { 6829 struct perf_task_event *task_event = data; 6830 struct perf_output_handle handle; 6831 struct perf_sample_data sample; 6832 struct task_struct *task = task_event->task; 6833 int ret, size = task_event->event_id.header.size; 6834 6835 if (!perf_event_task_match(event)) 6836 return; 6837 6838 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 6839 6840 ret = perf_output_begin(&handle, event, 6841 task_event->event_id.header.size); 6842 if (ret) 6843 goto out; 6844 6845 task_event->event_id.pid = perf_event_pid(event, task); 6846 task_event->event_id.ppid = perf_event_pid(event, current); 6847 6848 task_event->event_id.tid = perf_event_tid(event, task); 6849 task_event->event_id.ptid = perf_event_tid(event, current); 6850 6851 task_event->event_id.time = perf_event_clock(event); 6852 6853 perf_output_put(&handle, task_event->event_id); 6854 6855 perf_event__output_id_sample(event, &handle, &sample); 6856 6857 perf_output_end(&handle); 6858 out: 6859 task_event->event_id.header.size = size; 6860 } 6861 6862 static void perf_event_task(struct task_struct *task, 6863 struct perf_event_context *task_ctx, 6864 int new) 6865 { 6866 struct perf_task_event task_event; 6867 6868 if (!atomic_read(&nr_comm_events) && 6869 !atomic_read(&nr_mmap_events) && 6870 !atomic_read(&nr_task_events)) 6871 return; 6872 6873 task_event = (struct perf_task_event){ 6874 .task = task, 6875 .task_ctx = task_ctx, 6876 .event_id = { 6877 .header = { 6878 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 6879 .misc = 0, 6880 .size = sizeof(task_event.event_id), 6881 }, 6882 /* .pid */ 6883 /* .ppid */ 6884 /* .tid */ 6885 /* .ptid */ 6886 /* .time */ 6887 }, 6888 }; 6889 6890 perf_iterate_sb(perf_event_task_output, 6891 &task_event, 6892 task_ctx); 6893 } 6894 6895 void perf_event_fork(struct task_struct *task) 6896 { 6897 perf_event_task(task, NULL, 1); 6898 perf_event_namespaces(task); 6899 } 6900 6901 /* 6902 * comm tracking 6903 */ 6904 6905 struct perf_comm_event { 6906 struct task_struct *task; 6907 char *comm; 6908 int comm_size; 6909 6910 struct { 6911 struct perf_event_header header; 6912 6913 u32 pid; 6914 u32 tid; 6915 } event_id; 6916 }; 6917 6918 static int perf_event_comm_match(struct perf_event *event) 6919 { 6920 return event->attr.comm; 6921 } 6922 6923 static void perf_event_comm_output(struct perf_event *event, 6924 void *data) 6925 { 6926 struct perf_comm_event *comm_event = data; 6927 struct perf_output_handle handle; 6928 struct perf_sample_data sample; 6929 int size = comm_event->event_id.header.size; 6930 int ret; 6931 6932 if (!perf_event_comm_match(event)) 6933 return; 6934 6935 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 6936 ret = perf_output_begin(&handle, event, 6937 comm_event->event_id.header.size); 6938 6939 if (ret) 6940 goto out; 6941 6942 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 6943 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 6944 6945 perf_output_put(&handle, comm_event->event_id); 6946 __output_copy(&handle, comm_event->comm, 6947 comm_event->comm_size); 6948 6949 perf_event__output_id_sample(event, &handle, &sample); 6950 6951 perf_output_end(&handle); 6952 out: 6953 comm_event->event_id.header.size = size; 6954 } 6955 6956 static void perf_event_comm_event(struct perf_comm_event *comm_event) 6957 { 6958 char comm[TASK_COMM_LEN]; 6959 unsigned int size; 6960 6961 memset(comm, 0, sizeof(comm)); 6962 strlcpy(comm, comm_event->task->comm, sizeof(comm)); 6963 size = ALIGN(strlen(comm)+1, sizeof(u64)); 6964 6965 comm_event->comm = comm; 6966 comm_event->comm_size = size; 6967 6968 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 6969 6970 perf_iterate_sb(perf_event_comm_output, 6971 comm_event, 6972 NULL); 6973 } 6974 6975 void perf_event_comm(struct task_struct *task, bool exec) 6976 { 6977 struct perf_comm_event comm_event; 6978 6979 if (!atomic_read(&nr_comm_events)) 6980 return; 6981 6982 comm_event = (struct perf_comm_event){ 6983 .task = task, 6984 /* .comm */ 6985 /* .comm_size */ 6986 .event_id = { 6987 .header = { 6988 .type = PERF_RECORD_COMM, 6989 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 6990 /* .size */ 6991 }, 6992 /* .pid */ 6993 /* .tid */ 6994 }, 6995 }; 6996 6997 perf_event_comm_event(&comm_event); 6998 } 6999 7000 /* 7001 * namespaces tracking 7002 */ 7003 7004 struct perf_namespaces_event { 7005 struct task_struct *task; 7006 7007 struct { 7008 struct perf_event_header header; 7009 7010 u32 pid; 7011 u32 tid; 7012 u64 nr_namespaces; 7013 struct perf_ns_link_info link_info[NR_NAMESPACES]; 7014 } event_id; 7015 }; 7016 7017 static int perf_event_namespaces_match(struct perf_event *event) 7018 { 7019 return event->attr.namespaces; 7020 } 7021 7022 static void perf_event_namespaces_output(struct perf_event *event, 7023 void *data) 7024 { 7025 struct perf_namespaces_event *namespaces_event = data; 7026 struct perf_output_handle handle; 7027 struct perf_sample_data sample; 7028 u16 header_size = namespaces_event->event_id.header.size; 7029 int ret; 7030 7031 if (!perf_event_namespaces_match(event)) 7032 return; 7033 7034 perf_event_header__init_id(&namespaces_event->event_id.header, 7035 &sample, event); 7036 ret = perf_output_begin(&handle, event, 7037 namespaces_event->event_id.header.size); 7038 if (ret) 7039 goto out; 7040 7041 namespaces_event->event_id.pid = perf_event_pid(event, 7042 namespaces_event->task); 7043 namespaces_event->event_id.tid = perf_event_tid(event, 7044 namespaces_event->task); 7045 7046 perf_output_put(&handle, namespaces_event->event_id); 7047 7048 perf_event__output_id_sample(event, &handle, &sample); 7049 7050 perf_output_end(&handle); 7051 out: 7052 namespaces_event->event_id.header.size = header_size; 7053 } 7054 7055 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info, 7056 struct task_struct *task, 7057 const struct proc_ns_operations *ns_ops) 7058 { 7059 struct path ns_path; 7060 struct inode *ns_inode; 7061 void *error; 7062 7063 error = ns_get_path(&ns_path, task, ns_ops); 7064 if (!error) { 7065 ns_inode = ns_path.dentry->d_inode; 7066 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev); 7067 ns_link_info->ino = ns_inode->i_ino; 7068 path_put(&ns_path); 7069 } 7070 } 7071 7072 void perf_event_namespaces(struct task_struct *task) 7073 { 7074 struct perf_namespaces_event namespaces_event; 7075 struct perf_ns_link_info *ns_link_info; 7076 7077 if (!atomic_read(&nr_namespaces_events)) 7078 return; 7079 7080 namespaces_event = (struct perf_namespaces_event){ 7081 .task = task, 7082 .event_id = { 7083 .header = { 7084 .type = PERF_RECORD_NAMESPACES, 7085 .misc = 0, 7086 .size = sizeof(namespaces_event.event_id), 7087 }, 7088 /* .pid */ 7089 /* .tid */ 7090 .nr_namespaces = NR_NAMESPACES, 7091 /* .link_info[NR_NAMESPACES] */ 7092 }, 7093 }; 7094 7095 ns_link_info = namespaces_event.event_id.link_info; 7096 7097 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX], 7098 task, &mntns_operations); 7099 7100 #ifdef CONFIG_USER_NS 7101 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX], 7102 task, &userns_operations); 7103 #endif 7104 #ifdef CONFIG_NET_NS 7105 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX], 7106 task, &netns_operations); 7107 #endif 7108 #ifdef CONFIG_UTS_NS 7109 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX], 7110 task, &utsns_operations); 7111 #endif 7112 #ifdef CONFIG_IPC_NS 7113 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX], 7114 task, &ipcns_operations); 7115 #endif 7116 #ifdef CONFIG_PID_NS 7117 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX], 7118 task, &pidns_operations); 7119 #endif 7120 #ifdef CONFIG_CGROUPS 7121 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX], 7122 task, &cgroupns_operations); 7123 #endif 7124 7125 perf_iterate_sb(perf_event_namespaces_output, 7126 &namespaces_event, 7127 NULL); 7128 } 7129 7130 /* 7131 * mmap tracking 7132 */ 7133 7134 struct perf_mmap_event { 7135 struct vm_area_struct *vma; 7136 7137 const char *file_name; 7138 int file_size; 7139 int maj, min; 7140 u64 ino; 7141 u64 ino_generation; 7142 u32 prot, flags; 7143 7144 struct { 7145 struct perf_event_header header; 7146 7147 u32 pid; 7148 u32 tid; 7149 u64 start; 7150 u64 len; 7151 u64 pgoff; 7152 } event_id; 7153 }; 7154 7155 static int perf_event_mmap_match(struct perf_event *event, 7156 void *data) 7157 { 7158 struct perf_mmap_event *mmap_event = data; 7159 struct vm_area_struct *vma = mmap_event->vma; 7160 int executable = vma->vm_flags & VM_EXEC; 7161 7162 return (!executable && event->attr.mmap_data) || 7163 (executable && (event->attr.mmap || event->attr.mmap2)); 7164 } 7165 7166 static void perf_event_mmap_output(struct perf_event *event, 7167 void *data) 7168 { 7169 struct perf_mmap_event *mmap_event = data; 7170 struct perf_output_handle handle; 7171 struct perf_sample_data sample; 7172 int size = mmap_event->event_id.header.size; 7173 int ret; 7174 7175 if (!perf_event_mmap_match(event, data)) 7176 return; 7177 7178 if (event->attr.mmap2) { 7179 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 7180 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 7181 mmap_event->event_id.header.size += sizeof(mmap_event->min); 7182 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 7183 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 7184 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 7185 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 7186 } 7187 7188 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 7189 ret = perf_output_begin(&handle, event, 7190 mmap_event->event_id.header.size); 7191 if (ret) 7192 goto out; 7193 7194 mmap_event->event_id.pid = perf_event_pid(event, current); 7195 mmap_event->event_id.tid = perf_event_tid(event, current); 7196 7197 perf_output_put(&handle, mmap_event->event_id); 7198 7199 if (event->attr.mmap2) { 7200 perf_output_put(&handle, mmap_event->maj); 7201 perf_output_put(&handle, mmap_event->min); 7202 perf_output_put(&handle, mmap_event->ino); 7203 perf_output_put(&handle, mmap_event->ino_generation); 7204 perf_output_put(&handle, mmap_event->prot); 7205 perf_output_put(&handle, mmap_event->flags); 7206 } 7207 7208 __output_copy(&handle, mmap_event->file_name, 7209 mmap_event->file_size); 7210 7211 perf_event__output_id_sample(event, &handle, &sample); 7212 7213 perf_output_end(&handle); 7214 out: 7215 mmap_event->event_id.header.size = size; 7216 } 7217 7218 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 7219 { 7220 struct vm_area_struct *vma = mmap_event->vma; 7221 struct file *file = vma->vm_file; 7222 int maj = 0, min = 0; 7223 u64 ino = 0, gen = 0; 7224 u32 prot = 0, flags = 0; 7225 unsigned int size; 7226 char tmp[16]; 7227 char *buf = NULL; 7228 char *name; 7229 7230 if (vma->vm_flags & VM_READ) 7231 prot |= PROT_READ; 7232 if (vma->vm_flags & VM_WRITE) 7233 prot |= PROT_WRITE; 7234 if (vma->vm_flags & VM_EXEC) 7235 prot |= PROT_EXEC; 7236 7237 if (vma->vm_flags & VM_MAYSHARE) 7238 flags = MAP_SHARED; 7239 else 7240 flags = MAP_PRIVATE; 7241 7242 if (vma->vm_flags & VM_DENYWRITE) 7243 flags |= MAP_DENYWRITE; 7244 if (vma->vm_flags & VM_MAYEXEC) 7245 flags |= MAP_EXECUTABLE; 7246 if (vma->vm_flags & VM_LOCKED) 7247 flags |= MAP_LOCKED; 7248 if (vma->vm_flags & VM_HUGETLB) 7249 flags |= MAP_HUGETLB; 7250 7251 if (file) { 7252 struct inode *inode; 7253 dev_t dev; 7254 7255 buf = kmalloc(PATH_MAX, GFP_KERNEL); 7256 if (!buf) { 7257 name = "//enomem"; 7258 goto cpy_name; 7259 } 7260 /* 7261 * d_path() works from the end of the rb backwards, so we 7262 * need to add enough zero bytes after the string to handle 7263 * the 64bit alignment we do later. 7264 */ 7265 name = file_path(file, buf, PATH_MAX - sizeof(u64)); 7266 if (IS_ERR(name)) { 7267 name = "//toolong"; 7268 goto cpy_name; 7269 } 7270 inode = file_inode(vma->vm_file); 7271 dev = inode->i_sb->s_dev; 7272 ino = inode->i_ino; 7273 gen = inode->i_generation; 7274 maj = MAJOR(dev); 7275 min = MINOR(dev); 7276 7277 goto got_name; 7278 } else { 7279 if (vma->vm_ops && vma->vm_ops->name) { 7280 name = (char *) vma->vm_ops->name(vma); 7281 if (name) 7282 goto cpy_name; 7283 } 7284 7285 name = (char *)arch_vma_name(vma); 7286 if (name) 7287 goto cpy_name; 7288 7289 if (vma->vm_start <= vma->vm_mm->start_brk && 7290 vma->vm_end >= vma->vm_mm->brk) { 7291 name = "[heap]"; 7292 goto cpy_name; 7293 } 7294 if (vma->vm_start <= vma->vm_mm->start_stack && 7295 vma->vm_end >= vma->vm_mm->start_stack) { 7296 name = "[stack]"; 7297 goto cpy_name; 7298 } 7299 7300 name = "//anon"; 7301 goto cpy_name; 7302 } 7303 7304 cpy_name: 7305 strlcpy(tmp, name, sizeof(tmp)); 7306 name = tmp; 7307 got_name: 7308 /* 7309 * Since our buffer works in 8 byte units we need to align our string 7310 * size to a multiple of 8. However, we must guarantee the tail end is 7311 * zero'd out to avoid leaking random bits to userspace. 7312 */ 7313 size = strlen(name)+1; 7314 while (!IS_ALIGNED(size, sizeof(u64))) 7315 name[size++] = '\0'; 7316 7317 mmap_event->file_name = name; 7318 mmap_event->file_size = size; 7319 mmap_event->maj = maj; 7320 mmap_event->min = min; 7321 mmap_event->ino = ino; 7322 mmap_event->ino_generation = gen; 7323 mmap_event->prot = prot; 7324 mmap_event->flags = flags; 7325 7326 if (!(vma->vm_flags & VM_EXEC)) 7327 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 7328 7329 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 7330 7331 perf_iterate_sb(perf_event_mmap_output, 7332 mmap_event, 7333 NULL); 7334 7335 kfree(buf); 7336 } 7337 7338 /* 7339 * Check whether inode and address range match filter criteria. 7340 */ 7341 static bool perf_addr_filter_match(struct perf_addr_filter *filter, 7342 struct file *file, unsigned long offset, 7343 unsigned long size) 7344 { 7345 /* d_inode(NULL) won't be equal to any mapped user-space file */ 7346 if (!filter->path.dentry) 7347 return false; 7348 7349 if (d_inode(filter->path.dentry) != file_inode(file)) 7350 return false; 7351 7352 if (filter->offset > offset + size) 7353 return false; 7354 7355 if (filter->offset + filter->size < offset) 7356 return false; 7357 7358 return true; 7359 } 7360 7361 static void __perf_addr_filters_adjust(struct perf_event *event, void *data) 7362 { 7363 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 7364 struct vm_area_struct *vma = data; 7365 unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags; 7366 struct file *file = vma->vm_file; 7367 struct perf_addr_filter *filter; 7368 unsigned int restart = 0, count = 0; 7369 7370 if (!has_addr_filter(event)) 7371 return; 7372 7373 if (!file) 7374 return; 7375 7376 raw_spin_lock_irqsave(&ifh->lock, flags); 7377 list_for_each_entry(filter, &ifh->list, entry) { 7378 if (perf_addr_filter_match(filter, file, off, 7379 vma->vm_end - vma->vm_start)) { 7380 event->addr_filters_offs[count] = vma->vm_start; 7381 restart++; 7382 } 7383 7384 count++; 7385 } 7386 7387 if (restart) 7388 event->addr_filters_gen++; 7389 raw_spin_unlock_irqrestore(&ifh->lock, flags); 7390 7391 if (restart) 7392 perf_event_stop(event, 1); 7393 } 7394 7395 /* 7396 * Adjust all task's events' filters to the new vma 7397 */ 7398 static void perf_addr_filters_adjust(struct vm_area_struct *vma) 7399 { 7400 struct perf_event_context *ctx; 7401 int ctxn; 7402 7403 /* 7404 * Data tracing isn't supported yet and as such there is no need 7405 * to keep track of anything that isn't related to executable code: 7406 */ 7407 if (!(vma->vm_flags & VM_EXEC)) 7408 return; 7409 7410 rcu_read_lock(); 7411 for_each_task_context_nr(ctxn) { 7412 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 7413 if (!ctx) 7414 continue; 7415 7416 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true); 7417 } 7418 rcu_read_unlock(); 7419 } 7420 7421 void perf_event_mmap(struct vm_area_struct *vma) 7422 { 7423 struct perf_mmap_event mmap_event; 7424 7425 if (!atomic_read(&nr_mmap_events)) 7426 return; 7427 7428 mmap_event = (struct perf_mmap_event){ 7429 .vma = vma, 7430 /* .file_name */ 7431 /* .file_size */ 7432 .event_id = { 7433 .header = { 7434 .type = PERF_RECORD_MMAP, 7435 .misc = PERF_RECORD_MISC_USER, 7436 /* .size */ 7437 }, 7438 /* .pid */ 7439 /* .tid */ 7440 .start = vma->vm_start, 7441 .len = vma->vm_end - vma->vm_start, 7442 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 7443 }, 7444 /* .maj (attr_mmap2 only) */ 7445 /* .min (attr_mmap2 only) */ 7446 /* .ino (attr_mmap2 only) */ 7447 /* .ino_generation (attr_mmap2 only) */ 7448 /* .prot (attr_mmap2 only) */ 7449 /* .flags (attr_mmap2 only) */ 7450 }; 7451 7452 perf_addr_filters_adjust(vma); 7453 perf_event_mmap_event(&mmap_event); 7454 } 7455 7456 void perf_event_aux_event(struct perf_event *event, unsigned long head, 7457 unsigned long size, u64 flags) 7458 { 7459 struct perf_output_handle handle; 7460 struct perf_sample_data sample; 7461 struct perf_aux_event { 7462 struct perf_event_header header; 7463 u64 offset; 7464 u64 size; 7465 u64 flags; 7466 } rec = { 7467 .header = { 7468 .type = PERF_RECORD_AUX, 7469 .misc = 0, 7470 .size = sizeof(rec), 7471 }, 7472 .offset = head, 7473 .size = size, 7474 .flags = flags, 7475 }; 7476 int ret; 7477 7478 perf_event_header__init_id(&rec.header, &sample, event); 7479 ret = perf_output_begin(&handle, event, rec.header.size); 7480 7481 if (ret) 7482 return; 7483 7484 perf_output_put(&handle, rec); 7485 perf_event__output_id_sample(event, &handle, &sample); 7486 7487 perf_output_end(&handle); 7488 } 7489 7490 /* 7491 * Lost/dropped samples logging 7492 */ 7493 void perf_log_lost_samples(struct perf_event *event, u64 lost) 7494 { 7495 struct perf_output_handle handle; 7496 struct perf_sample_data sample; 7497 int ret; 7498 7499 struct { 7500 struct perf_event_header header; 7501 u64 lost; 7502 } lost_samples_event = { 7503 .header = { 7504 .type = PERF_RECORD_LOST_SAMPLES, 7505 .misc = 0, 7506 .size = sizeof(lost_samples_event), 7507 }, 7508 .lost = lost, 7509 }; 7510 7511 perf_event_header__init_id(&lost_samples_event.header, &sample, event); 7512 7513 ret = perf_output_begin(&handle, event, 7514 lost_samples_event.header.size); 7515 if (ret) 7516 return; 7517 7518 perf_output_put(&handle, lost_samples_event); 7519 perf_event__output_id_sample(event, &handle, &sample); 7520 perf_output_end(&handle); 7521 } 7522 7523 /* 7524 * context_switch tracking 7525 */ 7526 7527 struct perf_switch_event { 7528 struct task_struct *task; 7529 struct task_struct *next_prev; 7530 7531 struct { 7532 struct perf_event_header header; 7533 u32 next_prev_pid; 7534 u32 next_prev_tid; 7535 } event_id; 7536 }; 7537 7538 static int perf_event_switch_match(struct perf_event *event) 7539 { 7540 return event->attr.context_switch; 7541 } 7542 7543 static void perf_event_switch_output(struct perf_event *event, void *data) 7544 { 7545 struct perf_switch_event *se = data; 7546 struct perf_output_handle handle; 7547 struct perf_sample_data sample; 7548 int ret; 7549 7550 if (!perf_event_switch_match(event)) 7551 return; 7552 7553 /* Only CPU-wide events are allowed to see next/prev pid/tid */ 7554 if (event->ctx->task) { 7555 se->event_id.header.type = PERF_RECORD_SWITCH; 7556 se->event_id.header.size = sizeof(se->event_id.header); 7557 } else { 7558 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE; 7559 se->event_id.header.size = sizeof(se->event_id); 7560 se->event_id.next_prev_pid = 7561 perf_event_pid(event, se->next_prev); 7562 se->event_id.next_prev_tid = 7563 perf_event_tid(event, se->next_prev); 7564 } 7565 7566 perf_event_header__init_id(&se->event_id.header, &sample, event); 7567 7568 ret = perf_output_begin(&handle, event, se->event_id.header.size); 7569 if (ret) 7570 return; 7571 7572 if (event->ctx->task) 7573 perf_output_put(&handle, se->event_id.header); 7574 else 7575 perf_output_put(&handle, se->event_id); 7576 7577 perf_event__output_id_sample(event, &handle, &sample); 7578 7579 perf_output_end(&handle); 7580 } 7581 7582 static void perf_event_switch(struct task_struct *task, 7583 struct task_struct *next_prev, bool sched_in) 7584 { 7585 struct perf_switch_event switch_event; 7586 7587 /* N.B. caller checks nr_switch_events != 0 */ 7588 7589 switch_event = (struct perf_switch_event){ 7590 .task = task, 7591 .next_prev = next_prev, 7592 .event_id = { 7593 .header = { 7594 /* .type */ 7595 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT, 7596 /* .size */ 7597 }, 7598 /* .next_prev_pid */ 7599 /* .next_prev_tid */ 7600 }, 7601 }; 7602 7603 if (!sched_in && task->state == TASK_RUNNING) 7604 switch_event.event_id.header.misc |= 7605 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT; 7606 7607 perf_iterate_sb(perf_event_switch_output, 7608 &switch_event, 7609 NULL); 7610 } 7611 7612 /* 7613 * IRQ throttle logging 7614 */ 7615 7616 static void perf_log_throttle(struct perf_event *event, int enable) 7617 { 7618 struct perf_output_handle handle; 7619 struct perf_sample_data sample; 7620 int ret; 7621 7622 struct { 7623 struct perf_event_header header; 7624 u64 time; 7625 u64 id; 7626 u64 stream_id; 7627 } throttle_event = { 7628 .header = { 7629 .type = PERF_RECORD_THROTTLE, 7630 .misc = 0, 7631 .size = sizeof(throttle_event), 7632 }, 7633 .time = perf_event_clock(event), 7634 .id = primary_event_id(event), 7635 .stream_id = event->id, 7636 }; 7637 7638 if (enable) 7639 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 7640 7641 perf_event_header__init_id(&throttle_event.header, &sample, event); 7642 7643 ret = perf_output_begin(&handle, event, 7644 throttle_event.header.size); 7645 if (ret) 7646 return; 7647 7648 perf_output_put(&handle, throttle_event); 7649 perf_event__output_id_sample(event, &handle, &sample); 7650 perf_output_end(&handle); 7651 } 7652 7653 void perf_event_itrace_started(struct perf_event *event) 7654 { 7655 event->attach_state |= PERF_ATTACH_ITRACE; 7656 } 7657 7658 static void perf_log_itrace_start(struct perf_event *event) 7659 { 7660 struct perf_output_handle handle; 7661 struct perf_sample_data sample; 7662 struct perf_aux_event { 7663 struct perf_event_header header; 7664 u32 pid; 7665 u32 tid; 7666 } rec; 7667 int ret; 7668 7669 if (event->parent) 7670 event = event->parent; 7671 7672 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || 7673 event->attach_state & PERF_ATTACH_ITRACE) 7674 return; 7675 7676 rec.header.type = PERF_RECORD_ITRACE_START; 7677 rec.header.misc = 0; 7678 rec.header.size = sizeof(rec); 7679 rec.pid = perf_event_pid(event, current); 7680 rec.tid = perf_event_tid(event, current); 7681 7682 perf_event_header__init_id(&rec.header, &sample, event); 7683 ret = perf_output_begin(&handle, event, rec.header.size); 7684 7685 if (ret) 7686 return; 7687 7688 perf_output_put(&handle, rec); 7689 perf_event__output_id_sample(event, &handle, &sample); 7690 7691 perf_output_end(&handle); 7692 } 7693 7694 static int 7695 __perf_event_account_interrupt(struct perf_event *event, int throttle) 7696 { 7697 struct hw_perf_event *hwc = &event->hw; 7698 int ret = 0; 7699 u64 seq; 7700 7701 seq = __this_cpu_read(perf_throttled_seq); 7702 if (seq != hwc->interrupts_seq) { 7703 hwc->interrupts_seq = seq; 7704 hwc->interrupts = 1; 7705 } else { 7706 hwc->interrupts++; 7707 if (unlikely(throttle 7708 && hwc->interrupts >= max_samples_per_tick)) { 7709 __this_cpu_inc(perf_throttled_count); 7710 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 7711 hwc->interrupts = MAX_INTERRUPTS; 7712 perf_log_throttle(event, 0); 7713 ret = 1; 7714 } 7715 } 7716 7717 if (event->attr.freq) { 7718 u64 now = perf_clock(); 7719 s64 delta = now - hwc->freq_time_stamp; 7720 7721 hwc->freq_time_stamp = now; 7722 7723 if (delta > 0 && delta < 2*TICK_NSEC) 7724 perf_adjust_period(event, delta, hwc->last_period, true); 7725 } 7726 7727 return ret; 7728 } 7729 7730 int perf_event_account_interrupt(struct perf_event *event) 7731 { 7732 return __perf_event_account_interrupt(event, 1); 7733 } 7734 7735 /* 7736 * Generic event overflow handling, sampling. 7737 */ 7738 7739 static int __perf_event_overflow(struct perf_event *event, 7740 int throttle, struct perf_sample_data *data, 7741 struct pt_regs *regs) 7742 { 7743 int events = atomic_read(&event->event_limit); 7744 int ret = 0; 7745 7746 /* 7747 * Non-sampling counters might still use the PMI to fold short 7748 * hardware counters, ignore those. 7749 */ 7750 if (unlikely(!is_sampling_event(event))) 7751 return 0; 7752 7753 ret = __perf_event_account_interrupt(event, throttle); 7754 7755 /* 7756 * XXX event_limit might not quite work as expected on inherited 7757 * events 7758 */ 7759 7760 event->pending_kill = POLL_IN; 7761 if (events && atomic_dec_and_test(&event->event_limit)) { 7762 ret = 1; 7763 event->pending_kill = POLL_HUP; 7764 7765 perf_event_disable_inatomic(event); 7766 } 7767 7768 READ_ONCE(event->overflow_handler)(event, data, regs); 7769 7770 if (*perf_event_fasync(event) && event->pending_kill) { 7771 event->pending_wakeup = 1; 7772 irq_work_queue(&event->pending); 7773 } 7774 7775 return ret; 7776 } 7777 7778 int perf_event_overflow(struct perf_event *event, 7779 struct perf_sample_data *data, 7780 struct pt_regs *regs) 7781 { 7782 return __perf_event_overflow(event, 1, data, regs); 7783 } 7784 7785 /* 7786 * Generic software event infrastructure 7787 */ 7788 7789 struct swevent_htable { 7790 struct swevent_hlist *swevent_hlist; 7791 struct mutex hlist_mutex; 7792 int hlist_refcount; 7793 7794 /* Recursion avoidance in each contexts */ 7795 int recursion[PERF_NR_CONTEXTS]; 7796 }; 7797 7798 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 7799 7800 /* 7801 * We directly increment event->count and keep a second value in 7802 * event->hw.period_left to count intervals. This period event 7803 * is kept in the range [-sample_period, 0] so that we can use the 7804 * sign as trigger. 7805 */ 7806 7807 u64 perf_swevent_set_period(struct perf_event *event) 7808 { 7809 struct hw_perf_event *hwc = &event->hw; 7810 u64 period = hwc->last_period; 7811 u64 nr, offset; 7812 s64 old, val; 7813 7814 hwc->last_period = hwc->sample_period; 7815 7816 again: 7817 old = val = local64_read(&hwc->period_left); 7818 if (val < 0) 7819 return 0; 7820 7821 nr = div64_u64(period + val, period); 7822 offset = nr * period; 7823 val -= offset; 7824 if (local64_cmpxchg(&hwc->period_left, old, val) != old) 7825 goto again; 7826 7827 return nr; 7828 } 7829 7830 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 7831 struct perf_sample_data *data, 7832 struct pt_regs *regs) 7833 { 7834 struct hw_perf_event *hwc = &event->hw; 7835 int throttle = 0; 7836 7837 if (!overflow) 7838 overflow = perf_swevent_set_period(event); 7839 7840 if (hwc->interrupts == MAX_INTERRUPTS) 7841 return; 7842 7843 for (; overflow; overflow--) { 7844 if (__perf_event_overflow(event, throttle, 7845 data, regs)) { 7846 /* 7847 * We inhibit the overflow from happening when 7848 * hwc->interrupts == MAX_INTERRUPTS. 7849 */ 7850 break; 7851 } 7852 throttle = 1; 7853 } 7854 } 7855 7856 static void perf_swevent_event(struct perf_event *event, u64 nr, 7857 struct perf_sample_data *data, 7858 struct pt_regs *regs) 7859 { 7860 struct hw_perf_event *hwc = &event->hw; 7861 7862 local64_add(nr, &event->count); 7863 7864 if (!regs) 7865 return; 7866 7867 if (!is_sampling_event(event)) 7868 return; 7869 7870 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 7871 data->period = nr; 7872 return perf_swevent_overflow(event, 1, data, regs); 7873 } else 7874 data->period = event->hw.last_period; 7875 7876 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 7877 return perf_swevent_overflow(event, 1, data, regs); 7878 7879 if (local64_add_negative(nr, &hwc->period_left)) 7880 return; 7881 7882 perf_swevent_overflow(event, 0, data, regs); 7883 } 7884 7885 static int perf_exclude_event(struct perf_event *event, 7886 struct pt_regs *regs) 7887 { 7888 if (event->hw.state & PERF_HES_STOPPED) 7889 return 1; 7890 7891 if (regs) { 7892 if (event->attr.exclude_user && user_mode(regs)) 7893 return 1; 7894 7895 if (event->attr.exclude_kernel && !user_mode(regs)) 7896 return 1; 7897 } 7898 7899 return 0; 7900 } 7901 7902 static int perf_swevent_match(struct perf_event *event, 7903 enum perf_type_id type, 7904 u32 event_id, 7905 struct perf_sample_data *data, 7906 struct pt_regs *regs) 7907 { 7908 if (event->attr.type != type) 7909 return 0; 7910 7911 if (event->attr.config != event_id) 7912 return 0; 7913 7914 if (perf_exclude_event(event, regs)) 7915 return 0; 7916 7917 return 1; 7918 } 7919 7920 static inline u64 swevent_hash(u64 type, u32 event_id) 7921 { 7922 u64 val = event_id | (type << 32); 7923 7924 return hash_64(val, SWEVENT_HLIST_BITS); 7925 } 7926 7927 static inline struct hlist_head * 7928 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 7929 { 7930 u64 hash = swevent_hash(type, event_id); 7931 7932 return &hlist->heads[hash]; 7933 } 7934 7935 /* For the read side: events when they trigger */ 7936 static inline struct hlist_head * 7937 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 7938 { 7939 struct swevent_hlist *hlist; 7940 7941 hlist = rcu_dereference(swhash->swevent_hlist); 7942 if (!hlist) 7943 return NULL; 7944 7945 return __find_swevent_head(hlist, type, event_id); 7946 } 7947 7948 /* For the event head insertion and removal in the hlist */ 7949 static inline struct hlist_head * 7950 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 7951 { 7952 struct swevent_hlist *hlist; 7953 u32 event_id = event->attr.config; 7954 u64 type = event->attr.type; 7955 7956 /* 7957 * Event scheduling is always serialized against hlist allocation 7958 * and release. Which makes the protected version suitable here. 7959 * The context lock guarantees that. 7960 */ 7961 hlist = rcu_dereference_protected(swhash->swevent_hlist, 7962 lockdep_is_held(&event->ctx->lock)); 7963 if (!hlist) 7964 return NULL; 7965 7966 return __find_swevent_head(hlist, type, event_id); 7967 } 7968 7969 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 7970 u64 nr, 7971 struct perf_sample_data *data, 7972 struct pt_regs *regs) 7973 { 7974 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 7975 struct perf_event *event; 7976 struct hlist_head *head; 7977 7978 rcu_read_lock(); 7979 head = find_swevent_head_rcu(swhash, type, event_id); 7980 if (!head) 7981 goto end; 7982 7983 hlist_for_each_entry_rcu(event, head, hlist_entry) { 7984 if (perf_swevent_match(event, type, event_id, data, regs)) 7985 perf_swevent_event(event, nr, data, regs); 7986 } 7987 end: 7988 rcu_read_unlock(); 7989 } 7990 7991 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); 7992 7993 int perf_swevent_get_recursion_context(void) 7994 { 7995 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 7996 7997 return get_recursion_context(swhash->recursion); 7998 } 7999 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 8000 8001 void perf_swevent_put_recursion_context(int rctx) 8002 { 8003 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 8004 8005 put_recursion_context(swhash->recursion, rctx); 8006 } 8007 8008 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 8009 { 8010 struct perf_sample_data data; 8011 8012 if (WARN_ON_ONCE(!regs)) 8013 return; 8014 8015 perf_sample_data_init(&data, addr, 0); 8016 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 8017 } 8018 8019 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 8020 { 8021 int rctx; 8022 8023 preempt_disable_notrace(); 8024 rctx = perf_swevent_get_recursion_context(); 8025 if (unlikely(rctx < 0)) 8026 goto fail; 8027 8028 ___perf_sw_event(event_id, nr, regs, addr); 8029 8030 perf_swevent_put_recursion_context(rctx); 8031 fail: 8032 preempt_enable_notrace(); 8033 } 8034 8035 static void perf_swevent_read(struct perf_event *event) 8036 { 8037 } 8038 8039 static int perf_swevent_add(struct perf_event *event, int flags) 8040 { 8041 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 8042 struct hw_perf_event *hwc = &event->hw; 8043 struct hlist_head *head; 8044 8045 if (is_sampling_event(event)) { 8046 hwc->last_period = hwc->sample_period; 8047 perf_swevent_set_period(event); 8048 } 8049 8050 hwc->state = !(flags & PERF_EF_START); 8051 8052 head = find_swevent_head(swhash, event); 8053 if (WARN_ON_ONCE(!head)) 8054 return -EINVAL; 8055 8056 hlist_add_head_rcu(&event->hlist_entry, head); 8057 perf_event_update_userpage(event); 8058 8059 return 0; 8060 } 8061 8062 static void perf_swevent_del(struct perf_event *event, int flags) 8063 { 8064 hlist_del_rcu(&event->hlist_entry); 8065 } 8066 8067 static void perf_swevent_start(struct perf_event *event, int flags) 8068 { 8069 event->hw.state = 0; 8070 } 8071 8072 static void perf_swevent_stop(struct perf_event *event, int flags) 8073 { 8074 event->hw.state = PERF_HES_STOPPED; 8075 } 8076 8077 /* Deref the hlist from the update side */ 8078 static inline struct swevent_hlist * 8079 swevent_hlist_deref(struct swevent_htable *swhash) 8080 { 8081 return rcu_dereference_protected(swhash->swevent_hlist, 8082 lockdep_is_held(&swhash->hlist_mutex)); 8083 } 8084 8085 static void swevent_hlist_release(struct swevent_htable *swhash) 8086 { 8087 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 8088 8089 if (!hlist) 8090 return; 8091 8092 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 8093 kfree_rcu(hlist, rcu_head); 8094 } 8095 8096 static void swevent_hlist_put_cpu(int cpu) 8097 { 8098 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 8099 8100 mutex_lock(&swhash->hlist_mutex); 8101 8102 if (!--swhash->hlist_refcount) 8103 swevent_hlist_release(swhash); 8104 8105 mutex_unlock(&swhash->hlist_mutex); 8106 } 8107 8108 static void swevent_hlist_put(void) 8109 { 8110 int cpu; 8111 8112 for_each_possible_cpu(cpu) 8113 swevent_hlist_put_cpu(cpu); 8114 } 8115 8116 static int swevent_hlist_get_cpu(int cpu) 8117 { 8118 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 8119 int err = 0; 8120 8121 mutex_lock(&swhash->hlist_mutex); 8122 if (!swevent_hlist_deref(swhash) && 8123 cpumask_test_cpu(cpu, perf_online_mask)) { 8124 struct swevent_hlist *hlist; 8125 8126 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 8127 if (!hlist) { 8128 err = -ENOMEM; 8129 goto exit; 8130 } 8131 rcu_assign_pointer(swhash->swevent_hlist, hlist); 8132 } 8133 swhash->hlist_refcount++; 8134 exit: 8135 mutex_unlock(&swhash->hlist_mutex); 8136 8137 return err; 8138 } 8139 8140 static int swevent_hlist_get(void) 8141 { 8142 int err, cpu, failed_cpu; 8143 8144 mutex_lock(&pmus_lock); 8145 for_each_possible_cpu(cpu) { 8146 err = swevent_hlist_get_cpu(cpu); 8147 if (err) { 8148 failed_cpu = cpu; 8149 goto fail; 8150 } 8151 } 8152 mutex_unlock(&pmus_lock); 8153 return 0; 8154 fail: 8155 for_each_possible_cpu(cpu) { 8156 if (cpu == failed_cpu) 8157 break; 8158 swevent_hlist_put_cpu(cpu); 8159 } 8160 mutex_unlock(&pmus_lock); 8161 return err; 8162 } 8163 8164 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 8165 8166 static void sw_perf_event_destroy(struct perf_event *event) 8167 { 8168 u64 event_id = event->attr.config; 8169 8170 WARN_ON(event->parent); 8171 8172 static_key_slow_dec(&perf_swevent_enabled[event_id]); 8173 swevent_hlist_put(); 8174 } 8175 8176 static int perf_swevent_init(struct perf_event *event) 8177 { 8178 u64 event_id = event->attr.config; 8179 8180 if (event->attr.type != PERF_TYPE_SOFTWARE) 8181 return -ENOENT; 8182 8183 /* 8184 * no branch sampling for software events 8185 */ 8186 if (has_branch_stack(event)) 8187 return -EOPNOTSUPP; 8188 8189 switch (event_id) { 8190 case PERF_COUNT_SW_CPU_CLOCK: 8191 case PERF_COUNT_SW_TASK_CLOCK: 8192 return -ENOENT; 8193 8194 default: 8195 break; 8196 } 8197 8198 if (event_id >= PERF_COUNT_SW_MAX) 8199 return -ENOENT; 8200 8201 if (!event->parent) { 8202 int err; 8203 8204 err = swevent_hlist_get(); 8205 if (err) 8206 return err; 8207 8208 static_key_slow_inc(&perf_swevent_enabled[event_id]); 8209 event->destroy = sw_perf_event_destroy; 8210 } 8211 8212 return 0; 8213 } 8214 8215 static struct pmu perf_swevent = { 8216 .task_ctx_nr = perf_sw_context, 8217 8218 .capabilities = PERF_PMU_CAP_NO_NMI, 8219 8220 .event_init = perf_swevent_init, 8221 .add = perf_swevent_add, 8222 .del = perf_swevent_del, 8223 .start = perf_swevent_start, 8224 .stop = perf_swevent_stop, 8225 .read = perf_swevent_read, 8226 }; 8227 8228 #ifdef CONFIG_EVENT_TRACING 8229 8230 static int perf_tp_filter_match(struct perf_event *event, 8231 struct perf_sample_data *data) 8232 { 8233 void *record = data->raw->frag.data; 8234 8235 /* only top level events have filters set */ 8236 if (event->parent) 8237 event = event->parent; 8238 8239 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 8240 return 1; 8241 return 0; 8242 } 8243 8244 static int perf_tp_event_match(struct perf_event *event, 8245 struct perf_sample_data *data, 8246 struct pt_regs *regs) 8247 { 8248 if (event->hw.state & PERF_HES_STOPPED) 8249 return 0; 8250 /* 8251 * All tracepoints are from kernel-space. 8252 */ 8253 if (event->attr.exclude_kernel) 8254 return 0; 8255 8256 if (!perf_tp_filter_match(event, data)) 8257 return 0; 8258 8259 return 1; 8260 } 8261 8262 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx, 8263 struct trace_event_call *call, u64 count, 8264 struct pt_regs *regs, struct hlist_head *head, 8265 struct task_struct *task) 8266 { 8267 if (bpf_prog_array_valid(call)) { 8268 *(struct pt_regs **)raw_data = regs; 8269 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) { 8270 perf_swevent_put_recursion_context(rctx); 8271 return; 8272 } 8273 } 8274 perf_tp_event(call->event.type, count, raw_data, size, regs, head, 8275 rctx, task); 8276 } 8277 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit); 8278 8279 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size, 8280 struct pt_regs *regs, struct hlist_head *head, int rctx, 8281 struct task_struct *task) 8282 { 8283 struct perf_sample_data data; 8284 struct perf_event *event; 8285 8286 struct perf_raw_record raw = { 8287 .frag = { 8288 .size = entry_size, 8289 .data = record, 8290 }, 8291 }; 8292 8293 perf_sample_data_init(&data, 0, 0); 8294 data.raw = &raw; 8295 8296 perf_trace_buf_update(record, event_type); 8297 8298 hlist_for_each_entry_rcu(event, head, hlist_entry) { 8299 if (perf_tp_event_match(event, &data, regs)) 8300 perf_swevent_event(event, count, &data, regs); 8301 } 8302 8303 /* 8304 * If we got specified a target task, also iterate its context and 8305 * deliver this event there too. 8306 */ 8307 if (task && task != current) { 8308 struct perf_event_context *ctx; 8309 struct trace_entry *entry = record; 8310 8311 rcu_read_lock(); 8312 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]); 8313 if (!ctx) 8314 goto unlock; 8315 8316 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 8317 if (event->attr.type != PERF_TYPE_TRACEPOINT) 8318 continue; 8319 if (event->attr.config != entry->type) 8320 continue; 8321 if (perf_tp_event_match(event, &data, regs)) 8322 perf_swevent_event(event, count, &data, regs); 8323 } 8324 unlock: 8325 rcu_read_unlock(); 8326 } 8327 8328 perf_swevent_put_recursion_context(rctx); 8329 } 8330 EXPORT_SYMBOL_GPL(perf_tp_event); 8331 8332 static void tp_perf_event_destroy(struct perf_event *event) 8333 { 8334 perf_trace_destroy(event); 8335 } 8336 8337 static int perf_tp_event_init(struct perf_event *event) 8338 { 8339 int err; 8340 8341 if (event->attr.type != PERF_TYPE_TRACEPOINT) 8342 return -ENOENT; 8343 8344 /* 8345 * no branch sampling for tracepoint events 8346 */ 8347 if (has_branch_stack(event)) 8348 return -EOPNOTSUPP; 8349 8350 err = perf_trace_init(event); 8351 if (err) 8352 return err; 8353 8354 event->destroy = tp_perf_event_destroy; 8355 8356 return 0; 8357 } 8358 8359 static struct pmu perf_tracepoint = { 8360 .task_ctx_nr = perf_sw_context, 8361 8362 .event_init = perf_tp_event_init, 8363 .add = perf_trace_add, 8364 .del = perf_trace_del, 8365 .start = perf_swevent_start, 8366 .stop = perf_swevent_stop, 8367 .read = perf_swevent_read, 8368 }; 8369 8370 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS) 8371 /* 8372 * Flags in config, used by dynamic PMU kprobe and uprobe 8373 * The flags should match following PMU_FORMAT_ATTR(). 8374 * 8375 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe 8376 * if not set, create kprobe/uprobe 8377 */ 8378 enum perf_probe_config { 8379 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */ 8380 }; 8381 8382 PMU_FORMAT_ATTR(retprobe, "config:0"); 8383 8384 static struct attribute *probe_attrs[] = { 8385 &format_attr_retprobe.attr, 8386 NULL, 8387 }; 8388 8389 static struct attribute_group probe_format_group = { 8390 .name = "format", 8391 .attrs = probe_attrs, 8392 }; 8393 8394 static const struct attribute_group *probe_attr_groups[] = { 8395 &probe_format_group, 8396 NULL, 8397 }; 8398 #endif 8399 8400 #ifdef CONFIG_KPROBE_EVENTS 8401 static int perf_kprobe_event_init(struct perf_event *event); 8402 static struct pmu perf_kprobe = { 8403 .task_ctx_nr = perf_sw_context, 8404 .event_init = perf_kprobe_event_init, 8405 .add = perf_trace_add, 8406 .del = perf_trace_del, 8407 .start = perf_swevent_start, 8408 .stop = perf_swevent_stop, 8409 .read = perf_swevent_read, 8410 .attr_groups = probe_attr_groups, 8411 }; 8412 8413 static int perf_kprobe_event_init(struct perf_event *event) 8414 { 8415 int err; 8416 bool is_retprobe; 8417 8418 if (event->attr.type != perf_kprobe.type) 8419 return -ENOENT; 8420 8421 if (!capable(CAP_SYS_ADMIN)) 8422 return -EACCES; 8423 8424 /* 8425 * no branch sampling for probe events 8426 */ 8427 if (has_branch_stack(event)) 8428 return -EOPNOTSUPP; 8429 8430 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 8431 err = perf_kprobe_init(event, is_retprobe); 8432 if (err) 8433 return err; 8434 8435 event->destroy = perf_kprobe_destroy; 8436 8437 return 0; 8438 } 8439 #endif /* CONFIG_KPROBE_EVENTS */ 8440 8441 #ifdef CONFIG_UPROBE_EVENTS 8442 static int perf_uprobe_event_init(struct perf_event *event); 8443 static struct pmu perf_uprobe = { 8444 .task_ctx_nr = perf_sw_context, 8445 .event_init = perf_uprobe_event_init, 8446 .add = perf_trace_add, 8447 .del = perf_trace_del, 8448 .start = perf_swevent_start, 8449 .stop = perf_swevent_stop, 8450 .read = perf_swevent_read, 8451 .attr_groups = probe_attr_groups, 8452 }; 8453 8454 static int perf_uprobe_event_init(struct perf_event *event) 8455 { 8456 int err; 8457 bool is_retprobe; 8458 8459 if (event->attr.type != perf_uprobe.type) 8460 return -ENOENT; 8461 8462 if (!capable(CAP_SYS_ADMIN)) 8463 return -EACCES; 8464 8465 /* 8466 * no branch sampling for probe events 8467 */ 8468 if (has_branch_stack(event)) 8469 return -EOPNOTSUPP; 8470 8471 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 8472 err = perf_uprobe_init(event, is_retprobe); 8473 if (err) 8474 return err; 8475 8476 event->destroy = perf_uprobe_destroy; 8477 8478 return 0; 8479 } 8480 #endif /* CONFIG_UPROBE_EVENTS */ 8481 8482 static inline void perf_tp_register(void) 8483 { 8484 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 8485 #ifdef CONFIG_KPROBE_EVENTS 8486 perf_pmu_register(&perf_kprobe, "kprobe", -1); 8487 #endif 8488 #ifdef CONFIG_UPROBE_EVENTS 8489 perf_pmu_register(&perf_uprobe, "uprobe", -1); 8490 #endif 8491 } 8492 8493 static void perf_event_free_filter(struct perf_event *event) 8494 { 8495 ftrace_profile_free_filter(event); 8496 } 8497 8498 #ifdef CONFIG_BPF_SYSCALL 8499 static void bpf_overflow_handler(struct perf_event *event, 8500 struct perf_sample_data *data, 8501 struct pt_regs *regs) 8502 { 8503 struct bpf_perf_event_data_kern ctx = { 8504 .data = data, 8505 .event = event, 8506 }; 8507 int ret = 0; 8508 8509 ctx.regs = perf_arch_bpf_user_pt_regs(regs); 8510 preempt_disable(); 8511 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) 8512 goto out; 8513 rcu_read_lock(); 8514 ret = BPF_PROG_RUN(event->prog, &ctx); 8515 rcu_read_unlock(); 8516 out: 8517 __this_cpu_dec(bpf_prog_active); 8518 preempt_enable(); 8519 if (!ret) 8520 return; 8521 8522 event->orig_overflow_handler(event, data, regs); 8523 } 8524 8525 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd) 8526 { 8527 struct bpf_prog *prog; 8528 8529 if (event->overflow_handler_context) 8530 /* hw breakpoint or kernel counter */ 8531 return -EINVAL; 8532 8533 if (event->prog) 8534 return -EEXIST; 8535 8536 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT); 8537 if (IS_ERR(prog)) 8538 return PTR_ERR(prog); 8539 8540 event->prog = prog; 8541 event->orig_overflow_handler = READ_ONCE(event->overflow_handler); 8542 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler); 8543 return 0; 8544 } 8545 8546 static void perf_event_free_bpf_handler(struct perf_event *event) 8547 { 8548 struct bpf_prog *prog = event->prog; 8549 8550 if (!prog) 8551 return; 8552 8553 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler); 8554 event->prog = NULL; 8555 bpf_prog_put(prog); 8556 } 8557 #else 8558 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd) 8559 { 8560 return -EOPNOTSUPP; 8561 } 8562 static void perf_event_free_bpf_handler(struct perf_event *event) 8563 { 8564 } 8565 #endif 8566 8567 /* 8568 * returns true if the event is a tracepoint, or a kprobe/upprobe created 8569 * with perf_event_open() 8570 */ 8571 static inline bool perf_event_is_tracing(struct perf_event *event) 8572 { 8573 if (event->pmu == &perf_tracepoint) 8574 return true; 8575 #ifdef CONFIG_KPROBE_EVENTS 8576 if (event->pmu == &perf_kprobe) 8577 return true; 8578 #endif 8579 #ifdef CONFIG_UPROBE_EVENTS 8580 if (event->pmu == &perf_uprobe) 8581 return true; 8582 #endif 8583 return false; 8584 } 8585 8586 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 8587 { 8588 bool is_kprobe, is_tracepoint, is_syscall_tp; 8589 struct bpf_prog *prog; 8590 int ret; 8591 8592 if (!perf_event_is_tracing(event)) 8593 return perf_event_set_bpf_handler(event, prog_fd); 8594 8595 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE; 8596 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT; 8597 is_syscall_tp = is_syscall_trace_event(event->tp_event); 8598 if (!is_kprobe && !is_tracepoint && !is_syscall_tp) 8599 /* bpf programs can only be attached to u/kprobe or tracepoint */ 8600 return -EINVAL; 8601 8602 prog = bpf_prog_get(prog_fd); 8603 if (IS_ERR(prog)) 8604 return PTR_ERR(prog); 8605 8606 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) || 8607 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) || 8608 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) { 8609 /* valid fd, but invalid bpf program type */ 8610 bpf_prog_put(prog); 8611 return -EINVAL; 8612 } 8613 8614 /* Kprobe override only works for kprobes, not uprobes. */ 8615 if (prog->kprobe_override && 8616 !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) { 8617 bpf_prog_put(prog); 8618 return -EINVAL; 8619 } 8620 8621 if (is_tracepoint || is_syscall_tp) { 8622 int off = trace_event_get_offsets(event->tp_event); 8623 8624 if (prog->aux->max_ctx_offset > off) { 8625 bpf_prog_put(prog); 8626 return -EACCES; 8627 } 8628 } 8629 8630 ret = perf_event_attach_bpf_prog(event, prog); 8631 if (ret) 8632 bpf_prog_put(prog); 8633 return ret; 8634 } 8635 8636 static void perf_event_free_bpf_prog(struct perf_event *event) 8637 { 8638 if (!perf_event_is_tracing(event)) { 8639 perf_event_free_bpf_handler(event); 8640 return; 8641 } 8642 perf_event_detach_bpf_prog(event); 8643 } 8644 8645 #else 8646 8647 static inline void perf_tp_register(void) 8648 { 8649 } 8650 8651 static void perf_event_free_filter(struct perf_event *event) 8652 { 8653 } 8654 8655 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 8656 { 8657 return -ENOENT; 8658 } 8659 8660 static void perf_event_free_bpf_prog(struct perf_event *event) 8661 { 8662 } 8663 #endif /* CONFIG_EVENT_TRACING */ 8664 8665 #ifdef CONFIG_HAVE_HW_BREAKPOINT 8666 void perf_bp_event(struct perf_event *bp, void *data) 8667 { 8668 struct perf_sample_data sample; 8669 struct pt_regs *regs = data; 8670 8671 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 8672 8673 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 8674 perf_swevent_event(bp, 1, &sample, regs); 8675 } 8676 #endif 8677 8678 /* 8679 * Allocate a new address filter 8680 */ 8681 static struct perf_addr_filter * 8682 perf_addr_filter_new(struct perf_event *event, struct list_head *filters) 8683 { 8684 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu); 8685 struct perf_addr_filter *filter; 8686 8687 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node); 8688 if (!filter) 8689 return NULL; 8690 8691 INIT_LIST_HEAD(&filter->entry); 8692 list_add_tail(&filter->entry, filters); 8693 8694 return filter; 8695 } 8696 8697 static void free_filters_list(struct list_head *filters) 8698 { 8699 struct perf_addr_filter *filter, *iter; 8700 8701 list_for_each_entry_safe(filter, iter, filters, entry) { 8702 path_put(&filter->path); 8703 list_del(&filter->entry); 8704 kfree(filter); 8705 } 8706 } 8707 8708 /* 8709 * Free existing address filters and optionally install new ones 8710 */ 8711 static void perf_addr_filters_splice(struct perf_event *event, 8712 struct list_head *head) 8713 { 8714 unsigned long flags; 8715 LIST_HEAD(list); 8716 8717 if (!has_addr_filter(event)) 8718 return; 8719 8720 /* don't bother with children, they don't have their own filters */ 8721 if (event->parent) 8722 return; 8723 8724 raw_spin_lock_irqsave(&event->addr_filters.lock, flags); 8725 8726 list_splice_init(&event->addr_filters.list, &list); 8727 if (head) 8728 list_splice(head, &event->addr_filters.list); 8729 8730 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags); 8731 8732 free_filters_list(&list); 8733 } 8734 8735 /* 8736 * Scan through mm's vmas and see if one of them matches the 8737 * @filter; if so, adjust filter's address range. 8738 * Called with mm::mmap_sem down for reading. 8739 */ 8740 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter, 8741 struct mm_struct *mm) 8742 { 8743 struct vm_area_struct *vma; 8744 8745 for (vma = mm->mmap; vma; vma = vma->vm_next) { 8746 struct file *file = vma->vm_file; 8747 unsigned long off = vma->vm_pgoff << PAGE_SHIFT; 8748 unsigned long vma_size = vma->vm_end - vma->vm_start; 8749 8750 if (!file) 8751 continue; 8752 8753 if (!perf_addr_filter_match(filter, file, off, vma_size)) 8754 continue; 8755 8756 return vma->vm_start; 8757 } 8758 8759 return 0; 8760 } 8761 8762 /* 8763 * Update event's address range filters based on the 8764 * task's existing mappings, if any. 8765 */ 8766 static void perf_event_addr_filters_apply(struct perf_event *event) 8767 { 8768 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 8769 struct task_struct *task = READ_ONCE(event->ctx->task); 8770 struct perf_addr_filter *filter; 8771 struct mm_struct *mm = NULL; 8772 unsigned int count = 0; 8773 unsigned long flags; 8774 8775 /* 8776 * We may observe TASK_TOMBSTONE, which means that the event tear-down 8777 * will stop on the parent's child_mutex that our caller is also holding 8778 */ 8779 if (task == TASK_TOMBSTONE) 8780 return; 8781 8782 if (!ifh->nr_file_filters) 8783 return; 8784 8785 mm = get_task_mm(event->ctx->task); 8786 if (!mm) 8787 goto restart; 8788 8789 down_read(&mm->mmap_sem); 8790 8791 raw_spin_lock_irqsave(&ifh->lock, flags); 8792 list_for_each_entry(filter, &ifh->list, entry) { 8793 event->addr_filters_offs[count] = 0; 8794 8795 /* 8796 * Adjust base offset if the filter is associated to a binary 8797 * that needs to be mapped: 8798 */ 8799 if (filter->path.dentry) 8800 event->addr_filters_offs[count] = 8801 perf_addr_filter_apply(filter, mm); 8802 8803 count++; 8804 } 8805 8806 event->addr_filters_gen++; 8807 raw_spin_unlock_irqrestore(&ifh->lock, flags); 8808 8809 up_read(&mm->mmap_sem); 8810 8811 mmput(mm); 8812 8813 restart: 8814 perf_event_stop(event, 1); 8815 } 8816 8817 /* 8818 * Address range filtering: limiting the data to certain 8819 * instruction address ranges. Filters are ioctl()ed to us from 8820 * userspace as ascii strings. 8821 * 8822 * Filter string format: 8823 * 8824 * ACTION RANGE_SPEC 8825 * where ACTION is one of the 8826 * * "filter": limit the trace to this region 8827 * * "start": start tracing from this address 8828 * * "stop": stop tracing at this address/region; 8829 * RANGE_SPEC is 8830 * * for kernel addresses: <start address>[/<size>] 8831 * * for object files: <start address>[/<size>]@</path/to/object/file> 8832 * 8833 * if <size> is not specified or is zero, the range is treated as a single 8834 * address; not valid for ACTION=="filter". 8835 */ 8836 enum { 8837 IF_ACT_NONE = -1, 8838 IF_ACT_FILTER, 8839 IF_ACT_START, 8840 IF_ACT_STOP, 8841 IF_SRC_FILE, 8842 IF_SRC_KERNEL, 8843 IF_SRC_FILEADDR, 8844 IF_SRC_KERNELADDR, 8845 }; 8846 8847 enum { 8848 IF_STATE_ACTION = 0, 8849 IF_STATE_SOURCE, 8850 IF_STATE_END, 8851 }; 8852 8853 static const match_table_t if_tokens = { 8854 { IF_ACT_FILTER, "filter" }, 8855 { IF_ACT_START, "start" }, 8856 { IF_ACT_STOP, "stop" }, 8857 { IF_SRC_FILE, "%u/%u@%s" }, 8858 { IF_SRC_KERNEL, "%u/%u" }, 8859 { IF_SRC_FILEADDR, "%u@%s" }, 8860 { IF_SRC_KERNELADDR, "%u" }, 8861 { IF_ACT_NONE, NULL }, 8862 }; 8863 8864 /* 8865 * Address filter string parser 8866 */ 8867 static int 8868 perf_event_parse_addr_filter(struct perf_event *event, char *fstr, 8869 struct list_head *filters) 8870 { 8871 struct perf_addr_filter *filter = NULL; 8872 char *start, *orig, *filename = NULL; 8873 substring_t args[MAX_OPT_ARGS]; 8874 int state = IF_STATE_ACTION, token; 8875 unsigned int kernel = 0; 8876 int ret = -EINVAL; 8877 8878 orig = fstr = kstrdup(fstr, GFP_KERNEL); 8879 if (!fstr) 8880 return -ENOMEM; 8881 8882 while ((start = strsep(&fstr, " ,\n")) != NULL) { 8883 static const enum perf_addr_filter_action_t actions[] = { 8884 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER, 8885 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START, 8886 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP, 8887 }; 8888 ret = -EINVAL; 8889 8890 if (!*start) 8891 continue; 8892 8893 /* filter definition begins */ 8894 if (state == IF_STATE_ACTION) { 8895 filter = perf_addr_filter_new(event, filters); 8896 if (!filter) 8897 goto fail; 8898 } 8899 8900 token = match_token(start, if_tokens, args); 8901 switch (token) { 8902 case IF_ACT_FILTER: 8903 case IF_ACT_START: 8904 case IF_ACT_STOP: 8905 if (state != IF_STATE_ACTION) 8906 goto fail; 8907 8908 filter->action = actions[token]; 8909 state = IF_STATE_SOURCE; 8910 break; 8911 8912 case IF_SRC_KERNELADDR: 8913 case IF_SRC_KERNEL: 8914 kernel = 1; 8915 8916 case IF_SRC_FILEADDR: 8917 case IF_SRC_FILE: 8918 if (state != IF_STATE_SOURCE) 8919 goto fail; 8920 8921 *args[0].to = 0; 8922 ret = kstrtoul(args[0].from, 0, &filter->offset); 8923 if (ret) 8924 goto fail; 8925 8926 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) { 8927 *args[1].to = 0; 8928 ret = kstrtoul(args[1].from, 0, &filter->size); 8929 if (ret) 8930 goto fail; 8931 } 8932 8933 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) { 8934 int fpos = token == IF_SRC_FILE ? 2 : 1; 8935 8936 filename = match_strdup(&args[fpos]); 8937 if (!filename) { 8938 ret = -ENOMEM; 8939 goto fail; 8940 } 8941 } 8942 8943 state = IF_STATE_END; 8944 break; 8945 8946 default: 8947 goto fail; 8948 } 8949 8950 /* 8951 * Filter definition is fully parsed, validate and install it. 8952 * Make sure that it doesn't contradict itself or the event's 8953 * attribute. 8954 */ 8955 if (state == IF_STATE_END) { 8956 ret = -EINVAL; 8957 if (kernel && event->attr.exclude_kernel) 8958 goto fail; 8959 8960 /* 8961 * ACTION "filter" must have a non-zero length region 8962 * specified. 8963 */ 8964 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER && 8965 !filter->size) 8966 goto fail; 8967 8968 if (!kernel) { 8969 if (!filename) 8970 goto fail; 8971 8972 /* 8973 * For now, we only support file-based filters 8974 * in per-task events; doing so for CPU-wide 8975 * events requires additional context switching 8976 * trickery, since same object code will be 8977 * mapped at different virtual addresses in 8978 * different processes. 8979 */ 8980 ret = -EOPNOTSUPP; 8981 if (!event->ctx->task) 8982 goto fail_free_name; 8983 8984 /* look up the path and grab its inode */ 8985 ret = kern_path(filename, LOOKUP_FOLLOW, 8986 &filter->path); 8987 if (ret) 8988 goto fail_free_name; 8989 8990 kfree(filename); 8991 filename = NULL; 8992 8993 ret = -EINVAL; 8994 if (!filter->path.dentry || 8995 !S_ISREG(d_inode(filter->path.dentry) 8996 ->i_mode)) 8997 goto fail; 8998 8999 event->addr_filters.nr_file_filters++; 9000 } 9001 9002 /* ready to consume more filters */ 9003 state = IF_STATE_ACTION; 9004 filter = NULL; 9005 } 9006 } 9007 9008 if (state != IF_STATE_ACTION) 9009 goto fail; 9010 9011 kfree(orig); 9012 9013 return 0; 9014 9015 fail_free_name: 9016 kfree(filename); 9017 fail: 9018 free_filters_list(filters); 9019 kfree(orig); 9020 9021 return ret; 9022 } 9023 9024 static int 9025 perf_event_set_addr_filter(struct perf_event *event, char *filter_str) 9026 { 9027 LIST_HEAD(filters); 9028 int ret; 9029 9030 /* 9031 * Since this is called in perf_ioctl() path, we're already holding 9032 * ctx::mutex. 9033 */ 9034 lockdep_assert_held(&event->ctx->mutex); 9035 9036 if (WARN_ON_ONCE(event->parent)) 9037 return -EINVAL; 9038 9039 ret = perf_event_parse_addr_filter(event, filter_str, &filters); 9040 if (ret) 9041 goto fail_clear_files; 9042 9043 ret = event->pmu->addr_filters_validate(&filters); 9044 if (ret) 9045 goto fail_free_filters; 9046 9047 /* remove existing filters, if any */ 9048 perf_addr_filters_splice(event, &filters); 9049 9050 /* install new filters */ 9051 perf_event_for_each_child(event, perf_event_addr_filters_apply); 9052 9053 return ret; 9054 9055 fail_free_filters: 9056 free_filters_list(&filters); 9057 9058 fail_clear_files: 9059 event->addr_filters.nr_file_filters = 0; 9060 9061 return ret; 9062 } 9063 9064 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 9065 { 9066 int ret = -EINVAL; 9067 char *filter_str; 9068 9069 filter_str = strndup_user(arg, PAGE_SIZE); 9070 if (IS_ERR(filter_str)) 9071 return PTR_ERR(filter_str); 9072 9073 #ifdef CONFIG_EVENT_TRACING 9074 if (perf_event_is_tracing(event)) { 9075 struct perf_event_context *ctx = event->ctx; 9076 9077 /* 9078 * Beware, here be dragons!! 9079 * 9080 * the tracepoint muck will deadlock against ctx->mutex, but 9081 * the tracepoint stuff does not actually need it. So 9082 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we 9083 * already have a reference on ctx. 9084 * 9085 * This can result in event getting moved to a different ctx, 9086 * but that does not affect the tracepoint state. 9087 */ 9088 mutex_unlock(&ctx->mutex); 9089 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 9090 mutex_lock(&ctx->mutex); 9091 } else 9092 #endif 9093 if (has_addr_filter(event)) 9094 ret = perf_event_set_addr_filter(event, filter_str); 9095 9096 kfree(filter_str); 9097 return ret; 9098 } 9099 9100 /* 9101 * hrtimer based swevent callback 9102 */ 9103 9104 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 9105 { 9106 enum hrtimer_restart ret = HRTIMER_RESTART; 9107 struct perf_sample_data data; 9108 struct pt_regs *regs; 9109 struct perf_event *event; 9110 u64 period; 9111 9112 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 9113 9114 if (event->state != PERF_EVENT_STATE_ACTIVE) 9115 return HRTIMER_NORESTART; 9116 9117 event->pmu->read(event); 9118 9119 perf_sample_data_init(&data, 0, event->hw.last_period); 9120 regs = get_irq_regs(); 9121 9122 if (regs && !perf_exclude_event(event, regs)) { 9123 if (!(event->attr.exclude_idle && is_idle_task(current))) 9124 if (__perf_event_overflow(event, 1, &data, regs)) 9125 ret = HRTIMER_NORESTART; 9126 } 9127 9128 period = max_t(u64, 10000, event->hw.sample_period); 9129 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 9130 9131 return ret; 9132 } 9133 9134 static void perf_swevent_start_hrtimer(struct perf_event *event) 9135 { 9136 struct hw_perf_event *hwc = &event->hw; 9137 s64 period; 9138 9139 if (!is_sampling_event(event)) 9140 return; 9141 9142 period = local64_read(&hwc->period_left); 9143 if (period) { 9144 if (period < 0) 9145 period = 10000; 9146 9147 local64_set(&hwc->period_left, 0); 9148 } else { 9149 period = max_t(u64, 10000, hwc->sample_period); 9150 } 9151 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), 9152 HRTIMER_MODE_REL_PINNED); 9153 } 9154 9155 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 9156 { 9157 struct hw_perf_event *hwc = &event->hw; 9158 9159 if (is_sampling_event(event)) { 9160 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 9161 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 9162 9163 hrtimer_cancel(&hwc->hrtimer); 9164 } 9165 } 9166 9167 static void perf_swevent_init_hrtimer(struct perf_event *event) 9168 { 9169 struct hw_perf_event *hwc = &event->hw; 9170 9171 if (!is_sampling_event(event)) 9172 return; 9173 9174 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 9175 hwc->hrtimer.function = perf_swevent_hrtimer; 9176 9177 /* 9178 * Since hrtimers have a fixed rate, we can do a static freq->period 9179 * mapping and avoid the whole period adjust feedback stuff. 9180 */ 9181 if (event->attr.freq) { 9182 long freq = event->attr.sample_freq; 9183 9184 event->attr.sample_period = NSEC_PER_SEC / freq; 9185 hwc->sample_period = event->attr.sample_period; 9186 local64_set(&hwc->period_left, hwc->sample_period); 9187 hwc->last_period = hwc->sample_period; 9188 event->attr.freq = 0; 9189 } 9190 } 9191 9192 /* 9193 * Software event: cpu wall time clock 9194 */ 9195 9196 static void cpu_clock_event_update(struct perf_event *event) 9197 { 9198 s64 prev; 9199 u64 now; 9200 9201 now = local_clock(); 9202 prev = local64_xchg(&event->hw.prev_count, now); 9203 local64_add(now - prev, &event->count); 9204 } 9205 9206 static void cpu_clock_event_start(struct perf_event *event, int flags) 9207 { 9208 local64_set(&event->hw.prev_count, local_clock()); 9209 perf_swevent_start_hrtimer(event); 9210 } 9211 9212 static void cpu_clock_event_stop(struct perf_event *event, int flags) 9213 { 9214 perf_swevent_cancel_hrtimer(event); 9215 cpu_clock_event_update(event); 9216 } 9217 9218 static int cpu_clock_event_add(struct perf_event *event, int flags) 9219 { 9220 if (flags & PERF_EF_START) 9221 cpu_clock_event_start(event, flags); 9222 perf_event_update_userpage(event); 9223 9224 return 0; 9225 } 9226 9227 static void cpu_clock_event_del(struct perf_event *event, int flags) 9228 { 9229 cpu_clock_event_stop(event, flags); 9230 } 9231 9232 static void cpu_clock_event_read(struct perf_event *event) 9233 { 9234 cpu_clock_event_update(event); 9235 } 9236 9237 static int cpu_clock_event_init(struct perf_event *event) 9238 { 9239 if (event->attr.type != PERF_TYPE_SOFTWARE) 9240 return -ENOENT; 9241 9242 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 9243 return -ENOENT; 9244 9245 /* 9246 * no branch sampling for software events 9247 */ 9248 if (has_branch_stack(event)) 9249 return -EOPNOTSUPP; 9250 9251 perf_swevent_init_hrtimer(event); 9252 9253 return 0; 9254 } 9255 9256 static struct pmu perf_cpu_clock = { 9257 .task_ctx_nr = perf_sw_context, 9258 9259 .capabilities = PERF_PMU_CAP_NO_NMI, 9260 9261 .event_init = cpu_clock_event_init, 9262 .add = cpu_clock_event_add, 9263 .del = cpu_clock_event_del, 9264 .start = cpu_clock_event_start, 9265 .stop = cpu_clock_event_stop, 9266 .read = cpu_clock_event_read, 9267 }; 9268 9269 /* 9270 * Software event: task time clock 9271 */ 9272 9273 static void task_clock_event_update(struct perf_event *event, u64 now) 9274 { 9275 u64 prev; 9276 s64 delta; 9277 9278 prev = local64_xchg(&event->hw.prev_count, now); 9279 delta = now - prev; 9280 local64_add(delta, &event->count); 9281 } 9282 9283 static void task_clock_event_start(struct perf_event *event, int flags) 9284 { 9285 local64_set(&event->hw.prev_count, event->ctx->time); 9286 perf_swevent_start_hrtimer(event); 9287 } 9288 9289 static void task_clock_event_stop(struct perf_event *event, int flags) 9290 { 9291 perf_swevent_cancel_hrtimer(event); 9292 task_clock_event_update(event, event->ctx->time); 9293 } 9294 9295 static int task_clock_event_add(struct perf_event *event, int flags) 9296 { 9297 if (flags & PERF_EF_START) 9298 task_clock_event_start(event, flags); 9299 perf_event_update_userpage(event); 9300 9301 return 0; 9302 } 9303 9304 static void task_clock_event_del(struct perf_event *event, int flags) 9305 { 9306 task_clock_event_stop(event, PERF_EF_UPDATE); 9307 } 9308 9309 static void task_clock_event_read(struct perf_event *event) 9310 { 9311 u64 now = perf_clock(); 9312 u64 delta = now - event->ctx->timestamp; 9313 u64 time = event->ctx->time + delta; 9314 9315 task_clock_event_update(event, time); 9316 } 9317 9318 static int task_clock_event_init(struct perf_event *event) 9319 { 9320 if (event->attr.type != PERF_TYPE_SOFTWARE) 9321 return -ENOENT; 9322 9323 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 9324 return -ENOENT; 9325 9326 /* 9327 * no branch sampling for software events 9328 */ 9329 if (has_branch_stack(event)) 9330 return -EOPNOTSUPP; 9331 9332 perf_swevent_init_hrtimer(event); 9333 9334 return 0; 9335 } 9336 9337 static struct pmu perf_task_clock = { 9338 .task_ctx_nr = perf_sw_context, 9339 9340 .capabilities = PERF_PMU_CAP_NO_NMI, 9341 9342 .event_init = task_clock_event_init, 9343 .add = task_clock_event_add, 9344 .del = task_clock_event_del, 9345 .start = task_clock_event_start, 9346 .stop = task_clock_event_stop, 9347 .read = task_clock_event_read, 9348 }; 9349 9350 static void perf_pmu_nop_void(struct pmu *pmu) 9351 { 9352 } 9353 9354 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags) 9355 { 9356 } 9357 9358 static int perf_pmu_nop_int(struct pmu *pmu) 9359 { 9360 return 0; 9361 } 9362 9363 static DEFINE_PER_CPU(unsigned int, nop_txn_flags); 9364 9365 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags) 9366 { 9367 __this_cpu_write(nop_txn_flags, flags); 9368 9369 if (flags & ~PERF_PMU_TXN_ADD) 9370 return; 9371 9372 perf_pmu_disable(pmu); 9373 } 9374 9375 static int perf_pmu_commit_txn(struct pmu *pmu) 9376 { 9377 unsigned int flags = __this_cpu_read(nop_txn_flags); 9378 9379 __this_cpu_write(nop_txn_flags, 0); 9380 9381 if (flags & ~PERF_PMU_TXN_ADD) 9382 return 0; 9383 9384 perf_pmu_enable(pmu); 9385 return 0; 9386 } 9387 9388 static void perf_pmu_cancel_txn(struct pmu *pmu) 9389 { 9390 unsigned int flags = __this_cpu_read(nop_txn_flags); 9391 9392 __this_cpu_write(nop_txn_flags, 0); 9393 9394 if (flags & ~PERF_PMU_TXN_ADD) 9395 return; 9396 9397 perf_pmu_enable(pmu); 9398 } 9399 9400 static int perf_event_idx_default(struct perf_event *event) 9401 { 9402 return 0; 9403 } 9404 9405 /* 9406 * Ensures all contexts with the same task_ctx_nr have the same 9407 * pmu_cpu_context too. 9408 */ 9409 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn) 9410 { 9411 struct pmu *pmu; 9412 9413 if (ctxn < 0) 9414 return NULL; 9415 9416 list_for_each_entry(pmu, &pmus, entry) { 9417 if (pmu->task_ctx_nr == ctxn) 9418 return pmu->pmu_cpu_context; 9419 } 9420 9421 return NULL; 9422 } 9423 9424 static void free_pmu_context(struct pmu *pmu) 9425 { 9426 /* 9427 * Static contexts such as perf_sw_context have a global lifetime 9428 * and may be shared between different PMUs. Avoid freeing them 9429 * when a single PMU is going away. 9430 */ 9431 if (pmu->task_ctx_nr > perf_invalid_context) 9432 return; 9433 9434 mutex_lock(&pmus_lock); 9435 free_percpu(pmu->pmu_cpu_context); 9436 mutex_unlock(&pmus_lock); 9437 } 9438 9439 /* 9440 * Let userspace know that this PMU supports address range filtering: 9441 */ 9442 static ssize_t nr_addr_filters_show(struct device *dev, 9443 struct device_attribute *attr, 9444 char *page) 9445 { 9446 struct pmu *pmu = dev_get_drvdata(dev); 9447 9448 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters); 9449 } 9450 DEVICE_ATTR_RO(nr_addr_filters); 9451 9452 static struct idr pmu_idr; 9453 9454 static ssize_t 9455 type_show(struct device *dev, struct device_attribute *attr, char *page) 9456 { 9457 struct pmu *pmu = dev_get_drvdata(dev); 9458 9459 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); 9460 } 9461 static DEVICE_ATTR_RO(type); 9462 9463 static ssize_t 9464 perf_event_mux_interval_ms_show(struct device *dev, 9465 struct device_attribute *attr, 9466 char *page) 9467 { 9468 struct pmu *pmu = dev_get_drvdata(dev); 9469 9470 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms); 9471 } 9472 9473 static DEFINE_MUTEX(mux_interval_mutex); 9474 9475 static ssize_t 9476 perf_event_mux_interval_ms_store(struct device *dev, 9477 struct device_attribute *attr, 9478 const char *buf, size_t count) 9479 { 9480 struct pmu *pmu = dev_get_drvdata(dev); 9481 int timer, cpu, ret; 9482 9483 ret = kstrtoint(buf, 0, &timer); 9484 if (ret) 9485 return ret; 9486 9487 if (timer < 1) 9488 return -EINVAL; 9489 9490 /* same value, noting to do */ 9491 if (timer == pmu->hrtimer_interval_ms) 9492 return count; 9493 9494 mutex_lock(&mux_interval_mutex); 9495 pmu->hrtimer_interval_ms = timer; 9496 9497 /* update all cpuctx for this PMU */ 9498 cpus_read_lock(); 9499 for_each_online_cpu(cpu) { 9500 struct perf_cpu_context *cpuctx; 9501 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 9502 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 9503 9504 cpu_function_call(cpu, 9505 (remote_function_f)perf_mux_hrtimer_restart, cpuctx); 9506 } 9507 cpus_read_unlock(); 9508 mutex_unlock(&mux_interval_mutex); 9509 9510 return count; 9511 } 9512 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 9513 9514 static struct attribute *pmu_dev_attrs[] = { 9515 &dev_attr_type.attr, 9516 &dev_attr_perf_event_mux_interval_ms.attr, 9517 NULL, 9518 }; 9519 ATTRIBUTE_GROUPS(pmu_dev); 9520 9521 static int pmu_bus_running; 9522 static struct bus_type pmu_bus = { 9523 .name = "event_source", 9524 .dev_groups = pmu_dev_groups, 9525 }; 9526 9527 static void pmu_dev_release(struct device *dev) 9528 { 9529 kfree(dev); 9530 } 9531 9532 static int pmu_dev_alloc(struct pmu *pmu) 9533 { 9534 int ret = -ENOMEM; 9535 9536 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 9537 if (!pmu->dev) 9538 goto out; 9539 9540 pmu->dev->groups = pmu->attr_groups; 9541 device_initialize(pmu->dev); 9542 ret = dev_set_name(pmu->dev, "%s", pmu->name); 9543 if (ret) 9544 goto free_dev; 9545 9546 dev_set_drvdata(pmu->dev, pmu); 9547 pmu->dev->bus = &pmu_bus; 9548 pmu->dev->release = pmu_dev_release; 9549 ret = device_add(pmu->dev); 9550 if (ret) 9551 goto free_dev; 9552 9553 /* For PMUs with address filters, throw in an extra attribute: */ 9554 if (pmu->nr_addr_filters) 9555 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters); 9556 9557 if (ret) 9558 goto del_dev; 9559 9560 out: 9561 return ret; 9562 9563 del_dev: 9564 device_del(pmu->dev); 9565 9566 free_dev: 9567 put_device(pmu->dev); 9568 goto out; 9569 } 9570 9571 static struct lock_class_key cpuctx_mutex; 9572 static struct lock_class_key cpuctx_lock; 9573 9574 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 9575 { 9576 int cpu, ret; 9577 9578 mutex_lock(&pmus_lock); 9579 ret = -ENOMEM; 9580 pmu->pmu_disable_count = alloc_percpu(int); 9581 if (!pmu->pmu_disable_count) 9582 goto unlock; 9583 9584 pmu->type = -1; 9585 if (!name) 9586 goto skip_type; 9587 pmu->name = name; 9588 9589 if (type < 0) { 9590 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL); 9591 if (type < 0) { 9592 ret = type; 9593 goto free_pdc; 9594 } 9595 } 9596 pmu->type = type; 9597 9598 if (pmu_bus_running) { 9599 ret = pmu_dev_alloc(pmu); 9600 if (ret) 9601 goto free_idr; 9602 } 9603 9604 skip_type: 9605 if (pmu->task_ctx_nr == perf_hw_context) { 9606 static int hw_context_taken = 0; 9607 9608 /* 9609 * Other than systems with heterogeneous CPUs, it never makes 9610 * sense for two PMUs to share perf_hw_context. PMUs which are 9611 * uncore must use perf_invalid_context. 9612 */ 9613 if (WARN_ON_ONCE(hw_context_taken && 9614 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS))) 9615 pmu->task_ctx_nr = perf_invalid_context; 9616 9617 hw_context_taken = 1; 9618 } 9619 9620 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); 9621 if (pmu->pmu_cpu_context) 9622 goto got_cpu_context; 9623 9624 ret = -ENOMEM; 9625 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); 9626 if (!pmu->pmu_cpu_context) 9627 goto free_dev; 9628 9629 for_each_possible_cpu(cpu) { 9630 struct perf_cpu_context *cpuctx; 9631 9632 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 9633 __perf_event_init_context(&cpuctx->ctx); 9634 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 9635 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 9636 cpuctx->ctx.pmu = pmu; 9637 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask); 9638 9639 __perf_mux_hrtimer_init(cpuctx, cpu); 9640 } 9641 9642 got_cpu_context: 9643 if (!pmu->start_txn) { 9644 if (pmu->pmu_enable) { 9645 /* 9646 * If we have pmu_enable/pmu_disable calls, install 9647 * transaction stubs that use that to try and batch 9648 * hardware accesses. 9649 */ 9650 pmu->start_txn = perf_pmu_start_txn; 9651 pmu->commit_txn = perf_pmu_commit_txn; 9652 pmu->cancel_txn = perf_pmu_cancel_txn; 9653 } else { 9654 pmu->start_txn = perf_pmu_nop_txn; 9655 pmu->commit_txn = perf_pmu_nop_int; 9656 pmu->cancel_txn = perf_pmu_nop_void; 9657 } 9658 } 9659 9660 if (!pmu->pmu_enable) { 9661 pmu->pmu_enable = perf_pmu_nop_void; 9662 pmu->pmu_disable = perf_pmu_nop_void; 9663 } 9664 9665 if (!pmu->event_idx) 9666 pmu->event_idx = perf_event_idx_default; 9667 9668 list_add_rcu(&pmu->entry, &pmus); 9669 atomic_set(&pmu->exclusive_cnt, 0); 9670 ret = 0; 9671 unlock: 9672 mutex_unlock(&pmus_lock); 9673 9674 return ret; 9675 9676 free_dev: 9677 device_del(pmu->dev); 9678 put_device(pmu->dev); 9679 9680 free_idr: 9681 if (pmu->type >= PERF_TYPE_MAX) 9682 idr_remove(&pmu_idr, pmu->type); 9683 9684 free_pdc: 9685 free_percpu(pmu->pmu_disable_count); 9686 goto unlock; 9687 } 9688 EXPORT_SYMBOL_GPL(perf_pmu_register); 9689 9690 void perf_pmu_unregister(struct pmu *pmu) 9691 { 9692 int remove_device; 9693 9694 mutex_lock(&pmus_lock); 9695 remove_device = pmu_bus_running; 9696 list_del_rcu(&pmu->entry); 9697 mutex_unlock(&pmus_lock); 9698 9699 /* 9700 * We dereference the pmu list under both SRCU and regular RCU, so 9701 * synchronize against both of those. 9702 */ 9703 synchronize_srcu(&pmus_srcu); 9704 synchronize_rcu(); 9705 9706 free_percpu(pmu->pmu_disable_count); 9707 if (pmu->type >= PERF_TYPE_MAX) 9708 idr_remove(&pmu_idr, pmu->type); 9709 if (remove_device) { 9710 if (pmu->nr_addr_filters) 9711 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters); 9712 device_del(pmu->dev); 9713 put_device(pmu->dev); 9714 } 9715 free_pmu_context(pmu); 9716 } 9717 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 9718 9719 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) 9720 { 9721 struct perf_event_context *ctx = NULL; 9722 int ret; 9723 9724 if (!try_module_get(pmu->module)) 9725 return -ENODEV; 9726 9727 /* 9728 * A number of pmu->event_init() methods iterate the sibling_list to, 9729 * for example, validate if the group fits on the PMU. Therefore, 9730 * if this is a sibling event, acquire the ctx->mutex to protect 9731 * the sibling_list. 9732 */ 9733 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) { 9734 /* 9735 * This ctx->mutex can nest when we're called through 9736 * inheritance. See the perf_event_ctx_lock_nested() comment. 9737 */ 9738 ctx = perf_event_ctx_lock_nested(event->group_leader, 9739 SINGLE_DEPTH_NESTING); 9740 BUG_ON(!ctx); 9741 } 9742 9743 event->pmu = pmu; 9744 ret = pmu->event_init(event); 9745 9746 if (ctx) 9747 perf_event_ctx_unlock(event->group_leader, ctx); 9748 9749 if (ret) 9750 module_put(pmu->module); 9751 9752 return ret; 9753 } 9754 9755 static struct pmu *perf_init_event(struct perf_event *event) 9756 { 9757 struct pmu *pmu; 9758 int idx; 9759 int ret; 9760 9761 idx = srcu_read_lock(&pmus_srcu); 9762 9763 /* Try parent's PMU first: */ 9764 if (event->parent && event->parent->pmu) { 9765 pmu = event->parent->pmu; 9766 ret = perf_try_init_event(pmu, event); 9767 if (!ret) 9768 goto unlock; 9769 } 9770 9771 rcu_read_lock(); 9772 pmu = idr_find(&pmu_idr, event->attr.type); 9773 rcu_read_unlock(); 9774 if (pmu) { 9775 ret = perf_try_init_event(pmu, event); 9776 if (ret) 9777 pmu = ERR_PTR(ret); 9778 goto unlock; 9779 } 9780 9781 list_for_each_entry_rcu(pmu, &pmus, entry) { 9782 ret = perf_try_init_event(pmu, event); 9783 if (!ret) 9784 goto unlock; 9785 9786 if (ret != -ENOENT) { 9787 pmu = ERR_PTR(ret); 9788 goto unlock; 9789 } 9790 } 9791 pmu = ERR_PTR(-ENOENT); 9792 unlock: 9793 srcu_read_unlock(&pmus_srcu, idx); 9794 9795 return pmu; 9796 } 9797 9798 static void attach_sb_event(struct perf_event *event) 9799 { 9800 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 9801 9802 raw_spin_lock(&pel->lock); 9803 list_add_rcu(&event->sb_list, &pel->list); 9804 raw_spin_unlock(&pel->lock); 9805 } 9806 9807 /* 9808 * We keep a list of all !task (and therefore per-cpu) events 9809 * that need to receive side-band records. 9810 * 9811 * This avoids having to scan all the various PMU per-cpu contexts 9812 * looking for them. 9813 */ 9814 static void account_pmu_sb_event(struct perf_event *event) 9815 { 9816 if (is_sb_event(event)) 9817 attach_sb_event(event); 9818 } 9819 9820 static void account_event_cpu(struct perf_event *event, int cpu) 9821 { 9822 if (event->parent) 9823 return; 9824 9825 if (is_cgroup_event(event)) 9826 atomic_inc(&per_cpu(perf_cgroup_events, cpu)); 9827 } 9828 9829 /* Freq events need the tick to stay alive (see perf_event_task_tick). */ 9830 static void account_freq_event_nohz(void) 9831 { 9832 #ifdef CONFIG_NO_HZ_FULL 9833 /* Lock so we don't race with concurrent unaccount */ 9834 spin_lock(&nr_freq_lock); 9835 if (atomic_inc_return(&nr_freq_events) == 1) 9836 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS); 9837 spin_unlock(&nr_freq_lock); 9838 #endif 9839 } 9840 9841 static void account_freq_event(void) 9842 { 9843 if (tick_nohz_full_enabled()) 9844 account_freq_event_nohz(); 9845 else 9846 atomic_inc(&nr_freq_events); 9847 } 9848 9849 9850 static void account_event(struct perf_event *event) 9851 { 9852 bool inc = false; 9853 9854 if (event->parent) 9855 return; 9856 9857 if (event->attach_state & PERF_ATTACH_TASK) 9858 inc = true; 9859 if (event->attr.mmap || event->attr.mmap_data) 9860 atomic_inc(&nr_mmap_events); 9861 if (event->attr.comm) 9862 atomic_inc(&nr_comm_events); 9863 if (event->attr.namespaces) 9864 atomic_inc(&nr_namespaces_events); 9865 if (event->attr.task) 9866 atomic_inc(&nr_task_events); 9867 if (event->attr.freq) 9868 account_freq_event(); 9869 if (event->attr.context_switch) { 9870 atomic_inc(&nr_switch_events); 9871 inc = true; 9872 } 9873 if (has_branch_stack(event)) 9874 inc = true; 9875 if (is_cgroup_event(event)) 9876 inc = true; 9877 9878 if (inc) { 9879 /* 9880 * We need the mutex here because static_branch_enable() 9881 * must complete *before* the perf_sched_count increment 9882 * becomes visible. 9883 */ 9884 if (atomic_inc_not_zero(&perf_sched_count)) 9885 goto enabled; 9886 9887 mutex_lock(&perf_sched_mutex); 9888 if (!atomic_read(&perf_sched_count)) { 9889 static_branch_enable(&perf_sched_events); 9890 /* 9891 * Guarantee that all CPUs observe they key change and 9892 * call the perf scheduling hooks before proceeding to 9893 * install events that need them. 9894 */ 9895 synchronize_sched(); 9896 } 9897 /* 9898 * Now that we have waited for the sync_sched(), allow further 9899 * increments to by-pass the mutex. 9900 */ 9901 atomic_inc(&perf_sched_count); 9902 mutex_unlock(&perf_sched_mutex); 9903 } 9904 enabled: 9905 9906 account_event_cpu(event, event->cpu); 9907 9908 account_pmu_sb_event(event); 9909 } 9910 9911 /* 9912 * Allocate and initialize an event structure 9913 */ 9914 static struct perf_event * 9915 perf_event_alloc(struct perf_event_attr *attr, int cpu, 9916 struct task_struct *task, 9917 struct perf_event *group_leader, 9918 struct perf_event *parent_event, 9919 perf_overflow_handler_t overflow_handler, 9920 void *context, int cgroup_fd) 9921 { 9922 struct pmu *pmu; 9923 struct perf_event *event; 9924 struct hw_perf_event *hwc; 9925 long err = -EINVAL; 9926 9927 if ((unsigned)cpu >= nr_cpu_ids) { 9928 if (!task || cpu != -1) 9929 return ERR_PTR(-EINVAL); 9930 } 9931 9932 event = kzalloc(sizeof(*event), GFP_KERNEL); 9933 if (!event) 9934 return ERR_PTR(-ENOMEM); 9935 9936 /* 9937 * Single events are their own group leaders, with an 9938 * empty sibling list: 9939 */ 9940 if (!group_leader) 9941 group_leader = event; 9942 9943 mutex_init(&event->child_mutex); 9944 INIT_LIST_HEAD(&event->child_list); 9945 9946 INIT_LIST_HEAD(&event->event_entry); 9947 INIT_LIST_HEAD(&event->sibling_list); 9948 INIT_LIST_HEAD(&event->active_list); 9949 init_event_group(event); 9950 INIT_LIST_HEAD(&event->rb_entry); 9951 INIT_LIST_HEAD(&event->active_entry); 9952 INIT_LIST_HEAD(&event->addr_filters.list); 9953 INIT_HLIST_NODE(&event->hlist_entry); 9954 9955 9956 init_waitqueue_head(&event->waitq); 9957 init_irq_work(&event->pending, perf_pending_event); 9958 9959 mutex_init(&event->mmap_mutex); 9960 raw_spin_lock_init(&event->addr_filters.lock); 9961 9962 atomic_long_set(&event->refcount, 1); 9963 event->cpu = cpu; 9964 event->attr = *attr; 9965 event->group_leader = group_leader; 9966 event->pmu = NULL; 9967 event->oncpu = -1; 9968 9969 event->parent = parent_event; 9970 9971 event->ns = get_pid_ns(task_active_pid_ns(current)); 9972 event->id = atomic64_inc_return(&perf_event_id); 9973 9974 event->state = PERF_EVENT_STATE_INACTIVE; 9975 9976 if (task) { 9977 event->attach_state = PERF_ATTACH_TASK; 9978 /* 9979 * XXX pmu::event_init needs to know what task to account to 9980 * and we cannot use the ctx information because we need the 9981 * pmu before we get a ctx. 9982 */ 9983 get_task_struct(task); 9984 event->hw.target = task; 9985 } 9986 9987 event->clock = &local_clock; 9988 if (parent_event) 9989 event->clock = parent_event->clock; 9990 9991 if (!overflow_handler && parent_event) { 9992 overflow_handler = parent_event->overflow_handler; 9993 context = parent_event->overflow_handler_context; 9994 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING) 9995 if (overflow_handler == bpf_overflow_handler) { 9996 struct bpf_prog *prog = bpf_prog_inc(parent_event->prog); 9997 9998 if (IS_ERR(prog)) { 9999 err = PTR_ERR(prog); 10000 goto err_ns; 10001 } 10002 event->prog = prog; 10003 event->orig_overflow_handler = 10004 parent_event->orig_overflow_handler; 10005 } 10006 #endif 10007 } 10008 10009 if (overflow_handler) { 10010 event->overflow_handler = overflow_handler; 10011 event->overflow_handler_context = context; 10012 } else if (is_write_backward(event)){ 10013 event->overflow_handler = perf_event_output_backward; 10014 event->overflow_handler_context = NULL; 10015 } else { 10016 event->overflow_handler = perf_event_output_forward; 10017 event->overflow_handler_context = NULL; 10018 } 10019 10020 perf_event__state_init(event); 10021 10022 pmu = NULL; 10023 10024 hwc = &event->hw; 10025 hwc->sample_period = attr->sample_period; 10026 if (attr->freq && attr->sample_freq) 10027 hwc->sample_period = 1; 10028 hwc->last_period = hwc->sample_period; 10029 10030 local64_set(&hwc->period_left, hwc->sample_period); 10031 10032 /* 10033 * We currently do not support PERF_SAMPLE_READ on inherited events. 10034 * See perf_output_read(). 10035 */ 10036 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ)) 10037 goto err_ns; 10038 10039 if (!has_branch_stack(event)) 10040 event->attr.branch_sample_type = 0; 10041 10042 if (cgroup_fd != -1) { 10043 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); 10044 if (err) 10045 goto err_ns; 10046 } 10047 10048 pmu = perf_init_event(event); 10049 if (IS_ERR(pmu)) { 10050 err = PTR_ERR(pmu); 10051 goto err_ns; 10052 } 10053 10054 err = exclusive_event_init(event); 10055 if (err) 10056 goto err_pmu; 10057 10058 if (has_addr_filter(event)) { 10059 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters, 10060 sizeof(unsigned long), 10061 GFP_KERNEL); 10062 if (!event->addr_filters_offs) { 10063 err = -ENOMEM; 10064 goto err_per_task; 10065 } 10066 10067 /* force hw sync on the address filters */ 10068 event->addr_filters_gen = 1; 10069 } 10070 10071 if (!event->parent) { 10072 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 10073 err = get_callchain_buffers(attr->sample_max_stack); 10074 if (err) 10075 goto err_addr_filters; 10076 } 10077 } 10078 10079 /* symmetric to unaccount_event() in _free_event() */ 10080 account_event(event); 10081 10082 return event; 10083 10084 err_addr_filters: 10085 kfree(event->addr_filters_offs); 10086 10087 err_per_task: 10088 exclusive_event_destroy(event); 10089 10090 err_pmu: 10091 if (event->destroy) 10092 event->destroy(event); 10093 module_put(pmu->module); 10094 err_ns: 10095 if (is_cgroup_event(event)) 10096 perf_detach_cgroup(event); 10097 if (event->ns) 10098 put_pid_ns(event->ns); 10099 if (event->hw.target) 10100 put_task_struct(event->hw.target); 10101 kfree(event); 10102 10103 return ERR_PTR(err); 10104 } 10105 10106 static int perf_copy_attr(struct perf_event_attr __user *uattr, 10107 struct perf_event_attr *attr) 10108 { 10109 u32 size; 10110 int ret; 10111 10112 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0)) 10113 return -EFAULT; 10114 10115 /* 10116 * zero the full structure, so that a short copy will be nice. 10117 */ 10118 memset(attr, 0, sizeof(*attr)); 10119 10120 ret = get_user(size, &uattr->size); 10121 if (ret) 10122 return ret; 10123 10124 if (size > PAGE_SIZE) /* silly large */ 10125 goto err_size; 10126 10127 if (!size) /* abi compat */ 10128 size = PERF_ATTR_SIZE_VER0; 10129 10130 if (size < PERF_ATTR_SIZE_VER0) 10131 goto err_size; 10132 10133 /* 10134 * If we're handed a bigger struct than we know of, 10135 * ensure all the unknown bits are 0 - i.e. new 10136 * user-space does not rely on any kernel feature 10137 * extensions we dont know about yet. 10138 */ 10139 if (size > sizeof(*attr)) { 10140 unsigned char __user *addr; 10141 unsigned char __user *end; 10142 unsigned char val; 10143 10144 addr = (void __user *)uattr + sizeof(*attr); 10145 end = (void __user *)uattr + size; 10146 10147 for (; addr < end; addr++) { 10148 ret = get_user(val, addr); 10149 if (ret) 10150 return ret; 10151 if (val) 10152 goto err_size; 10153 } 10154 size = sizeof(*attr); 10155 } 10156 10157 ret = copy_from_user(attr, uattr, size); 10158 if (ret) 10159 return -EFAULT; 10160 10161 attr->size = size; 10162 10163 if (attr->__reserved_1) 10164 return -EINVAL; 10165 10166 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 10167 return -EINVAL; 10168 10169 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 10170 return -EINVAL; 10171 10172 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 10173 u64 mask = attr->branch_sample_type; 10174 10175 /* only using defined bits */ 10176 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 10177 return -EINVAL; 10178 10179 /* at least one branch bit must be set */ 10180 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 10181 return -EINVAL; 10182 10183 /* propagate priv level, when not set for branch */ 10184 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 10185 10186 /* exclude_kernel checked on syscall entry */ 10187 if (!attr->exclude_kernel) 10188 mask |= PERF_SAMPLE_BRANCH_KERNEL; 10189 10190 if (!attr->exclude_user) 10191 mask |= PERF_SAMPLE_BRANCH_USER; 10192 10193 if (!attr->exclude_hv) 10194 mask |= PERF_SAMPLE_BRANCH_HV; 10195 /* 10196 * adjust user setting (for HW filter setup) 10197 */ 10198 attr->branch_sample_type = mask; 10199 } 10200 /* privileged levels capture (kernel, hv): check permissions */ 10201 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM) 10202 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 10203 return -EACCES; 10204 } 10205 10206 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 10207 ret = perf_reg_validate(attr->sample_regs_user); 10208 if (ret) 10209 return ret; 10210 } 10211 10212 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 10213 if (!arch_perf_have_user_stack_dump()) 10214 return -ENOSYS; 10215 10216 /* 10217 * We have __u32 type for the size, but so far 10218 * we can only use __u16 as maximum due to the 10219 * __u16 sample size limit. 10220 */ 10221 if (attr->sample_stack_user >= USHRT_MAX) 10222 return -EINVAL; 10223 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 10224 return -EINVAL; 10225 } 10226 10227 if (!attr->sample_max_stack) 10228 attr->sample_max_stack = sysctl_perf_event_max_stack; 10229 10230 if (attr->sample_type & PERF_SAMPLE_REGS_INTR) 10231 ret = perf_reg_validate(attr->sample_regs_intr); 10232 out: 10233 return ret; 10234 10235 err_size: 10236 put_user(sizeof(*attr), &uattr->size); 10237 ret = -E2BIG; 10238 goto out; 10239 } 10240 10241 static int 10242 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 10243 { 10244 struct ring_buffer *rb = NULL; 10245 int ret = -EINVAL; 10246 10247 if (!output_event) 10248 goto set; 10249 10250 /* don't allow circular references */ 10251 if (event == output_event) 10252 goto out; 10253 10254 /* 10255 * Don't allow cross-cpu buffers 10256 */ 10257 if (output_event->cpu != event->cpu) 10258 goto out; 10259 10260 /* 10261 * If its not a per-cpu rb, it must be the same task. 10262 */ 10263 if (output_event->cpu == -1 && output_event->ctx != event->ctx) 10264 goto out; 10265 10266 /* 10267 * Mixing clocks in the same buffer is trouble you don't need. 10268 */ 10269 if (output_event->clock != event->clock) 10270 goto out; 10271 10272 /* 10273 * Either writing ring buffer from beginning or from end. 10274 * Mixing is not allowed. 10275 */ 10276 if (is_write_backward(output_event) != is_write_backward(event)) 10277 goto out; 10278 10279 /* 10280 * If both events generate aux data, they must be on the same PMU 10281 */ 10282 if (has_aux(event) && has_aux(output_event) && 10283 event->pmu != output_event->pmu) 10284 goto out; 10285 10286 set: 10287 mutex_lock(&event->mmap_mutex); 10288 /* Can't redirect output if we've got an active mmap() */ 10289 if (atomic_read(&event->mmap_count)) 10290 goto unlock; 10291 10292 if (output_event) { 10293 /* get the rb we want to redirect to */ 10294 rb = ring_buffer_get(output_event); 10295 if (!rb) 10296 goto unlock; 10297 } 10298 10299 ring_buffer_attach(event, rb); 10300 10301 ret = 0; 10302 unlock: 10303 mutex_unlock(&event->mmap_mutex); 10304 10305 out: 10306 return ret; 10307 } 10308 10309 static void mutex_lock_double(struct mutex *a, struct mutex *b) 10310 { 10311 if (b < a) 10312 swap(a, b); 10313 10314 mutex_lock(a); 10315 mutex_lock_nested(b, SINGLE_DEPTH_NESTING); 10316 } 10317 10318 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) 10319 { 10320 bool nmi_safe = false; 10321 10322 switch (clk_id) { 10323 case CLOCK_MONOTONIC: 10324 event->clock = &ktime_get_mono_fast_ns; 10325 nmi_safe = true; 10326 break; 10327 10328 case CLOCK_MONOTONIC_RAW: 10329 event->clock = &ktime_get_raw_fast_ns; 10330 nmi_safe = true; 10331 break; 10332 10333 case CLOCK_REALTIME: 10334 event->clock = &ktime_get_real_ns; 10335 break; 10336 10337 case CLOCK_BOOTTIME: 10338 event->clock = &ktime_get_boot_ns; 10339 break; 10340 10341 case CLOCK_TAI: 10342 event->clock = &ktime_get_tai_ns; 10343 break; 10344 10345 default: 10346 return -EINVAL; 10347 } 10348 10349 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) 10350 return -EINVAL; 10351 10352 return 0; 10353 } 10354 10355 /* 10356 * Variation on perf_event_ctx_lock_nested(), except we take two context 10357 * mutexes. 10358 */ 10359 static struct perf_event_context * 10360 __perf_event_ctx_lock_double(struct perf_event *group_leader, 10361 struct perf_event_context *ctx) 10362 { 10363 struct perf_event_context *gctx; 10364 10365 again: 10366 rcu_read_lock(); 10367 gctx = READ_ONCE(group_leader->ctx); 10368 if (!atomic_inc_not_zero(&gctx->refcount)) { 10369 rcu_read_unlock(); 10370 goto again; 10371 } 10372 rcu_read_unlock(); 10373 10374 mutex_lock_double(&gctx->mutex, &ctx->mutex); 10375 10376 if (group_leader->ctx != gctx) { 10377 mutex_unlock(&ctx->mutex); 10378 mutex_unlock(&gctx->mutex); 10379 put_ctx(gctx); 10380 goto again; 10381 } 10382 10383 return gctx; 10384 } 10385 10386 /** 10387 * sys_perf_event_open - open a performance event, associate it to a task/cpu 10388 * 10389 * @attr_uptr: event_id type attributes for monitoring/sampling 10390 * @pid: target pid 10391 * @cpu: target cpu 10392 * @group_fd: group leader event fd 10393 */ 10394 SYSCALL_DEFINE5(perf_event_open, 10395 struct perf_event_attr __user *, attr_uptr, 10396 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 10397 { 10398 struct perf_event *group_leader = NULL, *output_event = NULL; 10399 struct perf_event *event, *sibling; 10400 struct perf_event_attr attr; 10401 struct perf_event_context *ctx, *uninitialized_var(gctx); 10402 struct file *event_file = NULL; 10403 struct fd group = {NULL, 0}; 10404 struct task_struct *task = NULL; 10405 struct pmu *pmu; 10406 int event_fd; 10407 int move_group = 0; 10408 int err; 10409 int f_flags = O_RDWR; 10410 int cgroup_fd = -1; 10411 10412 /* for future expandability... */ 10413 if (flags & ~PERF_FLAG_ALL) 10414 return -EINVAL; 10415 10416 err = perf_copy_attr(attr_uptr, &attr); 10417 if (err) 10418 return err; 10419 10420 if (!attr.exclude_kernel) { 10421 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 10422 return -EACCES; 10423 } 10424 10425 if (attr.namespaces) { 10426 if (!capable(CAP_SYS_ADMIN)) 10427 return -EACCES; 10428 } 10429 10430 if (attr.freq) { 10431 if (attr.sample_freq > sysctl_perf_event_sample_rate) 10432 return -EINVAL; 10433 } else { 10434 if (attr.sample_period & (1ULL << 63)) 10435 return -EINVAL; 10436 } 10437 10438 /* Only privileged users can get physical addresses */ 10439 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) && 10440 perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 10441 return -EACCES; 10442 10443 /* 10444 * In cgroup mode, the pid argument is used to pass the fd 10445 * opened to the cgroup directory in cgroupfs. The cpu argument 10446 * designates the cpu on which to monitor threads from that 10447 * cgroup. 10448 */ 10449 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 10450 return -EINVAL; 10451 10452 if (flags & PERF_FLAG_FD_CLOEXEC) 10453 f_flags |= O_CLOEXEC; 10454 10455 event_fd = get_unused_fd_flags(f_flags); 10456 if (event_fd < 0) 10457 return event_fd; 10458 10459 if (group_fd != -1) { 10460 err = perf_fget_light(group_fd, &group); 10461 if (err) 10462 goto err_fd; 10463 group_leader = group.file->private_data; 10464 if (flags & PERF_FLAG_FD_OUTPUT) 10465 output_event = group_leader; 10466 if (flags & PERF_FLAG_FD_NO_GROUP) 10467 group_leader = NULL; 10468 } 10469 10470 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 10471 task = find_lively_task_by_vpid(pid); 10472 if (IS_ERR(task)) { 10473 err = PTR_ERR(task); 10474 goto err_group_fd; 10475 } 10476 } 10477 10478 if (task && group_leader && 10479 group_leader->attr.inherit != attr.inherit) { 10480 err = -EINVAL; 10481 goto err_task; 10482 } 10483 10484 if (task) { 10485 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex); 10486 if (err) 10487 goto err_task; 10488 10489 /* 10490 * Reuse ptrace permission checks for now. 10491 * 10492 * We must hold cred_guard_mutex across this and any potential 10493 * perf_install_in_context() call for this new event to 10494 * serialize against exec() altering our credentials (and the 10495 * perf_event_exit_task() that could imply). 10496 */ 10497 err = -EACCES; 10498 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) 10499 goto err_cred; 10500 } 10501 10502 if (flags & PERF_FLAG_PID_CGROUP) 10503 cgroup_fd = pid; 10504 10505 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 10506 NULL, NULL, cgroup_fd); 10507 if (IS_ERR(event)) { 10508 err = PTR_ERR(event); 10509 goto err_cred; 10510 } 10511 10512 if (is_sampling_event(event)) { 10513 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 10514 err = -EOPNOTSUPP; 10515 goto err_alloc; 10516 } 10517 } 10518 10519 /* 10520 * Special case software events and allow them to be part of 10521 * any hardware group. 10522 */ 10523 pmu = event->pmu; 10524 10525 if (attr.use_clockid) { 10526 err = perf_event_set_clock(event, attr.clockid); 10527 if (err) 10528 goto err_alloc; 10529 } 10530 10531 if (pmu->task_ctx_nr == perf_sw_context) 10532 event->event_caps |= PERF_EV_CAP_SOFTWARE; 10533 10534 if (group_leader) { 10535 if (is_software_event(event) && 10536 !in_software_context(group_leader)) { 10537 /* 10538 * If the event is a sw event, but the group_leader 10539 * is on hw context. 10540 * 10541 * Allow the addition of software events to hw 10542 * groups, this is safe because software events 10543 * never fail to schedule. 10544 */ 10545 pmu = group_leader->ctx->pmu; 10546 } else if (!is_software_event(event) && 10547 is_software_event(group_leader) && 10548 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 10549 /* 10550 * In case the group is a pure software group, and we 10551 * try to add a hardware event, move the whole group to 10552 * the hardware context. 10553 */ 10554 move_group = 1; 10555 } 10556 } 10557 10558 /* 10559 * Get the target context (task or percpu): 10560 */ 10561 ctx = find_get_context(pmu, task, event); 10562 if (IS_ERR(ctx)) { 10563 err = PTR_ERR(ctx); 10564 goto err_alloc; 10565 } 10566 10567 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) { 10568 err = -EBUSY; 10569 goto err_context; 10570 } 10571 10572 /* 10573 * Look up the group leader (we will attach this event to it): 10574 */ 10575 if (group_leader) { 10576 err = -EINVAL; 10577 10578 /* 10579 * Do not allow a recursive hierarchy (this new sibling 10580 * becoming part of another group-sibling): 10581 */ 10582 if (group_leader->group_leader != group_leader) 10583 goto err_context; 10584 10585 /* All events in a group should have the same clock */ 10586 if (group_leader->clock != event->clock) 10587 goto err_context; 10588 10589 /* 10590 * Make sure we're both events for the same CPU; 10591 * grouping events for different CPUs is broken; since 10592 * you can never concurrently schedule them anyhow. 10593 */ 10594 if (group_leader->cpu != event->cpu) 10595 goto err_context; 10596 10597 /* 10598 * Make sure we're both on the same task, or both 10599 * per-CPU events. 10600 */ 10601 if (group_leader->ctx->task != ctx->task) 10602 goto err_context; 10603 10604 /* 10605 * Do not allow to attach to a group in a different task 10606 * or CPU context. If we're moving SW events, we'll fix 10607 * this up later, so allow that. 10608 */ 10609 if (!move_group && group_leader->ctx != ctx) 10610 goto err_context; 10611 10612 /* 10613 * Only a group leader can be exclusive or pinned 10614 */ 10615 if (attr.exclusive || attr.pinned) 10616 goto err_context; 10617 } 10618 10619 if (output_event) { 10620 err = perf_event_set_output(event, output_event); 10621 if (err) 10622 goto err_context; 10623 } 10624 10625 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, 10626 f_flags); 10627 if (IS_ERR(event_file)) { 10628 err = PTR_ERR(event_file); 10629 event_file = NULL; 10630 goto err_context; 10631 } 10632 10633 if (move_group) { 10634 gctx = __perf_event_ctx_lock_double(group_leader, ctx); 10635 10636 if (gctx->task == TASK_TOMBSTONE) { 10637 err = -ESRCH; 10638 goto err_locked; 10639 } 10640 10641 /* 10642 * Check if we raced against another sys_perf_event_open() call 10643 * moving the software group underneath us. 10644 */ 10645 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 10646 /* 10647 * If someone moved the group out from under us, check 10648 * if this new event wound up on the same ctx, if so 10649 * its the regular !move_group case, otherwise fail. 10650 */ 10651 if (gctx != ctx) { 10652 err = -EINVAL; 10653 goto err_locked; 10654 } else { 10655 perf_event_ctx_unlock(group_leader, gctx); 10656 move_group = 0; 10657 } 10658 } 10659 } else { 10660 mutex_lock(&ctx->mutex); 10661 } 10662 10663 if (ctx->task == TASK_TOMBSTONE) { 10664 err = -ESRCH; 10665 goto err_locked; 10666 } 10667 10668 if (!perf_event_validate_size(event)) { 10669 err = -E2BIG; 10670 goto err_locked; 10671 } 10672 10673 if (!task) { 10674 /* 10675 * Check if the @cpu we're creating an event for is online. 10676 * 10677 * We use the perf_cpu_context::ctx::mutex to serialize against 10678 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 10679 */ 10680 struct perf_cpu_context *cpuctx = 10681 container_of(ctx, struct perf_cpu_context, ctx); 10682 10683 if (!cpuctx->online) { 10684 err = -ENODEV; 10685 goto err_locked; 10686 } 10687 } 10688 10689 10690 /* 10691 * Must be under the same ctx::mutex as perf_install_in_context(), 10692 * because we need to serialize with concurrent event creation. 10693 */ 10694 if (!exclusive_event_installable(event, ctx)) { 10695 /* exclusive and group stuff are assumed mutually exclusive */ 10696 WARN_ON_ONCE(move_group); 10697 10698 err = -EBUSY; 10699 goto err_locked; 10700 } 10701 10702 WARN_ON_ONCE(ctx->parent_ctx); 10703 10704 /* 10705 * This is the point on no return; we cannot fail hereafter. This is 10706 * where we start modifying current state. 10707 */ 10708 10709 if (move_group) { 10710 /* 10711 * See perf_event_ctx_lock() for comments on the details 10712 * of swizzling perf_event::ctx. 10713 */ 10714 perf_remove_from_context(group_leader, 0); 10715 put_ctx(gctx); 10716 10717 for_each_sibling_event(sibling, group_leader) { 10718 perf_remove_from_context(sibling, 0); 10719 put_ctx(gctx); 10720 } 10721 10722 /* 10723 * Wait for everybody to stop referencing the events through 10724 * the old lists, before installing it on new lists. 10725 */ 10726 synchronize_rcu(); 10727 10728 /* 10729 * Install the group siblings before the group leader. 10730 * 10731 * Because a group leader will try and install the entire group 10732 * (through the sibling list, which is still in-tact), we can 10733 * end up with siblings installed in the wrong context. 10734 * 10735 * By installing siblings first we NO-OP because they're not 10736 * reachable through the group lists. 10737 */ 10738 for_each_sibling_event(sibling, group_leader) { 10739 perf_event__state_init(sibling); 10740 perf_install_in_context(ctx, sibling, sibling->cpu); 10741 get_ctx(ctx); 10742 } 10743 10744 /* 10745 * Removing from the context ends up with disabled 10746 * event. What we want here is event in the initial 10747 * startup state, ready to be add into new context. 10748 */ 10749 perf_event__state_init(group_leader); 10750 perf_install_in_context(ctx, group_leader, group_leader->cpu); 10751 get_ctx(ctx); 10752 } 10753 10754 /* 10755 * Precalculate sample_data sizes; do while holding ctx::mutex such 10756 * that we're serialized against further additions and before 10757 * perf_install_in_context() which is the point the event is active and 10758 * can use these values. 10759 */ 10760 perf_event__header_size(event); 10761 perf_event__id_header_size(event); 10762 10763 event->owner = current; 10764 10765 perf_install_in_context(ctx, event, event->cpu); 10766 perf_unpin_context(ctx); 10767 10768 if (move_group) 10769 perf_event_ctx_unlock(group_leader, gctx); 10770 mutex_unlock(&ctx->mutex); 10771 10772 if (task) { 10773 mutex_unlock(&task->signal->cred_guard_mutex); 10774 put_task_struct(task); 10775 } 10776 10777 mutex_lock(¤t->perf_event_mutex); 10778 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 10779 mutex_unlock(¤t->perf_event_mutex); 10780 10781 /* 10782 * Drop the reference on the group_event after placing the 10783 * new event on the sibling_list. This ensures destruction 10784 * of the group leader will find the pointer to itself in 10785 * perf_group_detach(). 10786 */ 10787 fdput(group); 10788 fd_install(event_fd, event_file); 10789 return event_fd; 10790 10791 err_locked: 10792 if (move_group) 10793 perf_event_ctx_unlock(group_leader, gctx); 10794 mutex_unlock(&ctx->mutex); 10795 /* err_file: */ 10796 fput(event_file); 10797 err_context: 10798 perf_unpin_context(ctx); 10799 put_ctx(ctx); 10800 err_alloc: 10801 /* 10802 * If event_file is set, the fput() above will have called ->release() 10803 * and that will take care of freeing the event. 10804 */ 10805 if (!event_file) 10806 free_event(event); 10807 err_cred: 10808 if (task) 10809 mutex_unlock(&task->signal->cred_guard_mutex); 10810 err_task: 10811 if (task) 10812 put_task_struct(task); 10813 err_group_fd: 10814 fdput(group); 10815 err_fd: 10816 put_unused_fd(event_fd); 10817 return err; 10818 } 10819 10820 /** 10821 * perf_event_create_kernel_counter 10822 * 10823 * @attr: attributes of the counter to create 10824 * @cpu: cpu in which the counter is bound 10825 * @task: task to profile (NULL for percpu) 10826 */ 10827 struct perf_event * 10828 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 10829 struct task_struct *task, 10830 perf_overflow_handler_t overflow_handler, 10831 void *context) 10832 { 10833 struct perf_event_context *ctx; 10834 struct perf_event *event; 10835 int err; 10836 10837 /* 10838 * Get the target context (task or percpu): 10839 */ 10840 10841 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 10842 overflow_handler, context, -1); 10843 if (IS_ERR(event)) { 10844 err = PTR_ERR(event); 10845 goto err; 10846 } 10847 10848 /* Mark owner so we could distinguish it from user events. */ 10849 event->owner = TASK_TOMBSTONE; 10850 10851 ctx = find_get_context(event->pmu, task, event); 10852 if (IS_ERR(ctx)) { 10853 err = PTR_ERR(ctx); 10854 goto err_free; 10855 } 10856 10857 WARN_ON_ONCE(ctx->parent_ctx); 10858 mutex_lock(&ctx->mutex); 10859 if (ctx->task == TASK_TOMBSTONE) { 10860 err = -ESRCH; 10861 goto err_unlock; 10862 } 10863 10864 if (!task) { 10865 /* 10866 * Check if the @cpu we're creating an event for is online. 10867 * 10868 * We use the perf_cpu_context::ctx::mutex to serialize against 10869 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 10870 */ 10871 struct perf_cpu_context *cpuctx = 10872 container_of(ctx, struct perf_cpu_context, ctx); 10873 if (!cpuctx->online) { 10874 err = -ENODEV; 10875 goto err_unlock; 10876 } 10877 } 10878 10879 if (!exclusive_event_installable(event, ctx)) { 10880 err = -EBUSY; 10881 goto err_unlock; 10882 } 10883 10884 perf_install_in_context(ctx, event, cpu); 10885 perf_unpin_context(ctx); 10886 mutex_unlock(&ctx->mutex); 10887 10888 return event; 10889 10890 err_unlock: 10891 mutex_unlock(&ctx->mutex); 10892 perf_unpin_context(ctx); 10893 put_ctx(ctx); 10894 err_free: 10895 free_event(event); 10896 err: 10897 return ERR_PTR(err); 10898 } 10899 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 10900 10901 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 10902 { 10903 struct perf_event_context *src_ctx; 10904 struct perf_event_context *dst_ctx; 10905 struct perf_event *event, *tmp; 10906 LIST_HEAD(events); 10907 10908 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx; 10909 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx; 10910 10911 /* 10912 * See perf_event_ctx_lock() for comments on the details 10913 * of swizzling perf_event::ctx. 10914 */ 10915 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); 10916 list_for_each_entry_safe(event, tmp, &src_ctx->event_list, 10917 event_entry) { 10918 perf_remove_from_context(event, 0); 10919 unaccount_event_cpu(event, src_cpu); 10920 put_ctx(src_ctx); 10921 list_add(&event->migrate_entry, &events); 10922 } 10923 10924 /* 10925 * Wait for the events to quiesce before re-instating them. 10926 */ 10927 synchronize_rcu(); 10928 10929 /* 10930 * Re-instate events in 2 passes. 10931 * 10932 * Skip over group leaders and only install siblings on this first 10933 * pass, siblings will not get enabled without a leader, however a 10934 * leader will enable its siblings, even if those are still on the old 10935 * context. 10936 */ 10937 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 10938 if (event->group_leader == event) 10939 continue; 10940 10941 list_del(&event->migrate_entry); 10942 if (event->state >= PERF_EVENT_STATE_OFF) 10943 event->state = PERF_EVENT_STATE_INACTIVE; 10944 account_event_cpu(event, dst_cpu); 10945 perf_install_in_context(dst_ctx, event, dst_cpu); 10946 get_ctx(dst_ctx); 10947 } 10948 10949 /* 10950 * Once all the siblings are setup properly, install the group leaders 10951 * to make it go. 10952 */ 10953 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 10954 list_del(&event->migrate_entry); 10955 if (event->state >= PERF_EVENT_STATE_OFF) 10956 event->state = PERF_EVENT_STATE_INACTIVE; 10957 account_event_cpu(event, dst_cpu); 10958 perf_install_in_context(dst_ctx, event, dst_cpu); 10959 get_ctx(dst_ctx); 10960 } 10961 mutex_unlock(&dst_ctx->mutex); 10962 mutex_unlock(&src_ctx->mutex); 10963 } 10964 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 10965 10966 static void sync_child_event(struct perf_event *child_event, 10967 struct task_struct *child) 10968 { 10969 struct perf_event *parent_event = child_event->parent; 10970 u64 child_val; 10971 10972 if (child_event->attr.inherit_stat) 10973 perf_event_read_event(child_event, child); 10974 10975 child_val = perf_event_count(child_event); 10976 10977 /* 10978 * Add back the child's count to the parent's count: 10979 */ 10980 atomic64_add(child_val, &parent_event->child_count); 10981 atomic64_add(child_event->total_time_enabled, 10982 &parent_event->child_total_time_enabled); 10983 atomic64_add(child_event->total_time_running, 10984 &parent_event->child_total_time_running); 10985 } 10986 10987 static void 10988 perf_event_exit_event(struct perf_event *child_event, 10989 struct perf_event_context *child_ctx, 10990 struct task_struct *child) 10991 { 10992 struct perf_event *parent_event = child_event->parent; 10993 10994 /* 10995 * Do not destroy the 'original' grouping; because of the context 10996 * switch optimization the original events could've ended up in a 10997 * random child task. 10998 * 10999 * If we were to destroy the original group, all group related 11000 * operations would cease to function properly after this random 11001 * child dies. 11002 * 11003 * Do destroy all inherited groups, we don't care about those 11004 * and being thorough is better. 11005 */ 11006 raw_spin_lock_irq(&child_ctx->lock); 11007 WARN_ON_ONCE(child_ctx->is_active); 11008 11009 if (parent_event) 11010 perf_group_detach(child_event); 11011 list_del_event(child_event, child_ctx); 11012 perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */ 11013 raw_spin_unlock_irq(&child_ctx->lock); 11014 11015 /* 11016 * Parent events are governed by their filedesc, retain them. 11017 */ 11018 if (!parent_event) { 11019 perf_event_wakeup(child_event); 11020 return; 11021 } 11022 /* 11023 * Child events can be cleaned up. 11024 */ 11025 11026 sync_child_event(child_event, child); 11027 11028 /* 11029 * Remove this event from the parent's list 11030 */ 11031 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 11032 mutex_lock(&parent_event->child_mutex); 11033 list_del_init(&child_event->child_list); 11034 mutex_unlock(&parent_event->child_mutex); 11035 11036 /* 11037 * Kick perf_poll() for is_event_hup(). 11038 */ 11039 perf_event_wakeup(parent_event); 11040 free_event(child_event); 11041 put_event(parent_event); 11042 } 11043 11044 static void perf_event_exit_task_context(struct task_struct *child, int ctxn) 11045 { 11046 struct perf_event_context *child_ctx, *clone_ctx = NULL; 11047 struct perf_event *child_event, *next; 11048 11049 WARN_ON_ONCE(child != current); 11050 11051 child_ctx = perf_pin_task_context(child, ctxn); 11052 if (!child_ctx) 11053 return; 11054 11055 /* 11056 * In order to reduce the amount of tricky in ctx tear-down, we hold 11057 * ctx::mutex over the entire thing. This serializes against almost 11058 * everything that wants to access the ctx. 11059 * 11060 * The exception is sys_perf_event_open() / 11061 * perf_event_create_kernel_count() which does find_get_context() 11062 * without ctx::mutex (it cannot because of the move_group double mutex 11063 * lock thing). See the comments in perf_install_in_context(). 11064 */ 11065 mutex_lock(&child_ctx->mutex); 11066 11067 /* 11068 * In a single ctx::lock section, de-schedule the events and detach the 11069 * context from the task such that we cannot ever get it scheduled back 11070 * in. 11071 */ 11072 raw_spin_lock_irq(&child_ctx->lock); 11073 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL); 11074 11075 /* 11076 * Now that the context is inactive, destroy the task <-> ctx relation 11077 * and mark the context dead. 11078 */ 11079 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL); 11080 put_ctx(child_ctx); /* cannot be last */ 11081 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE); 11082 put_task_struct(current); /* cannot be last */ 11083 11084 clone_ctx = unclone_ctx(child_ctx); 11085 raw_spin_unlock_irq(&child_ctx->lock); 11086 11087 if (clone_ctx) 11088 put_ctx(clone_ctx); 11089 11090 /* 11091 * Report the task dead after unscheduling the events so that we 11092 * won't get any samples after PERF_RECORD_EXIT. We can however still 11093 * get a few PERF_RECORD_READ events. 11094 */ 11095 perf_event_task(child, child_ctx, 0); 11096 11097 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) 11098 perf_event_exit_event(child_event, child_ctx, child); 11099 11100 mutex_unlock(&child_ctx->mutex); 11101 11102 put_ctx(child_ctx); 11103 } 11104 11105 /* 11106 * When a child task exits, feed back event values to parent events. 11107 * 11108 * Can be called with cred_guard_mutex held when called from 11109 * install_exec_creds(). 11110 */ 11111 void perf_event_exit_task(struct task_struct *child) 11112 { 11113 struct perf_event *event, *tmp; 11114 int ctxn; 11115 11116 mutex_lock(&child->perf_event_mutex); 11117 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 11118 owner_entry) { 11119 list_del_init(&event->owner_entry); 11120 11121 /* 11122 * Ensure the list deletion is visible before we clear 11123 * the owner, closes a race against perf_release() where 11124 * we need to serialize on the owner->perf_event_mutex. 11125 */ 11126 smp_store_release(&event->owner, NULL); 11127 } 11128 mutex_unlock(&child->perf_event_mutex); 11129 11130 for_each_task_context_nr(ctxn) 11131 perf_event_exit_task_context(child, ctxn); 11132 11133 /* 11134 * The perf_event_exit_task_context calls perf_event_task 11135 * with child's task_ctx, which generates EXIT events for 11136 * child contexts and sets child->perf_event_ctxp[] to NULL. 11137 * At this point we need to send EXIT events to cpu contexts. 11138 */ 11139 perf_event_task(child, NULL, 0); 11140 } 11141 11142 static void perf_free_event(struct perf_event *event, 11143 struct perf_event_context *ctx) 11144 { 11145 struct perf_event *parent = event->parent; 11146 11147 if (WARN_ON_ONCE(!parent)) 11148 return; 11149 11150 mutex_lock(&parent->child_mutex); 11151 list_del_init(&event->child_list); 11152 mutex_unlock(&parent->child_mutex); 11153 11154 put_event(parent); 11155 11156 raw_spin_lock_irq(&ctx->lock); 11157 perf_group_detach(event); 11158 list_del_event(event, ctx); 11159 raw_spin_unlock_irq(&ctx->lock); 11160 free_event(event); 11161 } 11162 11163 /* 11164 * Free an unexposed, unused context as created by inheritance by 11165 * perf_event_init_task below, used by fork() in case of fail. 11166 * 11167 * Not all locks are strictly required, but take them anyway to be nice and 11168 * help out with the lockdep assertions. 11169 */ 11170 void perf_event_free_task(struct task_struct *task) 11171 { 11172 struct perf_event_context *ctx; 11173 struct perf_event *event, *tmp; 11174 int ctxn; 11175 11176 for_each_task_context_nr(ctxn) { 11177 ctx = task->perf_event_ctxp[ctxn]; 11178 if (!ctx) 11179 continue; 11180 11181 mutex_lock(&ctx->mutex); 11182 raw_spin_lock_irq(&ctx->lock); 11183 /* 11184 * Destroy the task <-> ctx relation and mark the context dead. 11185 * 11186 * This is important because even though the task hasn't been 11187 * exposed yet the context has been (through child_list). 11188 */ 11189 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL); 11190 WRITE_ONCE(ctx->task, TASK_TOMBSTONE); 11191 put_task_struct(task); /* cannot be last */ 11192 raw_spin_unlock_irq(&ctx->lock); 11193 11194 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) 11195 perf_free_event(event, ctx); 11196 11197 mutex_unlock(&ctx->mutex); 11198 put_ctx(ctx); 11199 } 11200 } 11201 11202 void perf_event_delayed_put(struct task_struct *task) 11203 { 11204 int ctxn; 11205 11206 for_each_task_context_nr(ctxn) 11207 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); 11208 } 11209 11210 struct file *perf_event_get(unsigned int fd) 11211 { 11212 struct file *file; 11213 11214 file = fget_raw(fd); 11215 if (!file) 11216 return ERR_PTR(-EBADF); 11217 11218 if (file->f_op != &perf_fops) { 11219 fput(file); 11220 return ERR_PTR(-EBADF); 11221 } 11222 11223 return file; 11224 } 11225 11226 const struct perf_event *perf_get_event(struct file *file) 11227 { 11228 if (file->f_op != &perf_fops) 11229 return ERR_PTR(-EINVAL); 11230 11231 return file->private_data; 11232 } 11233 11234 const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 11235 { 11236 if (!event) 11237 return ERR_PTR(-EINVAL); 11238 11239 return &event->attr; 11240 } 11241 11242 /* 11243 * Inherit an event from parent task to child task. 11244 * 11245 * Returns: 11246 * - valid pointer on success 11247 * - NULL for orphaned events 11248 * - IS_ERR() on error 11249 */ 11250 static struct perf_event * 11251 inherit_event(struct perf_event *parent_event, 11252 struct task_struct *parent, 11253 struct perf_event_context *parent_ctx, 11254 struct task_struct *child, 11255 struct perf_event *group_leader, 11256 struct perf_event_context *child_ctx) 11257 { 11258 enum perf_event_state parent_state = parent_event->state; 11259 struct perf_event *child_event; 11260 unsigned long flags; 11261 11262 /* 11263 * Instead of creating recursive hierarchies of events, 11264 * we link inherited events back to the original parent, 11265 * which has a filp for sure, which we use as the reference 11266 * count: 11267 */ 11268 if (parent_event->parent) 11269 parent_event = parent_event->parent; 11270 11271 child_event = perf_event_alloc(&parent_event->attr, 11272 parent_event->cpu, 11273 child, 11274 group_leader, parent_event, 11275 NULL, NULL, -1); 11276 if (IS_ERR(child_event)) 11277 return child_event; 11278 11279 11280 if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) && 11281 !child_ctx->task_ctx_data) { 11282 struct pmu *pmu = child_event->pmu; 11283 11284 child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size, 11285 GFP_KERNEL); 11286 if (!child_ctx->task_ctx_data) { 11287 free_event(child_event); 11288 return NULL; 11289 } 11290 } 11291 11292 /* 11293 * is_orphaned_event() and list_add_tail(&parent_event->child_list) 11294 * must be under the same lock in order to serialize against 11295 * perf_event_release_kernel(), such that either we must observe 11296 * is_orphaned_event() or they will observe us on the child_list. 11297 */ 11298 mutex_lock(&parent_event->child_mutex); 11299 if (is_orphaned_event(parent_event) || 11300 !atomic_long_inc_not_zero(&parent_event->refcount)) { 11301 mutex_unlock(&parent_event->child_mutex); 11302 /* task_ctx_data is freed with child_ctx */ 11303 free_event(child_event); 11304 return NULL; 11305 } 11306 11307 get_ctx(child_ctx); 11308 11309 /* 11310 * Make the child state follow the state of the parent event, 11311 * not its attr.disabled bit. We hold the parent's mutex, 11312 * so we won't race with perf_event_{en, dis}able_family. 11313 */ 11314 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 11315 child_event->state = PERF_EVENT_STATE_INACTIVE; 11316 else 11317 child_event->state = PERF_EVENT_STATE_OFF; 11318 11319 if (parent_event->attr.freq) { 11320 u64 sample_period = parent_event->hw.sample_period; 11321 struct hw_perf_event *hwc = &child_event->hw; 11322 11323 hwc->sample_period = sample_period; 11324 hwc->last_period = sample_period; 11325 11326 local64_set(&hwc->period_left, sample_period); 11327 } 11328 11329 child_event->ctx = child_ctx; 11330 child_event->overflow_handler = parent_event->overflow_handler; 11331 child_event->overflow_handler_context 11332 = parent_event->overflow_handler_context; 11333 11334 /* 11335 * Precalculate sample_data sizes 11336 */ 11337 perf_event__header_size(child_event); 11338 perf_event__id_header_size(child_event); 11339 11340 /* 11341 * Link it up in the child's context: 11342 */ 11343 raw_spin_lock_irqsave(&child_ctx->lock, flags); 11344 add_event_to_ctx(child_event, child_ctx); 11345 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 11346 11347 /* 11348 * Link this into the parent event's child list 11349 */ 11350 list_add_tail(&child_event->child_list, &parent_event->child_list); 11351 mutex_unlock(&parent_event->child_mutex); 11352 11353 return child_event; 11354 } 11355 11356 /* 11357 * Inherits an event group. 11358 * 11359 * This will quietly suppress orphaned events; !inherit_event() is not an error. 11360 * This matches with perf_event_release_kernel() removing all child events. 11361 * 11362 * Returns: 11363 * - 0 on success 11364 * - <0 on error 11365 */ 11366 static int inherit_group(struct perf_event *parent_event, 11367 struct task_struct *parent, 11368 struct perf_event_context *parent_ctx, 11369 struct task_struct *child, 11370 struct perf_event_context *child_ctx) 11371 { 11372 struct perf_event *leader; 11373 struct perf_event *sub; 11374 struct perf_event *child_ctr; 11375 11376 leader = inherit_event(parent_event, parent, parent_ctx, 11377 child, NULL, child_ctx); 11378 if (IS_ERR(leader)) 11379 return PTR_ERR(leader); 11380 /* 11381 * @leader can be NULL here because of is_orphaned_event(). In this 11382 * case inherit_event() will create individual events, similar to what 11383 * perf_group_detach() would do anyway. 11384 */ 11385 for_each_sibling_event(sub, parent_event) { 11386 child_ctr = inherit_event(sub, parent, parent_ctx, 11387 child, leader, child_ctx); 11388 if (IS_ERR(child_ctr)) 11389 return PTR_ERR(child_ctr); 11390 } 11391 return 0; 11392 } 11393 11394 /* 11395 * Creates the child task context and tries to inherit the event-group. 11396 * 11397 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave 11398 * inherited_all set when we 'fail' to inherit an orphaned event; this is 11399 * consistent with perf_event_release_kernel() removing all child events. 11400 * 11401 * Returns: 11402 * - 0 on success 11403 * - <0 on error 11404 */ 11405 static int 11406 inherit_task_group(struct perf_event *event, struct task_struct *parent, 11407 struct perf_event_context *parent_ctx, 11408 struct task_struct *child, int ctxn, 11409 int *inherited_all) 11410 { 11411 int ret; 11412 struct perf_event_context *child_ctx; 11413 11414 if (!event->attr.inherit) { 11415 *inherited_all = 0; 11416 return 0; 11417 } 11418 11419 child_ctx = child->perf_event_ctxp[ctxn]; 11420 if (!child_ctx) { 11421 /* 11422 * This is executed from the parent task context, so 11423 * inherit events that have been marked for cloning. 11424 * First allocate and initialize a context for the 11425 * child. 11426 */ 11427 child_ctx = alloc_perf_context(parent_ctx->pmu, child); 11428 if (!child_ctx) 11429 return -ENOMEM; 11430 11431 child->perf_event_ctxp[ctxn] = child_ctx; 11432 } 11433 11434 ret = inherit_group(event, parent, parent_ctx, 11435 child, child_ctx); 11436 11437 if (ret) 11438 *inherited_all = 0; 11439 11440 return ret; 11441 } 11442 11443 /* 11444 * Initialize the perf_event context in task_struct 11445 */ 11446 static int perf_event_init_context(struct task_struct *child, int ctxn) 11447 { 11448 struct perf_event_context *child_ctx, *parent_ctx; 11449 struct perf_event_context *cloned_ctx; 11450 struct perf_event *event; 11451 struct task_struct *parent = current; 11452 int inherited_all = 1; 11453 unsigned long flags; 11454 int ret = 0; 11455 11456 if (likely(!parent->perf_event_ctxp[ctxn])) 11457 return 0; 11458 11459 /* 11460 * If the parent's context is a clone, pin it so it won't get 11461 * swapped under us. 11462 */ 11463 parent_ctx = perf_pin_task_context(parent, ctxn); 11464 if (!parent_ctx) 11465 return 0; 11466 11467 /* 11468 * No need to check if parent_ctx != NULL here; since we saw 11469 * it non-NULL earlier, the only reason for it to become NULL 11470 * is if we exit, and since we're currently in the middle of 11471 * a fork we can't be exiting at the same time. 11472 */ 11473 11474 /* 11475 * Lock the parent list. No need to lock the child - not PID 11476 * hashed yet and not running, so nobody can access it. 11477 */ 11478 mutex_lock(&parent_ctx->mutex); 11479 11480 /* 11481 * We dont have to disable NMIs - we are only looking at 11482 * the list, not manipulating it: 11483 */ 11484 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) { 11485 ret = inherit_task_group(event, parent, parent_ctx, 11486 child, ctxn, &inherited_all); 11487 if (ret) 11488 goto out_unlock; 11489 } 11490 11491 /* 11492 * We can't hold ctx->lock when iterating the ->flexible_group list due 11493 * to allocations, but we need to prevent rotation because 11494 * rotate_ctx() will change the list from interrupt context. 11495 */ 11496 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 11497 parent_ctx->rotate_disable = 1; 11498 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 11499 11500 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) { 11501 ret = inherit_task_group(event, parent, parent_ctx, 11502 child, ctxn, &inherited_all); 11503 if (ret) 11504 goto out_unlock; 11505 } 11506 11507 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 11508 parent_ctx->rotate_disable = 0; 11509 11510 child_ctx = child->perf_event_ctxp[ctxn]; 11511 11512 if (child_ctx && inherited_all) { 11513 /* 11514 * Mark the child context as a clone of the parent 11515 * context, or of whatever the parent is a clone of. 11516 * 11517 * Note that if the parent is a clone, the holding of 11518 * parent_ctx->lock avoids it from being uncloned. 11519 */ 11520 cloned_ctx = parent_ctx->parent_ctx; 11521 if (cloned_ctx) { 11522 child_ctx->parent_ctx = cloned_ctx; 11523 child_ctx->parent_gen = parent_ctx->parent_gen; 11524 } else { 11525 child_ctx->parent_ctx = parent_ctx; 11526 child_ctx->parent_gen = parent_ctx->generation; 11527 } 11528 get_ctx(child_ctx->parent_ctx); 11529 } 11530 11531 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 11532 out_unlock: 11533 mutex_unlock(&parent_ctx->mutex); 11534 11535 perf_unpin_context(parent_ctx); 11536 put_ctx(parent_ctx); 11537 11538 return ret; 11539 } 11540 11541 /* 11542 * Initialize the perf_event context in task_struct 11543 */ 11544 int perf_event_init_task(struct task_struct *child) 11545 { 11546 int ctxn, ret; 11547 11548 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); 11549 mutex_init(&child->perf_event_mutex); 11550 INIT_LIST_HEAD(&child->perf_event_list); 11551 11552 for_each_task_context_nr(ctxn) { 11553 ret = perf_event_init_context(child, ctxn); 11554 if (ret) { 11555 perf_event_free_task(child); 11556 return ret; 11557 } 11558 } 11559 11560 return 0; 11561 } 11562 11563 static void __init perf_event_init_all_cpus(void) 11564 { 11565 struct swevent_htable *swhash; 11566 int cpu; 11567 11568 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL); 11569 11570 for_each_possible_cpu(cpu) { 11571 swhash = &per_cpu(swevent_htable, cpu); 11572 mutex_init(&swhash->hlist_mutex); 11573 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu)); 11574 11575 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu)); 11576 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu)); 11577 11578 #ifdef CONFIG_CGROUP_PERF 11579 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu)); 11580 #endif 11581 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu)); 11582 } 11583 } 11584 11585 void perf_swevent_init_cpu(unsigned int cpu) 11586 { 11587 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 11588 11589 mutex_lock(&swhash->hlist_mutex); 11590 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) { 11591 struct swevent_hlist *hlist; 11592 11593 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 11594 WARN_ON(!hlist); 11595 rcu_assign_pointer(swhash->swevent_hlist, hlist); 11596 } 11597 mutex_unlock(&swhash->hlist_mutex); 11598 } 11599 11600 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE 11601 static void __perf_event_exit_context(void *__info) 11602 { 11603 struct perf_event_context *ctx = __info; 11604 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 11605 struct perf_event *event; 11606 11607 raw_spin_lock(&ctx->lock); 11608 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 11609 list_for_each_entry(event, &ctx->event_list, event_entry) 11610 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP); 11611 raw_spin_unlock(&ctx->lock); 11612 } 11613 11614 static void perf_event_exit_cpu_context(int cpu) 11615 { 11616 struct perf_cpu_context *cpuctx; 11617 struct perf_event_context *ctx; 11618 struct pmu *pmu; 11619 11620 mutex_lock(&pmus_lock); 11621 list_for_each_entry(pmu, &pmus, entry) { 11622 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 11623 ctx = &cpuctx->ctx; 11624 11625 mutex_lock(&ctx->mutex); 11626 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 11627 cpuctx->online = 0; 11628 mutex_unlock(&ctx->mutex); 11629 } 11630 cpumask_clear_cpu(cpu, perf_online_mask); 11631 mutex_unlock(&pmus_lock); 11632 } 11633 #else 11634 11635 static void perf_event_exit_cpu_context(int cpu) { } 11636 11637 #endif 11638 11639 int perf_event_init_cpu(unsigned int cpu) 11640 { 11641 struct perf_cpu_context *cpuctx; 11642 struct perf_event_context *ctx; 11643 struct pmu *pmu; 11644 11645 perf_swevent_init_cpu(cpu); 11646 11647 mutex_lock(&pmus_lock); 11648 cpumask_set_cpu(cpu, perf_online_mask); 11649 list_for_each_entry(pmu, &pmus, entry) { 11650 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 11651 ctx = &cpuctx->ctx; 11652 11653 mutex_lock(&ctx->mutex); 11654 cpuctx->online = 1; 11655 mutex_unlock(&ctx->mutex); 11656 } 11657 mutex_unlock(&pmus_lock); 11658 11659 return 0; 11660 } 11661 11662 int perf_event_exit_cpu(unsigned int cpu) 11663 { 11664 perf_event_exit_cpu_context(cpu); 11665 return 0; 11666 } 11667 11668 static int 11669 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 11670 { 11671 int cpu; 11672 11673 for_each_online_cpu(cpu) 11674 perf_event_exit_cpu(cpu); 11675 11676 return NOTIFY_OK; 11677 } 11678 11679 /* 11680 * Run the perf reboot notifier at the very last possible moment so that 11681 * the generic watchdog code runs as long as possible. 11682 */ 11683 static struct notifier_block perf_reboot_notifier = { 11684 .notifier_call = perf_reboot, 11685 .priority = INT_MIN, 11686 }; 11687 11688 void __init perf_event_init(void) 11689 { 11690 int ret; 11691 11692 idr_init(&pmu_idr); 11693 11694 perf_event_init_all_cpus(); 11695 init_srcu_struct(&pmus_srcu); 11696 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 11697 perf_pmu_register(&perf_cpu_clock, NULL, -1); 11698 perf_pmu_register(&perf_task_clock, NULL, -1); 11699 perf_tp_register(); 11700 perf_event_init_cpu(smp_processor_id()); 11701 register_reboot_notifier(&perf_reboot_notifier); 11702 11703 ret = init_hw_breakpoint(); 11704 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 11705 11706 /* 11707 * Build time assertion that we keep the data_head at the intended 11708 * location. IOW, validation we got the __reserved[] size right. 11709 */ 11710 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 11711 != 1024); 11712 } 11713 11714 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 11715 char *page) 11716 { 11717 struct perf_pmu_events_attr *pmu_attr = 11718 container_of(attr, struct perf_pmu_events_attr, attr); 11719 11720 if (pmu_attr->event_str) 11721 return sprintf(page, "%s\n", pmu_attr->event_str); 11722 11723 return 0; 11724 } 11725 EXPORT_SYMBOL_GPL(perf_event_sysfs_show); 11726 11727 static int __init perf_event_sysfs_init(void) 11728 { 11729 struct pmu *pmu; 11730 int ret; 11731 11732 mutex_lock(&pmus_lock); 11733 11734 ret = bus_register(&pmu_bus); 11735 if (ret) 11736 goto unlock; 11737 11738 list_for_each_entry(pmu, &pmus, entry) { 11739 if (!pmu->name || pmu->type < 0) 11740 continue; 11741 11742 ret = pmu_dev_alloc(pmu); 11743 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 11744 } 11745 pmu_bus_running = 1; 11746 ret = 0; 11747 11748 unlock: 11749 mutex_unlock(&pmus_lock); 11750 11751 return ret; 11752 } 11753 device_initcall(perf_event_sysfs_init); 11754 11755 #ifdef CONFIG_CGROUP_PERF 11756 static struct cgroup_subsys_state * 11757 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 11758 { 11759 struct perf_cgroup *jc; 11760 11761 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 11762 if (!jc) 11763 return ERR_PTR(-ENOMEM); 11764 11765 jc->info = alloc_percpu(struct perf_cgroup_info); 11766 if (!jc->info) { 11767 kfree(jc); 11768 return ERR_PTR(-ENOMEM); 11769 } 11770 11771 return &jc->css; 11772 } 11773 11774 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 11775 { 11776 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 11777 11778 free_percpu(jc->info); 11779 kfree(jc); 11780 } 11781 11782 static int __perf_cgroup_move(void *info) 11783 { 11784 struct task_struct *task = info; 11785 rcu_read_lock(); 11786 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN); 11787 rcu_read_unlock(); 11788 return 0; 11789 } 11790 11791 static void perf_cgroup_attach(struct cgroup_taskset *tset) 11792 { 11793 struct task_struct *task; 11794 struct cgroup_subsys_state *css; 11795 11796 cgroup_taskset_for_each(task, css, tset) 11797 task_function_call(task, __perf_cgroup_move, task); 11798 } 11799 11800 struct cgroup_subsys perf_event_cgrp_subsys = { 11801 .css_alloc = perf_cgroup_css_alloc, 11802 .css_free = perf_cgroup_css_free, 11803 .attach = perf_cgroup_attach, 11804 /* 11805 * Implicitly enable on dfl hierarchy so that perf events can 11806 * always be filtered by cgroup2 path as long as perf_event 11807 * controller is not mounted on a legacy hierarchy. 11808 */ 11809 .implicit_on_dfl = true, 11810 .threaded = true, 11811 }; 11812 #endif /* CONFIG_CGROUP_PERF */ 11813