xref: /openbmc/linux/kernel/events/core.c (revision 8b030a57)
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11 
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 
54 #include "internal.h"
55 
56 #include <asm/irq_regs.h>
57 
58 typedef int (*remote_function_f)(void *);
59 
60 struct remote_function_call {
61 	struct task_struct	*p;
62 	remote_function_f	func;
63 	void			*info;
64 	int			ret;
65 };
66 
67 static void remote_function(void *data)
68 {
69 	struct remote_function_call *tfc = data;
70 	struct task_struct *p = tfc->p;
71 
72 	if (p) {
73 		/* -EAGAIN */
74 		if (task_cpu(p) != smp_processor_id())
75 			return;
76 
77 		/*
78 		 * Now that we're on right CPU with IRQs disabled, we can test
79 		 * if we hit the right task without races.
80 		 */
81 
82 		tfc->ret = -ESRCH; /* No such (running) process */
83 		if (p != current)
84 			return;
85 	}
86 
87 	tfc->ret = tfc->func(tfc->info);
88 }
89 
90 /**
91  * task_function_call - call a function on the cpu on which a task runs
92  * @p:		the task to evaluate
93  * @func:	the function to be called
94  * @info:	the function call argument
95  *
96  * Calls the function @func when the task is currently running. This might
97  * be on the current CPU, which just calls the function directly
98  *
99  * returns: @func return value, or
100  *	    -ESRCH  - when the process isn't running
101  *	    -EAGAIN - when the process moved away
102  */
103 static int
104 task_function_call(struct task_struct *p, remote_function_f func, void *info)
105 {
106 	struct remote_function_call data = {
107 		.p	= p,
108 		.func	= func,
109 		.info	= info,
110 		.ret	= -EAGAIN,
111 	};
112 	int ret;
113 
114 	do {
115 		ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
116 		if (!ret)
117 			ret = data.ret;
118 	} while (ret == -EAGAIN);
119 
120 	return ret;
121 }
122 
123 /**
124  * cpu_function_call - call a function on the cpu
125  * @func:	the function to be called
126  * @info:	the function call argument
127  *
128  * Calls the function @func on the remote cpu.
129  *
130  * returns: @func return value or -ENXIO when the cpu is offline
131  */
132 static int cpu_function_call(int cpu, remote_function_f func, void *info)
133 {
134 	struct remote_function_call data = {
135 		.p	= NULL,
136 		.func	= func,
137 		.info	= info,
138 		.ret	= -ENXIO, /* No such CPU */
139 	};
140 
141 	smp_call_function_single(cpu, remote_function, &data, 1);
142 
143 	return data.ret;
144 }
145 
146 static inline struct perf_cpu_context *
147 __get_cpu_context(struct perf_event_context *ctx)
148 {
149 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
150 }
151 
152 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
153 			  struct perf_event_context *ctx)
154 {
155 	raw_spin_lock(&cpuctx->ctx.lock);
156 	if (ctx)
157 		raw_spin_lock(&ctx->lock);
158 }
159 
160 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
161 			    struct perf_event_context *ctx)
162 {
163 	if (ctx)
164 		raw_spin_unlock(&ctx->lock);
165 	raw_spin_unlock(&cpuctx->ctx.lock);
166 }
167 
168 #define TASK_TOMBSTONE ((void *)-1L)
169 
170 static bool is_kernel_event(struct perf_event *event)
171 {
172 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
173 }
174 
175 /*
176  * On task ctx scheduling...
177  *
178  * When !ctx->nr_events a task context will not be scheduled. This means
179  * we can disable the scheduler hooks (for performance) without leaving
180  * pending task ctx state.
181  *
182  * This however results in two special cases:
183  *
184  *  - removing the last event from a task ctx; this is relatively straight
185  *    forward and is done in __perf_remove_from_context.
186  *
187  *  - adding the first event to a task ctx; this is tricky because we cannot
188  *    rely on ctx->is_active and therefore cannot use event_function_call().
189  *    See perf_install_in_context().
190  *
191  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
192  */
193 
194 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
195 			struct perf_event_context *, void *);
196 
197 struct event_function_struct {
198 	struct perf_event *event;
199 	event_f func;
200 	void *data;
201 };
202 
203 static int event_function(void *info)
204 {
205 	struct event_function_struct *efs = info;
206 	struct perf_event *event = efs->event;
207 	struct perf_event_context *ctx = event->ctx;
208 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
209 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
210 	int ret = 0;
211 
212 	lockdep_assert_irqs_disabled();
213 
214 	perf_ctx_lock(cpuctx, task_ctx);
215 	/*
216 	 * Since we do the IPI call without holding ctx->lock things can have
217 	 * changed, double check we hit the task we set out to hit.
218 	 */
219 	if (ctx->task) {
220 		if (ctx->task != current) {
221 			ret = -ESRCH;
222 			goto unlock;
223 		}
224 
225 		/*
226 		 * We only use event_function_call() on established contexts,
227 		 * and event_function() is only ever called when active (or
228 		 * rather, we'll have bailed in task_function_call() or the
229 		 * above ctx->task != current test), therefore we must have
230 		 * ctx->is_active here.
231 		 */
232 		WARN_ON_ONCE(!ctx->is_active);
233 		/*
234 		 * And since we have ctx->is_active, cpuctx->task_ctx must
235 		 * match.
236 		 */
237 		WARN_ON_ONCE(task_ctx != ctx);
238 	} else {
239 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
240 	}
241 
242 	efs->func(event, cpuctx, ctx, efs->data);
243 unlock:
244 	perf_ctx_unlock(cpuctx, task_ctx);
245 
246 	return ret;
247 }
248 
249 static void event_function_call(struct perf_event *event, event_f func, void *data)
250 {
251 	struct perf_event_context *ctx = event->ctx;
252 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
253 	struct event_function_struct efs = {
254 		.event = event,
255 		.func = func,
256 		.data = data,
257 	};
258 
259 	if (!event->parent) {
260 		/*
261 		 * If this is a !child event, we must hold ctx::mutex to
262 		 * stabilize the the event->ctx relation. See
263 		 * perf_event_ctx_lock().
264 		 */
265 		lockdep_assert_held(&ctx->mutex);
266 	}
267 
268 	if (!task) {
269 		cpu_function_call(event->cpu, event_function, &efs);
270 		return;
271 	}
272 
273 	if (task == TASK_TOMBSTONE)
274 		return;
275 
276 again:
277 	if (!task_function_call(task, event_function, &efs))
278 		return;
279 
280 	raw_spin_lock_irq(&ctx->lock);
281 	/*
282 	 * Reload the task pointer, it might have been changed by
283 	 * a concurrent perf_event_context_sched_out().
284 	 */
285 	task = ctx->task;
286 	if (task == TASK_TOMBSTONE) {
287 		raw_spin_unlock_irq(&ctx->lock);
288 		return;
289 	}
290 	if (ctx->is_active) {
291 		raw_spin_unlock_irq(&ctx->lock);
292 		goto again;
293 	}
294 	func(event, NULL, ctx, data);
295 	raw_spin_unlock_irq(&ctx->lock);
296 }
297 
298 /*
299  * Similar to event_function_call() + event_function(), but hard assumes IRQs
300  * are already disabled and we're on the right CPU.
301  */
302 static void event_function_local(struct perf_event *event, event_f func, void *data)
303 {
304 	struct perf_event_context *ctx = event->ctx;
305 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
306 	struct task_struct *task = READ_ONCE(ctx->task);
307 	struct perf_event_context *task_ctx = NULL;
308 
309 	lockdep_assert_irqs_disabled();
310 
311 	if (task) {
312 		if (task == TASK_TOMBSTONE)
313 			return;
314 
315 		task_ctx = ctx;
316 	}
317 
318 	perf_ctx_lock(cpuctx, task_ctx);
319 
320 	task = ctx->task;
321 	if (task == TASK_TOMBSTONE)
322 		goto unlock;
323 
324 	if (task) {
325 		/*
326 		 * We must be either inactive or active and the right task,
327 		 * otherwise we're screwed, since we cannot IPI to somewhere
328 		 * else.
329 		 */
330 		if (ctx->is_active) {
331 			if (WARN_ON_ONCE(task != current))
332 				goto unlock;
333 
334 			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
335 				goto unlock;
336 		}
337 	} else {
338 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
339 	}
340 
341 	func(event, cpuctx, ctx, data);
342 unlock:
343 	perf_ctx_unlock(cpuctx, task_ctx);
344 }
345 
346 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
347 		       PERF_FLAG_FD_OUTPUT  |\
348 		       PERF_FLAG_PID_CGROUP |\
349 		       PERF_FLAG_FD_CLOEXEC)
350 
351 /*
352  * branch priv levels that need permission checks
353  */
354 #define PERF_SAMPLE_BRANCH_PERM_PLM \
355 	(PERF_SAMPLE_BRANCH_KERNEL |\
356 	 PERF_SAMPLE_BRANCH_HV)
357 
358 enum event_type_t {
359 	EVENT_FLEXIBLE = 0x1,
360 	EVENT_PINNED = 0x2,
361 	EVENT_TIME = 0x4,
362 	/* see ctx_resched() for details */
363 	EVENT_CPU = 0x8,
364 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
365 };
366 
367 /*
368  * perf_sched_events : >0 events exist
369  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
370  */
371 
372 static void perf_sched_delayed(struct work_struct *work);
373 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
374 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
375 static DEFINE_MUTEX(perf_sched_mutex);
376 static atomic_t perf_sched_count;
377 
378 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
379 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
380 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
381 
382 static atomic_t nr_mmap_events __read_mostly;
383 static atomic_t nr_comm_events __read_mostly;
384 static atomic_t nr_namespaces_events __read_mostly;
385 static atomic_t nr_task_events __read_mostly;
386 static atomic_t nr_freq_events __read_mostly;
387 static atomic_t nr_switch_events __read_mostly;
388 
389 static LIST_HEAD(pmus);
390 static DEFINE_MUTEX(pmus_lock);
391 static struct srcu_struct pmus_srcu;
392 static cpumask_var_t perf_online_mask;
393 
394 /*
395  * perf event paranoia level:
396  *  -1 - not paranoid at all
397  *   0 - disallow raw tracepoint access for unpriv
398  *   1 - disallow cpu events for unpriv
399  *   2 - disallow kernel profiling for unpriv
400  */
401 int sysctl_perf_event_paranoid __read_mostly = 2;
402 
403 /* Minimum for 512 kiB + 1 user control page */
404 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
405 
406 /*
407  * max perf event sample rate
408  */
409 #define DEFAULT_MAX_SAMPLE_RATE		100000
410 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
411 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
412 
413 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
414 
415 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
416 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
417 
418 static int perf_sample_allowed_ns __read_mostly =
419 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
420 
421 static void update_perf_cpu_limits(void)
422 {
423 	u64 tmp = perf_sample_period_ns;
424 
425 	tmp *= sysctl_perf_cpu_time_max_percent;
426 	tmp = div_u64(tmp, 100);
427 	if (!tmp)
428 		tmp = 1;
429 
430 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
431 }
432 
433 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
434 
435 int perf_proc_update_handler(struct ctl_table *table, int write,
436 		void __user *buffer, size_t *lenp,
437 		loff_t *ppos)
438 {
439 	int ret;
440 	int perf_cpu = sysctl_perf_cpu_time_max_percent;
441 	/*
442 	 * If throttling is disabled don't allow the write:
443 	 */
444 	if (write && (perf_cpu == 100 || perf_cpu == 0))
445 		return -EINVAL;
446 
447 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
448 	if (ret || !write)
449 		return ret;
450 
451 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
452 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
453 	update_perf_cpu_limits();
454 
455 	return 0;
456 }
457 
458 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
459 
460 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
461 				void __user *buffer, size_t *lenp,
462 				loff_t *ppos)
463 {
464 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
465 
466 	if (ret || !write)
467 		return ret;
468 
469 	if (sysctl_perf_cpu_time_max_percent == 100 ||
470 	    sysctl_perf_cpu_time_max_percent == 0) {
471 		printk(KERN_WARNING
472 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
473 		WRITE_ONCE(perf_sample_allowed_ns, 0);
474 	} else {
475 		update_perf_cpu_limits();
476 	}
477 
478 	return 0;
479 }
480 
481 /*
482  * perf samples are done in some very critical code paths (NMIs).
483  * If they take too much CPU time, the system can lock up and not
484  * get any real work done.  This will drop the sample rate when
485  * we detect that events are taking too long.
486  */
487 #define NR_ACCUMULATED_SAMPLES 128
488 static DEFINE_PER_CPU(u64, running_sample_length);
489 
490 static u64 __report_avg;
491 static u64 __report_allowed;
492 
493 static void perf_duration_warn(struct irq_work *w)
494 {
495 	printk_ratelimited(KERN_INFO
496 		"perf: interrupt took too long (%lld > %lld), lowering "
497 		"kernel.perf_event_max_sample_rate to %d\n",
498 		__report_avg, __report_allowed,
499 		sysctl_perf_event_sample_rate);
500 }
501 
502 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
503 
504 void perf_sample_event_took(u64 sample_len_ns)
505 {
506 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
507 	u64 running_len;
508 	u64 avg_len;
509 	u32 max;
510 
511 	if (max_len == 0)
512 		return;
513 
514 	/* Decay the counter by 1 average sample. */
515 	running_len = __this_cpu_read(running_sample_length);
516 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
517 	running_len += sample_len_ns;
518 	__this_cpu_write(running_sample_length, running_len);
519 
520 	/*
521 	 * Note: this will be biased artifically low until we have
522 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
523 	 * from having to maintain a count.
524 	 */
525 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
526 	if (avg_len <= max_len)
527 		return;
528 
529 	__report_avg = avg_len;
530 	__report_allowed = max_len;
531 
532 	/*
533 	 * Compute a throttle threshold 25% below the current duration.
534 	 */
535 	avg_len += avg_len / 4;
536 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
537 	if (avg_len < max)
538 		max /= (u32)avg_len;
539 	else
540 		max = 1;
541 
542 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
543 	WRITE_ONCE(max_samples_per_tick, max);
544 
545 	sysctl_perf_event_sample_rate = max * HZ;
546 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
547 
548 	if (!irq_work_queue(&perf_duration_work)) {
549 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
550 			     "kernel.perf_event_max_sample_rate to %d\n",
551 			     __report_avg, __report_allowed,
552 			     sysctl_perf_event_sample_rate);
553 	}
554 }
555 
556 static atomic64_t perf_event_id;
557 
558 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
559 			      enum event_type_t event_type);
560 
561 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
562 			     enum event_type_t event_type,
563 			     struct task_struct *task);
564 
565 static void update_context_time(struct perf_event_context *ctx);
566 static u64 perf_event_time(struct perf_event *event);
567 
568 void __weak perf_event_print_debug(void)	{ }
569 
570 extern __weak const char *perf_pmu_name(void)
571 {
572 	return "pmu";
573 }
574 
575 static inline u64 perf_clock(void)
576 {
577 	return local_clock();
578 }
579 
580 static inline u64 perf_event_clock(struct perf_event *event)
581 {
582 	return event->clock();
583 }
584 
585 /*
586  * State based event timekeeping...
587  *
588  * The basic idea is to use event->state to determine which (if any) time
589  * fields to increment with the current delta. This means we only need to
590  * update timestamps when we change state or when they are explicitly requested
591  * (read).
592  *
593  * Event groups make things a little more complicated, but not terribly so. The
594  * rules for a group are that if the group leader is OFF the entire group is
595  * OFF, irrespecive of what the group member states are. This results in
596  * __perf_effective_state().
597  *
598  * A futher ramification is that when a group leader flips between OFF and
599  * !OFF, we need to update all group member times.
600  *
601  *
602  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
603  * need to make sure the relevant context time is updated before we try and
604  * update our timestamps.
605  */
606 
607 static __always_inline enum perf_event_state
608 __perf_effective_state(struct perf_event *event)
609 {
610 	struct perf_event *leader = event->group_leader;
611 
612 	if (leader->state <= PERF_EVENT_STATE_OFF)
613 		return leader->state;
614 
615 	return event->state;
616 }
617 
618 static __always_inline void
619 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
620 {
621 	enum perf_event_state state = __perf_effective_state(event);
622 	u64 delta = now - event->tstamp;
623 
624 	*enabled = event->total_time_enabled;
625 	if (state >= PERF_EVENT_STATE_INACTIVE)
626 		*enabled += delta;
627 
628 	*running = event->total_time_running;
629 	if (state >= PERF_EVENT_STATE_ACTIVE)
630 		*running += delta;
631 }
632 
633 static void perf_event_update_time(struct perf_event *event)
634 {
635 	u64 now = perf_event_time(event);
636 
637 	__perf_update_times(event, now, &event->total_time_enabled,
638 					&event->total_time_running);
639 	event->tstamp = now;
640 }
641 
642 static void perf_event_update_sibling_time(struct perf_event *leader)
643 {
644 	struct perf_event *sibling;
645 
646 	for_each_sibling_event(sibling, leader)
647 		perf_event_update_time(sibling);
648 }
649 
650 static void
651 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
652 {
653 	if (event->state == state)
654 		return;
655 
656 	perf_event_update_time(event);
657 	/*
658 	 * If a group leader gets enabled/disabled all its siblings
659 	 * are affected too.
660 	 */
661 	if ((event->state < 0) ^ (state < 0))
662 		perf_event_update_sibling_time(event);
663 
664 	WRITE_ONCE(event->state, state);
665 }
666 
667 #ifdef CONFIG_CGROUP_PERF
668 
669 static inline bool
670 perf_cgroup_match(struct perf_event *event)
671 {
672 	struct perf_event_context *ctx = event->ctx;
673 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
674 
675 	/* @event doesn't care about cgroup */
676 	if (!event->cgrp)
677 		return true;
678 
679 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
680 	if (!cpuctx->cgrp)
681 		return false;
682 
683 	/*
684 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
685 	 * also enabled for all its descendant cgroups.  If @cpuctx's
686 	 * cgroup is a descendant of @event's (the test covers identity
687 	 * case), it's a match.
688 	 */
689 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
690 				    event->cgrp->css.cgroup);
691 }
692 
693 static inline void perf_detach_cgroup(struct perf_event *event)
694 {
695 	css_put(&event->cgrp->css);
696 	event->cgrp = NULL;
697 }
698 
699 static inline int is_cgroup_event(struct perf_event *event)
700 {
701 	return event->cgrp != NULL;
702 }
703 
704 static inline u64 perf_cgroup_event_time(struct perf_event *event)
705 {
706 	struct perf_cgroup_info *t;
707 
708 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
709 	return t->time;
710 }
711 
712 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
713 {
714 	struct perf_cgroup_info *info;
715 	u64 now;
716 
717 	now = perf_clock();
718 
719 	info = this_cpu_ptr(cgrp->info);
720 
721 	info->time += now - info->timestamp;
722 	info->timestamp = now;
723 }
724 
725 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
726 {
727 	struct perf_cgroup *cgrp = cpuctx->cgrp;
728 	struct cgroup_subsys_state *css;
729 
730 	if (cgrp) {
731 		for (css = &cgrp->css; css; css = css->parent) {
732 			cgrp = container_of(css, struct perf_cgroup, css);
733 			__update_cgrp_time(cgrp);
734 		}
735 	}
736 }
737 
738 static inline void update_cgrp_time_from_event(struct perf_event *event)
739 {
740 	struct perf_cgroup *cgrp;
741 
742 	/*
743 	 * ensure we access cgroup data only when needed and
744 	 * when we know the cgroup is pinned (css_get)
745 	 */
746 	if (!is_cgroup_event(event))
747 		return;
748 
749 	cgrp = perf_cgroup_from_task(current, event->ctx);
750 	/*
751 	 * Do not update time when cgroup is not active
752 	 */
753 	if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
754 		__update_cgrp_time(event->cgrp);
755 }
756 
757 static inline void
758 perf_cgroup_set_timestamp(struct task_struct *task,
759 			  struct perf_event_context *ctx)
760 {
761 	struct perf_cgroup *cgrp;
762 	struct perf_cgroup_info *info;
763 	struct cgroup_subsys_state *css;
764 
765 	/*
766 	 * ctx->lock held by caller
767 	 * ensure we do not access cgroup data
768 	 * unless we have the cgroup pinned (css_get)
769 	 */
770 	if (!task || !ctx->nr_cgroups)
771 		return;
772 
773 	cgrp = perf_cgroup_from_task(task, ctx);
774 
775 	for (css = &cgrp->css; css; css = css->parent) {
776 		cgrp = container_of(css, struct perf_cgroup, css);
777 		info = this_cpu_ptr(cgrp->info);
778 		info->timestamp = ctx->timestamp;
779 	}
780 }
781 
782 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
783 
784 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
785 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
786 
787 /*
788  * reschedule events based on the cgroup constraint of task.
789  *
790  * mode SWOUT : schedule out everything
791  * mode SWIN : schedule in based on cgroup for next
792  */
793 static void perf_cgroup_switch(struct task_struct *task, int mode)
794 {
795 	struct perf_cpu_context *cpuctx;
796 	struct list_head *list;
797 	unsigned long flags;
798 
799 	/*
800 	 * Disable interrupts and preemption to avoid this CPU's
801 	 * cgrp_cpuctx_entry to change under us.
802 	 */
803 	local_irq_save(flags);
804 
805 	list = this_cpu_ptr(&cgrp_cpuctx_list);
806 	list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
807 		WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
808 
809 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
810 		perf_pmu_disable(cpuctx->ctx.pmu);
811 
812 		if (mode & PERF_CGROUP_SWOUT) {
813 			cpu_ctx_sched_out(cpuctx, EVENT_ALL);
814 			/*
815 			 * must not be done before ctxswout due
816 			 * to event_filter_match() in event_sched_out()
817 			 */
818 			cpuctx->cgrp = NULL;
819 		}
820 
821 		if (mode & PERF_CGROUP_SWIN) {
822 			WARN_ON_ONCE(cpuctx->cgrp);
823 			/*
824 			 * set cgrp before ctxsw in to allow
825 			 * event_filter_match() to not have to pass
826 			 * task around
827 			 * we pass the cpuctx->ctx to perf_cgroup_from_task()
828 			 * because cgorup events are only per-cpu
829 			 */
830 			cpuctx->cgrp = perf_cgroup_from_task(task,
831 							     &cpuctx->ctx);
832 			cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
833 		}
834 		perf_pmu_enable(cpuctx->ctx.pmu);
835 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
836 	}
837 
838 	local_irq_restore(flags);
839 }
840 
841 static inline void perf_cgroup_sched_out(struct task_struct *task,
842 					 struct task_struct *next)
843 {
844 	struct perf_cgroup *cgrp1;
845 	struct perf_cgroup *cgrp2 = NULL;
846 
847 	rcu_read_lock();
848 	/*
849 	 * we come here when we know perf_cgroup_events > 0
850 	 * we do not need to pass the ctx here because we know
851 	 * we are holding the rcu lock
852 	 */
853 	cgrp1 = perf_cgroup_from_task(task, NULL);
854 	cgrp2 = perf_cgroup_from_task(next, NULL);
855 
856 	/*
857 	 * only schedule out current cgroup events if we know
858 	 * that we are switching to a different cgroup. Otherwise,
859 	 * do no touch the cgroup events.
860 	 */
861 	if (cgrp1 != cgrp2)
862 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
863 
864 	rcu_read_unlock();
865 }
866 
867 static inline void perf_cgroup_sched_in(struct task_struct *prev,
868 					struct task_struct *task)
869 {
870 	struct perf_cgroup *cgrp1;
871 	struct perf_cgroup *cgrp2 = NULL;
872 
873 	rcu_read_lock();
874 	/*
875 	 * we come here when we know perf_cgroup_events > 0
876 	 * we do not need to pass the ctx here because we know
877 	 * we are holding the rcu lock
878 	 */
879 	cgrp1 = perf_cgroup_from_task(task, NULL);
880 	cgrp2 = perf_cgroup_from_task(prev, NULL);
881 
882 	/*
883 	 * only need to schedule in cgroup events if we are changing
884 	 * cgroup during ctxsw. Cgroup events were not scheduled
885 	 * out of ctxsw out if that was not the case.
886 	 */
887 	if (cgrp1 != cgrp2)
888 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
889 
890 	rcu_read_unlock();
891 }
892 
893 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
894 				      struct perf_event_attr *attr,
895 				      struct perf_event *group_leader)
896 {
897 	struct perf_cgroup *cgrp;
898 	struct cgroup_subsys_state *css;
899 	struct fd f = fdget(fd);
900 	int ret = 0;
901 
902 	if (!f.file)
903 		return -EBADF;
904 
905 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
906 					 &perf_event_cgrp_subsys);
907 	if (IS_ERR(css)) {
908 		ret = PTR_ERR(css);
909 		goto out;
910 	}
911 
912 	cgrp = container_of(css, struct perf_cgroup, css);
913 	event->cgrp = cgrp;
914 
915 	/*
916 	 * all events in a group must monitor
917 	 * the same cgroup because a task belongs
918 	 * to only one perf cgroup at a time
919 	 */
920 	if (group_leader && group_leader->cgrp != cgrp) {
921 		perf_detach_cgroup(event);
922 		ret = -EINVAL;
923 	}
924 out:
925 	fdput(f);
926 	return ret;
927 }
928 
929 static inline void
930 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
931 {
932 	struct perf_cgroup_info *t;
933 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
934 	event->shadow_ctx_time = now - t->timestamp;
935 }
936 
937 /*
938  * Update cpuctx->cgrp so that it is set when first cgroup event is added and
939  * cleared when last cgroup event is removed.
940  */
941 static inline void
942 list_update_cgroup_event(struct perf_event *event,
943 			 struct perf_event_context *ctx, bool add)
944 {
945 	struct perf_cpu_context *cpuctx;
946 	struct list_head *cpuctx_entry;
947 
948 	if (!is_cgroup_event(event))
949 		return;
950 
951 	/*
952 	 * Because cgroup events are always per-cpu events,
953 	 * this will always be called from the right CPU.
954 	 */
955 	cpuctx = __get_cpu_context(ctx);
956 
957 	/*
958 	 * Since setting cpuctx->cgrp is conditional on the current @cgrp
959 	 * matching the event's cgroup, we must do this for every new event,
960 	 * because if the first would mismatch, the second would not try again
961 	 * and we would leave cpuctx->cgrp unset.
962 	 */
963 	if (add && !cpuctx->cgrp) {
964 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
965 
966 		if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
967 			cpuctx->cgrp = cgrp;
968 	}
969 
970 	if (add && ctx->nr_cgroups++)
971 		return;
972 	else if (!add && --ctx->nr_cgroups)
973 		return;
974 
975 	/* no cgroup running */
976 	if (!add)
977 		cpuctx->cgrp = NULL;
978 
979 	cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
980 	if (add)
981 		list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
982 	else
983 		list_del(cpuctx_entry);
984 }
985 
986 #else /* !CONFIG_CGROUP_PERF */
987 
988 static inline bool
989 perf_cgroup_match(struct perf_event *event)
990 {
991 	return true;
992 }
993 
994 static inline void perf_detach_cgroup(struct perf_event *event)
995 {}
996 
997 static inline int is_cgroup_event(struct perf_event *event)
998 {
999 	return 0;
1000 }
1001 
1002 static inline void update_cgrp_time_from_event(struct perf_event *event)
1003 {
1004 }
1005 
1006 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1007 {
1008 }
1009 
1010 static inline void perf_cgroup_sched_out(struct task_struct *task,
1011 					 struct task_struct *next)
1012 {
1013 }
1014 
1015 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1016 					struct task_struct *task)
1017 {
1018 }
1019 
1020 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1021 				      struct perf_event_attr *attr,
1022 				      struct perf_event *group_leader)
1023 {
1024 	return -EINVAL;
1025 }
1026 
1027 static inline void
1028 perf_cgroup_set_timestamp(struct task_struct *task,
1029 			  struct perf_event_context *ctx)
1030 {
1031 }
1032 
1033 void
1034 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1035 {
1036 }
1037 
1038 static inline void
1039 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1040 {
1041 }
1042 
1043 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1044 {
1045 	return 0;
1046 }
1047 
1048 static inline void
1049 list_update_cgroup_event(struct perf_event *event,
1050 			 struct perf_event_context *ctx, bool add)
1051 {
1052 }
1053 
1054 #endif
1055 
1056 /*
1057  * set default to be dependent on timer tick just
1058  * like original code
1059  */
1060 #define PERF_CPU_HRTIMER (1000 / HZ)
1061 /*
1062  * function must be called with interrupts disabled
1063  */
1064 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1065 {
1066 	struct perf_cpu_context *cpuctx;
1067 	bool rotations;
1068 
1069 	lockdep_assert_irqs_disabled();
1070 
1071 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1072 	rotations = perf_rotate_context(cpuctx);
1073 
1074 	raw_spin_lock(&cpuctx->hrtimer_lock);
1075 	if (rotations)
1076 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1077 	else
1078 		cpuctx->hrtimer_active = 0;
1079 	raw_spin_unlock(&cpuctx->hrtimer_lock);
1080 
1081 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1082 }
1083 
1084 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1085 {
1086 	struct hrtimer *timer = &cpuctx->hrtimer;
1087 	struct pmu *pmu = cpuctx->ctx.pmu;
1088 	u64 interval;
1089 
1090 	/* no multiplexing needed for SW PMU */
1091 	if (pmu->task_ctx_nr == perf_sw_context)
1092 		return;
1093 
1094 	/*
1095 	 * check default is sane, if not set then force to
1096 	 * default interval (1/tick)
1097 	 */
1098 	interval = pmu->hrtimer_interval_ms;
1099 	if (interval < 1)
1100 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1101 
1102 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1103 
1104 	raw_spin_lock_init(&cpuctx->hrtimer_lock);
1105 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1106 	timer->function = perf_mux_hrtimer_handler;
1107 }
1108 
1109 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1110 {
1111 	struct hrtimer *timer = &cpuctx->hrtimer;
1112 	struct pmu *pmu = cpuctx->ctx.pmu;
1113 	unsigned long flags;
1114 
1115 	/* not for SW PMU */
1116 	if (pmu->task_ctx_nr == perf_sw_context)
1117 		return 0;
1118 
1119 	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1120 	if (!cpuctx->hrtimer_active) {
1121 		cpuctx->hrtimer_active = 1;
1122 		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1123 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1124 	}
1125 	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1126 
1127 	return 0;
1128 }
1129 
1130 void perf_pmu_disable(struct pmu *pmu)
1131 {
1132 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1133 	if (!(*count)++)
1134 		pmu->pmu_disable(pmu);
1135 }
1136 
1137 void perf_pmu_enable(struct pmu *pmu)
1138 {
1139 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1140 	if (!--(*count))
1141 		pmu->pmu_enable(pmu);
1142 }
1143 
1144 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1145 
1146 /*
1147  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1148  * perf_event_task_tick() are fully serialized because they're strictly cpu
1149  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1150  * disabled, while perf_event_task_tick is called from IRQ context.
1151  */
1152 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1153 {
1154 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
1155 
1156 	lockdep_assert_irqs_disabled();
1157 
1158 	WARN_ON(!list_empty(&ctx->active_ctx_list));
1159 
1160 	list_add(&ctx->active_ctx_list, head);
1161 }
1162 
1163 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1164 {
1165 	lockdep_assert_irqs_disabled();
1166 
1167 	WARN_ON(list_empty(&ctx->active_ctx_list));
1168 
1169 	list_del_init(&ctx->active_ctx_list);
1170 }
1171 
1172 static void get_ctx(struct perf_event_context *ctx)
1173 {
1174 	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1175 }
1176 
1177 static void free_ctx(struct rcu_head *head)
1178 {
1179 	struct perf_event_context *ctx;
1180 
1181 	ctx = container_of(head, struct perf_event_context, rcu_head);
1182 	kfree(ctx->task_ctx_data);
1183 	kfree(ctx);
1184 }
1185 
1186 static void put_ctx(struct perf_event_context *ctx)
1187 {
1188 	if (atomic_dec_and_test(&ctx->refcount)) {
1189 		if (ctx->parent_ctx)
1190 			put_ctx(ctx->parent_ctx);
1191 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1192 			put_task_struct(ctx->task);
1193 		call_rcu(&ctx->rcu_head, free_ctx);
1194 	}
1195 }
1196 
1197 /*
1198  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1199  * perf_pmu_migrate_context() we need some magic.
1200  *
1201  * Those places that change perf_event::ctx will hold both
1202  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1203  *
1204  * Lock ordering is by mutex address. There are two other sites where
1205  * perf_event_context::mutex nests and those are:
1206  *
1207  *  - perf_event_exit_task_context()	[ child , 0 ]
1208  *      perf_event_exit_event()
1209  *        put_event()			[ parent, 1 ]
1210  *
1211  *  - perf_event_init_context()		[ parent, 0 ]
1212  *      inherit_task_group()
1213  *        inherit_group()
1214  *          inherit_event()
1215  *            perf_event_alloc()
1216  *              perf_init_event()
1217  *                perf_try_init_event()	[ child , 1 ]
1218  *
1219  * While it appears there is an obvious deadlock here -- the parent and child
1220  * nesting levels are inverted between the two. This is in fact safe because
1221  * life-time rules separate them. That is an exiting task cannot fork, and a
1222  * spawning task cannot (yet) exit.
1223  *
1224  * But remember that that these are parent<->child context relations, and
1225  * migration does not affect children, therefore these two orderings should not
1226  * interact.
1227  *
1228  * The change in perf_event::ctx does not affect children (as claimed above)
1229  * because the sys_perf_event_open() case will install a new event and break
1230  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1231  * concerned with cpuctx and that doesn't have children.
1232  *
1233  * The places that change perf_event::ctx will issue:
1234  *
1235  *   perf_remove_from_context();
1236  *   synchronize_rcu();
1237  *   perf_install_in_context();
1238  *
1239  * to affect the change. The remove_from_context() + synchronize_rcu() should
1240  * quiesce the event, after which we can install it in the new location. This
1241  * means that only external vectors (perf_fops, prctl) can perturb the event
1242  * while in transit. Therefore all such accessors should also acquire
1243  * perf_event_context::mutex to serialize against this.
1244  *
1245  * However; because event->ctx can change while we're waiting to acquire
1246  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1247  * function.
1248  *
1249  * Lock order:
1250  *    cred_guard_mutex
1251  *	task_struct::perf_event_mutex
1252  *	  perf_event_context::mutex
1253  *	    perf_event::child_mutex;
1254  *	      perf_event_context::lock
1255  *	    perf_event::mmap_mutex
1256  *	    mmap_sem
1257  *
1258  *    cpu_hotplug_lock
1259  *      pmus_lock
1260  *	  cpuctx->mutex / perf_event_context::mutex
1261  */
1262 static struct perf_event_context *
1263 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1264 {
1265 	struct perf_event_context *ctx;
1266 
1267 again:
1268 	rcu_read_lock();
1269 	ctx = READ_ONCE(event->ctx);
1270 	if (!atomic_inc_not_zero(&ctx->refcount)) {
1271 		rcu_read_unlock();
1272 		goto again;
1273 	}
1274 	rcu_read_unlock();
1275 
1276 	mutex_lock_nested(&ctx->mutex, nesting);
1277 	if (event->ctx != ctx) {
1278 		mutex_unlock(&ctx->mutex);
1279 		put_ctx(ctx);
1280 		goto again;
1281 	}
1282 
1283 	return ctx;
1284 }
1285 
1286 static inline struct perf_event_context *
1287 perf_event_ctx_lock(struct perf_event *event)
1288 {
1289 	return perf_event_ctx_lock_nested(event, 0);
1290 }
1291 
1292 static void perf_event_ctx_unlock(struct perf_event *event,
1293 				  struct perf_event_context *ctx)
1294 {
1295 	mutex_unlock(&ctx->mutex);
1296 	put_ctx(ctx);
1297 }
1298 
1299 /*
1300  * This must be done under the ctx->lock, such as to serialize against
1301  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1302  * calling scheduler related locks and ctx->lock nests inside those.
1303  */
1304 static __must_check struct perf_event_context *
1305 unclone_ctx(struct perf_event_context *ctx)
1306 {
1307 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1308 
1309 	lockdep_assert_held(&ctx->lock);
1310 
1311 	if (parent_ctx)
1312 		ctx->parent_ctx = NULL;
1313 	ctx->generation++;
1314 
1315 	return parent_ctx;
1316 }
1317 
1318 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1319 				enum pid_type type)
1320 {
1321 	u32 nr;
1322 	/*
1323 	 * only top level events have the pid namespace they were created in
1324 	 */
1325 	if (event->parent)
1326 		event = event->parent;
1327 
1328 	nr = __task_pid_nr_ns(p, type, event->ns);
1329 	/* avoid -1 if it is idle thread or runs in another ns */
1330 	if (!nr && !pid_alive(p))
1331 		nr = -1;
1332 	return nr;
1333 }
1334 
1335 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1336 {
1337 	return perf_event_pid_type(event, p, PIDTYPE_TGID);
1338 }
1339 
1340 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1341 {
1342 	return perf_event_pid_type(event, p, PIDTYPE_PID);
1343 }
1344 
1345 /*
1346  * If we inherit events we want to return the parent event id
1347  * to userspace.
1348  */
1349 static u64 primary_event_id(struct perf_event *event)
1350 {
1351 	u64 id = event->id;
1352 
1353 	if (event->parent)
1354 		id = event->parent->id;
1355 
1356 	return id;
1357 }
1358 
1359 /*
1360  * Get the perf_event_context for a task and lock it.
1361  *
1362  * This has to cope with with the fact that until it is locked,
1363  * the context could get moved to another task.
1364  */
1365 static struct perf_event_context *
1366 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1367 {
1368 	struct perf_event_context *ctx;
1369 
1370 retry:
1371 	/*
1372 	 * One of the few rules of preemptible RCU is that one cannot do
1373 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1374 	 * part of the read side critical section was irqs-enabled -- see
1375 	 * rcu_read_unlock_special().
1376 	 *
1377 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1378 	 * side critical section has interrupts disabled.
1379 	 */
1380 	local_irq_save(*flags);
1381 	rcu_read_lock();
1382 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1383 	if (ctx) {
1384 		/*
1385 		 * If this context is a clone of another, it might
1386 		 * get swapped for another underneath us by
1387 		 * perf_event_task_sched_out, though the
1388 		 * rcu_read_lock() protects us from any context
1389 		 * getting freed.  Lock the context and check if it
1390 		 * got swapped before we could get the lock, and retry
1391 		 * if so.  If we locked the right context, then it
1392 		 * can't get swapped on us any more.
1393 		 */
1394 		raw_spin_lock(&ctx->lock);
1395 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1396 			raw_spin_unlock(&ctx->lock);
1397 			rcu_read_unlock();
1398 			local_irq_restore(*flags);
1399 			goto retry;
1400 		}
1401 
1402 		if (ctx->task == TASK_TOMBSTONE ||
1403 		    !atomic_inc_not_zero(&ctx->refcount)) {
1404 			raw_spin_unlock(&ctx->lock);
1405 			ctx = NULL;
1406 		} else {
1407 			WARN_ON_ONCE(ctx->task != task);
1408 		}
1409 	}
1410 	rcu_read_unlock();
1411 	if (!ctx)
1412 		local_irq_restore(*flags);
1413 	return ctx;
1414 }
1415 
1416 /*
1417  * Get the context for a task and increment its pin_count so it
1418  * can't get swapped to another task.  This also increments its
1419  * reference count so that the context can't get freed.
1420  */
1421 static struct perf_event_context *
1422 perf_pin_task_context(struct task_struct *task, int ctxn)
1423 {
1424 	struct perf_event_context *ctx;
1425 	unsigned long flags;
1426 
1427 	ctx = perf_lock_task_context(task, ctxn, &flags);
1428 	if (ctx) {
1429 		++ctx->pin_count;
1430 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1431 	}
1432 	return ctx;
1433 }
1434 
1435 static void perf_unpin_context(struct perf_event_context *ctx)
1436 {
1437 	unsigned long flags;
1438 
1439 	raw_spin_lock_irqsave(&ctx->lock, flags);
1440 	--ctx->pin_count;
1441 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1442 }
1443 
1444 /*
1445  * Update the record of the current time in a context.
1446  */
1447 static void update_context_time(struct perf_event_context *ctx)
1448 {
1449 	u64 now = perf_clock();
1450 
1451 	ctx->time += now - ctx->timestamp;
1452 	ctx->timestamp = now;
1453 }
1454 
1455 static u64 perf_event_time(struct perf_event *event)
1456 {
1457 	struct perf_event_context *ctx = event->ctx;
1458 
1459 	if (is_cgroup_event(event))
1460 		return perf_cgroup_event_time(event);
1461 
1462 	return ctx ? ctx->time : 0;
1463 }
1464 
1465 static enum event_type_t get_event_type(struct perf_event *event)
1466 {
1467 	struct perf_event_context *ctx = event->ctx;
1468 	enum event_type_t event_type;
1469 
1470 	lockdep_assert_held(&ctx->lock);
1471 
1472 	/*
1473 	 * It's 'group type', really, because if our group leader is
1474 	 * pinned, so are we.
1475 	 */
1476 	if (event->group_leader != event)
1477 		event = event->group_leader;
1478 
1479 	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1480 	if (!ctx->task)
1481 		event_type |= EVENT_CPU;
1482 
1483 	return event_type;
1484 }
1485 
1486 /*
1487  * Helper function to initialize event group nodes.
1488  */
1489 static void init_event_group(struct perf_event *event)
1490 {
1491 	RB_CLEAR_NODE(&event->group_node);
1492 	event->group_index = 0;
1493 }
1494 
1495 /*
1496  * Extract pinned or flexible groups from the context
1497  * based on event attrs bits.
1498  */
1499 static struct perf_event_groups *
1500 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1501 {
1502 	if (event->attr.pinned)
1503 		return &ctx->pinned_groups;
1504 	else
1505 		return &ctx->flexible_groups;
1506 }
1507 
1508 /*
1509  * Helper function to initializes perf_event_group trees.
1510  */
1511 static void perf_event_groups_init(struct perf_event_groups *groups)
1512 {
1513 	groups->tree = RB_ROOT;
1514 	groups->index = 0;
1515 }
1516 
1517 /*
1518  * Compare function for event groups;
1519  *
1520  * Implements complex key that first sorts by CPU and then by virtual index
1521  * which provides ordering when rotating groups for the same CPU.
1522  */
1523 static bool
1524 perf_event_groups_less(struct perf_event *left, struct perf_event *right)
1525 {
1526 	if (left->cpu < right->cpu)
1527 		return true;
1528 	if (left->cpu > right->cpu)
1529 		return false;
1530 
1531 	if (left->group_index < right->group_index)
1532 		return true;
1533 	if (left->group_index > right->group_index)
1534 		return false;
1535 
1536 	return false;
1537 }
1538 
1539 /*
1540  * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1541  * key (see perf_event_groups_less). This places it last inside the CPU
1542  * subtree.
1543  */
1544 static void
1545 perf_event_groups_insert(struct perf_event_groups *groups,
1546 			 struct perf_event *event)
1547 {
1548 	struct perf_event *node_event;
1549 	struct rb_node *parent;
1550 	struct rb_node **node;
1551 
1552 	event->group_index = ++groups->index;
1553 
1554 	node = &groups->tree.rb_node;
1555 	parent = *node;
1556 
1557 	while (*node) {
1558 		parent = *node;
1559 		node_event = container_of(*node, struct perf_event, group_node);
1560 
1561 		if (perf_event_groups_less(event, node_event))
1562 			node = &parent->rb_left;
1563 		else
1564 			node = &parent->rb_right;
1565 	}
1566 
1567 	rb_link_node(&event->group_node, parent, node);
1568 	rb_insert_color(&event->group_node, &groups->tree);
1569 }
1570 
1571 /*
1572  * Helper function to insert event into the pinned or flexible groups.
1573  */
1574 static void
1575 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1576 {
1577 	struct perf_event_groups *groups;
1578 
1579 	groups = get_event_groups(event, ctx);
1580 	perf_event_groups_insert(groups, event);
1581 }
1582 
1583 /*
1584  * Delete a group from a tree.
1585  */
1586 static void
1587 perf_event_groups_delete(struct perf_event_groups *groups,
1588 			 struct perf_event *event)
1589 {
1590 	WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1591 		     RB_EMPTY_ROOT(&groups->tree));
1592 
1593 	rb_erase(&event->group_node, &groups->tree);
1594 	init_event_group(event);
1595 }
1596 
1597 /*
1598  * Helper function to delete event from its groups.
1599  */
1600 static void
1601 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1602 {
1603 	struct perf_event_groups *groups;
1604 
1605 	groups = get_event_groups(event, ctx);
1606 	perf_event_groups_delete(groups, event);
1607 }
1608 
1609 /*
1610  * Get the leftmost event in the @cpu subtree.
1611  */
1612 static struct perf_event *
1613 perf_event_groups_first(struct perf_event_groups *groups, int cpu)
1614 {
1615 	struct perf_event *node_event = NULL, *match = NULL;
1616 	struct rb_node *node = groups->tree.rb_node;
1617 
1618 	while (node) {
1619 		node_event = container_of(node, struct perf_event, group_node);
1620 
1621 		if (cpu < node_event->cpu) {
1622 			node = node->rb_left;
1623 		} else if (cpu > node_event->cpu) {
1624 			node = node->rb_right;
1625 		} else {
1626 			match = node_event;
1627 			node = node->rb_left;
1628 		}
1629 	}
1630 
1631 	return match;
1632 }
1633 
1634 /*
1635  * Like rb_entry_next_safe() for the @cpu subtree.
1636  */
1637 static struct perf_event *
1638 perf_event_groups_next(struct perf_event *event)
1639 {
1640 	struct perf_event *next;
1641 
1642 	next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node);
1643 	if (next && next->cpu == event->cpu)
1644 		return next;
1645 
1646 	return NULL;
1647 }
1648 
1649 /*
1650  * Iterate through the whole groups tree.
1651  */
1652 #define perf_event_groups_for_each(event, groups)			\
1653 	for (event = rb_entry_safe(rb_first(&((groups)->tree)),		\
1654 				typeof(*event), group_node); event;	\
1655 		event = rb_entry_safe(rb_next(&event->group_node),	\
1656 				typeof(*event), group_node))
1657 
1658 /*
1659  * Add an event from the lists for its context.
1660  * Must be called with ctx->mutex and ctx->lock held.
1661  */
1662 static void
1663 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1664 {
1665 	lockdep_assert_held(&ctx->lock);
1666 
1667 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1668 	event->attach_state |= PERF_ATTACH_CONTEXT;
1669 
1670 	event->tstamp = perf_event_time(event);
1671 
1672 	/*
1673 	 * If we're a stand alone event or group leader, we go to the context
1674 	 * list, group events are kept attached to the group so that
1675 	 * perf_group_detach can, at all times, locate all siblings.
1676 	 */
1677 	if (event->group_leader == event) {
1678 		event->group_caps = event->event_caps;
1679 		add_event_to_groups(event, ctx);
1680 	}
1681 
1682 	list_update_cgroup_event(event, ctx, true);
1683 
1684 	list_add_rcu(&event->event_entry, &ctx->event_list);
1685 	ctx->nr_events++;
1686 	if (event->attr.inherit_stat)
1687 		ctx->nr_stat++;
1688 
1689 	ctx->generation++;
1690 }
1691 
1692 /*
1693  * Initialize event state based on the perf_event_attr::disabled.
1694  */
1695 static inline void perf_event__state_init(struct perf_event *event)
1696 {
1697 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1698 					      PERF_EVENT_STATE_INACTIVE;
1699 }
1700 
1701 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1702 {
1703 	int entry = sizeof(u64); /* value */
1704 	int size = 0;
1705 	int nr = 1;
1706 
1707 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1708 		size += sizeof(u64);
1709 
1710 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1711 		size += sizeof(u64);
1712 
1713 	if (event->attr.read_format & PERF_FORMAT_ID)
1714 		entry += sizeof(u64);
1715 
1716 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1717 		nr += nr_siblings;
1718 		size += sizeof(u64);
1719 	}
1720 
1721 	size += entry * nr;
1722 	event->read_size = size;
1723 }
1724 
1725 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1726 {
1727 	struct perf_sample_data *data;
1728 	u16 size = 0;
1729 
1730 	if (sample_type & PERF_SAMPLE_IP)
1731 		size += sizeof(data->ip);
1732 
1733 	if (sample_type & PERF_SAMPLE_ADDR)
1734 		size += sizeof(data->addr);
1735 
1736 	if (sample_type & PERF_SAMPLE_PERIOD)
1737 		size += sizeof(data->period);
1738 
1739 	if (sample_type & PERF_SAMPLE_WEIGHT)
1740 		size += sizeof(data->weight);
1741 
1742 	if (sample_type & PERF_SAMPLE_READ)
1743 		size += event->read_size;
1744 
1745 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1746 		size += sizeof(data->data_src.val);
1747 
1748 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1749 		size += sizeof(data->txn);
1750 
1751 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1752 		size += sizeof(data->phys_addr);
1753 
1754 	event->header_size = size;
1755 }
1756 
1757 /*
1758  * Called at perf_event creation and when events are attached/detached from a
1759  * group.
1760  */
1761 static void perf_event__header_size(struct perf_event *event)
1762 {
1763 	__perf_event_read_size(event,
1764 			       event->group_leader->nr_siblings);
1765 	__perf_event_header_size(event, event->attr.sample_type);
1766 }
1767 
1768 static void perf_event__id_header_size(struct perf_event *event)
1769 {
1770 	struct perf_sample_data *data;
1771 	u64 sample_type = event->attr.sample_type;
1772 	u16 size = 0;
1773 
1774 	if (sample_type & PERF_SAMPLE_TID)
1775 		size += sizeof(data->tid_entry);
1776 
1777 	if (sample_type & PERF_SAMPLE_TIME)
1778 		size += sizeof(data->time);
1779 
1780 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1781 		size += sizeof(data->id);
1782 
1783 	if (sample_type & PERF_SAMPLE_ID)
1784 		size += sizeof(data->id);
1785 
1786 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1787 		size += sizeof(data->stream_id);
1788 
1789 	if (sample_type & PERF_SAMPLE_CPU)
1790 		size += sizeof(data->cpu_entry);
1791 
1792 	event->id_header_size = size;
1793 }
1794 
1795 static bool perf_event_validate_size(struct perf_event *event)
1796 {
1797 	/*
1798 	 * The values computed here will be over-written when we actually
1799 	 * attach the event.
1800 	 */
1801 	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1802 	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1803 	perf_event__id_header_size(event);
1804 
1805 	/*
1806 	 * Sum the lot; should not exceed the 64k limit we have on records.
1807 	 * Conservative limit to allow for callchains and other variable fields.
1808 	 */
1809 	if (event->read_size + event->header_size +
1810 	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1811 		return false;
1812 
1813 	return true;
1814 }
1815 
1816 static void perf_group_attach(struct perf_event *event)
1817 {
1818 	struct perf_event *group_leader = event->group_leader, *pos;
1819 
1820 	lockdep_assert_held(&event->ctx->lock);
1821 
1822 	/*
1823 	 * We can have double attach due to group movement in perf_event_open.
1824 	 */
1825 	if (event->attach_state & PERF_ATTACH_GROUP)
1826 		return;
1827 
1828 	event->attach_state |= PERF_ATTACH_GROUP;
1829 
1830 	if (group_leader == event)
1831 		return;
1832 
1833 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1834 
1835 	group_leader->group_caps &= event->event_caps;
1836 
1837 	list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1838 	group_leader->nr_siblings++;
1839 
1840 	perf_event__header_size(group_leader);
1841 
1842 	for_each_sibling_event(pos, group_leader)
1843 		perf_event__header_size(pos);
1844 }
1845 
1846 /*
1847  * Remove an event from the lists for its context.
1848  * Must be called with ctx->mutex and ctx->lock held.
1849  */
1850 static void
1851 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1852 {
1853 	WARN_ON_ONCE(event->ctx != ctx);
1854 	lockdep_assert_held(&ctx->lock);
1855 
1856 	/*
1857 	 * We can have double detach due to exit/hot-unplug + close.
1858 	 */
1859 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1860 		return;
1861 
1862 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1863 
1864 	list_update_cgroup_event(event, ctx, false);
1865 
1866 	ctx->nr_events--;
1867 	if (event->attr.inherit_stat)
1868 		ctx->nr_stat--;
1869 
1870 	list_del_rcu(&event->event_entry);
1871 
1872 	if (event->group_leader == event)
1873 		del_event_from_groups(event, ctx);
1874 
1875 	/*
1876 	 * If event was in error state, then keep it
1877 	 * that way, otherwise bogus counts will be
1878 	 * returned on read(). The only way to get out
1879 	 * of error state is by explicit re-enabling
1880 	 * of the event
1881 	 */
1882 	if (event->state > PERF_EVENT_STATE_OFF)
1883 		perf_event_set_state(event, PERF_EVENT_STATE_OFF);
1884 
1885 	ctx->generation++;
1886 }
1887 
1888 static void perf_group_detach(struct perf_event *event)
1889 {
1890 	struct perf_event *sibling, *tmp;
1891 	struct perf_event_context *ctx = event->ctx;
1892 
1893 	lockdep_assert_held(&ctx->lock);
1894 
1895 	/*
1896 	 * We can have double detach due to exit/hot-unplug + close.
1897 	 */
1898 	if (!(event->attach_state & PERF_ATTACH_GROUP))
1899 		return;
1900 
1901 	event->attach_state &= ~PERF_ATTACH_GROUP;
1902 
1903 	/*
1904 	 * If this is a sibling, remove it from its group.
1905 	 */
1906 	if (event->group_leader != event) {
1907 		list_del_init(&event->sibling_list);
1908 		event->group_leader->nr_siblings--;
1909 		goto out;
1910 	}
1911 
1912 	/*
1913 	 * If this was a group event with sibling events then
1914 	 * upgrade the siblings to singleton events by adding them
1915 	 * to whatever list we are on.
1916 	 */
1917 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
1918 
1919 		sibling->group_leader = sibling;
1920 		list_del_init(&sibling->sibling_list);
1921 
1922 		/* Inherit group flags from the previous leader */
1923 		sibling->group_caps = event->group_caps;
1924 
1925 		if (!RB_EMPTY_NODE(&event->group_node)) {
1926 			add_event_to_groups(sibling, event->ctx);
1927 
1928 			if (sibling->state == PERF_EVENT_STATE_ACTIVE) {
1929 				struct list_head *list = sibling->attr.pinned ?
1930 					&ctx->pinned_active : &ctx->flexible_active;
1931 
1932 				list_add_tail(&sibling->active_list, list);
1933 			}
1934 		}
1935 
1936 		WARN_ON_ONCE(sibling->ctx != event->ctx);
1937 	}
1938 
1939 out:
1940 	perf_event__header_size(event->group_leader);
1941 
1942 	for_each_sibling_event(tmp, event->group_leader)
1943 		perf_event__header_size(tmp);
1944 }
1945 
1946 static bool is_orphaned_event(struct perf_event *event)
1947 {
1948 	return event->state == PERF_EVENT_STATE_DEAD;
1949 }
1950 
1951 static inline int __pmu_filter_match(struct perf_event *event)
1952 {
1953 	struct pmu *pmu = event->pmu;
1954 	return pmu->filter_match ? pmu->filter_match(event) : 1;
1955 }
1956 
1957 /*
1958  * Check whether we should attempt to schedule an event group based on
1959  * PMU-specific filtering. An event group can consist of HW and SW events,
1960  * potentially with a SW leader, so we must check all the filters, to
1961  * determine whether a group is schedulable:
1962  */
1963 static inline int pmu_filter_match(struct perf_event *event)
1964 {
1965 	struct perf_event *sibling;
1966 
1967 	if (!__pmu_filter_match(event))
1968 		return 0;
1969 
1970 	for_each_sibling_event(sibling, event) {
1971 		if (!__pmu_filter_match(sibling))
1972 			return 0;
1973 	}
1974 
1975 	return 1;
1976 }
1977 
1978 static inline int
1979 event_filter_match(struct perf_event *event)
1980 {
1981 	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1982 	       perf_cgroup_match(event) && pmu_filter_match(event);
1983 }
1984 
1985 static void
1986 event_sched_out(struct perf_event *event,
1987 		  struct perf_cpu_context *cpuctx,
1988 		  struct perf_event_context *ctx)
1989 {
1990 	enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
1991 
1992 	WARN_ON_ONCE(event->ctx != ctx);
1993 	lockdep_assert_held(&ctx->lock);
1994 
1995 	if (event->state != PERF_EVENT_STATE_ACTIVE)
1996 		return;
1997 
1998 	/*
1999 	 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2000 	 * we can schedule events _OUT_ individually through things like
2001 	 * __perf_remove_from_context().
2002 	 */
2003 	list_del_init(&event->active_list);
2004 
2005 	perf_pmu_disable(event->pmu);
2006 
2007 	event->pmu->del(event, 0);
2008 	event->oncpu = -1;
2009 
2010 	if (event->pending_disable) {
2011 		event->pending_disable = 0;
2012 		state = PERF_EVENT_STATE_OFF;
2013 	}
2014 	perf_event_set_state(event, state);
2015 
2016 	if (!is_software_event(event))
2017 		cpuctx->active_oncpu--;
2018 	if (!--ctx->nr_active)
2019 		perf_event_ctx_deactivate(ctx);
2020 	if (event->attr.freq && event->attr.sample_freq)
2021 		ctx->nr_freq--;
2022 	if (event->attr.exclusive || !cpuctx->active_oncpu)
2023 		cpuctx->exclusive = 0;
2024 
2025 	perf_pmu_enable(event->pmu);
2026 }
2027 
2028 static void
2029 group_sched_out(struct perf_event *group_event,
2030 		struct perf_cpu_context *cpuctx,
2031 		struct perf_event_context *ctx)
2032 {
2033 	struct perf_event *event;
2034 
2035 	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2036 		return;
2037 
2038 	perf_pmu_disable(ctx->pmu);
2039 
2040 	event_sched_out(group_event, cpuctx, ctx);
2041 
2042 	/*
2043 	 * Schedule out siblings (if any):
2044 	 */
2045 	for_each_sibling_event(event, group_event)
2046 		event_sched_out(event, cpuctx, ctx);
2047 
2048 	perf_pmu_enable(ctx->pmu);
2049 
2050 	if (group_event->attr.exclusive)
2051 		cpuctx->exclusive = 0;
2052 }
2053 
2054 #define DETACH_GROUP	0x01UL
2055 
2056 /*
2057  * Cross CPU call to remove a performance event
2058  *
2059  * We disable the event on the hardware level first. After that we
2060  * remove it from the context list.
2061  */
2062 static void
2063 __perf_remove_from_context(struct perf_event *event,
2064 			   struct perf_cpu_context *cpuctx,
2065 			   struct perf_event_context *ctx,
2066 			   void *info)
2067 {
2068 	unsigned long flags = (unsigned long)info;
2069 
2070 	if (ctx->is_active & EVENT_TIME) {
2071 		update_context_time(ctx);
2072 		update_cgrp_time_from_cpuctx(cpuctx);
2073 	}
2074 
2075 	event_sched_out(event, cpuctx, ctx);
2076 	if (flags & DETACH_GROUP)
2077 		perf_group_detach(event);
2078 	list_del_event(event, ctx);
2079 
2080 	if (!ctx->nr_events && ctx->is_active) {
2081 		ctx->is_active = 0;
2082 		if (ctx->task) {
2083 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2084 			cpuctx->task_ctx = NULL;
2085 		}
2086 	}
2087 }
2088 
2089 /*
2090  * Remove the event from a task's (or a CPU's) list of events.
2091  *
2092  * If event->ctx is a cloned context, callers must make sure that
2093  * every task struct that event->ctx->task could possibly point to
2094  * remains valid.  This is OK when called from perf_release since
2095  * that only calls us on the top-level context, which can't be a clone.
2096  * When called from perf_event_exit_task, it's OK because the
2097  * context has been detached from its task.
2098  */
2099 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2100 {
2101 	struct perf_event_context *ctx = event->ctx;
2102 
2103 	lockdep_assert_held(&ctx->mutex);
2104 
2105 	event_function_call(event, __perf_remove_from_context, (void *)flags);
2106 
2107 	/*
2108 	 * The above event_function_call() can NO-OP when it hits
2109 	 * TASK_TOMBSTONE. In that case we must already have been detached
2110 	 * from the context (by perf_event_exit_event()) but the grouping
2111 	 * might still be in-tact.
2112 	 */
2113 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
2114 	if ((flags & DETACH_GROUP) &&
2115 	    (event->attach_state & PERF_ATTACH_GROUP)) {
2116 		/*
2117 		 * Since in that case we cannot possibly be scheduled, simply
2118 		 * detach now.
2119 		 */
2120 		raw_spin_lock_irq(&ctx->lock);
2121 		perf_group_detach(event);
2122 		raw_spin_unlock_irq(&ctx->lock);
2123 	}
2124 }
2125 
2126 /*
2127  * Cross CPU call to disable a performance event
2128  */
2129 static void __perf_event_disable(struct perf_event *event,
2130 				 struct perf_cpu_context *cpuctx,
2131 				 struct perf_event_context *ctx,
2132 				 void *info)
2133 {
2134 	if (event->state < PERF_EVENT_STATE_INACTIVE)
2135 		return;
2136 
2137 	if (ctx->is_active & EVENT_TIME) {
2138 		update_context_time(ctx);
2139 		update_cgrp_time_from_event(event);
2140 	}
2141 
2142 	if (event == event->group_leader)
2143 		group_sched_out(event, cpuctx, ctx);
2144 	else
2145 		event_sched_out(event, cpuctx, ctx);
2146 
2147 	perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2148 }
2149 
2150 /*
2151  * Disable an event.
2152  *
2153  * If event->ctx is a cloned context, callers must make sure that
2154  * every task struct that event->ctx->task could possibly point to
2155  * remains valid.  This condition is satisifed when called through
2156  * perf_event_for_each_child or perf_event_for_each because they
2157  * hold the top-level event's child_mutex, so any descendant that
2158  * goes to exit will block in perf_event_exit_event().
2159  *
2160  * When called from perf_pending_event it's OK because event->ctx
2161  * is the current context on this CPU and preemption is disabled,
2162  * hence we can't get into perf_event_task_sched_out for this context.
2163  */
2164 static void _perf_event_disable(struct perf_event *event)
2165 {
2166 	struct perf_event_context *ctx = event->ctx;
2167 
2168 	raw_spin_lock_irq(&ctx->lock);
2169 	if (event->state <= PERF_EVENT_STATE_OFF) {
2170 		raw_spin_unlock_irq(&ctx->lock);
2171 		return;
2172 	}
2173 	raw_spin_unlock_irq(&ctx->lock);
2174 
2175 	event_function_call(event, __perf_event_disable, NULL);
2176 }
2177 
2178 void perf_event_disable_local(struct perf_event *event)
2179 {
2180 	event_function_local(event, __perf_event_disable, NULL);
2181 }
2182 
2183 /*
2184  * Strictly speaking kernel users cannot create groups and therefore this
2185  * interface does not need the perf_event_ctx_lock() magic.
2186  */
2187 void perf_event_disable(struct perf_event *event)
2188 {
2189 	struct perf_event_context *ctx;
2190 
2191 	ctx = perf_event_ctx_lock(event);
2192 	_perf_event_disable(event);
2193 	perf_event_ctx_unlock(event, ctx);
2194 }
2195 EXPORT_SYMBOL_GPL(perf_event_disable);
2196 
2197 void perf_event_disable_inatomic(struct perf_event *event)
2198 {
2199 	event->pending_disable = 1;
2200 	irq_work_queue(&event->pending);
2201 }
2202 
2203 static void perf_set_shadow_time(struct perf_event *event,
2204 				 struct perf_event_context *ctx)
2205 {
2206 	/*
2207 	 * use the correct time source for the time snapshot
2208 	 *
2209 	 * We could get by without this by leveraging the
2210 	 * fact that to get to this function, the caller
2211 	 * has most likely already called update_context_time()
2212 	 * and update_cgrp_time_xx() and thus both timestamp
2213 	 * are identical (or very close). Given that tstamp is,
2214 	 * already adjusted for cgroup, we could say that:
2215 	 *    tstamp - ctx->timestamp
2216 	 * is equivalent to
2217 	 *    tstamp - cgrp->timestamp.
2218 	 *
2219 	 * Then, in perf_output_read(), the calculation would
2220 	 * work with no changes because:
2221 	 * - event is guaranteed scheduled in
2222 	 * - no scheduled out in between
2223 	 * - thus the timestamp would be the same
2224 	 *
2225 	 * But this is a bit hairy.
2226 	 *
2227 	 * So instead, we have an explicit cgroup call to remain
2228 	 * within the time time source all along. We believe it
2229 	 * is cleaner and simpler to understand.
2230 	 */
2231 	if (is_cgroup_event(event))
2232 		perf_cgroup_set_shadow_time(event, event->tstamp);
2233 	else
2234 		event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2235 }
2236 
2237 #define MAX_INTERRUPTS (~0ULL)
2238 
2239 static void perf_log_throttle(struct perf_event *event, int enable);
2240 static void perf_log_itrace_start(struct perf_event *event);
2241 
2242 static int
2243 event_sched_in(struct perf_event *event,
2244 		 struct perf_cpu_context *cpuctx,
2245 		 struct perf_event_context *ctx)
2246 {
2247 	int ret = 0;
2248 
2249 	lockdep_assert_held(&ctx->lock);
2250 
2251 	if (event->state <= PERF_EVENT_STATE_OFF)
2252 		return 0;
2253 
2254 	WRITE_ONCE(event->oncpu, smp_processor_id());
2255 	/*
2256 	 * Order event::oncpu write to happen before the ACTIVE state is
2257 	 * visible. This allows perf_event_{stop,read}() to observe the correct
2258 	 * ->oncpu if it sees ACTIVE.
2259 	 */
2260 	smp_wmb();
2261 	perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2262 
2263 	/*
2264 	 * Unthrottle events, since we scheduled we might have missed several
2265 	 * ticks already, also for a heavily scheduling task there is little
2266 	 * guarantee it'll get a tick in a timely manner.
2267 	 */
2268 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2269 		perf_log_throttle(event, 1);
2270 		event->hw.interrupts = 0;
2271 	}
2272 
2273 	perf_pmu_disable(event->pmu);
2274 
2275 	perf_set_shadow_time(event, ctx);
2276 
2277 	perf_log_itrace_start(event);
2278 
2279 	if (event->pmu->add(event, PERF_EF_START)) {
2280 		perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2281 		event->oncpu = -1;
2282 		ret = -EAGAIN;
2283 		goto out;
2284 	}
2285 
2286 	if (!is_software_event(event))
2287 		cpuctx->active_oncpu++;
2288 	if (!ctx->nr_active++)
2289 		perf_event_ctx_activate(ctx);
2290 	if (event->attr.freq && event->attr.sample_freq)
2291 		ctx->nr_freq++;
2292 
2293 	if (event->attr.exclusive)
2294 		cpuctx->exclusive = 1;
2295 
2296 out:
2297 	perf_pmu_enable(event->pmu);
2298 
2299 	return ret;
2300 }
2301 
2302 static int
2303 group_sched_in(struct perf_event *group_event,
2304 	       struct perf_cpu_context *cpuctx,
2305 	       struct perf_event_context *ctx)
2306 {
2307 	struct perf_event *event, *partial_group = NULL;
2308 	struct pmu *pmu = ctx->pmu;
2309 
2310 	if (group_event->state == PERF_EVENT_STATE_OFF)
2311 		return 0;
2312 
2313 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2314 
2315 	if (event_sched_in(group_event, cpuctx, ctx)) {
2316 		pmu->cancel_txn(pmu);
2317 		perf_mux_hrtimer_restart(cpuctx);
2318 		return -EAGAIN;
2319 	}
2320 
2321 	/*
2322 	 * Schedule in siblings as one group (if any):
2323 	 */
2324 	for_each_sibling_event(event, group_event) {
2325 		if (event_sched_in(event, cpuctx, ctx)) {
2326 			partial_group = event;
2327 			goto group_error;
2328 		}
2329 	}
2330 
2331 	if (!pmu->commit_txn(pmu))
2332 		return 0;
2333 
2334 group_error:
2335 	/*
2336 	 * Groups can be scheduled in as one unit only, so undo any
2337 	 * partial group before returning:
2338 	 * The events up to the failed event are scheduled out normally.
2339 	 */
2340 	for_each_sibling_event(event, group_event) {
2341 		if (event == partial_group)
2342 			break;
2343 
2344 		event_sched_out(event, cpuctx, ctx);
2345 	}
2346 	event_sched_out(group_event, cpuctx, ctx);
2347 
2348 	pmu->cancel_txn(pmu);
2349 
2350 	perf_mux_hrtimer_restart(cpuctx);
2351 
2352 	return -EAGAIN;
2353 }
2354 
2355 /*
2356  * Work out whether we can put this event group on the CPU now.
2357  */
2358 static int group_can_go_on(struct perf_event *event,
2359 			   struct perf_cpu_context *cpuctx,
2360 			   int can_add_hw)
2361 {
2362 	/*
2363 	 * Groups consisting entirely of software events can always go on.
2364 	 */
2365 	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2366 		return 1;
2367 	/*
2368 	 * If an exclusive group is already on, no other hardware
2369 	 * events can go on.
2370 	 */
2371 	if (cpuctx->exclusive)
2372 		return 0;
2373 	/*
2374 	 * If this group is exclusive and there are already
2375 	 * events on the CPU, it can't go on.
2376 	 */
2377 	if (event->attr.exclusive && cpuctx->active_oncpu)
2378 		return 0;
2379 	/*
2380 	 * Otherwise, try to add it if all previous groups were able
2381 	 * to go on.
2382 	 */
2383 	return can_add_hw;
2384 }
2385 
2386 static void add_event_to_ctx(struct perf_event *event,
2387 			       struct perf_event_context *ctx)
2388 {
2389 	list_add_event(event, ctx);
2390 	perf_group_attach(event);
2391 }
2392 
2393 static void ctx_sched_out(struct perf_event_context *ctx,
2394 			  struct perf_cpu_context *cpuctx,
2395 			  enum event_type_t event_type);
2396 static void
2397 ctx_sched_in(struct perf_event_context *ctx,
2398 	     struct perf_cpu_context *cpuctx,
2399 	     enum event_type_t event_type,
2400 	     struct task_struct *task);
2401 
2402 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2403 			       struct perf_event_context *ctx,
2404 			       enum event_type_t event_type)
2405 {
2406 	if (!cpuctx->task_ctx)
2407 		return;
2408 
2409 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2410 		return;
2411 
2412 	ctx_sched_out(ctx, cpuctx, event_type);
2413 }
2414 
2415 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2416 				struct perf_event_context *ctx,
2417 				struct task_struct *task)
2418 {
2419 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2420 	if (ctx)
2421 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2422 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2423 	if (ctx)
2424 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2425 }
2426 
2427 /*
2428  * We want to maintain the following priority of scheduling:
2429  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2430  *  - task pinned (EVENT_PINNED)
2431  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2432  *  - task flexible (EVENT_FLEXIBLE).
2433  *
2434  * In order to avoid unscheduling and scheduling back in everything every
2435  * time an event is added, only do it for the groups of equal priority and
2436  * below.
2437  *
2438  * This can be called after a batch operation on task events, in which case
2439  * event_type is a bit mask of the types of events involved. For CPU events,
2440  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2441  */
2442 static void ctx_resched(struct perf_cpu_context *cpuctx,
2443 			struct perf_event_context *task_ctx,
2444 			enum event_type_t event_type)
2445 {
2446 	enum event_type_t ctx_event_type;
2447 	bool cpu_event = !!(event_type & EVENT_CPU);
2448 
2449 	/*
2450 	 * If pinned groups are involved, flexible groups also need to be
2451 	 * scheduled out.
2452 	 */
2453 	if (event_type & EVENT_PINNED)
2454 		event_type |= EVENT_FLEXIBLE;
2455 
2456 	ctx_event_type = event_type & EVENT_ALL;
2457 
2458 	perf_pmu_disable(cpuctx->ctx.pmu);
2459 	if (task_ctx)
2460 		task_ctx_sched_out(cpuctx, task_ctx, event_type);
2461 
2462 	/*
2463 	 * Decide which cpu ctx groups to schedule out based on the types
2464 	 * of events that caused rescheduling:
2465 	 *  - EVENT_CPU: schedule out corresponding groups;
2466 	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2467 	 *  - otherwise, do nothing more.
2468 	 */
2469 	if (cpu_event)
2470 		cpu_ctx_sched_out(cpuctx, ctx_event_type);
2471 	else if (ctx_event_type & EVENT_PINNED)
2472 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2473 
2474 	perf_event_sched_in(cpuctx, task_ctx, current);
2475 	perf_pmu_enable(cpuctx->ctx.pmu);
2476 }
2477 
2478 /*
2479  * Cross CPU call to install and enable a performance event
2480  *
2481  * Very similar to remote_function() + event_function() but cannot assume that
2482  * things like ctx->is_active and cpuctx->task_ctx are set.
2483  */
2484 static int  __perf_install_in_context(void *info)
2485 {
2486 	struct perf_event *event = info;
2487 	struct perf_event_context *ctx = event->ctx;
2488 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2489 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2490 	bool reprogram = true;
2491 	int ret = 0;
2492 
2493 	raw_spin_lock(&cpuctx->ctx.lock);
2494 	if (ctx->task) {
2495 		raw_spin_lock(&ctx->lock);
2496 		task_ctx = ctx;
2497 
2498 		reprogram = (ctx->task == current);
2499 
2500 		/*
2501 		 * If the task is running, it must be running on this CPU,
2502 		 * otherwise we cannot reprogram things.
2503 		 *
2504 		 * If its not running, we don't care, ctx->lock will
2505 		 * serialize against it becoming runnable.
2506 		 */
2507 		if (task_curr(ctx->task) && !reprogram) {
2508 			ret = -ESRCH;
2509 			goto unlock;
2510 		}
2511 
2512 		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2513 	} else if (task_ctx) {
2514 		raw_spin_lock(&task_ctx->lock);
2515 	}
2516 
2517 #ifdef CONFIG_CGROUP_PERF
2518 	if (is_cgroup_event(event)) {
2519 		/*
2520 		 * If the current cgroup doesn't match the event's
2521 		 * cgroup, we should not try to schedule it.
2522 		 */
2523 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2524 		reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2525 					event->cgrp->css.cgroup);
2526 	}
2527 #endif
2528 
2529 	if (reprogram) {
2530 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2531 		add_event_to_ctx(event, ctx);
2532 		ctx_resched(cpuctx, task_ctx, get_event_type(event));
2533 	} else {
2534 		add_event_to_ctx(event, ctx);
2535 	}
2536 
2537 unlock:
2538 	perf_ctx_unlock(cpuctx, task_ctx);
2539 
2540 	return ret;
2541 }
2542 
2543 /*
2544  * Attach a performance event to a context.
2545  *
2546  * Very similar to event_function_call, see comment there.
2547  */
2548 static void
2549 perf_install_in_context(struct perf_event_context *ctx,
2550 			struct perf_event *event,
2551 			int cpu)
2552 {
2553 	struct task_struct *task = READ_ONCE(ctx->task);
2554 
2555 	lockdep_assert_held(&ctx->mutex);
2556 
2557 	if (event->cpu != -1)
2558 		event->cpu = cpu;
2559 
2560 	/*
2561 	 * Ensures that if we can observe event->ctx, both the event and ctx
2562 	 * will be 'complete'. See perf_iterate_sb_cpu().
2563 	 */
2564 	smp_store_release(&event->ctx, ctx);
2565 
2566 	if (!task) {
2567 		cpu_function_call(cpu, __perf_install_in_context, event);
2568 		return;
2569 	}
2570 
2571 	/*
2572 	 * Should not happen, we validate the ctx is still alive before calling.
2573 	 */
2574 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2575 		return;
2576 
2577 	/*
2578 	 * Installing events is tricky because we cannot rely on ctx->is_active
2579 	 * to be set in case this is the nr_events 0 -> 1 transition.
2580 	 *
2581 	 * Instead we use task_curr(), which tells us if the task is running.
2582 	 * However, since we use task_curr() outside of rq::lock, we can race
2583 	 * against the actual state. This means the result can be wrong.
2584 	 *
2585 	 * If we get a false positive, we retry, this is harmless.
2586 	 *
2587 	 * If we get a false negative, things are complicated. If we are after
2588 	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2589 	 * value must be correct. If we're before, it doesn't matter since
2590 	 * perf_event_context_sched_in() will program the counter.
2591 	 *
2592 	 * However, this hinges on the remote context switch having observed
2593 	 * our task->perf_event_ctxp[] store, such that it will in fact take
2594 	 * ctx::lock in perf_event_context_sched_in().
2595 	 *
2596 	 * We do this by task_function_call(), if the IPI fails to hit the task
2597 	 * we know any future context switch of task must see the
2598 	 * perf_event_ctpx[] store.
2599 	 */
2600 
2601 	/*
2602 	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2603 	 * task_cpu() load, such that if the IPI then does not find the task
2604 	 * running, a future context switch of that task must observe the
2605 	 * store.
2606 	 */
2607 	smp_mb();
2608 again:
2609 	if (!task_function_call(task, __perf_install_in_context, event))
2610 		return;
2611 
2612 	raw_spin_lock_irq(&ctx->lock);
2613 	task = ctx->task;
2614 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2615 		/*
2616 		 * Cannot happen because we already checked above (which also
2617 		 * cannot happen), and we hold ctx->mutex, which serializes us
2618 		 * against perf_event_exit_task_context().
2619 		 */
2620 		raw_spin_unlock_irq(&ctx->lock);
2621 		return;
2622 	}
2623 	/*
2624 	 * If the task is not running, ctx->lock will avoid it becoming so,
2625 	 * thus we can safely install the event.
2626 	 */
2627 	if (task_curr(task)) {
2628 		raw_spin_unlock_irq(&ctx->lock);
2629 		goto again;
2630 	}
2631 	add_event_to_ctx(event, ctx);
2632 	raw_spin_unlock_irq(&ctx->lock);
2633 }
2634 
2635 /*
2636  * Cross CPU call to enable a performance event
2637  */
2638 static void __perf_event_enable(struct perf_event *event,
2639 				struct perf_cpu_context *cpuctx,
2640 				struct perf_event_context *ctx,
2641 				void *info)
2642 {
2643 	struct perf_event *leader = event->group_leader;
2644 	struct perf_event_context *task_ctx;
2645 
2646 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2647 	    event->state <= PERF_EVENT_STATE_ERROR)
2648 		return;
2649 
2650 	if (ctx->is_active)
2651 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2652 
2653 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2654 
2655 	if (!ctx->is_active)
2656 		return;
2657 
2658 	if (!event_filter_match(event)) {
2659 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2660 		return;
2661 	}
2662 
2663 	/*
2664 	 * If the event is in a group and isn't the group leader,
2665 	 * then don't put it on unless the group is on.
2666 	 */
2667 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2668 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2669 		return;
2670 	}
2671 
2672 	task_ctx = cpuctx->task_ctx;
2673 	if (ctx->task)
2674 		WARN_ON_ONCE(task_ctx != ctx);
2675 
2676 	ctx_resched(cpuctx, task_ctx, get_event_type(event));
2677 }
2678 
2679 /*
2680  * Enable an event.
2681  *
2682  * If event->ctx is a cloned context, callers must make sure that
2683  * every task struct that event->ctx->task could possibly point to
2684  * remains valid.  This condition is satisfied when called through
2685  * perf_event_for_each_child or perf_event_for_each as described
2686  * for perf_event_disable.
2687  */
2688 static void _perf_event_enable(struct perf_event *event)
2689 {
2690 	struct perf_event_context *ctx = event->ctx;
2691 
2692 	raw_spin_lock_irq(&ctx->lock);
2693 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2694 	    event->state <  PERF_EVENT_STATE_ERROR) {
2695 		raw_spin_unlock_irq(&ctx->lock);
2696 		return;
2697 	}
2698 
2699 	/*
2700 	 * If the event is in error state, clear that first.
2701 	 *
2702 	 * That way, if we see the event in error state below, we know that it
2703 	 * has gone back into error state, as distinct from the task having
2704 	 * been scheduled away before the cross-call arrived.
2705 	 */
2706 	if (event->state == PERF_EVENT_STATE_ERROR)
2707 		event->state = PERF_EVENT_STATE_OFF;
2708 	raw_spin_unlock_irq(&ctx->lock);
2709 
2710 	event_function_call(event, __perf_event_enable, NULL);
2711 }
2712 
2713 /*
2714  * See perf_event_disable();
2715  */
2716 void perf_event_enable(struct perf_event *event)
2717 {
2718 	struct perf_event_context *ctx;
2719 
2720 	ctx = perf_event_ctx_lock(event);
2721 	_perf_event_enable(event);
2722 	perf_event_ctx_unlock(event, ctx);
2723 }
2724 EXPORT_SYMBOL_GPL(perf_event_enable);
2725 
2726 struct stop_event_data {
2727 	struct perf_event	*event;
2728 	unsigned int		restart;
2729 };
2730 
2731 static int __perf_event_stop(void *info)
2732 {
2733 	struct stop_event_data *sd = info;
2734 	struct perf_event *event = sd->event;
2735 
2736 	/* if it's already INACTIVE, do nothing */
2737 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2738 		return 0;
2739 
2740 	/* matches smp_wmb() in event_sched_in() */
2741 	smp_rmb();
2742 
2743 	/*
2744 	 * There is a window with interrupts enabled before we get here,
2745 	 * so we need to check again lest we try to stop another CPU's event.
2746 	 */
2747 	if (READ_ONCE(event->oncpu) != smp_processor_id())
2748 		return -EAGAIN;
2749 
2750 	event->pmu->stop(event, PERF_EF_UPDATE);
2751 
2752 	/*
2753 	 * May race with the actual stop (through perf_pmu_output_stop()),
2754 	 * but it is only used for events with AUX ring buffer, and such
2755 	 * events will refuse to restart because of rb::aux_mmap_count==0,
2756 	 * see comments in perf_aux_output_begin().
2757 	 *
2758 	 * Since this is happening on an event-local CPU, no trace is lost
2759 	 * while restarting.
2760 	 */
2761 	if (sd->restart)
2762 		event->pmu->start(event, 0);
2763 
2764 	return 0;
2765 }
2766 
2767 static int perf_event_stop(struct perf_event *event, int restart)
2768 {
2769 	struct stop_event_data sd = {
2770 		.event		= event,
2771 		.restart	= restart,
2772 	};
2773 	int ret = 0;
2774 
2775 	do {
2776 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2777 			return 0;
2778 
2779 		/* matches smp_wmb() in event_sched_in() */
2780 		smp_rmb();
2781 
2782 		/*
2783 		 * We only want to restart ACTIVE events, so if the event goes
2784 		 * inactive here (event->oncpu==-1), there's nothing more to do;
2785 		 * fall through with ret==-ENXIO.
2786 		 */
2787 		ret = cpu_function_call(READ_ONCE(event->oncpu),
2788 					__perf_event_stop, &sd);
2789 	} while (ret == -EAGAIN);
2790 
2791 	return ret;
2792 }
2793 
2794 /*
2795  * In order to contain the amount of racy and tricky in the address filter
2796  * configuration management, it is a two part process:
2797  *
2798  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2799  *      we update the addresses of corresponding vmas in
2800  *	event::addr_filters_offs array and bump the event::addr_filters_gen;
2801  * (p2) when an event is scheduled in (pmu::add), it calls
2802  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2803  *      if the generation has changed since the previous call.
2804  *
2805  * If (p1) happens while the event is active, we restart it to force (p2).
2806  *
2807  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2808  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2809  *     ioctl;
2810  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2811  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2812  *     for reading;
2813  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2814  *     of exec.
2815  */
2816 void perf_event_addr_filters_sync(struct perf_event *event)
2817 {
2818 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2819 
2820 	if (!has_addr_filter(event))
2821 		return;
2822 
2823 	raw_spin_lock(&ifh->lock);
2824 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2825 		event->pmu->addr_filters_sync(event);
2826 		event->hw.addr_filters_gen = event->addr_filters_gen;
2827 	}
2828 	raw_spin_unlock(&ifh->lock);
2829 }
2830 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2831 
2832 static int _perf_event_refresh(struct perf_event *event, int refresh)
2833 {
2834 	/*
2835 	 * not supported on inherited events
2836 	 */
2837 	if (event->attr.inherit || !is_sampling_event(event))
2838 		return -EINVAL;
2839 
2840 	atomic_add(refresh, &event->event_limit);
2841 	_perf_event_enable(event);
2842 
2843 	return 0;
2844 }
2845 
2846 /*
2847  * See perf_event_disable()
2848  */
2849 int perf_event_refresh(struct perf_event *event, int refresh)
2850 {
2851 	struct perf_event_context *ctx;
2852 	int ret;
2853 
2854 	ctx = perf_event_ctx_lock(event);
2855 	ret = _perf_event_refresh(event, refresh);
2856 	perf_event_ctx_unlock(event, ctx);
2857 
2858 	return ret;
2859 }
2860 EXPORT_SYMBOL_GPL(perf_event_refresh);
2861 
2862 static int perf_event_modify_breakpoint(struct perf_event *bp,
2863 					 struct perf_event_attr *attr)
2864 {
2865 	int err;
2866 
2867 	_perf_event_disable(bp);
2868 
2869 	err = modify_user_hw_breakpoint_check(bp, attr, true);
2870 
2871 	if (!bp->attr.disabled)
2872 		_perf_event_enable(bp);
2873 
2874 	return err;
2875 }
2876 
2877 static int perf_event_modify_attr(struct perf_event *event,
2878 				  struct perf_event_attr *attr)
2879 {
2880 	if (event->attr.type != attr->type)
2881 		return -EINVAL;
2882 
2883 	switch (event->attr.type) {
2884 	case PERF_TYPE_BREAKPOINT:
2885 		return perf_event_modify_breakpoint(event, attr);
2886 	default:
2887 		/* Place holder for future additions. */
2888 		return -EOPNOTSUPP;
2889 	}
2890 }
2891 
2892 static void ctx_sched_out(struct perf_event_context *ctx,
2893 			  struct perf_cpu_context *cpuctx,
2894 			  enum event_type_t event_type)
2895 {
2896 	struct perf_event *event, *tmp;
2897 	int is_active = ctx->is_active;
2898 
2899 	lockdep_assert_held(&ctx->lock);
2900 
2901 	if (likely(!ctx->nr_events)) {
2902 		/*
2903 		 * See __perf_remove_from_context().
2904 		 */
2905 		WARN_ON_ONCE(ctx->is_active);
2906 		if (ctx->task)
2907 			WARN_ON_ONCE(cpuctx->task_ctx);
2908 		return;
2909 	}
2910 
2911 	ctx->is_active &= ~event_type;
2912 	if (!(ctx->is_active & EVENT_ALL))
2913 		ctx->is_active = 0;
2914 
2915 	if (ctx->task) {
2916 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2917 		if (!ctx->is_active)
2918 			cpuctx->task_ctx = NULL;
2919 	}
2920 
2921 	/*
2922 	 * Always update time if it was set; not only when it changes.
2923 	 * Otherwise we can 'forget' to update time for any but the last
2924 	 * context we sched out. For example:
2925 	 *
2926 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2927 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
2928 	 *
2929 	 * would only update time for the pinned events.
2930 	 */
2931 	if (is_active & EVENT_TIME) {
2932 		/* update (and stop) ctx time */
2933 		update_context_time(ctx);
2934 		update_cgrp_time_from_cpuctx(cpuctx);
2935 	}
2936 
2937 	is_active ^= ctx->is_active; /* changed bits */
2938 
2939 	if (!ctx->nr_active || !(is_active & EVENT_ALL))
2940 		return;
2941 
2942 	perf_pmu_disable(ctx->pmu);
2943 	if (is_active & EVENT_PINNED) {
2944 		list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
2945 			group_sched_out(event, cpuctx, ctx);
2946 	}
2947 
2948 	if (is_active & EVENT_FLEXIBLE) {
2949 		list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
2950 			group_sched_out(event, cpuctx, ctx);
2951 	}
2952 	perf_pmu_enable(ctx->pmu);
2953 }
2954 
2955 /*
2956  * Test whether two contexts are equivalent, i.e. whether they have both been
2957  * cloned from the same version of the same context.
2958  *
2959  * Equivalence is measured using a generation number in the context that is
2960  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2961  * and list_del_event().
2962  */
2963 static int context_equiv(struct perf_event_context *ctx1,
2964 			 struct perf_event_context *ctx2)
2965 {
2966 	lockdep_assert_held(&ctx1->lock);
2967 	lockdep_assert_held(&ctx2->lock);
2968 
2969 	/* Pinning disables the swap optimization */
2970 	if (ctx1->pin_count || ctx2->pin_count)
2971 		return 0;
2972 
2973 	/* If ctx1 is the parent of ctx2 */
2974 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2975 		return 1;
2976 
2977 	/* If ctx2 is the parent of ctx1 */
2978 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2979 		return 1;
2980 
2981 	/*
2982 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
2983 	 * hierarchy, see perf_event_init_context().
2984 	 */
2985 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2986 			ctx1->parent_gen == ctx2->parent_gen)
2987 		return 1;
2988 
2989 	/* Unmatched */
2990 	return 0;
2991 }
2992 
2993 static void __perf_event_sync_stat(struct perf_event *event,
2994 				     struct perf_event *next_event)
2995 {
2996 	u64 value;
2997 
2998 	if (!event->attr.inherit_stat)
2999 		return;
3000 
3001 	/*
3002 	 * Update the event value, we cannot use perf_event_read()
3003 	 * because we're in the middle of a context switch and have IRQs
3004 	 * disabled, which upsets smp_call_function_single(), however
3005 	 * we know the event must be on the current CPU, therefore we
3006 	 * don't need to use it.
3007 	 */
3008 	if (event->state == PERF_EVENT_STATE_ACTIVE)
3009 		event->pmu->read(event);
3010 
3011 	perf_event_update_time(event);
3012 
3013 	/*
3014 	 * In order to keep per-task stats reliable we need to flip the event
3015 	 * values when we flip the contexts.
3016 	 */
3017 	value = local64_read(&next_event->count);
3018 	value = local64_xchg(&event->count, value);
3019 	local64_set(&next_event->count, value);
3020 
3021 	swap(event->total_time_enabled, next_event->total_time_enabled);
3022 	swap(event->total_time_running, next_event->total_time_running);
3023 
3024 	/*
3025 	 * Since we swizzled the values, update the user visible data too.
3026 	 */
3027 	perf_event_update_userpage(event);
3028 	perf_event_update_userpage(next_event);
3029 }
3030 
3031 static void perf_event_sync_stat(struct perf_event_context *ctx,
3032 				   struct perf_event_context *next_ctx)
3033 {
3034 	struct perf_event *event, *next_event;
3035 
3036 	if (!ctx->nr_stat)
3037 		return;
3038 
3039 	update_context_time(ctx);
3040 
3041 	event = list_first_entry(&ctx->event_list,
3042 				   struct perf_event, event_entry);
3043 
3044 	next_event = list_first_entry(&next_ctx->event_list,
3045 					struct perf_event, event_entry);
3046 
3047 	while (&event->event_entry != &ctx->event_list &&
3048 	       &next_event->event_entry != &next_ctx->event_list) {
3049 
3050 		__perf_event_sync_stat(event, next_event);
3051 
3052 		event = list_next_entry(event, event_entry);
3053 		next_event = list_next_entry(next_event, event_entry);
3054 	}
3055 }
3056 
3057 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3058 					 struct task_struct *next)
3059 {
3060 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3061 	struct perf_event_context *next_ctx;
3062 	struct perf_event_context *parent, *next_parent;
3063 	struct perf_cpu_context *cpuctx;
3064 	int do_switch = 1;
3065 
3066 	if (likely(!ctx))
3067 		return;
3068 
3069 	cpuctx = __get_cpu_context(ctx);
3070 	if (!cpuctx->task_ctx)
3071 		return;
3072 
3073 	rcu_read_lock();
3074 	next_ctx = next->perf_event_ctxp[ctxn];
3075 	if (!next_ctx)
3076 		goto unlock;
3077 
3078 	parent = rcu_dereference(ctx->parent_ctx);
3079 	next_parent = rcu_dereference(next_ctx->parent_ctx);
3080 
3081 	/* If neither context have a parent context; they cannot be clones. */
3082 	if (!parent && !next_parent)
3083 		goto unlock;
3084 
3085 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3086 		/*
3087 		 * Looks like the two contexts are clones, so we might be
3088 		 * able to optimize the context switch.  We lock both
3089 		 * contexts and check that they are clones under the
3090 		 * lock (including re-checking that neither has been
3091 		 * uncloned in the meantime).  It doesn't matter which
3092 		 * order we take the locks because no other cpu could
3093 		 * be trying to lock both of these tasks.
3094 		 */
3095 		raw_spin_lock(&ctx->lock);
3096 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3097 		if (context_equiv(ctx, next_ctx)) {
3098 			WRITE_ONCE(ctx->task, next);
3099 			WRITE_ONCE(next_ctx->task, task);
3100 
3101 			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3102 
3103 			/*
3104 			 * RCU_INIT_POINTER here is safe because we've not
3105 			 * modified the ctx and the above modification of
3106 			 * ctx->task and ctx->task_ctx_data are immaterial
3107 			 * since those values are always verified under
3108 			 * ctx->lock which we're now holding.
3109 			 */
3110 			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3111 			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3112 
3113 			do_switch = 0;
3114 
3115 			perf_event_sync_stat(ctx, next_ctx);
3116 		}
3117 		raw_spin_unlock(&next_ctx->lock);
3118 		raw_spin_unlock(&ctx->lock);
3119 	}
3120 unlock:
3121 	rcu_read_unlock();
3122 
3123 	if (do_switch) {
3124 		raw_spin_lock(&ctx->lock);
3125 		task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3126 		raw_spin_unlock(&ctx->lock);
3127 	}
3128 }
3129 
3130 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3131 
3132 void perf_sched_cb_dec(struct pmu *pmu)
3133 {
3134 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3135 
3136 	this_cpu_dec(perf_sched_cb_usages);
3137 
3138 	if (!--cpuctx->sched_cb_usage)
3139 		list_del(&cpuctx->sched_cb_entry);
3140 }
3141 
3142 
3143 void perf_sched_cb_inc(struct pmu *pmu)
3144 {
3145 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3146 
3147 	if (!cpuctx->sched_cb_usage++)
3148 		list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3149 
3150 	this_cpu_inc(perf_sched_cb_usages);
3151 }
3152 
3153 /*
3154  * This function provides the context switch callback to the lower code
3155  * layer. It is invoked ONLY when the context switch callback is enabled.
3156  *
3157  * This callback is relevant even to per-cpu events; for example multi event
3158  * PEBS requires this to provide PID/TID information. This requires we flush
3159  * all queued PEBS records before we context switch to a new task.
3160  */
3161 static void perf_pmu_sched_task(struct task_struct *prev,
3162 				struct task_struct *next,
3163 				bool sched_in)
3164 {
3165 	struct perf_cpu_context *cpuctx;
3166 	struct pmu *pmu;
3167 
3168 	if (prev == next)
3169 		return;
3170 
3171 	list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3172 		pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3173 
3174 		if (WARN_ON_ONCE(!pmu->sched_task))
3175 			continue;
3176 
3177 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3178 		perf_pmu_disable(pmu);
3179 
3180 		pmu->sched_task(cpuctx->task_ctx, sched_in);
3181 
3182 		perf_pmu_enable(pmu);
3183 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3184 	}
3185 }
3186 
3187 static void perf_event_switch(struct task_struct *task,
3188 			      struct task_struct *next_prev, bool sched_in);
3189 
3190 #define for_each_task_context_nr(ctxn)					\
3191 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3192 
3193 /*
3194  * Called from scheduler to remove the events of the current task,
3195  * with interrupts disabled.
3196  *
3197  * We stop each event and update the event value in event->count.
3198  *
3199  * This does not protect us against NMI, but disable()
3200  * sets the disabled bit in the control field of event _before_
3201  * accessing the event control register. If a NMI hits, then it will
3202  * not restart the event.
3203  */
3204 void __perf_event_task_sched_out(struct task_struct *task,
3205 				 struct task_struct *next)
3206 {
3207 	int ctxn;
3208 
3209 	if (__this_cpu_read(perf_sched_cb_usages))
3210 		perf_pmu_sched_task(task, next, false);
3211 
3212 	if (atomic_read(&nr_switch_events))
3213 		perf_event_switch(task, next, false);
3214 
3215 	for_each_task_context_nr(ctxn)
3216 		perf_event_context_sched_out(task, ctxn, next);
3217 
3218 	/*
3219 	 * if cgroup events exist on this CPU, then we need
3220 	 * to check if we have to switch out PMU state.
3221 	 * cgroup event are system-wide mode only
3222 	 */
3223 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3224 		perf_cgroup_sched_out(task, next);
3225 }
3226 
3227 /*
3228  * Called with IRQs disabled
3229  */
3230 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3231 			      enum event_type_t event_type)
3232 {
3233 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3234 }
3235 
3236 static int visit_groups_merge(struct perf_event_groups *groups, int cpu,
3237 			      int (*func)(struct perf_event *, void *), void *data)
3238 {
3239 	struct perf_event **evt, *evt1, *evt2;
3240 	int ret;
3241 
3242 	evt1 = perf_event_groups_first(groups, -1);
3243 	evt2 = perf_event_groups_first(groups, cpu);
3244 
3245 	while (evt1 || evt2) {
3246 		if (evt1 && evt2) {
3247 			if (evt1->group_index < evt2->group_index)
3248 				evt = &evt1;
3249 			else
3250 				evt = &evt2;
3251 		} else if (evt1) {
3252 			evt = &evt1;
3253 		} else {
3254 			evt = &evt2;
3255 		}
3256 
3257 		ret = func(*evt, data);
3258 		if (ret)
3259 			return ret;
3260 
3261 		*evt = perf_event_groups_next(*evt);
3262 	}
3263 
3264 	return 0;
3265 }
3266 
3267 struct sched_in_data {
3268 	struct perf_event_context *ctx;
3269 	struct perf_cpu_context *cpuctx;
3270 	int can_add_hw;
3271 };
3272 
3273 static int pinned_sched_in(struct perf_event *event, void *data)
3274 {
3275 	struct sched_in_data *sid = data;
3276 
3277 	if (event->state <= PERF_EVENT_STATE_OFF)
3278 		return 0;
3279 
3280 	if (!event_filter_match(event))
3281 		return 0;
3282 
3283 	if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3284 		if (!group_sched_in(event, sid->cpuctx, sid->ctx))
3285 			list_add_tail(&event->active_list, &sid->ctx->pinned_active);
3286 	}
3287 
3288 	/*
3289 	 * If this pinned group hasn't been scheduled,
3290 	 * put it in error state.
3291 	 */
3292 	if (event->state == PERF_EVENT_STATE_INACTIVE)
3293 		perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3294 
3295 	return 0;
3296 }
3297 
3298 static int flexible_sched_in(struct perf_event *event, void *data)
3299 {
3300 	struct sched_in_data *sid = data;
3301 
3302 	if (event->state <= PERF_EVENT_STATE_OFF)
3303 		return 0;
3304 
3305 	if (!event_filter_match(event))
3306 		return 0;
3307 
3308 	if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3309 		if (!group_sched_in(event, sid->cpuctx, sid->ctx))
3310 			list_add_tail(&event->active_list, &sid->ctx->flexible_active);
3311 		else
3312 			sid->can_add_hw = 0;
3313 	}
3314 
3315 	return 0;
3316 }
3317 
3318 static void
3319 ctx_pinned_sched_in(struct perf_event_context *ctx,
3320 		    struct perf_cpu_context *cpuctx)
3321 {
3322 	struct sched_in_data sid = {
3323 		.ctx = ctx,
3324 		.cpuctx = cpuctx,
3325 		.can_add_hw = 1,
3326 	};
3327 
3328 	visit_groups_merge(&ctx->pinned_groups,
3329 			   smp_processor_id(),
3330 			   pinned_sched_in, &sid);
3331 }
3332 
3333 static void
3334 ctx_flexible_sched_in(struct perf_event_context *ctx,
3335 		      struct perf_cpu_context *cpuctx)
3336 {
3337 	struct sched_in_data sid = {
3338 		.ctx = ctx,
3339 		.cpuctx = cpuctx,
3340 		.can_add_hw = 1,
3341 	};
3342 
3343 	visit_groups_merge(&ctx->flexible_groups,
3344 			   smp_processor_id(),
3345 			   flexible_sched_in, &sid);
3346 }
3347 
3348 static void
3349 ctx_sched_in(struct perf_event_context *ctx,
3350 	     struct perf_cpu_context *cpuctx,
3351 	     enum event_type_t event_type,
3352 	     struct task_struct *task)
3353 {
3354 	int is_active = ctx->is_active;
3355 	u64 now;
3356 
3357 	lockdep_assert_held(&ctx->lock);
3358 
3359 	if (likely(!ctx->nr_events))
3360 		return;
3361 
3362 	ctx->is_active |= (event_type | EVENT_TIME);
3363 	if (ctx->task) {
3364 		if (!is_active)
3365 			cpuctx->task_ctx = ctx;
3366 		else
3367 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3368 	}
3369 
3370 	is_active ^= ctx->is_active; /* changed bits */
3371 
3372 	if (is_active & EVENT_TIME) {
3373 		/* start ctx time */
3374 		now = perf_clock();
3375 		ctx->timestamp = now;
3376 		perf_cgroup_set_timestamp(task, ctx);
3377 	}
3378 
3379 	/*
3380 	 * First go through the list and put on any pinned groups
3381 	 * in order to give them the best chance of going on.
3382 	 */
3383 	if (is_active & EVENT_PINNED)
3384 		ctx_pinned_sched_in(ctx, cpuctx);
3385 
3386 	/* Then walk through the lower prio flexible groups */
3387 	if (is_active & EVENT_FLEXIBLE)
3388 		ctx_flexible_sched_in(ctx, cpuctx);
3389 }
3390 
3391 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3392 			     enum event_type_t event_type,
3393 			     struct task_struct *task)
3394 {
3395 	struct perf_event_context *ctx = &cpuctx->ctx;
3396 
3397 	ctx_sched_in(ctx, cpuctx, event_type, task);
3398 }
3399 
3400 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3401 					struct task_struct *task)
3402 {
3403 	struct perf_cpu_context *cpuctx;
3404 
3405 	cpuctx = __get_cpu_context(ctx);
3406 	if (cpuctx->task_ctx == ctx)
3407 		return;
3408 
3409 	perf_ctx_lock(cpuctx, ctx);
3410 	/*
3411 	 * We must check ctx->nr_events while holding ctx->lock, such
3412 	 * that we serialize against perf_install_in_context().
3413 	 */
3414 	if (!ctx->nr_events)
3415 		goto unlock;
3416 
3417 	perf_pmu_disable(ctx->pmu);
3418 	/*
3419 	 * We want to keep the following priority order:
3420 	 * cpu pinned (that don't need to move), task pinned,
3421 	 * cpu flexible, task flexible.
3422 	 *
3423 	 * However, if task's ctx is not carrying any pinned
3424 	 * events, no need to flip the cpuctx's events around.
3425 	 */
3426 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3427 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3428 	perf_event_sched_in(cpuctx, ctx, task);
3429 	perf_pmu_enable(ctx->pmu);
3430 
3431 unlock:
3432 	perf_ctx_unlock(cpuctx, ctx);
3433 }
3434 
3435 /*
3436  * Called from scheduler to add the events of the current task
3437  * with interrupts disabled.
3438  *
3439  * We restore the event value and then enable it.
3440  *
3441  * This does not protect us against NMI, but enable()
3442  * sets the enabled bit in the control field of event _before_
3443  * accessing the event control register. If a NMI hits, then it will
3444  * keep the event running.
3445  */
3446 void __perf_event_task_sched_in(struct task_struct *prev,
3447 				struct task_struct *task)
3448 {
3449 	struct perf_event_context *ctx;
3450 	int ctxn;
3451 
3452 	/*
3453 	 * If cgroup events exist on this CPU, then we need to check if we have
3454 	 * to switch in PMU state; cgroup event are system-wide mode only.
3455 	 *
3456 	 * Since cgroup events are CPU events, we must schedule these in before
3457 	 * we schedule in the task events.
3458 	 */
3459 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3460 		perf_cgroup_sched_in(prev, task);
3461 
3462 	for_each_task_context_nr(ctxn) {
3463 		ctx = task->perf_event_ctxp[ctxn];
3464 		if (likely(!ctx))
3465 			continue;
3466 
3467 		perf_event_context_sched_in(ctx, task);
3468 	}
3469 
3470 	if (atomic_read(&nr_switch_events))
3471 		perf_event_switch(task, prev, true);
3472 
3473 	if (__this_cpu_read(perf_sched_cb_usages))
3474 		perf_pmu_sched_task(prev, task, true);
3475 }
3476 
3477 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3478 {
3479 	u64 frequency = event->attr.sample_freq;
3480 	u64 sec = NSEC_PER_SEC;
3481 	u64 divisor, dividend;
3482 
3483 	int count_fls, nsec_fls, frequency_fls, sec_fls;
3484 
3485 	count_fls = fls64(count);
3486 	nsec_fls = fls64(nsec);
3487 	frequency_fls = fls64(frequency);
3488 	sec_fls = 30;
3489 
3490 	/*
3491 	 * We got @count in @nsec, with a target of sample_freq HZ
3492 	 * the target period becomes:
3493 	 *
3494 	 *             @count * 10^9
3495 	 * period = -------------------
3496 	 *          @nsec * sample_freq
3497 	 *
3498 	 */
3499 
3500 	/*
3501 	 * Reduce accuracy by one bit such that @a and @b converge
3502 	 * to a similar magnitude.
3503 	 */
3504 #define REDUCE_FLS(a, b)		\
3505 do {					\
3506 	if (a##_fls > b##_fls) {	\
3507 		a >>= 1;		\
3508 		a##_fls--;		\
3509 	} else {			\
3510 		b >>= 1;		\
3511 		b##_fls--;		\
3512 	}				\
3513 } while (0)
3514 
3515 	/*
3516 	 * Reduce accuracy until either term fits in a u64, then proceed with
3517 	 * the other, so that finally we can do a u64/u64 division.
3518 	 */
3519 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3520 		REDUCE_FLS(nsec, frequency);
3521 		REDUCE_FLS(sec, count);
3522 	}
3523 
3524 	if (count_fls + sec_fls > 64) {
3525 		divisor = nsec * frequency;
3526 
3527 		while (count_fls + sec_fls > 64) {
3528 			REDUCE_FLS(count, sec);
3529 			divisor >>= 1;
3530 		}
3531 
3532 		dividend = count * sec;
3533 	} else {
3534 		dividend = count * sec;
3535 
3536 		while (nsec_fls + frequency_fls > 64) {
3537 			REDUCE_FLS(nsec, frequency);
3538 			dividend >>= 1;
3539 		}
3540 
3541 		divisor = nsec * frequency;
3542 	}
3543 
3544 	if (!divisor)
3545 		return dividend;
3546 
3547 	return div64_u64(dividend, divisor);
3548 }
3549 
3550 static DEFINE_PER_CPU(int, perf_throttled_count);
3551 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3552 
3553 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3554 {
3555 	struct hw_perf_event *hwc = &event->hw;
3556 	s64 period, sample_period;
3557 	s64 delta;
3558 
3559 	period = perf_calculate_period(event, nsec, count);
3560 
3561 	delta = (s64)(period - hwc->sample_period);
3562 	delta = (delta + 7) / 8; /* low pass filter */
3563 
3564 	sample_period = hwc->sample_period + delta;
3565 
3566 	if (!sample_period)
3567 		sample_period = 1;
3568 
3569 	hwc->sample_period = sample_period;
3570 
3571 	if (local64_read(&hwc->period_left) > 8*sample_period) {
3572 		if (disable)
3573 			event->pmu->stop(event, PERF_EF_UPDATE);
3574 
3575 		local64_set(&hwc->period_left, 0);
3576 
3577 		if (disable)
3578 			event->pmu->start(event, PERF_EF_RELOAD);
3579 	}
3580 }
3581 
3582 /*
3583  * combine freq adjustment with unthrottling to avoid two passes over the
3584  * events. At the same time, make sure, having freq events does not change
3585  * the rate of unthrottling as that would introduce bias.
3586  */
3587 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3588 					   int needs_unthr)
3589 {
3590 	struct perf_event *event;
3591 	struct hw_perf_event *hwc;
3592 	u64 now, period = TICK_NSEC;
3593 	s64 delta;
3594 
3595 	/*
3596 	 * only need to iterate over all events iff:
3597 	 * - context have events in frequency mode (needs freq adjust)
3598 	 * - there are events to unthrottle on this cpu
3599 	 */
3600 	if (!(ctx->nr_freq || needs_unthr))
3601 		return;
3602 
3603 	raw_spin_lock(&ctx->lock);
3604 	perf_pmu_disable(ctx->pmu);
3605 
3606 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3607 		if (event->state != PERF_EVENT_STATE_ACTIVE)
3608 			continue;
3609 
3610 		if (!event_filter_match(event))
3611 			continue;
3612 
3613 		perf_pmu_disable(event->pmu);
3614 
3615 		hwc = &event->hw;
3616 
3617 		if (hwc->interrupts == MAX_INTERRUPTS) {
3618 			hwc->interrupts = 0;
3619 			perf_log_throttle(event, 1);
3620 			event->pmu->start(event, 0);
3621 		}
3622 
3623 		if (!event->attr.freq || !event->attr.sample_freq)
3624 			goto next;
3625 
3626 		/*
3627 		 * stop the event and update event->count
3628 		 */
3629 		event->pmu->stop(event, PERF_EF_UPDATE);
3630 
3631 		now = local64_read(&event->count);
3632 		delta = now - hwc->freq_count_stamp;
3633 		hwc->freq_count_stamp = now;
3634 
3635 		/*
3636 		 * restart the event
3637 		 * reload only if value has changed
3638 		 * we have stopped the event so tell that
3639 		 * to perf_adjust_period() to avoid stopping it
3640 		 * twice.
3641 		 */
3642 		if (delta > 0)
3643 			perf_adjust_period(event, period, delta, false);
3644 
3645 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3646 	next:
3647 		perf_pmu_enable(event->pmu);
3648 	}
3649 
3650 	perf_pmu_enable(ctx->pmu);
3651 	raw_spin_unlock(&ctx->lock);
3652 }
3653 
3654 /*
3655  * Move @event to the tail of the @ctx's elegible events.
3656  */
3657 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
3658 {
3659 	/*
3660 	 * Rotate the first entry last of non-pinned groups. Rotation might be
3661 	 * disabled by the inheritance code.
3662 	 */
3663 	if (ctx->rotate_disable)
3664 		return;
3665 
3666 	perf_event_groups_delete(&ctx->flexible_groups, event);
3667 	perf_event_groups_insert(&ctx->flexible_groups, event);
3668 }
3669 
3670 static inline struct perf_event *
3671 ctx_first_active(struct perf_event_context *ctx)
3672 {
3673 	return list_first_entry_or_null(&ctx->flexible_active,
3674 					struct perf_event, active_list);
3675 }
3676 
3677 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
3678 {
3679 	struct perf_event *cpu_event = NULL, *task_event = NULL;
3680 	bool cpu_rotate = false, task_rotate = false;
3681 	struct perf_event_context *ctx = NULL;
3682 
3683 	/*
3684 	 * Since we run this from IRQ context, nobody can install new
3685 	 * events, thus the event count values are stable.
3686 	 */
3687 
3688 	if (cpuctx->ctx.nr_events) {
3689 		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3690 			cpu_rotate = true;
3691 	}
3692 
3693 	ctx = cpuctx->task_ctx;
3694 	if (ctx && ctx->nr_events) {
3695 		if (ctx->nr_events != ctx->nr_active)
3696 			task_rotate = true;
3697 	}
3698 
3699 	if (!(cpu_rotate || task_rotate))
3700 		return false;
3701 
3702 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3703 	perf_pmu_disable(cpuctx->ctx.pmu);
3704 
3705 	if (task_rotate)
3706 		task_event = ctx_first_active(ctx);
3707 	if (cpu_rotate)
3708 		cpu_event = ctx_first_active(&cpuctx->ctx);
3709 
3710 	/*
3711 	 * As per the order given at ctx_resched() first 'pop' task flexible
3712 	 * and then, if needed CPU flexible.
3713 	 */
3714 	if (task_event || (ctx && cpu_event))
3715 		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3716 	if (cpu_event)
3717 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3718 
3719 	if (task_event)
3720 		rotate_ctx(ctx, task_event);
3721 	if (cpu_event)
3722 		rotate_ctx(&cpuctx->ctx, cpu_event);
3723 
3724 	perf_event_sched_in(cpuctx, ctx, current);
3725 
3726 	perf_pmu_enable(cpuctx->ctx.pmu);
3727 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3728 
3729 	return true;
3730 }
3731 
3732 void perf_event_task_tick(void)
3733 {
3734 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
3735 	struct perf_event_context *ctx, *tmp;
3736 	int throttled;
3737 
3738 	lockdep_assert_irqs_disabled();
3739 
3740 	__this_cpu_inc(perf_throttled_seq);
3741 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
3742 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3743 
3744 	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3745 		perf_adjust_freq_unthr_context(ctx, throttled);
3746 }
3747 
3748 static int event_enable_on_exec(struct perf_event *event,
3749 				struct perf_event_context *ctx)
3750 {
3751 	if (!event->attr.enable_on_exec)
3752 		return 0;
3753 
3754 	event->attr.enable_on_exec = 0;
3755 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
3756 		return 0;
3757 
3758 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
3759 
3760 	return 1;
3761 }
3762 
3763 /*
3764  * Enable all of a task's events that have been marked enable-on-exec.
3765  * This expects task == current.
3766  */
3767 static void perf_event_enable_on_exec(int ctxn)
3768 {
3769 	struct perf_event_context *ctx, *clone_ctx = NULL;
3770 	enum event_type_t event_type = 0;
3771 	struct perf_cpu_context *cpuctx;
3772 	struct perf_event *event;
3773 	unsigned long flags;
3774 	int enabled = 0;
3775 
3776 	local_irq_save(flags);
3777 	ctx = current->perf_event_ctxp[ctxn];
3778 	if (!ctx || !ctx->nr_events)
3779 		goto out;
3780 
3781 	cpuctx = __get_cpu_context(ctx);
3782 	perf_ctx_lock(cpuctx, ctx);
3783 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3784 	list_for_each_entry(event, &ctx->event_list, event_entry) {
3785 		enabled |= event_enable_on_exec(event, ctx);
3786 		event_type |= get_event_type(event);
3787 	}
3788 
3789 	/*
3790 	 * Unclone and reschedule this context if we enabled any event.
3791 	 */
3792 	if (enabled) {
3793 		clone_ctx = unclone_ctx(ctx);
3794 		ctx_resched(cpuctx, ctx, event_type);
3795 	} else {
3796 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3797 	}
3798 	perf_ctx_unlock(cpuctx, ctx);
3799 
3800 out:
3801 	local_irq_restore(flags);
3802 
3803 	if (clone_ctx)
3804 		put_ctx(clone_ctx);
3805 }
3806 
3807 struct perf_read_data {
3808 	struct perf_event *event;
3809 	bool group;
3810 	int ret;
3811 };
3812 
3813 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3814 {
3815 	u16 local_pkg, event_pkg;
3816 
3817 	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3818 		int local_cpu = smp_processor_id();
3819 
3820 		event_pkg = topology_physical_package_id(event_cpu);
3821 		local_pkg = topology_physical_package_id(local_cpu);
3822 
3823 		if (event_pkg == local_pkg)
3824 			return local_cpu;
3825 	}
3826 
3827 	return event_cpu;
3828 }
3829 
3830 /*
3831  * Cross CPU call to read the hardware event
3832  */
3833 static void __perf_event_read(void *info)
3834 {
3835 	struct perf_read_data *data = info;
3836 	struct perf_event *sub, *event = data->event;
3837 	struct perf_event_context *ctx = event->ctx;
3838 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3839 	struct pmu *pmu = event->pmu;
3840 
3841 	/*
3842 	 * If this is a task context, we need to check whether it is
3843 	 * the current task context of this cpu.  If not it has been
3844 	 * scheduled out before the smp call arrived.  In that case
3845 	 * event->count would have been updated to a recent sample
3846 	 * when the event was scheduled out.
3847 	 */
3848 	if (ctx->task && cpuctx->task_ctx != ctx)
3849 		return;
3850 
3851 	raw_spin_lock(&ctx->lock);
3852 	if (ctx->is_active & EVENT_TIME) {
3853 		update_context_time(ctx);
3854 		update_cgrp_time_from_event(event);
3855 	}
3856 
3857 	perf_event_update_time(event);
3858 	if (data->group)
3859 		perf_event_update_sibling_time(event);
3860 
3861 	if (event->state != PERF_EVENT_STATE_ACTIVE)
3862 		goto unlock;
3863 
3864 	if (!data->group) {
3865 		pmu->read(event);
3866 		data->ret = 0;
3867 		goto unlock;
3868 	}
3869 
3870 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3871 
3872 	pmu->read(event);
3873 
3874 	for_each_sibling_event(sub, event) {
3875 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3876 			/*
3877 			 * Use sibling's PMU rather than @event's since
3878 			 * sibling could be on different (eg: software) PMU.
3879 			 */
3880 			sub->pmu->read(sub);
3881 		}
3882 	}
3883 
3884 	data->ret = pmu->commit_txn(pmu);
3885 
3886 unlock:
3887 	raw_spin_unlock(&ctx->lock);
3888 }
3889 
3890 static inline u64 perf_event_count(struct perf_event *event)
3891 {
3892 	return local64_read(&event->count) + atomic64_read(&event->child_count);
3893 }
3894 
3895 /*
3896  * NMI-safe method to read a local event, that is an event that
3897  * is:
3898  *   - either for the current task, or for this CPU
3899  *   - does not have inherit set, for inherited task events
3900  *     will not be local and we cannot read them atomically
3901  *   - must not have a pmu::count method
3902  */
3903 int perf_event_read_local(struct perf_event *event, u64 *value,
3904 			  u64 *enabled, u64 *running)
3905 {
3906 	unsigned long flags;
3907 	int ret = 0;
3908 
3909 	/*
3910 	 * Disabling interrupts avoids all counter scheduling (context
3911 	 * switches, timer based rotation and IPIs).
3912 	 */
3913 	local_irq_save(flags);
3914 
3915 	/*
3916 	 * It must not be an event with inherit set, we cannot read
3917 	 * all child counters from atomic context.
3918 	 */
3919 	if (event->attr.inherit) {
3920 		ret = -EOPNOTSUPP;
3921 		goto out;
3922 	}
3923 
3924 	/* If this is a per-task event, it must be for current */
3925 	if ((event->attach_state & PERF_ATTACH_TASK) &&
3926 	    event->hw.target != current) {
3927 		ret = -EINVAL;
3928 		goto out;
3929 	}
3930 
3931 	/* If this is a per-CPU event, it must be for this CPU */
3932 	if (!(event->attach_state & PERF_ATTACH_TASK) &&
3933 	    event->cpu != smp_processor_id()) {
3934 		ret = -EINVAL;
3935 		goto out;
3936 	}
3937 
3938 	/* If this is a pinned event it must be running on this CPU */
3939 	if (event->attr.pinned && event->oncpu != smp_processor_id()) {
3940 		ret = -EBUSY;
3941 		goto out;
3942 	}
3943 
3944 	/*
3945 	 * If the event is currently on this CPU, its either a per-task event,
3946 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3947 	 * oncpu == -1).
3948 	 */
3949 	if (event->oncpu == smp_processor_id())
3950 		event->pmu->read(event);
3951 
3952 	*value = local64_read(&event->count);
3953 	if (enabled || running) {
3954 		u64 now = event->shadow_ctx_time + perf_clock();
3955 		u64 __enabled, __running;
3956 
3957 		__perf_update_times(event, now, &__enabled, &__running);
3958 		if (enabled)
3959 			*enabled = __enabled;
3960 		if (running)
3961 			*running = __running;
3962 	}
3963 out:
3964 	local_irq_restore(flags);
3965 
3966 	return ret;
3967 }
3968 
3969 static int perf_event_read(struct perf_event *event, bool group)
3970 {
3971 	enum perf_event_state state = READ_ONCE(event->state);
3972 	int event_cpu, ret = 0;
3973 
3974 	/*
3975 	 * If event is enabled and currently active on a CPU, update the
3976 	 * value in the event structure:
3977 	 */
3978 again:
3979 	if (state == PERF_EVENT_STATE_ACTIVE) {
3980 		struct perf_read_data data;
3981 
3982 		/*
3983 		 * Orders the ->state and ->oncpu loads such that if we see
3984 		 * ACTIVE we must also see the right ->oncpu.
3985 		 *
3986 		 * Matches the smp_wmb() from event_sched_in().
3987 		 */
3988 		smp_rmb();
3989 
3990 		event_cpu = READ_ONCE(event->oncpu);
3991 		if ((unsigned)event_cpu >= nr_cpu_ids)
3992 			return 0;
3993 
3994 		data = (struct perf_read_data){
3995 			.event = event,
3996 			.group = group,
3997 			.ret = 0,
3998 		};
3999 
4000 		preempt_disable();
4001 		event_cpu = __perf_event_read_cpu(event, event_cpu);
4002 
4003 		/*
4004 		 * Purposely ignore the smp_call_function_single() return
4005 		 * value.
4006 		 *
4007 		 * If event_cpu isn't a valid CPU it means the event got
4008 		 * scheduled out and that will have updated the event count.
4009 		 *
4010 		 * Therefore, either way, we'll have an up-to-date event count
4011 		 * after this.
4012 		 */
4013 		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4014 		preempt_enable();
4015 		ret = data.ret;
4016 
4017 	} else if (state == PERF_EVENT_STATE_INACTIVE) {
4018 		struct perf_event_context *ctx = event->ctx;
4019 		unsigned long flags;
4020 
4021 		raw_spin_lock_irqsave(&ctx->lock, flags);
4022 		state = event->state;
4023 		if (state != PERF_EVENT_STATE_INACTIVE) {
4024 			raw_spin_unlock_irqrestore(&ctx->lock, flags);
4025 			goto again;
4026 		}
4027 
4028 		/*
4029 		 * May read while context is not active (e.g., thread is
4030 		 * blocked), in that case we cannot update context time
4031 		 */
4032 		if (ctx->is_active & EVENT_TIME) {
4033 			update_context_time(ctx);
4034 			update_cgrp_time_from_event(event);
4035 		}
4036 
4037 		perf_event_update_time(event);
4038 		if (group)
4039 			perf_event_update_sibling_time(event);
4040 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4041 	}
4042 
4043 	return ret;
4044 }
4045 
4046 /*
4047  * Initialize the perf_event context in a task_struct:
4048  */
4049 static void __perf_event_init_context(struct perf_event_context *ctx)
4050 {
4051 	raw_spin_lock_init(&ctx->lock);
4052 	mutex_init(&ctx->mutex);
4053 	INIT_LIST_HEAD(&ctx->active_ctx_list);
4054 	perf_event_groups_init(&ctx->pinned_groups);
4055 	perf_event_groups_init(&ctx->flexible_groups);
4056 	INIT_LIST_HEAD(&ctx->event_list);
4057 	INIT_LIST_HEAD(&ctx->pinned_active);
4058 	INIT_LIST_HEAD(&ctx->flexible_active);
4059 	atomic_set(&ctx->refcount, 1);
4060 }
4061 
4062 static struct perf_event_context *
4063 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4064 {
4065 	struct perf_event_context *ctx;
4066 
4067 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4068 	if (!ctx)
4069 		return NULL;
4070 
4071 	__perf_event_init_context(ctx);
4072 	if (task) {
4073 		ctx->task = task;
4074 		get_task_struct(task);
4075 	}
4076 	ctx->pmu = pmu;
4077 
4078 	return ctx;
4079 }
4080 
4081 static struct task_struct *
4082 find_lively_task_by_vpid(pid_t vpid)
4083 {
4084 	struct task_struct *task;
4085 
4086 	rcu_read_lock();
4087 	if (!vpid)
4088 		task = current;
4089 	else
4090 		task = find_task_by_vpid(vpid);
4091 	if (task)
4092 		get_task_struct(task);
4093 	rcu_read_unlock();
4094 
4095 	if (!task)
4096 		return ERR_PTR(-ESRCH);
4097 
4098 	return task;
4099 }
4100 
4101 /*
4102  * Returns a matching context with refcount and pincount.
4103  */
4104 static struct perf_event_context *
4105 find_get_context(struct pmu *pmu, struct task_struct *task,
4106 		struct perf_event *event)
4107 {
4108 	struct perf_event_context *ctx, *clone_ctx = NULL;
4109 	struct perf_cpu_context *cpuctx;
4110 	void *task_ctx_data = NULL;
4111 	unsigned long flags;
4112 	int ctxn, err;
4113 	int cpu = event->cpu;
4114 
4115 	if (!task) {
4116 		/* Must be root to operate on a CPU event: */
4117 		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
4118 			return ERR_PTR(-EACCES);
4119 
4120 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4121 		ctx = &cpuctx->ctx;
4122 		get_ctx(ctx);
4123 		++ctx->pin_count;
4124 
4125 		return ctx;
4126 	}
4127 
4128 	err = -EINVAL;
4129 	ctxn = pmu->task_ctx_nr;
4130 	if (ctxn < 0)
4131 		goto errout;
4132 
4133 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4134 		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
4135 		if (!task_ctx_data) {
4136 			err = -ENOMEM;
4137 			goto errout;
4138 		}
4139 	}
4140 
4141 retry:
4142 	ctx = perf_lock_task_context(task, ctxn, &flags);
4143 	if (ctx) {
4144 		clone_ctx = unclone_ctx(ctx);
4145 		++ctx->pin_count;
4146 
4147 		if (task_ctx_data && !ctx->task_ctx_data) {
4148 			ctx->task_ctx_data = task_ctx_data;
4149 			task_ctx_data = NULL;
4150 		}
4151 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4152 
4153 		if (clone_ctx)
4154 			put_ctx(clone_ctx);
4155 	} else {
4156 		ctx = alloc_perf_context(pmu, task);
4157 		err = -ENOMEM;
4158 		if (!ctx)
4159 			goto errout;
4160 
4161 		if (task_ctx_data) {
4162 			ctx->task_ctx_data = task_ctx_data;
4163 			task_ctx_data = NULL;
4164 		}
4165 
4166 		err = 0;
4167 		mutex_lock(&task->perf_event_mutex);
4168 		/*
4169 		 * If it has already passed perf_event_exit_task().
4170 		 * we must see PF_EXITING, it takes this mutex too.
4171 		 */
4172 		if (task->flags & PF_EXITING)
4173 			err = -ESRCH;
4174 		else if (task->perf_event_ctxp[ctxn])
4175 			err = -EAGAIN;
4176 		else {
4177 			get_ctx(ctx);
4178 			++ctx->pin_count;
4179 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4180 		}
4181 		mutex_unlock(&task->perf_event_mutex);
4182 
4183 		if (unlikely(err)) {
4184 			put_ctx(ctx);
4185 
4186 			if (err == -EAGAIN)
4187 				goto retry;
4188 			goto errout;
4189 		}
4190 	}
4191 
4192 	kfree(task_ctx_data);
4193 	return ctx;
4194 
4195 errout:
4196 	kfree(task_ctx_data);
4197 	return ERR_PTR(err);
4198 }
4199 
4200 static void perf_event_free_filter(struct perf_event *event);
4201 static void perf_event_free_bpf_prog(struct perf_event *event);
4202 
4203 static void free_event_rcu(struct rcu_head *head)
4204 {
4205 	struct perf_event *event;
4206 
4207 	event = container_of(head, struct perf_event, rcu_head);
4208 	if (event->ns)
4209 		put_pid_ns(event->ns);
4210 	perf_event_free_filter(event);
4211 	kfree(event);
4212 }
4213 
4214 static void ring_buffer_attach(struct perf_event *event,
4215 			       struct ring_buffer *rb);
4216 
4217 static void detach_sb_event(struct perf_event *event)
4218 {
4219 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4220 
4221 	raw_spin_lock(&pel->lock);
4222 	list_del_rcu(&event->sb_list);
4223 	raw_spin_unlock(&pel->lock);
4224 }
4225 
4226 static bool is_sb_event(struct perf_event *event)
4227 {
4228 	struct perf_event_attr *attr = &event->attr;
4229 
4230 	if (event->parent)
4231 		return false;
4232 
4233 	if (event->attach_state & PERF_ATTACH_TASK)
4234 		return false;
4235 
4236 	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4237 	    attr->comm || attr->comm_exec ||
4238 	    attr->task ||
4239 	    attr->context_switch)
4240 		return true;
4241 	return false;
4242 }
4243 
4244 static void unaccount_pmu_sb_event(struct perf_event *event)
4245 {
4246 	if (is_sb_event(event))
4247 		detach_sb_event(event);
4248 }
4249 
4250 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4251 {
4252 	if (event->parent)
4253 		return;
4254 
4255 	if (is_cgroup_event(event))
4256 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4257 }
4258 
4259 #ifdef CONFIG_NO_HZ_FULL
4260 static DEFINE_SPINLOCK(nr_freq_lock);
4261 #endif
4262 
4263 static void unaccount_freq_event_nohz(void)
4264 {
4265 #ifdef CONFIG_NO_HZ_FULL
4266 	spin_lock(&nr_freq_lock);
4267 	if (atomic_dec_and_test(&nr_freq_events))
4268 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4269 	spin_unlock(&nr_freq_lock);
4270 #endif
4271 }
4272 
4273 static void unaccount_freq_event(void)
4274 {
4275 	if (tick_nohz_full_enabled())
4276 		unaccount_freq_event_nohz();
4277 	else
4278 		atomic_dec(&nr_freq_events);
4279 }
4280 
4281 static void unaccount_event(struct perf_event *event)
4282 {
4283 	bool dec = false;
4284 
4285 	if (event->parent)
4286 		return;
4287 
4288 	if (event->attach_state & PERF_ATTACH_TASK)
4289 		dec = true;
4290 	if (event->attr.mmap || event->attr.mmap_data)
4291 		atomic_dec(&nr_mmap_events);
4292 	if (event->attr.comm)
4293 		atomic_dec(&nr_comm_events);
4294 	if (event->attr.namespaces)
4295 		atomic_dec(&nr_namespaces_events);
4296 	if (event->attr.task)
4297 		atomic_dec(&nr_task_events);
4298 	if (event->attr.freq)
4299 		unaccount_freq_event();
4300 	if (event->attr.context_switch) {
4301 		dec = true;
4302 		atomic_dec(&nr_switch_events);
4303 	}
4304 	if (is_cgroup_event(event))
4305 		dec = true;
4306 	if (has_branch_stack(event))
4307 		dec = true;
4308 
4309 	if (dec) {
4310 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
4311 			schedule_delayed_work(&perf_sched_work, HZ);
4312 	}
4313 
4314 	unaccount_event_cpu(event, event->cpu);
4315 
4316 	unaccount_pmu_sb_event(event);
4317 }
4318 
4319 static void perf_sched_delayed(struct work_struct *work)
4320 {
4321 	mutex_lock(&perf_sched_mutex);
4322 	if (atomic_dec_and_test(&perf_sched_count))
4323 		static_branch_disable(&perf_sched_events);
4324 	mutex_unlock(&perf_sched_mutex);
4325 }
4326 
4327 /*
4328  * The following implement mutual exclusion of events on "exclusive" pmus
4329  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4330  * at a time, so we disallow creating events that might conflict, namely:
4331  *
4332  *  1) cpu-wide events in the presence of per-task events,
4333  *  2) per-task events in the presence of cpu-wide events,
4334  *  3) two matching events on the same context.
4335  *
4336  * The former two cases are handled in the allocation path (perf_event_alloc(),
4337  * _free_event()), the latter -- before the first perf_install_in_context().
4338  */
4339 static int exclusive_event_init(struct perf_event *event)
4340 {
4341 	struct pmu *pmu = event->pmu;
4342 
4343 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4344 		return 0;
4345 
4346 	/*
4347 	 * Prevent co-existence of per-task and cpu-wide events on the
4348 	 * same exclusive pmu.
4349 	 *
4350 	 * Negative pmu::exclusive_cnt means there are cpu-wide
4351 	 * events on this "exclusive" pmu, positive means there are
4352 	 * per-task events.
4353 	 *
4354 	 * Since this is called in perf_event_alloc() path, event::ctx
4355 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4356 	 * to mean "per-task event", because unlike other attach states it
4357 	 * never gets cleared.
4358 	 */
4359 	if (event->attach_state & PERF_ATTACH_TASK) {
4360 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4361 			return -EBUSY;
4362 	} else {
4363 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4364 			return -EBUSY;
4365 	}
4366 
4367 	return 0;
4368 }
4369 
4370 static void exclusive_event_destroy(struct perf_event *event)
4371 {
4372 	struct pmu *pmu = event->pmu;
4373 
4374 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4375 		return;
4376 
4377 	/* see comment in exclusive_event_init() */
4378 	if (event->attach_state & PERF_ATTACH_TASK)
4379 		atomic_dec(&pmu->exclusive_cnt);
4380 	else
4381 		atomic_inc(&pmu->exclusive_cnt);
4382 }
4383 
4384 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4385 {
4386 	if ((e1->pmu == e2->pmu) &&
4387 	    (e1->cpu == e2->cpu ||
4388 	     e1->cpu == -1 ||
4389 	     e2->cpu == -1))
4390 		return true;
4391 	return false;
4392 }
4393 
4394 /* Called under the same ctx::mutex as perf_install_in_context() */
4395 static bool exclusive_event_installable(struct perf_event *event,
4396 					struct perf_event_context *ctx)
4397 {
4398 	struct perf_event *iter_event;
4399 	struct pmu *pmu = event->pmu;
4400 
4401 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4402 		return true;
4403 
4404 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4405 		if (exclusive_event_match(iter_event, event))
4406 			return false;
4407 	}
4408 
4409 	return true;
4410 }
4411 
4412 static void perf_addr_filters_splice(struct perf_event *event,
4413 				       struct list_head *head);
4414 
4415 static void _free_event(struct perf_event *event)
4416 {
4417 	irq_work_sync(&event->pending);
4418 
4419 	unaccount_event(event);
4420 
4421 	if (event->rb) {
4422 		/*
4423 		 * Can happen when we close an event with re-directed output.
4424 		 *
4425 		 * Since we have a 0 refcount, perf_mmap_close() will skip
4426 		 * over us; possibly making our ring_buffer_put() the last.
4427 		 */
4428 		mutex_lock(&event->mmap_mutex);
4429 		ring_buffer_attach(event, NULL);
4430 		mutex_unlock(&event->mmap_mutex);
4431 	}
4432 
4433 	if (is_cgroup_event(event))
4434 		perf_detach_cgroup(event);
4435 
4436 	if (!event->parent) {
4437 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4438 			put_callchain_buffers();
4439 	}
4440 
4441 	perf_event_free_bpf_prog(event);
4442 	perf_addr_filters_splice(event, NULL);
4443 	kfree(event->addr_filters_offs);
4444 
4445 	if (event->destroy)
4446 		event->destroy(event);
4447 
4448 	if (event->ctx)
4449 		put_ctx(event->ctx);
4450 
4451 	if (event->hw.target)
4452 		put_task_struct(event->hw.target);
4453 
4454 	exclusive_event_destroy(event);
4455 	module_put(event->pmu->module);
4456 
4457 	call_rcu(&event->rcu_head, free_event_rcu);
4458 }
4459 
4460 /*
4461  * Used to free events which have a known refcount of 1, such as in error paths
4462  * where the event isn't exposed yet and inherited events.
4463  */
4464 static void free_event(struct perf_event *event)
4465 {
4466 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4467 				"unexpected event refcount: %ld; ptr=%p\n",
4468 				atomic_long_read(&event->refcount), event)) {
4469 		/* leak to avoid use-after-free */
4470 		return;
4471 	}
4472 
4473 	_free_event(event);
4474 }
4475 
4476 /*
4477  * Remove user event from the owner task.
4478  */
4479 static void perf_remove_from_owner(struct perf_event *event)
4480 {
4481 	struct task_struct *owner;
4482 
4483 	rcu_read_lock();
4484 	/*
4485 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
4486 	 * observe !owner it means the list deletion is complete and we can
4487 	 * indeed free this event, otherwise we need to serialize on
4488 	 * owner->perf_event_mutex.
4489 	 */
4490 	owner = READ_ONCE(event->owner);
4491 	if (owner) {
4492 		/*
4493 		 * Since delayed_put_task_struct() also drops the last
4494 		 * task reference we can safely take a new reference
4495 		 * while holding the rcu_read_lock().
4496 		 */
4497 		get_task_struct(owner);
4498 	}
4499 	rcu_read_unlock();
4500 
4501 	if (owner) {
4502 		/*
4503 		 * If we're here through perf_event_exit_task() we're already
4504 		 * holding ctx->mutex which would be an inversion wrt. the
4505 		 * normal lock order.
4506 		 *
4507 		 * However we can safely take this lock because its the child
4508 		 * ctx->mutex.
4509 		 */
4510 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4511 
4512 		/*
4513 		 * We have to re-check the event->owner field, if it is cleared
4514 		 * we raced with perf_event_exit_task(), acquiring the mutex
4515 		 * ensured they're done, and we can proceed with freeing the
4516 		 * event.
4517 		 */
4518 		if (event->owner) {
4519 			list_del_init(&event->owner_entry);
4520 			smp_store_release(&event->owner, NULL);
4521 		}
4522 		mutex_unlock(&owner->perf_event_mutex);
4523 		put_task_struct(owner);
4524 	}
4525 }
4526 
4527 static void put_event(struct perf_event *event)
4528 {
4529 	if (!atomic_long_dec_and_test(&event->refcount))
4530 		return;
4531 
4532 	_free_event(event);
4533 }
4534 
4535 /*
4536  * Kill an event dead; while event:refcount will preserve the event
4537  * object, it will not preserve its functionality. Once the last 'user'
4538  * gives up the object, we'll destroy the thing.
4539  */
4540 int perf_event_release_kernel(struct perf_event *event)
4541 {
4542 	struct perf_event_context *ctx = event->ctx;
4543 	struct perf_event *child, *tmp;
4544 	LIST_HEAD(free_list);
4545 
4546 	/*
4547 	 * If we got here through err_file: fput(event_file); we will not have
4548 	 * attached to a context yet.
4549 	 */
4550 	if (!ctx) {
4551 		WARN_ON_ONCE(event->attach_state &
4552 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4553 		goto no_ctx;
4554 	}
4555 
4556 	if (!is_kernel_event(event))
4557 		perf_remove_from_owner(event);
4558 
4559 	ctx = perf_event_ctx_lock(event);
4560 	WARN_ON_ONCE(ctx->parent_ctx);
4561 	perf_remove_from_context(event, DETACH_GROUP);
4562 
4563 	raw_spin_lock_irq(&ctx->lock);
4564 	/*
4565 	 * Mark this event as STATE_DEAD, there is no external reference to it
4566 	 * anymore.
4567 	 *
4568 	 * Anybody acquiring event->child_mutex after the below loop _must_
4569 	 * also see this, most importantly inherit_event() which will avoid
4570 	 * placing more children on the list.
4571 	 *
4572 	 * Thus this guarantees that we will in fact observe and kill _ALL_
4573 	 * child events.
4574 	 */
4575 	event->state = PERF_EVENT_STATE_DEAD;
4576 	raw_spin_unlock_irq(&ctx->lock);
4577 
4578 	perf_event_ctx_unlock(event, ctx);
4579 
4580 again:
4581 	mutex_lock(&event->child_mutex);
4582 	list_for_each_entry(child, &event->child_list, child_list) {
4583 
4584 		/*
4585 		 * Cannot change, child events are not migrated, see the
4586 		 * comment with perf_event_ctx_lock_nested().
4587 		 */
4588 		ctx = READ_ONCE(child->ctx);
4589 		/*
4590 		 * Since child_mutex nests inside ctx::mutex, we must jump
4591 		 * through hoops. We start by grabbing a reference on the ctx.
4592 		 *
4593 		 * Since the event cannot get freed while we hold the
4594 		 * child_mutex, the context must also exist and have a !0
4595 		 * reference count.
4596 		 */
4597 		get_ctx(ctx);
4598 
4599 		/*
4600 		 * Now that we have a ctx ref, we can drop child_mutex, and
4601 		 * acquire ctx::mutex without fear of it going away. Then we
4602 		 * can re-acquire child_mutex.
4603 		 */
4604 		mutex_unlock(&event->child_mutex);
4605 		mutex_lock(&ctx->mutex);
4606 		mutex_lock(&event->child_mutex);
4607 
4608 		/*
4609 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
4610 		 * state, if child is still the first entry, it didn't get freed
4611 		 * and we can continue doing so.
4612 		 */
4613 		tmp = list_first_entry_or_null(&event->child_list,
4614 					       struct perf_event, child_list);
4615 		if (tmp == child) {
4616 			perf_remove_from_context(child, DETACH_GROUP);
4617 			list_move(&child->child_list, &free_list);
4618 			/*
4619 			 * This matches the refcount bump in inherit_event();
4620 			 * this can't be the last reference.
4621 			 */
4622 			put_event(event);
4623 		}
4624 
4625 		mutex_unlock(&event->child_mutex);
4626 		mutex_unlock(&ctx->mutex);
4627 		put_ctx(ctx);
4628 		goto again;
4629 	}
4630 	mutex_unlock(&event->child_mutex);
4631 
4632 	list_for_each_entry_safe(child, tmp, &free_list, child_list) {
4633 		list_del(&child->child_list);
4634 		free_event(child);
4635 	}
4636 
4637 no_ctx:
4638 	put_event(event); /* Must be the 'last' reference */
4639 	return 0;
4640 }
4641 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4642 
4643 /*
4644  * Called when the last reference to the file is gone.
4645  */
4646 static int perf_release(struct inode *inode, struct file *file)
4647 {
4648 	perf_event_release_kernel(file->private_data);
4649 	return 0;
4650 }
4651 
4652 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4653 {
4654 	struct perf_event *child;
4655 	u64 total = 0;
4656 
4657 	*enabled = 0;
4658 	*running = 0;
4659 
4660 	mutex_lock(&event->child_mutex);
4661 
4662 	(void)perf_event_read(event, false);
4663 	total += perf_event_count(event);
4664 
4665 	*enabled += event->total_time_enabled +
4666 			atomic64_read(&event->child_total_time_enabled);
4667 	*running += event->total_time_running +
4668 			atomic64_read(&event->child_total_time_running);
4669 
4670 	list_for_each_entry(child, &event->child_list, child_list) {
4671 		(void)perf_event_read(child, false);
4672 		total += perf_event_count(child);
4673 		*enabled += child->total_time_enabled;
4674 		*running += child->total_time_running;
4675 	}
4676 	mutex_unlock(&event->child_mutex);
4677 
4678 	return total;
4679 }
4680 
4681 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4682 {
4683 	struct perf_event_context *ctx;
4684 	u64 count;
4685 
4686 	ctx = perf_event_ctx_lock(event);
4687 	count = __perf_event_read_value(event, enabled, running);
4688 	perf_event_ctx_unlock(event, ctx);
4689 
4690 	return count;
4691 }
4692 EXPORT_SYMBOL_GPL(perf_event_read_value);
4693 
4694 static int __perf_read_group_add(struct perf_event *leader,
4695 					u64 read_format, u64 *values)
4696 {
4697 	struct perf_event_context *ctx = leader->ctx;
4698 	struct perf_event *sub;
4699 	unsigned long flags;
4700 	int n = 1; /* skip @nr */
4701 	int ret;
4702 
4703 	ret = perf_event_read(leader, true);
4704 	if (ret)
4705 		return ret;
4706 
4707 	raw_spin_lock_irqsave(&ctx->lock, flags);
4708 
4709 	/*
4710 	 * Since we co-schedule groups, {enabled,running} times of siblings
4711 	 * will be identical to those of the leader, so we only publish one
4712 	 * set.
4713 	 */
4714 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4715 		values[n++] += leader->total_time_enabled +
4716 			atomic64_read(&leader->child_total_time_enabled);
4717 	}
4718 
4719 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4720 		values[n++] += leader->total_time_running +
4721 			atomic64_read(&leader->child_total_time_running);
4722 	}
4723 
4724 	/*
4725 	 * Write {count,id} tuples for every sibling.
4726 	 */
4727 	values[n++] += perf_event_count(leader);
4728 	if (read_format & PERF_FORMAT_ID)
4729 		values[n++] = primary_event_id(leader);
4730 
4731 	for_each_sibling_event(sub, leader) {
4732 		values[n++] += perf_event_count(sub);
4733 		if (read_format & PERF_FORMAT_ID)
4734 			values[n++] = primary_event_id(sub);
4735 	}
4736 
4737 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
4738 	return 0;
4739 }
4740 
4741 static int perf_read_group(struct perf_event *event,
4742 				   u64 read_format, char __user *buf)
4743 {
4744 	struct perf_event *leader = event->group_leader, *child;
4745 	struct perf_event_context *ctx = leader->ctx;
4746 	int ret;
4747 	u64 *values;
4748 
4749 	lockdep_assert_held(&ctx->mutex);
4750 
4751 	values = kzalloc(event->read_size, GFP_KERNEL);
4752 	if (!values)
4753 		return -ENOMEM;
4754 
4755 	values[0] = 1 + leader->nr_siblings;
4756 
4757 	/*
4758 	 * By locking the child_mutex of the leader we effectively
4759 	 * lock the child list of all siblings.. XXX explain how.
4760 	 */
4761 	mutex_lock(&leader->child_mutex);
4762 
4763 	ret = __perf_read_group_add(leader, read_format, values);
4764 	if (ret)
4765 		goto unlock;
4766 
4767 	list_for_each_entry(child, &leader->child_list, child_list) {
4768 		ret = __perf_read_group_add(child, read_format, values);
4769 		if (ret)
4770 			goto unlock;
4771 	}
4772 
4773 	mutex_unlock(&leader->child_mutex);
4774 
4775 	ret = event->read_size;
4776 	if (copy_to_user(buf, values, event->read_size))
4777 		ret = -EFAULT;
4778 	goto out;
4779 
4780 unlock:
4781 	mutex_unlock(&leader->child_mutex);
4782 out:
4783 	kfree(values);
4784 	return ret;
4785 }
4786 
4787 static int perf_read_one(struct perf_event *event,
4788 				 u64 read_format, char __user *buf)
4789 {
4790 	u64 enabled, running;
4791 	u64 values[4];
4792 	int n = 0;
4793 
4794 	values[n++] = __perf_event_read_value(event, &enabled, &running);
4795 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4796 		values[n++] = enabled;
4797 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4798 		values[n++] = running;
4799 	if (read_format & PERF_FORMAT_ID)
4800 		values[n++] = primary_event_id(event);
4801 
4802 	if (copy_to_user(buf, values, n * sizeof(u64)))
4803 		return -EFAULT;
4804 
4805 	return n * sizeof(u64);
4806 }
4807 
4808 static bool is_event_hup(struct perf_event *event)
4809 {
4810 	bool no_children;
4811 
4812 	if (event->state > PERF_EVENT_STATE_EXIT)
4813 		return false;
4814 
4815 	mutex_lock(&event->child_mutex);
4816 	no_children = list_empty(&event->child_list);
4817 	mutex_unlock(&event->child_mutex);
4818 	return no_children;
4819 }
4820 
4821 /*
4822  * Read the performance event - simple non blocking version for now
4823  */
4824 static ssize_t
4825 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4826 {
4827 	u64 read_format = event->attr.read_format;
4828 	int ret;
4829 
4830 	/*
4831 	 * Return end-of-file for a read on an event that is in
4832 	 * error state (i.e. because it was pinned but it couldn't be
4833 	 * scheduled on to the CPU at some point).
4834 	 */
4835 	if (event->state == PERF_EVENT_STATE_ERROR)
4836 		return 0;
4837 
4838 	if (count < event->read_size)
4839 		return -ENOSPC;
4840 
4841 	WARN_ON_ONCE(event->ctx->parent_ctx);
4842 	if (read_format & PERF_FORMAT_GROUP)
4843 		ret = perf_read_group(event, read_format, buf);
4844 	else
4845 		ret = perf_read_one(event, read_format, buf);
4846 
4847 	return ret;
4848 }
4849 
4850 static ssize_t
4851 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4852 {
4853 	struct perf_event *event = file->private_data;
4854 	struct perf_event_context *ctx;
4855 	int ret;
4856 
4857 	ctx = perf_event_ctx_lock(event);
4858 	ret = __perf_read(event, buf, count);
4859 	perf_event_ctx_unlock(event, ctx);
4860 
4861 	return ret;
4862 }
4863 
4864 static __poll_t perf_poll(struct file *file, poll_table *wait)
4865 {
4866 	struct perf_event *event = file->private_data;
4867 	struct ring_buffer *rb;
4868 	__poll_t events = EPOLLHUP;
4869 
4870 	poll_wait(file, &event->waitq, wait);
4871 
4872 	if (is_event_hup(event))
4873 		return events;
4874 
4875 	/*
4876 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
4877 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4878 	 */
4879 	mutex_lock(&event->mmap_mutex);
4880 	rb = event->rb;
4881 	if (rb)
4882 		events = atomic_xchg(&rb->poll, 0);
4883 	mutex_unlock(&event->mmap_mutex);
4884 	return events;
4885 }
4886 
4887 static void _perf_event_reset(struct perf_event *event)
4888 {
4889 	(void)perf_event_read(event, false);
4890 	local64_set(&event->count, 0);
4891 	perf_event_update_userpage(event);
4892 }
4893 
4894 /*
4895  * Holding the top-level event's child_mutex means that any
4896  * descendant process that has inherited this event will block
4897  * in perf_event_exit_event() if it goes to exit, thus satisfying the
4898  * task existence requirements of perf_event_enable/disable.
4899  */
4900 static void perf_event_for_each_child(struct perf_event *event,
4901 					void (*func)(struct perf_event *))
4902 {
4903 	struct perf_event *child;
4904 
4905 	WARN_ON_ONCE(event->ctx->parent_ctx);
4906 
4907 	mutex_lock(&event->child_mutex);
4908 	func(event);
4909 	list_for_each_entry(child, &event->child_list, child_list)
4910 		func(child);
4911 	mutex_unlock(&event->child_mutex);
4912 }
4913 
4914 static void perf_event_for_each(struct perf_event *event,
4915 				  void (*func)(struct perf_event *))
4916 {
4917 	struct perf_event_context *ctx = event->ctx;
4918 	struct perf_event *sibling;
4919 
4920 	lockdep_assert_held(&ctx->mutex);
4921 
4922 	event = event->group_leader;
4923 
4924 	perf_event_for_each_child(event, func);
4925 	for_each_sibling_event(sibling, event)
4926 		perf_event_for_each_child(sibling, func);
4927 }
4928 
4929 static void __perf_event_period(struct perf_event *event,
4930 				struct perf_cpu_context *cpuctx,
4931 				struct perf_event_context *ctx,
4932 				void *info)
4933 {
4934 	u64 value = *((u64 *)info);
4935 	bool active;
4936 
4937 	if (event->attr.freq) {
4938 		event->attr.sample_freq = value;
4939 	} else {
4940 		event->attr.sample_period = value;
4941 		event->hw.sample_period = value;
4942 	}
4943 
4944 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
4945 	if (active) {
4946 		perf_pmu_disable(ctx->pmu);
4947 		/*
4948 		 * We could be throttled; unthrottle now to avoid the tick
4949 		 * trying to unthrottle while we already re-started the event.
4950 		 */
4951 		if (event->hw.interrupts == MAX_INTERRUPTS) {
4952 			event->hw.interrupts = 0;
4953 			perf_log_throttle(event, 1);
4954 		}
4955 		event->pmu->stop(event, PERF_EF_UPDATE);
4956 	}
4957 
4958 	local64_set(&event->hw.period_left, 0);
4959 
4960 	if (active) {
4961 		event->pmu->start(event, PERF_EF_RELOAD);
4962 		perf_pmu_enable(ctx->pmu);
4963 	}
4964 }
4965 
4966 static int perf_event_check_period(struct perf_event *event, u64 value)
4967 {
4968 	return event->pmu->check_period(event, value);
4969 }
4970 
4971 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4972 {
4973 	u64 value;
4974 
4975 	if (!is_sampling_event(event))
4976 		return -EINVAL;
4977 
4978 	if (copy_from_user(&value, arg, sizeof(value)))
4979 		return -EFAULT;
4980 
4981 	if (!value)
4982 		return -EINVAL;
4983 
4984 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4985 		return -EINVAL;
4986 
4987 	if (perf_event_check_period(event, value))
4988 		return -EINVAL;
4989 
4990 	event_function_call(event, __perf_event_period, &value);
4991 
4992 	return 0;
4993 }
4994 
4995 static const struct file_operations perf_fops;
4996 
4997 static inline int perf_fget_light(int fd, struct fd *p)
4998 {
4999 	struct fd f = fdget(fd);
5000 	if (!f.file)
5001 		return -EBADF;
5002 
5003 	if (f.file->f_op != &perf_fops) {
5004 		fdput(f);
5005 		return -EBADF;
5006 	}
5007 	*p = f;
5008 	return 0;
5009 }
5010 
5011 static int perf_event_set_output(struct perf_event *event,
5012 				 struct perf_event *output_event);
5013 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5014 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
5015 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5016 			  struct perf_event_attr *attr);
5017 
5018 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5019 {
5020 	void (*func)(struct perf_event *);
5021 	u32 flags = arg;
5022 
5023 	switch (cmd) {
5024 	case PERF_EVENT_IOC_ENABLE:
5025 		func = _perf_event_enable;
5026 		break;
5027 	case PERF_EVENT_IOC_DISABLE:
5028 		func = _perf_event_disable;
5029 		break;
5030 	case PERF_EVENT_IOC_RESET:
5031 		func = _perf_event_reset;
5032 		break;
5033 
5034 	case PERF_EVENT_IOC_REFRESH:
5035 		return _perf_event_refresh(event, arg);
5036 
5037 	case PERF_EVENT_IOC_PERIOD:
5038 		return perf_event_period(event, (u64 __user *)arg);
5039 
5040 	case PERF_EVENT_IOC_ID:
5041 	{
5042 		u64 id = primary_event_id(event);
5043 
5044 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5045 			return -EFAULT;
5046 		return 0;
5047 	}
5048 
5049 	case PERF_EVENT_IOC_SET_OUTPUT:
5050 	{
5051 		int ret;
5052 		if (arg != -1) {
5053 			struct perf_event *output_event;
5054 			struct fd output;
5055 			ret = perf_fget_light(arg, &output);
5056 			if (ret)
5057 				return ret;
5058 			output_event = output.file->private_data;
5059 			ret = perf_event_set_output(event, output_event);
5060 			fdput(output);
5061 		} else {
5062 			ret = perf_event_set_output(event, NULL);
5063 		}
5064 		return ret;
5065 	}
5066 
5067 	case PERF_EVENT_IOC_SET_FILTER:
5068 		return perf_event_set_filter(event, (void __user *)arg);
5069 
5070 	case PERF_EVENT_IOC_SET_BPF:
5071 		return perf_event_set_bpf_prog(event, arg);
5072 
5073 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5074 		struct ring_buffer *rb;
5075 
5076 		rcu_read_lock();
5077 		rb = rcu_dereference(event->rb);
5078 		if (!rb || !rb->nr_pages) {
5079 			rcu_read_unlock();
5080 			return -EINVAL;
5081 		}
5082 		rb_toggle_paused(rb, !!arg);
5083 		rcu_read_unlock();
5084 		return 0;
5085 	}
5086 
5087 	case PERF_EVENT_IOC_QUERY_BPF:
5088 		return perf_event_query_prog_array(event, (void __user *)arg);
5089 
5090 	case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5091 		struct perf_event_attr new_attr;
5092 		int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5093 					 &new_attr);
5094 
5095 		if (err)
5096 			return err;
5097 
5098 		return perf_event_modify_attr(event,  &new_attr);
5099 	}
5100 	default:
5101 		return -ENOTTY;
5102 	}
5103 
5104 	if (flags & PERF_IOC_FLAG_GROUP)
5105 		perf_event_for_each(event, func);
5106 	else
5107 		perf_event_for_each_child(event, func);
5108 
5109 	return 0;
5110 }
5111 
5112 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5113 {
5114 	struct perf_event *event = file->private_data;
5115 	struct perf_event_context *ctx;
5116 	long ret;
5117 
5118 	ctx = perf_event_ctx_lock(event);
5119 	ret = _perf_ioctl(event, cmd, arg);
5120 	perf_event_ctx_unlock(event, ctx);
5121 
5122 	return ret;
5123 }
5124 
5125 #ifdef CONFIG_COMPAT
5126 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5127 				unsigned long arg)
5128 {
5129 	switch (_IOC_NR(cmd)) {
5130 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5131 	case _IOC_NR(PERF_EVENT_IOC_ID):
5132 	case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5133 	case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5134 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5135 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5136 			cmd &= ~IOCSIZE_MASK;
5137 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5138 		}
5139 		break;
5140 	}
5141 	return perf_ioctl(file, cmd, arg);
5142 }
5143 #else
5144 # define perf_compat_ioctl NULL
5145 #endif
5146 
5147 int perf_event_task_enable(void)
5148 {
5149 	struct perf_event_context *ctx;
5150 	struct perf_event *event;
5151 
5152 	mutex_lock(&current->perf_event_mutex);
5153 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5154 		ctx = perf_event_ctx_lock(event);
5155 		perf_event_for_each_child(event, _perf_event_enable);
5156 		perf_event_ctx_unlock(event, ctx);
5157 	}
5158 	mutex_unlock(&current->perf_event_mutex);
5159 
5160 	return 0;
5161 }
5162 
5163 int perf_event_task_disable(void)
5164 {
5165 	struct perf_event_context *ctx;
5166 	struct perf_event *event;
5167 
5168 	mutex_lock(&current->perf_event_mutex);
5169 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5170 		ctx = perf_event_ctx_lock(event);
5171 		perf_event_for_each_child(event, _perf_event_disable);
5172 		perf_event_ctx_unlock(event, ctx);
5173 	}
5174 	mutex_unlock(&current->perf_event_mutex);
5175 
5176 	return 0;
5177 }
5178 
5179 static int perf_event_index(struct perf_event *event)
5180 {
5181 	if (event->hw.state & PERF_HES_STOPPED)
5182 		return 0;
5183 
5184 	if (event->state != PERF_EVENT_STATE_ACTIVE)
5185 		return 0;
5186 
5187 	return event->pmu->event_idx(event);
5188 }
5189 
5190 static void calc_timer_values(struct perf_event *event,
5191 				u64 *now,
5192 				u64 *enabled,
5193 				u64 *running)
5194 {
5195 	u64 ctx_time;
5196 
5197 	*now = perf_clock();
5198 	ctx_time = event->shadow_ctx_time + *now;
5199 	__perf_update_times(event, ctx_time, enabled, running);
5200 }
5201 
5202 static void perf_event_init_userpage(struct perf_event *event)
5203 {
5204 	struct perf_event_mmap_page *userpg;
5205 	struct ring_buffer *rb;
5206 
5207 	rcu_read_lock();
5208 	rb = rcu_dereference(event->rb);
5209 	if (!rb)
5210 		goto unlock;
5211 
5212 	userpg = rb->user_page;
5213 
5214 	/* Allow new userspace to detect that bit 0 is deprecated */
5215 	userpg->cap_bit0_is_deprecated = 1;
5216 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5217 	userpg->data_offset = PAGE_SIZE;
5218 	userpg->data_size = perf_data_size(rb);
5219 
5220 unlock:
5221 	rcu_read_unlock();
5222 }
5223 
5224 void __weak arch_perf_update_userpage(
5225 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5226 {
5227 }
5228 
5229 /*
5230  * Callers need to ensure there can be no nesting of this function, otherwise
5231  * the seqlock logic goes bad. We can not serialize this because the arch
5232  * code calls this from NMI context.
5233  */
5234 void perf_event_update_userpage(struct perf_event *event)
5235 {
5236 	struct perf_event_mmap_page *userpg;
5237 	struct ring_buffer *rb;
5238 	u64 enabled, running, now;
5239 
5240 	rcu_read_lock();
5241 	rb = rcu_dereference(event->rb);
5242 	if (!rb)
5243 		goto unlock;
5244 
5245 	/*
5246 	 * compute total_time_enabled, total_time_running
5247 	 * based on snapshot values taken when the event
5248 	 * was last scheduled in.
5249 	 *
5250 	 * we cannot simply called update_context_time()
5251 	 * because of locking issue as we can be called in
5252 	 * NMI context
5253 	 */
5254 	calc_timer_values(event, &now, &enabled, &running);
5255 
5256 	userpg = rb->user_page;
5257 	/*
5258 	 * Disable preemption to guarantee consistent time stamps are stored to
5259 	 * the user page.
5260 	 */
5261 	preempt_disable();
5262 	++userpg->lock;
5263 	barrier();
5264 	userpg->index = perf_event_index(event);
5265 	userpg->offset = perf_event_count(event);
5266 	if (userpg->index)
5267 		userpg->offset -= local64_read(&event->hw.prev_count);
5268 
5269 	userpg->time_enabled = enabled +
5270 			atomic64_read(&event->child_total_time_enabled);
5271 
5272 	userpg->time_running = running +
5273 			atomic64_read(&event->child_total_time_running);
5274 
5275 	arch_perf_update_userpage(event, userpg, now);
5276 
5277 	barrier();
5278 	++userpg->lock;
5279 	preempt_enable();
5280 unlock:
5281 	rcu_read_unlock();
5282 }
5283 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5284 
5285 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
5286 {
5287 	struct perf_event *event = vmf->vma->vm_file->private_data;
5288 	struct ring_buffer *rb;
5289 	vm_fault_t ret = VM_FAULT_SIGBUS;
5290 
5291 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
5292 		if (vmf->pgoff == 0)
5293 			ret = 0;
5294 		return ret;
5295 	}
5296 
5297 	rcu_read_lock();
5298 	rb = rcu_dereference(event->rb);
5299 	if (!rb)
5300 		goto unlock;
5301 
5302 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5303 		goto unlock;
5304 
5305 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5306 	if (!vmf->page)
5307 		goto unlock;
5308 
5309 	get_page(vmf->page);
5310 	vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5311 	vmf->page->index   = vmf->pgoff;
5312 
5313 	ret = 0;
5314 unlock:
5315 	rcu_read_unlock();
5316 
5317 	return ret;
5318 }
5319 
5320 static void ring_buffer_attach(struct perf_event *event,
5321 			       struct ring_buffer *rb)
5322 {
5323 	struct ring_buffer *old_rb = NULL;
5324 	unsigned long flags;
5325 
5326 	if (event->rb) {
5327 		/*
5328 		 * Should be impossible, we set this when removing
5329 		 * event->rb_entry and wait/clear when adding event->rb_entry.
5330 		 */
5331 		WARN_ON_ONCE(event->rcu_pending);
5332 
5333 		old_rb = event->rb;
5334 		spin_lock_irqsave(&old_rb->event_lock, flags);
5335 		list_del_rcu(&event->rb_entry);
5336 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
5337 
5338 		event->rcu_batches = get_state_synchronize_rcu();
5339 		event->rcu_pending = 1;
5340 	}
5341 
5342 	if (rb) {
5343 		if (event->rcu_pending) {
5344 			cond_synchronize_rcu(event->rcu_batches);
5345 			event->rcu_pending = 0;
5346 		}
5347 
5348 		spin_lock_irqsave(&rb->event_lock, flags);
5349 		list_add_rcu(&event->rb_entry, &rb->event_list);
5350 		spin_unlock_irqrestore(&rb->event_lock, flags);
5351 	}
5352 
5353 	/*
5354 	 * Avoid racing with perf_mmap_close(AUX): stop the event
5355 	 * before swizzling the event::rb pointer; if it's getting
5356 	 * unmapped, its aux_mmap_count will be 0 and it won't
5357 	 * restart. See the comment in __perf_pmu_output_stop().
5358 	 *
5359 	 * Data will inevitably be lost when set_output is done in
5360 	 * mid-air, but then again, whoever does it like this is
5361 	 * not in for the data anyway.
5362 	 */
5363 	if (has_aux(event))
5364 		perf_event_stop(event, 0);
5365 
5366 	rcu_assign_pointer(event->rb, rb);
5367 
5368 	if (old_rb) {
5369 		ring_buffer_put(old_rb);
5370 		/*
5371 		 * Since we detached before setting the new rb, so that we
5372 		 * could attach the new rb, we could have missed a wakeup.
5373 		 * Provide it now.
5374 		 */
5375 		wake_up_all(&event->waitq);
5376 	}
5377 }
5378 
5379 static void ring_buffer_wakeup(struct perf_event *event)
5380 {
5381 	struct ring_buffer *rb;
5382 
5383 	rcu_read_lock();
5384 	rb = rcu_dereference(event->rb);
5385 	if (rb) {
5386 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5387 			wake_up_all(&event->waitq);
5388 	}
5389 	rcu_read_unlock();
5390 }
5391 
5392 struct ring_buffer *ring_buffer_get(struct perf_event *event)
5393 {
5394 	struct ring_buffer *rb;
5395 
5396 	rcu_read_lock();
5397 	rb = rcu_dereference(event->rb);
5398 	if (rb) {
5399 		if (!atomic_inc_not_zero(&rb->refcount))
5400 			rb = NULL;
5401 	}
5402 	rcu_read_unlock();
5403 
5404 	return rb;
5405 }
5406 
5407 void ring_buffer_put(struct ring_buffer *rb)
5408 {
5409 	if (!atomic_dec_and_test(&rb->refcount))
5410 		return;
5411 
5412 	WARN_ON_ONCE(!list_empty(&rb->event_list));
5413 
5414 	call_rcu(&rb->rcu_head, rb_free_rcu);
5415 }
5416 
5417 static void perf_mmap_open(struct vm_area_struct *vma)
5418 {
5419 	struct perf_event *event = vma->vm_file->private_data;
5420 
5421 	atomic_inc(&event->mmap_count);
5422 	atomic_inc(&event->rb->mmap_count);
5423 
5424 	if (vma->vm_pgoff)
5425 		atomic_inc(&event->rb->aux_mmap_count);
5426 
5427 	if (event->pmu->event_mapped)
5428 		event->pmu->event_mapped(event, vma->vm_mm);
5429 }
5430 
5431 static void perf_pmu_output_stop(struct perf_event *event);
5432 
5433 /*
5434  * A buffer can be mmap()ed multiple times; either directly through the same
5435  * event, or through other events by use of perf_event_set_output().
5436  *
5437  * In order to undo the VM accounting done by perf_mmap() we need to destroy
5438  * the buffer here, where we still have a VM context. This means we need
5439  * to detach all events redirecting to us.
5440  */
5441 static void perf_mmap_close(struct vm_area_struct *vma)
5442 {
5443 	struct perf_event *event = vma->vm_file->private_data;
5444 
5445 	struct ring_buffer *rb = ring_buffer_get(event);
5446 	struct user_struct *mmap_user = rb->mmap_user;
5447 	int mmap_locked = rb->mmap_locked;
5448 	unsigned long size = perf_data_size(rb);
5449 
5450 	if (event->pmu->event_unmapped)
5451 		event->pmu->event_unmapped(event, vma->vm_mm);
5452 
5453 	/*
5454 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
5455 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
5456 	 * serialize with perf_mmap here.
5457 	 */
5458 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5459 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5460 		/*
5461 		 * Stop all AUX events that are writing to this buffer,
5462 		 * so that we can free its AUX pages and corresponding PMU
5463 		 * data. Note that after rb::aux_mmap_count dropped to zero,
5464 		 * they won't start any more (see perf_aux_output_begin()).
5465 		 */
5466 		perf_pmu_output_stop(event);
5467 
5468 		/* now it's safe to free the pages */
5469 		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5470 		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5471 
5472 		/* this has to be the last one */
5473 		rb_free_aux(rb);
5474 		WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5475 
5476 		mutex_unlock(&event->mmap_mutex);
5477 	}
5478 
5479 	atomic_dec(&rb->mmap_count);
5480 
5481 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5482 		goto out_put;
5483 
5484 	ring_buffer_attach(event, NULL);
5485 	mutex_unlock(&event->mmap_mutex);
5486 
5487 	/* If there's still other mmap()s of this buffer, we're done. */
5488 	if (atomic_read(&rb->mmap_count))
5489 		goto out_put;
5490 
5491 	/*
5492 	 * No other mmap()s, detach from all other events that might redirect
5493 	 * into the now unreachable buffer. Somewhat complicated by the
5494 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5495 	 */
5496 again:
5497 	rcu_read_lock();
5498 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5499 		if (!atomic_long_inc_not_zero(&event->refcount)) {
5500 			/*
5501 			 * This event is en-route to free_event() which will
5502 			 * detach it and remove it from the list.
5503 			 */
5504 			continue;
5505 		}
5506 		rcu_read_unlock();
5507 
5508 		mutex_lock(&event->mmap_mutex);
5509 		/*
5510 		 * Check we didn't race with perf_event_set_output() which can
5511 		 * swizzle the rb from under us while we were waiting to
5512 		 * acquire mmap_mutex.
5513 		 *
5514 		 * If we find a different rb; ignore this event, a next
5515 		 * iteration will no longer find it on the list. We have to
5516 		 * still restart the iteration to make sure we're not now
5517 		 * iterating the wrong list.
5518 		 */
5519 		if (event->rb == rb)
5520 			ring_buffer_attach(event, NULL);
5521 
5522 		mutex_unlock(&event->mmap_mutex);
5523 		put_event(event);
5524 
5525 		/*
5526 		 * Restart the iteration; either we're on the wrong list or
5527 		 * destroyed its integrity by doing a deletion.
5528 		 */
5529 		goto again;
5530 	}
5531 	rcu_read_unlock();
5532 
5533 	/*
5534 	 * It could be there's still a few 0-ref events on the list; they'll
5535 	 * get cleaned up by free_event() -- they'll also still have their
5536 	 * ref on the rb and will free it whenever they are done with it.
5537 	 *
5538 	 * Aside from that, this buffer is 'fully' detached and unmapped,
5539 	 * undo the VM accounting.
5540 	 */
5541 
5542 	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5543 	vma->vm_mm->pinned_vm -= mmap_locked;
5544 	free_uid(mmap_user);
5545 
5546 out_put:
5547 	ring_buffer_put(rb); /* could be last */
5548 }
5549 
5550 static const struct vm_operations_struct perf_mmap_vmops = {
5551 	.open		= perf_mmap_open,
5552 	.close		= perf_mmap_close, /* non mergeable */
5553 	.fault		= perf_mmap_fault,
5554 	.page_mkwrite	= perf_mmap_fault,
5555 };
5556 
5557 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5558 {
5559 	struct perf_event *event = file->private_data;
5560 	unsigned long user_locked, user_lock_limit;
5561 	struct user_struct *user = current_user();
5562 	unsigned long locked, lock_limit;
5563 	struct ring_buffer *rb = NULL;
5564 	unsigned long vma_size;
5565 	unsigned long nr_pages;
5566 	long user_extra = 0, extra = 0;
5567 	int ret = 0, flags = 0;
5568 
5569 	/*
5570 	 * Don't allow mmap() of inherited per-task counters. This would
5571 	 * create a performance issue due to all children writing to the
5572 	 * same rb.
5573 	 */
5574 	if (event->cpu == -1 && event->attr.inherit)
5575 		return -EINVAL;
5576 
5577 	if (!(vma->vm_flags & VM_SHARED))
5578 		return -EINVAL;
5579 
5580 	vma_size = vma->vm_end - vma->vm_start;
5581 
5582 	if (vma->vm_pgoff == 0) {
5583 		nr_pages = (vma_size / PAGE_SIZE) - 1;
5584 	} else {
5585 		/*
5586 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5587 		 * mapped, all subsequent mappings should have the same size
5588 		 * and offset. Must be above the normal perf buffer.
5589 		 */
5590 		u64 aux_offset, aux_size;
5591 
5592 		if (!event->rb)
5593 			return -EINVAL;
5594 
5595 		nr_pages = vma_size / PAGE_SIZE;
5596 
5597 		mutex_lock(&event->mmap_mutex);
5598 		ret = -EINVAL;
5599 
5600 		rb = event->rb;
5601 		if (!rb)
5602 			goto aux_unlock;
5603 
5604 		aux_offset = READ_ONCE(rb->user_page->aux_offset);
5605 		aux_size = READ_ONCE(rb->user_page->aux_size);
5606 
5607 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5608 			goto aux_unlock;
5609 
5610 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5611 			goto aux_unlock;
5612 
5613 		/* already mapped with a different offset */
5614 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5615 			goto aux_unlock;
5616 
5617 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5618 			goto aux_unlock;
5619 
5620 		/* already mapped with a different size */
5621 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5622 			goto aux_unlock;
5623 
5624 		if (!is_power_of_2(nr_pages))
5625 			goto aux_unlock;
5626 
5627 		if (!atomic_inc_not_zero(&rb->mmap_count))
5628 			goto aux_unlock;
5629 
5630 		if (rb_has_aux(rb)) {
5631 			atomic_inc(&rb->aux_mmap_count);
5632 			ret = 0;
5633 			goto unlock;
5634 		}
5635 
5636 		atomic_set(&rb->aux_mmap_count, 1);
5637 		user_extra = nr_pages;
5638 
5639 		goto accounting;
5640 	}
5641 
5642 	/*
5643 	 * If we have rb pages ensure they're a power-of-two number, so we
5644 	 * can do bitmasks instead of modulo.
5645 	 */
5646 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
5647 		return -EINVAL;
5648 
5649 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
5650 		return -EINVAL;
5651 
5652 	WARN_ON_ONCE(event->ctx->parent_ctx);
5653 again:
5654 	mutex_lock(&event->mmap_mutex);
5655 	if (event->rb) {
5656 		if (event->rb->nr_pages != nr_pages) {
5657 			ret = -EINVAL;
5658 			goto unlock;
5659 		}
5660 
5661 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5662 			/*
5663 			 * Raced against perf_mmap_close() through
5664 			 * perf_event_set_output(). Try again, hope for better
5665 			 * luck.
5666 			 */
5667 			mutex_unlock(&event->mmap_mutex);
5668 			goto again;
5669 		}
5670 
5671 		goto unlock;
5672 	}
5673 
5674 	user_extra = nr_pages + 1;
5675 
5676 accounting:
5677 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5678 
5679 	/*
5680 	 * Increase the limit linearly with more CPUs:
5681 	 */
5682 	user_lock_limit *= num_online_cpus();
5683 
5684 	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5685 
5686 	if (user_locked > user_lock_limit)
5687 		extra = user_locked - user_lock_limit;
5688 
5689 	lock_limit = rlimit(RLIMIT_MEMLOCK);
5690 	lock_limit >>= PAGE_SHIFT;
5691 	locked = vma->vm_mm->pinned_vm + extra;
5692 
5693 	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5694 		!capable(CAP_IPC_LOCK)) {
5695 		ret = -EPERM;
5696 		goto unlock;
5697 	}
5698 
5699 	WARN_ON(!rb && event->rb);
5700 
5701 	if (vma->vm_flags & VM_WRITE)
5702 		flags |= RING_BUFFER_WRITABLE;
5703 
5704 	if (!rb) {
5705 		rb = rb_alloc(nr_pages,
5706 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
5707 			      event->cpu, flags);
5708 
5709 		if (!rb) {
5710 			ret = -ENOMEM;
5711 			goto unlock;
5712 		}
5713 
5714 		atomic_set(&rb->mmap_count, 1);
5715 		rb->mmap_user = get_current_user();
5716 		rb->mmap_locked = extra;
5717 
5718 		ring_buffer_attach(event, rb);
5719 
5720 		perf_event_init_userpage(event);
5721 		perf_event_update_userpage(event);
5722 	} else {
5723 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5724 				   event->attr.aux_watermark, flags);
5725 		if (!ret)
5726 			rb->aux_mmap_locked = extra;
5727 	}
5728 
5729 unlock:
5730 	if (!ret) {
5731 		atomic_long_add(user_extra, &user->locked_vm);
5732 		vma->vm_mm->pinned_vm += extra;
5733 
5734 		atomic_inc(&event->mmap_count);
5735 	} else if (rb) {
5736 		atomic_dec(&rb->mmap_count);
5737 	}
5738 aux_unlock:
5739 	mutex_unlock(&event->mmap_mutex);
5740 
5741 	/*
5742 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
5743 	 * vma.
5744 	 */
5745 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5746 	vma->vm_ops = &perf_mmap_vmops;
5747 
5748 	if (event->pmu->event_mapped)
5749 		event->pmu->event_mapped(event, vma->vm_mm);
5750 
5751 	return ret;
5752 }
5753 
5754 static int perf_fasync(int fd, struct file *filp, int on)
5755 {
5756 	struct inode *inode = file_inode(filp);
5757 	struct perf_event *event = filp->private_data;
5758 	int retval;
5759 
5760 	inode_lock(inode);
5761 	retval = fasync_helper(fd, filp, on, &event->fasync);
5762 	inode_unlock(inode);
5763 
5764 	if (retval < 0)
5765 		return retval;
5766 
5767 	return 0;
5768 }
5769 
5770 static const struct file_operations perf_fops = {
5771 	.llseek			= no_llseek,
5772 	.release		= perf_release,
5773 	.read			= perf_read,
5774 	.poll			= perf_poll,
5775 	.unlocked_ioctl		= perf_ioctl,
5776 	.compat_ioctl		= perf_compat_ioctl,
5777 	.mmap			= perf_mmap,
5778 	.fasync			= perf_fasync,
5779 };
5780 
5781 /*
5782  * Perf event wakeup
5783  *
5784  * If there's data, ensure we set the poll() state and publish everything
5785  * to user-space before waking everybody up.
5786  */
5787 
5788 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5789 {
5790 	/* only the parent has fasync state */
5791 	if (event->parent)
5792 		event = event->parent;
5793 	return &event->fasync;
5794 }
5795 
5796 void perf_event_wakeup(struct perf_event *event)
5797 {
5798 	ring_buffer_wakeup(event);
5799 
5800 	if (event->pending_kill) {
5801 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5802 		event->pending_kill = 0;
5803 	}
5804 }
5805 
5806 static void perf_pending_event(struct irq_work *entry)
5807 {
5808 	struct perf_event *event = container_of(entry,
5809 			struct perf_event, pending);
5810 	int rctx;
5811 
5812 	rctx = perf_swevent_get_recursion_context();
5813 	/*
5814 	 * If we 'fail' here, that's OK, it means recursion is already disabled
5815 	 * and we won't recurse 'further'.
5816 	 */
5817 
5818 	if (event->pending_disable) {
5819 		event->pending_disable = 0;
5820 		perf_event_disable_local(event);
5821 	}
5822 
5823 	if (event->pending_wakeup) {
5824 		event->pending_wakeup = 0;
5825 		perf_event_wakeup(event);
5826 	}
5827 
5828 	if (rctx >= 0)
5829 		perf_swevent_put_recursion_context(rctx);
5830 }
5831 
5832 /*
5833  * We assume there is only KVM supporting the callbacks.
5834  * Later on, we might change it to a list if there is
5835  * another virtualization implementation supporting the callbacks.
5836  */
5837 struct perf_guest_info_callbacks *perf_guest_cbs;
5838 
5839 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5840 {
5841 	perf_guest_cbs = cbs;
5842 	return 0;
5843 }
5844 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5845 
5846 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5847 {
5848 	perf_guest_cbs = NULL;
5849 	return 0;
5850 }
5851 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5852 
5853 static void
5854 perf_output_sample_regs(struct perf_output_handle *handle,
5855 			struct pt_regs *regs, u64 mask)
5856 {
5857 	int bit;
5858 	DECLARE_BITMAP(_mask, 64);
5859 
5860 	bitmap_from_u64(_mask, mask);
5861 	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5862 		u64 val;
5863 
5864 		val = perf_reg_value(regs, bit);
5865 		perf_output_put(handle, val);
5866 	}
5867 }
5868 
5869 static void perf_sample_regs_user(struct perf_regs *regs_user,
5870 				  struct pt_regs *regs,
5871 				  struct pt_regs *regs_user_copy)
5872 {
5873 	if (user_mode(regs)) {
5874 		regs_user->abi = perf_reg_abi(current);
5875 		regs_user->regs = regs;
5876 	} else if (current->mm) {
5877 		perf_get_regs_user(regs_user, regs, regs_user_copy);
5878 	} else {
5879 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5880 		regs_user->regs = NULL;
5881 	}
5882 }
5883 
5884 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5885 				  struct pt_regs *regs)
5886 {
5887 	regs_intr->regs = regs;
5888 	regs_intr->abi  = perf_reg_abi(current);
5889 }
5890 
5891 
5892 /*
5893  * Get remaining task size from user stack pointer.
5894  *
5895  * It'd be better to take stack vma map and limit this more
5896  * precisly, but there's no way to get it safely under interrupt,
5897  * so using TASK_SIZE as limit.
5898  */
5899 static u64 perf_ustack_task_size(struct pt_regs *regs)
5900 {
5901 	unsigned long addr = perf_user_stack_pointer(regs);
5902 
5903 	if (!addr || addr >= TASK_SIZE)
5904 		return 0;
5905 
5906 	return TASK_SIZE - addr;
5907 }
5908 
5909 static u16
5910 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5911 			struct pt_regs *regs)
5912 {
5913 	u64 task_size;
5914 
5915 	/* No regs, no stack pointer, no dump. */
5916 	if (!regs)
5917 		return 0;
5918 
5919 	/*
5920 	 * Check if we fit in with the requested stack size into the:
5921 	 * - TASK_SIZE
5922 	 *   If we don't, we limit the size to the TASK_SIZE.
5923 	 *
5924 	 * - remaining sample size
5925 	 *   If we don't, we customize the stack size to
5926 	 *   fit in to the remaining sample size.
5927 	 */
5928 
5929 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5930 	stack_size = min(stack_size, (u16) task_size);
5931 
5932 	/* Current header size plus static size and dynamic size. */
5933 	header_size += 2 * sizeof(u64);
5934 
5935 	/* Do we fit in with the current stack dump size? */
5936 	if ((u16) (header_size + stack_size) < header_size) {
5937 		/*
5938 		 * If we overflow the maximum size for the sample,
5939 		 * we customize the stack dump size to fit in.
5940 		 */
5941 		stack_size = USHRT_MAX - header_size - sizeof(u64);
5942 		stack_size = round_up(stack_size, sizeof(u64));
5943 	}
5944 
5945 	return stack_size;
5946 }
5947 
5948 static void
5949 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5950 			  struct pt_regs *regs)
5951 {
5952 	/* Case of a kernel thread, nothing to dump */
5953 	if (!regs) {
5954 		u64 size = 0;
5955 		perf_output_put(handle, size);
5956 	} else {
5957 		unsigned long sp;
5958 		unsigned int rem;
5959 		u64 dyn_size;
5960 		mm_segment_t fs;
5961 
5962 		/*
5963 		 * We dump:
5964 		 * static size
5965 		 *   - the size requested by user or the best one we can fit
5966 		 *     in to the sample max size
5967 		 * data
5968 		 *   - user stack dump data
5969 		 * dynamic size
5970 		 *   - the actual dumped size
5971 		 */
5972 
5973 		/* Static size. */
5974 		perf_output_put(handle, dump_size);
5975 
5976 		/* Data. */
5977 		sp = perf_user_stack_pointer(regs);
5978 		fs = get_fs();
5979 		set_fs(USER_DS);
5980 		rem = __output_copy_user(handle, (void *) sp, dump_size);
5981 		set_fs(fs);
5982 		dyn_size = dump_size - rem;
5983 
5984 		perf_output_skip(handle, rem);
5985 
5986 		/* Dynamic size. */
5987 		perf_output_put(handle, dyn_size);
5988 	}
5989 }
5990 
5991 static void __perf_event_header__init_id(struct perf_event_header *header,
5992 					 struct perf_sample_data *data,
5993 					 struct perf_event *event)
5994 {
5995 	u64 sample_type = event->attr.sample_type;
5996 
5997 	data->type = sample_type;
5998 	header->size += event->id_header_size;
5999 
6000 	if (sample_type & PERF_SAMPLE_TID) {
6001 		/* namespace issues */
6002 		data->tid_entry.pid = perf_event_pid(event, current);
6003 		data->tid_entry.tid = perf_event_tid(event, current);
6004 	}
6005 
6006 	if (sample_type & PERF_SAMPLE_TIME)
6007 		data->time = perf_event_clock(event);
6008 
6009 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6010 		data->id = primary_event_id(event);
6011 
6012 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6013 		data->stream_id = event->id;
6014 
6015 	if (sample_type & PERF_SAMPLE_CPU) {
6016 		data->cpu_entry.cpu	 = raw_smp_processor_id();
6017 		data->cpu_entry.reserved = 0;
6018 	}
6019 }
6020 
6021 void perf_event_header__init_id(struct perf_event_header *header,
6022 				struct perf_sample_data *data,
6023 				struct perf_event *event)
6024 {
6025 	if (event->attr.sample_id_all)
6026 		__perf_event_header__init_id(header, data, event);
6027 }
6028 
6029 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6030 					   struct perf_sample_data *data)
6031 {
6032 	u64 sample_type = data->type;
6033 
6034 	if (sample_type & PERF_SAMPLE_TID)
6035 		perf_output_put(handle, data->tid_entry);
6036 
6037 	if (sample_type & PERF_SAMPLE_TIME)
6038 		perf_output_put(handle, data->time);
6039 
6040 	if (sample_type & PERF_SAMPLE_ID)
6041 		perf_output_put(handle, data->id);
6042 
6043 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6044 		perf_output_put(handle, data->stream_id);
6045 
6046 	if (sample_type & PERF_SAMPLE_CPU)
6047 		perf_output_put(handle, data->cpu_entry);
6048 
6049 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
6050 		perf_output_put(handle, data->id);
6051 }
6052 
6053 void perf_event__output_id_sample(struct perf_event *event,
6054 				  struct perf_output_handle *handle,
6055 				  struct perf_sample_data *sample)
6056 {
6057 	if (event->attr.sample_id_all)
6058 		__perf_event__output_id_sample(handle, sample);
6059 }
6060 
6061 static void perf_output_read_one(struct perf_output_handle *handle,
6062 				 struct perf_event *event,
6063 				 u64 enabled, u64 running)
6064 {
6065 	u64 read_format = event->attr.read_format;
6066 	u64 values[4];
6067 	int n = 0;
6068 
6069 	values[n++] = perf_event_count(event);
6070 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6071 		values[n++] = enabled +
6072 			atomic64_read(&event->child_total_time_enabled);
6073 	}
6074 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6075 		values[n++] = running +
6076 			atomic64_read(&event->child_total_time_running);
6077 	}
6078 	if (read_format & PERF_FORMAT_ID)
6079 		values[n++] = primary_event_id(event);
6080 
6081 	__output_copy(handle, values, n * sizeof(u64));
6082 }
6083 
6084 static void perf_output_read_group(struct perf_output_handle *handle,
6085 			    struct perf_event *event,
6086 			    u64 enabled, u64 running)
6087 {
6088 	struct perf_event *leader = event->group_leader, *sub;
6089 	u64 read_format = event->attr.read_format;
6090 	u64 values[5];
6091 	int n = 0;
6092 
6093 	values[n++] = 1 + leader->nr_siblings;
6094 
6095 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6096 		values[n++] = enabled;
6097 
6098 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6099 		values[n++] = running;
6100 
6101 	if ((leader != event) &&
6102 	    (leader->state == PERF_EVENT_STATE_ACTIVE))
6103 		leader->pmu->read(leader);
6104 
6105 	values[n++] = perf_event_count(leader);
6106 	if (read_format & PERF_FORMAT_ID)
6107 		values[n++] = primary_event_id(leader);
6108 
6109 	__output_copy(handle, values, n * sizeof(u64));
6110 
6111 	for_each_sibling_event(sub, leader) {
6112 		n = 0;
6113 
6114 		if ((sub != event) &&
6115 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
6116 			sub->pmu->read(sub);
6117 
6118 		values[n++] = perf_event_count(sub);
6119 		if (read_format & PERF_FORMAT_ID)
6120 			values[n++] = primary_event_id(sub);
6121 
6122 		__output_copy(handle, values, n * sizeof(u64));
6123 	}
6124 }
6125 
6126 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6127 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
6128 
6129 /*
6130  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6131  *
6132  * The problem is that its both hard and excessively expensive to iterate the
6133  * child list, not to mention that its impossible to IPI the children running
6134  * on another CPU, from interrupt/NMI context.
6135  */
6136 static void perf_output_read(struct perf_output_handle *handle,
6137 			     struct perf_event *event)
6138 {
6139 	u64 enabled = 0, running = 0, now;
6140 	u64 read_format = event->attr.read_format;
6141 
6142 	/*
6143 	 * compute total_time_enabled, total_time_running
6144 	 * based on snapshot values taken when the event
6145 	 * was last scheduled in.
6146 	 *
6147 	 * we cannot simply called update_context_time()
6148 	 * because of locking issue as we are called in
6149 	 * NMI context
6150 	 */
6151 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
6152 		calc_timer_values(event, &now, &enabled, &running);
6153 
6154 	if (event->attr.read_format & PERF_FORMAT_GROUP)
6155 		perf_output_read_group(handle, event, enabled, running);
6156 	else
6157 		perf_output_read_one(handle, event, enabled, running);
6158 }
6159 
6160 void perf_output_sample(struct perf_output_handle *handle,
6161 			struct perf_event_header *header,
6162 			struct perf_sample_data *data,
6163 			struct perf_event *event)
6164 {
6165 	u64 sample_type = data->type;
6166 
6167 	perf_output_put(handle, *header);
6168 
6169 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
6170 		perf_output_put(handle, data->id);
6171 
6172 	if (sample_type & PERF_SAMPLE_IP)
6173 		perf_output_put(handle, data->ip);
6174 
6175 	if (sample_type & PERF_SAMPLE_TID)
6176 		perf_output_put(handle, data->tid_entry);
6177 
6178 	if (sample_type & PERF_SAMPLE_TIME)
6179 		perf_output_put(handle, data->time);
6180 
6181 	if (sample_type & PERF_SAMPLE_ADDR)
6182 		perf_output_put(handle, data->addr);
6183 
6184 	if (sample_type & PERF_SAMPLE_ID)
6185 		perf_output_put(handle, data->id);
6186 
6187 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6188 		perf_output_put(handle, data->stream_id);
6189 
6190 	if (sample_type & PERF_SAMPLE_CPU)
6191 		perf_output_put(handle, data->cpu_entry);
6192 
6193 	if (sample_type & PERF_SAMPLE_PERIOD)
6194 		perf_output_put(handle, data->period);
6195 
6196 	if (sample_type & PERF_SAMPLE_READ)
6197 		perf_output_read(handle, event);
6198 
6199 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6200 		int size = 1;
6201 
6202 		size += data->callchain->nr;
6203 		size *= sizeof(u64);
6204 		__output_copy(handle, data->callchain, size);
6205 	}
6206 
6207 	if (sample_type & PERF_SAMPLE_RAW) {
6208 		struct perf_raw_record *raw = data->raw;
6209 
6210 		if (raw) {
6211 			struct perf_raw_frag *frag = &raw->frag;
6212 
6213 			perf_output_put(handle, raw->size);
6214 			do {
6215 				if (frag->copy) {
6216 					__output_custom(handle, frag->copy,
6217 							frag->data, frag->size);
6218 				} else {
6219 					__output_copy(handle, frag->data,
6220 						      frag->size);
6221 				}
6222 				if (perf_raw_frag_last(frag))
6223 					break;
6224 				frag = frag->next;
6225 			} while (1);
6226 			if (frag->pad)
6227 				__output_skip(handle, NULL, frag->pad);
6228 		} else {
6229 			struct {
6230 				u32	size;
6231 				u32	data;
6232 			} raw = {
6233 				.size = sizeof(u32),
6234 				.data = 0,
6235 			};
6236 			perf_output_put(handle, raw);
6237 		}
6238 	}
6239 
6240 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6241 		if (data->br_stack) {
6242 			size_t size;
6243 
6244 			size = data->br_stack->nr
6245 			     * sizeof(struct perf_branch_entry);
6246 
6247 			perf_output_put(handle, data->br_stack->nr);
6248 			perf_output_copy(handle, data->br_stack->entries, size);
6249 		} else {
6250 			/*
6251 			 * we always store at least the value of nr
6252 			 */
6253 			u64 nr = 0;
6254 			perf_output_put(handle, nr);
6255 		}
6256 	}
6257 
6258 	if (sample_type & PERF_SAMPLE_REGS_USER) {
6259 		u64 abi = data->regs_user.abi;
6260 
6261 		/*
6262 		 * If there are no regs to dump, notice it through
6263 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6264 		 */
6265 		perf_output_put(handle, abi);
6266 
6267 		if (abi) {
6268 			u64 mask = event->attr.sample_regs_user;
6269 			perf_output_sample_regs(handle,
6270 						data->regs_user.regs,
6271 						mask);
6272 		}
6273 	}
6274 
6275 	if (sample_type & PERF_SAMPLE_STACK_USER) {
6276 		perf_output_sample_ustack(handle,
6277 					  data->stack_user_size,
6278 					  data->regs_user.regs);
6279 	}
6280 
6281 	if (sample_type & PERF_SAMPLE_WEIGHT)
6282 		perf_output_put(handle, data->weight);
6283 
6284 	if (sample_type & PERF_SAMPLE_DATA_SRC)
6285 		perf_output_put(handle, data->data_src.val);
6286 
6287 	if (sample_type & PERF_SAMPLE_TRANSACTION)
6288 		perf_output_put(handle, data->txn);
6289 
6290 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
6291 		u64 abi = data->regs_intr.abi;
6292 		/*
6293 		 * If there are no regs to dump, notice it through
6294 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6295 		 */
6296 		perf_output_put(handle, abi);
6297 
6298 		if (abi) {
6299 			u64 mask = event->attr.sample_regs_intr;
6300 
6301 			perf_output_sample_regs(handle,
6302 						data->regs_intr.regs,
6303 						mask);
6304 		}
6305 	}
6306 
6307 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6308 		perf_output_put(handle, data->phys_addr);
6309 
6310 	if (!event->attr.watermark) {
6311 		int wakeup_events = event->attr.wakeup_events;
6312 
6313 		if (wakeup_events) {
6314 			struct ring_buffer *rb = handle->rb;
6315 			int events = local_inc_return(&rb->events);
6316 
6317 			if (events >= wakeup_events) {
6318 				local_sub(wakeup_events, &rb->events);
6319 				local_inc(&rb->wakeup);
6320 			}
6321 		}
6322 	}
6323 }
6324 
6325 static u64 perf_virt_to_phys(u64 virt)
6326 {
6327 	u64 phys_addr = 0;
6328 	struct page *p = NULL;
6329 
6330 	if (!virt)
6331 		return 0;
6332 
6333 	if (virt >= TASK_SIZE) {
6334 		/* If it's vmalloc()d memory, leave phys_addr as 0 */
6335 		if (virt_addr_valid((void *)(uintptr_t)virt) &&
6336 		    !(virt >= VMALLOC_START && virt < VMALLOC_END))
6337 			phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6338 	} else {
6339 		/*
6340 		 * Walking the pages tables for user address.
6341 		 * Interrupts are disabled, so it prevents any tear down
6342 		 * of the page tables.
6343 		 * Try IRQ-safe __get_user_pages_fast first.
6344 		 * If failed, leave phys_addr as 0.
6345 		 */
6346 		if ((current->mm != NULL) &&
6347 		    (__get_user_pages_fast(virt, 1, 0, &p) == 1))
6348 			phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6349 
6350 		if (p)
6351 			put_page(p);
6352 	}
6353 
6354 	return phys_addr;
6355 }
6356 
6357 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
6358 
6359 struct perf_callchain_entry *
6360 perf_callchain(struct perf_event *event, struct pt_regs *regs)
6361 {
6362 	bool kernel = !event->attr.exclude_callchain_kernel;
6363 	bool user   = !event->attr.exclude_callchain_user;
6364 	/* Disallow cross-task user callchains. */
6365 	bool crosstask = event->ctx->task && event->ctx->task != current;
6366 	const u32 max_stack = event->attr.sample_max_stack;
6367 	struct perf_callchain_entry *callchain;
6368 
6369 	if (!kernel && !user)
6370 		return &__empty_callchain;
6371 
6372 	callchain = get_perf_callchain(regs, 0, kernel, user,
6373 				       max_stack, crosstask, true);
6374 	return callchain ?: &__empty_callchain;
6375 }
6376 
6377 void perf_prepare_sample(struct perf_event_header *header,
6378 			 struct perf_sample_data *data,
6379 			 struct perf_event *event,
6380 			 struct pt_regs *regs)
6381 {
6382 	u64 sample_type = event->attr.sample_type;
6383 
6384 	header->type = PERF_RECORD_SAMPLE;
6385 	header->size = sizeof(*header) + event->header_size;
6386 
6387 	header->misc = 0;
6388 	header->misc |= perf_misc_flags(regs);
6389 
6390 	__perf_event_header__init_id(header, data, event);
6391 
6392 	if (sample_type & PERF_SAMPLE_IP)
6393 		data->ip = perf_instruction_pointer(regs);
6394 
6395 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6396 		int size = 1;
6397 
6398 		if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
6399 			data->callchain = perf_callchain(event, regs);
6400 
6401 		size += data->callchain->nr;
6402 
6403 		header->size += size * sizeof(u64);
6404 	}
6405 
6406 	if (sample_type & PERF_SAMPLE_RAW) {
6407 		struct perf_raw_record *raw = data->raw;
6408 		int size;
6409 
6410 		if (raw) {
6411 			struct perf_raw_frag *frag = &raw->frag;
6412 			u32 sum = 0;
6413 
6414 			do {
6415 				sum += frag->size;
6416 				if (perf_raw_frag_last(frag))
6417 					break;
6418 				frag = frag->next;
6419 			} while (1);
6420 
6421 			size = round_up(sum + sizeof(u32), sizeof(u64));
6422 			raw->size = size - sizeof(u32);
6423 			frag->pad = raw->size - sum;
6424 		} else {
6425 			size = sizeof(u64);
6426 		}
6427 
6428 		header->size += size;
6429 	}
6430 
6431 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6432 		int size = sizeof(u64); /* nr */
6433 		if (data->br_stack) {
6434 			size += data->br_stack->nr
6435 			      * sizeof(struct perf_branch_entry);
6436 		}
6437 		header->size += size;
6438 	}
6439 
6440 	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6441 		perf_sample_regs_user(&data->regs_user, regs,
6442 				      &data->regs_user_copy);
6443 
6444 	if (sample_type & PERF_SAMPLE_REGS_USER) {
6445 		/* regs dump ABI info */
6446 		int size = sizeof(u64);
6447 
6448 		if (data->regs_user.regs) {
6449 			u64 mask = event->attr.sample_regs_user;
6450 			size += hweight64(mask) * sizeof(u64);
6451 		}
6452 
6453 		header->size += size;
6454 	}
6455 
6456 	if (sample_type & PERF_SAMPLE_STACK_USER) {
6457 		/*
6458 		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6459 		 * processed as the last one or have additional check added
6460 		 * in case new sample type is added, because we could eat
6461 		 * up the rest of the sample size.
6462 		 */
6463 		u16 stack_size = event->attr.sample_stack_user;
6464 		u16 size = sizeof(u64);
6465 
6466 		stack_size = perf_sample_ustack_size(stack_size, header->size,
6467 						     data->regs_user.regs);
6468 
6469 		/*
6470 		 * If there is something to dump, add space for the dump
6471 		 * itself and for the field that tells the dynamic size,
6472 		 * which is how many have been actually dumped.
6473 		 */
6474 		if (stack_size)
6475 			size += sizeof(u64) + stack_size;
6476 
6477 		data->stack_user_size = stack_size;
6478 		header->size += size;
6479 	}
6480 
6481 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
6482 		/* regs dump ABI info */
6483 		int size = sizeof(u64);
6484 
6485 		perf_sample_regs_intr(&data->regs_intr, regs);
6486 
6487 		if (data->regs_intr.regs) {
6488 			u64 mask = event->attr.sample_regs_intr;
6489 
6490 			size += hweight64(mask) * sizeof(u64);
6491 		}
6492 
6493 		header->size += size;
6494 	}
6495 
6496 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6497 		data->phys_addr = perf_virt_to_phys(data->addr);
6498 }
6499 
6500 static __always_inline void
6501 __perf_event_output(struct perf_event *event,
6502 		    struct perf_sample_data *data,
6503 		    struct pt_regs *regs,
6504 		    int (*output_begin)(struct perf_output_handle *,
6505 					struct perf_event *,
6506 					unsigned int))
6507 {
6508 	struct perf_output_handle handle;
6509 	struct perf_event_header header;
6510 
6511 	/* protect the callchain buffers */
6512 	rcu_read_lock();
6513 
6514 	perf_prepare_sample(&header, data, event, regs);
6515 
6516 	if (output_begin(&handle, event, header.size))
6517 		goto exit;
6518 
6519 	perf_output_sample(&handle, &header, data, event);
6520 
6521 	perf_output_end(&handle);
6522 
6523 exit:
6524 	rcu_read_unlock();
6525 }
6526 
6527 void
6528 perf_event_output_forward(struct perf_event *event,
6529 			 struct perf_sample_data *data,
6530 			 struct pt_regs *regs)
6531 {
6532 	__perf_event_output(event, data, regs, perf_output_begin_forward);
6533 }
6534 
6535 void
6536 perf_event_output_backward(struct perf_event *event,
6537 			   struct perf_sample_data *data,
6538 			   struct pt_regs *regs)
6539 {
6540 	__perf_event_output(event, data, regs, perf_output_begin_backward);
6541 }
6542 
6543 void
6544 perf_event_output(struct perf_event *event,
6545 		  struct perf_sample_data *data,
6546 		  struct pt_regs *regs)
6547 {
6548 	__perf_event_output(event, data, regs, perf_output_begin);
6549 }
6550 
6551 /*
6552  * read event_id
6553  */
6554 
6555 struct perf_read_event {
6556 	struct perf_event_header	header;
6557 
6558 	u32				pid;
6559 	u32				tid;
6560 };
6561 
6562 static void
6563 perf_event_read_event(struct perf_event *event,
6564 			struct task_struct *task)
6565 {
6566 	struct perf_output_handle handle;
6567 	struct perf_sample_data sample;
6568 	struct perf_read_event read_event = {
6569 		.header = {
6570 			.type = PERF_RECORD_READ,
6571 			.misc = 0,
6572 			.size = sizeof(read_event) + event->read_size,
6573 		},
6574 		.pid = perf_event_pid(event, task),
6575 		.tid = perf_event_tid(event, task),
6576 	};
6577 	int ret;
6578 
6579 	perf_event_header__init_id(&read_event.header, &sample, event);
6580 	ret = perf_output_begin(&handle, event, read_event.header.size);
6581 	if (ret)
6582 		return;
6583 
6584 	perf_output_put(&handle, read_event);
6585 	perf_output_read(&handle, event);
6586 	perf_event__output_id_sample(event, &handle, &sample);
6587 
6588 	perf_output_end(&handle);
6589 }
6590 
6591 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6592 
6593 static void
6594 perf_iterate_ctx(struct perf_event_context *ctx,
6595 		   perf_iterate_f output,
6596 		   void *data, bool all)
6597 {
6598 	struct perf_event *event;
6599 
6600 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6601 		if (!all) {
6602 			if (event->state < PERF_EVENT_STATE_INACTIVE)
6603 				continue;
6604 			if (!event_filter_match(event))
6605 				continue;
6606 		}
6607 
6608 		output(event, data);
6609 	}
6610 }
6611 
6612 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6613 {
6614 	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6615 	struct perf_event *event;
6616 
6617 	list_for_each_entry_rcu(event, &pel->list, sb_list) {
6618 		/*
6619 		 * Skip events that are not fully formed yet; ensure that
6620 		 * if we observe event->ctx, both event and ctx will be
6621 		 * complete enough. See perf_install_in_context().
6622 		 */
6623 		if (!smp_load_acquire(&event->ctx))
6624 			continue;
6625 
6626 		if (event->state < PERF_EVENT_STATE_INACTIVE)
6627 			continue;
6628 		if (!event_filter_match(event))
6629 			continue;
6630 		output(event, data);
6631 	}
6632 }
6633 
6634 /*
6635  * Iterate all events that need to receive side-band events.
6636  *
6637  * For new callers; ensure that account_pmu_sb_event() includes
6638  * your event, otherwise it might not get delivered.
6639  */
6640 static void
6641 perf_iterate_sb(perf_iterate_f output, void *data,
6642 	       struct perf_event_context *task_ctx)
6643 {
6644 	struct perf_event_context *ctx;
6645 	int ctxn;
6646 
6647 	rcu_read_lock();
6648 	preempt_disable();
6649 
6650 	/*
6651 	 * If we have task_ctx != NULL we only notify the task context itself.
6652 	 * The task_ctx is set only for EXIT events before releasing task
6653 	 * context.
6654 	 */
6655 	if (task_ctx) {
6656 		perf_iterate_ctx(task_ctx, output, data, false);
6657 		goto done;
6658 	}
6659 
6660 	perf_iterate_sb_cpu(output, data);
6661 
6662 	for_each_task_context_nr(ctxn) {
6663 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6664 		if (ctx)
6665 			perf_iterate_ctx(ctx, output, data, false);
6666 	}
6667 done:
6668 	preempt_enable();
6669 	rcu_read_unlock();
6670 }
6671 
6672 /*
6673  * Clear all file-based filters at exec, they'll have to be
6674  * re-instated when/if these objects are mmapped again.
6675  */
6676 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6677 {
6678 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6679 	struct perf_addr_filter *filter;
6680 	unsigned int restart = 0, count = 0;
6681 	unsigned long flags;
6682 
6683 	if (!has_addr_filter(event))
6684 		return;
6685 
6686 	raw_spin_lock_irqsave(&ifh->lock, flags);
6687 	list_for_each_entry(filter, &ifh->list, entry) {
6688 		if (filter->path.dentry) {
6689 			event->addr_filters_offs[count] = 0;
6690 			restart++;
6691 		}
6692 
6693 		count++;
6694 	}
6695 
6696 	if (restart)
6697 		event->addr_filters_gen++;
6698 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
6699 
6700 	if (restart)
6701 		perf_event_stop(event, 1);
6702 }
6703 
6704 void perf_event_exec(void)
6705 {
6706 	struct perf_event_context *ctx;
6707 	int ctxn;
6708 
6709 	rcu_read_lock();
6710 	for_each_task_context_nr(ctxn) {
6711 		ctx = current->perf_event_ctxp[ctxn];
6712 		if (!ctx)
6713 			continue;
6714 
6715 		perf_event_enable_on_exec(ctxn);
6716 
6717 		perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6718 				   true);
6719 	}
6720 	rcu_read_unlock();
6721 }
6722 
6723 struct remote_output {
6724 	struct ring_buffer	*rb;
6725 	int			err;
6726 };
6727 
6728 static void __perf_event_output_stop(struct perf_event *event, void *data)
6729 {
6730 	struct perf_event *parent = event->parent;
6731 	struct remote_output *ro = data;
6732 	struct ring_buffer *rb = ro->rb;
6733 	struct stop_event_data sd = {
6734 		.event	= event,
6735 	};
6736 
6737 	if (!has_aux(event))
6738 		return;
6739 
6740 	if (!parent)
6741 		parent = event;
6742 
6743 	/*
6744 	 * In case of inheritance, it will be the parent that links to the
6745 	 * ring-buffer, but it will be the child that's actually using it.
6746 	 *
6747 	 * We are using event::rb to determine if the event should be stopped,
6748 	 * however this may race with ring_buffer_attach() (through set_output),
6749 	 * which will make us skip the event that actually needs to be stopped.
6750 	 * So ring_buffer_attach() has to stop an aux event before re-assigning
6751 	 * its rb pointer.
6752 	 */
6753 	if (rcu_dereference(parent->rb) == rb)
6754 		ro->err = __perf_event_stop(&sd);
6755 }
6756 
6757 static int __perf_pmu_output_stop(void *info)
6758 {
6759 	struct perf_event *event = info;
6760 	struct pmu *pmu = event->pmu;
6761 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6762 	struct remote_output ro = {
6763 		.rb	= event->rb,
6764 	};
6765 
6766 	rcu_read_lock();
6767 	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6768 	if (cpuctx->task_ctx)
6769 		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6770 				   &ro, false);
6771 	rcu_read_unlock();
6772 
6773 	return ro.err;
6774 }
6775 
6776 static void perf_pmu_output_stop(struct perf_event *event)
6777 {
6778 	struct perf_event *iter;
6779 	int err, cpu;
6780 
6781 restart:
6782 	rcu_read_lock();
6783 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6784 		/*
6785 		 * For per-CPU events, we need to make sure that neither they
6786 		 * nor their children are running; for cpu==-1 events it's
6787 		 * sufficient to stop the event itself if it's active, since
6788 		 * it can't have children.
6789 		 */
6790 		cpu = iter->cpu;
6791 		if (cpu == -1)
6792 			cpu = READ_ONCE(iter->oncpu);
6793 
6794 		if (cpu == -1)
6795 			continue;
6796 
6797 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6798 		if (err == -EAGAIN) {
6799 			rcu_read_unlock();
6800 			goto restart;
6801 		}
6802 	}
6803 	rcu_read_unlock();
6804 }
6805 
6806 /*
6807  * task tracking -- fork/exit
6808  *
6809  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6810  */
6811 
6812 struct perf_task_event {
6813 	struct task_struct		*task;
6814 	struct perf_event_context	*task_ctx;
6815 
6816 	struct {
6817 		struct perf_event_header	header;
6818 
6819 		u32				pid;
6820 		u32				ppid;
6821 		u32				tid;
6822 		u32				ptid;
6823 		u64				time;
6824 	} event_id;
6825 };
6826 
6827 static int perf_event_task_match(struct perf_event *event)
6828 {
6829 	return event->attr.comm  || event->attr.mmap ||
6830 	       event->attr.mmap2 || event->attr.mmap_data ||
6831 	       event->attr.task;
6832 }
6833 
6834 static void perf_event_task_output(struct perf_event *event,
6835 				   void *data)
6836 {
6837 	struct perf_task_event *task_event = data;
6838 	struct perf_output_handle handle;
6839 	struct perf_sample_data	sample;
6840 	struct task_struct *task = task_event->task;
6841 	int ret, size = task_event->event_id.header.size;
6842 
6843 	if (!perf_event_task_match(event))
6844 		return;
6845 
6846 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6847 
6848 	ret = perf_output_begin(&handle, event,
6849 				task_event->event_id.header.size);
6850 	if (ret)
6851 		goto out;
6852 
6853 	task_event->event_id.pid = perf_event_pid(event, task);
6854 	task_event->event_id.ppid = perf_event_pid(event, current);
6855 
6856 	task_event->event_id.tid = perf_event_tid(event, task);
6857 	task_event->event_id.ptid = perf_event_tid(event, current);
6858 
6859 	task_event->event_id.time = perf_event_clock(event);
6860 
6861 	perf_output_put(&handle, task_event->event_id);
6862 
6863 	perf_event__output_id_sample(event, &handle, &sample);
6864 
6865 	perf_output_end(&handle);
6866 out:
6867 	task_event->event_id.header.size = size;
6868 }
6869 
6870 static void perf_event_task(struct task_struct *task,
6871 			      struct perf_event_context *task_ctx,
6872 			      int new)
6873 {
6874 	struct perf_task_event task_event;
6875 
6876 	if (!atomic_read(&nr_comm_events) &&
6877 	    !atomic_read(&nr_mmap_events) &&
6878 	    !atomic_read(&nr_task_events))
6879 		return;
6880 
6881 	task_event = (struct perf_task_event){
6882 		.task	  = task,
6883 		.task_ctx = task_ctx,
6884 		.event_id    = {
6885 			.header = {
6886 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6887 				.misc = 0,
6888 				.size = sizeof(task_event.event_id),
6889 			},
6890 			/* .pid  */
6891 			/* .ppid */
6892 			/* .tid  */
6893 			/* .ptid */
6894 			/* .time */
6895 		},
6896 	};
6897 
6898 	perf_iterate_sb(perf_event_task_output,
6899 		       &task_event,
6900 		       task_ctx);
6901 }
6902 
6903 void perf_event_fork(struct task_struct *task)
6904 {
6905 	perf_event_task(task, NULL, 1);
6906 	perf_event_namespaces(task);
6907 }
6908 
6909 /*
6910  * comm tracking
6911  */
6912 
6913 struct perf_comm_event {
6914 	struct task_struct	*task;
6915 	char			*comm;
6916 	int			comm_size;
6917 
6918 	struct {
6919 		struct perf_event_header	header;
6920 
6921 		u32				pid;
6922 		u32				tid;
6923 	} event_id;
6924 };
6925 
6926 static int perf_event_comm_match(struct perf_event *event)
6927 {
6928 	return event->attr.comm;
6929 }
6930 
6931 static void perf_event_comm_output(struct perf_event *event,
6932 				   void *data)
6933 {
6934 	struct perf_comm_event *comm_event = data;
6935 	struct perf_output_handle handle;
6936 	struct perf_sample_data sample;
6937 	int size = comm_event->event_id.header.size;
6938 	int ret;
6939 
6940 	if (!perf_event_comm_match(event))
6941 		return;
6942 
6943 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6944 	ret = perf_output_begin(&handle, event,
6945 				comm_event->event_id.header.size);
6946 
6947 	if (ret)
6948 		goto out;
6949 
6950 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6951 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6952 
6953 	perf_output_put(&handle, comm_event->event_id);
6954 	__output_copy(&handle, comm_event->comm,
6955 				   comm_event->comm_size);
6956 
6957 	perf_event__output_id_sample(event, &handle, &sample);
6958 
6959 	perf_output_end(&handle);
6960 out:
6961 	comm_event->event_id.header.size = size;
6962 }
6963 
6964 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6965 {
6966 	char comm[TASK_COMM_LEN];
6967 	unsigned int size;
6968 
6969 	memset(comm, 0, sizeof(comm));
6970 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
6971 	size = ALIGN(strlen(comm)+1, sizeof(u64));
6972 
6973 	comm_event->comm = comm;
6974 	comm_event->comm_size = size;
6975 
6976 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6977 
6978 	perf_iterate_sb(perf_event_comm_output,
6979 		       comm_event,
6980 		       NULL);
6981 }
6982 
6983 void perf_event_comm(struct task_struct *task, bool exec)
6984 {
6985 	struct perf_comm_event comm_event;
6986 
6987 	if (!atomic_read(&nr_comm_events))
6988 		return;
6989 
6990 	comm_event = (struct perf_comm_event){
6991 		.task	= task,
6992 		/* .comm      */
6993 		/* .comm_size */
6994 		.event_id  = {
6995 			.header = {
6996 				.type = PERF_RECORD_COMM,
6997 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6998 				/* .size */
6999 			},
7000 			/* .pid */
7001 			/* .tid */
7002 		},
7003 	};
7004 
7005 	perf_event_comm_event(&comm_event);
7006 }
7007 
7008 /*
7009  * namespaces tracking
7010  */
7011 
7012 struct perf_namespaces_event {
7013 	struct task_struct		*task;
7014 
7015 	struct {
7016 		struct perf_event_header	header;
7017 
7018 		u32				pid;
7019 		u32				tid;
7020 		u64				nr_namespaces;
7021 		struct perf_ns_link_info	link_info[NR_NAMESPACES];
7022 	} event_id;
7023 };
7024 
7025 static int perf_event_namespaces_match(struct perf_event *event)
7026 {
7027 	return event->attr.namespaces;
7028 }
7029 
7030 static void perf_event_namespaces_output(struct perf_event *event,
7031 					 void *data)
7032 {
7033 	struct perf_namespaces_event *namespaces_event = data;
7034 	struct perf_output_handle handle;
7035 	struct perf_sample_data sample;
7036 	u16 header_size = namespaces_event->event_id.header.size;
7037 	int ret;
7038 
7039 	if (!perf_event_namespaces_match(event))
7040 		return;
7041 
7042 	perf_event_header__init_id(&namespaces_event->event_id.header,
7043 				   &sample, event);
7044 	ret = perf_output_begin(&handle, event,
7045 				namespaces_event->event_id.header.size);
7046 	if (ret)
7047 		goto out;
7048 
7049 	namespaces_event->event_id.pid = perf_event_pid(event,
7050 							namespaces_event->task);
7051 	namespaces_event->event_id.tid = perf_event_tid(event,
7052 							namespaces_event->task);
7053 
7054 	perf_output_put(&handle, namespaces_event->event_id);
7055 
7056 	perf_event__output_id_sample(event, &handle, &sample);
7057 
7058 	perf_output_end(&handle);
7059 out:
7060 	namespaces_event->event_id.header.size = header_size;
7061 }
7062 
7063 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
7064 				   struct task_struct *task,
7065 				   const struct proc_ns_operations *ns_ops)
7066 {
7067 	struct path ns_path;
7068 	struct inode *ns_inode;
7069 	void *error;
7070 
7071 	error = ns_get_path(&ns_path, task, ns_ops);
7072 	if (!error) {
7073 		ns_inode = ns_path.dentry->d_inode;
7074 		ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
7075 		ns_link_info->ino = ns_inode->i_ino;
7076 		path_put(&ns_path);
7077 	}
7078 }
7079 
7080 void perf_event_namespaces(struct task_struct *task)
7081 {
7082 	struct perf_namespaces_event namespaces_event;
7083 	struct perf_ns_link_info *ns_link_info;
7084 
7085 	if (!atomic_read(&nr_namespaces_events))
7086 		return;
7087 
7088 	namespaces_event = (struct perf_namespaces_event){
7089 		.task	= task,
7090 		.event_id  = {
7091 			.header = {
7092 				.type = PERF_RECORD_NAMESPACES,
7093 				.misc = 0,
7094 				.size = sizeof(namespaces_event.event_id),
7095 			},
7096 			/* .pid */
7097 			/* .tid */
7098 			.nr_namespaces = NR_NAMESPACES,
7099 			/* .link_info[NR_NAMESPACES] */
7100 		},
7101 	};
7102 
7103 	ns_link_info = namespaces_event.event_id.link_info;
7104 
7105 	perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
7106 			       task, &mntns_operations);
7107 
7108 #ifdef CONFIG_USER_NS
7109 	perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
7110 			       task, &userns_operations);
7111 #endif
7112 #ifdef CONFIG_NET_NS
7113 	perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
7114 			       task, &netns_operations);
7115 #endif
7116 #ifdef CONFIG_UTS_NS
7117 	perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
7118 			       task, &utsns_operations);
7119 #endif
7120 #ifdef CONFIG_IPC_NS
7121 	perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
7122 			       task, &ipcns_operations);
7123 #endif
7124 #ifdef CONFIG_PID_NS
7125 	perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
7126 			       task, &pidns_operations);
7127 #endif
7128 #ifdef CONFIG_CGROUPS
7129 	perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
7130 			       task, &cgroupns_operations);
7131 #endif
7132 
7133 	perf_iterate_sb(perf_event_namespaces_output,
7134 			&namespaces_event,
7135 			NULL);
7136 }
7137 
7138 /*
7139  * mmap tracking
7140  */
7141 
7142 struct perf_mmap_event {
7143 	struct vm_area_struct	*vma;
7144 
7145 	const char		*file_name;
7146 	int			file_size;
7147 	int			maj, min;
7148 	u64			ino;
7149 	u64			ino_generation;
7150 	u32			prot, flags;
7151 
7152 	struct {
7153 		struct perf_event_header	header;
7154 
7155 		u32				pid;
7156 		u32				tid;
7157 		u64				start;
7158 		u64				len;
7159 		u64				pgoff;
7160 	} event_id;
7161 };
7162 
7163 static int perf_event_mmap_match(struct perf_event *event,
7164 				 void *data)
7165 {
7166 	struct perf_mmap_event *mmap_event = data;
7167 	struct vm_area_struct *vma = mmap_event->vma;
7168 	int executable = vma->vm_flags & VM_EXEC;
7169 
7170 	return (!executable && event->attr.mmap_data) ||
7171 	       (executable && (event->attr.mmap || event->attr.mmap2));
7172 }
7173 
7174 static void perf_event_mmap_output(struct perf_event *event,
7175 				   void *data)
7176 {
7177 	struct perf_mmap_event *mmap_event = data;
7178 	struct perf_output_handle handle;
7179 	struct perf_sample_data sample;
7180 	int size = mmap_event->event_id.header.size;
7181 	int ret;
7182 
7183 	if (!perf_event_mmap_match(event, data))
7184 		return;
7185 
7186 	if (event->attr.mmap2) {
7187 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
7188 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
7189 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
7190 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
7191 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
7192 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
7193 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
7194 	}
7195 
7196 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
7197 	ret = perf_output_begin(&handle, event,
7198 				mmap_event->event_id.header.size);
7199 	if (ret)
7200 		goto out;
7201 
7202 	mmap_event->event_id.pid = perf_event_pid(event, current);
7203 	mmap_event->event_id.tid = perf_event_tid(event, current);
7204 
7205 	perf_output_put(&handle, mmap_event->event_id);
7206 
7207 	if (event->attr.mmap2) {
7208 		perf_output_put(&handle, mmap_event->maj);
7209 		perf_output_put(&handle, mmap_event->min);
7210 		perf_output_put(&handle, mmap_event->ino);
7211 		perf_output_put(&handle, mmap_event->ino_generation);
7212 		perf_output_put(&handle, mmap_event->prot);
7213 		perf_output_put(&handle, mmap_event->flags);
7214 	}
7215 
7216 	__output_copy(&handle, mmap_event->file_name,
7217 				   mmap_event->file_size);
7218 
7219 	perf_event__output_id_sample(event, &handle, &sample);
7220 
7221 	perf_output_end(&handle);
7222 out:
7223 	mmap_event->event_id.header.size = size;
7224 }
7225 
7226 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
7227 {
7228 	struct vm_area_struct *vma = mmap_event->vma;
7229 	struct file *file = vma->vm_file;
7230 	int maj = 0, min = 0;
7231 	u64 ino = 0, gen = 0;
7232 	u32 prot = 0, flags = 0;
7233 	unsigned int size;
7234 	char tmp[16];
7235 	char *buf = NULL;
7236 	char *name;
7237 
7238 	if (vma->vm_flags & VM_READ)
7239 		prot |= PROT_READ;
7240 	if (vma->vm_flags & VM_WRITE)
7241 		prot |= PROT_WRITE;
7242 	if (vma->vm_flags & VM_EXEC)
7243 		prot |= PROT_EXEC;
7244 
7245 	if (vma->vm_flags & VM_MAYSHARE)
7246 		flags = MAP_SHARED;
7247 	else
7248 		flags = MAP_PRIVATE;
7249 
7250 	if (vma->vm_flags & VM_DENYWRITE)
7251 		flags |= MAP_DENYWRITE;
7252 	if (vma->vm_flags & VM_MAYEXEC)
7253 		flags |= MAP_EXECUTABLE;
7254 	if (vma->vm_flags & VM_LOCKED)
7255 		flags |= MAP_LOCKED;
7256 	if (vma->vm_flags & VM_HUGETLB)
7257 		flags |= MAP_HUGETLB;
7258 
7259 	if (file) {
7260 		struct inode *inode;
7261 		dev_t dev;
7262 
7263 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
7264 		if (!buf) {
7265 			name = "//enomem";
7266 			goto cpy_name;
7267 		}
7268 		/*
7269 		 * d_path() works from the end of the rb backwards, so we
7270 		 * need to add enough zero bytes after the string to handle
7271 		 * the 64bit alignment we do later.
7272 		 */
7273 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
7274 		if (IS_ERR(name)) {
7275 			name = "//toolong";
7276 			goto cpy_name;
7277 		}
7278 		inode = file_inode(vma->vm_file);
7279 		dev = inode->i_sb->s_dev;
7280 		ino = inode->i_ino;
7281 		gen = inode->i_generation;
7282 		maj = MAJOR(dev);
7283 		min = MINOR(dev);
7284 
7285 		goto got_name;
7286 	} else {
7287 		if (vma->vm_ops && vma->vm_ops->name) {
7288 			name = (char *) vma->vm_ops->name(vma);
7289 			if (name)
7290 				goto cpy_name;
7291 		}
7292 
7293 		name = (char *)arch_vma_name(vma);
7294 		if (name)
7295 			goto cpy_name;
7296 
7297 		if (vma->vm_start <= vma->vm_mm->start_brk &&
7298 				vma->vm_end >= vma->vm_mm->brk) {
7299 			name = "[heap]";
7300 			goto cpy_name;
7301 		}
7302 		if (vma->vm_start <= vma->vm_mm->start_stack &&
7303 				vma->vm_end >= vma->vm_mm->start_stack) {
7304 			name = "[stack]";
7305 			goto cpy_name;
7306 		}
7307 
7308 		name = "//anon";
7309 		goto cpy_name;
7310 	}
7311 
7312 cpy_name:
7313 	strlcpy(tmp, name, sizeof(tmp));
7314 	name = tmp;
7315 got_name:
7316 	/*
7317 	 * Since our buffer works in 8 byte units we need to align our string
7318 	 * size to a multiple of 8. However, we must guarantee the tail end is
7319 	 * zero'd out to avoid leaking random bits to userspace.
7320 	 */
7321 	size = strlen(name)+1;
7322 	while (!IS_ALIGNED(size, sizeof(u64)))
7323 		name[size++] = '\0';
7324 
7325 	mmap_event->file_name = name;
7326 	mmap_event->file_size = size;
7327 	mmap_event->maj = maj;
7328 	mmap_event->min = min;
7329 	mmap_event->ino = ino;
7330 	mmap_event->ino_generation = gen;
7331 	mmap_event->prot = prot;
7332 	mmap_event->flags = flags;
7333 
7334 	if (!(vma->vm_flags & VM_EXEC))
7335 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
7336 
7337 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
7338 
7339 	perf_iterate_sb(perf_event_mmap_output,
7340 		       mmap_event,
7341 		       NULL);
7342 
7343 	kfree(buf);
7344 }
7345 
7346 /*
7347  * Check whether inode and address range match filter criteria.
7348  */
7349 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
7350 				     struct file *file, unsigned long offset,
7351 				     unsigned long size)
7352 {
7353 	/* d_inode(NULL) won't be equal to any mapped user-space file */
7354 	if (!filter->path.dentry)
7355 		return false;
7356 
7357 	if (d_inode(filter->path.dentry) != file_inode(file))
7358 		return false;
7359 
7360 	if (filter->offset > offset + size)
7361 		return false;
7362 
7363 	if (filter->offset + filter->size < offset)
7364 		return false;
7365 
7366 	return true;
7367 }
7368 
7369 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
7370 {
7371 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7372 	struct vm_area_struct *vma = data;
7373 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
7374 	struct file *file = vma->vm_file;
7375 	struct perf_addr_filter *filter;
7376 	unsigned int restart = 0, count = 0;
7377 
7378 	if (!has_addr_filter(event))
7379 		return;
7380 
7381 	if (!file)
7382 		return;
7383 
7384 	raw_spin_lock_irqsave(&ifh->lock, flags);
7385 	list_for_each_entry(filter, &ifh->list, entry) {
7386 		if (perf_addr_filter_match(filter, file, off,
7387 					     vma->vm_end - vma->vm_start)) {
7388 			event->addr_filters_offs[count] = vma->vm_start;
7389 			restart++;
7390 		}
7391 
7392 		count++;
7393 	}
7394 
7395 	if (restart)
7396 		event->addr_filters_gen++;
7397 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
7398 
7399 	if (restart)
7400 		perf_event_stop(event, 1);
7401 }
7402 
7403 /*
7404  * Adjust all task's events' filters to the new vma
7405  */
7406 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7407 {
7408 	struct perf_event_context *ctx;
7409 	int ctxn;
7410 
7411 	/*
7412 	 * Data tracing isn't supported yet and as such there is no need
7413 	 * to keep track of anything that isn't related to executable code:
7414 	 */
7415 	if (!(vma->vm_flags & VM_EXEC))
7416 		return;
7417 
7418 	rcu_read_lock();
7419 	for_each_task_context_nr(ctxn) {
7420 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7421 		if (!ctx)
7422 			continue;
7423 
7424 		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7425 	}
7426 	rcu_read_unlock();
7427 }
7428 
7429 void perf_event_mmap(struct vm_area_struct *vma)
7430 {
7431 	struct perf_mmap_event mmap_event;
7432 
7433 	if (!atomic_read(&nr_mmap_events))
7434 		return;
7435 
7436 	mmap_event = (struct perf_mmap_event){
7437 		.vma	= vma,
7438 		/* .file_name */
7439 		/* .file_size */
7440 		.event_id  = {
7441 			.header = {
7442 				.type = PERF_RECORD_MMAP,
7443 				.misc = PERF_RECORD_MISC_USER,
7444 				/* .size */
7445 			},
7446 			/* .pid */
7447 			/* .tid */
7448 			.start  = vma->vm_start,
7449 			.len    = vma->vm_end - vma->vm_start,
7450 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
7451 		},
7452 		/* .maj (attr_mmap2 only) */
7453 		/* .min (attr_mmap2 only) */
7454 		/* .ino (attr_mmap2 only) */
7455 		/* .ino_generation (attr_mmap2 only) */
7456 		/* .prot (attr_mmap2 only) */
7457 		/* .flags (attr_mmap2 only) */
7458 	};
7459 
7460 	perf_addr_filters_adjust(vma);
7461 	perf_event_mmap_event(&mmap_event);
7462 }
7463 
7464 void perf_event_aux_event(struct perf_event *event, unsigned long head,
7465 			  unsigned long size, u64 flags)
7466 {
7467 	struct perf_output_handle handle;
7468 	struct perf_sample_data sample;
7469 	struct perf_aux_event {
7470 		struct perf_event_header	header;
7471 		u64				offset;
7472 		u64				size;
7473 		u64				flags;
7474 	} rec = {
7475 		.header = {
7476 			.type = PERF_RECORD_AUX,
7477 			.misc = 0,
7478 			.size = sizeof(rec),
7479 		},
7480 		.offset		= head,
7481 		.size		= size,
7482 		.flags		= flags,
7483 	};
7484 	int ret;
7485 
7486 	perf_event_header__init_id(&rec.header, &sample, event);
7487 	ret = perf_output_begin(&handle, event, rec.header.size);
7488 
7489 	if (ret)
7490 		return;
7491 
7492 	perf_output_put(&handle, rec);
7493 	perf_event__output_id_sample(event, &handle, &sample);
7494 
7495 	perf_output_end(&handle);
7496 }
7497 
7498 /*
7499  * Lost/dropped samples logging
7500  */
7501 void perf_log_lost_samples(struct perf_event *event, u64 lost)
7502 {
7503 	struct perf_output_handle handle;
7504 	struct perf_sample_data sample;
7505 	int ret;
7506 
7507 	struct {
7508 		struct perf_event_header	header;
7509 		u64				lost;
7510 	} lost_samples_event = {
7511 		.header = {
7512 			.type = PERF_RECORD_LOST_SAMPLES,
7513 			.misc = 0,
7514 			.size = sizeof(lost_samples_event),
7515 		},
7516 		.lost		= lost,
7517 	};
7518 
7519 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7520 
7521 	ret = perf_output_begin(&handle, event,
7522 				lost_samples_event.header.size);
7523 	if (ret)
7524 		return;
7525 
7526 	perf_output_put(&handle, lost_samples_event);
7527 	perf_event__output_id_sample(event, &handle, &sample);
7528 	perf_output_end(&handle);
7529 }
7530 
7531 /*
7532  * context_switch tracking
7533  */
7534 
7535 struct perf_switch_event {
7536 	struct task_struct	*task;
7537 	struct task_struct	*next_prev;
7538 
7539 	struct {
7540 		struct perf_event_header	header;
7541 		u32				next_prev_pid;
7542 		u32				next_prev_tid;
7543 	} event_id;
7544 };
7545 
7546 static int perf_event_switch_match(struct perf_event *event)
7547 {
7548 	return event->attr.context_switch;
7549 }
7550 
7551 static void perf_event_switch_output(struct perf_event *event, void *data)
7552 {
7553 	struct perf_switch_event *se = data;
7554 	struct perf_output_handle handle;
7555 	struct perf_sample_data sample;
7556 	int ret;
7557 
7558 	if (!perf_event_switch_match(event))
7559 		return;
7560 
7561 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
7562 	if (event->ctx->task) {
7563 		se->event_id.header.type = PERF_RECORD_SWITCH;
7564 		se->event_id.header.size = sizeof(se->event_id.header);
7565 	} else {
7566 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7567 		se->event_id.header.size = sizeof(se->event_id);
7568 		se->event_id.next_prev_pid =
7569 					perf_event_pid(event, se->next_prev);
7570 		se->event_id.next_prev_tid =
7571 					perf_event_tid(event, se->next_prev);
7572 	}
7573 
7574 	perf_event_header__init_id(&se->event_id.header, &sample, event);
7575 
7576 	ret = perf_output_begin(&handle, event, se->event_id.header.size);
7577 	if (ret)
7578 		return;
7579 
7580 	if (event->ctx->task)
7581 		perf_output_put(&handle, se->event_id.header);
7582 	else
7583 		perf_output_put(&handle, se->event_id);
7584 
7585 	perf_event__output_id_sample(event, &handle, &sample);
7586 
7587 	perf_output_end(&handle);
7588 }
7589 
7590 static void perf_event_switch(struct task_struct *task,
7591 			      struct task_struct *next_prev, bool sched_in)
7592 {
7593 	struct perf_switch_event switch_event;
7594 
7595 	/* N.B. caller checks nr_switch_events != 0 */
7596 
7597 	switch_event = (struct perf_switch_event){
7598 		.task		= task,
7599 		.next_prev	= next_prev,
7600 		.event_id	= {
7601 			.header = {
7602 				/* .type */
7603 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7604 				/* .size */
7605 			},
7606 			/* .next_prev_pid */
7607 			/* .next_prev_tid */
7608 		},
7609 	};
7610 
7611 	if (!sched_in && task->state == TASK_RUNNING)
7612 		switch_event.event_id.header.misc |=
7613 				PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
7614 
7615 	perf_iterate_sb(perf_event_switch_output,
7616 		       &switch_event,
7617 		       NULL);
7618 }
7619 
7620 /*
7621  * IRQ throttle logging
7622  */
7623 
7624 static void perf_log_throttle(struct perf_event *event, int enable)
7625 {
7626 	struct perf_output_handle handle;
7627 	struct perf_sample_data sample;
7628 	int ret;
7629 
7630 	struct {
7631 		struct perf_event_header	header;
7632 		u64				time;
7633 		u64				id;
7634 		u64				stream_id;
7635 	} throttle_event = {
7636 		.header = {
7637 			.type = PERF_RECORD_THROTTLE,
7638 			.misc = 0,
7639 			.size = sizeof(throttle_event),
7640 		},
7641 		.time		= perf_event_clock(event),
7642 		.id		= primary_event_id(event),
7643 		.stream_id	= event->id,
7644 	};
7645 
7646 	if (enable)
7647 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7648 
7649 	perf_event_header__init_id(&throttle_event.header, &sample, event);
7650 
7651 	ret = perf_output_begin(&handle, event,
7652 				throttle_event.header.size);
7653 	if (ret)
7654 		return;
7655 
7656 	perf_output_put(&handle, throttle_event);
7657 	perf_event__output_id_sample(event, &handle, &sample);
7658 	perf_output_end(&handle);
7659 }
7660 
7661 void perf_event_itrace_started(struct perf_event *event)
7662 {
7663 	event->attach_state |= PERF_ATTACH_ITRACE;
7664 }
7665 
7666 static void perf_log_itrace_start(struct perf_event *event)
7667 {
7668 	struct perf_output_handle handle;
7669 	struct perf_sample_data sample;
7670 	struct perf_aux_event {
7671 		struct perf_event_header        header;
7672 		u32				pid;
7673 		u32				tid;
7674 	} rec;
7675 	int ret;
7676 
7677 	if (event->parent)
7678 		event = event->parent;
7679 
7680 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7681 	    event->attach_state & PERF_ATTACH_ITRACE)
7682 		return;
7683 
7684 	rec.header.type	= PERF_RECORD_ITRACE_START;
7685 	rec.header.misc	= 0;
7686 	rec.header.size	= sizeof(rec);
7687 	rec.pid	= perf_event_pid(event, current);
7688 	rec.tid	= perf_event_tid(event, current);
7689 
7690 	perf_event_header__init_id(&rec.header, &sample, event);
7691 	ret = perf_output_begin(&handle, event, rec.header.size);
7692 
7693 	if (ret)
7694 		return;
7695 
7696 	perf_output_put(&handle, rec);
7697 	perf_event__output_id_sample(event, &handle, &sample);
7698 
7699 	perf_output_end(&handle);
7700 }
7701 
7702 static int
7703 __perf_event_account_interrupt(struct perf_event *event, int throttle)
7704 {
7705 	struct hw_perf_event *hwc = &event->hw;
7706 	int ret = 0;
7707 	u64 seq;
7708 
7709 	seq = __this_cpu_read(perf_throttled_seq);
7710 	if (seq != hwc->interrupts_seq) {
7711 		hwc->interrupts_seq = seq;
7712 		hwc->interrupts = 1;
7713 	} else {
7714 		hwc->interrupts++;
7715 		if (unlikely(throttle
7716 			     && hwc->interrupts >= max_samples_per_tick)) {
7717 			__this_cpu_inc(perf_throttled_count);
7718 			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
7719 			hwc->interrupts = MAX_INTERRUPTS;
7720 			perf_log_throttle(event, 0);
7721 			ret = 1;
7722 		}
7723 	}
7724 
7725 	if (event->attr.freq) {
7726 		u64 now = perf_clock();
7727 		s64 delta = now - hwc->freq_time_stamp;
7728 
7729 		hwc->freq_time_stamp = now;
7730 
7731 		if (delta > 0 && delta < 2*TICK_NSEC)
7732 			perf_adjust_period(event, delta, hwc->last_period, true);
7733 	}
7734 
7735 	return ret;
7736 }
7737 
7738 int perf_event_account_interrupt(struct perf_event *event)
7739 {
7740 	return __perf_event_account_interrupt(event, 1);
7741 }
7742 
7743 /*
7744  * Generic event overflow handling, sampling.
7745  */
7746 
7747 static int __perf_event_overflow(struct perf_event *event,
7748 				   int throttle, struct perf_sample_data *data,
7749 				   struct pt_regs *regs)
7750 {
7751 	int events = atomic_read(&event->event_limit);
7752 	int ret = 0;
7753 
7754 	/*
7755 	 * Non-sampling counters might still use the PMI to fold short
7756 	 * hardware counters, ignore those.
7757 	 */
7758 	if (unlikely(!is_sampling_event(event)))
7759 		return 0;
7760 
7761 	ret = __perf_event_account_interrupt(event, throttle);
7762 
7763 	/*
7764 	 * XXX event_limit might not quite work as expected on inherited
7765 	 * events
7766 	 */
7767 
7768 	event->pending_kill = POLL_IN;
7769 	if (events && atomic_dec_and_test(&event->event_limit)) {
7770 		ret = 1;
7771 		event->pending_kill = POLL_HUP;
7772 
7773 		perf_event_disable_inatomic(event);
7774 	}
7775 
7776 	READ_ONCE(event->overflow_handler)(event, data, regs);
7777 
7778 	if (*perf_event_fasync(event) && event->pending_kill) {
7779 		event->pending_wakeup = 1;
7780 		irq_work_queue(&event->pending);
7781 	}
7782 
7783 	return ret;
7784 }
7785 
7786 int perf_event_overflow(struct perf_event *event,
7787 			  struct perf_sample_data *data,
7788 			  struct pt_regs *regs)
7789 {
7790 	return __perf_event_overflow(event, 1, data, regs);
7791 }
7792 
7793 /*
7794  * Generic software event infrastructure
7795  */
7796 
7797 struct swevent_htable {
7798 	struct swevent_hlist		*swevent_hlist;
7799 	struct mutex			hlist_mutex;
7800 	int				hlist_refcount;
7801 
7802 	/* Recursion avoidance in each contexts */
7803 	int				recursion[PERF_NR_CONTEXTS];
7804 };
7805 
7806 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7807 
7808 /*
7809  * We directly increment event->count and keep a second value in
7810  * event->hw.period_left to count intervals. This period event
7811  * is kept in the range [-sample_period, 0] so that we can use the
7812  * sign as trigger.
7813  */
7814 
7815 u64 perf_swevent_set_period(struct perf_event *event)
7816 {
7817 	struct hw_perf_event *hwc = &event->hw;
7818 	u64 period = hwc->last_period;
7819 	u64 nr, offset;
7820 	s64 old, val;
7821 
7822 	hwc->last_period = hwc->sample_period;
7823 
7824 again:
7825 	old = val = local64_read(&hwc->period_left);
7826 	if (val < 0)
7827 		return 0;
7828 
7829 	nr = div64_u64(period + val, period);
7830 	offset = nr * period;
7831 	val -= offset;
7832 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7833 		goto again;
7834 
7835 	return nr;
7836 }
7837 
7838 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7839 				    struct perf_sample_data *data,
7840 				    struct pt_regs *regs)
7841 {
7842 	struct hw_perf_event *hwc = &event->hw;
7843 	int throttle = 0;
7844 
7845 	if (!overflow)
7846 		overflow = perf_swevent_set_period(event);
7847 
7848 	if (hwc->interrupts == MAX_INTERRUPTS)
7849 		return;
7850 
7851 	for (; overflow; overflow--) {
7852 		if (__perf_event_overflow(event, throttle,
7853 					    data, regs)) {
7854 			/*
7855 			 * We inhibit the overflow from happening when
7856 			 * hwc->interrupts == MAX_INTERRUPTS.
7857 			 */
7858 			break;
7859 		}
7860 		throttle = 1;
7861 	}
7862 }
7863 
7864 static void perf_swevent_event(struct perf_event *event, u64 nr,
7865 			       struct perf_sample_data *data,
7866 			       struct pt_regs *regs)
7867 {
7868 	struct hw_perf_event *hwc = &event->hw;
7869 
7870 	local64_add(nr, &event->count);
7871 
7872 	if (!regs)
7873 		return;
7874 
7875 	if (!is_sampling_event(event))
7876 		return;
7877 
7878 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7879 		data->period = nr;
7880 		return perf_swevent_overflow(event, 1, data, regs);
7881 	} else
7882 		data->period = event->hw.last_period;
7883 
7884 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7885 		return perf_swevent_overflow(event, 1, data, regs);
7886 
7887 	if (local64_add_negative(nr, &hwc->period_left))
7888 		return;
7889 
7890 	perf_swevent_overflow(event, 0, data, regs);
7891 }
7892 
7893 static int perf_exclude_event(struct perf_event *event,
7894 			      struct pt_regs *regs)
7895 {
7896 	if (event->hw.state & PERF_HES_STOPPED)
7897 		return 1;
7898 
7899 	if (regs) {
7900 		if (event->attr.exclude_user && user_mode(regs))
7901 			return 1;
7902 
7903 		if (event->attr.exclude_kernel && !user_mode(regs))
7904 			return 1;
7905 	}
7906 
7907 	return 0;
7908 }
7909 
7910 static int perf_swevent_match(struct perf_event *event,
7911 				enum perf_type_id type,
7912 				u32 event_id,
7913 				struct perf_sample_data *data,
7914 				struct pt_regs *regs)
7915 {
7916 	if (event->attr.type != type)
7917 		return 0;
7918 
7919 	if (event->attr.config != event_id)
7920 		return 0;
7921 
7922 	if (perf_exclude_event(event, regs))
7923 		return 0;
7924 
7925 	return 1;
7926 }
7927 
7928 static inline u64 swevent_hash(u64 type, u32 event_id)
7929 {
7930 	u64 val = event_id | (type << 32);
7931 
7932 	return hash_64(val, SWEVENT_HLIST_BITS);
7933 }
7934 
7935 static inline struct hlist_head *
7936 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7937 {
7938 	u64 hash = swevent_hash(type, event_id);
7939 
7940 	return &hlist->heads[hash];
7941 }
7942 
7943 /* For the read side: events when they trigger */
7944 static inline struct hlist_head *
7945 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7946 {
7947 	struct swevent_hlist *hlist;
7948 
7949 	hlist = rcu_dereference(swhash->swevent_hlist);
7950 	if (!hlist)
7951 		return NULL;
7952 
7953 	return __find_swevent_head(hlist, type, event_id);
7954 }
7955 
7956 /* For the event head insertion and removal in the hlist */
7957 static inline struct hlist_head *
7958 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7959 {
7960 	struct swevent_hlist *hlist;
7961 	u32 event_id = event->attr.config;
7962 	u64 type = event->attr.type;
7963 
7964 	/*
7965 	 * Event scheduling is always serialized against hlist allocation
7966 	 * and release. Which makes the protected version suitable here.
7967 	 * The context lock guarantees that.
7968 	 */
7969 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
7970 					  lockdep_is_held(&event->ctx->lock));
7971 	if (!hlist)
7972 		return NULL;
7973 
7974 	return __find_swevent_head(hlist, type, event_id);
7975 }
7976 
7977 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7978 				    u64 nr,
7979 				    struct perf_sample_data *data,
7980 				    struct pt_regs *regs)
7981 {
7982 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7983 	struct perf_event *event;
7984 	struct hlist_head *head;
7985 
7986 	rcu_read_lock();
7987 	head = find_swevent_head_rcu(swhash, type, event_id);
7988 	if (!head)
7989 		goto end;
7990 
7991 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
7992 		if (perf_swevent_match(event, type, event_id, data, regs))
7993 			perf_swevent_event(event, nr, data, regs);
7994 	}
7995 end:
7996 	rcu_read_unlock();
7997 }
7998 
7999 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
8000 
8001 int perf_swevent_get_recursion_context(void)
8002 {
8003 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8004 
8005 	return get_recursion_context(swhash->recursion);
8006 }
8007 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
8008 
8009 void perf_swevent_put_recursion_context(int rctx)
8010 {
8011 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8012 
8013 	put_recursion_context(swhash->recursion, rctx);
8014 }
8015 
8016 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8017 {
8018 	struct perf_sample_data data;
8019 
8020 	if (WARN_ON_ONCE(!regs))
8021 		return;
8022 
8023 	perf_sample_data_init(&data, addr, 0);
8024 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
8025 }
8026 
8027 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8028 {
8029 	int rctx;
8030 
8031 	preempt_disable_notrace();
8032 	rctx = perf_swevent_get_recursion_context();
8033 	if (unlikely(rctx < 0))
8034 		goto fail;
8035 
8036 	___perf_sw_event(event_id, nr, regs, addr);
8037 
8038 	perf_swevent_put_recursion_context(rctx);
8039 fail:
8040 	preempt_enable_notrace();
8041 }
8042 
8043 static void perf_swevent_read(struct perf_event *event)
8044 {
8045 }
8046 
8047 static int perf_swevent_add(struct perf_event *event, int flags)
8048 {
8049 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8050 	struct hw_perf_event *hwc = &event->hw;
8051 	struct hlist_head *head;
8052 
8053 	if (is_sampling_event(event)) {
8054 		hwc->last_period = hwc->sample_period;
8055 		perf_swevent_set_period(event);
8056 	}
8057 
8058 	hwc->state = !(flags & PERF_EF_START);
8059 
8060 	head = find_swevent_head(swhash, event);
8061 	if (WARN_ON_ONCE(!head))
8062 		return -EINVAL;
8063 
8064 	hlist_add_head_rcu(&event->hlist_entry, head);
8065 	perf_event_update_userpage(event);
8066 
8067 	return 0;
8068 }
8069 
8070 static void perf_swevent_del(struct perf_event *event, int flags)
8071 {
8072 	hlist_del_rcu(&event->hlist_entry);
8073 }
8074 
8075 static void perf_swevent_start(struct perf_event *event, int flags)
8076 {
8077 	event->hw.state = 0;
8078 }
8079 
8080 static void perf_swevent_stop(struct perf_event *event, int flags)
8081 {
8082 	event->hw.state = PERF_HES_STOPPED;
8083 }
8084 
8085 /* Deref the hlist from the update side */
8086 static inline struct swevent_hlist *
8087 swevent_hlist_deref(struct swevent_htable *swhash)
8088 {
8089 	return rcu_dereference_protected(swhash->swevent_hlist,
8090 					 lockdep_is_held(&swhash->hlist_mutex));
8091 }
8092 
8093 static void swevent_hlist_release(struct swevent_htable *swhash)
8094 {
8095 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
8096 
8097 	if (!hlist)
8098 		return;
8099 
8100 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
8101 	kfree_rcu(hlist, rcu_head);
8102 }
8103 
8104 static void swevent_hlist_put_cpu(int cpu)
8105 {
8106 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8107 
8108 	mutex_lock(&swhash->hlist_mutex);
8109 
8110 	if (!--swhash->hlist_refcount)
8111 		swevent_hlist_release(swhash);
8112 
8113 	mutex_unlock(&swhash->hlist_mutex);
8114 }
8115 
8116 static void swevent_hlist_put(void)
8117 {
8118 	int cpu;
8119 
8120 	for_each_possible_cpu(cpu)
8121 		swevent_hlist_put_cpu(cpu);
8122 }
8123 
8124 static int swevent_hlist_get_cpu(int cpu)
8125 {
8126 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8127 	int err = 0;
8128 
8129 	mutex_lock(&swhash->hlist_mutex);
8130 	if (!swevent_hlist_deref(swhash) &&
8131 	    cpumask_test_cpu(cpu, perf_online_mask)) {
8132 		struct swevent_hlist *hlist;
8133 
8134 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
8135 		if (!hlist) {
8136 			err = -ENOMEM;
8137 			goto exit;
8138 		}
8139 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
8140 	}
8141 	swhash->hlist_refcount++;
8142 exit:
8143 	mutex_unlock(&swhash->hlist_mutex);
8144 
8145 	return err;
8146 }
8147 
8148 static int swevent_hlist_get(void)
8149 {
8150 	int err, cpu, failed_cpu;
8151 
8152 	mutex_lock(&pmus_lock);
8153 	for_each_possible_cpu(cpu) {
8154 		err = swevent_hlist_get_cpu(cpu);
8155 		if (err) {
8156 			failed_cpu = cpu;
8157 			goto fail;
8158 		}
8159 	}
8160 	mutex_unlock(&pmus_lock);
8161 	return 0;
8162 fail:
8163 	for_each_possible_cpu(cpu) {
8164 		if (cpu == failed_cpu)
8165 			break;
8166 		swevent_hlist_put_cpu(cpu);
8167 	}
8168 	mutex_unlock(&pmus_lock);
8169 	return err;
8170 }
8171 
8172 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
8173 
8174 static void sw_perf_event_destroy(struct perf_event *event)
8175 {
8176 	u64 event_id = event->attr.config;
8177 
8178 	WARN_ON(event->parent);
8179 
8180 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
8181 	swevent_hlist_put();
8182 }
8183 
8184 static int perf_swevent_init(struct perf_event *event)
8185 {
8186 	u64 event_id = event->attr.config;
8187 
8188 	if (event->attr.type != PERF_TYPE_SOFTWARE)
8189 		return -ENOENT;
8190 
8191 	/*
8192 	 * no branch sampling for software events
8193 	 */
8194 	if (has_branch_stack(event))
8195 		return -EOPNOTSUPP;
8196 
8197 	switch (event_id) {
8198 	case PERF_COUNT_SW_CPU_CLOCK:
8199 	case PERF_COUNT_SW_TASK_CLOCK:
8200 		return -ENOENT;
8201 
8202 	default:
8203 		break;
8204 	}
8205 
8206 	if (event_id >= PERF_COUNT_SW_MAX)
8207 		return -ENOENT;
8208 
8209 	if (!event->parent) {
8210 		int err;
8211 
8212 		err = swevent_hlist_get();
8213 		if (err)
8214 			return err;
8215 
8216 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
8217 		event->destroy = sw_perf_event_destroy;
8218 	}
8219 
8220 	return 0;
8221 }
8222 
8223 static struct pmu perf_swevent = {
8224 	.task_ctx_nr	= perf_sw_context,
8225 
8226 	.capabilities	= PERF_PMU_CAP_NO_NMI,
8227 
8228 	.event_init	= perf_swevent_init,
8229 	.add		= perf_swevent_add,
8230 	.del		= perf_swevent_del,
8231 	.start		= perf_swevent_start,
8232 	.stop		= perf_swevent_stop,
8233 	.read		= perf_swevent_read,
8234 };
8235 
8236 #ifdef CONFIG_EVENT_TRACING
8237 
8238 static int perf_tp_filter_match(struct perf_event *event,
8239 				struct perf_sample_data *data)
8240 {
8241 	void *record = data->raw->frag.data;
8242 
8243 	/* only top level events have filters set */
8244 	if (event->parent)
8245 		event = event->parent;
8246 
8247 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
8248 		return 1;
8249 	return 0;
8250 }
8251 
8252 static int perf_tp_event_match(struct perf_event *event,
8253 				struct perf_sample_data *data,
8254 				struct pt_regs *regs)
8255 {
8256 	if (event->hw.state & PERF_HES_STOPPED)
8257 		return 0;
8258 	/*
8259 	 * All tracepoints are from kernel-space.
8260 	 */
8261 	if (event->attr.exclude_kernel)
8262 		return 0;
8263 
8264 	if (!perf_tp_filter_match(event, data))
8265 		return 0;
8266 
8267 	return 1;
8268 }
8269 
8270 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
8271 			       struct trace_event_call *call, u64 count,
8272 			       struct pt_regs *regs, struct hlist_head *head,
8273 			       struct task_struct *task)
8274 {
8275 	if (bpf_prog_array_valid(call)) {
8276 		*(struct pt_regs **)raw_data = regs;
8277 		if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
8278 			perf_swevent_put_recursion_context(rctx);
8279 			return;
8280 		}
8281 	}
8282 	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
8283 		      rctx, task);
8284 }
8285 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
8286 
8287 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
8288 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
8289 		   struct task_struct *task)
8290 {
8291 	struct perf_sample_data data;
8292 	struct perf_event *event;
8293 
8294 	struct perf_raw_record raw = {
8295 		.frag = {
8296 			.size = entry_size,
8297 			.data = record,
8298 		},
8299 	};
8300 
8301 	perf_sample_data_init(&data, 0, 0);
8302 	data.raw = &raw;
8303 
8304 	perf_trace_buf_update(record, event_type);
8305 
8306 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
8307 		if (perf_tp_event_match(event, &data, regs))
8308 			perf_swevent_event(event, count, &data, regs);
8309 	}
8310 
8311 	/*
8312 	 * If we got specified a target task, also iterate its context and
8313 	 * deliver this event there too.
8314 	 */
8315 	if (task && task != current) {
8316 		struct perf_event_context *ctx;
8317 		struct trace_entry *entry = record;
8318 
8319 		rcu_read_lock();
8320 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
8321 		if (!ctx)
8322 			goto unlock;
8323 
8324 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
8325 			if (event->cpu != smp_processor_id())
8326 				continue;
8327 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
8328 				continue;
8329 			if (event->attr.config != entry->type)
8330 				continue;
8331 			if (perf_tp_event_match(event, &data, regs))
8332 				perf_swevent_event(event, count, &data, regs);
8333 		}
8334 unlock:
8335 		rcu_read_unlock();
8336 	}
8337 
8338 	perf_swevent_put_recursion_context(rctx);
8339 }
8340 EXPORT_SYMBOL_GPL(perf_tp_event);
8341 
8342 static void tp_perf_event_destroy(struct perf_event *event)
8343 {
8344 	perf_trace_destroy(event);
8345 }
8346 
8347 static int perf_tp_event_init(struct perf_event *event)
8348 {
8349 	int err;
8350 
8351 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
8352 		return -ENOENT;
8353 
8354 	/*
8355 	 * no branch sampling for tracepoint events
8356 	 */
8357 	if (has_branch_stack(event))
8358 		return -EOPNOTSUPP;
8359 
8360 	err = perf_trace_init(event);
8361 	if (err)
8362 		return err;
8363 
8364 	event->destroy = tp_perf_event_destroy;
8365 
8366 	return 0;
8367 }
8368 
8369 static struct pmu perf_tracepoint = {
8370 	.task_ctx_nr	= perf_sw_context,
8371 
8372 	.event_init	= perf_tp_event_init,
8373 	.add		= perf_trace_add,
8374 	.del		= perf_trace_del,
8375 	.start		= perf_swevent_start,
8376 	.stop		= perf_swevent_stop,
8377 	.read		= perf_swevent_read,
8378 };
8379 
8380 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
8381 /*
8382  * Flags in config, used by dynamic PMU kprobe and uprobe
8383  * The flags should match following PMU_FORMAT_ATTR().
8384  *
8385  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
8386  *                               if not set, create kprobe/uprobe
8387  *
8388  * The following values specify a reference counter (or semaphore in the
8389  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
8390  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
8391  *
8392  * PERF_UPROBE_REF_CTR_OFFSET_BITS	# of bits in config as th offset
8393  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT	# of bits to shift left
8394  */
8395 enum perf_probe_config {
8396 	PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
8397 	PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
8398 	PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
8399 };
8400 
8401 PMU_FORMAT_ATTR(retprobe, "config:0");
8402 #endif
8403 
8404 #ifdef CONFIG_KPROBE_EVENTS
8405 static struct attribute *kprobe_attrs[] = {
8406 	&format_attr_retprobe.attr,
8407 	NULL,
8408 };
8409 
8410 static struct attribute_group kprobe_format_group = {
8411 	.name = "format",
8412 	.attrs = kprobe_attrs,
8413 };
8414 
8415 static const struct attribute_group *kprobe_attr_groups[] = {
8416 	&kprobe_format_group,
8417 	NULL,
8418 };
8419 
8420 static int perf_kprobe_event_init(struct perf_event *event);
8421 static struct pmu perf_kprobe = {
8422 	.task_ctx_nr	= perf_sw_context,
8423 	.event_init	= perf_kprobe_event_init,
8424 	.add		= perf_trace_add,
8425 	.del		= perf_trace_del,
8426 	.start		= perf_swevent_start,
8427 	.stop		= perf_swevent_stop,
8428 	.read		= perf_swevent_read,
8429 	.attr_groups	= kprobe_attr_groups,
8430 };
8431 
8432 static int perf_kprobe_event_init(struct perf_event *event)
8433 {
8434 	int err;
8435 	bool is_retprobe;
8436 
8437 	if (event->attr.type != perf_kprobe.type)
8438 		return -ENOENT;
8439 
8440 	if (!capable(CAP_SYS_ADMIN))
8441 		return -EACCES;
8442 
8443 	/*
8444 	 * no branch sampling for probe events
8445 	 */
8446 	if (has_branch_stack(event))
8447 		return -EOPNOTSUPP;
8448 
8449 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8450 	err = perf_kprobe_init(event, is_retprobe);
8451 	if (err)
8452 		return err;
8453 
8454 	event->destroy = perf_kprobe_destroy;
8455 
8456 	return 0;
8457 }
8458 #endif /* CONFIG_KPROBE_EVENTS */
8459 
8460 #ifdef CONFIG_UPROBE_EVENTS
8461 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
8462 
8463 static struct attribute *uprobe_attrs[] = {
8464 	&format_attr_retprobe.attr,
8465 	&format_attr_ref_ctr_offset.attr,
8466 	NULL,
8467 };
8468 
8469 static struct attribute_group uprobe_format_group = {
8470 	.name = "format",
8471 	.attrs = uprobe_attrs,
8472 };
8473 
8474 static const struct attribute_group *uprobe_attr_groups[] = {
8475 	&uprobe_format_group,
8476 	NULL,
8477 };
8478 
8479 static int perf_uprobe_event_init(struct perf_event *event);
8480 static struct pmu perf_uprobe = {
8481 	.task_ctx_nr	= perf_sw_context,
8482 	.event_init	= perf_uprobe_event_init,
8483 	.add		= perf_trace_add,
8484 	.del		= perf_trace_del,
8485 	.start		= perf_swevent_start,
8486 	.stop		= perf_swevent_stop,
8487 	.read		= perf_swevent_read,
8488 	.attr_groups	= uprobe_attr_groups,
8489 };
8490 
8491 static int perf_uprobe_event_init(struct perf_event *event)
8492 {
8493 	int err;
8494 	unsigned long ref_ctr_offset;
8495 	bool is_retprobe;
8496 
8497 	if (event->attr.type != perf_uprobe.type)
8498 		return -ENOENT;
8499 
8500 	if (!capable(CAP_SYS_ADMIN))
8501 		return -EACCES;
8502 
8503 	/*
8504 	 * no branch sampling for probe events
8505 	 */
8506 	if (has_branch_stack(event))
8507 		return -EOPNOTSUPP;
8508 
8509 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8510 	ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
8511 	err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
8512 	if (err)
8513 		return err;
8514 
8515 	event->destroy = perf_uprobe_destroy;
8516 
8517 	return 0;
8518 }
8519 #endif /* CONFIG_UPROBE_EVENTS */
8520 
8521 static inline void perf_tp_register(void)
8522 {
8523 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
8524 #ifdef CONFIG_KPROBE_EVENTS
8525 	perf_pmu_register(&perf_kprobe, "kprobe", -1);
8526 #endif
8527 #ifdef CONFIG_UPROBE_EVENTS
8528 	perf_pmu_register(&perf_uprobe, "uprobe", -1);
8529 #endif
8530 }
8531 
8532 static void perf_event_free_filter(struct perf_event *event)
8533 {
8534 	ftrace_profile_free_filter(event);
8535 }
8536 
8537 #ifdef CONFIG_BPF_SYSCALL
8538 static void bpf_overflow_handler(struct perf_event *event,
8539 				 struct perf_sample_data *data,
8540 				 struct pt_regs *regs)
8541 {
8542 	struct bpf_perf_event_data_kern ctx = {
8543 		.data = data,
8544 		.event = event,
8545 	};
8546 	int ret = 0;
8547 
8548 	ctx.regs = perf_arch_bpf_user_pt_regs(regs);
8549 	preempt_disable();
8550 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8551 		goto out;
8552 	rcu_read_lock();
8553 	ret = BPF_PROG_RUN(event->prog, &ctx);
8554 	rcu_read_unlock();
8555 out:
8556 	__this_cpu_dec(bpf_prog_active);
8557 	preempt_enable();
8558 	if (!ret)
8559 		return;
8560 
8561 	event->orig_overflow_handler(event, data, regs);
8562 }
8563 
8564 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8565 {
8566 	struct bpf_prog *prog;
8567 
8568 	if (event->overflow_handler_context)
8569 		/* hw breakpoint or kernel counter */
8570 		return -EINVAL;
8571 
8572 	if (event->prog)
8573 		return -EEXIST;
8574 
8575 	prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8576 	if (IS_ERR(prog))
8577 		return PTR_ERR(prog);
8578 
8579 	event->prog = prog;
8580 	event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8581 	WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8582 	return 0;
8583 }
8584 
8585 static void perf_event_free_bpf_handler(struct perf_event *event)
8586 {
8587 	struct bpf_prog *prog = event->prog;
8588 
8589 	if (!prog)
8590 		return;
8591 
8592 	WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8593 	event->prog = NULL;
8594 	bpf_prog_put(prog);
8595 }
8596 #else
8597 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8598 {
8599 	return -EOPNOTSUPP;
8600 }
8601 static void perf_event_free_bpf_handler(struct perf_event *event)
8602 {
8603 }
8604 #endif
8605 
8606 /*
8607  * returns true if the event is a tracepoint, or a kprobe/upprobe created
8608  * with perf_event_open()
8609  */
8610 static inline bool perf_event_is_tracing(struct perf_event *event)
8611 {
8612 	if (event->pmu == &perf_tracepoint)
8613 		return true;
8614 #ifdef CONFIG_KPROBE_EVENTS
8615 	if (event->pmu == &perf_kprobe)
8616 		return true;
8617 #endif
8618 #ifdef CONFIG_UPROBE_EVENTS
8619 	if (event->pmu == &perf_uprobe)
8620 		return true;
8621 #endif
8622 	return false;
8623 }
8624 
8625 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8626 {
8627 	bool is_kprobe, is_tracepoint, is_syscall_tp;
8628 	struct bpf_prog *prog;
8629 	int ret;
8630 
8631 	if (!perf_event_is_tracing(event))
8632 		return perf_event_set_bpf_handler(event, prog_fd);
8633 
8634 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8635 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
8636 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
8637 	if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
8638 		/* bpf programs can only be attached to u/kprobe or tracepoint */
8639 		return -EINVAL;
8640 
8641 	prog = bpf_prog_get(prog_fd);
8642 	if (IS_ERR(prog))
8643 		return PTR_ERR(prog);
8644 
8645 	if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
8646 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
8647 	    (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
8648 		/* valid fd, but invalid bpf program type */
8649 		bpf_prog_put(prog);
8650 		return -EINVAL;
8651 	}
8652 
8653 	/* Kprobe override only works for kprobes, not uprobes. */
8654 	if (prog->kprobe_override &&
8655 	    !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
8656 		bpf_prog_put(prog);
8657 		return -EINVAL;
8658 	}
8659 
8660 	if (is_tracepoint || is_syscall_tp) {
8661 		int off = trace_event_get_offsets(event->tp_event);
8662 
8663 		if (prog->aux->max_ctx_offset > off) {
8664 			bpf_prog_put(prog);
8665 			return -EACCES;
8666 		}
8667 	}
8668 
8669 	ret = perf_event_attach_bpf_prog(event, prog);
8670 	if (ret)
8671 		bpf_prog_put(prog);
8672 	return ret;
8673 }
8674 
8675 static void perf_event_free_bpf_prog(struct perf_event *event)
8676 {
8677 	if (!perf_event_is_tracing(event)) {
8678 		perf_event_free_bpf_handler(event);
8679 		return;
8680 	}
8681 	perf_event_detach_bpf_prog(event);
8682 }
8683 
8684 #else
8685 
8686 static inline void perf_tp_register(void)
8687 {
8688 }
8689 
8690 static void perf_event_free_filter(struct perf_event *event)
8691 {
8692 }
8693 
8694 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8695 {
8696 	return -ENOENT;
8697 }
8698 
8699 static void perf_event_free_bpf_prog(struct perf_event *event)
8700 {
8701 }
8702 #endif /* CONFIG_EVENT_TRACING */
8703 
8704 #ifdef CONFIG_HAVE_HW_BREAKPOINT
8705 void perf_bp_event(struct perf_event *bp, void *data)
8706 {
8707 	struct perf_sample_data sample;
8708 	struct pt_regs *regs = data;
8709 
8710 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
8711 
8712 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
8713 		perf_swevent_event(bp, 1, &sample, regs);
8714 }
8715 #endif
8716 
8717 /*
8718  * Allocate a new address filter
8719  */
8720 static struct perf_addr_filter *
8721 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
8722 {
8723 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
8724 	struct perf_addr_filter *filter;
8725 
8726 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
8727 	if (!filter)
8728 		return NULL;
8729 
8730 	INIT_LIST_HEAD(&filter->entry);
8731 	list_add_tail(&filter->entry, filters);
8732 
8733 	return filter;
8734 }
8735 
8736 static void free_filters_list(struct list_head *filters)
8737 {
8738 	struct perf_addr_filter *filter, *iter;
8739 
8740 	list_for_each_entry_safe(filter, iter, filters, entry) {
8741 		path_put(&filter->path);
8742 		list_del(&filter->entry);
8743 		kfree(filter);
8744 	}
8745 }
8746 
8747 /*
8748  * Free existing address filters and optionally install new ones
8749  */
8750 static void perf_addr_filters_splice(struct perf_event *event,
8751 				     struct list_head *head)
8752 {
8753 	unsigned long flags;
8754 	LIST_HEAD(list);
8755 
8756 	if (!has_addr_filter(event))
8757 		return;
8758 
8759 	/* don't bother with children, they don't have their own filters */
8760 	if (event->parent)
8761 		return;
8762 
8763 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8764 
8765 	list_splice_init(&event->addr_filters.list, &list);
8766 	if (head)
8767 		list_splice(head, &event->addr_filters.list);
8768 
8769 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
8770 
8771 	free_filters_list(&list);
8772 }
8773 
8774 /*
8775  * Scan through mm's vmas and see if one of them matches the
8776  * @filter; if so, adjust filter's address range.
8777  * Called with mm::mmap_sem down for reading.
8778  */
8779 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
8780 					    struct mm_struct *mm)
8781 {
8782 	struct vm_area_struct *vma;
8783 
8784 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
8785 		struct file *file = vma->vm_file;
8786 		unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8787 		unsigned long vma_size = vma->vm_end - vma->vm_start;
8788 
8789 		if (!file)
8790 			continue;
8791 
8792 		if (!perf_addr_filter_match(filter, file, off, vma_size))
8793 			continue;
8794 
8795 		return vma->vm_start;
8796 	}
8797 
8798 	return 0;
8799 }
8800 
8801 /*
8802  * Update event's address range filters based on the
8803  * task's existing mappings, if any.
8804  */
8805 static void perf_event_addr_filters_apply(struct perf_event *event)
8806 {
8807 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8808 	struct task_struct *task = READ_ONCE(event->ctx->task);
8809 	struct perf_addr_filter *filter;
8810 	struct mm_struct *mm = NULL;
8811 	unsigned int count = 0;
8812 	unsigned long flags;
8813 
8814 	/*
8815 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
8816 	 * will stop on the parent's child_mutex that our caller is also holding
8817 	 */
8818 	if (task == TASK_TOMBSTONE)
8819 		return;
8820 
8821 	if (!ifh->nr_file_filters)
8822 		return;
8823 
8824 	mm = get_task_mm(event->ctx->task);
8825 	if (!mm)
8826 		goto restart;
8827 
8828 	down_read(&mm->mmap_sem);
8829 
8830 	raw_spin_lock_irqsave(&ifh->lock, flags);
8831 	list_for_each_entry(filter, &ifh->list, entry) {
8832 		event->addr_filters_offs[count] = 0;
8833 
8834 		/*
8835 		 * Adjust base offset if the filter is associated to a binary
8836 		 * that needs to be mapped:
8837 		 */
8838 		if (filter->path.dentry)
8839 			event->addr_filters_offs[count] =
8840 				perf_addr_filter_apply(filter, mm);
8841 
8842 		count++;
8843 	}
8844 
8845 	event->addr_filters_gen++;
8846 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
8847 
8848 	up_read(&mm->mmap_sem);
8849 
8850 	mmput(mm);
8851 
8852 restart:
8853 	perf_event_stop(event, 1);
8854 }
8855 
8856 /*
8857  * Address range filtering: limiting the data to certain
8858  * instruction address ranges. Filters are ioctl()ed to us from
8859  * userspace as ascii strings.
8860  *
8861  * Filter string format:
8862  *
8863  * ACTION RANGE_SPEC
8864  * where ACTION is one of the
8865  *  * "filter": limit the trace to this region
8866  *  * "start": start tracing from this address
8867  *  * "stop": stop tracing at this address/region;
8868  * RANGE_SPEC is
8869  *  * for kernel addresses: <start address>[/<size>]
8870  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
8871  *
8872  * if <size> is not specified or is zero, the range is treated as a single
8873  * address; not valid for ACTION=="filter".
8874  */
8875 enum {
8876 	IF_ACT_NONE = -1,
8877 	IF_ACT_FILTER,
8878 	IF_ACT_START,
8879 	IF_ACT_STOP,
8880 	IF_SRC_FILE,
8881 	IF_SRC_KERNEL,
8882 	IF_SRC_FILEADDR,
8883 	IF_SRC_KERNELADDR,
8884 };
8885 
8886 enum {
8887 	IF_STATE_ACTION = 0,
8888 	IF_STATE_SOURCE,
8889 	IF_STATE_END,
8890 };
8891 
8892 static const match_table_t if_tokens = {
8893 	{ IF_ACT_FILTER,	"filter" },
8894 	{ IF_ACT_START,		"start" },
8895 	{ IF_ACT_STOP,		"stop" },
8896 	{ IF_SRC_FILE,		"%u/%u@%s" },
8897 	{ IF_SRC_KERNEL,	"%u/%u" },
8898 	{ IF_SRC_FILEADDR,	"%u@%s" },
8899 	{ IF_SRC_KERNELADDR,	"%u" },
8900 	{ IF_ACT_NONE,		NULL },
8901 };
8902 
8903 /*
8904  * Address filter string parser
8905  */
8906 static int
8907 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8908 			     struct list_head *filters)
8909 {
8910 	struct perf_addr_filter *filter = NULL;
8911 	char *start, *orig, *filename = NULL;
8912 	substring_t args[MAX_OPT_ARGS];
8913 	int state = IF_STATE_ACTION, token;
8914 	unsigned int kernel = 0;
8915 	int ret = -EINVAL;
8916 
8917 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
8918 	if (!fstr)
8919 		return -ENOMEM;
8920 
8921 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
8922 		static const enum perf_addr_filter_action_t actions[] = {
8923 			[IF_ACT_FILTER]	= PERF_ADDR_FILTER_ACTION_FILTER,
8924 			[IF_ACT_START]	= PERF_ADDR_FILTER_ACTION_START,
8925 			[IF_ACT_STOP]	= PERF_ADDR_FILTER_ACTION_STOP,
8926 		};
8927 		ret = -EINVAL;
8928 
8929 		if (!*start)
8930 			continue;
8931 
8932 		/* filter definition begins */
8933 		if (state == IF_STATE_ACTION) {
8934 			filter = perf_addr_filter_new(event, filters);
8935 			if (!filter)
8936 				goto fail;
8937 		}
8938 
8939 		token = match_token(start, if_tokens, args);
8940 		switch (token) {
8941 		case IF_ACT_FILTER:
8942 		case IF_ACT_START:
8943 		case IF_ACT_STOP:
8944 			if (state != IF_STATE_ACTION)
8945 				goto fail;
8946 
8947 			filter->action = actions[token];
8948 			state = IF_STATE_SOURCE;
8949 			break;
8950 
8951 		case IF_SRC_KERNELADDR:
8952 		case IF_SRC_KERNEL:
8953 			kernel = 1;
8954 
8955 		case IF_SRC_FILEADDR:
8956 		case IF_SRC_FILE:
8957 			if (state != IF_STATE_SOURCE)
8958 				goto fail;
8959 
8960 			*args[0].to = 0;
8961 			ret = kstrtoul(args[0].from, 0, &filter->offset);
8962 			if (ret)
8963 				goto fail;
8964 
8965 			if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
8966 				*args[1].to = 0;
8967 				ret = kstrtoul(args[1].from, 0, &filter->size);
8968 				if (ret)
8969 					goto fail;
8970 			}
8971 
8972 			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8973 				int fpos = token == IF_SRC_FILE ? 2 : 1;
8974 
8975 				filename = match_strdup(&args[fpos]);
8976 				if (!filename) {
8977 					ret = -ENOMEM;
8978 					goto fail;
8979 				}
8980 			}
8981 
8982 			state = IF_STATE_END;
8983 			break;
8984 
8985 		default:
8986 			goto fail;
8987 		}
8988 
8989 		/*
8990 		 * Filter definition is fully parsed, validate and install it.
8991 		 * Make sure that it doesn't contradict itself or the event's
8992 		 * attribute.
8993 		 */
8994 		if (state == IF_STATE_END) {
8995 			ret = -EINVAL;
8996 			if (kernel && event->attr.exclude_kernel)
8997 				goto fail;
8998 
8999 			/*
9000 			 * ACTION "filter" must have a non-zero length region
9001 			 * specified.
9002 			 */
9003 			if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
9004 			    !filter->size)
9005 				goto fail;
9006 
9007 			if (!kernel) {
9008 				if (!filename)
9009 					goto fail;
9010 
9011 				/*
9012 				 * For now, we only support file-based filters
9013 				 * in per-task events; doing so for CPU-wide
9014 				 * events requires additional context switching
9015 				 * trickery, since same object code will be
9016 				 * mapped at different virtual addresses in
9017 				 * different processes.
9018 				 */
9019 				ret = -EOPNOTSUPP;
9020 				if (!event->ctx->task)
9021 					goto fail_free_name;
9022 
9023 				/* look up the path and grab its inode */
9024 				ret = kern_path(filename, LOOKUP_FOLLOW,
9025 						&filter->path);
9026 				if (ret)
9027 					goto fail_free_name;
9028 
9029 				kfree(filename);
9030 				filename = NULL;
9031 
9032 				ret = -EINVAL;
9033 				if (!filter->path.dentry ||
9034 				    !S_ISREG(d_inode(filter->path.dentry)
9035 					     ->i_mode))
9036 					goto fail;
9037 
9038 				event->addr_filters.nr_file_filters++;
9039 			}
9040 
9041 			/* ready to consume more filters */
9042 			state = IF_STATE_ACTION;
9043 			filter = NULL;
9044 		}
9045 	}
9046 
9047 	if (state != IF_STATE_ACTION)
9048 		goto fail;
9049 
9050 	kfree(orig);
9051 
9052 	return 0;
9053 
9054 fail_free_name:
9055 	kfree(filename);
9056 fail:
9057 	free_filters_list(filters);
9058 	kfree(orig);
9059 
9060 	return ret;
9061 }
9062 
9063 static int
9064 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
9065 {
9066 	LIST_HEAD(filters);
9067 	int ret;
9068 
9069 	/*
9070 	 * Since this is called in perf_ioctl() path, we're already holding
9071 	 * ctx::mutex.
9072 	 */
9073 	lockdep_assert_held(&event->ctx->mutex);
9074 
9075 	if (WARN_ON_ONCE(event->parent))
9076 		return -EINVAL;
9077 
9078 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
9079 	if (ret)
9080 		goto fail_clear_files;
9081 
9082 	ret = event->pmu->addr_filters_validate(&filters);
9083 	if (ret)
9084 		goto fail_free_filters;
9085 
9086 	/* remove existing filters, if any */
9087 	perf_addr_filters_splice(event, &filters);
9088 
9089 	/* install new filters */
9090 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
9091 
9092 	return ret;
9093 
9094 fail_free_filters:
9095 	free_filters_list(&filters);
9096 
9097 fail_clear_files:
9098 	event->addr_filters.nr_file_filters = 0;
9099 
9100 	return ret;
9101 }
9102 
9103 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
9104 {
9105 	int ret = -EINVAL;
9106 	char *filter_str;
9107 
9108 	filter_str = strndup_user(arg, PAGE_SIZE);
9109 	if (IS_ERR(filter_str))
9110 		return PTR_ERR(filter_str);
9111 
9112 #ifdef CONFIG_EVENT_TRACING
9113 	if (perf_event_is_tracing(event)) {
9114 		struct perf_event_context *ctx = event->ctx;
9115 
9116 		/*
9117 		 * Beware, here be dragons!!
9118 		 *
9119 		 * the tracepoint muck will deadlock against ctx->mutex, but
9120 		 * the tracepoint stuff does not actually need it. So
9121 		 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
9122 		 * already have a reference on ctx.
9123 		 *
9124 		 * This can result in event getting moved to a different ctx,
9125 		 * but that does not affect the tracepoint state.
9126 		 */
9127 		mutex_unlock(&ctx->mutex);
9128 		ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
9129 		mutex_lock(&ctx->mutex);
9130 	} else
9131 #endif
9132 	if (has_addr_filter(event))
9133 		ret = perf_event_set_addr_filter(event, filter_str);
9134 
9135 	kfree(filter_str);
9136 	return ret;
9137 }
9138 
9139 /*
9140  * hrtimer based swevent callback
9141  */
9142 
9143 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
9144 {
9145 	enum hrtimer_restart ret = HRTIMER_RESTART;
9146 	struct perf_sample_data data;
9147 	struct pt_regs *regs;
9148 	struct perf_event *event;
9149 	u64 period;
9150 
9151 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
9152 
9153 	if (event->state != PERF_EVENT_STATE_ACTIVE)
9154 		return HRTIMER_NORESTART;
9155 
9156 	event->pmu->read(event);
9157 
9158 	perf_sample_data_init(&data, 0, event->hw.last_period);
9159 	regs = get_irq_regs();
9160 
9161 	if (regs && !perf_exclude_event(event, regs)) {
9162 		if (!(event->attr.exclude_idle && is_idle_task(current)))
9163 			if (__perf_event_overflow(event, 1, &data, regs))
9164 				ret = HRTIMER_NORESTART;
9165 	}
9166 
9167 	period = max_t(u64, 10000, event->hw.sample_period);
9168 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
9169 
9170 	return ret;
9171 }
9172 
9173 static void perf_swevent_start_hrtimer(struct perf_event *event)
9174 {
9175 	struct hw_perf_event *hwc = &event->hw;
9176 	s64 period;
9177 
9178 	if (!is_sampling_event(event))
9179 		return;
9180 
9181 	period = local64_read(&hwc->period_left);
9182 	if (period) {
9183 		if (period < 0)
9184 			period = 10000;
9185 
9186 		local64_set(&hwc->period_left, 0);
9187 	} else {
9188 		period = max_t(u64, 10000, hwc->sample_period);
9189 	}
9190 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
9191 		      HRTIMER_MODE_REL_PINNED);
9192 }
9193 
9194 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
9195 {
9196 	struct hw_perf_event *hwc = &event->hw;
9197 
9198 	if (is_sampling_event(event)) {
9199 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
9200 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
9201 
9202 		hrtimer_cancel(&hwc->hrtimer);
9203 	}
9204 }
9205 
9206 static void perf_swevent_init_hrtimer(struct perf_event *event)
9207 {
9208 	struct hw_perf_event *hwc = &event->hw;
9209 
9210 	if (!is_sampling_event(event))
9211 		return;
9212 
9213 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
9214 	hwc->hrtimer.function = perf_swevent_hrtimer;
9215 
9216 	/*
9217 	 * Since hrtimers have a fixed rate, we can do a static freq->period
9218 	 * mapping and avoid the whole period adjust feedback stuff.
9219 	 */
9220 	if (event->attr.freq) {
9221 		long freq = event->attr.sample_freq;
9222 
9223 		event->attr.sample_period = NSEC_PER_SEC / freq;
9224 		hwc->sample_period = event->attr.sample_period;
9225 		local64_set(&hwc->period_left, hwc->sample_period);
9226 		hwc->last_period = hwc->sample_period;
9227 		event->attr.freq = 0;
9228 	}
9229 }
9230 
9231 /*
9232  * Software event: cpu wall time clock
9233  */
9234 
9235 static void cpu_clock_event_update(struct perf_event *event)
9236 {
9237 	s64 prev;
9238 	u64 now;
9239 
9240 	now = local_clock();
9241 	prev = local64_xchg(&event->hw.prev_count, now);
9242 	local64_add(now - prev, &event->count);
9243 }
9244 
9245 static void cpu_clock_event_start(struct perf_event *event, int flags)
9246 {
9247 	local64_set(&event->hw.prev_count, local_clock());
9248 	perf_swevent_start_hrtimer(event);
9249 }
9250 
9251 static void cpu_clock_event_stop(struct perf_event *event, int flags)
9252 {
9253 	perf_swevent_cancel_hrtimer(event);
9254 	cpu_clock_event_update(event);
9255 }
9256 
9257 static int cpu_clock_event_add(struct perf_event *event, int flags)
9258 {
9259 	if (flags & PERF_EF_START)
9260 		cpu_clock_event_start(event, flags);
9261 	perf_event_update_userpage(event);
9262 
9263 	return 0;
9264 }
9265 
9266 static void cpu_clock_event_del(struct perf_event *event, int flags)
9267 {
9268 	cpu_clock_event_stop(event, flags);
9269 }
9270 
9271 static void cpu_clock_event_read(struct perf_event *event)
9272 {
9273 	cpu_clock_event_update(event);
9274 }
9275 
9276 static int cpu_clock_event_init(struct perf_event *event)
9277 {
9278 	if (event->attr.type != PERF_TYPE_SOFTWARE)
9279 		return -ENOENT;
9280 
9281 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
9282 		return -ENOENT;
9283 
9284 	/*
9285 	 * no branch sampling for software events
9286 	 */
9287 	if (has_branch_stack(event))
9288 		return -EOPNOTSUPP;
9289 
9290 	perf_swevent_init_hrtimer(event);
9291 
9292 	return 0;
9293 }
9294 
9295 static struct pmu perf_cpu_clock = {
9296 	.task_ctx_nr	= perf_sw_context,
9297 
9298 	.capabilities	= PERF_PMU_CAP_NO_NMI,
9299 
9300 	.event_init	= cpu_clock_event_init,
9301 	.add		= cpu_clock_event_add,
9302 	.del		= cpu_clock_event_del,
9303 	.start		= cpu_clock_event_start,
9304 	.stop		= cpu_clock_event_stop,
9305 	.read		= cpu_clock_event_read,
9306 };
9307 
9308 /*
9309  * Software event: task time clock
9310  */
9311 
9312 static void task_clock_event_update(struct perf_event *event, u64 now)
9313 {
9314 	u64 prev;
9315 	s64 delta;
9316 
9317 	prev = local64_xchg(&event->hw.prev_count, now);
9318 	delta = now - prev;
9319 	local64_add(delta, &event->count);
9320 }
9321 
9322 static void task_clock_event_start(struct perf_event *event, int flags)
9323 {
9324 	local64_set(&event->hw.prev_count, event->ctx->time);
9325 	perf_swevent_start_hrtimer(event);
9326 }
9327 
9328 static void task_clock_event_stop(struct perf_event *event, int flags)
9329 {
9330 	perf_swevent_cancel_hrtimer(event);
9331 	task_clock_event_update(event, event->ctx->time);
9332 }
9333 
9334 static int task_clock_event_add(struct perf_event *event, int flags)
9335 {
9336 	if (flags & PERF_EF_START)
9337 		task_clock_event_start(event, flags);
9338 	perf_event_update_userpage(event);
9339 
9340 	return 0;
9341 }
9342 
9343 static void task_clock_event_del(struct perf_event *event, int flags)
9344 {
9345 	task_clock_event_stop(event, PERF_EF_UPDATE);
9346 }
9347 
9348 static void task_clock_event_read(struct perf_event *event)
9349 {
9350 	u64 now = perf_clock();
9351 	u64 delta = now - event->ctx->timestamp;
9352 	u64 time = event->ctx->time + delta;
9353 
9354 	task_clock_event_update(event, time);
9355 }
9356 
9357 static int task_clock_event_init(struct perf_event *event)
9358 {
9359 	if (event->attr.type != PERF_TYPE_SOFTWARE)
9360 		return -ENOENT;
9361 
9362 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
9363 		return -ENOENT;
9364 
9365 	/*
9366 	 * no branch sampling for software events
9367 	 */
9368 	if (has_branch_stack(event))
9369 		return -EOPNOTSUPP;
9370 
9371 	perf_swevent_init_hrtimer(event);
9372 
9373 	return 0;
9374 }
9375 
9376 static struct pmu perf_task_clock = {
9377 	.task_ctx_nr	= perf_sw_context,
9378 
9379 	.capabilities	= PERF_PMU_CAP_NO_NMI,
9380 
9381 	.event_init	= task_clock_event_init,
9382 	.add		= task_clock_event_add,
9383 	.del		= task_clock_event_del,
9384 	.start		= task_clock_event_start,
9385 	.stop		= task_clock_event_stop,
9386 	.read		= task_clock_event_read,
9387 };
9388 
9389 static void perf_pmu_nop_void(struct pmu *pmu)
9390 {
9391 }
9392 
9393 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
9394 {
9395 }
9396 
9397 static int perf_pmu_nop_int(struct pmu *pmu)
9398 {
9399 	return 0;
9400 }
9401 
9402 static int perf_event_nop_int(struct perf_event *event, u64 value)
9403 {
9404 	return 0;
9405 }
9406 
9407 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
9408 
9409 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
9410 {
9411 	__this_cpu_write(nop_txn_flags, flags);
9412 
9413 	if (flags & ~PERF_PMU_TXN_ADD)
9414 		return;
9415 
9416 	perf_pmu_disable(pmu);
9417 }
9418 
9419 static int perf_pmu_commit_txn(struct pmu *pmu)
9420 {
9421 	unsigned int flags = __this_cpu_read(nop_txn_flags);
9422 
9423 	__this_cpu_write(nop_txn_flags, 0);
9424 
9425 	if (flags & ~PERF_PMU_TXN_ADD)
9426 		return 0;
9427 
9428 	perf_pmu_enable(pmu);
9429 	return 0;
9430 }
9431 
9432 static void perf_pmu_cancel_txn(struct pmu *pmu)
9433 {
9434 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
9435 
9436 	__this_cpu_write(nop_txn_flags, 0);
9437 
9438 	if (flags & ~PERF_PMU_TXN_ADD)
9439 		return;
9440 
9441 	perf_pmu_enable(pmu);
9442 }
9443 
9444 static int perf_event_idx_default(struct perf_event *event)
9445 {
9446 	return 0;
9447 }
9448 
9449 /*
9450  * Ensures all contexts with the same task_ctx_nr have the same
9451  * pmu_cpu_context too.
9452  */
9453 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
9454 {
9455 	struct pmu *pmu;
9456 
9457 	if (ctxn < 0)
9458 		return NULL;
9459 
9460 	list_for_each_entry(pmu, &pmus, entry) {
9461 		if (pmu->task_ctx_nr == ctxn)
9462 			return pmu->pmu_cpu_context;
9463 	}
9464 
9465 	return NULL;
9466 }
9467 
9468 static void free_pmu_context(struct pmu *pmu)
9469 {
9470 	/*
9471 	 * Static contexts such as perf_sw_context have a global lifetime
9472 	 * and may be shared between different PMUs. Avoid freeing them
9473 	 * when a single PMU is going away.
9474 	 */
9475 	if (pmu->task_ctx_nr > perf_invalid_context)
9476 		return;
9477 
9478 	free_percpu(pmu->pmu_cpu_context);
9479 }
9480 
9481 /*
9482  * Let userspace know that this PMU supports address range filtering:
9483  */
9484 static ssize_t nr_addr_filters_show(struct device *dev,
9485 				    struct device_attribute *attr,
9486 				    char *page)
9487 {
9488 	struct pmu *pmu = dev_get_drvdata(dev);
9489 
9490 	return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
9491 }
9492 DEVICE_ATTR_RO(nr_addr_filters);
9493 
9494 static struct idr pmu_idr;
9495 
9496 static ssize_t
9497 type_show(struct device *dev, struct device_attribute *attr, char *page)
9498 {
9499 	struct pmu *pmu = dev_get_drvdata(dev);
9500 
9501 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
9502 }
9503 static DEVICE_ATTR_RO(type);
9504 
9505 static ssize_t
9506 perf_event_mux_interval_ms_show(struct device *dev,
9507 				struct device_attribute *attr,
9508 				char *page)
9509 {
9510 	struct pmu *pmu = dev_get_drvdata(dev);
9511 
9512 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
9513 }
9514 
9515 static DEFINE_MUTEX(mux_interval_mutex);
9516 
9517 static ssize_t
9518 perf_event_mux_interval_ms_store(struct device *dev,
9519 				 struct device_attribute *attr,
9520 				 const char *buf, size_t count)
9521 {
9522 	struct pmu *pmu = dev_get_drvdata(dev);
9523 	int timer, cpu, ret;
9524 
9525 	ret = kstrtoint(buf, 0, &timer);
9526 	if (ret)
9527 		return ret;
9528 
9529 	if (timer < 1)
9530 		return -EINVAL;
9531 
9532 	/* same value, noting to do */
9533 	if (timer == pmu->hrtimer_interval_ms)
9534 		return count;
9535 
9536 	mutex_lock(&mux_interval_mutex);
9537 	pmu->hrtimer_interval_ms = timer;
9538 
9539 	/* update all cpuctx for this PMU */
9540 	cpus_read_lock();
9541 	for_each_online_cpu(cpu) {
9542 		struct perf_cpu_context *cpuctx;
9543 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9544 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9545 
9546 		cpu_function_call(cpu,
9547 			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
9548 	}
9549 	cpus_read_unlock();
9550 	mutex_unlock(&mux_interval_mutex);
9551 
9552 	return count;
9553 }
9554 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
9555 
9556 static struct attribute *pmu_dev_attrs[] = {
9557 	&dev_attr_type.attr,
9558 	&dev_attr_perf_event_mux_interval_ms.attr,
9559 	NULL,
9560 };
9561 ATTRIBUTE_GROUPS(pmu_dev);
9562 
9563 static int pmu_bus_running;
9564 static struct bus_type pmu_bus = {
9565 	.name		= "event_source",
9566 	.dev_groups	= pmu_dev_groups,
9567 };
9568 
9569 static void pmu_dev_release(struct device *dev)
9570 {
9571 	kfree(dev);
9572 }
9573 
9574 static int pmu_dev_alloc(struct pmu *pmu)
9575 {
9576 	int ret = -ENOMEM;
9577 
9578 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
9579 	if (!pmu->dev)
9580 		goto out;
9581 
9582 	pmu->dev->groups = pmu->attr_groups;
9583 	device_initialize(pmu->dev);
9584 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
9585 	if (ret)
9586 		goto free_dev;
9587 
9588 	dev_set_drvdata(pmu->dev, pmu);
9589 	pmu->dev->bus = &pmu_bus;
9590 	pmu->dev->release = pmu_dev_release;
9591 	ret = device_add(pmu->dev);
9592 	if (ret)
9593 		goto free_dev;
9594 
9595 	/* For PMUs with address filters, throw in an extra attribute: */
9596 	if (pmu->nr_addr_filters)
9597 		ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
9598 
9599 	if (ret)
9600 		goto del_dev;
9601 
9602 out:
9603 	return ret;
9604 
9605 del_dev:
9606 	device_del(pmu->dev);
9607 
9608 free_dev:
9609 	put_device(pmu->dev);
9610 	goto out;
9611 }
9612 
9613 static struct lock_class_key cpuctx_mutex;
9614 static struct lock_class_key cpuctx_lock;
9615 
9616 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
9617 {
9618 	int cpu, ret;
9619 
9620 	mutex_lock(&pmus_lock);
9621 	ret = -ENOMEM;
9622 	pmu->pmu_disable_count = alloc_percpu(int);
9623 	if (!pmu->pmu_disable_count)
9624 		goto unlock;
9625 
9626 	pmu->type = -1;
9627 	if (!name)
9628 		goto skip_type;
9629 	pmu->name = name;
9630 
9631 	if (type < 0) {
9632 		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9633 		if (type < 0) {
9634 			ret = type;
9635 			goto free_pdc;
9636 		}
9637 	}
9638 	pmu->type = type;
9639 
9640 	if (pmu_bus_running) {
9641 		ret = pmu_dev_alloc(pmu);
9642 		if (ret)
9643 			goto free_idr;
9644 	}
9645 
9646 skip_type:
9647 	if (pmu->task_ctx_nr == perf_hw_context) {
9648 		static int hw_context_taken = 0;
9649 
9650 		/*
9651 		 * Other than systems with heterogeneous CPUs, it never makes
9652 		 * sense for two PMUs to share perf_hw_context. PMUs which are
9653 		 * uncore must use perf_invalid_context.
9654 		 */
9655 		if (WARN_ON_ONCE(hw_context_taken &&
9656 		    !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
9657 			pmu->task_ctx_nr = perf_invalid_context;
9658 
9659 		hw_context_taken = 1;
9660 	}
9661 
9662 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9663 	if (pmu->pmu_cpu_context)
9664 		goto got_cpu_context;
9665 
9666 	ret = -ENOMEM;
9667 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9668 	if (!pmu->pmu_cpu_context)
9669 		goto free_dev;
9670 
9671 	for_each_possible_cpu(cpu) {
9672 		struct perf_cpu_context *cpuctx;
9673 
9674 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9675 		__perf_event_init_context(&cpuctx->ctx);
9676 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
9677 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
9678 		cpuctx->ctx.pmu = pmu;
9679 		cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9680 
9681 		__perf_mux_hrtimer_init(cpuctx, cpu);
9682 	}
9683 
9684 got_cpu_context:
9685 	if (!pmu->start_txn) {
9686 		if (pmu->pmu_enable) {
9687 			/*
9688 			 * If we have pmu_enable/pmu_disable calls, install
9689 			 * transaction stubs that use that to try and batch
9690 			 * hardware accesses.
9691 			 */
9692 			pmu->start_txn  = perf_pmu_start_txn;
9693 			pmu->commit_txn = perf_pmu_commit_txn;
9694 			pmu->cancel_txn = perf_pmu_cancel_txn;
9695 		} else {
9696 			pmu->start_txn  = perf_pmu_nop_txn;
9697 			pmu->commit_txn = perf_pmu_nop_int;
9698 			pmu->cancel_txn = perf_pmu_nop_void;
9699 		}
9700 	}
9701 
9702 	if (!pmu->pmu_enable) {
9703 		pmu->pmu_enable  = perf_pmu_nop_void;
9704 		pmu->pmu_disable = perf_pmu_nop_void;
9705 	}
9706 
9707 	if (!pmu->check_period)
9708 		pmu->check_period = perf_event_nop_int;
9709 
9710 	if (!pmu->event_idx)
9711 		pmu->event_idx = perf_event_idx_default;
9712 
9713 	list_add_rcu(&pmu->entry, &pmus);
9714 	atomic_set(&pmu->exclusive_cnt, 0);
9715 	ret = 0;
9716 unlock:
9717 	mutex_unlock(&pmus_lock);
9718 
9719 	return ret;
9720 
9721 free_dev:
9722 	device_del(pmu->dev);
9723 	put_device(pmu->dev);
9724 
9725 free_idr:
9726 	if (pmu->type >= PERF_TYPE_MAX)
9727 		idr_remove(&pmu_idr, pmu->type);
9728 
9729 free_pdc:
9730 	free_percpu(pmu->pmu_disable_count);
9731 	goto unlock;
9732 }
9733 EXPORT_SYMBOL_GPL(perf_pmu_register);
9734 
9735 void perf_pmu_unregister(struct pmu *pmu)
9736 {
9737 	mutex_lock(&pmus_lock);
9738 	list_del_rcu(&pmu->entry);
9739 
9740 	/*
9741 	 * We dereference the pmu list under both SRCU and regular RCU, so
9742 	 * synchronize against both of those.
9743 	 */
9744 	synchronize_srcu(&pmus_srcu);
9745 	synchronize_rcu();
9746 
9747 	free_percpu(pmu->pmu_disable_count);
9748 	if (pmu->type >= PERF_TYPE_MAX)
9749 		idr_remove(&pmu_idr, pmu->type);
9750 	if (pmu_bus_running) {
9751 		if (pmu->nr_addr_filters)
9752 			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
9753 		device_del(pmu->dev);
9754 		put_device(pmu->dev);
9755 	}
9756 	free_pmu_context(pmu);
9757 	mutex_unlock(&pmus_lock);
9758 }
9759 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
9760 
9761 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
9762 {
9763 	struct perf_event_context *ctx = NULL;
9764 	int ret;
9765 
9766 	if (!try_module_get(pmu->module))
9767 		return -ENODEV;
9768 
9769 	/*
9770 	 * A number of pmu->event_init() methods iterate the sibling_list to,
9771 	 * for example, validate if the group fits on the PMU. Therefore,
9772 	 * if this is a sibling event, acquire the ctx->mutex to protect
9773 	 * the sibling_list.
9774 	 */
9775 	if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
9776 		/*
9777 		 * This ctx->mutex can nest when we're called through
9778 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
9779 		 */
9780 		ctx = perf_event_ctx_lock_nested(event->group_leader,
9781 						 SINGLE_DEPTH_NESTING);
9782 		BUG_ON(!ctx);
9783 	}
9784 
9785 	event->pmu = pmu;
9786 	ret = pmu->event_init(event);
9787 
9788 	if (ctx)
9789 		perf_event_ctx_unlock(event->group_leader, ctx);
9790 
9791 	if (ret)
9792 		module_put(pmu->module);
9793 
9794 	return ret;
9795 }
9796 
9797 static struct pmu *perf_init_event(struct perf_event *event)
9798 {
9799 	struct pmu *pmu;
9800 	int idx;
9801 	int ret;
9802 
9803 	idx = srcu_read_lock(&pmus_srcu);
9804 
9805 	/* Try parent's PMU first: */
9806 	if (event->parent && event->parent->pmu) {
9807 		pmu = event->parent->pmu;
9808 		ret = perf_try_init_event(pmu, event);
9809 		if (!ret)
9810 			goto unlock;
9811 	}
9812 
9813 	rcu_read_lock();
9814 	pmu = idr_find(&pmu_idr, event->attr.type);
9815 	rcu_read_unlock();
9816 	if (pmu) {
9817 		ret = perf_try_init_event(pmu, event);
9818 		if (ret)
9819 			pmu = ERR_PTR(ret);
9820 		goto unlock;
9821 	}
9822 
9823 	list_for_each_entry_rcu(pmu, &pmus, entry) {
9824 		ret = perf_try_init_event(pmu, event);
9825 		if (!ret)
9826 			goto unlock;
9827 
9828 		if (ret != -ENOENT) {
9829 			pmu = ERR_PTR(ret);
9830 			goto unlock;
9831 		}
9832 	}
9833 	pmu = ERR_PTR(-ENOENT);
9834 unlock:
9835 	srcu_read_unlock(&pmus_srcu, idx);
9836 
9837 	return pmu;
9838 }
9839 
9840 static void attach_sb_event(struct perf_event *event)
9841 {
9842 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9843 
9844 	raw_spin_lock(&pel->lock);
9845 	list_add_rcu(&event->sb_list, &pel->list);
9846 	raw_spin_unlock(&pel->lock);
9847 }
9848 
9849 /*
9850  * We keep a list of all !task (and therefore per-cpu) events
9851  * that need to receive side-band records.
9852  *
9853  * This avoids having to scan all the various PMU per-cpu contexts
9854  * looking for them.
9855  */
9856 static void account_pmu_sb_event(struct perf_event *event)
9857 {
9858 	if (is_sb_event(event))
9859 		attach_sb_event(event);
9860 }
9861 
9862 static void account_event_cpu(struct perf_event *event, int cpu)
9863 {
9864 	if (event->parent)
9865 		return;
9866 
9867 	if (is_cgroup_event(event))
9868 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9869 }
9870 
9871 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
9872 static void account_freq_event_nohz(void)
9873 {
9874 #ifdef CONFIG_NO_HZ_FULL
9875 	/* Lock so we don't race with concurrent unaccount */
9876 	spin_lock(&nr_freq_lock);
9877 	if (atomic_inc_return(&nr_freq_events) == 1)
9878 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9879 	spin_unlock(&nr_freq_lock);
9880 #endif
9881 }
9882 
9883 static void account_freq_event(void)
9884 {
9885 	if (tick_nohz_full_enabled())
9886 		account_freq_event_nohz();
9887 	else
9888 		atomic_inc(&nr_freq_events);
9889 }
9890 
9891 
9892 static void account_event(struct perf_event *event)
9893 {
9894 	bool inc = false;
9895 
9896 	if (event->parent)
9897 		return;
9898 
9899 	if (event->attach_state & PERF_ATTACH_TASK)
9900 		inc = true;
9901 	if (event->attr.mmap || event->attr.mmap_data)
9902 		atomic_inc(&nr_mmap_events);
9903 	if (event->attr.comm)
9904 		atomic_inc(&nr_comm_events);
9905 	if (event->attr.namespaces)
9906 		atomic_inc(&nr_namespaces_events);
9907 	if (event->attr.task)
9908 		atomic_inc(&nr_task_events);
9909 	if (event->attr.freq)
9910 		account_freq_event();
9911 	if (event->attr.context_switch) {
9912 		atomic_inc(&nr_switch_events);
9913 		inc = true;
9914 	}
9915 	if (has_branch_stack(event))
9916 		inc = true;
9917 	if (is_cgroup_event(event))
9918 		inc = true;
9919 
9920 	if (inc) {
9921 		/*
9922 		 * We need the mutex here because static_branch_enable()
9923 		 * must complete *before* the perf_sched_count increment
9924 		 * becomes visible.
9925 		 */
9926 		if (atomic_inc_not_zero(&perf_sched_count))
9927 			goto enabled;
9928 
9929 		mutex_lock(&perf_sched_mutex);
9930 		if (!atomic_read(&perf_sched_count)) {
9931 			static_branch_enable(&perf_sched_events);
9932 			/*
9933 			 * Guarantee that all CPUs observe they key change and
9934 			 * call the perf scheduling hooks before proceeding to
9935 			 * install events that need them.
9936 			 */
9937 			synchronize_rcu();
9938 		}
9939 		/*
9940 		 * Now that we have waited for the sync_sched(), allow further
9941 		 * increments to by-pass the mutex.
9942 		 */
9943 		atomic_inc(&perf_sched_count);
9944 		mutex_unlock(&perf_sched_mutex);
9945 	}
9946 enabled:
9947 
9948 	account_event_cpu(event, event->cpu);
9949 
9950 	account_pmu_sb_event(event);
9951 }
9952 
9953 /*
9954  * Allocate and initialize an event structure
9955  */
9956 static struct perf_event *
9957 perf_event_alloc(struct perf_event_attr *attr, int cpu,
9958 		 struct task_struct *task,
9959 		 struct perf_event *group_leader,
9960 		 struct perf_event *parent_event,
9961 		 perf_overflow_handler_t overflow_handler,
9962 		 void *context, int cgroup_fd)
9963 {
9964 	struct pmu *pmu;
9965 	struct perf_event *event;
9966 	struct hw_perf_event *hwc;
9967 	long err = -EINVAL;
9968 
9969 	if ((unsigned)cpu >= nr_cpu_ids) {
9970 		if (!task || cpu != -1)
9971 			return ERR_PTR(-EINVAL);
9972 	}
9973 
9974 	event = kzalloc(sizeof(*event), GFP_KERNEL);
9975 	if (!event)
9976 		return ERR_PTR(-ENOMEM);
9977 
9978 	/*
9979 	 * Single events are their own group leaders, with an
9980 	 * empty sibling list:
9981 	 */
9982 	if (!group_leader)
9983 		group_leader = event;
9984 
9985 	mutex_init(&event->child_mutex);
9986 	INIT_LIST_HEAD(&event->child_list);
9987 
9988 	INIT_LIST_HEAD(&event->event_entry);
9989 	INIT_LIST_HEAD(&event->sibling_list);
9990 	INIT_LIST_HEAD(&event->active_list);
9991 	init_event_group(event);
9992 	INIT_LIST_HEAD(&event->rb_entry);
9993 	INIT_LIST_HEAD(&event->active_entry);
9994 	INIT_LIST_HEAD(&event->addr_filters.list);
9995 	INIT_HLIST_NODE(&event->hlist_entry);
9996 
9997 
9998 	init_waitqueue_head(&event->waitq);
9999 	init_irq_work(&event->pending, perf_pending_event);
10000 
10001 	mutex_init(&event->mmap_mutex);
10002 	raw_spin_lock_init(&event->addr_filters.lock);
10003 
10004 	atomic_long_set(&event->refcount, 1);
10005 	event->cpu		= cpu;
10006 	event->attr		= *attr;
10007 	event->group_leader	= group_leader;
10008 	event->pmu		= NULL;
10009 	event->oncpu		= -1;
10010 
10011 	event->parent		= parent_event;
10012 
10013 	event->ns		= get_pid_ns(task_active_pid_ns(current));
10014 	event->id		= atomic64_inc_return(&perf_event_id);
10015 
10016 	event->state		= PERF_EVENT_STATE_INACTIVE;
10017 
10018 	if (task) {
10019 		event->attach_state = PERF_ATTACH_TASK;
10020 		/*
10021 		 * XXX pmu::event_init needs to know what task to account to
10022 		 * and we cannot use the ctx information because we need the
10023 		 * pmu before we get a ctx.
10024 		 */
10025 		get_task_struct(task);
10026 		event->hw.target = task;
10027 	}
10028 
10029 	event->clock = &local_clock;
10030 	if (parent_event)
10031 		event->clock = parent_event->clock;
10032 
10033 	if (!overflow_handler && parent_event) {
10034 		overflow_handler = parent_event->overflow_handler;
10035 		context = parent_event->overflow_handler_context;
10036 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
10037 		if (overflow_handler == bpf_overflow_handler) {
10038 			struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
10039 
10040 			if (IS_ERR(prog)) {
10041 				err = PTR_ERR(prog);
10042 				goto err_ns;
10043 			}
10044 			event->prog = prog;
10045 			event->orig_overflow_handler =
10046 				parent_event->orig_overflow_handler;
10047 		}
10048 #endif
10049 	}
10050 
10051 	if (overflow_handler) {
10052 		event->overflow_handler	= overflow_handler;
10053 		event->overflow_handler_context = context;
10054 	} else if (is_write_backward(event)){
10055 		event->overflow_handler = perf_event_output_backward;
10056 		event->overflow_handler_context = NULL;
10057 	} else {
10058 		event->overflow_handler = perf_event_output_forward;
10059 		event->overflow_handler_context = NULL;
10060 	}
10061 
10062 	perf_event__state_init(event);
10063 
10064 	pmu = NULL;
10065 
10066 	hwc = &event->hw;
10067 	hwc->sample_period = attr->sample_period;
10068 	if (attr->freq && attr->sample_freq)
10069 		hwc->sample_period = 1;
10070 	hwc->last_period = hwc->sample_period;
10071 
10072 	local64_set(&hwc->period_left, hwc->sample_period);
10073 
10074 	/*
10075 	 * We currently do not support PERF_SAMPLE_READ on inherited events.
10076 	 * See perf_output_read().
10077 	 */
10078 	if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
10079 		goto err_ns;
10080 
10081 	if (!has_branch_stack(event))
10082 		event->attr.branch_sample_type = 0;
10083 
10084 	if (cgroup_fd != -1) {
10085 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
10086 		if (err)
10087 			goto err_ns;
10088 	}
10089 
10090 	pmu = perf_init_event(event);
10091 	if (IS_ERR(pmu)) {
10092 		err = PTR_ERR(pmu);
10093 		goto err_ns;
10094 	}
10095 
10096 	err = exclusive_event_init(event);
10097 	if (err)
10098 		goto err_pmu;
10099 
10100 	if (has_addr_filter(event)) {
10101 		event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
10102 						   sizeof(unsigned long),
10103 						   GFP_KERNEL);
10104 		if (!event->addr_filters_offs) {
10105 			err = -ENOMEM;
10106 			goto err_per_task;
10107 		}
10108 
10109 		/* force hw sync on the address filters */
10110 		event->addr_filters_gen = 1;
10111 	}
10112 
10113 	if (!event->parent) {
10114 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
10115 			err = get_callchain_buffers(attr->sample_max_stack);
10116 			if (err)
10117 				goto err_addr_filters;
10118 		}
10119 	}
10120 
10121 	/* symmetric to unaccount_event() in _free_event() */
10122 	account_event(event);
10123 
10124 	return event;
10125 
10126 err_addr_filters:
10127 	kfree(event->addr_filters_offs);
10128 
10129 err_per_task:
10130 	exclusive_event_destroy(event);
10131 
10132 err_pmu:
10133 	if (event->destroy)
10134 		event->destroy(event);
10135 	module_put(pmu->module);
10136 err_ns:
10137 	if (is_cgroup_event(event))
10138 		perf_detach_cgroup(event);
10139 	if (event->ns)
10140 		put_pid_ns(event->ns);
10141 	if (event->hw.target)
10142 		put_task_struct(event->hw.target);
10143 	kfree(event);
10144 
10145 	return ERR_PTR(err);
10146 }
10147 
10148 static int perf_copy_attr(struct perf_event_attr __user *uattr,
10149 			  struct perf_event_attr *attr)
10150 {
10151 	u32 size;
10152 	int ret;
10153 
10154 	if (!access_ok(uattr, PERF_ATTR_SIZE_VER0))
10155 		return -EFAULT;
10156 
10157 	/*
10158 	 * zero the full structure, so that a short copy will be nice.
10159 	 */
10160 	memset(attr, 0, sizeof(*attr));
10161 
10162 	ret = get_user(size, &uattr->size);
10163 	if (ret)
10164 		return ret;
10165 
10166 	if (size > PAGE_SIZE)	/* silly large */
10167 		goto err_size;
10168 
10169 	if (!size)		/* abi compat */
10170 		size = PERF_ATTR_SIZE_VER0;
10171 
10172 	if (size < PERF_ATTR_SIZE_VER0)
10173 		goto err_size;
10174 
10175 	/*
10176 	 * If we're handed a bigger struct than we know of,
10177 	 * ensure all the unknown bits are 0 - i.e. new
10178 	 * user-space does not rely on any kernel feature
10179 	 * extensions we dont know about yet.
10180 	 */
10181 	if (size > sizeof(*attr)) {
10182 		unsigned char __user *addr;
10183 		unsigned char __user *end;
10184 		unsigned char val;
10185 
10186 		addr = (void __user *)uattr + sizeof(*attr);
10187 		end  = (void __user *)uattr + size;
10188 
10189 		for (; addr < end; addr++) {
10190 			ret = get_user(val, addr);
10191 			if (ret)
10192 				return ret;
10193 			if (val)
10194 				goto err_size;
10195 		}
10196 		size = sizeof(*attr);
10197 	}
10198 
10199 	ret = copy_from_user(attr, uattr, size);
10200 	if (ret)
10201 		return -EFAULT;
10202 
10203 	attr->size = size;
10204 
10205 	if (attr->__reserved_1)
10206 		return -EINVAL;
10207 
10208 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
10209 		return -EINVAL;
10210 
10211 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
10212 		return -EINVAL;
10213 
10214 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
10215 		u64 mask = attr->branch_sample_type;
10216 
10217 		/* only using defined bits */
10218 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
10219 			return -EINVAL;
10220 
10221 		/* at least one branch bit must be set */
10222 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
10223 			return -EINVAL;
10224 
10225 		/* propagate priv level, when not set for branch */
10226 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
10227 
10228 			/* exclude_kernel checked on syscall entry */
10229 			if (!attr->exclude_kernel)
10230 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
10231 
10232 			if (!attr->exclude_user)
10233 				mask |= PERF_SAMPLE_BRANCH_USER;
10234 
10235 			if (!attr->exclude_hv)
10236 				mask |= PERF_SAMPLE_BRANCH_HV;
10237 			/*
10238 			 * adjust user setting (for HW filter setup)
10239 			 */
10240 			attr->branch_sample_type = mask;
10241 		}
10242 		/* privileged levels capture (kernel, hv): check permissions */
10243 		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
10244 		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10245 			return -EACCES;
10246 	}
10247 
10248 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
10249 		ret = perf_reg_validate(attr->sample_regs_user);
10250 		if (ret)
10251 			return ret;
10252 	}
10253 
10254 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
10255 		if (!arch_perf_have_user_stack_dump())
10256 			return -ENOSYS;
10257 
10258 		/*
10259 		 * We have __u32 type for the size, but so far
10260 		 * we can only use __u16 as maximum due to the
10261 		 * __u16 sample size limit.
10262 		 */
10263 		if (attr->sample_stack_user >= USHRT_MAX)
10264 			return -EINVAL;
10265 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
10266 			return -EINVAL;
10267 	}
10268 
10269 	if (!attr->sample_max_stack)
10270 		attr->sample_max_stack = sysctl_perf_event_max_stack;
10271 
10272 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
10273 		ret = perf_reg_validate(attr->sample_regs_intr);
10274 out:
10275 	return ret;
10276 
10277 err_size:
10278 	put_user(sizeof(*attr), &uattr->size);
10279 	ret = -E2BIG;
10280 	goto out;
10281 }
10282 
10283 static int
10284 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
10285 {
10286 	struct ring_buffer *rb = NULL;
10287 	int ret = -EINVAL;
10288 
10289 	if (!output_event)
10290 		goto set;
10291 
10292 	/* don't allow circular references */
10293 	if (event == output_event)
10294 		goto out;
10295 
10296 	/*
10297 	 * Don't allow cross-cpu buffers
10298 	 */
10299 	if (output_event->cpu != event->cpu)
10300 		goto out;
10301 
10302 	/*
10303 	 * If its not a per-cpu rb, it must be the same task.
10304 	 */
10305 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
10306 		goto out;
10307 
10308 	/*
10309 	 * Mixing clocks in the same buffer is trouble you don't need.
10310 	 */
10311 	if (output_event->clock != event->clock)
10312 		goto out;
10313 
10314 	/*
10315 	 * Either writing ring buffer from beginning or from end.
10316 	 * Mixing is not allowed.
10317 	 */
10318 	if (is_write_backward(output_event) != is_write_backward(event))
10319 		goto out;
10320 
10321 	/*
10322 	 * If both events generate aux data, they must be on the same PMU
10323 	 */
10324 	if (has_aux(event) && has_aux(output_event) &&
10325 	    event->pmu != output_event->pmu)
10326 		goto out;
10327 
10328 set:
10329 	mutex_lock(&event->mmap_mutex);
10330 	/* Can't redirect output if we've got an active mmap() */
10331 	if (atomic_read(&event->mmap_count))
10332 		goto unlock;
10333 
10334 	if (output_event) {
10335 		/* get the rb we want to redirect to */
10336 		rb = ring_buffer_get(output_event);
10337 		if (!rb)
10338 			goto unlock;
10339 	}
10340 
10341 	ring_buffer_attach(event, rb);
10342 
10343 	ret = 0;
10344 unlock:
10345 	mutex_unlock(&event->mmap_mutex);
10346 
10347 out:
10348 	return ret;
10349 }
10350 
10351 static void mutex_lock_double(struct mutex *a, struct mutex *b)
10352 {
10353 	if (b < a)
10354 		swap(a, b);
10355 
10356 	mutex_lock(a);
10357 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
10358 }
10359 
10360 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
10361 {
10362 	bool nmi_safe = false;
10363 
10364 	switch (clk_id) {
10365 	case CLOCK_MONOTONIC:
10366 		event->clock = &ktime_get_mono_fast_ns;
10367 		nmi_safe = true;
10368 		break;
10369 
10370 	case CLOCK_MONOTONIC_RAW:
10371 		event->clock = &ktime_get_raw_fast_ns;
10372 		nmi_safe = true;
10373 		break;
10374 
10375 	case CLOCK_REALTIME:
10376 		event->clock = &ktime_get_real_ns;
10377 		break;
10378 
10379 	case CLOCK_BOOTTIME:
10380 		event->clock = &ktime_get_boot_ns;
10381 		break;
10382 
10383 	case CLOCK_TAI:
10384 		event->clock = &ktime_get_tai_ns;
10385 		break;
10386 
10387 	default:
10388 		return -EINVAL;
10389 	}
10390 
10391 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
10392 		return -EINVAL;
10393 
10394 	return 0;
10395 }
10396 
10397 /*
10398  * Variation on perf_event_ctx_lock_nested(), except we take two context
10399  * mutexes.
10400  */
10401 static struct perf_event_context *
10402 __perf_event_ctx_lock_double(struct perf_event *group_leader,
10403 			     struct perf_event_context *ctx)
10404 {
10405 	struct perf_event_context *gctx;
10406 
10407 again:
10408 	rcu_read_lock();
10409 	gctx = READ_ONCE(group_leader->ctx);
10410 	if (!atomic_inc_not_zero(&gctx->refcount)) {
10411 		rcu_read_unlock();
10412 		goto again;
10413 	}
10414 	rcu_read_unlock();
10415 
10416 	mutex_lock_double(&gctx->mutex, &ctx->mutex);
10417 
10418 	if (group_leader->ctx != gctx) {
10419 		mutex_unlock(&ctx->mutex);
10420 		mutex_unlock(&gctx->mutex);
10421 		put_ctx(gctx);
10422 		goto again;
10423 	}
10424 
10425 	return gctx;
10426 }
10427 
10428 /**
10429  * sys_perf_event_open - open a performance event, associate it to a task/cpu
10430  *
10431  * @attr_uptr:	event_id type attributes for monitoring/sampling
10432  * @pid:		target pid
10433  * @cpu:		target cpu
10434  * @group_fd:		group leader event fd
10435  */
10436 SYSCALL_DEFINE5(perf_event_open,
10437 		struct perf_event_attr __user *, attr_uptr,
10438 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
10439 {
10440 	struct perf_event *group_leader = NULL, *output_event = NULL;
10441 	struct perf_event *event, *sibling;
10442 	struct perf_event_attr attr;
10443 	struct perf_event_context *ctx, *uninitialized_var(gctx);
10444 	struct file *event_file = NULL;
10445 	struct fd group = {NULL, 0};
10446 	struct task_struct *task = NULL;
10447 	struct pmu *pmu;
10448 	int event_fd;
10449 	int move_group = 0;
10450 	int err;
10451 	int f_flags = O_RDWR;
10452 	int cgroup_fd = -1;
10453 
10454 	/* for future expandability... */
10455 	if (flags & ~PERF_FLAG_ALL)
10456 		return -EINVAL;
10457 
10458 	err = perf_copy_attr(attr_uptr, &attr);
10459 	if (err)
10460 		return err;
10461 
10462 	if (!attr.exclude_kernel) {
10463 		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10464 			return -EACCES;
10465 	}
10466 
10467 	if (attr.namespaces) {
10468 		if (!capable(CAP_SYS_ADMIN))
10469 			return -EACCES;
10470 	}
10471 
10472 	if (attr.freq) {
10473 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
10474 			return -EINVAL;
10475 	} else {
10476 		if (attr.sample_period & (1ULL << 63))
10477 			return -EINVAL;
10478 	}
10479 
10480 	/* Only privileged users can get physical addresses */
10481 	if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) &&
10482 	    perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10483 		return -EACCES;
10484 
10485 	/*
10486 	 * In cgroup mode, the pid argument is used to pass the fd
10487 	 * opened to the cgroup directory in cgroupfs. The cpu argument
10488 	 * designates the cpu on which to monitor threads from that
10489 	 * cgroup.
10490 	 */
10491 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
10492 		return -EINVAL;
10493 
10494 	if (flags & PERF_FLAG_FD_CLOEXEC)
10495 		f_flags |= O_CLOEXEC;
10496 
10497 	event_fd = get_unused_fd_flags(f_flags);
10498 	if (event_fd < 0)
10499 		return event_fd;
10500 
10501 	if (group_fd != -1) {
10502 		err = perf_fget_light(group_fd, &group);
10503 		if (err)
10504 			goto err_fd;
10505 		group_leader = group.file->private_data;
10506 		if (flags & PERF_FLAG_FD_OUTPUT)
10507 			output_event = group_leader;
10508 		if (flags & PERF_FLAG_FD_NO_GROUP)
10509 			group_leader = NULL;
10510 	}
10511 
10512 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
10513 		task = find_lively_task_by_vpid(pid);
10514 		if (IS_ERR(task)) {
10515 			err = PTR_ERR(task);
10516 			goto err_group_fd;
10517 		}
10518 	}
10519 
10520 	if (task && group_leader &&
10521 	    group_leader->attr.inherit != attr.inherit) {
10522 		err = -EINVAL;
10523 		goto err_task;
10524 	}
10525 
10526 	if (task) {
10527 		err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
10528 		if (err)
10529 			goto err_task;
10530 
10531 		/*
10532 		 * Reuse ptrace permission checks for now.
10533 		 *
10534 		 * We must hold cred_guard_mutex across this and any potential
10535 		 * perf_install_in_context() call for this new event to
10536 		 * serialize against exec() altering our credentials (and the
10537 		 * perf_event_exit_task() that could imply).
10538 		 */
10539 		err = -EACCES;
10540 		if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
10541 			goto err_cred;
10542 	}
10543 
10544 	if (flags & PERF_FLAG_PID_CGROUP)
10545 		cgroup_fd = pid;
10546 
10547 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
10548 				 NULL, NULL, cgroup_fd);
10549 	if (IS_ERR(event)) {
10550 		err = PTR_ERR(event);
10551 		goto err_cred;
10552 	}
10553 
10554 	if (is_sampling_event(event)) {
10555 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
10556 			err = -EOPNOTSUPP;
10557 			goto err_alloc;
10558 		}
10559 	}
10560 
10561 	/*
10562 	 * Special case software events and allow them to be part of
10563 	 * any hardware group.
10564 	 */
10565 	pmu = event->pmu;
10566 
10567 	if (attr.use_clockid) {
10568 		err = perf_event_set_clock(event, attr.clockid);
10569 		if (err)
10570 			goto err_alloc;
10571 	}
10572 
10573 	if (pmu->task_ctx_nr == perf_sw_context)
10574 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
10575 
10576 	if (group_leader) {
10577 		if (is_software_event(event) &&
10578 		    !in_software_context(group_leader)) {
10579 			/*
10580 			 * If the event is a sw event, but the group_leader
10581 			 * is on hw context.
10582 			 *
10583 			 * Allow the addition of software events to hw
10584 			 * groups, this is safe because software events
10585 			 * never fail to schedule.
10586 			 */
10587 			pmu = group_leader->ctx->pmu;
10588 		} else if (!is_software_event(event) &&
10589 			   is_software_event(group_leader) &&
10590 			   (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10591 			/*
10592 			 * In case the group is a pure software group, and we
10593 			 * try to add a hardware event, move the whole group to
10594 			 * the hardware context.
10595 			 */
10596 			move_group = 1;
10597 		}
10598 	}
10599 
10600 	/*
10601 	 * Get the target context (task or percpu):
10602 	 */
10603 	ctx = find_get_context(pmu, task, event);
10604 	if (IS_ERR(ctx)) {
10605 		err = PTR_ERR(ctx);
10606 		goto err_alloc;
10607 	}
10608 
10609 	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
10610 		err = -EBUSY;
10611 		goto err_context;
10612 	}
10613 
10614 	/*
10615 	 * Look up the group leader (we will attach this event to it):
10616 	 */
10617 	if (group_leader) {
10618 		err = -EINVAL;
10619 
10620 		/*
10621 		 * Do not allow a recursive hierarchy (this new sibling
10622 		 * becoming part of another group-sibling):
10623 		 */
10624 		if (group_leader->group_leader != group_leader)
10625 			goto err_context;
10626 
10627 		/* All events in a group should have the same clock */
10628 		if (group_leader->clock != event->clock)
10629 			goto err_context;
10630 
10631 		/*
10632 		 * Make sure we're both events for the same CPU;
10633 		 * grouping events for different CPUs is broken; since
10634 		 * you can never concurrently schedule them anyhow.
10635 		 */
10636 		if (group_leader->cpu != event->cpu)
10637 			goto err_context;
10638 
10639 		/*
10640 		 * Make sure we're both on the same task, or both
10641 		 * per-CPU events.
10642 		 */
10643 		if (group_leader->ctx->task != ctx->task)
10644 			goto err_context;
10645 
10646 		/*
10647 		 * Do not allow to attach to a group in a different task
10648 		 * or CPU context. If we're moving SW events, we'll fix
10649 		 * this up later, so allow that.
10650 		 */
10651 		if (!move_group && group_leader->ctx != ctx)
10652 			goto err_context;
10653 
10654 		/*
10655 		 * Only a group leader can be exclusive or pinned
10656 		 */
10657 		if (attr.exclusive || attr.pinned)
10658 			goto err_context;
10659 	}
10660 
10661 	if (output_event) {
10662 		err = perf_event_set_output(event, output_event);
10663 		if (err)
10664 			goto err_context;
10665 	}
10666 
10667 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
10668 					f_flags);
10669 	if (IS_ERR(event_file)) {
10670 		err = PTR_ERR(event_file);
10671 		event_file = NULL;
10672 		goto err_context;
10673 	}
10674 
10675 	if (move_group) {
10676 		gctx = __perf_event_ctx_lock_double(group_leader, ctx);
10677 
10678 		if (gctx->task == TASK_TOMBSTONE) {
10679 			err = -ESRCH;
10680 			goto err_locked;
10681 		}
10682 
10683 		/*
10684 		 * Check if we raced against another sys_perf_event_open() call
10685 		 * moving the software group underneath us.
10686 		 */
10687 		if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10688 			/*
10689 			 * If someone moved the group out from under us, check
10690 			 * if this new event wound up on the same ctx, if so
10691 			 * its the regular !move_group case, otherwise fail.
10692 			 */
10693 			if (gctx != ctx) {
10694 				err = -EINVAL;
10695 				goto err_locked;
10696 			} else {
10697 				perf_event_ctx_unlock(group_leader, gctx);
10698 				move_group = 0;
10699 			}
10700 		}
10701 	} else {
10702 		mutex_lock(&ctx->mutex);
10703 	}
10704 
10705 	if (ctx->task == TASK_TOMBSTONE) {
10706 		err = -ESRCH;
10707 		goto err_locked;
10708 	}
10709 
10710 	if (!perf_event_validate_size(event)) {
10711 		err = -E2BIG;
10712 		goto err_locked;
10713 	}
10714 
10715 	if (!task) {
10716 		/*
10717 		 * Check if the @cpu we're creating an event for is online.
10718 		 *
10719 		 * We use the perf_cpu_context::ctx::mutex to serialize against
10720 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10721 		 */
10722 		struct perf_cpu_context *cpuctx =
10723 			container_of(ctx, struct perf_cpu_context, ctx);
10724 
10725 		if (!cpuctx->online) {
10726 			err = -ENODEV;
10727 			goto err_locked;
10728 		}
10729 	}
10730 
10731 
10732 	/*
10733 	 * Must be under the same ctx::mutex as perf_install_in_context(),
10734 	 * because we need to serialize with concurrent event creation.
10735 	 */
10736 	if (!exclusive_event_installable(event, ctx)) {
10737 		/* exclusive and group stuff are assumed mutually exclusive */
10738 		WARN_ON_ONCE(move_group);
10739 
10740 		err = -EBUSY;
10741 		goto err_locked;
10742 	}
10743 
10744 	WARN_ON_ONCE(ctx->parent_ctx);
10745 
10746 	/*
10747 	 * This is the point on no return; we cannot fail hereafter. This is
10748 	 * where we start modifying current state.
10749 	 */
10750 
10751 	if (move_group) {
10752 		/*
10753 		 * See perf_event_ctx_lock() for comments on the details
10754 		 * of swizzling perf_event::ctx.
10755 		 */
10756 		perf_remove_from_context(group_leader, 0);
10757 		put_ctx(gctx);
10758 
10759 		for_each_sibling_event(sibling, group_leader) {
10760 			perf_remove_from_context(sibling, 0);
10761 			put_ctx(gctx);
10762 		}
10763 
10764 		/*
10765 		 * Wait for everybody to stop referencing the events through
10766 		 * the old lists, before installing it on new lists.
10767 		 */
10768 		synchronize_rcu();
10769 
10770 		/*
10771 		 * Install the group siblings before the group leader.
10772 		 *
10773 		 * Because a group leader will try and install the entire group
10774 		 * (through the sibling list, which is still in-tact), we can
10775 		 * end up with siblings installed in the wrong context.
10776 		 *
10777 		 * By installing siblings first we NO-OP because they're not
10778 		 * reachable through the group lists.
10779 		 */
10780 		for_each_sibling_event(sibling, group_leader) {
10781 			perf_event__state_init(sibling);
10782 			perf_install_in_context(ctx, sibling, sibling->cpu);
10783 			get_ctx(ctx);
10784 		}
10785 
10786 		/*
10787 		 * Removing from the context ends up with disabled
10788 		 * event. What we want here is event in the initial
10789 		 * startup state, ready to be add into new context.
10790 		 */
10791 		perf_event__state_init(group_leader);
10792 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
10793 		get_ctx(ctx);
10794 	}
10795 
10796 	/*
10797 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
10798 	 * that we're serialized against further additions and before
10799 	 * perf_install_in_context() which is the point the event is active and
10800 	 * can use these values.
10801 	 */
10802 	perf_event__header_size(event);
10803 	perf_event__id_header_size(event);
10804 
10805 	event->owner = current;
10806 
10807 	perf_install_in_context(ctx, event, event->cpu);
10808 	perf_unpin_context(ctx);
10809 
10810 	if (move_group)
10811 		perf_event_ctx_unlock(group_leader, gctx);
10812 	mutex_unlock(&ctx->mutex);
10813 
10814 	if (task) {
10815 		mutex_unlock(&task->signal->cred_guard_mutex);
10816 		put_task_struct(task);
10817 	}
10818 
10819 	mutex_lock(&current->perf_event_mutex);
10820 	list_add_tail(&event->owner_entry, &current->perf_event_list);
10821 	mutex_unlock(&current->perf_event_mutex);
10822 
10823 	/*
10824 	 * Drop the reference on the group_event after placing the
10825 	 * new event on the sibling_list. This ensures destruction
10826 	 * of the group leader will find the pointer to itself in
10827 	 * perf_group_detach().
10828 	 */
10829 	fdput(group);
10830 	fd_install(event_fd, event_file);
10831 	return event_fd;
10832 
10833 err_locked:
10834 	if (move_group)
10835 		perf_event_ctx_unlock(group_leader, gctx);
10836 	mutex_unlock(&ctx->mutex);
10837 /* err_file: */
10838 	fput(event_file);
10839 err_context:
10840 	perf_unpin_context(ctx);
10841 	put_ctx(ctx);
10842 err_alloc:
10843 	/*
10844 	 * If event_file is set, the fput() above will have called ->release()
10845 	 * and that will take care of freeing the event.
10846 	 */
10847 	if (!event_file)
10848 		free_event(event);
10849 err_cred:
10850 	if (task)
10851 		mutex_unlock(&task->signal->cred_guard_mutex);
10852 err_task:
10853 	if (task)
10854 		put_task_struct(task);
10855 err_group_fd:
10856 	fdput(group);
10857 err_fd:
10858 	put_unused_fd(event_fd);
10859 	return err;
10860 }
10861 
10862 /**
10863  * perf_event_create_kernel_counter
10864  *
10865  * @attr: attributes of the counter to create
10866  * @cpu: cpu in which the counter is bound
10867  * @task: task to profile (NULL for percpu)
10868  */
10869 struct perf_event *
10870 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
10871 				 struct task_struct *task,
10872 				 perf_overflow_handler_t overflow_handler,
10873 				 void *context)
10874 {
10875 	struct perf_event_context *ctx;
10876 	struct perf_event *event;
10877 	int err;
10878 
10879 	/*
10880 	 * Get the target context (task or percpu):
10881 	 */
10882 
10883 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
10884 				 overflow_handler, context, -1);
10885 	if (IS_ERR(event)) {
10886 		err = PTR_ERR(event);
10887 		goto err;
10888 	}
10889 
10890 	/* Mark owner so we could distinguish it from user events. */
10891 	event->owner = TASK_TOMBSTONE;
10892 
10893 	ctx = find_get_context(event->pmu, task, event);
10894 	if (IS_ERR(ctx)) {
10895 		err = PTR_ERR(ctx);
10896 		goto err_free;
10897 	}
10898 
10899 	WARN_ON_ONCE(ctx->parent_ctx);
10900 	mutex_lock(&ctx->mutex);
10901 	if (ctx->task == TASK_TOMBSTONE) {
10902 		err = -ESRCH;
10903 		goto err_unlock;
10904 	}
10905 
10906 	if (!task) {
10907 		/*
10908 		 * Check if the @cpu we're creating an event for is online.
10909 		 *
10910 		 * We use the perf_cpu_context::ctx::mutex to serialize against
10911 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10912 		 */
10913 		struct perf_cpu_context *cpuctx =
10914 			container_of(ctx, struct perf_cpu_context, ctx);
10915 		if (!cpuctx->online) {
10916 			err = -ENODEV;
10917 			goto err_unlock;
10918 		}
10919 	}
10920 
10921 	if (!exclusive_event_installable(event, ctx)) {
10922 		err = -EBUSY;
10923 		goto err_unlock;
10924 	}
10925 
10926 	perf_install_in_context(ctx, event, cpu);
10927 	perf_unpin_context(ctx);
10928 	mutex_unlock(&ctx->mutex);
10929 
10930 	return event;
10931 
10932 err_unlock:
10933 	mutex_unlock(&ctx->mutex);
10934 	perf_unpin_context(ctx);
10935 	put_ctx(ctx);
10936 err_free:
10937 	free_event(event);
10938 err:
10939 	return ERR_PTR(err);
10940 }
10941 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
10942 
10943 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10944 {
10945 	struct perf_event_context *src_ctx;
10946 	struct perf_event_context *dst_ctx;
10947 	struct perf_event *event, *tmp;
10948 	LIST_HEAD(events);
10949 
10950 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
10951 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
10952 
10953 	/*
10954 	 * See perf_event_ctx_lock() for comments on the details
10955 	 * of swizzling perf_event::ctx.
10956 	 */
10957 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
10958 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
10959 				 event_entry) {
10960 		perf_remove_from_context(event, 0);
10961 		unaccount_event_cpu(event, src_cpu);
10962 		put_ctx(src_ctx);
10963 		list_add(&event->migrate_entry, &events);
10964 	}
10965 
10966 	/*
10967 	 * Wait for the events to quiesce before re-instating them.
10968 	 */
10969 	synchronize_rcu();
10970 
10971 	/*
10972 	 * Re-instate events in 2 passes.
10973 	 *
10974 	 * Skip over group leaders and only install siblings on this first
10975 	 * pass, siblings will not get enabled without a leader, however a
10976 	 * leader will enable its siblings, even if those are still on the old
10977 	 * context.
10978 	 */
10979 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10980 		if (event->group_leader == event)
10981 			continue;
10982 
10983 		list_del(&event->migrate_entry);
10984 		if (event->state >= PERF_EVENT_STATE_OFF)
10985 			event->state = PERF_EVENT_STATE_INACTIVE;
10986 		account_event_cpu(event, dst_cpu);
10987 		perf_install_in_context(dst_ctx, event, dst_cpu);
10988 		get_ctx(dst_ctx);
10989 	}
10990 
10991 	/*
10992 	 * Once all the siblings are setup properly, install the group leaders
10993 	 * to make it go.
10994 	 */
10995 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10996 		list_del(&event->migrate_entry);
10997 		if (event->state >= PERF_EVENT_STATE_OFF)
10998 			event->state = PERF_EVENT_STATE_INACTIVE;
10999 		account_event_cpu(event, dst_cpu);
11000 		perf_install_in_context(dst_ctx, event, dst_cpu);
11001 		get_ctx(dst_ctx);
11002 	}
11003 	mutex_unlock(&dst_ctx->mutex);
11004 	mutex_unlock(&src_ctx->mutex);
11005 }
11006 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
11007 
11008 static void sync_child_event(struct perf_event *child_event,
11009 			       struct task_struct *child)
11010 {
11011 	struct perf_event *parent_event = child_event->parent;
11012 	u64 child_val;
11013 
11014 	if (child_event->attr.inherit_stat)
11015 		perf_event_read_event(child_event, child);
11016 
11017 	child_val = perf_event_count(child_event);
11018 
11019 	/*
11020 	 * Add back the child's count to the parent's count:
11021 	 */
11022 	atomic64_add(child_val, &parent_event->child_count);
11023 	atomic64_add(child_event->total_time_enabled,
11024 		     &parent_event->child_total_time_enabled);
11025 	atomic64_add(child_event->total_time_running,
11026 		     &parent_event->child_total_time_running);
11027 }
11028 
11029 static void
11030 perf_event_exit_event(struct perf_event *child_event,
11031 		      struct perf_event_context *child_ctx,
11032 		      struct task_struct *child)
11033 {
11034 	struct perf_event *parent_event = child_event->parent;
11035 
11036 	/*
11037 	 * Do not destroy the 'original' grouping; because of the context
11038 	 * switch optimization the original events could've ended up in a
11039 	 * random child task.
11040 	 *
11041 	 * If we were to destroy the original group, all group related
11042 	 * operations would cease to function properly after this random
11043 	 * child dies.
11044 	 *
11045 	 * Do destroy all inherited groups, we don't care about those
11046 	 * and being thorough is better.
11047 	 */
11048 	raw_spin_lock_irq(&child_ctx->lock);
11049 	WARN_ON_ONCE(child_ctx->is_active);
11050 
11051 	if (parent_event)
11052 		perf_group_detach(child_event);
11053 	list_del_event(child_event, child_ctx);
11054 	perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
11055 	raw_spin_unlock_irq(&child_ctx->lock);
11056 
11057 	/*
11058 	 * Parent events are governed by their filedesc, retain them.
11059 	 */
11060 	if (!parent_event) {
11061 		perf_event_wakeup(child_event);
11062 		return;
11063 	}
11064 	/*
11065 	 * Child events can be cleaned up.
11066 	 */
11067 
11068 	sync_child_event(child_event, child);
11069 
11070 	/*
11071 	 * Remove this event from the parent's list
11072 	 */
11073 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
11074 	mutex_lock(&parent_event->child_mutex);
11075 	list_del_init(&child_event->child_list);
11076 	mutex_unlock(&parent_event->child_mutex);
11077 
11078 	/*
11079 	 * Kick perf_poll() for is_event_hup().
11080 	 */
11081 	perf_event_wakeup(parent_event);
11082 	free_event(child_event);
11083 	put_event(parent_event);
11084 }
11085 
11086 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
11087 {
11088 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
11089 	struct perf_event *child_event, *next;
11090 
11091 	WARN_ON_ONCE(child != current);
11092 
11093 	child_ctx = perf_pin_task_context(child, ctxn);
11094 	if (!child_ctx)
11095 		return;
11096 
11097 	/*
11098 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
11099 	 * ctx::mutex over the entire thing. This serializes against almost
11100 	 * everything that wants to access the ctx.
11101 	 *
11102 	 * The exception is sys_perf_event_open() /
11103 	 * perf_event_create_kernel_count() which does find_get_context()
11104 	 * without ctx::mutex (it cannot because of the move_group double mutex
11105 	 * lock thing). See the comments in perf_install_in_context().
11106 	 */
11107 	mutex_lock(&child_ctx->mutex);
11108 
11109 	/*
11110 	 * In a single ctx::lock section, de-schedule the events and detach the
11111 	 * context from the task such that we cannot ever get it scheduled back
11112 	 * in.
11113 	 */
11114 	raw_spin_lock_irq(&child_ctx->lock);
11115 	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
11116 
11117 	/*
11118 	 * Now that the context is inactive, destroy the task <-> ctx relation
11119 	 * and mark the context dead.
11120 	 */
11121 	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
11122 	put_ctx(child_ctx); /* cannot be last */
11123 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
11124 	put_task_struct(current); /* cannot be last */
11125 
11126 	clone_ctx = unclone_ctx(child_ctx);
11127 	raw_spin_unlock_irq(&child_ctx->lock);
11128 
11129 	if (clone_ctx)
11130 		put_ctx(clone_ctx);
11131 
11132 	/*
11133 	 * Report the task dead after unscheduling the events so that we
11134 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
11135 	 * get a few PERF_RECORD_READ events.
11136 	 */
11137 	perf_event_task(child, child_ctx, 0);
11138 
11139 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
11140 		perf_event_exit_event(child_event, child_ctx, child);
11141 
11142 	mutex_unlock(&child_ctx->mutex);
11143 
11144 	put_ctx(child_ctx);
11145 }
11146 
11147 /*
11148  * When a child task exits, feed back event values to parent events.
11149  *
11150  * Can be called with cred_guard_mutex held when called from
11151  * install_exec_creds().
11152  */
11153 void perf_event_exit_task(struct task_struct *child)
11154 {
11155 	struct perf_event *event, *tmp;
11156 	int ctxn;
11157 
11158 	mutex_lock(&child->perf_event_mutex);
11159 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
11160 				 owner_entry) {
11161 		list_del_init(&event->owner_entry);
11162 
11163 		/*
11164 		 * Ensure the list deletion is visible before we clear
11165 		 * the owner, closes a race against perf_release() where
11166 		 * we need to serialize on the owner->perf_event_mutex.
11167 		 */
11168 		smp_store_release(&event->owner, NULL);
11169 	}
11170 	mutex_unlock(&child->perf_event_mutex);
11171 
11172 	for_each_task_context_nr(ctxn)
11173 		perf_event_exit_task_context(child, ctxn);
11174 
11175 	/*
11176 	 * The perf_event_exit_task_context calls perf_event_task
11177 	 * with child's task_ctx, which generates EXIT events for
11178 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
11179 	 * At this point we need to send EXIT events to cpu contexts.
11180 	 */
11181 	perf_event_task(child, NULL, 0);
11182 }
11183 
11184 static void perf_free_event(struct perf_event *event,
11185 			    struct perf_event_context *ctx)
11186 {
11187 	struct perf_event *parent = event->parent;
11188 
11189 	if (WARN_ON_ONCE(!parent))
11190 		return;
11191 
11192 	mutex_lock(&parent->child_mutex);
11193 	list_del_init(&event->child_list);
11194 	mutex_unlock(&parent->child_mutex);
11195 
11196 	put_event(parent);
11197 
11198 	raw_spin_lock_irq(&ctx->lock);
11199 	perf_group_detach(event);
11200 	list_del_event(event, ctx);
11201 	raw_spin_unlock_irq(&ctx->lock);
11202 	free_event(event);
11203 }
11204 
11205 /*
11206  * Free an unexposed, unused context as created by inheritance by
11207  * perf_event_init_task below, used by fork() in case of fail.
11208  *
11209  * Not all locks are strictly required, but take them anyway to be nice and
11210  * help out with the lockdep assertions.
11211  */
11212 void perf_event_free_task(struct task_struct *task)
11213 {
11214 	struct perf_event_context *ctx;
11215 	struct perf_event *event, *tmp;
11216 	int ctxn;
11217 
11218 	for_each_task_context_nr(ctxn) {
11219 		ctx = task->perf_event_ctxp[ctxn];
11220 		if (!ctx)
11221 			continue;
11222 
11223 		mutex_lock(&ctx->mutex);
11224 		raw_spin_lock_irq(&ctx->lock);
11225 		/*
11226 		 * Destroy the task <-> ctx relation and mark the context dead.
11227 		 *
11228 		 * This is important because even though the task hasn't been
11229 		 * exposed yet the context has been (through child_list).
11230 		 */
11231 		RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
11232 		WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
11233 		put_task_struct(task); /* cannot be last */
11234 		raw_spin_unlock_irq(&ctx->lock);
11235 
11236 		list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
11237 			perf_free_event(event, ctx);
11238 
11239 		mutex_unlock(&ctx->mutex);
11240 		put_ctx(ctx);
11241 	}
11242 }
11243 
11244 void perf_event_delayed_put(struct task_struct *task)
11245 {
11246 	int ctxn;
11247 
11248 	for_each_task_context_nr(ctxn)
11249 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
11250 }
11251 
11252 struct file *perf_event_get(unsigned int fd)
11253 {
11254 	struct file *file;
11255 
11256 	file = fget_raw(fd);
11257 	if (!file)
11258 		return ERR_PTR(-EBADF);
11259 
11260 	if (file->f_op != &perf_fops) {
11261 		fput(file);
11262 		return ERR_PTR(-EBADF);
11263 	}
11264 
11265 	return file;
11266 }
11267 
11268 const struct perf_event *perf_get_event(struct file *file)
11269 {
11270 	if (file->f_op != &perf_fops)
11271 		return ERR_PTR(-EINVAL);
11272 
11273 	return file->private_data;
11274 }
11275 
11276 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
11277 {
11278 	if (!event)
11279 		return ERR_PTR(-EINVAL);
11280 
11281 	return &event->attr;
11282 }
11283 
11284 /*
11285  * Inherit an event from parent task to child task.
11286  *
11287  * Returns:
11288  *  - valid pointer on success
11289  *  - NULL for orphaned events
11290  *  - IS_ERR() on error
11291  */
11292 static struct perf_event *
11293 inherit_event(struct perf_event *parent_event,
11294 	      struct task_struct *parent,
11295 	      struct perf_event_context *parent_ctx,
11296 	      struct task_struct *child,
11297 	      struct perf_event *group_leader,
11298 	      struct perf_event_context *child_ctx)
11299 {
11300 	enum perf_event_state parent_state = parent_event->state;
11301 	struct perf_event *child_event;
11302 	unsigned long flags;
11303 
11304 	/*
11305 	 * Instead of creating recursive hierarchies of events,
11306 	 * we link inherited events back to the original parent,
11307 	 * which has a filp for sure, which we use as the reference
11308 	 * count:
11309 	 */
11310 	if (parent_event->parent)
11311 		parent_event = parent_event->parent;
11312 
11313 	child_event = perf_event_alloc(&parent_event->attr,
11314 					   parent_event->cpu,
11315 					   child,
11316 					   group_leader, parent_event,
11317 					   NULL, NULL, -1);
11318 	if (IS_ERR(child_event))
11319 		return child_event;
11320 
11321 
11322 	if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
11323 	    !child_ctx->task_ctx_data) {
11324 		struct pmu *pmu = child_event->pmu;
11325 
11326 		child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size,
11327 						   GFP_KERNEL);
11328 		if (!child_ctx->task_ctx_data) {
11329 			free_event(child_event);
11330 			return NULL;
11331 		}
11332 	}
11333 
11334 	/*
11335 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
11336 	 * must be under the same lock in order to serialize against
11337 	 * perf_event_release_kernel(), such that either we must observe
11338 	 * is_orphaned_event() or they will observe us on the child_list.
11339 	 */
11340 	mutex_lock(&parent_event->child_mutex);
11341 	if (is_orphaned_event(parent_event) ||
11342 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
11343 		mutex_unlock(&parent_event->child_mutex);
11344 		/* task_ctx_data is freed with child_ctx */
11345 		free_event(child_event);
11346 		return NULL;
11347 	}
11348 
11349 	get_ctx(child_ctx);
11350 
11351 	/*
11352 	 * Make the child state follow the state of the parent event,
11353 	 * not its attr.disabled bit.  We hold the parent's mutex,
11354 	 * so we won't race with perf_event_{en, dis}able_family.
11355 	 */
11356 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
11357 		child_event->state = PERF_EVENT_STATE_INACTIVE;
11358 	else
11359 		child_event->state = PERF_EVENT_STATE_OFF;
11360 
11361 	if (parent_event->attr.freq) {
11362 		u64 sample_period = parent_event->hw.sample_period;
11363 		struct hw_perf_event *hwc = &child_event->hw;
11364 
11365 		hwc->sample_period = sample_period;
11366 		hwc->last_period   = sample_period;
11367 
11368 		local64_set(&hwc->period_left, sample_period);
11369 	}
11370 
11371 	child_event->ctx = child_ctx;
11372 	child_event->overflow_handler = parent_event->overflow_handler;
11373 	child_event->overflow_handler_context
11374 		= parent_event->overflow_handler_context;
11375 
11376 	/*
11377 	 * Precalculate sample_data sizes
11378 	 */
11379 	perf_event__header_size(child_event);
11380 	perf_event__id_header_size(child_event);
11381 
11382 	/*
11383 	 * Link it up in the child's context:
11384 	 */
11385 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
11386 	add_event_to_ctx(child_event, child_ctx);
11387 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
11388 
11389 	/*
11390 	 * Link this into the parent event's child list
11391 	 */
11392 	list_add_tail(&child_event->child_list, &parent_event->child_list);
11393 	mutex_unlock(&parent_event->child_mutex);
11394 
11395 	return child_event;
11396 }
11397 
11398 /*
11399  * Inherits an event group.
11400  *
11401  * This will quietly suppress orphaned events; !inherit_event() is not an error.
11402  * This matches with perf_event_release_kernel() removing all child events.
11403  *
11404  * Returns:
11405  *  - 0 on success
11406  *  - <0 on error
11407  */
11408 static int inherit_group(struct perf_event *parent_event,
11409 	      struct task_struct *parent,
11410 	      struct perf_event_context *parent_ctx,
11411 	      struct task_struct *child,
11412 	      struct perf_event_context *child_ctx)
11413 {
11414 	struct perf_event *leader;
11415 	struct perf_event *sub;
11416 	struct perf_event *child_ctr;
11417 
11418 	leader = inherit_event(parent_event, parent, parent_ctx,
11419 				 child, NULL, child_ctx);
11420 	if (IS_ERR(leader))
11421 		return PTR_ERR(leader);
11422 	/*
11423 	 * @leader can be NULL here because of is_orphaned_event(). In this
11424 	 * case inherit_event() will create individual events, similar to what
11425 	 * perf_group_detach() would do anyway.
11426 	 */
11427 	for_each_sibling_event(sub, parent_event) {
11428 		child_ctr = inherit_event(sub, parent, parent_ctx,
11429 					    child, leader, child_ctx);
11430 		if (IS_ERR(child_ctr))
11431 			return PTR_ERR(child_ctr);
11432 	}
11433 	return 0;
11434 }
11435 
11436 /*
11437  * Creates the child task context and tries to inherit the event-group.
11438  *
11439  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
11440  * inherited_all set when we 'fail' to inherit an orphaned event; this is
11441  * consistent with perf_event_release_kernel() removing all child events.
11442  *
11443  * Returns:
11444  *  - 0 on success
11445  *  - <0 on error
11446  */
11447 static int
11448 inherit_task_group(struct perf_event *event, struct task_struct *parent,
11449 		   struct perf_event_context *parent_ctx,
11450 		   struct task_struct *child, int ctxn,
11451 		   int *inherited_all)
11452 {
11453 	int ret;
11454 	struct perf_event_context *child_ctx;
11455 
11456 	if (!event->attr.inherit) {
11457 		*inherited_all = 0;
11458 		return 0;
11459 	}
11460 
11461 	child_ctx = child->perf_event_ctxp[ctxn];
11462 	if (!child_ctx) {
11463 		/*
11464 		 * This is executed from the parent task context, so
11465 		 * inherit events that have been marked for cloning.
11466 		 * First allocate and initialize a context for the
11467 		 * child.
11468 		 */
11469 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
11470 		if (!child_ctx)
11471 			return -ENOMEM;
11472 
11473 		child->perf_event_ctxp[ctxn] = child_ctx;
11474 	}
11475 
11476 	ret = inherit_group(event, parent, parent_ctx,
11477 			    child, child_ctx);
11478 
11479 	if (ret)
11480 		*inherited_all = 0;
11481 
11482 	return ret;
11483 }
11484 
11485 /*
11486  * Initialize the perf_event context in task_struct
11487  */
11488 static int perf_event_init_context(struct task_struct *child, int ctxn)
11489 {
11490 	struct perf_event_context *child_ctx, *parent_ctx;
11491 	struct perf_event_context *cloned_ctx;
11492 	struct perf_event *event;
11493 	struct task_struct *parent = current;
11494 	int inherited_all = 1;
11495 	unsigned long flags;
11496 	int ret = 0;
11497 
11498 	if (likely(!parent->perf_event_ctxp[ctxn]))
11499 		return 0;
11500 
11501 	/*
11502 	 * If the parent's context is a clone, pin it so it won't get
11503 	 * swapped under us.
11504 	 */
11505 	parent_ctx = perf_pin_task_context(parent, ctxn);
11506 	if (!parent_ctx)
11507 		return 0;
11508 
11509 	/*
11510 	 * No need to check if parent_ctx != NULL here; since we saw
11511 	 * it non-NULL earlier, the only reason for it to become NULL
11512 	 * is if we exit, and since we're currently in the middle of
11513 	 * a fork we can't be exiting at the same time.
11514 	 */
11515 
11516 	/*
11517 	 * Lock the parent list. No need to lock the child - not PID
11518 	 * hashed yet and not running, so nobody can access it.
11519 	 */
11520 	mutex_lock(&parent_ctx->mutex);
11521 
11522 	/*
11523 	 * We dont have to disable NMIs - we are only looking at
11524 	 * the list, not manipulating it:
11525 	 */
11526 	perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
11527 		ret = inherit_task_group(event, parent, parent_ctx,
11528 					 child, ctxn, &inherited_all);
11529 		if (ret)
11530 			goto out_unlock;
11531 	}
11532 
11533 	/*
11534 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
11535 	 * to allocations, but we need to prevent rotation because
11536 	 * rotate_ctx() will change the list from interrupt context.
11537 	 */
11538 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11539 	parent_ctx->rotate_disable = 1;
11540 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11541 
11542 	perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
11543 		ret = inherit_task_group(event, parent, parent_ctx,
11544 					 child, ctxn, &inherited_all);
11545 		if (ret)
11546 			goto out_unlock;
11547 	}
11548 
11549 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11550 	parent_ctx->rotate_disable = 0;
11551 
11552 	child_ctx = child->perf_event_ctxp[ctxn];
11553 
11554 	if (child_ctx && inherited_all) {
11555 		/*
11556 		 * Mark the child context as a clone of the parent
11557 		 * context, or of whatever the parent is a clone of.
11558 		 *
11559 		 * Note that if the parent is a clone, the holding of
11560 		 * parent_ctx->lock avoids it from being uncloned.
11561 		 */
11562 		cloned_ctx = parent_ctx->parent_ctx;
11563 		if (cloned_ctx) {
11564 			child_ctx->parent_ctx = cloned_ctx;
11565 			child_ctx->parent_gen = parent_ctx->parent_gen;
11566 		} else {
11567 			child_ctx->parent_ctx = parent_ctx;
11568 			child_ctx->parent_gen = parent_ctx->generation;
11569 		}
11570 		get_ctx(child_ctx->parent_ctx);
11571 	}
11572 
11573 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11574 out_unlock:
11575 	mutex_unlock(&parent_ctx->mutex);
11576 
11577 	perf_unpin_context(parent_ctx);
11578 	put_ctx(parent_ctx);
11579 
11580 	return ret;
11581 }
11582 
11583 /*
11584  * Initialize the perf_event context in task_struct
11585  */
11586 int perf_event_init_task(struct task_struct *child)
11587 {
11588 	int ctxn, ret;
11589 
11590 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
11591 	mutex_init(&child->perf_event_mutex);
11592 	INIT_LIST_HEAD(&child->perf_event_list);
11593 
11594 	for_each_task_context_nr(ctxn) {
11595 		ret = perf_event_init_context(child, ctxn);
11596 		if (ret) {
11597 			perf_event_free_task(child);
11598 			return ret;
11599 		}
11600 	}
11601 
11602 	return 0;
11603 }
11604 
11605 static void __init perf_event_init_all_cpus(void)
11606 {
11607 	struct swevent_htable *swhash;
11608 	int cpu;
11609 
11610 	zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
11611 
11612 	for_each_possible_cpu(cpu) {
11613 		swhash = &per_cpu(swevent_htable, cpu);
11614 		mutex_init(&swhash->hlist_mutex);
11615 		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
11616 
11617 		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
11618 		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
11619 
11620 #ifdef CONFIG_CGROUP_PERF
11621 		INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
11622 #endif
11623 		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
11624 	}
11625 }
11626 
11627 void perf_swevent_init_cpu(unsigned int cpu)
11628 {
11629 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
11630 
11631 	mutex_lock(&swhash->hlist_mutex);
11632 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
11633 		struct swevent_hlist *hlist;
11634 
11635 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
11636 		WARN_ON(!hlist);
11637 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
11638 	}
11639 	mutex_unlock(&swhash->hlist_mutex);
11640 }
11641 
11642 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
11643 static void __perf_event_exit_context(void *__info)
11644 {
11645 	struct perf_event_context *ctx = __info;
11646 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
11647 	struct perf_event *event;
11648 
11649 	raw_spin_lock(&ctx->lock);
11650 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
11651 	list_for_each_entry(event, &ctx->event_list, event_entry)
11652 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
11653 	raw_spin_unlock(&ctx->lock);
11654 }
11655 
11656 static void perf_event_exit_cpu_context(int cpu)
11657 {
11658 	struct perf_cpu_context *cpuctx;
11659 	struct perf_event_context *ctx;
11660 	struct pmu *pmu;
11661 
11662 	mutex_lock(&pmus_lock);
11663 	list_for_each_entry(pmu, &pmus, entry) {
11664 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11665 		ctx = &cpuctx->ctx;
11666 
11667 		mutex_lock(&ctx->mutex);
11668 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
11669 		cpuctx->online = 0;
11670 		mutex_unlock(&ctx->mutex);
11671 	}
11672 	cpumask_clear_cpu(cpu, perf_online_mask);
11673 	mutex_unlock(&pmus_lock);
11674 }
11675 #else
11676 
11677 static void perf_event_exit_cpu_context(int cpu) { }
11678 
11679 #endif
11680 
11681 int perf_event_init_cpu(unsigned int cpu)
11682 {
11683 	struct perf_cpu_context *cpuctx;
11684 	struct perf_event_context *ctx;
11685 	struct pmu *pmu;
11686 
11687 	perf_swevent_init_cpu(cpu);
11688 
11689 	mutex_lock(&pmus_lock);
11690 	cpumask_set_cpu(cpu, perf_online_mask);
11691 	list_for_each_entry(pmu, &pmus, entry) {
11692 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11693 		ctx = &cpuctx->ctx;
11694 
11695 		mutex_lock(&ctx->mutex);
11696 		cpuctx->online = 1;
11697 		mutex_unlock(&ctx->mutex);
11698 	}
11699 	mutex_unlock(&pmus_lock);
11700 
11701 	return 0;
11702 }
11703 
11704 int perf_event_exit_cpu(unsigned int cpu)
11705 {
11706 	perf_event_exit_cpu_context(cpu);
11707 	return 0;
11708 }
11709 
11710 static int
11711 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
11712 {
11713 	int cpu;
11714 
11715 	for_each_online_cpu(cpu)
11716 		perf_event_exit_cpu(cpu);
11717 
11718 	return NOTIFY_OK;
11719 }
11720 
11721 /*
11722  * Run the perf reboot notifier at the very last possible moment so that
11723  * the generic watchdog code runs as long as possible.
11724  */
11725 static struct notifier_block perf_reboot_notifier = {
11726 	.notifier_call = perf_reboot,
11727 	.priority = INT_MIN,
11728 };
11729 
11730 void __init perf_event_init(void)
11731 {
11732 	int ret;
11733 
11734 	idr_init(&pmu_idr);
11735 
11736 	perf_event_init_all_cpus();
11737 	init_srcu_struct(&pmus_srcu);
11738 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
11739 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
11740 	perf_pmu_register(&perf_task_clock, NULL, -1);
11741 	perf_tp_register();
11742 	perf_event_init_cpu(smp_processor_id());
11743 	register_reboot_notifier(&perf_reboot_notifier);
11744 
11745 	ret = init_hw_breakpoint();
11746 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
11747 
11748 	/*
11749 	 * Build time assertion that we keep the data_head at the intended
11750 	 * location.  IOW, validation we got the __reserved[] size right.
11751 	 */
11752 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
11753 		     != 1024);
11754 }
11755 
11756 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
11757 			      char *page)
11758 {
11759 	struct perf_pmu_events_attr *pmu_attr =
11760 		container_of(attr, struct perf_pmu_events_attr, attr);
11761 
11762 	if (pmu_attr->event_str)
11763 		return sprintf(page, "%s\n", pmu_attr->event_str);
11764 
11765 	return 0;
11766 }
11767 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
11768 
11769 static int __init perf_event_sysfs_init(void)
11770 {
11771 	struct pmu *pmu;
11772 	int ret;
11773 
11774 	mutex_lock(&pmus_lock);
11775 
11776 	ret = bus_register(&pmu_bus);
11777 	if (ret)
11778 		goto unlock;
11779 
11780 	list_for_each_entry(pmu, &pmus, entry) {
11781 		if (!pmu->name || pmu->type < 0)
11782 			continue;
11783 
11784 		ret = pmu_dev_alloc(pmu);
11785 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
11786 	}
11787 	pmu_bus_running = 1;
11788 	ret = 0;
11789 
11790 unlock:
11791 	mutex_unlock(&pmus_lock);
11792 
11793 	return ret;
11794 }
11795 device_initcall(perf_event_sysfs_init);
11796 
11797 #ifdef CONFIG_CGROUP_PERF
11798 static struct cgroup_subsys_state *
11799 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
11800 {
11801 	struct perf_cgroup *jc;
11802 
11803 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
11804 	if (!jc)
11805 		return ERR_PTR(-ENOMEM);
11806 
11807 	jc->info = alloc_percpu(struct perf_cgroup_info);
11808 	if (!jc->info) {
11809 		kfree(jc);
11810 		return ERR_PTR(-ENOMEM);
11811 	}
11812 
11813 	return &jc->css;
11814 }
11815 
11816 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
11817 {
11818 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
11819 
11820 	free_percpu(jc->info);
11821 	kfree(jc);
11822 }
11823 
11824 static int __perf_cgroup_move(void *info)
11825 {
11826 	struct task_struct *task = info;
11827 	rcu_read_lock();
11828 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
11829 	rcu_read_unlock();
11830 	return 0;
11831 }
11832 
11833 static void perf_cgroup_attach(struct cgroup_taskset *tset)
11834 {
11835 	struct task_struct *task;
11836 	struct cgroup_subsys_state *css;
11837 
11838 	cgroup_taskset_for_each(task, css, tset)
11839 		task_function_call(task, __perf_cgroup_move, task);
11840 }
11841 
11842 struct cgroup_subsys perf_event_cgrp_subsys = {
11843 	.css_alloc	= perf_cgroup_css_alloc,
11844 	.css_free	= perf_cgroup_css_free,
11845 	.attach		= perf_cgroup_attach,
11846 	/*
11847 	 * Implicitly enable on dfl hierarchy so that perf events can
11848 	 * always be filtered by cgroup2 path as long as perf_event
11849 	 * controller is not mounted on a legacy hierarchy.
11850 	 */
11851 	.implicit_on_dfl = true,
11852 	.threaded	= true,
11853 };
11854 #endif /* CONFIG_CGROUP_PERF */
11855