xref: /openbmc/linux/kernel/events/core.c (revision 88f4ede4)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10 
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54 
55 #include "internal.h"
56 
57 #include <asm/irq_regs.h>
58 
59 typedef int (*remote_function_f)(void *);
60 
61 struct remote_function_call {
62 	struct task_struct	*p;
63 	remote_function_f	func;
64 	void			*info;
65 	int			ret;
66 };
67 
68 static void remote_function(void *data)
69 {
70 	struct remote_function_call *tfc = data;
71 	struct task_struct *p = tfc->p;
72 
73 	if (p) {
74 		/* -EAGAIN */
75 		if (task_cpu(p) != smp_processor_id())
76 			return;
77 
78 		/*
79 		 * Now that we're on right CPU with IRQs disabled, we can test
80 		 * if we hit the right task without races.
81 		 */
82 
83 		tfc->ret = -ESRCH; /* No such (running) process */
84 		if (p != current)
85 			return;
86 	}
87 
88 	tfc->ret = tfc->func(tfc->info);
89 }
90 
91 /**
92  * task_function_call - call a function on the cpu on which a task runs
93  * @p:		the task to evaluate
94  * @func:	the function to be called
95  * @info:	the function call argument
96  *
97  * Calls the function @func when the task is currently running. This might
98  * be on the current CPU, which just calls the function directly.  This will
99  * retry due to any failures in smp_call_function_single(), such as if the
100  * task_cpu() goes offline concurrently.
101  *
102  * returns @func return value or -ESRCH or -ENXIO when the process isn't running
103  */
104 static int
105 task_function_call(struct task_struct *p, remote_function_f func, void *info)
106 {
107 	struct remote_function_call data = {
108 		.p	= p,
109 		.func	= func,
110 		.info	= info,
111 		.ret	= -EAGAIN,
112 	};
113 	int ret;
114 
115 	for (;;) {
116 		ret = smp_call_function_single(task_cpu(p), remote_function,
117 					       &data, 1);
118 		if (!ret)
119 			ret = data.ret;
120 
121 		if (ret != -EAGAIN)
122 			break;
123 
124 		cond_resched();
125 	}
126 
127 	return ret;
128 }
129 
130 /**
131  * cpu_function_call - call a function on the cpu
132  * @func:	the function to be called
133  * @info:	the function call argument
134  *
135  * Calls the function @func on the remote cpu.
136  *
137  * returns: @func return value or -ENXIO when the cpu is offline
138  */
139 static int cpu_function_call(int cpu, remote_function_f func, void *info)
140 {
141 	struct remote_function_call data = {
142 		.p	= NULL,
143 		.func	= func,
144 		.info	= info,
145 		.ret	= -ENXIO, /* No such CPU */
146 	};
147 
148 	smp_call_function_single(cpu, remote_function, &data, 1);
149 
150 	return data.ret;
151 }
152 
153 static inline struct perf_cpu_context *
154 __get_cpu_context(struct perf_event_context *ctx)
155 {
156 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
157 }
158 
159 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
160 			  struct perf_event_context *ctx)
161 {
162 	raw_spin_lock(&cpuctx->ctx.lock);
163 	if (ctx)
164 		raw_spin_lock(&ctx->lock);
165 }
166 
167 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
168 			    struct perf_event_context *ctx)
169 {
170 	if (ctx)
171 		raw_spin_unlock(&ctx->lock);
172 	raw_spin_unlock(&cpuctx->ctx.lock);
173 }
174 
175 #define TASK_TOMBSTONE ((void *)-1L)
176 
177 static bool is_kernel_event(struct perf_event *event)
178 {
179 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
180 }
181 
182 /*
183  * On task ctx scheduling...
184  *
185  * When !ctx->nr_events a task context will not be scheduled. This means
186  * we can disable the scheduler hooks (for performance) without leaving
187  * pending task ctx state.
188  *
189  * This however results in two special cases:
190  *
191  *  - removing the last event from a task ctx; this is relatively straight
192  *    forward and is done in __perf_remove_from_context.
193  *
194  *  - adding the first event to a task ctx; this is tricky because we cannot
195  *    rely on ctx->is_active and therefore cannot use event_function_call().
196  *    See perf_install_in_context().
197  *
198  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
199  */
200 
201 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
202 			struct perf_event_context *, void *);
203 
204 struct event_function_struct {
205 	struct perf_event *event;
206 	event_f func;
207 	void *data;
208 };
209 
210 static int event_function(void *info)
211 {
212 	struct event_function_struct *efs = info;
213 	struct perf_event *event = efs->event;
214 	struct perf_event_context *ctx = event->ctx;
215 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
216 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
217 	int ret = 0;
218 
219 	lockdep_assert_irqs_disabled();
220 
221 	perf_ctx_lock(cpuctx, task_ctx);
222 	/*
223 	 * Since we do the IPI call without holding ctx->lock things can have
224 	 * changed, double check we hit the task we set out to hit.
225 	 */
226 	if (ctx->task) {
227 		if (ctx->task != current) {
228 			ret = -ESRCH;
229 			goto unlock;
230 		}
231 
232 		/*
233 		 * We only use event_function_call() on established contexts,
234 		 * and event_function() is only ever called when active (or
235 		 * rather, we'll have bailed in task_function_call() or the
236 		 * above ctx->task != current test), therefore we must have
237 		 * ctx->is_active here.
238 		 */
239 		WARN_ON_ONCE(!ctx->is_active);
240 		/*
241 		 * And since we have ctx->is_active, cpuctx->task_ctx must
242 		 * match.
243 		 */
244 		WARN_ON_ONCE(task_ctx != ctx);
245 	} else {
246 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
247 	}
248 
249 	efs->func(event, cpuctx, ctx, efs->data);
250 unlock:
251 	perf_ctx_unlock(cpuctx, task_ctx);
252 
253 	return ret;
254 }
255 
256 static void event_function_call(struct perf_event *event, event_f func, void *data)
257 {
258 	struct perf_event_context *ctx = event->ctx;
259 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
260 	struct event_function_struct efs = {
261 		.event = event,
262 		.func = func,
263 		.data = data,
264 	};
265 
266 	if (!event->parent) {
267 		/*
268 		 * If this is a !child event, we must hold ctx::mutex to
269 		 * stabilize the the event->ctx relation. See
270 		 * perf_event_ctx_lock().
271 		 */
272 		lockdep_assert_held(&ctx->mutex);
273 	}
274 
275 	if (!task) {
276 		cpu_function_call(event->cpu, event_function, &efs);
277 		return;
278 	}
279 
280 	if (task == TASK_TOMBSTONE)
281 		return;
282 
283 again:
284 	if (!task_function_call(task, event_function, &efs))
285 		return;
286 
287 	raw_spin_lock_irq(&ctx->lock);
288 	/*
289 	 * Reload the task pointer, it might have been changed by
290 	 * a concurrent perf_event_context_sched_out().
291 	 */
292 	task = ctx->task;
293 	if (task == TASK_TOMBSTONE) {
294 		raw_spin_unlock_irq(&ctx->lock);
295 		return;
296 	}
297 	if (ctx->is_active) {
298 		raw_spin_unlock_irq(&ctx->lock);
299 		goto again;
300 	}
301 	func(event, NULL, ctx, data);
302 	raw_spin_unlock_irq(&ctx->lock);
303 }
304 
305 /*
306  * Similar to event_function_call() + event_function(), but hard assumes IRQs
307  * are already disabled and we're on the right CPU.
308  */
309 static void event_function_local(struct perf_event *event, event_f func, void *data)
310 {
311 	struct perf_event_context *ctx = event->ctx;
312 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
313 	struct task_struct *task = READ_ONCE(ctx->task);
314 	struct perf_event_context *task_ctx = NULL;
315 
316 	lockdep_assert_irqs_disabled();
317 
318 	if (task) {
319 		if (task == TASK_TOMBSTONE)
320 			return;
321 
322 		task_ctx = ctx;
323 	}
324 
325 	perf_ctx_lock(cpuctx, task_ctx);
326 
327 	task = ctx->task;
328 	if (task == TASK_TOMBSTONE)
329 		goto unlock;
330 
331 	if (task) {
332 		/*
333 		 * We must be either inactive or active and the right task,
334 		 * otherwise we're screwed, since we cannot IPI to somewhere
335 		 * else.
336 		 */
337 		if (ctx->is_active) {
338 			if (WARN_ON_ONCE(task != current))
339 				goto unlock;
340 
341 			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
342 				goto unlock;
343 		}
344 	} else {
345 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
346 	}
347 
348 	func(event, cpuctx, ctx, data);
349 unlock:
350 	perf_ctx_unlock(cpuctx, task_ctx);
351 }
352 
353 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
354 		       PERF_FLAG_FD_OUTPUT  |\
355 		       PERF_FLAG_PID_CGROUP |\
356 		       PERF_FLAG_FD_CLOEXEC)
357 
358 /*
359  * branch priv levels that need permission checks
360  */
361 #define PERF_SAMPLE_BRANCH_PERM_PLM \
362 	(PERF_SAMPLE_BRANCH_KERNEL |\
363 	 PERF_SAMPLE_BRANCH_HV)
364 
365 enum event_type_t {
366 	EVENT_FLEXIBLE = 0x1,
367 	EVENT_PINNED = 0x2,
368 	EVENT_TIME = 0x4,
369 	/* see ctx_resched() for details */
370 	EVENT_CPU = 0x8,
371 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
372 };
373 
374 /*
375  * perf_sched_events : >0 events exist
376  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
377  */
378 
379 static void perf_sched_delayed(struct work_struct *work);
380 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
381 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
382 static DEFINE_MUTEX(perf_sched_mutex);
383 static atomic_t perf_sched_count;
384 
385 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
386 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
387 
388 static atomic_t nr_mmap_events __read_mostly;
389 static atomic_t nr_comm_events __read_mostly;
390 static atomic_t nr_namespaces_events __read_mostly;
391 static atomic_t nr_task_events __read_mostly;
392 static atomic_t nr_freq_events __read_mostly;
393 static atomic_t nr_switch_events __read_mostly;
394 static atomic_t nr_ksymbol_events __read_mostly;
395 static atomic_t nr_bpf_events __read_mostly;
396 static atomic_t nr_cgroup_events __read_mostly;
397 static atomic_t nr_text_poke_events __read_mostly;
398 
399 static LIST_HEAD(pmus);
400 static DEFINE_MUTEX(pmus_lock);
401 static struct srcu_struct pmus_srcu;
402 static cpumask_var_t perf_online_mask;
403 
404 /*
405  * perf event paranoia level:
406  *  -1 - not paranoid at all
407  *   0 - disallow raw tracepoint access for unpriv
408  *   1 - disallow cpu events for unpriv
409  *   2 - disallow kernel profiling for unpriv
410  */
411 int sysctl_perf_event_paranoid __read_mostly = 2;
412 
413 /* Minimum for 512 kiB + 1 user control page */
414 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
415 
416 /*
417  * max perf event sample rate
418  */
419 #define DEFAULT_MAX_SAMPLE_RATE		100000
420 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
421 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
422 
423 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
424 
425 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
426 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
427 
428 static int perf_sample_allowed_ns __read_mostly =
429 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
430 
431 static void update_perf_cpu_limits(void)
432 {
433 	u64 tmp = perf_sample_period_ns;
434 
435 	tmp *= sysctl_perf_cpu_time_max_percent;
436 	tmp = div_u64(tmp, 100);
437 	if (!tmp)
438 		tmp = 1;
439 
440 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
441 }
442 
443 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
444 
445 int perf_proc_update_handler(struct ctl_table *table, int write,
446 		void *buffer, size_t *lenp, loff_t *ppos)
447 {
448 	int ret;
449 	int perf_cpu = sysctl_perf_cpu_time_max_percent;
450 	/*
451 	 * If throttling is disabled don't allow the write:
452 	 */
453 	if (write && (perf_cpu == 100 || perf_cpu == 0))
454 		return -EINVAL;
455 
456 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
457 	if (ret || !write)
458 		return ret;
459 
460 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
461 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
462 	update_perf_cpu_limits();
463 
464 	return 0;
465 }
466 
467 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
468 
469 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
470 		void *buffer, size_t *lenp, loff_t *ppos)
471 {
472 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
473 
474 	if (ret || !write)
475 		return ret;
476 
477 	if (sysctl_perf_cpu_time_max_percent == 100 ||
478 	    sysctl_perf_cpu_time_max_percent == 0) {
479 		printk(KERN_WARNING
480 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
481 		WRITE_ONCE(perf_sample_allowed_ns, 0);
482 	} else {
483 		update_perf_cpu_limits();
484 	}
485 
486 	return 0;
487 }
488 
489 /*
490  * perf samples are done in some very critical code paths (NMIs).
491  * If they take too much CPU time, the system can lock up and not
492  * get any real work done.  This will drop the sample rate when
493  * we detect that events are taking too long.
494  */
495 #define NR_ACCUMULATED_SAMPLES 128
496 static DEFINE_PER_CPU(u64, running_sample_length);
497 
498 static u64 __report_avg;
499 static u64 __report_allowed;
500 
501 static void perf_duration_warn(struct irq_work *w)
502 {
503 	printk_ratelimited(KERN_INFO
504 		"perf: interrupt took too long (%lld > %lld), lowering "
505 		"kernel.perf_event_max_sample_rate to %d\n",
506 		__report_avg, __report_allowed,
507 		sysctl_perf_event_sample_rate);
508 }
509 
510 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
511 
512 void perf_sample_event_took(u64 sample_len_ns)
513 {
514 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
515 	u64 running_len;
516 	u64 avg_len;
517 	u32 max;
518 
519 	if (max_len == 0)
520 		return;
521 
522 	/* Decay the counter by 1 average sample. */
523 	running_len = __this_cpu_read(running_sample_length);
524 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
525 	running_len += sample_len_ns;
526 	__this_cpu_write(running_sample_length, running_len);
527 
528 	/*
529 	 * Note: this will be biased artifically low until we have
530 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
531 	 * from having to maintain a count.
532 	 */
533 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
534 	if (avg_len <= max_len)
535 		return;
536 
537 	__report_avg = avg_len;
538 	__report_allowed = max_len;
539 
540 	/*
541 	 * Compute a throttle threshold 25% below the current duration.
542 	 */
543 	avg_len += avg_len / 4;
544 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
545 	if (avg_len < max)
546 		max /= (u32)avg_len;
547 	else
548 		max = 1;
549 
550 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
551 	WRITE_ONCE(max_samples_per_tick, max);
552 
553 	sysctl_perf_event_sample_rate = max * HZ;
554 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
555 
556 	if (!irq_work_queue(&perf_duration_work)) {
557 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
558 			     "kernel.perf_event_max_sample_rate to %d\n",
559 			     __report_avg, __report_allowed,
560 			     sysctl_perf_event_sample_rate);
561 	}
562 }
563 
564 static atomic64_t perf_event_id;
565 
566 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
567 			      enum event_type_t event_type);
568 
569 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
570 			     enum event_type_t event_type,
571 			     struct task_struct *task);
572 
573 static void update_context_time(struct perf_event_context *ctx);
574 static u64 perf_event_time(struct perf_event *event);
575 
576 void __weak perf_event_print_debug(void)	{ }
577 
578 extern __weak const char *perf_pmu_name(void)
579 {
580 	return "pmu";
581 }
582 
583 static inline u64 perf_clock(void)
584 {
585 	return local_clock();
586 }
587 
588 static inline u64 perf_event_clock(struct perf_event *event)
589 {
590 	return event->clock();
591 }
592 
593 /*
594  * State based event timekeeping...
595  *
596  * The basic idea is to use event->state to determine which (if any) time
597  * fields to increment with the current delta. This means we only need to
598  * update timestamps when we change state or when they are explicitly requested
599  * (read).
600  *
601  * Event groups make things a little more complicated, but not terribly so. The
602  * rules for a group are that if the group leader is OFF the entire group is
603  * OFF, irrespecive of what the group member states are. This results in
604  * __perf_effective_state().
605  *
606  * A futher ramification is that when a group leader flips between OFF and
607  * !OFF, we need to update all group member times.
608  *
609  *
610  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
611  * need to make sure the relevant context time is updated before we try and
612  * update our timestamps.
613  */
614 
615 static __always_inline enum perf_event_state
616 __perf_effective_state(struct perf_event *event)
617 {
618 	struct perf_event *leader = event->group_leader;
619 
620 	if (leader->state <= PERF_EVENT_STATE_OFF)
621 		return leader->state;
622 
623 	return event->state;
624 }
625 
626 static __always_inline void
627 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
628 {
629 	enum perf_event_state state = __perf_effective_state(event);
630 	u64 delta = now - event->tstamp;
631 
632 	*enabled = event->total_time_enabled;
633 	if (state >= PERF_EVENT_STATE_INACTIVE)
634 		*enabled += delta;
635 
636 	*running = event->total_time_running;
637 	if (state >= PERF_EVENT_STATE_ACTIVE)
638 		*running += delta;
639 }
640 
641 static void perf_event_update_time(struct perf_event *event)
642 {
643 	u64 now = perf_event_time(event);
644 
645 	__perf_update_times(event, now, &event->total_time_enabled,
646 					&event->total_time_running);
647 	event->tstamp = now;
648 }
649 
650 static void perf_event_update_sibling_time(struct perf_event *leader)
651 {
652 	struct perf_event *sibling;
653 
654 	for_each_sibling_event(sibling, leader)
655 		perf_event_update_time(sibling);
656 }
657 
658 static void
659 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
660 {
661 	if (event->state == state)
662 		return;
663 
664 	perf_event_update_time(event);
665 	/*
666 	 * If a group leader gets enabled/disabled all its siblings
667 	 * are affected too.
668 	 */
669 	if ((event->state < 0) ^ (state < 0))
670 		perf_event_update_sibling_time(event);
671 
672 	WRITE_ONCE(event->state, state);
673 }
674 
675 #ifdef CONFIG_CGROUP_PERF
676 
677 static inline bool
678 perf_cgroup_match(struct perf_event *event)
679 {
680 	struct perf_event_context *ctx = event->ctx;
681 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
682 
683 	/* @event doesn't care about cgroup */
684 	if (!event->cgrp)
685 		return true;
686 
687 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
688 	if (!cpuctx->cgrp)
689 		return false;
690 
691 	/*
692 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
693 	 * also enabled for all its descendant cgroups.  If @cpuctx's
694 	 * cgroup is a descendant of @event's (the test covers identity
695 	 * case), it's a match.
696 	 */
697 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
698 				    event->cgrp->css.cgroup);
699 }
700 
701 static inline void perf_detach_cgroup(struct perf_event *event)
702 {
703 	css_put(&event->cgrp->css);
704 	event->cgrp = NULL;
705 }
706 
707 static inline int is_cgroup_event(struct perf_event *event)
708 {
709 	return event->cgrp != NULL;
710 }
711 
712 static inline u64 perf_cgroup_event_time(struct perf_event *event)
713 {
714 	struct perf_cgroup_info *t;
715 
716 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
717 	return t->time;
718 }
719 
720 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
721 {
722 	struct perf_cgroup_info *info;
723 	u64 now;
724 
725 	now = perf_clock();
726 
727 	info = this_cpu_ptr(cgrp->info);
728 
729 	info->time += now - info->timestamp;
730 	info->timestamp = now;
731 }
732 
733 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
734 {
735 	struct perf_cgroup *cgrp = cpuctx->cgrp;
736 	struct cgroup_subsys_state *css;
737 
738 	if (cgrp) {
739 		for (css = &cgrp->css; css; css = css->parent) {
740 			cgrp = container_of(css, struct perf_cgroup, css);
741 			__update_cgrp_time(cgrp);
742 		}
743 	}
744 }
745 
746 static inline void update_cgrp_time_from_event(struct perf_event *event)
747 {
748 	struct perf_cgroup *cgrp;
749 
750 	/*
751 	 * ensure we access cgroup data only when needed and
752 	 * when we know the cgroup is pinned (css_get)
753 	 */
754 	if (!is_cgroup_event(event))
755 		return;
756 
757 	cgrp = perf_cgroup_from_task(current, event->ctx);
758 	/*
759 	 * Do not update time when cgroup is not active
760 	 */
761 	if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
762 		__update_cgrp_time(event->cgrp);
763 }
764 
765 static inline void
766 perf_cgroup_set_timestamp(struct task_struct *task,
767 			  struct perf_event_context *ctx)
768 {
769 	struct perf_cgroup *cgrp;
770 	struct perf_cgroup_info *info;
771 	struct cgroup_subsys_state *css;
772 
773 	/*
774 	 * ctx->lock held by caller
775 	 * ensure we do not access cgroup data
776 	 * unless we have the cgroup pinned (css_get)
777 	 */
778 	if (!task || !ctx->nr_cgroups)
779 		return;
780 
781 	cgrp = perf_cgroup_from_task(task, ctx);
782 
783 	for (css = &cgrp->css; css; css = css->parent) {
784 		cgrp = container_of(css, struct perf_cgroup, css);
785 		info = this_cpu_ptr(cgrp->info);
786 		info->timestamp = ctx->timestamp;
787 	}
788 }
789 
790 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
791 
792 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
793 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
794 
795 /*
796  * reschedule events based on the cgroup constraint of task.
797  *
798  * mode SWOUT : schedule out everything
799  * mode SWIN : schedule in based on cgroup for next
800  */
801 static void perf_cgroup_switch(struct task_struct *task, int mode)
802 {
803 	struct perf_cpu_context *cpuctx;
804 	struct list_head *list;
805 	unsigned long flags;
806 
807 	/*
808 	 * Disable interrupts and preemption to avoid this CPU's
809 	 * cgrp_cpuctx_entry to change under us.
810 	 */
811 	local_irq_save(flags);
812 
813 	list = this_cpu_ptr(&cgrp_cpuctx_list);
814 	list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
815 		WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
816 
817 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
818 		perf_pmu_disable(cpuctx->ctx.pmu);
819 
820 		if (mode & PERF_CGROUP_SWOUT) {
821 			cpu_ctx_sched_out(cpuctx, EVENT_ALL);
822 			/*
823 			 * must not be done before ctxswout due
824 			 * to event_filter_match() in event_sched_out()
825 			 */
826 			cpuctx->cgrp = NULL;
827 		}
828 
829 		if (mode & PERF_CGROUP_SWIN) {
830 			WARN_ON_ONCE(cpuctx->cgrp);
831 			/*
832 			 * set cgrp before ctxsw in to allow
833 			 * event_filter_match() to not have to pass
834 			 * task around
835 			 * we pass the cpuctx->ctx to perf_cgroup_from_task()
836 			 * because cgorup events are only per-cpu
837 			 */
838 			cpuctx->cgrp = perf_cgroup_from_task(task,
839 							     &cpuctx->ctx);
840 			cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
841 		}
842 		perf_pmu_enable(cpuctx->ctx.pmu);
843 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
844 	}
845 
846 	local_irq_restore(flags);
847 }
848 
849 static inline void perf_cgroup_sched_out(struct task_struct *task,
850 					 struct task_struct *next)
851 {
852 	struct perf_cgroup *cgrp1;
853 	struct perf_cgroup *cgrp2 = NULL;
854 
855 	rcu_read_lock();
856 	/*
857 	 * we come here when we know perf_cgroup_events > 0
858 	 * we do not need to pass the ctx here because we know
859 	 * we are holding the rcu lock
860 	 */
861 	cgrp1 = perf_cgroup_from_task(task, NULL);
862 	cgrp2 = perf_cgroup_from_task(next, NULL);
863 
864 	/*
865 	 * only schedule out current cgroup events if we know
866 	 * that we are switching to a different cgroup. Otherwise,
867 	 * do no touch the cgroup events.
868 	 */
869 	if (cgrp1 != cgrp2)
870 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
871 
872 	rcu_read_unlock();
873 }
874 
875 static inline void perf_cgroup_sched_in(struct task_struct *prev,
876 					struct task_struct *task)
877 {
878 	struct perf_cgroup *cgrp1;
879 	struct perf_cgroup *cgrp2 = NULL;
880 
881 	rcu_read_lock();
882 	/*
883 	 * we come here when we know perf_cgroup_events > 0
884 	 * we do not need to pass the ctx here because we know
885 	 * we are holding the rcu lock
886 	 */
887 	cgrp1 = perf_cgroup_from_task(task, NULL);
888 	cgrp2 = perf_cgroup_from_task(prev, NULL);
889 
890 	/*
891 	 * only need to schedule in cgroup events if we are changing
892 	 * cgroup during ctxsw. Cgroup events were not scheduled
893 	 * out of ctxsw out if that was not the case.
894 	 */
895 	if (cgrp1 != cgrp2)
896 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
897 
898 	rcu_read_unlock();
899 }
900 
901 static int perf_cgroup_ensure_storage(struct perf_event *event,
902 				struct cgroup_subsys_state *css)
903 {
904 	struct perf_cpu_context *cpuctx;
905 	struct perf_event **storage;
906 	int cpu, heap_size, ret = 0;
907 
908 	/*
909 	 * Allow storage to have sufficent space for an iterator for each
910 	 * possibly nested cgroup plus an iterator for events with no cgroup.
911 	 */
912 	for (heap_size = 1; css; css = css->parent)
913 		heap_size++;
914 
915 	for_each_possible_cpu(cpu) {
916 		cpuctx = per_cpu_ptr(event->pmu->pmu_cpu_context, cpu);
917 		if (heap_size <= cpuctx->heap_size)
918 			continue;
919 
920 		storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
921 				       GFP_KERNEL, cpu_to_node(cpu));
922 		if (!storage) {
923 			ret = -ENOMEM;
924 			break;
925 		}
926 
927 		raw_spin_lock_irq(&cpuctx->ctx.lock);
928 		if (cpuctx->heap_size < heap_size) {
929 			swap(cpuctx->heap, storage);
930 			if (storage == cpuctx->heap_default)
931 				storage = NULL;
932 			cpuctx->heap_size = heap_size;
933 		}
934 		raw_spin_unlock_irq(&cpuctx->ctx.lock);
935 
936 		kfree(storage);
937 	}
938 
939 	return ret;
940 }
941 
942 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
943 				      struct perf_event_attr *attr,
944 				      struct perf_event *group_leader)
945 {
946 	struct perf_cgroup *cgrp;
947 	struct cgroup_subsys_state *css;
948 	struct fd f = fdget(fd);
949 	int ret = 0;
950 
951 	if (!f.file)
952 		return -EBADF;
953 
954 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
955 					 &perf_event_cgrp_subsys);
956 	if (IS_ERR(css)) {
957 		ret = PTR_ERR(css);
958 		goto out;
959 	}
960 
961 	ret = perf_cgroup_ensure_storage(event, css);
962 	if (ret)
963 		goto out;
964 
965 	cgrp = container_of(css, struct perf_cgroup, css);
966 	event->cgrp = cgrp;
967 
968 	/*
969 	 * all events in a group must monitor
970 	 * the same cgroup because a task belongs
971 	 * to only one perf cgroup at a time
972 	 */
973 	if (group_leader && group_leader->cgrp != cgrp) {
974 		perf_detach_cgroup(event);
975 		ret = -EINVAL;
976 	}
977 out:
978 	fdput(f);
979 	return ret;
980 }
981 
982 static inline void
983 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
984 {
985 	struct perf_cgroup_info *t;
986 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
987 	event->shadow_ctx_time = now - t->timestamp;
988 }
989 
990 static inline void
991 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
992 {
993 	struct perf_cpu_context *cpuctx;
994 
995 	if (!is_cgroup_event(event))
996 		return;
997 
998 	/*
999 	 * Because cgroup events are always per-cpu events,
1000 	 * @ctx == &cpuctx->ctx.
1001 	 */
1002 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1003 
1004 	/*
1005 	 * Since setting cpuctx->cgrp is conditional on the current @cgrp
1006 	 * matching the event's cgroup, we must do this for every new event,
1007 	 * because if the first would mismatch, the second would not try again
1008 	 * and we would leave cpuctx->cgrp unset.
1009 	 */
1010 	if (ctx->is_active && !cpuctx->cgrp) {
1011 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
1012 
1013 		if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
1014 			cpuctx->cgrp = cgrp;
1015 	}
1016 
1017 	if (ctx->nr_cgroups++)
1018 		return;
1019 
1020 	list_add(&cpuctx->cgrp_cpuctx_entry,
1021 			per_cpu_ptr(&cgrp_cpuctx_list, event->cpu));
1022 }
1023 
1024 static inline void
1025 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1026 {
1027 	struct perf_cpu_context *cpuctx;
1028 
1029 	if (!is_cgroup_event(event))
1030 		return;
1031 
1032 	/*
1033 	 * Because cgroup events are always per-cpu events,
1034 	 * @ctx == &cpuctx->ctx.
1035 	 */
1036 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1037 
1038 	if (--ctx->nr_cgroups)
1039 		return;
1040 
1041 	if (ctx->is_active && cpuctx->cgrp)
1042 		cpuctx->cgrp = NULL;
1043 
1044 	list_del(&cpuctx->cgrp_cpuctx_entry);
1045 }
1046 
1047 #else /* !CONFIG_CGROUP_PERF */
1048 
1049 static inline bool
1050 perf_cgroup_match(struct perf_event *event)
1051 {
1052 	return true;
1053 }
1054 
1055 static inline void perf_detach_cgroup(struct perf_event *event)
1056 {}
1057 
1058 static inline int is_cgroup_event(struct perf_event *event)
1059 {
1060 	return 0;
1061 }
1062 
1063 static inline void update_cgrp_time_from_event(struct perf_event *event)
1064 {
1065 }
1066 
1067 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1068 {
1069 }
1070 
1071 static inline void perf_cgroup_sched_out(struct task_struct *task,
1072 					 struct task_struct *next)
1073 {
1074 }
1075 
1076 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1077 					struct task_struct *task)
1078 {
1079 }
1080 
1081 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1082 				      struct perf_event_attr *attr,
1083 				      struct perf_event *group_leader)
1084 {
1085 	return -EINVAL;
1086 }
1087 
1088 static inline void
1089 perf_cgroup_set_timestamp(struct task_struct *task,
1090 			  struct perf_event_context *ctx)
1091 {
1092 }
1093 
1094 static inline void
1095 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1096 {
1097 }
1098 
1099 static inline void
1100 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1101 {
1102 }
1103 
1104 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1105 {
1106 	return 0;
1107 }
1108 
1109 static inline void
1110 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1111 {
1112 }
1113 
1114 static inline void
1115 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1116 {
1117 }
1118 #endif
1119 
1120 /*
1121  * set default to be dependent on timer tick just
1122  * like original code
1123  */
1124 #define PERF_CPU_HRTIMER (1000 / HZ)
1125 /*
1126  * function must be called with interrupts disabled
1127  */
1128 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1129 {
1130 	struct perf_cpu_context *cpuctx;
1131 	bool rotations;
1132 
1133 	lockdep_assert_irqs_disabled();
1134 
1135 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1136 	rotations = perf_rotate_context(cpuctx);
1137 
1138 	raw_spin_lock(&cpuctx->hrtimer_lock);
1139 	if (rotations)
1140 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1141 	else
1142 		cpuctx->hrtimer_active = 0;
1143 	raw_spin_unlock(&cpuctx->hrtimer_lock);
1144 
1145 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1146 }
1147 
1148 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1149 {
1150 	struct hrtimer *timer = &cpuctx->hrtimer;
1151 	struct pmu *pmu = cpuctx->ctx.pmu;
1152 	u64 interval;
1153 
1154 	/* no multiplexing needed for SW PMU */
1155 	if (pmu->task_ctx_nr == perf_sw_context)
1156 		return;
1157 
1158 	/*
1159 	 * check default is sane, if not set then force to
1160 	 * default interval (1/tick)
1161 	 */
1162 	interval = pmu->hrtimer_interval_ms;
1163 	if (interval < 1)
1164 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1165 
1166 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1167 
1168 	raw_spin_lock_init(&cpuctx->hrtimer_lock);
1169 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1170 	timer->function = perf_mux_hrtimer_handler;
1171 }
1172 
1173 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1174 {
1175 	struct hrtimer *timer = &cpuctx->hrtimer;
1176 	struct pmu *pmu = cpuctx->ctx.pmu;
1177 	unsigned long flags;
1178 
1179 	/* not for SW PMU */
1180 	if (pmu->task_ctx_nr == perf_sw_context)
1181 		return 0;
1182 
1183 	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1184 	if (!cpuctx->hrtimer_active) {
1185 		cpuctx->hrtimer_active = 1;
1186 		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1187 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1188 	}
1189 	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1190 
1191 	return 0;
1192 }
1193 
1194 void perf_pmu_disable(struct pmu *pmu)
1195 {
1196 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1197 	if (!(*count)++)
1198 		pmu->pmu_disable(pmu);
1199 }
1200 
1201 void perf_pmu_enable(struct pmu *pmu)
1202 {
1203 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1204 	if (!--(*count))
1205 		pmu->pmu_enable(pmu);
1206 }
1207 
1208 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1209 
1210 /*
1211  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1212  * perf_event_task_tick() are fully serialized because they're strictly cpu
1213  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1214  * disabled, while perf_event_task_tick is called from IRQ context.
1215  */
1216 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1217 {
1218 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
1219 
1220 	lockdep_assert_irqs_disabled();
1221 
1222 	WARN_ON(!list_empty(&ctx->active_ctx_list));
1223 
1224 	list_add(&ctx->active_ctx_list, head);
1225 }
1226 
1227 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1228 {
1229 	lockdep_assert_irqs_disabled();
1230 
1231 	WARN_ON(list_empty(&ctx->active_ctx_list));
1232 
1233 	list_del_init(&ctx->active_ctx_list);
1234 }
1235 
1236 static void get_ctx(struct perf_event_context *ctx)
1237 {
1238 	refcount_inc(&ctx->refcount);
1239 }
1240 
1241 static void *alloc_task_ctx_data(struct pmu *pmu)
1242 {
1243 	if (pmu->task_ctx_cache)
1244 		return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL);
1245 
1246 	return NULL;
1247 }
1248 
1249 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data)
1250 {
1251 	if (pmu->task_ctx_cache && task_ctx_data)
1252 		kmem_cache_free(pmu->task_ctx_cache, task_ctx_data);
1253 }
1254 
1255 static void free_ctx(struct rcu_head *head)
1256 {
1257 	struct perf_event_context *ctx;
1258 
1259 	ctx = container_of(head, struct perf_event_context, rcu_head);
1260 	free_task_ctx_data(ctx->pmu, ctx->task_ctx_data);
1261 	kfree(ctx);
1262 }
1263 
1264 static void put_ctx(struct perf_event_context *ctx)
1265 {
1266 	if (refcount_dec_and_test(&ctx->refcount)) {
1267 		if (ctx->parent_ctx)
1268 			put_ctx(ctx->parent_ctx);
1269 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1270 			put_task_struct(ctx->task);
1271 		call_rcu(&ctx->rcu_head, free_ctx);
1272 	}
1273 }
1274 
1275 /*
1276  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1277  * perf_pmu_migrate_context() we need some magic.
1278  *
1279  * Those places that change perf_event::ctx will hold both
1280  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1281  *
1282  * Lock ordering is by mutex address. There are two other sites where
1283  * perf_event_context::mutex nests and those are:
1284  *
1285  *  - perf_event_exit_task_context()	[ child , 0 ]
1286  *      perf_event_exit_event()
1287  *        put_event()			[ parent, 1 ]
1288  *
1289  *  - perf_event_init_context()		[ parent, 0 ]
1290  *      inherit_task_group()
1291  *        inherit_group()
1292  *          inherit_event()
1293  *            perf_event_alloc()
1294  *              perf_init_event()
1295  *                perf_try_init_event()	[ child , 1 ]
1296  *
1297  * While it appears there is an obvious deadlock here -- the parent and child
1298  * nesting levels are inverted between the two. This is in fact safe because
1299  * life-time rules separate them. That is an exiting task cannot fork, and a
1300  * spawning task cannot (yet) exit.
1301  *
1302  * But remember that that these are parent<->child context relations, and
1303  * migration does not affect children, therefore these two orderings should not
1304  * interact.
1305  *
1306  * The change in perf_event::ctx does not affect children (as claimed above)
1307  * because the sys_perf_event_open() case will install a new event and break
1308  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1309  * concerned with cpuctx and that doesn't have children.
1310  *
1311  * The places that change perf_event::ctx will issue:
1312  *
1313  *   perf_remove_from_context();
1314  *   synchronize_rcu();
1315  *   perf_install_in_context();
1316  *
1317  * to affect the change. The remove_from_context() + synchronize_rcu() should
1318  * quiesce the event, after which we can install it in the new location. This
1319  * means that only external vectors (perf_fops, prctl) can perturb the event
1320  * while in transit. Therefore all such accessors should also acquire
1321  * perf_event_context::mutex to serialize against this.
1322  *
1323  * However; because event->ctx can change while we're waiting to acquire
1324  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1325  * function.
1326  *
1327  * Lock order:
1328  *    exec_update_mutex
1329  *	task_struct::perf_event_mutex
1330  *	  perf_event_context::mutex
1331  *	    perf_event::child_mutex;
1332  *	      perf_event_context::lock
1333  *	    perf_event::mmap_mutex
1334  *	    mmap_lock
1335  *	      perf_addr_filters_head::lock
1336  *
1337  *    cpu_hotplug_lock
1338  *      pmus_lock
1339  *	  cpuctx->mutex / perf_event_context::mutex
1340  */
1341 static struct perf_event_context *
1342 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1343 {
1344 	struct perf_event_context *ctx;
1345 
1346 again:
1347 	rcu_read_lock();
1348 	ctx = READ_ONCE(event->ctx);
1349 	if (!refcount_inc_not_zero(&ctx->refcount)) {
1350 		rcu_read_unlock();
1351 		goto again;
1352 	}
1353 	rcu_read_unlock();
1354 
1355 	mutex_lock_nested(&ctx->mutex, nesting);
1356 	if (event->ctx != ctx) {
1357 		mutex_unlock(&ctx->mutex);
1358 		put_ctx(ctx);
1359 		goto again;
1360 	}
1361 
1362 	return ctx;
1363 }
1364 
1365 static inline struct perf_event_context *
1366 perf_event_ctx_lock(struct perf_event *event)
1367 {
1368 	return perf_event_ctx_lock_nested(event, 0);
1369 }
1370 
1371 static void perf_event_ctx_unlock(struct perf_event *event,
1372 				  struct perf_event_context *ctx)
1373 {
1374 	mutex_unlock(&ctx->mutex);
1375 	put_ctx(ctx);
1376 }
1377 
1378 /*
1379  * This must be done under the ctx->lock, such as to serialize against
1380  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1381  * calling scheduler related locks and ctx->lock nests inside those.
1382  */
1383 static __must_check struct perf_event_context *
1384 unclone_ctx(struct perf_event_context *ctx)
1385 {
1386 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1387 
1388 	lockdep_assert_held(&ctx->lock);
1389 
1390 	if (parent_ctx)
1391 		ctx->parent_ctx = NULL;
1392 	ctx->generation++;
1393 
1394 	return parent_ctx;
1395 }
1396 
1397 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1398 				enum pid_type type)
1399 {
1400 	u32 nr;
1401 	/*
1402 	 * only top level events have the pid namespace they were created in
1403 	 */
1404 	if (event->parent)
1405 		event = event->parent;
1406 
1407 	nr = __task_pid_nr_ns(p, type, event->ns);
1408 	/* avoid -1 if it is idle thread or runs in another ns */
1409 	if (!nr && !pid_alive(p))
1410 		nr = -1;
1411 	return nr;
1412 }
1413 
1414 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1415 {
1416 	return perf_event_pid_type(event, p, PIDTYPE_TGID);
1417 }
1418 
1419 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1420 {
1421 	return perf_event_pid_type(event, p, PIDTYPE_PID);
1422 }
1423 
1424 /*
1425  * If we inherit events we want to return the parent event id
1426  * to userspace.
1427  */
1428 static u64 primary_event_id(struct perf_event *event)
1429 {
1430 	u64 id = event->id;
1431 
1432 	if (event->parent)
1433 		id = event->parent->id;
1434 
1435 	return id;
1436 }
1437 
1438 /*
1439  * Get the perf_event_context for a task and lock it.
1440  *
1441  * This has to cope with with the fact that until it is locked,
1442  * the context could get moved to another task.
1443  */
1444 static struct perf_event_context *
1445 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1446 {
1447 	struct perf_event_context *ctx;
1448 
1449 retry:
1450 	/*
1451 	 * One of the few rules of preemptible RCU is that one cannot do
1452 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1453 	 * part of the read side critical section was irqs-enabled -- see
1454 	 * rcu_read_unlock_special().
1455 	 *
1456 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1457 	 * side critical section has interrupts disabled.
1458 	 */
1459 	local_irq_save(*flags);
1460 	rcu_read_lock();
1461 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1462 	if (ctx) {
1463 		/*
1464 		 * If this context is a clone of another, it might
1465 		 * get swapped for another underneath us by
1466 		 * perf_event_task_sched_out, though the
1467 		 * rcu_read_lock() protects us from any context
1468 		 * getting freed.  Lock the context and check if it
1469 		 * got swapped before we could get the lock, and retry
1470 		 * if so.  If we locked the right context, then it
1471 		 * can't get swapped on us any more.
1472 		 */
1473 		raw_spin_lock(&ctx->lock);
1474 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1475 			raw_spin_unlock(&ctx->lock);
1476 			rcu_read_unlock();
1477 			local_irq_restore(*flags);
1478 			goto retry;
1479 		}
1480 
1481 		if (ctx->task == TASK_TOMBSTONE ||
1482 		    !refcount_inc_not_zero(&ctx->refcount)) {
1483 			raw_spin_unlock(&ctx->lock);
1484 			ctx = NULL;
1485 		} else {
1486 			WARN_ON_ONCE(ctx->task != task);
1487 		}
1488 	}
1489 	rcu_read_unlock();
1490 	if (!ctx)
1491 		local_irq_restore(*flags);
1492 	return ctx;
1493 }
1494 
1495 /*
1496  * Get the context for a task and increment its pin_count so it
1497  * can't get swapped to another task.  This also increments its
1498  * reference count so that the context can't get freed.
1499  */
1500 static struct perf_event_context *
1501 perf_pin_task_context(struct task_struct *task, int ctxn)
1502 {
1503 	struct perf_event_context *ctx;
1504 	unsigned long flags;
1505 
1506 	ctx = perf_lock_task_context(task, ctxn, &flags);
1507 	if (ctx) {
1508 		++ctx->pin_count;
1509 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1510 	}
1511 	return ctx;
1512 }
1513 
1514 static void perf_unpin_context(struct perf_event_context *ctx)
1515 {
1516 	unsigned long flags;
1517 
1518 	raw_spin_lock_irqsave(&ctx->lock, flags);
1519 	--ctx->pin_count;
1520 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1521 }
1522 
1523 /*
1524  * Update the record of the current time in a context.
1525  */
1526 static void update_context_time(struct perf_event_context *ctx)
1527 {
1528 	u64 now = perf_clock();
1529 
1530 	ctx->time += now - ctx->timestamp;
1531 	ctx->timestamp = now;
1532 }
1533 
1534 static u64 perf_event_time(struct perf_event *event)
1535 {
1536 	struct perf_event_context *ctx = event->ctx;
1537 
1538 	if (is_cgroup_event(event))
1539 		return perf_cgroup_event_time(event);
1540 
1541 	return ctx ? ctx->time : 0;
1542 }
1543 
1544 static enum event_type_t get_event_type(struct perf_event *event)
1545 {
1546 	struct perf_event_context *ctx = event->ctx;
1547 	enum event_type_t event_type;
1548 
1549 	lockdep_assert_held(&ctx->lock);
1550 
1551 	/*
1552 	 * It's 'group type', really, because if our group leader is
1553 	 * pinned, so are we.
1554 	 */
1555 	if (event->group_leader != event)
1556 		event = event->group_leader;
1557 
1558 	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1559 	if (!ctx->task)
1560 		event_type |= EVENT_CPU;
1561 
1562 	return event_type;
1563 }
1564 
1565 /*
1566  * Helper function to initialize event group nodes.
1567  */
1568 static void init_event_group(struct perf_event *event)
1569 {
1570 	RB_CLEAR_NODE(&event->group_node);
1571 	event->group_index = 0;
1572 }
1573 
1574 /*
1575  * Extract pinned or flexible groups from the context
1576  * based on event attrs bits.
1577  */
1578 static struct perf_event_groups *
1579 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1580 {
1581 	if (event->attr.pinned)
1582 		return &ctx->pinned_groups;
1583 	else
1584 		return &ctx->flexible_groups;
1585 }
1586 
1587 /*
1588  * Helper function to initializes perf_event_group trees.
1589  */
1590 static void perf_event_groups_init(struct perf_event_groups *groups)
1591 {
1592 	groups->tree = RB_ROOT;
1593 	groups->index = 0;
1594 }
1595 
1596 /*
1597  * Compare function for event groups;
1598  *
1599  * Implements complex key that first sorts by CPU and then by virtual index
1600  * which provides ordering when rotating groups for the same CPU.
1601  */
1602 static bool
1603 perf_event_groups_less(struct perf_event *left, struct perf_event *right)
1604 {
1605 	if (left->cpu < right->cpu)
1606 		return true;
1607 	if (left->cpu > right->cpu)
1608 		return false;
1609 
1610 #ifdef CONFIG_CGROUP_PERF
1611 	if (left->cgrp != right->cgrp) {
1612 		if (!left->cgrp || !left->cgrp->css.cgroup) {
1613 			/*
1614 			 * Left has no cgroup but right does, no cgroups come
1615 			 * first.
1616 			 */
1617 			return true;
1618 		}
1619 		if (!right->cgrp || !right->cgrp->css.cgroup) {
1620 			/*
1621 			 * Right has no cgroup but left does, no cgroups come
1622 			 * first.
1623 			 */
1624 			return false;
1625 		}
1626 		/* Two dissimilar cgroups, order by id. */
1627 		if (left->cgrp->css.cgroup->kn->id < right->cgrp->css.cgroup->kn->id)
1628 			return true;
1629 
1630 		return false;
1631 	}
1632 #endif
1633 
1634 	if (left->group_index < right->group_index)
1635 		return true;
1636 	if (left->group_index > right->group_index)
1637 		return false;
1638 
1639 	return false;
1640 }
1641 
1642 /*
1643  * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1644  * key (see perf_event_groups_less). This places it last inside the CPU
1645  * subtree.
1646  */
1647 static void
1648 perf_event_groups_insert(struct perf_event_groups *groups,
1649 			 struct perf_event *event)
1650 {
1651 	struct perf_event *node_event;
1652 	struct rb_node *parent;
1653 	struct rb_node **node;
1654 
1655 	event->group_index = ++groups->index;
1656 
1657 	node = &groups->tree.rb_node;
1658 	parent = *node;
1659 
1660 	while (*node) {
1661 		parent = *node;
1662 		node_event = container_of(*node, struct perf_event, group_node);
1663 
1664 		if (perf_event_groups_less(event, node_event))
1665 			node = &parent->rb_left;
1666 		else
1667 			node = &parent->rb_right;
1668 	}
1669 
1670 	rb_link_node(&event->group_node, parent, node);
1671 	rb_insert_color(&event->group_node, &groups->tree);
1672 }
1673 
1674 /*
1675  * Helper function to insert event into the pinned or flexible groups.
1676  */
1677 static void
1678 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1679 {
1680 	struct perf_event_groups *groups;
1681 
1682 	groups = get_event_groups(event, ctx);
1683 	perf_event_groups_insert(groups, event);
1684 }
1685 
1686 /*
1687  * Delete a group from a tree.
1688  */
1689 static void
1690 perf_event_groups_delete(struct perf_event_groups *groups,
1691 			 struct perf_event *event)
1692 {
1693 	WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1694 		     RB_EMPTY_ROOT(&groups->tree));
1695 
1696 	rb_erase(&event->group_node, &groups->tree);
1697 	init_event_group(event);
1698 }
1699 
1700 /*
1701  * Helper function to delete event from its groups.
1702  */
1703 static void
1704 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1705 {
1706 	struct perf_event_groups *groups;
1707 
1708 	groups = get_event_groups(event, ctx);
1709 	perf_event_groups_delete(groups, event);
1710 }
1711 
1712 /*
1713  * Get the leftmost event in the cpu/cgroup subtree.
1714  */
1715 static struct perf_event *
1716 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1717 			struct cgroup *cgrp)
1718 {
1719 	struct perf_event *node_event = NULL, *match = NULL;
1720 	struct rb_node *node = groups->tree.rb_node;
1721 #ifdef CONFIG_CGROUP_PERF
1722 	u64 node_cgrp_id, cgrp_id = 0;
1723 
1724 	if (cgrp)
1725 		cgrp_id = cgrp->kn->id;
1726 #endif
1727 
1728 	while (node) {
1729 		node_event = container_of(node, struct perf_event, group_node);
1730 
1731 		if (cpu < node_event->cpu) {
1732 			node = node->rb_left;
1733 			continue;
1734 		}
1735 		if (cpu > node_event->cpu) {
1736 			node = node->rb_right;
1737 			continue;
1738 		}
1739 #ifdef CONFIG_CGROUP_PERF
1740 		node_cgrp_id = 0;
1741 		if (node_event->cgrp && node_event->cgrp->css.cgroup)
1742 			node_cgrp_id = node_event->cgrp->css.cgroup->kn->id;
1743 
1744 		if (cgrp_id < node_cgrp_id) {
1745 			node = node->rb_left;
1746 			continue;
1747 		}
1748 		if (cgrp_id > node_cgrp_id) {
1749 			node = node->rb_right;
1750 			continue;
1751 		}
1752 #endif
1753 		match = node_event;
1754 		node = node->rb_left;
1755 	}
1756 
1757 	return match;
1758 }
1759 
1760 /*
1761  * Like rb_entry_next_safe() for the @cpu subtree.
1762  */
1763 static struct perf_event *
1764 perf_event_groups_next(struct perf_event *event)
1765 {
1766 	struct perf_event *next;
1767 #ifdef CONFIG_CGROUP_PERF
1768 	u64 curr_cgrp_id = 0;
1769 	u64 next_cgrp_id = 0;
1770 #endif
1771 
1772 	next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node);
1773 	if (next == NULL || next->cpu != event->cpu)
1774 		return NULL;
1775 
1776 #ifdef CONFIG_CGROUP_PERF
1777 	if (event->cgrp && event->cgrp->css.cgroup)
1778 		curr_cgrp_id = event->cgrp->css.cgroup->kn->id;
1779 
1780 	if (next->cgrp && next->cgrp->css.cgroup)
1781 		next_cgrp_id = next->cgrp->css.cgroup->kn->id;
1782 
1783 	if (curr_cgrp_id != next_cgrp_id)
1784 		return NULL;
1785 #endif
1786 	return next;
1787 }
1788 
1789 /*
1790  * Iterate through the whole groups tree.
1791  */
1792 #define perf_event_groups_for_each(event, groups)			\
1793 	for (event = rb_entry_safe(rb_first(&((groups)->tree)),		\
1794 				typeof(*event), group_node); event;	\
1795 		event = rb_entry_safe(rb_next(&event->group_node),	\
1796 				typeof(*event), group_node))
1797 
1798 /*
1799  * Add an event from the lists for its context.
1800  * Must be called with ctx->mutex and ctx->lock held.
1801  */
1802 static void
1803 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1804 {
1805 	lockdep_assert_held(&ctx->lock);
1806 
1807 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1808 	event->attach_state |= PERF_ATTACH_CONTEXT;
1809 
1810 	event->tstamp = perf_event_time(event);
1811 
1812 	/*
1813 	 * If we're a stand alone event or group leader, we go to the context
1814 	 * list, group events are kept attached to the group so that
1815 	 * perf_group_detach can, at all times, locate all siblings.
1816 	 */
1817 	if (event->group_leader == event) {
1818 		event->group_caps = event->event_caps;
1819 		add_event_to_groups(event, ctx);
1820 	}
1821 
1822 	list_add_rcu(&event->event_entry, &ctx->event_list);
1823 	ctx->nr_events++;
1824 	if (event->attr.inherit_stat)
1825 		ctx->nr_stat++;
1826 
1827 	if (event->state > PERF_EVENT_STATE_OFF)
1828 		perf_cgroup_event_enable(event, ctx);
1829 
1830 	ctx->generation++;
1831 }
1832 
1833 /*
1834  * Initialize event state based on the perf_event_attr::disabled.
1835  */
1836 static inline void perf_event__state_init(struct perf_event *event)
1837 {
1838 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1839 					      PERF_EVENT_STATE_INACTIVE;
1840 }
1841 
1842 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1843 {
1844 	int entry = sizeof(u64); /* value */
1845 	int size = 0;
1846 	int nr = 1;
1847 
1848 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1849 		size += sizeof(u64);
1850 
1851 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1852 		size += sizeof(u64);
1853 
1854 	if (event->attr.read_format & PERF_FORMAT_ID)
1855 		entry += sizeof(u64);
1856 
1857 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1858 		nr += nr_siblings;
1859 		size += sizeof(u64);
1860 	}
1861 
1862 	size += entry * nr;
1863 	event->read_size = size;
1864 }
1865 
1866 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1867 {
1868 	struct perf_sample_data *data;
1869 	u16 size = 0;
1870 
1871 	if (sample_type & PERF_SAMPLE_IP)
1872 		size += sizeof(data->ip);
1873 
1874 	if (sample_type & PERF_SAMPLE_ADDR)
1875 		size += sizeof(data->addr);
1876 
1877 	if (sample_type & PERF_SAMPLE_PERIOD)
1878 		size += sizeof(data->period);
1879 
1880 	if (sample_type & PERF_SAMPLE_WEIGHT)
1881 		size += sizeof(data->weight);
1882 
1883 	if (sample_type & PERF_SAMPLE_READ)
1884 		size += event->read_size;
1885 
1886 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1887 		size += sizeof(data->data_src.val);
1888 
1889 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1890 		size += sizeof(data->txn);
1891 
1892 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1893 		size += sizeof(data->phys_addr);
1894 
1895 	if (sample_type & PERF_SAMPLE_CGROUP)
1896 		size += sizeof(data->cgroup);
1897 
1898 	event->header_size = size;
1899 }
1900 
1901 /*
1902  * Called at perf_event creation and when events are attached/detached from a
1903  * group.
1904  */
1905 static void perf_event__header_size(struct perf_event *event)
1906 {
1907 	__perf_event_read_size(event,
1908 			       event->group_leader->nr_siblings);
1909 	__perf_event_header_size(event, event->attr.sample_type);
1910 }
1911 
1912 static void perf_event__id_header_size(struct perf_event *event)
1913 {
1914 	struct perf_sample_data *data;
1915 	u64 sample_type = event->attr.sample_type;
1916 	u16 size = 0;
1917 
1918 	if (sample_type & PERF_SAMPLE_TID)
1919 		size += sizeof(data->tid_entry);
1920 
1921 	if (sample_type & PERF_SAMPLE_TIME)
1922 		size += sizeof(data->time);
1923 
1924 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1925 		size += sizeof(data->id);
1926 
1927 	if (sample_type & PERF_SAMPLE_ID)
1928 		size += sizeof(data->id);
1929 
1930 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1931 		size += sizeof(data->stream_id);
1932 
1933 	if (sample_type & PERF_SAMPLE_CPU)
1934 		size += sizeof(data->cpu_entry);
1935 
1936 	event->id_header_size = size;
1937 }
1938 
1939 static bool perf_event_validate_size(struct perf_event *event)
1940 {
1941 	/*
1942 	 * The values computed here will be over-written when we actually
1943 	 * attach the event.
1944 	 */
1945 	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1946 	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1947 	perf_event__id_header_size(event);
1948 
1949 	/*
1950 	 * Sum the lot; should not exceed the 64k limit we have on records.
1951 	 * Conservative limit to allow for callchains and other variable fields.
1952 	 */
1953 	if (event->read_size + event->header_size +
1954 	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1955 		return false;
1956 
1957 	return true;
1958 }
1959 
1960 static void perf_group_attach(struct perf_event *event)
1961 {
1962 	struct perf_event *group_leader = event->group_leader, *pos;
1963 
1964 	lockdep_assert_held(&event->ctx->lock);
1965 
1966 	/*
1967 	 * We can have double attach due to group movement in perf_event_open.
1968 	 */
1969 	if (event->attach_state & PERF_ATTACH_GROUP)
1970 		return;
1971 
1972 	event->attach_state |= PERF_ATTACH_GROUP;
1973 
1974 	if (group_leader == event)
1975 		return;
1976 
1977 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1978 
1979 	group_leader->group_caps &= event->event_caps;
1980 
1981 	list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1982 	group_leader->nr_siblings++;
1983 
1984 	perf_event__header_size(group_leader);
1985 
1986 	for_each_sibling_event(pos, group_leader)
1987 		perf_event__header_size(pos);
1988 }
1989 
1990 /*
1991  * Remove an event from the lists for its context.
1992  * Must be called with ctx->mutex and ctx->lock held.
1993  */
1994 static void
1995 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1996 {
1997 	WARN_ON_ONCE(event->ctx != ctx);
1998 	lockdep_assert_held(&ctx->lock);
1999 
2000 	/*
2001 	 * We can have double detach due to exit/hot-unplug + close.
2002 	 */
2003 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
2004 		return;
2005 
2006 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
2007 
2008 	ctx->nr_events--;
2009 	if (event->attr.inherit_stat)
2010 		ctx->nr_stat--;
2011 
2012 	list_del_rcu(&event->event_entry);
2013 
2014 	if (event->group_leader == event)
2015 		del_event_from_groups(event, ctx);
2016 
2017 	/*
2018 	 * If event was in error state, then keep it
2019 	 * that way, otherwise bogus counts will be
2020 	 * returned on read(). The only way to get out
2021 	 * of error state is by explicit re-enabling
2022 	 * of the event
2023 	 */
2024 	if (event->state > PERF_EVENT_STATE_OFF) {
2025 		perf_cgroup_event_disable(event, ctx);
2026 		perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2027 	}
2028 
2029 	ctx->generation++;
2030 }
2031 
2032 static int
2033 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2034 {
2035 	if (!has_aux(aux_event))
2036 		return 0;
2037 
2038 	if (!event->pmu->aux_output_match)
2039 		return 0;
2040 
2041 	return event->pmu->aux_output_match(aux_event);
2042 }
2043 
2044 static void put_event(struct perf_event *event);
2045 static void event_sched_out(struct perf_event *event,
2046 			    struct perf_cpu_context *cpuctx,
2047 			    struct perf_event_context *ctx);
2048 
2049 static void perf_put_aux_event(struct perf_event *event)
2050 {
2051 	struct perf_event_context *ctx = event->ctx;
2052 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2053 	struct perf_event *iter;
2054 
2055 	/*
2056 	 * If event uses aux_event tear down the link
2057 	 */
2058 	if (event->aux_event) {
2059 		iter = event->aux_event;
2060 		event->aux_event = NULL;
2061 		put_event(iter);
2062 		return;
2063 	}
2064 
2065 	/*
2066 	 * If the event is an aux_event, tear down all links to
2067 	 * it from other events.
2068 	 */
2069 	for_each_sibling_event(iter, event->group_leader) {
2070 		if (iter->aux_event != event)
2071 			continue;
2072 
2073 		iter->aux_event = NULL;
2074 		put_event(event);
2075 
2076 		/*
2077 		 * If it's ACTIVE, schedule it out and put it into ERROR
2078 		 * state so that we don't try to schedule it again. Note
2079 		 * that perf_event_enable() will clear the ERROR status.
2080 		 */
2081 		event_sched_out(iter, cpuctx, ctx);
2082 		perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2083 	}
2084 }
2085 
2086 static bool perf_need_aux_event(struct perf_event *event)
2087 {
2088 	return !!event->attr.aux_output || !!event->attr.aux_sample_size;
2089 }
2090 
2091 static int perf_get_aux_event(struct perf_event *event,
2092 			      struct perf_event *group_leader)
2093 {
2094 	/*
2095 	 * Our group leader must be an aux event if we want to be
2096 	 * an aux_output. This way, the aux event will precede its
2097 	 * aux_output events in the group, and therefore will always
2098 	 * schedule first.
2099 	 */
2100 	if (!group_leader)
2101 		return 0;
2102 
2103 	/*
2104 	 * aux_output and aux_sample_size are mutually exclusive.
2105 	 */
2106 	if (event->attr.aux_output && event->attr.aux_sample_size)
2107 		return 0;
2108 
2109 	if (event->attr.aux_output &&
2110 	    !perf_aux_output_match(event, group_leader))
2111 		return 0;
2112 
2113 	if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2114 		return 0;
2115 
2116 	if (!atomic_long_inc_not_zero(&group_leader->refcount))
2117 		return 0;
2118 
2119 	/*
2120 	 * Link aux_outputs to their aux event; this is undone in
2121 	 * perf_group_detach() by perf_put_aux_event(). When the
2122 	 * group in torn down, the aux_output events loose their
2123 	 * link to the aux_event and can't schedule any more.
2124 	 */
2125 	event->aux_event = group_leader;
2126 
2127 	return 1;
2128 }
2129 
2130 static inline struct list_head *get_event_list(struct perf_event *event)
2131 {
2132 	struct perf_event_context *ctx = event->ctx;
2133 	return event->attr.pinned ? &ctx->pinned_active : &ctx->flexible_active;
2134 }
2135 
2136 /*
2137  * Events that have PERF_EV_CAP_SIBLING require being part of a group and
2138  * cannot exist on their own, schedule them out and move them into the ERROR
2139  * state. Also see _perf_event_enable(), it will not be able to recover
2140  * this ERROR state.
2141  */
2142 static inline void perf_remove_sibling_event(struct perf_event *event)
2143 {
2144 	struct perf_event_context *ctx = event->ctx;
2145 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2146 
2147 	event_sched_out(event, cpuctx, ctx);
2148 	perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2149 }
2150 
2151 static void perf_group_detach(struct perf_event *event)
2152 {
2153 	struct perf_event *leader = event->group_leader;
2154 	struct perf_event *sibling, *tmp;
2155 	struct perf_event_context *ctx = event->ctx;
2156 
2157 	lockdep_assert_held(&ctx->lock);
2158 
2159 	/*
2160 	 * We can have double detach due to exit/hot-unplug + close.
2161 	 */
2162 	if (!(event->attach_state & PERF_ATTACH_GROUP))
2163 		return;
2164 
2165 	event->attach_state &= ~PERF_ATTACH_GROUP;
2166 
2167 	perf_put_aux_event(event);
2168 
2169 	/*
2170 	 * If this is a sibling, remove it from its group.
2171 	 */
2172 	if (leader != event) {
2173 		list_del_init(&event->sibling_list);
2174 		event->group_leader->nr_siblings--;
2175 		goto out;
2176 	}
2177 
2178 	/*
2179 	 * If this was a group event with sibling events then
2180 	 * upgrade the siblings to singleton events by adding them
2181 	 * to whatever list we are on.
2182 	 */
2183 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2184 
2185 		if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2186 			perf_remove_sibling_event(sibling);
2187 
2188 		sibling->group_leader = sibling;
2189 		list_del_init(&sibling->sibling_list);
2190 
2191 		/* Inherit group flags from the previous leader */
2192 		sibling->group_caps = event->group_caps;
2193 
2194 		if (!RB_EMPTY_NODE(&event->group_node)) {
2195 			add_event_to_groups(sibling, event->ctx);
2196 
2197 			if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2198 				list_add_tail(&sibling->active_list, get_event_list(sibling));
2199 		}
2200 
2201 		WARN_ON_ONCE(sibling->ctx != event->ctx);
2202 	}
2203 
2204 out:
2205 	for_each_sibling_event(tmp, leader)
2206 		perf_event__header_size(tmp);
2207 
2208 	perf_event__header_size(leader);
2209 }
2210 
2211 static bool is_orphaned_event(struct perf_event *event)
2212 {
2213 	return event->state == PERF_EVENT_STATE_DEAD;
2214 }
2215 
2216 static inline int __pmu_filter_match(struct perf_event *event)
2217 {
2218 	struct pmu *pmu = event->pmu;
2219 	return pmu->filter_match ? pmu->filter_match(event) : 1;
2220 }
2221 
2222 /*
2223  * Check whether we should attempt to schedule an event group based on
2224  * PMU-specific filtering. An event group can consist of HW and SW events,
2225  * potentially with a SW leader, so we must check all the filters, to
2226  * determine whether a group is schedulable:
2227  */
2228 static inline int pmu_filter_match(struct perf_event *event)
2229 {
2230 	struct perf_event *sibling;
2231 
2232 	if (!__pmu_filter_match(event))
2233 		return 0;
2234 
2235 	for_each_sibling_event(sibling, event) {
2236 		if (!__pmu_filter_match(sibling))
2237 			return 0;
2238 	}
2239 
2240 	return 1;
2241 }
2242 
2243 static inline int
2244 event_filter_match(struct perf_event *event)
2245 {
2246 	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2247 	       perf_cgroup_match(event) && pmu_filter_match(event);
2248 }
2249 
2250 static void
2251 event_sched_out(struct perf_event *event,
2252 		  struct perf_cpu_context *cpuctx,
2253 		  struct perf_event_context *ctx)
2254 {
2255 	enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2256 
2257 	WARN_ON_ONCE(event->ctx != ctx);
2258 	lockdep_assert_held(&ctx->lock);
2259 
2260 	if (event->state != PERF_EVENT_STATE_ACTIVE)
2261 		return;
2262 
2263 	/*
2264 	 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2265 	 * we can schedule events _OUT_ individually through things like
2266 	 * __perf_remove_from_context().
2267 	 */
2268 	list_del_init(&event->active_list);
2269 
2270 	perf_pmu_disable(event->pmu);
2271 
2272 	event->pmu->del(event, 0);
2273 	event->oncpu = -1;
2274 
2275 	if (READ_ONCE(event->pending_disable) >= 0) {
2276 		WRITE_ONCE(event->pending_disable, -1);
2277 		perf_cgroup_event_disable(event, ctx);
2278 		state = PERF_EVENT_STATE_OFF;
2279 	}
2280 	perf_event_set_state(event, state);
2281 
2282 	if (!is_software_event(event))
2283 		cpuctx->active_oncpu--;
2284 	if (!--ctx->nr_active)
2285 		perf_event_ctx_deactivate(ctx);
2286 	if (event->attr.freq && event->attr.sample_freq)
2287 		ctx->nr_freq--;
2288 	if (event->attr.exclusive || !cpuctx->active_oncpu)
2289 		cpuctx->exclusive = 0;
2290 
2291 	perf_pmu_enable(event->pmu);
2292 }
2293 
2294 static void
2295 group_sched_out(struct perf_event *group_event,
2296 		struct perf_cpu_context *cpuctx,
2297 		struct perf_event_context *ctx)
2298 {
2299 	struct perf_event *event;
2300 
2301 	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2302 		return;
2303 
2304 	perf_pmu_disable(ctx->pmu);
2305 
2306 	event_sched_out(group_event, cpuctx, ctx);
2307 
2308 	/*
2309 	 * Schedule out siblings (if any):
2310 	 */
2311 	for_each_sibling_event(event, group_event)
2312 		event_sched_out(event, cpuctx, ctx);
2313 
2314 	perf_pmu_enable(ctx->pmu);
2315 }
2316 
2317 #define DETACH_GROUP	0x01UL
2318 
2319 /*
2320  * Cross CPU call to remove a performance event
2321  *
2322  * We disable the event on the hardware level first. After that we
2323  * remove it from the context list.
2324  */
2325 static void
2326 __perf_remove_from_context(struct perf_event *event,
2327 			   struct perf_cpu_context *cpuctx,
2328 			   struct perf_event_context *ctx,
2329 			   void *info)
2330 {
2331 	unsigned long flags = (unsigned long)info;
2332 
2333 	if (ctx->is_active & EVENT_TIME) {
2334 		update_context_time(ctx);
2335 		update_cgrp_time_from_cpuctx(cpuctx);
2336 	}
2337 
2338 	event_sched_out(event, cpuctx, ctx);
2339 	if (flags & DETACH_GROUP)
2340 		perf_group_detach(event);
2341 	list_del_event(event, ctx);
2342 
2343 	if (!ctx->nr_events && ctx->is_active) {
2344 		ctx->is_active = 0;
2345 		ctx->rotate_necessary = 0;
2346 		if (ctx->task) {
2347 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2348 			cpuctx->task_ctx = NULL;
2349 		}
2350 	}
2351 }
2352 
2353 /*
2354  * Remove the event from a task's (or a CPU's) list of events.
2355  *
2356  * If event->ctx is a cloned context, callers must make sure that
2357  * every task struct that event->ctx->task could possibly point to
2358  * remains valid.  This is OK when called from perf_release since
2359  * that only calls us on the top-level context, which can't be a clone.
2360  * When called from perf_event_exit_task, it's OK because the
2361  * context has been detached from its task.
2362  */
2363 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2364 {
2365 	struct perf_event_context *ctx = event->ctx;
2366 
2367 	lockdep_assert_held(&ctx->mutex);
2368 
2369 	event_function_call(event, __perf_remove_from_context, (void *)flags);
2370 
2371 	/*
2372 	 * The above event_function_call() can NO-OP when it hits
2373 	 * TASK_TOMBSTONE. In that case we must already have been detached
2374 	 * from the context (by perf_event_exit_event()) but the grouping
2375 	 * might still be in-tact.
2376 	 */
2377 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
2378 	if ((flags & DETACH_GROUP) &&
2379 	    (event->attach_state & PERF_ATTACH_GROUP)) {
2380 		/*
2381 		 * Since in that case we cannot possibly be scheduled, simply
2382 		 * detach now.
2383 		 */
2384 		raw_spin_lock_irq(&ctx->lock);
2385 		perf_group_detach(event);
2386 		raw_spin_unlock_irq(&ctx->lock);
2387 	}
2388 }
2389 
2390 /*
2391  * Cross CPU call to disable a performance event
2392  */
2393 static void __perf_event_disable(struct perf_event *event,
2394 				 struct perf_cpu_context *cpuctx,
2395 				 struct perf_event_context *ctx,
2396 				 void *info)
2397 {
2398 	if (event->state < PERF_EVENT_STATE_INACTIVE)
2399 		return;
2400 
2401 	if (ctx->is_active & EVENT_TIME) {
2402 		update_context_time(ctx);
2403 		update_cgrp_time_from_event(event);
2404 	}
2405 
2406 	if (event == event->group_leader)
2407 		group_sched_out(event, cpuctx, ctx);
2408 	else
2409 		event_sched_out(event, cpuctx, ctx);
2410 
2411 	perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2412 	perf_cgroup_event_disable(event, ctx);
2413 }
2414 
2415 /*
2416  * Disable an event.
2417  *
2418  * If event->ctx is a cloned context, callers must make sure that
2419  * every task struct that event->ctx->task could possibly point to
2420  * remains valid.  This condition is satisfied when called through
2421  * perf_event_for_each_child or perf_event_for_each because they
2422  * hold the top-level event's child_mutex, so any descendant that
2423  * goes to exit will block in perf_event_exit_event().
2424  *
2425  * When called from perf_pending_event it's OK because event->ctx
2426  * is the current context on this CPU and preemption is disabled,
2427  * hence we can't get into perf_event_task_sched_out for this context.
2428  */
2429 static void _perf_event_disable(struct perf_event *event)
2430 {
2431 	struct perf_event_context *ctx = event->ctx;
2432 
2433 	raw_spin_lock_irq(&ctx->lock);
2434 	if (event->state <= PERF_EVENT_STATE_OFF) {
2435 		raw_spin_unlock_irq(&ctx->lock);
2436 		return;
2437 	}
2438 	raw_spin_unlock_irq(&ctx->lock);
2439 
2440 	event_function_call(event, __perf_event_disable, NULL);
2441 }
2442 
2443 void perf_event_disable_local(struct perf_event *event)
2444 {
2445 	event_function_local(event, __perf_event_disable, NULL);
2446 }
2447 
2448 /*
2449  * Strictly speaking kernel users cannot create groups and therefore this
2450  * interface does not need the perf_event_ctx_lock() magic.
2451  */
2452 void perf_event_disable(struct perf_event *event)
2453 {
2454 	struct perf_event_context *ctx;
2455 
2456 	ctx = perf_event_ctx_lock(event);
2457 	_perf_event_disable(event);
2458 	perf_event_ctx_unlock(event, ctx);
2459 }
2460 EXPORT_SYMBOL_GPL(perf_event_disable);
2461 
2462 void perf_event_disable_inatomic(struct perf_event *event)
2463 {
2464 	WRITE_ONCE(event->pending_disable, smp_processor_id());
2465 	/* can fail, see perf_pending_event_disable() */
2466 	irq_work_queue(&event->pending);
2467 }
2468 
2469 static void perf_set_shadow_time(struct perf_event *event,
2470 				 struct perf_event_context *ctx)
2471 {
2472 	/*
2473 	 * use the correct time source for the time snapshot
2474 	 *
2475 	 * We could get by without this by leveraging the
2476 	 * fact that to get to this function, the caller
2477 	 * has most likely already called update_context_time()
2478 	 * and update_cgrp_time_xx() and thus both timestamp
2479 	 * are identical (or very close). Given that tstamp is,
2480 	 * already adjusted for cgroup, we could say that:
2481 	 *    tstamp - ctx->timestamp
2482 	 * is equivalent to
2483 	 *    tstamp - cgrp->timestamp.
2484 	 *
2485 	 * Then, in perf_output_read(), the calculation would
2486 	 * work with no changes because:
2487 	 * - event is guaranteed scheduled in
2488 	 * - no scheduled out in between
2489 	 * - thus the timestamp would be the same
2490 	 *
2491 	 * But this is a bit hairy.
2492 	 *
2493 	 * So instead, we have an explicit cgroup call to remain
2494 	 * within the time time source all along. We believe it
2495 	 * is cleaner and simpler to understand.
2496 	 */
2497 	if (is_cgroup_event(event))
2498 		perf_cgroup_set_shadow_time(event, event->tstamp);
2499 	else
2500 		event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2501 }
2502 
2503 #define MAX_INTERRUPTS (~0ULL)
2504 
2505 static void perf_log_throttle(struct perf_event *event, int enable);
2506 static void perf_log_itrace_start(struct perf_event *event);
2507 
2508 static int
2509 event_sched_in(struct perf_event *event,
2510 		 struct perf_cpu_context *cpuctx,
2511 		 struct perf_event_context *ctx)
2512 {
2513 	int ret = 0;
2514 
2515 	WARN_ON_ONCE(event->ctx != ctx);
2516 
2517 	lockdep_assert_held(&ctx->lock);
2518 
2519 	if (event->state <= PERF_EVENT_STATE_OFF)
2520 		return 0;
2521 
2522 	WRITE_ONCE(event->oncpu, smp_processor_id());
2523 	/*
2524 	 * Order event::oncpu write to happen before the ACTIVE state is
2525 	 * visible. This allows perf_event_{stop,read}() to observe the correct
2526 	 * ->oncpu if it sees ACTIVE.
2527 	 */
2528 	smp_wmb();
2529 	perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2530 
2531 	/*
2532 	 * Unthrottle events, since we scheduled we might have missed several
2533 	 * ticks already, also for a heavily scheduling task there is little
2534 	 * guarantee it'll get a tick in a timely manner.
2535 	 */
2536 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2537 		perf_log_throttle(event, 1);
2538 		event->hw.interrupts = 0;
2539 	}
2540 
2541 	perf_pmu_disable(event->pmu);
2542 
2543 	perf_set_shadow_time(event, ctx);
2544 
2545 	perf_log_itrace_start(event);
2546 
2547 	if (event->pmu->add(event, PERF_EF_START)) {
2548 		perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2549 		event->oncpu = -1;
2550 		ret = -EAGAIN;
2551 		goto out;
2552 	}
2553 
2554 	if (!is_software_event(event))
2555 		cpuctx->active_oncpu++;
2556 	if (!ctx->nr_active++)
2557 		perf_event_ctx_activate(ctx);
2558 	if (event->attr.freq && event->attr.sample_freq)
2559 		ctx->nr_freq++;
2560 
2561 	if (event->attr.exclusive)
2562 		cpuctx->exclusive = 1;
2563 
2564 out:
2565 	perf_pmu_enable(event->pmu);
2566 
2567 	return ret;
2568 }
2569 
2570 static int
2571 group_sched_in(struct perf_event *group_event,
2572 	       struct perf_cpu_context *cpuctx,
2573 	       struct perf_event_context *ctx)
2574 {
2575 	struct perf_event *event, *partial_group = NULL;
2576 	struct pmu *pmu = ctx->pmu;
2577 
2578 	if (group_event->state == PERF_EVENT_STATE_OFF)
2579 		return 0;
2580 
2581 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2582 
2583 	if (event_sched_in(group_event, cpuctx, ctx))
2584 		goto error;
2585 
2586 	/*
2587 	 * Schedule in siblings as one group (if any):
2588 	 */
2589 	for_each_sibling_event(event, group_event) {
2590 		if (event_sched_in(event, cpuctx, ctx)) {
2591 			partial_group = event;
2592 			goto group_error;
2593 		}
2594 	}
2595 
2596 	if (!pmu->commit_txn(pmu))
2597 		return 0;
2598 
2599 group_error:
2600 	/*
2601 	 * Groups can be scheduled in as one unit only, so undo any
2602 	 * partial group before returning:
2603 	 * The events up to the failed event are scheduled out normally.
2604 	 */
2605 	for_each_sibling_event(event, group_event) {
2606 		if (event == partial_group)
2607 			break;
2608 
2609 		event_sched_out(event, cpuctx, ctx);
2610 	}
2611 	event_sched_out(group_event, cpuctx, ctx);
2612 
2613 error:
2614 	pmu->cancel_txn(pmu);
2615 	return -EAGAIN;
2616 }
2617 
2618 /*
2619  * Work out whether we can put this event group on the CPU now.
2620  */
2621 static int group_can_go_on(struct perf_event *event,
2622 			   struct perf_cpu_context *cpuctx,
2623 			   int can_add_hw)
2624 {
2625 	/*
2626 	 * Groups consisting entirely of software events can always go on.
2627 	 */
2628 	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2629 		return 1;
2630 	/*
2631 	 * If an exclusive group is already on, no other hardware
2632 	 * events can go on.
2633 	 */
2634 	if (cpuctx->exclusive)
2635 		return 0;
2636 	/*
2637 	 * If this group is exclusive and there are already
2638 	 * events on the CPU, it can't go on.
2639 	 */
2640 	if (event->attr.exclusive && !list_empty(get_event_list(event)))
2641 		return 0;
2642 	/*
2643 	 * Otherwise, try to add it if all previous groups were able
2644 	 * to go on.
2645 	 */
2646 	return can_add_hw;
2647 }
2648 
2649 static void add_event_to_ctx(struct perf_event *event,
2650 			       struct perf_event_context *ctx)
2651 {
2652 	list_add_event(event, ctx);
2653 	perf_group_attach(event);
2654 }
2655 
2656 static void ctx_sched_out(struct perf_event_context *ctx,
2657 			  struct perf_cpu_context *cpuctx,
2658 			  enum event_type_t event_type);
2659 static void
2660 ctx_sched_in(struct perf_event_context *ctx,
2661 	     struct perf_cpu_context *cpuctx,
2662 	     enum event_type_t event_type,
2663 	     struct task_struct *task);
2664 
2665 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2666 			       struct perf_event_context *ctx,
2667 			       enum event_type_t event_type)
2668 {
2669 	if (!cpuctx->task_ctx)
2670 		return;
2671 
2672 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2673 		return;
2674 
2675 	ctx_sched_out(ctx, cpuctx, event_type);
2676 }
2677 
2678 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2679 				struct perf_event_context *ctx,
2680 				struct task_struct *task)
2681 {
2682 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2683 	if (ctx)
2684 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2685 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2686 	if (ctx)
2687 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2688 }
2689 
2690 /*
2691  * We want to maintain the following priority of scheduling:
2692  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2693  *  - task pinned (EVENT_PINNED)
2694  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2695  *  - task flexible (EVENT_FLEXIBLE).
2696  *
2697  * In order to avoid unscheduling and scheduling back in everything every
2698  * time an event is added, only do it for the groups of equal priority and
2699  * below.
2700  *
2701  * This can be called after a batch operation on task events, in which case
2702  * event_type is a bit mask of the types of events involved. For CPU events,
2703  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2704  */
2705 static void ctx_resched(struct perf_cpu_context *cpuctx,
2706 			struct perf_event_context *task_ctx,
2707 			enum event_type_t event_type)
2708 {
2709 	enum event_type_t ctx_event_type;
2710 	bool cpu_event = !!(event_type & EVENT_CPU);
2711 
2712 	/*
2713 	 * If pinned groups are involved, flexible groups also need to be
2714 	 * scheduled out.
2715 	 */
2716 	if (event_type & EVENT_PINNED)
2717 		event_type |= EVENT_FLEXIBLE;
2718 
2719 	ctx_event_type = event_type & EVENT_ALL;
2720 
2721 	perf_pmu_disable(cpuctx->ctx.pmu);
2722 	if (task_ctx)
2723 		task_ctx_sched_out(cpuctx, task_ctx, event_type);
2724 
2725 	/*
2726 	 * Decide which cpu ctx groups to schedule out based on the types
2727 	 * of events that caused rescheduling:
2728 	 *  - EVENT_CPU: schedule out corresponding groups;
2729 	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2730 	 *  - otherwise, do nothing more.
2731 	 */
2732 	if (cpu_event)
2733 		cpu_ctx_sched_out(cpuctx, ctx_event_type);
2734 	else if (ctx_event_type & EVENT_PINNED)
2735 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2736 
2737 	perf_event_sched_in(cpuctx, task_ctx, current);
2738 	perf_pmu_enable(cpuctx->ctx.pmu);
2739 }
2740 
2741 void perf_pmu_resched(struct pmu *pmu)
2742 {
2743 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2744 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2745 
2746 	perf_ctx_lock(cpuctx, task_ctx);
2747 	ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2748 	perf_ctx_unlock(cpuctx, task_ctx);
2749 }
2750 
2751 /*
2752  * Cross CPU call to install and enable a performance event
2753  *
2754  * Very similar to remote_function() + event_function() but cannot assume that
2755  * things like ctx->is_active and cpuctx->task_ctx are set.
2756  */
2757 static int  __perf_install_in_context(void *info)
2758 {
2759 	struct perf_event *event = info;
2760 	struct perf_event_context *ctx = event->ctx;
2761 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2762 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2763 	bool reprogram = true;
2764 	int ret = 0;
2765 
2766 	raw_spin_lock(&cpuctx->ctx.lock);
2767 	if (ctx->task) {
2768 		raw_spin_lock(&ctx->lock);
2769 		task_ctx = ctx;
2770 
2771 		reprogram = (ctx->task == current);
2772 
2773 		/*
2774 		 * If the task is running, it must be running on this CPU,
2775 		 * otherwise we cannot reprogram things.
2776 		 *
2777 		 * If its not running, we don't care, ctx->lock will
2778 		 * serialize against it becoming runnable.
2779 		 */
2780 		if (task_curr(ctx->task) && !reprogram) {
2781 			ret = -ESRCH;
2782 			goto unlock;
2783 		}
2784 
2785 		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2786 	} else if (task_ctx) {
2787 		raw_spin_lock(&task_ctx->lock);
2788 	}
2789 
2790 #ifdef CONFIG_CGROUP_PERF
2791 	if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2792 		/*
2793 		 * If the current cgroup doesn't match the event's
2794 		 * cgroup, we should not try to schedule it.
2795 		 */
2796 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2797 		reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2798 					event->cgrp->css.cgroup);
2799 	}
2800 #endif
2801 
2802 	if (reprogram) {
2803 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2804 		add_event_to_ctx(event, ctx);
2805 		ctx_resched(cpuctx, task_ctx, get_event_type(event));
2806 	} else {
2807 		add_event_to_ctx(event, ctx);
2808 	}
2809 
2810 unlock:
2811 	perf_ctx_unlock(cpuctx, task_ctx);
2812 
2813 	return ret;
2814 }
2815 
2816 static bool exclusive_event_installable(struct perf_event *event,
2817 					struct perf_event_context *ctx);
2818 
2819 /*
2820  * Attach a performance event to a context.
2821  *
2822  * Very similar to event_function_call, see comment there.
2823  */
2824 static void
2825 perf_install_in_context(struct perf_event_context *ctx,
2826 			struct perf_event *event,
2827 			int cpu)
2828 {
2829 	struct task_struct *task = READ_ONCE(ctx->task);
2830 
2831 	lockdep_assert_held(&ctx->mutex);
2832 
2833 	WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2834 
2835 	if (event->cpu != -1)
2836 		event->cpu = cpu;
2837 
2838 	/*
2839 	 * Ensures that if we can observe event->ctx, both the event and ctx
2840 	 * will be 'complete'. See perf_iterate_sb_cpu().
2841 	 */
2842 	smp_store_release(&event->ctx, ctx);
2843 
2844 	/*
2845 	 * perf_event_attr::disabled events will not run and can be initialized
2846 	 * without IPI. Except when this is the first event for the context, in
2847 	 * that case we need the magic of the IPI to set ctx->is_active.
2848 	 *
2849 	 * The IOC_ENABLE that is sure to follow the creation of a disabled
2850 	 * event will issue the IPI and reprogram the hardware.
2851 	 */
2852 	if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && ctx->nr_events) {
2853 		raw_spin_lock_irq(&ctx->lock);
2854 		if (ctx->task == TASK_TOMBSTONE) {
2855 			raw_spin_unlock_irq(&ctx->lock);
2856 			return;
2857 		}
2858 		add_event_to_ctx(event, ctx);
2859 		raw_spin_unlock_irq(&ctx->lock);
2860 		return;
2861 	}
2862 
2863 	if (!task) {
2864 		cpu_function_call(cpu, __perf_install_in_context, event);
2865 		return;
2866 	}
2867 
2868 	/*
2869 	 * Should not happen, we validate the ctx is still alive before calling.
2870 	 */
2871 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2872 		return;
2873 
2874 	/*
2875 	 * Installing events is tricky because we cannot rely on ctx->is_active
2876 	 * to be set in case this is the nr_events 0 -> 1 transition.
2877 	 *
2878 	 * Instead we use task_curr(), which tells us if the task is running.
2879 	 * However, since we use task_curr() outside of rq::lock, we can race
2880 	 * against the actual state. This means the result can be wrong.
2881 	 *
2882 	 * If we get a false positive, we retry, this is harmless.
2883 	 *
2884 	 * If we get a false negative, things are complicated. If we are after
2885 	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2886 	 * value must be correct. If we're before, it doesn't matter since
2887 	 * perf_event_context_sched_in() will program the counter.
2888 	 *
2889 	 * However, this hinges on the remote context switch having observed
2890 	 * our task->perf_event_ctxp[] store, such that it will in fact take
2891 	 * ctx::lock in perf_event_context_sched_in().
2892 	 *
2893 	 * We do this by task_function_call(), if the IPI fails to hit the task
2894 	 * we know any future context switch of task must see the
2895 	 * perf_event_ctpx[] store.
2896 	 */
2897 
2898 	/*
2899 	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2900 	 * task_cpu() load, such that if the IPI then does not find the task
2901 	 * running, a future context switch of that task must observe the
2902 	 * store.
2903 	 */
2904 	smp_mb();
2905 again:
2906 	if (!task_function_call(task, __perf_install_in_context, event))
2907 		return;
2908 
2909 	raw_spin_lock_irq(&ctx->lock);
2910 	task = ctx->task;
2911 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2912 		/*
2913 		 * Cannot happen because we already checked above (which also
2914 		 * cannot happen), and we hold ctx->mutex, which serializes us
2915 		 * against perf_event_exit_task_context().
2916 		 */
2917 		raw_spin_unlock_irq(&ctx->lock);
2918 		return;
2919 	}
2920 	/*
2921 	 * If the task is not running, ctx->lock will avoid it becoming so,
2922 	 * thus we can safely install the event.
2923 	 */
2924 	if (task_curr(task)) {
2925 		raw_spin_unlock_irq(&ctx->lock);
2926 		goto again;
2927 	}
2928 	add_event_to_ctx(event, ctx);
2929 	raw_spin_unlock_irq(&ctx->lock);
2930 }
2931 
2932 /*
2933  * Cross CPU call to enable a performance event
2934  */
2935 static void __perf_event_enable(struct perf_event *event,
2936 				struct perf_cpu_context *cpuctx,
2937 				struct perf_event_context *ctx,
2938 				void *info)
2939 {
2940 	struct perf_event *leader = event->group_leader;
2941 	struct perf_event_context *task_ctx;
2942 
2943 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2944 	    event->state <= PERF_EVENT_STATE_ERROR)
2945 		return;
2946 
2947 	if (ctx->is_active)
2948 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2949 
2950 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2951 	perf_cgroup_event_enable(event, ctx);
2952 
2953 	if (!ctx->is_active)
2954 		return;
2955 
2956 	if (!event_filter_match(event)) {
2957 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2958 		return;
2959 	}
2960 
2961 	/*
2962 	 * If the event is in a group and isn't the group leader,
2963 	 * then don't put it on unless the group is on.
2964 	 */
2965 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2966 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2967 		return;
2968 	}
2969 
2970 	task_ctx = cpuctx->task_ctx;
2971 	if (ctx->task)
2972 		WARN_ON_ONCE(task_ctx != ctx);
2973 
2974 	ctx_resched(cpuctx, task_ctx, get_event_type(event));
2975 }
2976 
2977 /*
2978  * Enable an event.
2979  *
2980  * If event->ctx is a cloned context, callers must make sure that
2981  * every task struct that event->ctx->task could possibly point to
2982  * remains valid.  This condition is satisfied when called through
2983  * perf_event_for_each_child or perf_event_for_each as described
2984  * for perf_event_disable.
2985  */
2986 static void _perf_event_enable(struct perf_event *event)
2987 {
2988 	struct perf_event_context *ctx = event->ctx;
2989 
2990 	raw_spin_lock_irq(&ctx->lock);
2991 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2992 	    event->state <  PERF_EVENT_STATE_ERROR) {
2993 out:
2994 		raw_spin_unlock_irq(&ctx->lock);
2995 		return;
2996 	}
2997 
2998 	/*
2999 	 * If the event is in error state, clear that first.
3000 	 *
3001 	 * That way, if we see the event in error state below, we know that it
3002 	 * has gone back into error state, as distinct from the task having
3003 	 * been scheduled away before the cross-call arrived.
3004 	 */
3005 	if (event->state == PERF_EVENT_STATE_ERROR) {
3006 		/*
3007 		 * Detached SIBLING events cannot leave ERROR state.
3008 		 */
3009 		if (event->event_caps & PERF_EV_CAP_SIBLING &&
3010 		    event->group_leader == event)
3011 			goto out;
3012 
3013 		event->state = PERF_EVENT_STATE_OFF;
3014 	}
3015 	raw_spin_unlock_irq(&ctx->lock);
3016 
3017 	event_function_call(event, __perf_event_enable, NULL);
3018 }
3019 
3020 /*
3021  * See perf_event_disable();
3022  */
3023 void perf_event_enable(struct perf_event *event)
3024 {
3025 	struct perf_event_context *ctx;
3026 
3027 	ctx = perf_event_ctx_lock(event);
3028 	_perf_event_enable(event);
3029 	perf_event_ctx_unlock(event, ctx);
3030 }
3031 EXPORT_SYMBOL_GPL(perf_event_enable);
3032 
3033 struct stop_event_data {
3034 	struct perf_event	*event;
3035 	unsigned int		restart;
3036 };
3037 
3038 static int __perf_event_stop(void *info)
3039 {
3040 	struct stop_event_data *sd = info;
3041 	struct perf_event *event = sd->event;
3042 
3043 	/* if it's already INACTIVE, do nothing */
3044 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3045 		return 0;
3046 
3047 	/* matches smp_wmb() in event_sched_in() */
3048 	smp_rmb();
3049 
3050 	/*
3051 	 * There is a window with interrupts enabled before we get here,
3052 	 * so we need to check again lest we try to stop another CPU's event.
3053 	 */
3054 	if (READ_ONCE(event->oncpu) != smp_processor_id())
3055 		return -EAGAIN;
3056 
3057 	event->pmu->stop(event, PERF_EF_UPDATE);
3058 
3059 	/*
3060 	 * May race with the actual stop (through perf_pmu_output_stop()),
3061 	 * but it is only used for events with AUX ring buffer, and such
3062 	 * events will refuse to restart because of rb::aux_mmap_count==0,
3063 	 * see comments in perf_aux_output_begin().
3064 	 *
3065 	 * Since this is happening on an event-local CPU, no trace is lost
3066 	 * while restarting.
3067 	 */
3068 	if (sd->restart)
3069 		event->pmu->start(event, 0);
3070 
3071 	return 0;
3072 }
3073 
3074 static int perf_event_stop(struct perf_event *event, int restart)
3075 {
3076 	struct stop_event_data sd = {
3077 		.event		= event,
3078 		.restart	= restart,
3079 	};
3080 	int ret = 0;
3081 
3082 	do {
3083 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3084 			return 0;
3085 
3086 		/* matches smp_wmb() in event_sched_in() */
3087 		smp_rmb();
3088 
3089 		/*
3090 		 * We only want to restart ACTIVE events, so if the event goes
3091 		 * inactive here (event->oncpu==-1), there's nothing more to do;
3092 		 * fall through with ret==-ENXIO.
3093 		 */
3094 		ret = cpu_function_call(READ_ONCE(event->oncpu),
3095 					__perf_event_stop, &sd);
3096 	} while (ret == -EAGAIN);
3097 
3098 	return ret;
3099 }
3100 
3101 /*
3102  * In order to contain the amount of racy and tricky in the address filter
3103  * configuration management, it is a two part process:
3104  *
3105  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3106  *      we update the addresses of corresponding vmas in
3107  *	event::addr_filter_ranges array and bump the event::addr_filters_gen;
3108  * (p2) when an event is scheduled in (pmu::add), it calls
3109  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3110  *      if the generation has changed since the previous call.
3111  *
3112  * If (p1) happens while the event is active, we restart it to force (p2).
3113  *
3114  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3115  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
3116  *     ioctl;
3117  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3118  *     registered mapping, called for every new mmap(), with mm::mmap_lock down
3119  *     for reading;
3120  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3121  *     of exec.
3122  */
3123 void perf_event_addr_filters_sync(struct perf_event *event)
3124 {
3125 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3126 
3127 	if (!has_addr_filter(event))
3128 		return;
3129 
3130 	raw_spin_lock(&ifh->lock);
3131 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3132 		event->pmu->addr_filters_sync(event);
3133 		event->hw.addr_filters_gen = event->addr_filters_gen;
3134 	}
3135 	raw_spin_unlock(&ifh->lock);
3136 }
3137 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3138 
3139 static int _perf_event_refresh(struct perf_event *event, int refresh)
3140 {
3141 	/*
3142 	 * not supported on inherited events
3143 	 */
3144 	if (event->attr.inherit || !is_sampling_event(event))
3145 		return -EINVAL;
3146 
3147 	atomic_add(refresh, &event->event_limit);
3148 	_perf_event_enable(event);
3149 
3150 	return 0;
3151 }
3152 
3153 /*
3154  * See perf_event_disable()
3155  */
3156 int perf_event_refresh(struct perf_event *event, int refresh)
3157 {
3158 	struct perf_event_context *ctx;
3159 	int ret;
3160 
3161 	ctx = perf_event_ctx_lock(event);
3162 	ret = _perf_event_refresh(event, refresh);
3163 	perf_event_ctx_unlock(event, ctx);
3164 
3165 	return ret;
3166 }
3167 EXPORT_SYMBOL_GPL(perf_event_refresh);
3168 
3169 static int perf_event_modify_breakpoint(struct perf_event *bp,
3170 					 struct perf_event_attr *attr)
3171 {
3172 	int err;
3173 
3174 	_perf_event_disable(bp);
3175 
3176 	err = modify_user_hw_breakpoint_check(bp, attr, true);
3177 
3178 	if (!bp->attr.disabled)
3179 		_perf_event_enable(bp);
3180 
3181 	return err;
3182 }
3183 
3184 static int perf_event_modify_attr(struct perf_event *event,
3185 				  struct perf_event_attr *attr)
3186 {
3187 	if (event->attr.type != attr->type)
3188 		return -EINVAL;
3189 
3190 	switch (event->attr.type) {
3191 	case PERF_TYPE_BREAKPOINT:
3192 		return perf_event_modify_breakpoint(event, attr);
3193 	default:
3194 		/* Place holder for future additions. */
3195 		return -EOPNOTSUPP;
3196 	}
3197 }
3198 
3199 static void ctx_sched_out(struct perf_event_context *ctx,
3200 			  struct perf_cpu_context *cpuctx,
3201 			  enum event_type_t event_type)
3202 {
3203 	struct perf_event *event, *tmp;
3204 	int is_active = ctx->is_active;
3205 
3206 	lockdep_assert_held(&ctx->lock);
3207 
3208 	if (likely(!ctx->nr_events)) {
3209 		/*
3210 		 * See __perf_remove_from_context().
3211 		 */
3212 		WARN_ON_ONCE(ctx->is_active);
3213 		if (ctx->task)
3214 			WARN_ON_ONCE(cpuctx->task_ctx);
3215 		return;
3216 	}
3217 
3218 	ctx->is_active &= ~event_type;
3219 	if (!(ctx->is_active & EVENT_ALL))
3220 		ctx->is_active = 0;
3221 
3222 	if (ctx->task) {
3223 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3224 		if (!ctx->is_active)
3225 			cpuctx->task_ctx = NULL;
3226 	}
3227 
3228 	/*
3229 	 * Always update time if it was set; not only when it changes.
3230 	 * Otherwise we can 'forget' to update time for any but the last
3231 	 * context we sched out. For example:
3232 	 *
3233 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3234 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
3235 	 *
3236 	 * would only update time for the pinned events.
3237 	 */
3238 	if (is_active & EVENT_TIME) {
3239 		/* update (and stop) ctx time */
3240 		update_context_time(ctx);
3241 		update_cgrp_time_from_cpuctx(cpuctx);
3242 	}
3243 
3244 	is_active ^= ctx->is_active; /* changed bits */
3245 
3246 	if (!ctx->nr_active || !(is_active & EVENT_ALL))
3247 		return;
3248 
3249 	perf_pmu_disable(ctx->pmu);
3250 	if (is_active & EVENT_PINNED) {
3251 		list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
3252 			group_sched_out(event, cpuctx, ctx);
3253 	}
3254 
3255 	if (is_active & EVENT_FLEXIBLE) {
3256 		list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
3257 			group_sched_out(event, cpuctx, ctx);
3258 
3259 		/*
3260 		 * Since we cleared EVENT_FLEXIBLE, also clear
3261 		 * rotate_necessary, is will be reset by
3262 		 * ctx_flexible_sched_in() when needed.
3263 		 */
3264 		ctx->rotate_necessary = 0;
3265 	}
3266 	perf_pmu_enable(ctx->pmu);
3267 }
3268 
3269 /*
3270  * Test whether two contexts are equivalent, i.e. whether they have both been
3271  * cloned from the same version of the same context.
3272  *
3273  * Equivalence is measured using a generation number in the context that is
3274  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3275  * and list_del_event().
3276  */
3277 static int context_equiv(struct perf_event_context *ctx1,
3278 			 struct perf_event_context *ctx2)
3279 {
3280 	lockdep_assert_held(&ctx1->lock);
3281 	lockdep_assert_held(&ctx2->lock);
3282 
3283 	/* Pinning disables the swap optimization */
3284 	if (ctx1->pin_count || ctx2->pin_count)
3285 		return 0;
3286 
3287 	/* If ctx1 is the parent of ctx2 */
3288 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3289 		return 1;
3290 
3291 	/* If ctx2 is the parent of ctx1 */
3292 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3293 		return 1;
3294 
3295 	/*
3296 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
3297 	 * hierarchy, see perf_event_init_context().
3298 	 */
3299 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3300 			ctx1->parent_gen == ctx2->parent_gen)
3301 		return 1;
3302 
3303 	/* Unmatched */
3304 	return 0;
3305 }
3306 
3307 static void __perf_event_sync_stat(struct perf_event *event,
3308 				     struct perf_event *next_event)
3309 {
3310 	u64 value;
3311 
3312 	if (!event->attr.inherit_stat)
3313 		return;
3314 
3315 	/*
3316 	 * Update the event value, we cannot use perf_event_read()
3317 	 * because we're in the middle of a context switch and have IRQs
3318 	 * disabled, which upsets smp_call_function_single(), however
3319 	 * we know the event must be on the current CPU, therefore we
3320 	 * don't need to use it.
3321 	 */
3322 	if (event->state == PERF_EVENT_STATE_ACTIVE)
3323 		event->pmu->read(event);
3324 
3325 	perf_event_update_time(event);
3326 
3327 	/*
3328 	 * In order to keep per-task stats reliable we need to flip the event
3329 	 * values when we flip the contexts.
3330 	 */
3331 	value = local64_read(&next_event->count);
3332 	value = local64_xchg(&event->count, value);
3333 	local64_set(&next_event->count, value);
3334 
3335 	swap(event->total_time_enabled, next_event->total_time_enabled);
3336 	swap(event->total_time_running, next_event->total_time_running);
3337 
3338 	/*
3339 	 * Since we swizzled the values, update the user visible data too.
3340 	 */
3341 	perf_event_update_userpage(event);
3342 	perf_event_update_userpage(next_event);
3343 }
3344 
3345 static void perf_event_sync_stat(struct perf_event_context *ctx,
3346 				   struct perf_event_context *next_ctx)
3347 {
3348 	struct perf_event *event, *next_event;
3349 
3350 	if (!ctx->nr_stat)
3351 		return;
3352 
3353 	update_context_time(ctx);
3354 
3355 	event = list_first_entry(&ctx->event_list,
3356 				   struct perf_event, event_entry);
3357 
3358 	next_event = list_first_entry(&next_ctx->event_list,
3359 					struct perf_event, event_entry);
3360 
3361 	while (&event->event_entry != &ctx->event_list &&
3362 	       &next_event->event_entry != &next_ctx->event_list) {
3363 
3364 		__perf_event_sync_stat(event, next_event);
3365 
3366 		event = list_next_entry(event, event_entry);
3367 		next_event = list_next_entry(next_event, event_entry);
3368 	}
3369 }
3370 
3371 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3372 					 struct task_struct *next)
3373 {
3374 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3375 	struct perf_event_context *next_ctx;
3376 	struct perf_event_context *parent, *next_parent;
3377 	struct perf_cpu_context *cpuctx;
3378 	int do_switch = 1;
3379 	struct pmu *pmu;
3380 
3381 	if (likely(!ctx))
3382 		return;
3383 
3384 	pmu = ctx->pmu;
3385 	cpuctx = __get_cpu_context(ctx);
3386 	if (!cpuctx->task_ctx)
3387 		return;
3388 
3389 	rcu_read_lock();
3390 	next_ctx = next->perf_event_ctxp[ctxn];
3391 	if (!next_ctx)
3392 		goto unlock;
3393 
3394 	parent = rcu_dereference(ctx->parent_ctx);
3395 	next_parent = rcu_dereference(next_ctx->parent_ctx);
3396 
3397 	/* If neither context have a parent context; they cannot be clones. */
3398 	if (!parent && !next_parent)
3399 		goto unlock;
3400 
3401 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3402 		/*
3403 		 * Looks like the two contexts are clones, so we might be
3404 		 * able to optimize the context switch.  We lock both
3405 		 * contexts and check that they are clones under the
3406 		 * lock (including re-checking that neither has been
3407 		 * uncloned in the meantime).  It doesn't matter which
3408 		 * order we take the locks because no other cpu could
3409 		 * be trying to lock both of these tasks.
3410 		 */
3411 		raw_spin_lock(&ctx->lock);
3412 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3413 		if (context_equiv(ctx, next_ctx)) {
3414 
3415 			WRITE_ONCE(ctx->task, next);
3416 			WRITE_ONCE(next_ctx->task, task);
3417 
3418 			perf_pmu_disable(pmu);
3419 
3420 			if (cpuctx->sched_cb_usage && pmu->sched_task)
3421 				pmu->sched_task(ctx, false);
3422 
3423 			/*
3424 			 * PMU specific parts of task perf context can require
3425 			 * additional synchronization. As an example of such
3426 			 * synchronization see implementation details of Intel
3427 			 * LBR call stack data profiling;
3428 			 */
3429 			if (pmu->swap_task_ctx)
3430 				pmu->swap_task_ctx(ctx, next_ctx);
3431 			else
3432 				swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3433 
3434 			perf_pmu_enable(pmu);
3435 
3436 			/*
3437 			 * RCU_INIT_POINTER here is safe because we've not
3438 			 * modified the ctx and the above modification of
3439 			 * ctx->task and ctx->task_ctx_data are immaterial
3440 			 * since those values are always verified under
3441 			 * ctx->lock which we're now holding.
3442 			 */
3443 			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3444 			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3445 
3446 			do_switch = 0;
3447 
3448 			perf_event_sync_stat(ctx, next_ctx);
3449 		}
3450 		raw_spin_unlock(&next_ctx->lock);
3451 		raw_spin_unlock(&ctx->lock);
3452 	}
3453 unlock:
3454 	rcu_read_unlock();
3455 
3456 	if (do_switch) {
3457 		raw_spin_lock(&ctx->lock);
3458 		perf_pmu_disable(pmu);
3459 
3460 		if (cpuctx->sched_cb_usage && pmu->sched_task)
3461 			pmu->sched_task(ctx, false);
3462 		task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3463 
3464 		perf_pmu_enable(pmu);
3465 		raw_spin_unlock(&ctx->lock);
3466 	}
3467 }
3468 
3469 void perf_sched_cb_dec(struct pmu *pmu)
3470 {
3471 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3472 
3473 	--cpuctx->sched_cb_usage;
3474 }
3475 
3476 
3477 void perf_sched_cb_inc(struct pmu *pmu)
3478 {
3479 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3480 
3481 	cpuctx->sched_cb_usage++;
3482 }
3483 
3484 /*
3485  * This function provides the context switch callback to the lower code
3486  * layer. It is invoked ONLY when the context switch callback is enabled.
3487  *
3488  * This callback is relevant even to per-cpu events; for example multi event
3489  * PEBS requires this to provide PID/TID information. This requires we flush
3490  * all queued PEBS records before we context switch to a new task.
3491  */
3492 static void __perf_pmu_sched_task(struct perf_cpu_context *cpuctx, bool sched_in)
3493 {
3494 	struct pmu *pmu;
3495 
3496 	pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3497 
3498 	if (WARN_ON_ONCE(!pmu->sched_task))
3499 		return;
3500 
3501 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3502 	perf_pmu_disable(pmu);
3503 
3504 	pmu->sched_task(cpuctx->task_ctx, sched_in);
3505 
3506 	perf_pmu_enable(pmu);
3507 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3508 }
3509 
3510 static void perf_event_switch(struct task_struct *task,
3511 			      struct task_struct *next_prev, bool sched_in);
3512 
3513 #define for_each_task_context_nr(ctxn)					\
3514 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3515 
3516 /*
3517  * Called from scheduler to remove the events of the current task,
3518  * with interrupts disabled.
3519  *
3520  * We stop each event and update the event value in event->count.
3521  *
3522  * This does not protect us against NMI, but disable()
3523  * sets the disabled bit in the control field of event _before_
3524  * accessing the event control register. If a NMI hits, then it will
3525  * not restart the event.
3526  */
3527 void __perf_event_task_sched_out(struct task_struct *task,
3528 				 struct task_struct *next)
3529 {
3530 	int ctxn;
3531 
3532 	if (atomic_read(&nr_switch_events))
3533 		perf_event_switch(task, next, false);
3534 
3535 	for_each_task_context_nr(ctxn)
3536 		perf_event_context_sched_out(task, ctxn, next);
3537 
3538 	/*
3539 	 * if cgroup events exist on this CPU, then we need
3540 	 * to check if we have to switch out PMU state.
3541 	 * cgroup event are system-wide mode only
3542 	 */
3543 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3544 		perf_cgroup_sched_out(task, next);
3545 }
3546 
3547 /*
3548  * Called with IRQs disabled
3549  */
3550 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3551 			      enum event_type_t event_type)
3552 {
3553 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3554 }
3555 
3556 static bool perf_less_group_idx(const void *l, const void *r)
3557 {
3558 	const struct perf_event *le = *(const struct perf_event **)l;
3559 	const struct perf_event *re = *(const struct perf_event **)r;
3560 
3561 	return le->group_index < re->group_index;
3562 }
3563 
3564 static void swap_ptr(void *l, void *r)
3565 {
3566 	void **lp = l, **rp = r;
3567 
3568 	swap(*lp, *rp);
3569 }
3570 
3571 static const struct min_heap_callbacks perf_min_heap = {
3572 	.elem_size = sizeof(struct perf_event *),
3573 	.less = perf_less_group_idx,
3574 	.swp = swap_ptr,
3575 };
3576 
3577 static void __heap_add(struct min_heap *heap, struct perf_event *event)
3578 {
3579 	struct perf_event **itrs = heap->data;
3580 
3581 	if (event) {
3582 		itrs[heap->nr] = event;
3583 		heap->nr++;
3584 	}
3585 }
3586 
3587 static noinline int visit_groups_merge(struct perf_cpu_context *cpuctx,
3588 				struct perf_event_groups *groups, int cpu,
3589 				int (*func)(struct perf_event *, void *),
3590 				void *data)
3591 {
3592 #ifdef CONFIG_CGROUP_PERF
3593 	struct cgroup_subsys_state *css = NULL;
3594 #endif
3595 	/* Space for per CPU and/or any CPU event iterators. */
3596 	struct perf_event *itrs[2];
3597 	struct min_heap event_heap;
3598 	struct perf_event **evt;
3599 	int ret;
3600 
3601 	if (cpuctx) {
3602 		event_heap = (struct min_heap){
3603 			.data = cpuctx->heap,
3604 			.nr = 0,
3605 			.size = cpuctx->heap_size,
3606 		};
3607 
3608 		lockdep_assert_held(&cpuctx->ctx.lock);
3609 
3610 #ifdef CONFIG_CGROUP_PERF
3611 		if (cpuctx->cgrp)
3612 			css = &cpuctx->cgrp->css;
3613 #endif
3614 	} else {
3615 		event_heap = (struct min_heap){
3616 			.data = itrs,
3617 			.nr = 0,
3618 			.size = ARRAY_SIZE(itrs),
3619 		};
3620 		/* Events not within a CPU context may be on any CPU. */
3621 		__heap_add(&event_heap, perf_event_groups_first(groups, -1, NULL));
3622 	}
3623 	evt = event_heap.data;
3624 
3625 	__heap_add(&event_heap, perf_event_groups_first(groups, cpu, NULL));
3626 
3627 #ifdef CONFIG_CGROUP_PERF
3628 	for (; css; css = css->parent)
3629 		__heap_add(&event_heap, perf_event_groups_first(groups, cpu, css->cgroup));
3630 #endif
3631 
3632 	min_heapify_all(&event_heap, &perf_min_heap);
3633 
3634 	while (event_heap.nr) {
3635 		ret = func(*evt, data);
3636 		if (ret)
3637 			return ret;
3638 
3639 		*evt = perf_event_groups_next(*evt);
3640 		if (*evt)
3641 			min_heapify(&event_heap, 0, &perf_min_heap);
3642 		else
3643 			min_heap_pop(&event_heap, &perf_min_heap);
3644 	}
3645 
3646 	return 0;
3647 }
3648 
3649 static int merge_sched_in(struct perf_event *event, void *data)
3650 {
3651 	struct perf_event_context *ctx = event->ctx;
3652 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3653 	int *can_add_hw = data;
3654 
3655 	if (event->state <= PERF_EVENT_STATE_OFF)
3656 		return 0;
3657 
3658 	if (!event_filter_match(event))
3659 		return 0;
3660 
3661 	if (group_can_go_on(event, cpuctx, *can_add_hw)) {
3662 		if (!group_sched_in(event, cpuctx, ctx))
3663 			list_add_tail(&event->active_list, get_event_list(event));
3664 	}
3665 
3666 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
3667 		if (event->attr.pinned) {
3668 			perf_cgroup_event_disable(event, ctx);
3669 			perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3670 		}
3671 
3672 		*can_add_hw = 0;
3673 		ctx->rotate_necessary = 1;
3674 		perf_mux_hrtimer_restart(cpuctx);
3675 	}
3676 
3677 	return 0;
3678 }
3679 
3680 static void
3681 ctx_pinned_sched_in(struct perf_event_context *ctx,
3682 		    struct perf_cpu_context *cpuctx)
3683 {
3684 	int can_add_hw = 1;
3685 
3686 	if (ctx != &cpuctx->ctx)
3687 		cpuctx = NULL;
3688 
3689 	visit_groups_merge(cpuctx, &ctx->pinned_groups,
3690 			   smp_processor_id(),
3691 			   merge_sched_in, &can_add_hw);
3692 }
3693 
3694 static void
3695 ctx_flexible_sched_in(struct perf_event_context *ctx,
3696 		      struct perf_cpu_context *cpuctx)
3697 {
3698 	int can_add_hw = 1;
3699 
3700 	if (ctx != &cpuctx->ctx)
3701 		cpuctx = NULL;
3702 
3703 	visit_groups_merge(cpuctx, &ctx->flexible_groups,
3704 			   smp_processor_id(),
3705 			   merge_sched_in, &can_add_hw);
3706 }
3707 
3708 static void
3709 ctx_sched_in(struct perf_event_context *ctx,
3710 	     struct perf_cpu_context *cpuctx,
3711 	     enum event_type_t event_type,
3712 	     struct task_struct *task)
3713 {
3714 	int is_active = ctx->is_active;
3715 	u64 now;
3716 
3717 	lockdep_assert_held(&ctx->lock);
3718 
3719 	if (likely(!ctx->nr_events))
3720 		return;
3721 
3722 	ctx->is_active |= (event_type | EVENT_TIME);
3723 	if (ctx->task) {
3724 		if (!is_active)
3725 			cpuctx->task_ctx = ctx;
3726 		else
3727 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3728 	}
3729 
3730 	is_active ^= ctx->is_active; /* changed bits */
3731 
3732 	if (is_active & EVENT_TIME) {
3733 		/* start ctx time */
3734 		now = perf_clock();
3735 		ctx->timestamp = now;
3736 		perf_cgroup_set_timestamp(task, ctx);
3737 	}
3738 
3739 	/*
3740 	 * First go through the list and put on any pinned groups
3741 	 * in order to give them the best chance of going on.
3742 	 */
3743 	if (is_active & EVENT_PINNED)
3744 		ctx_pinned_sched_in(ctx, cpuctx);
3745 
3746 	/* Then walk through the lower prio flexible groups */
3747 	if (is_active & EVENT_FLEXIBLE)
3748 		ctx_flexible_sched_in(ctx, cpuctx);
3749 }
3750 
3751 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3752 			     enum event_type_t event_type,
3753 			     struct task_struct *task)
3754 {
3755 	struct perf_event_context *ctx = &cpuctx->ctx;
3756 
3757 	ctx_sched_in(ctx, cpuctx, event_type, task);
3758 }
3759 
3760 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3761 					struct task_struct *task)
3762 {
3763 	struct perf_cpu_context *cpuctx;
3764 	struct pmu *pmu = ctx->pmu;
3765 
3766 	cpuctx = __get_cpu_context(ctx);
3767 	if (cpuctx->task_ctx == ctx) {
3768 		if (cpuctx->sched_cb_usage)
3769 			__perf_pmu_sched_task(cpuctx, true);
3770 		return;
3771 	}
3772 
3773 	perf_ctx_lock(cpuctx, ctx);
3774 	/*
3775 	 * We must check ctx->nr_events while holding ctx->lock, such
3776 	 * that we serialize against perf_install_in_context().
3777 	 */
3778 	if (!ctx->nr_events)
3779 		goto unlock;
3780 
3781 	perf_pmu_disable(pmu);
3782 	/*
3783 	 * We want to keep the following priority order:
3784 	 * cpu pinned (that don't need to move), task pinned,
3785 	 * cpu flexible, task flexible.
3786 	 *
3787 	 * However, if task's ctx is not carrying any pinned
3788 	 * events, no need to flip the cpuctx's events around.
3789 	 */
3790 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3791 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3792 	perf_event_sched_in(cpuctx, ctx, task);
3793 
3794 	if (cpuctx->sched_cb_usage && pmu->sched_task)
3795 		pmu->sched_task(cpuctx->task_ctx, true);
3796 
3797 	perf_pmu_enable(pmu);
3798 
3799 unlock:
3800 	perf_ctx_unlock(cpuctx, ctx);
3801 }
3802 
3803 /*
3804  * Called from scheduler to add the events of the current task
3805  * with interrupts disabled.
3806  *
3807  * We restore the event value and then enable it.
3808  *
3809  * This does not protect us against NMI, but enable()
3810  * sets the enabled bit in the control field of event _before_
3811  * accessing the event control register. If a NMI hits, then it will
3812  * keep the event running.
3813  */
3814 void __perf_event_task_sched_in(struct task_struct *prev,
3815 				struct task_struct *task)
3816 {
3817 	struct perf_event_context *ctx;
3818 	int ctxn;
3819 
3820 	/*
3821 	 * If cgroup events exist on this CPU, then we need to check if we have
3822 	 * to switch in PMU state; cgroup event are system-wide mode only.
3823 	 *
3824 	 * Since cgroup events are CPU events, we must schedule these in before
3825 	 * we schedule in the task events.
3826 	 */
3827 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3828 		perf_cgroup_sched_in(prev, task);
3829 
3830 	for_each_task_context_nr(ctxn) {
3831 		ctx = task->perf_event_ctxp[ctxn];
3832 		if (likely(!ctx))
3833 			continue;
3834 
3835 		perf_event_context_sched_in(ctx, task);
3836 	}
3837 
3838 	if (atomic_read(&nr_switch_events))
3839 		perf_event_switch(task, prev, true);
3840 }
3841 
3842 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3843 {
3844 	u64 frequency = event->attr.sample_freq;
3845 	u64 sec = NSEC_PER_SEC;
3846 	u64 divisor, dividend;
3847 
3848 	int count_fls, nsec_fls, frequency_fls, sec_fls;
3849 
3850 	count_fls = fls64(count);
3851 	nsec_fls = fls64(nsec);
3852 	frequency_fls = fls64(frequency);
3853 	sec_fls = 30;
3854 
3855 	/*
3856 	 * We got @count in @nsec, with a target of sample_freq HZ
3857 	 * the target period becomes:
3858 	 *
3859 	 *             @count * 10^9
3860 	 * period = -------------------
3861 	 *          @nsec * sample_freq
3862 	 *
3863 	 */
3864 
3865 	/*
3866 	 * Reduce accuracy by one bit such that @a and @b converge
3867 	 * to a similar magnitude.
3868 	 */
3869 #define REDUCE_FLS(a, b)		\
3870 do {					\
3871 	if (a##_fls > b##_fls) {	\
3872 		a >>= 1;		\
3873 		a##_fls--;		\
3874 	} else {			\
3875 		b >>= 1;		\
3876 		b##_fls--;		\
3877 	}				\
3878 } while (0)
3879 
3880 	/*
3881 	 * Reduce accuracy until either term fits in a u64, then proceed with
3882 	 * the other, so that finally we can do a u64/u64 division.
3883 	 */
3884 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3885 		REDUCE_FLS(nsec, frequency);
3886 		REDUCE_FLS(sec, count);
3887 	}
3888 
3889 	if (count_fls + sec_fls > 64) {
3890 		divisor = nsec * frequency;
3891 
3892 		while (count_fls + sec_fls > 64) {
3893 			REDUCE_FLS(count, sec);
3894 			divisor >>= 1;
3895 		}
3896 
3897 		dividend = count * sec;
3898 	} else {
3899 		dividend = count * sec;
3900 
3901 		while (nsec_fls + frequency_fls > 64) {
3902 			REDUCE_FLS(nsec, frequency);
3903 			dividend >>= 1;
3904 		}
3905 
3906 		divisor = nsec * frequency;
3907 	}
3908 
3909 	if (!divisor)
3910 		return dividend;
3911 
3912 	return div64_u64(dividend, divisor);
3913 }
3914 
3915 static DEFINE_PER_CPU(int, perf_throttled_count);
3916 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3917 
3918 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3919 {
3920 	struct hw_perf_event *hwc = &event->hw;
3921 	s64 period, sample_period;
3922 	s64 delta;
3923 
3924 	period = perf_calculate_period(event, nsec, count);
3925 
3926 	delta = (s64)(period - hwc->sample_period);
3927 	delta = (delta + 7) / 8; /* low pass filter */
3928 
3929 	sample_period = hwc->sample_period + delta;
3930 
3931 	if (!sample_period)
3932 		sample_period = 1;
3933 
3934 	hwc->sample_period = sample_period;
3935 
3936 	if (local64_read(&hwc->period_left) > 8*sample_period) {
3937 		if (disable)
3938 			event->pmu->stop(event, PERF_EF_UPDATE);
3939 
3940 		local64_set(&hwc->period_left, 0);
3941 
3942 		if (disable)
3943 			event->pmu->start(event, PERF_EF_RELOAD);
3944 	}
3945 }
3946 
3947 /*
3948  * combine freq adjustment with unthrottling to avoid two passes over the
3949  * events. At the same time, make sure, having freq events does not change
3950  * the rate of unthrottling as that would introduce bias.
3951  */
3952 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3953 					   int needs_unthr)
3954 {
3955 	struct perf_event *event;
3956 	struct hw_perf_event *hwc;
3957 	u64 now, period = TICK_NSEC;
3958 	s64 delta;
3959 
3960 	/*
3961 	 * only need to iterate over all events iff:
3962 	 * - context have events in frequency mode (needs freq adjust)
3963 	 * - there are events to unthrottle on this cpu
3964 	 */
3965 	if (!(ctx->nr_freq || needs_unthr))
3966 		return;
3967 
3968 	raw_spin_lock(&ctx->lock);
3969 	perf_pmu_disable(ctx->pmu);
3970 
3971 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3972 		if (event->state != PERF_EVENT_STATE_ACTIVE)
3973 			continue;
3974 
3975 		if (!event_filter_match(event))
3976 			continue;
3977 
3978 		perf_pmu_disable(event->pmu);
3979 
3980 		hwc = &event->hw;
3981 
3982 		if (hwc->interrupts == MAX_INTERRUPTS) {
3983 			hwc->interrupts = 0;
3984 			perf_log_throttle(event, 1);
3985 			event->pmu->start(event, 0);
3986 		}
3987 
3988 		if (!event->attr.freq || !event->attr.sample_freq)
3989 			goto next;
3990 
3991 		/*
3992 		 * stop the event and update event->count
3993 		 */
3994 		event->pmu->stop(event, PERF_EF_UPDATE);
3995 
3996 		now = local64_read(&event->count);
3997 		delta = now - hwc->freq_count_stamp;
3998 		hwc->freq_count_stamp = now;
3999 
4000 		/*
4001 		 * restart the event
4002 		 * reload only if value has changed
4003 		 * we have stopped the event so tell that
4004 		 * to perf_adjust_period() to avoid stopping it
4005 		 * twice.
4006 		 */
4007 		if (delta > 0)
4008 			perf_adjust_period(event, period, delta, false);
4009 
4010 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
4011 	next:
4012 		perf_pmu_enable(event->pmu);
4013 	}
4014 
4015 	perf_pmu_enable(ctx->pmu);
4016 	raw_spin_unlock(&ctx->lock);
4017 }
4018 
4019 /*
4020  * Move @event to the tail of the @ctx's elegible events.
4021  */
4022 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4023 {
4024 	/*
4025 	 * Rotate the first entry last of non-pinned groups. Rotation might be
4026 	 * disabled by the inheritance code.
4027 	 */
4028 	if (ctx->rotate_disable)
4029 		return;
4030 
4031 	perf_event_groups_delete(&ctx->flexible_groups, event);
4032 	perf_event_groups_insert(&ctx->flexible_groups, event);
4033 }
4034 
4035 /* pick an event from the flexible_groups to rotate */
4036 static inline struct perf_event *
4037 ctx_event_to_rotate(struct perf_event_context *ctx)
4038 {
4039 	struct perf_event *event;
4040 
4041 	/* pick the first active flexible event */
4042 	event = list_first_entry_or_null(&ctx->flexible_active,
4043 					 struct perf_event, active_list);
4044 
4045 	/* if no active flexible event, pick the first event */
4046 	if (!event) {
4047 		event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree),
4048 				      typeof(*event), group_node);
4049 	}
4050 
4051 	/*
4052 	 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4053 	 * finds there are unschedulable events, it will set it again.
4054 	 */
4055 	ctx->rotate_necessary = 0;
4056 
4057 	return event;
4058 }
4059 
4060 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
4061 {
4062 	struct perf_event *cpu_event = NULL, *task_event = NULL;
4063 	struct perf_event_context *task_ctx = NULL;
4064 	int cpu_rotate, task_rotate;
4065 
4066 	/*
4067 	 * Since we run this from IRQ context, nobody can install new
4068 	 * events, thus the event count values are stable.
4069 	 */
4070 
4071 	cpu_rotate = cpuctx->ctx.rotate_necessary;
4072 	task_ctx = cpuctx->task_ctx;
4073 	task_rotate = task_ctx ? task_ctx->rotate_necessary : 0;
4074 
4075 	if (!(cpu_rotate || task_rotate))
4076 		return false;
4077 
4078 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4079 	perf_pmu_disable(cpuctx->ctx.pmu);
4080 
4081 	if (task_rotate)
4082 		task_event = ctx_event_to_rotate(task_ctx);
4083 	if (cpu_rotate)
4084 		cpu_event = ctx_event_to_rotate(&cpuctx->ctx);
4085 
4086 	/*
4087 	 * As per the order given at ctx_resched() first 'pop' task flexible
4088 	 * and then, if needed CPU flexible.
4089 	 */
4090 	if (task_event || (task_ctx && cpu_event))
4091 		ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE);
4092 	if (cpu_event)
4093 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
4094 
4095 	if (task_event)
4096 		rotate_ctx(task_ctx, task_event);
4097 	if (cpu_event)
4098 		rotate_ctx(&cpuctx->ctx, cpu_event);
4099 
4100 	perf_event_sched_in(cpuctx, task_ctx, current);
4101 
4102 	perf_pmu_enable(cpuctx->ctx.pmu);
4103 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4104 
4105 	return true;
4106 }
4107 
4108 void perf_event_task_tick(void)
4109 {
4110 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
4111 	struct perf_event_context *ctx, *tmp;
4112 	int throttled;
4113 
4114 	lockdep_assert_irqs_disabled();
4115 
4116 	__this_cpu_inc(perf_throttled_seq);
4117 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
4118 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4119 
4120 	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
4121 		perf_adjust_freq_unthr_context(ctx, throttled);
4122 }
4123 
4124 static int event_enable_on_exec(struct perf_event *event,
4125 				struct perf_event_context *ctx)
4126 {
4127 	if (!event->attr.enable_on_exec)
4128 		return 0;
4129 
4130 	event->attr.enable_on_exec = 0;
4131 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
4132 		return 0;
4133 
4134 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4135 
4136 	return 1;
4137 }
4138 
4139 /*
4140  * Enable all of a task's events that have been marked enable-on-exec.
4141  * This expects task == current.
4142  */
4143 static void perf_event_enable_on_exec(int ctxn)
4144 {
4145 	struct perf_event_context *ctx, *clone_ctx = NULL;
4146 	enum event_type_t event_type = 0;
4147 	struct perf_cpu_context *cpuctx;
4148 	struct perf_event *event;
4149 	unsigned long flags;
4150 	int enabled = 0;
4151 
4152 	local_irq_save(flags);
4153 	ctx = current->perf_event_ctxp[ctxn];
4154 	if (!ctx || !ctx->nr_events)
4155 		goto out;
4156 
4157 	cpuctx = __get_cpu_context(ctx);
4158 	perf_ctx_lock(cpuctx, ctx);
4159 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
4160 	list_for_each_entry(event, &ctx->event_list, event_entry) {
4161 		enabled |= event_enable_on_exec(event, ctx);
4162 		event_type |= get_event_type(event);
4163 	}
4164 
4165 	/*
4166 	 * Unclone and reschedule this context if we enabled any event.
4167 	 */
4168 	if (enabled) {
4169 		clone_ctx = unclone_ctx(ctx);
4170 		ctx_resched(cpuctx, ctx, event_type);
4171 	} else {
4172 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
4173 	}
4174 	perf_ctx_unlock(cpuctx, ctx);
4175 
4176 out:
4177 	local_irq_restore(flags);
4178 
4179 	if (clone_ctx)
4180 		put_ctx(clone_ctx);
4181 }
4182 
4183 struct perf_read_data {
4184 	struct perf_event *event;
4185 	bool group;
4186 	int ret;
4187 };
4188 
4189 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4190 {
4191 	u16 local_pkg, event_pkg;
4192 
4193 	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4194 		int local_cpu = smp_processor_id();
4195 
4196 		event_pkg = topology_physical_package_id(event_cpu);
4197 		local_pkg = topology_physical_package_id(local_cpu);
4198 
4199 		if (event_pkg == local_pkg)
4200 			return local_cpu;
4201 	}
4202 
4203 	return event_cpu;
4204 }
4205 
4206 /*
4207  * Cross CPU call to read the hardware event
4208  */
4209 static void __perf_event_read(void *info)
4210 {
4211 	struct perf_read_data *data = info;
4212 	struct perf_event *sub, *event = data->event;
4213 	struct perf_event_context *ctx = event->ctx;
4214 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4215 	struct pmu *pmu = event->pmu;
4216 
4217 	/*
4218 	 * If this is a task context, we need to check whether it is
4219 	 * the current task context of this cpu.  If not it has been
4220 	 * scheduled out before the smp call arrived.  In that case
4221 	 * event->count would have been updated to a recent sample
4222 	 * when the event was scheduled out.
4223 	 */
4224 	if (ctx->task && cpuctx->task_ctx != ctx)
4225 		return;
4226 
4227 	raw_spin_lock(&ctx->lock);
4228 	if (ctx->is_active & EVENT_TIME) {
4229 		update_context_time(ctx);
4230 		update_cgrp_time_from_event(event);
4231 	}
4232 
4233 	perf_event_update_time(event);
4234 	if (data->group)
4235 		perf_event_update_sibling_time(event);
4236 
4237 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4238 		goto unlock;
4239 
4240 	if (!data->group) {
4241 		pmu->read(event);
4242 		data->ret = 0;
4243 		goto unlock;
4244 	}
4245 
4246 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4247 
4248 	pmu->read(event);
4249 
4250 	for_each_sibling_event(sub, event) {
4251 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4252 			/*
4253 			 * Use sibling's PMU rather than @event's since
4254 			 * sibling could be on different (eg: software) PMU.
4255 			 */
4256 			sub->pmu->read(sub);
4257 		}
4258 	}
4259 
4260 	data->ret = pmu->commit_txn(pmu);
4261 
4262 unlock:
4263 	raw_spin_unlock(&ctx->lock);
4264 }
4265 
4266 static inline u64 perf_event_count(struct perf_event *event)
4267 {
4268 	return local64_read(&event->count) + atomic64_read(&event->child_count);
4269 }
4270 
4271 /*
4272  * NMI-safe method to read a local event, that is an event that
4273  * is:
4274  *   - either for the current task, or for this CPU
4275  *   - does not have inherit set, for inherited task events
4276  *     will not be local and we cannot read them atomically
4277  *   - must not have a pmu::count method
4278  */
4279 int perf_event_read_local(struct perf_event *event, u64 *value,
4280 			  u64 *enabled, u64 *running)
4281 {
4282 	unsigned long flags;
4283 	int ret = 0;
4284 
4285 	/*
4286 	 * Disabling interrupts avoids all counter scheduling (context
4287 	 * switches, timer based rotation and IPIs).
4288 	 */
4289 	local_irq_save(flags);
4290 
4291 	/*
4292 	 * It must not be an event with inherit set, we cannot read
4293 	 * all child counters from atomic context.
4294 	 */
4295 	if (event->attr.inherit) {
4296 		ret = -EOPNOTSUPP;
4297 		goto out;
4298 	}
4299 
4300 	/* If this is a per-task event, it must be for current */
4301 	if ((event->attach_state & PERF_ATTACH_TASK) &&
4302 	    event->hw.target != current) {
4303 		ret = -EINVAL;
4304 		goto out;
4305 	}
4306 
4307 	/* If this is a per-CPU event, it must be for this CPU */
4308 	if (!(event->attach_state & PERF_ATTACH_TASK) &&
4309 	    event->cpu != smp_processor_id()) {
4310 		ret = -EINVAL;
4311 		goto out;
4312 	}
4313 
4314 	/* If this is a pinned event it must be running on this CPU */
4315 	if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4316 		ret = -EBUSY;
4317 		goto out;
4318 	}
4319 
4320 	/*
4321 	 * If the event is currently on this CPU, its either a per-task event,
4322 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4323 	 * oncpu == -1).
4324 	 */
4325 	if (event->oncpu == smp_processor_id())
4326 		event->pmu->read(event);
4327 
4328 	*value = local64_read(&event->count);
4329 	if (enabled || running) {
4330 		u64 now = event->shadow_ctx_time + perf_clock();
4331 		u64 __enabled, __running;
4332 
4333 		__perf_update_times(event, now, &__enabled, &__running);
4334 		if (enabled)
4335 			*enabled = __enabled;
4336 		if (running)
4337 			*running = __running;
4338 	}
4339 out:
4340 	local_irq_restore(flags);
4341 
4342 	return ret;
4343 }
4344 
4345 static int perf_event_read(struct perf_event *event, bool group)
4346 {
4347 	enum perf_event_state state = READ_ONCE(event->state);
4348 	int event_cpu, ret = 0;
4349 
4350 	/*
4351 	 * If event is enabled and currently active on a CPU, update the
4352 	 * value in the event structure:
4353 	 */
4354 again:
4355 	if (state == PERF_EVENT_STATE_ACTIVE) {
4356 		struct perf_read_data data;
4357 
4358 		/*
4359 		 * Orders the ->state and ->oncpu loads such that if we see
4360 		 * ACTIVE we must also see the right ->oncpu.
4361 		 *
4362 		 * Matches the smp_wmb() from event_sched_in().
4363 		 */
4364 		smp_rmb();
4365 
4366 		event_cpu = READ_ONCE(event->oncpu);
4367 		if ((unsigned)event_cpu >= nr_cpu_ids)
4368 			return 0;
4369 
4370 		data = (struct perf_read_data){
4371 			.event = event,
4372 			.group = group,
4373 			.ret = 0,
4374 		};
4375 
4376 		preempt_disable();
4377 		event_cpu = __perf_event_read_cpu(event, event_cpu);
4378 
4379 		/*
4380 		 * Purposely ignore the smp_call_function_single() return
4381 		 * value.
4382 		 *
4383 		 * If event_cpu isn't a valid CPU it means the event got
4384 		 * scheduled out and that will have updated the event count.
4385 		 *
4386 		 * Therefore, either way, we'll have an up-to-date event count
4387 		 * after this.
4388 		 */
4389 		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4390 		preempt_enable();
4391 		ret = data.ret;
4392 
4393 	} else if (state == PERF_EVENT_STATE_INACTIVE) {
4394 		struct perf_event_context *ctx = event->ctx;
4395 		unsigned long flags;
4396 
4397 		raw_spin_lock_irqsave(&ctx->lock, flags);
4398 		state = event->state;
4399 		if (state != PERF_EVENT_STATE_INACTIVE) {
4400 			raw_spin_unlock_irqrestore(&ctx->lock, flags);
4401 			goto again;
4402 		}
4403 
4404 		/*
4405 		 * May read while context is not active (e.g., thread is
4406 		 * blocked), in that case we cannot update context time
4407 		 */
4408 		if (ctx->is_active & EVENT_TIME) {
4409 			update_context_time(ctx);
4410 			update_cgrp_time_from_event(event);
4411 		}
4412 
4413 		perf_event_update_time(event);
4414 		if (group)
4415 			perf_event_update_sibling_time(event);
4416 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4417 	}
4418 
4419 	return ret;
4420 }
4421 
4422 /*
4423  * Initialize the perf_event context in a task_struct:
4424  */
4425 static void __perf_event_init_context(struct perf_event_context *ctx)
4426 {
4427 	raw_spin_lock_init(&ctx->lock);
4428 	mutex_init(&ctx->mutex);
4429 	INIT_LIST_HEAD(&ctx->active_ctx_list);
4430 	perf_event_groups_init(&ctx->pinned_groups);
4431 	perf_event_groups_init(&ctx->flexible_groups);
4432 	INIT_LIST_HEAD(&ctx->event_list);
4433 	INIT_LIST_HEAD(&ctx->pinned_active);
4434 	INIT_LIST_HEAD(&ctx->flexible_active);
4435 	refcount_set(&ctx->refcount, 1);
4436 }
4437 
4438 static struct perf_event_context *
4439 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4440 {
4441 	struct perf_event_context *ctx;
4442 
4443 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4444 	if (!ctx)
4445 		return NULL;
4446 
4447 	__perf_event_init_context(ctx);
4448 	if (task)
4449 		ctx->task = get_task_struct(task);
4450 	ctx->pmu = pmu;
4451 
4452 	return ctx;
4453 }
4454 
4455 static struct task_struct *
4456 find_lively_task_by_vpid(pid_t vpid)
4457 {
4458 	struct task_struct *task;
4459 
4460 	rcu_read_lock();
4461 	if (!vpid)
4462 		task = current;
4463 	else
4464 		task = find_task_by_vpid(vpid);
4465 	if (task)
4466 		get_task_struct(task);
4467 	rcu_read_unlock();
4468 
4469 	if (!task)
4470 		return ERR_PTR(-ESRCH);
4471 
4472 	return task;
4473 }
4474 
4475 /*
4476  * Returns a matching context with refcount and pincount.
4477  */
4478 static struct perf_event_context *
4479 find_get_context(struct pmu *pmu, struct task_struct *task,
4480 		struct perf_event *event)
4481 {
4482 	struct perf_event_context *ctx, *clone_ctx = NULL;
4483 	struct perf_cpu_context *cpuctx;
4484 	void *task_ctx_data = NULL;
4485 	unsigned long flags;
4486 	int ctxn, err;
4487 	int cpu = event->cpu;
4488 
4489 	if (!task) {
4490 		/* Must be root to operate on a CPU event: */
4491 		err = perf_allow_cpu(&event->attr);
4492 		if (err)
4493 			return ERR_PTR(err);
4494 
4495 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4496 		ctx = &cpuctx->ctx;
4497 		get_ctx(ctx);
4498 		++ctx->pin_count;
4499 
4500 		return ctx;
4501 	}
4502 
4503 	err = -EINVAL;
4504 	ctxn = pmu->task_ctx_nr;
4505 	if (ctxn < 0)
4506 		goto errout;
4507 
4508 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4509 		task_ctx_data = alloc_task_ctx_data(pmu);
4510 		if (!task_ctx_data) {
4511 			err = -ENOMEM;
4512 			goto errout;
4513 		}
4514 	}
4515 
4516 retry:
4517 	ctx = perf_lock_task_context(task, ctxn, &flags);
4518 	if (ctx) {
4519 		clone_ctx = unclone_ctx(ctx);
4520 		++ctx->pin_count;
4521 
4522 		if (task_ctx_data && !ctx->task_ctx_data) {
4523 			ctx->task_ctx_data = task_ctx_data;
4524 			task_ctx_data = NULL;
4525 		}
4526 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4527 
4528 		if (clone_ctx)
4529 			put_ctx(clone_ctx);
4530 	} else {
4531 		ctx = alloc_perf_context(pmu, task);
4532 		err = -ENOMEM;
4533 		if (!ctx)
4534 			goto errout;
4535 
4536 		if (task_ctx_data) {
4537 			ctx->task_ctx_data = task_ctx_data;
4538 			task_ctx_data = NULL;
4539 		}
4540 
4541 		err = 0;
4542 		mutex_lock(&task->perf_event_mutex);
4543 		/*
4544 		 * If it has already passed perf_event_exit_task().
4545 		 * we must see PF_EXITING, it takes this mutex too.
4546 		 */
4547 		if (task->flags & PF_EXITING)
4548 			err = -ESRCH;
4549 		else if (task->perf_event_ctxp[ctxn])
4550 			err = -EAGAIN;
4551 		else {
4552 			get_ctx(ctx);
4553 			++ctx->pin_count;
4554 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4555 		}
4556 		mutex_unlock(&task->perf_event_mutex);
4557 
4558 		if (unlikely(err)) {
4559 			put_ctx(ctx);
4560 
4561 			if (err == -EAGAIN)
4562 				goto retry;
4563 			goto errout;
4564 		}
4565 	}
4566 
4567 	free_task_ctx_data(pmu, task_ctx_data);
4568 	return ctx;
4569 
4570 errout:
4571 	free_task_ctx_data(pmu, task_ctx_data);
4572 	return ERR_PTR(err);
4573 }
4574 
4575 static void perf_event_free_filter(struct perf_event *event);
4576 static void perf_event_free_bpf_prog(struct perf_event *event);
4577 
4578 static void free_event_rcu(struct rcu_head *head)
4579 {
4580 	struct perf_event *event;
4581 
4582 	event = container_of(head, struct perf_event, rcu_head);
4583 	if (event->ns)
4584 		put_pid_ns(event->ns);
4585 	perf_event_free_filter(event);
4586 	kfree(event);
4587 }
4588 
4589 static void ring_buffer_attach(struct perf_event *event,
4590 			       struct perf_buffer *rb);
4591 
4592 static void detach_sb_event(struct perf_event *event)
4593 {
4594 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4595 
4596 	raw_spin_lock(&pel->lock);
4597 	list_del_rcu(&event->sb_list);
4598 	raw_spin_unlock(&pel->lock);
4599 }
4600 
4601 static bool is_sb_event(struct perf_event *event)
4602 {
4603 	struct perf_event_attr *attr = &event->attr;
4604 
4605 	if (event->parent)
4606 		return false;
4607 
4608 	if (event->attach_state & PERF_ATTACH_TASK)
4609 		return false;
4610 
4611 	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4612 	    attr->comm || attr->comm_exec ||
4613 	    attr->task || attr->ksymbol ||
4614 	    attr->context_switch || attr->text_poke ||
4615 	    attr->bpf_event)
4616 		return true;
4617 	return false;
4618 }
4619 
4620 static void unaccount_pmu_sb_event(struct perf_event *event)
4621 {
4622 	if (is_sb_event(event))
4623 		detach_sb_event(event);
4624 }
4625 
4626 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4627 {
4628 	if (event->parent)
4629 		return;
4630 
4631 	if (is_cgroup_event(event))
4632 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4633 }
4634 
4635 #ifdef CONFIG_NO_HZ_FULL
4636 static DEFINE_SPINLOCK(nr_freq_lock);
4637 #endif
4638 
4639 static void unaccount_freq_event_nohz(void)
4640 {
4641 #ifdef CONFIG_NO_HZ_FULL
4642 	spin_lock(&nr_freq_lock);
4643 	if (atomic_dec_and_test(&nr_freq_events))
4644 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4645 	spin_unlock(&nr_freq_lock);
4646 #endif
4647 }
4648 
4649 static void unaccount_freq_event(void)
4650 {
4651 	if (tick_nohz_full_enabled())
4652 		unaccount_freq_event_nohz();
4653 	else
4654 		atomic_dec(&nr_freq_events);
4655 }
4656 
4657 static void unaccount_event(struct perf_event *event)
4658 {
4659 	bool dec = false;
4660 
4661 	if (event->parent)
4662 		return;
4663 
4664 	if (event->attach_state & PERF_ATTACH_TASK)
4665 		dec = true;
4666 	if (event->attr.mmap || event->attr.mmap_data)
4667 		atomic_dec(&nr_mmap_events);
4668 	if (event->attr.comm)
4669 		atomic_dec(&nr_comm_events);
4670 	if (event->attr.namespaces)
4671 		atomic_dec(&nr_namespaces_events);
4672 	if (event->attr.cgroup)
4673 		atomic_dec(&nr_cgroup_events);
4674 	if (event->attr.task)
4675 		atomic_dec(&nr_task_events);
4676 	if (event->attr.freq)
4677 		unaccount_freq_event();
4678 	if (event->attr.context_switch) {
4679 		dec = true;
4680 		atomic_dec(&nr_switch_events);
4681 	}
4682 	if (is_cgroup_event(event))
4683 		dec = true;
4684 	if (has_branch_stack(event))
4685 		dec = true;
4686 	if (event->attr.ksymbol)
4687 		atomic_dec(&nr_ksymbol_events);
4688 	if (event->attr.bpf_event)
4689 		atomic_dec(&nr_bpf_events);
4690 	if (event->attr.text_poke)
4691 		atomic_dec(&nr_text_poke_events);
4692 
4693 	if (dec) {
4694 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
4695 			schedule_delayed_work(&perf_sched_work, HZ);
4696 	}
4697 
4698 	unaccount_event_cpu(event, event->cpu);
4699 
4700 	unaccount_pmu_sb_event(event);
4701 }
4702 
4703 static void perf_sched_delayed(struct work_struct *work)
4704 {
4705 	mutex_lock(&perf_sched_mutex);
4706 	if (atomic_dec_and_test(&perf_sched_count))
4707 		static_branch_disable(&perf_sched_events);
4708 	mutex_unlock(&perf_sched_mutex);
4709 }
4710 
4711 /*
4712  * The following implement mutual exclusion of events on "exclusive" pmus
4713  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4714  * at a time, so we disallow creating events that might conflict, namely:
4715  *
4716  *  1) cpu-wide events in the presence of per-task events,
4717  *  2) per-task events in the presence of cpu-wide events,
4718  *  3) two matching events on the same context.
4719  *
4720  * The former two cases are handled in the allocation path (perf_event_alloc(),
4721  * _free_event()), the latter -- before the first perf_install_in_context().
4722  */
4723 static int exclusive_event_init(struct perf_event *event)
4724 {
4725 	struct pmu *pmu = event->pmu;
4726 
4727 	if (!is_exclusive_pmu(pmu))
4728 		return 0;
4729 
4730 	/*
4731 	 * Prevent co-existence of per-task and cpu-wide events on the
4732 	 * same exclusive pmu.
4733 	 *
4734 	 * Negative pmu::exclusive_cnt means there are cpu-wide
4735 	 * events on this "exclusive" pmu, positive means there are
4736 	 * per-task events.
4737 	 *
4738 	 * Since this is called in perf_event_alloc() path, event::ctx
4739 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4740 	 * to mean "per-task event", because unlike other attach states it
4741 	 * never gets cleared.
4742 	 */
4743 	if (event->attach_state & PERF_ATTACH_TASK) {
4744 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4745 			return -EBUSY;
4746 	} else {
4747 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4748 			return -EBUSY;
4749 	}
4750 
4751 	return 0;
4752 }
4753 
4754 static void exclusive_event_destroy(struct perf_event *event)
4755 {
4756 	struct pmu *pmu = event->pmu;
4757 
4758 	if (!is_exclusive_pmu(pmu))
4759 		return;
4760 
4761 	/* see comment in exclusive_event_init() */
4762 	if (event->attach_state & PERF_ATTACH_TASK)
4763 		atomic_dec(&pmu->exclusive_cnt);
4764 	else
4765 		atomic_inc(&pmu->exclusive_cnt);
4766 }
4767 
4768 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4769 {
4770 	if ((e1->pmu == e2->pmu) &&
4771 	    (e1->cpu == e2->cpu ||
4772 	     e1->cpu == -1 ||
4773 	     e2->cpu == -1))
4774 		return true;
4775 	return false;
4776 }
4777 
4778 static bool exclusive_event_installable(struct perf_event *event,
4779 					struct perf_event_context *ctx)
4780 {
4781 	struct perf_event *iter_event;
4782 	struct pmu *pmu = event->pmu;
4783 
4784 	lockdep_assert_held(&ctx->mutex);
4785 
4786 	if (!is_exclusive_pmu(pmu))
4787 		return true;
4788 
4789 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4790 		if (exclusive_event_match(iter_event, event))
4791 			return false;
4792 	}
4793 
4794 	return true;
4795 }
4796 
4797 static void perf_addr_filters_splice(struct perf_event *event,
4798 				       struct list_head *head);
4799 
4800 static void _free_event(struct perf_event *event)
4801 {
4802 	irq_work_sync(&event->pending);
4803 
4804 	unaccount_event(event);
4805 
4806 	security_perf_event_free(event);
4807 
4808 	if (event->rb) {
4809 		/*
4810 		 * Can happen when we close an event with re-directed output.
4811 		 *
4812 		 * Since we have a 0 refcount, perf_mmap_close() will skip
4813 		 * over us; possibly making our ring_buffer_put() the last.
4814 		 */
4815 		mutex_lock(&event->mmap_mutex);
4816 		ring_buffer_attach(event, NULL);
4817 		mutex_unlock(&event->mmap_mutex);
4818 	}
4819 
4820 	if (is_cgroup_event(event))
4821 		perf_detach_cgroup(event);
4822 
4823 	if (!event->parent) {
4824 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4825 			put_callchain_buffers();
4826 	}
4827 
4828 	perf_event_free_bpf_prog(event);
4829 	perf_addr_filters_splice(event, NULL);
4830 	kfree(event->addr_filter_ranges);
4831 
4832 	if (event->destroy)
4833 		event->destroy(event);
4834 
4835 	/*
4836 	 * Must be after ->destroy(), due to uprobe_perf_close() using
4837 	 * hw.target.
4838 	 */
4839 	if (event->hw.target)
4840 		put_task_struct(event->hw.target);
4841 
4842 	/*
4843 	 * perf_event_free_task() relies on put_ctx() being 'last', in particular
4844 	 * all task references must be cleaned up.
4845 	 */
4846 	if (event->ctx)
4847 		put_ctx(event->ctx);
4848 
4849 	exclusive_event_destroy(event);
4850 	module_put(event->pmu->module);
4851 
4852 	call_rcu(&event->rcu_head, free_event_rcu);
4853 }
4854 
4855 /*
4856  * Used to free events which have a known refcount of 1, such as in error paths
4857  * where the event isn't exposed yet and inherited events.
4858  */
4859 static void free_event(struct perf_event *event)
4860 {
4861 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4862 				"unexpected event refcount: %ld; ptr=%p\n",
4863 				atomic_long_read(&event->refcount), event)) {
4864 		/* leak to avoid use-after-free */
4865 		return;
4866 	}
4867 
4868 	_free_event(event);
4869 }
4870 
4871 /*
4872  * Remove user event from the owner task.
4873  */
4874 static void perf_remove_from_owner(struct perf_event *event)
4875 {
4876 	struct task_struct *owner;
4877 
4878 	rcu_read_lock();
4879 	/*
4880 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
4881 	 * observe !owner it means the list deletion is complete and we can
4882 	 * indeed free this event, otherwise we need to serialize on
4883 	 * owner->perf_event_mutex.
4884 	 */
4885 	owner = READ_ONCE(event->owner);
4886 	if (owner) {
4887 		/*
4888 		 * Since delayed_put_task_struct() also drops the last
4889 		 * task reference we can safely take a new reference
4890 		 * while holding the rcu_read_lock().
4891 		 */
4892 		get_task_struct(owner);
4893 	}
4894 	rcu_read_unlock();
4895 
4896 	if (owner) {
4897 		/*
4898 		 * If we're here through perf_event_exit_task() we're already
4899 		 * holding ctx->mutex which would be an inversion wrt. the
4900 		 * normal lock order.
4901 		 *
4902 		 * However we can safely take this lock because its the child
4903 		 * ctx->mutex.
4904 		 */
4905 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4906 
4907 		/*
4908 		 * We have to re-check the event->owner field, if it is cleared
4909 		 * we raced with perf_event_exit_task(), acquiring the mutex
4910 		 * ensured they're done, and we can proceed with freeing the
4911 		 * event.
4912 		 */
4913 		if (event->owner) {
4914 			list_del_init(&event->owner_entry);
4915 			smp_store_release(&event->owner, NULL);
4916 		}
4917 		mutex_unlock(&owner->perf_event_mutex);
4918 		put_task_struct(owner);
4919 	}
4920 }
4921 
4922 static void put_event(struct perf_event *event)
4923 {
4924 	if (!atomic_long_dec_and_test(&event->refcount))
4925 		return;
4926 
4927 	_free_event(event);
4928 }
4929 
4930 /*
4931  * Kill an event dead; while event:refcount will preserve the event
4932  * object, it will not preserve its functionality. Once the last 'user'
4933  * gives up the object, we'll destroy the thing.
4934  */
4935 int perf_event_release_kernel(struct perf_event *event)
4936 {
4937 	struct perf_event_context *ctx = event->ctx;
4938 	struct perf_event *child, *tmp;
4939 	LIST_HEAD(free_list);
4940 
4941 	/*
4942 	 * If we got here through err_file: fput(event_file); we will not have
4943 	 * attached to a context yet.
4944 	 */
4945 	if (!ctx) {
4946 		WARN_ON_ONCE(event->attach_state &
4947 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4948 		goto no_ctx;
4949 	}
4950 
4951 	if (!is_kernel_event(event))
4952 		perf_remove_from_owner(event);
4953 
4954 	ctx = perf_event_ctx_lock(event);
4955 	WARN_ON_ONCE(ctx->parent_ctx);
4956 	perf_remove_from_context(event, DETACH_GROUP);
4957 
4958 	raw_spin_lock_irq(&ctx->lock);
4959 	/*
4960 	 * Mark this event as STATE_DEAD, there is no external reference to it
4961 	 * anymore.
4962 	 *
4963 	 * Anybody acquiring event->child_mutex after the below loop _must_
4964 	 * also see this, most importantly inherit_event() which will avoid
4965 	 * placing more children on the list.
4966 	 *
4967 	 * Thus this guarantees that we will in fact observe and kill _ALL_
4968 	 * child events.
4969 	 */
4970 	event->state = PERF_EVENT_STATE_DEAD;
4971 	raw_spin_unlock_irq(&ctx->lock);
4972 
4973 	perf_event_ctx_unlock(event, ctx);
4974 
4975 again:
4976 	mutex_lock(&event->child_mutex);
4977 	list_for_each_entry(child, &event->child_list, child_list) {
4978 
4979 		/*
4980 		 * Cannot change, child events are not migrated, see the
4981 		 * comment with perf_event_ctx_lock_nested().
4982 		 */
4983 		ctx = READ_ONCE(child->ctx);
4984 		/*
4985 		 * Since child_mutex nests inside ctx::mutex, we must jump
4986 		 * through hoops. We start by grabbing a reference on the ctx.
4987 		 *
4988 		 * Since the event cannot get freed while we hold the
4989 		 * child_mutex, the context must also exist and have a !0
4990 		 * reference count.
4991 		 */
4992 		get_ctx(ctx);
4993 
4994 		/*
4995 		 * Now that we have a ctx ref, we can drop child_mutex, and
4996 		 * acquire ctx::mutex without fear of it going away. Then we
4997 		 * can re-acquire child_mutex.
4998 		 */
4999 		mutex_unlock(&event->child_mutex);
5000 		mutex_lock(&ctx->mutex);
5001 		mutex_lock(&event->child_mutex);
5002 
5003 		/*
5004 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
5005 		 * state, if child is still the first entry, it didn't get freed
5006 		 * and we can continue doing so.
5007 		 */
5008 		tmp = list_first_entry_or_null(&event->child_list,
5009 					       struct perf_event, child_list);
5010 		if (tmp == child) {
5011 			perf_remove_from_context(child, DETACH_GROUP);
5012 			list_move(&child->child_list, &free_list);
5013 			/*
5014 			 * This matches the refcount bump in inherit_event();
5015 			 * this can't be the last reference.
5016 			 */
5017 			put_event(event);
5018 		}
5019 
5020 		mutex_unlock(&event->child_mutex);
5021 		mutex_unlock(&ctx->mutex);
5022 		put_ctx(ctx);
5023 		goto again;
5024 	}
5025 	mutex_unlock(&event->child_mutex);
5026 
5027 	list_for_each_entry_safe(child, tmp, &free_list, child_list) {
5028 		void *var = &child->ctx->refcount;
5029 
5030 		list_del(&child->child_list);
5031 		free_event(child);
5032 
5033 		/*
5034 		 * Wake any perf_event_free_task() waiting for this event to be
5035 		 * freed.
5036 		 */
5037 		smp_mb(); /* pairs with wait_var_event() */
5038 		wake_up_var(var);
5039 	}
5040 
5041 no_ctx:
5042 	put_event(event); /* Must be the 'last' reference */
5043 	return 0;
5044 }
5045 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5046 
5047 /*
5048  * Called when the last reference to the file is gone.
5049  */
5050 static int perf_release(struct inode *inode, struct file *file)
5051 {
5052 	perf_event_release_kernel(file->private_data);
5053 	return 0;
5054 }
5055 
5056 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5057 {
5058 	struct perf_event *child;
5059 	u64 total = 0;
5060 
5061 	*enabled = 0;
5062 	*running = 0;
5063 
5064 	mutex_lock(&event->child_mutex);
5065 
5066 	(void)perf_event_read(event, false);
5067 	total += perf_event_count(event);
5068 
5069 	*enabled += event->total_time_enabled +
5070 			atomic64_read(&event->child_total_time_enabled);
5071 	*running += event->total_time_running +
5072 			atomic64_read(&event->child_total_time_running);
5073 
5074 	list_for_each_entry(child, &event->child_list, child_list) {
5075 		(void)perf_event_read(child, false);
5076 		total += perf_event_count(child);
5077 		*enabled += child->total_time_enabled;
5078 		*running += child->total_time_running;
5079 	}
5080 	mutex_unlock(&event->child_mutex);
5081 
5082 	return total;
5083 }
5084 
5085 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5086 {
5087 	struct perf_event_context *ctx;
5088 	u64 count;
5089 
5090 	ctx = perf_event_ctx_lock(event);
5091 	count = __perf_event_read_value(event, enabled, running);
5092 	perf_event_ctx_unlock(event, ctx);
5093 
5094 	return count;
5095 }
5096 EXPORT_SYMBOL_GPL(perf_event_read_value);
5097 
5098 static int __perf_read_group_add(struct perf_event *leader,
5099 					u64 read_format, u64 *values)
5100 {
5101 	struct perf_event_context *ctx = leader->ctx;
5102 	struct perf_event *sub;
5103 	unsigned long flags;
5104 	int n = 1; /* skip @nr */
5105 	int ret;
5106 
5107 	ret = perf_event_read(leader, true);
5108 	if (ret)
5109 		return ret;
5110 
5111 	raw_spin_lock_irqsave(&ctx->lock, flags);
5112 
5113 	/*
5114 	 * Since we co-schedule groups, {enabled,running} times of siblings
5115 	 * will be identical to those of the leader, so we only publish one
5116 	 * set.
5117 	 */
5118 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5119 		values[n++] += leader->total_time_enabled +
5120 			atomic64_read(&leader->child_total_time_enabled);
5121 	}
5122 
5123 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5124 		values[n++] += leader->total_time_running +
5125 			atomic64_read(&leader->child_total_time_running);
5126 	}
5127 
5128 	/*
5129 	 * Write {count,id} tuples for every sibling.
5130 	 */
5131 	values[n++] += perf_event_count(leader);
5132 	if (read_format & PERF_FORMAT_ID)
5133 		values[n++] = primary_event_id(leader);
5134 
5135 	for_each_sibling_event(sub, leader) {
5136 		values[n++] += perf_event_count(sub);
5137 		if (read_format & PERF_FORMAT_ID)
5138 			values[n++] = primary_event_id(sub);
5139 	}
5140 
5141 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
5142 	return 0;
5143 }
5144 
5145 static int perf_read_group(struct perf_event *event,
5146 				   u64 read_format, char __user *buf)
5147 {
5148 	struct perf_event *leader = event->group_leader, *child;
5149 	struct perf_event_context *ctx = leader->ctx;
5150 	int ret;
5151 	u64 *values;
5152 
5153 	lockdep_assert_held(&ctx->mutex);
5154 
5155 	values = kzalloc(event->read_size, GFP_KERNEL);
5156 	if (!values)
5157 		return -ENOMEM;
5158 
5159 	values[0] = 1 + leader->nr_siblings;
5160 
5161 	/*
5162 	 * By locking the child_mutex of the leader we effectively
5163 	 * lock the child list of all siblings.. XXX explain how.
5164 	 */
5165 	mutex_lock(&leader->child_mutex);
5166 
5167 	ret = __perf_read_group_add(leader, read_format, values);
5168 	if (ret)
5169 		goto unlock;
5170 
5171 	list_for_each_entry(child, &leader->child_list, child_list) {
5172 		ret = __perf_read_group_add(child, read_format, values);
5173 		if (ret)
5174 			goto unlock;
5175 	}
5176 
5177 	mutex_unlock(&leader->child_mutex);
5178 
5179 	ret = event->read_size;
5180 	if (copy_to_user(buf, values, event->read_size))
5181 		ret = -EFAULT;
5182 	goto out;
5183 
5184 unlock:
5185 	mutex_unlock(&leader->child_mutex);
5186 out:
5187 	kfree(values);
5188 	return ret;
5189 }
5190 
5191 static int perf_read_one(struct perf_event *event,
5192 				 u64 read_format, char __user *buf)
5193 {
5194 	u64 enabled, running;
5195 	u64 values[4];
5196 	int n = 0;
5197 
5198 	values[n++] = __perf_event_read_value(event, &enabled, &running);
5199 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5200 		values[n++] = enabled;
5201 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5202 		values[n++] = running;
5203 	if (read_format & PERF_FORMAT_ID)
5204 		values[n++] = primary_event_id(event);
5205 
5206 	if (copy_to_user(buf, values, n * sizeof(u64)))
5207 		return -EFAULT;
5208 
5209 	return n * sizeof(u64);
5210 }
5211 
5212 static bool is_event_hup(struct perf_event *event)
5213 {
5214 	bool no_children;
5215 
5216 	if (event->state > PERF_EVENT_STATE_EXIT)
5217 		return false;
5218 
5219 	mutex_lock(&event->child_mutex);
5220 	no_children = list_empty(&event->child_list);
5221 	mutex_unlock(&event->child_mutex);
5222 	return no_children;
5223 }
5224 
5225 /*
5226  * Read the performance event - simple non blocking version for now
5227  */
5228 static ssize_t
5229 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5230 {
5231 	u64 read_format = event->attr.read_format;
5232 	int ret;
5233 
5234 	/*
5235 	 * Return end-of-file for a read on an event that is in
5236 	 * error state (i.e. because it was pinned but it couldn't be
5237 	 * scheduled on to the CPU at some point).
5238 	 */
5239 	if (event->state == PERF_EVENT_STATE_ERROR)
5240 		return 0;
5241 
5242 	if (count < event->read_size)
5243 		return -ENOSPC;
5244 
5245 	WARN_ON_ONCE(event->ctx->parent_ctx);
5246 	if (read_format & PERF_FORMAT_GROUP)
5247 		ret = perf_read_group(event, read_format, buf);
5248 	else
5249 		ret = perf_read_one(event, read_format, buf);
5250 
5251 	return ret;
5252 }
5253 
5254 static ssize_t
5255 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5256 {
5257 	struct perf_event *event = file->private_data;
5258 	struct perf_event_context *ctx;
5259 	int ret;
5260 
5261 	ret = security_perf_event_read(event);
5262 	if (ret)
5263 		return ret;
5264 
5265 	ctx = perf_event_ctx_lock(event);
5266 	ret = __perf_read(event, buf, count);
5267 	perf_event_ctx_unlock(event, ctx);
5268 
5269 	return ret;
5270 }
5271 
5272 static __poll_t perf_poll(struct file *file, poll_table *wait)
5273 {
5274 	struct perf_event *event = file->private_data;
5275 	struct perf_buffer *rb;
5276 	__poll_t events = EPOLLHUP;
5277 
5278 	poll_wait(file, &event->waitq, wait);
5279 
5280 	if (is_event_hup(event))
5281 		return events;
5282 
5283 	/*
5284 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
5285 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5286 	 */
5287 	mutex_lock(&event->mmap_mutex);
5288 	rb = event->rb;
5289 	if (rb)
5290 		events = atomic_xchg(&rb->poll, 0);
5291 	mutex_unlock(&event->mmap_mutex);
5292 	return events;
5293 }
5294 
5295 static void _perf_event_reset(struct perf_event *event)
5296 {
5297 	(void)perf_event_read(event, false);
5298 	local64_set(&event->count, 0);
5299 	perf_event_update_userpage(event);
5300 }
5301 
5302 /* Assume it's not an event with inherit set. */
5303 u64 perf_event_pause(struct perf_event *event, bool reset)
5304 {
5305 	struct perf_event_context *ctx;
5306 	u64 count;
5307 
5308 	ctx = perf_event_ctx_lock(event);
5309 	WARN_ON_ONCE(event->attr.inherit);
5310 	_perf_event_disable(event);
5311 	count = local64_read(&event->count);
5312 	if (reset)
5313 		local64_set(&event->count, 0);
5314 	perf_event_ctx_unlock(event, ctx);
5315 
5316 	return count;
5317 }
5318 EXPORT_SYMBOL_GPL(perf_event_pause);
5319 
5320 /*
5321  * Holding the top-level event's child_mutex means that any
5322  * descendant process that has inherited this event will block
5323  * in perf_event_exit_event() if it goes to exit, thus satisfying the
5324  * task existence requirements of perf_event_enable/disable.
5325  */
5326 static void perf_event_for_each_child(struct perf_event *event,
5327 					void (*func)(struct perf_event *))
5328 {
5329 	struct perf_event *child;
5330 
5331 	WARN_ON_ONCE(event->ctx->parent_ctx);
5332 
5333 	mutex_lock(&event->child_mutex);
5334 	func(event);
5335 	list_for_each_entry(child, &event->child_list, child_list)
5336 		func(child);
5337 	mutex_unlock(&event->child_mutex);
5338 }
5339 
5340 static void perf_event_for_each(struct perf_event *event,
5341 				  void (*func)(struct perf_event *))
5342 {
5343 	struct perf_event_context *ctx = event->ctx;
5344 	struct perf_event *sibling;
5345 
5346 	lockdep_assert_held(&ctx->mutex);
5347 
5348 	event = event->group_leader;
5349 
5350 	perf_event_for_each_child(event, func);
5351 	for_each_sibling_event(sibling, event)
5352 		perf_event_for_each_child(sibling, func);
5353 }
5354 
5355 static void __perf_event_period(struct perf_event *event,
5356 				struct perf_cpu_context *cpuctx,
5357 				struct perf_event_context *ctx,
5358 				void *info)
5359 {
5360 	u64 value = *((u64 *)info);
5361 	bool active;
5362 
5363 	if (event->attr.freq) {
5364 		event->attr.sample_freq = value;
5365 	} else {
5366 		event->attr.sample_period = value;
5367 		event->hw.sample_period = value;
5368 	}
5369 
5370 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
5371 	if (active) {
5372 		perf_pmu_disable(ctx->pmu);
5373 		/*
5374 		 * We could be throttled; unthrottle now to avoid the tick
5375 		 * trying to unthrottle while we already re-started the event.
5376 		 */
5377 		if (event->hw.interrupts == MAX_INTERRUPTS) {
5378 			event->hw.interrupts = 0;
5379 			perf_log_throttle(event, 1);
5380 		}
5381 		event->pmu->stop(event, PERF_EF_UPDATE);
5382 	}
5383 
5384 	local64_set(&event->hw.period_left, 0);
5385 
5386 	if (active) {
5387 		event->pmu->start(event, PERF_EF_RELOAD);
5388 		perf_pmu_enable(ctx->pmu);
5389 	}
5390 }
5391 
5392 static int perf_event_check_period(struct perf_event *event, u64 value)
5393 {
5394 	return event->pmu->check_period(event, value);
5395 }
5396 
5397 static int _perf_event_period(struct perf_event *event, u64 value)
5398 {
5399 	if (!is_sampling_event(event))
5400 		return -EINVAL;
5401 
5402 	if (!value)
5403 		return -EINVAL;
5404 
5405 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5406 		return -EINVAL;
5407 
5408 	if (perf_event_check_period(event, value))
5409 		return -EINVAL;
5410 
5411 	if (!event->attr.freq && (value & (1ULL << 63)))
5412 		return -EINVAL;
5413 
5414 	event_function_call(event, __perf_event_period, &value);
5415 
5416 	return 0;
5417 }
5418 
5419 int perf_event_period(struct perf_event *event, u64 value)
5420 {
5421 	struct perf_event_context *ctx;
5422 	int ret;
5423 
5424 	ctx = perf_event_ctx_lock(event);
5425 	ret = _perf_event_period(event, value);
5426 	perf_event_ctx_unlock(event, ctx);
5427 
5428 	return ret;
5429 }
5430 EXPORT_SYMBOL_GPL(perf_event_period);
5431 
5432 static const struct file_operations perf_fops;
5433 
5434 static inline int perf_fget_light(int fd, struct fd *p)
5435 {
5436 	struct fd f = fdget(fd);
5437 	if (!f.file)
5438 		return -EBADF;
5439 
5440 	if (f.file->f_op != &perf_fops) {
5441 		fdput(f);
5442 		return -EBADF;
5443 	}
5444 	*p = f;
5445 	return 0;
5446 }
5447 
5448 static int perf_event_set_output(struct perf_event *event,
5449 				 struct perf_event *output_event);
5450 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5451 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
5452 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5453 			  struct perf_event_attr *attr);
5454 
5455 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5456 {
5457 	void (*func)(struct perf_event *);
5458 	u32 flags = arg;
5459 
5460 	switch (cmd) {
5461 	case PERF_EVENT_IOC_ENABLE:
5462 		func = _perf_event_enable;
5463 		break;
5464 	case PERF_EVENT_IOC_DISABLE:
5465 		func = _perf_event_disable;
5466 		break;
5467 	case PERF_EVENT_IOC_RESET:
5468 		func = _perf_event_reset;
5469 		break;
5470 
5471 	case PERF_EVENT_IOC_REFRESH:
5472 		return _perf_event_refresh(event, arg);
5473 
5474 	case PERF_EVENT_IOC_PERIOD:
5475 	{
5476 		u64 value;
5477 
5478 		if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5479 			return -EFAULT;
5480 
5481 		return _perf_event_period(event, value);
5482 	}
5483 	case PERF_EVENT_IOC_ID:
5484 	{
5485 		u64 id = primary_event_id(event);
5486 
5487 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5488 			return -EFAULT;
5489 		return 0;
5490 	}
5491 
5492 	case PERF_EVENT_IOC_SET_OUTPUT:
5493 	{
5494 		int ret;
5495 		if (arg != -1) {
5496 			struct perf_event *output_event;
5497 			struct fd output;
5498 			ret = perf_fget_light(arg, &output);
5499 			if (ret)
5500 				return ret;
5501 			output_event = output.file->private_data;
5502 			ret = perf_event_set_output(event, output_event);
5503 			fdput(output);
5504 		} else {
5505 			ret = perf_event_set_output(event, NULL);
5506 		}
5507 		return ret;
5508 	}
5509 
5510 	case PERF_EVENT_IOC_SET_FILTER:
5511 		return perf_event_set_filter(event, (void __user *)arg);
5512 
5513 	case PERF_EVENT_IOC_SET_BPF:
5514 		return perf_event_set_bpf_prog(event, arg);
5515 
5516 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5517 		struct perf_buffer *rb;
5518 
5519 		rcu_read_lock();
5520 		rb = rcu_dereference(event->rb);
5521 		if (!rb || !rb->nr_pages) {
5522 			rcu_read_unlock();
5523 			return -EINVAL;
5524 		}
5525 		rb_toggle_paused(rb, !!arg);
5526 		rcu_read_unlock();
5527 		return 0;
5528 	}
5529 
5530 	case PERF_EVENT_IOC_QUERY_BPF:
5531 		return perf_event_query_prog_array(event, (void __user *)arg);
5532 
5533 	case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5534 		struct perf_event_attr new_attr;
5535 		int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5536 					 &new_attr);
5537 
5538 		if (err)
5539 			return err;
5540 
5541 		return perf_event_modify_attr(event,  &new_attr);
5542 	}
5543 	default:
5544 		return -ENOTTY;
5545 	}
5546 
5547 	if (flags & PERF_IOC_FLAG_GROUP)
5548 		perf_event_for_each(event, func);
5549 	else
5550 		perf_event_for_each_child(event, func);
5551 
5552 	return 0;
5553 }
5554 
5555 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5556 {
5557 	struct perf_event *event = file->private_data;
5558 	struct perf_event_context *ctx;
5559 	long ret;
5560 
5561 	/* Treat ioctl like writes as it is likely a mutating operation. */
5562 	ret = security_perf_event_write(event);
5563 	if (ret)
5564 		return ret;
5565 
5566 	ctx = perf_event_ctx_lock(event);
5567 	ret = _perf_ioctl(event, cmd, arg);
5568 	perf_event_ctx_unlock(event, ctx);
5569 
5570 	return ret;
5571 }
5572 
5573 #ifdef CONFIG_COMPAT
5574 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5575 				unsigned long arg)
5576 {
5577 	switch (_IOC_NR(cmd)) {
5578 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5579 	case _IOC_NR(PERF_EVENT_IOC_ID):
5580 	case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5581 	case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5582 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5583 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5584 			cmd &= ~IOCSIZE_MASK;
5585 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5586 		}
5587 		break;
5588 	}
5589 	return perf_ioctl(file, cmd, arg);
5590 }
5591 #else
5592 # define perf_compat_ioctl NULL
5593 #endif
5594 
5595 int perf_event_task_enable(void)
5596 {
5597 	struct perf_event_context *ctx;
5598 	struct perf_event *event;
5599 
5600 	mutex_lock(&current->perf_event_mutex);
5601 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5602 		ctx = perf_event_ctx_lock(event);
5603 		perf_event_for_each_child(event, _perf_event_enable);
5604 		perf_event_ctx_unlock(event, ctx);
5605 	}
5606 	mutex_unlock(&current->perf_event_mutex);
5607 
5608 	return 0;
5609 }
5610 
5611 int perf_event_task_disable(void)
5612 {
5613 	struct perf_event_context *ctx;
5614 	struct perf_event *event;
5615 
5616 	mutex_lock(&current->perf_event_mutex);
5617 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5618 		ctx = perf_event_ctx_lock(event);
5619 		perf_event_for_each_child(event, _perf_event_disable);
5620 		perf_event_ctx_unlock(event, ctx);
5621 	}
5622 	mutex_unlock(&current->perf_event_mutex);
5623 
5624 	return 0;
5625 }
5626 
5627 static int perf_event_index(struct perf_event *event)
5628 {
5629 	if (event->hw.state & PERF_HES_STOPPED)
5630 		return 0;
5631 
5632 	if (event->state != PERF_EVENT_STATE_ACTIVE)
5633 		return 0;
5634 
5635 	return event->pmu->event_idx(event);
5636 }
5637 
5638 static void calc_timer_values(struct perf_event *event,
5639 				u64 *now,
5640 				u64 *enabled,
5641 				u64 *running)
5642 {
5643 	u64 ctx_time;
5644 
5645 	*now = perf_clock();
5646 	ctx_time = event->shadow_ctx_time + *now;
5647 	__perf_update_times(event, ctx_time, enabled, running);
5648 }
5649 
5650 static void perf_event_init_userpage(struct perf_event *event)
5651 {
5652 	struct perf_event_mmap_page *userpg;
5653 	struct perf_buffer *rb;
5654 
5655 	rcu_read_lock();
5656 	rb = rcu_dereference(event->rb);
5657 	if (!rb)
5658 		goto unlock;
5659 
5660 	userpg = rb->user_page;
5661 
5662 	/* Allow new userspace to detect that bit 0 is deprecated */
5663 	userpg->cap_bit0_is_deprecated = 1;
5664 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5665 	userpg->data_offset = PAGE_SIZE;
5666 	userpg->data_size = perf_data_size(rb);
5667 
5668 unlock:
5669 	rcu_read_unlock();
5670 }
5671 
5672 void __weak arch_perf_update_userpage(
5673 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5674 {
5675 }
5676 
5677 /*
5678  * Callers need to ensure there can be no nesting of this function, otherwise
5679  * the seqlock logic goes bad. We can not serialize this because the arch
5680  * code calls this from NMI context.
5681  */
5682 void perf_event_update_userpage(struct perf_event *event)
5683 {
5684 	struct perf_event_mmap_page *userpg;
5685 	struct perf_buffer *rb;
5686 	u64 enabled, running, now;
5687 
5688 	rcu_read_lock();
5689 	rb = rcu_dereference(event->rb);
5690 	if (!rb)
5691 		goto unlock;
5692 
5693 	/*
5694 	 * compute total_time_enabled, total_time_running
5695 	 * based on snapshot values taken when the event
5696 	 * was last scheduled in.
5697 	 *
5698 	 * we cannot simply called update_context_time()
5699 	 * because of locking issue as we can be called in
5700 	 * NMI context
5701 	 */
5702 	calc_timer_values(event, &now, &enabled, &running);
5703 
5704 	userpg = rb->user_page;
5705 	/*
5706 	 * Disable preemption to guarantee consistent time stamps are stored to
5707 	 * the user page.
5708 	 */
5709 	preempt_disable();
5710 	++userpg->lock;
5711 	barrier();
5712 	userpg->index = perf_event_index(event);
5713 	userpg->offset = perf_event_count(event);
5714 	if (userpg->index)
5715 		userpg->offset -= local64_read(&event->hw.prev_count);
5716 
5717 	userpg->time_enabled = enabled +
5718 			atomic64_read(&event->child_total_time_enabled);
5719 
5720 	userpg->time_running = running +
5721 			atomic64_read(&event->child_total_time_running);
5722 
5723 	arch_perf_update_userpage(event, userpg, now);
5724 
5725 	barrier();
5726 	++userpg->lock;
5727 	preempt_enable();
5728 unlock:
5729 	rcu_read_unlock();
5730 }
5731 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5732 
5733 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
5734 {
5735 	struct perf_event *event = vmf->vma->vm_file->private_data;
5736 	struct perf_buffer *rb;
5737 	vm_fault_t ret = VM_FAULT_SIGBUS;
5738 
5739 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
5740 		if (vmf->pgoff == 0)
5741 			ret = 0;
5742 		return ret;
5743 	}
5744 
5745 	rcu_read_lock();
5746 	rb = rcu_dereference(event->rb);
5747 	if (!rb)
5748 		goto unlock;
5749 
5750 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5751 		goto unlock;
5752 
5753 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5754 	if (!vmf->page)
5755 		goto unlock;
5756 
5757 	get_page(vmf->page);
5758 	vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5759 	vmf->page->index   = vmf->pgoff;
5760 
5761 	ret = 0;
5762 unlock:
5763 	rcu_read_unlock();
5764 
5765 	return ret;
5766 }
5767 
5768 static void ring_buffer_attach(struct perf_event *event,
5769 			       struct perf_buffer *rb)
5770 {
5771 	struct perf_buffer *old_rb = NULL;
5772 	unsigned long flags;
5773 
5774 	if (event->rb) {
5775 		/*
5776 		 * Should be impossible, we set this when removing
5777 		 * event->rb_entry and wait/clear when adding event->rb_entry.
5778 		 */
5779 		WARN_ON_ONCE(event->rcu_pending);
5780 
5781 		old_rb = event->rb;
5782 		spin_lock_irqsave(&old_rb->event_lock, flags);
5783 		list_del_rcu(&event->rb_entry);
5784 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
5785 
5786 		event->rcu_batches = get_state_synchronize_rcu();
5787 		event->rcu_pending = 1;
5788 	}
5789 
5790 	if (rb) {
5791 		if (event->rcu_pending) {
5792 			cond_synchronize_rcu(event->rcu_batches);
5793 			event->rcu_pending = 0;
5794 		}
5795 
5796 		spin_lock_irqsave(&rb->event_lock, flags);
5797 		list_add_rcu(&event->rb_entry, &rb->event_list);
5798 		spin_unlock_irqrestore(&rb->event_lock, flags);
5799 	}
5800 
5801 	/*
5802 	 * Avoid racing with perf_mmap_close(AUX): stop the event
5803 	 * before swizzling the event::rb pointer; if it's getting
5804 	 * unmapped, its aux_mmap_count will be 0 and it won't
5805 	 * restart. See the comment in __perf_pmu_output_stop().
5806 	 *
5807 	 * Data will inevitably be lost when set_output is done in
5808 	 * mid-air, but then again, whoever does it like this is
5809 	 * not in for the data anyway.
5810 	 */
5811 	if (has_aux(event))
5812 		perf_event_stop(event, 0);
5813 
5814 	rcu_assign_pointer(event->rb, rb);
5815 
5816 	if (old_rb) {
5817 		ring_buffer_put(old_rb);
5818 		/*
5819 		 * Since we detached before setting the new rb, so that we
5820 		 * could attach the new rb, we could have missed a wakeup.
5821 		 * Provide it now.
5822 		 */
5823 		wake_up_all(&event->waitq);
5824 	}
5825 }
5826 
5827 static void ring_buffer_wakeup(struct perf_event *event)
5828 {
5829 	struct perf_buffer *rb;
5830 
5831 	rcu_read_lock();
5832 	rb = rcu_dereference(event->rb);
5833 	if (rb) {
5834 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5835 			wake_up_all(&event->waitq);
5836 	}
5837 	rcu_read_unlock();
5838 }
5839 
5840 struct perf_buffer *ring_buffer_get(struct perf_event *event)
5841 {
5842 	struct perf_buffer *rb;
5843 
5844 	rcu_read_lock();
5845 	rb = rcu_dereference(event->rb);
5846 	if (rb) {
5847 		if (!refcount_inc_not_zero(&rb->refcount))
5848 			rb = NULL;
5849 	}
5850 	rcu_read_unlock();
5851 
5852 	return rb;
5853 }
5854 
5855 void ring_buffer_put(struct perf_buffer *rb)
5856 {
5857 	if (!refcount_dec_and_test(&rb->refcount))
5858 		return;
5859 
5860 	WARN_ON_ONCE(!list_empty(&rb->event_list));
5861 
5862 	call_rcu(&rb->rcu_head, rb_free_rcu);
5863 }
5864 
5865 static void perf_mmap_open(struct vm_area_struct *vma)
5866 {
5867 	struct perf_event *event = vma->vm_file->private_data;
5868 
5869 	atomic_inc(&event->mmap_count);
5870 	atomic_inc(&event->rb->mmap_count);
5871 
5872 	if (vma->vm_pgoff)
5873 		atomic_inc(&event->rb->aux_mmap_count);
5874 
5875 	if (event->pmu->event_mapped)
5876 		event->pmu->event_mapped(event, vma->vm_mm);
5877 }
5878 
5879 static void perf_pmu_output_stop(struct perf_event *event);
5880 
5881 /*
5882  * A buffer can be mmap()ed multiple times; either directly through the same
5883  * event, or through other events by use of perf_event_set_output().
5884  *
5885  * In order to undo the VM accounting done by perf_mmap() we need to destroy
5886  * the buffer here, where we still have a VM context. This means we need
5887  * to detach all events redirecting to us.
5888  */
5889 static void perf_mmap_close(struct vm_area_struct *vma)
5890 {
5891 	struct perf_event *event = vma->vm_file->private_data;
5892 	struct perf_buffer *rb = ring_buffer_get(event);
5893 	struct user_struct *mmap_user = rb->mmap_user;
5894 	int mmap_locked = rb->mmap_locked;
5895 	unsigned long size = perf_data_size(rb);
5896 	bool detach_rest = false;
5897 
5898 	if (event->pmu->event_unmapped)
5899 		event->pmu->event_unmapped(event, vma->vm_mm);
5900 
5901 	/*
5902 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
5903 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
5904 	 * serialize with perf_mmap here.
5905 	 */
5906 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5907 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5908 		/*
5909 		 * Stop all AUX events that are writing to this buffer,
5910 		 * so that we can free its AUX pages and corresponding PMU
5911 		 * data. Note that after rb::aux_mmap_count dropped to zero,
5912 		 * they won't start any more (see perf_aux_output_begin()).
5913 		 */
5914 		perf_pmu_output_stop(event);
5915 
5916 		/* now it's safe to free the pages */
5917 		atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
5918 		atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
5919 
5920 		/* this has to be the last one */
5921 		rb_free_aux(rb);
5922 		WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
5923 
5924 		mutex_unlock(&event->mmap_mutex);
5925 	}
5926 
5927 	if (atomic_dec_and_test(&rb->mmap_count))
5928 		detach_rest = true;
5929 
5930 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5931 		goto out_put;
5932 
5933 	ring_buffer_attach(event, NULL);
5934 	mutex_unlock(&event->mmap_mutex);
5935 
5936 	/* If there's still other mmap()s of this buffer, we're done. */
5937 	if (!detach_rest)
5938 		goto out_put;
5939 
5940 	/*
5941 	 * No other mmap()s, detach from all other events that might redirect
5942 	 * into the now unreachable buffer. Somewhat complicated by the
5943 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5944 	 */
5945 again:
5946 	rcu_read_lock();
5947 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5948 		if (!atomic_long_inc_not_zero(&event->refcount)) {
5949 			/*
5950 			 * This event is en-route to free_event() which will
5951 			 * detach it and remove it from the list.
5952 			 */
5953 			continue;
5954 		}
5955 		rcu_read_unlock();
5956 
5957 		mutex_lock(&event->mmap_mutex);
5958 		/*
5959 		 * Check we didn't race with perf_event_set_output() which can
5960 		 * swizzle the rb from under us while we were waiting to
5961 		 * acquire mmap_mutex.
5962 		 *
5963 		 * If we find a different rb; ignore this event, a next
5964 		 * iteration will no longer find it on the list. We have to
5965 		 * still restart the iteration to make sure we're not now
5966 		 * iterating the wrong list.
5967 		 */
5968 		if (event->rb == rb)
5969 			ring_buffer_attach(event, NULL);
5970 
5971 		mutex_unlock(&event->mmap_mutex);
5972 		put_event(event);
5973 
5974 		/*
5975 		 * Restart the iteration; either we're on the wrong list or
5976 		 * destroyed its integrity by doing a deletion.
5977 		 */
5978 		goto again;
5979 	}
5980 	rcu_read_unlock();
5981 
5982 	/*
5983 	 * It could be there's still a few 0-ref events on the list; they'll
5984 	 * get cleaned up by free_event() -- they'll also still have their
5985 	 * ref on the rb and will free it whenever they are done with it.
5986 	 *
5987 	 * Aside from that, this buffer is 'fully' detached and unmapped,
5988 	 * undo the VM accounting.
5989 	 */
5990 
5991 	atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
5992 			&mmap_user->locked_vm);
5993 	atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
5994 	free_uid(mmap_user);
5995 
5996 out_put:
5997 	ring_buffer_put(rb); /* could be last */
5998 }
5999 
6000 static const struct vm_operations_struct perf_mmap_vmops = {
6001 	.open		= perf_mmap_open,
6002 	.close		= perf_mmap_close, /* non mergeable */
6003 	.fault		= perf_mmap_fault,
6004 	.page_mkwrite	= perf_mmap_fault,
6005 };
6006 
6007 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
6008 {
6009 	struct perf_event *event = file->private_data;
6010 	unsigned long user_locked, user_lock_limit;
6011 	struct user_struct *user = current_user();
6012 	struct perf_buffer *rb = NULL;
6013 	unsigned long locked, lock_limit;
6014 	unsigned long vma_size;
6015 	unsigned long nr_pages;
6016 	long user_extra = 0, extra = 0;
6017 	int ret = 0, flags = 0;
6018 
6019 	/*
6020 	 * Don't allow mmap() of inherited per-task counters. This would
6021 	 * create a performance issue due to all children writing to the
6022 	 * same rb.
6023 	 */
6024 	if (event->cpu == -1 && event->attr.inherit)
6025 		return -EINVAL;
6026 
6027 	if (!(vma->vm_flags & VM_SHARED))
6028 		return -EINVAL;
6029 
6030 	ret = security_perf_event_read(event);
6031 	if (ret)
6032 		return ret;
6033 
6034 	vma_size = vma->vm_end - vma->vm_start;
6035 
6036 	if (vma->vm_pgoff == 0) {
6037 		nr_pages = (vma_size / PAGE_SIZE) - 1;
6038 	} else {
6039 		/*
6040 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6041 		 * mapped, all subsequent mappings should have the same size
6042 		 * and offset. Must be above the normal perf buffer.
6043 		 */
6044 		u64 aux_offset, aux_size;
6045 
6046 		if (!event->rb)
6047 			return -EINVAL;
6048 
6049 		nr_pages = vma_size / PAGE_SIZE;
6050 
6051 		mutex_lock(&event->mmap_mutex);
6052 		ret = -EINVAL;
6053 
6054 		rb = event->rb;
6055 		if (!rb)
6056 			goto aux_unlock;
6057 
6058 		aux_offset = READ_ONCE(rb->user_page->aux_offset);
6059 		aux_size = READ_ONCE(rb->user_page->aux_size);
6060 
6061 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6062 			goto aux_unlock;
6063 
6064 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6065 			goto aux_unlock;
6066 
6067 		/* already mapped with a different offset */
6068 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6069 			goto aux_unlock;
6070 
6071 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6072 			goto aux_unlock;
6073 
6074 		/* already mapped with a different size */
6075 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6076 			goto aux_unlock;
6077 
6078 		if (!is_power_of_2(nr_pages))
6079 			goto aux_unlock;
6080 
6081 		if (!atomic_inc_not_zero(&rb->mmap_count))
6082 			goto aux_unlock;
6083 
6084 		if (rb_has_aux(rb)) {
6085 			atomic_inc(&rb->aux_mmap_count);
6086 			ret = 0;
6087 			goto unlock;
6088 		}
6089 
6090 		atomic_set(&rb->aux_mmap_count, 1);
6091 		user_extra = nr_pages;
6092 
6093 		goto accounting;
6094 	}
6095 
6096 	/*
6097 	 * If we have rb pages ensure they're a power-of-two number, so we
6098 	 * can do bitmasks instead of modulo.
6099 	 */
6100 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
6101 		return -EINVAL;
6102 
6103 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
6104 		return -EINVAL;
6105 
6106 	WARN_ON_ONCE(event->ctx->parent_ctx);
6107 again:
6108 	mutex_lock(&event->mmap_mutex);
6109 	if (event->rb) {
6110 		if (event->rb->nr_pages != nr_pages) {
6111 			ret = -EINVAL;
6112 			goto unlock;
6113 		}
6114 
6115 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6116 			/*
6117 			 * Raced against perf_mmap_close() through
6118 			 * perf_event_set_output(). Try again, hope for better
6119 			 * luck.
6120 			 */
6121 			mutex_unlock(&event->mmap_mutex);
6122 			goto again;
6123 		}
6124 
6125 		goto unlock;
6126 	}
6127 
6128 	user_extra = nr_pages + 1;
6129 
6130 accounting:
6131 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6132 
6133 	/*
6134 	 * Increase the limit linearly with more CPUs:
6135 	 */
6136 	user_lock_limit *= num_online_cpus();
6137 
6138 	user_locked = atomic_long_read(&user->locked_vm);
6139 
6140 	/*
6141 	 * sysctl_perf_event_mlock may have changed, so that
6142 	 *     user->locked_vm > user_lock_limit
6143 	 */
6144 	if (user_locked > user_lock_limit)
6145 		user_locked = user_lock_limit;
6146 	user_locked += user_extra;
6147 
6148 	if (user_locked > user_lock_limit) {
6149 		/*
6150 		 * charge locked_vm until it hits user_lock_limit;
6151 		 * charge the rest from pinned_vm
6152 		 */
6153 		extra = user_locked - user_lock_limit;
6154 		user_extra -= extra;
6155 	}
6156 
6157 	lock_limit = rlimit(RLIMIT_MEMLOCK);
6158 	lock_limit >>= PAGE_SHIFT;
6159 	locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
6160 
6161 	if ((locked > lock_limit) && perf_is_paranoid() &&
6162 		!capable(CAP_IPC_LOCK)) {
6163 		ret = -EPERM;
6164 		goto unlock;
6165 	}
6166 
6167 	WARN_ON(!rb && event->rb);
6168 
6169 	if (vma->vm_flags & VM_WRITE)
6170 		flags |= RING_BUFFER_WRITABLE;
6171 
6172 	if (!rb) {
6173 		rb = rb_alloc(nr_pages,
6174 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
6175 			      event->cpu, flags);
6176 
6177 		if (!rb) {
6178 			ret = -ENOMEM;
6179 			goto unlock;
6180 		}
6181 
6182 		atomic_set(&rb->mmap_count, 1);
6183 		rb->mmap_user = get_current_user();
6184 		rb->mmap_locked = extra;
6185 
6186 		ring_buffer_attach(event, rb);
6187 
6188 		perf_event_init_userpage(event);
6189 		perf_event_update_userpage(event);
6190 	} else {
6191 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6192 				   event->attr.aux_watermark, flags);
6193 		if (!ret)
6194 			rb->aux_mmap_locked = extra;
6195 	}
6196 
6197 unlock:
6198 	if (!ret) {
6199 		atomic_long_add(user_extra, &user->locked_vm);
6200 		atomic64_add(extra, &vma->vm_mm->pinned_vm);
6201 
6202 		atomic_inc(&event->mmap_count);
6203 	} else if (rb) {
6204 		atomic_dec(&rb->mmap_count);
6205 	}
6206 aux_unlock:
6207 	mutex_unlock(&event->mmap_mutex);
6208 
6209 	/*
6210 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
6211 	 * vma.
6212 	 */
6213 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
6214 	vma->vm_ops = &perf_mmap_vmops;
6215 
6216 	if (event->pmu->event_mapped)
6217 		event->pmu->event_mapped(event, vma->vm_mm);
6218 
6219 	return ret;
6220 }
6221 
6222 static int perf_fasync(int fd, struct file *filp, int on)
6223 {
6224 	struct inode *inode = file_inode(filp);
6225 	struct perf_event *event = filp->private_data;
6226 	int retval;
6227 
6228 	inode_lock(inode);
6229 	retval = fasync_helper(fd, filp, on, &event->fasync);
6230 	inode_unlock(inode);
6231 
6232 	if (retval < 0)
6233 		return retval;
6234 
6235 	return 0;
6236 }
6237 
6238 static const struct file_operations perf_fops = {
6239 	.llseek			= no_llseek,
6240 	.release		= perf_release,
6241 	.read			= perf_read,
6242 	.poll			= perf_poll,
6243 	.unlocked_ioctl		= perf_ioctl,
6244 	.compat_ioctl		= perf_compat_ioctl,
6245 	.mmap			= perf_mmap,
6246 	.fasync			= perf_fasync,
6247 };
6248 
6249 /*
6250  * Perf event wakeup
6251  *
6252  * If there's data, ensure we set the poll() state and publish everything
6253  * to user-space before waking everybody up.
6254  */
6255 
6256 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
6257 {
6258 	/* only the parent has fasync state */
6259 	if (event->parent)
6260 		event = event->parent;
6261 	return &event->fasync;
6262 }
6263 
6264 void perf_event_wakeup(struct perf_event *event)
6265 {
6266 	ring_buffer_wakeup(event);
6267 
6268 	if (event->pending_kill) {
6269 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6270 		event->pending_kill = 0;
6271 	}
6272 }
6273 
6274 static void perf_pending_event_disable(struct perf_event *event)
6275 {
6276 	int cpu = READ_ONCE(event->pending_disable);
6277 
6278 	if (cpu < 0)
6279 		return;
6280 
6281 	if (cpu == smp_processor_id()) {
6282 		WRITE_ONCE(event->pending_disable, -1);
6283 		perf_event_disable_local(event);
6284 		return;
6285 	}
6286 
6287 	/*
6288 	 *  CPU-A			CPU-B
6289 	 *
6290 	 *  perf_event_disable_inatomic()
6291 	 *    @pending_disable = CPU-A;
6292 	 *    irq_work_queue();
6293 	 *
6294 	 *  sched-out
6295 	 *    @pending_disable = -1;
6296 	 *
6297 	 *				sched-in
6298 	 *				perf_event_disable_inatomic()
6299 	 *				  @pending_disable = CPU-B;
6300 	 *				  irq_work_queue(); // FAILS
6301 	 *
6302 	 *  irq_work_run()
6303 	 *    perf_pending_event()
6304 	 *
6305 	 * But the event runs on CPU-B and wants disabling there.
6306 	 */
6307 	irq_work_queue_on(&event->pending, cpu);
6308 }
6309 
6310 static void perf_pending_event(struct irq_work *entry)
6311 {
6312 	struct perf_event *event = container_of(entry, struct perf_event, pending);
6313 	int rctx;
6314 
6315 	rctx = perf_swevent_get_recursion_context();
6316 	/*
6317 	 * If we 'fail' here, that's OK, it means recursion is already disabled
6318 	 * and we won't recurse 'further'.
6319 	 */
6320 
6321 	perf_pending_event_disable(event);
6322 
6323 	if (event->pending_wakeup) {
6324 		event->pending_wakeup = 0;
6325 		perf_event_wakeup(event);
6326 	}
6327 
6328 	if (rctx >= 0)
6329 		perf_swevent_put_recursion_context(rctx);
6330 }
6331 
6332 /*
6333  * We assume there is only KVM supporting the callbacks.
6334  * Later on, we might change it to a list if there is
6335  * another virtualization implementation supporting the callbacks.
6336  */
6337 struct perf_guest_info_callbacks *perf_guest_cbs;
6338 
6339 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6340 {
6341 	perf_guest_cbs = cbs;
6342 	return 0;
6343 }
6344 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6345 
6346 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6347 {
6348 	perf_guest_cbs = NULL;
6349 	return 0;
6350 }
6351 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6352 
6353 static void
6354 perf_output_sample_regs(struct perf_output_handle *handle,
6355 			struct pt_regs *regs, u64 mask)
6356 {
6357 	int bit;
6358 	DECLARE_BITMAP(_mask, 64);
6359 
6360 	bitmap_from_u64(_mask, mask);
6361 	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6362 		u64 val;
6363 
6364 		val = perf_reg_value(regs, bit);
6365 		perf_output_put(handle, val);
6366 	}
6367 }
6368 
6369 static void perf_sample_regs_user(struct perf_regs *regs_user,
6370 				  struct pt_regs *regs)
6371 {
6372 	if (user_mode(regs)) {
6373 		regs_user->abi = perf_reg_abi(current);
6374 		regs_user->regs = regs;
6375 	} else if (!(current->flags & PF_KTHREAD)) {
6376 		perf_get_regs_user(regs_user, regs);
6377 	} else {
6378 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6379 		regs_user->regs = NULL;
6380 	}
6381 }
6382 
6383 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6384 				  struct pt_regs *regs)
6385 {
6386 	regs_intr->regs = regs;
6387 	regs_intr->abi  = perf_reg_abi(current);
6388 }
6389 
6390 
6391 /*
6392  * Get remaining task size from user stack pointer.
6393  *
6394  * It'd be better to take stack vma map and limit this more
6395  * precisely, but there's no way to get it safely under interrupt,
6396  * so using TASK_SIZE as limit.
6397  */
6398 static u64 perf_ustack_task_size(struct pt_regs *regs)
6399 {
6400 	unsigned long addr = perf_user_stack_pointer(regs);
6401 
6402 	if (!addr || addr >= TASK_SIZE)
6403 		return 0;
6404 
6405 	return TASK_SIZE - addr;
6406 }
6407 
6408 static u16
6409 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6410 			struct pt_regs *regs)
6411 {
6412 	u64 task_size;
6413 
6414 	/* No regs, no stack pointer, no dump. */
6415 	if (!regs)
6416 		return 0;
6417 
6418 	/*
6419 	 * Check if we fit in with the requested stack size into the:
6420 	 * - TASK_SIZE
6421 	 *   If we don't, we limit the size to the TASK_SIZE.
6422 	 *
6423 	 * - remaining sample size
6424 	 *   If we don't, we customize the stack size to
6425 	 *   fit in to the remaining sample size.
6426 	 */
6427 
6428 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6429 	stack_size = min(stack_size, (u16) task_size);
6430 
6431 	/* Current header size plus static size and dynamic size. */
6432 	header_size += 2 * sizeof(u64);
6433 
6434 	/* Do we fit in with the current stack dump size? */
6435 	if ((u16) (header_size + stack_size) < header_size) {
6436 		/*
6437 		 * If we overflow the maximum size for the sample,
6438 		 * we customize the stack dump size to fit in.
6439 		 */
6440 		stack_size = USHRT_MAX - header_size - sizeof(u64);
6441 		stack_size = round_up(stack_size, sizeof(u64));
6442 	}
6443 
6444 	return stack_size;
6445 }
6446 
6447 static void
6448 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6449 			  struct pt_regs *regs)
6450 {
6451 	/* Case of a kernel thread, nothing to dump */
6452 	if (!regs) {
6453 		u64 size = 0;
6454 		perf_output_put(handle, size);
6455 	} else {
6456 		unsigned long sp;
6457 		unsigned int rem;
6458 		u64 dyn_size;
6459 		mm_segment_t fs;
6460 
6461 		/*
6462 		 * We dump:
6463 		 * static size
6464 		 *   - the size requested by user or the best one we can fit
6465 		 *     in to the sample max size
6466 		 * data
6467 		 *   - user stack dump data
6468 		 * dynamic size
6469 		 *   - the actual dumped size
6470 		 */
6471 
6472 		/* Static size. */
6473 		perf_output_put(handle, dump_size);
6474 
6475 		/* Data. */
6476 		sp = perf_user_stack_pointer(regs);
6477 		fs = force_uaccess_begin();
6478 		rem = __output_copy_user(handle, (void *) sp, dump_size);
6479 		force_uaccess_end(fs);
6480 		dyn_size = dump_size - rem;
6481 
6482 		perf_output_skip(handle, rem);
6483 
6484 		/* Dynamic size. */
6485 		perf_output_put(handle, dyn_size);
6486 	}
6487 }
6488 
6489 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
6490 					  struct perf_sample_data *data,
6491 					  size_t size)
6492 {
6493 	struct perf_event *sampler = event->aux_event;
6494 	struct perf_buffer *rb;
6495 
6496 	data->aux_size = 0;
6497 
6498 	if (!sampler)
6499 		goto out;
6500 
6501 	if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
6502 		goto out;
6503 
6504 	if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
6505 		goto out;
6506 
6507 	rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6508 	if (!rb)
6509 		goto out;
6510 
6511 	/*
6512 	 * If this is an NMI hit inside sampling code, don't take
6513 	 * the sample. See also perf_aux_sample_output().
6514 	 */
6515 	if (READ_ONCE(rb->aux_in_sampling)) {
6516 		data->aux_size = 0;
6517 	} else {
6518 		size = min_t(size_t, size, perf_aux_size(rb));
6519 		data->aux_size = ALIGN(size, sizeof(u64));
6520 	}
6521 	ring_buffer_put(rb);
6522 
6523 out:
6524 	return data->aux_size;
6525 }
6526 
6527 long perf_pmu_snapshot_aux(struct perf_buffer *rb,
6528 			   struct perf_event *event,
6529 			   struct perf_output_handle *handle,
6530 			   unsigned long size)
6531 {
6532 	unsigned long flags;
6533 	long ret;
6534 
6535 	/*
6536 	 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
6537 	 * paths. If we start calling them in NMI context, they may race with
6538 	 * the IRQ ones, that is, for example, re-starting an event that's just
6539 	 * been stopped, which is why we're using a separate callback that
6540 	 * doesn't change the event state.
6541 	 *
6542 	 * IRQs need to be disabled to prevent IPIs from racing with us.
6543 	 */
6544 	local_irq_save(flags);
6545 	/*
6546 	 * Guard against NMI hits inside the critical section;
6547 	 * see also perf_prepare_sample_aux().
6548 	 */
6549 	WRITE_ONCE(rb->aux_in_sampling, 1);
6550 	barrier();
6551 
6552 	ret = event->pmu->snapshot_aux(event, handle, size);
6553 
6554 	barrier();
6555 	WRITE_ONCE(rb->aux_in_sampling, 0);
6556 	local_irq_restore(flags);
6557 
6558 	return ret;
6559 }
6560 
6561 static void perf_aux_sample_output(struct perf_event *event,
6562 				   struct perf_output_handle *handle,
6563 				   struct perf_sample_data *data)
6564 {
6565 	struct perf_event *sampler = event->aux_event;
6566 	struct perf_buffer *rb;
6567 	unsigned long pad;
6568 	long size;
6569 
6570 	if (WARN_ON_ONCE(!sampler || !data->aux_size))
6571 		return;
6572 
6573 	rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6574 	if (!rb)
6575 		return;
6576 
6577 	size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
6578 
6579 	/*
6580 	 * An error here means that perf_output_copy() failed (returned a
6581 	 * non-zero surplus that it didn't copy), which in its current
6582 	 * enlightened implementation is not possible. If that changes, we'd
6583 	 * like to know.
6584 	 */
6585 	if (WARN_ON_ONCE(size < 0))
6586 		goto out_put;
6587 
6588 	/*
6589 	 * The pad comes from ALIGN()ing data->aux_size up to u64 in
6590 	 * perf_prepare_sample_aux(), so should not be more than that.
6591 	 */
6592 	pad = data->aux_size - size;
6593 	if (WARN_ON_ONCE(pad >= sizeof(u64)))
6594 		pad = 8;
6595 
6596 	if (pad) {
6597 		u64 zero = 0;
6598 		perf_output_copy(handle, &zero, pad);
6599 	}
6600 
6601 out_put:
6602 	ring_buffer_put(rb);
6603 }
6604 
6605 static void __perf_event_header__init_id(struct perf_event_header *header,
6606 					 struct perf_sample_data *data,
6607 					 struct perf_event *event)
6608 {
6609 	u64 sample_type = event->attr.sample_type;
6610 
6611 	data->type = sample_type;
6612 	header->size += event->id_header_size;
6613 
6614 	if (sample_type & PERF_SAMPLE_TID) {
6615 		/* namespace issues */
6616 		data->tid_entry.pid = perf_event_pid(event, current);
6617 		data->tid_entry.tid = perf_event_tid(event, current);
6618 	}
6619 
6620 	if (sample_type & PERF_SAMPLE_TIME)
6621 		data->time = perf_event_clock(event);
6622 
6623 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6624 		data->id = primary_event_id(event);
6625 
6626 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6627 		data->stream_id = event->id;
6628 
6629 	if (sample_type & PERF_SAMPLE_CPU) {
6630 		data->cpu_entry.cpu	 = raw_smp_processor_id();
6631 		data->cpu_entry.reserved = 0;
6632 	}
6633 }
6634 
6635 void perf_event_header__init_id(struct perf_event_header *header,
6636 				struct perf_sample_data *data,
6637 				struct perf_event *event)
6638 {
6639 	if (event->attr.sample_id_all)
6640 		__perf_event_header__init_id(header, data, event);
6641 }
6642 
6643 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6644 					   struct perf_sample_data *data)
6645 {
6646 	u64 sample_type = data->type;
6647 
6648 	if (sample_type & PERF_SAMPLE_TID)
6649 		perf_output_put(handle, data->tid_entry);
6650 
6651 	if (sample_type & PERF_SAMPLE_TIME)
6652 		perf_output_put(handle, data->time);
6653 
6654 	if (sample_type & PERF_SAMPLE_ID)
6655 		perf_output_put(handle, data->id);
6656 
6657 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6658 		perf_output_put(handle, data->stream_id);
6659 
6660 	if (sample_type & PERF_SAMPLE_CPU)
6661 		perf_output_put(handle, data->cpu_entry);
6662 
6663 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
6664 		perf_output_put(handle, data->id);
6665 }
6666 
6667 void perf_event__output_id_sample(struct perf_event *event,
6668 				  struct perf_output_handle *handle,
6669 				  struct perf_sample_data *sample)
6670 {
6671 	if (event->attr.sample_id_all)
6672 		__perf_event__output_id_sample(handle, sample);
6673 }
6674 
6675 static void perf_output_read_one(struct perf_output_handle *handle,
6676 				 struct perf_event *event,
6677 				 u64 enabled, u64 running)
6678 {
6679 	u64 read_format = event->attr.read_format;
6680 	u64 values[4];
6681 	int n = 0;
6682 
6683 	values[n++] = perf_event_count(event);
6684 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6685 		values[n++] = enabled +
6686 			atomic64_read(&event->child_total_time_enabled);
6687 	}
6688 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6689 		values[n++] = running +
6690 			atomic64_read(&event->child_total_time_running);
6691 	}
6692 	if (read_format & PERF_FORMAT_ID)
6693 		values[n++] = primary_event_id(event);
6694 
6695 	__output_copy(handle, values, n * sizeof(u64));
6696 }
6697 
6698 static void perf_output_read_group(struct perf_output_handle *handle,
6699 			    struct perf_event *event,
6700 			    u64 enabled, u64 running)
6701 {
6702 	struct perf_event *leader = event->group_leader, *sub;
6703 	u64 read_format = event->attr.read_format;
6704 	u64 values[5];
6705 	int n = 0;
6706 
6707 	values[n++] = 1 + leader->nr_siblings;
6708 
6709 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6710 		values[n++] = enabled;
6711 
6712 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6713 		values[n++] = running;
6714 
6715 	if ((leader != event) &&
6716 	    (leader->state == PERF_EVENT_STATE_ACTIVE))
6717 		leader->pmu->read(leader);
6718 
6719 	values[n++] = perf_event_count(leader);
6720 	if (read_format & PERF_FORMAT_ID)
6721 		values[n++] = primary_event_id(leader);
6722 
6723 	__output_copy(handle, values, n * sizeof(u64));
6724 
6725 	for_each_sibling_event(sub, leader) {
6726 		n = 0;
6727 
6728 		if ((sub != event) &&
6729 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
6730 			sub->pmu->read(sub);
6731 
6732 		values[n++] = perf_event_count(sub);
6733 		if (read_format & PERF_FORMAT_ID)
6734 			values[n++] = primary_event_id(sub);
6735 
6736 		__output_copy(handle, values, n * sizeof(u64));
6737 	}
6738 }
6739 
6740 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6741 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
6742 
6743 /*
6744  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6745  *
6746  * The problem is that its both hard and excessively expensive to iterate the
6747  * child list, not to mention that its impossible to IPI the children running
6748  * on another CPU, from interrupt/NMI context.
6749  */
6750 static void perf_output_read(struct perf_output_handle *handle,
6751 			     struct perf_event *event)
6752 {
6753 	u64 enabled = 0, running = 0, now;
6754 	u64 read_format = event->attr.read_format;
6755 
6756 	/*
6757 	 * compute total_time_enabled, total_time_running
6758 	 * based on snapshot values taken when the event
6759 	 * was last scheduled in.
6760 	 *
6761 	 * we cannot simply called update_context_time()
6762 	 * because of locking issue as we are called in
6763 	 * NMI context
6764 	 */
6765 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
6766 		calc_timer_values(event, &now, &enabled, &running);
6767 
6768 	if (event->attr.read_format & PERF_FORMAT_GROUP)
6769 		perf_output_read_group(handle, event, enabled, running);
6770 	else
6771 		perf_output_read_one(handle, event, enabled, running);
6772 }
6773 
6774 static inline bool perf_sample_save_hw_index(struct perf_event *event)
6775 {
6776 	return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX;
6777 }
6778 
6779 void perf_output_sample(struct perf_output_handle *handle,
6780 			struct perf_event_header *header,
6781 			struct perf_sample_data *data,
6782 			struct perf_event *event)
6783 {
6784 	u64 sample_type = data->type;
6785 
6786 	perf_output_put(handle, *header);
6787 
6788 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
6789 		perf_output_put(handle, data->id);
6790 
6791 	if (sample_type & PERF_SAMPLE_IP)
6792 		perf_output_put(handle, data->ip);
6793 
6794 	if (sample_type & PERF_SAMPLE_TID)
6795 		perf_output_put(handle, data->tid_entry);
6796 
6797 	if (sample_type & PERF_SAMPLE_TIME)
6798 		perf_output_put(handle, data->time);
6799 
6800 	if (sample_type & PERF_SAMPLE_ADDR)
6801 		perf_output_put(handle, data->addr);
6802 
6803 	if (sample_type & PERF_SAMPLE_ID)
6804 		perf_output_put(handle, data->id);
6805 
6806 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6807 		perf_output_put(handle, data->stream_id);
6808 
6809 	if (sample_type & PERF_SAMPLE_CPU)
6810 		perf_output_put(handle, data->cpu_entry);
6811 
6812 	if (sample_type & PERF_SAMPLE_PERIOD)
6813 		perf_output_put(handle, data->period);
6814 
6815 	if (sample_type & PERF_SAMPLE_READ)
6816 		perf_output_read(handle, event);
6817 
6818 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6819 		int size = 1;
6820 
6821 		size += data->callchain->nr;
6822 		size *= sizeof(u64);
6823 		__output_copy(handle, data->callchain, size);
6824 	}
6825 
6826 	if (sample_type & PERF_SAMPLE_RAW) {
6827 		struct perf_raw_record *raw = data->raw;
6828 
6829 		if (raw) {
6830 			struct perf_raw_frag *frag = &raw->frag;
6831 
6832 			perf_output_put(handle, raw->size);
6833 			do {
6834 				if (frag->copy) {
6835 					__output_custom(handle, frag->copy,
6836 							frag->data, frag->size);
6837 				} else {
6838 					__output_copy(handle, frag->data,
6839 						      frag->size);
6840 				}
6841 				if (perf_raw_frag_last(frag))
6842 					break;
6843 				frag = frag->next;
6844 			} while (1);
6845 			if (frag->pad)
6846 				__output_skip(handle, NULL, frag->pad);
6847 		} else {
6848 			struct {
6849 				u32	size;
6850 				u32	data;
6851 			} raw = {
6852 				.size = sizeof(u32),
6853 				.data = 0,
6854 			};
6855 			perf_output_put(handle, raw);
6856 		}
6857 	}
6858 
6859 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6860 		if (data->br_stack) {
6861 			size_t size;
6862 
6863 			size = data->br_stack->nr
6864 			     * sizeof(struct perf_branch_entry);
6865 
6866 			perf_output_put(handle, data->br_stack->nr);
6867 			if (perf_sample_save_hw_index(event))
6868 				perf_output_put(handle, data->br_stack->hw_idx);
6869 			perf_output_copy(handle, data->br_stack->entries, size);
6870 		} else {
6871 			/*
6872 			 * we always store at least the value of nr
6873 			 */
6874 			u64 nr = 0;
6875 			perf_output_put(handle, nr);
6876 		}
6877 	}
6878 
6879 	if (sample_type & PERF_SAMPLE_REGS_USER) {
6880 		u64 abi = data->regs_user.abi;
6881 
6882 		/*
6883 		 * If there are no regs to dump, notice it through
6884 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6885 		 */
6886 		perf_output_put(handle, abi);
6887 
6888 		if (abi) {
6889 			u64 mask = event->attr.sample_regs_user;
6890 			perf_output_sample_regs(handle,
6891 						data->regs_user.regs,
6892 						mask);
6893 		}
6894 	}
6895 
6896 	if (sample_type & PERF_SAMPLE_STACK_USER) {
6897 		perf_output_sample_ustack(handle,
6898 					  data->stack_user_size,
6899 					  data->regs_user.regs);
6900 	}
6901 
6902 	if (sample_type & PERF_SAMPLE_WEIGHT)
6903 		perf_output_put(handle, data->weight);
6904 
6905 	if (sample_type & PERF_SAMPLE_DATA_SRC)
6906 		perf_output_put(handle, data->data_src.val);
6907 
6908 	if (sample_type & PERF_SAMPLE_TRANSACTION)
6909 		perf_output_put(handle, data->txn);
6910 
6911 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
6912 		u64 abi = data->regs_intr.abi;
6913 		/*
6914 		 * If there are no regs to dump, notice it through
6915 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6916 		 */
6917 		perf_output_put(handle, abi);
6918 
6919 		if (abi) {
6920 			u64 mask = event->attr.sample_regs_intr;
6921 
6922 			perf_output_sample_regs(handle,
6923 						data->regs_intr.regs,
6924 						mask);
6925 		}
6926 	}
6927 
6928 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6929 		perf_output_put(handle, data->phys_addr);
6930 
6931 	if (sample_type & PERF_SAMPLE_CGROUP)
6932 		perf_output_put(handle, data->cgroup);
6933 
6934 	if (sample_type & PERF_SAMPLE_AUX) {
6935 		perf_output_put(handle, data->aux_size);
6936 
6937 		if (data->aux_size)
6938 			perf_aux_sample_output(event, handle, data);
6939 	}
6940 
6941 	if (!event->attr.watermark) {
6942 		int wakeup_events = event->attr.wakeup_events;
6943 
6944 		if (wakeup_events) {
6945 			struct perf_buffer *rb = handle->rb;
6946 			int events = local_inc_return(&rb->events);
6947 
6948 			if (events >= wakeup_events) {
6949 				local_sub(wakeup_events, &rb->events);
6950 				local_inc(&rb->wakeup);
6951 			}
6952 		}
6953 	}
6954 }
6955 
6956 static u64 perf_virt_to_phys(u64 virt)
6957 {
6958 	u64 phys_addr = 0;
6959 	struct page *p = NULL;
6960 
6961 	if (!virt)
6962 		return 0;
6963 
6964 	if (virt >= TASK_SIZE) {
6965 		/* If it's vmalloc()d memory, leave phys_addr as 0 */
6966 		if (virt_addr_valid((void *)(uintptr_t)virt) &&
6967 		    !(virt >= VMALLOC_START && virt < VMALLOC_END))
6968 			phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6969 	} else {
6970 		/*
6971 		 * Walking the pages tables for user address.
6972 		 * Interrupts are disabled, so it prevents any tear down
6973 		 * of the page tables.
6974 		 * Try IRQ-safe get_user_page_fast_only first.
6975 		 * If failed, leave phys_addr as 0.
6976 		 */
6977 		if (current->mm != NULL) {
6978 			pagefault_disable();
6979 			if (get_user_page_fast_only(virt, 0, &p))
6980 				phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6981 			pagefault_enable();
6982 		}
6983 
6984 		if (p)
6985 			put_page(p);
6986 	}
6987 
6988 	return phys_addr;
6989 }
6990 
6991 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
6992 
6993 struct perf_callchain_entry *
6994 perf_callchain(struct perf_event *event, struct pt_regs *regs)
6995 {
6996 	bool kernel = !event->attr.exclude_callchain_kernel;
6997 	bool user   = !event->attr.exclude_callchain_user;
6998 	/* Disallow cross-task user callchains. */
6999 	bool crosstask = event->ctx->task && event->ctx->task != current;
7000 	const u32 max_stack = event->attr.sample_max_stack;
7001 	struct perf_callchain_entry *callchain;
7002 
7003 	if (!kernel && !user)
7004 		return &__empty_callchain;
7005 
7006 	callchain = get_perf_callchain(regs, 0, kernel, user,
7007 				       max_stack, crosstask, true);
7008 	return callchain ?: &__empty_callchain;
7009 }
7010 
7011 void perf_prepare_sample(struct perf_event_header *header,
7012 			 struct perf_sample_data *data,
7013 			 struct perf_event *event,
7014 			 struct pt_regs *regs)
7015 {
7016 	u64 sample_type = event->attr.sample_type;
7017 
7018 	header->type = PERF_RECORD_SAMPLE;
7019 	header->size = sizeof(*header) + event->header_size;
7020 
7021 	header->misc = 0;
7022 	header->misc |= perf_misc_flags(regs);
7023 
7024 	__perf_event_header__init_id(header, data, event);
7025 
7026 	if (sample_type & PERF_SAMPLE_IP)
7027 		data->ip = perf_instruction_pointer(regs);
7028 
7029 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7030 		int size = 1;
7031 
7032 		if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
7033 			data->callchain = perf_callchain(event, regs);
7034 
7035 		size += data->callchain->nr;
7036 
7037 		header->size += size * sizeof(u64);
7038 	}
7039 
7040 	if (sample_type & PERF_SAMPLE_RAW) {
7041 		struct perf_raw_record *raw = data->raw;
7042 		int size;
7043 
7044 		if (raw) {
7045 			struct perf_raw_frag *frag = &raw->frag;
7046 			u32 sum = 0;
7047 
7048 			do {
7049 				sum += frag->size;
7050 				if (perf_raw_frag_last(frag))
7051 					break;
7052 				frag = frag->next;
7053 			} while (1);
7054 
7055 			size = round_up(sum + sizeof(u32), sizeof(u64));
7056 			raw->size = size - sizeof(u32);
7057 			frag->pad = raw->size - sum;
7058 		} else {
7059 			size = sizeof(u64);
7060 		}
7061 
7062 		header->size += size;
7063 	}
7064 
7065 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7066 		int size = sizeof(u64); /* nr */
7067 		if (data->br_stack) {
7068 			if (perf_sample_save_hw_index(event))
7069 				size += sizeof(u64);
7070 
7071 			size += data->br_stack->nr
7072 			      * sizeof(struct perf_branch_entry);
7073 		}
7074 		header->size += size;
7075 	}
7076 
7077 	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
7078 		perf_sample_regs_user(&data->regs_user, regs);
7079 
7080 	if (sample_type & PERF_SAMPLE_REGS_USER) {
7081 		/* regs dump ABI info */
7082 		int size = sizeof(u64);
7083 
7084 		if (data->regs_user.regs) {
7085 			u64 mask = event->attr.sample_regs_user;
7086 			size += hweight64(mask) * sizeof(u64);
7087 		}
7088 
7089 		header->size += size;
7090 	}
7091 
7092 	if (sample_type & PERF_SAMPLE_STACK_USER) {
7093 		/*
7094 		 * Either we need PERF_SAMPLE_STACK_USER bit to be always
7095 		 * processed as the last one or have additional check added
7096 		 * in case new sample type is added, because we could eat
7097 		 * up the rest of the sample size.
7098 		 */
7099 		u16 stack_size = event->attr.sample_stack_user;
7100 		u16 size = sizeof(u64);
7101 
7102 		stack_size = perf_sample_ustack_size(stack_size, header->size,
7103 						     data->regs_user.regs);
7104 
7105 		/*
7106 		 * If there is something to dump, add space for the dump
7107 		 * itself and for the field that tells the dynamic size,
7108 		 * which is how many have been actually dumped.
7109 		 */
7110 		if (stack_size)
7111 			size += sizeof(u64) + stack_size;
7112 
7113 		data->stack_user_size = stack_size;
7114 		header->size += size;
7115 	}
7116 
7117 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
7118 		/* regs dump ABI info */
7119 		int size = sizeof(u64);
7120 
7121 		perf_sample_regs_intr(&data->regs_intr, regs);
7122 
7123 		if (data->regs_intr.regs) {
7124 			u64 mask = event->attr.sample_regs_intr;
7125 
7126 			size += hweight64(mask) * sizeof(u64);
7127 		}
7128 
7129 		header->size += size;
7130 	}
7131 
7132 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7133 		data->phys_addr = perf_virt_to_phys(data->addr);
7134 
7135 #ifdef CONFIG_CGROUP_PERF
7136 	if (sample_type & PERF_SAMPLE_CGROUP) {
7137 		struct cgroup *cgrp;
7138 
7139 		/* protected by RCU */
7140 		cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
7141 		data->cgroup = cgroup_id(cgrp);
7142 	}
7143 #endif
7144 
7145 	if (sample_type & PERF_SAMPLE_AUX) {
7146 		u64 size;
7147 
7148 		header->size += sizeof(u64); /* size */
7149 
7150 		/*
7151 		 * Given the 16bit nature of header::size, an AUX sample can
7152 		 * easily overflow it, what with all the preceding sample bits.
7153 		 * Make sure this doesn't happen by using up to U16_MAX bytes
7154 		 * per sample in total (rounded down to 8 byte boundary).
7155 		 */
7156 		size = min_t(size_t, U16_MAX - header->size,
7157 			     event->attr.aux_sample_size);
7158 		size = rounddown(size, 8);
7159 		size = perf_prepare_sample_aux(event, data, size);
7160 
7161 		WARN_ON_ONCE(size + header->size > U16_MAX);
7162 		header->size += size;
7163 	}
7164 	/*
7165 	 * If you're adding more sample types here, you likely need to do
7166 	 * something about the overflowing header::size, like repurpose the
7167 	 * lowest 3 bits of size, which should be always zero at the moment.
7168 	 * This raises a more important question, do we really need 512k sized
7169 	 * samples and why, so good argumentation is in order for whatever you
7170 	 * do here next.
7171 	 */
7172 	WARN_ON_ONCE(header->size & 7);
7173 }
7174 
7175 static __always_inline int
7176 __perf_event_output(struct perf_event *event,
7177 		    struct perf_sample_data *data,
7178 		    struct pt_regs *regs,
7179 		    int (*output_begin)(struct perf_output_handle *,
7180 					struct perf_sample_data *,
7181 					struct perf_event *,
7182 					unsigned int))
7183 {
7184 	struct perf_output_handle handle;
7185 	struct perf_event_header header;
7186 	int err;
7187 
7188 	/* protect the callchain buffers */
7189 	rcu_read_lock();
7190 
7191 	perf_prepare_sample(&header, data, event, regs);
7192 
7193 	err = output_begin(&handle, data, event, header.size);
7194 	if (err)
7195 		goto exit;
7196 
7197 	perf_output_sample(&handle, &header, data, event);
7198 
7199 	perf_output_end(&handle);
7200 
7201 exit:
7202 	rcu_read_unlock();
7203 	return err;
7204 }
7205 
7206 void
7207 perf_event_output_forward(struct perf_event *event,
7208 			 struct perf_sample_data *data,
7209 			 struct pt_regs *regs)
7210 {
7211 	__perf_event_output(event, data, regs, perf_output_begin_forward);
7212 }
7213 
7214 void
7215 perf_event_output_backward(struct perf_event *event,
7216 			   struct perf_sample_data *data,
7217 			   struct pt_regs *regs)
7218 {
7219 	__perf_event_output(event, data, regs, perf_output_begin_backward);
7220 }
7221 
7222 int
7223 perf_event_output(struct perf_event *event,
7224 		  struct perf_sample_data *data,
7225 		  struct pt_regs *regs)
7226 {
7227 	return __perf_event_output(event, data, regs, perf_output_begin);
7228 }
7229 
7230 /*
7231  * read event_id
7232  */
7233 
7234 struct perf_read_event {
7235 	struct perf_event_header	header;
7236 
7237 	u32				pid;
7238 	u32				tid;
7239 };
7240 
7241 static void
7242 perf_event_read_event(struct perf_event *event,
7243 			struct task_struct *task)
7244 {
7245 	struct perf_output_handle handle;
7246 	struct perf_sample_data sample;
7247 	struct perf_read_event read_event = {
7248 		.header = {
7249 			.type = PERF_RECORD_READ,
7250 			.misc = 0,
7251 			.size = sizeof(read_event) + event->read_size,
7252 		},
7253 		.pid = perf_event_pid(event, task),
7254 		.tid = perf_event_tid(event, task),
7255 	};
7256 	int ret;
7257 
7258 	perf_event_header__init_id(&read_event.header, &sample, event);
7259 	ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
7260 	if (ret)
7261 		return;
7262 
7263 	perf_output_put(&handle, read_event);
7264 	perf_output_read(&handle, event);
7265 	perf_event__output_id_sample(event, &handle, &sample);
7266 
7267 	perf_output_end(&handle);
7268 }
7269 
7270 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
7271 
7272 static void
7273 perf_iterate_ctx(struct perf_event_context *ctx,
7274 		   perf_iterate_f output,
7275 		   void *data, bool all)
7276 {
7277 	struct perf_event *event;
7278 
7279 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7280 		if (!all) {
7281 			if (event->state < PERF_EVENT_STATE_INACTIVE)
7282 				continue;
7283 			if (!event_filter_match(event))
7284 				continue;
7285 		}
7286 
7287 		output(event, data);
7288 	}
7289 }
7290 
7291 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
7292 {
7293 	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
7294 	struct perf_event *event;
7295 
7296 	list_for_each_entry_rcu(event, &pel->list, sb_list) {
7297 		/*
7298 		 * Skip events that are not fully formed yet; ensure that
7299 		 * if we observe event->ctx, both event and ctx will be
7300 		 * complete enough. See perf_install_in_context().
7301 		 */
7302 		if (!smp_load_acquire(&event->ctx))
7303 			continue;
7304 
7305 		if (event->state < PERF_EVENT_STATE_INACTIVE)
7306 			continue;
7307 		if (!event_filter_match(event))
7308 			continue;
7309 		output(event, data);
7310 	}
7311 }
7312 
7313 /*
7314  * Iterate all events that need to receive side-band events.
7315  *
7316  * For new callers; ensure that account_pmu_sb_event() includes
7317  * your event, otherwise it might not get delivered.
7318  */
7319 static void
7320 perf_iterate_sb(perf_iterate_f output, void *data,
7321 	       struct perf_event_context *task_ctx)
7322 {
7323 	struct perf_event_context *ctx;
7324 	int ctxn;
7325 
7326 	rcu_read_lock();
7327 	preempt_disable();
7328 
7329 	/*
7330 	 * If we have task_ctx != NULL we only notify the task context itself.
7331 	 * The task_ctx is set only for EXIT events before releasing task
7332 	 * context.
7333 	 */
7334 	if (task_ctx) {
7335 		perf_iterate_ctx(task_ctx, output, data, false);
7336 		goto done;
7337 	}
7338 
7339 	perf_iterate_sb_cpu(output, data);
7340 
7341 	for_each_task_context_nr(ctxn) {
7342 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7343 		if (ctx)
7344 			perf_iterate_ctx(ctx, output, data, false);
7345 	}
7346 done:
7347 	preempt_enable();
7348 	rcu_read_unlock();
7349 }
7350 
7351 /*
7352  * Clear all file-based filters at exec, they'll have to be
7353  * re-instated when/if these objects are mmapped again.
7354  */
7355 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
7356 {
7357 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7358 	struct perf_addr_filter *filter;
7359 	unsigned int restart = 0, count = 0;
7360 	unsigned long flags;
7361 
7362 	if (!has_addr_filter(event))
7363 		return;
7364 
7365 	raw_spin_lock_irqsave(&ifh->lock, flags);
7366 	list_for_each_entry(filter, &ifh->list, entry) {
7367 		if (filter->path.dentry) {
7368 			event->addr_filter_ranges[count].start = 0;
7369 			event->addr_filter_ranges[count].size = 0;
7370 			restart++;
7371 		}
7372 
7373 		count++;
7374 	}
7375 
7376 	if (restart)
7377 		event->addr_filters_gen++;
7378 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
7379 
7380 	if (restart)
7381 		perf_event_stop(event, 1);
7382 }
7383 
7384 void perf_event_exec(void)
7385 {
7386 	struct perf_event_context *ctx;
7387 	int ctxn;
7388 
7389 	rcu_read_lock();
7390 	for_each_task_context_nr(ctxn) {
7391 		ctx = current->perf_event_ctxp[ctxn];
7392 		if (!ctx)
7393 			continue;
7394 
7395 		perf_event_enable_on_exec(ctxn);
7396 
7397 		perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
7398 				   true);
7399 	}
7400 	rcu_read_unlock();
7401 }
7402 
7403 struct remote_output {
7404 	struct perf_buffer	*rb;
7405 	int			err;
7406 };
7407 
7408 static void __perf_event_output_stop(struct perf_event *event, void *data)
7409 {
7410 	struct perf_event *parent = event->parent;
7411 	struct remote_output *ro = data;
7412 	struct perf_buffer *rb = ro->rb;
7413 	struct stop_event_data sd = {
7414 		.event	= event,
7415 	};
7416 
7417 	if (!has_aux(event))
7418 		return;
7419 
7420 	if (!parent)
7421 		parent = event;
7422 
7423 	/*
7424 	 * In case of inheritance, it will be the parent that links to the
7425 	 * ring-buffer, but it will be the child that's actually using it.
7426 	 *
7427 	 * We are using event::rb to determine if the event should be stopped,
7428 	 * however this may race with ring_buffer_attach() (through set_output),
7429 	 * which will make us skip the event that actually needs to be stopped.
7430 	 * So ring_buffer_attach() has to stop an aux event before re-assigning
7431 	 * its rb pointer.
7432 	 */
7433 	if (rcu_dereference(parent->rb) == rb)
7434 		ro->err = __perf_event_stop(&sd);
7435 }
7436 
7437 static int __perf_pmu_output_stop(void *info)
7438 {
7439 	struct perf_event *event = info;
7440 	struct pmu *pmu = event->ctx->pmu;
7441 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7442 	struct remote_output ro = {
7443 		.rb	= event->rb,
7444 	};
7445 
7446 	rcu_read_lock();
7447 	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
7448 	if (cpuctx->task_ctx)
7449 		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
7450 				   &ro, false);
7451 	rcu_read_unlock();
7452 
7453 	return ro.err;
7454 }
7455 
7456 static void perf_pmu_output_stop(struct perf_event *event)
7457 {
7458 	struct perf_event *iter;
7459 	int err, cpu;
7460 
7461 restart:
7462 	rcu_read_lock();
7463 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
7464 		/*
7465 		 * For per-CPU events, we need to make sure that neither they
7466 		 * nor their children are running; for cpu==-1 events it's
7467 		 * sufficient to stop the event itself if it's active, since
7468 		 * it can't have children.
7469 		 */
7470 		cpu = iter->cpu;
7471 		if (cpu == -1)
7472 			cpu = READ_ONCE(iter->oncpu);
7473 
7474 		if (cpu == -1)
7475 			continue;
7476 
7477 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
7478 		if (err == -EAGAIN) {
7479 			rcu_read_unlock();
7480 			goto restart;
7481 		}
7482 	}
7483 	rcu_read_unlock();
7484 }
7485 
7486 /*
7487  * task tracking -- fork/exit
7488  *
7489  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
7490  */
7491 
7492 struct perf_task_event {
7493 	struct task_struct		*task;
7494 	struct perf_event_context	*task_ctx;
7495 
7496 	struct {
7497 		struct perf_event_header	header;
7498 
7499 		u32				pid;
7500 		u32				ppid;
7501 		u32				tid;
7502 		u32				ptid;
7503 		u64				time;
7504 	} event_id;
7505 };
7506 
7507 static int perf_event_task_match(struct perf_event *event)
7508 {
7509 	return event->attr.comm  || event->attr.mmap ||
7510 	       event->attr.mmap2 || event->attr.mmap_data ||
7511 	       event->attr.task;
7512 }
7513 
7514 static void perf_event_task_output(struct perf_event *event,
7515 				   void *data)
7516 {
7517 	struct perf_task_event *task_event = data;
7518 	struct perf_output_handle handle;
7519 	struct perf_sample_data	sample;
7520 	struct task_struct *task = task_event->task;
7521 	int ret, size = task_event->event_id.header.size;
7522 
7523 	if (!perf_event_task_match(event))
7524 		return;
7525 
7526 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
7527 
7528 	ret = perf_output_begin(&handle, &sample, event,
7529 				task_event->event_id.header.size);
7530 	if (ret)
7531 		goto out;
7532 
7533 	task_event->event_id.pid = perf_event_pid(event, task);
7534 	task_event->event_id.tid = perf_event_tid(event, task);
7535 
7536 	if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
7537 		task_event->event_id.ppid = perf_event_pid(event,
7538 							task->real_parent);
7539 		task_event->event_id.ptid = perf_event_pid(event,
7540 							task->real_parent);
7541 	} else {  /* PERF_RECORD_FORK */
7542 		task_event->event_id.ppid = perf_event_pid(event, current);
7543 		task_event->event_id.ptid = perf_event_tid(event, current);
7544 	}
7545 
7546 	task_event->event_id.time = perf_event_clock(event);
7547 
7548 	perf_output_put(&handle, task_event->event_id);
7549 
7550 	perf_event__output_id_sample(event, &handle, &sample);
7551 
7552 	perf_output_end(&handle);
7553 out:
7554 	task_event->event_id.header.size = size;
7555 }
7556 
7557 static void perf_event_task(struct task_struct *task,
7558 			      struct perf_event_context *task_ctx,
7559 			      int new)
7560 {
7561 	struct perf_task_event task_event;
7562 
7563 	if (!atomic_read(&nr_comm_events) &&
7564 	    !atomic_read(&nr_mmap_events) &&
7565 	    !atomic_read(&nr_task_events))
7566 		return;
7567 
7568 	task_event = (struct perf_task_event){
7569 		.task	  = task,
7570 		.task_ctx = task_ctx,
7571 		.event_id    = {
7572 			.header = {
7573 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
7574 				.misc = 0,
7575 				.size = sizeof(task_event.event_id),
7576 			},
7577 			/* .pid  */
7578 			/* .ppid */
7579 			/* .tid  */
7580 			/* .ptid */
7581 			/* .time */
7582 		},
7583 	};
7584 
7585 	perf_iterate_sb(perf_event_task_output,
7586 		       &task_event,
7587 		       task_ctx);
7588 }
7589 
7590 void perf_event_fork(struct task_struct *task)
7591 {
7592 	perf_event_task(task, NULL, 1);
7593 	perf_event_namespaces(task);
7594 }
7595 
7596 /*
7597  * comm tracking
7598  */
7599 
7600 struct perf_comm_event {
7601 	struct task_struct	*task;
7602 	char			*comm;
7603 	int			comm_size;
7604 
7605 	struct {
7606 		struct perf_event_header	header;
7607 
7608 		u32				pid;
7609 		u32				tid;
7610 	} event_id;
7611 };
7612 
7613 static int perf_event_comm_match(struct perf_event *event)
7614 {
7615 	return event->attr.comm;
7616 }
7617 
7618 static void perf_event_comm_output(struct perf_event *event,
7619 				   void *data)
7620 {
7621 	struct perf_comm_event *comm_event = data;
7622 	struct perf_output_handle handle;
7623 	struct perf_sample_data sample;
7624 	int size = comm_event->event_id.header.size;
7625 	int ret;
7626 
7627 	if (!perf_event_comm_match(event))
7628 		return;
7629 
7630 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
7631 	ret = perf_output_begin(&handle, &sample, event,
7632 				comm_event->event_id.header.size);
7633 
7634 	if (ret)
7635 		goto out;
7636 
7637 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
7638 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
7639 
7640 	perf_output_put(&handle, comm_event->event_id);
7641 	__output_copy(&handle, comm_event->comm,
7642 				   comm_event->comm_size);
7643 
7644 	perf_event__output_id_sample(event, &handle, &sample);
7645 
7646 	perf_output_end(&handle);
7647 out:
7648 	comm_event->event_id.header.size = size;
7649 }
7650 
7651 static void perf_event_comm_event(struct perf_comm_event *comm_event)
7652 {
7653 	char comm[TASK_COMM_LEN];
7654 	unsigned int size;
7655 
7656 	memset(comm, 0, sizeof(comm));
7657 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
7658 	size = ALIGN(strlen(comm)+1, sizeof(u64));
7659 
7660 	comm_event->comm = comm;
7661 	comm_event->comm_size = size;
7662 
7663 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
7664 
7665 	perf_iterate_sb(perf_event_comm_output,
7666 		       comm_event,
7667 		       NULL);
7668 }
7669 
7670 void perf_event_comm(struct task_struct *task, bool exec)
7671 {
7672 	struct perf_comm_event comm_event;
7673 
7674 	if (!atomic_read(&nr_comm_events))
7675 		return;
7676 
7677 	comm_event = (struct perf_comm_event){
7678 		.task	= task,
7679 		/* .comm      */
7680 		/* .comm_size */
7681 		.event_id  = {
7682 			.header = {
7683 				.type = PERF_RECORD_COMM,
7684 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
7685 				/* .size */
7686 			},
7687 			/* .pid */
7688 			/* .tid */
7689 		},
7690 	};
7691 
7692 	perf_event_comm_event(&comm_event);
7693 }
7694 
7695 /*
7696  * namespaces tracking
7697  */
7698 
7699 struct perf_namespaces_event {
7700 	struct task_struct		*task;
7701 
7702 	struct {
7703 		struct perf_event_header	header;
7704 
7705 		u32				pid;
7706 		u32				tid;
7707 		u64				nr_namespaces;
7708 		struct perf_ns_link_info	link_info[NR_NAMESPACES];
7709 	} event_id;
7710 };
7711 
7712 static int perf_event_namespaces_match(struct perf_event *event)
7713 {
7714 	return event->attr.namespaces;
7715 }
7716 
7717 static void perf_event_namespaces_output(struct perf_event *event,
7718 					 void *data)
7719 {
7720 	struct perf_namespaces_event *namespaces_event = data;
7721 	struct perf_output_handle handle;
7722 	struct perf_sample_data sample;
7723 	u16 header_size = namespaces_event->event_id.header.size;
7724 	int ret;
7725 
7726 	if (!perf_event_namespaces_match(event))
7727 		return;
7728 
7729 	perf_event_header__init_id(&namespaces_event->event_id.header,
7730 				   &sample, event);
7731 	ret = perf_output_begin(&handle, &sample, event,
7732 				namespaces_event->event_id.header.size);
7733 	if (ret)
7734 		goto out;
7735 
7736 	namespaces_event->event_id.pid = perf_event_pid(event,
7737 							namespaces_event->task);
7738 	namespaces_event->event_id.tid = perf_event_tid(event,
7739 							namespaces_event->task);
7740 
7741 	perf_output_put(&handle, namespaces_event->event_id);
7742 
7743 	perf_event__output_id_sample(event, &handle, &sample);
7744 
7745 	perf_output_end(&handle);
7746 out:
7747 	namespaces_event->event_id.header.size = header_size;
7748 }
7749 
7750 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
7751 				   struct task_struct *task,
7752 				   const struct proc_ns_operations *ns_ops)
7753 {
7754 	struct path ns_path;
7755 	struct inode *ns_inode;
7756 	int error;
7757 
7758 	error = ns_get_path(&ns_path, task, ns_ops);
7759 	if (!error) {
7760 		ns_inode = ns_path.dentry->d_inode;
7761 		ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
7762 		ns_link_info->ino = ns_inode->i_ino;
7763 		path_put(&ns_path);
7764 	}
7765 }
7766 
7767 void perf_event_namespaces(struct task_struct *task)
7768 {
7769 	struct perf_namespaces_event namespaces_event;
7770 	struct perf_ns_link_info *ns_link_info;
7771 
7772 	if (!atomic_read(&nr_namespaces_events))
7773 		return;
7774 
7775 	namespaces_event = (struct perf_namespaces_event){
7776 		.task	= task,
7777 		.event_id  = {
7778 			.header = {
7779 				.type = PERF_RECORD_NAMESPACES,
7780 				.misc = 0,
7781 				.size = sizeof(namespaces_event.event_id),
7782 			},
7783 			/* .pid */
7784 			/* .tid */
7785 			.nr_namespaces = NR_NAMESPACES,
7786 			/* .link_info[NR_NAMESPACES] */
7787 		},
7788 	};
7789 
7790 	ns_link_info = namespaces_event.event_id.link_info;
7791 
7792 	perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
7793 			       task, &mntns_operations);
7794 
7795 #ifdef CONFIG_USER_NS
7796 	perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
7797 			       task, &userns_operations);
7798 #endif
7799 #ifdef CONFIG_NET_NS
7800 	perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
7801 			       task, &netns_operations);
7802 #endif
7803 #ifdef CONFIG_UTS_NS
7804 	perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
7805 			       task, &utsns_operations);
7806 #endif
7807 #ifdef CONFIG_IPC_NS
7808 	perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
7809 			       task, &ipcns_operations);
7810 #endif
7811 #ifdef CONFIG_PID_NS
7812 	perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
7813 			       task, &pidns_operations);
7814 #endif
7815 #ifdef CONFIG_CGROUPS
7816 	perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
7817 			       task, &cgroupns_operations);
7818 #endif
7819 
7820 	perf_iterate_sb(perf_event_namespaces_output,
7821 			&namespaces_event,
7822 			NULL);
7823 }
7824 
7825 /*
7826  * cgroup tracking
7827  */
7828 #ifdef CONFIG_CGROUP_PERF
7829 
7830 struct perf_cgroup_event {
7831 	char				*path;
7832 	int				path_size;
7833 	struct {
7834 		struct perf_event_header	header;
7835 		u64				id;
7836 		char				path[];
7837 	} event_id;
7838 };
7839 
7840 static int perf_event_cgroup_match(struct perf_event *event)
7841 {
7842 	return event->attr.cgroup;
7843 }
7844 
7845 static void perf_event_cgroup_output(struct perf_event *event, void *data)
7846 {
7847 	struct perf_cgroup_event *cgroup_event = data;
7848 	struct perf_output_handle handle;
7849 	struct perf_sample_data sample;
7850 	u16 header_size = cgroup_event->event_id.header.size;
7851 	int ret;
7852 
7853 	if (!perf_event_cgroup_match(event))
7854 		return;
7855 
7856 	perf_event_header__init_id(&cgroup_event->event_id.header,
7857 				   &sample, event);
7858 	ret = perf_output_begin(&handle, &sample, event,
7859 				cgroup_event->event_id.header.size);
7860 	if (ret)
7861 		goto out;
7862 
7863 	perf_output_put(&handle, cgroup_event->event_id);
7864 	__output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
7865 
7866 	perf_event__output_id_sample(event, &handle, &sample);
7867 
7868 	perf_output_end(&handle);
7869 out:
7870 	cgroup_event->event_id.header.size = header_size;
7871 }
7872 
7873 static void perf_event_cgroup(struct cgroup *cgrp)
7874 {
7875 	struct perf_cgroup_event cgroup_event;
7876 	char path_enomem[16] = "//enomem";
7877 	char *pathname;
7878 	size_t size;
7879 
7880 	if (!atomic_read(&nr_cgroup_events))
7881 		return;
7882 
7883 	cgroup_event = (struct perf_cgroup_event){
7884 		.event_id  = {
7885 			.header = {
7886 				.type = PERF_RECORD_CGROUP,
7887 				.misc = 0,
7888 				.size = sizeof(cgroup_event.event_id),
7889 			},
7890 			.id = cgroup_id(cgrp),
7891 		},
7892 	};
7893 
7894 	pathname = kmalloc(PATH_MAX, GFP_KERNEL);
7895 	if (pathname == NULL) {
7896 		cgroup_event.path = path_enomem;
7897 	} else {
7898 		/* just to be sure to have enough space for alignment */
7899 		cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
7900 		cgroup_event.path = pathname;
7901 	}
7902 
7903 	/*
7904 	 * Since our buffer works in 8 byte units we need to align our string
7905 	 * size to a multiple of 8. However, we must guarantee the tail end is
7906 	 * zero'd out to avoid leaking random bits to userspace.
7907 	 */
7908 	size = strlen(cgroup_event.path) + 1;
7909 	while (!IS_ALIGNED(size, sizeof(u64)))
7910 		cgroup_event.path[size++] = '\0';
7911 
7912 	cgroup_event.event_id.header.size += size;
7913 	cgroup_event.path_size = size;
7914 
7915 	perf_iterate_sb(perf_event_cgroup_output,
7916 			&cgroup_event,
7917 			NULL);
7918 
7919 	kfree(pathname);
7920 }
7921 
7922 #endif
7923 
7924 /*
7925  * mmap tracking
7926  */
7927 
7928 struct perf_mmap_event {
7929 	struct vm_area_struct	*vma;
7930 
7931 	const char		*file_name;
7932 	int			file_size;
7933 	int			maj, min;
7934 	u64			ino;
7935 	u64			ino_generation;
7936 	u32			prot, flags;
7937 
7938 	struct {
7939 		struct perf_event_header	header;
7940 
7941 		u32				pid;
7942 		u32				tid;
7943 		u64				start;
7944 		u64				len;
7945 		u64				pgoff;
7946 	} event_id;
7947 };
7948 
7949 static int perf_event_mmap_match(struct perf_event *event,
7950 				 void *data)
7951 {
7952 	struct perf_mmap_event *mmap_event = data;
7953 	struct vm_area_struct *vma = mmap_event->vma;
7954 	int executable = vma->vm_flags & VM_EXEC;
7955 
7956 	return (!executable && event->attr.mmap_data) ||
7957 	       (executable && (event->attr.mmap || event->attr.mmap2));
7958 }
7959 
7960 static void perf_event_mmap_output(struct perf_event *event,
7961 				   void *data)
7962 {
7963 	struct perf_mmap_event *mmap_event = data;
7964 	struct perf_output_handle handle;
7965 	struct perf_sample_data sample;
7966 	int size = mmap_event->event_id.header.size;
7967 	u32 type = mmap_event->event_id.header.type;
7968 	int ret;
7969 
7970 	if (!perf_event_mmap_match(event, data))
7971 		return;
7972 
7973 	if (event->attr.mmap2) {
7974 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
7975 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
7976 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
7977 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
7978 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
7979 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
7980 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
7981 	}
7982 
7983 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
7984 	ret = perf_output_begin(&handle, &sample, event,
7985 				mmap_event->event_id.header.size);
7986 	if (ret)
7987 		goto out;
7988 
7989 	mmap_event->event_id.pid = perf_event_pid(event, current);
7990 	mmap_event->event_id.tid = perf_event_tid(event, current);
7991 
7992 	perf_output_put(&handle, mmap_event->event_id);
7993 
7994 	if (event->attr.mmap2) {
7995 		perf_output_put(&handle, mmap_event->maj);
7996 		perf_output_put(&handle, mmap_event->min);
7997 		perf_output_put(&handle, mmap_event->ino);
7998 		perf_output_put(&handle, mmap_event->ino_generation);
7999 		perf_output_put(&handle, mmap_event->prot);
8000 		perf_output_put(&handle, mmap_event->flags);
8001 	}
8002 
8003 	__output_copy(&handle, mmap_event->file_name,
8004 				   mmap_event->file_size);
8005 
8006 	perf_event__output_id_sample(event, &handle, &sample);
8007 
8008 	perf_output_end(&handle);
8009 out:
8010 	mmap_event->event_id.header.size = size;
8011 	mmap_event->event_id.header.type = type;
8012 }
8013 
8014 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
8015 {
8016 	struct vm_area_struct *vma = mmap_event->vma;
8017 	struct file *file = vma->vm_file;
8018 	int maj = 0, min = 0;
8019 	u64 ino = 0, gen = 0;
8020 	u32 prot = 0, flags = 0;
8021 	unsigned int size;
8022 	char tmp[16];
8023 	char *buf = NULL;
8024 	char *name;
8025 
8026 	if (vma->vm_flags & VM_READ)
8027 		prot |= PROT_READ;
8028 	if (vma->vm_flags & VM_WRITE)
8029 		prot |= PROT_WRITE;
8030 	if (vma->vm_flags & VM_EXEC)
8031 		prot |= PROT_EXEC;
8032 
8033 	if (vma->vm_flags & VM_MAYSHARE)
8034 		flags = MAP_SHARED;
8035 	else
8036 		flags = MAP_PRIVATE;
8037 
8038 	if (vma->vm_flags & VM_DENYWRITE)
8039 		flags |= MAP_DENYWRITE;
8040 	if (vma->vm_flags & VM_MAYEXEC)
8041 		flags |= MAP_EXECUTABLE;
8042 	if (vma->vm_flags & VM_LOCKED)
8043 		flags |= MAP_LOCKED;
8044 	if (is_vm_hugetlb_page(vma))
8045 		flags |= MAP_HUGETLB;
8046 
8047 	if (file) {
8048 		struct inode *inode;
8049 		dev_t dev;
8050 
8051 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
8052 		if (!buf) {
8053 			name = "//enomem";
8054 			goto cpy_name;
8055 		}
8056 		/*
8057 		 * d_path() works from the end of the rb backwards, so we
8058 		 * need to add enough zero bytes after the string to handle
8059 		 * the 64bit alignment we do later.
8060 		 */
8061 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
8062 		if (IS_ERR(name)) {
8063 			name = "//toolong";
8064 			goto cpy_name;
8065 		}
8066 		inode = file_inode(vma->vm_file);
8067 		dev = inode->i_sb->s_dev;
8068 		ino = inode->i_ino;
8069 		gen = inode->i_generation;
8070 		maj = MAJOR(dev);
8071 		min = MINOR(dev);
8072 
8073 		goto got_name;
8074 	} else {
8075 		if (vma->vm_ops && vma->vm_ops->name) {
8076 			name = (char *) vma->vm_ops->name(vma);
8077 			if (name)
8078 				goto cpy_name;
8079 		}
8080 
8081 		name = (char *)arch_vma_name(vma);
8082 		if (name)
8083 			goto cpy_name;
8084 
8085 		if (vma->vm_start <= vma->vm_mm->start_brk &&
8086 				vma->vm_end >= vma->vm_mm->brk) {
8087 			name = "[heap]";
8088 			goto cpy_name;
8089 		}
8090 		if (vma->vm_start <= vma->vm_mm->start_stack &&
8091 				vma->vm_end >= vma->vm_mm->start_stack) {
8092 			name = "[stack]";
8093 			goto cpy_name;
8094 		}
8095 
8096 		name = "//anon";
8097 		goto cpy_name;
8098 	}
8099 
8100 cpy_name:
8101 	strlcpy(tmp, name, sizeof(tmp));
8102 	name = tmp;
8103 got_name:
8104 	/*
8105 	 * Since our buffer works in 8 byte units we need to align our string
8106 	 * size to a multiple of 8. However, we must guarantee the tail end is
8107 	 * zero'd out to avoid leaking random bits to userspace.
8108 	 */
8109 	size = strlen(name)+1;
8110 	while (!IS_ALIGNED(size, sizeof(u64)))
8111 		name[size++] = '\0';
8112 
8113 	mmap_event->file_name = name;
8114 	mmap_event->file_size = size;
8115 	mmap_event->maj = maj;
8116 	mmap_event->min = min;
8117 	mmap_event->ino = ino;
8118 	mmap_event->ino_generation = gen;
8119 	mmap_event->prot = prot;
8120 	mmap_event->flags = flags;
8121 
8122 	if (!(vma->vm_flags & VM_EXEC))
8123 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
8124 
8125 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
8126 
8127 	perf_iterate_sb(perf_event_mmap_output,
8128 		       mmap_event,
8129 		       NULL);
8130 
8131 	kfree(buf);
8132 }
8133 
8134 /*
8135  * Check whether inode and address range match filter criteria.
8136  */
8137 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
8138 				     struct file *file, unsigned long offset,
8139 				     unsigned long size)
8140 {
8141 	/* d_inode(NULL) won't be equal to any mapped user-space file */
8142 	if (!filter->path.dentry)
8143 		return false;
8144 
8145 	if (d_inode(filter->path.dentry) != file_inode(file))
8146 		return false;
8147 
8148 	if (filter->offset > offset + size)
8149 		return false;
8150 
8151 	if (filter->offset + filter->size < offset)
8152 		return false;
8153 
8154 	return true;
8155 }
8156 
8157 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
8158 					struct vm_area_struct *vma,
8159 					struct perf_addr_filter_range *fr)
8160 {
8161 	unsigned long vma_size = vma->vm_end - vma->vm_start;
8162 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8163 	struct file *file = vma->vm_file;
8164 
8165 	if (!perf_addr_filter_match(filter, file, off, vma_size))
8166 		return false;
8167 
8168 	if (filter->offset < off) {
8169 		fr->start = vma->vm_start;
8170 		fr->size = min(vma_size, filter->size - (off - filter->offset));
8171 	} else {
8172 		fr->start = vma->vm_start + filter->offset - off;
8173 		fr->size = min(vma->vm_end - fr->start, filter->size);
8174 	}
8175 
8176 	return true;
8177 }
8178 
8179 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
8180 {
8181 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8182 	struct vm_area_struct *vma = data;
8183 	struct perf_addr_filter *filter;
8184 	unsigned int restart = 0, count = 0;
8185 	unsigned long flags;
8186 
8187 	if (!has_addr_filter(event))
8188 		return;
8189 
8190 	if (!vma->vm_file)
8191 		return;
8192 
8193 	raw_spin_lock_irqsave(&ifh->lock, flags);
8194 	list_for_each_entry(filter, &ifh->list, entry) {
8195 		if (perf_addr_filter_vma_adjust(filter, vma,
8196 						&event->addr_filter_ranges[count]))
8197 			restart++;
8198 
8199 		count++;
8200 	}
8201 
8202 	if (restart)
8203 		event->addr_filters_gen++;
8204 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
8205 
8206 	if (restart)
8207 		perf_event_stop(event, 1);
8208 }
8209 
8210 /*
8211  * Adjust all task's events' filters to the new vma
8212  */
8213 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
8214 {
8215 	struct perf_event_context *ctx;
8216 	int ctxn;
8217 
8218 	/*
8219 	 * Data tracing isn't supported yet and as such there is no need
8220 	 * to keep track of anything that isn't related to executable code:
8221 	 */
8222 	if (!(vma->vm_flags & VM_EXEC))
8223 		return;
8224 
8225 	rcu_read_lock();
8226 	for_each_task_context_nr(ctxn) {
8227 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
8228 		if (!ctx)
8229 			continue;
8230 
8231 		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
8232 	}
8233 	rcu_read_unlock();
8234 }
8235 
8236 void perf_event_mmap(struct vm_area_struct *vma)
8237 {
8238 	struct perf_mmap_event mmap_event;
8239 
8240 	if (!atomic_read(&nr_mmap_events))
8241 		return;
8242 
8243 	mmap_event = (struct perf_mmap_event){
8244 		.vma	= vma,
8245 		/* .file_name */
8246 		/* .file_size */
8247 		.event_id  = {
8248 			.header = {
8249 				.type = PERF_RECORD_MMAP,
8250 				.misc = PERF_RECORD_MISC_USER,
8251 				/* .size */
8252 			},
8253 			/* .pid */
8254 			/* .tid */
8255 			.start  = vma->vm_start,
8256 			.len    = vma->vm_end - vma->vm_start,
8257 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
8258 		},
8259 		/* .maj (attr_mmap2 only) */
8260 		/* .min (attr_mmap2 only) */
8261 		/* .ino (attr_mmap2 only) */
8262 		/* .ino_generation (attr_mmap2 only) */
8263 		/* .prot (attr_mmap2 only) */
8264 		/* .flags (attr_mmap2 only) */
8265 	};
8266 
8267 	perf_addr_filters_adjust(vma);
8268 	perf_event_mmap_event(&mmap_event);
8269 }
8270 
8271 void perf_event_aux_event(struct perf_event *event, unsigned long head,
8272 			  unsigned long size, u64 flags)
8273 {
8274 	struct perf_output_handle handle;
8275 	struct perf_sample_data sample;
8276 	struct perf_aux_event {
8277 		struct perf_event_header	header;
8278 		u64				offset;
8279 		u64				size;
8280 		u64				flags;
8281 	} rec = {
8282 		.header = {
8283 			.type = PERF_RECORD_AUX,
8284 			.misc = 0,
8285 			.size = sizeof(rec),
8286 		},
8287 		.offset		= head,
8288 		.size		= size,
8289 		.flags		= flags,
8290 	};
8291 	int ret;
8292 
8293 	perf_event_header__init_id(&rec.header, &sample, event);
8294 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
8295 
8296 	if (ret)
8297 		return;
8298 
8299 	perf_output_put(&handle, rec);
8300 	perf_event__output_id_sample(event, &handle, &sample);
8301 
8302 	perf_output_end(&handle);
8303 }
8304 
8305 /*
8306  * Lost/dropped samples logging
8307  */
8308 void perf_log_lost_samples(struct perf_event *event, u64 lost)
8309 {
8310 	struct perf_output_handle handle;
8311 	struct perf_sample_data sample;
8312 	int ret;
8313 
8314 	struct {
8315 		struct perf_event_header	header;
8316 		u64				lost;
8317 	} lost_samples_event = {
8318 		.header = {
8319 			.type = PERF_RECORD_LOST_SAMPLES,
8320 			.misc = 0,
8321 			.size = sizeof(lost_samples_event),
8322 		},
8323 		.lost		= lost,
8324 	};
8325 
8326 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
8327 
8328 	ret = perf_output_begin(&handle, &sample, event,
8329 				lost_samples_event.header.size);
8330 	if (ret)
8331 		return;
8332 
8333 	perf_output_put(&handle, lost_samples_event);
8334 	perf_event__output_id_sample(event, &handle, &sample);
8335 	perf_output_end(&handle);
8336 }
8337 
8338 /*
8339  * context_switch tracking
8340  */
8341 
8342 struct perf_switch_event {
8343 	struct task_struct	*task;
8344 	struct task_struct	*next_prev;
8345 
8346 	struct {
8347 		struct perf_event_header	header;
8348 		u32				next_prev_pid;
8349 		u32				next_prev_tid;
8350 	} event_id;
8351 };
8352 
8353 static int perf_event_switch_match(struct perf_event *event)
8354 {
8355 	return event->attr.context_switch;
8356 }
8357 
8358 static void perf_event_switch_output(struct perf_event *event, void *data)
8359 {
8360 	struct perf_switch_event *se = data;
8361 	struct perf_output_handle handle;
8362 	struct perf_sample_data sample;
8363 	int ret;
8364 
8365 	if (!perf_event_switch_match(event))
8366 		return;
8367 
8368 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
8369 	if (event->ctx->task) {
8370 		se->event_id.header.type = PERF_RECORD_SWITCH;
8371 		se->event_id.header.size = sizeof(se->event_id.header);
8372 	} else {
8373 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
8374 		se->event_id.header.size = sizeof(se->event_id);
8375 		se->event_id.next_prev_pid =
8376 					perf_event_pid(event, se->next_prev);
8377 		se->event_id.next_prev_tid =
8378 					perf_event_tid(event, se->next_prev);
8379 	}
8380 
8381 	perf_event_header__init_id(&se->event_id.header, &sample, event);
8382 
8383 	ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
8384 	if (ret)
8385 		return;
8386 
8387 	if (event->ctx->task)
8388 		perf_output_put(&handle, se->event_id.header);
8389 	else
8390 		perf_output_put(&handle, se->event_id);
8391 
8392 	perf_event__output_id_sample(event, &handle, &sample);
8393 
8394 	perf_output_end(&handle);
8395 }
8396 
8397 static void perf_event_switch(struct task_struct *task,
8398 			      struct task_struct *next_prev, bool sched_in)
8399 {
8400 	struct perf_switch_event switch_event;
8401 
8402 	/* N.B. caller checks nr_switch_events != 0 */
8403 
8404 	switch_event = (struct perf_switch_event){
8405 		.task		= task,
8406 		.next_prev	= next_prev,
8407 		.event_id	= {
8408 			.header = {
8409 				/* .type */
8410 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
8411 				/* .size */
8412 			},
8413 			/* .next_prev_pid */
8414 			/* .next_prev_tid */
8415 		},
8416 	};
8417 
8418 	if (!sched_in && task->state == TASK_RUNNING)
8419 		switch_event.event_id.header.misc |=
8420 				PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
8421 
8422 	perf_iterate_sb(perf_event_switch_output,
8423 		       &switch_event,
8424 		       NULL);
8425 }
8426 
8427 /*
8428  * IRQ throttle logging
8429  */
8430 
8431 static void perf_log_throttle(struct perf_event *event, int enable)
8432 {
8433 	struct perf_output_handle handle;
8434 	struct perf_sample_data sample;
8435 	int ret;
8436 
8437 	struct {
8438 		struct perf_event_header	header;
8439 		u64				time;
8440 		u64				id;
8441 		u64				stream_id;
8442 	} throttle_event = {
8443 		.header = {
8444 			.type = PERF_RECORD_THROTTLE,
8445 			.misc = 0,
8446 			.size = sizeof(throttle_event),
8447 		},
8448 		.time		= perf_event_clock(event),
8449 		.id		= primary_event_id(event),
8450 		.stream_id	= event->id,
8451 	};
8452 
8453 	if (enable)
8454 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
8455 
8456 	perf_event_header__init_id(&throttle_event.header, &sample, event);
8457 
8458 	ret = perf_output_begin(&handle, &sample, event,
8459 				throttle_event.header.size);
8460 	if (ret)
8461 		return;
8462 
8463 	perf_output_put(&handle, throttle_event);
8464 	perf_event__output_id_sample(event, &handle, &sample);
8465 	perf_output_end(&handle);
8466 }
8467 
8468 /*
8469  * ksymbol register/unregister tracking
8470  */
8471 
8472 struct perf_ksymbol_event {
8473 	const char	*name;
8474 	int		name_len;
8475 	struct {
8476 		struct perf_event_header        header;
8477 		u64				addr;
8478 		u32				len;
8479 		u16				ksym_type;
8480 		u16				flags;
8481 	} event_id;
8482 };
8483 
8484 static int perf_event_ksymbol_match(struct perf_event *event)
8485 {
8486 	return event->attr.ksymbol;
8487 }
8488 
8489 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
8490 {
8491 	struct perf_ksymbol_event *ksymbol_event = data;
8492 	struct perf_output_handle handle;
8493 	struct perf_sample_data sample;
8494 	int ret;
8495 
8496 	if (!perf_event_ksymbol_match(event))
8497 		return;
8498 
8499 	perf_event_header__init_id(&ksymbol_event->event_id.header,
8500 				   &sample, event);
8501 	ret = perf_output_begin(&handle, &sample, event,
8502 				ksymbol_event->event_id.header.size);
8503 	if (ret)
8504 		return;
8505 
8506 	perf_output_put(&handle, ksymbol_event->event_id);
8507 	__output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
8508 	perf_event__output_id_sample(event, &handle, &sample);
8509 
8510 	perf_output_end(&handle);
8511 }
8512 
8513 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
8514 			const char *sym)
8515 {
8516 	struct perf_ksymbol_event ksymbol_event;
8517 	char name[KSYM_NAME_LEN];
8518 	u16 flags = 0;
8519 	int name_len;
8520 
8521 	if (!atomic_read(&nr_ksymbol_events))
8522 		return;
8523 
8524 	if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
8525 	    ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
8526 		goto err;
8527 
8528 	strlcpy(name, sym, KSYM_NAME_LEN);
8529 	name_len = strlen(name) + 1;
8530 	while (!IS_ALIGNED(name_len, sizeof(u64)))
8531 		name[name_len++] = '\0';
8532 	BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
8533 
8534 	if (unregister)
8535 		flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
8536 
8537 	ksymbol_event = (struct perf_ksymbol_event){
8538 		.name = name,
8539 		.name_len = name_len,
8540 		.event_id = {
8541 			.header = {
8542 				.type = PERF_RECORD_KSYMBOL,
8543 				.size = sizeof(ksymbol_event.event_id) +
8544 					name_len,
8545 			},
8546 			.addr = addr,
8547 			.len = len,
8548 			.ksym_type = ksym_type,
8549 			.flags = flags,
8550 		},
8551 	};
8552 
8553 	perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
8554 	return;
8555 err:
8556 	WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
8557 }
8558 
8559 /*
8560  * bpf program load/unload tracking
8561  */
8562 
8563 struct perf_bpf_event {
8564 	struct bpf_prog	*prog;
8565 	struct {
8566 		struct perf_event_header        header;
8567 		u16				type;
8568 		u16				flags;
8569 		u32				id;
8570 		u8				tag[BPF_TAG_SIZE];
8571 	} event_id;
8572 };
8573 
8574 static int perf_event_bpf_match(struct perf_event *event)
8575 {
8576 	return event->attr.bpf_event;
8577 }
8578 
8579 static void perf_event_bpf_output(struct perf_event *event, void *data)
8580 {
8581 	struct perf_bpf_event *bpf_event = data;
8582 	struct perf_output_handle handle;
8583 	struct perf_sample_data sample;
8584 	int ret;
8585 
8586 	if (!perf_event_bpf_match(event))
8587 		return;
8588 
8589 	perf_event_header__init_id(&bpf_event->event_id.header,
8590 				   &sample, event);
8591 	ret = perf_output_begin(&handle, data, event,
8592 				bpf_event->event_id.header.size);
8593 	if (ret)
8594 		return;
8595 
8596 	perf_output_put(&handle, bpf_event->event_id);
8597 	perf_event__output_id_sample(event, &handle, &sample);
8598 
8599 	perf_output_end(&handle);
8600 }
8601 
8602 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
8603 					 enum perf_bpf_event_type type)
8604 {
8605 	bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
8606 	int i;
8607 
8608 	if (prog->aux->func_cnt == 0) {
8609 		perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
8610 				   (u64)(unsigned long)prog->bpf_func,
8611 				   prog->jited_len, unregister,
8612 				   prog->aux->ksym.name);
8613 	} else {
8614 		for (i = 0; i < prog->aux->func_cnt; i++) {
8615 			struct bpf_prog *subprog = prog->aux->func[i];
8616 
8617 			perf_event_ksymbol(
8618 				PERF_RECORD_KSYMBOL_TYPE_BPF,
8619 				(u64)(unsigned long)subprog->bpf_func,
8620 				subprog->jited_len, unregister,
8621 				prog->aux->ksym.name);
8622 		}
8623 	}
8624 }
8625 
8626 void perf_event_bpf_event(struct bpf_prog *prog,
8627 			  enum perf_bpf_event_type type,
8628 			  u16 flags)
8629 {
8630 	struct perf_bpf_event bpf_event;
8631 
8632 	if (type <= PERF_BPF_EVENT_UNKNOWN ||
8633 	    type >= PERF_BPF_EVENT_MAX)
8634 		return;
8635 
8636 	switch (type) {
8637 	case PERF_BPF_EVENT_PROG_LOAD:
8638 	case PERF_BPF_EVENT_PROG_UNLOAD:
8639 		if (atomic_read(&nr_ksymbol_events))
8640 			perf_event_bpf_emit_ksymbols(prog, type);
8641 		break;
8642 	default:
8643 		break;
8644 	}
8645 
8646 	if (!atomic_read(&nr_bpf_events))
8647 		return;
8648 
8649 	bpf_event = (struct perf_bpf_event){
8650 		.prog = prog,
8651 		.event_id = {
8652 			.header = {
8653 				.type = PERF_RECORD_BPF_EVENT,
8654 				.size = sizeof(bpf_event.event_id),
8655 			},
8656 			.type = type,
8657 			.flags = flags,
8658 			.id = prog->aux->id,
8659 		},
8660 	};
8661 
8662 	BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
8663 
8664 	memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
8665 	perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
8666 }
8667 
8668 struct perf_text_poke_event {
8669 	const void		*old_bytes;
8670 	const void		*new_bytes;
8671 	size_t			pad;
8672 	u16			old_len;
8673 	u16			new_len;
8674 
8675 	struct {
8676 		struct perf_event_header	header;
8677 
8678 		u64				addr;
8679 	} event_id;
8680 };
8681 
8682 static int perf_event_text_poke_match(struct perf_event *event)
8683 {
8684 	return event->attr.text_poke;
8685 }
8686 
8687 static void perf_event_text_poke_output(struct perf_event *event, void *data)
8688 {
8689 	struct perf_text_poke_event *text_poke_event = data;
8690 	struct perf_output_handle handle;
8691 	struct perf_sample_data sample;
8692 	u64 padding = 0;
8693 	int ret;
8694 
8695 	if (!perf_event_text_poke_match(event))
8696 		return;
8697 
8698 	perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
8699 
8700 	ret = perf_output_begin(&handle, &sample, event,
8701 				text_poke_event->event_id.header.size);
8702 	if (ret)
8703 		return;
8704 
8705 	perf_output_put(&handle, text_poke_event->event_id);
8706 	perf_output_put(&handle, text_poke_event->old_len);
8707 	perf_output_put(&handle, text_poke_event->new_len);
8708 
8709 	__output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
8710 	__output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
8711 
8712 	if (text_poke_event->pad)
8713 		__output_copy(&handle, &padding, text_poke_event->pad);
8714 
8715 	perf_event__output_id_sample(event, &handle, &sample);
8716 
8717 	perf_output_end(&handle);
8718 }
8719 
8720 void perf_event_text_poke(const void *addr, const void *old_bytes,
8721 			  size_t old_len, const void *new_bytes, size_t new_len)
8722 {
8723 	struct perf_text_poke_event text_poke_event;
8724 	size_t tot, pad;
8725 
8726 	if (!atomic_read(&nr_text_poke_events))
8727 		return;
8728 
8729 	tot  = sizeof(text_poke_event.old_len) + old_len;
8730 	tot += sizeof(text_poke_event.new_len) + new_len;
8731 	pad  = ALIGN(tot, sizeof(u64)) - tot;
8732 
8733 	text_poke_event = (struct perf_text_poke_event){
8734 		.old_bytes    = old_bytes,
8735 		.new_bytes    = new_bytes,
8736 		.pad          = pad,
8737 		.old_len      = old_len,
8738 		.new_len      = new_len,
8739 		.event_id  = {
8740 			.header = {
8741 				.type = PERF_RECORD_TEXT_POKE,
8742 				.misc = PERF_RECORD_MISC_KERNEL,
8743 				.size = sizeof(text_poke_event.event_id) + tot + pad,
8744 			},
8745 			.addr = (unsigned long)addr,
8746 		},
8747 	};
8748 
8749 	perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
8750 }
8751 
8752 void perf_event_itrace_started(struct perf_event *event)
8753 {
8754 	event->attach_state |= PERF_ATTACH_ITRACE;
8755 }
8756 
8757 static void perf_log_itrace_start(struct perf_event *event)
8758 {
8759 	struct perf_output_handle handle;
8760 	struct perf_sample_data sample;
8761 	struct perf_aux_event {
8762 		struct perf_event_header        header;
8763 		u32				pid;
8764 		u32				tid;
8765 	} rec;
8766 	int ret;
8767 
8768 	if (event->parent)
8769 		event = event->parent;
8770 
8771 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
8772 	    event->attach_state & PERF_ATTACH_ITRACE)
8773 		return;
8774 
8775 	rec.header.type	= PERF_RECORD_ITRACE_START;
8776 	rec.header.misc	= 0;
8777 	rec.header.size	= sizeof(rec);
8778 	rec.pid	= perf_event_pid(event, current);
8779 	rec.tid	= perf_event_tid(event, current);
8780 
8781 	perf_event_header__init_id(&rec.header, &sample, event);
8782 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
8783 
8784 	if (ret)
8785 		return;
8786 
8787 	perf_output_put(&handle, rec);
8788 	perf_event__output_id_sample(event, &handle, &sample);
8789 
8790 	perf_output_end(&handle);
8791 }
8792 
8793 static int
8794 __perf_event_account_interrupt(struct perf_event *event, int throttle)
8795 {
8796 	struct hw_perf_event *hwc = &event->hw;
8797 	int ret = 0;
8798 	u64 seq;
8799 
8800 	seq = __this_cpu_read(perf_throttled_seq);
8801 	if (seq != hwc->interrupts_seq) {
8802 		hwc->interrupts_seq = seq;
8803 		hwc->interrupts = 1;
8804 	} else {
8805 		hwc->interrupts++;
8806 		if (unlikely(throttle
8807 			     && hwc->interrupts >= max_samples_per_tick)) {
8808 			__this_cpu_inc(perf_throttled_count);
8809 			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
8810 			hwc->interrupts = MAX_INTERRUPTS;
8811 			perf_log_throttle(event, 0);
8812 			ret = 1;
8813 		}
8814 	}
8815 
8816 	if (event->attr.freq) {
8817 		u64 now = perf_clock();
8818 		s64 delta = now - hwc->freq_time_stamp;
8819 
8820 		hwc->freq_time_stamp = now;
8821 
8822 		if (delta > 0 && delta < 2*TICK_NSEC)
8823 			perf_adjust_period(event, delta, hwc->last_period, true);
8824 	}
8825 
8826 	return ret;
8827 }
8828 
8829 int perf_event_account_interrupt(struct perf_event *event)
8830 {
8831 	return __perf_event_account_interrupt(event, 1);
8832 }
8833 
8834 /*
8835  * Generic event overflow handling, sampling.
8836  */
8837 
8838 static int __perf_event_overflow(struct perf_event *event,
8839 				   int throttle, struct perf_sample_data *data,
8840 				   struct pt_regs *regs)
8841 {
8842 	int events = atomic_read(&event->event_limit);
8843 	int ret = 0;
8844 
8845 	/*
8846 	 * Non-sampling counters might still use the PMI to fold short
8847 	 * hardware counters, ignore those.
8848 	 */
8849 	if (unlikely(!is_sampling_event(event)))
8850 		return 0;
8851 
8852 	ret = __perf_event_account_interrupt(event, throttle);
8853 
8854 	/*
8855 	 * XXX event_limit might not quite work as expected on inherited
8856 	 * events
8857 	 */
8858 
8859 	event->pending_kill = POLL_IN;
8860 	if (events && atomic_dec_and_test(&event->event_limit)) {
8861 		ret = 1;
8862 		event->pending_kill = POLL_HUP;
8863 
8864 		perf_event_disable_inatomic(event);
8865 	}
8866 
8867 	READ_ONCE(event->overflow_handler)(event, data, regs);
8868 
8869 	if (*perf_event_fasync(event) && event->pending_kill) {
8870 		event->pending_wakeup = 1;
8871 		irq_work_queue(&event->pending);
8872 	}
8873 
8874 	return ret;
8875 }
8876 
8877 int perf_event_overflow(struct perf_event *event,
8878 			  struct perf_sample_data *data,
8879 			  struct pt_regs *regs)
8880 {
8881 	return __perf_event_overflow(event, 1, data, regs);
8882 }
8883 
8884 /*
8885  * Generic software event infrastructure
8886  */
8887 
8888 struct swevent_htable {
8889 	struct swevent_hlist		*swevent_hlist;
8890 	struct mutex			hlist_mutex;
8891 	int				hlist_refcount;
8892 
8893 	/* Recursion avoidance in each contexts */
8894 	int				recursion[PERF_NR_CONTEXTS];
8895 };
8896 
8897 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
8898 
8899 /*
8900  * We directly increment event->count and keep a second value in
8901  * event->hw.period_left to count intervals. This period event
8902  * is kept in the range [-sample_period, 0] so that we can use the
8903  * sign as trigger.
8904  */
8905 
8906 u64 perf_swevent_set_period(struct perf_event *event)
8907 {
8908 	struct hw_perf_event *hwc = &event->hw;
8909 	u64 period = hwc->last_period;
8910 	u64 nr, offset;
8911 	s64 old, val;
8912 
8913 	hwc->last_period = hwc->sample_period;
8914 
8915 again:
8916 	old = val = local64_read(&hwc->period_left);
8917 	if (val < 0)
8918 		return 0;
8919 
8920 	nr = div64_u64(period + val, period);
8921 	offset = nr * period;
8922 	val -= offset;
8923 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
8924 		goto again;
8925 
8926 	return nr;
8927 }
8928 
8929 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
8930 				    struct perf_sample_data *data,
8931 				    struct pt_regs *regs)
8932 {
8933 	struct hw_perf_event *hwc = &event->hw;
8934 	int throttle = 0;
8935 
8936 	if (!overflow)
8937 		overflow = perf_swevent_set_period(event);
8938 
8939 	if (hwc->interrupts == MAX_INTERRUPTS)
8940 		return;
8941 
8942 	for (; overflow; overflow--) {
8943 		if (__perf_event_overflow(event, throttle,
8944 					    data, regs)) {
8945 			/*
8946 			 * We inhibit the overflow from happening when
8947 			 * hwc->interrupts == MAX_INTERRUPTS.
8948 			 */
8949 			break;
8950 		}
8951 		throttle = 1;
8952 	}
8953 }
8954 
8955 static void perf_swevent_event(struct perf_event *event, u64 nr,
8956 			       struct perf_sample_data *data,
8957 			       struct pt_regs *regs)
8958 {
8959 	struct hw_perf_event *hwc = &event->hw;
8960 
8961 	local64_add(nr, &event->count);
8962 
8963 	if (!regs)
8964 		return;
8965 
8966 	if (!is_sampling_event(event))
8967 		return;
8968 
8969 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
8970 		data->period = nr;
8971 		return perf_swevent_overflow(event, 1, data, regs);
8972 	} else
8973 		data->period = event->hw.last_period;
8974 
8975 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
8976 		return perf_swevent_overflow(event, 1, data, regs);
8977 
8978 	if (local64_add_negative(nr, &hwc->period_left))
8979 		return;
8980 
8981 	perf_swevent_overflow(event, 0, data, regs);
8982 }
8983 
8984 static int perf_exclude_event(struct perf_event *event,
8985 			      struct pt_regs *regs)
8986 {
8987 	if (event->hw.state & PERF_HES_STOPPED)
8988 		return 1;
8989 
8990 	if (regs) {
8991 		if (event->attr.exclude_user && user_mode(regs))
8992 			return 1;
8993 
8994 		if (event->attr.exclude_kernel && !user_mode(regs))
8995 			return 1;
8996 	}
8997 
8998 	return 0;
8999 }
9000 
9001 static int perf_swevent_match(struct perf_event *event,
9002 				enum perf_type_id type,
9003 				u32 event_id,
9004 				struct perf_sample_data *data,
9005 				struct pt_regs *regs)
9006 {
9007 	if (event->attr.type != type)
9008 		return 0;
9009 
9010 	if (event->attr.config != event_id)
9011 		return 0;
9012 
9013 	if (perf_exclude_event(event, regs))
9014 		return 0;
9015 
9016 	return 1;
9017 }
9018 
9019 static inline u64 swevent_hash(u64 type, u32 event_id)
9020 {
9021 	u64 val = event_id | (type << 32);
9022 
9023 	return hash_64(val, SWEVENT_HLIST_BITS);
9024 }
9025 
9026 static inline struct hlist_head *
9027 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
9028 {
9029 	u64 hash = swevent_hash(type, event_id);
9030 
9031 	return &hlist->heads[hash];
9032 }
9033 
9034 /* For the read side: events when they trigger */
9035 static inline struct hlist_head *
9036 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
9037 {
9038 	struct swevent_hlist *hlist;
9039 
9040 	hlist = rcu_dereference(swhash->swevent_hlist);
9041 	if (!hlist)
9042 		return NULL;
9043 
9044 	return __find_swevent_head(hlist, type, event_id);
9045 }
9046 
9047 /* For the event head insertion and removal in the hlist */
9048 static inline struct hlist_head *
9049 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
9050 {
9051 	struct swevent_hlist *hlist;
9052 	u32 event_id = event->attr.config;
9053 	u64 type = event->attr.type;
9054 
9055 	/*
9056 	 * Event scheduling is always serialized against hlist allocation
9057 	 * and release. Which makes the protected version suitable here.
9058 	 * The context lock guarantees that.
9059 	 */
9060 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
9061 					  lockdep_is_held(&event->ctx->lock));
9062 	if (!hlist)
9063 		return NULL;
9064 
9065 	return __find_swevent_head(hlist, type, event_id);
9066 }
9067 
9068 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
9069 				    u64 nr,
9070 				    struct perf_sample_data *data,
9071 				    struct pt_regs *regs)
9072 {
9073 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9074 	struct perf_event *event;
9075 	struct hlist_head *head;
9076 
9077 	rcu_read_lock();
9078 	head = find_swevent_head_rcu(swhash, type, event_id);
9079 	if (!head)
9080 		goto end;
9081 
9082 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
9083 		if (perf_swevent_match(event, type, event_id, data, regs))
9084 			perf_swevent_event(event, nr, data, regs);
9085 	}
9086 end:
9087 	rcu_read_unlock();
9088 }
9089 
9090 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
9091 
9092 int perf_swevent_get_recursion_context(void)
9093 {
9094 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9095 
9096 	return get_recursion_context(swhash->recursion);
9097 }
9098 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
9099 
9100 void perf_swevent_put_recursion_context(int rctx)
9101 {
9102 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9103 
9104 	put_recursion_context(swhash->recursion, rctx);
9105 }
9106 
9107 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9108 {
9109 	struct perf_sample_data data;
9110 
9111 	if (WARN_ON_ONCE(!regs))
9112 		return;
9113 
9114 	perf_sample_data_init(&data, addr, 0);
9115 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
9116 }
9117 
9118 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9119 {
9120 	int rctx;
9121 
9122 	preempt_disable_notrace();
9123 	rctx = perf_swevent_get_recursion_context();
9124 	if (unlikely(rctx < 0))
9125 		goto fail;
9126 
9127 	___perf_sw_event(event_id, nr, regs, addr);
9128 
9129 	perf_swevent_put_recursion_context(rctx);
9130 fail:
9131 	preempt_enable_notrace();
9132 }
9133 
9134 static void perf_swevent_read(struct perf_event *event)
9135 {
9136 }
9137 
9138 static int perf_swevent_add(struct perf_event *event, int flags)
9139 {
9140 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9141 	struct hw_perf_event *hwc = &event->hw;
9142 	struct hlist_head *head;
9143 
9144 	if (is_sampling_event(event)) {
9145 		hwc->last_period = hwc->sample_period;
9146 		perf_swevent_set_period(event);
9147 	}
9148 
9149 	hwc->state = !(flags & PERF_EF_START);
9150 
9151 	head = find_swevent_head(swhash, event);
9152 	if (WARN_ON_ONCE(!head))
9153 		return -EINVAL;
9154 
9155 	hlist_add_head_rcu(&event->hlist_entry, head);
9156 	perf_event_update_userpage(event);
9157 
9158 	return 0;
9159 }
9160 
9161 static void perf_swevent_del(struct perf_event *event, int flags)
9162 {
9163 	hlist_del_rcu(&event->hlist_entry);
9164 }
9165 
9166 static void perf_swevent_start(struct perf_event *event, int flags)
9167 {
9168 	event->hw.state = 0;
9169 }
9170 
9171 static void perf_swevent_stop(struct perf_event *event, int flags)
9172 {
9173 	event->hw.state = PERF_HES_STOPPED;
9174 }
9175 
9176 /* Deref the hlist from the update side */
9177 static inline struct swevent_hlist *
9178 swevent_hlist_deref(struct swevent_htable *swhash)
9179 {
9180 	return rcu_dereference_protected(swhash->swevent_hlist,
9181 					 lockdep_is_held(&swhash->hlist_mutex));
9182 }
9183 
9184 static void swevent_hlist_release(struct swevent_htable *swhash)
9185 {
9186 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
9187 
9188 	if (!hlist)
9189 		return;
9190 
9191 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
9192 	kfree_rcu(hlist, rcu_head);
9193 }
9194 
9195 static void swevent_hlist_put_cpu(int cpu)
9196 {
9197 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9198 
9199 	mutex_lock(&swhash->hlist_mutex);
9200 
9201 	if (!--swhash->hlist_refcount)
9202 		swevent_hlist_release(swhash);
9203 
9204 	mutex_unlock(&swhash->hlist_mutex);
9205 }
9206 
9207 static void swevent_hlist_put(void)
9208 {
9209 	int cpu;
9210 
9211 	for_each_possible_cpu(cpu)
9212 		swevent_hlist_put_cpu(cpu);
9213 }
9214 
9215 static int swevent_hlist_get_cpu(int cpu)
9216 {
9217 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9218 	int err = 0;
9219 
9220 	mutex_lock(&swhash->hlist_mutex);
9221 	if (!swevent_hlist_deref(swhash) &&
9222 	    cpumask_test_cpu(cpu, perf_online_mask)) {
9223 		struct swevent_hlist *hlist;
9224 
9225 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
9226 		if (!hlist) {
9227 			err = -ENOMEM;
9228 			goto exit;
9229 		}
9230 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
9231 	}
9232 	swhash->hlist_refcount++;
9233 exit:
9234 	mutex_unlock(&swhash->hlist_mutex);
9235 
9236 	return err;
9237 }
9238 
9239 static int swevent_hlist_get(void)
9240 {
9241 	int err, cpu, failed_cpu;
9242 
9243 	mutex_lock(&pmus_lock);
9244 	for_each_possible_cpu(cpu) {
9245 		err = swevent_hlist_get_cpu(cpu);
9246 		if (err) {
9247 			failed_cpu = cpu;
9248 			goto fail;
9249 		}
9250 	}
9251 	mutex_unlock(&pmus_lock);
9252 	return 0;
9253 fail:
9254 	for_each_possible_cpu(cpu) {
9255 		if (cpu == failed_cpu)
9256 			break;
9257 		swevent_hlist_put_cpu(cpu);
9258 	}
9259 	mutex_unlock(&pmus_lock);
9260 	return err;
9261 }
9262 
9263 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
9264 
9265 static void sw_perf_event_destroy(struct perf_event *event)
9266 {
9267 	u64 event_id = event->attr.config;
9268 
9269 	WARN_ON(event->parent);
9270 
9271 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
9272 	swevent_hlist_put();
9273 }
9274 
9275 static int perf_swevent_init(struct perf_event *event)
9276 {
9277 	u64 event_id = event->attr.config;
9278 
9279 	if (event->attr.type != PERF_TYPE_SOFTWARE)
9280 		return -ENOENT;
9281 
9282 	/*
9283 	 * no branch sampling for software events
9284 	 */
9285 	if (has_branch_stack(event))
9286 		return -EOPNOTSUPP;
9287 
9288 	switch (event_id) {
9289 	case PERF_COUNT_SW_CPU_CLOCK:
9290 	case PERF_COUNT_SW_TASK_CLOCK:
9291 		return -ENOENT;
9292 
9293 	default:
9294 		break;
9295 	}
9296 
9297 	if (event_id >= PERF_COUNT_SW_MAX)
9298 		return -ENOENT;
9299 
9300 	if (!event->parent) {
9301 		int err;
9302 
9303 		err = swevent_hlist_get();
9304 		if (err)
9305 			return err;
9306 
9307 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
9308 		event->destroy = sw_perf_event_destroy;
9309 	}
9310 
9311 	return 0;
9312 }
9313 
9314 static struct pmu perf_swevent = {
9315 	.task_ctx_nr	= perf_sw_context,
9316 
9317 	.capabilities	= PERF_PMU_CAP_NO_NMI,
9318 
9319 	.event_init	= perf_swevent_init,
9320 	.add		= perf_swevent_add,
9321 	.del		= perf_swevent_del,
9322 	.start		= perf_swevent_start,
9323 	.stop		= perf_swevent_stop,
9324 	.read		= perf_swevent_read,
9325 };
9326 
9327 #ifdef CONFIG_EVENT_TRACING
9328 
9329 static int perf_tp_filter_match(struct perf_event *event,
9330 				struct perf_sample_data *data)
9331 {
9332 	void *record = data->raw->frag.data;
9333 
9334 	/* only top level events have filters set */
9335 	if (event->parent)
9336 		event = event->parent;
9337 
9338 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
9339 		return 1;
9340 	return 0;
9341 }
9342 
9343 static int perf_tp_event_match(struct perf_event *event,
9344 				struct perf_sample_data *data,
9345 				struct pt_regs *regs)
9346 {
9347 	if (event->hw.state & PERF_HES_STOPPED)
9348 		return 0;
9349 	/*
9350 	 * If exclude_kernel, only trace user-space tracepoints (uprobes)
9351 	 */
9352 	if (event->attr.exclude_kernel && !user_mode(regs))
9353 		return 0;
9354 
9355 	if (!perf_tp_filter_match(event, data))
9356 		return 0;
9357 
9358 	return 1;
9359 }
9360 
9361 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
9362 			       struct trace_event_call *call, u64 count,
9363 			       struct pt_regs *regs, struct hlist_head *head,
9364 			       struct task_struct *task)
9365 {
9366 	if (bpf_prog_array_valid(call)) {
9367 		*(struct pt_regs **)raw_data = regs;
9368 		if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
9369 			perf_swevent_put_recursion_context(rctx);
9370 			return;
9371 		}
9372 	}
9373 	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
9374 		      rctx, task);
9375 }
9376 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
9377 
9378 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
9379 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
9380 		   struct task_struct *task)
9381 {
9382 	struct perf_sample_data data;
9383 	struct perf_event *event;
9384 
9385 	struct perf_raw_record raw = {
9386 		.frag = {
9387 			.size = entry_size,
9388 			.data = record,
9389 		},
9390 	};
9391 
9392 	perf_sample_data_init(&data, 0, 0);
9393 	data.raw = &raw;
9394 
9395 	perf_trace_buf_update(record, event_type);
9396 
9397 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
9398 		if (perf_tp_event_match(event, &data, regs))
9399 			perf_swevent_event(event, count, &data, regs);
9400 	}
9401 
9402 	/*
9403 	 * If we got specified a target task, also iterate its context and
9404 	 * deliver this event there too.
9405 	 */
9406 	if (task && task != current) {
9407 		struct perf_event_context *ctx;
9408 		struct trace_entry *entry = record;
9409 
9410 		rcu_read_lock();
9411 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
9412 		if (!ctx)
9413 			goto unlock;
9414 
9415 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
9416 			if (event->cpu != smp_processor_id())
9417 				continue;
9418 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
9419 				continue;
9420 			if (event->attr.config != entry->type)
9421 				continue;
9422 			if (perf_tp_event_match(event, &data, regs))
9423 				perf_swevent_event(event, count, &data, regs);
9424 		}
9425 unlock:
9426 		rcu_read_unlock();
9427 	}
9428 
9429 	perf_swevent_put_recursion_context(rctx);
9430 }
9431 EXPORT_SYMBOL_GPL(perf_tp_event);
9432 
9433 static void tp_perf_event_destroy(struct perf_event *event)
9434 {
9435 	perf_trace_destroy(event);
9436 }
9437 
9438 static int perf_tp_event_init(struct perf_event *event)
9439 {
9440 	int err;
9441 
9442 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
9443 		return -ENOENT;
9444 
9445 	/*
9446 	 * no branch sampling for tracepoint events
9447 	 */
9448 	if (has_branch_stack(event))
9449 		return -EOPNOTSUPP;
9450 
9451 	err = perf_trace_init(event);
9452 	if (err)
9453 		return err;
9454 
9455 	event->destroy = tp_perf_event_destroy;
9456 
9457 	return 0;
9458 }
9459 
9460 static struct pmu perf_tracepoint = {
9461 	.task_ctx_nr	= perf_sw_context,
9462 
9463 	.event_init	= perf_tp_event_init,
9464 	.add		= perf_trace_add,
9465 	.del		= perf_trace_del,
9466 	.start		= perf_swevent_start,
9467 	.stop		= perf_swevent_stop,
9468 	.read		= perf_swevent_read,
9469 };
9470 
9471 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
9472 /*
9473  * Flags in config, used by dynamic PMU kprobe and uprobe
9474  * The flags should match following PMU_FORMAT_ATTR().
9475  *
9476  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
9477  *                               if not set, create kprobe/uprobe
9478  *
9479  * The following values specify a reference counter (or semaphore in the
9480  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
9481  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
9482  *
9483  * PERF_UPROBE_REF_CTR_OFFSET_BITS	# of bits in config as th offset
9484  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT	# of bits to shift left
9485  */
9486 enum perf_probe_config {
9487 	PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
9488 	PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
9489 	PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
9490 };
9491 
9492 PMU_FORMAT_ATTR(retprobe, "config:0");
9493 #endif
9494 
9495 #ifdef CONFIG_KPROBE_EVENTS
9496 static struct attribute *kprobe_attrs[] = {
9497 	&format_attr_retprobe.attr,
9498 	NULL,
9499 };
9500 
9501 static struct attribute_group kprobe_format_group = {
9502 	.name = "format",
9503 	.attrs = kprobe_attrs,
9504 };
9505 
9506 static const struct attribute_group *kprobe_attr_groups[] = {
9507 	&kprobe_format_group,
9508 	NULL,
9509 };
9510 
9511 static int perf_kprobe_event_init(struct perf_event *event);
9512 static struct pmu perf_kprobe = {
9513 	.task_ctx_nr	= perf_sw_context,
9514 	.event_init	= perf_kprobe_event_init,
9515 	.add		= perf_trace_add,
9516 	.del		= perf_trace_del,
9517 	.start		= perf_swevent_start,
9518 	.stop		= perf_swevent_stop,
9519 	.read		= perf_swevent_read,
9520 	.attr_groups	= kprobe_attr_groups,
9521 };
9522 
9523 static int perf_kprobe_event_init(struct perf_event *event)
9524 {
9525 	int err;
9526 	bool is_retprobe;
9527 
9528 	if (event->attr.type != perf_kprobe.type)
9529 		return -ENOENT;
9530 
9531 	if (!perfmon_capable())
9532 		return -EACCES;
9533 
9534 	/*
9535 	 * no branch sampling for probe events
9536 	 */
9537 	if (has_branch_stack(event))
9538 		return -EOPNOTSUPP;
9539 
9540 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9541 	err = perf_kprobe_init(event, is_retprobe);
9542 	if (err)
9543 		return err;
9544 
9545 	event->destroy = perf_kprobe_destroy;
9546 
9547 	return 0;
9548 }
9549 #endif /* CONFIG_KPROBE_EVENTS */
9550 
9551 #ifdef CONFIG_UPROBE_EVENTS
9552 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
9553 
9554 static struct attribute *uprobe_attrs[] = {
9555 	&format_attr_retprobe.attr,
9556 	&format_attr_ref_ctr_offset.attr,
9557 	NULL,
9558 };
9559 
9560 static struct attribute_group uprobe_format_group = {
9561 	.name = "format",
9562 	.attrs = uprobe_attrs,
9563 };
9564 
9565 static const struct attribute_group *uprobe_attr_groups[] = {
9566 	&uprobe_format_group,
9567 	NULL,
9568 };
9569 
9570 static int perf_uprobe_event_init(struct perf_event *event);
9571 static struct pmu perf_uprobe = {
9572 	.task_ctx_nr	= perf_sw_context,
9573 	.event_init	= perf_uprobe_event_init,
9574 	.add		= perf_trace_add,
9575 	.del		= perf_trace_del,
9576 	.start		= perf_swevent_start,
9577 	.stop		= perf_swevent_stop,
9578 	.read		= perf_swevent_read,
9579 	.attr_groups	= uprobe_attr_groups,
9580 };
9581 
9582 static int perf_uprobe_event_init(struct perf_event *event)
9583 {
9584 	int err;
9585 	unsigned long ref_ctr_offset;
9586 	bool is_retprobe;
9587 
9588 	if (event->attr.type != perf_uprobe.type)
9589 		return -ENOENT;
9590 
9591 	if (!perfmon_capable())
9592 		return -EACCES;
9593 
9594 	/*
9595 	 * no branch sampling for probe events
9596 	 */
9597 	if (has_branch_stack(event))
9598 		return -EOPNOTSUPP;
9599 
9600 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9601 	ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
9602 	err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
9603 	if (err)
9604 		return err;
9605 
9606 	event->destroy = perf_uprobe_destroy;
9607 
9608 	return 0;
9609 }
9610 #endif /* CONFIG_UPROBE_EVENTS */
9611 
9612 static inline void perf_tp_register(void)
9613 {
9614 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
9615 #ifdef CONFIG_KPROBE_EVENTS
9616 	perf_pmu_register(&perf_kprobe, "kprobe", -1);
9617 #endif
9618 #ifdef CONFIG_UPROBE_EVENTS
9619 	perf_pmu_register(&perf_uprobe, "uprobe", -1);
9620 #endif
9621 }
9622 
9623 static void perf_event_free_filter(struct perf_event *event)
9624 {
9625 	ftrace_profile_free_filter(event);
9626 }
9627 
9628 #ifdef CONFIG_BPF_SYSCALL
9629 static void bpf_overflow_handler(struct perf_event *event,
9630 				 struct perf_sample_data *data,
9631 				 struct pt_regs *regs)
9632 {
9633 	struct bpf_perf_event_data_kern ctx = {
9634 		.data = data,
9635 		.event = event,
9636 	};
9637 	int ret = 0;
9638 
9639 	ctx.regs = perf_arch_bpf_user_pt_regs(regs);
9640 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
9641 		goto out;
9642 	rcu_read_lock();
9643 	ret = BPF_PROG_RUN(event->prog, &ctx);
9644 	rcu_read_unlock();
9645 out:
9646 	__this_cpu_dec(bpf_prog_active);
9647 	if (!ret)
9648 		return;
9649 
9650 	event->orig_overflow_handler(event, data, regs);
9651 }
9652 
9653 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9654 {
9655 	struct bpf_prog *prog;
9656 
9657 	if (event->overflow_handler_context)
9658 		/* hw breakpoint or kernel counter */
9659 		return -EINVAL;
9660 
9661 	if (event->prog)
9662 		return -EEXIST;
9663 
9664 	prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
9665 	if (IS_ERR(prog))
9666 		return PTR_ERR(prog);
9667 
9668 	if (event->attr.precise_ip &&
9669 	    prog->call_get_stack &&
9670 	    (!(event->attr.sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY) ||
9671 	     event->attr.exclude_callchain_kernel ||
9672 	     event->attr.exclude_callchain_user)) {
9673 		/*
9674 		 * On perf_event with precise_ip, calling bpf_get_stack()
9675 		 * may trigger unwinder warnings and occasional crashes.
9676 		 * bpf_get_[stack|stackid] works around this issue by using
9677 		 * callchain attached to perf_sample_data. If the
9678 		 * perf_event does not full (kernel and user) callchain
9679 		 * attached to perf_sample_data, do not allow attaching BPF
9680 		 * program that calls bpf_get_[stack|stackid].
9681 		 */
9682 		bpf_prog_put(prog);
9683 		return -EPROTO;
9684 	}
9685 
9686 	event->prog = prog;
9687 	event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
9688 	WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
9689 	return 0;
9690 }
9691 
9692 static void perf_event_free_bpf_handler(struct perf_event *event)
9693 {
9694 	struct bpf_prog *prog = event->prog;
9695 
9696 	if (!prog)
9697 		return;
9698 
9699 	WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
9700 	event->prog = NULL;
9701 	bpf_prog_put(prog);
9702 }
9703 #else
9704 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9705 {
9706 	return -EOPNOTSUPP;
9707 }
9708 static void perf_event_free_bpf_handler(struct perf_event *event)
9709 {
9710 }
9711 #endif
9712 
9713 /*
9714  * returns true if the event is a tracepoint, or a kprobe/upprobe created
9715  * with perf_event_open()
9716  */
9717 static inline bool perf_event_is_tracing(struct perf_event *event)
9718 {
9719 	if (event->pmu == &perf_tracepoint)
9720 		return true;
9721 #ifdef CONFIG_KPROBE_EVENTS
9722 	if (event->pmu == &perf_kprobe)
9723 		return true;
9724 #endif
9725 #ifdef CONFIG_UPROBE_EVENTS
9726 	if (event->pmu == &perf_uprobe)
9727 		return true;
9728 #endif
9729 	return false;
9730 }
9731 
9732 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
9733 {
9734 	bool is_kprobe, is_tracepoint, is_syscall_tp;
9735 	struct bpf_prog *prog;
9736 	int ret;
9737 
9738 	if (!perf_event_is_tracing(event))
9739 		return perf_event_set_bpf_handler(event, prog_fd);
9740 
9741 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
9742 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
9743 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
9744 	if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
9745 		/* bpf programs can only be attached to u/kprobe or tracepoint */
9746 		return -EINVAL;
9747 
9748 	prog = bpf_prog_get(prog_fd);
9749 	if (IS_ERR(prog))
9750 		return PTR_ERR(prog);
9751 
9752 	if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
9753 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
9754 	    (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
9755 		/* valid fd, but invalid bpf program type */
9756 		bpf_prog_put(prog);
9757 		return -EINVAL;
9758 	}
9759 
9760 	/* Kprobe override only works for kprobes, not uprobes. */
9761 	if (prog->kprobe_override &&
9762 	    !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
9763 		bpf_prog_put(prog);
9764 		return -EINVAL;
9765 	}
9766 
9767 	if (is_tracepoint || is_syscall_tp) {
9768 		int off = trace_event_get_offsets(event->tp_event);
9769 
9770 		if (prog->aux->max_ctx_offset > off) {
9771 			bpf_prog_put(prog);
9772 			return -EACCES;
9773 		}
9774 	}
9775 
9776 	ret = perf_event_attach_bpf_prog(event, prog);
9777 	if (ret)
9778 		bpf_prog_put(prog);
9779 	return ret;
9780 }
9781 
9782 static void perf_event_free_bpf_prog(struct perf_event *event)
9783 {
9784 	if (!perf_event_is_tracing(event)) {
9785 		perf_event_free_bpf_handler(event);
9786 		return;
9787 	}
9788 	perf_event_detach_bpf_prog(event);
9789 }
9790 
9791 #else
9792 
9793 static inline void perf_tp_register(void)
9794 {
9795 }
9796 
9797 static void perf_event_free_filter(struct perf_event *event)
9798 {
9799 }
9800 
9801 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
9802 {
9803 	return -ENOENT;
9804 }
9805 
9806 static void perf_event_free_bpf_prog(struct perf_event *event)
9807 {
9808 }
9809 #endif /* CONFIG_EVENT_TRACING */
9810 
9811 #ifdef CONFIG_HAVE_HW_BREAKPOINT
9812 void perf_bp_event(struct perf_event *bp, void *data)
9813 {
9814 	struct perf_sample_data sample;
9815 	struct pt_regs *regs = data;
9816 
9817 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
9818 
9819 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
9820 		perf_swevent_event(bp, 1, &sample, regs);
9821 }
9822 #endif
9823 
9824 /*
9825  * Allocate a new address filter
9826  */
9827 static struct perf_addr_filter *
9828 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
9829 {
9830 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
9831 	struct perf_addr_filter *filter;
9832 
9833 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
9834 	if (!filter)
9835 		return NULL;
9836 
9837 	INIT_LIST_HEAD(&filter->entry);
9838 	list_add_tail(&filter->entry, filters);
9839 
9840 	return filter;
9841 }
9842 
9843 static void free_filters_list(struct list_head *filters)
9844 {
9845 	struct perf_addr_filter *filter, *iter;
9846 
9847 	list_for_each_entry_safe(filter, iter, filters, entry) {
9848 		path_put(&filter->path);
9849 		list_del(&filter->entry);
9850 		kfree(filter);
9851 	}
9852 }
9853 
9854 /*
9855  * Free existing address filters and optionally install new ones
9856  */
9857 static void perf_addr_filters_splice(struct perf_event *event,
9858 				     struct list_head *head)
9859 {
9860 	unsigned long flags;
9861 	LIST_HEAD(list);
9862 
9863 	if (!has_addr_filter(event))
9864 		return;
9865 
9866 	/* don't bother with children, they don't have their own filters */
9867 	if (event->parent)
9868 		return;
9869 
9870 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
9871 
9872 	list_splice_init(&event->addr_filters.list, &list);
9873 	if (head)
9874 		list_splice(head, &event->addr_filters.list);
9875 
9876 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
9877 
9878 	free_filters_list(&list);
9879 }
9880 
9881 /*
9882  * Scan through mm's vmas and see if one of them matches the
9883  * @filter; if so, adjust filter's address range.
9884  * Called with mm::mmap_lock down for reading.
9885  */
9886 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
9887 				   struct mm_struct *mm,
9888 				   struct perf_addr_filter_range *fr)
9889 {
9890 	struct vm_area_struct *vma;
9891 
9892 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
9893 		if (!vma->vm_file)
9894 			continue;
9895 
9896 		if (perf_addr_filter_vma_adjust(filter, vma, fr))
9897 			return;
9898 	}
9899 }
9900 
9901 /*
9902  * Update event's address range filters based on the
9903  * task's existing mappings, if any.
9904  */
9905 static void perf_event_addr_filters_apply(struct perf_event *event)
9906 {
9907 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
9908 	struct task_struct *task = READ_ONCE(event->ctx->task);
9909 	struct perf_addr_filter *filter;
9910 	struct mm_struct *mm = NULL;
9911 	unsigned int count = 0;
9912 	unsigned long flags;
9913 
9914 	/*
9915 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
9916 	 * will stop on the parent's child_mutex that our caller is also holding
9917 	 */
9918 	if (task == TASK_TOMBSTONE)
9919 		return;
9920 
9921 	if (ifh->nr_file_filters) {
9922 		mm = get_task_mm(event->ctx->task);
9923 		if (!mm)
9924 			goto restart;
9925 
9926 		mmap_read_lock(mm);
9927 	}
9928 
9929 	raw_spin_lock_irqsave(&ifh->lock, flags);
9930 	list_for_each_entry(filter, &ifh->list, entry) {
9931 		if (filter->path.dentry) {
9932 			/*
9933 			 * Adjust base offset if the filter is associated to a
9934 			 * binary that needs to be mapped:
9935 			 */
9936 			event->addr_filter_ranges[count].start = 0;
9937 			event->addr_filter_ranges[count].size = 0;
9938 
9939 			perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
9940 		} else {
9941 			event->addr_filter_ranges[count].start = filter->offset;
9942 			event->addr_filter_ranges[count].size  = filter->size;
9943 		}
9944 
9945 		count++;
9946 	}
9947 
9948 	event->addr_filters_gen++;
9949 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
9950 
9951 	if (ifh->nr_file_filters) {
9952 		mmap_read_unlock(mm);
9953 
9954 		mmput(mm);
9955 	}
9956 
9957 restart:
9958 	perf_event_stop(event, 1);
9959 }
9960 
9961 /*
9962  * Address range filtering: limiting the data to certain
9963  * instruction address ranges. Filters are ioctl()ed to us from
9964  * userspace as ascii strings.
9965  *
9966  * Filter string format:
9967  *
9968  * ACTION RANGE_SPEC
9969  * where ACTION is one of the
9970  *  * "filter": limit the trace to this region
9971  *  * "start": start tracing from this address
9972  *  * "stop": stop tracing at this address/region;
9973  * RANGE_SPEC is
9974  *  * for kernel addresses: <start address>[/<size>]
9975  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
9976  *
9977  * if <size> is not specified or is zero, the range is treated as a single
9978  * address; not valid for ACTION=="filter".
9979  */
9980 enum {
9981 	IF_ACT_NONE = -1,
9982 	IF_ACT_FILTER,
9983 	IF_ACT_START,
9984 	IF_ACT_STOP,
9985 	IF_SRC_FILE,
9986 	IF_SRC_KERNEL,
9987 	IF_SRC_FILEADDR,
9988 	IF_SRC_KERNELADDR,
9989 };
9990 
9991 enum {
9992 	IF_STATE_ACTION = 0,
9993 	IF_STATE_SOURCE,
9994 	IF_STATE_END,
9995 };
9996 
9997 static const match_table_t if_tokens = {
9998 	{ IF_ACT_FILTER,	"filter" },
9999 	{ IF_ACT_START,		"start" },
10000 	{ IF_ACT_STOP,		"stop" },
10001 	{ IF_SRC_FILE,		"%u/%u@%s" },
10002 	{ IF_SRC_KERNEL,	"%u/%u" },
10003 	{ IF_SRC_FILEADDR,	"%u@%s" },
10004 	{ IF_SRC_KERNELADDR,	"%u" },
10005 	{ IF_ACT_NONE,		NULL },
10006 };
10007 
10008 /*
10009  * Address filter string parser
10010  */
10011 static int
10012 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
10013 			     struct list_head *filters)
10014 {
10015 	struct perf_addr_filter *filter = NULL;
10016 	char *start, *orig, *filename = NULL;
10017 	substring_t args[MAX_OPT_ARGS];
10018 	int state = IF_STATE_ACTION, token;
10019 	unsigned int kernel = 0;
10020 	int ret = -EINVAL;
10021 
10022 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
10023 	if (!fstr)
10024 		return -ENOMEM;
10025 
10026 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
10027 		static const enum perf_addr_filter_action_t actions[] = {
10028 			[IF_ACT_FILTER]	= PERF_ADDR_FILTER_ACTION_FILTER,
10029 			[IF_ACT_START]	= PERF_ADDR_FILTER_ACTION_START,
10030 			[IF_ACT_STOP]	= PERF_ADDR_FILTER_ACTION_STOP,
10031 		};
10032 		ret = -EINVAL;
10033 
10034 		if (!*start)
10035 			continue;
10036 
10037 		/* filter definition begins */
10038 		if (state == IF_STATE_ACTION) {
10039 			filter = perf_addr_filter_new(event, filters);
10040 			if (!filter)
10041 				goto fail;
10042 		}
10043 
10044 		token = match_token(start, if_tokens, args);
10045 		switch (token) {
10046 		case IF_ACT_FILTER:
10047 		case IF_ACT_START:
10048 		case IF_ACT_STOP:
10049 			if (state != IF_STATE_ACTION)
10050 				goto fail;
10051 
10052 			filter->action = actions[token];
10053 			state = IF_STATE_SOURCE;
10054 			break;
10055 
10056 		case IF_SRC_KERNELADDR:
10057 		case IF_SRC_KERNEL:
10058 			kernel = 1;
10059 			fallthrough;
10060 
10061 		case IF_SRC_FILEADDR:
10062 		case IF_SRC_FILE:
10063 			if (state != IF_STATE_SOURCE)
10064 				goto fail;
10065 
10066 			*args[0].to = 0;
10067 			ret = kstrtoul(args[0].from, 0, &filter->offset);
10068 			if (ret)
10069 				goto fail;
10070 
10071 			if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
10072 				*args[1].to = 0;
10073 				ret = kstrtoul(args[1].from, 0, &filter->size);
10074 				if (ret)
10075 					goto fail;
10076 			}
10077 
10078 			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
10079 				int fpos = token == IF_SRC_FILE ? 2 : 1;
10080 
10081 				kfree(filename);
10082 				filename = match_strdup(&args[fpos]);
10083 				if (!filename) {
10084 					ret = -ENOMEM;
10085 					goto fail;
10086 				}
10087 			}
10088 
10089 			state = IF_STATE_END;
10090 			break;
10091 
10092 		default:
10093 			goto fail;
10094 		}
10095 
10096 		/*
10097 		 * Filter definition is fully parsed, validate and install it.
10098 		 * Make sure that it doesn't contradict itself or the event's
10099 		 * attribute.
10100 		 */
10101 		if (state == IF_STATE_END) {
10102 			ret = -EINVAL;
10103 			if (kernel && event->attr.exclude_kernel)
10104 				goto fail;
10105 
10106 			/*
10107 			 * ACTION "filter" must have a non-zero length region
10108 			 * specified.
10109 			 */
10110 			if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
10111 			    !filter->size)
10112 				goto fail;
10113 
10114 			if (!kernel) {
10115 				if (!filename)
10116 					goto fail;
10117 
10118 				/*
10119 				 * For now, we only support file-based filters
10120 				 * in per-task events; doing so for CPU-wide
10121 				 * events requires additional context switching
10122 				 * trickery, since same object code will be
10123 				 * mapped at different virtual addresses in
10124 				 * different processes.
10125 				 */
10126 				ret = -EOPNOTSUPP;
10127 				if (!event->ctx->task)
10128 					goto fail;
10129 
10130 				/* look up the path and grab its inode */
10131 				ret = kern_path(filename, LOOKUP_FOLLOW,
10132 						&filter->path);
10133 				if (ret)
10134 					goto fail;
10135 
10136 				ret = -EINVAL;
10137 				if (!filter->path.dentry ||
10138 				    !S_ISREG(d_inode(filter->path.dentry)
10139 					     ->i_mode))
10140 					goto fail;
10141 
10142 				event->addr_filters.nr_file_filters++;
10143 			}
10144 
10145 			/* ready to consume more filters */
10146 			state = IF_STATE_ACTION;
10147 			filter = NULL;
10148 		}
10149 	}
10150 
10151 	if (state != IF_STATE_ACTION)
10152 		goto fail;
10153 
10154 	kfree(filename);
10155 	kfree(orig);
10156 
10157 	return 0;
10158 
10159 fail:
10160 	kfree(filename);
10161 	free_filters_list(filters);
10162 	kfree(orig);
10163 
10164 	return ret;
10165 }
10166 
10167 static int
10168 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
10169 {
10170 	LIST_HEAD(filters);
10171 	int ret;
10172 
10173 	/*
10174 	 * Since this is called in perf_ioctl() path, we're already holding
10175 	 * ctx::mutex.
10176 	 */
10177 	lockdep_assert_held(&event->ctx->mutex);
10178 
10179 	if (WARN_ON_ONCE(event->parent))
10180 		return -EINVAL;
10181 
10182 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
10183 	if (ret)
10184 		goto fail_clear_files;
10185 
10186 	ret = event->pmu->addr_filters_validate(&filters);
10187 	if (ret)
10188 		goto fail_free_filters;
10189 
10190 	/* remove existing filters, if any */
10191 	perf_addr_filters_splice(event, &filters);
10192 
10193 	/* install new filters */
10194 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
10195 
10196 	return ret;
10197 
10198 fail_free_filters:
10199 	free_filters_list(&filters);
10200 
10201 fail_clear_files:
10202 	event->addr_filters.nr_file_filters = 0;
10203 
10204 	return ret;
10205 }
10206 
10207 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
10208 {
10209 	int ret = -EINVAL;
10210 	char *filter_str;
10211 
10212 	filter_str = strndup_user(arg, PAGE_SIZE);
10213 	if (IS_ERR(filter_str))
10214 		return PTR_ERR(filter_str);
10215 
10216 #ifdef CONFIG_EVENT_TRACING
10217 	if (perf_event_is_tracing(event)) {
10218 		struct perf_event_context *ctx = event->ctx;
10219 
10220 		/*
10221 		 * Beware, here be dragons!!
10222 		 *
10223 		 * the tracepoint muck will deadlock against ctx->mutex, but
10224 		 * the tracepoint stuff does not actually need it. So
10225 		 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
10226 		 * already have a reference on ctx.
10227 		 *
10228 		 * This can result in event getting moved to a different ctx,
10229 		 * but that does not affect the tracepoint state.
10230 		 */
10231 		mutex_unlock(&ctx->mutex);
10232 		ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
10233 		mutex_lock(&ctx->mutex);
10234 	} else
10235 #endif
10236 	if (has_addr_filter(event))
10237 		ret = perf_event_set_addr_filter(event, filter_str);
10238 
10239 	kfree(filter_str);
10240 	return ret;
10241 }
10242 
10243 /*
10244  * hrtimer based swevent callback
10245  */
10246 
10247 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
10248 {
10249 	enum hrtimer_restart ret = HRTIMER_RESTART;
10250 	struct perf_sample_data data;
10251 	struct pt_regs *regs;
10252 	struct perf_event *event;
10253 	u64 period;
10254 
10255 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
10256 
10257 	if (event->state != PERF_EVENT_STATE_ACTIVE)
10258 		return HRTIMER_NORESTART;
10259 
10260 	event->pmu->read(event);
10261 
10262 	perf_sample_data_init(&data, 0, event->hw.last_period);
10263 	regs = get_irq_regs();
10264 
10265 	if (regs && !perf_exclude_event(event, regs)) {
10266 		if (!(event->attr.exclude_idle && is_idle_task(current)))
10267 			if (__perf_event_overflow(event, 1, &data, regs))
10268 				ret = HRTIMER_NORESTART;
10269 	}
10270 
10271 	period = max_t(u64, 10000, event->hw.sample_period);
10272 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
10273 
10274 	return ret;
10275 }
10276 
10277 static void perf_swevent_start_hrtimer(struct perf_event *event)
10278 {
10279 	struct hw_perf_event *hwc = &event->hw;
10280 	s64 period;
10281 
10282 	if (!is_sampling_event(event))
10283 		return;
10284 
10285 	period = local64_read(&hwc->period_left);
10286 	if (period) {
10287 		if (period < 0)
10288 			period = 10000;
10289 
10290 		local64_set(&hwc->period_left, 0);
10291 	} else {
10292 		period = max_t(u64, 10000, hwc->sample_period);
10293 	}
10294 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
10295 		      HRTIMER_MODE_REL_PINNED_HARD);
10296 }
10297 
10298 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
10299 {
10300 	struct hw_perf_event *hwc = &event->hw;
10301 
10302 	if (is_sampling_event(event)) {
10303 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
10304 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
10305 
10306 		hrtimer_cancel(&hwc->hrtimer);
10307 	}
10308 }
10309 
10310 static void perf_swevent_init_hrtimer(struct perf_event *event)
10311 {
10312 	struct hw_perf_event *hwc = &event->hw;
10313 
10314 	if (!is_sampling_event(event))
10315 		return;
10316 
10317 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
10318 	hwc->hrtimer.function = perf_swevent_hrtimer;
10319 
10320 	/*
10321 	 * Since hrtimers have a fixed rate, we can do a static freq->period
10322 	 * mapping and avoid the whole period adjust feedback stuff.
10323 	 */
10324 	if (event->attr.freq) {
10325 		long freq = event->attr.sample_freq;
10326 
10327 		event->attr.sample_period = NSEC_PER_SEC / freq;
10328 		hwc->sample_period = event->attr.sample_period;
10329 		local64_set(&hwc->period_left, hwc->sample_period);
10330 		hwc->last_period = hwc->sample_period;
10331 		event->attr.freq = 0;
10332 	}
10333 }
10334 
10335 /*
10336  * Software event: cpu wall time clock
10337  */
10338 
10339 static void cpu_clock_event_update(struct perf_event *event)
10340 {
10341 	s64 prev;
10342 	u64 now;
10343 
10344 	now = local_clock();
10345 	prev = local64_xchg(&event->hw.prev_count, now);
10346 	local64_add(now - prev, &event->count);
10347 }
10348 
10349 static void cpu_clock_event_start(struct perf_event *event, int flags)
10350 {
10351 	local64_set(&event->hw.prev_count, local_clock());
10352 	perf_swevent_start_hrtimer(event);
10353 }
10354 
10355 static void cpu_clock_event_stop(struct perf_event *event, int flags)
10356 {
10357 	perf_swevent_cancel_hrtimer(event);
10358 	cpu_clock_event_update(event);
10359 }
10360 
10361 static int cpu_clock_event_add(struct perf_event *event, int flags)
10362 {
10363 	if (flags & PERF_EF_START)
10364 		cpu_clock_event_start(event, flags);
10365 	perf_event_update_userpage(event);
10366 
10367 	return 0;
10368 }
10369 
10370 static void cpu_clock_event_del(struct perf_event *event, int flags)
10371 {
10372 	cpu_clock_event_stop(event, flags);
10373 }
10374 
10375 static void cpu_clock_event_read(struct perf_event *event)
10376 {
10377 	cpu_clock_event_update(event);
10378 }
10379 
10380 static int cpu_clock_event_init(struct perf_event *event)
10381 {
10382 	if (event->attr.type != PERF_TYPE_SOFTWARE)
10383 		return -ENOENT;
10384 
10385 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
10386 		return -ENOENT;
10387 
10388 	/*
10389 	 * no branch sampling for software events
10390 	 */
10391 	if (has_branch_stack(event))
10392 		return -EOPNOTSUPP;
10393 
10394 	perf_swevent_init_hrtimer(event);
10395 
10396 	return 0;
10397 }
10398 
10399 static struct pmu perf_cpu_clock = {
10400 	.task_ctx_nr	= perf_sw_context,
10401 
10402 	.capabilities	= PERF_PMU_CAP_NO_NMI,
10403 
10404 	.event_init	= cpu_clock_event_init,
10405 	.add		= cpu_clock_event_add,
10406 	.del		= cpu_clock_event_del,
10407 	.start		= cpu_clock_event_start,
10408 	.stop		= cpu_clock_event_stop,
10409 	.read		= cpu_clock_event_read,
10410 };
10411 
10412 /*
10413  * Software event: task time clock
10414  */
10415 
10416 static void task_clock_event_update(struct perf_event *event, u64 now)
10417 {
10418 	u64 prev;
10419 	s64 delta;
10420 
10421 	prev = local64_xchg(&event->hw.prev_count, now);
10422 	delta = now - prev;
10423 	local64_add(delta, &event->count);
10424 }
10425 
10426 static void task_clock_event_start(struct perf_event *event, int flags)
10427 {
10428 	local64_set(&event->hw.prev_count, event->ctx->time);
10429 	perf_swevent_start_hrtimer(event);
10430 }
10431 
10432 static void task_clock_event_stop(struct perf_event *event, int flags)
10433 {
10434 	perf_swevent_cancel_hrtimer(event);
10435 	task_clock_event_update(event, event->ctx->time);
10436 }
10437 
10438 static int task_clock_event_add(struct perf_event *event, int flags)
10439 {
10440 	if (flags & PERF_EF_START)
10441 		task_clock_event_start(event, flags);
10442 	perf_event_update_userpage(event);
10443 
10444 	return 0;
10445 }
10446 
10447 static void task_clock_event_del(struct perf_event *event, int flags)
10448 {
10449 	task_clock_event_stop(event, PERF_EF_UPDATE);
10450 }
10451 
10452 static void task_clock_event_read(struct perf_event *event)
10453 {
10454 	u64 now = perf_clock();
10455 	u64 delta = now - event->ctx->timestamp;
10456 	u64 time = event->ctx->time + delta;
10457 
10458 	task_clock_event_update(event, time);
10459 }
10460 
10461 static int task_clock_event_init(struct perf_event *event)
10462 {
10463 	if (event->attr.type != PERF_TYPE_SOFTWARE)
10464 		return -ENOENT;
10465 
10466 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
10467 		return -ENOENT;
10468 
10469 	/*
10470 	 * no branch sampling for software events
10471 	 */
10472 	if (has_branch_stack(event))
10473 		return -EOPNOTSUPP;
10474 
10475 	perf_swevent_init_hrtimer(event);
10476 
10477 	return 0;
10478 }
10479 
10480 static struct pmu perf_task_clock = {
10481 	.task_ctx_nr	= perf_sw_context,
10482 
10483 	.capabilities	= PERF_PMU_CAP_NO_NMI,
10484 
10485 	.event_init	= task_clock_event_init,
10486 	.add		= task_clock_event_add,
10487 	.del		= task_clock_event_del,
10488 	.start		= task_clock_event_start,
10489 	.stop		= task_clock_event_stop,
10490 	.read		= task_clock_event_read,
10491 };
10492 
10493 static void perf_pmu_nop_void(struct pmu *pmu)
10494 {
10495 }
10496 
10497 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
10498 {
10499 }
10500 
10501 static int perf_pmu_nop_int(struct pmu *pmu)
10502 {
10503 	return 0;
10504 }
10505 
10506 static int perf_event_nop_int(struct perf_event *event, u64 value)
10507 {
10508 	return 0;
10509 }
10510 
10511 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
10512 
10513 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
10514 {
10515 	__this_cpu_write(nop_txn_flags, flags);
10516 
10517 	if (flags & ~PERF_PMU_TXN_ADD)
10518 		return;
10519 
10520 	perf_pmu_disable(pmu);
10521 }
10522 
10523 static int perf_pmu_commit_txn(struct pmu *pmu)
10524 {
10525 	unsigned int flags = __this_cpu_read(nop_txn_flags);
10526 
10527 	__this_cpu_write(nop_txn_flags, 0);
10528 
10529 	if (flags & ~PERF_PMU_TXN_ADD)
10530 		return 0;
10531 
10532 	perf_pmu_enable(pmu);
10533 	return 0;
10534 }
10535 
10536 static void perf_pmu_cancel_txn(struct pmu *pmu)
10537 {
10538 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
10539 
10540 	__this_cpu_write(nop_txn_flags, 0);
10541 
10542 	if (flags & ~PERF_PMU_TXN_ADD)
10543 		return;
10544 
10545 	perf_pmu_enable(pmu);
10546 }
10547 
10548 static int perf_event_idx_default(struct perf_event *event)
10549 {
10550 	return 0;
10551 }
10552 
10553 /*
10554  * Ensures all contexts with the same task_ctx_nr have the same
10555  * pmu_cpu_context too.
10556  */
10557 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
10558 {
10559 	struct pmu *pmu;
10560 
10561 	if (ctxn < 0)
10562 		return NULL;
10563 
10564 	list_for_each_entry(pmu, &pmus, entry) {
10565 		if (pmu->task_ctx_nr == ctxn)
10566 			return pmu->pmu_cpu_context;
10567 	}
10568 
10569 	return NULL;
10570 }
10571 
10572 static void free_pmu_context(struct pmu *pmu)
10573 {
10574 	/*
10575 	 * Static contexts such as perf_sw_context have a global lifetime
10576 	 * and may be shared between different PMUs. Avoid freeing them
10577 	 * when a single PMU is going away.
10578 	 */
10579 	if (pmu->task_ctx_nr > perf_invalid_context)
10580 		return;
10581 
10582 	free_percpu(pmu->pmu_cpu_context);
10583 }
10584 
10585 /*
10586  * Let userspace know that this PMU supports address range filtering:
10587  */
10588 static ssize_t nr_addr_filters_show(struct device *dev,
10589 				    struct device_attribute *attr,
10590 				    char *page)
10591 {
10592 	struct pmu *pmu = dev_get_drvdata(dev);
10593 
10594 	return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
10595 }
10596 DEVICE_ATTR_RO(nr_addr_filters);
10597 
10598 static struct idr pmu_idr;
10599 
10600 static ssize_t
10601 type_show(struct device *dev, struct device_attribute *attr, char *page)
10602 {
10603 	struct pmu *pmu = dev_get_drvdata(dev);
10604 
10605 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
10606 }
10607 static DEVICE_ATTR_RO(type);
10608 
10609 static ssize_t
10610 perf_event_mux_interval_ms_show(struct device *dev,
10611 				struct device_attribute *attr,
10612 				char *page)
10613 {
10614 	struct pmu *pmu = dev_get_drvdata(dev);
10615 
10616 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
10617 }
10618 
10619 static DEFINE_MUTEX(mux_interval_mutex);
10620 
10621 static ssize_t
10622 perf_event_mux_interval_ms_store(struct device *dev,
10623 				 struct device_attribute *attr,
10624 				 const char *buf, size_t count)
10625 {
10626 	struct pmu *pmu = dev_get_drvdata(dev);
10627 	int timer, cpu, ret;
10628 
10629 	ret = kstrtoint(buf, 0, &timer);
10630 	if (ret)
10631 		return ret;
10632 
10633 	if (timer < 1)
10634 		return -EINVAL;
10635 
10636 	/* same value, noting to do */
10637 	if (timer == pmu->hrtimer_interval_ms)
10638 		return count;
10639 
10640 	mutex_lock(&mux_interval_mutex);
10641 	pmu->hrtimer_interval_ms = timer;
10642 
10643 	/* update all cpuctx for this PMU */
10644 	cpus_read_lock();
10645 	for_each_online_cpu(cpu) {
10646 		struct perf_cpu_context *cpuctx;
10647 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10648 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
10649 
10650 		cpu_function_call(cpu,
10651 			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
10652 	}
10653 	cpus_read_unlock();
10654 	mutex_unlock(&mux_interval_mutex);
10655 
10656 	return count;
10657 }
10658 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
10659 
10660 static struct attribute *pmu_dev_attrs[] = {
10661 	&dev_attr_type.attr,
10662 	&dev_attr_perf_event_mux_interval_ms.attr,
10663 	NULL,
10664 };
10665 ATTRIBUTE_GROUPS(pmu_dev);
10666 
10667 static int pmu_bus_running;
10668 static struct bus_type pmu_bus = {
10669 	.name		= "event_source",
10670 	.dev_groups	= pmu_dev_groups,
10671 };
10672 
10673 static void pmu_dev_release(struct device *dev)
10674 {
10675 	kfree(dev);
10676 }
10677 
10678 static int pmu_dev_alloc(struct pmu *pmu)
10679 {
10680 	int ret = -ENOMEM;
10681 
10682 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
10683 	if (!pmu->dev)
10684 		goto out;
10685 
10686 	pmu->dev->groups = pmu->attr_groups;
10687 	device_initialize(pmu->dev);
10688 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
10689 	if (ret)
10690 		goto free_dev;
10691 
10692 	dev_set_drvdata(pmu->dev, pmu);
10693 	pmu->dev->bus = &pmu_bus;
10694 	pmu->dev->release = pmu_dev_release;
10695 	ret = device_add(pmu->dev);
10696 	if (ret)
10697 		goto free_dev;
10698 
10699 	/* For PMUs with address filters, throw in an extra attribute: */
10700 	if (pmu->nr_addr_filters)
10701 		ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
10702 
10703 	if (ret)
10704 		goto del_dev;
10705 
10706 	if (pmu->attr_update)
10707 		ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
10708 
10709 	if (ret)
10710 		goto del_dev;
10711 
10712 out:
10713 	return ret;
10714 
10715 del_dev:
10716 	device_del(pmu->dev);
10717 
10718 free_dev:
10719 	put_device(pmu->dev);
10720 	goto out;
10721 }
10722 
10723 static struct lock_class_key cpuctx_mutex;
10724 static struct lock_class_key cpuctx_lock;
10725 
10726 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
10727 {
10728 	int cpu, ret, max = PERF_TYPE_MAX;
10729 
10730 	mutex_lock(&pmus_lock);
10731 	ret = -ENOMEM;
10732 	pmu->pmu_disable_count = alloc_percpu(int);
10733 	if (!pmu->pmu_disable_count)
10734 		goto unlock;
10735 
10736 	pmu->type = -1;
10737 	if (!name)
10738 		goto skip_type;
10739 	pmu->name = name;
10740 
10741 	if (type != PERF_TYPE_SOFTWARE) {
10742 		if (type >= 0)
10743 			max = type;
10744 
10745 		ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
10746 		if (ret < 0)
10747 			goto free_pdc;
10748 
10749 		WARN_ON(type >= 0 && ret != type);
10750 
10751 		type = ret;
10752 	}
10753 	pmu->type = type;
10754 
10755 	if (pmu_bus_running) {
10756 		ret = pmu_dev_alloc(pmu);
10757 		if (ret)
10758 			goto free_idr;
10759 	}
10760 
10761 skip_type:
10762 	if (pmu->task_ctx_nr == perf_hw_context) {
10763 		static int hw_context_taken = 0;
10764 
10765 		/*
10766 		 * Other than systems with heterogeneous CPUs, it never makes
10767 		 * sense for two PMUs to share perf_hw_context. PMUs which are
10768 		 * uncore must use perf_invalid_context.
10769 		 */
10770 		if (WARN_ON_ONCE(hw_context_taken &&
10771 		    !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
10772 			pmu->task_ctx_nr = perf_invalid_context;
10773 
10774 		hw_context_taken = 1;
10775 	}
10776 
10777 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
10778 	if (pmu->pmu_cpu_context)
10779 		goto got_cpu_context;
10780 
10781 	ret = -ENOMEM;
10782 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
10783 	if (!pmu->pmu_cpu_context)
10784 		goto free_dev;
10785 
10786 	for_each_possible_cpu(cpu) {
10787 		struct perf_cpu_context *cpuctx;
10788 
10789 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10790 		__perf_event_init_context(&cpuctx->ctx);
10791 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
10792 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
10793 		cpuctx->ctx.pmu = pmu;
10794 		cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
10795 
10796 		__perf_mux_hrtimer_init(cpuctx, cpu);
10797 
10798 		cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
10799 		cpuctx->heap = cpuctx->heap_default;
10800 	}
10801 
10802 got_cpu_context:
10803 	if (!pmu->start_txn) {
10804 		if (pmu->pmu_enable) {
10805 			/*
10806 			 * If we have pmu_enable/pmu_disable calls, install
10807 			 * transaction stubs that use that to try and batch
10808 			 * hardware accesses.
10809 			 */
10810 			pmu->start_txn  = perf_pmu_start_txn;
10811 			pmu->commit_txn = perf_pmu_commit_txn;
10812 			pmu->cancel_txn = perf_pmu_cancel_txn;
10813 		} else {
10814 			pmu->start_txn  = perf_pmu_nop_txn;
10815 			pmu->commit_txn = perf_pmu_nop_int;
10816 			pmu->cancel_txn = perf_pmu_nop_void;
10817 		}
10818 	}
10819 
10820 	if (!pmu->pmu_enable) {
10821 		pmu->pmu_enable  = perf_pmu_nop_void;
10822 		pmu->pmu_disable = perf_pmu_nop_void;
10823 	}
10824 
10825 	if (!pmu->check_period)
10826 		pmu->check_period = perf_event_nop_int;
10827 
10828 	if (!pmu->event_idx)
10829 		pmu->event_idx = perf_event_idx_default;
10830 
10831 	/*
10832 	 * Ensure the TYPE_SOFTWARE PMUs are at the head of the list,
10833 	 * since these cannot be in the IDR. This way the linear search
10834 	 * is fast, provided a valid software event is provided.
10835 	 */
10836 	if (type == PERF_TYPE_SOFTWARE || !name)
10837 		list_add_rcu(&pmu->entry, &pmus);
10838 	else
10839 		list_add_tail_rcu(&pmu->entry, &pmus);
10840 
10841 	atomic_set(&pmu->exclusive_cnt, 0);
10842 	ret = 0;
10843 unlock:
10844 	mutex_unlock(&pmus_lock);
10845 
10846 	return ret;
10847 
10848 free_dev:
10849 	device_del(pmu->dev);
10850 	put_device(pmu->dev);
10851 
10852 free_idr:
10853 	if (pmu->type != PERF_TYPE_SOFTWARE)
10854 		idr_remove(&pmu_idr, pmu->type);
10855 
10856 free_pdc:
10857 	free_percpu(pmu->pmu_disable_count);
10858 	goto unlock;
10859 }
10860 EXPORT_SYMBOL_GPL(perf_pmu_register);
10861 
10862 void perf_pmu_unregister(struct pmu *pmu)
10863 {
10864 	mutex_lock(&pmus_lock);
10865 	list_del_rcu(&pmu->entry);
10866 
10867 	/*
10868 	 * We dereference the pmu list under both SRCU and regular RCU, so
10869 	 * synchronize against both of those.
10870 	 */
10871 	synchronize_srcu(&pmus_srcu);
10872 	synchronize_rcu();
10873 
10874 	free_percpu(pmu->pmu_disable_count);
10875 	if (pmu->type != PERF_TYPE_SOFTWARE)
10876 		idr_remove(&pmu_idr, pmu->type);
10877 	if (pmu_bus_running) {
10878 		if (pmu->nr_addr_filters)
10879 			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
10880 		device_del(pmu->dev);
10881 		put_device(pmu->dev);
10882 	}
10883 	free_pmu_context(pmu);
10884 	mutex_unlock(&pmus_lock);
10885 }
10886 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
10887 
10888 static inline bool has_extended_regs(struct perf_event *event)
10889 {
10890 	return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
10891 	       (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
10892 }
10893 
10894 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
10895 {
10896 	struct perf_event_context *ctx = NULL;
10897 	int ret;
10898 
10899 	if (!try_module_get(pmu->module))
10900 		return -ENODEV;
10901 
10902 	/*
10903 	 * A number of pmu->event_init() methods iterate the sibling_list to,
10904 	 * for example, validate if the group fits on the PMU. Therefore,
10905 	 * if this is a sibling event, acquire the ctx->mutex to protect
10906 	 * the sibling_list.
10907 	 */
10908 	if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
10909 		/*
10910 		 * This ctx->mutex can nest when we're called through
10911 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
10912 		 */
10913 		ctx = perf_event_ctx_lock_nested(event->group_leader,
10914 						 SINGLE_DEPTH_NESTING);
10915 		BUG_ON(!ctx);
10916 	}
10917 
10918 	event->pmu = pmu;
10919 	ret = pmu->event_init(event);
10920 
10921 	if (ctx)
10922 		perf_event_ctx_unlock(event->group_leader, ctx);
10923 
10924 	if (!ret) {
10925 		if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
10926 		    has_extended_regs(event))
10927 			ret = -EOPNOTSUPP;
10928 
10929 		if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
10930 		    event_has_any_exclude_flag(event))
10931 			ret = -EINVAL;
10932 
10933 		if (ret && event->destroy)
10934 			event->destroy(event);
10935 	}
10936 
10937 	if (ret)
10938 		module_put(pmu->module);
10939 
10940 	return ret;
10941 }
10942 
10943 static struct pmu *perf_init_event(struct perf_event *event)
10944 {
10945 	int idx, type, ret;
10946 	struct pmu *pmu;
10947 
10948 	idx = srcu_read_lock(&pmus_srcu);
10949 
10950 	/* Try parent's PMU first: */
10951 	if (event->parent && event->parent->pmu) {
10952 		pmu = event->parent->pmu;
10953 		ret = perf_try_init_event(pmu, event);
10954 		if (!ret)
10955 			goto unlock;
10956 	}
10957 
10958 	/*
10959 	 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
10960 	 * are often aliases for PERF_TYPE_RAW.
10961 	 */
10962 	type = event->attr.type;
10963 	if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE)
10964 		type = PERF_TYPE_RAW;
10965 
10966 again:
10967 	rcu_read_lock();
10968 	pmu = idr_find(&pmu_idr, type);
10969 	rcu_read_unlock();
10970 	if (pmu) {
10971 		ret = perf_try_init_event(pmu, event);
10972 		if (ret == -ENOENT && event->attr.type != type) {
10973 			type = event->attr.type;
10974 			goto again;
10975 		}
10976 
10977 		if (ret)
10978 			pmu = ERR_PTR(ret);
10979 
10980 		goto unlock;
10981 	}
10982 
10983 	list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
10984 		ret = perf_try_init_event(pmu, event);
10985 		if (!ret)
10986 			goto unlock;
10987 
10988 		if (ret != -ENOENT) {
10989 			pmu = ERR_PTR(ret);
10990 			goto unlock;
10991 		}
10992 	}
10993 	pmu = ERR_PTR(-ENOENT);
10994 unlock:
10995 	srcu_read_unlock(&pmus_srcu, idx);
10996 
10997 	return pmu;
10998 }
10999 
11000 static void attach_sb_event(struct perf_event *event)
11001 {
11002 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
11003 
11004 	raw_spin_lock(&pel->lock);
11005 	list_add_rcu(&event->sb_list, &pel->list);
11006 	raw_spin_unlock(&pel->lock);
11007 }
11008 
11009 /*
11010  * We keep a list of all !task (and therefore per-cpu) events
11011  * that need to receive side-band records.
11012  *
11013  * This avoids having to scan all the various PMU per-cpu contexts
11014  * looking for them.
11015  */
11016 static void account_pmu_sb_event(struct perf_event *event)
11017 {
11018 	if (is_sb_event(event))
11019 		attach_sb_event(event);
11020 }
11021 
11022 static void account_event_cpu(struct perf_event *event, int cpu)
11023 {
11024 	if (event->parent)
11025 		return;
11026 
11027 	if (is_cgroup_event(event))
11028 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
11029 }
11030 
11031 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
11032 static void account_freq_event_nohz(void)
11033 {
11034 #ifdef CONFIG_NO_HZ_FULL
11035 	/* Lock so we don't race with concurrent unaccount */
11036 	spin_lock(&nr_freq_lock);
11037 	if (atomic_inc_return(&nr_freq_events) == 1)
11038 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
11039 	spin_unlock(&nr_freq_lock);
11040 #endif
11041 }
11042 
11043 static void account_freq_event(void)
11044 {
11045 	if (tick_nohz_full_enabled())
11046 		account_freq_event_nohz();
11047 	else
11048 		atomic_inc(&nr_freq_events);
11049 }
11050 
11051 
11052 static void account_event(struct perf_event *event)
11053 {
11054 	bool inc = false;
11055 
11056 	if (event->parent)
11057 		return;
11058 
11059 	if (event->attach_state & PERF_ATTACH_TASK)
11060 		inc = true;
11061 	if (event->attr.mmap || event->attr.mmap_data)
11062 		atomic_inc(&nr_mmap_events);
11063 	if (event->attr.comm)
11064 		atomic_inc(&nr_comm_events);
11065 	if (event->attr.namespaces)
11066 		atomic_inc(&nr_namespaces_events);
11067 	if (event->attr.cgroup)
11068 		atomic_inc(&nr_cgroup_events);
11069 	if (event->attr.task)
11070 		atomic_inc(&nr_task_events);
11071 	if (event->attr.freq)
11072 		account_freq_event();
11073 	if (event->attr.context_switch) {
11074 		atomic_inc(&nr_switch_events);
11075 		inc = true;
11076 	}
11077 	if (has_branch_stack(event))
11078 		inc = true;
11079 	if (is_cgroup_event(event))
11080 		inc = true;
11081 	if (event->attr.ksymbol)
11082 		atomic_inc(&nr_ksymbol_events);
11083 	if (event->attr.bpf_event)
11084 		atomic_inc(&nr_bpf_events);
11085 	if (event->attr.text_poke)
11086 		atomic_inc(&nr_text_poke_events);
11087 
11088 	if (inc) {
11089 		/*
11090 		 * We need the mutex here because static_branch_enable()
11091 		 * must complete *before* the perf_sched_count increment
11092 		 * becomes visible.
11093 		 */
11094 		if (atomic_inc_not_zero(&perf_sched_count))
11095 			goto enabled;
11096 
11097 		mutex_lock(&perf_sched_mutex);
11098 		if (!atomic_read(&perf_sched_count)) {
11099 			static_branch_enable(&perf_sched_events);
11100 			/*
11101 			 * Guarantee that all CPUs observe they key change and
11102 			 * call the perf scheduling hooks before proceeding to
11103 			 * install events that need them.
11104 			 */
11105 			synchronize_rcu();
11106 		}
11107 		/*
11108 		 * Now that we have waited for the sync_sched(), allow further
11109 		 * increments to by-pass the mutex.
11110 		 */
11111 		atomic_inc(&perf_sched_count);
11112 		mutex_unlock(&perf_sched_mutex);
11113 	}
11114 enabled:
11115 
11116 	account_event_cpu(event, event->cpu);
11117 
11118 	account_pmu_sb_event(event);
11119 }
11120 
11121 /*
11122  * Allocate and initialize an event structure
11123  */
11124 static struct perf_event *
11125 perf_event_alloc(struct perf_event_attr *attr, int cpu,
11126 		 struct task_struct *task,
11127 		 struct perf_event *group_leader,
11128 		 struct perf_event *parent_event,
11129 		 perf_overflow_handler_t overflow_handler,
11130 		 void *context, int cgroup_fd)
11131 {
11132 	struct pmu *pmu;
11133 	struct perf_event *event;
11134 	struct hw_perf_event *hwc;
11135 	long err = -EINVAL;
11136 
11137 	if ((unsigned)cpu >= nr_cpu_ids) {
11138 		if (!task || cpu != -1)
11139 			return ERR_PTR(-EINVAL);
11140 	}
11141 
11142 	event = kzalloc(sizeof(*event), GFP_KERNEL);
11143 	if (!event)
11144 		return ERR_PTR(-ENOMEM);
11145 
11146 	/*
11147 	 * Single events are their own group leaders, with an
11148 	 * empty sibling list:
11149 	 */
11150 	if (!group_leader)
11151 		group_leader = event;
11152 
11153 	mutex_init(&event->child_mutex);
11154 	INIT_LIST_HEAD(&event->child_list);
11155 
11156 	INIT_LIST_HEAD(&event->event_entry);
11157 	INIT_LIST_HEAD(&event->sibling_list);
11158 	INIT_LIST_HEAD(&event->active_list);
11159 	init_event_group(event);
11160 	INIT_LIST_HEAD(&event->rb_entry);
11161 	INIT_LIST_HEAD(&event->active_entry);
11162 	INIT_LIST_HEAD(&event->addr_filters.list);
11163 	INIT_HLIST_NODE(&event->hlist_entry);
11164 
11165 
11166 	init_waitqueue_head(&event->waitq);
11167 	event->pending_disable = -1;
11168 	init_irq_work(&event->pending, perf_pending_event);
11169 
11170 	mutex_init(&event->mmap_mutex);
11171 	raw_spin_lock_init(&event->addr_filters.lock);
11172 
11173 	atomic_long_set(&event->refcount, 1);
11174 	event->cpu		= cpu;
11175 	event->attr		= *attr;
11176 	event->group_leader	= group_leader;
11177 	event->pmu		= NULL;
11178 	event->oncpu		= -1;
11179 
11180 	event->parent		= parent_event;
11181 
11182 	event->ns		= get_pid_ns(task_active_pid_ns(current));
11183 	event->id		= atomic64_inc_return(&perf_event_id);
11184 
11185 	event->state		= PERF_EVENT_STATE_INACTIVE;
11186 
11187 	if (task) {
11188 		event->attach_state = PERF_ATTACH_TASK;
11189 		/*
11190 		 * XXX pmu::event_init needs to know what task to account to
11191 		 * and we cannot use the ctx information because we need the
11192 		 * pmu before we get a ctx.
11193 		 */
11194 		event->hw.target = get_task_struct(task);
11195 	}
11196 
11197 	event->clock = &local_clock;
11198 	if (parent_event)
11199 		event->clock = parent_event->clock;
11200 
11201 	if (!overflow_handler && parent_event) {
11202 		overflow_handler = parent_event->overflow_handler;
11203 		context = parent_event->overflow_handler_context;
11204 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
11205 		if (overflow_handler == bpf_overflow_handler) {
11206 			struct bpf_prog *prog = parent_event->prog;
11207 
11208 			bpf_prog_inc(prog);
11209 			event->prog = prog;
11210 			event->orig_overflow_handler =
11211 				parent_event->orig_overflow_handler;
11212 		}
11213 #endif
11214 	}
11215 
11216 	if (overflow_handler) {
11217 		event->overflow_handler	= overflow_handler;
11218 		event->overflow_handler_context = context;
11219 	} else if (is_write_backward(event)){
11220 		event->overflow_handler = perf_event_output_backward;
11221 		event->overflow_handler_context = NULL;
11222 	} else {
11223 		event->overflow_handler = perf_event_output_forward;
11224 		event->overflow_handler_context = NULL;
11225 	}
11226 
11227 	perf_event__state_init(event);
11228 
11229 	pmu = NULL;
11230 
11231 	hwc = &event->hw;
11232 	hwc->sample_period = attr->sample_period;
11233 	if (attr->freq && attr->sample_freq)
11234 		hwc->sample_period = 1;
11235 	hwc->last_period = hwc->sample_period;
11236 
11237 	local64_set(&hwc->period_left, hwc->sample_period);
11238 
11239 	/*
11240 	 * We currently do not support PERF_SAMPLE_READ on inherited events.
11241 	 * See perf_output_read().
11242 	 */
11243 	if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
11244 		goto err_ns;
11245 
11246 	if (!has_branch_stack(event))
11247 		event->attr.branch_sample_type = 0;
11248 
11249 	pmu = perf_init_event(event);
11250 	if (IS_ERR(pmu)) {
11251 		err = PTR_ERR(pmu);
11252 		goto err_ns;
11253 	}
11254 
11255 	/*
11256 	 * Disallow uncore-cgroup events, they don't make sense as the cgroup will
11257 	 * be different on other CPUs in the uncore mask.
11258 	 */
11259 	if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) {
11260 		err = -EINVAL;
11261 		goto err_pmu;
11262 	}
11263 
11264 	if (event->attr.aux_output &&
11265 	    !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
11266 		err = -EOPNOTSUPP;
11267 		goto err_pmu;
11268 	}
11269 
11270 	if (cgroup_fd != -1) {
11271 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
11272 		if (err)
11273 			goto err_pmu;
11274 	}
11275 
11276 	err = exclusive_event_init(event);
11277 	if (err)
11278 		goto err_pmu;
11279 
11280 	if (has_addr_filter(event)) {
11281 		event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
11282 						    sizeof(struct perf_addr_filter_range),
11283 						    GFP_KERNEL);
11284 		if (!event->addr_filter_ranges) {
11285 			err = -ENOMEM;
11286 			goto err_per_task;
11287 		}
11288 
11289 		/*
11290 		 * Clone the parent's vma offsets: they are valid until exec()
11291 		 * even if the mm is not shared with the parent.
11292 		 */
11293 		if (event->parent) {
11294 			struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
11295 
11296 			raw_spin_lock_irq(&ifh->lock);
11297 			memcpy(event->addr_filter_ranges,
11298 			       event->parent->addr_filter_ranges,
11299 			       pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
11300 			raw_spin_unlock_irq(&ifh->lock);
11301 		}
11302 
11303 		/* force hw sync on the address filters */
11304 		event->addr_filters_gen = 1;
11305 	}
11306 
11307 	if (!event->parent) {
11308 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
11309 			err = get_callchain_buffers(attr->sample_max_stack);
11310 			if (err)
11311 				goto err_addr_filters;
11312 		}
11313 	}
11314 
11315 	err = security_perf_event_alloc(event);
11316 	if (err)
11317 		goto err_callchain_buffer;
11318 
11319 	/* symmetric to unaccount_event() in _free_event() */
11320 	account_event(event);
11321 
11322 	return event;
11323 
11324 err_callchain_buffer:
11325 	if (!event->parent) {
11326 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
11327 			put_callchain_buffers();
11328 	}
11329 err_addr_filters:
11330 	kfree(event->addr_filter_ranges);
11331 
11332 err_per_task:
11333 	exclusive_event_destroy(event);
11334 
11335 err_pmu:
11336 	if (is_cgroup_event(event))
11337 		perf_detach_cgroup(event);
11338 	if (event->destroy)
11339 		event->destroy(event);
11340 	module_put(pmu->module);
11341 err_ns:
11342 	if (event->ns)
11343 		put_pid_ns(event->ns);
11344 	if (event->hw.target)
11345 		put_task_struct(event->hw.target);
11346 	kfree(event);
11347 
11348 	return ERR_PTR(err);
11349 }
11350 
11351 static int perf_copy_attr(struct perf_event_attr __user *uattr,
11352 			  struct perf_event_attr *attr)
11353 {
11354 	u32 size;
11355 	int ret;
11356 
11357 	/* Zero the full structure, so that a short copy will be nice. */
11358 	memset(attr, 0, sizeof(*attr));
11359 
11360 	ret = get_user(size, &uattr->size);
11361 	if (ret)
11362 		return ret;
11363 
11364 	/* ABI compatibility quirk: */
11365 	if (!size)
11366 		size = PERF_ATTR_SIZE_VER0;
11367 	if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
11368 		goto err_size;
11369 
11370 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
11371 	if (ret) {
11372 		if (ret == -E2BIG)
11373 			goto err_size;
11374 		return ret;
11375 	}
11376 
11377 	attr->size = size;
11378 
11379 	if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
11380 		return -EINVAL;
11381 
11382 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
11383 		return -EINVAL;
11384 
11385 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
11386 		return -EINVAL;
11387 
11388 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
11389 		u64 mask = attr->branch_sample_type;
11390 
11391 		/* only using defined bits */
11392 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
11393 			return -EINVAL;
11394 
11395 		/* at least one branch bit must be set */
11396 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
11397 			return -EINVAL;
11398 
11399 		/* propagate priv level, when not set for branch */
11400 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
11401 
11402 			/* exclude_kernel checked on syscall entry */
11403 			if (!attr->exclude_kernel)
11404 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
11405 
11406 			if (!attr->exclude_user)
11407 				mask |= PERF_SAMPLE_BRANCH_USER;
11408 
11409 			if (!attr->exclude_hv)
11410 				mask |= PERF_SAMPLE_BRANCH_HV;
11411 			/*
11412 			 * adjust user setting (for HW filter setup)
11413 			 */
11414 			attr->branch_sample_type = mask;
11415 		}
11416 		/* privileged levels capture (kernel, hv): check permissions */
11417 		if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
11418 			ret = perf_allow_kernel(attr);
11419 			if (ret)
11420 				return ret;
11421 		}
11422 	}
11423 
11424 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
11425 		ret = perf_reg_validate(attr->sample_regs_user);
11426 		if (ret)
11427 			return ret;
11428 	}
11429 
11430 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
11431 		if (!arch_perf_have_user_stack_dump())
11432 			return -ENOSYS;
11433 
11434 		/*
11435 		 * We have __u32 type for the size, but so far
11436 		 * we can only use __u16 as maximum due to the
11437 		 * __u16 sample size limit.
11438 		 */
11439 		if (attr->sample_stack_user >= USHRT_MAX)
11440 			return -EINVAL;
11441 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
11442 			return -EINVAL;
11443 	}
11444 
11445 	if (!attr->sample_max_stack)
11446 		attr->sample_max_stack = sysctl_perf_event_max_stack;
11447 
11448 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
11449 		ret = perf_reg_validate(attr->sample_regs_intr);
11450 
11451 #ifndef CONFIG_CGROUP_PERF
11452 	if (attr->sample_type & PERF_SAMPLE_CGROUP)
11453 		return -EINVAL;
11454 #endif
11455 
11456 out:
11457 	return ret;
11458 
11459 err_size:
11460 	put_user(sizeof(*attr), &uattr->size);
11461 	ret = -E2BIG;
11462 	goto out;
11463 }
11464 
11465 static int
11466 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
11467 {
11468 	struct perf_buffer *rb = NULL;
11469 	int ret = -EINVAL;
11470 
11471 	if (!output_event)
11472 		goto set;
11473 
11474 	/* don't allow circular references */
11475 	if (event == output_event)
11476 		goto out;
11477 
11478 	/*
11479 	 * Don't allow cross-cpu buffers
11480 	 */
11481 	if (output_event->cpu != event->cpu)
11482 		goto out;
11483 
11484 	/*
11485 	 * If its not a per-cpu rb, it must be the same task.
11486 	 */
11487 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
11488 		goto out;
11489 
11490 	/*
11491 	 * Mixing clocks in the same buffer is trouble you don't need.
11492 	 */
11493 	if (output_event->clock != event->clock)
11494 		goto out;
11495 
11496 	/*
11497 	 * Either writing ring buffer from beginning or from end.
11498 	 * Mixing is not allowed.
11499 	 */
11500 	if (is_write_backward(output_event) != is_write_backward(event))
11501 		goto out;
11502 
11503 	/*
11504 	 * If both events generate aux data, they must be on the same PMU
11505 	 */
11506 	if (has_aux(event) && has_aux(output_event) &&
11507 	    event->pmu != output_event->pmu)
11508 		goto out;
11509 
11510 set:
11511 	mutex_lock(&event->mmap_mutex);
11512 	/* Can't redirect output if we've got an active mmap() */
11513 	if (atomic_read(&event->mmap_count))
11514 		goto unlock;
11515 
11516 	if (output_event) {
11517 		/* get the rb we want to redirect to */
11518 		rb = ring_buffer_get(output_event);
11519 		if (!rb)
11520 			goto unlock;
11521 	}
11522 
11523 	ring_buffer_attach(event, rb);
11524 
11525 	ret = 0;
11526 unlock:
11527 	mutex_unlock(&event->mmap_mutex);
11528 
11529 out:
11530 	return ret;
11531 }
11532 
11533 static void mutex_lock_double(struct mutex *a, struct mutex *b)
11534 {
11535 	if (b < a)
11536 		swap(a, b);
11537 
11538 	mutex_lock(a);
11539 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
11540 }
11541 
11542 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
11543 {
11544 	bool nmi_safe = false;
11545 
11546 	switch (clk_id) {
11547 	case CLOCK_MONOTONIC:
11548 		event->clock = &ktime_get_mono_fast_ns;
11549 		nmi_safe = true;
11550 		break;
11551 
11552 	case CLOCK_MONOTONIC_RAW:
11553 		event->clock = &ktime_get_raw_fast_ns;
11554 		nmi_safe = true;
11555 		break;
11556 
11557 	case CLOCK_REALTIME:
11558 		event->clock = &ktime_get_real_ns;
11559 		break;
11560 
11561 	case CLOCK_BOOTTIME:
11562 		event->clock = &ktime_get_boottime_ns;
11563 		break;
11564 
11565 	case CLOCK_TAI:
11566 		event->clock = &ktime_get_clocktai_ns;
11567 		break;
11568 
11569 	default:
11570 		return -EINVAL;
11571 	}
11572 
11573 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
11574 		return -EINVAL;
11575 
11576 	return 0;
11577 }
11578 
11579 /*
11580  * Variation on perf_event_ctx_lock_nested(), except we take two context
11581  * mutexes.
11582  */
11583 static struct perf_event_context *
11584 __perf_event_ctx_lock_double(struct perf_event *group_leader,
11585 			     struct perf_event_context *ctx)
11586 {
11587 	struct perf_event_context *gctx;
11588 
11589 again:
11590 	rcu_read_lock();
11591 	gctx = READ_ONCE(group_leader->ctx);
11592 	if (!refcount_inc_not_zero(&gctx->refcount)) {
11593 		rcu_read_unlock();
11594 		goto again;
11595 	}
11596 	rcu_read_unlock();
11597 
11598 	mutex_lock_double(&gctx->mutex, &ctx->mutex);
11599 
11600 	if (group_leader->ctx != gctx) {
11601 		mutex_unlock(&ctx->mutex);
11602 		mutex_unlock(&gctx->mutex);
11603 		put_ctx(gctx);
11604 		goto again;
11605 	}
11606 
11607 	return gctx;
11608 }
11609 
11610 /**
11611  * sys_perf_event_open - open a performance event, associate it to a task/cpu
11612  *
11613  * @attr_uptr:	event_id type attributes for monitoring/sampling
11614  * @pid:		target pid
11615  * @cpu:		target cpu
11616  * @group_fd:		group leader event fd
11617  */
11618 SYSCALL_DEFINE5(perf_event_open,
11619 		struct perf_event_attr __user *, attr_uptr,
11620 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
11621 {
11622 	struct perf_event *group_leader = NULL, *output_event = NULL;
11623 	struct perf_event *event, *sibling;
11624 	struct perf_event_attr attr;
11625 	struct perf_event_context *ctx, *gctx;
11626 	struct file *event_file = NULL;
11627 	struct fd group = {NULL, 0};
11628 	struct task_struct *task = NULL;
11629 	struct pmu *pmu;
11630 	int event_fd;
11631 	int move_group = 0;
11632 	int err;
11633 	int f_flags = O_RDWR;
11634 	int cgroup_fd = -1;
11635 
11636 	/* for future expandability... */
11637 	if (flags & ~PERF_FLAG_ALL)
11638 		return -EINVAL;
11639 
11640 	/* Do we allow access to perf_event_open(2) ? */
11641 	err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
11642 	if (err)
11643 		return err;
11644 
11645 	err = perf_copy_attr(attr_uptr, &attr);
11646 	if (err)
11647 		return err;
11648 
11649 	if (!attr.exclude_kernel) {
11650 		err = perf_allow_kernel(&attr);
11651 		if (err)
11652 			return err;
11653 	}
11654 
11655 	if (attr.namespaces) {
11656 		if (!perfmon_capable())
11657 			return -EACCES;
11658 	}
11659 
11660 	if (attr.freq) {
11661 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
11662 			return -EINVAL;
11663 	} else {
11664 		if (attr.sample_period & (1ULL << 63))
11665 			return -EINVAL;
11666 	}
11667 
11668 	/* Only privileged users can get physical addresses */
11669 	if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
11670 		err = perf_allow_kernel(&attr);
11671 		if (err)
11672 			return err;
11673 	}
11674 
11675 	err = security_locked_down(LOCKDOWN_PERF);
11676 	if (err && (attr.sample_type & PERF_SAMPLE_REGS_INTR))
11677 		/* REGS_INTR can leak data, lockdown must prevent this */
11678 		return err;
11679 
11680 	err = 0;
11681 
11682 	/*
11683 	 * In cgroup mode, the pid argument is used to pass the fd
11684 	 * opened to the cgroup directory in cgroupfs. The cpu argument
11685 	 * designates the cpu on which to monitor threads from that
11686 	 * cgroup.
11687 	 */
11688 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
11689 		return -EINVAL;
11690 
11691 	if (flags & PERF_FLAG_FD_CLOEXEC)
11692 		f_flags |= O_CLOEXEC;
11693 
11694 	event_fd = get_unused_fd_flags(f_flags);
11695 	if (event_fd < 0)
11696 		return event_fd;
11697 
11698 	if (group_fd != -1) {
11699 		err = perf_fget_light(group_fd, &group);
11700 		if (err)
11701 			goto err_fd;
11702 		group_leader = group.file->private_data;
11703 		if (flags & PERF_FLAG_FD_OUTPUT)
11704 			output_event = group_leader;
11705 		if (flags & PERF_FLAG_FD_NO_GROUP)
11706 			group_leader = NULL;
11707 	}
11708 
11709 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
11710 		task = find_lively_task_by_vpid(pid);
11711 		if (IS_ERR(task)) {
11712 			err = PTR_ERR(task);
11713 			goto err_group_fd;
11714 		}
11715 	}
11716 
11717 	if (task && group_leader &&
11718 	    group_leader->attr.inherit != attr.inherit) {
11719 		err = -EINVAL;
11720 		goto err_task;
11721 	}
11722 
11723 	if (task) {
11724 		err = mutex_lock_interruptible(&task->signal->exec_update_mutex);
11725 		if (err)
11726 			goto err_task;
11727 
11728 		/*
11729 		 * Preserve ptrace permission check for backwards compatibility.
11730 		 *
11731 		 * We must hold exec_update_mutex across this and any potential
11732 		 * perf_install_in_context() call for this new event to
11733 		 * serialize against exec() altering our credentials (and the
11734 		 * perf_event_exit_task() that could imply).
11735 		 */
11736 		err = -EACCES;
11737 		if (!perfmon_capable() && !ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
11738 			goto err_cred;
11739 	}
11740 
11741 	if (flags & PERF_FLAG_PID_CGROUP)
11742 		cgroup_fd = pid;
11743 
11744 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
11745 				 NULL, NULL, cgroup_fd);
11746 	if (IS_ERR(event)) {
11747 		err = PTR_ERR(event);
11748 		goto err_cred;
11749 	}
11750 
11751 	if (is_sampling_event(event)) {
11752 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
11753 			err = -EOPNOTSUPP;
11754 			goto err_alloc;
11755 		}
11756 	}
11757 
11758 	/*
11759 	 * Special case software events and allow them to be part of
11760 	 * any hardware group.
11761 	 */
11762 	pmu = event->pmu;
11763 
11764 	if (attr.use_clockid) {
11765 		err = perf_event_set_clock(event, attr.clockid);
11766 		if (err)
11767 			goto err_alloc;
11768 	}
11769 
11770 	if (pmu->task_ctx_nr == perf_sw_context)
11771 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
11772 
11773 	if (group_leader) {
11774 		if (is_software_event(event) &&
11775 		    !in_software_context(group_leader)) {
11776 			/*
11777 			 * If the event is a sw event, but the group_leader
11778 			 * is on hw context.
11779 			 *
11780 			 * Allow the addition of software events to hw
11781 			 * groups, this is safe because software events
11782 			 * never fail to schedule.
11783 			 */
11784 			pmu = group_leader->ctx->pmu;
11785 		} else if (!is_software_event(event) &&
11786 			   is_software_event(group_leader) &&
11787 			   (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
11788 			/*
11789 			 * In case the group is a pure software group, and we
11790 			 * try to add a hardware event, move the whole group to
11791 			 * the hardware context.
11792 			 */
11793 			move_group = 1;
11794 		}
11795 	}
11796 
11797 	/*
11798 	 * Get the target context (task or percpu):
11799 	 */
11800 	ctx = find_get_context(pmu, task, event);
11801 	if (IS_ERR(ctx)) {
11802 		err = PTR_ERR(ctx);
11803 		goto err_alloc;
11804 	}
11805 
11806 	/*
11807 	 * Look up the group leader (we will attach this event to it):
11808 	 */
11809 	if (group_leader) {
11810 		err = -EINVAL;
11811 
11812 		/*
11813 		 * Do not allow a recursive hierarchy (this new sibling
11814 		 * becoming part of another group-sibling):
11815 		 */
11816 		if (group_leader->group_leader != group_leader)
11817 			goto err_context;
11818 
11819 		/* All events in a group should have the same clock */
11820 		if (group_leader->clock != event->clock)
11821 			goto err_context;
11822 
11823 		/*
11824 		 * Make sure we're both events for the same CPU;
11825 		 * grouping events for different CPUs is broken; since
11826 		 * you can never concurrently schedule them anyhow.
11827 		 */
11828 		if (group_leader->cpu != event->cpu)
11829 			goto err_context;
11830 
11831 		/*
11832 		 * Make sure we're both on the same task, or both
11833 		 * per-CPU events.
11834 		 */
11835 		if (group_leader->ctx->task != ctx->task)
11836 			goto err_context;
11837 
11838 		/*
11839 		 * Do not allow to attach to a group in a different task
11840 		 * or CPU context. If we're moving SW events, we'll fix
11841 		 * this up later, so allow that.
11842 		 */
11843 		if (!move_group && group_leader->ctx != ctx)
11844 			goto err_context;
11845 
11846 		/*
11847 		 * Only a group leader can be exclusive or pinned
11848 		 */
11849 		if (attr.exclusive || attr.pinned)
11850 			goto err_context;
11851 	}
11852 
11853 	if (output_event) {
11854 		err = perf_event_set_output(event, output_event);
11855 		if (err)
11856 			goto err_context;
11857 	}
11858 
11859 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
11860 					f_flags);
11861 	if (IS_ERR(event_file)) {
11862 		err = PTR_ERR(event_file);
11863 		event_file = NULL;
11864 		goto err_context;
11865 	}
11866 
11867 	if (move_group) {
11868 		gctx = __perf_event_ctx_lock_double(group_leader, ctx);
11869 
11870 		if (gctx->task == TASK_TOMBSTONE) {
11871 			err = -ESRCH;
11872 			goto err_locked;
11873 		}
11874 
11875 		/*
11876 		 * Check if we raced against another sys_perf_event_open() call
11877 		 * moving the software group underneath us.
11878 		 */
11879 		if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
11880 			/*
11881 			 * If someone moved the group out from under us, check
11882 			 * if this new event wound up on the same ctx, if so
11883 			 * its the regular !move_group case, otherwise fail.
11884 			 */
11885 			if (gctx != ctx) {
11886 				err = -EINVAL;
11887 				goto err_locked;
11888 			} else {
11889 				perf_event_ctx_unlock(group_leader, gctx);
11890 				move_group = 0;
11891 			}
11892 		}
11893 
11894 		/*
11895 		 * Failure to create exclusive events returns -EBUSY.
11896 		 */
11897 		err = -EBUSY;
11898 		if (!exclusive_event_installable(group_leader, ctx))
11899 			goto err_locked;
11900 
11901 		for_each_sibling_event(sibling, group_leader) {
11902 			if (!exclusive_event_installable(sibling, ctx))
11903 				goto err_locked;
11904 		}
11905 	} else {
11906 		mutex_lock(&ctx->mutex);
11907 	}
11908 
11909 	if (ctx->task == TASK_TOMBSTONE) {
11910 		err = -ESRCH;
11911 		goto err_locked;
11912 	}
11913 
11914 	if (!perf_event_validate_size(event)) {
11915 		err = -E2BIG;
11916 		goto err_locked;
11917 	}
11918 
11919 	if (!task) {
11920 		/*
11921 		 * Check if the @cpu we're creating an event for is online.
11922 		 *
11923 		 * We use the perf_cpu_context::ctx::mutex to serialize against
11924 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11925 		 */
11926 		struct perf_cpu_context *cpuctx =
11927 			container_of(ctx, struct perf_cpu_context, ctx);
11928 
11929 		if (!cpuctx->online) {
11930 			err = -ENODEV;
11931 			goto err_locked;
11932 		}
11933 	}
11934 
11935 	if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
11936 		err = -EINVAL;
11937 		goto err_locked;
11938 	}
11939 
11940 	/*
11941 	 * Must be under the same ctx::mutex as perf_install_in_context(),
11942 	 * because we need to serialize with concurrent event creation.
11943 	 */
11944 	if (!exclusive_event_installable(event, ctx)) {
11945 		err = -EBUSY;
11946 		goto err_locked;
11947 	}
11948 
11949 	WARN_ON_ONCE(ctx->parent_ctx);
11950 
11951 	/*
11952 	 * This is the point on no return; we cannot fail hereafter. This is
11953 	 * where we start modifying current state.
11954 	 */
11955 
11956 	if (move_group) {
11957 		/*
11958 		 * See perf_event_ctx_lock() for comments on the details
11959 		 * of swizzling perf_event::ctx.
11960 		 */
11961 		perf_remove_from_context(group_leader, 0);
11962 		put_ctx(gctx);
11963 
11964 		for_each_sibling_event(sibling, group_leader) {
11965 			perf_remove_from_context(sibling, 0);
11966 			put_ctx(gctx);
11967 		}
11968 
11969 		/*
11970 		 * Wait for everybody to stop referencing the events through
11971 		 * the old lists, before installing it on new lists.
11972 		 */
11973 		synchronize_rcu();
11974 
11975 		/*
11976 		 * Install the group siblings before the group leader.
11977 		 *
11978 		 * Because a group leader will try and install the entire group
11979 		 * (through the sibling list, which is still in-tact), we can
11980 		 * end up with siblings installed in the wrong context.
11981 		 *
11982 		 * By installing siblings first we NO-OP because they're not
11983 		 * reachable through the group lists.
11984 		 */
11985 		for_each_sibling_event(sibling, group_leader) {
11986 			perf_event__state_init(sibling);
11987 			perf_install_in_context(ctx, sibling, sibling->cpu);
11988 			get_ctx(ctx);
11989 		}
11990 
11991 		/*
11992 		 * Removing from the context ends up with disabled
11993 		 * event. What we want here is event in the initial
11994 		 * startup state, ready to be add into new context.
11995 		 */
11996 		perf_event__state_init(group_leader);
11997 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
11998 		get_ctx(ctx);
11999 	}
12000 
12001 	/*
12002 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
12003 	 * that we're serialized against further additions and before
12004 	 * perf_install_in_context() which is the point the event is active and
12005 	 * can use these values.
12006 	 */
12007 	perf_event__header_size(event);
12008 	perf_event__id_header_size(event);
12009 
12010 	event->owner = current;
12011 
12012 	perf_install_in_context(ctx, event, event->cpu);
12013 	perf_unpin_context(ctx);
12014 
12015 	if (move_group)
12016 		perf_event_ctx_unlock(group_leader, gctx);
12017 	mutex_unlock(&ctx->mutex);
12018 
12019 	if (task) {
12020 		mutex_unlock(&task->signal->exec_update_mutex);
12021 		put_task_struct(task);
12022 	}
12023 
12024 	mutex_lock(&current->perf_event_mutex);
12025 	list_add_tail(&event->owner_entry, &current->perf_event_list);
12026 	mutex_unlock(&current->perf_event_mutex);
12027 
12028 	/*
12029 	 * Drop the reference on the group_event after placing the
12030 	 * new event on the sibling_list. This ensures destruction
12031 	 * of the group leader will find the pointer to itself in
12032 	 * perf_group_detach().
12033 	 */
12034 	fdput(group);
12035 	fd_install(event_fd, event_file);
12036 	return event_fd;
12037 
12038 err_locked:
12039 	if (move_group)
12040 		perf_event_ctx_unlock(group_leader, gctx);
12041 	mutex_unlock(&ctx->mutex);
12042 /* err_file: */
12043 	fput(event_file);
12044 err_context:
12045 	perf_unpin_context(ctx);
12046 	put_ctx(ctx);
12047 err_alloc:
12048 	/*
12049 	 * If event_file is set, the fput() above will have called ->release()
12050 	 * and that will take care of freeing the event.
12051 	 */
12052 	if (!event_file)
12053 		free_event(event);
12054 err_cred:
12055 	if (task)
12056 		mutex_unlock(&task->signal->exec_update_mutex);
12057 err_task:
12058 	if (task)
12059 		put_task_struct(task);
12060 err_group_fd:
12061 	fdput(group);
12062 err_fd:
12063 	put_unused_fd(event_fd);
12064 	return err;
12065 }
12066 
12067 /**
12068  * perf_event_create_kernel_counter
12069  *
12070  * @attr: attributes of the counter to create
12071  * @cpu: cpu in which the counter is bound
12072  * @task: task to profile (NULL for percpu)
12073  */
12074 struct perf_event *
12075 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
12076 				 struct task_struct *task,
12077 				 perf_overflow_handler_t overflow_handler,
12078 				 void *context)
12079 {
12080 	struct perf_event_context *ctx;
12081 	struct perf_event *event;
12082 	int err;
12083 
12084 	/*
12085 	 * Grouping is not supported for kernel events, neither is 'AUX',
12086 	 * make sure the caller's intentions are adjusted.
12087 	 */
12088 	if (attr->aux_output)
12089 		return ERR_PTR(-EINVAL);
12090 
12091 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
12092 				 overflow_handler, context, -1);
12093 	if (IS_ERR(event)) {
12094 		err = PTR_ERR(event);
12095 		goto err;
12096 	}
12097 
12098 	/* Mark owner so we could distinguish it from user events. */
12099 	event->owner = TASK_TOMBSTONE;
12100 
12101 	/*
12102 	 * Get the target context (task or percpu):
12103 	 */
12104 	ctx = find_get_context(event->pmu, task, event);
12105 	if (IS_ERR(ctx)) {
12106 		err = PTR_ERR(ctx);
12107 		goto err_free;
12108 	}
12109 
12110 	WARN_ON_ONCE(ctx->parent_ctx);
12111 	mutex_lock(&ctx->mutex);
12112 	if (ctx->task == TASK_TOMBSTONE) {
12113 		err = -ESRCH;
12114 		goto err_unlock;
12115 	}
12116 
12117 	if (!task) {
12118 		/*
12119 		 * Check if the @cpu we're creating an event for is online.
12120 		 *
12121 		 * We use the perf_cpu_context::ctx::mutex to serialize against
12122 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12123 		 */
12124 		struct perf_cpu_context *cpuctx =
12125 			container_of(ctx, struct perf_cpu_context, ctx);
12126 		if (!cpuctx->online) {
12127 			err = -ENODEV;
12128 			goto err_unlock;
12129 		}
12130 	}
12131 
12132 	if (!exclusive_event_installable(event, ctx)) {
12133 		err = -EBUSY;
12134 		goto err_unlock;
12135 	}
12136 
12137 	perf_install_in_context(ctx, event, event->cpu);
12138 	perf_unpin_context(ctx);
12139 	mutex_unlock(&ctx->mutex);
12140 
12141 	return event;
12142 
12143 err_unlock:
12144 	mutex_unlock(&ctx->mutex);
12145 	perf_unpin_context(ctx);
12146 	put_ctx(ctx);
12147 err_free:
12148 	free_event(event);
12149 err:
12150 	return ERR_PTR(err);
12151 }
12152 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
12153 
12154 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
12155 {
12156 	struct perf_event_context *src_ctx;
12157 	struct perf_event_context *dst_ctx;
12158 	struct perf_event *event, *tmp;
12159 	LIST_HEAD(events);
12160 
12161 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
12162 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
12163 
12164 	/*
12165 	 * See perf_event_ctx_lock() for comments on the details
12166 	 * of swizzling perf_event::ctx.
12167 	 */
12168 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
12169 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
12170 				 event_entry) {
12171 		perf_remove_from_context(event, 0);
12172 		unaccount_event_cpu(event, src_cpu);
12173 		put_ctx(src_ctx);
12174 		list_add(&event->migrate_entry, &events);
12175 	}
12176 
12177 	/*
12178 	 * Wait for the events to quiesce before re-instating them.
12179 	 */
12180 	synchronize_rcu();
12181 
12182 	/*
12183 	 * Re-instate events in 2 passes.
12184 	 *
12185 	 * Skip over group leaders and only install siblings on this first
12186 	 * pass, siblings will not get enabled without a leader, however a
12187 	 * leader will enable its siblings, even if those are still on the old
12188 	 * context.
12189 	 */
12190 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12191 		if (event->group_leader == event)
12192 			continue;
12193 
12194 		list_del(&event->migrate_entry);
12195 		if (event->state >= PERF_EVENT_STATE_OFF)
12196 			event->state = PERF_EVENT_STATE_INACTIVE;
12197 		account_event_cpu(event, dst_cpu);
12198 		perf_install_in_context(dst_ctx, event, dst_cpu);
12199 		get_ctx(dst_ctx);
12200 	}
12201 
12202 	/*
12203 	 * Once all the siblings are setup properly, install the group leaders
12204 	 * to make it go.
12205 	 */
12206 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12207 		list_del(&event->migrate_entry);
12208 		if (event->state >= PERF_EVENT_STATE_OFF)
12209 			event->state = PERF_EVENT_STATE_INACTIVE;
12210 		account_event_cpu(event, dst_cpu);
12211 		perf_install_in_context(dst_ctx, event, dst_cpu);
12212 		get_ctx(dst_ctx);
12213 	}
12214 	mutex_unlock(&dst_ctx->mutex);
12215 	mutex_unlock(&src_ctx->mutex);
12216 }
12217 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
12218 
12219 static void sync_child_event(struct perf_event *child_event,
12220 			       struct task_struct *child)
12221 {
12222 	struct perf_event *parent_event = child_event->parent;
12223 	u64 child_val;
12224 
12225 	if (child_event->attr.inherit_stat)
12226 		perf_event_read_event(child_event, child);
12227 
12228 	child_val = perf_event_count(child_event);
12229 
12230 	/*
12231 	 * Add back the child's count to the parent's count:
12232 	 */
12233 	atomic64_add(child_val, &parent_event->child_count);
12234 	atomic64_add(child_event->total_time_enabled,
12235 		     &parent_event->child_total_time_enabled);
12236 	atomic64_add(child_event->total_time_running,
12237 		     &parent_event->child_total_time_running);
12238 }
12239 
12240 static void
12241 perf_event_exit_event(struct perf_event *child_event,
12242 		      struct perf_event_context *child_ctx,
12243 		      struct task_struct *child)
12244 {
12245 	struct perf_event *parent_event = child_event->parent;
12246 
12247 	/*
12248 	 * Do not destroy the 'original' grouping; because of the context
12249 	 * switch optimization the original events could've ended up in a
12250 	 * random child task.
12251 	 *
12252 	 * If we were to destroy the original group, all group related
12253 	 * operations would cease to function properly after this random
12254 	 * child dies.
12255 	 *
12256 	 * Do destroy all inherited groups, we don't care about those
12257 	 * and being thorough is better.
12258 	 */
12259 	raw_spin_lock_irq(&child_ctx->lock);
12260 	WARN_ON_ONCE(child_ctx->is_active);
12261 
12262 	if (parent_event)
12263 		perf_group_detach(child_event);
12264 	list_del_event(child_event, child_ctx);
12265 	perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
12266 	raw_spin_unlock_irq(&child_ctx->lock);
12267 
12268 	/*
12269 	 * Parent events are governed by their filedesc, retain them.
12270 	 */
12271 	if (!parent_event) {
12272 		perf_event_wakeup(child_event);
12273 		return;
12274 	}
12275 	/*
12276 	 * Child events can be cleaned up.
12277 	 */
12278 
12279 	sync_child_event(child_event, child);
12280 
12281 	/*
12282 	 * Remove this event from the parent's list
12283 	 */
12284 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
12285 	mutex_lock(&parent_event->child_mutex);
12286 	list_del_init(&child_event->child_list);
12287 	mutex_unlock(&parent_event->child_mutex);
12288 
12289 	/*
12290 	 * Kick perf_poll() for is_event_hup().
12291 	 */
12292 	perf_event_wakeup(parent_event);
12293 	free_event(child_event);
12294 	put_event(parent_event);
12295 }
12296 
12297 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
12298 {
12299 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
12300 	struct perf_event *child_event, *next;
12301 
12302 	WARN_ON_ONCE(child != current);
12303 
12304 	child_ctx = perf_pin_task_context(child, ctxn);
12305 	if (!child_ctx)
12306 		return;
12307 
12308 	/*
12309 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
12310 	 * ctx::mutex over the entire thing. This serializes against almost
12311 	 * everything that wants to access the ctx.
12312 	 *
12313 	 * The exception is sys_perf_event_open() /
12314 	 * perf_event_create_kernel_count() which does find_get_context()
12315 	 * without ctx::mutex (it cannot because of the move_group double mutex
12316 	 * lock thing). See the comments in perf_install_in_context().
12317 	 */
12318 	mutex_lock(&child_ctx->mutex);
12319 
12320 	/*
12321 	 * In a single ctx::lock section, de-schedule the events and detach the
12322 	 * context from the task such that we cannot ever get it scheduled back
12323 	 * in.
12324 	 */
12325 	raw_spin_lock_irq(&child_ctx->lock);
12326 	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
12327 
12328 	/*
12329 	 * Now that the context is inactive, destroy the task <-> ctx relation
12330 	 * and mark the context dead.
12331 	 */
12332 	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
12333 	put_ctx(child_ctx); /* cannot be last */
12334 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
12335 	put_task_struct(current); /* cannot be last */
12336 
12337 	clone_ctx = unclone_ctx(child_ctx);
12338 	raw_spin_unlock_irq(&child_ctx->lock);
12339 
12340 	if (clone_ctx)
12341 		put_ctx(clone_ctx);
12342 
12343 	/*
12344 	 * Report the task dead after unscheduling the events so that we
12345 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
12346 	 * get a few PERF_RECORD_READ events.
12347 	 */
12348 	perf_event_task(child, child_ctx, 0);
12349 
12350 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
12351 		perf_event_exit_event(child_event, child_ctx, child);
12352 
12353 	mutex_unlock(&child_ctx->mutex);
12354 
12355 	put_ctx(child_ctx);
12356 }
12357 
12358 /*
12359  * When a child task exits, feed back event values to parent events.
12360  *
12361  * Can be called with exec_update_mutex held when called from
12362  * setup_new_exec().
12363  */
12364 void perf_event_exit_task(struct task_struct *child)
12365 {
12366 	struct perf_event *event, *tmp;
12367 	int ctxn;
12368 
12369 	mutex_lock(&child->perf_event_mutex);
12370 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
12371 				 owner_entry) {
12372 		list_del_init(&event->owner_entry);
12373 
12374 		/*
12375 		 * Ensure the list deletion is visible before we clear
12376 		 * the owner, closes a race against perf_release() where
12377 		 * we need to serialize on the owner->perf_event_mutex.
12378 		 */
12379 		smp_store_release(&event->owner, NULL);
12380 	}
12381 	mutex_unlock(&child->perf_event_mutex);
12382 
12383 	for_each_task_context_nr(ctxn)
12384 		perf_event_exit_task_context(child, ctxn);
12385 
12386 	/*
12387 	 * The perf_event_exit_task_context calls perf_event_task
12388 	 * with child's task_ctx, which generates EXIT events for
12389 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
12390 	 * At this point we need to send EXIT events to cpu contexts.
12391 	 */
12392 	perf_event_task(child, NULL, 0);
12393 }
12394 
12395 static void perf_free_event(struct perf_event *event,
12396 			    struct perf_event_context *ctx)
12397 {
12398 	struct perf_event *parent = event->parent;
12399 
12400 	if (WARN_ON_ONCE(!parent))
12401 		return;
12402 
12403 	mutex_lock(&parent->child_mutex);
12404 	list_del_init(&event->child_list);
12405 	mutex_unlock(&parent->child_mutex);
12406 
12407 	put_event(parent);
12408 
12409 	raw_spin_lock_irq(&ctx->lock);
12410 	perf_group_detach(event);
12411 	list_del_event(event, ctx);
12412 	raw_spin_unlock_irq(&ctx->lock);
12413 	free_event(event);
12414 }
12415 
12416 /*
12417  * Free a context as created by inheritance by perf_event_init_task() below,
12418  * used by fork() in case of fail.
12419  *
12420  * Even though the task has never lived, the context and events have been
12421  * exposed through the child_list, so we must take care tearing it all down.
12422  */
12423 void perf_event_free_task(struct task_struct *task)
12424 {
12425 	struct perf_event_context *ctx;
12426 	struct perf_event *event, *tmp;
12427 	int ctxn;
12428 
12429 	for_each_task_context_nr(ctxn) {
12430 		ctx = task->perf_event_ctxp[ctxn];
12431 		if (!ctx)
12432 			continue;
12433 
12434 		mutex_lock(&ctx->mutex);
12435 		raw_spin_lock_irq(&ctx->lock);
12436 		/*
12437 		 * Destroy the task <-> ctx relation and mark the context dead.
12438 		 *
12439 		 * This is important because even though the task hasn't been
12440 		 * exposed yet the context has been (through child_list).
12441 		 */
12442 		RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
12443 		WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
12444 		put_task_struct(task); /* cannot be last */
12445 		raw_spin_unlock_irq(&ctx->lock);
12446 
12447 		list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
12448 			perf_free_event(event, ctx);
12449 
12450 		mutex_unlock(&ctx->mutex);
12451 
12452 		/*
12453 		 * perf_event_release_kernel() could've stolen some of our
12454 		 * child events and still have them on its free_list. In that
12455 		 * case we must wait for these events to have been freed (in
12456 		 * particular all their references to this task must've been
12457 		 * dropped).
12458 		 *
12459 		 * Without this copy_process() will unconditionally free this
12460 		 * task (irrespective of its reference count) and
12461 		 * _free_event()'s put_task_struct(event->hw.target) will be a
12462 		 * use-after-free.
12463 		 *
12464 		 * Wait for all events to drop their context reference.
12465 		 */
12466 		wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
12467 		put_ctx(ctx); /* must be last */
12468 	}
12469 }
12470 
12471 void perf_event_delayed_put(struct task_struct *task)
12472 {
12473 	int ctxn;
12474 
12475 	for_each_task_context_nr(ctxn)
12476 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
12477 }
12478 
12479 struct file *perf_event_get(unsigned int fd)
12480 {
12481 	struct file *file = fget(fd);
12482 	if (!file)
12483 		return ERR_PTR(-EBADF);
12484 
12485 	if (file->f_op != &perf_fops) {
12486 		fput(file);
12487 		return ERR_PTR(-EBADF);
12488 	}
12489 
12490 	return file;
12491 }
12492 
12493 const struct perf_event *perf_get_event(struct file *file)
12494 {
12495 	if (file->f_op != &perf_fops)
12496 		return ERR_PTR(-EINVAL);
12497 
12498 	return file->private_data;
12499 }
12500 
12501 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
12502 {
12503 	if (!event)
12504 		return ERR_PTR(-EINVAL);
12505 
12506 	return &event->attr;
12507 }
12508 
12509 /*
12510  * Inherit an event from parent task to child task.
12511  *
12512  * Returns:
12513  *  - valid pointer on success
12514  *  - NULL for orphaned events
12515  *  - IS_ERR() on error
12516  */
12517 static struct perf_event *
12518 inherit_event(struct perf_event *parent_event,
12519 	      struct task_struct *parent,
12520 	      struct perf_event_context *parent_ctx,
12521 	      struct task_struct *child,
12522 	      struct perf_event *group_leader,
12523 	      struct perf_event_context *child_ctx)
12524 {
12525 	enum perf_event_state parent_state = parent_event->state;
12526 	struct perf_event *child_event;
12527 	unsigned long flags;
12528 
12529 	/*
12530 	 * Instead of creating recursive hierarchies of events,
12531 	 * we link inherited events back to the original parent,
12532 	 * which has a filp for sure, which we use as the reference
12533 	 * count:
12534 	 */
12535 	if (parent_event->parent)
12536 		parent_event = parent_event->parent;
12537 
12538 	child_event = perf_event_alloc(&parent_event->attr,
12539 					   parent_event->cpu,
12540 					   child,
12541 					   group_leader, parent_event,
12542 					   NULL, NULL, -1);
12543 	if (IS_ERR(child_event))
12544 		return child_event;
12545 
12546 
12547 	if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
12548 	    !child_ctx->task_ctx_data) {
12549 		struct pmu *pmu = child_event->pmu;
12550 
12551 		child_ctx->task_ctx_data = alloc_task_ctx_data(pmu);
12552 		if (!child_ctx->task_ctx_data) {
12553 			free_event(child_event);
12554 			return ERR_PTR(-ENOMEM);
12555 		}
12556 	}
12557 
12558 	/*
12559 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
12560 	 * must be under the same lock in order to serialize against
12561 	 * perf_event_release_kernel(), such that either we must observe
12562 	 * is_orphaned_event() or they will observe us on the child_list.
12563 	 */
12564 	mutex_lock(&parent_event->child_mutex);
12565 	if (is_orphaned_event(parent_event) ||
12566 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
12567 		mutex_unlock(&parent_event->child_mutex);
12568 		/* task_ctx_data is freed with child_ctx */
12569 		free_event(child_event);
12570 		return NULL;
12571 	}
12572 
12573 	get_ctx(child_ctx);
12574 
12575 	/*
12576 	 * Make the child state follow the state of the parent event,
12577 	 * not its attr.disabled bit.  We hold the parent's mutex,
12578 	 * so we won't race with perf_event_{en, dis}able_family.
12579 	 */
12580 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
12581 		child_event->state = PERF_EVENT_STATE_INACTIVE;
12582 	else
12583 		child_event->state = PERF_EVENT_STATE_OFF;
12584 
12585 	if (parent_event->attr.freq) {
12586 		u64 sample_period = parent_event->hw.sample_period;
12587 		struct hw_perf_event *hwc = &child_event->hw;
12588 
12589 		hwc->sample_period = sample_period;
12590 		hwc->last_period   = sample_period;
12591 
12592 		local64_set(&hwc->period_left, sample_period);
12593 	}
12594 
12595 	child_event->ctx = child_ctx;
12596 	child_event->overflow_handler = parent_event->overflow_handler;
12597 	child_event->overflow_handler_context
12598 		= parent_event->overflow_handler_context;
12599 
12600 	/*
12601 	 * Precalculate sample_data sizes
12602 	 */
12603 	perf_event__header_size(child_event);
12604 	perf_event__id_header_size(child_event);
12605 
12606 	/*
12607 	 * Link it up in the child's context:
12608 	 */
12609 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
12610 	add_event_to_ctx(child_event, child_ctx);
12611 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
12612 
12613 	/*
12614 	 * Link this into the parent event's child list
12615 	 */
12616 	list_add_tail(&child_event->child_list, &parent_event->child_list);
12617 	mutex_unlock(&parent_event->child_mutex);
12618 
12619 	return child_event;
12620 }
12621 
12622 /*
12623  * Inherits an event group.
12624  *
12625  * This will quietly suppress orphaned events; !inherit_event() is not an error.
12626  * This matches with perf_event_release_kernel() removing all child events.
12627  *
12628  * Returns:
12629  *  - 0 on success
12630  *  - <0 on error
12631  */
12632 static int inherit_group(struct perf_event *parent_event,
12633 	      struct task_struct *parent,
12634 	      struct perf_event_context *parent_ctx,
12635 	      struct task_struct *child,
12636 	      struct perf_event_context *child_ctx)
12637 {
12638 	struct perf_event *leader;
12639 	struct perf_event *sub;
12640 	struct perf_event *child_ctr;
12641 
12642 	leader = inherit_event(parent_event, parent, parent_ctx,
12643 				 child, NULL, child_ctx);
12644 	if (IS_ERR(leader))
12645 		return PTR_ERR(leader);
12646 	/*
12647 	 * @leader can be NULL here because of is_orphaned_event(). In this
12648 	 * case inherit_event() will create individual events, similar to what
12649 	 * perf_group_detach() would do anyway.
12650 	 */
12651 	for_each_sibling_event(sub, parent_event) {
12652 		child_ctr = inherit_event(sub, parent, parent_ctx,
12653 					    child, leader, child_ctx);
12654 		if (IS_ERR(child_ctr))
12655 			return PTR_ERR(child_ctr);
12656 
12657 		if (sub->aux_event == parent_event && child_ctr &&
12658 		    !perf_get_aux_event(child_ctr, leader))
12659 			return -EINVAL;
12660 	}
12661 	return 0;
12662 }
12663 
12664 /*
12665  * Creates the child task context and tries to inherit the event-group.
12666  *
12667  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
12668  * inherited_all set when we 'fail' to inherit an orphaned event; this is
12669  * consistent with perf_event_release_kernel() removing all child events.
12670  *
12671  * Returns:
12672  *  - 0 on success
12673  *  - <0 on error
12674  */
12675 static int
12676 inherit_task_group(struct perf_event *event, struct task_struct *parent,
12677 		   struct perf_event_context *parent_ctx,
12678 		   struct task_struct *child, int ctxn,
12679 		   int *inherited_all)
12680 {
12681 	int ret;
12682 	struct perf_event_context *child_ctx;
12683 
12684 	if (!event->attr.inherit) {
12685 		*inherited_all = 0;
12686 		return 0;
12687 	}
12688 
12689 	child_ctx = child->perf_event_ctxp[ctxn];
12690 	if (!child_ctx) {
12691 		/*
12692 		 * This is executed from the parent task context, so
12693 		 * inherit events that have been marked for cloning.
12694 		 * First allocate and initialize a context for the
12695 		 * child.
12696 		 */
12697 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
12698 		if (!child_ctx)
12699 			return -ENOMEM;
12700 
12701 		child->perf_event_ctxp[ctxn] = child_ctx;
12702 	}
12703 
12704 	ret = inherit_group(event, parent, parent_ctx,
12705 			    child, child_ctx);
12706 
12707 	if (ret)
12708 		*inherited_all = 0;
12709 
12710 	return ret;
12711 }
12712 
12713 /*
12714  * Initialize the perf_event context in task_struct
12715  */
12716 static int perf_event_init_context(struct task_struct *child, int ctxn)
12717 {
12718 	struct perf_event_context *child_ctx, *parent_ctx;
12719 	struct perf_event_context *cloned_ctx;
12720 	struct perf_event *event;
12721 	struct task_struct *parent = current;
12722 	int inherited_all = 1;
12723 	unsigned long flags;
12724 	int ret = 0;
12725 
12726 	if (likely(!parent->perf_event_ctxp[ctxn]))
12727 		return 0;
12728 
12729 	/*
12730 	 * If the parent's context is a clone, pin it so it won't get
12731 	 * swapped under us.
12732 	 */
12733 	parent_ctx = perf_pin_task_context(parent, ctxn);
12734 	if (!parent_ctx)
12735 		return 0;
12736 
12737 	/*
12738 	 * No need to check if parent_ctx != NULL here; since we saw
12739 	 * it non-NULL earlier, the only reason for it to become NULL
12740 	 * is if we exit, and since we're currently in the middle of
12741 	 * a fork we can't be exiting at the same time.
12742 	 */
12743 
12744 	/*
12745 	 * Lock the parent list. No need to lock the child - not PID
12746 	 * hashed yet and not running, so nobody can access it.
12747 	 */
12748 	mutex_lock(&parent_ctx->mutex);
12749 
12750 	/*
12751 	 * We dont have to disable NMIs - we are only looking at
12752 	 * the list, not manipulating it:
12753 	 */
12754 	perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
12755 		ret = inherit_task_group(event, parent, parent_ctx,
12756 					 child, ctxn, &inherited_all);
12757 		if (ret)
12758 			goto out_unlock;
12759 	}
12760 
12761 	/*
12762 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
12763 	 * to allocations, but we need to prevent rotation because
12764 	 * rotate_ctx() will change the list from interrupt context.
12765 	 */
12766 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
12767 	parent_ctx->rotate_disable = 1;
12768 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
12769 
12770 	perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
12771 		ret = inherit_task_group(event, parent, parent_ctx,
12772 					 child, ctxn, &inherited_all);
12773 		if (ret)
12774 			goto out_unlock;
12775 	}
12776 
12777 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
12778 	parent_ctx->rotate_disable = 0;
12779 
12780 	child_ctx = child->perf_event_ctxp[ctxn];
12781 
12782 	if (child_ctx && inherited_all) {
12783 		/*
12784 		 * Mark the child context as a clone of the parent
12785 		 * context, or of whatever the parent is a clone of.
12786 		 *
12787 		 * Note that if the parent is a clone, the holding of
12788 		 * parent_ctx->lock avoids it from being uncloned.
12789 		 */
12790 		cloned_ctx = parent_ctx->parent_ctx;
12791 		if (cloned_ctx) {
12792 			child_ctx->parent_ctx = cloned_ctx;
12793 			child_ctx->parent_gen = parent_ctx->parent_gen;
12794 		} else {
12795 			child_ctx->parent_ctx = parent_ctx;
12796 			child_ctx->parent_gen = parent_ctx->generation;
12797 		}
12798 		get_ctx(child_ctx->parent_ctx);
12799 	}
12800 
12801 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
12802 out_unlock:
12803 	mutex_unlock(&parent_ctx->mutex);
12804 
12805 	perf_unpin_context(parent_ctx);
12806 	put_ctx(parent_ctx);
12807 
12808 	return ret;
12809 }
12810 
12811 /*
12812  * Initialize the perf_event context in task_struct
12813  */
12814 int perf_event_init_task(struct task_struct *child)
12815 {
12816 	int ctxn, ret;
12817 
12818 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
12819 	mutex_init(&child->perf_event_mutex);
12820 	INIT_LIST_HEAD(&child->perf_event_list);
12821 
12822 	for_each_task_context_nr(ctxn) {
12823 		ret = perf_event_init_context(child, ctxn);
12824 		if (ret) {
12825 			perf_event_free_task(child);
12826 			return ret;
12827 		}
12828 	}
12829 
12830 	return 0;
12831 }
12832 
12833 static void __init perf_event_init_all_cpus(void)
12834 {
12835 	struct swevent_htable *swhash;
12836 	int cpu;
12837 
12838 	zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
12839 
12840 	for_each_possible_cpu(cpu) {
12841 		swhash = &per_cpu(swevent_htable, cpu);
12842 		mutex_init(&swhash->hlist_mutex);
12843 		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
12844 
12845 		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
12846 		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
12847 
12848 #ifdef CONFIG_CGROUP_PERF
12849 		INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
12850 #endif
12851 	}
12852 }
12853 
12854 static void perf_swevent_init_cpu(unsigned int cpu)
12855 {
12856 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
12857 
12858 	mutex_lock(&swhash->hlist_mutex);
12859 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
12860 		struct swevent_hlist *hlist;
12861 
12862 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
12863 		WARN_ON(!hlist);
12864 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
12865 	}
12866 	mutex_unlock(&swhash->hlist_mutex);
12867 }
12868 
12869 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
12870 static void __perf_event_exit_context(void *__info)
12871 {
12872 	struct perf_event_context *ctx = __info;
12873 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
12874 	struct perf_event *event;
12875 
12876 	raw_spin_lock(&ctx->lock);
12877 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
12878 	list_for_each_entry(event, &ctx->event_list, event_entry)
12879 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
12880 	raw_spin_unlock(&ctx->lock);
12881 }
12882 
12883 static void perf_event_exit_cpu_context(int cpu)
12884 {
12885 	struct perf_cpu_context *cpuctx;
12886 	struct perf_event_context *ctx;
12887 	struct pmu *pmu;
12888 
12889 	mutex_lock(&pmus_lock);
12890 	list_for_each_entry(pmu, &pmus, entry) {
12891 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
12892 		ctx = &cpuctx->ctx;
12893 
12894 		mutex_lock(&ctx->mutex);
12895 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
12896 		cpuctx->online = 0;
12897 		mutex_unlock(&ctx->mutex);
12898 	}
12899 	cpumask_clear_cpu(cpu, perf_online_mask);
12900 	mutex_unlock(&pmus_lock);
12901 }
12902 #else
12903 
12904 static void perf_event_exit_cpu_context(int cpu) { }
12905 
12906 #endif
12907 
12908 int perf_event_init_cpu(unsigned int cpu)
12909 {
12910 	struct perf_cpu_context *cpuctx;
12911 	struct perf_event_context *ctx;
12912 	struct pmu *pmu;
12913 
12914 	perf_swevent_init_cpu(cpu);
12915 
12916 	mutex_lock(&pmus_lock);
12917 	cpumask_set_cpu(cpu, perf_online_mask);
12918 	list_for_each_entry(pmu, &pmus, entry) {
12919 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
12920 		ctx = &cpuctx->ctx;
12921 
12922 		mutex_lock(&ctx->mutex);
12923 		cpuctx->online = 1;
12924 		mutex_unlock(&ctx->mutex);
12925 	}
12926 	mutex_unlock(&pmus_lock);
12927 
12928 	return 0;
12929 }
12930 
12931 int perf_event_exit_cpu(unsigned int cpu)
12932 {
12933 	perf_event_exit_cpu_context(cpu);
12934 	return 0;
12935 }
12936 
12937 static int
12938 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
12939 {
12940 	int cpu;
12941 
12942 	for_each_online_cpu(cpu)
12943 		perf_event_exit_cpu(cpu);
12944 
12945 	return NOTIFY_OK;
12946 }
12947 
12948 /*
12949  * Run the perf reboot notifier at the very last possible moment so that
12950  * the generic watchdog code runs as long as possible.
12951  */
12952 static struct notifier_block perf_reboot_notifier = {
12953 	.notifier_call = perf_reboot,
12954 	.priority = INT_MIN,
12955 };
12956 
12957 void __init perf_event_init(void)
12958 {
12959 	int ret;
12960 
12961 	idr_init(&pmu_idr);
12962 
12963 	perf_event_init_all_cpus();
12964 	init_srcu_struct(&pmus_srcu);
12965 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
12966 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
12967 	perf_pmu_register(&perf_task_clock, NULL, -1);
12968 	perf_tp_register();
12969 	perf_event_init_cpu(smp_processor_id());
12970 	register_reboot_notifier(&perf_reboot_notifier);
12971 
12972 	ret = init_hw_breakpoint();
12973 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
12974 
12975 	/*
12976 	 * Build time assertion that we keep the data_head at the intended
12977 	 * location.  IOW, validation we got the __reserved[] size right.
12978 	 */
12979 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
12980 		     != 1024);
12981 }
12982 
12983 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
12984 			      char *page)
12985 {
12986 	struct perf_pmu_events_attr *pmu_attr =
12987 		container_of(attr, struct perf_pmu_events_attr, attr);
12988 
12989 	if (pmu_attr->event_str)
12990 		return sprintf(page, "%s\n", pmu_attr->event_str);
12991 
12992 	return 0;
12993 }
12994 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
12995 
12996 static int __init perf_event_sysfs_init(void)
12997 {
12998 	struct pmu *pmu;
12999 	int ret;
13000 
13001 	mutex_lock(&pmus_lock);
13002 
13003 	ret = bus_register(&pmu_bus);
13004 	if (ret)
13005 		goto unlock;
13006 
13007 	list_for_each_entry(pmu, &pmus, entry) {
13008 		if (!pmu->name || pmu->type < 0)
13009 			continue;
13010 
13011 		ret = pmu_dev_alloc(pmu);
13012 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
13013 	}
13014 	pmu_bus_running = 1;
13015 	ret = 0;
13016 
13017 unlock:
13018 	mutex_unlock(&pmus_lock);
13019 
13020 	return ret;
13021 }
13022 device_initcall(perf_event_sysfs_init);
13023 
13024 #ifdef CONFIG_CGROUP_PERF
13025 static struct cgroup_subsys_state *
13026 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
13027 {
13028 	struct perf_cgroup *jc;
13029 
13030 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
13031 	if (!jc)
13032 		return ERR_PTR(-ENOMEM);
13033 
13034 	jc->info = alloc_percpu(struct perf_cgroup_info);
13035 	if (!jc->info) {
13036 		kfree(jc);
13037 		return ERR_PTR(-ENOMEM);
13038 	}
13039 
13040 	return &jc->css;
13041 }
13042 
13043 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
13044 {
13045 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
13046 
13047 	free_percpu(jc->info);
13048 	kfree(jc);
13049 }
13050 
13051 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
13052 {
13053 	perf_event_cgroup(css->cgroup);
13054 	return 0;
13055 }
13056 
13057 static int __perf_cgroup_move(void *info)
13058 {
13059 	struct task_struct *task = info;
13060 	rcu_read_lock();
13061 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
13062 	rcu_read_unlock();
13063 	return 0;
13064 }
13065 
13066 static void perf_cgroup_attach(struct cgroup_taskset *tset)
13067 {
13068 	struct task_struct *task;
13069 	struct cgroup_subsys_state *css;
13070 
13071 	cgroup_taskset_for_each(task, css, tset)
13072 		task_function_call(task, __perf_cgroup_move, task);
13073 }
13074 
13075 struct cgroup_subsys perf_event_cgrp_subsys = {
13076 	.css_alloc	= perf_cgroup_css_alloc,
13077 	.css_free	= perf_cgroup_css_free,
13078 	.css_online	= perf_cgroup_css_online,
13079 	.attach		= perf_cgroup_attach,
13080 	/*
13081 	 * Implicitly enable on dfl hierarchy so that perf events can
13082 	 * always be filtered by cgroup2 path as long as perf_event
13083 	 * controller is not mounted on a legacy hierarchy.
13084 	 */
13085 	.implicit_on_dfl = true,
13086 	.threaded	= true,
13087 };
13088 #endif /* CONFIG_CGROUP_PERF */
13089