1 /* 2 * Performance events core code: 3 * 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 8 * 9 * For licensing details see kernel-base/COPYING 10 */ 11 12 #include <linux/fs.h> 13 #include <linux/mm.h> 14 #include <linux/cpu.h> 15 #include <linux/smp.h> 16 #include <linux/idr.h> 17 #include <linux/file.h> 18 #include <linux/poll.h> 19 #include <linux/slab.h> 20 #include <linux/hash.h> 21 #include <linux/tick.h> 22 #include <linux/sysfs.h> 23 #include <linux/dcache.h> 24 #include <linux/percpu.h> 25 #include <linux/ptrace.h> 26 #include <linux/reboot.h> 27 #include <linux/vmstat.h> 28 #include <linux/device.h> 29 #include <linux/export.h> 30 #include <linux/vmalloc.h> 31 #include <linux/hardirq.h> 32 #include <linux/rculist.h> 33 #include <linux/uaccess.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/cgroup.h> 38 #include <linux/perf_event.h> 39 #include <linux/trace_events.h> 40 #include <linux/hw_breakpoint.h> 41 #include <linux/mm_types.h> 42 #include <linux/module.h> 43 #include <linux/mman.h> 44 #include <linux/compat.h> 45 #include <linux/bpf.h> 46 #include <linux/filter.h> 47 #include <linux/namei.h> 48 #include <linux/parser.h> 49 50 #include "internal.h" 51 52 #include <asm/irq_regs.h> 53 54 typedef int (*remote_function_f)(void *); 55 56 struct remote_function_call { 57 struct task_struct *p; 58 remote_function_f func; 59 void *info; 60 int ret; 61 }; 62 63 static void remote_function(void *data) 64 { 65 struct remote_function_call *tfc = data; 66 struct task_struct *p = tfc->p; 67 68 if (p) { 69 /* -EAGAIN */ 70 if (task_cpu(p) != smp_processor_id()) 71 return; 72 73 /* 74 * Now that we're on right CPU with IRQs disabled, we can test 75 * if we hit the right task without races. 76 */ 77 78 tfc->ret = -ESRCH; /* No such (running) process */ 79 if (p != current) 80 return; 81 } 82 83 tfc->ret = tfc->func(tfc->info); 84 } 85 86 /** 87 * task_function_call - call a function on the cpu on which a task runs 88 * @p: the task to evaluate 89 * @func: the function to be called 90 * @info: the function call argument 91 * 92 * Calls the function @func when the task is currently running. This might 93 * be on the current CPU, which just calls the function directly 94 * 95 * returns: @func return value, or 96 * -ESRCH - when the process isn't running 97 * -EAGAIN - when the process moved away 98 */ 99 static int 100 task_function_call(struct task_struct *p, remote_function_f func, void *info) 101 { 102 struct remote_function_call data = { 103 .p = p, 104 .func = func, 105 .info = info, 106 .ret = -EAGAIN, 107 }; 108 int ret; 109 110 do { 111 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1); 112 if (!ret) 113 ret = data.ret; 114 } while (ret == -EAGAIN); 115 116 return ret; 117 } 118 119 /** 120 * cpu_function_call - call a function on the cpu 121 * @func: the function to be called 122 * @info: the function call argument 123 * 124 * Calls the function @func on the remote cpu. 125 * 126 * returns: @func return value or -ENXIO when the cpu is offline 127 */ 128 static int cpu_function_call(int cpu, remote_function_f func, void *info) 129 { 130 struct remote_function_call data = { 131 .p = NULL, 132 .func = func, 133 .info = info, 134 .ret = -ENXIO, /* No such CPU */ 135 }; 136 137 smp_call_function_single(cpu, remote_function, &data, 1); 138 139 return data.ret; 140 } 141 142 static inline struct perf_cpu_context * 143 __get_cpu_context(struct perf_event_context *ctx) 144 { 145 return this_cpu_ptr(ctx->pmu->pmu_cpu_context); 146 } 147 148 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 149 struct perf_event_context *ctx) 150 { 151 raw_spin_lock(&cpuctx->ctx.lock); 152 if (ctx) 153 raw_spin_lock(&ctx->lock); 154 } 155 156 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 157 struct perf_event_context *ctx) 158 { 159 if (ctx) 160 raw_spin_unlock(&ctx->lock); 161 raw_spin_unlock(&cpuctx->ctx.lock); 162 } 163 164 #define TASK_TOMBSTONE ((void *)-1L) 165 166 static bool is_kernel_event(struct perf_event *event) 167 { 168 return READ_ONCE(event->owner) == TASK_TOMBSTONE; 169 } 170 171 /* 172 * On task ctx scheduling... 173 * 174 * When !ctx->nr_events a task context will not be scheduled. This means 175 * we can disable the scheduler hooks (for performance) without leaving 176 * pending task ctx state. 177 * 178 * This however results in two special cases: 179 * 180 * - removing the last event from a task ctx; this is relatively straight 181 * forward and is done in __perf_remove_from_context. 182 * 183 * - adding the first event to a task ctx; this is tricky because we cannot 184 * rely on ctx->is_active and therefore cannot use event_function_call(). 185 * See perf_install_in_context(). 186 * 187 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set. 188 */ 189 190 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *, 191 struct perf_event_context *, void *); 192 193 struct event_function_struct { 194 struct perf_event *event; 195 event_f func; 196 void *data; 197 }; 198 199 static int event_function(void *info) 200 { 201 struct event_function_struct *efs = info; 202 struct perf_event *event = efs->event; 203 struct perf_event_context *ctx = event->ctx; 204 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 205 struct perf_event_context *task_ctx = cpuctx->task_ctx; 206 int ret = 0; 207 208 WARN_ON_ONCE(!irqs_disabled()); 209 210 perf_ctx_lock(cpuctx, task_ctx); 211 /* 212 * Since we do the IPI call without holding ctx->lock things can have 213 * changed, double check we hit the task we set out to hit. 214 */ 215 if (ctx->task) { 216 if (ctx->task != current) { 217 ret = -ESRCH; 218 goto unlock; 219 } 220 221 /* 222 * We only use event_function_call() on established contexts, 223 * and event_function() is only ever called when active (or 224 * rather, we'll have bailed in task_function_call() or the 225 * above ctx->task != current test), therefore we must have 226 * ctx->is_active here. 227 */ 228 WARN_ON_ONCE(!ctx->is_active); 229 /* 230 * And since we have ctx->is_active, cpuctx->task_ctx must 231 * match. 232 */ 233 WARN_ON_ONCE(task_ctx != ctx); 234 } else { 235 WARN_ON_ONCE(&cpuctx->ctx != ctx); 236 } 237 238 efs->func(event, cpuctx, ctx, efs->data); 239 unlock: 240 perf_ctx_unlock(cpuctx, task_ctx); 241 242 return ret; 243 } 244 245 static void event_function_call(struct perf_event *event, event_f func, void *data) 246 { 247 struct perf_event_context *ctx = event->ctx; 248 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */ 249 struct event_function_struct efs = { 250 .event = event, 251 .func = func, 252 .data = data, 253 }; 254 255 if (!event->parent) { 256 /* 257 * If this is a !child event, we must hold ctx::mutex to 258 * stabilize the the event->ctx relation. See 259 * perf_event_ctx_lock(). 260 */ 261 lockdep_assert_held(&ctx->mutex); 262 } 263 264 if (!task) { 265 cpu_function_call(event->cpu, event_function, &efs); 266 return; 267 } 268 269 if (task == TASK_TOMBSTONE) 270 return; 271 272 again: 273 if (!task_function_call(task, event_function, &efs)) 274 return; 275 276 raw_spin_lock_irq(&ctx->lock); 277 /* 278 * Reload the task pointer, it might have been changed by 279 * a concurrent perf_event_context_sched_out(). 280 */ 281 task = ctx->task; 282 if (task == TASK_TOMBSTONE) { 283 raw_spin_unlock_irq(&ctx->lock); 284 return; 285 } 286 if (ctx->is_active) { 287 raw_spin_unlock_irq(&ctx->lock); 288 goto again; 289 } 290 func(event, NULL, ctx, data); 291 raw_spin_unlock_irq(&ctx->lock); 292 } 293 294 /* 295 * Similar to event_function_call() + event_function(), but hard assumes IRQs 296 * are already disabled and we're on the right CPU. 297 */ 298 static void event_function_local(struct perf_event *event, event_f func, void *data) 299 { 300 struct perf_event_context *ctx = event->ctx; 301 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 302 struct task_struct *task = READ_ONCE(ctx->task); 303 struct perf_event_context *task_ctx = NULL; 304 305 WARN_ON_ONCE(!irqs_disabled()); 306 307 if (task) { 308 if (task == TASK_TOMBSTONE) 309 return; 310 311 task_ctx = ctx; 312 } 313 314 perf_ctx_lock(cpuctx, task_ctx); 315 316 task = ctx->task; 317 if (task == TASK_TOMBSTONE) 318 goto unlock; 319 320 if (task) { 321 /* 322 * We must be either inactive or active and the right task, 323 * otherwise we're screwed, since we cannot IPI to somewhere 324 * else. 325 */ 326 if (ctx->is_active) { 327 if (WARN_ON_ONCE(task != current)) 328 goto unlock; 329 330 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx)) 331 goto unlock; 332 } 333 } else { 334 WARN_ON_ONCE(&cpuctx->ctx != ctx); 335 } 336 337 func(event, cpuctx, ctx, data); 338 unlock: 339 perf_ctx_unlock(cpuctx, task_ctx); 340 } 341 342 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 343 PERF_FLAG_FD_OUTPUT |\ 344 PERF_FLAG_PID_CGROUP |\ 345 PERF_FLAG_FD_CLOEXEC) 346 347 /* 348 * branch priv levels that need permission checks 349 */ 350 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 351 (PERF_SAMPLE_BRANCH_KERNEL |\ 352 PERF_SAMPLE_BRANCH_HV) 353 354 enum event_type_t { 355 EVENT_FLEXIBLE = 0x1, 356 EVENT_PINNED = 0x2, 357 EVENT_TIME = 0x4, 358 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 359 }; 360 361 /* 362 * perf_sched_events : >0 events exist 363 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu 364 */ 365 366 static void perf_sched_delayed(struct work_struct *work); 367 DEFINE_STATIC_KEY_FALSE(perf_sched_events); 368 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed); 369 static DEFINE_MUTEX(perf_sched_mutex); 370 static atomic_t perf_sched_count; 371 372 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); 373 static DEFINE_PER_CPU(int, perf_sched_cb_usages); 374 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events); 375 376 static atomic_t nr_mmap_events __read_mostly; 377 static atomic_t nr_comm_events __read_mostly; 378 static atomic_t nr_task_events __read_mostly; 379 static atomic_t nr_freq_events __read_mostly; 380 static atomic_t nr_switch_events __read_mostly; 381 382 static LIST_HEAD(pmus); 383 static DEFINE_MUTEX(pmus_lock); 384 static struct srcu_struct pmus_srcu; 385 386 /* 387 * perf event paranoia level: 388 * -1 - not paranoid at all 389 * 0 - disallow raw tracepoint access for unpriv 390 * 1 - disallow cpu events for unpriv 391 * 2 - disallow kernel profiling for unpriv 392 */ 393 int sysctl_perf_event_paranoid __read_mostly = 2; 394 395 /* Minimum for 512 kiB + 1 user control page */ 396 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 397 398 /* 399 * max perf event sample rate 400 */ 401 #define DEFAULT_MAX_SAMPLE_RATE 100000 402 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 403 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 404 405 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 406 407 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 408 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 409 410 static int perf_sample_allowed_ns __read_mostly = 411 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 412 413 static void update_perf_cpu_limits(void) 414 { 415 u64 tmp = perf_sample_period_ns; 416 417 tmp *= sysctl_perf_cpu_time_max_percent; 418 tmp = div_u64(tmp, 100); 419 if (!tmp) 420 tmp = 1; 421 422 WRITE_ONCE(perf_sample_allowed_ns, tmp); 423 } 424 425 static int perf_rotate_context(struct perf_cpu_context *cpuctx); 426 427 int perf_proc_update_handler(struct ctl_table *table, int write, 428 void __user *buffer, size_t *lenp, 429 loff_t *ppos) 430 { 431 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 432 433 if (ret || !write) 434 return ret; 435 436 /* 437 * If throttling is disabled don't allow the write: 438 */ 439 if (sysctl_perf_cpu_time_max_percent == 100 || 440 sysctl_perf_cpu_time_max_percent == 0) 441 return -EINVAL; 442 443 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 444 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 445 update_perf_cpu_limits(); 446 447 return 0; 448 } 449 450 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 451 452 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 453 void __user *buffer, size_t *lenp, 454 loff_t *ppos) 455 { 456 int ret = proc_dointvec(table, write, buffer, lenp, ppos); 457 458 if (ret || !write) 459 return ret; 460 461 if (sysctl_perf_cpu_time_max_percent == 100 || 462 sysctl_perf_cpu_time_max_percent == 0) { 463 printk(KERN_WARNING 464 "perf: Dynamic interrupt throttling disabled, can hang your system!\n"); 465 WRITE_ONCE(perf_sample_allowed_ns, 0); 466 } else { 467 update_perf_cpu_limits(); 468 } 469 470 return 0; 471 } 472 473 /* 474 * perf samples are done in some very critical code paths (NMIs). 475 * If they take too much CPU time, the system can lock up and not 476 * get any real work done. This will drop the sample rate when 477 * we detect that events are taking too long. 478 */ 479 #define NR_ACCUMULATED_SAMPLES 128 480 static DEFINE_PER_CPU(u64, running_sample_length); 481 482 static u64 __report_avg; 483 static u64 __report_allowed; 484 485 static void perf_duration_warn(struct irq_work *w) 486 { 487 printk_ratelimited(KERN_INFO 488 "perf: interrupt took too long (%lld > %lld), lowering " 489 "kernel.perf_event_max_sample_rate to %d\n", 490 __report_avg, __report_allowed, 491 sysctl_perf_event_sample_rate); 492 } 493 494 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 495 496 void perf_sample_event_took(u64 sample_len_ns) 497 { 498 u64 max_len = READ_ONCE(perf_sample_allowed_ns); 499 u64 running_len; 500 u64 avg_len; 501 u32 max; 502 503 if (max_len == 0) 504 return; 505 506 /* Decay the counter by 1 average sample. */ 507 running_len = __this_cpu_read(running_sample_length); 508 running_len -= running_len/NR_ACCUMULATED_SAMPLES; 509 running_len += sample_len_ns; 510 __this_cpu_write(running_sample_length, running_len); 511 512 /* 513 * Note: this will be biased artifically low until we have 514 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 515 * from having to maintain a count. 516 */ 517 avg_len = running_len/NR_ACCUMULATED_SAMPLES; 518 if (avg_len <= max_len) 519 return; 520 521 __report_avg = avg_len; 522 __report_allowed = max_len; 523 524 /* 525 * Compute a throttle threshold 25% below the current duration. 526 */ 527 avg_len += avg_len / 4; 528 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent; 529 if (avg_len < max) 530 max /= (u32)avg_len; 531 else 532 max = 1; 533 534 WRITE_ONCE(perf_sample_allowed_ns, avg_len); 535 WRITE_ONCE(max_samples_per_tick, max); 536 537 sysctl_perf_event_sample_rate = max * HZ; 538 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 539 540 if (!irq_work_queue(&perf_duration_work)) { 541 early_printk("perf: interrupt took too long (%lld > %lld), lowering " 542 "kernel.perf_event_max_sample_rate to %d\n", 543 __report_avg, __report_allowed, 544 sysctl_perf_event_sample_rate); 545 } 546 } 547 548 static atomic64_t perf_event_id; 549 550 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 551 enum event_type_t event_type); 552 553 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 554 enum event_type_t event_type, 555 struct task_struct *task); 556 557 static void update_context_time(struct perf_event_context *ctx); 558 static u64 perf_event_time(struct perf_event *event); 559 560 void __weak perf_event_print_debug(void) { } 561 562 extern __weak const char *perf_pmu_name(void) 563 { 564 return "pmu"; 565 } 566 567 static inline u64 perf_clock(void) 568 { 569 return local_clock(); 570 } 571 572 static inline u64 perf_event_clock(struct perf_event *event) 573 { 574 return event->clock(); 575 } 576 577 #ifdef CONFIG_CGROUP_PERF 578 579 static inline bool 580 perf_cgroup_match(struct perf_event *event) 581 { 582 struct perf_event_context *ctx = event->ctx; 583 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 584 585 /* @event doesn't care about cgroup */ 586 if (!event->cgrp) 587 return true; 588 589 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 590 if (!cpuctx->cgrp) 591 return false; 592 593 /* 594 * Cgroup scoping is recursive. An event enabled for a cgroup is 595 * also enabled for all its descendant cgroups. If @cpuctx's 596 * cgroup is a descendant of @event's (the test covers identity 597 * case), it's a match. 598 */ 599 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 600 event->cgrp->css.cgroup); 601 } 602 603 static inline void perf_detach_cgroup(struct perf_event *event) 604 { 605 css_put(&event->cgrp->css); 606 event->cgrp = NULL; 607 } 608 609 static inline int is_cgroup_event(struct perf_event *event) 610 { 611 return event->cgrp != NULL; 612 } 613 614 static inline u64 perf_cgroup_event_time(struct perf_event *event) 615 { 616 struct perf_cgroup_info *t; 617 618 t = per_cpu_ptr(event->cgrp->info, event->cpu); 619 return t->time; 620 } 621 622 static inline void __update_cgrp_time(struct perf_cgroup *cgrp) 623 { 624 struct perf_cgroup_info *info; 625 u64 now; 626 627 now = perf_clock(); 628 629 info = this_cpu_ptr(cgrp->info); 630 631 info->time += now - info->timestamp; 632 info->timestamp = now; 633 } 634 635 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 636 { 637 struct perf_cgroup *cgrp_out = cpuctx->cgrp; 638 if (cgrp_out) 639 __update_cgrp_time(cgrp_out); 640 } 641 642 static inline void update_cgrp_time_from_event(struct perf_event *event) 643 { 644 struct perf_cgroup *cgrp; 645 646 /* 647 * ensure we access cgroup data only when needed and 648 * when we know the cgroup is pinned (css_get) 649 */ 650 if (!is_cgroup_event(event)) 651 return; 652 653 cgrp = perf_cgroup_from_task(current, event->ctx); 654 /* 655 * Do not update time when cgroup is not active 656 */ 657 if (cgrp == event->cgrp) 658 __update_cgrp_time(event->cgrp); 659 } 660 661 static inline void 662 perf_cgroup_set_timestamp(struct task_struct *task, 663 struct perf_event_context *ctx) 664 { 665 struct perf_cgroup *cgrp; 666 struct perf_cgroup_info *info; 667 668 /* 669 * ctx->lock held by caller 670 * ensure we do not access cgroup data 671 * unless we have the cgroup pinned (css_get) 672 */ 673 if (!task || !ctx->nr_cgroups) 674 return; 675 676 cgrp = perf_cgroup_from_task(task, ctx); 677 info = this_cpu_ptr(cgrp->info); 678 info->timestamp = ctx->timestamp; 679 } 680 681 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */ 682 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */ 683 684 /* 685 * reschedule events based on the cgroup constraint of task. 686 * 687 * mode SWOUT : schedule out everything 688 * mode SWIN : schedule in based on cgroup for next 689 */ 690 static void perf_cgroup_switch(struct task_struct *task, int mode) 691 { 692 struct perf_cpu_context *cpuctx; 693 struct pmu *pmu; 694 unsigned long flags; 695 696 /* 697 * disable interrupts to avoid geting nr_cgroup 698 * changes via __perf_event_disable(). Also 699 * avoids preemption. 700 */ 701 local_irq_save(flags); 702 703 /* 704 * we reschedule only in the presence of cgroup 705 * constrained events. 706 */ 707 708 list_for_each_entry_rcu(pmu, &pmus, entry) { 709 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 710 if (cpuctx->unique_pmu != pmu) 711 continue; /* ensure we process each cpuctx once */ 712 713 /* 714 * perf_cgroup_events says at least one 715 * context on this CPU has cgroup events. 716 * 717 * ctx->nr_cgroups reports the number of cgroup 718 * events for a context. 719 */ 720 if (cpuctx->ctx.nr_cgroups > 0) { 721 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 722 perf_pmu_disable(cpuctx->ctx.pmu); 723 724 if (mode & PERF_CGROUP_SWOUT) { 725 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 726 /* 727 * must not be done before ctxswout due 728 * to event_filter_match() in event_sched_out() 729 */ 730 cpuctx->cgrp = NULL; 731 } 732 733 if (mode & PERF_CGROUP_SWIN) { 734 WARN_ON_ONCE(cpuctx->cgrp); 735 /* 736 * set cgrp before ctxsw in to allow 737 * event_filter_match() to not have to pass 738 * task around 739 * we pass the cpuctx->ctx to perf_cgroup_from_task() 740 * because cgorup events are only per-cpu 741 */ 742 cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx); 743 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task); 744 } 745 perf_pmu_enable(cpuctx->ctx.pmu); 746 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 747 } 748 } 749 750 local_irq_restore(flags); 751 } 752 753 static inline void perf_cgroup_sched_out(struct task_struct *task, 754 struct task_struct *next) 755 { 756 struct perf_cgroup *cgrp1; 757 struct perf_cgroup *cgrp2 = NULL; 758 759 rcu_read_lock(); 760 /* 761 * we come here when we know perf_cgroup_events > 0 762 * we do not need to pass the ctx here because we know 763 * we are holding the rcu lock 764 */ 765 cgrp1 = perf_cgroup_from_task(task, NULL); 766 cgrp2 = perf_cgroup_from_task(next, NULL); 767 768 /* 769 * only schedule out current cgroup events if we know 770 * that we are switching to a different cgroup. Otherwise, 771 * do no touch the cgroup events. 772 */ 773 if (cgrp1 != cgrp2) 774 perf_cgroup_switch(task, PERF_CGROUP_SWOUT); 775 776 rcu_read_unlock(); 777 } 778 779 static inline void perf_cgroup_sched_in(struct task_struct *prev, 780 struct task_struct *task) 781 { 782 struct perf_cgroup *cgrp1; 783 struct perf_cgroup *cgrp2 = NULL; 784 785 rcu_read_lock(); 786 /* 787 * we come here when we know perf_cgroup_events > 0 788 * we do not need to pass the ctx here because we know 789 * we are holding the rcu lock 790 */ 791 cgrp1 = perf_cgroup_from_task(task, NULL); 792 cgrp2 = perf_cgroup_from_task(prev, NULL); 793 794 /* 795 * only need to schedule in cgroup events if we are changing 796 * cgroup during ctxsw. Cgroup events were not scheduled 797 * out of ctxsw out if that was not the case. 798 */ 799 if (cgrp1 != cgrp2) 800 perf_cgroup_switch(task, PERF_CGROUP_SWIN); 801 802 rcu_read_unlock(); 803 } 804 805 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 806 struct perf_event_attr *attr, 807 struct perf_event *group_leader) 808 { 809 struct perf_cgroup *cgrp; 810 struct cgroup_subsys_state *css; 811 struct fd f = fdget(fd); 812 int ret = 0; 813 814 if (!f.file) 815 return -EBADF; 816 817 css = css_tryget_online_from_dir(f.file->f_path.dentry, 818 &perf_event_cgrp_subsys); 819 if (IS_ERR(css)) { 820 ret = PTR_ERR(css); 821 goto out; 822 } 823 824 cgrp = container_of(css, struct perf_cgroup, css); 825 event->cgrp = cgrp; 826 827 /* 828 * all events in a group must monitor 829 * the same cgroup because a task belongs 830 * to only one perf cgroup at a time 831 */ 832 if (group_leader && group_leader->cgrp != cgrp) { 833 perf_detach_cgroup(event); 834 ret = -EINVAL; 835 } 836 out: 837 fdput(f); 838 return ret; 839 } 840 841 static inline void 842 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 843 { 844 struct perf_cgroup_info *t; 845 t = per_cpu_ptr(event->cgrp->info, event->cpu); 846 event->shadow_ctx_time = now - t->timestamp; 847 } 848 849 static inline void 850 perf_cgroup_defer_enabled(struct perf_event *event) 851 { 852 /* 853 * when the current task's perf cgroup does not match 854 * the event's, we need to remember to call the 855 * perf_mark_enable() function the first time a task with 856 * a matching perf cgroup is scheduled in. 857 */ 858 if (is_cgroup_event(event) && !perf_cgroup_match(event)) 859 event->cgrp_defer_enabled = 1; 860 } 861 862 static inline void 863 perf_cgroup_mark_enabled(struct perf_event *event, 864 struct perf_event_context *ctx) 865 { 866 struct perf_event *sub; 867 u64 tstamp = perf_event_time(event); 868 869 if (!event->cgrp_defer_enabled) 870 return; 871 872 event->cgrp_defer_enabled = 0; 873 874 event->tstamp_enabled = tstamp - event->total_time_enabled; 875 list_for_each_entry(sub, &event->sibling_list, group_entry) { 876 if (sub->state >= PERF_EVENT_STATE_INACTIVE) { 877 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 878 sub->cgrp_defer_enabled = 0; 879 } 880 } 881 } 882 883 /* 884 * Update cpuctx->cgrp so that it is set when first cgroup event is added and 885 * cleared when last cgroup event is removed. 886 */ 887 static inline void 888 list_update_cgroup_event(struct perf_event *event, 889 struct perf_event_context *ctx, bool add) 890 { 891 struct perf_cpu_context *cpuctx; 892 893 if (!is_cgroup_event(event)) 894 return; 895 896 if (add && ctx->nr_cgroups++) 897 return; 898 else if (!add && --ctx->nr_cgroups) 899 return; 900 /* 901 * Because cgroup events are always per-cpu events, 902 * this will always be called from the right CPU. 903 */ 904 cpuctx = __get_cpu_context(ctx); 905 906 /* 907 * cpuctx->cgrp is NULL until a cgroup event is sched in or 908 * ctx->nr_cgroup == 0 . 909 */ 910 if (add && perf_cgroup_from_task(current, ctx) == event->cgrp) 911 cpuctx->cgrp = event->cgrp; 912 else if (!add) 913 cpuctx->cgrp = NULL; 914 } 915 916 #else /* !CONFIG_CGROUP_PERF */ 917 918 static inline bool 919 perf_cgroup_match(struct perf_event *event) 920 { 921 return true; 922 } 923 924 static inline void perf_detach_cgroup(struct perf_event *event) 925 {} 926 927 static inline int is_cgroup_event(struct perf_event *event) 928 { 929 return 0; 930 } 931 932 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event) 933 { 934 return 0; 935 } 936 937 static inline void update_cgrp_time_from_event(struct perf_event *event) 938 { 939 } 940 941 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 942 { 943 } 944 945 static inline void perf_cgroup_sched_out(struct task_struct *task, 946 struct task_struct *next) 947 { 948 } 949 950 static inline void perf_cgroup_sched_in(struct task_struct *prev, 951 struct task_struct *task) 952 { 953 } 954 955 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 956 struct perf_event_attr *attr, 957 struct perf_event *group_leader) 958 { 959 return -EINVAL; 960 } 961 962 static inline void 963 perf_cgroup_set_timestamp(struct task_struct *task, 964 struct perf_event_context *ctx) 965 { 966 } 967 968 void 969 perf_cgroup_switch(struct task_struct *task, struct task_struct *next) 970 { 971 } 972 973 static inline void 974 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 975 { 976 } 977 978 static inline u64 perf_cgroup_event_time(struct perf_event *event) 979 { 980 return 0; 981 } 982 983 static inline void 984 perf_cgroup_defer_enabled(struct perf_event *event) 985 { 986 } 987 988 static inline void 989 perf_cgroup_mark_enabled(struct perf_event *event, 990 struct perf_event_context *ctx) 991 { 992 } 993 994 static inline void 995 list_update_cgroup_event(struct perf_event *event, 996 struct perf_event_context *ctx, bool add) 997 { 998 } 999 1000 #endif 1001 1002 /* 1003 * set default to be dependent on timer tick just 1004 * like original code 1005 */ 1006 #define PERF_CPU_HRTIMER (1000 / HZ) 1007 /* 1008 * function must be called with interrupts disbled 1009 */ 1010 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) 1011 { 1012 struct perf_cpu_context *cpuctx; 1013 int rotations = 0; 1014 1015 WARN_ON(!irqs_disabled()); 1016 1017 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer); 1018 rotations = perf_rotate_context(cpuctx); 1019 1020 raw_spin_lock(&cpuctx->hrtimer_lock); 1021 if (rotations) 1022 hrtimer_forward_now(hr, cpuctx->hrtimer_interval); 1023 else 1024 cpuctx->hrtimer_active = 0; 1025 raw_spin_unlock(&cpuctx->hrtimer_lock); 1026 1027 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; 1028 } 1029 1030 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu) 1031 { 1032 struct hrtimer *timer = &cpuctx->hrtimer; 1033 struct pmu *pmu = cpuctx->ctx.pmu; 1034 u64 interval; 1035 1036 /* no multiplexing needed for SW PMU */ 1037 if (pmu->task_ctx_nr == perf_sw_context) 1038 return; 1039 1040 /* 1041 * check default is sane, if not set then force to 1042 * default interval (1/tick) 1043 */ 1044 interval = pmu->hrtimer_interval_ms; 1045 if (interval < 1) 1046 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 1047 1048 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 1049 1050 raw_spin_lock_init(&cpuctx->hrtimer_lock); 1051 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 1052 timer->function = perf_mux_hrtimer_handler; 1053 } 1054 1055 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx) 1056 { 1057 struct hrtimer *timer = &cpuctx->hrtimer; 1058 struct pmu *pmu = cpuctx->ctx.pmu; 1059 unsigned long flags; 1060 1061 /* not for SW PMU */ 1062 if (pmu->task_ctx_nr == perf_sw_context) 1063 return 0; 1064 1065 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags); 1066 if (!cpuctx->hrtimer_active) { 1067 cpuctx->hrtimer_active = 1; 1068 hrtimer_forward_now(timer, cpuctx->hrtimer_interval); 1069 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 1070 } 1071 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags); 1072 1073 return 0; 1074 } 1075 1076 void perf_pmu_disable(struct pmu *pmu) 1077 { 1078 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1079 if (!(*count)++) 1080 pmu->pmu_disable(pmu); 1081 } 1082 1083 void perf_pmu_enable(struct pmu *pmu) 1084 { 1085 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1086 if (!--(*count)) 1087 pmu->pmu_enable(pmu); 1088 } 1089 1090 static DEFINE_PER_CPU(struct list_head, active_ctx_list); 1091 1092 /* 1093 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and 1094 * perf_event_task_tick() are fully serialized because they're strictly cpu 1095 * affine and perf_event_ctx{activate,deactivate} are called with IRQs 1096 * disabled, while perf_event_task_tick is called from IRQ context. 1097 */ 1098 static void perf_event_ctx_activate(struct perf_event_context *ctx) 1099 { 1100 struct list_head *head = this_cpu_ptr(&active_ctx_list); 1101 1102 WARN_ON(!irqs_disabled()); 1103 1104 WARN_ON(!list_empty(&ctx->active_ctx_list)); 1105 1106 list_add(&ctx->active_ctx_list, head); 1107 } 1108 1109 static void perf_event_ctx_deactivate(struct perf_event_context *ctx) 1110 { 1111 WARN_ON(!irqs_disabled()); 1112 1113 WARN_ON(list_empty(&ctx->active_ctx_list)); 1114 1115 list_del_init(&ctx->active_ctx_list); 1116 } 1117 1118 static void get_ctx(struct perf_event_context *ctx) 1119 { 1120 WARN_ON(!atomic_inc_not_zero(&ctx->refcount)); 1121 } 1122 1123 static void free_ctx(struct rcu_head *head) 1124 { 1125 struct perf_event_context *ctx; 1126 1127 ctx = container_of(head, struct perf_event_context, rcu_head); 1128 kfree(ctx->task_ctx_data); 1129 kfree(ctx); 1130 } 1131 1132 static void put_ctx(struct perf_event_context *ctx) 1133 { 1134 if (atomic_dec_and_test(&ctx->refcount)) { 1135 if (ctx->parent_ctx) 1136 put_ctx(ctx->parent_ctx); 1137 if (ctx->task && ctx->task != TASK_TOMBSTONE) 1138 put_task_struct(ctx->task); 1139 call_rcu(&ctx->rcu_head, free_ctx); 1140 } 1141 } 1142 1143 /* 1144 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 1145 * perf_pmu_migrate_context() we need some magic. 1146 * 1147 * Those places that change perf_event::ctx will hold both 1148 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 1149 * 1150 * Lock ordering is by mutex address. There are two other sites where 1151 * perf_event_context::mutex nests and those are: 1152 * 1153 * - perf_event_exit_task_context() [ child , 0 ] 1154 * perf_event_exit_event() 1155 * put_event() [ parent, 1 ] 1156 * 1157 * - perf_event_init_context() [ parent, 0 ] 1158 * inherit_task_group() 1159 * inherit_group() 1160 * inherit_event() 1161 * perf_event_alloc() 1162 * perf_init_event() 1163 * perf_try_init_event() [ child , 1 ] 1164 * 1165 * While it appears there is an obvious deadlock here -- the parent and child 1166 * nesting levels are inverted between the two. This is in fact safe because 1167 * life-time rules separate them. That is an exiting task cannot fork, and a 1168 * spawning task cannot (yet) exit. 1169 * 1170 * But remember that that these are parent<->child context relations, and 1171 * migration does not affect children, therefore these two orderings should not 1172 * interact. 1173 * 1174 * The change in perf_event::ctx does not affect children (as claimed above) 1175 * because the sys_perf_event_open() case will install a new event and break 1176 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 1177 * concerned with cpuctx and that doesn't have children. 1178 * 1179 * The places that change perf_event::ctx will issue: 1180 * 1181 * perf_remove_from_context(); 1182 * synchronize_rcu(); 1183 * perf_install_in_context(); 1184 * 1185 * to affect the change. The remove_from_context() + synchronize_rcu() should 1186 * quiesce the event, after which we can install it in the new location. This 1187 * means that only external vectors (perf_fops, prctl) can perturb the event 1188 * while in transit. Therefore all such accessors should also acquire 1189 * perf_event_context::mutex to serialize against this. 1190 * 1191 * However; because event->ctx can change while we're waiting to acquire 1192 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 1193 * function. 1194 * 1195 * Lock order: 1196 * cred_guard_mutex 1197 * task_struct::perf_event_mutex 1198 * perf_event_context::mutex 1199 * perf_event::child_mutex; 1200 * perf_event_context::lock 1201 * perf_event::mmap_mutex 1202 * mmap_sem 1203 */ 1204 static struct perf_event_context * 1205 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 1206 { 1207 struct perf_event_context *ctx; 1208 1209 again: 1210 rcu_read_lock(); 1211 ctx = ACCESS_ONCE(event->ctx); 1212 if (!atomic_inc_not_zero(&ctx->refcount)) { 1213 rcu_read_unlock(); 1214 goto again; 1215 } 1216 rcu_read_unlock(); 1217 1218 mutex_lock_nested(&ctx->mutex, nesting); 1219 if (event->ctx != ctx) { 1220 mutex_unlock(&ctx->mutex); 1221 put_ctx(ctx); 1222 goto again; 1223 } 1224 1225 return ctx; 1226 } 1227 1228 static inline struct perf_event_context * 1229 perf_event_ctx_lock(struct perf_event *event) 1230 { 1231 return perf_event_ctx_lock_nested(event, 0); 1232 } 1233 1234 static void perf_event_ctx_unlock(struct perf_event *event, 1235 struct perf_event_context *ctx) 1236 { 1237 mutex_unlock(&ctx->mutex); 1238 put_ctx(ctx); 1239 } 1240 1241 /* 1242 * This must be done under the ctx->lock, such as to serialize against 1243 * context_equiv(), therefore we cannot call put_ctx() since that might end up 1244 * calling scheduler related locks and ctx->lock nests inside those. 1245 */ 1246 static __must_check struct perf_event_context * 1247 unclone_ctx(struct perf_event_context *ctx) 1248 { 1249 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1250 1251 lockdep_assert_held(&ctx->lock); 1252 1253 if (parent_ctx) 1254 ctx->parent_ctx = NULL; 1255 ctx->generation++; 1256 1257 return parent_ctx; 1258 } 1259 1260 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1261 { 1262 /* 1263 * only top level events have the pid namespace they were created in 1264 */ 1265 if (event->parent) 1266 event = event->parent; 1267 1268 return task_tgid_nr_ns(p, event->ns); 1269 } 1270 1271 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1272 { 1273 /* 1274 * only top level events have the pid namespace they were created in 1275 */ 1276 if (event->parent) 1277 event = event->parent; 1278 1279 return task_pid_nr_ns(p, event->ns); 1280 } 1281 1282 /* 1283 * If we inherit events we want to return the parent event id 1284 * to userspace. 1285 */ 1286 static u64 primary_event_id(struct perf_event *event) 1287 { 1288 u64 id = event->id; 1289 1290 if (event->parent) 1291 id = event->parent->id; 1292 1293 return id; 1294 } 1295 1296 /* 1297 * Get the perf_event_context for a task and lock it. 1298 * 1299 * This has to cope with with the fact that until it is locked, 1300 * the context could get moved to another task. 1301 */ 1302 static struct perf_event_context * 1303 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) 1304 { 1305 struct perf_event_context *ctx; 1306 1307 retry: 1308 /* 1309 * One of the few rules of preemptible RCU is that one cannot do 1310 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1311 * part of the read side critical section was irqs-enabled -- see 1312 * rcu_read_unlock_special(). 1313 * 1314 * Since ctx->lock nests under rq->lock we must ensure the entire read 1315 * side critical section has interrupts disabled. 1316 */ 1317 local_irq_save(*flags); 1318 rcu_read_lock(); 1319 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); 1320 if (ctx) { 1321 /* 1322 * If this context is a clone of another, it might 1323 * get swapped for another underneath us by 1324 * perf_event_task_sched_out, though the 1325 * rcu_read_lock() protects us from any context 1326 * getting freed. Lock the context and check if it 1327 * got swapped before we could get the lock, and retry 1328 * if so. If we locked the right context, then it 1329 * can't get swapped on us any more. 1330 */ 1331 raw_spin_lock(&ctx->lock); 1332 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { 1333 raw_spin_unlock(&ctx->lock); 1334 rcu_read_unlock(); 1335 local_irq_restore(*flags); 1336 goto retry; 1337 } 1338 1339 if (ctx->task == TASK_TOMBSTONE || 1340 !atomic_inc_not_zero(&ctx->refcount)) { 1341 raw_spin_unlock(&ctx->lock); 1342 ctx = NULL; 1343 } else { 1344 WARN_ON_ONCE(ctx->task != task); 1345 } 1346 } 1347 rcu_read_unlock(); 1348 if (!ctx) 1349 local_irq_restore(*flags); 1350 return ctx; 1351 } 1352 1353 /* 1354 * Get the context for a task and increment its pin_count so it 1355 * can't get swapped to another task. This also increments its 1356 * reference count so that the context can't get freed. 1357 */ 1358 static struct perf_event_context * 1359 perf_pin_task_context(struct task_struct *task, int ctxn) 1360 { 1361 struct perf_event_context *ctx; 1362 unsigned long flags; 1363 1364 ctx = perf_lock_task_context(task, ctxn, &flags); 1365 if (ctx) { 1366 ++ctx->pin_count; 1367 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1368 } 1369 return ctx; 1370 } 1371 1372 static void perf_unpin_context(struct perf_event_context *ctx) 1373 { 1374 unsigned long flags; 1375 1376 raw_spin_lock_irqsave(&ctx->lock, flags); 1377 --ctx->pin_count; 1378 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1379 } 1380 1381 /* 1382 * Update the record of the current time in a context. 1383 */ 1384 static void update_context_time(struct perf_event_context *ctx) 1385 { 1386 u64 now = perf_clock(); 1387 1388 ctx->time += now - ctx->timestamp; 1389 ctx->timestamp = now; 1390 } 1391 1392 static u64 perf_event_time(struct perf_event *event) 1393 { 1394 struct perf_event_context *ctx = event->ctx; 1395 1396 if (is_cgroup_event(event)) 1397 return perf_cgroup_event_time(event); 1398 1399 return ctx ? ctx->time : 0; 1400 } 1401 1402 /* 1403 * Update the total_time_enabled and total_time_running fields for a event. 1404 */ 1405 static void update_event_times(struct perf_event *event) 1406 { 1407 struct perf_event_context *ctx = event->ctx; 1408 u64 run_end; 1409 1410 lockdep_assert_held(&ctx->lock); 1411 1412 if (event->state < PERF_EVENT_STATE_INACTIVE || 1413 event->group_leader->state < PERF_EVENT_STATE_INACTIVE) 1414 return; 1415 1416 /* 1417 * in cgroup mode, time_enabled represents 1418 * the time the event was enabled AND active 1419 * tasks were in the monitored cgroup. This is 1420 * independent of the activity of the context as 1421 * there may be a mix of cgroup and non-cgroup events. 1422 * 1423 * That is why we treat cgroup events differently 1424 * here. 1425 */ 1426 if (is_cgroup_event(event)) 1427 run_end = perf_cgroup_event_time(event); 1428 else if (ctx->is_active) 1429 run_end = ctx->time; 1430 else 1431 run_end = event->tstamp_stopped; 1432 1433 event->total_time_enabled = run_end - event->tstamp_enabled; 1434 1435 if (event->state == PERF_EVENT_STATE_INACTIVE) 1436 run_end = event->tstamp_stopped; 1437 else 1438 run_end = perf_event_time(event); 1439 1440 event->total_time_running = run_end - event->tstamp_running; 1441 1442 } 1443 1444 /* 1445 * Update total_time_enabled and total_time_running for all events in a group. 1446 */ 1447 static void update_group_times(struct perf_event *leader) 1448 { 1449 struct perf_event *event; 1450 1451 update_event_times(leader); 1452 list_for_each_entry(event, &leader->sibling_list, group_entry) 1453 update_event_times(event); 1454 } 1455 1456 static struct list_head * 1457 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx) 1458 { 1459 if (event->attr.pinned) 1460 return &ctx->pinned_groups; 1461 else 1462 return &ctx->flexible_groups; 1463 } 1464 1465 /* 1466 * Add a event from the lists for its context. 1467 * Must be called with ctx->mutex and ctx->lock held. 1468 */ 1469 static void 1470 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1471 { 1472 1473 lockdep_assert_held(&ctx->lock); 1474 1475 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1476 event->attach_state |= PERF_ATTACH_CONTEXT; 1477 1478 /* 1479 * If we're a stand alone event or group leader, we go to the context 1480 * list, group events are kept attached to the group so that 1481 * perf_group_detach can, at all times, locate all siblings. 1482 */ 1483 if (event->group_leader == event) { 1484 struct list_head *list; 1485 1486 event->group_caps = event->event_caps; 1487 1488 list = ctx_group_list(event, ctx); 1489 list_add_tail(&event->group_entry, list); 1490 } 1491 1492 list_update_cgroup_event(event, ctx, true); 1493 1494 list_add_rcu(&event->event_entry, &ctx->event_list); 1495 ctx->nr_events++; 1496 if (event->attr.inherit_stat) 1497 ctx->nr_stat++; 1498 1499 ctx->generation++; 1500 } 1501 1502 /* 1503 * Initialize event state based on the perf_event_attr::disabled. 1504 */ 1505 static inline void perf_event__state_init(struct perf_event *event) 1506 { 1507 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1508 PERF_EVENT_STATE_INACTIVE; 1509 } 1510 1511 static void __perf_event_read_size(struct perf_event *event, int nr_siblings) 1512 { 1513 int entry = sizeof(u64); /* value */ 1514 int size = 0; 1515 int nr = 1; 1516 1517 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1518 size += sizeof(u64); 1519 1520 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1521 size += sizeof(u64); 1522 1523 if (event->attr.read_format & PERF_FORMAT_ID) 1524 entry += sizeof(u64); 1525 1526 if (event->attr.read_format & PERF_FORMAT_GROUP) { 1527 nr += nr_siblings; 1528 size += sizeof(u64); 1529 } 1530 1531 size += entry * nr; 1532 event->read_size = size; 1533 } 1534 1535 static void __perf_event_header_size(struct perf_event *event, u64 sample_type) 1536 { 1537 struct perf_sample_data *data; 1538 u16 size = 0; 1539 1540 if (sample_type & PERF_SAMPLE_IP) 1541 size += sizeof(data->ip); 1542 1543 if (sample_type & PERF_SAMPLE_ADDR) 1544 size += sizeof(data->addr); 1545 1546 if (sample_type & PERF_SAMPLE_PERIOD) 1547 size += sizeof(data->period); 1548 1549 if (sample_type & PERF_SAMPLE_WEIGHT) 1550 size += sizeof(data->weight); 1551 1552 if (sample_type & PERF_SAMPLE_READ) 1553 size += event->read_size; 1554 1555 if (sample_type & PERF_SAMPLE_DATA_SRC) 1556 size += sizeof(data->data_src.val); 1557 1558 if (sample_type & PERF_SAMPLE_TRANSACTION) 1559 size += sizeof(data->txn); 1560 1561 event->header_size = size; 1562 } 1563 1564 /* 1565 * Called at perf_event creation and when events are attached/detached from a 1566 * group. 1567 */ 1568 static void perf_event__header_size(struct perf_event *event) 1569 { 1570 __perf_event_read_size(event, 1571 event->group_leader->nr_siblings); 1572 __perf_event_header_size(event, event->attr.sample_type); 1573 } 1574 1575 static void perf_event__id_header_size(struct perf_event *event) 1576 { 1577 struct perf_sample_data *data; 1578 u64 sample_type = event->attr.sample_type; 1579 u16 size = 0; 1580 1581 if (sample_type & PERF_SAMPLE_TID) 1582 size += sizeof(data->tid_entry); 1583 1584 if (sample_type & PERF_SAMPLE_TIME) 1585 size += sizeof(data->time); 1586 1587 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1588 size += sizeof(data->id); 1589 1590 if (sample_type & PERF_SAMPLE_ID) 1591 size += sizeof(data->id); 1592 1593 if (sample_type & PERF_SAMPLE_STREAM_ID) 1594 size += sizeof(data->stream_id); 1595 1596 if (sample_type & PERF_SAMPLE_CPU) 1597 size += sizeof(data->cpu_entry); 1598 1599 event->id_header_size = size; 1600 } 1601 1602 static bool perf_event_validate_size(struct perf_event *event) 1603 { 1604 /* 1605 * The values computed here will be over-written when we actually 1606 * attach the event. 1607 */ 1608 __perf_event_read_size(event, event->group_leader->nr_siblings + 1); 1609 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ); 1610 perf_event__id_header_size(event); 1611 1612 /* 1613 * Sum the lot; should not exceed the 64k limit we have on records. 1614 * Conservative limit to allow for callchains and other variable fields. 1615 */ 1616 if (event->read_size + event->header_size + 1617 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024) 1618 return false; 1619 1620 return true; 1621 } 1622 1623 static void perf_group_attach(struct perf_event *event) 1624 { 1625 struct perf_event *group_leader = event->group_leader, *pos; 1626 1627 /* 1628 * We can have double attach due to group movement in perf_event_open. 1629 */ 1630 if (event->attach_state & PERF_ATTACH_GROUP) 1631 return; 1632 1633 event->attach_state |= PERF_ATTACH_GROUP; 1634 1635 if (group_leader == event) 1636 return; 1637 1638 WARN_ON_ONCE(group_leader->ctx != event->ctx); 1639 1640 group_leader->group_caps &= event->event_caps; 1641 1642 list_add_tail(&event->group_entry, &group_leader->sibling_list); 1643 group_leader->nr_siblings++; 1644 1645 perf_event__header_size(group_leader); 1646 1647 list_for_each_entry(pos, &group_leader->sibling_list, group_entry) 1648 perf_event__header_size(pos); 1649 } 1650 1651 /* 1652 * Remove a event from the lists for its context. 1653 * Must be called with ctx->mutex and ctx->lock held. 1654 */ 1655 static void 1656 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 1657 { 1658 WARN_ON_ONCE(event->ctx != ctx); 1659 lockdep_assert_held(&ctx->lock); 1660 1661 /* 1662 * We can have double detach due to exit/hot-unplug + close. 1663 */ 1664 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 1665 return; 1666 1667 event->attach_state &= ~PERF_ATTACH_CONTEXT; 1668 1669 list_update_cgroup_event(event, ctx, false); 1670 1671 ctx->nr_events--; 1672 if (event->attr.inherit_stat) 1673 ctx->nr_stat--; 1674 1675 list_del_rcu(&event->event_entry); 1676 1677 if (event->group_leader == event) 1678 list_del_init(&event->group_entry); 1679 1680 update_group_times(event); 1681 1682 /* 1683 * If event was in error state, then keep it 1684 * that way, otherwise bogus counts will be 1685 * returned on read(). The only way to get out 1686 * of error state is by explicit re-enabling 1687 * of the event 1688 */ 1689 if (event->state > PERF_EVENT_STATE_OFF) 1690 event->state = PERF_EVENT_STATE_OFF; 1691 1692 ctx->generation++; 1693 } 1694 1695 static void perf_group_detach(struct perf_event *event) 1696 { 1697 struct perf_event *sibling, *tmp; 1698 struct list_head *list = NULL; 1699 1700 /* 1701 * We can have double detach due to exit/hot-unplug + close. 1702 */ 1703 if (!(event->attach_state & PERF_ATTACH_GROUP)) 1704 return; 1705 1706 event->attach_state &= ~PERF_ATTACH_GROUP; 1707 1708 /* 1709 * If this is a sibling, remove it from its group. 1710 */ 1711 if (event->group_leader != event) { 1712 list_del_init(&event->group_entry); 1713 event->group_leader->nr_siblings--; 1714 goto out; 1715 } 1716 1717 if (!list_empty(&event->group_entry)) 1718 list = &event->group_entry; 1719 1720 /* 1721 * If this was a group event with sibling events then 1722 * upgrade the siblings to singleton events by adding them 1723 * to whatever list we are on. 1724 */ 1725 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) { 1726 if (list) 1727 list_move_tail(&sibling->group_entry, list); 1728 sibling->group_leader = sibling; 1729 1730 /* Inherit group flags from the previous leader */ 1731 sibling->group_caps = event->group_caps; 1732 1733 WARN_ON_ONCE(sibling->ctx != event->ctx); 1734 } 1735 1736 out: 1737 perf_event__header_size(event->group_leader); 1738 1739 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry) 1740 perf_event__header_size(tmp); 1741 } 1742 1743 static bool is_orphaned_event(struct perf_event *event) 1744 { 1745 return event->state == PERF_EVENT_STATE_DEAD; 1746 } 1747 1748 static inline int __pmu_filter_match(struct perf_event *event) 1749 { 1750 struct pmu *pmu = event->pmu; 1751 return pmu->filter_match ? pmu->filter_match(event) : 1; 1752 } 1753 1754 /* 1755 * Check whether we should attempt to schedule an event group based on 1756 * PMU-specific filtering. An event group can consist of HW and SW events, 1757 * potentially with a SW leader, so we must check all the filters, to 1758 * determine whether a group is schedulable: 1759 */ 1760 static inline int pmu_filter_match(struct perf_event *event) 1761 { 1762 struct perf_event *child; 1763 1764 if (!__pmu_filter_match(event)) 1765 return 0; 1766 1767 list_for_each_entry(child, &event->sibling_list, group_entry) { 1768 if (!__pmu_filter_match(child)) 1769 return 0; 1770 } 1771 1772 return 1; 1773 } 1774 1775 static inline int 1776 event_filter_match(struct perf_event *event) 1777 { 1778 return (event->cpu == -1 || event->cpu == smp_processor_id()) && 1779 perf_cgroup_match(event) && pmu_filter_match(event); 1780 } 1781 1782 static void 1783 event_sched_out(struct perf_event *event, 1784 struct perf_cpu_context *cpuctx, 1785 struct perf_event_context *ctx) 1786 { 1787 u64 tstamp = perf_event_time(event); 1788 u64 delta; 1789 1790 WARN_ON_ONCE(event->ctx != ctx); 1791 lockdep_assert_held(&ctx->lock); 1792 1793 /* 1794 * An event which could not be activated because of 1795 * filter mismatch still needs to have its timings 1796 * maintained, otherwise bogus information is return 1797 * via read() for time_enabled, time_running: 1798 */ 1799 if (event->state == PERF_EVENT_STATE_INACTIVE && 1800 !event_filter_match(event)) { 1801 delta = tstamp - event->tstamp_stopped; 1802 event->tstamp_running += delta; 1803 event->tstamp_stopped = tstamp; 1804 } 1805 1806 if (event->state != PERF_EVENT_STATE_ACTIVE) 1807 return; 1808 1809 perf_pmu_disable(event->pmu); 1810 1811 event->tstamp_stopped = tstamp; 1812 event->pmu->del(event, 0); 1813 event->oncpu = -1; 1814 event->state = PERF_EVENT_STATE_INACTIVE; 1815 if (event->pending_disable) { 1816 event->pending_disable = 0; 1817 event->state = PERF_EVENT_STATE_OFF; 1818 } 1819 1820 if (!is_software_event(event)) 1821 cpuctx->active_oncpu--; 1822 if (!--ctx->nr_active) 1823 perf_event_ctx_deactivate(ctx); 1824 if (event->attr.freq && event->attr.sample_freq) 1825 ctx->nr_freq--; 1826 if (event->attr.exclusive || !cpuctx->active_oncpu) 1827 cpuctx->exclusive = 0; 1828 1829 perf_pmu_enable(event->pmu); 1830 } 1831 1832 static void 1833 group_sched_out(struct perf_event *group_event, 1834 struct perf_cpu_context *cpuctx, 1835 struct perf_event_context *ctx) 1836 { 1837 struct perf_event *event; 1838 int state = group_event->state; 1839 1840 perf_pmu_disable(ctx->pmu); 1841 1842 event_sched_out(group_event, cpuctx, ctx); 1843 1844 /* 1845 * Schedule out siblings (if any): 1846 */ 1847 list_for_each_entry(event, &group_event->sibling_list, group_entry) 1848 event_sched_out(event, cpuctx, ctx); 1849 1850 perf_pmu_enable(ctx->pmu); 1851 1852 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive) 1853 cpuctx->exclusive = 0; 1854 } 1855 1856 #define DETACH_GROUP 0x01UL 1857 1858 /* 1859 * Cross CPU call to remove a performance event 1860 * 1861 * We disable the event on the hardware level first. After that we 1862 * remove it from the context list. 1863 */ 1864 static void 1865 __perf_remove_from_context(struct perf_event *event, 1866 struct perf_cpu_context *cpuctx, 1867 struct perf_event_context *ctx, 1868 void *info) 1869 { 1870 unsigned long flags = (unsigned long)info; 1871 1872 event_sched_out(event, cpuctx, ctx); 1873 if (flags & DETACH_GROUP) 1874 perf_group_detach(event); 1875 list_del_event(event, ctx); 1876 1877 if (!ctx->nr_events && ctx->is_active) { 1878 ctx->is_active = 0; 1879 if (ctx->task) { 1880 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 1881 cpuctx->task_ctx = NULL; 1882 } 1883 } 1884 } 1885 1886 /* 1887 * Remove the event from a task's (or a CPU's) list of events. 1888 * 1889 * If event->ctx is a cloned context, callers must make sure that 1890 * every task struct that event->ctx->task could possibly point to 1891 * remains valid. This is OK when called from perf_release since 1892 * that only calls us on the top-level context, which can't be a clone. 1893 * When called from perf_event_exit_task, it's OK because the 1894 * context has been detached from its task. 1895 */ 1896 static void perf_remove_from_context(struct perf_event *event, unsigned long flags) 1897 { 1898 lockdep_assert_held(&event->ctx->mutex); 1899 1900 event_function_call(event, __perf_remove_from_context, (void *)flags); 1901 } 1902 1903 /* 1904 * Cross CPU call to disable a performance event 1905 */ 1906 static void __perf_event_disable(struct perf_event *event, 1907 struct perf_cpu_context *cpuctx, 1908 struct perf_event_context *ctx, 1909 void *info) 1910 { 1911 if (event->state < PERF_EVENT_STATE_INACTIVE) 1912 return; 1913 1914 update_context_time(ctx); 1915 update_cgrp_time_from_event(event); 1916 update_group_times(event); 1917 if (event == event->group_leader) 1918 group_sched_out(event, cpuctx, ctx); 1919 else 1920 event_sched_out(event, cpuctx, ctx); 1921 event->state = PERF_EVENT_STATE_OFF; 1922 } 1923 1924 /* 1925 * Disable a event. 1926 * 1927 * If event->ctx is a cloned context, callers must make sure that 1928 * every task struct that event->ctx->task could possibly point to 1929 * remains valid. This condition is satisifed when called through 1930 * perf_event_for_each_child or perf_event_for_each because they 1931 * hold the top-level event's child_mutex, so any descendant that 1932 * goes to exit will block in perf_event_exit_event(). 1933 * 1934 * When called from perf_pending_event it's OK because event->ctx 1935 * is the current context on this CPU and preemption is disabled, 1936 * hence we can't get into perf_event_task_sched_out for this context. 1937 */ 1938 static void _perf_event_disable(struct perf_event *event) 1939 { 1940 struct perf_event_context *ctx = event->ctx; 1941 1942 raw_spin_lock_irq(&ctx->lock); 1943 if (event->state <= PERF_EVENT_STATE_OFF) { 1944 raw_spin_unlock_irq(&ctx->lock); 1945 return; 1946 } 1947 raw_spin_unlock_irq(&ctx->lock); 1948 1949 event_function_call(event, __perf_event_disable, NULL); 1950 } 1951 1952 void perf_event_disable_local(struct perf_event *event) 1953 { 1954 event_function_local(event, __perf_event_disable, NULL); 1955 } 1956 1957 /* 1958 * Strictly speaking kernel users cannot create groups and therefore this 1959 * interface does not need the perf_event_ctx_lock() magic. 1960 */ 1961 void perf_event_disable(struct perf_event *event) 1962 { 1963 struct perf_event_context *ctx; 1964 1965 ctx = perf_event_ctx_lock(event); 1966 _perf_event_disable(event); 1967 perf_event_ctx_unlock(event, ctx); 1968 } 1969 EXPORT_SYMBOL_GPL(perf_event_disable); 1970 1971 void perf_event_disable_inatomic(struct perf_event *event) 1972 { 1973 event->pending_disable = 1; 1974 irq_work_queue(&event->pending); 1975 } 1976 1977 static void perf_set_shadow_time(struct perf_event *event, 1978 struct perf_event_context *ctx, 1979 u64 tstamp) 1980 { 1981 /* 1982 * use the correct time source for the time snapshot 1983 * 1984 * We could get by without this by leveraging the 1985 * fact that to get to this function, the caller 1986 * has most likely already called update_context_time() 1987 * and update_cgrp_time_xx() and thus both timestamp 1988 * are identical (or very close). Given that tstamp is, 1989 * already adjusted for cgroup, we could say that: 1990 * tstamp - ctx->timestamp 1991 * is equivalent to 1992 * tstamp - cgrp->timestamp. 1993 * 1994 * Then, in perf_output_read(), the calculation would 1995 * work with no changes because: 1996 * - event is guaranteed scheduled in 1997 * - no scheduled out in between 1998 * - thus the timestamp would be the same 1999 * 2000 * But this is a bit hairy. 2001 * 2002 * So instead, we have an explicit cgroup call to remain 2003 * within the time time source all along. We believe it 2004 * is cleaner and simpler to understand. 2005 */ 2006 if (is_cgroup_event(event)) 2007 perf_cgroup_set_shadow_time(event, tstamp); 2008 else 2009 event->shadow_ctx_time = tstamp - ctx->timestamp; 2010 } 2011 2012 #define MAX_INTERRUPTS (~0ULL) 2013 2014 static void perf_log_throttle(struct perf_event *event, int enable); 2015 static void perf_log_itrace_start(struct perf_event *event); 2016 2017 static int 2018 event_sched_in(struct perf_event *event, 2019 struct perf_cpu_context *cpuctx, 2020 struct perf_event_context *ctx) 2021 { 2022 u64 tstamp = perf_event_time(event); 2023 int ret = 0; 2024 2025 lockdep_assert_held(&ctx->lock); 2026 2027 if (event->state <= PERF_EVENT_STATE_OFF) 2028 return 0; 2029 2030 WRITE_ONCE(event->oncpu, smp_processor_id()); 2031 /* 2032 * Order event::oncpu write to happen before the ACTIVE state 2033 * is visible. 2034 */ 2035 smp_wmb(); 2036 WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE); 2037 2038 /* 2039 * Unthrottle events, since we scheduled we might have missed several 2040 * ticks already, also for a heavily scheduling task there is little 2041 * guarantee it'll get a tick in a timely manner. 2042 */ 2043 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 2044 perf_log_throttle(event, 1); 2045 event->hw.interrupts = 0; 2046 } 2047 2048 /* 2049 * The new state must be visible before we turn it on in the hardware: 2050 */ 2051 smp_wmb(); 2052 2053 perf_pmu_disable(event->pmu); 2054 2055 perf_set_shadow_time(event, ctx, tstamp); 2056 2057 perf_log_itrace_start(event); 2058 2059 if (event->pmu->add(event, PERF_EF_START)) { 2060 event->state = PERF_EVENT_STATE_INACTIVE; 2061 event->oncpu = -1; 2062 ret = -EAGAIN; 2063 goto out; 2064 } 2065 2066 event->tstamp_running += tstamp - event->tstamp_stopped; 2067 2068 if (!is_software_event(event)) 2069 cpuctx->active_oncpu++; 2070 if (!ctx->nr_active++) 2071 perf_event_ctx_activate(ctx); 2072 if (event->attr.freq && event->attr.sample_freq) 2073 ctx->nr_freq++; 2074 2075 if (event->attr.exclusive) 2076 cpuctx->exclusive = 1; 2077 2078 out: 2079 perf_pmu_enable(event->pmu); 2080 2081 return ret; 2082 } 2083 2084 static int 2085 group_sched_in(struct perf_event *group_event, 2086 struct perf_cpu_context *cpuctx, 2087 struct perf_event_context *ctx) 2088 { 2089 struct perf_event *event, *partial_group = NULL; 2090 struct pmu *pmu = ctx->pmu; 2091 u64 now = ctx->time; 2092 bool simulate = false; 2093 2094 if (group_event->state == PERF_EVENT_STATE_OFF) 2095 return 0; 2096 2097 pmu->start_txn(pmu, PERF_PMU_TXN_ADD); 2098 2099 if (event_sched_in(group_event, cpuctx, ctx)) { 2100 pmu->cancel_txn(pmu); 2101 perf_mux_hrtimer_restart(cpuctx); 2102 return -EAGAIN; 2103 } 2104 2105 /* 2106 * Schedule in siblings as one group (if any): 2107 */ 2108 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 2109 if (event_sched_in(event, cpuctx, ctx)) { 2110 partial_group = event; 2111 goto group_error; 2112 } 2113 } 2114 2115 if (!pmu->commit_txn(pmu)) 2116 return 0; 2117 2118 group_error: 2119 /* 2120 * Groups can be scheduled in as one unit only, so undo any 2121 * partial group before returning: 2122 * The events up to the failed event are scheduled out normally, 2123 * tstamp_stopped will be updated. 2124 * 2125 * The failed events and the remaining siblings need to have 2126 * their timings updated as if they had gone thru event_sched_in() 2127 * and event_sched_out(). This is required to get consistent timings 2128 * across the group. This also takes care of the case where the group 2129 * could never be scheduled by ensuring tstamp_stopped is set to mark 2130 * the time the event was actually stopped, such that time delta 2131 * calculation in update_event_times() is correct. 2132 */ 2133 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 2134 if (event == partial_group) 2135 simulate = true; 2136 2137 if (simulate) { 2138 event->tstamp_running += now - event->tstamp_stopped; 2139 event->tstamp_stopped = now; 2140 } else { 2141 event_sched_out(event, cpuctx, ctx); 2142 } 2143 } 2144 event_sched_out(group_event, cpuctx, ctx); 2145 2146 pmu->cancel_txn(pmu); 2147 2148 perf_mux_hrtimer_restart(cpuctx); 2149 2150 return -EAGAIN; 2151 } 2152 2153 /* 2154 * Work out whether we can put this event group on the CPU now. 2155 */ 2156 static int group_can_go_on(struct perf_event *event, 2157 struct perf_cpu_context *cpuctx, 2158 int can_add_hw) 2159 { 2160 /* 2161 * Groups consisting entirely of software events can always go on. 2162 */ 2163 if (event->group_caps & PERF_EV_CAP_SOFTWARE) 2164 return 1; 2165 /* 2166 * If an exclusive group is already on, no other hardware 2167 * events can go on. 2168 */ 2169 if (cpuctx->exclusive) 2170 return 0; 2171 /* 2172 * If this group is exclusive and there are already 2173 * events on the CPU, it can't go on. 2174 */ 2175 if (event->attr.exclusive && cpuctx->active_oncpu) 2176 return 0; 2177 /* 2178 * Otherwise, try to add it if all previous groups were able 2179 * to go on. 2180 */ 2181 return can_add_hw; 2182 } 2183 2184 static void add_event_to_ctx(struct perf_event *event, 2185 struct perf_event_context *ctx) 2186 { 2187 u64 tstamp = perf_event_time(event); 2188 2189 list_add_event(event, ctx); 2190 perf_group_attach(event); 2191 event->tstamp_enabled = tstamp; 2192 event->tstamp_running = tstamp; 2193 event->tstamp_stopped = tstamp; 2194 } 2195 2196 static void ctx_sched_out(struct perf_event_context *ctx, 2197 struct perf_cpu_context *cpuctx, 2198 enum event_type_t event_type); 2199 static void 2200 ctx_sched_in(struct perf_event_context *ctx, 2201 struct perf_cpu_context *cpuctx, 2202 enum event_type_t event_type, 2203 struct task_struct *task); 2204 2205 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx, 2206 struct perf_event_context *ctx) 2207 { 2208 if (!cpuctx->task_ctx) 2209 return; 2210 2211 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2212 return; 2213 2214 ctx_sched_out(ctx, cpuctx, EVENT_ALL); 2215 } 2216 2217 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2218 struct perf_event_context *ctx, 2219 struct task_struct *task) 2220 { 2221 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task); 2222 if (ctx) 2223 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task); 2224 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task); 2225 if (ctx) 2226 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task); 2227 } 2228 2229 static void ctx_resched(struct perf_cpu_context *cpuctx, 2230 struct perf_event_context *task_ctx) 2231 { 2232 perf_pmu_disable(cpuctx->ctx.pmu); 2233 if (task_ctx) 2234 task_ctx_sched_out(cpuctx, task_ctx); 2235 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 2236 perf_event_sched_in(cpuctx, task_ctx, current); 2237 perf_pmu_enable(cpuctx->ctx.pmu); 2238 } 2239 2240 /* 2241 * Cross CPU call to install and enable a performance event 2242 * 2243 * Very similar to remote_function() + event_function() but cannot assume that 2244 * things like ctx->is_active and cpuctx->task_ctx are set. 2245 */ 2246 static int __perf_install_in_context(void *info) 2247 { 2248 struct perf_event *event = info; 2249 struct perf_event_context *ctx = event->ctx; 2250 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2251 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2252 bool reprogram = true; 2253 int ret = 0; 2254 2255 raw_spin_lock(&cpuctx->ctx.lock); 2256 if (ctx->task) { 2257 raw_spin_lock(&ctx->lock); 2258 task_ctx = ctx; 2259 2260 reprogram = (ctx->task == current); 2261 2262 /* 2263 * If the task is running, it must be running on this CPU, 2264 * otherwise we cannot reprogram things. 2265 * 2266 * If its not running, we don't care, ctx->lock will 2267 * serialize against it becoming runnable. 2268 */ 2269 if (task_curr(ctx->task) && !reprogram) { 2270 ret = -ESRCH; 2271 goto unlock; 2272 } 2273 2274 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx); 2275 } else if (task_ctx) { 2276 raw_spin_lock(&task_ctx->lock); 2277 } 2278 2279 if (reprogram) { 2280 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2281 add_event_to_ctx(event, ctx); 2282 ctx_resched(cpuctx, task_ctx); 2283 } else { 2284 add_event_to_ctx(event, ctx); 2285 } 2286 2287 unlock: 2288 perf_ctx_unlock(cpuctx, task_ctx); 2289 2290 return ret; 2291 } 2292 2293 /* 2294 * Attach a performance event to a context. 2295 * 2296 * Very similar to event_function_call, see comment there. 2297 */ 2298 static void 2299 perf_install_in_context(struct perf_event_context *ctx, 2300 struct perf_event *event, 2301 int cpu) 2302 { 2303 struct task_struct *task = READ_ONCE(ctx->task); 2304 2305 lockdep_assert_held(&ctx->mutex); 2306 2307 if (event->cpu != -1) 2308 event->cpu = cpu; 2309 2310 /* 2311 * Ensures that if we can observe event->ctx, both the event and ctx 2312 * will be 'complete'. See perf_iterate_sb_cpu(). 2313 */ 2314 smp_store_release(&event->ctx, ctx); 2315 2316 if (!task) { 2317 cpu_function_call(cpu, __perf_install_in_context, event); 2318 return; 2319 } 2320 2321 /* 2322 * Should not happen, we validate the ctx is still alive before calling. 2323 */ 2324 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) 2325 return; 2326 2327 /* 2328 * Installing events is tricky because we cannot rely on ctx->is_active 2329 * to be set in case this is the nr_events 0 -> 1 transition. 2330 * 2331 * Instead we use task_curr(), which tells us if the task is running. 2332 * However, since we use task_curr() outside of rq::lock, we can race 2333 * against the actual state. This means the result can be wrong. 2334 * 2335 * If we get a false positive, we retry, this is harmless. 2336 * 2337 * If we get a false negative, things are complicated. If we are after 2338 * perf_event_context_sched_in() ctx::lock will serialize us, and the 2339 * value must be correct. If we're before, it doesn't matter since 2340 * perf_event_context_sched_in() will program the counter. 2341 * 2342 * However, this hinges on the remote context switch having observed 2343 * our task->perf_event_ctxp[] store, such that it will in fact take 2344 * ctx::lock in perf_event_context_sched_in(). 2345 * 2346 * We do this by task_function_call(), if the IPI fails to hit the task 2347 * we know any future context switch of task must see the 2348 * perf_event_ctpx[] store. 2349 */ 2350 2351 /* 2352 * This smp_mb() orders the task->perf_event_ctxp[] store with the 2353 * task_cpu() load, such that if the IPI then does not find the task 2354 * running, a future context switch of that task must observe the 2355 * store. 2356 */ 2357 smp_mb(); 2358 again: 2359 if (!task_function_call(task, __perf_install_in_context, event)) 2360 return; 2361 2362 raw_spin_lock_irq(&ctx->lock); 2363 task = ctx->task; 2364 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) { 2365 /* 2366 * Cannot happen because we already checked above (which also 2367 * cannot happen), and we hold ctx->mutex, which serializes us 2368 * against perf_event_exit_task_context(). 2369 */ 2370 raw_spin_unlock_irq(&ctx->lock); 2371 return; 2372 } 2373 /* 2374 * If the task is not running, ctx->lock will avoid it becoming so, 2375 * thus we can safely install the event. 2376 */ 2377 if (task_curr(task)) { 2378 raw_spin_unlock_irq(&ctx->lock); 2379 goto again; 2380 } 2381 add_event_to_ctx(event, ctx); 2382 raw_spin_unlock_irq(&ctx->lock); 2383 } 2384 2385 /* 2386 * Put a event into inactive state and update time fields. 2387 * Enabling the leader of a group effectively enables all 2388 * the group members that aren't explicitly disabled, so we 2389 * have to update their ->tstamp_enabled also. 2390 * Note: this works for group members as well as group leaders 2391 * since the non-leader members' sibling_lists will be empty. 2392 */ 2393 static void __perf_event_mark_enabled(struct perf_event *event) 2394 { 2395 struct perf_event *sub; 2396 u64 tstamp = perf_event_time(event); 2397 2398 event->state = PERF_EVENT_STATE_INACTIVE; 2399 event->tstamp_enabled = tstamp - event->total_time_enabled; 2400 list_for_each_entry(sub, &event->sibling_list, group_entry) { 2401 if (sub->state >= PERF_EVENT_STATE_INACTIVE) 2402 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 2403 } 2404 } 2405 2406 /* 2407 * Cross CPU call to enable a performance event 2408 */ 2409 static void __perf_event_enable(struct perf_event *event, 2410 struct perf_cpu_context *cpuctx, 2411 struct perf_event_context *ctx, 2412 void *info) 2413 { 2414 struct perf_event *leader = event->group_leader; 2415 struct perf_event_context *task_ctx; 2416 2417 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2418 event->state <= PERF_EVENT_STATE_ERROR) 2419 return; 2420 2421 if (ctx->is_active) 2422 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2423 2424 __perf_event_mark_enabled(event); 2425 2426 if (!ctx->is_active) 2427 return; 2428 2429 if (!event_filter_match(event)) { 2430 if (is_cgroup_event(event)) 2431 perf_cgroup_defer_enabled(event); 2432 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2433 return; 2434 } 2435 2436 /* 2437 * If the event is in a group and isn't the group leader, 2438 * then don't put it on unless the group is on. 2439 */ 2440 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) { 2441 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2442 return; 2443 } 2444 2445 task_ctx = cpuctx->task_ctx; 2446 if (ctx->task) 2447 WARN_ON_ONCE(task_ctx != ctx); 2448 2449 ctx_resched(cpuctx, task_ctx); 2450 } 2451 2452 /* 2453 * Enable a event. 2454 * 2455 * If event->ctx is a cloned context, callers must make sure that 2456 * every task struct that event->ctx->task could possibly point to 2457 * remains valid. This condition is satisfied when called through 2458 * perf_event_for_each_child or perf_event_for_each as described 2459 * for perf_event_disable. 2460 */ 2461 static void _perf_event_enable(struct perf_event *event) 2462 { 2463 struct perf_event_context *ctx = event->ctx; 2464 2465 raw_spin_lock_irq(&ctx->lock); 2466 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2467 event->state < PERF_EVENT_STATE_ERROR) { 2468 raw_spin_unlock_irq(&ctx->lock); 2469 return; 2470 } 2471 2472 /* 2473 * If the event is in error state, clear that first. 2474 * 2475 * That way, if we see the event in error state below, we know that it 2476 * has gone back into error state, as distinct from the task having 2477 * been scheduled away before the cross-call arrived. 2478 */ 2479 if (event->state == PERF_EVENT_STATE_ERROR) 2480 event->state = PERF_EVENT_STATE_OFF; 2481 raw_spin_unlock_irq(&ctx->lock); 2482 2483 event_function_call(event, __perf_event_enable, NULL); 2484 } 2485 2486 /* 2487 * See perf_event_disable(); 2488 */ 2489 void perf_event_enable(struct perf_event *event) 2490 { 2491 struct perf_event_context *ctx; 2492 2493 ctx = perf_event_ctx_lock(event); 2494 _perf_event_enable(event); 2495 perf_event_ctx_unlock(event, ctx); 2496 } 2497 EXPORT_SYMBOL_GPL(perf_event_enable); 2498 2499 struct stop_event_data { 2500 struct perf_event *event; 2501 unsigned int restart; 2502 }; 2503 2504 static int __perf_event_stop(void *info) 2505 { 2506 struct stop_event_data *sd = info; 2507 struct perf_event *event = sd->event; 2508 2509 /* if it's already INACTIVE, do nothing */ 2510 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 2511 return 0; 2512 2513 /* matches smp_wmb() in event_sched_in() */ 2514 smp_rmb(); 2515 2516 /* 2517 * There is a window with interrupts enabled before we get here, 2518 * so we need to check again lest we try to stop another CPU's event. 2519 */ 2520 if (READ_ONCE(event->oncpu) != smp_processor_id()) 2521 return -EAGAIN; 2522 2523 event->pmu->stop(event, PERF_EF_UPDATE); 2524 2525 /* 2526 * May race with the actual stop (through perf_pmu_output_stop()), 2527 * but it is only used for events with AUX ring buffer, and such 2528 * events will refuse to restart because of rb::aux_mmap_count==0, 2529 * see comments in perf_aux_output_begin(). 2530 * 2531 * Since this is happening on a event-local CPU, no trace is lost 2532 * while restarting. 2533 */ 2534 if (sd->restart) 2535 event->pmu->start(event, 0); 2536 2537 return 0; 2538 } 2539 2540 static int perf_event_stop(struct perf_event *event, int restart) 2541 { 2542 struct stop_event_data sd = { 2543 .event = event, 2544 .restart = restart, 2545 }; 2546 int ret = 0; 2547 2548 do { 2549 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 2550 return 0; 2551 2552 /* matches smp_wmb() in event_sched_in() */ 2553 smp_rmb(); 2554 2555 /* 2556 * We only want to restart ACTIVE events, so if the event goes 2557 * inactive here (event->oncpu==-1), there's nothing more to do; 2558 * fall through with ret==-ENXIO. 2559 */ 2560 ret = cpu_function_call(READ_ONCE(event->oncpu), 2561 __perf_event_stop, &sd); 2562 } while (ret == -EAGAIN); 2563 2564 return ret; 2565 } 2566 2567 /* 2568 * In order to contain the amount of racy and tricky in the address filter 2569 * configuration management, it is a two part process: 2570 * 2571 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below, 2572 * we update the addresses of corresponding vmas in 2573 * event::addr_filters_offs array and bump the event::addr_filters_gen; 2574 * (p2) when an event is scheduled in (pmu::add), it calls 2575 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync() 2576 * if the generation has changed since the previous call. 2577 * 2578 * If (p1) happens while the event is active, we restart it to force (p2). 2579 * 2580 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on 2581 * pre-existing mappings, called once when new filters arrive via SET_FILTER 2582 * ioctl; 2583 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly 2584 * registered mapping, called for every new mmap(), with mm::mmap_sem down 2585 * for reading; 2586 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process 2587 * of exec. 2588 */ 2589 void perf_event_addr_filters_sync(struct perf_event *event) 2590 { 2591 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 2592 2593 if (!has_addr_filter(event)) 2594 return; 2595 2596 raw_spin_lock(&ifh->lock); 2597 if (event->addr_filters_gen != event->hw.addr_filters_gen) { 2598 event->pmu->addr_filters_sync(event); 2599 event->hw.addr_filters_gen = event->addr_filters_gen; 2600 } 2601 raw_spin_unlock(&ifh->lock); 2602 } 2603 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync); 2604 2605 static int _perf_event_refresh(struct perf_event *event, int refresh) 2606 { 2607 /* 2608 * not supported on inherited events 2609 */ 2610 if (event->attr.inherit || !is_sampling_event(event)) 2611 return -EINVAL; 2612 2613 atomic_add(refresh, &event->event_limit); 2614 _perf_event_enable(event); 2615 2616 return 0; 2617 } 2618 2619 /* 2620 * See perf_event_disable() 2621 */ 2622 int perf_event_refresh(struct perf_event *event, int refresh) 2623 { 2624 struct perf_event_context *ctx; 2625 int ret; 2626 2627 ctx = perf_event_ctx_lock(event); 2628 ret = _perf_event_refresh(event, refresh); 2629 perf_event_ctx_unlock(event, ctx); 2630 2631 return ret; 2632 } 2633 EXPORT_SYMBOL_GPL(perf_event_refresh); 2634 2635 static void ctx_sched_out(struct perf_event_context *ctx, 2636 struct perf_cpu_context *cpuctx, 2637 enum event_type_t event_type) 2638 { 2639 int is_active = ctx->is_active; 2640 struct perf_event *event; 2641 2642 lockdep_assert_held(&ctx->lock); 2643 2644 if (likely(!ctx->nr_events)) { 2645 /* 2646 * See __perf_remove_from_context(). 2647 */ 2648 WARN_ON_ONCE(ctx->is_active); 2649 if (ctx->task) 2650 WARN_ON_ONCE(cpuctx->task_ctx); 2651 return; 2652 } 2653 2654 ctx->is_active &= ~event_type; 2655 if (!(ctx->is_active & EVENT_ALL)) 2656 ctx->is_active = 0; 2657 2658 if (ctx->task) { 2659 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2660 if (!ctx->is_active) 2661 cpuctx->task_ctx = NULL; 2662 } 2663 2664 /* 2665 * Always update time if it was set; not only when it changes. 2666 * Otherwise we can 'forget' to update time for any but the last 2667 * context we sched out. For example: 2668 * 2669 * ctx_sched_out(.event_type = EVENT_FLEXIBLE) 2670 * ctx_sched_out(.event_type = EVENT_PINNED) 2671 * 2672 * would only update time for the pinned events. 2673 */ 2674 if (is_active & EVENT_TIME) { 2675 /* update (and stop) ctx time */ 2676 update_context_time(ctx); 2677 update_cgrp_time_from_cpuctx(cpuctx); 2678 } 2679 2680 is_active ^= ctx->is_active; /* changed bits */ 2681 2682 if (!ctx->nr_active || !(is_active & EVENT_ALL)) 2683 return; 2684 2685 perf_pmu_disable(ctx->pmu); 2686 if (is_active & EVENT_PINNED) { 2687 list_for_each_entry(event, &ctx->pinned_groups, group_entry) 2688 group_sched_out(event, cpuctx, ctx); 2689 } 2690 2691 if (is_active & EVENT_FLEXIBLE) { 2692 list_for_each_entry(event, &ctx->flexible_groups, group_entry) 2693 group_sched_out(event, cpuctx, ctx); 2694 } 2695 perf_pmu_enable(ctx->pmu); 2696 } 2697 2698 /* 2699 * Test whether two contexts are equivalent, i.e. whether they have both been 2700 * cloned from the same version of the same context. 2701 * 2702 * Equivalence is measured using a generation number in the context that is 2703 * incremented on each modification to it; see unclone_ctx(), list_add_event() 2704 * and list_del_event(). 2705 */ 2706 static int context_equiv(struct perf_event_context *ctx1, 2707 struct perf_event_context *ctx2) 2708 { 2709 lockdep_assert_held(&ctx1->lock); 2710 lockdep_assert_held(&ctx2->lock); 2711 2712 /* Pinning disables the swap optimization */ 2713 if (ctx1->pin_count || ctx2->pin_count) 2714 return 0; 2715 2716 /* If ctx1 is the parent of ctx2 */ 2717 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 2718 return 1; 2719 2720 /* If ctx2 is the parent of ctx1 */ 2721 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 2722 return 1; 2723 2724 /* 2725 * If ctx1 and ctx2 have the same parent; we flatten the parent 2726 * hierarchy, see perf_event_init_context(). 2727 */ 2728 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 2729 ctx1->parent_gen == ctx2->parent_gen) 2730 return 1; 2731 2732 /* Unmatched */ 2733 return 0; 2734 } 2735 2736 static void __perf_event_sync_stat(struct perf_event *event, 2737 struct perf_event *next_event) 2738 { 2739 u64 value; 2740 2741 if (!event->attr.inherit_stat) 2742 return; 2743 2744 /* 2745 * Update the event value, we cannot use perf_event_read() 2746 * because we're in the middle of a context switch and have IRQs 2747 * disabled, which upsets smp_call_function_single(), however 2748 * we know the event must be on the current CPU, therefore we 2749 * don't need to use it. 2750 */ 2751 switch (event->state) { 2752 case PERF_EVENT_STATE_ACTIVE: 2753 event->pmu->read(event); 2754 /* fall-through */ 2755 2756 case PERF_EVENT_STATE_INACTIVE: 2757 update_event_times(event); 2758 break; 2759 2760 default: 2761 break; 2762 } 2763 2764 /* 2765 * In order to keep per-task stats reliable we need to flip the event 2766 * values when we flip the contexts. 2767 */ 2768 value = local64_read(&next_event->count); 2769 value = local64_xchg(&event->count, value); 2770 local64_set(&next_event->count, value); 2771 2772 swap(event->total_time_enabled, next_event->total_time_enabled); 2773 swap(event->total_time_running, next_event->total_time_running); 2774 2775 /* 2776 * Since we swizzled the values, update the user visible data too. 2777 */ 2778 perf_event_update_userpage(event); 2779 perf_event_update_userpage(next_event); 2780 } 2781 2782 static void perf_event_sync_stat(struct perf_event_context *ctx, 2783 struct perf_event_context *next_ctx) 2784 { 2785 struct perf_event *event, *next_event; 2786 2787 if (!ctx->nr_stat) 2788 return; 2789 2790 update_context_time(ctx); 2791 2792 event = list_first_entry(&ctx->event_list, 2793 struct perf_event, event_entry); 2794 2795 next_event = list_first_entry(&next_ctx->event_list, 2796 struct perf_event, event_entry); 2797 2798 while (&event->event_entry != &ctx->event_list && 2799 &next_event->event_entry != &next_ctx->event_list) { 2800 2801 __perf_event_sync_stat(event, next_event); 2802 2803 event = list_next_entry(event, event_entry); 2804 next_event = list_next_entry(next_event, event_entry); 2805 } 2806 } 2807 2808 static void perf_event_context_sched_out(struct task_struct *task, int ctxn, 2809 struct task_struct *next) 2810 { 2811 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; 2812 struct perf_event_context *next_ctx; 2813 struct perf_event_context *parent, *next_parent; 2814 struct perf_cpu_context *cpuctx; 2815 int do_switch = 1; 2816 2817 if (likely(!ctx)) 2818 return; 2819 2820 cpuctx = __get_cpu_context(ctx); 2821 if (!cpuctx->task_ctx) 2822 return; 2823 2824 rcu_read_lock(); 2825 next_ctx = next->perf_event_ctxp[ctxn]; 2826 if (!next_ctx) 2827 goto unlock; 2828 2829 parent = rcu_dereference(ctx->parent_ctx); 2830 next_parent = rcu_dereference(next_ctx->parent_ctx); 2831 2832 /* If neither context have a parent context; they cannot be clones. */ 2833 if (!parent && !next_parent) 2834 goto unlock; 2835 2836 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 2837 /* 2838 * Looks like the two contexts are clones, so we might be 2839 * able to optimize the context switch. We lock both 2840 * contexts and check that they are clones under the 2841 * lock (including re-checking that neither has been 2842 * uncloned in the meantime). It doesn't matter which 2843 * order we take the locks because no other cpu could 2844 * be trying to lock both of these tasks. 2845 */ 2846 raw_spin_lock(&ctx->lock); 2847 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 2848 if (context_equiv(ctx, next_ctx)) { 2849 WRITE_ONCE(ctx->task, next); 2850 WRITE_ONCE(next_ctx->task, task); 2851 2852 swap(ctx->task_ctx_data, next_ctx->task_ctx_data); 2853 2854 /* 2855 * RCU_INIT_POINTER here is safe because we've not 2856 * modified the ctx and the above modification of 2857 * ctx->task and ctx->task_ctx_data are immaterial 2858 * since those values are always verified under 2859 * ctx->lock which we're now holding. 2860 */ 2861 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx); 2862 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx); 2863 2864 do_switch = 0; 2865 2866 perf_event_sync_stat(ctx, next_ctx); 2867 } 2868 raw_spin_unlock(&next_ctx->lock); 2869 raw_spin_unlock(&ctx->lock); 2870 } 2871 unlock: 2872 rcu_read_unlock(); 2873 2874 if (do_switch) { 2875 raw_spin_lock(&ctx->lock); 2876 task_ctx_sched_out(cpuctx, ctx); 2877 raw_spin_unlock(&ctx->lock); 2878 } 2879 } 2880 2881 static DEFINE_PER_CPU(struct list_head, sched_cb_list); 2882 2883 void perf_sched_cb_dec(struct pmu *pmu) 2884 { 2885 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 2886 2887 this_cpu_dec(perf_sched_cb_usages); 2888 2889 if (!--cpuctx->sched_cb_usage) 2890 list_del(&cpuctx->sched_cb_entry); 2891 } 2892 2893 2894 void perf_sched_cb_inc(struct pmu *pmu) 2895 { 2896 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 2897 2898 if (!cpuctx->sched_cb_usage++) 2899 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list)); 2900 2901 this_cpu_inc(perf_sched_cb_usages); 2902 } 2903 2904 /* 2905 * This function provides the context switch callback to the lower code 2906 * layer. It is invoked ONLY when the context switch callback is enabled. 2907 * 2908 * This callback is relevant even to per-cpu events; for example multi event 2909 * PEBS requires this to provide PID/TID information. This requires we flush 2910 * all queued PEBS records before we context switch to a new task. 2911 */ 2912 static void perf_pmu_sched_task(struct task_struct *prev, 2913 struct task_struct *next, 2914 bool sched_in) 2915 { 2916 struct perf_cpu_context *cpuctx; 2917 struct pmu *pmu; 2918 2919 if (prev == next) 2920 return; 2921 2922 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) { 2923 pmu = cpuctx->unique_pmu; /* software PMUs will not have sched_task */ 2924 2925 if (WARN_ON_ONCE(!pmu->sched_task)) 2926 continue; 2927 2928 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 2929 perf_pmu_disable(pmu); 2930 2931 pmu->sched_task(cpuctx->task_ctx, sched_in); 2932 2933 perf_pmu_enable(pmu); 2934 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 2935 } 2936 } 2937 2938 static void perf_event_switch(struct task_struct *task, 2939 struct task_struct *next_prev, bool sched_in); 2940 2941 #define for_each_task_context_nr(ctxn) \ 2942 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) 2943 2944 /* 2945 * Called from scheduler to remove the events of the current task, 2946 * with interrupts disabled. 2947 * 2948 * We stop each event and update the event value in event->count. 2949 * 2950 * This does not protect us against NMI, but disable() 2951 * sets the disabled bit in the control field of event _before_ 2952 * accessing the event control register. If a NMI hits, then it will 2953 * not restart the event. 2954 */ 2955 void __perf_event_task_sched_out(struct task_struct *task, 2956 struct task_struct *next) 2957 { 2958 int ctxn; 2959 2960 if (__this_cpu_read(perf_sched_cb_usages)) 2961 perf_pmu_sched_task(task, next, false); 2962 2963 if (atomic_read(&nr_switch_events)) 2964 perf_event_switch(task, next, false); 2965 2966 for_each_task_context_nr(ctxn) 2967 perf_event_context_sched_out(task, ctxn, next); 2968 2969 /* 2970 * if cgroup events exist on this CPU, then we need 2971 * to check if we have to switch out PMU state. 2972 * cgroup event are system-wide mode only 2973 */ 2974 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 2975 perf_cgroup_sched_out(task, next); 2976 } 2977 2978 /* 2979 * Called with IRQs disabled 2980 */ 2981 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 2982 enum event_type_t event_type) 2983 { 2984 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); 2985 } 2986 2987 static void 2988 ctx_pinned_sched_in(struct perf_event_context *ctx, 2989 struct perf_cpu_context *cpuctx) 2990 { 2991 struct perf_event *event; 2992 2993 list_for_each_entry(event, &ctx->pinned_groups, group_entry) { 2994 if (event->state <= PERF_EVENT_STATE_OFF) 2995 continue; 2996 if (!event_filter_match(event)) 2997 continue; 2998 2999 /* may need to reset tstamp_enabled */ 3000 if (is_cgroup_event(event)) 3001 perf_cgroup_mark_enabled(event, ctx); 3002 3003 if (group_can_go_on(event, cpuctx, 1)) 3004 group_sched_in(event, cpuctx, ctx); 3005 3006 /* 3007 * If this pinned group hasn't been scheduled, 3008 * put it in error state. 3009 */ 3010 if (event->state == PERF_EVENT_STATE_INACTIVE) { 3011 update_group_times(event); 3012 event->state = PERF_EVENT_STATE_ERROR; 3013 } 3014 } 3015 } 3016 3017 static void 3018 ctx_flexible_sched_in(struct perf_event_context *ctx, 3019 struct perf_cpu_context *cpuctx) 3020 { 3021 struct perf_event *event; 3022 int can_add_hw = 1; 3023 3024 list_for_each_entry(event, &ctx->flexible_groups, group_entry) { 3025 /* Ignore events in OFF or ERROR state */ 3026 if (event->state <= PERF_EVENT_STATE_OFF) 3027 continue; 3028 /* 3029 * Listen to the 'cpu' scheduling filter constraint 3030 * of events: 3031 */ 3032 if (!event_filter_match(event)) 3033 continue; 3034 3035 /* may need to reset tstamp_enabled */ 3036 if (is_cgroup_event(event)) 3037 perf_cgroup_mark_enabled(event, ctx); 3038 3039 if (group_can_go_on(event, cpuctx, can_add_hw)) { 3040 if (group_sched_in(event, cpuctx, ctx)) 3041 can_add_hw = 0; 3042 } 3043 } 3044 } 3045 3046 static void 3047 ctx_sched_in(struct perf_event_context *ctx, 3048 struct perf_cpu_context *cpuctx, 3049 enum event_type_t event_type, 3050 struct task_struct *task) 3051 { 3052 int is_active = ctx->is_active; 3053 u64 now; 3054 3055 lockdep_assert_held(&ctx->lock); 3056 3057 if (likely(!ctx->nr_events)) 3058 return; 3059 3060 ctx->is_active |= (event_type | EVENT_TIME); 3061 if (ctx->task) { 3062 if (!is_active) 3063 cpuctx->task_ctx = ctx; 3064 else 3065 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3066 } 3067 3068 is_active ^= ctx->is_active; /* changed bits */ 3069 3070 if (is_active & EVENT_TIME) { 3071 /* start ctx time */ 3072 now = perf_clock(); 3073 ctx->timestamp = now; 3074 perf_cgroup_set_timestamp(task, ctx); 3075 } 3076 3077 /* 3078 * First go through the list and put on any pinned groups 3079 * in order to give them the best chance of going on. 3080 */ 3081 if (is_active & EVENT_PINNED) 3082 ctx_pinned_sched_in(ctx, cpuctx); 3083 3084 /* Then walk through the lower prio flexible groups */ 3085 if (is_active & EVENT_FLEXIBLE) 3086 ctx_flexible_sched_in(ctx, cpuctx); 3087 } 3088 3089 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 3090 enum event_type_t event_type, 3091 struct task_struct *task) 3092 { 3093 struct perf_event_context *ctx = &cpuctx->ctx; 3094 3095 ctx_sched_in(ctx, cpuctx, event_type, task); 3096 } 3097 3098 static void perf_event_context_sched_in(struct perf_event_context *ctx, 3099 struct task_struct *task) 3100 { 3101 struct perf_cpu_context *cpuctx; 3102 3103 cpuctx = __get_cpu_context(ctx); 3104 if (cpuctx->task_ctx == ctx) 3105 return; 3106 3107 perf_ctx_lock(cpuctx, ctx); 3108 perf_pmu_disable(ctx->pmu); 3109 /* 3110 * We want to keep the following priority order: 3111 * cpu pinned (that don't need to move), task pinned, 3112 * cpu flexible, task flexible. 3113 */ 3114 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3115 perf_event_sched_in(cpuctx, ctx, task); 3116 perf_pmu_enable(ctx->pmu); 3117 perf_ctx_unlock(cpuctx, ctx); 3118 } 3119 3120 /* 3121 * Called from scheduler to add the events of the current task 3122 * with interrupts disabled. 3123 * 3124 * We restore the event value and then enable it. 3125 * 3126 * This does not protect us against NMI, but enable() 3127 * sets the enabled bit in the control field of event _before_ 3128 * accessing the event control register. If a NMI hits, then it will 3129 * keep the event running. 3130 */ 3131 void __perf_event_task_sched_in(struct task_struct *prev, 3132 struct task_struct *task) 3133 { 3134 struct perf_event_context *ctx; 3135 int ctxn; 3136 3137 /* 3138 * If cgroup events exist on this CPU, then we need to check if we have 3139 * to switch in PMU state; cgroup event are system-wide mode only. 3140 * 3141 * Since cgroup events are CPU events, we must schedule these in before 3142 * we schedule in the task events. 3143 */ 3144 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3145 perf_cgroup_sched_in(prev, task); 3146 3147 for_each_task_context_nr(ctxn) { 3148 ctx = task->perf_event_ctxp[ctxn]; 3149 if (likely(!ctx)) 3150 continue; 3151 3152 perf_event_context_sched_in(ctx, task); 3153 } 3154 3155 if (atomic_read(&nr_switch_events)) 3156 perf_event_switch(task, prev, true); 3157 3158 if (__this_cpu_read(perf_sched_cb_usages)) 3159 perf_pmu_sched_task(prev, task, true); 3160 } 3161 3162 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 3163 { 3164 u64 frequency = event->attr.sample_freq; 3165 u64 sec = NSEC_PER_SEC; 3166 u64 divisor, dividend; 3167 3168 int count_fls, nsec_fls, frequency_fls, sec_fls; 3169 3170 count_fls = fls64(count); 3171 nsec_fls = fls64(nsec); 3172 frequency_fls = fls64(frequency); 3173 sec_fls = 30; 3174 3175 /* 3176 * We got @count in @nsec, with a target of sample_freq HZ 3177 * the target period becomes: 3178 * 3179 * @count * 10^9 3180 * period = ------------------- 3181 * @nsec * sample_freq 3182 * 3183 */ 3184 3185 /* 3186 * Reduce accuracy by one bit such that @a and @b converge 3187 * to a similar magnitude. 3188 */ 3189 #define REDUCE_FLS(a, b) \ 3190 do { \ 3191 if (a##_fls > b##_fls) { \ 3192 a >>= 1; \ 3193 a##_fls--; \ 3194 } else { \ 3195 b >>= 1; \ 3196 b##_fls--; \ 3197 } \ 3198 } while (0) 3199 3200 /* 3201 * Reduce accuracy until either term fits in a u64, then proceed with 3202 * the other, so that finally we can do a u64/u64 division. 3203 */ 3204 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 3205 REDUCE_FLS(nsec, frequency); 3206 REDUCE_FLS(sec, count); 3207 } 3208 3209 if (count_fls + sec_fls > 64) { 3210 divisor = nsec * frequency; 3211 3212 while (count_fls + sec_fls > 64) { 3213 REDUCE_FLS(count, sec); 3214 divisor >>= 1; 3215 } 3216 3217 dividend = count * sec; 3218 } else { 3219 dividend = count * sec; 3220 3221 while (nsec_fls + frequency_fls > 64) { 3222 REDUCE_FLS(nsec, frequency); 3223 dividend >>= 1; 3224 } 3225 3226 divisor = nsec * frequency; 3227 } 3228 3229 if (!divisor) 3230 return dividend; 3231 3232 return div64_u64(dividend, divisor); 3233 } 3234 3235 static DEFINE_PER_CPU(int, perf_throttled_count); 3236 static DEFINE_PER_CPU(u64, perf_throttled_seq); 3237 3238 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 3239 { 3240 struct hw_perf_event *hwc = &event->hw; 3241 s64 period, sample_period; 3242 s64 delta; 3243 3244 period = perf_calculate_period(event, nsec, count); 3245 3246 delta = (s64)(period - hwc->sample_period); 3247 delta = (delta + 7) / 8; /* low pass filter */ 3248 3249 sample_period = hwc->sample_period + delta; 3250 3251 if (!sample_period) 3252 sample_period = 1; 3253 3254 hwc->sample_period = sample_period; 3255 3256 if (local64_read(&hwc->period_left) > 8*sample_period) { 3257 if (disable) 3258 event->pmu->stop(event, PERF_EF_UPDATE); 3259 3260 local64_set(&hwc->period_left, 0); 3261 3262 if (disable) 3263 event->pmu->start(event, PERF_EF_RELOAD); 3264 } 3265 } 3266 3267 /* 3268 * combine freq adjustment with unthrottling to avoid two passes over the 3269 * events. At the same time, make sure, having freq events does not change 3270 * the rate of unthrottling as that would introduce bias. 3271 */ 3272 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx, 3273 int needs_unthr) 3274 { 3275 struct perf_event *event; 3276 struct hw_perf_event *hwc; 3277 u64 now, period = TICK_NSEC; 3278 s64 delta; 3279 3280 /* 3281 * only need to iterate over all events iff: 3282 * - context have events in frequency mode (needs freq adjust) 3283 * - there are events to unthrottle on this cpu 3284 */ 3285 if (!(ctx->nr_freq || needs_unthr)) 3286 return; 3287 3288 raw_spin_lock(&ctx->lock); 3289 perf_pmu_disable(ctx->pmu); 3290 3291 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 3292 if (event->state != PERF_EVENT_STATE_ACTIVE) 3293 continue; 3294 3295 if (!event_filter_match(event)) 3296 continue; 3297 3298 perf_pmu_disable(event->pmu); 3299 3300 hwc = &event->hw; 3301 3302 if (hwc->interrupts == MAX_INTERRUPTS) { 3303 hwc->interrupts = 0; 3304 perf_log_throttle(event, 1); 3305 event->pmu->start(event, 0); 3306 } 3307 3308 if (!event->attr.freq || !event->attr.sample_freq) 3309 goto next; 3310 3311 /* 3312 * stop the event and update event->count 3313 */ 3314 event->pmu->stop(event, PERF_EF_UPDATE); 3315 3316 now = local64_read(&event->count); 3317 delta = now - hwc->freq_count_stamp; 3318 hwc->freq_count_stamp = now; 3319 3320 /* 3321 * restart the event 3322 * reload only if value has changed 3323 * we have stopped the event so tell that 3324 * to perf_adjust_period() to avoid stopping it 3325 * twice. 3326 */ 3327 if (delta > 0) 3328 perf_adjust_period(event, period, delta, false); 3329 3330 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 3331 next: 3332 perf_pmu_enable(event->pmu); 3333 } 3334 3335 perf_pmu_enable(ctx->pmu); 3336 raw_spin_unlock(&ctx->lock); 3337 } 3338 3339 /* 3340 * Round-robin a context's events: 3341 */ 3342 static void rotate_ctx(struct perf_event_context *ctx) 3343 { 3344 /* 3345 * Rotate the first entry last of non-pinned groups. Rotation might be 3346 * disabled by the inheritance code. 3347 */ 3348 if (!ctx->rotate_disable) 3349 list_rotate_left(&ctx->flexible_groups); 3350 } 3351 3352 static int perf_rotate_context(struct perf_cpu_context *cpuctx) 3353 { 3354 struct perf_event_context *ctx = NULL; 3355 int rotate = 0; 3356 3357 if (cpuctx->ctx.nr_events) { 3358 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active) 3359 rotate = 1; 3360 } 3361 3362 ctx = cpuctx->task_ctx; 3363 if (ctx && ctx->nr_events) { 3364 if (ctx->nr_events != ctx->nr_active) 3365 rotate = 1; 3366 } 3367 3368 if (!rotate) 3369 goto done; 3370 3371 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3372 perf_pmu_disable(cpuctx->ctx.pmu); 3373 3374 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3375 if (ctx) 3376 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE); 3377 3378 rotate_ctx(&cpuctx->ctx); 3379 if (ctx) 3380 rotate_ctx(ctx); 3381 3382 perf_event_sched_in(cpuctx, ctx, current); 3383 3384 perf_pmu_enable(cpuctx->ctx.pmu); 3385 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3386 done: 3387 3388 return rotate; 3389 } 3390 3391 void perf_event_task_tick(void) 3392 { 3393 struct list_head *head = this_cpu_ptr(&active_ctx_list); 3394 struct perf_event_context *ctx, *tmp; 3395 int throttled; 3396 3397 WARN_ON(!irqs_disabled()); 3398 3399 __this_cpu_inc(perf_throttled_seq); 3400 throttled = __this_cpu_xchg(perf_throttled_count, 0); 3401 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 3402 3403 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list) 3404 perf_adjust_freq_unthr_context(ctx, throttled); 3405 } 3406 3407 static int event_enable_on_exec(struct perf_event *event, 3408 struct perf_event_context *ctx) 3409 { 3410 if (!event->attr.enable_on_exec) 3411 return 0; 3412 3413 event->attr.enable_on_exec = 0; 3414 if (event->state >= PERF_EVENT_STATE_INACTIVE) 3415 return 0; 3416 3417 __perf_event_mark_enabled(event); 3418 3419 return 1; 3420 } 3421 3422 /* 3423 * Enable all of a task's events that have been marked enable-on-exec. 3424 * This expects task == current. 3425 */ 3426 static void perf_event_enable_on_exec(int ctxn) 3427 { 3428 struct perf_event_context *ctx, *clone_ctx = NULL; 3429 struct perf_cpu_context *cpuctx; 3430 struct perf_event *event; 3431 unsigned long flags; 3432 int enabled = 0; 3433 3434 local_irq_save(flags); 3435 ctx = current->perf_event_ctxp[ctxn]; 3436 if (!ctx || !ctx->nr_events) 3437 goto out; 3438 3439 cpuctx = __get_cpu_context(ctx); 3440 perf_ctx_lock(cpuctx, ctx); 3441 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 3442 list_for_each_entry(event, &ctx->event_list, event_entry) 3443 enabled |= event_enable_on_exec(event, ctx); 3444 3445 /* 3446 * Unclone and reschedule this context if we enabled any event. 3447 */ 3448 if (enabled) { 3449 clone_ctx = unclone_ctx(ctx); 3450 ctx_resched(cpuctx, ctx); 3451 } 3452 perf_ctx_unlock(cpuctx, ctx); 3453 3454 out: 3455 local_irq_restore(flags); 3456 3457 if (clone_ctx) 3458 put_ctx(clone_ctx); 3459 } 3460 3461 struct perf_read_data { 3462 struct perf_event *event; 3463 bool group; 3464 int ret; 3465 }; 3466 3467 static int find_cpu_to_read(struct perf_event *event, int local_cpu) 3468 { 3469 int event_cpu = event->oncpu; 3470 u16 local_pkg, event_pkg; 3471 3472 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) { 3473 event_pkg = topology_physical_package_id(event_cpu); 3474 local_pkg = topology_physical_package_id(local_cpu); 3475 3476 if (event_pkg == local_pkg) 3477 return local_cpu; 3478 } 3479 3480 return event_cpu; 3481 } 3482 3483 /* 3484 * Cross CPU call to read the hardware event 3485 */ 3486 static void __perf_event_read(void *info) 3487 { 3488 struct perf_read_data *data = info; 3489 struct perf_event *sub, *event = data->event; 3490 struct perf_event_context *ctx = event->ctx; 3491 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 3492 struct pmu *pmu = event->pmu; 3493 3494 /* 3495 * If this is a task context, we need to check whether it is 3496 * the current task context of this cpu. If not it has been 3497 * scheduled out before the smp call arrived. In that case 3498 * event->count would have been updated to a recent sample 3499 * when the event was scheduled out. 3500 */ 3501 if (ctx->task && cpuctx->task_ctx != ctx) 3502 return; 3503 3504 raw_spin_lock(&ctx->lock); 3505 if (ctx->is_active) { 3506 update_context_time(ctx); 3507 update_cgrp_time_from_event(event); 3508 } 3509 3510 update_event_times(event); 3511 if (event->state != PERF_EVENT_STATE_ACTIVE) 3512 goto unlock; 3513 3514 if (!data->group) { 3515 pmu->read(event); 3516 data->ret = 0; 3517 goto unlock; 3518 } 3519 3520 pmu->start_txn(pmu, PERF_PMU_TXN_READ); 3521 3522 pmu->read(event); 3523 3524 list_for_each_entry(sub, &event->sibling_list, group_entry) { 3525 update_event_times(sub); 3526 if (sub->state == PERF_EVENT_STATE_ACTIVE) { 3527 /* 3528 * Use sibling's PMU rather than @event's since 3529 * sibling could be on different (eg: software) PMU. 3530 */ 3531 sub->pmu->read(sub); 3532 } 3533 } 3534 3535 data->ret = pmu->commit_txn(pmu); 3536 3537 unlock: 3538 raw_spin_unlock(&ctx->lock); 3539 } 3540 3541 static inline u64 perf_event_count(struct perf_event *event) 3542 { 3543 if (event->pmu->count) 3544 return event->pmu->count(event); 3545 3546 return __perf_event_count(event); 3547 } 3548 3549 /* 3550 * NMI-safe method to read a local event, that is an event that 3551 * is: 3552 * - either for the current task, or for this CPU 3553 * - does not have inherit set, for inherited task events 3554 * will not be local and we cannot read them atomically 3555 * - must not have a pmu::count method 3556 */ 3557 u64 perf_event_read_local(struct perf_event *event) 3558 { 3559 unsigned long flags; 3560 u64 val; 3561 3562 /* 3563 * Disabling interrupts avoids all counter scheduling (context 3564 * switches, timer based rotation and IPIs). 3565 */ 3566 local_irq_save(flags); 3567 3568 /* If this is a per-task event, it must be for current */ 3569 WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) && 3570 event->hw.target != current); 3571 3572 /* If this is a per-CPU event, it must be for this CPU */ 3573 WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) && 3574 event->cpu != smp_processor_id()); 3575 3576 /* 3577 * It must not be an event with inherit set, we cannot read 3578 * all child counters from atomic context. 3579 */ 3580 WARN_ON_ONCE(event->attr.inherit); 3581 3582 /* 3583 * It must not have a pmu::count method, those are not 3584 * NMI safe. 3585 */ 3586 WARN_ON_ONCE(event->pmu->count); 3587 3588 /* 3589 * If the event is currently on this CPU, its either a per-task event, 3590 * or local to this CPU. Furthermore it means its ACTIVE (otherwise 3591 * oncpu == -1). 3592 */ 3593 if (event->oncpu == smp_processor_id()) 3594 event->pmu->read(event); 3595 3596 val = local64_read(&event->count); 3597 local_irq_restore(flags); 3598 3599 return val; 3600 } 3601 3602 static int perf_event_read(struct perf_event *event, bool group) 3603 { 3604 int ret = 0, cpu_to_read, local_cpu; 3605 3606 /* 3607 * If event is enabled and currently active on a CPU, update the 3608 * value in the event structure: 3609 */ 3610 if (event->state == PERF_EVENT_STATE_ACTIVE) { 3611 struct perf_read_data data = { 3612 .event = event, 3613 .group = group, 3614 .ret = 0, 3615 }; 3616 3617 local_cpu = get_cpu(); 3618 cpu_to_read = find_cpu_to_read(event, local_cpu); 3619 put_cpu(); 3620 3621 /* 3622 * Purposely ignore the smp_call_function_single() return 3623 * value. 3624 * 3625 * If event->oncpu isn't a valid CPU it means the event got 3626 * scheduled out and that will have updated the event count. 3627 * 3628 * Therefore, either way, we'll have an up-to-date event count 3629 * after this. 3630 */ 3631 (void)smp_call_function_single(cpu_to_read, __perf_event_read, &data, 1); 3632 ret = data.ret; 3633 } else if (event->state == PERF_EVENT_STATE_INACTIVE) { 3634 struct perf_event_context *ctx = event->ctx; 3635 unsigned long flags; 3636 3637 raw_spin_lock_irqsave(&ctx->lock, flags); 3638 /* 3639 * may read while context is not active 3640 * (e.g., thread is blocked), in that case 3641 * we cannot update context time 3642 */ 3643 if (ctx->is_active) { 3644 update_context_time(ctx); 3645 update_cgrp_time_from_event(event); 3646 } 3647 if (group) 3648 update_group_times(event); 3649 else 3650 update_event_times(event); 3651 raw_spin_unlock_irqrestore(&ctx->lock, flags); 3652 } 3653 3654 return ret; 3655 } 3656 3657 /* 3658 * Initialize the perf_event context in a task_struct: 3659 */ 3660 static void __perf_event_init_context(struct perf_event_context *ctx) 3661 { 3662 raw_spin_lock_init(&ctx->lock); 3663 mutex_init(&ctx->mutex); 3664 INIT_LIST_HEAD(&ctx->active_ctx_list); 3665 INIT_LIST_HEAD(&ctx->pinned_groups); 3666 INIT_LIST_HEAD(&ctx->flexible_groups); 3667 INIT_LIST_HEAD(&ctx->event_list); 3668 atomic_set(&ctx->refcount, 1); 3669 } 3670 3671 static struct perf_event_context * 3672 alloc_perf_context(struct pmu *pmu, struct task_struct *task) 3673 { 3674 struct perf_event_context *ctx; 3675 3676 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 3677 if (!ctx) 3678 return NULL; 3679 3680 __perf_event_init_context(ctx); 3681 if (task) { 3682 ctx->task = task; 3683 get_task_struct(task); 3684 } 3685 ctx->pmu = pmu; 3686 3687 return ctx; 3688 } 3689 3690 static struct task_struct * 3691 find_lively_task_by_vpid(pid_t vpid) 3692 { 3693 struct task_struct *task; 3694 3695 rcu_read_lock(); 3696 if (!vpid) 3697 task = current; 3698 else 3699 task = find_task_by_vpid(vpid); 3700 if (task) 3701 get_task_struct(task); 3702 rcu_read_unlock(); 3703 3704 if (!task) 3705 return ERR_PTR(-ESRCH); 3706 3707 return task; 3708 } 3709 3710 /* 3711 * Returns a matching context with refcount and pincount. 3712 */ 3713 static struct perf_event_context * 3714 find_get_context(struct pmu *pmu, struct task_struct *task, 3715 struct perf_event *event) 3716 { 3717 struct perf_event_context *ctx, *clone_ctx = NULL; 3718 struct perf_cpu_context *cpuctx; 3719 void *task_ctx_data = NULL; 3720 unsigned long flags; 3721 int ctxn, err; 3722 int cpu = event->cpu; 3723 3724 if (!task) { 3725 /* Must be root to operate on a CPU event: */ 3726 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) 3727 return ERR_PTR(-EACCES); 3728 3729 /* 3730 * We could be clever and allow to attach a event to an 3731 * offline CPU and activate it when the CPU comes up, but 3732 * that's for later. 3733 */ 3734 if (!cpu_online(cpu)) 3735 return ERR_PTR(-ENODEV); 3736 3737 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 3738 ctx = &cpuctx->ctx; 3739 get_ctx(ctx); 3740 ++ctx->pin_count; 3741 3742 return ctx; 3743 } 3744 3745 err = -EINVAL; 3746 ctxn = pmu->task_ctx_nr; 3747 if (ctxn < 0) 3748 goto errout; 3749 3750 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 3751 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL); 3752 if (!task_ctx_data) { 3753 err = -ENOMEM; 3754 goto errout; 3755 } 3756 } 3757 3758 retry: 3759 ctx = perf_lock_task_context(task, ctxn, &flags); 3760 if (ctx) { 3761 clone_ctx = unclone_ctx(ctx); 3762 ++ctx->pin_count; 3763 3764 if (task_ctx_data && !ctx->task_ctx_data) { 3765 ctx->task_ctx_data = task_ctx_data; 3766 task_ctx_data = NULL; 3767 } 3768 raw_spin_unlock_irqrestore(&ctx->lock, flags); 3769 3770 if (clone_ctx) 3771 put_ctx(clone_ctx); 3772 } else { 3773 ctx = alloc_perf_context(pmu, task); 3774 err = -ENOMEM; 3775 if (!ctx) 3776 goto errout; 3777 3778 if (task_ctx_data) { 3779 ctx->task_ctx_data = task_ctx_data; 3780 task_ctx_data = NULL; 3781 } 3782 3783 err = 0; 3784 mutex_lock(&task->perf_event_mutex); 3785 /* 3786 * If it has already passed perf_event_exit_task(). 3787 * we must see PF_EXITING, it takes this mutex too. 3788 */ 3789 if (task->flags & PF_EXITING) 3790 err = -ESRCH; 3791 else if (task->perf_event_ctxp[ctxn]) 3792 err = -EAGAIN; 3793 else { 3794 get_ctx(ctx); 3795 ++ctx->pin_count; 3796 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); 3797 } 3798 mutex_unlock(&task->perf_event_mutex); 3799 3800 if (unlikely(err)) { 3801 put_ctx(ctx); 3802 3803 if (err == -EAGAIN) 3804 goto retry; 3805 goto errout; 3806 } 3807 } 3808 3809 kfree(task_ctx_data); 3810 return ctx; 3811 3812 errout: 3813 kfree(task_ctx_data); 3814 return ERR_PTR(err); 3815 } 3816 3817 static void perf_event_free_filter(struct perf_event *event); 3818 static void perf_event_free_bpf_prog(struct perf_event *event); 3819 3820 static void free_event_rcu(struct rcu_head *head) 3821 { 3822 struct perf_event *event; 3823 3824 event = container_of(head, struct perf_event, rcu_head); 3825 if (event->ns) 3826 put_pid_ns(event->ns); 3827 perf_event_free_filter(event); 3828 kfree(event); 3829 } 3830 3831 static void ring_buffer_attach(struct perf_event *event, 3832 struct ring_buffer *rb); 3833 3834 static void detach_sb_event(struct perf_event *event) 3835 { 3836 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 3837 3838 raw_spin_lock(&pel->lock); 3839 list_del_rcu(&event->sb_list); 3840 raw_spin_unlock(&pel->lock); 3841 } 3842 3843 static bool is_sb_event(struct perf_event *event) 3844 { 3845 struct perf_event_attr *attr = &event->attr; 3846 3847 if (event->parent) 3848 return false; 3849 3850 if (event->attach_state & PERF_ATTACH_TASK) 3851 return false; 3852 3853 if (attr->mmap || attr->mmap_data || attr->mmap2 || 3854 attr->comm || attr->comm_exec || 3855 attr->task || 3856 attr->context_switch) 3857 return true; 3858 return false; 3859 } 3860 3861 static void unaccount_pmu_sb_event(struct perf_event *event) 3862 { 3863 if (is_sb_event(event)) 3864 detach_sb_event(event); 3865 } 3866 3867 static void unaccount_event_cpu(struct perf_event *event, int cpu) 3868 { 3869 if (event->parent) 3870 return; 3871 3872 if (is_cgroup_event(event)) 3873 atomic_dec(&per_cpu(perf_cgroup_events, cpu)); 3874 } 3875 3876 #ifdef CONFIG_NO_HZ_FULL 3877 static DEFINE_SPINLOCK(nr_freq_lock); 3878 #endif 3879 3880 static void unaccount_freq_event_nohz(void) 3881 { 3882 #ifdef CONFIG_NO_HZ_FULL 3883 spin_lock(&nr_freq_lock); 3884 if (atomic_dec_and_test(&nr_freq_events)) 3885 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS); 3886 spin_unlock(&nr_freq_lock); 3887 #endif 3888 } 3889 3890 static void unaccount_freq_event(void) 3891 { 3892 if (tick_nohz_full_enabled()) 3893 unaccount_freq_event_nohz(); 3894 else 3895 atomic_dec(&nr_freq_events); 3896 } 3897 3898 static void unaccount_event(struct perf_event *event) 3899 { 3900 bool dec = false; 3901 3902 if (event->parent) 3903 return; 3904 3905 if (event->attach_state & PERF_ATTACH_TASK) 3906 dec = true; 3907 if (event->attr.mmap || event->attr.mmap_data) 3908 atomic_dec(&nr_mmap_events); 3909 if (event->attr.comm) 3910 atomic_dec(&nr_comm_events); 3911 if (event->attr.task) 3912 atomic_dec(&nr_task_events); 3913 if (event->attr.freq) 3914 unaccount_freq_event(); 3915 if (event->attr.context_switch) { 3916 dec = true; 3917 atomic_dec(&nr_switch_events); 3918 } 3919 if (is_cgroup_event(event)) 3920 dec = true; 3921 if (has_branch_stack(event)) 3922 dec = true; 3923 3924 if (dec) { 3925 if (!atomic_add_unless(&perf_sched_count, -1, 1)) 3926 schedule_delayed_work(&perf_sched_work, HZ); 3927 } 3928 3929 unaccount_event_cpu(event, event->cpu); 3930 3931 unaccount_pmu_sb_event(event); 3932 } 3933 3934 static void perf_sched_delayed(struct work_struct *work) 3935 { 3936 mutex_lock(&perf_sched_mutex); 3937 if (atomic_dec_and_test(&perf_sched_count)) 3938 static_branch_disable(&perf_sched_events); 3939 mutex_unlock(&perf_sched_mutex); 3940 } 3941 3942 /* 3943 * The following implement mutual exclusion of events on "exclusive" pmus 3944 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 3945 * at a time, so we disallow creating events that might conflict, namely: 3946 * 3947 * 1) cpu-wide events in the presence of per-task events, 3948 * 2) per-task events in the presence of cpu-wide events, 3949 * 3) two matching events on the same context. 3950 * 3951 * The former two cases are handled in the allocation path (perf_event_alloc(), 3952 * _free_event()), the latter -- before the first perf_install_in_context(). 3953 */ 3954 static int exclusive_event_init(struct perf_event *event) 3955 { 3956 struct pmu *pmu = event->pmu; 3957 3958 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 3959 return 0; 3960 3961 /* 3962 * Prevent co-existence of per-task and cpu-wide events on the 3963 * same exclusive pmu. 3964 * 3965 * Negative pmu::exclusive_cnt means there are cpu-wide 3966 * events on this "exclusive" pmu, positive means there are 3967 * per-task events. 3968 * 3969 * Since this is called in perf_event_alloc() path, event::ctx 3970 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 3971 * to mean "per-task event", because unlike other attach states it 3972 * never gets cleared. 3973 */ 3974 if (event->attach_state & PERF_ATTACH_TASK) { 3975 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 3976 return -EBUSY; 3977 } else { 3978 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 3979 return -EBUSY; 3980 } 3981 3982 return 0; 3983 } 3984 3985 static void exclusive_event_destroy(struct perf_event *event) 3986 { 3987 struct pmu *pmu = event->pmu; 3988 3989 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 3990 return; 3991 3992 /* see comment in exclusive_event_init() */ 3993 if (event->attach_state & PERF_ATTACH_TASK) 3994 atomic_dec(&pmu->exclusive_cnt); 3995 else 3996 atomic_inc(&pmu->exclusive_cnt); 3997 } 3998 3999 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 4000 { 4001 if ((e1->pmu == e2->pmu) && 4002 (e1->cpu == e2->cpu || 4003 e1->cpu == -1 || 4004 e2->cpu == -1)) 4005 return true; 4006 return false; 4007 } 4008 4009 /* Called under the same ctx::mutex as perf_install_in_context() */ 4010 static bool exclusive_event_installable(struct perf_event *event, 4011 struct perf_event_context *ctx) 4012 { 4013 struct perf_event *iter_event; 4014 struct pmu *pmu = event->pmu; 4015 4016 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 4017 return true; 4018 4019 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 4020 if (exclusive_event_match(iter_event, event)) 4021 return false; 4022 } 4023 4024 return true; 4025 } 4026 4027 static void perf_addr_filters_splice(struct perf_event *event, 4028 struct list_head *head); 4029 4030 static void _free_event(struct perf_event *event) 4031 { 4032 irq_work_sync(&event->pending); 4033 4034 unaccount_event(event); 4035 4036 if (event->rb) { 4037 /* 4038 * Can happen when we close an event with re-directed output. 4039 * 4040 * Since we have a 0 refcount, perf_mmap_close() will skip 4041 * over us; possibly making our ring_buffer_put() the last. 4042 */ 4043 mutex_lock(&event->mmap_mutex); 4044 ring_buffer_attach(event, NULL); 4045 mutex_unlock(&event->mmap_mutex); 4046 } 4047 4048 if (is_cgroup_event(event)) 4049 perf_detach_cgroup(event); 4050 4051 if (!event->parent) { 4052 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 4053 put_callchain_buffers(); 4054 } 4055 4056 perf_event_free_bpf_prog(event); 4057 perf_addr_filters_splice(event, NULL); 4058 kfree(event->addr_filters_offs); 4059 4060 if (event->destroy) 4061 event->destroy(event); 4062 4063 if (event->ctx) 4064 put_ctx(event->ctx); 4065 4066 exclusive_event_destroy(event); 4067 module_put(event->pmu->module); 4068 4069 call_rcu(&event->rcu_head, free_event_rcu); 4070 } 4071 4072 /* 4073 * Used to free events which have a known refcount of 1, such as in error paths 4074 * where the event isn't exposed yet and inherited events. 4075 */ 4076 static void free_event(struct perf_event *event) 4077 { 4078 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 4079 "unexpected event refcount: %ld; ptr=%p\n", 4080 atomic_long_read(&event->refcount), event)) { 4081 /* leak to avoid use-after-free */ 4082 return; 4083 } 4084 4085 _free_event(event); 4086 } 4087 4088 /* 4089 * Remove user event from the owner task. 4090 */ 4091 static void perf_remove_from_owner(struct perf_event *event) 4092 { 4093 struct task_struct *owner; 4094 4095 rcu_read_lock(); 4096 /* 4097 * Matches the smp_store_release() in perf_event_exit_task(). If we 4098 * observe !owner it means the list deletion is complete and we can 4099 * indeed free this event, otherwise we need to serialize on 4100 * owner->perf_event_mutex. 4101 */ 4102 owner = lockless_dereference(event->owner); 4103 if (owner) { 4104 /* 4105 * Since delayed_put_task_struct() also drops the last 4106 * task reference we can safely take a new reference 4107 * while holding the rcu_read_lock(). 4108 */ 4109 get_task_struct(owner); 4110 } 4111 rcu_read_unlock(); 4112 4113 if (owner) { 4114 /* 4115 * If we're here through perf_event_exit_task() we're already 4116 * holding ctx->mutex which would be an inversion wrt. the 4117 * normal lock order. 4118 * 4119 * However we can safely take this lock because its the child 4120 * ctx->mutex. 4121 */ 4122 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 4123 4124 /* 4125 * We have to re-check the event->owner field, if it is cleared 4126 * we raced with perf_event_exit_task(), acquiring the mutex 4127 * ensured they're done, and we can proceed with freeing the 4128 * event. 4129 */ 4130 if (event->owner) { 4131 list_del_init(&event->owner_entry); 4132 smp_store_release(&event->owner, NULL); 4133 } 4134 mutex_unlock(&owner->perf_event_mutex); 4135 put_task_struct(owner); 4136 } 4137 } 4138 4139 static void put_event(struct perf_event *event) 4140 { 4141 if (!atomic_long_dec_and_test(&event->refcount)) 4142 return; 4143 4144 _free_event(event); 4145 } 4146 4147 /* 4148 * Kill an event dead; while event:refcount will preserve the event 4149 * object, it will not preserve its functionality. Once the last 'user' 4150 * gives up the object, we'll destroy the thing. 4151 */ 4152 int perf_event_release_kernel(struct perf_event *event) 4153 { 4154 struct perf_event_context *ctx = event->ctx; 4155 struct perf_event *child, *tmp; 4156 4157 /* 4158 * If we got here through err_file: fput(event_file); we will not have 4159 * attached to a context yet. 4160 */ 4161 if (!ctx) { 4162 WARN_ON_ONCE(event->attach_state & 4163 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP)); 4164 goto no_ctx; 4165 } 4166 4167 if (!is_kernel_event(event)) 4168 perf_remove_from_owner(event); 4169 4170 ctx = perf_event_ctx_lock(event); 4171 WARN_ON_ONCE(ctx->parent_ctx); 4172 perf_remove_from_context(event, DETACH_GROUP); 4173 4174 raw_spin_lock_irq(&ctx->lock); 4175 /* 4176 * Mark this even as STATE_DEAD, there is no external reference to it 4177 * anymore. 4178 * 4179 * Anybody acquiring event->child_mutex after the below loop _must_ 4180 * also see this, most importantly inherit_event() which will avoid 4181 * placing more children on the list. 4182 * 4183 * Thus this guarantees that we will in fact observe and kill _ALL_ 4184 * child events. 4185 */ 4186 event->state = PERF_EVENT_STATE_DEAD; 4187 raw_spin_unlock_irq(&ctx->lock); 4188 4189 perf_event_ctx_unlock(event, ctx); 4190 4191 again: 4192 mutex_lock(&event->child_mutex); 4193 list_for_each_entry(child, &event->child_list, child_list) { 4194 4195 /* 4196 * Cannot change, child events are not migrated, see the 4197 * comment with perf_event_ctx_lock_nested(). 4198 */ 4199 ctx = lockless_dereference(child->ctx); 4200 /* 4201 * Since child_mutex nests inside ctx::mutex, we must jump 4202 * through hoops. We start by grabbing a reference on the ctx. 4203 * 4204 * Since the event cannot get freed while we hold the 4205 * child_mutex, the context must also exist and have a !0 4206 * reference count. 4207 */ 4208 get_ctx(ctx); 4209 4210 /* 4211 * Now that we have a ctx ref, we can drop child_mutex, and 4212 * acquire ctx::mutex without fear of it going away. Then we 4213 * can re-acquire child_mutex. 4214 */ 4215 mutex_unlock(&event->child_mutex); 4216 mutex_lock(&ctx->mutex); 4217 mutex_lock(&event->child_mutex); 4218 4219 /* 4220 * Now that we hold ctx::mutex and child_mutex, revalidate our 4221 * state, if child is still the first entry, it didn't get freed 4222 * and we can continue doing so. 4223 */ 4224 tmp = list_first_entry_or_null(&event->child_list, 4225 struct perf_event, child_list); 4226 if (tmp == child) { 4227 perf_remove_from_context(child, DETACH_GROUP); 4228 list_del(&child->child_list); 4229 free_event(child); 4230 /* 4231 * This matches the refcount bump in inherit_event(); 4232 * this can't be the last reference. 4233 */ 4234 put_event(event); 4235 } 4236 4237 mutex_unlock(&event->child_mutex); 4238 mutex_unlock(&ctx->mutex); 4239 put_ctx(ctx); 4240 goto again; 4241 } 4242 mutex_unlock(&event->child_mutex); 4243 4244 no_ctx: 4245 put_event(event); /* Must be the 'last' reference */ 4246 return 0; 4247 } 4248 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 4249 4250 /* 4251 * Called when the last reference to the file is gone. 4252 */ 4253 static int perf_release(struct inode *inode, struct file *file) 4254 { 4255 perf_event_release_kernel(file->private_data); 4256 return 0; 4257 } 4258 4259 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 4260 { 4261 struct perf_event *child; 4262 u64 total = 0; 4263 4264 *enabled = 0; 4265 *running = 0; 4266 4267 mutex_lock(&event->child_mutex); 4268 4269 (void)perf_event_read(event, false); 4270 total += perf_event_count(event); 4271 4272 *enabled += event->total_time_enabled + 4273 atomic64_read(&event->child_total_time_enabled); 4274 *running += event->total_time_running + 4275 atomic64_read(&event->child_total_time_running); 4276 4277 list_for_each_entry(child, &event->child_list, child_list) { 4278 (void)perf_event_read(child, false); 4279 total += perf_event_count(child); 4280 *enabled += child->total_time_enabled; 4281 *running += child->total_time_running; 4282 } 4283 mutex_unlock(&event->child_mutex); 4284 4285 return total; 4286 } 4287 EXPORT_SYMBOL_GPL(perf_event_read_value); 4288 4289 static int __perf_read_group_add(struct perf_event *leader, 4290 u64 read_format, u64 *values) 4291 { 4292 struct perf_event *sub; 4293 int n = 1; /* skip @nr */ 4294 int ret; 4295 4296 ret = perf_event_read(leader, true); 4297 if (ret) 4298 return ret; 4299 4300 /* 4301 * Since we co-schedule groups, {enabled,running} times of siblings 4302 * will be identical to those of the leader, so we only publish one 4303 * set. 4304 */ 4305 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 4306 values[n++] += leader->total_time_enabled + 4307 atomic64_read(&leader->child_total_time_enabled); 4308 } 4309 4310 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 4311 values[n++] += leader->total_time_running + 4312 atomic64_read(&leader->child_total_time_running); 4313 } 4314 4315 /* 4316 * Write {count,id} tuples for every sibling. 4317 */ 4318 values[n++] += perf_event_count(leader); 4319 if (read_format & PERF_FORMAT_ID) 4320 values[n++] = primary_event_id(leader); 4321 4322 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 4323 values[n++] += perf_event_count(sub); 4324 if (read_format & PERF_FORMAT_ID) 4325 values[n++] = primary_event_id(sub); 4326 } 4327 4328 return 0; 4329 } 4330 4331 static int perf_read_group(struct perf_event *event, 4332 u64 read_format, char __user *buf) 4333 { 4334 struct perf_event *leader = event->group_leader, *child; 4335 struct perf_event_context *ctx = leader->ctx; 4336 int ret; 4337 u64 *values; 4338 4339 lockdep_assert_held(&ctx->mutex); 4340 4341 values = kzalloc(event->read_size, GFP_KERNEL); 4342 if (!values) 4343 return -ENOMEM; 4344 4345 values[0] = 1 + leader->nr_siblings; 4346 4347 /* 4348 * By locking the child_mutex of the leader we effectively 4349 * lock the child list of all siblings.. XXX explain how. 4350 */ 4351 mutex_lock(&leader->child_mutex); 4352 4353 ret = __perf_read_group_add(leader, read_format, values); 4354 if (ret) 4355 goto unlock; 4356 4357 list_for_each_entry(child, &leader->child_list, child_list) { 4358 ret = __perf_read_group_add(child, read_format, values); 4359 if (ret) 4360 goto unlock; 4361 } 4362 4363 mutex_unlock(&leader->child_mutex); 4364 4365 ret = event->read_size; 4366 if (copy_to_user(buf, values, event->read_size)) 4367 ret = -EFAULT; 4368 goto out; 4369 4370 unlock: 4371 mutex_unlock(&leader->child_mutex); 4372 out: 4373 kfree(values); 4374 return ret; 4375 } 4376 4377 static int perf_read_one(struct perf_event *event, 4378 u64 read_format, char __user *buf) 4379 { 4380 u64 enabled, running; 4381 u64 values[4]; 4382 int n = 0; 4383 4384 values[n++] = perf_event_read_value(event, &enabled, &running); 4385 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 4386 values[n++] = enabled; 4387 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 4388 values[n++] = running; 4389 if (read_format & PERF_FORMAT_ID) 4390 values[n++] = primary_event_id(event); 4391 4392 if (copy_to_user(buf, values, n * sizeof(u64))) 4393 return -EFAULT; 4394 4395 return n * sizeof(u64); 4396 } 4397 4398 static bool is_event_hup(struct perf_event *event) 4399 { 4400 bool no_children; 4401 4402 if (event->state > PERF_EVENT_STATE_EXIT) 4403 return false; 4404 4405 mutex_lock(&event->child_mutex); 4406 no_children = list_empty(&event->child_list); 4407 mutex_unlock(&event->child_mutex); 4408 return no_children; 4409 } 4410 4411 /* 4412 * Read the performance event - simple non blocking version for now 4413 */ 4414 static ssize_t 4415 __perf_read(struct perf_event *event, char __user *buf, size_t count) 4416 { 4417 u64 read_format = event->attr.read_format; 4418 int ret; 4419 4420 /* 4421 * Return end-of-file for a read on a event that is in 4422 * error state (i.e. because it was pinned but it couldn't be 4423 * scheduled on to the CPU at some point). 4424 */ 4425 if (event->state == PERF_EVENT_STATE_ERROR) 4426 return 0; 4427 4428 if (count < event->read_size) 4429 return -ENOSPC; 4430 4431 WARN_ON_ONCE(event->ctx->parent_ctx); 4432 if (read_format & PERF_FORMAT_GROUP) 4433 ret = perf_read_group(event, read_format, buf); 4434 else 4435 ret = perf_read_one(event, read_format, buf); 4436 4437 return ret; 4438 } 4439 4440 static ssize_t 4441 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 4442 { 4443 struct perf_event *event = file->private_data; 4444 struct perf_event_context *ctx; 4445 int ret; 4446 4447 ctx = perf_event_ctx_lock(event); 4448 ret = __perf_read(event, buf, count); 4449 perf_event_ctx_unlock(event, ctx); 4450 4451 return ret; 4452 } 4453 4454 static unsigned int perf_poll(struct file *file, poll_table *wait) 4455 { 4456 struct perf_event *event = file->private_data; 4457 struct ring_buffer *rb; 4458 unsigned int events = POLLHUP; 4459 4460 poll_wait(file, &event->waitq, wait); 4461 4462 if (is_event_hup(event)) 4463 return events; 4464 4465 /* 4466 * Pin the event->rb by taking event->mmap_mutex; otherwise 4467 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 4468 */ 4469 mutex_lock(&event->mmap_mutex); 4470 rb = event->rb; 4471 if (rb) 4472 events = atomic_xchg(&rb->poll, 0); 4473 mutex_unlock(&event->mmap_mutex); 4474 return events; 4475 } 4476 4477 static void _perf_event_reset(struct perf_event *event) 4478 { 4479 (void)perf_event_read(event, false); 4480 local64_set(&event->count, 0); 4481 perf_event_update_userpage(event); 4482 } 4483 4484 /* 4485 * Holding the top-level event's child_mutex means that any 4486 * descendant process that has inherited this event will block 4487 * in perf_event_exit_event() if it goes to exit, thus satisfying the 4488 * task existence requirements of perf_event_enable/disable. 4489 */ 4490 static void perf_event_for_each_child(struct perf_event *event, 4491 void (*func)(struct perf_event *)) 4492 { 4493 struct perf_event *child; 4494 4495 WARN_ON_ONCE(event->ctx->parent_ctx); 4496 4497 mutex_lock(&event->child_mutex); 4498 func(event); 4499 list_for_each_entry(child, &event->child_list, child_list) 4500 func(child); 4501 mutex_unlock(&event->child_mutex); 4502 } 4503 4504 static void perf_event_for_each(struct perf_event *event, 4505 void (*func)(struct perf_event *)) 4506 { 4507 struct perf_event_context *ctx = event->ctx; 4508 struct perf_event *sibling; 4509 4510 lockdep_assert_held(&ctx->mutex); 4511 4512 event = event->group_leader; 4513 4514 perf_event_for_each_child(event, func); 4515 list_for_each_entry(sibling, &event->sibling_list, group_entry) 4516 perf_event_for_each_child(sibling, func); 4517 } 4518 4519 static void __perf_event_period(struct perf_event *event, 4520 struct perf_cpu_context *cpuctx, 4521 struct perf_event_context *ctx, 4522 void *info) 4523 { 4524 u64 value = *((u64 *)info); 4525 bool active; 4526 4527 if (event->attr.freq) { 4528 event->attr.sample_freq = value; 4529 } else { 4530 event->attr.sample_period = value; 4531 event->hw.sample_period = value; 4532 } 4533 4534 active = (event->state == PERF_EVENT_STATE_ACTIVE); 4535 if (active) { 4536 perf_pmu_disable(ctx->pmu); 4537 /* 4538 * We could be throttled; unthrottle now to avoid the tick 4539 * trying to unthrottle while we already re-started the event. 4540 */ 4541 if (event->hw.interrupts == MAX_INTERRUPTS) { 4542 event->hw.interrupts = 0; 4543 perf_log_throttle(event, 1); 4544 } 4545 event->pmu->stop(event, PERF_EF_UPDATE); 4546 } 4547 4548 local64_set(&event->hw.period_left, 0); 4549 4550 if (active) { 4551 event->pmu->start(event, PERF_EF_RELOAD); 4552 perf_pmu_enable(ctx->pmu); 4553 } 4554 } 4555 4556 static int perf_event_period(struct perf_event *event, u64 __user *arg) 4557 { 4558 u64 value; 4559 4560 if (!is_sampling_event(event)) 4561 return -EINVAL; 4562 4563 if (copy_from_user(&value, arg, sizeof(value))) 4564 return -EFAULT; 4565 4566 if (!value) 4567 return -EINVAL; 4568 4569 if (event->attr.freq && value > sysctl_perf_event_sample_rate) 4570 return -EINVAL; 4571 4572 event_function_call(event, __perf_event_period, &value); 4573 4574 return 0; 4575 } 4576 4577 static const struct file_operations perf_fops; 4578 4579 static inline int perf_fget_light(int fd, struct fd *p) 4580 { 4581 struct fd f = fdget(fd); 4582 if (!f.file) 4583 return -EBADF; 4584 4585 if (f.file->f_op != &perf_fops) { 4586 fdput(f); 4587 return -EBADF; 4588 } 4589 *p = f; 4590 return 0; 4591 } 4592 4593 static int perf_event_set_output(struct perf_event *event, 4594 struct perf_event *output_event); 4595 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 4596 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd); 4597 4598 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 4599 { 4600 void (*func)(struct perf_event *); 4601 u32 flags = arg; 4602 4603 switch (cmd) { 4604 case PERF_EVENT_IOC_ENABLE: 4605 func = _perf_event_enable; 4606 break; 4607 case PERF_EVENT_IOC_DISABLE: 4608 func = _perf_event_disable; 4609 break; 4610 case PERF_EVENT_IOC_RESET: 4611 func = _perf_event_reset; 4612 break; 4613 4614 case PERF_EVENT_IOC_REFRESH: 4615 return _perf_event_refresh(event, arg); 4616 4617 case PERF_EVENT_IOC_PERIOD: 4618 return perf_event_period(event, (u64 __user *)arg); 4619 4620 case PERF_EVENT_IOC_ID: 4621 { 4622 u64 id = primary_event_id(event); 4623 4624 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 4625 return -EFAULT; 4626 return 0; 4627 } 4628 4629 case PERF_EVENT_IOC_SET_OUTPUT: 4630 { 4631 int ret; 4632 if (arg != -1) { 4633 struct perf_event *output_event; 4634 struct fd output; 4635 ret = perf_fget_light(arg, &output); 4636 if (ret) 4637 return ret; 4638 output_event = output.file->private_data; 4639 ret = perf_event_set_output(event, output_event); 4640 fdput(output); 4641 } else { 4642 ret = perf_event_set_output(event, NULL); 4643 } 4644 return ret; 4645 } 4646 4647 case PERF_EVENT_IOC_SET_FILTER: 4648 return perf_event_set_filter(event, (void __user *)arg); 4649 4650 case PERF_EVENT_IOC_SET_BPF: 4651 return perf_event_set_bpf_prog(event, arg); 4652 4653 case PERF_EVENT_IOC_PAUSE_OUTPUT: { 4654 struct ring_buffer *rb; 4655 4656 rcu_read_lock(); 4657 rb = rcu_dereference(event->rb); 4658 if (!rb || !rb->nr_pages) { 4659 rcu_read_unlock(); 4660 return -EINVAL; 4661 } 4662 rb_toggle_paused(rb, !!arg); 4663 rcu_read_unlock(); 4664 return 0; 4665 } 4666 default: 4667 return -ENOTTY; 4668 } 4669 4670 if (flags & PERF_IOC_FLAG_GROUP) 4671 perf_event_for_each(event, func); 4672 else 4673 perf_event_for_each_child(event, func); 4674 4675 return 0; 4676 } 4677 4678 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 4679 { 4680 struct perf_event *event = file->private_data; 4681 struct perf_event_context *ctx; 4682 long ret; 4683 4684 ctx = perf_event_ctx_lock(event); 4685 ret = _perf_ioctl(event, cmd, arg); 4686 perf_event_ctx_unlock(event, ctx); 4687 4688 return ret; 4689 } 4690 4691 #ifdef CONFIG_COMPAT 4692 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 4693 unsigned long arg) 4694 { 4695 switch (_IOC_NR(cmd)) { 4696 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 4697 case _IOC_NR(PERF_EVENT_IOC_ID): 4698 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 4699 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 4700 cmd &= ~IOCSIZE_MASK; 4701 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 4702 } 4703 break; 4704 } 4705 return perf_ioctl(file, cmd, arg); 4706 } 4707 #else 4708 # define perf_compat_ioctl NULL 4709 #endif 4710 4711 int perf_event_task_enable(void) 4712 { 4713 struct perf_event_context *ctx; 4714 struct perf_event *event; 4715 4716 mutex_lock(¤t->perf_event_mutex); 4717 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 4718 ctx = perf_event_ctx_lock(event); 4719 perf_event_for_each_child(event, _perf_event_enable); 4720 perf_event_ctx_unlock(event, ctx); 4721 } 4722 mutex_unlock(¤t->perf_event_mutex); 4723 4724 return 0; 4725 } 4726 4727 int perf_event_task_disable(void) 4728 { 4729 struct perf_event_context *ctx; 4730 struct perf_event *event; 4731 4732 mutex_lock(¤t->perf_event_mutex); 4733 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 4734 ctx = perf_event_ctx_lock(event); 4735 perf_event_for_each_child(event, _perf_event_disable); 4736 perf_event_ctx_unlock(event, ctx); 4737 } 4738 mutex_unlock(¤t->perf_event_mutex); 4739 4740 return 0; 4741 } 4742 4743 static int perf_event_index(struct perf_event *event) 4744 { 4745 if (event->hw.state & PERF_HES_STOPPED) 4746 return 0; 4747 4748 if (event->state != PERF_EVENT_STATE_ACTIVE) 4749 return 0; 4750 4751 return event->pmu->event_idx(event); 4752 } 4753 4754 static void calc_timer_values(struct perf_event *event, 4755 u64 *now, 4756 u64 *enabled, 4757 u64 *running) 4758 { 4759 u64 ctx_time; 4760 4761 *now = perf_clock(); 4762 ctx_time = event->shadow_ctx_time + *now; 4763 *enabled = ctx_time - event->tstamp_enabled; 4764 *running = ctx_time - event->tstamp_running; 4765 } 4766 4767 static void perf_event_init_userpage(struct perf_event *event) 4768 { 4769 struct perf_event_mmap_page *userpg; 4770 struct ring_buffer *rb; 4771 4772 rcu_read_lock(); 4773 rb = rcu_dereference(event->rb); 4774 if (!rb) 4775 goto unlock; 4776 4777 userpg = rb->user_page; 4778 4779 /* Allow new userspace to detect that bit 0 is deprecated */ 4780 userpg->cap_bit0_is_deprecated = 1; 4781 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 4782 userpg->data_offset = PAGE_SIZE; 4783 userpg->data_size = perf_data_size(rb); 4784 4785 unlock: 4786 rcu_read_unlock(); 4787 } 4788 4789 void __weak arch_perf_update_userpage( 4790 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 4791 { 4792 } 4793 4794 /* 4795 * Callers need to ensure there can be no nesting of this function, otherwise 4796 * the seqlock logic goes bad. We can not serialize this because the arch 4797 * code calls this from NMI context. 4798 */ 4799 void perf_event_update_userpage(struct perf_event *event) 4800 { 4801 struct perf_event_mmap_page *userpg; 4802 struct ring_buffer *rb; 4803 u64 enabled, running, now; 4804 4805 rcu_read_lock(); 4806 rb = rcu_dereference(event->rb); 4807 if (!rb) 4808 goto unlock; 4809 4810 /* 4811 * compute total_time_enabled, total_time_running 4812 * based on snapshot values taken when the event 4813 * was last scheduled in. 4814 * 4815 * we cannot simply called update_context_time() 4816 * because of locking issue as we can be called in 4817 * NMI context 4818 */ 4819 calc_timer_values(event, &now, &enabled, &running); 4820 4821 userpg = rb->user_page; 4822 /* 4823 * Disable preemption so as to not let the corresponding user-space 4824 * spin too long if we get preempted. 4825 */ 4826 preempt_disable(); 4827 ++userpg->lock; 4828 barrier(); 4829 userpg->index = perf_event_index(event); 4830 userpg->offset = perf_event_count(event); 4831 if (userpg->index) 4832 userpg->offset -= local64_read(&event->hw.prev_count); 4833 4834 userpg->time_enabled = enabled + 4835 atomic64_read(&event->child_total_time_enabled); 4836 4837 userpg->time_running = running + 4838 atomic64_read(&event->child_total_time_running); 4839 4840 arch_perf_update_userpage(event, userpg, now); 4841 4842 barrier(); 4843 ++userpg->lock; 4844 preempt_enable(); 4845 unlock: 4846 rcu_read_unlock(); 4847 } 4848 4849 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 4850 { 4851 struct perf_event *event = vma->vm_file->private_data; 4852 struct ring_buffer *rb; 4853 int ret = VM_FAULT_SIGBUS; 4854 4855 if (vmf->flags & FAULT_FLAG_MKWRITE) { 4856 if (vmf->pgoff == 0) 4857 ret = 0; 4858 return ret; 4859 } 4860 4861 rcu_read_lock(); 4862 rb = rcu_dereference(event->rb); 4863 if (!rb) 4864 goto unlock; 4865 4866 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 4867 goto unlock; 4868 4869 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 4870 if (!vmf->page) 4871 goto unlock; 4872 4873 get_page(vmf->page); 4874 vmf->page->mapping = vma->vm_file->f_mapping; 4875 vmf->page->index = vmf->pgoff; 4876 4877 ret = 0; 4878 unlock: 4879 rcu_read_unlock(); 4880 4881 return ret; 4882 } 4883 4884 static void ring_buffer_attach(struct perf_event *event, 4885 struct ring_buffer *rb) 4886 { 4887 struct ring_buffer *old_rb = NULL; 4888 unsigned long flags; 4889 4890 if (event->rb) { 4891 /* 4892 * Should be impossible, we set this when removing 4893 * event->rb_entry and wait/clear when adding event->rb_entry. 4894 */ 4895 WARN_ON_ONCE(event->rcu_pending); 4896 4897 old_rb = event->rb; 4898 spin_lock_irqsave(&old_rb->event_lock, flags); 4899 list_del_rcu(&event->rb_entry); 4900 spin_unlock_irqrestore(&old_rb->event_lock, flags); 4901 4902 event->rcu_batches = get_state_synchronize_rcu(); 4903 event->rcu_pending = 1; 4904 } 4905 4906 if (rb) { 4907 if (event->rcu_pending) { 4908 cond_synchronize_rcu(event->rcu_batches); 4909 event->rcu_pending = 0; 4910 } 4911 4912 spin_lock_irqsave(&rb->event_lock, flags); 4913 list_add_rcu(&event->rb_entry, &rb->event_list); 4914 spin_unlock_irqrestore(&rb->event_lock, flags); 4915 } 4916 4917 /* 4918 * Avoid racing with perf_mmap_close(AUX): stop the event 4919 * before swizzling the event::rb pointer; if it's getting 4920 * unmapped, its aux_mmap_count will be 0 and it won't 4921 * restart. See the comment in __perf_pmu_output_stop(). 4922 * 4923 * Data will inevitably be lost when set_output is done in 4924 * mid-air, but then again, whoever does it like this is 4925 * not in for the data anyway. 4926 */ 4927 if (has_aux(event)) 4928 perf_event_stop(event, 0); 4929 4930 rcu_assign_pointer(event->rb, rb); 4931 4932 if (old_rb) { 4933 ring_buffer_put(old_rb); 4934 /* 4935 * Since we detached before setting the new rb, so that we 4936 * could attach the new rb, we could have missed a wakeup. 4937 * Provide it now. 4938 */ 4939 wake_up_all(&event->waitq); 4940 } 4941 } 4942 4943 static void ring_buffer_wakeup(struct perf_event *event) 4944 { 4945 struct ring_buffer *rb; 4946 4947 rcu_read_lock(); 4948 rb = rcu_dereference(event->rb); 4949 if (rb) { 4950 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 4951 wake_up_all(&event->waitq); 4952 } 4953 rcu_read_unlock(); 4954 } 4955 4956 struct ring_buffer *ring_buffer_get(struct perf_event *event) 4957 { 4958 struct ring_buffer *rb; 4959 4960 rcu_read_lock(); 4961 rb = rcu_dereference(event->rb); 4962 if (rb) { 4963 if (!atomic_inc_not_zero(&rb->refcount)) 4964 rb = NULL; 4965 } 4966 rcu_read_unlock(); 4967 4968 return rb; 4969 } 4970 4971 void ring_buffer_put(struct ring_buffer *rb) 4972 { 4973 if (!atomic_dec_and_test(&rb->refcount)) 4974 return; 4975 4976 WARN_ON_ONCE(!list_empty(&rb->event_list)); 4977 4978 call_rcu(&rb->rcu_head, rb_free_rcu); 4979 } 4980 4981 static void perf_mmap_open(struct vm_area_struct *vma) 4982 { 4983 struct perf_event *event = vma->vm_file->private_data; 4984 4985 atomic_inc(&event->mmap_count); 4986 atomic_inc(&event->rb->mmap_count); 4987 4988 if (vma->vm_pgoff) 4989 atomic_inc(&event->rb->aux_mmap_count); 4990 4991 if (event->pmu->event_mapped) 4992 event->pmu->event_mapped(event); 4993 } 4994 4995 static void perf_pmu_output_stop(struct perf_event *event); 4996 4997 /* 4998 * A buffer can be mmap()ed multiple times; either directly through the same 4999 * event, or through other events by use of perf_event_set_output(). 5000 * 5001 * In order to undo the VM accounting done by perf_mmap() we need to destroy 5002 * the buffer here, where we still have a VM context. This means we need 5003 * to detach all events redirecting to us. 5004 */ 5005 static void perf_mmap_close(struct vm_area_struct *vma) 5006 { 5007 struct perf_event *event = vma->vm_file->private_data; 5008 5009 struct ring_buffer *rb = ring_buffer_get(event); 5010 struct user_struct *mmap_user = rb->mmap_user; 5011 int mmap_locked = rb->mmap_locked; 5012 unsigned long size = perf_data_size(rb); 5013 5014 if (event->pmu->event_unmapped) 5015 event->pmu->event_unmapped(event); 5016 5017 /* 5018 * rb->aux_mmap_count will always drop before rb->mmap_count and 5019 * event->mmap_count, so it is ok to use event->mmap_mutex to 5020 * serialize with perf_mmap here. 5021 */ 5022 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 5023 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) { 5024 /* 5025 * Stop all AUX events that are writing to this buffer, 5026 * so that we can free its AUX pages and corresponding PMU 5027 * data. Note that after rb::aux_mmap_count dropped to zero, 5028 * they won't start any more (see perf_aux_output_begin()). 5029 */ 5030 perf_pmu_output_stop(event); 5031 5032 /* now it's safe to free the pages */ 5033 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm); 5034 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked; 5035 5036 /* this has to be the last one */ 5037 rb_free_aux(rb); 5038 WARN_ON_ONCE(atomic_read(&rb->aux_refcount)); 5039 5040 mutex_unlock(&event->mmap_mutex); 5041 } 5042 5043 atomic_dec(&rb->mmap_count); 5044 5045 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 5046 goto out_put; 5047 5048 ring_buffer_attach(event, NULL); 5049 mutex_unlock(&event->mmap_mutex); 5050 5051 /* If there's still other mmap()s of this buffer, we're done. */ 5052 if (atomic_read(&rb->mmap_count)) 5053 goto out_put; 5054 5055 /* 5056 * No other mmap()s, detach from all other events that might redirect 5057 * into the now unreachable buffer. Somewhat complicated by the 5058 * fact that rb::event_lock otherwise nests inside mmap_mutex. 5059 */ 5060 again: 5061 rcu_read_lock(); 5062 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 5063 if (!atomic_long_inc_not_zero(&event->refcount)) { 5064 /* 5065 * This event is en-route to free_event() which will 5066 * detach it and remove it from the list. 5067 */ 5068 continue; 5069 } 5070 rcu_read_unlock(); 5071 5072 mutex_lock(&event->mmap_mutex); 5073 /* 5074 * Check we didn't race with perf_event_set_output() which can 5075 * swizzle the rb from under us while we were waiting to 5076 * acquire mmap_mutex. 5077 * 5078 * If we find a different rb; ignore this event, a next 5079 * iteration will no longer find it on the list. We have to 5080 * still restart the iteration to make sure we're not now 5081 * iterating the wrong list. 5082 */ 5083 if (event->rb == rb) 5084 ring_buffer_attach(event, NULL); 5085 5086 mutex_unlock(&event->mmap_mutex); 5087 put_event(event); 5088 5089 /* 5090 * Restart the iteration; either we're on the wrong list or 5091 * destroyed its integrity by doing a deletion. 5092 */ 5093 goto again; 5094 } 5095 rcu_read_unlock(); 5096 5097 /* 5098 * It could be there's still a few 0-ref events on the list; they'll 5099 * get cleaned up by free_event() -- they'll also still have their 5100 * ref on the rb and will free it whenever they are done with it. 5101 * 5102 * Aside from that, this buffer is 'fully' detached and unmapped, 5103 * undo the VM accounting. 5104 */ 5105 5106 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm); 5107 vma->vm_mm->pinned_vm -= mmap_locked; 5108 free_uid(mmap_user); 5109 5110 out_put: 5111 ring_buffer_put(rb); /* could be last */ 5112 } 5113 5114 static const struct vm_operations_struct perf_mmap_vmops = { 5115 .open = perf_mmap_open, 5116 .close = perf_mmap_close, /* non mergable */ 5117 .fault = perf_mmap_fault, 5118 .page_mkwrite = perf_mmap_fault, 5119 }; 5120 5121 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 5122 { 5123 struct perf_event *event = file->private_data; 5124 unsigned long user_locked, user_lock_limit; 5125 struct user_struct *user = current_user(); 5126 unsigned long locked, lock_limit; 5127 struct ring_buffer *rb = NULL; 5128 unsigned long vma_size; 5129 unsigned long nr_pages; 5130 long user_extra = 0, extra = 0; 5131 int ret = 0, flags = 0; 5132 5133 /* 5134 * Don't allow mmap() of inherited per-task counters. This would 5135 * create a performance issue due to all children writing to the 5136 * same rb. 5137 */ 5138 if (event->cpu == -1 && event->attr.inherit) 5139 return -EINVAL; 5140 5141 if (!(vma->vm_flags & VM_SHARED)) 5142 return -EINVAL; 5143 5144 vma_size = vma->vm_end - vma->vm_start; 5145 5146 if (vma->vm_pgoff == 0) { 5147 nr_pages = (vma_size / PAGE_SIZE) - 1; 5148 } else { 5149 /* 5150 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 5151 * mapped, all subsequent mappings should have the same size 5152 * and offset. Must be above the normal perf buffer. 5153 */ 5154 u64 aux_offset, aux_size; 5155 5156 if (!event->rb) 5157 return -EINVAL; 5158 5159 nr_pages = vma_size / PAGE_SIZE; 5160 5161 mutex_lock(&event->mmap_mutex); 5162 ret = -EINVAL; 5163 5164 rb = event->rb; 5165 if (!rb) 5166 goto aux_unlock; 5167 5168 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset); 5169 aux_size = ACCESS_ONCE(rb->user_page->aux_size); 5170 5171 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 5172 goto aux_unlock; 5173 5174 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 5175 goto aux_unlock; 5176 5177 /* already mapped with a different offset */ 5178 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 5179 goto aux_unlock; 5180 5181 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) 5182 goto aux_unlock; 5183 5184 /* already mapped with a different size */ 5185 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 5186 goto aux_unlock; 5187 5188 if (!is_power_of_2(nr_pages)) 5189 goto aux_unlock; 5190 5191 if (!atomic_inc_not_zero(&rb->mmap_count)) 5192 goto aux_unlock; 5193 5194 if (rb_has_aux(rb)) { 5195 atomic_inc(&rb->aux_mmap_count); 5196 ret = 0; 5197 goto unlock; 5198 } 5199 5200 atomic_set(&rb->aux_mmap_count, 1); 5201 user_extra = nr_pages; 5202 5203 goto accounting; 5204 } 5205 5206 /* 5207 * If we have rb pages ensure they're a power-of-two number, so we 5208 * can do bitmasks instead of modulo. 5209 */ 5210 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 5211 return -EINVAL; 5212 5213 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 5214 return -EINVAL; 5215 5216 WARN_ON_ONCE(event->ctx->parent_ctx); 5217 again: 5218 mutex_lock(&event->mmap_mutex); 5219 if (event->rb) { 5220 if (event->rb->nr_pages != nr_pages) { 5221 ret = -EINVAL; 5222 goto unlock; 5223 } 5224 5225 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 5226 /* 5227 * Raced against perf_mmap_close() through 5228 * perf_event_set_output(). Try again, hope for better 5229 * luck. 5230 */ 5231 mutex_unlock(&event->mmap_mutex); 5232 goto again; 5233 } 5234 5235 goto unlock; 5236 } 5237 5238 user_extra = nr_pages + 1; 5239 5240 accounting: 5241 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 5242 5243 /* 5244 * Increase the limit linearly with more CPUs: 5245 */ 5246 user_lock_limit *= num_online_cpus(); 5247 5248 user_locked = atomic_long_read(&user->locked_vm) + user_extra; 5249 5250 if (user_locked > user_lock_limit) 5251 extra = user_locked - user_lock_limit; 5252 5253 lock_limit = rlimit(RLIMIT_MEMLOCK); 5254 lock_limit >>= PAGE_SHIFT; 5255 locked = vma->vm_mm->pinned_vm + extra; 5256 5257 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() && 5258 !capable(CAP_IPC_LOCK)) { 5259 ret = -EPERM; 5260 goto unlock; 5261 } 5262 5263 WARN_ON(!rb && event->rb); 5264 5265 if (vma->vm_flags & VM_WRITE) 5266 flags |= RING_BUFFER_WRITABLE; 5267 5268 if (!rb) { 5269 rb = rb_alloc(nr_pages, 5270 event->attr.watermark ? event->attr.wakeup_watermark : 0, 5271 event->cpu, flags); 5272 5273 if (!rb) { 5274 ret = -ENOMEM; 5275 goto unlock; 5276 } 5277 5278 atomic_set(&rb->mmap_count, 1); 5279 rb->mmap_user = get_current_user(); 5280 rb->mmap_locked = extra; 5281 5282 ring_buffer_attach(event, rb); 5283 5284 perf_event_init_userpage(event); 5285 perf_event_update_userpage(event); 5286 } else { 5287 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 5288 event->attr.aux_watermark, flags); 5289 if (!ret) 5290 rb->aux_mmap_locked = extra; 5291 } 5292 5293 unlock: 5294 if (!ret) { 5295 atomic_long_add(user_extra, &user->locked_vm); 5296 vma->vm_mm->pinned_vm += extra; 5297 5298 atomic_inc(&event->mmap_count); 5299 } else if (rb) { 5300 atomic_dec(&rb->mmap_count); 5301 } 5302 aux_unlock: 5303 mutex_unlock(&event->mmap_mutex); 5304 5305 /* 5306 * Since pinned accounting is per vm we cannot allow fork() to copy our 5307 * vma. 5308 */ 5309 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP; 5310 vma->vm_ops = &perf_mmap_vmops; 5311 5312 if (event->pmu->event_mapped) 5313 event->pmu->event_mapped(event); 5314 5315 return ret; 5316 } 5317 5318 static int perf_fasync(int fd, struct file *filp, int on) 5319 { 5320 struct inode *inode = file_inode(filp); 5321 struct perf_event *event = filp->private_data; 5322 int retval; 5323 5324 inode_lock(inode); 5325 retval = fasync_helper(fd, filp, on, &event->fasync); 5326 inode_unlock(inode); 5327 5328 if (retval < 0) 5329 return retval; 5330 5331 return 0; 5332 } 5333 5334 static const struct file_operations perf_fops = { 5335 .llseek = no_llseek, 5336 .release = perf_release, 5337 .read = perf_read, 5338 .poll = perf_poll, 5339 .unlocked_ioctl = perf_ioctl, 5340 .compat_ioctl = perf_compat_ioctl, 5341 .mmap = perf_mmap, 5342 .fasync = perf_fasync, 5343 }; 5344 5345 /* 5346 * Perf event wakeup 5347 * 5348 * If there's data, ensure we set the poll() state and publish everything 5349 * to user-space before waking everybody up. 5350 */ 5351 5352 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event) 5353 { 5354 /* only the parent has fasync state */ 5355 if (event->parent) 5356 event = event->parent; 5357 return &event->fasync; 5358 } 5359 5360 void perf_event_wakeup(struct perf_event *event) 5361 { 5362 ring_buffer_wakeup(event); 5363 5364 if (event->pending_kill) { 5365 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); 5366 event->pending_kill = 0; 5367 } 5368 } 5369 5370 static void perf_pending_event(struct irq_work *entry) 5371 { 5372 struct perf_event *event = container_of(entry, 5373 struct perf_event, pending); 5374 int rctx; 5375 5376 rctx = perf_swevent_get_recursion_context(); 5377 /* 5378 * If we 'fail' here, that's OK, it means recursion is already disabled 5379 * and we won't recurse 'further'. 5380 */ 5381 5382 if (event->pending_disable) { 5383 event->pending_disable = 0; 5384 perf_event_disable_local(event); 5385 } 5386 5387 if (event->pending_wakeup) { 5388 event->pending_wakeup = 0; 5389 perf_event_wakeup(event); 5390 } 5391 5392 if (rctx >= 0) 5393 perf_swevent_put_recursion_context(rctx); 5394 } 5395 5396 /* 5397 * We assume there is only KVM supporting the callbacks. 5398 * Later on, we might change it to a list if there is 5399 * another virtualization implementation supporting the callbacks. 5400 */ 5401 struct perf_guest_info_callbacks *perf_guest_cbs; 5402 5403 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 5404 { 5405 perf_guest_cbs = cbs; 5406 return 0; 5407 } 5408 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 5409 5410 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 5411 { 5412 perf_guest_cbs = NULL; 5413 return 0; 5414 } 5415 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 5416 5417 static void 5418 perf_output_sample_regs(struct perf_output_handle *handle, 5419 struct pt_regs *regs, u64 mask) 5420 { 5421 int bit; 5422 DECLARE_BITMAP(_mask, 64); 5423 5424 bitmap_from_u64(_mask, mask); 5425 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) { 5426 u64 val; 5427 5428 val = perf_reg_value(regs, bit); 5429 perf_output_put(handle, val); 5430 } 5431 } 5432 5433 static void perf_sample_regs_user(struct perf_regs *regs_user, 5434 struct pt_regs *regs, 5435 struct pt_regs *regs_user_copy) 5436 { 5437 if (user_mode(regs)) { 5438 regs_user->abi = perf_reg_abi(current); 5439 regs_user->regs = regs; 5440 } else if (current->mm) { 5441 perf_get_regs_user(regs_user, regs, regs_user_copy); 5442 } else { 5443 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 5444 regs_user->regs = NULL; 5445 } 5446 } 5447 5448 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 5449 struct pt_regs *regs) 5450 { 5451 regs_intr->regs = regs; 5452 regs_intr->abi = perf_reg_abi(current); 5453 } 5454 5455 5456 /* 5457 * Get remaining task size from user stack pointer. 5458 * 5459 * It'd be better to take stack vma map and limit this more 5460 * precisly, but there's no way to get it safely under interrupt, 5461 * so using TASK_SIZE as limit. 5462 */ 5463 static u64 perf_ustack_task_size(struct pt_regs *regs) 5464 { 5465 unsigned long addr = perf_user_stack_pointer(regs); 5466 5467 if (!addr || addr >= TASK_SIZE) 5468 return 0; 5469 5470 return TASK_SIZE - addr; 5471 } 5472 5473 static u16 5474 perf_sample_ustack_size(u16 stack_size, u16 header_size, 5475 struct pt_regs *regs) 5476 { 5477 u64 task_size; 5478 5479 /* No regs, no stack pointer, no dump. */ 5480 if (!regs) 5481 return 0; 5482 5483 /* 5484 * Check if we fit in with the requested stack size into the: 5485 * - TASK_SIZE 5486 * If we don't, we limit the size to the TASK_SIZE. 5487 * 5488 * - remaining sample size 5489 * If we don't, we customize the stack size to 5490 * fit in to the remaining sample size. 5491 */ 5492 5493 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 5494 stack_size = min(stack_size, (u16) task_size); 5495 5496 /* Current header size plus static size and dynamic size. */ 5497 header_size += 2 * sizeof(u64); 5498 5499 /* Do we fit in with the current stack dump size? */ 5500 if ((u16) (header_size + stack_size) < header_size) { 5501 /* 5502 * If we overflow the maximum size for the sample, 5503 * we customize the stack dump size to fit in. 5504 */ 5505 stack_size = USHRT_MAX - header_size - sizeof(u64); 5506 stack_size = round_up(stack_size, sizeof(u64)); 5507 } 5508 5509 return stack_size; 5510 } 5511 5512 static void 5513 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 5514 struct pt_regs *regs) 5515 { 5516 /* Case of a kernel thread, nothing to dump */ 5517 if (!regs) { 5518 u64 size = 0; 5519 perf_output_put(handle, size); 5520 } else { 5521 unsigned long sp; 5522 unsigned int rem; 5523 u64 dyn_size; 5524 5525 /* 5526 * We dump: 5527 * static size 5528 * - the size requested by user or the best one we can fit 5529 * in to the sample max size 5530 * data 5531 * - user stack dump data 5532 * dynamic size 5533 * - the actual dumped size 5534 */ 5535 5536 /* Static size. */ 5537 perf_output_put(handle, dump_size); 5538 5539 /* Data. */ 5540 sp = perf_user_stack_pointer(regs); 5541 rem = __output_copy_user(handle, (void *) sp, dump_size); 5542 dyn_size = dump_size - rem; 5543 5544 perf_output_skip(handle, rem); 5545 5546 /* Dynamic size. */ 5547 perf_output_put(handle, dyn_size); 5548 } 5549 } 5550 5551 static void __perf_event_header__init_id(struct perf_event_header *header, 5552 struct perf_sample_data *data, 5553 struct perf_event *event) 5554 { 5555 u64 sample_type = event->attr.sample_type; 5556 5557 data->type = sample_type; 5558 header->size += event->id_header_size; 5559 5560 if (sample_type & PERF_SAMPLE_TID) { 5561 /* namespace issues */ 5562 data->tid_entry.pid = perf_event_pid(event, current); 5563 data->tid_entry.tid = perf_event_tid(event, current); 5564 } 5565 5566 if (sample_type & PERF_SAMPLE_TIME) 5567 data->time = perf_event_clock(event); 5568 5569 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 5570 data->id = primary_event_id(event); 5571 5572 if (sample_type & PERF_SAMPLE_STREAM_ID) 5573 data->stream_id = event->id; 5574 5575 if (sample_type & PERF_SAMPLE_CPU) { 5576 data->cpu_entry.cpu = raw_smp_processor_id(); 5577 data->cpu_entry.reserved = 0; 5578 } 5579 } 5580 5581 void perf_event_header__init_id(struct perf_event_header *header, 5582 struct perf_sample_data *data, 5583 struct perf_event *event) 5584 { 5585 if (event->attr.sample_id_all) 5586 __perf_event_header__init_id(header, data, event); 5587 } 5588 5589 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 5590 struct perf_sample_data *data) 5591 { 5592 u64 sample_type = data->type; 5593 5594 if (sample_type & PERF_SAMPLE_TID) 5595 perf_output_put(handle, data->tid_entry); 5596 5597 if (sample_type & PERF_SAMPLE_TIME) 5598 perf_output_put(handle, data->time); 5599 5600 if (sample_type & PERF_SAMPLE_ID) 5601 perf_output_put(handle, data->id); 5602 5603 if (sample_type & PERF_SAMPLE_STREAM_ID) 5604 perf_output_put(handle, data->stream_id); 5605 5606 if (sample_type & PERF_SAMPLE_CPU) 5607 perf_output_put(handle, data->cpu_entry); 5608 5609 if (sample_type & PERF_SAMPLE_IDENTIFIER) 5610 perf_output_put(handle, data->id); 5611 } 5612 5613 void perf_event__output_id_sample(struct perf_event *event, 5614 struct perf_output_handle *handle, 5615 struct perf_sample_data *sample) 5616 { 5617 if (event->attr.sample_id_all) 5618 __perf_event__output_id_sample(handle, sample); 5619 } 5620 5621 static void perf_output_read_one(struct perf_output_handle *handle, 5622 struct perf_event *event, 5623 u64 enabled, u64 running) 5624 { 5625 u64 read_format = event->attr.read_format; 5626 u64 values[4]; 5627 int n = 0; 5628 5629 values[n++] = perf_event_count(event); 5630 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 5631 values[n++] = enabled + 5632 atomic64_read(&event->child_total_time_enabled); 5633 } 5634 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 5635 values[n++] = running + 5636 atomic64_read(&event->child_total_time_running); 5637 } 5638 if (read_format & PERF_FORMAT_ID) 5639 values[n++] = primary_event_id(event); 5640 5641 __output_copy(handle, values, n * sizeof(u64)); 5642 } 5643 5644 /* 5645 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult. 5646 */ 5647 static void perf_output_read_group(struct perf_output_handle *handle, 5648 struct perf_event *event, 5649 u64 enabled, u64 running) 5650 { 5651 struct perf_event *leader = event->group_leader, *sub; 5652 u64 read_format = event->attr.read_format; 5653 u64 values[5]; 5654 int n = 0; 5655 5656 values[n++] = 1 + leader->nr_siblings; 5657 5658 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 5659 values[n++] = enabled; 5660 5661 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 5662 values[n++] = running; 5663 5664 if (leader != event) 5665 leader->pmu->read(leader); 5666 5667 values[n++] = perf_event_count(leader); 5668 if (read_format & PERF_FORMAT_ID) 5669 values[n++] = primary_event_id(leader); 5670 5671 __output_copy(handle, values, n * sizeof(u64)); 5672 5673 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 5674 n = 0; 5675 5676 if ((sub != event) && 5677 (sub->state == PERF_EVENT_STATE_ACTIVE)) 5678 sub->pmu->read(sub); 5679 5680 values[n++] = perf_event_count(sub); 5681 if (read_format & PERF_FORMAT_ID) 5682 values[n++] = primary_event_id(sub); 5683 5684 __output_copy(handle, values, n * sizeof(u64)); 5685 } 5686 } 5687 5688 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 5689 PERF_FORMAT_TOTAL_TIME_RUNNING) 5690 5691 static void perf_output_read(struct perf_output_handle *handle, 5692 struct perf_event *event) 5693 { 5694 u64 enabled = 0, running = 0, now; 5695 u64 read_format = event->attr.read_format; 5696 5697 /* 5698 * compute total_time_enabled, total_time_running 5699 * based on snapshot values taken when the event 5700 * was last scheduled in. 5701 * 5702 * we cannot simply called update_context_time() 5703 * because of locking issue as we are called in 5704 * NMI context 5705 */ 5706 if (read_format & PERF_FORMAT_TOTAL_TIMES) 5707 calc_timer_values(event, &now, &enabled, &running); 5708 5709 if (event->attr.read_format & PERF_FORMAT_GROUP) 5710 perf_output_read_group(handle, event, enabled, running); 5711 else 5712 perf_output_read_one(handle, event, enabled, running); 5713 } 5714 5715 void perf_output_sample(struct perf_output_handle *handle, 5716 struct perf_event_header *header, 5717 struct perf_sample_data *data, 5718 struct perf_event *event) 5719 { 5720 u64 sample_type = data->type; 5721 5722 perf_output_put(handle, *header); 5723 5724 if (sample_type & PERF_SAMPLE_IDENTIFIER) 5725 perf_output_put(handle, data->id); 5726 5727 if (sample_type & PERF_SAMPLE_IP) 5728 perf_output_put(handle, data->ip); 5729 5730 if (sample_type & PERF_SAMPLE_TID) 5731 perf_output_put(handle, data->tid_entry); 5732 5733 if (sample_type & PERF_SAMPLE_TIME) 5734 perf_output_put(handle, data->time); 5735 5736 if (sample_type & PERF_SAMPLE_ADDR) 5737 perf_output_put(handle, data->addr); 5738 5739 if (sample_type & PERF_SAMPLE_ID) 5740 perf_output_put(handle, data->id); 5741 5742 if (sample_type & PERF_SAMPLE_STREAM_ID) 5743 perf_output_put(handle, data->stream_id); 5744 5745 if (sample_type & PERF_SAMPLE_CPU) 5746 perf_output_put(handle, data->cpu_entry); 5747 5748 if (sample_type & PERF_SAMPLE_PERIOD) 5749 perf_output_put(handle, data->period); 5750 5751 if (sample_type & PERF_SAMPLE_READ) 5752 perf_output_read(handle, event); 5753 5754 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 5755 if (data->callchain) { 5756 int size = 1; 5757 5758 if (data->callchain) 5759 size += data->callchain->nr; 5760 5761 size *= sizeof(u64); 5762 5763 __output_copy(handle, data->callchain, size); 5764 } else { 5765 u64 nr = 0; 5766 perf_output_put(handle, nr); 5767 } 5768 } 5769 5770 if (sample_type & PERF_SAMPLE_RAW) { 5771 struct perf_raw_record *raw = data->raw; 5772 5773 if (raw) { 5774 struct perf_raw_frag *frag = &raw->frag; 5775 5776 perf_output_put(handle, raw->size); 5777 do { 5778 if (frag->copy) { 5779 __output_custom(handle, frag->copy, 5780 frag->data, frag->size); 5781 } else { 5782 __output_copy(handle, frag->data, 5783 frag->size); 5784 } 5785 if (perf_raw_frag_last(frag)) 5786 break; 5787 frag = frag->next; 5788 } while (1); 5789 if (frag->pad) 5790 __output_skip(handle, NULL, frag->pad); 5791 } else { 5792 struct { 5793 u32 size; 5794 u32 data; 5795 } raw = { 5796 .size = sizeof(u32), 5797 .data = 0, 5798 }; 5799 perf_output_put(handle, raw); 5800 } 5801 } 5802 5803 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 5804 if (data->br_stack) { 5805 size_t size; 5806 5807 size = data->br_stack->nr 5808 * sizeof(struct perf_branch_entry); 5809 5810 perf_output_put(handle, data->br_stack->nr); 5811 perf_output_copy(handle, data->br_stack->entries, size); 5812 } else { 5813 /* 5814 * we always store at least the value of nr 5815 */ 5816 u64 nr = 0; 5817 perf_output_put(handle, nr); 5818 } 5819 } 5820 5821 if (sample_type & PERF_SAMPLE_REGS_USER) { 5822 u64 abi = data->regs_user.abi; 5823 5824 /* 5825 * If there are no regs to dump, notice it through 5826 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 5827 */ 5828 perf_output_put(handle, abi); 5829 5830 if (abi) { 5831 u64 mask = event->attr.sample_regs_user; 5832 perf_output_sample_regs(handle, 5833 data->regs_user.regs, 5834 mask); 5835 } 5836 } 5837 5838 if (sample_type & PERF_SAMPLE_STACK_USER) { 5839 perf_output_sample_ustack(handle, 5840 data->stack_user_size, 5841 data->regs_user.regs); 5842 } 5843 5844 if (sample_type & PERF_SAMPLE_WEIGHT) 5845 perf_output_put(handle, data->weight); 5846 5847 if (sample_type & PERF_SAMPLE_DATA_SRC) 5848 perf_output_put(handle, data->data_src.val); 5849 5850 if (sample_type & PERF_SAMPLE_TRANSACTION) 5851 perf_output_put(handle, data->txn); 5852 5853 if (sample_type & PERF_SAMPLE_REGS_INTR) { 5854 u64 abi = data->regs_intr.abi; 5855 /* 5856 * If there are no regs to dump, notice it through 5857 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 5858 */ 5859 perf_output_put(handle, abi); 5860 5861 if (abi) { 5862 u64 mask = event->attr.sample_regs_intr; 5863 5864 perf_output_sample_regs(handle, 5865 data->regs_intr.regs, 5866 mask); 5867 } 5868 } 5869 5870 if (!event->attr.watermark) { 5871 int wakeup_events = event->attr.wakeup_events; 5872 5873 if (wakeup_events) { 5874 struct ring_buffer *rb = handle->rb; 5875 int events = local_inc_return(&rb->events); 5876 5877 if (events >= wakeup_events) { 5878 local_sub(wakeup_events, &rb->events); 5879 local_inc(&rb->wakeup); 5880 } 5881 } 5882 } 5883 } 5884 5885 void perf_prepare_sample(struct perf_event_header *header, 5886 struct perf_sample_data *data, 5887 struct perf_event *event, 5888 struct pt_regs *regs) 5889 { 5890 u64 sample_type = event->attr.sample_type; 5891 5892 header->type = PERF_RECORD_SAMPLE; 5893 header->size = sizeof(*header) + event->header_size; 5894 5895 header->misc = 0; 5896 header->misc |= perf_misc_flags(regs); 5897 5898 __perf_event_header__init_id(header, data, event); 5899 5900 if (sample_type & PERF_SAMPLE_IP) 5901 data->ip = perf_instruction_pointer(regs); 5902 5903 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 5904 int size = 1; 5905 5906 data->callchain = perf_callchain(event, regs); 5907 5908 if (data->callchain) 5909 size += data->callchain->nr; 5910 5911 header->size += size * sizeof(u64); 5912 } 5913 5914 if (sample_type & PERF_SAMPLE_RAW) { 5915 struct perf_raw_record *raw = data->raw; 5916 int size; 5917 5918 if (raw) { 5919 struct perf_raw_frag *frag = &raw->frag; 5920 u32 sum = 0; 5921 5922 do { 5923 sum += frag->size; 5924 if (perf_raw_frag_last(frag)) 5925 break; 5926 frag = frag->next; 5927 } while (1); 5928 5929 size = round_up(sum + sizeof(u32), sizeof(u64)); 5930 raw->size = size - sizeof(u32); 5931 frag->pad = raw->size - sum; 5932 } else { 5933 size = sizeof(u64); 5934 } 5935 5936 header->size += size; 5937 } 5938 5939 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 5940 int size = sizeof(u64); /* nr */ 5941 if (data->br_stack) { 5942 size += data->br_stack->nr 5943 * sizeof(struct perf_branch_entry); 5944 } 5945 header->size += size; 5946 } 5947 5948 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER)) 5949 perf_sample_regs_user(&data->regs_user, regs, 5950 &data->regs_user_copy); 5951 5952 if (sample_type & PERF_SAMPLE_REGS_USER) { 5953 /* regs dump ABI info */ 5954 int size = sizeof(u64); 5955 5956 if (data->regs_user.regs) { 5957 u64 mask = event->attr.sample_regs_user; 5958 size += hweight64(mask) * sizeof(u64); 5959 } 5960 5961 header->size += size; 5962 } 5963 5964 if (sample_type & PERF_SAMPLE_STACK_USER) { 5965 /* 5966 * Either we need PERF_SAMPLE_STACK_USER bit to be allways 5967 * processed as the last one or have additional check added 5968 * in case new sample type is added, because we could eat 5969 * up the rest of the sample size. 5970 */ 5971 u16 stack_size = event->attr.sample_stack_user; 5972 u16 size = sizeof(u64); 5973 5974 stack_size = perf_sample_ustack_size(stack_size, header->size, 5975 data->regs_user.regs); 5976 5977 /* 5978 * If there is something to dump, add space for the dump 5979 * itself and for the field that tells the dynamic size, 5980 * which is how many have been actually dumped. 5981 */ 5982 if (stack_size) 5983 size += sizeof(u64) + stack_size; 5984 5985 data->stack_user_size = stack_size; 5986 header->size += size; 5987 } 5988 5989 if (sample_type & PERF_SAMPLE_REGS_INTR) { 5990 /* regs dump ABI info */ 5991 int size = sizeof(u64); 5992 5993 perf_sample_regs_intr(&data->regs_intr, regs); 5994 5995 if (data->regs_intr.regs) { 5996 u64 mask = event->attr.sample_regs_intr; 5997 5998 size += hweight64(mask) * sizeof(u64); 5999 } 6000 6001 header->size += size; 6002 } 6003 } 6004 6005 static void __always_inline 6006 __perf_event_output(struct perf_event *event, 6007 struct perf_sample_data *data, 6008 struct pt_regs *regs, 6009 int (*output_begin)(struct perf_output_handle *, 6010 struct perf_event *, 6011 unsigned int)) 6012 { 6013 struct perf_output_handle handle; 6014 struct perf_event_header header; 6015 6016 /* protect the callchain buffers */ 6017 rcu_read_lock(); 6018 6019 perf_prepare_sample(&header, data, event, regs); 6020 6021 if (output_begin(&handle, event, header.size)) 6022 goto exit; 6023 6024 perf_output_sample(&handle, &header, data, event); 6025 6026 perf_output_end(&handle); 6027 6028 exit: 6029 rcu_read_unlock(); 6030 } 6031 6032 void 6033 perf_event_output_forward(struct perf_event *event, 6034 struct perf_sample_data *data, 6035 struct pt_regs *regs) 6036 { 6037 __perf_event_output(event, data, regs, perf_output_begin_forward); 6038 } 6039 6040 void 6041 perf_event_output_backward(struct perf_event *event, 6042 struct perf_sample_data *data, 6043 struct pt_regs *regs) 6044 { 6045 __perf_event_output(event, data, regs, perf_output_begin_backward); 6046 } 6047 6048 void 6049 perf_event_output(struct perf_event *event, 6050 struct perf_sample_data *data, 6051 struct pt_regs *regs) 6052 { 6053 __perf_event_output(event, data, regs, perf_output_begin); 6054 } 6055 6056 /* 6057 * read event_id 6058 */ 6059 6060 struct perf_read_event { 6061 struct perf_event_header header; 6062 6063 u32 pid; 6064 u32 tid; 6065 }; 6066 6067 static void 6068 perf_event_read_event(struct perf_event *event, 6069 struct task_struct *task) 6070 { 6071 struct perf_output_handle handle; 6072 struct perf_sample_data sample; 6073 struct perf_read_event read_event = { 6074 .header = { 6075 .type = PERF_RECORD_READ, 6076 .misc = 0, 6077 .size = sizeof(read_event) + event->read_size, 6078 }, 6079 .pid = perf_event_pid(event, task), 6080 .tid = perf_event_tid(event, task), 6081 }; 6082 int ret; 6083 6084 perf_event_header__init_id(&read_event.header, &sample, event); 6085 ret = perf_output_begin(&handle, event, read_event.header.size); 6086 if (ret) 6087 return; 6088 6089 perf_output_put(&handle, read_event); 6090 perf_output_read(&handle, event); 6091 perf_event__output_id_sample(event, &handle, &sample); 6092 6093 perf_output_end(&handle); 6094 } 6095 6096 typedef void (perf_iterate_f)(struct perf_event *event, void *data); 6097 6098 static void 6099 perf_iterate_ctx(struct perf_event_context *ctx, 6100 perf_iterate_f output, 6101 void *data, bool all) 6102 { 6103 struct perf_event *event; 6104 6105 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 6106 if (!all) { 6107 if (event->state < PERF_EVENT_STATE_INACTIVE) 6108 continue; 6109 if (!event_filter_match(event)) 6110 continue; 6111 } 6112 6113 output(event, data); 6114 } 6115 } 6116 6117 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data) 6118 { 6119 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events); 6120 struct perf_event *event; 6121 6122 list_for_each_entry_rcu(event, &pel->list, sb_list) { 6123 /* 6124 * Skip events that are not fully formed yet; ensure that 6125 * if we observe event->ctx, both event and ctx will be 6126 * complete enough. See perf_install_in_context(). 6127 */ 6128 if (!smp_load_acquire(&event->ctx)) 6129 continue; 6130 6131 if (event->state < PERF_EVENT_STATE_INACTIVE) 6132 continue; 6133 if (!event_filter_match(event)) 6134 continue; 6135 output(event, data); 6136 } 6137 } 6138 6139 /* 6140 * Iterate all events that need to receive side-band events. 6141 * 6142 * For new callers; ensure that account_pmu_sb_event() includes 6143 * your event, otherwise it might not get delivered. 6144 */ 6145 static void 6146 perf_iterate_sb(perf_iterate_f output, void *data, 6147 struct perf_event_context *task_ctx) 6148 { 6149 struct perf_event_context *ctx; 6150 int ctxn; 6151 6152 rcu_read_lock(); 6153 preempt_disable(); 6154 6155 /* 6156 * If we have task_ctx != NULL we only notify the task context itself. 6157 * The task_ctx is set only for EXIT events before releasing task 6158 * context. 6159 */ 6160 if (task_ctx) { 6161 perf_iterate_ctx(task_ctx, output, data, false); 6162 goto done; 6163 } 6164 6165 perf_iterate_sb_cpu(output, data); 6166 6167 for_each_task_context_nr(ctxn) { 6168 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 6169 if (ctx) 6170 perf_iterate_ctx(ctx, output, data, false); 6171 } 6172 done: 6173 preempt_enable(); 6174 rcu_read_unlock(); 6175 } 6176 6177 /* 6178 * Clear all file-based filters at exec, they'll have to be 6179 * re-instated when/if these objects are mmapped again. 6180 */ 6181 static void perf_event_addr_filters_exec(struct perf_event *event, void *data) 6182 { 6183 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 6184 struct perf_addr_filter *filter; 6185 unsigned int restart = 0, count = 0; 6186 unsigned long flags; 6187 6188 if (!has_addr_filter(event)) 6189 return; 6190 6191 raw_spin_lock_irqsave(&ifh->lock, flags); 6192 list_for_each_entry(filter, &ifh->list, entry) { 6193 if (filter->inode) { 6194 event->addr_filters_offs[count] = 0; 6195 restart++; 6196 } 6197 6198 count++; 6199 } 6200 6201 if (restart) 6202 event->addr_filters_gen++; 6203 raw_spin_unlock_irqrestore(&ifh->lock, flags); 6204 6205 if (restart) 6206 perf_event_stop(event, 1); 6207 } 6208 6209 void perf_event_exec(void) 6210 { 6211 struct perf_event_context *ctx; 6212 int ctxn; 6213 6214 rcu_read_lock(); 6215 for_each_task_context_nr(ctxn) { 6216 ctx = current->perf_event_ctxp[ctxn]; 6217 if (!ctx) 6218 continue; 6219 6220 perf_event_enable_on_exec(ctxn); 6221 6222 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, 6223 true); 6224 } 6225 rcu_read_unlock(); 6226 } 6227 6228 struct remote_output { 6229 struct ring_buffer *rb; 6230 int err; 6231 }; 6232 6233 static void __perf_event_output_stop(struct perf_event *event, void *data) 6234 { 6235 struct perf_event *parent = event->parent; 6236 struct remote_output *ro = data; 6237 struct ring_buffer *rb = ro->rb; 6238 struct stop_event_data sd = { 6239 .event = event, 6240 }; 6241 6242 if (!has_aux(event)) 6243 return; 6244 6245 if (!parent) 6246 parent = event; 6247 6248 /* 6249 * In case of inheritance, it will be the parent that links to the 6250 * ring-buffer, but it will be the child that's actually using it. 6251 * 6252 * We are using event::rb to determine if the event should be stopped, 6253 * however this may race with ring_buffer_attach() (through set_output), 6254 * which will make us skip the event that actually needs to be stopped. 6255 * So ring_buffer_attach() has to stop an aux event before re-assigning 6256 * its rb pointer. 6257 */ 6258 if (rcu_dereference(parent->rb) == rb) 6259 ro->err = __perf_event_stop(&sd); 6260 } 6261 6262 static int __perf_pmu_output_stop(void *info) 6263 { 6264 struct perf_event *event = info; 6265 struct pmu *pmu = event->pmu; 6266 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 6267 struct remote_output ro = { 6268 .rb = event->rb, 6269 }; 6270 6271 rcu_read_lock(); 6272 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false); 6273 if (cpuctx->task_ctx) 6274 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop, 6275 &ro, false); 6276 rcu_read_unlock(); 6277 6278 return ro.err; 6279 } 6280 6281 static void perf_pmu_output_stop(struct perf_event *event) 6282 { 6283 struct perf_event *iter; 6284 int err, cpu; 6285 6286 restart: 6287 rcu_read_lock(); 6288 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) { 6289 /* 6290 * For per-CPU events, we need to make sure that neither they 6291 * nor their children are running; for cpu==-1 events it's 6292 * sufficient to stop the event itself if it's active, since 6293 * it can't have children. 6294 */ 6295 cpu = iter->cpu; 6296 if (cpu == -1) 6297 cpu = READ_ONCE(iter->oncpu); 6298 6299 if (cpu == -1) 6300 continue; 6301 6302 err = cpu_function_call(cpu, __perf_pmu_output_stop, event); 6303 if (err == -EAGAIN) { 6304 rcu_read_unlock(); 6305 goto restart; 6306 } 6307 } 6308 rcu_read_unlock(); 6309 } 6310 6311 /* 6312 * task tracking -- fork/exit 6313 * 6314 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 6315 */ 6316 6317 struct perf_task_event { 6318 struct task_struct *task; 6319 struct perf_event_context *task_ctx; 6320 6321 struct { 6322 struct perf_event_header header; 6323 6324 u32 pid; 6325 u32 ppid; 6326 u32 tid; 6327 u32 ptid; 6328 u64 time; 6329 } event_id; 6330 }; 6331 6332 static int perf_event_task_match(struct perf_event *event) 6333 { 6334 return event->attr.comm || event->attr.mmap || 6335 event->attr.mmap2 || event->attr.mmap_data || 6336 event->attr.task; 6337 } 6338 6339 static void perf_event_task_output(struct perf_event *event, 6340 void *data) 6341 { 6342 struct perf_task_event *task_event = data; 6343 struct perf_output_handle handle; 6344 struct perf_sample_data sample; 6345 struct task_struct *task = task_event->task; 6346 int ret, size = task_event->event_id.header.size; 6347 6348 if (!perf_event_task_match(event)) 6349 return; 6350 6351 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 6352 6353 ret = perf_output_begin(&handle, event, 6354 task_event->event_id.header.size); 6355 if (ret) 6356 goto out; 6357 6358 task_event->event_id.pid = perf_event_pid(event, task); 6359 task_event->event_id.ppid = perf_event_pid(event, current); 6360 6361 task_event->event_id.tid = perf_event_tid(event, task); 6362 task_event->event_id.ptid = perf_event_tid(event, current); 6363 6364 task_event->event_id.time = perf_event_clock(event); 6365 6366 perf_output_put(&handle, task_event->event_id); 6367 6368 perf_event__output_id_sample(event, &handle, &sample); 6369 6370 perf_output_end(&handle); 6371 out: 6372 task_event->event_id.header.size = size; 6373 } 6374 6375 static void perf_event_task(struct task_struct *task, 6376 struct perf_event_context *task_ctx, 6377 int new) 6378 { 6379 struct perf_task_event task_event; 6380 6381 if (!atomic_read(&nr_comm_events) && 6382 !atomic_read(&nr_mmap_events) && 6383 !atomic_read(&nr_task_events)) 6384 return; 6385 6386 task_event = (struct perf_task_event){ 6387 .task = task, 6388 .task_ctx = task_ctx, 6389 .event_id = { 6390 .header = { 6391 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 6392 .misc = 0, 6393 .size = sizeof(task_event.event_id), 6394 }, 6395 /* .pid */ 6396 /* .ppid */ 6397 /* .tid */ 6398 /* .ptid */ 6399 /* .time */ 6400 }, 6401 }; 6402 6403 perf_iterate_sb(perf_event_task_output, 6404 &task_event, 6405 task_ctx); 6406 } 6407 6408 void perf_event_fork(struct task_struct *task) 6409 { 6410 perf_event_task(task, NULL, 1); 6411 } 6412 6413 /* 6414 * comm tracking 6415 */ 6416 6417 struct perf_comm_event { 6418 struct task_struct *task; 6419 char *comm; 6420 int comm_size; 6421 6422 struct { 6423 struct perf_event_header header; 6424 6425 u32 pid; 6426 u32 tid; 6427 } event_id; 6428 }; 6429 6430 static int perf_event_comm_match(struct perf_event *event) 6431 { 6432 return event->attr.comm; 6433 } 6434 6435 static void perf_event_comm_output(struct perf_event *event, 6436 void *data) 6437 { 6438 struct perf_comm_event *comm_event = data; 6439 struct perf_output_handle handle; 6440 struct perf_sample_data sample; 6441 int size = comm_event->event_id.header.size; 6442 int ret; 6443 6444 if (!perf_event_comm_match(event)) 6445 return; 6446 6447 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 6448 ret = perf_output_begin(&handle, event, 6449 comm_event->event_id.header.size); 6450 6451 if (ret) 6452 goto out; 6453 6454 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 6455 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 6456 6457 perf_output_put(&handle, comm_event->event_id); 6458 __output_copy(&handle, comm_event->comm, 6459 comm_event->comm_size); 6460 6461 perf_event__output_id_sample(event, &handle, &sample); 6462 6463 perf_output_end(&handle); 6464 out: 6465 comm_event->event_id.header.size = size; 6466 } 6467 6468 static void perf_event_comm_event(struct perf_comm_event *comm_event) 6469 { 6470 char comm[TASK_COMM_LEN]; 6471 unsigned int size; 6472 6473 memset(comm, 0, sizeof(comm)); 6474 strlcpy(comm, comm_event->task->comm, sizeof(comm)); 6475 size = ALIGN(strlen(comm)+1, sizeof(u64)); 6476 6477 comm_event->comm = comm; 6478 comm_event->comm_size = size; 6479 6480 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 6481 6482 perf_iterate_sb(perf_event_comm_output, 6483 comm_event, 6484 NULL); 6485 } 6486 6487 void perf_event_comm(struct task_struct *task, bool exec) 6488 { 6489 struct perf_comm_event comm_event; 6490 6491 if (!atomic_read(&nr_comm_events)) 6492 return; 6493 6494 comm_event = (struct perf_comm_event){ 6495 .task = task, 6496 /* .comm */ 6497 /* .comm_size */ 6498 .event_id = { 6499 .header = { 6500 .type = PERF_RECORD_COMM, 6501 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 6502 /* .size */ 6503 }, 6504 /* .pid */ 6505 /* .tid */ 6506 }, 6507 }; 6508 6509 perf_event_comm_event(&comm_event); 6510 } 6511 6512 /* 6513 * mmap tracking 6514 */ 6515 6516 struct perf_mmap_event { 6517 struct vm_area_struct *vma; 6518 6519 const char *file_name; 6520 int file_size; 6521 int maj, min; 6522 u64 ino; 6523 u64 ino_generation; 6524 u32 prot, flags; 6525 6526 struct { 6527 struct perf_event_header header; 6528 6529 u32 pid; 6530 u32 tid; 6531 u64 start; 6532 u64 len; 6533 u64 pgoff; 6534 } event_id; 6535 }; 6536 6537 static int perf_event_mmap_match(struct perf_event *event, 6538 void *data) 6539 { 6540 struct perf_mmap_event *mmap_event = data; 6541 struct vm_area_struct *vma = mmap_event->vma; 6542 int executable = vma->vm_flags & VM_EXEC; 6543 6544 return (!executable && event->attr.mmap_data) || 6545 (executable && (event->attr.mmap || event->attr.mmap2)); 6546 } 6547 6548 static void perf_event_mmap_output(struct perf_event *event, 6549 void *data) 6550 { 6551 struct perf_mmap_event *mmap_event = data; 6552 struct perf_output_handle handle; 6553 struct perf_sample_data sample; 6554 int size = mmap_event->event_id.header.size; 6555 int ret; 6556 6557 if (!perf_event_mmap_match(event, data)) 6558 return; 6559 6560 if (event->attr.mmap2) { 6561 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 6562 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 6563 mmap_event->event_id.header.size += sizeof(mmap_event->min); 6564 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 6565 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 6566 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 6567 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 6568 } 6569 6570 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 6571 ret = perf_output_begin(&handle, event, 6572 mmap_event->event_id.header.size); 6573 if (ret) 6574 goto out; 6575 6576 mmap_event->event_id.pid = perf_event_pid(event, current); 6577 mmap_event->event_id.tid = perf_event_tid(event, current); 6578 6579 perf_output_put(&handle, mmap_event->event_id); 6580 6581 if (event->attr.mmap2) { 6582 perf_output_put(&handle, mmap_event->maj); 6583 perf_output_put(&handle, mmap_event->min); 6584 perf_output_put(&handle, mmap_event->ino); 6585 perf_output_put(&handle, mmap_event->ino_generation); 6586 perf_output_put(&handle, mmap_event->prot); 6587 perf_output_put(&handle, mmap_event->flags); 6588 } 6589 6590 __output_copy(&handle, mmap_event->file_name, 6591 mmap_event->file_size); 6592 6593 perf_event__output_id_sample(event, &handle, &sample); 6594 6595 perf_output_end(&handle); 6596 out: 6597 mmap_event->event_id.header.size = size; 6598 } 6599 6600 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 6601 { 6602 struct vm_area_struct *vma = mmap_event->vma; 6603 struct file *file = vma->vm_file; 6604 int maj = 0, min = 0; 6605 u64 ino = 0, gen = 0; 6606 u32 prot = 0, flags = 0; 6607 unsigned int size; 6608 char tmp[16]; 6609 char *buf = NULL; 6610 char *name; 6611 6612 if (file) { 6613 struct inode *inode; 6614 dev_t dev; 6615 6616 buf = kmalloc(PATH_MAX, GFP_KERNEL); 6617 if (!buf) { 6618 name = "//enomem"; 6619 goto cpy_name; 6620 } 6621 /* 6622 * d_path() works from the end of the rb backwards, so we 6623 * need to add enough zero bytes after the string to handle 6624 * the 64bit alignment we do later. 6625 */ 6626 name = file_path(file, buf, PATH_MAX - sizeof(u64)); 6627 if (IS_ERR(name)) { 6628 name = "//toolong"; 6629 goto cpy_name; 6630 } 6631 inode = file_inode(vma->vm_file); 6632 dev = inode->i_sb->s_dev; 6633 ino = inode->i_ino; 6634 gen = inode->i_generation; 6635 maj = MAJOR(dev); 6636 min = MINOR(dev); 6637 6638 if (vma->vm_flags & VM_READ) 6639 prot |= PROT_READ; 6640 if (vma->vm_flags & VM_WRITE) 6641 prot |= PROT_WRITE; 6642 if (vma->vm_flags & VM_EXEC) 6643 prot |= PROT_EXEC; 6644 6645 if (vma->vm_flags & VM_MAYSHARE) 6646 flags = MAP_SHARED; 6647 else 6648 flags = MAP_PRIVATE; 6649 6650 if (vma->vm_flags & VM_DENYWRITE) 6651 flags |= MAP_DENYWRITE; 6652 if (vma->vm_flags & VM_MAYEXEC) 6653 flags |= MAP_EXECUTABLE; 6654 if (vma->vm_flags & VM_LOCKED) 6655 flags |= MAP_LOCKED; 6656 if (vma->vm_flags & VM_HUGETLB) 6657 flags |= MAP_HUGETLB; 6658 6659 goto got_name; 6660 } else { 6661 if (vma->vm_ops && vma->vm_ops->name) { 6662 name = (char *) vma->vm_ops->name(vma); 6663 if (name) 6664 goto cpy_name; 6665 } 6666 6667 name = (char *)arch_vma_name(vma); 6668 if (name) 6669 goto cpy_name; 6670 6671 if (vma->vm_start <= vma->vm_mm->start_brk && 6672 vma->vm_end >= vma->vm_mm->brk) { 6673 name = "[heap]"; 6674 goto cpy_name; 6675 } 6676 if (vma->vm_start <= vma->vm_mm->start_stack && 6677 vma->vm_end >= vma->vm_mm->start_stack) { 6678 name = "[stack]"; 6679 goto cpy_name; 6680 } 6681 6682 name = "//anon"; 6683 goto cpy_name; 6684 } 6685 6686 cpy_name: 6687 strlcpy(tmp, name, sizeof(tmp)); 6688 name = tmp; 6689 got_name: 6690 /* 6691 * Since our buffer works in 8 byte units we need to align our string 6692 * size to a multiple of 8. However, we must guarantee the tail end is 6693 * zero'd out to avoid leaking random bits to userspace. 6694 */ 6695 size = strlen(name)+1; 6696 while (!IS_ALIGNED(size, sizeof(u64))) 6697 name[size++] = '\0'; 6698 6699 mmap_event->file_name = name; 6700 mmap_event->file_size = size; 6701 mmap_event->maj = maj; 6702 mmap_event->min = min; 6703 mmap_event->ino = ino; 6704 mmap_event->ino_generation = gen; 6705 mmap_event->prot = prot; 6706 mmap_event->flags = flags; 6707 6708 if (!(vma->vm_flags & VM_EXEC)) 6709 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 6710 6711 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 6712 6713 perf_iterate_sb(perf_event_mmap_output, 6714 mmap_event, 6715 NULL); 6716 6717 kfree(buf); 6718 } 6719 6720 /* 6721 * Check whether inode and address range match filter criteria. 6722 */ 6723 static bool perf_addr_filter_match(struct perf_addr_filter *filter, 6724 struct file *file, unsigned long offset, 6725 unsigned long size) 6726 { 6727 if (filter->inode != file_inode(file)) 6728 return false; 6729 6730 if (filter->offset > offset + size) 6731 return false; 6732 6733 if (filter->offset + filter->size < offset) 6734 return false; 6735 6736 return true; 6737 } 6738 6739 static void __perf_addr_filters_adjust(struct perf_event *event, void *data) 6740 { 6741 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 6742 struct vm_area_struct *vma = data; 6743 unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags; 6744 struct file *file = vma->vm_file; 6745 struct perf_addr_filter *filter; 6746 unsigned int restart = 0, count = 0; 6747 6748 if (!has_addr_filter(event)) 6749 return; 6750 6751 if (!file) 6752 return; 6753 6754 raw_spin_lock_irqsave(&ifh->lock, flags); 6755 list_for_each_entry(filter, &ifh->list, entry) { 6756 if (perf_addr_filter_match(filter, file, off, 6757 vma->vm_end - vma->vm_start)) { 6758 event->addr_filters_offs[count] = vma->vm_start; 6759 restart++; 6760 } 6761 6762 count++; 6763 } 6764 6765 if (restart) 6766 event->addr_filters_gen++; 6767 raw_spin_unlock_irqrestore(&ifh->lock, flags); 6768 6769 if (restart) 6770 perf_event_stop(event, 1); 6771 } 6772 6773 /* 6774 * Adjust all task's events' filters to the new vma 6775 */ 6776 static void perf_addr_filters_adjust(struct vm_area_struct *vma) 6777 { 6778 struct perf_event_context *ctx; 6779 int ctxn; 6780 6781 /* 6782 * Data tracing isn't supported yet and as such there is no need 6783 * to keep track of anything that isn't related to executable code: 6784 */ 6785 if (!(vma->vm_flags & VM_EXEC)) 6786 return; 6787 6788 rcu_read_lock(); 6789 for_each_task_context_nr(ctxn) { 6790 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 6791 if (!ctx) 6792 continue; 6793 6794 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true); 6795 } 6796 rcu_read_unlock(); 6797 } 6798 6799 void perf_event_mmap(struct vm_area_struct *vma) 6800 { 6801 struct perf_mmap_event mmap_event; 6802 6803 if (!atomic_read(&nr_mmap_events)) 6804 return; 6805 6806 mmap_event = (struct perf_mmap_event){ 6807 .vma = vma, 6808 /* .file_name */ 6809 /* .file_size */ 6810 .event_id = { 6811 .header = { 6812 .type = PERF_RECORD_MMAP, 6813 .misc = PERF_RECORD_MISC_USER, 6814 /* .size */ 6815 }, 6816 /* .pid */ 6817 /* .tid */ 6818 .start = vma->vm_start, 6819 .len = vma->vm_end - vma->vm_start, 6820 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 6821 }, 6822 /* .maj (attr_mmap2 only) */ 6823 /* .min (attr_mmap2 only) */ 6824 /* .ino (attr_mmap2 only) */ 6825 /* .ino_generation (attr_mmap2 only) */ 6826 /* .prot (attr_mmap2 only) */ 6827 /* .flags (attr_mmap2 only) */ 6828 }; 6829 6830 perf_addr_filters_adjust(vma); 6831 perf_event_mmap_event(&mmap_event); 6832 } 6833 6834 void perf_event_aux_event(struct perf_event *event, unsigned long head, 6835 unsigned long size, u64 flags) 6836 { 6837 struct perf_output_handle handle; 6838 struct perf_sample_data sample; 6839 struct perf_aux_event { 6840 struct perf_event_header header; 6841 u64 offset; 6842 u64 size; 6843 u64 flags; 6844 } rec = { 6845 .header = { 6846 .type = PERF_RECORD_AUX, 6847 .misc = 0, 6848 .size = sizeof(rec), 6849 }, 6850 .offset = head, 6851 .size = size, 6852 .flags = flags, 6853 }; 6854 int ret; 6855 6856 perf_event_header__init_id(&rec.header, &sample, event); 6857 ret = perf_output_begin(&handle, event, rec.header.size); 6858 6859 if (ret) 6860 return; 6861 6862 perf_output_put(&handle, rec); 6863 perf_event__output_id_sample(event, &handle, &sample); 6864 6865 perf_output_end(&handle); 6866 } 6867 6868 /* 6869 * Lost/dropped samples logging 6870 */ 6871 void perf_log_lost_samples(struct perf_event *event, u64 lost) 6872 { 6873 struct perf_output_handle handle; 6874 struct perf_sample_data sample; 6875 int ret; 6876 6877 struct { 6878 struct perf_event_header header; 6879 u64 lost; 6880 } lost_samples_event = { 6881 .header = { 6882 .type = PERF_RECORD_LOST_SAMPLES, 6883 .misc = 0, 6884 .size = sizeof(lost_samples_event), 6885 }, 6886 .lost = lost, 6887 }; 6888 6889 perf_event_header__init_id(&lost_samples_event.header, &sample, event); 6890 6891 ret = perf_output_begin(&handle, event, 6892 lost_samples_event.header.size); 6893 if (ret) 6894 return; 6895 6896 perf_output_put(&handle, lost_samples_event); 6897 perf_event__output_id_sample(event, &handle, &sample); 6898 perf_output_end(&handle); 6899 } 6900 6901 /* 6902 * context_switch tracking 6903 */ 6904 6905 struct perf_switch_event { 6906 struct task_struct *task; 6907 struct task_struct *next_prev; 6908 6909 struct { 6910 struct perf_event_header header; 6911 u32 next_prev_pid; 6912 u32 next_prev_tid; 6913 } event_id; 6914 }; 6915 6916 static int perf_event_switch_match(struct perf_event *event) 6917 { 6918 return event->attr.context_switch; 6919 } 6920 6921 static void perf_event_switch_output(struct perf_event *event, void *data) 6922 { 6923 struct perf_switch_event *se = data; 6924 struct perf_output_handle handle; 6925 struct perf_sample_data sample; 6926 int ret; 6927 6928 if (!perf_event_switch_match(event)) 6929 return; 6930 6931 /* Only CPU-wide events are allowed to see next/prev pid/tid */ 6932 if (event->ctx->task) { 6933 se->event_id.header.type = PERF_RECORD_SWITCH; 6934 se->event_id.header.size = sizeof(se->event_id.header); 6935 } else { 6936 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE; 6937 se->event_id.header.size = sizeof(se->event_id); 6938 se->event_id.next_prev_pid = 6939 perf_event_pid(event, se->next_prev); 6940 se->event_id.next_prev_tid = 6941 perf_event_tid(event, se->next_prev); 6942 } 6943 6944 perf_event_header__init_id(&se->event_id.header, &sample, event); 6945 6946 ret = perf_output_begin(&handle, event, se->event_id.header.size); 6947 if (ret) 6948 return; 6949 6950 if (event->ctx->task) 6951 perf_output_put(&handle, se->event_id.header); 6952 else 6953 perf_output_put(&handle, se->event_id); 6954 6955 perf_event__output_id_sample(event, &handle, &sample); 6956 6957 perf_output_end(&handle); 6958 } 6959 6960 static void perf_event_switch(struct task_struct *task, 6961 struct task_struct *next_prev, bool sched_in) 6962 { 6963 struct perf_switch_event switch_event; 6964 6965 /* N.B. caller checks nr_switch_events != 0 */ 6966 6967 switch_event = (struct perf_switch_event){ 6968 .task = task, 6969 .next_prev = next_prev, 6970 .event_id = { 6971 .header = { 6972 /* .type */ 6973 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT, 6974 /* .size */ 6975 }, 6976 /* .next_prev_pid */ 6977 /* .next_prev_tid */ 6978 }, 6979 }; 6980 6981 perf_iterate_sb(perf_event_switch_output, 6982 &switch_event, 6983 NULL); 6984 } 6985 6986 /* 6987 * IRQ throttle logging 6988 */ 6989 6990 static void perf_log_throttle(struct perf_event *event, int enable) 6991 { 6992 struct perf_output_handle handle; 6993 struct perf_sample_data sample; 6994 int ret; 6995 6996 struct { 6997 struct perf_event_header header; 6998 u64 time; 6999 u64 id; 7000 u64 stream_id; 7001 } throttle_event = { 7002 .header = { 7003 .type = PERF_RECORD_THROTTLE, 7004 .misc = 0, 7005 .size = sizeof(throttle_event), 7006 }, 7007 .time = perf_event_clock(event), 7008 .id = primary_event_id(event), 7009 .stream_id = event->id, 7010 }; 7011 7012 if (enable) 7013 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 7014 7015 perf_event_header__init_id(&throttle_event.header, &sample, event); 7016 7017 ret = perf_output_begin(&handle, event, 7018 throttle_event.header.size); 7019 if (ret) 7020 return; 7021 7022 perf_output_put(&handle, throttle_event); 7023 perf_event__output_id_sample(event, &handle, &sample); 7024 perf_output_end(&handle); 7025 } 7026 7027 static void perf_log_itrace_start(struct perf_event *event) 7028 { 7029 struct perf_output_handle handle; 7030 struct perf_sample_data sample; 7031 struct perf_aux_event { 7032 struct perf_event_header header; 7033 u32 pid; 7034 u32 tid; 7035 } rec; 7036 int ret; 7037 7038 if (event->parent) 7039 event = event->parent; 7040 7041 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || 7042 event->hw.itrace_started) 7043 return; 7044 7045 rec.header.type = PERF_RECORD_ITRACE_START; 7046 rec.header.misc = 0; 7047 rec.header.size = sizeof(rec); 7048 rec.pid = perf_event_pid(event, current); 7049 rec.tid = perf_event_tid(event, current); 7050 7051 perf_event_header__init_id(&rec.header, &sample, event); 7052 ret = perf_output_begin(&handle, event, rec.header.size); 7053 7054 if (ret) 7055 return; 7056 7057 perf_output_put(&handle, rec); 7058 perf_event__output_id_sample(event, &handle, &sample); 7059 7060 perf_output_end(&handle); 7061 } 7062 7063 static int 7064 __perf_event_account_interrupt(struct perf_event *event, int throttle) 7065 { 7066 struct hw_perf_event *hwc = &event->hw; 7067 int ret = 0; 7068 u64 seq; 7069 7070 seq = __this_cpu_read(perf_throttled_seq); 7071 if (seq != hwc->interrupts_seq) { 7072 hwc->interrupts_seq = seq; 7073 hwc->interrupts = 1; 7074 } else { 7075 hwc->interrupts++; 7076 if (unlikely(throttle 7077 && hwc->interrupts >= max_samples_per_tick)) { 7078 __this_cpu_inc(perf_throttled_count); 7079 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 7080 hwc->interrupts = MAX_INTERRUPTS; 7081 perf_log_throttle(event, 0); 7082 ret = 1; 7083 } 7084 } 7085 7086 if (event->attr.freq) { 7087 u64 now = perf_clock(); 7088 s64 delta = now - hwc->freq_time_stamp; 7089 7090 hwc->freq_time_stamp = now; 7091 7092 if (delta > 0 && delta < 2*TICK_NSEC) 7093 perf_adjust_period(event, delta, hwc->last_period, true); 7094 } 7095 7096 return ret; 7097 } 7098 7099 int perf_event_account_interrupt(struct perf_event *event) 7100 { 7101 return __perf_event_account_interrupt(event, 1); 7102 } 7103 7104 /* 7105 * Generic event overflow handling, sampling. 7106 */ 7107 7108 static int __perf_event_overflow(struct perf_event *event, 7109 int throttle, struct perf_sample_data *data, 7110 struct pt_regs *regs) 7111 { 7112 int events = atomic_read(&event->event_limit); 7113 int ret = 0; 7114 7115 /* 7116 * Non-sampling counters might still use the PMI to fold short 7117 * hardware counters, ignore those. 7118 */ 7119 if (unlikely(!is_sampling_event(event))) 7120 return 0; 7121 7122 ret = __perf_event_account_interrupt(event, throttle); 7123 7124 /* 7125 * XXX event_limit might not quite work as expected on inherited 7126 * events 7127 */ 7128 7129 event->pending_kill = POLL_IN; 7130 if (events && atomic_dec_and_test(&event->event_limit)) { 7131 ret = 1; 7132 event->pending_kill = POLL_HUP; 7133 7134 perf_event_disable_inatomic(event); 7135 } 7136 7137 READ_ONCE(event->overflow_handler)(event, data, regs); 7138 7139 if (*perf_event_fasync(event) && event->pending_kill) { 7140 event->pending_wakeup = 1; 7141 irq_work_queue(&event->pending); 7142 } 7143 7144 return ret; 7145 } 7146 7147 int perf_event_overflow(struct perf_event *event, 7148 struct perf_sample_data *data, 7149 struct pt_regs *regs) 7150 { 7151 return __perf_event_overflow(event, 1, data, regs); 7152 } 7153 7154 /* 7155 * Generic software event infrastructure 7156 */ 7157 7158 struct swevent_htable { 7159 struct swevent_hlist *swevent_hlist; 7160 struct mutex hlist_mutex; 7161 int hlist_refcount; 7162 7163 /* Recursion avoidance in each contexts */ 7164 int recursion[PERF_NR_CONTEXTS]; 7165 }; 7166 7167 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 7168 7169 /* 7170 * We directly increment event->count and keep a second value in 7171 * event->hw.period_left to count intervals. This period event 7172 * is kept in the range [-sample_period, 0] so that we can use the 7173 * sign as trigger. 7174 */ 7175 7176 u64 perf_swevent_set_period(struct perf_event *event) 7177 { 7178 struct hw_perf_event *hwc = &event->hw; 7179 u64 period = hwc->last_period; 7180 u64 nr, offset; 7181 s64 old, val; 7182 7183 hwc->last_period = hwc->sample_period; 7184 7185 again: 7186 old = val = local64_read(&hwc->period_left); 7187 if (val < 0) 7188 return 0; 7189 7190 nr = div64_u64(period + val, period); 7191 offset = nr * period; 7192 val -= offset; 7193 if (local64_cmpxchg(&hwc->period_left, old, val) != old) 7194 goto again; 7195 7196 return nr; 7197 } 7198 7199 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 7200 struct perf_sample_data *data, 7201 struct pt_regs *regs) 7202 { 7203 struct hw_perf_event *hwc = &event->hw; 7204 int throttle = 0; 7205 7206 if (!overflow) 7207 overflow = perf_swevent_set_period(event); 7208 7209 if (hwc->interrupts == MAX_INTERRUPTS) 7210 return; 7211 7212 for (; overflow; overflow--) { 7213 if (__perf_event_overflow(event, throttle, 7214 data, regs)) { 7215 /* 7216 * We inhibit the overflow from happening when 7217 * hwc->interrupts == MAX_INTERRUPTS. 7218 */ 7219 break; 7220 } 7221 throttle = 1; 7222 } 7223 } 7224 7225 static void perf_swevent_event(struct perf_event *event, u64 nr, 7226 struct perf_sample_data *data, 7227 struct pt_regs *regs) 7228 { 7229 struct hw_perf_event *hwc = &event->hw; 7230 7231 local64_add(nr, &event->count); 7232 7233 if (!regs) 7234 return; 7235 7236 if (!is_sampling_event(event)) 7237 return; 7238 7239 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 7240 data->period = nr; 7241 return perf_swevent_overflow(event, 1, data, regs); 7242 } else 7243 data->period = event->hw.last_period; 7244 7245 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 7246 return perf_swevent_overflow(event, 1, data, regs); 7247 7248 if (local64_add_negative(nr, &hwc->period_left)) 7249 return; 7250 7251 perf_swevent_overflow(event, 0, data, regs); 7252 } 7253 7254 static int perf_exclude_event(struct perf_event *event, 7255 struct pt_regs *regs) 7256 { 7257 if (event->hw.state & PERF_HES_STOPPED) 7258 return 1; 7259 7260 if (regs) { 7261 if (event->attr.exclude_user && user_mode(regs)) 7262 return 1; 7263 7264 if (event->attr.exclude_kernel && !user_mode(regs)) 7265 return 1; 7266 } 7267 7268 return 0; 7269 } 7270 7271 static int perf_swevent_match(struct perf_event *event, 7272 enum perf_type_id type, 7273 u32 event_id, 7274 struct perf_sample_data *data, 7275 struct pt_regs *regs) 7276 { 7277 if (event->attr.type != type) 7278 return 0; 7279 7280 if (event->attr.config != event_id) 7281 return 0; 7282 7283 if (perf_exclude_event(event, regs)) 7284 return 0; 7285 7286 return 1; 7287 } 7288 7289 static inline u64 swevent_hash(u64 type, u32 event_id) 7290 { 7291 u64 val = event_id | (type << 32); 7292 7293 return hash_64(val, SWEVENT_HLIST_BITS); 7294 } 7295 7296 static inline struct hlist_head * 7297 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 7298 { 7299 u64 hash = swevent_hash(type, event_id); 7300 7301 return &hlist->heads[hash]; 7302 } 7303 7304 /* For the read side: events when they trigger */ 7305 static inline struct hlist_head * 7306 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 7307 { 7308 struct swevent_hlist *hlist; 7309 7310 hlist = rcu_dereference(swhash->swevent_hlist); 7311 if (!hlist) 7312 return NULL; 7313 7314 return __find_swevent_head(hlist, type, event_id); 7315 } 7316 7317 /* For the event head insertion and removal in the hlist */ 7318 static inline struct hlist_head * 7319 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 7320 { 7321 struct swevent_hlist *hlist; 7322 u32 event_id = event->attr.config; 7323 u64 type = event->attr.type; 7324 7325 /* 7326 * Event scheduling is always serialized against hlist allocation 7327 * and release. Which makes the protected version suitable here. 7328 * The context lock guarantees that. 7329 */ 7330 hlist = rcu_dereference_protected(swhash->swevent_hlist, 7331 lockdep_is_held(&event->ctx->lock)); 7332 if (!hlist) 7333 return NULL; 7334 7335 return __find_swevent_head(hlist, type, event_id); 7336 } 7337 7338 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 7339 u64 nr, 7340 struct perf_sample_data *data, 7341 struct pt_regs *regs) 7342 { 7343 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 7344 struct perf_event *event; 7345 struct hlist_head *head; 7346 7347 rcu_read_lock(); 7348 head = find_swevent_head_rcu(swhash, type, event_id); 7349 if (!head) 7350 goto end; 7351 7352 hlist_for_each_entry_rcu(event, head, hlist_entry) { 7353 if (perf_swevent_match(event, type, event_id, data, regs)) 7354 perf_swevent_event(event, nr, data, regs); 7355 } 7356 end: 7357 rcu_read_unlock(); 7358 } 7359 7360 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); 7361 7362 int perf_swevent_get_recursion_context(void) 7363 { 7364 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 7365 7366 return get_recursion_context(swhash->recursion); 7367 } 7368 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 7369 7370 void perf_swevent_put_recursion_context(int rctx) 7371 { 7372 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 7373 7374 put_recursion_context(swhash->recursion, rctx); 7375 } 7376 7377 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 7378 { 7379 struct perf_sample_data data; 7380 7381 if (WARN_ON_ONCE(!regs)) 7382 return; 7383 7384 perf_sample_data_init(&data, addr, 0); 7385 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 7386 } 7387 7388 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 7389 { 7390 int rctx; 7391 7392 preempt_disable_notrace(); 7393 rctx = perf_swevent_get_recursion_context(); 7394 if (unlikely(rctx < 0)) 7395 goto fail; 7396 7397 ___perf_sw_event(event_id, nr, regs, addr); 7398 7399 perf_swevent_put_recursion_context(rctx); 7400 fail: 7401 preempt_enable_notrace(); 7402 } 7403 7404 static void perf_swevent_read(struct perf_event *event) 7405 { 7406 } 7407 7408 static int perf_swevent_add(struct perf_event *event, int flags) 7409 { 7410 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 7411 struct hw_perf_event *hwc = &event->hw; 7412 struct hlist_head *head; 7413 7414 if (is_sampling_event(event)) { 7415 hwc->last_period = hwc->sample_period; 7416 perf_swevent_set_period(event); 7417 } 7418 7419 hwc->state = !(flags & PERF_EF_START); 7420 7421 head = find_swevent_head(swhash, event); 7422 if (WARN_ON_ONCE(!head)) 7423 return -EINVAL; 7424 7425 hlist_add_head_rcu(&event->hlist_entry, head); 7426 perf_event_update_userpage(event); 7427 7428 return 0; 7429 } 7430 7431 static void perf_swevent_del(struct perf_event *event, int flags) 7432 { 7433 hlist_del_rcu(&event->hlist_entry); 7434 } 7435 7436 static void perf_swevent_start(struct perf_event *event, int flags) 7437 { 7438 event->hw.state = 0; 7439 } 7440 7441 static void perf_swevent_stop(struct perf_event *event, int flags) 7442 { 7443 event->hw.state = PERF_HES_STOPPED; 7444 } 7445 7446 /* Deref the hlist from the update side */ 7447 static inline struct swevent_hlist * 7448 swevent_hlist_deref(struct swevent_htable *swhash) 7449 { 7450 return rcu_dereference_protected(swhash->swevent_hlist, 7451 lockdep_is_held(&swhash->hlist_mutex)); 7452 } 7453 7454 static void swevent_hlist_release(struct swevent_htable *swhash) 7455 { 7456 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 7457 7458 if (!hlist) 7459 return; 7460 7461 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 7462 kfree_rcu(hlist, rcu_head); 7463 } 7464 7465 static void swevent_hlist_put_cpu(int cpu) 7466 { 7467 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 7468 7469 mutex_lock(&swhash->hlist_mutex); 7470 7471 if (!--swhash->hlist_refcount) 7472 swevent_hlist_release(swhash); 7473 7474 mutex_unlock(&swhash->hlist_mutex); 7475 } 7476 7477 static void swevent_hlist_put(void) 7478 { 7479 int cpu; 7480 7481 for_each_possible_cpu(cpu) 7482 swevent_hlist_put_cpu(cpu); 7483 } 7484 7485 static int swevent_hlist_get_cpu(int cpu) 7486 { 7487 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 7488 int err = 0; 7489 7490 mutex_lock(&swhash->hlist_mutex); 7491 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) { 7492 struct swevent_hlist *hlist; 7493 7494 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 7495 if (!hlist) { 7496 err = -ENOMEM; 7497 goto exit; 7498 } 7499 rcu_assign_pointer(swhash->swevent_hlist, hlist); 7500 } 7501 swhash->hlist_refcount++; 7502 exit: 7503 mutex_unlock(&swhash->hlist_mutex); 7504 7505 return err; 7506 } 7507 7508 static int swevent_hlist_get(void) 7509 { 7510 int err, cpu, failed_cpu; 7511 7512 get_online_cpus(); 7513 for_each_possible_cpu(cpu) { 7514 err = swevent_hlist_get_cpu(cpu); 7515 if (err) { 7516 failed_cpu = cpu; 7517 goto fail; 7518 } 7519 } 7520 put_online_cpus(); 7521 7522 return 0; 7523 fail: 7524 for_each_possible_cpu(cpu) { 7525 if (cpu == failed_cpu) 7526 break; 7527 swevent_hlist_put_cpu(cpu); 7528 } 7529 7530 put_online_cpus(); 7531 return err; 7532 } 7533 7534 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 7535 7536 static void sw_perf_event_destroy(struct perf_event *event) 7537 { 7538 u64 event_id = event->attr.config; 7539 7540 WARN_ON(event->parent); 7541 7542 static_key_slow_dec(&perf_swevent_enabled[event_id]); 7543 swevent_hlist_put(); 7544 } 7545 7546 static int perf_swevent_init(struct perf_event *event) 7547 { 7548 u64 event_id = event->attr.config; 7549 7550 if (event->attr.type != PERF_TYPE_SOFTWARE) 7551 return -ENOENT; 7552 7553 /* 7554 * no branch sampling for software events 7555 */ 7556 if (has_branch_stack(event)) 7557 return -EOPNOTSUPP; 7558 7559 switch (event_id) { 7560 case PERF_COUNT_SW_CPU_CLOCK: 7561 case PERF_COUNT_SW_TASK_CLOCK: 7562 return -ENOENT; 7563 7564 default: 7565 break; 7566 } 7567 7568 if (event_id >= PERF_COUNT_SW_MAX) 7569 return -ENOENT; 7570 7571 if (!event->parent) { 7572 int err; 7573 7574 err = swevent_hlist_get(); 7575 if (err) 7576 return err; 7577 7578 static_key_slow_inc(&perf_swevent_enabled[event_id]); 7579 event->destroy = sw_perf_event_destroy; 7580 } 7581 7582 return 0; 7583 } 7584 7585 static struct pmu perf_swevent = { 7586 .task_ctx_nr = perf_sw_context, 7587 7588 .capabilities = PERF_PMU_CAP_NO_NMI, 7589 7590 .event_init = perf_swevent_init, 7591 .add = perf_swevent_add, 7592 .del = perf_swevent_del, 7593 .start = perf_swevent_start, 7594 .stop = perf_swevent_stop, 7595 .read = perf_swevent_read, 7596 }; 7597 7598 #ifdef CONFIG_EVENT_TRACING 7599 7600 static int perf_tp_filter_match(struct perf_event *event, 7601 struct perf_sample_data *data) 7602 { 7603 void *record = data->raw->frag.data; 7604 7605 /* only top level events have filters set */ 7606 if (event->parent) 7607 event = event->parent; 7608 7609 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 7610 return 1; 7611 return 0; 7612 } 7613 7614 static int perf_tp_event_match(struct perf_event *event, 7615 struct perf_sample_data *data, 7616 struct pt_regs *regs) 7617 { 7618 if (event->hw.state & PERF_HES_STOPPED) 7619 return 0; 7620 /* 7621 * All tracepoints are from kernel-space. 7622 */ 7623 if (event->attr.exclude_kernel) 7624 return 0; 7625 7626 if (!perf_tp_filter_match(event, data)) 7627 return 0; 7628 7629 return 1; 7630 } 7631 7632 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx, 7633 struct trace_event_call *call, u64 count, 7634 struct pt_regs *regs, struct hlist_head *head, 7635 struct task_struct *task) 7636 { 7637 struct bpf_prog *prog = call->prog; 7638 7639 if (prog) { 7640 *(struct pt_regs **)raw_data = regs; 7641 if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) { 7642 perf_swevent_put_recursion_context(rctx); 7643 return; 7644 } 7645 } 7646 perf_tp_event(call->event.type, count, raw_data, size, regs, head, 7647 rctx, task); 7648 } 7649 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit); 7650 7651 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size, 7652 struct pt_regs *regs, struct hlist_head *head, int rctx, 7653 struct task_struct *task) 7654 { 7655 struct perf_sample_data data; 7656 struct perf_event *event; 7657 7658 struct perf_raw_record raw = { 7659 .frag = { 7660 .size = entry_size, 7661 .data = record, 7662 }, 7663 }; 7664 7665 perf_sample_data_init(&data, 0, 0); 7666 data.raw = &raw; 7667 7668 perf_trace_buf_update(record, event_type); 7669 7670 hlist_for_each_entry_rcu(event, head, hlist_entry) { 7671 if (perf_tp_event_match(event, &data, regs)) 7672 perf_swevent_event(event, count, &data, regs); 7673 } 7674 7675 /* 7676 * If we got specified a target task, also iterate its context and 7677 * deliver this event there too. 7678 */ 7679 if (task && task != current) { 7680 struct perf_event_context *ctx; 7681 struct trace_entry *entry = record; 7682 7683 rcu_read_lock(); 7684 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]); 7685 if (!ctx) 7686 goto unlock; 7687 7688 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 7689 if (event->attr.type != PERF_TYPE_TRACEPOINT) 7690 continue; 7691 if (event->attr.config != entry->type) 7692 continue; 7693 if (perf_tp_event_match(event, &data, regs)) 7694 perf_swevent_event(event, count, &data, regs); 7695 } 7696 unlock: 7697 rcu_read_unlock(); 7698 } 7699 7700 perf_swevent_put_recursion_context(rctx); 7701 } 7702 EXPORT_SYMBOL_GPL(perf_tp_event); 7703 7704 static void tp_perf_event_destroy(struct perf_event *event) 7705 { 7706 perf_trace_destroy(event); 7707 } 7708 7709 static int perf_tp_event_init(struct perf_event *event) 7710 { 7711 int err; 7712 7713 if (event->attr.type != PERF_TYPE_TRACEPOINT) 7714 return -ENOENT; 7715 7716 /* 7717 * no branch sampling for tracepoint events 7718 */ 7719 if (has_branch_stack(event)) 7720 return -EOPNOTSUPP; 7721 7722 err = perf_trace_init(event); 7723 if (err) 7724 return err; 7725 7726 event->destroy = tp_perf_event_destroy; 7727 7728 return 0; 7729 } 7730 7731 static struct pmu perf_tracepoint = { 7732 .task_ctx_nr = perf_sw_context, 7733 7734 .event_init = perf_tp_event_init, 7735 .add = perf_trace_add, 7736 .del = perf_trace_del, 7737 .start = perf_swevent_start, 7738 .stop = perf_swevent_stop, 7739 .read = perf_swevent_read, 7740 }; 7741 7742 static inline void perf_tp_register(void) 7743 { 7744 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 7745 } 7746 7747 static void perf_event_free_filter(struct perf_event *event) 7748 { 7749 ftrace_profile_free_filter(event); 7750 } 7751 7752 #ifdef CONFIG_BPF_SYSCALL 7753 static void bpf_overflow_handler(struct perf_event *event, 7754 struct perf_sample_data *data, 7755 struct pt_regs *regs) 7756 { 7757 struct bpf_perf_event_data_kern ctx = { 7758 .data = data, 7759 .regs = regs, 7760 }; 7761 int ret = 0; 7762 7763 preempt_disable(); 7764 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) 7765 goto out; 7766 rcu_read_lock(); 7767 ret = BPF_PROG_RUN(event->prog, &ctx); 7768 rcu_read_unlock(); 7769 out: 7770 __this_cpu_dec(bpf_prog_active); 7771 preempt_enable(); 7772 if (!ret) 7773 return; 7774 7775 event->orig_overflow_handler(event, data, regs); 7776 } 7777 7778 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd) 7779 { 7780 struct bpf_prog *prog; 7781 7782 if (event->overflow_handler_context) 7783 /* hw breakpoint or kernel counter */ 7784 return -EINVAL; 7785 7786 if (event->prog) 7787 return -EEXIST; 7788 7789 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT); 7790 if (IS_ERR(prog)) 7791 return PTR_ERR(prog); 7792 7793 event->prog = prog; 7794 event->orig_overflow_handler = READ_ONCE(event->overflow_handler); 7795 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler); 7796 return 0; 7797 } 7798 7799 static void perf_event_free_bpf_handler(struct perf_event *event) 7800 { 7801 struct bpf_prog *prog = event->prog; 7802 7803 if (!prog) 7804 return; 7805 7806 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler); 7807 event->prog = NULL; 7808 bpf_prog_put(prog); 7809 } 7810 #else 7811 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd) 7812 { 7813 return -EOPNOTSUPP; 7814 } 7815 static void perf_event_free_bpf_handler(struct perf_event *event) 7816 { 7817 } 7818 #endif 7819 7820 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 7821 { 7822 bool is_kprobe, is_tracepoint; 7823 struct bpf_prog *prog; 7824 7825 if (event->attr.type == PERF_TYPE_HARDWARE || 7826 event->attr.type == PERF_TYPE_SOFTWARE) 7827 return perf_event_set_bpf_handler(event, prog_fd); 7828 7829 if (event->attr.type != PERF_TYPE_TRACEPOINT) 7830 return -EINVAL; 7831 7832 if (event->tp_event->prog) 7833 return -EEXIST; 7834 7835 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE; 7836 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT; 7837 if (!is_kprobe && !is_tracepoint) 7838 /* bpf programs can only be attached to u/kprobe or tracepoint */ 7839 return -EINVAL; 7840 7841 prog = bpf_prog_get(prog_fd); 7842 if (IS_ERR(prog)) 7843 return PTR_ERR(prog); 7844 7845 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) || 7846 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT)) { 7847 /* valid fd, but invalid bpf program type */ 7848 bpf_prog_put(prog); 7849 return -EINVAL; 7850 } 7851 7852 if (is_tracepoint) { 7853 int off = trace_event_get_offsets(event->tp_event); 7854 7855 if (prog->aux->max_ctx_offset > off) { 7856 bpf_prog_put(prog); 7857 return -EACCES; 7858 } 7859 } 7860 event->tp_event->prog = prog; 7861 7862 return 0; 7863 } 7864 7865 static void perf_event_free_bpf_prog(struct perf_event *event) 7866 { 7867 struct bpf_prog *prog; 7868 7869 perf_event_free_bpf_handler(event); 7870 7871 if (!event->tp_event) 7872 return; 7873 7874 prog = event->tp_event->prog; 7875 if (prog) { 7876 event->tp_event->prog = NULL; 7877 bpf_prog_put(prog); 7878 } 7879 } 7880 7881 #else 7882 7883 static inline void perf_tp_register(void) 7884 { 7885 } 7886 7887 static void perf_event_free_filter(struct perf_event *event) 7888 { 7889 } 7890 7891 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 7892 { 7893 return -ENOENT; 7894 } 7895 7896 static void perf_event_free_bpf_prog(struct perf_event *event) 7897 { 7898 } 7899 #endif /* CONFIG_EVENT_TRACING */ 7900 7901 #ifdef CONFIG_HAVE_HW_BREAKPOINT 7902 void perf_bp_event(struct perf_event *bp, void *data) 7903 { 7904 struct perf_sample_data sample; 7905 struct pt_regs *regs = data; 7906 7907 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 7908 7909 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 7910 perf_swevent_event(bp, 1, &sample, regs); 7911 } 7912 #endif 7913 7914 /* 7915 * Allocate a new address filter 7916 */ 7917 static struct perf_addr_filter * 7918 perf_addr_filter_new(struct perf_event *event, struct list_head *filters) 7919 { 7920 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu); 7921 struct perf_addr_filter *filter; 7922 7923 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node); 7924 if (!filter) 7925 return NULL; 7926 7927 INIT_LIST_HEAD(&filter->entry); 7928 list_add_tail(&filter->entry, filters); 7929 7930 return filter; 7931 } 7932 7933 static void free_filters_list(struct list_head *filters) 7934 { 7935 struct perf_addr_filter *filter, *iter; 7936 7937 list_for_each_entry_safe(filter, iter, filters, entry) { 7938 if (filter->inode) 7939 iput(filter->inode); 7940 list_del(&filter->entry); 7941 kfree(filter); 7942 } 7943 } 7944 7945 /* 7946 * Free existing address filters and optionally install new ones 7947 */ 7948 static void perf_addr_filters_splice(struct perf_event *event, 7949 struct list_head *head) 7950 { 7951 unsigned long flags; 7952 LIST_HEAD(list); 7953 7954 if (!has_addr_filter(event)) 7955 return; 7956 7957 /* don't bother with children, they don't have their own filters */ 7958 if (event->parent) 7959 return; 7960 7961 raw_spin_lock_irqsave(&event->addr_filters.lock, flags); 7962 7963 list_splice_init(&event->addr_filters.list, &list); 7964 if (head) 7965 list_splice(head, &event->addr_filters.list); 7966 7967 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags); 7968 7969 free_filters_list(&list); 7970 } 7971 7972 /* 7973 * Scan through mm's vmas and see if one of them matches the 7974 * @filter; if so, adjust filter's address range. 7975 * Called with mm::mmap_sem down for reading. 7976 */ 7977 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter, 7978 struct mm_struct *mm) 7979 { 7980 struct vm_area_struct *vma; 7981 7982 for (vma = mm->mmap; vma; vma = vma->vm_next) { 7983 struct file *file = vma->vm_file; 7984 unsigned long off = vma->vm_pgoff << PAGE_SHIFT; 7985 unsigned long vma_size = vma->vm_end - vma->vm_start; 7986 7987 if (!file) 7988 continue; 7989 7990 if (!perf_addr_filter_match(filter, file, off, vma_size)) 7991 continue; 7992 7993 return vma->vm_start; 7994 } 7995 7996 return 0; 7997 } 7998 7999 /* 8000 * Update event's address range filters based on the 8001 * task's existing mappings, if any. 8002 */ 8003 static void perf_event_addr_filters_apply(struct perf_event *event) 8004 { 8005 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 8006 struct task_struct *task = READ_ONCE(event->ctx->task); 8007 struct perf_addr_filter *filter; 8008 struct mm_struct *mm = NULL; 8009 unsigned int count = 0; 8010 unsigned long flags; 8011 8012 /* 8013 * We may observe TASK_TOMBSTONE, which means that the event tear-down 8014 * will stop on the parent's child_mutex that our caller is also holding 8015 */ 8016 if (task == TASK_TOMBSTONE) 8017 return; 8018 8019 mm = get_task_mm(event->ctx->task); 8020 if (!mm) 8021 goto restart; 8022 8023 down_read(&mm->mmap_sem); 8024 8025 raw_spin_lock_irqsave(&ifh->lock, flags); 8026 list_for_each_entry(filter, &ifh->list, entry) { 8027 event->addr_filters_offs[count] = 0; 8028 8029 /* 8030 * Adjust base offset if the filter is associated to a binary 8031 * that needs to be mapped: 8032 */ 8033 if (filter->inode) 8034 event->addr_filters_offs[count] = 8035 perf_addr_filter_apply(filter, mm); 8036 8037 count++; 8038 } 8039 8040 event->addr_filters_gen++; 8041 raw_spin_unlock_irqrestore(&ifh->lock, flags); 8042 8043 up_read(&mm->mmap_sem); 8044 8045 mmput(mm); 8046 8047 restart: 8048 perf_event_stop(event, 1); 8049 } 8050 8051 /* 8052 * Address range filtering: limiting the data to certain 8053 * instruction address ranges. Filters are ioctl()ed to us from 8054 * userspace as ascii strings. 8055 * 8056 * Filter string format: 8057 * 8058 * ACTION RANGE_SPEC 8059 * where ACTION is one of the 8060 * * "filter": limit the trace to this region 8061 * * "start": start tracing from this address 8062 * * "stop": stop tracing at this address/region; 8063 * RANGE_SPEC is 8064 * * for kernel addresses: <start address>[/<size>] 8065 * * for object files: <start address>[/<size>]@</path/to/object/file> 8066 * 8067 * if <size> is not specified, the range is treated as a single address. 8068 */ 8069 enum { 8070 IF_ACT_NONE = -1, 8071 IF_ACT_FILTER, 8072 IF_ACT_START, 8073 IF_ACT_STOP, 8074 IF_SRC_FILE, 8075 IF_SRC_KERNEL, 8076 IF_SRC_FILEADDR, 8077 IF_SRC_KERNELADDR, 8078 }; 8079 8080 enum { 8081 IF_STATE_ACTION = 0, 8082 IF_STATE_SOURCE, 8083 IF_STATE_END, 8084 }; 8085 8086 static const match_table_t if_tokens = { 8087 { IF_ACT_FILTER, "filter" }, 8088 { IF_ACT_START, "start" }, 8089 { IF_ACT_STOP, "stop" }, 8090 { IF_SRC_FILE, "%u/%u@%s" }, 8091 { IF_SRC_KERNEL, "%u/%u" }, 8092 { IF_SRC_FILEADDR, "%u@%s" }, 8093 { IF_SRC_KERNELADDR, "%u" }, 8094 { IF_ACT_NONE, NULL }, 8095 }; 8096 8097 /* 8098 * Address filter string parser 8099 */ 8100 static int 8101 perf_event_parse_addr_filter(struct perf_event *event, char *fstr, 8102 struct list_head *filters) 8103 { 8104 struct perf_addr_filter *filter = NULL; 8105 char *start, *orig, *filename = NULL; 8106 struct path path; 8107 substring_t args[MAX_OPT_ARGS]; 8108 int state = IF_STATE_ACTION, token; 8109 unsigned int kernel = 0; 8110 int ret = -EINVAL; 8111 8112 orig = fstr = kstrdup(fstr, GFP_KERNEL); 8113 if (!fstr) 8114 return -ENOMEM; 8115 8116 while ((start = strsep(&fstr, " ,\n")) != NULL) { 8117 ret = -EINVAL; 8118 8119 if (!*start) 8120 continue; 8121 8122 /* filter definition begins */ 8123 if (state == IF_STATE_ACTION) { 8124 filter = perf_addr_filter_new(event, filters); 8125 if (!filter) 8126 goto fail; 8127 } 8128 8129 token = match_token(start, if_tokens, args); 8130 switch (token) { 8131 case IF_ACT_FILTER: 8132 case IF_ACT_START: 8133 filter->filter = 1; 8134 8135 case IF_ACT_STOP: 8136 if (state != IF_STATE_ACTION) 8137 goto fail; 8138 8139 state = IF_STATE_SOURCE; 8140 break; 8141 8142 case IF_SRC_KERNELADDR: 8143 case IF_SRC_KERNEL: 8144 kernel = 1; 8145 8146 case IF_SRC_FILEADDR: 8147 case IF_SRC_FILE: 8148 if (state != IF_STATE_SOURCE) 8149 goto fail; 8150 8151 if (token == IF_SRC_FILE || token == IF_SRC_KERNEL) 8152 filter->range = 1; 8153 8154 *args[0].to = 0; 8155 ret = kstrtoul(args[0].from, 0, &filter->offset); 8156 if (ret) 8157 goto fail; 8158 8159 if (filter->range) { 8160 *args[1].to = 0; 8161 ret = kstrtoul(args[1].from, 0, &filter->size); 8162 if (ret) 8163 goto fail; 8164 } 8165 8166 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) { 8167 int fpos = filter->range ? 2 : 1; 8168 8169 filename = match_strdup(&args[fpos]); 8170 if (!filename) { 8171 ret = -ENOMEM; 8172 goto fail; 8173 } 8174 } 8175 8176 state = IF_STATE_END; 8177 break; 8178 8179 default: 8180 goto fail; 8181 } 8182 8183 /* 8184 * Filter definition is fully parsed, validate and install it. 8185 * Make sure that it doesn't contradict itself or the event's 8186 * attribute. 8187 */ 8188 if (state == IF_STATE_END) { 8189 if (kernel && event->attr.exclude_kernel) 8190 goto fail; 8191 8192 if (!kernel) { 8193 if (!filename) 8194 goto fail; 8195 8196 /* look up the path and grab its inode */ 8197 ret = kern_path(filename, LOOKUP_FOLLOW, &path); 8198 if (ret) 8199 goto fail_free_name; 8200 8201 filter->inode = igrab(d_inode(path.dentry)); 8202 path_put(&path); 8203 kfree(filename); 8204 filename = NULL; 8205 8206 ret = -EINVAL; 8207 if (!filter->inode || 8208 !S_ISREG(filter->inode->i_mode)) 8209 /* free_filters_list() will iput() */ 8210 goto fail; 8211 } 8212 8213 /* ready to consume more filters */ 8214 state = IF_STATE_ACTION; 8215 filter = NULL; 8216 } 8217 } 8218 8219 if (state != IF_STATE_ACTION) 8220 goto fail; 8221 8222 kfree(orig); 8223 8224 return 0; 8225 8226 fail_free_name: 8227 kfree(filename); 8228 fail: 8229 free_filters_list(filters); 8230 kfree(orig); 8231 8232 return ret; 8233 } 8234 8235 static int 8236 perf_event_set_addr_filter(struct perf_event *event, char *filter_str) 8237 { 8238 LIST_HEAD(filters); 8239 int ret; 8240 8241 /* 8242 * Since this is called in perf_ioctl() path, we're already holding 8243 * ctx::mutex. 8244 */ 8245 lockdep_assert_held(&event->ctx->mutex); 8246 8247 if (WARN_ON_ONCE(event->parent)) 8248 return -EINVAL; 8249 8250 /* 8251 * For now, we only support filtering in per-task events; doing so 8252 * for CPU-wide events requires additional context switching trickery, 8253 * since same object code will be mapped at different virtual 8254 * addresses in different processes. 8255 */ 8256 if (!event->ctx->task) 8257 return -EOPNOTSUPP; 8258 8259 ret = perf_event_parse_addr_filter(event, filter_str, &filters); 8260 if (ret) 8261 return ret; 8262 8263 ret = event->pmu->addr_filters_validate(&filters); 8264 if (ret) { 8265 free_filters_list(&filters); 8266 return ret; 8267 } 8268 8269 /* remove existing filters, if any */ 8270 perf_addr_filters_splice(event, &filters); 8271 8272 /* install new filters */ 8273 perf_event_for_each_child(event, perf_event_addr_filters_apply); 8274 8275 return ret; 8276 } 8277 8278 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 8279 { 8280 char *filter_str; 8281 int ret = -EINVAL; 8282 8283 if ((event->attr.type != PERF_TYPE_TRACEPOINT || 8284 !IS_ENABLED(CONFIG_EVENT_TRACING)) && 8285 !has_addr_filter(event)) 8286 return -EINVAL; 8287 8288 filter_str = strndup_user(arg, PAGE_SIZE); 8289 if (IS_ERR(filter_str)) 8290 return PTR_ERR(filter_str); 8291 8292 if (IS_ENABLED(CONFIG_EVENT_TRACING) && 8293 event->attr.type == PERF_TYPE_TRACEPOINT) 8294 ret = ftrace_profile_set_filter(event, event->attr.config, 8295 filter_str); 8296 else if (has_addr_filter(event)) 8297 ret = perf_event_set_addr_filter(event, filter_str); 8298 8299 kfree(filter_str); 8300 return ret; 8301 } 8302 8303 /* 8304 * hrtimer based swevent callback 8305 */ 8306 8307 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 8308 { 8309 enum hrtimer_restart ret = HRTIMER_RESTART; 8310 struct perf_sample_data data; 8311 struct pt_regs *regs; 8312 struct perf_event *event; 8313 u64 period; 8314 8315 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 8316 8317 if (event->state != PERF_EVENT_STATE_ACTIVE) 8318 return HRTIMER_NORESTART; 8319 8320 event->pmu->read(event); 8321 8322 perf_sample_data_init(&data, 0, event->hw.last_period); 8323 regs = get_irq_regs(); 8324 8325 if (regs && !perf_exclude_event(event, regs)) { 8326 if (!(event->attr.exclude_idle && is_idle_task(current))) 8327 if (__perf_event_overflow(event, 1, &data, regs)) 8328 ret = HRTIMER_NORESTART; 8329 } 8330 8331 period = max_t(u64, 10000, event->hw.sample_period); 8332 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 8333 8334 return ret; 8335 } 8336 8337 static void perf_swevent_start_hrtimer(struct perf_event *event) 8338 { 8339 struct hw_perf_event *hwc = &event->hw; 8340 s64 period; 8341 8342 if (!is_sampling_event(event)) 8343 return; 8344 8345 period = local64_read(&hwc->period_left); 8346 if (period) { 8347 if (period < 0) 8348 period = 10000; 8349 8350 local64_set(&hwc->period_left, 0); 8351 } else { 8352 period = max_t(u64, 10000, hwc->sample_period); 8353 } 8354 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), 8355 HRTIMER_MODE_REL_PINNED); 8356 } 8357 8358 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 8359 { 8360 struct hw_perf_event *hwc = &event->hw; 8361 8362 if (is_sampling_event(event)) { 8363 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 8364 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 8365 8366 hrtimer_cancel(&hwc->hrtimer); 8367 } 8368 } 8369 8370 static void perf_swevent_init_hrtimer(struct perf_event *event) 8371 { 8372 struct hw_perf_event *hwc = &event->hw; 8373 8374 if (!is_sampling_event(event)) 8375 return; 8376 8377 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 8378 hwc->hrtimer.function = perf_swevent_hrtimer; 8379 8380 /* 8381 * Since hrtimers have a fixed rate, we can do a static freq->period 8382 * mapping and avoid the whole period adjust feedback stuff. 8383 */ 8384 if (event->attr.freq) { 8385 long freq = event->attr.sample_freq; 8386 8387 event->attr.sample_period = NSEC_PER_SEC / freq; 8388 hwc->sample_period = event->attr.sample_period; 8389 local64_set(&hwc->period_left, hwc->sample_period); 8390 hwc->last_period = hwc->sample_period; 8391 event->attr.freq = 0; 8392 } 8393 } 8394 8395 /* 8396 * Software event: cpu wall time clock 8397 */ 8398 8399 static void cpu_clock_event_update(struct perf_event *event) 8400 { 8401 s64 prev; 8402 u64 now; 8403 8404 now = local_clock(); 8405 prev = local64_xchg(&event->hw.prev_count, now); 8406 local64_add(now - prev, &event->count); 8407 } 8408 8409 static void cpu_clock_event_start(struct perf_event *event, int flags) 8410 { 8411 local64_set(&event->hw.prev_count, local_clock()); 8412 perf_swevent_start_hrtimer(event); 8413 } 8414 8415 static void cpu_clock_event_stop(struct perf_event *event, int flags) 8416 { 8417 perf_swevent_cancel_hrtimer(event); 8418 cpu_clock_event_update(event); 8419 } 8420 8421 static int cpu_clock_event_add(struct perf_event *event, int flags) 8422 { 8423 if (flags & PERF_EF_START) 8424 cpu_clock_event_start(event, flags); 8425 perf_event_update_userpage(event); 8426 8427 return 0; 8428 } 8429 8430 static void cpu_clock_event_del(struct perf_event *event, int flags) 8431 { 8432 cpu_clock_event_stop(event, flags); 8433 } 8434 8435 static void cpu_clock_event_read(struct perf_event *event) 8436 { 8437 cpu_clock_event_update(event); 8438 } 8439 8440 static int cpu_clock_event_init(struct perf_event *event) 8441 { 8442 if (event->attr.type != PERF_TYPE_SOFTWARE) 8443 return -ENOENT; 8444 8445 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 8446 return -ENOENT; 8447 8448 /* 8449 * no branch sampling for software events 8450 */ 8451 if (has_branch_stack(event)) 8452 return -EOPNOTSUPP; 8453 8454 perf_swevent_init_hrtimer(event); 8455 8456 return 0; 8457 } 8458 8459 static struct pmu perf_cpu_clock = { 8460 .task_ctx_nr = perf_sw_context, 8461 8462 .capabilities = PERF_PMU_CAP_NO_NMI, 8463 8464 .event_init = cpu_clock_event_init, 8465 .add = cpu_clock_event_add, 8466 .del = cpu_clock_event_del, 8467 .start = cpu_clock_event_start, 8468 .stop = cpu_clock_event_stop, 8469 .read = cpu_clock_event_read, 8470 }; 8471 8472 /* 8473 * Software event: task time clock 8474 */ 8475 8476 static void task_clock_event_update(struct perf_event *event, u64 now) 8477 { 8478 u64 prev; 8479 s64 delta; 8480 8481 prev = local64_xchg(&event->hw.prev_count, now); 8482 delta = now - prev; 8483 local64_add(delta, &event->count); 8484 } 8485 8486 static void task_clock_event_start(struct perf_event *event, int flags) 8487 { 8488 local64_set(&event->hw.prev_count, event->ctx->time); 8489 perf_swevent_start_hrtimer(event); 8490 } 8491 8492 static void task_clock_event_stop(struct perf_event *event, int flags) 8493 { 8494 perf_swevent_cancel_hrtimer(event); 8495 task_clock_event_update(event, event->ctx->time); 8496 } 8497 8498 static int task_clock_event_add(struct perf_event *event, int flags) 8499 { 8500 if (flags & PERF_EF_START) 8501 task_clock_event_start(event, flags); 8502 perf_event_update_userpage(event); 8503 8504 return 0; 8505 } 8506 8507 static void task_clock_event_del(struct perf_event *event, int flags) 8508 { 8509 task_clock_event_stop(event, PERF_EF_UPDATE); 8510 } 8511 8512 static void task_clock_event_read(struct perf_event *event) 8513 { 8514 u64 now = perf_clock(); 8515 u64 delta = now - event->ctx->timestamp; 8516 u64 time = event->ctx->time + delta; 8517 8518 task_clock_event_update(event, time); 8519 } 8520 8521 static int task_clock_event_init(struct perf_event *event) 8522 { 8523 if (event->attr.type != PERF_TYPE_SOFTWARE) 8524 return -ENOENT; 8525 8526 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 8527 return -ENOENT; 8528 8529 /* 8530 * no branch sampling for software events 8531 */ 8532 if (has_branch_stack(event)) 8533 return -EOPNOTSUPP; 8534 8535 perf_swevent_init_hrtimer(event); 8536 8537 return 0; 8538 } 8539 8540 static struct pmu perf_task_clock = { 8541 .task_ctx_nr = perf_sw_context, 8542 8543 .capabilities = PERF_PMU_CAP_NO_NMI, 8544 8545 .event_init = task_clock_event_init, 8546 .add = task_clock_event_add, 8547 .del = task_clock_event_del, 8548 .start = task_clock_event_start, 8549 .stop = task_clock_event_stop, 8550 .read = task_clock_event_read, 8551 }; 8552 8553 static void perf_pmu_nop_void(struct pmu *pmu) 8554 { 8555 } 8556 8557 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags) 8558 { 8559 } 8560 8561 static int perf_pmu_nop_int(struct pmu *pmu) 8562 { 8563 return 0; 8564 } 8565 8566 static DEFINE_PER_CPU(unsigned int, nop_txn_flags); 8567 8568 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags) 8569 { 8570 __this_cpu_write(nop_txn_flags, flags); 8571 8572 if (flags & ~PERF_PMU_TXN_ADD) 8573 return; 8574 8575 perf_pmu_disable(pmu); 8576 } 8577 8578 static int perf_pmu_commit_txn(struct pmu *pmu) 8579 { 8580 unsigned int flags = __this_cpu_read(nop_txn_flags); 8581 8582 __this_cpu_write(nop_txn_flags, 0); 8583 8584 if (flags & ~PERF_PMU_TXN_ADD) 8585 return 0; 8586 8587 perf_pmu_enable(pmu); 8588 return 0; 8589 } 8590 8591 static void perf_pmu_cancel_txn(struct pmu *pmu) 8592 { 8593 unsigned int flags = __this_cpu_read(nop_txn_flags); 8594 8595 __this_cpu_write(nop_txn_flags, 0); 8596 8597 if (flags & ~PERF_PMU_TXN_ADD) 8598 return; 8599 8600 perf_pmu_enable(pmu); 8601 } 8602 8603 static int perf_event_idx_default(struct perf_event *event) 8604 { 8605 return 0; 8606 } 8607 8608 /* 8609 * Ensures all contexts with the same task_ctx_nr have the same 8610 * pmu_cpu_context too. 8611 */ 8612 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn) 8613 { 8614 struct pmu *pmu; 8615 8616 if (ctxn < 0) 8617 return NULL; 8618 8619 list_for_each_entry(pmu, &pmus, entry) { 8620 if (pmu->task_ctx_nr == ctxn) 8621 return pmu->pmu_cpu_context; 8622 } 8623 8624 return NULL; 8625 } 8626 8627 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu) 8628 { 8629 int cpu; 8630 8631 for_each_possible_cpu(cpu) { 8632 struct perf_cpu_context *cpuctx; 8633 8634 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 8635 8636 if (cpuctx->unique_pmu == old_pmu) 8637 cpuctx->unique_pmu = pmu; 8638 } 8639 } 8640 8641 static void free_pmu_context(struct pmu *pmu) 8642 { 8643 struct pmu *i; 8644 8645 mutex_lock(&pmus_lock); 8646 /* 8647 * Like a real lame refcount. 8648 */ 8649 list_for_each_entry(i, &pmus, entry) { 8650 if (i->pmu_cpu_context == pmu->pmu_cpu_context) { 8651 update_pmu_context(i, pmu); 8652 goto out; 8653 } 8654 } 8655 8656 free_percpu(pmu->pmu_cpu_context); 8657 out: 8658 mutex_unlock(&pmus_lock); 8659 } 8660 8661 /* 8662 * Let userspace know that this PMU supports address range filtering: 8663 */ 8664 static ssize_t nr_addr_filters_show(struct device *dev, 8665 struct device_attribute *attr, 8666 char *page) 8667 { 8668 struct pmu *pmu = dev_get_drvdata(dev); 8669 8670 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters); 8671 } 8672 DEVICE_ATTR_RO(nr_addr_filters); 8673 8674 static struct idr pmu_idr; 8675 8676 static ssize_t 8677 type_show(struct device *dev, struct device_attribute *attr, char *page) 8678 { 8679 struct pmu *pmu = dev_get_drvdata(dev); 8680 8681 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); 8682 } 8683 static DEVICE_ATTR_RO(type); 8684 8685 static ssize_t 8686 perf_event_mux_interval_ms_show(struct device *dev, 8687 struct device_attribute *attr, 8688 char *page) 8689 { 8690 struct pmu *pmu = dev_get_drvdata(dev); 8691 8692 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms); 8693 } 8694 8695 static DEFINE_MUTEX(mux_interval_mutex); 8696 8697 static ssize_t 8698 perf_event_mux_interval_ms_store(struct device *dev, 8699 struct device_attribute *attr, 8700 const char *buf, size_t count) 8701 { 8702 struct pmu *pmu = dev_get_drvdata(dev); 8703 int timer, cpu, ret; 8704 8705 ret = kstrtoint(buf, 0, &timer); 8706 if (ret) 8707 return ret; 8708 8709 if (timer < 1) 8710 return -EINVAL; 8711 8712 /* same value, noting to do */ 8713 if (timer == pmu->hrtimer_interval_ms) 8714 return count; 8715 8716 mutex_lock(&mux_interval_mutex); 8717 pmu->hrtimer_interval_ms = timer; 8718 8719 /* update all cpuctx for this PMU */ 8720 get_online_cpus(); 8721 for_each_online_cpu(cpu) { 8722 struct perf_cpu_context *cpuctx; 8723 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 8724 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 8725 8726 cpu_function_call(cpu, 8727 (remote_function_f)perf_mux_hrtimer_restart, cpuctx); 8728 } 8729 put_online_cpus(); 8730 mutex_unlock(&mux_interval_mutex); 8731 8732 return count; 8733 } 8734 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 8735 8736 static struct attribute *pmu_dev_attrs[] = { 8737 &dev_attr_type.attr, 8738 &dev_attr_perf_event_mux_interval_ms.attr, 8739 NULL, 8740 }; 8741 ATTRIBUTE_GROUPS(pmu_dev); 8742 8743 static int pmu_bus_running; 8744 static struct bus_type pmu_bus = { 8745 .name = "event_source", 8746 .dev_groups = pmu_dev_groups, 8747 }; 8748 8749 static void pmu_dev_release(struct device *dev) 8750 { 8751 kfree(dev); 8752 } 8753 8754 static int pmu_dev_alloc(struct pmu *pmu) 8755 { 8756 int ret = -ENOMEM; 8757 8758 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 8759 if (!pmu->dev) 8760 goto out; 8761 8762 pmu->dev->groups = pmu->attr_groups; 8763 device_initialize(pmu->dev); 8764 ret = dev_set_name(pmu->dev, "%s", pmu->name); 8765 if (ret) 8766 goto free_dev; 8767 8768 dev_set_drvdata(pmu->dev, pmu); 8769 pmu->dev->bus = &pmu_bus; 8770 pmu->dev->release = pmu_dev_release; 8771 ret = device_add(pmu->dev); 8772 if (ret) 8773 goto free_dev; 8774 8775 /* For PMUs with address filters, throw in an extra attribute: */ 8776 if (pmu->nr_addr_filters) 8777 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters); 8778 8779 if (ret) 8780 goto del_dev; 8781 8782 out: 8783 return ret; 8784 8785 del_dev: 8786 device_del(pmu->dev); 8787 8788 free_dev: 8789 put_device(pmu->dev); 8790 goto out; 8791 } 8792 8793 static struct lock_class_key cpuctx_mutex; 8794 static struct lock_class_key cpuctx_lock; 8795 8796 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 8797 { 8798 int cpu, ret; 8799 8800 mutex_lock(&pmus_lock); 8801 ret = -ENOMEM; 8802 pmu->pmu_disable_count = alloc_percpu(int); 8803 if (!pmu->pmu_disable_count) 8804 goto unlock; 8805 8806 pmu->type = -1; 8807 if (!name) 8808 goto skip_type; 8809 pmu->name = name; 8810 8811 if (type < 0) { 8812 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL); 8813 if (type < 0) { 8814 ret = type; 8815 goto free_pdc; 8816 } 8817 } 8818 pmu->type = type; 8819 8820 if (pmu_bus_running) { 8821 ret = pmu_dev_alloc(pmu); 8822 if (ret) 8823 goto free_idr; 8824 } 8825 8826 skip_type: 8827 if (pmu->task_ctx_nr == perf_hw_context) { 8828 static int hw_context_taken = 0; 8829 8830 /* 8831 * Other than systems with heterogeneous CPUs, it never makes 8832 * sense for two PMUs to share perf_hw_context. PMUs which are 8833 * uncore must use perf_invalid_context. 8834 */ 8835 if (WARN_ON_ONCE(hw_context_taken && 8836 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS))) 8837 pmu->task_ctx_nr = perf_invalid_context; 8838 8839 hw_context_taken = 1; 8840 } 8841 8842 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); 8843 if (pmu->pmu_cpu_context) 8844 goto got_cpu_context; 8845 8846 ret = -ENOMEM; 8847 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); 8848 if (!pmu->pmu_cpu_context) 8849 goto free_dev; 8850 8851 for_each_possible_cpu(cpu) { 8852 struct perf_cpu_context *cpuctx; 8853 8854 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 8855 __perf_event_init_context(&cpuctx->ctx); 8856 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 8857 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 8858 cpuctx->ctx.pmu = pmu; 8859 8860 __perf_mux_hrtimer_init(cpuctx, cpu); 8861 8862 cpuctx->unique_pmu = pmu; 8863 } 8864 8865 got_cpu_context: 8866 if (!pmu->start_txn) { 8867 if (pmu->pmu_enable) { 8868 /* 8869 * If we have pmu_enable/pmu_disable calls, install 8870 * transaction stubs that use that to try and batch 8871 * hardware accesses. 8872 */ 8873 pmu->start_txn = perf_pmu_start_txn; 8874 pmu->commit_txn = perf_pmu_commit_txn; 8875 pmu->cancel_txn = perf_pmu_cancel_txn; 8876 } else { 8877 pmu->start_txn = perf_pmu_nop_txn; 8878 pmu->commit_txn = perf_pmu_nop_int; 8879 pmu->cancel_txn = perf_pmu_nop_void; 8880 } 8881 } 8882 8883 if (!pmu->pmu_enable) { 8884 pmu->pmu_enable = perf_pmu_nop_void; 8885 pmu->pmu_disable = perf_pmu_nop_void; 8886 } 8887 8888 if (!pmu->event_idx) 8889 pmu->event_idx = perf_event_idx_default; 8890 8891 list_add_rcu(&pmu->entry, &pmus); 8892 atomic_set(&pmu->exclusive_cnt, 0); 8893 ret = 0; 8894 unlock: 8895 mutex_unlock(&pmus_lock); 8896 8897 return ret; 8898 8899 free_dev: 8900 device_del(pmu->dev); 8901 put_device(pmu->dev); 8902 8903 free_idr: 8904 if (pmu->type >= PERF_TYPE_MAX) 8905 idr_remove(&pmu_idr, pmu->type); 8906 8907 free_pdc: 8908 free_percpu(pmu->pmu_disable_count); 8909 goto unlock; 8910 } 8911 EXPORT_SYMBOL_GPL(perf_pmu_register); 8912 8913 void perf_pmu_unregister(struct pmu *pmu) 8914 { 8915 int remove_device; 8916 8917 mutex_lock(&pmus_lock); 8918 remove_device = pmu_bus_running; 8919 list_del_rcu(&pmu->entry); 8920 mutex_unlock(&pmus_lock); 8921 8922 /* 8923 * We dereference the pmu list under both SRCU and regular RCU, so 8924 * synchronize against both of those. 8925 */ 8926 synchronize_srcu(&pmus_srcu); 8927 synchronize_rcu(); 8928 8929 free_percpu(pmu->pmu_disable_count); 8930 if (pmu->type >= PERF_TYPE_MAX) 8931 idr_remove(&pmu_idr, pmu->type); 8932 if (remove_device) { 8933 if (pmu->nr_addr_filters) 8934 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters); 8935 device_del(pmu->dev); 8936 put_device(pmu->dev); 8937 } 8938 free_pmu_context(pmu); 8939 } 8940 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 8941 8942 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) 8943 { 8944 struct perf_event_context *ctx = NULL; 8945 int ret; 8946 8947 if (!try_module_get(pmu->module)) 8948 return -ENODEV; 8949 8950 if (event->group_leader != event) { 8951 /* 8952 * This ctx->mutex can nest when we're called through 8953 * inheritance. See the perf_event_ctx_lock_nested() comment. 8954 */ 8955 ctx = perf_event_ctx_lock_nested(event->group_leader, 8956 SINGLE_DEPTH_NESTING); 8957 BUG_ON(!ctx); 8958 } 8959 8960 event->pmu = pmu; 8961 ret = pmu->event_init(event); 8962 8963 if (ctx) 8964 perf_event_ctx_unlock(event->group_leader, ctx); 8965 8966 if (ret) 8967 module_put(pmu->module); 8968 8969 return ret; 8970 } 8971 8972 static struct pmu *perf_init_event(struct perf_event *event) 8973 { 8974 struct pmu *pmu = NULL; 8975 int idx; 8976 int ret; 8977 8978 idx = srcu_read_lock(&pmus_srcu); 8979 8980 rcu_read_lock(); 8981 pmu = idr_find(&pmu_idr, event->attr.type); 8982 rcu_read_unlock(); 8983 if (pmu) { 8984 ret = perf_try_init_event(pmu, event); 8985 if (ret) 8986 pmu = ERR_PTR(ret); 8987 goto unlock; 8988 } 8989 8990 list_for_each_entry_rcu(pmu, &pmus, entry) { 8991 ret = perf_try_init_event(pmu, event); 8992 if (!ret) 8993 goto unlock; 8994 8995 if (ret != -ENOENT) { 8996 pmu = ERR_PTR(ret); 8997 goto unlock; 8998 } 8999 } 9000 pmu = ERR_PTR(-ENOENT); 9001 unlock: 9002 srcu_read_unlock(&pmus_srcu, idx); 9003 9004 return pmu; 9005 } 9006 9007 static void attach_sb_event(struct perf_event *event) 9008 { 9009 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 9010 9011 raw_spin_lock(&pel->lock); 9012 list_add_rcu(&event->sb_list, &pel->list); 9013 raw_spin_unlock(&pel->lock); 9014 } 9015 9016 /* 9017 * We keep a list of all !task (and therefore per-cpu) events 9018 * that need to receive side-band records. 9019 * 9020 * This avoids having to scan all the various PMU per-cpu contexts 9021 * looking for them. 9022 */ 9023 static void account_pmu_sb_event(struct perf_event *event) 9024 { 9025 if (is_sb_event(event)) 9026 attach_sb_event(event); 9027 } 9028 9029 static void account_event_cpu(struct perf_event *event, int cpu) 9030 { 9031 if (event->parent) 9032 return; 9033 9034 if (is_cgroup_event(event)) 9035 atomic_inc(&per_cpu(perf_cgroup_events, cpu)); 9036 } 9037 9038 /* Freq events need the tick to stay alive (see perf_event_task_tick). */ 9039 static void account_freq_event_nohz(void) 9040 { 9041 #ifdef CONFIG_NO_HZ_FULL 9042 /* Lock so we don't race with concurrent unaccount */ 9043 spin_lock(&nr_freq_lock); 9044 if (atomic_inc_return(&nr_freq_events) == 1) 9045 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS); 9046 spin_unlock(&nr_freq_lock); 9047 #endif 9048 } 9049 9050 static void account_freq_event(void) 9051 { 9052 if (tick_nohz_full_enabled()) 9053 account_freq_event_nohz(); 9054 else 9055 atomic_inc(&nr_freq_events); 9056 } 9057 9058 9059 static void account_event(struct perf_event *event) 9060 { 9061 bool inc = false; 9062 9063 if (event->parent) 9064 return; 9065 9066 if (event->attach_state & PERF_ATTACH_TASK) 9067 inc = true; 9068 if (event->attr.mmap || event->attr.mmap_data) 9069 atomic_inc(&nr_mmap_events); 9070 if (event->attr.comm) 9071 atomic_inc(&nr_comm_events); 9072 if (event->attr.task) 9073 atomic_inc(&nr_task_events); 9074 if (event->attr.freq) 9075 account_freq_event(); 9076 if (event->attr.context_switch) { 9077 atomic_inc(&nr_switch_events); 9078 inc = true; 9079 } 9080 if (has_branch_stack(event)) 9081 inc = true; 9082 if (is_cgroup_event(event)) 9083 inc = true; 9084 9085 if (inc) { 9086 if (atomic_inc_not_zero(&perf_sched_count)) 9087 goto enabled; 9088 9089 mutex_lock(&perf_sched_mutex); 9090 if (!atomic_read(&perf_sched_count)) { 9091 static_branch_enable(&perf_sched_events); 9092 /* 9093 * Guarantee that all CPUs observe they key change and 9094 * call the perf scheduling hooks before proceeding to 9095 * install events that need them. 9096 */ 9097 synchronize_sched(); 9098 } 9099 /* 9100 * Now that we have waited for the sync_sched(), allow further 9101 * increments to by-pass the mutex. 9102 */ 9103 atomic_inc(&perf_sched_count); 9104 mutex_unlock(&perf_sched_mutex); 9105 } 9106 enabled: 9107 9108 account_event_cpu(event, event->cpu); 9109 9110 account_pmu_sb_event(event); 9111 } 9112 9113 /* 9114 * Allocate and initialize a event structure 9115 */ 9116 static struct perf_event * 9117 perf_event_alloc(struct perf_event_attr *attr, int cpu, 9118 struct task_struct *task, 9119 struct perf_event *group_leader, 9120 struct perf_event *parent_event, 9121 perf_overflow_handler_t overflow_handler, 9122 void *context, int cgroup_fd) 9123 { 9124 struct pmu *pmu; 9125 struct perf_event *event; 9126 struct hw_perf_event *hwc; 9127 long err = -EINVAL; 9128 9129 if ((unsigned)cpu >= nr_cpu_ids) { 9130 if (!task || cpu != -1) 9131 return ERR_PTR(-EINVAL); 9132 } 9133 9134 event = kzalloc(sizeof(*event), GFP_KERNEL); 9135 if (!event) 9136 return ERR_PTR(-ENOMEM); 9137 9138 /* 9139 * Single events are their own group leaders, with an 9140 * empty sibling list: 9141 */ 9142 if (!group_leader) 9143 group_leader = event; 9144 9145 mutex_init(&event->child_mutex); 9146 INIT_LIST_HEAD(&event->child_list); 9147 9148 INIT_LIST_HEAD(&event->group_entry); 9149 INIT_LIST_HEAD(&event->event_entry); 9150 INIT_LIST_HEAD(&event->sibling_list); 9151 INIT_LIST_HEAD(&event->rb_entry); 9152 INIT_LIST_HEAD(&event->active_entry); 9153 INIT_LIST_HEAD(&event->addr_filters.list); 9154 INIT_HLIST_NODE(&event->hlist_entry); 9155 9156 9157 init_waitqueue_head(&event->waitq); 9158 init_irq_work(&event->pending, perf_pending_event); 9159 9160 mutex_init(&event->mmap_mutex); 9161 raw_spin_lock_init(&event->addr_filters.lock); 9162 9163 atomic_long_set(&event->refcount, 1); 9164 event->cpu = cpu; 9165 event->attr = *attr; 9166 event->group_leader = group_leader; 9167 event->pmu = NULL; 9168 event->oncpu = -1; 9169 9170 event->parent = parent_event; 9171 9172 event->ns = get_pid_ns(task_active_pid_ns(current)); 9173 event->id = atomic64_inc_return(&perf_event_id); 9174 9175 event->state = PERF_EVENT_STATE_INACTIVE; 9176 9177 if (task) { 9178 event->attach_state = PERF_ATTACH_TASK; 9179 /* 9180 * XXX pmu::event_init needs to know what task to account to 9181 * and we cannot use the ctx information because we need the 9182 * pmu before we get a ctx. 9183 */ 9184 event->hw.target = task; 9185 } 9186 9187 event->clock = &local_clock; 9188 if (parent_event) 9189 event->clock = parent_event->clock; 9190 9191 if (!overflow_handler && parent_event) { 9192 overflow_handler = parent_event->overflow_handler; 9193 context = parent_event->overflow_handler_context; 9194 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING) 9195 if (overflow_handler == bpf_overflow_handler) { 9196 struct bpf_prog *prog = bpf_prog_inc(parent_event->prog); 9197 9198 if (IS_ERR(prog)) { 9199 err = PTR_ERR(prog); 9200 goto err_ns; 9201 } 9202 event->prog = prog; 9203 event->orig_overflow_handler = 9204 parent_event->orig_overflow_handler; 9205 } 9206 #endif 9207 } 9208 9209 if (overflow_handler) { 9210 event->overflow_handler = overflow_handler; 9211 event->overflow_handler_context = context; 9212 } else if (is_write_backward(event)){ 9213 event->overflow_handler = perf_event_output_backward; 9214 event->overflow_handler_context = NULL; 9215 } else { 9216 event->overflow_handler = perf_event_output_forward; 9217 event->overflow_handler_context = NULL; 9218 } 9219 9220 perf_event__state_init(event); 9221 9222 pmu = NULL; 9223 9224 hwc = &event->hw; 9225 hwc->sample_period = attr->sample_period; 9226 if (attr->freq && attr->sample_freq) 9227 hwc->sample_period = 1; 9228 hwc->last_period = hwc->sample_period; 9229 9230 local64_set(&hwc->period_left, hwc->sample_period); 9231 9232 /* 9233 * we currently do not support PERF_FORMAT_GROUP on inherited events 9234 */ 9235 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP)) 9236 goto err_ns; 9237 9238 if (!has_branch_stack(event)) 9239 event->attr.branch_sample_type = 0; 9240 9241 if (cgroup_fd != -1) { 9242 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); 9243 if (err) 9244 goto err_ns; 9245 } 9246 9247 pmu = perf_init_event(event); 9248 if (!pmu) 9249 goto err_ns; 9250 else if (IS_ERR(pmu)) { 9251 err = PTR_ERR(pmu); 9252 goto err_ns; 9253 } 9254 9255 err = exclusive_event_init(event); 9256 if (err) 9257 goto err_pmu; 9258 9259 if (has_addr_filter(event)) { 9260 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters, 9261 sizeof(unsigned long), 9262 GFP_KERNEL); 9263 if (!event->addr_filters_offs) 9264 goto err_per_task; 9265 9266 /* force hw sync on the address filters */ 9267 event->addr_filters_gen = 1; 9268 } 9269 9270 if (!event->parent) { 9271 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 9272 err = get_callchain_buffers(attr->sample_max_stack); 9273 if (err) 9274 goto err_addr_filters; 9275 } 9276 } 9277 9278 /* symmetric to unaccount_event() in _free_event() */ 9279 account_event(event); 9280 9281 return event; 9282 9283 err_addr_filters: 9284 kfree(event->addr_filters_offs); 9285 9286 err_per_task: 9287 exclusive_event_destroy(event); 9288 9289 err_pmu: 9290 if (event->destroy) 9291 event->destroy(event); 9292 module_put(pmu->module); 9293 err_ns: 9294 if (is_cgroup_event(event)) 9295 perf_detach_cgroup(event); 9296 if (event->ns) 9297 put_pid_ns(event->ns); 9298 kfree(event); 9299 9300 return ERR_PTR(err); 9301 } 9302 9303 static int perf_copy_attr(struct perf_event_attr __user *uattr, 9304 struct perf_event_attr *attr) 9305 { 9306 u32 size; 9307 int ret; 9308 9309 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0)) 9310 return -EFAULT; 9311 9312 /* 9313 * zero the full structure, so that a short copy will be nice. 9314 */ 9315 memset(attr, 0, sizeof(*attr)); 9316 9317 ret = get_user(size, &uattr->size); 9318 if (ret) 9319 return ret; 9320 9321 if (size > PAGE_SIZE) /* silly large */ 9322 goto err_size; 9323 9324 if (!size) /* abi compat */ 9325 size = PERF_ATTR_SIZE_VER0; 9326 9327 if (size < PERF_ATTR_SIZE_VER0) 9328 goto err_size; 9329 9330 /* 9331 * If we're handed a bigger struct than we know of, 9332 * ensure all the unknown bits are 0 - i.e. new 9333 * user-space does not rely on any kernel feature 9334 * extensions we dont know about yet. 9335 */ 9336 if (size > sizeof(*attr)) { 9337 unsigned char __user *addr; 9338 unsigned char __user *end; 9339 unsigned char val; 9340 9341 addr = (void __user *)uattr + sizeof(*attr); 9342 end = (void __user *)uattr + size; 9343 9344 for (; addr < end; addr++) { 9345 ret = get_user(val, addr); 9346 if (ret) 9347 return ret; 9348 if (val) 9349 goto err_size; 9350 } 9351 size = sizeof(*attr); 9352 } 9353 9354 ret = copy_from_user(attr, uattr, size); 9355 if (ret) 9356 return -EFAULT; 9357 9358 if (attr->__reserved_1) 9359 return -EINVAL; 9360 9361 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 9362 return -EINVAL; 9363 9364 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 9365 return -EINVAL; 9366 9367 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 9368 u64 mask = attr->branch_sample_type; 9369 9370 /* only using defined bits */ 9371 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 9372 return -EINVAL; 9373 9374 /* at least one branch bit must be set */ 9375 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 9376 return -EINVAL; 9377 9378 /* propagate priv level, when not set for branch */ 9379 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 9380 9381 /* exclude_kernel checked on syscall entry */ 9382 if (!attr->exclude_kernel) 9383 mask |= PERF_SAMPLE_BRANCH_KERNEL; 9384 9385 if (!attr->exclude_user) 9386 mask |= PERF_SAMPLE_BRANCH_USER; 9387 9388 if (!attr->exclude_hv) 9389 mask |= PERF_SAMPLE_BRANCH_HV; 9390 /* 9391 * adjust user setting (for HW filter setup) 9392 */ 9393 attr->branch_sample_type = mask; 9394 } 9395 /* privileged levels capture (kernel, hv): check permissions */ 9396 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM) 9397 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 9398 return -EACCES; 9399 } 9400 9401 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 9402 ret = perf_reg_validate(attr->sample_regs_user); 9403 if (ret) 9404 return ret; 9405 } 9406 9407 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 9408 if (!arch_perf_have_user_stack_dump()) 9409 return -ENOSYS; 9410 9411 /* 9412 * We have __u32 type for the size, but so far 9413 * we can only use __u16 as maximum due to the 9414 * __u16 sample size limit. 9415 */ 9416 if (attr->sample_stack_user >= USHRT_MAX) 9417 ret = -EINVAL; 9418 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 9419 ret = -EINVAL; 9420 } 9421 9422 if (attr->sample_type & PERF_SAMPLE_REGS_INTR) 9423 ret = perf_reg_validate(attr->sample_regs_intr); 9424 out: 9425 return ret; 9426 9427 err_size: 9428 put_user(sizeof(*attr), &uattr->size); 9429 ret = -E2BIG; 9430 goto out; 9431 } 9432 9433 static int 9434 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 9435 { 9436 struct ring_buffer *rb = NULL; 9437 int ret = -EINVAL; 9438 9439 if (!output_event) 9440 goto set; 9441 9442 /* don't allow circular references */ 9443 if (event == output_event) 9444 goto out; 9445 9446 /* 9447 * Don't allow cross-cpu buffers 9448 */ 9449 if (output_event->cpu != event->cpu) 9450 goto out; 9451 9452 /* 9453 * If its not a per-cpu rb, it must be the same task. 9454 */ 9455 if (output_event->cpu == -1 && output_event->ctx != event->ctx) 9456 goto out; 9457 9458 /* 9459 * Mixing clocks in the same buffer is trouble you don't need. 9460 */ 9461 if (output_event->clock != event->clock) 9462 goto out; 9463 9464 /* 9465 * Either writing ring buffer from beginning or from end. 9466 * Mixing is not allowed. 9467 */ 9468 if (is_write_backward(output_event) != is_write_backward(event)) 9469 goto out; 9470 9471 /* 9472 * If both events generate aux data, they must be on the same PMU 9473 */ 9474 if (has_aux(event) && has_aux(output_event) && 9475 event->pmu != output_event->pmu) 9476 goto out; 9477 9478 set: 9479 mutex_lock(&event->mmap_mutex); 9480 /* Can't redirect output if we've got an active mmap() */ 9481 if (atomic_read(&event->mmap_count)) 9482 goto unlock; 9483 9484 if (output_event) { 9485 /* get the rb we want to redirect to */ 9486 rb = ring_buffer_get(output_event); 9487 if (!rb) 9488 goto unlock; 9489 } 9490 9491 ring_buffer_attach(event, rb); 9492 9493 ret = 0; 9494 unlock: 9495 mutex_unlock(&event->mmap_mutex); 9496 9497 out: 9498 return ret; 9499 } 9500 9501 static void mutex_lock_double(struct mutex *a, struct mutex *b) 9502 { 9503 if (b < a) 9504 swap(a, b); 9505 9506 mutex_lock(a); 9507 mutex_lock_nested(b, SINGLE_DEPTH_NESTING); 9508 } 9509 9510 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) 9511 { 9512 bool nmi_safe = false; 9513 9514 switch (clk_id) { 9515 case CLOCK_MONOTONIC: 9516 event->clock = &ktime_get_mono_fast_ns; 9517 nmi_safe = true; 9518 break; 9519 9520 case CLOCK_MONOTONIC_RAW: 9521 event->clock = &ktime_get_raw_fast_ns; 9522 nmi_safe = true; 9523 break; 9524 9525 case CLOCK_REALTIME: 9526 event->clock = &ktime_get_real_ns; 9527 break; 9528 9529 case CLOCK_BOOTTIME: 9530 event->clock = &ktime_get_boot_ns; 9531 break; 9532 9533 case CLOCK_TAI: 9534 event->clock = &ktime_get_tai_ns; 9535 break; 9536 9537 default: 9538 return -EINVAL; 9539 } 9540 9541 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) 9542 return -EINVAL; 9543 9544 return 0; 9545 } 9546 9547 /* 9548 * Variation on perf_event_ctx_lock_nested(), except we take two context 9549 * mutexes. 9550 */ 9551 static struct perf_event_context * 9552 __perf_event_ctx_lock_double(struct perf_event *group_leader, 9553 struct perf_event_context *ctx) 9554 { 9555 struct perf_event_context *gctx; 9556 9557 again: 9558 rcu_read_lock(); 9559 gctx = READ_ONCE(group_leader->ctx); 9560 if (!atomic_inc_not_zero(&gctx->refcount)) { 9561 rcu_read_unlock(); 9562 goto again; 9563 } 9564 rcu_read_unlock(); 9565 9566 mutex_lock_double(&gctx->mutex, &ctx->mutex); 9567 9568 if (group_leader->ctx != gctx) { 9569 mutex_unlock(&ctx->mutex); 9570 mutex_unlock(&gctx->mutex); 9571 put_ctx(gctx); 9572 goto again; 9573 } 9574 9575 return gctx; 9576 } 9577 9578 /** 9579 * sys_perf_event_open - open a performance event, associate it to a task/cpu 9580 * 9581 * @attr_uptr: event_id type attributes for monitoring/sampling 9582 * @pid: target pid 9583 * @cpu: target cpu 9584 * @group_fd: group leader event fd 9585 */ 9586 SYSCALL_DEFINE5(perf_event_open, 9587 struct perf_event_attr __user *, attr_uptr, 9588 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 9589 { 9590 struct perf_event *group_leader = NULL, *output_event = NULL; 9591 struct perf_event *event, *sibling; 9592 struct perf_event_attr attr; 9593 struct perf_event_context *ctx, *uninitialized_var(gctx); 9594 struct file *event_file = NULL; 9595 struct fd group = {NULL, 0}; 9596 struct task_struct *task = NULL; 9597 struct pmu *pmu; 9598 int event_fd; 9599 int move_group = 0; 9600 int err; 9601 int f_flags = O_RDWR; 9602 int cgroup_fd = -1; 9603 9604 /* for future expandability... */ 9605 if (flags & ~PERF_FLAG_ALL) 9606 return -EINVAL; 9607 9608 err = perf_copy_attr(attr_uptr, &attr); 9609 if (err) 9610 return err; 9611 9612 if (!attr.exclude_kernel) { 9613 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 9614 return -EACCES; 9615 } 9616 9617 if (attr.freq) { 9618 if (attr.sample_freq > sysctl_perf_event_sample_rate) 9619 return -EINVAL; 9620 } else { 9621 if (attr.sample_period & (1ULL << 63)) 9622 return -EINVAL; 9623 } 9624 9625 if (!attr.sample_max_stack) 9626 attr.sample_max_stack = sysctl_perf_event_max_stack; 9627 9628 /* 9629 * In cgroup mode, the pid argument is used to pass the fd 9630 * opened to the cgroup directory in cgroupfs. The cpu argument 9631 * designates the cpu on which to monitor threads from that 9632 * cgroup. 9633 */ 9634 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 9635 return -EINVAL; 9636 9637 if (flags & PERF_FLAG_FD_CLOEXEC) 9638 f_flags |= O_CLOEXEC; 9639 9640 event_fd = get_unused_fd_flags(f_flags); 9641 if (event_fd < 0) 9642 return event_fd; 9643 9644 if (group_fd != -1) { 9645 err = perf_fget_light(group_fd, &group); 9646 if (err) 9647 goto err_fd; 9648 group_leader = group.file->private_data; 9649 if (flags & PERF_FLAG_FD_OUTPUT) 9650 output_event = group_leader; 9651 if (flags & PERF_FLAG_FD_NO_GROUP) 9652 group_leader = NULL; 9653 } 9654 9655 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 9656 task = find_lively_task_by_vpid(pid); 9657 if (IS_ERR(task)) { 9658 err = PTR_ERR(task); 9659 goto err_group_fd; 9660 } 9661 } 9662 9663 if (task && group_leader && 9664 group_leader->attr.inherit != attr.inherit) { 9665 err = -EINVAL; 9666 goto err_task; 9667 } 9668 9669 get_online_cpus(); 9670 9671 if (task) { 9672 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex); 9673 if (err) 9674 goto err_cpus; 9675 9676 /* 9677 * Reuse ptrace permission checks for now. 9678 * 9679 * We must hold cred_guard_mutex across this and any potential 9680 * perf_install_in_context() call for this new event to 9681 * serialize against exec() altering our credentials (and the 9682 * perf_event_exit_task() that could imply). 9683 */ 9684 err = -EACCES; 9685 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) 9686 goto err_cred; 9687 } 9688 9689 if (flags & PERF_FLAG_PID_CGROUP) 9690 cgroup_fd = pid; 9691 9692 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 9693 NULL, NULL, cgroup_fd); 9694 if (IS_ERR(event)) { 9695 err = PTR_ERR(event); 9696 goto err_cred; 9697 } 9698 9699 if (is_sampling_event(event)) { 9700 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 9701 err = -EOPNOTSUPP; 9702 goto err_alloc; 9703 } 9704 } 9705 9706 /* 9707 * Special case software events and allow them to be part of 9708 * any hardware group. 9709 */ 9710 pmu = event->pmu; 9711 9712 if (attr.use_clockid) { 9713 err = perf_event_set_clock(event, attr.clockid); 9714 if (err) 9715 goto err_alloc; 9716 } 9717 9718 if (pmu->task_ctx_nr == perf_sw_context) 9719 event->event_caps |= PERF_EV_CAP_SOFTWARE; 9720 9721 if (group_leader && 9722 (is_software_event(event) != is_software_event(group_leader))) { 9723 if (is_software_event(event)) { 9724 /* 9725 * If event and group_leader are not both a software 9726 * event, and event is, then group leader is not. 9727 * 9728 * Allow the addition of software events to !software 9729 * groups, this is safe because software events never 9730 * fail to schedule. 9731 */ 9732 pmu = group_leader->pmu; 9733 } else if (is_software_event(group_leader) && 9734 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 9735 /* 9736 * In case the group is a pure software group, and we 9737 * try to add a hardware event, move the whole group to 9738 * the hardware context. 9739 */ 9740 move_group = 1; 9741 } 9742 } 9743 9744 /* 9745 * Get the target context (task or percpu): 9746 */ 9747 ctx = find_get_context(pmu, task, event); 9748 if (IS_ERR(ctx)) { 9749 err = PTR_ERR(ctx); 9750 goto err_alloc; 9751 } 9752 9753 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) { 9754 err = -EBUSY; 9755 goto err_context; 9756 } 9757 9758 /* 9759 * Look up the group leader (we will attach this event to it): 9760 */ 9761 if (group_leader) { 9762 err = -EINVAL; 9763 9764 /* 9765 * Do not allow a recursive hierarchy (this new sibling 9766 * becoming part of another group-sibling): 9767 */ 9768 if (group_leader->group_leader != group_leader) 9769 goto err_context; 9770 9771 /* All events in a group should have the same clock */ 9772 if (group_leader->clock != event->clock) 9773 goto err_context; 9774 9775 /* 9776 * Do not allow to attach to a group in a different 9777 * task or CPU context: 9778 */ 9779 if (move_group) { 9780 /* 9781 * Make sure we're both on the same task, or both 9782 * per-cpu events. 9783 */ 9784 if (group_leader->ctx->task != ctx->task) 9785 goto err_context; 9786 9787 /* 9788 * Make sure we're both events for the same CPU; 9789 * grouping events for different CPUs is broken; since 9790 * you can never concurrently schedule them anyhow. 9791 */ 9792 if (group_leader->cpu != event->cpu) 9793 goto err_context; 9794 } else { 9795 if (group_leader->ctx != ctx) 9796 goto err_context; 9797 } 9798 9799 /* 9800 * Only a group leader can be exclusive or pinned 9801 */ 9802 if (attr.exclusive || attr.pinned) 9803 goto err_context; 9804 } 9805 9806 if (output_event) { 9807 err = perf_event_set_output(event, output_event); 9808 if (err) 9809 goto err_context; 9810 } 9811 9812 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, 9813 f_flags); 9814 if (IS_ERR(event_file)) { 9815 err = PTR_ERR(event_file); 9816 event_file = NULL; 9817 goto err_context; 9818 } 9819 9820 if (move_group) { 9821 gctx = __perf_event_ctx_lock_double(group_leader, ctx); 9822 9823 if (gctx->task == TASK_TOMBSTONE) { 9824 err = -ESRCH; 9825 goto err_locked; 9826 } 9827 9828 /* 9829 * Check if we raced against another sys_perf_event_open() call 9830 * moving the software group underneath us. 9831 */ 9832 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 9833 /* 9834 * If someone moved the group out from under us, check 9835 * if this new event wound up on the same ctx, if so 9836 * its the regular !move_group case, otherwise fail. 9837 */ 9838 if (gctx != ctx) { 9839 err = -EINVAL; 9840 goto err_locked; 9841 } else { 9842 perf_event_ctx_unlock(group_leader, gctx); 9843 move_group = 0; 9844 } 9845 } 9846 } else { 9847 mutex_lock(&ctx->mutex); 9848 } 9849 9850 if (ctx->task == TASK_TOMBSTONE) { 9851 err = -ESRCH; 9852 goto err_locked; 9853 } 9854 9855 if (!perf_event_validate_size(event)) { 9856 err = -E2BIG; 9857 goto err_locked; 9858 } 9859 9860 /* 9861 * Must be under the same ctx::mutex as perf_install_in_context(), 9862 * because we need to serialize with concurrent event creation. 9863 */ 9864 if (!exclusive_event_installable(event, ctx)) { 9865 /* exclusive and group stuff are assumed mutually exclusive */ 9866 WARN_ON_ONCE(move_group); 9867 9868 err = -EBUSY; 9869 goto err_locked; 9870 } 9871 9872 WARN_ON_ONCE(ctx->parent_ctx); 9873 9874 /* 9875 * This is the point on no return; we cannot fail hereafter. This is 9876 * where we start modifying current state. 9877 */ 9878 9879 if (move_group) { 9880 /* 9881 * See perf_event_ctx_lock() for comments on the details 9882 * of swizzling perf_event::ctx. 9883 */ 9884 perf_remove_from_context(group_leader, 0); 9885 9886 list_for_each_entry(sibling, &group_leader->sibling_list, 9887 group_entry) { 9888 perf_remove_from_context(sibling, 0); 9889 put_ctx(gctx); 9890 } 9891 9892 /* 9893 * Wait for everybody to stop referencing the events through 9894 * the old lists, before installing it on new lists. 9895 */ 9896 synchronize_rcu(); 9897 9898 /* 9899 * Install the group siblings before the group leader. 9900 * 9901 * Because a group leader will try and install the entire group 9902 * (through the sibling list, which is still in-tact), we can 9903 * end up with siblings installed in the wrong context. 9904 * 9905 * By installing siblings first we NO-OP because they're not 9906 * reachable through the group lists. 9907 */ 9908 list_for_each_entry(sibling, &group_leader->sibling_list, 9909 group_entry) { 9910 perf_event__state_init(sibling); 9911 perf_install_in_context(ctx, sibling, sibling->cpu); 9912 get_ctx(ctx); 9913 } 9914 9915 /* 9916 * Removing from the context ends up with disabled 9917 * event. What we want here is event in the initial 9918 * startup state, ready to be add into new context. 9919 */ 9920 perf_event__state_init(group_leader); 9921 perf_install_in_context(ctx, group_leader, group_leader->cpu); 9922 get_ctx(ctx); 9923 9924 /* 9925 * Now that all events are installed in @ctx, nothing 9926 * references @gctx anymore, so drop the last reference we have 9927 * on it. 9928 */ 9929 put_ctx(gctx); 9930 } 9931 9932 /* 9933 * Precalculate sample_data sizes; do while holding ctx::mutex such 9934 * that we're serialized against further additions and before 9935 * perf_install_in_context() which is the point the event is active and 9936 * can use these values. 9937 */ 9938 perf_event__header_size(event); 9939 perf_event__id_header_size(event); 9940 9941 event->owner = current; 9942 9943 perf_install_in_context(ctx, event, event->cpu); 9944 perf_unpin_context(ctx); 9945 9946 if (move_group) 9947 perf_event_ctx_unlock(group_leader, gctx); 9948 mutex_unlock(&ctx->mutex); 9949 9950 if (task) { 9951 mutex_unlock(&task->signal->cred_guard_mutex); 9952 put_task_struct(task); 9953 } 9954 9955 put_online_cpus(); 9956 9957 mutex_lock(¤t->perf_event_mutex); 9958 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 9959 mutex_unlock(¤t->perf_event_mutex); 9960 9961 /* 9962 * Drop the reference on the group_event after placing the 9963 * new event on the sibling_list. This ensures destruction 9964 * of the group leader will find the pointer to itself in 9965 * perf_group_detach(). 9966 */ 9967 fdput(group); 9968 fd_install(event_fd, event_file); 9969 return event_fd; 9970 9971 err_locked: 9972 if (move_group) 9973 perf_event_ctx_unlock(group_leader, gctx); 9974 mutex_unlock(&ctx->mutex); 9975 /* err_file: */ 9976 fput(event_file); 9977 err_context: 9978 perf_unpin_context(ctx); 9979 put_ctx(ctx); 9980 err_alloc: 9981 /* 9982 * If event_file is set, the fput() above will have called ->release() 9983 * and that will take care of freeing the event. 9984 */ 9985 if (!event_file) 9986 free_event(event); 9987 err_cred: 9988 if (task) 9989 mutex_unlock(&task->signal->cred_guard_mutex); 9990 err_cpus: 9991 put_online_cpus(); 9992 err_task: 9993 if (task) 9994 put_task_struct(task); 9995 err_group_fd: 9996 fdput(group); 9997 err_fd: 9998 put_unused_fd(event_fd); 9999 return err; 10000 } 10001 10002 /** 10003 * perf_event_create_kernel_counter 10004 * 10005 * @attr: attributes of the counter to create 10006 * @cpu: cpu in which the counter is bound 10007 * @task: task to profile (NULL for percpu) 10008 */ 10009 struct perf_event * 10010 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 10011 struct task_struct *task, 10012 perf_overflow_handler_t overflow_handler, 10013 void *context) 10014 { 10015 struct perf_event_context *ctx; 10016 struct perf_event *event; 10017 int err; 10018 10019 /* 10020 * Get the target context (task or percpu): 10021 */ 10022 10023 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 10024 overflow_handler, context, -1); 10025 if (IS_ERR(event)) { 10026 err = PTR_ERR(event); 10027 goto err; 10028 } 10029 10030 /* Mark owner so we could distinguish it from user events. */ 10031 event->owner = TASK_TOMBSTONE; 10032 10033 ctx = find_get_context(event->pmu, task, event); 10034 if (IS_ERR(ctx)) { 10035 err = PTR_ERR(ctx); 10036 goto err_free; 10037 } 10038 10039 WARN_ON_ONCE(ctx->parent_ctx); 10040 mutex_lock(&ctx->mutex); 10041 if (ctx->task == TASK_TOMBSTONE) { 10042 err = -ESRCH; 10043 goto err_unlock; 10044 } 10045 10046 if (!exclusive_event_installable(event, ctx)) { 10047 err = -EBUSY; 10048 goto err_unlock; 10049 } 10050 10051 perf_install_in_context(ctx, event, cpu); 10052 perf_unpin_context(ctx); 10053 mutex_unlock(&ctx->mutex); 10054 10055 return event; 10056 10057 err_unlock: 10058 mutex_unlock(&ctx->mutex); 10059 perf_unpin_context(ctx); 10060 put_ctx(ctx); 10061 err_free: 10062 free_event(event); 10063 err: 10064 return ERR_PTR(err); 10065 } 10066 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 10067 10068 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 10069 { 10070 struct perf_event_context *src_ctx; 10071 struct perf_event_context *dst_ctx; 10072 struct perf_event *event, *tmp; 10073 LIST_HEAD(events); 10074 10075 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx; 10076 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx; 10077 10078 /* 10079 * See perf_event_ctx_lock() for comments on the details 10080 * of swizzling perf_event::ctx. 10081 */ 10082 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); 10083 list_for_each_entry_safe(event, tmp, &src_ctx->event_list, 10084 event_entry) { 10085 perf_remove_from_context(event, 0); 10086 unaccount_event_cpu(event, src_cpu); 10087 put_ctx(src_ctx); 10088 list_add(&event->migrate_entry, &events); 10089 } 10090 10091 /* 10092 * Wait for the events to quiesce before re-instating them. 10093 */ 10094 synchronize_rcu(); 10095 10096 /* 10097 * Re-instate events in 2 passes. 10098 * 10099 * Skip over group leaders and only install siblings on this first 10100 * pass, siblings will not get enabled without a leader, however a 10101 * leader will enable its siblings, even if those are still on the old 10102 * context. 10103 */ 10104 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 10105 if (event->group_leader == event) 10106 continue; 10107 10108 list_del(&event->migrate_entry); 10109 if (event->state >= PERF_EVENT_STATE_OFF) 10110 event->state = PERF_EVENT_STATE_INACTIVE; 10111 account_event_cpu(event, dst_cpu); 10112 perf_install_in_context(dst_ctx, event, dst_cpu); 10113 get_ctx(dst_ctx); 10114 } 10115 10116 /* 10117 * Once all the siblings are setup properly, install the group leaders 10118 * to make it go. 10119 */ 10120 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 10121 list_del(&event->migrate_entry); 10122 if (event->state >= PERF_EVENT_STATE_OFF) 10123 event->state = PERF_EVENT_STATE_INACTIVE; 10124 account_event_cpu(event, dst_cpu); 10125 perf_install_in_context(dst_ctx, event, dst_cpu); 10126 get_ctx(dst_ctx); 10127 } 10128 mutex_unlock(&dst_ctx->mutex); 10129 mutex_unlock(&src_ctx->mutex); 10130 } 10131 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 10132 10133 static void sync_child_event(struct perf_event *child_event, 10134 struct task_struct *child) 10135 { 10136 struct perf_event *parent_event = child_event->parent; 10137 u64 child_val; 10138 10139 if (child_event->attr.inherit_stat) 10140 perf_event_read_event(child_event, child); 10141 10142 child_val = perf_event_count(child_event); 10143 10144 /* 10145 * Add back the child's count to the parent's count: 10146 */ 10147 atomic64_add(child_val, &parent_event->child_count); 10148 atomic64_add(child_event->total_time_enabled, 10149 &parent_event->child_total_time_enabled); 10150 atomic64_add(child_event->total_time_running, 10151 &parent_event->child_total_time_running); 10152 } 10153 10154 static void 10155 perf_event_exit_event(struct perf_event *child_event, 10156 struct perf_event_context *child_ctx, 10157 struct task_struct *child) 10158 { 10159 struct perf_event *parent_event = child_event->parent; 10160 10161 /* 10162 * Do not destroy the 'original' grouping; because of the context 10163 * switch optimization the original events could've ended up in a 10164 * random child task. 10165 * 10166 * If we were to destroy the original group, all group related 10167 * operations would cease to function properly after this random 10168 * child dies. 10169 * 10170 * Do destroy all inherited groups, we don't care about those 10171 * and being thorough is better. 10172 */ 10173 raw_spin_lock_irq(&child_ctx->lock); 10174 WARN_ON_ONCE(child_ctx->is_active); 10175 10176 if (parent_event) 10177 perf_group_detach(child_event); 10178 list_del_event(child_event, child_ctx); 10179 child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */ 10180 raw_spin_unlock_irq(&child_ctx->lock); 10181 10182 /* 10183 * Parent events are governed by their filedesc, retain them. 10184 */ 10185 if (!parent_event) { 10186 perf_event_wakeup(child_event); 10187 return; 10188 } 10189 /* 10190 * Child events can be cleaned up. 10191 */ 10192 10193 sync_child_event(child_event, child); 10194 10195 /* 10196 * Remove this event from the parent's list 10197 */ 10198 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 10199 mutex_lock(&parent_event->child_mutex); 10200 list_del_init(&child_event->child_list); 10201 mutex_unlock(&parent_event->child_mutex); 10202 10203 /* 10204 * Kick perf_poll() for is_event_hup(). 10205 */ 10206 perf_event_wakeup(parent_event); 10207 free_event(child_event); 10208 put_event(parent_event); 10209 } 10210 10211 static void perf_event_exit_task_context(struct task_struct *child, int ctxn) 10212 { 10213 struct perf_event_context *child_ctx, *clone_ctx = NULL; 10214 struct perf_event *child_event, *next; 10215 10216 WARN_ON_ONCE(child != current); 10217 10218 child_ctx = perf_pin_task_context(child, ctxn); 10219 if (!child_ctx) 10220 return; 10221 10222 /* 10223 * In order to reduce the amount of tricky in ctx tear-down, we hold 10224 * ctx::mutex over the entire thing. This serializes against almost 10225 * everything that wants to access the ctx. 10226 * 10227 * The exception is sys_perf_event_open() / 10228 * perf_event_create_kernel_count() which does find_get_context() 10229 * without ctx::mutex (it cannot because of the move_group double mutex 10230 * lock thing). See the comments in perf_install_in_context(). 10231 */ 10232 mutex_lock(&child_ctx->mutex); 10233 10234 /* 10235 * In a single ctx::lock section, de-schedule the events and detach the 10236 * context from the task such that we cannot ever get it scheduled back 10237 * in. 10238 */ 10239 raw_spin_lock_irq(&child_ctx->lock); 10240 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx); 10241 10242 /* 10243 * Now that the context is inactive, destroy the task <-> ctx relation 10244 * and mark the context dead. 10245 */ 10246 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL); 10247 put_ctx(child_ctx); /* cannot be last */ 10248 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE); 10249 put_task_struct(current); /* cannot be last */ 10250 10251 clone_ctx = unclone_ctx(child_ctx); 10252 raw_spin_unlock_irq(&child_ctx->lock); 10253 10254 if (clone_ctx) 10255 put_ctx(clone_ctx); 10256 10257 /* 10258 * Report the task dead after unscheduling the events so that we 10259 * won't get any samples after PERF_RECORD_EXIT. We can however still 10260 * get a few PERF_RECORD_READ events. 10261 */ 10262 perf_event_task(child, child_ctx, 0); 10263 10264 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) 10265 perf_event_exit_event(child_event, child_ctx, child); 10266 10267 mutex_unlock(&child_ctx->mutex); 10268 10269 put_ctx(child_ctx); 10270 } 10271 10272 /* 10273 * When a child task exits, feed back event values to parent events. 10274 * 10275 * Can be called with cred_guard_mutex held when called from 10276 * install_exec_creds(). 10277 */ 10278 void perf_event_exit_task(struct task_struct *child) 10279 { 10280 struct perf_event *event, *tmp; 10281 int ctxn; 10282 10283 mutex_lock(&child->perf_event_mutex); 10284 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 10285 owner_entry) { 10286 list_del_init(&event->owner_entry); 10287 10288 /* 10289 * Ensure the list deletion is visible before we clear 10290 * the owner, closes a race against perf_release() where 10291 * we need to serialize on the owner->perf_event_mutex. 10292 */ 10293 smp_store_release(&event->owner, NULL); 10294 } 10295 mutex_unlock(&child->perf_event_mutex); 10296 10297 for_each_task_context_nr(ctxn) 10298 perf_event_exit_task_context(child, ctxn); 10299 10300 /* 10301 * The perf_event_exit_task_context calls perf_event_task 10302 * with child's task_ctx, which generates EXIT events for 10303 * child contexts and sets child->perf_event_ctxp[] to NULL. 10304 * At this point we need to send EXIT events to cpu contexts. 10305 */ 10306 perf_event_task(child, NULL, 0); 10307 } 10308 10309 static void perf_free_event(struct perf_event *event, 10310 struct perf_event_context *ctx) 10311 { 10312 struct perf_event *parent = event->parent; 10313 10314 if (WARN_ON_ONCE(!parent)) 10315 return; 10316 10317 mutex_lock(&parent->child_mutex); 10318 list_del_init(&event->child_list); 10319 mutex_unlock(&parent->child_mutex); 10320 10321 put_event(parent); 10322 10323 raw_spin_lock_irq(&ctx->lock); 10324 perf_group_detach(event); 10325 list_del_event(event, ctx); 10326 raw_spin_unlock_irq(&ctx->lock); 10327 free_event(event); 10328 } 10329 10330 /* 10331 * Free an unexposed, unused context as created by inheritance by 10332 * perf_event_init_task below, used by fork() in case of fail. 10333 * 10334 * Not all locks are strictly required, but take them anyway to be nice and 10335 * help out with the lockdep assertions. 10336 */ 10337 void perf_event_free_task(struct task_struct *task) 10338 { 10339 struct perf_event_context *ctx; 10340 struct perf_event *event, *tmp; 10341 int ctxn; 10342 10343 for_each_task_context_nr(ctxn) { 10344 ctx = task->perf_event_ctxp[ctxn]; 10345 if (!ctx) 10346 continue; 10347 10348 mutex_lock(&ctx->mutex); 10349 again: 10350 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, 10351 group_entry) 10352 perf_free_event(event, ctx); 10353 10354 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, 10355 group_entry) 10356 perf_free_event(event, ctx); 10357 10358 if (!list_empty(&ctx->pinned_groups) || 10359 !list_empty(&ctx->flexible_groups)) 10360 goto again; 10361 10362 mutex_unlock(&ctx->mutex); 10363 10364 put_ctx(ctx); 10365 } 10366 } 10367 10368 void perf_event_delayed_put(struct task_struct *task) 10369 { 10370 int ctxn; 10371 10372 for_each_task_context_nr(ctxn) 10373 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); 10374 } 10375 10376 struct file *perf_event_get(unsigned int fd) 10377 { 10378 struct file *file; 10379 10380 file = fget_raw(fd); 10381 if (!file) 10382 return ERR_PTR(-EBADF); 10383 10384 if (file->f_op != &perf_fops) { 10385 fput(file); 10386 return ERR_PTR(-EBADF); 10387 } 10388 10389 return file; 10390 } 10391 10392 const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 10393 { 10394 if (!event) 10395 return ERR_PTR(-EINVAL); 10396 10397 return &event->attr; 10398 } 10399 10400 /* 10401 * inherit a event from parent task to child task: 10402 */ 10403 static struct perf_event * 10404 inherit_event(struct perf_event *parent_event, 10405 struct task_struct *parent, 10406 struct perf_event_context *parent_ctx, 10407 struct task_struct *child, 10408 struct perf_event *group_leader, 10409 struct perf_event_context *child_ctx) 10410 { 10411 enum perf_event_active_state parent_state = parent_event->state; 10412 struct perf_event *child_event; 10413 unsigned long flags; 10414 10415 /* 10416 * Instead of creating recursive hierarchies of events, 10417 * we link inherited events back to the original parent, 10418 * which has a filp for sure, which we use as the reference 10419 * count: 10420 */ 10421 if (parent_event->parent) 10422 parent_event = parent_event->parent; 10423 10424 child_event = perf_event_alloc(&parent_event->attr, 10425 parent_event->cpu, 10426 child, 10427 group_leader, parent_event, 10428 NULL, NULL, -1); 10429 if (IS_ERR(child_event)) 10430 return child_event; 10431 10432 /* 10433 * is_orphaned_event() and list_add_tail(&parent_event->child_list) 10434 * must be under the same lock in order to serialize against 10435 * perf_event_release_kernel(), such that either we must observe 10436 * is_orphaned_event() or they will observe us on the child_list. 10437 */ 10438 mutex_lock(&parent_event->child_mutex); 10439 if (is_orphaned_event(parent_event) || 10440 !atomic_long_inc_not_zero(&parent_event->refcount)) { 10441 mutex_unlock(&parent_event->child_mutex); 10442 free_event(child_event); 10443 return NULL; 10444 } 10445 10446 get_ctx(child_ctx); 10447 10448 /* 10449 * Make the child state follow the state of the parent event, 10450 * not its attr.disabled bit. We hold the parent's mutex, 10451 * so we won't race with perf_event_{en, dis}able_family. 10452 */ 10453 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 10454 child_event->state = PERF_EVENT_STATE_INACTIVE; 10455 else 10456 child_event->state = PERF_EVENT_STATE_OFF; 10457 10458 if (parent_event->attr.freq) { 10459 u64 sample_period = parent_event->hw.sample_period; 10460 struct hw_perf_event *hwc = &child_event->hw; 10461 10462 hwc->sample_period = sample_period; 10463 hwc->last_period = sample_period; 10464 10465 local64_set(&hwc->period_left, sample_period); 10466 } 10467 10468 child_event->ctx = child_ctx; 10469 child_event->overflow_handler = parent_event->overflow_handler; 10470 child_event->overflow_handler_context 10471 = parent_event->overflow_handler_context; 10472 10473 /* 10474 * Precalculate sample_data sizes 10475 */ 10476 perf_event__header_size(child_event); 10477 perf_event__id_header_size(child_event); 10478 10479 /* 10480 * Link it up in the child's context: 10481 */ 10482 raw_spin_lock_irqsave(&child_ctx->lock, flags); 10483 add_event_to_ctx(child_event, child_ctx); 10484 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 10485 10486 /* 10487 * Link this into the parent event's child list 10488 */ 10489 list_add_tail(&child_event->child_list, &parent_event->child_list); 10490 mutex_unlock(&parent_event->child_mutex); 10491 10492 return child_event; 10493 } 10494 10495 static int inherit_group(struct perf_event *parent_event, 10496 struct task_struct *parent, 10497 struct perf_event_context *parent_ctx, 10498 struct task_struct *child, 10499 struct perf_event_context *child_ctx) 10500 { 10501 struct perf_event *leader; 10502 struct perf_event *sub; 10503 struct perf_event *child_ctr; 10504 10505 leader = inherit_event(parent_event, parent, parent_ctx, 10506 child, NULL, child_ctx); 10507 if (IS_ERR(leader)) 10508 return PTR_ERR(leader); 10509 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) { 10510 child_ctr = inherit_event(sub, parent, parent_ctx, 10511 child, leader, child_ctx); 10512 if (IS_ERR(child_ctr)) 10513 return PTR_ERR(child_ctr); 10514 } 10515 return 0; 10516 } 10517 10518 static int 10519 inherit_task_group(struct perf_event *event, struct task_struct *parent, 10520 struct perf_event_context *parent_ctx, 10521 struct task_struct *child, int ctxn, 10522 int *inherited_all) 10523 { 10524 int ret; 10525 struct perf_event_context *child_ctx; 10526 10527 if (!event->attr.inherit) { 10528 *inherited_all = 0; 10529 return 0; 10530 } 10531 10532 child_ctx = child->perf_event_ctxp[ctxn]; 10533 if (!child_ctx) { 10534 /* 10535 * This is executed from the parent task context, so 10536 * inherit events that have been marked for cloning. 10537 * First allocate and initialize a context for the 10538 * child. 10539 */ 10540 10541 child_ctx = alloc_perf_context(parent_ctx->pmu, child); 10542 if (!child_ctx) 10543 return -ENOMEM; 10544 10545 child->perf_event_ctxp[ctxn] = child_ctx; 10546 } 10547 10548 ret = inherit_group(event, parent, parent_ctx, 10549 child, child_ctx); 10550 10551 if (ret) 10552 *inherited_all = 0; 10553 10554 return ret; 10555 } 10556 10557 /* 10558 * Initialize the perf_event context in task_struct 10559 */ 10560 static int perf_event_init_context(struct task_struct *child, int ctxn) 10561 { 10562 struct perf_event_context *child_ctx, *parent_ctx; 10563 struct perf_event_context *cloned_ctx; 10564 struct perf_event *event; 10565 struct task_struct *parent = current; 10566 int inherited_all = 1; 10567 unsigned long flags; 10568 int ret = 0; 10569 10570 if (likely(!parent->perf_event_ctxp[ctxn])) 10571 return 0; 10572 10573 /* 10574 * If the parent's context is a clone, pin it so it won't get 10575 * swapped under us. 10576 */ 10577 parent_ctx = perf_pin_task_context(parent, ctxn); 10578 if (!parent_ctx) 10579 return 0; 10580 10581 /* 10582 * No need to check if parent_ctx != NULL here; since we saw 10583 * it non-NULL earlier, the only reason for it to become NULL 10584 * is if we exit, and since we're currently in the middle of 10585 * a fork we can't be exiting at the same time. 10586 */ 10587 10588 /* 10589 * Lock the parent list. No need to lock the child - not PID 10590 * hashed yet and not running, so nobody can access it. 10591 */ 10592 mutex_lock(&parent_ctx->mutex); 10593 10594 /* 10595 * We dont have to disable NMIs - we are only looking at 10596 * the list, not manipulating it: 10597 */ 10598 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) { 10599 ret = inherit_task_group(event, parent, parent_ctx, 10600 child, ctxn, &inherited_all); 10601 if (ret) 10602 break; 10603 } 10604 10605 /* 10606 * We can't hold ctx->lock when iterating the ->flexible_group list due 10607 * to allocations, but we need to prevent rotation because 10608 * rotate_ctx() will change the list from interrupt context. 10609 */ 10610 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 10611 parent_ctx->rotate_disable = 1; 10612 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 10613 10614 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) { 10615 ret = inherit_task_group(event, parent, parent_ctx, 10616 child, ctxn, &inherited_all); 10617 if (ret) 10618 break; 10619 } 10620 10621 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 10622 parent_ctx->rotate_disable = 0; 10623 10624 child_ctx = child->perf_event_ctxp[ctxn]; 10625 10626 if (child_ctx && inherited_all) { 10627 /* 10628 * Mark the child context as a clone of the parent 10629 * context, or of whatever the parent is a clone of. 10630 * 10631 * Note that if the parent is a clone, the holding of 10632 * parent_ctx->lock avoids it from being uncloned. 10633 */ 10634 cloned_ctx = parent_ctx->parent_ctx; 10635 if (cloned_ctx) { 10636 child_ctx->parent_ctx = cloned_ctx; 10637 child_ctx->parent_gen = parent_ctx->parent_gen; 10638 } else { 10639 child_ctx->parent_ctx = parent_ctx; 10640 child_ctx->parent_gen = parent_ctx->generation; 10641 } 10642 get_ctx(child_ctx->parent_ctx); 10643 } 10644 10645 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 10646 mutex_unlock(&parent_ctx->mutex); 10647 10648 perf_unpin_context(parent_ctx); 10649 put_ctx(parent_ctx); 10650 10651 return ret; 10652 } 10653 10654 /* 10655 * Initialize the perf_event context in task_struct 10656 */ 10657 int perf_event_init_task(struct task_struct *child) 10658 { 10659 int ctxn, ret; 10660 10661 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); 10662 mutex_init(&child->perf_event_mutex); 10663 INIT_LIST_HEAD(&child->perf_event_list); 10664 10665 for_each_task_context_nr(ctxn) { 10666 ret = perf_event_init_context(child, ctxn); 10667 if (ret) { 10668 perf_event_free_task(child); 10669 return ret; 10670 } 10671 } 10672 10673 return 0; 10674 } 10675 10676 static void __init perf_event_init_all_cpus(void) 10677 { 10678 struct swevent_htable *swhash; 10679 int cpu; 10680 10681 for_each_possible_cpu(cpu) { 10682 swhash = &per_cpu(swevent_htable, cpu); 10683 mutex_init(&swhash->hlist_mutex); 10684 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu)); 10685 10686 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu)); 10687 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu)); 10688 10689 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu)); 10690 } 10691 } 10692 10693 int perf_event_init_cpu(unsigned int cpu) 10694 { 10695 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 10696 10697 mutex_lock(&swhash->hlist_mutex); 10698 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) { 10699 struct swevent_hlist *hlist; 10700 10701 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 10702 WARN_ON(!hlist); 10703 rcu_assign_pointer(swhash->swevent_hlist, hlist); 10704 } 10705 mutex_unlock(&swhash->hlist_mutex); 10706 return 0; 10707 } 10708 10709 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE 10710 static void __perf_event_exit_context(void *__info) 10711 { 10712 struct perf_event_context *ctx = __info; 10713 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 10714 struct perf_event *event; 10715 10716 raw_spin_lock(&ctx->lock); 10717 list_for_each_entry(event, &ctx->event_list, event_entry) 10718 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP); 10719 raw_spin_unlock(&ctx->lock); 10720 } 10721 10722 static void perf_event_exit_cpu_context(int cpu) 10723 { 10724 struct perf_event_context *ctx; 10725 struct pmu *pmu; 10726 int idx; 10727 10728 idx = srcu_read_lock(&pmus_srcu); 10729 list_for_each_entry_rcu(pmu, &pmus, entry) { 10730 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx; 10731 10732 mutex_lock(&ctx->mutex); 10733 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 10734 mutex_unlock(&ctx->mutex); 10735 } 10736 srcu_read_unlock(&pmus_srcu, idx); 10737 } 10738 #else 10739 10740 static void perf_event_exit_cpu_context(int cpu) { } 10741 10742 #endif 10743 10744 int perf_event_exit_cpu(unsigned int cpu) 10745 { 10746 perf_event_exit_cpu_context(cpu); 10747 return 0; 10748 } 10749 10750 static int 10751 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 10752 { 10753 int cpu; 10754 10755 for_each_online_cpu(cpu) 10756 perf_event_exit_cpu(cpu); 10757 10758 return NOTIFY_OK; 10759 } 10760 10761 /* 10762 * Run the perf reboot notifier at the very last possible moment so that 10763 * the generic watchdog code runs as long as possible. 10764 */ 10765 static struct notifier_block perf_reboot_notifier = { 10766 .notifier_call = perf_reboot, 10767 .priority = INT_MIN, 10768 }; 10769 10770 void __init perf_event_init(void) 10771 { 10772 int ret; 10773 10774 idr_init(&pmu_idr); 10775 10776 perf_event_init_all_cpus(); 10777 init_srcu_struct(&pmus_srcu); 10778 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 10779 perf_pmu_register(&perf_cpu_clock, NULL, -1); 10780 perf_pmu_register(&perf_task_clock, NULL, -1); 10781 perf_tp_register(); 10782 perf_event_init_cpu(smp_processor_id()); 10783 register_reboot_notifier(&perf_reboot_notifier); 10784 10785 ret = init_hw_breakpoint(); 10786 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 10787 10788 /* 10789 * Build time assertion that we keep the data_head at the intended 10790 * location. IOW, validation we got the __reserved[] size right. 10791 */ 10792 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 10793 != 1024); 10794 } 10795 10796 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 10797 char *page) 10798 { 10799 struct perf_pmu_events_attr *pmu_attr = 10800 container_of(attr, struct perf_pmu_events_attr, attr); 10801 10802 if (pmu_attr->event_str) 10803 return sprintf(page, "%s\n", pmu_attr->event_str); 10804 10805 return 0; 10806 } 10807 EXPORT_SYMBOL_GPL(perf_event_sysfs_show); 10808 10809 static int __init perf_event_sysfs_init(void) 10810 { 10811 struct pmu *pmu; 10812 int ret; 10813 10814 mutex_lock(&pmus_lock); 10815 10816 ret = bus_register(&pmu_bus); 10817 if (ret) 10818 goto unlock; 10819 10820 list_for_each_entry(pmu, &pmus, entry) { 10821 if (!pmu->name || pmu->type < 0) 10822 continue; 10823 10824 ret = pmu_dev_alloc(pmu); 10825 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 10826 } 10827 pmu_bus_running = 1; 10828 ret = 0; 10829 10830 unlock: 10831 mutex_unlock(&pmus_lock); 10832 10833 return ret; 10834 } 10835 device_initcall(perf_event_sysfs_init); 10836 10837 #ifdef CONFIG_CGROUP_PERF 10838 static struct cgroup_subsys_state * 10839 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 10840 { 10841 struct perf_cgroup *jc; 10842 10843 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 10844 if (!jc) 10845 return ERR_PTR(-ENOMEM); 10846 10847 jc->info = alloc_percpu(struct perf_cgroup_info); 10848 if (!jc->info) { 10849 kfree(jc); 10850 return ERR_PTR(-ENOMEM); 10851 } 10852 10853 return &jc->css; 10854 } 10855 10856 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 10857 { 10858 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 10859 10860 free_percpu(jc->info); 10861 kfree(jc); 10862 } 10863 10864 static int __perf_cgroup_move(void *info) 10865 { 10866 struct task_struct *task = info; 10867 rcu_read_lock(); 10868 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN); 10869 rcu_read_unlock(); 10870 return 0; 10871 } 10872 10873 static void perf_cgroup_attach(struct cgroup_taskset *tset) 10874 { 10875 struct task_struct *task; 10876 struct cgroup_subsys_state *css; 10877 10878 cgroup_taskset_for_each(task, css, tset) 10879 task_function_call(task, __perf_cgroup_move, task); 10880 } 10881 10882 struct cgroup_subsys perf_event_cgrp_subsys = { 10883 .css_alloc = perf_cgroup_css_alloc, 10884 .css_free = perf_cgroup_css_free, 10885 .attach = perf_cgroup_attach, 10886 }; 10887 #endif /* CONFIG_CGROUP_PERF */ 10888