xref: /openbmc/linux/kernel/events/core.c (revision 8730046c)
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11 
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 
50 #include "internal.h"
51 
52 #include <asm/irq_regs.h>
53 
54 typedef int (*remote_function_f)(void *);
55 
56 struct remote_function_call {
57 	struct task_struct	*p;
58 	remote_function_f	func;
59 	void			*info;
60 	int			ret;
61 };
62 
63 static void remote_function(void *data)
64 {
65 	struct remote_function_call *tfc = data;
66 	struct task_struct *p = tfc->p;
67 
68 	if (p) {
69 		/* -EAGAIN */
70 		if (task_cpu(p) != smp_processor_id())
71 			return;
72 
73 		/*
74 		 * Now that we're on right CPU with IRQs disabled, we can test
75 		 * if we hit the right task without races.
76 		 */
77 
78 		tfc->ret = -ESRCH; /* No such (running) process */
79 		if (p != current)
80 			return;
81 	}
82 
83 	tfc->ret = tfc->func(tfc->info);
84 }
85 
86 /**
87  * task_function_call - call a function on the cpu on which a task runs
88  * @p:		the task to evaluate
89  * @func:	the function to be called
90  * @info:	the function call argument
91  *
92  * Calls the function @func when the task is currently running. This might
93  * be on the current CPU, which just calls the function directly
94  *
95  * returns: @func return value, or
96  *	    -ESRCH  - when the process isn't running
97  *	    -EAGAIN - when the process moved away
98  */
99 static int
100 task_function_call(struct task_struct *p, remote_function_f func, void *info)
101 {
102 	struct remote_function_call data = {
103 		.p	= p,
104 		.func	= func,
105 		.info	= info,
106 		.ret	= -EAGAIN,
107 	};
108 	int ret;
109 
110 	do {
111 		ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
112 		if (!ret)
113 			ret = data.ret;
114 	} while (ret == -EAGAIN);
115 
116 	return ret;
117 }
118 
119 /**
120  * cpu_function_call - call a function on the cpu
121  * @func:	the function to be called
122  * @info:	the function call argument
123  *
124  * Calls the function @func on the remote cpu.
125  *
126  * returns: @func return value or -ENXIO when the cpu is offline
127  */
128 static int cpu_function_call(int cpu, remote_function_f func, void *info)
129 {
130 	struct remote_function_call data = {
131 		.p	= NULL,
132 		.func	= func,
133 		.info	= info,
134 		.ret	= -ENXIO, /* No such CPU */
135 	};
136 
137 	smp_call_function_single(cpu, remote_function, &data, 1);
138 
139 	return data.ret;
140 }
141 
142 static inline struct perf_cpu_context *
143 __get_cpu_context(struct perf_event_context *ctx)
144 {
145 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
146 }
147 
148 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
149 			  struct perf_event_context *ctx)
150 {
151 	raw_spin_lock(&cpuctx->ctx.lock);
152 	if (ctx)
153 		raw_spin_lock(&ctx->lock);
154 }
155 
156 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
157 			    struct perf_event_context *ctx)
158 {
159 	if (ctx)
160 		raw_spin_unlock(&ctx->lock);
161 	raw_spin_unlock(&cpuctx->ctx.lock);
162 }
163 
164 #define TASK_TOMBSTONE ((void *)-1L)
165 
166 static bool is_kernel_event(struct perf_event *event)
167 {
168 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
169 }
170 
171 /*
172  * On task ctx scheduling...
173  *
174  * When !ctx->nr_events a task context will not be scheduled. This means
175  * we can disable the scheduler hooks (for performance) without leaving
176  * pending task ctx state.
177  *
178  * This however results in two special cases:
179  *
180  *  - removing the last event from a task ctx; this is relatively straight
181  *    forward and is done in __perf_remove_from_context.
182  *
183  *  - adding the first event to a task ctx; this is tricky because we cannot
184  *    rely on ctx->is_active and therefore cannot use event_function_call().
185  *    See perf_install_in_context().
186  *
187  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
188  */
189 
190 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
191 			struct perf_event_context *, void *);
192 
193 struct event_function_struct {
194 	struct perf_event *event;
195 	event_f func;
196 	void *data;
197 };
198 
199 static int event_function(void *info)
200 {
201 	struct event_function_struct *efs = info;
202 	struct perf_event *event = efs->event;
203 	struct perf_event_context *ctx = event->ctx;
204 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
205 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
206 	int ret = 0;
207 
208 	WARN_ON_ONCE(!irqs_disabled());
209 
210 	perf_ctx_lock(cpuctx, task_ctx);
211 	/*
212 	 * Since we do the IPI call without holding ctx->lock things can have
213 	 * changed, double check we hit the task we set out to hit.
214 	 */
215 	if (ctx->task) {
216 		if (ctx->task != current) {
217 			ret = -ESRCH;
218 			goto unlock;
219 		}
220 
221 		/*
222 		 * We only use event_function_call() on established contexts,
223 		 * and event_function() is only ever called when active (or
224 		 * rather, we'll have bailed in task_function_call() or the
225 		 * above ctx->task != current test), therefore we must have
226 		 * ctx->is_active here.
227 		 */
228 		WARN_ON_ONCE(!ctx->is_active);
229 		/*
230 		 * And since we have ctx->is_active, cpuctx->task_ctx must
231 		 * match.
232 		 */
233 		WARN_ON_ONCE(task_ctx != ctx);
234 	} else {
235 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
236 	}
237 
238 	efs->func(event, cpuctx, ctx, efs->data);
239 unlock:
240 	perf_ctx_unlock(cpuctx, task_ctx);
241 
242 	return ret;
243 }
244 
245 static void event_function_call(struct perf_event *event, event_f func, void *data)
246 {
247 	struct perf_event_context *ctx = event->ctx;
248 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
249 	struct event_function_struct efs = {
250 		.event = event,
251 		.func = func,
252 		.data = data,
253 	};
254 
255 	if (!event->parent) {
256 		/*
257 		 * If this is a !child event, we must hold ctx::mutex to
258 		 * stabilize the the event->ctx relation. See
259 		 * perf_event_ctx_lock().
260 		 */
261 		lockdep_assert_held(&ctx->mutex);
262 	}
263 
264 	if (!task) {
265 		cpu_function_call(event->cpu, event_function, &efs);
266 		return;
267 	}
268 
269 	if (task == TASK_TOMBSTONE)
270 		return;
271 
272 again:
273 	if (!task_function_call(task, event_function, &efs))
274 		return;
275 
276 	raw_spin_lock_irq(&ctx->lock);
277 	/*
278 	 * Reload the task pointer, it might have been changed by
279 	 * a concurrent perf_event_context_sched_out().
280 	 */
281 	task = ctx->task;
282 	if (task == TASK_TOMBSTONE) {
283 		raw_spin_unlock_irq(&ctx->lock);
284 		return;
285 	}
286 	if (ctx->is_active) {
287 		raw_spin_unlock_irq(&ctx->lock);
288 		goto again;
289 	}
290 	func(event, NULL, ctx, data);
291 	raw_spin_unlock_irq(&ctx->lock);
292 }
293 
294 /*
295  * Similar to event_function_call() + event_function(), but hard assumes IRQs
296  * are already disabled and we're on the right CPU.
297  */
298 static void event_function_local(struct perf_event *event, event_f func, void *data)
299 {
300 	struct perf_event_context *ctx = event->ctx;
301 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
302 	struct task_struct *task = READ_ONCE(ctx->task);
303 	struct perf_event_context *task_ctx = NULL;
304 
305 	WARN_ON_ONCE(!irqs_disabled());
306 
307 	if (task) {
308 		if (task == TASK_TOMBSTONE)
309 			return;
310 
311 		task_ctx = ctx;
312 	}
313 
314 	perf_ctx_lock(cpuctx, task_ctx);
315 
316 	task = ctx->task;
317 	if (task == TASK_TOMBSTONE)
318 		goto unlock;
319 
320 	if (task) {
321 		/*
322 		 * We must be either inactive or active and the right task,
323 		 * otherwise we're screwed, since we cannot IPI to somewhere
324 		 * else.
325 		 */
326 		if (ctx->is_active) {
327 			if (WARN_ON_ONCE(task != current))
328 				goto unlock;
329 
330 			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
331 				goto unlock;
332 		}
333 	} else {
334 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
335 	}
336 
337 	func(event, cpuctx, ctx, data);
338 unlock:
339 	perf_ctx_unlock(cpuctx, task_ctx);
340 }
341 
342 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
343 		       PERF_FLAG_FD_OUTPUT  |\
344 		       PERF_FLAG_PID_CGROUP |\
345 		       PERF_FLAG_FD_CLOEXEC)
346 
347 /*
348  * branch priv levels that need permission checks
349  */
350 #define PERF_SAMPLE_BRANCH_PERM_PLM \
351 	(PERF_SAMPLE_BRANCH_KERNEL |\
352 	 PERF_SAMPLE_BRANCH_HV)
353 
354 enum event_type_t {
355 	EVENT_FLEXIBLE = 0x1,
356 	EVENT_PINNED = 0x2,
357 	EVENT_TIME = 0x4,
358 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
359 };
360 
361 /*
362  * perf_sched_events : >0 events exist
363  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
364  */
365 
366 static void perf_sched_delayed(struct work_struct *work);
367 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
368 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
369 static DEFINE_MUTEX(perf_sched_mutex);
370 static atomic_t perf_sched_count;
371 
372 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
373 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
374 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
375 
376 static atomic_t nr_mmap_events __read_mostly;
377 static atomic_t nr_comm_events __read_mostly;
378 static atomic_t nr_task_events __read_mostly;
379 static atomic_t nr_freq_events __read_mostly;
380 static atomic_t nr_switch_events __read_mostly;
381 
382 static LIST_HEAD(pmus);
383 static DEFINE_MUTEX(pmus_lock);
384 static struct srcu_struct pmus_srcu;
385 
386 /*
387  * perf event paranoia level:
388  *  -1 - not paranoid at all
389  *   0 - disallow raw tracepoint access for unpriv
390  *   1 - disallow cpu events for unpriv
391  *   2 - disallow kernel profiling for unpriv
392  */
393 int sysctl_perf_event_paranoid __read_mostly = 2;
394 
395 /* Minimum for 512 kiB + 1 user control page */
396 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
397 
398 /*
399  * max perf event sample rate
400  */
401 #define DEFAULT_MAX_SAMPLE_RATE		100000
402 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
403 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
404 
405 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
406 
407 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
408 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
409 
410 static int perf_sample_allowed_ns __read_mostly =
411 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
412 
413 static void update_perf_cpu_limits(void)
414 {
415 	u64 tmp = perf_sample_period_ns;
416 
417 	tmp *= sysctl_perf_cpu_time_max_percent;
418 	tmp = div_u64(tmp, 100);
419 	if (!tmp)
420 		tmp = 1;
421 
422 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
423 }
424 
425 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
426 
427 int perf_proc_update_handler(struct ctl_table *table, int write,
428 		void __user *buffer, size_t *lenp,
429 		loff_t *ppos)
430 {
431 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
432 
433 	if (ret || !write)
434 		return ret;
435 
436 	/*
437 	 * If throttling is disabled don't allow the write:
438 	 */
439 	if (sysctl_perf_cpu_time_max_percent == 100 ||
440 	    sysctl_perf_cpu_time_max_percent == 0)
441 		return -EINVAL;
442 
443 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
444 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
445 	update_perf_cpu_limits();
446 
447 	return 0;
448 }
449 
450 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
451 
452 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
453 				void __user *buffer, size_t *lenp,
454 				loff_t *ppos)
455 {
456 	int ret = proc_dointvec(table, write, buffer, lenp, ppos);
457 
458 	if (ret || !write)
459 		return ret;
460 
461 	if (sysctl_perf_cpu_time_max_percent == 100 ||
462 	    sysctl_perf_cpu_time_max_percent == 0) {
463 		printk(KERN_WARNING
464 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
465 		WRITE_ONCE(perf_sample_allowed_ns, 0);
466 	} else {
467 		update_perf_cpu_limits();
468 	}
469 
470 	return 0;
471 }
472 
473 /*
474  * perf samples are done in some very critical code paths (NMIs).
475  * If they take too much CPU time, the system can lock up and not
476  * get any real work done.  This will drop the sample rate when
477  * we detect that events are taking too long.
478  */
479 #define NR_ACCUMULATED_SAMPLES 128
480 static DEFINE_PER_CPU(u64, running_sample_length);
481 
482 static u64 __report_avg;
483 static u64 __report_allowed;
484 
485 static void perf_duration_warn(struct irq_work *w)
486 {
487 	printk_ratelimited(KERN_INFO
488 		"perf: interrupt took too long (%lld > %lld), lowering "
489 		"kernel.perf_event_max_sample_rate to %d\n",
490 		__report_avg, __report_allowed,
491 		sysctl_perf_event_sample_rate);
492 }
493 
494 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
495 
496 void perf_sample_event_took(u64 sample_len_ns)
497 {
498 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
499 	u64 running_len;
500 	u64 avg_len;
501 	u32 max;
502 
503 	if (max_len == 0)
504 		return;
505 
506 	/* Decay the counter by 1 average sample. */
507 	running_len = __this_cpu_read(running_sample_length);
508 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
509 	running_len += sample_len_ns;
510 	__this_cpu_write(running_sample_length, running_len);
511 
512 	/*
513 	 * Note: this will be biased artifically low until we have
514 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
515 	 * from having to maintain a count.
516 	 */
517 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
518 	if (avg_len <= max_len)
519 		return;
520 
521 	__report_avg = avg_len;
522 	__report_allowed = max_len;
523 
524 	/*
525 	 * Compute a throttle threshold 25% below the current duration.
526 	 */
527 	avg_len += avg_len / 4;
528 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
529 	if (avg_len < max)
530 		max /= (u32)avg_len;
531 	else
532 		max = 1;
533 
534 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
535 	WRITE_ONCE(max_samples_per_tick, max);
536 
537 	sysctl_perf_event_sample_rate = max * HZ;
538 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
539 
540 	if (!irq_work_queue(&perf_duration_work)) {
541 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
542 			     "kernel.perf_event_max_sample_rate to %d\n",
543 			     __report_avg, __report_allowed,
544 			     sysctl_perf_event_sample_rate);
545 	}
546 }
547 
548 static atomic64_t perf_event_id;
549 
550 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
551 			      enum event_type_t event_type);
552 
553 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
554 			     enum event_type_t event_type,
555 			     struct task_struct *task);
556 
557 static void update_context_time(struct perf_event_context *ctx);
558 static u64 perf_event_time(struct perf_event *event);
559 
560 void __weak perf_event_print_debug(void)	{ }
561 
562 extern __weak const char *perf_pmu_name(void)
563 {
564 	return "pmu";
565 }
566 
567 static inline u64 perf_clock(void)
568 {
569 	return local_clock();
570 }
571 
572 static inline u64 perf_event_clock(struct perf_event *event)
573 {
574 	return event->clock();
575 }
576 
577 #ifdef CONFIG_CGROUP_PERF
578 
579 static inline bool
580 perf_cgroup_match(struct perf_event *event)
581 {
582 	struct perf_event_context *ctx = event->ctx;
583 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
584 
585 	/* @event doesn't care about cgroup */
586 	if (!event->cgrp)
587 		return true;
588 
589 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
590 	if (!cpuctx->cgrp)
591 		return false;
592 
593 	/*
594 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
595 	 * also enabled for all its descendant cgroups.  If @cpuctx's
596 	 * cgroup is a descendant of @event's (the test covers identity
597 	 * case), it's a match.
598 	 */
599 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
600 				    event->cgrp->css.cgroup);
601 }
602 
603 static inline void perf_detach_cgroup(struct perf_event *event)
604 {
605 	css_put(&event->cgrp->css);
606 	event->cgrp = NULL;
607 }
608 
609 static inline int is_cgroup_event(struct perf_event *event)
610 {
611 	return event->cgrp != NULL;
612 }
613 
614 static inline u64 perf_cgroup_event_time(struct perf_event *event)
615 {
616 	struct perf_cgroup_info *t;
617 
618 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
619 	return t->time;
620 }
621 
622 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
623 {
624 	struct perf_cgroup_info *info;
625 	u64 now;
626 
627 	now = perf_clock();
628 
629 	info = this_cpu_ptr(cgrp->info);
630 
631 	info->time += now - info->timestamp;
632 	info->timestamp = now;
633 }
634 
635 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
636 {
637 	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
638 	if (cgrp_out)
639 		__update_cgrp_time(cgrp_out);
640 }
641 
642 static inline void update_cgrp_time_from_event(struct perf_event *event)
643 {
644 	struct perf_cgroup *cgrp;
645 
646 	/*
647 	 * ensure we access cgroup data only when needed and
648 	 * when we know the cgroup is pinned (css_get)
649 	 */
650 	if (!is_cgroup_event(event))
651 		return;
652 
653 	cgrp = perf_cgroup_from_task(current, event->ctx);
654 	/*
655 	 * Do not update time when cgroup is not active
656 	 */
657 	if (cgrp == event->cgrp)
658 		__update_cgrp_time(event->cgrp);
659 }
660 
661 static inline void
662 perf_cgroup_set_timestamp(struct task_struct *task,
663 			  struct perf_event_context *ctx)
664 {
665 	struct perf_cgroup *cgrp;
666 	struct perf_cgroup_info *info;
667 
668 	/*
669 	 * ctx->lock held by caller
670 	 * ensure we do not access cgroup data
671 	 * unless we have the cgroup pinned (css_get)
672 	 */
673 	if (!task || !ctx->nr_cgroups)
674 		return;
675 
676 	cgrp = perf_cgroup_from_task(task, ctx);
677 	info = this_cpu_ptr(cgrp->info);
678 	info->timestamp = ctx->timestamp;
679 }
680 
681 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
682 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
683 
684 /*
685  * reschedule events based on the cgroup constraint of task.
686  *
687  * mode SWOUT : schedule out everything
688  * mode SWIN : schedule in based on cgroup for next
689  */
690 static void perf_cgroup_switch(struct task_struct *task, int mode)
691 {
692 	struct perf_cpu_context *cpuctx;
693 	struct pmu *pmu;
694 	unsigned long flags;
695 
696 	/*
697 	 * disable interrupts to avoid geting nr_cgroup
698 	 * changes via __perf_event_disable(). Also
699 	 * avoids preemption.
700 	 */
701 	local_irq_save(flags);
702 
703 	/*
704 	 * we reschedule only in the presence of cgroup
705 	 * constrained events.
706 	 */
707 
708 	list_for_each_entry_rcu(pmu, &pmus, entry) {
709 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
710 		if (cpuctx->unique_pmu != pmu)
711 			continue; /* ensure we process each cpuctx once */
712 
713 		/*
714 		 * perf_cgroup_events says at least one
715 		 * context on this CPU has cgroup events.
716 		 *
717 		 * ctx->nr_cgroups reports the number of cgroup
718 		 * events for a context.
719 		 */
720 		if (cpuctx->ctx.nr_cgroups > 0) {
721 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
722 			perf_pmu_disable(cpuctx->ctx.pmu);
723 
724 			if (mode & PERF_CGROUP_SWOUT) {
725 				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
726 				/*
727 				 * must not be done before ctxswout due
728 				 * to event_filter_match() in event_sched_out()
729 				 */
730 				cpuctx->cgrp = NULL;
731 			}
732 
733 			if (mode & PERF_CGROUP_SWIN) {
734 				WARN_ON_ONCE(cpuctx->cgrp);
735 				/*
736 				 * set cgrp before ctxsw in to allow
737 				 * event_filter_match() to not have to pass
738 				 * task around
739 				 * we pass the cpuctx->ctx to perf_cgroup_from_task()
740 				 * because cgorup events are only per-cpu
741 				 */
742 				cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
743 				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
744 			}
745 			perf_pmu_enable(cpuctx->ctx.pmu);
746 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
747 		}
748 	}
749 
750 	local_irq_restore(flags);
751 }
752 
753 static inline void perf_cgroup_sched_out(struct task_struct *task,
754 					 struct task_struct *next)
755 {
756 	struct perf_cgroup *cgrp1;
757 	struct perf_cgroup *cgrp2 = NULL;
758 
759 	rcu_read_lock();
760 	/*
761 	 * we come here when we know perf_cgroup_events > 0
762 	 * we do not need to pass the ctx here because we know
763 	 * we are holding the rcu lock
764 	 */
765 	cgrp1 = perf_cgroup_from_task(task, NULL);
766 	cgrp2 = perf_cgroup_from_task(next, NULL);
767 
768 	/*
769 	 * only schedule out current cgroup events if we know
770 	 * that we are switching to a different cgroup. Otherwise,
771 	 * do no touch the cgroup events.
772 	 */
773 	if (cgrp1 != cgrp2)
774 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
775 
776 	rcu_read_unlock();
777 }
778 
779 static inline void perf_cgroup_sched_in(struct task_struct *prev,
780 					struct task_struct *task)
781 {
782 	struct perf_cgroup *cgrp1;
783 	struct perf_cgroup *cgrp2 = NULL;
784 
785 	rcu_read_lock();
786 	/*
787 	 * we come here when we know perf_cgroup_events > 0
788 	 * we do not need to pass the ctx here because we know
789 	 * we are holding the rcu lock
790 	 */
791 	cgrp1 = perf_cgroup_from_task(task, NULL);
792 	cgrp2 = perf_cgroup_from_task(prev, NULL);
793 
794 	/*
795 	 * only need to schedule in cgroup events if we are changing
796 	 * cgroup during ctxsw. Cgroup events were not scheduled
797 	 * out of ctxsw out if that was not the case.
798 	 */
799 	if (cgrp1 != cgrp2)
800 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
801 
802 	rcu_read_unlock();
803 }
804 
805 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
806 				      struct perf_event_attr *attr,
807 				      struct perf_event *group_leader)
808 {
809 	struct perf_cgroup *cgrp;
810 	struct cgroup_subsys_state *css;
811 	struct fd f = fdget(fd);
812 	int ret = 0;
813 
814 	if (!f.file)
815 		return -EBADF;
816 
817 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
818 					 &perf_event_cgrp_subsys);
819 	if (IS_ERR(css)) {
820 		ret = PTR_ERR(css);
821 		goto out;
822 	}
823 
824 	cgrp = container_of(css, struct perf_cgroup, css);
825 	event->cgrp = cgrp;
826 
827 	/*
828 	 * all events in a group must monitor
829 	 * the same cgroup because a task belongs
830 	 * to only one perf cgroup at a time
831 	 */
832 	if (group_leader && group_leader->cgrp != cgrp) {
833 		perf_detach_cgroup(event);
834 		ret = -EINVAL;
835 	}
836 out:
837 	fdput(f);
838 	return ret;
839 }
840 
841 static inline void
842 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
843 {
844 	struct perf_cgroup_info *t;
845 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
846 	event->shadow_ctx_time = now - t->timestamp;
847 }
848 
849 static inline void
850 perf_cgroup_defer_enabled(struct perf_event *event)
851 {
852 	/*
853 	 * when the current task's perf cgroup does not match
854 	 * the event's, we need to remember to call the
855 	 * perf_mark_enable() function the first time a task with
856 	 * a matching perf cgroup is scheduled in.
857 	 */
858 	if (is_cgroup_event(event) && !perf_cgroup_match(event))
859 		event->cgrp_defer_enabled = 1;
860 }
861 
862 static inline void
863 perf_cgroup_mark_enabled(struct perf_event *event,
864 			 struct perf_event_context *ctx)
865 {
866 	struct perf_event *sub;
867 	u64 tstamp = perf_event_time(event);
868 
869 	if (!event->cgrp_defer_enabled)
870 		return;
871 
872 	event->cgrp_defer_enabled = 0;
873 
874 	event->tstamp_enabled = tstamp - event->total_time_enabled;
875 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
876 		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
877 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
878 			sub->cgrp_defer_enabled = 0;
879 		}
880 	}
881 }
882 
883 /*
884  * Update cpuctx->cgrp so that it is set when first cgroup event is added and
885  * cleared when last cgroup event is removed.
886  */
887 static inline void
888 list_update_cgroup_event(struct perf_event *event,
889 			 struct perf_event_context *ctx, bool add)
890 {
891 	struct perf_cpu_context *cpuctx;
892 
893 	if (!is_cgroup_event(event))
894 		return;
895 
896 	if (add && ctx->nr_cgroups++)
897 		return;
898 	else if (!add && --ctx->nr_cgroups)
899 		return;
900 	/*
901 	 * Because cgroup events are always per-cpu events,
902 	 * this will always be called from the right CPU.
903 	 */
904 	cpuctx = __get_cpu_context(ctx);
905 
906 	/*
907 	 * cpuctx->cgrp is NULL until a cgroup event is sched in or
908 	 * ctx->nr_cgroup == 0 .
909 	 */
910 	if (add && perf_cgroup_from_task(current, ctx) == event->cgrp)
911 		cpuctx->cgrp = event->cgrp;
912 	else if (!add)
913 		cpuctx->cgrp = NULL;
914 }
915 
916 #else /* !CONFIG_CGROUP_PERF */
917 
918 static inline bool
919 perf_cgroup_match(struct perf_event *event)
920 {
921 	return true;
922 }
923 
924 static inline void perf_detach_cgroup(struct perf_event *event)
925 {}
926 
927 static inline int is_cgroup_event(struct perf_event *event)
928 {
929 	return 0;
930 }
931 
932 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
933 {
934 	return 0;
935 }
936 
937 static inline void update_cgrp_time_from_event(struct perf_event *event)
938 {
939 }
940 
941 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
942 {
943 }
944 
945 static inline void perf_cgroup_sched_out(struct task_struct *task,
946 					 struct task_struct *next)
947 {
948 }
949 
950 static inline void perf_cgroup_sched_in(struct task_struct *prev,
951 					struct task_struct *task)
952 {
953 }
954 
955 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
956 				      struct perf_event_attr *attr,
957 				      struct perf_event *group_leader)
958 {
959 	return -EINVAL;
960 }
961 
962 static inline void
963 perf_cgroup_set_timestamp(struct task_struct *task,
964 			  struct perf_event_context *ctx)
965 {
966 }
967 
968 void
969 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
970 {
971 }
972 
973 static inline void
974 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
975 {
976 }
977 
978 static inline u64 perf_cgroup_event_time(struct perf_event *event)
979 {
980 	return 0;
981 }
982 
983 static inline void
984 perf_cgroup_defer_enabled(struct perf_event *event)
985 {
986 }
987 
988 static inline void
989 perf_cgroup_mark_enabled(struct perf_event *event,
990 			 struct perf_event_context *ctx)
991 {
992 }
993 
994 static inline void
995 list_update_cgroup_event(struct perf_event *event,
996 			 struct perf_event_context *ctx, bool add)
997 {
998 }
999 
1000 #endif
1001 
1002 /*
1003  * set default to be dependent on timer tick just
1004  * like original code
1005  */
1006 #define PERF_CPU_HRTIMER (1000 / HZ)
1007 /*
1008  * function must be called with interrupts disbled
1009  */
1010 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1011 {
1012 	struct perf_cpu_context *cpuctx;
1013 	int rotations = 0;
1014 
1015 	WARN_ON(!irqs_disabled());
1016 
1017 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1018 	rotations = perf_rotate_context(cpuctx);
1019 
1020 	raw_spin_lock(&cpuctx->hrtimer_lock);
1021 	if (rotations)
1022 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1023 	else
1024 		cpuctx->hrtimer_active = 0;
1025 	raw_spin_unlock(&cpuctx->hrtimer_lock);
1026 
1027 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1028 }
1029 
1030 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1031 {
1032 	struct hrtimer *timer = &cpuctx->hrtimer;
1033 	struct pmu *pmu = cpuctx->ctx.pmu;
1034 	u64 interval;
1035 
1036 	/* no multiplexing needed for SW PMU */
1037 	if (pmu->task_ctx_nr == perf_sw_context)
1038 		return;
1039 
1040 	/*
1041 	 * check default is sane, if not set then force to
1042 	 * default interval (1/tick)
1043 	 */
1044 	interval = pmu->hrtimer_interval_ms;
1045 	if (interval < 1)
1046 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1047 
1048 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1049 
1050 	raw_spin_lock_init(&cpuctx->hrtimer_lock);
1051 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1052 	timer->function = perf_mux_hrtimer_handler;
1053 }
1054 
1055 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1056 {
1057 	struct hrtimer *timer = &cpuctx->hrtimer;
1058 	struct pmu *pmu = cpuctx->ctx.pmu;
1059 	unsigned long flags;
1060 
1061 	/* not for SW PMU */
1062 	if (pmu->task_ctx_nr == perf_sw_context)
1063 		return 0;
1064 
1065 	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1066 	if (!cpuctx->hrtimer_active) {
1067 		cpuctx->hrtimer_active = 1;
1068 		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1069 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1070 	}
1071 	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1072 
1073 	return 0;
1074 }
1075 
1076 void perf_pmu_disable(struct pmu *pmu)
1077 {
1078 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1079 	if (!(*count)++)
1080 		pmu->pmu_disable(pmu);
1081 }
1082 
1083 void perf_pmu_enable(struct pmu *pmu)
1084 {
1085 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1086 	if (!--(*count))
1087 		pmu->pmu_enable(pmu);
1088 }
1089 
1090 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1091 
1092 /*
1093  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1094  * perf_event_task_tick() are fully serialized because they're strictly cpu
1095  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1096  * disabled, while perf_event_task_tick is called from IRQ context.
1097  */
1098 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1099 {
1100 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
1101 
1102 	WARN_ON(!irqs_disabled());
1103 
1104 	WARN_ON(!list_empty(&ctx->active_ctx_list));
1105 
1106 	list_add(&ctx->active_ctx_list, head);
1107 }
1108 
1109 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1110 {
1111 	WARN_ON(!irqs_disabled());
1112 
1113 	WARN_ON(list_empty(&ctx->active_ctx_list));
1114 
1115 	list_del_init(&ctx->active_ctx_list);
1116 }
1117 
1118 static void get_ctx(struct perf_event_context *ctx)
1119 {
1120 	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1121 }
1122 
1123 static void free_ctx(struct rcu_head *head)
1124 {
1125 	struct perf_event_context *ctx;
1126 
1127 	ctx = container_of(head, struct perf_event_context, rcu_head);
1128 	kfree(ctx->task_ctx_data);
1129 	kfree(ctx);
1130 }
1131 
1132 static void put_ctx(struct perf_event_context *ctx)
1133 {
1134 	if (atomic_dec_and_test(&ctx->refcount)) {
1135 		if (ctx->parent_ctx)
1136 			put_ctx(ctx->parent_ctx);
1137 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1138 			put_task_struct(ctx->task);
1139 		call_rcu(&ctx->rcu_head, free_ctx);
1140 	}
1141 }
1142 
1143 /*
1144  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1145  * perf_pmu_migrate_context() we need some magic.
1146  *
1147  * Those places that change perf_event::ctx will hold both
1148  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1149  *
1150  * Lock ordering is by mutex address. There are two other sites where
1151  * perf_event_context::mutex nests and those are:
1152  *
1153  *  - perf_event_exit_task_context()	[ child , 0 ]
1154  *      perf_event_exit_event()
1155  *        put_event()			[ parent, 1 ]
1156  *
1157  *  - perf_event_init_context()		[ parent, 0 ]
1158  *      inherit_task_group()
1159  *        inherit_group()
1160  *          inherit_event()
1161  *            perf_event_alloc()
1162  *              perf_init_event()
1163  *                perf_try_init_event()	[ child , 1 ]
1164  *
1165  * While it appears there is an obvious deadlock here -- the parent and child
1166  * nesting levels are inverted between the two. This is in fact safe because
1167  * life-time rules separate them. That is an exiting task cannot fork, and a
1168  * spawning task cannot (yet) exit.
1169  *
1170  * But remember that that these are parent<->child context relations, and
1171  * migration does not affect children, therefore these two orderings should not
1172  * interact.
1173  *
1174  * The change in perf_event::ctx does not affect children (as claimed above)
1175  * because the sys_perf_event_open() case will install a new event and break
1176  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1177  * concerned with cpuctx and that doesn't have children.
1178  *
1179  * The places that change perf_event::ctx will issue:
1180  *
1181  *   perf_remove_from_context();
1182  *   synchronize_rcu();
1183  *   perf_install_in_context();
1184  *
1185  * to affect the change. The remove_from_context() + synchronize_rcu() should
1186  * quiesce the event, after which we can install it in the new location. This
1187  * means that only external vectors (perf_fops, prctl) can perturb the event
1188  * while in transit. Therefore all such accessors should also acquire
1189  * perf_event_context::mutex to serialize against this.
1190  *
1191  * However; because event->ctx can change while we're waiting to acquire
1192  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1193  * function.
1194  *
1195  * Lock order:
1196  *    cred_guard_mutex
1197  *	task_struct::perf_event_mutex
1198  *	  perf_event_context::mutex
1199  *	    perf_event::child_mutex;
1200  *	      perf_event_context::lock
1201  *	    perf_event::mmap_mutex
1202  *	    mmap_sem
1203  */
1204 static struct perf_event_context *
1205 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1206 {
1207 	struct perf_event_context *ctx;
1208 
1209 again:
1210 	rcu_read_lock();
1211 	ctx = ACCESS_ONCE(event->ctx);
1212 	if (!atomic_inc_not_zero(&ctx->refcount)) {
1213 		rcu_read_unlock();
1214 		goto again;
1215 	}
1216 	rcu_read_unlock();
1217 
1218 	mutex_lock_nested(&ctx->mutex, nesting);
1219 	if (event->ctx != ctx) {
1220 		mutex_unlock(&ctx->mutex);
1221 		put_ctx(ctx);
1222 		goto again;
1223 	}
1224 
1225 	return ctx;
1226 }
1227 
1228 static inline struct perf_event_context *
1229 perf_event_ctx_lock(struct perf_event *event)
1230 {
1231 	return perf_event_ctx_lock_nested(event, 0);
1232 }
1233 
1234 static void perf_event_ctx_unlock(struct perf_event *event,
1235 				  struct perf_event_context *ctx)
1236 {
1237 	mutex_unlock(&ctx->mutex);
1238 	put_ctx(ctx);
1239 }
1240 
1241 /*
1242  * This must be done under the ctx->lock, such as to serialize against
1243  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1244  * calling scheduler related locks and ctx->lock nests inside those.
1245  */
1246 static __must_check struct perf_event_context *
1247 unclone_ctx(struct perf_event_context *ctx)
1248 {
1249 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1250 
1251 	lockdep_assert_held(&ctx->lock);
1252 
1253 	if (parent_ctx)
1254 		ctx->parent_ctx = NULL;
1255 	ctx->generation++;
1256 
1257 	return parent_ctx;
1258 }
1259 
1260 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1261 {
1262 	/*
1263 	 * only top level events have the pid namespace they were created in
1264 	 */
1265 	if (event->parent)
1266 		event = event->parent;
1267 
1268 	return task_tgid_nr_ns(p, event->ns);
1269 }
1270 
1271 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1272 {
1273 	/*
1274 	 * only top level events have the pid namespace they were created in
1275 	 */
1276 	if (event->parent)
1277 		event = event->parent;
1278 
1279 	return task_pid_nr_ns(p, event->ns);
1280 }
1281 
1282 /*
1283  * If we inherit events we want to return the parent event id
1284  * to userspace.
1285  */
1286 static u64 primary_event_id(struct perf_event *event)
1287 {
1288 	u64 id = event->id;
1289 
1290 	if (event->parent)
1291 		id = event->parent->id;
1292 
1293 	return id;
1294 }
1295 
1296 /*
1297  * Get the perf_event_context for a task and lock it.
1298  *
1299  * This has to cope with with the fact that until it is locked,
1300  * the context could get moved to another task.
1301  */
1302 static struct perf_event_context *
1303 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1304 {
1305 	struct perf_event_context *ctx;
1306 
1307 retry:
1308 	/*
1309 	 * One of the few rules of preemptible RCU is that one cannot do
1310 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1311 	 * part of the read side critical section was irqs-enabled -- see
1312 	 * rcu_read_unlock_special().
1313 	 *
1314 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1315 	 * side critical section has interrupts disabled.
1316 	 */
1317 	local_irq_save(*flags);
1318 	rcu_read_lock();
1319 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1320 	if (ctx) {
1321 		/*
1322 		 * If this context is a clone of another, it might
1323 		 * get swapped for another underneath us by
1324 		 * perf_event_task_sched_out, though the
1325 		 * rcu_read_lock() protects us from any context
1326 		 * getting freed.  Lock the context and check if it
1327 		 * got swapped before we could get the lock, and retry
1328 		 * if so.  If we locked the right context, then it
1329 		 * can't get swapped on us any more.
1330 		 */
1331 		raw_spin_lock(&ctx->lock);
1332 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1333 			raw_spin_unlock(&ctx->lock);
1334 			rcu_read_unlock();
1335 			local_irq_restore(*flags);
1336 			goto retry;
1337 		}
1338 
1339 		if (ctx->task == TASK_TOMBSTONE ||
1340 		    !atomic_inc_not_zero(&ctx->refcount)) {
1341 			raw_spin_unlock(&ctx->lock);
1342 			ctx = NULL;
1343 		} else {
1344 			WARN_ON_ONCE(ctx->task != task);
1345 		}
1346 	}
1347 	rcu_read_unlock();
1348 	if (!ctx)
1349 		local_irq_restore(*flags);
1350 	return ctx;
1351 }
1352 
1353 /*
1354  * Get the context for a task and increment its pin_count so it
1355  * can't get swapped to another task.  This also increments its
1356  * reference count so that the context can't get freed.
1357  */
1358 static struct perf_event_context *
1359 perf_pin_task_context(struct task_struct *task, int ctxn)
1360 {
1361 	struct perf_event_context *ctx;
1362 	unsigned long flags;
1363 
1364 	ctx = perf_lock_task_context(task, ctxn, &flags);
1365 	if (ctx) {
1366 		++ctx->pin_count;
1367 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1368 	}
1369 	return ctx;
1370 }
1371 
1372 static void perf_unpin_context(struct perf_event_context *ctx)
1373 {
1374 	unsigned long flags;
1375 
1376 	raw_spin_lock_irqsave(&ctx->lock, flags);
1377 	--ctx->pin_count;
1378 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1379 }
1380 
1381 /*
1382  * Update the record of the current time in a context.
1383  */
1384 static void update_context_time(struct perf_event_context *ctx)
1385 {
1386 	u64 now = perf_clock();
1387 
1388 	ctx->time += now - ctx->timestamp;
1389 	ctx->timestamp = now;
1390 }
1391 
1392 static u64 perf_event_time(struct perf_event *event)
1393 {
1394 	struct perf_event_context *ctx = event->ctx;
1395 
1396 	if (is_cgroup_event(event))
1397 		return perf_cgroup_event_time(event);
1398 
1399 	return ctx ? ctx->time : 0;
1400 }
1401 
1402 /*
1403  * Update the total_time_enabled and total_time_running fields for a event.
1404  */
1405 static void update_event_times(struct perf_event *event)
1406 {
1407 	struct perf_event_context *ctx = event->ctx;
1408 	u64 run_end;
1409 
1410 	lockdep_assert_held(&ctx->lock);
1411 
1412 	if (event->state < PERF_EVENT_STATE_INACTIVE ||
1413 	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1414 		return;
1415 
1416 	/*
1417 	 * in cgroup mode, time_enabled represents
1418 	 * the time the event was enabled AND active
1419 	 * tasks were in the monitored cgroup. This is
1420 	 * independent of the activity of the context as
1421 	 * there may be a mix of cgroup and non-cgroup events.
1422 	 *
1423 	 * That is why we treat cgroup events differently
1424 	 * here.
1425 	 */
1426 	if (is_cgroup_event(event))
1427 		run_end = perf_cgroup_event_time(event);
1428 	else if (ctx->is_active)
1429 		run_end = ctx->time;
1430 	else
1431 		run_end = event->tstamp_stopped;
1432 
1433 	event->total_time_enabled = run_end - event->tstamp_enabled;
1434 
1435 	if (event->state == PERF_EVENT_STATE_INACTIVE)
1436 		run_end = event->tstamp_stopped;
1437 	else
1438 		run_end = perf_event_time(event);
1439 
1440 	event->total_time_running = run_end - event->tstamp_running;
1441 
1442 }
1443 
1444 /*
1445  * Update total_time_enabled and total_time_running for all events in a group.
1446  */
1447 static void update_group_times(struct perf_event *leader)
1448 {
1449 	struct perf_event *event;
1450 
1451 	update_event_times(leader);
1452 	list_for_each_entry(event, &leader->sibling_list, group_entry)
1453 		update_event_times(event);
1454 }
1455 
1456 static struct list_head *
1457 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1458 {
1459 	if (event->attr.pinned)
1460 		return &ctx->pinned_groups;
1461 	else
1462 		return &ctx->flexible_groups;
1463 }
1464 
1465 /*
1466  * Add a event from the lists for its context.
1467  * Must be called with ctx->mutex and ctx->lock held.
1468  */
1469 static void
1470 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1471 {
1472 
1473 	lockdep_assert_held(&ctx->lock);
1474 
1475 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1476 	event->attach_state |= PERF_ATTACH_CONTEXT;
1477 
1478 	/*
1479 	 * If we're a stand alone event or group leader, we go to the context
1480 	 * list, group events are kept attached to the group so that
1481 	 * perf_group_detach can, at all times, locate all siblings.
1482 	 */
1483 	if (event->group_leader == event) {
1484 		struct list_head *list;
1485 
1486 		event->group_caps = event->event_caps;
1487 
1488 		list = ctx_group_list(event, ctx);
1489 		list_add_tail(&event->group_entry, list);
1490 	}
1491 
1492 	list_update_cgroup_event(event, ctx, true);
1493 
1494 	list_add_rcu(&event->event_entry, &ctx->event_list);
1495 	ctx->nr_events++;
1496 	if (event->attr.inherit_stat)
1497 		ctx->nr_stat++;
1498 
1499 	ctx->generation++;
1500 }
1501 
1502 /*
1503  * Initialize event state based on the perf_event_attr::disabled.
1504  */
1505 static inline void perf_event__state_init(struct perf_event *event)
1506 {
1507 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1508 					      PERF_EVENT_STATE_INACTIVE;
1509 }
1510 
1511 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1512 {
1513 	int entry = sizeof(u64); /* value */
1514 	int size = 0;
1515 	int nr = 1;
1516 
1517 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1518 		size += sizeof(u64);
1519 
1520 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1521 		size += sizeof(u64);
1522 
1523 	if (event->attr.read_format & PERF_FORMAT_ID)
1524 		entry += sizeof(u64);
1525 
1526 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1527 		nr += nr_siblings;
1528 		size += sizeof(u64);
1529 	}
1530 
1531 	size += entry * nr;
1532 	event->read_size = size;
1533 }
1534 
1535 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1536 {
1537 	struct perf_sample_data *data;
1538 	u16 size = 0;
1539 
1540 	if (sample_type & PERF_SAMPLE_IP)
1541 		size += sizeof(data->ip);
1542 
1543 	if (sample_type & PERF_SAMPLE_ADDR)
1544 		size += sizeof(data->addr);
1545 
1546 	if (sample_type & PERF_SAMPLE_PERIOD)
1547 		size += sizeof(data->period);
1548 
1549 	if (sample_type & PERF_SAMPLE_WEIGHT)
1550 		size += sizeof(data->weight);
1551 
1552 	if (sample_type & PERF_SAMPLE_READ)
1553 		size += event->read_size;
1554 
1555 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1556 		size += sizeof(data->data_src.val);
1557 
1558 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1559 		size += sizeof(data->txn);
1560 
1561 	event->header_size = size;
1562 }
1563 
1564 /*
1565  * Called at perf_event creation and when events are attached/detached from a
1566  * group.
1567  */
1568 static void perf_event__header_size(struct perf_event *event)
1569 {
1570 	__perf_event_read_size(event,
1571 			       event->group_leader->nr_siblings);
1572 	__perf_event_header_size(event, event->attr.sample_type);
1573 }
1574 
1575 static void perf_event__id_header_size(struct perf_event *event)
1576 {
1577 	struct perf_sample_data *data;
1578 	u64 sample_type = event->attr.sample_type;
1579 	u16 size = 0;
1580 
1581 	if (sample_type & PERF_SAMPLE_TID)
1582 		size += sizeof(data->tid_entry);
1583 
1584 	if (sample_type & PERF_SAMPLE_TIME)
1585 		size += sizeof(data->time);
1586 
1587 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1588 		size += sizeof(data->id);
1589 
1590 	if (sample_type & PERF_SAMPLE_ID)
1591 		size += sizeof(data->id);
1592 
1593 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1594 		size += sizeof(data->stream_id);
1595 
1596 	if (sample_type & PERF_SAMPLE_CPU)
1597 		size += sizeof(data->cpu_entry);
1598 
1599 	event->id_header_size = size;
1600 }
1601 
1602 static bool perf_event_validate_size(struct perf_event *event)
1603 {
1604 	/*
1605 	 * The values computed here will be over-written when we actually
1606 	 * attach the event.
1607 	 */
1608 	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1609 	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1610 	perf_event__id_header_size(event);
1611 
1612 	/*
1613 	 * Sum the lot; should not exceed the 64k limit we have on records.
1614 	 * Conservative limit to allow for callchains and other variable fields.
1615 	 */
1616 	if (event->read_size + event->header_size +
1617 	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1618 		return false;
1619 
1620 	return true;
1621 }
1622 
1623 static void perf_group_attach(struct perf_event *event)
1624 {
1625 	struct perf_event *group_leader = event->group_leader, *pos;
1626 
1627 	/*
1628 	 * We can have double attach due to group movement in perf_event_open.
1629 	 */
1630 	if (event->attach_state & PERF_ATTACH_GROUP)
1631 		return;
1632 
1633 	event->attach_state |= PERF_ATTACH_GROUP;
1634 
1635 	if (group_leader == event)
1636 		return;
1637 
1638 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1639 
1640 	group_leader->group_caps &= event->event_caps;
1641 
1642 	list_add_tail(&event->group_entry, &group_leader->sibling_list);
1643 	group_leader->nr_siblings++;
1644 
1645 	perf_event__header_size(group_leader);
1646 
1647 	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1648 		perf_event__header_size(pos);
1649 }
1650 
1651 /*
1652  * Remove a event from the lists for its context.
1653  * Must be called with ctx->mutex and ctx->lock held.
1654  */
1655 static void
1656 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1657 {
1658 	WARN_ON_ONCE(event->ctx != ctx);
1659 	lockdep_assert_held(&ctx->lock);
1660 
1661 	/*
1662 	 * We can have double detach due to exit/hot-unplug + close.
1663 	 */
1664 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1665 		return;
1666 
1667 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1668 
1669 	list_update_cgroup_event(event, ctx, false);
1670 
1671 	ctx->nr_events--;
1672 	if (event->attr.inherit_stat)
1673 		ctx->nr_stat--;
1674 
1675 	list_del_rcu(&event->event_entry);
1676 
1677 	if (event->group_leader == event)
1678 		list_del_init(&event->group_entry);
1679 
1680 	update_group_times(event);
1681 
1682 	/*
1683 	 * If event was in error state, then keep it
1684 	 * that way, otherwise bogus counts will be
1685 	 * returned on read(). The only way to get out
1686 	 * of error state is by explicit re-enabling
1687 	 * of the event
1688 	 */
1689 	if (event->state > PERF_EVENT_STATE_OFF)
1690 		event->state = PERF_EVENT_STATE_OFF;
1691 
1692 	ctx->generation++;
1693 }
1694 
1695 static void perf_group_detach(struct perf_event *event)
1696 {
1697 	struct perf_event *sibling, *tmp;
1698 	struct list_head *list = NULL;
1699 
1700 	/*
1701 	 * We can have double detach due to exit/hot-unplug + close.
1702 	 */
1703 	if (!(event->attach_state & PERF_ATTACH_GROUP))
1704 		return;
1705 
1706 	event->attach_state &= ~PERF_ATTACH_GROUP;
1707 
1708 	/*
1709 	 * If this is a sibling, remove it from its group.
1710 	 */
1711 	if (event->group_leader != event) {
1712 		list_del_init(&event->group_entry);
1713 		event->group_leader->nr_siblings--;
1714 		goto out;
1715 	}
1716 
1717 	if (!list_empty(&event->group_entry))
1718 		list = &event->group_entry;
1719 
1720 	/*
1721 	 * If this was a group event with sibling events then
1722 	 * upgrade the siblings to singleton events by adding them
1723 	 * to whatever list we are on.
1724 	 */
1725 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1726 		if (list)
1727 			list_move_tail(&sibling->group_entry, list);
1728 		sibling->group_leader = sibling;
1729 
1730 		/* Inherit group flags from the previous leader */
1731 		sibling->group_caps = event->group_caps;
1732 
1733 		WARN_ON_ONCE(sibling->ctx != event->ctx);
1734 	}
1735 
1736 out:
1737 	perf_event__header_size(event->group_leader);
1738 
1739 	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1740 		perf_event__header_size(tmp);
1741 }
1742 
1743 static bool is_orphaned_event(struct perf_event *event)
1744 {
1745 	return event->state == PERF_EVENT_STATE_DEAD;
1746 }
1747 
1748 static inline int __pmu_filter_match(struct perf_event *event)
1749 {
1750 	struct pmu *pmu = event->pmu;
1751 	return pmu->filter_match ? pmu->filter_match(event) : 1;
1752 }
1753 
1754 /*
1755  * Check whether we should attempt to schedule an event group based on
1756  * PMU-specific filtering. An event group can consist of HW and SW events,
1757  * potentially with a SW leader, so we must check all the filters, to
1758  * determine whether a group is schedulable:
1759  */
1760 static inline int pmu_filter_match(struct perf_event *event)
1761 {
1762 	struct perf_event *child;
1763 
1764 	if (!__pmu_filter_match(event))
1765 		return 0;
1766 
1767 	list_for_each_entry(child, &event->sibling_list, group_entry) {
1768 		if (!__pmu_filter_match(child))
1769 			return 0;
1770 	}
1771 
1772 	return 1;
1773 }
1774 
1775 static inline int
1776 event_filter_match(struct perf_event *event)
1777 {
1778 	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1779 	       perf_cgroup_match(event) && pmu_filter_match(event);
1780 }
1781 
1782 static void
1783 event_sched_out(struct perf_event *event,
1784 		  struct perf_cpu_context *cpuctx,
1785 		  struct perf_event_context *ctx)
1786 {
1787 	u64 tstamp = perf_event_time(event);
1788 	u64 delta;
1789 
1790 	WARN_ON_ONCE(event->ctx != ctx);
1791 	lockdep_assert_held(&ctx->lock);
1792 
1793 	/*
1794 	 * An event which could not be activated because of
1795 	 * filter mismatch still needs to have its timings
1796 	 * maintained, otherwise bogus information is return
1797 	 * via read() for time_enabled, time_running:
1798 	 */
1799 	if (event->state == PERF_EVENT_STATE_INACTIVE &&
1800 	    !event_filter_match(event)) {
1801 		delta = tstamp - event->tstamp_stopped;
1802 		event->tstamp_running += delta;
1803 		event->tstamp_stopped = tstamp;
1804 	}
1805 
1806 	if (event->state != PERF_EVENT_STATE_ACTIVE)
1807 		return;
1808 
1809 	perf_pmu_disable(event->pmu);
1810 
1811 	event->tstamp_stopped = tstamp;
1812 	event->pmu->del(event, 0);
1813 	event->oncpu = -1;
1814 	event->state = PERF_EVENT_STATE_INACTIVE;
1815 	if (event->pending_disable) {
1816 		event->pending_disable = 0;
1817 		event->state = PERF_EVENT_STATE_OFF;
1818 	}
1819 
1820 	if (!is_software_event(event))
1821 		cpuctx->active_oncpu--;
1822 	if (!--ctx->nr_active)
1823 		perf_event_ctx_deactivate(ctx);
1824 	if (event->attr.freq && event->attr.sample_freq)
1825 		ctx->nr_freq--;
1826 	if (event->attr.exclusive || !cpuctx->active_oncpu)
1827 		cpuctx->exclusive = 0;
1828 
1829 	perf_pmu_enable(event->pmu);
1830 }
1831 
1832 static void
1833 group_sched_out(struct perf_event *group_event,
1834 		struct perf_cpu_context *cpuctx,
1835 		struct perf_event_context *ctx)
1836 {
1837 	struct perf_event *event;
1838 	int state = group_event->state;
1839 
1840 	perf_pmu_disable(ctx->pmu);
1841 
1842 	event_sched_out(group_event, cpuctx, ctx);
1843 
1844 	/*
1845 	 * Schedule out siblings (if any):
1846 	 */
1847 	list_for_each_entry(event, &group_event->sibling_list, group_entry)
1848 		event_sched_out(event, cpuctx, ctx);
1849 
1850 	perf_pmu_enable(ctx->pmu);
1851 
1852 	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1853 		cpuctx->exclusive = 0;
1854 }
1855 
1856 #define DETACH_GROUP	0x01UL
1857 
1858 /*
1859  * Cross CPU call to remove a performance event
1860  *
1861  * We disable the event on the hardware level first. After that we
1862  * remove it from the context list.
1863  */
1864 static void
1865 __perf_remove_from_context(struct perf_event *event,
1866 			   struct perf_cpu_context *cpuctx,
1867 			   struct perf_event_context *ctx,
1868 			   void *info)
1869 {
1870 	unsigned long flags = (unsigned long)info;
1871 
1872 	event_sched_out(event, cpuctx, ctx);
1873 	if (flags & DETACH_GROUP)
1874 		perf_group_detach(event);
1875 	list_del_event(event, ctx);
1876 
1877 	if (!ctx->nr_events && ctx->is_active) {
1878 		ctx->is_active = 0;
1879 		if (ctx->task) {
1880 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1881 			cpuctx->task_ctx = NULL;
1882 		}
1883 	}
1884 }
1885 
1886 /*
1887  * Remove the event from a task's (or a CPU's) list of events.
1888  *
1889  * If event->ctx is a cloned context, callers must make sure that
1890  * every task struct that event->ctx->task could possibly point to
1891  * remains valid.  This is OK when called from perf_release since
1892  * that only calls us on the top-level context, which can't be a clone.
1893  * When called from perf_event_exit_task, it's OK because the
1894  * context has been detached from its task.
1895  */
1896 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
1897 {
1898 	lockdep_assert_held(&event->ctx->mutex);
1899 
1900 	event_function_call(event, __perf_remove_from_context, (void *)flags);
1901 }
1902 
1903 /*
1904  * Cross CPU call to disable a performance event
1905  */
1906 static void __perf_event_disable(struct perf_event *event,
1907 				 struct perf_cpu_context *cpuctx,
1908 				 struct perf_event_context *ctx,
1909 				 void *info)
1910 {
1911 	if (event->state < PERF_EVENT_STATE_INACTIVE)
1912 		return;
1913 
1914 	update_context_time(ctx);
1915 	update_cgrp_time_from_event(event);
1916 	update_group_times(event);
1917 	if (event == event->group_leader)
1918 		group_sched_out(event, cpuctx, ctx);
1919 	else
1920 		event_sched_out(event, cpuctx, ctx);
1921 	event->state = PERF_EVENT_STATE_OFF;
1922 }
1923 
1924 /*
1925  * Disable a event.
1926  *
1927  * If event->ctx is a cloned context, callers must make sure that
1928  * every task struct that event->ctx->task could possibly point to
1929  * remains valid.  This condition is satisifed when called through
1930  * perf_event_for_each_child or perf_event_for_each because they
1931  * hold the top-level event's child_mutex, so any descendant that
1932  * goes to exit will block in perf_event_exit_event().
1933  *
1934  * When called from perf_pending_event it's OK because event->ctx
1935  * is the current context on this CPU and preemption is disabled,
1936  * hence we can't get into perf_event_task_sched_out for this context.
1937  */
1938 static void _perf_event_disable(struct perf_event *event)
1939 {
1940 	struct perf_event_context *ctx = event->ctx;
1941 
1942 	raw_spin_lock_irq(&ctx->lock);
1943 	if (event->state <= PERF_EVENT_STATE_OFF) {
1944 		raw_spin_unlock_irq(&ctx->lock);
1945 		return;
1946 	}
1947 	raw_spin_unlock_irq(&ctx->lock);
1948 
1949 	event_function_call(event, __perf_event_disable, NULL);
1950 }
1951 
1952 void perf_event_disable_local(struct perf_event *event)
1953 {
1954 	event_function_local(event, __perf_event_disable, NULL);
1955 }
1956 
1957 /*
1958  * Strictly speaking kernel users cannot create groups and therefore this
1959  * interface does not need the perf_event_ctx_lock() magic.
1960  */
1961 void perf_event_disable(struct perf_event *event)
1962 {
1963 	struct perf_event_context *ctx;
1964 
1965 	ctx = perf_event_ctx_lock(event);
1966 	_perf_event_disable(event);
1967 	perf_event_ctx_unlock(event, ctx);
1968 }
1969 EXPORT_SYMBOL_GPL(perf_event_disable);
1970 
1971 void perf_event_disable_inatomic(struct perf_event *event)
1972 {
1973 	event->pending_disable = 1;
1974 	irq_work_queue(&event->pending);
1975 }
1976 
1977 static void perf_set_shadow_time(struct perf_event *event,
1978 				 struct perf_event_context *ctx,
1979 				 u64 tstamp)
1980 {
1981 	/*
1982 	 * use the correct time source for the time snapshot
1983 	 *
1984 	 * We could get by without this by leveraging the
1985 	 * fact that to get to this function, the caller
1986 	 * has most likely already called update_context_time()
1987 	 * and update_cgrp_time_xx() and thus both timestamp
1988 	 * are identical (or very close). Given that tstamp is,
1989 	 * already adjusted for cgroup, we could say that:
1990 	 *    tstamp - ctx->timestamp
1991 	 * is equivalent to
1992 	 *    tstamp - cgrp->timestamp.
1993 	 *
1994 	 * Then, in perf_output_read(), the calculation would
1995 	 * work with no changes because:
1996 	 * - event is guaranteed scheduled in
1997 	 * - no scheduled out in between
1998 	 * - thus the timestamp would be the same
1999 	 *
2000 	 * But this is a bit hairy.
2001 	 *
2002 	 * So instead, we have an explicit cgroup call to remain
2003 	 * within the time time source all along. We believe it
2004 	 * is cleaner and simpler to understand.
2005 	 */
2006 	if (is_cgroup_event(event))
2007 		perf_cgroup_set_shadow_time(event, tstamp);
2008 	else
2009 		event->shadow_ctx_time = tstamp - ctx->timestamp;
2010 }
2011 
2012 #define MAX_INTERRUPTS (~0ULL)
2013 
2014 static void perf_log_throttle(struct perf_event *event, int enable);
2015 static void perf_log_itrace_start(struct perf_event *event);
2016 
2017 static int
2018 event_sched_in(struct perf_event *event,
2019 		 struct perf_cpu_context *cpuctx,
2020 		 struct perf_event_context *ctx)
2021 {
2022 	u64 tstamp = perf_event_time(event);
2023 	int ret = 0;
2024 
2025 	lockdep_assert_held(&ctx->lock);
2026 
2027 	if (event->state <= PERF_EVENT_STATE_OFF)
2028 		return 0;
2029 
2030 	WRITE_ONCE(event->oncpu, smp_processor_id());
2031 	/*
2032 	 * Order event::oncpu write to happen before the ACTIVE state
2033 	 * is visible.
2034 	 */
2035 	smp_wmb();
2036 	WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
2037 
2038 	/*
2039 	 * Unthrottle events, since we scheduled we might have missed several
2040 	 * ticks already, also for a heavily scheduling task there is little
2041 	 * guarantee it'll get a tick in a timely manner.
2042 	 */
2043 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2044 		perf_log_throttle(event, 1);
2045 		event->hw.interrupts = 0;
2046 	}
2047 
2048 	/*
2049 	 * The new state must be visible before we turn it on in the hardware:
2050 	 */
2051 	smp_wmb();
2052 
2053 	perf_pmu_disable(event->pmu);
2054 
2055 	perf_set_shadow_time(event, ctx, tstamp);
2056 
2057 	perf_log_itrace_start(event);
2058 
2059 	if (event->pmu->add(event, PERF_EF_START)) {
2060 		event->state = PERF_EVENT_STATE_INACTIVE;
2061 		event->oncpu = -1;
2062 		ret = -EAGAIN;
2063 		goto out;
2064 	}
2065 
2066 	event->tstamp_running += tstamp - event->tstamp_stopped;
2067 
2068 	if (!is_software_event(event))
2069 		cpuctx->active_oncpu++;
2070 	if (!ctx->nr_active++)
2071 		perf_event_ctx_activate(ctx);
2072 	if (event->attr.freq && event->attr.sample_freq)
2073 		ctx->nr_freq++;
2074 
2075 	if (event->attr.exclusive)
2076 		cpuctx->exclusive = 1;
2077 
2078 out:
2079 	perf_pmu_enable(event->pmu);
2080 
2081 	return ret;
2082 }
2083 
2084 static int
2085 group_sched_in(struct perf_event *group_event,
2086 	       struct perf_cpu_context *cpuctx,
2087 	       struct perf_event_context *ctx)
2088 {
2089 	struct perf_event *event, *partial_group = NULL;
2090 	struct pmu *pmu = ctx->pmu;
2091 	u64 now = ctx->time;
2092 	bool simulate = false;
2093 
2094 	if (group_event->state == PERF_EVENT_STATE_OFF)
2095 		return 0;
2096 
2097 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2098 
2099 	if (event_sched_in(group_event, cpuctx, ctx)) {
2100 		pmu->cancel_txn(pmu);
2101 		perf_mux_hrtimer_restart(cpuctx);
2102 		return -EAGAIN;
2103 	}
2104 
2105 	/*
2106 	 * Schedule in siblings as one group (if any):
2107 	 */
2108 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2109 		if (event_sched_in(event, cpuctx, ctx)) {
2110 			partial_group = event;
2111 			goto group_error;
2112 		}
2113 	}
2114 
2115 	if (!pmu->commit_txn(pmu))
2116 		return 0;
2117 
2118 group_error:
2119 	/*
2120 	 * Groups can be scheduled in as one unit only, so undo any
2121 	 * partial group before returning:
2122 	 * The events up to the failed event are scheduled out normally,
2123 	 * tstamp_stopped will be updated.
2124 	 *
2125 	 * The failed events and the remaining siblings need to have
2126 	 * their timings updated as if they had gone thru event_sched_in()
2127 	 * and event_sched_out(). This is required to get consistent timings
2128 	 * across the group. This also takes care of the case where the group
2129 	 * could never be scheduled by ensuring tstamp_stopped is set to mark
2130 	 * the time the event was actually stopped, such that time delta
2131 	 * calculation in update_event_times() is correct.
2132 	 */
2133 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2134 		if (event == partial_group)
2135 			simulate = true;
2136 
2137 		if (simulate) {
2138 			event->tstamp_running += now - event->tstamp_stopped;
2139 			event->tstamp_stopped = now;
2140 		} else {
2141 			event_sched_out(event, cpuctx, ctx);
2142 		}
2143 	}
2144 	event_sched_out(group_event, cpuctx, ctx);
2145 
2146 	pmu->cancel_txn(pmu);
2147 
2148 	perf_mux_hrtimer_restart(cpuctx);
2149 
2150 	return -EAGAIN;
2151 }
2152 
2153 /*
2154  * Work out whether we can put this event group on the CPU now.
2155  */
2156 static int group_can_go_on(struct perf_event *event,
2157 			   struct perf_cpu_context *cpuctx,
2158 			   int can_add_hw)
2159 {
2160 	/*
2161 	 * Groups consisting entirely of software events can always go on.
2162 	 */
2163 	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2164 		return 1;
2165 	/*
2166 	 * If an exclusive group is already on, no other hardware
2167 	 * events can go on.
2168 	 */
2169 	if (cpuctx->exclusive)
2170 		return 0;
2171 	/*
2172 	 * If this group is exclusive and there are already
2173 	 * events on the CPU, it can't go on.
2174 	 */
2175 	if (event->attr.exclusive && cpuctx->active_oncpu)
2176 		return 0;
2177 	/*
2178 	 * Otherwise, try to add it if all previous groups were able
2179 	 * to go on.
2180 	 */
2181 	return can_add_hw;
2182 }
2183 
2184 static void add_event_to_ctx(struct perf_event *event,
2185 			       struct perf_event_context *ctx)
2186 {
2187 	u64 tstamp = perf_event_time(event);
2188 
2189 	list_add_event(event, ctx);
2190 	perf_group_attach(event);
2191 	event->tstamp_enabled = tstamp;
2192 	event->tstamp_running = tstamp;
2193 	event->tstamp_stopped = tstamp;
2194 }
2195 
2196 static void ctx_sched_out(struct perf_event_context *ctx,
2197 			  struct perf_cpu_context *cpuctx,
2198 			  enum event_type_t event_type);
2199 static void
2200 ctx_sched_in(struct perf_event_context *ctx,
2201 	     struct perf_cpu_context *cpuctx,
2202 	     enum event_type_t event_type,
2203 	     struct task_struct *task);
2204 
2205 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2206 			       struct perf_event_context *ctx)
2207 {
2208 	if (!cpuctx->task_ctx)
2209 		return;
2210 
2211 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2212 		return;
2213 
2214 	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2215 }
2216 
2217 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2218 				struct perf_event_context *ctx,
2219 				struct task_struct *task)
2220 {
2221 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2222 	if (ctx)
2223 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2224 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2225 	if (ctx)
2226 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2227 }
2228 
2229 static void ctx_resched(struct perf_cpu_context *cpuctx,
2230 			struct perf_event_context *task_ctx)
2231 {
2232 	perf_pmu_disable(cpuctx->ctx.pmu);
2233 	if (task_ctx)
2234 		task_ctx_sched_out(cpuctx, task_ctx);
2235 	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2236 	perf_event_sched_in(cpuctx, task_ctx, current);
2237 	perf_pmu_enable(cpuctx->ctx.pmu);
2238 }
2239 
2240 /*
2241  * Cross CPU call to install and enable a performance event
2242  *
2243  * Very similar to remote_function() + event_function() but cannot assume that
2244  * things like ctx->is_active and cpuctx->task_ctx are set.
2245  */
2246 static int  __perf_install_in_context(void *info)
2247 {
2248 	struct perf_event *event = info;
2249 	struct perf_event_context *ctx = event->ctx;
2250 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2251 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2252 	bool reprogram = true;
2253 	int ret = 0;
2254 
2255 	raw_spin_lock(&cpuctx->ctx.lock);
2256 	if (ctx->task) {
2257 		raw_spin_lock(&ctx->lock);
2258 		task_ctx = ctx;
2259 
2260 		reprogram = (ctx->task == current);
2261 
2262 		/*
2263 		 * If the task is running, it must be running on this CPU,
2264 		 * otherwise we cannot reprogram things.
2265 		 *
2266 		 * If its not running, we don't care, ctx->lock will
2267 		 * serialize against it becoming runnable.
2268 		 */
2269 		if (task_curr(ctx->task) && !reprogram) {
2270 			ret = -ESRCH;
2271 			goto unlock;
2272 		}
2273 
2274 		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2275 	} else if (task_ctx) {
2276 		raw_spin_lock(&task_ctx->lock);
2277 	}
2278 
2279 	if (reprogram) {
2280 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2281 		add_event_to_ctx(event, ctx);
2282 		ctx_resched(cpuctx, task_ctx);
2283 	} else {
2284 		add_event_to_ctx(event, ctx);
2285 	}
2286 
2287 unlock:
2288 	perf_ctx_unlock(cpuctx, task_ctx);
2289 
2290 	return ret;
2291 }
2292 
2293 /*
2294  * Attach a performance event to a context.
2295  *
2296  * Very similar to event_function_call, see comment there.
2297  */
2298 static void
2299 perf_install_in_context(struct perf_event_context *ctx,
2300 			struct perf_event *event,
2301 			int cpu)
2302 {
2303 	struct task_struct *task = READ_ONCE(ctx->task);
2304 
2305 	lockdep_assert_held(&ctx->mutex);
2306 
2307 	if (event->cpu != -1)
2308 		event->cpu = cpu;
2309 
2310 	/*
2311 	 * Ensures that if we can observe event->ctx, both the event and ctx
2312 	 * will be 'complete'. See perf_iterate_sb_cpu().
2313 	 */
2314 	smp_store_release(&event->ctx, ctx);
2315 
2316 	if (!task) {
2317 		cpu_function_call(cpu, __perf_install_in_context, event);
2318 		return;
2319 	}
2320 
2321 	/*
2322 	 * Should not happen, we validate the ctx is still alive before calling.
2323 	 */
2324 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2325 		return;
2326 
2327 	/*
2328 	 * Installing events is tricky because we cannot rely on ctx->is_active
2329 	 * to be set in case this is the nr_events 0 -> 1 transition.
2330 	 *
2331 	 * Instead we use task_curr(), which tells us if the task is running.
2332 	 * However, since we use task_curr() outside of rq::lock, we can race
2333 	 * against the actual state. This means the result can be wrong.
2334 	 *
2335 	 * If we get a false positive, we retry, this is harmless.
2336 	 *
2337 	 * If we get a false negative, things are complicated. If we are after
2338 	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2339 	 * value must be correct. If we're before, it doesn't matter since
2340 	 * perf_event_context_sched_in() will program the counter.
2341 	 *
2342 	 * However, this hinges on the remote context switch having observed
2343 	 * our task->perf_event_ctxp[] store, such that it will in fact take
2344 	 * ctx::lock in perf_event_context_sched_in().
2345 	 *
2346 	 * We do this by task_function_call(), if the IPI fails to hit the task
2347 	 * we know any future context switch of task must see the
2348 	 * perf_event_ctpx[] store.
2349 	 */
2350 
2351 	/*
2352 	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2353 	 * task_cpu() load, such that if the IPI then does not find the task
2354 	 * running, a future context switch of that task must observe the
2355 	 * store.
2356 	 */
2357 	smp_mb();
2358 again:
2359 	if (!task_function_call(task, __perf_install_in_context, event))
2360 		return;
2361 
2362 	raw_spin_lock_irq(&ctx->lock);
2363 	task = ctx->task;
2364 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2365 		/*
2366 		 * Cannot happen because we already checked above (which also
2367 		 * cannot happen), and we hold ctx->mutex, which serializes us
2368 		 * against perf_event_exit_task_context().
2369 		 */
2370 		raw_spin_unlock_irq(&ctx->lock);
2371 		return;
2372 	}
2373 	/*
2374 	 * If the task is not running, ctx->lock will avoid it becoming so,
2375 	 * thus we can safely install the event.
2376 	 */
2377 	if (task_curr(task)) {
2378 		raw_spin_unlock_irq(&ctx->lock);
2379 		goto again;
2380 	}
2381 	add_event_to_ctx(event, ctx);
2382 	raw_spin_unlock_irq(&ctx->lock);
2383 }
2384 
2385 /*
2386  * Put a event into inactive state and update time fields.
2387  * Enabling the leader of a group effectively enables all
2388  * the group members that aren't explicitly disabled, so we
2389  * have to update their ->tstamp_enabled also.
2390  * Note: this works for group members as well as group leaders
2391  * since the non-leader members' sibling_lists will be empty.
2392  */
2393 static void __perf_event_mark_enabled(struct perf_event *event)
2394 {
2395 	struct perf_event *sub;
2396 	u64 tstamp = perf_event_time(event);
2397 
2398 	event->state = PERF_EVENT_STATE_INACTIVE;
2399 	event->tstamp_enabled = tstamp - event->total_time_enabled;
2400 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2401 		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2402 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2403 	}
2404 }
2405 
2406 /*
2407  * Cross CPU call to enable a performance event
2408  */
2409 static void __perf_event_enable(struct perf_event *event,
2410 				struct perf_cpu_context *cpuctx,
2411 				struct perf_event_context *ctx,
2412 				void *info)
2413 {
2414 	struct perf_event *leader = event->group_leader;
2415 	struct perf_event_context *task_ctx;
2416 
2417 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2418 	    event->state <= PERF_EVENT_STATE_ERROR)
2419 		return;
2420 
2421 	if (ctx->is_active)
2422 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2423 
2424 	__perf_event_mark_enabled(event);
2425 
2426 	if (!ctx->is_active)
2427 		return;
2428 
2429 	if (!event_filter_match(event)) {
2430 		if (is_cgroup_event(event))
2431 			perf_cgroup_defer_enabled(event);
2432 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2433 		return;
2434 	}
2435 
2436 	/*
2437 	 * If the event is in a group and isn't the group leader,
2438 	 * then don't put it on unless the group is on.
2439 	 */
2440 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2441 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2442 		return;
2443 	}
2444 
2445 	task_ctx = cpuctx->task_ctx;
2446 	if (ctx->task)
2447 		WARN_ON_ONCE(task_ctx != ctx);
2448 
2449 	ctx_resched(cpuctx, task_ctx);
2450 }
2451 
2452 /*
2453  * Enable a event.
2454  *
2455  * If event->ctx is a cloned context, callers must make sure that
2456  * every task struct that event->ctx->task could possibly point to
2457  * remains valid.  This condition is satisfied when called through
2458  * perf_event_for_each_child or perf_event_for_each as described
2459  * for perf_event_disable.
2460  */
2461 static void _perf_event_enable(struct perf_event *event)
2462 {
2463 	struct perf_event_context *ctx = event->ctx;
2464 
2465 	raw_spin_lock_irq(&ctx->lock);
2466 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2467 	    event->state <  PERF_EVENT_STATE_ERROR) {
2468 		raw_spin_unlock_irq(&ctx->lock);
2469 		return;
2470 	}
2471 
2472 	/*
2473 	 * If the event is in error state, clear that first.
2474 	 *
2475 	 * That way, if we see the event in error state below, we know that it
2476 	 * has gone back into error state, as distinct from the task having
2477 	 * been scheduled away before the cross-call arrived.
2478 	 */
2479 	if (event->state == PERF_EVENT_STATE_ERROR)
2480 		event->state = PERF_EVENT_STATE_OFF;
2481 	raw_spin_unlock_irq(&ctx->lock);
2482 
2483 	event_function_call(event, __perf_event_enable, NULL);
2484 }
2485 
2486 /*
2487  * See perf_event_disable();
2488  */
2489 void perf_event_enable(struct perf_event *event)
2490 {
2491 	struct perf_event_context *ctx;
2492 
2493 	ctx = perf_event_ctx_lock(event);
2494 	_perf_event_enable(event);
2495 	perf_event_ctx_unlock(event, ctx);
2496 }
2497 EXPORT_SYMBOL_GPL(perf_event_enable);
2498 
2499 struct stop_event_data {
2500 	struct perf_event	*event;
2501 	unsigned int		restart;
2502 };
2503 
2504 static int __perf_event_stop(void *info)
2505 {
2506 	struct stop_event_data *sd = info;
2507 	struct perf_event *event = sd->event;
2508 
2509 	/* if it's already INACTIVE, do nothing */
2510 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2511 		return 0;
2512 
2513 	/* matches smp_wmb() in event_sched_in() */
2514 	smp_rmb();
2515 
2516 	/*
2517 	 * There is a window with interrupts enabled before we get here,
2518 	 * so we need to check again lest we try to stop another CPU's event.
2519 	 */
2520 	if (READ_ONCE(event->oncpu) != smp_processor_id())
2521 		return -EAGAIN;
2522 
2523 	event->pmu->stop(event, PERF_EF_UPDATE);
2524 
2525 	/*
2526 	 * May race with the actual stop (through perf_pmu_output_stop()),
2527 	 * but it is only used for events with AUX ring buffer, and such
2528 	 * events will refuse to restart because of rb::aux_mmap_count==0,
2529 	 * see comments in perf_aux_output_begin().
2530 	 *
2531 	 * Since this is happening on a event-local CPU, no trace is lost
2532 	 * while restarting.
2533 	 */
2534 	if (sd->restart)
2535 		event->pmu->start(event, 0);
2536 
2537 	return 0;
2538 }
2539 
2540 static int perf_event_stop(struct perf_event *event, int restart)
2541 {
2542 	struct stop_event_data sd = {
2543 		.event		= event,
2544 		.restart	= restart,
2545 	};
2546 	int ret = 0;
2547 
2548 	do {
2549 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2550 			return 0;
2551 
2552 		/* matches smp_wmb() in event_sched_in() */
2553 		smp_rmb();
2554 
2555 		/*
2556 		 * We only want to restart ACTIVE events, so if the event goes
2557 		 * inactive here (event->oncpu==-1), there's nothing more to do;
2558 		 * fall through with ret==-ENXIO.
2559 		 */
2560 		ret = cpu_function_call(READ_ONCE(event->oncpu),
2561 					__perf_event_stop, &sd);
2562 	} while (ret == -EAGAIN);
2563 
2564 	return ret;
2565 }
2566 
2567 /*
2568  * In order to contain the amount of racy and tricky in the address filter
2569  * configuration management, it is a two part process:
2570  *
2571  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2572  *      we update the addresses of corresponding vmas in
2573  *	event::addr_filters_offs array and bump the event::addr_filters_gen;
2574  * (p2) when an event is scheduled in (pmu::add), it calls
2575  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2576  *      if the generation has changed since the previous call.
2577  *
2578  * If (p1) happens while the event is active, we restart it to force (p2).
2579  *
2580  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2581  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2582  *     ioctl;
2583  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2584  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2585  *     for reading;
2586  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2587  *     of exec.
2588  */
2589 void perf_event_addr_filters_sync(struct perf_event *event)
2590 {
2591 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2592 
2593 	if (!has_addr_filter(event))
2594 		return;
2595 
2596 	raw_spin_lock(&ifh->lock);
2597 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2598 		event->pmu->addr_filters_sync(event);
2599 		event->hw.addr_filters_gen = event->addr_filters_gen;
2600 	}
2601 	raw_spin_unlock(&ifh->lock);
2602 }
2603 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2604 
2605 static int _perf_event_refresh(struct perf_event *event, int refresh)
2606 {
2607 	/*
2608 	 * not supported on inherited events
2609 	 */
2610 	if (event->attr.inherit || !is_sampling_event(event))
2611 		return -EINVAL;
2612 
2613 	atomic_add(refresh, &event->event_limit);
2614 	_perf_event_enable(event);
2615 
2616 	return 0;
2617 }
2618 
2619 /*
2620  * See perf_event_disable()
2621  */
2622 int perf_event_refresh(struct perf_event *event, int refresh)
2623 {
2624 	struct perf_event_context *ctx;
2625 	int ret;
2626 
2627 	ctx = perf_event_ctx_lock(event);
2628 	ret = _perf_event_refresh(event, refresh);
2629 	perf_event_ctx_unlock(event, ctx);
2630 
2631 	return ret;
2632 }
2633 EXPORT_SYMBOL_GPL(perf_event_refresh);
2634 
2635 static void ctx_sched_out(struct perf_event_context *ctx,
2636 			  struct perf_cpu_context *cpuctx,
2637 			  enum event_type_t event_type)
2638 {
2639 	int is_active = ctx->is_active;
2640 	struct perf_event *event;
2641 
2642 	lockdep_assert_held(&ctx->lock);
2643 
2644 	if (likely(!ctx->nr_events)) {
2645 		/*
2646 		 * See __perf_remove_from_context().
2647 		 */
2648 		WARN_ON_ONCE(ctx->is_active);
2649 		if (ctx->task)
2650 			WARN_ON_ONCE(cpuctx->task_ctx);
2651 		return;
2652 	}
2653 
2654 	ctx->is_active &= ~event_type;
2655 	if (!(ctx->is_active & EVENT_ALL))
2656 		ctx->is_active = 0;
2657 
2658 	if (ctx->task) {
2659 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2660 		if (!ctx->is_active)
2661 			cpuctx->task_ctx = NULL;
2662 	}
2663 
2664 	/*
2665 	 * Always update time if it was set; not only when it changes.
2666 	 * Otherwise we can 'forget' to update time for any but the last
2667 	 * context we sched out. For example:
2668 	 *
2669 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2670 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
2671 	 *
2672 	 * would only update time for the pinned events.
2673 	 */
2674 	if (is_active & EVENT_TIME) {
2675 		/* update (and stop) ctx time */
2676 		update_context_time(ctx);
2677 		update_cgrp_time_from_cpuctx(cpuctx);
2678 	}
2679 
2680 	is_active ^= ctx->is_active; /* changed bits */
2681 
2682 	if (!ctx->nr_active || !(is_active & EVENT_ALL))
2683 		return;
2684 
2685 	perf_pmu_disable(ctx->pmu);
2686 	if (is_active & EVENT_PINNED) {
2687 		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2688 			group_sched_out(event, cpuctx, ctx);
2689 	}
2690 
2691 	if (is_active & EVENT_FLEXIBLE) {
2692 		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2693 			group_sched_out(event, cpuctx, ctx);
2694 	}
2695 	perf_pmu_enable(ctx->pmu);
2696 }
2697 
2698 /*
2699  * Test whether two contexts are equivalent, i.e. whether they have both been
2700  * cloned from the same version of the same context.
2701  *
2702  * Equivalence is measured using a generation number in the context that is
2703  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2704  * and list_del_event().
2705  */
2706 static int context_equiv(struct perf_event_context *ctx1,
2707 			 struct perf_event_context *ctx2)
2708 {
2709 	lockdep_assert_held(&ctx1->lock);
2710 	lockdep_assert_held(&ctx2->lock);
2711 
2712 	/* Pinning disables the swap optimization */
2713 	if (ctx1->pin_count || ctx2->pin_count)
2714 		return 0;
2715 
2716 	/* If ctx1 is the parent of ctx2 */
2717 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2718 		return 1;
2719 
2720 	/* If ctx2 is the parent of ctx1 */
2721 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2722 		return 1;
2723 
2724 	/*
2725 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
2726 	 * hierarchy, see perf_event_init_context().
2727 	 */
2728 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2729 			ctx1->parent_gen == ctx2->parent_gen)
2730 		return 1;
2731 
2732 	/* Unmatched */
2733 	return 0;
2734 }
2735 
2736 static void __perf_event_sync_stat(struct perf_event *event,
2737 				     struct perf_event *next_event)
2738 {
2739 	u64 value;
2740 
2741 	if (!event->attr.inherit_stat)
2742 		return;
2743 
2744 	/*
2745 	 * Update the event value, we cannot use perf_event_read()
2746 	 * because we're in the middle of a context switch and have IRQs
2747 	 * disabled, which upsets smp_call_function_single(), however
2748 	 * we know the event must be on the current CPU, therefore we
2749 	 * don't need to use it.
2750 	 */
2751 	switch (event->state) {
2752 	case PERF_EVENT_STATE_ACTIVE:
2753 		event->pmu->read(event);
2754 		/* fall-through */
2755 
2756 	case PERF_EVENT_STATE_INACTIVE:
2757 		update_event_times(event);
2758 		break;
2759 
2760 	default:
2761 		break;
2762 	}
2763 
2764 	/*
2765 	 * In order to keep per-task stats reliable we need to flip the event
2766 	 * values when we flip the contexts.
2767 	 */
2768 	value = local64_read(&next_event->count);
2769 	value = local64_xchg(&event->count, value);
2770 	local64_set(&next_event->count, value);
2771 
2772 	swap(event->total_time_enabled, next_event->total_time_enabled);
2773 	swap(event->total_time_running, next_event->total_time_running);
2774 
2775 	/*
2776 	 * Since we swizzled the values, update the user visible data too.
2777 	 */
2778 	perf_event_update_userpage(event);
2779 	perf_event_update_userpage(next_event);
2780 }
2781 
2782 static void perf_event_sync_stat(struct perf_event_context *ctx,
2783 				   struct perf_event_context *next_ctx)
2784 {
2785 	struct perf_event *event, *next_event;
2786 
2787 	if (!ctx->nr_stat)
2788 		return;
2789 
2790 	update_context_time(ctx);
2791 
2792 	event = list_first_entry(&ctx->event_list,
2793 				   struct perf_event, event_entry);
2794 
2795 	next_event = list_first_entry(&next_ctx->event_list,
2796 					struct perf_event, event_entry);
2797 
2798 	while (&event->event_entry != &ctx->event_list &&
2799 	       &next_event->event_entry != &next_ctx->event_list) {
2800 
2801 		__perf_event_sync_stat(event, next_event);
2802 
2803 		event = list_next_entry(event, event_entry);
2804 		next_event = list_next_entry(next_event, event_entry);
2805 	}
2806 }
2807 
2808 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2809 					 struct task_struct *next)
2810 {
2811 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2812 	struct perf_event_context *next_ctx;
2813 	struct perf_event_context *parent, *next_parent;
2814 	struct perf_cpu_context *cpuctx;
2815 	int do_switch = 1;
2816 
2817 	if (likely(!ctx))
2818 		return;
2819 
2820 	cpuctx = __get_cpu_context(ctx);
2821 	if (!cpuctx->task_ctx)
2822 		return;
2823 
2824 	rcu_read_lock();
2825 	next_ctx = next->perf_event_ctxp[ctxn];
2826 	if (!next_ctx)
2827 		goto unlock;
2828 
2829 	parent = rcu_dereference(ctx->parent_ctx);
2830 	next_parent = rcu_dereference(next_ctx->parent_ctx);
2831 
2832 	/* If neither context have a parent context; they cannot be clones. */
2833 	if (!parent && !next_parent)
2834 		goto unlock;
2835 
2836 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2837 		/*
2838 		 * Looks like the two contexts are clones, so we might be
2839 		 * able to optimize the context switch.  We lock both
2840 		 * contexts and check that they are clones under the
2841 		 * lock (including re-checking that neither has been
2842 		 * uncloned in the meantime).  It doesn't matter which
2843 		 * order we take the locks because no other cpu could
2844 		 * be trying to lock both of these tasks.
2845 		 */
2846 		raw_spin_lock(&ctx->lock);
2847 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2848 		if (context_equiv(ctx, next_ctx)) {
2849 			WRITE_ONCE(ctx->task, next);
2850 			WRITE_ONCE(next_ctx->task, task);
2851 
2852 			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2853 
2854 			/*
2855 			 * RCU_INIT_POINTER here is safe because we've not
2856 			 * modified the ctx and the above modification of
2857 			 * ctx->task and ctx->task_ctx_data are immaterial
2858 			 * since those values are always verified under
2859 			 * ctx->lock which we're now holding.
2860 			 */
2861 			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2862 			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2863 
2864 			do_switch = 0;
2865 
2866 			perf_event_sync_stat(ctx, next_ctx);
2867 		}
2868 		raw_spin_unlock(&next_ctx->lock);
2869 		raw_spin_unlock(&ctx->lock);
2870 	}
2871 unlock:
2872 	rcu_read_unlock();
2873 
2874 	if (do_switch) {
2875 		raw_spin_lock(&ctx->lock);
2876 		task_ctx_sched_out(cpuctx, ctx);
2877 		raw_spin_unlock(&ctx->lock);
2878 	}
2879 }
2880 
2881 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
2882 
2883 void perf_sched_cb_dec(struct pmu *pmu)
2884 {
2885 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2886 
2887 	this_cpu_dec(perf_sched_cb_usages);
2888 
2889 	if (!--cpuctx->sched_cb_usage)
2890 		list_del(&cpuctx->sched_cb_entry);
2891 }
2892 
2893 
2894 void perf_sched_cb_inc(struct pmu *pmu)
2895 {
2896 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2897 
2898 	if (!cpuctx->sched_cb_usage++)
2899 		list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
2900 
2901 	this_cpu_inc(perf_sched_cb_usages);
2902 }
2903 
2904 /*
2905  * This function provides the context switch callback to the lower code
2906  * layer. It is invoked ONLY when the context switch callback is enabled.
2907  *
2908  * This callback is relevant even to per-cpu events; for example multi event
2909  * PEBS requires this to provide PID/TID information. This requires we flush
2910  * all queued PEBS records before we context switch to a new task.
2911  */
2912 static void perf_pmu_sched_task(struct task_struct *prev,
2913 				struct task_struct *next,
2914 				bool sched_in)
2915 {
2916 	struct perf_cpu_context *cpuctx;
2917 	struct pmu *pmu;
2918 
2919 	if (prev == next)
2920 		return;
2921 
2922 	list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
2923 		pmu = cpuctx->unique_pmu; /* software PMUs will not have sched_task */
2924 
2925 		if (WARN_ON_ONCE(!pmu->sched_task))
2926 			continue;
2927 
2928 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2929 		perf_pmu_disable(pmu);
2930 
2931 		pmu->sched_task(cpuctx->task_ctx, sched_in);
2932 
2933 		perf_pmu_enable(pmu);
2934 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2935 	}
2936 }
2937 
2938 static void perf_event_switch(struct task_struct *task,
2939 			      struct task_struct *next_prev, bool sched_in);
2940 
2941 #define for_each_task_context_nr(ctxn)					\
2942 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2943 
2944 /*
2945  * Called from scheduler to remove the events of the current task,
2946  * with interrupts disabled.
2947  *
2948  * We stop each event and update the event value in event->count.
2949  *
2950  * This does not protect us against NMI, but disable()
2951  * sets the disabled bit in the control field of event _before_
2952  * accessing the event control register. If a NMI hits, then it will
2953  * not restart the event.
2954  */
2955 void __perf_event_task_sched_out(struct task_struct *task,
2956 				 struct task_struct *next)
2957 {
2958 	int ctxn;
2959 
2960 	if (__this_cpu_read(perf_sched_cb_usages))
2961 		perf_pmu_sched_task(task, next, false);
2962 
2963 	if (atomic_read(&nr_switch_events))
2964 		perf_event_switch(task, next, false);
2965 
2966 	for_each_task_context_nr(ctxn)
2967 		perf_event_context_sched_out(task, ctxn, next);
2968 
2969 	/*
2970 	 * if cgroup events exist on this CPU, then we need
2971 	 * to check if we have to switch out PMU state.
2972 	 * cgroup event are system-wide mode only
2973 	 */
2974 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2975 		perf_cgroup_sched_out(task, next);
2976 }
2977 
2978 /*
2979  * Called with IRQs disabled
2980  */
2981 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2982 			      enum event_type_t event_type)
2983 {
2984 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2985 }
2986 
2987 static void
2988 ctx_pinned_sched_in(struct perf_event_context *ctx,
2989 		    struct perf_cpu_context *cpuctx)
2990 {
2991 	struct perf_event *event;
2992 
2993 	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2994 		if (event->state <= PERF_EVENT_STATE_OFF)
2995 			continue;
2996 		if (!event_filter_match(event))
2997 			continue;
2998 
2999 		/* may need to reset tstamp_enabled */
3000 		if (is_cgroup_event(event))
3001 			perf_cgroup_mark_enabled(event, ctx);
3002 
3003 		if (group_can_go_on(event, cpuctx, 1))
3004 			group_sched_in(event, cpuctx, ctx);
3005 
3006 		/*
3007 		 * If this pinned group hasn't been scheduled,
3008 		 * put it in error state.
3009 		 */
3010 		if (event->state == PERF_EVENT_STATE_INACTIVE) {
3011 			update_group_times(event);
3012 			event->state = PERF_EVENT_STATE_ERROR;
3013 		}
3014 	}
3015 }
3016 
3017 static void
3018 ctx_flexible_sched_in(struct perf_event_context *ctx,
3019 		      struct perf_cpu_context *cpuctx)
3020 {
3021 	struct perf_event *event;
3022 	int can_add_hw = 1;
3023 
3024 	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
3025 		/* Ignore events in OFF or ERROR state */
3026 		if (event->state <= PERF_EVENT_STATE_OFF)
3027 			continue;
3028 		/*
3029 		 * Listen to the 'cpu' scheduling filter constraint
3030 		 * of events:
3031 		 */
3032 		if (!event_filter_match(event))
3033 			continue;
3034 
3035 		/* may need to reset tstamp_enabled */
3036 		if (is_cgroup_event(event))
3037 			perf_cgroup_mark_enabled(event, ctx);
3038 
3039 		if (group_can_go_on(event, cpuctx, can_add_hw)) {
3040 			if (group_sched_in(event, cpuctx, ctx))
3041 				can_add_hw = 0;
3042 		}
3043 	}
3044 }
3045 
3046 static void
3047 ctx_sched_in(struct perf_event_context *ctx,
3048 	     struct perf_cpu_context *cpuctx,
3049 	     enum event_type_t event_type,
3050 	     struct task_struct *task)
3051 {
3052 	int is_active = ctx->is_active;
3053 	u64 now;
3054 
3055 	lockdep_assert_held(&ctx->lock);
3056 
3057 	if (likely(!ctx->nr_events))
3058 		return;
3059 
3060 	ctx->is_active |= (event_type | EVENT_TIME);
3061 	if (ctx->task) {
3062 		if (!is_active)
3063 			cpuctx->task_ctx = ctx;
3064 		else
3065 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3066 	}
3067 
3068 	is_active ^= ctx->is_active; /* changed bits */
3069 
3070 	if (is_active & EVENT_TIME) {
3071 		/* start ctx time */
3072 		now = perf_clock();
3073 		ctx->timestamp = now;
3074 		perf_cgroup_set_timestamp(task, ctx);
3075 	}
3076 
3077 	/*
3078 	 * First go through the list and put on any pinned groups
3079 	 * in order to give them the best chance of going on.
3080 	 */
3081 	if (is_active & EVENT_PINNED)
3082 		ctx_pinned_sched_in(ctx, cpuctx);
3083 
3084 	/* Then walk through the lower prio flexible groups */
3085 	if (is_active & EVENT_FLEXIBLE)
3086 		ctx_flexible_sched_in(ctx, cpuctx);
3087 }
3088 
3089 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3090 			     enum event_type_t event_type,
3091 			     struct task_struct *task)
3092 {
3093 	struct perf_event_context *ctx = &cpuctx->ctx;
3094 
3095 	ctx_sched_in(ctx, cpuctx, event_type, task);
3096 }
3097 
3098 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3099 					struct task_struct *task)
3100 {
3101 	struct perf_cpu_context *cpuctx;
3102 
3103 	cpuctx = __get_cpu_context(ctx);
3104 	if (cpuctx->task_ctx == ctx)
3105 		return;
3106 
3107 	perf_ctx_lock(cpuctx, ctx);
3108 	perf_pmu_disable(ctx->pmu);
3109 	/*
3110 	 * We want to keep the following priority order:
3111 	 * cpu pinned (that don't need to move), task pinned,
3112 	 * cpu flexible, task flexible.
3113 	 */
3114 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3115 	perf_event_sched_in(cpuctx, ctx, task);
3116 	perf_pmu_enable(ctx->pmu);
3117 	perf_ctx_unlock(cpuctx, ctx);
3118 }
3119 
3120 /*
3121  * Called from scheduler to add the events of the current task
3122  * with interrupts disabled.
3123  *
3124  * We restore the event value and then enable it.
3125  *
3126  * This does not protect us against NMI, but enable()
3127  * sets the enabled bit in the control field of event _before_
3128  * accessing the event control register. If a NMI hits, then it will
3129  * keep the event running.
3130  */
3131 void __perf_event_task_sched_in(struct task_struct *prev,
3132 				struct task_struct *task)
3133 {
3134 	struct perf_event_context *ctx;
3135 	int ctxn;
3136 
3137 	/*
3138 	 * If cgroup events exist on this CPU, then we need to check if we have
3139 	 * to switch in PMU state; cgroup event are system-wide mode only.
3140 	 *
3141 	 * Since cgroup events are CPU events, we must schedule these in before
3142 	 * we schedule in the task events.
3143 	 */
3144 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3145 		perf_cgroup_sched_in(prev, task);
3146 
3147 	for_each_task_context_nr(ctxn) {
3148 		ctx = task->perf_event_ctxp[ctxn];
3149 		if (likely(!ctx))
3150 			continue;
3151 
3152 		perf_event_context_sched_in(ctx, task);
3153 	}
3154 
3155 	if (atomic_read(&nr_switch_events))
3156 		perf_event_switch(task, prev, true);
3157 
3158 	if (__this_cpu_read(perf_sched_cb_usages))
3159 		perf_pmu_sched_task(prev, task, true);
3160 }
3161 
3162 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3163 {
3164 	u64 frequency = event->attr.sample_freq;
3165 	u64 sec = NSEC_PER_SEC;
3166 	u64 divisor, dividend;
3167 
3168 	int count_fls, nsec_fls, frequency_fls, sec_fls;
3169 
3170 	count_fls = fls64(count);
3171 	nsec_fls = fls64(nsec);
3172 	frequency_fls = fls64(frequency);
3173 	sec_fls = 30;
3174 
3175 	/*
3176 	 * We got @count in @nsec, with a target of sample_freq HZ
3177 	 * the target period becomes:
3178 	 *
3179 	 *             @count * 10^9
3180 	 * period = -------------------
3181 	 *          @nsec * sample_freq
3182 	 *
3183 	 */
3184 
3185 	/*
3186 	 * Reduce accuracy by one bit such that @a and @b converge
3187 	 * to a similar magnitude.
3188 	 */
3189 #define REDUCE_FLS(a, b)		\
3190 do {					\
3191 	if (a##_fls > b##_fls) {	\
3192 		a >>= 1;		\
3193 		a##_fls--;		\
3194 	} else {			\
3195 		b >>= 1;		\
3196 		b##_fls--;		\
3197 	}				\
3198 } while (0)
3199 
3200 	/*
3201 	 * Reduce accuracy until either term fits in a u64, then proceed with
3202 	 * the other, so that finally we can do a u64/u64 division.
3203 	 */
3204 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3205 		REDUCE_FLS(nsec, frequency);
3206 		REDUCE_FLS(sec, count);
3207 	}
3208 
3209 	if (count_fls + sec_fls > 64) {
3210 		divisor = nsec * frequency;
3211 
3212 		while (count_fls + sec_fls > 64) {
3213 			REDUCE_FLS(count, sec);
3214 			divisor >>= 1;
3215 		}
3216 
3217 		dividend = count * sec;
3218 	} else {
3219 		dividend = count * sec;
3220 
3221 		while (nsec_fls + frequency_fls > 64) {
3222 			REDUCE_FLS(nsec, frequency);
3223 			dividend >>= 1;
3224 		}
3225 
3226 		divisor = nsec * frequency;
3227 	}
3228 
3229 	if (!divisor)
3230 		return dividend;
3231 
3232 	return div64_u64(dividend, divisor);
3233 }
3234 
3235 static DEFINE_PER_CPU(int, perf_throttled_count);
3236 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3237 
3238 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3239 {
3240 	struct hw_perf_event *hwc = &event->hw;
3241 	s64 period, sample_period;
3242 	s64 delta;
3243 
3244 	period = perf_calculate_period(event, nsec, count);
3245 
3246 	delta = (s64)(period - hwc->sample_period);
3247 	delta = (delta + 7) / 8; /* low pass filter */
3248 
3249 	sample_period = hwc->sample_period + delta;
3250 
3251 	if (!sample_period)
3252 		sample_period = 1;
3253 
3254 	hwc->sample_period = sample_period;
3255 
3256 	if (local64_read(&hwc->period_left) > 8*sample_period) {
3257 		if (disable)
3258 			event->pmu->stop(event, PERF_EF_UPDATE);
3259 
3260 		local64_set(&hwc->period_left, 0);
3261 
3262 		if (disable)
3263 			event->pmu->start(event, PERF_EF_RELOAD);
3264 	}
3265 }
3266 
3267 /*
3268  * combine freq adjustment with unthrottling to avoid two passes over the
3269  * events. At the same time, make sure, having freq events does not change
3270  * the rate of unthrottling as that would introduce bias.
3271  */
3272 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3273 					   int needs_unthr)
3274 {
3275 	struct perf_event *event;
3276 	struct hw_perf_event *hwc;
3277 	u64 now, period = TICK_NSEC;
3278 	s64 delta;
3279 
3280 	/*
3281 	 * only need to iterate over all events iff:
3282 	 * - context have events in frequency mode (needs freq adjust)
3283 	 * - there are events to unthrottle on this cpu
3284 	 */
3285 	if (!(ctx->nr_freq || needs_unthr))
3286 		return;
3287 
3288 	raw_spin_lock(&ctx->lock);
3289 	perf_pmu_disable(ctx->pmu);
3290 
3291 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3292 		if (event->state != PERF_EVENT_STATE_ACTIVE)
3293 			continue;
3294 
3295 		if (!event_filter_match(event))
3296 			continue;
3297 
3298 		perf_pmu_disable(event->pmu);
3299 
3300 		hwc = &event->hw;
3301 
3302 		if (hwc->interrupts == MAX_INTERRUPTS) {
3303 			hwc->interrupts = 0;
3304 			perf_log_throttle(event, 1);
3305 			event->pmu->start(event, 0);
3306 		}
3307 
3308 		if (!event->attr.freq || !event->attr.sample_freq)
3309 			goto next;
3310 
3311 		/*
3312 		 * stop the event and update event->count
3313 		 */
3314 		event->pmu->stop(event, PERF_EF_UPDATE);
3315 
3316 		now = local64_read(&event->count);
3317 		delta = now - hwc->freq_count_stamp;
3318 		hwc->freq_count_stamp = now;
3319 
3320 		/*
3321 		 * restart the event
3322 		 * reload only if value has changed
3323 		 * we have stopped the event so tell that
3324 		 * to perf_adjust_period() to avoid stopping it
3325 		 * twice.
3326 		 */
3327 		if (delta > 0)
3328 			perf_adjust_period(event, period, delta, false);
3329 
3330 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3331 	next:
3332 		perf_pmu_enable(event->pmu);
3333 	}
3334 
3335 	perf_pmu_enable(ctx->pmu);
3336 	raw_spin_unlock(&ctx->lock);
3337 }
3338 
3339 /*
3340  * Round-robin a context's events:
3341  */
3342 static void rotate_ctx(struct perf_event_context *ctx)
3343 {
3344 	/*
3345 	 * Rotate the first entry last of non-pinned groups. Rotation might be
3346 	 * disabled by the inheritance code.
3347 	 */
3348 	if (!ctx->rotate_disable)
3349 		list_rotate_left(&ctx->flexible_groups);
3350 }
3351 
3352 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3353 {
3354 	struct perf_event_context *ctx = NULL;
3355 	int rotate = 0;
3356 
3357 	if (cpuctx->ctx.nr_events) {
3358 		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3359 			rotate = 1;
3360 	}
3361 
3362 	ctx = cpuctx->task_ctx;
3363 	if (ctx && ctx->nr_events) {
3364 		if (ctx->nr_events != ctx->nr_active)
3365 			rotate = 1;
3366 	}
3367 
3368 	if (!rotate)
3369 		goto done;
3370 
3371 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3372 	perf_pmu_disable(cpuctx->ctx.pmu);
3373 
3374 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3375 	if (ctx)
3376 		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3377 
3378 	rotate_ctx(&cpuctx->ctx);
3379 	if (ctx)
3380 		rotate_ctx(ctx);
3381 
3382 	perf_event_sched_in(cpuctx, ctx, current);
3383 
3384 	perf_pmu_enable(cpuctx->ctx.pmu);
3385 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3386 done:
3387 
3388 	return rotate;
3389 }
3390 
3391 void perf_event_task_tick(void)
3392 {
3393 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
3394 	struct perf_event_context *ctx, *tmp;
3395 	int throttled;
3396 
3397 	WARN_ON(!irqs_disabled());
3398 
3399 	__this_cpu_inc(perf_throttled_seq);
3400 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
3401 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3402 
3403 	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3404 		perf_adjust_freq_unthr_context(ctx, throttled);
3405 }
3406 
3407 static int event_enable_on_exec(struct perf_event *event,
3408 				struct perf_event_context *ctx)
3409 {
3410 	if (!event->attr.enable_on_exec)
3411 		return 0;
3412 
3413 	event->attr.enable_on_exec = 0;
3414 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
3415 		return 0;
3416 
3417 	__perf_event_mark_enabled(event);
3418 
3419 	return 1;
3420 }
3421 
3422 /*
3423  * Enable all of a task's events that have been marked enable-on-exec.
3424  * This expects task == current.
3425  */
3426 static void perf_event_enable_on_exec(int ctxn)
3427 {
3428 	struct perf_event_context *ctx, *clone_ctx = NULL;
3429 	struct perf_cpu_context *cpuctx;
3430 	struct perf_event *event;
3431 	unsigned long flags;
3432 	int enabled = 0;
3433 
3434 	local_irq_save(flags);
3435 	ctx = current->perf_event_ctxp[ctxn];
3436 	if (!ctx || !ctx->nr_events)
3437 		goto out;
3438 
3439 	cpuctx = __get_cpu_context(ctx);
3440 	perf_ctx_lock(cpuctx, ctx);
3441 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3442 	list_for_each_entry(event, &ctx->event_list, event_entry)
3443 		enabled |= event_enable_on_exec(event, ctx);
3444 
3445 	/*
3446 	 * Unclone and reschedule this context if we enabled any event.
3447 	 */
3448 	if (enabled) {
3449 		clone_ctx = unclone_ctx(ctx);
3450 		ctx_resched(cpuctx, ctx);
3451 	}
3452 	perf_ctx_unlock(cpuctx, ctx);
3453 
3454 out:
3455 	local_irq_restore(flags);
3456 
3457 	if (clone_ctx)
3458 		put_ctx(clone_ctx);
3459 }
3460 
3461 struct perf_read_data {
3462 	struct perf_event *event;
3463 	bool group;
3464 	int ret;
3465 };
3466 
3467 static int find_cpu_to_read(struct perf_event *event, int local_cpu)
3468 {
3469 	int event_cpu = event->oncpu;
3470 	u16 local_pkg, event_pkg;
3471 
3472 	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3473 		event_pkg =  topology_physical_package_id(event_cpu);
3474 		local_pkg =  topology_physical_package_id(local_cpu);
3475 
3476 		if (event_pkg == local_pkg)
3477 			return local_cpu;
3478 	}
3479 
3480 	return event_cpu;
3481 }
3482 
3483 /*
3484  * Cross CPU call to read the hardware event
3485  */
3486 static void __perf_event_read(void *info)
3487 {
3488 	struct perf_read_data *data = info;
3489 	struct perf_event *sub, *event = data->event;
3490 	struct perf_event_context *ctx = event->ctx;
3491 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3492 	struct pmu *pmu = event->pmu;
3493 
3494 	/*
3495 	 * If this is a task context, we need to check whether it is
3496 	 * the current task context of this cpu.  If not it has been
3497 	 * scheduled out before the smp call arrived.  In that case
3498 	 * event->count would have been updated to a recent sample
3499 	 * when the event was scheduled out.
3500 	 */
3501 	if (ctx->task && cpuctx->task_ctx != ctx)
3502 		return;
3503 
3504 	raw_spin_lock(&ctx->lock);
3505 	if (ctx->is_active) {
3506 		update_context_time(ctx);
3507 		update_cgrp_time_from_event(event);
3508 	}
3509 
3510 	update_event_times(event);
3511 	if (event->state != PERF_EVENT_STATE_ACTIVE)
3512 		goto unlock;
3513 
3514 	if (!data->group) {
3515 		pmu->read(event);
3516 		data->ret = 0;
3517 		goto unlock;
3518 	}
3519 
3520 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3521 
3522 	pmu->read(event);
3523 
3524 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
3525 		update_event_times(sub);
3526 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3527 			/*
3528 			 * Use sibling's PMU rather than @event's since
3529 			 * sibling could be on different (eg: software) PMU.
3530 			 */
3531 			sub->pmu->read(sub);
3532 		}
3533 	}
3534 
3535 	data->ret = pmu->commit_txn(pmu);
3536 
3537 unlock:
3538 	raw_spin_unlock(&ctx->lock);
3539 }
3540 
3541 static inline u64 perf_event_count(struct perf_event *event)
3542 {
3543 	if (event->pmu->count)
3544 		return event->pmu->count(event);
3545 
3546 	return __perf_event_count(event);
3547 }
3548 
3549 /*
3550  * NMI-safe method to read a local event, that is an event that
3551  * is:
3552  *   - either for the current task, or for this CPU
3553  *   - does not have inherit set, for inherited task events
3554  *     will not be local and we cannot read them atomically
3555  *   - must not have a pmu::count method
3556  */
3557 u64 perf_event_read_local(struct perf_event *event)
3558 {
3559 	unsigned long flags;
3560 	u64 val;
3561 
3562 	/*
3563 	 * Disabling interrupts avoids all counter scheduling (context
3564 	 * switches, timer based rotation and IPIs).
3565 	 */
3566 	local_irq_save(flags);
3567 
3568 	/* If this is a per-task event, it must be for current */
3569 	WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3570 		     event->hw.target != current);
3571 
3572 	/* If this is a per-CPU event, it must be for this CPU */
3573 	WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3574 		     event->cpu != smp_processor_id());
3575 
3576 	/*
3577 	 * It must not be an event with inherit set, we cannot read
3578 	 * all child counters from atomic context.
3579 	 */
3580 	WARN_ON_ONCE(event->attr.inherit);
3581 
3582 	/*
3583 	 * It must not have a pmu::count method, those are not
3584 	 * NMI safe.
3585 	 */
3586 	WARN_ON_ONCE(event->pmu->count);
3587 
3588 	/*
3589 	 * If the event is currently on this CPU, its either a per-task event,
3590 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3591 	 * oncpu == -1).
3592 	 */
3593 	if (event->oncpu == smp_processor_id())
3594 		event->pmu->read(event);
3595 
3596 	val = local64_read(&event->count);
3597 	local_irq_restore(flags);
3598 
3599 	return val;
3600 }
3601 
3602 static int perf_event_read(struct perf_event *event, bool group)
3603 {
3604 	int ret = 0, cpu_to_read, local_cpu;
3605 
3606 	/*
3607 	 * If event is enabled and currently active on a CPU, update the
3608 	 * value in the event structure:
3609 	 */
3610 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
3611 		struct perf_read_data data = {
3612 			.event = event,
3613 			.group = group,
3614 			.ret = 0,
3615 		};
3616 
3617 		local_cpu = get_cpu();
3618 		cpu_to_read = find_cpu_to_read(event, local_cpu);
3619 		put_cpu();
3620 
3621 		/*
3622 		 * Purposely ignore the smp_call_function_single() return
3623 		 * value.
3624 		 *
3625 		 * If event->oncpu isn't a valid CPU it means the event got
3626 		 * scheduled out and that will have updated the event count.
3627 		 *
3628 		 * Therefore, either way, we'll have an up-to-date event count
3629 		 * after this.
3630 		 */
3631 		(void)smp_call_function_single(cpu_to_read, __perf_event_read, &data, 1);
3632 		ret = data.ret;
3633 	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3634 		struct perf_event_context *ctx = event->ctx;
3635 		unsigned long flags;
3636 
3637 		raw_spin_lock_irqsave(&ctx->lock, flags);
3638 		/*
3639 		 * may read while context is not active
3640 		 * (e.g., thread is blocked), in that case
3641 		 * we cannot update context time
3642 		 */
3643 		if (ctx->is_active) {
3644 			update_context_time(ctx);
3645 			update_cgrp_time_from_event(event);
3646 		}
3647 		if (group)
3648 			update_group_times(event);
3649 		else
3650 			update_event_times(event);
3651 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3652 	}
3653 
3654 	return ret;
3655 }
3656 
3657 /*
3658  * Initialize the perf_event context in a task_struct:
3659  */
3660 static void __perf_event_init_context(struct perf_event_context *ctx)
3661 {
3662 	raw_spin_lock_init(&ctx->lock);
3663 	mutex_init(&ctx->mutex);
3664 	INIT_LIST_HEAD(&ctx->active_ctx_list);
3665 	INIT_LIST_HEAD(&ctx->pinned_groups);
3666 	INIT_LIST_HEAD(&ctx->flexible_groups);
3667 	INIT_LIST_HEAD(&ctx->event_list);
3668 	atomic_set(&ctx->refcount, 1);
3669 }
3670 
3671 static struct perf_event_context *
3672 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3673 {
3674 	struct perf_event_context *ctx;
3675 
3676 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3677 	if (!ctx)
3678 		return NULL;
3679 
3680 	__perf_event_init_context(ctx);
3681 	if (task) {
3682 		ctx->task = task;
3683 		get_task_struct(task);
3684 	}
3685 	ctx->pmu = pmu;
3686 
3687 	return ctx;
3688 }
3689 
3690 static struct task_struct *
3691 find_lively_task_by_vpid(pid_t vpid)
3692 {
3693 	struct task_struct *task;
3694 
3695 	rcu_read_lock();
3696 	if (!vpid)
3697 		task = current;
3698 	else
3699 		task = find_task_by_vpid(vpid);
3700 	if (task)
3701 		get_task_struct(task);
3702 	rcu_read_unlock();
3703 
3704 	if (!task)
3705 		return ERR_PTR(-ESRCH);
3706 
3707 	return task;
3708 }
3709 
3710 /*
3711  * Returns a matching context with refcount and pincount.
3712  */
3713 static struct perf_event_context *
3714 find_get_context(struct pmu *pmu, struct task_struct *task,
3715 		struct perf_event *event)
3716 {
3717 	struct perf_event_context *ctx, *clone_ctx = NULL;
3718 	struct perf_cpu_context *cpuctx;
3719 	void *task_ctx_data = NULL;
3720 	unsigned long flags;
3721 	int ctxn, err;
3722 	int cpu = event->cpu;
3723 
3724 	if (!task) {
3725 		/* Must be root to operate on a CPU event: */
3726 		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3727 			return ERR_PTR(-EACCES);
3728 
3729 		/*
3730 		 * We could be clever and allow to attach a event to an
3731 		 * offline CPU and activate it when the CPU comes up, but
3732 		 * that's for later.
3733 		 */
3734 		if (!cpu_online(cpu))
3735 			return ERR_PTR(-ENODEV);
3736 
3737 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3738 		ctx = &cpuctx->ctx;
3739 		get_ctx(ctx);
3740 		++ctx->pin_count;
3741 
3742 		return ctx;
3743 	}
3744 
3745 	err = -EINVAL;
3746 	ctxn = pmu->task_ctx_nr;
3747 	if (ctxn < 0)
3748 		goto errout;
3749 
3750 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3751 		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3752 		if (!task_ctx_data) {
3753 			err = -ENOMEM;
3754 			goto errout;
3755 		}
3756 	}
3757 
3758 retry:
3759 	ctx = perf_lock_task_context(task, ctxn, &flags);
3760 	if (ctx) {
3761 		clone_ctx = unclone_ctx(ctx);
3762 		++ctx->pin_count;
3763 
3764 		if (task_ctx_data && !ctx->task_ctx_data) {
3765 			ctx->task_ctx_data = task_ctx_data;
3766 			task_ctx_data = NULL;
3767 		}
3768 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3769 
3770 		if (clone_ctx)
3771 			put_ctx(clone_ctx);
3772 	} else {
3773 		ctx = alloc_perf_context(pmu, task);
3774 		err = -ENOMEM;
3775 		if (!ctx)
3776 			goto errout;
3777 
3778 		if (task_ctx_data) {
3779 			ctx->task_ctx_data = task_ctx_data;
3780 			task_ctx_data = NULL;
3781 		}
3782 
3783 		err = 0;
3784 		mutex_lock(&task->perf_event_mutex);
3785 		/*
3786 		 * If it has already passed perf_event_exit_task().
3787 		 * we must see PF_EXITING, it takes this mutex too.
3788 		 */
3789 		if (task->flags & PF_EXITING)
3790 			err = -ESRCH;
3791 		else if (task->perf_event_ctxp[ctxn])
3792 			err = -EAGAIN;
3793 		else {
3794 			get_ctx(ctx);
3795 			++ctx->pin_count;
3796 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3797 		}
3798 		mutex_unlock(&task->perf_event_mutex);
3799 
3800 		if (unlikely(err)) {
3801 			put_ctx(ctx);
3802 
3803 			if (err == -EAGAIN)
3804 				goto retry;
3805 			goto errout;
3806 		}
3807 	}
3808 
3809 	kfree(task_ctx_data);
3810 	return ctx;
3811 
3812 errout:
3813 	kfree(task_ctx_data);
3814 	return ERR_PTR(err);
3815 }
3816 
3817 static void perf_event_free_filter(struct perf_event *event);
3818 static void perf_event_free_bpf_prog(struct perf_event *event);
3819 
3820 static void free_event_rcu(struct rcu_head *head)
3821 {
3822 	struct perf_event *event;
3823 
3824 	event = container_of(head, struct perf_event, rcu_head);
3825 	if (event->ns)
3826 		put_pid_ns(event->ns);
3827 	perf_event_free_filter(event);
3828 	kfree(event);
3829 }
3830 
3831 static void ring_buffer_attach(struct perf_event *event,
3832 			       struct ring_buffer *rb);
3833 
3834 static void detach_sb_event(struct perf_event *event)
3835 {
3836 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3837 
3838 	raw_spin_lock(&pel->lock);
3839 	list_del_rcu(&event->sb_list);
3840 	raw_spin_unlock(&pel->lock);
3841 }
3842 
3843 static bool is_sb_event(struct perf_event *event)
3844 {
3845 	struct perf_event_attr *attr = &event->attr;
3846 
3847 	if (event->parent)
3848 		return false;
3849 
3850 	if (event->attach_state & PERF_ATTACH_TASK)
3851 		return false;
3852 
3853 	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
3854 	    attr->comm || attr->comm_exec ||
3855 	    attr->task ||
3856 	    attr->context_switch)
3857 		return true;
3858 	return false;
3859 }
3860 
3861 static void unaccount_pmu_sb_event(struct perf_event *event)
3862 {
3863 	if (is_sb_event(event))
3864 		detach_sb_event(event);
3865 }
3866 
3867 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3868 {
3869 	if (event->parent)
3870 		return;
3871 
3872 	if (is_cgroup_event(event))
3873 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3874 }
3875 
3876 #ifdef CONFIG_NO_HZ_FULL
3877 static DEFINE_SPINLOCK(nr_freq_lock);
3878 #endif
3879 
3880 static void unaccount_freq_event_nohz(void)
3881 {
3882 #ifdef CONFIG_NO_HZ_FULL
3883 	spin_lock(&nr_freq_lock);
3884 	if (atomic_dec_and_test(&nr_freq_events))
3885 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3886 	spin_unlock(&nr_freq_lock);
3887 #endif
3888 }
3889 
3890 static void unaccount_freq_event(void)
3891 {
3892 	if (tick_nohz_full_enabled())
3893 		unaccount_freq_event_nohz();
3894 	else
3895 		atomic_dec(&nr_freq_events);
3896 }
3897 
3898 static void unaccount_event(struct perf_event *event)
3899 {
3900 	bool dec = false;
3901 
3902 	if (event->parent)
3903 		return;
3904 
3905 	if (event->attach_state & PERF_ATTACH_TASK)
3906 		dec = true;
3907 	if (event->attr.mmap || event->attr.mmap_data)
3908 		atomic_dec(&nr_mmap_events);
3909 	if (event->attr.comm)
3910 		atomic_dec(&nr_comm_events);
3911 	if (event->attr.task)
3912 		atomic_dec(&nr_task_events);
3913 	if (event->attr.freq)
3914 		unaccount_freq_event();
3915 	if (event->attr.context_switch) {
3916 		dec = true;
3917 		atomic_dec(&nr_switch_events);
3918 	}
3919 	if (is_cgroup_event(event))
3920 		dec = true;
3921 	if (has_branch_stack(event))
3922 		dec = true;
3923 
3924 	if (dec) {
3925 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
3926 			schedule_delayed_work(&perf_sched_work, HZ);
3927 	}
3928 
3929 	unaccount_event_cpu(event, event->cpu);
3930 
3931 	unaccount_pmu_sb_event(event);
3932 }
3933 
3934 static void perf_sched_delayed(struct work_struct *work)
3935 {
3936 	mutex_lock(&perf_sched_mutex);
3937 	if (atomic_dec_and_test(&perf_sched_count))
3938 		static_branch_disable(&perf_sched_events);
3939 	mutex_unlock(&perf_sched_mutex);
3940 }
3941 
3942 /*
3943  * The following implement mutual exclusion of events on "exclusive" pmus
3944  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3945  * at a time, so we disallow creating events that might conflict, namely:
3946  *
3947  *  1) cpu-wide events in the presence of per-task events,
3948  *  2) per-task events in the presence of cpu-wide events,
3949  *  3) two matching events on the same context.
3950  *
3951  * The former two cases are handled in the allocation path (perf_event_alloc(),
3952  * _free_event()), the latter -- before the first perf_install_in_context().
3953  */
3954 static int exclusive_event_init(struct perf_event *event)
3955 {
3956 	struct pmu *pmu = event->pmu;
3957 
3958 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3959 		return 0;
3960 
3961 	/*
3962 	 * Prevent co-existence of per-task and cpu-wide events on the
3963 	 * same exclusive pmu.
3964 	 *
3965 	 * Negative pmu::exclusive_cnt means there are cpu-wide
3966 	 * events on this "exclusive" pmu, positive means there are
3967 	 * per-task events.
3968 	 *
3969 	 * Since this is called in perf_event_alloc() path, event::ctx
3970 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3971 	 * to mean "per-task event", because unlike other attach states it
3972 	 * never gets cleared.
3973 	 */
3974 	if (event->attach_state & PERF_ATTACH_TASK) {
3975 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3976 			return -EBUSY;
3977 	} else {
3978 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3979 			return -EBUSY;
3980 	}
3981 
3982 	return 0;
3983 }
3984 
3985 static void exclusive_event_destroy(struct perf_event *event)
3986 {
3987 	struct pmu *pmu = event->pmu;
3988 
3989 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3990 		return;
3991 
3992 	/* see comment in exclusive_event_init() */
3993 	if (event->attach_state & PERF_ATTACH_TASK)
3994 		atomic_dec(&pmu->exclusive_cnt);
3995 	else
3996 		atomic_inc(&pmu->exclusive_cnt);
3997 }
3998 
3999 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4000 {
4001 	if ((e1->pmu == e2->pmu) &&
4002 	    (e1->cpu == e2->cpu ||
4003 	     e1->cpu == -1 ||
4004 	     e2->cpu == -1))
4005 		return true;
4006 	return false;
4007 }
4008 
4009 /* Called under the same ctx::mutex as perf_install_in_context() */
4010 static bool exclusive_event_installable(struct perf_event *event,
4011 					struct perf_event_context *ctx)
4012 {
4013 	struct perf_event *iter_event;
4014 	struct pmu *pmu = event->pmu;
4015 
4016 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4017 		return true;
4018 
4019 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4020 		if (exclusive_event_match(iter_event, event))
4021 			return false;
4022 	}
4023 
4024 	return true;
4025 }
4026 
4027 static void perf_addr_filters_splice(struct perf_event *event,
4028 				       struct list_head *head);
4029 
4030 static void _free_event(struct perf_event *event)
4031 {
4032 	irq_work_sync(&event->pending);
4033 
4034 	unaccount_event(event);
4035 
4036 	if (event->rb) {
4037 		/*
4038 		 * Can happen when we close an event with re-directed output.
4039 		 *
4040 		 * Since we have a 0 refcount, perf_mmap_close() will skip
4041 		 * over us; possibly making our ring_buffer_put() the last.
4042 		 */
4043 		mutex_lock(&event->mmap_mutex);
4044 		ring_buffer_attach(event, NULL);
4045 		mutex_unlock(&event->mmap_mutex);
4046 	}
4047 
4048 	if (is_cgroup_event(event))
4049 		perf_detach_cgroup(event);
4050 
4051 	if (!event->parent) {
4052 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4053 			put_callchain_buffers();
4054 	}
4055 
4056 	perf_event_free_bpf_prog(event);
4057 	perf_addr_filters_splice(event, NULL);
4058 	kfree(event->addr_filters_offs);
4059 
4060 	if (event->destroy)
4061 		event->destroy(event);
4062 
4063 	if (event->ctx)
4064 		put_ctx(event->ctx);
4065 
4066 	exclusive_event_destroy(event);
4067 	module_put(event->pmu->module);
4068 
4069 	call_rcu(&event->rcu_head, free_event_rcu);
4070 }
4071 
4072 /*
4073  * Used to free events which have a known refcount of 1, such as in error paths
4074  * where the event isn't exposed yet and inherited events.
4075  */
4076 static void free_event(struct perf_event *event)
4077 {
4078 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4079 				"unexpected event refcount: %ld; ptr=%p\n",
4080 				atomic_long_read(&event->refcount), event)) {
4081 		/* leak to avoid use-after-free */
4082 		return;
4083 	}
4084 
4085 	_free_event(event);
4086 }
4087 
4088 /*
4089  * Remove user event from the owner task.
4090  */
4091 static void perf_remove_from_owner(struct perf_event *event)
4092 {
4093 	struct task_struct *owner;
4094 
4095 	rcu_read_lock();
4096 	/*
4097 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
4098 	 * observe !owner it means the list deletion is complete and we can
4099 	 * indeed free this event, otherwise we need to serialize on
4100 	 * owner->perf_event_mutex.
4101 	 */
4102 	owner = lockless_dereference(event->owner);
4103 	if (owner) {
4104 		/*
4105 		 * Since delayed_put_task_struct() also drops the last
4106 		 * task reference we can safely take a new reference
4107 		 * while holding the rcu_read_lock().
4108 		 */
4109 		get_task_struct(owner);
4110 	}
4111 	rcu_read_unlock();
4112 
4113 	if (owner) {
4114 		/*
4115 		 * If we're here through perf_event_exit_task() we're already
4116 		 * holding ctx->mutex which would be an inversion wrt. the
4117 		 * normal lock order.
4118 		 *
4119 		 * However we can safely take this lock because its the child
4120 		 * ctx->mutex.
4121 		 */
4122 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4123 
4124 		/*
4125 		 * We have to re-check the event->owner field, if it is cleared
4126 		 * we raced with perf_event_exit_task(), acquiring the mutex
4127 		 * ensured they're done, and we can proceed with freeing the
4128 		 * event.
4129 		 */
4130 		if (event->owner) {
4131 			list_del_init(&event->owner_entry);
4132 			smp_store_release(&event->owner, NULL);
4133 		}
4134 		mutex_unlock(&owner->perf_event_mutex);
4135 		put_task_struct(owner);
4136 	}
4137 }
4138 
4139 static void put_event(struct perf_event *event)
4140 {
4141 	if (!atomic_long_dec_and_test(&event->refcount))
4142 		return;
4143 
4144 	_free_event(event);
4145 }
4146 
4147 /*
4148  * Kill an event dead; while event:refcount will preserve the event
4149  * object, it will not preserve its functionality. Once the last 'user'
4150  * gives up the object, we'll destroy the thing.
4151  */
4152 int perf_event_release_kernel(struct perf_event *event)
4153 {
4154 	struct perf_event_context *ctx = event->ctx;
4155 	struct perf_event *child, *tmp;
4156 
4157 	/*
4158 	 * If we got here through err_file: fput(event_file); we will not have
4159 	 * attached to a context yet.
4160 	 */
4161 	if (!ctx) {
4162 		WARN_ON_ONCE(event->attach_state &
4163 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4164 		goto no_ctx;
4165 	}
4166 
4167 	if (!is_kernel_event(event))
4168 		perf_remove_from_owner(event);
4169 
4170 	ctx = perf_event_ctx_lock(event);
4171 	WARN_ON_ONCE(ctx->parent_ctx);
4172 	perf_remove_from_context(event, DETACH_GROUP);
4173 
4174 	raw_spin_lock_irq(&ctx->lock);
4175 	/*
4176 	 * Mark this even as STATE_DEAD, there is no external reference to it
4177 	 * anymore.
4178 	 *
4179 	 * Anybody acquiring event->child_mutex after the below loop _must_
4180 	 * also see this, most importantly inherit_event() which will avoid
4181 	 * placing more children on the list.
4182 	 *
4183 	 * Thus this guarantees that we will in fact observe and kill _ALL_
4184 	 * child events.
4185 	 */
4186 	event->state = PERF_EVENT_STATE_DEAD;
4187 	raw_spin_unlock_irq(&ctx->lock);
4188 
4189 	perf_event_ctx_unlock(event, ctx);
4190 
4191 again:
4192 	mutex_lock(&event->child_mutex);
4193 	list_for_each_entry(child, &event->child_list, child_list) {
4194 
4195 		/*
4196 		 * Cannot change, child events are not migrated, see the
4197 		 * comment with perf_event_ctx_lock_nested().
4198 		 */
4199 		ctx = lockless_dereference(child->ctx);
4200 		/*
4201 		 * Since child_mutex nests inside ctx::mutex, we must jump
4202 		 * through hoops. We start by grabbing a reference on the ctx.
4203 		 *
4204 		 * Since the event cannot get freed while we hold the
4205 		 * child_mutex, the context must also exist and have a !0
4206 		 * reference count.
4207 		 */
4208 		get_ctx(ctx);
4209 
4210 		/*
4211 		 * Now that we have a ctx ref, we can drop child_mutex, and
4212 		 * acquire ctx::mutex without fear of it going away. Then we
4213 		 * can re-acquire child_mutex.
4214 		 */
4215 		mutex_unlock(&event->child_mutex);
4216 		mutex_lock(&ctx->mutex);
4217 		mutex_lock(&event->child_mutex);
4218 
4219 		/*
4220 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
4221 		 * state, if child is still the first entry, it didn't get freed
4222 		 * and we can continue doing so.
4223 		 */
4224 		tmp = list_first_entry_or_null(&event->child_list,
4225 					       struct perf_event, child_list);
4226 		if (tmp == child) {
4227 			perf_remove_from_context(child, DETACH_GROUP);
4228 			list_del(&child->child_list);
4229 			free_event(child);
4230 			/*
4231 			 * This matches the refcount bump in inherit_event();
4232 			 * this can't be the last reference.
4233 			 */
4234 			put_event(event);
4235 		}
4236 
4237 		mutex_unlock(&event->child_mutex);
4238 		mutex_unlock(&ctx->mutex);
4239 		put_ctx(ctx);
4240 		goto again;
4241 	}
4242 	mutex_unlock(&event->child_mutex);
4243 
4244 no_ctx:
4245 	put_event(event); /* Must be the 'last' reference */
4246 	return 0;
4247 }
4248 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4249 
4250 /*
4251  * Called when the last reference to the file is gone.
4252  */
4253 static int perf_release(struct inode *inode, struct file *file)
4254 {
4255 	perf_event_release_kernel(file->private_data);
4256 	return 0;
4257 }
4258 
4259 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4260 {
4261 	struct perf_event *child;
4262 	u64 total = 0;
4263 
4264 	*enabled = 0;
4265 	*running = 0;
4266 
4267 	mutex_lock(&event->child_mutex);
4268 
4269 	(void)perf_event_read(event, false);
4270 	total += perf_event_count(event);
4271 
4272 	*enabled += event->total_time_enabled +
4273 			atomic64_read(&event->child_total_time_enabled);
4274 	*running += event->total_time_running +
4275 			atomic64_read(&event->child_total_time_running);
4276 
4277 	list_for_each_entry(child, &event->child_list, child_list) {
4278 		(void)perf_event_read(child, false);
4279 		total += perf_event_count(child);
4280 		*enabled += child->total_time_enabled;
4281 		*running += child->total_time_running;
4282 	}
4283 	mutex_unlock(&event->child_mutex);
4284 
4285 	return total;
4286 }
4287 EXPORT_SYMBOL_GPL(perf_event_read_value);
4288 
4289 static int __perf_read_group_add(struct perf_event *leader,
4290 					u64 read_format, u64 *values)
4291 {
4292 	struct perf_event *sub;
4293 	int n = 1; /* skip @nr */
4294 	int ret;
4295 
4296 	ret = perf_event_read(leader, true);
4297 	if (ret)
4298 		return ret;
4299 
4300 	/*
4301 	 * Since we co-schedule groups, {enabled,running} times of siblings
4302 	 * will be identical to those of the leader, so we only publish one
4303 	 * set.
4304 	 */
4305 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4306 		values[n++] += leader->total_time_enabled +
4307 			atomic64_read(&leader->child_total_time_enabled);
4308 	}
4309 
4310 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4311 		values[n++] += leader->total_time_running +
4312 			atomic64_read(&leader->child_total_time_running);
4313 	}
4314 
4315 	/*
4316 	 * Write {count,id} tuples for every sibling.
4317 	 */
4318 	values[n++] += perf_event_count(leader);
4319 	if (read_format & PERF_FORMAT_ID)
4320 		values[n++] = primary_event_id(leader);
4321 
4322 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4323 		values[n++] += perf_event_count(sub);
4324 		if (read_format & PERF_FORMAT_ID)
4325 			values[n++] = primary_event_id(sub);
4326 	}
4327 
4328 	return 0;
4329 }
4330 
4331 static int perf_read_group(struct perf_event *event,
4332 				   u64 read_format, char __user *buf)
4333 {
4334 	struct perf_event *leader = event->group_leader, *child;
4335 	struct perf_event_context *ctx = leader->ctx;
4336 	int ret;
4337 	u64 *values;
4338 
4339 	lockdep_assert_held(&ctx->mutex);
4340 
4341 	values = kzalloc(event->read_size, GFP_KERNEL);
4342 	if (!values)
4343 		return -ENOMEM;
4344 
4345 	values[0] = 1 + leader->nr_siblings;
4346 
4347 	/*
4348 	 * By locking the child_mutex of the leader we effectively
4349 	 * lock the child list of all siblings.. XXX explain how.
4350 	 */
4351 	mutex_lock(&leader->child_mutex);
4352 
4353 	ret = __perf_read_group_add(leader, read_format, values);
4354 	if (ret)
4355 		goto unlock;
4356 
4357 	list_for_each_entry(child, &leader->child_list, child_list) {
4358 		ret = __perf_read_group_add(child, read_format, values);
4359 		if (ret)
4360 			goto unlock;
4361 	}
4362 
4363 	mutex_unlock(&leader->child_mutex);
4364 
4365 	ret = event->read_size;
4366 	if (copy_to_user(buf, values, event->read_size))
4367 		ret = -EFAULT;
4368 	goto out;
4369 
4370 unlock:
4371 	mutex_unlock(&leader->child_mutex);
4372 out:
4373 	kfree(values);
4374 	return ret;
4375 }
4376 
4377 static int perf_read_one(struct perf_event *event,
4378 				 u64 read_format, char __user *buf)
4379 {
4380 	u64 enabled, running;
4381 	u64 values[4];
4382 	int n = 0;
4383 
4384 	values[n++] = perf_event_read_value(event, &enabled, &running);
4385 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4386 		values[n++] = enabled;
4387 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4388 		values[n++] = running;
4389 	if (read_format & PERF_FORMAT_ID)
4390 		values[n++] = primary_event_id(event);
4391 
4392 	if (copy_to_user(buf, values, n * sizeof(u64)))
4393 		return -EFAULT;
4394 
4395 	return n * sizeof(u64);
4396 }
4397 
4398 static bool is_event_hup(struct perf_event *event)
4399 {
4400 	bool no_children;
4401 
4402 	if (event->state > PERF_EVENT_STATE_EXIT)
4403 		return false;
4404 
4405 	mutex_lock(&event->child_mutex);
4406 	no_children = list_empty(&event->child_list);
4407 	mutex_unlock(&event->child_mutex);
4408 	return no_children;
4409 }
4410 
4411 /*
4412  * Read the performance event - simple non blocking version for now
4413  */
4414 static ssize_t
4415 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4416 {
4417 	u64 read_format = event->attr.read_format;
4418 	int ret;
4419 
4420 	/*
4421 	 * Return end-of-file for a read on a event that is in
4422 	 * error state (i.e. because it was pinned but it couldn't be
4423 	 * scheduled on to the CPU at some point).
4424 	 */
4425 	if (event->state == PERF_EVENT_STATE_ERROR)
4426 		return 0;
4427 
4428 	if (count < event->read_size)
4429 		return -ENOSPC;
4430 
4431 	WARN_ON_ONCE(event->ctx->parent_ctx);
4432 	if (read_format & PERF_FORMAT_GROUP)
4433 		ret = perf_read_group(event, read_format, buf);
4434 	else
4435 		ret = perf_read_one(event, read_format, buf);
4436 
4437 	return ret;
4438 }
4439 
4440 static ssize_t
4441 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4442 {
4443 	struct perf_event *event = file->private_data;
4444 	struct perf_event_context *ctx;
4445 	int ret;
4446 
4447 	ctx = perf_event_ctx_lock(event);
4448 	ret = __perf_read(event, buf, count);
4449 	perf_event_ctx_unlock(event, ctx);
4450 
4451 	return ret;
4452 }
4453 
4454 static unsigned int perf_poll(struct file *file, poll_table *wait)
4455 {
4456 	struct perf_event *event = file->private_data;
4457 	struct ring_buffer *rb;
4458 	unsigned int events = POLLHUP;
4459 
4460 	poll_wait(file, &event->waitq, wait);
4461 
4462 	if (is_event_hup(event))
4463 		return events;
4464 
4465 	/*
4466 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
4467 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4468 	 */
4469 	mutex_lock(&event->mmap_mutex);
4470 	rb = event->rb;
4471 	if (rb)
4472 		events = atomic_xchg(&rb->poll, 0);
4473 	mutex_unlock(&event->mmap_mutex);
4474 	return events;
4475 }
4476 
4477 static void _perf_event_reset(struct perf_event *event)
4478 {
4479 	(void)perf_event_read(event, false);
4480 	local64_set(&event->count, 0);
4481 	perf_event_update_userpage(event);
4482 }
4483 
4484 /*
4485  * Holding the top-level event's child_mutex means that any
4486  * descendant process that has inherited this event will block
4487  * in perf_event_exit_event() if it goes to exit, thus satisfying the
4488  * task existence requirements of perf_event_enable/disable.
4489  */
4490 static void perf_event_for_each_child(struct perf_event *event,
4491 					void (*func)(struct perf_event *))
4492 {
4493 	struct perf_event *child;
4494 
4495 	WARN_ON_ONCE(event->ctx->parent_ctx);
4496 
4497 	mutex_lock(&event->child_mutex);
4498 	func(event);
4499 	list_for_each_entry(child, &event->child_list, child_list)
4500 		func(child);
4501 	mutex_unlock(&event->child_mutex);
4502 }
4503 
4504 static void perf_event_for_each(struct perf_event *event,
4505 				  void (*func)(struct perf_event *))
4506 {
4507 	struct perf_event_context *ctx = event->ctx;
4508 	struct perf_event *sibling;
4509 
4510 	lockdep_assert_held(&ctx->mutex);
4511 
4512 	event = event->group_leader;
4513 
4514 	perf_event_for_each_child(event, func);
4515 	list_for_each_entry(sibling, &event->sibling_list, group_entry)
4516 		perf_event_for_each_child(sibling, func);
4517 }
4518 
4519 static void __perf_event_period(struct perf_event *event,
4520 				struct perf_cpu_context *cpuctx,
4521 				struct perf_event_context *ctx,
4522 				void *info)
4523 {
4524 	u64 value = *((u64 *)info);
4525 	bool active;
4526 
4527 	if (event->attr.freq) {
4528 		event->attr.sample_freq = value;
4529 	} else {
4530 		event->attr.sample_period = value;
4531 		event->hw.sample_period = value;
4532 	}
4533 
4534 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
4535 	if (active) {
4536 		perf_pmu_disable(ctx->pmu);
4537 		/*
4538 		 * We could be throttled; unthrottle now to avoid the tick
4539 		 * trying to unthrottle while we already re-started the event.
4540 		 */
4541 		if (event->hw.interrupts == MAX_INTERRUPTS) {
4542 			event->hw.interrupts = 0;
4543 			perf_log_throttle(event, 1);
4544 		}
4545 		event->pmu->stop(event, PERF_EF_UPDATE);
4546 	}
4547 
4548 	local64_set(&event->hw.period_left, 0);
4549 
4550 	if (active) {
4551 		event->pmu->start(event, PERF_EF_RELOAD);
4552 		perf_pmu_enable(ctx->pmu);
4553 	}
4554 }
4555 
4556 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4557 {
4558 	u64 value;
4559 
4560 	if (!is_sampling_event(event))
4561 		return -EINVAL;
4562 
4563 	if (copy_from_user(&value, arg, sizeof(value)))
4564 		return -EFAULT;
4565 
4566 	if (!value)
4567 		return -EINVAL;
4568 
4569 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4570 		return -EINVAL;
4571 
4572 	event_function_call(event, __perf_event_period, &value);
4573 
4574 	return 0;
4575 }
4576 
4577 static const struct file_operations perf_fops;
4578 
4579 static inline int perf_fget_light(int fd, struct fd *p)
4580 {
4581 	struct fd f = fdget(fd);
4582 	if (!f.file)
4583 		return -EBADF;
4584 
4585 	if (f.file->f_op != &perf_fops) {
4586 		fdput(f);
4587 		return -EBADF;
4588 	}
4589 	*p = f;
4590 	return 0;
4591 }
4592 
4593 static int perf_event_set_output(struct perf_event *event,
4594 				 struct perf_event *output_event);
4595 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4596 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4597 
4598 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4599 {
4600 	void (*func)(struct perf_event *);
4601 	u32 flags = arg;
4602 
4603 	switch (cmd) {
4604 	case PERF_EVENT_IOC_ENABLE:
4605 		func = _perf_event_enable;
4606 		break;
4607 	case PERF_EVENT_IOC_DISABLE:
4608 		func = _perf_event_disable;
4609 		break;
4610 	case PERF_EVENT_IOC_RESET:
4611 		func = _perf_event_reset;
4612 		break;
4613 
4614 	case PERF_EVENT_IOC_REFRESH:
4615 		return _perf_event_refresh(event, arg);
4616 
4617 	case PERF_EVENT_IOC_PERIOD:
4618 		return perf_event_period(event, (u64 __user *)arg);
4619 
4620 	case PERF_EVENT_IOC_ID:
4621 	{
4622 		u64 id = primary_event_id(event);
4623 
4624 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4625 			return -EFAULT;
4626 		return 0;
4627 	}
4628 
4629 	case PERF_EVENT_IOC_SET_OUTPUT:
4630 	{
4631 		int ret;
4632 		if (arg != -1) {
4633 			struct perf_event *output_event;
4634 			struct fd output;
4635 			ret = perf_fget_light(arg, &output);
4636 			if (ret)
4637 				return ret;
4638 			output_event = output.file->private_data;
4639 			ret = perf_event_set_output(event, output_event);
4640 			fdput(output);
4641 		} else {
4642 			ret = perf_event_set_output(event, NULL);
4643 		}
4644 		return ret;
4645 	}
4646 
4647 	case PERF_EVENT_IOC_SET_FILTER:
4648 		return perf_event_set_filter(event, (void __user *)arg);
4649 
4650 	case PERF_EVENT_IOC_SET_BPF:
4651 		return perf_event_set_bpf_prog(event, arg);
4652 
4653 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4654 		struct ring_buffer *rb;
4655 
4656 		rcu_read_lock();
4657 		rb = rcu_dereference(event->rb);
4658 		if (!rb || !rb->nr_pages) {
4659 			rcu_read_unlock();
4660 			return -EINVAL;
4661 		}
4662 		rb_toggle_paused(rb, !!arg);
4663 		rcu_read_unlock();
4664 		return 0;
4665 	}
4666 	default:
4667 		return -ENOTTY;
4668 	}
4669 
4670 	if (flags & PERF_IOC_FLAG_GROUP)
4671 		perf_event_for_each(event, func);
4672 	else
4673 		perf_event_for_each_child(event, func);
4674 
4675 	return 0;
4676 }
4677 
4678 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4679 {
4680 	struct perf_event *event = file->private_data;
4681 	struct perf_event_context *ctx;
4682 	long ret;
4683 
4684 	ctx = perf_event_ctx_lock(event);
4685 	ret = _perf_ioctl(event, cmd, arg);
4686 	perf_event_ctx_unlock(event, ctx);
4687 
4688 	return ret;
4689 }
4690 
4691 #ifdef CONFIG_COMPAT
4692 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4693 				unsigned long arg)
4694 {
4695 	switch (_IOC_NR(cmd)) {
4696 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4697 	case _IOC_NR(PERF_EVENT_IOC_ID):
4698 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4699 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4700 			cmd &= ~IOCSIZE_MASK;
4701 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4702 		}
4703 		break;
4704 	}
4705 	return perf_ioctl(file, cmd, arg);
4706 }
4707 #else
4708 # define perf_compat_ioctl NULL
4709 #endif
4710 
4711 int perf_event_task_enable(void)
4712 {
4713 	struct perf_event_context *ctx;
4714 	struct perf_event *event;
4715 
4716 	mutex_lock(&current->perf_event_mutex);
4717 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4718 		ctx = perf_event_ctx_lock(event);
4719 		perf_event_for_each_child(event, _perf_event_enable);
4720 		perf_event_ctx_unlock(event, ctx);
4721 	}
4722 	mutex_unlock(&current->perf_event_mutex);
4723 
4724 	return 0;
4725 }
4726 
4727 int perf_event_task_disable(void)
4728 {
4729 	struct perf_event_context *ctx;
4730 	struct perf_event *event;
4731 
4732 	mutex_lock(&current->perf_event_mutex);
4733 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4734 		ctx = perf_event_ctx_lock(event);
4735 		perf_event_for_each_child(event, _perf_event_disable);
4736 		perf_event_ctx_unlock(event, ctx);
4737 	}
4738 	mutex_unlock(&current->perf_event_mutex);
4739 
4740 	return 0;
4741 }
4742 
4743 static int perf_event_index(struct perf_event *event)
4744 {
4745 	if (event->hw.state & PERF_HES_STOPPED)
4746 		return 0;
4747 
4748 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4749 		return 0;
4750 
4751 	return event->pmu->event_idx(event);
4752 }
4753 
4754 static void calc_timer_values(struct perf_event *event,
4755 				u64 *now,
4756 				u64 *enabled,
4757 				u64 *running)
4758 {
4759 	u64 ctx_time;
4760 
4761 	*now = perf_clock();
4762 	ctx_time = event->shadow_ctx_time + *now;
4763 	*enabled = ctx_time - event->tstamp_enabled;
4764 	*running = ctx_time - event->tstamp_running;
4765 }
4766 
4767 static void perf_event_init_userpage(struct perf_event *event)
4768 {
4769 	struct perf_event_mmap_page *userpg;
4770 	struct ring_buffer *rb;
4771 
4772 	rcu_read_lock();
4773 	rb = rcu_dereference(event->rb);
4774 	if (!rb)
4775 		goto unlock;
4776 
4777 	userpg = rb->user_page;
4778 
4779 	/* Allow new userspace to detect that bit 0 is deprecated */
4780 	userpg->cap_bit0_is_deprecated = 1;
4781 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4782 	userpg->data_offset = PAGE_SIZE;
4783 	userpg->data_size = perf_data_size(rb);
4784 
4785 unlock:
4786 	rcu_read_unlock();
4787 }
4788 
4789 void __weak arch_perf_update_userpage(
4790 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4791 {
4792 }
4793 
4794 /*
4795  * Callers need to ensure there can be no nesting of this function, otherwise
4796  * the seqlock logic goes bad. We can not serialize this because the arch
4797  * code calls this from NMI context.
4798  */
4799 void perf_event_update_userpage(struct perf_event *event)
4800 {
4801 	struct perf_event_mmap_page *userpg;
4802 	struct ring_buffer *rb;
4803 	u64 enabled, running, now;
4804 
4805 	rcu_read_lock();
4806 	rb = rcu_dereference(event->rb);
4807 	if (!rb)
4808 		goto unlock;
4809 
4810 	/*
4811 	 * compute total_time_enabled, total_time_running
4812 	 * based on snapshot values taken when the event
4813 	 * was last scheduled in.
4814 	 *
4815 	 * we cannot simply called update_context_time()
4816 	 * because of locking issue as we can be called in
4817 	 * NMI context
4818 	 */
4819 	calc_timer_values(event, &now, &enabled, &running);
4820 
4821 	userpg = rb->user_page;
4822 	/*
4823 	 * Disable preemption so as to not let the corresponding user-space
4824 	 * spin too long if we get preempted.
4825 	 */
4826 	preempt_disable();
4827 	++userpg->lock;
4828 	barrier();
4829 	userpg->index = perf_event_index(event);
4830 	userpg->offset = perf_event_count(event);
4831 	if (userpg->index)
4832 		userpg->offset -= local64_read(&event->hw.prev_count);
4833 
4834 	userpg->time_enabled = enabled +
4835 			atomic64_read(&event->child_total_time_enabled);
4836 
4837 	userpg->time_running = running +
4838 			atomic64_read(&event->child_total_time_running);
4839 
4840 	arch_perf_update_userpage(event, userpg, now);
4841 
4842 	barrier();
4843 	++userpg->lock;
4844 	preempt_enable();
4845 unlock:
4846 	rcu_read_unlock();
4847 }
4848 
4849 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4850 {
4851 	struct perf_event *event = vma->vm_file->private_data;
4852 	struct ring_buffer *rb;
4853 	int ret = VM_FAULT_SIGBUS;
4854 
4855 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
4856 		if (vmf->pgoff == 0)
4857 			ret = 0;
4858 		return ret;
4859 	}
4860 
4861 	rcu_read_lock();
4862 	rb = rcu_dereference(event->rb);
4863 	if (!rb)
4864 		goto unlock;
4865 
4866 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4867 		goto unlock;
4868 
4869 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4870 	if (!vmf->page)
4871 		goto unlock;
4872 
4873 	get_page(vmf->page);
4874 	vmf->page->mapping = vma->vm_file->f_mapping;
4875 	vmf->page->index   = vmf->pgoff;
4876 
4877 	ret = 0;
4878 unlock:
4879 	rcu_read_unlock();
4880 
4881 	return ret;
4882 }
4883 
4884 static void ring_buffer_attach(struct perf_event *event,
4885 			       struct ring_buffer *rb)
4886 {
4887 	struct ring_buffer *old_rb = NULL;
4888 	unsigned long flags;
4889 
4890 	if (event->rb) {
4891 		/*
4892 		 * Should be impossible, we set this when removing
4893 		 * event->rb_entry and wait/clear when adding event->rb_entry.
4894 		 */
4895 		WARN_ON_ONCE(event->rcu_pending);
4896 
4897 		old_rb = event->rb;
4898 		spin_lock_irqsave(&old_rb->event_lock, flags);
4899 		list_del_rcu(&event->rb_entry);
4900 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
4901 
4902 		event->rcu_batches = get_state_synchronize_rcu();
4903 		event->rcu_pending = 1;
4904 	}
4905 
4906 	if (rb) {
4907 		if (event->rcu_pending) {
4908 			cond_synchronize_rcu(event->rcu_batches);
4909 			event->rcu_pending = 0;
4910 		}
4911 
4912 		spin_lock_irqsave(&rb->event_lock, flags);
4913 		list_add_rcu(&event->rb_entry, &rb->event_list);
4914 		spin_unlock_irqrestore(&rb->event_lock, flags);
4915 	}
4916 
4917 	/*
4918 	 * Avoid racing with perf_mmap_close(AUX): stop the event
4919 	 * before swizzling the event::rb pointer; if it's getting
4920 	 * unmapped, its aux_mmap_count will be 0 and it won't
4921 	 * restart. See the comment in __perf_pmu_output_stop().
4922 	 *
4923 	 * Data will inevitably be lost when set_output is done in
4924 	 * mid-air, but then again, whoever does it like this is
4925 	 * not in for the data anyway.
4926 	 */
4927 	if (has_aux(event))
4928 		perf_event_stop(event, 0);
4929 
4930 	rcu_assign_pointer(event->rb, rb);
4931 
4932 	if (old_rb) {
4933 		ring_buffer_put(old_rb);
4934 		/*
4935 		 * Since we detached before setting the new rb, so that we
4936 		 * could attach the new rb, we could have missed a wakeup.
4937 		 * Provide it now.
4938 		 */
4939 		wake_up_all(&event->waitq);
4940 	}
4941 }
4942 
4943 static void ring_buffer_wakeup(struct perf_event *event)
4944 {
4945 	struct ring_buffer *rb;
4946 
4947 	rcu_read_lock();
4948 	rb = rcu_dereference(event->rb);
4949 	if (rb) {
4950 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4951 			wake_up_all(&event->waitq);
4952 	}
4953 	rcu_read_unlock();
4954 }
4955 
4956 struct ring_buffer *ring_buffer_get(struct perf_event *event)
4957 {
4958 	struct ring_buffer *rb;
4959 
4960 	rcu_read_lock();
4961 	rb = rcu_dereference(event->rb);
4962 	if (rb) {
4963 		if (!atomic_inc_not_zero(&rb->refcount))
4964 			rb = NULL;
4965 	}
4966 	rcu_read_unlock();
4967 
4968 	return rb;
4969 }
4970 
4971 void ring_buffer_put(struct ring_buffer *rb)
4972 {
4973 	if (!atomic_dec_and_test(&rb->refcount))
4974 		return;
4975 
4976 	WARN_ON_ONCE(!list_empty(&rb->event_list));
4977 
4978 	call_rcu(&rb->rcu_head, rb_free_rcu);
4979 }
4980 
4981 static void perf_mmap_open(struct vm_area_struct *vma)
4982 {
4983 	struct perf_event *event = vma->vm_file->private_data;
4984 
4985 	atomic_inc(&event->mmap_count);
4986 	atomic_inc(&event->rb->mmap_count);
4987 
4988 	if (vma->vm_pgoff)
4989 		atomic_inc(&event->rb->aux_mmap_count);
4990 
4991 	if (event->pmu->event_mapped)
4992 		event->pmu->event_mapped(event);
4993 }
4994 
4995 static void perf_pmu_output_stop(struct perf_event *event);
4996 
4997 /*
4998  * A buffer can be mmap()ed multiple times; either directly through the same
4999  * event, or through other events by use of perf_event_set_output().
5000  *
5001  * In order to undo the VM accounting done by perf_mmap() we need to destroy
5002  * the buffer here, where we still have a VM context. This means we need
5003  * to detach all events redirecting to us.
5004  */
5005 static void perf_mmap_close(struct vm_area_struct *vma)
5006 {
5007 	struct perf_event *event = vma->vm_file->private_data;
5008 
5009 	struct ring_buffer *rb = ring_buffer_get(event);
5010 	struct user_struct *mmap_user = rb->mmap_user;
5011 	int mmap_locked = rb->mmap_locked;
5012 	unsigned long size = perf_data_size(rb);
5013 
5014 	if (event->pmu->event_unmapped)
5015 		event->pmu->event_unmapped(event);
5016 
5017 	/*
5018 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
5019 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
5020 	 * serialize with perf_mmap here.
5021 	 */
5022 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5023 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5024 		/*
5025 		 * Stop all AUX events that are writing to this buffer,
5026 		 * so that we can free its AUX pages and corresponding PMU
5027 		 * data. Note that after rb::aux_mmap_count dropped to zero,
5028 		 * they won't start any more (see perf_aux_output_begin()).
5029 		 */
5030 		perf_pmu_output_stop(event);
5031 
5032 		/* now it's safe to free the pages */
5033 		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5034 		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5035 
5036 		/* this has to be the last one */
5037 		rb_free_aux(rb);
5038 		WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5039 
5040 		mutex_unlock(&event->mmap_mutex);
5041 	}
5042 
5043 	atomic_dec(&rb->mmap_count);
5044 
5045 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5046 		goto out_put;
5047 
5048 	ring_buffer_attach(event, NULL);
5049 	mutex_unlock(&event->mmap_mutex);
5050 
5051 	/* If there's still other mmap()s of this buffer, we're done. */
5052 	if (atomic_read(&rb->mmap_count))
5053 		goto out_put;
5054 
5055 	/*
5056 	 * No other mmap()s, detach from all other events that might redirect
5057 	 * into the now unreachable buffer. Somewhat complicated by the
5058 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5059 	 */
5060 again:
5061 	rcu_read_lock();
5062 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5063 		if (!atomic_long_inc_not_zero(&event->refcount)) {
5064 			/*
5065 			 * This event is en-route to free_event() which will
5066 			 * detach it and remove it from the list.
5067 			 */
5068 			continue;
5069 		}
5070 		rcu_read_unlock();
5071 
5072 		mutex_lock(&event->mmap_mutex);
5073 		/*
5074 		 * Check we didn't race with perf_event_set_output() which can
5075 		 * swizzle the rb from under us while we were waiting to
5076 		 * acquire mmap_mutex.
5077 		 *
5078 		 * If we find a different rb; ignore this event, a next
5079 		 * iteration will no longer find it on the list. We have to
5080 		 * still restart the iteration to make sure we're not now
5081 		 * iterating the wrong list.
5082 		 */
5083 		if (event->rb == rb)
5084 			ring_buffer_attach(event, NULL);
5085 
5086 		mutex_unlock(&event->mmap_mutex);
5087 		put_event(event);
5088 
5089 		/*
5090 		 * Restart the iteration; either we're on the wrong list or
5091 		 * destroyed its integrity by doing a deletion.
5092 		 */
5093 		goto again;
5094 	}
5095 	rcu_read_unlock();
5096 
5097 	/*
5098 	 * It could be there's still a few 0-ref events on the list; they'll
5099 	 * get cleaned up by free_event() -- they'll also still have their
5100 	 * ref on the rb and will free it whenever they are done with it.
5101 	 *
5102 	 * Aside from that, this buffer is 'fully' detached and unmapped,
5103 	 * undo the VM accounting.
5104 	 */
5105 
5106 	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5107 	vma->vm_mm->pinned_vm -= mmap_locked;
5108 	free_uid(mmap_user);
5109 
5110 out_put:
5111 	ring_buffer_put(rb); /* could be last */
5112 }
5113 
5114 static const struct vm_operations_struct perf_mmap_vmops = {
5115 	.open		= perf_mmap_open,
5116 	.close		= perf_mmap_close, /* non mergable */
5117 	.fault		= perf_mmap_fault,
5118 	.page_mkwrite	= perf_mmap_fault,
5119 };
5120 
5121 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5122 {
5123 	struct perf_event *event = file->private_data;
5124 	unsigned long user_locked, user_lock_limit;
5125 	struct user_struct *user = current_user();
5126 	unsigned long locked, lock_limit;
5127 	struct ring_buffer *rb = NULL;
5128 	unsigned long vma_size;
5129 	unsigned long nr_pages;
5130 	long user_extra = 0, extra = 0;
5131 	int ret = 0, flags = 0;
5132 
5133 	/*
5134 	 * Don't allow mmap() of inherited per-task counters. This would
5135 	 * create a performance issue due to all children writing to the
5136 	 * same rb.
5137 	 */
5138 	if (event->cpu == -1 && event->attr.inherit)
5139 		return -EINVAL;
5140 
5141 	if (!(vma->vm_flags & VM_SHARED))
5142 		return -EINVAL;
5143 
5144 	vma_size = vma->vm_end - vma->vm_start;
5145 
5146 	if (vma->vm_pgoff == 0) {
5147 		nr_pages = (vma_size / PAGE_SIZE) - 1;
5148 	} else {
5149 		/*
5150 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5151 		 * mapped, all subsequent mappings should have the same size
5152 		 * and offset. Must be above the normal perf buffer.
5153 		 */
5154 		u64 aux_offset, aux_size;
5155 
5156 		if (!event->rb)
5157 			return -EINVAL;
5158 
5159 		nr_pages = vma_size / PAGE_SIZE;
5160 
5161 		mutex_lock(&event->mmap_mutex);
5162 		ret = -EINVAL;
5163 
5164 		rb = event->rb;
5165 		if (!rb)
5166 			goto aux_unlock;
5167 
5168 		aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
5169 		aux_size = ACCESS_ONCE(rb->user_page->aux_size);
5170 
5171 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5172 			goto aux_unlock;
5173 
5174 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5175 			goto aux_unlock;
5176 
5177 		/* already mapped with a different offset */
5178 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5179 			goto aux_unlock;
5180 
5181 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5182 			goto aux_unlock;
5183 
5184 		/* already mapped with a different size */
5185 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5186 			goto aux_unlock;
5187 
5188 		if (!is_power_of_2(nr_pages))
5189 			goto aux_unlock;
5190 
5191 		if (!atomic_inc_not_zero(&rb->mmap_count))
5192 			goto aux_unlock;
5193 
5194 		if (rb_has_aux(rb)) {
5195 			atomic_inc(&rb->aux_mmap_count);
5196 			ret = 0;
5197 			goto unlock;
5198 		}
5199 
5200 		atomic_set(&rb->aux_mmap_count, 1);
5201 		user_extra = nr_pages;
5202 
5203 		goto accounting;
5204 	}
5205 
5206 	/*
5207 	 * If we have rb pages ensure they're a power-of-two number, so we
5208 	 * can do bitmasks instead of modulo.
5209 	 */
5210 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
5211 		return -EINVAL;
5212 
5213 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
5214 		return -EINVAL;
5215 
5216 	WARN_ON_ONCE(event->ctx->parent_ctx);
5217 again:
5218 	mutex_lock(&event->mmap_mutex);
5219 	if (event->rb) {
5220 		if (event->rb->nr_pages != nr_pages) {
5221 			ret = -EINVAL;
5222 			goto unlock;
5223 		}
5224 
5225 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5226 			/*
5227 			 * Raced against perf_mmap_close() through
5228 			 * perf_event_set_output(). Try again, hope for better
5229 			 * luck.
5230 			 */
5231 			mutex_unlock(&event->mmap_mutex);
5232 			goto again;
5233 		}
5234 
5235 		goto unlock;
5236 	}
5237 
5238 	user_extra = nr_pages + 1;
5239 
5240 accounting:
5241 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5242 
5243 	/*
5244 	 * Increase the limit linearly with more CPUs:
5245 	 */
5246 	user_lock_limit *= num_online_cpus();
5247 
5248 	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5249 
5250 	if (user_locked > user_lock_limit)
5251 		extra = user_locked - user_lock_limit;
5252 
5253 	lock_limit = rlimit(RLIMIT_MEMLOCK);
5254 	lock_limit >>= PAGE_SHIFT;
5255 	locked = vma->vm_mm->pinned_vm + extra;
5256 
5257 	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5258 		!capable(CAP_IPC_LOCK)) {
5259 		ret = -EPERM;
5260 		goto unlock;
5261 	}
5262 
5263 	WARN_ON(!rb && event->rb);
5264 
5265 	if (vma->vm_flags & VM_WRITE)
5266 		flags |= RING_BUFFER_WRITABLE;
5267 
5268 	if (!rb) {
5269 		rb = rb_alloc(nr_pages,
5270 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
5271 			      event->cpu, flags);
5272 
5273 		if (!rb) {
5274 			ret = -ENOMEM;
5275 			goto unlock;
5276 		}
5277 
5278 		atomic_set(&rb->mmap_count, 1);
5279 		rb->mmap_user = get_current_user();
5280 		rb->mmap_locked = extra;
5281 
5282 		ring_buffer_attach(event, rb);
5283 
5284 		perf_event_init_userpage(event);
5285 		perf_event_update_userpage(event);
5286 	} else {
5287 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5288 				   event->attr.aux_watermark, flags);
5289 		if (!ret)
5290 			rb->aux_mmap_locked = extra;
5291 	}
5292 
5293 unlock:
5294 	if (!ret) {
5295 		atomic_long_add(user_extra, &user->locked_vm);
5296 		vma->vm_mm->pinned_vm += extra;
5297 
5298 		atomic_inc(&event->mmap_count);
5299 	} else if (rb) {
5300 		atomic_dec(&rb->mmap_count);
5301 	}
5302 aux_unlock:
5303 	mutex_unlock(&event->mmap_mutex);
5304 
5305 	/*
5306 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
5307 	 * vma.
5308 	 */
5309 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5310 	vma->vm_ops = &perf_mmap_vmops;
5311 
5312 	if (event->pmu->event_mapped)
5313 		event->pmu->event_mapped(event);
5314 
5315 	return ret;
5316 }
5317 
5318 static int perf_fasync(int fd, struct file *filp, int on)
5319 {
5320 	struct inode *inode = file_inode(filp);
5321 	struct perf_event *event = filp->private_data;
5322 	int retval;
5323 
5324 	inode_lock(inode);
5325 	retval = fasync_helper(fd, filp, on, &event->fasync);
5326 	inode_unlock(inode);
5327 
5328 	if (retval < 0)
5329 		return retval;
5330 
5331 	return 0;
5332 }
5333 
5334 static const struct file_operations perf_fops = {
5335 	.llseek			= no_llseek,
5336 	.release		= perf_release,
5337 	.read			= perf_read,
5338 	.poll			= perf_poll,
5339 	.unlocked_ioctl		= perf_ioctl,
5340 	.compat_ioctl		= perf_compat_ioctl,
5341 	.mmap			= perf_mmap,
5342 	.fasync			= perf_fasync,
5343 };
5344 
5345 /*
5346  * Perf event wakeup
5347  *
5348  * If there's data, ensure we set the poll() state and publish everything
5349  * to user-space before waking everybody up.
5350  */
5351 
5352 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5353 {
5354 	/* only the parent has fasync state */
5355 	if (event->parent)
5356 		event = event->parent;
5357 	return &event->fasync;
5358 }
5359 
5360 void perf_event_wakeup(struct perf_event *event)
5361 {
5362 	ring_buffer_wakeup(event);
5363 
5364 	if (event->pending_kill) {
5365 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5366 		event->pending_kill = 0;
5367 	}
5368 }
5369 
5370 static void perf_pending_event(struct irq_work *entry)
5371 {
5372 	struct perf_event *event = container_of(entry,
5373 			struct perf_event, pending);
5374 	int rctx;
5375 
5376 	rctx = perf_swevent_get_recursion_context();
5377 	/*
5378 	 * If we 'fail' here, that's OK, it means recursion is already disabled
5379 	 * and we won't recurse 'further'.
5380 	 */
5381 
5382 	if (event->pending_disable) {
5383 		event->pending_disable = 0;
5384 		perf_event_disable_local(event);
5385 	}
5386 
5387 	if (event->pending_wakeup) {
5388 		event->pending_wakeup = 0;
5389 		perf_event_wakeup(event);
5390 	}
5391 
5392 	if (rctx >= 0)
5393 		perf_swevent_put_recursion_context(rctx);
5394 }
5395 
5396 /*
5397  * We assume there is only KVM supporting the callbacks.
5398  * Later on, we might change it to a list if there is
5399  * another virtualization implementation supporting the callbacks.
5400  */
5401 struct perf_guest_info_callbacks *perf_guest_cbs;
5402 
5403 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5404 {
5405 	perf_guest_cbs = cbs;
5406 	return 0;
5407 }
5408 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5409 
5410 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5411 {
5412 	perf_guest_cbs = NULL;
5413 	return 0;
5414 }
5415 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5416 
5417 static void
5418 perf_output_sample_regs(struct perf_output_handle *handle,
5419 			struct pt_regs *regs, u64 mask)
5420 {
5421 	int bit;
5422 	DECLARE_BITMAP(_mask, 64);
5423 
5424 	bitmap_from_u64(_mask, mask);
5425 	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5426 		u64 val;
5427 
5428 		val = perf_reg_value(regs, bit);
5429 		perf_output_put(handle, val);
5430 	}
5431 }
5432 
5433 static void perf_sample_regs_user(struct perf_regs *regs_user,
5434 				  struct pt_regs *regs,
5435 				  struct pt_regs *regs_user_copy)
5436 {
5437 	if (user_mode(regs)) {
5438 		regs_user->abi = perf_reg_abi(current);
5439 		regs_user->regs = regs;
5440 	} else if (current->mm) {
5441 		perf_get_regs_user(regs_user, regs, regs_user_copy);
5442 	} else {
5443 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5444 		regs_user->regs = NULL;
5445 	}
5446 }
5447 
5448 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5449 				  struct pt_regs *regs)
5450 {
5451 	regs_intr->regs = regs;
5452 	regs_intr->abi  = perf_reg_abi(current);
5453 }
5454 
5455 
5456 /*
5457  * Get remaining task size from user stack pointer.
5458  *
5459  * It'd be better to take stack vma map and limit this more
5460  * precisly, but there's no way to get it safely under interrupt,
5461  * so using TASK_SIZE as limit.
5462  */
5463 static u64 perf_ustack_task_size(struct pt_regs *regs)
5464 {
5465 	unsigned long addr = perf_user_stack_pointer(regs);
5466 
5467 	if (!addr || addr >= TASK_SIZE)
5468 		return 0;
5469 
5470 	return TASK_SIZE - addr;
5471 }
5472 
5473 static u16
5474 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5475 			struct pt_regs *regs)
5476 {
5477 	u64 task_size;
5478 
5479 	/* No regs, no stack pointer, no dump. */
5480 	if (!regs)
5481 		return 0;
5482 
5483 	/*
5484 	 * Check if we fit in with the requested stack size into the:
5485 	 * - TASK_SIZE
5486 	 *   If we don't, we limit the size to the TASK_SIZE.
5487 	 *
5488 	 * - remaining sample size
5489 	 *   If we don't, we customize the stack size to
5490 	 *   fit in to the remaining sample size.
5491 	 */
5492 
5493 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5494 	stack_size = min(stack_size, (u16) task_size);
5495 
5496 	/* Current header size plus static size and dynamic size. */
5497 	header_size += 2 * sizeof(u64);
5498 
5499 	/* Do we fit in with the current stack dump size? */
5500 	if ((u16) (header_size + stack_size) < header_size) {
5501 		/*
5502 		 * If we overflow the maximum size for the sample,
5503 		 * we customize the stack dump size to fit in.
5504 		 */
5505 		stack_size = USHRT_MAX - header_size - sizeof(u64);
5506 		stack_size = round_up(stack_size, sizeof(u64));
5507 	}
5508 
5509 	return stack_size;
5510 }
5511 
5512 static void
5513 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5514 			  struct pt_regs *regs)
5515 {
5516 	/* Case of a kernel thread, nothing to dump */
5517 	if (!regs) {
5518 		u64 size = 0;
5519 		perf_output_put(handle, size);
5520 	} else {
5521 		unsigned long sp;
5522 		unsigned int rem;
5523 		u64 dyn_size;
5524 
5525 		/*
5526 		 * We dump:
5527 		 * static size
5528 		 *   - the size requested by user or the best one we can fit
5529 		 *     in to the sample max size
5530 		 * data
5531 		 *   - user stack dump data
5532 		 * dynamic size
5533 		 *   - the actual dumped size
5534 		 */
5535 
5536 		/* Static size. */
5537 		perf_output_put(handle, dump_size);
5538 
5539 		/* Data. */
5540 		sp = perf_user_stack_pointer(regs);
5541 		rem = __output_copy_user(handle, (void *) sp, dump_size);
5542 		dyn_size = dump_size - rem;
5543 
5544 		perf_output_skip(handle, rem);
5545 
5546 		/* Dynamic size. */
5547 		perf_output_put(handle, dyn_size);
5548 	}
5549 }
5550 
5551 static void __perf_event_header__init_id(struct perf_event_header *header,
5552 					 struct perf_sample_data *data,
5553 					 struct perf_event *event)
5554 {
5555 	u64 sample_type = event->attr.sample_type;
5556 
5557 	data->type = sample_type;
5558 	header->size += event->id_header_size;
5559 
5560 	if (sample_type & PERF_SAMPLE_TID) {
5561 		/* namespace issues */
5562 		data->tid_entry.pid = perf_event_pid(event, current);
5563 		data->tid_entry.tid = perf_event_tid(event, current);
5564 	}
5565 
5566 	if (sample_type & PERF_SAMPLE_TIME)
5567 		data->time = perf_event_clock(event);
5568 
5569 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5570 		data->id = primary_event_id(event);
5571 
5572 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5573 		data->stream_id = event->id;
5574 
5575 	if (sample_type & PERF_SAMPLE_CPU) {
5576 		data->cpu_entry.cpu	 = raw_smp_processor_id();
5577 		data->cpu_entry.reserved = 0;
5578 	}
5579 }
5580 
5581 void perf_event_header__init_id(struct perf_event_header *header,
5582 				struct perf_sample_data *data,
5583 				struct perf_event *event)
5584 {
5585 	if (event->attr.sample_id_all)
5586 		__perf_event_header__init_id(header, data, event);
5587 }
5588 
5589 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5590 					   struct perf_sample_data *data)
5591 {
5592 	u64 sample_type = data->type;
5593 
5594 	if (sample_type & PERF_SAMPLE_TID)
5595 		perf_output_put(handle, data->tid_entry);
5596 
5597 	if (sample_type & PERF_SAMPLE_TIME)
5598 		perf_output_put(handle, data->time);
5599 
5600 	if (sample_type & PERF_SAMPLE_ID)
5601 		perf_output_put(handle, data->id);
5602 
5603 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5604 		perf_output_put(handle, data->stream_id);
5605 
5606 	if (sample_type & PERF_SAMPLE_CPU)
5607 		perf_output_put(handle, data->cpu_entry);
5608 
5609 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
5610 		perf_output_put(handle, data->id);
5611 }
5612 
5613 void perf_event__output_id_sample(struct perf_event *event,
5614 				  struct perf_output_handle *handle,
5615 				  struct perf_sample_data *sample)
5616 {
5617 	if (event->attr.sample_id_all)
5618 		__perf_event__output_id_sample(handle, sample);
5619 }
5620 
5621 static void perf_output_read_one(struct perf_output_handle *handle,
5622 				 struct perf_event *event,
5623 				 u64 enabled, u64 running)
5624 {
5625 	u64 read_format = event->attr.read_format;
5626 	u64 values[4];
5627 	int n = 0;
5628 
5629 	values[n++] = perf_event_count(event);
5630 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5631 		values[n++] = enabled +
5632 			atomic64_read(&event->child_total_time_enabled);
5633 	}
5634 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5635 		values[n++] = running +
5636 			atomic64_read(&event->child_total_time_running);
5637 	}
5638 	if (read_format & PERF_FORMAT_ID)
5639 		values[n++] = primary_event_id(event);
5640 
5641 	__output_copy(handle, values, n * sizeof(u64));
5642 }
5643 
5644 /*
5645  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5646  */
5647 static void perf_output_read_group(struct perf_output_handle *handle,
5648 			    struct perf_event *event,
5649 			    u64 enabled, u64 running)
5650 {
5651 	struct perf_event *leader = event->group_leader, *sub;
5652 	u64 read_format = event->attr.read_format;
5653 	u64 values[5];
5654 	int n = 0;
5655 
5656 	values[n++] = 1 + leader->nr_siblings;
5657 
5658 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5659 		values[n++] = enabled;
5660 
5661 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5662 		values[n++] = running;
5663 
5664 	if (leader != event)
5665 		leader->pmu->read(leader);
5666 
5667 	values[n++] = perf_event_count(leader);
5668 	if (read_format & PERF_FORMAT_ID)
5669 		values[n++] = primary_event_id(leader);
5670 
5671 	__output_copy(handle, values, n * sizeof(u64));
5672 
5673 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5674 		n = 0;
5675 
5676 		if ((sub != event) &&
5677 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
5678 			sub->pmu->read(sub);
5679 
5680 		values[n++] = perf_event_count(sub);
5681 		if (read_format & PERF_FORMAT_ID)
5682 			values[n++] = primary_event_id(sub);
5683 
5684 		__output_copy(handle, values, n * sizeof(u64));
5685 	}
5686 }
5687 
5688 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5689 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
5690 
5691 static void perf_output_read(struct perf_output_handle *handle,
5692 			     struct perf_event *event)
5693 {
5694 	u64 enabled = 0, running = 0, now;
5695 	u64 read_format = event->attr.read_format;
5696 
5697 	/*
5698 	 * compute total_time_enabled, total_time_running
5699 	 * based on snapshot values taken when the event
5700 	 * was last scheduled in.
5701 	 *
5702 	 * we cannot simply called update_context_time()
5703 	 * because of locking issue as we are called in
5704 	 * NMI context
5705 	 */
5706 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
5707 		calc_timer_values(event, &now, &enabled, &running);
5708 
5709 	if (event->attr.read_format & PERF_FORMAT_GROUP)
5710 		perf_output_read_group(handle, event, enabled, running);
5711 	else
5712 		perf_output_read_one(handle, event, enabled, running);
5713 }
5714 
5715 void perf_output_sample(struct perf_output_handle *handle,
5716 			struct perf_event_header *header,
5717 			struct perf_sample_data *data,
5718 			struct perf_event *event)
5719 {
5720 	u64 sample_type = data->type;
5721 
5722 	perf_output_put(handle, *header);
5723 
5724 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
5725 		perf_output_put(handle, data->id);
5726 
5727 	if (sample_type & PERF_SAMPLE_IP)
5728 		perf_output_put(handle, data->ip);
5729 
5730 	if (sample_type & PERF_SAMPLE_TID)
5731 		perf_output_put(handle, data->tid_entry);
5732 
5733 	if (sample_type & PERF_SAMPLE_TIME)
5734 		perf_output_put(handle, data->time);
5735 
5736 	if (sample_type & PERF_SAMPLE_ADDR)
5737 		perf_output_put(handle, data->addr);
5738 
5739 	if (sample_type & PERF_SAMPLE_ID)
5740 		perf_output_put(handle, data->id);
5741 
5742 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5743 		perf_output_put(handle, data->stream_id);
5744 
5745 	if (sample_type & PERF_SAMPLE_CPU)
5746 		perf_output_put(handle, data->cpu_entry);
5747 
5748 	if (sample_type & PERF_SAMPLE_PERIOD)
5749 		perf_output_put(handle, data->period);
5750 
5751 	if (sample_type & PERF_SAMPLE_READ)
5752 		perf_output_read(handle, event);
5753 
5754 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5755 		if (data->callchain) {
5756 			int size = 1;
5757 
5758 			if (data->callchain)
5759 				size += data->callchain->nr;
5760 
5761 			size *= sizeof(u64);
5762 
5763 			__output_copy(handle, data->callchain, size);
5764 		} else {
5765 			u64 nr = 0;
5766 			perf_output_put(handle, nr);
5767 		}
5768 	}
5769 
5770 	if (sample_type & PERF_SAMPLE_RAW) {
5771 		struct perf_raw_record *raw = data->raw;
5772 
5773 		if (raw) {
5774 			struct perf_raw_frag *frag = &raw->frag;
5775 
5776 			perf_output_put(handle, raw->size);
5777 			do {
5778 				if (frag->copy) {
5779 					__output_custom(handle, frag->copy,
5780 							frag->data, frag->size);
5781 				} else {
5782 					__output_copy(handle, frag->data,
5783 						      frag->size);
5784 				}
5785 				if (perf_raw_frag_last(frag))
5786 					break;
5787 				frag = frag->next;
5788 			} while (1);
5789 			if (frag->pad)
5790 				__output_skip(handle, NULL, frag->pad);
5791 		} else {
5792 			struct {
5793 				u32	size;
5794 				u32	data;
5795 			} raw = {
5796 				.size = sizeof(u32),
5797 				.data = 0,
5798 			};
5799 			perf_output_put(handle, raw);
5800 		}
5801 	}
5802 
5803 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5804 		if (data->br_stack) {
5805 			size_t size;
5806 
5807 			size = data->br_stack->nr
5808 			     * sizeof(struct perf_branch_entry);
5809 
5810 			perf_output_put(handle, data->br_stack->nr);
5811 			perf_output_copy(handle, data->br_stack->entries, size);
5812 		} else {
5813 			/*
5814 			 * we always store at least the value of nr
5815 			 */
5816 			u64 nr = 0;
5817 			perf_output_put(handle, nr);
5818 		}
5819 	}
5820 
5821 	if (sample_type & PERF_SAMPLE_REGS_USER) {
5822 		u64 abi = data->regs_user.abi;
5823 
5824 		/*
5825 		 * If there are no regs to dump, notice it through
5826 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5827 		 */
5828 		perf_output_put(handle, abi);
5829 
5830 		if (abi) {
5831 			u64 mask = event->attr.sample_regs_user;
5832 			perf_output_sample_regs(handle,
5833 						data->regs_user.regs,
5834 						mask);
5835 		}
5836 	}
5837 
5838 	if (sample_type & PERF_SAMPLE_STACK_USER) {
5839 		perf_output_sample_ustack(handle,
5840 					  data->stack_user_size,
5841 					  data->regs_user.regs);
5842 	}
5843 
5844 	if (sample_type & PERF_SAMPLE_WEIGHT)
5845 		perf_output_put(handle, data->weight);
5846 
5847 	if (sample_type & PERF_SAMPLE_DATA_SRC)
5848 		perf_output_put(handle, data->data_src.val);
5849 
5850 	if (sample_type & PERF_SAMPLE_TRANSACTION)
5851 		perf_output_put(handle, data->txn);
5852 
5853 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
5854 		u64 abi = data->regs_intr.abi;
5855 		/*
5856 		 * If there are no regs to dump, notice it through
5857 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5858 		 */
5859 		perf_output_put(handle, abi);
5860 
5861 		if (abi) {
5862 			u64 mask = event->attr.sample_regs_intr;
5863 
5864 			perf_output_sample_regs(handle,
5865 						data->regs_intr.regs,
5866 						mask);
5867 		}
5868 	}
5869 
5870 	if (!event->attr.watermark) {
5871 		int wakeup_events = event->attr.wakeup_events;
5872 
5873 		if (wakeup_events) {
5874 			struct ring_buffer *rb = handle->rb;
5875 			int events = local_inc_return(&rb->events);
5876 
5877 			if (events >= wakeup_events) {
5878 				local_sub(wakeup_events, &rb->events);
5879 				local_inc(&rb->wakeup);
5880 			}
5881 		}
5882 	}
5883 }
5884 
5885 void perf_prepare_sample(struct perf_event_header *header,
5886 			 struct perf_sample_data *data,
5887 			 struct perf_event *event,
5888 			 struct pt_regs *regs)
5889 {
5890 	u64 sample_type = event->attr.sample_type;
5891 
5892 	header->type = PERF_RECORD_SAMPLE;
5893 	header->size = sizeof(*header) + event->header_size;
5894 
5895 	header->misc = 0;
5896 	header->misc |= perf_misc_flags(regs);
5897 
5898 	__perf_event_header__init_id(header, data, event);
5899 
5900 	if (sample_type & PERF_SAMPLE_IP)
5901 		data->ip = perf_instruction_pointer(regs);
5902 
5903 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5904 		int size = 1;
5905 
5906 		data->callchain = perf_callchain(event, regs);
5907 
5908 		if (data->callchain)
5909 			size += data->callchain->nr;
5910 
5911 		header->size += size * sizeof(u64);
5912 	}
5913 
5914 	if (sample_type & PERF_SAMPLE_RAW) {
5915 		struct perf_raw_record *raw = data->raw;
5916 		int size;
5917 
5918 		if (raw) {
5919 			struct perf_raw_frag *frag = &raw->frag;
5920 			u32 sum = 0;
5921 
5922 			do {
5923 				sum += frag->size;
5924 				if (perf_raw_frag_last(frag))
5925 					break;
5926 				frag = frag->next;
5927 			} while (1);
5928 
5929 			size = round_up(sum + sizeof(u32), sizeof(u64));
5930 			raw->size = size - sizeof(u32);
5931 			frag->pad = raw->size - sum;
5932 		} else {
5933 			size = sizeof(u64);
5934 		}
5935 
5936 		header->size += size;
5937 	}
5938 
5939 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5940 		int size = sizeof(u64); /* nr */
5941 		if (data->br_stack) {
5942 			size += data->br_stack->nr
5943 			      * sizeof(struct perf_branch_entry);
5944 		}
5945 		header->size += size;
5946 	}
5947 
5948 	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5949 		perf_sample_regs_user(&data->regs_user, regs,
5950 				      &data->regs_user_copy);
5951 
5952 	if (sample_type & PERF_SAMPLE_REGS_USER) {
5953 		/* regs dump ABI info */
5954 		int size = sizeof(u64);
5955 
5956 		if (data->regs_user.regs) {
5957 			u64 mask = event->attr.sample_regs_user;
5958 			size += hweight64(mask) * sizeof(u64);
5959 		}
5960 
5961 		header->size += size;
5962 	}
5963 
5964 	if (sample_type & PERF_SAMPLE_STACK_USER) {
5965 		/*
5966 		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5967 		 * processed as the last one or have additional check added
5968 		 * in case new sample type is added, because we could eat
5969 		 * up the rest of the sample size.
5970 		 */
5971 		u16 stack_size = event->attr.sample_stack_user;
5972 		u16 size = sizeof(u64);
5973 
5974 		stack_size = perf_sample_ustack_size(stack_size, header->size,
5975 						     data->regs_user.regs);
5976 
5977 		/*
5978 		 * If there is something to dump, add space for the dump
5979 		 * itself and for the field that tells the dynamic size,
5980 		 * which is how many have been actually dumped.
5981 		 */
5982 		if (stack_size)
5983 			size += sizeof(u64) + stack_size;
5984 
5985 		data->stack_user_size = stack_size;
5986 		header->size += size;
5987 	}
5988 
5989 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
5990 		/* regs dump ABI info */
5991 		int size = sizeof(u64);
5992 
5993 		perf_sample_regs_intr(&data->regs_intr, regs);
5994 
5995 		if (data->regs_intr.regs) {
5996 			u64 mask = event->attr.sample_regs_intr;
5997 
5998 			size += hweight64(mask) * sizeof(u64);
5999 		}
6000 
6001 		header->size += size;
6002 	}
6003 }
6004 
6005 static void __always_inline
6006 __perf_event_output(struct perf_event *event,
6007 		    struct perf_sample_data *data,
6008 		    struct pt_regs *regs,
6009 		    int (*output_begin)(struct perf_output_handle *,
6010 					struct perf_event *,
6011 					unsigned int))
6012 {
6013 	struct perf_output_handle handle;
6014 	struct perf_event_header header;
6015 
6016 	/* protect the callchain buffers */
6017 	rcu_read_lock();
6018 
6019 	perf_prepare_sample(&header, data, event, regs);
6020 
6021 	if (output_begin(&handle, event, header.size))
6022 		goto exit;
6023 
6024 	perf_output_sample(&handle, &header, data, event);
6025 
6026 	perf_output_end(&handle);
6027 
6028 exit:
6029 	rcu_read_unlock();
6030 }
6031 
6032 void
6033 perf_event_output_forward(struct perf_event *event,
6034 			 struct perf_sample_data *data,
6035 			 struct pt_regs *regs)
6036 {
6037 	__perf_event_output(event, data, regs, perf_output_begin_forward);
6038 }
6039 
6040 void
6041 perf_event_output_backward(struct perf_event *event,
6042 			   struct perf_sample_data *data,
6043 			   struct pt_regs *regs)
6044 {
6045 	__perf_event_output(event, data, regs, perf_output_begin_backward);
6046 }
6047 
6048 void
6049 perf_event_output(struct perf_event *event,
6050 		  struct perf_sample_data *data,
6051 		  struct pt_regs *regs)
6052 {
6053 	__perf_event_output(event, data, regs, perf_output_begin);
6054 }
6055 
6056 /*
6057  * read event_id
6058  */
6059 
6060 struct perf_read_event {
6061 	struct perf_event_header	header;
6062 
6063 	u32				pid;
6064 	u32				tid;
6065 };
6066 
6067 static void
6068 perf_event_read_event(struct perf_event *event,
6069 			struct task_struct *task)
6070 {
6071 	struct perf_output_handle handle;
6072 	struct perf_sample_data sample;
6073 	struct perf_read_event read_event = {
6074 		.header = {
6075 			.type = PERF_RECORD_READ,
6076 			.misc = 0,
6077 			.size = sizeof(read_event) + event->read_size,
6078 		},
6079 		.pid = perf_event_pid(event, task),
6080 		.tid = perf_event_tid(event, task),
6081 	};
6082 	int ret;
6083 
6084 	perf_event_header__init_id(&read_event.header, &sample, event);
6085 	ret = perf_output_begin(&handle, event, read_event.header.size);
6086 	if (ret)
6087 		return;
6088 
6089 	perf_output_put(&handle, read_event);
6090 	perf_output_read(&handle, event);
6091 	perf_event__output_id_sample(event, &handle, &sample);
6092 
6093 	perf_output_end(&handle);
6094 }
6095 
6096 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6097 
6098 static void
6099 perf_iterate_ctx(struct perf_event_context *ctx,
6100 		   perf_iterate_f output,
6101 		   void *data, bool all)
6102 {
6103 	struct perf_event *event;
6104 
6105 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6106 		if (!all) {
6107 			if (event->state < PERF_EVENT_STATE_INACTIVE)
6108 				continue;
6109 			if (!event_filter_match(event))
6110 				continue;
6111 		}
6112 
6113 		output(event, data);
6114 	}
6115 }
6116 
6117 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6118 {
6119 	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6120 	struct perf_event *event;
6121 
6122 	list_for_each_entry_rcu(event, &pel->list, sb_list) {
6123 		/*
6124 		 * Skip events that are not fully formed yet; ensure that
6125 		 * if we observe event->ctx, both event and ctx will be
6126 		 * complete enough. See perf_install_in_context().
6127 		 */
6128 		if (!smp_load_acquire(&event->ctx))
6129 			continue;
6130 
6131 		if (event->state < PERF_EVENT_STATE_INACTIVE)
6132 			continue;
6133 		if (!event_filter_match(event))
6134 			continue;
6135 		output(event, data);
6136 	}
6137 }
6138 
6139 /*
6140  * Iterate all events that need to receive side-band events.
6141  *
6142  * For new callers; ensure that account_pmu_sb_event() includes
6143  * your event, otherwise it might not get delivered.
6144  */
6145 static void
6146 perf_iterate_sb(perf_iterate_f output, void *data,
6147 	       struct perf_event_context *task_ctx)
6148 {
6149 	struct perf_event_context *ctx;
6150 	int ctxn;
6151 
6152 	rcu_read_lock();
6153 	preempt_disable();
6154 
6155 	/*
6156 	 * If we have task_ctx != NULL we only notify the task context itself.
6157 	 * The task_ctx is set only for EXIT events before releasing task
6158 	 * context.
6159 	 */
6160 	if (task_ctx) {
6161 		perf_iterate_ctx(task_ctx, output, data, false);
6162 		goto done;
6163 	}
6164 
6165 	perf_iterate_sb_cpu(output, data);
6166 
6167 	for_each_task_context_nr(ctxn) {
6168 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6169 		if (ctx)
6170 			perf_iterate_ctx(ctx, output, data, false);
6171 	}
6172 done:
6173 	preempt_enable();
6174 	rcu_read_unlock();
6175 }
6176 
6177 /*
6178  * Clear all file-based filters at exec, they'll have to be
6179  * re-instated when/if these objects are mmapped again.
6180  */
6181 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6182 {
6183 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6184 	struct perf_addr_filter *filter;
6185 	unsigned int restart = 0, count = 0;
6186 	unsigned long flags;
6187 
6188 	if (!has_addr_filter(event))
6189 		return;
6190 
6191 	raw_spin_lock_irqsave(&ifh->lock, flags);
6192 	list_for_each_entry(filter, &ifh->list, entry) {
6193 		if (filter->inode) {
6194 			event->addr_filters_offs[count] = 0;
6195 			restart++;
6196 		}
6197 
6198 		count++;
6199 	}
6200 
6201 	if (restart)
6202 		event->addr_filters_gen++;
6203 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
6204 
6205 	if (restart)
6206 		perf_event_stop(event, 1);
6207 }
6208 
6209 void perf_event_exec(void)
6210 {
6211 	struct perf_event_context *ctx;
6212 	int ctxn;
6213 
6214 	rcu_read_lock();
6215 	for_each_task_context_nr(ctxn) {
6216 		ctx = current->perf_event_ctxp[ctxn];
6217 		if (!ctx)
6218 			continue;
6219 
6220 		perf_event_enable_on_exec(ctxn);
6221 
6222 		perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6223 				   true);
6224 	}
6225 	rcu_read_unlock();
6226 }
6227 
6228 struct remote_output {
6229 	struct ring_buffer	*rb;
6230 	int			err;
6231 };
6232 
6233 static void __perf_event_output_stop(struct perf_event *event, void *data)
6234 {
6235 	struct perf_event *parent = event->parent;
6236 	struct remote_output *ro = data;
6237 	struct ring_buffer *rb = ro->rb;
6238 	struct stop_event_data sd = {
6239 		.event	= event,
6240 	};
6241 
6242 	if (!has_aux(event))
6243 		return;
6244 
6245 	if (!parent)
6246 		parent = event;
6247 
6248 	/*
6249 	 * In case of inheritance, it will be the parent that links to the
6250 	 * ring-buffer, but it will be the child that's actually using it.
6251 	 *
6252 	 * We are using event::rb to determine if the event should be stopped,
6253 	 * however this may race with ring_buffer_attach() (through set_output),
6254 	 * which will make us skip the event that actually needs to be stopped.
6255 	 * So ring_buffer_attach() has to stop an aux event before re-assigning
6256 	 * its rb pointer.
6257 	 */
6258 	if (rcu_dereference(parent->rb) == rb)
6259 		ro->err = __perf_event_stop(&sd);
6260 }
6261 
6262 static int __perf_pmu_output_stop(void *info)
6263 {
6264 	struct perf_event *event = info;
6265 	struct pmu *pmu = event->pmu;
6266 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6267 	struct remote_output ro = {
6268 		.rb	= event->rb,
6269 	};
6270 
6271 	rcu_read_lock();
6272 	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6273 	if (cpuctx->task_ctx)
6274 		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6275 				   &ro, false);
6276 	rcu_read_unlock();
6277 
6278 	return ro.err;
6279 }
6280 
6281 static void perf_pmu_output_stop(struct perf_event *event)
6282 {
6283 	struct perf_event *iter;
6284 	int err, cpu;
6285 
6286 restart:
6287 	rcu_read_lock();
6288 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6289 		/*
6290 		 * For per-CPU events, we need to make sure that neither they
6291 		 * nor their children are running; for cpu==-1 events it's
6292 		 * sufficient to stop the event itself if it's active, since
6293 		 * it can't have children.
6294 		 */
6295 		cpu = iter->cpu;
6296 		if (cpu == -1)
6297 			cpu = READ_ONCE(iter->oncpu);
6298 
6299 		if (cpu == -1)
6300 			continue;
6301 
6302 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6303 		if (err == -EAGAIN) {
6304 			rcu_read_unlock();
6305 			goto restart;
6306 		}
6307 	}
6308 	rcu_read_unlock();
6309 }
6310 
6311 /*
6312  * task tracking -- fork/exit
6313  *
6314  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6315  */
6316 
6317 struct perf_task_event {
6318 	struct task_struct		*task;
6319 	struct perf_event_context	*task_ctx;
6320 
6321 	struct {
6322 		struct perf_event_header	header;
6323 
6324 		u32				pid;
6325 		u32				ppid;
6326 		u32				tid;
6327 		u32				ptid;
6328 		u64				time;
6329 	} event_id;
6330 };
6331 
6332 static int perf_event_task_match(struct perf_event *event)
6333 {
6334 	return event->attr.comm  || event->attr.mmap ||
6335 	       event->attr.mmap2 || event->attr.mmap_data ||
6336 	       event->attr.task;
6337 }
6338 
6339 static void perf_event_task_output(struct perf_event *event,
6340 				   void *data)
6341 {
6342 	struct perf_task_event *task_event = data;
6343 	struct perf_output_handle handle;
6344 	struct perf_sample_data	sample;
6345 	struct task_struct *task = task_event->task;
6346 	int ret, size = task_event->event_id.header.size;
6347 
6348 	if (!perf_event_task_match(event))
6349 		return;
6350 
6351 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6352 
6353 	ret = perf_output_begin(&handle, event,
6354 				task_event->event_id.header.size);
6355 	if (ret)
6356 		goto out;
6357 
6358 	task_event->event_id.pid = perf_event_pid(event, task);
6359 	task_event->event_id.ppid = perf_event_pid(event, current);
6360 
6361 	task_event->event_id.tid = perf_event_tid(event, task);
6362 	task_event->event_id.ptid = perf_event_tid(event, current);
6363 
6364 	task_event->event_id.time = perf_event_clock(event);
6365 
6366 	perf_output_put(&handle, task_event->event_id);
6367 
6368 	perf_event__output_id_sample(event, &handle, &sample);
6369 
6370 	perf_output_end(&handle);
6371 out:
6372 	task_event->event_id.header.size = size;
6373 }
6374 
6375 static void perf_event_task(struct task_struct *task,
6376 			      struct perf_event_context *task_ctx,
6377 			      int new)
6378 {
6379 	struct perf_task_event task_event;
6380 
6381 	if (!atomic_read(&nr_comm_events) &&
6382 	    !atomic_read(&nr_mmap_events) &&
6383 	    !atomic_read(&nr_task_events))
6384 		return;
6385 
6386 	task_event = (struct perf_task_event){
6387 		.task	  = task,
6388 		.task_ctx = task_ctx,
6389 		.event_id    = {
6390 			.header = {
6391 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6392 				.misc = 0,
6393 				.size = sizeof(task_event.event_id),
6394 			},
6395 			/* .pid  */
6396 			/* .ppid */
6397 			/* .tid  */
6398 			/* .ptid */
6399 			/* .time */
6400 		},
6401 	};
6402 
6403 	perf_iterate_sb(perf_event_task_output,
6404 		       &task_event,
6405 		       task_ctx);
6406 }
6407 
6408 void perf_event_fork(struct task_struct *task)
6409 {
6410 	perf_event_task(task, NULL, 1);
6411 }
6412 
6413 /*
6414  * comm tracking
6415  */
6416 
6417 struct perf_comm_event {
6418 	struct task_struct	*task;
6419 	char			*comm;
6420 	int			comm_size;
6421 
6422 	struct {
6423 		struct perf_event_header	header;
6424 
6425 		u32				pid;
6426 		u32				tid;
6427 	} event_id;
6428 };
6429 
6430 static int perf_event_comm_match(struct perf_event *event)
6431 {
6432 	return event->attr.comm;
6433 }
6434 
6435 static void perf_event_comm_output(struct perf_event *event,
6436 				   void *data)
6437 {
6438 	struct perf_comm_event *comm_event = data;
6439 	struct perf_output_handle handle;
6440 	struct perf_sample_data sample;
6441 	int size = comm_event->event_id.header.size;
6442 	int ret;
6443 
6444 	if (!perf_event_comm_match(event))
6445 		return;
6446 
6447 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6448 	ret = perf_output_begin(&handle, event,
6449 				comm_event->event_id.header.size);
6450 
6451 	if (ret)
6452 		goto out;
6453 
6454 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6455 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6456 
6457 	perf_output_put(&handle, comm_event->event_id);
6458 	__output_copy(&handle, comm_event->comm,
6459 				   comm_event->comm_size);
6460 
6461 	perf_event__output_id_sample(event, &handle, &sample);
6462 
6463 	perf_output_end(&handle);
6464 out:
6465 	comm_event->event_id.header.size = size;
6466 }
6467 
6468 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6469 {
6470 	char comm[TASK_COMM_LEN];
6471 	unsigned int size;
6472 
6473 	memset(comm, 0, sizeof(comm));
6474 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
6475 	size = ALIGN(strlen(comm)+1, sizeof(u64));
6476 
6477 	comm_event->comm = comm;
6478 	comm_event->comm_size = size;
6479 
6480 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6481 
6482 	perf_iterate_sb(perf_event_comm_output,
6483 		       comm_event,
6484 		       NULL);
6485 }
6486 
6487 void perf_event_comm(struct task_struct *task, bool exec)
6488 {
6489 	struct perf_comm_event comm_event;
6490 
6491 	if (!atomic_read(&nr_comm_events))
6492 		return;
6493 
6494 	comm_event = (struct perf_comm_event){
6495 		.task	= task,
6496 		/* .comm      */
6497 		/* .comm_size */
6498 		.event_id  = {
6499 			.header = {
6500 				.type = PERF_RECORD_COMM,
6501 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6502 				/* .size */
6503 			},
6504 			/* .pid */
6505 			/* .tid */
6506 		},
6507 	};
6508 
6509 	perf_event_comm_event(&comm_event);
6510 }
6511 
6512 /*
6513  * mmap tracking
6514  */
6515 
6516 struct perf_mmap_event {
6517 	struct vm_area_struct	*vma;
6518 
6519 	const char		*file_name;
6520 	int			file_size;
6521 	int			maj, min;
6522 	u64			ino;
6523 	u64			ino_generation;
6524 	u32			prot, flags;
6525 
6526 	struct {
6527 		struct perf_event_header	header;
6528 
6529 		u32				pid;
6530 		u32				tid;
6531 		u64				start;
6532 		u64				len;
6533 		u64				pgoff;
6534 	} event_id;
6535 };
6536 
6537 static int perf_event_mmap_match(struct perf_event *event,
6538 				 void *data)
6539 {
6540 	struct perf_mmap_event *mmap_event = data;
6541 	struct vm_area_struct *vma = mmap_event->vma;
6542 	int executable = vma->vm_flags & VM_EXEC;
6543 
6544 	return (!executable && event->attr.mmap_data) ||
6545 	       (executable && (event->attr.mmap || event->attr.mmap2));
6546 }
6547 
6548 static void perf_event_mmap_output(struct perf_event *event,
6549 				   void *data)
6550 {
6551 	struct perf_mmap_event *mmap_event = data;
6552 	struct perf_output_handle handle;
6553 	struct perf_sample_data sample;
6554 	int size = mmap_event->event_id.header.size;
6555 	int ret;
6556 
6557 	if (!perf_event_mmap_match(event, data))
6558 		return;
6559 
6560 	if (event->attr.mmap2) {
6561 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6562 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6563 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
6564 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6565 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6566 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6567 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6568 	}
6569 
6570 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6571 	ret = perf_output_begin(&handle, event,
6572 				mmap_event->event_id.header.size);
6573 	if (ret)
6574 		goto out;
6575 
6576 	mmap_event->event_id.pid = perf_event_pid(event, current);
6577 	mmap_event->event_id.tid = perf_event_tid(event, current);
6578 
6579 	perf_output_put(&handle, mmap_event->event_id);
6580 
6581 	if (event->attr.mmap2) {
6582 		perf_output_put(&handle, mmap_event->maj);
6583 		perf_output_put(&handle, mmap_event->min);
6584 		perf_output_put(&handle, mmap_event->ino);
6585 		perf_output_put(&handle, mmap_event->ino_generation);
6586 		perf_output_put(&handle, mmap_event->prot);
6587 		perf_output_put(&handle, mmap_event->flags);
6588 	}
6589 
6590 	__output_copy(&handle, mmap_event->file_name,
6591 				   mmap_event->file_size);
6592 
6593 	perf_event__output_id_sample(event, &handle, &sample);
6594 
6595 	perf_output_end(&handle);
6596 out:
6597 	mmap_event->event_id.header.size = size;
6598 }
6599 
6600 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6601 {
6602 	struct vm_area_struct *vma = mmap_event->vma;
6603 	struct file *file = vma->vm_file;
6604 	int maj = 0, min = 0;
6605 	u64 ino = 0, gen = 0;
6606 	u32 prot = 0, flags = 0;
6607 	unsigned int size;
6608 	char tmp[16];
6609 	char *buf = NULL;
6610 	char *name;
6611 
6612 	if (file) {
6613 		struct inode *inode;
6614 		dev_t dev;
6615 
6616 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
6617 		if (!buf) {
6618 			name = "//enomem";
6619 			goto cpy_name;
6620 		}
6621 		/*
6622 		 * d_path() works from the end of the rb backwards, so we
6623 		 * need to add enough zero bytes after the string to handle
6624 		 * the 64bit alignment we do later.
6625 		 */
6626 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
6627 		if (IS_ERR(name)) {
6628 			name = "//toolong";
6629 			goto cpy_name;
6630 		}
6631 		inode = file_inode(vma->vm_file);
6632 		dev = inode->i_sb->s_dev;
6633 		ino = inode->i_ino;
6634 		gen = inode->i_generation;
6635 		maj = MAJOR(dev);
6636 		min = MINOR(dev);
6637 
6638 		if (vma->vm_flags & VM_READ)
6639 			prot |= PROT_READ;
6640 		if (vma->vm_flags & VM_WRITE)
6641 			prot |= PROT_WRITE;
6642 		if (vma->vm_flags & VM_EXEC)
6643 			prot |= PROT_EXEC;
6644 
6645 		if (vma->vm_flags & VM_MAYSHARE)
6646 			flags = MAP_SHARED;
6647 		else
6648 			flags = MAP_PRIVATE;
6649 
6650 		if (vma->vm_flags & VM_DENYWRITE)
6651 			flags |= MAP_DENYWRITE;
6652 		if (vma->vm_flags & VM_MAYEXEC)
6653 			flags |= MAP_EXECUTABLE;
6654 		if (vma->vm_flags & VM_LOCKED)
6655 			flags |= MAP_LOCKED;
6656 		if (vma->vm_flags & VM_HUGETLB)
6657 			flags |= MAP_HUGETLB;
6658 
6659 		goto got_name;
6660 	} else {
6661 		if (vma->vm_ops && vma->vm_ops->name) {
6662 			name = (char *) vma->vm_ops->name(vma);
6663 			if (name)
6664 				goto cpy_name;
6665 		}
6666 
6667 		name = (char *)arch_vma_name(vma);
6668 		if (name)
6669 			goto cpy_name;
6670 
6671 		if (vma->vm_start <= vma->vm_mm->start_brk &&
6672 				vma->vm_end >= vma->vm_mm->brk) {
6673 			name = "[heap]";
6674 			goto cpy_name;
6675 		}
6676 		if (vma->vm_start <= vma->vm_mm->start_stack &&
6677 				vma->vm_end >= vma->vm_mm->start_stack) {
6678 			name = "[stack]";
6679 			goto cpy_name;
6680 		}
6681 
6682 		name = "//anon";
6683 		goto cpy_name;
6684 	}
6685 
6686 cpy_name:
6687 	strlcpy(tmp, name, sizeof(tmp));
6688 	name = tmp;
6689 got_name:
6690 	/*
6691 	 * Since our buffer works in 8 byte units we need to align our string
6692 	 * size to a multiple of 8. However, we must guarantee the tail end is
6693 	 * zero'd out to avoid leaking random bits to userspace.
6694 	 */
6695 	size = strlen(name)+1;
6696 	while (!IS_ALIGNED(size, sizeof(u64)))
6697 		name[size++] = '\0';
6698 
6699 	mmap_event->file_name = name;
6700 	mmap_event->file_size = size;
6701 	mmap_event->maj = maj;
6702 	mmap_event->min = min;
6703 	mmap_event->ino = ino;
6704 	mmap_event->ino_generation = gen;
6705 	mmap_event->prot = prot;
6706 	mmap_event->flags = flags;
6707 
6708 	if (!(vma->vm_flags & VM_EXEC))
6709 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6710 
6711 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6712 
6713 	perf_iterate_sb(perf_event_mmap_output,
6714 		       mmap_event,
6715 		       NULL);
6716 
6717 	kfree(buf);
6718 }
6719 
6720 /*
6721  * Check whether inode and address range match filter criteria.
6722  */
6723 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
6724 				     struct file *file, unsigned long offset,
6725 				     unsigned long size)
6726 {
6727 	if (filter->inode != file_inode(file))
6728 		return false;
6729 
6730 	if (filter->offset > offset + size)
6731 		return false;
6732 
6733 	if (filter->offset + filter->size < offset)
6734 		return false;
6735 
6736 	return true;
6737 }
6738 
6739 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
6740 {
6741 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6742 	struct vm_area_struct *vma = data;
6743 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
6744 	struct file *file = vma->vm_file;
6745 	struct perf_addr_filter *filter;
6746 	unsigned int restart = 0, count = 0;
6747 
6748 	if (!has_addr_filter(event))
6749 		return;
6750 
6751 	if (!file)
6752 		return;
6753 
6754 	raw_spin_lock_irqsave(&ifh->lock, flags);
6755 	list_for_each_entry(filter, &ifh->list, entry) {
6756 		if (perf_addr_filter_match(filter, file, off,
6757 					     vma->vm_end - vma->vm_start)) {
6758 			event->addr_filters_offs[count] = vma->vm_start;
6759 			restart++;
6760 		}
6761 
6762 		count++;
6763 	}
6764 
6765 	if (restart)
6766 		event->addr_filters_gen++;
6767 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
6768 
6769 	if (restart)
6770 		perf_event_stop(event, 1);
6771 }
6772 
6773 /*
6774  * Adjust all task's events' filters to the new vma
6775  */
6776 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
6777 {
6778 	struct perf_event_context *ctx;
6779 	int ctxn;
6780 
6781 	/*
6782 	 * Data tracing isn't supported yet and as such there is no need
6783 	 * to keep track of anything that isn't related to executable code:
6784 	 */
6785 	if (!(vma->vm_flags & VM_EXEC))
6786 		return;
6787 
6788 	rcu_read_lock();
6789 	for_each_task_context_nr(ctxn) {
6790 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6791 		if (!ctx)
6792 			continue;
6793 
6794 		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
6795 	}
6796 	rcu_read_unlock();
6797 }
6798 
6799 void perf_event_mmap(struct vm_area_struct *vma)
6800 {
6801 	struct perf_mmap_event mmap_event;
6802 
6803 	if (!atomic_read(&nr_mmap_events))
6804 		return;
6805 
6806 	mmap_event = (struct perf_mmap_event){
6807 		.vma	= vma,
6808 		/* .file_name */
6809 		/* .file_size */
6810 		.event_id  = {
6811 			.header = {
6812 				.type = PERF_RECORD_MMAP,
6813 				.misc = PERF_RECORD_MISC_USER,
6814 				/* .size */
6815 			},
6816 			/* .pid */
6817 			/* .tid */
6818 			.start  = vma->vm_start,
6819 			.len    = vma->vm_end - vma->vm_start,
6820 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
6821 		},
6822 		/* .maj (attr_mmap2 only) */
6823 		/* .min (attr_mmap2 only) */
6824 		/* .ino (attr_mmap2 only) */
6825 		/* .ino_generation (attr_mmap2 only) */
6826 		/* .prot (attr_mmap2 only) */
6827 		/* .flags (attr_mmap2 only) */
6828 	};
6829 
6830 	perf_addr_filters_adjust(vma);
6831 	perf_event_mmap_event(&mmap_event);
6832 }
6833 
6834 void perf_event_aux_event(struct perf_event *event, unsigned long head,
6835 			  unsigned long size, u64 flags)
6836 {
6837 	struct perf_output_handle handle;
6838 	struct perf_sample_data sample;
6839 	struct perf_aux_event {
6840 		struct perf_event_header	header;
6841 		u64				offset;
6842 		u64				size;
6843 		u64				flags;
6844 	} rec = {
6845 		.header = {
6846 			.type = PERF_RECORD_AUX,
6847 			.misc = 0,
6848 			.size = sizeof(rec),
6849 		},
6850 		.offset		= head,
6851 		.size		= size,
6852 		.flags		= flags,
6853 	};
6854 	int ret;
6855 
6856 	perf_event_header__init_id(&rec.header, &sample, event);
6857 	ret = perf_output_begin(&handle, event, rec.header.size);
6858 
6859 	if (ret)
6860 		return;
6861 
6862 	perf_output_put(&handle, rec);
6863 	perf_event__output_id_sample(event, &handle, &sample);
6864 
6865 	perf_output_end(&handle);
6866 }
6867 
6868 /*
6869  * Lost/dropped samples logging
6870  */
6871 void perf_log_lost_samples(struct perf_event *event, u64 lost)
6872 {
6873 	struct perf_output_handle handle;
6874 	struct perf_sample_data sample;
6875 	int ret;
6876 
6877 	struct {
6878 		struct perf_event_header	header;
6879 		u64				lost;
6880 	} lost_samples_event = {
6881 		.header = {
6882 			.type = PERF_RECORD_LOST_SAMPLES,
6883 			.misc = 0,
6884 			.size = sizeof(lost_samples_event),
6885 		},
6886 		.lost		= lost,
6887 	};
6888 
6889 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6890 
6891 	ret = perf_output_begin(&handle, event,
6892 				lost_samples_event.header.size);
6893 	if (ret)
6894 		return;
6895 
6896 	perf_output_put(&handle, lost_samples_event);
6897 	perf_event__output_id_sample(event, &handle, &sample);
6898 	perf_output_end(&handle);
6899 }
6900 
6901 /*
6902  * context_switch tracking
6903  */
6904 
6905 struct perf_switch_event {
6906 	struct task_struct	*task;
6907 	struct task_struct	*next_prev;
6908 
6909 	struct {
6910 		struct perf_event_header	header;
6911 		u32				next_prev_pid;
6912 		u32				next_prev_tid;
6913 	} event_id;
6914 };
6915 
6916 static int perf_event_switch_match(struct perf_event *event)
6917 {
6918 	return event->attr.context_switch;
6919 }
6920 
6921 static void perf_event_switch_output(struct perf_event *event, void *data)
6922 {
6923 	struct perf_switch_event *se = data;
6924 	struct perf_output_handle handle;
6925 	struct perf_sample_data sample;
6926 	int ret;
6927 
6928 	if (!perf_event_switch_match(event))
6929 		return;
6930 
6931 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
6932 	if (event->ctx->task) {
6933 		se->event_id.header.type = PERF_RECORD_SWITCH;
6934 		se->event_id.header.size = sizeof(se->event_id.header);
6935 	} else {
6936 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6937 		se->event_id.header.size = sizeof(se->event_id);
6938 		se->event_id.next_prev_pid =
6939 					perf_event_pid(event, se->next_prev);
6940 		se->event_id.next_prev_tid =
6941 					perf_event_tid(event, se->next_prev);
6942 	}
6943 
6944 	perf_event_header__init_id(&se->event_id.header, &sample, event);
6945 
6946 	ret = perf_output_begin(&handle, event, se->event_id.header.size);
6947 	if (ret)
6948 		return;
6949 
6950 	if (event->ctx->task)
6951 		perf_output_put(&handle, se->event_id.header);
6952 	else
6953 		perf_output_put(&handle, se->event_id);
6954 
6955 	perf_event__output_id_sample(event, &handle, &sample);
6956 
6957 	perf_output_end(&handle);
6958 }
6959 
6960 static void perf_event_switch(struct task_struct *task,
6961 			      struct task_struct *next_prev, bool sched_in)
6962 {
6963 	struct perf_switch_event switch_event;
6964 
6965 	/* N.B. caller checks nr_switch_events != 0 */
6966 
6967 	switch_event = (struct perf_switch_event){
6968 		.task		= task,
6969 		.next_prev	= next_prev,
6970 		.event_id	= {
6971 			.header = {
6972 				/* .type */
6973 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6974 				/* .size */
6975 			},
6976 			/* .next_prev_pid */
6977 			/* .next_prev_tid */
6978 		},
6979 	};
6980 
6981 	perf_iterate_sb(perf_event_switch_output,
6982 		       &switch_event,
6983 		       NULL);
6984 }
6985 
6986 /*
6987  * IRQ throttle logging
6988  */
6989 
6990 static void perf_log_throttle(struct perf_event *event, int enable)
6991 {
6992 	struct perf_output_handle handle;
6993 	struct perf_sample_data sample;
6994 	int ret;
6995 
6996 	struct {
6997 		struct perf_event_header	header;
6998 		u64				time;
6999 		u64				id;
7000 		u64				stream_id;
7001 	} throttle_event = {
7002 		.header = {
7003 			.type = PERF_RECORD_THROTTLE,
7004 			.misc = 0,
7005 			.size = sizeof(throttle_event),
7006 		},
7007 		.time		= perf_event_clock(event),
7008 		.id		= primary_event_id(event),
7009 		.stream_id	= event->id,
7010 	};
7011 
7012 	if (enable)
7013 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7014 
7015 	perf_event_header__init_id(&throttle_event.header, &sample, event);
7016 
7017 	ret = perf_output_begin(&handle, event,
7018 				throttle_event.header.size);
7019 	if (ret)
7020 		return;
7021 
7022 	perf_output_put(&handle, throttle_event);
7023 	perf_event__output_id_sample(event, &handle, &sample);
7024 	perf_output_end(&handle);
7025 }
7026 
7027 static void perf_log_itrace_start(struct perf_event *event)
7028 {
7029 	struct perf_output_handle handle;
7030 	struct perf_sample_data sample;
7031 	struct perf_aux_event {
7032 		struct perf_event_header        header;
7033 		u32				pid;
7034 		u32				tid;
7035 	} rec;
7036 	int ret;
7037 
7038 	if (event->parent)
7039 		event = event->parent;
7040 
7041 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7042 	    event->hw.itrace_started)
7043 		return;
7044 
7045 	rec.header.type	= PERF_RECORD_ITRACE_START;
7046 	rec.header.misc	= 0;
7047 	rec.header.size	= sizeof(rec);
7048 	rec.pid	= perf_event_pid(event, current);
7049 	rec.tid	= perf_event_tid(event, current);
7050 
7051 	perf_event_header__init_id(&rec.header, &sample, event);
7052 	ret = perf_output_begin(&handle, event, rec.header.size);
7053 
7054 	if (ret)
7055 		return;
7056 
7057 	perf_output_put(&handle, rec);
7058 	perf_event__output_id_sample(event, &handle, &sample);
7059 
7060 	perf_output_end(&handle);
7061 }
7062 
7063 static int
7064 __perf_event_account_interrupt(struct perf_event *event, int throttle)
7065 {
7066 	struct hw_perf_event *hwc = &event->hw;
7067 	int ret = 0;
7068 	u64 seq;
7069 
7070 	seq = __this_cpu_read(perf_throttled_seq);
7071 	if (seq != hwc->interrupts_seq) {
7072 		hwc->interrupts_seq = seq;
7073 		hwc->interrupts = 1;
7074 	} else {
7075 		hwc->interrupts++;
7076 		if (unlikely(throttle
7077 			     && hwc->interrupts >= max_samples_per_tick)) {
7078 			__this_cpu_inc(perf_throttled_count);
7079 			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
7080 			hwc->interrupts = MAX_INTERRUPTS;
7081 			perf_log_throttle(event, 0);
7082 			ret = 1;
7083 		}
7084 	}
7085 
7086 	if (event->attr.freq) {
7087 		u64 now = perf_clock();
7088 		s64 delta = now - hwc->freq_time_stamp;
7089 
7090 		hwc->freq_time_stamp = now;
7091 
7092 		if (delta > 0 && delta < 2*TICK_NSEC)
7093 			perf_adjust_period(event, delta, hwc->last_period, true);
7094 	}
7095 
7096 	return ret;
7097 }
7098 
7099 int perf_event_account_interrupt(struct perf_event *event)
7100 {
7101 	return __perf_event_account_interrupt(event, 1);
7102 }
7103 
7104 /*
7105  * Generic event overflow handling, sampling.
7106  */
7107 
7108 static int __perf_event_overflow(struct perf_event *event,
7109 				   int throttle, struct perf_sample_data *data,
7110 				   struct pt_regs *regs)
7111 {
7112 	int events = atomic_read(&event->event_limit);
7113 	int ret = 0;
7114 
7115 	/*
7116 	 * Non-sampling counters might still use the PMI to fold short
7117 	 * hardware counters, ignore those.
7118 	 */
7119 	if (unlikely(!is_sampling_event(event)))
7120 		return 0;
7121 
7122 	ret = __perf_event_account_interrupt(event, throttle);
7123 
7124 	/*
7125 	 * XXX event_limit might not quite work as expected on inherited
7126 	 * events
7127 	 */
7128 
7129 	event->pending_kill = POLL_IN;
7130 	if (events && atomic_dec_and_test(&event->event_limit)) {
7131 		ret = 1;
7132 		event->pending_kill = POLL_HUP;
7133 
7134 		perf_event_disable_inatomic(event);
7135 	}
7136 
7137 	READ_ONCE(event->overflow_handler)(event, data, regs);
7138 
7139 	if (*perf_event_fasync(event) && event->pending_kill) {
7140 		event->pending_wakeup = 1;
7141 		irq_work_queue(&event->pending);
7142 	}
7143 
7144 	return ret;
7145 }
7146 
7147 int perf_event_overflow(struct perf_event *event,
7148 			  struct perf_sample_data *data,
7149 			  struct pt_regs *regs)
7150 {
7151 	return __perf_event_overflow(event, 1, data, regs);
7152 }
7153 
7154 /*
7155  * Generic software event infrastructure
7156  */
7157 
7158 struct swevent_htable {
7159 	struct swevent_hlist		*swevent_hlist;
7160 	struct mutex			hlist_mutex;
7161 	int				hlist_refcount;
7162 
7163 	/* Recursion avoidance in each contexts */
7164 	int				recursion[PERF_NR_CONTEXTS];
7165 };
7166 
7167 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7168 
7169 /*
7170  * We directly increment event->count and keep a second value in
7171  * event->hw.period_left to count intervals. This period event
7172  * is kept in the range [-sample_period, 0] so that we can use the
7173  * sign as trigger.
7174  */
7175 
7176 u64 perf_swevent_set_period(struct perf_event *event)
7177 {
7178 	struct hw_perf_event *hwc = &event->hw;
7179 	u64 period = hwc->last_period;
7180 	u64 nr, offset;
7181 	s64 old, val;
7182 
7183 	hwc->last_period = hwc->sample_period;
7184 
7185 again:
7186 	old = val = local64_read(&hwc->period_left);
7187 	if (val < 0)
7188 		return 0;
7189 
7190 	nr = div64_u64(period + val, period);
7191 	offset = nr * period;
7192 	val -= offset;
7193 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7194 		goto again;
7195 
7196 	return nr;
7197 }
7198 
7199 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7200 				    struct perf_sample_data *data,
7201 				    struct pt_regs *regs)
7202 {
7203 	struct hw_perf_event *hwc = &event->hw;
7204 	int throttle = 0;
7205 
7206 	if (!overflow)
7207 		overflow = perf_swevent_set_period(event);
7208 
7209 	if (hwc->interrupts == MAX_INTERRUPTS)
7210 		return;
7211 
7212 	for (; overflow; overflow--) {
7213 		if (__perf_event_overflow(event, throttle,
7214 					    data, regs)) {
7215 			/*
7216 			 * We inhibit the overflow from happening when
7217 			 * hwc->interrupts == MAX_INTERRUPTS.
7218 			 */
7219 			break;
7220 		}
7221 		throttle = 1;
7222 	}
7223 }
7224 
7225 static void perf_swevent_event(struct perf_event *event, u64 nr,
7226 			       struct perf_sample_data *data,
7227 			       struct pt_regs *regs)
7228 {
7229 	struct hw_perf_event *hwc = &event->hw;
7230 
7231 	local64_add(nr, &event->count);
7232 
7233 	if (!regs)
7234 		return;
7235 
7236 	if (!is_sampling_event(event))
7237 		return;
7238 
7239 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7240 		data->period = nr;
7241 		return perf_swevent_overflow(event, 1, data, regs);
7242 	} else
7243 		data->period = event->hw.last_period;
7244 
7245 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7246 		return perf_swevent_overflow(event, 1, data, regs);
7247 
7248 	if (local64_add_negative(nr, &hwc->period_left))
7249 		return;
7250 
7251 	perf_swevent_overflow(event, 0, data, regs);
7252 }
7253 
7254 static int perf_exclude_event(struct perf_event *event,
7255 			      struct pt_regs *regs)
7256 {
7257 	if (event->hw.state & PERF_HES_STOPPED)
7258 		return 1;
7259 
7260 	if (regs) {
7261 		if (event->attr.exclude_user && user_mode(regs))
7262 			return 1;
7263 
7264 		if (event->attr.exclude_kernel && !user_mode(regs))
7265 			return 1;
7266 	}
7267 
7268 	return 0;
7269 }
7270 
7271 static int perf_swevent_match(struct perf_event *event,
7272 				enum perf_type_id type,
7273 				u32 event_id,
7274 				struct perf_sample_data *data,
7275 				struct pt_regs *regs)
7276 {
7277 	if (event->attr.type != type)
7278 		return 0;
7279 
7280 	if (event->attr.config != event_id)
7281 		return 0;
7282 
7283 	if (perf_exclude_event(event, regs))
7284 		return 0;
7285 
7286 	return 1;
7287 }
7288 
7289 static inline u64 swevent_hash(u64 type, u32 event_id)
7290 {
7291 	u64 val = event_id | (type << 32);
7292 
7293 	return hash_64(val, SWEVENT_HLIST_BITS);
7294 }
7295 
7296 static inline struct hlist_head *
7297 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7298 {
7299 	u64 hash = swevent_hash(type, event_id);
7300 
7301 	return &hlist->heads[hash];
7302 }
7303 
7304 /* For the read side: events when they trigger */
7305 static inline struct hlist_head *
7306 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7307 {
7308 	struct swevent_hlist *hlist;
7309 
7310 	hlist = rcu_dereference(swhash->swevent_hlist);
7311 	if (!hlist)
7312 		return NULL;
7313 
7314 	return __find_swevent_head(hlist, type, event_id);
7315 }
7316 
7317 /* For the event head insertion and removal in the hlist */
7318 static inline struct hlist_head *
7319 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7320 {
7321 	struct swevent_hlist *hlist;
7322 	u32 event_id = event->attr.config;
7323 	u64 type = event->attr.type;
7324 
7325 	/*
7326 	 * Event scheduling is always serialized against hlist allocation
7327 	 * and release. Which makes the protected version suitable here.
7328 	 * The context lock guarantees that.
7329 	 */
7330 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
7331 					  lockdep_is_held(&event->ctx->lock));
7332 	if (!hlist)
7333 		return NULL;
7334 
7335 	return __find_swevent_head(hlist, type, event_id);
7336 }
7337 
7338 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7339 				    u64 nr,
7340 				    struct perf_sample_data *data,
7341 				    struct pt_regs *regs)
7342 {
7343 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7344 	struct perf_event *event;
7345 	struct hlist_head *head;
7346 
7347 	rcu_read_lock();
7348 	head = find_swevent_head_rcu(swhash, type, event_id);
7349 	if (!head)
7350 		goto end;
7351 
7352 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
7353 		if (perf_swevent_match(event, type, event_id, data, regs))
7354 			perf_swevent_event(event, nr, data, regs);
7355 	}
7356 end:
7357 	rcu_read_unlock();
7358 }
7359 
7360 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7361 
7362 int perf_swevent_get_recursion_context(void)
7363 {
7364 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7365 
7366 	return get_recursion_context(swhash->recursion);
7367 }
7368 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
7369 
7370 void perf_swevent_put_recursion_context(int rctx)
7371 {
7372 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7373 
7374 	put_recursion_context(swhash->recursion, rctx);
7375 }
7376 
7377 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7378 {
7379 	struct perf_sample_data data;
7380 
7381 	if (WARN_ON_ONCE(!regs))
7382 		return;
7383 
7384 	perf_sample_data_init(&data, addr, 0);
7385 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7386 }
7387 
7388 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7389 {
7390 	int rctx;
7391 
7392 	preempt_disable_notrace();
7393 	rctx = perf_swevent_get_recursion_context();
7394 	if (unlikely(rctx < 0))
7395 		goto fail;
7396 
7397 	___perf_sw_event(event_id, nr, regs, addr);
7398 
7399 	perf_swevent_put_recursion_context(rctx);
7400 fail:
7401 	preempt_enable_notrace();
7402 }
7403 
7404 static void perf_swevent_read(struct perf_event *event)
7405 {
7406 }
7407 
7408 static int perf_swevent_add(struct perf_event *event, int flags)
7409 {
7410 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7411 	struct hw_perf_event *hwc = &event->hw;
7412 	struct hlist_head *head;
7413 
7414 	if (is_sampling_event(event)) {
7415 		hwc->last_period = hwc->sample_period;
7416 		perf_swevent_set_period(event);
7417 	}
7418 
7419 	hwc->state = !(flags & PERF_EF_START);
7420 
7421 	head = find_swevent_head(swhash, event);
7422 	if (WARN_ON_ONCE(!head))
7423 		return -EINVAL;
7424 
7425 	hlist_add_head_rcu(&event->hlist_entry, head);
7426 	perf_event_update_userpage(event);
7427 
7428 	return 0;
7429 }
7430 
7431 static void perf_swevent_del(struct perf_event *event, int flags)
7432 {
7433 	hlist_del_rcu(&event->hlist_entry);
7434 }
7435 
7436 static void perf_swevent_start(struct perf_event *event, int flags)
7437 {
7438 	event->hw.state = 0;
7439 }
7440 
7441 static void perf_swevent_stop(struct perf_event *event, int flags)
7442 {
7443 	event->hw.state = PERF_HES_STOPPED;
7444 }
7445 
7446 /* Deref the hlist from the update side */
7447 static inline struct swevent_hlist *
7448 swevent_hlist_deref(struct swevent_htable *swhash)
7449 {
7450 	return rcu_dereference_protected(swhash->swevent_hlist,
7451 					 lockdep_is_held(&swhash->hlist_mutex));
7452 }
7453 
7454 static void swevent_hlist_release(struct swevent_htable *swhash)
7455 {
7456 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7457 
7458 	if (!hlist)
7459 		return;
7460 
7461 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7462 	kfree_rcu(hlist, rcu_head);
7463 }
7464 
7465 static void swevent_hlist_put_cpu(int cpu)
7466 {
7467 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7468 
7469 	mutex_lock(&swhash->hlist_mutex);
7470 
7471 	if (!--swhash->hlist_refcount)
7472 		swevent_hlist_release(swhash);
7473 
7474 	mutex_unlock(&swhash->hlist_mutex);
7475 }
7476 
7477 static void swevent_hlist_put(void)
7478 {
7479 	int cpu;
7480 
7481 	for_each_possible_cpu(cpu)
7482 		swevent_hlist_put_cpu(cpu);
7483 }
7484 
7485 static int swevent_hlist_get_cpu(int cpu)
7486 {
7487 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7488 	int err = 0;
7489 
7490 	mutex_lock(&swhash->hlist_mutex);
7491 	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
7492 		struct swevent_hlist *hlist;
7493 
7494 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7495 		if (!hlist) {
7496 			err = -ENOMEM;
7497 			goto exit;
7498 		}
7499 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7500 	}
7501 	swhash->hlist_refcount++;
7502 exit:
7503 	mutex_unlock(&swhash->hlist_mutex);
7504 
7505 	return err;
7506 }
7507 
7508 static int swevent_hlist_get(void)
7509 {
7510 	int err, cpu, failed_cpu;
7511 
7512 	get_online_cpus();
7513 	for_each_possible_cpu(cpu) {
7514 		err = swevent_hlist_get_cpu(cpu);
7515 		if (err) {
7516 			failed_cpu = cpu;
7517 			goto fail;
7518 		}
7519 	}
7520 	put_online_cpus();
7521 
7522 	return 0;
7523 fail:
7524 	for_each_possible_cpu(cpu) {
7525 		if (cpu == failed_cpu)
7526 			break;
7527 		swevent_hlist_put_cpu(cpu);
7528 	}
7529 
7530 	put_online_cpus();
7531 	return err;
7532 }
7533 
7534 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7535 
7536 static void sw_perf_event_destroy(struct perf_event *event)
7537 {
7538 	u64 event_id = event->attr.config;
7539 
7540 	WARN_ON(event->parent);
7541 
7542 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
7543 	swevent_hlist_put();
7544 }
7545 
7546 static int perf_swevent_init(struct perf_event *event)
7547 {
7548 	u64 event_id = event->attr.config;
7549 
7550 	if (event->attr.type != PERF_TYPE_SOFTWARE)
7551 		return -ENOENT;
7552 
7553 	/*
7554 	 * no branch sampling for software events
7555 	 */
7556 	if (has_branch_stack(event))
7557 		return -EOPNOTSUPP;
7558 
7559 	switch (event_id) {
7560 	case PERF_COUNT_SW_CPU_CLOCK:
7561 	case PERF_COUNT_SW_TASK_CLOCK:
7562 		return -ENOENT;
7563 
7564 	default:
7565 		break;
7566 	}
7567 
7568 	if (event_id >= PERF_COUNT_SW_MAX)
7569 		return -ENOENT;
7570 
7571 	if (!event->parent) {
7572 		int err;
7573 
7574 		err = swevent_hlist_get();
7575 		if (err)
7576 			return err;
7577 
7578 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
7579 		event->destroy = sw_perf_event_destroy;
7580 	}
7581 
7582 	return 0;
7583 }
7584 
7585 static struct pmu perf_swevent = {
7586 	.task_ctx_nr	= perf_sw_context,
7587 
7588 	.capabilities	= PERF_PMU_CAP_NO_NMI,
7589 
7590 	.event_init	= perf_swevent_init,
7591 	.add		= perf_swevent_add,
7592 	.del		= perf_swevent_del,
7593 	.start		= perf_swevent_start,
7594 	.stop		= perf_swevent_stop,
7595 	.read		= perf_swevent_read,
7596 };
7597 
7598 #ifdef CONFIG_EVENT_TRACING
7599 
7600 static int perf_tp_filter_match(struct perf_event *event,
7601 				struct perf_sample_data *data)
7602 {
7603 	void *record = data->raw->frag.data;
7604 
7605 	/* only top level events have filters set */
7606 	if (event->parent)
7607 		event = event->parent;
7608 
7609 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
7610 		return 1;
7611 	return 0;
7612 }
7613 
7614 static int perf_tp_event_match(struct perf_event *event,
7615 				struct perf_sample_data *data,
7616 				struct pt_regs *regs)
7617 {
7618 	if (event->hw.state & PERF_HES_STOPPED)
7619 		return 0;
7620 	/*
7621 	 * All tracepoints are from kernel-space.
7622 	 */
7623 	if (event->attr.exclude_kernel)
7624 		return 0;
7625 
7626 	if (!perf_tp_filter_match(event, data))
7627 		return 0;
7628 
7629 	return 1;
7630 }
7631 
7632 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7633 			       struct trace_event_call *call, u64 count,
7634 			       struct pt_regs *regs, struct hlist_head *head,
7635 			       struct task_struct *task)
7636 {
7637 	struct bpf_prog *prog = call->prog;
7638 
7639 	if (prog) {
7640 		*(struct pt_regs **)raw_data = regs;
7641 		if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
7642 			perf_swevent_put_recursion_context(rctx);
7643 			return;
7644 		}
7645 	}
7646 	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
7647 		      rctx, task);
7648 }
7649 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7650 
7651 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
7652 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
7653 		   struct task_struct *task)
7654 {
7655 	struct perf_sample_data data;
7656 	struct perf_event *event;
7657 
7658 	struct perf_raw_record raw = {
7659 		.frag = {
7660 			.size = entry_size,
7661 			.data = record,
7662 		},
7663 	};
7664 
7665 	perf_sample_data_init(&data, 0, 0);
7666 	data.raw = &raw;
7667 
7668 	perf_trace_buf_update(record, event_type);
7669 
7670 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
7671 		if (perf_tp_event_match(event, &data, regs))
7672 			perf_swevent_event(event, count, &data, regs);
7673 	}
7674 
7675 	/*
7676 	 * If we got specified a target task, also iterate its context and
7677 	 * deliver this event there too.
7678 	 */
7679 	if (task && task != current) {
7680 		struct perf_event_context *ctx;
7681 		struct trace_entry *entry = record;
7682 
7683 		rcu_read_lock();
7684 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7685 		if (!ctx)
7686 			goto unlock;
7687 
7688 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7689 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
7690 				continue;
7691 			if (event->attr.config != entry->type)
7692 				continue;
7693 			if (perf_tp_event_match(event, &data, regs))
7694 				perf_swevent_event(event, count, &data, regs);
7695 		}
7696 unlock:
7697 		rcu_read_unlock();
7698 	}
7699 
7700 	perf_swevent_put_recursion_context(rctx);
7701 }
7702 EXPORT_SYMBOL_GPL(perf_tp_event);
7703 
7704 static void tp_perf_event_destroy(struct perf_event *event)
7705 {
7706 	perf_trace_destroy(event);
7707 }
7708 
7709 static int perf_tp_event_init(struct perf_event *event)
7710 {
7711 	int err;
7712 
7713 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
7714 		return -ENOENT;
7715 
7716 	/*
7717 	 * no branch sampling for tracepoint events
7718 	 */
7719 	if (has_branch_stack(event))
7720 		return -EOPNOTSUPP;
7721 
7722 	err = perf_trace_init(event);
7723 	if (err)
7724 		return err;
7725 
7726 	event->destroy = tp_perf_event_destroy;
7727 
7728 	return 0;
7729 }
7730 
7731 static struct pmu perf_tracepoint = {
7732 	.task_ctx_nr	= perf_sw_context,
7733 
7734 	.event_init	= perf_tp_event_init,
7735 	.add		= perf_trace_add,
7736 	.del		= perf_trace_del,
7737 	.start		= perf_swevent_start,
7738 	.stop		= perf_swevent_stop,
7739 	.read		= perf_swevent_read,
7740 };
7741 
7742 static inline void perf_tp_register(void)
7743 {
7744 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7745 }
7746 
7747 static void perf_event_free_filter(struct perf_event *event)
7748 {
7749 	ftrace_profile_free_filter(event);
7750 }
7751 
7752 #ifdef CONFIG_BPF_SYSCALL
7753 static void bpf_overflow_handler(struct perf_event *event,
7754 				 struct perf_sample_data *data,
7755 				 struct pt_regs *regs)
7756 {
7757 	struct bpf_perf_event_data_kern ctx = {
7758 		.data = data,
7759 		.regs = regs,
7760 	};
7761 	int ret = 0;
7762 
7763 	preempt_disable();
7764 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
7765 		goto out;
7766 	rcu_read_lock();
7767 	ret = BPF_PROG_RUN(event->prog, &ctx);
7768 	rcu_read_unlock();
7769 out:
7770 	__this_cpu_dec(bpf_prog_active);
7771 	preempt_enable();
7772 	if (!ret)
7773 		return;
7774 
7775 	event->orig_overflow_handler(event, data, regs);
7776 }
7777 
7778 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
7779 {
7780 	struct bpf_prog *prog;
7781 
7782 	if (event->overflow_handler_context)
7783 		/* hw breakpoint or kernel counter */
7784 		return -EINVAL;
7785 
7786 	if (event->prog)
7787 		return -EEXIST;
7788 
7789 	prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
7790 	if (IS_ERR(prog))
7791 		return PTR_ERR(prog);
7792 
7793 	event->prog = prog;
7794 	event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
7795 	WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
7796 	return 0;
7797 }
7798 
7799 static void perf_event_free_bpf_handler(struct perf_event *event)
7800 {
7801 	struct bpf_prog *prog = event->prog;
7802 
7803 	if (!prog)
7804 		return;
7805 
7806 	WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
7807 	event->prog = NULL;
7808 	bpf_prog_put(prog);
7809 }
7810 #else
7811 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
7812 {
7813 	return -EOPNOTSUPP;
7814 }
7815 static void perf_event_free_bpf_handler(struct perf_event *event)
7816 {
7817 }
7818 #endif
7819 
7820 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7821 {
7822 	bool is_kprobe, is_tracepoint;
7823 	struct bpf_prog *prog;
7824 
7825 	if (event->attr.type == PERF_TYPE_HARDWARE ||
7826 	    event->attr.type == PERF_TYPE_SOFTWARE)
7827 		return perf_event_set_bpf_handler(event, prog_fd);
7828 
7829 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
7830 		return -EINVAL;
7831 
7832 	if (event->tp_event->prog)
7833 		return -EEXIST;
7834 
7835 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
7836 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
7837 	if (!is_kprobe && !is_tracepoint)
7838 		/* bpf programs can only be attached to u/kprobe or tracepoint */
7839 		return -EINVAL;
7840 
7841 	prog = bpf_prog_get(prog_fd);
7842 	if (IS_ERR(prog))
7843 		return PTR_ERR(prog);
7844 
7845 	if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
7846 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
7847 		/* valid fd, but invalid bpf program type */
7848 		bpf_prog_put(prog);
7849 		return -EINVAL;
7850 	}
7851 
7852 	if (is_tracepoint) {
7853 		int off = trace_event_get_offsets(event->tp_event);
7854 
7855 		if (prog->aux->max_ctx_offset > off) {
7856 			bpf_prog_put(prog);
7857 			return -EACCES;
7858 		}
7859 	}
7860 	event->tp_event->prog = prog;
7861 
7862 	return 0;
7863 }
7864 
7865 static void perf_event_free_bpf_prog(struct perf_event *event)
7866 {
7867 	struct bpf_prog *prog;
7868 
7869 	perf_event_free_bpf_handler(event);
7870 
7871 	if (!event->tp_event)
7872 		return;
7873 
7874 	prog = event->tp_event->prog;
7875 	if (prog) {
7876 		event->tp_event->prog = NULL;
7877 		bpf_prog_put(prog);
7878 	}
7879 }
7880 
7881 #else
7882 
7883 static inline void perf_tp_register(void)
7884 {
7885 }
7886 
7887 static void perf_event_free_filter(struct perf_event *event)
7888 {
7889 }
7890 
7891 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7892 {
7893 	return -ENOENT;
7894 }
7895 
7896 static void perf_event_free_bpf_prog(struct perf_event *event)
7897 {
7898 }
7899 #endif /* CONFIG_EVENT_TRACING */
7900 
7901 #ifdef CONFIG_HAVE_HW_BREAKPOINT
7902 void perf_bp_event(struct perf_event *bp, void *data)
7903 {
7904 	struct perf_sample_data sample;
7905 	struct pt_regs *regs = data;
7906 
7907 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7908 
7909 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
7910 		perf_swevent_event(bp, 1, &sample, regs);
7911 }
7912 #endif
7913 
7914 /*
7915  * Allocate a new address filter
7916  */
7917 static struct perf_addr_filter *
7918 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
7919 {
7920 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
7921 	struct perf_addr_filter *filter;
7922 
7923 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
7924 	if (!filter)
7925 		return NULL;
7926 
7927 	INIT_LIST_HEAD(&filter->entry);
7928 	list_add_tail(&filter->entry, filters);
7929 
7930 	return filter;
7931 }
7932 
7933 static void free_filters_list(struct list_head *filters)
7934 {
7935 	struct perf_addr_filter *filter, *iter;
7936 
7937 	list_for_each_entry_safe(filter, iter, filters, entry) {
7938 		if (filter->inode)
7939 			iput(filter->inode);
7940 		list_del(&filter->entry);
7941 		kfree(filter);
7942 	}
7943 }
7944 
7945 /*
7946  * Free existing address filters and optionally install new ones
7947  */
7948 static void perf_addr_filters_splice(struct perf_event *event,
7949 				     struct list_head *head)
7950 {
7951 	unsigned long flags;
7952 	LIST_HEAD(list);
7953 
7954 	if (!has_addr_filter(event))
7955 		return;
7956 
7957 	/* don't bother with children, they don't have their own filters */
7958 	if (event->parent)
7959 		return;
7960 
7961 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
7962 
7963 	list_splice_init(&event->addr_filters.list, &list);
7964 	if (head)
7965 		list_splice(head, &event->addr_filters.list);
7966 
7967 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
7968 
7969 	free_filters_list(&list);
7970 }
7971 
7972 /*
7973  * Scan through mm's vmas and see if one of them matches the
7974  * @filter; if so, adjust filter's address range.
7975  * Called with mm::mmap_sem down for reading.
7976  */
7977 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
7978 					    struct mm_struct *mm)
7979 {
7980 	struct vm_area_struct *vma;
7981 
7982 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
7983 		struct file *file = vma->vm_file;
7984 		unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
7985 		unsigned long vma_size = vma->vm_end - vma->vm_start;
7986 
7987 		if (!file)
7988 			continue;
7989 
7990 		if (!perf_addr_filter_match(filter, file, off, vma_size))
7991 			continue;
7992 
7993 		return vma->vm_start;
7994 	}
7995 
7996 	return 0;
7997 }
7998 
7999 /*
8000  * Update event's address range filters based on the
8001  * task's existing mappings, if any.
8002  */
8003 static void perf_event_addr_filters_apply(struct perf_event *event)
8004 {
8005 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8006 	struct task_struct *task = READ_ONCE(event->ctx->task);
8007 	struct perf_addr_filter *filter;
8008 	struct mm_struct *mm = NULL;
8009 	unsigned int count = 0;
8010 	unsigned long flags;
8011 
8012 	/*
8013 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
8014 	 * will stop on the parent's child_mutex that our caller is also holding
8015 	 */
8016 	if (task == TASK_TOMBSTONE)
8017 		return;
8018 
8019 	mm = get_task_mm(event->ctx->task);
8020 	if (!mm)
8021 		goto restart;
8022 
8023 	down_read(&mm->mmap_sem);
8024 
8025 	raw_spin_lock_irqsave(&ifh->lock, flags);
8026 	list_for_each_entry(filter, &ifh->list, entry) {
8027 		event->addr_filters_offs[count] = 0;
8028 
8029 		/*
8030 		 * Adjust base offset if the filter is associated to a binary
8031 		 * that needs to be mapped:
8032 		 */
8033 		if (filter->inode)
8034 			event->addr_filters_offs[count] =
8035 				perf_addr_filter_apply(filter, mm);
8036 
8037 		count++;
8038 	}
8039 
8040 	event->addr_filters_gen++;
8041 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
8042 
8043 	up_read(&mm->mmap_sem);
8044 
8045 	mmput(mm);
8046 
8047 restart:
8048 	perf_event_stop(event, 1);
8049 }
8050 
8051 /*
8052  * Address range filtering: limiting the data to certain
8053  * instruction address ranges. Filters are ioctl()ed to us from
8054  * userspace as ascii strings.
8055  *
8056  * Filter string format:
8057  *
8058  * ACTION RANGE_SPEC
8059  * where ACTION is one of the
8060  *  * "filter": limit the trace to this region
8061  *  * "start": start tracing from this address
8062  *  * "stop": stop tracing at this address/region;
8063  * RANGE_SPEC is
8064  *  * for kernel addresses: <start address>[/<size>]
8065  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
8066  *
8067  * if <size> is not specified, the range is treated as a single address.
8068  */
8069 enum {
8070 	IF_ACT_NONE = -1,
8071 	IF_ACT_FILTER,
8072 	IF_ACT_START,
8073 	IF_ACT_STOP,
8074 	IF_SRC_FILE,
8075 	IF_SRC_KERNEL,
8076 	IF_SRC_FILEADDR,
8077 	IF_SRC_KERNELADDR,
8078 };
8079 
8080 enum {
8081 	IF_STATE_ACTION = 0,
8082 	IF_STATE_SOURCE,
8083 	IF_STATE_END,
8084 };
8085 
8086 static const match_table_t if_tokens = {
8087 	{ IF_ACT_FILTER,	"filter" },
8088 	{ IF_ACT_START,		"start" },
8089 	{ IF_ACT_STOP,		"stop" },
8090 	{ IF_SRC_FILE,		"%u/%u@%s" },
8091 	{ IF_SRC_KERNEL,	"%u/%u" },
8092 	{ IF_SRC_FILEADDR,	"%u@%s" },
8093 	{ IF_SRC_KERNELADDR,	"%u" },
8094 	{ IF_ACT_NONE,		NULL },
8095 };
8096 
8097 /*
8098  * Address filter string parser
8099  */
8100 static int
8101 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8102 			     struct list_head *filters)
8103 {
8104 	struct perf_addr_filter *filter = NULL;
8105 	char *start, *orig, *filename = NULL;
8106 	struct path path;
8107 	substring_t args[MAX_OPT_ARGS];
8108 	int state = IF_STATE_ACTION, token;
8109 	unsigned int kernel = 0;
8110 	int ret = -EINVAL;
8111 
8112 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
8113 	if (!fstr)
8114 		return -ENOMEM;
8115 
8116 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
8117 		ret = -EINVAL;
8118 
8119 		if (!*start)
8120 			continue;
8121 
8122 		/* filter definition begins */
8123 		if (state == IF_STATE_ACTION) {
8124 			filter = perf_addr_filter_new(event, filters);
8125 			if (!filter)
8126 				goto fail;
8127 		}
8128 
8129 		token = match_token(start, if_tokens, args);
8130 		switch (token) {
8131 		case IF_ACT_FILTER:
8132 		case IF_ACT_START:
8133 			filter->filter = 1;
8134 
8135 		case IF_ACT_STOP:
8136 			if (state != IF_STATE_ACTION)
8137 				goto fail;
8138 
8139 			state = IF_STATE_SOURCE;
8140 			break;
8141 
8142 		case IF_SRC_KERNELADDR:
8143 		case IF_SRC_KERNEL:
8144 			kernel = 1;
8145 
8146 		case IF_SRC_FILEADDR:
8147 		case IF_SRC_FILE:
8148 			if (state != IF_STATE_SOURCE)
8149 				goto fail;
8150 
8151 			if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
8152 				filter->range = 1;
8153 
8154 			*args[0].to = 0;
8155 			ret = kstrtoul(args[0].from, 0, &filter->offset);
8156 			if (ret)
8157 				goto fail;
8158 
8159 			if (filter->range) {
8160 				*args[1].to = 0;
8161 				ret = kstrtoul(args[1].from, 0, &filter->size);
8162 				if (ret)
8163 					goto fail;
8164 			}
8165 
8166 			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8167 				int fpos = filter->range ? 2 : 1;
8168 
8169 				filename = match_strdup(&args[fpos]);
8170 				if (!filename) {
8171 					ret = -ENOMEM;
8172 					goto fail;
8173 				}
8174 			}
8175 
8176 			state = IF_STATE_END;
8177 			break;
8178 
8179 		default:
8180 			goto fail;
8181 		}
8182 
8183 		/*
8184 		 * Filter definition is fully parsed, validate and install it.
8185 		 * Make sure that it doesn't contradict itself or the event's
8186 		 * attribute.
8187 		 */
8188 		if (state == IF_STATE_END) {
8189 			if (kernel && event->attr.exclude_kernel)
8190 				goto fail;
8191 
8192 			if (!kernel) {
8193 				if (!filename)
8194 					goto fail;
8195 
8196 				/* look up the path and grab its inode */
8197 				ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8198 				if (ret)
8199 					goto fail_free_name;
8200 
8201 				filter->inode = igrab(d_inode(path.dentry));
8202 				path_put(&path);
8203 				kfree(filename);
8204 				filename = NULL;
8205 
8206 				ret = -EINVAL;
8207 				if (!filter->inode ||
8208 				    !S_ISREG(filter->inode->i_mode))
8209 					/* free_filters_list() will iput() */
8210 					goto fail;
8211 			}
8212 
8213 			/* ready to consume more filters */
8214 			state = IF_STATE_ACTION;
8215 			filter = NULL;
8216 		}
8217 	}
8218 
8219 	if (state != IF_STATE_ACTION)
8220 		goto fail;
8221 
8222 	kfree(orig);
8223 
8224 	return 0;
8225 
8226 fail_free_name:
8227 	kfree(filename);
8228 fail:
8229 	free_filters_list(filters);
8230 	kfree(orig);
8231 
8232 	return ret;
8233 }
8234 
8235 static int
8236 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8237 {
8238 	LIST_HEAD(filters);
8239 	int ret;
8240 
8241 	/*
8242 	 * Since this is called in perf_ioctl() path, we're already holding
8243 	 * ctx::mutex.
8244 	 */
8245 	lockdep_assert_held(&event->ctx->mutex);
8246 
8247 	if (WARN_ON_ONCE(event->parent))
8248 		return -EINVAL;
8249 
8250 	/*
8251 	 * For now, we only support filtering in per-task events; doing so
8252 	 * for CPU-wide events requires additional context switching trickery,
8253 	 * since same object code will be mapped at different virtual
8254 	 * addresses in different processes.
8255 	 */
8256 	if (!event->ctx->task)
8257 		return -EOPNOTSUPP;
8258 
8259 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8260 	if (ret)
8261 		return ret;
8262 
8263 	ret = event->pmu->addr_filters_validate(&filters);
8264 	if (ret) {
8265 		free_filters_list(&filters);
8266 		return ret;
8267 	}
8268 
8269 	/* remove existing filters, if any */
8270 	perf_addr_filters_splice(event, &filters);
8271 
8272 	/* install new filters */
8273 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
8274 
8275 	return ret;
8276 }
8277 
8278 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8279 {
8280 	char *filter_str;
8281 	int ret = -EINVAL;
8282 
8283 	if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8284 	    !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8285 	    !has_addr_filter(event))
8286 		return -EINVAL;
8287 
8288 	filter_str = strndup_user(arg, PAGE_SIZE);
8289 	if (IS_ERR(filter_str))
8290 		return PTR_ERR(filter_str);
8291 
8292 	if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8293 	    event->attr.type == PERF_TYPE_TRACEPOINT)
8294 		ret = ftrace_profile_set_filter(event, event->attr.config,
8295 						filter_str);
8296 	else if (has_addr_filter(event))
8297 		ret = perf_event_set_addr_filter(event, filter_str);
8298 
8299 	kfree(filter_str);
8300 	return ret;
8301 }
8302 
8303 /*
8304  * hrtimer based swevent callback
8305  */
8306 
8307 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
8308 {
8309 	enum hrtimer_restart ret = HRTIMER_RESTART;
8310 	struct perf_sample_data data;
8311 	struct pt_regs *regs;
8312 	struct perf_event *event;
8313 	u64 period;
8314 
8315 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
8316 
8317 	if (event->state != PERF_EVENT_STATE_ACTIVE)
8318 		return HRTIMER_NORESTART;
8319 
8320 	event->pmu->read(event);
8321 
8322 	perf_sample_data_init(&data, 0, event->hw.last_period);
8323 	regs = get_irq_regs();
8324 
8325 	if (regs && !perf_exclude_event(event, regs)) {
8326 		if (!(event->attr.exclude_idle && is_idle_task(current)))
8327 			if (__perf_event_overflow(event, 1, &data, regs))
8328 				ret = HRTIMER_NORESTART;
8329 	}
8330 
8331 	period = max_t(u64, 10000, event->hw.sample_period);
8332 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
8333 
8334 	return ret;
8335 }
8336 
8337 static void perf_swevent_start_hrtimer(struct perf_event *event)
8338 {
8339 	struct hw_perf_event *hwc = &event->hw;
8340 	s64 period;
8341 
8342 	if (!is_sampling_event(event))
8343 		return;
8344 
8345 	period = local64_read(&hwc->period_left);
8346 	if (period) {
8347 		if (period < 0)
8348 			period = 10000;
8349 
8350 		local64_set(&hwc->period_left, 0);
8351 	} else {
8352 		period = max_t(u64, 10000, hwc->sample_period);
8353 	}
8354 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8355 		      HRTIMER_MODE_REL_PINNED);
8356 }
8357 
8358 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8359 {
8360 	struct hw_perf_event *hwc = &event->hw;
8361 
8362 	if (is_sampling_event(event)) {
8363 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
8364 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
8365 
8366 		hrtimer_cancel(&hwc->hrtimer);
8367 	}
8368 }
8369 
8370 static void perf_swevent_init_hrtimer(struct perf_event *event)
8371 {
8372 	struct hw_perf_event *hwc = &event->hw;
8373 
8374 	if (!is_sampling_event(event))
8375 		return;
8376 
8377 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8378 	hwc->hrtimer.function = perf_swevent_hrtimer;
8379 
8380 	/*
8381 	 * Since hrtimers have a fixed rate, we can do a static freq->period
8382 	 * mapping and avoid the whole period adjust feedback stuff.
8383 	 */
8384 	if (event->attr.freq) {
8385 		long freq = event->attr.sample_freq;
8386 
8387 		event->attr.sample_period = NSEC_PER_SEC / freq;
8388 		hwc->sample_period = event->attr.sample_period;
8389 		local64_set(&hwc->period_left, hwc->sample_period);
8390 		hwc->last_period = hwc->sample_period;
8391 		event->attr.freq = 0;
8392 	}
8393 }
8394 
8395 /*
8396  * Software event: cpu wall time clock
8397  */
8398 
8399 static void cpu_clock_event_update(struct perf_event *event)
8400 {
8401 	s64 prev;
8402 	u64 now;
8403 
8404 	now = local_clock();
8405 	prev = local64_xchg(&event->hw.prev_count, now);
8406 	local64_add(now - prev, &event->count);
8407 }
8408 
8409 static void cpu_clock_event_start(struct perf_event *event, int flags)
8410 {
8411 	local64_set(&event->hw.prev_count, local_clock());
8412 	perf_swevent_start_hrtimer(event);
8413 }
8414 
8415 static void cpu_clock_event_stop(struct perf_event *event, int flags)
8416 {
8417 	perf_swevent_cancel_hrtimer(event);
8418 	cpu_clock_event_update(event);
8419 }
8420 
8421 static int cpu_clock_event_add(struct perf_event *event, int flags)
8422 {
8423 	if (flags & PERF_EF_START)
8424 		cpu_clock_event_start(event, flags);
8425 	perf_event_update_userpage(event);
8426 
8427 	return 0;
8428 }
8429 
8430 static void cpu_clock_event_del(struct perf_event *event, int flags)
8431 {
8432 	cpu_clock_event_stop(event, flags);
8433 }
8434 
8435 static void cpu_clock_event_read(struct perf_event *event)
8436 {
8437 	cpu_clock_event_update(event);
8438 }
8439 
8440 static int cpu_clock_event_init(struct perf_event *event)
8441 {
8442 	if (event->attr.type != PERF_TYPE_SOFTWARE)
8443 		return -ENOENT;
8444 
8445 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8446 		return -ENOENT;
8447 
8448 	/*
8449 	 * no branch sampling for software events
8450 	 */
8451 	if (has_branch_stack(event))
8452 		return -EOPNOTSUPP;
8453 
8454 	perf_swevent_init_hrtimer(event);
8455 
8456 	return 0;
8457 }
8458 
8459 static struct pmu perf_cpu_clock = {
8460 	.task_ctx_nr	= perf_sw_context,
8461 
8462 	.capabilities	= PERF_PMU_CAP_NO_NMI,
8463 
8464 	.event_init	= cpu_clock_event_init,
8465 	.add		= cpu_clock_event_add,
8466 	.del		= cpu_clock_event_del,
8467 	.start		= cpu_clock_event_start,
8468 	.stop		= cpu_clock_event_stop,
8469 	.read		= cpu_clock_event_read,
8470 };
8471 
8472 /*
8473  * Software event: task time clock
8474  */
8475 
8476 static void task_clock_event_update(struct perf_event *event, u64 now)
8477 {
8478 	u64 prev;
8479 	s64 delta;
8480 
8481 	prev = local64_xchg(&event->hw.prev_count, now);
8482 	delta = now - prev;
8483 	local64_add(delta, &event->count);
8484 }
8485 
8486 static void task_clock_event_start(struct perf_event *event, int flags)
8487 {
8488 	local64_set(&event->hw.prev_count, event->ctx->time);
8489 	perf_swevent_start_hrtimer(event);
8490 }
8491 
8492 static void task_clock_event_stop(struct perf_event *event, int flags)
8493 {
8494 	perf_swevent_cancel_hrtimer(event);
8495 	task_clock_event_update(event, event->ctx->time);
8496 }
8497 
8498 static int task_clock_event_add(struct perf_event *event, int flags)
8499 {
8500 	if (flags & PERF_EF_START)
8501 		task_clock_event_start(event, flags);
8502 	perf_event_update_userpage(event);
8503 
8504 	return 0;
8505 }
8506 
8507 static void task_clock_event_del(struct perf_event *event, int flags)
8508 {
8509 	task_clock_event_stop(event, PERF_EF_UPDATE);
8510 }
8511 
8512 static void task_clock_event_read(struct perf_event *event)
8513 {
8514 	u64 now = perf_clock();
8515 	u64 delta = now - event->ctx->timestamp;
8516 	u64 time = event->ctx->time + delta;
8517 
8518 	task_clock_event_update(event, time);
8519 }
8520 
8521 static int task_clock_event_init(struct perf_event *event)
8522 {
8523 	if (event->attr.type != PERF_TYPE_SOFTWARE)
8524 		return -ENOENT;
8525 
8526 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8527 		return -ENOENT;
8528 
8529 	/*
8530 	 * no branch sampling for software events
8531 	 */
8532 	if (has_branch_stack(event))
8533 		return -EOPNOTSUPP;
8534 
8535 	perf_swevent_init_hrtimer(event);
8536 
8537 	return 0;
8538 }
8539 
8540 static struct pmu perf_task_clock = {
8541 	.task_ctx_nr	= perf_sw_context,
8542 
8543 	.capabilities	= PERF_PMU_CAP_NO_NMI,
8544 
8545 	.event_init	= task_clock_event_init,
8546 	.add		= task_clock_event_add,
8547 	.del		= task_clock_event_del,
8548 	.start		= task_clock_event_start,
8549 	.stop		= task_clock_event_stop,
8550 	.read		= task_clock_event_read,
8551 };
8552 
8553 static void perf_pmu_nop_void(struct pmu *pmu)
8554 {
8555 }
8556 
8557 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8558 {
8559 }
8560 
8561 static int perf_pmu_nop_int(struct pmu *pmu)
8562 {
8563 	return 0;
8564 }
8565 
8566 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8567 
8568 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
8569 {
8570 	__this_cpu_write(nop_txn_flags, flags);
8571 
8572 	if (flags & ~PERF_PMU_TXN_ADD)
8573 		return;
8574 
8575 	perf_pmu_disable(pmu);
8576 }
8577 
8578 static int perf_pmu_commit_txn(struct pmu *pmu)
8579 {
8580 	unsigned int flags = __this_cpu_read(nop_txn_flags);
8581 
8582 	__this_cpu_write(nop_txn_flags, 0);
8583 
8584 	if (flags & ~PERF_PMU_TXN_ADD)
8585 		return 0;
8586 
8587 	perf_pmu_enable(pmu);
8588 	return 0;
8589 }
8590 
8591 static void perf_pmu_cancel_txn(struct pmu *pmu)
8592 {
8593 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
8594 
8595 	__this_cpu_write(nop_txn_flags, 0);
8596 
8597 	if (flags & ~PERF_PMU_TXN_ADD)
8598 		return;
8599 
8600 	perf_pmu_enable(pmu);
8601 }
8602 
8603 static int perf_event_idx_default(struct perf_event *event)
8604 {
8605 	return 0;
8606 }
8607 
8608 /*
8609  * Ensures all contexts with the same task_ctx_nr have the same
8610  * pmu_cpu_context too.
8611  */
8612 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
8613 {
8614 	struct pmu *pmu;
8615 
8616 	if (ctxn < 0)
8617 		return NULL;
8618 
8619 	list_for_each_entry(pmu, &pmus, entry) {
8620 		if (pmu->task_ctx_nr == ctxn)
8621 			return pmu->pmu_cpu_context;
8622 	}
8623 
8624 	return NULL;
8625 }
8626 
8627 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
8628 {
8629 	int cpu;
8630 
8631 	for_each_possible_cpu(cpu) {
8632 		struct perf_cpu_context *cpuctx;
8633 
8634 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8635 
8636 		if (cpuctx->unique_pmu == old_pmu)
8637 			cpuctx->unique_pmu = pmu;
8638 	}
8639 }
8640 
8641 static void free_pmu_context(struct pmu *pmu)
8642 {
8643 	struct pmu *i;
8644 
8645 	mutex_lock(&pmus_lock);
8646 	/*
8647 	 * Like a real lame refcount.
8648 	 */
8649 	list_for_each_entry(i, &pmus, entry) {
8650 		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
8651 			update_pmu_context(i, pmu);
8652 			goto out;
8653 		}
8654 	}
8655 
8656 	free_percpu(pmu->pmu_cpu_context);
8657 out:
8658 	mutex_unlock(&pmus_lock);
8659 }
8660 
8661 /*
8662  * Let userspace know that this PMU supports address range filtering:
8663  */
8664 static ssize_t nr_addr_filters_show(struct device *dev,
8665 				    struct device_attribute *attr,
8666 				    char *page)
8667 {
8668 	struct pmu *pmu = dev_get_drvdata(dev);
8669 
8670 	return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8671 }
8672 DEVICE_ATTR_RO(nr_addr_filters);
8673 
8674 static struct idr pmu_idr;
8675 
8676 static ssize_t
8677 type_show(struct device *dev, struct device_attribute *attr, char *page)
8678 {
8679 	struct pmu *pmu = dev_get_drvdata(dev);
8680 
8681 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8682 }
8683 static DEVICE_ATTR_RO(type);
8684 
8685 static ssize_t
8686 perf_event_mux_interval_ms_show(struct device *dev,
8687 				struct device_attribute *attr,
8688 				char *page)
8689 {
8690 	struct pmu *pmu = dev_get_drvdata(dev);
8691 
8692 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
8693 }
8694 
8695 static DEFINE_MUTEX(mux_interval_mutex);
8696 
8697 static ssize_t
8698 perf_event_mux_interval_ms_store(struct device *dev,
8699 				 struct device_attribute *attr,
8700 				 const char *buf, size_t count)
8701 {
8702 	struct pmu *pmu = dev_get_drvdata(dev);
8703 	int timer, cpu, ret;
8704 
8705 	ret = kstrtoint(buf, 0, &timer);
8706 	if (ret)
8707 		return ret;
8708 
8709 	if (timer < 1)
8710 		return -EINVAL;
8711 
8712 	/* same value, noting to do */
8713 	if (timer == pmu->hrtimer_interval_ms)
8714 		return count;
8715 
8716 	mutex_lock(&mux_interval_mutex);
8717 	pmu->hrtimer_interval_ms = timer;
8718 
8719 	/* update all cpuctx for this PMU */
8720 	get_online_cpus();
8721 	for_each_online_cpu(cpu) {
8722 		struct perf_cpu_context *cpuctx;
8723 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8724 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
8725 
8726 		cpu_function_call(cpu,
8727 			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
8728 	}
8729 	put_online_cpus();
8730 	mutex_unlock(&mux_interval_mutex);
8731 
8732 	return count;
8733 }
8734 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
8735 
8736 static struct attribute *pmu_dev_attrs[] = {
8737 	&dev_attr_type.attr,
8738 	&dev_attr_perf_event_mux_interval_ms.attr,
8739 	NULL,
8740 };
8741 ATTRIBUTE_GROUPS(pmu_dev);
8742 
8743 static int pmu_bus_running;
8744 static struct bus_type pmu_bus = {
8745 	.name		= "event_source",
8746 	.dev_groups	= pmu_dev_groups,
8747 };
8748 
8749 static void pmu_dev_release(struct device *dev)
8750 {
8751 	kfree(dev);
8752 }
8753 
8754 static int pmu_dev_alloc(struct pmu *pmu)
8755 {
8756 	int ret = -ENOMEM;
8757 
8758 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
8759 	if (!pmu->dev)
8760 		goto out;
8761 
8762 	pmu->dev->groups = pmu->attr_groups;
8763 	device_initialize(pmu->dev);
8764 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
8765 	if (ret)
8766 		goto free_dev;
8767 
8768 	dev_set_drvdata(pmu->dev, pmu);
8769 	pmu->dev->bus = &pmu_bus;
8770 	pmu->dev->release = pmu_dev_release;
8771 	ret = device_add(pmu->dev);
8772 	if (ret)
8773 		goto free_dev;
8774 
8775 	/* For PMUs with address filters, throw in an extra attribute: */
8776 	if (pmu->nr_addr_filters)
8777 		ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
8778 
8779 	if (ret)
8780 		goto del_dev;
8781 
8782 out:
8783 	return ret;
8784 
8785 del_dev:
8786 	device_del(pmu->dev);
8787 
8788 free_dev:
8789 	put_device(pmu->dev);
8790 	goto out;
8791 }
8792 
8793 static struct lock_class_key cpuctx_mutex;
8794 static struct lock_class_key cpuctx_lock;
8795 
8796 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
8797 {
8798 	int cpu, ret;
8799 
8800 	mutex_lock(&pmus_lock);
8801 	ret = -ENOMEM;
8802 	pmu->pmu_disable_count = alloc_percpu(int);
8803 	if (!pmu->pmu_disable_count)
8804 		goto unlock;
8805 
8806 	pmu->type = -1;
8807 	if (!name)
8808 		goto skip_type;
8809 	pmu->name = name;
8810 
8811 	if (type < 0) {
8812 		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
8813 		if (type < 0) {
8814 			ret = type;
8815 			goto free_pdc;
8816 		}
8817 	}
8818 	pmu->type = type;
8819 
8820 	if (pmu_bus_running) {
8821 		ret = pmu_dev_alloc(pmu);
8822 		if (ret)
8823 			goto free_idr;
8824 	}
8825 
8826 skip_type:
8827 	if (pmu->task_ctx_nr == perf_hw_context) {
8828 		static int hw_context_taken = 0;
8829 
8830 		/*
8831 		 * Other than systems with heterogeneous CPUs, it never makes
8832 		 * sense for two PMUs to share perf_hw_context. PMUs which are
8833 		 * uncore must use perf_invalid_context.
8834 		 */
8835 		if (WARN_ON_ONCE(hw_context_taken &&
8836 		    !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
8837 			pmu->task_ctx_nr = perf_invalid_context;
8838 
8839 		hw_context_taken = 1;
8840 	}
8841 
8842 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
8843 	if (pmu->pmu_cpu_context)
8844 		goto got_cpu_context;
8845 
8846 	ret = -ENOMEM;
8847 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
8848 	if (!pmu->pmu_cpu_context)
8849 		goto free_dev;
8850 
8851 	for_each_possible_cpu(cpu) {
8852 		struct perf_cpu_context *cpuctx;
8853 
8854 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8855 		__perf_event_init_context(&cpuctx->ctx);
8856 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
8857 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
8858 		cpuctx->ctx.pmu = pmu;
8859 
8860 		__perf_mux_hrtimer_init(cpuctx, cpu);
8861 
8862 		cpuctx->unique_pmu = pmu;
8863 	}
8864 
8865 got_cpu_context:
8866 	if (!pmu->start_txn) {
8867 		if (pmu->pmu_enable) {
8868 			/*
8869 			 * If we have pmu_enable/pmu_disable calls, install
8870 			 * transaction stubs that use that to try and batch
8871 			 * hardware accesses.
8872 			 */
8873 			pmu->start_txn  = perf_pmu_start_txn;
8874 			pmu->commit_txn = perf_pmu_commit_txn;
8875 			pmu->cancel_txn = perf_pmu_cancel_txn;
8876 		} else {
8877 			pmu->start_txn  = perf_pmu_nop_txn;
8878 			pmu->commit_txn = perf_pmu_nop_int;
8879 			pmu->cancel_txn = perf_pmu_nop_void;
8880 		}
8881 	}
8882 
8883 	if (!pmu->pmu_enable) {
8884 		pmu->pmu_enable  = perf_pmu_nop_void;
8885 		pmu->pmu_disable = perf_pmu_nop_void;
8886 	}
8887 
8888 	if (!pmu->event_idx)
8889 		pmu->event_idx = perf_event_idx_default;
8890 
8891 	list_add_rcu(&pmu->entry, &pmus);
8892 	atomic_set(&pmu->exclusive_cnt, 0);
8893 	ret = 0;
8894 unlock:
8895 	mutex_unlock(&pmus_lock);
8896 
8897 	return ret;
8898 
8899 free_dev:
8900 	device_del(pmu->dev);
8901 	put_device(pmu->dev);
8902 
8903 free_idr:
8904 	if (pmu->type >= PERF_TYPE_MAX)
8905 		idr_remove(&pmu_idr, pmu->type);
8906 
8907 free_pdc:
8908 	free_percpu(pmu->pmu_disable_count);
8909 	goto unlock;
8910 }
8911 EXPORT_SYMBOL_GPL(perf_pmu_register);
8912 
8913 void perf_pmu_unregister(struct pmu *pmu)
8914 {
8915 	int remove_device;
8916 
8917 	mutex_lock(&pmus_lock);
8918 	remove_device = pmu_bus_running;
8919 	list_del_rcu(&pmu->entry);
8920 	mutex_unlock(&pmus_lock);
8921 
8922 	/*
8923 	 * We dereference the pmu list under both SRCU and regular RCU, so
8924 	 * synchronize against both of those.
8925 	 */
8926 	synchronize_srcu(&pmus_srcu);
8927 	synchronize_rcu();
8928 
8929 	free_percpu(pmu->pmu_disable_count);
8930 	if (pmu->type >= PERF_TYPE_MAX)
8931 		idr_remove(&pmu_idr, pmu->type);
8932 	if (remove_device) {
8933 		if (pmu->nr_addr_filters)
8934 			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
8935 		device_del(pmu->dev);
8936 		put_device(pmu->dev);
8937 	}
8938 	free_pmu_context(pmu);
8939 }
8940 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
8941 
8942 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
8943 {
8944 	struct perf_event_context *ctx = NULL;
8945 	int ret;
8946 
8947 	if (!try_module_get(pmu->module))
8948 		return -ENODEV;
8949 
8950 	if (event->group_leader != event) {
8951 		/*
8952 		 * This ctx->mutex can nest when we're called through
8953 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
8954 		 */
8955 		ctx = perf_event_ctx_lock_nested(event->group_leader,
8956 						 SINGLE_DEPTH_NESTING);
8957 		BUG_ON(!ctx);
8958 	}
8959 
8960 	event->pmu = pmu;
8961 	ret = pmu->event_init(event);
8962 
8963 	if (ctx)
8964 		perf_event_ctx_unlock(event->group_leader, ctx);
8965 
8966 	if (ret)
8967 		module_put(pmu->module);
8968 
8969 	return ret;
8970 }
8971 
8972 static struct pmu *perf_init_event(struct perf_event *event)
8973 {
8974 	struct pmu *pmu = NULL;
8975 	int idx;
8976 	int ret;
8977 
8978 	idx = srcu_read_lock(&pmus_srcu);
8979 
8980 	rcu_read_lock();
8981 	pmu = idr_find(&pmu_idr, event->attr.type);
8982 	rcu_read_unlock();
8983 	if (pmu) {
8984 		ret = perf_try_init_event(pmu, event);
8985 		if (ret)
8986 			pmu = ERR_PTR(ret);
8987 		goto unlock;
8988 	}
8989 
8990 	list_for_each_entry_rcu(pmu, &pmus, entry) {
8991 		ret = perf_try_init_event(pmu, event);
8992 		if (!ret)
8993 			goto unlock;
8994 
8995 		if (ret != -ENOENT) {
8996 			pmu = ERR_PTR(ret);
8997 			goto unlock;
8998 		}
8999 	}
9000 	pmu = ERR_PTR(-ENOENT);
9001 unlock:
9002 	srcu_read_unlock(&pmus_srcu, idx);
9003 
9004 	return pmu;
9005 }
9006 
9007 static void attach_sb_event(struct perf_event *event)
9008 {
9009 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9010 
9011 	raw_spin_lock(&pel->lock);
9012 	list_add_rcu(&event->sb_list, &pel->list);
9013 	raw_spin_unlock(&pel->lock);
9014 }
9015 
9016 /*
9017  * We keep a list of all !task (and therefore per-cpu) events
9018  * that need to receive side-band records.
9019  *
9020  * This avoids having to scan all the various PMU per-cpu contexts
9021  * looking for them.
9022  */
9023 static void account_pmu_sb_event(struct perf_event *event)
9024 {
9025 	if (is_sb_event(event))
9026 		attach_sb_event(event);
9027 }
9028 
9029 static void account_event_cpu(struct perf_event *event, int cpu)
9030 {
9031 	if (event->parent)
9032 		return;
9033 
9034 	if (is_cgroup_event(event))
9035 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9036 }
9037 
9038 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
9039 static void account_freq_event_nohz(void)
9040 {
9041 #ifdef CONFIG_NO_HZ_FULL
9042 	/* Lock so we don't race with concurrent unaccount */
9043 	spin_lock(&nr_freq_lock);
9044 	if (atomic_inc_return(&nr_freq_events) == 1)
9045 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9046 	spin_unlock(&nr_freq_lock);
9047 #endif
9048 }
9049 
9050 static void account_freq_event(void)
9051 {
9052 	if (tick_nohz_full_enabled())
9053 		account_freq_event_nohz();
9054 	else
9055 		atomic_inc(&nr_freq_events);
9056 }
9057 
9058 
9059 static void account_event(struct perf_event *event)
9060 {
9061 	bool inc = false;
9062 
9063 	if (event->parent)
9064 		return;
9065 
9066 	if (event->attach_state & PERF_ATTACH_TASK)
9067 		inc = true;
9068 	if (event->attr.mmap || event->attr.mmap_data)
9069 		atomic_inc(&nr_mmap_events);
9070 	if (event->attr.comm)
9071 		atomic_inc(&nr_comm_events);
9072 	if (event->attr.task)
9073 		atomic_inc(&nr_task_events);
9074 	if (event->attr.freq)
9075 		account_freq_event();
9076 	if (event->attr.context_switch) {
9077 		atomic_inc(&nr_switch_events);
9078 		inc = true;
9079 	}
9080 	if (has_branch_stack(event))
9081 		inc = true;
9082 	if (is_cgroup_event(event))
9083 		inc = true;
9084 
9085 	if (inc) {
9086 		if (atomic_inc_not_zero(&perf_sched_count))
9087 			goto enabled;
9088 
9089 		mutex_lock(&perf_sched_mutex);
9090 		if (!atomic_read(&perf_sched_count)) {
9091 			static_branch_enable(&perf_sched_events);
9092 			/*
9093 			 * Guarantee that all CPUs observe they key change and
9094 			 * call the perf scheduling hooks before proceeding to
9095 			 * install events that need them.
9096 			 */
9097 			synchronize_sched();
9098 		}
9099 		/*
9100 		 * Now that we have waited for the sync_sched(), allow further
9101 		 * increments to by-pass the mutex.
9102 		 */
9103 		atomic_inc(&perf_sched_count);
9104 		mutex_unlock(&perf_sched_mutex);
9105 	}
9106 enabled:
9107 
9108 	account_event_cpu(event, event->cpu);
9109 
9110 	account_pmu_sb_event(event);
9111 }
9112 
9113 /*
9114  * Allocate and initialize a event structure
9115  */
9116 static struct perf_event *
9117 perf_event_alloc(struct perf_event_attr *attr, int cpu,
9118 		 struct task_struct *task,
9119 		 struct perf_event *group_leader,
9120 		 struct perf_event *parent_event,
9121 		 perf_overflow_handler_t overflow_handler,
9122 		 void *context, int cgroup_fd)
9123 {
9124 	struct pmu *pmu;
9125 	struct perf_event *event;
9126 	struct hw_perf_event *hwc;
9127 	long err = -EINVAL;
9128 
9129 	if ((unsigned)cpu >= nr_cpu_ids) {
9130 		if (!task || cpu != -1)
9131 			return ERR_PTR(-EINVAL);
9132 	}
9133 
9134 	event = kzalloc(sizeof(*event), GFP_KERNEL);
9135 	if (!event)
9136 		return ERR_PTR(-ENOMEM);
9137 
9138 	/*
9139 	 * Single events are their own group leaders, with an
9140 	 * empty sibling list:
9141 	 */
9142 	if (!group_leader)
9143 		group_leader = event;
9144 
9145 	mutex_init(&event->child_mutex);
9146 	INIT_LIST_HEAD(&event->child_list);
9147 
9148 	INIT_LIST_HEAD(&event->group_entry);
9149 	INIT_LIST_HEAD(&event->event_entry);
9150 	INIT_LIST_HEAD(&event->sibling_list);
9151 	INIT_LIST_HEAD(&event->rb_entry);
9152 	INIT_LIST_HEAD(&event->active_entry);
9153 	INIT_LIST_HEAD(&event->addr_filters.list);
9154 	INIT_HLIST_NODE(&event->hlist_entry);
9155 
9156 
9157 	init_waitqueue_head(&event->waitq);
9158 	init_irq_work(&event->pending, perf_pending_event);
9159 
9160 	mutex_init(&event->mmap_mutex);
9161 	raw_spin_lock_init(&event->addr_filters.lock);
9162 
9163 	atomic_long_set(&event->refcount, 1);
9164 	event->cpu		= cpu;
9165 	event->attr		= *attr;
9166 	event->group_leader	= group_leader;
9167 	event->pmu		= NULL;
9168 	event->oncpu		= -1;
9169 
9170 	event->parent		= parent_event;
9171 
9172 	event->ns		= get_pid_ns(task_active_pid_ns(current));
9173 	event->id		= atomic64_inc_return(&perf_event_id);
9174 
9175 	event->state		= PERF_EVENT_STATE_INACTIVE;
9176 
9177 	if (task) {
9178 		event->attach_state = PERF_ATTACH_TASK;
9179 		/*
9180 		 * XXX pmu::event_init needs to know what task to account to
9181 		 * and we cannot use the ctx information because we need the
9182 		 * pmu before we get a ctx.
9183 		 */
9184 		event->hw.target = task;
9185 	}
9186 
9187 	event->clock = &local_clock;
9188 	if (parent_event)
9189 		event->clock = parent_event->clock;
9190 
9191 	if (!overflow_handler && parent_event) {
9192 		overflow_handler = parent_event->overflow_handler;
9193 		context = parent_event->overflow_handler_context;
9194 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9195 		if (overflow_handler == bpf_overflow_handler) {
9196 			struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9197 
9198 			if (IS_ERR(prog)) {
9199 				err = PTR_ERR(prog);
9200 				goto err_ns;
9201 			}
9202 			event->prog = prog;
9203 			event->orig_overflow_handler =
9204 				parent_event->orig_overflow_handler;
9205 		}
9206 #endif
9207 	}
9208 
9209 	if (overflow_handler) {
9210 		event->overflow_handler	= overflow_handler;
9211 		event->overflow_handler_context = context;
9212 	} else if (is_write_backward(event)){
9213 		event->overflow_handler = perf_event_output_backward;
9214 		event->overflow_handler_context = NULL;
9215 	} else {
9216 		event->overflow_handler = perf_event_output_forward;
9217 		event->overflow_handler_context = NULL;
9218 	}
9219 
9220 	perf_event__state_init(event);
9221 
9222 	pmu = NULL;
9223 
9224 	hwc = &event->hw;
9225 	hwc->sample_period = attr->sample_period;
9226 	if (attr->freq && attr->sample_freq)
9227 		hwc->sample_period = 1;
9228 	hwc->last_period = hwc->sample_period;
9229 
9230 	local64_set(&hwc->period_left, hwc->sample_period);
9231 
9232 	/*
9233 	 * we currently do not support PERF_FORMAT_GROUP on inherited events
9234 	 */
9235 	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
9236 		goto err_ns;
9237 
9238 	if (!has_branch_stack(event))
9239 		event->attr.branch_sample_type = 0;
9240 
9241 	if (cgroup_fd != -1) {
9242 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9243 		if (err)
9244 			goto err_ns;
9245 	}
9246 
9247 	pmu = perf_init_event(event);
9248 	if (!pmu)
9249 		goto err_ns;
9250 	else if (IS_ERR(pmu)) {
9251 		err = PTR_ERR(pmu);
9252 		goto err_ns;
9253 	}
9254 
9255 	err = exclusive_event_init(event);
9256 	if (err)
9257 		goto err_pmu;
9258 
9259 	if (has_addr_filter(event)) {
9260 		event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9261 						   sizeof(unsigned long),
9262 						   GFP_KERNEL);
9263 		if (!event->addr_filters_offs)
9264 			goto err_per_task;
9265 
9266 		/* force hw sync on the address filters */
9267 		event->addr_filters_gen = 1;
9268 	}
9269 
9270 	if (!event->parent) {
9271 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
9272 			err = get_callchain_buffers(attr->sample_max_stack);
9273 			if (err)
9274 				goto err_addr_filters;
9275 		}
9276 	}
9277 
9278 	/* symmetric to unaccount_event() in _free_event() */
9279 	account_event(event);
9280 
9281 	return event;
9282 
9283 err_addr_filters:
9284 	kfree(event->addr_filters_offs);
9285 
9286 err_per_task:
9287 	exclusive_event_destroy(event);
9288 
9289 err_pmu:
9290 	if (event->destroy)
9291 		event->destroy(event);
9292 	module_put(pmu->module);
9293 err_ns:
9294 	if (is_cgroup_event(event))
9295 		perf_detach_cgroup(event);
9296 	if (event->ns)
9297 		put_pid_ns(event->ns);
9298 	kfree(event);
9299 
9300 	return ERR_PTR(err);
9301 }
9302 
9303 static int perf_copy_attr(struct perf_event_attr __user *uattr,
9304 			  struct perf_event_attr *attr)
9305 {
9306 	u32 size;
9307 	int ret;
9308 
9309 	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9310 		return -EFAULT;
9311 
9312 	/*
9313 	 * zero the full structure, so that a short copy will be nice.
9314 	 */
9315 	memset(attr, 0, sizeof(*attr));
9316 
9317 	ret = get_user(size, &uattr->size);
9318 	if (ret)
9319 		return ret;
9320 
9321 	if (size > PAGE_SIZE)	/* silly large */
9322 		goto err_size;
9323 
9324 	if (!size)		/* abi compat */
9325 		size = PERF_ATTR_SIZE_VER0;
9326 
9327 	if (size < PERF_ATTR_SIZE_VER0)
9328 		goto err_size;
9329 
9330 	/*
9331 	 * If we're handed a bigger struct than we know of,
9332 	 * ensure all the unknown bits are 0 - i.e. new
9333 	 * user-space does not rely on any kernel feature
9334 	 * extensions we dont know about yet.
9335 	 */
9336 	if (size > sizeof(*attr)) {
9337 		unsigned char __user *addr;
9338 		unsigned char __user *end;
9339 		unsigned char val;
9340 
9341 		addr = (void __user *)uattr + sizeof(*attr);
9342 		end  = (void __user *)uattr + size;
9343 
9344 		for (; addr < end; addr++) {
9345 			ret = get_user(val, addr);
9346 			if (ret)
9347 				return ret;
9348 			if (val)
9349 				goto err_size;
9350 		}
9351 		size = sizeof(*attr);
9352 	}
9353 
9354 	ret = copy_from_user(attr, uattr, size);
9355 	if (ret)
9356 		return -EFAULT;
9357 
9358 	if (attr->__reserved_1)
9359 		return -EINVAL;
9360 
9361 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9362 		return -EINVAL;
9363 
9364 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9365 		return -EINVAL;
9366 
9367 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9368 		u64 mask = attr->branch_sample_type;
9369 
9370 		/* only using defined bits */
9371 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9372 			return -EINVAL;
9373 
9374 		/* at least one branch bit must be set */
9375 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9376 			return -EINVAL;
9377 
9378 		/* propagate priv level, when not set for branch */
9379 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9380 
9381 			/* exclude_kernel checked on syscall entry */
9382 			if (!attr->exclude_kernel)
9383 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
9384 
9385 			if (!attr->exclude_user)
9386 				mask |= PERF_SAMPLE_BRANCH_USER;
9387 
9388 			if (!attr->exclude_hv)
9389 				mask |= PERF_SAMPLE_BRANCH_HV;
9390 			/*
9391 			 * adjust user setting (for HW filter setup)
9392 			 */
9393 			attr->branch_sample_type = mask;
9394 		}
9395 		/* privileged levels capture (kernel, hv): check permissions */
9396 		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9397 		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9398 			return -EACCES;
9399 	}
9400 
9401 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9402 		ret = perf_reg_validate(attr->sample_regs_user);
9403 		if (ret)
9404 			return ret;
9405 	}
9406 
9407 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9408 		if (!arch_perf_have_user_stack_dump())
9409 			return -ENOSYS;
9410 
9411 		/*
9412 		 * We have __u32 type for the size, but so far
9413 		 * we can only use __u16 as maximum due to the
9414 		 * __u16 sample size limit.
9415 		 */
9416 		if (attr->sample_stack_user >= USHRT_MAX)
9417 			ret = -EINVAL;
9418 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9419 			ret = -EINVAL;
9420 	}
9421 
9422 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9423 		ret = perf_reg_validate(attr->sample_regs_intr);
9424 out:
9425 	return ret;
9426 
9427 err_size:
9428 	put_user(sizeof(*attr), &uattr->size);
9429 	ret = -E2BIG;
9430 	goto out;
9431 }
9432 
9433 static int
9434 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9435 {
9436 	struct ring_buffer *rb = NULL;
9437 	int ret = -EINVAL;
9438 
9439 	if (!output_event)
9440 		goto set;
9441 
9442 	/* don't allow circular references */
9443 	if (event == output_event)
9444 		goto out;
9445 
9446 	/*
9447 	 * Don't allow cross-cpu buffers
9448 	 */
9449 	if (output_event->cpu != event->cpu)
9450 		goto out;
9451 
9452 	/*
9453 	 * If its not a per-cpu rb, it must be the same task.
9454 	 */
9455 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9456 		goto out;
9457 
9458 	/*
9459 	 * Mixing clocks in the same buffer is trouble you don't need.
9460 	 */
9461 	if (output_event->clock != event->clock)
9462 		goto out;
9463 
9464 	/*
9465 	 * Either writing ring buffer from beginning or from end.
9466 	 * Mixing is not allowed.
9467 	 */
9468 	if (is_write_backward(output_event) != is_write_backward(event))
9469 		goto out;
9470 
9471 	/*
9472 	 * If both events generate aux data, they must be on the same PMU
9473 	 */
9474 	if (has_aux(event) && has_aux(output_event) &&
9475 	    event->pmu != output_event->pmu)
9476 		goto out;
9477 
9478 set:
9479 	mutex_lock(&event->mmap_mutex);
9480 	/* Can't redirect output if we've got an active mmap() */
9481 	if (atomic_read(&event->mmap_count))
9482 		goto unlock;
9483 
9484 	if (output_event) {
9485 		/* get the rb we want to redirect to */
9486 		rb = ring_buffer_get(output_event);
9487 		if (!rb)
9488 			goto unlock;
9489 	}
9490 
9491 	ring_buffer_attach(event, rb);
9492 
9493 	ret = 0;
9494 unlock:
9495 	mutex_unlock(&event->mmap_mutex);
9496 
9497 out:
9498 	return ret;
9499 }
9500 
9501 static void mutex_lock_double(struct mutex *a, struct mutex *b)
9502 {
9503 	if (b < a)
9504 		swap(a, b);
9505 
9506 	mutex_lock(a);
9507 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9508 }
9509 
9510 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9511 {
9512 	bool nmi_safe = false;
9513 
9514 	switch (clk_id) {
9515 	case CLOCK_MONOTONIC:
9516 		event->clock = &ktime_get_mono_fast_ns;
9517 		nmi_safe = true;
9518 		break;
9519 
9520 	case CLOCK_MONOTONIC_RAW:
9521 		event->clock = &ktime_get_raw_fast_ns;
9522 		nmi_safe = true;
9523 		break;
9524 
9525 	case CLOCK_REALTIME:
9526 		event->clock = &ktime_get_real_ns;
9527 		break;
9528 
9529 	case CLOCK_BOOTTIME:
9530 		event->clock = &ktime_get_boot_ns;
9531 		break;
9532 
9533 	case CLOCK_TAI:
9534 		event->clock = &ktime_get_tai_ns;
9535 		break;
9536 
9537 	default:
9538 		return -EINVAL;
9539 	}
9540 
9541 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9542 		return -EINVAL;
9543 
9544 	return 0;
9545 }
9546 
9547 /*
9548  * Variation on perf_event_ctx_lock_nested(), except we take two context
9549  * mutexes.
9550  */
9551 static struct perf_event_context *
9552 __perf_event_ctx_lock_double(struct perf_event *group_leader,
9553 			     struct perf_event_context *ctx)
9554 {
9555 	struct perf_event_context *gctx;
9556 
9557 again:
9558 	rcu_read_lock();
9559 	gctx = READ_ONCE(group_leader->ctx);
9560 	if (!atomic_inc_not_zero(&gctx->refcount)) {
9561 		rcu_read_unlock();
9562 		goto again;
9563 	}
9564 	rcu_read_unlock();
9565 
9566 	mutex_lock_double(&gctx->mutex, &ctx->mutex);
9567 
9568 	if (group_leader->ctx != gctx) {
9569 		mutex_unlock(&ctx->mutex);
9570 		mutex_unlock(&gctx->mutex);
9571 		put_ctx(gctx);
9572 		goto again;
9573 	}
9574 
9575 	return gctx;
9576 }
9577 
9578 /**
9579  * sys_perf_event_open - open a performance event, associate it to a task/cpu
9580  *
9581  * @attr_uptr:	event_id type attributes for monitoring/sampling
9582  * @pid:		target pid
9583  * @cpu:		target cpu
9584  * @group_fd:		group leader event fd
9585  */
9586 SYSCALL_DEFINE5(perf_event_open,
9587 		struct perf_event_attr __user *, attr_uptr,
9588 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
9589 {
9590 	struct perf_event *group_leader = NULL, *output_event = NULL;
9591 	struct perf_event *event, *sibling;
9592 	struct perf_event_attr attr;
9593 	struct perf_event_context *ctx, *uninitialized_var(gctx);
9594 	struct file *event_file = NULL;
9595 	struct fd group = {NULL, 0};
9596 	struct task_struct *task = NULL;
9597 	struct pmu *pmu;
9598 	int event_fd;
9599 	int move_group = 0;
9600 	int err;
9601 	int f_flags = O_RDWR;
9602 	int cgroup_fd = -1;
9603 
9604 	/* for future expandability... */
9605 	if (flags & ~PERF_FLAG_ALL)
9606 		return -EINVAL;
9607 
9608 	err = perf_copy_attr(attr_uptr, &attr);
9609 	if (err)
9610 		return err;
9611 
9612 	if (!attr.exclude_kernel) {
9613 		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9614 			return -EACCES;
9615 	}
9616 
9617 	if (attr.freq) {
9618 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
9619 			return -EINVAL;
9620 	} else {
9621 		if (attr.sample_period & (1ULL << 63))
9622 			return -EINVAL;
9623 	}
9624 
9625 	if (!attr.sample_max_stack)
9626 		attr.sample_max_stack = sysctl_perf_event_max_stack;
9627 
9628 	/*
9629 	 * In cgroup mode, the pid argument is used to pass the fd
9630 	 * opened to the cgroup directory in cgroupfs. The cpu argument
9631 	 * designates the cpu on which to monitor threads from that
9632 	 * cgroup.
9633 	 */
9634 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9635 		return -EINVAL;
9636 
9637 	if (flags & PERF_FLAG_FD_CLOEXEC)
9638 		f_flags |= O_CLOEXEC;
9639 
9640 	event_fd = get_unused_fd_flags(f_flags);
9641 	if (event_fd < 0)
9642 		return event_fd;
9643 
9644 	if (group_fd != -1) {
9645 		err = perf_fget_light(group_fd, &group);
9646 		if (err)
9647 			goto err_fd;
9648 		group_leader = group.file->private_data;
9649 		if (flags & PERF_FLAG_FD_OUTPUT)
9650 			output_event = group_leader;
9651 		if (flags & PERF_FLAG_FD_NO_GROUP)
9652 			group_leader = NULL;
9653 	}
9654 
9655 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
9656 		task = find_lively_task_by_vpid(pid);
9657 		if (IS_ERR(task)) {
9658 			err = PTR_ERR(task);
9659 			goto err_group_fd;
9660 		}
9661 	}
9662 
9663 	if (task && group_leader &&
9664 	    group_leader->attr.inherit != attr.inherit) {
9665 		err = -EINVAL;
9666 		goto err_task;
9667 	}
9668 
9669 	get_online_cpus();
9670 
9671 	if (task) {
9672 		err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
9673 		if (err)
9674 			goto err_cpus;
9675 
9676 		/*
9677 		 * Reuse ptrace permission checks for now.
9678 		 *
9679 		 * We must hold cred_guard_mutex across this and any potential
9680 		 * perf_install_in_context() call for this new event to
9681 		 * serialize against exec() altering our credentials (and the
9682 		 * perf_event_exit_task() that could imply).
9683 		 */
9684 		err = -EACCES;
9685 		if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
9686 			goto err_cred;
9687 	}
9688 
9689 	if (flags & PERF_FLAG_PID_CGROUP)
9690 		cgroup_fd = pid;
9691 
9692 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
9693 				 NULL, NULL, cgroup_fd);
9694 	if (IS_ERR(event)) {
9695 		err = PTR_ERR(event);
9696 		goto err_cred;
9697 	}
9698 
9699 	if (is_sampling_event(event)) {
9700 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
9701 			err = -EOPNOTSUPP;
9702 			goto err_alloc;
9703 		}
9704 	}
9705 
9706 	/*
9707 	 * Special case software events and allow them to be part of
9708 	 * any hardware group.
9709 	 */
9710 	pmu = event->pmu;
9711 
9712 	if (attr.use_clockid) {
9713 		err = perf_event_set_clock(event, attr.clockid);
9714 		if (err)
9715 			goto err_alloc;
9716 	}
9717 
9718 	if (pmu->task_ctx_nr == perf_sw_context)
9719 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
9720 
9721 	if (group_leader &&
9722 	    (is_software_event(event) != is_software_event(group_leader))) {
9723 		if (is_software_event(event)) {
9724 			/*
9725 			 * If event and group_leader are not both a software
9726 			 * event, and event is, then group leader is not.
9727 			 *
9728 			 * Allow the addition of software events to !software
9729 			 * groups, this is safe because software events never
9730 			 * fail to schedule.
9731 			 */
9732 			pmu = group_leader->pmu;
9733 		} else if (is_software_event(group_leader) &&
9734 			   (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
9735 			/*
9736 			 * In case the group is a pure software group, and we
9737 			 * try to add a hardware event, move the whole group to
9738 			 * the hardware context.
9739 			 */
9740 			move_group = 1;
9741 		}
9742 	}
9743 
9744 	/*
9745 	 * Get the target context (task or percpu):
9746 	 */
9747 	ctx = find_get_context(pmu, task, event);
9748 	if (IS_ERR(ctx)) {
9749 		err = PTR_ERR(ctx);
9750 		goto err_alloc;
9751 	}
9752 
9753 	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
9754 		err = -EBUSY;
9755 		goto err_context;
9756 	}
9757 
9758 	/*
9759 	 * Look up the group leader (we will attach this event to it):
9760 	 */
9761 	if (group_leader) {
9762 		err = -EINVAL;
9763 
9764 		/*
9765 		 * Do not allow a recursive hierarchy (this new sibling
9766 		 * becoming part of another group-sibling):
9767 		 */
9768 		if (group_leader->group_leader != group_leader)
9769 			goto err_context;
9770 
9771 		/* All events in a group should have the same clock */
9772 		if (group_leader->clock != event->clock)
9773 			goto err_context;
9774 
9775 		/*
9776 		 * Do not allow to attach to a group in a different
9777 		 * task or CPU context:
9778 		 */
9779 		if (move_group) {
9780 			/*
9781 			 * Make sure we're both on the same task, or both
9782 			 * per-cpu events.
9783 			 */
9784 			if (group_leader->ctx->task != ctx->task)
9785 				goto err_context;
9786 
9787 			/*
9788 			 * Make sure we're both events for the same CPU;
9789 			 * grouping events for different CPUs is broken; since
9790 			 * you can never concurrently schedule them anyhow.
9791 			 */
9792 			if (group_leader->cpu != event->cpu)
9793 				goto err_context;
9794 		} else {
9795 			if (group_leader->ctx != ctx)
9796 				goto err_context;
9797 		}
9798 
9799 		/*
9800 		 * Only a group leader can be exclusive or pinned
9801 		 */
9802 		if (attr.exclusive || attr.pinned)
9803 			goto err_context;
9804 	}
9805 
9806 	if (output_event) {
9807 		err = perf_event_set_output(event, output_event);
9808 		if (err)
9809 			goto err_context;
9810 	}
9811 
9812 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
9813 					f_flags);
9814 	if (IS_ERR(event_file)) {
9815 		err = PTR_ERR(event_file);
9816 		event_file = NULL;
9817 		goto err_context;
9818 	}
9819 
9820 	if (move_group) {
9821 		gctx = __perf_event_ctx_lock_double(group_leader, ctx);
9822 
9823 		if (gctx->task == TASK_TOMBSTONE) {
9824 			err = -ESRCH;
9825 			goto err_locked;
9826 		}
9827 
9828 		/*
9829 		 * Check if we raced against another sys_perf_event_open() call
9830 		 * moving the software group underneath us.
9831 		 */
9832 		if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
9833 			/*
9834 			 * If someone moved the group out from under us, check
9835 			 * if this new event wound up on the same ctx, if so
9836 			 * its the regular !move_group case, otherwise fail.
9837 			 */
9838 			if (gctx != ctx) {
9839 				err = -EINVAL;
9840 				goto err_locked;
9841 			} else {
9842 				perf_event_ctx_unlock(group_leader, gctx);
9843 				move_group = 0;
9844 			}
9845 		}
9846 	} else {
9847 		mutex_lock(&ctx->mutex);
9848 	}
9849 
9850 	if (ctx->task == TASK_TOMBSTONE) {
9851 		err = -ESRCH;
9852 		goto err_locked;
9853 	}
9854 
9855 	if (!perf_event_validate_size(event)) {
9856 		err = -E2BIG;
9857 		goto err_locked;
9858 	}
9859 
9860 	/*
9861 	 * Must be under the same ctx::mutex as perf_install_in_context(),
9862 	 * because we need to serialize with concurrent event creation.
9863 	 */
9864 	if (!exclusive_event_installable(event, ctx)) {
9865 		/* exclusive and group stuff are assumed mutually exclusive */
9866 		WARN_ON_ONCE(move_group);
9867 
9868 		err = -EBUSY;
9869 		goto err_locked;
9870 	}
9871 
9872 	WARN_ON_ONCE(ctx->parent_ctx);
9873 
9874 	/*
9875 	 * This is the point on no return; we cannot fail hereafter. This is
9876 	 * where we start modifying current state.
9877 	 */
9878 
9879 	if (move_group) {
9880 		/*
9881 		 * See perf_event_ctx_lock() for comments on the details
9882 		 * of swizzling perf_event::ctx.
9883 		 */
9884 		perf_remove_from_context(group_leader, 0);
9885 
9886 		list_for_each_entry(sibling, &group_leader->sibling_list,
9887 				    group_entry) {
9888 			perf_remove_from_context(sibling, 0);
9889 			put_ctx(gctx);
9890 		}
9891 
9892 		/*
9893 		 * Wait for everybody to stop referencing the events through
9894 		 * the old lists, before installing it on new lists.
9895 		 */
9896 		synchronize_rcu();
9897 
9898 		/*
9899 		 * Install the group siblings before the group leader.
9900 		 *
9901 		 * Because a group leader will try and install the entire group
9902 		 * (through the sibling list, which is still in-tact), we can
9903 		 * end up with siblings installed in the wrong context.
9904 		 *
9905 		 * By installing siblings first we NO-OP because they're not
9906 		 * reachable through the group lists.
9907 		 */
9908 		list_for_each_entry(sibling, &group_leader->sibling_list,
9909 				    group_entry) {
9910 			perf_event__state_init(sibling);
9911 			perf_install_in_context(ctx, sibling, sibling->cpu);
9912 			get_ctx(ctx);
9913 		}
9914 
9915 		/*
9916 		 * Removing from the context ends up with disabled
9917 		 * event. What we want here is event in the initial
9918 		 * startup state, ready to be add into new context.
9919 		 */
9920 		perf_event__state_init(group_leader);
9921 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
9922 		get_ctx(ctx);
9923 
9924 		/*
9925 		 * Now that all events are installed in @ctx, nothing
9926 		 * references @gctx anymore, so drop the last reference we have
9927 		 * on it.
9928 		 */
9929 		put_ctx(gctx);
9930 	}
9931 
9932 	/*
9933 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
9934 	 * that we're serialized against further additions and before
9935 	 * perf_install_in_context() which is the point the event is active and
9936 	 * can use these values.
9937 	 */
9938 	perf_event__header_size(event);
9939 	perf_event__id_header_size(event);
9940 
9941 	event->owner = current;
9942 
9943 	perf_install_in_context(ctx, event, event->cpu);
9944 	perf_unpin_context(ctx);
9945 
9946 	if (move_group)
9947 		perf_event_ctx_unlock(group_leader, gctx);
9948 	mutex_unlock(&ctx->mutex);
9949 
9950 	if (task) {
9951 		mutex_unlock(&task->signal->cred_guard_mutex);
9952 		put_task_struct(task);
9953 	}
9954 
9955 	put_online_cpus();
9956 
9957 	mutex_lock(&current->perf_event_mutex);
9958 	list_add_tail(&event->owner_entry, &current->perf_event_list);
9959 	mutex_unlock(&current->perf_event_mutex);
9960 
9961 	/*
9962 	 * Drop the reference on the group_event after placing the
9963 	 * new event on the sibling_list. This ensures destruction
9964 	 * of the group leader will find the pointer to itself in
9965 	 * perf_group_detach().
9966 	 */
9967 	fdput(group);
9968 	fd_install(event_fd, event_file);
9969 	return event_fd;
9970 
9971 err_locked:
9972 	if (move_group)
9973 		perf_event_ctx_unlock(group_leader, gctx);
9974 	mutex_unlock(&ctx->mutex);
9975 /* err_file: */
9976 	fput(event_file);
9977 err_context:
9978 	perf_unpin_context(ctx);
9979 	put_ctx(ctx);
9980 err_alloc:
9981 	/*
9982 	 * If event_file is set, the fput() above will have called ->release()
9983 	 * and that will take care of freeing the event.
9984 	 */
9985 	if (!event_file)
9986 		free_event(event);
9987 err_cred:
9988 	if (task)
9989 		mutex_unlock(&task->signal->cred_guard_mutex);
9990 err_cpus:
9991 	put_online_cpus();
9992 err_task:
9993 	if (task)
9994 		put_task_struct(task);
9995 err_group_fd:
9996 	fdput(group);
9997 err_fd:
9998 	put_unused_fd(event_fd);
9999 	return err;
10000 }
10001 
10002 /**
10003  * perf_event_create_kernel_counter
10004  *
10005  * @attr: attributes of the counter to create
10006  * @cpu: cpu in which the counter is bound
10007  * @task: task to profile (NULL for percpu)
10008  */
10009 struct perf_event *
10010 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
10011 				 struct task_struct *task,
10012 				 perf_overflow_handler_t overflow_handler,
10013 				 void *context)
10014 {
10015 	struct perf_event_context *ctx;
10016 	struct perf_event *event;
10017 	int err;
10018 
10019 	/*
10020 	 * Get the target context (task or percpu):
10021 	 */
10022 
10023 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
10024 				 overflow_handler, context, -1);
10025 	if (IS_ERR(event)) {
10026 		err = PTR_ERR(event);
10027 		goto err;
10028 	}
10029 
10030 	/* Mark owner so we could distinguish it from user events. */
10031 	event->owner = TASK_TOMBSTONE;
10032 
10033 	ctx = find_get_context(event->pmu, task, event);
10034 	if (IS_ERR(ctx)) {
10035 		err = PTR_ERR(ctx);
10036 		goto err_free;
10037 	}
10038 
10039 	WARN_ON_ONCE(ctx->parent_ctx);
10040 	mutex_lock(&ctx->mutex);
10041 	if (ctx->task == TASK_TOMBSTONE) {
10042 		err = -ESRCH;
10043 		goto err_unlock;
10044 	}
10045 
10046 	if (!exclusive_event_installable(event, ctx)) {
10047 		err = -EBUSY;
10048 		goto err_unlock;
10049 	}
10050 
10051 	perf_install_in_context(ctx, event, cpu);
10052 	perf_unpin_context(ctx);
10053 	mutex_unlock(&ctx->mutex);
10054 
10055 	return event;
10056 
10057 err_unlock:
10058 	mutex_unlock(&ctx->mutex);
10059 	perf_unpin_context(ctx);
10060 	put_ctx(ctx);
10061 err_free:
10062 	free_event(event);
10063 err:
10064 	return ERR_PTR(err);
10065 }
10066 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
10067 
10068 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10069 {
10070 	struct perf_event_context *src_ctx;
10071 	struct perf_event_context *dst_ctx;
10072 	struct perf_event *event, *tmp;
10073 	LIST_HEAD(events);
10074 
10075 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
10076 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
10077 
10078 	/*
10079 	 * See perf_event_ctx_lock() for comments on the details
10080 	 * of swizzling perf_event::ctx.
10081 	 */
10082 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
10083 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
10084 				 event_entry) {
10085 		perf_remove_from_context(event, 0);
10086 		unaccount_event_cpu(event, src_cpu);
10087 		put_ctx(src_ctx);
10088 		list_add(&event->migrate_entry, &events);
10089 	}
10090 
10091 	/*
10092 	 * Wait for the events to quiesce before re-instating them.
10093 	 */
10094 	synchronize_rcu();
10095 
10096 	/*
10097 	 * Re-instate events in 2 passes.
10098 	 *
10099 	 * Skip over group leaders and only install siblings on this first
10100 	 * pass, siblings will not get enabled without a leader, however a
10101 	 * leader will enable its siblings, even if those are still on the old
10102 	 * context.
10103 	 */
10104 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10105 		if (event->group_leader == event)
10106 			continue;
10107 
10108 		list_del(&event->migrate_entry);
10109 		if (event->state >= PERF_EVENT_STATE_OFF)
10110 			event->state = PERF_EVENT_STATE_INACTIVE;
10111 		account_event_cpu(event, dst_cpu);
10112 		perf_install_in_context(dst_ctx, event, dst_cpu);
10113 		get_ctx(dst_ctx);
10114 	}
10115 
10116 	/*
10117 	 * Once all the siblings are setup properly, install the group leaders
10118 	 * to make it go.
10119 	 */
10120 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10121 		list_del(&event->migrate_entry);
10122 		if (event->state >= PERF_EVENT_STATE_OFF)
10123 			event->state = PERF_EVENT_STATE_INACTIVE;
10124 		account_event_cpu(event, dst_cpu);
10125 		perf_install_in_context(dst_ctx, event, dst_cpu);
10126 		get_ctx(dst_ctx);
10127 	}
10128 	mutex_unlock(&dst_ctx->mutex);
10129 	mutex_unlock(&src_ctx->mutex);
10130 }
10131 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10132 
10133 static void sync_child_event(struct perf_event *child_event,
10134 			       struct task_struct *child)
10135 {
10136 	struct perf_event *parent_event = child_event->parent;
10137 	u64 child_val;
10138 
10139 	if (child_event->attr.inherit_stat)
10140 		perf_event_read_event(child_event, child);
10141 
10142 	child_val = perf_event_count(child_event);
10143 
10144 	/*
10145 	 * Add back the child's count to the parent's count:
10146 	 */
10147 	atomic64_add(child_val, &parent_event->child_count);
10148 	atomic64_add(child_event->total_time_enabled,
10149 		     &parent_event->child_total_time_enabled);
10150 	atomic64_add(child_event->total_time_running,
10151 		     &parent_event->child_total_time_running);
10152 }
10153 
10154 static void
10155 perf_event_exit_event(struct perf_event *child_event,
10156 		      struct perf_event_context *child_ctx,
10157 		      struct task_struct *child)
10158 {
10159 	struct perf_event *parent_event = child_event->parent;
10160 
10161 	/*
10162 	 * Do not destroy the 'original' grouping; because of the context
10163 	 * switch optimization the original events could've ended up in a
10164 	 * random child task.
10165 	 *
10166 	 * If we were to destroy the original group, all group related
10167 	 * operations would cease to function properly after this random
10168 	 * child dies.
10169 	 *
10170 	 * Do destroy all inherited groups, we don't care about those
10171 	 * and being thorough is better.
10172 	 */
10173 	raw_spin_lock_irq(&child_ctx->lock);
10174 	WARN_ON_ONCE(child_ctx->is_active);
10175 
10176 	if (parent_event)
10177 		perf_group_detach(child_event);
10178 	list_del_event(child_event, child_ctx);
10179 	child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
10180 	raw_spin_unlock_irq(&child_ctx->lock);
10181 
10182 	/*
10183 	 * Parent events are governed by their filedesc, retain them.
10184 	 */
10185 	if (!parent_event) {
10186 		perf_event_wakeup(child_event);
10187 		return;
10188 	}
10189 	/*
10190 	 * Child events can be cleaned up.
10191 	 */
10192 
10193 	sync_child_event(child_event, child);
10194 
10195 	/*
10196 	 * Remove this event from the parent's list
10197 	 */
10198 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
10199 	mutex_lock(&parent_event->child_mutex);
10200 	list_del_init(&child_event->child_list);
10201 	mutex_unlock(&parent_event->child_mutex);
10202 
10203 	/*
10204 	 * Kick perf_poll() for is_event_hup().
10205 	 */
10206 	perf_event_wakeup(parent_event);
10207 	free_event(child_event);
10208 	put_event(parent_event);
10209 }
10210 
10211 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
10212 {
10213 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
10214 	struct perf_event *child_event, *next;
10215 
10216 	WARN_ON_ONCE(child != current);
10217 
10218 	child_ctx = perf_pin_task_context(child, ctxn);
10219 	if (!child_ctx)
10220 		return;
10221 
10222 	/*
10223 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
10224 	 * ctx::mutex over the entire thing. This serializes against almost
10225 	 * everything that wants to access the ctx.
10226 	 *
10227 	 * The exception is sys_perf_event_open() /
10228 	 * perf_event_create_kernel_count() which does find_get_context()
10229 	 * without ctx::mutex (it cannot because of the move_group double mutex
10230 	 * lock thing). See the comments in perf_install_in_context().
10231 	 */
10232 	mutex_lock(&child_ctx->mutex);
10233 
10234 	/*
10235 	 * In a single ctx::lock section, de-schedule the events and detach the
10236 	 * context from the task such that we cannot ever get it scheduled back
10237 	 * in.
10238 	 */
10239 	raw_spin_lock_irq(&child_ctx->lock);
10240 	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
10241 
10242 	/*
10243 	 * Now that the context is inactive, destroy the task <-> ctx relation
10244 	 * and mark the context dead.
10245 	 */
10246 	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
10247 	put_ctx(child_ctx); /* cannot be last */
10248 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
10249 	put_task_struct(current); /* cannot be last */
10250 
10251 	clone_ctx = unclone_ctx(child_ctx);
10252 	raw_spin_unlock_irq(&child_ctx->lock);
10253 
10254 	if (clone_ctx)
10255 		put_ctx(clone_ctx);
10256 
10257 	/*
10258 	 * Report the task dead after unscheduling the events so that we
10259 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
10260 	 * get a few PERF_RECORD_READ events.
10261 	 */
10262 	perf_event_task(child, child_ctx, 0);
10263 
10264 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
10265 		perf_event_exit_event(child_event, child_ctx, child);
10266 
10267 	mutex_unlock(&child_ctx->mutex);
10268 
10269 	put_ctx(child_ctx);
10270 }
10271 
10272 /*
10273  * When a child task exits, feed back event values to parent events.
10274  *
10275  * Can be called with cred_guard_mutex held when called from
10276  * install_exec_creds().
10277  */
10278 void perf_event_exit_task(struct task_struct *child)
10279 {
10280 	struct perf_event *event, *tmp;
10281 	int ctxn;
10282 
10283 	mutex_lock(&child->perf_event_mutex);
10284 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
10285 				 owner_entry) {
10286 		list_del_init(&event->owner_entry);
10287 
10288 		/*
10289 		 * Ensure the list deletion is visible before we clear
10290 		 * the owner, closes a race against perf_release() where
10291 		 * we need to serialize on the owner->perf_event_mutex.
10292 		 */
10293 		smp_store_release(&event->owner, NULL);
10294 	}
10295 	mutex_unlock(&child->perf_event_mutex);
10296 
10297 	for_each_task_context_nr(ctxn)
10298 		perf_event_exit_task_context(child, ctxn);
10299 
10300 	/*
10301 	 * The perf_event_exit_task_context calls perf_event_task
10302 	 * with child's task_ctx, which generates EXIT events for
10303 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
10304 	 * At this point we need to send EXIT events to cpu contexts.
10305 	 */
10306 	perf_event_task(child, NULL, 0);
10307 }
10308 
10309 static void perf_free_event(struct perf_event *event,
10310 			    struct perf_event_context *ctx)
10311 {
10312 	struct perf_event *parent = event->parent;
10313 
10314 	if (WARN_ON_ONCE(!parent))
10315 		return;
10316 
10317 	mutex_lock(&parent->child_mutex);
10318 	list_del_init(&event->child_list);
10319 	mutex_unlock(&parent->child_mutex);
10320 
10321 	put_event(parent);
10322 
10323 	raw_spin_lock_irq(&ctx->lock);
10324 	perf_group_detach(event);
10325 	list_del_event(event, ctx);
10326 	raw_spin_unlock_irq(&ctx->lock);
10327 	free_event(event);
10328 }
10329 
10330 /*
10331  * Free an unexposed, unused context as created by inheritance by
10332  * perf_event_init_task below, used by fork() in case of fail.
10333  *
10334  * Not all locks are strictly required, but take them anyway to be nice and
10335  * help out with the lockdep assertions.
10336  */
10337 void perf_event_free_task(struct task_struct *task)
10338 {
10339 	struct perf_event_context *ctx;
10340 	struct perf_event *event, *tmp;
10341 	int ctxn;
10342 
10343 	for_each_task_context_nr(ctxn) {
10344 		ctx = task->perf_event_ctxp[ctxn];
10345 		if (!ctx)
10346 			continue;
10347 
10348 		mutex_lock(&ctx->mutex);
10349 again:
10350 		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
10351 				group_entry)
10352 			perf_free_event(event, ctx);
10353 
10354 		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
10355 				group_entry)
10356 			perf_free_event(event, ctx);
10357 
10358 		if (!list_empty(&ctx->pinned_groups) ||
10359 				!list_empty(&ctx->flexible_groups))
10360 			goto again;
10361 
10362 		mutex_unlock(&ctx->mutex);
10363 
10364 		put_ctx(ctx);
10365 	}
10366 }
10367 
10368 void perf_event_delayed_put(struct task_struct *task)
10369 {
10370 	int ctxn;
10371 
10372 	for_each_task_context_nr(ctxn)
10373 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10374 }
10375 
10376 struct file *perf_event_get(unsigned int fd)
10377 {
10378 	struct file *file;
10379 
10380 	file = fget_raw(fd);
10381 	if (!file)
10382 		return ERR_PTR(-EBADF);
10383 
10384 	if (file->f_op != &perf_fops) {
10385 		fput(file);
10386 		return ERR_PTR(-EBADF);
10387 	}
10388 
10389 	return file;
10390 }
10391 
10392 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10393 {
10394 	if (!event)
10395 		return ERR_PTR(-EINVAL);
10396 
10397 	return &event->attr;
10398 }
10399 
10400 /*
10401  * inherit a event from parent task to child task:
10402  */
10403 static struct perf_event *
10404 inherit_event(struct perf_event *parent_event,
10405 	      struct task_struct *parent,
10406 	      struct perf_event_context *parent_ctx,
10407 	      struct task_struct *child,
10408 	      struct perf_event *group_leader,
10409 	      struct perf_event_context *child_ctx)
10410 {
10411 	enum perf_event_active_state parent_state = parent_event->state;
10412 	struct perf_event *child_event;
10413 	unsigned long flags;
10414 
10415 	/*
10416 	 * Instead of creating recursive hierarchies of events,
10417 	 * we link inherited events back to the original parent,
10418 	 * which has a filp for sure, which we use as the reference
10419 	 * count:
10420 	 */
10421 	if (parent_event->parent)
10422 		parent_event = parent_event->parent;
10423 
10424 	child_event = perf_event_alloc(&parent_event->attr,
10425 					   parent_event->cpu,
10426 					   child,
10427 					   group_leader, parent_event,
10428 					   NULL, NULL, -1);
10429 	if (IS_ERR(child_event))
10430 		return child_event;
10431 
10432 	/*
10433 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10434 	 * must be under the same lock in order to serialize against
10435 	 * perf_event_release_kernel(), such that either we must observe
10436 	 * is_orphaned_event() or they will observe us on the child_list.
10437 	 */
10438 	mutex_lock(&parent_event->child_mutex);
10439 	if (is_orphaned_event(parent_event) ||
10440 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
10441 		mutex_unlock(&parent_event->child_mutex);
10442 		free_event(child_event);
10443 		return NULL;
10444 	}
10445 
10446 	get_ctx(child_ctx);
10447 
10448 	/*
10449 	 * Make the child state follow the state of the parent event,
10450 	 * not its attr.disabled bit.  We hold the parent's mutex,
10451 	 * so we won't race with perf_event_{en, dis}able_family.
10452 	 */
10453 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
10454 		child_event->state = PERF_EVENT_STATE_INACTIVE;
10455 	else
10456 		child_event->state = PERF_EVENT_STATE_OFF;
10457 
10458 	if (parent_event->attr.freq) {
10459 		u64 sample_period = parent_event->hw.sample_period;
10460 		struct hw_perf_event *hwc = &child_event->hw;
10461 
10462 		hwc->sample_period = sample_period;
10463 		hwc->last_period   = sample_period;
10464 
10465 		local64_set(&hwc->period_left, sample_period);
10466 	}
10467 
10468 	child_event->ctx = child_ctx;
10469 	child_event->overflow_handler = parent_event->overflow_handler;
10470 	child_event->overflow_handler_context
10471 		= parent_event->overflow_handler_context;
10472 
10473 	/*
10474 	 * Precalculate sample_data sizes
10475 	 */
10476 	perf_event__header_size(child_event);
10477 	perf_event__id_header_size(child_event);
10478 
10479 	/*
10480 	 * Link it up in the child's context:
10481 	 */
10482 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
10483 	add_event_to_ctx(child_event, child_ctx);
10484 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
10485 
10486 	/*
10487 	 * Link this into the parent event's child list
10488 	 */
10489 	list_add_tail(&child_event->child_list, &parent_event->child_list);
10490 	mutex_unlock(&parent_event->child_mutex);
10491 
10492 	return child_event;
10493 }
10494 
10495 static int inherit_group(struct perf_event *parent_event,
10496 	      struct task_struct *parent,
10497 	      struct perf_event_context *parent_ctx,
10498 	      struct task_struct *child,
10499 	      struct perf_event_context *child_ctx)
10500 {
10501 	struct perf_event *leader;
10502 	struct perf_event *sub;
10503 	struct perf_event *child_ctr;
10504 
10505 	leader = inherit_event(parent_event, parent, parent_ctx,
10506 				 child, NULL, child_ctx);
10507 	if (IS_ERR(leader))
10508 		return PTR_ERR(leader);
10509 	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10510 		child_ctr = inherit_event(sub, parent, parent_ctx,
10511 					    child, leader, child_ctx);
10512 		if (IS_ERR(child_ctr))
10513 			return PTR_ERR(child_ctr);
10514 	}
10515 	return 0;
10516 }
10517 
10518 static int
10519 inherit_task_group(struct perf_event *event, struct task_struct *parent,
10520 		   struct perf_event_context *parent_ctx,
10521 		   struct task_struct *child, int ctxn,
10522 		   int *inherited_all)
10523 {
10524 	int ret;
10525 	struct perf_event_context *child_ctx;
10526 
10527 	if (!event->attr.inherit) {
10528 		*inherited_all = 0;
10529 		return 0;
10530 	}
10531 
10532 	child_ctx = child->perf_event_ctxp[ctxn];
10533 	if (!child_ctx) {
10534 		/*
10535 		 * This is executed from the parent task context, so
10536 		 * inherit events that have been marked for cloning.
10537 		 * First allocate and initialize a context for the
10538 		 * child.
10539 		 */
10540 
10541 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
10542 		if (!child_ctx)
10543 			return -ENOMEM;
10544 
10545 		child->perf_event_ctxp[ctxn] = child_ctx;
10546 	}
10547 
10548 	ret = inherit_group(event, parent, parent_ctx,
10549 			    child, child_ctx);
10550 
10551 	if (ret)
10552 		*inherited_all = 0;
10553 
10554 	return ret;
10555 }
10556 
10557 /*
10558  * Initialize the perf_event context in task_struct
10559  */
10560 static int perf_event_init_context(struct task_struct *child, int ctxn)
10561 {
10562 	struct perf_event_context *child_ctx, *parent_ctx;
10563 	struct perf_event_context *cloned_ctx;
10564 	struct perf_event *event;
10565 	struct task_struct *parent = current;
10566 	int inherited_all = 1;
10567 	unsigned long flags;
10568 	int ret = 0;
10569 
10570 	if (likely(!parent->perf_event_ctxp[ctxn]))
10571 		return 0;
10572 
10573 	/*
10574 	 * If the parent's context is a clone, pin it so it won't get
10575 	 * swapped under us.
10576 	 */
10577 	parent_ctx = perf_pin_task_context(parent, ctxn);
10578 	if (!parent_ctx)
10579 		return 0;
10580 
10581 	/*
10582 	 * No need to check if parent_ctx != NULL here; since we saw
10583 	 * it non-NULL earlier, the only reason for it to become NULL
10584 	 * is if we exit, and since we're currently in the middle of
10585 	 * a fork we can't be exiting at the same time.
10586 	 */
10587 
10588 	/*
10589 	 * Lock the parent list. No need to lock the child - not PID
10590 	 * hashed yet and not running, so nobody can access it.
10591 	 */
10592 	mutex_lock(&parent_ctx->mutex);
10593 
10594 	/*
10595 	 * We dont have to disable NMIs - we are only looking at
10596 	 * the list, not manipulating it:
10597 	 */
10598 	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
10599 		ret = inherit_task_group(event, parent, parent_ctx,
10600 					 child, ctxn, &inherited_all);
10601 		if (ret)
10602 			break;
10603 	}
10604 
10605 	/*
10606 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
10607 	 * to allocations, but we need to prevent rotation because
10608 	 * rotate_ctx() will change the list from interrupt context.
10609 	 */
10610 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10611 	parent_ctx->rotate_disable = 1;
10612 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10613 
10614 	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
10615 		ret = inherit_task_group(event, parent, parent_ctx,
10616 					 child, ctxn, &inherited_all);
10617 		if (ret)
10618 			break;
10619 	}
10620 
10621 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10622 	parent_ctx->rotate_disable = 0;
10623 
10624 	child_ctx = child->perf_event_ctxp[ctxn];
10625 
10626 	if (child_ctx && inherited_all) {
10627 		/*
10628 		 * Mark the child context as a clone of the parent
10629 		 * context, or of whatever the parent is a clone of.
10630 		 *
10631 		 * Note that if the parent is a clone, the holding of
10632 		 * parent_ctx->lock avoids it from being uncloned.
10633 		 */
10634 		cloned_ctx = parent_ctx->parent_ctx;
10635 		if (cloned_ctx) {
10636 			child_ctx->parent_ctx = cloned_ctx;
10637 			child_ctx->parent_gen = parent_ctx->parent_gen;
10638 		} else {
10639 			child_ctx->parent_ctx = parent_ctx;
10640 			child_ctx->parent_gen = parent_ctx->generation;
10641 		}
10642 		get_ctx(child_ctx->parent_ctx);
10643 	}
10644 
10645 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10646 	mutex_unlock(&parent_ctx->mutex);
10647 
10648 	perf_unpin_context(parent_ctx);
10649 	put_ctx(parent_ctx);
10650 
10651 	return ret;
10652 }
10653 
10654 /*
10655  * Initialize the perf_event context in task_struct
10656  */
10657 int perf_event_init_task(struct task_struct *child)
10658 {
10659 	int ctxn, ret;
10660 
10661 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
10662 	mutex_init(&child->perf_event_mutex);
10663 	INIT_LIST_HEAD(&child->perf_event_list);
10664 
10665 	for_each_task_context_nr(ctxn) {
10666 		ret = perf_event_init_context(child, ctxn);
10667 		if (ret) {
10668 			perf_event_free_task(child);
10669 			return ret;
10670 		}
10671 	}
10672 
10673 	return 0;
10674 }
10675 
10676 static void __init perf_event_init_all_cpus(void)
10677 {
10678 	struct swevent_htable *swhash;
10679 	int cpu;
10680 
10681 	for_each_possible_cpu(cpu) {
10682 		swhash = &per_cpu(swevent_htable, cpu);
10683 		mutex_init(&swhash->hlist_mutex);
10684 		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
10685 
10686 		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
10687 		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
10688 
10689 		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
10690 	}
10691 }
10692 
10693 int perf_event_init_cpu(unsigned int cpu)
10694 {
10695 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10696 
10697 	mutex_lock(&swhash->hlist_mutex);
10698 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
10699 		struct swevent_hlist *hlist;
10700 
10701 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
10702 		WARN_ON(!hlist);
10703 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
10704 	}
10705 	mutex_unlock(&swhash->hlist_mutex);
10706 	return 0;
10707 }
10708 
10709 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
10710 static void __perf_event_exit_context(void *__info)
10711 {
10712 	struct perf_event_context *ctx = __info;
10713 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
10714 	struct perf_event *event;
10715 
10716 	raw_spin_lock(&ctx->lock);
10717 	list_for_each_entry(event, &ctx->event_list, event_entry)
10718 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
10719 	raw_spin_unlock(&ctx->lock);
10720 }
10721 
10722 static void perf_event_exit_cpu_context(int cpu)
10723 {
10724 	struct perf_event_context *ctx;
10725 	struct pmu *pmu;
10726 	int idx;
10727 
10728 	idx = srcu_read_lock(&pmus_srcu);
10729 	list_for_each_entry_rcu(pmu, &pmus, entry) {
10730 		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
10731 
10732 		mutex_lock(&ctx->mutex);
10733 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
10734 		mutex_unlock(&ctx->mutex);
10735 	}
10736 	srcu_read_unlock(&pmus_srcu, idx);
10737 }
10738 #else
10739 
10740 static void perf_event_exit_cpu_context(int cpu) { }
10741 
10742 #endif
10743 
10744 int perf_event_exit_cpu(unsigned int cpu)
10745 {
10746 	perf_event_exit_cpu_context(cpu);
10747 	return 0;
10748 }
10749 
10750 static int
10751 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
10752 {
10753 	int cpu;
10754 
10755 	for_each_online_cpu(cpu)
10756 		perf_event_exit_cpu(cpu);
10757 
10758 	return NOTIFY_OK;
10759 }
10760 
10761 /*
10762  * Run the perf reboot notifier at the very last possible moment so that
10763  * the generic watchdog code runs as long as possible.
10764  */
10765 static struct notifier_block perf_reboot_notifier = {
10766 	.notifier_call = perf_reboot,
10767 	.priority = INT_MIN,
10768 };
10769 
10770 void __init perf_event_init(void)
10771 {
10772 	int ret;
10773 
10774 	idr_init(&pmu_idr);
10775 
10776 	perf_event_init_all_cpus();
10777 	init_srcu_struct(&pmus_srcu);
10778 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
10779 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
10780 	perf_pmu_register(&perf_task_clock, NULL, -1);
10781 	perf_tp_register();
10782 	perf_event_init_cpu(smp_processor_id());
10783 	register_reboot_notifier(&perf_reboot_notifier);
10784 
10785 	ret = init_hw_breakpoint();
10786 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
10787 
10788 	/*
10789 	 * Build time assertion that we keep the data_head at the intended
10790 	 * location.  IOW, validation we got the __reserved[] size right.
10791 	 */
10792 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
10793 		     != 1024);
10794 }
10795 
10796 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
10797 			      char *page)
10798 {
10799 	struct perf_pmu_events_attr *pmu_attr =
10800 		container_of(attr, struct perf_pmu_events_attr, attr);
10801 
10802 	if (pmu_attr->event_str)
10803 		return sprintf(page, "%s\n", pmu_attr->event_str);
10804 
10805 	return 0;
10806 }
10807 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
10808 
10809 static int __init perf_event_sysfs_init(void)
10810 {
10811 	struct pmu *pmu;
10812 	int ret;
10813 
10814 	mutex_lock(&pmus_lock);
10815 
10816 	ret = bus_register(&pmu_bus);
10817 	if (ret)
10818 		goto unlock;
10819 
10820 	list_for_each_entry(pmu, &pmus, entry) {
10821 		if (!pmu->name || pmu->type < 0)
10822 			continue;
10823 
10824 		ret = pmu_dev_alloc(pmu);
10825 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
10826 	}
10827 	pmu_bus_running = 1;
10828 	ret = 0;
10829 
10830 unlock:
10831 	mutex_unlock(&pmus_lock);
10832 
10833 	return ret;
10834 }
10835 device_initcall(perf_event_sysfs_init);
10836 
10837 #ifdef CONFIG_CGROUP_PERF
10838 static struct cgroup_subsys_state *
10839 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
10840 {
10841 	struct perf_cgroup *jc;
10842 
10843 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
10844 	if (!jc)
10845 		return ERR_PTR(-ENOMEM);
10846 
10847 	jc->info = alloc_percpu(struct perf_cgroup_info);
10848 	if (!jc->info) {
10849 		kfree(jc);
10850 		return ERR_PTR(-ENOMEM);
10851 	}
10852 
10853 	return &jc->css;
10854 }
10855 
10856 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
10857 {
10858 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
10859 
10860 	free_percpu(jc->info);
10861 	kfree(jc);
10862 }
10863 
10864 static int __perf_cgroup_move(void *info)
10865 {
10866 	struct task_struct *task = info;
10867 	rcu_read_lock();
10868 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
10869 	rcu_read_unlock();
10870 	return 0;
10871 }
10872 
10873 static void perf_cgroup_attach(struct cgroup_taskset *tset)
10874 {
10875 	struct task_struct *task;
10876 	struct cgroup_subsys_state *css;
10877 
10878 	cgroup_taskset_for_each(task, css, tset)
10879 		task_function_call(task, __perf_cgroup_move, task);
10880 }
10881 
10882 struct cgroup_subsys perf_event_cgrp_subsys = {
10883 	.css_alloc	= perf_cgroup_css_alloc,
10884 	.css_free	= perf_cgroup_css_free,
10885 	.attach		= perf_cgroup_attach,
10886 };
10887 #endif /* CONFIG_CGROUP_PERF */
10888