1 /* 2 * Performance events core code: 3 * 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 8 * 9 * For licensing details see kernel-base/COPYING 10 */ 11 12 #include <linux/fs.h> 13 #include <linux/mm.h> 14 #include <linux/cpu.h> 15 #include <linux/smp.h> 16 #include <linux/idr.h> 17 #include <linux/file.h> 18 #include <linux/poll.h> 19 #include <linux/slab.h> 20 #include <linux/hash.h> 21 #include <linux/tick.h> 22 #include <linux/sysfs.h> 23 #include <linux/dcache.h> 24 #include <linux/percpu.h> 25 #include <linux/ptrace.h> 26 #include <linux/reboot.h> 27 #include <linux/vmstat.h> 28 #include <linux/device.h> 29 #include <linux/export.h> 30 #include <linux/vmalloc.h> 31 #include <linux/hardirq.h> 32 #include <linux/rculist.h> 33 #include <linux/uaccess.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/cgroup.h> 38 #include <linux/perf_event.h> 39 #include <linux/trace_events.h> 40 #include <linux/hw_breakpoint.h> 41 #include <linux/mm_types.h> 42 #include <linux/module.h> 43 #include <linux/mman.h> 44 #include <linux/compat.h> 45 #include <linux/bpf.h> 46 #include <linux/filter.h> 47 #include <linux/namei.h> 48 #include <linux/parser.h> 49 #include <linux/sched/clock.h> 50 #include <linux/sched/mm.h> 51 #include <linux/proc_ns.h> 52 #include <linux/mount.h> 53 54 #include "internal.h" 55 56 #include <asm/irq_regs.h> 57 58 typedef int (*remote_function_f)(void *); 59 60 struct remote_function_call { 61 struct task_struct *p; 62 remote_function_f func; 63 void *info; 64 int ret; 65 }; 66 67 static void remote_function(void *data) 68 { 69 struct remote_function_call *tfc = data; 70 struct task_struct *p = tfc->p; 71 72 if (p) { 73 /* -EAGAIN */ 74 if (task_cpu(p) != smp_processor_id()) 75 return; 76 77 /* 78 * Now that we're on right CPU with IRQs disabled, we can test 79 * if we hit the right task without races. 80 */ 81 82 tfc->ret = -ESRCH; /* No such (running) process */ 83 if (p != current) 84 return; 85 } 86 87 tfc->ret = tfc->func(tfc->info); 88 } 89 90 /** 91 * task_function_call - call a function on the cpu on which a task runs 92 * @p: the task to evaluate 93 * @func: the function to be called 94 * @info: the function call argument 95 * 96 * Calls the function @func when the task is currently running. This might 97 * be on the current CPU, which just calls the function directly 98 * 99 * returns: @func return value, or 100 * -ESRCH - when the process isn't running 101 * -EAGAIN - when the process moved away 102 */ 103 static int 104 task_function_call(struct task_struct *p, remote_function_f func, void *info) 105 { 106 struct remote_function_call data = { 107 .p = p, 108 .func = func, 109 .info = info, 110 .ret = -EAGAIN, 111 }; 112 int ret; 113 114 do { 115 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1); 116 if (!ret) 117 ret = data.ret; 118 } while (ret == -EAGAIN); 119 120 return ret; 121 } 122 123 /** 124 * cpu_function_call - call a function on the cpu 125 * @func: the function to be called 126 * @info: the function call argument 127 * 128 * Calls the function @func on the remote cpu. 129 * 130 * returns: @func return value or -ENXIO when the cpu is offline 131 */ 132 static int cpu_function_call(int cpu, remote_function_f func, void *info) 133 { 134 struct remote_function_call data = { 135 .p = NULL, 136 .func = func, 137 .info = info, 138 .ret = -ENXIO, /* No such CPU */ 139 }; 140 141 smp_call_function_single(cpu, remote_function, &data, 1); 142 143 return data.ret; 144 } 145 146 static inline struct perf_cpu_context * 147 __get_cpu_context(struct perf_event_context *ctx) 148 { 149 return this_cpu_ptr(ctx->pmu->pmu_cpu_context); 150 } 151 152 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 153 struct perf_event_context *ctx) 154 { 155 raw_spin_lock(&cpuctx->ctx.lock); 156 if (ctx) 157 raw_spin_lock(&ctx->lock); 158 } 159 160 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 161 struct perf_event_context *ctx) 162 { 163 if (ctx) 164 raw_spin_unlock(&ctx->lock); 165 raw_spin_unlock(&cpuctx->ctx.lock); 166 } 167 168 #define TASK_TOMBSTONE ((void *)-1L) 169 170 static bool is_kernel_event(struct perf_event *event) 171 { 172 return READ_ONCE(event->owner) == TASK_TOMBSTONE; 173 } 174 175 /* 176 * On task ctx scheduling... 177 * 178 * When !ctx->nr_events a task context will not be scheduled. This means 179 * we can disable the scheduler hooks (for performance) without leaving 180 * pending task ctx state. 181 * 182 * This however results in two special cases: 183 * 184 * - removing the last event from a task ctx; this is relatively straight 185 * forward and is done in __perf_remove_from_context. 186 * 187 * - adding the first event to a task ctx; this is tricky because we cannot 188 * rely on ctx->is_active and therefore cannot use event_function_call(). 189 * See perf_install_in_context(). 190 * 191 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set. 192 */ 193 194 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *, 195 struct perf_event_context *, void *); 196 197 struct event_function_struct { 198 struct perf_event *event; 199 event_f func; 200 void *data; 201 }; 202 203 static int event_function(void *info) 204 { 205 struct event_function_struct *efs = info; 206 struct perf_event *event = efs->event; 207 struct perf_event_context *ctx = event->ctx; 208 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 209 struct perf_event_context *task_ctx = cpuctx->task_ctx; 210 int ret = 0; 211 212 WARN_ON_ONCE(!irqs_disabled()); 213 214 perf_ctx_lock(cpuctx, task_ctx); 215 /* 216 * Since we do the IPI call without holding ctx->lock things can have 217 * changed, double check we hit the task we set out to hit. 218 */ 219 if (ctx->task) { 220 if (ctx->task != current) { 221 ret = -ESRCH; 222 goto unlock; 223 } 224 225 /* 226 * We only use event_function_call() on established contexts, 227 * and event_function() is only ever called when active (or 228 * rather, we'll have bailed in task_function_call() or the 229 * above ctx->task != current test), therefore we must have 230 * ctx->is_active here. 231 */ 232 WARN_ON_ONCE(!ctx->is_active); 233 /* 234 * And since we have ctx->is_active, cpuctx->task_ctx must 235 * match. 236 */ 237 WARN_ON_ONCE(task_ctx != ctx); 238 } else { 239 WARN_ON_ONCE(&cpuctx->ctx != ctx); 240 } 241 242 efs->func(event, cpuctx, ctx, efs->data); 243 unlock: 244 perf_ctx_unlock(cpuctx, task_ctx); 245 246 return ret; 247 } 248 249 static void event_function_call(struct perf_event *event, event_f func, void *data) 250 { 251 struct perf_event_context *ctx = event->ctx; 252 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */ 253 struct event_function_struct efs = { 254 .event = event, 255 .func = func, 256 .data = data, 257 }; 258 259 if (!event->parent) { 260 /* 261 * If this is a !child event, we must hold ctx::mutex to 262 * stabilize the the event->ctx relation. See 263 * perf_event_ctx_lock(). 264 */ 265 lockdep_assert_held(&ctx->mutex); 266 } 267 268 if (!task) { 269 cpu_function_call(event->cpu, event_function, &efs); 270 return; 271 } 272 273 if (task == TASK_TOMBSTONE) 274 return; 275 276 again: 277 if (!task_function_call(task, event_function, &efs)) 278 return; 279 280 raw_spin_lock_irq(&ctx->lock); 281 /* 282 * Reload the task pointer, it might have been changed by 283 * a concurrent perf_event_context_sched_out(). 284 */ 285 task = ctx->task; 286 if (task == TASK_TOMBSTONE) { 287 raw_spin_unlock_irq(&ctx->lock); 288 return; 289 } 290 if (ctx->is_active) { 291 raw_spin_unlock_irq(&ctx->lock); 292 goto again; 293 } 294 func(event, NULL, ctx, data); 295 raw_spin_unlock_irq(&ctx->lock); 296 } 297 298 /* 299 * Similar to event_function_call() + event_function(), but hard assumes IRQs 300 * are already disabled and we're on the right CPU. 301 */ 302 static void event_function_local(struct perf_event *event, event_f func, void *data) 303 { 304 struct perf_event_context *ctx = event->ctx; 305 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 306 struct task_struct *task = READ_ONCE(ctx->task); 307 struct perf_event_context *task_ctx = NULL; 308 309 WARN_ON_ONCE(!irqs_disabled()); 310 311 if (task) { 312 if (task == TASK_TOMBSTONE) 313 return; 314 315 task_ctx = ctx; 316 } 317 318 perf_ctx_lock(cpuctx, task_ctx); 319 320 task = ctx->task; 321 if (task == TASK_TOMBSTONE) 322 goto unlock; 323 324 if (task) { 325 /* 326 * We must be either inactive or active and the right task, 327 * otherwise we're screwed, since we cannot IPI to somewhere 328 * else. 329 */ 330 if (ctx->is_active) { 331 if (WARN_ON_ONCE(task != current)) 332 goto unlock; 333 334 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx)) 335 goto unlock; 336 } 337 } else { 338 WARN_ON_ONCE(&cpuctx->ctx != ctx); 339 } 340 341 func(event, cpuctx, ctx, data); 342 unlock: 343 perf_ctx_unlock(cpuctx, task_ctx); 344 } 345 346 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 347 PERF_FLAG_FD_OUTPUT |\ 348 PERF_FLAG_PID_CGROUP |\ 349 PERF_FLAG_FD_CLOEXEC) 350 351 /* 352 * branch priv levels that need permission checks 353 */ 354 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 355 (PERF_SAMPLE_BRANCH_KERNEL |\ 356 PERF_SAMPLE_BRANCH_HV) 357 358 enum event_type_t { 359 EVENT_FLEXIBLE = 0x1, 360 EVENT_PINNED = 0x2, 361 EVENT_TIME = 0x4, 362 /* see ctx_resched() for details */ 363 EVENT_CPU = 0x8, 364 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 365 }; 366 367 /* 368 * perf_sched_events : >0 events exist 369 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu 370 */ 371 372 static void perf_sched_delayed(struct work_struct *work); 373 DEFINE_STATIC_KEY_FALSE(perf_sched_events); 374 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed); 375 static DEFINE_MUTEX(perf_sched_mutex); 376 static atomic_t perf_sched_count; 377 378 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); 379 static DEFINE_PER_CPU(int, perf_sched_cb_usages); 380 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events); 381 382 static atomic_t nr_mmap_events __read_mostly; 383 static atomic_t nr_comm_events __read_mostly; 384 static atomic_t nr_namespaces_events __read_mostly; 385 static atomic_t nr_task_events __read_mostly; 386 static atomic_t nr_freq_events __read_mostly; 387 static atomic_t nr_switch_events __read_mostly; 388 389 static LIST_HEAD(pmus); 390 static DEFINE_MUTEX(pmus_lock); 391 static struct srcu_struct pmus_srcu; 392 static cpumask_var_t perf_online_mask; 393 394 /* 395 * perf event paranoia level: 396 * -1 - not paranoid at all 397 * 0 - disallow raw tracepoint access for unpriv 398 * 1 - disallow cpu events for unpriv 399 * 2 - disallow kernel profiling for unpriv 400 */ 401 int sysctl_perf_event_paranoid __read_mostly = 2; 402 403 /* Minimum for 512 kiB + 1 user control page */ 404 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 405 406 /* 407 * max perf event sample rate 408 */ 409 #define DEFAULT_MAX_SAMPLE_RATE 100000 410 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 411 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 412 413 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 414 415 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 416 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 417 418 static int perf_sample_allowed_ns __read_mostly = 419 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 420 421 static void update_perf_cpu_limits(void) 422 { 423 u64 tmp = perf_sample_period_ns; 424 425 tmp *= sysctl_perf_cpu_time_max_percent; 426 tmp = div_u64(tmp, 100); 427 if (!tmp) 428 tmp = 1; 429 430 WRITE_ONCE(perf_sample_allowed_ns, tmp); 431 } 432 433 static int perf_rotate_context(struct perf_cpu_context *cpuctx); 434 435 int perf_proc_update_handler(struct ctl_table *table, int write, 436 void __user *buffer, size_t *lenp, 437 loff_t *ppos) 438 { 439 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 440 441 if (ret || !write) 442 return ret; 443 444 /* 445 * If throttling is disabled don't allow the write: 446 */ 447 if (sysctl_perf_cpu_time_max_percent == 100 || 448 sysctl_perf_cpu_time_max_percent == 0) 449 return -EINVAL; 450 451 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 452 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 453 update_perf_cpu_limits(); 454 455 return 0; 456 } 457 458 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 459 460 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 461 void __user *buffer, size_t *lenp, 462 loff_t *ppos) 463 { 464 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 465 466 if (ret || !write) 467 return ret; 468 469 if (sysctl_perf_cpu_time_max_percent == 100 || 470 sysctl_perf_cpu_time_max_percent == 0) { 471 printk(KERN_WARNING 472 "perf: Dynamic interrupt throttling disabled, can hang your system!\n"); 473 WRITE_ONCE(perf_sample_allowed_ns, 0); 474 } else { 475 update_perf_cpu_limits(); 476 } 477 478 return 0; 479 } 480 481 /* 482 * perf samples are done in some very critical code paths (NMIs). 483 * If they take too much CPU time, the system can lock up and not 484 * get any real work done. This will drop the sample rate when 485 * we detect that events are taking too long. 486 */ 487 #define NR_ACCUMULATED_SAMPLES 128 488 static DEFINE_PER_CPU(u64, running_sample_length); 489 490 static u64 __report_avg; 491 static u64 __report_allowed; 492 493 static void perf_duration_warn(struct irq_work *w) 494 { 495 printk_ratelimited(KERN_INFO 496 "perf: interrupt took too long (%lld > %lld), lowering " 497 "kernel.perf_event_max_sample_rate to %d\n", 498 __report_avg, __report_allowed, 499 sysctl_perf_event_sample_rate); 500 } 501 502 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 503 504 void perf_sample_event_took(u64 sample_len_ns) 505 { 506 u64 max_len = READ_ONCE(perf_sample_allowed_ns); 507 u64 running_len; 508 u64 avg_len; 509 u32 max; 510 511 if (max_len == 0) 512 return; 513 514 /* Decay the counter by 1 average sample. */ 515 running_len = __this_cpu_read(running_sample_length); 516 running_len -= running_len/NR_ACCUMULATED_SAMPLES; 517 running_len += sample_len_ns; 518 __this_cpu_write(running_sample_length, running_len); 519 520 /* 521 * Note: this will be biased artifically low until we have 522 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 523 * from having to maintain a count. 524 */ 525 avg_len = running_len/NR_ACCUMULATED_SAMPLES; 526 if (avg_len <= max_len) 527 return; 528 529 __report_avg = avg_len; 530 __report_allowed = max_len; 531 532 /* 533 * Compute a throttle threshold 25% below the current duration. 534 */ 535 avg_len += avg_len / 4; 536 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent; 537 if (avg_len < max) 538 max /= (u32)avg_len; 539 else 540 max = 1; 541 542 WRITE_ONCE(perf_sample_allowed_ns, avg_len); 543 WRITE_ONCE(max_samples_per_tick, max); 544 545 sysctl_perf_event_sample_rate = max * HZ; 546 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 547 548 if (!irq_work_queue(&perf_duration_work)) { 549 early_printk("perf: interrupt took too long (%lld > %lld), lowering " 550 "kernel.perf_event_max_sample_rate to %d\n", 551 __report_avg, __report_allowed, 552 sysctl_perf_event_sample_rate); 553 } 554 } 555 556 static atomic64_t perf_event_id; 557 558 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 559 enum event_type_t event_type); 560 561 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 562 enum event_type_t event_type, 563 struct task_struct *task); 564 565 static void update_context_time(struct perf_event_context *ctx); 566 static u64 perf_event_time(struct perf_event *event); 567 568 void __weak perf_event_print_debug(void) { } 569 570 extern __weak const char *perf_pmu_name(void) 571 { 572 return "pmu"; 573 } 574 575 static inline u64 perf_clock(void) 576 { 577 return local_clock(); 578 } 579 580 static inline u64 perf_event_clock(struct perf_event *event) 581 { 582 return event->clock(); 583 } 584 585 #ifdef CONFIG_CGROUP_PERF 586 587 static inline bool 588 perf_cgroup_match(struct perf_event *event) 589 { 590 struct perf_event_context *ctx = event->ctx; 591 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 592 593 /* @event doesn't care about cgroup */ 594 if (!event->cgrp) 595 return true; 596 597 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 598 if (!cpuctx->cgrp) 599 return false; 600 601 /* 602 * Cgroup scoping is recursive. An event enabled for a cgroup is 603 * also enabled for all its descendant cgroups. If @cpuctx's 604 * cgroup is a descendant of @event's (the test covers identity 605 * case), it's a match. 606 */ 607 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 608 event->cgrp->css.cgroup); 609 } 610 611 static inline void perf_detach_cgroup(struct perf_event *event) 612 { 613 css_put(&event->cgrp->css); 614 event->cgrp = NULL; 615 } 616 617 static inline int is_cgroup_event(struct perf_event *event) 618 { 619 return event->cgrp != NULL; 620 } 621 622 static inline u64 perf_cgroup_event_time(struct perf_event *event) 623 { 624 struct perf_cgroup_info *t; 625 626 t = per_cpu_ptr(event->cgrp->info, event->cpu); 627 return t->time; 628 } 629 630 static inline void __update_cgrp_time(struct perf_cgroup *cgrp) 631 { 632 struct perf_cgroup_info *info; 633 u64 now; 634 635 now = perf_clock(); 636 637 info = this_cpu_ptr(cgrp->info); 638 639 info->time += now - info->timestamp; 640 info->timestamp = now; 641 } 642 643 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 644 { 645 struct perf_cgroup *cgrp_out = cpuctx->cgrp; 646 if (cgrp_out) 647 __update_cgrp_time(cgrp_out); 648 } 649 650 static inline void update_cgrp_time_from_event(struct perf_event *event) 651 { 652 struct perf_cgroup *cgrp; 653 654 /* 655 * ensure we access cgroup data only when needed and 656 * when we know the cgroup is pinned (css_get) 657 */ 658 if (!is_cgroup_event(event)) 659 return; 660 661 cgrp = perf_cgroup_from_task(current, event->ctx); 662 /* 663 * Do not update time when cgroup is not active 664 */ 665 if (cgrp == event->cgrp) 666 __update_cgrp_time(event->cgrp); 667 } 668 669 static inline void 670 perf_cgroup_set_timestamp(struct task_struct *task, 671 struct perf_event_context *ctx) 672 { 673 struct perf_cgroup *cgrp; 674 struct perf_cgroup_info *info; 675 676 /* 677 * ctx->lock held by caller 678 * ensure we do not access cgroup data 679 * unless we have the cgroup pinned (css_get) 680 */ 681 if (!task || !ctx->nr_cgroups) 682 return; 683 684 cgrp = perf_cgroup_from_task(task, ctx); 685 info = this_cpu_ptr(cgrp->info); 686 info->timestamp = ctx->timestamp; 687 } 688 689 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list); 690 691 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */ 692 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */ 693 694 /* 695 * reschedule events based on the cgroup constraint of task. 696 * 697 * mode SWOUT : schedule out everything 698 * mode SWIN : schedule in based on cgroup for next 699 */ 700 static void perf_cgroup_switch(struct task_struct *task, int mode) 701 { 702 struct perf_cpu_context *cpuctx; 703 struct list_head *list; 704 unsigned long flags; 705 706 /* 707 * Disable interrupts and preemption to avoid this CPU's 708 * cgrp_cpuctx_entry to change under us. 709 */ 710 local_irq_save(flags); 711 712 list = this_cpu_ptr(&cgrp_cpuctx_list); 713 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) { 714 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0); 715 716 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 717 perf_pmu_disable(cpuctx->ctx.pmu); 718 719 if (mode & PERF_CGROUP_SWOUT) { 720 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 721 /* 722 * must not be done before ctxswout due 723 * to event_filter_match() in event_sched_out() 724 */ 725 cpuctx->cgrp = NULL; 726 } 727 728 if (mode & PERF_CGROUP_SWIN) { 729 WARN_ON_ONCE(cpuctx->cgrp); 730 /* 731 * set cgrp before ctxsw in to allow 732 * event_filter_match() to not have to pass 733 * task around 734 * we pass the cpuctx->ctx to perf_cgroup_from_task() 735 * because cgorup events are only per-cpu 736 */ 737 cpuctx->cgrp = perf_cgroup_from_task(task, 738 &cpuctx->ctx); 739 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task); 740 } 741 perf_pmu_enable(cpuctx->ctx.pmu); 742 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 743 } 744 745 local_irq_restore(flags); 746 } 747 748 static inline void perf_cgroup_sched_out(struct task_struct *task, 749 struct task_struct *next) 750 { 751 struct perf_cgroup *cgrp1; 752 struct perf_cgroup *cgrp2 = NULL; 753 754 rcu_read_lock(); 755 /* 756 * we come here when we know perf_cgroup_events > 0 757 * we do not need to pass the ctx here because we know 758 * we are holding the rcu lock 759 */ 760 cgrp1 = perf_cgroup_from_task(task, NULL); 761 cgrp2 = perf_cgroup_from_task(next, NULL); 762 763 /* 764 * only schedule out current cgroup events if we know 765 * that we are switching to a different cgroup. Otherwise, 766 * do no touch the cgroup events. 767 */ 768 if (cgrp1 != cgrp2) 769 perf_cgroup_switch(task, PERF_CGROUP_SWOUT); 770 771 rcu_read_unlock(); 772 } 773 774 static inline void perf_cgroup_sched_in(struct task_struct *prev, 775 struct task_struct *task) 776 { 777 struct perf_cgroup *cgrp1; 778 struct perf_cgroup *cgrp2 = NULL; 779 780 rcu_read_lock(); 781 /* 782 * we come here when we know perf_cgroup_events > 0 783 * we do not need to pass the ctx here because we know 784 * we are holding the rcu lock 785 */ 786 cgrp1 = perf_cgroup_from_task(task, NULL); 787 cgrp2 = perf_cgroup_from_task(prev, NULL); 788 789 /* 790 * only need to schedule in cgroup events if we are changing 791 * cgroup during ctxsw. Cgroup events were not scheduled 792 * out of ctxsw out if that was not the case. 793 */ 794 if (cgrp1 != cgrp2) 795 perf_cgroup_switch(task, PERF_CGROUP_SWIN); 796 797 rcu_read_unlock(); 798 } 799 800 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 801 struct perf_event_attr *attr, 802 struct perf_event *group_leader) 803 { 804 struct perf_cgroup *cgrp; 805 struct cgroup_subsys_state *css; 806 struct fd f = fdget(fd); 807 int ret = 0; 808 809 if (!f.file) 810 return -EBADF; 811 812 css = css_tryget_online_from_dir(f.file->f_path.dentry, 813 &perf_event_cgrp_subsys); 814 if (IS_ERR(css)) { 815 ret = PTR_ERR(css); 816 goto out; 817 } 818 819 cgrp = container_of(css, struct perf_cgroup, css); 820 event->cgrp = cgrp; 821 822 /* 823 * all events in a group must monitor 824 * the same cgroup because a task belongs 825 * to only one perf cgroup at a time 826 */ 827 if (group_leader && group_leader->cgrp != cgrp) { 828 perf_detach_cgroup(event); 829 ret = -EINVAL; 830 } 831 out: 832 fdput(f); 833 return ret; 834 } 835 836 static inline void 837 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 838 { 839 struct perf_cgroup_info *t; 840 t = per_cpu_ptr(event->cgrp->info, event->cpu); 841 event->shadow_ctx_time = now - t->timestamp; 842 } 843 844 static inline void 845 perf_cgroup_defer_enabled(struct perf_event *event) 846 { 847 /* 848 * when the current task's perf cgroup does not match 849 * the event's, we need to remember to call the 850 * perf_mark_enable() function the first time a task with 851 * a matching perf cgroup is scheduled in. 852 */ 853 if (is_cgroup_event(event) && !perf_cgroup_match(event)) 854 event->cgrp_defer_enabled = 1; 855 } 856 857 static inline void 858 perf_cgroup_mark_enabled(struct perf_event *event, 859 struct perf_event_context *ctx) 860 { 861 struct perf_event *sub; 862 u64 tstamp = perf_event_time(event); 863 864 if (!event->cgrp_defer_enabled) 865 return; 866 867 event->cgrp_defer_enabled = 0; 868 869 event->tstamp_enabled = tstamp - event->total_time_enabled; 870 list_for_each_entry(sub, &event->sibling_list, group_entry) { 871 if (sub->state >= PERF_EVENT_STATE_INACTIVE) { 872 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 873 sub->cgrp_defer_enabled = 0; 874 } 875 } 876 } 877 878 /* 879 * Update cpuctx->cgrp so that it is set when first cgroup event is added and 880 * cleared when last cgroup event is removed. 881 */ 882 static inline void 883 list_update_cgroup_event(struct perf_event *event, 884 struct perf_event_context *ctx, bool add) 885 { 886 struct perf_cpu_context *cpuctx; 887 struct list_head *cpuctx_entry; 888 889 if (!is_cgroup_event(event)) 890 return; 891 892 if (add && ctx->nr_cgroups++) 893 return; 894 else if (!add && --ctx->nr_cgroups) 895 return; 896 /* 897 * Because cgroup events are always per-cpu events, 898 * this will always be called from the right CPU. 899 */ 900 cpuctx = __get_cpu_context(ctx); 901 cpuctx_entry = &cpuctx->cgrp_cpuctx_entry; 902 /* cpuctx->cgrp is NULL unless a cgroup event is active in this CPU .*/ 903 if (add) { 904 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list)); 905 if (perf_cgroup_from_task(current, ctx) == event->cgrp) 906 cpuctx->cgrp = event->cgrp; 907 } else { 908 list_del(cpuctx_entry); 909 cpuctx->cgrp = NULL; 910 } 911 } 912 913 #else /* !CONFIG_CGROUP_PERF */ 914 915 static inline bool 916 perf_cgroup_match(struct perf_event *event) 917 { 918 return true; 919 } 920 921 static inline void perf_detach_cgroup(struct perf_event *event) 922 {} 923 924 static inline int is_cgroup_event(struct perf_event *event) 925 { 926 return 0; 927 } 928 929 static inline void update_cgrp_time_from_event(struct perf_event *event) 930 { 931 } 932 933 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 934 { 935 } 936 937 static inline void perf_cgroup_sched_out(struct task_struct *task, 938 struct task_struct *next) 939 { 940 } 941 942 static inline void perf_cgroup_sched_in(struct task_struct *prev, 943 struct task_struct *task) 944 { 945 } 946 947 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 948 struct perf_event_attr *attr, 949 struct perf_event *group_leader) 950 { 951 return -EINVAL; 952 } 953 954 static inline void 955 perf_cgroup_set_timestamp(struct task_struct *task, 956 struct perf_event_context *ctx) 957 { 958 } 959 960 void 961 perf_cgroup_switch(struct task_struct *task, struct task_struct *next) 962 { 963 } 964 965 static inline void 966 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 967 { 968 } 969 970 static inline u64 perf_cgroup_event_time(struct perf_event *event) 971 { 972 return 0; 973 } 974 975 static inline void 976 perf_cgroup_defer_enabled(struct perf_event *event) 977 { 978 } 979 980 static inline void 981 perf_cgroup_mark_enabled(struct perf_event *event, 982 struct perf_event_context *ctx) 983 { 984 } 985 986 static inline void 987 list_update_cgroup_event(struct perf_event *event, 988 struct perf_event_context *ctx, bool add) 989 { 990 } 991 992 #endif 993 994 /* 995 * set default to be dependent on timer tick just 996 * like original code 997 */ 998 #define PERF_CPU_HRTIMER (1000 / HZ) 999 /* 1000 * function must be called with interrupts disabled 1001 */ 1002 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) 1003 { 1004 struct perf_cpu_context *cpuctx; 1005 int rotations = 0; 1006 1007 WARN_ON(!irqs_disabled()); 1008 1009 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer); 1010 rotations = perf_rotate_context(cpuctx); 1011 1012 raw_spin_lock(&cpuctx->hrtimer_lock); 1013 if (rotations) 1014 hrtimer_forward_now(hr, cpuctx->hrtimer_interval); 1015 else 1016 cpuctx->hrtimer_active = 0; 1017 raw_spin_unlock(&cpuctx->hrtimer_lock); 1018 1019 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; 1020 } 1021 1022 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu) 1023 { 1024 struct hrtimer *timer = &cpuctx->hrtimer; 1025 struct pmu *pmu = cpuctx->ctx.pmu; 1026 u64 interval; 1027 1028 /* no multiplexing needed for SW PMU */ 1029 if (pmu->task_ctx_nr == perf_sw_context) 1030 return; 1031 1032 /* 1033 * check default is sane, if not set then force to 1034 * default interval (1/tick) 1035 */ 1036 interval = pmu->hrtimer_interval_ms; 1037 if (interval < 1) 1038 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 1039 1040 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 1041 1042 raw_spin_lock_init(&cpuctx->hrtimer_lock); 1043 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 1044 timer->function = perf_mux_hrtimer_handler; 1045 } 1046 1047 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx) 1048 { 1049 struct hrtimer *timer = &cpuctx->hrtimer; 1050 struct pmu *pmu = cpuctx->ctx.pmu; 1051 unsigned long flags; 1052 1053 /* not for SW PMU */ 1054 if (pmu->task_ctx_nr == perf_sw_context) 1055 return 0; 1056 1057 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags); 1058 if (!cpuctx->hrtimer_active) { 1059 cpuctx->hrtimer_active = 1; 1060 hrtimer_forward_now(timer, cpuctx->hrtimer_interval); 1061 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 1062 } 1063 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags); 1064 1065 return 0; 1066 } 1067 1068 void perf_pmu_disable(struct pmu *pmu) 1069 { 1070 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1071 if (!(*count)++) 1072 pmu->pmu_disable(pmu); 1073 } 1074 1075 void perf_pmu_enable(struct pmu *pmu) 1076 { 1077 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1078 if (!--(*count)) 1079 pmu->pmu_enable(pmu); 1080 } 1081 1082 static DEFINE_PER_CPU(struct list_head, active_ctx_list); 1083 1084 /* 1085 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and 1086 * perf_event_task_tick() are fully serialized because they're strictly cpu 1087 * affine and perf_event_ctx{activate,deactivate} are called with IRQs 1088 * disabled, while perf_event_task_tick is called from IRQ context. 1089 */ 1090 static void perf_event_ctx_activate(struct perf_event_context *ctx) 1091 { 1092 struct list_head *head = this_cpu_ptr(&active_ctx_list); 1093 1094 WARN_ON(!irqs_disabled()); 1095 1096 WARN_ON(!list_empty(&ctx->active_ctx_list)); 1097 1098 list_add(&ctx->active_ctx_list, head); 1099 } 1100 1101 static void perf_event_ctx_deactivate(struct perf_event_context *ctx) 1102 { 1103 WARN_ON(!irqs_disabled()); 1104 1105 WARN_ON(list_empty(&ctx->active_ctx_list)); 1106 1107 list_del_init(&ctx->active_ctx_list); 1108 } 1109 1110 static void get_ctx(struct perf_event_context *ctx) 1111 { 1112 WARN_ON(!atomic_inc_not_zero(&ctx->refcount)); 1113 } 1114 1115 static void free_ctx(struct rcu_head *head) 1116 { 1117 struct perf_event_context *ctx; 1118 1119 ctx = container_of(head, struct perf_event_context, rcu_head); 1120 kfree(ctx->task_ctx_data); 1121 kfree(ctx); 1122 } 1123 1124 static void put_ctx(struct perf_event_context *ctx) 1125 { 1126 if (atomic_dec_and_test(&ctx->refcount)) { 1127 if (ctx->parent_ctx) 1128 put_ctx(ctx->parent_ctx); 1129 if (ctx->task && ctx->task != TASK_TOMBSTONE) 1130 put_task_struct(ctx->task); 1131 call_rcu(&ctx->rcu_head, free_ctx); 1132 } 1133 } 1134 1135 /* 1136 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 1137 * perf_pmu_migrate_context() we need some magic. 1138 * 1139 * Those places that change perf_event::ctx will hold both 1140 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 1141 * 1142 * Lock ordering is by mutex address. There are two other sites where 1143 * perf_event_context::mutex nests and those are: 1144 * 1145 * - perf_event_exit_task_context() [ child , 0 ] 1146 * perf_event_exit_event() 1147 * put_event() [ parent, 1 ] 1148 * 1149 * - perf_event_init_context() [ parent, 0 ] 1150 * inherit_task_group() 1151 * inherit_group() 1152 * inherit_event() 1153 * perf_event_alloc() 1154 * perf_init_event() 1155 * perf_try_init_event() [ child , 1 ] 1156 * 1157 * While it appears there is an obvious deadlock here -- the parent and child 1158 * nesting levels are inverted between the two. This is in fact safe because 1159 * life-time rules separate them. That is an exiting task cannot fork, and a 1160 * spawning task cannot (yet) exit. 1161 * 1162 * But remember that that these are parent<->child context relations, and 1163 * migration does not affect children, therefore these two orderings should not 1164 * interact. 1165 * 1166 * The change in perf_event::ctx does not affect children (as claimed above) 1167 * because the sys_perf_event_open() case will install a new event and break 1168 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 1169 * concerned with cpuctx and that doesn't have children. 1170 * 1171 * The places that change perf_event::ctx will issue: 1172 * 1173 * perf_remove_from_context(); 1174 * synchronize_rcu(); 1175 * perf_install_in_context(); 1176 * 1177 * to affect the change. The remove_from_context() + synchronize_rcu() should 1178 * quiesce the event, after which we can install it in the new location. This 1179 * means that only external vectors (perf_fops, prctl) can perturb the event 1180 * while in transit. Therefore all such accessors should also acquire 1181 * perf_event_context::mutex to serialize against this. 1182 * 1183 * However; because event->ctx can change while we're waiting to acquire 1184 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 1185 * function. 1186 * 1187 * Lock order: 1188 * cred_guard_mutex 1189 * task_struct::perf_event_mutex 1190 * perf_event_context::mutex 1191 * perf_event::child_mutex; 1192 * perf_event_context::lock 1193 * perf_event::mmap_mutex 1194 * mmap_sem 1195 */ 1196 static struct perf_event_context * 1197 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 1198 { 1199 struct perf_event_context *ctx; 1200 1201 again: 1202 rcu_read_lock(); 1203 ctx = ACCESS_ONCE(event->ctx); 1204 if (!atomic_inc_not_zero(&ctx->refcount)) { 1205 rcu_read_unlock(); 1206 goto again; 1207 } 1208 rcu_read_unlock(); 1209 1210 mutex_lock_nested(&ctx->mutex, nesting); 1211 if (event->ctx != ctx) { 1212 mutex_unlock(&ctx->mutex); 1213 put_ctx(ctx); 1214 goto again; 1215 } 1216 1217 return ctx; 1218 } 1219 1220 static inline struct perf_event_context * 1221 perf_event_ctx_lock(struct perf_event *event) 1222 { 1223 return perf_event_ctx_lock_nested(event, 0); 1224 } 1225 1226 static void perf_event_ctx_unlock(struct perf_event *event, 1227 struct perf_event_context *ctx) 1228 { 1229 mutex_unlock(&ctx->mutex); 1230 put_ctx(ctx); 1231 } 1232 1233 /* 1234 * This must be done under the ctx->lock, such as to serialize against 1235 * context_equiv(), therefore we cannot call put_ctx() since that might end up 1236 * calling scheduler related locks and ctx->lock nests inside those. 1237 */ 1238 static __must_check struct perf_event_context * 1239 unclone_ctx(struct perf_event_context *ctx) 1240 { 1241 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1242 1243 lockdep_assert_held(&ctx->lock); 1244 1245 if (parent_ctx) 1246 ctx->parent_ctx = NULL; 1247 ctx->generation++; 1248 1249 return parent_ctx; 1250 } 1251 1252 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1253 { 1254 /* 1255 * only top level events have the pid namespace they were created in 1256 */ 1257 if (event->parent) 1258 event = event->parent; 1259 1260 return task_tgid_nr_ns(p, event->ns); 1261 } 1262 1263 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1264 { 1265 /* 1266 * only top level events have the pid namespace they were created in 1267 */ 1268 if (event->parent) 1269 event = event->parent; 1270 1271 return task_pid_nr_ns(p, event->ns); 1272 } 1273 1274 /* 1275 * If we inherit events we want to return the parent event id 1276 * to userspace. 1277 */ 1278 static u64 primary_event_id(struct perf_event *event) 1279 { 1280 u64 id = event->id; 1281 1282 if (event->parent) 1283 id = event->parent->id; 1284 1285 return id; 1286 } 1287 1288 /* 1289 * Get the perf_event_context for a task and lock it. 1290 * 1291 * This has to cope with with the fact that until it is locked, 1292 * the context could get moved to another task. 1293 */ 1294 static struct perf_event_context * 1295 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) 1296 { 1297 struct perf_event_context *ctx; 1298 1299 retry: 1300 /* 1301 * One of the few rules of preemptible RCU is that one cannot do 1302 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1303 * part of the read side critical section was irqs-enabled -- see 1304 * rcu_read_unlock_special(). 1305 * 1306 * Since ctx->lock nests under rq->lock we must ensure the entire read 1307 * side critical section has interrupts disabled. 1308 */ 1309 local_irq_save(*flags); 1310 rcu_read_lock(); 1311 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); 1312 if (ctx) { 1313 /* 1314 * If this context is a clone of another, it might 1315 * get swapped for another underneath us by 1316 * perf_event_task_sched_out, though the 1317 * rcu_read_lock() protects us from any context 1318 * getting freed. Lock the context and check if it 1319 * got swapped before we could get the lock, and retry 1320 * if so. If we locked the right context, then it 1321 * can't get swapped on us any more. 1322 */ 1323 raw_spin_lock(&ctx->lock); 1324 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { 1325 raw_spin_unlock(&ctx->lock); 1326 rcu_read_unlock(); 1327 local_irq_restore(*flags); 1328 goto retry; 1329 } 1330 1331 if (ctx->task == TASK_TOMBSTONE || 1332 !atomic_inc_not_zero(&ctx->refcount)) { 1333 raw_spin_unlock(&ctx->lock); 1334 ctx = NULL; 1335 } else { 1336 WARN_ON_ONCE(ctx->task != task); 1337 } 1338 } 1339 rcu_read_unlock(); 1340 if (!ctx) 1341 local_irq_restore(*flags); 1342 return ctx; 1343 } 1344 1345 /* 1346 * Get the context for a task and increment its pin_count so it 1347 * can't get swapped to another task. This also increments its 1348 * reference count so that the context can't get freed. 1349 */ 1350 static struct perf_event_context * 1351 perf_pin_task_context(struct task_struct *task, int ctxn) 1352 { 1353 struct perf_event_context *ctx; 1354 unsigned long flags; 1355 1356 ctx = perf_lock_task_context(task, ctxn, &flags); 1357 if (ctx) { 1358 ++ctx->pin_count; 1359 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1360 } 1361 return ctx; 1362 } 1363 1364 static void perf_unpin_context(struct perf_event_context *ctx) 1365 { 1366 unsigned long flags; 1367 1368 raw_spin_lock_irqsave(&ctx->lock, flags); 1369 --ctx->pin_count; 1370 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1371 } 1372 1373 /* 1374 * Update the record of the current time in a context. 1375 */ 1376 static void update_context_time(struct perf_event_context *ctx) 1377 { 1378 u64 now = perf_clock(); 1379 1380 ctx->time += now - ctx->timestamp; 1381 ctx->timestamp = now; 1382 } 1383 1384 static u64 perf_event_time(struct perf_event *event) 1385 { 1386 struct perf_event_context *ctx = event->ctx; 1387 1388 if (is_cgroup_event(event)) 1389 return perf_cgroup_event_time(event); 1390 1391 return ctx ? ctx->time : 0; 1392 } 1393 1394 /* 1395 * Update the total_time_enabled and total_time_running fields for a event. 1396 */ 1397 static void update_event_times(struct perf_event *event) 1398 { 1399 struct perf_event_context *ctx = event->ctx; 1400 u64 run_end; 1401 1402 lockdep_assert_held(&ctx->lock); 1403 1404 if (event->state < PERF_EVENT_STATE_INACTIVE || 1405 event->group_leader->state < PERF_EVENT_STATE_INACTIVE) 1406 return; 1407 1408 /* 1409 * in cgroup mode, time_enabled represents 1410 * the time the event was enabled AND active 1411 * tasks were in the monitored cgroup. This is 1412 * independent of the activity of the context as 1413 * there may be a mix of cgroup and non-cgroup events. 1414 * 1415 * That is why we treat cgroup events differently 1416 * here. 1417 */ 1418 if (is_cgroup_event(event)) 1419 run_end = perf_cgroup_event_time(event); 1420 else if (ctx->is_active) 1421 run_end = ctx->time; 1422 else 1423 run_end = event->tstamp_stopped; 1424 1425 event->total_time_enabled = run_end - event->tstamp_enabled; 1426 1427 if (event->state == PERF_EVENT_STATE_INACTIVE) 1428 run_end = event->tstamp_stopped; 1429 else 1430 run_end = perf_event_time(event); 1431 1432 event->total_time_running = run_end - event->tstamp_running; 1433 1434 } 1435 1436 /* 1437 * Update total_time_enabled and total_time_running for all events in a group. 1438 */ 1439 static void update_group_times(struct perf_event *leader) 1440 { 1441 struct perf_event *event; 1442 1443 update_event_times(leader); 1444 list_for_each_entry(event, &leader->sibling_list, group_entry) 1445 update_event_times(event); 1446 } 1447 1448 static enum event_type_t get_event_type(struct perf_event *event) 1449 { 1450 struct perf_event_context *ctx = event->ctx; 1451 enum event_type_t event_type; 1452 1453 lockdep_assert_held(&ctx->lock); 1454 1455 /* 1456 * It's 'group type', really, because if our group leader is 1457 * pinned, so are we. 1458 */ 1459 if (event->group_leader != event) 1460 event = event->group_leader; 1461 1462 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE; 1463 if (!ctx->task) 1464 event_type |= EVENT_CPU; 1465 1466 return event_type; 1467 } 1468 1469 static struct list_head * 1470 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx) 1471 { 1472 if (event->attr.pinned) 1473 return &ctx->pinned_groups; 1474 else 1475 return &ctx->flexible_groups; 1476 } 1477 1478 /* 1479 * Add a event from the lists for its context. 1480 * Must be called with ctx->mutex and ctx->lock held. 1481 */ 1482 static void 1483 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1484 { 1485 lockdep_assert_held(&ctx->lock); 1486 1487 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1488 event->attach_state |= PERF_ATTACH_CONTEXT; 1489 1490 /* 1491 * If we're a stand alone event or group leader, we go to the context 1492 * list, group events are kept attached to the group so that 1493 * perf_group_detach can, at all times, locate all siblings. 1494 */ 1495 if (event->group_leader == event) { 1496 struct list_head *list; 1497 1498 event->group_caps = event->event_caps; 1499 1500 list = ctx_group_list(event, ctx); 1501 list_add_tail(&event->group_entry, list); 1502 } 1503 1504 list_update_cgroup_event(event, ctx, true); 1505 1506 list_add_rcu(&event->event_entry, &ctx->event_list); 1507 ctx->nr_events++; 1508 if (event->attr.inherit_stat) 1509 ctx->nr_stat++; 1510 1511 ctx->generation++; 1512 } 1513 1514 /* 1515 * Initialize event state based on the perf_event_attr::disabled. 1516 */ 1517 static inline void perf_event__state_init(struct perf_event *event) 1518 { 1519 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1520 PERF_EVENT_STATE_INACTIVE; 1521 } 1522 1523 static void __perf_event_read_size(struct perf_event *event, int nr_siblings) 1524 { 1525 int entry = sizeof(u64); /* value */ 1526 int size = 0; 1527 int nr = 1; 1528 1529 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1530 size += sizeof(u64); 1531 1532 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1533 size += sizeof(u64); 1534 1535 if (event->attr.read_format & PERF_FORMAT_ID) 1536 entry += sizeof(u64); 1537 1538 if (event->attr.read_format & PERF_FORMAT_GROUP) { 1539 nr += nr_siblings; 1540 size += sizeof(u64); 1541 } 1542 1543 size += entry * nr; 1544 event->read_size = size; 1545 } 1546 1547 static void __perf_event_header_size(struct perf_event *event, u64 sample_type) 1548 { 1549 struct perf_sample_data *data; 1550 u16 size = 0; 1551 1552 if (sample_type & PERF_SAMPLE_IP) 1553 size += sizeof(data->ip); 1554 1555 if (sample_type & PERF_SAMPLE_ADDR) 1556 size += sizeof(data->addr); 1557 1558 if (sample_type & PERF_SAMPLE_PERIOD) 1559 size += sizeof(data->period); 1560 1561 if (sample_type & PERF_SAMPLE_WEIGHT) 1562 size += sizeof(data->weight); 1563 1564 if (sample_type & PERF_SAMPLE_READ) 1565 size += event->read_size; 1566 1567 if (sample_type & PERF_SAMPLE_DATA_SRC) 1568 size += sizeof(data->data_src.val); 1569 1570 if (sample_type & PERF_SAMPLE_TRANSACTION) 1571 size += sizeof(data->txn); 1572 1573 event->header_size = size; 1574 } 1575 1576 /* 1577 * Called at perf_event creation and when events are attached/detached from a 1578 * group. 1579 */ 1580 static void perf_event__header_size(struct perf_event *event) 1581 { 1582 __perf_event_read_size(event, 1583 event->group_leader->nr_siblings); 1584 __perf_event_header_size(event, event->attr.sample_type); 1585 } 1586 1587 static void perf_event__id_header_size(struct perf_event *event) 1588 { 1589 struct perf_sample_data *data; 1590 u64 sample_type = event->attr.sample_type; 1591 u16 size = 0; 1592 1593 if (sample_type & PERF_SAMPLE_TID) 1594 size += sizeof(data->tid_entry); 1595 1596 if (sample_type & PERF_SAMPLE_TIME) 1597 size += sizeof(data->time); 1598 1599 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1600 size += sizeof(data->id); 1601 1602 if (sample_type & PERF_SAMPLE_ID) 1603 size += sizeof(data->id); 1604 1605 if (sample_type & PERF_SAMPLE_STREAM_ID) 1606 size += sizeof(data->stream_id); 1607 1608 if (sample_type & PERF_SAMPLE_CPU) 1609 size += sizeof(data->cpu_entry); 1610 1611 event->id_header_size = size; 1612 } 1613 1614 static bool perf_event_validate_size(struct perf_event *event) 1615 { 1616 /* 1617 * The values computed here will be over-written when we actually 1618 * attach the event. 1619 */ 1620 __perf_event_read_size(event, event->group_leader->nr_siblings + 1); 1621 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ); 1622 perf_event__id_header_size(event); 1623 1624 /* 1625 * Sum the lot; should not exceed the 64k limit we have on records. 1626 * Conservative limit to allow for callchains and other variable fields. 1627 */ 1628 if (event->read_size + event->header_size + 1629 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024) 1630 return false; 1631 1632 return true; 1633 } 1634 1635 static void perf_group_attach(struct perf_event *event) 1636 { 1637 struct perf_event *group_leader = event->group_leader, *pos; 1638 1639 lockdep_assert_held(&event->ctx->lock); 1640 1641 /* 1642 * We can have double attach due to group movement in perf_event_open. 1643 */ 1644 if (event->attach_state & PERF_ATTACH_GROUP) 1645 return; 1646 1647 event->attach_state |= PERF_ATTACH_GROUP; 1648 1649 if (group_leader == event) 1650 return; 1651 1652 WARN_ON_ONCE(group_leader->ctx != event->ctx); 1653 1654 group_leader->group_caps &= event->event_caps; 1655 1656 list_add_tail(&event->group_entry, &group_leader->sibling_list); 1657 group_leader->nr_siblings++; 1658 1659 perf_event__header_size(group_leader); 1660 1661 list_for_each_entry(pos, &group_leader->sibling_list, group_entry) 1662 perf_event__header_size(pos); 1663 } 1664 1665 /* 1666 * Remove a event from the lists for its context. 1667 * Must be called with ctx->mutex and ctx->lock held. 1668 */ 1669 static void 1670 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 1671 { 1672 WARN_ON_ONCE(event->ctx != ctx); 1673 lockdep_assert_held(&ctx->lock); 1674 1675 /* 1676 * We can have double detach due to exit/hot-unplug + close. 1677 */ 1678 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 1679 return; 1680 1681 event->attach_state &= ~PERF_ATTACH_CONTEXT; 1682 1683 list_update_cgroup_event(event, ctx, false); 1684 1685 ctx->nr_events--; 1686 if (event->attr.inherit_stat) 1687 ctx->nr_stat--; 1688 1689 list_del_rcu(&event->event_entry); 1690 1691 if (event->group_leader == event) 1692 list_del_init(&event->group_entry); 1693 1694 update_group_times(event); 1695 1696 /* 1697 * If event was in error state, then keep it 1698 * that way, otherwise bogus counts will be 1699 * returned on read(). The only way to get out 1700 * of error state is by explicit re-enabling 1701 * of the event 1702 */ 1703 if (event->state > PERF_EVENT_STATE_OFF) 1704 event->state = PERF_EVENT_STATE_OFF; 1705 1706 ctx->generation++; 1707 } 1708 1709 static void perf_group_detach(struct perf_event *event) 1710 { 1711 struct perf_event *sibling, *tmp; 1712 struct list_head *list = NULL; 1713 1714 lockdep_assert_held(&event->ctx->lock); 1715 1716 /* 1717 * We can have double detach due to exit/hot-unplug + close. 1718 */ 1719 if (!(event->attach_state & PERF_ATTACH_GROUP)) 1720 return; 1721 1722 event->attach_state &= ~PERF_ATTACH_GROUP; 1723 1724 /* 1725 * If this is a sibling, remove it from its group. 1726 */ 1727 if (event->group_leader != event) { 1728 list_del_init(&event->group_entry); 1729 event->group_leader->nr_siblings--; 1730 goto out; 1731 } 1732 1733 if (!list_empty(&event->group_entry)) 1734 list = &event->group_entry; 1735 1736 /* 1737 * If this was a group event with sibling events then 1738 * upgrade the siblings to singleton events by adding them 1739 * to whatever list we are on. 1740 */ 1741 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) { 1742 if (list) 1743 list_move_tail(&sibling->group_entry, list); 1744 sibling->group_leader = sibling; 1745 1746 /* Inherit group flags from the previous leader */ 1747 sibling->group_caps = event->group_caps; 1748 1749 WARN_ON_ONCE(sibling->ctx != event->ctx); 1750 } 1751 1752 out: 1753 perf_event__header_size(event->group_leader); 1754 1755 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry) 1756 perf_event__header_size(tmp); 1757 } 1758 1759 static bool is_orphaned_event(struct perf_event *event) 1760 { 1761 return event->state == PERF_EVENT_STATE_DEAD; 1762 } 1763 1764 static inline int __pmu_filter_match(struct perf_event *event) 1765 { 1766 struct pmu *pmu = event->pmu; 1767 return pmu->filter_match ? pmu->filter_match(event) : 1; 1768 } 1769 1770 /* 1771 * Check whether we should attempt to schedule an event group based on 1772 * PMU-specific filtering. An event group can consist of HW and SW events, 1773 * potentially with a SW leader, so we must check all the filters, to 1774 * determine whether a group is schedulable: 1775 */ 1776 static inline int pmu_filter_match(struct perf_event *event) 1777 { 1778 struct perf_event *child; 1779 1780 if (!__pmu_filter_match(event)) 1781 return 0; 1782 1783 list_for_each_entry(child, &event->sibling_list, group_entry) { 1784 if (!__pmu_filter_match(child)) 1785 return 0; 1786 } 1787 1788 return 1; 1789 } 1790 1791 static inline int 1792 event_filter_match(struct perf_event *event) 1793 { 1794 return (event->cpu == -1 || event->cpu == smp_processor_id()) && 1795 perf_cgroup_match(event) && pmu_filter_match(event); 1796 } 1797 1798 static void 1799 event_sched_out(struct perf_event *event, 1800 struct perf_cpu_context *cpuctx, 1801 struct perf_event_context *ctx) 1802 { 1803 u64 tstamp = perf_event_time(event); 1804 u64 delta; 1805 1806 WARN_ON_ONCE(event->ctx != ctx); 1807 lockdep_assert_held(&ctx->lock); 1808 1809 /* 1810 * An event which could not be activated because of 1811 * filter mismatch still needs to have its timings 1812 * maintained, otherwise bogus information is return 1813 * via read() for time_enabled, time_running: 1814 */ 1815 if (event->state == PERF_EVENT_STATE_INACTIVE && 1816 !event_filter_match(event)) { 1817 delta = tstamp - event->tstamp_stopped; 1818 event->tstamp_running += delta; 1819 event->tstamp_stopped = tstamp; 1820 } 1821 1822 if (event->state != PERF_EVENT_STATE_ACTIVE) 1823 return; 1824 1825 perf_pmu_disable(event->pmu); 1826 1827 event->tstamp_stopped = tstamp; 1828 event->pmu->del(event, 0); 1829 event->oncpu = -1; 1830 event->state = PERF_EVENT_STATE_INACTIVE; 1831 if (event->pending_disable) { 1832 event->pending_disable = 0; 1833 event->state = PERF_EVENT_STATE_OFF; 1834 } 1835 1836 if (!is_software_event(event)) 1837 cpuctx->active_oncpu--; 1838 if (!--ctx->nr_active) 1839 perf_event_ctx_deactivate(ctx); 1840 if (event->attr.freq && event->attr.sample_freq) 1841 ctx->nr_freq--; 1842 if (event->attr.exclusive || !cpuctx->active_oncpu) 1843 cpuctx->exclusive = 0; 1844 1845 perf_pmu_enable(event->pmu); 1846 } 1847 1848 static void 1849 group_sched_out(struct perf_event *group_event, 1850 struct perf_cpu_context *cpuctx, 1851 struct perf_event_context *ctx) 1852 { 1853 struct perf_event *event; 1854 int state = group_event->state; 1855 1856 perf_pmu_disable(ctx->pmu); 1857 1858 event_sched_out(group_event, cpuctx, ctx); 1859 1860 /* 1861 * Schedule out siblings (if any): 1862 */ 1863 list_for_each_entry(event, &group_event->sibling_list, group_entry) 1864 event_sched_out(event, cpuctx, ctx); 1865 1866 perf_pmu_enable(ctx->pmu); 1867 1868 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive) 1869 cpuctx->exclusive = 0; 1870 } 1871 1872 #define DETACH_GROUP 0x01UL 1873 1874 /* 1875 * Cross CPU call to remove a performance event 1876 * 1877 * We disable the event on the hardware level first. After that we 1878 * remove it from the context list. 1879 */ 1880 static void 1881 __perf_remove_from_context(struct perf_event *event, 1882 struct perf_cpu_context *cpuctx, 1883 struct perf_event_context *ctx, 1884 void *info) 1885 { 1886 unsigned long flags = (unsigned long)info; 1887 1888 event_sched_out(event, cpuctx, ctx); 1889 if (flags & DETACH_GROUP) 1890 perf_group_detach(event); 1891 list_del_event(event, ctx); 1892 1893 if (!ctx->nr_events && ctx->is_active) { 1894 ctx->is_active = 0; 1895 if (ctx->task) { 1896 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 1897 cpuctx->task_ctx = NULL; 1898 } 1899 } 1900 } 1901 1902 /* 1903 * Remove the event from a task's (or a CPU's) list of events. 1904 * 1905 * If event->ctx is a cloned context, callers must make sure that 1906 * every task struct that event->ctx->task could possibly point to 1907 * remains valid. This is OK when called from perf_release since 1908 * that only calls us on the top-level context, which can't be a clone. 1909 * When called from perf_event_exit_task, it's OK because the 1910 * context has been detached from its task. 1911 */ 1912 static void perf_remove_from_context(struct perf_event *event, unsigned long flags) 1913 { 1914 struct perf_event_context *ctx = event->ctx; 1915 1916 lockdep_assert_held(&ctx->mutex); 1917 1918 event_function_call(event, __perf_remove_from_context, (void *)flags); 1919 1920 /* 1921 * The above event_function_call() can NO-OP when it hits 1922 * TASK_TOMBSTONE. In that case we must already have been detached 1923 * from the context (by perf_event_exit_event()) but the grouping 1924 * might still be in-tact. 1925 */ 1926 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1927 if ((flags & DETACH_GROUP) && 1928 (event->attach_state & PERF_ATTACH_GROUP)) { 1929 /* 1930 * Since in that case we cannot possibly be scheduled, simply 1931 * detach now. 1932 */ 1933 raw_spin_lock_irq(&ctx->lock); 1934 perf_group_detach(event); 1935 raw_spin_unlock_irq(&ctx->lock); 1936 } 1937 } 1938 1939 /* 1940 * Cross CPU call to disable a performance event 1941 */ 1942 static void __perf_event_disable(struct perf_event *event, 1943 struct perf_cpu_context *cpuctx, 1944 struct perf_event_context *ctx, 1945 void *info) 1946 { 1947 if (event->state < PERF_EVENT_STATE_INACTIVE) 1948 return; 1949 1950 update_context_time(ctx); 1951 update_cgrp_time_from_event(event); 1952 update_group_times(event); 1953 if (event == event->group_leader) 1954 group_sched_out(event, cpuctx, ctx); 1955 else 1956 event_sched_out(event, cpuctx, ctx); 1957 event->state = PERF_EVENT_STATE_OFF; 1958 } 1959 1960 /* 1961 * Disable a event. 1962 * 1963 * If event->ctx is a cloned context, callers must make sure that 1964 * every task struct that event->ctx->task could possibly point to 1965 * remains valid. This condition is satisifed when called through 1966 * perf_event_for_each_child or perf_event_for_each because they 1967 * hold the top-level event's child_mutex, so any descendant that 1968 * goes to exit will block in perf_event_exit_event(). 1969 * 1970 * When called from perf_pending_event it's OK because event->ctx 1971 * is the current context on this CPU and preemption is disabled, 1972 * hence we can't get into perf_event_task_sched_out for this context. 1973 */ 1974 static void _perf_event_disable(struct perf_event *event) 1975 { 1976 struct perf_event_context *ctx = event->ctx; 1977 1978 raw_spin_lock_irq(&ctx->lock); 1979 if (event->state <= PERF_EVENT_STATE_OFF) { 1980 raw_spin_unlock_irq(&ctx->lock); 1981 return; 1982 } 1983 raw_spin_unlock_irq(&ctx->lock); 1984 1985 event_function_call(event, __perf_event_disable, NULL); 1986 } 1987 1988 void perf_event_disable_local(struct perf_event *event) 1989 { 1990 event_function_local(event, __perf_event_disable, NULL); 1991 } 1992 1993 /* 1994 * Strictly speaking kernel users cannot create groups and therefore this 1995 * interface does not need the perf_event_ctx_lock() magic. 1996 */ 1997 void perf_event_disable(struct perf_event *event) 1998 { 1999 struct perf_event_context *ctx; 2000 2001 ctx = perf_event_ctx_lock(event); 2002 _perf_event_disable(event); 2003 perf_event_ctx_unlock(event, ctx); 2004 } 2005 EXPORT_SYMBOL_GPL(perf_event_disable); 2006 2007 void perf_event_disable_inatomic(struct perf_event *event) 2008 { 2009 event->pending_disable = 1; 2010 irq_work_queue(&event->pending); 2011 } 2012 2013 static void perf_set_shadow_time(struct perf_event *event, 2014 struct perf_event_context *ctx, 2015 u64 tstamp) 2016 { 2017 /* 2018 * use the correct time source for the time snapshot 2019 * 2020 * We could get by without this by leveraging the 2021 * fact that to get to this function, the caller 2022 * has most likely already called update_context_time() 2023 * and update_cgrp_time_xx() and thus both timestamp 2024 * are identical (or very close). Given that tstamp is, 2025 * already adjusted for cgroup, we could say that: 2026 * tstamp - ctx->timestamp 2027 * is equivalent to 2028 * tstamp - cgrp->timestamp. 2029 * 2030 * Then, in perf_output_read(), the calculation would 2031 * work with no changes because: 2032 * - event is guaranteed scheduled in 2033 * - no scheduled out in between 2034 * - thus the timestamp would be the same 2035 * 2036 * But this is a bit hairy. 2037 * 2038 * So instead, we have an explicit cgroup call to remain 2039 * within the time time source all along. We believe it 2040 * is cleaner and simpler to understand. 2041 */ 2042 if (is_cgroup_event(event)) 2043 perf_cgroup_set_shadow_time(event, tstamp); 2044 else 2045 event->shadow_ctx_time = tstamp - ctx->timestamp; 2046 } 2047 2048 #define MAX_INTERRUPTS (~0ULL) 2049 2050 static void perf_log_throttle(struct perf_event *event, int enable); 2051 static void perf_log_itrace_start(struct perf_event *event); 2052 2053 static int 2054 event_sched_in(struct perf_event *event, 2055 struct perf_cpu_context *cpuctx, 2056 struct perf_event_context *ctx) 2057 { 2058 u64 tstamp = perf_event_time(event); 2059 int ret = 0; 2060 2061 lockdep_assert_held(&ctx->lock); 2062 2063 if (event->state <= PERF_EVENT_STATE_OFF) 2064 return 0; 2065 2066 WRITE_ONCE(event->oncpu, smp_processor_id()); 2067 /* 2068 * Order event::oncpu write to happen before the ACTIVE state 2069 * is visible. 2070 */ 2071 smp_wmb(); 2072 WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE); 2073 2074 /* 2075 * Unthrottle events, since we scheduled we might have missed several 2076 * ticks already, also for a heavily scheduling task there is little 2077 * guarantee it'll get a tick in a timely manner. 2078 */ 2079 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 2080 perf_log_throttle(event, 1); 2081 event->hw.interrupts = 0; 2082 } 2083 2084 /* 2085 * The new state must be visible before we turn it on in the hardware: 2086 */ 2087 smp_wmb(); 2088 2089 perf_pmu_disable(event->pmu); 2090 2091 perf_set_shadow_time(event, ctx, tstamp); 2092 2093 perf_log_itrace_start(event); 2094 2095 if (event->pmu->add(event, PERF_EF_START)) { 2096 event->state = PERF_EVENT_STATE_INACTIVE; 2097 event->oncpu = -1; 2098 ret = -EAGAIN; 2099 goto out; 2100 } 2101 2102 event->tstamp_running += tstamp - event->tstamp_stopped; 2103 2104 if (!is_software_event(event)) 2105 cpuctx->active_oncpu++; 2106 if (!ctx->nr_active++) 2107 perf_event_ctx_activate(ctx); 2108 if (event->attr.freq && event->attr.sample_freq) 2109 ctx->nr_freq++; 2110 2111 if (event->attr.exclusive) 2112 cpuctx->exclusive = 1; 2113 2114 out: 2115 perf_pmu_enable(event->pmu); 2116 2117 return ret; 2118 } 2119 2120 static int 2121 group_sched_in(struct perf_event *group_event, 2122 struct perf_cpu_context *cpuctx, 2123 struct perf_event_context *ctx) 2124 { 2125 struct perf_event *event, *partial_group = NULL; 2126 struct pmu *pmu = ctx->pmu; 2127 u64 now = ctx->time; 2128 bool simulate = false; 2129 2130 if (group_event->state == PERF_EVENT_STATE_OFF) 2131 return 0; 2132 2133 pmu->start_txn(pmu, PERF_PMU_TXN_ADD); 2134 2135 if (event_sched_in(group_event, cpuctx, ctx)) { 2136 pmu->cancel_txn(pmu); 2137 perf_mux_hrtimer_restart(cpuctx); 2138 return -EAGAIN; 2139 } 2140 2141 /* 2142 * Schedule in siblings as one group (if any): 2143 */ 2144 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 2145 if (event_sched_in(event, cpuctx, ctx)) { 2146 partial_group = event; 2147 goto group_error; 2148 } 2149 } 2150 2151 if (!pmu->commit_txn(pmu)) 2152 return 0; 2153 2154 group_error: 2155 /* 2156 * Groups can be scheduled in as one unit only, so undo any 2157 * partial group before returning: 2158 * The events up to the failed event are scheduled out normally, 2159 * tstamp_stopped will be updated. 2160 * 2161 * The failed events and the remaining siblings need to have 2162 * their timings updated as if they had gone thru event_sched_in() 2163 * and event_sched_out(). This is required to get consistent timings 2164 * across the group. This also takes care of the case where the group 2165 * could never be scheduled by ensuring tstamp_stopped is set to mark 2166 * the time the event was actually stopped, such that time delta 2167 * calculation in update_event_times() is correct. 2168 */ 2169 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 2170 if (event == partial_group) 2171 simulate = true; 2172 2173 if (simulate) { 2174 event->tstamp_running += now - event->tstamp_stopped; 2175 event->tstamp_stopped = now; 2176 } else { 2177 event_sched_out(event, cpuctx, ctx); 2178 } 2179 } 2180 event_sched_out(group_event, cpuctx, ctx); 2181 2182 pmu->cancel_txn(pmu); 2183 2184 perf_mux_hrtimer_restart(cpuctx); 2185 2186 return -EAGAIN; 2187 } 2188 2189 /* 2190 * Work out whether we can put this event group on the CPU now. 2191 */ 2192 static int group_can_go_on(struct perf_event *event, 2193 struct perf_cpu_context *cpuctx, 2194 int can_add_hw) 2195 { 2196 /* 2197 * Groups consisting entirely of software events can always go on. 2198 */ 2199 if (event->group_caps & PERF_EV_CAP_SOFTWARE) 2200 return 1; 2201 /* 2202 * If an exclusive group is already on, no other hardware 2203 * events can go on. 2204 */ 2205 if (cpuctx->exclusive) 2206 return 0; 2207 /* 2208 * If this group is exclusive and there are already 2209 * events on the CPU, it can't go on. 2210 */ 2211 if (event->attr.exclusive && cpuctx->active_oncpu) 2212 return 0; 2213 /* 2214 * Otherwise, try to add it if all previous groups were able 2215 * to go on. 2216 */ 2217 return can_add_hw; 2218 } 2219 2220 static void add_event_to_ctx(struct perf_event *event, 2221 struct perf_event_context *ctx) 2222 { 2223 u64 tstamp = perf_event_time(event); 2224 2225 list_add_event(event, ctx); 2226 perf_group_attach(event); 2227 event->tstamp_enabled = tstamp; 2228 event->tstamp_running = tstamp; 2229 event->tstamp_stopped = tstamp; 2230 } 2231 2232 static void ctx_sched_out(struct perf_event_context *ctx, 2233 struct perf_cpu_context *cpuctx, 2234 enum event_type_t event_type); 2235 static void 2236 ctx_sched_in(struct perf_event_context *ctx, 2237 struct perf_cpu_context *cpuctx, 2238 enum event_type_t event_type, 2239 struct task_struct *task); 2240 2241 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx, 2242 struct perf_event_context *ctx, 2243 enum event_type_t event_type) 2244 { 2245 if (!cpuctx->task_ctx) 2246 return; 2247 2248 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2249 return; 2250 2251 ctx_sched_out(ctx, cpuctx, event_type); 2252 } 2253 2254 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2255 struct perf_event_context *ctx, 2256 struct task_struct *task) 2257 { 2258 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task); 2259 if (ctx) 2260 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task); 2261 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task); 2262 if (ctx) 2263 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task); 2264 } 2265 2266 /* 2267 * We want to maintain the following priority of scheduling: 2268 * - CPU pinned (EVENT_CPU | EVENT_PINNED) 2269 * - task pinned (EVENT_PINNED) 2270 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE) 2271 * - task flexible (EVENT_FLEXIBLE). 2272 * 2273 * In order to avoid unscheduling and scheduling back in everything every 2274 * time an event is added, only do it for the groups of equal priority and 2275 * below. 2276 * 2277 * This can be called after a batch operation on task events, in which case 2278 * event_type is a bit mask of the types of events involved. For CPU events, 2279 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE. 2280 */ 2281 static void ctx_resched(struct perf_cpu_context *cpuctx, 2282 struct perf_event_context *task_ctx, 2283 enum event_type_t event_type) 2284 { 2285 enum event_type_t ctx_event_type = event_type & EVENT_ALL; 2286 bool cpu_event = !!(event_type & EVENT_CPU); 2287 2288 /* 2289 * If pinned groups are involved, flexible groups also need to be 2290 * scheduled out. 2291 */ 2292 if (event_type & EVENT_PINNED) 2293 event_type |= EVENT_FLEXIBLE; 2294 2295 perf_pmu_disable(cpuctx->ctx.pmu); 2296 if (task_ctx) 2297 task_ctx_sched_out(cpuctx, task_ctx, event_type); 2298 2299 /* 2300 * Decide which cpu ctx groups to schedule out based on the types 2301 * of events that caused rescheduling: 2302 * - EVENT_CPU: schedule out corresponding groups; 2303 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups; 2304 * - otherwise, do nothing more. 2305 */ 2306 if (cpu_event) 2307 cpu_ctx_sched_out(cpuctx, ctx_event_type); 2308 else if (ctx_event_type & EVENT_PINNED) 2309 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2310 2311 perf_event_sched_in(cpuctx, task_ctx, current); 2312 perf_pmu_enable(cpuctx->ctx.pmu); 2313 } 2314 2315 /* 2316 * Cross CPU call to install and enable a performance event 2317 * 2318 * Very similar to remote_function() + event_function() but cannot assume that 2319 * things like ctx->is_active and cpuctx->task_ctx are set. 2320 */ 2321 static int __perf_install_in_context(void *info) 2322 { 2323 struct perf_event *event = info; 2324 struct perf_event_context *ctx = event->ctx; 2325 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2326 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2327 bool reprogram = true; 2328 int ret = 0; 2329 2330 raw_spin_lock(&cpuctx->ctx.lock); 2331 if (ctx->task) { 2332 raw_spin_lock(&ctx->lock); 2333 task_ctx = ctx; 2334 2335 reprogram = (ctx->task == current); 2336 2337 /* 2338 * If the task is running, it must be running on this CPU, 2339 * otherwise we cannot reprogram things. 2340 * 2341 * If its not running, we don't care, ctx->lock will 2342 * serialize against it becoming runnable. 2343 */ 2344 if (task_curr(ctx->task) && !reprogram) { 2345 ret = -ESRCH; 2346 goto unlock; 2347 } 2348 2349 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx); 2350 } else if (task_ctx) { 2351 raw_spin_lock(&task_ctx->lock); 2352 } 2353 2354 if (reprogram) { 2355 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2356 add_event_to_ctx(event, ctx); 2357 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2358 } else { 2359 add_event_to_ctx(event, ctx); 2360 } 2361 2362 unlock: 2363 perf_ctx_unlock(cpuctx, task_ctx); 2364 2365 return ret; 2366 } 2367 2368 /* 2369 * Attach a performance event to a context. 2370 * 2371 * Very similar to event_function_call, see comment there. 2372 */ 2373 static void 2374 perf_install_in_context(struct perf_event_context *ctx, 2375 struct perf_event *event, 2376 int cpu) 2377 { 2378 struct task_struct *task = READ_ONCE(ctx->task); 2379 2380 lockdep_assert_held(&ctx->mutex); 2381 2382 if (event->cpu != -1) 2383 event->cpu = cpu; 2384 2385 /* 2386 * Ensures that if we can observe event->ctx, both the event and ctx 2387 * will be 'complete'. See perf_iterate_sb_cpu(). 2388 */ 2389 smp_store_release(&event->ctx, ctx); 2390 2391 if (!task) { 2392 cpu_function_call(cpu, __perf_install_in_context, event); 2393 return; 2394 } 2395 2396 /* 2397 * Should not happen, we validate the ctx is still alive before calling. 2398 */ 2399 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) 2400 return; 2401 2402 /* 2403 * Installing events is tricky because we cannot rely on ctx->is_active 2404 * to be set in case this is the nr_events 0 -> 1 transition. 2405 * 2406 * Instead we use task_curr(), which tells us if the task is running. 2407 * However, since we use task_curr() outside of rq::lock, we can race 2408 * against the actual state. This means the result can be wrong. 2409 * 2410 * If we get a false positive, we retry, this is harmless. 2411 * 2412 * If we get a false negative, things are complicated. If we are after 2413 * perf_event_context_sched_in() ctx::lock will serialize us, and the 2414 * value must be correct. If we're before, it doesn't matter since 2415 * perf_event_context_sched_in() will program the counter. 2416 * 2417 * However, this hinges on the remote context switch having observed 2418 * our task->perf_event_ctxp[] store, such that it will in fact take 2419 * ctx::lock in perf_event_context_sched_in(). 2420 * 2421 * We do this by task_function_call(), if the IPI fails to hit the task 2422 * we know any future context switch of task must see the 2423 * perf_event_ctpx[] store. 2424 */ 2425 2426 /* 2427 * This smp_mb() orders the task->perf_event_ctxp[] store with the 2428 * task_cpu() load, such that if the IPI then does not find the task 2429 * running, a future context switch of that task must observe the 2430 * store. 2431 */ 2432 smp_mb(); 2433 again: 2434 if (!task_function_call(task, __perf_install_in_context, event)) 2435 return; 2436 2437 raw_spin_lock_irq(&ctx->lock); 2438 task = ctx->task; 2439 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) { 2440 /* 2441 * Cannot happen because we already checked above (which also 2442 * cannot happen), and we hold ctx->mutex, which serializes us 2443 * against perf_event_exit_task_context(). 2444 */ 2445 raw_spin_unlock_irq(&ctx->lock); 2446 return; 2447 } 2448 /* 2449 * If the task is not running, ctx->lock will avoid it becoming so, 2450 * thus we can safely install the event. 2451 */ 2452 if (task_curr(task)) { 2453 raw_spin_unlock_irq(&ctx->lock); 2454 goto again; 2455 } 2456 add_event_to_ctx(event, ctx); 2457 raw_spin_unlock_irq(&ctx->lock); 2458 } 2459 2460 /* 2461 * Put a event into inactive state and update time fields. 2462 * Enabling the leader of a group effectively enables all 2463 * the group members that aren't explicitly disabled, so we 2464 * have to update their ->tstamp_enabled also. 2465 * Note: this works for group members as well as group leaders 2466 * since the non-leader members' sibling_lists will be empty. 2467 */ 2468 static void __perf_event_mark_enabled(struct perf_event *event) 2469 { 2470 struct perf_event *sub; 2471 u64 tstamp = perf_event_time(event); 2472 2473 event->state = PERF_EVENT_STATE_INACTIVE; 2474 event->tstamp_enabled = tstamp - event->total_time_enabled; 2475 list_for_each_entry(sub, &event->sibling_list, group_entry) { 2476 if (sub->state >= PERF_EVENT_STATE_INACTIVE) 2477 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 2478 } 2479 } 2480 2481 /* 2482 * Cross CPU call to enable a performance event 2483 */ 2484 static void __perf_event_enable(struct perf_event *event, 2485 struct perf_cpu_context *cpuctx, 2486 struct perf_event_context *ctx, 2487 void *info) 2488 { 2489 struct perf_event *leader = event->group_leader; 2490 struct perf_event_context *task_ctx; 2491 2492 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2493 event->state <= PERF_EVENT_STATE_ERROR) 2494 return; 2495 2496 if (ctx->is_active) 2497 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2498 2499 __perf_event_mark_enabled(event); 2500 2501 if (!ctx->is_active) 2502 return; 2503 2504 if (!event_filter_match(event)) { 2505 if (is_cgroup_event(event)) 2506 perf_cgroup_defer_enabled(event); 2507 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2508 return; 2509 } 2510 2511 /* 2512 * If the event is in a group and isn't the group leader, 2513 * then don't put it on unless the group is on. 2514 */ 2515 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) { 2516 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2517 return; 2518 } 2519 2520 task_ctx = cpuctx->task_ctx; 2521 if (ctx->task) 2522 WARN_ON_ONCE(task_ctx != ctx); 2523 2524 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2525 } 2526 2527 /* 2528 * Enable a event. 2529 * 2530 * If event->ctx is a cloned context, callers must make sure that 2531 * every task struct that event->ctx->task could possibly point to 2532 * remains valid. This condition is satisfied when called through 2533 * perf_event_for_each_child or perf_event_for_each as described 2534 * for perf_event_disable. 2535 */ 2536 static void _perf_event_enable(struct perf_event *event) 2537 { 2538 struct perf_event_context *ctx = event->ctx; 2539 2540 raw_spin_lock_irq(&ctx->lock); 2541 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2542 event->state < PERF_EVENT_STATE_ERROR) { 2543 raw_spin_unlock_irq(&ctx->lock); 2544 return; 2545 } 2546 2547 /* 2548 * If the event is in error state, clear that first. 2549 * 2550 * That way, if we see the event in error state below, we know that it 2551 * has gone back into error state, as distinct from the task having 2552 * been scheduled away before the cross-call arrived. 2553 */ 2554 if (event->state == PERF_EVENT_STATE_ERROR) 2555 event->state = PERF_EVENT_STATE_OFF; 2556 raw_spin_unlock_irq(&ctx->lock); 2557 2558 event_function_call(event, __perf_event_enable, NULL); 2559 } 2560 2561 /* 2562 * See perf_event_disable(); 2563 */ 2564 void perf_event_enable(struct perf_event *event) 2565 { 2566 struct perf_event_context *ctx; 2567 2568 ctx = perf_event_ctx_lock(event); 2569 _perf_event_enable(event); 2570 perf_event_ctx_unlock(event, ctx); 2571 } 2572 EXPORT_SYMBOL_GPL(perf_event_enable); 2573 2574 struct stop_event_data { 2575 struct perf_event *event; 2576 unsigned int restart; 2577 }; 2578 2579 static int __perf_event_stop(void *info) 2580 { 2581 struct stop_event_data *sd = info; 2582 struct perf_event *event = sd->event; 2583 2584 /* if it's already INACTIVE, do nothing */ 2585 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 2586 return 0; 2587 2588 /* matches smp_wmb() in event_sched_in() */ 2589 smp_rmb(); 2590 2591 /* 2592 * There is a window with interrupts enabled before we get here, 2593 * so we need to check again lest we try to stop another CPU's event. 2594 */ 2595 if (READ_ONCE(event->oncpu) != smp_processor_id()) 2596 return -EAGAIN; 2597 2598 event->pmu->stop(event, PERF_EF_UPDATE); 2599 2600 /* 2601 * May race with the actual stop (through perf_pmu_output_stop()), 2602 * but it is only used for events with AUX ring buffer, and such 2603 * events will refuse to restart because of rb::aux_mmap_count==0, 2604 * see comments in perf_aux_output_begin(). 2605 * 2606 * Since this is happening on a event-local CPU, no trace is lost 2607 * while restarting. 2608 */ 2609 if (sd->restart) 2610 event->pmu->start(event, 0); 2611 2612 return 0; 2613 } 2614 2615 static int perf_event_stop(struct perf_event *event, int restart) 2616 { 2617 struct stop_event_data sd = { 2618 .event = event, 2619 .restart = restart, 2620 }; 2621 int ret = 0; 2622 2623 do { 2624 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 2625 return 0; 2626 2627 /* matches smp_wmb() in event_sched_in() */ 2628 smp_rmb(); 2629 2630 /* 2631 * We only want to restart ACTIVE events, so if the event goes 2632 * inactive here (event->oncpu==-1), there's nothing more to do; 2633 * fall through with ret==-ENXIO. 2634 */ 2635 ret = cpu_function_call(READ_ONCE(event->oncpu), 2636 __perf_event_stop, &sd); 2637 } while (ret == -EAGAIN); 2638 2639 return ret; 2640 } 2641 2642 /* 2643 * In order to contain the amount of racy and tricky in the address filter 2644 * configuration management, it is a two part process: 2645 * 2646 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below, 2647 * we update the addresses of corresponding vmas in 2648 * event::addr_filters_offs array and bump the event::addr_filters_gen; 2649 * (p2) when an event is scheduled in (pmu::add), it calls 2650 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync() 2651 * if the generation has changed since the previous call. 2652 * 2653 * If (p1) happens while the event is active, we restart it to force (p2). 2654 * 2655 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on 2656 * pre-existing mappings, called once when new filters arrive via SET_FILTER 2657 * ioctl; 2658 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly 2659 * registered mapping, called for every new mmap(), with mm::mmap_sem down 2660 * for reading; 2661 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process 2662 * of exec. 2663 */ 2664 void perf_event_addr_filters_sync(struct perf_event *event) 2665 { 2666 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 2667 2668 if (!has_addr_filter(event)) 2669 return; 2670 2671 raw_spin_lock(&ifh->lock); 2672 if (event->addr_filters_gen != event->hw.addr_filters_gen) { 2673 event->pmu->addr_filters_sync(event); 2674 event->hw.addr_filters_gen = event->addr_filters_gen; 2675 } 2676 raw_spin_unlock(&ifh->lock); 2677 } 2678 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync); 2679 2680 static int _perf_event_refresh(struct perf_event *event, int refresh) 2681 { 2682 /* 2683 * not supported on inherited events 2684 */ 2685 if (event->attr.inherit || !is_sampling_event(event)) 2686 return -EINVAL; 2687 2688 atomic_add(refresh, &event->event_limit); 2689 _perf_event_enable(event); 2690 2691 return 0; 2692 } 2693 2694 /* 2695 * See perf_event_disable() 2696 */ 2697 int perf_event_refresh(struct perf_event *event, int refresh) 2698 { 2699 struct perf_event_context *ctx; 2700 int ret; 2701 2702 ctx = perf_event_ctx_lock(event); 2703 ret = _perf_event_refresh(event, refresh); 2704 perf_event_ctx_unlock(event, ctx); 2705 2706 return ret; 2707 } 2708 EXPORT_SYMBOL_GPL(perf_event_refresh); 2709 2710 static void ctx_sched_out(struct perf_event_context *ctx, 2711 struct perf_cpu_context *cpuctx, 2712 enum event_type_t event_type) 2713 { 2714 int is_active = ctx->is_active; 2715 struct perf_event *event; 2716 2717 lockdep_assert_held(&ctx->lock); 2718 2719 if (likely(!ctx->nr_events)) { 2720 /* 2721 * See __perf_remove_from_context(). 2722 */ 2723 WARN_ON_ONCE(ctx->is_active); 2724 if (ctx->task) 2725 WARN_ON_ONCE(cpuctx->task_ctx); 2726 return; 2727 } 2728 2729 ctx->is_active &= ~event_type; 2730 if (!(ctx->is_active & EVENT_ALL)) 2731 ctx->is_active = 0; 2732 2733 if (ctx->task) { 2734 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2735 if (!ctx->is_active) 2736 cpuctx->task_ctx = NULL; 2737 } 2738 2739 /* 2740 * Always update time if it was set; not only when it changes. 2741 * Otherwise we can 'forget' to update time for any but the last 2742 * context we sched out. For example: 2743 * 2744 * ctx_sched_out(.event_type = EVENT_FLEXIBLE) 2745 * ctx_sched_out(.event_type = EVENT_PINNED) 2746 * 2747 * would only update time for the pinned events. 2748 */ 2749 if (is_active & EVENT_TIME) { 2750 /* update (and stop) ctx time */ 2751 update_context_time(ctx); 2752 update_cgrp_time_from_cpuctx(cpuctx); 2753 } 2754 2755 is_active ^= ctx->is_active; /* changed bits */ 2756 2757 if (!ctx->nr_active || !(is_active & EVENT_ALL)) 2758 return; 2759 2760 perf_pmu_disable(ctx->pmu); 2761 if (is_active & EVENT_PINNED) { 2762 list_for_each_entry(event, &ctx->pinned_groups, group_entry) 2763 group_sched_out(event, cpuctx, ctx); 2764 } 2765 2766 if (is_active & EVENT_FLEXIBLE) { 2767 list_for_each_entry(event, &ctx->flexible_groups, group_entry) 2768 group_sched_out(event, cpuctx, ctx); 2769 } 2770 perf_pmu_enable(ctx->pmu); 2771 } 2772 2773 /* 2774 * Test whether two contexts are equivalent, i.e. whether they have both been 2775 * cloned from the same version of the same context. 2776 * 2777 * Equivalence is measured using a generation number in the context that is 2778 * incremented on each modification to it; see unclone_ctx(), list_add_event() 2779 * and list_del_event(). 2780 */ 2781 static int context_equiv(struct perf_event_context *ctx1, 2782 struct perf_event_context *ctx2) 2783 { 2784 lockdep_assert_held(&ctx1->lock); 2785 lockdep_assert_held(&ctx2->lock); 2786 2787 /* Pinning disables the swap optimization */ 2788 if (ctx1->pin_count || ctx2->pin_count) 2789 return 0; 2790 2791 /* If ctx1 is the parent of ctx2 */ 2792 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 2793 return 1; 2794 2795 /* If ctx2 is the parent of ctx1 */ 2796 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 2797 return 1; 2798 2799 /* 2800 * If ctx1 and ctx2 have the same parent; we flatten the parent 2801 * hierarchy, see perf_event_init_context(). 2802 */ 2803 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 2804 ctx1->parent_gen == ctx2->parent_gen) 2805 return 1; 2806 2807 /* Unmatched */ 2808 return 0; 2809 } 2810 2811 static void __perf_event_sync_stat(struct perf_event *event, 2812 struct perf_event *next_event) 2813 { 2814 u64 value; 2815 2816 if (!event->attr.inherit_stat) 2817 return; 2818 2819 /* 2820 * Update the event value, we cannot use perf_event_read() 2821 * because we're in the middle of a context switch and have IRQs 2822 * disabled, which upsets smp_call_function_single(), however 2823 * we know the event must be on the current CPU, therefore we 2824 * don't need to use it. 2825 */ 2826 switch (event->state) { 2827 case PERF_EVENT_STATE_ACTIVE: 2828 event->pmu->read(event); 2829 /* fall-through */ 2830 2831 case PERF_EVENT_STATE_INACTIVE: 2832 update_event_times(event); 2833 break; 2834 2835 default: 2836 break; 2837 } 2838 2839 /* 2840 * In order to keep per-task stats reliable we need to flip the event 2841 * values when we flip the contexts. 2842 */ 2843 value = local64_read(&next_event->count); 2844 value = local64_xchg(&event->count, value); 2845 local64_set(&next_event->count, value); 2846 2847 swap(event->total_time_enabled, next_event->total_time_enabled); 2848 swap(event->total_time_running, next_event->total_time_running); 2849 2850 /* 2851 * Since we swizzled the values, update the user visible data too. 2852 */ 2853 perf_event_update_userpage(event); 2854 perf_event_update_userpage(next_event); 2855 } 2856 2857 static void perf_event_sync_stat(struct perf_event_context *ctx, 2858 struct perf_event_context *next_ctx) 2859 { 2860 struct perf_event *event, *next_event; 2861 2862 if (!ctx->nr_stat) 2863 return; 2864 2865 update_context_time(ctx); 2866 2867 event = list_first_entry(&ctx->event_list, 2868 struct perf_event, event_entry); 2869 2870 next_event = list_first_entry(&next_ctx->event_list, 2871 struct perf_event, event_entry); 2872 2873 while (&event->event_entry != &ctx->event_list && 2874 &next_event->event_entry != &next_ctx->event_list) { 2875 2876 __perf_event_sync_stat(event, next_event); 2877 2878 event = list_next_entry(event, event_entry); 2879 next_event = list_next_entry(next_event, event_entry); 2880 } 2881 } 2882 2883 static void perf_event_context_sched_out(struct task_struct *task, int ctxn, 2884 struct task_struct *next) 2885 { 2886 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; 2887 struct perf_event_context *next_ctx; 2888 struct perf_event_context *parent, *next_parent; 2889 struct perf_cpu_context *cpuctx; 2890 int do_switch = 1; 2891 2892 if (likely(!ctx)) 2893 return; 2894 2895 cpuctx = __get_cpu_context(ctx); 2896 if (!cpuctx->task_ctx) 2897 return; 2898 2899 rcu_read_lock(); 2900 next_ctx = next->perf_event_ctxp[ctxn]; 2901 if (!next_ctx) 2902 goto unlock; 2903 2904 parent = rcu_dereference(ctx->parent_ctx); 2905 next_parent = rcu_dereference(next_ctx->parent_ctx); 2906 2907 /* If neither context have a parent context; they cannot be clones. */ 2908 if (!parent && !next_parent) 2909 goto unlock; 2910 2911 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 2912 /* 2913 * Looks like the two contexts are clones, so we might be 2914 * able to optimize the context switch. We lock both 2915 * contexts and check that they are clones under the 2916 * lock (including re-checking that neither has been 2917 * uncloned in the meantime). It doesn't matter which 2918 * order we take the locks because no other cpu could 2919 * be trying to lock both of these tasks. 2920 */ 2921 raw_spin_lock(&ctx->lock); 2922 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 2923 if (context_equiv(ctx, next_ctx)) { 2924 WRITE_ONCE(ctx->task, next); 2925 WRITE_ONCE(next_ctx->task, task); 2926 2927 swap(ctx->task_ctx_data, next_ctx->task_ctx_data); 2928 2929 /* 2930 * RCU_INIT_POINTER here is safe because we've not 2931 * modified the ctx and the above modification of 2932 * ctx->task and ctx->task_ctx_data are immaterial 2933 * since those values are always verified under 2934 * ctx->lock which we're now holding. 2935 */ 2936 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx); 2937 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx); 2938 2939 do_switch = 0; 2940 2941 perf_event_sync_stat(ctx, next_ctx); 2942 } 2943 raw_spin_unlock(&next_ctx->lock); 2944 raw_spin_unlock(&ctx->lock); 2945 } 2946 unlock: 2947 rcu_read_unlock(); 2948 2949 if (do_switch) { 2950 raw_spin_lock(&ctx->lock); 2951 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL); 2952 raw_spin_unlock(&ctx->lock); 2953 } 2954 } 2955 2956 static DEFINE_PER_CPU(struct list_head, sched_cb_list); 2957 2958 void perf_sched_cb_dec(struct pmu *pmu) 2959 { 2960 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 2961 2962 this_cpu_dec(perf_sched_cb_usages); 2963 2964 if (!--cpuctx->sched_cb_usage) 2965 list_del(&cpuctx->sched_cb_entry); 2966 } 2967 2968 2969 void perf_sched_cb_inc(struct pmu *pmu) 2970 { 2971 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 2972 2973 if (!cpuctx->sched_cb_usage++) 2974 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list)); 2975 2976 this_cpu_inc(perf_sched_cb_usages); 2977 } 2978 2979 /* 2980 * This function provides the context switch callback to the lower code 2981 * layer. It is invoked ONLY when the context switch callback is enabled. 2982 * 2983 * This callback is relevant even to per-cpu events; for example multi event 2984 * PEBS requires this to provide PID/TID information. This requires we flush 2985 * all queued PEBS records before we context switch to a new task. 2986 */ 2987 static void perf_pmu_sched_task(struct task_struct *prev, 2988 struct task_struct *next, 2989 bool sched_in) 2990 { 2991 struct perf_cpu_context *cpuctx; 2992 struct pmu *pmu; 2993 2994 if (prev == next) 2995 return; 2996 2997 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) { 2998 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */ 2999 3000 if (WARN_ON_ONCE(!pmu->sched_task)) 3001 continue; 3002 3003 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3004 perf_pmu_disable(pmu); 3005 3006 pmu->sched_task(cpuctx->task_ctx, sched_in); 3007 3008 perf_pmu_enable(pmu); 3009 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3010 } 3011 } 3012 3013 static void perf_event_switch(struct task_struct *task, 3014 struct task_struct *next_prev, bool sched_in); 3015 3016 #define for_each_task_context_nr(ctxn) \ 3017 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) 3018 3019 /* 3020 * Called from scheduler to remove the events of the current task, 3021 * with interrupts disabled. 3022 * 3023 * We stop each event and update the event value in event->count. 3024 * 3025 * This does not protect us against NMI, but disable() 3026 * sets the disabled bit in the control field of event _before_ 3027 * accessing the event control register. If a NMI hits, then it will 3028 * not restart the event. 3029 */ 3030 void __perf_event_task_sched_out(struct task_struct *task, 3031 struct task_struct *next) 3032 { 3033 int ctxn; 3034 3035 if (__this_cpu_read(perf_sched_cb_usages)) 3036 perf_pmu_sched_task(task, next, false); 3037 3038 if (atomic_read(&nr_switch_events)) 3039 perf_event_switch(task, next, false); 3040 3041 for_each_task_context_nr(ctxn) 3042 perf_event_context_sched_out(task, ctxn, next); 3043 3044 /* 3045 * if cgroup events exist on this CPU, then we need 3046 * to check if we have to switch out PMU state. 3047 * cgroup event are system-wide mode only 3048 */ 3049 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3050 perf_cgroup_sched_out(task, next); 3051 } 3052 3053 /* 3054 * Called with IRQs disabled 3055 */ 3056 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 3057 enum event_type_t event_type) 3058 { 3059 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); 3060 } 3061 3062 static void 3063 ctx_pinned_sched_in(struct perf_event_context *ctx, 3064 struct perf_cpu_context *cpuctx) 3065 { 3066 struct perf_event *event; 3067 3068 list_for_each_entry(event, &ctx->pinned_groups, group_entry) { 3069 if (event->state <= PERF_EVENT_STATE_OFF) 3070 continue; 3071 if (!event_filter_match(event)) 3072 continue; 3073 3074 /* may need to reset tstamp_enabled */ 3075 if (is_cgroup_event(event)) 3076 perf_cgroup_mark_enabled(event, ctx); 3077 3078 if (group_can_go_on(event, cpuctx, 1)) 3079 group_sched_in(event, cpuctx, ctx); 3080 3081 /* 3082 * If this pinned group hasn't been scheduled, 3083 * put it in error state. 3084 */ 3085 if (event->state == PERF_EVENT_STATE_INACTIVE) { 3086 update_group_times(event); 3087 event->state = PERF_EVENT_STATE_ERROR; 3088 } 3089 } 3090 } 3091 3092 static void 3093 ctx_flexible_sched_in(struct perf_event_context *ctx, 3094 struct perf_cpu_context *cpuctx) 3095 { 3096 struct perf_event *event; 3097 int can_add_hw = 1; 3098 3099 list_for_each_entry(event, &ctx->flexible_groups, group_entry) { 3100 /* Ignore events in OFF or ERROR state */ 3101 if (event->state <= PERF_EVENT_STATE_OFF) 3102 continue; 3103 /* 3104 * Listen to the 'cpu' scheduling filter constraint 3105 * of events: 3106 */ 3107 if (!event_filter_match(event)) 3108 continue; 3109 3110 /* may need to reset tstamp_enabled */ 3111 if (is_cgroup_event(event)) 3112 perf_cgroup_mark_enabled(event, ctx); 3113 3114 if (group_can_go_on(event, cpuctx, can_add_hw)) { 3115 if (group_sched_in(event, cpuctx, ctx)) 3116 can_add_hw = 0; 3117 } 3118 } 3119 } 3120 3121 static void 3122 ctx_sched_in(struct perf_event_context *ctx, 3123 struct perf_cpu_context *cpuctx, 3124 enum event_type_t event_type, 3125 struct task_struct *task) 3126 { 3127 int is_active = ctx->is_active; 3128 u64 now; 3129 3130 lockdep_assert_held(&ctx->lock); 3131 3132 if (likely(!ctx->nr_events)) 3133 return; 3134 3135 ctx->is_active |= (event_type | EVENT_TIME); 3136 if (ctx->task) { 3137 if (!is_active) 3138 cpuctx->task_ctx = ctx; 3139 else 3140 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3141 } 3142 3143 is_active ^= ctx->is_active; /* changed bits */ 3144 3145 if (is_active & EVENT_TIME) { 3146 /* start ctx time */ 3147 now = perf_clock(); 3148 ctx->timestamp = now; 3149 perf_cgroup_set_timestamp(task, ctx); 3150 } 3151 3152 /* 3153 * First go through the list and put on any pinned groups 3154 * in order to give them the best chance of going on. 3155 */ 3156 if (is_active & EVENT_PINNED) 3157 ctx_pinned_sched_in(ctx, cpuctx); 3158 3159 /* Then walk through the lower prio flexible groups */ 3160 if (is_active & EVENT_FLEXIBLE) 3161 ctx_flexible_sched_in(ctx, cpuctx); 3162 } 3163 3164 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 3165 enum event_type_t event_type, 3166 struct task_struct *task) 3167 { 3168 struct perf_event_context *ctx = &cpuctx->ctx; 3169 3170 ctx_sched_in(ctx, cpuctx, event_type, task); 3171 } 3172 3173 static void perf_event_context_sched_in(struct perf_event_context *ctx, 3174 struct task_struct *task) 3175 { 3176 struct perf_cpu_context *cpuctx; 3177 3178 cpuctx = __get_cpu_context(ctx); 3179 if (cpuctx->task_ctx == ctx) 3180 return; 3181 3182 perf_ctx_lock(cpuctx, ctx); 3183 perf_pmu_disable(ctx->pmu); 3184 /* 3185 * We want to keep the following priority order: 3186 * cpu pinned (that don't need to move), task pinned, 3187 * cpu flexible, task flexible. 3188 * 3189 * However, if task's ctx is not carrying any pinned 3190 * events, no need to flip the cpuctx's events around. 3191 */ 3192 if (!list_empty(&ctx->pinned_groups)) 3193 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3194 perf_event_sched_in(cpuctx, ctx, task); 3195 perf_pmu_enable(ctx->pmu); 3196 perf_ctx_unlock(cpuctx, ctx); 3197 } 3198 3199 /* 3200 * Called from scheduler to add the events of the current task 3201 * with interrupts disabled. 3202 * 3203 * We restore the event value and then enable it. 3204 * 3205 * This does not protect us against NMI, but enable() 3206 * sets the enabled bit in the control field of event _before_ 3207 * accessing the event control register. If a NMI hits, then it will 3208 * keep the event running. 3209 */ 3210 void __perf_event_task_sched_in(struct task_struct *prev, 3211 struct task_struct *task) 3212 { 3213 struct perf_event_context *ctx; 3214 int ctxn; 3215 3216 /* 3217 * If cgroup events exist on this CPU, then we need to check if we have 3218 * to switch in PMU state; cgroup event are system-wide mode only. 3219 * 3220 * Since cgroup events are CPU events, we must schedule these in before 3221 * we schedule in the task events. 3222 */ 3223 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3224 perf_cgroup_sched_in(prev, task); 3225 3226 for_each_task_context_nr(ctxn) { 3227 ctx = task->perf_event_ctxp[ctxn]; 3228 if (likely(!ctx)) 3229 continue; 3230 3231 perf_event_context_sched_in(ctx, task); 3232 } 3233 3234 if (atomic_read(&nr_switch_events)) 3235 perf_event_switch(task, prev, true); 3236 3237 if (__this_cpu_read(perf_sched_cb_usages)) 3238 perf_pmu_sched_task(prev, task, true); 3239 } 3240 3241 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 3242 { 3243 u64 frequency = event->attr.sample_freq; 3244 u64 sec = NSEC_PER_SEC; 3245 u64 divisor, dividend; 3246 3247 int count_fls, nsec_fls, frequency_fls, sec_fls; 3248 3249 count_fls = fls64(count); 3250 nsec_fls = fls64(nsec); 3251 frequency_fls = fls64(frequency); 3252 sec_fls = 30; 3253 3254 /* 3255 * We got @count in @nsec, with a target of sample_freq HZ 3256 * the target period becomes: 3257 * 3258 * @count * 10^9 3259 * period = ------------------- 3260 * @nsec * sample_freq 3261 * 3262 */ 3263 3264 /* 3265 * Reduce accuracy by one bit such that @a and @b converge 3266 * to a similar magnitude. 3267 */ 3268 #define REDUCE_FLS(a, b) \ 3269 do { \ 3270 if (a##_fls > b##_fls) { \ 3271 a >>= 1; \ 3272 a##_fls--; \ 3273 } else { \ 3274 b >>= 1; \ 3275 b##_fls--; \ 3276 } \ 3277 } while (0) 3278 3279 /* 3280 * Reduce accuracy until either term fits in a u64, then proceed with 3281 * the other, so that finally we can do a u64/u64 division. 3282 */ 3283 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 3284 REDUCE_FLS(nsec, frequency); 3285 REDUCE_FLS(sec, count); 3286 } 3287 3288 if (count_fls + sec_fls > 64) { 3289 divisor = nsec * frequency; 3290 3291 while (count_fls + sec_fls > 64) { 3292 REDUCE_FLS(count, sec); 3293 divisor >>= 1; 3294 } 3295 3296 dividend = count * sec; 3297 } else { 3298 dividend = count * sec; 3299 3300 while (nsec_fls + frequency_fls > 64) { 3301 REDUCE_FLS(nsec, frequency); 3302 dividend >>= 1; 3303 } 3304 3305 divisor = nsec * frequency; 3306 } 3307 3308 if (!divisor) 3309 return dividend; 3310 3311 return div64_u64(dividend, divisor); 3312 } 3313 3314 static DEFINE_PER_CPU(int, perf_throttled_count); 3315 static DEFINE_PER_CPU(u64, perf_throttled_seq); 3316 3317 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 3318 { 3319 struct hw_perf_event *hwc = &event->hw; 3320 s64 period, sample_period; 3321 s64 delta; 3322 3323 period = perf_calculate_period(event, nsec, count); 3324 3325 delta = (s64)(period - hwc->sample_period); 3326 delta = (delta + 7) / 8; /* low pass filter */ 3327 3328 sample_period = hwc->sample_period + delta; 3329 3330 if (!sample_period) 3331 sample_period = 1; 3332 3333 hwc->sample_period = sample_period; 3334 3335 if (local64_read(&hwc->period_left) > 8*sample_period) { 3336 if (disable) 3337 event->pmu->stop(event, PERF_EF_UPDATE); 3338 3339 local64_set(&hwc->period_left, 0); 3340 3341 if (disable) 3342 event->pmu->start(event, PERF_EF_RELOAD); 3343 } 3344 } 3345 3346 /* 3347 * combine freq adjustment with unthrottling to avoid two passes over the 3348 * events. At the same time, make sure, having freq events does not change 3349 * the rate of unthrottling as that would introduce bias. 3350 */ 3351 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx, 3352 int needs_unthr) 3353 { 3354 struct perf_event *event; 3355 struct hw_perf_event *hwc; 3356 u64 now, period = TICK_NSEC; 3357 s64 delta; 3358 3359 /* 3360 * only need to iterate over all events iff: 3361 * - context have events in frequency mode (needs freq adjust) 3362 * - there are events to unthrottle on this cpu 3363 */ 3364 if (!(ctx->nr_freq || needs_unthr)) 3365 return; 3366 3367 raw_spin_lock(&ctx->lock); 3368 perf_pmu_disable(ctx->pmu); 3369 3370 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 3371 if (event->state != PERF_EVENT_STATE_ACTIVE) 3372 continue; 3373 3374 if (!event_filter_match(event)) 3375 continue; 3376 3377 perf_pmu_disable(event->pmu); 3378 3379 hwc = &event->hw; 3380 3381 if (hwc->interrupts == MAX_INTERRUPTS) { 3382 hwc->interrupts = 0; 3383 perf_log_throttle(event, 1); 3384 event->pmu->start(event, 0); 3385 } 3386 3387 if (!event->attr.freq || !event->attr.sample_freq) 3388 goto next; 3389 3390 /* 3391 * stop the event and update event->count 3392 */ 3393 event->pmu->stop(event, PERF_EF_UPDATE); 3394 3395 now = local64_read(&event->count); 3396 delta = now - hwc->freq_count_stamp; 3397 hwc->freq_count_stamp = now; 3398 3399 /* 3400 * restart the event 3401 * reload only if value has changed 3402 * we have stopped the event so tell that 3403 * to perf_adjust_period() to avoid stopping it 3404 * twice. 3405 */ 3406 if (delta > 0) 3407 perf_adjust_period(event, period, delta, false); 3408 3409 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 3410 next: 3411 perf_pmu_enable(event->pmu); 3412 } 3413 3414 perf_pmu_enable(ctx->pmu); 3415 raw_spin_unlock(&ctx->lock); 3416 } 3417 3418 /* 3419 * Round-robin a context's events: 3420 */ 3421 static void rotate_ctx(struct perf_event_context *ctx) 3422 { 3423 /* 3424 * Rotate the first entry last of non-pinned groups. Rotation might be 3425 * disabled by the inheritance code. 3426 */ 3427 if (!ctx->rotate_disable) 3428 list_rotate_left(&ctx->flexible_groups); 3429 } 3430 3431 static int perf_rotate_context(struct perf_cpu_context *cpuctx) 3432 { 3433 struct perf_event_context *ctx = NULL; 3434 int rotate = 0; 3435 3436 if (cpuctx->ctx.nr_events) { 3437 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active) 3438 rotate = 1; 3439 } 3440 3441 ctx = cpuctx->task_ctx; 3442 if (ctx && ctx->nr_events) { 3443 if (ctx->nr_events != ctx->nr_active) 3444 rotate = 1; 3445 } 3446 3447 if (!rotate) 3448 goto done; 3449 3450 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3451 perf_pmu_disable(cpuctx->ctx.pmu); 3452 3453 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3454 if (ctx) 3455 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE); 3456 3457 rotate_ctx(&cpuctx->ctx); 3458 if (ctx) 3459 rotate_ctx(ctx); 3460 3461 perf_event_sched_in(cpuctx, ctx, current); 3462 3463 perf_pmu_enable(cpuctx->ctx.pmu); 3464 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3465 done: 3466 3467 return rotate; 3468 } 3469 3470 void perf_event_task_tick(void) 3471 { 3472 struct list_head *head = this_cpu_ptr(&active_ctx_list); 3473 struct perf_event_context *ctx, *tmp; 3474 int throttled; 3475 3476 WARN_ON(!irqs_disabled()); 3477 3478 __this_cpu_inc(perf_throttled_seq); 3479 throttled = __this_cpu_xchg(perf_throttled_count, 0); 3480 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 3481 3482 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list) 3483 perf_adjust_freq_unthr_context(ctx, throttled); 3484 } 3485 3486 static int event_enable_on_exec(struct perf_event *event, 3487 struct perf_event_context *ctx) 3488 { 3489 if (!event->attr.enable_on_exec) 3490 return 0; 3491 3492 event->attr.enable_on_exec = 0; 3493 if (event->state >= PERF_EVENT_STATE_INACTIVE) 3494 return 0; 3495 3496 __perf_event_mark_enabled(event); 3497 3498 return 1; 3499 } 3500 3501 /* 3502 * Enable all of a task's events that have been marked enable-on-exec. 3503 * This expects task == current. 3504 */ 3505 static void perf_event_enable_on_exec(int ctxn) 3506 { 3507 struct perf_event_context *ctx, *clone_ctx = NULL; 3508 enum event_type_t event_type = 0; 3509 struct perf_cpu_context *cpuctx; 3510 struct perf_event *event; 3511 unsigned long flags; 3512 int enabled = 0; 3513 3514 local_irq_save(flags); 3515 ctx = current->perf_event_ctxp[ctxn]; 3516 if (!ctx || !ctx->nr_events) 3517 goto out; 3518 3519 cpuctx = __get_cpu_context(ctx); 3520 perf_ctx_lock(cpuctx, ctx); 3521 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 3522 list_for_each_entry(event, &ctx->event_list, event_entry) { 3523 enabled |= event_enable_on_exec(event, ctx); 3524 event_type |= get_event_type(event); 3525 } 3526 3527 /* 3528 * Unclone and reschedule this context if we enabled any event. 3529 */ 3530 if (enabled) { 3531 clone_ctx = unclone_ctx(ctx); 3532 ctx_resched(cpuctx, ctx, event_type); 3533 } else { 3534 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 3535 } 3536 perf_ctx_unlock(cpuctx, ctx); 3537 3538 out: 3539 local_irq_restore(flags); 3540 3541 if (clone_ctx) 3542 put_ctx(clone_ctx); 3543 } 3544 3545 struct perf_read_data { 3546 struct perf_event *event; 3547 bool group; 3548 int ret; 3549 }; 3550 3551 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu) 3552 { 3553 u16 local_pkg, event_pkg; 3554 3555 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) { 3556 int local_cpu = smp_processor_id(); 3557 3558 event_pkg = topology_physical_package_id(event_cpu); 3559 local_pkg = topology_physical_package_id(local_cpu); 3560 3561 if (event_pkg == local_pkg) 3562 return local_cpu; 3563 } 3564 3565 return event_cpu; 3566 } 3567 3568 /* 3569 * Cross CPU call to read the hardware event 3570 */ 3571 static void __perf_event_read(void *info) 3572 { 3573 struct perf_read_data *data = info; 3574 struct perf_event *sub, *event = data->event; 3575 struct perf_event_context *ctx = event->ctx; 3576 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 3577 struct pmu *pmu = event->pmu; 3578 3579 /* 3580 * If this is a task context, we need to check whether it is 3581 * the current task context of this cpu. If not it has been 3582 * scheduled out before the smp call arrived. In that case 3583 * event->count would have been updated to a recent sample 3584 * when the event was scheduled out. 3585 */ 3586 if (ctx->task && cpuctx->task_ctx != ctx) 3587 return; 3588 3589 raw_spin_lock(&ctx->lock); 3590 if (ctx->is_active) { 3591 update_context_time(ctx); 3592 update_cgrp_time_from_event(event); 3593 } 3594 3595 update_event_times(event); 3596 if (event->state != PERF_EVENT_STATE_ACTIVE) 3597 goto unlock; 3598 3599 if (!data->group) { 3600 pmu->read(event); 3601 data->ret = 0; 3602 goto unlock; 3603 } 3604 3605 pmu->start_txn(pmu, PERF_PMU_TXN_READ); 3606 3607 pmu->read(event); 3608 3609 list_for_each_entry(sub, &event->sibling_list, group_entry) { 3610 update_event_times(sub); 3611 if (sub->state == PERF_EVENT_STATE_ACTIVE) { 3612 /* 3613 * Use sibling's PMU rather than @event's since 3614 * sibling could be on different (eg: software) PMU. 3615 */ 3616 sub->pmu->read(sub); 3617 } 3618 } 3619 3620 data->ret = pmu->commit_txn(pmu); 3621 3622 unlock: 3623 raw_spin_unlock(&ctx->lock); 3624 } 3625 3626 static inline u64 perf_event_count(struct perf_event *event) 3627 { 3628 if (event->pmu->count) 3629 return event->pmu->count(event); 3630 3631 return __perf_event_count(event); 3632 } 3633 3634 /* 3635 * NMI-safe method to read a local event, that is an event that 3636 * is: 3637 * - either for the current task, or for this CPU 3638 * - does not have inherit set, for inherited task events 3639 * will not be local and we cannot read them atomically 3640 * - must not have a pmu::count method 3641 */ 3642 int perf_event_read_local(struct perf_event *event, u64 *value) 3643 { 3644 unsigned long flags; 3645 int ret = 0; 3646 3647 /* 3648 * Disabling interrupts avoids all counter scheduling (context 3649 * switches, timer based rotation and IPIs). 3650 */ 3651 local_irq_save(flags); 3652 3653 /* 3654 * It must not be an event with inherit set, we cannot read 3655 * all child counters from atomic context. 3656 */ 3657 if (event->attr.inherit) { 3658 ret = -EOPNOTSUPP; 3659 goto out; 3660 } 3661 3662 /* 3663 * It must not have a pmu::count method, those are not 3664 * NMI safe. 3665 */ 3666 if (event->pmu->count) { 3667 ret = -EOPNOTSUPP; 3668 goto out; 3669 } 3670 3671 /* If this is a per-task event, it must be for current */ 3672 if ((event->attach_state & PERF_ATTACH_TASK) && 3673 event->hw.target != current) { 3674 ret = -EINVAL; 3675 goto out; 3676 } 3677 3678 /* If this is a per-CPU event, it must be for this CPU */ 3679 if (!(event->attach_state & PERF_ATTACH_TASK) && 3680 event->cpu != smp_processor_id()) { 3681 ret = -EINVAL; 3682 goto out; 3683 } 3684 3685 /* 3686 * If the event is currently on this CPU, its either a per-task event, 3687 * or local to this CPU. Furthermore it means its ACTIVE (otherwise 3688 * oncpu == -1). 3689 */ 3690 if (event->oncpu == smp_processor_id()) 3691 event->pmu->read(event); 3692 3693 *value = local64_read(&event->count); 3694 out: 3695 local_irq_restore(flags); 3696 3697 return ret; 3698 } 3699 3700 static int perf_event_read(struct perf_event *event, bool group) 3701 { 3702 int event_cpu, ret = 0; 3703 3704 /* 3705 * If event is enabled and currently active on a CPU, update the 3706 * value in the event structure: 3707 */ 3708 if (event->state == PERF_EVENT_STATE_ACTIVE) { 3709 struct perf_read_data data = { 3710 .event = event, 3711 .group = group, 3712 .ret = 0, 3713 }; 3714 3715 event_cpu = READ_ONCE(event->oncpu); 3716 if ((unsigned)event_cpu >= nr_cpu_ids) 3717 return 0; 3718 3719 preempt_disable(); 3720 event_cpu = __perf_event_read_cpu(event, event_cpu); 3721 3722 /* 3723 * Purposely ignore the smp_call_function_single() return 3724 * value. 3725 * 3726 * If event_cpu isn't a valid CPU it means the event got 3727 * scheduled out and that will have updated the event count. 3728 * 3729 * Therefore, either way, we'll have an up-to-date event count 3730 * after this. 3731 */ 3732 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1); 3733 preempt_enable(); 3734 ret = data.ret; 3735 } else if (event->state == PERF_EVENT_STATE_INACTIVE) { 3736 struct perf_event_context *ctx = event->ctx; 3737 unsigned long flags; 3738 3739 raw_spin_lock_irqsave(&ctx->lock, flags); 3740 /* 3741 * may read while context is not active 3742 * (e.g., thread is blocked), in that case 3743 * we cannot update context time 3744 */ 3745 if (ctx->is_active) { 3746 update_context_time(ctx); 3747 update_cgrp_time_from_event(event); 3748 } 3749 if (group) 3750 update_group_times(event); 3751 else 3752 update_event_times(event); 3753 raw_spin_unlock_irqrestore(&ctx->lock, flags); 3754 } 3755 3756 return ret; 3757 } 3758 3759 /* 3760 * Initialize the perf_event context in a task_struct: 3761 */ 3762 static void __perf_event_init_context(struct perf_event_context *ctx) 3763 { 3764 raw_spin_lock_init(&ctx->lock); 3765 mutex_init(&ctx->mutex); 3766 INIT_LIST_HEAD(&ctx->active_ctx_list); 3767 INIT_LIST_HEAD(&ctx->pinned_groups); 3768 INIT_LIST_HEAD(&ctx->flexible_groups); 3769 INIT_LIST_HEAD(&ctx->event_list); 3770 atomic_set(&ctx->refcount, 1); 3771 } 3772 3773 static struct perf_event_context * 3774 alloc_perf_context(struct pmu *pmu, struct task_struct *task) 3775 { 3776 struct perf_event_context *ctx; 3777 3778 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 3779 if (!ctx) 3780 return NULL; 3781 3782 __perf_event_init_context(ctx); 3783 if (task) { 3784 ctx->task = task; 3785 get_task_struct(task); 3786 } 3787 ctx->pmu = pmu; 3788 3789 return ctx; 3790 } 3791 3792 static struct task_struct * 3793 find_lively_task_by_vpid(pid_t vpid) 3794 { 3795 struct task_struct *task; 3796 3797 rcu_read_lock(); 3798 if (!vpid) 3799 task = current; 3800 else 3801 task = find_task_by_vpid(vpid); 3802 if (task) 3803 get_task_struct(task); 3804 rcu_read_unlock(); 3805 3806 if (!task) 3807 return ERR_PTR(-ESRCH); 3808 3809 return task; 3810 } 3811 3812 /* 3813 * Returns a matching context with refcount and pincount. 3814 */ 3815 static struct perf_event_context * 3816 find_get_context(struct pmu *pmu, struct task_struct *task, 3817 struct perf_event *event) 3818 { 3819 struct perf_event_context *ctx, *clone_ctx = NULL; 3820 struct perf_cpu_context *cpuctx; 3821 void *task_ctx_data = NULL; 3822 unsigned long flags; 3823 int ctxn, err; 3824 int cpu = event->cpu; 3825 3826 if (!task) { 3827 /* Must be root to operate on a CPU event: */ 3828 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) 3829 return ERR_PTR(-EACCES); 3830 3831 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 3832 ctx = &cpuctx->ctx; 3833 get_ctx(ctx); 3834 ++ctx->pin_count; 3835 3836 return ctx; 3837 } 3838 3839 err = -EINVAL; 3840 ctxn = pmu->task_ctx_nr; 3841 if (ctxn < 0) 3842 goto errout; 3843 3844 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 3845 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL); 3846 if (!task_ctx_data) { 3847 err = -ENOMEM; 3848 goto errout; 3849 } 3850 } 3851 3852 retry: 3853 ctx = perf_lock_task_context(task, ctxn, &flags); 3854 if (ctx) { 3855 clone_ctx = unclone_ctx(ctx); 3856 ++ctx->pin_count; 3857 3858 if (task_ctx_data && !ctx->task_ctx_data) { 3859 ctx->task_ctx_data = task_ctx_data; 3860 task_ctx_data = NULL; 3861 } 3862 raw_spin_unlock_irqrestore(&ctx->lock, flags); 3863 3864 if (clone_ctx) 3865 put_ctx(clone_ctx); 3866 } else { 3867 ctx = alloc_perf_context(pmu, task); 3868 err = -ENOMEM; 3869 if (!ctx) 3870 goto errout; 3871 3872 if (task_ctx_data) { 3873 ctx->task_ctx_data = task_ctx_data; 3874 task_ctx_data = NULL; 3875 } 3876 3877 err = 0; 3878 mutex_lock(&task->perf_event_mutex); 3879 /* 3880 * If it has already passed perf_event_exit_task(). 3881 * we must see PF_EXITING, it takes this mutex too. 3882 */ 3883 if (task->flags & PF_EXITING) 3884 err = -ESRCH; 3885 else if (task->perf_event_ctxp[ctxn]) 3886 err = -EAGAIN; 3887 else { 3888 get_ctx(ctx); 3889 ++ctx->pin_count; 3890 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); 3891 } 3892 mutex_unlock(&task->perf_event_mutex); 3893 3894 if (unlikely(err)) { 3895 put_ctx(ctx); 3896 3897 if (err == -EAGAIN) 3898 goto retry; 3899 goto errout; 3900 } 3901 } 3902 3903 kfree(task_ctx_data); 3904 return ctx; 3905 3906 errout: 3907 kfree(task_ctx_data); 3908 return ERR_PTR(err); 3909 } 3910 3911 static void perf_event_free_filter(struct perf_event *event); 3912 static void perf_event_free_bpf_prog(struct perf_event *event); 3913 3914 static void free_event_rcu(struct rcu_head *head) 3915 { 3916 struct perf_event *event; 3917 3918 event = container_of(head, struct perf_event, rcu_head); 3919 if (event->ns) 3920 put_pid_ns(event->ns); 3921 perf_event_free_filter(event); 3922 kfree(event); 3923 } 3924 3925 static void ring_buffer_attach(struct perf_event *event, 3926 struct ring_buffer *rb); 3927 3928 static void detach_sb_event(struct perf_event *event) 3929 { 3930 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 3931 3932 raw_spin_lock(&pel->lock); 3933 list_del_rcu(&event->sb_list); 3934 raw_spin_unlock(&pel->lock); 3935 } 3936 3937 static bool is_sb_event(struct perf_event *event) 3938 { 3939 struct perf_event_attr *attr = &event->attr; 3940 3941 if (event->parent) 3942 return false; 3943 3944 if (event->attach_state & PERF_ATTACH_TASK) 3945 return false; 3946 3947 if (attr->mmap || attr->mmap_data || attr->mmap2 || 3948 attr->comm || attr->comm_exec || 3949 attr->task || 3950 attr->context_switch) 3951 return true; 3952 return false; 3953 } 3954 3955 static void unaccount_pmu_sb_event(struct perf_event *event) 3956 { 3957 if (is_sb_event(event)) 3958 detach_sb_event(event); 3959 } 3960 3961 static void unaccount_event_cpu(struct perf_event *event, int cpu) 3962 { 3963 if (event->parent) 3964 return; 3965 3966 if (is_cgroup_event(event)) 3967 atomic_dec(&per_cpu(perf_cgroup_events, cpu)); 3968 } 3969 3970 #ifdef CONFIG_NO_HZ_FULL 3971 static DEFINE_SPINLOCK(nr_freq_lock); 3972 #endif 3973 3974 static void unaccount_freq_event_nohz(void) 3975 { 3976 #ifdef CONFIG_NO_HZ_FULL 3977 spin_lock(&nr_freq_lock); 3978 if (atomic_dec_and_test(&nr_freq_events)) 3979 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS); 3980 spin_unlock(&nr_freq_lock); 3981 #endif 3982 } 3983 3984 static void unaccount_freq_event(void) 3985 { 3986 if (tick_nohz_full_enabled()) 3987 unaccount_freq_event_nohz(); 3988 else 3989 atomic_dec(&nr_freq_events); 3990 } 3991 3992 static void unaccount_event(struct perf_event *event) 3993 { 3994 bool dec = false; 3995 3996 if (event->parent) 3997 return; 3998 3999 if (event->attach_state & PERF_ATTACH_TASK) 4000 dec = true; 4001 if (event->attr.mmap || event->attr.mmap_data) 4002 atomic_dec(&nr_mmap_events); 4003 if (event->attr.comm) 4004 atomic_dec(&nr_comm_events); 4005 if (event->attr.namespaces) 4006 atomic_dec(&nr_namespaces_events); 4007 if (event->attr.task) 4008 atomic_dec(&nr_task_events); 4009 if (event->attr.freq) 4010 unaccount_freq_event(); 4011 if (event->attr.context_switch) { 4012 dec = true; 4013 atomic_dec(&nr_switch_events); 4014 } 4015 if (is_cgroup_event(event)) 4016 dec = true; 4017 if (has_branch_stack(event)) 4018 dec = true; 4019 4020 if (dec) { 4021 if (!atomic_add_unless(&perf_sched_count, -1, 1)) 4022 schedule_delayed_work(&perf_sched_work, HZ); 4023 } 4024 4025 unaccount_event_cpu(event, event->cpu); 4026 4027 unaccount_pmu_sb_event(event); 4028 } 4029 4030 static void perf_sched_delayed(struct work_struct *work) 4031 { 4032 mutex_lock(&perf_sched_mutex); 4033 if (atomic_dec_and_test(&perf_sched_count)) 4034 static_branch_disable(&perf_sched_events); 4035 mutex_unlock(&perf_sched_mutex); 4036 } 4037 4038 /* 4039 * The following implement mutual exclusion of events on "exclusive" pmus 4040 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 4041 * at a time, so we disallow creating events that might conflict, namely: 4042 * 4043 * 1) cpu-wide events in the presence of per-task events, 4044 * 2) per-task events in the presence of cpu-wide events, 4045 * 3) two matching events on the same context. 4046 * 4047 * The former two cases are handled in the allocation path (perf_event_alloc(), 4048 * _free_event()), the latter -- before the first perf_install_in_context(). 4049 */ 4050 static int exclusive_event_init(struct perf_event *event) 4051 { 4052 struct pmu *pmu = event->pmu; 4053 4054 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 4055 return 0; 4056 4057 /* 4058 * Prevent co-existence of per-task and cpu-wide events on the 4059 * same exclusive pmu. 4060 * 4061 * Negative pmu::exclusive_cnt means there are cpu-wide 4062 * events on this "exclusive" pmu, positive means there are 4063 * per-task events. 4064 * 4065 * Since this is called in perf_event_alloc() path, event::ctx 4066 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 4067 * to mean "per-task event", because unlike other attach states it 4068 * never gets cleared. 4069 */ 4070 if (event->attach_state & PERF_ATTACH_TASK) { 4071 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 4072 return -EBUSY; 4073 } else { 4074 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 4075 return -EBUSY; 4076 } 4077 4078 return 0; 4079 } 4080 4081 static void exclusive_event_destroy(struct perf_event *event) 4082 { 4083 struct pmu *pmu = event->pmu; 4084 4085 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 4086 return; 4087 4088 /* see comment in exclusive_event_init() */ 4089 if (event->attach_state & PERF_ATTACH_TASK) 4090 atomic_dec(&pmu->exclusive_cnt); 4091 else 4092 atomic_inc(&pmu->exclusive_cnt); 4093 } 4094 4095 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 4096 { 4097 if ((e1->pmu == e2->pmu) && 4098 (e1->cpu == e2->cpu || 4099 e1->cpu == -1 || 4100 e2->cpu == -1)) 4101 return true; 4102 return false; 4103 } 4104 4105 /* Called under the same ctx::mutex as perf_install_in_context() */ 4106 static bool exclusive_event_installable(struct perf_event *event, 4107 struct perf_event_context *ctx) 4108 { 4109 struct perf_event *iter_event; 4110 struct pmu *pmu = event->pmu; 4111 4112 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 4113 return true; 4114 4115 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 4116 if (exclusive_event_match(iter_event, event)) 4117 return false; 4118 } 4119 4120 return true; 4121 } 4122 4123 static void perf_addr_filters_splice(struct perf_event *event, 4124 struct list_head *head); 4125 4126 static void _free_event(struct perf_event *event) 4127 { 4128 irq_work_sync(&event->pending); 4129 4130 unaccount_event(event); 4131 4132 if (event->rb) { 4133 /* 4134 * Can happen when we close an event with re-directed output. 4135 * 4136 * Since we have a 0 refcount, perf_mmap_close() will skip 4137 * over us; possibly making our ring_buffer_put() the last. 4138 */ 4139 mutex_lock(&event->mmap_mutex); 4140 ring_buffer_attach(event, NULL); 4141 mutex_unlock(&event->mmap_mutex); 4142 } 4143 4144 if (is_cgroup_event(event)) 4145 perf_detach_cgroup(event); 4146 4147 if (!event->parent) { 4148 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 4149 put_callchain_buffers(); 4150 } 4151 4152 perf_event_free_bpf_prog(event); 4153 perf_addr_filters_splice(event, NULL); 4154 kfree(event->addr_filters_offs); 4155 4156 if (event->destroy) 4157 event->destroy(event); 4158 4159 if (event->ctx) 4160 put_ctx(event->ctx); 4161 4162 exclusive_event_destroy(event); 4163 module_put(event->pmu->module); 4164 4165 call_rcu(&event->rcu_head, free_event_rcu); 4166 } 4167 4168 /* 4169 * Used to free events which have a known refcount of 1, such as in error paths 4170 * where the event isn't exposed yet and inherited events. 4171 */ 4172 static void free_event(struct perf_event *event) 4173 { 4174 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 4175 "unexpected event refcount: %ld; ptr=%p\n", 4176 atomic_long_read(&event->refcount), event)) { 4177 /* leak to avoid use-after-free */ 4178 return; 4179 } 4180 4181 _free_event(event); 4182 } 4183 4184 /* 4185 * Remove user event from the owner task. 4186 */ 4187 static void perf_remove_from_owner(struct perf_event *event) 4188 { 4189 struct task_struct *owner; 4190 4191 rcu_read_lock(); 4192 /* 4193 * Matches the smp_store_release() in perf_event_exit_task(). If we 4194 * observe !owner it means the list deletion is complete and we can 4195 * indeed free this event, otherwise we need to serialize on 4196 * owner->perf_event_mutex. 4197 */ 4198 owner = lockless_dereference(event->owner); 4199 if (owner) { 4200 /* 4201 * Since delayed_put_task_struct() also drops the last 4202 * task reference we can safely take a new reference 4203 * while holding the rcu_read_lock(). 4204 */ 4205 get_task_struct(owner); 4206 } 4207 rcu_read_unlock(); 4208 4209 if (owner) { 4210 /* 4211 * If we're here through perf_event_exit_task() we're already 4212 * holding ctx->mutex which would be an inversion wrt. the 4213 * normal lock order. 4214 * 4215 * However we can safely take this lock because its the child 4216 * ctx->mutex. 4217 */ 4218 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 4219 4220 /* 4221 * We have to re-check the event->owner field, if it is cleared 4222 * we raced with perf_event_exit_task(), acquiring the mutex 4223 * ensured they're done, and we can proceed with freeing the 4224 * event. 4225 */ 4226 if (event->owner) { 4227 list_del_init(&event->owner_entry); 4228 smp_store_release(&event->owner, NULL); 4229 } 4230 mutex_unlock(&owner->perf_event_mutex); 4231 put_task_struct(owner); 4232 } 4233 } 4234 4235 static void put_event(struct perf_event *event) 4236 { 4237 if (!atomic_long_dec_and_test(&event->refcount)) 4238 return; 4239 4240 _free_event(event); 4241 } 4242 4243 /* 4244 * Kill an event dead; while event:refcount will preserve the event 4245 * object, it will not preserve its functionality. Once the last 'user' 4246 * gives up the object, we'll destroy the thing. 4247 */ 4248 int perf_event_release_kernel(struct perf_event *event) 4249 { 4250 struct perf_event_context *ctx = event->ctx; 4251 struct perf_event *child, *tmp; 4252 4253 /* 4254 * If we got here through err_file: fput(event_file); we will not have 4255 * attached to a context yet. 4256 */ 4257 if (!ctx) { 4258 WARN_ON_ONCE(event->attach_state & 4259 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP)); 4260 goto no_ctx; 4261 } 4262 4263 if (!is_kernel_event(event)) 4264 perf_remove_from_owner(event); 4265 4266 ctx = perf_event_ctx_lock(event); 4267 WARN_ON_ONCE(ctx->parent_ctx); 4268 perf_remove_from_context(event, DETACH_GROUP); 4269 4270 raw_spin_lock_irq(&ctx->lock); 4271 /* 4272 * Mark this event as STATE_DEAD, there is no external reference to it 4273 * anymore. 4274 * 4275 * Anybody acquiring event->child_mutex after the below loop _must_ 4276 * also see this, most importantly inherit_event() which will avoid 4277 * placing more children on the list. 4278 * 4279 * Thus this guarantees that we will in fact observe and kill _ALL_ 4280 * child events. 4281 */ 4282 event->state = PERF_EVENT_STATE_DEAD; 4283 raw_spin_unlock_irq(&ctx->lock); 4284 4285 perf_event_ctx_unlock(event, ctx); 4286 4287 again: 4288 mutex_lock(&event->child_mutex); 4289 list_for_each_entry(child, &event->child_list, child_list) { 4290 4291 /* 4292 * Cannot change, child events are not migrated, see the 4293 * comment with perf_event_ctx_lock_nested(). 4294 */ 4295 ctx = lockless_dereference(child->ctx); 4296 /* 4297 * Since child_mutex nests inside ctx::mutex, we must jump 4298 * through hoops. We start by grabbing a reference on the ctx. 4299 * 4300 * Since the event cannot get freed while we hold the 4301 * child_mutex, the context must also exist and have a !0 4302 * reference count. 4303 */ 4304 get_ctx(ctx); 4305 4306 /* 4307 * Now that we have a ctx ref, we can drop child_mutex, and 4308 * acquire ctx::mutex without fear of it going away. Then we 4309 * can re-acquire child_mutex. 4310 */ 4311 mutex_unlock(&event->child_mutex); 4312 mutex_lock(&ctx->mutex); 4313 mutex_lock(&event->child_mutex); 4314 4315 /* 4316 * Now that we hold ctx::mutex and child_mutex, revalidate our 4317 * state, if child is still the first entry, it didn't get freed 4318 * and we can continue doing so. 4319 */ 4320 tmp = list_first_entry_or_null(&event->child_list, 4321 struct perf_event, child_list); 4322 if (tmp == child) { 4323 perf_remove_from_context(child, DETACH_GROUP); 4324 list_del(&child->child_list); 4325 free_event(child); 4326 /* 4327 * This matches the refcount bump in inherit_event(); 4328 * this can't be the last reference. 4329 */ 4330 put_event(event); 4331 } 4332 4333 mutex_unlock(&event->child_mutex); 4334 mutex_unlock(&ctx->mutex); 4335 put_ctx(ctx); 4336 goto again; 4337 } 4338 mutex_unlock(&event->child_mutex); 4339 4340 no_ctx: 4341 put_event(event); /* Must be the 'last' reference */ 4342 return 0; 4343 } 4344 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 4345 4346 /* 4347 * Called when the last reference to the file is gone. 4348 */ 4349 static int perf_release(struct inode *inode, struct file *file) 4350 { 4351 perf_event_release_kernel(file->private_data); 4352 return 0; 4353 } 4354 4355 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 4356 { 4357 struct perf_event *child; 4358 u64 total = 0; 4359 4360 *enabled = 0; 4361 *running = 0; 4362 4363 mutex_lock(&event->child_mutex); 4364 4365 (void)perf_event_read(event, false); 4366 total += perf_event_count(event); 4367 4368 *enabled += event->total_time_enabled + 4369 atomic64_read(&event->child_total_time_enabled); 4370 *running += event->total_time_running + 4371 atomic64_read(&event->child_total_time_running); 4372 4373 list_for_each_entry(child, &event->child_list, child_list) { 4374 (void)perf_event_read(child, false); 4375 total += perf_event_count(child); 4376 *enabled += child->total_time_enabled; 4377 *running += child->total_time_running; 4378 } 4379 mutex_unlock(&event->child_mutex); 4380 4381 return total; 4382 } 4383 EXPORT_SYMBOL_GPL(perf_event_read_value); 4384 4385 static int __perf_read_group_add(struct perf_event *leader, 4386 u64 read_format, u64 *values) 4387 { 4388 struct perf_event_context *ctx = leader->ctx; 4389 struct perf_event *sub; 4390 unsigned long flags; 4391 int n = 1; /* skip @nr */ 4392 int ret; 4393 4394 ret = perf_event_read(leader, true); 4395 if (ret) 4396 return ret; 4397 4398 /* 4399 * Since we co-schedule groups, {enabled,running} times of siblings 4400 * will be identical to those of the leader, so we only publish one 4401 * set. 4402 */ 4403 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 4404 values[n++] += leader->total_time_enabled + 4405 atomic64_read(&leader->child_total_time_enabled); 4406 } 4407 4408 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 4409 values[n++] += leader->total_time_running + 4410 atomic64_read(&leader->child_total_time_running); 4411 } 4412 4413 /* 4414 * Write {count,id} tuples for every sibling. 4415 */ 4416 values[n++] += perf_event_count(leader); 4417 if (read_format & PERF_FORMAT_ID) 4418 values[n++] = primary_event_id(leader); 4419 4420 raw_spin_lock_irqsave(&ctx->lock, flags); 4421 4422 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 4423 values[n++] += perf_event_count(sub); 4424 if (read_format & PERF_FORMAT_ID) 4425 values[n++] = primary_event_id(sub); 4426 } 4427 4428 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4429 return 0; 4430 } 4431 4432 static int perf_read_group(struct perf_event *event, 4433 u64 read_format, char __user *buf) 4434 { 4435 struct perf_event *leader = event->group_leader, *child; 4436 struct perf_event_context *ctx = leader->ctx; 4437 int ret; 4438 u64 *values; 4439 4440 lockdep_assert_held(&ctx->mutex); 4441 4442 values = kzalloc(event->read_size, GFP_KERNEL); 4443 if (!values) 4444 return -ENOMEM; 4445 4446 values[0] = 1 + leader->nr_siblings; 4447 4448 /* 4449 * By locking the child_mutex of the leader we effectively 4450 * lock the child list of all siblings.. XXX explain how. 4451 */ 4452 mutex_lock(&leader->child_mutex); 4453 4454 ret = __perf_read_group_add(leader, read_format, values); 4455 if (ret) 4456 goto unlock; 4457 4458 list_for_each_entry(child, &leader->child_list, child_list) { 4459 ret = __perf_read_group_add(child, read_format, values); 4460 if (ret) 4461 goto unlock; 4462 } 4463 4464 mutex_unlock(&leader->child_mutex); 4465 4466 ret = event->read_size; 4467 if (copy_to_user(buf, values, event->read_size)) 4468 ret = -EFAULT; 4469 goto out; 4470 4471 unlock: 4472 mutex_unlock(&leader->child_mutex); 4473 out: 4474 kfree(values); 4475 return ret; 4476 } 4477 4478 static int perf_read_one(struct perf_event *event, 4479 u64 read_format, char __user *buf) 4480 { 4481 u64 enabled, running; 4482 u64 values[4]; 4483 int n = 0; 4484 4485 values[n++] = perf_event_read_value(event, &enabled, &running); 4486 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 4487 values[n++] = enabled; 4488 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 4489 values[n++] = running; 4490 if (read_format & PERF_FORMAT_ID) 4491 values[n++] = primary_event_id(event); 4492 4493 if (copy_to_user(buf, values, n * sizeof(u64))) 4494 return -EFAULT; 4495 4496 return n * sizeof(u64); 4497 } 4498 4499 static bool is_event_hup(struct perf_event *event) 4500 { 4501 bool no_children; 4502 4503 if (event->state > PERF_EVENT_STATE_EXIT) 4504 return false; 4505 4506 mutex_lock(&event->child_mutex); 4507 no_children = list_empty(&event->child_list); 4508 mutex_unlock(&event->child_mutex); 4509 return no_children; 4510 } 4511 4512 /* 4513 * Read the performance event - simple non blocking version for now 4514 */ 4515 static ssize_t 4516 __perf_read(struct perf_event *event, char __user *buf, size_t count) 4517 { 4518 u64 read_format = event->attr.read_format; 4519 int ret; 4520 4521 /* 4522 * Return end-of-file for a read on a event that is in 4523 * error state (i.e. because it was pinned but it couldn't be 4524 * scheduled on to the CPU at some point). 4525 */ 4526 if (event->state == PERF_EVENT_STATE_ERROR) 4527 return 0; 4528 4529 if (count < event->read_size) 4530 return -ENOSPC; 4531 4532 WARN_ON_ONCE(event->ctx->parent_ctx); 4533 if (read_format & PERF_FORMAT_GROUP) 4534 ret = perf_read_group(event, read_format, buf); 4535 else 4536 ret = perf_read_one(event, read_format, buf); 4537 4538 return ret; 4539 } 4540 4541 static ssize_t 4542 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 4543 { 4544 struct perf_event *event = file->private_data; 4545 struct perf_event_context *ctx; 4546 int ret; 4547 4548 ctx = perf_event_ctx_lock(event); 4549 ret = __perf_read(event, buf, count); 4550 perf_event_ctx_unlock(event, ctx); 4551 4552 return ret; 4553 } 4554 4555 static unsigned int perf_poll(struct file *file, poll_table *wait) 4556 { 4557 struct perf_event *event = file->private_data; 4558 struct ring_buffer *rb; 4559 unsigned int events = POLLHUP; 4560 4561 poll_wait(file, &event->waitq, wait); 4562 4563 if (is_event_hup(event)) 4564 return events; 4565 4566 /* 4567 * Pin the event->rb by taking event->mmap_mutex; otherwise 4568 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 4569 */ 4570 mutex_lock(&event->mmap_mutex); 4571 rb = event->rb; 4572 if (rb) 4573 events = atomic_xchg(&rb->poll, 0); 4574 mutex_unlock(&event->mmap_mutex); 4575 return events; 4576 } 4577 4578 static void _perf_event_reset(struct perf_event *event) 4579 { 4580 (void)perf_event_read(event, false); 4581 local64_set(&event->count, 0); 4582 perf_event_update_userpage(event); 4583 } 4584 4585 /* 4586 * Holding the top-level event's child_mutex means that any 4587 * descendant process that has inherited this event will block 4588 * in perf_event_exit_event() if it goes to exit, thus satisfying the 4589 * task existence requirements of perf_event_enable/disable. 4590 */ 4591 static void perf_event_for_each_child(struct perf_event *event, 4592 void (*func)(struct perf_event *)) 4593 { 4594 struct perf_event *child; 4595 4596 WARN_ON_ONCE(event->ctx->parent_ctx); 4597 4598 mutex_lock(&event->child_mutex); 4599 func(event); 4600 list_for_each_entry(child, &event->child_list, child_list) 4601 func(child); 4602 mutex_unlock(&event->child_mutex); 4603 } 4604 4605 static void perf_event_for_each(struct perf_event *event, 4606 void (*func)(struct perf_event *)) 4607 { 4608 struct perf_event_context *ctx = event->ctx; 4609 struct perf_event *sibling; 4610 4611 lockdep_assert_held(&ctx->mutex); 4612 4613 event = event->group_leader; 4614 4615 perf_event_for_each_child(event, func); 4616 list_for_each_entry(sibling, &event->sibling_list, group_entry) 4617 perf_event_for_each_child(sibling, func); 4618 } 4619 4620 static void __perf_event_period(struct perf_event *event, 4621 struct perf_cpu_context *cpuctx, 4622 struct perf_event_context *ctx, 4623 void *info) 4624 { 4625 u64 value = *((u64 *)info); 4626 bool active; 4627 4628 if (event->attr.freq) { 4629 event->attr.sample_freq = value; 4630 } else { 4631 event->attr.sample_period = value; 4632 event->hw.sample_period = value; 4633 } 4634 4635 active = (event->state == PERF_EVENT_STATE_ACTIVE); 4636 if (active) { 4637 perf_pmu_disable(ctx->pmu); 4638 /* 4639 * We could be throttled; unthrottle now to avoid the tick 4640 * trying to unthrottle while we already re-started the event. 4641 */ 4642 if (event->hw.interrupts == MAX_INTERRUPTS) { 4643 event->hw.interrupts = 0; 4644 perf_log_throttle(event, 1); 4645 } 4646 event->pmu->stop(event, PERF_EF_UPDATE); 4647 } 4648 4649 local64_set(&event->hw.period_left, 0); 4650 4651 if (active) { 4652 event->pmu->start(event, PERF_EF_RELOAD); 4653 perf_pmu_enable(ctx->pmu); 4654 } 4655 } 4656 4657 static int perf_event_period(struct perf_event *event, u64 __user *arg) 4658 { 4659 u64 value; 4660 4661 if (!is_sampling_event(event)) 4662 return -EINVAL; 4663 4664 if (copy_from_user(&value, arg, sizeof(value))) 4665 return -EFAULT; 4666 4667 if (!value) 4668 return -EINVAL; 4669 4670 if (event->attr.freq && value > sysctl_perf_event_sample_rate) 4671 return -EINVAL; 4672 4673 event_function_call(event, __perf_event_period, &value); 4674 4675 return 0; 4676 } 4677 4678 static const struct file_operations perf_fops; 4679 4680 static inline int perf_fget_light(int fd, struct fd *p) 4681 { 4682 struct fd f = fdget(fd); 4683 if (!f.file) 4684 return -EBADF; 4685 4686 if (f.file->f_op != &perf_fops) { 4687 fdput(f); 4688 return -EBADF; 4689 } 4690 *p = f; 4691 return 0; 4692 } 4693 4694 static int perf_event_set_output(struct perf_event *event, 4695 struct perf_event *output_event); 4696 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 4697 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd); 4698 4699 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 4700 { 4701 void (*func)(struct perf_event *); 4702 u32 flags = arg; 4703 4704 switch (cmd) { 4705 case PERF_EVENT_IOC_ENABLE: 4706 func = _perf_event_enable; 4707 break; 4708 case PERF_EVENT_IOC_DISABLE: 4709 func = _perf_event_disable; 4710 break; 4711 case PERF_EVENT_IOC_RESET: 4712 func = _perf_event_reset; 4713 break; 4714 4715 case PERF_EVENT_IOC_REFRESH: 4716 return _perf_event_refresh(event, arg); 4717 4718 case PERF_EVENT_IOC_PERIOD: 4719 return perf_event_period(event, (u64 __user *)arg); 4720 4721 case PERF_EVENT_IOC_ID: 4722 { 4723 u64 id = primary_event_id(event); 4724 4725 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 4726 return -EFAULT; 4727 return 0; 4728 } 4729 4730 case PERF_EVENT_IOC_SET_OUTPUT: 4731 { 4732 int ret; 4733 if (arg != -1) { 4734 struct perf_event *output_event; 4735 struct fd output; 4736 ret = perf_fget_light(arg, &output); 4737 if (ret) 4738 return ret; 4739 output_event = output.file->private_data; 4740 ret = perf_event_set_output(event, output_event); 4741 fdput(output); 4742 } else { 4743 ret = perf_event_set_output(event, NULL); 4744 } 4745 return ret; 4746 } 4747 4748 case PERF_EVENT_IOC_SET_FILTER: 4749 return perf_event_set_filter(event, (void __user *)arg); 4750 4751 case PERF_EVENT_IOC_SET_BPF: 4752 return perf_event_set_bpf_prog(event, arg); 4753 4754 case PERF_EVENT_IOC_PAUSE_OUTPUT: { 4755 struct ring_buffer *rb; 4756 4757 rcu_read_lock(); 4758 rb = rcu_dereference(event->rb); 4759 if (!rb || !rb->nr_pages) { 4760 rcu_read_unlock(); 4761 return -EINVAL; 4762 } 4763 rb_toggle_paused(rb, !!arg); 4764 rcu_read_unlock(); 4765 return 0; 4766 } 4767 default: 4768 return -ENOTTY; 4769 } 4770 4771 if (flags & PERF_IOC_FLAG_GROUP) 4772 perf_event_for_each(event, func); 4773 else 4774 perf_event_for_each_child(event, func); 4775 4776 return 0; 4777 } 4778 4779 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 4780 { 4781 struct perf_event *event = file->private_data; 4782 struct perf_event_context *ctx; 4783 long ret; 4784 4785 ctx = perf_event_ctx_lock(event); 4786 ret = _perf_ioctl(event, cmd, arg); 4787 perf_event_ctx_unlock(event, ctx); 4788 4789 return ret; 4790 } 4791 4792 #ifdef CONFIG_COMPAT 4793 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 4794 unsigned long arg) 4795 { 4796 switch (_IOC_NR(cmd)) { 4797 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 4798 case _IOC_NR(PERF_EVENT_IOC_ID): 4799 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 4800 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 4801 cmd &= ~IOCSIZE_MASK; 4802 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 4803 } 4804 break; 4805 } 4806 return perf_ioctl(file, cmd, arg); 4807 } 4808 #else 4809 # define perf_compat_ioctl NULL 4810 #endif 4811 4812 int perf_event_task_enable(void) 4813 { 4814 struct perf_event_context *ctx; 4815 struct perf_event *event; 4816 4817 mutex_lock(¤t->perf_event_mutex); 4818 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 4819 ctx = perf_event_ctx_lock(event); 4820 perf_event_for_each_child(event, _perf_event_enable); 4821 perf_event_ctx_unlock(event, ctx); 4822 } 4823 mutex_unlock(¤t->perf_event_mutex); 4824 4825 return 0; 4826 } 4827 4828 int perf_event_task_disable(void) 4829 { 4830 struct perf_event_context *ctx; 4831 struct perf_event *event; 4832 4833 mutex_lock(¤t->perf_event_mutex); 4834 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 4835 ctx = perf_event_ctx_lock(event); 4836 perf_event_for_each_child(event, _perf_event_disable); 4837 perf_event_ctx_unlock(event, ctx); 4838 } 4839 mutex_unlock(¤t->perf_event_mutex); 4840 4841 return 0; 4842 } 4843 4844 static int perf_event_index(struct perf_event *event) 4845 { 4846 if (event->hw.state & PERF_HES_STOPPED) 4847 return 0; 4848 4849 if (event->state != PERF_EVENT_STATE_ACTIVE) 4850 return 0; 4851 4852 return event->pmu->event_idx(event); 4853 } 4854 4855 static void calc_timer_values(struct perf_event *event, 4856 u64 *now, 4857 u64 *enabled, 4858 u64 *running) 4859 { 4860 u64 ctx_time; 4861 4862 *now = perf_clock(); 4863 ctx_time = event->shadow_ctx_time + *now; 4864 *enabled = ctx_time - event->tstamp_enabled; 4865 *running = ctx_time - event->tstamp_running; 4866 } 4867 4868 static void perf_event_init_userpage(struct perf_event *event) 4869 { 4870 struct perf_event_mmap_page *userpg; 4871 struct ring_buffer *rb; 4872 4873 rcu_read_lock(); 4874 rb = rcu_dereference(event->rb); 4875 if (!rb) 4876 goto unlock; 4877 4878 userpg = rb->user_page; 4879 4880 /* Allow new userspace to detect that bit 0 is deprecated */ 4881 userpg->cap_bit0_is_deprecated = 1; 4882 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 4883 userpg->data_offset = PAGE_SIZE; 4884 userpg->data_size = perf_data_size(rb); 4885 4886 unlock: 4887 rcu_read_unlock(); 4888 } 4889 4890 void __weak arch_perf_update_userpage( 4891 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 4892 { 4893 } 4894 4895 /* 4896 * Callers need to ensure there can be no nesting of this function, otherwise 4897 * the seqlock logic goes bad. We can not serialize this because the arch 4898 * code calls this from NMI context. 4899 */ 4900 void perf_event_update_userpage(struct perf_event *event) 4901 { 4902 struct perf_event_mmap_page *userpg; 4903 struct ring_buffer *rb; 4904 u64 enabled, running, now; 4905 4906 rcu_read_lock(); 4907 rb = rcu_dereference(event->rb); 4908 if (!rb) 4909 goto unlock; 4910 4911 /* 4912 * compute total_time_enabled, total_time_running 4913 * based on snapshot values taken when the event 4914 * was last scheduled in. 4915 * 4916 * we cannot simply called update_context_time() 4917 * because of locking issue as we can be called in 4918 * NMI context 4919 */ 4920 calc_timer_values(event, &now, &enabled, &running); 4921 4922 userpg = rb->user_page; 4923 /* 4924 * Disable preemption so as to not let the corresponding user-space 4925 * spin too long if we get preempted. 4926 */ 4927 preempt_disable(); 4928 ++userpg->lock; 4929 barrier(); 4930 userpg->index = perf_event_index(event); 4931 userpg->offset = perf_event_count(event); 4932 if (userpg->index) 4933 userpg->offset -= local64_read(&event->hw.prev_count); 4934 4935 userpg->time_enabled = enabled + 4936 atomic64_read(&event->child_total_time_enabled); 4937 4938 userpg->time_running = running + 4939 atomic64_read(&event->child_total_time_running); 4940 4941 arch_perf_update_userpage(event, userpg, now); 4942 4943 barrier(); 4944 ++userpg->lock; 4945 preempt_enable(); 4946 unlock: 4947 rcu_read_unlock(); 4948 } 4949 4950 static int perf_mmap_fault(struct vm_fault *vmf) 4951 { 4952 struct perf_event *event = vmf->vma->vm_file->private_data; 4953 struct ring_buffer *rb; 4954 int ret = VM_FAULT_SIGBUS; 4955 4956 if (vmf->flags & FAULT_FLAG_MKWRITE) { 4957 if (vmf->pgoff == 0) 4958 ret = 0; 4959 return ret; 4960 } 4961 4962 rcu_read_lock(); 4963 rb = rcu_dereference(event->rb); 4964 if (!rb) 4965 goto unlock; 4966 4967 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 4968 goto unlock; 4969 4970 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 4971 if (!vmf->page) 4972 goto unlock; 4973 4974 get_page(vmf->page); 4975 vmf->page->mapping = vmf->vma->vm_file->f_mapping; 4976 vmf->page->index = vmf->pgoff; 4977 4978 ret = 0; 4979 unlock: 4980 rcu_read_unlock(); 4981 4982 return ret; 4983 } 4984 4985 static void ring_buffer_attach(struct perf_event *event, 4986 struct ring_buffer *rb) 4987 { 4988 struct ring_buffer *old_rb = NULL; 4989 unsigned long flags; 4990 4991 if (event->rb) { 4992 /* 4993 * Should be impossible, we set this when removing 4994 * event->rb_entry and wait/clear when adding event->rb_entry. 4995 */ 4996 WARN_ON_ONCE(event->rcu_pending); 4997 4998 old_rb = event->rb; 4999 spin_lock_irqsave(&old_rb->event_lock, flags); 5000 list_del_rcu(&event->rb_entry); 5001 spin_unlock_irqrestore(&old_rb->event_lock, flags); 5002 5003 event->rcu_batches = get_state_synchronize_rcu(); 5004 event->rcu_pending = 1; 5005 } 5006 5007 if (rb) { 5008 if (event->rcu_pending) { 5009 cond_synchronize_rcu(event->rcu_batches); 5010 event->rcu_pending = 0; 5011 } 5012 5013 spin_lock_irqsave(&rb->event_lock, flags); 5014 list_add_rcu(&event->rb_entry, &rb->event_list); 5015 spin_unlock_irqrestore(&rb->event_lock, flags); 5016 } 5017 5018 /* 5019 * Avoid racing with perf_mmap_close(AUX): stop the event 5020 * before swizzling the event::rb pointer; if it's getting 5021 * unmapped, its aux_mmap_count will be 0 and it won't 5022 * restart. See the comment in __perf_pmu_output_stop(). 5023 * 5024 * Data will inevitably be lost when set_output is done in 5025 * mid-air, but then again, whoever does it like this is 5026 * not in for the data anyway. 5027 */ 5028 if (has_aux(event)) 5029 perf_event_stop(event, 0); 5030 5031 rcu_assign_pointer(event->rb, rb); 5032 5033 if (old_rb) { 5034 ring_buffer_put(old_rb); 5035 /* 5036 * Since we detached before setting the new rb, so that we 5037 * could attach the new rb, we could have missed a wakeup. 5038 * Provide it now. 5039 */ 5040 wake_up_all(&event->waitq); 5041 } 5042 } 5043 5044 static void ring_buffer_wakeup(struct perf_event *event) 5045 { 5046 struct ring_buffer *rb; 5047 5048 rcu_read_lock(); 5049 rb = rcu_dereference(event->rb); 5050 if (rb) { 5051 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 5052 wake_up_all(&event->waitq); 5053 } 5054 rcu_read_unlock(); 5055 } 5056 5057 struct ring_buffer *ring_buffer_get(struct perf_event *event) 5058 { 5059 struct ring_buffer *rb; 5060 5061 rcu_read_lock(); 5062 rb = rcu_dereference(event->rb); 5063 if (rb) { 5064 if (!atomic_inc_not_zero(&rb->refcount)) 5065 rb = NULL; 5066 } 5067 rcu_read_unlock(); 5068 5069 return rb; 5070 } 5071 5072 void ring_buffer_put(struct ring_buffer *rb) 5073 { 5074 if (!atomic_dec_and_test(&rb->refcount)) 5075 return; 5076 5077 WARN_ON_ONCE(!list_empty(&rb->event_list)); 5078 5079 call_rcu(&rb->rcu_head, rb_free_rcu); 5080 } 5081 5082 static void perf_mmap_open(struct vm_area_struct *vma) 5083 { 5084 struct perf_event *event = vma->vm_file->private_data; 5085 5086 atomic_inc(&event->mmap_count); 5087 atomic_inc(&event->rb->mmap_count); 5088 5089 if (vma->vm_pgoff) 5090 atomic_inc(&event->rb->aux_mmap_count); 5091 5092 if (event->pmu->event_mapped) 5093 event->pmu->event_mapped(event); 5094 } 5095 5096 static void perf_pmu_output_stop(struct perf_event *event); 5097 5098 /* 5099 * A buffer can be mmap()ed multiple times; either directly through the same 5100 * event, or through other events by use of perf_event_set_output(). 5101 * 5102 * In order to undo the VM accounting done by perf_mmap() we need to destroy 5103 * the buffer here, where we still have a VM context. This means we need 5104 * to detach all events redirecting to us. 5105 */ 5106 static void perf_mmap_close(struct vm_area_struct *vma) 5107 { 5108 struct perf_event *event = vma->vm_file->private_data; 5109 5110 struct ring_buffer *rb = ring_buffer_get(event); 5111 struct user_struct *mmap_user = rb->mmap_user; 5112 int mmap_locked = rb->mmap_locked; 5113 unsigned long size = perf_data_size(rb); 5114 5115 if (event->pmu->event_unmapped) 5116 event->pmu->event_unmapped(event); 5117 5118 /* 5119 * rb->aux_mmap_count will always drop before rb->mmap_count and 5120 * event->mmap_count, so it is ok to use event->mmap_mutex to 5121 * serialize with perf_mmap here. 5122 */ 5123 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 5124 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) { 5125 /* 5126 * Stop all AUX events that are writing to this buffer, 5127 * so that we can free its AUX pages and corresponding PMU 5128 * data. Note that after rb::aux_mmap_count dropped to zero, 5129 * they won't start any more (see perf_aux_output_begin()). 5130 */ 5131 perf_pmu_output_stop(event); 5132 5133 /* now it's safe to free the pages */ 5134 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm); 5135 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked; 5136 5137 /* this has to be the last one */ 5138 rb_free_aux(rb); 5139 WARN_ON_ONCE(atomic_read(&rb->aux_refcount)); 5140 5141 mutex_unlock(&event->mmap_mutex); 5142 } 5143 5144 atomic_dec(&rb->mmap_count); 5145 5146 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 5147 goto out_put; 5148 5149 ring_buffer_attach(event, NULL); 5150 mutex_unlock(&event->mmap_mutex); 5151 5152 /* If there's still other mmap()s of this buffer, we're done. */ 5153 if (atomic_read(&rb->mmap_count)) 5154 goto out_put; 5155 5156 /* 5157 * No other mmap()s, detach from all other events that might redirect 5158 * into the now unreachable buffer. Somewhat complicated by the 5159 * fact that rb::event_lock otherwise nests inside mmap_mutex. 5160 */ 5161 again: 5162 rcu_read_lock(); 5163 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 5164 if (!atomic_long_inc_not_zero(&event->refcount)) { 5165 /* 5166 * This event is en-route to free_event() which will 5167 * detach it and remove it from the list. 5168 */ 5169 continue; 5170 } 5171 rcu_read_unlock(); 5172 5173 mutex_lock(&event->mmap_mutex); 5174 /* 5175 * Check we didn't race with perf_event_set_output() which can 5176 * swizzle the rb from under us while we were waiting to 5177 * acquire mmap_mutex. 5178 * 5179 * If we find a different rb; ignore this event, a next 5180 * iteration will no longer find it on the list. We have to 5181 * still restart the iteration to make sure we're not now 5182 * iterating the wrong list. 5183 */ 5184 if (event->rb == rb) 5185 ring_buffer_attach(event, NULL); 5186 5187 mutex_unlock(&event->mmap_mutex); 5188 put_event(event); 5189 5190 /* 5191 * Restart the iteration; either we're on the wrong list or 5192 * destroyed its integrity by doing a deletion. 5193 */ 5194 goto again; 5195 } 5196 rcu_read_unlock(); 5197 5198 /* 5199 * It could be there's still a few 0-ref events on the list; they'll 5200 * get cleaned up by free_event() -- they'll also still have their 5201 * ref on the rb and will free it whenever they are done with it. 5202 * 5203 * Aside from that, this buffer is 'fully' detached and unmapped, 5204 * undo the VM accounting. 5205 */ 5206 5207 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm); 5208 vma->vm_mm->pinned_vm -= mmap_locked; 5209 free_uid(mmap_user); 5210 5211 out_put: 5212 ring_buffer_put(rb); /* could be last */ 5213 } 5214 5215 static const struct vm_operations_struct perf_mmap_vmops = { 5216 .open = perf_mmap_open, 5217 .close = perf_mmap_close, /* non mergable */ 5218 .fault = perf_mmap_fault, 5219 .page_mkwrite = perf_mmap_fault, 5220 }; 5221 5222 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 5223 { 5224 struct perf_event *event = file->private_data; 5225 unsigned long user_locked, user_lock_limit; 5226 struct user_struct *user = current_user(); 5227 unsigned long locked, lock_limit; 5228 struct ring_buffer *rb = NULL; 5229 unsigned long vma_size; 5230 unsigned long nr_pages; 5231 long user_extra = 0, extra = 0; 5232 int ret = 0, flags = 0; 5233 5234 /* 5235 * Don't allow mmap() of inherited per-task counters. This would 5236 * create a performance issue due to all children writing to the 5237 * same rb. 5238 */ 5239 if (event->cpu == -1 && event->attr.inherit) 5240 return -EINVAL; 5241 5242 if (!(vma->vm_flags & VM_SHARED)) 5243 return -EINVAL; 5244 5245 vma_size = vma->vm_end - vma->vm_start; 5246 5247 if (vma->vm_pgoff == 0) { 5248 nr_pages = (vma_size / PAGE_SIZE) - 1; 5249 } else { 5250 /* 5251 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 5252 * mapped, all subsequent mappings should have the same size 5253 * and offset. Must be above the normal perf buffer. 5254 */ 5255 u64 aux_offset, aux_size; 5256 5257 if (!event->rb) 5258 return -EINVAL; 5259 5260 nr_pages = vma_size / PAGE_SIZE; 5261 5262 mutex_lock(&event->mmap_mutex); 5263 ret = -EINVAL; 5264 5265 rb = event->rb; 5266 if (!rb) 5267 goto aux_unlock; 5268 5269 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset); 5270 aux_size = ACCESS_ONCE(rb->user_page->aux_size); 5271 5272 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 5273 goto aux_unlock; 5274 5275 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 5276 goto aux_unlock; 5277 5278 /* already mapped with a different offset */ 5279 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 5280 goto aux_unlock; 5281 5282 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) 5283 goto aux_unlock; 5284 5285 /* already mapped with a different size */ 5286 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 5287 goto aux_unlock; 5288 5289 if (!is_power_of_2(nr_pages)) 5290 goto aux_unlock; 5291 5292 if (!atomic_inc_not_zero(&rb->mmap_count)) 5293 goto aux_unlock; 5294 5295 if (rb_has_aux(rb)) { 5296 atomic_inc(&rb->aux_mmap_count); 5297 ret = 0; 5298 goto unlock; 5299 } 5300 5301 atomic_set(&rb->aux_mmap_count, 1); 5302 user_extra = nr_pages; 5303 5304 goto accounting; 5305 } 5306 5307 /* 5308 * If we have rb pages ensure they're a power-of-two number, so we 5309 * can do bitmasks instead of modulo. 5310 */ 5311 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 5312 return -EINVAL; 5313 5314 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 5315 return -EINVAL; 5316 5317 WARN_ON_ONCE(event->ctx->parent_ctx); 5318 again: 5319 mutex_lock(&event->mmap_mutex); 5320 if (event->rb) { 5321 if (event->rb->nr_pages != nr_pages) { 5322 ret = -EINVAL; 5323 goto unlock; 5324 } 5325 5326 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 5327 /* 5328 * Raced against perf_mmap_close() through 5329 * perf_event_set_output(). Try again, hope for better 5330 * luck. 5331 */ 5332 mutex_unlock(&event->mmap_mutex); 5333 goto again; 5334 } 5335 5336 goto unlock; 5337 } 5338 5339 user_extra = nr_pages + 1; 5340 5341 accounting: 5342 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 5343 5344 /* 5345 * Increase the limit linearly with more CPUs: 5346 */ 5347 user_lock_limit *= num_online_cpus(); 5348 5349 user_locked = atomic_long_read(&user->locked_vm) + user_extra; 5350 5351 if (user_locked > user_lock_limit) 5352 extra = user_locked - user_lock_limit; 5353 5354 lock_limit = rlimit(RLIMIT_MEMLOCK); 5355 lock_limit >>= PAGE_SHIFT; 5356 locked = vma->vm_mm->pinned_vm + extra; 5357 5358 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() && 5359 !capable(CAP_IPC_LOCK)) { 5360 ret = -EPERM; 5361 goto unlock; 5362 } 5363 5364 WARN_ON(!rb && event->rb); 5365 5366 if (vma->vm_flags & VM_WRITE) 5367 flags |= RING_BUFFER_WRITABLE; 5368 5369 if (!rb) { 5370 rb = rb_alloc(nr_pages, 5371 event->attr.watermark ? event->attr.wakeup_watermark : 0, 5372 event->cpu, flags); 5373 5374 if (!rb) { 5375 ret = -ENOMEM; 5376 goto unlock; 5377 } 5378 5379 atomic_set(&rb->mmap_count, 1); 5380 rb->mmap_user = get_current_user(); 5381 rb->mmap_locked = extra; 5382 5383 ring_buffer_attach(event, rb); 5384 5385 perf_event_init_userpage(event); 5386 perf_event_update_userpage(event); 5387 } else { 5388 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 5389 event->attr.aux_watermark, flags); 5390 if (!ret) 5391 rb->aux_mmap_locked = extra; 5392 } 5393 5394 unlock: 5395 if (!ret) { 5396 atomic_long_add(user_extra, &user->locked_vm); 5397 vma->vm_mm->pinned_vm += extra; 5398 5399 atomic_inc(&event->mmap_count); 5400 } else if (rb) { 5401 atomic_dec(&rb->mmap_count); 5402 } 5403 aux_unlock: 5404 mutex_unlock(&event->mmap_mutex); 5405 5406 /* 5407 * Since pinned accounting is per vm we cannot allow fork() to copy our 5408 * vma. 5409 */ 5410 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP; 5411 vma->vm_ops = &perf_mmap_vmops; 5412 5413 if (event->pmu->event_mapped) 5414 event->pmu->event_mapped(event); 5415 5416 return ret; 5417 } 5418 5419 static int perf_fasync(int fd, struct file *filp, int on) 5420 { 5421 struct inode *inode = file_inode(filp); 5422 struct perf_event *event = filp->private_data; 5423 int retval; 5424 5425 inode_lock(inode); 5426 retval = fasync_helper(fd, filp, on, &event->fasync); 5427 inode_unlock(inode); 5428 5429 if (retval < 0) 5430 return retval; 5431 5432 return 0; 5433 } 5434 5435 static const struct file_operations perf_fops = { 5436 .llseek = no_llseek, 5437 .release = perf_release, 5438 .read = perf_read, 5439 .poll = perf_poll, 5440 .unlocked_ioctl = perf_ioctl, 5441 .compat_ioctl = perf_compat_ioctl, 5442 .mmap = perf_mmap, 5443 .fasync = perf_fasync, 5444 }; 5445 5446 /* 5447 * Perf event wakeup 5448 * 5449 * If there's data, ensure we set the poll() state and publish everything 5450 * to user-space before waking everybody up. 5451 */ 5452 5453 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event) 5454 { 5455 /* only the parent has fasync state */ 5456 if (event->parent) 5457 event = event->parent; 5458 return &event->fasync; 5459 } 5460 5461 void perf_event_wakeup(struct perf_event *event) 5462 { 5463 ring_buffer_wakeup(event); 5464 5465 if (event->pending_kill) { 5466 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); 5467 event->pending_kill = 0; 5468 } 5469 } 5470 5471 static void perf_pending_event(struct irq_work *entry) 5472 { 5473 struct perf_event *event = container_of(entry, 5474 struct perf_event, pending); 5475 int rctx; 5476 5477 rctx = perf_swevent_get_recursion_context(); 5478 /* 5479 * If we 'fail' here, that's OK, it means recursion is already disabled 5480 * and we won't recurse 'further'. 5481 */ 5482 5483 if (event->pending_disable) { 5484 event->pending_disable = 0; 5485 perf_event_disable_local(event); 5486 } 5487 5488 if (event->pending_wakeup) { 5489 event->pending_wakeup = 0; 5490 perf_event_wakeup(event); 5491 } 5492 5493 if (rctx >= 0) 5494 perf_swevent_put_recursion_context(rctx); 5495 } 5496 5497 /* 5498 * We assume there is only KVM supporting the callbacks. 5499 * Later on, we might change it to a list if there is 5500 * another virtualization implementation supporting the callbacks. 5501 */ 5502 struct perf_guest_info_callbacks *perf_guest_cbs; 5503 5504 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 5505 { 5506 perf_guest_cbs = cbs; 5507 return 0; 5508 } 5509 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 5510 5511 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 5512 { 5513 perf_guest_cbs = NULL; 5514 return 0; 5515 } 5516 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 5517 5518 static void 5519 perf_output_sample_regs(struct perf_output_handle *handle, 5520 struct pt_regs *regs, u64 mask) 5521 { 5522 int bit; 5523 DECLARE_BITMAP(_mask, 64); 5524 5525 bitmap_from_u64(_mask, mask); 5526 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) { 5527 u64 val; 5528 5529 val = perf_reg_value(regs, bit); 5530 perf_output_put(handle, val); 5531 } 5532 } 5533 5534 static void perf_sample_regs_user(struct perf_regs *regs_user, 5535 struct pt_regs *regs, 5536 struct pt_regs *regs_user_copy) 5537 { 5538 if (user_mode(regs)) { 5539 regs_user->abi = perf_reg_abi(current); 5540 regs_user->regs = regs; 5541 } else if (current->mm) { 5542 perf_get_regs_user(regs_user, regs, regs_user_copy); 5543 } else { 5544 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 5545 regs_user->regs = NULL; 5546 } 5547 } 5548 5549 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 5550 struct pt_regs *regs) 5551 { 5552 regs_intr->regs = regs; 5553 regs_intr->abi = perf_reg_abi(current); 5554 } 5555 5556 5557 /* 5558 * Get remaining task size from user stack pointer. 5559 * 5560 * It'd be better to take stack vma map and limit this more 5561 * precisly, but there's no way to get it safely under interrupt, 5562 * so using TASK_SIZE as limit. 5563 */ 5564 static u64 perf_ustack_task_size(struct pt_regs *regs) 5565 { 5566 unsigned long addr = perf_user_stack_pointer(regs); 5567 5568 if (!addr || addr >= TASK_SIZE) 5569 return 0; 5570 5571 return TASK_SIZE - addr; 5572 } 5573 5574 static u16 5575 perf_sample_ustack_size(u16 stack_size, u16 header_size, 5576 struct pt_regs *regs) 5577 { 5578 u64 task_size; 5579 5580 /* No regs, no stack pointer, no dump. */ 5581 if (!regs) 5582 return 0; 5583 5584 /* 5585 * Check if we fit in with the requested stack size into the: 5586 * - TASK_SIZE 5587 * If we don't, we limit the size to the TASK_SIZE. 5588 * 5589 * - remaining sample size 5590 * If we don't, we customize the stack size to 5591 * fit in to the remaining sample size. 5592 */ 5593 5594 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 5595 stack_size = min(stack_size, (u16) task_size); 5596 5597 /* Current header size plus static size and dynamic size. */ 5598 header_size += 2 * sizeof(u64); 5599 5600 /* Do we fit in with the current stack dump size? */ 5601 if ((u16) (header_size + stack_size) < header_size) { 5602 /* 5603 * If we overflow the maximum size for the sample, 5604 * we customize the stack dump size to fit in. 5605 */ 5606 stack_size = USHRT_MAX - header_size - sizeof(u64); 5607 stack_size = round_up(stack_size, sizeof(u64)); 5608 } 5609 5610 return stack_size; 5611 } 5612 5613 static void 5614 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 5615 struct pt_regs *regs) 5616 { 5617 /* Case of a kernel thread, nothing to dump */ 5618 if (!regs) { 5619 u64 size = 0; 5620 perf_output_put(handle, size); 5621 } else { 5622 unsigned long sp; 5623 unsigned int rem; 5624 u64 dyn_size; 5625 5626 /* 5627 * We dump: 5628 * static size 5629 * - the size requested by user or the best one we can fit 5630 * in to the sample max size 5631 * data 5632 * - user stack dump data 5633 * dynamic size 5634 * - the actual dumped size 5635 */ 5636 5637 /* Static size. */ 5638 perf_output_put(handle, dump_size); 5639 5640 /* Data. */ 5641 sp = perf_user_stack_pointer(regs); 5642 rem = __output_copy_user(handle, (void *) sp, dump_size); 5643 dyn_size = dump_size - rem; 5644 5645 perf_output_skip(handle, rem); 5646 5647 /* Dynamic size. */ 5648 perf_output_put(handle, dyn_size); 5649 } 5650 } 5651 5652 static void __perf_event_header__init_id(struct perf_event_header *header, 5653 struct perf_sample_data *data, 5654 struct perf_event *event) 5655 { 5656 u64 sample_type = event->attr.sample_type; 5657 5658 data->type = sample_type; 5659 header->size += event->id_header_size; 5660 5661 if (sample_type & PERF_SAMPLE_TID) { 5662 /* namespace issues */ 5663 data->tid_entry.pid = perf_event_pid(event, current); 5664 data->tid_entry.tid = perf_event_tid(event, current); 5665 } 5666 5667 if (sample_type & PERF_SAMPLE_TIME) 5668 data->time = perf_event_clock(event); 5669 5670 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 5671 data->id = primary_event_id(event); 5672 5673 if (sample_type & PERF_SAMPLE_STREAM_ID) 5674 data->stream_id = event->id; 5675 5676 if (sample_type & PERF_SAMPLE_CPU) { 5677 data->cpu_entry.cpu = raw_smp_processor_id(); 5678 data->cpu_entry.reserved = 0; 5679 } 5680 } 5681 5682 void perf_event_header__init_id(struct perf_event_header *header, 5683 struct perf_sample_data *data, 5684 struct perf_event *event) 5685 { 5686 if (event->attr.sample_id_all) 5687 __perf_event_header__init_id(header, data, event); 5688 } 5689 5690 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 5691 struct perf_sample_data *data) 5692 { 5693 u64 sample_type = data->type; 5694 5695 if (sample_type & PERF_SAMPLE_TID) 5696 perf_output_put(handle, data->tid_entry); 5697 5698 if (sample_type & PERF_SAMPLE_TIME) 5699 perf_output_put(handle, data->time); 5700 5701 if (sample_type & PERF_SAMPLE_ID) 5702 perf_output_put(handle, data->id); 5703 5704 if (sample_type & PERF_SAMPLE_STREAM_ID) 5705 perf_output_put(handle, data->stream_id); 5706 5707 if (sample_type & PERF_SAMPLE_CPU) 5708 perf_output_put(handle, data->cpu_entry); 5709 5710 if (sample_type & PERF_SAMPLE_IDENTIFIER) 5711 perf_output_put(handle, data->id); 5712 } 5713 5714 void perf_event__output_id_sample(struct perf_event *event, 5715 struct perf_output_handle *handle, 5716 struct perf_sample_data *sample) 5717 { 5718 if (event->attr.sample_id_all) 5719 __perf_event__output_id_sample(handle, sample); 5720 } 5721 5722 static void perf_output_read_one(struct perf_output_handle *handle, 5723 struct perf_event *event, 5724 u64 enabled, u64 running) 5725 { 5726 u64 read_format = event->attr.read_format; 5727 u64 values[4]; 5728 int n = 0; 5729 5730 values[n++] = perf_event_count(event); 5731 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 5732 values[n++] = enabled + 5733 atomic64_read(&event->child_total_time_enabled); 5734 } 5735 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 5736 values[n++] = running + 5737 atomic64_read(&event->child_total_time_running); 5738 } 5739 if (read_format & PERF_FORMAT_ID) 5740 values[n++] = primary_event_id(event); 5741 5742 __output_copy(handle, values, n * sizeof(u64)); 5743 } 5744 5745 static void perf_output_read_group(struct perf_output_handle *handle, 5746 struct perf_event *event, 5747 u64 enabled, u64 running) 5748 { 5749 struct perf_event *leader = event->group_leader, *sub; 5750 u64 read_format = event->attr.read_format; 5751 u64 values[5]; 5752 int n = 0; 5753 5754 values[n++] = 1 + leader->nr_siblings; 5755 5756 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 5757 values[n++] = enabled; 5758 5759 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 5760 values[n++] = running; 5761 5762 if (leader != event) 5763 leader->pmu->read(leader); 5764 5765 values[n++] = perf_event_count(leader); 5766 if (read_format & PERF_FORMAT_ID) 5767 values[n++] = primary_event_id(leader); 5768 5769 __output_copy(handle, values, n * sizeof(u64)); 5770 5771 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 5772 n = 0; 5773 5774 if ((sub != event) && 5775 (sub->state == PERF_EVENT_STATE_ACTIVE)) 5776 sub->pmu->read(sub); 5777 5778 values[n++] = perf_event_count(sub); 5779 if (read_format & PERF_FORMAT_ID) 5780 values[n++] = primary_event_id(sub); 5781 5782 __output_copy(handle, values, n * sizeof(u64)); 5783 } 5784 } 5785 5786 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 5787 PERF_FORMAT_TOTAL_TIME_RUNNING) 5788 5789 /* 5790 * XXX PERF_SAMPLE_READ vs inherited events seems difficult. 5791 * 5792 * The problem is that its both hard and excessively expensive to iterate the 5793 * child list, not to mention that its impossible to IPI the children running 5794 * on another CPU, from interrupt/NMI context. 5795 */ 5796 static void perf_output_read(struct perf_output_handle *handle, 5797 struct perf_event *event) 5798 { 5799 u64 enabled = 0, running = 0, now; 5800 u64 read_format = event->attr.read_format; 5801 5802 /* 5803 * compute total_time_enabled, total_time_running 5804 * based on snapshot values taken when the event 5805 * was last scheduled in. 5806 * 5807 * we cannot simply called update_context_time() 5808 * because of locking issue as we are called in 5809 * NMI context 5810 */ 5811 if (read_format & PERF_FORMAT_TOTAL_TIMES) 5812 calc_timer_values(event, &now, &enabled, &running); 5813 5814 if (event->attr.read_format & PERF_FORMAT_GROUP) 5815 perf_output_read_group(handle, event, enabled, running); 5816 else 5817 perf_output_read_one(handle, event, enabled, running); 5818 } 5819 5820 void perf_output_sample(struct perf_output_handle *handle, 5821 struct perf_event_header *header, 5822 struct perf_sample_data *data, 5823 struct perf_event *event) 5824 { 5825 u64 sample_type = data->type; 5826 5827 perf_output_put(handle, *header); 5828 5829 if (sample_type & PERF_SAMPLE_IDENTIFIER) 5830 perf_output_put(handle, data->id); 5831 5832 if (sample_type & PERF_SAMPLE_IP) 5833 perf_output_put(handle, data->ip); 5834 5835 if (sample_type & PERF_SAMPLE_TID) 5836 perf_output_put(handle, data->tid_entry); 5837 5838 if (sample_type & PERF_SAMPLE_TIME) 5839 perf_output_put(handle, data->time); 5840 5841 if (sample_type & PERF_SAMPLE_ADDR) 5842 perf_output_put(handle, data->addr); 5843 5844 if (sample_type & PERF_SAMPLE_ID) 5845 perf_output_put(handle, data->id); 5846 5847 if (sample_type & PERF_SAMPLE_STREAM_ID) 5848 perf_output_put(handle, data->stream_id); 5849 5850 if (sample_type & PERF_SAMPLE_CPU) 5851 perf_output_put(handle, data->cpu_entry); 5852 5853 if (sample_type & PERF_SAMPLE_PERIOD) 5854 perf_output_put(handle, data->period); 5855 5856 if (sample_type & PERF_SAMPLE_READ) 5857 perf_output_read(handle, event); 5858 5859 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 5860 if (data->callchain) { 5861 int size = 1; 5862 5863 if (data->callchain) 5864 size += data->callchain->nr; 5865 5866 size *= sizeof(u64); 5867 5868 __output_copy(handle, data->callchain, size); 5869 } else { 5870 u64 nr = 0; 5871 perf_output_put(handle, nr); 5872 } 5873 } 5874 5875 if (sample_type & PERF_SAMPLE_RAW) { 5876 struct perf_raw_record *raw = data->raw; 5877 5878 if (raw) { 5879 struct perf_raw_frag *frag = &raw->frag; 5880 5881 perf_output_put(handle, raw->size); 5882 do { 5883 if (frag->copy) { 5884 __output_custom(handle, frag->copy, 5885 frag->data, frag->size); 5886 } else { 5887 __output_copy(handle, frag->data, 5888 frag->size); 5889 } 5890 if (perf_raw_frag_last(frag)) 5891 break; 5892 frag = frag->next; 5893 } while (1); 5894 if (frag->pad) 5895 __output_skip(handle, NULL, frag->pad); 5896 } else { 5897 struct { 5898 u32 size; 5899 u32 data; 5900 } raw = { 5901 .size = sizeof(u32), 5902 .data = 0, 5903 }; 5904 perf_output_put(handle, raw); 5905 } 5906 } 5907 5908 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 5909 if (data->br_stack) { 5910 size_t size; 5911 5912 size = data->br_stack->nr 5913 * sizeof(struct perf_branch_entry); 5914 5915 perf_output_put(handle, data->br_stack->nr); 5916 perf_output_copy(handle, data->br_stack->entries, size); 5917 } else { 5918 /* 5919 * we always store at least the value of nr 5920 */ 5921 u64 nr = 0; 5922 perf_output_put(handle, nr); 5923 } 5924 } 5925 5926 if (sample_type & PERF_SAMPLE_REGS_USER) { 5927 u64 abi = data->regs_user.abi; 5928 5929 /* 5930 * If there are no regs to dump, notice it through 5931 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 5932 */ 5933 perf_output_put(handle, abi); 5934 5935 if (abi) { 5936 u64 mask = event->attr.sample_regs_user; 5937 perf_output_sample_regs(handle, 5938 data->regs_user.regs, 5939 mask); 5940 } 5941 } 5942 5943 if (sample_type & PERF_SAMPLE_STACK_USER) { 5944 perf_output_sample_ustack(handle, 5945 data->stack_user_size, 5946 data->regs_user.regs); 5947 } 5948 5949 if (sample_type & PERF_SAMPLE_WEIGHT) 5950 perf_output_put(handle, data->weight); 5951 5952 if (sample_type & PERF_SAMPLE_DATA_SRC) 5953 perf_output_put(handle, data->data_src.val); 5954 5955 if (sample_type & PERF_SAMPLE_TRANSACTION) 5956 perf_output_put(handle, data->txn); 5957 5958 if (sample_type & PERF_SAMPLE_REGS_INTR) { 5959 u64 abi = data->regs_intr.abi; 5960 /* 5961 * If there are no regs to dump, notice it through 5962 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 5963 */ 5964 perf_output_put(handle, abi); 5965 5966 if (abi) { 5967 u64 mask = event->attr.sample_regs_intr; 5968 5969 perf_output_sample_regs(handle, 5970 data->regs_intr.regs, 5971 mask); 5972 } 5973 } 5974 5975 if (!event->attr.watermark) { 5976 int wakeup_events = event->attr.wakeup_events; 5977 5978 if (wakeup_events) { 5979 struct ring_buffer *rb = handle->rb; 5980 int events = local_inc_return(&rb->events); 5981 5982 if (events >= wakeup_events) { 5983 local_sub(wakeup_events, &rb->events); 5984 local_inc(&rb->wakeup); 5985 } 5986 } 5987 } 5988 } 5989 5990 void perf_prepare_sample(struct perf_event_header *header, 5991 struct perf_sample_data *data, 5992 struct perf_event *event, 5993 struct pt_regs *regs) 5994 { 5995 u64 sample_type = event->attr.sample_type; 5996 5997 header->type = PERF_RECORD_SAMPLE; 5998 header->size = sizeof(*header) + event->header_size; 5999 6000 header->misc = 0; 6001 header->misc |= perf_misc_flags(regs); 6002 6003 __perf_event_header__init_id(header, data, event); 6004 6005 if (sample_type & PERF_SAMPLE_IP) 6006 data->ip = perf_instruction_pointer(regs); 6007 6008 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 6009 int size = 1; 6010 6011 data->callchain = perf_callchain(event, regs); 6012 6013 if (data->callchain) 6014 size += data->callchain->nr; 6015 6016 header->size += size * sizeof(u64); 6017 } 6018 6019 if (sample_type & PERF_SAMPLE_RAW) { 6020 struct perf_raw_record *raw = data->raw; 6021 int size; 6022 6023 if (raw) { 6024 struct perf_raw_frag *frag = &raw->frag; 6025 u32 sum = 0; 6026 6027 do { 6028 sum += frag->size; 6029 if (perf_raw_frag_last(frag)) 6030 break; 6031 frag = frag->next; 6032 } while (1); 6033 6034 size = round_up(sum + sizeof(u32), sizeof(u64)); 6035 raw->size = size - sizeof(u32); 6036 frag->pad = raw->size - sum; 6037 } else { 6038 size = sizeof(u64); 6039 } 6040 6041 header->size += size; 6042 } 6043 6044 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 6045 int size = sizeof(u64); /* nr */ 6046 if (data->br_stack) { 6047 size += data->br_stack->nr 6048 * sizeof(struct perf_branch_entry); 6049 } 6050 header->size += size; 6051 } 6052 6053 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER)) 6054 perf_sample_regs_user(&data->regs_user, regs, 6055 &data->regs_user_copy); 6056 6057 if (sample_type & PERF_SAMPLE_REGS_USER) { 6058 /* regs dump ABI info */ 6059 int size = sizeof(u64); 6060 6061 if (data->regs_user.regs) { 6062 u64 mask = event->attr.sample_regs_user; 6063 size += hweight64(mask) * sizeof(u64); 6064 } 6065 6066 header->size += size; 6067 } 6068 6069 if (sample_type & PERF_SAMPLE_STACK_USER) { 6070 /* 6071 * Either we need PERF_SAMPLE_STACK_USER bit to be allways 6072 * processed as the last one or have additional check added 6073 * in case new sample type is added, because we could eat 6074 * up the rest of the sample size. 6075 */ 6076 u16 stack_size = event->attr.sample_stack_user; 6077 u16 size = sizeof(u64); 6078 6079 stack_size = perf_sample_ustack_size(stack_size, header->size, 6080 data->regs_user.regs); 6081 6082 /* 6083 * If there is something to dump, add space for the dump 6084 * itself and for the field that tells the dynamic size, 6085 * which is how many have been actually dumped. 6086 */ 6087 if (stack_size) 6088 size += sizeof(u64) + stack_size; 6089 6090 data->stack_user_size = stack_size; 6091 header->size += size; 6092 } 6093 6094 if (sample_type & PERF_SAMPLE_REGS_INTR) { 6095 /* regs dump ABI info */ 6096 int size = sizeof(u64); 6097 6098 perf_sample_regs_intr(&data->regs_intr, regs); 6099 6100 if (data->regs_intr.regs) { 6101 u64 mask = event->attr.sample_regs_intr; 6102 6103 size += hweight64(mask) * sizeof(u64); 6104 } 6105 6106 header->size += size; 6107 } 6108 } 6109 6110 static void __always_inline 6111 __perf_event_output(struct perf_event *event, 6112 struct perf_sample_data *data, 6113 struct pt_regs *regs, 6114 int (*output_begin)(struct perf_output_handle *, 6115 struct perf_event *, 6116 unsigned int)) 6117 { 6118 struct perf_output_handle handle; 6119 struct perf_event_header header; 6120 6121 /* protect the callchain buffers */ 6122 rcu_read_lock(); 6123 6124 perf_prepare_sample(&header, data, event, regs); 6125 6126 if (output_begin(&handle, event, header.size)) 6127 goto exit; 6128 6129 perf_output_sample(&handle, &header, data, event); 6130 6131 perf_output_end(&handle); 6132 6133 exit: 6134 rcu_read_unlock(); 6135 } 6136 6137 void 6138 perf_event_output_forward(struct perf_event *event, 6139 struct perf_sample_data *data, 6140 struct pt_regs *regs) 6141 { 6142 __perf_event_output(event, data, regs, perf_output_begin_forward); 6143 } 6144 6145 void 6146 perf_event_output_backward(struct perf_event *event, 6147 struct perf_sample_data *data, 6148 struct pt_regs *regs) 6149 { 6150 __perf_event_output(event, data, regs, perf_output_begin_backward); 6151 } 6152 6153 void 6154 perf_event_output(struct perf_event *event, 6155 struct perf_sample_data *data, 6156 struct pt_regs *regs) 6157 { 6158 __perf_event_output(event, data, regs, perf_output_begin); 6159 } 6160 6161 /* 6162 * read event_id 6163 */ 6164 6165 struct perf_read_event { 6166 struct perf_event_header header; 6167 6168 u32 pid; 6169 u32 tid; 6170 }; 6171 6172 static void 6173 perf_event_read_event(struct perf_event *event, 6174 struct task_struct *task) 6175 { 6176 struct perf_output_handle handle; 6177 struct perf_sample_data sample; 6178 struct perf_read_event read_event = { 6179 .header = { 6180 .type = PERF_RECORD_READ, 6181 .misc = 0, 6182 .size = sizeof(read_event) + event->read_size, 6183 }, 6184 .pid = perf_event_pid(event, task), 6185 .tid = perf_event_tid(event, task), 6186 }; 6187 int ret; 6188 6189 perf_event_header__init_id(&read_event.header, &sample, event); 6190 ret = perf_output_begin(&handle, event, read_event.header.size); 6191 if (ret) 6192 return; 6193 6194 perf_output_put(&handle, read_event); 6195 perf_output_read(&handle, event); 6196 perf_event__output_id_sample(event, &handle, &sample); 6197 6198 perf_output_end(&handle); 6199 } 6200 6201 typedef void (perf_iterate_f)(struct perf_event *event, void *data); 6202 6203 static void 6204 perf_iterate_ctx(struct perf_event_context *ctx, 6205 perf_iterate_f output, 6206 void *data, bool all) 6207 { 6208 struct perf_event *event; 6209 6210 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 6211 if (!all) { 6212 if (event->state < PERF_EVENT_STATE_INACTIVE) 6213 continue; 6214 if (!event_filter_match(event)) 6215 continue; 6216 } 6217 6218 output(event, data); 6219 } 6220 } 6221 6222 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data) 6223 { 6224 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events); 6225 struct perf_event *event; 6226 6227 list_for_each_entry_rcu(event, &pel->list, sb_list) { 6228 /* 6229 * Skip events that are not fully formed yet; ensure that 6230 * if we observe event->ctx, both event and ctx will be 6231 * complete enough. See perf_install_in_context(). 6232 */ 6233 if (!smp_load_acquire(&event->ctx)) 6234 continue; 6235 6236 if (event->state < PERF_EVENT_STATE_INACTIVE) 6237 continue; 6238 if (!event_filter_match(event)) 6239 continue; 6240 output(event, data); 6241 } 6242 } 6243 6244 /* 6245 * Iterate all events that need to receive side-band events. 6246 * 6247 * For new callers; ensure that account_pmu_sb_event() includes 6248 * your event, otherwise it might not get delivered. 6249 */ 6250 static void 6251 perf_iterate_sb(perf_iterate_f output, void *data, 6252 struct perf_event_context *task_ctx) 6253 { 6254 struct perf_event_context *ctx; 6255 int ctxn; 6256 6257 rcu_read_lock(); 6258 preempt_disable(); 6259 6260 /* 6261 * If we have task_ctx != NULL we only notify the task context itself. 6262 * The task_ctx is set only for EXIT events before releasing task 6263 * context. 6264 */ 6265 if (task_ctx) { 6266 perf_iterate_ctx(task_ctx, output, data, false); 6267 goto done; 6268 } 6269 6270 perf_iterate_sb_cpu(output, data); 6271 6272 for_each_task_context_nr(ctxn) { 6273 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 6274 if (ctx) 6275 perf_iterate_ctx(ctx, output, data, false); 6276 } 6277 done: 6278 preempt_enable(); 6279 rcu_read_unlock(); 6280 } 6281 6282 /* 6283 * Clear all file-based filters at exec, they'll have to be 6284 * re-instated when/if these objects are mmapped again. 6285 */ 6286 static void perf_event_addr_filters_exec(struct perf_event *event, void *data) 6287 { 6288 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 6289 struct perf_addr_filter *filter; 6290 unsigned int restart = 0, count = 0; 6291 unsigned long flags; 6292 6293 if (!has_addr_filter(event)) 6294 return; 6295 6296 raw_spin_lock_irqsave(&ifh->lock, flags); 6297 list_for_each_entry(filter, &ifh->list, entry) { 6298 if (filter->inode) { 6299 event->addr_filters_offs[count] = 0; 6300 restart++; 6301 } 6302 6303 count++; 6304 } 6305 6306 if (restart) 6307 event->addr_filters_gen++; 6308 raw_spin_unlock_irqrestore(&ifh->lock, flags); 6309 6310 if (restart) 6311 perf_event_stop(event, 1); 6312 } 6313 6314 void perf_event_exec(void) 6315 { 6316 struct perf_event_context *ctx; 6317 int ctxn; 6318 6319 rcu_read_lock(); 6320 for_each_task_context_nr(ctxn) { 6321 ctx = current->perf_event_ctxp[ctxn]; 6322 if (!ctx) 6323 continue; 6324 6325 perf_event_enable_on_exec(ctxn); 6326 6327 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, 6328 true); 6329 } 6330 rcu_read_unlock(); 6331 } 6332 6333 struct remote_output { 6334 struct ring_buffer *rb; 6335 int err; 6336 }; 6337 6338 static void __perf_event_output_stop(struct perf_event *event, void *data) 6339 { 6340 struct perf_event *parent = event->parent; 6341 struct remote_output *ro = data; 6342 struct ring_buffer *rb = ro->rb; 6343 struct stop_event_data sd = { 6344 .event = event, 6345 }; 6346 6347 if (!has_aux(event)) 6348 return; 6349 6350 if (!parent) 6351 parent = event; 6352 6353 /* 6354 * In case of inheritance, it will be the parent that links to the 6355 * ring-buffer, but it will be the child that's actually using it. 6356 * 6357 * We are using event::rb to determine if the event should be stopped, 6358 * however this may race with ring_buffer_attach() (through set_output), 6359 * which will make us skip the event that actually needs to be stopped. 6360 * So ring_buffer_attach() has to stop an aux event before re-assigning 6361 * its rb pointer. 6362 */ 6363 if (rcu_dereference(parent->rb) == rb) 6364 ro->err = __perf_event_stop(&sd); 6365 } 6366 6367 static int __perf_pmu_output_stop(void *info) 6368 { 6369 struct perf_event *event = info; 6370 struct pmu *pmu = event->pmu; 6371 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 6372 struct remote_output ro = { 6373 .rb = event->rb, 6374 }; 6375 6376 rcu_read_lock(); 6377 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false); 6378 if (cpuctx->task_ctx) 6379 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop, 6380 &ro, false); 6381 rcu_read_unlock(); 6382 6383 return ro.err; 6384 } 6385 6386 static void perf_pmu_output_stop(struct perf_event *event) 6387 { 6388 struct perf_event *iter; 6389 int err, cpu; 6390 6391 restart: 6392 rcu_read_lock(); 6393 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) { 6394 /* 6395 * For per-CPU events, we need to make sure that neither they 6396 * nor their children are running; for cpu==-1 events it's 6397 * sufficient to stop the event itself if it's active, since 6398 * it can't have children. 6399 */ 6400 cpu = iter->cpu; 6401 if (cpu == -1) 6402 cpu = READ_ONCE(iter->oncpu); 6403 6404 if (cpu == -1) 6405 continue; 6406 6407 err = cpu_function_call(cpu, __perf_pmu_output_stop, event); 6408 if (err == -EAGAIN) { 6409 rcu_read_unlock(); 6410 goto restart; 6411 } 6412 } 6413 rcu_read_unlock(); 6414 } 6415 6416 /* 6417 * task tracking -- fork/exit 6418 * 6419 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 6420 */ 6421 6422 struct perf_task_event { 6423 struct task_struct *task; 6424 struct perf_event_context *task_ctx; 6425 6426 struct { 6427 struct perf_event_header header; 6428 6429 u32 pid; 6430 u32 ppid; 6431 u32 tid; 6432 u32 ptid; 6433 u64 time; 6434 } event_id; 6435 }; 6436 6437 static int perf_event_task_match(struct perf_event *event) 6438 { 6439 return event->attr.comm || event->attr.mmap || 6440 event->attr.mmap2 || event->attr.mmap_data || 6441 event->attr.task; 6442 } 6443 6444 static void perf_event_task_output(struct perf_event *event, 6445 void *data) 6446 { 6447 struct perf_task_event *task_event = data; 6448 struct perf_output_handle handle; 6449 struct perf_sample_data sample; 6450 struct task_struct *task = task_event->task; 6451 int ret, size = task_event->event_id.header.size; 6452 6453 if (!perf_event_task_match(event)) 6454 return; 6455 6456 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 6457 6458 ret = perf_output_begin(&handle, event, 6459 task_event->event_id.header.size); 6460 if (ret) 6461 goto out; 6462 6463 task_event->event_id.pid = perf_event_pid(event, task); 6464 task_event->event_id.ppid = perf_event_pid(event, current); 6465 6466 task_event->event_id.tid = perf_event_tid(event, task); 6467 task_event->event_id.ptid = perf_event_tid(event, current); 6468 6469 task_event->event_id.time = perf_event_clock(event); 6470 6471 perf_output_put(&handle, task_event->event_id); 6472 6473 perf_event__output_id_sample(event, &handle, &sample); 6474 6475 perf_output_end(&handle); 6476 out: 6477 task_event->event_id.header.size = size; 6478 } 6479 6480 static void perf_event_task(struct task_struct *task, 6481 struct perf_event_context *task_ctx, 6482 int new) 6483 { 6484 struct perf_task_event task_event; 6485 6486 if (!atomic_read(&nr_comm_events) && 6487 !atomic_read(&nr_mmap_events) && 6488 !atomic_read(&nr_task_events)) 6489 return; 6490 6491 task_event = (struct perf_task_event){ 6492 .task = task, 6493 .task_ctx = task_ctx, 6494 .event_id = { 6495 .header = { 6496 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 6497 .misc = 0, 6498 .size = sizeof(task_event.event_id), 6499 }, 6500 /* .pid */ 6501 /* .ppid */ 6502 /* .tid */ 6503 /* .ptid */ 6504 /* .time */ 6505 }, 6506 }; 6507 6508 perf_iterate_sb(perf_event_task_output, 6509 &task_event, 6510 task_ctx); 6511 } 6512 6513 void perf_event_fork(struct task_struct *task) 6514 { 6515 perf_event_task(task, NULL, 1); 6516 perf_event_namespaces(task); 6517 } 6518 6519 /* 6520 * comm tracking 6521 */ 6522 6523 struct perf_comm_event { 6524 struct task_struct *task; 6525 char *comm; 6526 int comm_size; 6527 6528 struct { 6529 struct perf_event_header header; 6530 6531 u32 pid; 6532 u32 tid; 6533 } event_id; 6534 }; 6535 6536 static int perf_event_comm_match(struct perf_event *event) 6537 { 6538 return event->attr.comm; 6539 } 6540 6541 static void perf_event_comm_output(struct perf_event *event, 6542 void *data) 6543 { 6544 struct perf_comm_event *comm_event = data; 6545 struct perf_output_handle handle; 6546 struct perf_sample_data sample; 6547 int size = comm_event->event_id.header.size; 6548 int ret; 6549 6550 if (!perf_event_comm_match(event)) 6551 return; 6552 6553 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 6554 ret = perf_output_begin(&handle, event, 6555 comm_event->event_id.header.size); 6556 6557 if (ret) 6558 goto out; 6559 6560 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 6561 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 6562 6563 perf_output_put(&handle, comm_event->event_id); 6564 __output_copy(&handle, comm_event->comm, 6565 comm_event->comm_size); 6566 6567 perf_event__output_id_sample(event, &handle, &sample); 6568 6569 perf_output_end(&handle); 6570 out: 6571 comm_event->event_id.header.size = size; 6572 } 6573 6574 static void perf_event_comm_event(struct perf_comm_event *comm_event) 6575 { 6576 char comm[TASK_COMM_LEN]; 6577 unsigned int size; 6578 6579 memset(comm, 0, sizeof(comm)); 6580 strlcpy(comm, comm_event->task->comm, sizeof(comm)); 6581 size = ALIGN(strlen(comm)+1, sizeof(u64)); 6582 6583 comm_event->comm = comm; 6584 comm_event->comm_size = size; 6585 6586 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 6587 6588 perf_iterate_sb(perf_event_comm_output, 6589 comm_event, 6590 NULL); 6591 } 6592 6593 void perf_event_comm(struct task_struct *task, bool exec) 6594 { 6595 struct perf_comm_event comm_event; 6596 6597 if (!atomic_read(&nr_comm_events)) 6598 return; 6599 6600 comm_event = (struct perf_comm_event){ 6601 .task = task, 6602 /* .comm */ 6603 /* .comm_size */ 6604 .event_id = { 6605 .header = { 6606 .type = PERF_RECORD_COMM, 6607 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 6608 /* .size */ 6609 }, 6610 /* .pid */ 6611 /* .tid */ 6612 }, 6613 }; 6614 6615 perf_event_comm_event(&comm_event); 6616 } 6617 6618 /* 6619 * namespaces tracking 6620 */ 6621 6622 struct perf_namespaces_event { 6623 struct task_struct *task; 6624 6625 struct { 6626 struct perf_event_header header; 6627 6628 u32 pid; 6629 u32 tid; 6630 u64 nr_namespaces; 6631 struct perf_ns_link_info link_info[NR_NAMESPACES]; 6632 } event_id; 6633 }; 6634 6635 static int perf_event_namespaces_match(struct perf_event *event) 6636 { 6637 return event->attr.namespaces; 6638 } 6639 6640 static void perf_event_namespaces_output(struct perf_event *event, 6641 void *data) 6642 { 6643 struct perf_namespaces_event *namespaces_event = data; 6644 struct perf_output_handle handle; 6645 struct perf_sample_data sample; 6646 int ret; 6647 6648 if (!perf_event_namespaces_match(event)) 6649 return; 6650 6651 perf_event_header__init_id(&namespaces_event->event_id.header, 6652 &sample, event); 6653 ret = perf_output_begin(&handle, event, 6654 namespaces_event->event_id.header.size); 6655 if (ret) 6656 return; 6657 6658 namespaces_event->event_id.pid = perf_event_pid(event, 6659 namespaces_event->task); 6660 namespaces_event->event_id.tid = perf_event_tid(event, 6661 namespaces_event->task); 6662 6663 perf_output_put(&handle, namespaces_event->event_id); 6664 6665 perf_event__output_id_sample(event, &handle, &sample); 6666 6667 perf_output_end(&handle); 6668 } 6669 6670 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info, 6671 struct task_struct *task, 6672 const struct proc_ns_operations *ns_ops) 6673 { 6674 struct path ns_path; 6675 struct inode *ns_inode; 6676 void *error; 6677 6678 error = ns_get_path(&ns_path, task, ns_ops); 6679 if (!error) { 6680 ns_inode = ns_path.dentry->d_inode; 6681 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev); 6682 ns_link_info->ino = ns_inode->i_ino; 6683 } 6684 } 6685 6686 void perf_event_namespaces(struct task_struct *task) 6687 { 6688 struct perf_namespaces_event namespaces_event; 6689 struct perf_ns_link_info *ns_link_info; 6690 6691 if (!atomic_read(&nr_namespaces_events)) 6692 return; 6693 6694 namespaces_event = (struct perf_namespaces_event){ 6695 .task = task, 6696 .event_id = { 6697 .header = { 6698 .type = PERF_RECORD_NAMESPACES, 6699 .misc = 0, 6700 .size = sizeof(namespaces_event.event_id), 6701 }, 6702 /* .pid */ 6703 /* .tid */ 6704 .nr_namespaces = NR_NAMESPACES, 6705 /* .link_info[NR_NAMESPACES] */ 6706 }, 6707 }; 6708 6709 ns_link_info = namespaces_event.event_id.link_info; 6710 6711 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX], 6712 task, &mntns_operations); 6713 6714 #ifdef CONFIG_USER_NS 6715 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX], 6716 task, &userns_operations); 6717 #endif 6718 #ifdef CONFIG_NET_NS 6719 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX], 6720 task, &netns_operations); 6721 #endif 6722 #ifdef CONFIG_UTS_NS 6723 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX], 6724 task, &utsns_operations); 6725 #endif 6726 #ifdef CONFIG_IPC_NS 6727 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX], 6728 task, &ipcns_operations); 6729 #endif 6730 #ifdef CONFIG_PID_NS 6731 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX], 6732 task, &pidns_operations); 6733 #endif 6734 #ifdef CONFIG_CGROUPS 6735 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX], 6736 task, &cgroupns_operations); 6737 #endif 6738 6739 perf_iterate_sb(perf_event_namespaces_output, 6740 &namespaces_event, 6741 NULL); 6742 } 6743 6744 /* 6745 * mmap tracking 6746 */ 6747 6748 struct perf_mmap_event { 6749 struct vm_area_struct *vma; 6750 6751 const char *file_name; 6752 int file_size; 6753 int maj, min; 6754 u64 ino; 6755 u64 ino_generation; 6756 u32 prot, flags; 6757 6758 struct { 6759 struct perf_event_header header; 6760 6761 u32 pid; 6762 u32 tid; 6763 u64 start; 6764 u64 len; 6765 u64 pgoff; 6766 } event_id; 6767 }; 6768 6769 static int perf_event_mmap_match(struct perf_event *event, 6770 void *data) 6771 { 6772 struct perf_mmap_event *mmap_event = data; 6773 struct vm_area_struct *vma = mmap_event->vma; 6774 int executable = vma->vm_flags & VM_EXEC; 6775 6776 return (!executable && event->attr.mmap_data) || 6777 (executable && (event->attr.mmap || event->attr.mmap2)); 6778 } 6779 6780 static void perf_event_mmap_output(struct perf_event *event, 6781 void *data) 6782 { 6783 struct perf_mmap_event *mmap_event = data; 6784 struct perf_output_handle handle; 6785 struct perf_sample_data sample; 6786 int size = mmap_event->event_id.header.size; 6787 int ret; 6788 6789 if (!perf_event_mmap_match(event, data)) 6790 return; 6791 6792 if (event->attr.mmap2) { 6793 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 6794 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 6795 mmap_event->event_id.header.size += sizeof(mmap_event->min); 6796 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 6797 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 6798 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 6799 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 6800 } 6801 6802 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 6803 ret = perf_output_begin(&handle, event, 6804 mmap_event->event_id.header.size); 6805 if (ret) 6806 goto out; 6807 6808 mmap_event->event_id.pid = perf_event_pid(event, current); 6809 mmap_event->event_id.tid = perf_event_tid(event, current); 6810 6811 perf_output_put(&handle, mmap_event->event_id); 6812 6813 if (event->attr.mmap2) { 6814 perf_output_put(&handle, mmap_event->maj); 6815 perf_output_put(&handle, mmap_event->min); 6816 perf_output_put(&handle, mmap_event->ino); 6817 perf_output_put(&handle, mmap_event->ino_generation); 6818 perf_output_put(&handle, mmap_event->prot); 6819 perf_output_put(&handle, mmap_event->flags); 6820 } 6821 6822 __output_copy(&handle, mmap_event->file_name, 6823 mmap_event->file_size); 6824 6825 perf_event__output_id_sample(event, &handle, &sample); 6826 6827 perf_output_end(&handle); 6828 out: 6829 mmap_event->event_id.header.size = size; 6830 } 6831 6832 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 6833 { 6834 struct vm_area_struct *vma = mmap_event->vma; 6835 struct file *file = vma->vm_file; 6836 int maj = 0, min = 0; 6837 u64 ino = 0, gen = 0; 6838 u32 prot = 0, flags = 0; 6839 unsigned int size; 6840 char tmp[16]; 6841 char *buf = NULL; 6842 char *name; 6843 6844 if (vma->vm_flags & VM_READ) 6845 prot |= PROT_READ; 6846 if (vma->vm_flags & VM_WRITE) 6847 prot |= PROT_WRITE; 6848 if (vma->vm_flags & VM_EXEC) 6849 prot |= PROT_EXEC; 6850 6851 if (vma->vm_flags & VM_MAYSHARE) 6852 flags = MAP_SHARED; 6853 else 6854 flags = MAP_PRIVATE; 6855 6856 if (vma->vm_flags & VM_DENYWRITE) 6857 flags |= MAP_DENYWRITE; 6858 if (vma->vm_flags & VM_MAYEXEC) 6859 flags |= MAP_EXECUTABLE; 6860 if (vma->vm_flags & VM_LOCKED) 6861 flags |= MAP_LOCKED; 6862 if (vma->vm_flags & VM_HUGETLB) 6863 flags |= MAP_HUGETLB; 6864 6865 if (file) { 6866 struct inode *inode; 6867 dev_t dev; 6868 6869 buf = kmalloc(PATH_MAX, GFP_KERNEL); 6870 if (!buf) { 6871 name = "//enomem"; 6872 goto cpy_name; 6873 } 6874 /* 6875 * d_path() works from the end of the rb backwards, so we 6876 * need to add enough zero bytes after the string to handle 6877 * the 64bit alignment we do later. 6878 */ 6879 name = file_path(file, buf, PATH_MAX - sizeof(u64)); 6880 if (IS_ERR(name)) { 6881 name = "//toolong"; 6882 goto cpy_name; 6883 } 6884 inode = file_inode(vma->vm_file); 6885 dev = inode->i_sb->s_dev; 6886 ino = inode->i_ino; 6887 gen = inode->i_generation; 6888 maj = MAJOR(dev); 6889 min = MINOR(dev); 6890 6891 goto got_name; 6892 } else { 6893 if (vma->vm_ops && vma->vm_ops->name) { 6894 name = (char *) vma->vm_ops->name(vma); 6895 if (name) 6896 goto cpy_name; 6897 } 6898 6899 name = (char *)arch_vma_name(vma); 6900 if (name) 6901 goto cpy_name; 6902 6903 if (vma->vm_start <= vma->vm_mm->start_brk && 6904 vma->vm_end >= vma->vm_mm->brk) { 6905 name = "[heap]"; 6906 goto cpy_name; 6907 } 6908 if (vma->vm_start <= vma->vm_mm->start_stack && 6909 vma->vm_end >= vma->vm_mm->start_stack) { 6910 name = "[stack]"; 6911 goto cpy_name; 6912 } 6913 6914 name = "//anon"; 6915 goto cpy_name; 6916 } 6917 6918 cpy_name: 6919 strlcpy(tmp, name, sizeof(tmp)); 6920 name = tmp; 6921 got_name: 6922 /* 6923 * Since our buffer works in 8 byte units we need to align our string 6924 * size to a multiple of 8. However, we must guarantee the tail end is 6925 * zero'd out to avoid leaking random bits to userspace. 6926 */ 6927 size = strlen(name)+1; 6928 while (!IS_ALIGNED(size, sizeof(u64))) 6929 name[size++] = '\0'; 6930 6931 mmap_event->file_name = name; 6932 mmap_event->file_size = size; 6933 mmap_event->maj = maj; 6934 mmap_event->min = min; 6935 mmap_event->ino = ino; 6936 mmap_event->ino_generation = gen; 6937 mmap_event->prot = prot; 6938 mmap_event->flags = flags; 6939 6940 if (!(vma->vm_flags & VM_EXEC)) 6941 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 6942 6943 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 6944 6945 perf_iterate_sb(perf_event_mmap_output, 6946 mmap_event, 6947 NULL); 6948 6949 kfree(buf); 6950 } 6951 6952 /* 6953 * Check whether inode and address range match filter criteria. 6954 */ 6955 static bool perf_addr_filter_match(struct perf_addr_filter *filter, 6956 struct file *file, unsigned long offset, 6957 unsigned long size) 6958 { 6959 if (filter->inode != file_inode(file)) 6960 return false; 6961 6962 if (filter->offset > offset + size) 6963 return false; 6964 6965 if (filter->offset + filter->size < offset) 6966 return false; 6967 6968 return true; 6969 } 6970 6971 static void __perf_addr_filters_adjust(struct perf_event *event, void *data) 6972 { 6973 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 6974 struct vm_area_struct *vma = data; 6975 unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags; 6976 struct file *file = vma->vm_file; 6977 struct perf_addr_filter *filter; 6978 unsigned int restart = 0, count = 0; 6979 6980 if (!has_addr_filter(event)) 6981 return; 6982 6983 if (!file) 6984 return; 6985 6986 raw_spin_lock_irqsave(&ifh->lock, flags); 6987 list_for_each_entry(filter, &ifh->list, entry) { 6988 if (perf_addr_filter_match(filter, file, off, 6989 vma->vm_end - vma->vm_start)) { 6990 event->addr_filters_offs[count] = vma->vm_start; 6991 restart++; 6992 } 6993 6994 count++; 6995 } 6996 6997 if (restart) 6998 event->addr_filters_gen++; 6999 raw_spin_unlock_irqrestore(&ifh->lock, flags); 7000 7001 if (restart) 7002 perf_event_stop(event, 1); 7003 } 7004 7005 /* 7006 * Adjust all task's events' filters to the new vma 7007 */ 7008 static void perf_addr_filters_adjust(struct vm_area_struct *vma) 7009 { 7010 struct perf_event_context *ctx; 7011 int ctxn; 7012 7013 /* 7014 * Data tracing isn't supported yet and as such there is no need 7015 * to keep track of anything that isn't related to executable code: 7016 */ 7017 if (!(vma->vm_flags & VM_EXEC)) 7018 return; 7019 7020 rcu_read_lock(); 7021 for_each_task_context_nr(ctxn) { 7022 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 7023 if (!ctx) 7024 continue; 7025 7026 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true); 7027 } 7028 rcu_read_unlock(); 7029 } 7030 7031 void perf_event_mmap(struct vm_area_struct *vma) 7032 { 7033 struct perf_mmap_event mmap_event; 7034 7035 if (!atomic_read(&nr_mmap_events)) 7036 return; 7037 7038 mmap_event = (struct perf_mmap_event){ 7039 .vma = vma, 7040 /* .file_name */ 7041 /* .file_size */ 7042 .event_id = { 7043 .header = { 7044 .type = PERF_RECORD_MMAP, 7045 .misc = PERF_RECORD_MISC_USER, 7046 /* .size */ 7047 }, 7048 /* .pid */ 7049 /* .tid */ 7050 .start = vma->vm_start, 7051 .len = vma->vm_end - vma->vm_start, 7052 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 7053 }, 7054 /* .maj (attr_mmap2 only) */ 7055 /* .min (attr_mmap2 only) */ 7056 /* .ino (attr_mmap2 only) */ 7057 /* .ino_generation (attr_mmap2 only) */ 7058 /* .prot (attr_mmap2 only) */ 7059 /* .flags (attr_mmap2 only) */ 7060 }; 7061 7062 perf_addr_filters_adjust(vma); 7063 perf_event_mmap_event(&mmap_event); 7064 } 7065 7066 void perf_event_aux_event(struct perf_event *event, unsigned long head, 7067 unsigned long size, u64 flags) 7068 { 7069 struct perf_output_handle handle; 7070 struct perf_sample_data sample; 7071 struct perf_aux_event { 7072 struct perf_event_header header; 7073 u64 offset; 7074 u64 size; 7075 u64 flags; 7076 } rec = { 7077 .header = { 7078 .type = PERF_RECORD_AUX, 7079 .misc = 0, 7080 .size = sizeof(rec), 7081 }, 7082 .offset = head, 7083 .size = size, 7084 .flags = flags, 7085 }; 7086 int ret; 7087 7088 perf_event_header__init_id(&rec.header, &sample, event); 7089 ret = perf_output_begin(&handle, event, rec.header.size); 7090 7091 if (ret) 7092 return; 7093 7094 perf_output_put(&handle, rec); 7095 perf_event__output_id_sample(event, &handle, &sample); 7096 7097 perf_output_end(&handle); 7098 } 7099 7100 /* 7101 * Lost/dropped samples logging 7102 */ 7103 void perf_log_lost_samples(struct perf_event *event, u64 lost) 7104 { 7105 struct perf_output_handle handle; 7106 struct perf_sample_data sample; 7107 int ret; 7108 7109 struct { 7110 struct perf_event_header header; 7111 u64 lost; 7112 } lost_samples_event = { 7113 .header = { 7114 .type = PERF_RECORD_LOST_SAMPLES, 7115 .misc = 0, 7116 .size = sizeof(lost_samples_event), 7117 }, 7118 .lost = lost, 7119 }; 7120 7121 perf_event_header__init_id(&lost_samples_event.header, &sample, event); 7122 7123 ret = perf_output_begin(&handle, event, 7124 lost_samples_event.header.size); 7125 if (ret) 7126 return; 7127 7128 perf_output_put(&handle, lost_samples_event); 7129 perf_event__output_id_sample(event, &handle, &sample); 7130 perf_output_end(&handle); 7131 } 7132 7133 /* 7134 * context_switch tracking 7135 */ 7136 7137 struct perf_switch_event { 7138 struct task_struct *task; 7139 struct task_struct *next_prev; 7140 7141 struct { 7142 struct perf_event_header header; 7143 u32 next_prev_pid; 7144 u32 next_prev_tid; 7145 } event_id; 7146 }; 7147 7148 static int perf_event_switch_match(struct perf_event *event) 7149 { 7150 return event->attr.context_switch; 7151 } 7152 7153 static void perf_event_switch_output(struct perf_event *event, void *data) 7154 { 7155 struct perf_switch_event *se = data; 7156 struct perf_output_handle handle; 7157 struct perf_sample_data sample; 7158 int ret; 7159 7160 if (!perf_event_switch_match(event)) 7161 return; 7162 7163 /* Only CPU-wide events are allowed to see next/prev pid/tid */ 7164 if (event->ctx->task) { 7165 se->event_id.header.type = PERF_RECORD_SWITCH; 7166 se->event_id.header.size = sizeof(se->event_id.header); 7167 } else { 7168 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE; 7169 se->event_id.header.size = sizeof(se->event_id); 7170 se->event_id.next_prev_pid = 7171 perf_event_pid(event, se->next_prev); 7172 se->event_id.next_prev_tid = 7173 perf_event_tid(event, se->next_prev); 7174 } 7175 7176 perf_event_header__init_id(&se->event_id.header, &sample, event); 7177 7178 ret = perf_output_begin(&handle, event, se->event_id.header.size); 7179 if (ret) 7180 return; 7181 7182 if (event->ctx->task) 7183 perf_output_put(&handle, se->event_id.header); 7184 else 7185 perf_output_put(&handle, se->event_id); 7186 7187 perf_event__output_id_sample(event, &handle, &sample); 7188 7189 perf_output_end(&handle); 7190 } 7191 7192 static void perf_event_switch(struct task_struct *task, 7193 struct task_struct *next_prev, bool sched_in) 7194 { 7195 struct perf_switch_event switch_event; 7196 7197 /* N.B. caller checks nr_switch_events != 0 */ 7198 7199 switch_event = (struct perf_switch_event){ 7200 .task = task, 7201 .next_prev = next_prev, 7202 .event_id = { 7203 .header = { 7204 /* .type */ 7205 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT, 7206 /* .size */ 7207 }, 7208 /* .next_prev_pid */ 7209 /* .next_prev_tid */ 7210 }, 7211 }; 7212 7213 perf_iterate_sb(perf_event_switch_output, 7214 &switch_event, 7215 NULL); 7216 } 7217 7218 /* 7219 * IRQ throttle logging 7220 */ 7221 7222 static void perf_log_throttle(struct perf_event *event, int enable) 7223 { 7224 struct perf_output_handle handle; 7225 struct perf_sample_data sample; 7226 int ret; 7227 7228 struct { 7229 struct perf_event_header header; 7230 u64 time; 7231 u64 id; 7232 u64 stream_id; 7233 } throttle_event = { 7234 .header = { 7235 .type = PERF_RECORD_THROTTLE, 7236 .misc = 0, 7237 .size = sizeof(throttle_event), 7238 }, 7239 .time = perf_event_clock(event), 7240 .id = primary_event_id(event), 7241 .stream_id = event->id, 7242 }; 7243 7244 if (enable) 7245 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 7246 7247 perf_event_header__init_id(&throttle_event.header, &sample, event); 7248 7249 ret = perf_output_begin(&handle, event, 7250 throttle_event.header.size); 7251 if (ret) 7252 return; 7253 7254 perf_output_put(&handle, throttle_event); 7255 perf_event__output_id_sample(event, &handle, &sample); 7256 perf_output_end(&handle); 7257 } 7258 7259 static void perf_log_itrace_start(struct perf_event *event) 7260 { 7261 struct perf_output_handle handle; 7262 struct perf_sample_data sample; 7263 struct perf_aux_event { 7264 struct perf_event_header header; 7265 u32 pid; 7266 u32 tid; 7267 } rec; 7268 int ret; 7269 7270 if (event->parent) 7271 event = event->parent; 7272 7273 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || 7274 event->hw.itrace_started) 7275 return; 7276 7277 rec.header.type = PERF_RECORD_ITRACE_START; 7278 rec.header.misc = 0; 7279 rec.header.size = sizeof(rec); 7280 rec.pid = perf_event_pid(event, current); 7281 rec.tid = perf_event_tid(event, current); 7282 7283 perf_event_header__init_id(&rec.header, &sample, event); 7284 ret = perf_output_begin(&handle, event, rec.header.size); 7285 7286 if (ret) 7287 return; 7288 7289 perf_output_put(&handle, rec); 7290 perf_event__output_id_sample(event, &handle, &sample); 7291 7292 perf_output_end(&handle); 7293 } 7294 7295 static int 7296 __perf_event_account_interrupt(struct perf_event *event, int throttle) 7297 { 7298 struct hw_perf_event *hwc = &event->hw; 7299 int ret = 0; 7300 u64 seq; 7301 7302 seq = __this_cpu_read(perf_throttled_seq); 7303 if (seq != hwc->interrupts_seq) { 7304 hwc->interrupts_seq = seq; 7305 hwc->interrupts = 1; 7306 } else { 7307 hwc->interrupts++; 7308 if (unlikely(throttle 7309 && hwc->interrupts >= max_samples_per_tick)) { 7310 __this_cpu_inc(perf_throttled_count); 7311 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 7312 hwc->interrupts = MAX_INTERRUPTS; 7313 perf_log_throttle(event, 0); 7314 ret = 1; 7315 } 7316 } 7317 7318 if (event->attr.freq) { 7319 u64 now = perf_clock(); 7320 s64 delta = now - hwc->freq_time_stamp; 7321 7322 hwc->freq_time_stamp = now; 7323 7324 if (delta > 0 && delta < 2*TICK_NSEC) 7325 perf_adjust_period(event, delta, hwc->last_period, true); 7326 } 7327 7328 return ret; 7329 } 7330 7331 int perf_event_account_interrupt(struct perf_event *event) 7332 { 7333 return __perf_event_account_interrupt(event, 1); 7334 } 7335 7336 /* 7337 * Generic event overflow handling, sampling. 7338 */ 7339 7340 static int __perf_event_overflow(struct perf_event *event, 7341 int throttle, struct perf_sample_data *data, 7342 struct pt_regs *regs) 7343 { 7344 int events = atomic_read(&event->event_limit); 7345 int ret = 0; 7346 7347 /* 7348 * Non-sampling counters might still use the PMI to fold short 7349 * hardware counters, ignore those. 7350 */ 7351 if (unlikely(!is_sampling_event(event))) 7352 return 0; 7353 7354 ret = __perf_event_account_interrupt(event, throttle); 7355 7356 /* 7357 * XXX event_limit might not quite work as expected on inherited 7358 * events 7359 */ 7360 7361 event->pending_kill = POLL_IN; 7362 if (events && atomic_dec_and_test(&event->event_limit)) { 7363 ret = 1; 7364 event->pending_kill = POLL_HUP; 7365 7366 perf_event_disable_inatomic(event); 7367 } 7368 7369 READ_ONCE(event->overflow_handler)(event, data, regs); 7370 7371 if (*perf_event_fasync(event) && event->pending_kill) { 7372 event->pending_wakeup = 1; 7373 irq_work_queue(&event->pending); 7374 } 7375 7376 return ret; 7377 } 7378 7379 int perf_event_overflow(struct perf_event *event, 7380 struct perf_sample_data *data, 7381 struct pt_regs *regs) 7382 { 7383 return __perf_event_overflow(event, 1, data, regs); 7384 } 7385 7386 /* 7387 * Generic software event infrastructure 7388 */ 7389 7390 struct swevent_htable { 7391 struct swevent_hlist *swevent_hlist; 7392 struct mutex hlist_mutex; 7393 int hlist_refcount; 7394 7395 /* Recursion avoidance in each contexts */ 7396 int recursion[PERF_NR_CONTEXTS]; 7397 }; 7398 7399 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 7400 7401 /* 7402 * We directly increment event->count and keep a second value in 7403 * event->hw.period_left to count intervals. This period event 7404 * is kept in the range [-sample_period, 0] so that we can use the 7405 * sign as trigger. 7406 */ 7407 7408 u64 perf_swevent_set_period(struct perf_event *event) 7409 { 7410 struct hw_perf_event *hwc = &event->hw; 7411 u64 period = hwc->last_period; 7412 u64 nr, offset; 7413 s64 old, val; 7414 7415 hwc->last_period = hwc->sample_period; 7416 7417 again: 7418 old = val = local64_read(&hwc->period_left); 7419 if (val < 0) 7420 return 0; 7421 7422 nr = div64_u64(period + val, period); 7423 offset = nr * period; 7424 val -= offset; 7425 if (local64_cmpxchg(&hwc->period_left, old, val) != old) 7426 goto again; 7427 7428 return nr; 7429 } 7430 7431 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 7432 struct perf_sample_data *data, 7433 struct pt_regs *regs) 7434 { 7435 struct hw_perf_event *hwc = &event->hw; 7436 int throttle = 0; 7437 7438 if (!overflow) 7439 overflow = perf_swevent_set_period(event); 7440 7441 if (hwc->interrupts == MAX_INTERRUPTS) 7442 return; 7443 7444 for (; overflow; overflow--) { 7445 if (__perf_event_overflow(event, throttle, 7446 data, regs)) { 7447 /* 7448 * We inhibit the overflow from happening when 7449 * hwc->interrupts == MAX_INTERRUPTS. 7450 */ 7451 break; 7452 } 7453 throttle = 1; 7454 } 7455 } 7456 7457 static void perf_swevent_event(struct perf_event *event, u64 nr, 7458 struct perf_sample_data *data, 7459 struct pt_regs *regs) 7460 { 7461 struct hw_perf_event *hwc = &event->hw; 7462 7463 local64_add(nr, &event->count); 7464 7465 if (!regs) 7466 return; 7467 7468 if (!is_sampling_event(event)) 7469 return; 7470 7471 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 7472 data->period = nr; 7473 return perf_swevent_overflow(event, 1, data, regs); 7474 } else 7475 data->period = event->hw.last_period; 7476 7477 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 7478 return perf_swevent_overflow(event, 1, data, regs); 7479 7480 if (local64_add_negative(nr, &hwc->period_left)) 7481 return; 7482 7483 perf_swevent_overflow(event, 0, data, regs); 7484 } 7485 7486 static int perf_exclude_event(struct perf_event *event, 7487 struct pt_regs *regs) 7488 { 7489 if (event->hw.state & PERF_HES_STOPPED) 7490 return 1; 7491 7492 if (regs) { 7493 if (event->attr.exclude_user && user_mode(regs)) 7494 return 1; 7495 7496 if (event->attr.exclude_kernel && !user_mode(regs)) 7497 return 1; 7498 } 7499 7500 return 0; 7501 } 7502 7503 static int perf_swevent_match(struct perf_event *event, 7504 enum perf_type_id type, 7505 u32 event_id, 7506 struct perf_sample_data *data, 7507 struct pt_regs *regs) 7508 { 7509 if (event->attr.type != type) 7510 return 0; 7511 7512 if (event->attr.config != event_id) 7513 return 0; 7514 7515 if (perf_exclude_event(event, regs)) 7516 return 0; 7517 7518 return 1; 7519 } 7520 7521 static inline u64 swevent_hash(u64 type, u32 event_id) 7522 { 7523 u64 val = event_id | (type << 32); 7524 7525 return hash_64(val, SWEVENT_HLIST_BITS); 7526 } 7527 7528 static inline struct hlist_head * 7529 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 7530 { 7531 u64 hash = swevent_hash(type, event_id); 7532 7533 return &hlist->heads[hash]; 7534 } 7535 7536 /* For the read side: events when they trigger */ 7537 static inline struct hlist_head * 7538 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 7539 { 7540 struct swevent_hlist *hlist; 7541 7542 hlist = rcu_dereference(swhash->swevent_hlist); 7543 if (!hlist) 7544 return NULL; 7545 7546 return __find_swevent_head(hlist, type, event_id); 7547 } 7548 7549 /* For the event head insertion and removal in the hlist */ 7550 static inline struct hlist_head * 7551 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 7552 { 7553 struct swevent_hlist *hlist; 7554 u32 event_id = event->attr.config; 7555 u64 type = event->attr.type; 7556 7557 /* 7558 * Event scheduling is always serialized against hlist allocation 7559 * and release. Which makes the protected version suitable here. 7560 * The context lock guarantees that. 7561 */ 7562 hlist = rcu_dereference_protected(swhash->swevent_hlist, 7563 lockdep_is_held(&event->ctx->lock)); 7564 if (!hlist) 7565 return NULL; 7566 7567 return __find_swevent_head(hlist, type, event_id); 7568 } 7569 7570 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 7571 u64 nr, 7572 struct perf_sample_data *data, 7573 struct pt_regs *regs) 7574 { 7575 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 7576 struct perf_event *event; 7577 struct hlist_head *head; 7578 7579 rcu_read_lock(); 7580 head = find_swevent_head_rcu(swhash, type, event_id); 7581 if (!head) 7582 goto end; 7583 7584 hlist_for_each_entry_rcu(event, head, hlist_entry) { 7585 if (perf_swevent_match(event, type, event_id, data, regs)) 7586 perf_swevent_event(event, nr, data, regs); 7587 } 7588 end: 7589 rcu_read_unlock(); 7590 } 7591 7592 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); 7593 7594 int perf_swevent_get_recursion_context(void) 7595 { 7596 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 7597 7598 return get_recursion_context(swhash->recursion); 7599 } 7600 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 7601 7602 void perf_swevent_put_recursion_context(int rctx) 7603 { 7604 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 7605 7606 put_recursion_context(swhash->recursion, rctx); 7607 } 7608 7609 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 7610 { 7611 struct perf_sample_data data; 7612 7613 if (WARN_ON_ONCE(!regs)) 7614 return; 7615 7616 perf_sample_data_init(&data, addr, 0); 7617 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 7618 } 7619 7620 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 7621 { 7622 int rctx; 7623 7624 preempt_disable_notrace(); 7625 rctx = perf_swevent_get_recursion_context(); 7626 if (unlikely(rctx < 0)) 7627 goto fail; 7628 7629 ___perf_sw_event(event_id, nr, regs, addr); 7630 7631 perf_swevent_put_recursion_context(rctx); 7632 fail: 7633 preempt_enable_notrace(); 7634 } 7635 7636 static void perf_swevent_read(struct perf_event *event) 7637 { 7638 } 7639 7640 static int perf_swevent_add(struct perf_event *event, int flags) 7641 { 7642 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 7643 struct hw_perf_event *hwc = &event->hw; 7644 struct hlist_head *head; 7645 7646 if (is_sampling_event(event)) { 7647 hwc->last_period = hwc->sample_period; 7648 perf_swevent_set_period(event); 7649 } 7650 7651 hwc->state = !(flags & PERF_EF_START); 7652 7653 head = find_swevent_head(swhash, event); 7654 if (WARN_ON_ONCE(!head)) 7655 return -EINVAL; 7656 7657 hlist_add_head_rcu(&event->hlist_entry, head); 7658 perf_event_update_userpage(event); 7659 7660 return 0; 7661 } 7662 7663 static void perf_swevent_del(struct perf_event *event, int flags) 7664 { 7665 hlist_del_rcu(&event->hlist_entry); 7666 } 7667 7668 static void perf_swevent_start(struct perf_event *event, int flags) 7669 { 7670 event->hw.state = 0; 7671 } 7672 7673 static void perf_swevent_stop(struct perf_event *event, int flags) 7674 { 7675 event->hw.state = PERF_HES_STOPPED; 7676 } 7677 7678 /* Deref the hlist from the update side */ 7679 static inline struct swevent_hlist * 7680 swevent_hlist_deref(struct swevent_htable *swhash) 7681 { 7682 return rcu_dereference_protected(swhash->swevent_hlist, 7683 lockdep_is_held(&swhash->hlist_mutex)); 7684 } 7685 7686 static void swevent_hlist_release(struct swevent_htable *swhash) 7687 { 7688 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 7689 7690 if (!hlist) 7691 return; 7692 7693 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 7694 kfree_rcu(hlist, rcu_head); 7695 } 7696 7697 static void swevent_hlist_put_cpu(int cpu) 7698 { 7699 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 7700 7701 mutex_lock(&swhash->hlist_mutex); 7702 7703 if (!--swhash->hlist_refcount) 7704 swevent_hlist_release(swhash); 7705 7706 mutex_unlock(&swhash->hlist_mutex); 7707 } 7708 7709 static void swevent_hlist_put(void) 7710 { 7711 int cpu; 7712 7713 for_each_possible_cpu(cpu) 7714 swevent_hlist_put_cpu(cpu); 7715 } 7716 7717 static int swevent_hlist_get_cpu(int cpu) 7718 { 7719 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 7720 int err = 0; 7721 7722 mutex_lock(&swhash->hlist_mutex); 7723 if (!swevent_hlist_deref(swhash) && 7724 cpumask_test_cpu(cpu, perf_online_mask)) { 7725 struct swevent_hlist *hlist; 7726 7727 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 7728 if (!hlist) { 7729 err = -ENOMEM; 7730 goto exit; 7731 } 7732 rcu_assign_pointer(swhash->swevent_hlist, hlist); 7733 } 7734 swhash->hlist_refcount++; 7735 exit: 7736 mutex_unlock(&swhash->hlist_mutex); 7737 7738 return err; 7739 } 7740 7741 static int swevent_hlist_get(void) 7742 { 7743 int err, cpu, failed_cpu; 7744 7745 mutex_lock(&pmus_lock); 7746 for_each_possible_cpu(cpu) { 7747 err = swevent_hlist_get_cpu(cpu); 7748 if (err) { 7749 failed_cpu = cpu; 7750 goto fail; 7751 } 7752 } 7753 mutex_unlock(&pmus_lock); 7754 return 0; 7755 fail: 7756 for_each_possible_cpu(cpu) { 7757 if (cpu == failed_cpu) 7758 break; 7759 swevent_hlist_put_cpu(cpu); 7760 } 7761 mutex_unlock(&pmus_lock); 7762 return err; 7763 } 7764 7765 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 7766 7767 static void sw_perf_event_destroy(struct perf_event *event) 7768 { 7769 u64 event_id = event->attr.config; 7770 7771 WARN_ON(event->parent); 7772 7773 static_key_slow_dec(&perf_swevent_enabled[event_id]); 7774 swevent_hlist_put(); 7775 } 7776 7777 static int perf_swevent_init(struct perf_event *event) 7778 { 7779 u64 event_id = event->attr.config; 7780 7781 if (event->attr.type != PERF_TYPE_SOFTWARE) 7782 return -ENOENT; 7783 7784 /* 7785 * no branch sampling for software events 7786 */ 7787 if (has_branch_stack(event)) 7788 return -EOPNOTSUPP; 7789 7790 switch (event_id) { 7791 case PERF_COUNT_SW_CPU_CLOCK: 7792 case PERF_COUNT_SW_TASK_CLOCK: 7793 return -ENOENT; 7794 7795 default: 7796 break; 7797 } 7798 7799 if (event_id >= PERF_COUNT_SW_MAX) 7800 return -ENOENT; 7801 7802 if (!event->parent) { 7803 int err; 7804 7805 err = swevent_hlist_get(); 7806 if (err) 7807 return err; 7808 7809 static_key_slow_inc(&perf_swevent_enabled[event_id]); 7810 event->destroy = sw_perf_event_destroy; 7811 } 7812 7813 return 0; 7814 } 7815 7816 static struct pmu perf_swevent = { 7817 .task_ctx_nr = perf_sw_context, 7818 7819 .capabilities = PERF_PMU_CAP_NO_NMI, 7820 7821 .event_init = perf_swevent_init, 7822 .add = perf_swevent_add, 7823 .del = perf_swevent_del, 7824 .start = perf_swevent_start, 7825 .stop = perf_swevent_stop, 7826 .read = perf_swevent_read, 7827 }; 7828 7829 #ifdef CONFIG_EVENT_TRACING 7830 7831 static int perf_tp_filter_match(struct perf_event *event, 7832 struct perf_sample_data *data) 7833 { 7834 void *record = data->raw->frag.data; 7835 7836 /* only top level events have filters set */ 7837 if (event->parent) 7838 event = event->parent; 7839 7840 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 7841 return 1; 7842 return 0; 7843 } 7844 7845 static int perf_tp_event_match(struct perf_event *event, 7846 struct perf_sample_data *data, 7847 struct pt_regs *regs) 7848 { 7849 if (event->hw.state & PERF_HES_STOPPED) 7850 return 0; 7851 /* 7852 * All tracepoints are from kernel-space. 7853 */ 7854 if (event->attr.exclude_kernel) 7855 return 0; 7856 7857 if (!perf_tp_filter_match(event, data)) 7858 return 0; 7859 7860 return 1; 7861 } 7862 7863 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx, 7864 struct trace_event_call *call, u64 count, 7865 struct pt_regs *regs, struct hlist_head *head, 7866 struct task_struct *task) 7867 { 7868 struct bpf_prog *prog = call->prog; 7869 7870 if (prog) { 7871 *(struct pt_regs **)raw_data = regs; 7872 if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) { 7873 perf_swevent_put_recursion_context(rctx); 7874 return; 7875 } 7876 } 7877 perf_tp_event(call->event.type, count, raw_data, size, regs, head, 7878 rctx, task); 7879 } 7880 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit); 7881 7882 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size, 7883 struct pt_regs *regs, struct hlist_head *head, int rctx, 7884 struct task_struct *task) 7885 { 7886 struct perf_sample_data data; 7887 struct perf_event *event; 7888 7889 struct perf_raw_record raw = { 7890 .frag = { 7891 .size = entry_size, 7892 .data = record, 7893 }, 7894 }; 7895 7896 perf_sample_data_init(&data, 0, 0); 7897 data.raw = &raw; 7898 7899 perf_trace_buf_update(record, event_type); 7900 7901 hlist_for_each_entry_rcu(event, head, hlist_entry) { 7902 if (perf_tp_event_match(event, &data, regs)) 7903 perf_swevent_event(event, count, &data, regs); 7904 } 7905 7906 /* 7907 * If we got specified a target task, also iterate its context and 7908 * deliver this event there too. 7909 */ 7910 if (task && task != current) { 7911 struct perf_event_context *ctx; 7912 struct trace_entry *entry = record; 7913 7914 rcu_read_lock(); 7915 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]); 7916 if (!ctx) 7917 goto unlock; 7918 7919 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 7920 if (event->attr.type != PERF_TYPE_TRACEPOINT) 7921 continue; 7922 if (event->attr.config != entry->type) 7923 continue; 7924 if (perf_tp_event_match(event, &data, regs)) 7925 perf_swevent_event(event, count, &data, regs); 7926 } 7927 unlock: 7928 rcu_read_unlock(); 7929 } 7930 7931 perf_swevent_put_recursion_context(rctx); 7932 } 7933 EXPORT_SYMBOL_GPL(perf_tp_event); 7934 7935 static void tp_perf_event_destroy(struct perf_event *event) 7936 { 7937 perf_trace_destroy(event); 7938 } 7939 7940 static int perf_tp_event_init(struct perf_event *event) 7941 { 7942 int err; 7943 7944 if (event->attr.type != PERF_TYPE_TRACEPOINT) 7945 return -ENOENT; 7946 7947 /* 7948 * no branch sampling for tracepoint events 7949 */ 7950 if (has_branch_stack(event)) 7951 return -EOPNOTSUPP; 7952 7953 err = perf_trace_init(event); 7954 if (err) 7955 return err; 7956 7957 event->destroy = tp_perf_event_destroy; 7958 7959 return 0; 7960 } 7961 7962 static struct pmu perf_tracepoint = { 7963 .task_ctx_nr = perf_sw_context, 7964 7965 .event_init = perf_tp_event_init, 7966 .add = perf_trace_add, 7967 .del = perf_trace_del, 7968 .start = perf_swevent_start, 7969 .stop = perf_swevent_stop, 7970 .read = perf_swevent_read, 7971 }; 7972 7973 static inline void perf_tp_register(void) 7974 { 7975 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 7976 } 7977 7978 static void perf_event_free_filter(struct perf_event *event) 7979 { 7980 ftrace_profile_free_filter(event); 7981 } 7982 7983 #ifdef CONFIG_BPF_SYSCALL 7984 static void bpf_overflow_handler(struct perf_event *event, 7985 struct perf_sample_data *data, 7986 struct pt_regs *regs) 7987 { 7988 struct bpf_perf_event_data_kern ctx = { 7989 .data = data, 7990 .regs = regs, 7991 }; 7992 int ret = 0; 7993 7994 preempt_disable(); 7995 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) 7996 goto out; 7997 rcu_read_lock(); 7998 ret = BPF_PROG_RUN(event->prog, &ctx); 7999 rcu_read_unlock(); 8000 out: 8001 __this_cpu_dec(bpf_prog_active); 8002 preempt_enable(); 8003 if (!ret) 8004 return; 8005 8006 event->orig_overflow_handler(event, data, regs); 8007 } 8008 8009 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd) 8010 { 8011 struct bpf_prog *prog; 8012 8013 if (event->overflow_handler_context) 8014 /* hw breakpoint or kernel counter */ 8015 return -EINVAL; 8016 8017 if (event->prog) 8018 return -EEXIST; 8019 8020 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT); 8021 if (IS_ERR(prog)) 8022 return PTR_ERR(prog); 8023 8024 event->prog = prog; 8025 event->orig_overflow_handler = READ_ONCE(event->overflow_handler); 8026 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler); 8027 return 0; 8028 } 8029 8030 static void perf_event_free_bpf_handler(struct perf_event *event) 8031 { 8032 struct bpf_prog *prog = event->prog; 8033 8034 if (!prog) 8035 return; 8036 8037 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler); 8038 event->prog = NULL; 8039 bpf_prog_put(prog); 8040 } 8041 #else 8042 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd) 8043 { 8044 return -EOPNOTSUPP; 8045 } 8046 static void perf_event_free_bpf_handler(struct perf_event *event) 8047 { 8048 } 8049 #endif 8050 8051 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 8052 { 8053 bool is_kprobe, is_tracepoint; 8054 struct bpf_prog *prog; 8055 8056 if (event->attr.type != PERF_TYPE_TRACEPOINT) 8057 return perf_event_set_bpf_handler(event, prog_fd); 8058 8059 if (event->tp_event->prog) 8060 return -EEXIST; 8061 8062 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE; 8063 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT; 8064 if (!is_kprobe && !is_tracepoint) 8065 /* bpf programs can only be attached to u/kprobe or tracepoint */ 8066 return -EINVAL; 8067 8068 prog = bpf_prog_get(prog_fd); 8069 if (IS_ERR(prog)) 8070 return PTR_ERR(prog); 8071 8072 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) || 8073 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT)) { 8074 /* valid fd, but invalid bpf program type */ 8075 bpf_prog_put(prog); 8076 return -EINVAL; 8077 } 8078 8079 if (is_tracepoint) { 8080 int off = trace_event_get_offsets(event->tp_event); 8081 8082 if (prog->aux->max_ctx_offset > off) { 8083 bpf_prog_put(prog); 8084 return -EACCES; 8085 } 8086 } 8087 event->tp_event->prog = prog; 8088 8089 return 0; 8090 } 8091 8092 static void perf_event_free_bpf_prog(struct perf_event *event) 8093 { 8094 struct bpf_prog *prog; 8095 8096 perf_event_free_bpf_handler(event); 8097 8098 if (!event->tp_event) 8099 return; 8100 8101 prog = event->tp_event->prog; 8102 if (prog) { 8103 event->tp_event->prog = NULL; 8104 bpf_prog_put(prog); 8105 } 8106 } 8107 8108 #else 8109 8110 static inline void perf_tp_register(void) 8111 { 8112 } 8113 8114 static void perf_event_free_filter(struct perf_event *event) 8115 { 8116 } 8117 8118 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 8119 { 8120 return -ENOENT; 8121 } 8122 8123 static void perf_event_free_bpf_prog(struct perf_event *event) 8124 { 8125 } 8126 #endif /* CONFIG_EVENT_TRACING */ 8127 8128 #ifdef CONFIG_HAVE_HW_BREAKPOINT 8129 void perf_bp_event(struct perf_event *bp, void *data) 8130 { 8131 struct perf_sample_data sample; 8132 struct pt_regs *regs = data; 8133 8134 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 8135 8136 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 8137 perf_swevent_event(bp, 1, &sample, regs); 8138 } 8139 #endif 8140 8141 /* 8142 * Allocate a new address filter 8143 */ 8144 static struct perf_addr_filter * 8145 perf_addr_filter_new(struct perf_event *event, struct list_head *filters) 8146 { 8147 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu); 8148 struct perf_addr_filter *filter; 8149 8150 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node); 8151 if (!filter) 8152 return NULL; 8153 8154 INIT_LIST_HEAD(&filter->entry); 8155 list_add_tail(&filter->entry, filters); 8156 8157 return filter; 8158 } 8159 8160 static void free_filters_list(struct list_head *filters) 8161 { 8162 struct perf_addr_filter *filter, *iter; 8163 8164 list_for_each_entry_safe(filter, iter, filters, entry) { 8165 if (filter->inode) 8166 iput(filter->inode); 8167 list_del(&filter->entry); 8168 kfree(filter); 8169 } 8170 } 8171 8172 /* 8173 * Free existing address filters and optionally install new ones 8174 */ 8175 static void perf_addr_filters_splice(struct perf_event *event, 8176 struct list_head *head) 8177 { 8178 unsigned long flags; 8179 LIST_HEAD(list); 8180 8181 if (!has_addr_filter(event)) 8182 return; 8183 8184 /* don't bother with children, they don't have their own filters */ 8185 if (event->parent) 8186 return; 8187 8188 raw_spin_lock_irqsave(&event->addr_filters.lock, flags); 8189 8190 list_splice_init(&event->addr_filters.list, &list); 8191 if (head) 8192 list_splice(head, &event->addr_filters.list); 8193 8194 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags); 8195 8196 free_filters_list(&list); 8197 } 8198 8199 /* 8200 * Scan through mm's vmas and see if one of them matches the 8201 * @filter; if so, adjust filter's address range. 8202 * Called with mm::mmap_sem down for reading. 8203 */ 8204 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter, 8205 struct mm_struct *mm) 8206 { 8207 struct vm_area_struct *vma; 8208 8209 for (vma = mm->mmap; vma; vma = vma->vm_next) { 8210 struct file *file = vma->vm_file; 8211 unsigned long off = vma->vm_pgoff << PAGE_SHIFT; 8212 unsigned long vma_size = vma->vm_end - vma->vm_start; 8213 8214 if (!file) 8215 continue; 8216 8217 if (!perf_addr_filter_match(filter, file, off, vma_size)) 8218 continue; 8219 8220 return vma->vm_start; 8221 } 8222 8223 return 0; 8224 } 8225 8226 /* 8227 * Update event's address range filters based on the 8228 * task's existing mappings, if any. 8229 */ 8230 static void perf_event_addr_filters_apply(struct perf_event *event) 8231 { 8232 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 8233 struct task_struct *task = READ_ONCE(event->ctx->task); 8234 struct perf_addr_filter *filter; 8235 struct mm_struct *mm = NULL; 8236 unsigned int count = 0; 8237 unsigned long flags; 8238 8239 /* 8240 * We may observe TASK_TOMBSTONE, which means that the event tear-down 8241 * will stop on the parent's child_mutex that our caller is also holding 8242 */ 8243 if (task == TASK_TOMBSTONE) 8244 return; 8245 8246 if (!ifh->nr_file_filters) 8247 return; 8248 8249 mm = get_task_mm(event->ctx->task); 8250 if (!mm) 8251 goto restart; 8252 8253 down_read(&mm->mmap_sem); 8254 8255 raw_spin_lock_irqsave(&ifh->lock, flags); 8256 list_for_each_entry(filter, &ifh->list, entry) { 8257 event->addr_filters_offs[count] = 0; 8258 8259 /* 8260 * Adjust base offset if the filter is associated to a binary 8261 * that needs to be mapped: 8262 */ 8263 if (filter->inode) 8264 event->addr_filters_offs[count] = 8265 perf_addr_filter_apply(filter, mm); 8266 8267 count++; 8268 } 8269 8270 event->addr_filters_gen++; 8271 raw_spin_unlock_irqrestore(&ifh->lock, flags); 8272 8273 up_read(&mm->mmap_sem); 8274 8275 mmput(mm); 8276 8277 restart: 8278 perf_event_stop(event, 1); 8279 } 8280 8281 /* 8282 * Address range filtering: limiting the data to certain 8283 * instruction address ranges. Filters are ioctl()ed to us from 8284 * userspace as ascii strings. 8285 * 8286 * Filter string format: 8287 * 8288 * ACTION RANGE_SPEC 8289 * where ACTION is one of the 8290 * * "filter": limit the trace to this region 8291 * * "start": start tracing from this address 8292 * * "stop": stop tracing at this address/region; 8293 * RANGE_SPEC is 8294 * * for kernel addresses: <start address>[/<size>] 8295 * * for object files: <start address>[/<size>]@</path/to/object/file> 8296 * 8297 * if <size> is not specified, the range is treated as a single address. 8298 */ 8299 enum { 8300 IF_ACT_NONE = -1, 8301 IF_ACT_FILTER, 8302 IF_ACT_START, 8303 IF_ACT_STOP, 8304 IF_SRC_FILE, 8305 IF_SRC_KERNEL, 8306 IF_SRC_FILEADDR, 8307 IF_SRC_KERNELADDR, 8308 }; 8309 8310 enum { 8311 IF_STATE_ACTION = 0, 8312 IF_STATE_SOURCE, 8313 IF_STATE_END, 8314 }; 8315 8316 static const match_table_t if_tokens = { 8317 { IF_ACT_FILTER, "filter" }, 8318 { IF_ACT_START, "start" }, 8319 { IF_ACT_STOP, "stop" }, 8320 { IF_SRC_FILE, "%u/%u@%s" }, 8321 { IF_SRC_KERNEL, "%u/%u" }, 8322 { IF_SRC_FILEADDR, "%u@%s" }, 8323 { IF_SRC_KERNELADDR, "%u" }, 8324 { IF_ACT_NONE, NULL }, 8325 }; 8326 8327 /* 8328 * Address filter string parser 8329 */ 8330 static int 8331 perf_event_parse_addr_filter(struct perf_event *event, char *fstr, 8332 struct list_head *filters) 8333 { 8334 struct perf_addr_filter *filter = NULL; 8335 char *start, *orig, *filename = NULL; 8336 struct path path; 8337 substring_t args[MAX_OPT_ARGS]; 8338 int state = IF_STATE_ACTION, token; 8339 unsigned int kernel = 0; 8340 int ret = -EINVAL; 8341 8342 orig = fstr = kstrdup(fstr, GFP_KERNEL); 8343 if (!fstr) 8344 return -ENOMEM; 8345 8346 while ((start = strsep(&fstr, " ,\n")) != NULL) { 8347 ret = -EINVAL; 8348 8349 if (!*start) 8350 continue; 8351 8352 /* filter definition begins */ 8353 if (state == IF_STATE_ACTION) { 8354 filter = perf_addr_filter_new(event, filters); 8355 if (!filter) 8356 goto fail; 8357 } 8358 8359 token = match_token(start, if_tokens, args); 8360 switch (token) { 8361 case IF_ACT_FILTER: 8362 case IF_ACT_START: 8363 filter->filter = 1; 8364 8365 case IF_ACT_STOP: 8366 if (state != IF_STATE_ACTION) 8367 goto fail; 8368 8369 state = IF_STATE_SOURCE; 8370 break; 8371 8372 case IF_SRC_KERNELADDR: 8373 case IF_SRC_KERNEL: 8374 kernel = 1; 8375 8376 case IF_SRC_FILEADDR: 8377 case IF_SRC_FILE: 8378 if (state != IF_STATE_SOURCE) 8379 goto fail; 8380 8381 if (token == IF_SRC_FILE || token == IF_SRC_KERNEL) 8382 filter->range = 1; 8383 8384 *args[0].to = 0; 8385 ret = kstrtoul(args[0].from, 0, &filter->offset); 8386 if (ret) 8387 goto fail; 8388 8389 if (filter->range) { 8390 *args[1].to = 0; 8391 ret = kstrtoul(args[1].from, 0, &filter->size); 8392 if (ret) 8393 goto fail; 8394 } 8395 8396 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) { 8397 int fpos = filter->range ? 2 : 1; 8398 8399 filename = match_strdup(&args[fpos]); 8400 if (!filename) { 8401 ret = -ENOMEM; 8402 goto fail; 8403 } 8404 } 8405 8406 state = IF_STATE_END; 8407 break; 8408 8409 default: 8410 goto fail; 8411 } 8412 8413 /* 8414 * Filter definition is fully parsed, validate and install it. 8415 * Make sure that it doesn't contradict itself or the event's 8416 * attribute. 8417 */ 8418 if (state == IF_STATE_END) { 8419 ret = -EINVAL; 8420 if (kernel && event->attr.exclude_kernel) 8421 goto fail; 8422 8423 if (!kernel) { 8424 if (!filename) 8425 goto fail; 8426 8427 /* 8428 * For now, we only support file-based filters 8429 * in per-task events; doing so for CPU-wide 8430 * events requires additional context switching 8431 * trickery, since same object code will be 8432 * mapped at different virtual addresses in 8433 * different processes. 8434 */ 8435 ret = -EOPNOTSUPP; 8436 if (!event->ctx->task) 8437 goto fail_free_name; 8438 8439 /* look up the path and grab its inode */ 8440 ret = kern_path(filename, LOOKUP_FOLLOW, &path); 8441 if (ret) 8442 goto fail_free_name; 8443 8444 filter->inode = igrab(d_inode(path.dentry)); 8445 path_put(&path); 8446 kfree(filename); 8447 filename = NULL; 8448 8449 ret = -EINVAL; 8450 if (!filter->inode || 8451 !S_ISREG(filter->inode->i_mode)) 8452 /* free_filters_list() will iput() */ 8453 goto fail; 8454 8455 event->addr_filters.nr_file_filters++; 8456 } 8457 8458 /* ready to consume more filters */ 8459 state = IF_STATE_ACTION; 8460 filter = NULL; 8461 } 8462 } 8463 8464 if (state != IF_STATE_ACTION) 8465 goto fail; 8466 8467 kfree(orig); 8468 8469 return 0; 8470 8471 fail_free_name: 8472 kfree(filename); 8473 fail: 8474 free_filters_list(filters); 8475 kfree(orig); 8476 8477 return ret; 8478 } 8479 8480 static int 8481 perf_event_set_addr_filter(struct perf_event *event, char *filter_str) 8482 { 8483 LIST_HEAD(filters); 8484 int ret; 8485 8486 /* 8487 * Since this is called in perf_ioctl() path, we're already holding 8488 * ctx::mutex. 8489 */ 8490 lockdep_assert_held(&event->ctx->mutex); 8491 8492 if (WARN_ON_ONCE(event->parent)) 8493 return -EINVAL; 8494 8495 ret = perf_event_parse_addr_filter(event, filter_str, &filters); 8496 if (ret) 8497 goto fail_clear_files; 8498 8499 ret = event->pmu->addr_filters_validate(&filters); 8500 if (ret) 8501 goto fail_free_filters; 8502 8503 /* remove existing filters, if any */ 8504 perf_addr_filters_splice(event, &filters); 8505 8506 /* install new filters */ 8507 perf_event_for_each_child(event, perf_event_addr_filters_apply); 8508 8509 return ret; 8510 8511 fail_free_filters: 8512 free_filters_list(&filters); 8513 8514 fail_clear_files: 8515 event->addr_filters.nr_file_filters = 0; 8516 8517 return ret; 8518 } 8519 8520 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 8521 { 8522 char *filter_str; 8523 int ret = -EINVAL; 8524 8525 if ((event->attr.type != PERF_TYPE_TRACEPOINT || 8526 !IS_ENABLED(CONFIG_EVENT_TRACING)) && 8527 !has_addr_filter(event)) 8528 return -EINVAL; 8529 8530 filter_str = strndup_user(arg, PAGE_SIZE); 8531 if (IS_ERR(filter_str)) 8532 return PTR_ERR(filter_str); 8533 8534 if (IS_ENABLED(CONFIG_EVENT_TRACING) && 8535 event->attr.type == PERF_TYPE_TRACEPOINT) 8536 ret = ftrace_profile_set_filter(event, event->attr.config, 8537 filter_str); 8538 else if (has_addr_filter(event)) 8539 ret = perf_event_set_addr_filter(event, filter_str); 8540 8541 kfree(filter_str); 8542 return ret; 8543 } 8544 8545 /* 8546 * hrtimer based swevent callback 8547 */ 8548 8549 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 8550 { 8551 enum hrtimer_restart ret = HRTIMER_RESTART; 8552 struct perf_sample_data data; 8553 struct pt_regs *regs; 8554 struct perf_event *event; 8555 u64 period; 8556 8557 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 8558 8559 if (event->state != PERF_EVENT_STATE_ACTIVE) 8560 return HRTIMER_NORESTART; 8561 8562 event->pmu->read(event); 8563 8564 perf_sample_data_init(&data, 0, event->hw.last_period); 8565 regs = get_irq_regs(); 8566 8567 if (regs && !perf_exclude_event(event, regs)) { 8568 if (!(event->attr.exclude_idle && is_idle_task(current))) 8569 if (__perf_event_overflow(event, 1, &data, regs)) 8570 ret = HRTIMER_NORESTART; 8571 } 8572 8573 period = max_t(u64, 10000, event->hw.sample_period); 8574 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 8575 8576 return ret; 8577 } 8578 8579 static void perf_swevent_start_hrtimer(struct perf_event *event) 8580 { 8581 struct hw_perf_event *hwc = &event->hw; 8582 s64 period; 8583 8584 if (!is_sampling_event(event)) 8585 return; 8586 8587 period = local64_read(&hwc->period_left); 8588 if (period) { 8589 if (period < 0) 8590 period = 10000; 8591 8592 local64_set(&hwc->period_left, 0); 8593 } else { 8594 period = max_t(u64, 10000, hwc->sample_period); 8595 } 8596 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), 8597 HRTIMER_MODE_REL_PINNED); 8598 } 8599 8600 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 8601 { 8602 struct hw_perf_event *hwc = &event->hw; 8603 8604 if (is_sampling_event(event)) { 8605 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 8606 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 8607 8608 hrtimer_cancel(&hwc->hrtimer); 8609 } 8610 } 8611 8612 static void perf_swevent_init_hrtimer(struct perf_event *event) 8613 { 8614 struct hw_perf_event *hwc = &event->hw; 8615 8616 if (!is_sampling_event(event)) 8617 return; 8618 8619 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 8620 hwc->hrtimer.function = perf_swevent_hrtimer; 8621 8622 /* 8623 * Since hrtimers have a fixed rate, we can do a static freq->period 8624 * mapping and avoid the whole period adjust feedback stuff. 8625 */ 8626 if (event->attr.freq) { 8627 long freq = event->attr.sample_freq; 8628 8629 event->attr.sample_period = NSEC_PER_SEC / freq; 8630 hwc->sample_period = event->attr.sample_period; 8631 local64_set(&hwc->period_left, hwc->sample_period); 8632 hwc->last_period = hwc->sample_period; 8633 event->attr.freq = 0; 8634 } 8635 } 8636 8637 /* 8638 * Software event: cpu wall time clock 8639 */ 8640 8641 static void cpu_clock_event_update(struct perf_event *event) 8642 { 8643 s64 prev; 8644 u64 now; 8645 8646 now = local_clock(); 8647 prev = local64_xchg(&event->hw.prev_count, now); 8648 local64_add(now - prev, &event->count); 8649 } 8650 8651 static void cpu_clock_event_start(struct perf_event *event, int flags) 8652 { 8653 local64_set(&event->hw.prev_count, local_clock()); 8654 perf_swevent_start_hrtimer(event); 8655 } 8656 8657 static void cpu_clock_event_stop(struct perf_event *event, int flags) 8658 { 8659 perf_swevent_cancel_hrtimer(event); 8660 cpu_clock_event_update(event); 8661 } 8662 8663 static int cpu_clock_event_add(struct perf_event *event, int flags) 8664 { 8665 if (flags & PERF_EF_START) 8666 cpu_clock_event_start(event, flags); 8667 perf_event_update_userpage(event); 8668 8669 return 0; 8670 } 8671 8672 static void cpu_clock_event_del(struct perf_event *event, int flags) 8673 { 8674 cpu_clock_event_stop(event, flags); 8675 } 8676 8677 static void cpu_clock_event_read(struct perf_event *event) 8678 { 8679 cpu_clock_event_update(event); 8680 } 8681 8682 static int cpu_clock_event_init(struct perf_event *event) 8683 { 8684 if (event->attr.type != PERF_TYPE_SOFTWARE) 8685 return -ENOENT; 8686 8687 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 8688 return -ENOENT; 8689 8690 /* 8691 * no branch sampling for software events 8692 */ 8693 if (has_branch_stack(event)) 8694 return -EOPNOTSUPP; 8695 8696 perf_swevent_init_hrtimer(event); 8697 8698 return 0; 8699 } 8700 8701 static struct pmu perf_cpu_clock = { 8702 .task_ctx_nr = perf_sw_context, 8703 8704 .capabilities = PERF_PMU_CAP_NO_NMI, 8705 8706 .event_init = cpu_clock_event_init, 8707 .add = cpu_clock_event_add, 8708 .del = cpu_clock_event_del, 8709 .start = cpu_clock_event_start, 8710 .stop = cpu_clock_event_stop, 8711 .read = cpu_clock_event_read, 8712 }; 8713 8714 /* 8715 * Software event: task time clock 8716 */ 8717 8718 static void task_clock_event_update(struct perf_event *event, u64 now) 8719 { 8720 u64 prev; 8721 s64 delta; 8722 8723 prev = local64_xchg(&event->hw.prev_count, now); 8724 delta = now - prev; 8725 local64_add(delta, &event->count); 8726 } 8727 8728 static void task_clock_event_start(struct perf_event *event, int flags) 8729 { 8730 local64_set(&event->hw.prev_count, event->ctx->time); 8731 perf_swevent_start_hrtimer(event); 8732 } 8733 8734 static void task_clock_event_stop(struct perf_event *event, int flags) 8735 { 8736 perf_swevent_cancel_hrtimer(event); 8737 task_clock_event_update(event, event->ctx->time); 8738 } 8739 8740 static int task_clock_event_add(struct perf_event *event, int flags) 8741 { 8742 if (flags & PERF_EF_START) 8743 task_clock_event_start(event, flags); 8744 perf_event_update_userpage(event); 8745 8746 return 0; 8747 } 8748 8749 static void task_clock_event_del(struct perf_event *event, int flags) 8750 { 8751 task_clock_event_stop(event, PERF_EF_UPDATE); 8752 } 8753 8754 static void task_clock_event_read(struct perf_event *event) 8755 { 8756 u64 now = perf_clock(); 8757 u64 delta = now - event->ctx->timestamp; 8758 u64 time = event->ctx->time + delta; 8759 8760 task_clock_event_update(event, time); 8761 } 8762 8763 static int task_clock_event_init(struct perf_event *event) 8764 { 8765 if (event->attr.type != PERF_TYPE_SOFTWARE) 8766 return -ENOENT; 8767 8768 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 8769 return -ENOENT; 8770 8771 /* 8772 * no branch sampling for software events 8773 */ 8774 if (has_branch_stack(event)) 8775 return -EOPNOTSUPP; 8776 8777 perf_swevent_init_hrtimer(event); 8778 8779 return 0; 8780 } 8781 8782 static struct pmu perf_task_clock = { 8783 .task_ctx_nr = perf_sw_context, 8784 8785 .capabilities = PERF_PMU_CAP_NO_NMI, 8786 8787 .event_init = task_clock_event_init, 8788 .add = task_clock_event_add, 8789 .del = task_clock_event_del, 8790 .start = task_clock_event_start, 8791 .stop = task_clock_event_stop, 8792 .read = task_clock_event_read, 8793 }; 8794 8795 static void perf_pmu_nop_void(struct pmu *pmu) 8796 { 8797 } 8798 8799 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags) 8800 { 8801 } 8802 8803 static int perf_pmu_nop_int(struct pmu *pmu) 8804 { 8805 return 0; 8806 } 8807 8808 static DEFINE_PER_CPU(unsigned int, nop_txn_flags); 8809 8810 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags) 8811 { 8812 __this_cpu_write(nop_txn_flags, flags); 8813 8814 if (flags & ~PERF_PMU_TXN_ADD) 8815 return; 8816 8817 perf_pmu_disable(pmu); 8818 } 8819 8820 static int perf_pmu_commit_txn(struct pmu *pmu) 8821 { 8822 unsigned int flags = __this_cpu_read(nop_txn_flags); 8823 8824 __this_cpu_write(nop_txn_flags, 0); 8825 8826 if (flags & ~PERF_PMU_TXN_ADD) 8827 return 0; 8828 8829 perf_pmu_enable(pmu); 8830 return 0; 8831 } 8832 8833 static void perf_pmu_cancel_txn(struct pmu *pmu) 8834 { 8835 unsigned int flags = __this_cpu_read(nop_txn_flags); 8836 8837 __this_cpu_write(nop_txn_flags, 0); 8838 8839 if (flags & ~PERF_PMU_TXN_ADD) 8840 return; 8841 8842 perf_pmu_enable(pmu); 8843 } 8844 8845 static int perf_event_idx_default(struct perf_event *event) 8846 { 8847 return 0; 8848 } 8849 8850 /* 8851 * Ensures all contexts with the same task_ctx_nr have the same 8852 * pmu_cpu_context too. 8853 */ 8854 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn) 8855 { 8856 struct pmu *pmu; 8857 8858 if (ctxn < 0) 8859 return NULL; 8860 8861 list_for_each_entry(pmu, &pmus, entry) { 8862 if (pmu->task_ctx_nr == ctxn) 8863 return pmu->pmu_cpu_context; 8864 } 8865 8866 return NULL; 8867 } 8868 8869 static void free_pmu_context(struct pmu *pmu) 8870 { 8871 mutex_lock(&pmus_lock); 8872 free_percpu(pmu->pmu_cpu_context); 8873 mutex_unlock(&pmus_lock); 8874 } 8875 8876 /* 8877 * Let userspace know that this PMU supports address range filtering: 8878 */ 8879 static ssize_t nr_addr_filters_show(struct device *dev, 8880 struct device_attribute *attr, 8881 char *page) 8882 { 8883 struct pmu *pmu = dev_get_drvdata(dev); 8884 8885 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters); 8886 } 8887 DEVICE_ATTR_RO(nr_addr_filters); 8888 8889 static struct idr pmu_idr; 8890 8891 static ssize_t 8892 type_show(struct device *dev, struct device_attribute *attr, char *page) 8893 { 8894 struct pmu *pmu = dev_get_drvdata(dev); 8895 8896 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); 8897 } 8898 static DEVICE_ATTR_RO(type); 8899 8900 static ssize_t 8901 perf_event_mux_interval_ms_show(struct device *dev, 8902 struct device_attribute *attr, 8903 char *page) 8904 { 8905 struct pmu *pmu = dev_get_drvdata(dev); 8906 8907 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms); 8908 } 8909 8910 static DEFINE_MUTEX(mux_interval_mutex); 8911 8912 static ssize_t 8913 perf_event_mux_interval_ms_store(struct device *dev, 8914 struct device_attribute *attr, 8915 const char *buf, size_t count) 8916 { 8917 struct pmu *pmu = dev_get_drvdata(dev); 8918 int timer, cpu, ret; 8919 8920 ret = kstrtoint(buf, 0, &timer); 8921 if (ret) 8922 return ret; 8923 8924 if (timer < 1) 8925 return -EINVAL; 8926 8927 /* same value, noting to do */ 8928 if (timer == pmu->hrtimer_interval_ms) 8929 return count; 8930 8931 mutex_lock(&mux_interval_mutex); 8932 pmu->hrtimer_interval_ms = timer; 8933 8934 /* update all cpuctx for this PMU */ 8935 cpus_read_lock(); 8936 for_each_online_cpu(cpu) { 8937 struct perf_cpu_context *cpuctx; 8938 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 8939 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 8940 8941 cpu_function_call(cpu, 8942 (remote_function_f)perf_mux_hrtimer_restart, cpuctx); 8943 } 8944 cpus_read_unlock(); 8945 mutex_unlock(&mux_interval_mutex); 8946 8947 return count; 8948 } 8949 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 8950 8951 static struct attribute *pmu_dev_attrs[] = { 8952 &dev_attr_type.attr, 8953 &dev_attr_perf_event_mux_interval_ms.attr, 8954 NULL, 8955 }; 8956 ATTRIBUTE_GROUPS(pmu_dev); 8957 8958 static int pmu_bus_running; 8959 static struct bus_type pmu_bus = { 8960 .name = "event_source", 8961 .dev_groups = pmu_dev_groups, 8962 }; 8963 8964 static void pmu_dev_release(struct device *dev) 8965 { 8966 kfree(dev); 8967 } 8968 8969 static int pmu_dev_alloc(struct pmu *pmu) 8970 { 8971 int ret = -ENOMEM; 8972 8973 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 8974 if (!pmu->dev) 8975 goto out; 8976 8977 pmu->dev->groups = pmu->attr_groups; 8978 device_initialize(pmu->dev); 8979 ret = dev_set_name(pmu->dev, "%s", pmu->name); 8980 if (ret) 8981 goto free_dev; 8982 8983 dev_set_drvdata(pmu->dev, pmu); 8984 pmu->dev->bus = &pmu_bus; 8985 pmu->dev->release = pmu_dev_release; 8986 ret = device_add(pmu->dev); 8987 if (ret) 8988 goto free_dev; 8989 8990 /* For PMUs with address filters, throw in an extra attribute: */ 8991 if (pmu->nr_addr_filters) 8992 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters); 8993 8994 if (ret) 8995 goto del_dev; 8996 8997 out: 8998 return ret; 8999 9000 del_dev: 9001 device_del(pmu->dev); 9002 9003 free_dev: 9004 put_device(pmu->dev); 9005 goto out; 9006 } 9007 9008 static struct lock_class_key cpuctx_mutex; 9009 static struct lock_class_key cpuctx_lock; 9010 9011 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 9012 { 9013 int cpu, ret; 9014 9015 mutex_lock(&pmus_lock); 9016 ret = -ENOMEM; 9017 pmu->pmu_disable_count = alloc_percpu(int); 9018 if (!pmu->pmu_disable_count) 9019 goto unlock; 9020 9021 pmu->type = -1; 9022 if (!name) 9023 goto skip_type; 9024 pmu->name = name; 9025 9026 if (type < 0) { 9027 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL); 9028 if (type < 0) { 9029 ret = type; 9030 goto free_pdc; 9031 } 9032 } 9033 pmu->type = type; 9034 9035 if (pmu_bus_running) { 9036 ret = pmu_dev_alloc(pmu); 9037 if (ret) 9038 goto free_idr; 9039 } 9040 9041 skip_type: 9042 if (pmu->task_ctx_nr == perf_hw_context) { 9043 static int hw_context_taken = 0; 9044 9045 /* 9046 * Other than systems with heterogeneous CPUs, it never makes 9047 * sense for two PMUs to share perf_hw_context. PMUs which are 9048 * uncore must use perf_invalid_context. 9049 */ 9050 if (WARN_ON_ONCE(hw_context_taken && 9051 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS))) 9052 pmu->task_ctx_nr = perf_invalid_context; 9053 9054 hw_context_taken = 1; 9055 } 9056 9057 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); 9058 if (pmu->pmu_cpu_context) 9059 goto got_cpu_context; 9060 9061 ret = -ENOMEM; 9062 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); 9063 if (!pmu->pmu_cpu_context) 9064 goto free_dev; 9065 9066 for_each_possible_cpu(cpu) { 9067 struct perf_cpu_context *cpuctx; 9068 9069 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 9070 __perf_event_init_context(&cpuctx->ctx); 9071 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 9072 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 9073 cpuctx->ctx.pmu = pmu; 9074 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask); 9075 9076 __perf_mux_hrtimer_init(cpuctx, cpu); 9077 } 9078 9079 got_cpu_context: 9080 if (!pmu->start_txn) { 9081 if (pmu->pmu_enable) { 9082 /* 9083 * If we have pmu_enable/pmu_disable calls, install 9084 * transaction stubs that use that to try and batch 9085 * hardware accesses. 9086 */ 9087 pmu->start_txn = perf_pmu_start_txn; 9088 pmu->commit_txn = perf_pmu_commit_txn; 9089 pmu->cancel_txn = perf_pmu_cancel_txn; 9090 } else { 9091 pmu->start_txn = perf_pmu_nop_txn; 9092 pmu->commit_txn = perf_pmu_nop_int; 9093 pmu->cancel_txn = perf_pmu_nop_void; 9094 } 9095 } 9096 9097 if (!pmu->pmu_enable) { 9098 pmu->pmu_enable = perf_pmu_nop_void; 9099 pmu->pmu_disable = perf_pmu_nop_void; 9100 } 9101 9102 if (!pmu->event_idx) 9103 pmu->event_idx = perf_event_idx_default; 9104 9105 list_add_rcu(&pmu->entry, &pmus); 9106 atomic_set(&pmu->exclusive_cnt, 0); 9107 ret = 0; 9108 unlock: 9109 mutex_unlock(&pmus_lock); 9110 9111 return ret; 9112 9113 free_dev: 9114 device_del(pmu->dev); 9115 put_device(pmu->dev); 9116 9117 free_idr: 9118 if (pmu->type >= PERF_TYPE_MAX) 9119 idr_remove(&pmu_idr, pmu->type); 9120 9121 free_pdc: 9122 free_percpu(pmu->pmu_disable_count); 9123 goto unlock; 9124 } 9125 EXPORT_SYMBOL_GPL(perf_pmu_register); 9126 9127 void perf_pmu_unregister(struct pmu *pmu) 9128 { 9129 int remove_device; 9130 9131 mutex_lock(&pmus_lock); 9132 remove_device = pmu_bus_running; 9133 list_del_rcu(&pmu->entry); 9134 mutex_unlock(&pmus_lock); 9135 9136 /* 9137 * We dereference the pmu list under both SRCU and regular RCU, so 9138 * synchronize against both of those. 9139 */ 9140 synchronize_srcu(&pmus_srcu); 9141 synchronize_rcu(); 9142 9143 free_percpu(pmu->pmu_disable_count); 9144 if (pmu->type >= PERF_TYPE_MAX) 9145 idr_remove(&pmu_idr, pmu->type); 9146 if (remove_device) { 9147 if (pmu->nr_addr_filters) 9148 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters); 9149 device_del(pmu->dev); 9150 put_device(pmu->dev); 9151 } 9152 free_pmu_context(pmu); 9153 } 9154 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 9155 9156 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) 9157 { 9158 struct perf_event_context *ctx = NULL; 9159 int ret; 9160 9161 if (!try_module_get(pmu->module)) 9162 return -ENODEV; 9163 9164 if (event->group_leader != event) { 9165 /* 9166 * This ctx->mutex can nest when we're called through 9167 * inheritance. See the perf_event_ctx_lock_nested() comment. 9168 */ 9169 ctx = perf_event_ctx_lock_nested(event->group_leader, 9170 SINGLE_DEPTH_NESTING); 9171 BUG_ON(!ctx); 9172 } 9173 9174 event->pmu = pmu; 9175 ret = pmu->event_init(event); 9176 9177 if (ctx) 9178 perf_event_ctx_unlock(event->group_leader, ctx); 9179 9180 if (ret) 9181 module_put(pmu->module); 9182 9183 return ret; 9184 } 9185 9186 static struct pmu *perf_init_event(struct perf_event *event) 9187 { 9188 struct pmu *pmu; 9189 int idx; 9190 int ret; 9191 9192 idx = srcu_read_lock(&pmus_srcu); 9193 9194 /* Try parent's PMU first: */ 9195 if (event->parent && event->parent->pmu) { 9196 pmu = event->parent->pmu; 9197 ret = perf_try_init_event(pmu, event); 9198 if (!ret) 9199 goto unlock; 9200 } 9201 9202 rcu_read_lock(); 9203 pmu = idr_find(&pmu_idr, event->attr.type); 9204 rcu_read_unlock(); 9205 if (pmu) { 9206 ret = perf_try_init_event(pmu, event); 9207 if (ret) 9208 pmu = ERR_PTR(ret); 9209 goto unlock; 9210 } 9211 9212 list_for_each_entry_rcu(pmu, &pmus, entry) { 9213 ret = perf_try_init_event(pmu, event); 9214 if (!ret) 9215 goto unlock; 9216 9217 if (ret != -ENOENT) { 9218 pmu = ERR_PTR(ret); 9219 goto unlock; 9220 } 9221 } 9222 pmu = ERR_PTR(-ENOENT); 9223 unlock: 9224 srcu_read_unlock(&pmus_srcu, idx); 9225 9226 return pmu; 9227 } 9228 9229 static void attach_sb_event(struct perf_event *event) 9230 { 9231 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 9232 9233 raw_spin_lock(&pel->lock); 9234 list_add_rcu(&event->sb_list, &pel->list); 9235 raw_spin_unlock(&pel->lock); 9236 } 9237 9238 /* 9239 * We keep a list of all !task (and therefore per-cpu) events 9240 * that need to receive side-band records. 9241 * 9242 * This avoids having to scan all the various PMU per-cpu contexts 9243 * looking for them. 9244 */ 9245 static void account_pmu_sb_event(struct perf_event *event) 9246 { 9247 if (is_sb_event(event)) 9248 attach_sb_event(event); 9249 } 9250 9251 static void account_event_cpu(struct perf_event *event, int cpu) 9252 { 9253 if (event->parent) 9254 return; 9255 9256 if (is_cgroup_event(event)) 9257 atomic_inc(&per_cpu(perf_cgroup_events, cpu)); 9258 } 9259 9260 /* Freq events need the tick to stay alive (see perf_event_task_tick). */ 9261 static void account_freq_event_nohz(void) 9262 { 9263 #ifdef CONFIG_NO_HZ_FULL 9264 /* Lock so we don't race with concurrent unaccount */ 9265 spin_lock(&nr_freq_lock); 9266 if (atomic_inc_return(&nr_freq_events) == 1) 9267 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS); 9268 spin_unlock(&nr_freq_lock); 9269 #endif 9270 } 9271 9272 static void account_freq_event(void) 9273 { 9274 if (tick_nohz_full_enabled()) 9275 account_freq_event_nohz(); 9276 else 9277 atomic_inc(&nr_freq_events); 9278 } 9279 9280 9281 static void account_event(struct perf_event *event) 9282 { 9283 bool inc = false; 9284 9285 if (event->parent) 9286 return; 9287 9288 if (event->attach_state & PERF_ATTACH_TASK) 9289 inc = true; 9290 if (event->attr.mmap || event->attr.mmap_data) 9291 atomic_inc(&nr_mmap_events); 9292 if (event->attr.comm) 9293 atomic_inc(&nr_comm_events); 9294 if (event->attr.namespaces) 9295 atomic_inc(&nr_namespaces_events); 9296 if (event->attr.task) 9297 atomic_inc(&nr_task_events); 9298 if (event->attr.freq) 9299 account_freq_event(); 9300 if (event->attr.context_switch) { 9301 atomic_inc(&nr_switch_events); 9302 inc = true; 9303 } 9304 if (has_branch_stack(event)) 9305 inc = true; 9306 if (is_cgroup_event(event)) 9307 inc = true; 9308 9309 if (inc) { 9310 if (atomic_inc_not_zero(&perf_sched_count)) 9311 goto enabled; 9312 9313 mutex_lock(&perf_sched_mutex); 9314 if (!atomic_read(&perf_sched_count)) { 9315 static_branch_enable(&perf_sched_events); 9316 /* 9317 * Guarantee that all CPUs observe they key change and 9318 * call the perf scheduling hooks before proceeding to 9319 * install events that need them. 9320 */ 9321 synchronize_sched(); 9322 } 9323 /* 9324 * Now that we have waited for the sync_sched(), allow further 9325 * increments to by-pass the mutex. 9326 */ 9327 atomic_inc(&perf_sched_count); 9328 mutex_unlock(&perf_sched_mutex); 9329 } 9330 enabled: 9331 9332 account_event_cpu(event, event->cpu); 9333 9334 account_pmu_sb_event(event); 9335 } 9336 9337 /* 9338 * Allocate and initialize a event structure 9339 */ 9340 static struct perf_event * 9341 perf_event_alloc(struct perf_event_attr *attr, int cpu, 9342 struct task_struct *task, 9343 struct perf_event *group_leader, 9344 struct perf_event *parent_event, 9345 perf_overflow_handler_t overflow_handler, 9346 void *context, int cgroup_fd) 9347 { 9348 struct pmu *pmu; 9349 struct perf_event *event; 9350 struct hw_perf_event *hwc; 9351 long err = -EINVAL; 9352 9353 if ((unsigned)cpu >= nr_cpu_ids) { 9354 if (!task || cpu != -1) 9355 return ERR_PTR(-EINVAL); 9356 } 9357 9358 event = kzalloc(sizeof(*event), GFP_KERNEL); 9359 if (!event) 9360 return ERR_PTR(-ENOMEM); 9361 9362 /* 9363 * Single events are their own group leaders, with an 9364 * empty sibling list: 9365 */ 9366 if (!group_leader) 9367 group_leader = event; 9368 9369 mutex_init(&event->child_mutex); 9370 INIT_LIST_HEAD(&event->child_list); 9371 9372 INIT_LIST_HEAD(&event->group_entry); 9373 INIT_LIST_HEAD(&event->event_entry); 9374 INIT_LIST_HEAD(&event->sibling_list); 9375 INIT_LIST_HEAD(&event->rb_entry); 9376 INIT_LIST_HEAD(&event->active_entry); 9377 INIT_LIST_HEAD(&event->addr_filters.list); 9378 INIT_HLIST_NODE(&event->hlist_entry); 9379 9380 9381 init_waitqueue_head(&event->waitq); 9382 init_irq_work(&event->pending, perf_pending_event); 9383 9384 mutex_init(&event->mmap_mutex); 9385 raw_spin_lock_init(&event->addr_filters.lock); 9386 9387 atomic_long_set(&event->refcount, 1); 9388 event->cpu = cpu; 9389 event->attr = *attr; 9390 event->group_leader = group_leader; 9391 event->pmu = NULL; 9392 event->oncpu = -1; 9393 9394 event->parent = parent_event; 9395 9396 event->ns = get_pid_ns(task_active_pid_ns(current)); 9397 event->id = atomic64_inc_return(&perf_event_id); 9398 9399 event->state = PERF_EVENT_STATE_INACTIVE; 9400 9401 if (task) { 9402 event->attach_state = PERF_ATTACH_TASK; 9403 /* 9404 * XXX pmu::event_init needs to know what task to account to 9405 * and we cannot use the ctx information because we need the 9406 * pmu before we get a ctx. 9407 */ 9408 event->hw.target = task; 9409 } 9410 9411 event->clock = &local_clock; 9412 if (parent_event) 9413 event->clock = parent_event->clock; 9414 9415 if (!overflow_handler && parent_event) { 9416 overflow_handler = parent_event->overflow_handler; 9417 context = parent_event->overflow_handler_context; 9418 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING) 9419 if (overflow_handler == bpf_overflow_handler) { 9420 struct bpf_prog *prog = bpf_prog_inc(parent_event->prog); 9421 9422 if (IS_ERR(prog)) { 9423 err = PTR_ERR(prog); 9424 goto err_ns; 9425 } 9426 event->prog = prog; 9427 event->orig_overflow_handler = 9428 parent_event->orig_overflow_handler; 9429 } 9430 #endif 9431 } 9432 9433 if (overflow_handler) { 9434 event->overflow_handler = overflow_handler; 9435 event->overflow_handler_context = context; 9436 } else if (is_write_backward(event)){ 9437 event->overflow_handler = perf_event_output_backward; 9438 event->overflow_handler_context = NULL; 9439 } else { 9440 event->overflow_handler = perf_event_output_forward; 9441 event->overflow_handler_context = NULL; 9442 } 9443 9444 perf_event__state_init(event); 9445 9446 pmu = NULL; 9447 9448 hwc = &event->hw; 9449 hwc->sample_period = attr->sample_period; 9450 if (attr->freq && attr->sample_freq) 9451 hwc->sample_period = 1; 9452 hwc->last_period = hwc->sample_period; 9453 9454 local64_set(&hwc->period_left, hwc->sample_period); 9455 9456 /* 9457 * We currently do not support PERF_SAMPLE_READ on inherited events. 9458 * See perf_output_read(). 9459 */ 9460 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ)) 9461 goto err_ns; 9462 9463 if (!has_branch_stack(event)) 9464 event->attr.branch_sample_type = 0; 9465 9466 if (cgroup_fd != -1) { 9467 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); 9468 if (err) 9469 goto err_ns; 9470 } 9471 9472 pmu = perf_init_event(event); 9473 if (IS_ERR(pmu)) { 9474 err = PTR_ERR(pmu); 9475 goto err_ns; 9476 } 9477 9478 err = exclusive_event_init(event); 9479 if (err) 9480 goto err_pmu; 9481 9482 if (has_addr_filter(event)) { 9483 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters, 9484 sizeof(unsigned long), 9485 GFP_KERNEL); 9486 if (!event->addr_filters_offs) { 9487 err = -ENOMEM; 9488 goto err_per_task; 9489 } 9490 9491 /* force hw sync on the address filters */ 9492 event->addr_filters_gen = 1; 9493 } 9494 9495 if (!event->parent) { 9496 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 9497 err = get_callchain_buffers(attr->sample_max_stack); 9498 if (err) 9499 goto err_addr_filters; 9500 } 9501 } 9502 9503 /* symmetric to unaccount_event() in _free_event() */ 9504 account_event(event); 9505 9506 return event; 9507 9508 err_addr_filters: 9509 kfree(event->addr_filters_offs); 9510 9511 err_per_task: 9512 exclusive_event_destroy(event); 9513 9514 err_pmu: 9515 if (event->destroy) 9516 event->destroy(event); 9517 module_put(pmu->module); 9518 err_ns: 9519 if (is_cgroup_event(event)) 9520 perf_detach_cgroup(event); 9521 if (event->ns) 9522 put_pid_ns(event->ns); 9523 kfree(event); 9524 9525 return ERR_PTR(err); 9526 } 9527 9528 static int perf_copy_attr(struct perf_event_attr __user *uattr, 9529 struct perf_event_attr *attr) 9530 { 9531 u32 size; 9532 int ret; 9533 9534 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0)) 9535 return -EFAULT; 9536 9537 /* 9538 * zero the full structure, so that a short copy will be nice. 9539 */ 9540 memset(attr, 0, sizeof(*attr)); 9541 9542 ret = get_user(size, &uattr->size); 9543 if (ret) 9544 return ret; 9545 9546 if (size > PAGE_SIZE) /* silly large */ 9547 goto err_size; 9548 9549 if (!size) /* abi compat */ 9550 size = PERF_ATTR_SIZE_VER0; 9551 9552 if (size < PERF_ATTR_SIZE_VER0) 9553 goto err_size; 9554 9555 /* 9556 * If we're handed a bigger struct than we know of, 9557 * ensure all the unknown bits are 0 - i.e. new 9558 * user-space does not rely on any kernel feature 9559 * extensions we dont know about yet. 9560 */ 9561 if (size > sizeof(*attr)) { 9562 unsigned char __user *addr; 9563 unsigned char __user *end; 9564 unsigned char val; 9565 9566 addr = (void __user *)uattr + sizeof(*attr); 9567 end = (void __user *)uattr + size; 9568 9569 for (; addr < end; addr++) { 9570 ret = get_user(val, addr); 9571 if (ret) 9572 return ret; 9573 if (val) 9574 goto err_size; 9575 } 9576 size = sizeof(*attr); 9577 } 9578 9579 ret = copy_from_user(attr, uattr, size); 9580 if (ret) 9581 return -EFAULT; 9582 9583 if (attr->__reserved_1) 9584 return -EINVAL; 9585 9586 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 9587 return -EINVAL; 9588 9589 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 9590 return -EINVAL; 9591 9592 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 9593 u64 mask = attr->branch_sample_type; 9594 9595 /* only using defined bits */ 9596 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 9597 return -EINVAL; 9598 9599 /* at least one branch bit must be set */ 9600 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 9601 return -EINVAL; 9602 9603 /* propagate priv level, when not set for branch */ 9604 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 9605 9606 /* exclude_kernel checked on syscall entry */ 9607 if (!attr->exclude_kernel) 9608 mask |= PERF_SAMPLE_BRANCH_KERNEL; 9609 9610 if (!attr->exclude_user) 9611 mask |= PERF_SAMPLE_BRANCH_USER; 9612 9613 if (!attr->exclude_hv) 9614 mask |= PERF_SAMPLE_BRANCH_HV; 9615 /* 9616 * adjust user setting (for HW filter setup) 9617 */ 9618 attr->branch_sample_type = mask; 9619 } 9620 /* privileged levels capture (kernel, hv): check permissions */ 9621 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM) 9622 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 9623 return -EACCES; 9624 } 9625 9626 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 9627 ret = perf_reg_validate(attr->sample_regs_user); 9628 if (ret) 9629 return ret; 9630 } 9631 9632 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 9633 if (!arch_perf_have_user_stack_dump()) 9634 return -ENOSYS; 9635 9636 /* 9637 * We have __u32 type for the size, but so far 9638 * we can only use __u16 as maximum due to the 9639 * __u16 sample size limit. 9640 */ 9641 if (attr->sample_stack_user >= USHRT_MAX) 9642 ret = -EINVAL; 9643 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 9644 ret = -EINVAL; 9645 } 9646 9647 if (attr->sample_type & PERF_SAMPLE_REGS_INTR) 9648 ret = perf_reg_validate(attr->sample_regs_intr); 9649 out: 9650 return ret; 9651 9652 err_size: 9653 put_user(sizeof(*attr), &uattr->size); 9654 ret = -E2BIG; 9655 goto out; 9656 } 9657 9658 static int 9659 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 9660 { 9661 struct ring_buffer *rb = NULL; 9662 int ret = -EINVAL; 9663 9664 if (!output_event) 9665 goto set; 9666 9667 /* don't allow circular references */ 9668 if (event == output_event) 9669 goto out; 9670 9671 /* 9672 * Don't allow cross-cpu buffers 9673 */ 9674 if (output_event->cpu != event->cpu) 9675 goto out; 9676 9677 /* 9678 * If its not a per-cpu rb, it must be the same task. 9679 */ 9680 if (output_event->cpu == -1 && output_event->ctx != event->ctx) 9681 goto out; 9682 9683 /* 9684 * Mixing clocks in the same buffer is trouble you don't need. 9685 */ 9686 if (output_event->clock != event->clock) 9687 goto out; 9688 9689 /* 9690 * Either writing ring buffer from beginning or from end. 9691 * Mixing is not allowed. 9692 */ 9693 if (is_write_backward(output_event) != is_write_backward(event)) 9694 goto out; 9695 9696 /* 9697 * If both events generate aux data, they must be on the same PMU 9698 */ 9699 if (has_aux(event) && has_aux(output_event) && 9700 event->pmu != output_event->pmu) 9701 goto out; 9702 9703 set: 9704 mutex_lock(&event->mmap_mutex); 9705 /* Can't redirect output if we've got an active mmap() */ 9706 if (atomic_read(&event->mmap_count)) 9707 goto unlock; 9708 9709 if (output_event) { 9710 /* get the rb we want to redirect to */ 9711 rb = ring_buffer_get(output_event); 9712 if (!rb) 9713 goto unlock; 9714 } 9715 9716 ring_buffer_attach(event, rb); 9717 9718 ret = 0; 9719 unlock: 9720 mutex_unlock(&event->mmap_mutex); 9721 9722 out: 9723 return ret; 9724 } 9725 9726 static void mutex_lock_double(struct mutex *a, struct mutex *b) 9727 { 9728 if (b < a) 9729 swap(a, b); 9730 9731 mutex_lock(a); 9732 mutex_lock_nested(b, SINGLE_DEPTH_NESTING); 9733 } 9734 9735 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) 9736 { 9737 bool nmi_safe = false; 9738 9739 switch (clk_id) { 9740 case CLOCK_MONOTONIC: 9741 event->clock = &ktime_get_mono_fast_ns; 9742 nmi_safe = true; 9743 break; 9744 9745 case CLOCK_MONOTONIC_RAW: 9746 event->clock = &ktime_get_raw_fast_ns; 9747 nmi_safe = true; 9748 break; 9749 9750 case CLOCK_REALTIME: 9751 event->clock = &ktime_get_real_ns; 9752 break; 9753 9754 case CLOCK_BOOTTIME: 9755 event->clock = &ktime_get_boot_ns; 9756 break; 9757 9758 case CLOCK_TAI: 9759 event->clock = &ktime_get_tai_ns; 9760 break; 9761 9762 default: 9763 return -EINVAL; 9764 } 9765 9766 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) 9767 return -EINVAL; 9768 9769 return 0; 9770 } 9771 9772 /* 9773 * Variation on perf_event_ctx_lock_nested(), except we take two context 9774 * mutexes. 9775 */ 9776 static struct perf_event_context * 9777 __perf_event_ctx_lock_double(struct perf_event *group_leader, 9778 struct perf_event_context *ctx) 9779 { 9780 struct perf_event_context *gctx; 9781 9782 again: 9783 rcu_read_lock(); 9784 gctx = READ_ONCE(group_leader->ctx); 9785 if (!atomic_inc_not_zero(&gctx->refcount)) { 9786 rcu_read_unlock(); 9787 goto again; 9788 } 9789 rcu_read_unlock(); 9790 9791 mutex_lock_double(&gctx->mutex, &ctx->mutex); 9792 9793 if (group_leader->ctx != gctx) { 9794 mutex_unlock(&ctx->mutex); 9795 mutex_unlock(&gctx->mutex); 9796 put_ctx(gctx); 9797 goto again; 9798 } 9799 9800 return gctx; 9801 } 9802 9803 /** 9804 * sys_perf_event_open - open a performance event, associate it to a task/cpu 9805 * 9806 * @attr_uptr: event_id type attributes for monitoring/sampling 9807 * @pid: target pid 9808 * @cpu: target cpu 9809 * @group_fd: group leader event fd 9810 */ 9811 SYSCALL_DEFINE5(perf_event_open, 9812 struct perf_event_attr __user *, attr_uptr, 9813 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 9814 { 9815 struct perf_event *group_leader = NULL, *output_event = NULL; 9816 struct perf_event *event, *sibling; 9817 struct perf_event_attr attr; 9818 struct perf_event_context *ctx, *uninitialized_var(gctx); 9819 struct file *event_file = NULL; 9820 struct fd group = {NULL, 0}; 9821 struct task_struct *task = NULL; 9822 struct pmu *pmu; 9823 int event_fd; 9824 int move_group = 0; 9825 int err; 9826 int f_flags = O_RDWR; 9827 int cgroup_fd = -1; 9828 9829 /* for future expandability... */ 9830 if (flags & ~PERF_FLAG_ALL) 9831 return -EINVAL; 9832 9833 err = perf_copy_attr(attr_uptr, &attr); 9834 if (err) 9835 return err; 9836 9837 if (!attr.exclude_kernel) { 9838 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 9839 return -EACCES; 9840 } 9841 9842 if (attr.namespaces) { 9843 if (!capable(CAP_SYS_ADMIN)) 9844 return -EACCES; 9845 } 9846 9847 if (attr.freq) { 9848 if (attr.sample_freq > sysctl_perf_event_sample_rate) 9849 return -EINVAL; 9850 } else { 9851 if (attr.sample_period & (1ULL << 63)) 9852 return -EINVAL; 9853 } 9854 9855 if (!attr.sample_max_stack) 9856 attr.sample_max_stack = sysctl_perf_event_max_stack; 9857 9858 /* 9859 * In cgroup mode, the pid argument is used to pass the fd 9860 * opened to the cgroup directory in cgroupfs. The cpu argument 9861 * designates the cpu on which to monitor threads from that 9862 * cgroup. 9863 */ 9864 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 9865 return -EINVAL; 9866 9867 if (flags & PERF_FLAG_FD_CLOEXEC) 9868 f_flags |= O_CLOEXEC; 9869 9870 event_fd = get_unused_fd_flags(f_flags); 9871 if (event_fd < 0) 9872 return event_fd; 9873 9874 if (group_fd != -1) { 9875 err = perf_fget_light(group_fd, &group); 9876 if (err) 9877 goto err_fd; 9878 group_leader = group.file->private_data; 9879 if (flags & PERF_FLAG_FD_OUTPUT) 9880 output_event = group_leader; 9881 if (flags & PERF_FLAG_FD_NO_GROUP) 9882 group_leader = NULL; 9883 } 9884 9885 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 9886 task = find_lively_task_by_vpid(pid); 9887 if (IS_ERR(task)) { 9888 err = PTR_ERR(task); 9889 goto err_group_fd; 9890 } 9891 } 9892 9893 if (task && group_leader && 9894 group_leader->attr.inherit != attr.inherit) { 9895 err = -EINVAL; 9896 goto err_task; 9897 } 9898 9899 if (task) { 9900 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex); 9901 if (err) 9902 goto err_task; 9903 9904 /* 9905 * Reuse ptrace permission checks for now. 9906 * 9907 * We must hold cred_guard_mutex across this and any potential 9908 * perf_install_in_context() call for this new event to 9909 * serialize against exec() altering our credentials (and the 9910 * perf_event_exit_task() that could imply). 9911 */ 9912 err = -EACCES; 9913 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) 9914 goto err_cred; 9915 } 9916 9917 if (flags & PERF_FLAG_PID_CGROUP) 9918 cgroup_fd = pid; 9919 9920 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 9921 NULL, NULL, cgroup_fd); 9922 if (IS_ERR(event)) { 9923 err = PTR_ERR(event); 9924 goto err_cred; 9925 } 9926 9927 if (is_sampling_event(event)) { 9928 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 9929 err = -EOPNOTSUPP; 9930 goto err_alloc; 9931 } 9932 } 9933 9934 /* 9935 * Special case software events and allow them to be part of 9936 * any hardware group. 9937 */ 9938 pmu = event->pmu; 9939 9940 if (attr.use_clockid) { 9941 err = perf_event_set_clock(event, attr.clockid); 9942 if (err) 9943 goto err_alloc; 9944 } 9945 9946 if (pmu->task_ctx_nr == perf_sw_context) 9947 event->event_caps |= PERF_EV_CAP_SOFTWARE; 9948 9949 if (group_leader && 9950 (is_software_event(event) != is_software_event(group_leader))) { 9951 if (is_software_event(event)) { 9952 /* 9953 * If event and group_leader are not both a software 9954 * event, and event is, then group leader is not. 9955 * 9956 * Allow the addition of software events to !software 9957 * groups, this is safe because software events never 9958 * fail to schedule. 9959 */ 9960 pmu = group_leader->pmu; 9961 } else if (is_software_event(group_leader) && 9962 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 9963 /* 9964 * In case the group is a pure software group, and we 9965 * try to add a hardware event, move the whole group to 9966 * the hardware context. 9967 */ 9968 move_group = 1; 9969 } 9970 } 9971 9972 /* 9973 * Get the target context (task or percpu): 9974 */ 9975 ctx = find_get_context(pmu, task, event); 9976 if (IS_ERR(ctx)) { 9977 err = PTR_ERR(ctx); 9978 goto err_alloc; 9979 } 9980 9981 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) { 9982 err = -EBUSY; 9983 goto err_context; 9984 } 9985 9986 /* 9987 * Look up the group leader (we will attach this event to it): 9988 */ 9989 if (group_leader) { 9990 err = -EINVAL; 9991 9992 /* 9993 * Do not allow a recursive hierarchy (this new sibling 9994 * becoming part of another group-sibling): 9995 */ 9996 if (group_leader->group_leader != group_leader) 9997 goto err_context; 9998 9999 /* All events in a group should have the same clock */ 10000 if (group_leader->clock != event->clock) 10001 goto err_context; 10002 10003 /* 10004 * Do not allow to attach to a group in a different 10005 * task or CPU context: 10006 */ 10007 if (move_group) { 10008 /* 10009 * Make sure we're both on the same task, or both 10010 * per-cpu events. 10011 */ 10012 if (group_leader->ctx->task != ctx->task) 10013 goto err_context; 10014 10015 /* 10016 * Make sure we're both events for the same CPU; 10017 * grouping events for different CPUs is broken; since 10018 * you can never concurrently schedule them anyhow. 10019 */ 10020 if (group_leader->cpu != event->cpu) 10021 goto err_context; 10022 } else { 10023 if (group_leader->ctx != ctx) 10024 goto err_context; 10025 } 10026 10027 /* 10028 * Only a group leader can be exclusive or pinned 10029 */ 10030 if (attr.exclusive || attr.pinned) 10031 goto err_context; 10032 } 10033 10034 if (output_event) { 10035 err = perf_event_set_output(event, output_event); 10036 if (err) 10037 goto err_context; 10038 } 10039 10040 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, 10041 f_flags); 10042 if (IS_ERR(event_file)) { 10043 err = PTR_ERR(event_file); 10044 event_file = NULL; 10045 goto err_context; 10046 } 10047 10048 if (move_group) { 10049 gctx = __perf_event_ctx_lock_double(group_leader, ctx); 10050 10051 if (gctx->task == TASK_TOMBSTONE) { 10052 err = -ESRCH; 10053 goto err_locked; 10054 } 10055 10056 /* 10057 * Check if we raced against another sys_perf_event_open() call 10058 * moving the software group underneath us. 10059 */ 10060 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 10061 /* 10062 * If someone moved the group out from under us, check 10063 * if this new event wound up on the same ctx, if so 10064 * its the regular !move_group case, otherwise fail. 10065 */ 10066 if (gctx != ctx) { 10067 err = -EINVAL; 10068 goto err_locked; 10069 } else { 10070 perf_event_ctx_unlock(group_leader, gctx); 10071 move_group = 0; 10072 } 10073 } 10074 } else { 10075 mutex_lock(&ctx->mutex); 10076 } 10077 10078 if (ctx->task == TASK_TOMBSTONE) { 10079 err = -ESRCH; 10080 goto err_locked; 10081 } 10082 10083 if (!perf_event_validate_size(event)) { 10084 err = -E2BIG; 10085 goto err_locked; 10086 } 10087 10088 if (!task) { 10089 /* 10090 * Check if the @cpu we're creating an event for is online. 10091 * 10092 * We use the perf_cpu_context::ctx::mutex to serialize against 10093 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 10094 */ 10095 struct perf_cpu_context *cpuctx = 10096 container_of(ctx, struct perf_cpu_context, ctx); 10097 10098 if (!cpuctx->online) { 10099 err = -ENODEV; 10100 goto err_locked; 10101 } 10102 } 10103 10104 10105 /* 10106 * Must be under the same ctx::mutex as perf_install_in_context(), 10107 * because we need to serialize with concurrent event creation. 10108 */ 10109 if (!exclusive_event_installable(event, ctx)) { 10110 /* exclusive and group stuff are assumed mutually exclusive */ 10111 WARN_ON_ONCE(move_group); 10112 10113 err = -EBUSY; 10114 goto err_locked; 10115 } 10116 10117 WARN_ON_ONCE(ctx->parent_ctx); 10118 10119 /* 10120 * This is the point on no return; we cannot fail hereafter. This is 10121 * where we start modifying current state. 10122 */ 10123 10124 if (move_group) { 10125 /* 10126 * See perf_event_ctx_lock() for comments on the details 10127 * of swizzling perf_event::ctx. 10128 */ 10129 perf_remove_from_context(group_leader, 0); 10130 put_ctx(gctx); 10131 10132 list_for_each_entry(sibling, &group_leader->sibling_list, 10133 group_entry) { 10134 perf_remove_from_context(sibling, 0); 10135 put_ctx(gctx); 10136 } 10137 10138 /* 10139 * Wait for everybody to stop referencing the events through 10140 * the old lists, before installing it on new lists. 10141 */ 10142 synchronize_rcu(); 10143 10144 /* 10145 * Install the group siblings before the group leader. 10146 * 10147 * Because a group leader will try and install the entire group 10148 * (through the sibling list, which is still in-tact), we can 10149 * end up with siblings installed in the wrong context. 10150 * 10151 * By installing siblings first we NO-OP because they're not 10152 * reachable through the group lists. 10153 */ 10154 list_for_each_entry(sibling, &group_leader->sibling_list, 10155 group_entry) { 10156 perf_event__state_init(sibling); 10157 perf_install_in_context(ctx, sibling, sibling->cpu); 10158 get_ctx(ctx); 10159 } 10160 10161 /* 10162 * Removing from the context ends up with disabled 10163 * event. What we want here is event in the initial 10164 * startup state, ready to be add into new context. 10165 */ 10166 perf_event__state_init(group_leader); 10167 perf_install_in_context(ctx, group_leader, group_leader->cpu); 10168 get_ctx(ctx); 10169 } 10170 10171 /* 10172 * Precalculate sample_data sizes; do while holding ctx::mutex such 10173 * that we're serialized against further additions and before 10174 * perf_install_in_context() which is the point the event is active and 10175 * can use these values. 10176 */ 10177 perf_event__header_size(event); 10178 perf_event__id_header_size(event); 10179 10180 event->owner = current; 10181 10182 perf_install_in_context(ctx, event, event->cpu); 10183 perf_unpin_context(ctx); 10184 10185 if (move_group) 10186 perf_event_ctx_unlock(group_leader, gctx); 10187 mutex_unlock(&ctx->mutex); 10188 10189 if (task) { 10190 mutex_unlock(&task->signal->cred_guard_mutex); 10191 put_task_struct(task); 10192 } 10193 10194 mutex_lock(¤t->perf_event_mutex); 10195 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 10196 mutex_unlock(¤t->perf_event_mutex); 10197 10198 /* 10199 * Drop the reference on the group_event after placing the 10200 * new event on the sibling_list. This ensures destruction 10201 * of the group leader will find the pointer to itself in 10202 * perf_group_detach(). 10203 */ 10204 fdput(group); 10205 fd_install(event_fd, event_file); 10206 return event_fd; 10207 10208 err_locked: 10209 if (move_group) 10210 perf_event_ctx_unlock(group_leader, gctx); 10211 mutex_unlock(&ctx->mutex); 10212 /* err_file: */ 10213 fput(event_file); 10214 err_context: 10215 perf_unpin_context(ctx); 10216 put_ctx(ctx); 10217 err_alloc: 10218 /* 10219 * If event_file is set, the fput() above will have called ->release() 10220 * and that will take care of freeing the event. 10221 */ 10222 if (!event_file) 10223 free_event(event); 10224 err_cred: 10225 if (task) 10226 mutex_unlock(&task->signal->cred_guard_mutex); 10227 err_task: 10228 if (task) 10229 put_task_struct(task); 10230 err_group_fd: 10231 fdput(group); 10232 err_fd: 10233 put_unused_fd(event_fd); 10234 return err; 10235 } 10236 10237 /** 10238 * perf_event_create_kernel_counter 10239 * 10240 * @attr: attributes of the counter to create 10241 * @cpu: cpu in which the counter is bound 10242 * @task: task to profile (NULL for percpu) 10243 */ 10244 struct perf_event * 10245 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 10246 struct task_struct *task, 10247 perf_overflow_handler_t overflow_handler, 10248 void *context) 10249 { 10250 struct perf_event_context *ctx; 10251 struct perf_event *event; 10252 int err; 10253 10254 /* 10255 * Get the target context (task or percpu): 10256 */ 10257 10258 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 10259 overflow_handler, context, -1); 10260 if (IS_ERR(event)) { 10261 err = PTR_ERR(event); 10262 goto err; 10263 } 10264 10265 /* Mark owner so we could distinguish it from user events. */ 10266 event->owner = TASK_TOMBSTONE; 10267 10268 ctx = find_get_context(event->pmu, task, event); 10269 if (IS_ERR(ctx)) { 10270 err = PTR_ERR(ctx); 10271 goto err_free; 10272 } 10273 10274 WARN_ON_ONCE(ctx->parent_ctx); 10275 mutex_lock(&ctx->mutex); 10276 if (ctx->task == TASK_TOMBSTONE) { 10277 err = -ESRCH; 10278 goto err_unlock; 10279 } 10280 10281 if (!task) { 10282 /* 10283 * Check if the @cpu we're creating an event for is online. 10284 * 10285 * We use the perf_cpu_context::ctx::mutex to serialize against 10286 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 10287 */ 10288 struct perf_cpu_context *cpuctx = 10289 container_of(ctx, struct perf_cpu_context, ctx); 10290 if (!cpuctx->online) { 10291 err = -ENODEV; 10292 goto err_unlock; 10293 } 10294 } 10295 10296 if (!exclusive_event_installable(event, ctx)) { 10297 err = -EBUSY; 10298 goto err_unlock; 10299 } 10300 10301 perf_install_in_context(ctx, event, cpu); 10302 perf_unpin_context(ctx); 10303 mutex_unlock(&ctx->mutex); 10304 10305 return event; 10306 10307 err_unlock: 10308 mutex_unlock(&ctx->mutex); 10309 perf_unpin_context(ctx); 10310 put_ctx(ctx); 10311 err_free: 10312 free_event(event); 10313 err: 10314 return ERR_PTR(err); 10315 } 10316 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 10317 10318 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 10319 { 10320 struct perf_event_context *src_ctx; 10321 struct perf_event_context *dst_ctx; 10322 struct perf_event *event, *tmp; 10323 LIST_HEAD(events); 10324 10325 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx; 10326 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx; 10327 10328 /* 10329 * See perf_event_ctx_lock() for comments on the details 10330 * of swizzling perf_event::ctx. 10331 */ 10332 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); 10333 list_for_each_entry_safe(event, tmp, &src_ctx->event_list, 10334 event_entry) { 10335 perf_remove_from_context(event, 0); 10336 unaccount_event_cpu(event, src_cpu); 10337 put_ctx(src_ctx); 10338 list_add(&event->migrate_entry, &events); 10339 } 10340 10341 /* 10342 * Wait for the events to quiesce before re-instating them. 10343 */ 10344 synchronize_rcu(); 10345 10346 /* 10347 * Re-instate events in 2 passes. 10348 * 10349 * Skip over group leaders and only install siblings on this first 10350 * pass, siblings will not get enabled without a leader, however a 10351 * leader will enable its siblings, even if those are still on the old 10352 * context. 10353 */ 10354 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 10355 if (event->group_leader == event) 10356 continue; 10357 10358 list_del(&event->migrate_entry); 10359 if (event->state >= PERF_EVENT_STATE_OFF) 10360 event->state = PERF_EVENT_STATE_INACTIVE; 10361 account_event_cpu(event, dst_cpu); 10362 perf_install_in_context(dst_ctx, event, dst_cpu); 10363 get_ctx(dst_ctx); 10364 } 10365 10366 /* 10367 * Once all the siblings are setup properly, install the group leaders 10368 * to make it go. 10369 */ 10370 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 10371 list_del(&event->migrate_entry); 10372 if (event->state >= PERF_EVENT_STATE_OFF) 10373 event->state = PERF_EVENT_STATE_INACTIVE; 10374 account_event_cpu(event, dst_cpu); 10375 perf_install_in_context(dst_ctx, event, dst_cpu); 10376 get_ctx(dst_ctx); 10377 } 10378 mutex_unlock(&dst_ctx->mutex); 10379 mutex_unlock(&src_ctx->mutex); 10380 } 10381 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 10382 10383 static void sync_child_event(struct perf_event *child_event, 10384 struct task_struct *child) 10385 { 10386 struct perf_event *parent_event = child_event->parent; 10387 u64 child_val; 10388 10389 if (child_event->attr.inherit_stat) 10390 perf_event_read_event(child_event, child); 10391 10392 child_val = perf_event_count(child_event); 10393 10394 /* 10395 * Add back the child's count to the parent's count: 10396 */ 10397 atomic64_add(child_val, &parent_event->child_count); 10398 atomic64_add(child_event->total_time_enabled, 10399 &parent_event->child_total_time_enabled); 10400 atomic64_add(child_event->total_time_running, 10401 &parent_event->child_total_time_running); 10402 } 10403 10404 static void 10405 perf_event_exit_event(struct perf_event *child_event, 10406 struct perf_event_context *child_ctx, 10407 struct task_struct *child) 10408 { 10409 struct perf_event *parent_event = child_event->parent; 10410 10411 /* 10412 * Do not destroy the 'original' grouping; because of the context 10413 * switch optimization the original events could've ended up in a 10414 * random child task. 10415 * 10416 * If we were to destroy the original group, all group related 10417 * operations would cease to function properly after this random 10418 * child dies. 10419 * 10420 * Do destroy all inherited groups, we don't care about those 10421 * and being thorough is better. 10422 */ 10423 raw_spin_lock_irq(&child_ctx->lock); 10424 WARN_ON_ONCE(child_ctx->is_active); 10425 10426 if (parent_event) 10427 perf_group_detach(child_event); 10428 list_del_event(child_event, child_ctx); 10429 child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */ 10430 raw_spin_unlock_irq(&child_ctx->lock); 10431 10432 /* 10433 * Parent events are governed by their filedesc, retain them. 10434 */ 10435 if (!parent_event) { 10436 perf_event_wakeup(child_event); 10437 return; 10438 } 10439 /* 10440 * Child events can be cleaned up. 10441 */ 10442 10443 sync_child_event(child_event, child); 10444 10445 /* 10446 * Remove this event from the parent's list 10447 */ 10448 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 10449 mutex_lock(&parent_event->child_mutex); 10450 list_del_init(&child_event->child_list); 10451 mutex_unlock(&parent_event->child_mutex); 10452 10453 /* 10454 * Kick perf_poll() for is_event_hup(). 10455 */ 10456 perf_event_wakeup(parent_event); 10457 free_event(child_event); 10458 put_event(parent_event); 10459 } 10460 10461 static void perf_event_exit_task_context(struct task_struct *child, int ctxn) 10462 { 10463 struct perf_event_context *child_ctx, *clone_ctx = NULL; 10464 struct perf_event *child_event, *next; 10465 10466 WARN_ON_ONCE(child != current); 10467 10468 child_ctx = perf_pin_task_context(child, ctxn); 10469 if (!child_ctx) 10470 return; 10471 10472 /* 10473 * In order to reduce the amount of tricky in ctx tear-down, we hold 10474 * ctx::mutex over the entire thing. This serializes against almost 10475 * everything that wants to access the ctx. 10476 * 10477 * The exception is sys_perf_event_open() / 10478 * perf_event_create_kernel_count() which does find_get_context() 10479 * without ctx::mutex (it cannot because of the move_group double mutex 10480 * lock thing). See the comments in perf_install_in_context(). 10481 */ 10482 mutex_lock(&child_ctx->mutex); 10483 10484 /* 10485 * In a single ctx::lock section, de-schedule the events and detach the 10486 * context from the task such that we cannot ever get it scheduled back 10487 * in. 10488 */ 10489 raw_spin_lock_irq(&child_ctx->lock); 10490 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL); 10491 10492 /* 10493 * Now that the context is inactive, destroy the task <-> ctx relation 10494 * and mark the context dead. 10495 */ 10496 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL); 10497 put_ctx(child_ctx); /* cannot be last */ 10498 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE); 10499 put_task_struct(current); /* cannot be last */ 10500 10501 clone_ctx = unclone_ctx(child_ctx); 10502 raw_spin_unlock_irq(&child_ctx->lock); 10503 10504 if (clone_ctx) 10505 put_ctx(clone_ctx); 10506 10507 /* 10508 * Report the task dead after unscheduling the events so that we 10509 * won't get any samples after PERF_RECORD_EXIT. We can however still 10510 * get a few PERF_RECORD_READ events. 10511 */ 10512 perf_event_task(child, child_ctx, 0); 10513 10514 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) 10515 perf_event_exit_event(child_event, child_ctx, child); 10516 10517 mutex_unlock(&child_ctx->mutex); 10518 10519 put_ctx(child_ctx); 10520 } 10521 10522 /* 10523 * When a child task exits, feed back event values to parent events. 10524 * 10525 * Can be called with cred_guard_mutex held when called from 10526 * install_exec_creds(). 10527 */ 10528 void perf_event_exit_task(struct task_struct *child) 10529 { 10530 struct perf_event *event, *tmp; 10531 int ctxn; 10532 10533 mutex_lock(&child->perf_event_mutex); 10534 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 10535 owner_entry) { 10536 list_del_init(&event->owner_entry); 10537 10538 /* 10539 * Ensure the list deletion is visible before we clear 10540 * the owner, closes a race against perf_release() where 10541 * we need to serialize on the owner->perf_event_mutex. 10542 */ 10543 smp_store_release(&event->owner, NULL); 10544 } 10545 mutex_unlock(&child->perf_event_mutex); 10546 10547 for_each_task_context_nr(ctxn) 10548 perf_event_exit_task_context(child, ctxn); 10549 10550 /* 10551 * The perf_event_exit_task_context calls perf_event_task 10552 * with child's task_ctx, which generates EXIT events for 10553 * child contexts and sets child->perf_event_ctxp[] to NULL. 10554 * At this point we need to send EXIT events to cpu contexts. 10555 */ 10556 perf_event_task(child, NULL, 0); 10557 } 10558 10559 static void perf_free_event(struct perf_event *event, 10560 struct perf_event_context *ctx) 10561 { 10562 struct perf_event *parent = event->parent; 10563 10564 if (WARN_ON_ONCE(!parent)) 10565 return; 10566 10567 mutex_lock(&parent->child_mutex); 10568 list_del_init(&event->child_list); 10569 mutex_unlock(&parent->child_mutex); 10570 10571 put_event(parent); 10572 10573 raw_spin_lock_irq(&ctx->lock); 10574 perf_group_detach(event); 10575 list_del_event(event, ctx); 10576 raw_spin_unlock_irq(&ctx->lock); 10577 free_event(event); 10578 } 10579 10580 /* 10581 * Free an unexposed, unused context as created by inheritance by 10582 * perf_event_init_task below, used by fork() in case of fail. 10583 * 10584 * Not all locks are strictly required, but take them anyway to be nice and 10585 * help out with the lockdep assertions. 10586 */ 10587 void perf_event_free_task(struct task_struct *task) 10588 { 10589 struct perf_event_context *ctx; 10590 struct perf_event *event, *tmp; 10591 int ctxn; 10592 10593 for_each_task_context_nr(ctxn) { 10594 ctx = task->perf_event_ctxp[ctxn]; 10595 if (!ctx) 10596 continue; 10597 10598 mutex_lock(&ctx->mutex); 10599 raw_spin_lock_irq(&ctx->lock); 10600 /* 10601 * Destroy the task <-> ctx relation and mark the context dead. 10602 * 10603 * This is important because even though the task hasn't been 10604 * exposed yet the context has been (through child_list). 10605 */ 10606 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL); 10607 WRITE_ONCE(ctx->task, TASK_TOMBSTONE); 10608 put_task_struct(task); /* cannot be last */ 10609 raw_spin_unlock_irq(&ctx->lock); 10610 10611 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) 10612 perf_free_event(event, ctx); 10613 10614 mutex_unlock(&ctx->mutex); 10615 put_ctx(ctx); 10616 } 10617 } 10618 10619 void perf_event_delayed_put(struct task_struct *task) 10620 { 10621 int ctxn; 10622 10623 for_each_task_context_nr(ctxn) 10624 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); 10625 } 10626 10627 struct file *perf_event_get(unsigned int fd) 10628 { 10629 struct file *file; 10630 10631 file = fget_raw(fd); 10632 if (!file) 10633 return ERR_PTR(-EBADF); 10634 10635 if (file->f_op != &perf_fops) { 10636 fput(file); 10637 return ERR_PTR(-EBADF); 10638 } 10639 10640 return file; 10641 } 10642 10643 const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 10644 { 10645 if (!event) 10646 return ERR_PTR(-EINVAL); 10647 10648 return &event->attr; 10649 } 10650 10651 /* 10652 * Inherit a event from parent task to child task. 10653 * 10654 * Returns: 10655 * - valid pointer on success 10656 * - NULL for orphaned events 10657 * - IS_ERR() on error 10658 */ 10659 static struct perf_event * 10660 inherit_event(struct perf_event *parent_event, 10661 struct task_struct *parent, 10662 struct perf_event_context *parent_ctx, 10663 struct task_struct *child, 10664 struct perf_event *group_leader, 10665 struct perf_event_context *child_ctx) 10666 { 10667 enum perf_event_active_state parent_state = parent_event->state; 10668 struct perf_event *child_event; 10669 unsigned long flags; 10670 10671 /* 10672 * Instead of creating recursive hierarchies of events, 10673 * we link inherited events back to the original parent, 10674 * which has a filp for sure, which we use as the reference 10675 * count: 10676 */ 10677 if (parent_event->parent) 10678 parent_event = parent_event->parent; 10679 10680 child_event = perf_event_alloc(&parent_event->attr, 10681 parent_event->cpu, 10682 child, 10683 group_leader, parent_event, 10684 NULL, NULL, -1); 10685 if (IS_ERR(child_event)) 10686 return child_event; 10687 10688 /* 10689 * is_orphaned_event() and list_add_tail(&parent_event->child_list) 10690 * must be under the same lock in order to serialize against 10691 * perf_event_release_kernel(), such that either we must observe 10692 * is_orphaned_event() or they will observe us on the child_list. 10693 */ 10694 mutex_lock(&parent_event->child_mutex); 10695 if (is_orphaned_event(parent_event) || 10696 !atomic_long_inc_not_zero(&parent_event->refcount)) { 10697 mutex_unlock(&parent_event->child_mutex); 10698 free_event(child_event); 10699 return NULL; 10700 } 10701 10702 get_ctx(child_ctx); 10703 10704 /* 10705 * Make the child state follow the state of the parent event, 10706 * not its attr.disabled bit. We hold the parent's mutex, 10707 * so we won't race with perf_event_{en, dis}able_family. 10708 */ 10709 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 10710 child_event->state = PERF_EVENT_STATE_INACTIVE; 10711 else 10712 child_event->state = PERF_EVENT_STATE_OFF; 10713 10714 if (parent_event->attr.freq) { 10715 u64 sample_period = parent_event->hw.sample_period; 10716 struct hw_perf_event *hwc = &child_event->hw; 10717 10718 hwc->sample_period = sample_period; 10719 hwc->last_period = sample_period; 10720 10721 local64_set(&hwc->period_left, sample_period); 10722 } 10723 10724 child_event->ctx = child_ctx; 10725 child_event->overflow_handler = parent_event->overflow_handler; 10726 child_event->overflow_handler_context 10727 = parent_event->overflow_handler_context; 10728 10729 /* 10730 * Precalculate sample_data sizes 10731 */ 10732 perf_event__header_size(child_event); 10733 perf_event__id_header_size(child_event); 10734 10735 /* 10736 * Link it up in the child's context: 10737 */ 10738 raw_spin_lock_irqsave(&child_ctx->lock, flags); 10739 add_event_to_ctx(child_event, child_ctx); 10740 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 10741 10742 /* 10743 * Link this into the parent event's child list 10744 */ 10745 list_add_tail(&child_event->child_list, &parent_event->child_list); 10746 mutex_unlock(&parent_event->child_mutex); 10747 10748 return child_event; 10749 } 10750 10751 /* 10752 * Inherits an event group. 10753 * 10754 * This will quietly suppress orphaned events; !inherit_event() is not an error. 10755 * This matches with perf_event_release_kernel() removing all child events. 10756 * 10757 * Returns: 10758 * - 0 on success 10759 * - <0 on error 10760 */ 10761 static int inherit_group(struct perf_event *parent_event, 10762 struct task_struct *parent, 10763 struct perf_event_context *parent_ctx, 10764 struct task_struct *child, 10765 struct perf_event_context *child_ctx) 10766 { 10767 struct perf_event *leader; 10768 struct perf_event *sub; 10769 struct perf_event *child_ctr; 10770 10771 leader = inherit_event(parent_event, parent, parent_ctx, 10772 child, NULL, child_ctx); 10773 if (IS_ERR(leader)) 10774 return PTR_ERR(leader); 10775 /* 10776 * @leader can be NULL here because of is_orphaned_event(). In this 10777 * case inherit_event() will create individual events, similar to what 10778 * perf_group_detach() would do anyway. 10779 */ 10780 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) { 10781 child_ctr = inherit_event(sub, parent, parent_ctx, 10782 child, leader, child_ctx); 10783 if (IS_ERR(child_ctr)) 10784 return PTR_ERR(child_ctr); 10785 } 10786 return 0; 10787 } 10788 10789 /* 10790 * Creates the child task context and tries to inherit the event-group. 10791 * 10792 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave 10793 * inherited_all set when we 'fail' to inherit an orphaned event; this is 10794 * consistent with perf_event_release_kernel() removing all child events. 10795 * 10796 * Returns: 10797 * - 0 on success 10798 * - <0 on error 10799 */ 10800 static int 10801 inherit_task_group(struct perf_event *event, struct task_struct *parent, 10802 struct perf_event_context *parent_ctx, 10803 struct task_struct *child, int ctxn, 10804 int *inherited_all) 10805 { 10806 int ret; 10807 struct perf_event_context *child_ctx; 10808 10809 if (!event->attr.inherit) { 10810 *inherited_all = 0; 10811 return 0; 10812 } 10813 10814 child_ctx = child->perf_event_ctxp[ctxn]; 10815 if (!child_ctx) { 10816 /* 10817 * This is executed from the parent task context, so 10818 * inherit events that have been marked for cloning. 10819 * First allocate and initialize a context for the 10820 * child. 10821 */ 10822 child_ctx = alloc_perf_context(parent_ctx->pmu, child); 10823 if (!child_ctx) 10824 return -ENOMEM; 10825 10826 child->perf_event_ctxp[ctxn] = child_ctx; 10827 } 10828 10829 ret = inherit_group(event, parent, parent_ctx, 10830 child, child_ctx); 10831 10832 if (ret) 10833 *inherited_all = 0; 10834 10835 return ret; 10836 } 10837 10838 /* 10839 * Initialize the perf_event context in task_struct 10840 */ 10841 static int perf_event_init_context(struct task_struct *child, int ctxn) 10842 { 10843 struct perf_event_context *child_ctx, *parent_ctx; 10844 struct perf_event_context *cloned_ctx; 10845 struct perf_event *event; 10846 struct task_struct *parent = current; 10847 int inherited_all = 1; 10848 unsigned long flags; 10849 int ret = 0; 10850 10851 if (likely(!parent->perf_event_ctxp[ctxn])) 10852 return 0; 10853 10854 /* 10855 * If the parent's context is a clone, pin it so it won't get 10856 * swapped under us. 10857 */ 10858 parent_ctx = perf_pin_task_context(parent, ctxn); 10859 if (!parent_ctx) 10860 return 0; 10861 10862 /* 10863 * No need to check if parent_ctx != NULL here; since we saw 10864 * it non-NULL earlier, the only reason for it to become NULL 10865 * is if we exit, and since we're currently in the middle of 10866 * a fork we can't be exiting at the same time. 10867 */ 10868 10869 /* 10870 * Lock the parent list. No need to lock the child - not PID 10871 * hashed yet and not running, so nobody can access it. 10872 */ 10873 mutex_lock(&parent_ctx->mutex); 10874 10875 /* 10876 * We dont have to disable NMIs - we are only looking at 10877 * the list, not manipulating it: 10878 */ 10879 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) { 10880 ret = inherit_task_group(event, parent, parent_ctx, 10881 child, ctxn, &inherited_all); 10882 if (ret) 10883 goto out_unlock; 10884 } 10885 10886 /* 10887 * We can't hold ctx->lock when iterating the ->flexible_group list due 10888 * to allocations, but we need to prevent rotation because 10889 * rotate_ctx() will change the list from interrupt context. 10890 */ 10891 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 10892 parent_ctx->rotate_disable = 1; 10893 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 10894 10895 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) { 10896 ret = inherit_task_group(event, parent, parent_ctx, 10897 child, ctxn, &inherited_all); 10898 if (ret) 10899 goto out_unlock; 10900 } 10901 10902 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 10903 parent_ctx->rotate_disable = 0; 10904 10905 child_ctx = child->perf_event_ctxp[ctxn]; 10906 10907 if (child_ctx && inherited_all) { 10908 /* 10909 * Mark the child context as a clone of the parent 10910 * context, or of whatever the parent is a clone of. 10911 * 10912 * Note that if the parent is a clone, the holding of 10913 * parent_ctx->lock avoids it from being uncloned. 10914 */ 10915 cloned_ctx = parent_ctx->parent_ctx; 10916 if (cloned_ctx) { 10917 child_ctx->parent_ctx = cloned_ctx; 10918 child_ctx->parent_gen = parent_ctx->parent_gen; 10919 } else { 10920 child_ctx->parent_ctx = parent_ctx; 10921 child_ctx->parent_gen = parent_ctx->generation; 10922 } 10923 get_ctx(child_ctx->parent_ctx); 10924 } 10925 10926 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 10927 out_unlock: 10928 mutex_unlock(&parent_ctx->mutex); 10929 10930 perf_unpin_context(parent_ctx); 10931 put_ctx(parent_ctx); 10932 10933 return ret; 10934 } 10935 10936 /* 10937 * Initialize the perf_event context in task_struct 10938 */ 10939 int perf_event_init_task(struct task_struct *child) 10940 { 10941 int ctxn, ret; 10942 10943 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); 10944 mutex_init(&child->perf_event_mutex); 10945 INIT_LIST_HEAD(&child->perf_event_list); 10946 10947 for_each_task_context_nr(ctxn) { 10948 ret = perf_event_init_context(child, ctxn); 10949 if (ret) { 10950 perf_event_free_task(child); 10951 return ret; 10952 } 10953 } 10954 10955 return 0; 10956 } 10957 10958 static void __init perf_event_init_all_cpus(void) 10959 { 10960 struct swevent_htable *swhash; 10961 int cpu; 10962 10963 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL); 10964 10965 for_each_possible_cpu(cpu) { 10966 swhash = &per_cpu(swevent_htable, cpu); 10967 mutex_init(&swhash->hlist_mutex); 10968 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu)); 10969 10970 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu)); 10971 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu)); 10972 10973 #ifdef CONFIG_CGROUP_PERF 10974 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu)); 10975 #endif 10976 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu)); 10977 } 10978 } 10979 10980 void perf_swevent_init_cpu(unsigned int cpu) 10981 { 10982 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 10983 10984 mutex_lock(&swhash->hlist_mutex); 10985 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) { 10986 struct swevent_hlist *hlist; 10987 10988 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 10989 WARN_ON(!hlist); 10990 rcu_assign_pointer(swhash->swevent_hlist, hlist); 10991 } 10992 mutex_unlock(&swhash->hlist_mutex); 10993 } 10994 10995 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE 10996 static void __perf_event_exit_context(void *__info) 10997 { 10998 struct perf_event_context *ctx = __info; 10999 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 11000 struct perf_event *event; 11001 11002 raw_spin_lock(&ctx->lock); 11003 list_for_each_entry(event, &ctx->event_list, event_entry) 11004 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP); 11005 raw_spin_unlock(&ctx->lock); 11006 } 11007 11008 static void perf_event_exit_cpu_context(int cpu) 11009 { 11010 struct perf_cpu_context *cpuctx; 11011 struct perf_event_context *ctx; 11012 struct pmu *pmu; 11013 11014 mutex_lock(&pmus_lock); 11015 list_for_each_entry(pmu, &pmus, entry) { 11016 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 11017 ctx = &cpuctx->ctx; 11018 11019 mutex_lock(&ctx->mutex); 11020 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 11021 cpuctx->online = 0; 11022 mutex_unlock(&ctx->mutex); 11023 } 11024 cpumask_clear_cpu(cpu, perf_online_mask); 11025 mutex_unlock(&pmus_lock); 11026 } 11027 #else 11028 11029 static void perf_event_exit_cpu_context(int cpu) { } 11030 11031 #endif 11032 11033 int perf_event_init_cpu(unsigned int cpu) 11034 { 11035 struct perf_cpu_context *cpuctx; 11036 struct perf_event_context *ctx; 11037 struct pmu *pmu; 11038 11039 perf_swevent_init_cpu(cpu); 11040 11041 mutex_lock(&pmus_lock); 11042 cpumask_set_cpu(cpu, perf_online_mask); 11043 list_for_each_entry(pmu, &pmus, entry) { 11044 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 11045 ctx = &cpuctx->ctx; 11046 11047 mutex_lock(&ctx->mutex); 11048 cpuctx->online = 1; 11049 mutex_unlock(&ctx->mutex); 11050 } 11051 mutex_unlock(&pmus_lock); 11052 11053 return 0; 11054 } 11055 11056 int perf_event_exit_cpu(unsigned int cpu) 11057 { 11058 perf_event_exit_cpu_context(cpu); 11059 return 0; 11060 } 11061 11062 static int 11063 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 11064 { 11065 int cpu; 11066 11067 for_each_online_cpu(cpu) 11068 perf_event_exit_cpu(cpu); 11069 11070 return NOTIFY_OK; 11071 } 11072 11073 /* 11074 * Run the perf reboot notifier at the very last possible moment so that 11075 * the generic watchdog code runs as long as possible. 11076 */ 11077 static struct notifier_block perf_reboot_notifier = { 11078 .notifier_call = perf_reboot, 11079 .priority = INT_MIN, 11080 }; 11081 11082 void __init perf_event_init(void) 11083 { 11084 int ret; 11085 11086 idr_init(&pmu_idr); 11087 11088 perf_event_init_all_cpus(); 11089 init_srcu_struct(&pmus_srcu); 11090 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 11091 perf_pmu_register(&perf_cpu_clock, NULL, -1); 11092 perf_pmu_register(&perf_task_clock, NULL, -1); 11093 perf_tp_register(); 11094 perf_event_init_cpu(smp_processor_id()); 11095 register_reboot_notifier(&perf_reboot_notifier); 11096 11097 ret = init_hw_breakpoint(); 11098 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 11099 11100 /* 11101 * Build time assertion that we keep the data_head at the intended 11102 * location. IOW, validation we got the __reserved[] size right. 11103 */ 11104 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 11105 != 1024); 11106 } 11107 11108 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 11109 char *page) 11110 { 11111 struct perf_pmu_events_attr *pmu_attr = 11112 container_of(attr, struct perf_pmu_events_attr, attr); 11113 11114 if (pmu_attr->event_str) 11115 return sprintf(page, "%s\n", pmu_attr->event_str); 11116 11117 return 0; 11118 } 11119 EXPORT_SYMBOL_GPL(perf_event_sysfs_show); 11120 11121 static int __init perf_event_sysfs_init(void) 11122 { 11123 struct pmu *pmu; 11124 int ret; 11125 11126 mutex_lock(&pmus_lock); 11127 11128 ret = bus_register(&pmu_bus); 11129 if (ret) 11130 goto unlock; 11131 11132 list_for_each_entry(pmu, &pmus, entry) { 11133 if (!pmu->name || pmu->type < 0) 11134 continue; 11135 11136 ret = pmu_dev_alloc(pmu); 11137 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 11138 } 11139 pmu_bus_running = 1; 11140 ret = 0; 11141 11142 unlock: 11143 mutex_unlock(&pmus_lock); 11144 11145 return ret; 11146 } 11147 device_initcall(perf_event_sysfs_init); 11148 11149 #ifdef CONFIG_CGROUP_PERF 11150 static struct cgroup_subsys_state * 11151 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 11152 { 11153 struct perf_cgroup *jc; 11154 11155 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 11156 if (!jc) 11157 return ERR_PTR(-ENOMEM); 11158 11159 jc->info = alloc_percpu(struct perf_cgroup_info); 11160 if (!jc->info) { 11161 kfree(jc); 11162 return ERR_PTR(-ENOMEM); 11163 } 11164 11165 return &jc->css; 11166 } 11167 11168 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 11169 { 11170 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 11171 11172 free_percpu(jc->info); 11173 kfree(jc); 11174 } 11175 11176 static int __perf_cgroup_move(void *info) 11177 { 11178 struct task_struct *task = info; 11179 rcu_read_lock(); 11180 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN); 11181 rcu_read_unlock(); 11182 return 0; 11183 } 11184 11185 static void perf_cgroup_attach(struct cgroup_taskset *tset) 11186 { 11187 struct task_struct *task; 11188 struct cgroup_subsys_state *css; 11189 11190 cgroup_taskset_for_each(task, css, tset) 11191 task_function_call(task, __perf_cgroup_move, task); 11192 } 11193 11194 struct cgroup_subsys perf_event_cgrp_subsys = { 11195 .css_alloc = perf_cgroup_css_alloc, 11196 .css_free = perf_cgroup_css_free, 11197 .attach = perf_cgroup_attach, 11198 /* 11199 * Implicitly enable on dfl hierarchy so that perf events can 11200 * always be filtered by cgroup2 path as long as perf_event 11201 * controller is not mounted on a legacy hierarchy. 11202 */ 11203 .implicit_on_dfl = true, 11204 }; 11205 #endif /* CONFIG_CGROUP_PERF */ 11206