1 /* 2 * Performance events core code: 3 * 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 8 * 9 * For licensing details see kernel-base/COPYING 10 */ 11 12 #include <linux/fs.h> 13 #include <linux/mm.h> 14 #include <linux/cpu.h> 15 #include <linux/smp.h> 16 #include <linux/idr.h> 17 #include <linux/file.h> 18 #include <linux/poll.h> 19 #include <linux/slab.h> 20 #include <linux/hash.h> 21 #include <linux/tick.h> 22 #include <linux/sysfs.h> 23 #include <linux/dcache.h> 24 #include <linux/percpu.h> 25 #include <linux/ptrace.h> 26 #include <linux/reboot.h> 27 #include <linux/vmstat.h> 28 #include <linux/device.h> 29 #include <linux/export.h> 30 #include <linux/vmalloc.h> 31 #include <linux/hardirq.h> 32 #include <linux/rculist.h> 33 #include <linux/uaccess.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/perf_event.h> 38 #include <linux/ftrace_event.h> 39 #include <linux/hw_breakpoint.h> 40 #include <linux/mm_types.h> 41 #include <linux/cgroup.h> 42 #include <linux/module.h> 43 44 #include "internal.h" 45 46 #include <asm/irq_regs.h> 47 48 struct remote_function_call { 49 struct task_struct *p; 50 int (*func)(void *info); 51 void *info; 52 int ret; 53 }; 54 55 static void remote_function(void *data) 56 { 57 struct remote_function_call *tfc = data; 58 struct task_struct *p = tfc->p; 59 60 if (p) { 61 tfc->ret = -EAGAIN; 62 if (task_cpu(p) != smp_processor_id() || !task_curr(p)) 63 return; 64 } 65 66 tfc->ret = tfc->func(tfc->info); 67 } 68 69 /** 70 * task_function_call - call a function on the cpu on which a task runs 71 * @p: the task to evaluate 72 * @func: the function to be called 73 * @info: the function call argument 74 * 75 * Calls the function @func when the task is currently running. This might 76 * be on the current CPU, which just calls the function directly 77 * 78 * returns: @func return value, or 79 * -ESRCH - when the process isn't running 80 * -EAGAIN - when the process moved away 81 */ 82 static int 83 task_function_call(struct task_struct *p, int (*func) (void *info), void *info) 84 { 85 struct remote_function_call data = { 86 .p = p, 87 .func = func, 88 .info = info, 89 .ret = -ESRCH, /* No such (running) process */ 90 }; 91 92 if (task_curr(p)) 93 smp_call_function_single(task_cpu(p), remote_function, &data, 1); 94 95 return data.ret; 96 } 97 98 /** 99 * cpu_function_call - call a function on the cpu 100 * @func: the function to be called 101 * @info: the function call argument 102 * 103 * Calls the function @func on the remote cpu. 104 * 105 * returns: @func return value or -ENXIO when the cpu is offline 106 */ 107 static int cpu_function_call(int cpu, int (*func) (void *info), void *info) 108 { 109 struct remote_function_call data = { 110 .p = NULL, 111 .func = func, 112 .info = info, 113 .ret = -ENXIO, /* No such CPU */ 114 }; 115 116 smp_call_function_single(cpu, remote_function, &data, 1); 117 118 return data.ret; 119 } 120 121 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 122 PERF_FLAG_FD_OUTPUT |\ 123 PERF_FLAG_PID_CGROUP |\ 124 PERF_FLAG_FD_CLOEXEC) 125 126 /* 127 * branch priv levels that need permission checks 128 */ 129 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 130 (PERF_SAMPLE_BRANCH_KERNEL |\ 131 PERF_SAMPLE_BRANCH_HV) 132 133 enum event_type_t { 134 EVENT_FLEXIBLE = 0x1, 135 EVENT_PINNED = 0x2, 136 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 137 }; 138 139 /* 140 * perf_sched_events : >0 events exist 141 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu 142 */ 143 struct static_key_deferred perf_sched_events __read_mostly; 144 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); 145 static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events); 146 147 static atomic_t nr_mmap_events __read_mostly; 148 static atomic_t nr_comm_events __read_mostly; 149 static atomic_t nr_task_events __read_mostly; 150 static atomic_t nr_freq_events __read_mostly; 151 152 static LIST_HEAD(pmus); 153 static DEFINE_MUTEX(pmus_lock); 154 static struct srcu_struct pmus_srcu; 155 156 /* 157 * perf event paranoia level: 158 * -1 - not paranoid at all 159 * 0 - disallow raw tracepoint access for unpriv 160 * 1 - disallow cpu events for unpriv 161 * 2 - disallow kernel profiling for unpriv 162 */ 163 int sysctl_perf_event_paranoid __read_mostly = 1; 164 165 /* Minimum for 512 kiB + 1 user control page */ 166 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 167 168 /* 169 * max perf event sample rate 170 */ 171 #define DEFAULT_MAX_SAMPLE_RATE 100000 172 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 173 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 174 175 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 176 177 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 178 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 179 180 static int perf_sample_allowed_ns __read_mostly = 181 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 182 183 void update_perf_cpu_limits(void) 184 { 185 u64 tmp = perf_sample_period_ns; 186 187 tmp *= sysctl_perf_cpu_time_max_percent; 188 do_div(tmp, 100); 189 ACCESS_ONCE(perf_sample_allowed_ns) = tmp; 190 } 191 192 static int perf_rotate_context(struct perf_cpu_context *cpuctx); 193 194 int perf_proc_update_handler(struct ctl_table *table, int write, 195 void __user *buffer, size_t *lenp, 196 loff_t *ppos) 197 { 198 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 199 200 if (ret || !write) 201 return ret; 202 203 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 204 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 205 update_perf_cpu_limits(); 206 207 return 0; 208 } 209 210 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 211 212 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 213 void __user *buffer, size_t *lenp, 214 loff_t *ppos) 215 { 216 int ret = proc_dointvec(table, write, buffer, lenp, ppos); 217 218 if (ret || !write) 219 return ret; 220 221 update_perf_cpu_limits(); 222 223 return 0; 224 } 225 226 /* 227 * perf samples are done in some very critical code paths (NMIs). 228 * If they take too much CPU time, the system can lock up and not 229 * get any real work done. This will drop the sample rate when 230 * we detect that events are taking too long. 231 */ 232 #define NR_ACCUMULATED_SAMPLES 128 233 static DEFINE_PER_CPU(u64, running_sample_length); 234 235 static void perf_duration_warn(struct irq_work *w) 236 { 237 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns); 238 u64 avg_local_sample_len; 239 u64 local_samples_len; 240 241 local_samples_len = __get_cpu_var(running_sample_length); 242 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES; 243 244 printk_ratelimited(KERN_WARNING 245 "perf interrupt took too long (%lld > %lld), lowering " 246 "kernel.perf_event_max_sample_rate to %d\n", 247 avg_local_sample_len, allowed_ns >> 1, 248 sysctl_perf_event_sample_rate); 249 } 250 251 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 252 253 void perf_sample_event_took(u64 sample_len_ns) 254 { 255 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns); 256 u64 avg_local_sample_len; 257 u64 local_samples_len; 258 259 if (allowed_ns == 0) 260 return; 261 262 /* decay the counter by 1 average sample */ 263 local_samples_len = __get_cpu_var(running_sample_length); 264 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES; 265 local_samples_len += sample_len_ns; 266 __get_cpu_var(running_sample_length) = local_samples_len; 267 268 /* 269 * note: this will be biased artifically low until we have 270 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 271 * from having to maintain a count. 272 */ 273 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES; 274 275 if (avg_local_sample_len <= allowed_ns) 276 return; 277 278 if (max_samples_per_tick <= 1) 279 return; 280 281 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2); 282 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ; 283 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 284 285 update_perf_cpu_limits(); 286 287 if (!irq_work_queue(&perf_duration_work)) { 288 early_printk("perf interrupt took too long (%lld > %lld), lowering " 289 "kernel.perf_event_max_sample_rate to %d\n", 290 avg_local_sample_len, allowed_ns >> 1, 291 sysctl_perf_event_sample_rate); 292 } 293 } 294 295 static atomic64_t perf_event_id; 296 297 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 298 enum event_type_t event_type); 299 300 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 301 enum event_type_t event_type, 302 struct task_struct *task); 303 304 static void update_context_time(struct perf_event_context *ctx); 305 static u64 perf_event_time(struct perf_event *event); 306 307 void __weak perf_event_print_debug(void) { } 308 309 extern __weak const char *perf_pmu_name(void) 310 { 311 return "pmu"; 312 } 313 314 static inline u64 perf_clock(void) 315 { 316 return local_clock(); 317 } 318 319 static inline struct perf_cpu_context * 320 __get_cpu_context(struct perf_event_context *ctx) 321 { 322 return this_cpu_ptr(ctx->pmu->pmu_cpu_context); 323 } 324 325 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 326 struct perf_event_context *ctx) 327 { 328 raw_spin_lock(&cpuctx->ctx.lock); 329 if (ctx) 330 raw_spin_lock(&ctx->lock); 331 } 332 333 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 334 struct perf_event_context *ctx) 335 { 336 if (ctx) 337 raw_spin_unlock(&ctx->lock); 338 raw_spin_unlock(&cpuctx->ctx.lock); 339 } 340 341 #ifdef CONFIG_CGROUP_PERF 342 343 /* 344 * perf_cgroup_info keeps track of time_enabled for a cgroup. 345 * This is a per-cpu dynamically allocated data structure. 346 */ 347 struct perf_cgroup_info { 348 u64 time; 349 u64 timestamp; 350 }; 351 352 struct perf_cgroup { 353 struct cgroup_subsys_state css; 354 struct perf_cgroup_info __percpu *info; 355 }; 356 357 /* 358 * Must ensure cgroup is pinned (css_get) before calling 359 * this function. In other words, we cannot call this function 360 * if there is no cgroup event for the current CPU context. 361 */ 362 static inline struct perf_cgroup * 363 perf_cgroup_from_task(struct task_struct *task) 364 { 365 return container_of(task_css(task, perf_event_cgrp_id), 366 struct perf_cgroup, css); 367 } 368 369 static inline bool 370 perf_cgroup_match(struct perf_event *event) 371 { 372 struct perf_event_context *ctx = event->ctx; 373 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 374 375 /* @event doesn't care about cgroup */ 376 if (!event->cgrp) 377 return true; 378 379 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 380 if (!cpuctx->cgrp) 381 return false; 382 383 /* 384 * Cgroup scoping is recursive. An event enabled for a cgroup is 385 * also enabled for all its descendant cgroups. If @cpuctx's 386 * cgroup is a descendant of @event's (the test covers identity 387 * case), it's a match. 388 */ 389 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 390 event->cgrp->css.cgroup); 391 } 392 393 static inline void perf_put_cgroup(struct perf_event *event) 394 { 395 css_put(&event->cgrp->css); 396 } 397 398 static inline void perf_detach_cgroup(struct perf_event *event) 399 { 400 perf_put_cgroup(event); 401 event->cgrp = NULL; 402 } 403 404 static inline int is_cgroup_event(struct perf_event *event) 405 { 406 return event->cgrp != NULL; 407 } 408 409 static inline u64 perf_cgroup_event_time(struct perf_event *event) 410 { 411 struct perf_cgroup_info *t; 412 413 t = per_cpu_ptr(event->cgrp->info, event->cpu); 414 return t->time; 415 } 416 417 static inline void __update_cgrp_time(struct perf_cgroup *cgrp) 418 { 419 struct perf_cgroup_info *info; 420 u64 now; 421 422 now = perf_clock(); 423 424 info = this_cpu_ptr(cgrp->info); 425 426 info->time += now - info->timestamp; 427 info->timestamp = now; 428 } 429 430 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 431 { 432 struct perf_cgroup *cgrp_out = cpuctx->cgrp; 433 if (cgrp_out) 434 __update_cgrp_time(cgrp_out); 435 } 436 437 static inline void update_cgrp_time_from_event(struct perf_event *event) 438 { 439 struct perf_cgroup *cgrp; 440 441 /* 442 * ensure we access cgroup data only when needed and 443 * when we know the cgroup is pinned (css_get) 444 */ 445 if (!is_cgroup_event(event)) 446 return; 447 448 cgrp = perf_cgroup_from_task(current); 449 /* 450 * Do not update time when cgroup is not active 451 */ 452 if (cgrp == event->cgrp) 453 __update_cgrp_time(event->cgrp); 454 } 455 456 static inline void 457 perf_cgroup_set_timestamp(struct task_struct *task, 458 struct perf_event_context *ctx) 459 { 460 struct perf_cgroup *cgrp; 461 struct perf_cgroup_info *info; 462 463 /* 464 * ctx->lock held by caller 465 * ensure we do not access cgroup data 466 * unless we have the cgroup pinned (css_get) 467 */ 468 if (!task || !ctx->nr_cgroups) 469 return; 470 471 cgrp = perf_cgroup_from_task(task); 472 info = this_cpu_ptr(cgrp->info); 473 info->timestamp = ctx->timestamp; 474 } 475 476 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */ 477 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */ 478 479 /* 480 * reschedule events based on the cgroup constraint of task. 481 * 482 * mode SWOUT : schedule out everything 483 * mode SWIN : schedule in based on cgroup for next 484 */ 485 void perf_cgroup_switch(struct task_struct *task, int mode) 486 { 487 struct perf_cpu_context *cpuctx; 488 struct pmu *pmu; 489 unsigned long flags; 490 491 /* 492 * disable interrupts to avoid geting nr_cgroup 493 * changes via __perf_event_disable(). Also 494 * avoids preemption. 495 */ 496 local_irq_save(flags); 497 498 /* 499 * we reschedule only in the presence of cgroup 500 * constrained events. 501 */ 502 rcu_read_lock(); 503 504 list_for_each_entry_rcu(pmu, &pmus, entry) { 505 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 506 if (cpuctx->unique_pmu != pmu) 507 continue; /* ensure we process each cpuctx once */ 508 509 /* 510 * perf_cgroup_events says at least one 511 * context on this CPU has cgroup events. 512 * 513 * ctx->nr_cgroups reports the number of cgroup 514 * events for a context. 515 */ 516 if (cpuctx->ctx.nr_cgroups > 0) { 517 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 518 perf_pmu_disable(cpuctx->ctx.pmu); 519 520 if (mode & PERF_CGROUP_SWOUT) { 521 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 522 /* 523 * must not be done before ctxswout due 524 * to event_filter_match() in event_sched_out() 525 */ 526 cpuctx->cgrp = NULL; 527 } 528 529 if (mode & PERF_CGROUP_SWIN) { 530 WARN_ON_ONCE(cpuctx->cgrp); 531 /* 532 * set cgrp before ctxsw in to allow 533 * event_filter_match() to not have to pass 534 * task around 535 */ 536 cpuctx->cgrp = perf_cgroup_from_task(task); 537 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task); 538 } 539 perf_pmu_enable(cpuctx->ctx.pmu); 540 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 541 } 542 } 543 544 rcu_read_unlock(); 545 546 local_irq_restore(flags); 547 } 548 549 static inline void perf_cgroup_sched_out(struct task_struct *task, 550 struct task_struct *next) 551 { 552 struct perf_cgroup *cgrp1; 553 struct perf_cgroup *cgrp2 = NULL; 554 555 /* 556 * we come here when we know perf_cgroup_events > 0 557 */ 558 cgrp1 = perf_cgroup_from_task(task); 559 560 /* 561 * next is NULL when called from perf_event_enable_on_exec() 562 * that will systematically cause a cgroup_switch() 563 */ 564 if (next) 565 cgrp2 = perf_cgroup_from_task(next); 566 567 /* 568 * only schedule out current cgroup events if we know 569 * that we are switching to a different cgroup. Otherwise, 570 * do no touch the cgroup events. 571 */ 572 if (cgrp1 != cgrp2) 573 perf_cgroup_switch(task, PERF_CGROUP_SWOUT); 574 } 575 576 static inline void perf_cgroup_sched_in(struct task_struct *prev, 577 struct task_struct *task) 578 { 579 struct perf_cgroup *cgrp1; 580 struct perf_cgroup *cgrp2 = NULL; 581 582 /* 583 * we come here when we know perf_cgroup_events > 0 584 */ 585 cgrp1 = perf_cgroup_from_task(task); 586 587 /* prev can never be NULL */ 588 cgrp2 = perf_cgroup_from_task(prev); 589 590 /* 591 * only need to schedule in cgroup events if we are changing 592 * cgroup during ctxsw. Cgroup events were not scheduled 593 * out of ctxsw out if that was not the case. 594 */ 595 if (cgrp1 != cgrp2) 596 perf_cgroup_switch(task, PERF_CGROUP_SWIN); 597 } 598 599 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 600 struct perf_event_attr *attr, 601 struct perf_event *group_leader) 602 { 603 struct perf_cgroup *cgrp; 604 struct cgroup_subsys_state *css; 605 struct fd f = fdget(fd); 606 int ret = 0; 607 608 if (!f.file) 609 return -EBADF; 610 611 css = css_tryget_from_dir(f.file->f_dentry, &perf_event_cgrp_subsys); 612 if (IS_ERR(css)) { 613 ret = PTR_ERR(css); 614 goto out; 615 } 616 617 cgrp = container_of(css, struct perf_cgroup, css); 618 event->cgrp = cgrp; 619 620 /* 621 * all events in a group must monitor 622 * the same cgroup because a task belongs 623 * to only one perf cgroup at a time 624 */ 625 if (group_leader && group_leader->cgrp != cgrp) { 626 perf_detach_cgroup(event); 627 ret = -EINVAL; 628 } 629 out: 630 fdput(f); 631 return ret; 632 } 633 634 static inline void 635 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 636 { 637 struct perf_cgroup_info *t; 638 t = per_cpu_ptr(event->cgrp->info, event->cpu); 639 event->shadow_ctx_time = now - t->timestamp; 640 } 641 642 static inline void 643 perf_cgroup_defer_enabled(struct perf_event *event) 644 { 645 /* 646 * when the current task's perf cgroup does not match 647 * the event's, we need to remember to call the 648 * perf_mark_enable() function the first time a task with 649 * a matching perf cgroup is scheduled in. 650 */ 651 if (is_cgroup_event(event) && !perf_cgroup_match(event)) 652 event->cgrp_defer_enabled = 1; 653 } 654 655 static inline void 656 perf_cgroup_mark_enabled(struct perf_event *event, 657 struct perf_event_context *ctx) 658 { 659 struct perf_event *sub; 660 u64 tstamp = perf_event_time(event); 661 662 if (!event->cgrp_defer_enabled) 663 return; 664 665 event->cgrp_defer_enabled = 0; 666 667 event->tstamp_enabled = tstamp - event->total_time_enabled; 668 list_for_each_entry(sub, &event->sibling_list, group_entry) { 669 if (sub->state >= PERF_EVENT_STATE_INACTIVE) { 670 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 671 sub->cgrp_defer_enabled = 0; 672 } 673 } 674 } 675 #else /* !CONFIG_CGROUP_PERF */ 676 677 static inline bool 678 perf_cgroup_match(struct perf_event *event) 679 { 680 return true; 681 } 682 683 static inline void perf_detach_cgroup(struct perf_event *event) 684 {} 685 686 static inline int is_cgroup_event(struct perf_event *event) 687 { 688 return 0; 689 } 690 691 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event) 692 { 693 return 0; 694 } 695 696 static inline void update_cgrp_time_from_event(struct perf_event *event) 697 { 698 } 699 700 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 701 { 702 } 703 704 static inline void perf_cgroup_sched_out(struct task_struct *task, 705 struct task_struct *next) 706 { 707 } 708 709 static inline void perf_cgroup_sched_in(struct task_struct *prev, 710 struct task_struct *task) 711 { 712 } 713 714 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 715 struct perf_event_attr *attr, 716 struct perf_event *group_leader) 717 { 718 return -EINVAL; 719 } 720 721 static inline void 722 perf_cgroup_set_timestamp(struct task_struct *task, 723 struct perf_event_context *ctx) 724 { 725 } 726 727 void 728 perf_cgroup_switch(struct task_struct *task, struct task_struct *next) 729 { 730 } 731 732 static inline void 733 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 734 { 735 } 736 737 static inline u64 perf_cgroup_event_time(struct perf_event *event) 738 { 739 return 0; 740 } 741 742 static inline void 743 perf_cgroup_defer_enabled(struct perf_event *event) 744 { 745 } 746 747 static inline void 748 perf_cgroup_mark_enabled(struct perf_event *event, 749 struct perf_event_context *ctx) 750 { 751 } 752 #endif 753 754 /* 755 * set default to be dependent on timer tick just 756 * like original code 757 */ 758 #define PERF_CPU_HRTIMER (1000 / HZ) 759 /* 760 * function must be called with interrupts disbled 761 */ 762 static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr) 763 { 764 struct perf_cpu_context *cpuctx; 765 enum hrtimer_restart ret = HRTIMER_NORESTART; 766 int rotations = 0; 767 768 WARN_ON(!irqs_disabled()); 769 770 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer); 771 772 rotations = perf_rotate_context(cpuctx); 773 774 /* 775 * arm timer if needed 776 */ 777 if (rotations) { 778 hrtimer_forward_now(hr, cpuctx->hrtimer_interval); 779 ret = HRTIMER_RESTART; 780 } 781 782 return ret; 783 } 784 785 /* CPU is going down */ 786 void perf_cpu_hrtimer_cancel(int cpu) 787 { 788 struct perf_cpu_context *cpuctx; 789 struct pmu *pmu; 790 unsigned long flags; 791 792 if (WARN_ON(cpu != smp_processor_id())) 793 return; 794 795 local_irq_save(flags); 796 797 rcu_read_lock(); 798 799 list_for_each_entry_rcu(pmu, &pmus, entry) { 800 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 801 802 if (pmu->task_ctx_nr == perf_sw_context) 803 continue; 804 805 hrtimer_cancel(&cpuctx->hrtimer); 806 } 807 808 rcu_read_unlock(); 809 810 local_irq_restore(flags); 811 } 812 813 static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu) 814 { 815 struct hrtimer *hr = &cpuctx->hrtimer; 816 struct pmu *pmu = cpuctx->ctx.pmu; 817 int timer; 818 819 /* no multiplexing needed for SW PMU */ 820 if (pmu->task_ctx_nr == perf_sw_context) 821 return; 822 823 /* 824 * check default is sane, if not set then force to 825 * default interval (1/tick) 826 */ 827 timer = pmu->hrtimer_interval_ms; 828 if (timer < 1) 829 timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 830 831 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 832 833 hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 834 hr->function = perf_cpu_hrtimer_handler; 835 } 836 837 static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx) 838 { 839 struct hrtimer *hr = &cpuctx->hrtimer; 840 struct pmu *pmu = cpuctx->ctx.pmu; 841 842 /* not for SW PMU */ 843 if (pmu->task_ctx_nr == perf_sw_context) 844 return; 845 846 if (hrtimer_active(hr)) 847 return; 848 849 if (!hrtimer_callback_running(hr)) 850 __hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval, 851 0, HRTIMER_MODE_REL_PINNED, 0); 852 } 853 854 void perf_pmu_disable(struct pmu *pmu) 855 { 856 int *count = this_cpu_ptr(pmu->pmu_disable_count); 857 if (!(*count)++) 858 pmu->pmu_disable(pmu); 859 } 860 861 void perf_pmu_enable(struct pmu *pmu) 862 { 863 int *count = this_cpu_ptr(pmu->pmu_disable_count); 864 if (!--(*count)) 865 pmu->pmu_enable(pmu); 866 } 867 868 static DEFINE_PER_CPU(struct list_head, rotation_list); 869 870 /* 871 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized 872 * because they're strictly cpu affine and rotate_start is called with IRQs 873 * disabled, while rotate_context is called from IRQ context. 874 */ 875 static void perf_pmu_rotate_start(struct pmu *pmu) 876 { 877 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 878 struct list_head *head = &__get_cpu_var(rotation_list); 879 880 WARN_ON(!irqs_disabled()); 881 882 if (list_empty(&cpuctx->rotation_list)) 883 list_add(&cpuctx->rotation_list, head); 884 } 885 886 static void get_ctx(struct perf_event_context *ctx) 887 { 888 WARN_ON(!atomic_inc_not_zero(&ctx->refcount)); 889 } 890 891 static void put_ctx(struct perf_event_context *ctx) 892 { 893 if (atomic_dec_and_test(&ctx->refcount)) { 894 if (ctx->parent_ctx) 895 put_ctx(ctx->parent_ctx); 896 if (ctx->task) 897 put_task_struct(ctx->task); 898 kfree_rcu(ctx, rcu_head); 899 } 900 } 901 902 static void unclone_ctx(struct perf_event_context *ctx) 903 { 904 if (ctx->parent_ctx) { 905 put_ctx(ctx->parent_ctx); 906 ctx->parent_ctx = NULL; 907 } 908 ctx->generation++; 909 } 910 911 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 912 { 913 /* 914 * only top level events have the pid namespace they were created in 915 */ 916 if (event->parent) 917 event = event->parent; 918 919 return task_tgid_nr_ns(p, event->ns); 920 } 921 922 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 923 { 924 /* 925 * only top level events have the pid namespace they were created in 926 */ 927 if (event->parent) 928 event = event->parent; 929 930 return task_pid_nr_ns(p, event->ns); 931 } 932 933 /* 934 * If we inherit events we want to return the parent event id 935 * to userspace. 936 */ 937 static u64 primary_event_id(struct perf_event *event) 938 { 939 u64 id = event->id; 940 941 if (event->parent) 942 id = event->parent->id; 943 944 return id; 945 } 946 947 /* 948 * Get the perf_event_context for a task and lock it. 949 * This has to cope with with the fact that until it is locked, 950 * the context could get moved to another task. 951 */ 952 static struct perf_event_context * 953 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) 954 { 955 struct perf_event_context *ctx; 956 957 retry: 958 /* 959 * One of the few rules of preemptible RCU is that one cannot do 960 * rcu_read_unlock() while holding a scheduler (or nested) lock when 961 * part of the read side critical section was preemptible -- see 962 * rcu_read_unlock_special(). 963 * 964 * Since ctx->lock nests under rq->lock we must ensure the entire read 965 * side critical section is non-preemptible. 966 */ 967 preempt_disable(); 968 rcu_read_lock(); 969 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); 970 if (ctx) { 971 /* 972 * If this context is a clone of another, it might 973 * get swapped for another underneath us by 974 * perf_event_task_sched_out, though the 975 * rcu_read_lock() protects us from any context 976 * getting freed. Lock the context and check if it 977 * got swapped before we could get the lock, and retry 978 * if so. If we locked the right context, then it 979 * can't get swapped on us any more. 980 */ 981 raw_spin_lock_irqsave(&ctx->lock, *flags); 982 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { 983 raw_spin_unlock_irqrestore(&ctx->lock, *flags); 984 rcu_read_unlock(); 985 preempt_enable(); 986 goto retry; 987 } 988 989 if (!atomic_inc_not_zero(&ctx->refcount)) { 990 raw_spin_unlock_irqrestore(&ctx->lock, *flags); 991 ctx = NULL; 992 } 993 } 994 rcu_read_unlock(); 995 preempt_enable(); 996 return ctx; 997 } 998 999 /* 1000 * Get the context for a task and increment its pin_count so it 1001 * can't get swapped to another task. This also increments its 1002 * reference count so that the context can't get freed. 1003 */ 1004 static struct perf_event_context * 1005 perf_pin_task_context(struct task_struct *task, int ctxn) 1006 { 1007 struct perf_event_context *ctx; 1008 unsigned long flags; 1009 1010 ctx = perf_lock_task_context(task, ctxn, &flags); 1011 if (ctx) { 1012 ++ctx->pin_count; 1013 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1014 } 1015 return ctx; 1016 } 1017 1018 static void perf_unpin_context(struct perf_event_context *ctx) 1019 { 1020 unsigned long flags; 1021 1022 raw_spin_lock_irqsave(&ctx->lock, flags); 1023 --ctx->pin_count; 1024 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1025 } 1026 1027 /* 1028 * Update the record of the current time in a context. 1029 */ 1030 static void update_context_time(struct perf_event_context *ctx) 1031 { 1032 u64 now = perf_clock(); 1033 1034 ctx->time += now - ctx->timestamp; 1035 ctx->timestamp = now; 1036 } 1037 1038 static u64 perf_event_time(struct perf_event *event) 1039 { 1040 struct perf_event_context *ctx = event->ctx; 1041 1042 if (is_cgroup_event(event)) 1043 return perf_cgroup_event_time(event); 1044 1045 return ctx ? ctx->time : 0; 1046 } 1047 1048 /* 1049 * Update the total_time_enabled and total_time_running fields for a event. 1050 * The caller of this function needs to hold the ctx->lock. 1051 */ 1052 static void update_event_times(struct perf_event *event) 1053 { 1054 struct perf_event_context *ctx = event->ctx; 1055 u64 run_end; 1056 1057 if (event->state < PERF_EVENT_STATE_INACTIVE || 1058 event->group_leader->state < PERF_EVENT_STATE_INACTIVE) 1059 return; 1060 /* 1061 * in cgroup mode, time_enabled represents 1062 * the time the event was enabled AND active 1063 * tasks were in the monitored cgroup. This is 1064 * independent of the activity of the context as 1065 * there may be a mix of cgroup and non-cgroup events. 1066 * 1067 * That is why we treat cgroup events differently 1068 * here. 1069 */ 1070 if (is_cgroup_event(event)) 1071 run_end = perf_cgroup_event_time(event); 1072 else if (ctx->is_active) 1073 run_end = ctx->time; 1074 else 1075 run_end = event->tstamp_stopped; 1076 1077 event->total_time_enabled = run_end - event->tstamp_enabled; 1078 1079 if (event->state == PERF_EVENT_STATE_INACTIVE) 1080 run_end = event->tstamp_stopped; 1081 else 1082 run_end = perf_event_time(event); 1083 1084 event->total_time_running = run_end - event->tstamp_running; 1085 1086 } 1087 1088 /* 1089 * Update total_time_enabled and total_time_running for all events in a group. 1090 */ 1091 static void update_group_times(struct perf_event *leader) 1092 { 1093 struct perf_event *event; 1094 1095 update_event_times(leader); 1096 list_for_each_entry(event, &leader->sibling_list, group_entry) 1097 update_event_times(event); 1098 } 1099 1100 static struct list_head * 1101 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx) 1102 { 1103 if (event->attr.pinned) 1104 return &ctx->pinned_groups; 1105 else 1106 return &ctx->flexible_groups; 1107 } 1108 1109 /* 1110 * Add a event from the lists for its context. 1111 * Must be called with ctx->mutex and ctx->lock held. 1112 */ 1113 static void 1114 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1115 { 1116 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1117 event->attach_state |= PERF_ATTACH_CONTEXT; 1118 1119 /* 1120 * If we're a stand alone event or group leader, we go to the context 1121 * list, group events are kept attached to the group so that 1122 * perf_group_detach can, at all times, locate all siblings. 1123 */ 1124 if (event->group_leader == event) { 1125 struct list_head *list; 1126 1127 if (is_software_event(event)) 1128 event->group_flags |= PERF_GROUP_SOFTWARE; 1129 1130 list = ctx_group_list(event, ctx); 1131 list_add_tail(&event->group_entry, list); 1132 } 1133 1134 if (is_cgroup_event(event)) 1135 ctx->nr_cgroups++; 1136 1137 if (has_branch_stack(event)) 1138 ctx->nr_branch_stack++; 1139 1140 list_add_rcu(&event->event_entry, &ctx->event_list); 1141 if (!ctx->nr_events) 1142 perf_pmu_rotate_start(ctx->pmu); 1143 ctx->nr_events++; 1144 if (event->attr.inherit_stat) 1145 ctx->nr_stat++; 1146 1147 ctx->generation++; 1148 } 1149 1150 /* 1151 * Initialize event state based on the perf_event_attr::disabled. 1152 */ 1153 static inline void perf_event__state_init(struct perf_event *event) 1154 { 1155 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1156 PERF_EVENT_STATE_INACTIVE; 1157 } 1158 1159 /* 1160 * Called at perf_event creation and when events are attached/detached from a 1161 * group. 1162 */ 1163 static void perf_event__read_size(struct perf_event *event) 1164 { 1165 int entry = sizeof(u64); /* value */ 1166 int size = 0; 1167 int nr = 1; 1168 1169 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1170 size += sizeof(u64); 1171 1172 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1173 size += sizeof(u64); 1174 1175 if (event->attr.read_format & PERF_FORMAT_ID) 1176 entry += sizeof(u64); 1177 1178 if (event->attr.read_format & PERF_FORMAT_GROUP) { 1179 nr += event->group_leader->nr_siblings; 1180 size += sizeof(u64); 1181 } 1182 1183 size += entry * nr; 1184 event->read_size = size; 1185 } 1186 1187 static void perf_event__header_size(struct perf_event *event) 1188 { 1189 struct perf_sample_data *data; 1190 u64 sample_type = event->attr.sample_type; 1191 u16 size = 0; 1192 1193 perf_event__read_size(event); 1194 1195 if (sample_type & PERF_SAMPLE_IP) 1196 size += sizeof(data->ip); 1197 1198 if (sample_type & PERF_SAMPLE_ADDR) 1199 size += sizeof(data->addr); 1200 1201 if (sample_type & PERF_SAMPLE_PERIOD) 1202 size += sizeof(data->period); 1203 1204 if (sample_type & PERF_SAMPLE_WEIGHT) 1205 size += sizeof(data->weight); 1206 1207 if (sample_type & PERF_SAMPLE_READ) 1208 size += event->read_size; 1209 1210 if (sample_type & PERF_SAMPLE_DATA_SRC) 1211 size += sizeof(data->data_src.val); 1212 1213 if (sample_type & PERF_SAMPLE_TRANSACTION) 1214 size += sizeof(data->txn); 1215 1216 event->header_size = size; 1217 } 1218 1219 static void perf_event__id_header_size(struct perf_event *event) 1220 { 1221 struct perf_sample_data *data; 1222 u64 sample_type = event->attr.sample_type; 1223 u16 size = 0; 1224 1225 if (sample_type & PERF_SAMPLE_TID) 1226 size += sizeof(data->tid_entry); 1227 1228 if (sample_type & PERF_SAMPLE_TIME) 1229 size += sizeof(data->time); 1230 1231 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1232 size += sizeof(data->id); 1233 1234 if (sample_type & PERF_SAMPLE_ID) 1235 size += sizeof(data->id); 1236 1237 if (sample_type & PERF_SAMPLE_STREAM_ID) 1238 size += sizeof(data->stream_id); 1239 1240 if (sample_type & PERF_SAMPLE_CPU) 1241 size += sizeof(data->cpu_entry); 1242 1243 event->id_header_size = size; 1244 } 1245 1246 static void perf_group_attach(struct perf_event *event) 1247 { 1248 struct perf_event *group_leader = event->group_leader, *pos; 1249 1250 /* 1251 * We can have double attach due to group movement in perf_event_open. 1252 */ 1253 if (event->attach_state & PERF_ATTACH_GROUP) 1254 return; 1255 1256 event->attach_state |= PERF_ATTACH_GROUP; 1257 1258 if (group_leader == event) 1259 return; 1260 1261 if (group_leader->group_flags & PERF_GROUP_SOFTWARE && 1262 !is_software_event(event)) 1263 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE; 1264 1265 list_add_tail(&event->group_entry, &group_leader->sibling_list); 1266 group_leader->nr_siblings++; 1267 1268 perf_event__header_size(group_leader); 1269 1270 list_for_each_entry(pos, &group_leader->sibling_list, group_entry) 1271 perf_event__header_size(pos); 1272 } 1273 1274 /* 1275 * Remove a event from the lists for its context. 1276 * Must be called with ctx->mutex and ctx->lock held. 1277 */ 1278 static void 1279 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 1280 { 1281 struct perf_cpu_context *cpuctx; 1282 /* 1283 * We can have double detach due to exit/hot-unplug + close. 1284 */ 1285 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 1286 return; 1287 1288 event->attach_state &= ~PERF_ATTACH_CONTEXT; 1289 1290 if (is_cgroup_event(event)) { 1291 ctx->nr_cgroups--; 1292 cpuctx = __get_cpu_context(ctx); 1293 /* 1294 * if there are no more cgroup events 1295 * then cler cgrp to avoid stale pointer 1296 * in update_cgrp_time_from_cpuctx() 1297 */ 1298 if (!ctx->nr_cgroups) 1299 cpuctx->cgrp = NULL; 1300 } 1301 1302 if (has_branch_stack(event)) 1303 ctx->nr_branch_stack--; 1304 1305 ctx->nr_events--; 1306 if (event->attr.inherit_stat) 1307 ctx->nr_stat--; 1308 1309 list_del_rcu(&event->event_entry); 1310 1311 if (event->group_leader == event) 1312 list_del_init(&event->group_entry); 1313 1314 update_group_times(event); 1315 1316 /* 1317 * If event was in error state, then keep it 1318 * that way, otherwise bogus counts will be 1319 * returned on read(). The only way to get out 1320 * of error state is by explicit re-enabling 1321 * of the event 1322 */ 1323 if (event->state > PERF_EVENT_STATE_OFF) 1324 event->state = PERF_EVENT_STATE_OFF; 1325 1326 ctx->generation++; 1327 } 1328 1329 static void perf_group_detach(struct perf_event *event) 1330 { 1331 struct perf_event *sibling, *tmp; 1332 struct list_head *list = NULL; 1333 1334 /* 1335 * We can have double detach due to exit/hot-unplug + close. 1336 */ 1337 if (!(event->attach_state & PERF_ATTACH_GROUP)) 1338 return; 1339 1340 event->attach_state &= ~PERF_ATTACH_GROUP; 1341 1342 /* 1343 * If this is a sibling, remove it from its group. 1344 */ 1345 if (event->group_leader != event) { 1346 list_del_init(&event->group_entry); 1347 event->group_leader->nr_siblings--; 1348 goto out; 1349 } 1350 1351 if (!list_empty(&event->group_entry)) 1352 list = &event->group_entry; 1353 1354 /* 1355 * If this was a group event with sibling events then 1356 * upgrade the siblings to singleton events by adding them 1357 * to whatever list we are on. 1358 */ 1359 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) { 1360 if (list) 1361 list_move_tail(&sibling->group_entry, list); 1362 sibling->group_leader = sibling; 1363 1364 /* Inherit group flags from the previous leader */ 1365 sibling->group_flags = event->group_flags; 1366 } 1367 1368 out: 1369 perf_event__header_size(event->group_leader); 1370 1371 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry) 1372 perf_event__header_size(tmp); 1373 } 1374 1375 static inline int 1376 event_filter_match(struct perf_event *event) 1377 { 1378 return (event->cpu == -1 || event->cpu == smp_processor_id()) 1379 && perf_cgroup_match(event); 1380 } 1381 1382 static void 1383 event_sched_out(struct perf_event *event, 1384 struct perf_cpu_context *cpuctx, 1385 struct perf_event_context *ctx) 1386 { 1387 u64 tstamp = perf_event_time(event); 1388 u64 delta; 1389 /* 1390 * An event which could not be activated because of 1391 * filter mismatch still needs to have its timings 1392 * maintained, otherwise bogus information is return 1393 * via read() for time_enabled, time_running: 1394 */ 1395 if (event->state == PERF_EVENT_STATE_INACTIVE 1396 && !event_filter_match(event)) { 1397 delta = tstamp - event->tstamp_stopped; 1398 event->tstamp_running += delta; 1399 event->tstamp_stopped = tstamp; 1400 } 1401 1402 if (event->state != PERF_EVENT_STATE_ACTIVE) 1403 return; 1404 1405 perf_pmu_disable(event->pmu); 1406 1407 event->state = PERF_EVENT_STATE_INACTIVE; 1408 if (event->pending_disable) { 1409 event->pending_disable = 0; 1410 event->state = PERF_EVENT_STATE_OFF; 1411 } 1412 event->tstamp_stopped = tstamp; 1413 event->pmu->del(event, 0); 1414 event->oncpu = -1; 1415 1416 if (!is_software_event(event)) 1417 cpuctx->active_oncpu--; 1418 ctx->nr_active--; 1419 if (event->attr.freq && event->attr.sample_freq) 1420 ctx->nr_freq--; 1421 if (event->attr.exclusive || !cpuctx->active_oncpu) 1422 cpuctx->exclusive = 0; 1423 1424 perf_pmu_enable(event->pmu); 1425 } 1426 1427 static void 1428 group_sched_out(struct perf_event *group_event, 1429 struct perf_cpu_context *cpuctx, 1430 struct perf_event_context *ctx) 1431 { 1432 struct perf_event *event; 1433 int state = group_event->state; 1434 1435 event_sched_out(group_event, cpuctx, ctx); 1436 1437 /* 1438 * Schedule out siblings (if any): 1439 */ 1440 list_for_each_entry(event, &group_event->sibling_list, group_entry) 1441 event_sched_out(event, cpuctx, ctx); 1442 1443 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive) 1444 cpuctx->exclusive = 0; 1445 } 1446 1447 struct remove_event { 1448 struct perf_event *event; 1449 bool detach_group; 1450 }; 1451 1452 /* 1453 * Cross CPU call to remove a performance event 1454 * 1455 * We disable the event on the hardware level first. After that we 1456 * remove it from the context list. 1457 */ 1458 static int __perf_remove_from_context(void *info) 1459 { 1460 struct remove_event *re = info; 1461 struct perf_event *event = re->event; 1462 struct perf_event_context *ctx = event->ctx; 1463 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1464 1465 raw_spin_lock(&ctx->lock); 1466 event_sched_out(event, cpuctx, ctx); 1467 if (re->detach_group) 1468 perf_group_detach(event); 1469 list_del_event(event, ctx); 1470 if (!ctx->nr_events && cpuctx->task_ctx == ctx) { 1471 ctx->is_active = 0; 1472 cpuctx->task_ctx = NULL; 1473 } 1474 raw_spin_unlock(&ctx->lock); 1475 1476 return 0; 1477 } 1478 1479 1480 /* 1481 * Remove the event from a task's (or a CPU's) list of events. 1482 * 1483 * CPU events are removed with a smp call. For task events we only 1484 * call when the task is on a CPU. 1485 * 1486 * If event->ctx is a cloned context, callers must make sure that 1487 * every task struct that event->ctx->task could possibly point to 1488 * remains valid. This is OK when called from perf_release since 1489 * that only calls us on the top-level context, which can't be a clone. 1490 * When called from perf_event_exit_task, it's OK because the 1491 * context has been detached from its task. 1492 */ 1493 static void perf_remove_from_context(struct perf_event *event, bool detach_group) 1494 { 1495 struct perf_event_context *ctx = event->ctx; 1496 struct task_struct *task = ctx->task; 1497 struct remove_event re = { 1498 .event = event, 1499 .detach_group = detach_group, 1500 }; 1501 1502 lockdep_assert_held(&ctx->mutex); 1503 1504 if (!task) { 1505 /* 1506 * Per cpu events are removed via an smp call and 1507 * the removal is always successful. 1508 */ 1509 cpu_function_call(event->cpu, __perf_remove_from_context, &re); 1510 return; 1511 } 1512 1513 retry: 1514 if (!task_function_call(task, __perf_remove_from_context, &re)) 1515 return; 1516 1517 raw_spin_lock_irq(&ctx->lock); 1518 /* 1519 * If we failed to find a running task, but find the context active now 1520 * that we've acquired the ctx->lock, retry. 1521 */ 1522 if (ctx->is_active) { 1523 raw_spin_unlock_irq(&ctx->lock); 1524 goto retry; 1525 } 1526 1527 /* 1528 * Since the task isn't running, its safe to remove the event, us 1529 * holding the ctx->lock ensures the task won't get scheduled in. 1530 */ 1531 if (detach_group) 1532 perf_group_detach(event); 1533 list_del_event(event, ctx); 1534 raw_spin_unlock_irq(&ctx->lock); 1535 } 1536 1537 /* 1538 * Cross CPU call to disable a performance event 1539 */ 1540 int __perf_event_disable(void *info) 1541 { 1542 struct perf_event *event = info; 1543 struct perf_event_context *ctx = event->ctx; 1544 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1545 1546 /* 1547 * If this is a per-task event, need to check whether this 1548 * event's task is the current task on this cpu. 1549 * 1550 * Can trigger due to concurrent perf_event_context_sched_out() 1551 * flipping contexts around. 1552 */ 1553 if (ctx->task && cpuctx->task_ctx != ctx) 1554 return -EINVAL; 1555 1556 raw_spin_lock(&ctx->lock); 1557 1558 /* 1559 * If the event is on, turn it off. 1560 * If it is in error state, leave it in error state. 1561 */ 1562 if (event->state >= PERF_EVENT_STATE_INACTIVE) { 1563 update_context_time(ctx); 1564 update_cgrp_time_from_event(event); 1565 update_group_times(event); 1566 if (event == event->group_leader) 1567 group_sched_out(event, cpuctx, ctx); 1568 else 1569 event_sched_out(event, cpuctx, ctx); 1570 event->state = PERF_EVENT_STATE_OFF; 1571 } 1572 1573 raw_spin_unlock(&ctx->lock); 1574 1575 return 0; 1576 } 1577 1578 /* 1579 * Disable a event. 1580 * 1581 * If event->ctx is a cloned context, callers must make sure that 1582 * every task struct that event->ctx->task could possibly point to 1583 * remains valid. This condition is satisifed when called through 1584 * perf_event_for_each_child or perf_event_for_each because they 1585 * hold the top-level event's child_mutex, so any descendant that 1586 * goes to exit will block in sync_child_event. 1587 * When called from perf_pending_event it's OK because event->ctx 1588 * is the current context on this CPU and preemption is disabled, 1589 * hence we can't get into perf_event_task_sched_out for this context. 1590 */ 1591 void perf_event_disable(struct perf_event *event) 1592 { 1593 struct perf_event_context *ctx = event->ctx; 1594 struct task_struct *task = ctx->task; 1595 1596 if (!task) { 1597 /* 1598 * Disable the event on the cpu that it's on 1599 */ 1600 cpu_function_call(event->cpu, __perf_event_disable, event); 1601 return; 1602 } 1603 1604 retry: 1605 if (!task_function_call(task, __perf_event_disable, event)) 1606 return; 1607 1608 raw_spin_lock_irq(&ctx->lock); 1609 /* 1610 * If the event is still active, we need to retry the cross-call. 1611 */ 1612 if (event->state == PERF_EVENT_STATE_ACTIVE) { 1613 raw_spin_unlock_irq(&ctx->lock); 1614 /* 1615 * Reload the task pointer, it might have been changed by 1616 * a concurrent perf_event_context_sched_out(). 1617 */ 1618 task = ctx->task; 1619 goto retry; 1620 } 1621 1622 /* 1623 * Since we have the lock this context can't be scheduled 1624 * in, so we can change the state safely. 1625 */ 1626 if (event->state == PERF_EVENT_STATE_INACTIVE) { 1627 update_group_times(event); 1628 event->state = PERF_EVENT_STATE_OFF; 1629 } 1630 raw_spin_unlock_irq(&ctx->lock); 1631 } 1632 EXPORT_SYMBOL_GPL(perf_event_disable); 1633 1634 static void perf_set_shadow_time(struct perf_event *event, 1635 struct perf_event_context *ctx, 1636 u64 tstamp) 1637 { 1638 /* 1639 * use the correct time source for the time snapshot 1640 * 1641 * We could get by without this by leveraging the 1642 * fact that to get to this function, the caller 1643 * has most likely already called update_context_time() 1644 * and update_cgrp_time_xx() and thus both timestamp 1645 * are identical (or very close). Given that tstamp is, 1646 * already adjusted for cgroup, we could say that: 1647 * tstamp - ctx->timestamp 1648 * is equivalent to 1649 * tstamp - cgrp->timestamp. 1650 * 1651 * Then, in perf_output_read(), the calculation would 1652 * work with no changes because: 1653 * - event is guaranteed scheduled in 1654 * - no scheduled out in between 1655 * - thus the timestamp would be the same 1656 * 1657 * But this is a bit hairy. 1658 * 1659 * So instead, we have an explicit cgroup call to remain 1660 * within the time time source all along. We believe it 1661 * is cleaner and simpler to understand. 1662 */ 1663 if (is_cgroup_event(event)) 1664 perf_cgroup_set_shadow_time(event, tstamp); 1665 else 1666 event->shadow_ctx_time = tstamp - ctx->timestamp; 1667 } 1668 1669 #define MAX_INTERRUPTS (~0ULL) 1670 1671 static void perf_log_throttle(struct perf_event *event, int enable); 1672 1673 static int 1674 event_sched_in(struct perf_event *event, 1675 struct perf_cpu_context *cpuctx, 1676 struct perf_event_context *ctx) 1677 { 1678 u64 tstamp = perf_event_time(event); 1679 int ret = 0; 1680 1681 lockdep_assert_held(&ctx->lock); 1682 1683 if (event->state <= PERF_EVENT_STATE_OFF) 1684 return 0; 1685 1686 event->state = PERF_EVENT_STATE_ACTIVE; 1687 event->oncpu = smp_processor_id(); 1688 1689 /* 1690 * Unthrottle events, since we scheduled we might have missed several 1691 * ticks already, also for a heavily scheduling task there is little 1692 * guarantee it'll get a tick in a timely manner. 1693 */ 1694 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 1695 perf_log_throttle(event, 1); 1696 event->hw.interrupts = 0; 1697 } 1698 1699 /* 1700 * The new state must be visible before we turn it on in the hardware: 1701 */ 1702 smp_wmb(); 1703 1704 perf_pmu_disable(event->pmu); 1705 1706 if (event->pmu->add(event, PERF_EF_START)) { 1707 event->state = PERF_EVENT_STATE_INACTIVE; 1708 event->oncpu = -1; 1709 ret = -EAGAIN; 1710 goto out; 1711 } 1712 1713 event->tstamp_running += tstamp - event->tstamp_stopped; 1714 1715 perf_set_shadow_time(event, ctx, tstamp); 1716 1717 if (!is_software_event(event)) 1718 cpuctx->active_oncpu++; 1719 ctx->nr_active++; 1720 if (event->attr.freq && event->attr.sample_freq) 1721 ctx->nr_freq++; 1722 1723 if (event->attr.exclusive) 1724 cpuctx->exclusive = 1; 1725 1726 out: 1727 perf_pmu_enable(event->pmu); 1728 1729 return ret; 1730 } 1731 1732 static int 1733 group_sched_in(struct perf_event *group_event, 1734 struct perf_cpu_context *cpuctx, 1735 struct perf_event_context *ctx) 1736 { 1737 struct perf_event *event, *partial_group = NULL; 1738 struct pmu *pmu = ctx->pmu; 1739 u64 now = ctx->time; 1740 bool simulate = false; 1741 1742 if (group_event->state == PERF_EVENT_STATE_OFF) 1743 return 0; 1744 1745 pmu->start_txn(pmu); 1746 1747 if (event_sched_in(group_event, cpuctx, ctx)) { 1748 pmu->cancel_txn(pmu); 1749 perf_cpu_hrtimer_restart(cpuctx); 1750 return -EAGAIN; 1751 } 1752 1753 /* 1754 * Schedule in siblings as one group (if any): 1755 */ 1756 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 1757 if (event_sched_in(event, cpuctx, ctx)) { 1758 partial_group = event; 1759 goto group_error; 1760 } 1761 } 1762 1763 if (!pmu->commit_txn(pmu)) 1764 return 0; 1765 1766 group_error: 1767 /* 1768 * Groups can be scheduled in as one unit only, so undo any 1769 * partial group before returning: 1770 * The events up to the failed event are scheduled out normally, 1771 * tstamp_stopped will be updated. 1772 * 1773 * The failed events and the remaining siblings need to have 1774 * their timings updated as if they had gone thru event_sched_in() 1775 * and event_sched_out(). This is required to get consistent timings 1776 * across the group. This also takes care of the case where the group 1777 * could never be scheduled by ensuring tstamp_stopped is set to mark 1778 * the time the event was actually stopped, such that time delta 1779 * calculation in update_event_times() is correct. 1780 */ 1781 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 1782 if (event == partial_group) 1783 simulate = true; 1784 1785 if (simulate) { 1786 event->tstamp_running += now - event->tstamp_stopped; 1787 event->tstamp_stopped = now; 1788 } else { 1789 event_sched_out(event, cpuctx, ctx); 1790 } 1791 } 1792 event_sched_out(group_event, cpuctx, ctx); 1793 1794 pmu->cancel_txn(pmu); 1795 1796 perf_cpu_hrtimer_restart(cpuctx); 1797 1798 return -EAGAIN; 1799 } 1800 1801 /* 1802 * Work out whether we can put this event group on the CPU now. 1803 */ 1804 static int group_can_go_on(struct perf_event *event, 1805 struct perf_cpu_context *cpuctx, 1806 int can_add_hw) 1807 { 1808 /* 1809 * Groups consisting entirely of software events can always go on. 1810 */ 1811 if (event->group_flags & PERF_GROUP_SOFTWARE) 1812 return 1; 1813 /* 1814 * If an exclusive group is already on, no other hardware 1815 * events can go on. 1816 */ 1817 if (cpuctx->exclusive) 1818 return 0; 1819 /* 1820 * If this group is exclusive and there are already 1821 * events on the CPU, it can't go on. 1822 */ 1823 if (event->attr.exclusive && cpuctx->active_oncpu) 1824 return 0; 1825 /* 1826 * Otherwise, try to add it if all previous groups were able 1827 * to go on. 1828 */ 1829 return can_add_hw; 1830 } 1831 1832 static void add_event_to_ctx(struct perf_event *event, 1833 struct perf_event_context *ctx) 1834 { 1835 u64 tstamp = perf_event_time(event); 1836 1837 list_add_event(event, ctx); 1838 perf_group_attach(event); 1839 event->tstamp_enabled = tstamp; 1840 event->tstamp_running = tstamp; 1841 event->tstamp_stopped = tstamp; 1842 } 1843 1844 static void task_ctx_sched_out(struct perf_event_context *ctx); 1845 static void 1846 ctx_sched_in(struct perf_event_context *ctx, 1847 struct perf_cpu_context *cpuctx, 1848 enum event_type_t event_type, 1849 struct task_struct *task); 1850 1851 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 1852 struct perf_event_context *ctx, 1853 struct task_struct *task) 1854 { 1855 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task); 1856 if (ctx) 1857 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task); 1858 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task); 1859 if (ctx) 1860 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task); 1861 } 1862 1863 /* 1864 * Cross CPU call to install and enable a performance event 1865 * 1866 * Must be called with ctx->mutex held 1867 */ 1868 static int __perf_install_in_context(void *info) 1869 { 1870 struct perf_event *event = info; 1871 struct perf_event_context *ctx = event->ctx; 1872 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1873 struct perf_event_context *task_ctx = cpuctx->task_ctx; 1874 struct task_struct *task = current; 1875 1876 perf_ctx_lock(cpuctx, task_ctx); 1877 perf_pmu_disable(cpuctx->ctx.pmu); 1878 1879 /* 1880 * If there was an active task_ctx schedule it out. 1881 */ 1882 if (task_ctx) 1883 task_ctx_sched_out(task_ctx); 1884 1885 /* 1886 * If the context we're installing events in is not the 1887 * active task_ctx, flip them. 1888 */ 1889 if (ctx->task && task_ctx != ctx) { 1890 if (task_ctx) 1891 raw_spin_unlock(&task_ctx->lock); 1892 raw_spin_lock(&ctx->lock); 1893 task_ctx = ctx; 1894 } 1895 1896 if (task_ctx) { 1897 cpuctx->task_ctx = task_ctx; 1898 task = task_ctx->task; 1899 } 1900 1901 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 1902 1903 update_context_time(ctx); 1904 /* 1905 * update cgrp time only if current cgrp 1906 * matches event->cgrp. Must be done before 1907 * calling add_event_to_ctx() 1908 */ 1909 update_cgrp_time_from_event(event); 1910 1911 add_event_to_ctx(event, ctx); 1912 1913 /* 1914 * Schedule everything back in 1915 */ 1916 perf_event_sched_in(cpuctx, task_ctx, task); 1917 1918 perf_pmu_enable(cpuctx->ctx.pmu); 1919 perf_ctx_unlock(cpuctx, task_ctx); 1920 1921 return 0; 1922 } 1923 1924 /* 1925 * Attach a performance event to a context 1926 * 1927 * First we add the event to the list with the hardware enable bit 1928 * in event->hw_config cleared. 1929 * 1930 * If the event is attached to a task which is on a CPU we use a smp 1931 * call to enable it in the task context. The task might have been 1932 * scheduled away, but we check this in the smp call again. 1933 */ 1934 static void 1935 perf_install_in_context(struct perf_event_context *ctx, 1936 struct perf_event *event, 1937 int cpu) 1938 { 1939 struct task_struct *task = ctx->task; 1940 1941 lockdep_assert_held(&ctx->mutex); 1942 1943 event->ctx = ctx; 1944 if (event->cpu != -1) 1945 event->cpu = cpu; 1946 1947 if (!task) { 1948 /* 1949 * Per cpu events are installed via an smp call and 1950 * the install is always successful. 1951 */ 1952 cpu_function_call(cpu, __perf_install_in_context, event); 1953 return; 1954 } 1955 1956 retry: 1957 if (!task_function_call(task, __perf_install_in_context, event)) 1958 return; 1959 1960 raw_spin_lock_irq(&ctx->lock); 1961 /* 1962 * If we failed to find a running task, but find the context active now 1963 * that we've acquired the ctx->lock, retry. 1964 */ 1965 if (ctx->is_active) { 1966 raw_spin_unlock_irq(&ctx->lock); 1967 goto retry; 1968 } 1969 1970 /* 1971 * Since the task isn't running, its safe to add the event, us holding 1972 * the ctx->lock ensures the task won't get scheduled in. 1973 */ 1974 add_event_to_ctx(event, ctx); 1975 raw_spin_unlock_irq(&ctx->lock); 1976 } 1977 1978 /* 1979 * Put a event into inactive state and update time fields. 1980 * Enabling the leader of a group effectively enables all 1981 * the group members that aren't explicitly disabled, so we 1982 * have to update their ->tstamp_enabled also. 1983 * Note: this works for group members as well as group leaders 1984 * since the non-leader members' sibling_lists will be empty. 1985 */ 1986 static void __perf_event_mark_enabled(struct perf_event *event) 1987 { 1988 struct perf_event *sub; 1989 u64 tstamp = perf_event_time(event); 1990 1991 event->state = PERF_EVENT_STATE_INACTIVE; 1992 event->tstamp_enabled = tstamp - event->total_time_enabled; 1993 list_for_each_entry(sub, &event->sibling_list, group_entry) { 1994 if (sub->state >= PERF_EVENT_STATE_INACTIVE) 1995 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 1996 } 1997 } 1998 1999 /* 2000 * Cross CPU call to enable a performance event 2001 */ 2002 static int __perf_event_enable(void *info) 2003 { 2004 struct perf_event *event = info; 2005 struct perf_event_context *ctx = event->ctx; 2006 struct perf_event *leader = event->group_leader; 2007 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2008 int err; 2009 2010 /* 2011 * There's a time window between 'ctx->is_active' check 2012 * in perf_event_enable function and this place having: 2013 * - IRQs on 2014 * - ctx->lock unlocked 2015 * 2016 * where the task could be killed and 'ctx' deactivated 2017 * by perf_event_exit_task. 2018 */ 2019 if (!ctx->is_active) 2020 return -EINVAL; 2021 2022 raw_spin_lock(&ctx->lock); 2023 update_context_time(ctx); 2024 2025 if (event->state >= PERF_EVENT_STATE_INACTIVE) 2026 goto unlock; 2027 2028 /* 2029 * set current task's cgroup time reference point 2030 */ 2031 perf_cgroup_set_timestamp(current, ctx); 2032 2033 __perf_event_mark_enabled(event); 2034 2035 if (!event_filter_match(event)) { 2036 if (is_cgroup_event(event)) 2037 perf_cgroup_defer_enabled(event); 2038 goto unlock; 2039 } 2040 2041 /* 2042 * If the event is in a group and isn't the group leader, 2043 * then don't put it on unless the group is on. 2044 */ 2045 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) 2046 goto unlock; 2047 2048 if (!group_can_go_on(event, cpuctx, 1)) { 2049 err = -EEXIST; 2050 } else { 2051 if (event == leader) 2052 err = group_sched_in(event, cpuctx, ctx); 2053 else 2054 err = event_sched_in(event, cpuctx, ctx); 2055 } 2056 2057 if (err) { 2058 /* 2059 * If this event can't go on and it's part of a 2060 * group, then the whole group has to come off. 2061 */ 2062 if (leader != event) { 2063 group_sched_out(leader, cpuctx, ctx); 2064 perf_cpu_hrtimer_restart(cpuctx); 2065 } 2066 if (leader->attr.pinned) { 2067 update_group_times(leader); 2068 leader->state = PERF_EVENT_STATE_ERROR; 2069 } 2070 } 2071 2072 unlock: 2073 raw_spin_unlock(&ctx->lock); 2074 2075 return 0; 2076 } 2077 2078 /* 2079 * Enable a event. 2080 * 2081 * If event->ctx is a cloned context, callers must make sure that 2082 * every task struct that event->ctx->task could possibly point to 2083 * remains valid. This condition is satisfied when called through 2084 * perf_event_for_each_child or perf_event_for_each as described 2085 * for perf_event_disable. 2086 */ 2087 void perf_event_enable(struct perf_event *event) 2088 { 2089 struct perf_event_context *ctx = event->ctx; 2090 struct task_struct *task = ctx->task; 2091 2092 if (!task) { 2093 /* 2094 * Enable the event on the cpu that it's on 2095 */ 2096 cpu_function_call(event->cpu, __perf_event_enable, event); 2097 return; 2098 } 2099 2100 raw_spin_lock_irq(&ctx->lock); 2101 if (event->state >= PERF_EVENT_STATE_INACTIVE) 2102 goto out; 2103 2104 /* 2105 * If the event is in error state, clear that first. 2106 * That way, if we see the event in error state below, we 2107 * know that it has gone back into error state, as distinct 2108 * from the task having been scheduled away before the 2109 * cross-call arrived. 2110 */ 2111 if (event->state == PERF_EVENT_STATE_ERROR) 2112 event->state = PERF_EVENT_STATE_OFF; 2113 2114 retry: 2115 if (!ctx->is_active) { 2116 __perf_event_mark_enabled(event); 2117 goto out; 2118 } 2119 2120 raw_spin_unlock_irq(&ctx->lock); 2121 2122 if (!task_function_call(task, __perf_event_enable, event)) 2123 return; 2124 2125 raw_spin_lock_irq(&ctx->lock); 2126 2127 /* 2128 * If the context is active and the event is still off, 2129 * we need to retry the cross-call. 2130 */ 2131 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) { 2132 /* 2133 * task could have been flipped by a concurrent 2134 * perf_event_context_sched_out() 2135 */ 2136 task = ctx->task; 2137 goto retry; 2138 } 2139 2140 out: 2141 raw_spin_unlock_irq(&ctx->lock); 2142 } 2143 EXPORT_SYMBOL_GPL(perf_event_enable); 2144 2145 int perf_event_refresh(struct perf_event *event, int refresh) 2146 { 2147 /* 2148 * not supported on inherited events 2149 */ 2150 if (event->attr.inherit || !is_sampling_event(event)) 2151 return -EINVAL; 2152 2153 atomic_add(refresh, &event->event_limit); 2154 perf_event_enable(event); 2155 2156 return 0; 2157 } 2158 EXPORT_SYMBOL_GPL(perf_event_refresh); 2159 2160 static void ctx_sched_out(struct perf_event_context *ctx, 2161 struct perf_cpu_context *cpuctx, 2162 enum event_type_t event_type) 2163 { 2164 struct perf_event *event; 2165 int is_active = ctx->is_active; 2166 2167 ctx->is_active &= ~event_type; 2168 if (likely(!ctx->nr_events)) 2169 return; 2170 2171 update_context_time(ctx); 2172 update_cgrp_time_from_cpuctx(cpuctx); 2173 if (!ctx->nr_active) 2174 return; 2175 2176 perf_pmu_disable(ctx->pmu); 2177 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) { 2178 list_for_each_entry(event, &ctx->pinned_groups, group_entry) 2179 group_sched_out(event, cpuctx, ctx); 2180 } 2181 2182 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) { 2183 list_for_each_entry(event, &ctx->flexible_groups, group_entry) 2184 group_sched_out(event, cpuctx, ctx); 2185 } 2186 perf_pmu_enable(ctx->pmu); 2187 } 2188 2189 /* 2190 * Test whether two contexts are equivalent, i.e. whether they have both been 2191 * cloned from the same version of the same context. 2192 * 2193 * Equivalence is measured using a generation number in the context that is 2194 * incremented on each modification to it; see unclone_ctx(), list_add_event() 2195 * and list_del_event(). 2196 */ 2197 static int context_equiv(struct perf_event_context *ctx1, 2198 struct perf_event_context *ctx2) 2199 { 2200 /* Pinning disables the swap optimization */ 2201 if (ctx1->pin_count || ctx2->pin_count) 2202 return 0; 2203 2204 /* If ctx1 is the parent of ctx2 */ 2205 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 2206 return 1; 2207 2208 /* If ctx2 is the parent of ctx1 */ 2209 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 2210 return 1; 2211 2212 /* 2213 * If ctx1 and ctx2 have the same parent; we flatten the parent 2214 * hierarchy, see perf_event_init_context(). 2215 */ 2216 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 2217 ctx1->parent_gen == ctx2->parent_gen) 2218 return 1; 2219 2220 /* Unmatched */ 2221 return 0; 2222 } 2223 2224 static void __perf_event_sync_stat(struct perf_event *event, 2225 struct perf_event *next_event) 2226 { 2227 u64 value; 2228 2229 if (!event->attr.inherit_stat) 2230 return; 2231 2232 /* 2233 * Update the event value, we cannot use perf_event_read() 2234 * because we're in the middle of a context switch and have IRQs 2235 * disabled, which upsets smp_call_function_single(), however 2236 * we know the event must be on the current CPU, therefore we 2237 * don't need to use it. 2238 */ 2239 switch (event->state) { 2240 case PERF_EVENT_STATE_ACTIVE: 2241 event->pmu->read(event); 2242 /* fall-through */ 2243 2244 case PERF_EVENT_STATE_INACTIVE: 2245 update_event_times(event); 2246 break; 2247 2248 default: 2249 break; 2250 } 2251 2252 /* 2253 * In order to keep per-task stats reliable we need to flip the event 2254 * values when we flip the contexts. 2255 */ 2256 value = local64_read(&next_event->count); 2257 value = local64_xchg(&event->count, value); 2258 local64_set(&next_event->count, value); 2259 2260 swap(event->total_time_enabled, next_event->total_time_enabled); 2261 swap(event->total_time_running, next_event->total_time_running); 2262 2263 /* 2264 * Since we swizzled the values, update the user visible data too. 2265 */ 2266 perf_event_update_userpage(event); 2267 perf_event_update_userpage(next_event); 2268 } 2269 2270 static void perf_event_sync_stat(struct perf_event_context *ctx, 2271 struct perf_event_context *next_ctx) 2272 { 2273 struct perf_event *event, *next_event; 2274 2275 if (!ctx->nr_stat) 2276 return; 2277 2278 update_context_time(ctx); 2279 2280 event = list_first_entry(&ctx->event_list, 2281 struct perf_event, event_entry); 2282 2283 next_event = list_first_entry(&next_ctx->event_list, 2284 struct perf_event, event_entry); 2285 2286 while (&event->event_entry != &ctx->event_list && 2287 &next_event->event_entry != &next_ctx->event_list) { 2288 2289 __perf_event_sync_stat(event, next_event); 2290 2291 event = list_next_entry(event, event_entry); 2292 next_event = list_next_entry(next_event, event_entry); 2293 } 2294 } 2295 2296 static void perf_event_context_sched_out(struct task_struct *task, int ctxn, 2297 struct task_struct *next) 2298 { 2299 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; 2300 struct perf_event_context *next_ctx; 2301 struct perf_event_context *parent, *next_parent; 2302 struct perf_cpu_context *cpuctx; 2303 int do_switch = 1; 2304 2305 if (likely(!ctx)) 2306 return; 2307 2308 cpuctx = __get_cpu_context(ctx); 2309 if (!cpuctx->task_ctx) 2310 return; 2311 2312 rcu_read_lock(); 2313 next_ctx = next->perf_event_ctxp[ctxn]; 2314 if (!next_ctx) 2315 goto unlock; 2316 2317 parent = rcu_dereference(ctx->parent_ctx); 2318 next_parent = rcu_dereference(next_ctx->parent_ctx); 2319 2320 /* If neither context have a parent context; they cannot be clones. */ 2321 if (!parent && !next_parent) 2322 goto unlock; 2323 2324 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 2325 /* 2326 * Looks like the two contexts are clones, so we might be 2327 * able to optimize the context switch. We lock both 2328 * contexts and check that they are clones under the 2329 * lock (including re-checking that neither has been 2330 * uncloned in the meantime). It doesn't matter which 2331 * order we take the locks because no other cpu could 2332 * be trying to lock both of these tasks. 2333 */ 2334 raw_spin_lock(&ctx->lock); 2335 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 2336 if (context_equiv(ctx, next_ctx)) { 2337 /* 2338 * XXX do we need a memory barrier of sorts 2339 * wrt to rcu_dereference() of perf_event_ctxp 2340 */ 2341 task->perf_event_ctxp[ctxn] = next_ctx; 2342 next->perf_event_ctxp[ctxn] = ctx; 2343 ctx->task = next; 2344 next_ctx->task = task; 2345 do_switch = 0; 2346 2347 perf_event_sync_stat(ctx, next_ctx); 2348 } 2349 raw_spin_unlock(&next_ctx->lock); 2350 raw_spin_unlock(&ctx->lock); 2351 } 2352 unlock: 2353 rcu_read_unlock(); 2354 2355 if (do_switch) { 2356 raw_spin_lock(&ctx->lock); 2357 ctx_sched_out(ctx, cpuctx, EVENT_ALL); 2358 cpuctx->task_ctx = NULL; 2359 raw_spin_unlock(&ctx->lock); 2360 } 2361 } 2362 2363 #define for_each_task_context_nr(ctxn) \ 2364 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) 2365 2366 /* 2367 * Called from scheduler to remove the events of the current task, 2368 * with interrupts disabled. 2369 * 2370 * We stop each event and update the event value in event->count. 2371 * 2372 * This does not protect us against NMI, but disable() 2373 * sets the disabled bit in the control field of event _before_ 2374 * accessing the event control register. If a NMI hits, then it will 2375 * not restart the event. 2376 */ 2377 void __perf_event_task_sched_out(struct task_struct *task, 2378 struct task_struct *next) 2379 { 2380 int ctxn; 2381 2382 for_each_task_context_nr(ctxn) 2383 perf_event_context_sched_out(task, ctxn, next); 2384 2385 /* 2386 * if cgroup events exist on this CPU, then we need 2387 * to check if we have to switch out PMU state. 2388 * cgroup event are system-wide mode only 2389 */ 2390 if (atomic_read(&__get_cpu_var(perf_cgroup_events))) 2391 perf_cgroup_sched_out(task, next); 2392 } 2393 2394 static void task_ctx_sched_out(struct perf_event_context *ctx) 2395 { 2396 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2397 2398 if (!cpuctx->task_ctx) 2399 return; 2400 2401 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2402 return; 2403 2404 ctx_sched_out(ctx, cpuctx, EVENT_ALL); 2405 cpuctx->task_ctx = NULL; 2406 } 2407 2408 /* 2409 * Called with IRQs disabled 2410 */ 2411 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 2412 enum event_type_t event_type) 2413 { 2414 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); 2415 } 2416 2417 static void 2418 ctx_pinned_sched_in(struct perf_event_context *ctx, 2419 struct perf_cpu_context *cpuctx) 2420 { 2421 struct perf_event *event; 2422 2423 list_for_each_entry(event, &ctx->pinned_groups, group_entry) { 2424 if (event->state <= PERF_EVENT_STATE_OFF) 2425 continue; 2426 if (!event_filter_match(event)) 2427 continue; 2428 2429 /* may need to reset tstamp_enabled */ 2430 if (is_cgroup_event(event)) 2431 perf_cgroup_mark_enabled(event, ctx); 2432 2433 if (group_can_go_on(event, cpuctx, 1)) 2434 group_sched_in(event, cpuctx, ctx); 2435 2436 /* 2437 * If this pinned group hasn't been scheduled, 2438 * put it in error state. 2439 */ 2440 if (event->state == PERF_EVENT_STATE_INACTIVE) { 2441 update_group_times(event); 2442 event->state = PERF_EVENT_STATE_ERROR; 2443 } 2444 } 2445 } 2446 2447 static void 2448 ctx_flexible_sched_in(struct perf_event_context *ctx, 2449 struct perf_cpu_context *cpuctx) 2450 { 2451 struct perf_event *event; 2452 int can_add_hw = 1; 2453 2454 list_for_each_entry(event, &ctx->flexible_groups, group_entry) { 2455 /* Ignore events in OFF or ERROR state */ 2456 if (event->state <= PERF_EVENT_STATE_OFF) 2457 continue; 2458 /* 2459 * Listen to the 'cpu' scheduling filter constraint 2460 * of events: 2461 */ 2462 if (!event_filter_match(event)) 2463 continue; 2464 2465 /* may need to reset tstamp_enabled */ 2466 if (is_cgroup_event(event)) 2467 perf_cgroup_mark_enabled(event, ctx); 2468 2469 if (group_can_go_on(event, cpuctx, can_add_hw)) { 2470 if (group_sched_in(event, cpuctx, ctx)) 2471 can_add_hw = 0; 2472 } 2473 } 2474 } 2475 2476 static void 2477 ctx_sched_in(struct perf_event_context *ctx, 2478 struct perf_cpu_context *cpuctx, 2479 enum event_type_t event_type, 2480 struct task_struct *task) 2481 { 2482 u64 now; 2483 int is_active = ctx->is_active; 2484 2485 ctx->is_active |= event_type; 2486 if (likely(!ctx->nr_events)) 2487 return; 2488 2489 now = perf_clock(); 2490 ctx->timestamp = now; 2491 perf_cgroup_set_timestamp(task, ctx); 2492 /* 2493 * First go through the list and put on any pinned groups 2494 * in order to give them the best chance of going on. 2495 */ 2496 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) 2497 ctx_pinned_sched_in(ctx, cpuctx); 2498 2499 /* Then walk through the lower prio flexible groups */ 2500 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) 2501 ctx_flexible_sched_in(ctx, cpuctx); 2502 } 2503 2504 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 2505 enum event_type_t event_type, 2506 struct task_struct *task) 2507 { 2508 struct perf_event_context *ctx = &cpuctx->ctx; 2509 2510 ctx_sched_in(ctx, cpuctx, event_type, task); 2511 } 2512 2513 static void perf_event_context_sched_in(struct perf_event_context *ctx, 2514 struct task_struct *task) 2515 { 2516 struct perf_cpu_context *cpuctx; 2517 2518 cpuctx = __get_cpu_context(ctx); 2519 if (cpuctx->task_ctx == ctx) 2520 return; 2521 2522 perf_ctx_lock(cpuctx, ctx); 2523 perf_pmu_disable(ctx->pmu); 2524 /* 2525 * We want to keep the following priority order: 2526 * cpu pinned (that don't need to move), task pinned, 2527 * cpu flexible, task flexible. 2528 */ 2529 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2530 2531 if (ctx->nr_events) 2532 cpuctx->task_ctx = ctx; 2533 2534 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task); 2535 2536 perf_pmu_enable(ctx->pmu); 2537 perf_ctx_unlock(cpuctx, ctx); 2538 2539 /* 2540 * Since these rotations are per-cpu, we need to ensure the 2541 * cpu-context we got scheduled on is actually rotating. 2542 */ 2543 perf_pmu_rotate_start(ctx->pmu); 2544 } 2545 2546 /* 2547 * When sampling the branck stack in system-wide, it may be necessary 2548 * to flush the stack on context switch. This happens when the branch 2549 * stack does not tag its entries with the pid of the current task. 2550 * Otherwise it becomes impossible to associate a branch entry with a 2551 * task. This ambiguity is more likely to appear when the branch stack 2552 * supports priv level filtering and the user sets it to monitor only 2553 * at the user level (which could be a useful measurement in system-wide 2554 * mode). In that case, the risk is high of having a branch stack with 2555 * branch from multiple tasks. Flushing may mean dropping the existing 2556 * entries or stashing them somewhere in the PMU specific code layer. 2557 * 2558 * This function provides the context switch callback to the lower code 2559 * layer. It is invoked ONLY when there is at least one system-wide context 2560 * with at least one active event using taken branch sampling. 2561 */ 2562 static void perf_branch_stack_sched_in(struct task_struct *prev, 2563 struct task_struct *task) 2564 { 2565 struct perf_cpu_context *cpuctx; 2566 struct pmu *pmu; 2567 unsigned long flags; 2568 2569 /* no need to flush branch stack if not changing task */ 2570 if (prev == task) 2571 return; 2572 2573 local_irq_save(flags); 2574 2575 rcu_read_lock(); 2576 2577 list_for_each_entry_rcu(pmu, &pmus, entry) { 2578 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 2579 2580 /* 2581 * check if the context has at least one 2582 * event using PERF_SAMPLE_BRANCH_STACK 2583 */ 2584 if (cpuctx->ctx.nr_branch_stack > 0 2585 && pmu->flush_branch_stack) { 2586 2587 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 2588 2589 perf_pmu_disable(pmu); 2590 2591 pmu->flush_branch_stack(); 2592 2593 perf_pmu_enable(pmu); 2594 2595 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 2596 } 2597 } 2598 2599 rcu_read_unlock(); 2600 2601 local_irq_restore(flags); 2602 } 2603 2604 /* 2605 * Called from scheduler to add the events of the current task 2606 * with interrupts disabled. 2607 * 2608 * We restore the event value and then enable it. 2609 * 2610 * This does not protect us against NMI, but enable() 2611 * sets the enabled bit in the control field of event _before_ 2612 * accessing the event control register. If a NMI hits, then it will 2613 * keep the event running. 2614 */ 2615 void __perf_event_task_sched_in(struct task_struct *prev, 2616 struct task_struct *task) 2617 { 2618 struct perf_event_context *ctx; 2619 int ctxn; 2620 2621 for_each_task_context_nr(ctxn) { 2622 ctx = task->perf_event_ctxp[ctxn]; 2623 if (likely(!ctx)) 2624 continue; 2625 2626 perf_event_context_sched_in(ctx, task); 2627 } 2628 /* 2629 * if cgroup events exist on this CPU, then we need 2630 * to check if we have to switch in PMU state. 2631 * cgroup event are system-wide mode only 2632 */ 2633 if (atomic_read(&__get_cpu_var(perf_cgroup_events))) 2634 perf_cgroup_sched_in(prev, task); 2635 2636 /* check for system-wide branch_stack events */ 2637 if (atomic_read(&__get_cpu_var(perf_branch_stack_events))) 2638 perf_branch_stack_sched_in(prev, task); 2639 } 2640 2641 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 2642 { 2643 u64 frequency = event->attr.sample_freq; 2644 u64 sec = NSEC_PER_SEC; 2645 u64 divisor, dividend; 2646 2647 int count_fls, nsec_fls, frequency_fls, sec_fls; 2648 2649 count_fls = fls64(count); 2650 nsec_fls = fls64(nsec); 2651 frequency_fls = fls64(frequency); 2652 sec_fls = 30; 2653 2654 /* 2655 * We got @count in @nsec, with a target of sample_freq HZ 2656 * the target period becomes: 2657 * 2658 * @count * 10^9 2659 * period = ------------------- 2660 * @nsec * sample_freq 2661 * 2662 */ 2663 2664 /* 2665 * Reduce accuracy by one bit such that @a and @b converge 2666 * to a similar magnitude. 2667 */ 2668 #define REDUCE_FLS(a, b) \ 2669 do { \ 2670 if (a##_fls > b##_fls) { \ 2671 a >>= 1; \ 2672 a##_fls--; \ 2673 } else { \ 2674 b >>= 1; \ 2675 b##_fls--; \ 2676 } \ 2677 } while (0) 2678 2679 /* 2680 * Reduce accuracy until either term fits in a u64, then proceed with 2681 * the other, so that finally we can do a u64/u64 division. 2682 */ 2683 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 2684 REDUCE_FLS(nsec, frequency); 2685 REDUCE_FLS(sec, count); 2686 } 2687 2688 if (count_fls + sec_fls > 64) { 2689 divisor = nsec * frequency; 2690 2691 while (count_fls + sec_fls > 64) { 2692 REDUCE_FLS(count, sec); 2693 divisor >>= 1; 2694 } 2695 2696 dividend = count * sec; 2697 } else { 2698 dividend = count * sec; 2699 2700 while (nsec_fls + frequency_fls > 64) { 2701 REDUCE_FLS(nsec, frequency); 2702 dividend >>= 1; 2703 } 2704 2705 divisor = nsec * frequency; 2706 } 2707 2708 if (!divisor) 2709 return dividend; 2710 2711 return div64_u64(dividend, divisor); 2712 } 2713 2714 static DEFINE_PER_CPU(int, perf_throttled_count); 2715 static DEFINE_PER_CPU(u64, perf_throttled_seq); 2716 2717 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 2718 { 2719 struct hw_perf_event *hwc = &event->hw; 2720 s64 period, sample_period; 2721 s64 delta; 2722 2723 period = perf_calculate_period(event, nsec, count); 2724 2725 delta = (s64)(period - hwc->sample_period); 2726 delta = (delta + 7) / 8; /* low pass filter */ 2727 2728 sample_period = hwc->sample_period + delta; 2729 2730 if (!sample_period) 2731 sample_period = 1; 2732 2733 hwc->sample_period = sample_period; 2734 2735 if (local64_read(&hwc->period_left) > 8*sample_period) { 2736 if (disable) 2737 event->pmu->stop(event, PERF_EF_UPDATE); 2738 2739 local64_set(&hwc->period_left, 0); 2740 2741 if (disable) 2742 event->pmu->start(event, PERF_EF_RELOAD); 2743 } 2744 } 2745 2746 /* 2747 * combine freq adjustment with unthrottling to avoid two passes over the 2748 * events. At the same time, make sure, having freq events does not change 2749 * the rate of unthrottling as that would introduce bias. 2750 */ 2751 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx, 2752 int needs_unthr) 2753 { 2754 struct perf_event *event; 2755 struct hw_perf_event *hwc; 2756 u64 now, period = TICK_NSEC; 2757 s64 delta; 2758 2759 /* 2760 * only need to iterate over all events iff: 2761 * - context have events in frequency mode (needs freq adjust) 2762 * - there are events to unthrottle on this cpu 2763 */ 2764 if (!(ctx->nr_freq || needs_unthr)) 2765 return; 2766 2767 raw_spin_lock(&ctx->lock); 2768 perf_pmu_disable(ctx->pmu); 2769 2770 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 2771 if (event->state != PERF_EVENT_STATE_ACTIVE) 2772 continue; 2773 2774 if (!event_filter_match(event)) 2775 continue; 2776 2777 perf_pmu_disable(event->pmu); 2778 2779 hwc = &event->hw; 2780 2781 if (hwc->interrupts == MAX_INTERRUPTS) { 2782 hwc->interrupts = 0; 2783 perf_log_throttle(event, 1); 2784 event->pmu->start(event, 0); 2785 } 2786 2787 if (!event->attr.freq || !event->attr.sample_freq) 2788 goto next; 2789 2790 /* 2791 * stop the event and update event->count 2792 */ 2793 event->pmu->stop(event, PERF_EF_UPDATE); 2794 2795 now = local64_read(&event->count); 2796 delta = now - hwc->freq_count_stamp; 2797 hwc->freq_count_stamp = now; 2798 2799 /* 2800 * restart the event 2801 * reload only if value has changed 2802 * we have stopped the event so tell that 2803 * to perf_adjust_period() to avoid stopping it 2804 * twice. 2805 */ 2806 if (delta > 0) 2807 perf_adjust_period(event, period, delta, false); 2808 2809 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 2810 next: 2811 perf_pmu_enable(event->pmu); 2812 } 2813 2814 perf_pmu_enable(ctx->pmu); 2815 raw_spin_unlock(&ctx->lock); 2816 } 2817 2818 /* 2819 * Round-robin a context's events: 2820 */ 2821 static void rotate_ctx(struct perf_event_context *ctx) 2822 { 2823 /* 2824 * Rotate the first entry last of non-pinned groups. Rotation might be 2825 * disabled by the inheritance code. 2826 */ 2827 if (!ctx->rotate_disable) 2828 list_rotate_left(&ctx->flexible_groups); 2829 } 2830 2831 /* 2832 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized 2833 * because they're strictly cpu affine and rotate_start is called with IRQs 2834 * disabled, while rotate_context is called from IRQ context. 2835 */ 2836 static int perf_rotate_context(struct perf_cpu_context *cpuctx) 2837 { 2838 struct perf_event_context *ctx = NULL; 2839 int rotate = 0, remove = 1; 2840 2841 if (cpuctx->ctx.nr_events) { 2842 remove = 0; 2843 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active) 2844 rotate = 1; 2845 } 2846 2847 ctx = cpuctx->task_ctx; 2848 if (ctx && ctx->nr_events) { 2849 remove = 0; 2850 if (ctx->nr_events != ctx->nr_active) 2851 rotate = 1; 2852 } 2853 2854 if (!rotate) 2855 goto done; 2856 2857 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 2858 perf_pmu_disable(cpuctx->ctx.pmu); 2859 2860 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2861 if (ctx) 2862 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE); 2863 2864 rotate_ctx(&cpuctx->ctx); 2865 if (ctx) 2866 rotate_ctx(ctx); 2867 2868 perf_event_sched_in(cpuctx, ctx, current); 2869 2870 perf_pmu_enable(cpuctx->ctx.pmu); 2871 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 2872 done: 2873 if (remove) 2874 list_del_init(&cpuctx->rotation_list); 2875 2876 return rotate; 2877 } 2878 2879 #ifdef CONFIG_NO_HZ_FULL 2880 bool perf_event_can_stop_tick(void) 2881 { 2882 if (atomic_read(&nr_freq_events) || 2883 __this_cpu_read(perf_throttled_count)) 2884 return false; 2885 else 2886 return true; 2887 } 2888 #endif 2889 2890 void perf_event_task_tick(void) 2891 { 2892 struct list_head *head = &__get_cpu_var(rotation_list); 2893 struct perf_cpu_context *cpuctx, *tmp; 2894 struct perf_event_context *ctx; 2895 int throttled; 2896 2897 WARN_ON(!irqs_disabled()); 2898 2899 __this_cpu_inc(perf_throttled_seq); 2900 throttled = __this_cpu_xchg(perf_throttled_count, 0); 2901 2902 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) { 2903 ctx = &cpuctx->ctx; 2904 perf_adjust_freq_unthr_context(ctx, throttled); 2905 2906 ctx = cpuctx->task_ctx; 2907 if (ctx) 2908 perf_adjust_freq_unthr_context(ctx, throttled); 2909 } 2910 } 2911 2912 static int event_enable_on_exec(struct perf_event *event, 2913 struct perf_event_context *ctx) 2914 { 2915 if (!event->attr.enable_on_exec) 2916 return 0; 2917 2918 event->attr.enable_on_exec = 0; 2919 if (event->state >= PERF_EVENT_STATE_INACTIVE) 2920 return 0; 2921 2922 __perf_event_mark_enabled(event); 2923 2924 return 1; 2925 } 2926 2927 /* 2928 * Enable all of a task's events that have been marked enable-on-exec. 2929 * This expects task == current. 2930 */ 2931 static void perf_event_enable_on_exec(struct perf_event_context *ctx) 2932 { 2933 struct perf_event *event; 2934 unsigned long flags; 2935 int enabled = 0; 2936 int ret; 2937 2938 local_irq_save(flags); 2939 if (!ctx || !ctx->nr_events) 2940 goto out; 2941 2942 /* 2943 * We must ctxsw out cgroup events to avoid conflict 2944 * when invoking perf_task_event_sched_in() later on 2945 * in this function. Otherwise we end up trying to 2946 * ctxswin cgroup events which are already scheduled 2947 * in. 2948 */ 2949 perf_cgroup_sched_out(current, NULL); 2950 2951 raw_spin_lock(&ctx->lock); 2952 task_ctx_sched_out(ctx); 2953 2954 list_for_each_entry(event, &ctx->event_list, event_entry) { 2955 ret = event_enable_on_exec(event, ctx); 2956 if (ret) 2957 enabled = 1; 2958 } 2959 2960 /* 2961 * Unclone this context if we enabled any event. 2962 */ 2963 if (enabled) 2964 unclone_ctx(ctx); 2965 2966 raw_spin_unlock(&ctx->lock); 2967 2968 /* 2969 * Also calls ctxswin for cgroup events, if any: 2970 */ 2971 perf_event_context_sched_in(ctx, ctx->task); 2972 out: 2973 local_irq_restore(flags); 2974 } 2975 2976 /* 2977 * Cross CPU call to read the hardware event 2978 */ 2979 static void __perf_event_read(void *info) 2980 { 2981 struct perf_event *event = info; 2982 struct perf_event_context *ctx = event->ctx; 2983 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2984 2985 /* 2986 * If this is a task context, we need to check whether it is 2987 * the current task context of this cpu. If not it has been 2988 * scheduled out before the smp call arrived. In that case 2989 * event->count would have been updated to a recent sample 2990 * when the event was scheduled out. 2991 */ 2992 if (ctx->task && cpuctx->task_ctx != ctx) 2993 return; 2994 2995 raw_spin_lock(&ctx->lock); 2996 if (ctx->is_active) { 2997 update_context_time(ctx); 2998 update_cgrp_time_from_event(event); 2999 } 3000 update_event_times(event); 3001 if (event->state == PERF_EVENT_STATE_ACTIVE) 3002 event->pmu->read(event); 3003 raw_spin_unlock(&ctx->lock); 3004 } 3005 3006 static inline u64 perf_event_count(struct perf_event *event) 3007 { 3008 return local64_read(&event->count) + atomic64_read(&event->child_count); 3009 } 3010 3011 static u64 perf_event_read(struct perf_event *event) 3012 { 3013 /* 3014 * If event is enabled and currently active on a CPU, update the 3015 * value in the event structure: 3016 */ 3017 if (event->state == PERF_EVENT_STATE_ACTIVE) { 3018 smp_call_function_single(event->oncpu, 3019 __perf_event_read, event, 1); 3020 } else if (event->state == PERF_EVENT_STATE_INACTIVE) { 3021 struct perf_event_context *ctx = event->ctx; 3022 unsigned long flags; 3023 3024 raw_spin_lock_irqsave(&ctx->lock, flags); 3025 /* 3026 * may read while context is not active 3027 * (e.g., thread is blocked), in that case 3028 * we cannot update context time 3029 */ 3030 if (ctx->is_active) { 3031 update_context_time(ctx); 3032 update_cgrp_time_from_event(event); 3033 } 3034 update_event_times(event); 3035 raw_spin_unlock_irqrestore(&ctx->lock, flags); 3036 } 3037 3038 return perf_event_count(event); 3039 } 3040 3041 /* 3042 * Initialize the perf_event context in a task_struct: 3043 */ 3044 static void __perf_event_init_context(struct perf_event_context *ctx) 3045 { 3046 raw_spin_lock_init(&ctx->lock); 3047 mutex_init(&ctx->mutex); 3048 INIT_LIST_HEAD(&ctx->pinned_groups); 3049 INIT_LIST_HEAD(&ctx->flexible_groups); 3050 INIT_LIST_HEAD(&ctx->event_list); 3051 atomic_set(&ctx->refcount, 1); 3052 } 3053 3054 static struct perf_event_context * 3055 alloc_perf_context(struct pmu *pmu, struct task_struct *task) 3056 { 3057 struct perf_event_context *ctx; 3058 3059 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 3060 if (!ctx) 3061 return NULL; 3062 3063 __perf_event_init_context(ctx); 3064 if (task) { 3065 ctx->task = task; 3066 get_task_struct(task); 3067 } 3068 ctx->pmu = pmu; 3069 3070 return ctx; 3071 } 3072 3073 static struct task_struct * 3074 find_lively_task_by_vpid(pid_t vpid) 3075 { 3076 struct task_struct *task; 3077 int err; 3078 3079 rcu_read_lock(); 3080 if (!vpid) 3081 task = current; 3082 else 3083 task = find_task_by_vpid(vpid); 3084 if (task) 3085 get_task_struct(task); 3086 rcu_read_unlock(); 3087 3088 if (!task) 3089 return ERR_PTR(-ESRCH); 3090 3091 /* Reuse ptrace permission checks for now. */ 3092 err = -EACCES; 3093 if (!ptrace_may_access(task, PTRACE_MODE_READ)) 3094 goto errout; 3095 3096 return task; 3097 errout: 3098 put_task_struct(task); 3099 return ERR_PTR(err); 3100 3101 } 3102 3103 /* 3104 * Returns a matching context with refcount and pincount. 3105 */ 3106 static struct perf_event_context * 3107 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu) 3108 { 3109 struct perf_event_context *ctx; 3110 struct perf_cpu_context *cpuctx; 3111 unsigned long flags; 3112 int ctxn, err; 3113 3114 if (!task) { 3115 /* Must be root to operate on a CPU event: */ 3116 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) 3117 return ERR_PTR(-EACCES); 3118 3119 /* 3120 * We could be clever and allow to attach a event to an 3121 * offline CPU and activate it when the CPU comes up, but 3122 * that's for later. 3123 */ 3124 if (!cpu_online(cpu)) 3125 return ERR_PTR(-ENODEV); 3126 3127 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 3128 ctx = &cpuctx->ctx; 3129 get_ctx(ctx); 3130 ++ctx->pin_count; 3131 3132 return ctx; 3133 } 3134 3135 err = -EINVAL; 3136 ctxn = pmu->task_ctx_nr; 3137 if (ctxn < 0) 3138 goto errout; 3139 3140 retry: 3141 ctx = perf_lock_task_context(task, ctxn, &flags); 3142 if (ctx) { 3143 unclone_ctx(ctx); 3144 ++ctx->pin_count; 3145 raw_spin_unlock_irqrestore(&ctx->lock, flags); 3146 } else { 3147 ctx = alloc_perf_context(pmu, task); 3148 err = -ENOMEM; 3149 if (!ctx) 3150 goto errout; 3151 3152 err = 0; 3153 mutex_lock(&task->perf_event_mutex); 3154 /* 3155 * If it has already passed perf_event_exit_task(). 3156 * we must see PF_EXITING, it takes this mutex too. 3157 */ 3158 if (task->flags & PF_EXITING) 3159 err = -ESRCH; 3160 else if (task->perf_event_ctxp[ctxn]) 3161 err = -EAGAIN; 3162 else { 3163 get_ctx(ctx); 3164 ++ctx->pin_count; 3165 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); 3166 } 3167 mutex_unlock(&task->perf_event_mutex); 3168 3169 if (unlikely(err)) { 3170 put_ctx(ctx); 3171 3172 if (err == -EAGAIN) 3173 goto retry; 3174 goto errout; 3175 } 3176 } 3177 3178 return ctx; 3179 3180 errout: 3181 return ERR_PTR(err); 3182 } 3183 3184 static void perf_event_free_filter(struct perf_event *event); 3185 3186 static void free_event_rcu(struct rcu_head *head) 3187 { 3188 struct perf_event *event; 3189 3190 event = container_of(head, struct perf_event, rcu_head); 3191 if (event->ns) 3192 put_pid_ns(event->ns); 3193 perf_event_free_filter(event); 3194 kfree(event); 3195 } 3196 3197 static void ring_buffer_put(struct ring_buffer *rb); 3198 static void ring_buffer_attach(struct perf_event *event, 3199 struct ring_buffer *rb); 3200 3201 static void unaccount_event_cpu(struct perf_event *event, int cpu) 3202 { 3203 if (event->parent) 3204 return; 3205 3206 if (has_branch_stack(event)) { 3207 if (!(event->attach_state & PERF_ATTACH_TASK)) 3208 atomic_dec(&per_cpu(perf_branch_stack_events, cpu)); 3209 } 3210 if (is_cgroup_event(event)) 3211 atomic_dec(&per_cpu(perf_cgroup_events, cpu)); 3212 } 3213 3214 static void unaccount_event(struct perf_event *event) 3215 { 3216 if (event->parent) 3217 return; 3218 3219 if (event->attach_state & PERF_ATTACH_TASK) 3220 static_key_slow_dec_deferred(&perf_sched_events); 3221 if (event->attr.mmap || event->attr.mmap_data) 3222 atomic_dec(&nr_mmap_events); 3223 if (event->attr.comm) 3224 atomic_dec(&nr_comm_events); 3225 if (event->attr.task) 3226 atomic_dec(&nr_task_events); 3227 if (event->attr.freq) 3228 atomic_dec(&nr_freq_events); 3229 if (is_cgroup_event(event)) 3230 static_key_slow_dec_deferred(&perf_sched_events); 3231 if (has_branch_stack(event)) 3232 static_key_slow_dec_deferred(&perf_sched_events); 3233 3234 unaccount_event_cpu(event, event->cpu); 3235 } 3236 3237 static void __free_event(struct perf_event *event) 3238 { 3239 if (!event->parent) { 3240 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 3241 put_callchain_buffers(); 3242 } 3243 3244 if (event->destroy) 3245 event->destroy(event); 3246 3247 if (event->ctx) 3248 put_ctx(event->ctx); 3249 3250 if (event->pmu) 3251 module_put(event->pmu->module); 3252 3253 call_rcu(&event->rcu_head, free_event_rcu); 3254 } 3255 3256 static void _free_event(struct perf_event *event) 3257 { 3258 irq_work_sync(&event->pending); 3259 3260 unaccount_event(event); 3261 3262 if (event->rb) { 3263 /* 3264 * Can happen when we close an event with re-directed output. 3265 * 3266 * Since we have a 0 refcount, perf_mmap_close() will skip 3267 * over us; possibly making our ring_buffer_put() the last. 3268 */ 3269 mutex_lock(&event->mmap_mutex); 3270 ring_buffer_attach(event, NULL); 3271 mutex_unlock(&event->mmap_mutex); 3272 } 3273 3274 if (is_cgroup_event(event)) 3275 perf_detach_cgroup(event); 3276 3277 __free_event(event); 3278 } 3279 3280 /* 3281 * Used to free events which have a known refcount of 1, such as in error paths 3282 * where the event isn't exposed yet and inherited events. 3283 */ 3284 static void free_event(struct perf_event *event) 3285 { 3286 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 3287 "unexpected event refcount: %ld; ptr=%p\n", 3288 atomic_long_read(&event->refcount), event)) { 3289 /* leak to avoid use-after-free */ 3290 return; 3291 } 3292 3293 _free_event(event); 3294 } 3295 3296 /* 3297 * Called when the last reference to the file is gone. 3298 */ 3299 static void put_event(struct perf_event *event) 3300 { 3301 struct perf_event_context *ctx = event->ctx; 3302 struct task_struct *owner; 3303 3304 if (!atomic_long_dec_and_test(&event->refcount)) 3305 return; 3306 3307 rcu_read_lock(); 3308 owner = ACCESS_ONCE(event->owner); 3309 /* 3310 * Matches the smp_wmb() in perf_event_exit_task(). If we observe 3311 * !owner it means the list deletion is complete and we can indeed 3312 * free this event, otherwise we need to serialize on 3313 * owner->perf_event_mutex. 3314 */ 3315 smp_read_barrier_depends(); 3316 if (owner) { 3317 /* 3318 * Since delayed_put_task_struct() also drops the last 3319 * task reference we can safely take a new reference 3320 * while holding the rcu_read_lock(). 3321 */ 3322 get_task_struct(owner); 3323 } 3324 rcu_read_unlock(); 3325 3326 if (owner) { 3327 mutex_lock(&owner->perf_event_mutex); 3328 /* 3329 * We have to re-check the event->owner field, if it is cleared 3330 * we raced with perf_event_exit_task(), acquiring the mutex 3331 * ensured they're done, and we can proceed with freeing the 3332 * event. 3333 */ 3334 if (event->owner) 3335 list_del_init(&event->owner_entry); 3336 mutex_unlock(&owner->perf_event_mutex); 3337 put_task_struct(owner); 3338 } 3339 3340 WARN_ON_ONCE(ctx->parent_ctx); 3341 /* 3342 * There are two ways this annotation is useful: 3343 * 3344 * 1) there is a lock recursion from perf_event_exit_task 3345 * see the comment there. 3346 * 3347 * 2) there is a lock-inversion with mmap_sem through 3348 * perf_event_read_group(), which takes faults while 3349 * holding ctx->mutex, however this is called after 3350 * the last filedesc died, so there is no possibility 3351 * to trigger the AB-BA case. 3352 */ 3353 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING); 3354 perf_remove_from_context(event, true); 3355 mutex_unlock(&ctx->mutex); 3356 3357 _free_event(event); 3358 } 3359 3360 int perf_event_release_kernel(struct perf_event *event) 3361 { 3362 put_event(event); 3363 return 0; 3364 } 3365 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 3366 3367 static int perf_release(struct inode *inode, struct file *file) 3368 { 3369 put_event(file->private_data); 3370 return 0; 3371 } 3372 3373 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 3374 { 3375 struct perf_event *child; 3376 u64 total = 0; 3377 3378 *enabled = 0; 3379 *running = 0; 3380 3381 mutex_lock(&event->child_mutex); 3382 total += perf_event_read(event); 3383 *enabled += event->total_time_enabled + 3384 atomic64_read(&event->child_total_time_enabled); 3385 *running += event->total_time_running + 3386 atomic64_read(&event->child_total_time_running); 3387 3388 list_for_each_entry(child, &event->child_list, child_list) { 3389 total += perf_event_read(child); 3390 *enabled += child->total_time_enabled; 3391 *running += child->total_time_running; 3392 } 3393 mutex_unlock(&event->child_mutex); 3394 3395 return total; 3396 } 3397 EXPORT_SYMBOL_GPL(perf_event_read_value); 3398 3399 static int perf_event_read_group(struct perf_event *event, 3400 u64 read_format, char __user *buf) 3401 { 3402 struct perf_event *leader = event->group_leader, *sub; 3403 int n = 0, size = 0, ret = -EFAULT; 3404 struct perf_event_context *ctx = leader->ctx; 3405 u64 values[5]; 3406 u64 count, enabled, running; 3407 3408 mutex_lock(&ctx->mutex); 3409 count = perf_event_read_value(leader, &enabled, &running); 3410 3411 values[n++] = 1 + leader->nr_siblings; 3412 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 3413 values[n++] = enabled; 3414 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 3415 values[n++] = running; 3416 values[n++] = count; 3417 if (read_format & PERF_FORMAT_ID) 3418 values[n++] = primary_event_id(leader); 3419 3420 size = n * sizeof(u64); 3421 3422 if (copy_to_user(buf, values, size)) 3423 goto unlock; 3424 3425 ret = size; 3426 3427 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 3428 n = 0; 3429 3430 values[n++] = perf_event_read_value(sub, &enabled, &running); 3431 if (read_format & PERF_FORMAT_ID) 3432 values[n++] = primary_event_id(sub); 3433 3434 size = n * sizeof(u64); 3435 3436 if (copy_to_user(buf + ret, values, size)) { 3437 ret = -EFAULT; 3438 goto unlock; 3439 } 3440 3441 ret += size; 3442 } 3443 unlock: 3444 mutex_unlock(&ctx->mutex); 3445 3446 return ret; 3447 } 3448 3449 static int perf_event_read_one(struct perf_event *event, 3450 u64 read_format, char __user *buf) 3451 { 3452 u64 enabled, running; 3453 u64 values[4]; 3454 int n = 0; 3455 3456 values[n++] = perf_event_read_value(event, &enabled, &running); 3457 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 3458 values[n++] = enabled; 3459 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 3460 values[n++] = running; 3461 if (read_format & PERF_FORMAT_ID) 3462 values[n++] = primary_event_id(event); 3463 3464 if (copy_to_user(buf, values, n * sizeof(u64))) 3465 return -EFAULT; 3466 3467 return n * sizeof(u64); 3468 } 3469 3470 /* 3471 * Read the performance event - simple non blocking version for now 3472 */ 3473 static ssize_t 3474 perf_read_hw(struct perf_event *event, char __user *buf, size_t count) 3475 { 3476 u64 read_format = event->attr.read_format; 3477 int ret; 3478 3479 /* 3480 * Return end-of-file for a read on a event that is in 3481 * error state (i.e. because it was pinned but it couldn't be 3482 * scheduled on to the CPU at some point). 3483 */ 3484 if (event->state == PERF_EVENT_STATE_ERROR) 3485 return 0; 3486 3487 if (count < event->read_size) 3488 return -ENOSPC; 3489 3490 WARN_ON_ONCE(event->ctx->parent_ctx); 3491 if (read_format & PERF_FORMAT_GROUP) 3492 ret = perf_event_read_group(event, read_format, buf); 3493 else 3494 ret = perf_event_read_one(event, read_format, buf); 3495 3496 return ret; 3497 } 3498 3499 static ssize_t 3500 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 3501 { 3502 struct perf_event *event = file->private_data; 3503 3504 return perf_read_hw(event, buf, count); 3505 } 3506 3507 static unsigned int perf_poll(struct file *file, poll_table *wait) 3508 { 3509 struct perf_event *event = file->private_data; 3510 struct ring_buffer *rb; 3511 unsigned int events = POLL_HUP; 3512 3513 /* 3514 * Pin the event->rb by taking event->mmap_mutex; otherwise 3515 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 3516 */ 3517 mutex_lock(&event->mmap_mutex); 3518 rb = event->rb; 3519 if (rb) 3520 events = atomic_xchg(&rb->poll, 0); 3521 mutex_unlock(&event->mmap_mutex); 3522 3523 poll_wait(file, &event->waitq, wait); 3524 3525 return events; 3526 } 3527 3528 static void perf_event_reset(struct perf_event *event) 3529 { 3530 (void)perf_event_read(event); 3531 local64_set(&event->count, 0); 3532 perf_event_update_userpage(event); 3533 } 3534 3535 /* 3536 * Holding the top-level event's child_mutex means that any 3537 * descendant process that has inherited this event will block 3538 * in sync_child_event if it goes to exit, thus satisfying the 3539 * task existence requirements of perf_event_enable/disable. 3540 */ 3541 static void perf_event_for_each_child(struct perf_event *event, 3542 void (*func)(struct perf_event *)) 3543 { 3544 struct perf_event *child; 3545 3546 WARN_ON_ONCE(event->ctx->parent_ctx); 3547 mutex_lock(&event->child_mutex); 3548 func(event); 3549 list_for_each_entry(child, &event->child_list, child_list) 3550 func(child); 3551 mutex_unlock(&event->child_mutex); 3552 } 3553 3554 static void perf_event_for_each(struct perf_event *event, 3555 void (*func)(struct perf_event *)) 3556 { 3557 struct perf_event_context *ctx = event->ctx; 3558 struct perf_event *sibling; 3559 3560 WARN_ON_ONCE(ctx->parent_ctx); 3561 mutex_lock(&ctx->mutex); 3562 event = event->group_leader; 3563 3564 perf_event_for_each_child(event, func); 3565 list_for_each_entry(sibling, &event->sibling_list, group_entry) 3566 perf_event_for_each_child(sibling, func); 3567 mutex_unlock(&ctx->mutex); 3568 } 3569 3570 static int perf_event_period(struct perf_event *event, u64 __user *arg) 3571 { 3572 struct perf_event_context *ctx = event->ctx; 3573 int ret = 0, active; 3574 u64 value; 3575 3576 if (!is_sampling_event(event)) 3577 return -EINVAL; 3578 3579 if (copy_from_user(&value, arg, sizeof(value))) 3580 return -EFAULT; 3581 3582 if (!value) 3583 return -EINVAL; 3584 3585 raw_spin_lock_irq(&ctx->lock); 3586 if (event->attr.freq) { 3587 if (value > sysctl_perf_event_sample_rate) { 3588 ret = -EINVAL; 3589 goto unlock; 3590 } 3591 3592 event->attr.sample_freq = value; 3593 } else { 3594 event->attr.sample_period = value; 3595 event->hw.sample_period = value; 3596 } 3597 3598 active = (event->state == PERF_EVENT_STATE_ACTIVE); 3599 if (active) { 3600 perf_pmu_disable(ctx->pmu); 3601 event->pmu->stop(event, PERF_EF_UPDATE); 3602 } 3603 3604 local64_set(&event->hw.period_left, 0); 3605 3606 if (active) { 3607 event->pmu->start(event, PERF_EF_RELOAD); 3608 perf_pmu_enable(ctx->pmu); 3609 } 3610 3611 unlock: 3612 raw_spin_unlock_irq(&ctx->lock); 3613 3614 return ret; 3615 } 3616 3617 static const struct file_operations perf_fops; 3618 3619 static inline int perf_fget_light(int fd, struct fd *p) 3620 { 3621 struct fd f = fdget(fd); 3622 if (!f.file) 3623 return -EBADF; 3624 3625 if (f.file->f_op != &perf_fops) { 3626 fdput(f); 3627 return -EBADF; 3628 } 3629 *p = f; 3630 return 0; 3631 } 3632 3633 static int perf_event_set_output(struct perf_event *event, 3634 struct perf_event *output_event); 3635 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 3636 3637 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 3638 { 3639 struct perf_event *event = file->private_data; 3640 void (*func)(struct perf_event *); 3641 u32 flags = arg; 3642 3643 switch (cmd) { 3644 case PERF_EVENT_IOC_ENABLE: 3645 func = perf_event_enable; 3646 break; 3647 case PERF_EVENT_IOC_DISABLE: 3648 func = perf_event_disable; 3649 break; 3650 case PERF_EVENT_IOC_RESET: 3651 func = perf_event_reset; 3652 break; 3653 3654 case PERF_EVENT_IOC_REFRESH: 3655 return perf_event_refresh(event, arg); 3656 3657 case PERF_EVENT_IOC_PERIOD: 3658 return perf_event_period(event, (u64 __user *)arg); 3659 3660 case PERF_EVENT_IOC_ID: 3661 { 3662 u64 id = primary_event_id(event); 3663 3664 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 3665 return -EFAULT; 3666 return 0; 3667 } 3668 3669 case PERF_EVENT_IOC_SET_OUTPUT: 3670 { 3671 int ret; 3672 if (arg != -1) { 3673 struct perf_event *output_event; 3674 struct fd output; 3675 ret = perf_fget_light(arg, &output); 3676 if (ret) 3677 return ret; 3678 output_event = output.file->private_data; 3679 ret = perf_event_set_output(event, output_event); 3680 fdput(output); 3681 } else { 3682 ret = perf_event_set_output(event, NULL); 3683 } 3684 return ret; 3685 } 3686 3687 case PERF_EVENT_IOC_SET_FILTER: 3688 return perf_event_set_filter(event, (void __user *)arg); 3689 3690 default: 3691 return -ENOTTY; 3692 } 3693 3694 if (flags & PERF_IOC_FLAG_GROUP) 3695 perf_event_for_each(event, func); 3696 else 3697 perf_event_for_each_child(event, func); 3698 3699 return 0; 3700 } 3701 3702 int perf_event_task_enable(void) 3703 { 3704 struct perf_event *event; 3705 3706 mutex_lock(¤t->perf_event_mutex); 3707 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) 3708 perf_event_for_each_child(event, perf_event_enable); 3709 mutex_unlock(¤t->perf_event_mutex); 3710 3711 return 0; 3712 } 3713 3714 int perf_event_task_disable(void) 3715 { 3716 struct perf_event *event; 3717 3718 mutex_lock(¤t->perf_event_mutex); 3719 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) 3720 perf_event_for_each_child(event, perf_event_disable); 3721 mutex_unlock(¤t->perf_event_mutex); 3722 3723 return 0; 3724 } 3725 3726 static int perf_event_index(struct perf_event *event) 3727 { 3728 if (event->hw.state & PERF_HES_STOPPED) 3729 return 0; 3730 3731 if (event->state != PERF_EVENT_STATE_ACTIVE) 3732 return 0; 3733 3734 return event->pmu->event_idx(event); 3735 } 3736 3737 static void calc_timer_values(struct perf_event *event, 3738 u64 *now, 3739 u64 *enabled, 3740 u64 *running) 3741 { 3742 u64 ctx_time; 3743 3744 *now = perf_clock(); 3745 ctx_time = event->shadow_ctx_time + *now; 3746 *enabled = ctx_time - event->tstamp_enabled; 3747 *running = ctx_time - event->tstamp_running; 3748 } 3749 3750 static void perf_event_init_userpage(struct perf_event *event) 3751 { 3752 struct perf_event_mmap_page *userpg; 3753 struct ring_buffer *rb; 3754 3755 rcu_read_lock(); 3756 rb = rcu_dereference(event->rb); 3757 if (!rb) 3758 goto unlock; 3759 3760 userpg = rb->user_page; 3761 3762 /* Allow new userspace to detect that bit 0 is deprecated */ 3763 userpg->cap_bit0_is_deprecated = 1; 3764 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 3765 3766 unlock: 3767 rcu_read_unlock(); 3768 } 3769 3770 void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now) 3771 { 3772 } 3773 3774 /* 3775 * Callers need to ensure there can be no nesting of this function, otherwise 3776 * the seqlock logic goes bad. We can not serialize this because the arch 3777 * code calls this from NMI context. 3778 */ 3779 void perf_event_update_userpage(struct perf_event *event) 3780 { 3781 struct perf_event_mmap_page *userpg; 3782 struct ring_buffer *rb; 3783 u64 enabled, running, now; 3784 3785 rcu_read_lock(); 3786 rb = rcu_dereference(event->rb); 3787 if (!rb) 3788 goto unlock; 3789 3790 /* 3791 * compute total_time_enabled, total_time_running 3792 * based on snapshot values taken when the event 3793 * was last scheduled in. 3794 * 3795 * we cannot simply called update_context_time() 3796 * because of locking issue as we can be called in 3797 * NMI context 3798 */ 3799 calc_timer_values(event, &now, &enabled, &running); 3800 3801 userpg = rb->user_page; 3802 /* 3803 * Disable preemption so as to not let the corresponding user-space 3804 * spin too long if we get preempted. 3805 */ 3806 preempt_disable(); 3807 ++userpg->lock; 3808 barrier(); 3809 userpg->index = perf_event_index(event); 3810 userpg->offset = perf_event_count(event); 3811 if (userpg->index) 3812 userpg->offset -= local64_read(&event->hw.prev_count); 3813 3814 userpg->time_enabled = enabled + 3815 atomic64_read(&event->child_total_time_enabled); 3816 3817 userpg->time_running = running + 3818 atomic64_read(&event->child_total_time_running); 3819 3820 arch_perf_update_userpage(userpg, now); 3821 3822 barrier(); 3823 ++userpg->lock; 3824 preempt_enable(); 3825 unlock: 3826 rcu_read_unlock(); 3827 } 3828 3829 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 3830 { 3831 struct perf_event *event = vma->vm_file->private_data; 3832 struct ring_buffer *rb; 3833 int ret = VM_FAULT_SIGBUS; 3834 3835 if (vmf->flags & FAULT_FLAG_MKWRITE) { 3836 if (vmf->pgoff == 0) 3837 ret = 0; 3838 return ret; 3839 } 3840 3841 rcu_read_lock(); 3842 rb = rcu_dereference(event->rb); 3843 if (!rb) 3844 goto unlock; 3845 3846 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 3847 goto unlock; 3848 3849 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 3850 if (!vmf->page) 3851 goto unlock; 3852 3853 get_page(vmf->page); 3854 vmf->page->mapping = vma->vm_file->f_mapping; 3855 vmf->page->index = vmf->pgoff; 3856 3857 ret = 0; 3858 unlock: 3859 rcu_read_unlock(); 3860 3861 return ret; 3862 } 3863 3864 static void ring_buffer_attach(struct perf_event *event, 3865 struct ring_buffer *rb) 3866 { 3867 struct ring_buffer *old_rb = NULL; 3868 unsigned long flags; 3869 3870 if (event->rb) { 3871 /* 3872 * Should be impossible, we set this when removing 3873 * event->rb_entry and wait/clear when adding event->rb_entry. 3874 */ 3875 WARN_ON_ONCE(event->rcu_pending); 3876 3877 old_rb = event->rb; 3878 event->rcu_batches = get_state_synchronize_rcu(); 3879 event->rcu_pending = 1; 3880 3881 spin_lock_irqsave(&old_rb->event_lock, flags); 3882 list_del_rcu(&event->rb_entry); 3883 spin_unlock_irqrestore(&old_rb->event_lock, flags); 3884 } 3885 3886 if (event->rcu_pending && rb) { 3887 cond_synchronize_rcu(event->rcu_batches); 3888 event->rcu_pending = 0; 3889 } 3890 3891 if (rb) { 3892 spin_lock_irqsave(&rb->event_lock, flags); 3893 list_add_rcu(&event->rb_entry, &rb->event_list); 3894 spin_unlock_irqrestore(&rb->event_lock, flags); 3895 } 3896 3897 rcu_assign_pointer(event->rb, rb); 3898 3899 if (old_rb) { 3900 ring_buffer_put(old_rb); 3901 /* 3902 * Since we detached before setting the new rb, so that we 3903 * could attach the new rb, we could have missed a wakeup. 3904 * Provide it now. 3905 */ 3906 wake_up_all(&event->waitq); 3907 } 3908 } 3909 3910 static void ring_buffer_wakeup(struct perf_event *event) 3911 { 3912 struct ring_buffer *rb; 3913 3914 rcu_read_lock(); 3915 rb = rcu_dereference(event->rb); 3916 if (rb) { 3917 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 3918 wake_up_all(&event->waitq); 3919 } 3920 rcu_read_unlock(); 3921 } 3922 3923 static void rb_free_rcu(struct rcu_head *rcu_head) 3924 { 3925 struct ring_buffer *rb; 3926 3927 rb = container_of(rcu_head, struct ring_buffer, rcu_head); 3928 rb_free(rb); 3929 } 3930 3931 static struct ring_buffer *ring_buffer_get(struct perf_event *event) 3932 { 3933 struct ring_buffer *rb; 3934 3935 rcu_read_lock(); 3936 rb = rcu_dereference(event->rb); 3937 if (rb) { 3938 if (!atomic_inc_not_zero(&rb->refcount)) 3939 rb = NULL; 3940 } 3941 rcu_read_unlock(); 3942 3943 return rb; 3944 } 3945 3946 static void ring_buffer_put(struct ring_buffer *rb) 3947 { 3948 if (!atomic_dec_and_test(&rb->refcount)) 3949 return; 3950 3951 WARN_ON_ONCE(!list_empty(&rb->event_list)); 3952 3953 call_rcu(&rb->rcu_head, rb_free_rcu); 3954 } 3955 3956 static void perf_mmap_open(struct vm_area_struct *vma) 3957 { 3958 struct perf_event *event = vma->vm_file->private_data; 3959 3960 atomic_inc(&event->mmap_count); 3961 atomic_inc(&event->rb->mmap_count); 3962 } 3963 3964 /* 3965 * A buffer can be mmap()ed multiple times; either directly through the same 3966 * event, or through other events by use of perf_event_set_output(). 3967 * 3968 * In order to undo the VM accounting done by perf_mmap() we need to destroy 3969 * the buffer here, where we still have a VM context. This means we need 3970 * to detach all events redirecting to us. 3971 */ 3972 static void perf_mmap_close(struct vm_area_struct *vma) 3973 { 3974 struct perf_event *event = vma->vm_file->private_data; 3975 3976 struct ring_buffer *rb = ring_buffer_get(event); 3977 struct user_struct *mmap_user = rb->mmap_user; 3978 int mmap_locked = rb->mmap_locked; 3979 unsigned long size = perf_data_size(rb); 3980 3981 atomic_dec(&rb->mmap_count); 3982 3983 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 3984 goto out_put; 3985 3986 ring_buffer_attach(event, NULL); 3987 mutex_unlock(&event->mmap_mutex); 3988 3989 /* If there's still other mmap()s of this buffer, we're done. */ 3990 if (atomic_read(&rb->mmap_count)) 3991 goto out_put; 3992 3993 /* 3994 * No other mmap()s, detach from all other events that might redirect 3995 * into the now unreachable buffer. Somewhat complicated by the 3996 * fact that rb::event_lock otherwise nests inside mmap_mutex. 3997 */ 3998 again: 3999 rcu_read_lock(); 4000 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 4001 if (!atomic_long_inc_not_zero(&event->refcount)) { 4002 /* 4003 * This event is en-route to free_event() which will 4004 * detach it and remove it from the list. 4005 */ 4006 continue; 4007 } 4008 rcu_read_unlock(); 4009 4010 mutex_lock(&event->mmap_mutex); 4011 /* 4012 * Check we didn't race with perf_event_set_output() which can 4013 * swizzle the rb from under us while we were waiting to 4014 * acquire mmap_mutex. 4015 * 4016 * If we find a different rb; ignore this event, a next 4017 * iteration will no longer find it on the list. We have to 4018 * still restart the iteration to make sure we're not now 4019 * iterating the wrong list. 4020 */ 4021 if (event->rb == rb) 4022 ring_buffer_attach(event, NULL); 4023 4024 mutex_unlock(&event->mmap_mutex); 4025 put_event(event); 4026 4027 /* 4028 * Restart the iteration; either we're on the wrong list or 4029 * destroyed its integrity by doing a deletion. 4030 */ 4031 goto again; 4032 } 4033 rcu_read_unlock(); 4034 4035 /* 4036 * It could be there's still a few 0-ref events on the list; they'll 4037 * get cleaned up by free_event() -- they'll also still have their 4038 * ref on the rb and will free it whenever they are done with it. 4039 * 4040 * Aside from that, this buffer is 'fully' detached and unmapped, 4041 * undo the VM accounting. 4042 */ 4043 4044 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm); 4045 vma->vm_mm->pinned_vm -= mmap_locked; 4046 free_uid(mmap_user); 4047 4048 out_put: 4049 ring_buffer_put(rb); /* could be last */ 4050 } 4051 4052 static const struct vm_operations_struct perf_mmap_vmops = { 4053 .open = perf_mmap_open, 4054 .close = perf_mmap_close, 4055 .fault = perf_mmap_fault, 4056 .page_mkwrite = perf_mmap_fault, 4057 }; 4058 4059 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 4060 { 4061 struct perf_event *event = file->private_data; 4062 unsigned long user_locked, user_lock_limit; 4063 struct user_struct *user = current_user(); 4064 unsigned long locked, lock_limit; 4065 struct ring_buffer *rb; 4066 unsigned long vma_size; 4067 unsigned long nr_pages; 4068 long user_extra, extra; 4069 int ret = 0, flags = 0; 4070 4071 /* 4072 * Don't allow mmap() of inherited per-task counters. This would 4073 * create a performance issue due to all children writing to the 4074 * same rb. 4075 */ 4076 if (event->cpu == -1 && event->attr.inherit) 4077 return -EINVAL; 4078 4079 if (!(vma->vm_flags & VM_SHARED)) 4080 return -EINVAL; 4081 4082 vma_size = vma->vm_end - vma->vm_start; 4083 nr_pages = (vma_size / PAGE_SIZE) - 1; 4084 4085 /* 4086 * If we have rb pages ensure they're a power-of-two number, so we 4087 * can do bitmasks instead of modulo. 4088 */ 4089 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 4090 return -EINVAL; 4091 4092 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 4093 return -EINVAL; 4094 4095 if (vma->vm_pgoff != 0) 4096 return -EINVAL; 4097 4098 WARN_ON_ONCE(event->ctx->parent_ctx); 4099 again: 4100 mutex_lock(&event->mmap_mutex); 4101 if (event->rb) { 4102 if (event->rb->nr_pages != nr_pages) { 4103 ret = -EINVAL; 4104 goto unlock; 4105 } 4106 4107 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 4108 /* 4109 * Raced against perf_mmap_close() through 4110 * perf_event_set_output(). Try again, hope for better 4111 * luck. 4112 */ 4113 mutex_unlock(&event->mmap_mutex); 4114 goto again; 4115 } 4116 4117 goto unlock; 4118 } 4119 4120 user_extra = nr_pages + 1; 4121 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 4122 4123 /* 4124 * Increase the limit linearly with more CPUs: 4125 */ 4126 user_lock_limit *= num_online_cpus(); 4127 4128 user_locked = atomic_long_read(&user->locked_vm) + user_extra; 4129 4130 extra = 0; 4131 if (user_locked > user_lock_limit) 4132 extra = user_locked - user_lock_limit; 4133 4134 lock_limit = rlimit(RLIMIT_MEMLOCK); 4135 lock_limit >>= PAGE_SHIFT; 4136 locked = vma->vm_mm->pinned_vm + extra; 4137 4138 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() && 4139 !capable(CAP_IPC_LOCK)) { 4140 ret = -EPERM; 4141 goto unlock; 4142 } 4143 4144 WARN_ON(event->rb); 4145 4146 if (vma->vm_flags & VM_WRITE) 4147 flags |= RING_BUFFER_WRITABLE; 4148 4149 rb = rb_alloc(nr_pages, 4150 event->attr.watermark ? event->attr.wakeup_watermark : 0, 4151 event->cpu, flags); 4152 4153 if (!rb) { 4154 ret = -ENOMEM; 4155 goto unlock; 4156 } 4157 4158 atomic_set(&rb->mmap_count, 1); 4159 rb->mmap_locked = extra; 4160 rb->mmap_user = get_current_user(); 4161 4162 atomic_long_add(user_extra, &user->locked_vm); 4163 vma->vm_mm->pinned_vm += extra; 4164 4165 ring_buffer_attach(event, rb); 4166 4167 perf_event_init_userpage(event); 4168 perf_event_update_userpage(event); 4169 4170 unlock: 4171 if (!ret) 4172 atomic_inc(&event->mmap_count); 4173 mutex_unlock(&event->mmap_mutex); 4174 4175 /* 4176 * Since pinned accounting is per vm we cannot allow fork() to copy our 4177 * vma. 4178 */ 4179 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP; 4180 vma->vm_ops = &perf_mmap_vmops; 4181 4182 return ret; 4183 } 4184 4185 static int perf_fasync(int fd, struct file *filp, int on) 4186 { 4187 struct inode *inode = file_inode(filp); 4188 struct perf_event *event = filp->private_data; 4189 int retval; 4190 4191 mutex_lock(&inode->i_mutex); 4192 retval = fasync_helper(fd, filp, on, &event->fasync); 4193 mutex_unlock(&inode->i_mutex); 4194 4195 if (retval < 0) 4196 return retval; 4197 4198 return 0; 4199 } 4200 4201 static const struct file_operations perf_fops = { 4202 .llseek = no_llseek, 4203 .release = perf_release, 4204 .read = perf_read, 4205 .poll = perf_poll, 4206 .unlocked_ioctl = perf_ioctl, 4207 .compat_ioctl = perf_ioctl, 4208 .mmap = perf_mmap, 4209 .fasync = perf_fasync, 4210 }; 4211 4212 /* 4213 * Perf event wakeup 4214 * 4215 * If there's data, ensure we set the poll() state and publish everything 4216 * to user-space before waking everybody up. 4217 */ 4218 4219 void perf_event_wakeup(struct perf_event *event) 4220 { 4221 ring_buffer_wakeup(event); 4222 4223 if (event->pending_kill) { 4224 kill_fasync(&event->fasync, SIGIO, event->pending_kill); 4225 event->pending_kill = 0; 4226 } 4227 } 4228 4229 static void perf_pending_event(struct irq_work *entry) 4230 { 4231 struct perf_event *event = container_of(entry, 4232 struct perf_event, pending); 4233 4234 if (event->pending_disable) { 4235 event->pending_disable = 0; 4236 __perf_event_disable(event); 4237 } 4238 4239 if (event->pending_wakeup) { 4240 event->pending_wakeup = 0; 4241 perf_event_wakeup(event); 4242 } 4243 } 4244 4245 /* 4246 * We assume there is only KVM supporting the callbacks. 4247 * Later on, we might change it to a list if there is 4248 * another virtualization implementation supporting the callbacks. 4249 */ 4250 struct perf_guest_info_callbacks *perf_guest_cbs; 4251 4252 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 4253 { 4254 perf_guest_cbs = cbs; 4255 return 0; 4256 } 4257 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 4258 4259 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 4260 { 4261 perf_guest_cbs = NULL; 4262 return 0; 4263 } 4264 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 4265 4266 static void 4267 perf_output_sample_regs(struct perf_output_handle *handle, 4268 struct pt_regs *regs, u64 mask) 4269 { 4270 int bit; 4271 4272 for_each_set_bit(bit, (const unsigned long *) &mask, 4273 sizeof(mask) * BITS_PER_BYTE) { 4274 u64 val; 4275 4276 val = perf_reg_value(regs, bit); 4277 perf_output_put(handle, val); 4278 } 4279 } 4280 4281 static void perf_sample_regs_user(struct perf_regs_user *regs_user, 4282 struct pt_regs *regs) 4283 { 4284 if (!user_mode(regs)) { 4285 if (current->mm) 4286 regs = task_pt_regs(current); 4287 else 4288 regs = NULL; 4289 } 4290 4291 if (regs) { 4292 regs_user->regs = regs; 4293 regs_user->abi = perf_reg_abi(current); 4294 } 4295 } 4296 4297 /* 4298 * Get remaining task size from user stack pointer. 4299 * 4300 * It'd be better to take stack vma map and limit this more 4301 * precisly, but there's no way to get it safely under interrupt, 4302 * so using TASK_SIZE as limit. 4303 */ 4304 static u64 perf_ustack_task_size(struct pt_regs *regs) 4305 { 4306 unsigned long addr = perf_user_stack_pointer(regs); 4307 4308 if (!addr || addr >= TASK_SIZE) 4309 return 0; 4310 4311 return TASK_SIZE - addr; 4312 } 4313 4314 static u16 4315 perf_sample_ustack_size(u16 stack_size, u16 header_size, 4316 struct pt_regs *regs) 4317 { 4318 u64 task_size; 4319 4320 /* No regs, no stack pointer, no dump. */ 4321 if (!regs) 4322 return 0; 4323 4324 /* 4325 * Check if we fit in with the requested stack size into the: 4326 * - TASK_SIZE 4327 * If we don't, we limit the size to the TASK_SIZE. 4328 * 4329 * - remaining sample size 4330 * If we don't, we customize the stack size to 4331 * fit in to the remaining sample size. 4332 */ 4333 4334 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 4335 stack_size = min(stack_size, (u16) task_size); 4336 4337 /* Current header size plus static size and dynamic size. */ 4338 header_size += 2 * sizeof(u64); 4339 4340 /* Do we fit in with the current stack dump size? */ 4341 if ((u16) (header_size + stack_size) < header_size) { 4342 /* 4343 * If we overflow the maximum size for the sample, 4344 * we customize the stack dump size to fit in. 4345 */ 4346 stack_size = USHRT_MAX - header_size - sizeof(u64); 4347 stack_size = round_up(stack_size, sizeof(u64)); 4348 } 4349 4350 return stack_size; 4351 } 4352 4353 static void 4354 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 4355 struct pt_regs *regs) 4356 { 4357 /* Case of a kernel thread, nothing to dump */ 4358 if (!regs) { 4359 u64 size = 0; 4360 perf_output_put(handle, size); 4361 } else { 4362 unsigned long sp; 4363 unsigned int rem; 4364 u64 dyn_size; 4365 4366 /* 4367 * We dump: 4368 * static size 4369 * - the size requested by user or the best one we can fit 4370 * in to the sample max size 4371 * data 4372 * - user stack dump data 4373 * dynamic size 4374 * - the actual dumped size 4375 */ 4376 4377 /* Static size. */ 4378 perf_output_put(handle, dump_size); 4379 4380 /* Data. */ 4381 sp = perf_user_stack_pointer(regs); 4382 rem = __output_copy_user(handle, (void *) sp, dump_size); 4383 dyn_size = dump_size - rem; 4384 4385 perf_output_skip(handle, rem); 4386 4387 /* Dynamic size. */ 4388 perf_output_put(handle, dyn_size); 4389 } 4390 } 4391 4392 static void __perf_event_header__init_id(struct perf_event_header *header, 4393 struct perf_sample_data *data, 4394 struct perf_event *event) 4395 { 4396 u64 sample_type = event->attr.sample_type; 4397 4398 data->type = sample_type; 4399 header->size += event->id_header_size; 4400 4401 if (sample_type & PERF_SAMPLE_TID) { 4402 /* namespace issues */ 4403 data->tid_entry.pid = perf_event_pid(event, current); 4404 data->tid_entry.tid = perf_event_tid(event, current); 4405 } 4406 4407 if (sample_type & PERF_SAMPLE_TIME) 4408 data->time = perf_clock(); 4409 4410 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 4411 data->id = primary_event_id(event); 4412 4413 if (sample_type & PERF_SAMPLE_STREAM_ID) 4414 data->stream_id = event->id; 4415 4416 if (sample_type & PERF_SAMPLE_CPU) { 4417 data->cpu_entry.cpu = raw_smp_processor_id(); 4418 data->cpu_entry.reserved = 0; 4419 } 4420 } 4421 4422 void perf_event_header__init_id(struct perf_event_header *header, 4423 struct perf_sample_data *data, 4424 struct perf_event *event) 4425 { 4426 if (event->attr.sample_id_all) 4427 __perf_event_header__init_id(header, data, event); 4428 } 4429 4430 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 4431 struct perf_sample_data *data) 4432 { 4433 u64 sample_type = data->type; 4434 4435 if (sample_type & PERF_SAMPLE_TID) 4436 perf_output_put(handle, data->tid_entry); 4437 4438 if (sample_type & PERF_SAMPLE_TIME) 4439 perf_output_put(handle, data->time); 4440 4441 if (sample_type & PERF_SAMPLE_ID) 4442 perf_output_put(handle, data->id); 4443 4444 if (sample_type & PERF_SAMPLE_STREAM_ID) 4445 perf_output_put(handle, data->stream_id); 4446 4447 if (sample_type & PERF_SAMPLE_CPU) 4448 perf_output_put(handle, data->cpu_entry); 4449 4450 if (sample_type & PERF_SAMPLE_IDENTIFIER) 4451 perf_output_put(handle, data->id); 4452 } 4453 4454 void perf_event__output_id_sample(struct perf_event *event, 4455 struct perf_output_handle *handle, 4456 struct perf_sample_data *sample) 4457 { 4458 if (event->attr.sample_id_all) 4459 __perf_event__output_id_sample(handle, sample); 4460 } 4461 4462 static void perf_output_read_one(struct perf_output_handle *handle, 4463 struct perf_event *event, 4464 u64 enabled, u64 running) 4465 { 4466 u64 read_format = event->attr.read_format; 4467 u64 values[4]; 4468 int n = 0; 4469 4470 values[n++] = perf_event_count(event); 4471 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 4472 values[n++] = enabled + 4473 atomic64_read(&event->child_total_time_enabled); 4474 } 4475 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 4476 values[n++] = running + 4477 atomic64_read(&event->child_total_time_running); 4478 } 4479 if (read_format & PERF_FORMAT_ID) 4480 values[n++] = primary_event_id(event); 4481 4482 __output_copy(handle, values, n * sizeof(u64)); 4483 } 4484 4485 /* 4486 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult. 4487 */ 4488 static void perf_output_read_group(struct perf_output_handle *handle, 4489 struct perf_event *event, 4490 u64 enabled, u64 running) 4491 { 4492 struct perf_event *leader = event->group_leader, *sub; 4493 u64 read_format = event->attr.read_format; 4494 u64 values[5]; 4495 int n = 0; 4496 4497 values[n++] = 1 + leader->nr_siblings; 4498 4499 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 4500 values[n++] = enabled; 4501 4502 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 4503 values[n++] = running; 4504 4505 if (leader != event) 4506 leader->pmu->read(leader); 4507 4508 values[n++] = perf_event_count(leader); 4509 if (read_format & PERF_FORMAT_ID) 4510 values[n++] = primary_event_id(leader); 4511 4512 __output_copy(handle, values, n * sizeof(u64)); 4513 4514 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 4515 n = 0; 4516 4517 if ((sub != event) && 4518 (sub->state == PERF_EVENT_STATE_ACTIVE)) 4519 sub->pmu->read(sub); 4520 4521 values[n++] = perf_event_count(sub); 4522 if (read_format & PERF_FORMAT_ID) 4523 values[n++] = primary_event_id(sub); 4524 4525 __output_copy(handle, values, n * sizeof(u64)); 4526 } 4527 } 4528 4529 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 4530 PERF_FORMAT_TOTAL_TIME_RUNNING) 4531 4532 static void perf_output_read(struct perf_output_handle *handle, 4533 struct perf_event *event) 4534 { 4535 u64 enabled = 0, running = 0, now; 4536 u64 read_format = event->attr.read_format; 4537 4538 /* 4539 * compute total_time_enabled, total_time_running 4540 * based on snapshot values taken when the event 4541 * was last scheduled in. 4542 * 4543 * we cannot simply called update_context_time() 4544 * because of locking issue as we are called in 4545 * NMI context 4546 */ 4547 if (read_format & PERF_FORMAT_TOTAL_TIMES) 4548 calc_timer_values(event, &now, &enabled, &running); 4549 4550 if (event->attr.read_format & PERF_FORMAT_GROUP) 4551 perf_output_read_group(handle, event, enabled, running); 4552 else 4553 perf_output_read_one(handle, event, enabled, running); 4554 } 4555 4556 void perf_output_sample(struct perf_output_handle *handle, 4557 struct perf_event_header *header, 4558 struct perf_sample_data *data, 4559 struct perf_event *event) 4560 { 4561 u64 sample_type = data->type; 4562 4563 perf_output_put(handle, *header); 4564 4565 if (sample_type & PERF_SAMPLE_IDENTIFIER) 4566 perf_output_put(handle, data->id); 4567 4568 if (sample_type & PERF_SAMPLE_IP) 4569 perf_output_put(handle, data->ip); 4570 4571 if (sample_type & PERF_SAMPLE_TID) 4572 perf_output_put(handle, data->tid_entry); 4573 4574 if (sample_type & PERF_SAMPLE_TIME) 4575 perf_output_put(handle, data->time); 4576 4577 if (sample_type & PERF_SAMPLE_ADDR) 4578 perf_output_put(handle, data->addr); 4579 4580 if (sample_type & PERF_SAMPLE_ID) 4581 perf_output_put(handle, data->id); 4582 4583 if (sample_type & PERF_SAMPLE_STREAM_ID) 4584 perf_output_put(handle, data->stream_id); 4585 4586 if (sample_type & PERF_SAMPLE_CPU) 4587 perf_output_put(handle, data->cpu_entry); 4588 4589 if (sample_type & PERF_SAMPLE_PERIOD) 4590 perf_output_put(handle, data->period); 4591 4592 if (sample_type & PERF_SAMPLE_READ) 4593 perf_output_read(handle, event); 4594 4595 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 4596 if (data->callchain) { 4597 int size = 1; 4598 4599 if (data->callchain) 4600 size += data->callchain->nr; 4601 4602 size *= sizeof(u64); 4603 4604 __output_copy(handle, data->callchain, size); 4605 } else { 4606 u64 nr = 0; 4607 perf_output_put(handle, nr); 4608 } 4609 } 4610 4611 if (sample_type & PERF_SAMPLE_RAW) { 4612 if (data->raw) { 4613 perf_output_put(handle, data->raw->size); 4614 __output_copy(handle, data->raw->data, 4615 data->raw->size); 4616 } else { 4617 struct { 4618 u32 size; 4619 u32 data; 4620 } raw = { 4621 .size = sizeof(u32), 4622 .data = 0, 4623 }; 4624 perf_output_put(handle, raw); 4625 } 4626 } 4627 4628 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 4629 if (data->br_stack) { 4630 size_t size; 4631 4632 size = data->br_stack->nr 4633 * sizeof(struct perf_branch_entry); 4634 4635 perf_output_put(handle, data->br_stack->nr); 4636 perf_output_copy(handle, data->br_stack->entries, size); 4637 } else { 4638 /* 4639 * we always store at least the value of nr 4640 */ 4641 u64 nr = 0; 4642 perf_output_put(handle, nr); 4643 } 4644 } 4645 4646 if (sample_type & PERF_SAMPLE_REGS_USER) { 4647 u64 abi = data->regs_user.abi; 4648 4649 /* 4650 * If there are no regs to dump, notice it through 4651 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 4652 */ 4653 perf_output_put(handle, abi); 4654 4655 if (abi) { 4656 u64 mask = event->attr.sample_regs_user; 4657 perf_output_sample_regs(handle, 4658 data->regs_user.regs, 4659 mask); 4660 } 4661 } 4662 4663 if (sample_type & PERF_SAMPLE_STACK_USER) { 4664 perf_output_sample_ustack(handle, 4665 data->stack_user_size, 4666 data->regs_user.regs); 4667 } 4668 4669 if (sample_type & PERF_SAMPLE_WEIGHT) 4670 perf_output_put(handle, data->weight); 4671 4672 if (sample_type & PERF_SAMPLE_DATA_SRC) 4673 perf_output_put(handle, data->data_src.val); 4674 4675 if (sample_type & PERF_SAMPLE_TRANSACTION) 4676 perf_output_put(handle, data->txn); 4677 4678 if (!event->attr.watermark) { 4679 int wakeup_events = event->attr.wakeup_events; 4680 4681 if (wakeup_events) { 4682 struct ring_buffer *rb = handle->rb; 4683 int events = local_inc_return(&rb->events); 4684 4685 if (events >= wakeup_events) { 4686 local_sub(wakeup_events, &rb->events); 4687 local_inc(&rb->wakeup); 4688 } 4689 } 4690 } 4691 } 4692 4693 void perf_prepare_sample(struct perf_event_header *header, 4694 struct perf_sample_data *data, 4695 struct perf_event *event, 4696 struct pt_regs *regs) 4697 { 4698 u64 sample_type = event->attr.sample_type; 4699 4700 header->type = PERF_RECORD_SAMPLE; 4701 header->size = sizeof(*header) + event->header_size; 4702 4703 header->misc = 0; 4704 header->misc |= perf_misc_flags(regs); 4705 4706 __perf_event_header__init_id(header, data, event); 4707 4708 if (sample_type & PERF_SAMPLE_IP) 4709 data->ip = perf_instruction_pointer(regs); 4710 4711 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 4712 int size = 1; 4713 4714 data->callchain = perf_callchain(event, regs); 4715 4716 if (data->callchain) 4717 size += data->callchain->nr; 4718 4719 header->size += size * sizeof(u64); 4720 } 4721 4722 if (sample_type & PERF_SAMPLE_RAW) { 4723 int size = sizeof(u32); 4724 4725 if (data->raw) 4726 size += data->raw->size; 4727 else 4728 size += sizeof(u32); 4729 4730 WARN_ON_ONCE(size & (sizeof(u64)-1)); 4731 header->size += size; 4732 } 4733 4734 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 4735 int size = sizeof(u64); /* nr */ 4736 if (data->br_stack) { 4737 size += data->br_stack->nr 4738 * sizeof(struct perf_branch_entry); 4739 } 4740 header->size += size; 4741 } 4742 4743 if (sample_type & PERF_SAMPLE_REGS_USER) { 4744 /* regs dump ABI info */ 4745 int size = sizeof(u64); 4746 4747 perf_sample_regs_user(&data->regs_user, regs); 4748 4749 if (data->regs_user.regs) { 4750 u64 mask = event->attr.sample_regs_user; 4751 size += hweight64(mask) * sizeof(u64); 4752 } 4753 4754 header->size += size; 4755 } 4756 4757 if (sample_type & PERF_SAMPLE_STACK_USER) { 4758 /* 4759 * Either we need PERF_SAMPLE_STACK_USER bit to be allways 4760 * processed as the last one or have additional check added 4761 * in case new sample type is added, because we could eat 4762 * up the rest of the sample size. 4763 */ 4764 struct perf_regs_user *uregs = &data->regs_user; 4765 u16 stack_size = event->attr.sample_stack_user; 4766 u16 size = sizeof(u64); 4767 4768 if (!uregs->abi) 4769 perf_sample_regs_user(uregs, regs); 4770 4771 stack_size = perf_sample_ustack_size(stack_size, header->size, 4772 uregs->regs); 4773 4774 /* 4775 * If there is something to dump, add space for the dump 4776 * itself and for the field that tells the dynamic size, 4777 * which is how many have been actually dumped. 4778 */ 4779 if (stack_size) 4780 size += sizeof(u64) + stack_size; 4781 4782 data->stack_user_size = stack_size; 4783 header->size += size; 4784 } 4785 } 4786 4787 static void perf_event_output(struct perf_event *event, 4788 struct perf_sample_data *data, 4789 struct pt_regs *regs) 4790 { 4791 struct perf_output_handle handle; 4792 struct perf_event_header header; 4793 4794 /* protect the callchain buffers */ 4795 rcu_read_lock(); 4796 4797 perf_prepare_sample(&header, data, event, regs); 4798 4799 if (perf_output_begin(&handle, event, header.size)) 4800 goto exit; 4801 4802 perf_output_sample(&handle, &header, data, event); 4803 4804 perf_output_end(&handle); 4805 4806 exit: 4807 rcu_read_unlock(); 4808 } 4809 4810 /* 4811 * read event_id 4812 */ 4813 4814 struct perf_read_event { 4815 struct perf_event_header header; 4816 4817 u32 pid; 4818 u32 tid; 4819 }; 4820 4821 static void 4822 perf_event_read_event(struct perf_event *event, 4823 struct task_struct *task) 4824 { 4825 struct perf_output_handle handle; 4826 struct perf_sample_data sample; 4827 struct perf_read_event read_event = { 4828 .header = { 4829 .type = PERF_RECORD_READ, 4830 .misc = 0, 4831 .size = sizeof(read_event) + event->read_size, 4832 }, 4833 .pid = perf_event_pid(event, task), 4834 .tid = perf_event_tid(event, task), 4835 }; 4836 int ret; 4837 4838 perf_event_header__init_id(&read_event.header, &sample, event); 4839 ret = perf_output_begin(&handle, event, read_event.header.size); 4840 if (ret) 4841 return; 4842 4843 perf_output_put(&handle, read_event); 4844 perf_output_read(&handle, event); 4845 perf_event__output_id_sample(event, &handle, &sample); 4846 4847 perf_output_end(&handle); 4848 } 4849 4850 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data); 4851 4852 static void 4853 perf_event_aux_ctx(struct perf_event_context *ctx, 4854 perf_event_aux_output_cb output, 4855 void *data) 4856 { 4857 struct perf_event *event; 4858 4859 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 4860 if (event->state < PERF_EVENT_STATE_INACTIVE) 4861 continue; 4862 if (!event_filter_match(event)) 4863 continue; 4864 output(event, data); 4865 } 4866 } 4867 4868 static void 4869 perf_event_aux(perf_event_aux_output_cb output, void *data, 4870 struct perf_event_context *task_ctx) 4871 { 4872 struct perf_cpu_context *cpuctx; 4873 struct perf_event_context *ctx; 4874 struct pmu *pmu; 4875 int ctxn; 4876 4877 rcu_read_lock(); 4878 list_for_each_entry_rcu(pmu, &pmus, entry) { 4879 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context); 4880 if (cpuctx->unique_pmu != pmu) 4881 goto next; 4882 perf_event_aux_ctx(&cpuctx->ctx, output, data); 4883 if (task_ctx) 4884 goto next; 4885 ctxn = pmu->task_ctx_nr; 4886 if (ctxn < 0) 4887 goto next; 4888 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 4889 if (ctx) 4890 perf_event_aux_ctx(ctx, output, data); 4891 next: 4892 put_cpu_ptr(pmu->pmu_cpu_context); 4893 } 4894 4895 if (task_ctx) { 4896 preempt_disable(); 4897 perf_event_aux_ctx(task_ctx, output, data); 4898 preempt_enable(); 4899 } 4900 rcu_read_unlock(); 4901 } 4902 4903 /* 4904 * task tracking -- fork/exit 4905 * 4906 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 4907 */ 4908 4909 struct perf_task_event { 4910 struct task_struct *task; 4911 struct perf_event_context *task_ctx; 4912 4913 struct { 4914 struct perf_event_header header; 4915 4916 u32 pid; 4917 u32 ppid; 4918 u32 tid; 4919 u32 ptid; 4920 u64 time; 4921 } event_id; 4922 }; 4923 4924 static int perf_event_task_match(struct perf_event *event) 4925 { 4926 return event->attr.comm || event->attr.mmap || 4927 event->attr.mmap2 || event->attr.mmap_data || 4928 event->attr.task; 4929 } 4930 4931 static void perf_event_task_output(struct perf_event *event, 4932 void *data) 4933 { 4934 struct perf_task_event *task_event = data; 4935 struct perf_output_handle handle; 4936 struct perf_sample_data sample; 4937 struct task_struct *task = task_event->task; 4938 int ret, size = task_event->event_id.header.size; 4939 4940 if (!perf_event_task_match(event)) 4941 return; 4942 4943 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 4944 4945 ret = perf_output_begin(&handle, event, 4946 task_event->event_id.header.size); 4947 if (ret) 4948 goto out; 4949 4950 task_event->event_id.pid = perf_event_pid(event, task); 4951 task_event->event_id.ppid = perf_event_pid(event, current); 4952 4953 task_event->event_id.tid = perf_event_tid(event, task); 4954 task_event->event_id.ptid = perf_event_tid(event, current); 4955 4956 perf_output_put(&handle, task_event->event_id); 4957 4958 perf_event__output_id_sample(event, &handle, &sample); 4959 4960 perf_output_end(&handle); 4961 out: 4962 task_event->event_id.header.size = size; 4963 } 4964 4965 static void perf_event_task(struct task_struct *task, 4966 struct perf_event_context *task_ctx, 4967 int new) 4968 { 4969 struct perf_task_event task_event; 4970 4971 if (!atomic_read(&nr_comm_events) && 4972 !atomic_read(&nr_mmap_events) && 4973 !atomic_read(&nr_task_events)) 4974 return; 4975 4976 task_event = (struct perf_task_event){ 4977 .task = task, 4978 .task_ctx = task_ctx, 4979 .event_id = { 4980 .header = { 4981 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 4982 .misc = 0, 4983 .size = sizeof(task_event.event_id), 4984 }, 4985 /* .pid */ 4986 /* .ppid */ 4987 /* .tid */ 4988 /* .ptid */ 4989 .time = perf_clock(), 4990 }, 4991 }; 4992 4993 perf_event_aux(perf_event_task_output, 4994 &task_event, 4995 task_ctx); 4996 } 4997 4998 void perf_event_fork(struct task_struct *task) 4999 { 5000 perf_event_task(task, NULL, 1); 5001 } 5002 5003 /* 5004 * comm tracking 5005 */ 5006 5007 struct perf_comm_event { 5008 struct task_struct *task; 5009 char *comm; 5010 int comm_size; 5011 5012 struct { 5013 struct perf_event_header header; 5014 5015 u32 pid; 5016 u32 tid; 5017 } event_id; 5018 }; 5019 5020 static int perf_event_comm_match(struct perf_event *event) 5021 { 5022 return event->attr.comm; 5023 } 5024 5025 static void perf_event_comm_output(struct perf_event *event, 5026 void *data) 5027 { 5028 struct perf_comm_event *comm_event = data; 5029 struct perf_output_handle handle; 5030 struct perf_sample_data sample; 5031 int size = comm_event->event_id.header.size; 5032 int ret; 5033 5034 if (!perf_event_comm_match(event)) 5035 return; 5036 5037 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 5038 ret = perf_output_begin(&handle, event, 5039 comm_event->event_id.header.size); 5040 5041 if (ret) 5042 goto out; 5043 5044 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 5045 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 5046 5047 perf_output_put(&handle, comm_event->event_id); 5048 __output_copy(&handle, comm_event->comm, 5049 comm_event->comm_size); 5050 5051 perf_event__output_id_sample(event, &handle, &sample); 5052 5053 perf_output_end(&handle); 5054 out: 5055 comm_event->event_id.header.size = size; 5056 } 5057 5058 static void perf_event_comm_event(struct perf_comm_event *comm_event) 5059 { 5060 char comm[TASK_COMM_LEN]; 5061 unsigned int size; 5062 5063 memset(comm, 0, sizeof(comm)); 5064 strlcpy(comm, comm_event->task->comm, sizeof(comm)); 5065 size = ALIGN(strlen(comm)+1, sizeof(u64)); 5066 5067 comm_event->comm = comm; 5068 comm_event->comm_size = size; 5069 5070 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 5071 5072 perf_event_aux(perf_event_comm_output, 5073 comm_event, 5074 NULL); 5075 } 5076 5077 void perf_event_comm(struct task_struct *task) 5078 { 5079 struct perf_comm_event comm_event; 5080 struct perf_event_context *ctx; 5081 int ctxn; 5082 5083 rcu_read_lock(); 5084 for_each_task_context_nr(ctxn) { 5085 ctx = task->perf_event_ctxp[ctxn]; 5086 if (!ctx) 5087 continue; 5088 5089 perf_event_enable_on_exec(ctx); 5090 } 5091 rcu_read_unlock(); 5092 5093 if (!atomic_read(&nr_comm_events)) 5094 return; 5095 5096 comm_event = (struct perf_comm_event){ 5097 .task = task, 5098 /* .comm */ 5099 /* .comm_size */ 5100 .event_id = { 5101 .header = { 5102 .type = PERF_RECORD_COMM, 5103 .misc = 0, 5104 /* .size */ 5105 }, 5106 /* .pid */ 5107 /* .tid */ 5108 }, 5109 }; 5110 5111 perf_event_comm_event(&comm_event); 5112 } 5113 5114 /* 5115 * mmap tracking 5116 */ 5117 5118 struct perf_mmap_event { 5119 struct vm_area_struct *vma; 5120 5121 const char *file_name; 5122 int file_size; 5123 int maj, min; 5124 u64 ino; 5125 u64 ino_generation; 5126 5127 struct { 5128 struct perf_event_header header; 5129 5130 u32 pid; 5131 u32 tid; 5132 u64 start; 5133 u64 len; 5134 u64 pgoff; 5135 } event_id; 5136 }; 5137 5138 static int perf_event_mmap_match(struct perf_event *event, 5139 void *data) 5140 { 5141 struct perf_mmap_event *mmap_event = data; 5142 struct vm_area_struct *vma = mmap_event->vma; 5143 int executable = vma->vm_flags & VM_EXEC; 5144 5145 return (!executable && event->attr.mmap_data) || 5146 (executable && (event->attr.mmap || event->attr.mmap2)); 5147 } 5148 5149 static void perf_event_mmap_output(struct perf_event *event, 5150 void *data) 5151 { 5152 struct perf_mmap_event *mmap_event = data; 5153 struct perf_output_handle handle; 5154 struct perf_sample_data sample; 5155 int size = mmap_event->event_id.header.size; 5156 int ret; 5157 5158 if (!perf_event_mmap_match(event, data)) 5159 return; 5160 5161 if (event->attr.mmap2) { 5162 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 5163 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 5164 mmap_event->event_id.header.size += sizeof(mmap_event->min); 5165 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 5166 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 5167 } 5168 5169 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 5170 ret = perf_output_begin(&handle, event, 5171 mmap_event->event_id.header.size); 5172 if (ret) 5173 goto out; 5174 5175 mmap_event->event_id.pid = perf_event_pid(event, current); 5176 mmap_event->event_id.tid = perf_event_tid(event, current); 5177 5178 perf_output_put(&handle, mmap_event->event_id); 5179 5180 if (event->attr.mmap2) { 5181 perf_output_put(&handle, mmap_event->maj); 5182 perf_output_put(&handle, mmap_event->min); 5183 perf_output_put(&handle, mmap_event->ino); 5184 perf_output_put(&handle, mmap_event->ino_generation); 5185 } 5186 5187 __output_copy(&handle, mmap_event->file_name, 5188 mmap_event->file_size); 5189 5190 perf_event__output_id_sample(event, &handle, &sample); 5191 5192 perf_output_end(&handle); 5193 out: 5194 mmap_event->event_id.header.size = size; 5195 } 5196 5197 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 5198 { 5199 struct vm_area_struct *vma = mmap_event->vma; 5200 struct file *file = vma->vm_file; 5201 int maj = 0, min = 0; 5202 u64 ino = 0, gen = 0; 5203 unsigned int size; 5204 char tmp[16]; 5205 char *buf = NULL; 5206 char *name; 5207 5208 if (file) { 5209 struct inode *inode; 5210 dev_t dev; 5211 5212 buf = kmalloc(PATH_MAX, GFP_KERNEL); 5213 if (!buf) { 5214 name = "//enomem"; 5215 goto cpy_name; 5216 } 5217 /* 5218 * d_path() works from the end of the rb backwards, so we 5219 * need to add enough zero bytes after the string to handle 5220 * the 64bit alignment we do later. 5221 */ 5222 name = d_path(&file->f_path, buf, PATH_MAX - sizeof(u64)); 5223 if (IS_ERR(name)) { 5224 name = "//toolong"; 5225 goto cpy_name; 5226 } 5227 inode = file_inode(vma->vm_file); 5228 dev = inode->i_sb->s_dev; 5229 ino = inode->i_ino; 5230 gen = inode->i_generation; 5231 maj = MAJOR(dev); 5232 min = MINOR(dev); 5233 goto got_name; 5234 } else { 5235 name = (char *)arch_vma_name(vma); 5236 if (name) 5237 goto cpy_name; 5238 5239 if (vma->vm_start <= vma->vm_mm->start_brk && 5240 vma->vm_end >= vma->vm_mm->brk) { 5241 name = "[heap]"; 5242 goto cpy_name; 5243 } 5244 if (vma->vm_start <= vma->vm_mm->start_stack && 5245 vma->vm_end >= vma->vm_mm->start_stack) { 5246 name = "[stack]"; 5247 goto cpy_name; 5248 } 5249 5250 name = "//anon"; 5251 goto cpy_name; 5252 } 5253 5254 cpy_name: 5255 strlcpy(tmp, name, sizeof(tmp)); 5256 name = tmp; 5257 got_name: 5258 /* 5259 * Since our buffer works in 8 byte units we need to align our string 5260 * size to a multiple of 8. However, we must guarantee the tail end is 5261 * zero'd out to avoid leaking random bits to userspace. 5262 */ 5263 size = strlen(name)+1; 5264 while (!IS_ALIGNED(size, sizeof(u64))) 5265 name[size++] = '\0'; 5266 5267 mmap_event->file_name = name; 5268 mmap_event->file_size = size; 5269 mmap_event->maj = maj; 5270 mmap_event->min = min; 5271 mmap_event->ino = ino; 5272 mmap_event->ino_generation = gen; 5273 5274 if (!(vma->vm_flags & VM_EXEC)) 5275 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 5276 5277 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 5278 5279 perf_event_aux(perf_event_mmap_output, 5280 mmap_event, 5281 NULL); 5282 5283 kfree(buf); 5284 } 5285 5286 void perf_event_mmap(struct vm_area_struct *vma) 5287 { 5288 struct perf_mmap_event mmap_event; 5289 5290 if (!atomic_read(&nr_mmap_events)) 5291 return; 5292 5293 mmap_event = (struct perf_mmap_event){ 5294 .vma = vma, 5295 /* .file_name */ 5296 /* .file_size */ 5297 .event_id = { 5298 .header = { 5299 .type = PERF_RECORD_MMAP, 5300 .misc = PERF_RECORD_MISC_USER, 5301 /* .size */ 5302 }, 5303 /* .pid */ 5304 /* .tid */ 5305 .start = vma->vm_start, 5306 .len = vma->vm_end - vma->vm_start, 5307 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 5308 }, 5309 /* .maj (attr_mmap2 only) */ 5310 /* .min (attr_mmap2 only) */ 5311 /* .ino (attr_mmap2 only) */ 5312 /* .ino_generation (attr_mmap2 only) */ 5313 }; 5314 5315 perf_event_mmap_event(&mmap_event); 5316 } 5317 5318 /* 5319 * IRQ throttle logging 5320 */ 5321 5322 static void perf_log_throttle(struct perf_event *event, int enable) 5323 { 5324 struct perf_output_handle handle; 5325 struct perf_sample_data sample; 5326 int ret; 5327 5328 struct { 5329 struct perf_event_header header; 5330 u64 time; 5331 u64 id; 5332 u64 stream_id; 5333 } throttle_event = { 5334 .header = { 5335 .type = PERF_RECORD_THROTTLE, 5336 .misc = 0, 5337 .size = sizeof(throttle_event), 5338 }, 5339 .time = perf_clock(), 5340 .id = primary_event_id(event), 5341 .stream_id = event->id, 5342 }; 5343 5344 if (enable) 5345 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 5346 5347 perf_event_header__init_id(&throttle_event.header, &sample, event); 5348 5349 ret = perf_output_begin(&handle, event, 5350 throttle_event.header.size); 5351 if (ret) 5352 return; 5353 5354 perf_output_put(&handle, throttle_event); 5355 perf_event__output_id_sample(event, &handle, &sample); 5356 perf_output_end(&handle); 5357 } 5358 5359 /* 5360 * Generic event overflow handling, sampling. 5361 */ 5362 5363 static int __perf_event_overflow(struct perf_event *event, 5364 int throttle, struct perf_sample_data *data, 5365 struct pt_regs *regs) 5366 { 5367 int events = atomic_read(&event->event_limit); 5368 struct hw_perf_event *hwc = &event->hw; 5369 u64 seq; 5370 int ret = 0; 5371 5372 /* 5373 * Non-sampling counters might still use the PMI to fold short 5374 * hardware counters, ignore those. 5375 */ 5376 if (unlikely(!is_sampling_event(event))) 5377 return 0; 5378 5379 seq = __this_cpu_read(perf_throttled_seq); 5380 if (seq != hwc->interrupts_seq) { 5381 hwc->interrupts_seq = seq; 5382 hwc->interrupts = 1; 5383 } else { 5384 hwc->interrupts++; 5385 if (unlikely(throttle 5386 && hwc->interrupts >= max_samples_per_tick)) { 5387 __this_cpu_inc(perf_throttled_count); 5388 hwc->interrupts = MAX_INTERRUPTS; 5389 perf_log_throttle(event, 0); 5390 tick_nohz_full_kick(); 5391 ret = 1; 5392 } 5393 } 5394 5395 if (event->attr.freq) { 5396 u64 now = perf_clock(); 5397 s64 delta = now - hwc->freq_time_stamp; 5398 5399 hwc->freq_time_stamp = now; 5400 5401 if (delta > 0 && delta < 2*TICK_NSEC) 5402 perf_adjust_period(event, delta, hwc->last_period, true); 5403 } 5404 5405 /* 5406 * XXX event_limit might not quite work as expected on inherited 5407 * events 5408 */ 5409 5410 event->pending_kill = POLL_IN; 5411 if (events && atomic_dec_and_test(&event->event_limit)) { 5412 ret = 1; 5413 event->pending_kill = POLL_HUP; 5414 event->pending_disable = 1; 5415 irq_work_queue(&event->pending); 5416 } 5417 5418 if (event->overflow_handler) 5419 event->overflow_handler(event, data, regs); 5420 else 5421 perf_event_output(event, data, regs); 5422 5423 if (event->fasync && event->pending_kill) { 5424 event->pending_wakeup = 1; 5425 irq_work_queue(&event->pending); 5426 } 5427 5428 return ret; 5429 } 5430 5431 int perf_event_overflow(struct perf_event *event, 5432 struct perf_sample_data *data, 5433 struct pt_regs *regs) 5434 { 5435 return __perf_event_overflow(event, 1, data, regs); 5436 } 5437 5438 /* 5439 * Generic software event infrastructure 5440 */ 5441 5442 struct swevent_htable { 5443 struct swevent_hlist *swevent_hlist; 5444 struct mutex hlist_mutex; 5445 int hlist_refcount; 5446 5447 /* Recursion avoidance in each contexts */ 5448 int recursion[PERF_NR_CONTEXTS]; 5449 5450 /* Keeps track of cpu being initialized/exited */ 5451 bool online; 5452 }; 5453 5454 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 5455 5456 /* 5457 * We directly increment event->count and keep a second value in 5458 * event->hw.period_left to count intervals. This period event 5459 * is kept in the range [-sample_period, 0] so that we can use the 5460 * sign as trigger. 5461 */ 5462 5463 u64 perf_swevent_set_period(struct perf_event *event) 5464 { 5465 struct hw_perf_event *hwc = &event->hw; 5466 u64 period = hwc->last_period; 5467 u64 nr, offset; 5468 s64 old, val; 5469 5470 hwc->last_period = hwc->sample_period; 5471 5472 again: 5473 old = val = local64_read(&hwc->period_left); 5474 if (val < 0) 5475 return 0; 5476 5477 nr = div64_u64(period + val, period); 5478 offset = nr * period; 5479 val -= offset; 5480 if (local64_cmpxchg(&hwc->period_left, old, val) != old) 5481 goto again; 5482 5483 return nr; 5484 } 5485 5486 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 5487 struct perf_sample_data *data, 5488 struct pt_regs *regs) 5489 { 5490 struct hw_perf_event *hwc = &event->hw; 5491 int throttle = 0; 5492 5493 if (!overflow) 5494 overflow = perf_swevent_set_period(event); 5495 5496 if (hwc->interrupts == MAX_INTERRUPTS) 5497 return; 5498 5499 for (; overflow; overflow--) { 5500 if (__perf_event_overflow(event, throttle, 5501 data, regs)) { 5502 /* 5503 * We inhibit the overflow from happening when 5504 * hwc->interrupts == MAX_INTERRUPTS. 5505 */ 5506 break; 5507 } 5508 throttle = 1; 5509 } 5510 } 5511 5512 static void perf_swevent_event(struct perf_event *event, u64 nr, 5513 struct perf_sample_data *data, 5514 struct pt_regs *regs) 5515 { 5516 struct hw_perf_event *hwc = &event->hw; 5517 5518 local64_add(nr, &event->count); 5519 5520 if (!regs) 5521 return; 5522 5523 if (!is_sampling_event(event)) 5524 return; 5525 5526 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 5527 data->period = nr; 5528 return perf_swevent_overflow(event, 1, data, regs); 5529 } else 5530 data->period = event->hw.last_period; 5531 5532 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 5533 return perf_swevent_overflow(event, 1, data, regs); 5534 5535 if (local64_add_negative(nr, &hwc->period_left)) 5536 return; 5537 5538 perf_swevent_overflow(event, 0, data, regs); 5539 } 5540 5541 static int perf_exclude_event(struct perf_event *event, 5542 struct pt_regs *regs) 5543 { 5544 if (event->hw.state & PERF_HES_STOPPED) 5545 return 1; 5546 5547 if (regs) { 5548 if (event->attr.exclude_user && user_mode(regs)) 5549 return 1; 5550 5551 if (event->attr.exclude_kernel && !user_mode(regs)) 5552 return 1; 5553 } 5554 5555 return 0; 5556 } 5557 5558 static int perf_swevent_match(struct perf_event *event, 5559 enum perf_type_id type, 5560 u32 event_id, 5561 struct perf_sample_data *data, 5562 struct pt_regs *regs) 5563 { 5564 if (event->attr.type != type) 5565 return 0; 5566 5567 if (event->attr.config != event_id) 5568 return 0; 5569 5570 if (perf_exclude_event(event, regs)) 5571 return 0; 5572 5573 return 1; 5574 } 5575 5576 static inline u64 swevent_hash(u64 type, u32 event_id) 5577 { 5578 u64 val = event_id | (type << 32); 5579 5580 return hash_64(val, SWEVENT_HLIST_BITS); 5581 } 5582 5583 static inline struct hlist_head * 5584 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 5585 { 5586 u64 hash = swevent_hash(type, event_id); 5587 5588 return &hlist->heads[hash]; 5589 } 5590 5591 /* For the read side: events when they trigger */ 5592 static inline struct hlist_head * 5593 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 5594 { 5595 struct swevent_hlist *hlist; 5596 5597 hlist = rcu_dereference(swhash->swevent_hlist); 5598 if (!hlist) 5599 return NULL; 5600 5601 return __find_swevent_head(hlist, type, event_id); 5602 } 5603 5604 /* For the event head insertion and removal in the hlist */ 5605 static inline struct hlist_head * 5606 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 5607 { 5608 struct swevent_hlist *hlist; 5609 u32 event_id = event->attr.config; 5610 u64 type = event->attr.type; 5611 5612 /* 5613 * Event scheduling is always serialized against hlist allocation 5614 * and release. Which makes the protected version suitable here. 5615 * The context lock guarantees that. 5616 */ 5617 hlist = rcu_dereference_protected(swhash->swevent_hlist, 5618 lockdep_is_held(&event->ctx->lock)); 5619 if (!hlist) 5620 return NULL; 5621 5622 return __find_swevent_head(hlist, type, event_id); 5623 } 5624 5625 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 5626 u64 nr, 5627 struct perf_sample_data *data, 5628 struct pt_regs *regs) 5629 { 5630 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); 5631 struct perf_event *event; 5632 struct hlist_head *head; 5633 5634 rcu_read_lock(); 5635 head = find_swevent_head_rcu(swhash, type, event_id); 5636 if (!head) 5637 goto end; 5638 5639 hlist_for_each_entry_rcu(event, head, hlist_entry) { 5640 if (perf_swevent_match(event, type, event_id, data, regs)) 5641 perf_swevent_event(event, nr, data, regs); 5642 } 5643 end: 5644 rcu_read_unlock(); 5645 } 5646 5647 int perf_swevent_get_recursion_context(void) 5648 { 5649 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); 5650 5651 return get_recursion_context(swhash->recursion); 5652 } 5653 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 5654 5655 inline void perf_swevent_put_recursion_context(int rctx) 5656 { 5657 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); 5658 5659 put_recursion_context(swhash->recursion, rctx); 5660 } 5661 5662 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 5663 { 5664 struct perf_sample_data data; 5665 int rctx; 5666 5667 preempt_disable_notrace(); 5668 rctx = perf_swevent_get_recursion_context(); 5669 if (rctx < 0) 5670 return; 5671 5672 perf_sample_data_init(&data, addr, 0); 5673 5674 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 5675 5676 perf_swevent_put_recursion_context(rctx); 5677 preempt_enable_notrace(); 5678 } 5679 5680 static void perf_swevent_read(struct perf_event *event) 5681 { 5682 } 5683 5684 static int perf_swevent_add(struct perf_event *event, int flags) 5685 { 5686 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); 5687 struct hw_perf_event *hwc = &event->hw; 5688 struct hlist_head *head; 5689 5690 if (is_sampling_event(event)) { 5691 hwc->last_period = hwc->sample_period; 5692 perf_swevent_set_period(event); 5693 } 5694 5695 hwc->state = !(flags & PERF_EF_START); 5696 5697 head = find_swevent_head(swhash, event); 5698 if (!head) { 5699 /* 5700 * We can race with cpu hotplug code. Do not 5701 * WARN if the cpu just got unplugged. 5702 */ 5703 WARN_ON_ONCE(swhash->online); 5704 return -EINVAL; 5705 } 5706 5707 hlist_add_head_rcu(&event->hlist_entry, head); 5708 5709 return 0; 5710 } 5711 5712 static void perf_swevent_del(struct perf_event *event, int flags) 5713 { 5714 hlist_del_rcu(&event->hlist_entry); 5715 } 5716 5717 static void perf_swevent_start(struct perf_event *event, int flags) 5718 { 5719 event->hw.state = 0; 5720 } 5721 5722 static void perf_swevent_stop(struct perf_event *event, int flags) 5723 { 5724 event->hw.state = PERF_HES_STOPPED; 5725 } 5726 5727 /* Deref the hlist from the update side */ 5728 static inline struct swevent_hlist * 5729 swevent_hlist_deref(struct swevent_htable *swhash) 5730 { 5731 return rcu_dereference_protected(swhash->swevent_hlist, 5732 lockdep_is_held(&swhash->hlist_mutex)); 5733 } 5734 5735 static void swevent_hlist_release(struct swevent_htable *swhash) 5736 { 5737 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 5738 5739 if (!hlist) 5740 return; 5741 5742 rcu_assign_pointer(swhash->swevent_hlist, NULL); 5743 kfree_rcu(hlist, rcu_head); 5744 } 5745 5746 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu) 5747 { 5748 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 5749 5750 mutex_lock(&swhash->hlist_mutex); 5751 5752 if (!--swhash->hlist_refcount) 5753 swevent_hlist_release(swhash); 5754 5755 mutex_unlock(&swhash->hlist_mutex); 5756 } 5757 5758 static void swevent_hlist_put(struct perf_event *event) 5759 { 5760 int cpu; 5761 5762 for_each_possible_cpu(cpu) 5763 swevent_hlist_put_cpu(event, cpu); 5764 } 5765 5766 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu) 5767 { 5768 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 5769 int err = 0; 5770 5771 mutex_lock(&swhash->hlist_mutex); 5772 5773 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) { 5774 struct swevent_hlist *hlist; 5775 5776 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 5777 if (!hlist) { 5778 err = -ENOMEM; 5779 goto exit; 5780 } 5781 rcu_assign_pointer(swhash->swevent_hlist, hlist); 5782 } 5783 swhash->hlist_refcount++; 5784 exit: 5785 mutex_unlock(&swhash->hlist_mutex); 5786 5787 return err; 5788 } 5789 5790 static int swevent_hlist_get(struct perf_event *event) 5791 { 5792 int err; 5793 int cpu, failed_cpu; 5794 5795 get_online_cpus(); 5796 for_each_possible_cpu(cpu) { 5797 err = swevent_hlist_get_cpu(event, cpu); 5798 if (err) { 5799 failed_cpu = cpu; 5800 goto fail; 5801 } 5802 } 5803 put_online_cpus(); 5804 5805 return 0; 5806 fail: 5807 for_each_possible_cpu(cpu) { 5808 if (cpu == failed_cpu) 5809 break; 5810 swevent_hlist_put_cpu(event, cpu); 5811 } 5812 5813 put_online_cpus(); 5814 return err; 5815 } 5816 5817 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 5818 5819 static void sw_perf_event_destroy(struct perf_event *event) 5820 { 5821 u64 event_id = event->attr.config; 5822 5823 WARN_ON(event->parent); 5824 5825 static_key_slow_dec(&perf_swevent_enabled[event_id]); 5826 swevent_hlist_put(event); 5827 } 5828 5829 static int perf_swevent_init(struct perf_event *event) 5830 { 5831 u64 event_id = event->attr.config; 5832 5833 if (event->attr.type != PERF_TYPE_SOFTWARE) 5834 return -ENOENT; 5835 5836 /* 5837 * no branch sampling for software events 5838 */ 5839 if (has_branch_stack(event)) 5840 return -EOPNOTSUPP; 5841 5842 switch (event_id) { 5843 case PERF_COUNT_SW_CPU_CLOCK: 5844 case PERF_COUNT_SW_TASK_CLOCK: 5845 return -ENOENT; 5846 5847 default: 5848 break; 5849 } 5850 5851 if (event_id >= PERF_COUNT_SW_MAX) 5852 return -ENOENT; 5853 5854 if (!event->parent) { 5855 int err; 5856 5857 err = swevent_hlist_get(event); 5858 if (err) 5859 return err; 5860 5861 static_key_slow_inc(&perf_swevent_enabled[event_id]); 5862 event->destroy = sw_perf_event_destroy; 5863 } 5864 5865 return 0; 5866 } 5867 5868 static int perf_swevent_event_idx(struct perf_event *event) 5869 { 5870 return 0; 5871 } 5872 5873 static struct pmu perf_swevent = { 5874 .task_ctx_nr = perf_sw_context, 5875 5876 .event_init = perf_swevent_init, 5877 .add = perf_swevent_add, 5878 .del = perf_swevent_del, 5879 .start = perf_swevent_start, 5880 .stop = perf_swevent_stop, 5881 .read = perf_swevent_read, 5882 5883 .event_idx = perf_swevent_event_idx, 5884 }; 5885 5886 #ifdef CONFIG_EVENT_TRACING 5887 5888 static int perf_tp_filter_match(struct perf_event *event, 5889 struct perf_sample_data *data) 5890 { 5891 void *record = data->raw->data; 5892 5893 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 5894 return 1; 5895 return 0; 5896 } 5897 5898 static int perf_tp_event_match(struct perf_event *event, 5899 struct perf_sample_data *data, 5900 struct pt_regs *regs) 5901 { 5902 if (event->hw.state & PERF_HES_STOPPED) 5903 return 0; 5904 /* 5905 * All tracepoints are from kernel-space. 5906 */ 5907 if (event->attr.exclude_kernel) 5908 return 0; 5909 5910 if (!perf_tp_filter_match(event, data)) 5911 return 0; 5912 5913 return 1; 5914 } 5915 5916 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size, 5917 struct pt_regs *regs, struct hlist_head *head, int rctx, 5918 struct task_struct *task) 5919 { 5920 struct perf_sample_data data; 5921 struct perf_event *event; 5922 5923 struct perf_raw_record raw = { 5924 .size = entry_size, 5925 .data = record, 5926 }; 5927 5928 perf_sample_data_init(&data, addr, 0); 5929 data.raw = &raw; 5930 5931 hlist_for_each_entry_rcu(event, head, hlist_entry) { 5932 if (perf_tp_event_match(event, &data, regs)) 5933 perf_swevent_event(event, count, &data, regs); 5934 } 5935 5936 /* 5937 * If we got specified a target task, also iterate its context and 5938 * deliver this event there too. 5939 */ 5940 if (task && task != current) { 5941 struct perf_event_context *ctx; 5942 struct trace_entry *entry = record; 5943 5944 rcu_read_lock(); 5945 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]); 5946 if (!ctx) 5947 goto unlock; 5948 5949 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 5950 if (event->attr.type != PERF_TYPE_TRACEPOINT) 5951 continue; 5952 if (event->attr.config != entry->type) 5953 continue; 5954 if (perf_tp_event_match(event, &data, regs)) 5955 perf_swevent_event(event, count, &data, regs); 5956 } 5957 unlock: 5958 rcu_read_unlock(); 5959 } 5960 5961 perf_swevent_put_recursion_context(rctx); 5962 } 5963 EXPORT_SYMBOL_GPL(perf_tp_event); 5964 5965 static void tp_perf_event_destroy(struct perf_event *event) 5966 { 5967 perf_trace_destroy(event); 5968 } 5969 5970 static int perf_tp_event_init(struct perf_event *event) 5971 { 5972 int err; 5973 5974 if (event->attr.type != PERF_TYPE_TRACEPOINT) 5975 return -ENOENT; 5976 5977 /* 5978 * no branch sampling for tracepoint events 5979 */ 5980 if (has_branch_stack(event)) 5981 return -EOPNOTSUPP; 5982 5983 err = perf_trace_init(event); 5984 if (err) 5985 return err; 5986 5987 event->destroy = tp_perf_event_destroy; 5988 5989 return 0; 5990 } 5991 5992 static struct pmu perf_tracepoint = { 5993 .task_ctx_nr = perf_sw_context, 5994 5995 .event_init = perf_tp_event_init, 5996 .add = perf_trace_add, 5997 .del = perf_trace_del, 5998 .start = perf_swevent_start, 5999 .stop = perf_swevent_stop, 6000 .read = perf_swevent_read, 6001 6002 .event_idx = perf_swevent_event_idx, 6003 }; 6004 6005 static inline void perf_tp_register(void) 6006 { 6007 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 6008 } 6009 6010 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 6011 { 6012 char *filter_str; 6013 int ret; 6014 6015 if (event->attr.type != PERF_TYPE_TRACEPOINT) 6016 return -EINVAL; 6017 6018 filter_str = strndup_user(arg, PAGE_SIZE); 6019 if (IS_ERR(filter_str)) 6020 return PTR_ERR(filter_str); 6021 6022 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 6023 6024 kfree(filter_str); 6025 return ret; 6026 } 6027 6028 static void perf_event_free_filter(struct perf_event *event) 6029 { 6030 ftrace_profile_free_filter(event); 6031 } 6032 6033 #else 6034 6035 static inline void perf_tp_register(void) 6036 { 6037 } 6038 6039 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 6040 { 6041 return -ENOENT; 6042 } 6043 6044 static void perf_event_free_filter(struct perf_event *event) 6045 { 6046 } 6047 6048 #endif /* CONFIG_EVENT_TRACING */ 6049 6050 #ifdef CONFIG_HAVE_HW_BREAKPOINT 6051 void perf_bp_event(struct perf_event *bp, void *data) 6052 { 6053 struct perf_sample_data sample; 6054 struct pt_regs *regs = data; 6055 6056 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 6057 6058 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 6059 perf_swevent_event(bp, 1, &sample, regs); 6060 } 6061 #endif 6062 6063 /* 6064 * hrtimer based swevent callback 6065 */ 6066 6067 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 6068 { 6069 enum hrtimer_restart ret = HRTIMER_RESTART; 6070 struct perf_sample_data data; 6071 struct pt_regs *regs; 6072 struct perf_event *event; 6073 u64 period; 6074 6075 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 6076 6077 if (event->state != PERF_EVENT_STATE_ACTIVE) 6078 return HRTIMER_NORESTART; 6079 6080 event->pmu->read(event); 6081 6082 perf_sample_data_init(&data, 0, event->hw.last_period); 6083 regs = get_irq_regs(); 6084 6085 if (regs && !perf_exclude_event(event, regs)) { 6086 if (!(event->attr.exclude_idle && is_idle_task(current))) 6087 if (__perf_event_overflow(event, 1, &data, regs)) 6088 ret = HRTIMER_NORESTART; 6089 } 6090 6091 period = max_t(u64, 10000, event->hw.sample_period); 6092 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 6093 6094 return ret; 6095 } 6096 6097 static void perf_swevent_start_hrtimer(struct perf_event *event) 6098 { 6099 struct hw_perf_event *hwc = &event->hw; 6100 s64 period; 6101 6102 if (!is_sampling_event(event)) 6103 return; 6104 6105 period = local64_read(&hwc->period_left); 6106 if (period) { 6107 if (period < 0) 6108 period = 10000; 6109 6110 local64_set(&hwc->period_left, 0); 6111 } else { 6112 period = max_t(u64, 10000, hwc->sample_period); 6113 } 6114 __hrtimer_start_range_ns(&hwc->hrtimer, 6115 ns_to_ktime(period), 0, 6116 HRTIMER_MODE_REL_PINNED, 0); 6117 } 6118 6119 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 6120 { 6121 struct hw_perf_event *hwc = &event->hw; 6122 6123 if (is_sampling_event(event)) { 6124 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 6125 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 6126 6127 hrtimer_cancel(&hwc->hrtimer); 6128 } 6129 } 6130 6131 static void perf_swevent_init_hrtimer(struct perf_event *event) 6132 { 6133 struct hw_perf_event *hwc = &event->hw; 6134 6135 if (!is_sampling_event(event)) 6136 return; 6137 6138 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 6139 hwc->hrtimer.function = perf_swevent_hrtimer; 6140 6141 /* 6142 * Since hrtimers have a fixed rate, we can do a static freq->period 6143 * mapping and avoid the whole period adjust feedback stuff. 6144 */ 6145 if (event->attr.freq) { 6146 long freq = event->attr.sample_freq; 6147 6148 event->attr.sample_period = NSEC_PER_SEC / freq; 6149 hwc->sample_period = event->attr.sample_period; 6150 local64_set(&hwc->period_left, hwc->sample_period); 6151 hwc->last_period = hwc->sample_period; 6152 event->attr.freq = 0; 6153 } 6154 } 6155 6156 /* 6157 * Software event: cpu wall time clock 6158 */ 6159 6160 static void cpu_clock_event_update(struct perf_event *event) 6161 { 6162 s64 prev; 6163 u64 now; 6164 6165 now = local_clock(); 6166 prev = local64_xchg(&event->hw.prev_count, now); 6167 local64_add(now - prev, &event->count); 6168 } 6169 6170 static void cpu_clock_event_start(struct perf_event *event, int flags) 6171 { 6172 local64_set(&event->hw.prev_count, local_clock()); 6173 perf_swevent_start_hrtimer(event); 6174 } 6175 6176 static void cpu_clock_event_stop(struct perf_event *event, int flags) 6177 { 6178 perf_swevent_cancel_hrtimer(event); 6179 cpu_clock_event_update(event); 6180 } 6181 6182 static int cpu_clock_event_add(struct perf_event *event, int flags) 6183 { 6184 if (flags & PERF_EF_START) 6185 cpu_clock_event_start(event, flags); 6186 6187 return 0; 6188 } 6189 6190 static void cpu_clock_event_del(struct perf_event *event, int flags) 6191 { 6192 cpu_clock_event_stop(event, flags); 6193 } 6194 6195 static void cpu_clock_event_read(struct perf_event *event) 6196 { 6197 cpu_clock_event_update(event); 6198 } 6199 6200 static int cpu_clock_event_init(struct perf_event *event) 6201 { 6202 if (event->attr.type != PERF_TYPE_SOFTWARE) 6203 return -ENOENT; 6204 6205 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 6206 return -ENOENT; 6207 6208 /* 6209 * no branch sampling for software events 6210 */ 6211 if (has_branch_stack(event)) 6212 return -EOPNOTSUPP; 6213 6214 perf_swevent_init_hrtimer(event); 6215 6216 return 0; 6217 } 6218 6219 static struct pmu perf_cpu_clock = { 6220 .task_ctx_nr = perf_sw_context, 6221 6222 .event_init = cpu_clock_event_init, 6223 .add = cpu_clock_event_add, 6224 .del = cpu_clock_event_del, 6225 .start = cpu_clock_event_start, 6226 .stop = cpu_clock_event_stop, 6227 .read = cpu_clock_event_read, 6228 6229 .event_idx = perf_swevent_event_idx, 6230 }; 6231 6232 /* 6233 * Software event: task time clock 6234 */ 6235 6236 static void task_clock_event_update(struct perf_event *event, u64 now) 6237 { 6238 u64 prev; 6239 s64 delta; 6240 6241 prev = local64_xchg(&event->hw.prev_count, now); 6242 delta = now - prev; 6243 local64_add(delta, &event->count); 6244 } 6245 6246 static void task_clock_event_start(struct perf_event *event, int flags) 6247 { 6248 local64_set(&event->hw.prev_count, event->ctx->time); 6249 perf_swevent_start_hrtimer(event); 6250 } 6251 6252 static void task_clock_event_stop(struct perf_event *event, int flags) 6253 { 6254 perf_swevent_cancel_hrtimer(event); 6255 task_clock_event_update(event, event->ctx->time); 6256 } 6257 6258 static int task_clock_event_add(struct perf_event *event, int flags) 6259 { 6260 if (flags & PERF_EF_START) 6261 task_clock_event_start(event, flags); 6262 6263 return 0; 6264 } 6265 6266 static void task_clock_event_del(struct perf_event *event, int flags) 6267 { 6268 task_clock_event_stop(event, PERF_EF_UPDATE); 6269 } 6270 6271 static void task_clock_event_read(struct perf_event *event) 6272 { 6273 u64 now = perf_clock(); 6274 u64 delta = now - event->ctx->timestamp; 6275 u64 time = event->ctx->time + delta; 6276 6277 task_clock_event_update(event, time); 6278 } 6279 6280 static int task_clock_event_init(struct perf_event *event) 6281 { 6282 if (event->attr.type != PERF_TYPE_SOFTWARE) 6283 return -ENOENT; 6284 6285 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 6286 return -ENOENT; 6287 6288 /* 6289 * no branch sampling for software events 6290 */ 6291 if (has_branch_stack(event)) 6292 return -EOPNOTSUPP; 6293 6294 perf_swevent_init_hrtimer(event); 6295 6296 return 0; 6297 } 6298 6299 static struct pmu perf_task_clock = { 6300 .task_ctx_nr = perf_sw_context, 6301 6302 .event_init = task_clock_event_init, 6303 .add = task_clock_event_add, 6304 .del = task_clock_event_del, 6305 .start = task_clock_event_start, 6306 .stop = task_clock_event_stop, 6307 .read = task_clock_event_read, 6308 6309 .event_idx = perf_swevent_event_idx, 6310 }; 6311 6312 static void perf_pmu_nop_void(struct pmu *pmu) 6313 { 6314 } 6315 6316 static int perf_pmu_nop_int(struct pmu *pmu) 6317 { 6318 return 0; 6319 } 6320 6321 static void perf_pmu_start_txn(struct pmu *pmu) 6322 { 6323 perf_pmu_disable(pmu); 6324 } 6325 6326 static int perf_pmu_commit_txn(struct pmu *pmu) 6327 { 6328 perf_pmu_enable(pmu); 6329 return 0; 6330 } 6331 6332 static void perf_pmu_cancel_txn(struct pmu *pmu) 6333 { 6334 perf_pmu_enable(pmu); 6335 } 6336 6337 static int perf_event_idx_default(struct perf_event *event) 6338 { 6339 return event->hw.idx + 1; 6340 } 6341 6342 /* 6343 * Ensures all contexts with the same task_ctx_nr have the same 6344 * pmu_cpu_context too. 6345 */ 6346 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn) 6347 { 6348 struct pmu *pmu; 6349 6350 if (ctxn < 0) 6351 return NULL; 6352 6353 list_for_each_entry(pmu, &pmus, entry) { 6354 if (pmu->task_ctx_nr == ctxn) 6355 return pmu->pmu_cpu_context; 6356 } 6357 6358 return NULL; 6359 } 6360 6361 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu) 6362 { 6363 int cpu; 6364 6365 for_each_possible_cpu(cpu) { 6366 struct perf_cpu_context *cpuctx; 6367 6368 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 6369 6370 if (cpuctx->unique_pmu == old_pmu) 6371 cpuctx->unique_pmu = pmu; 6372 } 6373 } 6374 6375 static void free_pmu_context(struct pmu *pmu) 6376 { 6377 struct pmu *i; 6378 6379 mutex_lock(&pmus_lock); 6380 /* 6381 * Like a real lame refcount. 6382 */ 6383 list_for_each_entry(i, &pmus, entry) { 6384 if (i->pmu_cpu_context == pmu->pmu_cpu_context) { 6385 update_pmu_context(i, pmu); 6386 goto out; 6387 } 6388 } 6389 6390 free_percpu(pmu->pmu_cpu_context); 6391 out: 6392 mutex_unlock(&pmus_lock); 6393 } 6394 static struct idr pmu_idr; 6395 6396 static ssize_t 6397 type_show(struct device *dev, struct device_attribute *attr, char *page) 6398 { 6399 struct pmu *pmu = dev_get_drvdata(dev); 6400 6401 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); 6402 } 6403 static DEVICE_ATTR_RO(type); 6404 6405 static ssize_t 6406 perf_event_mux_interval_ms_show(struct device *dev, 6407 struct device_attribute *attr, 6408 char *page) 6409 { 6410 struct pmu *pmu = dev_get_drvdata(dev); 6411 6412 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms); 6413 } 6414 6415 static ssize_t 6416 perf_event_mux_interval_ms_store(struct device *dev, 6417 struct device_attribute *attr, 6418 const char *buf, size_t count) 6419 { 6420 struct pmu *pmu = dev_get_drvdata(dev); 6421 int timer, cpu, ret; 6422 6423 ret = kstrtoint(buf, 0, &timer); 6424 if (ret) 6425 return ret; 6426 6427 if (timer < 1) 6428 return -EINVAL; 6429 6430 /* same value, noting to do */ 6431 if (timer == pmu->hrtimer_interval_ms) 6432 return count; 6433 6434 pmu->hrtimer_interval_ms = timer; 6435 6436 /* update all cpuctx for this PMU */ 6437 for_each_possible_cpu(cpu) { 6438 struct perf_cpu_context *cpuctx; 6439 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 6440 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 6441 6442 if (hrtimer_active(&cpuctx->hrtimer)) 6443 hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval); 6444 } 6445 6446 return count; 6447 } 6448 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 6449 6450 static struct attribute *pmu_dev_attrs[] = { 6451 &dev_attr_type.attr, 6452 &dev_attr_perf_event_mux_interval_ms.attr, 6453 NULL, 6454 }; 6455 ATTRIBUTE_GROUPS(pmu_dev); 6456 6457 static int pmu_bus_running; 6458 static struct bus_type pmu_bus = { 6459 .name = "event_source", 6460 .dev_groups = pmu_dev_groups, 6461 }; 6462 6463 static void pmu_dev_release(struct device *dev) 6464 { 6465 kfree(dev); 6466 } 6467 6468 static int pmu_dev_alloc(struct pmu *pmu) 6469 { 6470 int ret = -ENOMEM; 6471 6472 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 6473 if (!pmu->dev) 6474 goto out; 6475 6476 pmu->dev->groups = pmu->attr_groups; 6477 device_initialize(pmu->dev); 6478 ret = dev_set_name(pmu->dev, "%s", pmu->name); 6479 if (ret) 6480 goto free_dev; 6481 6482 dev_set_drvdata(pmu->dev, pmu); 6483 pmu->dev->bus = &pmu_bus; 6484 pmu->dev->release = pmu_dev_release; 6485 ret = device_add(pmu->dev); 6486 if (ret) 6487 goto free_dev; 6488 6489 out: 6490 return ret; 6491 6492 free_dev: 6493 put_device(pmu->dev); 6494 goto out; 6495 } 6496 6497 static struct lock_class_key cpuctx_mutex; 6498 static struct lock_class_key cpuctx_lock; 6499 6500 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 6501 { 6502 int cpu, ret; 6503 6504 mutex_lock(&pmus_lock); 6505 ret = -ENOMEM; 6506 pmu->pmu_disable_count = alloc_percpu(int); 6507 if (!pmu->pmu_disable_count) 6508 goto unlock; 6509 6510 pmu->type = -1; 6511 if (!name) 6512 goto skip_type; 6513 pmu->name = name; 6514 6515 if (type < 0) { 6516 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL); 6517 if (type < 0) { 6518 ret = type; 6519 goto free_pdc; 6520 } 6521 } 6522 pmu->type = type; 6523 6524 if (pmu_bus_running) { 6525 ret = pmu_dev_alloc(pmu); 6526 if (ret) 6527 goto free_idr; 6528 } 6529 6530 skip_type: 6531 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); 6532 if (pmu->pmu_cpu_context) 6533 goto got_cpu_context; 6534 6535 ret = -ENOMEM; 6536 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); 6537 if (!pmu->pmu_cpu_context) 6538 goto free_dev; 6539 6540 for_each_possible_cpu(cpu) { 6541 struct perf_cpu_context *cpuctx; 6542 6543 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 6544 __perf_event_init_context(&cpuctx->ctx); 6545 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 6546 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 6547 cpuctx->ctx.type = cpu_context; 6548 cpuctx->ctx.pmu = pmu; 6549 6550 __perf_cpu_hrtimer_init(cpuctx, cpu); 6551 6552 INIT_LIST_HEAD(&cpuctx->rotation_list); 6553 cpuctx->unique_pmu = pmu; 6554 } 6555 6556 got_cpu_context: 6557 if (!pmu->start_txn) { 6558 if (pmu->pmu_enable) { 6559 /* 6560 * If we have pmu_enable/pmu_disable calls, install 6561 * transaction stubs that use that to try and batch 6562 * hardware accesses. 6563 */ 6564 pmu->start_txn = perf_pmu_start_txn; 6565 pmu->commit_txn = perf_pmu_commit_txn; 6566 pmu->cancel_txn = perf_pmu_cancel_txn; 6567 } else { 6568 pmu->start_txn = perf_pmu_nop_void; 6569 pmu->commit_txn = perf_pmu_nop_int; 6570 pmu->cancel_txn = perf_pmu_nop_void; 6571 } 6572 } 6573 6574 if (!pmu->pmu_enable) { 6575 pmu->pmu_enable = perf_pmu_nop_void; 6576 pmu->pmu_disable = perf_pmu_nop_void; 6577 } 6578 6579 if (!pmu->event_idx) 6580 pmu->event_idx = perf_event_idx_default; 6581 6582 list_add_rcu(&pmu->entry, &pmus); 6583 ret = 0; 6584 unlock: 6585 mutex_unlock(&pmus_lock); 6586 6587 return ret; 6588 6589 free_dev: 6590 device_del(pmu->dev); 6591 put_device(pmu->dev); 6592 6593 free_idr: 6594 if (pmu->type >= PERF_TYPE_MAX) 6595 idr_remove(&pmu_idr, pmu->type); 6596 6597 free_pdc: 6598 free_percpu(pmu->pmu_disable_count); 6599 goto unlock; 6600 } 6601 EXPORT_SYMBOL_GPL(perf_pmu_register); 6602 6603 void perf_pmu_unregister(struct pmu *pmu) 6604 { 6605 mutex_lock(&pmus_lock); 6606 list_del_rcu(&pmu->entry); 6607 mutex_unlock(&pmus_lock); 6608 6609 /* 6610 * We dereference the pmu list under both SRCU and regular RCU, so 6611 * synchronize against both of those. 6612 */ 6613 synchronize_srcu(&pmus_srcu); 6614 synchronize_rcu(); 6615 6616 free_percpu(pmu->pmu_disable_count); 6617 if (pmu->type >= PERF_TYPE_MAX) 6618 idr_remove(&pmu_idr, pmu->type); 6619 device_del(pmu->dev); 6620 put_device(pmu->dev); 6621 free_pmu_context(pmu); 6622 } 6623 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 6624 6625 struct pmu *perf_init_event(struct perf_event *event) 6626 { 6627 struct pmu *pmu = NULL; 6628 int idx; 6629 int ret; 6630 6631 idx = srcu_read_lock(&pmus_srcu); 6632 6633 rcu_read_lock(); 6634 pmu = idr_find(&pmu_idr, event->attr.type); 6635 rcu_read_unlock(); 6636 if (pmu) { 6637 if (!try_module_get(pmu->module)) { 6638 pmu = ERR_PTR(-ENODEV); 6639 goto unlock; 6640 } 6641 event->pmu = pmu; 6642 ret = pmu->event_init(event); 6643 if (ret) 6644 pmu = ERR_PTR(ret); 6645 goto unlock; 6646 } 6647 6648 list_for_each_entry_rcu(pmu, &pmus, entry) { 6649 if (!try_module_get(pmu->module)) { 6650 pmu = ERR_PTR(-ENODEV); 6651 goto unlock; 6652 } 6653 event->pmu = pmu; 6654 ret = pmu->event_init(event); 6655 if (!ret) 6656 goto unlock; 6657 6658 if (ret != -ENOENT) { 6659 pmu = ERR_PTR(ret); 6660 goto unlock; 6661 } 6662 } 6663 pmu = ERR_PTR(-ENOENT); 6664 unlock: 6665 srcu_read_unlock(&pmus_srcu, idx); 6666 6667 return pmu; 6668 } 6669 6670 static void account_event_cpu(struct perf_event *event, int cpu) 6671 { 6672 if (event->parent) 6673 return; 6674 6675 if (has_branch_stack(event)) { 6676 if (!(event->attach_state & PERF_ATTACH_TASK)) 6677 atomic_inc(&per_cpu(perf_branch_stack_events, cpu)); 6678 } 6679 if (is_cgroup_event(event)) 6680 atomic_inc(&per_cpu(perf_cgroup_events, cpu)); 6681 } 6682 6683 static void account_event(struct perf_event *event) 6684 { 6685 if (event->parent) 6686 return; 6687 6688 if (event->attach_state & PERF_ATTACH_TASK) 6689 static_key_slow_inc(&perf_sched_events.key); 6690 if (event->attr.mmap || event->attr.mmap_data) 6691 atomic_inc(&nr_mmap_events); 6692 if (event->attr.comm) 6693 atomic_inc(&nr_comm_events); 6694 if (event->attr.task) 6695 atomic_inc(&nr_task_events); 6696 if (event->attr.freq) { 6697 if (atomic_inc_return(&nr_freq_events) == 1) 6698 tick_nohz_full_kick_all(); 6699 } 6700 if (has_branch_stack(event)) 6701 static_key_slow_inc(&perf_sched_events.key); 6702 if (is_cgroup_event(event)) 6703 static_key_slow_inc(&perf_sched_events.key); 6704 6705 account_event_cpu(event, event->cpu); 6706 } 6707 6708 /* 6709 * Allocate and initialize a event structure 6710 */ 6711 static struct perf_event * 6712 perf_event_alloc(struct perf_event_attr *attr, int cpu, 6713 struct task_struct *task, 6714 struct perf_event *group_leader, 6715 struct perf_event *parent_event, 6716 perf_overflow_handler_t overflow_handler, 6717 void *context) 6718 { 6719 struct pmu *pmu; 6720 struct perf_event *event; 6721 struct hw_perf_event *hwc; 6722 long err = -EINVAL; 6723 6724 if ((unsigned)cpu >= nr_cpu_ids) { 6725 if (!task || cpu != -1) 6726 return ERR_PTR(-EINVAL); 6727 } 6728 6729 event = kzalloc(sizeof(*event), GFP_KERNEL); 6730 if (!event) 6731 return ERR_PTR(-ENOMEM); 6732 6733 /* 6734 * Single events are their own group leaders, with an 6735 * empty sibling list: 6736 */ 6737 if (!group_leader) 6738 group_leader = event; 6739 6740 mutex_init(&event->child_mutex); 6741 INIT_LIST_HEAD(&event->child_list); 6742 6743 INIT_LIST_HEAD(&event->group_entry); 6744 INIT_LIST_HEAD(&event->event_entry); 6745 INIT_LIST_HEAD(&event->sibling_list); 6746 INIT_LIST_HEAD(&event->rb_entry); 6747 INIT_LIST_HEAD(&event->active_entry); 6748 INIT_HLIST_NODE(&event->hlist_entry); 6749 6750 6751 init_waitqueue_head(&event->waitq); 6752 init_irq_work(&event->pending, perf_pending_event); 6753 6754 mutex_init(&event->mmap_mutex); 6755 6756 atomic_long_set(&event->refcount, 1); 6757 event->cpu = cpu; 6758 event->attr = *attr; 6759 event->group_leader = group_leader; 6760 event->pmu = NULL; 6761 event->oncpu = -1; 6762 6763 event->parent = parent_event; 6764 6765 event->ns = get_pid_ns(task_active_pid_ns(current)); 6766 event->id = atomic64_inc_return(&perf_event_id); 6767 6768 event->state = PERF_EVENT_STATE_INACTIVE; 6769 6770 if (task) { 6771 event->attach_state = PERF_ATTACH_TASK; 6772 6773 if (attr->type == PERF_TYPE_TRACEPOINT) 6774 event->hw.tp_target = task; 6775 #ifdef CONFIG_HAVE_HW_BREAKPOINT 6776 /* 6777 * hw_breakpoint is a bit difficult here.. 6778 */ 6779 else if (attr->type == PERF_TYPE_BREAKPOINT) 6780 event->hw.bp_target = task; 6781 #endif 6782 } 6783 6784 if (!overflow_handler && parent_event) { 6785 overflow_handler = parent_event->overflow_handler; 6786 context = parent_event->overflow_handler_context; 6787 } 6788 6789 event->overflow_handler = overflow_handler; 6790 event->overflow_handler_context = context; 6791 6792 perf_event__state_init(event); 6793 6794 pmu = NULL; 6795 6796 hwc = &event->hw; 6797 hwc->sample_period = attr->sample_period; 6798 if (attr->freq && attr->sample_freq) 6799 hwc->sample_period = 1; 6800 hwc->last_period = hwc->sample_period; 6801 6802 local64_set(&hwc->period_left, hwc->sample_period); 6803 6804 /* 6805 * we currently do not support PERF_FORMAT_GROUP on inherited events 6806 */ 6807 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP)) 6808 goto err_ns; 6809 6810 pmu = perf_init_event(event); 6811 if (!pmu) 6812 goto err_ns; 6813 else if (IS_ERR(pmu)) { 6814 err = PTR_ERR(pmu); 6815 goto err_ns; 6816 } 6817 6818 if (!event->parent) { 6819 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 6820 err = get_callchain_buffers(); 6821 if (err) 6822 goto err_pmu; 6823 } 6824 } 6825 6826 return event; 6827 6828 err_pmu: 6829 if (event->destroy) 6830 event->destroy(event); 6831 module_put(pmu->module); 6832 err_ns: 6833 if (event->ns) 6834 put_pid_ns(event->ns); 6835 kfree(event); 6836 6837 return ERR_PTR(err); 6838 } 6839 6840 static int perf_copy_attr(struct perf_event_attr __user *uattr, 6841 struct perf_event_attr *attr) 6842 { 6843 u32 size; 6844 int ret; 6845 6846 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0)) 6847 return -EFAULT; 6848 6849 /* 6850 * zero the full structure, so that a short copy will be nice. 6851 */ 6852 memset(attr, 0, sizeof(*attr)); 6853 6854 ret = get_user(size, &uattr->size); 6855 if (ret) 6856 return ret; 6857 6858 if (size > PAGE_SIZE) /* silly large */ 6859 goto err_size; 6860 6861 if (!size) /* abi compat */ 6862 size = PERF_ATTR_SIZE_VER0; 6863 6864 if (size < PERF_ATTR_SIZE_VER0) 6865 goto err_size; 6866 6867 /* 6868 * If we're handed a bigger struct than we know of, 6869 * ensure all the unknown bits are 0 - i.e. new 6870 * user-space does not rely on any kernel feature 6871 * extensions we dont know about yet. 6872 */ 6873 if (size > sizeof(*attr)) { 6874 unsigned char __user *addr; 6875 unsigned char __user *end; 6876 unsigned char val; 6877 6878 addr = (void __user *)uattr + sizeof(*attr); 6879 end = (void __user *)uattr + size; 6880 6881 for (; addr < end; addr++) { 6882 ret = get_user(val, addr); 6883 if (ret) 6884 return ret; 6885 if (val) 6886 goto err_size; 6887 } 6888 size = sizeof(*attr); 6889 } 6890 6891 ret = copy_from_user(attr, uattr, size); 6892 if (ret) 6893 return -EFAULT; 6894 6895 /* disabled for now */ 6896 if (attr->mmap2) 6897 return -EINVAL; 6898 6899 if (attr->__reserved_1) 6900 return -EINVAL; 6901 6902 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 6903 return -EINVAL; 6904 6905 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 6906 return -EINVAL; 6907 6908 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 6909 u64 mask = attr->branch_sample_type; 6910 6911 /* only using defined bits */ 6912 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 6913 return -EINVAL; 6914 6915 /* at least one branch bit must be set */ 6916 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 6917 return -EINVAL; 6918 6919 /* propagate priv level, when not set for branch */ 6920 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 6921 6922 /* exclude_kernel checked on syscall entry */ 6923 if (!attr->exclude_kernel) 6924 mask |= PERF_SAMPLE_BRANCH_KERNEL; 6925 6926 if (!attr->exclude_user) 6927 mask |= PERF_SAMPLE_BRANCH_USER; 6928 6929 if (!attr->exclude_hv) 6930 mask |= PERF_SAMPLE_BRANCH_HV; 6931 /* 6932 * adjust user setting (for HW filter setup) 6933 */ 6934 attr->branch_sample_type = mask; 6935 } 6936 /* privileged levels capture (kernel, hv): check permissions */ 6937 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM) 6938 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 6939 return -EACCES; 6940 } 6941 6942 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 6943 ret = perf_reg_validate(attr->sample_regs_user); 6944 if (ret) 6945 return ret; 6946 } 6947 6948 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 6949 if (!arch_perf_have_user_stack_dump()) 6950 return -ENOSYS; 6951 6952 /* 6953 * We have __u32 type for the size, but so far 6954 * we can only use __u16 as maximum due to the 6955 * __u16 sample size limit. 6956 */ 6957 if (attr->sample_stack_user >= USHRT_MAX) 6958 ret = -EINVAL; 6959 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 6960 ret = -EINVAL; 6961 } 6962 6963 out: 6964 return ret; 6965 6966 err_size: 6967 put_user(sizeof(*attr), &uattr->size); 6968 ret = -E2BIG; 6969 goto out; 6970 } 6971 6972 static int 6973 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 6974 { 6975 struct ring_buffer *rb = NULL; 6976 int ret = -EINVAL; 6977 6978 if (!output_event) 6979 goto set; 6980 6981 /* don't allow circular references */ 6982 if (event == output_event) 6983 goto out; 6984 6985 /* 6986 * Don't allow cross-cpu buffers 6987 */ 6988 if (output_event->cpu != event->cpu) 6989 goto out; 6990 6991 /* 6992 * If its not a per-cpu rb, it must be the same task. 6993 */ 6994 if (output_event->cpu == -1 && output_event->ctx != event->ctx) 6995 goto out; 6996 6997 set: 6998 mutex_lock(&event->mmap_mutex); 6999 /* Can't redirect output if we've got an active mmap() */ 7000 if (atomic_read(&event->mmap_count)) 7001 goto unlock; 7002 7003 if (output_event) { 7004 /* get the rb we want to redirect to */ 7005 rb = ring_buffer_get(output_event); 7006 if (!rb) 7007 goto unlock; 7008 } 7009 7010 ring_buffer_attach(event, rb); 7011 7012 ret = 0; 7013 unlock: 7014 mutex_unlock(&event->mmap_mutex); 7015 7016 out: 7017 return ret; 7018 } 7019 7020 /** 7021 * sys_perf_event_open - open a performance event, associate it to a task/cpu 7022 * 7023 * @attr_uptr: event_id type attributes for monitoring/sampling 7024 * @pid: target pid 7025 * @cpu: target cpu 7026 * @group_fd: group leader event fd 7027 */ 7028 SYSCALL_DEFINE5(perf_event_open, 7029 struct perf_event_attr __user *, attr_uptr, 7030 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 7031 { 7032 struct perf_event *group_leader = NULL, *output_event = NULL; 7033 struct perf_event *event, *sibling; 7034 struct perf_event_attr attr; 7035 struct perf_event_context *ctx; 7036 struct file *event_file = NULL; 7037 struct fd group = {NULL, 0}; 7038 struct task_struct *task = NULL; 7039 struct pmu *pmu; 7040 int event_fd; 7041 int move_group = 0; 7042 int err; 7043 int f_flags = O_RDWR; 7044 7045 /* for future expandability... */ 7046 if (flags & ~PERF_FLAG_ALL) 7047 return -EINVAL; 7048 7049 err = perf_copy_attr(attr_uptr, &attr); 7050 if (err) 7051 return err; 7052 7053 if (!attr.exclude_kernel) { 7054 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 7055 return -EACCES; 7056 } 7057 7058 if (attr.freq) { 7059 if (attr.sample_freq > sysctl_perf_event_sample_rate) 7060 return -EINVAL; 7061 } else { 7062 if (attr.sample_period & (1ULL << 63)) 7063 return -EINVAL; 7064 } 7065 7066 /* 7067 * In cgroup mode, the pid argument is used to pass the fd 7068 * opened to the cgroup directory in cgroupfs. The cpu argument 7069 * designates the cpu on which to monitor threads from that 7070 * cgroup. 7071 */ 7072 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 7073 return -EINVAL; 7074 7075 if (flags & PERF_FLAG_FD_CLOEXEC) 7076 f_flags |= O_CLOEXEC; 7077 7078 event_fd = get_unused_fd_flags(f_flags); 7079 if (event_fd < 0) 7080 return event_fd; 7081 7082 if (group_fd != -1) { 7083 err = perf_fget_light(group_fd, &group); 7084 if (err) 7085 goto err_fd; 7086 group_leader = group.file->private_data; 7087 if (flags & PERF_FLAG_FD_OUTPUT) 7088 output_event = group_leader; 7089 if (flags & PERF_FLAG_FD_NO_GROUP) 7090 group_leader = NULL; 7091 } 7092 7093 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 7094 task = find_lively_task_by_vpid(pid); 7095 if (IS_ERR(task)) { 7096 err = PTR_ERR(task); 7097 goto err_group_fd; 7098 } 7099 } 7100 7101 if (task && group_leader && 7102 group_leader->attr.inherit != attr.inherit) { 7103 err = -EINVAL; 7104 goto err_task; 7105 } 7106 7107 get_online_cpus(); 7108 7109 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 7110 NULL, NULL); 7111 if (IS_ERR(event)) { 7112 err = PTR_ERR(event); 7113 goto err_cpus; 7114 } 7115 7116 if (flags & PERF_FLAG_PID_CGROUP) { 7117 err = perf_cgroup_connect(pid, event, &attr, group_leader); 7118 if (err) { 7119 __free_event(event); 7120 goto err_cpus; 7121 } 7122 } 7123 7124 account_event(event); 7125 7126 /* 7127 * Special case software events and allow them to be part of 7128 * any hardware group. 7129 */ 7130 pmu = event->pmu; 7131 7132 if (group_leader && 7133 (is_software_event(event) != is_software_event(group_leader))) { 7134 if (is_software_event(event)) { 7135 /* 7136 * If event and group_leader are not both a software 7137 * event, and event is, then group leader is not. 7138 * 7139 * Allow the addition of software events to !software 7140 * groups, this is safe because software events never 7141 * fail to schedule. 7142 */ 7143 pmu = group_leader->pmu; 7144 } else if (is_software_event(group_leader) && 7145 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) { 7146 /* 7147 * In case the group is a pure software group, and we 7148 * try to add a hardware event, move the whole group to 7149 * the hardware context. 7150 */ 7151 move_group = 1; 7152 } 7153 } 7154 7155 /* 7156 * Get the target context (task or percpu): 7157 */ 7158 ctx = find_get_context(pmu, task, event->cpu); 7159 if (IS_ERR(ctx)) { 7160 err = PTR_ERR(ctx); 7161 goto err_alloc; 7162 } 7163 7164 if (task) { 7165 put_task_struct(task); 7166 task = NULL; 7167 } 7168 7169 /* 7170 * Look up the group leader (we will attach this event to it): 7171 */ 7172 if (group_leader) { 7173 err = -EINVAL; 7174 7175 /* 7176 * Do not allow a recursive hierarchy (this new sibling 7177 * becoming part of another group-sibling): 7178 */ 7179 if (group_leader->group_leader != group_leader) 7180 goto err_context; 7181 /* 7182 * Do not allow to attach to a group in a different 7183 * task or CPU context: 7184 */ 7185 if (move_group) { 7186 if (group_leader->ctx->type != ctx->type) 7187 goto err_context; 7188 } else { 7189 if (group_leader->ctx != ctx) 7190 goto err_context; 7191 } 7192 7193 /* 7194 * Only a group leader can be exclusive or pinned 7195 */ 7196 if (attr.exclusive || attr.pinned) 7197 goto err_context; 7198 } 7199 7200 if (output_event) { 7201 err = perf_event_set_output(event, output_event); 7202 if (err) 7203 goto err_context; 7204 } 7205 7206 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, 7207 f_flags); 7208 if (IS_ERR(event_file)) { 7209 err = PTR_ERR(event_file); 7210 goto err_context; 7211 } 7212 7213 if (move_group) { 7214 struct perf_event_context *gctx = group_leader->ctx; 7215 7216 mutex_lock(&gctx->mutex); 7217 perf_remove_from_context(group_leader, false); 7218 7219 /* 7220 * Removing from the context ends up with disabled 7221 * event. What we want here is event in the initial 7222 * startup state, ready to be add into new context. 7223 */ 7224 perf_event__state_init(group_leader); 7225 list_for_each_entry(sibling, &group_leader->sibling_list, 7226 group_entry) { 7227 perf_remove_from_context(sibling, false); 7228 perf_event__state_init(sibling); 7229 put_ctx(gctx); 7230 } 7231 mutex_unlock(&gctx->mutex); 7232 put_ctx(gctx); 7233 } 7234 7235 WARN_ON_ONCE(ctx->parent_ctx); 7236 mutex_lock(&ctx->mutex); 7237 7238 if (move_group) { 7239 synchronize_rcu(); 7240 perf_install_in_context(ctx, group_leader, event->cpu); 7241 get_ctx(ctx); 7242 list_for_each_entry(sibling, &group_leader->sibling_list, 7243 group_entry) { 7244 perf_install_in_context(ctx, sibling, event->cpu); 7245 get_ctx(ctx); 7246 } 7247 } 7248 7249 perf_install_in_context(ctx, event, event->cpu); 7250 perf_unpin_context(ctx); 7251 mutex_unlock(&ctx->mutex); 7252 7253 put_online_cpus(); 7254 7255 event->owner = current; 7256 7257 mutex_lock(¤t->perf_event_mutex); 7258 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 7259 mutex_unlock(¤t->perf_event_mutex); 7260 7261 /* 7262 * Precalculate sample_data sizes 7263 */ 7264 perf_event__header_size(event); 7265 perf_event__id_header_size(event); 7266 7267 /* 7268 * Drop the reference on the group_event after placing the 7269 * new event on the sibling_list. This ensures destruction 7270 * of the group leader will find the pointer to itself in 7271 * perf_group_detach(). 7272 */ 7273 fdput(group); 7274 fd_install(event_fd, event_file); 7275 return event_fd; 7276 7277 err_context: 7278 perf_unpin_context(ctx); 7279 put_ctx(ctx); 7280 err_alloc: 7281 free_event(event); 7282 err_cpus: 7283 put_online_cpus(); 7284 err_task: 7285 if (task) 7286 put_task_struct(task); 7287 err_group_fd: 7288 fdput(group); 7289 err_fd: 7290 put_unused_fd(event_fd); 7291 return err; 7292 } 7293 7294 /** 7295 * perf_event_create_kernel_counter 7296 * 7297 * @attr: attributes of the counter to create 7298 * @cpu: cpu in which the counter is bound 7299 * @task: task to profile (NULL for percpu) 7300 */ 7301 struct perf_event * 7302 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 7303 struct task_struct *task, 7304 perf_overflow_handler_t overflow_handler, 7305 void *context) 7306 { 7307 struct perf_event_context *ctx; 7308 struct perf_event *event; 7309 int err; 7310 7311 /* 7312 * Get the target context (task or percpu): 7313 */ 7314 7315 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 7316 overflow_handler, context); 7317 if (IS_ERR(event)) { 7318 err = PTR_ERR(event); 7319 goto err; 7320 } 7321 7322 account_event(event); 7323 7324 ctx = find_get_context(event->pmu, task, cpu); 7325 if (IS_ERR(ctx)) { 7326 err = PTR_ERR(ctx); 7327 goto err_free; 7328 } 7329 7330 WARN_ON_ONCE(ctx->parent_ctx); 7331 mutex_lock(&ctx->mutex); 7332 perf_install_in_context(ctx, event, cpu); 7333 perf_unpin_context(ctx); 7334 mutex_unlock(&ctx->mutex); 7335 7336 return event; 7337 7338 err_free: 7339 free_event(event); 7340 err: 7341 return ERR_PTR(err); 7342 } 7343 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 7344 7345 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 7346 { 7347 struct perf_event_context *src_ctx; 7348 struct perf_event_context *dst_ctx; 7349 struct perf_event *event, *tmp; 7350 LIST_HEAD(events); 7351 7352 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx; 7353 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx; 7354 7355 mutex_lock(&src_ctx->mutex); 7356 list_for_each_entry_safe(event, tmp, &src_ctx->event_list, 7357 event_entry) { 7358 perf_remove_from_context(event, false); 7359 unaccount_event_cpu(event, src_cpu); 7360 put_ctx(src_ctx); 7361 list_add(&event->migrate_entry, &events); 7362 } 7363 mutex_unlock(&src_ctx->mutex); 7364 7365 synchronize_rcu(); 7366 7367 mutex_lock(&dst_ctx->mutex); 7368 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 7369 list_del(&event->migrate_entry); 7370 if (event->state >= PERF_EVENT_STATE_OFF) 7371 event->state = PERF_EVENT_STATE_INACTIVE; 7372 account_event_cpu(event, dst_cpu); 7373 perf_install_in_context(dst_ctx, event, dst_cpu); 7374 get_ctx(dst_ctx); 7375 } 7376 mutex_unlock(&dst_ctx->mutex); 7377 } 7378 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 7379 7380 static void sync_child_event(struct perf_event *child_event, 7381 struct task_struct *child) 7382 { 7383 struct perf_event *parent_event = child_event->parent; 7384 u64 child_val; 7385 7386 if (child_event->attr.inherit_stat) 7387 perf_event_read_event(child_event, child); 7388 7389 child_val = perf_event_count(child_event); 7390 7391 /* 7392 * Add back the child's count to the parent's count: 7393 */ 7394 atomic64_add(child_val, &parent_event->child_count); 7395 atomic64_add(child_event->total_time_enabled, 7396 &parent_event->child_total_time_enabled); 7397 atomic64_add(child_event->total_time_running, 7398 &parent_event->child_total_time_running); 7399 7400 /* 7401 * Remove this event from the parent's list 7402 */ 7403 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 7404 mutex_lock(&parent_event->child_mutex); 7405 list_del_init(&child_event->child_list); 7406 mutex_unlock(&parent_event->child_mutex); 7407 7408 /* 7409 * Release the parent event, if this was the last 7410 * reference to it. 7411 */ 7412 put_event(parent_event); 7413 } 7414 7415 static void 7416 __perf_event_exit_task(struct perf_event *child_event, 7417 struct perf_event_context *child_ctx, 7418 struct task_struct *child) 7419 { 7420 perf_remove_from_context(child_event, true); 7421 7422 /* 7423 * It can happen that the parent exits first, and has events 7424 * that are still around due to the child reference. These 7425 * events need to be zapped. 7426 */ 7427 if (child_event->parent) { 7428 sync_child_event(child_event, child); 7429 free_event(child_event); 7430 } 7431 } 7432 7433 static void perf_event_exit_task_context(struct task_struct *child, int ctxn) 7434 { 7435 struct perf_event *child_event; 7436 struct perf_event_context *child_ctx; 7437 unsigned long flags; 7438 7439 if (likely(!child->perf_event_ctxp[ctxn])) { 7440 perf_event_task(child, NULL, 0); 7441 return; 7442 } 7443 7444 local_irq_save(flags); 7445 /* 7446 * We can't reschedule here because interrupts are disabled, 7447 * and either child is current or it is a task that can't be 7448 * scheduled, so we are now safe from rescheduling changing 7449 * our context. 7450 */ 7451 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]); 7452 7453 /* 7454 * Take the context lock here so that if find_get_context is 7455 * reading child->perf_event_ctxp, we wait until it has 7456 * incremented the context's refcount before we do put_ctx below. 7457 */ 7458 raw_spin_lock(&child_ctx->lock); 7459 task_ctx_sched_out(child_ctx); 7460 child->perf_event_ctxp[ctxn] = NULL; 7461 /* 7462 * If this context is a clone; unclone it so it can't get 7463 * swapped to another process while we're removing all 7464 * the events from it. 7465 */ 7466 unclone_ctx(child_ctx); 7467 update_context_time(child_ctx); 7468 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 7469 7470 /* 7471 * Report the task dead after unscheduling the events so that we 7472 * won't get any samples after PERF_RECORD_EXIT. We can however still 7473 * get a few PERF_RECORD_READ events. 7474 */ 7475 perf_event_task(child, child_ctx, 0); 7476 7477 /* 7478 * We can recurse on the same lock type through: 7479 * 7480 * __perf_event_exit_task() 7481 * sync_child_event() 7482 * put_event() 7483 * mutex_lock(&ctx->mutex) 7484 * 7485 * But since its the parent context it won't be the same instance. 7486 */ 7487 mutex_lock(&child_ctx->mutex); 7488 7489 list_for_each_entry_rcu(child_event, &child_ctx->event_list, event_entry) 7490 __perf_event_exit_task(child_event, child_ctx, child); 7491 7492 mutex_unlock(&child_ctx->mutex); 7493 7494 put_ctx(child_ctx); 7495 } 7496 7497 /* 7498 * When a child task exits, feed back event values to parent events. 7499 */ 7500 void perf_event_exit_task(struct task_struct *child) 7501 { 7502 struct perf_event *event, *tmp; 7503 int ctxn; 7504 7505 mutex_lock(&child->perf_event_mutex); 7506 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 7507 owner_entry) { 7508 list_del_init(&event->owner_entry); 7509 7510 /* 7511 * Ensure the list deletion is visible before we clear 7512 * the owner, closes a race against perf_release() where 7513 * we need to serialize on the owner->perf_event_mutex. 7514 */ 7515 smp_wmb(); 7516 event->owner = NULL; 7517 } 7518 mutex_unlock(&child->perf_event_mutex); 7519 7520 for_each_task_context_nr(ctxn) 7521 perf_event_exit_task_context(child, ctxn); 7522 } 7523 7524 static void perf_free_event(struct perf_event *event, 7525 struct perf_event_context *ctx) 7526 { 7527 struct perf_event *parent = event->parent; 7528 7529 if (WARN_ON_ONCE(!parent)) 7530 return; 7531 7532 mutex_lock(&parent->child_mutex); 7533 list_del_init(&event->child_list); 7534 mutex_unlock(&parent->child_mutex); 7535 7536 put_event(parent); 7537 7538 perf_group_detach(event); 7539 list_del_event(event, ctx); 7540 free_event(event); 7541 } 7542 7543 /* 7544 * free an unexposed, unused context as created by inheritance by 7545 * perf_event_init_task below, used by fork() in case of fail. 7546 */ 7547 void perf_event_free_task(struct task_struct *task) 7548 { 7549 struct perf_event_context *ctx; 7550 struct perf_event *event, *tmp; 7551 int ctxn; 7552 7553 for_each_task_context_nr(ctxn) { 7554 ctx = task->perf_event_ctxp[ctxn]; 7555 if (!ctx) 7556 continue; 7557 7558 mutex_lock(&ctx->mutex); 7559 again: 7560 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, 7561 group_entry) 7562 perf_free_event(event, ctx); 7563 7564 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, 7565 group_entry) 7566 perf_free_event(event, ctx); 7567 7568 if (!list_empty(&ctx->pinned_groups) || 7569 !list_empty(&ctx->flexible_groups)) 7570 goto again; 7571 7572 mutex_unlock(&ctx->mutex); 7573 7574 put_ctx(ctx); 7575 } 7576 } 7577 7578 void perf_event_delayed_put(struct task_struct *task) 7579 { 7580 int ctxn; 7581 7582 for_each_task_context_nr(ctxn) 7583 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); 7584 } 7585 7586 /* 7587 * inherit a event from parent task to child task: 7588 */ 7589 static struct perf_event * 7590 inherit_event(struct perf_event *parent_event, 7591 struct task_struct *parent, 7592 struct perf_event_context *parent_ctx, 7593 struct task_struct *child, 7594 struct perf_event *group_leader, 7595 struct perf_event_context *child_ctx) 7596 { 7597 struct perf_event *child_event; 7598 unsigned long flags; 7599 7600 /* 7601 * Instead of creating recursive hierarchies of events, 7602 * we link inherited events back to the original parent, 7603 * which has a filp for sure, which we use as the reference 7604 * count: 7605 */ 7606 if (parent_event->parent) 7607 parent_event = parent_event->parent; 7608 7609 child_event = perf_event_alloc(&parent_event->attr, 7610 parent_event->cpu, 7611 child, 7612 group_leader, parent_event, 7613 NULL, NULL); 7614 if (IS_ERR(child_event)) 7615 return child_event; 7616 7617 if (!atomic_long_inc_not_zero(&parent_event->refcount)) { 7618 free_event(child_event); 7619 return NULL; 7620 } 7621 7622 get_ctx(child_ctx); 7623 7624 /* 7625 * Make the child state follow the state of the parent event, 7626 * not its attr.disabled bit. We hold the parent's mutex, 7627 * so we won't race with perf_event_{en, dis}able_family. 7628 */ 7629 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE) 7630 child_event->state = PERF_EVENT_STATE_INACTIVE; 7631 else 7632 child_event->state = PERF_EVENT_STATE_OFF; 7633 7634 if (parent_event->attr.freq) { 7635 u64 sample_period = parent_event->hw.sample_period; 7636 struct hw_perf_event *hwc = &child_event->hw; 7637 7638 hwc->sample_period = sample_period; 7639 hwc->last_period = sample_period; 7640 7641 local64_set(&hwc->period_left, sample_period); 7642 } 7643 7644 child_event->ctx = child_ctx; 7645 child_event->overflow_handler = parent_event->overflow_handler; 7646 child_event->overflow_handler_context 7647 = parent_event->overflow_handler_context; 7648 7649 /* 7650 * Precalculate sample_data sizes 7651 */ 7652 perf_event__header_size(child_event); 7653 perf_event__id_header_size(child_event); 7654 7655 /* 7656 * Link it up in the child's context: 7657 */ 7658 raw_spin_lock_irqsave(&child_ctx->lock, flags); 7659 add_event_to_ctx(child_event, child_ctx); 7660 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 7661 7662 /* 7663 * Link this into the parent event's child list 7664 */ 7665 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 7666 mutex_lock(&parent_event->child_mutex); 7667 list_add_tail(&child_event->child_list, &parent_event->child_list); 7668 mutex_unlock(&parent_event->child_mutex); 7669 7670 return child_event; 7671 } 7672 7673 static int inherit_group(struct perf_event *parent_event, 7674 struct task_struct *parent, 7675 struct perf_event_context *parent_ctx, 7676 struct task_struct *child, 7677 struct perf_event_context *child_ctx) 7678 { 7679 struct perf_event *leader; 7680 struct perf_event *sub; 7681 struct perf_event *child_ctr; 7682 7683 leader = inherit_event(parent_event, parent, parent_ctx, 7684 child, NULL, child_ctx); 7685 if (IS_ERR(leader)) 7686 return PTR_ERR(leader); 7687 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) { 7688 child_ctr = inherit_event(sub, parent, parent_ctx, 7689 child, leader, child_ctx); 7690 if (IS_ERR(child_ctr)) 7691 return PTR_ERR(child_ctr); 7692 } 7693 return 0; 7694 } 7695 7696 static int 7697 inherit_task_group(struct perf_event *event, struct task_struct *parent, 7698 struct perf_event_context *parent_ctx, 7699 struct task_struct *child, int ctxn, 7700 int *inherited_all) 7701 { 7702 int ret; 7703 struct perf_event_context *child_ctx; 7704 7705 if (!event->attr.inherit) { 7706 *inherited_all = 0; 7707 return 0; 7708 } 7709 7710 child_ctx = child->perf_event_ctxp[ctxn]; 7711 if (!child_ctx) { 7712 /* 7713 * This is executed from the parent task context, so 7714 * inherit events that have been marked for cloning. 7715 * First allocate and initialize a context for the 7716 * child. 7717 */ 7718 7719 child_ctx = alloc_perf_context(parent_ctx->pmu, child); 7720 if (!child_ctx) 7721 return -ENOMEM; 7722 7723 child->perf_event_ctxp[ctxn] = child_ctx; 7724 } 7725 7726 ret = inherit_group(event, parent, parent_ctx, 7727 child, child_ctx); 7728 7729 if (ret) 7730 *inherited_all = 0; 7731 7732 return ret; 7733 } 7734 7735 /* 7736 * Initialize the perf_event context in task_struct 7737 */ 7738 int perf_event_init_context(struct task_struct *child, int ctxn) 7739 { 7740 struct perf_event_context *child_ctx, *parent_ctx; 7741 struct perf_event_context *cloned_ctx; 7742 struct perf_event *event; 7743 struct task_struct *parent = current; 7744 int inherited_all = 1; 7745 unsigned long flags; 7746 int ret = 0; 7747 7748 if (likely(!parent->perf_event_ctxp[ctxn])) 7749 return 0; 7750 7751 /* 7752 * If the parent's context is a clone, pin it so it won't get 7753 * swapped under us. 7754 */ 7755 parent_ctx = perf_pin_task_context(parent, ctxn); 7756 if (!parent_ctx) 7757 return 0; 7758 7759 /* 7760 * No need to check if parent_ctx != NULL here; since we saw 7761 * it non-NULL earlier, the only reason for it to become NULL 7762 * is if we exit, and since we're currently in the middle of 7763 * a fork we can't be exiting at the same time. 7764 */ 7765 7766 /* 7767 * Lock the parent list. No need to lock the child - not PID 7768 * hashed yet and not running, so nobody can access it. 7769 */ 7770 mutex_lock(&parent_ctx->mutex); 7771 7772 /* 7773 * We dont have to disable NMIs - we are only looking at 7774 * the list, not manipulating it: 7775 */ 7776 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) { 7777 ret = inherit_task_group(event, parent, parent_ctx, 7778 child, ctxn, &inherited_all); 7779 if (ret) 7780 break; 7781 } 7782 7783 /* 7784 * We can't hold ctx->lock when iterating the ->flexible_group list due 7785 * to allocations, but we need to prevent rotation because 7786 * rotate_ctx() will change the list from interrupt context. 7787 */ 7788 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 7789 parent_ctx->rotate_disable = 1; 7790 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 7791 7792 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) { 7793 ret = inherit_task_group(event, parent, parent_ctx, 7794 child, ctxn, &inherited_all); 7795 if (ret) 7796 break; 7797 } 7798 7799 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 7800 parent_ctx->rotate_disable = 0; 7801 7802 child_ctx = child->perf_event_ctxp[ctxn]; 7803 7804 if (child_ctx && inherited_all) { 7805 /* 7806 * Mark the child context as a clone of the parent 7807 * context, or of whatever the parent is a clone of. 7808 * 7809 * Note that if the parent is a clone, the holding of 7810 * parent_ctx->lock avoids it from being uncloned. 7811 */ 7812 cloned_ctx = parent_ctx->parent_ctx; 7813 if (cloned_ctx) { 7814 child_ctx->parent_ctx = cloned_ctx; 7815 child_ctx->parent_gen = parent_ctx->parent_gen; 7816 } else { 7817 child_ctx->parent_ctx = parent_ctx; 7818 child_ctx->parent_gen = parent_ctx->generation; 7819 } 7820 get_ctx(child_ctx->parent_ctx); 7821 } 7822 7823 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 7824 mutex_unlock(&parent_ctx->mutex); 7825 7826 perf_unpin_context(parent_ctx); 7827 put_ctx(parent_ctx); 7828 7829 return ret; 7830 } 7831 7832 /* 7833 * Initialize the perf_event context in task_struct 7834 */ 7835 int perf_event_init_task(struct task_struct *child) 7836 { 7837 int ctxn, ret; 7838 7839 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); 7840 mutex_init(&child->perf_event_mutex); 7841 INIT_LIST_HEAD(&child->perf_event_list); 7842 7843 for_each_task_context_nr(ctxn) { 7844 ret = perf_event_init_context(child, ctxn); 7845 if (ret) 7846 return ret; 7847 } 7848 7849 return 0; 7850 } 7851 7852 static void __init perf_event_init_all_cpus(void) 7853 { 7854 struct swevent_htable *swhash; 7855 int cpu; 7856 7857 for_each_possible_cpu(cpu) { 7858 swhash = &per_cpu(swevent_htable, cpu); 7859 mutex_init(&swhash->hlist_mutex); 7860 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu)); 7861 } 7862 } 7863 7864 static void perf_event_init_cpu(int cpu) 7865 { 7866 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 7867 7868 mutex_lock(&swhash->hlist_mutex); 7869 swhash->online = true; 7870 if (swhash->hlist_refcount > 0) { 7871 struct swevent_hlist *hlist; 7872 7873 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 7874 WARN_ON(!hlist); 7875 rcu_assign_pointer(swhash->swevent_hlist, hlist); 7876 } 7877 mutex_unlock(&swhash->hlist_mutex); 7878 } 7879 7880 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC 7881 static void perf_pmu_rotate_stop(struct pmu *pmu) 7882 { 7883 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 7884 7885 WARN_ON(!irqs_disabled()); 7886 7887 list_del_init(&cpuctx->rotation_list); 7888 } 7889 7890 static void __perf_event_exit_context(void *__info) 7891 { 7892 struct remove_event re = { .detach_group = false }; 7893 struct perf_event_context *ctx = __info; 7894 7895 perf_pmu_rotate_stop(ctx->pmu); 7896 7897 rcu_read_lock(); 7898 list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry) 7899 __perf_remove_from_context(&re); 7900 rcu_read_unlock(); 7901 } 7902 7903 static void perf_event_exit_cpu_context(int cpu) 7904 { 7905 struct perf_event_context *ctx; 7906 struct pmu *pmu; 7907 int idx; 7908 7909 idx = srcu_read_lock(&pmus_srcu); 7910 list_for_each_entry_rcu(pmu, &pmus, entry) { 7911 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx; 7912 7913 mutex_lock(&ctx->mutex); 7914 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 7915 mutex_unlock(&ctx->mutex); 7916 } 7917 srcu_read_unlock(&pmus_srcu, idx); 7918 } 7919 7920 static void perf_event_exit_cpu(int cpu) 7921 { 7922 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 7923 7924 perf_event_exit_cpu_context(cpu); 7925 7926 mutex_lock(&swhash->hlist_mutex); 7927 swhash->online = false; 7928 swevent_hlist_release(swhash); 7929 mutex_unlock(&swhash->hlist_mutex); 7930 } 7931 #else 7932 static inline void perf_event_exit_cpu(int cpu) { } 7933 #endif 7934 7935 static int 7936 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 7937 { 7938 int cpu; 7939 7940 for_each_online_cpu(cpu) 7941 perf_event_exit_cpu(cpu); 7942 7943 return NOTIFY_OK; 7944 } 7945 7946 /* 7947 * Run the perf reboot notifier at the very last possible moment so that 7948 * the generic watchdog code runs as long as possible. 7949 */ 7950 static struct notifier_block perf_reboot_notifier = { 7951 .notifier_call = perf_reboot, 7952 .priority = INT_MIN, 7953 }; 7954 7955 static int 7956 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu) 7957 { 7958 unsigned int cpu = (long)hcpu; 7959 7960 switch (action & ~CPU_TASKS_FROZEN) { 7961 7962 case CPU_UP_PREPARE: 7963 case CPU_DOWN_FAILED: 7964 perf_event_init_cpu(cpu); 7965 break; 7966 7967 case CPU_UP_CANCELED: 7968 case CPU_DOWN_PREPARE: 7969 perf_event_exit_cpu(cpu); 7970 break; 7971 default: 7972 break; 7973 } 7974 7975 return NOTIFY_OK; 7976 } 7977 7978 void __init perf_event_init(void) 7979 { 7980 int ret; 7981 7982 idr_init(&pmu_idr); 7983 7984 perf_event_init_all_cpus(); 7985 init_srcu_struct(&pmus_srcu); 7986 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 7987 perf_pmu_register(&perf_cpu_clock, NULL, -1); 7988 perf_pmu_register(&perf_task_clock, NULL, -1); 7989 perf_tp_register(); 7990 perf_cpu_notifier(perf_cpu_notify); 7991 register_reboot_notifier(&perf_reboot_notifier); 7992 7993 ret = init_hw_breakpoint(); 7994 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 7995 7996 /* do not patch jump label more than once per second */ 7997 jump_label_rate_limit(&perf_sched_events, HZ); 7998 7999 /* 8000 * Build time assertion that we keep the data_head at the intended 8001 * location. IOW, validation we got the __reserved[] size right. 8002 */ 8003 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 8004 != 1024); 8005 } 8006 8007 static int __init perf_event_sysfs_init(void) 8008 { 8009 struct pmu *pmu; 8010 int ret; 8011 8012 mutex_lock(&pmus_lock); 8013 8014 ret = bus_register(&pmu_bus); 8015 if (ret) 8016 goto unlock; 8017 8018 list_for_each_entry(pmu, &pmus, entry) { 8019 if (!pmu->name || pmu->type < 0) 8020 continue; 8021 8022 ret = pmu_dev_alloc(pmu); 8023 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 8024 } 8025 pmu_bus_running = 1; 8026 ret = 0; 8027 8028 unlock: 8029 mutex_unlock(&pmus_lock); 8030 8031 return ret; 8032 } 8033 device_initcall(perf_event_sysfs_init); 8034 8035 #ifdef CONFIG_CGROUP_PERF 8036 static struct cgroup_subsys_state * 8037 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 8038 { 8039 struct perf_cgroup *jc; 8040 8041 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 8042 if (!jc) 8043 return ERR_PTR(-ENOMEM); 8044 8045 jc->info = alloc_percpu(struct perf_cgroup_info); 8046 if (!jc->info) { 8047 kfree(jc); 8048 return ERR_PTR(-ENOMEM); 8049 } 8050 8051 return &jc->css; 8052 } 8053 8054 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 8055 { 8056 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 8057 8058 free_percpu(jc->info); 8059 kfree(jc); 8060 } 8061 8062 static int __perf_cgroup_move(void *info) 8063 { 8064 struct task_struct *task = info; 8065 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN); 8066 return 0; 8067 } 8068 8069 static void perf_cgroup_attach(struct cgroup_subsys_state *css, 8070 struct cgroup_taskset *tset) 8071 { 8072 struct task_struct *task; 8073 8074 cgroup_taskset_for_each(task, tset) 8075 task_function_call(task, __perf_cgroup_move, task); 8076 } 8077 8078 static void perf_cgroup_exit(struct cgroup_subsys_state *css, 8079 struct cgroup_subsys_state *old_css, 8080 struct task_struct *task) 8081 { 8082 /* 8083 * cgroup_exit() is called in the copy_process() failure path. 8084 * Ignore this case since the task hasn't ran yet, this avoids 8085 * trying to poke a half freed task state from generic code. 8086 */ 8087 if (!(task->flags & PF_EXITING)) 8088 return; 8089 8090 task_function_call(task, __perf_cgroup_move, task); 8091 } 8092 8093 struct cgroup_subsys perf_event_cgrp_subsys = { 8094 .css_alloc = perf_cgroup_css_alloc, 8095 .css_free = perf_cgroup_css_free, 8096 .exit = perf_cgroup_exit, 8097 .attach = perf_cgroup_attach, 8098 }; 8099 #endif /* CONFIG_CGROUP_PERF */ 8100