1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Performance events core code: 4 * 5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 9 */ 10 11 #include <linux/fs.h> 12 #include <linux/mm.h> 13 #include <linux/cpu.h> 14 #include <linux/smp.h> 15 #include <linux/idr.h> 16 #include <linux/file.h> 17 #include <linux/poll.h> 18 #include <linux/slab.h> 19 #include <linux/hash.h> 20 #include <linux/tick.h> 21 #include <linux/sysfs.h> 22 #include <linux/dcache.h> 23 #include <linux/percpu.h> 24 #include <linux/ptrace.h> 25 #include <linux/reboot.h> 26 #include <linux/vmstat.h> 27 #include <linux/device.h> 28 #include <linux/export.h> 29 #include <linux/vmalloc.h> 30 #include <linux/hardirq.h> 31 #include <linux/hugetlb.h> 32 #include <linux/rculist.h> 33 #include <linux/uaccess.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/cgroup.h> 38 #include <linux/perf_event.h> 39 #include <linux/trace_events.h> 40 #include <linux/hw_breakpoint.h> 41 #include <linux/mm_types.h> 42 #include <linux/module.h> 43 #include <linux/mman.h> 44 #include <linux/compat.h> 45 #include <linux/bpf.h> 46 #include <linux/filter.h> 47 #include <linux/namei.h> 48 #include <linux/parser.h> 49 #include <linux/sched/clock.h> 50 #include <linux/sched/mm.h> 51 #include <linux/proc_ns.h> 52 #include <linux/mount.h> 53 #include <linux/min_heap.h> 54 #include <linux/highmem.h> 55 #include <linux/pgtable.h> 56 57 #include "internal.h" 58 59 #include <asm/irq_regs.h> 60 61 typedef int (*remote_function_f)(void *); 62 63 struct remote_function_call { 64 struct task_struct *p; 65 remote_function_f func; 66 void *info; 67 int ret; 68 }; 69 70 static void remote_function(void *data) 71 { 72 struct remote_function_call *tfc = data; 73 struct task_struct *p = tfc->p; 74 75 if (p) { 76 /* -EAGAIN */ 77 if (task_cpu(p) != smp_processor_id()) 78 return; 79 80 /* 81 * Now that we're on right CPU with IRQs disabled, we can test 82 * if we hit the right task without races. 83 */ 84 85 tfc->ret = -ESRCH; /* No such (running) process */ 86 if (p != current) 87 return; 88 } 89 90 tfc->ret = tfc->func(tfc->info); 91 } 92 93 /** 94 * task_function_call - call a function on the cpu on which a task runs 95 * @p: the task to evaluate 96 * @func: the function to be called 97 * @info: the function call argument 98 * 99 * Calls the function @func when the task is currently running. This might 100 * be on the current CPU, which just calls the function directly. This will 101 * retry due to any failures in smp_call_function_single(), such as if the 102 * task_cpu() goes offline concurrently. 103 * 104 * returns @func return value or -ESRCH or -ENXIO when the process isn't running 105 */ 106 static int 107 task_function_call(struct task_struct *p, remote_function_f func, void *info) 108 { 109 struct remote_function_call data = { 110 .p = p, 111 .func = func, 112 .info = info, 113 .ret = -EAGAIN, 114 }; 115 int ret; 116 117 for (;;) { 118 ret = smp_call_function_single(task_cpu(p), remote_function, 119 &data, 1); 120 if (!ret) 121 ret = data.ret; 122 123 if (ret != -EAGAIN) 124 break; 125 126 cond_resched(); 127 } 128 129 return ret; 130 } 131 132 /** 133 * cpu_function_call - call a function on the cpu 134 * @func: the function to be called 135 * @info: the function call argument 136 * 137 * Calls the function @func on the remote cpu. 138 * 139 * returns: @func return value or -ENXIO when the cpu is offline 140 */ 141 static int cpu_function_call(int cpu, remote_function_f func, void *info) 142 { 143 struct remote_function_call data = { 144 .p = NULL, 145 .func = func, 146 .info = info, 147 .ret = -ENXIO, /* No such CPU */ 148 }; 149 150 smp_call_function_single(cpu, remote_function, &data, 1); 151 152 return data.ret; 153 } 154 155 static inline struct perf_cpu_context * 156 __get_cpu_context(struct perf_event_context *ctx) 157 { 158 return this_cpu_ptr(ctx->pmu->pmu_cpu_context); 159 } 160 161 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 162 struct perf_event_context *ctx) 163 { 164 raw_spin_lock(&cpuctx->ctx.lock); 165 if (ctx) 166 raw_spin_lock(&ctx->lock); 167 } 168 169 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 170 struct perf_event_context *ctx) 171 { 172 if (ctx) 173 raw_spin_unlock(&ctx->lock); 174 raw_spin_unlock(&cpuctx->ctx.lock); 175 } 176 177 #define TASK_TOMBSTONE ((void *)-1L) 178 179 static bool is_kernel_event(struct perf_event *event) 180 { 181 return READ_ONCE(event->owner) == TASK_TOMBSTONE; 182 } 183 184 /* 185 * On task ctx scheduling... 186 * 187 * When !ctx->nr_events a task context will not be scheduled. This means 188 * we can disable the scheduler hooks (for performance) without leaving 189 * pending task ctx state. 190 * 191 * This however results in two special cases: 192 * 193 * - removing the last event from a task ctx; this is relatively straight 194 * forward and is done in __perf_remove_from_context. 195 * 196 * - adding the first event to a task ctx; this is tricky because we cannot 197 * rely on ctx->is_active and therefore cannot use event_function_call(). 198 * See perf_install_in_context(). 199 * 200 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set. 201 */ 202 203 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *, 204 struct perf_event_context *, void *); 205 206 struct event_function_struct { 207 struct perf_event *event; 208 event_f func; 209 void *data; 210 }; 211 212 static int event_function(void *info) 213 { 214 struct event_function_struct *efs = info; 215 struct perf_event *event = efs->event; 216 struct perf_event_context *ctx = event->ctx; 217 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 218 struct perf_event_context *task_ctx = cpuctx->task_ctx; 219 int ret = 0; 220 221 lockdep_assert_irqs_disabled(); 222 223 perf_ctx_lock(cpuctx, task_ctx); 224 /* 225 * Since we do the IPI call without holding ctx->lock things can have 226 * changed, double check we hit the task we set out to hit. 227 */ 228 if (ctx->task) { 229 if (ctx->task != current) { 230 ret = -ESRCH; 231 goto unlock; 232 } 233 234 /* 235 * We only use event_function_call() on established contexts, 236 * and event_function() is only ever called when active (or 237 * rather, we'll have bailed in task_function_call() or the 238 * above ctx->task != current test), therefore we must have 239 * ctx->is_active here. 240 */ 241 WARN_ON_ONCE(!ctx->is_active); 242 /* 243 * And since we have ctx->is_active, cpuctx->task_ctx must 244 * match. 245 */ 246 WARN_ON_ONCE(task_ctx != ctx); 247 } else { 248 WARN_ON_ONCE(&cpuctx->ctx != ctx); 249 } 250 251 efs->func(event, cpuctx, ctx, efs->data); 252 unlock: 253 perf_ctx_unlock(cpuctx, task_ctx); 254 255 return ret; 256 } 257 258 static void event_function_call(struct perf_event *event, event_f func, void *data) 259 { 260 struct perf_event_context *ctx = event->ctx; 261 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */ 262 struct event_function_struct efs = { 263 .event = event, 264 .func = func, 265 .data = data, 266 }; 267 268 if (!event->parent) { 269 /* 270 * If this is a !child event, we must hold ctx::mutex to 271 * stabilize the the event->ctx relation. See 272 * perf_event_ctx_lock(). 273 */ 274 lockdep_assert_held(&ctx->mutex); 275 } 276 277 if (!task) { 278 cpu_function_call(event->cpu, event_function, &efs); 279 return; 280 } 281 282 if (task == TASK_TOMBSTONE) 283 return; 284 285 again: 286 if (!task_function_call(task, event_function, &efs)) 287 return; 288 289 raw_spin_lock_irq(&ctx->lock); 290 /* 291 * Reload the task pointer, it might have been changed by 292 * a concurrent perf_event_context_sched_out(). 293 */ 294 task = ctx->task; 295 if (task == TASK_TOMBSTONE) { 296 raw_spin_unlock_irq(&ctx->lock); 297 return; 298 } 299 if (ctx->is_active) { 300 raw_spin_unlock_irq(&ctx->lock); 301 goto again; 302 } 303 func(event, NULL, ctx, data); 304 raw_spin_unlock_irq(&ctx->lock); 305 } 306 307 /* 308 * Similar to event_function_call() + event_function(), but hard assumes IRQs 309 * are already disabled and we're on the right CPU. 310 */ 311 static void event_function_local(struct perf_event *event, event_f func, void *data) 312 { 313 struct perf_event_context *ctx = event->ctx; 314 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 315 struct task_struct *task = READ_ONCE(ctx->task); 316 struct perf_event_context *task_ctx = NULL; 317 318 lockdep_assert_irqs_disabled(); 319 320 if (task) { 321 if (task == TASK_TOMBSTONE) 322 return; 323 324 task_ctx = ctx; 325 } 326 327 perf_ctx_lock(cpuctx, task_ctx); 328 329 task = ctx->task; 330 if (task == TASK_TOMBSTONE) 331 goto unlock; 332 333 if (task) { 334 /* 335 * We must be either inactive or active and the right task, 336 * otherwise we're screwed, since we cannot IPI to somewhere 337 * else. 338 */ 339 if (ctx->is_active) { 340 if (WARN_ON_ONCE(task != current)) 341 goto unlock; 342 343 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx)) 344 goto unlock; 345 } 346 } else { 347 WARN_ON_ONCE(&cpuctx->ctx != ctx); 348 } 349 350 func(event, cpuctx, ctx, data); 351 unlock: 352 perf_ctx_unlock(cpuctx, task_ctx); 353 } 354 355 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 356 PERF_FLAG_FD_OUTPUT |\ 357 PERF_FLAG_PID_CGROUP |\ 358 PERF_FLAG_FD_CLOEXEC) 359 360 /* 361 * branch priv levels that need permission checks 362 */ 363 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 364 (PERF_SAMPLE_BRANCH_KERNEL |\ 365 PERF_SAMPLE_BRANCH_HV) 366 367 enum event_type_t { 368 EVENT_FLEXIBLE = 0x1, 369 EVENT_PINNED = 0x2, 370 EVENT_TIME = 0x4, 371 /* see ctx_resched() for details */ 372 EVENT_CPU = 0x8, 373 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 374 }; 375 376 /* 377 * perf_sched_events : >0 events exist 378 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu 379 */ 380 381 static void perf_sched_delayed(struct work_struct *work); 382 DEFINE_STATIC_KEY_FALSE(perf_sched_events); 383 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed); 384 static DEFINE_MUTEX(perf_sched_mutex); 385 static atomic_t perf_sched_count; 386 387 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); 388 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events); 389 390 static atomic_t nr_mmap_events __read_mostly; 391 static atomic_t nr_comm_events __read_mostly; 392 static atomic_t nr_namespaces_events __read_mostly; 393 static atomic_t nr_task_events __read_mostly; 394 static atomic_t nr_freq_events __read_mostly; 395 static atomic_t nr_switch_events __read_mostly; 396 static atomic_t nr_ksymbol_events __read_mostly; 397 static atomic_t nr_bpf_events __read_mostly; 398 static atomic_t nr_cgroup_events __read_mostly; 399 static atomic_t nr_text_poke_events __read_mostly; 400 401 static LIST_HEAD(pmus); 402 static DEFINE_MUTEX(pmus_lock); 403 static struct srcu_struct pmus_srcu; 404 static cpumask_var_t perf_online_mask; 405 406 /* 407 * perf event paranoia level: 408 * -1 - not paranoid at all 409 * 0 - disallow raw tracepoint access for unpriv 410 * 1 - disallow cpu events for unpriv 411 * 2 - disallow kernel profiling for unpriv 412 */ 413 int sysctl_perf_event_paranoid __read_mostly = 2; 414 415 /* Minimum for 512 kiB + 1 user control page */ 416 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 417 418 /* 419 * max perf event sample rate 420 */ 421 #define DEFAULT_MAX_SAMPLE_RATE 100000 422 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 423 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 424 425 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 426 427 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 428 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 429 430 static int perf_sample_allowed_ns __read_mostly = 431 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 432 433 static void update_perf_cpu_limits(void) 434 { 435 u64 tmp = perf_sample_period_ns; 436 437 tmp *= sysctl_perf_cpu_time_max_percent; 438 tmp = div_u64(tmp, 100); 439 if (!tmp) 440 tmp = 1; 441 442 WRITE_ONCE(perf_sample_allowed_ns, tmp); 443 } 444 445 static bool perf_rotate_context(struct perf_cpu_context *cpuctx); 446 447 int perf_proc_update_handler(struct ctl_table *table, int write, 448 void *buffer, size_t *lenp, loff_t *ppos) 449 { 450 int ret; 451 int perf_cpu = sysctl_perf_cpu_time_max_percent; 452 /* 453 * If throttling is disabled don't allow the write: 454 */ 455 if (write && (perf_cpu == 100 || perf_cpu == 0)) 456 return -EINVAL; 457 458 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 459 if (ret || !write) 460 return ret; 461 462 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 463 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 464 update_perf_cpu_limits(); 465 466 return 0; 467 } 468 469 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 470 471 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 472 void *buffer, size_t *lenp, loff_t *ppos) 473 { 474 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 475 476 if (ret || !write) 477 return ret; 478 479 if (sysctl_perf_cpu_time_max_percent == 100 || 480 sysctl_perf_cpu_time_max_percent == 0) { 481 printk(KERN_WARNING 482 "perf: Dynamic interrupt throttling disabled, can hang your system!\n"); 483 WRITE_ONCE(perf_sample_allowed_ns, 0); 484 } else { 485 update_perf_cpu_limits(); 486 } 487 488 return 0; 489 } 490 491 /* 492 * perf samples are done in some very critical code paths (NMIs). 493 * If they take too much CPU time, the system can lock up and not 494 * get any real work done. This will drop the sample rate when 495 * we detect that events are taking too long. 496 */ 497 #define NR_ACCUMULATED_SAMPLES 128 498 static DEFINE_PER_CPU(u64, running_sample_length); 499 500 static u64 __report_avg; 501 static u64 __report_allowed; 502 503 static void perf_duration_warn(struct irq_work *w) 504 { 505 printk_ratelimited(KERN_INFO 506 "perf: interrupt took too long (%lld > %lld), lowering " 507 "kernel.perf_event_max_sample_rate to %d\n", 508 __report_avg, __report_allowed, 509 sysctl_perf_event_sample_rate); 510 } 511 512 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 513 514 void perf_sample_event_took(u64 sample_len_ns) 515 { 516 u64 max_len = READ_ONCE(perf_sample_allowed_ns); 517 u64 running_len; 518 u64 avg_len; 519 u32 max; 520 521 if (max_len == 0) 522 return; 523 524 /* Decay the counter by 1 average sample. */ 525 running_len = __this_cpu_read(running_sample_length); 526 running_len -= running_len/NR_ACCUMULATED_SAMPLES; 527 running_len += sample_len_ns; 528 __this_cpu_write(running_sample_length, running_len); 529 530 /* 531 * Note: this will be biased artifically low until we have 532 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 533 * from having to maintain a count. 534 */ 535 avg_len = running_len/NR_ACCUMULATED_SAMPLES; 536 if (avg_len <= max_len) 537 return; 538 539 __report_avg = avg_len; 540 __report_allowed = max_len; 541 542 /* 543 * Compute a throttle threshold 25% below the current duration. 544 */ 545 avg_len += avg_len / 4; 546 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent; 547 if (avg_len < max) 548 max /= (u32)avg_len; 549 else 550 max = 1; 551 552 WRITE_ONCE(perf_sample_allowed_ns, avg_len); 553 WRITE_ONCE(max_samples_per_tick, max); 554 555 sysctl_perf_event_sample_rate = max * HZ; 556 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 557 558 if (!irq_work_queue(&perf_duration_work)) { 559 early_printk("perf: interrupt took too long (%lld > %lld), lowering " 560 "kernel.perf_event_max_sample_rate to %d\n", 561 __report_avg, __report_allowed, 562 sysctl_perf_event_sample_rate); 563 } 564 } 565 566 static atomic64_t perf_event_id; 567 568 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 569 enum event_type_t event_type); 570 571 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 572 enum event_type_t event_type, 573 struct task_struct *task); 574 575 static void update_context_time(struct perf_event_context *ctx); 576 static u64 perf_event_time(struct perf_event *event); 577 578 void __weak perf_event_print_debug(void) { } 579 580 extern __weak const char *perf_pmu_name(void) 581 { 582 return "pmu"; 583 } 584 585 static inline u64 perf_clock(void) 586 { 587 return local_clock(); 588 } 589 590 static inline u64 perf_event_clock(struct perf_event *event) 591 { 592 return event->clock(); 593 } 594 595 /* 596 * State based event timekeeping... 597 * 598 * The basic idea is to use event->state to determine which (if any) time 599 * fields to increment with the current delta. This means we only need to 600 * update timestamps when we change state or when they are explicitly requested 601 * (read). 602 * 603 * Event groups make things a little more complicated, but not terribly so. The 604 * rules for a group are that if the group leader is OFF the entire group is 605 * OFF, irrespecive of what the group member states are. This results in 606 * __perf_effective_state(). 607 * 608 * A futher ramification is that when a group leader flips between OFF and 609 * !OFF, we need to update all group member times. 610 * 611 * 612 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we 613 * need to make sure the relevant context time is updated before we try and 614 * update our timestamps. 615 */ 616 617 static __always_inline enum perf_event_state 618 __perf_effective_state(struct perf_event *event) 619 { 620 struct perf_event *leader = event->group_leader; 621 622 if (leader->state <= PERF_EVENT_STATE_OFF) 623 return leader->state; 624 625 return event->state; 626 } 627 628 static __always_inline void 629 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running) 630 { 631 enum perf_event_state state = __perf_effective_state(event); 632 u64 delta = now - event->tstamp; 633 634 *enabled = event->total_time_enabled; 635 if (state >= PERF_EVENT_STATE_INACTIVE) 636 *enabled += delta; 637 638 *running = event->total_time_running; 639 if (state >= PERF_EVENT_STATE_ACTIVE) 640 *running += delta; 641 } 642 643 static void perf_event_update_time(struct perf_event *event) 644 { 645 u64 now = perf_event_time(event); 646 647 __perf_update_times(event, now, &event->total_time_enabled, 648 &event->total_time_running); 649 event->tstamp = now; 650 } 651 652 static void perf_event_update_sibling_time(struct perf_event *leader) 653 { 654 struct perf_event *sibling; 655 656 for_each_sibling_event(sibling, leader) 657 perf_event_update_time(sibling); 658 } 659 660 static void 661 perf_event_set_state(struct perf_event *event, enum perf_event_state state) 662 { 663 if (event->state == state) 664 return; 665 666 perf_event_update_time(event); 667 /* 668 * If a group leader gets enabled/disabled all its siblings 669 * are affected too. 670 */ 671 if ((event->state < 0) ^ (state < 0)) 672 perf_event_update_sibling_time(event); 673 674 WRITE_ONCE(event->state, state); 675 } 676 677 #ifdef CONFIG_CGROUP_PERF 678 679 static inline bool 680 perf_cgroup_match(struct perf_event *event) 681 { 682 struct perf_event_context *ctx = event->ctx; 683 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 684 685 /* @event doesn't care about cgroup */ 686 if (!event->cgrp) 687 return true; 688 689 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 690 if (!cpuctx->cgrp) 691 return false; 692 693 /* 694 * Cgroup scoping is recursive. An event enabled for a cgroup is 695 * also enabled for all its descendant cgroups. If @cpuctx's 696 * cgroup is a descendant of @event's (the test covers identity 697 * case), it's a match. 698 */ 699 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 700 event->cgrp->css.cgroup); 701 } 702 703 static inline void perf_detach_cgroup(struct perf_event *event) 704 { 705 css_put(&event->cgrp->css); 706 event->cgrp = NULL; 707 } 708 709 static inline int is_cgroup_event(struct perf_event *event) 710 { 711 return event->cgrp != NULL; 712 } 713 714 static inline u64 perf_cgroup_event_time(struct perf_event *event) 715 { 716 struct perf_cgroup_info *t; 717 718 t = per_cpu_ptr(event->cgrp->info, event->cpu); 719 return t->time; 720 } 721 722 static inline void __update_cgrp_time(struct perf_cgroup *cgrp) 723 { 724 struct perf_cgroup_info *info; 725 u64 now; 726 727 now = perf_clock(); 728 729 info = this_cpu_ptr(cgrp->info); 730 731 info->time += now - info->timestamp; 732 info->timestamp = now; 733 } 734 735 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 736 { 737 struct perf_cgroup *cgrp = cpuctx->cgrp; 738 struct cgroup_subsys_state *css; 739 740 if (cgrp) { 741 for (css = &cgrp->css; css; css = css->parent) { 742 cgrp = container_of(css, struct perf_cgroup, css); 743 __update_cgrp_time(cgrp); 744 } 745 } 746 } 747 748 static inline void update_cgrp_time_from_event(struct perf_event *event) 749 { 750 struct perf_cgroup *cgrp; 751 752 /* 753 * ensure we access cgroup data only when needed and 754 * when we know the cgroup is pinned (css_get) 755 */ 756 if (!is_cgroup_event(event)) 757 return; 758 759 cgrp = perf_cgroup_from_task(current, event->ctx); 760 /* 761 * Do not update time when cgroup is not active 762 */ 763 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup)) 764 __update_cgrp_time(event->cgrp); 765 } 766 767 static inline void 768 perf_cgroup_set_timestamp(struct task_struct *task, 769 struct perf_event_context *ctx) 770 { 771 struct perf_cgroup *cgrp; 772 struct perf_cgroup_info *info; 773 struct cgroup_subsys_state *css; 774 775 /* 776 * ctx->lock held by caller 777 * ensure we do not access cgroup data 778 * unless we have the cgroup pinned (css_get) 779 */ 780 if (!task || !ctx->nr_cgroups) 781 return; 782 783 cgrp = perf_cgroup_from_task(task, ctx); 784 785 for (css = &cgrp->css; css; css = css->parent) { 786 cgrp = container_of(css, struct perf_cgroup, css); 787 info = this_cpu_ptr(cgrp->info); 788 info->timestamp = ctx->timestamp; 789 } 790 } 791 792 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list); 793 794 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */ 795 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */ 796 797 /* 798 * reschedule events based on the cgroup constraint of task. 799 * 800 * mode SWOUT : schedule out everything 801 * mode SWIN : schedule in based on cgroup for next 802 */ 803 static void perf_cgroup_switch(struct task_struct *task, int mode) 804 { 805 struct perf_cpu_context *cpuctx; 806 struct list_head *list; 807 unsigned long flags; 808 809 /* 810 * Disable interrupts and preemption to avoid this CPU's 811 * cgrp_cpuctx_entry to change under us. 812 */ 813 local_irq_save(flags); 814 815 list = this_cpu_ptr(&cgrp_cpuctx_list); 816 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) { 817 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0); 818 819 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 820 perf_pmu_disable(cpuctx->ctx.pmu); 821 822 if (mode & PERF_CGROUP_SWOUT) { 823 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 824 /* 825 * must not be done before ctxswout due 826 * to event_filter_match() in event_sched_out() 827 */ 828 cpuctx->cgrp = NULL; 829 } 830 831 if (mode & PERF_CGROUP_SWIN) { 832 WARN_ON_ONCE(cpuctx->cgrp); 833 /* 834 * set cgrp before ctxsw in to allow 835 * event_filter_match() to not have to pass 836 * task around 837 * we pass the cpuctx->ctx to perf_cgroup_from_task() 838 * because cgorup events are only per-cpu 839 */ 840 cpuctx->cgrp = perf_cgroup_from_task(task, 841 &cpuctx->ctx); 842 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task); 843 } 844 perf_pmu_enable(cpuctx->ctx.pmu); 845 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 846 } 847 848 local_irq_restore(flags); 849 } 850 851 static inline void perf_cgroup_sched_out(struct task_struct *task, 852 struct task_struct *next) 853 { 854 struct perf_cgroup *cgrp1; 855 struct perf_cgroup *cgrp2 = NULL; 856 857 rcu_read_lock(); 858 /* 859 * we come here when we know perf_cgroup_events > 0 860 * we do not need to pass the ctx here because we know 861 * we are holding the rcu lock 862 */ 863 cgrp1 = perf_cgroup_from_task(task, NULL); 864 cgrp2 = perf_cgroup_from_task(next, NULL); 865 866 /* 867 * only schedule out current cgroup events if we know 868 * that we are switching to a different cgroup. Otherwise, 869 * do no touch the cgroup events. 870 */ 871 if (cgrp1 != cgrp2) 872 perf_cgroup_switch(task, PERF_CGROUP_SWOUT); 873 874 rcu_read_unlock(); 875 } 876 877 static inline void perf_cgroup_sched_in(struct task_struct *prev, 878 struct task_struct *task) 879 { 880 struct perf_cgroup *cgrp1; 881 struct perf_cgroup *cgrp2 = NULL; 882 883 rcu_read_lock(); 884 /* 885 * we come here when we know perf_cgroup_events > 0 886 * we do not need to pass the ctx here because we know 887 * we are holding the rcu lock 888 */ 889 cgrp1 = perf_cgroup_from_task(task, NULL); 890 cgrp2 = perf_cgroup_from_task(prev, NULL); 891 892 /* 893 * only need to schedule in cgroup events if we are changing 894 * cgroup during ctxsw. Cgroup events were not scheduled 895 * out of ctxsw out if that was not the case. 896 */ 897 if (cgrp1 != cgrp2) 898 perf_cgroup_switch(task, PERF_CGROUP_SWIN); 899 900 rcu_read_unlock(); 901 } 902 903 static int perf_cgroup_ensure_storage(struct perf_event *event, 904 struct cgroup_subsys_state *css) 905 { 906 struct perf_cpu_context *cpuctx; 907 struct perf_event **storage; 908 int cpu, heap_size, ret = 0; 909 910 /* 911 * Allow storage to have sufficent space for an iterator for each 912 * possibly nested cgroup plus an iterator for events with no cgroup. 913 */ 914 for (heap_size = 1; css; css = css->parent) 915 heap_size++; 916 917 for_each_possible_cpu(cpu) { 918 cpuctx = per_cpu_ptr(event->pmu->pmu_cpu_context, cpu); 919 if (heap_size <= cpuctx->heap_size) 920 continue; 921 922 storage = kmalloc_node(heap_size * sizeof(struct perf_event *), 923 GFP_KERNEL, cpu_to_node(cpu)); 924 if (!storage) { 925 ret = -ENOMEM; 926 break; 927 } 928 929 raw_spin_lock_irq(&cpuctx->ctx.lock); 930 if (cpuctx->heap_size < heap_size) { 931 swap(cpuctx->heap, storage); 932 if (storage == cpuctx->heap_default) 933 storage = NULL; 934 cpuctx->heap_size = heap_size; 935 } 936 raw_spin_unlock_irq(&cpuctx->ctx.lock); 937 938 kfree(storage); 939 } 940 941 return ret; 942 } 943 944 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 945 struct perf_event_attr *attr, 946 struct perf_event *group_leader) 947 { 948 struct perf_cgroup *cgrp; 949 struct cgroup_subsys_state *css; 950 struct fd f = fdget(fd); 951 int ret = 0; 952 953 if (!f.file) 954 return -EBADF; 955 956 css = css_tryget_online_from_dir(f.file->f_path.dentry, 957 &perf_event_cgrp_subsys); 958 if (IS_ERR(css)) { 959 ret = PTR_ERR(css); 960 goto out; 961 } 962 963 ret = perf_cgroup_ensure_storage(event, css); 964 if (ret) 965 goto out; 966 967 cgrp = container_of(css, struct perf_cgroup, css); 968 event->cgrp = cgrp; 969 970 /* 971 * all events in a group must monitor 972 * the same cgroup because a task belongs 973 * to only one perf cgroup at a time 974 */ 975 if (group_leader && group_leader->cgrp != cgrp) { 976 perf_detach_cgroup(event); 977 ret = -EINVAL; 978 } 979 out: 980 fdput(f); 981 return ret; 982 } 983 984 static inline void 985 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 986 { 987 struct perf_cgroup_info *t; 988 t = per_cpu_ptr(event->cgrp->info, event->cpu); 989 event->shadow_ctx_time = now - t->timestamp; 990 } 991 992 static inline void 993 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 994 { 995 struct perf_cpu_context *cpuctx; 996 997 if (!is_cgroup_event(event)) 998 return; 999 1000 /* 1001 * Because cgroup events are always per-cpu events, 1002 * @ctx == &cpuctx->ctx. 1003 */ 1004 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 1005 1006 /* 1007 * Since setting cpuctx->cgrp is conditional on the current @cgrp 1008 * matching the event's cgroup, we must do this for every new event, 1009 * because if the first would mismatch, the second would not try again 1010 * and we would leave cpuctx->cgrp unset. 1011 */ 1012 if (ctx->is_active && !cpuctx->cgrp) { 1013 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 1014 1015 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup)) 1016 cpuctx->cgrp = cgrp; 1017 } 1018 1019 if (ctx->nr_cgroups++) 1020 return; 1021 1022 list_add(&cpuctx->cgrp_cpuctx_entry, 1023 per_cpu_ptr(&cgrp_cpuctx_list, event->cpu)); 1024 } 1025 1026 static inline void 1027 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 1028 { 1029 struct perf_cpu_context *cpuctx; 1030 1031 if (!is_cgroup_event(event)) 1032 return; 1033 1034 /* 1035 * Because cgroup events are always per-cpu events, 1036 * @ctx == &cpuctx->ctx. 1037 */ 1038 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 1039 1040 if (--ctx->nr_cgroups) 1041 return; 1042 1043 if (ctx->is_active && cpuctx->cgrp) 1044 cpuctx->cgrp = NULL; 1045 1046 list_del(&cpuctx->cgrp_cpuctx_entry); 1047 } 1048 1049 #else /* !CONFIG_CGROUP_PERF */ 1050 1051 static inline bool 1052 perf_cgroup_match(struct perf_event *event) 1053 { 1054 return true; 1055 } 1056 1057 static inline void perf_detach_cgroup(struct perf_event *event) 1058 {} 1059 1060 static inline int is_cgroup_event(struct perf_event *event) 1061 { 1062 return 0; 1063 } 1064 1065 static inline void update_cgrp_time_from_event(struct perf_event *event) 1066 { 1067 } 1068 1069 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 1070 { 1071 } 1072 1073 static inline void perf_cgroup_sched_out(struct task_struct *task, 1074 struct task_struct *next) 1075 { 1076 } 1077 1078 static inline void perf_cgroup_sched_in(struct task_struct *prev, 1079 struct task_struct *task) 1080 { 1081 } 1082 1083 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 1084 struct perf_event_attr *attr, 1085 struct perf_event *group_leader) 1086 { 1087 return -EINVAL; 1088 } 1089 1090 static inline void 1091 perf_cgroup_set_timestamp(struct task_struct *task, 1092 struct perf_event_context *ctx) 1093 { 1094 } 1095 1096 static inline void 1097 perf_cgroup_switch(struct task_struct *task, struct task_struct *next) 1098 { 1099 } 1100 1101 static inline void 1102 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 1103 { 1104 } 1105 1106 static inline u64 perf_cgroup_event_time(struct perf_event *event) 1107 { 1108 return 0; 1109 } 1110 1111 static inline void 1112 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 1113 { 1114 } 1115 1116 static inline void 1117 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 1118 { 1119 } 1120 #endif 1121 1122 /* 1123 * set default to be dependent on timer tick just 1124 * like original code 1125 */ 1126 #define PERF_CPU_HRTIMER (1000 / HZ) 1127 /* 1128 * function must be called with interrupts disabled 1129 */ 1130 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) 1131 { 1132 struct perf_cpu_context *cpuctx; 1133 bool rotations; 1134 1135 lockdep_assert_irqs_disabled(); 1136 1137 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer); 1138 rotations = perf_rotate_context(cpuctx); 1139 1140 raw_spin_lock(&cpuctx->hrtimer_lock); 1141 if (rotations) 1142 hrtimer_forward_now(hr, cpuctx->hrtimer_interval); 1143 else 1144 cpuctx->hrtimer_active = 0; 1145 raw_spin_unlock(&cpuctx->hrtimer_lock); 1146 1147 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; 1148 } 1149 1150 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu) 1151 { 1152 struct hrtimer *timer = &cpuctx->hrtimer; 1153 struct pmu *pmu = cpuctx->ctx.pmu; 1154 u64 interval; 1155 1156 /* no multiplexing needed for SW PMU */ 1157 if (pmu->task_ctx_nr == perf_sw_context) 1158 return; 1159 1160 /* 1161 * check default is sane, if not set then force to 1162 * default interval (1/tick) 1163 */ 1164 interval = pmu->hrtimer_interval_ms; 1165 if (interval < 1) 1166 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 1167 1168 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 1169 1170 raw_spin_lock_init(&cpuctx->hrtimer_lock); 1171 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD); 1172 timer->function = perf_mux_hrtimer_handler; 1173 } 1174 1175 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx) 1176 { 1177 struct hrtimer *timer = &cpuctx->hrtimer; 1178 struct pmu *pmu = cpuctx->ctx.pmu; 1179 unsigned long flags; 1180 1181 /* not for SW PMU */ 1182 if (pmu->task_ctx_nr == perf_sw_context) 1183 return 0; 1184 1185 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags); 1186 if (!cpuctx->hrtimer_active) { 1187 cpuctx->hrtimer_active = 1; 1188 hrtimer_forward_now(timer, cpuctx->hrtimer_interval); 1189 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD); 1190 } 1191 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags); 1192 1193 return 0; 1194 } 1195 1196 void perf_pmu_disable(struct pmu *pmu) 1197 { 1198 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1199 if (!(*count)++) 1200 pmu->pmu_disable(pmu); 1201 } 1202 1203 void perf_pmu_enable(struct pmu *pmu) 1204 { 1205 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1206 if (!--(*count)) 1207 pmu->pmu_enable(pmu); 1208 } 1209 1210 static DEFINE_PER_CPU(struct list_head, active_ctx_list); 1211 1212 /* 1213 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and 1214 * perf_event_task_tick() are fully serialized because they're strictly cpu 1215 * affine and perf_event_ctx{activate,deactivate} are called with IRQs 1216 * disabled, while perf_event_task_tick is called from IRQ context. 1217 */ 1218 static void perf_event_ctx_activate(struct perf_event_context *ctx) 1219 { 1220 struct list_head *head = this_cpu_ptr(&active_ctx_list); 1221 1222 lockdep_assert_irqs_disabled(); 1223 1224 WARN_ON(!list_empty(&ctx->active_ctx_list)); 1225 1226 list_add(&ctx->active_ctx_list, head); 1227 } 1228 1229 static void perf_event_ctx_deactivate(struct perf_event_context *ctx) 1230 { 1231 lockdep_assert_irqs_disabled(); 1232 1233 WARN_ON(list_empty(&ctx->active_ctx_list)); 1234 1235 list_del_init(&ctx->active_ctx_list); 1236 } 1237 1238 static void get_ctx(struct perf_event_context *ctx) 1239 { 1240 refcount_inc(&ctx->refcount); 1241 } 1242 1243 static void *alloc_task_ctx_data(struct pmu *pmu) 1244 { 1245 if (pmu->task_ctx_cache) 1246 return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL); 1247 1248 return NULL; 1249 } 1250 1251 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data) 1252 { 1253 if (pmu->task_ctx_cache && task_ctx_data) 1254 kmem_cache_free(pmu->task_ctx_cache, task_ctx_data); 1255 } 1256 1257 static void free_ctx(struct rcu_head *head) 1258 { 1259 struct perf_event_context *ctx; 1260 1261 ctx = container_of(head, struct perf_event_context, rcu_head); 1262 free_task_ctx_data(ctx->pmu, ctx->task_ctx_data); 1263 kfree(ctx); 1264 } 1265 1266 static void put_ctx(struct perf_event_context *ctx) 1267 { 1268 if (refcount_dec_and_test(&ctx->refcount)) { 1269 if (ctx->parent_ctx) 1270 put_ctx(ctx->parent_ctx); 1271 if (ctx->task && ctx->task != TASK_TOMBSTONE) 1272 put_task_struct(ctx->task); 1273 call_rcu(&ctx->rcu_head, free_ctx); 1274 } 1275 } 1276 1277 /* 1278 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 1279 * perf_pmu_migrate_context() we need some magic. 1280 * 1281 * Those places that change perf_event::ctx will hold both 1282 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 1283 * 1284 * Lock ordering is by mutex address. There are two other sites where 1285 * perf_event_context::mutex nests and those are: 1286 * 1287 * - perf_event_exit_task_context() [ child , 0 ] 1288 * perf_event_exit_event() 1289 * put_event() [ parent, 1 ] 1290 * 1291 * - perf_event_init_context() [ parent, 0 ] 1292 * inherit_task_group() 1293 * inherit_group() 1294 * inherit_event() 1295 * perf_event_alloc() 1296 * perf_init_event() 1297 * perf_try_init_event() [ child , 1 ] 1298 * 1299 * While it appears there is an obvious deadlock here -- the parent and child 1300 * nesting levels are inverted between the two. This is in fact safe because 1301 * life-time rules separate them. That is an exiting task cannot fork, and a 1302 * spawning task cannot (yet) exit. 1303 * 1304 * But remember that that these are parent<->child context relations, and 1305 * migration does not affect children, therefore these two orderings should not 1306 * interact. 1307 * 1308 * The change in perf_event::ctx does not affect children (as claimed above) 1309 * because the sys_perf_event_open() case will install a new event and break 1310 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 1311 * concerned with cpuctx and that doesn't have children. 1312 * 1313 * The places that change perf_event::ctx will issue: 1314 * 1315 * perf_remove_from_context(); 1316 * synchronize_rcu(); 1317 * perf_install_in_context(); 1318 * 1319 * to affect the change. The remove_from_context() + synchronize_rcu() should 1320 * quiesce the event, after which we can install it in the new location. This 1321 * means that only external vectors (perf_fops, prctl) can perturb the event 1322 * while in transit. Therefore all such accessors should also acquire 1323 * perf_event_context::mutex to serialize against this. 1324 * 1325 * However; because event->ctx can change while we're waiting to acquire 1326 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 1327 * function. 1328 * 1329 * Lock order: 1330 * exec_update_lock 1331 * task_struct::perf_event_mutex 1332 * perf_event_context::mutex 1333 * perf_event::child_mutex; 1334 * perf_event_context::lock 1335 * perf_event::mmap_mutex 1336 * mmap_lock 1337 * perf_addr_filters_head::lock 1338 * 1339 * cpu_hotplug_lock 1340 * pmus_lock 1341 * cpuctx->mutex / perf_event_context::mutex 1342 */ 1343 static struct perf_event_context * 1344 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 1345 { 1346 struct perf_event_context *ctx; 1347 1348 again: 1349 rcu_read_lock(); 1350 ctx = READ_ONCE(event->ctx); 1351 if (!refcount_inc_not_zero(&ctx->refcount)) { 1352 rcu_read_unlock(); 1353 goto again; 1354 } 1355 rcu_read_unlock(); 1356 1357 mutex_lock_nested(&ctx->mutex, nesting); 1358 if (event->ctx != ctx) { 1359 mutex_unlock(&ctx->mutex); 1360 put_ctx(ctx); 1361 goto again; 1362 } 1363 1364 return ctx; 1365 } 1366 1367 static inline struct perf_event_context * 1368 perf_event_ctx_lock(struct perf_event *event) 1369 { 1370 return perf_event_ctx_lock_nested(event, 0); 1371 } 1372 1373 static void perf_event_ctx_unlock(struct perf_event *event, 1374 struct perf_event_context *ctx) 1375 { 1376 mutex_unlock(&ctx->mutex); 1377 put_ctx(ctx); 1378 } 1379 1380 /* 1381 * This must be done under the ctx->lock, such as to serialize against 1382 * context_equiv(), therefore we cannot call put_ctx() since that might end up 1383 * calling scheduler related locks and ctx->lock nests inside those. 1384 */ 1385 static __must_check struct perf_event_context * 1386 unclone_ctx(struct perf_event_context *ctx) 1387 { 1388 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1389 1390 lockdep_assert_held(&ctx->lock); 1391 1392 if (parent_ctx) 1393 ctx->parent_ctx = NULL; 1394 ctx->generation++; 1395 1396 return parent_ctx; 1397 } 1398 1399 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p, 1400 enum pid_type type) 1401 { 1402 u32 nr; 1403 /* 1404 * only top level events have the pid namespace they were created in 1405 */ 1406 if (event->parent) 1407 event = event->parent; 1408 1409 nr = __task_pid_nr_ns(p, type, event->ns); 1410 /* avoid -1 if it is idle thread or runs in another ns */ 1411 if (!nr && !pid_alive(p)) 1412 nr = -1; 1413 return nr; 1414 } 1415 1416 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1417 { 1418 return perf_event_pid_type(event, p, PIDTYPE_TGID); 1419 } 1420 1421 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1422 { 1423 return perf_event_pid_type(event, p, PIDTYPE_PID); 1424 } 1425 1426 /* 1427 * If we inherit events we want to return the parent event id 1428 * to userspace. 1429 */ 1430 static u64 primary_event_id(struct perf_event *event) 1431 { 1432 u64 id = event->id; 1433 1434 if (event->parent) 1435 id = event->parent->id; 1436 1437 return id; 1438 } 1439 1440 /* 1441 * Get the perf_event_context for a task and lock it. 1442 * 1443 * This has to cope with with the fact that until it is locked, 1444 * the context could get moved to another task. 1445 */ 1446 static struct perf_event_context * 1447 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) 1448 { 1449 struct perf_event_context *ctx; 1450 1451 retry: 1452 /* 1453 * One of the few rules of preemptible RCU is that one cannot do 1454 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1455 * part of the read side critical section was irqs-enabled -- see 1456 * rcu_read_unlock_special(). 1457 * 1458 * Since ctx->lock nests under rq->lock we must ensure the entire read 1459 * side critical section has interrupts disabled. 1460 */ 1461 local_irq_save(*flags); 1462 rcu_read_lock(); 1463 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); 1464 if (ctx) { 1465 /* 1466 * If this context is a clone of another, it might 1467 * get swapped for another underneath us by 1468 * perf_event_task_sched_out, though the 1469 * rcu_read_lock() protects us from any context 1470 * getting freed. Lock the context and check if it 1471 * got swapped before we could get the lock, and retry 1472 * if so. If we locked the right context, then it 1473 * can't get swapped on us any more. 1474 */ 1475 raw_spin_lock(&ctx->lock); 1476 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { 1477 raw_spin_unlock(&ctx->lock); 1478 rcu_read_unlock(); 1479 local_irq_restore(*flags); 1480 goto retry; 1481 } 1482 1483 if (ctx->task == TASK_TOMBSTONE || 1484 !refcount_inc_not_zero(&ctx->refcount)) { 1485 raw_spin_unlock(&ctx->lock); 1486 ctx = NULL; 1487 } else { 1488 WARN_ON_ONCE(ctx->task != task); 1489 } 1490 } 1491 rcu_read_unlock(); 1492 if (!ctx) 1493 local_irq_restore(*flags); 1494 return ctx; 1495 } 1496 1497 /* 1498 * Get the context for a task and increment its pin_count so it 1499 * can't get swapped to another task. This also increments its 1500 * reference count so that the context can't get freed. 1501 */ 1502 static struct perf_event_context * 1503 perf_pin_task_context(struct task_struct *task, int ctxn) 1504 { 1505 struct perf_event_context *ctx; 1506 unsigned long flags; 1507 1508 ctx = perf_lock_task_context(task, ctxn, &flags); 1509 if (ctx) { 1510 ++ctx->pin_count; 1511 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1512 } 1513 return ctx; 1514 } 1515 1516 static void perf_unpin_context(struct perf_event_context *ctx) 1517 { 1518 unsigned long flags; 1519 1520 raw_spin_lock_irqsave(&ctx->lock, flags); 1521 --ctx->pin_count; 1522 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1523 } 1524 1525 /* 1526 * Update the record of the current time in a context. 1527 */ 1528 static void update_context_time(struct perf_event_context *ctx) 1529 { 1530 u64 now = perf_clock(); 1531 1532 ctx->time += now - ctx->timestamp; 1533 ctx->timestamp = now; 1534 } 1535 1536 static u64 perf_event_time(struct perf_event *event) 1537 { 1538 struct perf_event_context *ctx = event->ctx; 1539 1540 if (is_cgroup_event(event)) 1541 return perf_cgroup_event_time(event); 1542 1543 return ctx ? ctx->time : 0; 1544 } 1545 1546 static enum event_type_t get_event_type(struct perf_event *event) 1547 { 1548 struct perf_event_context *ctx = event->ctx; 1549 enum event_type_t event_type; 1550 1551 lockdep_assert_held(&ctx->lock); 1552 1553 /* 1554 * It's 'group type', really, because if our group leader is 1555 * pinned, so are we. 1556 */ 1557 if (event->group_leader != event) 1558 event = event->group_leader; 1559 1560 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE; 1561 if (!ctx->task) 1562 event_type |= EVENT_CPU; 1563 1564 return event_type; 1565 } 1566 1567 /* 1568 * Helper function to initialize event group nodes. 1569 */ 1570 static void init_event_group(struct perf_event *event) 1571 { 1572 RB_CLEAR_NODE(&event->group_node); 1573 event->group_index = 0; 1574 } 1575 1576 /* 1577 * Extract pinned or flexible groups from the context 1578 * based on event attrs bits. 1579 */ 1580 static struct perf_event_groups * 1581 get_event_groups(struct perf_event *event, struct perf_event_context *ctx) 1582 { 1583 if (event->attr.pinned) 1584 return &ctx->pinned_groups; 1585 else 1586 return &ctx->flexible_groups; 1587 } 1588 1589 /* 1590 * Helper function to initializes perf_event_group trees. 1591 */ 1592 static void perf_event_groups_init(struct perf_event_groups *groups) 1593 { 1594 groups->tree = RB_ROOT; 1595 groups->index = 0; 1596 } 1597 1598 /* 1599 * Compare function for event groups; 1600 * 1601 * Implements complex key that first sorts by CPU and then by virtual index 1602 * which provides ordering when rotating groups for the same CPU. 1603 */ 1604 static bool 1605 perf_event_groups_less(struct perf_event *left, struct perf_event *right) 1606 { 1607 if (left->cpu < right->cpu) 1608 return true; 1609 if (left->cpu > right->cpu) 1610 return false; 1611 1612 #ifdef CONFIG_CGROUP_PERF 1613 if (left->cgrp != right->cgrp) { 1614 if (!left->cgrp || !left->cgrp->css.cgroup) { 1615 /* 1616 * Left has no cgroup but right does, no cgroups come 1617 * first. 1618 */ 1619 return true; 1620 } 1621 if (!right->cgrp || !right->cgrp->css.cgroup) { 1622 /* 1623 * Right has no cgroup but left does, no cgroups come 1624 * first. 1625 */ 1626 return false; 1627 } 1628 /* Two dissimilar cgroups, order by id. */ 1629 if (left->cgrp->css.cgroup->kn->id < right->cgrp->css.cgroup->kn->id) 1630 return true; 1631 1632 return false; 1633 } 1634 #endif 1635 1636 if (left->group_index < right->group_index) 1637 return true; 1638 if (left->group_index > right->group_index) 1639 return false; 1640 1641 return false; 1642 } 1643 1644 /* 1645 * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for 1646 * key (see perf_event_groups_less). This places it last inside the CPU 1647 * subtree. 1648 */ 1649 static void 1650 perf_event_groups_insert(struct perf_event_groups *groups, 1651 struct perf_event *event) 1652 { 1653 struct perf_event *node_event; 1654 struct rb_node *parent; 1655 struct rb_node **node; 1656 1657 event->group_index = ++groups->index; 1658 1659 node = &groups->tree.rb_node; 1660 parent = *node; 1661 1662 while (*node) { 1663 parent = *node; 1664 node_event = container_of(*node, struct perf_event, group_node); 1665 1666 if (perf_event_groups_less(event, node_event)) 1667 node = &parent->rb_left; 1668 else 1669 node = &parent->rb_right; 1670 } 1671 1672 rb_link_node(&event->group_node, parent, node); 1673 rb_insert_color(&event->group_node, &groups->tree); 1674 } 1675 1676 /* 1677 * Helper function to insert event into the pinned or flexible groups. 1678 */ 1679 static void 1680 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx) 1681 { 1682 struct perf_event_groups *groups; 1683 1684 groups = get_event_groups(event, ctx); 1685 perf_event_groups_insert(groups, event); 1686 } 1687 1688 /* 1689 * Delete a group from a tree. 1690 */ 1691 static void 1692 perf_event_groups_delete(struct perf_event_groups *groups, 1693 struct perf_event *event) 1694 { 1695 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) || 1696 RB_EMPTY_ROOT(&groups->tree)); 1697 1698 rb_erase(&event->group_node, &groups->tree); 1699 init_event_group(event); 1700 } 1701 1702 /* 1703 * Helper function to delete event from its groups. 1704 */ 1705 static void 1706 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx) 1707 { 1708 struct perf_event_groups *groups; 1709 1710 groups = get_event_groups(event, ctx); 1711 perf_event_groups_delete(groups, event); 1712 } 1713 1714 /* 1715 * Get the leftmost event in the cpu/cgroup subtree. 1716 */ 1717 static struct perf_event * 1718 perf_event_groups_first(struct perf_event_groups *groups, int cpu, 1719 struct cgroup *cgrp) 1720 { 1721 struct perf_event *node_event = NULL, *match = NULL; 1722 struct rb_node *node = groups->tree.rb_node; 1723 #ifdef CONFIG_CGROUP_PERF 1724 u64 node_cgrp_id, cgrp_id = 0; 1725 1726 if (cgrp) 1727 cgrp_id = cgrp->kn->id; 1728 #endif 1729 1730 while (node) { 1731 node_event = container_of(node, struct perf_event, group_node); 1732 1733 if (cpu < node_event->cpu) { 1734 node = node->rb_left; 1735 continue; 1736 } 1737 if (cpu > node_event->cpu) { 1738 node = node->rb_right; 1739 continue; 1740 } 1741 #ifdef CONFIG_CGROUP_PERF 1742 node_cgrp_id = 0; 1743 if (node_event->cgrp && node_event->cgrp->css.cgroup) 1744 node_cgrp_id = node_event->cgrp->css.cgroup->kn->id; 1745 1746 if (cgrp_id < node_cgrp_id) { 1747 node = node->rb_left; 1748 continue; 1749 } 1750 if (cgrp_id > node_cgrp_id) { 1751 node = node->rb_right; 1752 continue; 1753 } 1754 #endif 1755 match = node_event; 1756 node = node->rb_left; 1757 } 1758 1759 return match; 1760 } 1761 1762 /* 1763 * Like rb_entry_next_safe() for the @cpu subtree. 1764 */ 1765 static struct perf_event * 1766 perf_event_groups_next(struct perf_event *event) 1767 { 1768 struct perf_event *next; 1769 #ifdef CONFIG_CGROUP_PERF 1770 u64 curr_cgrp_id = 0; 1771 u64 next_cgrp_id = 0; 1772 #endif 1773 1774 next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node); 1775 if (next == NULL || next->cpu != event->cpu) 1776 return NULL; 1777 1778 #ifdef CONFIG_CGROUP_PERF 1779 if (event->cgrp && event->cgrp->css.cgroup) 1780 curr_cgrp_id = event->cgrp->css.cgroup->kn->id; 1781 1782 if (next->cgrp && next->cgrp->css.cgroup) 1783 next_cgrp_id = next->cgrp->css.cgroup->kn->id; 1784 1785 if (curr_cgrp_id != next_cgrp_id) 1786 return NULL; 1787 #endif 1788 return next; 1789 } 1790 1791 /* 1792 * Iterate through the whole groups tree. 1793 */ 1794 #define perf_event_groups_for_each(event, groups) \ 1795 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \ 1796 typeof(*event), group_node); event; \ 1797 event = rb_entry_safe(rb_next(&event->group_node), \ 1798 typeof(*event), group_node)) 1799 1800 /* 1801 * Add an event from the lists for its context. 1802 * Must be called with ctx->mutex and ctx->lock held. 1803 */ 1804 static void 1805 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1806 { 1807 lockdep_assert_held(&ctx->lock); 1808 1809 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1810 event->attach_state |= PERF_ATTACH_CONTEXT; 1811 1812 event->tstamp = perf_event_time(event); 1813 1814 /* 1815 * If we're a stand alone event or group leader, we go to the context 1816 * list, group events are kept attached to the group so that 1817 * perf_group_detach can, at all times, locate all siblings. 1818 */ 1819 if (event->group_leader == event) { 1820 event->group_caps = event->event_caps; 1821 add_event_to_groups(event, ctx); 1822 } 1823 1824 list_add_rcu(&event->event_entry, &ctx->event_list); 1825 ctx->nr_events++; 1826 if (event->attr.inherit_stat) 1827 ctx->nr_stat++; 1828 1829 if (event->state > PERF_EVENT_STATE_OFF) 1830 perf_cgroup_event_enable(event, ctx); 1831 1832 ctx->generation++; 1833 } 1834 1835 /* 1836 * Initialize event state based on the perf_event_attr::disabled. 1837 */ 1838 static inline void perf_event__state_init(struct perf_event *event) 1839 { 1840 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1841 PERF_EVENT_STATE_INACTIVE; 1842 } 1843 1844 static void __perf_event_read_size(struct perf_event *event, int nr_siblings) 1845 { 1846 int entry = sizeof(u64); /* value */ 1847 int size = 0; 1848 int nr = 1; 1849 1850 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1851 size += sizeof(u64); 1852 1853 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1854 size += sizeof(u64); 1855 1856 if (event->attr.read_format & PERF_FORMAT_ID) 1857 entry += sizeof(u64); 1858 1859 if (event->attr.read_format & PERF_FORMAT_GROUP) { 1860 nr += nr_siblings; 1861 size += sizeof(u64); 1862 } 1863 1864 size += entry * nr; 1865 event->read_size = size; 1866 } 1867 1868 static void __perf_event_header_size(struct perf_event *event, u64 sample_type) 1869 { 1870 struct perf_sample_data *data; 1871 u16 size = 0; 1872 1873 if (sample_type & PERF_SAMPLE_IP) 1874 size += sizeof(data->ip); 1875 1876 if (sample_type & PERF_SAMPLE_ADDR) 1877 size += sizeof(data->addr); 1878 1879 if (sample_type & PERF_SAMPLE_PERIOD) 1880 size += sizeof(data->period); 1881 1882 if (sample_type & PERF_SAMPLE_WEIGHT) 1883 size += sizeof(data->weight); 1884 1885 if (sample_type & PERF_SAMPLE_READ) 1886 size += event->read_size; 1887 1888 if (sample_type & PERF_SAMPLE_DATA_SRC) 1889 size += sizeof(data->data_src.val); 1890 1891 if (sample_type & PERF_SAMPLE_TRANSACTION) 1892 size += sizeof(data->txn); 1893 1894 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 1895 size += sizeof(data->phys_addr); 1896 1897 if (sample_type & PERF_SAMPLE_CGROUP) 1898 size += sizeof(data->cgroup); 1899 1900 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 1901 size += sizeof(data->data_page_size); 1902 1903 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 1904 size += sizeof(data->code_page_size); 1905 1906 event->header_size = size; 1907 } 1908 1909 /* 1910 * Called at perf_event creation and when events are attached/detached from a 1911 * group. 1912 */ 1913 static void perf_event__header_size(struct perf_event *event) 1914 { 1915 __perf_event_read_size(event, 1916 event->group_leader->nr_siblings); 1917 __perf_event_header_size(event, event->attr.sample_type); 1918 } 1919 1920 static void perf_event__id_header_size(struct perf_event *event) 1921 { 1922 struct perf_sample_data *data; 1923 u64 sample_type = event->attr.sample_type; 1924 u16 size = 0; 1925 1926 if (sample_type & PERF_SAMPLE_TID) 1927 size += sizeof(data->tid_entry); 1928 1929 if (sample_type & PERF_SAMPLE_TIME) 1930 size += sizeof(data->time); 1931 1932 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1933 size += sizeof(data->id); 1934 1935 if (sample_type & PERF_SAMPLE_ID) 1936 size += sizeof(data->id); 1937 1938 if (sample_type & PERF_SAMPLE_STREAM_ID) 1939 size += sizeof(data->stream_id); 1940 1941 if (sample_type & PERF_SAMPLE_CPU) 1942 size += sizeof(data->cpu_entry); 1943 1944 event->id_header_size = size; 1945 } 1946 1947 static bool perf_event_validate_size(struct perf_event *event) 1948 { 1949 /* 1950 * The values computed here will be over-written when we actually 1951 * attach the event. 1952 */ 1953 __perf_event_read_size(event, event->group_leader->nr_siblings + 1); 1954 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ); 1955 perf_event__id_header_size(event); 1956 1957 /* 1958 * Sum the lot; should not exceed the 64k limit we have on records. 1959 * Conservative limit to allow for callchains and other variable fields. 1960 */ 1961 if (event->read_size + event->header_size + 1962 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024) 1963 return false; 1964 1965 return true; 1966 } 1967 1968 static void perf_group_attach(struct perf_event *event) 1969 { 1970 struct perf_event *group_leader = event->group_leader, *pos; 1971 1972 lockdep_assert_held(&event->ctx->lock); 1973 1974 /* 1975 * We can have double attach due to group movement in perf_event_open. 1976 */ 1977 if (event->attach_state & PERF_ATTACH_GROUP) 1978 return; 1979 1980 event->attach_state |= PERF_ATTACH_GROUP; 1981 1982 if (group_leader == event) 1983 return; 1984 1985 WARN_ON_ONCE(group_leader->ctx != event->ctx); 1986 1987 group_leader->group_caps &= event->event_caps; 1988 1989 list_add_tail(&event->sibling_list, &group_leader->sibling_list); 1990 group_leader->nr_siblings++; 1991 1992 perf_event__header_size(group_leader); 1993 1994 for_each_sibling_event(pos, group_leader) 1995 perf_event__header_size(pos); 1996 } 1997 1998 /* 1999 * Remove an event from the lists for its context. 2000 * Must be called with ctx->mutex and ctx->lock held. 2001 */ 2002 static void 2003 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 2004 { 2005 WARN_ON_ONCE(event->ctx != ctx); 2006 lockdep_assert_held(&ctx->lock); 2007 2008 /* 2009 * We can have double detach due to exit/hot-unplug + close. 2010 */ 2011 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 2012 return; 2013 2014 event->attach_state &= ~PERF_ATTACH_CONTEXT; 2015 2016 ctx->nr_events--; 2017 if (event->attr.inherit_stat) 2018 ctx->nr_stat--; 2019 2020 list_del_rcu(&event->event_entry); 2021 2022 if (event->group_leader == event) 2023 del_event_from_groups(event, ctx); 2024 2025 /* 2026 * If event was in error state, then keep it 2027 * that way, otherwise bogus counts will be 2028 * returned on read(). The only way to get out 2029 * of error state is by explicit re-enabling 2030 * of the event 2031 */ 2032 if (event->state > PERF_EVENT_STATE_OFF) { 2033 perf_cgroup_event_disable(event, ctx); 2034 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2035 } 2036 2037 ctx->generation++; 2038 } 2039 2040 static int 2041 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event) 2042 { 2043 if (!has_aux(aux_event)) 2044 return 0; 2045 2046 if (!event->pmu->aux_output_match) 2047 return 0; 2048 2049 return event->pmu->aux_output_match(aux_event); 2050 } 2051 2052 static void put_event(struct perf_event *event); 2053 static void event_sched_out(struct perf_event *event, 2054 struct perf_cpu_context *cpuctx, 2055 struct perf_event_context *ctx); 2056 2057 static void perf_put_aux_event(struct perf_event *event) 2058 { 2059 struct perf_event_context *ctx = event->ctx; 2060 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2061 struct perf_event *iter; 2062 2063 /* 2064 * If event uses aux_event tear down the link 2065 */ 2066 if (event->aux_event) { 2067 iter = event->aux_event; 2068 event->aux_event = NULL; 2069 put_event(iter); 2070 return; 2071 } 2072 2073 /* 2074 * If the event is an aux_event, tear down all links to 2075 * it from other events. 2076 */ 2077 for_each_sibling_event(iter, event->group_leader) { 2078 if (iter->aux_event != event) 2079 continue; 2080 2081 iter->aux_event = NULL; 2082 put_event(event); 2083 2084 /* 2085 * If it's ACTIVE, schedule it out and put it into ERROR 2086 * state so that we don't try to schedule it again. Note 2087 * that perf_event_enable() will clear the ERROR status. 2088 */ 2089 event_sched_out(iter, cpuctx, ctx); 2090 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 2091 } 2092 } 2093 2094 static bool perf_need_aux_event(struct perf_event *event) 2095 { 2096 return !!event->attr.aux_output || !!event->attr.aux_sample_size; 2097 } 2098 2099 static int perf_get_aux_event(struct perf_event *event, 2100 struct perf_event *group_leader) 2101 { 2102 /* 2103 * Our group leader must be an aux event if we want to be 2104 * an aux_output. This way, the aux event will precede its 2105 * aux_output events in the group, and therefore will always 2106 * schedule first. 2107 */ 2108 if (!group_leader) 2109 return 0; 2110 2111 /* 2112 * aux_output and aux_sample_size are mutually exclusive. 2113 */ 2114 if (event->attr.aux_output && event->attr.aux_sample_size) 2115 return 0; 2116 2117 if (event->attr.aux_output && 2118 !perf_aux_output_match(event, group_leader)) 2119 return 0; 2120 2121 if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux) 2122 return 0; 2123 2124 if (!atomic_long_inc_not_zero(&group_leader->refcount)) 2125 return 0; 2126 2127 /* 2128 * Link aux_outputs to their aux event; this is undone in 2129 * perf_group_detach() by perf_put_aux_event(). When the 2130 * group in torn down, the aux_output events loose their 2131 * link to the aux_event and can't schedule any more. 2132 */ 2133 event->aux_event = group_leader; 2134 2135 return 1; 2136 } 2137 2138 static inline struct list_head *get_event_list(struct perf_event *event) 2139 { 2140 struct perf_event_context *ctx = event->ctx; 2141 return event->attr.pinned ? &ctx->pinned_active : &ctx->flexible_active; 2142 } 2143 2144 /* 2145 * Events that have PERF_EV_CAP_SIBLING require being part of a group and 2146 * cannot exist on their own, schedule them out and move them into the ERROR 2147 * state. Also see _perf_event_enable(), it will not be able to recover 2148 * this ERROR state. 2149 */ 2150 static inline void perf_remove_sibling_event(struct perf_event *event) 2151 { 2152 struct perf_event_context *ctx = event->ctx; 2153 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2154 2155 event_sched_out(event, cpuctx, ctx); 2156 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 2157 } 2158 2159 static void perf_group_detach(struct perf_event *event) 2160 { 2161 struct perf_event *leader = event->group_leader; 2162 struct perf_event *sibling, *tmp; 2163 struct perf_event_context *ctx = event->ctx; 2164 2165 lockdep_assert_held(&ctx->lock); 2166 2167 /* 2168 * We can have double detach due to exit/hot-unplug + close. 2169 */ 2170 if (!(event->attach_state & PERF_ATTACH_GROUP)) 2171 return; 2172 2173 event->attach_state &= ~PERF_ATTACH_GROUP; 2174 2175 perf_put_aux_event(event); 2176 2177 /* 2178 * If this is a sibling, remove it from its group. 2179 */ 2180 if (leader != event) { 2181 list_del_init(&event->sibling_list); 2182 event->group_leader->nr_siblings--; 2183 goto out; 2184 } 2185 2186 /* 2187 * If this was a group event with sibling events then 2188 * upgrade the siblings to singleton events by adding them 2189 * to whatever list we are on. 2190 */ 2191 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) { 2192 2193 if (sibling->event_caps & PERF_EV_CAP_SIBLING) 2194 perf_remove_sibling_event(sibling); 2195 2196 sibling->group_leader = sibling; 2197 list_del_init(&sibling->sibling_list); 2198 2199 /* Inherit group flags from the previous leader */ 2200 sibling->group_caps = event->group_caps; 2201 2202 if (!RB_EMPTY_NODE(&event->group_node)) { 2203 add_event_to_groups(sibling, event->ctx); 2204 2205 if (sibling->state == PERF_EVENT_STATE_ACTIVE) 2206 list_add_tail(&sibling->active_list, get_event_list(sibling)); 2207 } 2208 2209 WARN_ON_ONCE(sibling->ctx != event->ctx); 2210 } 2211 2212 out: 2213 for_each_sibling_event(tmp, leader) 2214 perf_event__header_size(tmp); 2215 2216 perf_event__header_size(leader); 2217 } 2218 2219 static bool is_orphaned_event(struct perf_event *event) 2220 { 2221 return event->state == PERF_EVENT_STATE_DEAD; 2222 } 2223 2224 static inline int __pmu_filter_match(struct perf_event *event) 2225 { 2226 struct pmu *pmu = event->pmu; 2227 return pmu->filter_match ? pmu->filter_match(event) : 1; 2228 } 2229 2230 /* 2231 * Check whether we should attempt to schedule an event group based on 2232 * PMU-specific filtering. An event group can consist of HW and SW events, 2233 * potentially with a SW leader, so we must check all the filters, to 2234 * determine whether a group is schedulable: 2235 */ 2236 static inline int pmu_filter_match(struct perf_event *event) 2237 { 2238 struct perf_event *sibling; 2239 2240 if (!__pmu_filter_match(event)) 2241 return 0; 2242 2243 for_each_sibling_event(sibling, event) { 2244 if (!__pmu_filter_match(sibling)) 2245 return 0; 2246 } 2247 2248 return 1; 2249 } 2250 2251 static inline int 2252 event_filter_match(struct perf_event *event) 2253 { 2254 return (event->cpu == -1 || event->cpu == smp_processor_id()) && 2255 perf_cgroup_match(event) && pmu_filter_match(event); 2256 } 2257 2258 static void 2259 event_sched_out(struct perf_event *event, 2260 struct perf_cpu_context *cpuctx, 2261 struct perf_event_context *ctx) 2262 { 2263 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE; 2264 2265 WARN_ON_ONCE(event->ctx != ctx); 2266 lockdep_assert_held(&ctx->lock); 2267 2268 if (event->state != PERF_EVENT_STATE_ACTIVE) 2269 return; 2270 2271 /* 2272 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but 2273 * we can schedule events _OUT_ individually through things like 2274 * __perf_remove_from_context(). 2275 */ 2276 list_del_init(&event->active_list); 2277 2278 perf_pmu_disable(event->pmu); 2279 2280 event->pmu->del(event, 0); 2281 event->oncpu = -1; 2282 2283 if (READ_ONCE(event->pending_disable) >= 0) { 2284 WRITE_ONCE(event->pending_disable, -1); 2285 perf_cgroup_event_disable(event, ctx); 2286 state = PERF_EVENT_STATE_OFF; 2287 } 2288 perf_event_set_state(event, state); 2289 2290 if (!is_software_event(event)) 2291 cpuctx->active_oncpu--; 2292 if (!--ctx->nr_active) 2293 perf_event_ctx_deactivate(ctx); 2294 if (event->attr.freq && event->attr.sample_freq) 2295 ctx->nr_freq--; 2296 if (event->attr.exclusive || !cpuctx->active_oncpu) 2297 cpuctx->exclusive = 0; 2298 2299 perf_pmu_enable(event->pmu); 2300 } 2301 2302 static void 2303 group_sched_out(struct perf_event *group_event, 2304 struct perf_cpu_context *cpuctx, 2305 struct perf_event_context *ctx) 2306 { 2307 struct perf_event *event; 2308 2309 if (group_event->state != PERF_EVENT_STATE_ACTIVE) 2310 return; 2311 2312 perf_pmu_disable(ctx->pmu); 2313 2314 event_sched_out(group_event, cpuctx, ctx); 2315 2316 /* 2317 * Schedule out siblings (if any): 2318 */ 2319 for_each_sibling_event(event, group_event) 2320 event_sched_out(event, cpuctx, ctx); 2321 2322 perf_pmu_enable(ctx->pmu); 2323 } 2324 2325 #define DETACH_GROUP 0x01UL 2326 2327 /* 2328 * Cross CPU call to remove a performance event 2329 * 2330 * We disable the event on the hardware level first. After that we 2331 * remove it from the context list. 2332 */ 2333 static void 2334 __perf_remove_from_context(struct perf_event *event, 2335 struct perf_cpu_context *cpuctx, 2336 struct perf_event_context *ctx, 2337 void *info) 2338 { 2339 unsigned long flags = (unsigned long)info; 2340 2341 if (ctx->is_active & EVENT_TIME) { 2342 update_context_time(ctx); 2343 update_cgrp_time_from_cpuctx(cpuctx); 2344 } 2345 2346 event_sched_out(event, cpuctx, ctx); 2347 if (flags & DETACH_GROUP) 2348 perf_group_detach(event); 2349 list_del_event(event, ctx); 2350 2351 if (!ctx->nr_events && ctx->is_active) { 2352 ctx->is_active = 0; 2353 ctx->rotate_necessary = 0; 2354 if (ctx->task) { 2355 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2356 cpuctx->task_ctx = NULL; 2357 } 2358 } 2359 } 2360 2361 /* 2362 * Remove the event from a task's (or a CPU's) list of events. 2363 * 2364 * If event->ctx is a cloned context, callers must make sure that 2365 * every task struct that event->ctx->task could possibly point to 2366 * remains valid. This is OK when called from perf_release since 2367 * that only calls us on the top-level context, which can't be a clone. 2368 * When called from perf_event_exit_task, it's OK because the 2369 * context has been detached from its task. 2370 */ 2371 static void perf_remove_from_context(struct perf_event *event, unsigned long flags) 2372 { 2373 struct perf_event_context *ctx = event->ctx; 2374 2375 lockdep_assert_held(&ctx->mutex); 2376 2377 event_function_call(event, __perf_remove_from_context, (void *)flags); 2378 2379 /* 2380 * The above event_function_call() can NO-OP when it hits 2381 * TASK_TOMBSTONE. In that case we must already have been detached 2382 * from the context (by perf_event_exit_event()) but the grouping 2383 * might still be in-tact. 2384 */ 2385 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 2386 if ((flags & DETACH_GROUP) && 2387 (event->attach_state & PERF_ATTACH_GROUP)) { 2388 /* 2389 * Since in that case we cannot possibly be scheduled, simply 2390 * detach now. 2391 */ 2392 raw_spin_lock_irq(&ctx->lock); 2393 perf_group_detach(event); 2394 raw_spin_unlock_irq(&ctx->lock); 2395 } 2396 } 2397 2398 /* 2399 * Cross CPU call to disable a performance event 2400 */ 2401 static void __perf_event_disable(struct perf_event *event, 2402 struct perf_cpu_context *cpuctx, 2403 struct perf_event_context *ctx, 2404 void *info) 2405 { 2406 if (event->state < PERF_EVENT_STATE_INACTIVE) 2407 return; 2408 2409 if (ctx->is_active & EVENT_TIME) { 2410 update_context_time(ctx); 2411 update_cgrp_time_from_event(event); 2412 } 2413 2414 if (event == event->group_leader) 2415 group_sched_out(event, cpuctx, ctx); 2416 else 2417 event_sched_out(event, cpuctx, ctx); 2418 2419 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2420 perf_cgroup_event_disable(event, ctx); 2421 } 2422 2423 /* 2424 * Disable an event. 2425 * 2426 * If event->ctx is a cloned context, callers must make sure that 2427 * every task struct that event->ctx->task could possibly point to 2428 * remains valid. This condition is satisfied when called through 2429 * perf_event_for_each_child or perf_event_for_each because they 2430 * hold the top-level event's child_mutex, so any descendant that 2431 * goes to exit will block in perf_event_exit_event(). 2432 * 2433 * When called from perf_pending_event it's OK because event->ctx 2434 * is the current context on this CPU and preemption is disabled, 2435 * hence we can't get into perf_event_task_sched_out for this context. 2436 */ 2437 static void _perf_event_disable(struct perf_event *event) 2438 { 2439 struct perf_event_context *ctx = event->ctx; 2440 2441 raw_spin_lock_irq(&ctx->lock); 2442 if (event->state <= PERF_EVENT_STATE_OFF) { 2443 raw_spin_unlock_irq(&ctx->lock); 2444 return; 2445 } 2446 raw_spin_unlock_irq(&ctx->lock); 2447 2448 event_function_call(event, __perf_event_disable, NULL); 2449 } 2450 2451 void perf_event_disable_local(struct perf_event *event) 2452 { 2453 event_function_local(event, __perf_event_disable, NULL); 2454 } 2455 2456 /* 2457 * Strictly speaking kernel users cannot create groups and therefore this 2458 * interface does not need the perf_event_ctx_lock() magic. 2459 */ 2460 void perf_event_disable(struct perf_event *event) 2461 { 2462 struct perf_event_context *ctx; 2463 2464 ctx = perf_event_ctx_lock(event); 2465 _perf_event_disable(event); 2466 perf_event_ctx_unlock(event, ctx); 2467 } 2468 EXPORT_SYMBOL_GPL(perf_event_disable); 2469 2470 void perf_event_disable_inatomic(struct perf_event *event) 2471 { 2472 WRITE_ONCE(event->pending_disable, smp_processor_id()); 2473 /* can fail, see perf_pending_event_disable() */ 2474 irq_work_queue(&event->pending); 2475 } 2476 2477 static void perf_set_shadow_time(struct perf_event *event, 2478 struct perf_event_context *ctx) 2479 { 2480 /* 2481 * use the correct time source for the time snapshot 2482 * 2483 * We could get by without this by leveraging the 2484 * fact that to get to this function, the caller 2485 * has most likely already called update_context_time() 2486 * and update_cgrp_time_xx() and thus both timestamp 2487 * are identical (or very close). Given that tstamp is, 2488 * already adjusted for cgroup, we could say that: 2489 * tstamp - ctx->timestamp 2490 * is equivalent to 2491 * tstamp - cgrp->timestamp. 2492 * 2493 * Then, in perf_output_read(), the calculation would 2494 * work with no changes because: 2495 * - event is guaranteed scheduled in 2496 * - no scheduled out in between 2497 * - thus the timestamp would be the same 2498 * 2499 * But this is a bit hairy. 2500 * 2501 * So instead, we have an explicit cgroup call to remain 2502 * within the time time source all along. We believe it 2503 * is cleaner and simpler to understand. 2504 */ 2505 if (is_cgroup_event(event)) 2506 perf_cgroup_set_shadow_time(event, event->tstamp); 2507 else 2508 event->shadow_ctx_time = event->tstamp - ctx->timestamp; 2509 } 2510 2511 #define MAX_INTERRUPTS (~0ULL) 2512 2513 static void perf_log_throttle(struct perf_event *event, int enable); 2514 static void perf_log_itrace_start(struct perf_event *event); 2515 2516 static int 2517 event_sched_in(struct perf_event *event, 2518 struct perf_cpu_context *cpuctx, 2519 struct perf_event_context *ctx) 2520 { 2521 int ret = 0; 2522 2523 WARN_ON_ONCE(event->ctx != ctx); 2524 2525 lockdep_assert_held(&ctx->lock); 2526 2527 if (event->state <= PERF_EVENT_STATE_OFF) 2528 return 0; 2529 2530 WRITE_ONCE(event->oncpu, smp_processor_id()); 2531 /* 2532 * Order event::oncpu write to happen before the ACTIVE state is 2533 * visible. This allows perf_event_{stop,read}() to observe the correct 2534 * ->oncpu if it sees ACTIVE. 2535 */ 2536 smp_wmb(); 2537 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE); 2538 2539 /* 2540 * Unthrottle events, since we scheduled we might have missed several 2541 * ticks already, also for a heavily scheduling task there is little 2542 * guarantee it'll get a tick in a timely manner. 2543 */ 2544 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 2545 perf_log_throttle(event, 1); 2546 event->hw.interrupts = 0; 2547 } 2548 2549 perf_pmu_disable(event->pmu); 2550 2551 perf_set_shadow_time(event, ctx); 2552 2553 perf_log_itrace_start(event); 2554 2555 if (event->pmu->add(event, PERF_EF_START)) { 2556 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2557 event->oncpu = -1; 2558 ret = -EAGAIN; 2559 goto out; 2560 } 2561 2562 if (!is_software_event(event)) 2563 cpuctx->active_oncpu++; 2564 if (!ctx->nr_active++) 2565 perf_event_ctx_activate(ctx); 2566 if (event->attr.freq && event->attr.sample_freq) 2567 ctx->nr_freq++; 2568 2569 if (event->attr.exclusive) 2570 cpuctx->exclusive = 1; 2571 2572 out: 2573 perf_pmu_enable(event->pmu); 2574 2575 return ret; 2576 } 2577 2578 static int 2579 group_sched_in(struct perf_event *group_event, 2580 struct perf_cpu_context *cpuctx, 2581 struct perf_event_context *ctx) 2582 { 2583 struct perf_event *event, *partial_group = NULL; 2584 struct pmu *pmu = ctx->pmu; 2585 2586 if (group_event->state == PERF_EVENT_STATE_OFF) 2587 return 0; 2588 2589 pmu->start_txn(pmu, PERF_PMU_TXN_ADD); 2590 2591 if (event_sched_in(group_event, cpuctx, ctx)) 2592 goto error; 2593 2594 /* 2595 * Schedule in siblings as one group (if any): 2596 */ 2597 for_each_sibling_event(event, group_event) { 2598 if (event_sched_in(event, cpuctx, ctx)) { 2599 partial_group = event; 2600 goto group_error; 2601 } 2602 } 2603 2604 if (!pmu->commit_txn(pmu)) 2605 return 0; 2606 2607 group_error: 2608 /* 2609 * Groups can be scheduled in as one unit only, so undo any 2610 * partial group before returning: 2611 * The events up to the failed event are scheduled out normally. 2612 */ 2613 for_each_sibling_event(event, group_event) { 2614 if (event == partial_group) 2615 break; 2616 2617 event_sched_out(event, cpuctx, ctx); 2618 } 2619 event_sched_out(group_event, cpuctx, ctx); 2620 2621 error: 2622 pmu->cancel_txn(pmu); 2623 return -EAGAIN; 2624 } 2625 2626 /* 2627 * Work out whether we can put this event group on the CPU now. 2628 */ 2629 static int group_can_go_on(struct perf_event *event, 2630 struct perf_cpu_context *cpuctx, 2631 int can_add_hw) 2632 { 2633 /* 2634 * Groups consisting entirely of software events can always go on. 2635 */ 2636 if (event->group_caps & PERF_EV_CAP_SOFTWARE) 2637 return 1; 2638 /* 2639 * If an exclusive group is already on, no other hardware 2640 * events can go on. 2641 */ 2642 if (cpuctx->exclusive) 2643 return 0; 2644 /* 2645 * If this group is exclusive and there are already 2646 * events on the CPU, it can't go on. 2647 */ 2648 if (event->attr.exclusive && !list_empty(get_event_list(event))) 2649 return 0; 2650 /* 2651 * Otherwise, try to add it if all previous groups were able 2652 * to go on. 2653 */ 2654 return can_add_hw; 2655 } 2656 2657 static void add_event_to_ctx(struct perf_event *event, 2658 struct perf_event_context *ctx) 2659 { 2660 list_add_event(event, ctx); 2661 perf_group_attach(event); 2662 } 2663 2664 static void ctx_sched_out(struct perf_event_context *ctx, 2665 struct perf_cpu_context *cpuctx, 2666 enum event_type_t event_type); 2667 static void 2668 ctx_sched_in(struct perf_event_context *ctx, 2669 struct perf_cpu_context *cpuctx, 2670 enum event_type_t event_type, 2671 struct task_struct *task); 2672 2673 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx, 2674 struct perf_event_context *ctx, 2675 enum event_type_t event_type) 2676 { 2677 if (!cpuctx->task_ctx) 2678 return; 2679 2680 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2681 return; 2682 2683 ctx_sched_out(ctx, cpuctx, event_type); 2684 } 2685 2686 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2687 struct perf_event_context *ctx, 2688 struct task_struct *task) 2689 { 2690 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task); 2691 if (ctx) 2692 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task); 2693 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task); 2694 if (ctx) 2695 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task); 2696 } 2697 2698 /* 2699 * We want to maintain the following priority of scheduling: 2700 * - CPU pinned (EVENT_CPU | EVENT_PINNED) 2701 * - task pinned (EVENT_PINNED) 2702 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE) 2703 * - task flexible (EVENT_FLEXIBLE). 2704 * 2705 * In order to avoid unscheduling and scheduling back in everything every 2706 * time an event is added, only do it for the groups of equal priority and 2707 * below. 2708 * 2709 * This can be called after a batch operation on task events, in which case 2710 * event_type is a bit mask of the types of events involved. For CPU events, 2711 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE. 2712 */ 2713 static void ctx_resched(struct perf_cpu_context *cpuctx, 2714 struct perf_event_context *task_ctx, 2715 enum event_type_t event_type) 2716 { 2717 enum event_type_t ctx_event_type; 2718 bool cpu_event = !!(event_type & EVENT_CPU); 2719 2720 /* 2721 * If pinned groups are involved, flexible groups also need to be 2722 * scheduled out. 2723 */ 2724 if (event_type & EVENT_PINNED) 2725 event_type |= EVENT_FLEXIBLE; 2726 2727 ctx_event_type = event_type & EVENT_ALL; 2728 2729 perf_pmu_disable(cpuctx->ctx.pmu); 2730 if (task_ctx) 2731 task_ctx_sched_out(cpuctx, task_ctx, event_type); 2732 2733 /* 2734 * Decide which cpu ctx groups to schedule out based on the types 2735 * of events that caused rescheduling: 2736 * - EVENT_CPU: schedule out corresponding groups; 2737 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups; 2738 * - otherwise, do nothing more. 2739 */ 2740 if (cpu_event) 2741 cpu_ctx_sched_out(cpuctx, ctx_event_type); 2742 else if (ctx_event_type & EVENT_PINNED) 2743 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2744 2745 perf_event_sched_in(cpuctx, task_ctx, current); 2746 perf_pmu_enable(cpuctx->ctx.pmu); 2747 } 2748 2749 void perf_pmu_resched(struct pmu *pmu) 2750 { 2751 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 2752 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2753 2754 perf_ctx_lock(cpuctx, task_ctx); 2755 ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU); 2756 perf_ctx_unlock(cpuctx, task_ctx); 2757 } 2758 2759 /* 2760 * Cross CPU call to install and enable a performance event 2761 * 2762 * Very similar to remote_function() + event_function() but cannot assume that 2763 * things like ctx->is_active and cpuctx->task_ctx are set. 2764 */ 2765 static int __perf_install_in_context(void *info) 2766 { 2767 struct perf_event *event = info; 2768 struct perf_event_context *ctx = event->ctx; 2769 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2770 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2771 bool reprogram = true; 2772 int ret = 0; 2773 2774 raw_spin_lock(&cpuctx->ctx.lock); 2775 if (ctx->task) { 2776 raw_spin_lock(&ctx->lock); 2777 task_ctx = ctx; 2778 2779 reprogram = (ctx->task == current); 2780 2781 /* 2782 * If the task is running, it must be running on this CPU, 2783 * otherwise we cannot reprogram things. 2784 * 2785 * If its not running, we don't care, ctx->lock will 2786 * serialize against it becoming runnable. 2787 */ 2788 if (task_curr(ctx->task) && !reprogram) { 2789 ret = -ESRCH; 2790 goto unlock; 2791 } 2792 2793 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx); 2794 } else if (task_ctx) { 2795 raw_spin_lock(&task_ctx->lock); 2796 } 2797 2798 #ifdef CONFIG_CGROUP_PERF 2799 if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) { 2800 /* 2801 * If the current cgroup doesn't match the event's 2802 * cgroup, we should not try to schedule it. 2803 */ 2804 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 2805 reprogram = cgroup_is_descendant(cgrp->css.cgroup, 2806 event->cgrp->css.cgroup); 2807 } 2808 #endif 2809 2810 if (reprogram) { 2811 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2812 add_event_to_ctx(event, ctx); 2813 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2814 } else { 2815 add_event_to_ctx(event, ctx); 2816 } 2817 2818 unlock: 2819 perf_ctx_unlock(cpuctx, task_ctx); 2820 2821 return ret; 2822 } 2823 2824 static bool exclusive_event_installable(struct perf_event *event, 2825 struct perf_event_context *ctx); 2826 2827 /* 2828 * Attach a performance event to a context. 2829 * 2830 * Very similar to event_function_call, see comment there. 2831 */ 2832 static void 2833 perf_install_in_context(struct perf_event_context *ctx, 2834 struct perf_event *event, 2835 int cpu) 2836 { 2837 struct task_struct *task = READ_ONCE(ctx->task); 2838 2839 lockdep_assert_held(&ctx->mutex); 2840 2841 WARN_ON_ONCE(!exclusive_event_installable(event, ctx)); 2842 2843 if (event->cpu != -1) 2844 event->cpu = cpu; 2845 2846 /* 2847 * Ensures that if we can observe event->ctx, both the event and ctx 2848 * will be 'complete'. See perf_iterate_sb_cpu(). 2849 */ 2850 smp_store_release(&event->ctx, ctx); 2851 2852 /* 2853 * perf_event_attr::disabled events will not run and can be initialized 2854 * without IPI. Except when this is the first event for the context, in 2855 * that case we need the magic of the IPI to set ctx->is_active. 2856 * 2857 * The IOC_ENABLE that is sure to follow the creation of a disabled 2858 * event will issue the IPI and reprogram the hardware. 2859 */ 2860 if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && ctx->nr_events) { 2861 raw_spin_lock_irq(&ctx->lock); 2862 if (ctx->task == TASK_TOMBSTONE) { 2863 raw_spin_unlock_irq(&ctx->lock); 2864 return; 2865 } 2866 add_event_to_ctx(event, ctx); 2867 raw_spin_unlock_irq(&ctx->lock); 2868 return; 2869 } 2870 2871 if (!task) { 2872 cpu_function_call(cpu, __perf_install_in_context, event); 2873 return; 2874 } 2875 2876 /* 2877 * Should not happen, we validate the ctx is still alive before calling. 2878 */ 2879 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) 2880 return; 2881 2882 /* 2883 * Installing events is tricky because we cannot rely on ctx->is_active 2884 * to be set in case this is the nr_events 0 -> 1 transition. 2885 * 2886 * Instead we use task_curr(), which tells us if the task is running. 2887 * However, since we use task_curr() outside of rq::lock, we can race 2888 * against the actual state. This means the result can be wrong. 2889 * 2890 * If we get a false positive, we retry, this is harmless. 2891 * 2892 * If we get a false negative, things are complicated. If we are after 2893 * perf_event_context_sched_in() ctx::lock will serialize us, and the 2894 * value must be correct. If we're before, it doesn't matter since 2895 * perf_event_context_sched_in() will program the counter. 2896 * 2897 * However, this hinges on the remote context switch having observed 2898 * our task->perf_event_ctxp[] store, such that it will in fact take 2899 * ctx::lock in perf_event_context_sched_in(). 2900 * 2901 * We do this by task_function_call(), if the IPI fails to hit the task 2902 * we know any future context switch of task must see the 2903 * perf_event_ctpx[] store. 2904 */ 2905 2906 /* 2907 * This smp_mb() orders the task->perf_event_ctxp[] store with the 2908 * task_cpu() load, such that if the IPI then does not find the task 2909 * running, a future context switch of that task must observe the 2910 * store. 2911 */ 2912 smp_mb(); 2913 again: 2914 if (!task_function_call(task, __perf_install_in_context, event)) 2915 return; 2916 2917 raw_spin_lock_irq(&ctx->lock); 2918 task = ctx->task; 2919 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) { 2920 /* 2921 * Cannot happen because we already checked above (which also 2922 * cannot happen), and we hold ctx->mutex, which serializes us 2923 * against perf_event_exit_task_context(). 2924 */ 2925 raw_spin_unlock_irq(&ctx->lock); 2926 return; 2927 } 2928 /* 2929 * If the task is not running, ctx->lock will avoid it becoming so, 2930 * thus we can safely install the event. 2931 */ 2932 if (task_curr(task)) { 2933 raw_spin_unlock_irq(&ctx->lock); 2934 goto again; 2935 } 2936 add_event_to_ctx(event, ctx); 2937 raw_spin_unlock_irq(&ctx->lock); 2938 } 2939 2940 /* 2941 * Cross CPU call to enable a performance event 2942 */ 2943 static void __perf_event_enable(struct perf_event *event, 2944 struct perf_cpu_context *cpuctx, 2945 struct perf_event_context *ctx, 2946 void *info) 2947 { 2948 struct perf_event *leader = event->group_leader; 2949 struct perf_event_context *task_ctx; 2950 2951 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2952 event->state <= PERF_EVENT_STATE_ERROR) 2953 return; 2954 2955 if (ctx->is_active) 2956 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2957 2958 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2959 perf_cgroup_event_enable(event, ctx); 2960 2961 if (!ctx->is_active) 2962 return; 2963 2964 if (!event_filter_match(event)) { 2965 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2966 return; 2967 } 2968 2969 /* 2970 * If the event is in a group and isn't the group leader, 2971 * then don't put it on unless the group is on. 2972 */ 2973 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) { 2974 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2975 return; 2976 } 2977 2978 task_ctx = cpuctx->task_ctx; 2979 if (ctx->task) 2980 WARN_ON_ONCE(task_ctx != ctx); 2981 2982 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2983 } 2984 2985 /* 2986 * Enable an event. 2987 * 2988 * If event->ctx is a cloned context, callers must make sure that 2989 * every task struct that event->ctx->task could possibly point to 2990 * remains valid. This condition is satisfied when called through 2991 * perf_event_for_each_child or perf_event_for_each as described 2992 * for perf_event_disable. 2993 */ 2994 static void _perf_event_enable(struct perf_event *event) 2995 { 2996 struct perf_event_context *ctx = event->ctx; 2997 2998 raw_spin_lock_irq(&ctx->lock); 2999 if (event->state >= PERF_EVENT_STATE_INACTIVE || 3000 event->state < PERF_EVENT_STATE_ERROR) { 3001 out: 3002 raw_spin_unlock_irq(&ctx->lock); 3003 return; 3004 } 3005 3006 /* 3007 * If the event is in error state, clear that first. 3008 * 3009 * That way, if we see the event in error state below, we know that it 3010 * has gone back into error state, as distinct from the task having 3011 * been scheduled away before the cross-call arrived. 3012 */ 3013 if (event->state == PERF_EVENT_STATE_ERROR) { 3014 /* 3015 * Detached SIBLING events cannot leave ERROR state. 3016 */ 3017 if (event->event_caps & PERF_EV_CAP_SIBLING && 3018 event->group_leader == event) 3019 goto out; 3020 3021 event->state = PERF_EVENT_STATE_OFF; 3022 } 3023 raw_spin_unlock_irq(&ctx->lock); 3024 3025 event_function_call(event, __perf_event_enable, NULL); 3026 } 3027 3028 /* 3029 * See perf_event_disable(); 3030 */ 3031 void perf_event_enable(struct perf_event *event) 3032 { 3033 struct perf_event_context *ctx; 3034 3035 ctx = perf_event_ctx_lock(event); 3036 _perf_event_enable(event); 3037 perf_event_ctx_unlock(event, ctx); 3038 } 3039 EXPORT_SYMBOL_GPL(perf_event_enable); 3040 3041 struct stop_event_data { 3042 struct perf_event *event; 3043 unsigned int restart; 3044 }; 3045 3046 static int __perf_event_stop(void *info) 3047 { 3048 struct stop_event_data *sd = info; 3049 struct perf_event *event = sd->event; 3050 3051 /* if it's already INACTIVE, do nothing */ 3052 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3053 return 0; 3054 3055 /* matches smp_wmb() in event_sched_in() */ 3056 smp_rmb(); 3057 3058 /* 3059 * There is a window with interrupts enabled before we get here, 3060 * so we need to check again lest we try to stop another CPU's event. 3061 */ 3062 if (READ_ONCE(event->oncpu) != smp_processor_id()) 3063 return -EAGAIN; 3064 3065 event->pmu->stop(event, PERF_EF_UPDATE); 3066 3067 /* 3068 * May race with the actual stop (through perf_pmu_output_stop()), 3069 * but it is only used for events with AUX ring buffer, and such 3070 * events will refuse to restart because of rb::aux_mmap_count==0, 3071 * see comments in perf_aux_output_begin(). 3072 * 3073 * Since this is happening on an event-local CPU, no trace is lost 3074 * while restarting. 3075 */ 3076 if (sd->restart) 3077 event->pmu->start(event, 0); 3078 3079 return 0; 3080 } 3081 3082 static int perf_event_stop(struct perf_event *event, int restart) 3083 { 3084 struct stop_event_data sd = { 3085 .event = event, 3086 .restart = restart, 3087 }; 3088 int ret = 0; 3089 3090 do { 3091 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3092 return 0; 3093 3094 /* matches smp_wmb() in event_sched_in() */ 3095 smp_rmb(); 3096 3097 /* 3098 * We only want to restart ACTIVE events, so if the event goes 3099 * inactive here (event->oncpu==-1), there's nothing more to do; 3100 * fall through with ret==-ENXIO. 3101 */ 3102 ret = cpu_function_call(READ_ONCE(event->oncpu), 3103 __perf_event_stop, &sd); 3104 } while (ret == -EAGAIN); 3105 3106 return ret; 3107 } 3108 3109 /* 3110 * In order to contain the amount of racy and tricky in the address filter 3111 * configuration management, it is a two part process: 3112 * 3113 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below, 3114 * we update the addresses of corresponding vmas in 3115 * event::addr_filter_ranges array and bump the event::addr_filters_gen; 3116 * (p2) when an event is scheduled in (pmu::add), it calls 3117 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync() 3118 * if the generation has changed since the previous call. 3119 * 3120 * If (p1) happens while the event is active, we restart it to force (p2). 3121 * 3122 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on 3123 * pre-existing mappings, called once when new filters arrive via SET_FILTER 3124 * ioctl; 3125 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly 3126 * registered mapping, called for every new mmap(), with mm::mmap_lock down 3127 * for reading; 3128 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process 3129 * of exec. 3130 */ 3131 void perf_event_addr_filters_sync(struct perf_event *event) 3132 { 3133 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 3134 3135 if (!has_addr_filter(event)) 3136 return; 3137 3138 raw_spin_lock(&ifh->lock); 3139 if (event->addr_filters_gen != event->hw.addr_filters_gen) { 3140 event->pmu->addr_filters_sync(event); 3141 event->hw.addr_filters_gen = event->addr_filters_gen; 3142 } 3143 raw_spin_unlock(&ifh->lock); 3144 } 3145 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync); 3146 3147 static int _perf_event_refresh(struct perf_event *event, int refresh) 3148 { 3149 /* 3150 * not supported on inherited events 3151 */ 3152 if (event->attr.inherit || !is_sampling_event(event)) 3153 return -EINVAL; 3154 3155 atomic_add(refresh, &event->event_limit); 3156 _perf_event_enable(event); 3157 3158 return 0; 3159 } 3160 3161 /* 3162 * See perf_event_disable() 3163 */ 3164 int perf_event_refresh(struct perf_event *event, int refresh) 3165 { 3166 struct perf_event_context *ctx; 3167 int ret; 3168 3169 ctx = perf_event_ctx_lock(event); 3170 ret = _perf_event_refresh(event, refresh); 3171 perf_event_ctx_unlock(event, ctx); 3172 3173 return ret; 3174 } 3175 EXPORT_SYMBOL_GPL(perf_event_refresh); 3176 3177 static int perf_event_modify_breakpoint(struct perf_event *bp, 3178 struct perf_event_attr *attr) 3179 { 3180 int err; 3181 3182 _perf_event_disable(bp); 3183 3184 err = modify_user_hw_breakpoint_check(bp, attr, true); 3185 3186 if (!bp->attr.disabled) 3187 _perf_event_enable(bp); 3188 3189 return err; 3190 } 3191 3192 static int perf_event_modify_attr(struct perf_event *event, 3193 struct perf_event_attr *attr) 3194 { 3195 if (event->attr.type != attr->type) 3196 return -EINVAL; 3197 3198 switch (event->attr.type) { 3199 case PERF_TYPE_BREAKPOINT: 3200 return perf_event_modify_breakpoint(event, attr); 3201 default: 3202 /* Place holder for future additions. */ 3203 return -EOPNOTSUPP; 3204 } 3205 } 3206 3207 static void ctx_sched_out(struct perf_event_context *ctx, 3208 struct perf_cpu_context *cpuctx, 3209 enum event_type_t event_type) 3210 { 3211 struct perf_event *event, *tmp; 3212 int is_active = ctx->is_active; 3213 3214 lockdep_assert_held(&ctx->lock); 3215 3216 if (likely(!ctx->nr_events)) { 3217 /* 3218 * See __perf_remove_from_context(). 3219 */ 3220 WARN_ON_ONCE(ctx->is_active); 3221 if (ctx->task) 3222 WARN_ON_ONCE(cpuctx->task_ctx); 3223 return; 3224 } 3225 3226 ctx->is_active &= ~event_type; 3227 if (!(ctx->is_active & EVENT_ALL)) 3228 ctx->is_active = 0; 3229 3230 if (ctx->task) { 3231 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3232 if (!ctx->is_active) 3233 cpuctx->task_ctx = NULL; 3234 } 3235 3236 /* 3237 * Always update time if it was set; not only when it changes. 3238 * Otherwise we can 'forget' to update time for any but the last 3239 * context we sched out. For example: 3240 * 3241 * ctx_sched_out(.event_type = EVENT_FLEXIBLE) 3242 * ctx_sched_out(.event_type = EVENT_PINNED) 3243 * 3244 * would only update time for the pinned events. 3245 */ 3246 if (is_active & EVENT_TIME) { 3247 /* update (and stop) ctx time */ 3248 update_context_time(ctx); 3249 update_cgrp_time_from_cpuctx(cpuctx); 3250 } 3251 3252 is_active ^= ctx->is_active; /* changed bits */ 3253 3254 if (!ctx->nr_active || !(is_active & EVENT_ALL)) 3255 return; 3256 3257 perf_pmu_disable(ctx->pmu); 3258 if (is_active & EVENT_PINNED) { 3259 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list) 3260 group_sched_out(event, cpuctx, ctx); 3261 } 3262 3263 if (is_active & EVENT_FLEXIBLE) { 3264 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list) 3265 group_sched_out(event, cpuctx, ctx); 3266 3267 /* 3268 * Since we cleared EVENT_FLEXIBLE, also clear 3269 * rotate_necessary, is will be reset by 3270 * ctx_flexible_sched_in() when needed. 3271 */ 3272 ctx->rotate_necessary = 0; 3273 } 3274 perf_pmu_enable(ctx->pmu); 3275 } 3276 3277 /* 3278 * Test whether two contexts are equivalent, i.e. whether they have both been 3279 * cloned from the same version of the same context. 3280 * 3281 * Equivalence is measured using a generation number in the context that is 3282 * incremented on each modification to it; see unclone_ctx(), list_add_event() 3283 * and list_del_event(). 3284 */ 3285 static int context_equiv(struct perf_event_context *ctx1, 3286 struct perf_event_context *ctx2) 3287 { 3288 lockdep_assert_held(&ctx1->lock); 3289 lockdep_assert_held(&ctx2->lock); 3290 3291 /* Pinning disables the swap optimization */ 3292 if (ctx1->pin_count || ctx2->pin_count) 3293 return 0; 3294 3295 /* If ctx1 is the parent of ctx2 */ 3296 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 3297 return 1; 3298 3299 /* If ctx2 is the parent of ctx1 */ 3300 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 3301 return 1; 3302 3303 /* 3304 * If ctx1 and ctx2 have the same parent; we flatten the parent 3305 * hierarchy, see perf_event_init_context(). 3306 */ 3307 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 3308 ctx1->parent_gen == ctx2->parent_gen) 3309 return 1; 3310 3311 /* Unmatched */ 3312 return 0; 3313 } 3314 3315 static void __perf_event_sync_stat(struct perf_event *event, 3316 struct perf_event *next_event) 3317 { 3318 u64 value; 3319 3320 if (!event->attr.inherit_stat) 3321 return; 3322 3323 /* 3324 * Update the event value, we cannot use perf_event_read() 3325 * because we're in the middle of a context switch and have IRQs 3326 * disabled, which upsets smp_call_function_single(), however 3327 * we know the event must be on the current CPU, therefore we 3328 * don't need to use it. 3329 */ 3330 if (event->state == PERF_EVENT_STATE_ACTIVE) 3331 event->pmu->read(event); 3332 3333 perf_event_update_time(event); 3334 3335 /* 3336 * In order to keep per-task stats reliable we need to flip the event 3337 * values when we flip the contexts. 3338 */ 3339 value = local64_read(&next_event->count); 3340 value = local64_xchg(&event->count, value); 3341 local64_set(&next_event->count, value); 3342 3343 swap(event->total_time_enabled, next_event->total_time_enabled); 3344 swap(event->total_time_running, next_event->total_time_running); 3345 3346 /* 3347 * Since we swizzled the values, update the user visible data too. 3348 */ 3349 perf_event_update_userpage(event); 3350 perf_event_update_userpage(next_event); 3351 } 3352 3353 static void perf_event_sync_stat(struct perf_event_context *ctx, 3354 struct perf_event_context *next_ctx) 3355 { 3356 struct perf_event *event, *next_event; 3357 3358 if (!ctx->nr_stat) 3359 return; 3360 3361 update_context_time(ctx); 3362 3363 event = list_first_entry(&ctx->event_list, 3364 struct perf_event, event_entry); 3365 3366 next_event = list_first_entry(&next_ctx->event_list, 3367 struct perf_event, event_entry); 3368 3369 while (&event->event_entry != &ctx->event_list && 3370 &next_event->event_entry != &next_ctx->event_list) { 3371 3372 __perf_event_sync_stat(event, next_event); 3373 3374 event = list_next_entry(event, event_entry); 3375 next_event = list_next_entry(next_event, event_entry); 3376 } 3377 } 3378 3379 static void perf_event_context_sched_out(struct task_struct *task, int ctxn, 3380 struct task_struct *next) 3381 { 3382 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; 3383 struct perf_event_context *next_ctx; 3384 struct perf_event_context *parent, *next_parent; 3385 struct perf_cpu_context *cpuctx; 3386 int do_switch = 1; 3387 struct pmu *pmu; 3388 3389 if (likely(!ctx)) 3390 return; 3391 3392 pmu = ctx->pmu; 3393 cpuctx = __get_cpu_context(ctx); 3394 if (!cpuctx->task_ctx) 3395 return; 3396 3397 rcu_read_lock(); 3398 next_ctx = next->perf_event_ctxp[ctxn]; 3399 if (!next_ctx) 3400 goto unlock; 3401 3402 parent = rcu_dereference(ctx->parent_ctx); 3403 next_parent = rcu_dereference(next_ctx->parent_ctx); 3404 3405 /* If neither context have a parent context; they cannot be clones. */ 3406 if (!parent && !next_parent) 3407 goto unlock; 3408 3409 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 3410 /* 3411 * Looks like the two contexts are clones, so we might be 3412 * able to optimize the context switch. We lock both 3413 * contexts and check that they are clones under the 3414 * lock (including re-checking that neither has been 3415 * uncloned in the meantime). It doesn't matter which 3416 * order we take the locks because no other cpu could 3417 * be trying to lock both of these tasks. 3418 */ 3419 raw_spin_lock(&ctx->lock); 3420 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 3421 if (context_equiv(ctx, next_ctx)) { 3422 3423 WRITE_ONCE(ctx->task, next); 3424 WRITE_ONCE(next_ctx->task, task); 3425 3426 perf_pmu_disable(pmu); 3427 3428 if (cpuctx->sched_cb_usage && pmu->sched_task) 3429 pmu->sched_task(ctx, false); 3430 3431 /* 3432 * PMU specific parts of task perf context can require 3433 * additional synchronization. As an example of such 3434 * synchronization see implementation details of Intel 3435 * LBR call stack data profiling; 3436 */ 3437 if (pmu->swap_task_ctx) 3438 pmu->swap_task_ctx(ctx, next_ctx); 3439 else 3440 swap(ctx->task_ctx_data, next_ctx->task_ctx_data); 3441 3442 perf_pmu_enable(pmu); 3443 3444 /* 3445 * RCU_INIT_POINTER here is safe because we've not 3446 * modified the ctx and the above modification of 3447 * ctx->task and ctx->task_ctx_data are immaterial 3448 * since those values are always verified under 3449 * ctx->lock which we're now holding. 3450 */ 3451 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx); 3452 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx); 3453 3454 do_switch = 0; 3455 3456 perf_event_sync_stat(ctx, next_ctx); 3457 } 3458 raw_spin_unlock(&next_ctx->lock); 3459 raw_spin_unlock(&ctx->lock); 3460 } 3461 unlock: 3462 rcu_read_unlock(); 3463 3464 if (do_switch) { 3465 raw_spin_lock(&ctx->lock); 3466 perf_pmu_disable(pmu); 3467 3468 if (cpuctx->sched_cb_usage && pmu->sched_task) 3469 pmu->sched_task(ctx, false); 3470 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL); 3471 3472 perf_pmu_enable(pmu); 3473 raw_spin_unlock(&ctx->lock); 3474 } 3475 } 3476 3477 void perf_sched_cb_dec(struct pmu *pmu) 3478 { 3479 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 3480 3481 --cpuctx->sched_cb_usage; 3482 } 3483 3484 3485 void perf_sched_cb_inc(struct pmu *pmu) 3486 { 3487 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 3488 3489 cpuctx->sched_cb_usage++; 3490 } 3491 3492 /* 3493 * This function provides the context switch callback to the lower code 3494 * layer. It is invoked ONLY when the context switch callback is enabled. 3495 * 3496 * This callback is relevant even to per-cpu events; for example multi event 3497 * PEBS requires this to provide PID/TID information. This requires we flush 3498 * all queued PEBS records before we context switch to a new task. 3499 */ 3500 static void __perf_pmu_sched_task(struct perf_cpu_context *cpuctx, bool sched_in) 3501 { 3502 struct pmu *pmu; 3503 3504 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */ 3505 3506 if (WARN_ON_ONCE(!pmu->sched_task)) 3507 return; 3508 3509 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3510 perf_pmu_disable(pmu); 3511 3512 pmu->sched_task(cpuctx->task_ctx, sched_in); 3513 3514 perf_pmu_enable(pmu); 3515 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3516 } 3517 3518 static void perf_event_switch(struct task_struct *task, 3519 struct task_struct *next_prev, bool sched_in); 3520 3521 #define for_each_task_context_nr(ctxn) \ 3522 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) 3523 3524 /* 3525 * Called from scheduler to remove the events of the current task, 3526 * with interrupts disabled. 3527 * 3528 * We stop each event and update the event value in event->count. 3529 * 3530 * This does not protect us against NMI, but disable() 3531 * sets the disabled bit in the control field of event _before_ 3532 * accessing the event control register. If a NMI hits, then it will 3533 * not restart the event. 3534 */ 3535 void __perf_event_task_sched_out(struct task_struct *task, 3536 struct task_struct *next) 3537 { 3538 int ctxn; 3539 3540 if (atomic_read(&nr_switch_events)) 3541 perf_event_switch(task, next, false); 3542 3543 for_each_task_context_nr(ctxn) 3544 perf_event_context_sched_out(task, ctxn, next); 3545 3546 /* 3547 * if cgroup events exist on this CPU, then we need 3548 * to check if we have to switch out PMU state. 3549 * cgroup event are system-wide mode only 3550 */ 3551 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3552 perf_cgroup_sched_out(task, next); 3553 } 3554 3555 /* 3556 * Called with IRQs disabled 3557 */ 3558 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 3559 enum event_type_t event_type) 3560 { 3561 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); 3562 } 3563 3564 static bool perf_less_group_idx(const void *l, const void *r) 3565 { 3566 const struct perf_event *le = *(const struct perf_event **)l; 3567 const struct perf_event *re = *(const struct perf_event **)r; 3568 3569 return le->group_index < re->group_index; 3570 } 3571 3572 static void swap_ptr(void *l, void *r) 3573 { 3574 void **lp = l, **rp = r; 3575 3576 swap(*lp, *rp); 3577 } 3578 3579 static const struct min_heap_callbacks perf_min_heap = { 3580 .elem_size = sizeof(struct perf_event *), 3581 .less = perf_less_group_idx, 3582 .swp = swap_ptr, 3583 }; 3584 3585 static void __heap_add(struct min_heap *heap, struct perf_event *event) 3586 { 3587 struct perf_event **itrs = heap->data; 3588 3589 if (event) { 3590 itrs[heap->nr] = event; 3591 heap->nr++; 3592 } 3593 } 3594 3595 static noinline int visit_groups_merge(struct perf_cpu_context *cpuctx, 3596 struct perf_event_groups *groups, int cpu, 3597 int (*func)(struct perf_event *, void *), 3598 void *data) 3599 { 3600 #ifdef CONFIG_CGROUP_PERF 3601 struct cgroup_subsys_state *css = NULL; 3602 #endif 3603 /* Space for per CPU and/or any CPU event iterators. */ 3604 struct perf_event *itrs[2]; 3605 struct min_heap event_heap; 3606 struct perf_event **evt; 3607 int ret; 3608 3609 if (cpuctx) { 3610 event_heap = (struct min_heap){ 3611 .data = cpuctx->heap, 3612 .nr = 0, 3613 .size = cpuctx->heap_size, 3614 }; 3615 3616 lockdep_assert_held(&cpuctx->ctx.lock); 3617 3618 #ifdef CONFIG_CGROUP_PERF 3619 if (cpuctx->cgrp) 3620 css = &cpuctx->cgrp->css; 3621 #endif 3622 } else { 3623 event_heap = (struct min_heap){ 3624 .data = itrs, 3625 .nr = 0, 3626 .size = ARRAY_SIZE(itrs), 3627 }; 3628 /* Events not within a CPU context may be on any CPU. */ 3629 __heap_add(&event_heap, perf_event_groups_first(groups, -1, NULL)); 3630 } 3631 evt = event_heap.data; 3632 3633 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, NULL)); 3634 3635 #ifdef CONFIG_CGROUP_PERF 3636 for (; css; css = css->parent) 3637 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, css->cgroup)); 3638 #endif 3639 3640 min_heapify_all(&event_heap, &perf_min_heap); 3641 3642 while (event_heap.nr) { 3643 ret = func(*evt, data); 3644 if (ret) 3645 return ret; 3646 3647 *evt = perf_event_groups_next(*evt); 3648 if (*evt) 3649 min_heapify(&event_heap, 0, &perf_min_heap); 3650 else 3651 min_heap_pop(&event_heap, &perf_min_heap); 3652 } 3653 3654 return 0; 3655 } 3656 3657 static int merge_sched_in(struct perf_event *event, void *data) 3658 { 3659 struct perf_event_context *ctx = event->ctx; 3660 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 3661 int *can_add_hw = data; 3662 3663 if (event->state <= PERF_EVENT_STATE_OFF) 3664 return 0; 3665 3666 if (!event_filter_match(event)) 3667 return 0; 3668 3669 if (group_can_go_on(event, cpuctx, *can_add_hw)) { 3670 if (!group_sched_in(event, cpuctx, ctx)) 3671 list_add_tail(&event->active_list, get_event_list(event)); 3672 } 3673 3674 if (event->state == PERF_EVENT_STATE_INACTIVE) { 3675 if (event->attr.pinned) { 3676 perf_cgroup_event_disable(event, ctx); 3677 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 3678 } 3679 3680 *can_add_hw = 0; 3681 ctx->rotate_necessary = 1; 3682 perf_mux_hrtimer_restart(cpuctx); 3683 } 3684 3685 return 0; 3686 } 3687 3688 static void 3689 ctx_pinned_sched_in(struct perf_event_context *ctx, 3690 struct perf_cpu_context *cpuctx) 3691 { 3692 int can_add_hw = 1; 3693 3694 if (ctx != &cpuctx->ctx) 3695 cpuctx = NULL; 3696 3697 visit_groups_merge(cpuctx, &ctx->pinned_groups, 3698 smp_processor_id(), 3699 merge_sched_in, &can_add_hw); 3700 } 3701 3702 static void 3703 ctx_flexible_sched_in(struct perf_event_context *ctx, 3704 struct perf_cpu_context *cpuctx) 3705 { 3706 int can_add_hw = 1; 3707 3708 if (ctx != &cpuctx->ctx) 3709 cpuctx = NULL; 3710 3711 visit_groups_merge(cpuctx, &ctx->flexible_groups, 3712 smp_processor_id(), 3713 merge_sched_in, &can_add_hw); 3714 } 3715 3716 static void 3717 ctx_sched_in(struct perf_event_context *ctx, 3718 struct perf_cpu_context *cpuctx, 3719 enum event_type_t event_type, 3720 struct task_struct *task) 3721 { 3722 int is_active = ctx->is_active; 3723 u64 now; 3724 3725 lockdep_assert_held(&ctx->lock); 3726 3727 if (likely(!ctx->nr_events)) 3728 return; 3729 3730 ctx->is_active |= (event_type | EVENT_TIME); 3731 if (ctx->task) { 3732 if (!is_active) 3733 cpuctx->task_ctx = ctx; 3734 else 3735 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3736 } 3737 3738 is_active ^= ctx->is_active; /* changed bits */ 3739 3740 if (is_active & EVENT_TIME) { 3741 /* start ctx time */ 3742 now = perf_clock(); 3743 ctx->timestamp = now; 3744 perf_cgroup_set_timestamp(task, ctx); 3745 } 3746 3747 /* 3748 * First go through the list and put on any pinned groups 3749 * in order to give them the best chance of going on. 3750 */ 3751 if (is_active & EVENT_PINNED) 3752 ctx_pinned_sched_in(ctx, cpuctx); 3753 3754 /* Then walk through the lower prio flexible groups */ 3755 if (is_active & EVENT_FLEXIBLE) 3756 ctx_flexible_sched_in(ctx, cpuctx); 3757 } 3758 3759 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 3760 enum event_type_t event_type, 3761 struct task_struct *task) 3762 { 3763 struct perf_event_context *ctx = &cpuctx->ctx; 3764 3765 ctx_sched_in(ctx, cpuctx, event_type, task); 3766 } 3767 3768 static void perf_event_context_sched_in(struct perf_event_context *ctx, 3769 struct task_struct *task) 3770 { 3771 struct perf_cpu_context *cpuctx; 3772 struct pmu *pmu = ctx->pmu; 3773 3774 cpuctx = __get_cpu_context(ctx); 3775 if (cpuctx->task_ctx == ctx) { 3776 if (cpuctx->sched_cb_usage) 3777 __perf_pmu_sched_task(cpuctx, true); 3778 return; 3779 } 3780 3781 perf_ctx_lock(cpuctx, ctx); 3782 /* 3783 * We must check ctx->nr_events while holding ctx->lock, such 3784 * that we serialize against perf_install_in_context(). 3785 */ 3786 if (!ctx->nr_events) 3787 goto unlock; 3788 3789 perf_pmu_disable(pmu); 3790 /* 3791 * We want to keep the following priority order: 3792 * cpu pinned (that don't need to move), task pinned, 3793 * cpu flexible, task flexible. 3794 * 3795 * However, if task's ctx is not carrying any pinned 3796 * events, no need to flip the cpuctx's events around. 3797 */ 3798 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) 3799 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3800 perf_event_sched_in(cpuctx, ctx, task); 3801 3802 if (cpuctx->sched_cb_usage && pmu->sched_task) 3803 pmu->sched_task(cpuctx->task_ctx, true); 3804 3805 perf_pmu_enable(pmu); 3806 3807 unlock: 3808 perf_ctx_unlock(cpuctx, ctx); 3809 } 3810 3811 /* 3812 * Called from scheduler to add the events of the current task 3813 * with interrupts disabled. 3814 * 3815 * We restore the event value and then enable it. 3816 * 3817 * This does not protect us against NMI, but enable() 3818 * sets the enabled bit in the control field of event _before_ 3819 * accessing the event control register. If a NMI hits, then it will 3820 * keep the event running. 3821 */ 3822 void __perf_event_task_sched_in(struct task_struct *prev, 3823 struct task_struct *task) 3824 { 3825 struct perf_event_context *ctx; 3826 int ctxn; 3827 3828 /* 3829 * If cgroup events exist on this CPU, then we need to check if we have 3830 * to switch in PMU state; cgroup event are system-wide mode only. 3831 * 3832 * Since cgroup events are CPU events, we must schedule these in before 3833 * we schedule in the task events. 3834 */ 3835 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3836 perf_cgroup_sched_in(prev, task); 3837 3838 for_each_task_context_nr(ctxn) { 3839 ctx = task->perf_event_ctxp[ctxn]; 3840 if (likely(!ctx)) 3841 continue; 3842 3843 perf_event_context_sched_in(ctx, task); 3844 } 3845 3846 if (atomic_read(&nr_switch_events)) 3847 perf_event_switch(task, prev, true); 3848 } 3849 3850 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 3851 { 3852 u64 frequency = event->attr.sample_freq; 3853 u64 sec = NSEC_PER_SEC; 3854 u64 divisor, dividend; 3855 3856 int count_fls, nsec_fls, frequency_fls, sec_fls; 3857 3858 count_fls = fls64(count); 3859 nsec_fls = fls64(nsec); 3860 frequency_fls = fls64(frequency); 3861 sec_fls = 30; 3862 3863 /* 3864 * We got @count in @nsec, with a target of sample_freq HZ 3865 * the target period becomes: 3866 * 3867 * @count * 10^9 3868 * period = ------------------- 3869 * @nsec * sample_freq 3870 * 3871 */ 3872 3873 /* 3874 * Reduce accuracy by one bit such that @a and @b converge 3875 * to a similar magnitude. 3876 */ 3877 #define REDUCE_FLS(a, b) \ 3878 do { \ 3879 if (a##_fls > b##_fls) { \ 3880 a >>= 1; \ 3881 a##_fls--; \ 3882 } else { \ 3883 b >>= 1; \ 3884 b##_fls--; \ 3885 } \ 3886 } while (0) 3887 3888 /* 3889 * Reduce accuracy until either term fits in a u64, then proceed with 3890 * the other, so that finally we can do a u64/u64 division. 3891 */ 3892 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 3893 REDUCE_FLS(nsec, frequency); 3894 REDUCE_FLS(sec, count); 3895 } 3896 3897 if (count_fls + sec_fls > 64) { 3898 divisor = nsec * frequency; 3899 3900 while (count_fls + sec_fls > 64) { 3901 REDUCE_FLS(count, sec); 3902 divisor >>= 1; 3903 } 3904 3905 dividend = count * sec; 3906 } else { 3907 dividend = count * sec; 3908 3909 while (nsec_fls + frequency_fls > 64) { 3910 REDUCE_FLS(nsec, frequency); 3911 dividend >>= 1; 3912 } 3913 3914 divisor = nsec * frequency; 3915 } 3916 3917 if (!divisor) 3918 return dividend; 3919 3920 return div64_u64(dividend, divisor); 3921 } 3922 3923 static DEFINE_PER_CPU(int, perf_throttled_count); 3924 static DEFINE_PER_CPU(u64, perf_throttled_seq); 3925 3926 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 3927 { 3928 struct hw_perf_event *hwc = &event->hw; 3929 s64 period, sample_period; 3930 s64 delta; 3931 3932 period = perf_calculate_period(event, nsec, count); 3933 3934 delta = (s64)(period - hwc->sample_period); 3935 delta = (delta + 7) / 8; /* low pass filter */ 3936 3937 sample_period = hwc->sample_period + delta; 3938 3939 if (!sample_period) 3940 sample_period = 1; 3941 3942 hwc->sample_period = sample_period; 3943 3944 if (local64_read(&hwc->period_left) > 8*sample_period) { 3945 if (disable) 3946 event->pmu->stop(event, PERF_EF_UPDATE); 3947 3948 local64_set(&hwc->period_left, 0); 3949 3950 if (disable) 3951 event->pmu->start(event, PERF_EF_RELOAD); 3952 } 3953 } 3954 3955 /* 3956 * combine freq adjustment with unthrottling to avoid two passes over the 3957 * events. At the same time, make sure, having freq events does not change 3958 * the rate of unthrottling as that would introduce bias. 3959 */ 3960 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx, 3961 int needs_unthr) 3962 { 3963 struct perf_event *event; 3964 struct hw_perf_event *hwc; 3965 u64 now, period = TICK_NSEC; 3966 s64 delta; 3967 3968 /* 3969 * only need to iterate over all events iff: 3970 * - context have events in frequency mode (needs freq adjust) 3971 * - there are events to unthrottle on this cpu 3972 */ 3973 if (!(ctx->nr_freq || needs_unthr)) 3974 return; 3975 3976 raw_spin_lock(&ctx->lock); 3977 perf_pmu_disable(ctx->pmu); 3978 3979 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 3980 if (event->state != PERF_EVENT_STATE_ACTIVE) 3981 continue; 3982 3983 if (!event_filter_match(event)) 3984 continue; 3985 3986 perf_pmu_disable(event->pmu); 3987 3988 hwc = &event->hw; 3989 3990 if (hwc->interrupts == MAX_INTERRUPTS) { 3991 hwc->interrupts = 0; 3992 perf_log_throttle(event, 1); 3993 event->pmu->start(event, 0); 3994 } 3995 3996 if (!event->attr.freq || !event->attr.sample_freq) 3997 goto next; 3998 3999 /* 4000 * stop the event and update event->count 4001 */ 4002 event->pmu->stop(event, PERF_EF_UPDATE); 4003 4004 now = local64_read(&event->count); 4005 delta = now - hwc->freq_count_stamp; 4006 hwc->freq_count_stamp = now; 4007 4008 /* 4009 * restart the event 4010 * reload only if value has changed 4011 * we have stopped the event so tell that 4012 * to perf_adjust_period() to avoid stopping it 4013 * twice. 4014 */ 4015 if (delta > 0) 4016 perf_adjust_period(event, period, delta, false); 4017 4018 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 4019 next: 4020 perf_pmu_enable(event->pmu); 4021 } 4022 4023 perf_pmu_enable(ctx->pmu); 4024 raw_spin_unlock(&ctx->lock); 4025 } 4026 4027 /* 4028 * Move @event to the tail of the @ctx's elegible events. 4029 */ 4030 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event) 4031 { 4032 /* 4033 * Rotate the first entry last of non-pinned groups. Rotation might be 4034 * disabled by the inheritance code. 4035 */ 4036 if (ctx->rotate_disable) 4037 return; 4038 4039 perf_event_groups_delete(&ctx->flexible_groups, event); 4040 perf_event_groups_insert(&ctx->flexible_groups, event); 4041 } 4042 4043 /* pick an event from the flexible_groups to rotate */ 4044 static inline struct perf_event * 4045 ctx_event_to_rotate(struct perf_event_context *ctx) 4046 { 4047 struct perf_event *event; 4048 4049 /* pick the first active flexible event */ 4050 event = list_first_entry_or_null(&ctx->flexible_active, 4051 struct perf_event, active_list); 4052 4053 /* if no active flexible event, pick the first event */ 4054 if (!event) { 4055 event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree), 4056 typeof(*event), group_node); 4057 } 4058 4059 /* 4060 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in() 4061 * finds there are unschedulable events, it will set it again. 4062 */ 4063 ctx->rotate_necessary = 0; 4064 4065 return event; 4066 } 4067 4068 static bool perf_rotate_context(struct perf_cpu_context *cpuctx) 4069 { 4070 struct perf_event *cpu_event = NULL, *task_event = NULL; 4071 struct perf_event_context *task_ctx = NULL; 4072 int cpu_rotate, task_rotate; 4073 4074 /* 4075 * Since we run this from IRQ context, nobody can install new 4076 * events, thus the event count values are stable. 4077 */ 4078 4079 cpu_rotate = cpuctx->ctx.rotate_necessary; 4080 task_ctx = cpuctx->task_ctx; 4081 task_rotate = task_ctx ? task_ctx->rotate_necessary : 0; 4082 4083 if (!(cpu_rotate || task_rotate)) 4084 return false; 4085 4086 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 4087 perf_pmu_disable(cpuctx->ctx.pmu); 4088 4089 if (task_rotate) 4090 task_event = ctx_event_to_rotate(task_ctx); 4091 if (cpu_rotate) 4092 cpu_event = ctx_event_to_rotate(&cpuctx->ctx); 4093 4094 /* 4095 * As per the order given at ctx_resched() first 'pop' task flexible 4096 * and then, if needed CPU flexible. 4097 */ 4098 if (task_event || (task_ctx && cpu_event)) 4099 ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE); 4100 if (cpu_event) 4101 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 4102 4103 if (task_event) 4104 rotate_ctx(task_ctx, task_event); 4105 if (cpu_event) 4106 rotate_ctx(&cpuctx->ctx, cpu_event); 4107 4108 perf_event_sched_in(cpuctx, task_ctx, current); 4109 4110 perf_pmu_enable(cpuctx->ctx.pmu); 4111 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 4112 4113 return true; 4114 } 4115 4116 void perf_event_task_tick(void) 4117 { 4118 struct list_head *head = this_cpu_ptr(&active_ctx_list); 4119 struct perf_event_context *ctx, *tmp; 4120 int throttled; 4121 4122 lockdep_assert_irqs_disabled(); 4123 4124 __this_cpu_inc(perf_throttled_seq); 4125 throttled = __this_cpu_xchg(perf_throttled_count, 0); 4126 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 4127 4128 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list) 4129 perf_adjust_freq_unthr_context(ctx, throttled); 4130 } 4131 4132 static int event_enable_on_exec(struct perf_event *event, 4133 struct perf_event_context *ctx) 4134 { 4135 if (!event->attr.enable_on_exec) 4136 return 0; 4137 4138 event->attr.enable_on_exec = 0; 4139 if (event->state >= PERF_EVENT_STATE_INACTIVE) 4140 return 0; 4141 4142 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 4143 4144 return 1; 4145 } 4146 4147 /* 4148 * Enable all of a task's events that have been marked enable-on-exec. 4149 * This expects task == current. 4150 */ 4151 static void perf_event_enable_on_exec(int ctxn) 4152 { 4153 struct perf_event_context *ctx, *clone_ctx = NULL; 4154 enum event_type_t event_type = 0; 4155 struct perf_cpu_context *cpuctx; 4156 struct perf_event *event; 4157 unsigned long flags; 4158 int enabled = 0; 4159 4160 local_irq_save(flags); 4161 ctx = current->perf_event_ctxp[ctxn]; 4162 if (!ctx || !ctx->nr_events) 4163 goto out; 4164 4165 cpuctx = __get_cpu_context(ctx); 4166 perf_ctx_lock(cpuctx, ctx); 4167 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 4168 list_for_each_entry(event, &ctx->event_list, event_entry) { 4169 enabled |= event_enable_on_exec(event, ctx); 4170 event_type |= get_event_type(event); 4171 } 4172 4173 /* 4174 * Unclone and reschedule this context if we enabled any event. 4175 */ 4176 if (enabled) { 4177 clone_ctx = unclone_ctx(ctx); 4178 ctx_resched(cpuctx, ctx, event_type); 4179 } else { 4180 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 4181 } 4182 perf_ctx_unlock(cpuctx, ctx); 4183 4184 out: 4185 local_irq_restore(flags); 4186 4187 if (clone_ctx) 4188 put_ctx(clone_ctx); 4189 } 4190 4191 struct perf_read_data { 4192 struct perf_event *event; 4193 bool group; 4194 int ret; 4195 }; 4196 4197 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu) 4198 { 4199 u16 local_pkg, event_pkg; 4200 4201 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) { 4202 int local_cpu = smp_processor_id(); 4203 4204 event_pkg = topology_physical_package_id(event_cpu); 4205 local_pkg = topology_physical_package_id(local_cpu); 4206 4207 if (event_pkg == local_pkg) 4208 return local_cpu; 4209 } 4210 4211 return event_cpu; 4212 } 4213 4214 /* 4215 * Cross CPU call to read the hardware event 4216 */ 4217 static void __perf_event_read(void *info) 4218 { 4219 struct perf_read_data *data = info; 4220 struct perf_event *sub, *event = data->event; 4221 struct perf_event_context *ctx = event->ctx; 4222 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 4223 struct pmu *pmu = event->pmu; 4224 4225 /* 4226 * If this is a task context, we need to check whether it is 4227 * the current task context of this cpu. If not it has been 4228 * scheduled out before the smp call arrived. In that case 4229 * event->count would have been updated to a recent sample 4230 * when the event was scheduled out. 4231 */ 4232 if (ctx->task && cpuctx->task_ctx != ctx) 4233 return; 4234 4235 raw_spin_lock(&ctx->lock); 4236 if (ctx->is_active & EVENT_TIME) { 4237 update_context_time(ctx); 4238 update_cgrp_time_from_event(event); 4239 } 4240 4241 perf_event_update_time(event); 4242 if (data->group) 4243 perf_event_update_sibling_time(event); 4244 4245 if (event->state != PERF_EVENT_STATE_ACTIVE) 4246 goto unlock; 4247 4248 if (!data->group) { 4249 pmu->read(event); 4250 data->ret = 0; 4251 goto unlock; 4252 } 4253 4254 pmu->start_txn(pmu, PERF_PMU_TXN_READ); 4255 4256 pmu->read(event); 4257 4258 for_each_sibling_event(sub, event) { 4259 if (sub->state == PERF_EVENT_STATE_ACTIVE) { 4260 /* 4261 * Use sibling's PMU rather than @event's since 4262 * sibling could be on different (eg: software) PMU. 4263 */ 4264 sub->pmu->read(sub); 4265 } 4266 } 4267 4268 data->ret = pmu->commit_txn(pmu); 4269 4270 unlock: 4271 raw_spin_unlock(&ctx->lock); 4272 } 4273 4274 static inline u64 perf_event_count(struct perf_event *event) 4275 { 4276 return local64_read(&event->count) + atomic64_read(&event->child_count); 4277 } 4278 4279 /* 4280 * NMI-safe method to read a local event, that is an event that 4281 * is: 4282 * - either for the current task, or for this CPU 4283 * - does not have inherit set, for inherited task events 4284 * will not be local and we cannot read them atomically 4285 * - must not have a pmu::count method 4286 */ 4287 int perf_event_read_local(struct perf_event *event, u64 *value, 4288 u64 *enabled, u64 *running) 4289 { 4290 unsigned long flags; 4291 int ret = 0; 4292 4293 /* 4294 * Disabling interrupts avoids all counter scheduling (context 4295 * switches, timer based rotation and IPIs). 4296 */ 4297 local_irq_save(flags); 4298 4299 /* 4300 * It must not be an event with inherit set, we cannot read 4301 * all child counters from atomic context. 4302 */ 4303 if (event->attr.inherit) { 4304 ret = -EOPNOTSUPP; 4305 goto out; 4306 } 4307 4308 /* If this is a per-task event, it must be for current */ 4309 if ((event->attach_state & PERF_ATTACH_TASK) && 4310 event->hw.target != current) { 4311 ret = -EINVAL; 4312 goto out; 4313 } 4314 4315 /* If this is a per-CPU event, it must be for this CPU */ 4316 if (!(event->attach_state & PERF_ATTACH_TASK) && 4317 event->cpu != smp_processor_id()) { 4318 ret = -EINVAL; 4319 goto out; 4320 } 4321 4322 /* If this is a pinned event it must be running on this CPU */ 4323 if (event->attr.pinned && event->oncpu != smp_processor_id()) { 4324 ret = -EBUSY; 4325 goto out; 4326 } 4327 4328 /* 4329 * If the event is currently on this CPU, its either a per-task event, 4330 * or local to this CPU. Furthermore it means its ACTIVE (otherwise 4331 * oncpu == -1). 4332 */ 4333 if (event->oncpu == smp_processor_id()) 4334 event->pmu->read(event); 4335 4336 *value = local64_read(&event->count); 4337 if (enabled || running) { 4338 u64 now = event->shadow_ctx_time + perf_clock(); 4339 u64 __enabled, __running; 4340 4341 __perf_update_times(event, now, &__enabled, &__running); 4342 if (enabled) 4343 *enabled = __enabled; 4344 if (running) 4345 *running = __running; 4346 } 4347 out: 4348 local_irq_restore(flags); 4349 4350 return ret; 4351 } 4352 4353 static int perf_event_read(struct perf_event *event, bool group) 4354 { 4355 enum perf_event_state state = READ_ONCE(event->state); 4356 int event_cpu, ret = 0; 4357 4358 /* 4359 * If event is enabled and currently active on a CPU, update the 4360 * value in the event structure: 4361 */ 4362 again: 4363 if (state == PERF_EVENT_STATE_ACTIVE) { 4364 struct perf_read_data data; 4365 4366 /* 4367 * Orders the ->state and ->oncpu loads such that if we see 4368 * ACTIVE we must also see the right ->oncpu. 4369 * 4370 * Matches the smp_wmb() from event_sched_in(). 4371 */ 4372 smp_rmb(); 4373 4374 event_cpu = READ_ONCE(event->oncpu); 4375 if ((unsigned)event_cpu >= nr_cpu_ids) 4376 return 0; 4377 4378 data = (struct perf_read_data){ 4379 .event = event, 4380 .group = group, 4381 .ret = 0, 4382 }; 4383 4384 preempt_disable(); 4385 event_cpu = __perf_event_read_cpu(event, event_cpu); 4386 4387 /* 4388 * Purposely ignore the smp_call_function_single() return 4389 * value. 4390 * 4391 * If event_cpu isn't a valid CPU it means the event got 4392 * scheduled out and that will have updated the event count. 4393 * 4394 * Therefore, either way, we'll have an up-to-date event count 4395 * after this. 4396 */ 4397 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1); 4398 preempt_enable(); 4399 ret = data.ret; 4400 4401 } else if (state == PERF_EVENT_STATE_INACTIVE) { 4402 struct perf_event_context *ctx = event->ctx; 4403 unsigned long flags; 4404 4405 raw_spin_lock_irqsave(&ctx->lock, flags); 4406 state = event->state; 4407 if (state != PERF_EVENT_STATE_INACTIVE) { 4408 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4409 goto again; 4410 } 4411 4412 /* 4413 * May read while context is not active (e.g., thread is 4414 * blocked), in that case we cannot update context time 4415 */ 4416 if (ctx->is_active & EVENT_TIME) { 4417 update_context_time(ctx); 4418 update_cgrp_time_from_event(event); 4419 } 4420 4421 perf_event_update_time(event); 4422 if (group) 4423 perf_event_update_sibling_time(event); 4424 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4425 } 4426 4427 return ret; 4428 } 4429 4430 /* 4431 * Initialize the perf_event context in a task_struct: 4432 */ 4433 static void __perf_event_init_context(struct perf_event_context *ctx) 4434 { 4435 raw_spin_lock_init(&ctx->lock); 4436 mutex_init(&ctx->mutex); 4437 INIT_LIST_HEAD(&ctx->active_ctx_list); 4438 perf_event_groups_init(&ctx->pinned_groups); 4439 perf_event_groups_init(&ctx->flexible_groups); 4440 INIT_LIST_HEAD(&ctx->event_list); 4441 INIT_LIST_HEAD(&ctx->pinned_active); 4442 INIT_LIST_HEAD(&ctx->flexible_active); 4443 refcount_set(&ctx->refcount, 1); 4444 } 4445 4446 static struct perf_event_context * 4447 alloc_perf_context(struct pmu *pmu, struct task_struct *task) 4448 { 4449 struct perf_event_context *ctx; 4450 4451 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 4452 if (!ctx) 4453 return NULL; 4454 4455 __perf_event_init_context(ctx); 4456 if (task) 4457 ctx->task = get_task_struct(task); 4458 ctx->pmu = pmu; 4459 4460 return ctx; 4461 } 4462 4463 static struct task_struct * 4464 find_lively_task_by_vpid(pid_t vpid) 4465 { 4466 struct task_struct *task; 4467 4468 rcu_read_lock(); 4469 if (!vpid) 4470 task = current; 4471 else 4472 task = find_task_by_vpid(vpid); 4473 if (task) 4474 get_task_struct(task); 4475 rcu_read_unlock(); 4476 4477 if (!task) 4478 return ERR_PTR(-ESRCH); 4479 4480 return task; 4481 } 4482 4483 /* 4484 * Returns a matching context with refcount and pincount. 4485 */ 4486 static struct perf_event_context * 4487 find_get_context(struct pmu *pmu, struct task_struct *task, 4488 struct perf_event *event) 4489 { 4490 struct perf_event_context *ctx, *clone_ctx = NULL; 4491 struct perf_cpu_context *cpuctx; 4492 void *task_ctx_data = NULL; 4493 unsigned long flags; 4494 int ctxn, err; 4495 int cpu = event->cpu; 4496 4497 if (!task) { 4498 /* Must be root to operate on a CPU event: */ 4499 err = perf_allow_cpu(&event->attr); 4500 if (err) 4501 return ERR_PTR(err); 4502 4503 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 4504 ctx = &cpuctx->ctx; 4505 get_ctx(ctx); 4506 ++ctx->pin_count; 4507 4508 return ctx; 4509 } 4510 4511 err = -EINVAL; 4512 ctxn = pmu->task_ctx_nr; 4513 if (ctxn < 0) 4514 goto errout; 4515 4516 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 4517 task_ctx_data = alloc_task_ctx_data(pmu); 4518 if (!task_ctx_data) { 4519 err = -ENOMEM; 4520 goto errout; 4521 } 4522 } 4523 4524 retry: 4525 ctx = perf_lock_task_context(task, ctxn, &flags); 4526 if (ctx) { 4527 clone_ctx = unclone_ctx(ctx); 4528 ++ctx->pin_count; 4529 4530 if (task_ctx_data && !ctx->task_ctx_data) { 4531 ctx->task_ctx_data = task_ctx_data; 4532 task_ctx_data = NULL; 4533 } 4534 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4535 4536 if (clone_ctx) 4537 put_ctx(clone_ctx); 4538 } else { 4539 ctx = alloc_perf_context(pmu, task); 4540 err = -ENOMEM; 4541 if (!ctx) 4542 goto errout; 4543 4544 if (task_ctx_data) { 4545 ctx->task_ctx_data = task_ctx_data; 4546 task_ctx_data = NULL; 4547 } 4548 4549 err = 0; 4550 mutex_lock(&task->perf_event_mutex); 4551 /* 4552 * If it has already passed perf_event_exit_task(). 4553 * we must see PF_EXITING, it takes this mutex too. 4554 */ 4555 if (task->flags & PF_EXITING) 4556 err = -ESRCH; 4557 else if (task->perf_event_ctxp[ctxn]) 4558 err = -EAGAIN; 4559 else { 4560 get_ctx(ctx); 4561 ++ctx->pin_count; 4562 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); 4563 } 4564 mutex_unlock(&task->perf_event_mutex); 4565 4566 if (unlikely(err)) { 4567 put_ctx(ctx); 4568 4569 if (err == -EAGAIN) 4570 goto retry; 4571 goto errout; 4572 } 4573 } 4574 4575 free_task_ctx_data(pmu, task_ctx_data); 4576 return ctx; 4577 4578 errout: 4579 free_task_ctx_data(pmu, task_ctx_data); 4580 return ERR_PTR(err); 4581 } 4582 4583 static void perf_event_free_filter(struct perf_event *event); 4584 static void perf_event_free_bpf_prog(struct perf_event *event); 4585 4586 static void free_event_rcu(struct rcu_head *head) 4587 { 4588 struct perf_event *event; 4589 4590 event = container_of(head, struct perf_event, rcu_head); 4591 if (event->ns) 4592 put_pid_ns(event->ns); 4593 perf_event_free_filter(event); 4594 kfree(event); 4595 } 4596 4597 static void ring_buffer_attach(struct perf_event *event, 4598 struct perf_buffer *rb); 4599 4600 static void detach_sb_event(struct perf_event *event) 4601 { 4602 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 4603 4604 raw_spin_lock(&pel->lock); 4605 list_del_rcu(&event->sb_list); 4606 raw_spin_unlock(&pel->lock); 4607 } 4608 4609 static bool is_sb_event(struct perf_event *event) 4610 { 4611 struct perf_event_attr *attr = &event->attr; 4612 4613 if (event->parent) 4614 return false; 4615 4616 if (event->attach_state & PERF_ATTACH_TASK) 4617 return false; 4618 4619 if (attr->mmap || attr->mmap_data || attr->mmap2 || 4620 attr->comm || attr->comm_exec || 4621 attr->task || attr->ksymbol || 4622 attr->context_switch || attr->text_poke || 4623 attr->bpf_event) 4624 return true; 4625 return false; 4626 } 4627 4628 static void unaccount_pmu_sb_event(struct perf_event *event) 4629 { 4630 if (is_sb_event(event)) 4631 detach_sb_event(event); 4632 } 4633 4634 static void unaccount_event_cpu(struct perf_event *event, int cpu) 4635 { 4636 if (event->parent) 4637 return; 4638 4639 if (is_cgroup_event(event)) 4640 atomic_dec(&per_cpu(perf_cgroup_events, cpu)); 4641 } 4642 4643 #ifdef CONFIG_NO_HZ_FULL 4644 static DEFINE_SPINLOCK(nr_freq_lock); 4645 #endif 4646 4647 static void unaccount_freq_event_nohz(void) 4648 { 4649 #ifdef CONFIG_NO_HZ_FULL 4650 spin_lock(&nr_freq_lock); 4651 if (atomic_dec_and_test(&nr_freq_events)) 4652 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS); 4653 spin_unlock(&nr_freq_lock); 4654 #endif 4655 } 4656 4657 static void unaccount_freq_event(void) 4658 { 4659 if (tick_nohz_full_enabled()) 4660 unaccount_freq_event_nohz(); 4661 else 4662 atomic_dec(&nr_freq_events); 4663 } 4664 4665 static void unaccount_event(struct perf_event *event) 4666 { 4667 bool dec = false; 4668 4669 if (event->parent) 4670 return; 4671 4672 if (event->attach_state & PERF_ATTACH_TASK) 4673 dec = true; 4674 if (event->attr.mmap || event->attr.mmap_data) 4675 atomic_dec(&nr_mmap_events); 4676 if (event->attr.comm) 4677 atomic_dec(&nr_comm_events); 4678 if (event->attr.namespaces) 4679 atomic_dec(&nr_namespaces_events); 4680 if (event->attr.cgroup) 4681 atomic_dec(&nr_cgroup_events); 4682 if (event->attr.task) 4683 atomic_dec(&nr_task_events); 4684 if (event->attr.freq) 4685 unaccount_freq_event(); 4686 if (event->attr.context_switch) { 4687 dec = true; 4688 atomic_dec(&nr_switch_events); 4689 } 4690 if (is_cgroup_event(event)) 4691 dec = true; 4692 if (has_branch_stack(event)) 4693 dec = true; 4694 if (event->attr.ksymbol) 4695 atomic_dec(&nr_ksymbol_events); 4696 if (event->attr.bpf_event) 4697 atomic_dec(&nr_bpf_events); 4698 if (event->attr.text_poke) 4699 atomic_dec(&nr_text_poke_events); 4700 4701 if (dec) { 4702 if (!atomic_add_unless(&perf_sched_count, -1, 1)) 4703 schedule_delayed_work(&perf_sched_work, HZ); 4704 } 4705 4706 unaccount_event_cpu(event, event->cpu); 4707 4708 unaccount_pmu_sb_event(event); 4709 } 4710 4711 static void perf_sched_delayed(struct work_struct *work) 4712 { 4713 mutex_lock(&perf_sched_mutex); 4714 if (atomic_dec_and_test(&perf_sched_count)) 4715 static_branch_disable(&perf_sched_events); 4716 mutex_unlock(&perf_sched_mutex); 4717 } 4718 4719 /* 4720 * The following implement mutual exclusion of events on "exclusive" pmus 4721 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 4722 * at a time, so we disallow creating events that might conflict, namely: 4723 * 4724 * 1) cpu-wide events in the presence of per-task events, 4725 * 2) per-task events in the presence of cpu-wide events, 4726 * 3) two matching events on the same context. 4727 * 4728 * The former two cases are handled in the allocation path (perf_event_alloc(), 4729 * _free_event()), the latter -- before the first perf_install_in_context(). 4730 */ 4731 static int exclusive_event_init(struct perf_event *event) 4732 { 4733 struct pmu *pmu = event->pmu; 4734 4735 if (!is_exclusive_pmu(pmu)) 4736 return 0; 4737 4738 /* 4739 * Prevent co-existence of per-task and cpu-wide events on the 4740 * same exclusive pmu. 4741 * 4742 * Negative pmu::exclusive_cnt means there are cpu-wide 4743 * events on this "exclusive" pmu, positive means there are 4744 * per-task events. 4745 * 4746 * Since this is called in perf_event_alloc() path, event::ctx 4747 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 4748 * to mean "per-task event", because unlike other attach states it 4749 * never gets cleared. 4750 */ 4751 if (event->attach_state & PERF_ATTACH_TASK) { 4752 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 4753 return -EBUSY; 4754 } else { 4755 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 4756 return -EBUSY; 4757 } 4758 4759 return 0; 4760 } 4761 4762 static void exclusive_event_destroy(struct perf_event *event) 4763 { 4764 struct pmu *pmu = event->pmu; 4765 4766 if (!is_exclusive_pmu(pmu)) 4767 return; 4768 4769 /* see comment in exclusive_event_init() */ 4770 if (event->attach_state & PERF_ATTACH_TASK) 4771 atomic_dec(&pmu->exclusive_cnt); 4772 else 4773 atomic_inc(&pmu->exclusive_cnt); 4774 } 4775 4776 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 4777 { 4778 if ((e1->pmu == e2->pmu) && 4779 (e1->cpu == e2->cpu || 4780 e1->cpu == -1 || 4781 e2->cpu == -1)) 4782 return true; 4783 return false; 4784 } 4785 4786 static bool exclusive_event_installable(struct perf_event *event, 4787 struct perf_event_context *ctx) 4788 { 4789 struct perf_event *iter_event; 4790 struct pmu *pmu = event->pmu; 4791 4792 lockdep_assert_held(&ctx->mutex); 4793 4794 if (!is_exclusive_pmu(pmu)) 4795 return true; 4796 4797 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 4798 if (exclusive_event_match(iter_event, event)) 4799 return false; 4800 } 4801 4802 return true; 4803 } 4804 4805 static void perf_addr_filters_splice(struct perf_event *event, 4806 struct list_head *head); 4807 4808 static void _free_event(struct perf_event *event) 4809 { 4810 irq_work_sync(&event->pending); 4811 4812 unaccount_event(event); 4813 4814 security_perf_event_free(event); 4815 4816 if (event->rb) { 4817 /* 4818 * Can happen when we close an event with re-directed output. 4819 * 4820 * Since we have a 0 refcount, perf_mmap_close() will skip 4821 * over us; possibly making our ring_buffer_put() the last. 4822 */ 4823 mutex_lock(&event->mmap_mutex); 4824 ring_buffer_attach(event, NULL); 4825 mutex_unlock(&event->mmap_mutex); 4826 } 4827 4828 if (is_cgroup_event(event)) 4829 perf_detach_cgroup(event); 4830 4831 if (!event->parent) { 4832 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 4833 put_callchain_buffers(); 4834 } 4835 4836 perf_event_free_bpf_prog(event); 4837 perf_addr_filters_splice(event, NULL); 4838 kfree(event->addr_filter_ranges); 4839 4840 if (event->destroy) 4841 event->destroy(event); 4842 4843 /* 4844 * Must be after ->destroy(), due to uprobe_perf_close() using 4845 * hw.target. 4846 */ 4847 if (event->hw.target) 4848 put_task_struct(event->hw.target); 4849 4850 /* 4851 * perf_event_free_task() relies on put_ctx() being 'last', in particular 4852 * all task references must be cleaned up. 4853 */ 4854 if (event->ctx) 4855 put_ctx(event->ctx); 4856 4857 exclusive_event_destroy(event); 4858 module_put(event->pmu->module); 4859 4860 call_rcu(&event->rcu_head, free_event_rcu); 4861 } 4862 4863 /* 4864 * Used to free events which have a known refcount of 1, such as in error paths 4865 * where the event isn't exposed yet and inherited events. 4866 */ 4867 static void free_event(struct perf_event *event) 4868 { 4869 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 4870 "unexpected event refcount: %ld; ptr=%p\n", 4871 atomic_long_read(&event->refcount), event)) { 4872 /* leak to avoid use-after-free */ 4873 return; 4874 } 4875 4876 _free_event(event); 4877 } 4878 4879 /* 4880 * Remove user event from the owner task. 4881 */ 4882 static void perf_remove_from_owner(struct perf_event *event) 4883 { 4884 struct task_struct *owner; 4885 4886 rcu_read_lock(); 4887 /* 4888 * Matches the smp_store_release() in perf_event_exit_task(). If we 4889 * observe !owner it means the list deletion is complete and we can 4890 * indeed free this event, otherwise we need to serialize on 4891 * owner->perf_event_mutex. 4892 */ 4893 owner = READ_ONCE(event->owner); 4894 if (owner) { 4895 /* 4896 * Since delayed_put_task_struct() also drops the last 4897 * task reference we can safely take a new reference 4898 * while holding the rcu_read_lock(). 4899 */ 4900 get_task_struct(owner); 4901 } 4902 rcu_read_unlock(); 4903 4904 if (owner) { 4905 /* 4906 * If we're here through perf_event_exit_task() we're already 4907 * holding ctx->mutex which would be an inversion wrt. the 4908 * normal lock order. 4909 * 4910 * However we can safely take this lock because its the child 4911 * ctx->mutex. 4912 */ 4913 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 4914 4915 /* 4916 * We have to re-check the event->owner field, if it is cleared 4917 * we raced with perf_event_exit_task(), acquiring the mutex 4918 * ensured they're done, and we can proceed with freeing the 4919 * event. 4920 */ 4921 if (event->owner) { 4922 list_del_init(&event->owner_entry); 4923 smp_store_release(&event->owner, NULL); 4924 } 4925 mutex_unlock(&owner->perf_event_mutex); 4926 put_task_struct(owner); 4927 } 4928 } 4929 4930 static void put_event(struct perf_event *event) 4931 { 4932 if (!atomic_long_dec_and_test(&event->refcount)) 4933 return; 4934 4935 _free_event(event); 4936 } 4937 4938 /* 4939 * Kill an event dead; while event:refcount will preserve the event 4940 * object, it will not preserve its functionality. Once the last 'user' 4941 * gives up the object, we'll destroy the thing. 4942 */ 4943 int perf_event_release_kernel(struct perf_event *event) 4944 { 4945 struct perf_event_context *ctx = event->ctx; 4946 struct perf_event *child, *tmp; 4947 LIST_HEAD(free_list); 4948 4949 /* 4950 * If we got here through err_file: fput(event_file); we will not have 4951 * attached to a context yet. 4952 */ 4953 if (!ctx) { 4954 WARN_ON_ONCE(event->attach_state & 4955 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP)); 4956 goto no_ctx; 4957 } 4958 4959 if (!is_kernel_event(event)) 4960 perf_remove_from_owner(event); 4961 4962 ctx = perf_event_ctx_lock(event); 4963 WARN_ON_ONCE(ctx->parent_ctx); 4964 perf_remove_from_context(event, DETACH_GROUP); 4965 4966 raw_spin_lock_irq(&ctx->lock); 4967 /* 4968 * Mark this event as STATE_DEAD, there is no external reference to it 4969 * anymore. 4970 * 4971 * Anybody acquiring event->child_mutex after the below loop _must_ 4972 * also see this, most importantly inherit_event() which will avoid 4973 * placing more children on the list. 4974 * 4975 * Thus this guarantees that we will in fact observe and kill _ALL_ 4976 * child events. 4977 */ 4978 event->state = PERF_EVENT_STATE_DEAD; 4979 raw_spin_unlock_irq(&ctx->lock); 4980 4981 perf_event_ctx_unlock(event, ctx); 4982 4983 again: 4984 mutex_lock(&event->child_mutex); 4985 list_for_each_entry(child, &event->child_list, child_list) { 4986 4987 /* 4988 * Cannot change, child events are not migrated, see the 4989 * comment with perf_event_ctx_lock_nested(). 4990 */ 4991 ctx = READ_ONCE(child->ctx); 4992 /* 4993 * Since child_mutex nests inside ctx::mutex, we must jump 4994 * through hoops. We start by grabbing a reference on the ctx. 4995 * 4996 * Since the event cannot get freed while we hold the 4997 * child_mutex, the context must also exist and have a !0 4998 * reference count. 4999 */ 5000 get_ctx(ctx); 5001 5002 /* 5003 * Now that we have a ctx ref, we can drop child_mutex, and 5004 * acquire ctx::mutex without fear of it going away. Then we 5005 * can re-acquire child_mutex. 5006 */ 5007 mutex_unlock(&event->child_mutex); 5008 mutex_lock(&ctx->mutex); 5009 mutex_lock(&event->child_mutex); 5010 5011 /* 5012 * Now that we hold ctx::mutex and child_mutex, revalidate our 5013 * state, if child is still the first entry, it didn't get freed 5014 * and we can continue doing so. 5015 */ 5016 tmp = list_first_entry_or_null(&event->child_list, 5017 struct perf_event, child_list); 5018 if (tmp == child) { 5019 perf_remove_from_context(child, DETACH_GROUP); 5020 list_move(&child->child_list, &free_list); 5021 /* 5022 * This matches the refcount bump in inherit_event(); 5023 * this can't be the last reference. 5024 */ 5025 put_event(event); 5026 } 5027 5028 mutex_unlock(&event->child_mutex); 5029 mutex_unlock(&ctx->mutex); 5030 put_ctx(ctx); 5031 goto again; 5032 } 5033 mutex_unlock(&event->child_mutex); 5034 5035 list_for_each_entry_safe(child, tmp, &free_list, child_list) { 5036 void *var = &child->ctx->refcount; 5037 5038 list_del(&child->child_list); 5039 free_event(child); 5040 5041 /* 5042 * Wake any perf_event_free_task() waiting for this event to be 5043 * freed. 5044 */ 5045 smp_mb(); /* pairs with wait_var_event() */ 5046 wake_up_var(var); 5047 } 5048 5049 no_ctx: 5050 put_event(event); /* Must be the 'last' reference */ 5051 return 0; 5052 } 5053 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 5054 5055 /* 5056 * Called when the last reference to the file is gone. 5057 */ 5058 static int perf_release(struct inode *inode, struct file *file) 5059 { 5060 perf_event_release_kernel(file->private_data); 5061 return 0; 5062 } 5063 5064 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5065 { 5066 struct perf_event *child; 5067 u64 total = 0; 5068 5069 *enabled = 0; 5070 *running = 0; 5071 5072 mutex_lock(&event->child_mutex); 5073 5074 (void)perf_event_read(event, false); 5075 total += perf_event_count(event); 5076 5077 *enabled += event->total_time_enabled + 5078 atomic64_read(&event->child_total_time_enabled); 5079 *running += event->total_time_running + 5080 atomic64_read(&event->child_total_time_running); 5081 5082 list_for_each_entry(child, &event->child_list, child_list) { 5083 (void)perf_event_read(child, false); 5084 total += perf_event_count(child); 5085 *enabled += child->total_time_enabled; 5086 *running += child->total_time_running; 5087 } 5088 mutex_unlock(&event->child_mutex); 5089 5090 return total; 5091 } 5092 5093 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5094 { 5095 struct perf_event_context *ctx; 5096 u64 count; 5097 5098 ctx = perf_event_ctx_lock(event); 5099 count = __perf_event_read_value(event, enabled, running); 5100 perf_event_ctx_unlock(event, ctx); 5101 5102 return count; 5103 } 5104 EXPORT_SYMBOL_GPL(perf_event_read_value); 5105 5106 static int __perf_read_group_add(struct perf_event *leader, 5107 u64 read_format, u64 *values) 5108 { 5109 struct perf_event_context *ctx = leader->ctx; 5110 struct perf_event *sub; 5111 unsigned long flags; 5112 int n = 1; /* skip @nr */ 5113 int ret; 5114 5115 ret = perf_event_read(leader, true); 5116 if (ret) 5117 return ret; 5118 5119 raw_spin_lock_irqsave(&ctx->lock, flags); 5120 5121 /* 5122 * Since we co-schedule groups, {enabled,running} times of siblings 5123 * will be identical to those of the leader, so we only publish one 5124 * set. 5125 */ 5126 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 5127 values[n++] += leader->total_time_enabled + 5128 atomic64_read(&leader->child_total_time_enabled); 5129 } 5130 5131 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 5132 values[n++] += leader->total_time_running + 5133 atomic64_read(&leader->child_total_time_running); 5134 } 5135 5136 /* 5137 * Write {count,id} tuples for every sibling. 5138 */ 5139 values[n++] += perf_event_count(leader); 5140 if (read_format & PERF_FORMAT_ID) 5141 values[n++] = primary_event_id(leader); 5142 5143 for_each_sibling_event(sub, leader) { 5144 values[n++] += perf_event_count(sub); 5145 if (read_format & PERF_FORMAT_ID) 5146 values[n++] = primary_event_id(sub); 5147 } 5148 5149 raw_spin_unlock_irqrestore(&ctx->lock, flags); 5150 return 0; 5151 } 5152 5153 static int perf_read_group(struct perf_event *event, 5154 u64 read_format, char __user *buf) 5155 { 5156 struct perf_event *leader = event->group_leader, *child; 5157 struct perf_event_context *ctx = leader->ctx; 5158 int ret; 5159 u64 *values; 5160 5161 lockdep_assert_held(&ctx->mutex); 5162 5163 values = kzalloc(event->read_size, GFP_KERNEL); 5164 if (!values) 5165 return -ENOMEM; 5166 5167 values[0] = 1 + leader->nr_siblings; 5168 5169 /* 5170 * By locking the child_mutex of the leader we effectively 5171 * lock the child list of all siblings.. XXX explain how. 5172 */ 5173 mutex_lock(&leader->child_mutex); 5174 5175 ret = __perf_read_group_add(leader, read_format, values); 5176 if (ret) 5177 goto unlock; 5178 5179 list_for_each_entry(child, &leader->child_list, child_list) { 5180 ret = __perf_read_group_add(child, read_format, values); 5181 if (ret) 5182 goto unlock; 5183 } 5184 5185 mutex_unlock(&leader->child_mutex); 5186 5187 ret = event->read_size; 5188 if (copy_to_user(buf, values, event->read_size)) 5189 ret = -EFAULT; 5190 goto out; 5191 5192 unlock: 5193 mutex_unlock(&leader->child_mutex); 5194 out: 5195 kfree(values); 5196 return ret; 5197 } 5198 5199 static int perf_read_one(struct perf_event *event, 5200 u64 read_format, char __user *buf) 5201 { 5202 u64 enabled, running; 5203 u64 values[4]; 5204 int n = 0; 5205 5206 values[n++] = __perf_event_read_value(event, &enabled, &running); 5207 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 5208 values[n++] = enabled; 5209 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 5210 values[n++] = running; 5211 if (read_format & PERF_FORMAT_ID) 5212 values[n++] = primary_event_id(event); 5213 5214 if (copy_to_user(buf, values, n * sizeof(u64))) 5215 return -EFAULT; 5216 5217 return n * sizeof(u64); 5218 } 5219 5220 static bool is_event_hup(struct perf_event *event) 5221 { 5222 bool no_children; 5223 5224 if (event->state > PERF_EVENT_STATE_EXIT) 5225 return false; 5226 5227 mutex_lock(&event->child_mutex); 5228 no_children = list_empty(&event->child_list); 5229 mutex_unlock(&event->child_mutex); 5230 return no_children; 5231 } 5232 5233 /* 5234 * Read the performance event - simple non blocking version for now 5235 */ 5236 static ssize_t 5237 __perf_read(struct perf_event *event, char __user *buf, size_t count) 5238 { 5239 u64 read_format = event->attr.read_format; 5240 int ret; 5241 5242 /* 5243 * Return end-of-file for a read on an event that is in 5244 * error state (i.e. because it was pinned but it couldn't be 5245 * scheduled on to the CPU at some point). 5246 */ 5247 if (event->state == PERF_EVENT_STATE_ERROR) 5248 return 0; 5249 5250 if (count < event->read_size) 5251 return -ENOSPC; 5252 5253 WARN_ON_ONCE(event->ctx->parent_ctx); 5254 if (read_format & PERF_FORMAT_GROUP) 5255 ret = perf_read_group(event, read_format, buf); 5256 else 5257 ret = perf_read_one(event, read_format, buf); 5258 5259 return ret; 5260 } 5261 5262 static ssize_t 5263 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 5264 { 5265 struct perf_event *event = file->private_data; 5266 struct perf_event_context *ctx; 5267 int ret; 5268 5269 ret = security_perf_event_read(event); 5270 if (ret) 5271 return ret; 5272 5273 ctx = perf_event_ctx_lock(event); 5274 ret = __perf_read(event, buf, count); 5275 perf_event_ctx_unlock(event, ctx); 5276 5277 return ret; 5278 } 5279 5280 static __poll_t perf_poll(struct file *file, poll_table *wait) 5281 { 5282 struct perf_event *event = file->private_data; 5283 struct perf_buffer *rb; 5284 __poll_t events = EPOLLHUP; 5285 5286 poll_wait(file, &event->waitq, wait); 5287 5288 if (is_event_hup(event)) 5289 return events; 5290 5291 /* 5292 * Pin the event->rb by taking event->mmap_mutex; otherwise 5293 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 5294 */ 5295 mutex_lock(&event->mmap_mutex); 5296 rb = event->rb; 5297 if (rb) 5298 events = atomic_xchg(&rb->poll, 0); 5299 mutex_unlock(&event->mmap_mutex); 5300 return events; 5301 } 5302 5303 static void _perf_event_reset(struct perf_event *event) 5304 { 5305 (void)perf_event_read(event, false); 5306 local64_set(&event->count, 0); 5307 perf_event_update_userpage(event); 5308 } 5309 5310 /* Assume it's not an event with inherit set. */ 5311 u64 perf_event_pause(struct perf_event *event, bool reset) 5312 { 5313 struct perf_event_context *ctx; 5314 u64 count; 5315 5316 ctx = perf_event_ctx_lock(event); 5317 WARN_ON_ONCE(event->attr.inherit); 5318 _perf_event_disable(event); 5319 count = local64_read(&event->count); 5320 if (reset) 5321 local64_set(&event->count, 0); 5322 perf_event_ctx_unlock(event, ctx); 5323 5324 return count; 5325 } 5326 EXPORT_SYMBOL_GPL(perf_event_pause); 5327 5328 /* 5329 * Holding the top-level event's child_mutex means that any 5330 * descendant process that has inherited this event will block 5331 * in perf_event_exit_event() if it goes to exit, thus satisfying the 5332 * task existence requirements of perf_event_enable/disable. 5333 */ 5334 static void perf_event_for_each_child(struct perf_event *event, 5335 void (*func)(struct perf_event *)) 5336 { 5337 struct perf_event *child; 5338 5339 WARN_ON_ONCE(event->ctx->parent_ctx); 5340 5341 mutex_lock(&event->child_mutex); 5342 func(event); 5343 list_for_each_entry(child, &event->child_list, child_list) 5344 func(child); 5345 mutex_unlock(&event->child_mutex); 5346 } 5347 5348 static void perf_event_for_each(struct perf_event *event, 5349 void (*func)(struct perf_event *)) 5350 { 5351 struct perf_event_context *ctx = event->ctx; 5352 struct perf_event *sibling; 5353 5354 lockdep_assert_held(&ctx->mutex); 5355 5356 event = event->group_leader; 5357 5358 perf_event_for_each_child(event, func); 5359 for_each_sibling_event(sibling, event) 5360 perf_event_for_each_child(sibling, func); 5361 } 5362 5363 static void __perf_event_period(struct perf_event *event, 5364 struct perf_cpu_context *cpuctx, 5365 struct perf_event_context *ctx, 5366 void *info) 5367 { 5368 u64 value = *((u64 *)info); 5369 bool active; 5370 5371 if (event->attr.freq) { 5372 event->attr.sample_freq = value; 5373 } else { 5374 event->attr.sample_period = value; 5375 event->hw.sample_period = value; 5376 } 5377 5378 active = (event->state == PERF_EVENT_STATE_ACTIVE); 5379 if (active) { 5380 perf_pmu_disable(ctx->pmu); 5381 /* 5382 * We could be throttled; unthrottle now to avoid the tick 5383 * trying to unthrottle while we already re-started the event. 5384 */ 5385 if (event->hw.interrupts == MAX_INTERRUPTS) { 5386 event->hw.interrupts = 0; 5387 perf_log_throttle(event, 1); 5388 } 5389 event->pmu->stop(event, PERF_EF_UPDATE); 5390 } 5391 5392 local64_set(&event->hw.period_left, 0); 5393 5394 if (active) { 5395 event->pmu->start(event, PERF_EF_RELOAD); 5396 perf_pmu_enable(ctx->pmu); 5397 } 5398 } 5399 5400 static int perf_event_check_period(struct perf_event *event, u64 value) 5401 { 5402 return event->pmu->check_period(event, value); 5403 } 5404 5405 static int _perf_event_period(struct perf_event *event, u64 value) 5406 { 5407 if (!is_sampling_event(event)) 5408 return -EINVAL; 5409 5410 if (!value) 5411 return -EINVAL; 5412 5413 if (event->attr.freq && value > sysctl_perf_event_sample_rate) 5414 return -EINVAL; 5415 5416 if (perf_event_check_period(event, value)) 5417 return -EINVAL; 5418 5419 if (!event->attr.freq && (value & (1ULL << 63))) 5420 return -EINVAL; 5421 5422 event_function_call(event, __perf_event_period, &value); 5423 5424 return 0; 5425 } 5426 5427 int perf_event_period(struct perf_event *event, u64 value) 5428 { 5429 struct perf_event_context *ctx; 5430 int ret; 5431 5432 ctx = perf_event_ctx_lock(event); 5433 ret = _perf_event_period(event, value); 5434 perf_event_ctx_unlock(event, ctx); 5435 5436 return ret; 5437 } 5438 EXPORT_SYMBOL_GPL(perf_event_period); 5439 5440 static const struct file_operations perf_fops; 5441 5442 static inline int perf_fget_light(int fd, struct fd *p) 5443 { 5444 struct fd f = fdget(fd); 5445 if (!f.file) 5446 return -EBADF; 5447 5448 if (f.file->f_op != &perf_fops) { 5449 fdput(f); 5450 return -EBADF; 5451 } 5452 *p = f; 5453 return 0; 5454 } 5455 5456 static int perf_event_set_output(struct perf_event *event, 5457 struct perf_event *output_event); 5458 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 5459 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd); 5460 static int perf_copy_attr(struct perf_event_attr __user *uattr, 5461 struct perf_event_attr *attr); 5462 5463 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 5464 { 5465 void (*func)(struct perf_event *); 5466 u32 flags = arg; 5467 5468 switch (cmd) { 5469 case PERF_EVENT_IOC_ENABLE: 5470 func = _perf_event_enable; 5471 break; 5472 case PERF_EVENT_IOC_DISABLE: 5473 func = _perf_event_disable; 5474 break; 5475 case PERF_EVENT_IOC_RESET: 5476 func = _perf_event_reset; 5477 break; 5478 5479 case PERF_EVENT_IOC_REFRESH: 5480 return _perf_event_refresh(event, arg); 5481 5482 case PERF_EVENT_IOC_PERIOD: 5483 { 5484 u64 value; 5485 5486 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value))) 5487 return -EFAULT; 5488 5489 return _perf_event_period(event, value); 5490 } 5491 case PERF_EVENT_IOC_ID: 5492 { 5493 u64 id = primary_event_id(event); 5494 5495 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 5496 return -EFAULT; 5497 return 0; 5498 } 5499 5500 case PERF_EVENT_IOC_SET_OUTPUT: 5501 { 5502 int ret; 5503 if (arg != -1) { 5504 struct perf_event *output_event; 5505 struct fd output; 5506 ret = perf_fget_light(arg, &output); 5507 if (ret) 5508 return ret; 5509 output_event = output.file->private_data; 5510 ret = perf_event_set_output(event, output_event); 5511 fdput(output); 5512 } else { 5513 ret = perf_event_set_output(event, NULL); 5514 } 5515 return ret; 5516 } 5517 5518 case PERF_EVENT_IOC_SET_FILTER: 5519 return perf_event_set_filter(event, (void __user *)arg); 5520 5521 case PERF_EVENT_IOC_SET_BPF: 5522 return perf_event_set_bpf_prog(event, arg); 5523 5524 case PERF_EVENT_IOC_PAUSE_OUTPUT: { 5525 struct perf_buffer *rb; 5526 5527 rcu_read_lock(); 5528 rb = rcu_dereference(event->rb); 5529 if (!rb || !rb->nr_pages) { 5530 rcu_read_unlock(); 5531 return -EINVAL; 5532 } 5533 rb_toggle_paused(rb, !!arg); 5534 rcu_read_unlock(); 5535 return 0; 5536 } 5537 5538 case PERF_EVENT_IOC_QUERY_BPF: 5539 return perf_event_query_prog_array(event, (void __user *)arg); 5540 5541 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: { 5542 struct perf_event_attr new_attr; 5543 int err = perf_copy_attr((struct perf_event_attr __user *)arg, 5544 &new_attr); 5545 5546 if (err) 5547 return err; 5548 5549 return perf_event_modify_attr(event, &new_attr); 5550 } 5551 default: 5552 return -ENOTTY; 5553 } 5554 5555 if (flags & PERF_IOC_FLAG_GROUP) 5556 perf_event_for_each(event, func); 5557 else 5558 perf_event_for_each_child(event, func); 5559 5560 return 0; 5561 } 5562 5563 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5564 { 5565 struct perf_event *event = file->private_data; 5566 struct perf_event_context *ctx; 5567 long ret; 5568 5569 /* Treat ioctl like writes as it is likely a mutating operation. */ 5570 ret = security_perf_event_write(event); 5571 if (ret) 5572 return ret; 5573 5574 ctx = perf_event_ctx_lock(event); 5575 ret = _perf_ioctl(event, cmd, arg); 5576 perf_event_ctx_unlock(event, ctx); 5577 5578 return ret; 5579 } 5580 5581 #ifdef CONFIG_COMPAT 5582 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 5583 unsigned long arg) 5584 { 5585 switch (_IOC_NR(cmd)) { 5586 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 5587 case _IOC_NR(PERF_EVENT_IOC_ID): 5588 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF): 5589 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES): 5590 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 5591 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 5592 cmd &= ~IOCSIZE_MASK; 5593 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 5594 } 5595 break; 5596 } 5597 return perf_ioctl(file, cmd, arg); 5598 } 5599 #else 5600 # define perf_compat_ioctl NULL 5601 #endif 5602 5603 int perf_event_task_enable(void) 5604 { 5605 struct perf_event_context *ctx; 5606 struct perf_event *event; 5607 5608 mutex_lock(¤t->perf_event_mutex); 5609 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 5610 ctx = perf_event_ctx_lock(event); 5611 perf_event_for_each_child(event, _perf_event_enable); 5612 perf_event_ctx_unlock(event, ctx); 5613 } 5614 mutex_unlock(¤t->perf_event_mutex); 5615 5616 return 0; 5617 } 5618 5619 int perf_event_task_disable(void) 5620 { 5621 struct perf_event_context *ctx; 5622 struct perf_event *event; 5623 5624 mutex_lock(¤t->perf_event_mutex); 5625 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 5626 ctx = perf_event_ctx_lock(event); 5627 perf_event_for_each_child(event, _perf_event_disable); 5628 perf_event_ctx_unlock(event, ctx); 5629 } 5630 mutex_unlock(¤t->perf_event_mutex); 5631 5632 return 0; 5633 } 5634 5635 static int perf_event_index(struct perf_event *event) 5636 { 5637 if (event->hw.state & PERF_HES_STOPPED) 5638 return 0; 5639 5640 if (event->state != PERF_EVENT_STATE_ACTIVE) 5641 return 0; 5642 5643 return event->pmu->event_idx(event); 5644 } 5645 5646 static void calc_timer_values(struct perf_event *event, 5647 u64 *now, 5648 u64 *enabled, 5649 u64 *running) 5650 { 5651 u64 ctx_time; 5652 5653 *now = perf_clock(); 5654 ctx_time = event->shadow_ctx_time + *now; 5655 __perf_update_times(event, ctx_time, enabled, running); 5656 } 5657 5658 static void perf_event_init_userpage(struct perf_event *event) 5659 { 5660 struct perf_event_mmap_page *userpg; 5661 struct perf_buffer *rb; 5662 5663 rcu_read_lock(); 5664 rb = rcu_dereference(event->rb); 5665 if (!rb) 5666 goto unlock; 5667 5668 userpg = rb->user_page; 5669 5670 /* Allow new userspace to detect that bit 0 is deprecated */ 5671 userpg->cap_bit0_is_deprecated = 1; 5672 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 5673 userpg->data_offset = PAGE_SIZE; 5674 userpg->data_size = perf_data_size(rb); 5675 5676 unlock: 5677 rcu_read_unlock(); 5678 } 5679 5680 void __weak arch_perf_update_userpage( 5681 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 5682 { 5683 } 5684 5685 /* 5686 * Callers need to ensure there can be no nesting of this function, otherwise 5687 * the seqlock logic goes bad. We can not serialize this because the arch 5688 * code calls this from NMI context. 5689 */ 5690 void perf_event_update_userpage(struct perf_event *event) 5691 { 5692 struct perf_event_mmap_page *userpg; 5693 struct perf_buffer *rb; 5694 u64 enabled, running, now; 5695 5696 rcu_read_lock(); 5697 rb = rcu_dereference(event->rb); 5698 if (!rb) 5699 goto unlock; 5700 5701 /* 5702 * compute total_time_enabled, total_time_running 5703 * based on snapshot values taken when the event 5704 * was last scheduled in. 5705 * 5706 * we cannot simply called update_context_time() 5707 * because of locking issue as we can be called in 5708 * NMI context 5709 */ 5710 calc_timer_values(event, &now, &enabled, &running); 5711 5712 userpg = rb->user_page; 5713 /* 5714 * Disable preemption to guarantee consistent time stamps are stored to 5715 * the user page. 5716 */ 5717 preempt_disable(); 5718 ++userpg->lock; 5719 barrier(); 5720 userpg->index = perf_event_index(event); 5721 userpg->offset = perf_event_count(event); 5722 if (userpg->index) 5723 userpg->offset -= local64_read(&event->hw.prev_count); 5724 5725 userpg->time_enabled = enabled + 5726 atomic64_read(&event->child_total_time_enabled); 5727 5728 userpg->time_running = running + 5729 atomic64_read(&event->child_total_time_running); 5730 5731 arch_perf_update_userpage(event, userpg, now); 5732 5733 barrier(); 5734 ++userpg->lock; 5735 preempt_enable(); 5736 unlock: 5737 rcu_read_unlock(); 5738 } 5739 EXPORT_SYMBOL_GPL(perf_event_update_userpage); 5740 5741 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf) 5742 { 5743 struct perf_event *event = vmf->vma->vm_file->private_data; 5744 struct perf_buffer *rb; 5745 vm_fault_t ret = VM_FAULT_SIGBUS; 5746 5747 if (vmf->flags & FAULT_FLAG_MKWRITE) { 5748 if (vmf->pgoff == 0) 5749 ret = 0; 5750 return ret; 5751 } 5752 5753 rcu_read_lock(); 5754 rb = rcu_dereference(event->rb); 5755 if (!rb) 5756 goto unlock; 5757 5758 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 5759 goto unlock; 5760 5761 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 5762 if (!vmf->page) 5763 goto unlock; 5764 5765 get_page(vmf->page); 5766 vmf->page->mapping = vmf->vma->vm_file->f_mapping; 5767 vmf->page->index = vmf->pgoff; 5768 5769 ret = 0; 5770 unlock: 5771 rcu_read_unlock(); 5772 5773 return ret; 5774 } 5775 5776 static void ring_buffer_attach(struct perf_event *event, 5777 struct perf_buffer *rb) 5778 { 5779 struct perf_buffer *old_rb = NULL; 5780 unsigned long flags; 5781 5782 if (event->rb) { 5783 /* 5784 * Should be impossible, we set this when removing 5785 * event->rb_entry and wait/clear when adding event->rb_entry. 5786 */ 5787 WARN_ON_ONCE(event->rcu_pending); 5788 5789 old_rb = event->rb; 5790 spin_lock_irqsave(&old_rb->event_lock, flags); 5791 list_del_rcu(&event->rb_entry); 5792 spin_unlock_irqrestore(&old_rb->event_lock, flags); 5793 5794 event->rcu_batches = get_state_synchronize_rcu(); 5795 event->rcu_pending = 1; 5796 } 5797 5798 if (rb) { 5799 if (event->rcu_pending) { 5800 cond_synchronize_rcu(event->rcu_batches); 5801 event->rcu_pending = 0; 5802 } 5803 5804 spin_lock_irqsave(&rb->event_lock, flags); 5805 list_add_rcu(&event->rb_entry, &rb->event_list); 5806 spin_unlock_irqrestore(&rb->event_lock, flags); 5807 } 5808 5809 /* 5810 * Avoid racing with perf_mmap_close(AUX): stop the event 5811 * before swizzling the event::rb pointer; if it's getting 5812 * unmapped, its aux_mmap_count will be 0 and it won't 5813 * restart. See the comment in __perf_pmu_output_stop(). 5814 * 5815 * Data will inevitably be lost when set_output is done in 5816 * mid-air, but then again, whoever does it like this is 5817 * not in for the data anyway. 5818 */ 5819 if (has_aux(event)) 5820 perf_event_stop(event, 0); 5821 5822 rcu_assign_pointer(event->rb, rb); 5823 5824 if (old_rb) { 5825 ring_buffer_put(old_rb); 5826 /* 5827 * Since we detached before setting the new rb, so that we 5828 * could attach the new rb, we could have missed a wakeup. 5829 * Provide it now. 5830 */ 5831 wake_up_all(&event->waitq); 5832 } 5833 } 5834 5835 static void ring_buffer_wakeup(struct perf_event *event) 5836 { 5837 struct perf_buffer *rb; 5838 5839 rcu_read_lock(); 5840 rb = rcu_dereference(event->rb); 5841 if (rb) { 5842 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 5843 wake_up_all(&event->waitq); 5844 } 5845 rcu_read_unlock(); 5846 } 5847 5848 struct perf_buffer *ring_buffer_get(struct perf_event *event) 5849 { 5850 struct perf_buffer *rb; 5851 5852 rcu_read_lock(); 5853 rb = rcu_dereference(event->rb); 5854 if (rb) { 5855 if (!refcount_inc_not_zero(&rb->refcount)) 5856 rb = NULL; 5857 } 5858 rcu_read_unlock(); 5859 5860 return rb; 5861 } 5862 5863 void ring_buffer_put(struct perf_buffer *rb) 5864 { 5865 if (!refcount_dec_and_test(&rb->refcount)) 5866 return; 5867 5868 WARN_ON_ONCE(!list_empty(&rb->event_list)); 5869 5870 call_rcu(&rb->rcu_head, rb_free_rcu); 5871 } 5872 5873 static void perf_mmap_open(struct vm_area_struct *vma) 5874 { 5875 struct perf_event *event = vma->vm_file->private_data; 5876 5877 atomic_inc(&event->mmap_count); 5878 atomic_inc(&event->rb->mmap_count); 5879 5880 if (vma->vm_pgoff) 5881 atomic_inc(&event->rb->aux_mmap_count); 5882 5883 if (event->pmu->event_mapped) 5884 event->pmu->event_mapped(event, vma->vm_mm); 5885 } 5886 5887 static void perf_pmu_output_stop(struct perf_event *event); 5888 5889 /* 5890 * A buffer can be mmap()ed multiple times; either directly through the same 5891 * event, or through other events by use of perf_event_set_output(). 5892 * 5893 * In order to undo the VM accounting done by perf_mmap() we need to destroy 5894 * the buffer here, where we still have a VM context. This means we need 5895 * to detach all events redirecting to us. 5896 */ 5897 static void perf_mmap_close(struct vm_area_struct *vma) 5898 { 5899 struct perf_event *event = vma->vm_file->private_data; 5900 struct perf_buffer *rb = ring_buffer_get(event); 5901 struct user_struct *mmap_user = rb->mmap_user; 5902 int mmap_locked = rb->mmap_locked; 5903 unsigned long size = perf_data_size(rb); 5904 bool detach_rest = false; 5905 5906 if (event->pmu->event_unmapped) 5907 event->pmu->event_unmapped(event, vma->vm_mm); 5908 5909 /* 5910 * rb->aux_mmap_count will always drop before rb->mmap_count and 5911 * event->mmap_count, so it is ok to use event->mmap_mutex to 5912 * serialize with perf_mmap here. 5913 */ 5914 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 5915 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) { 5916 /* 5917 * Stop all AUX events that are writing to this buffer, 5918 * so that we can free its AUX pages and corresponding PMU 5919 * data. Note that after rb::aux_mmap_count dropped to zero, 5920 * they won't start any more (see perf_aux_output_begin()). 5921 */ 5922 perf_pmu_output_stop(event); 5923 5924 /* now it's safe to free the pages */ 5925 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm); 5926 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm); 5927 5928 /* this has to be the last one */ 5929 rb_free_aux(rb); 5930 WARN_ON_ONCE(refcount_read(&rb->aux_refcount)); 5931 5932 mutex_unlock(&event->mmap_mutex); 5933 } 5934 5935 if (atomic_dec_and_test(&rb->mmap_count)) 5936 detach_rest = true; 5937 5938 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 5939 goto out_put; 5940 5941 ring_buffer_attach(event, NULL); 5942 mutex_unlock(&event->mmap_mutex); 5943 5944 /* If there's still other mmap()s of this buffer, we're done. */ 5945 if (!detach_rest) 5946 goto out_put; 5947 5948 /* 5949 * No other mmap()s, detach from all other events that might redirect 5950 * into the now unreachable buffer. Somewhat complicated by the 5951 * fact that rb::event_lock otherwise nests inside mmap_mutex. 5952 */ 5953 again: 5954 rcu_read_lock(); 5955 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 5956 if (!atomic_long_inc_not_zero(&event->refcount)) { 5957 /* 5958 * This event is en-route to free_event() which will 5959 * detach it and remove it from the list. 5960 */ 5961 continue; 5962 } 5963 rcu_read_unlock(); 5964 5965 mutex_lock(&event->mmap_mutex); 5966 /* 5967 * Check we didn't race with perf_event_set_output() which can 5968 * swizzle the rb from under us while we were waiting to 5969 * acquire mmap_mutex. 5970 * 5971 * If we find a different rb; ignore this event, a next 5972 * iteration will no longer find it on the list. We have to 5973 * still restart the iteration to make sure we're not now 5974 * iterating the wrong list. 5975 */ 5976 if (event->rb == rb) 5977 ring_buffer_attach(event, NULL); 5978 5979 mutex_unlock(&event->mmap_mutex); 5980 put_event(event); 5981 5982 /* 5983 * Restart the iteration; either we're on the wrong list or 5984 * destroyed its integrity by doing a deletion. 5985 */ 5986 goto again; 5987 } 5988 rcu_read_unlock(); 5989 5990 /* 5991 * It could be there's still a few 0-ref events on the list; they'll 5992 * get cleaned up by free_event() -- they'll also still have their 5993 * ref on the rb and will free it whenever they are done with it. 5994 * 5995 * Aside from that, this buffer is 'fully' detached and unmapped, 5996 * undo the VM accounting. 5997 */ 5998 5999 atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked, 6000 &mmap_user->locked_vm); 6001 atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm); 6002 free_uid(mmap_user); 6003 6004 out_put: 6005 ring_buffer_put(rb); /* could be last */ 6006 } 6007 6008 static const struct vm_operations_struct perf_mmap_vmops = { 6009 .open = perf_mmap_open, 6010 .close = perf_mmap_close, /* non mergeable */ 6011 .fault = perf_mmap_fault, 6012 .page_mkwrite = perf_mmap_fault, 6013 }; 6014 6015 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 6016 { 6017 struct perf_event *event = file->private_data; 6018 unsigned long user_locked, user_lock_limit; 6019 struct user_struct *user = current_user(); 6020 struct perf_buffer *rb = NULL; 6021 unsigned long locked, lock_limit; 6022 unsigned long vma_size; 6023 unsigned long nr_pages; 6024 long user_extra = 0, extra = 0; 6025 int ret = 0, flags = 0; 6026 6027 /* 6028 * Don't allow mmap() of inherited per-task counters. This would 6029 * create a performance issue due to all children writing to the 6030 * same rb. 6031 */ 6032 if (event->cpu == -1 && event->attr.inherit) 6033 return -EINVAL; 6034 6035 if (!(vma->vm_flags & VM_SHARED)) 6036 return -EINVAL; 6037 6038 ret = security_perf_event_read(event); 6039 if (ret) 6040 return ret; 6041 6042 vma_size = vma->vm_end - vma->vm_start; 6043 6044 if (vma->vm_pgoff == 0) { 6045 nr_pages = (vma_size / PAGE_SIZE) - 1; 6046 } else { 6047 /* 6048 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 6049 * mapped, all subsequent mappings should have the same size 6050 * and offset. Must be above the normal perf buffer. 6051 */ 6052 u64 aux_offset, aux_size; 6053 6054 if (!event->rb) 6055 return -EINVAL; 6056 6057 nr_pages = vma_size / PAGE_SIZE; 6058 6059 mutex_lock(&event->mmap_mutex); 6060 ret = -EINVAL; 6061 6062 rb = event->rb; 6063 if (!rb) 6064 goto aux_unlock; 6065 6066 aux_offset = READ_ONCE(rb->user_page->aux_offset); 6067 aux_size = READ_ONCE(rb->user_page->aux_size); 6068 6069 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 6070 goto aux_unlock; 6071 6072 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 6073 goto aux_unlock; 6074 6075 /* already mapped with a different offset */ 6076 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 6077 goto aux_unlock; 6078 6079 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) 6080 goto aux_unlock; 6081 6082 /* already mapped with a different size */ 6083 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 6084 goto aux_unlock; 6085 6086 if (!is_power_of_2(nr_pages)) 6087 goto aux_unlock; 6088 6089 if (!atomic_inc_not_zero(&rb->mmap_count)) 6090 goto aux_unlock; 6091 6092 if (rb_has_aux(rb)) { 6093 atomic_inc(&rb->aux_mmap_count); 6094 ret = 0; 6095 goto unlock; 6096 } 6097 6098 atomic_set(&rb->aux_mmap_count, 1); 6099 user_extra = nr_pages; 6100 6101 goto accounting; 6102 } 6103 6104 /* 6105 * If we have rb pages ensure they're a power-of-two number, so we 6106 * can do bitmasks instead of modulo. 6107 */ 6108 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 6109 return -EINVAL; 6110 6111 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 6112 return -EINVAL; 6113 6114 WARN_ON_ONCE(event->ctx->parent_ctx); 6115 again: 6116 mutex_lock(&event->mmap_mutex); 6117 if (event->rb) { 6118 if (event->rb->nr_pages != nr_pages) { 6119 ret = -EINVAL; 6120 goto unlock; 6121 } 6122 6123 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 6124 /* 6125 * Raced against perf_mmap_close() through 6126 * perf_event_set_output(). Try again, hope for better 6127 * luck. 6128 */ 6129 mutex_unlock(&event->mmap_mutex); 6130 goto again; 6131 } 6132 6133 goto unlock; 6134 } 6135 6136 user_extra = nr_pages + 1; 6137 6138 accounting: 6139 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 6140 6141 /* 6142 * Increase the limit linearly with more CPUs: 6143 */ 6144 user_lock_limit *= num_online_cpus(); 6145 6146 user_locked = atomic_long_read(&user->locked_vm); 6147 6148 /* 6149 * sysctl_perf_event_mlock may have changed, so that 6150 * user->locked_vm > user_lock_limit 6151 */ 6152 if (user_locked > user_lock_limit) 6153 user_locked = user_lock_limit; 6154 user_locked += user_extra; 6155 6156 if (user_locked > user_lock_limit) { 6157 /* 6158 * charge locked_vm until it hits user_lock_limit; 6159 * charge the rest from pinned_vm 6160 */ 6161 extra = user_locked - user_lock_limit; 6162 user_extra -= extra; 6163 } 6164 6165 lock_limit = rlimit(RLIMIT_MEMLOCK); 6166 lock_limit >>= PAGE_SHIFT; 6167 locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra; 6168 6169 if ((locked > lock_limit) && perf_is_paranoid() && 6170 !capable(CAP_IPC_LOCK)) { 6171 ret = -EPERM; 6172 goto unlock; 6173 } 6174 6175 WARN_ON(!rb && event->rb); 6176 6177 if (vma->vm_flags & VM_WRITE) 6178 flags |= RING_BUFFER_WRITABLE; 6179 6180 if (!rb) { 6181 rb = rb_alloc(nr_pages, 6182 event->attr.watermark ? event->attr.wakeup_watermark : 0, 6183 event->cpu, flags); 6184 6185 if (!rb) { 6186 ret = -ENOMEM; 6187 goto unlock; 6188 } 6189 6190 atomic_set(&rb->mmap_count, 1); 6191 rb->mmap_user = get_current_user(); 6192 rb->mmap_locked = extra; 6193 6194 ring_buffer_attach(event, rb); 6195 6196 perf_event_init_userpage(event); 6197 perf_event_update_userpage(event); 6198 } else { 6199 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 6200 event->attr.aux_watermark, flags); 6201 if (!ret) 6202 rb->aux_mmap_locked = extra; 6203 } 6204 6205 unlock: 6206 if (!ret) { 6207 atomic_long_add(user_extra, &user->locked_vm); 6208 atomic64_add(extra, &vma->vm_mm->pinned_vm); 6209 6210 atomic_inc(&event->mmap_count); 6211 } else if (rb) { 6212 atomic_dec(&rb->mmap_count); 6213 } 6214 aux_unlock: 6215 mutex_unlock(&event->mmap_mutex); 6216 6217 /* 6218 * Since pinned accounting is per vm we cannot allow fork() to copy our 6219 * vma. 6220 */ 6221 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP; 6222 vma->vm_ops = &perf_mmap_vmops; 6223 6224 if (event->pmu->event_mapped) 6225 event->pmu->event_mapped(event, vma->vm_mm); 6226 6227 return ret; 6228 } 6229 6230 static int perf_fasync(int fd, struct file *filp, int on) 6231 { 6232 struct inode *inode = file_inode(filp); 6233 struct perf_event *event = filp->private_data; 6234 int retval; 6235 6236 inode_lock(inode); 6237 retval = fasync_helper(fd, filp, on, &event->fasync); 6238 inode_unlock(inode); 6239 6240 if (retval < 0) 6241 return retval; 6242 6243 return 0; 6244 } 6245 6246 static const struct file_operations perf_fops = { 6247 .llseek = no_llseek, 6248 .release = perf_release, 6249 .read = perf_read, 6250 .poll = perf_poll, 6251 .unlocked_ioctl = perf_ioctl, 6252 .compat_ioctl = perf_compat_ioctl, 6253 .mmap = perf_mmap, 6254 .fasync = perf_fasync, 6255 }; 6256 6257 /* 6258 * Perf event wakeup 6259 * 6260 * If there's data, ensure we set the poll() state and publish everything 6261 * to user-space before waking everybody up. 6262 */ 6263 6264 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event) 6265 { 6266 /* only the parent has fasync state */ 6267 if (event->parent) 6268 event = event->parent; 6269 return &event->fasync; 6270 } 6271 6272 void perf_event_wakeup(struct perf_event *event) 6273 { 6274 ring_buffer_wakeup(event); 6275 6276 if (event->pending_kill) { 6277 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); 6278 event->pending_kill = 0; 6279 } 6280 } 6281 6282 static void perf_pending_event_disable(struct perf_event *event) 6283 { 6284 int cpu = READ_ONCE(event->pending_disable); 6285 6286 if (cpu < 0) 6287 return; 6288 6289 if (cpu == smp_processor_id()) { 6290 WRITE_ONCE(event->pending_disable, -1); 6291 perf_event_disable_local(event); 6292 return; 6293 } 6294 6295 /* 6296 * CPU-A CPU-B 6297 * 6298 * perf_event_disable_inatomic() 6299 * @pending_disable = CPU-A; 6300 * irq_work_queue(); 6301 * 6302 * sched-out 6303 * @pending_disable = -1; 6304 * 6305 * sched-in 6306 * perf_event_disable_inatomic() 6307 * @pending_disable = CPU-B; 6308 * irq_work_queue(); // FAILS 6309 * 6310 * irq_work_run() 6311 * perf_pending_event() 6312 * 6313 * But the event runs on CPU-B and wants disabling there. 6314 */ 6315 irq_work_queue_on(&event->pending, cpu); 6316 } 6317 6318 static void perf_pending_event(struct irq_work *entry) 6319 { 6320 struct perf_event *event = container_of(entry, struct perf_event, pending); 6321 int rctx; 6322 6323 rctx = perf_swevent_get_recursion_context(); 6324 /* 6325 * If we 'fail' here, that's OK, it means recursion is already disabled 6326 * and we won't recurse 'further'. 6327 */ 6328 6329 perf_pending_event_disable(event); 6330 6331 if (event->pending_wakeup) { 6332 event->pending_wakeup = 0; 6333 perf_event_wakeup(event); 6334 } 6335 6336 if (rctx >= 0) 6337 perf_swevent_put_recursion_context(rctx); 6338 } 6339 6340 /* 6341 * We assume there is only KVM supporting the callbacks. 6342 * Later on, we might change it to a list if there is 6343 * another virtualization implementation supporting the callbacks. 6344 */ 6345 struct perf_guest_info_callbacks *perf_guest_cbs; 6346 6347 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 6348 { 6349 perf_guest_cbs = cbs; 6350 return 0; 6351 } 6352 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 6353 6354 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 6355 { 6356 perf_guest_cbs = NULL; 6357 return 0; 6358 } 6359 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 6360 6361 static void 6362 perf_output_sample_regs(struct perf_output_handle *handle, 6363 struct pt_regs *regs, u64 mask) 6364 { 6365 int bit; 6366 DECLARE_BITMAP(_mask, 64); 6367 6368 bitmap_from_u64(_mask, mask); 6369 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) { 6370 u64 val; 6371 6372 val = perf_reg_value(regs, bit); 6373 perf_output_put(handle, val); 6374 } 6375 } 6376 6377 static void perf_sample_regs_user(struct perf_regs *regs_user, 6378 struct pt_regs *regs) 6379 { 6380 if (user_mode(regs)) { 6381 regs_user->abi = perf_reg_abi(current); 6382 regs_user->regs = regs; 6383 } else if (!(current->flags & PF_KTHREAD)) { 6384 perf_get_regs_user(regs_user, regs); 6385 } else { 6386 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 6387 regs_user->regs = NULL; 6388 } 6389 } 6390 6391 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 6392 struct pt_regs *regs) 6393 { 6394 regs_intr->regs = regs; 6395 regs_intr->abi = perf_reg_abi(current); 6396 } 6397 6398 6399 /* 6400 * Get remaining task size from user stack pointer. 6401 * 6402 * It'd be better to take stack vma map and limit this more 6403 * precisely, but there's no way to get it safely under interrupt, 6404 * so using TASK_SIZE as limit. 6405 */ 6406 static u64 perf_ustack_task_size(struct pt_regs *regs) 6407 { 6408 unsigned long addr = perf_user_stack_pointer(regs); 6409 6410 if (!addr || addr >= TASK_SIZE) 6411 return 0; 6412 6413 return TASK_SIZE - addr; 6414 } 6415 6416 static u16 6417 perf_sample_ustack_size(u16 stack_size, u16 header_size, 6418 struct pt_regs *regs) 6419 { 6420 u64 task_size; 6421 6422 /* No regs, no stack pointer, no dump. */ 6423 if (!regs) 6424 return 0; 6425 6426 /* 6427 * Check if we fit in with the requested stack size into the: 6428 * - TASK_SIZE 6429 * If we don't, we limit the size to the TASK_SIZE. 6430 * 6431 * - remaining sample size 6432 * If we don't, we customize the stack size to 6433 * fit in to the remaining sample size. 6434 */ 6435 6436 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 6437 stack_size = min(stack_size, (u16) task_size); 6438 6439 /* Current header size plus static size and dynamic size. */ 6440 header_size += 2 * sizeof(u64); 6441 6442 /* Do we fit in with the current stack dump size? */ 6443 if ((u16) (header_size + stack_size) < header_size) { 6444 /* 6445 * If we overflow the maximum size for the sample, 6446 * we customize the stack dump size to fit in. 6447 */ 6448 stack_size = USHRT_MAX - header_size - sizeof(u64); 6449 stack_size = round_up(stack_size, sizeof(u64)); 6450 } 6451 6452 return stack_size; 6453 } 6454 6455 static void 6456 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 6457 struct pt_regs *regs) 6458 { 6459 /* Case of a kernel thread, nothing to dump */ 6460 if (!regs) { 6461 u64 size = 0; 6462 perf_output_put(handle, size); 6463 } else { 6464 unsigned long sp; 6465 unsigned int rem; 6466 u64 dyn_size; 6467 mm_segment_t fs; 6468 6469 /* 6470 * We dump: 6471 * static size 6472 * - the size requested by user or the best one we can fit 6473 * in to the sample max size 6474 * data 6475 * - user stack dump data 6476 * dynamic size 6477 * - the actual dumped size 6478 */ 6479 6480 /* Static size. */ 6481 perf_output_put(handle, dump_size); 6482 6483 /* Data. */ 6484 sp = perf_user_stack_pointer(regs); 6485 fs = force_uaccess_begin(); 6486 rem = __output_copy_user(handle, (void *) sp, dump_size); 6487 force_uaccess_end(fs); 6488 dyn_size = dump_size - rem; 6489 6490 perf_output_skip(handle, rem); 6491 6492 /* Dynamic size. */ 6493 perf_output_put(handle, dyn_size); 6494 } 6495 } 6496 6497 static unsigned long perf_prepare_sample_aux(struct perf_event *event, 6498 struct perf_sample_data *data, 6499 size_t size) 6500 { 6501 struct perf_event *sampler = event->aux_event; 6502 struct perf_buffer *rb; 6503 6504 data->aux_size = 0; 6505 6506 if (!sampler) 6507 goto out; 6508 6509 if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE)) 6510 goto out; 6511 6512 if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id())) 6513 goto out; 6514 6515 rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler); 6516 if (!rb) 6517 goto out; 6518 6519 /* 6520 * If this is an NMI hit inside sampling code, don't take 6521 * the sample. See also perf_aux_sample_output(). 6522 */ 6523 if (READ_ONCE(rb->aux_in_sampling)) { 6524 data->aux_size = 0; 6525 } else { 6526 size = min_t(size_t, size, perf_aux_size(rb)); 6527 data->aux_size = ALIGN(size, sizeof(u64)); 6528 } 6529 ring_buffer_put(rb); 6530 6531 out: 6532 return data->aux_size; 6533 } 6534 6535 long perf_pmu_snapshot_aux(struct perf_buffer *rb, 6536 struct perf_event *event, 6537 struct perf_output_handle *handle, 6538 unsigned long size) 6539 { 6540 unsigned long flags; 6541 long ret; 6542 6543 /* 6544 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler 6545 * paths. If we start calling them in NMI context, they may race with 6546 * the IRQ ones, that is, for example, re-starting an event that's just 6547 * been stopped, which is why we're using a separate callback that 6548 * doesn't change the event state. 6549 * 6550 * IRQs need to be disabled to prevent IPIs from racing with us. 6551 */ 6552 local_irq_save(flags); 6553 /* 6554 * Guard against NMI hits inside the critical section; 6555 * see also perf_prepare_sample_aux(). 6556 */ 6557 WRITE_ONCE(rb->aux_in_sampling, 1); 6558 barrier(); 6559 6560 ret = event->pmu->snapshot_aux(event, handle, size); 6561 6562 barrier(); 6563 WRITE_ONCE(rb->aux_in_sampling, 0); 6564 local_irq_restore(flags); 6565 6566 return ret; 6567 } 6568 6569 static void perf_aux_sample_output(struct perf_event *event, 6570 struct perf_output_handle *handle, 6571 struct perf_sample_data *data) 6572 { 6573 struct perf_event *sampler = event->aux_event; 6574 struct perf_buffer *rb; 6575 unsigned long pad; 6576 long size; 6577 6578 if (WARN_ON_ONCE(!sampler || !data->aux_size)) 6579 return; 6580 6581 rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler); 6582 if (!rb) 6583 return; 6584 6585 size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size); 6586 6587 /* 6588 * An error here means that perf_output_copy() failed (returned a 6589 * non-zero surplus that it didn't copy), which in its current 6590 * enlightened implementation is not possible. If that changes, we'd 6591 * like to know. 6592 */ 6593 if (WARN_ON_ONCE(size < 0)) 6594 goto out_put; 6595 6596 /* 6597 * The pad comes from ALIGN()ing data->aux_size up to u64 in 6598 * perf_prepare_sample_aux(), so should not be more than that. 6599 */ 6600 pad = data->aux_size - size; 6601 if (WARN_ON_ONCE(pad >= sizeof(u64))) 6602 pad = 8; 6603 6604 if (pad) { 6605 u64 zero = 0; 6606 perf_output_copy(handle, &zero, pad); 6607 } 6608 6609 out_put: 6610 ring_buffer_put(rb); 6611 } 6612 6613 static void __perf_event_header__init_id(struct perf_event_header *header, 6614 struct perf_sample_data *data, 6615 struct perf_event *event) 6616 { 6617 u64 sample_type = event->attr.sample_type; 6618 6619 data->type = sample_type; 6620 header->size += event->id_header_size; 6621 6622 if (sample_type & PERF_SAMPLE_TID) { 6623 /* namespace issues */ 6624 data->tid_entry.pid = perf_event_pid(event, current); 6625 data->tid_entry.tid = perf_event_tid(event, current); 6626 } 6627 6628 if (sample_type & PERF_SAMPLE_TIME) 6629 data->time = perf_event_clock(event); 6630 6631 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 6632 data->id = primary_event_id(event); 6633 6634 if (sample_type & PERF_SAMPLE_STREAM_ID) 6635 data->stream_id = event->id; 6636 6637 if (sample_type & PERF_SAMPLE_CPU) { 6638 data->cpu_entry.cpu = raw_smp_processor_id(); 6639 data->cpu_entry.reserved = 0; 6640 } 6641 } 6642 6643 void perf_event_header__init_id(struct perf_event_header *header, 6644 struct perf_sample_data *data, 6645 struct perf_event *event) 6646 { 6647 if (event->attr.sample_id_all) 6648 __perf_event_header__init_id(header, data, event); 6649 } 6650 6651 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 6652 struct perf_sample_data *data) 6653 { 6654 u64 sample_type = data->type; 6655 6656 if (sample_type & PERF_SAMPLE_TID) 6657 perf_output_put(handle, data->tid_entry); 6658 6659 if (sample_type & PERF_SAMPLE_TIME) 6660 perf_output_put(handle, data->time); 6661 6662 if (sample_type & PERF_SAMPLE_ID) 6663 perf_output_put(handle, data->id); 6664 6665 if (sample_type & PERF_SAMPLE_STREAM_ID) 6666 perf_output_put(handle, data->stream_id); 6667 6668 if (sample_type & PERF_SAMPLE_CPU) 6669 perf_output_put(handle, data->cpu_entry); 6670 6671 if (sample_type & PERF_SAMPLE_IDENTIFIER) 6672 perf_output_put(handle, data->id); 6673 } 6674 6675 void perf_event__output_id_sample(struct perf_event *event, 6676 struct perf_output_handle *handle, 6677 struct perf_sample_data *sample) 6678 { 6679 if (event->attr.sample_id_all) 6680 __perf_event__output_id_sample(handle, sample); 6681 } 6682 6683 static void perf_output_read_one(struct perf_output_handle *handle, 6684 struct perf_event *event, 6685 u64 enabled, u64 running) 6686 { 6687 u64 read_format = event->attr.read_format; 6688 u64 values[4]; 6689 int n = 0; 6690 6691 values[n++] = perf_event_count(event); 6692 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 6693 values[n++] = enabled + 6694 atomic64_read(&event->child_total_time_enabled); 6695 } 6696 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 6697 values[n++] = running + 6698 atomic64_read(&event->child_total_time_running); 6699 } 6700 if (read_format & PERF_FORMAT_ID) 6701 values[n++] = primary_event_id(event); 6702 6703 __output_copy(handle, values, n * sizeof(u64)); 6704 } 6705 6706 static void perf_output_read_group(struct perf_output_handle *handle, 6707 struct perf_event *event, 6708 u64 enabled, u64 running) 6709 { 6710 struct perf_event *leader = event->group_leader, *sub; 6711 u64 read_format = event->attr.read_format; 6712 u64 values[5]; 6713 int n = 0; 6714 6715 values[n++] = 1 + leader->nr_siblings; 6716 6717 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 6718 values[n++] = enabled; 6719 6720 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 6721 values[n++] = running; 6722 6723 if ((leader != event) && 6724 (leader->state == PERF_EVENT_STATE_ACTIVE)) 6725 leader->pmu->read(leader); 6726 6727 values[n++] = perf_event_count(leader); 6728 if (read_format & PERF_FORMAT_ID) 6729 values[n++] = primary_event_id(leader); 6730 6731 __output_copy(handle, values, n * sizeof(u64)); 6732 6733 for_each_sibling_event(sub, leader) { 6734 n = 0; 6735 6736 if ((sub != event) && 6737 (sub->state == PERF_EVENT_STATE_ACTIVE)) 6738 sub->pmu->read(sub); 6739 6740 values[n++] = perf_event_count(sub); 6741 if (read_format & PERF_FORMAT_ID) 6742 values[n++] = primary_event_id(sub); 6743 6744 __output_copy(handle, values, n * sizeof(u64)); 6745 } 6746 } 6747 6748 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 6749 PERF_FORMAT_TOTAL_TIME_RUNNING) 6750 6751 /* 6752 * XXX PERF_SAMPLE_READ vs inherited events seems difficult. 6753 * 6754 * The problem is that its both hard and excessively expensive to iterate the 6755 * child list, not to mention that its impossible to IPI the children running 6756 * on another CPU, from interrupt/NMI context. 6757 */ 6758 static void perf_output_read(struct perf_output_handle *handle, 6759 struct perf_event *event) 6760 { 6761 u64 enabled = 0, running = 0, now; 6762 u64 read_format = event->attr.read_format; 6763 6764 /* 6765 * compute total_time_enabled, total_time_running 6766 * based on snapshot values taken when the event 6767 * was last scheduled in. 6768 * 6769 * we cannot simply called update_context_time() 6770 * because of locking issue as we are called in 6771 * NMI context 6772 */ 6773 if (read_format & PERF_FORMAT_TOTAL_TIMES) 6774 calc_timer_values(event, &now, &enabled, &running); 6775 6776 if (event->attr.read_format & PERF_FORMAT_GROUP) 6777 perf_output_read_group(handle, event, enabled, running); 6778 else 6779 perf_output_read_one(handle, event, enabled, running); 6780 } 6781 6782 static inline bool perf_sample_save_hw_index(struct perf_event *event) 6783 { 6784 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX; 6785 } 6786 6787 void perf_output_sample(struct perf_output_handle *handle, 6788 struct perf_event_header *header, 6789 struct perf_sample_data *data, 6790 struct perf_event *event) 6791 { 6792 u64 sample_type = data->type; 6793 6794 perf_output_put(handle, *header); 6795 6796 if (sample_type & PERF_SAMPLE_IDENTIFIER) 6797 perf_output_put(handle, data->id); 6798 6799 if (sample_type & PERF_SAMPLE_IP) 6800 perf_output_put(handle, data->ip); 6801 6802 if (sample_type & PERF_SAMPLE_TID) 6803 perf_output_put(handle, data->tid_entry); 6804 6805 if (sample_type & PERF_SAMPLE_TIME) 6806 perf_output_put(handle, data->time); 6807 6808 if (sample_type & PERF_SAMPLE_ADDR) 6809 perf_output_put(handle, data->addr); 6810 6811 if (sample_type & PERF_SAMPLE_ID) 6812 perf_output_put(handle, data->id); 6813 6814 if (sample_type & PERF_SAMPLE_STREAM_ID) 6815 perf_output_put(handle, data->stream_id); 6816 6817 if (sample_type & PERF_SAMPLE_CPU) 6818 perf_output_put(handle, data->cpu_entry); 6819 6820 if (sample_type & PERF_SAMPLE_PERIOD) 6821 perf_output_put(handle, data->period); 6822 6823 if (sample_type & PERF_SAMPLE_READ) 6824 perf_output_read(handle, event); 6825 6826 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 6827 int size = 1; 6828 6829 size += data->callchain->nr; 6830 size *= sizeof(u64); 6831 __output_copy(handle, data->callchain, size); 6832 } 6833 6834 if (sample_type & PERF_SAMPLE_RAW) { 6835 struct perf_raw_record *raw = data->raw; 6836 6837 if (raw) { 6838 struct perf_raw_frag *frag = &raw->frag; 6839 6840 perf_output_put(handle, raw->size); 6841 do { 6842 if (frag->copy) { 6843 __output_custom(handle, frag->copy, 6844 frag->data, frag->size); 6845 } else { 6846 __output_copy(handle, frag->data, 6847 frag->size); 6848 } 6849 if (perf_raw_frag_last(frag)) 6850 break; 6851 frag = frag->next; 6852 } while (1); 6853 if (frag->pad) 6854 __output_skip(handle, NULL, frag->pad); 6855 } else { 6856 struct { 6857 u32 size; 6858 u32 data; 6859 } raw = { 6860 .size = sizeof(u32), 6861 .data = 0, 6862 }; 6863 perf_output_put(handle, raw); 6864 } 6865 } 6866 6867 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 6868 if (data->br_stack) { 6869 size_t size; 6870 6871 size = data->br_stack->nr 6872 * sizeof(struct perf_branch_entry); 6873 6874 perf_output_put(handle, data->br_stack->nr); 6875 if (perf_sample_save_hw_index(event)) 6876 perf_output_put(handle, data->br_stack->hw_idx); 6877 perf_output_copy(handle, data->br_stack->entries, size); 6878 } else { 6879 /* 6880 * we always store at least the value of nr 6881 */ 6882 u64 nr = 0; 6883 perf_output_put(handle, nr); 6884 } 6885 } 6886 6887 if (sample_type & PERF_SAMPLE_REGS_USER) { 6888 u64 abi = data->regs_user.abi; 6889 6890 /* 6891 * If there are no regs to dump, notice it through 6892 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 6893 */ 6894 perf_output_put(handle, abi); 6895 6896 if (abi) { 6897 u64 mask = event->attr.sample_regs_user; 6898 perf_output_sample_regs(handle, 6899 data->regs_user.regs, 6900 mask); 6901 } 6902 } 6903 6904 if (sample_type & PERF_SAMPLE_STACK_USER) { 6905 perf_output_sample_ustack(handle, 6906 data->stack_user_size, 6907 data->regs_user.regs); 6908 } 6909 6910 if (sample_type & PERF_SAMPLE_WEIGHT) 6911 perf_output_put(handle, data->weight); 6912 6913 if (sample_type & PERF_SAMPLE_DATA_SRC) 6914 perf_output_put(handle, data->data_src.val); 6915 6916 if (sample_type & PERF_SAMPLE_TRANSACTION) 6917 perf_output_put(handle, data->txn); 6918 6919 if (sample_type & PERF_SAMPLE_REGS_INTR) { 6920 u64 abi = data->regs_intr.abi; 6921 /* 6922 * If there are no regs to dump, notice it through 6923 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 6924 */ 6925 perf_output_put(handle, abi); 6926 6927 if (abi) { 6928 u64 mask = event->attr.sample_regs_intr; 6929 6930 perf_output_sample_regs(handle, 6931 data->regs_intr.regs, 6932 mask); 6933 } 6934 } 6935 6936 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 6937 perf_output_put(handle, data->phys_addr); 6938 6939 if (sample_type & PERF_SAMPLE_CGROUP) 6940 perf_output_put(handle, data->cgroup); 6941 6942 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 6943 perf_output_put(handle, data->data_page_size); 6944 6945 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 6946 perf_output_put(handle, data->code_page_size); 6947 6948 if (sample_type & PERF_SAMPLE_AUX) { 6949 perf_output_put(handle, data->aux_size); 6950 6951 if (data->aux_size) 6952 perf_aux_sample_output(event, handle, data); 6953 } 6954 6955 if (!event->attr.watermark) { 6956 int wakeup_events = event->attr.wakeup_events; 6957 6958 if (wakeup_events) { 6959 struct perf_buffer *rb = handle->rb; 6960 int events = local_inc_return(&rb->events); 6961 6962 if (events >= wakeup_events) { 6963 local_sub(wakeup_events, &rb->events); 6964 local_inc(&rb->wakeup); 6965 } 6966 } 6967 } 6968 } 6969 6970 static u64 perf_virt_to_phys(u64 virt) 6971 { 6972 u64 phys_addr = 0; 6973 struct page *p = NULL; 6974 6975 if (!virt) 6976 return 0; 6977 6978 if (virt >= TASK_SIZE) { 6979 /* If it's vmalloc()d memory, leave phys_addr as 0 */ 6980 if (virt_addr_valid((void *)(uintptr_t)virt) && 6981 !(virt >= VMALLOC_START && virt < VMALLOC_END)) 6982 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt); 6983 } else { 6984 /* 6985 * Walking the pages tables for user address. 6986 * Interrupts are disabled, so it prevents any tear down 6987 * of the page tables. 6988 * Try IRQ-safe get_user_page_fast_only first. 6989 * If failed, leave phys_addr as 0. 6990 */ 6991 if (current->mm != NULL) { 6992 pagefault_disable(); 6993 if (get_user_page_fast_only(virt, 0, &p)) 6994 phys_addr = page_to_phys(p) + virt % PAGE_SIZE; 6995 pagefault_enable(); 6996 } 6997 6998 if (p) 6999 put_page(p); 7000 } 7001 7002 return phys_addr; 7003 } 7004 7005 /* 7006 * Return the pagetable size of a given virtual address. 7007 */ 7008 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr) 7009 { 7010 u64 size = 0; 7011 7012 #ifdef CONFIG_HAVE_FAST_GUP 7013 pgd_t *pgdp, pgd; 7014 p4d_t *p4dp, p4d; 7015 pud_t *pudp, pud; 7016 pmd_t *pmdp, pmd; 7017 pte_t *ptep, pte; 7018 7019 pgdp = pgd_offset(mm, addr); 7020 pgd = READ_ONCE(*pgdp); 7021 if (pgd_none(pgd)) 7022 return 0; 7023 7024 if (pgd_leaf(pgd)) 7025 return pgd_leaf_size(pgd); 7026 7027 p4dp = p4d_offset_lockless(pgdp, pgd, addr); 7028 p4d = READ_ONCE(*p4dp); 7029 if (!p4d_present(p4d)) 7030 return 0; 7031 7032 if (p4d_leaf(p4d)) 7033 return p4d_leaf_size(p4d); 7034 7035 pudp = pud_offset_lockless(p4dp, p4d, addr); 7036 pud = READ_ONCE(*pudp); 7037 if (!pud_present(pud)) 7038 return 0; 7039 7040 if (pud_leaf(pud)) 7041 return pud_leaf_size(pud); 7042 7043 pmdp = pmd_offset_lockless(pudp, pud, addr); 7044 pmd = READ_ONCE(*pmdp); 7045 if (!pmd_present(pmd)) 7046 return 0; 7047 7048 if (pmd_leaf(pmd)) 7049 return pmd_leaf_size(pmd); 7050 7051 ptep = pte_offset_map(&pmd, addr); 7052 pte = ptep_get_lockless(ptep); 7053 if (pte_present(pte)) 7054 size = pte_leaf_size(pte); 7055 pte_unmap(ptep); 7056 #endif /* CONFIG_HAVE_FAST_GUP */ 7057 7058 return size; 7059 } 7060 7061 static u64 perf_get_page_size(unsigned long addr) 7062 { 7063 struct mm_struct *mm; 7064 unsigned long flags; 7065 u64 size; 7066 7067 if (!addr) 7068 return 0; 7069 7070 /* 7071 * Software page-table walkers must disable IRQs, 7072 * which prevents any tear down of the page tables. 7073 */ 7074 local_irq_save(flags); 7075 7076 mm = current->mm; 7077 if (!mm) { 7078 /* 7079 * For kernel threads and the like, use init_mm so that 7080 * we can find kernel memory. 7081 */ 7082 mm = &init_mm; 7083 } 7084 7085 size = perf_get_pgtable_size(mm, addr); 7086 7087 local_irq_restore(flags); 7088 7089 return size; 7090 } 7091 7092 static struct perf_callchain_entry __empty_callchain = { .nr = 0, }; 7093 7094 struct perf_callchain_entry * 7095 perf_callchain(struct perf_event *event, struct pt_regs *regs) 7096 { 7097 bool kernel = !event->attr.exclude_callchain_kernel; 7098 bool user = !event->attr.exclude_callchain_user; 7099 /* Disallow cross-task user callchains. */ 7100 bool crosstask = event->ctx->task && event->ctx->task != current; 7101 const u32 max_stack = event->attr.sample_max_stack; 7102 struct perf_callchain_entry *callchain; 7103 7104 if (!kernel && !user) 7105 return &__empty_callchain; 7106 7107 callchain = get_perf_callchain(regs, 0, kernel, user, 7108 max_stack, crosstask, true); 7109 return callchain ?: &__empty_callchain; 7110 } 7111 7112 void perf_prepare_sample(struct perf_event_header *header, 7113 struct perf_sample_data *data, 7114 struct perf_event *event, 7115 struct pt_regs *regs) 7116 { 7117 u64 sample_type = event->attr.sample_type; 7118 7119 header->type = PERF_RECORD_SAMPLE; 7120 header->size = sizeof(*header) + event->header_size; 7121 7122 header->misc = 0; 7123 header->misc |= perf_misc_flags(regs); 7124 7125 __perf_event_header__init_id(header, data, event); 7126 7127 if (sample_type & (PERF_SAMPLE_IP | PERF_SAMPLE_CODE_PAGE_SIZE)) 7128 data->ip = perf_instruction_pointer(regs); 7129 7130 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 7131 int size = 1; 7132 7133 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY)) 7134 data->callchain = perf_callchain(event, regs); 7135 7136 size += data->callchain->nr; 7137 7138 header->size += size * sizeof(u64); 7139 } 7140 7141 if (sample_type & PERF_SAMPLE_RAW) { 7142 struct perf_raw_record *raw = data->raw; 7143 int size; 7144 7145 if (raw) { 7146 struct perf_raw_frag *frag = &raw->frag; 7147 u32 sum = 0; 7148 7149 do { 7150 sum += frag->size; 7151 if (perf_raw_frag_last(frag)) 7152 break; 7153 frag = frag->next; 7154 } while (1); 7155 7156 size = round_up(sum + sizeof(u32), sizeof(u64)); 7157 raw->size = size - sizeof(u32); 7158 frag->pad = raw->size - sum; 7159 } else { 7160 size = sizeof(u64); 7161 } 7162 7163 header->size += size; 7164 } 7165 7166 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 7167 int size = sizeof(u64); /* nr */ 7168 if (data->br_stack) { 7169 if (perf_sample_save_hw_index(event)) 7170 size += sizeof(u64); 7171 7172 size += data->br_stack->nr 7173 * sizeof(struct perf_branch_entry); 7174 } 7175 header->size += size; 7176 } 7177 7178 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER)) 7179 perf_sample_regs_user(&data->regs_user, regs); 7180 7181 if (sample_type & PERF_SAMPLE_REGS_USER) { 7182 /* regs dump ABI info */ 7183 int size = sizeof(u64); 7184 7185 if (data->regs_user.regs) { 7186 u64 mask = event->attr.sample_regs_user; 7187 size += hweight64(mask) * sizeof(u64); 7188 } 7189 7190 header->size += size; 7191 } 7192 7193 if (sample_type & PERF_SAMPLE_STACK_USER) { 7194 /* 7195 * Either we need PERF_SAMPLE_STACK_USER bit to be always 7196 * processed as the last one or have additional check added 7197 * in case new sample type is added, because we could eat 7198 * up the rest of the sample size. 7199 */ 7200 u16 stack_size = event->attr.sample_stack_user; 7201 u16 size = sizeof(u64); 7202 7203 stack_size = perf_sample_ustack_size(stack_size, header->size, 7204 data->regs_user.regs); 7205 7206 /* 7207 * If there is something to dump, add space for the dump 7208 * itself and for the field that tells the dynamic size, 7209 * which is how many have been actually dumped. 7210 */ 7211 if (stack_size) 7212 size += sizeof(u64) + stack_size; 7213 7214 data->stack_user_size = stack_size; 7215 header->size += size; 7216 } 7217 7218 if (sample_type & PERF_SAMPLE_REGS_INTR) { 7219 /* regs dump ABI info */ 7220 int size = sizeof(u64); 7221 7222 perf_sample_regs_intr(&data->regs_intr, regs); 7223 7224 if (data->regs_intr.regs) { 7225 u64 mask = event->attr.sample_regs_intr; 7226 7227 size += hweight64(mask) * sizeof(u64); 7228 } 7229 7230 header->size += size; 7231 } 7232 7233 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 7234 data->phys_addr = perf_virt_to_phys(data->addr); 7235 7236 #ifdef CONFIG_CGROUP_PERF 7237 if (sample_type & PERF_SAMPLE_CGROUP) { 7238 struct cgroup *cgrp; 7239 7240 /* protected by RCU */ 7241 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup; 7242 data->cgroup = cgroup_id(cgrp); 7243 } 7244 #endif 7245 7246 /* 7247 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't 7248 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr, 7249 * but the value will not dump to the userspace. 7250 */ 7251 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 7252 data->data_page_size = perf_get_page_size(data->addr); 7253 7254 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 7255 data->code_page_size = perf_get_page_size(data->ip); 7256 7257 if (sample_type & PERF_SAMPLE_AUX) { 7258 u64 size; 7259 7260 header->size += sizeof(u64); /* size */ 7261 7262 /* 7263 * Given the 16bit nature of header::size, an AUX sample can 7264 * easily overflow it, what with all the preceding sample bits. 7265 * Make sure this doesn't happen by using up to U16_MAX bytes 7266 * per sample in total (rounded down to 8 byte boundary). 7267 */ 7268 size = min_t(size_t, U16_MAX - header->size, 7269 event->attr.aux_sample_size); 7270 size = rounddown(size, 8); 7271 size = perf_prepare_sample_aux(event, data, size); 7272 7273 WARN_ON_ONCE(size + header->size > U16_MAX); 7274 header->size += size; 7275 } 7276 /* 7277 * If you're adding more sample types here, you likely need to do 7278 * something about the overflowing header::size, like repurpose the 7279 * lowest 3 bits of size, which should be always zero at the moment. 7280 * This raises a more important question, do we really need 512k sized 7281 * samples and why, so good argumentation is in order for whatever you 7282 * do here next. 7283 */ 7284 WARN_ON_ONCE(header->size & 7); 7285 } 7286 7287 static __always_inline int 7288 __perf_event_output(struct perf_event *event, 7289 struct perf_sample_data *data, 7290 struct pt_regs *regs, 7291 int (*output_begin)(struct perf_output_handle *, 7292 struct perf_sample_data *, 7293 struct perf_event *, 7294 unsigned int)) 7295 { 7296 struct perf_output_handle handle; 7297 struct perf_event_header header; 7298 int err; 7299 7300 /* protect the callchain buffers */ 7301 rcu_read_lock(); 7302 7303 perf_prepare_sample(&header, data, event, regs); 7304 7305 err = output_begin(&handle, data, event, header.size); 7306 if (err) 7307 goto exit; 7308 7309 perf_output_sample(&handle, &header, data, event); 7310 7311 perf_output_end(&handle); 7312 7313 exit: 7314 rcu_read_unlock(); 7315 return err; 7316 } 7317 7318 void 7319 perf_event_output_forward(struct perf_event *event, 7320 struct perf_sample_data *data, 7321 struct pt_regs *regs) 7322 { 7323 __perf_event_output(event, data, regs, perf_output_begin_forward); 7324 } 7325 7326 void 7327 perf_event_output_backward(struct perf_event *event, 7328 struct perf_sample_data *data, 7329 struct pt_regs *regs) 7330 { 7331 __perf_event_output(event, data, regs, perf_output_begin_backward); 7332 } 7333 7334 int 7335 perf_event_output(struct perf_event *event, 7336 struct perf_sample_data *data, 7337 struct pt_regs *regs) 7338 { 7339 return __perf_event_output(event, data, regs, perf_output_begin); 7340 } 7341 7342 /* 7343 * read event_id 7344 */ 7345 7346 struct perf_read_event { 7347 struct perf_event_header header; 7348 7349 u32 pid; 7350 u32 tid; 7351 }; 7352 7353 static void 7354 perf_event_read_event(struct perf_event *event, 7355 struct task_struct *task) 7356 { 7357 struct perf_output_handle handle; 7358 struct perf_sample_data sample; 7359 struct perf_read_event read_event = { 7360 .header = { 7361 .type = PERF_RECORD_READ, 7362 .misc = 0, 7363 .size = sizeof(read_event) + event->read_size, 7364 }, 7365 .pid = perf_event_pid(event, task), 7366 .tid = perf_event_tid(event, task), 7367 }; 7368 int ret; 7369 7370 perf_event_header__init_id(&read_event.header, &sample, event); 7371 ret = perf_output_begin(&handle, &sample, event, read_event.header.size); 7372 if (ret) 7373 return; 7374 7375 perf_output_put(&handle, read_event); 7376 perf_output_read(&handle, event); 7377 perf_event__output_id_sample(event, &handle, &sample); 7378 7379 perf_output_end(&handle); 7380 } 7381 7382 typedef void (perf_iterate_f)(struct perf_event *event, void *data); 7383 7384 static void 7385 perf_iterate_ctx(struct perf_event_context *ctx, 7386 perf_iterate_f output, 7387 void *data, bool all) 7388 { 7389 struct perf_event *event; 7390 7391 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 7392 if (!all) { 7393 if (event->state < PERF_EVENT_STATE_INACTIVE) 7394 continue; 7395 if (!event_filter_match(event)) 7396 continue; 7397 } 7398 7399 output(event, data); 7400 } 7401 } 7402 7403 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data) 7404 { 7405 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events); 7406 struct perf_event *event; 7407 7408 list_for_each_entry_rcu(event, &pel->list, sb_list) { 7409 /* 7410 * Skip events that are not fully formed yet; ensure that 7411 * if we observe event->ctx, both event and ctx will be 7412 * complete enough. See perf_install_in_context(). 7413 */ 7414 if (!smp_load_acquire(&event->ctx)) 7415 continue; 7416 7417 if (event->state < PERF_EVENT_STATE_INACTIVE) 7418 continue; 7419 if (!event_filter_match(event)) 7420 continue; 7421 output(event, data); 7422 } 7423 } 7424 7425 /* 7426 * Iterate all events that need to receive side-band events. 7427 * 7428 * For new callers; ensure that account_pmu_sb_event() includes 7429 * your event, otherwise it might not get delivered. 7430 */ 7431 static void 7432 perf_iterate_sb(perf_iterate_f output, void *data, 7433 struct perf_event_context *task_ctx) 7434 { 7435 struct perf_event_context *ctx; 7436 int ctxn; 7437 7438 rcu_read_lock(); 7439 preempt_disable(); 7440 7441 /* 7442 * If we have task_ctx != NULL we only notify the task context itself. 7443 * The task_ctx is set only for EXIT events before releasing task 7444 * context. 7445 */ 7446 if (task_ctx) { 7447 perf_iterate_ctx(task_ctx, output, data, false); 7448 goto done; 7449 } 7450 7451 perf_iterate_sb_cpu(output, data); 7452 7453 for_each_task_context_nr(ctxn) { 7454 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 7455 if (ctx) 7456 perf_iterate_ctx(ctx, output, data, false); 7457 } 7458 done: 7459 preempt_enable(); 7460 rcu_read_unlock(); 7461 } 7462 7463 /* 7464 * Clear all file-based filters at exec, they'll have to be 7465 * re-instated when/if these objects are mmapped again. 7466 */ 7467 static void perf_event_addr_filters_exec(struct perf_event *event, void *data) 7468 { 7469 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 7470 struct perf_addr_filter *filter; 7471 unsigned int restart = 0, count = 0; 7472 unsigned long flags; 7473 7474 if (!has_addr_filter(event)) 7475 return; 7476 7477 raw_spin_lock_irqsave(&ifh->lock, flags); 7478 list_for_each_entry(filter, &ifh->list, entry) { 7479 if (filter->path.dentry) { 7480 event->addr_filter_ranges[count].start = 0; 7481 event->addr_filter_ranges[count].size = 0; 7482 restart++; 7483 } 7484 7485 count++; 7486 } 7487 7488 if (restart) 7489 event->addr_filters_gen++; 7490 raw_spin_unlock_irqrestore(&ifh->lock, flags); 7491 7492 if (restart) 7493 perf_event_stop(event, 1); 7494 } 7495 7496 void perf_event_exec(void) 7497 { 7498 struct perf_event_context *ctx; 7499 int ctxn; 7500 7501 rcu_read_lock(); 7502 for_each_task_context_nr(ctxn) { 7503 ctx = current->perf_event_ctxp[ctxn]; 7504 if (!ctx) 7505 continue; 7506 7507 perf_event_enable_on_exec(ctxn); 7508 7509 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, 7510 true); 7511 } 7512 rcu_read_unlock(); 7513 } 7514 7515 struct remote_output { 7516 struct perf_buffer *rb; 7517 int err; 7518 }; 7519 7520 static void __perf_event_output_stop(struct perf_event *event, void *data) 7521 { 7522 struct perf_event *parent = event->parent; 7523 struct remote_output *ro = data; 7524 struct perf_buffer *rb = ro->rb; 7525 struct stop_event_data sd = { 7526 .event = event, 7527 }; 7528 7529 if (!has_aux(event)) 7530 return; 7531 7532 if (!parent) 7533 parent = event; 7534 7535 /* 7536 * In case of inheritance, it will be the parent that links to the 7537 * ring-buffer, but it will be the child that's actually using it. 7538 * 7539 * We are using event::rb to determine if the event should be stopped, 7540 * however this may race with ring_buffer_attach() (through set_output), 7541 * which will make us skip the event that actually needs to be stopped. 7542 * So ring_buffer_attach() has to stop an aux event before re-assigning 7543 * its rb pointer. 7544 */ 7545 if (rcu_dereference(parent->rb) == rb) 7546 ro->err = __perf_event_stop(&sd); 7547 } 7548 7549 static int __perf_pmu_output_stop(void *info) 7550 { 7551 struct perf_event *event = info; 7552 struct pmu *pmu = event->ctx->pmu; 7553 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 7554 struct remote_output ro = { 7555 .rb = event->rb, 7556 }; 7557 7558 rcu_read_lock(); 7559 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false); 7560 if (cpuctx->task_ctx) 7561 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop, 7562 &ro, false); 7563 rcu_read_unlock(); 7564 7565 return ro.err; 7566 } 7567 7568 static void perf_pmu_output_stop(struct perf_event *event) 7569 { 7570 struct perf_event *iter; 7571 int err, cpu; 7572 7573 restart: 7574 rcu_read_lock(); 7575 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) { 7576 /* 7577 * For per-CPU events, we need to make sure that neither they 7578 * nor their children are running; for cpu==-1 events it's 7579 * sufficient to stop the event itself if it's active, since 7580 * it can't have children. 7581 */ 7582 cpu = iter->cpu; 7583 if (cpu == -1) 7584 cpu = READ_ONCE(iter->oncpu); 7585 7586 if (cpu == -1) 7587 continue; 7588 7589 err = cpu_function_call(cpu, __perf_pmu_output_stop, event); 7590 if (err == -EAGAIN) { 7591 rcu_read_unlock(); 7592 goto restart; 7593 } 7594 } 7595 rcu_read_unlock(); 7596 } 7597 7598 /* 7599 * task tracking -- fork/exit 7600 * 7601 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 7602 */ 7603 7604 struct perf_task_event { 7605 struct task_struct *task; 7606 struct perf_event_context *task_ctx; 7607 7608 struct { 7609 struct perf_event_header header; 7610 7611 u32 pid; 7612 u32 ppid; 7613 u32 tid; 7614 u32 ptid; 7615 u64 time; 7616 } event_id; 7617 }; 7618 7619 static int perf_event_task_match(struct perf_event *event) 7620 { 7621 return event->attr.comm || event->attr.mmap || 7622 event->attr.mmap2 || event->attr.mmap_data || 7623 event->attr.task; 7624 } 7625 7626 static void perf_event_task_output(struct perf_event *event, 7627 void *data) 7628 { 7629 struct perf_task_event *task_event = data; 7630 struct perf_output_handle handle; 7631 struct perf_sample_data sample; 7632 struct task_struct *task = task_event->task; 7633 int ret, size = task_event->event_id.header.size; 7634 7635 if (!perf_event_task_match(event)) 7636 return; 7637 7638 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 7639 7640 ret = perf_output_begin(&handle, &sample, event, 7641 task_event->event_id.header.size); 7642 if (ret) 7643 goto out; 7644 7645 task_event->event_id.pid = perf_event_pid(event, task); 7646 task_event->event_id.tid = perf_event_tid(event, task); 7647 7648 if (task_event->event_id.header.type == PERF_RECORD_EXIT) { 7649 task_event->event_id.ppid = perf_event_pid(event, 7650 task->real_parent); 7651 task_event->event_id.ptid = perf_event_pid(event, 7652 task->real_parent); 7653 } else { /* PERF_RECORD_FORK */ 7654 task_event->event_id.ppid = perf_event_pid(event, current); 7655 task_event->event_id.ptid = perf_event_tid(event, current); 7656 } 7657 7658 task_event->event_id.time = perf_event_clock(event); 7659 7660 perf_output_put(&handle, task_event->event_id); 7661 7662 perf_event__output_id_sample(event, &handle, &sample); 7663 7664 perf_output_end(&handle); 7665 out: 7666 task_event->event_id.header.size = size; 7667 } 7668 7669 static void perf_event_task(struct task_struct *task, 7670 struct perf_event_context *task_ctx, 7671 int new) 7672 { 7673 struct perf_task_event task_event; 7674 7675 if (!atomic_read(&nr_comm_events) && 7676 !atomic_read(&nr_mmap_events) && 7677 !atomic_read(&nr_task_events)) 7678 return; 7679 7680 task_event = (struct perf_task_event){ 7681 .task = task, 7682 .task_ctx = task_ctx, 7683 .event_id = { 7684 .header = { 7685 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 7686 .misc = 0, 7687 .size = sizeof(task_event.event_id), 7688 }, 7689 /* .pid */ 7690 /* .ppid */ 7691 /* .tid */ 7692 /* .ptid */ 7693 /* .time */ 7694 }, 7695 }; 7696 7697 perf_iterate_sb(perf_event_task_output, 7698 &task_event, 7699 task_ctx); 7700 } 7701 7702 void perf_event_fork(struct task_struct *task) 7703 { 7704 perf_event_task(task, NULL, 1); 7705 perf_event_namespaces(task); 7706 } 7707 7708 /* 7709 * comm tracking 7710 */ 7711 7712 struct perf_comm_event { 7713 struct task_struct *task; 7714 char *comm; 7715 int comm_size; 7716 7717 struct { 7718 struct perf_event_header header; 7719 7720 u32 pid; 7721 u32 tid; 7722 } event_id; 7723 }; 7724 7725 static int perf_event_comm_match(struct perf_event *event) 7726 { 7727 return event->attr.comm; 7728 } 7729 7730 static void perf_event_comm_output(struct perf_event *event, 7731 void *data) 7732 { 7733 struct perf_comm_event *comm_event = data; 7734 struct perf_output_handle handle; 7735 struct perf_sample_data sample; 7736 int size = comm_event->event_id.header.size; 7737 int ret; 7738 7739 if (!perf_event_comm_match(event)) 7740 return; 7741 7742 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 7743 ret = perf_output_begin(&handle, &sample, event, 7744 comm_event->event_id.header.size); 7745 7746 if (ret) 7747 goto out; 7748 7749 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 7750 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 7751 7752 perf_output_put(&handle, comm_event->event_id); 7753 __output_copy(&handle, comm_event->comm, 7754 comm_event->comm_size); 7755 7756 perf_event__output_id_sample(event, &handle, &sample); 7757 7758 perf_output_end(&handle); 7759 out: 7760 comm_event->event_id.header.size = size; 7761 } 7762 7763 static void perf_event_comm_event(struct perf_comm_event *comm_event) 7764 { 7765 char comm[TASK_COMM_LEN]; 7766 unsigned int size; 7767 7768 memset(comm, 0, sizeof(comm)); 7769 strlcpy(comm, comm_event->task->comm, sizeof(comm)); 7770 size = ALIGN(strlen(comm)+1, sizeof(u64)); 7771 7772 comm_event->comm = comm; 7773 comm_event->comm_size = size; 7774 7775 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 7776 7777 perf_iterate_sb(perf_event_comm_output, 7778 comm_event, 7779 NULL); 7780 } 7781 7782 void perf_event_comm(struct task_struct *task, bool exec) 7783 { 7784 struct perf_comm_event comm_event; 7785 7786 if (!atomic_read(&nr_comm_events)) 7787 return; 7788 7789 comm_event = (struct perf_comm_event){ 7790 .task = task, 7791 /* .comm */ 7792 /* .comm_size */ 7793 .event_id = { 7794 .header = { 7795 .type = PERF_RECORD_COMM, 7796 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 7797 /* .size */ 7798 }, 7799 /* .pid */ 7800 /* .tid */ 7801 }, 7802 }; 7803 7804 perf_event_comm_event(&comm_event); 7805 } 7806 7807 /* 7808 * namespaces tracking 7809 */ 7810 7811 struct perf_namespaces_event { 7812 struct task_struct *task; 7813 7814 struct { 7815 struct perf_event_header header; 7816 7817 u32 pid; 7818 u32 tid; 7819 u64 nr_namespaces; 7820 struct perf_ns_link_info link_info[NR_NAMESPACES]; 7821 } event_id; 7822 }; 7823 7824 static int perf_event_namespaces_match(struct perf_event *event) 7825 { 7826 return event->attr.namespaces; 7827 } 7828 7829 static void perf_event_namespaces_output(struct perf_event *event, 7830 void *data) 7831 { 7832 struct perf_namespaces_event *namespaces_event = data; 7833 struct perf_output_handle handle; 7834 struct perf_sample_data sample; 7835 u16 header_size = namespaces_event->event_id.header.size; 7836 int ret; 7837 7838 if (!perf_event_namespaces_match(event)) 7839 return; 7840 7841 perf_event_header__init_id(&namespaces_event->event_id.header, 7842 &sample, event); 7843 ret = perf_output_begin(&handle, &sample, event, 7844 namespaces_event->event_id.header.size); 7845 if (ret) 7846 goto out; 7847 7848 namespaces_event->event_id.pid = perf_event_pid(event, 7849 namespaces_event->task); 7850 namespaces_event->event_id.tid = perf_event_tid(event, 7851 namespaces_event->task); 7852 7853 perf_output_put(&handle, namespaces_event->event_id); 7854 7855 perf_event__output_id_sample(event, &handle, &sample); 7856 7857 perf_output_end(&handle); 7858 out: 7859 namespaces_event->event_id.header.size = header_size; 7860 } 7861 7862 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info, 7863 struct task_struct *task, 7864 const struct proc_ns_operations *ns_ops) 7865 { 7866 struct path ns_path; 7867 struct inode *ns_inode; 7868 int error; 7869 7870 error = ns_get_path(&ns_path, task, ns_ops); 7871 if (!error) { 7872 ns_inode = ns_path.dentry->d_inode; 7873 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev); 7874 ns_link_info->ino = ns_inode->i_ino; 7875 path_put(&ns_path); 7876 } 7877 } 7878 7879 void perf_event_namespaces(struct task_struct *task) 7880 { 7881 struct perf_namespaces_event namespaces_event; 7882 struct perf_ns_link_info *ns_link_info; 7883 7884 if (!atomic_read(&nr_namespaces_events)) 7885 return; 7886 7887 namespaces_event = (struct perf_namespaces_event){ 7888 .task = task, 7889 .event_id = { 7890 .header = { 7891 .type = PERF_RECORD_NAMESPACES, 7892 .misc = 0, 7893 .size = sizeof(namespaces_event.event_id), 7894 }, 7895 /* .pid */ 7896 /* .tid */ 7897 .nr_namespaces = NR_NAMESPACES, 7898 /* .link_info[NR_NAMESPACES] */ 7899 }, 7900 }; 7901 7902 ns_link_info = namespaces_event.event_id.link_info; 7903 7904 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX], 7905 task, &mntns_operations); 7906 7907 #ifdef CONFIG_USER_NS 7908 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX], 7909 task, &userns_operations); 7910 #endif 7911 #ifdef CONFIG_NET_NS 7912 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX], 7913 task, &netns_operations); 7914 #endif 7915 #ifdef CONFIG_UTS_NS 7916 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX], 7917 task, &utsns_operations); 7918 #endif 7919 #ifdef CONFIG_IPC_NS 7920 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX], 7921 task, &ipcns_operations); 7922 #endif 7923 #ifdef CONFIG_PID_NS 7924 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX], 7925 task, &pidns_operations); 7926 #endif 7927 #ifdef CONFIG_CGROUPS 7928 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX], 7929 task, &cgroupns_operations); 7930 #endif 7931 7932 perf_iterate_sb(perf_event_namespaces_output, 7933 &namespaces_event, 7934 NULL); 7935 } 7936 7937 /* 7938 * cgroup tracking 7939 */ 7940 #ifdef CONFIG_CGROUP_PERF 7941 7942 struct perf_cgroup_event { 7943 char *path; 7944 int path_size; 7945 struct { 7946 struct perf_event_header header; 7947 u64 id; 7948 char path[]; 7949 } event_id; 7950 }; 7951 7952 static int perf_event_cgroup_match(struct perf_event *event) 7953 { 7954 return event->attr.cgroup; 7955 } 7956 7957 static void perf_event_cgroup_output(struct perf_event *event, void *data) 7958 { 7959 struct perf_cgroup_event *cgroup_event = data; 7960 struct perf_output_handle handle; 7961 struct perf_sample_data sample; 7962 u16 header_size = cgroup_event->event_id.header.size; 7963 int ret; 7964 7965 if (!perf_event_cgroup_match(event)) 7966 return; 7967 7968 perf_event_header__init_id(&cgroup_event->event_id.header, 7969 &sample, event); 7970 ret = perf_output_begin(&handle, &sample, event, 7971 cgroup_event->event_id.header.size); 7972 if (ret) 7973 goto out; 7974 7975 perf_output_put(&handle, cgroup_event->event_id); 7976 __output_copy(&handle, cgroup_event->path, cgroup_event->path_size); 7977 7978 perf_event__output_id_sample(event, &handle, &sample); 7979 7980 perf_output_end(&handle); 7981 out: 7982 cgroup_event->event_id.header.size = header_size; 7983 } 7984 7985 static void perf_event_cgroup(struct cgroup *cgrp) 7986 { 7987 struct perf_cgroup_event cgroup_event; 7988 char path_enomem[16] = "//enomem"; 7989 char *pathname; 7990 size_t size; 7991 7992 if (!atomic_read(&nr_cgroup_events)) 7993 return; 7994 7995 cgroup_event = (struct perf_cgroup_event){ 7996 .event_id = { 7997 .header = { 7998 .type = PERF_RECORD_CGROUP, 7999 .misc = 0, 8000 .size = sizeof(cgroup_event.event_id), 8001 }, 8002 .id = cgroup_id(cgrp), 8003 }, 8004 }; 8005 8006 pathname = kmalloc(PATH_MAX, GFP_KERNEL); 8007 if (pathname == NULL) { 8008 cgroup_event.path = path_enomem; 8009 } else { 8010 /* just to be sure to have enough space for alignment */ 8011 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64)); 8012 cgroup_event.path = pathname; 8013 } 8014 8015 /* 8016 * Since our buffer works in 8 byte units we need to align our string 8017 * size to a multiple of 8. However, we must guarantee the tail end is 8018 * zero'd out to avoid leaking random bits to userspace. 8019 */ 8020 size = strlen(cgroup_event.path) + 1; 8021 while (!IS_ALIGNED(size, sizeof(u64))) 8022 cgroup_event.path[size++] = '\0'; 8023 8024 cgroup_event.event_id.header.size += size; 8025 cgroup_event.path_size = size; 8026 8027 perf_iterate_sb(perf_event_cgroup_output, 8028 &cgroup_event, 8029 NULL); 8030 8031 kfree(pathname); 8032 } 8033 8034 #endif 8035 8036 /* 8037 * mmap tracking 8038 */ 8039 8040 struct perf_mmap_event { 8041 struct vm_area_struct *vma; 8042 8043 const char *file_name; 8044 int file_size; 8045 int maj, min; 8046 u64 ino; 8047 u64 ino_generation; 8048 u32 prot, flags; 8049 8050 struct { 8051 struct perf_event_header header; 8052 8053 u32 pid; 8054 u32 tid; 8055 u64 start; 8056 u64 len; 8057 u64 pgoff; 8058 } event_id; 8059 }; 8060 8061 static int perf_event_mmap_match(struct perf_event *event, 8062 void *data) 8063 { 8064 struct perf_mmap_event *mmap_event = data; 8065 struct vm_area_struct *vma = mmap_event->vma; 8066 int executable = vma->vm_flags & VM_EXEC; 8067 8068 return (!executable && event->attr.mmap_data) || 8069 (executable && (event->attr.mmap || event->attr.mmap2)); 8070 } 8071 8072 static void perf_event_mmap_output(struct perf_event *event, 8073 void *data) 8074 { 8075 struct perf_mmap_event *mmap_event = data; 8076 struct perf_output_handle handle; 8077 struct perf_sample_data sample; 8078 int size = mmap_event->event_id.header.size; 8079 u32 type = mmap_event->event_id.header.type; 8080 int ret; 8081 8082 if (!perf_event_mmap_match(event, data)) 8083 return; 8084 8085 if (event->attr.mmap2) { 8086 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 8087 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 8088 mmap_event->event_id.header.size += sizeof(mmap_event->min); 8089 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 8090 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 8091 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 8092 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 8093 } 8094 8095 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 8096 ret = perf_output_begin(&handle, &sample, event, 8097 mmap_event->event_id.header.size); 8098 if (ret) 8099 goto out; 8100 8101 mmap_event->event_id.pid = perf_event_pid(event, current); 8102 mmap_event->event_id.tid = perf_event_tid(event, current); 8103 8104 perf_output_put(&handle, mmap_event->event_id); 8105 8106 if (event->attr.mmap2) { 8107 perf_output_put(&handle, mmap_event->maj); 8108 perf_output_put(&handle, mmap_event->min); 8109 perf_output_put(&handle, mmap_event->ino); 8110 perf_output_put(&handle, mmap_event->ino_generation); 8111 perf_output_put(&handle, mmap_event->prot); 8112 perf_output_put(&handle, mmap_event->flags); 8113 } 8114 8115 __output_copy(&handle, mmap_event->file_name, 8116 mmap_event->file_size); 8117 8118 perf_event__output_id_sample(event, &handle, &sample); 8119 8120 perf_output_end(&handle); 8121 out: 8122 mmap_event->event_id.header.size = size; 8123 mmap_event->event_id.header.type = type; 8124 } 8125 8126 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 8127 { 8128 struct vm_area_struct *vma = mmap_event->vma; 8129 struct file *file = vma->vm_file; 8130 int maj = 0, min = 0; 8131 u64 ino = 0, gen = 0; 8132 u32 prot = 0, flags = 0; 8133 unsigned int size; 8134 char tmp[16]; 8135 char *buf = NULL; 8136 char *name; 8137 8138 if (vma->vm_flags & VM_READ) 8139 prot |= PROT_READ; 8140 if (vma->vm_flags & VM_WRITE) 8141 prot |= PROT_WRITE; 8142 if (vma->vm_flags & VM_EXEC) 8143 prot |= PROT_EXEC; 8144 8145 if (vma->vm_flags & VM_MAYSHARE) 8146 flags = MAP_SHARED; 8147 else 8148 flags = MAP_PRIVATE; 8149 8150 if (vma->vm_flags & VM_DENYWRITE) 8151 flags |= MAP_DENYWRITE; 8152 if (vma->vm_flags & VM_MAYEXEC) 8153 flags |= MAP_EXECUTABLE; 8154 if (vma->vm_flags & VM_LOCKED) 8155 flags |= MAP_LOCKED; 8156 if (is_vm_hugetlb_page(vma)) 8157 flags |= MAP_HUGETLB; 8158 8159 if (file) { 8160 struct inode *inode; 8161 dev_t dev; 8162 8163 buf = kmalloc(PATH_MAX, GFP_KERNEL); 8164 if (!buf) { 8165 name = "//enomem"; 8166 goto cpy_name; 8167 } 8168 /* 8169 * d_path() works from the end of the rb backwards, so we 8170 * need to add enough zero bytes after the string to handle 8171 * the 64bit alignment we do later. 8172 */ 8173 name = file_path(file, buf, PATH_MAX - sizeof(u64)); 8174 if (IS_ERR(name)) { 8175 name = "//toolong"; 8176 goto cpy_name; 8177 } 8178 inode = file_inode(vma->vm_file); 8179 dev = inode->i_sb->s_dev; 8180 ino = inode->i_ino; 8181 gen = inode->i_generation; 8182 maj = MAJOR(dev); 8183 min = MINOR(dev); 8184 8185 goto got_name; 8186 } else { 8187 if (vma->vm_ops && vma->vm_ops->name) { 8188 name = (char *) vma->vm_ops->name(vma); 8189 if (name) 8190 goto cpy_name; 8191 } 8192 8193 name = (char *)arch_vma_name(vma); 8194 if (name) 8195 goto cpy_name; 8196 8197 if (vma->vm_start <= vma->vm_mm->start_brk && 8198 vma->vm_end >= vma->vm_mm->brk) { 8199 name = "[heap]"; 8200 goto cpy_name; 8201 } 8202 if (vma->vm_start <= vma->vm_mm->start_stack && 8203 vma->vm_end >= vma->vm_mm->start_stack) { 8204 name = "[stack]"; 8205 goto cpy_name; 8206 } 8207 8208 name = "//anon"; 8209 goto cpy_name; 8210 } 8211 8212 cpy_name: 8213 strlcpy(tmp, name, sizeof(tmp)); 8214 name = tmp; 8215 got_name: 8216 /* 8217 * Since our buffer works in 8 byte units we need to align our string 8218 * size to a multiple of 8. However, we must guarantee the tail end is 8219 * zero'd out to avoid leaking random bits to userspace. 8220 */ 8221 size = strlen(name)+1; 8222 while (!IS_ALIGNED(size, sizeof(u64))) 8223 name[size++] = '\0'; 8224 8225 mmap_event->file_name = name; 8226 mmap_event->file_size = size; 8227 mmap_event->maj = maj; 8228 mmap_event->min = min; 8229 mmap_event->ino = ino; 8230 mmap_event->ino_generation = gen; 8231 mmap_event->prot = prot; 8232 mmap_event->flags = flags; 8233 8234 if (!(vma->vm_flags & VM_EXEC)) 8235 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 8236 8237 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 8238 8239 perf_iterate_sb(perf_event_mmap_output, 8240 mmap_event, 8241 NULL); 8242 8243 kfree(buf); 8244 } 8245 8246 /* 8247 * Check whether inode and address range match filter criteria. 8248 */ 8249 static bool perf_addr_filter_match(struct perf_addr_filter *filter, 8250 struct file *file, unsigned long offset, 8251 unsigned long size) 8252 { 8253 /* d_inode(NULL) won't be equal to any mapped user-space file */ 8254 if (!filter->path.dentry) 8255 return false; 8256 8257 if (d_inode(filter->path.dentry) != file_inode(file)) 8258 return false; 8259 8260 if (filter->offset > offset + size) 8261 return false; 8262 8263 if (filter->offset + filter->size < offset) 8264 return false; 8265 8266 return true; 8267 } 8268 8269 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter, 8270 struct vm_area_struct *vma, 8271 struct perf_addr_filter_range *fr) 8272 { 8273 unsigned long vma_size = vma->vm_end - vma->vm_start; 8274 unsigned long off = vma->vm_pgoff << PAGE_SHIFT; 8275 struct file *file = vma->vm_file; 8276 8277 if (!perf_addr_filter_match(filter, file, off, vma_size)) 8278 return false; 8279 8280 if (filter->offset < off) { 8281 fr->start = vma->vm_start; 8282 fr->size = min(vma_size, filter->size - (off - filter->offset)); 8283 } else { 8284 fr->start = vma->vm_start + filter->offset - off; 8285 fr->size = min(vma->vm_end - fr->start, filter->size); 8286 } 8287 8288 return true; 8289 } 8290 8291 static void __perf_addr_filters_adjust(struct perf_event *event, void *data) 8292 { 8293 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 8294 struct vm_area_struct *vma = data; 8295 struct perf_addr_filter *filter; 8296 unsigned int restart = 0, count = 0; 8297 unsigned long flags; 8298 8299 if (!has_addr_filter(event)) 8300 return; 8301 8302 if (!vma->vm_file) 8303 return; 8304 8305 raw_spin_lock_irqsave(&ifh->lock, flags); 8306 list_for_each_entry(filter, &ifh->list, entry) { 8307 if (perf_addr_filter_vma_adjust(filter, vma, 8308 &event->addr_filter_ranges[count])) 8309 restart++; 8310 8311 count++; 8312 } 8313 8314 if (restart) 8315 event->addr_filters_gen++; 8316 raw_spin_unlock_irqrestore(&ifh->lock, flags); 8317 8318 if (restart) 8319 perf_event_stop(event, 1); 8320 } 8321 8322 /* 8323 * Adjust all task's events' filters to the new vma 8324 */ 8325 static void perf_addr_filters_adjust(struct vm_area_struct *vma) 8326 { 8327 struct perf_event_context *ctx; 8328 int ctxn; 8329 8330 /* 8331 * Data tracing isn't supported yet and as such there is no need 8332 * to keep track of anything that isn't related to executable code: 8333 */ 8334 if (!(vma->vm_flags & VM_EXEC)) 8335 return; 8336 8337 rcu_read_lock(); 8338 for_each_task_context_nr(ctxn) { 8339 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 8340 if (!ctx) 8341 continue; 8342 8343 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true); 8344 } 8345 rcu_read_unlock(); 8346 } 8347 8348 void perf_event_mmap(struct vm_area_struct *vma) 8349 { 8350 struct perf_mmap_event mmap_event; 8351 8352 if (!atomic_read(&nr_mmap_events)) 8353 return; 8354 8355 mmap_event = (struct perf_mmap_event){ 8356 .vma = vma, 8357 /* .file_name */ 8358 /* .file_size */ 8359 .event_id = { 8360 .header = { 8361 .type = PERF_RECORD_MMAP, 8362 .misc = PERF_RECORD_MISC_USER, 8363 /* .size */ 8364 }, 8365 /* .pid */ 8366 /* .tid */ 8367 .start = vma->vm_start, 8368 .len = vma->vm_end - vma->vm_start, 8369 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 8370 }, 8371 /* .maj (attr_mmap2 only) */ 8372 /* .min (attr_mmap2 only) */ 8373 /* .ino (attr_mmap2 only) */ 8374 /* .ino_generation (attr_mmap2 only) */ 8375 /* .prot (attr_mmap2 only) */ 8376 /* .flags (attr_mmap2 only) */ 8377 }; 8378 8379 perf_addr_filters_adjust(vma); 8380 perf_event_mmap_event(&mmap_event); 8381 } 8382 8383 void perf_event_aux_event(struct perf_event *event, unsigned long head, 8384 unsigned long size, u64 flags) 8385 { 8386 struct perf_output_handle handle; 8387 struct perf_sample_data sample; 8388 struct perf_aux_event { 8389 struct perf_event_header header; 8390 u64 offset; 8391 u64 size; 8392 u64 flags; 8393 } rec = { 8394 .header = { 8395 .type = PERF_RECORD_AUX, 8396 .misc = 0, 8397 .size = sizeof(rec), 8398 }, 8399 .offset = head, 8400 .size = size, 8401 .flags = flags, 8402 }; 8403 int ret; 8404 8405 perf_event_header__init_id(&rec.header, &sample, event); 8406 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 8407 8408 if (ret) 8409 return; 8410 8411 perf_output_put(&handle, rec); 8412 perf_event__output_id_sample(event, &handle, &sample); 8413 8414 perf_output_end(&handle); 8415 } 8416 8417 /* 8418 * Lost/dropped samples logging 8419 */ 8420 void perf_log_lost_samples(struct perf_event *event, u64 lost) 8421 { 8422 struct perf_output_handle handle; 8423 struct perf_sample_data sample; 8424 int ret; 8425 8426 struct { 8427 struct perf_event_header header; 8428 u64 lost; 8429 } lost_samples_event = { 8430 .header = { 8431 .type = PERF_RECORD_LOST_SAMPLES, 8432 .misc = 0, 8433 .size = sizeof(lost_samples_event), 8434 }, 8435 .lost = lost, 8436 }; 8437 8438 perf_event_header__init_id(&lost_samples_event.header, &sample, event); 8439 8440 ret = perf_output_begin(&handle, &sample, event, 8441 lost_samples_event.header.size); 8442 if (ret) 8443 return; 8444 8445 perf_output_put(&handle, lost_samples_event); 8446 perf_event__output_id_sample(event, &handle, &sample); 8447 perf_output_end(&handle); 8448 } 8449 8450 /* 8451 * context_switch tracking 8452 */ 8453 8454 struct perf_switch_event { 8455 struct task_struct *task; 8456 struct task_struct *next_prev; 8457 8458 struct { 8459 struct perf_event_header header; 8460 u32 next_prev_pid; 8461 u32 next_prev_tid; 8462 } event_id; 8463 }; 8464 8465 static int perf_event_switch_match(struct perf_event *event) 8466 { 8467 return event->attr.context_switch; 8468 } 8469 8470 static void perf_event_switch_output(struct perf_event *event, void *data) 8471 { 8472 struct perf_switch_event *se = data; 8473 struct perf_output_handle handle; 8474 struct perf_sample_data sample; 8475 int ret; 8476 8477 if (!perf_event_switch_match(event)) 8478 return; 8479 8480 /* Only CPU-wide events are allowed to see next/prev pid/tid */ 8481 if (event->ctx->task) { 8482 se->event_id.header.type = PERF_RECORD_SWITCH; 8483 se->event_id.header.size = sizeof(se->event_id.header); 8484 } else { 8485 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE; 8486 se->event_id.header.size = sizeof(se->event_id); 8487 se->event_id.next_prev_pid = 8488 perf_event_pid(event, se->next_prev); 8489 se->event_id.next_prev_tid = 8490 perf_event_tid(event, se->next_prev); 8491 } 8492 8493 perf_event_header__init_id(&se->event_id.header, &sample, event); 8494 8495 ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size); 8496 if (ret) 8497 return; 8498 8499 if (event->ctx->task) 8500 perf_output_put(&handle, se->event_id.header); 8501 else 8502 perf_output_put(&handle, se->event_id); 8503 8504 perf_event__output_id_sample(event, &handle, &sample); 8505 8506 perf_output_end(&handle); 8507 } 8508 8509 static void perf_event_switch(struct task_struct *task, 8510 struct task_struct *next_prev, bool sched_in) 8511 { 8512 struct perf_switch_event switch_event; 8513 8514 /* N.B. caller checks nr_switch_events != 0 */ 8515 8516 switch_event = (struct perf_switch_event){ 8517 .task = task, 8518 .next_prev = next_prev, 8519 .event_id = { 8520 .header = { 8521 /* .type */ 8522 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT, 8523 /* .size */ 8524 }, 8525 /* .next_prev_pid */ 8526 /* .next_prev_tid */ 8527 }, 8528 }; 8529 8530 if (!sched_in && task->state == TASK_RUNNING) 8531 switch_event.event_id.header.misc |= 8532 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT; 8533 8534 perf_iterate_sb(perf_event_switch_output, 8535 &switch_event, 8536 NULL); 8537 } 8538 8539 /* 8540 * IRQ throttle logging 8541 */ 8542 8543 static void perf_log_throttle(struct perf_event *event, int enable) 8544 { 8545 struct perf_output_handle handle; 8546 struct perf_sample_data sample; 8547 int ret; 8548 8549 struct { 8550 struct perf_event_header header; 8551 u64 time; 8552 u64 id; 8553 u64 stream_id; 8554 } throttle_event = { 8555 .header = { 8556 .type = PERF_RECORD_THROTTLE, 8557 .misc = 0, 8558 .size = sizeof(throttle_event), 8559 }, 8560 .time = perf_event_clock(event), 8561 .id = primary_event_id(event), 8562 .stream_id = event->id, 8563 }; 8564 8565 if (enable) 8566 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 8567 8568 perf_event_header__init_id(&throttle_event.header, &sample, event); 8569 8570 ret = perf_output_begin(&handle, &sample, event, 8571 throttle_event.header.size); 8572 if (ret) 8573 return; 8574 8575 perf_output_put(&handle, throttle_event); 8576 perf_event__output_id_sample(event, &handle, &sample); 8577 perf_output_end(&handle); 8578 } 8579 8580 /* 8581 * ksymbol register/unregister tracking 8582 */ 8583 8584 struct perf_ksymbol_event { 8585 const char *name; 8586 int name_len; 8587 struct { 8588 struct perf_event_header header; 8589 u64 addr; 8590 u32 len; 8591 u16 ksym_type; 8592 u16 flags; 8593 } event_id; 8594 }; 8595 8596 static int perf_event_ksymbol_match(struct perf_event *event) 8597 { 8598 return event->attr.ksymbol; 8599 } 8600 8601 static void perf_event_ksymbol_output(struct perf_event *event, void *data) 8602 { 8603 struct perf_ksymbol_event *ksymbol_event = data; 8604 struct perf_output_handle handle; 8605 struct perf_sample_data sample; 8606 int ret; 8607 8608 if (!perf_event_ksymbol_match(event)) 8609 return; 8610 8611 perf_event_header__init_id(&ksymbol_event->event_id.header, 8612 &sample, event); 8613 ret = perf_output_begin(&handle, &sample, event, 8614 ksymbol_event->event_id.header.size); 8615 if (ret) 8616 return; 8617 8618 perf_output_put(&handle, ksymbol_event->event_id); 8619 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len); 8620 perf_event__output_id_sample(event, &handle, &sample); 8621 8622 perf_output_end(&handle); 8623 } 8624 8625 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister, 8626 const char *sym) 8627 { 8628 struct perf_ksymbol_event ksymbol_event; 8629 char name[KSYM_NAME_LEN]; 8630 u16 flags = 0; 8631 int name_len; 8632 8633 if (!atomic_read(&nr_ksymbol_events)) 8634 return; 8635 8636 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX || 8637 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN) 8638 goto err; 8639 8640 strlcpy(name, sym, KSYM_NAME_LEN); 8641 name_len = strlen(name) + 1; 8642 while (!IS_ALIGNED(name_len, sizeof(u64))) 8643 name[name_len++] = '\0'; 8644 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64)); 8645 8646 if (unregister) 8647 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER; 8648 8649 ksymbol_event = (struct perf_ksymbol_event){ 8650 .name = name, 8651 .name_len = name_len, 8652 .event_id = { 8653 .header = { 8654 .type = PERF_RECORD_KSYMBOL, 8655 .size = sizeof(ksymbol_event.event_id) + 8656 name_len, 8657 }, 8658 .addr = addr, 8659 .len = len, 8660 .ksym_type = ksym_type, 8661 .flags = flags, 8662 }, 8663 }; 8664 8665 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL); 8666 return; 8667 err: 8668 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type); 8669 } 8670 8671 /* 8672 * bpf program load/unload tracking 8673 */ 8674 8675 struct perf_bpf_event { 8676 struct bpf_prog *prog; 8677 struct { 8678 struct perf_event_header header; 8679 u16 type; 8680 u16 flags; 8681 u32 id; 8682 u8 tag[BPF_TAG_SIZE]; 8683 } event_id; 8684 }; 8685 8686 static int perf_event_bpf_match(struct perf_event *event) 8687 { 8688 return event->attr.bpf_event; 8689 } 8690 8691 static void perf_event_bpf_output(struct perf_event *event, void *data) 8692 { 8693 struct perf_bpf_event *bpf_event = data; 8694 struct perf_output_handle handle; 8695 struct perf_sample_data sample; 8696 int ret; 8697 8698 if (!perf_event_bpf_match(event)) 8699 return; 8700 8701 perf_event_header__init_id(&bpf_event->event_id.header, 8702 &sample, event); 8703 ret = perf_output_begin(&handle, data, event, 8704 bpf_event->event_id.header.size); 8705 if (ret) 8706 return; 8707 8708 perf_output_put(&handle, bpf_event->event_id); 8709 perf_event__output_id_sample(event, &handle, &sample); 8710 8711 perf_output_end(&handle); 8712 } 8713 8714 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog, 8715 enum perf_bpf_event_type type) 8716 { 8717 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD; 8718 int i; 8719 8720 if (prog->aux->func_cnt == 0) { 8721 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF, 8722 (u64)(unsigned long)prog->bpf_func, 8723 prog->jited_len, unregister, 8724 prog->aux->ksym.name); 8725 } else { 8726 for (i = 0; i < prog->aux->func_cnt; i++) { 8727 struct bpf_prog *subprog = prog->aux->func[i]; 8728 8729 perf_event_ksymbol( 8730 PERF_RECORD_KSYMBOL_TYPE_BPF, 8731 (u64)(unsigned long)subprog->bpf_func, 8732 subprog->jited_len, unregister, 8733 prog->aux->ksym.name); 8734 } 8735 } 8736 } 8737 8738 void perf_event_bpf_event(struct bpf_prog *prog, 8739 enum perf_bpf_event_type type, 8740 u16 flags) 8741 { 8742 struct perf_bpf_event bpf_event; 8743 8744 if (type <= PERF_BPF_EVENT_UNKNOWN || 8745 type >= PERF_BPF_EVENT_MAX) 8746 return; 8747 8748 switch (type) { 8749 case PERF_BPF_EVENT_PROG_LOAD: 8750 case PERF_BPF_EVENT_PROG_UNLOAD: 8751 if (atomic_read(&nr_ksymbol_events)) 8752 perf_event_bpf_emit_ksymbols(prog, type); 8753 break; 8754 default: 8755 break; 8756 } 8757 8758 if (!atomic_read(&nr_bpf_events)) 8759 return; 8760 8761 bpf_event = (struct perf_bpf_event){ 8762 .prog = prog, 8763 .event_id = { 8764 .header = { 8765 .type = PERF_RECORD_BPF_EVENT, 8766 .size = sizeof(bpf_event.event_id), 8767 }, 8768 .type = type, 8769 .flags = flags, 8770 .id = prog->aux->id, 8771 }, 8772 }; 8773 8774 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64)); 8775 8776 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE); 8777 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL); 8778 } 8779 8780 struct perf_text_poke_event { 8781 const void *old_bytes; 8782 const void *new_bytes; 8783 size_t pad; 8784 u16 old_len; 8785 u16 new_len; 8786 8787 struct { 8788 struct perf_event_header header; 8789 8790 u64 addr; 8791 } event_id; 8792 }; 8793 8794 static int perf_event_text_poke_match(struct perf_event *event) 8795 { 8796 return event->attr.text_poke; 8797 } 8798 8799 static void perf_event_text_poke_output(struct perf_event *event, void *data) 8800 { 8801 struct perf_text_poke_event *text_poke_event = data; 8802 struct perf_output_handle handle; 8803 struct perf_sample_data sample; 8804 u64 padding = 0; 8805 int ret; 8806 8807 if (!perf_event_text_poke_match(event)) 8808 return; 8809 8810 perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event); 8811 8812 ret = perf_output_begin(&handle, &sample, event, 8813 text_poke_event->event_id.header.size); 8814 if (ret) 8815 return; 8816 8817 perf_output_put(&handle, text_poke_event->event_id); 8818 perf_output_put(&handle, text_poke_event->old_len); 8819 perf_output_put(&handle, text_poke_event->new_len); 8820 8821 __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len); 8822 __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len); 8823 8824 if (text_poke_event->pad) 8825 __output_copy(&handle, &padding, text_poke_event->pad); 8826 8827 perf_event__output_id_sample(event, &handle, &sample); 8828 8829 perf_output_end(&handle); 8830 } 8831 8832 void perf_event_text_poke(const void *addr, const void *old_bytes, 8833 size_t old_len, const void *new_bytes, size_t new_len) 8834 { 8835 struct perf_text_poke_event text_poke_event; 8836 size_t tot, pad; 8837 8838 if (!atomic_read(&nr_text_poke_events)) 8839 return; 8840 8841 tot = sizeof(text_poke_event.old_len) + old_len; 8842 tot += sizeof(text_poke_event.new_len) + new_len; 8843 pad = ALIGN(tot, sizeof(u64)) - tot; 8844 8845 text_poke_event = (struct perf_text_poke_event){ 8846 .old_bytes = old_bytes, 8847 .new_bytes = new_bytes, 8848 .pad = pad, 8849 .old_len = old_len, 8850 .new_len = new_len, 8851 .event_id = { 8852 .header = { 8853 .type = PERF_RECORD_TEXT_POKE, 8854 .misc = PERF_RECORD_MISC_KERNEL, 8855 .size = sizeof(text_poke_event.event_id) + tot + pad, 8856 }, 8857 .addr = (unsigned long)addr, 8858 }, 8859 }; 8860 8861 perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL); 8862 } 8863 8864 void perf_event_itrace_started(struct perf_event *event) 8865 { 8866 event->attach_state |= PERF_ATTACH_ITRACE; 8867 } 8868 8869 static void perf_log_itrace_start(struct perf_event *event) 8870 { 8871 struct perf_output_handle handle; 8872 struct perf_sample_data sample; 8873 struct perf_aux_event { 8874 struct perf_event_header header; 8875 u32 pid; 8876 u32 tid; 8877 } rec; 8878 int ret; 8879 8880 if (event->parent) 8881 event = event->parent; 8882 8883 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || 8884 event->attach_state & PERF_ATTACH_ITRACE) 8885 return; 8886 8887 rec.header.type = PERF_RECORD_ITRACE_START; 8888 rec.header.misc = 0; 8889 rec.header.size = sizeof(rec); 8890 rec.pid = perf_event_pid(event, current); 8891 rec.tid = perf_event_tid(event, current); 8892 8893 perf_event_header__init_id(&rec.header, &sample, event); 8894 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 8895 8896 if (ret) 8897 return; 8898 8899 perf_output_put(&handle, rec); 8900 perf_event__output_id_sample(event, &handle, &sample); 8901 8902 perf_output_end(&handle); 8903 } 8904 8905 static int 8906 __perf_event_account_interrupt(struct perf_event *event, int throttle) 8907 { 8908 struct hw_perf_event *hwc = &event->hw; 8909 int ret = 0; 8910 u64 seq; 8911 8912 seq = __this_cpu_read(perf_throttled_seq); 8913 if (seq != hwc->interrupts_seq) { 8914 hwc->interrupts_seq = seq; 8915 hwc->interrupts = 1; 8916 } else { 8917 hwc->interrupts++; 8918 if (unlikely(throttle 8919 && hwc->interrupts >= max_samples_per_tick)) { 8920 __this_cpu_inc(perf_throttled_count); 8921 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 8922 hwc->interrupts = MAX_INTERRUPTS; 8923 perf_log_throttle(event, 0); 8924 ret = 1; 8925 } 8926 } 8927 8928 if (event->attr.freq) { 8929 u64 now = perf_clock(); 8930 s64 delta = now - hwc->freq_time_stamp; 8931 8932 hwc->freq_time_stamp = now; 8933 8934 if (delta > 0 && delta < 2*TICK_NSEC) 8935 perf_adjust_period(event, delta, hwc->last_period, true); 8936 } 8937 8938 return ret; 8939 } 8940 8941 int perf_event_account_interrupt(struct perf_event *event) 8942 { 8943 return __perf_event_account_interrupt(event, 1); 8944 } 8945 8946 /* 8947 * Generic event overflow handling, sampling. 8948 */ 8949 8950 static int __perf_event_overflow(struct perf_event *event, 8951 int throttle, struct perf_sample_data *data, 8952 struct pt_regs *regs) 8953 { 8954 int events = atomic_read(&event->event_limit); 8955 int ret = 0; 8956 8957 /* 8958 * Non-sampling counters might still use the PMI to fold short 8959 * hardware counters, ignore those. 8960 */ 8961 if (unlikely(!is_sampling_event(event))) 8962 return 0; 8963 8964 ret = __perf_event_account_interrupt(event, throttle); 8965 8966 /* 8967 * XXX event_limit might not quite work as expected on inherited 8968 * events 8969 */ 8970 8971 event->pending_kill = POLL_IN; 8972 if (events && atomic_dec_and_test(&event->event_limit)) { 8973 ret = 1; 8974 event->pending_kill = POLL_HUP; 8975 8976 perf_event_disable_inatomic(event); 8977 } 8978 8979 READ_ONCE(event->overflow_handler)(event, data, regs); 8980 8981 if (*perf_event_fasync(event) && event->pending_kill) { 8982 event->pending_wakeup = 1; 8983 irq_work_queue(&event->pending); 8984 } 8985 8986 return ret; 8987 } 8988 8989 int perf_event_overflow(struct perf_event *event, 8990 struct perf_sample_data *data, 8991 struct pt_regs *regs) 8992 { 8993 return __perf_event_overflow(event, 1, data, regs); 8994 } 8995 8996 /* 8997 * Generic software event infrastructure 8998 */ 8999 9000 struct swevent_htable { 9001 struct swevent_hlist *swevent_hlist; 9002 struct mutex hlist_mutex; 9003 int hlist_refcount; 9004 9005 /* Recursion avoidance in each contexts */ 9006 int recursion[PERF_NR_CONTEXTS]; 9007 }; 9008 9009 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 9010 9011 /* 9012 * We directly increment event->count and keep a second value in 9013 * event->hw.period_left to count intervals. This period event 9014 * is kept in the range [-sample_period, 0] so that we can use the 9015 * sign as trigger. 9016 */ 9017 9018 u64 perf_swevent_set_period(struct perf_event *event) 9019 { 9020 struct hw_perf_event *hwc = &event->hw; 9021 u64 period = hwc->last_period; 9022 u64 nr, offset; 9023 s64 old, val; 9024 9025 hwc->last_period = hwc->sample_period; 9026 9027 again: 9028 old = val = local64_read(&hwc->period_left); 9029 if (val < 0) 9030 return 0; 9031 9032 nr = div64_u64(period + val, period); 9033 offset = nr * period; 9034 val -= offset; 9035 if (local64_cmpxchg(&hwc->period_left, old, val) != old) 9036 goto again; 9037 9038 return nr; 9039 } 9040 9041 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 9042 struct perf_sample_data *data, 9043 struct pt_regs *regs) 9044 { 9045 struct hw_perf_event *hwc = &event->hw; 9046 int throttle = 0; 9047 9048 if (!overflow) 9049 overflow = perf_swevent_set_period(event); 9050 9051 if (hwc->interrupts == MAX_INTERRUPTS) 9052 return; 9053 9054 for (; overflow; overflow--) { 9055 if (__perf_event_overflow(event, throttle, 9056 data, regs)) { 9057 /* 9058 * We inhibit the overflow from happening when 9059 * hwc->interrupts == MAX_INTERRUPTS. 9060 */ 9061 break; 9062 } 9063 throttle = 1; 9064 } 9065 } 9066 9067 static void perf_swevent_event(struct perf_event *event, u64 nr, 9068 struct perf_sample_data *data, 9069 struct pt_regs *regs) 9070 { 9071 struct hw_perf_event *hwc = &event->hw; 9072 9073 local64_add(nr, &event->count); 9074 9075 if (!regs) 9076 return; 9077 9078 if (!is_sampling_event(event)) 9079 return; 9080 9081 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 9082 data->period = nr; 9083 return perf_swevent_overflow(event, 1, data, regs); 9084 } else 9085 data->period = event->hw.last_period; 9086 9087 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 9088 return perf_swevent_overflow(event, 1, data, regs); 9089 9090 if (local64_add_negative(nr, &hwc->period_left)) 9091 return; 9092 9093 perf_swevent_overflow(event, 0, data, regs); 9094 } 9095 9096 static int perf_exclude_event(struct perf_event *event, 9097 struct pt_regs *regs) 9098 { 9099 if (event->hw.state & PERF_HES_STOPPED) 9100 return 1; 9101 9102 if (regs) { 9103 if (event->attr.exclude_user && user_mode(regs)) 9104 return 1; 9105 9106 if (event->attr.exclude_kernel && !user_mode(regs)) 9107 return 1; 9108 } 9109 9110 return 0; 9111 } 9112 9113 static int perf_swevent_match(struct perf_event *event, 9114 enum perf_type_id type, 9115 u32 event_id, 9116 struct perf_sample_data *data, 9117 struct pt_regs *regs) 9118 { 9119 if (event->attr.type != type) 9120 return 0; 9121 9122 if (event->attr.config != event_id) 9123 return 0; 9124 9125 if (perf_exclude_event(event, regs)) 9126 return 0; 9127 9128 return 1; 9129 } 9130 9131 static inline u64 swevent_hash(u64 type, u32 event_id) 9132 { 9133 u64 val = event_id | (type << 32); 9134 9135 return hash_64(val, SWEVENT_HLIST_BITS); 9136 } 9137 9138 static inline struct hlist_head * 9139 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 9140 { 9141 u64 hash = swevent_hash(type, event_id); 9142 9143 return &hlist->heads[hash]; 9144 } 9145 9146 /* For the read side: events when they trigger */ 9147 static inline struct hlist_head * 9148 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 9149 { 9150 struct swevent_hlist *hlist; 9151 9152 hlist = rcu_dereference(swhash->swevent_hlist); 9153 if (!hlist) 9154 return NULL; 9155 9156 return __find_swevent_head(hlist, type, event_id); 9157 } 9158 9159 /* For the event head insertion and removal in the hlist */ 9160 static inline struct hlist_head * 9161 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 9162 { 9163 struct swevent_hlist *hlist; 9164 u32 event_id = event->attr.config; 9165 u64 type = event->attr.type; 9166 9167 /* 9168 * Event scheduling is always serialized against hlist allocation 9169 * and release. Which makes the protected version suitable here. 9170 * The context lock guarantees that. 9171 */ 9172 hlist = rcu_dereference_protected(swhash->swevent_hlist, 9173 lockdep_is_held(&event->ctx->lock)); 9174 if (!hlist) 9175 return NULL; 9176 9177 return __find_swevent_head(hlist, type, event_id); 9178 } 9179 9180 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 9181 u64 nr, 9182 struct perf_sample_data *data, 9183 struct pt_regs *regs) 9184 { 9185 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9186 struct perf_event *event; 9187 struct hlist_head *head; 9188 9189 rcu_read_lock(); 9190 head = find_swevent_head_rcu(swhash, type, event_id); 9191 if (!head) 9192 goto end; 9193 9194 hlist_for_each_entry_rcu(event, head, hlist_entry) { 9195 if (perf_swevent_match(event, type, event_id, data, regs)) 9196 perf_swevent_event(event, nr, data, regs); 9197 } 9198 end: 9199 rcu_read_unlock(); 9200 } 9201 9202 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); 9203 9204 int perf_swevent_get_recursion_context(void) 9205 { 9206 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9207 9208 return get_recursion_context(swhash->recursion); 9209 } 9210 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 9211 9212 void perf_swevent_put_recursion_context(int rctx) 9213 { 9214 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9215 9216 put_recursion_context(swhash->recursion, rctx); 9217 } 9218 9219 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 9220 { 9221 struct perf_sample_data data; 9222 9223 if (WARN_ON_ONCE(!regs)) 9224 return; 9225 9226 perf_sample_data_init(&data, addr, 0); 9227 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 9228 } 9229 9230 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 9231 { 9232 int rctx; 9233 9234 preempt_disable_notrace(); 9235 rctx = perf_swevent_get_recursion_context(); 9236 if (unlikely(rctx < 0)) 9237 goto fail; 9238 9239 ___perf_sw_event(event_id, nr, regs, addr); 9240 9241 perf_swevent_put_recursion_context(rctx); 9242 fail: 9243 preempt_enable_notrace(); 9244 } 9245 9246 static void perf_swevent_read(struct perf_event *event) 9247 { 9248 } 9249 9250 static int perf_swevent_add(struct perf_event *event, int flags) 9251 { 9252 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9253 struct hw_perf_event *hwc = &event->hw; 9254 struct hlist_head *head; 9255 9256 if (is_sampling_event(event)) { 9257 hwc->last_period = hwc->sample_period; 9258 perf_swevent_set_period(event); 9259 } 9260 9261 hwc->state = !(flags & PERF_EF_START); 9262 9263 head = find_swevent_head(swhash, event); 9264 if (WARN_ON_ONCE(!head)) 9265 return -EINVAL; 9266 9267 hlist_add_head_rcu(&event->hlist_entry, head); 9268 perf_event_update_userpage(event); 9269 9270 return 0; 9271 } 9272 9273 static void perf_swevent_del(struct perf_event *event, int flags) 9274 { 9275 hlist_del_rcu(&event->hlist_entry); 9276 } 9277 9278 static void perf_swevent_start(struct perf_event *event, int flags) 9279 { 9280 event->hw.state = 0; 9281 } 9282 9283 static void perf_swevent_stop(struct perf_event *event, int flags) 9284 { 9285 event->hw.state = PERF_HES_STOPPED; 9286 } 9287 9288 /* Deref the hlist from the update side */ 9289 static inline struct swevent_hlist * 9290 swevent_hlist_deref(struct swevent_htable *swhash) 9291 { 9292 return rcu_dereference_protected(swhash->swevent_hlist, 9293 lockdep_is_held(&swhash->hlist_mutex)); 9294 } 9295 9296 static void swevent_hlist_release(struct swevent_htable *swhash) 9297 { 9298 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 9299 9300 if (!hlist) 9301 return; 9302 9303 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 9304 kfree_rcu(hlist, rcu_head); 9305 } 9306 9307 static void swevent_hlist_put_cpu(int cpu) 9308 { 9309 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 9310 9311 mutex_lock(&swhash->hlist_mutex); 9312 9313 if (!--swhash->hlist_refcount) 9314 swevent_hlist_release(swhash); 9315 9316 mutex_unlock(&swhash->hlist_mutex); 9317 } 9318 9319 static void swevent_hlist_put(void) 9320 { 9321 int cpu; 9322 9323 for_each_possible_cpu(cpu) 9324 swevent_hlist_put_cpu(cpu); 9325 } 9326 9327 static int swevent_hlist_get_cpu(int cpu) 9328 { 9329 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 9330 int err = 0; 9331 9332 mutex_lock(&swhash->hlist_mutex); 9333 if (!swevent_hlist_deref(swhash) && 9334 cpumask_test_cpu(cpu, perf_online_mask)) { 9335 struct swevent_hlist *hlist; 9336 9337 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 9338 if (!hlist) { 9339 err = -ENOMEM; 9340 goto exit; 9341 } 9342 rcu_assign_pointer(swhash->swevent_hlist, hlist); 9343 } 9344 swhash->hlist_refcount++; 9345 exit: 9346 mutex_unlock(&swhash->hlist_mutex); 9347 9348 return err; 9349 } 9350 9351 static int swevent_hlist_get(void) 9352 { 9353 int err, cpu, failed_cpu; 9354 9355 mutex_lock(&pmus_lock); 9356 for_each_possible_cpu(cpu) { 9357 err = swevent_hlist_get_cpu(cpu); 9358 if (err) { 9359 failed_cpu = cpu; 9360 goto fail; 9361 } 9362 } 9363 mutex_unlock(&pmus_lock); 9364 return 0; 9365 fail: 9366 for_each_possible_cpu(cpu) { 9367 if (cpu == failed_cpu) 9368 break; 9369 swevent_hlist_put_cpu(cpu); 9370 } 9371 mutex_unlock(&pmus_lock); 9372 return err; 9373 } 9374 9375 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 9376 9377 static void sw_perf_event_destroy(struct perf_event *event) 9378 { 9379 u64 event_id = event->attr.config; 9380 9381 WARN_ON(event->parent); 9382 9383 static_key_slow_dec(&perf_swevent_enabled[event_id]); 9384 swevent_hlist_put(); 9385 } 9386 9387 static int perf_swevent_init(struct perf_event *event) 9388 { 9389 u64 event_id = event->attr.config; 9390 9391 if (event->attr.type != PERF_TYPE_SOFTWARE) 9392 return -ENOENT; 9393 9394 /* 9395 * no branch sampling for software events 9396 */ 9397 if (has_branch_stack(event)) 9398 return -EOPNOTSUPP; 9399 9400 switch (event_id) { 9401 case PERF_COUNT_SW_CPU_CLOCK: 9402 case PERF_COUNT_SW_TASK_CLOCK: 9403 return -ENOENT; 9404 9405 default: 9406 break; 9407 } 9408 9409 if (event_id >= PERF_COUNT_SW_MAX) 9410 return -ENOENT; 9411 9412 if (!event->parent) { 9413 int err; 9414 9415 err = swevent_hlist_get(); 9416 if (err) 9417 return err; 9418 9419 static_key_slow_inc(&perf_swevent_enabled[event_id]); 9420 event->destroy = sw_perf_event_destroy; 9421 } 9422 9423 return 0; 9424 } 9425 9426 static struct pmu perf_swevent = { 9427 .task_ctx_nr = perf_sw_context, 9428 9429 .capabilities = PERF_PMU_CAP_NO_NMI, 9430 9431 .event_init = perf_swevent_init, 9432 .add = perf_swevent_add, 9433 .del = perf_swevent_del, 9434 .start = perf_swevent_start, 9435 .stop = perf_swevent_stop, 9436 .read = perf_swevent_read, 9437 }; 9438 9439 #ifdef CONFIG_EVENT_TRACING 9440 9441 static int perf_tp_filter_match(struct perf_event *event, 9442 struct perf_sample_data *data) 9443 { 9444 void *record = data->raw->frag.data; 9445 9446 /* only top level events have filters set */ 9447 if (event->parent) 9448 event = event->parent; 9449 9450 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 9451 return 1; 9452 return 0; 9453 } 9454 9455 static int perf_tp_event_match(struct perf_event *event, 9456 struct perf_sample_data *data, 9457 struct pt_regs *regs) 9458 { 9459 if (event->hw.state & PERF_HES_STOPPED) 9460 return 0; 9461 /* 9462 * If exclude_kernel, only trace user-space tracepoints (uprobes) 9463 */ 9464 if (event->attr.exclude_kernel && !user_mode(regs)) 9465 return 0; 9466 9467 if (!perf_tp_filter_match(event, data)) 9468 return 0; 9469 9470 return 1; 9471 } 9472 9473 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx, 9474 struct trace_event_call *call, u64 count, 9475 struct pt_regs *regs, struct hlist_head *head, 9476 struct task_struct *task) 9477 { 9478 if (bpf_prog_array_valid(call)) { 9479 *(struct pt_regs **)raw_data = regs; 9480 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) { 9481 perf_swevent_put_recursion_context(rctx); 9482 return; 9483 } 9484 } 9485 perf_tp_event(call->event.type, count, raw_data, size, regs, head, 9486 rctx, task); 9487 } 9488 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit); 9489 9490 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size, 9491 struct pt_regs *regs, struct hlist_head *head, int rctx, 9492 struct task_struct *task) 9493 { 9494 struct perf_sample_data data; 9495 struct perf_event *event; 9496 9497 struct perf_raw_record raw = { 9498 .frag = { 9499 .size = entry_size, 9500 .data = record, 9501 }, 9502 }; 9503 9504 perf_sample_data_init(&data, 0, 0); 9505 data.raw = &raw; 9506 9507 perf_trace_buf_update(record, event_type); 9508 9509 hlist_for_each_entry_rcu(event, head, hlist_entry) { 9510 if (perf_tp_event_match(event, &data, regs)) 9511 perf_swevent_event(event, count, &data, regs); 9512 } 9513 9514 /* 9515 * If we got specified a target task, also iterate its context and 9516 * deliver this event there too. 9517 */ 9518 if (task && task != current) { 9519 struct perf_event_context *ctx; 9520 struct trace_entry *entry = record; 9521 9522 rcu_read_lock(); 9523 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]); 9524 if (!ctx) 9525 goto unlock; 9526 9527 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 9528 if (event->cpu != smp_processor_id()) 9529 continue; 9530 if (event->attr.type != PERF_TYPE_TRACEPOINT) 9531 continue; 9532 if (event->attr.config != entry->type) 9533 continue; 9534 if (perf_tp_event_match(event, &data, regs)) 9535 perf_swevent_event(event, count, &data, regs); 9536 } 9537 unlock: 9538 rcu_read_unlock(); 9539 } 9540 9541 perf_swevent_put_recursion_context(rctx); 9542 } 9543 EXPORT_SYMBOL_GPL(perf_tp_event); 9544 9545 static void tp_perf_event_destroy(struct perf_event *event) 9546 { 9547 perf_trace_destroy(event); 9548 } 9549 9550 static int perf_tp_event_init(struct perf_event *event) 9551 { 9552 int err; 9553 9554 if (event->attr.type != PERF_TYPE_TRACEPOINT) 9555 return -ENOENT; 9556 9557 /* 9558 * no branch sampling for tracepoint events 9559 */ 9560 if (has_branch_stack(event)) 9561 return -EOPNOTSUPP; 9562 9563 err = perf_trace_init(event); 9564 if (err) 9565 return err; 9566 9567 event->destroy = tp_perf_event_destroy; 9568 9569 return 0; 9570 } 9571 9572 static struct pmu perf_tracepoint = { 9573 .task_ctx_nr = perf_sw_context, 9574 9575 .event_init = perf_tp_event_init, 9576 .add = perf_trace_add, 9577 .del = perf_trace_del, 9578 .start = perf_swevent_start, 9579 .stop = perf_swevent_stop, 9580 .read = perf_swevent_read, 9581 }; 9582 9583 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS) 9584 /* 9585 * Flags in config, used by dynamic PMU kprobe and uprobe 9586 * The flags should match following PMU_FORMAT_ATTR(). 9587 * 9588 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe 9589 * if not set, create kprobe/uprobe 9590 * 9591 * The following values specify a reference counter (or semaphore in the 9592 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically 9593 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset. 9594 * 9595 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset 9596 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left 9597 */ 9598 enum perf_probe_config { 9599 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */ 9600 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32, 9601 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS, 9602 }; 9603 9604 PMU_FORMAT_ATTR(retprobe, "config:0"); 9605 #endif 9606 9607 #ifdef CONFIG_KPROBE_EVENTS 9608 static struct attribute *kprobe_attrs[] = { 9609 &format_attr_retprobe.attr, 9610 NULL, 9611 }; 9612 9613 static struct attribute_group kprobe_format_group = { 9614 .name = "format", 9615 .attrs = kprobe_attrs, 9616 }; 9617 9618 static const struct attribute_group *kprobe_attr_groups[] = { 9619 &kprobe_format_group, 9620 NULL, 9621 }; 9622 9623 static int perf_kprobe_event_init(struct perf_event *event); 9624 static struct pmu perf_kprobe = { 9625 .task_ctx_nr = perf_sw_context, 9626 .event_init = perf_kprobe_event_init, 9627 .add = perf_trace_add, 9628 .del = perf_trace_del, 9629 .start = perf_swevent_start, 9630 .stop = perf_swevent_stop, 9631 .read = perf_swevent_read, 9632 .attr_groups = kprobe_attr_groups, 9633 }; 9634 9635 static int perf_kprobe_event_init(struct perf_event *event) 9636 { 9637 int err; 9638 bool is_retprobe; 9639 9640 if (event->attr.type != perf_kprobe.type) 9641 return -ENOENT; 9642 9643 if (!perfmon_capable()) 9644 return -EACCES; 9645 9646 /* 9647 * no branch sampling for probe events 9648 */ 9649 if (has_branch_stack(event)) 9650 return -EOPNOTSUPP; 9651 9652 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 9653 err = perf_kprobe_init(event, is_retprobe); 9654 if (err) 9655 return err; 9656 9657 event->destroy = perf_kprobe_destroy; 9658 9659 return 0; 9660 } 9661 #endif /* CONFIG_KPROBE_EVENTS */ 9662 9663 #ifdef CONFIG_UPROBE_EVENTS 9664 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63"); 9665 9666 static struct attribute *uprobe_attrs[] = { 9667 &format_attr_retprobe.attr, 9668 &format_attr_ref_ctr_offset.attr, 9669 NULL, 9670 }; 9671 9672 static struct attribute_group uprobe_format_group = { 9673 .name = "format", 9674 .attrs = uprobe_attrs, 9675 }; 9676 9677 static const struct attribute_group *uprobe_attr_groups[] = { 9678 &uprobe_format_group, 9679 NULL, 9680 }; 9681 9682 static int perf_uprobe_event_init(struct perf_event *event); 9683 static struct pmu perf_uprobe = { 9684 .task_ctx_nr = perf_sw_context, 9685 .event_init = perf_uprobe_event_init, 9686 .add = perf_trace_add, 9687 .del = perf_trace_del, 9688 .start = perf_swevent_start, 9689 .stop = perf_swevent_stop, 9690 .read = perf_swevent_read, 9691 .attr_groups = uprobe_attr_groups, 9692 }; 9693 9694 static int perf_uprobe_event_init(struct perf_event *event) 9695 { 9696 int err; 9697 unsigned long ref_ctr_offset; 9698 bool is_retprobe; 9699 9700 if (event->attr.type != perf_uprobe.type) 9701 return -ENOENT; 9702 9703 if (!perfmon_capable()) 9704 return -EACCES; 9705 9706 /* 9707 * no branch sampling for probe events 9708 */ 9709 if (has_branch_stack(event)) 9710 return -EOPNOTSUPP; 9711 9712 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 9713 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 9714 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe); 9715 if (err) 9716 return err; 9717 9718 event->destroy = perf_uprobe_destroy; 9719 9720 return 0; 9721 } 9722 #endif /* CONFIG_UPROBE_EVENTS */ 9723 9724 static inline void perf_tp_register(void) 9725 { 9726 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 9727 #ifdef CONFIG_KPROBE_EVENTS 9728 perf_pmu_register(&perf_kprobe, "kprobe", -1); 9729 #endif 9730 #ifdef CONFIG_UPROBE_EVENTS 9731 perf_pmu_register(&perf_uprobe, "uprobe", -1); 9732 #endif 9733 } 9734 9735 static void perf_event_free_filter(struct perf_event *event) 9736 { 9737 ftrace_profile_free_filter(event); 9738 } 9739 9740 #ifdef CONFIG_BPF_SYSCALL 9741 static void bpf_overflow_handler(struct perf_event *event, 9742 struct perf_sample_data *data, 9743 struct pt_regs *regs) 9744 { 9745 struct bpf_perf_event_data_kern ctx = { 9746 .data = data, 9747 .event = event, 9748 }; 9749 int ret = 0; 9750 9751 ctx.regs = perf_arch_bpf_user_pt_regs(regs); 9752 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) 9753 goto out; 9754 rcu_read_lock(); 9755 ret = BPF_PROG_RUN(event->prog, &ctx); 9756 rcu_read_unlock(); 9757 out: 9758 __this_cpu_dec(bpf_prog_active); 9759 if (!ret) 9760 return; 9761 9762 event->orig_overflow_handler(event, data, regs); 9763 } 9764 9765 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd) 9766 { 9767 struct bpf_prog *prog; 9768 9769 if (event->overflow_handler_context) 9770 /* hw breakpoint or kernel counter */ 9771 return -EINVAL; 9772 9773 if (event->prog) 9774 return -EEXIST; 9775 9776 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT); 9777 if (IS_ERR(prog)) 9778 return PTR_ERR(prog); 9779 9780 if (event->attr.precise_ip && 9781 prog->call_get_stack && 9782 (!(event->attr.sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY) || 9783 event->attr.exclude_callchain_kernel || 9784 event->attr.exclude_callchain_user)) { 9785 /* 9786 * On perf_event with precise_ip, calling bpf_get_stack() 9787 * may trigger unwinder warnings and occasional crashes. 9788 * bpf_get_[stack|stackid] works around this issue by using 9789 * callchain attached to perf_sample_data. If the 9790 * perf_event does not full (kernel and user) callchain 9791 * attached to perf_sample_data, do not allow attaching BPF 9792 * program that calls bpf_get_[stack|stackid]. 9793 */ 9794 bpf_prog_put(prog); 9795 return -EPROTO; 9796 } 9797 9798 event->prog = prog; 9799 event->orig_overflow_handler = READ_ONCE(event->overflow_handler); 9800 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler); 9801 return 0; 9802 } 9803 9804 static void perf_event_free_bpf_handler(struct perf_event *event) 9805 { 9806 struct bpf_prog *prog = event->prog; 9807 9808 if (!prog) 9809 return; 9810 9811 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler); 9812 event->prog = NULL; 9813 bpf_prog_put(prog); 9814 } 9815 #else 9816 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd) 9817 { 9818 return -EOPNOTSUPP; 9819 } 9820 static void perf_event_free_bpf_handler(struct perf_event *event) 9821 { 9822 } 9823 #endif 9824 9825 /* 9826 * returns true if the event is a tracepoint, or a kprobe/upprobe created 9827 * with perf_event_open() 9828 */ 9829 static inline bool perf_event_is_tracing(struct perf_event *event) 9830 { 9831 if (event->pmu == &perf_tracepoint) 9832 return true; 9833 #ifdef CONFIG_KPROBE_EVENTS 9834 if (event->pmu == &perf_kprobe) 9835 return true; 9836 #endif 9837 #ifdef CONFIG_UPROBE_EVENTS 9838 if (event->pmu == &perf_uprobe) 9839 return true; 9840 #endif 9841 return false; 9842 } 9843 9844 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 9845 { 9846 bool is_kprobe, is_tracepoint, is_syscall_tp; 9847 struct bpf_prog *prog; 9848 int ret; 9849 9850 if (!perf_event_is_tracing(event)) 9851 return perf_event_set_bpf_handler(event, prog_fd); 9852 9853 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE; 9854 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT; 9855 is_syscall_tp = is_syscall_trace_event(event->tp_event); 9856 if (!is_kprobe && !is_tracepoint && !is_syscall_tp) 9857 /* bpf programs can only be attached to u/kprobe or tracepoint */ 9858 return -EINVAL; 9859 9860 prog = bpf_prog_get(prog_fd); 9861 if (IS_ERR(prog)) 9862 return PTR_ERR(prog); 9863 9864 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) || 9865 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) || 9866 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) { 9867 /* valid fd, but invalid bpf program type */ 9868 bpf_prog_put(prog); 9869 return -EINVAL; 9870 } 9871 9872 /* Kprobe override only works for kprobes, not uprobes. */ 9873 if (prog->kprobe_override && 9874 !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) { 9875 bpf_prog_put(prog); 9876 return -EINVAL; 9877 } 9878 9879 if (is_tracepoint || is_syscall_tp) { 9880 int off = trace_event_get_offsets(event->tp_event); 9881 9882 if (prog->aux->max_ctx_offset > off) { 9883 bpf_prog_put(prog); 9884 return -EACCES; 9885 } 9886 } 9887 9888 ret = perf_event_attach_bpf_prog(event, prog); 9889 if (ret) 9890 bpf_prog_put(prog); 9891 return ret; 9892 } 9893 9894 static void perf_event_free_bpf_prog(struct perf_event *event) 9895 { 9896 if (!perf_event_is_tracing(event)) { 9897 perf_event_free_bpf_handler(event); 9898 return; 9899 } 9900 perf_event_detach_bpf_prog(event); 9901 } 9902 9903 #else 9904 9905 static inline void perf_tp_register(void) 9906 { 9907 } 9908 9909 static void perf_event_free_filter(struct perf_event *event) 9910 { 9911 } 9912 9913 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 9914 { 9915 return -ENOENT; 9916 } 9917 9918 static void perf_event_free_bpf_prog(struct perf_event *event) 9919 { 9920 } 9921 #endif /* CONFIG_EVENT_TRACING */ 9922 9923 #ifdef CONFIG_HAVE_HW_BREAKPOINT 9924 void perf_bp_event(struct perf_event *bp, void *data) 9925 { 9926 struct perf_sample_data sample; 9927 struct pt_regs *regs = data; 9928 9929 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 9930 9931 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 9932 perf_swevent_event(bp, 1, &sample, regs); 9933 } 9934 #endif 9935 9936 /* 9937 * Allocate a new address filter 9938 */ 9939 static struct perf_addr_filter * 9940 perf_addr_filter_new(struct perf_event *event, struct list_head *filters) 9941 { 9942 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu); 9943 struct perf_addr_filter *filter; 9944 9945 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node); 9946 if (!filter) 9947 return NULL; 9948 9949 INIT_LIST_HEAD(&filter->entry); 9950 list_add_tail(&filter->entry, filters); 9951 9952 return filter; 9953 } 9954 9955 static void free_filters_list(struct list_head *filters) 9956 { 9957 struct perf_addr_filter *filter, *iter; 9958 9959 list_for_each_entry_safe(filter, iter, filters, entry) { 9960 path_put(&filter->path); 9961 list_del(&filter->entry); 9962 kfree(filter); 9963 } 9964 } 9965 9966 /* 9967 * Free existing address filters and optionally install new ones 9968 */ 9969 static void perf_addr_filters_splice(struct perf_event *event, 9970 struct list_head *head) 9971 { 9972 unsigned long flags; 9973 LIST_HEAD(list); 9974 9975 if (!has_addr_filter(event)) 9976 return; 9977 9978 /* don't bother with children, they don't have their own filters */ 9979 if (event->parent) 9980 return; 9981 9982 raw_spin_lock_irqsave(&event->addr_filters.lock, flags); 9983 9984 list_splice_init(&event->addr_filters.list, &list); 9985 if (head) 9986 list_splice(head, &event->addr_filters.list); 9987 9988 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags); 9989 9990 free_filters_list(&list); 9991 } 9992 9993 /* 9994 * Scan through mm's vmas and see if one of them matches the 9995 * @filter; if so, adjust filter's address range. 9996 * Called with mm::mmap_lock down for reading. 9997 */ 9998 static void perf_addr_filter_apply(struct perf_addr_filter *filter, 9999 struct mm_struct *mm, 10000 struct perf_addr_filter_range *fr) 10001 { 10002 struct vm_area_struct *vma; 10003 10004 for (vma = mm->mmap; vma; vma = vma->vm_next) { 10005 if (!vma->vm_file) 10006 continue; 10007 10008 if (perf_addr_filter_vma_adjust(filter, vma, fr)) 10009 return; 10010 } 10011 } 10012 10013 /* 10014 * Update event's address range filters based on the 10015 * task's existing mappings, if any. 10016 */ 10017 static void perf_event_addr_filters_apply(struct perf_event *event) 10018 { 10019 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 10020 struct task_struct *task = READ_ONCE(event->ctx->task); 10021 struct perf_addr_filter *filter; 10022 struct mm_struct *mm = NULL; 10023 unsigned int count = 0; 10024 unsigned long flags; 10025 10026 /* 10027 * We may observe TASK_TOMBSTONE, which means that the event tear-down 10028 * will stop on the parent's child_mutex that our caller is also holding 10029 */ 10030 if (task == TASK_TOMBSTONE) 10031 return; 10032 10033 if (ifh->nr_file_filters) { 10034 mm = get_task_mm(event->ctx->task); 10035 if (!mm) 10036 goto restart; 10037 10038 mmap_read_lock(mm); 10039 } 10040 10041 raw_spin_lock_irqsave(&ifh->lock, flags); 10042 list_for_each_entry(filter, &ifh->list, entry) { 10043 if (filter->path.dentry) { 10044 /* 10045 * Adjust base offset if the filter is associated to a 10046 * binary that needs to be mapped: 10047 */ 10048 event->addr_filter_ranges[count].start = 0; 10049 event->addr_filter_ranges[count].size = 0; 10050 10051 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]); 10052 } else { 10053 event->addr_filter_ranges[count].start = filter->offset; 10054 event->addr_filter_ranges[count].size = filter->size; 10055 } 10056 10057 count++; 10058 } 10059 10060 event->addr_filters_gen++; 10061 raw_spin_unlock_irqrestore(&ifh->lock, flags); 10062 10063 if (ifh->nr_file_filters) { 10064 mmap_read_unlock(mm); 10065 10066 mmput(mm); 10067 } 10068 10069 restart: 10070 perf_event_stop(event, 1); 10071 } 10072 10073 /* 10074 * Address range filtering: limiting the data to certain 10075 * instruction address ranges. Filters are ioctl()ed to us from 10076 * userspace as ascii strings. 10077 * 10078 * Filter string format: 10079 * 10080 * ACTION RANGE_SPEC 10081 * where ACTION is one of the 10082 * * "filter": limit the trace to this region 10083 * * "start": start tracing from this address 10084 * * "stop": stop tracing at this address/region; 10085 * RANGE_SPEC is 10086 * * for kernel addresses: <start address>[/<size>] 10087 * * for object files: <start address>[/<size>]@</path/to/object/file> 10088 * 10089 * if <size> is not specified or is zero, the range is treated as a single 10090 * address; not valid for ACTION=="filter". 10091 */ 10092 enum { 10093 IF_ACT_NONE = -1, 10094 IF_ACT_FILTER, 10095 IF_ACT_START, 10096 IF_ACT_STOP, 10097 IF_SRC_FILE, 10098 IF_SRC_KERNEL, 10099 IF_SRC_FILEADDR, 10100 IF_SRC_KERNELADDR, 10101 }; 10102 10103 enum { 10104 IF_STATE_ACTION = 0, 10105 IF_STATE_SOURCE, 10106 IF_STATE_END, 10107 }; 10108 10109 static const match_table_t if_tokens = { 10110 { IF_ACT_FILTER, "filter" }, 10111 { IF_ACT_START, "start" }, 10112 { IF_ACT_STOP, "stop" }, 10113 { IF_SRC_FILE, "%u/%u@%s" }, 10114 { IF_SRC_KERNEL, "%u/%u" }, 10115 { IF_SRC_FILEADDR, "%u@%s" }, 10116 { IF_SRC_KERNELADDR, "%u" }, 10117 { IF_ACT_NONE, NULL }, 10118 }; 10119 10120 /* 10121 * Address filter string parser 10122 */ 10123 static int 10124 perf_event_parse_addr_filter(struct perf_event *event, char *fstr, 10125 struct list_head *filters) 10126 { 10127 struct perf_addr_filter *filter = NULL; 10128 char *start, *orig, *filename = NULL; 10129 substring_t args[MAX_OPT_ARGS]; 10130 int state = IF_STATE_ACTION, token; 10131 unsigned int kernel = 0; 10132 int ret = -EINVAL; 10133 10134 orig = fstr = kstrdup(fstr, GFP_KERNEL); 10135 if (!fstr) 10136 return -ENOMEM; 10137 10138 while ((start = strsep(&fstr, " ,\n")) != NULL) { 10139 static const enum perf_addr_filter_action_t actions[] = { 10140 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER, 10141 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START, 10142 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP, 10143 }; 10144 ret = -EINVAL; 10145 10146 if (!*start) 10147 continue; 10148 10149 /* filter definition begins */ 10150 if (state == IF_STATE_ACTION) { 10151 filter = perf_addr_filter_new(event, filters); 10152 if (!filter) 10153 goto fail; 10154 } 10155 10156 token = match_token(start, if_tokens, args); 10157 switch (token) { 10158 case IF_ACT_FILTER: 10159 case IF_ACT_START: 10160 case IF_ACT_STOP: 10161 if (state != IF_STATE_ACTION) 10162 goto fail; 10163 10164 filter->action = actions[token]; 10165 state = IF_STATE_SOURCE; 10166 break; 10167 10168 case IF_SRC_KERNELADDR: 10169 case IF_SRC_KERNEL: 10170 kernel = 1; 10171 fallthrough; 10172 10173 case IF_SRC_FILEADDR: 10174 case IF_SRC_FILE: 10175 if (state != IF_STATE_SOURCE) 10176 goto fail; 10177 10178 *args[0].to = 0; 10179 ret = kstrtoul(args[0].from, 0, &filter->offset); 10180 if (ret) 10181 goto fail; 10182 10183 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) { 10184 *args[1].to = 0; 10185 ret = kstrtoul(args[1].from, 0, &filter->size); 10186 if (ret) 10187 goto fail; 10188 } 10189 10190 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) { 10191 int fpos = token == IF_SRC_FILE ? 2 : 1; 10192 10193 kfree(filename); 10194 filename = match_strdup(&args[fpos]); 10195 if (!filename) { 10196 ret = -ENOMEM; 10197 goto fail; 10198 } 10199 } 10200 10201 state = IF_STATE_END; 10202 break; 10203 10204 default: 10205 goto fail; 10206 } 10207 10208 /* 10209 * Filter definition is fully parsed, validate and install it. 10210 * Make sure that it doesn't contradict itself or the event's 10211 * attribute. 10212 */ 10213 if (state == IF_STATE_END) { 10214 ret = -EINVAL; 10215 if (kernel && event->attr.exclude_kernel) 10216 goto fail; 10217 10218 /* 10219 * ACTION "filter" must have a non-zero length region 10220 * specified. 10221 */ 10222 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER && 10223 !filter->size) 10224 goto fail; 10225 10226 if (!kernel) { 10227 if (!filename) 10228 goto fail; 10229 10230 /* 10231 * For now, we only support file-based filters 10232 * in per-task events; doing so for CPU-wide 10233 * events requires additional context switching 10234 * trickery, since same object code will be 10235 * mapped at different virtual addresses in 10236 * different processes. 10237 */ 10238 ret = -EOPNOTSUPP; 10239 if (!event->ctx->task) 10240 goto fail; 10241 10242 /* look up the path and grab its inode */ 10243 ret = kern_path(filename, LOOKUP_FOLLOW, 10244 &filter->path); 10245 if (ret) 10246 goto fail; 10247 10248 ret = -EINVAL; 10249 if (!filter->path.dentry || 10250 !S_ISREG(d_inode(filter->path.dentry) 10251 ->i_mode)) 10252 goto fail; 10253 10254 event->addr_filters.nr_file_filters++; 10255 } 10256 10257 /* ready to consume more filters */ 10258 state = IF_STATE_ACTION; 10259 filter = NULL; 10260 } 10261 } 10262 10263 if (state != IF_STATE_ACTION) 10264 goto fail; 10265 10266 kfree(filename); 10267 kfree(orig); 10268 10269 return 0; 10270 10271 fail: 10272 kfree(filename); 10273 free_filters_list(filters); 10274 kfree(orig); 10275 10276 return ret; 10277 } 10278 10279 static int 10280 perf_event_set_addr_filter(struct perf_event *event, char *filter_str) 10281 { 10282 LIST_HEAD(filters); 10283 int ret; 10284 10285 /* 10286 * Since this is called in perf_ioctl() path, we're already holding 10287 * ctx::mutex. 10288 */ 10289 lockdep_assert_held(&event->ctx->mutex); 10290 10291 if (WARN_ON_ONCE(event->parent)) 10292 return -EINVAL; 10293 10294 ret = perf_event_parse_addr_filter(event, filter_str, &filters); 10295 if (ret) 10296 goto fail_clear_files; 10297 10298 ret = event->pmu->addr_filters_validate(&filters); 10299 if (ret) 10300 goto fail_free_filters; 10301 10302 /* remove existing filters, if any */ 10303 perf_addr_filters_splice(event, &filters); 10304 10305 /* install new filters */ 10306 perf_event_for_each_child(event, perf_event_addr_filters_apply); 10307 10308 return ret; 10309 10310 fail_free_filters: 10311 free_filters_list(&filters); 10312 10313 fail_clear_files: 10314 event->addr_filters.nr_file_filters = 0; 10315 10316 return ret; 10317 } 10318 10319 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 10320 { 10321 int ret = -EINVAL; 10322 char *filter_str; 10323 10324 filter_str = strndup_user(arg, PAGE_SIZE); 10325 if (IS_ERR(filter_str)) 10326 return PTR_ERR(filter_str); 10327 10328 #ifdef CONFIG_EVENT_TRACING 10329 if (perf_event_is_tracing(event)) { 10330 struct perf_event_context *ctx = event->ctx; 10331 10332 /* 10333 * Beware, here be dragons!! 10334 * 10335 * the tracepoint muck will deadlock against ctx->mutex, but 10336 * the tracepoint stuff does not actually need it. So 10337 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we 10338 * already have a reference on ctx. 10339 * 10340 * This can result in event getting moved to a different ctx, 10341 * but that does not affect the tracepoint state. 10342 */ 10343 mutex_unlock(&ctx->mutex); 10344 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 10345 mutex_lock(&ctx->mutex); 10346 } else 10347 #endif 10348 if (has_addr_filter(event)) 10349 ret = perf_event_set_addr_filter(event, filter_str); 10350 10351 kfree(filter_str); 10352 return ret; 10353 } 10354 10355 /* 10356 * hrtimer based swevent callback 10357 */ 10358 10359 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 10360 { 10361 enum hrtimer_restart ret = HRTIMER_RESTART; 10362 struct perf_sample_data data; 10363 struct pt_regs *regs; 10364 struct perf_event *event; 10365 u64 period; 10366 10367 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 10368 10369 if (event->state != PERF_EVENT_STATE_ACTIVE) 10370 return HRTIMER_NORESTART; 10371 10372 event->pmu->read(event); 10373 10374 perf_sample_data_init(&data, 0, event->hw.last_period); 10375 regs = get_irq_regs(); 10376 10377 if (regs && !perf_exclude_event(event, regs)) { 10378 if (!(event->attr.exclude_idle && is_idle_task(current))) 10379 if (__perf_event_overflow(event, 1, &data, regs)) 10380 ret = HRTIMER_NORESTART; 10381 } 10382 10383 period = max_t(u64, 10000, event->hw.sample_period); 10384 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 10385 10386 return ret; 10387 } 10388 10389 static void perf_swevent_start_hrtimer(struct perf_event *event) 10390 { 10391 struct hw_perf_event *hwc = &event->hw; 10392 s64 period; 10393 10394 if (!is_sampling_event(event)) 10395 return; 10396 10397 period = local64_read(&hwc->period_left); 10398 if (period) { 10399 if (period < 0) 10400 period = 10000; 10401 10402 local64_set(&hwc->period_left, 0); 10403 } else { 10404 period = max_t(u64, 10000, hwc->sample_period); 10405 } 10406 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), 10407 HRTIMER_MODE_REL_PINNED_HARD); 10408 } 10409 10410 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 10411 { 10412 struct hw_perf_event *hwc = &event->hw; 10413 10414 if (is_sampling_event(event)) { 10415 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 10416 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 10417 10418 hrtimer_cancel(&hwc->hrtimer); 10419 } 10420 } 10421 10422 static void perf_swevent_init_hrtimer(struct perf_event *event) 10423 { 10424 struct hw_perf_event *hwc = &event->hw; 10425 10426 if (!is_sampling_event(event)) 10427 return; 10428 10429 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 10430 hwc->hrtimer.function = perf_swevent_hrtimer; 10431 10432 /* 10433 * Since hrtimers have a fixed rate, we can do a static freq->period 10434 * mapping and avoid the whole period adjust feedback stuff. 10435 */ 10436 if (event->attr.freq) { 10437 long freq = event->attr.sample_freq; 10438 10439 event->attr.sample_period = NSEC_PER_SEC / freq; 10440 hwc->sample_period = event->attr.sample_period; 10441 local64_set(&hwc->period_left, hwc->sample_period); 10442 hwc->last_period = hwc->sample_period; 10443 event->attr.freq = 0; 10444 } 10445 } 10446 10447 /* 10448 * Software event: cpu wall time clock 10449 */ 10450 10451 static void cpu_clock_event_update(struct perf_event *event) 10452 { 10453 s64 prev; 10454 u64 now; 10455 10456 now = local_clock(); 10457 prev = local64_xchg(&event->hw.prev_count, now); 10458 local64_add(now - prev, &event->count); 10459 } 10460 10461 static void cpu_clock_event_start(struct perf_event *event, int flags) 10462 { 10463 local64_set(&event->hw.prev_count, local_clock()); 10464 perf_swevent_start_hrtimer(event); 10465 } 10466 10467 static void cpu_clock_event_stop(struct perf_event *event, int flags) 10468 { 10469 perf_swevent_cancel_hrtimer(event); 10470 cpu_clock_event_update(event); 10471 } 10472 10473 static int cpu_clock_event_add(struct perf_event *event, int flags) 10474 { 10475 if (flags & PERF_EF_START) 10476 cpu_clock_event_start(event, flags); 10477 perf_event_update_userpage(event); 10478 10479 return 0; 10480 } 10481 10482 static void cpu_clock_event_del(struct perf_event *event, int flags) 10483 { 10484 cpu_clock_event_stop(event, flags); 10485 } 10486 10487 static void cpu_clock_event_read(struct perf_event *event) 10488 { 10489 cpu_clock_event_update(event); 10490 } 10491 10492 static int cpu_clock_event_init(struct perf_event *event) 10493 { 10494 if (event->attr.type != PERF_TYPE_SOFTWARE) 10495 return -ENOENT; 10496 10497 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 10498 return -ENOENT; 10499 10500 /* 10501 * no branch sampling for software events 10502 */ 10503 if (has_branch_stack(event)) 10504 return -EOPNOTSUPP; 10505 10506 perf_swevent_init_hrtimer(event); 10507 10508 return 0; 10509 } 10510 10511 static struct pmu perf_cpu_clock = { 10512 .task_ctx_nr = perf_sw_context, 10513 10514 .capabilities = PERF_PMU_CAP_NO_NMI, 10515 10516 .event_init = cpu_clock_event_init, 10517 .add = cpu_clock_event_add, 10518 .del = cpu_clock_event_del, 10519 .start = cpu_clock_event_start, 10520 .stop = cpu_clock_event_stop, 10521 .read = cpu_clock_event_read, 10522 }; 10523 10524 /* 10525 * Software event: task time clock 10526 */ 10527 10528 static void task_clock_event_update(struct perf_event *event, u64 now) 10529 { 10530 u64 prev; 10531 s64 delta; 10532 10533 prev = local64_xchg(&event->hw.prev_count, now); 10534 delta = now - prev; 10535 local64_add(delta, &event->count); 10536 } 10537 10538 static void task_clock_event_start(struct perf_event *event, int flags) 10539 { 10540 local64_set(&event->hw.prev_count, event->ctx->time); 10541 perf_swevent_start_hrtimer(event); 10542 } 10543 10544 static void task_clock_event_stop(struct perf_event *event, int flags) 10545 { 10546 perf_swevent_cancel_hrtimer(event); 10547 task_clock_event_update(event, event->ctx->time); 10548 } 10549 10550 static int task_clock_event_add(struct perf_event *event, int flags) 10551 { 10552 if (flags & PERF_EF_START) 10553 task_clock_event_start(event, flags); 10554 perf_event_update_userpage(event); 10555 10556 return 0; 10557 } 10558 10559 static void task_clock_event_del(struct perf_event *event, int flags) 10560 { 10561 task_clock_event_stop(event, PERF_EF_UPDATE); 10562 } 10563 10564 static void task_clock_event_read(struct perf_event *event) 10565 { 10566 u64 now = perf_clock(); 10567 u64 delta = now - event->ctx->timestamp; 10568 u64 time = event->ctx->time + delta; 10569 10570 task_clock_event_update(event, time); 10571 } 10572 10573 static int task_clock_event_init(struct perf_event *event) 10574 { 10575 if (event->attr.type != PERF_TYPE_SOFTWARE) 10576 return -ENOENT; 10577 10578 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 10579 return -ENOENT; 10580 10581 /* 10582 * no branch sampling for software events 10583 */ 10584 if (has_branch_stack(event)) 10585 return -EOPNOTSUPP; 10586 10587 perf_swevent_init_hrtimer(event); 10588 10589 return 0; 10590 } 10591 10592 static struct pmu perf_task_clock = { 10593 .task_ctx_nr = perf_sw_context, 10594 10595 .capabilities = PERF_PMU_CAP_NO_NMI, 10596 10597 .event_init = task_clock_event_init, 10598 .add = task_clock_event_add, 10599 .del = task_clock_event_del, 10600 .start = task_clock_event_start, 10601 .stop = task_clock_event_stop, 10602 .read = task_clock_event_read, 10603 }; 10604 10605 static void perf_pmu_nop_void(struct pmu *pmu) 10606 { 10607 } 10608 10609 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags) 10610 { 10611 } 10612 10613 static int perf_pmu_nop_int(struct pmu *pmu) 10614 { 10615 return 0; 10616 } 10617 10618 static int perf_event_nop_int(struct perf_event *event, u64 value) 10619 { 10620 return 0; 10621 } 10622 10623 static DEFINE_PER_CPU(unsigned int, nop_txn_flags); 10624 10625 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags) 10626 { 10627 __this_cpu_write(nop_txn_flags, flags); 10628 10629 if (flags & ~PERF_PMU_TXN_ADD) 10630 return; 10631 10632 perf_pmu_disable(pmu); 10633 } 10634 10635 static int perf_pmu_commit_txn(struct pmu *pmu) 10636 { 10637 unsigned int flags = __this_cpu_read(nop_txn_flags); 10638 10639 __this_cpu_write(nop_txn_flags, 0); 10640 10641 if (flags & ~PERF_PMU_TXN_ADD) 10642 return 0; 10643 10644 perf_pmu_enable(pmu); 10645 return 0; 10646 } 10647 10648 static void perf_pmu_cancel_txn(struct pmu *pmu) 10649 { 10650 unsigned int flags = __this_cpu_read(nop_txn_flags); 10651 10652 __this_cpu_write(nop_txn_flags, 0); 10653 10654 if (flags & ~PERF_PMU_TXN_ADD) 10655 return; 10656 10657 perf_pmu_enable(pmu); 10658 } 10659 10660 static int perf_event_idx_default(struct perf_event *event) 10661 { 10662 return 0; 10663 } 10664 10665 /* 10666 * Ensures all contexts with the same task_ctx_nr have the same 10667 * pmu_cpu_context too. 10668 */ 10669 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn) 10670 { 10671 struct pmu *pmu; 10672 10673 if (ctxn < 0) 10674 return NULL; 10675 10676 list_for_each_entry(pmu, &pmus, entry) { 10677 if (pmu->task_ctx_nr == ctxn) 10678 return pmu->pmu_cpu_context; 10679 } 10680 10681 return NULL; 10682 } 10683 10684 static void free_pmu_context(struct pmu *pmu) 10685 { 10686 /* 10687 * Static contexts such as perf_sw_context have a global lifetime 10688 * and may be shared between different PMUs. Avoid freeing them 10689 * when a single PMU is going away. 10690 */ 10691 if (pmu->task_ctx_nr > perf_invalid_context) 10692 return; 10693 10694 free_percpu(pmu->pmu_cpu_context); 10695 } 10696 10697 /* 10698 * Let userspace know that this PMU supports address range filtering: 10699 */ 10700 static ssize_t nr_addr_filters_show(struct device *dev, 10701 struct device_attribute *attr, 10702 char *page) 10703 { 10704 struct pmu *pmu = dev_get_drvdata(dev); 10705 10706 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters); 10707 } 10708 DEVICE_ATTR_RO(nr_addr_filters); 10709 10710 static struct idr pmu_idr; 10711 10712 static ssize_t 10713 type_show(struct device *dev, struct device_attribute *attr, char *page) 10714 { 10715 struct pmu *pmu = dev_get_drvdata(dev); 10716 10717 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); 10718 } 10719 static DEVICE_ATTR_RO(type); 10720 10721 static ssize_t 10722 perf_event_mux_interval_ms_show(struct device *dev, 10723 struct device_attribute *attr, 10724 char *page) 10725 { 10726 struct pmu *pmu = dev_get_drvdata(dev); 10727 10728 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms); 10729 } 10730 10731 static DEFINE_MUTEX(mux_interval_mutex); 10732 10733 static ssize_t 10734 perf_event_mux_interval_ms_store(struct device *dev, 10735 struct device_attribute *attr, 10736 const char *buf, size_t count) 10737 { 10738 struct pmu *pmu = dev_get_drvdata(dev); 10739 int timer, cpu, ret; 10740 10741 ret = kstrtoint(buf, 0, &timer); 10742 if (ret) 10743 return ret; 10744 10745 if (timer < 1) 10746 return -EINVAL; 10747 10748 /* same value, noting to do */ 10749 if (timer == pmu->hrtimer_interval_ms) 10750 return count; 10751 10752 mutex_lock(&mux_interval_mutex); 10753 pmu->hrtimer_interval_ms = timer; 10754 10755 /* update all cpuctx for this PMU */ 10756 cpus_read_lock(); 10757 for_each_online_cpu(cpu) { 10758 struct perf_cpu_context *cpuctx; 10759 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 10760 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 10761 10762 cpu_function_call(cpu, 10763 (remote_function_f)perf_mux_hrtimer_restart, cpuctx); 10764 } 10765 cpus_read_unlock(); 10766 mutex_unlock(&mux_interval_mutex); 10767 10768 return count; 10769 } 10770 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 10771 10772 static struct attribute *pmu_dev_attrs[] = { 10773 &dev_attr_type.attr, 10774 &dev_attr_perf_event_mux_interval_ms.attr, 10775 NULL, 10776 }; 10777 ATTRIBUTE_GROUPS(pmu_dev); 10778 10779 static int pmu_bus_running; 10780 static struct bus_type pmu_bus = { 10781 .name = "event_source", 10782 .dev_groups = pmu_dev_groups, 10783 }; 10784 10785 static void pmu_dev_release(struct device *dev) 10786 { 10787 kfree(dev); 10788 } 10789 10790 static int pmu_dev_alloc(struct pmu *pmu) 10791 { 10792 int ret = -ENOMEM; 10793 10794 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 10795 if (!pmu->dev) 10796 goto out; 10797 10798 pmu->dev->groups = pmu->attr_groups; 10799 device_initialize(pmu->dev); 10800 ret = dev_set_name(pmu->dev, "%s", pmu->name); 10801 if (ret) 10802 goto free_dev; 10803 10804 dev_set_drvdata(pmu->dev, pmu); 10805 pmu->dev->bus = &pmu_bus; 10806 pmu->dev->release = pmu_dev_release; 10807 ret = device_add(pmu->dev); 10808 if (ret) 10809 goto free_dev; 10810 10811 /* For PMUs with address filters, throw in an extra attribute: */ 10812 if (pmu->nr_addr_filters) 10813 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters); 10814 10815 if (ret) 10816 goto del_dev; 10817 10818 if (pmu->attr_update) 10819 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update); 10820 10821 if (ret) 10822 goto del_dev; 10823 10824 out: 10825 return ret; 10826 10827 del_dev: 10828 device_del(pmu->dev); 10829 10830 free_dev: 10831 put_device(pmu->dev); 10832 goto out; 10833 } 10834 10835 static struct lock_class_key cpuctx_mutex; 10836 static struct lock_class_key cpuctx_lock; 10837 10838 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 10839 { 10840 int cpu, ret, max = PERF_TYPE_MAX; 10841 10842 mutex_lock(&pmus_lock); 10843 ret = -ENOMEM; 10844 pmu->pmu_disable_count = alloc_percpu(int); 10845 if (!pmu->pmu_disable_count) 10846 goto unlock; 10847 10848 pmu->type = -1; 10849 if (!name) 10850 goto skip_type; 10851 pmu->name = name; 10852 10853 if (type != PERF_TYPE_SOFTWARE) { 10854 if (type >= 0) 10855 max = type; 10856 10857 ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL); 10858 if (ret < 0) 10859 goto free_pdc; 10860 10861 WARN_ON(type >= 0 && ret != type); 10862 10863 type = ret; 10864 } 10865 pmu->type = type; 10866 10867 if (pmu_bus_running) { 10868 ret = pmu_dev_alloc(pmu); 10869 if (ret) 10870 goto free_idr; 10871 } 10872 10873 skip_type: 10874 if (pmu->task_ctx_nr == perf_hw_context) { 10875 static int hw_context_taken = 0; 10876 10877 /* 10878 * Other than systems with heterogeneous CPUs, it never makes 10879 * sense for two PMUs to share perf_hw_context. PMUs which are 10880 * uncore must use perf_invalid_context. 10881 */ 10882 if (WARN_ON_ONCE(hw_context_taken && 10883 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS))) 10884 pmu->task_ctx_nr = perf_invalid_context; 10885 10886 hw_context_taken = 1; 10887 } 10888 10889 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); 10890 if (pmu->pmu_cpu_context) 10891 goto got_cpu_context; 10892 10893 ret = -ENOMEM; 10894 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); 10895 if (!pmu->pmu_cpu_context) 10896 goto free_dev; 10897 10898 for_each_possible_cpu(cpu) { 10899 struct perf_cpu_context *cpuctx; 10900 10901 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 10902 __perf_event_init_context(&cpuctx->ctx); 10903 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 10904 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 10905 cpuctx->ctx.pmu = pmu; 10906 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask); 10907 10908 __perf_mux_hrtimer_init(cpuctx, cpu); 10909 10910 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default); 10911 cpuctx->heap = cpuctx->heap_default; 10912 } 10913 10914 got_cpu_context: 10915 if (!pmu->start_txn) { 10916 if (pmu->pmu_enable) { 10917 /* 10918 * If we have pmu_enable/pmu_disable calls, install 10919 * transaction stubs that use that to try and batch 10920 * hardware accesses. 10921 */ 10922 pmu->start_txn = perf_pmu_start_txn; 10923 pmu->commit_txn = perf_pmu_commit_txn; 10924 pmu->cancel_txn = perf_pmu_cancel_txn; 10925 } else { 10926 pmu->start_txn = perf_pmu_nop_txn; 10927 pmu->commit_txn = perf_pmu_nop_int; 10928 pmu->cancel_txn = perf_pmu_nop_void; 10929 } 10930 } 10931 10932 if (!pmu->pmu_enable) { 10933 pmu->pmu_enable = perf_pmu_nop_void; 10934 pmu->pmu_disable = perf_pmu_nop_void; 10935 } 10936 10937 if (!pmu->check_period) 10938 pmu->check_period = perf_event_nop_int; 10939 10940 if (!pmu->event_idx) 10941 pmu->event_idx = perf_event_idx_default; 10942 10943 /* 10944 * Ensure the TYPE_SOFTWARE PMUs are at the head of the list, 10945 * since these cannot be in the IDR. This way the linear search 10946 * is fast, provided a valid software event is provided. 10947 */ 10948 if (type == PERF_TYPE_SOFTWARE || !name) 10949 list_add_rcu(&pmu->entry, &pmus); 10950 else 10951 list_add_tail_rcu(&pmu->entry, &pmus); 10952 10953 atomic_set(&pmu->exclusive_cnt, 0); 10954 ret = 0; 10955 unlock: 10956 mutex_unlock(&pmus_lock); 10957 10958 return ret; 10959 10960 free_dev: 10961 device_del(pmu->dev); 10962 put_device(pmu->dev); 10963 10964 free_idr: 10965 if (pmu->type != PERF_TYPE_SOFTWARE) 10966 idr_remove(&pmu_idr, pmu->type); 10967 10968 free_pdc: 10969 free_percpu(pmu->pmu_disable_count); 10970 goto unlock; 10971 } 10972 EXPORT_SYMBOL_GPL(perf_pmu_register); 10973 10974 void perf_pmu_unregister(struct pmu *pmu) 10975 { 10976 mutex_lock(&pmus_lock); 10977 list_del_rcu(&pmu->entry); 10978 10979 /* 10980 * We dereference the pmu list under both SRCU and regular RCU, so 10981 * synchronize against both of those. 10982 */ 10983 synchronize_srcu(&pmus_srcu); 10984 synchronize_rcu(); 10985 10986 free_percpu(pmu->pmu_disable_count); 10987 if (pmu->type != PERF_TYPE_SOFTWARE) 10988 idr_remove(&pmu_idr, pmu->type); 10989 if (pmu_bus_running) { 10990 if (pmu->nr_addr_filters) 10991 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters); 10992 device_del(pmu->dev); 10993 put_device(pmu->dev); 10994 } 10995 free_pmu_context(pmu); 10996 mutex_unlock(&pmus_lock); 10997 } 10998 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 10999 11000 static inline bool has_extended_regs(struct perf_event *event) 11001 { 11002 return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) || 11003 (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK); 11004 } 11005 11006 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) 11007 { 11008 struct perf_event_context *ctx = NULL; 11009 int ret; 11010 11011 if (!try_module_get(pmu->module)) 11012 return -ENODEV; 11013 11014 /* 11015 * A number of pmu->event_init() methods iterate the sibling_list to, 11016 * for example, validate if the group fits on the PMU. Therefore, 11017 * if this is a sibling event, acquire the ctx->mutex to protect 11018 * the sibling_list. 11019 */ 11020 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) { 11021 /* 11022 * This ctx->mutex can nest when we're called through 11023 * inheritance. See the perf_event_ctx_lock_nested() comment. 11024 */ 11025 ctx = perf_event_ctx_lock_nested(event->group_leader, 11026 SINGLE_DEPTH_NESTING); 11027 BUG_ON(!ctx); 11028 } 11029 11030 event->pmu = pmu; 11031 ret = pmu->event_init(event); 11032 11033 if (ctx) 11034 perf_event_ctx_unlock(event->group_leader, ctx); 11035 11036 if (!ret) { 11037 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) && 11038 has_extended_regs(event)) 11039 ret = -EOPNOTSUPP; 11040 11041 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE && 11042 event_has_any_exclude_flag(event)) 11043 ret = -EINVAL; 11044 11045 if (ret && event->destroy) 11046 event->destroy(event); 11047 } 11048 11049 if (ret) 11050 module_put(pmu->module); 11051 11052 return ret; 11053 } 11054 11055 static struct pmu *perf_init_event(struct perf_event *event) 11056 { 11057 int idx, type, ret; 11058 struct pmu *pmu; 11059 11060 idx = srcu_read_lock(&pmus_srcu); 11061 11062 /* Try parent's PMU first: */ 11063 if (event->parent && event->parent->pmu) { 11064 pmu = event->parent->pmu; 11065 ret = perf_try_init_event(pmu, event); 11066 if (!ret) 11067 goto unlock; 11068 } 11069 11070 /* 11071 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE 11072 * are often aliases for PERF_TYPE_RAW. 11073 */ 11074 type = event->attr.type; 11075 if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) 11076 type = PERF_TYPE_RAW; 11077 11078 again: 11079 rcu_read_lock(); 11080 pmu = idr_find(&pmu_idr, type); 11081 rcu_read_unlock(); 11082 if (pmu) { 11083 ret = perf_try_init_event(pmu, event); 11084 if (ret == -ENOENT && event->attr.type != type) { 11085 type = event->attr.type; 11086 goto again; 11087 } 11088 11089 if (ret) 11090 pmu = ERR_PTR(ret); 11091 11092 goto unlock; 11093 } 11094 11095 list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) { 11096 ret = perf_try_init_event(pmu, event); 11097 if (!ret) 11098 goto unlock; 11099 11100 if (ret != -ENOENT) { 11101 pmu = ERR_PTR(ret); 11102 goto unlock; 11103 } 11104 } 11105 pmu = ERR_PTR(-ENOENT); 11106 unlock: 11107 srcu_read_unlock(&pmus_srcu, idx); 11108 11109 return pmu; 11110 } 11111 11112 static void attach_sb_event(struct perf_event *event) 11113 { 11114 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 11115 11116 raw_spin_lock(&pel->lock); 11117 list_add_rcu(&event->sb_list, &pel->list); 11118 raw_spin_unlock(&pel->lock); 11119 } 11120 11121 /* 11122 * We keep a list of all !task (and therefore per-cpu) events 11123 * that need to receive side-band records. 11124 * 11125 * This avoids having to scan all the various PMU per-cpu contexts 11126 * looking for them. 11127 */ 11128 static void account_pmu_sb_event(struct perf_event *event) 11129 { 11130 if (is_sb_event(event)) 11131 attach_sb_event(event); 11132 } 11133 11134 static void account_event_cpu(struct perf_event *event, int cpu) 11135 { 11136 if (event->parent) 11137 return; 11138 11139 if (is_cgroup_event(event)) 11140 atomic_inc(&per_cpu(perf_cgroup_events, cpu)); 11141 } 11142 11143 /* Freq events need the tick to stay alive (see perf_event_task_tick). */ 11144 static void account_freq_event_nohz(void) 11145 { 11146 #ifdef CONFIG_NO_HZ_FULL 11147 /* Lock so we don't race with concurrent unaccount */ 11148 spin_lock(&nr_freq_lock); 11149 if (atomic_inc_return(&nr_freq_events) == 1) 11150 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS); 11151 spin_unlock(&nr_freq_lock); 11152 #endif 11153 } 11154 11155 static void account_freq_event(void) 11156 { 11157 if (tick_nohz_full_enabled()) 11158 account_freq_event_nohz(); 11159 else 11160 atomic_inc(&nr_freq_events); 11161 } 11162 11163 11164 static void account_event(struct perf_event *event) 11165 { 11166 bool inc = false; 11167 11168 if (event->parent) 11169 return; 11170 11171 if (event->attach_state & PERF_ATTACH_TASK) 11172 inc = true; 11173 if (event->attr.mmap || event->attr.mmap_data) 11174 atomic_inc(&nr_mmap_events); 11175 if (event->attr.comm) 11176 atomic_inc(&nr_comm_events); 11177 if (event->attr.namespaces) 11178 atomic_inc(&nr_namespaces_events); 11179 if (event->attr.cgroup) 11180 atomic_inc(&nr_cgroup_events); 11181 if (event->attr.task) 11182 atomic_inc(&nr_task_events); 11183 if (event->attr.freq) 11184 account_freq_event(); 11185 if (event->attr.context_switch) { 11186 atomic_inc(&nr_switch_events); 11187 inc = true; 11188 } 11189 if (has_branch_stack(event)) 11190 inc = true; 11191 if (is_cgroup_event(event)) 11192 inc = true; 11193 if (event->attr.ksymbol) 11194 atomic_inc(&nr_ksymbol_events); 11195 if (event->attr.bpf_event) 11196 atomic_inc(&nr_bpf_events); 11197 if (event->attr.text_poke) 11198 atomic_inc(&nr_text_poke_events); 11199 11200 if (inc) { 11201 /* 11202 * We need the mutex here because static_branch_enable() 11203 * must complete *before* the perf_sched_count increment 11204 * becomes visible. 11205 */ 11206 if (atomic_inc_not_zero(&perf_sched_count)) 11207 goto enabled; 11208 11209 mutex_lock(&perf_sched_mutex); 11210 if (!atomic_read(&perf_sched_count)) { 11211 static_branch_enable(&perf_sched_events); 11212 /* 11213 * Guarantee that all CPUs observe they key change and 11214 * call the perf scheduling hooks before proceeding to 11215 * install events that need them. 11216 */ 11217 synchronize_rcu(); 11218 } 11219 /* 11220 * Now that we have waited for the sync_sched(), allow further 11221 * increments to by-pass the mutex. 11222 */ 11223 atomic_inc(&perf_sched_count); 11224 mutex_unlock(&perf_sched_mutex); 11225 } 11226 enabled: 11227 11228 account_event_cpu(event, event->cpu); 11229 11230 account_pmu_sb_event(event); 11231 } 11232 11233 /* 11234 * Allocate and initialize an event structure 11235 */ 11236 static struct perf_event * 11237 perf_event_alloc(struct perf_event_attr *attr, int cpu, 11238 struct task_struct *task, 11239 struct perf_event *group_leader, 11240 struct perf_event *parent_event, 11241 perf_overflow_handler_t overflow_handler, 11242 void *context, int cgroup_fd) 11243 { 11244 struct pmu *pmu; 11245 struct perf_event *event; 11246 struct hw_perf_event *hwc; 11247 long err = -EINVAL; 11248 11249 if ((unsigned)cpu >= nr_cpu_ids) { 11250 if (!task || cpu != -1) 11251 return ERR_PTR(-EINVAL); 11252 } 11253 11254 event = kzalloc(sizeof(*event), GFP_KERNEL); 11255 if (!event) 11256 return ERR_PTR(-ENOMEM); 11257 11258 /* 11259 * Single events are their own group leaders, with an 11260 * empty sibling list: 11261 */ 11262 if (!group_leader) 11263 group_leader = event; 11264 11265 mutex_init(&event->child_mutex); 11266 INIT_LIST_HEAD(&event->child_list); 11267 11268 INIT_LIST_HEAD(&event->event_entry); 11269 INIT_LIST_HEAD(&event->sibling_list); 11270 INIT_LIST_HEAD(&event->active_list); 11271 init_event_group(event); 11272 INIT_LIST_HEAD(&event->rb_entry); 11273 INIT_LIST_HEAD(&event->active_entry); 11274 INIT_LIST_HEAD(&event->addr_filters.list); 11275 INIT_HLIST_NODE(&event->hlist_entry); 11276 11277 11278 init_waitqueue_head(&event->waitq); 11279 event->pending_disable = -1; 11280 init_irq_work(&event->pending, perf_pending_event); 11281 11282 mutex_init(&event->mmap_mutex); 11283 raw_spin_lock_init(&event->addr_filters.lock); 11284 11285 atomic_long_set(&event->refcount, 1); 11286 event->cpu = cpu; 11287 event->attr = *attr; 11288 event->group_leader = group_leader; 11289 event->pmu = NULL; 11290 event->oncpu = -1; 11291 11292 event->parent = parent_event; 11293 11294 event->ns = get_pid_ns(task_active_pid_ns(current)); 11295 event->id = atomic64_inc_return(&perf_event_id); 11296 11297 event->state = PERF_EVENT_STATE_INACTIVE; 11298 11299 if (task) { 11300 event->attach_state = PERF_ATTACH_TASK; 11301 /* 11302 * XXX pmu::event_init needs to know what task to account to 11303 * and we cannot use the ctx information because we need the 11304 * pmu before we get a ctx. 11305 */ 11306 event->hw.target = get_task_struct(task); 11307 } 11308 11309 event->clock = &local_clock; 11310 if (parent_event) 11311 event->clock = parent_event->clock; 11312 11313 if (!overflow_handler && parent_event) { 11314 overflow_handler = parent_event->overflow_handler; 11315 context = parent_event->overflow_handler_context; 11316 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING) 11317 if (overflow_handler == bpf_overflow_handler) { 11318 struct bpf_prog *prog = parent_event->prog; 11319 11320 bpf_prog_inc(prog); 11321 event->prog = prog; 11322 event->orig_overflow_handler = 11323 parent_event->orig_overflow_handler; 11324 } 11325 #endif 11326 } 11327 11328 if (overflow_handler) { 11329 event->overflow_handler = overflow_handler; 11330 event->overflow_handler_context = context; 11331 } else if (is_write_backward(event)){ 11332 event->overflow_handler = perf_event_output_backward; 11333 event->overflow_handler_context = NULL; 11334 } else { 11335 event->overflow_handler = perf_event_output_forward; 11336 event->overflow_handler_context = NULL; 11337 } 11338 11339 perf_event__state_init(event); 11340 11341 pmu = NULL; 11342 11343 hwc = &event->hw; 11344 hwc->sample_period = attr->sample_period; 11345 if (attr->freq && attr->sample_freq) 11346 hwc->sample_period = 1; 11347 hwc->last_period = hwc->sample_period; 11348 11349 local64_set(&hwc->period_left, hwc->sample_period); 11350 11351 /* 11352 * We currently do not support PERF_SAMPLE_READ on inherited events. 11353 * See perf_output_read(). 11354 */ 11355 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ)) 11356 goto err_ns; 11357 11358 if (!has_branch_stack(event)) 11359 event->attr.branch_sample_type = 0; 11360 11361 pmu = perf_init_event(event); 11362 if (IS_ERR(pmu)) { 11363 err = PTR_ERR(pmu); 11364 goto err_ns; 11365 } 11366 11367 /* 11368 * Disallow uncore-cgroup events, they don't make sense as the cgroup will 11369 * be different on other CPUs in the uncore mask. 11370 */ 11371 if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) { 11372 err = -EINVAL; 11373 goto err_pmu; 11374 } 11375 11376 if (event->attr.aux_output && 11377 !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) { 11378 err = -EOPNOTSUPP; 11379 goto err_pmu; 11380 } 11381 11382 if (cgroup_fd != -1) { 11383 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); 11384 if (err) 11385 goto err_pmu; 11386 } 11387 11388 err = exclusive_event_init(event); 11389 if (err) 11390 goto err_pmu; 11391 11392 if (has_addr_filter(event)) { 11393 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters, 11394 sizeof(struct perf_addr_filter_range), 11395 GFP_KERNEL); 11396 if (!event->addr_filter_ranges) { 11397 err = -ENOMEM; 11398 goto err_per_task; 11399 } 11400 11401 /* 11402 * Clone the parent's vma offsets: they are valid until exec() 11403 * even if the mm is not shared with the parent. 11404 */ 11405 if (event->parent) { 11406 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 11407 11408 raw_spin_lock_irq(&ifh->lock); 11409 memcpy(event->addr_filter_ranges, 11410 event->parent->addr_filter_ranges, 11411 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range)); 11412 raw_spin_unlock_irq(&ifh->lock); 11413 } 11414 11415 /* force hw sync on the address filters */ 11416 event->addr_filters_gen = 1; 11417 } 11418 11419 if (!event->parent) { 11420 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 11421 err = get_callchain_buffers(attr->sample_max_stack); 11422 if (err) 11423 goto err_addr_filters; 11424 } 11425 } 11426 11427 err = security_perf_event_alloc(event); 11428 if (err) 11429 goto err_callchain_buffer; 11430 11431 /* symmetric to unaccount_event() in _free_event() */ 11432 account_event(event); 11433 11434 return event; 11435 11436 err_callchain_buffer: 11437 if (!event->parent) { 11438 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 11439 put_callchain_buffers(); 11440 } 11441 err_addr_filters: 11442 kfree(event->addr_filter_ranges); 11443 11444 err_per_task: 11445 exclusive_event_destroy(event); 11446 11447 err_pmu: 11448 if (is_cgroup_event(event)) 11449 perf_detach_cgroup(event); 11450 if (event->destroy) 11451 event->destroy(event); 11452 module_put(pmu->module); 11453 err_ns: 11454 if (event->ns) 11455 put_pid_ns(event->ns); 11456 if (event->hw.target) 11457 put_task_struct(event->hw.target); 11458 kfree(event); 11459 11460 return ERR_PTR(err); 11461 } 11462 11463 static int perf_copy_attr(struct perf_event_attr __user *uattr, 11464 struct perf_event_attr *attr) 11465 { 11466 u32 size; 11467 int ret; 11468 11469 /* Zero the full structure, so that a short copy will be nice. */ 11470 memset(attr, 0, sizeof(*attr)); 11471 11472 ret = get_user(size, &uattr->size); 11473 if (ret) 11474 return ret; 11475 11476 /* ABI compatibility quirk: */ 11477 if (!size) 11478 size = PERF_ATTR_SIZE_VER0; 11479 if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE) 11480 goto err_size; 11481 11482 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); 11483 if (ret) { 11484 if (ret == -E2BIG) 11485 goto err_size; 11486 return ret; 11487 } 11488 11489 attr->size = size; 11490 11491 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) 11492 return -EINVAL; 11493 11494 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 11495 return -EINVAL; 11496 11497 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 11498 return -EINVAL; 11499 11500 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 11501 u64 mask = attr->branch_sample_type; 11502 11503 /* only using defined bits */ 11504 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 11505 return -EINVAL; 11506 11507 /* at least one branch bit must be set */ 11508 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 11509 return -EINVAL; 11510 11511 /* propagate priv level, when not set for branch */ 11512 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 11513 11514 /* exclude_kernel checked on syscall entry */ 11515 if (!attr->exclude_kernel) 11516 mask |= PERF_SAMPLE_BRANCH_KERNEL; 11517 11518 if (!attr->exclude_user) 11519 mask |= PERF_SAMPLE_BRANCH_USER; 11520 11521 if (!attr->exclude_hv) 11522 mask |= PERF_SAMPLE_BRANCH_HV; 11523 /* 11524 * adjust user setting (for HW filter setup) 11525 */ 11526 attr->branch_sample_type = mask; 11527 } 11528 /* privileged levels capture (kernel, hv): check permissions */ 11529 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) { 11530 ret = perf_allow_kernel(attr); 11531 if (ret) 11532 return ret; 11533 } 11534 } 11535 11536 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 11537 ret = perf_reg_validate(attr->sample_regs_user); 11538 if (ret) 11539 return ret; 11540 } 11541 11542 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 11543 if (!arch_perf_have_user_stack_dump()) 11544 return -ENOSYS; 11545 11546 /* 11547 * We have __u32 type for the size, but so far 11548 * we can only use __u16 as maximum due to the 11549 * __u16 sample size limit. 11550 */ 11551 if (attr->sample_stack_user >= USHRT_MAX) 11552 return -EINVAL; 11553 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 11554 return -EINVAL; 11555 } 11556 11557 if (!attr->sample_max_stack) 11558 attr->sample_max_stack = sysctl_perf_event_max_stack; 11559 11560 if (attr->sample_type & PERF_SAMPLE_REGS_INTR) 11561 ret = perf_reg_validate(attr->sample_regs_intr); 11562 11563 #ifndef CONFIG_CGROUP_PERF 11564 if (attr->sample_type & PERF_SAMPLE_CGROUP) 11565 return -EINVAL; 11566 #endif 11567 11568 out: 11569 return ret; 11570 11571 err_size: 11572 put_user(sizeof(*attr), &uattr->size); 11573 ret = -E2BIG; 11574 goto out; 11575 } 11576 11577 static int 11578 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 11579 { 11580 struct perf_buffer *rb = NULL; 11581 int ret = -EINVAL; 11582 11583 if (!output_event) 11584 goto set; 11585 11586 /* don't allow circular references */ 11587 if (event == output_event) 11588 goto out; 11589 11590 /* 11591 * Don't allow cross-cpu buffers 11592 */ 11593 if (output_event->cpu != event->cpu) 11594 goto out; 11595 11596 /* 11597 * If its not a per-cpu rb, it must be the same task. 11598 */ 11599 if (output_event->cpu == -1 && output_event->ctx != event->ctx) 11600 goto out; 11601 11602 /* 11603 * Mixing clocks in the same buffer is trouble you don't need. 11604 */ 11605 if (output_event->clock != event->clock) 11606 goto out; 11607 11608 /* 11609 * Either writing ring buffer from beginning or from end. 11610 * Mixing is not allowed. 11611 */ 11612 if (is_write_backward(output_event) != is_write_backward(event)) 11613 goto out; 11614 11615 /* 11616 * If both events generate aux data, they must be on the same PMU 11617 */ 11618 if (has_aux(event) && has_aux(output_event) && 11619 event->pmu != output_event->pmu) 11620 goto out; 11621 11622 set: 11623 mutex_lock(&event->mmap_mutex); 11624 /* Can't redirect output if we've got an active mmap() */ 11625 if (atomic_read(&event->mmap_count)) 11626 goto unlock; 11627 11628 if (output_event) { 11629 /* get the rb we want to redirect to */ 11630 rb = ring_buffer_get(output_event); 11631 if (!rb) 11632 goto unlock; 11633 } 11634 11635 ring_buffer_attach(event, rb); 11636 11637 ret = 0; 11638 unlock: 11639 mutex_unlock(&event->mmap_mutex); 11640 11641 out: 11642 return ret; 11643 } 11644 11645 static void mutex_lock_double(struct mutex *a, struct mutex *b) 11646 { 11647 if (b < a) 11648 swap(a, b); 11649 11650 mutex_lock(a); 11651 mutex_lock_nested(b, SINGLE_DEPTH_NESTING); 11652 } 11653 11654 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) 11655 { 11656 bool nmi_safe = false; 11657 11658 switch (clk_id) { 11659 case CLOCK_MONOTONIC: 11660 event->clock = &ktime_get_mono_fast_ns; 11661 nmi_safe = true; 11662 break; 11663 11664 case CLOCK_MONOTONIC_RAW: 11665 event->clock = &ktime_get_raw_fast_ns; 11666 nmi_safe = true; 11667 break; 11668 11669 case CLOCK_REALTIME: 11670 event->clock = &ktime_get_real_ns; 11671 break; 11672 11673 case CLOCK_BOOTTIME: 11674 event->clock = &ktime_get_boottime_ns; 11675 break; 11676 11677 case CLOCK_TAI: 11678 event->clock = &ktime_get_clocktai_ns; 11679 break; 11680 11681 default: 11682 return -EINVAL; 11683 } 11684 11685 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) 11686 return -EINVAL; 11687 11688 return 0; 11689 } 11690 11691 /* 11692 * Variation on perf_event_ctx_lock_nested(), except we take two context 11693 * mutexes. 11694 */ 11695 static struct perf_event_context * 11696 __perf_event_ctx_lock_double(struct perf_event *group_leader, 11697 struct perf_event_context *ctx) 11698 { 11699 struct perf_event_context *gctx; 11700 11701 again: 11702 rcu_read_lock(); 11703 gctx = READ_ONCE(group_leader->ctx); 11704 if (!refcount_inc_not_zero(&gctx->refcount)) { 11705 rcu_read_unlock(); 11706 goto again; 11707 } 11708 rcu_read_unlock(); 11709 11710 mutex_lock_double(&gctx->mutex, &ctx->mutex); 11711 11712 if (group_leader->ctx != gctx) { 11713 mutex_unlock(&ctx->mutex); 11714 mutex_unlock(&gctx->mutex); 11715 put_ctx(gctx); 11716 goto again; 11717 } 11718 11719 return gctx; 11720 } 11721 11722 /** 11723 * sys_perf_event_open - open a performance event, associate it to a task/cpu 11724 * 11725 * @attr_uptr: event_id type attributes for monitoring/sampling 11726 * @pid: target pid 11727 * @cpu: target cpu 11728 * @group_fd: group leader event fd 11729 */ 11730 SYSCALL_DEFINE5(perf_event_open, 11731 struct perf_event_attr __user *, attr_uptr, 11732 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 11733 { 11734 struct perf_event *group_leader = NULL, *output_event = NULL; 11735 struct perf_event *event, *sibling; 11736 struct perf_event_attr attr; 11737 struct perf_event_context *ctx, *gctx; 11738 struct file *event_file = NULL; 11739 struct fd group = {NULL, 0}; 11740 struct task_struct *task = NULL; 11741 struct pmu *pmu; 11742 int event_fd; 11743 int move_group = 0; 11744 int err; 11745 int f_flags = O_RDWR; 11746 int cgroup_fd = -1; 11747 11748 /* for future expandability... */ 11749 if (flags & ~PERF_FLAG_ALL) 11750 return -EINVAL; 11751 11752 /* Do we allow access to perf_event_open(2) ? */ 11753 err = security_perf_event_open(&attr, PERF_SECURITY_OPEN); 11754 if (err) 11755 return err; 11756 11757 err = perf_copy_attr(attr_uptr, &attr); 11758 if (err) 11759 return err; 11760 11761 if (!attr.exclude_kernel) { 11762 err = perf_allow_kernel(&attr); 11763 if (err) 11764 return err; 11765 } 11766 11767 if (attr.namespaces) { 11768 if (!perfmon_capable()) 11769 return -EACCES; 11770 } 11771 11772 if (attr.freq) { 11773 if (attr.sample_freq > sysctl_perf_event_sample_rate) 11774 return -EINVAL; 11775 } else { 11776 if (attr.sample_period & (1ULL << 63)) 11777 return -EINVAL; 11778 } 11779 11780 /* Only privileged users can get physical addresses */ 11781 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) { 11782 err = perf_allow_kernel(&attr); 11783 if (err) 11784 return err; 11785 } 11786 11787 err = security_locked_down(LOCKDOWN_PERF); 11788 if (err && (attr.sample_type & PERF_SAMPLE_REGS_INTR)) 11789 /* REGS_INTR can leak data, lockdown must prevent this */ 11790 return err; 11791 11792 err = 0; 11793 11794 /* 11795 * In cgroup mode, the pid argument is used to pass the fd 11796 * opened to the cgroup directory in cgroupfs. The cpu argument 11797 * designates the cpu on which to monitor threads from that 11798 * cgroup. 11799 */ 11800 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 11801 return -EINVAL; 11802 11803 if (flags & PERF_FLAG_FD_CLOEXEC) 11804 f_flags |= O_CLOEXEC; 11805 11806 event_fd = get_unused_fd_flags(f_flags); 11807 if (event_fd < 0) 11808 return event_fd; 11809 11810 if (group_fd != -1) { 11811 err = perf_fget_light(group_fd, &group); 11812 if (err) 11813 goto err_fd; 11814 group_leader = group.file->private_data; 11815 if (flags & PERF_FLAG_FD_OUTPUT) 11816 output_event = group_leader; 11817 if (flags & PERF_FLAG_FD_NO_GROUP) 11818 group_leader = NULL; 11819 } 11820 11821 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 11822 task = find_lively_task_by_vpid(pid); 11823 if (IS_ERR(task)) { 11824 err = PTR_ERR(task); 11825 goto err_group_fd; 11826 } 11827 } 11828 11829 if (task && group_leader && 11830 group_leader->attr.inherit != attr.inherit) { 11831 err = -EINVAL; 11832 goto err_task; 11833 } 11834 11835 if (flags & PERF_FLAG_PID_CGROUP) 11836 cgroup_fd = pid; 11837 11838 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 11839 NULL, NULL, cgroup_fd); 11840 if (IS_ERR(event)) { 11841 err = PTR_ERR(event); 11842 goto err_task; 11843 } 11844 11845 if (is_sampling_event(event)) { 11846 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 11847 err = -EOPNOTSUPP; 11848 goto err_alloc; 11849 } 11850 } 11851 11852 /* 11853 * Special case software events and allow them to be part of 11854 * any hardware group. 11855 */ 11856 pmu = event->pmu; 11857 11858 if (attr.use_clockid) { 11859 err = perf_event_set_clock(event, attr.clockid); 11860 if (err) 11861 goto err_alloc; 11862 } 11863 11864 if (pmu->task_ctx_nr == perf_sw_context) 11865 event->event_caps |= PERF_EV_CAP_SOFTWARE; 11866 11867 if (group_leader) { 11868 if (is_software_event(event) && 11869 !in_software_context(group_leader)) { 11870 /* 11871 * If the event is a sw event, but the group_leader 11872 * is on hw context. 11873 * 11874 * Allow the addition of software events to hw 11875 * groups, this is safe because software events 11876 * never fail to schedule. 11877 */ 11878 pmu = group_leader->ctx->pmu; 11879 } else if (!is_software_event(event) && 11880 is_software_event(group_leader) && 11881 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 11882 /* 11883 * In case the group is a pure software group, and we 11884 * try to add a hardware event, move the whole group to 11885 * the hardware context. 11886 */ 11887 move_group = 1; 11888 } 11889 } 11890 11891 /* 11892 * Get the target context (task or percpu): 11893 */ 11894 ctx = find_get_context(pmu, task, event); 11895 if (IS_ERR(ctx)) { 11896 err = PTR_ERR(ctx); 11897 goto err_alloc; 11898 } 11899 11900 /* 11901 * Look up the group leader (we will attach this event to it): 11902 */ 11903 if (group_leader) { 11904 err = -EINVAL; 11905 11906 /* 11907 * Do not allow a recursive hierarchy (this new sibling 11908 * becoming part of another group-sibling): 11909 */ 11910 if (group_leader->group_leader != group_leader) 11911 goto err_context; 11912 11913 /* All events in a group should have the same clock */ 11914 if (group_leader->clock != event->clock) 11915 goto err_context; 11916 11917 /* 11918 * Make sure we're both events for the same CPU; 11919 * grouping events for different CPUs is broken; since 11920 * you can never concurrently schedule them anyhow. 11921 */ 11922 if (group_leader->cpu != event->cpu) 11923 goto err_context; 11924 11925 /* 11926 * Make sure we're both on the same task, or both 11927 * per-CPU events. 11928 */ 11929 if (group_leader->ctx->task != ctx->task) 11930 goto err_context; 11931 11932 /* 11933 * Do not allow to attach to a group in a different task 11934 * or CPU context. If we're moving SW events, we'll fix 11935 * this up later, so allow that. 11936 */ 11937 if (!move_group && group_leader->ctx != ctx) 11938 goto err_context; 11939 11940 /* 11941 * Only a group leader can be exclusive or pinned 11942 */ 11943 if (attr.exclusive || attr.pinned) 11944 goto err_context; 11945 } 11946 11947 if (output_event) { 11948 err = perf_event_set_output(event, output_event); 11949 if (err) 11950 goto err_context; 11951 } 11952 11953 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, 11954 f_flags); 11955 if (IS_ERR(event_file)) { 11956 err = PTR_ERR(event_file); 11957 event_file = NULL; 11958 goto err_context; 11959 } 11960 11961 if (task) { 11962 err = down_read_interruptible(&task->signal->exec_update_lock); 11963 if (err) 11964 goto err_file; 11965 11966 /* 11967 * Preserve ptrace permission check for backwards compatibility. 11968 * 11969 * We must hold exec_update_lock across this and any potential 11970 * perf_install_in_context() call for this new event to 11971 * serialize against exec() altering our credentials (and the 11972 * perf_event_exit_task() that could imply). 11973 */ 11974 err = -EACCES; 11975 if (!perfmon_capable() && !ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) 11976 goto err_cred; 11977 } 11978 11979 if (move_group) { 11980 gctx = __perf_event_ctx_lock_double(group_leader, ctx); 11981 11982 if (gctx->task == TASK_TOMBSTONE) { 11983 err = -ESRCH; 11984 goto err_locked; 11985 } 11986 11987 /* 11988 * Check if we raced against another sys_perf_event_open() call 11989 * moving the software group underneath us. 11990 */ 11991 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 11992 /* 11993 * If someone moved the group out from under us, check 11994 * if this new event wound up on the same ctx, if so 11995 * its the regular !move_group case, otherwise fail. 11996 */ 11997 if (gctx != ctx) { 11998 err = -EINVAL; 11999 goto err_locked; 12000 } else { 12001 perf_event_ctx_unlock(group_leader, gctx); 12002 move_group = 0; 12003 } 12004 } 12005 12006 /* 12007 * Failure to create exclusive events returns -EBUSY. 12008 */ 12009 err = -EBUSY; 12010 if (!exclusive_event_installable(group_leader, ctx)) 12011 goto err_locked; 12012 12013 for_each_sibling_event(sibling, group_leader) { 12014 if (!exclusive_event_installable(sibling, ctx)) 12015 goto err_locked; 12016 } 12017 } else { 12018 mutex_lock(&ctx->mutex); 12019 } 12020 12021 if (ctx->task == TASK_TOMBSTONE) { 12022 err = -ESRCH; 12023 goto err_locked; 12024 } 12025 12026 if (!perf_event_validate_size(event)) { 12027 err = -E2BIG; 12028 goto err_locked; 12029 } 12030 12031 if (!task) { 12032 /* 12033 * Check if the @cpu we're creating an event for is online. 12034 * 12035 * We use the perf_cpu_context::ctx::mutex to serialize against 12036 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 12037 */ 12038 struct perf_cpu_context *cpuctx = 12039 container_of(ctx, struct perf_cpu_context, ctx); 12040 12041 if (!cpuctx->online) { 12042 err = -ENODEV; 12043 goto err_locked; 12044 } 12045 } 12046 12047 if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) { 12048 err = -EINVAL; 12049 goto err_locked; 12050 } 12051 12052 /* 12053 * Must be under the same ctx::mutex as perf_install_in_context(), 12054 * because we need to serialize with concurrent event creation. 12055 */ 12056 if (!exclusive_event_installable(event, ctx)) { 12057 err = -EBUSY; 12058 goto err_locked; 12059 } 12060 12061 WARN_ON_ONCE(ctx->parent_ctx); 12062 12063 /* 12064 * This is the point on no return; we cannot fail hereafter. This is 12065 * where we start modifying current state. 12066 */ 12067 12068 if (move_group) { 12069 /* 12070 * See perf_event_ctx_lock() for comments on the details 12071 * of swizzling perf_event::ctx. 12072 */ 12073 perf_remove_from_context(group_leader, 0); 12074 put_ctx(gctx); 12075 12076 for_each_sibling_event(sibling, group_leader) { 12077 perf_remove_from_context(sibling, 0); 12078 put_ctx(gctx); 12079 } 12080 12081 /* 12082 * Wait for everybody to stop referencing the events through 12083 * the old lists, before installing it on new lists. 12084 */ 12085 synchronize_rcu(); 12086 12087 /* 12088 * Install the group siblings before the group leader. 12089 * 12090 * Because a group leader will try and install the entire group 12091 * (through the sibling list, which is still in-tact), we can 12092 * end up with siblings installed in the wrong context. 12093 * 12094 * By installing siblings first we NO-OP because they're not 12095 * reachable through the group lists. 12096 */ 12097 for_each_sibling_event(sibling, group_leader) { 12098 perf_event__state_init(sibling); 12099 perf_install_in_context(ctx, sibling, sibling->cpu); 12100 get_ctx(ctx); 12101 } 12102 12103 /* 12104 * Removing from the context ends up with disabled 12105 * event. What we want here is event in the initial 12106 * startup state, ready to be add into new context. 12107 */ 12108 perf_event__state_init(group_leader); 12109 perf_install_in_context(ctx, group_leader, group_leader->cpu); 12110 get_ctx(ctx); 12111 } 12112 12113 /* 12114 * Precalculate sample_data sizes; do while holding ctx::mutex such 12115 * that we're serialized against further additions and before 12116 * perf_install_in_context() which is the point the event is active and 12117 * can use these values. 12118 */ 12119 perf_event__header_size(event); 12120 perf_event__id_header_size(event); 12121 12122 event->owner = current; 12123 12124 perf_install_in_context(ctx, event, event->cpu); 12125 perf_unpin_context(ctx); 12126 12127 if (move_group) 12128 perf_event_ctx_unlock(group_leader, gctx); 12129 mutex_unlock(&ctx->mutex); 12130 12131 if (task) { 12132 up_read(&task->signal->exec_update_lock); 12133 put_task_struct(task); 12134 } 12135 12136 mutex_lock(¤t->perf_event_mutex); 12137 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 12138 mutex_unlock(¤t->perf_event_mutex); 12139 12140 /* 12141 * Drop the reference on the group_event after placing the 12142 * new event on the sibling_list. This ensures destruction 12143 * of the group leader will find the pointer to itself in 12144 * perf_group_detach(). 12145 */ 12146 fdput(group); 12147 fd_install(event_fd, event_file); 12148 return event_fd; 12149 12150 err_locked: 12151 if (move_group) 12152 perf_event_ctx_unlock(group_leader, gctx); 12153 mutex_unlock(&ctx->mutex); 12154 err_cred: 12155 if (task) 12156 up_read(&task->signal->exec_update_lock); 12157 err_file: 12158 fput(event_file); 12159 err_context: 12160 perf_unpin_context(ctx); 12161 put_ctx(ctx); 12162 err_alloc: 12163 /* 12164 * If event_file is set, the fput() above will have called ->release() 12165 * and that will take care of freeing the event. 12166 */ 12167 if (!event_file) 12168 free_event(event); 12169 err_task: 12170 if (task) 12171 put_task_struct(task); 12172 err_group_fd: 12173 fdput(group); 12174 err_fd: 12175 put_unused_fd(event_fd); 12176 return err; 12177 } 12178 12179 /** 12180 * perf_event_create_kernel_counter 12181 * 12182 * @attr: attributes of the counter to create 12183 * @cpu: cpu in which the counter is bound 12184 * @task: task to profile (NULL for percpu) 12185 */ 12186 struct perf_event * 12187 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 12188 struct task_struct *task, 12189 perf_overflow_handler_t overflow_handler, 12190 void *context) 12191 { 12192 struct perf_event_context *ctx; 12193 struct perf_event *event; 12194 int err; 12195 12196 /* 12197 * Grouping is not supported for kernel events, neither is 'AUX', 12198 * make sure the caller's intentions are adjusted. 12199 */ 12200 if (attr->aux_output) 12201 return ERR_PTR(-EINVAL); 12202 12203 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 12204 overflow_handler, context, -1); 12205 if (IS_ERR(event)) { 12206 err = PTR_ERR(event); 12207 goto err; 12208 } 12209 12210 /* Mark owner so we could distinguish it from user events. */ 12211 event->owner = TASK_TOMBSTONE; 12212 12213 /* 12214 * Get the target context (task or percpu): 12215 */ 12216 ctx = find_get_context(event->pmu, task, event); 12217 if (IS_ERR(ctx)) { 12218 err = PTR_ERR(ctx); 12219 goto err_free; 12220 } 12221 12222 WARN_ON_ONCE(ctx->parent_ctx); 12223 mutex_lock(&ctx->mutex); 12224 if (ctx->task == TASK_TOMBSTONE) { 12225 err = -ESRCH; 12226 goto err_unlock; 12227 } 12228 12229 if (!task) { 12230 /* 12231 * Check if the @cpu we're creating an event for is online. 12232 * 12233 * We use the perf_cpu_context::ctx::mutex to serialize against 12234 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 12235 */ 12236 struct perf_cpu_context *cpuctx = 12237 container_of(ctx, struct perf_cpu_context, ctx); 12238 if (!cpuctx->online) { 12239 err = -ENODEV; 12240 goto err_unlock; 12241 } 12242 } 12243 12244 if (!exclusive_event_installable(event, ctx)) { 12245 err = -EBUSY; 12246 goto err_unlock; 12247 } 12248 12249 perf_install_in_context(ctx, event, event->cpu); 12250 perf_unpin_context(ctx); 12251 mutex_unlock(&ctx->mutex); 12252 12253 return event; 12254 12255 err_unlock: 12256 mutex_unlock(&ctx->mutex); 12257 perf_unpin_context(ctx); 12258 put_ctx(ctx); 12259 err_free: 12260 free_event(event); 12261 err: 12262 return ERR_PTR(err); 12263 } 12264 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 12265 12266 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 12267 { 12268 struct perf_event_context *src_ctx; 12269 struct perf_event_context *dst_ctx; 12270 struct perf_event *event, *tmp; 12271 LIST_HEAD(events); 12272 12273 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx; 12274 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx; 12275 12276 /* 12277 * See perf_event_ctx_lock() for comments on the details 12278 * of swizzling perf_event::ctx. 12279 */ 12280 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); 12281 list_for_each_entry_safe(event, tmp, &src_ctx->event_list, 12282 event_entry) { 12283 perf_remove_from_context(event, 0); 12284 unaccount_event_cpu(event, src_cpu); 12285 put_ctx(src_ctx); 12286 list_add(&event->migrate_entry, &events); 12287 } 12288 12289 /* 12290 * Wait for the events to quiesce before re-instating them. 12291 */ 12292 synchronize_rcu(); 12293 12294 /* 12295 * Re-instate events in 2 passes. 12296 * 12297 * Skip over group leaders and only install siblings on this first 12298 * pass, siblings will not get enabled without a leader, however a 12299 * leader will enable its siblings, even if those are still on the old 12300 * context. 12301 */ 12302 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 12303 if (event->group_leader == event) 12304 continue; 12305 12306 list_del(&event->migrate_entry); 12307 if (event->state >= PERF_EVENT_STATE_OFF) 12308 event->state = PERF_EVENT_STATE_INACTIVE; 12309 account_event_cpu(event, dst_cpu); 12310 perf_install_in_context(dst_ctx, event, dst_cpu); 12311 get_ctx(dst_ctx); 12312 } 12313 12314 /* 12315 * Once all the siblings are setup properly, install the group leaders 12316 * to make it go. 12317 */ 12318 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 12319 list_del(&event->migrate_entry); 12320 if (event->state >= PERF_EVENT_STATE_OFF) 12321 event->state = PERF_EVENT_STATE_INACTIVE; 12322 account_event_cpu(event, dst_cpu); 12323 perf_install_in_context(dst_ctx, event, dst_cpu); 12324 get_ctx(dst_ctx); 12325 } 12326 mutex_unlock(&dst_ctx->mutex); 12327 mutex_unlock(&src_ctx->mutex); 12328 } 12329 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 12330 12331 static void sync_child_event(struct perf_event *child_event, 12332 struct task_struct *child) 12333 { 12334 struct perf_event *parent_event = child_event->parent; 12335 u64 child_val; 12336 12337 if (child_event->attr.inherit_stat) 12338 perf_event_read_event(child_event, child); 12339 12340 child_val = perf_event_count(child_event); 12341 12342 /* 12343 * Add back the child's count to the parent's count: 12344 */ 12345 atomic64_add(child_val, &parent_event->child_count); 12346 atomic64_add(child_event->total_time_enabled, 12347 &parent_event->child_total_time_enabled); 12348 atomic64_add(child_event->total_time_running, 12349 &parent_event->child_total_time_running); 12350 } 12351 12352 static void 12353 perf_event_exit_event(struct perf_event *child_event, 12354 struct perf_event_context *child_ctx, 12355 struct task_struct *child) 12356 { 12357 struct perf_event *parent_event = child_event->parent; 12358 12359 /* 12360 * Do not destroy the 'original' grouping; because of the context 12361 * switch optimization the original events could've ended up in a 12362 * random child task. 12363 * 12364 * If we were to destroy the original group, all group related 12365 * operations would cease to function properly after this random 12366 * child dies. 12367 * 12368 * Do destroy all inherited groups, we don't care about those 12369 * and being thorough is better. 12370 */ 12371 raw_spin_lock_irq(&child_ctx->lock); 12372 WARN_ON_ONCE(child_ctx->is_active); 12373 12374 if (parent_event) 12375 perf_group_detach(child_event); 12376 list_del_event(child_event, child_ctx); 12377 perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */ 12378 raw_spin_unlock_irq(&child_ctx->lock); 12379 12380 /* 12381 * Parent events are governed by their filedesc, retain them. 12382 */ 12383 if (!parent_event) { 12384 perf_event_wakeup(child_event); 12385 return; 12386 } 12387 /* 12388 * Child events can be cleaned up. 12389 */ 12390 12391 sync_child_event(child_event, child); 12392 12393 /* 12394 * Remove this event from the parent's list 12395 */ 12396 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 12397 mutex_lock(&parent_event->child_mutex); 12398 list_del_init(&child_event->child_list); 12399 mutex_unlock(&parent_event->child_mutex); 12400 12401 /* 12402 * Kick perf_poll() for is_event_hup(). 12403 */ 12404 perf_event_wakeup(parent_event); 12405 free_event(child_event); 12406 put_event(parent_event); 12407 } 12408 12409 static void perf_event_exit_task_context(struct task_struct *child, int ctxn) 12410 { 12411 struct perf_event_context *child_ctx, *clone_ctx = NULL; 12412 struct perf_event *child_event, *next; 12413 12414 WARN_ON_ONCE(child != current); 12415 12416 child_ctx = perf_pin_task_context(child, ctxn); 12417 if (!child_ctx) 12418 return; 12419 12420 /* 12421 * In order to reduce the amount of tricky in ctx tear-down, we hold 12422 * ctx::mutex over the entire thing. This serializes against almost 12423 * everything that wants to access the ctx. 12424 * 12425 * The exception is sys_perf_event_open() / 12426 * perf_event_create_kernel_count() which does find_get_context() 12427 * without ctx::mutex (it cannot because of the move_group double mutex 12428 * lock thing). See the comments in perf_install_in_context(). 12429 */ 12430 mutex_lock(&child_ctx->mutex); 12431 12432 /* 12433 * In a single ctx::lock section, de-schedule the events and detach the 12434 * context from the task such that we cannot ever get it scheduled back 12435 * in. 12436 */ 12437 raw_spin_lock_irq(&child_ctx->lock); 12438 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL); 12439 12440 /* 12441 * Now that the context is inactive, destroy the task <-> ctx relation 12442 * and mark the context dead. 12443 */ 12444 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL); 12445 put_ctx(child_ctx); /* cannot be last */ 12446 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE); 12447 put_task_struct(current); /* cannot be last */ 12448 12449 clone_ctx = unclone_ctx(child_ctx); 12450 raw_spin_unlock_irq(&child_ctx->lock); 12451 12452 if (clone_ctx) 12453 put_ctx(clone_ctx); 12454 12455 /* 12456 * Report the task dead after unscheduling the events so that we 12457 * won't get any samples after PERF_RECORD_EXIT. We can however still 12458 * get a few PERF_RECORD_READ events. 12459 */ 12460 perf_event_task(child, child_ctx, 0); 12461 12462 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) 12463 perf_event_exit_event(child_event, child_ctx, child); 12464 12465 mutex_unlock(&child_ctx->mutex); 12466 12467 put_ctx(child_ctx); 12468 } 12469 12470 /* 12471 * When a child task exits, feed back event values to parent events. 12472 * 12473 * Can be called with exec_update_lock held when called from 12474 * setup_new_exec(). 12475 */ 12476 void perf_event_exit_task(struct task_struct *child) 12477 { 12478 struct perf_event *event, *tmp; 12479 int ctxn; 12480 12481 mutex_lock(&child->perf_event_mutex); 12482 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 12483 owner_entry) { 12484 list_del_init(&event->owner_entry); 12485 12486 /* 12487 * Ensure the list deletion is visible before we clear 12488 * the owner, closes a race against perf_release() where 12489 * we need to serialize on the owner->perf_event_mutex. 12490 */ 12491 smp_store_release(&event->owner, NULL); 12492 } 12493 mutex_unlock(&child->perf_event_mutex); 12494 12495 for_each_task_context_nr(ctxn) 12496 perf_event_exit_task_context(child, ctxn); 12497 12498 /* 12499 * The perf_event_exit_task_context calls perf_event_task 12500 * with child's task_ctx, which generates EXIT events for 12501 * child contexts and sets child->perf_event_ctxp[] to NULL. 12502 * At this point we need to send EXIT events to cpu contexts. 12503 */ 12504 perf_event_task(child, NULL, 0); 12505 } 12506 12507 static void perf_free_event(struct perf_event *event, 12508 struct perf_event_context *ctx) 12509 { 12510 struct perf_event *parent = event->parent; 12511 12512 if (WARN_ON_ONCE(!parent)) 12513 return; 12514 12515 mutex_lock(&parent->child_mutex); 12516 list_del_init(&event->child_list); 12517 mutex_unlock(&parent->child_mutex); 12518 12519 put_event(parent); 12520 12521 raw_spin_lock_irq(&ctx->lock); 12522 perf_group_detach(event); 12523 list_del_event(event, ctx); 12524 raw_spin_unlock_irq(&ctx->lock); 12525 free_event(event); 12526 } 12527 12528 /* 12529 * Free a context as created by inheritance by perf_event_init_task() below, 12530 * used by fork() in case of fail. 12531 * 12532 * Even though the task has never lived, the context and events have been 12533 * exposed through the child_list, so we must take care tearing it all down. 12534 */ 12535 void perf_event_free_task(struct task_struct *task) 12536 { 12537 struct perf_event_context *ctx; 12538 struct perf_event *event, *tmp; 12539 int ctxn; 12540 12541 for_each_task_context_nr(ctxn) { 12542 ctx = task->perf_event_ctxp[ctxn]; 12543 if (!ctx) 12544 continue; 12545 12546 mutex_lock(&ctx->mutex); 12547 raw_spin_lock_irq(&ctx->lock); 12548 /* 12549 * Destroy the task <-> ctx relation and mark the context dead. 12550 * 12551 * This is important because even though the task hasn't been 12552 * exposed yet the context has been (through child_list). 12553 */ 12554 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL); 12555 WRITE_ONCE(ctx->task, TASK_TOMBSTONE); 12556 put_task_struct(task); /* cannot be last */ 12557 raw_spin_unlock_irq(&ctx->lock); 12558 12559 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) 12560 perf_free_event(event, ctx); 12561 12562 mutex_unlock(&ctx->mutex); 12563 12564 /* 12565 * perf_event_release_kernel() could've stolen some of our 12566 * child events and still have them on its free_list. In that 12567 * case we must wait for these events to have been freed (in 12568 * particular all their references to this task must've been 12569 * dropped). 12570 * 12571 * Without this copy_process() will unconditionally free this 12572 * task (irrespective of its reference count) and 12573 * _free_event()'s put_task_struct(event->hw.target) will be a 12574 * use-after-free. 12575 * 12576 * Wait for all events to drop their context reference. 12577 */ 12578 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1); 12579 put_ctx(ctx); /* must be last */ 12580 } 12581 } 12582 12583 void perf_event_delayed_put(struct task_struct *task) 12584 { 12585 int ctxn; 12586 12587 for_each_task_context_nr(ctxn) 12588 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); 12589 } 12590 12591 struct file *perf_event_get(unsigned int fd) 12592 { 12593 struct file *file = fget(fd); 12594 if (!file) 12595 return ERR_PTR(-EBADF); 12596 12597 if (file->f_op != &perf_fops) { 12598 fput(file); 12599 return ERR_PTR(-EBADF); 12600 } 12601 12602 return file; 12603 } 12604 12605 const struct perf_event *perf_get_event(struct file *file) 12606 { 12607 if (file->f_op != &perf_fops) 12608 return ERR_PTR(-EINVAL); 12609 12610 return file->private_data; 12611 } 12612 12613 const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 12614 { 12615 if (!event) 12616 return ERR_PTR(-EINVAL); 12617 12618 return &event->attr; 12619 } 12620 12621 /* 12622 * Inherit an event from parent task to child task. 12623 * 12624 * Returns: 12625 * - valid pointer on success 12626 * - NULL for orphaned events 12627 * - IS_ERR() on error 12628 */ 12629 static struct perf_event * 12630 inherit_event(struct perf_event *parent_event, 12631 struct task_struct *parent, 12632 struct perf_event_context *parent_ctx, 12633 struct task_struct *child, 12634 struct perf_event *group_leader, 12635 struct perf_event_context *child_ctx) 12636 { 12637 enum perf_event_state parent_state = parent_event->state; 12638 struct perf_event *child_event; 12639 unsigned long flags; 12640 12641 /* 12642 * Instead of creating recursive hierarchies of events, 12643 * we link inherited events back to the original parent, 12644 * which has a filp for sure, which we use as the reference 12645 * count: 12646 */ 12647 if (parent_event->parent) 12648 parent_event = parent_event->parent; 12649 12650 child_event = perf_event_alloc(&parent_event->attr, 12651 parent_event->cpu, 12652 child, 12653 group_leader, parent_event, 12654 NULL, NULL, -1); 12655 if (IS_ERR(child_event)) 12656 return child_event; 12657 12658 12659 if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) && 12660 !child_ctx->task_ctx_data) { 12661 struct pmu *pmu = child_event->pmu; 12662 12663 child_ctx->task_ctx_data = alloc_task_ctx_data(pmu); 12664 if (!child_ctx->task_ctx_data) { 12665 free_event(child_event); 12666 return ERR_PTR(-ENOMEM); 12667 } 12668 } 12669 12670 /* 12671 * is_orphaned_event() and list_add_tail(&parent_event->child_list) 12672 * must be under the same lock in order to serialize against 12673 * perf_event_release_kernel(), such that either we must observe 12674 * is_orphaned_event() or they will observe us on the child_list. 12675 */ 12676 mutex_lock(&parent_event->child_mutex); 12677 if (is_orphaned_event(parent_event) || 12678 !atomic_long_inc_not_zero(&parent_event->refcount)) { 12679 mutex_unlock(&parent_event->child_mutex); 12680 /* task_ctx_data is freed with child_ctx */ 12681 free_event(child_event); 12682 return NULL; 12683 } 12684 12685 get_ctx(child_ctx); 12686 12687 /* 12688 * Make the child state follow the state of the parent event, 12689 * not its attr.disabled bit. We hold the parent's mutex, 12690 * so we won't race with perf_event_{en, dis}able_family. 12691 */ 12692 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 12693 child_event->state = PERF_EVENT_STATE_INACTIVE; 12694 else 12695 child_event->state = PERF_EVENT_STATE_OFF; 12696 12697 if (parent_event->attr.freq) { 12698 u64 sample_period = parent_event->hw.sample_period; 12699 struct hw_perf_event *hwc = &child_event->hw; 12700 12701 hwc->sample_period = sample_period; 12702 hwc->last_period = sample_period; 12703 12704 local64_set(&hwc->period_left, sample_period); 12705 } 12706 12707 child_event->ctx = child_ctx; 12708 child_event->overflow_handler = parent_event->overflow_handler; 12709 child_event->overflow_handler_context 12710 = parent_event->overflow_handler_context; 12711 12712 /* 12713 * Precalculate sample_data sizes 12714 */ 12715 perf_event__header_size(child_event); 12716 perf_event__id_header_size(child_event); 12717 12718 /* 12719 * Link it up in the child's context: 12720 */ 12721 raw_spin_lock_irqsave(&child_ctx->lock, flags); 12722 add_event_to_ctx(child_event, child_ctx); 12723 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 12724 12725 /* 12726 * Link this into the parent event's child list 12727 */ 12728 list_add_tail(&child_event->child_list, &parent_event->child_list); 12729 mutex_unlock(&parent_event->child_mutex); 12730 12731 return child_event; 12732 } 12733 12734 /* 12735 * Inherits an event group. 12736 * 12737 * This will quietly suppress orphaned events; !inherit_event() is not an error. 12738 * This matches with perf_event_release_kernel() removing all child events. 12739 * 12740 * Returns: 12741 * - 0 on success 12742 * - <0 on error 12743 */ 12744 static int inherit_group(struct perf_event *parent_event, 12745 struct task_struct *parent, 12746 struct perf_event_context *parent_ctx, 12747 struct task_struct *child, 12748 struct perf_event_context *child_ctx) 12749 { 12750 struct perf_event *leader; 12751 struct perf_event *sub; 12752 struct perf_event *child_ctr; 12753 12754 leader = inherit_event(parent_event, parent, parent_ctx, 12755 child, NULL, child_ctx); 12756 if (IS_ERR(leader)) 12757 return PTR_ERR(leader); 12758 /* 12759 * @leader can be NULL here because of is_orphaned_event(). In this 12760 * case inherit_event() will create individual events, similar to what 12761 * perf_group_detach() would do anyway. 12762 */ 12763 for_each_sibling_event(sub, parent_event) { 12764 child_ctr = inherit_event(sub, parent, parent_ctx, 12765 child, leader, child_ctx); 12766 if (IS_ERR(child_ctr)) 12767 return PTR_ERR(child_ctr); 12768 12769 if (sub->aux_event == parent_event && child_ctr && 12770 !perf_get_aux_event(child_ctr, leader)) 12771 return -EINVAL; 12772 } 12773 return 0; 12774 } 12775 12776 /* 12777 * Creates the child task context and tries to inherit the event-group. 12778 * 12779 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave 12780 * inherited_all set when we 'fail' to inherit an orphaned event; this is 12781 * consistent with perf_event_release_kernel() removing all child events. 12782 * 12783 * Returns: 12784 * - 0 on success 12785 * - <0 on error 12786 */ 12787 static int 12788 inherit_task_group(struct perf_event *event, struct task_struct *parent, 12789 struct perf_event_context *parent_ctx, 12790 struct task_struct *child, int ctxn, 12791 int *inherited_all) 12792 { 12793 int ret; 12794 struct perf_event_context *child_ctx; 12795 12796 if (!event->attr.inherit) { 12797 *inherited_all = 0; 12798 return 0; 12799 } 12800 12801 child_ctx = child->perf_event_ctxp[ctxn]; 12802 if (!child_ctx) { 12803 /* 12804 * This is executed from the parent task context, so 12805 * inherit events that have been marked for cloning. 12806 * First allocate and initialize a context for the 12807 * child. 12808 */ 12809 child_ctx = alloc_perf_context(parent_ctx->pmu, child); 12810 if (!child_ctx) 12811 return -ENOMEM; 12812 12813 child->perf_event_ctxp[ctxn] = child_ctx; 12814 } 12815 12816 ret = inherit_group(event, parent, parent_ctx, 12817 child, child_ctx); 12818 12819 if (ret) 12820 *inherited_all = 0; 12821 12822 return ret; 12823 } 12824 12825 /* 12826 * Initialize the perf_event context in task_struct 12827 */ 12828 static int perf_event_init_context(struct task_struct *child, int ctxn) 12829 { 12830 struct perf_event_context *child_ctx, *parent_ctx; 12831 struct perf_event_context *cloned_ctx; 12832 struct perf_event *event; 12833 struct task_struct *parent = current; 12834 int inherited_all = 1; 12835 unsigned long flags; 12836 int ret = 0; 12837 12838 if (likely(!parent->perf_event_ctxp[ctxn])) 12839 return 0; 12840 12841 /* 12842 * If the parent's context is a clone, pin it so it won't get 12843 * swapped under us. 12844 */ 12845 parent_ctx = perf_pin_task_context(parent, ctxn); 12846 if (!parent_ctx) 12847 return 0; 12848 12849 /* 12850 * No need to check if parent_ctx != NULL here; since we saw 12851 * it non-NULL earlier, the only reason for it to become NULL 12852 * is if we exit, and since we're currently in the middle of 12853 * a fork we can't be exiting at the same time. 12854 */ 12855 12856 /* 12857 * Lock the parent list. No need to lock the child - not PID 12858 * hashed yet and not running, so nobody can access it. 12859 */ 12860 mutex_lock(&parent_ctx->mutex); 12861 12862 /* 12863 * We dont have to disable NMIs - we are only looking at 12864 * the list, not manipulating it: 12865 */ 12866 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) { 12867 ret = inherit_task_group(event, parent, parent_ctx, 12868 child, ctxn, &inherited_all); 12869 if (ret) 12870 goto out_unlock; 12871 } 12872 12873 /* 12874 * We can't hold ctx->lock when iterating the ->flexible_group list due 12875 * to allocations, but we need to prevent rotation because 12876 * rotate_ctx() will change the list from interrupt context. 12877 */ 12878 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 12879 parent_ctx->rotate_disable = 1; 12880 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 12881 12882 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) { 12883 ret = inherit_task_group(event, parent, parent_ctx, 12884 child, ctxn, &inherited_all); 12885 if (ret) 12886 goto out_unlock; 12887 } 12888 12889 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 12890 parent_ctx->rotate_disable = 0; 12891 12892 child_ctx = child->perf_event_ctxp[ctxn]; 12893 12894 if (child_ctx && inherited_all) { 12895 /* 12896 * Mark the child context as a clone of the parent 12897 * context, or of whatever the parent is a clone of. 12898 * 12899 * Note that if the parent is a clone, the holding of 12900 * parent_ctx->lock avoids it from being uncloned. 12901 */ 12902 cloned_ctx = parent_ctx->parent_ctx; 12903 if (cloned_ctx) { 12904 child_ctx->parent_ctx = cloned_ctx; 12905 child_ctx->parent_gen = parent_ctx->parent_gen; 12906 } else { 12907 child_ctx->parent_ctx = parent_ctx; 12908 child_ctx->parent_gen = parent_ctx->generation; 12909 } 12910 get_ctx(child_ctx->parent_ctx); 12911 } 12912 12913 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 12914 out_unlock: 12915 mutex_unlock(&parent_ctx->mutex); 12916 12917 perf_unpin_context(parent_ctx); 12918 put_ctx(parent_ctx); 12919 12920 return ret; 12921 } 12922 12923 /* 12924 * Initialize the perf_event context in task_struct 12925 */ 12926 int perf_event_init_task(struct task_struct *child) 12927 { 12928 int ctxn, ret; 12929 12930 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); 12931 mutex_init(&child->perf_event_mutex); 12932 INIT_LIST_HEAD(&child->perf_event_list); 12933 12934 for_each_task_context_nr(ctxn) { 12935 ret = perf_event_init_context(child, ctxn); 12936 if (ret) { 12937 perf_event_free_task(child); 12938 return ret; 12939 } 12940 } 12941 12942 return 0; 12943 } 12944 12945 static void __init perf_event_init_all_cpus(void) 12946 { 12947 struct swevent_htable *swhash; 12948 int cpu; 12949 12950 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL); 12951 12952 for_each_possible_cpu(cpu) { 12953 swhash = &per_cpu(swevent_htable, cpu); 12954 mutex_init(&swhash->hlist_mutex); 12955 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu)); 12956 12957 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu)); 12958 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu)); 12959 12960 #ifdef CONFIG_CGROUP_PERF 12961 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu)); 12962 #endif 12963 } 12964 } 12965 12966 static void perf_swevent_init_cpu(unsigned int cpu) 12967 { 12968 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 12969 12970 mutex_lock(&swhash->hlist_mutex); 12971 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) { 12972 struct swevent_hlist *hlist; 12973 12974 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 12975 WARN_ON(!hlist); 12976 rcu_assign_pointer(swhash->swevent_hlist, hlist); 12977 } 12978 mutex_unlock(&swhash->hlist_mutex); 12979 } 12980 12981 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE 12982 static void __perf_event_exit_context(void *__info) 12983 { 12984 struct perf_event_context *ctx = __info; 12985 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 12986 struct perf_event *event; 12987 12988 raw_spin_lock(&ctx->lock); 12989 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 12990 list_for_each_entry(event, &ctx->event_list, event_entry) 12991 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP); 12992 raw_spin_unlock(&ctx->lock); 12993 } 12994 12995 static void perf_event_exit_cpu_context(int cpu) 12996 { 12997 struct perf_cpu_context *cpuctx; 12998 struct perf_event_context *ctx; 12999 struct pmu *pmu; 13000 13001 mutex_lock(&pmus_lock); 13002 list_for_each_entry(pmu, &pmus, entry) { 13003 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 13004 ctx = &cpuctx->ctx; 13005 13006 mutex_lock(&ctx->mutex); 13007 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 13008 cpuctx->online = 0; 13009 mutex_unlock(&ctx->mutex); 13010 } 13011 cpumask_clear_cpu(cpu, perf_online_mask); 13012 mutex_unlock(&pmus_lock); 13013 } 13014 #else 13015 13016 static void perf_event_exit_cpu_context(int cpu) { } 13017 13018 #endif 13019 13020 int perf_event_init_cpu(unsigned int cpu) 13021 { 13022 struct perf_cpu_context *cpuctx; 13023 struct perf_event_context *ctx; 13024 struct pmu *pmu; 13025 13026 perf_swevent_init_cpu(cpu); 13027 13028 mutex_lock(&pmus_lock); 13029 cpumask_set_cpu(cpu, perf_online_mask); 13030 list_for_each_entry(pmu, &pmus, entry) { 13031 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 13032 ctx = &cpuctx->ctx; 13033 13034 mutex_lock(&ctx->mutex); 13035 cpuctx->online = 1; 13036 mutex_unlock(&ctx->mutex); 13037 } 13038 mutex_unlock(&pmus_lock); 13039 13040 return 0; 13041 } 13042 13043 int perf_event_exit_cpu(unsigned int cpu) 13044 { 13045 perf_event_exit_cpu_context(cpu); 13046 return 0; 13047 } 13048 13049 static int 13050 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 13051 { 13052 int cpu; 13053 13054 for_each_online_cpu(cpu) 13055 perf_event_exit_cpu(cpu); 13056 13057 return NOTIFY_OK; 13058 } 13059 13060 /* 13061 * Run the perf reboot notifier at the very last possible moment so that 13062 * the generic watchdog code runs as long as possible. 13063 */ 13064 static struct notifier_block perf_reboot_notifier = { 13065 .notifier_call = perf_reboot, 13066 .priority = INT_MIN, 13067 }; 13068 13069 void __init perf_event_init(void) 13070 { 13071 int ret; 13072 13073 idr_init(&pmu_idr); 13074 13075 perf_event_init_all_cpus(); 13076 init_srcu_struct(&pmus_srcu); 13077 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 13078 perf_pmu_register(&perf_cpu_clock, NULL, -1); 13079 perf_pmu_register(&perf_task_clock, NULL, -1); 13080 perf_tp_register(); 13081 perf_event_init_cpu(smp_processor_id()); 13082 register_reboot_notifier(&perf_reboot_notifier); 13083 13084 ret = init_hw_breakpoint(); 13085 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 13086 13087 /* 13088 * Build time assertion that we keep the data_head at the intended 13089 * location. IOW, validation we got the __reserved[] size right. 13090 */ 13091 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 13092 != 1024); 13093 } 13094 13095 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 13096 char *page) 13097 { 13098 struct perf_pmu_events_attr *pmu_attr = 13099 container_of(attr, struct perf_pmu_events_attr, attr); 13100 13101 if (pmu_attr->event_str) 13102 return sprintf(page, "%s\n", pmu_attr->event_str); 13103 13104 return 0; 13105 } 13106 EXPORT_SYMBOL_GPL(perf_event_sysfs_show); 13107 13108 static int __init perf_event_sysfs_init(void) 13109 { 13110 struct pmu *pmu; 13111 int ret; 13112 13113 mutex_lock(&pmus_lock); 13114 13115 ret = bus_register(&pmu_bus); 13116 if (ret) 13117 goto unlock; 13118 13119 list_for_each_entry(pmu, &pmus, entry) { 13120 if (!pmu->name || pmu->type < 0) 13121 continue; 13122 13123 ret = pmu_dev_alloc(pmu); 13124 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 13125 } 13126 pmu_bus_running = 1; 13127 ret = 0; 13128 13129 unlock: 13130 mutex_unlock(&pmus_lock); 13131 13132 return ret; 13133 } 13134 device_initcall(perf_event_sysfs_init); 13135 13136 #ifdef CONFIG_CGROUP_PERF 13137 static struct cgroup_subsys_state * 13138 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 13139 { 13140 struct perf_cgroup *jc; 13141 13142 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 13143 if (!jc) 13144 return ERR_PTR(-ENOMEM); 13145 13146 jc->info = alloc_percpu(struct perf_cgroup_info); 13147 if (!jc->info) { 13148 kfree(jc); 13149 return ERR_PTR(-ENOMEM); 13150 } 13151 13152 return &jc->css; 13153 } 13154 13155 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 13156 { 13157 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 13158 13159 free_percpu(jc->info); 13160 kfree(jc); 13161 } 13162 13163 static int perf_cgroup_css_online(struct cgroup_subsys_state *css) 13164 { 13165 perf_event_cgroup(css->cgroup); 13166 return 0; 13167 } 13168 13169 static int __perf_cgroup_move(void *info) 13170 { 13171 struct task_struct *task = info; 13172 rcu_read_lock(); 13173 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN); 13174 rcu_read_unlock(); 13175 return 0; 13176 } 13177 13178 static void perf_cgroup_attach(struct cgroup_taskset *tset) 13179 { 13180 struct task_struct *task; 13181 struct cgroup_subsys_state *css; 13182 13183 cgroup_taskset_for_each(task, css, tset) 13184 task_function_call(task, __perf_cgroup_move, task); 13185 } 13186 13187 struct cgroup_subsys perf_event_cgrp_subsys = { 13188 .css_alloc = perf_cgroup_css_alloc, 13189 .css_free = perf_cgroup_css_free, 13190 .css_online = perf_cgroup_css_online, 13191 .attach = perf_cgroup_attach, 13192 /* 13193 * Implicitly enable on dfl hierarchy so that perf events can 13194 * always be filtered by cgroup2 path as long as perf_event 13195 * controller is not mounted on a legacy hierarchy. 13196 */ 13197 .implicit_on_dfl = true, 13198 .threaded = true, 13199 }; 13200 #endif /* CONFIG_CGROUP_PERF */ 13201