xref: /openbmc/linux/kernel/events/core.c (revision 83869019)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10 
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54 #include <linux/highmem.h>
55 #include <linux/pgtable.h>
56 #include <linux/buildid.h>
57 
58 #include "internal.h"
59 
60 #include <asm/irq_regs.h>
61 
62 typedef int (*remote_function_f)(void *);
63 
64 struct remote_function_call {
65 	struct task_struct	*p;
66 	remote_function_f	func;
67 	void			*info;
68 	int			ret;
69 };
70 
71 static void remote_function(void *data)
72 {
73 	struct remote_function_call *tfc = data;
74 	struct task_struct *p = tfc->p;
75 
76 	if (p) {
77 		/* -EAGAIN */
78 		if (task_cpu(p) != smp_processor_id())
79 			return;
80 
81 		/*
82 		 * Now that we're on right CPU with IRQs disabled, we can test
83 		 * if we hit the right task without races.
84 		 */
85 
86 		tfc->ret = -ESRCH; /* No such (running) process */
87 		if (p != current)
88 			return;
89 	}
90 
91 	tfc->ret = tfc->func(tfc->info);
92 }
93 
94 /**
95  * task_function_call - call a function on the cpu on which a task runs
96  * @p:		the task to evaluate
97  * @func:	the function to be called
98  * @info:	the function call argument
99  *
100  * Calls the function @func when the task is currently running. This might
101  * be on the current CPU, which just calls the function directly.  This will
102  * retry due to any failures in smp_call_function_single(), such as if the
103  * task_cpu() goes offline concurrently.
104  *
105  * returns @func return value or -ESRCH or -ENXIO when the process isn't running
106  */
107 static int
108 task_function_call(struct task_struct *p, remote_function_f func, void *info)
109 {
110 	struct remote_function_call data = {
111 		.p	= p,
112 		.func	= func,
113 		.info	= info,
114 		.ret	= -EAGAIN,
115 	};
116 	int ret;
117 
118 	for (;;) {
119 		ret = smp_call_function_single(task_cpu(p), remote_function,
120 					       &data, 1);
121 		if (!ret)
122 			ret = data.ret;
123 
124 		if (ret != -EAGAIN)
125 			break;
126 
127 		cond_resched();
128 	}
129 
130 	return ret;
131 }
132 
133 /**
134  * cpu_function_call - call a function on the cpu
135  * @cpu:	target cpu to queue this function
136  * @func:	the function to be called
137  * @info:	the function call argument
138  *
139  * Calls the function @func on the remote cpu.
140  *
141  * returns: @func return value or -ENXIO when the cpu is offline
142  */
143 static int cpu_function_call(int cpu, remote_function_f func, void *info)
144 {
145 	struct remote_function_call data = {
146 		.p	= NULL,
147 		.func	= func,
148 		.info	= info,
149 		.ret	= -ENXIO, /* No such CPU */
150 	};
151 
152 	smp_call_function_single(cpu, remote_function, &data, 1);
153 
154 	return data.ret;
155 }
156 
157 static inline struct perf_cpu_context *
158 __get_cpu_context(struct perf_event_context *ctx)
159 {
160 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
161 }
162 
163 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
164 			  struct perf_event_context *ctx)
165 {
166 	raw_spin_lock(&cpuctx->ctx.lock);
167 	if (ctx)
168 		raw_spin_lock(&ctx->lock);
169 }
170 
171 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
172 			    struct perf_event_context *ctx)
173 {
174 	if (ctx)
175 		raw_spin_unlock(&ctx->lock);
176 	raw_spin_unlock(&cpuctx->ctx.lock);
177 }
178 
179 #define TASK_TOMBSTONE ((void *)-1L)
180 
181 static bool is_kernel_event(struct perf_event *event)
182 {
183 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
184 }
185 
186 /*
187  * On task ctx scheduling...
188  *
189  * When !ctx->nr_events a task context will not be scheduled. This means
190  * we can disable the scheduler hooks (for performance) without leaving
191  * pending task ctx state.
192  *
193  * This however results in two special cases:
194  *
195  *  - removing the last event from a task ctx; this is relatively straight
196  *    forward and is done in __perf_remove_from_context.
197  *
198  *  - adding the first event to a task ctx; this is tricky because we cannot
199  *    rely on ctx->is_active and therefore cannot use event_function_call().
200  *    See perf_install_in_context().
201  *
202  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
203  */
204 
205 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
206 			struct perf_event_context *, void *);
207 
208 struct event_function_struct {
209 	struct perf_event *event;
210 	event_f func;
211 	void *data;
212 };
213 
214 static int event_function(void *info)
215 {
216 	struct event_function_struct *efs = info;
217 	struct perf_event *event = efs->event;
218 	struct perf_event_context *ctx = event->ctx;
219 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
220 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
221 	int ret = 0;
222 
223 	lockdep_assert_irqs_disabled();
224 
225 	perf_ctx_lock(cpuctx, task_ctx);
226 	/*
227 	 * Since we do the IPI call without holding ctx->lock things can have
228 	 * changed, double check we hit the task we set out to hit.
229 	 */
230 	if (ctx->task) {
231 		if (ctx->task != current) {
232 			ret = -ESRCH;
233 			goto unlock;
234 		}
235 
236 		/*
237 		 * We only use event_function_call() on established contexts,
238 		 * and event_function() is only ever called when active (or
239 		 * rather, we'll have bailed in task_function_call() or the
240 		 * above ctx->task != current test), therefore we must have
241 		 * ctx->is_active here.
242 		 */
243 		WARN_ON_ONCE(!ctx->is_active);
244 		/*
245 		 * And since we have ctx->is_active, cpuctx->task_ctx must
246 		 * match.
247 		 */
248 		WARN_ON_ONCE(task_ctx != ctx);
249 	} else {
250 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
251 	}
252 
253 	efs->func(event, cpuctx, ctx, efs->data);
254 unlock:
255 	perf_ctx_unlock(cpuctx, task_ctx);
256 
257 	return ret;
258 }
259 
260 static void event_function_call(struct perf_event *event, event_f func, void *data)
261 {
262 	struct perf_event_context *ctx = event->ctx;
263 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
264 	struct event_function_struct efs = {
265 		.event = event,
266 		.func = func,
267 		.data = data,
268 	};
269 
270 	if (!event->parent) {
271 		/*
272 		 * If this is a !child event, we must hold ctx::mutex to
273 		 * stabilize the event->ctx relation. See
274 		 * perf_event_ctx_lock().
275 		 */
276 		lockdep_assert_held(&ctx->mutex);
277 	}
278 
279 	if (!task) {
280 		cpu_function_call(event->cpu, event_function, &efs);
281 		return;
282 	}
283 
284 	if (task == TASK_TOMBSTONE)
285 		return;
286 
287 again:
288 	if (!task_function_call(task, event_function, &efs))
289 		return;
290 
291 	raw_spin_lock_irq(&ctx->lock);
292 	/*
293 	 * Reload the task pointer, it might have been changed by
294 	 * a concurrent perf_event_context_sched_out().
295 	 */
296 	task = ctx->task;
297 	if (task == TASK_TOMBSTONE) {
298 		raw_spin_unlock_irq(&ctx->lock);
299 		return;
300 	}
301 	if (ctx->is_active) {
302 		raw_spin_unlock_irq(&ctx->lock);
303 		goto again;
304 	}
305 	func(event, NULL, ctx, data);
306 	raw_spin_unlock_irq(&ctx->lock);
307 }
308 
309 /*
310  * Similar to event_function_call() + event_function(), but hard assumes IRQs
311  * are already disabled and we're on the right CPU.
312  */
313 static void event_function_local(struct perf_event *event, event_f func, void *data)
314 {
315 	struct perf_event_context *ctx = event->ctx;
316 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
317 	struct task_struct *task = READ_ONCE(ctx->task);
318 	struct perf_event_context *task_ctx = NULL;
319 
320 	lockdep_assert_irqs_disabled();
321 
322 	if (task) {
323 		if (task == TASK_TOMBSTONE)
324 			return;
325 
326 		task_ctx = ctx;
327 	}
328 
329 	perf_ctx_lock(cpuctx, task_ctx);
330 
331 	task = ctx->task;
332 	if (task == TASK_TOMBSTONE)
333 		goto unlock;
334 
335 	if (task) {
336 		/*
337 		 * We must be either inactive or active and the right task,
338 		 * otherwise we're screwed, since we cannot IPI to somewhere
339 		 * else.
340 		 */
341 		if (ctx->is_active) {
342 			if (WARN_ON_ONCE(task != current))
343 				goto unlock;
344 
345 			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
346 				goto unlock;
347 		}
348 	} else {
349 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
350 	}
351 
352 	func(event, cpuctx, ctx, data);
353 unlock:
354 	perf_ctx_unlock(cpuctx, task_ctx);
355 }
356 
357 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
358 		       PERF_FLAG_FD_OUTPUT  |\
359 		       PERF_FLAG_PID_CGROUP |\
360 		       PERF_FLAG_FD_CLOEXEC)
361 
362 /*
363  * branch priv levels that need permission checks
364  */
365 #define PERF_SAMPLE_BRANCH_PERM_PLM \
366 	(PERF_SAMPLE_BRANCH_KERNEL |\
367 	 PERF_SAMPLE_BRANCH_HV)
368 
369 enum event_type_t {
370 	EVENT_FLEXIBLE = 0x1,
371 	EVENT_PINNED = 0x2,
372 	EVENT_TIME = 0x4,
373 	/* see ctx_resched() for details */
374 	EVENT_CPU = 0x8,
375 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
376 };
377 
378 /*
379  * perf_sched_events : >0 events exist
380  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
381  */
382 
383 static void perf_sched_delayed(struct work_struct *work);
384 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
385 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
386 static DEFINE_MUTEX(perf_sched_mutex);
387 static atomic_t perf_sched_count;
388 
389 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
390 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
391 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
392 
393 static atomic_t nr_mmap_events __read_mostly;
394 static atomic_t nr_comm_events __read_mostly;
395 static atomic_t nr_namespaces_events __read_mostly;
396 static atomic_t nr_task_events __read_mostly;
397 static atomic_t nr_freq_events __read_mostly;
398 static atomic_t nr_switch_events __read_mostly;
399 static atomic_t nr_ksymbol_events __read_mostly;
400 static atomic_t nr_bpf_events __read_mostly;
401 static atomic_t nr_cgroup_events __read_mostly;
402 static atomic_t nr_text_poke_events __read_mostly;
403 static atomic_t nr_build_id_events __read_mostly;
404 
405 static LIST_HEAD(pmus);
406 static DEFINE_MUTEX(pmus_lock);
407 static struct srcu_struct pmus_srcu;
408 static cpumask_var_t perf_online_mask;
409 static struct kmem_cache *perf_event_cache;
410 
411 /*
412  * perf event paranoia level:
413  *  -1 - not paranoid at all
414  *   0 - disallow raw tracepoint access for unpriv
415  *   1 - disallow cpu events for unpriv
416  *   2 - disallow kernel profiling for unpriv
417  */
418 int sysctl_perf_event_paranoid __read_mostly = 2;
419 
420 /* Minimum for 512 kiB + 1 user control page */
421 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
422 
423 /*
424  * max perf event sample rate
425  */
426 #define DEFAULT_MAX_SAMPLE_RATE		100000
427 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
428 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
429 
430 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
431 
432 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
433 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
434 
435 static int perf_sample_allowed_ns __read_mostly =
436 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
437 
438 static void update_perf_cpu_limits(void)
439 {
440 	u64 tmp = perf_sample_period_ns;
441 
442 	tmp *= sysctl_perf_cpu_time_max_percent;
443 	tmp = div_u64(tmp, 100);
444 	if (!tmp)
445 		tmp = 1;
446 
447 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
448 }
449 
450 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
451 
452 int perf_proc_update_handler(struct ctl_table *table, int write,
453 		void *buffer, size_t *lenp, loff_t *ppos)
454 {
455 	int ret;
456 	int perf_cpu = sysctl_perf_cpu_time_max_percent;
457 	/*
458 	 * If throttling is disabled don't allow the write:
459 	 */
460 	if (write && (perf_cpu == 100 || perf_cpu == 0))
461 		return -EINVAL;
462 
463 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
464 	if (ret || !write)
465 		return ret;
466 
467 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
468 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
469 	update_perf_cpu_limits();
470 
471 	return 0;
472 }
473 
474 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
475 
476 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
477 		void *buffer, size_t *lenp, loff_t *ppos)
478 {
479 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
480 
481 	if (ret || !write)
482 		return ret;
483 
484 	if (sysctl_perf_cpu_time_max_percent == 100 ||
485 	    sysctl_perf_cpu_time_max_percent == 0) {
486 		printk(KERN_WARNING
487 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
488 		WRITE_ONCE(perf_sample_allowed_ns, 0);
489 	} else {
490 		update_perf_cpu_limits();
491 	}
492 
493 	return 0;
494 }
495 
496 /*
497  * perf samples are done in some very critical code paths (NMIs).
498  * If they take too much CPU time, the system can lock up and not
499  * get any real work done.  This will drop the sample rate when
500  * we detect that events are taking too long.
501  */
502 #define NR_ACCUMULATED_SAMPLES 128
503 static DEFINE_PER_CPU(u64, running_sample_length);
504 
505 static u64 __report_avg;
506 static u64 __report_allowed;
507 
508 static void perf_duration_warn(struct irq_work *w)
509 {
510 	printk_ratelimited(KERN_INFO
511 		"perf: interrupt took too long (%lld > %lld), lowering "
512 		"kernel.perf_event_max_sample_rate to %d\n",
513 		__report_avg, __report_allowed,
514 		sysctl_perf_event_sample_rate);
515 }
516 
517 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
518 
519 void perf_sample_event_took(u64 sample_len_ns)
520 {
521 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
522 	u64 running_len;
523 	u64 avg_len;
524 	u32 max;
525 
526 	if (max_len == 0)
527 		return;
528 
529 	/* Decay the counter by 1 average sample. */
530 	running_len = __this_cpu_read(running_sample_length);
531 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
532 	running_len += sample_len_ns;
533 	__this_cpu_write(running_sample_length, running_len);
534 
535 	/*
536 	 * Note: this will be biased artifically low until we have
537 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
538 	 * from having to maintain a count.
539 	 */
540 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
541 	if (avg_len <= max_len)
542 		return;
543 
544 	__report_avg = avg_len;
545 	__report_allowed = max_len;
546 
547 	/*
548 	 * Compute a throttle threshold 25% below the current duration.
549 	 */
550 	avg_len += avg_len / 4;
551 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
552 	if (avg_len < max)
553 		max /= (u32)avg_len;
554 	else
555 		max = 1;
556 
557 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
558 	WRITE_ONCE(max_samples_per_tick, max);
559 
560 	sysctl_perf_event_sample_rate = max * HZ;
561 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
562 
563 	if (!irq_work_queue(&perf_duration_work)) {
564 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
565 			     "kernel.perf_event_max_sample_rate to %d\n",
566 			     __report_avg, __report_allowed,
567 			     sysctl_perf_event_sample_rate);
568 	}
569 }
570 
571 static atomic64_t perf_event_id;
572 
573 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
574 			      enum event_type_t event_type);
575 
576 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
577 			     enum event_type_t event_type,
578 			     struct task_struct *task);
579 
580 static void update_context_time(struct perf_event_context *ctx);
581 static u64 perf_event_time(struct perf_event *event);
582 
583 void __weak perf_event_print_debug(void)	{ }
584 
585 static inline u64 perf_clock(void)
586 {
587 	return local_clock();
588 }
589 
590 static inline u64 perf_event_clock(struct perf_event *event)
591 {
592 	return event->clock();
593 }
594 
595 /*
596  * State based event timekeeping...
597  *
598  * The basic idea is to use event->state to determine which (if any) time
599  * fields to increment with the current delta. This means we only need to
600  * update timestamps when we change state or when they are explicitly requested
601  * (read).
602  *
603  * Event groups make things a little more complicated, but not terribly so. The
604  * rules for a group are that if the group leader is OFF the entire group is
605  * OFF, irrespecive of what the group member states are. This results in
606  * __perf_effective_state().
607  *
608  * A futher ramification is that when a group leader flips between OFF and
609  * !OFF, we need to update all group member times.
610  *
611  *
612  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
613  * need to make sure the relevant context time is updated before we try and
614  * update our timestamps.
615  */
616 
617 static __always_inline enum perf_event_state
618 __perf_effective_state(struct perf_event *event)
619 {
620 	struct perf_event *leader = event->group_leader;
621 
622 	if (leader->state <= PERF_EVENT_STATE_OFF)
623 		return leader->state;
624 
625 	return event->state;
626 }
627 
628 static __always_inline void
629 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
630 {
631 	enum perf_event_state state = __perf_effective_state(event);
632 	u64 delta = now - event->tstamp;
633 
634 	*enabled = event->total_time_enabled;
635 	if (state >= PERF_EVENT_STATE_INACTIVE)
636 		*enabled += delta;
637 
638 	*running = event->total_time_running;
639 	if (state >= PERF_EVENT_STATE_ACTIVE)
640 		*running += delta;
641 }
642 
643 static void perf_event_update_time(struct perf_event *event)
644 {
645 	u64 now = perf_event_time(event);
646 
647 	__perf_update_times(event, now, &event->total_time_enabled,
648 					&event->total_time_running);
649 	event->tstamp = now;
650 }
651 
652 static void perf_event_update_sibling_time(struct perf_event *leader)
653 {
654 	struct perf_event *sibling;
655 
656 	for_each_sibling_event(sibling, leader)
657 		perf_event_update_time(sibling);
658 }
659 
660 static void
661 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
662 {
663 	if (event->state == state)
664 		return;
665 
666 	perf_event_update_time(event);
667 	/*
668 	 * If a group leader gets enabled/disabled all its siblings
669 	 * are affected too.
670 	 */
671 	if ((event->state < 0) ^ (state < 0))
672 		perf_event_update_sibling_time(event);
673 
674 	WRITE_ONCE(event->state, state);
675 }
676 
677 #ifdef CONFIG_CGROUP_PERF
678 
679 static inline bool
680 perf_cgroup_match(struct perf_event *event)
681 {
682 	struct perf_event_context *ctx = event->ctx;
683 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
684 
685 	/* @event doesn't care about cgroup */
686 	if (!event->cgrp)
687 		return true;
688 
689 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
690 	if (!cpuctx->cgrp)
691 		return false;
692 
693 	/*
694 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
695 	 * also enabled for all its descendant cgroups.  If @cpuctx's
696 	 * cgroup is a descendant of @event's (the test covers identity
697 	 * case), it's a match.
698 	 */
699 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
700 				    event->cgrp->css.cgroup);
701 }
702 
703 static inline void perf_detach_cgroup(struct perf_event *event)
704 {
705 	css_put(&event->cgrp->css);
706 	event->cgrp = NULL;
707 }
708 
709 static inline int is_cgroup_event(struct perf_event *event)
710 {
711 	return event->cgrp != NULL;
712 }
713 
714 static inline u64 perf_cgroup_event_time(struct perf_event *event)
715 {
716 	struct perf_cgroup_info *t;
717 
718 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
719 	return t->time;
720 }
721 
722 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
723 {
724 	struct perf_cgroup_info *info;
725 	u64 now;
726 
727 	now = perf_clock();
728 
729 	info = this_cpu_ptr(cgrp->info);
730 
731 	info->time += now - info->timestamp;
732 	info->timestamp = now;
733 }
734 
735 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
736 {
737 	struct perf_cgroup *cgrp = cpuctx->cgrp;
738 	struct cgroup_subsys_state *css;
739 
740 	if (cgrp) {
741 		for (css = &cgrp->css; css; css = css->parent) {
742 			cgrp = container_of(css, struct perf_cgroup, css);
743 			__update_cgrp_time(cgrp);
744 		}
745 	}
746 }
747 
748 static inline void update_cgrp_time_from_event(struct perf_event *event)
749 {
750 	struct perf_cgroup *cgrp;
751 
752 	/*
753 	 * ensure we access cgroup data only when needed and
754 	 * when we know the cgroup is pinned (css_get)
755 	 */
756 	if (!is_cgroup_event(event))
757 		return;
758 
759 	cgrp = perf_cgroup_from_task(current, event->ctx);
760 	/*
761 	 * Do not update time when cgroup is not active
762 	 */
763 	if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
764 		__update_cgrp_time(event->cgrp);
765 }
766 
767 static inline void
768 perf_cgroup_set_timestamp(struct task_struct *task,
769 			  struct perf_event_context *ctx)
770 {
771 	struct perf_cgroup *cgrp;
772 	struct perf_cgroup_info *info;
773 	struct cgroup_subsys_state *css;
774 
775 	/*
776 	 * ctx->lock held by caller
777 	 * ensure we do not access cgroup data
778 	 * unless we have the cgroup pinned (css_get)
779 	 */
780 	if (!task || !ctx->nr_cgroups)
781 		return;
782 
783 	cgrp = perf_cgroup_from_task(task, ctx);
784 
785 	for (css = &cgrp->css; css; css = css->parent) {
786 		cgrp = container_of(css, struct perf_cgroup, css);
787 		info = this_cpu_ptr(cgrp->info);
788 		info->timestamp = ctx->timestamp;
789 	}
790 }
791 
792 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
793 
794 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
795 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
796 
797 /*
798  * reschedule events based on the cgroup constraint of task.
799  *
800  * mode SWOUT : schedule out everything
801  * mode SWIN : schedule in based on cgroup for next
802  */
803 static void perf_cgroup_switch(struct task_struct *task, int mode)
804 {
805 	struct perf_cpu_context *cpuctx;
806 	struct list_head *list;
807 	unsigned long flags;
808 
809 	/*
810 	 * Disable interrupts and preemption to avoid this CPU's
811 	 * cgrp_cpuctx_entry to change under us.
812 	 */
813 	local_irq_save(flags);
814 
815 	list = this_cpu_ptr(&cgrp_cpuctx_list);
816 	list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
817 		WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
818 
819 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
820 		perf_pmu_disable(cpuctx->ctx.pmu);
821 
822 		if (mode & PERF_CGROUP_SWOUT) {
823 			cpu_ctx_sched_out(cpuctx, EVENT_ALL);
824 			/*
825 			 * must not be done before ctxswout due
826 			 * to event_filter_match() in event_sched_out()
827 			 */
828 			cpuctx->cgrp = NULL;
829 		}
830 
831 		if (mode & PERF_CGROUP_SWIN) {
832 			WARN_ON_ONCE(cpuctx->cgrp);
833 			/*
834 			 * set cgrp before ctxsw in to allow
835 			 * event_filter_match() to not have to pass
836 			 * task around
837 			 * we pass the cpuctx->ctx to perf_cgroup_from_task()
838 			 * because cgorup events are only per-cpu
839 			 */
840 			cpuctx->cgrp = perf_cgroup_from_task(task,
841 							     &cpuctx->ctx);
842 			cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
843 		}
844 		perf_pmu_enable(cpuctx->ctx.pmu);
845 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
846 	}
847 
848 	local_irq_restore(flags);
849 }
850 
851 static inline void perf_cgroup_sched_out(struct task_struct *task,
852 					 struct task_struct *next)
853 {
854 	struct perf_cgroup *cgrp1;
855 	struct perf_cgroup *cgrp2 = NULL;
856 
857 	rcu_read_lock();
858 	/*
859 	 * we come here when we know perf_cgroup_events > 0
860 	 * we do not need to pass the ctx here because we know
861 	 * we are holding the rcu lock
862 	 */
863 	cgrp1 = perf_cgroup_from_task(task, NULL);
864 	cgrp2 = perf_cgroup_from_task(next, NULL);
865 
866 	/*
867 	 * only schedule out current cgroup events if we know
868 	 * that we are switching to a different cgroup. Otherwise,
869 	 * do no touch the cgroup events.
870 	 */
871 	if (cgrp1 != cgrp2)
872 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
873 
874 	rcu_read_unlock();
875 }
876 
877 static inline void perf_cgroup_sched_in(struct task_struct *prev,
878 					struct task_struct *task)
879 {
880 	struct perf_cgroup *cgrp1;
881 	struct perf_cgroup *cgrp2 = NULL;
882 
883 	rcu_read_lock();
884 	/*
885 	 * we come here when we know perf_cgroup_events > 0
886 	 * we do not need to pass the ctx here because we know
887 	 * we are holding the rcu lock
888 	 */
889 	cgrp1 = perf_cgroup_from_task(task, NULL);
890 	cgrp2 = perf_cgroup_from_task(prev, NULL);
891 
892 	/*
893 	 * only need to schedule in cgroup events if we are changing
894 	 * cgroup during ctxsw. Cgroup events were not scheduled
895 	 * out of ctxsw out if that was not the case.
896 	 */
897 	if (cgrp1 != cgrp2)
898 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
899 
900 	rcu_read_unlock();
901 }
902 
903 static int perf_cgroup_ensure_storage(struct perf_event *event,
904 				struct cgroup_subsys_state *css)
905 {
906 	struct perf_cpu_context *cpuctx;
907 	struct perf_event **storage;
908 	int cpu, heap_size, ret = 0;
909 
910 	/*
911 	 * Allow storage to have sufficent space for an iterator for each
912 	 * possibly nested cgroup plus an iterator for events with no cgroup.
913 	 */
914 	for (heap_size = 1; css; css = css->parent)
915 		heap_size++;
916 
917 	for_each_possible_cpu(cpu) {
918 		cpuctx = per_cpu_ptr(event->pmu->pmu_cpu_context, cpu);
919 		if (heap_size <= cpuctx->heap_size)
920 			continue;
921 
922 		storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
923 				       GFP_KERNEL, cpu_to_node(cpu));
924 		if (!storage) {
925 			ret = -ENOMEM;
926 			break;
927 		}
928 
929 		raw_spin_lock_irq(&cpuctx->ctx.lock);
930 		if (cpuctx->heap_size < heap_size) {
931 			swap(cpuctx->heap, storage);
932 			if (storage == cpuctx->heap_default)
933 				storage = NULL;
934 			cpuctx->heap_size = heap_size;
935 		}
936 		raw_spin_unlock_irq(&cpuctx->ctx.lock);
937 
938 		kfree(storage);
939 	}
940 
941 	return ret;
942 }
943 
944 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
945 				      struct perf_event_attr *attr,
946 				      struct perf_event *group_leader)
947 {
948 	struct perf_cgroup *cgrp;
949 	struct cgroup_subsys_state *css;
950 	struct fd f = fdget(fd);
951 	int ret = 0;
952 
953 	if (!f.file)
954 		return -EBADF;
955 
956 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
957 					 &perf_event_cgrp_subsys);
958 	if (IS_ERR(css)) {
959 		ret = PTR_ERR(css);
960 		goto out;
961 	}
962 
963 	ret = perf_cgroup_ensure_storage(event, css);
964 	if (ret)
965 		goto out;
966 
967 	cgrp = container_of(css, struct perf_cgroup, css);
968 	event->cgrp = cgrp;
969 
970 	/*
971 	 * all events in a group must monitor
972 	 * the same cgroup because a task belongs
973 	 * to only one perf cgroup at a time
974 	 */
975 	if (group_leader && group_leader->cgrp != cgrp) {
976 		perf_detach_cgroup(event);
977 		ret = -EINVAL;
978 	}
979 out:
980 	fdput(f);
981 	return ret;
982 }
983 
984 static inline void
985 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
986 {
987 	struct perf_cgroup_info *t;
988 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
989 	event->shadow_ctx_time = now - t->timestamp;
990 }
991 
992 static inline void
993 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
994 {
995 	struct perf_cpu_context *cpuctx;
996 
997 	if (!is_cgroup_event(event))
998 		return;
999 
1000 	/*
1001 	 * Because cgroup events are always per-cpu events,
1002 	 * @ctx == &cpuctx->ctx.
1003 	 */
1004 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1005 
1006 	/*
1007 	 * Since setting cpuctx->cgrp is conditional on the current @cgrp
1008 	 * matching the event's cgroup, we must do this for every new event,
1009 	 * because if the first would mismatch, the second would not try again
1010 	 * and we would leave cpuctx->cgrp unset.
1011 	 */
1012 	if (ctx->is_active && !cpuctx->cgrp) {
1013 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
1014 
1015 		if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
1016 			cpuctx->cgrp = cgrp;
1017 	}
1018 
1019 	if (ctx->nr_cgroups++)
1020 		return;
1021 
1022 	list_add(&cpuctx->cgrp_cpuctx_entry,
1023 			per_cpu_ptr(&cgrp_cpuctx_list, event->cpu));
1024 }
1025 
1026 static inline void
1027 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1028 {
1029 	struct perf_cpu_context *cpuctx;
1030 
1031 	if (!is_cgroup_event(event))
1032 		return;
1033 
1034 	/*
1035 	 * Because cgroup events are always per-cpu events,
1036 	 * @ctx == &cpuctx->ctx.
1037 	 */
1038 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1039 
1040 	if (--ctx->nr_cgroups)
1041 		return;
1042 
1043 	if (ctx->is_active && cpuctx->cgrp)
1044 		cpuctx->cgrp = NULL;
1045 
1046 	list_del(&cpuctx->cgrp_cpuctx_entry);
1047 }
1048 
1049 #else /* !CONFIG_CGROUP_PERF */
1050 
1051 static inline bool
1052 perf_cgroup_match(struct perf_event *event)
1053 {
1054 	return true;
1055 }
1056 
1057 static inline void perf_detach_cgroup(struct perf_event *event)
1058 {}
1059 
1060 static inline int is_cgroup_event(struct perf_event *event)
1061 {
1062 	return 0;
1063 }
1064 
1065 static inline void update_cgrp_time_from_event(struct perf_event *event)
1066 {
1067 }
1068 
1069 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1070 {
1071 }
1072 
1073 static inline void perf_cgroup_sched_out(struct task_struct *task,
1074 					 struct task_struct *next)
1075 {
1076 }
1077 
1078 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1079 					struct task_struct *task)
1080 {
1081 }
1082 
1083 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1084 				      struct perf_event_attr *attr,
1085 				      struct perf_event *group_leader)
1086 {
1087 	return -EINVAL;
1088 }
1089 
1090 static inline void
1091 perf_cgroup_set_timestamp(struct task_struct *task,
1092 			  struct perf_event_context *ctx)
1093 {
1094 }
1095 
1096 static inline void
1097 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1098 {
1099 }
1100 
1101 static inline void
1102 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1103 {
1104 }
1105 
1106 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1107 {
1108 	return 0;
1109 }
1110 
1111 static inline void
1112 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1113 {
1114 }
1115 
1116 static inline void
1117 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1118 {
1119 }
1120 #endif
1121 
1122 /*
1123  * set default to be dependent on timer tick just
1124  * like original code
1125  */
1126 #define PERF_CPU_HRTIMER (1000 / HZ)
1127 /*
1128  * function must be called with interrupts disabled
1129  */
1130 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1131 {
1132 	struct perf_cpu_context *cpuctx;
1133 	bool rotations;
1134 
1135 	lockdep_assert_irqs_disabled();
1136 
1137 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1138 	rotations = perf_rotate_context(cpuctx);
1139 
1140 	raw_spin_lock(&cpuctx->hrtimer_lock);
1141 	if (rotations)
1142 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1143 	else
1144 		cpuctx->hrtimer_active = 0;
1145 	raw_spin_unlock(&cpuctx->hrtimer_lock);
1146 
1147 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1148 }
1149 
1150 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1151 {
1152 	struct hrtimer *timer = &cpuctx->hrtimer;
1153 	struct pmu *pmu = cpuctx->ctx.pmu;
1154 	u64 interval;
1155 
1156 	/* no multiplexing needed for SW PMU */
1157 	if (pmu->task_ctx_nr == perf_sw_context)
1158 		return;
1159 
1160 	/*
1161 	 * check default is sane, if not set then force to
1162 	 * default interval (1/tick)
1163 	 */
1164 	interval = pmu->hrtimer_interval_ms;
1165 	if (interval < 1)
1166 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1167 
1168 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1169 
1170 	raw_spin_lock_init(&cpuctx->hrtimer_lock);
1171 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1172 	timer->function = perf_mux_hrtimer_handler;
1173 }
1174 
1175 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1176 {
1177 	struct hrtimer *timer = &cpuctx->hrtimer;
1178 	struct pmu *pmu = cpuctx->ctx.pmu;
1179 	unsigned long flags;
1180 
1181 	/* not for SW PMU */
1182 	if (pmu->task_ctx_nr == perf_sw_context)
1183 		return 0;
1184 
1185 	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1186 	if (!cpuctx->hrtimer_active) {
1187 		cpuctx->hrtimer_active = 1;
1188 		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1189 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1190 	}
1191 	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1192 
1193 	return 0;
1194 }
1195 
1196 void perf_pmu_disable(struct pmu *pmu)
1197 {
1198 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1199 	if (!(*count)++)
1200 		pmu->pmu_disable(pmu);
1201 }
1202 
1203 void perf_pmu_enable(struct pmu *pmu)
1204 {
1205 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1206 	if (!--(*count))
1207 		pmu->pmu_enable(pmu);
1208 }
1209 
1210 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1211 
1212 /*
1213  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1214  * perf_event_task_tick() are fully serialized because they're strictly cpu
1215  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1216  * disabled, while perf_event_task_tick is called from IRQ context.
1217  */
1218 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1219 {
1220 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
1221 
1222 	lockdep_assert_irqs_disabled();
1223 
1224 	WARN_ON(!list_empty(&ctx->active_ctx_list));
1225 
1226 	list_add(&ctx->active_ctx_list, head);
1227 }
1228 
1229 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1230 {
1231 	lockdep_assert_irqs_disabled();
1232 
1233 	WARN_ON(list_empty(&ctx->active_ctx_list));
1234 
1235 	list_del_init(&ctx->active_ctx_list);
1236 }
1237 
1238 static void get_ctx(struct perf_event_context *ctx)
1239 {
1240 	refcount_inc(&ctx->refcount);
1241 }
1242 
1243 static void *alloc_task_ctx_data(struct pmu *pmu)
1244 {
1245 	if (pmu->task_ctx_cache)
1246 		return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL);
1247 
1248 	return NULL;
1249 }
1250 
1251 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data)
1252 {
1253 	if (pmu->task_ctx_cache && task_ctx_data)
1254 		kmem_cache_free(pmu->task_ctx_cache, task_ctx_data);
1255 }
1256 
1257 static void free_ctx(struct rcu_head *head)
1258 {
1259 	struct perf_event_context *ctx;
1260 
1261 	ctx = container_of(head, struct perf_event_context, rcu_head);
1262 	free_task_ctx_data(ctx->pmu, ctx->task_ctx_data);
1263 	kfree(ctx);
1264 }
1265 
1266 static void put_ctx(struct perf_event_context *ctx)
1267 {
1268 	if (refcount_dec_and_test(&ctx->refcount)) {
1269 		if (ctx->parent_ctx)
1270 			put_ctx(ctx->parent_ctx);
1271 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1272 			put_task_struct(ctx->task);
1273 		call_rcu(&ctx->rcu_head, free_ctx);
1274 	}
1275 }
1276 
1277 /*
1278  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1279  * perf_pmu_migrate_context() we need some magic.
1280  *
1281  * Those places that change perf_event::ctx will hold both
1282  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1283  *
1284  * Lock ordering is by mutex address. There are two other sites where
1285  * perf_event_context::mutex nests and those are:
1286  *
1287  *  - perf_event_exit_task_context()	[ child , 0 ]
1288  *      perf_event_exit_event()
1289  *        put_event()			[ parent, 1 ]
1290  *
1291  *  - perf_event_init_context()		[ parent, 0 ]
1292  *      inherit_task_group()
1293  *        inherit_group()
1294  *          inherit_event()
1295  *            perf_event_alloc()
1296  *              perf_init_event()
1297  *                perf_try_init_event()	[ child , 1 ]
1298  *
1299  * While it appears there is an obvious deadlock here -- the parent and child
1300  * nesting levels are inverted between the two. This is in fact safe because
1301  * life-time rules separate them. That is an exiting task cannot fork, and a
1302  * spawning task cannot (yet) exit.
1303  *
1304  * But remember that these are parent<->child context relations, and
1305  * migration does not affect children, therefore these two orderings should not
1306  * interact.
1307  *
1308  * The change in perf_event::ctx does not affect children (as claimed above)
1309  * because the sys_perf_event_open() case will install a new event and break
1310  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1311  * concerned with cpuctx and that doesn't have children.
1312  *
1313  * The places that change perf_event::ctx will issue:
1314  *
1315  *   perf_remove_from_context();
1316  *   synchronize_rcu();
1317  *   perf_install_in_context();
1318  *
1319  * to affect the change. The remove_from_context() + synchronize_rcu() should
1320  * quiesce the event, after which we can install it in the new location. This
1321  * means that only external vectors (perf_fops, prctl) can perturb the event
1322  * while in transit. Therefore all such accessors should also acquire
1323  * perf_event_context::mutex to serialize against this.
1324  *
1325  * However; because event->ctx can change while we're waiting to acquire
1326  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1327  * function.
1328  *
1329  * Lock order:
1330  *    exec_update_lock
1331  *	task_struct::perf_event_mutex
1332  *	  perf_event_context::mutex
1333  *	    perf_event::child_mutex;
1334  *	      perf_event_context::lock
1335  *	    perf_event::mmap_mutex
1336  *	    mmap_lock
1337  *	      perf_addr_filters_head::lock
1338  *
1339  *    cpu_hotplug_lock
1340  *      pmus_lock
1341  *	  cpuctx->mutex / perf_event_context::mutex
1342  */
1343 static struct perf_event_context *
1344 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1345 {
1346 	struct perf_event_context *ctx;
1347 
1348 again:
1349 	rcu_read_lock();
1350 	ctx = READ_ONCE(event->ctx);
1351 	if (!refcount_inc_not_zero(&ctx->refcount)) {
1352 		rcu_read_unlock();
1353 		goto again;
1354 	}
1355 	rcu_read_unlock();
1356 
1357 	mutex_lock_nested(&ctx->mutex, nesting);
1358 	if (event->ctx != ctx) {
1359 		mutex_unlock(&ctx->mutex);
1360 		put_ctx(ctx);
1361 		goto again;
1362 	}
1363 
1364 	return ctx;
1365 }
1366 
1367 static inline struct perf_event_context *
1368 perf_event_ctx_lock(struct perf_event *event)
1369 {
1370 	return perf_event_ctx_lock_nested(event, 0);
1371 }
1372 
1373 static void perf_event_ctx_unlock(struct perf_event *event,
1374 				  struct perf_event_context *ctx)
1375 {
1376 	mutex_unlock(&ctx->mutex);
1377 	put_ctx(ctx);
1378 }
1379 
1380 /*
1381  * This must be done under the ctx->lock, such as to serialize against
1382  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1383  * calling scheduler related locks and ctx->lock nests inside those.
1384  */
1385 static __must_check struct perf_event_context *
1386 unclone_ctx(struct perf_event_context *ctx)
1387 {
1388 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1389 
1390 	lockdep_assert_held(&ctx->lock);
1391 
1392 	if (parent_ctx)
1393 		ctx->parent_ctx = NULL;
1394 	ctx->generation++;
1395 
1396 	return parent_ctx;
1397 }
1398 
1399 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1400 				enum pid_type type)
1401 {
1402 	u32 nr;
1403 	/*
1404 	 * only top level events have the pid namespace they were created in
1405 	 */
1406 	if (event->parent)
1407 		event = event->parent;
1408 
1409 	nr = __task_pid_nr_ns(p, type, event->ns);
1410 	/* avoid -1 if it is idle thread or runs in another ns */
1411 	if (!nr && !pid_alive(p))
1412 		nr = -1;
1413 	return nr;
1414 }
1415 
1416 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1417 {
1418 	return perf_event_pid_type(event, p, PIDTYPE_TGID);
1419 }
1420 
1421 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1422 {
1423 	return perf_event_pid_type(event, p, PIDTYPE_PID);
1424 }
1425 
1426 /*
1427  * If we inherit events we want to return the parent event id
1428  * to userspace.
1429  */
1430 static u64 primary_event_id(struct perf_event *event)
1431 {
1432 	u64 id = event->id;
1433 
1434 	if (event->parent)
1435 		id = event->parent->id;
1436 
1437 	return id;
1438 }
1439 
1440 /*
1441  * Get the perf_event_context for a task and lock it.
1442  *
1443  * This has to cope with the fact that until it is locked,
1444  * the context could get moved to another task.
1445  */
1446 static struct perf_event_context *
1447 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1448 {
1449 	struct perf_event_context *ctx;
1450 
1451 retry:
1452 	/*
1453 	 * One of the few rules of preemptible RCU is that one cannot do
1454 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1455 	 * part of the read side critical section was irqs-enabled -- see
1456 	 * rcu_read_unlock_special().
1457 	 *
1458 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1459 	 * side critical section has interrupts disabled.
1460 	 */
1461 	local_irq_save(*flags);
1462 	rcu_read_lock();
1463 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1464 	if (ctx) {
1465 		/*
1466 		 * If this context is a clone of another, it might
1467 		 * get swapped for another underneath us by
1468 		 * perf_event_task_sched_out, though the
1469 		 * rcu_read_lock() protects us from any context
1470 		 * getting freed.  Lock the context and check if it
1471 		 * got swapped before we could get the lock, and retry
1472 		 * if so.  If we locked the right context, then it
1473 		 * can't get swapped on us any more.
1474 		 */
1475 		raw_spin_lock(&ctx->lock);
1476 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1477 			raw_spin_unlock(&ctx->lock);
1478 			rcu_read_unlock();
1479 			local_irq_restore(*flags);
1480 			goto retry;
1481 		}
1482 
1483 		if (ctx->task == TASK_TOMBSTONE ||
1484 		    !refcount_inc_not_zero(&ctx->refcount)) {
1485 			raw_spin_unlock(&ctx->lock);
1486 			ctx = NULL;
1487 		} else {
1488 			WARN_ON_ONCE(ctx->task != task);
1489 		}
1490 	}
1491 	rcu_read_unlock();
1492 	if (!ctx)
1493 		local_irq_restore(*flags);
1494 	return ctx;
1495 }
1496 
1497 /*
1498  * Get the context for a task and increment its pin_count so it
1499  * can't get swapped to another task.  This also increments its
1500  * reference count so that the context can't get freed.
1501  */
1502 static struct perf_event_context *
1503 perf_pin_task_context(struct task_struct *task, int ctxn)
1504 {
1505 	struct perf_event_context *ctx;
1506 	unsigned long flags;
1507 
1508 	ctx = perf_lock_task_context(task, ctxn, &flags);
1509 	if (ctx) {
1510 		++ctx->pin_count;
1511 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1512 	}
1513 	return ctx;
1514 }
1515 
1516 static void perf_unpin_context(struct perf_event_context *ctx)
1517 {
1518 	unsigned long flags;
1519 
1520 	raw_spin_lock_irqsave(&ctx->lock, flags);
1521 	--ctx->pin_count;
1522 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1523 }
1524 
1525 /*
1526  * Update the record of the current time in a context.
1527  */
1528 static void update_context_time(struct perf_event_context *ctx)
1529 {
1530 	u64 now = perf_clock();
1531 
1532 	ctx->time += now - ctx->timestamp;
1533 	ctx->timestamp = now;
1534 }
1535 
1536 static u64 perf_event_time(struct perf_event *event)
1537 {
1538 	struct perf_event_context *ctx = event->ctx;
1539 
1540 	if (is_cgroup_event(event))
1541 		return perf_cgroup_event_time(event);
1542 
1543 	return ctx ? ctx->time : 0;
1544 }
1545 
1546 static enum event_type_t get_event_type(struct perf_event *event)
1547 {
1548 	struct perf_event_context *ctx = event->ctx;
1549 	enum event_type_t event_type;
1550 
1551 	lockdep_assert_held(&ctx->lock);
1552 
1553 	/*
1554 	 * It's 'group type', really, because if our group leader is
1555 	 * pinned, so are we.
1556 	 */
1557 	if (event->group_leader != event)
1558 		event = event->group_leader;
1559 
1560 	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1561 	if (!ctx->task)
1562 		event_type |= EVENT_CPU;
1563 
1564 	return event_type;
1565 }
1566 
1567 /*
1568  * Helper function to initialize event group nodes.
1569  */
1570 static void init_event_group(struct perf_event *event)
1571 {
1572 	RB_CLEAR_NODE(&event->group_node);
1573 	event->group_index = 0;
1574 }
1575 
1576 /*
1577  * Extract pinned or flexible groups from the context
1578  * based on event attrs bits.
1579  */
1580 static struct perf_event_groups *
1581 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1582 {
1583 	if (event->attr.pinned)
1584 		return &ctx->pinned_groups;
1585 	else
1586 		return &ctx->flexible_groups;
1587 }
1588 
1589 /*
1590  * Helper function to initializes perf_event_group trees.
1591  */
1592 static void perf_event_groups_init(struct perf_event_groups *groups)
1593 {
1594 	groups->tree = RB_ROOT;
1595 	groups->index = 0;
1596 }
1597 
1598 static inline struct cgroup *event_cgroup(const struct perf_event *event)
1599 {
1600 	struct cgroup *cgroup = NULL;
1601 
1602 #ifdef CONFIG_CGROUP_PERF
1603 	if (event->cgrp)
1604 		cgroup = event->cgrp->css.cgroup;
1605 #endif
1606 
1607 	return cgroup;
1608 }
1609 
1610 /*
1611  * Compare function for event groups;
1612  *
1613  * Implements complex key that first sorts by CPU and then by virtual index
1614  * which provides ordering when rotating groups for the same CPU.
1615  */
1616 static __always_inline int
1617 perf_event_groups_cmp(const int left_cpu, const struct cgroup *left_cgroup,
1618 		      const u64 left_group_index, const struct perf_event *right)
1619 {
1620 	if (left_cpu < right->cpu)
1621 		return -1;
1622 	if (left_cpu > right->cpu)
1623 		return 1;
1624 
1625 #ifdef CONFIG_CGROUP_PERF
1626 	{
1627 		const struct cgroup *right_cgroup = event_cgroup(right);
1628 
1629 		if (left_cgroup != right_cgroup) {
1630 			if (!left_cgroup) {
1631 				/*
1632 				 * Left has no cgroup but right does, no
1633 				 * cgroups come first.
1634 				 */
1635 				return -1;
1636 			}
1637 			if (!right_cgroup) {
1638 				/*
1639 				 * Right has no cgroup but left does, no
1640 				 * cgroups come first.
1641 				 */
1642 				return 1;
1643 			}
1644 			/* Two dissimilar cgroups, order by id. */
1645 			if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup))
1646 				return -1;
1647 
1648 			return 1;
1649 		}
1650 	}
1651 #endif
1652 
1653 	if (left_group_index < right->group_index)
1654 		return -1;
1655 	if (left_group_index > right->group_index)
1656 		return 1;
1657 
1658 	return 0;
1659 }
1660 
1661 #define __node_2_pe(node) \
1662 	rb_entry((node), struct perf_event, group_node)
1663 
1664 static inline bool __group_less(struct rb_node *a, const struct rb_node *b)
1665 {
1666 	struct perf_event *e = __node_2_pe(a);
1667 	return perf_event_groups_cmp(e->cpu, event_cgroup(e), e->group_index,
1668 				     __node_2_pe(b)) < 0;
1669 }
1670 
1671 struct __group_key {
1672 	int cpu;
1673 	struct cgroup *cgroup;
1674 };
1675 
1676 static inline int __group_cmp(const void *key, const struct rb_node *node)
1677 {
1678 	const struct __group_key *a = key;
1679 	const struct perf_event *b = __node_2_pe(node);
1680 
1681 	/* partial/subtree match: @cpu, @cgroup; ignore: @group_index */
1682 	return perf_event_groups_cmp(a->cpu, a->cgroup, b->group_index, b);
1683 }
1684 
1685 /*
1686  * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1687  * key (see perf_event_groups_less). This places it last inside the CPU
1688  * subtree.
1689  */
1690 static void
1691 perf_event_groups_insert(struct perf_event_groups *groups,
1692 			 struct perf_event *event)
1693 {
1694 	event->group_index = ++groups->index;
1695 
1696 	rb_add(&event->group_node, &groups->tree, __group_less);
1697 }
1698 
1699 /*
1700  * Helper function to insert event into the pinned or flexible groups.
1701  */
1702 static void
1703 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1704 {
1705 	struct perf_event_groups *groups;
1706 
1707 	groups = get_event_groups(event, ctx);
1708 	perf_event_groups_insert(groups, event);
1709 }
1710 
1711 /*
1712  * Delete a group from a tree.
1713  */
1714 static void
1715 perf_event_groups_delete(struct perf_event_groups *groups,
1716 			 struct perf_event *event)
1717 {
1718 	WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1719 		     RB_EMPTY_ROOT(&groups->tree));
1720 
1721 	rb_erase(&event->group_node, &groups->tree);
1722 	init_event_group(event);
1723 }
1724 
1725 /*
1726  * Helper function to delete event from its groups.
1727  */
1728 static void
1729 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1730 {
1731 	struct perf_event_groups *groups;
1732 
1733 	groups = get_event_groups(event, ctx);
1734 	perf_event_groups_delete(groups, event);
1735 }
1736 
1737 /*
1738  * Get the leftmost event in the cpu/cgroup subtree.
1739  */
1740 static struct perf_event *
1741 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1742 			struct cgroup *cgrp)
1743 {
1744 	struct __group_key key = {
1745 		.cpu = cpu,
1746 		.cgroup = cgrp,
1747 	};
1748 	struct rb_node *node;
1749 
1750 	node = rb_find_first(&key, &groups->tree, __group_cmp);
1751 	if (node)
1752 		return __node_2_pe(node);
1753 
1754 	return NULL;
1755 }
1756 
1757 /*
1758  * Like rb_entry_next_safe() for the @cpu subtree.
1759  */
1760 static struct perf_event *
1761 perf_event_groups_next(struct perf_event *event)
1762 {
1763 	struct __group_key key = {
1764 		.cpu = event->cpu,
1765 		.cgroup = event_cgroup(event),
1766 	};
1767 	struct rb_node *next;
1768 
1769 	next = rb_next_match(&key, &event->group_node, __group_cmp);
1770 	if (next)
1771 		return __node_2_pe(next);
1772 
1773 	return NULL;
1774 }
1775 
1776 /*
1777  * Iterate through the whole groups tree.
1778  */
1779 #define perf_event_groups_for_each(event, groups)			\
1780 	for (event = rb_entry_safe(rb_first(&((groups)->tree)),		\
1781 				typeof(*event), group_node); event;	\
1782 		event = rb_entry_safe(rb_next(&event->group_node),	\
1783 				typeof(*event), group_node))
1784 
1785 /*
1786  * Add an event from the lists for its context.
1787  * Must be called with ctx->mutex and ctx->lock held.
1788  */
1789 static void
1790 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1791 {
1792 	lockdep_assert_held(&ctx->lock);
1793 
1794 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1795 	event->attach_state |= PERF_ATTACH_CONTEXT;
1796 
1797 	event->tstamp = perf_event_time(event);
1798 
1799 	/*
1800 	 * If we're a stand alone event or group leader, we go to the context
1801 	 * list, group events are kept attached to the group so that
1802 	 * perf_group_detach can, at all times, locate all siblings.
1803 	 */
1804 	if (event->group_leader == event) {
1805 		event->group_caps = event->event_caps;
1806 		add_event_to_groups(event, ctx);
1807 	}
1808 
1809 	list_add_rcu(&event->event_entry, &ctx->event_list);
1810 	ctx->nr_events++;
1811 	if (event->attr.inherit_stat)
1812 		ctx->nr_stat++;
1813 
1814 	if (event->state > PERF_EVENT_STATE_OFF)
1815 		perf_cgroup_event_enable(event, ctx);
1816 
1817 	ctx->generation++;
1818 }
1819 
1820 /*
1821  * Initialize event state based on the perf_event_attr::disabled.
1822  */
1823 static inline void perf_event__state_init(struct perf_event *event)
1824 {
1825 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1826 					      PERF_EVENT_STATE_INACTIVE;
1827 }
1828 
1829 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1830 {
1831 	int entry = sizeof(u64); /* value */
1832 	int size = 0;
1833 	int nr = 1;
1834 
1835 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1836 		size += sizeof(u64);
1837 
1838 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1839 		size += sizeof(u64);
1840 
1841 	if (event->attr.read_format & PERF_FORMAT_ID)
1842 		entry += sizeof(u64);
1843 
1844 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1845 		nr += nr_siblings;
1846 		size += sizeof(u64);
1847 	}
1848 
1849 	size += entry * nr;
1850 	event->read_size = size;
1851 }
1852 
1853 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1854 {
1855 	struct perf_sample_data *data;
1856 	u16 size = 0;
1857 
1858 	if (sample_type & PERF_SAMPLE_IP)
1859 		size += sizeof(data->ip);
1860 
1861 	if (sample_type & PERF_SAMPLE_ADDR)
1862 		size += sizeof(data->addr);
1863 
1864 	if (sample_type & PERF_SAMPLE_PERIOD)
1865 		size += sizeof(data->period);
1866 
1867 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
1868 		size += sizeof(data->weight.full);
1869 
1870 	if (sample_type & PERF_SAMPLE_READ)
1871 		size += event->read_size;
1872 
1873 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1874 		size += sizeof(data->data_src.val);
1875 
1876 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1877 		size += sizeof(data->txn);
1878 
1879 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1880 		size += sizeof(data->phys_addr);
1881 
1882 	if (sample_type & PERF_SAMPLE_CGROUP)
1883 		size += sizeof(data->cgroup);
1884 
1885 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
1886 		size += sizeof(data->data_page_size);
1887 
1888 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
1889 		size += sizeof(data->code_page_size);
1890 
1891 	event->header_size = size;
1892 }
1893 
1894 /*
1895  * Called at perf_event creation and when events are attached/detached from a
1896  * group.
1897  */
1898 static void perf_event__header_size(struct perf_event *event)
1899 {
1900 	__perf_event_read_size(event,
1901 			       event->group_leader->nr_siblings);
1902 	__perf_event_header_size(event, event->attr.sample_type);
1903 }
1904 
1905 static void perf_event__id_header_size(struct perf_event *event)
1906 {
1907 	struct perf_sample_data *data;
1908 	u64 sample_type = event->attr.sample_type;
1909 	u16 size = 0;
1910 
1911 	if (sample_type & PERF_SAMPLE_TID)
1912 		size += sizeof(data->tid_entry);
1913 
1914 	if (sample_type & PERF_SAMPLE_TIME)
1915 		size += sizeof(data->time);
1916 
1917 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1918 		size += sizeof(data->id);
1919 
1920 	if (sample_type & PERF_SAMPLE_ID)
1921 		size += sizeof(data->id);
1922 
1923 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1924 		size += sizeof(data->stream_id);
1925 
1926 	if (sample_type & PERF_SAMPLE_CPU)
1927 		size += sizeof(data->cpu_entry);
1928 
1929 	event->id_header_size = size;
1930 }
1931 
1932 static bool perf_event_validate_size(struct perf_event *event)
1933 {
1934 	/*
1935 	 * The values computed here will be over-written when we actually
1936 	 * attach the event.
1937 	 */
1938 	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1939 	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1940 	perf_event__id_header_size(event);
1941 
1942 	/*
1943 	 * Sum the lot; should not exceed the 64k limit we have on records.
1944 	 * Conservative limit to allow for callchains and other variable fields.
1945 	 */
1946 	if (event->read_size + event->header_size +
1947 	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1948 		return false;
1949 
1950 	return true;
1951 }
1952 
1953 static void perf_group_attach(struct perf_event *event)
1954 {
1955 	struct perf_event *group_leader = event->group_leader, *pos;
1956 
1957 	lockdep_assert_held(&event->ctx->lock);
1958 
1959 	/*
1960 	 * We can have double attach due to group movement in perf_event_open.
1961 	 */
1962 	if (event->attach_state & PERF_ATTACH_GROUP)
1963 		return;
1964 
1965 	event->attach_state |= PERF_ATTACH_GROUP;
1966 
1967 	if (group_leader == event)
1968 		return;
1969 
1970 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1971 
1972 	group_leader->group_caps &= event->event_caps;
1973 
1974 	list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1975 	group_leader->nr_siblings++;
1976 
1977 	perf_event__header_size(group_leader);
1978 
1979 	for_each_sibling_event(pos, group_leader)
1980 		perf_event__header_size(pos);
1981 }
1982 
1983 /*
1984  * Remove an event from the lists for its context.
1985  * Must be called with ctx->mutex and ctx->lock held.
1986  */
1987 static void
1988 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1989 {
1990 	WARN_ON_ONCE(event->ctx != ctx);
1991 	lockdep_assert_held(&ctx->lock);
1992 
1993 	/*
1994 	 * We can have double detach due to exit/hot-unplug + close.
1995 	 */
1996 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1997 		return;
1998 
1999 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
2000 
2001 	ctx->nr_events--;
2002 	if (event->attr.inherit_stat)
2003 		ctx->nr_stat--;
2004 
2005 	list_del_rcu(&event->event_entry);
2006 
2007 	if (event->group_leader == event)
2008 		del_event_from_groups(event, ctx);
2009 
2010 	/*
2011 	 * If event was in error state, then keep it
2012 	 * that way, otherwise bogus counts will be
2013 	 * returned on read(). The only way to get out
2014 	 * of error state is by explicit re-enabling
2015 	 * of the event
2016 	 */
2017 	if (event->state > PERF_EVENT_STATE_OFF) {
2018 		perf_cgroup_event_disable(event, ctx);
2019 		perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2020 	}
2021 
2022 	ctx->generation++;
2023 }
2024 
2025 static int
2026 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2027 {
2028 	if (!has_aux(aux_event))
2029 		return 0;
2030 
2031 	if (!event->pmu->aux_output_match)
2032 		return 0;
2033 
2034 	return event->pmu->aux_output_match(aux_event);
2035 }
2036 
2037 static void put_event(struct perf_event *event);
2038 static void event_sched_out(struct perf_event *event,
2039 			    struct perf_cpu_context *cpuctx,
2040 			    struct perf_event_context *ctx);
2041 
2042 static void perf_put_aux_event(struct perf_event *event)
2043 {
2044 	struct perf_event_context *ctx = event->ctx;
2045 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2046 	struct perf_event *iter;
2047 
2048 	/*
2049 	 * If event uses aux_event tear down the link
2050 	 */
2051 	if (event->aux_event) {
2052 		iter = event->aux_event;
2053 		event->aux_event = NULL;
2054 		put_event(iter);
2055 		return;
2056 	}
2057 
2058 	/*
2059 	 * If the event is an aux_event, tear down all links to
2060 	 * it from other events.
2061 	 */
2062 	for_each_sibling_event(iter, event->group_leader) {
2063 		if (iter->aux_event != event)
2064 			continue;
2065 
2066 		iter->aux_event = NULL;
2067 		put_event(event);
2068 
2069 		/*
2070 		 * If it's ACTIVE, schedule it out and put it into ERROR
2071 		 * state so that we don't try to schedule it again. Note
2072 		 * that perf_event_enable() will clear the ERROR status.
2073 		 */
2074 		event_sched_out(iter, cpuctx, ctx);
2075 		perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2076 	}
2077 }
2078 
2079 static bool perf_need_aux_event(struct perf_event *event)
2080 {
2081 	return !!event->attr.aux_output || !!event->attr.aux_sample_size;
2082 }
2083 
2084 static int perf_get_aux_event(struct perf_event *event,
2085 			      struct perf_event *group_leader)
2086 {
2087 	/*
2088 	 * Our group leader must be an aux event if we want to be
2089 	 * an aux_output. This way, the aux event will precede its
2090 	 * aux_output events in the group, and therefore will always
2091 	 * schedule first.
2092 	 */
2093 	if (!group_leader)
2094 		return 0;
2095 
2096 	/*
2097 	 * aux_output and aux_sample_size are mutually exclusive.
2098 	 */
2099 	if (event->attr.aux_output && event->attr.aux_sample_size)
2100 		return 0;
2101 
2102 	if (event->attr.aux_output &&
2103 	    !perf_aux_output_match(event, group_leader))
2104 		return 0;
2105 
2106 	if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2107 		return 0;
2108 
2109 	if (!atomic_long_inc_not_zero(&group_leader->refcount))
2110 		return 0;
2111 
2112 	/*
2113 	 * Link aux_outputs to their aux event; this is undone in
2114 	 * perf_group_detach() by perf_put_aux_event(). When the
2115 	 * group in torn down, the aux_output events loose their
2116 	 * link to the aux_event and can't schedule any more.
2117 	 */
2118 	event->aux_event = group_leader;
2119 
2120 	return 1;
2121 }
2122 
2123 static inline struct list_head *get_event_list(struct perf_event *event)
2124 {
2125 	struct perf_event_context *ctx = event->ctx;
2126 	return event->attr.pinned ? &ctx->pinned_active : &ctx->flexible_active;
2127 }
2128 
2129 /*
2130  * Events that have PERF_EV_CAP_SIBLING require being part of a group and
2131  * cannot exist on their own, schedule them out and move them into the ERROR
2132  * state. Also see _perf_event_enable(), it will not be able to recover
2133  * this ERROR state.
2134  */
2135 static inline void perf_remove_sibling_event(struct perf_event *event)
2136 {
2137 	struct perf_event_context *ctx = event->ctx;
2138 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2139 
2140 	event_sched_out(event, cpuctx, ctx);
2141 	perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2142 }
2143 
2144 static void perf_group_detach(struct perf_event *event)
2145 {
2146 	struct perf_event *leader = event->group_leader;
2147 	struct perf_event *sibling, *tmp;
2148 	struct perf_event_context *ctx = event->ctx;
2149 
2150 	lockdep_assert_held(&ctx->lock);
2151 
2152 	/*
2153 	 * We can have double detach due to exit/hot-unplug + close.
2154 	 */
2155 	if (!(event->attach_state & PERF_ATTACH_GROUP))
2156 		return;
2157 
2158 	event->attach_state &= ~PERF_ATTACH_GROUP;
2159 
2160 	perf_put_aux_event(event);
2161 
2162 	/*
2163 	 * If this is a sibling, remove it from its group.
2164 	 */
2165 	if (leader != event) {
2166 		list_del_init(&event->sibling_list);
2167 		event->group_leader->nr_siblings--;
2168 		goto out;
2169 	}
2170 
2171 	/*
2172 	 * If this was a group event with sibling events then
2173 	 * upgrade the siblings to singleton events by adding them
2174 	 * to whatever list we are on.
2175 	 */
2176 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2177 
2178 		if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2179 			perf_remove_sibling_event(sibling);
2180 
2181 		sibling->group_leader = sibling;
2182 		list_del_init(&sibling->sibling_list);
2183 
2184 		/* Inherit group flags from the previous leader */
2185 		sibling->group_caps = event->group_caps;
2186 
2187 		if (!RB_EMPTY_NODE(&event->group_node)) {
2188 			add_event_to_groups(sibling, event->ctx);
2189 
2190 			if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2191 				list_add_tail(&sibling->active_list, get_event_list(sibling));
2192 		}
2193 
2194 		WARN_ON_ONCE(sibling->ctx != event->ctx);
2195 	}
2196 
2197 out:
2198 	for_each_sibling_event(tmp, leader)
2199 		perf_event__header_size(tmp);
2200 
2201 	perf_event__header_size(leader);
2202 }
2203 
2204 static void sync_child_event(struct perf_event *child_event);
2205 
2206 static void perf_child_detach(struct perf_event *event)
2207 {
2208 	struct perf_event *parent_event = event->parent;
2209 
2210 	if (!(event->attach_state & PERF_ATTACH_CHILD))
2211 		return;
2212 
2213 	event->attach_state &= ~PERF_ATTACH_CHILD;
2214 
2215 	if (WARN_ON_ONCE(!parent_event))
2216 		return;
2217 
2218 	lockdep_assert_held(&parent_event->child_mutex);
2219 
2220 	sync_child_event(event);
2221 	list_del_init(&event->child_list);
2222 }
2223 
2224 static bool is_orphaned_event(struct perf_event *event)
2225 {
2226 	return event->state == PERF_EVENT_STATE_DEAD;
2227 }
2228 
2229 static inline int __pmu_filter_match(struct perf_event *event)
2230 {
2231 	struct pmu *pmu = event->pmu;
2232 	return pmu->filter_match ? pmu->filter_match(event) : 1;
2233 }
2234 
2235 /*
2236  * Check whether we should attempt to schedule an event group based on
2237  * PMU-specific filtering. An event group can consist of HW and SW events,
2238  * potentially with a SW leader, so we must check all the filters, to
2239  * determine whether a group is schedulable:
2240  */
2241 static inline int pmu_filter_match(struct perf_event *event)
2242 {
2243 	struct perf_event *sibling;
2244 
2245 	if (!__pmu_filter_match(event))
2246 		return 0;
2247 
2248 	for_each_sibling_event(sibling, event) {
2249 		if (!__pmu_filter_match(sibling))
2250 			return 0;
2251 	}
2252 
2253 	return 1;
2254 }
2255 
2256 static inline int
2257 event_filter_match(struct perf_event *event)
2258 {
2259 	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2260 	       perf_cgroup_match(event) && pmu_filter_match(event);
2261 }
2262 
2263 static void
2264 event_sched_out(struct perf_event *event,
2265 		  struct perf_cpu_context *cpuctx,
2266 		  struct perf_event_context *ctx)
2267 {
2268 	enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2269 
2270 	WARN_ON_ONCE(event->ctx != ctx);
2271 	lockdep_assert_held(&ctx->lock);
2272 
2273 	if (event->state != PERF_EVENT_STATE_ACTIVE)
2274 		return;
2275 
2276 	/*
2277 	 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2278 	 * we can schedule events _OUT_ individually through things like
2279 	 * __perf_remove_from_context().
2280 	 */
2281 	list_del_init(&event->active_list);
2282 
2283 	perf_pmu_disable(event->pmu);
2284 
2285 	event->pmu->del(event, 0);
2286 	event->oncpu = -1;
2287 
2288 	if (READ_ONCE(event->pending_disable) >= 0) {
2289 		WRITE_ONCE(event->pending_disable, -1);
2290 		perf_cgroup_event_disable(event, ctx);
2291 		state = PERF_EVENT_STATE_OFF;
2292 	}
2293 	perf_event_set_state(event, state);
2294 
2295 	if (!is_software_event(event))
2296 		cpuctx->active_oncpu--;
2297 	if (!--ctx->nr_active)
2298 		perf_event_ctx_deactivate(ctx);
2299 	if (event->attr.freq && event->attr.sample_freq)
2300 		ctx->nr_freq--;
2301 	if (event->attr.exclusive || !cpuctx->active_oncpu)
2302 		cpuctx->exclusive = 0;
2303 
2304 	perf_pmu_enable(event->pmu);
2305 }
2306 
2307 static void
2308 group_sched_out(struct perf_event *group_event,
2309 		struct perf_cpu_context *cpuctx,
2310 		struct perf_event_context *ctx)
2311 {
2312 	struct perf_event *event;
2313 
2314 	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2315 		return;
2316 
2317 	perf_pmu_disable(ctx->pmu);
2318 
2319 	event_sched_out(group_event, cpuctx, ctx);
2320 
2321 	/*
2322 	 * Schedule out siblings (if any):
2323 	 */
2324 	for_each_sibling_event(event, group_event)
2325 		event_sched_out(event, cpuctx, ctx);
2326 
2327 	perf_pmu_enable(ctx->pmu);
2328 }
2329 
2330 #define DETACH_GROUP	0x01UL
2331 #define DETACH_CHILD	0x02UL
2332 
2333 /*
2334  * Cross CPU call to remove a performance event
2335  *
2336  * We disable the event on the hardware level first. After that we
2337  * remove it from the context list.
2338  */
2339 static void
2340 __perf_remove_from_context(struct perf_event *event,
2341 			   struct perf_cpu_context *cpuctx,
2342 			   struct perf_event_context *ctx,
2343 			   void *info)
2344 {
2345 	unsigned long flags = (unsigned long)info;
2346 
2347 	if (ctx->is_active & EVENT_TIME) {
2348 		update_context_time(ctx);
2349 		update_cgrp_time_from_cpuctx(cpuctx);
2350 	}
2351 
2352 	event_sched_out(event, cpuctx, ctx);
2353 	if (flags & DETACH_GROUP)
2354 		perf_group_detach(event);
2355 	if (flags & DETACH_CHILD)
2356 		perf_child_detach(event);
2357 	list_del_event(event, ctx);
2358 
2359 	if (!ctx->nr_events && ctx->is_active) {
2360 		ctx->is_active = 0;
2361 		ctx->rotate_necessary = 0;
2362 		if (ctx->task) {
2363 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2364 			cpuctx->task_ctx = NULL;
2365 		}
2366 	}
2367 }
2368 
2369 /*
2370  * Remove the event from a task's (or a CPU's) list of events.
2371  *
2372  * If event->ctx is a cloned context, callers must make sure that
2373  * every task struct that event->ctx->task could possibly point to
2374  * remains valid.  This is OK when called from perf_release since
2375  * that only calls us on the top-level context, which can't be a clone.
2376  * When called from perf_event_exit_task, it's OK because the
2377  * context has been detached from its task.
2378  */
2379 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2380 {
2381 	struct perf_event_context *ctx = event->ctx;
2382 
2383 	lockdep_assert_held(&ctx->mutex);
2384 
2385 	/*
2386 	 * Because of perf_event_exit_task(), perf_remove_from_context() ought
2387 	 * to work in the face of TASK_TOMBSTONE, unlike every other
2388 	 * event_function_call() user.
2389 	 */
2390 	raw_spin_lock_irq(&ctx->lock);
2391 	if (!ctx->is_active) {
2392 		__perf_remove_from_context(event, __get_cpu_context(ctx),
2393 					   ctx, (void *)flags);
2394 		raw_spin_unlock_irq(&ctx->lock);
2395 		return;
2396 	}
2397 	raw_spin_unlock_irq(&ctx->lock);
2398 
2399 	event_function_call(event, __perf_remove_from_context, (void *)flags);
2400 }
2401 
2402 /*
2403  * Cross CPU call to disable a performance event
2404  */
2405 static void __perf_event_disable(struct perf_event *event,
2406 				 struct perf_cpu_context *cpuctx,
2407 				 struct perf_event_context *ctx,
2408 				 void *info)
2409 {
2410 	if (event->state < PERF_EVENT_STATE_INACTIVE)
2411 		return;
2412 
2413 	if (ctx->is_active & EVENT_TIME) {
2414 		update_context_time(ctx);
2415 		update_cgrp_time_from_event(event);
2416 	}
2417 
2418 	if (event == event->group_leader)
2419 		group_sched_out(event, cpuctx, ctx);
2420 	else
2421 		event_sched_out(event, cpuctx, ctx);
2422 
2423 	perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2424 	perf_cgroup_event_disable(event, ctx);
2425 }
2426 
2427 /*
2428  * Disable an event.
2429  *
2430  * If event->ctx is a cloned context, callers must make sure that
2431  * every task struct that event->ctx->task could possibly point to
2432  * remains valid.  This condition is satisfied when called through
2433  * perf_event_for_each_child or perf_event_for_each because they
2434  * hold the top-level event's child_mutex, so any descendant that
2435  * goes to exit will block in perf_event_exit_event().
2436  *
2437  * When called from perf_pending_event it's OK because event->ctx
2438  * is the current context on this CPU and preemption is disabled,
2439  * hence we can't get into perf_event_task_sched_out for this context.
2440  */
2441 static void _perf_event_disable(struct perf_event *event)
2442 {
2443 	struct perf_event_context *ctx = event->ctx;
2444 
2445 	raw_spin_lock_irq(&ctx->lock);
2446 	if (event->state <= PERF_EVENT_STATE_OFF) {
2447 		raw_spin_unlock_irq(&ctx->lock);
2448 		return;
2449 	}
2450 	raw_spin_unlock_irq(&ctx->lock);
2451 
2452 	event_function_call(event, __perf_event_disable, NULL);
2453 }
2454 
2455 void perf_event_disable_local(struct perf_event *event)
2456 {
2457 	event_function_local(event, __perf_event_disable, NULL);
2458 }
2459 
2460 /*
2461  * Strictly speaking kernel users cannot create groups and therefore this
2462  * interface does not need the perf_event_ctx_lock() magic.
2463  */
2464 void perf_event_disable(struct perf_event *event)
2465 {
2466 	struct perf_event_context *ctx;
2467 
2468 	ctx = perf_event_ctx_lock(event);
2469 	_perf_event_disable(event);
2470 	perf_event_ctx_unlock(event, ctx);
2471 }
2472 EXPORT_SYMBOL_GPL(perf_event_disable);
2473 
2474 void perf_event_disable_inatomic(struct perf_event *event)
2475 {
2476 	WRITE_ONCE(event->pending_disable, smp_processor_id());
2477 	/* can fail, see perf_pending_event_disable() */
2478 	irq_work_queue(&event->pending);
2479 }
2480 
2481 static void perf_set_shadow_time(struct perf_event *event,
2482 				 struct perf_event_context *ctx)
2483 {
2484 	/*
2485 	 * use the correct time source for the time snapshot
2486 	 *
2487 	 * We could get by without this by leveraging the
2488 	 * fact that to get to this function, the caller
2489 	 * has most likely already called update_context_time()
2490 	 * and update_cgrp_time_xx() and thus both timestamp
2491 	 * are identical (or very close). Given that tstamp is,
2492 	 * already adjusted for cgroup, we could say that:
2493 	 *    tstamp - ctx->timestamp
2494 	 * is equivalent to
2495 	 *    tstamp - cgrp->timestamp.
2496 	 *
2497 	 * Then, in perf_output_read(), the calculation would
2498 	 * work with no changes because:
2499 	 * - event is guaranteed scheduled in
2500 	 * - no scheduled out in between
2501 	 * - thus the timestamp would be the same
2502 	 *
2503 	 * But this is a bit hairy.
2504 	 *
2505 	 * So instead, we have an explicit cgroup call to remain
2506 	 * within the time source all along. We believe it
2507 	 * is cleaner and simpler to understand.
2508 	 */
2509 	if (is_cgroup_event(event))
2510 		perf_cgroup_set_shadow_time(event, event->tstamp);
2511 	else
2512 		event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2513 }
2514 
2515 #define MAX_INTERRUPTS (~0ULL)
2516 
2517 static void perf_log_throttle(struct perf_event *event, int enable);
2518 static void perf_log_itrace_start(struct perf_event *event);
2519 
2520 static int
2521 event_sched_in(struct perf_event *event,
2522 		 struct perf_cpu_context *cpuctx,
2523 		 struct perf_event_context *ctx)
2524 {
2525 	int ret = 0;
2526 
2527 	WARN_ON_ONCE(event->ctx != ctx);
2528 
2529 	lockdep_assert_held(&ctx->lock);
2530 
2531 	if (event->state <= PERF_EVENT_STATE_OFF)
2532 		return 0;
2533 
2534 	WRITE_ONCE(event->oncpu, smp_processor_id());
2535 	/*
2536 	 * Order event::oncpu write to happen before the ACTIVE state is
2537 	 * visible. This allows perf_event_{stop,read}() to observe the correct
2538 	 * ->oncpu if it sees ACTIVE.
2539 	 */
2540 	smp_wmb();
2541 	perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2542 
2543 	/*
2544 	 * Unthrottle events, since we scheduled we might have missed several
2545 	 * ticks already, also for a heavily scheduling task there is little
2546 	 * guarantee it'll get a tick in a timely manner.
2547 	 */
2548 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2549 		perf_log_throttle(event, 1);
2550 		event->hw.interrupts = 0;
2551 	}
2552 
2553 	perf_pmu_disable(event->pmu);
2554 
2555 	perf_set_shadow_time(event, ctx);
2556 
2557 	perf_log_itrace_start(event);
2558 
2559 	if (event->pmu->add(event, PERF_EF_START)) {
2560 		perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2561 		event->oncpu = -1;
2562 		ret = -EAGAIN;
2563 		goto out;
2564 	}
2565 
2566 	if (!is_software_event(event))
2567 		cpuctx->active_oncpu++;
2568 	if (!ctx->nr_active++)
2569 		perf_event_ctx_activate(ctx);
2570 	if (event->attr.freq && event->attr.sample_freq)
2571 		ctx->nr_freq++;
2572 
2573 	if (event->attr.exclusive)
2574 		cpuctx->exclusive = 1;
2575 
2576 out:
2577 	perf_pmu_enable(event->pmu);
2578 
2579 	return ret;
2580 }
2581 
2582 static int
2583 group_sched_in(struct perf_event *group_event,
2584 	       struct perf_cpu_context *cpuctx,
2585 	       struct perf_event_context *ctx)
2586 {
2587 	struct perf_event *event, *partial_group = NULL;
2588 	struct pmu *pmu = ctx->pmu;
2589 
2590 	if (group_event->state == PERF_EVENT_STATE_OFF)
2591 		return 0;
2592 
2593 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2594 
2595 	if (event_sched_in(group_event, cpuctx, ctx))
2596 		goto error;
2597 
2598 	/*
2599 	 * Schedule in siblings as one group (if any):
2600 	 */
2601 	for_each_sibling_event(event, group_event) {
2602 		if (event_sched_in(event, cpuctx, ctx)) {
2603 			partial_group = event;
2604 			goto group_error;
2605 		}
2606 	}
2607 
2608 	if (!pmu->commit_txn(pmu))
2609 		return 0;
2610 
2611 group_error:
2612 	/*
2613 	 * Groups can be scheduled in as one unit only, so undo any
2614 	 * partial group before returning:
2615 	 * The events up to the failed event are scheduled out normally.
2616 	 */
2617 	for_each_sibling_event(event, group_event) {
2618 		if (event == partial_group)
2619 			break;
2620 
2621 		event_sched_out(event, cpuctx, ctx);
2622 	}
2623 	event_sched_out(group_event, cpuctx, ctx);
2624 
2625 error:
2626 	pmu->cancel_txn(pmu);
2627 	return -EAGAIN;
2628 }
2629 
2630 /*
2631  * Work out whether we can put this event group on the CPU now.
2632  */
2633 static int group_can_go_on(struct perf_event *event,
2634 			   struct perf_cpu_context *cpuctx,
2635 			   int can_add_hw)
2636 {
2637 	/*
2638 	 * Groups consisting entirely of software events can always go on.
2639 	 */
2640 	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2641 		return 1;
2642 	/*
2643 	 * If an exclusive group is already on, no other hardware
2644 	 * events can go on.
2645 	 */
2646 	if (cpuctx->exclusive)
2647 		return 0;
2648 	/*
2649 	 * If this group is exclusive and there are already
2650 	 * events on the CPU, it can't go on.
2651 	 */
2652 	if (event->attr.exclusive && !list_empty(get_event_list(event)))
2653 		return 0;
2654 	/*
2655 	 * Otherwise, try to add it if all previous groups were able
2656 	 * to go on.
2657 	 */
2658 	return can_add_hw;
2659 }
2660 
2661 static void add_event_to_ctx(struct perf_event *event,
2662 			       struct perf_event_context *ctx)
2663 {
2664 	list_add_event(event, ctx);
2665 	perf_group_attach(event);
2666 }
2667 
2668 static void ctx_sched_out(struct perf_event_context *ctx,
2669 			  struct perf_cpu_context *cpuctx,
2670 			  enum event_type_t event_type);
2671 static void
2672 ctx_sched_in(struct perf_event_context *ctx,
2673 	     struct perf_cpu_context *cpuctx,
2674 	     enum event_type_t event_type,
2675 	     struct task_struct *task);
2676 
2677 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2678 			       struct perf_event_context *ctx,
2679 			       enum event_type_t event_type)
2680 {
2681 	if (!cpuctx->task_ctx)
2682 		return;
2683 
2684 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2685 		return;
2686 
2687 	ctx_sched_out(ctx, cpuctx, event_type);
2688 }
2689 
2690 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2691 				struct perf_event_context *ctx,
2692 				struct task_struct *task)
2693 {
2694 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2695 	if (ctx)
2696 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2697 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2698 	if (ctx)
2699 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2700 }
2701 
2702 /*
2703  * We want to maintain the following priority of scheduling:
2704  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2705  *  - task pinned (EVENT_PINNED)
2706  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2707  *  - task flexible (EVENT_FLEXIBLE).
2708  *
2709  * In order to avoid unscheduling and scheduling back in everything every
2710  * time an event is added, only do it for the groups of equal priority and
2711  * below.
2712  *
2713  * This can be called after a batch operation on task events, in which case
2714  * event_type is a bit mask of the types of events involved. For CPU events,
2715  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2716  */
2717 static void ctx_resched(struct perf_cpu_context *cpuctx,
2718 			struct perf_event_context *task_ctx,
2719 			enum event_type_t event_type)
2720 {
2721 	enum event_type_t ctx_event_type;
2722 	bool cpu_event = !!(event_type & EVENT_CPU);
2723 
2724 	/*
2725 	 * If pinned groups are involved, flexible groups also need to be
2726 	 * scheduled out.
2727 	 */
2728 	if (event_type & EVENT_PINNED)
2729 		event_type |= EVENT_FLEXIBLE;
2730 
2731 	ctx_event_type = event_type & EVENT_ALL;
2732 
2733 	perf_pmu_disable(cpuctx->ctx.pmu);
2734 	if (task_ctx)
2735 		task_ctx_sched_out(cpuctx, task_ctx, event_type);
2736 
2737 	/*
2738 	 * Decide which cpu ctx groups to schedule out based on the types
2739 	 * of events that caused rescheduling:
2740 	 *  - EVENT_CPU: schedule out corresponding groups;
2741 	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2742 	 *  - otherwise, do nothing more.
2743 	 */
2744 	if (cpu_event)
2745 		cpu_ctx_sched_out(cpuctx, ctx_event_type);
2746 	else if (ctx_event_type & EVENT_PINNED)
2747 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2748 
2749 	perf_event_sched_in(cpuctx, task_ctx, current);
2750 	perf_pmu_enable(cpuctx->ctx.pmu);
2751 }
2752 
2753 void perf_pmu_resched(struct pmu *pmu)
2754 {
2755 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2756 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2757 
2758 	perf_ctx_lock(cpuctx, task_ctx);
2759 	ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2760 	perf_ctx_unlock(cpuctx, task_ctx);
2761 }
2762 
2763 /*
2764  * Cross CPU call to install and enable a performance event
2765  *
2766  * Very similar to remote_function() + event_function() but cannot assume that
2767  * things like ctx->is_active and cpuctx->task_ctx are set.
2768  */
2769 static int  __perf_install_in_context(void *info)
2770 {
2771 	struct perf_event *event = info;
2772 	struct perf_event_context *ctx = event->ctx;
2773 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2774 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2775 	bool reprogram = true;
2776 	int ret = 0;
2777 
2778 	raw_spin_lock(&cpuctx->ctx.lock);
2779 	if (ctx->task) {
2780 		raw_spin_lock(&ctx->lock);
2781 		task_ctx = ctx;
2782 
2783 		reprogram = (ctx->task == current);
2784 
2785 		/*
2786 		 * If the task is running, it must be running on this CPU,
2787 		 * otherwise we cannot reprogram things.
2788 		 *
2789 		 * If its not running, we don't care, ctx->lock will
2790 		 * serialize against it becoming runnable.
2791 		 */
2792 		if (task_curr(ctx->task) && !reprogram) {
2793 			ret = -ESRCH;
2794 			goto unlock;
2795 		}
2796 
2797 		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2798 	} else if (task_ctx) {
2799 		raw_spin_lock(&task_ctx->lock);
2800 	}
2801 
2802 #ifdef CONFIG_CGROUP_PERF
2803 	if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2804 		/*
2805 		 * If the current cgroup doesn't match the event's
2806 		 * cgroup, we should not try to schedule it.
2807 		 */
2808 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2809 		reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2810 					event->cgrp->css.cgroup);
2811 	}
2812 #endif
2813 
2814 	if (reprogram) {
2815 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2816 		add_event_to_ctx(event, ctx);
2817 		ctx_resched(cpuctx, task_ctx, get_event_type(event));
2818 	} else {
2819 		add_event_to_ctx(event, ctx);
2820 	}
2821 
2822 unlock:
2823 	perf_ctx_unlock(cpuctx, task_ctx);
2824 
2825 	return ret;
2826 }
2827 
2828 static bool exclusive_event_installable(struct perf_event *event,
2829 					struct perf_event_context *ctx);
2830 
2831 /*
2832  * Attach a performance event to a context.
2833  *
2834  * Very similar to event_function_call, see comment there.
2835  */
2836 static void
2837 perf_install_in_context(struct perf_event_context *ctx,
2838 			struct perf_event *event,
2839 			int cpu)
2840 {
2841 	struct task_struct *task = READ_ONCE(ctx->task);
2842 
2843 	lockdep_assert_held(&ctx->mutex);
2844 
2845 	WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2846 
2847 	if (event->cpu != -1)
2848 		event->cpu = cpu;
2849 
2850 	/*
2851 	 * Ensures that if we can observe event->ctx, both the event and ctx
2852 	 * will be 'complete'. See perf_iterate_sb_cpu().
2853 	 */
2854 	smp_store_release(&event->ctx, ctx);
2855 
2856 	/*
2857 	 * perf_event_attr::disabled events will not run and can be initialized
2858 	 * without IPI. Except when this is the first event for the context, in
2859 	 * that case we need the magic of the IPI to set ctx->is_active.
2860 	 *
2861 	 * The IOC_ENABLE that is sure to follow the creation of a disabled
2862 	 * event will issue the IPI and reprogram the hardware.
2863 	 */
2864 	if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && ctx->nr_events) {
2865 		raw_spin_lock_irq(&ctx->lock);
2866 		if (ctx->task == TASK_TOMBSTONE) {
2867 			raw_spin_unlock_irq(&ctx->lock);
2868 			return;
2869 		}
2870 		add_event_to_ctx(event, ctx);
2871 		raw_spin_unlock_irq(&ctx->lock);
2872 		return;
2873 	}
2874 
2875 	if (!task) {
2876 		cpu_function_call(cpu, __perf_install_in_context, event);
2877 		return;
2878 	}
2879 
2880 	/*
2881 	 * Should not happen, we validate the ctx is still alive before calling.
2882 	 */
2883 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2884 		return;
2885 
2886 	/*
2887 	 * Installing events is tricky because we cannot rely on ctx->is_active
2888 	 * to be set in case this is the nr_events 0 -> 1 transition.
2889 	 *
2890 	 * Instead we use task_curr(), which tells us if the task is running.
2891 	 * However, since we use task_curr() outside of rq::lock, we can race
2892 	 * against the actual state. This means the result can be wrong.
2893 	 *
2894 	 * If we get a false positive, we retry, this is harmless.
2895 	 *
2896 	 * If we get a false negative, things are complicated. If we are after
2897 	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2898 	 * value must be correct. If we're before, it doesn't matter since
2899 	 * perf_event_context_sched_in() will program the counter.
2900 	 *
2901 	 * However, this hinges on the remote context switch having observed
2902 	 * our task->perf_event_ctxp[] store, such that it will in fact take
2903 	 * ctx::lock in perf_event_context_sched_in().
2904 	 *
2905 	 * We do this by task_function_call(), if the IPI fails to hit the task
2906 	 * we know any future context switch of task must see the
2907 	 * perf_event_ctpx[] store.
2908 	 */
2909 
2910 	/*
2911 	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2912 	 * task_cpu() load, such that if the IPI then does not find the task
2913 	 * running, a future context switch of that task must observe the
2914 	 * store.
2915 	 */
2916 	smp_mb();
2917 again:
2918 	if (!task_function_call(task, __perf_install_in_context, event))
2919 		return;
2920 
2921 	raw_spin_lock_irq(&ctx->lock);
2922 	task = ctx->task;
2923 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2924 		/*
2925 		 * Cannot happen because we already checked above (which also
2926 		 * cannot happen), and we hold ctx->mutex, which serializes us
2927 		 * against perf_event_exit_task_context().
2928 		 */
2929 		raw_spin_unlock_irq(&ctx->lock);
2930 		return;
2931 	}
2932 	/*
2933 	 * If the task is not running, ctx->lock will avoid it becoming so,
2934 	 * thus we can safely install the event.
2935 	 */
2936 	if (task_curr(task)) {
2937 		raw_spin_unlock_irq(&ctx->lock);
2938 		goto again;
2939 	}
2940 	add_event_to_ctx(event, ctx);
2941 	raw_spin_unlock_irq(&ctx->lock);
2942 }
2943 
2944 /*
2945  * Cross CPU call to enable a performance event
2946  */
2947 static void __perf_event_enable(struct perf_event *event,
2948 				struct perf_cpu_context *cpuctx,
2949 				struct perf_event_context *ctx,
2950 				void *info)
2951 {
2952 	struct perf_event *leader = event->group_leader;
2953 	struct perf_event_context *task_ctx;
2954 
2955 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2956 	    event->state <= PERF_EVENT_STATE_ERROR)
2957 		return;
2958 
2959 	if (ctx->is_active)
2960 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2961 
2962 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2963 	perf_cgroup_event_enable(event, ctx);
2964 
2965 	if (!ctx->is_active)
2966 		return;
2967 
2968 	if (!event_filter_match(event)) {
2969 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2970 		return;
2971 	}
2972 
2973 	/*
2974 	 * If the event is in a group and isn't the group leader,
2975 	 * then don't put it on unless the group is on.
2976 	 */
2977 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2978 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2979 		return;
2980 	}
2981 
2982 	task_ctx = cpuctx->task_ctx;
2983 	if (ctx->task)
2984 		WARN_ON_ONCE(task_ctx != ctx);
2985 
2986 	ctx_resched(cpuctx, task_ctx, get_event_type(event));
2987 }
2988 
2989 /*
2990  * Enable an event.
2991  *
2992  * If event->ctx is a cloned context, callers must make sure that
2993  * every task struct that event->ctx->task could possibly point to
2994  * remains valid.  This condition is satisfied when called through
2995  * perf_event_for_each_child or perf_event_for_each as described
2996  * for perf_event_disable.
2997  */
2998 static void _perf_event_enable(struct perf_event *event)
2999 {
3000 	struct perf_event_context *ctx = event->ctx;
3001 
3002 	raw_spin_lock_irq(&ctx->lock);
3003 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
3004 	    event->state <  PERF_EVENT_STATE_ERROR) {
3005 out:
3006 		raw_spin_unlock_irq(&ctx->lock);
3007 		return;
3008 	}
3009 
3010 	/*
3011 	 * If the event is in error state, clear that first.
3012 	 *
3013 	 * That way, if we see the event in error state below, we know that it
3014 	 * has gone back into error state, as distinct from the task having
3015 	 * been scheduled away before the cross-call arrived.
3016 	 */
3017 	if (event->state == PERF_EVENT_STATE_ERROR) {
3018 		/*
3019 		 * Detached SIBLING events cannot leave ERROR state.
3020 		 */
3021 		if (event->event_caps & PERF_EV_CAP_SIBLING &&
3022 		    event->group_leader == event)
3023 			goto out;
3024 
3025 		event->state = PERF_EVENT_STATE_OFF;
3026 	}
3027 	raw_spin_unlock_irq(&ctx->lock);
3028 
3029 	event_function_call(event, __perf_event_enable, NULL);
3030 }
3031 
3032 /*
3033  * See perf_event_disable();
3034  */
3035 void perf_event_enable(struct perf_event *event)
3036 {
3037 	struct perf_event_context *ctx;
3038 
3039 	ctx = perf_event_ctx_lock(event);
3040 	_perf_event_enable(event);
3041 	perf_event_ctx_unlock(event, ctx);
3042 }
3043 EXPORT_SYMBOL_GPL(perf_event_enable);
3044 
3045 struct stop_event_data {
3046 	struct perf_event	*event;
3047 	unsigned int		restart;
3048 };
3049 
3050 static int __perf_event_stop(void *info)
3051 {
3052 	struct stop_event_data *sd = info;
3053 	struct perf_event *event = sd->event;
3054 
3055 	/* if it's already INACTIVE, do nothing */
3056 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3057 		return 0;
3058 
3059 	/* matches smp_wmb() in event_sched_in() */
3060 	smp_rmb();
3061 
3062 	/*
3063 	 * There is a window with interrupts enabled before we get here,
3064 	 * so we need to check again lest we try to stop another CPU's event.
3065 	 */
3066 	if (READ_ONCE(event->oncpu) != smp_processor_id())
3067 		return -EAGAIN;
3068 
3069 	event->pmu->stop(event, PERF_EF_UPDATE);
3070 
3071 	/*
3072 	 * May race with the actual stop (through perf_pmu_output_stop()),
3073 	 * but it is only used for events with AUX ring buffer, and such
3074 	 * events will refuse to restart because of rb::aux_mmap_count==0,
3075 	 * see comments in perf_aux_output_begin().
3076 	 *
3077 	 * Since this is happening on an event-local CPU, no trace is lost
3078 	 * while restarting.
3079 	 */
3080 	if (sd->restart)
3081 		event->pmu->start(event, 0);
3082 
3083 	return 0;
3084 }
3085 
3086 static int perf_event_stop(struct perf_event *event, int restart)
3087 {
3088 	struct stop_event_data sd = {
3089 		.event		= event,
3090 		.restart	= restart,
3091 	};
3092 	int ret = 0;
3093 
3094 	do {
3095 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3096 			return 0;
3097 
3098 		/* matches smp_wmb() in event_sched_in() */
3099 		smp_rmb();
3100 
3101 		/*
3102 		 * We only want to restart ACTIVE events, so if the event goes
3103 		 * inactive here (event->oncpu==-1), there's nothing more to do;
3104 		 * fall through with ret==-ENXIO.
3105 		 */
3106 		ret = cpu_function_call(READ_ONCE(event->oncpu),
3107 					__perf_event_stop, &sd);
3108 	} while (ret == -EAGAIN);
3109 
3110 	return ret;
3111 }
3112 
3113 /*
3114  * In order to contain the amount of racy and tricky in the address filter
3115  * configuration management, it is a two part process:
3116  *
3117  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3118  *      we update the addresses of corresponding vmas in
3119  *	event::addr_filter_ranges array and bump the event::addr_filters_gen;
3120  * (p2) when an event is scheduled in (pmu::add), it calls
3121  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3122  *      if the generation has changed since the previous call.
3123  *
3124  * If (p1) happens while the event is active, we restart it to force (p2).
3125  *
3126  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3127  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
3128  *     ioctl;
3129  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3130  *     registered mapping, called for every new mmap(), with mm::mmap_lock down
3131  *     for reading;
3132  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3133  *     of exec.
3134  */
3135 void perf_event_addr_filters_sync(struct perf_event *event)
3136 {
3137 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3138 
3139 	if (!has_addr_filter(event))
3140 		return;
3141 
3142 	raw_spin_lock(&ifh->lock);
3143 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3144 		event->pmu->addr_filters_sync(event);
3145 		event->hw.addr_filters_gen = event->addr_filters_gen;
3146 	}
3147 	raw_spin_unlock(&ifh->lock);
3148 }
3149 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3150 
3151 static int _perf_event_refresh(struct perf_event *event, int refresh)
3152 {
3153 	/*
3154 	 * not supported on inherited events
3155 	 */
3156 	if (event->attr.inherit || !is_sampling_event(event))
3157 		return -EINVAL;
3158 
3159 	atomic_add(refresh, &event->event_limit);
3160 	_perf_event_enable(event);
3161 
3162 	return 0;
3163 }
3164 
3165 /*
3166  * See perf_event_disable()
3167  */
3168 int perf_event_refresh(struct perf_event *event, int refresh)
3169 {
3170 	struct perf_event_context *ctx;
3171 	int ret;
3172 
3173 	ctx = perf_event_ctx_lock(event);
3174 	ret = _perf_event_refresh(event, refresh);
3175 	perf_event_ctx_unlock(event, ctx);
3176 
3177 	return ret;
3178 }
3179 EXPORT_SYMBOL_GPL(perf_event_refresh);
3180 
3181 static int perf_event_modify_breakpoint(struct perf_event *bp,
3182 					 struct perf_event_attr *attr)
3183 {
3184 	int err;
3185 
3186 	_perf_event_disable(bp);
3187 
3188 	err = modify_user_hw_breakpoint_check(bp, attr, true);
3189 
3190 	if (!bp->attr.disabled)
3191 		_perf_event_enable(bp);
3192 
3193 	return err;
3194 }
3195 
3196 static int perf_event_modify_attr(struct perf_event *event,
3197 				  struct perf_event_attr *attr)
3198 {
3199 	int (*func)(struct perf_event *, struct perf_event_attr *);
3200 	struct perf_event *child;
3201 	int err;
3202 
3203 	if (event->attr.type != attr->type)
3204 		return -EINVAL;
3205 
3206 	switch (event->attr.type) {
3207 	case PERF_TYPE_BREAKPOINT:
3208 		func = perf_event_modify_breakpoint;
3209 		break;
3210 	default:
3211 		/* Place holder for future additions. */
3212 		return -EOPNOTSUPP;
3213 	}
3214 
3215 	WARN_ON_ONCE(event->ctx->parent_ctx);
3216 
3217 	mutex_lock(&event->child_mutex);
3218 	err = func(event, attr);
3219 	if (err)
3220 		goto out;
3221 	list_for_each_entry(child, &event->child_list, child_list) {
3222 		err = func(child, attr);
3223 		if (err)
3224 			goto out;
3225 	}
3226 out:
3227 	mutex_unlock(&event->child_mutex);
3228 	return err;
3229 }
3230 
3231 static void ctx_sched_out(struct perf_event_context *ctx,
3232 			  struct perf_cpu_context *cpuctx,
3233 			  enum event_type_t event_type)
3234 {
3235 	struct perf_event *event, *tmp;
3236 	int is_active = ctx->is_active;
3237 
3238 	lockdep_assert_held(&ctx->lock);
3239 
3240 	if (likely(!ctx->nr_events)) {
3241 		/*
3242 		 * See __perf_remove_from_context().
3243 		 */
3244 		WARN_ON_ONCE(ctx->is_active);
3245 		if (ctx->task)
3246 			WARN_ON_ONCE(cpuctx->task_ctx);
3247 		return;
3248 	}
3249 
3250 	ctx->is_active &= ~event_type;
3251 	if (!(ctx->is_active & EVENT_ALL))
3252 		ctx->is_active = 0;
3253 
3254 	if (ctx->task) {
3255 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3256 		if (!ctx->is_active)
3257 			cpuctx->task_ctx = NULL;
3258 	}
3259 
3260 	/*
3261 	 * Always update time if it was set; not only when it changes.
3262 	 * Otherwise we can 'forget' to update time for any but the last
3263 	 * context we sched out. For example:
3264 	 *
3265 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3266 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
3267 	 *
3268 	 * would only update time for the pinned events.
3269 	 */
3270 	if (is_active & EVENT_TIME) {
3271 		/* update (and stop) ctx time */
3272 		update_context_time(ctx);
3273 		update_cgrp_time_from_cpuctx(cpuctx);
3274 	}
3275 
3276 	is_active ^= ctx->is_active; /* changed bits */
3277 
3278 	if (!ctx->nr_active || !(is_active & EVENT_ALL))
3279 		return;
3280 
3281 	perf_pmu_disable(ctx->pmu);
3282 	if (is_active & EVENT_PINNED) {
3283 		list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
3284 			group_sched_out(event, cpuctx, ctx);
3285 	}
3286 
3287 	if (is_active & EVENT_FLEXIBLE) {
3288 		list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
3289 			group_sched_out(event, cpuctx, ctx);
3290 
3291 		/*
3292 		 * Since we cleared EVENT_FLEXIBLE, also clear
3293 		 * rotate_necessary, is will be reset by
3294 		 * ctx_flexible_sched_in() when needed.
3295 		 */
3296 		ctx->rotate_necessary = 0;
3297 	}
3298 	perf_pmu_enable(ctx->pmu);
3299 }
3300 
3301 /*
3302  * Test whether two contexts are equivalent, i.e. whether they have both been
3303  * cloned from the same version of the same context.
3304  *
3305  * Equivalence is measured using a generation number in the context that is
3306  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3307  * and list_del_event().
3308  */
3309 static int context_equiv(struct perf_event_context *ctx1,
3310 			 struct perf_event_context *ctx2)
3311 {
3312 	lockdep_assert_held(&ctx1->lock);
3313 	lockdep_assert_held(&ctx2->lock);
3314 
3315 	/* Pinning disables the swap optimization */
3316 	if (ctx1->pin_count || ctx2->pin_count)
3317 		return 0;
3318 
3319 	/* If ctx1 is the parent of ctx2 */
3320 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3321 		return 1;
3322 
3323 	/* If ctx2 is the parent of ctx1 */
3324 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3325 		return 1;
3326 
3327 	/*
3328 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
3329 	 * hierarchy, see perf_event_init_context().
3330 	 */
3331 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3332 			ctx1->parent_gen == ctx2->parent_gen)
3333 		return 1;
3334 
3335 	/* Unmatched */
3336 	return 0;
3337 }
3338 
3339 static void __perf_event_sync_stat(struct perf_event *event,
3340 				     struct perf_event *next_event)
3341 {
3342 	u64 value;
3343 
3344 	if (!event->attr.inherit_stat)
3345 		return;
3346 
3347 	/*
3348 	 * Update the event value, we cannot use perf_event_read()
3349 	 * because we're in the middle of a context switch and have IRQs
3350 	 * disabled, which upsets smp_call_function_single(), however
3351 	 * we know the event must be on the current CPU, therefore we
3352 	 * don't need to use it.
3353 	 */
3354 	if (event->state == PERF_EVENT_STATE_ACTIVE)
3355 		event->pmu->read(event);
3356 
3357 	perf_event_update_time(event);
3358 
3359 	/*
3360 	 * In order to keep per-task stats reliable we need to flip the event
3361 	 * values when we flip the contexts.
3362 	 */
3363 	value = local64_read(&next_event->count);
3364 	value = local64_xchg(&event->count, value);
3365 	local64_set(&next_event->count, value);
3366 
3367 	swap(event->total_time_enabled, next_event->total_time_enabled);
3368 	swap(event->total_time_running, next_event->total_time_running);
3369 
3370 	/*
3371 	 * Since we swizzled the values, update the user visible data too.
3372 	 */
3373 	perf_event_update_userpage(event);
3374 	perf_event_update_userpage(next_event);
3375 }
3376 
3377 static void perf_event_sync_stat(struct perf_event_context *ctx,
3378 				   struct perf_event_context *next_ctx)
3379 {
3380 	struct perf_event *event, *next_event;
3381 
3382 	if (!ctx->nr_stat)
3383 		return;
3384 
3385 	update_context_time(ctx);
3386 
3387 	event = list_first_entry(&ctx->event_list,
3388 				   struct perf_event, event_entry);
3389 
3390 	next_event = list_first_entry(&next_ctx->event_list,
3391 					struct perf_event, event_entry);
3392 
3393 	while (&event->event_entry != &ctx->event_list &&
3394 	       &next_event->event_entry != &next_ctx->event_list) {
3395 
3396 		__perf_event_sync_stat(event, next_event);
3397 
3398 		event = list_next_entry(event, event_entry);
3399 		next_event = list_next_entry(next_event, event_entry);
3400 	}
3401 }
3402 
3403 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3404 					 struct task_struct *next)
3405 {
3406 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3407 	struct perf_event_context *next_ctx;
3408 	struct perf_event_context *parent, *next_parent;
3409 	struct perf_cpu_context *cpuctx;
3410 	int do_switch = 1;
3411 	struct pmu *pmu;
3412 
3413 	if (likely(!ctx))
3414 		return;
3415 
3416 	pmu = ctx->pmu;
3417 	cpuctx = __get_cpu_context(ctx);
3418 	if (!cpuctx->task_ctx)
3419 		return;
3420 
3421 	rcu_read_lock();
3422 	next_ctx = next->perf_event_ctxp[ctxn];
3423 	if (!next_ctx)
3424 		goto unlock;
3425 
3426 	parent = rcu_dereference(ctx->parent_ctx);
3427 	next_parent = rcu_dereference(next_ctx->parent_ctx);
3428 
3429 	/* If neither context have a parent context; they cannot be clones. */
3430 	if (!parent && !next_parent)
3431 		goto unlock;
3432 
3433 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3434 		/*
3435 		 * Looks like the two contexts are clones, so we might be
3436 		 * able to optimize the context switch.  We lock both
3437 		 * contexts and check that they are clones under the
3438 		 * lock (including re-checking that neither has been
3439 		 * uncloned in the meantime).  It doesn't matter which
3440 		 * order we take the locks because no other cpu could
3441 		 * be trying to lock both of these tasks.
3442 		 */
3443 		raw_spin_lock(&ctx->lock);
3444 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3445 		if (context_equiv(ctx, next_ctx)) {
3446 
3447 			WRITE_ONCE(ctx->task, next);
3448 			WRITE_ONCE(next_ctx->task, task);
3449 
3450 			perf_pmu_disable(pmu);
3451 
3452 			if (cpuctx->sched_cb_usage && pmu->sched_task)
3453 				pmu->sched_task(ctx, false);
3454 
3455 			/*
3456 			 * PMU specific parts of task perf context can require
3457 			 * additional synchronization. As an example of such
3458 			 * synchronization see implementation details of Intel
3459 			 * LBR call stack data profiling;
3460 			 */
3461 			if (pmu->swap_task_ctx)
3462 				pmu->swap_task_ctx(ctx, next_ctx);
3463 			else
3464 				swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3465 
3466 			perf_pmu_enable(pmu);
3467 
3468 			/*
3469 			 * RCU_INIT_POINTER here is safe because we've not
3470 			 * modified the ctx and the above modification of
3471 			 * ctx->task and ctx->task_ctx_data are immaterial
3472 			 * since those values are always verified under
3473 			 * ctx->lock which we're now holding.
3474 			 */
3475 			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3476 			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3477 
3478 			do_switch = 0;
3479 
3480 			perf_event_sync_stat(ctx, next_ctx);
3481 		}
3482 		raw_spin_unlock(&next_ctx->lock);
3483 		raw_spin_unlock(&ctx->lock);
3484 	}
3485 unlock:
3486 	rcu_read_unlock();
3487 
3488 	if (do_switch) {
3489 		raw_spin_lock(&ctx->lock);
3490 		perf_pmu_disable(pmu);
3491 
3492 		if (cpuctx->sched_cb_usage && pmu->sched_task)
3493 			pmu->sched_task(ctx, false);
3494 		task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3495 
3496 		perf_pmu_enable(pmu);
3497 		raw_spin_unlock(&ctx->lock);
3498 	}
3499 }
3500 
3501 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3502 
3503 void perf_sched_cb_dec(struct pmu *pmu)
3504 {
3505 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3506 
3507 	this_cpu_dec(perf_sched_cb_usages);
3508 
3509 	if (!--cpuctx->sched_cb_usage)
3510 		list_del(&cpuctx->sched_cb_entry);
3511 }
3512 
3513 
3514 void perf_sched_cb_inc(struct pmu *pmu)
3515 {
3516 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3517 
3518 	if (!cpuctx->sched_cb_usage++)
3519 		list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3520 
3521 	this_cpu_inc(perf_sched_cb_usages);
3522 }
3523 
3524 /*
3525  * This function provides the context switch callback to the lower code
3526  * layer. It is invoked ONLY when the context switch callback is enabled.
3527  *
3528  * This callback is relevant even to per-cpu events; for example multi event
3529  * PEBS requires this to provide PID/TID information. This requires we flush
3530  * all queued PEBS records before we context switch to a new task.
3531  */
3532 static void __perf_pmu_sched_task(struct perf_cpu_context *cpuctx, bool sched_in)
3533 {
3534 	struct pmu *pmu;
3535 
3536 	pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3537 
3538 	if (WARN_ON_ONCE(!pmu->sched_task))
3539 		return;
3540 
3541 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3542 	perf_pmu_disable(pmu);
3543 
3544 	pmu->sched_task(cpuctx->task_ctx, sched_in);
3545 
3546 	perf_pmu_enable(pmu);
3547 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3548 }
3549 
3550 static void perf_pmu_sched_task(struct task_struct *prev,
3551 				struct task_struct *next,
3552 				bool sched_in)
3553 {
3554 	struct perf_cpu_context *cpuctx;
3555 
3556 	if (prev == next)
3557 		return;
3558 
3559 	list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3560 		/* will be handled in perf_event_context_sched_in/out */
3561 		if (cpuctx->task_ctx)
3562 			continue;
3563 
3564 		__perf_pmu_sched_task(cpuctx, sched_in);
3565 	}
3566 }
3567 
3568 static void perf_event_switch(struct task_struct *task,
3569 			      struct task_struct *next_prev, bool sched_in);
3570 
3571 #define for_each_task_context_nr(ctxn)					\
3572 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3573 
3574 /*
3575  * Called from scheduler to remove the events of the current task,
3576  * with interrupts disabled.
3577  *
3578  * We stop each event and update the event value in event->count.
3579  *
3580  * This does not protect us against NMI, but disable()
3581  * sets the disabled bit in the control field of event _before_
3582  * accessing the event control register. If a NMI hits, then it will
3583  * not restart the event.
3584  */
3585 void __perf_event_task_sched_out(struct task_struct *task,
3586 				 struct task_struct *next)
3587 {
3588 	int ctxn;
3589 
3590 	if (__this_cpu_read(perf_sched_cb_usages))
3591 		perf_pmu_sched_task(task, next, false);
3592 
3593 	if (atomic_read(&nr_switch_events))
3594 		perf_event_switch(task, next, false);
3595 
3596 	for_each_task_context_nr(ctxn)
3597 		perf_event_context_sched_out(task, ctxn, next);
3598 
3599 	/*
3600 	 * if cgroup events exist on this CPU, then we need
3601 	 * to check if we have to switch out PMU state.
3602 	 * cgroup event are system-wide mode only
3603 	 */
3604 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3605 		perf_cgroup_sched_out(task, next);
3606 }
3607 
3608 /*
3609  * Called with IRQs disabled
3610  */
3611 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3612 			      enum event_type_t event_type)
3613 {
3614 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3615 }
3616 
3617 static bool perf_less_group_idx(const void *l, const void *r)
3618 {
3619 	const struct perf_event *le = *(const struct perf_event **)l;
3620 	const struct perf_event *re = *(const struct perf_event **)r;
3621 
3622 	return le->group_index < re->group_index;
3623 }
3624 
3625 static void swap_ptr(void *l, void *r)
3626 {
3627 	void **lp = l, **rp = r;
3628 
3629 	swap(*lp, *rp);
3630 }
3631 
3632 static const struct min_heap_callbacks perf_min_heap = {
3633 	.elem_size = sizeof(struct perf_event *),
3634 	.less = perf_less_group_idx,
3635 	.swp = swap_ptr,
3636 };
3637 
3638 static void __heap_add(struct min_heap *heap, struct perf_event *event)
3639 {
3640 	struct perf_event **itrs = heap->data;
3641 
3642 	if (event) {
3643 		itrs[heap->nr] = event;
3644 		heap->nr++;
3645 	}
3646 }
3647 
3648 static noinline int visit_groups_merge(struct perf_cpu_context *cpuctx,
3649 				struct perf_event_groups *groups, int cpu,
3650 				int (*func)(struct perf_event *, void *),
3651 				void *data)
3652 {
3653 #ifdef CONFIG_CGROUP_PERF
3654 	struct cgroup_subsys_state *css = NULL;
3655 #endif
3656 	/* Space for per CPU and/or any CPU event iterators. */
3657 	struct perf_event *itrs[2];
3658 	struct min_heap event_heap;
3659 	struct perf_event **evt;
3660 	int ret;
3661 
3662 	if (cpuctx) {
3663 		event_heap = (struct min_heap){
3664 			.data = cpuctx->heap,
3665 			.nr = 0,
3666 			.size = cpuctx->heap_size,
3667 		};
3668 
3669 		lockdep_assert_held(&cpuctx->ctx.lock);
3670 
3671 #ifdef CONFIG_CGROUP_PERF
3672 		if (cpuctx->cgrp)
3673 			css = &cpuctx->cgrp->css;
3674 #endif
3675 	} else {
3676 		event_heap = (struct min_heap){
3677 			.data = itrs,
3678 			.nr = 0,
3679 			.size = ARRAY_SIZE(itrs),
3680 		};
3681 		/* Events not within a CPU context may be on any CPU. */
3682 		__heap_add(&event_heap, perf_event_groups_first(groups, -1, NULL));
3683 	}
3684 	evt = event_heap.data;
3685 
3686 	__heap_add(&event_heap, perf_event_groups_first(groups, cpu, NULL));
3687 
3688 #ifdef CONFIG_CGROUP_PERF
3689 	for (; css; css = css->parent)
3690 		__heap_add(&event_heap, perf_event_groups_first(groups, cpu, css->cgroup));
3691 #endif
3692 
3693 	min_heapify_all(&event_heap, &perf_min_heap);
3694 
3695 	while (event_heap.nr) {
3696 		ret = func(*evt, data);
3697 		if (ret)
3698 			return ret;
3699 
3700 		*evt = perf_event_groups_next(*evt);
3701 		if (*evt)
3702 			min_heapify(&event_heap, 0, &perf_min_heap);
3703 		else
3704 			min_heap_pop(&event_heap, &perf_min_heap);
3705 	}
3706 
3707 	return 0;
3708 }
3709 
3710 static inline bool event_update_userpage(struct perf_event *event)
3711 {
3712 	if (likely(!atomic_read(&event->mmap_count)))
3713 		return false;
3714 
3715 	perf_event_update_time(event);
3716 	perf_set_shadow_time(event, event->ctx);
3717 	perf_event_update_userpage(event);
3718 
3719 	return true;
3720 }
3721 
3722 static inline void group_update_userpage(struct perf_event *group_event)
3723 {
3724 	struct perf_event *event;
3725 
3726 	if (!event_update_userpage(group_event))
3727 		return;
3728 
3729 	for_each_sibling_event(event, group_event)
3730 		event_update_userpage(event);
3731 }
3732 
3733 static int merge_sched_in(struct perf_event *event, void *data)
3734 {
3735 	struct perf_event_context *ctx = event->ctx;
3736 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3737 	int *can_add_hw = data;
3738 
3739 	if (event->state <= PERF_EVENT_STATE_OFF)
3740 		return 0;
3741 
3742 	if (!event_filter_match(event))
3743 		return 0;
3744 
3745 	if (group_can_go_on(event, cpuctx, *can_add_hw)) {
3746 		if (!group_sched_in(event, cpuctx, ctx))
3747 			list_add_tail(&event->active_list, get_event_list(event));
3748 	}
3749 
3750 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
3751 		*can_add_hw = 0;
3752 		if (event->attr.pinned) {
3753 			perf_cgroup_event_disable(event, ctx);
3754 			perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3755 		} else {
3756 			ctx->rotate_necessary = 1;
3757 			perf_mux_hrtimer_restart(cpuctx);
3758 			group_update_userpage(event);
3759 		}
3760 	}
3761 
3762 	return 0;
3763 }
3764 
3765 static void
3766 ctx_pinned_sched_in(struct perf_event_context *ctx,
3767 		    struct perf_cpu_context *cpuctx)
3768 {
3769 	int can_add_hw = 1;
3770 
3771 	if (ctx != &cpuctx->ctx)
3772 		cpuctx = NULL;
3773 
3774 	visit_groups_merge(cpuctx, &ctx->pinned_groups,
3775 			   smp_processor_id(),
3776 			   merge_sched_in, &can_add_hw);
3777 }
3778 
3779 static void
3780 ctx_flexible_sched_in(struct perf_event_context *ctx,
3781 		      struct perf_cpu_context *cpuctx)
3782 {
3783 	int can_add_hw = 1;
3784 
3785 	if (ctx != &cpuctx->ctx)
3786 		cpuctx = NULL;
3787 
3788 	visit_groups_merge(cpuctx, &ctx->flexible_groups,
3789 			   smp_processor_id(),
3790 			   merge_sched_in, &can_add_hw);
3791 }
3792 
3793 static void
3794 ctx_sched_in(struct perf_event_context *ctx,
3795 	     struct perf_cpu_context *cpuctx,
3796 	     enum event_type_t event_type,
3797 	     struct task_struct *task)
3798 {
3799 	int is_active = ctx->is_active;
3800 	u64 now;
3801 
3802 	lockdep_assert_held(&ctx->lock);
3803 
3804 	if (likely(!ctx->nr_events))
3805 		return;
3806 
3807 	ctx->is_active |= (event_type | EVENT_TIME);
3808 	if (ctx->task) {
3809 		if (!is_active)
3810 			cpuctx->task_ctx = ctx;
3811 		else
3812 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3813 	}
3814 
3815 	is_active ^= ctx->is_active; /* changed bits */
3816 
3817 	if (is_active & EVENT_TIME) {
3818 		/* start ctx time */
3819 		now = perf_clock();
3820 		ctx->timestamp = now;
3821 		perf_cgroup_set_timestamp(task, ctx);
3822 	}
3823 
3824 	/*
3825 	 * First go through the list and put on any pinned groups
3826 	 * in order to give them the best chance of going on.
3827 	 */
3828 	if (is_active & EVENT_PINNED)
3829 		ctx_pinned_sched_in(ctx, cpuctx);
3830 
3831 	/* Then walk through the lower prio flexible groups */
3832 	if (is_active & EVENT_FLEXIBLE)
3833 		ctx_flexible_sched_in(ctx, cpuctx);
3834 }
3835 
3836 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3837 			     enum event_type_t event_type,
3838 			     struct task_struct *task)
3839 {
3840 	struct perf_event_context *ctx = &cpuctx->ctx;
3841 
3842 	ctx_sched_in(ctx, cpuctx, event_type, task);
3843 }
3844 
3845 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3846 					struct task_struct *task)
3847 {
3848 	struct perf_cpu_context *cpuctx;
3849 	struct pmu *pmu;
3850 
3851 	cpuctx = __get_cpu_context(ctx);
3852 
3853 	/*
3854 	 * HACK: for HETEROGENEOUS the task context might have switched to a
3855 	 * different PMU, force (re)set the context,
3856 	 */
3857 	pmu = ctx->pmu = cpuctx->ctx.pmu;
3858 
3859 	if (cpuctx->task_ctx == ctx) {
3860 		if (cpuctx->sched_cb_usage)
3861 			__perf_pmu_sched_task(cpuctx, true);
3862 		return;
3863 	}
3864 
3865 	perf_ctx_lock(cpuctx, ctx);
3866 	/*
3867 	 * We must check ctx->nr_events while holding ctx->lock, such
3868 	 * that we serialize against perf_install_in_context().
3869 	 */
3870 	if (!ctx->nr_events)
3871 		goto unlock;
3872 
3873 	perf_pmu_disable(pmu);
3874 	/*
3875 	 * We want to keep the following priority order:
3876 	 * cpu pinned (that don't need to move), task pinned,
3877 	 * cpu flexible, task flexible.
3878 	 *
3879 	 * However, if task's ctx is not carrying any pinned
3880 	 * events, no need to flip the cpuctx's events around.
3881 	 */
3882 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3883 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3884 	perf_event_sched_in(cpuctx, ctx, task);
3885 
3886 	if (cpuctx->sched_cb_usage && pmu->sched_task)
3887 		pmu->sched_task(cpuctx->task_ctx, true);
3888 
3889 	perf_pmu_enable(pmu);
3890 
3891 unlock:
3892 	perf_ctx_unlock(cpuctx, ctx);
3893 }
3894 
3895 /*
3896  * Called from scheduler to add the events of the current task
3897  * with interrupts disabled.
3898  *
3899  * We restore the event value and then enable it.
3900  *
3901  * This does not protect us against NMI, but enable()
3902  * sets the enabled bit in the control field of event _before_
3903  * accessing the event control register. If a NMI hits, then it will
3904  * keep the event running.
3905  */
3906 void __perf_event_task_sched_in(struct task_struct *prev,
3907 				struct task_struct *task)
3908 {
3909 	struct perf_event_context *ctx;
3910 	int ctxn;
3911 
3912 	/*
3913 	 * If cgroup events exist on this CPU, then we need to check if we have
3914 	 * to switch in PMU state; cgroup event are system-wide mode only.
3915 	 *
3916 	 * Since cgroup events are CPU events, we must schedule these in before
3917 	 * we schedule in the task events.
3918 	 */
3919 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3920 		perf_cgroup_sched_in(prev, task);
3921 
3922 	for_each_task_context_nr(ctxn) {
3923 		ctx = task->perf_event_ctxp[ctxn];
3924 		if (likely(!ctx))
3925 			continue;
3926 
3927 		perf_event_context_sched_in(ctx, task);
3928 	}
3929 
3930 	if (atomic_read(&nr_switch_events))
3931 		perf_event_switch(task, prev, true);
3932 
3933 	if (__this_cpu_read(perf_sched_cb_usages))
3934 		perf_pmu_sched_task(prev, task, true);
3935 }
3936 
3937 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3938 {
3939 	u64 frequency = event->attr.sample_freq;
3940 	u64 sec = NSEC_PER_SEC;
3941 	u64 divisor, dividend;
3942 
3943 	int count_fls, nsec_fls, frequency_fls, sec_fls;
3944 
3945 	count_fls = fls64(count);
3946 	nsec_fls = fls64(nsec);
3947 	frequency_fls = fls64(frequency);
3948 	sec_fls = 30;
3949 
3950 	/*
3951 	 * We got @count in @nsec, with a target of sample_freq HZ
3952 	 * the target period becomes:
3953 	 *
3954 	 *             @count * 10^9
3955 	 * period = -------------------
3956 	 *          @nsec * sample_freq
3957 	 *
3958 	 */
3959 
3960 	/*
3961 	 * Reduce accuracy by one bit such that @a and @b converge
3962 	 * to a similar magnitude.
3963 	 */
3964 #define REDUCE_FLS(a, b)		\
3965 do {					\
3966 	if (a##_fls > b##_fls) {	\
3967 		a >>= 1;		\
3968 		a##_fls--;		\
3969 	} else {			\
3970 		b >>= 1;		\
3971 		b##_fls--;		\
3972 	}				\
3973 } while (0)
3974 
3975 	/*
3976 	 * Reduce accuracy until either term fits in a u64, then proceed with
3977 	 * the other, so that finally we can do a u64/u64 division.
3978 	 */
3979 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3980 		REDUCE_FLS(nsec, frequency);
3981 		REDUCE_FLS(sec, count);
3982 	}
3983 
3984 	if (count_fls + sec_fls > 64) {
3985 		divisor = nsec * frequency;
3986 
3987 		while (count_fls + sec_fls > 64) {
3988 			REDUCE_FLS(count, sec);
3989 			divisor >>= 1;
3990 		}
3991 
3992 		dividend = count * sec;
3993 	} else {
3994 		dividend = count * sec;
3995 
3996 		while (nsec_fls + frequency_fls > 64) {
3997 			REDUCE_FLS(nsec, frequency);
3998 			dividend >>= 1;
3999 		}
4000 
4001 		divisor = nsec * frequency;
4002 	}
4003 
4004 	if (!divisor)
4005 		return dividend;
4006 
4007 	return div64_u64(dividend, divisor);
4008 }
4009 
4010 static DEFINE_PER_CPU(int, perf_throttled_count);
4011 static DEFINE_PER_CPU(u64, perf_throttled_seq);
4012 
4013 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
4014 {
4015 	struct hw_perf_event *hwc = &event->hw;
4016 	s64 period, sample_period;
4017 	s64 delta;
4018 
4019 	period = perf_calculate_period(event, nsec, count);
4020 
4021 	delta = (s64)(period - hwc->sample_period);
4022 	delta = (delta + 7) / 8; /* low pass filter */
4023 
4024 	sample_period = hwc->sample_period + delta;
4025 
4026 	if (!sample_period)
4027 		sample_period = 1;
4028 
4029 	hwc->sample_period = sample_period;
4030 
4031 	if (local64_read(&hwc->period_left) > 8*sample_period) {
4032 		if (disable)
4033 			event->pmu->stop(event, PERF_EF_UPDATE);
4034 
4035 		local64_set(&hwc->period_left, 0);
4036 
4037 		if (disable)
4038 			event->pmu->start(event, PERF_EF_RELOAD);
4039 	}
4040 }
4041 
4042 /*
4043  * combine freq adjustment with unthrottling to avoid two passes over the
4044  * events. At the same time, make sure, having freq events does not change
4045  * the rate of unthrottling as that would introduce bias.
4046  */
4047 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
4048 					   int needs_unthr)
4049 {
4050 	struct perf_event *event;
4051 	struct hw_perf_event *hwc;
4052 	u64 now, period = TICK_NSEC;
4053 	s64 delta;
4054 
4055 	/*
4056 	 * only need to iterate over all events iff:
4057 	 * - context have events in frequency mode (needs freq adjust)
4058 	 * - there are events to unthrottle on this cpu
4059 	 */
4060 	if (!(ctx->nr_freq || needs_unthr))
4061 		return;
4062 
4063 	raw_spin_lock(&ctx->lock);
4064 	perf_pmu_disable(ctx->pmu);
4065 
4066 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4067 		if (event->state != PERF_EVENT_STATE_ACTIVE)
4068 			continue;
4069 
4070 		if (!event_filter_match(event))
4071 			continue;
4072 
4073 		perf_pmu_disable(event->pmu);
4074 
4075 		hwc = &event->hw;
4076 
4077 		if (hwc->interrupts == MAX_INTERRUPTS) {
4078 			hwc->interrupts = 0;
4079 			perf_log_throttle(event, 1);
4080 			event->pmu->start(event, 0);
4081 		}
4082 
4083 		if (!event->attr.freq || !event->attr.sample_freq)
4084 			goto next;
4085 
4086 		/*
4087 		 * stop the event and update event->count
4088 		 */
4089 		event->pmu->stop(event, PERF_EF_UPDATE);
4090 
4091 		now = local64_read(&event->count);
4092 		delta = now - hwc->freq_count_stamp;
4093 		hwc->freq_count_stamp = now;
4094 
4095 		/*
4096 		 * restart the event
4097 		 * reload only if value has changed
4098 		 * we have stopped the event so tell that
4099 		 * to perf_adjust_period() to avoid stopping it
4100 		 * twice.
4101 		 */
4102 		if (delta > 0)
4103 			perf_adjust_period(event, period, delta, false);
4104 
4105 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
4106 	next:
4107 		perf_pmu_enable(event->pmu);
4108 	}
4109 
4110 	perf_pmu_enable(ctx->pmu);
4111 	raw_spin_unlock(&ctx->lock);
4112 }
4113 
4114 /*
4115  * Move @event to the tail of the @ctx's elegible events.
4116  */
4117 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4118 {
4119 	/*
4120 	 * Rotate the first entry last of non-pinned groups. Rotation might be
4121 	 * disabled by the inheritance code.
4122 	 */
4123 	if (ctx->rotate_disable)
4124 		return;
4125 
4126 	perf_event_groups_delete(&ctx->flexible_groups, event);
4127 	perf_event_groups_insert(&ctx->flexible_groups, event);
4128 }
4129 
4130 /* pick an event from the flexible_groups to rotate */
4131 static inline struct perf_event *
4132 ctx_event_to_rotate(struct perf_event_context *ctx)
4133 {
4134 	struct perf_event *event;
4135 
4136 	/* pick the first active flexible event */
4137 	event = list_first_entry_or_null(&ctx->flexible_active,
4138 					 struct perf_event, active_list);
4139 
4140 	/* if no active flexible event, pick the first event */
4141 	if (!event) {
4142 		event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree),
4143 				      typeof(*event), group_node);
4144 	}
4145 
4146 	/*
4147 	 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4148 	 * finds there are unschedulable events, it will set it again.
4149 	 */
4150 	ctx->rotate_necessary = 0;
4151 
4152 	return event;
4153 }
4154 
4155 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
4156 {
4157 	struct perf_event *cpu_event = NULL, *task_event = NULL;
4158 	struct perf_event_context *task_ctx = NULL;
4159 	int cpu_rotate, task_rotate;
4160 
4161 	/*
4162 	 * Since we run this from IRQ context, nobody can install new
4163 	 * events, thus the event count values are stable.
4164 	 */
4165 
4166 	cpu_rotate = cpuctx->ctx.rotate_necessary;
4167 	task_ctx = cpuctx->task_ctx;
4168 	task_rotate = task_ctx ? task_ctx->rotate_necessary : 0;
4169 
4170 	if (!(cpu_rotate || task_rotate))
4171 		return false;
4172 
4173 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4174 	perf_pmu_disable(cpuctx->ctx.pmu);
4175 
4176 	if (task_rotate)
4177 		task_event = ctx_event_to_rotate(task_ctx);
4178 	if (cpu_rotate)
4179 		cpu_event = ctx_event_to_rotate(&cpuctx->ctx);
4180 
4181 	/*
4182 	 * As per the order given at ctx_resched() first 'pop' task flexible
4183 	 * and then, if needed CPU flexible.
4184 	 */
4185 	if (task_event || (task_ctx && cpu_event))
4186 		ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE);
4187 	if (cpu_event)
4188 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
4189 
4190 	if (task_event)
4191 		rotate_ctx(task_ctx, task_event);
4192 	if (cpu_event)
4193 		rotate_ctx(&cpuctx->ctx, cpu_event);
4194 
4195 	perf_event_sched_in(cpuctx, task_ctx, current);
4196 
4197 	perf_pmu_enable(cpuctx->ctx.pmu);
4198 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4199 
4200 	return true;
4201 }
4202 
4203 void perf_event_task_tick(void)
4204 {
4205 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
4206 	struct perf_event_context *ctx, *tmp;
4207 	int throttled;
4208 
4209 	lockdep_assert_irqs_disabled();
4210 
4211 	__this_cpu_inc(perf_throttled_seq);
4212 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
4213 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4214 
4215 	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
4216 		perf_adjust_freq_unthr_context(ctx, throttled);
4217 }
4218 
4219 static int event_enable_on_exec(struct perf_event *event,
4220 				struct perf_event_context *ctx)
4221 {
4222 	if (!event->attr.enable_on_exec)
4223 		return 0;
4224 
4225 	event->attr.enable_on_exec = 0;
4226 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
4227 		return 0;
4228 
4229 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4230 
4231 	return 1;
4232 }
4233 
4234 /*
4235  * Enable all of a task's events that have been marked enable-on-exec.
4236  * This expects task == current.
4237  */
4238 static void perf_event_enable_on_exec(int ctxn)
4239 {
4240 	struct perf_event_context *ctx, *clone_ctx = NULL;
4241 	enum event_type_t event_type = 0;
4242 	struct perf_cpu_context *cpuctx;
4243 	struct perf_event *event;
4244 	unsigned long flags;
4245 	int enabled = 0;
4246 
4247 	local_irq_save(flags);
4248 	ctx = current->perf_event_ctxp[ctxn];
4249 	if (!ctx || !ctx->nr_events)
4250 		goto out;
4251 
4252 	cpuctx = __get_cpu_context(ctx);
4253 	perf_ctx_lock(cpuctx, ctx);
4254 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
4255 	list_for_each_entry(event, &ctx->event_list, event_entry) {
4256 		enabled |= event_enable_on_exec(event, ctx);
4257 		event_type |= get_event_type(event);
4258 	}
4259 
4260 	/*
4261 	 * Unclone and reschedule this context if we enabled any event.
4262 	 */
4263 	if (enabled) {
4264 		clone_ctx = unclone_ctx(ctx);
4265 		ctx_resched(cpuctx, ctx, event_type);
4266 	} else {
4267 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
4268 	}
4269 	perf_ctx_unlock(cpuctx, ctx);
4270 
4271 out:
4272 	local_irq_restore(flags);
4273 
4274 	if (clone_ctx)
4275 		put_ctx(clone_ctx);
4276 }
4277 
4278 static void perf_remove_from_owner(struct perf_event *event);
4279 static void perf_event_exit_event(struct perf_event *event,
4280 				  struct perf_event_context *ctx);
4281 
4282 /*
4283  * Removes all events from the current task that have been marked
4284  * remove-on-exec, and feeds their values back to parent events.
4285  */
4286 static void perf_event_remove_on_exec(int ctxn)
4287 {
4288 	struct perf_event_context *ctx, *clone_ctx = NULL;
4289 	struct perf_event *event, *next;
4290 	LIST_HEAD(free_list);
4291 	unsigned long flags;
4292 	bool modified = false;
4293 
4294 	ctx = perf_pin_task_context(current, ctxn);
4295 	if (!ctx)
4296 		return;
4297 
4298 	mutex_lock(&ctx->mutex);
4299 
4300 	if (WARN_ON_ONCE(ctx->task != current))
4301 		goto unlock;
4302 
4303 	list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) {
4304 		if (!event->attr.remove_on_exec)
4305 			continue;
4306 
4307 		if (!is_kernel_event(event))
4308 			perf_remove_from_owner(event);
4309 
4310 		modified = true;
4311 
4312 		perf_event_exit_event(event, ctx);
4313 	}
4314 
4315 	raw_spin_lock_irqsave(&ctx->lock, flags);
4316 	if (modified)
4317 		clone_ctx = unclone_ctx(ctx);
4318 	--ctx->pin_count;
4319 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
4320 
4321 unlock:
4322 	mutex_unlock(&ctx->mutex);
4323 
4324 	put_ctx(ctx);
4325 	if (clone_ctx)
4326 		put_ctx(clone_ctx);
4327 }
4328 
4329 struct perf_read_data {
4330 	struct perf_event *event;
4331 	bool group;
4332 	int ret;
4333 };
4334 
4335 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4336 {
4337 	u16 local_pkg, event_pkg;
4338 
4339 	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4340 		int local_cpu = smp_processor_id();
4341 
4342 		event_pkg = topology_physical_package_id(event_cpu);
4343 		local_pkg = topology_physical_package_id(local_cpu);
4344 
4345 		if (event_pkg == local_pkg)
4346 			return local_cpu;
4347 	}
4348 
4349 	return event_cpu;
4350 }
4351 
4352 /*
4353  * Cross CPU call to read the hardware event
4354  */
4355 static void __perf_event_read(void *info)
4356 {
4357 	struct perf_read_data *data = info;
4358 	struct perf_event *sub, *event = data->event;
4359 	struct perf_event_context *ctx = event->ctx;
4360 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4361 	struct pmu *pmu = event->pmu;
4362 
4363 	/*
4364 	 * If this is a task context, we need to check whether it is
4365 	 * the current task context of this cpu.  If not it has been
4366 	 * scheduled out before the smp call arrived.  In that case
4367 	 * event->count would have been updated to a recent sample
4368 	 * when the event was scheduled out.
4369 	 */
4370 	if (ctx->task && cpuctx->task_ctx != ctx)
4371 		return;
4372 
4373 	raw_spin_lock(&ctx->lock);
4374 	if (ctx->is_active & EVENT_TIME) {
4375 		update_context_time(ctx);
4376 		update_cgrp_time_from_event(event);
4377 	}
4378 
4379 	perf_event_update_time(event);
4380 	if (data->group)
4381 		perf_event_update_sibling_time(event);
4382 
4383 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4384 		goto unlock;
4385 
4386 	if (!data->group) {
4387 		pmu->read(event);
4388 		data->ret = 0;
4389 		goto unlock;
4390 	}
4391 
4392 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4393 
4394 	pmu->read(event);
4395 
4396 	for_each_sibling_event(sub, event) {
4397 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4398 			/*
4399 			 * Use sibling's PMU rather than @event's since
4400 			 * sibling could be on different (eg: software) PMU.
4401 			 */
4402 			sub->pmu->read(sub);
4403 		}
4404 	}
4405 
4406 	data->ret = pmu->commit_txn(pmu);
4407 
4408 unlock:
4409 	raw_spin_unlock(&ctx->lock);
4410 }
4411 
4412 static inline u64 perf_event_count(struct perf_event *event)
4413 {
4414 	return local64_read(&event->count) + atomic64_read(&event->child_count);
4415 }
4416 
4417 /*
4418  * NMI-safe method to read a local event, that is an event that
4419  * is:
4420  *   - either for the current task, or for this CPU
4421  *   - does not have inherit set, for inherited task events
4422  *     will not be local and we cannot read them atomically
4423  *   - must not have a pmu::count method
4424  */
4425 int perf_event_read_local(struct perf_event *event, u64 *value,
4426 			  u64 *enabled, u64 *running)
4427 {
4428 	unsigned long flags;
4429 	int ret = 0;
4430 
4431 	/*
4432 	 * Disabling interrupts avoids all counter scheduling (context
4433 	 * switches, timer based rotation and IPIs).
4434 	 */
4435 	local_irq_save(flags);
4436 
4437 	/*
4438 	 * It must not be an event with inherit set, we cannot read
4439 	 * all child counters from atomic context.
4440 	 */
4441 	if (event->attr.inherit) {
4442 		ret = -EOPNOTSUPP;
4443 		goto out;
4444 	}
4445 
4446 	/* If this is a per-task event, it must be for current */
4447 	if ((event->attach_state & PERF_ATTACH_TASK) &&
4448 	    event->hw.target != current) {
4449 		ret = -EINVAL;
4450 		goto out;
4451 	}
4452 
4453 	/* If this is a per-CPU event, it must be for this CPU */
4454 	if (!(event->attach_state & PERF_ATTACH_TASK) &&
4455 	    event->cpu != smp_processor_id()) {
4456 		ret = -EINVAL;
4457 		goto out;
4458 	}
4459 
4460 	/* If this is a pinned event it must be running on this CPU */
4461 	if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4462 		ret = -EBUSY;
4463 		goto out;
4464 	}
4465 
4466 	/*
4467 	 * If the event is currently on this CPU, its either a per-task event,
4468 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4469 	 * oncpu == -1).
4470 	 */
4471 	if (event->oncpu == smp_processor_id())
4472 		event->pmu->read(event);
4473 
4474 	*value = local64_read(&event->count);
4475 	if (enabled || running) {
4476 		u64 now = event->shadow_ctx_time + perf_clock();
4477 		u64 __enabled, __running;
4478 
4479 		__perf_update_times(event, now, &__enabled, &__running);
4480 		if (enabled)
4481 			*enabled = __enabled;
4482 		if (running)
4483 			*running = __running;
4484 	}
4485 out:
4486 	local_irq_restore(flags);
4487 
4488 	return ret;
4489 }
4490 
4491 static int perf_event_read(struct perf_event *event, bool group)
4492 {
4493 	enum perf_event_state state = READ_ONCE(event->state);
4494 	int event_cpu, ret = 0;
4495 
4496 	/*
4497 	 * If event is enabled and currently active on a CPU, update the
4498 	 * value in the event structure:
4499 	 */
4500 again:
4501 	if (state == PERF_EVENT_STATE_ACTIVE) {
4502 		struct perf_read_data data;
4503 
4504 		/*
4505 		 * Orders the ->state and ->oncpu loads such that if we see
4506 		 * ACTIVE we must also see the right ->oncpu.
4507 		 *
4508 		 * Matches the smp_wmb() from event_sched_in().
4509 		 */
4510 		smp_rmb();
4511 
4512 		event_cpu = READ_ONCE(event->oncpu);
4513 		if ((unsigned)event_cpu >= nr_cpu_ids)
4514 			return 0;
4515 
4516 		data = (struct perf_read_data){
4517 			.event = event,
4518 			.group = group,
4519 			.ret = 0,
4520 		};
4521 
4522 		preempt_disable();
4523 		event_cpu = __perf_event_read_cpu(event, event_cpu);
4524 
4525 		/*
4526 		 * Purposely ignore the smp_call_function_single() return
4527 		 * value.
4528 		 *
4529 		 * If event_cpu isn't a valid CPU it means the event got
4530 		 * scheduled out and that will have updated the event count.
4531 		 *
4532 		 * Therefore, either way, we'll have an up-to-date event count
4533 		 * after this.
4534 		 */
4535 		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4536 		preempt_enable();
4537 		ret = data.ret;
4538 
4539 	} else if (state == PERF_EVENT_STATE_INACTIVE) {
4540 		struct perf_event_context *ctx = event->ctx;
4541 		unsigned long flags;
4542 
4543 		raw_spin_lock_irqsave(&ctx->lock, flags);
4544 		state = event->state;
4545 		if (state != PERF_EVENT_STATE_INACTIVE) {
4546 			raw_spin_unlock_irqrestore(&ctx->lock, flags);
4547 			goto again;
4548 		}
4549 
4550 		/*
4551 		 * May read while context is not active (e.g., thread is
4552 		 * blocked), in that case we cannot update context time
4553 		 */
4554 		if (ctx->is_active & EVENT_TIME) {
4555 			update_context_time(ctx);
4556 			update_cgrp_time_from_event(event);
4557 		}
4558 
4559 		perf_event_update_time(event);
4560 		if (group)
4561 			perf_event_update_sibling_time(event);
4562 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4563 	}
4564 
4565 	return ret;
4566 }
4567 
4568 /*
4569  * Initialize the perf_event context in a task_struct:
4570  */
4571 static void __perf_event_init_context(struct perf_event_context *ctx)
4572 {
4573 	raw_spin_lock_init(&ctx->lock);
4574 	mutex_init(&ctx->mutex);
4575 	INIT_LIST_HEAD(&ctx->active_ctx_list);
4576 	perf_event_groups_init(&ctx->pinned_groups);
4577 	perf_event_groups_init(&ctx->flexible_groups);
4578 	INIT_LIST_HEAD(&ctx->event_list);
4579 	INIT_LIST_HEAD(&ctx->pinned_active);
4580 	INIT_LIST_HEAD(&ctx->flexible_active);
4581 	refcount_set(&ctx->refcount, 1);
4582 }
4583 
4584 static struct perf_event_context *
4585 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4586 {
4587 	struct perf_event_context *ctx;
4588 
4589 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4590 	if (!ctx)
4591 		return NULL;
4592 
4593 	__perf_event_init_context(ctx);
4594 	if (task)
4595 		ctx->task = get_task_struct(task);
4596 	ctx->pmu = pmu;
4597 
4598 	return ctx;
4599 }
4600 
4601 static struct task_struct *
4602 find_lively_task_by_vpid(pid_t vpid)
4603 {
4604 	struct task_struct *task;
4605 
4606 	rcu_read_lock();
4607 	if (!vpid)
4608 		task = current;
4609 	else
4610 		task = find_task_by_vpid(vpid);
4611 	if (task)
4612 		get_task_struct(task);
4613 	rcu_read_unlock();
4614 
4615 	if (!task)
4616 		return ERR_PTR(-ESRCH);
4617 
4618 	return task;
4619 }
4620 
4621 /*
4622  * Returns a matching context with refcount and pincount.
4623  */
4624 static struct perf_event_context *
4625 find_get_context(struct pmu *pmu, struct task_struct *task,
4626 		struct perf_event *event)
4627 {
4628 	struct perf_event_context *ctx, *clone_ctx = NULL;
4629 	struct perf_cpu_context *cpuctx;
4630 	void *task_ctx_data = NULL;
4631 	unsigned long flags;
4632 	int ctxn, err;
4633 	int cpu = event->cpu;
4634 
4635 	if (!task) {
4636 		/* Must be root to operate on a CPU event: */
4637 		err = perf_allow_cpu(&event->attr);
4638 		if (err)
4639 			return ERR_PTR(err);
4640 
4641 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4642 		ctx = &cpuctx->ctx;
4643 		get_ctx(ctx);
4644 		raw_spin_lock_irqsave(&ctx->lock, flags);
4645 		++ctx->pin_count;
4646 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4647 
4648 		return ctx;
4649 	}
4650 
4651 	err = -EINVAL;
4652 	ctxn = pmu->task_ctx_nr;
4653 	if (ctxn < 0)
4654 		goto errout;
4655 
4656 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4657 		task_ctx_data = alloc_task_ctx_data(pmu);
4658 		if (!task_ctx_data) {
4659 			err = -ENOMEM;
4660 			goto errout;
4661 		}
4662 	}
4663 
4664 retry:
4665 	ctx = perf_lock_task_context(task, ctxn, &flags);
4666 	if (ctx) {
4667 		clone_ctx = unclone_ctx(ctx);
4668 		++ctx->pin_count;
4669 
4670 		if (task_ctx_data && !ctx->task_ctx_data) {
4671 			ctx->task_ctx_data = task_ctx_data;
4672 			task_ctx_data = NULL;
4673 		}
4674 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4675 
4676 		if (clone_ctx)
4677 			put_ctx(clone_ctx);
4678 	} else {
4679 		ctx = alloc_perf_context(pmu, task);
4680 		err = -ENOMEM;
4681 		if (!ctx)
4682 			goto errout;
4683 
4684 		if (task_ctx_data) {
4685 			ctx->task_ctx_data = task_ctx_data;
4686 			task_ctx_data = NULL;
4687 		}
4688 
4689 		err = 0;
4690 		mutex_lock(&task->perf_event_mutex);
4691 		/*
4692 		 * If it has already passed perf_event_exit_task().
4693 		 * we must see PF_EXITING, it takes this mutex too.
4694 		 */
4695 		if (task->flags & PF_EXITING)
4696 			err = -ESRCH;
4697 		else if (task->perf_event_ctxp[ctxn])
4698 			err = -EAGAIN;
4699 		else {
4700 			get_ctx(ctx);
4701 			++ctx->pin_count;
4702 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4703 		}
4704 		mutex_unlock(&task->perf_event_mutex);
4705 
4706 		if (unlikely(err)) {
4707 			put_ctx(ctx);
4708 
4709 			if (err == -EAGAIN)
4710 				goto retry;
4711 			goto errout;
4712 		}
4713 	}
4714 
4715 	free_task_ctx_data(pmu, task_ctx_data);
4716 	return ctx;
4717 
4718 errout:
4719 	free_task_ctx_data(pmu, task_ctx_data);
4720 	return ERR_PTR(err);
4721 }
4722 
4723 static void perf_event_free_filter(struct perf_event *event);
4724 
4725 static void free_event_rcu(struct rcu_head *head)
4726 {
4727 	struct perf_event *event;
4728 
4729 	event = container_of(head, struct perf_event, rcu_head);
4730 	if (event->ns)
4731 		put_pid_ns(event->ns);
4732 	perf_event_free_filter(event);
4733 	kmem_cache_free(perf_event_cache, event);
4734 }
4735 
4736 static void ring_buffer_attach(struct perf_event *event,
4737 			       struct perf_buffer *rb);
4738 
4739 static void detach_sb_event(struct perf_event *event)
4740 {
4741 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4742 
4743 	raw_spin_lock(&pel->lock);
4744 	list_del_rcu(&event->sb_list);
4745 	raw_spin_unlock(&pel->lock);
4746 }
4747 
4748 static bool is_sb_event(struct perf_event *event)
4749 {
4750 	struct perf_event_attr *attr = &event->attr;
4751 
4752 	if (event->parent)
4753 		return false;
4754 
4755 	if (event->attach_state & PERF_ATTACH_TASK)
4756 		return false;
4757 
4758 	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4759 	    attr->comm || attr->comm_exec ||
4760 	    attr->task || attr->ksymbol ||
4761 	    attr->context_switch || attr->text_poke ||
4762 	    attr->bpf_event)
4763 		return true;
4764 	return false;
4765 }
4766 
4767 static void unaccount_pmu_sb_event(struct perf_event *event)
4768 {
4769 	if (is_sb_event(event))
4770 		detach_sb_event(event);
4771 }
4772 
4773 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4774 {
4775 	if (event->parent)
4776 		return;
4777 
4778 	if (is_cgroup_event(event))
4779 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4780 }
4781 
4782 #ifdef CONFIG_NO_HZ_FULL
4783 static DEFINE_SPINLOCK(nr_freq_lock);
4784 #endif
4785 
4786 static void unaccount_freq_event_nohz(void)
4787 {
4788 #ifdef CONFIG_NO_HZ_FULL
4789 	spin_lock(&nr_freq_lock);
4790 	if (atomic_dec_and_test(&nr_freq_events))
4791 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4792 	spin_unlock(&nr_freq_lock);
4793 #endif
4794 }
4795 
4796 static void unaccount_freq_event(void)
4797 {
4798 	if (tick_nohz_full_enabled())
4799 		unaccount_freq_event_nohz();
4800 	else
4801 		atomic_dec(&nr_freq_events);
4802 }
4803 
4804 static void unaccount_event(struct perf_event *event)
4805 {
4806 	bool dec = false;
4807 
4808 	if (event->parent)
4809 		return;
4810 
4811 	if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
4812 		dec = true;
4813 	if (event->attr.mmap || event->attr.mmap_data)
4814 		atomic_dec(&nr_mmap_events);
4815 	if (event->attr.build_id)
4816 		atomic_dec(&nr_build_id_events);
4817 	if (event->attr.comm)
4818 		atomic_dec(&nr_comm_events);
4819 	if (event->attr.namespaces)
4820 		atomic_dec(&nr_namespaces_events);
4821 	if (event->attr.cgroup)
4822 		atomic_dec(&nr_cgroup_events);
4823 	if (event->attr.task)
4824 		atomic_dec(&nr_task_events);
4825 	if (event->attr.freq)
4826 		unaccount_freq_event();
4827 	if (event->attr.context_switch) {
4828 		dec = true;
4829 		atomic_dec(&nr_switch_events);
4830 	}
4831 	if (is_cgroup_event(event))
4832 		dec = true;
4833 	if (has_branch_stack(event))
4834 		dec = true;
4835 	if (event->attr.ksymbol)
4836 		atomic_dec(&nr_ksymbol_events);
4837 	if (event->attr.bpf_event)
4838 		atomic_dec(&nr_bpf_events);
4839 	if (event->attr.text_poke)
4840 		atomic_dec(&nr_text_poke_events);
4841 
4842 	if (dec) {
4843 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
4844 			schedule_delayed_work(&perf_sched_work, HZ);
4845 	}
4846 
4847 	unaccount_event_cpu(event, event->cpu);
4848 
4849 	unaccount_pmu_sb_event(event);
4850 }
4851 
4852 static void perf_sched_delayed(struct work_struct *work)
4853 {
4854 	mutex_lock(&perf_sched_mutex);
4855 	if (atomic_dec_and_test(&perf_sched_count))
4856 		static_branch_disable(&perf_sched_events);
4857 	mutex_unlock(&perf_sched_mutex);
4858 }
4859 
4860 /*
4861  * The following implement mutual exclusion of events on "exclusive" pmus
4862  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4863  * at a time, so we disallow creating events that might conflict, namely:
4864  *
4865  *  1) cpu-wide events in the presence of per-task events,
4866  *  2) per-task events in the presence of cpu-wide events,
4867  *  3) two matching events on the same context.
4868  *
4869  * The former two cases are handled in the allocation path (perf_event_alloc(),
4870  * _free_event()), the latter -- before the first perf_install_in_context().
4871  */
4872 static int exclusive_event_init(struct perf_event *event)
4873 {
4874 	struct pmu *pmu = event->pmu;
4875 
4876 	if (!is_exclusive_pmu(pmu))
4877 		return 0;
4878 
4879 	/*
4880 	 * Prevent co-existence of per-task and cpu-wide events on the
4881 	 * same exclusive pmu.
4882 	 *
4883 	 * Negative pmu::exclusive_cnt means there are cpu-wide
4884 	 * events on this "exclusive" pmu, positive means there are
4885 	 * per-task events.
4886 	 *
4887 	 * Since this is called in perf_event_alloc() path, event::ctx
4888 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4889 	 * to mean "per-task event", because unlike other attach states it
4890 	 * never gets cleared.
4891 	 */
4892 	if (event->attach_state & PERF_ATTACH_TASK) {
4893 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4894 			return -EBUSY;
4895 	} else {
4896 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4897 			return -EBUSY;
4898 	}
4899 
4900 	return 0;
4901 }
4902 
4903 static void exclusive_event_destroy(struct perf_event *event)
4904 {
4905 	struct pmu *pmu = event->pmu;
4906 
4907 	if (!is_exclusive_pmu(pmu))
4908 		return;
4909 
4910 	/* see comment in exclusive_event_init() */
4911 	if (event->attach_state & PERF_ATTACH_TASK)
4912 		atomic_dec(&pmu->exclusive_cnt);
4913 	else
4914 		atomic_inc(&pmu->exclusive_cnt);
4915 }
4916 
4917 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4918 {
4919 	if ((e1->pmu == e2->pmu) &&
4920 	    (e1->cpu == e2->cpu ||
4921 	     e1->cpu == -1 ||
4922 	     e2->cpu == -1))
4923 		return true;
4924 	return false;
4925 }
4926 
4927 static bool exclusive_event_installable(struct perf_event *event,
4928 					struct perf_event_context *ctx)
4929 {
4930 	struct perf_event *iter_event;
4931 	struct pmu *pmu = event->pmu;
4932 
4933 	lockdep_assert_held(&ctx->mutex);
4934 
4935 	if (!is_exclusive_pmu(pmu))
4936 		return true;
4937 
4938 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4939 		if (exclusive_event_match(iter_event, event))
4940 			return false;
4941 	}
4942 
4943 	return true;
4944 }
4945 
4946 static void perf_addr_filters_splice(struct perf_event *event,
4947 				       struct list_head *head);
4948 
4949 static void _free_event(struct perf_event *event)
4950 {
4951 	irq_work_sync(&event->pending);
4952 
4953 	unaccount_event(event);
4954 
4955 	security_perf_event_free(event);
4956 
4957 	if (event->rb) {
4958 		/*
4959 		 * Can happen when we close an event with re-directed output.
4960 		 *
4961 		 * Since we have a 0 refcount, perf_mmap_close() will skip
4962 		 * over us; possibly making our ring_buffer_put() the last.
4963 		 */
4964 		mutex_lock(&event->mmap_mutex);
4965 		ring_buffer_attach(event, NULL);
4966 		mutex_unlock(&event->mmap_mutex);
4967 	}
4968 
4969 	if (is_cgroup_event(event))
4970 		perf_detach_cgroup(event);
4971 
4972 	if (!event->parent) {
4973 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4974 			put_callchain_buffers();
4975 	}
4976 
4977 	perf_event_free_bpf_prog(event);
4978 	perf_addr_filters_splice(event, NULL);
4979 	kfree(event->addr_filter_ranges);
4980 
4981 	if (event->destroy)
4982 		event->destroy(event);
4983 
4984 	/*
4985 	 * Must be after ->destroy(), due to uprobe_perf_close() using
4986 	 * hw.target.
4987 	 */
4988 	if (event->hw.target)
4989 		put_task_struct(event->hw.target);
4990 
4991 	/*
4992 	 * perf_event_free_task() relies on put_ctx() being 'last', in particular
4993 	 * all task references must be cleaned up.
4994 	 */
4995 	if (event->ctx)
4996 		put_ctx(event->ctx);
4997 
4998 	exclusive_event_destroy(event);
4999 	module_put(event->pmu->module);
5000 
5001 	call_rcu(&event->rcu_head, free_event_rcu);
5002 }
5003 
5004 /*
5005  * Used to free events which have a known refcount of 1, such as in error paths
5006  * where the event isn't exposed yet and inherited events.
5007  */
5008 static void free_event(struct perf_event *event)
5009 {
5010 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
5011 				"unexpected event refcount: %ld; ptr=%p\n",
5012 				atomic_long_read(&event->refcount), event)) {
5013 		/* leak to avoid use-after-free */
5014 		return;
5015 	}
5016 
5017 	_free_event(event);
5018 }
5019 
5020 /*
5021  * Remove user event from the owner task.
5022  */
5023 static void perf_remove_from_owner(struct perf_event *event)
5024 {
5025 	struct task_struct *owner;
5026 
5027 	rcu_read_lock();
5028 	/*
5029 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
5030 	 * observe !owner it means the list deletion is complete and we can
5031 	 * indeed free this event, otherwise we need to serialize on
5032 	 * owner->perf_event_mutex.
5033 	 */
5034 	owner = READ_ONCE(event->owner);
5035 	if (owner) {
5036 		/*
5037 		 * Since delayed_put_task_struct() also drops the last
5038 		 * task reference we can safely take a new reference
5039 		 * while holding the rcu_read_lock().
5040 		 */
5041 		get_task_struct(owner);
5042 	}
5043 	rcu_read_unlock();
5044 
5045 	if (owner) {
5046 		/*
5047 		 * If we're here through perf_event_exit_task() we're already
5048 		 * holding ctx->mutex which would be an inversion wrt. the
5049 		 * normal lock order.
5050 		 *
5051 		 * However we can safely take this lock because its the child
5052 		 * ctx->mutex.
5053 		 */
5054 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
5055 
5056 		/*
5057 		 * We have to re-check the event->owner field, if it is cleared
5058 		 * we raced with perf_event_exit_task(), acquiring the mutex
5059 		 * ensured they're done, and we can proceed with freeing the
5060 		 * event.
5061 		 */
5062 		if (event->owner) {
5063 			list_del_init(&event->owner_entry);
5064 			smp_store_release(&event->owner, NULL);
5065 		}
5066 		mutex_unlock(&owner->perf_event_mutex);
5067 		put_task_struct(owner);
5068 	}
5069 }
5070 
5071 static void put_event(struct perf_event *event)
5072 {
5073 	if (!atomic_long_dec_and_test(&event->refcount))
5074 		return;
5075 
5076 	_free_event(event);
5077 }
5078 
5079 /*
5080  * Kill an event dead; while event:refcount will preserve the event
5081  * object, it will not preserve its functionality. Once the last 'user'
5082  * gives up the object, we'll destroy the thing.
5083  */
5084 int perf_event_release_kernel(struct perf_event *event)
5085 {
5086 	struct perf_event_context *ctx = event->ctx;
5087 	struct perf_event *child, *tmp;
5088 	LIST_HEAD(free_list);
5089 
5090 	/*
5091 	 * If we got here through err_file: fput(event_file); we will not have
5092 	 * attached to a context yet.
5093 	 */
5094 	if (!ctx) {
5095 		WARN_ON_ONCE(event->attach_state &
5096 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
5097 		goto no_ctx;
5098 	}
5099 
5100 	if (!is_kernel_event(event))
5101 		perf_remove_from_owner(event);
5102 
5103 	ctx = perf_event_ctx_lock(event);
5104 	WARN_ON_ONCE(ctx->parent_ctx);
5105 	perf_remove_from_context(event, DETACH_GROUP);
5106 
5107 	raw_spin_lock_irq(&ctx->lock);
5108 	/*
5109 	 * Mark this event as STATE_DEAD, there is no external reference to it
5110 	 * anymore.
5111 	 *
5112 	 * Anybody acquiring event->child_mutex after the below loop _must_
5113 	 * also see this, most importantly inherit_event() which will avoid
5114 	 * placing more children on the list.
5115 	 *
5116 	 * Thus this guarantees that we will in fact observe and kill _ALL_
5117 	 * child events.
5118 	 */
5119 	event->state = PERF_EVENT_STATE_DEAD;
5120 	raw_spin_unlock_irq(&ctx->lock);
5121 
5122 	perf_event_ctx_unlock(event, ctx);
5123 
5124 again:
5125 	mutex_lock(&event->child_mutex);
5126 	list_for_each_entry(child, &event->child_list, child_list) {
5127 
5128 		/*
5129 		 * Cannot change, child events are not migrated, see the
5130 		 * comment with perf_event_ctx_lock_nested().
5131 		 */
5132 		ctx = READ_ONCE(child->ctx);
5133 		/*
5134 		 * Since child_mutex nests inside ctx::mutex, we must jump
5135 		 * through hoops. We start by grabbing a reference on the ctx.
5136 		 *
5137 		 * Since the event cannot get freed while we hold the
5138 		 * child_mutex, the context must also exist and have a !0
5139 		 * reference count.
5140 		 */
5141 		get_ctx(ctx);
5142 
5143 		/*
5144 		 * Now that we have a ctx ref, we can drop child_mutex, and
5145 		 * acquire ctx::mutex without fear of it going away. Then we
5146 		 * can re-acquire child_mutex.
5147 		 */
5148 		mutex_unlock(&event->child_mutex);
5149 		mutex_lock(&ctx->mutex);
5150 		mutex_lock(&event->child_mutex);
5151 
5152 		/*
5153 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
5154 		 * state, if child is still the first entry, it didn't get freed
5155 		 * and we can continue doing so.
5156 		 */
5157 		tmp = list_first_entry_or_null(&event->child_list,
5158 					       struct perf_event, child_list);
5159 		if (tmp == child) {
5160 			perf_remove_from_context(child, DETACH_GROUP);
5161 			list_move(&child->child_list, &free_list);
5162 			/*
5163 			 * This matches the refcount bump in inherit_event();
5164 			 * this can't be the last reference.
5165 			 */
5166 			put_event(event);
5167 		}
5168 
5169 		mutex_unlock(&event->child_mutex);
5170 		mutex_unlock(&ctx->mutex);
5171 		put_ctx(ctx);
5172 		goto again;
5173 	}
5174 	mutex_unlock(&event->child_mutex);
5175 
5176 	list_for_each_entry_safe(child, tmp, &free_list, child_list) {
5177 		void *var = &child->ctx->refcount;
5178 
5179 		list_del(&child->child_list);
5180 		free_event(child);
5181 
5182 		/*
5183 		 * Wake any perf_event_free_task() waiting for this event to be
5184 		 * freed.
5185 		 */
5186 		smp_mb(); /* pairs with wait_var_event() */
5187 		wake_up_var(var);
5188 	}
5189 
5190 no_ctx:
5191 	put_event(event); /* Must be the 'last' reference */
5192 	return 0;
5193 }
5194 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5195 
5196 /*
5197  * Called when the last reference to the file is gone.
5198  */
5199 static int perf_release(struct inode *inode, struct file *file)
5200 {
5201 	perf_event_release_kernel(file->private_data);
5202 	return 0;
5203 }
5204 
5205 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5206 {
5207 	struct perf_event *child;
5208 	u64 total = 0;
5209 
5210 	*enabled = 0;
5211 	*running = 0;
5212 
5213 	mutex_lock(&event->child_mutex);
5214 
5215 	(void)perf_event_read(event, false);
5216 	total += perf_event_count(event);
5217 
5218 	*enabled += event->total_time_enabled +
5219 			atomic64_read(&event->child_total_time_enabled);
5220 	*running += event->total_time_running +
5221 			atomic64_read(&event->child_total_time_running);
5222 
5223 	list_for_each_entry(child, &event->child_list, child_list) {
5224 		(void)perf_event_read(child, false);
5225 		total += perf_event_count(child);
5226 		*enabled += child->total_time_enabled;
5227 		*running += child->total_time_running;
5228 	}
5229 	mutex_unlock(&event->child_mutex);
5230 
5231 	return total;
5232 }
5233 
5234 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5235 {
5236 	struct perf_event_context *ctx;
5237 	u64 count;
5238 
5239 	ctx = perf_event_ctx_lock(event);
5240 	count = __perf_event_read_value(event, enabled, running);
5241 	perf_event_ctx_unlock(event, ctx);
5242 
5243 	return count;
5244 }
5245 EXPORT_SYMBOL_GPL(perf_event_read_value);
5246 
5247 static int __perf_read_group_add(struct perf_event *leader,
5248 					u64 read_format, u64 *values)
5249 {
5250 	struct perf_event_context *ctx = leader->ctx;
5251 	struct perf_event *sub;
5252 	unsigned long flags;
5253 	int n = 1; /* skip @nr */
5254 	int ret;
5255 
5256 	ret = perf_event_read(leader, true);
5257 	if (ret)
5258 		return ret;
5259 
5260 	raw_spin_lock_irqsave(&ctx->lock, flags);
5261 
5262 	/*
5263 	 * Since we co-schedule groups, {enabled,running} times of siblings
5264 	 * will be identical to those of the leader, so we only publish one
5265 	 * set.
5266 	 */
5267 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5268 		values[n++] += leader->total_time_enabled +
5269 			atomic64_read(&leader->child_total_time_enabled);
5270 	}
5271 
5272 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5273 		values[n++] += leader->total_time_running +
5274 			atomic64_read(&leader->child_total_time_running);
5275 	}
5276 
5277 	/*
5278 	 * Write {count,id} tuples for every sibling.
5279 	 */
5280 	values[n++] += perf_event_count(leader);
5281 	if (read_format & PERF_FORMAT_ID)
5282 		values[n++] = primary_event_id(leader);
5283 
5284 	for_each_sibling_event(sub, leader) {
5285 		values[n++] += perf_event_count(sub);
5286 		if (read_format & PERF_FORMAT_ID)
5287 			values[n++] = primary_event_id(sub);
5288 	}
5289 
5290 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
5291 	return 0;
5292 }
5293 
5294 static int perf_read_group(struct perf_event *event,
5295 				   u64 read_format, char __user *buf)
5296 {
5297 	struct perf_event *leader = event->group_leader, *child;
5298 	struct perf_event_context *ctx = leader->ctx;
5299 	int ret;
5300 	u64 *values;
5301 
5302 	lockdep_assert_held(&ctx->mutex);
5303 
5304 	values = kzalloc(event->read_size, GFP_KERNEL);
5305 	if (!values)
5306 		return -ENOMEM;
5307 
5308 	values[0] = 1 + leader->nr_siblings;
5309 
5310 	/*
5311 	 * By locking the child_mutex of the leader we effectively
5312 	 * lock the child list of all siblings.. XXX explain how.
5313 	 */
5314 	mutex_lock(&leader->child_mutex);
5315 
5316 	ret = __perf_read_group_add(leader, read_format, values);
5317 	if (ret)
5318 		goto unlock;
5319 
5320 	list_for_each_entry(child, &leader->child_list, child_list) {
5321 		ret = __perf_read_group_add(child, read_format, values);
5322 		if (ret)
5323 			goto unlock;
5324 	}
5325 
5326 	mutex_unlock(&leader->child_mutex);
5327 
5328 	ret = event->read_size;
5329 	if (copy_to_user(buf, values, event->read_size))
5330 		ret = -EFAULT;
5331 	goto out;
5332 
5333 unlock:
5334 	mutex_unlock(&leader->child_mutex);
5335 out:
5336 	kfree(values);
5337 	return ret;
5338 }
5339 
5340 static int perf_read_one(struct perf_event *event,
5341 				 u64 read_format, char __user *buf)
5342 {
5343 	u64 enabled, running;
5344 	u64 values[4];
5345 	int n = 0;
5346 
5347 	values[n++] = __perf_event_read_value(event, &enabled, &running);
5348 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5349 		values[n++] = enabled;
5350 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5351 		values[n++] = running;
5352 	if (read_format & PERF_FORMAT_ID)
5353 		values[n++] = primary_event_id(event);
5354 
5355 	if (copy_to_user(buf, values, n * sizeof(u64)))
5356 		return -EFAULT;
5357 
5358 	return n * sizeof(u64);
5359 }
5360 
5361 static bool is_event_hup(struct perf_event *event)
5362 {
5363 	bool no_children;
5364 
5365 	if (event->state > PERF_EVENT_STATE_EXIT)
5366 		return false;
5367 
5368 	mutex_lock(&event->child_mutex);
5369 	no_children = list_empty(&event->child_list);
5370 	mutex_unlock(&event->child_mutex);
5371 	return no_children;
5372 }
5373 
5374 /*
5375  * Read the performance event - simple non blocking version for now
5376  */
5377 static ssize_t
5378 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5379 {
5380 	u64 read_format = event->attr.read_format;
5381 	int ret;
5382 
5383 	/*
5384 	 * Return end-of-file for a read on an event that is in
5385 	 * error state (i.e. because it was pinned but it couldn't be
5386 	 * scheduled on to the CPU at some point).
5387 	 */
5388 	if (event->state == PERF_EVENT_STATE_ERROR)
5389 		return 0;
5390 
5391 	if (count < event->read_size)
5392 		return -ENOSPC;
5393 
5394 	WARN_ON_ONCE(event->ctx->parent_ctx);
5395 	if (read_format & PERF_FORMAT_GROUP)
5396 		ret = perf_read_group(event, read_format, buf);
5397 	else
5398 		ret = perf_read_one(event, read_format, buf);
5399 
5400 	return ret;
5401 }
5402 
5403 static ssize_t
5404 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5405 {
5406 	struct perf_event *event = file->private_data;
5407 	struct perf_event_context *ctx;
5408 	int ret;
5409 
5410 	ret = security_perf_event_read(event);
5411 	if (ret)
5412 		return ret;
5413 
5414 	ctx = perf_event_ctx_lock(event);
5415 	ret = __perf_read(event, buf, count);
5416 	perf_event_ctx_unlock(event, ctx);
5417 
5418 	return ret;
5419 }
5420 
5421 static __poll_t perf_poll(struct file *file, poll_table *wait)
5422 {
5423 	struct perf_event *event = file->private_data;
5424 	struct perf_buffer *rb;
5425 	__poll_t events = EPOLLHUP;
5426 
5427 	poll_wait(file, &event->waitq, wait);
5428 
5429 	if (is_event_hup(event))
5430 		return events;
5431 
5432 	/*
5433 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
5434 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5435 	 */
5436 	mutex_lock(&event->mmap_mutex);
5437 	rb = event->rb;
5438 	if (rb)
5439 		events = atomic_xchg(&rb->poll, 0);
5440 	mutex_unlock(&event->mmap_mutex);
5441 	return events;
5442 }
5443 
5444 static void _perf_event_reset(struct perf_event *event)
5445 {
5446 	(void)perf_event_read(event, false);
5447 	local64_set(&event->count, 0);
5448 	perf_event_update_userpage(event);
5449 }
5450 
5451 /* Assume it's not an event with inherit set. */
5452 u64 perf_event_pause(struct perf_event *event, bool reset)
5453 {
5454 	struct perf_event_context *ctx;
5455 	u64 count;
5456 
5457 	ctx = perf_event_ctx_lock(event);
5458 	WARN_ON_ONCE(event->attr.inherit);
5459 	_perf_event_disable(event);
5460 	count = local64_read(&event->count);
5461 	if (reset)
5462 		local64_set(&event->count, 0);
5463 	perf_event_ctx_unlock(event, ctx);
5464 
5465 	return count;
5466 }
5467 EXPORT_SYMBOL_GPL(perf_event_pause);
5468 
5469 /*
5470  * Holding the top-level event's child_mutex means that any
5471  * descendant process that has inherited this event will block
5472  * in perf_event_exit_event() if it goes to exit, thus satisfying the
5473  * task existence requirements of perf_event_enable/disable.
5474  */
5475 static void perf_event_for_each_child(struct perf_event *event,
5476 					void (*func)(struct perf_event *))
5477 {
5478 	struct perf_event *child;
5479 
5480 	WARN_ON_ONCE(event->ctx->parent_ctx);
5481 
5482 	mutex_lock(&event->child_mutex);
5483 	func(event);
5484 	list_for_each_entry(child, &event->child_list, child_list)
5485 		func(child);
5486 	mutex_unlock(&event->child_mutex);
5487 }
5488 
5489 static void perf_event_for_each(struct perf_event *event,
5490 				  void (*func)(struct perf_event *))
5491 {
5492 	struct perf_event_context *ctx = event->ctx;
5493 	struct perf_event *sibling;
5494 
5495 	lockdep_assert_held(&ctx->mutex);
5496 
5497 	event = event->group_leader;
5498 
5499 	perf_event_for_each_child(event, func);
5500 	for_each_sibling_event(sibling, event)
5501 		perf_event_for_each_child(sibling, func);
5502 }
5503 
5504 static void __perf_event_period(struct perf_event *event,
5505 				struct perf_cpu_context *cpuctx,
5506 				struct perf_event_context *ctx,
5507 				void *info)
5508 {
5509 	u64 value = *((u64 *)info);
5510 	bool active;
5511 
5512 	if (event->attr.freq) {
5513 		event->attr.sample_freq = value;
5514 	} else {
5515 		event->attr.sample_period = value;
5516 		event->hw.sample_period = value;
5517 	}
5518 
5519 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
5520 	if (active) {
5521 		perf_pmu_disable(ctx->pmu);
5522 		/*
5523 		 * We could be throttled; unthrottle now to avoid the tick
5524 		 * trying to unthrottle while we already re-started the event.
5525 		 */
5526 		if (event->hw.interrupts == MAX_INTERRUPTS) {
5527 			event->hw.interrupts = 0;
5528 			perf_log_throttle(event, 1);
5529 		}
5530 		event->pmu->stop(event, PERF_EF_UPDATE);
5531 	}
5532 
5533 	local64_set(&event->hw.period_left, 0);
5534 
5535 	if (active) {
5536 		event->pmu->start(event, PERF_EF_RELOAD);
5537 		perf_pmu_enable(ctx->pmu);
5538 	}
5539 }
5540 
5541 static int perf_event_check_period(struct perf_event *event, u64 value)
5542 {
5543 	return event->pmu->check_period(event, value);
5544 }
5545 
5546 static int _perf_event_period(struct perf_event *event, u64 value)
5547 {
5548 	if (!is_sampling_event(event))
5549 		return -EINVAL;
5550 
5551 	if (!value)
5552 		return -EINVAL;
5553 
5554 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5555 		return -EINVAL;
5556 
5557 	if (perf_event_check_period(event, value))
5558 		return -EINVAL;
5559 
5560 	if (!event->attr.freq && (value & (1ULL << 63)))
5561 		return -EINVAL;
5562 
5563 	event_function_call(event, __perf_event_period, &value);
5564 
5565 	return 0;
5566 }
5567 
5568 int perf_event_period(struct perf_event *event, u64 value)
5569 {
5570 	struct perf_event_context *ctx;
5571 	int ret;
5572 
5573 	ctx = perf_event_ctx_lock(event);
5574 	ret = _perf_event_period(event, value);
5575 	perf_event_ctx_unlock(event, ctx);
5576 
5577 	return ret;
5578 }
5579 EXPORT_SYMBOL_GPL(perf_event_period);
5580 
5581 static const struct file_operations perf_fops;
5582 
5583 static inline int perf_fget_light(int fd, struct fd *p)
5584 {
5585 	struct fd f = fdget(fd);
5586 	if (!f.file)
5587 		return -EBADF;
5588 
5589 	if (f.file->f_op != &perf_fops) {
5590 		fdput(f);
5591 		return -EBADF;
5592 	}
5593 	*p = f;
5594 	return 0;
5595 }
5596 
5597 static int perf_event_set_output(struct perf_event *event,
5598 				 struct perf_event *output_event);
5599 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5600 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5601 			  struct perf_event_attr *attr);
5602 
5603 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5604 {
5605 	void (*func)(struct perf_event *);
5606 	u32 flags = arg;
5607 
5608 	switch (cmd) {
5609 	case PERF_EVENT_IOC_ENABLE:
5610 		func = _perf_event_enable;
5611 		break;
5612 	case PERF_EVENT_IOC_DISABLE:
5613 		func = _perf_event_disable;
5614 		break;
5615 	case PERF_EVENT_IOC_RESET:
5616 		func = _perf_event_reset;
5617 		break;
5618 
5619 	case PERF_EVENT_IOC_REFRESH:
5620 		return _perf_event_refresh(event, arg);
5621 
5622 	case PERF_EVENT_IOC_PERIOD:
5623 	{
5624 		u64 value;
5625 
5626 		if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5627 			return -EFAULT;
5628 
5629 		return _perf_event_period(event, value);
5630 	}
5631 	case PERF_EVENT_IOC_ID:
5632 	{
5633 		u64 id = primary_event_id(event);
5634 
5635 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5636 			return -EFAULT;
5637 		return 0;
5638 	}
5639 
5640 	case PERF_EVENT_IOC_SET_OUTPUT:
5641 	{
5642 		int ret;
5643 		if (arg != -1) {
5644 			struct perf_event *output_event;
5645 			struct fd output;
5646 			ret = perf_fget_light(arg, &output);
5647 			if (ret)
5648 				return ret;
5649 			output_event = output.file->private_data;
5650 			ret = perf_event_set_output(event, output_event);
5651 			fdput(output);
5652 		} else {
5653 			ret = perf_event_set_output(event, NULL);
5654 		}
5655 		return ret;
5656 	}
5657 
5658 	case PERF_EVENT_IOC_SET_FILTER:
5659 		return perf_event_set_filter(event, (void __user *)arg);
5660 
5661 	case PERF_EVENT_IOC_SET_BPF:
5662 	{
5663 		struct bpf_prog *prog;
5664 		int err;
5665 
5666 		prog = bpf_prog_get(arg);
5667 		if (IS_ERR(prog))
5668 			return PTR_ERR(prog);
5669 
5670 		err = perf_event_set_bpf_prog(event, prog, 0);
5671 		if (err) {
5672 			bpf_prog_put(prog);
5673 			return err;
5674 		}
5675 
5676 		return 0;
5677 	}
5678 
5679 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5680 		struct perf_buffer *rb;
5681 
5682 		rcu_read_lock();
5683 		rb = rcu_dereference(event->rb);
5684 		if (!rb || !rb->nr_pages) {
5685 			rcu_read_unlock();
5686 			return -EINVAL;
5687 		}
5688 		rb_toggle_paused(rb, !!arg);
5689 		rcu_read_unlock();
5690 		return 0;
5691 	}
5692 
5693 	case PERF_EVENT_IOC_QUERY_BPF:
5694 		return perf_event_query_prog_array(event, (void __user *)arg);
5695 
5696 	case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5697 		struct perf_event_attr new_attr;
5698 		int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5699 					 &new_attr);
5700 
5701 		if (err)
5702 			return err;
5703 
5704 		return perf_event_modify_attr(event,  &new_attr);
5705 	}
5706 	default:
5707 		return -ENOTTY;
5708 	}
5709 
5710 	if (flags & PERF_IOC_FLAG_GROUP)
5711 		perf_event_for_each(event, func);
5712 	else
5713 		perf_event_for_each_child(event, func);
5714 
5715 	return 0;
5716 }
5717 
5718 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5719 {
5720 	struct perf_event *event = file->private_data;
5721 	struct perf_event_context *ctx;
5722 	long ret;
5723 
5724 	/* Treat ioctl like writes as it is likely a mutating operation. */
5725 	ret = security_perf_event_write(event);
5726 	if (ret)
5727 		return ret;
5728 
5729 	ctx = perf_event_ctx_lock(event);
5730 	ret = _perf_ioctl(event, cmd, arg);
5731 	perf_event_ctx_unlock(event, ctx);
5732 
5733 	return ret;
5734 }
5735 
5736 #ifdef CONFIG_COMPAT
5737 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5738 				unsigned long arg)
5739 {
5740 	switch (_IOC_NR(cmd)) {
5741 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5742 	case _IOC_NR(PERF_EVENT_IOC_ID):
5743 	case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5744 	case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5745 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5746 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5747 			cmd &= ~IOCSIZE_MASK;
5748 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5749 		}
5750 		break;
5751 	}
5752 	return perf_ioctl(file, cmd, arg);
5753 }
5754 #else
5755 # define perf_compat_ioctl NULL
5756 #endif
5757 
5758 int perf_event_task_enable(void)
5759 {
5760 	struct perf_event_context *ctx;
5761 	struct perf_event *event;
5762 
5763 	mutex_lock(&current->perf_event_mutex);
5764 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5765 		ctx = perf_event_ctx_lock(event);
5766 		perf_event_for_each_child(event, _perf_event_enable);
5767 		perf_event_ctx_unlock(event, ctx);
5768 	}
5769 	mutex_unlock(&current->perf_event_mutex);
5770 
5771 	return 0;
5772 }
5773 
5774 int perf_event_task_disable(void)
5775 {
5776 	struct perf_event_context *ctx;
5777 	struct perf_event *event;
5778 
5779 	mutex_lock(&current->perf_event_mutex);
5780 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5781 		ctx = perf_event_ctx_lock(event);
5782 		perf_event_for_each_child(event, _perf_event_disable);
5783 		perf_event_ctx_unlock(event, ctx);
5784 	}
5785 	mutex_unlock(&current->perf_event_mutex);
5786 
5787 	return 0;
5788 }
5789 
5790 static int perf_event_index(struct perf_event *event)
5791 {
5792 	if (event->hw.state & PERF_HES_STOPPED)
5793 		return 0;
5794 
5795 	if (event->state != PERF_EVENT_STATE_ACTIVE)
5796 		return 0;
5797 
5798 	return event->pmu->event_idx(event);
5799 }
5800 
5801 static void calc_timer_values(struct perf_event *event,
5802 				u64 *now,
5803 				u64 *enabled,
5804 				u64 *running)
5805 {
5806 	u64 ctx_time;
5807 
5808 	*now = perf_clock();
5809 	ctx_time = event->shadow_ctx_time + *now;
5810 	__perf_update_times(event, ctx_time, enabled, running);
5811 }
5812 
5813 static void perf_event_init_userpage(struct perf_event *event)
5814 {
5815 	struct perf_event_mmap_page *userpg;
5816 	struct perf_buffer *rb;
5817 
5818 	rcu_read_lock();
5819 	rb = rcu_dereference(event->rb);
5820 	if (!rb)
5821 		goto unlock;
5822 
5823 	userpg = rb->user_page;
5824 
5825 	/* Allow new userspace to detect that bit 0 is deprecated */
5826 	userpg->cap_bit0_is_deprecated = 1;
5827 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5828 	userpg->data_offset = PAGE_SIZE;
5829 	userpg->data_size = perf_data_size(rb);
5830 
5831 unlock:
5832 	rcu_read_unlock();
5833 }
5834 
5835 void __weak arch_perf_update_userpage(
5836 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5837 {
5838 }
5839 
5840 /*
5841  * Callers need to ensure there can be no nesting of this function, otherwise
5842  * the seqlock logic goes bad. We can not serialize this because the arch
5843  * code calls this from NMI context.
5844  */
5845 void perf_event_update_userpage(struct perf_event *event)
5846 {
5847 	struct perf_event_mmap_page *userpg;
5848 	struct perf_buffer *rb;
5849 	u64 enabled, running, now;
5850 
5851 	rcu_read_lock();
5852 	rb = rcu_dereference(event->rb);
5853 	if (!rb)
5854 		goto unlock;
5855 
5856 	/*
5857 	 * compute total_time_enabled, total_time_running
5858 	 * based on snapshot values taken when the event
5859 	 * was last scheduled in.
5860 	 *
5861 	 * we cannot simply called update_context_time()
5862 	 * because of locking issue as we can be called in
5863 	 * NMI context
5864 	 */
5865 	calc_timer_values(event, &now, &enabled, &running);
5866 
5867 	userpg = rb->user_page;
5868 	/*
5869 	 * Disable preemption to guarantee consistent time stamps are stored to
5870 	 * the user page.
5871 	 */
5872 	preempt_disable();
5873 	++userpg->lock;
5874 	barrier();
5875 	userpg->index = perf_event_index(event);
5876 	userpg->offset = perf_event_count(event);
5877 	if (userpg->index)
5878 		userpg->offset -= local64_read(&event->hw.prev_count);
5879 
5880 	userpg->time_enabled = enabled +
5881 			atomic64_read(&event->child_total_time_enabled);
5882 
5883 	userpg->time_running = running +
5884 			atomic64_read(&event->child_total_time_running);
5885 
5886 	arch_perf_update_userpage(event, userpg, now);
5887 
5888 	barrier();
5889 	++userpg->lock;
5890 	preempt_enable();
5891 unlock:
5892 	rcu_read_unlock();
5893 }
5894 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5895 
5896 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
5897 {
5898 	struct perf_event *event = vmf->vma->vm_file->private_data;
5899 	struct perf_buffer *rb;
5900 	vm_fault_t ret = VM_FAULT_SIGBUS;
5901 
5902 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
5903 		if (vmf->pgoff == 0)
5904 			ret = 0;
5905 		return ret;
5906 	}
5907 
5908 	rcu_read_lock();
5909 	rb = rcu_dereference(event->rb);
5910 	if (!rb)
5911 		goto unlock;
5912 
5913 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5914 		goto unlock;
5915 
5916 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5917 	if (!vmf->page)
5918 		goto unlock;
5919 
5920 	get_page(vmf->page);
5921 	vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5922 	vmf->page->index   = vmf->pgoff;
5923 
5924 	ret = 0;
5925 unlock:
5926 	rcu_read_unlock();
5927 
5928 	return ret;
5929 }
5930 
5931 static void ring_buffer_attach(struct perf_event *event,
5932 			       struct perf_buffer *rb)
5933 {
5934 	struct perf_buffer *old_rb = NULL;
5935 	unsigned long flags;
5936 
5937 	if (event->rb) {
5938 		/*
5939 		 * Should be impossible, we set this when removing
5940 		 * event->rb_entry and wait/clear when adding event->rb_entry.
5941 		 */
5942 		WARN_ON_ONCE(event->rcu_pending);
5943 
5944 		old_rb = event->rb;
5945 		spin_lock_irqsave(&old_rb->event_lock, flags);
5946 		list_del_rcu(&event->rb_entry);
5947 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
5948 
5949 		event->rcu_batches = get_state_synchronize_rcu();
5950 		event->rcu_pending = 1;
5951 	}
5952 
5953 	if (rb) {
5954 		if (event->rcu_pending) {
5955 			cond_synchronize_rcu(event->rcu_batches);
5956 			event->rcu_pending = 0;
5957 		}
5958 
5959 		spin_lock_irqsave(&rb->event_lock, flags);
5960 		list_add_rcu(&event->rb_entry, &rb->event_list);
5961 		spin_unlock_irqrestore(&rb->event_lock, flags);
5962 	}
5963 
5964 	/*
5965 	 * Avoid racing with perf_mmap_close(AUX): stop the event
5966 	 * before swizzling the event::rb pointer; if it's getting
5967 	 * unmapped, its aux_mmap_count will be 0 and it won't
5968 	 * restart. See the comment in __perf_pmu_output_stop().
5969 	 *
5970 	 * Data will inevitably be lost when set_output is done in
5971 	 * mid-air, but then again, whoever does it like this is
5972 	 * not in for the data anyway.
5973 	 */
5974 	if (has_aux(event))
5975 		perf_event_stop(event, 0);
5976 
5977 	rcu_assign_pointer(event->rb, rb);
5978 
5979 	if (old_rb) {
5980 		ring_buffer_put(old_rb);
5981 		/*
5982 		 * Since we detached before setting the new rb, so that we
5983 		 * could attach the new rb, we could have missed a wakeup.
5984 		 * Provide it now.
5985 		 */
5986 		wake_up_all(&event->waitq);
5987 	}
5988 }
5989 
5990 static void ring_buffer_wakeup(struct perf_event *event)
5991 {
5992 	struct perf_buffer *rb;
5993 
5994 	rcu_read_lock();
5995 	rb = rcu_dereference(event->rb);
5996 	if (rb) {
5997 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5998 			wake_up_all(&event->waitq);
5999 	}
6000 	rcu_read_unlock();
6001 }
6002 
6003 struct perf_buffer *ring_buffer_get(struct perf_event *event)
6004 {
6005 	struct perf_buffer *rb;
6006 
6007 	rcu_read_lock();
6008 	rb = rcu_dereference(event->rb);
6009 	if (rb) {
6010 		if (!refcount_inc_not_zero(&rb->refcount))
6011 			rb = NULL;
6012 	}
6013 	rcu_read_unlock();
6014 
6015 	return rb;
6016 }
6017 
6018 void ring_buffer_put(struct perf_buffer *rb)
6019 {
6020 	if (!refcount_dec_and_test(&rb->refcount))
6021 		return;
6022 
6023 	WARN_ON_ONCE(!list_empty(&rb->event_list));
6024 
6025 	call_rcu(&rb->rcu_head, rb_free_rcu);
6026 }
6027 
6028 static void perf_mmap_open(struct vm_area_struct *vma)
6029 {
6030 	struct perf_event *event = vma->vm_file->private_data;
6031 
6032 	atomic_inc(&event->mmap_count);
6033 	atomic_inc(&event->rb->mmap_count);
6034 
6035 	if (vma->vm_pgoff)
6036 		atomic_inc(&event->rb->aux_mmap_count);
6037 
6038 	if (event->pmu->event_mapped)
6039 		event->pmu->event_mapped(event, vma->vm_mm);
6040 }
6041 
6042 static void perf_pmu_output_stop(struct perf_event *event);
6043 
6044 /*
6045  * A buffer can be mmap()ed multiple times; either directly through the same
6046  * event, or through other events by use of perf_event_set_output().
6047  *
6048  * In order to undo the VM accounting done by perf_mmap() we need to destroy
6049  * the buffer here, where we still have a VM context. This means we need
6050  * to detach all events redirecting to us.
6051  */
6052 static void perf_mmap_close(struct vm_area_struct *vma)
6053 {
6054 	struct perf_event *event = vma->vm_file->private_data;
6055 	struct perf_buffer *rb = ring_buffer_get(event);
6056 	struct user_struct *mmap_user = rb->mmap_user;
6057 	int mmap_locked = rb->mmap_locked;
6058 	unsigned long size = perf_data_size(rb);
6059 	bool detach_rest = false;
6060 
6061 	if (event->pmu->event_unmapped)
6062 		event->pmu->event_unmapped(event, vma->vm_mm);
6063 
6064 	/*
6065 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
6066 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
6067 	 * serialize with perf_mmap here.
6068 	 */
6069 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
6070 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
6071 		/*
6072 		 * Stop all AUX events that are writing to this buffer,
6073 		 * so that we can free its AUX pages and corresponding PMU
6074 		 * data. Note that after rb::aux_mmap_count dropped to zero,
6075 		 * they won't start any more (see perf_aux_output_begin()).
6076 		 */
6077 		perf_pmu_output_stop(event);
6078 
6079 		/* now it's safe to free the pages */
6080 		atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
6081 		atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
6082 
6083 		/* this has to be the last one */
6084 		rb_free_aux(rb);
6085 		WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
6086 
6087 		mutex_unlock(&event->mmap_mutex);
6088 	}
6089 
6090 	if (atomic_dec_and_test(&rb->mmap_count))
6091 		detach_rest = true;
6092 
6093 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
6094 		goto out_put;
6095 
6096 	ring_buffer_attach(event, NULL);
6097 	mutex_unlock(&event->mmap_mutex);
6098 
6099 	/* If there's still other mmap()s of this buffer, we're done. */
6100 	if (!detach_rest)
6101 		goto out_put;
6102 
6103 	/*
6104 	 * No other mmap()s, detach from all other events that might redirect
6105 	 * into the now unreachable buffer. Somewhat complicated by the
6106 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
6107 	 */
6108 again:
6109 	rcu_read_lock();
6110 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
6111 		if (!atomic_long_inc_not_zero(&event->refcount)) {
6112 			/*
6113 			 * This event is en-route to free_event() which will
6114 			 * detach it and remove it from the list.
6115 			 */
6116 			continue;
6117 		}
6118 		rcu_read_unlock();
6119 
6120 		mutex_lock(&event->mmap_mutex);
6121 		/*
6122 		 * Check we didn't race with perf_event_set_output() which can
6123 		 * swizzle the rb from under us while we were waiting to
6124 		 * acquire mmap_mutex.
6125 		 *
6126 		 * If we find a different rb; ignore this event, a next
6127 		 * iteration will no longer find it on the list. We have to
6128 		 * still restart the iteration to make sure we're not now
6129 		 * iterating the wrong list.
6130 		 */
6131 		if (event->rb == rb)
6132 			ring_buffer_attach(event, NULL);
6133 
6134 		mutex_unlock(&event->mmap_mutex);
6135 		put_event(event);
6136 
6137 		/*
6138 		 * Restart the iteration; either we're on the wrong list or
6139 		 * destroyed its integrity by doing a deletion.
6140 		 */
6141 		goto again;
6142 	}
6143 	rcu_read_unlock();
6144 
6145 	/*
6146 	 * It could be there's still a few 0-ref events on the list; they'll
6147 	 * get cleaned up by free_event() -- they'll also still have their
6148 	 * ref on the rb and will free it whenever they are done with it.
6149 	 *
6150 	 * Aside from that, this buffer is 'fully' detached and unmapped,
6151 	 * undo the VM accounting.
6152 	 */
6153 
6154 	atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
6155 			&mmap_user->locked_vm);
6156 	atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
6157 	free_uid(mmap_user);
6158 
6159 out_put:
6160 	ring_buffer_put(rb); /* could be last */
6161 }
6162 
6163 static const struct vm_operations_struct perf_mmap_vmops = {
6164 	.open		= perf_mmap_open,
6165 	.close		= perf_mmap_close, /* non mergeable */
6166 	.fault		= perf_mmap_fault,
6167 	.page_mkwrite	= perf_mmap_fault,
6168 };
6169 
6170 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
6171 {
6172 	struct perf_event *event = file->private_data;
6173 	unsigned long user_locked, user_lock_limit;
6174 	struct user_struct *user = current_user();
6175 	struct perf_buffer *rb = NULL;
6176 	unsigned long locked, lock_limit;
6177 	unsigned long vma_size;
6178 	unsigned long nr_pages;
6179 	long user_extra = 0, extra = 0;
6180 	int ret = 0, flags = 0;
6181 
6182 	/*
6183 	 * Don't allow mmap() of inherited per-task counters. This would
6184 	 * create a performance issue due to all children writing to the
6185 	 * same rb.
6186 	 */
6187 	if (event->cpu == -1 && event->attr.inherit)
6188 		return -EINVAL;
6189 
6190 	if (!(vma->vm_flags & VM_SHARED))
6191 		return -EINVAL;
6192 
6193 	ret = security_perf_event_read(event);
6194 	if (ret)
6195 		return ret;
6196 
6197 	vma_size = vma->vm_end - vma->vm_start;
6198 
6199 	if (vma->vm_pgoff == 0) {
6200 		nr_pages = (vma_size / PAGE_SIZE) - 1;
6201 	} else {
6202 		/*
6203 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6204 		 * mapped, all subsequent mappings should have the same size
6205 		 * and offset. Must be above the normal perf buffer.
6206 		 */
6207 		u64 aux_offset, aux_size;
6208 
6209 		if (!event->rb)
6210 			return -EINVAL;
6211 
6212 		nr_pages = vma_size / PAGE_SIZE;
6213 
6214 		mutex_lock(&event->mmap_mutex);
6215 		ret = -EINVAL;
6216 
6217 		rb = event->rb;
6218 		if (!rb)
6219 			goto aux_unlock;
6220 
6221 		aux_offset = READ_ONCE(rb->user_page->aux_offset);
6222 		aux_size = READ_ONCE(rb->user_page->aux_size);
6223 
6224 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6225 			goto aux_unlock;
6226 
6227 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6228 			goto aux_unlock;
6229 
6230 		/* already mapped with a different offset */
6231 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6232 			goto aux_unlock;
6233 
6234 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6235 			goto aux_unlock;
6236 
6237 		/* already mapped with a different size */
6238 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6239 			goto aux_unlock;
6240 
6241 		if (!is_power_of_2(nr_pages))
6242 			goto aux_unlock;
6243 
6244 		if (!atomic_inc_not_zero(&rb->mmap_count))
6245 			goto aux_unlock;
6246 
6247 		if (rb_has_aux(rb)) {
6248 			atomic_inc(&rb->aux_mmap_count);
6249 			ret = 0;
6250 			goto unlock;
6251 		}
6252 
6253 		atomic_set(&rb->aux_mmap_count, 1);
6254 		user_extra = nr_pages;
6255 
6256 		goto accounting;
6257 	}
6258 
6259 	/*
6260 	 * If we have rb pages ensure they're a power-of-two number, so we
6261 	 * can do bitmasks instead of modulo.
6262 	 */
6263 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
6264 		return -EINVAL;
6265 
6266 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
6267 		return -EINVAL;
6268 
6269 	WARN_ON_ONCE(event->ctx->parent_ctx);
6270 again:
6271 	mutex_lock(&event->mmap_mutex);
6272 	if (event->rb) {
6273 		if (event->rb->nr_pages != nr_pages) {
6274 			ret = -EINVAL;
6275 			goto unlock;
6276 		}
6277 
6278 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6279 			/*
6280 			 * Raced against perf_mmap_close() through
6281 			 * perf_event_set_output(). Try again, hope for better
6282 			 * luck.
6283 			 */
6284 			mutex_unlock(&event->mmap_mutex);
6285 			goto again;
6286 		}
6287 
6288 		goto unlock;
6289 	}
6290 
6291 	user_extra = nr_pages + 1;
6292 
6293 accounting:
6294 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6295 
6296 	/*
6297 	 * Increase the limit linearly with more CPUs:
6298 	 */
6299 	user_lock_limit *= num_online_cpus();
6300 
6301 	user_locked = atomic_long_read(&user->locked_vm);
6302 
6303 	/*
6304 	 * sysctl_perf_event_mlock may have changed, so that
6305 	 *     user->locked_vm > user_lock_limit
6306 	 */
6307 	if (user_locked > user_lock_limit)
6308 		user_locked = user_lock_limit;
6309 	user_locked += user_extra;
6310 
6311 	if (user_locked > user_lock_limit) {
6312 		/*
6313 		 * charge locked_vm until it hits user_lock_limit;
6314 		 * charge the rest from pinned_vm
6315 		 */
6316 		extra = user_locked - user_lock_limit;
6317 		user_extra -= extra;
6318 	}
6319 
6320 	lock_limit = rlimit(RLIMIT_MEMLOCK);
6321 	lock_limit >>= PAGE_SHIFT;
6322 	locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
6323 
6324 	if ((locked > lock_limit) && perf_is_paranoid() &&
6325 		!capable(CAP_IPC_LOCK)) {
6326 		ret = -EPERM;
6327 		goto unlock;
6328 	}
6329 
6330 	WARN_ON(!rb && event->rb);
6331 
6332 	if (vma->vm_flags & VM_WRITE)
6333 		flags |= RING_BUFFER_WRITABLE;
6334 
6335 	if (!rb) {
6336 		rb = rb_alloc(nr_pages,
6337 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
6338 			      event->cpu, flags);
6339 
6340 		if (!rb) {
6341 			ret = -ENOMEM;
6342 			goto unlock;
6343 		}
6344 
6345 		atomic_set(&rb->mmap_count, 1);
6346 		rb->mmap_user = get_current_user();
6347 		rb->mmap_locked = extra;
6348 
6349 		ring_buffer_attach(event, rb);
6350 
6351 		perf_event_update_time(event);
6352 		perf_set_shadow_time(event, event->ctx);
6353 		perf_event_init_userpage(event);
6354 		perf_event_update_userpage(event);
6355 	} else {
6356 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6357 				   event->attr.aux_watermark, flags);
6358 		if (!ret)
6359 			rb->aux_mmap_locked = extra;
6360 	}
6361 
6362 unlock:
6363 	if (!ret) {
6364 		atomic_long_add(user_extra, &user->locked_vm);
6365 		atomic64_add(extra, &vma->vm_mm->pinned_vm);
6366 
6367 		atomic_inc(&event->mmap_count);
6368 	} else if (rb) {
6369 		atomic_dec(&rb->mmap_count);
6370 	}
6371 aux_unlock:
6372 	mutex_unlock(&event->mmap_mutex);
6373 
6374 	/*
6375 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
6376 	 * vma.
6377 	 */
6378 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
6379 	vma->vm_ops = &perf_mmap_vmops;
6380 
6381 	if (event->pmu->event_mapped)
6382 		event->pmu->event_mapped(event, vma->vm_mm);
6383 
6384 	return ret;
6385 }
6386 
6387 static int perf_fasync(int fd, struct file *filp, int on)
6388 {
6389 	struct inode *inode = file_inode(filp);
6390 	struct perf_event *event = filp->private_data;
6391 	int retval;
6392 
6393 	inode_lock(inode);
6394 	retval = fasync_helper(fd, filp, on, &event->fasync);
6395 	inode_unlock(inode);
6396 
6397 	if (retval < 0)
6398 		return retval;
6399 
6400 	return 0;
6401 }
6402 
6403 static const struct file_operations perf_fops = {
6404 	.llseek			= no_llseek,
6405 	.release		= perf_release,
6406 	.read			= perf_read,
6407 	.poll			= perf_poll,
6408 	.unlocked_ioctl		= perf_ioctl,
6409 	.compat_ioctl		= perf_compat_ioctl,
6410 	.mmap			= perf_mmap,
6411 	.fasync			= perf_fasync,
6412 };
6413 
6414 /*
6415  * Perf event wakeup
6416  *
6417  * If there's data, ensure we set the poll() state and publish everything
6418  * to user-space before waking everybody up.
6419  */
6420 
6421 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
6422 {
6423 	/* only the parent has fasync state */
6424 	if (event->parent)
6425 		event = event->parent;
6426 	return &event->fasync;
6427 }
6428 
6429 void perf_event_wakeup(struct perf_event *event)
6430 {
6431 	ring_buffer_wakeup(event);
6432 
6433 	if (event->pending_kill) {
6434 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6435 		event->pending_kill = 0;
6436 	}
6437 }
6438 
6439 static void perf_sigtrap(struct perf_event *event)
6440 {
6441 	/*
6442 	 * We'd expect this to only occur if the irq_work is delayed and either
6443 	 * ctx->task or current has changed in the meantime. This can be the
6444 	 * case on architectures that do not implement arch_irq_work_raise().
6445 	 */
6446 	if (WARN_ON_ONCE(event->ctx->task != current))
6447 		return;
6448 
6449 	/*
6450 	 * perf_pending_event() can race with the task exiting.
6451 	 */
6452 	if (current->flags & PF_EXITING)
6453 		return;
6454 
6455 	force_sig_perf((void __user *)event->pending_addr,
6456 		       event->attr.type, event->attr.sig_data);
6457 }
6458 
6459 static void perf_pending_event_disable(struct perf_event *event)
6460 {
6461 	int cpu = READ_ONCE(event->pending_disable);
6462 
6463 	if (cpu < 0)
6464 		return;
6465 
6466 	if (cpu == smp_processor_id()) {
6467 		WRITE_ONCE(event->pending_disable, -1);
6468 
6469 		if (event->attr.sigtrap) {
6470 			perf_sigtrap(event);
6471 			atomic_set_release(&event->event_limit, 1); /* rearm event */
6472 			return;
6473 		}
6474 
6475 		perf_event_disable_local(event);
6476 		return;
6477 	}
6478 
6479 	/*
6480 	 *  CPU-A			CPU-B
6481 	 *
6482 	 *  perf_event_disable_inatomic()
6483 	 *    @pending_disable = CPU-A;
6484 	 *    irq_work_queue();
6485 	 *
6486 	 *  sched-out
6487 	 *    @pending_disable = -1;
6488 	 *
6489 	 *				sched-in
6490 	 *				perf_event_disable_inatomic()
6491 	 *				  @pending_disable = CPU-B;
6492 	 *				  irq_work_queue(); // FAILS
6493 	 *
6494 	 *  irq_work_run()
6495 	 *    perf_pending_event()
6496 	 *
6497 	 * But the event runs on CPU-B and wants disabling there.
6498 	 */
6499 	irq_work_queue_on(&event->pending, cpu);
6500 }
6501 
6502 static void perf_pending_event(struct irq_work *entry)
6503 {
6504 	struct perf_event *event = container_of(entry, struct perf_event, pending);
6505 	int rctx;
6506 
6507 	rctx = perf_swevent_get_recursion_context();
6508 	/*
6509 	 * If we 'fail' here, that's OK, it means recursion is already disabled
6510 	 * and we won't recurse 'further'.
6511 	 */
6512 
6513 	perf_pending_event_disable(event);
6514 
6515 	if (event->pending_wakeup) {
6516 		event->pending_wakeup = 0;
6517 		perf_event_wakeup(event);
6518 	}
6519 
6520 	if (rctx >= 0)
6521 		perf_swevent_put_recursion_context(rctx);
6522 }
6523 
6524 /*
6525  * We assume there is only KVM supporting the callbacks.
6526  * Later on, we might change it to a list if there is
6527  * another virtualization implementation supporting the callbacks.
6528  */
6529 struct perf_guest_info_callbacks *perf_guest_cbs;
6530 
6531 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6532 {
6533 	perf_guest_cbs = cbs;
6534 	return 0;
6535 }
6536 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6537 
6538 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6539 {
6540 	perf_guest_cbs = NULL;
6541 	return 0;
6542 }
6543 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6544 
6545 static void
6546 perf_output_sample_regs(struct perf_output_handle *handle,
6547 			struct pt_regs *regs, u64 mask)
6548 {
6549 	int bit;
6550 	DECLARE_BITMAP(_mask, 64);
6551 
6552 	bitmap_from_u64(_mask, mask);
6553 	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6554 		u64 val;
6555 
6556 		val = perf_reg_value(regs, bit);
6557 		perf_output_put(handle, val);
6558 	}
6559 }
6560 
6561 static void perf_sample_regs_user(struct perf_regs *regs_user,
6562 				  struct pt_regs *regs)
6563 {
6564 	if (user_mode(regs)) {
6565 		regs_user->abi = perf_reg_abi(current);
6566 		regs_user->regs = regs;
6567 	} else if (!(current->flags & PF_KTHREAD)) {
6568 		perf_get_regs_user(regs_user, regs);
6569 	} else {
6570 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6571 		regs_user->regs = NULL;
6572 	}
6573 }
6574 
6575 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6576 				  struct pt_regs *regs)
6577 {
6578 	regs_intr->regs = regs;
6579 	regs_intr->abi  = perf_reg_abi(current);
6580 }
6581 
6582 
6583 /*
6584  * Get remaining task size from user stack pointer.
6585  *
6586  * It'd be better to take stack vma map and limit this more
6587  * precisely, but there's no way to get it safely under interrupt,
6588  * so using TASK_SIZE as limit.
6589  */
6590 static u64 perf_ustack_task_size(struct pt_regs *regs)
6591 {
6592 	unsigned long addr = perf_user_stack_pointer(regs);
6593 
6594 	if (!addr || addr >= TASK_SIZE)
6595 		return 0;
6596 
6597 	return TASK_SIZE - addr;
6598 }
6599 
6600 static u16
6601 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6602 			struct pt_regs *regs)
6603 {
6604 	u64 task_size;
6605 
6606 	/* No regs, no stack pointer, no dump. */
6607 	if (!regs)
6608 		return 0;
6609 
6610 	/*
6611 	 * Check if we fit in with the requested stack size into the:
6612 	 * - TASK_SIZE
6613 	 *   If we don't, we limit the size to the TASK_SIZE.
6614 	 *
6615 	 * - remaining sample size
6616 	 *   If we don't, we customize the stack size to
6617 	 *   fit in to the remaining sample size.
6618 	 */
6619 
6620 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6621 	stack_size = min(stack_size, (u16) task_size);
6622 
6623 	/* Current header size plus static size and dynamic size. */
6624 	header_size += 2 * sizeof(u64);
6625 
6626 	/* Do we fit in with the current stack dump size? */
6627 	if ((u16) (header_size + stack_size) < header_size) {
6628 		/*
6629 		 * If we overflow the maximum size for the sample,
6630 		 * we customize the stack dump size to fit in.
6631 		 */
6632 		stack_size = USHRT_MAX - header_size - sizeof(u64);
6633 		stack_size = round_up(stack_size, sizeof(u64));
6634 	}
6635 
6636 	return stack_size;
6637 }
6638 
6639 static void
6640 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6641 			  struct pt_regs *regs)
6642 {
6643 	/* Case of a kernel thread, nothing to dump */
6644 	if (!regs) {
6645 		u64 size = 0;
6646 		perf_output_put(handle, size);
6647 	} else {
6648 		unsigned long sp;
6649 		unsigned int rem;
6650 		u64 dyn_size;
6651 		mm_segment_t fs;
6652 
6653 		/*
6654 		 * We dump:
6655 		 * static size
6656 		 *   - the size requested by user or the best one we can fit
6657 		 *     in to the sample max size
6658 		 * data
6659 		 *   - user stack dump data
6660 		 * dynamic size
6661 		 *   - the actual dumped size
6662 		 */
6663 
6664 		/* Static size. */
6665 		perf_output_put(handle, dump_size);
6666 
6667 		/* Data. */
6668 		sp = perf_user_stack_pointer(regs);
6669 		fs = force_uaccess_begin();
6670 		rem = __output_copy_user(handle, (void *) sp, dump_size);
6671 		force_uaccess_end(fs);
6672 		dyn_size = dump_size - rem;
6673 
6674 		perf_output_skip(handle, rem);
6675 
6676 		/* Dynamic size. */
6677 		perf_output_put(handle, dyn_size);
6678 	}
6679 }
6680 
6681 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
6682 					  struct perf_sample_data *data,
6683 					  size_t size)
6684 {
6685 	struct perf_event *sampler = event->aux_event;
6686 	struct perf_buffer *rb;
6687 
6688 	data->aux_size = 0;
6689 
6690 	if (!sampler)
6691 		goto out;
6692 
6693 	if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
6694 		goto out;
6695 
6696 	if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
6697 		goto out;
6698 
6699 	rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6700 	if (!rb)
6701 		goto out;
6702 
6703 	/*
6704 	 * If this is an NMI hit inside sampling code, don't take
6705 	 * the sample. See also perf_aux_sample_output().
6706 	 */
6707 	if (READ_ONCE(rb->aux_in_sampling)) {
6708 		data->aux_size = 0;
6709 	} else {
6710 		size = min_t(size_t, size, perf_aux_size(rb));
6711 		data->aux_size = ALIGN(size, sizeof(u64));
6712 	}
6713 	ring_buffer_put(rb);
6714 
6715 out:
6716 	return data->aux_size;
6717 }
6718 
6719 static long perf_pmu_snapshot_aux(struct perf_buffer *rb,
6720                                  struct perf_event *event,
6721                                  struct perf_output_handle *handle,
6722                                  unsigned long size)
6723 {
6724 	unsigned long flags;
6725 	long ret;
6726 
6727 	/*
6728 	 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
6729 	 * paths. If we start calling them in NMI context, they may race with
6730 	 * the IRQ ones, that is, for example, re-starting an event that's just
6731 	 * been stopped, which is why we're using a separate callback that
6732 	 * doesn't change the event state.
6733 	 *
6734 	 * IRQs need to be disabled to prevent IPIs from racing with us.
6735 	 */
6736 	local_irq_save(flags);
6737 	/*
6738 	 * Guard against NMI hits inside the critical section;
6739 	 * see also perf_prepare_sample_aux().
6740 	 */
6741 	WRITE_ONCE(rb->aux_in_sampling, 1);
6742 	barrier();
6743 
6744 	ret = event->pmu->snapshot_aux(event, handle, size);
6745 
6746 	barrier();
6747 	WRITE_ONCE(rb->aux_in_sampling, 0);
6748 	local_irq_restore(flags);
6749 
6750 	return ret;
6751 }
6752 
6753 static void perf_aux_sample_output(struct perf_event *event,
6754 				   struct perf_output_handle *handle,
6755 				   struct perf_sample_data *data)
6756 {
6757 	struct perf_event *sampler = event->aux_event;
6758 	struct perf_buffer *rb;
6759 	unsigned long pad;
6760 	long size;
6761 
6762 	if (WARN_ON_ONCE(!sampler || !data->aux_size))
6763 		return;
6764 
6765 	rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6766 	if (!rb)
6767 		return;
6768 
6769 	size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
6770 
6771 	/*
6772 	 * An error here means that perf_output_copy() failed (returned a
6773 	 * non-zero surplus that it didn't copy), which in its current
6774 	 * enlightened implementation is not possible. If that changes, we'd
6775 	 * like to know.
6776 	 */
6777 	if (WARN_ON_ONCE(size < 0))
6778 		goto out_put;
6779 
6780 	/*
6781 	 * The pad comes from ALIGN()ing data->aux_size up to u64 in
6782 	 * perf_prepare_sample_aux(), so should not be more than that.
6783 	 */
6784 	pad = data->aux_size - size;
6785 	if (WARN_ON_ONCE(pad >= sizeof(u64)))
6786 		pad = 8;
6787 
6788 	if (pad) {
6789 		u64 zero = 0;
6790 		perf_output_copy(handle, &zero, pad);
6791 	}
6792 
6793 out_put:
6794 	ring_buffer_put(rb);
6795 }
6796 
6797 static void __perf_event_header__init_id(struct perf_event_header *header,
6798 					 struct perf_sample_data *data,
6799 					 struct perf_event *event)
6800 {
6801 	u64 sample_type = event->attr.sample_type;
6802 
6803 	data->type = sample_type;
6804 	header->size += event->id_header_size;
6805 
6806 	if (sample_type & PERF_SAMPLE_TID) {
6807 		/* namespace issues */
6808 		data->tid_entry.pid = perf_event_pid(event, current);
6809 		data->tid_entry.tid = perf_event_tid(event, current);
6810 	}
6811 
6812 	if (sample_type & PERF_SAMPLE_TIME)
6813 		data->time = perf_event_clock(event);
6814 
6815 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6816 		data->id = primary_event_id(event);
6817 
6818 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6819 		data->stream_id = event->id;
6820 
6821 	if (sample_type & PERF_SAMPLE_CPU) {
6822 		data->cpu_entry.cpu	 = raw_smp_processor_id();
6823 		data->cpu_entry.reserved = 0;
6824 	}
6825 }
6826 
6827 void perf_event_header__init_id(struct perf_event_header *header,
6828 				struct perf_sample_data *data,
6829 				struct perf_event *event)
6830 {
6831 	if (event->attr.sample_id_all)
6832 		__perf_event_header__init_id(header, data, event);
6833 }
6834 
6835 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6836 					   struct perf_sample_data *data)
6837 {
6838 	u64 sample_type = data->type;
6839 
6840 	if (sample_type & PERF_SAMPLE_TID)
6841 		perf_output_put(handle, data->tid_entry);
6842 
6843 	if (sample_type & PERF_SAMPLE_TIME)
6844 		perf_output_put(handle, data->time);
6845 
6846 	if (sample_type & PERF_SAMPLE_ID)
6847 		perf_output_put(handle, data->id);
6848 
6849 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6850 		perf_output_put(handle, data->stream_id);
6851 
6852 	if (sample_type & PERF_SAMPLE_CPU)
6853 		perf_output_put(handle, data->cpu_entry);
6854 
6855 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
6856 		perf_output_put(handle, data->id);
6857 }
6858 
6859 void perf_event__output_id_sample(struct perf_event *event,
6860 				  struct perf_output_handle *handle,
6861 				  struct perf_sample_data *sample)
6862 {
6863 	if (event->attr.sample_id_all)
6864 		__perf_event__output_id_sample(handle, sample);
6865 }
6866 
6867 static void perf_output_read_one(struct perf_output_handle *handle,
6868 				 struct perf_event *event,
6869 				 u64 enabled, u64 running)
6870 {
6871 	u64 read_format = event->attr.read_format;
6872 	u64 values[4];
6873 	int n = 0;
6874 
6875 	values[n++] = perf_event_count(event);
6876 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6877 		values[n++] = enabled +
6878 			atomic64_read(&event->child_total_time_enabled);
6879 	}
6880 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6881 		values[n++] = running +
6882 			atomic64_read(&event->child_total_time_running);
6883 	}
6884 	if (read_format & PERF_FORMAT_ID)
6885 		values[n++] = primary_event_id(event);
6886 
6887 	__output_copy(handle, values, n * sizeof(u64));
6888 }
6889 
6890 static void perf_output_read_group(struct perf_output_handle *handle,
6891 			    struct perf_event *event,
6892 			    u64 enabled, u64 running)
6893 {
6894 	struct perf_event *leader = event->group_leader, *sub;
6895 	u64 read_format = event->attr.read_format;
6896 	u64 values[5];
6897 	int n = 0;
6898 
6899 	values[n++] = 1 + leader->nr_siblings;
6900 
6901 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6902 		values[n++] = enabled;
6903 
6904 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6905 		values[n++] = running;
6906 
6907 	if ((leader != event) &&
6908 	    (leader->state == PERF_EVENT_STATE_ACTIVE))
6909 		leader->pmu->read(leader);
6910 
6911 	values[n++] = perf_event_count(leader);
6912 	if (read_format & PERF_FORMAT_ID)
6913 		values[n++] = primary_event_id(leader);
6914 
6915 	__output_copy(handle, values, n * sizeof(u64));
6916 
6917 	for_each_sibling_event(sub, leader) {
6918 		n = 0;
6919 
6920 		if ((sub != event) &&
6921 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
6922 			sub->pmu->read(sub);
6923 
6924 		values[n++] = perf_event_count(sub);
6925 		if (read_format & PERF_FORMAT_ID)
6926 			values[n++] = primary_event_id(sub);
6927 
6928 		__output_copy(handle, values, n * sizeof(u64));
6929 	}
6930 }
6931 
6932 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6933 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
6934 
6935 /*
6936  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6937  *
6938  * The problem is that its both hard and excessively expensive to iterate the
6939  * child list, not to mention that its impossible to IPI the children running
6940  * on another CPU, from interrupt/NMI context.
6941  */
6942 static void perf_output_read(struct perf_output_handle *handle,
6943 			     struct perf_event *event)
6944 {
6945 	u64 enabled = 0, running = 0, now;
6946 	u64 read_format = event->attr.read_format;
6947 
6948 	/*
6949 	 * compute total_time_enabled, total_time_running
6950 	 * based on snapshot values taken when the event
6951 	 * was last scheduled in.
6952 	 *
6953 	 * we cannot simply called update_context_time()
6954 	 * because of locking issue as we are called in
6955 	 * NMI context
6956 	 */
6957 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
6958 		calc_timer_values(event, &now, &enabled, &running);
6959 
6960 	if (event->attr.read_format & PERF_FORMAT_GROUP)
6961 		perf_output_read_group(handle, event, enabled, running);
6962 	else
6963 		perf_output_read_one(handle, event, enabled, running);
6964 }
6965 
6966 static inline bool perf_sample_save_hw_index(struct perf_event *event)
6967 {
6968 	return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX;
6969 }
6970 
6971 void perf_output_sample(struct perf_output_handle *handle,
6972 			struct perf_event_header *header,
6973 			struct perf_sample_data *data,
6974 			struct perf_event *event)
6975 {
6976 	u64 sample_type = data->type;
6977 
6978 	perf_output_put(handle, *header);
6979 
6980 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
6981 		perf_output_put(handle, data->id);
6982 
6983 	if (sample_type & PERF_SAMPLE_IP)
6984 		perf_output_put(handle, data->ip);
6985 
6986 	if (sample_type & PERF_SAMPLE_TID)
6987 		perf_output_put(handle, data->tid_entry);
6988 
6989 	if (sample_type & PERF_SAMPLE_TIME)
6990 		perf_output_put(handle, data->time);
6991 
6992 	if (sample_type & PERF_SAMPLE_ADDR)
6993 		perf_output_put(handle, data->addr);
6994 
6995 	if (sample_type & PERF_SAMPLE_ID)
6996 		perf_output_put(handle, data->id);
6997 
6998 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6999 		perf_output_put(handle, data->stream_id);
7000 
7001 	if (sample_type & PERF_SAMPLE_CPU)
7002 		perf_output_put(handle, data->cpu_entry);
7003 
7004 	if (sample_type & PERF_SAMPLE_PERIOD)
7005 		perf_output_put(handle, data->period);
7006 
7007 	if (sample_type & PERF_SAMPLE_READ)
7008 		perf_output_read(handle, event);
7009 
7010 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7011 		int size = 1;
7012 
7013 		size += data->callchain->nr;
7014 		size *= sizeof(u64);
7015 		__output_copy(handle, data->callchain, size);
7016 	}
7017 
7018 	if (sample_type & PERF_SAMPLE_RAW) {
7019 		struct perf_raw_record *raw = data->raw;
7020 
7021 		if (raw) {
7022 			struct perf_raw_frag *frag = &raw->frag;
7023 
7024 			perf_output_put(handle, raw->size);
7025 			do {
7026 				if (frag->copy) {
7027 					__output_custom(handle, frag->copy,
7028 							frag->data, frag->size);
7029 				} else {
7030 					__output_copy(handle, frag->data,
7031 						      frag->size);
7032 				}
7033 				if (perf_raw_frag_last(frag))
7034 					break;
7035 				frag = frag->next;
7036 			} while (1);
7037 			if (frag->pad)
7038 				__output_skip(handle, NULL, frag->pad);
7039 		} else {
7040 			struct {
7041 				u32	size;
7042 				u32	data;
7043 			} raw = {
7044 				.size = sizeof(u32),
7045 				.data = 0,
7046 			};
7047 			perf_output_put(handle, raw);
7048 		}
7049 	}
7050 
7051 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7052 		if (data->br_stack) {
7053 			size_t size;
7054 
7055 			size = data->br_stack->nr
7056 			     * sizeof(struct perf_branch_entry);
7057 
7058 			perf_output_put(handle, data->br_stack->nr);
7059 			if (perf_sample_save_hw_index(event))
7060 				perf_output_put(handle, data->br_stack->hw_idx);
7061 			perf_output_copy(handle, data->br_stack->entries, size);
7062 		} else {
7063 			/*
7064 			 * we always store at least the value of nr
7065 			 */
7066 			u64 nr = 0;
7067 			perf_output_put(handle, nr);
7068 		}
7069 	}
7070 
7071 	if (sample_type & PERF_SAMPLE_REGS_USER) {
7072 		u64 abi = data->regs_user.abi;
7073 
7074 		/*
7075 		 * If there are no regs to dump, notice it through
7076 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7077 		 */
7078 		perf_output_put(handle, abi);
7079 
7080 		if (abi) {
7081 			u64 mask = event->attr.sample_regs_user;
7082 			perf_output_sample_regs(handle,
7083 						data->regs_user.regs,
7084 						mask);
7085 		}
7086 	}
7087 
7088 	if (sample_type & PERF_SAMPLE_STACK_USER) {
7089 		perf_output_sample_ustack(handle,
7090 					  data->stack_user_size,
7091 					  data->regs_user.regs);
7092 	}
7093 
7094 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
7095 		perf_output_put(handle, data->weight.full);
7096 
7097 	if (sample_type & PERF_SAMPLE_DATA_SRC)
7098 		perf_output_put(handle, data->data_src.val);
7099 
7100 	if (sample_type & PERF_SAMPLE_TRANSACTION)
7101 		perf_output_put(handle, data->txn);
7102 
7103 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
7104 		u64 abi = data->regs_intr.abi;
7105 		/*
7106 		 * If there are no regs to dump, notice it through
7107 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7108 		 */
7109 		perf_output_put(handle, abi);
7110 
7111 		if (abi) {
7112 			u64 mask = event->attr.sample_regs_intr;
7113 
7114 			perf_output_sample_regs(handle,
7115 						data->regs_intr.regs,
7116 						mask);
7117 		}
7118 	}
7119 
7120 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7121 		perf_output_put(handle, data->phys_addr);
7122 
7123 	if (sample_type & PERF_SAMPLE_CGROUP)
7124 		perf_output_put(handle, data->cgroup);
7125 
7126 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7127 		perf_output_put(handle, data->data_page_size);
7128 
7129 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7130 		perf_output_put(handle, data->code_page_size);
7131 
7132 	if (sample_type & PERF_SAMPLE_AUX) {
7133 		perf_output_put(handle, data->aux_size);
7134 
7135 		if (data->aux_size)
7136 			perf_aux_sample_output(event, handle, data);
7137 	}
7138 
7139 	if (!event->attr.watermark) {
7140 		int wakeup_events = event->attr.wakeup_events;
7141 
7142 		if (wakeup_events) {
7143 			struct perf_buffer *rb = handle->rb;
7144 			int events = local_inc_return(&rb->events);
7145 
7146 			if (events >= wakeup_events) {
7147 				local_sub(wakeup_events, &rb->events);
7148 				local_inc(&rb->wakeup);
7149 			}
7150 		}
7151 	}
7152 }
7153 
7154 static u64 perf_virt_to_phys(u64 virt)
7155 {
7156 	u64 phys_addr = 0;
7157 
7158 	if (!virt)
7159 		return 0;
7160 
7161 	if (virt >= TASK_SIZE) {
7162 		/* If it's vmalloc()d memory, leave phys_addr as 0 */
7163 		if (virt_addr_valid((void *)(uintptr_t)virt) &&
7164 		    !(virt >= VMALLOC_START && virt < VMALLOC_END))
7165 			phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
7166 	} else {
7167 		/*
7168 		 * Walking the pages tables for user address.
7169 		 * Interrupts are disabled, so it prevents any tear down
7170 		 * of the page tables.
7171 		 * Try IRQ-safe get_user_page_fast_only first.
7172 		 * If failed, leave phys_addr as 0.
7173 		 */
7174 		if (current->mm != NULL) {
7175 			struct page *p;
7176 
7177 			pagefault_disable();
7178 			if (get_user_page_fast_only(virt, 0, &p)) {
7179 				phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
7180 				put_page(p);
7181 			}
7182 			pagefault_enable();
7183 		}
7184 	}
7185 
7186 	return phys_addr;
7187 }
7188 
7189 /*
7190  * Return the pagetable size of a given virtual address.
7191  */
7192 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr)
7193 {
7194 	u64 size = 0;
7195 
7196 #ifdef CONFIG_HAVE_FAST_GUP
7197 	pgd_t *pgdp, pgd;
7198 	p4d_t *p4dp, p4d;
7199 	pud_t *pudp, pud;
7200 	pmd_t *pmdp, pmd;
7201 	pte_t *ptep, pte;
7202 
7203 	pgdp = pgd_offset(mm, addr);
7204 	pgd = READ_ONCE(*pgdp);
7205 	if (pgd_none(pgd))
7206 		return 0;
7207 
7208 	if (pgd_leaf(pgd))
7209 		return pgd_leaf_size(pgd);
7210 
7211 	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
7212 	p4d = READ_ONCE(*p4dp);
7213 	if (!p4d_present(p4d))
7214 		return 0;
7215 
7216 	if (p4d_leaf(p4d))
7217 		return p4d_leaf_size(p4d);
7218 
7219 	pudp = pud_offset_lockless(p4dp, p4d, addr);
7220 	pud = READ_ONCE(*pudp);
7221 	if (!pud_present(pud))
7222 		return 0;
7223 
7224 	if (pud_leaf(pud))
7225 		return pud_leaf_size(pud);
7226 
7227 	pmdp = pmd_offset_lockless(pudp, pud, addr);
7228 	pmd = READ_ONCE(*pmdp);
7229 	if (!pmd_present(pmd))
7230 		return 0;
7231 
7232 	if (pmd_leaf(pmd))
7233 		return pmd_leaf_size(pmd);
7234 
7235 	ptep = pte_offset_map(&pmd, addr);
7236 	pte = ptep_get_lockless(ptep);
7237 	if (pte_present(pte))
7238 		size = pte_leaf_size(pte);
7239 	pte_unmap(ptep);
7240 #endif /* CONFIG_HAVE_FAST_GUP */
7241 
7242 	return size;
7243 }
7244 
7245 static u64 perf_get_page_size(unsigned long addr)
7246 {
7247 	struct mm_struct *mm;
7248 	unsigned long flags;
7249 	u64 size;
7250 
7251 	if (!addr)
7252 		return 0;
7253 
7254 	/*
7255 	 * Software page-table walkers must disable IRQs,
7256 	 * which prevents any tear down of the page tables.
7257 	 */
7258 	local_irq_save(flags);
7259 
7260 	mm = current->mm;
7261 	if (!mm) {
7262 		/*
7263 		 * For kernel threads and the like, use init_mm so that
7264 		 * we can find kernel memory.
7265 		 */
7266 		mm = &init_mm;
7267 	}
7268 
7269 	size = perf_get_pgtable_size(mm, addr);
7270 
7271 	local_irq_restore(flags);
7272 
7273 	return size;
7274 }
7275 
7276 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
7277 
7278 struct perf_callchain_entry *
7279 perf_callchain(struct perf_event *event, struct pt_regs *regs)
7280 {
7281 	bool kernel = !event->attr.exclude_callchain_kernel;
7282 	bool user   = !event->attr.exclude_callchain_user;
7283 	/* Disallow cross-task user callchains. */
7284 	bool crosstask = event->ctx->task && event->ctx->task != current;
7285 	const u32 max_stack = event->attr.sample_max_stack;
7286 	struct perf_callchain_entry *callchain;
7287 
7288 	if (!kernel && !user)
7289 		return &__empty_callchain;
7290 
7291 	callchain = get_perf_callchain(regs, 0, kernel, user,
7292 				       max_stack, crosstask, true);
7293 	return callchain ?: &__empty_callchain;
7294 }
7295 
7296 void perf_prepare_sample(struct perf_event_header *header,
7297 			 struct perf_sample_data *data,
7298 			 struct perf_event *event,
7299 			 struct pt_regs *regs)
7300 {
7301 	u64 sample_type = event->attr.sample_type;
7302 
7303 	header->type = PERF_RECORD_SAMPLE;
7304 	header->size = sizeof(*header) + event->header_size;
7305 
7306 	header->misc = 0;
7307 	header->misc |= perf_misc_flags(regs);
7308 
7309 	__perf_event_header__init_id(header, data, event);
7310 
7311 	if (sample_type & (PERF_SAMPLE_IP | PERF_SAMPLE_CODE_PAGE_SIZE))
7312 		data->ip = perf_instruction_pointer(regs);
7313 
7314 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7315 		int size = 1;
7316 
7317 		if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
7318 			data->callchain = perf_callchain(event, regs);
7319 
7320 		size += data->callchain->nr;
7321 
7322 		header->size += size * sizeof(u64);
7323 	}
7324 
7325 	if (sample_type & PERF_SAMPLE_RAW) {
7326 		struct perf_raw_record *raw = data->raw;
7327 		int size;
7328 
7329 		if (raw) {
7330 			struct perf_raw_frag *frag = &raw->frag;
7331 			u32 sum = 0;
7332 
7333 			do {
7334 				sum += frag->size;
7335 				if (perf_raw_frag_last(frag))
7336 					break;
7337 				frag = frag->next;
7338 			} while (1);
7339 
7340 			size = round_up(sum + sizeof(u32), sizeof(u64));
7341 			raw->size = size - sizeof(u32);
7342 			frag->pad = raw->size - sum;
7343 		} else {
7344 			size = sizeof(u64);
7345 		}
7346 
7347 		header->size += size;
7348 	}
7349 
7350 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7351 		int size = sizeof(u64); /* nr */
7352 		if (data->br_stack) {
7353 			if (perf_sample_save_hw_index(event))
7354 				size += sizeof(u64);
7355 
7356 			size += data->br_stack->nr
7357 			      * sizeof(struct perf_branch_entry);
7358 		}
7359 		header->size += size;
7360 	}
7361 
7362 	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
7363 		perf_sample_regs_user(&data->regs_user, regs);
7364 
7365 	if (sample_type & PERF_SAMPLE_REGS_USER) {
7366 		/* regs dump ABI info */
7367 		int size = sizeof(u64);
7368 
7369 		if (data->regs_user.regs) {
7370 			u64 mask = event->attr.sample_regs_user;
7371 			size += hweight64(mask) * sizeof(u64);
7372 		}
7373 
7374 		header->size += size;
7375 	}
7376 
7377 	if (sample_type & PERF_SAMPLE_STACK_USER) {
7378 		/*
7379 		 * Either we need PERF_SAMPLE_STACK_USER bit to be always
7380 		 * processed as the last one or have additional check added
7381 		 * in case new sample type is added, because we could eat
7382 		 * up the rest of the sample size.
7383 		 */
7384 		u16 stack_size = event->attr.sample_stack_user;
7385 		u16 size = sizeof(u64);
7386 
7387 		stack_size = perf_sample_ustack_size(stack_size, header->size,
7388 						     data->regs_user.regs);
7389 
7390 		/*
7391 		 * If there is something to dump, add space for the dump
7392 		 * itself and for the field that tells the dynamic size,
7393 		 * which is how many have been actually dumped.
7394 		 */
7395 		if (stack_size)
7396 			size += sizeof(u64) + stack_size;
7397 
7398 		data->stack_user_size = stack_size;
7399 		header->size += size;
7400 	}
7401 
7402 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
7403 		/* regs dump ABI info */
7404 		int size = sizeof(u64);
7405 
7406 		perf_sample_regs_intr(&data->regs_intr, regs);
7407 
7408 		if (data->regs_intr.regs) {
7409 			u64 mask = event->attr.sample_regs_intr;
7410 
7411 			size += hweight64(mask) * sizeof(u64);
7412 		}
7413 
7414 		header->size += size;
7415 	}
7416 
7417 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7418 		data->phys_addr = perf_virt_to_phys(data->addr);
7419 
7420 #ifdef CONFIG_CGROUP_PERF
7421 	if (sample_type & PERF_SAMPLE_CGROUP) {
7422 		struct cgroup *cgrp;
7423 
7424 		/* protected by RCU */
7425 		cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
7426 		data->cgroup = cgroup_id(cgrp);
7427 	}
7428 #endif
7429 
7430 	/*
7431 	 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't
7432 	 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr,
7433 	 * but the value will not dump to the userspace.
7434 	 */
7435 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7436 		data->data_page_size = perf_get_page_size(data->addr);
7437 
7438 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7439 		data->code_page_size = perf_get_page_size(data->ip);
7440 
7441 	if (sample_type & PERF_SAMPLE_AUX) {
7442 		u64 size;
7443 
7444 		header->size += sizeof(u64); /* size */
7445 
7446 		/*
7447 		 * Given the 16bit nature of header::size, an AUX sample can
7448 		 * easily overflow it, what with all the preceding sample bits.
7449 		 * Make sure this doesn't happen by using up to U16_MAX bytes
7450 		 * per sample in total (rounded down to 8 byte boundary).
7451 		 */
7452 		size = min_t(size_t, U16_MAX - header->size,
7453 			     event->attr.aux_sample_size);
7454 		size = rounddown(size, 8);
7455 		size = perf_prepare_sample_aux(event, data, size);
7456 
7457 		WARN_ON_ONCE(size + header->size > U16_MAX);
7458 		header->size += size;
7459 	}
7460 	/*
7461 	 * If you're adding more sample types here, you likely need to do
7462 	 * something about the overflowing header::size, like repurpose the
7463 	 * lowest 3 bits of size, which should be always zero at the moment.
7464 	 * This raises a more important question, do we really need 512k sized
7465 	 * samples and why, so good argumentation is in order for whatever you
7466 	 * do here next.
7467 	 */
7468 	WARN_ON_ONCE(header->size & 7);
7469 }
7470 
7471 static __always_inline int
7472 __perf_event_output(struct perf_event *event,
7473 		    struct perf_sample_data *data,
7474 		    struct pt_regs *regs,
7475 		    int (*output_begin)(struct perf_output_handle *,
7476 					struct perf_sample_data *,
7477 					struct perf_event *,
7478 					unsigned int))
7479 {
7480 	struct perf_output_handle handle;
7481 	struct perf_event_header header;
7482 	int err;
7483 
7484 	/* protect the callchain buffers */
7485 	rcu_read_lock();
7486 
7487 	perf_prepare_sample(&header, data, event, regs);
7488 
7489 	err = output_begin(&handle, data, event, header.size);
7490 	if (err)
7491 		goto exit;
7492 
7493 	perf_output_sample(&handle, &header, data, event);
7494 
7495 	perf_output_end(&handle);
7496 
7497 exit:
7498 	rcu_read_unlock();
7499 	return err;
7500 }
7501 
7502 void
7503 perf_event_output_forward(struct perf_event *event,
7504 			 struct perf_sample_data *data,
7505 			 struct pt_regs *regs)
7506 {
7507 	__perf_event_output(event, data, regs, perf_output_begin_forward);
7508 }
7509 
7510 void
7511 perf_event_output_backward(struct perf_event *event,
7512 			   struct perf_sample_data *data,
7513 			   struct pt_regs *regs)
7514 {
7515 	__perf_event_output(event, data, regs, perf_output_begin_backward);
7516 }
7517 
7518 int
7519 perf_event_output(struct perf_event *event,
7520 		  struct perf_sample_data *data,
7521 		  struct pt_regs *regs)
7522 {
7523 	return __perf_event_output(event, data, regs, perf_output_begin);
7524 }
7525 
7526 /*
7527  * read event_id
7528  */
7529 
7530 struct perf_read_event {
7531 	struct perf_event_header	header;
7532 
7533 	u32				pid;
7534 	u32				tid;
7535 };
7536 
7537 static void
7538 perf_event_read_event(struct perf_event *event,
7539 			struct task_struct *task)
7540 {
7541 	struct perf_output_handle handle;
7542 	struct perf_sample_data sample;
7543 	struct perf_read_event read_event = {
7544 		.header = {
7545 			.type = PERF_RECORD_READ,
7546 			.misc = 0,
7547 			.size = sizeof(read_event) + event->read_size,
7548 		},
7549 		.pid = perf_event_pid(event, task),
7550 		.tid = perf_event_tid(event, task),
7551 	};
7552 	int ret;
7553 
7554 	perf_event_header__init_id(&read_event.header, &sample, event);
7555 	ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
7556 	if (ret)
7557 		return;
7558 
7559 	perf_output_put(&handle, read_event);
7560 	perf_output_read(&handle, event);
7561 	perf_event__output_id_sample(event, &handle, &sample);
7562 
7563 	perf_output_end(&handle);
7564 }
7565 
7566 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
7567 
7568 static void
7569 perf_iterate_ctx(struct perf_event_context *ctx,
7570 		   perf_iterate_f output,
7571 		   void *data, bool all)
7572 {
7573 	struct perf_event *event;
7574 
7575 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7576 		if (!all) {
7577 			if (event->state < PERF_EVENT_STATE_INACTIVE)
7578 				continue;
7579 			if (!event_filter_match(event))
7580 				continue;
7581 		}
7582 
7583 		output(event, data);
7584 	}
7585 }
7586 
7587 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
7588 {
7589 	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
7590 	struct perf_event *event;
7591 
7592 	list_for_each_entry_rcu(event, &pel->list, sb_list) {
7593 		/*
7594 		 * Skip events that are not fully formed yet; ensure that
7595 		 * if we observe event->ctx, both event and ctx will be
7596 		 * complete enough. See perf_install_in_context().
7597 		 */
7598 		if (!smp_load_acquire(&event->ctx))
7599 			continue;
7600 
7601 		if (event->state < PERF_EVENT_STATE_INACTIVE)
7602 			continue;
7603 		if (!event_filter_match(event))
7604 			continue;
7605 		output(event, data);
7606 	}
7607 }
7608 
7609 /*
7610  * Iterate all events that need to receive side-band events.
7611  *
7612  * For new callers; ensure that account_pmu_sb_event() includes
7613  * your event, otherwise it might not get delivered.
7614  */
7615 static void
7616 perf_iterate_sb(perf_iterate_f output, void *data,
7617 	       struct perf_event_context *task_ctx)
7618 {
7619 	struct perf_event_context *ctx;
7620 	int ctxn;
7621 
7622 	rcu_read_lock();
7623 	preempt_disable();
7624 
7625 	/*
7626 	 * If we have task_ctx != NULL we only notify the task context itself.
7627 	 * The task_ctx is set only for EXIT events before releasing task
7628 	 * context.
7629 	 */
7630 	if (task_ctx) {
7631 		perf_iterate_ctx(task_ctx, output, data, false);
7632 		goto done;
7633 	}
7634 
7635 	perf_iterate_sb_cpu(output, data);
7636 
7637 	for_each_task_context_nr(ctxn) {
7638 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7639 		if (ctx)
7640 			perf_iterate_ctx(ctx, output, data, false);
7641 	}
7642 done:
7643 	preempt_enable();
7644 	rcu_read_unlock();
7645 }
7646 
7647 /*
7648  * Clear all file-based filters at exec, they'll have to be
7649  * re-instated when/if these objects are mmapped again.
7650  */
7651 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
7652 {
7653 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7654 	struct perf_addr_filter *filter;
7655 	unsigned int restart = 0, count = 0;
7656 	unsigned long flags;
7657 
7658 	if (!has_addr_filter(event))
7659 		return;
7660 
7661 	raw_spin_lock_irqsave(&ifh->lock, flags);
7662 	list_for_each_entry(filter, &ifh->list, entry) {
7663 		if (filter->path.dentry) {
7664 			event->addr_filter_ranges[count].start = 0;
7665 			event->addr_filter_ranges[count].size = 0;
7666 			restart++;
7667 		}
7668 
7669 		count++;
7670 	}
7671 
7672 	if (restart)
7673 		event->addr_filters_gen++;
7674 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
7675 
7676 	if (restart)
7677 		perf_event_stop(event, 1);
7678 }
7679 
7680 void perf_event_exec(void)
7681 {
7682 	struct perf_event_context *ctx;
7683 	int ctxn;
7684 
7685 	for_each_task_context_nr(ctxn) {
7686 		perf_event_enable_on_exec(ctxn);
7687 		perf_event_remove_on_exec(ctxn);
7688 
7689 		rcu_read_lock();
7690 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7691 		if (ctx) {
7692 			perf_iterate_ctx(ctx, perf_event_addr_filters_exec,
7693 					 NULL, true);
7694 		}
7695 		rcu_read_unlock();
7696 	}
7697 }
7698 
7699 struct remote_output {
7700 	struct perf_buffer	*rb;
7701 	int			err;
7702 };
7703 
7704 static void __perf_event_output_stop(struct perf_event *event, void *data)
7705 {
7706 	struct perf_event *parent = event->parent;
7707 	struct remote_output *ro = data;
7708 	struct perf_buffer *rb = ro->rb;
7709 	struct stop_event_data sd = {
7710 		.event	= event,
7711 	};
7712 
7713 	if (!has_aux(event))
7714 		return;
7715 
7716 	if (!parent)
7717 		parent = event;
7718 
7719 	/*
7720 	 * In case of inheritance, it will be the parent that links to the
7721 	 * ring-buffer, but it will be the child that's actually using it.
7722 	 *
7723 	 * We are using event::rb to determine if the event should be stopped,
7724 	 * however this may race with ring_buffer_attach() (through set_output),
7725 	 * which will make us skip the event that actually needs to be stopped.
7726 	 * So ring_buffer_attach() has to stop an aux event before re-assigning
7727 	 * its rb pointer.
7728 	 */
7729 	if (rcu_dereference(parent->rb) == rb)
7730 		ro->err = __perf_event_stop(&sd);
7731 }
7732 
7733 static int __perf_pmu_output_stop(void *info)
7734 {
7735 	struct perf_event *event = info;
7736 	struct pmu *pmu = event->ctx->pmu;
7737 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7738 	struct remote_output ro = {
7739 		.rb	= event->rb,
7740 	};
7741 
7742 	rcu_read_lock();
7743 	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
7744 	if (cpuctx->task_ctx)
7745 		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
7746 				   &ro, false);
7747 	rcu_read_unlock();
7748 
7749 	return ro.err;
7750 }
7751 
7752 static void perf_pmu_output_stop(struct perf_event *event)
7753 {
7754 	struct perf_event *iter;
7755 	int err, cpu;
7756 
7757 restart:
7758 	rcu_read_lock();
7759 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
7760 		/*
7761 		 * For per-CPU events, we need to make sure that neither they
7762 		 * nor their children are running; for cpu==-1 events it's
7763 		 * sufficient to stop the event itself if it's active, since
7764 		 * it can't have children.
7765 		 */
7766 		cpu = iter->cpu;
7767 		if (cpu == -1)
7768 			cpu = READ_ONCE(iter->oncpu);
7769 
7770 		if (cpu == -1)
7771 			continue;
7772 
7773 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
7774 		if (err == -EAGAIN) {
7775 			rcu_read_unlock();
7776 			goto restart;
7777 		}
7778 	}
7779 	rcu_read_unlock();
7780 }
7781 
7782 /*
7783  * task tracking -- fork/exit
7784  *
7785  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
7786  */
7787 
7788 struct perf_task_event {
7789 	struct task_struct		*task;
7790 	struct perf_event_context	*task_ctx;
7791 
7792 	struct {
7793 		struct perf_event_header	header;
7794 
7795 		u32				pid;
7796 		u32				ppid;
7797 		u32				tid;
7798 		u32				ptid;
7799 		u64				time;
7800 	} event_id;
7801 };
7802 
7803 static int perf_event_task_match(struct perf_event *event)
7804 {
7805 	return event->attr.comm  || event->attr.mmap ||
7806 	       event->attr.mmap2 || event->attr.mmap_data ||
7807 	       event->attr.task;
7808 }
7809 
7810 static void perf_event_task_output(struct perf_event *event,
7811 				   void *data)
7812 {
7813 	struct perf_task_event *task_event = data;
7814 	struct perf_output_handle handle;
7815 	struct perf_sample_data	sample;
7816 	struct task_struct *task = task_event->task;
7817 	int ret, size = task_event->event_id.header.size;
7818 
7819 	if (!perf_event_task_match(event))
7820 		return;
7821 
7822 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
7823 
7824 	ret = perf_output_begin(&handle, &sample, event,
7825 				task_event->event_id.header.size);
7826 	if (ret)
7827 		goto out;
7828 
7829 	task_event->event_id.pid = perf_event_pid(event, task);
7830 	task_event->event_id.tid = perf_event_tid(event, task);
7831 
7832 	if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
7833 		task_event->event_id.ppid = perf_event_pid(event,
7834 							task->real_parent);
7835 		task_event->event_id.ptid = perf_event_pid(event,
7836 							task->real_parent);
7837 	} else {  /* PERF_RECORD_FORK */
7838 		task_event->event_id.ppid = perf_event_pid(event, current);
7839 		task_event->event_id.ptid = perf_event_tid(event, current);
7840 	}
7841 
7842 	task_event->event_id.time = perf_event_clock(event);
7843 
7844 	perf_output_put(&handle, task_event->event_id);
7845 
7846 	perf_event__output_id_sample(event, &handle, &sample);
7847 
7848 	perf_output_end(&handle);
7849 out:
7850 	task_event->event_id.header.size = size;
7851 }
7852 
7853 static void perf_event_task(struct task_struct *task,
7854 			      struct perf_event_context *task_ctx,
7855 			      int new)
7856 {
7857 	struct perf_task_event task_event;
7858 
7859 	if (!atomic_read(&nr_comm_events) &&
7860 	    !atomic_read(&nr_mmap_events) &&
7861 	    !atomic_read(&nr_task_events))
7862 		return;
7863 
7864 	task_event = (struct perf_task_event){
7865 		.task	  = task,
7866 		.task_ctx = task_ctx,
7867 		.event_id    = {
7868 			.header = {
7869 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
7870 				.misc = 0,
7871 				.size = sizeof(task_event.event_id),
7872 			},
7873 			/* .pid  */
7874 			/* .ppid */
7875 			/* .tid  */
7876 			/* .ptid */
7877 			/* .time */
7878 		},
7879 	};
7880 
7881 	perf_iterate_sb(perf_event_task_output,
7882 		       &task_event,
7883 		       task_ctx);
7884 }
7885 
7886 void perf_event_fork(struct task_struct *task)
7887 {
7888 	perf_event_task(task, NULL, 1);
7889 	perf_event_namespaces(task);
7890 }
7891 
7892 /*
7893  * comm tracking
7894  */
7895 
7896 struct perf_comm_event {
7897 	struct task_struct	*task;
7898 	char			*comm;
7899 	int			comm_size;
7900 
7901 	struct {
7902 		struct perf_event_header	header;
7903 
7904 		u32				pid;
7905 		u32				tid;
7906 	} event_id;
7907 };
7908 
7909 static int perf_event_comm_match(struct perf_event *event)
7910 {
7911 	return event->attr.comm;
7912 }
7913 
7914 static void perf_event_comm_output(struct perf_event *event,
7915 				   void *data)
7916 {
7917 	struct perf_comm_event *comm_event = data;
7918 	struct perf_output_handle handle;
7919 	struct perf_sample_data sample;
7920 	int size = comm_event->event_id.header.size;
7921 	int ret;
7922 
7923 	if (!perf_event_comm_match(event))
7924 		return;
7925 
7926 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
7927 	ret = perf_output_begin(&handle, &sample, event,
7928 				comm_event->event_id.header.size);
7929 
7930 	if (ret)
7931 		goto out;
7932 
7933 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
7934 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
7935 
7936 	perf_output_put(&handle, comm_event->event_id);
7937 	__output_copy(&handle, comm_event->comm,
7938 				   comm_event->comm_size);
7939 
7940 	perf_event__output_id_sample(event, &handle, &sample);
7941 
7942 	perf_output_end(&handle);
7943 out:
7944 	comm_event->event_id.header.size = size;
7945 }
7946 
7947 static void perf_event_comm_event(struct perf_comm_event *comm_event)
7948 {
7949 	char comm[TASK_COMM_LEN];
7950 	unsigned int size;
7951 
7952 	memset(comm, 0, sizeof(comm));
7953 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
7954 	size = ALIGN(strlen(comm)+1, sizeof(u64));
7955 
7956 	comm_event->comm = comm;
7957 	comm_event->comm_size = size;
7958 
7959 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
7960 
7961 	perf_iterate_sb(perf_event_comm_output,
7962 		       comm_event,
7963 		       NULL);
7964 }
7965 
7966 void perf_event_comm(struct task_struct *task, bool exec)
7967 {
7968 	struct perf_comm_event comm_event;
7969 
7970 	if (!atomic_read(&nr_comm_events))
7971 		return;
7972 
7973 	comm_event = (struct perf_comm_event){
7974 		.task	= task,
7975 		/* .comm      */
7976 		/* .comm_size */
7977 		.event_id  = {
7978 			.header = {
7979 				.type = PERF_RECORD_COMM,
7980 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
7981 				/* .size */
7982 			},
7983 			/* .pid */
7984 			/* .tid */
7985 		},
7986 	};
7987 
7988 	perf_event_comm_event(&comm_event);
7989 }
7990 
7991 /*
7992  * namespaces tracking
7993  */
7994 
7995 struct perf_namespaces_event {
7996 	struct task_struct		*task;
7997 
7998 	struct {
7999 		struct perf_event_header	header;
8000 
8001 		u32				pid;
8002 		u32				tid;
8003 		u64				nr_namespaces;
8004 		struct perf_ns_link_info	link_info[NR_NAMESPACES];
8005 	} event_id;
8006 };
8007 
8008 static int perf_event_namespaces_match(struct perf_event *event)
8009 {
8010 	return event->attr.namespaces;
8011 }
8012 
8013 static void perf_event_namespaces_output(struct perf_event *event,
8014 					 void *data)
8015 {
8016 	struct perf_namespaces_event *namespaces_event = data;
8017 	struct perf_output_handle handle;
8018 	struct perf_sample_data sample;
8019 	u16 header_size = namespaces_event->event_id.header.size;
8020 	int ret;
8021 
8022 	if (!perf_event_namespaces_match(event))
8023 		return;
8024 
8025 	perf_event_header__init_id(&namespaces_event->event_id.header,
8026 				   &sample, event);
8027 	ret = perf_output_begin(&handle, &sample, event,
8028 				namespaces_event->event_id.header.size);
8029 	if (ret)
8030 		goto out;
8031 
8032 	namespaces_event->event_id.pid = perf_event_pid(event,
8033 							namespaces_event->task);
8034 	namespaces_event->event_id.tid = perf_event_tid(event,
8035 							namespaces_event->task);
8036 
8037 	perf_output_put(&handle, namespaces_event->event_id);
8038 
8039 	perf_event__output_id_sample(event, &handle, &sample);
8040 
8041 	perf_output_end(&handle);
8042 out:
8043 	namespaces_event->event_id.header.size = header_size;
8044 }
8045 
8046 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
8047 				   struct task_struct *task,
8048 				   const struct proc_ns_operations *ns_ops)
8049 {
8050 	struct path ns_path;
8051 	struct inode *ns_inode;
8052 	int error;
8053 
8054 	error = ns_get_path(&ns_path, task, ns_ops);
8055 	if (!error) {
8056 		ns_inode = ns_path.dentry->d_inode;
8057 		ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
8058 		ns_link_info->ino = ns_inode->i_ino;
8059 		path_put(&ns_path);
8060 	}
8061 }
8062 
8063 void perf_event_namespaces(struct task_struct *task)
8064 {
8065 	struct perf_namespaces_event namespaces_event;
8066 	struct perf_ns_link_info *ns_link_info;
8067 
8068 	if (!atomic_read(&nr_namespaces_events))
8069 		return;
8070 
8071 	namespaces_event = (struct perf_namespaces_event){
8072 		.task	= task,
8073 		.event_id  = {
8074 			.header = {
8075 				.type = PERF_RECORD_NAMESPACES,
8076 				.misc = 0,
8077 				.size = sizeof(namespaces_event.event_id),
8078 			},
8079 			/* .pid */
8080 			/* .tid */
8081 			.nr_namespaces = NR_NAMESPACES,
8082 			/* .link_info[NR_NAMESPACES] */
8083 		},
8084 	};
8085 
8086 	ns_link_info = namespaces_event.event_id.link_info;
8087 
8088 	perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
8089 			       task, &mntns_operations);
8090 
8091 #ifdef CONFIG_USER_NS
8092 	perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
8093 			       task, &userns_operations);
8094 #endif
8095 #ifdef CONFIG_NET_NS
8096 	perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
8097 			       task, &netns_operations);
8098 #endif
8099 #ifdef CONFIG_UTS_NS
8100 	perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
8101 			       task, &utsns_operations);
8102 #endif
8103 #ifdef CONFIG_IPC_NS
8104 	perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
8105 			       task, &ipcns_operations);
8106 #endif
8107 #ifdef CONFIG_PID_NS
8108 	perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
8109 			       task, &pidns_operations);
8110 #endif
8111 #ifdef CONFIG_CGROUPS
8112 	perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
8113 			       task, &cgroupns_operations);
8114 #endif
8115 
8116 	perf_iterate_sb(perf_event_namespaces_output,
8117 			&namespaces_event,
8118 			NULL);
8119 }
8120 
8121 /*
8122  * cgroup tracking
8123  */
8124 #ifdef CONFIG_CGROUP_PERF
8125 
8126 struct perf_cgroup_event {
8127 	char				*path;
8128 	int				path_size;
8129 	struct {
8130 		struct perf_event_header	header;
8131 		u64				id;
8132 		char				path[];
8133 	} event_id;
8134 };
8135 
8136 static int perf_event_cgroup_match(struct perf_event *event)
8137 {
8138 	return event->attr.cgroup;
8139 }
8140 
8141 static void perf_event_cgroup_output(struct perf_event *event, void *data)
8142 {
8143 	struct perf_cgroup_event *cgroup_event = data;
8144 	struct perf_output_handle handle;
8145 	struct perf_sample_data sample;
8146 	u16 header_size = cgroup_event->event_id.header.size;
8147 	int ret;
8148 
8149 	if (!perf_event_cgroup_match(event))
8150 		return;
8151 
8152 	perf_event_header__init_id(&cgroup_event->event_id.header,
8153 				   &sample, event);
8154 	ret = perf_output_begin(&handle, &sample, event,
8155 				cgroup_event->event_id.header.size);
8156 	if (ret)
8157 		goto out;
8158 
8159 	perf_output_put(&handle, cgroup_event->event_id);
8160 	__output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
8161 
8162 	perf_event__output_id_sample(event, &handle, &sample);
8163 
8164 	perf_output_end(&handle);
8165 out:
8166 	cgroup_event->event_id.header.size = header_size;
8167 }
8168 
8169 static void perf_event_cgroup(struct cgroup *cgrp)
8170 {
8171 	struct perf_cgroup_event cgroup_event;
8172 	char path_enomem[16] = "//enomem";
8173 	char *pathname;
8174 	size_t size;
8175 
8176 	if (!atomic_read(&nr_cgroup_events))
8177 		return;
8178 
8179 	cgroup_event = (struct perf_cgroup_event){
8180 		.event_id  = {
8181 			.header = {
8182 				.type = PERF_RECORD_CGROUP,
8183 				.misc = 0,
8184 				.size = sizeof(cgroup_event.event_id),
8185 			},
8186 			.id = cgroup_id(cgrp),
8187 		},
8188 	};
8189 
8190 	pathname = kmalloc(PATH_MAX, GFP_KERNEL);
8191 	if (pathname == NULL) {
8192 		cgroup_event.path = path_enomem;
8193 	} else {
8194 		/* just to be sure to have enough space for alignment */
8195 		cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
8196 		cgroup_event.path = pathname;
8197 	}
8198 
8199 	/*
8200 	 * Since our buffer works in 8 byte units we need to align our string
8201 	 * size to a multiple of 8. However, we must guarantee the tail end is
8202 	 * zero'd out to avoid leaking random bits to userspace.
8203 	 */
8204 	size = strlen(cgroup_event.path) + 1;
8205 	while (!IS_ALIGNED(size, sizeof(u64)))
8206 		cgroup_event.path[size++] = '\0';
8207 
8208 	cgroup_event.event_id.header.size += size;
8209 	cgroup_event.path_size = size;
8210 
8211 	perf_iterate_sb(perf_event_cgroup_output,
8212 			&cgroup_event,
8213 			NULL);
8214 
8215 	kfree(pathname);
8216 }
8217 
8218 #endif
8219 
8220 /*
8221  * mmap tracking
8222  */
8223 
8224 struct perf_mmap_event {
8225 	struct vm_area_struct	*vma;
8226 
8227 	const char		*file_name;
8228 	int			file_size;
8229 	int			maj, min;
8230 	u64			ino;
8231 	u64			ino_generation;
8232 	u32			prot, flags;
8233 	u8			build_id[BUILD_ID_SIZE_MAX];
8234 	u32			build_id_size;
8235 
8236 	struct {
8237 		struct perf_event_header	header;
8238 
8239 		u32				pid;
8240 		u32				tid;
8241 		u64				start;
8242 		u64				len;
8243 		u64				pgoff;
8244 	} event_id;
8245 };
8246 
8247 static int perf_event_mmap_match(struct perf_event *event,
8248 				 void *data)
8249 {
8250 	struct perf_mmap_event *mmap_event = data;
8251 	struct vm_area_struct *vma = mmap_event->vma;
8252 	int executable = vma->vm_flags & VM_EXEC;
8253 
8254 	return (!executable && event->attr.mmap_data) ||
8255 	       (executable && (event->attr.mmap || event->attr.mmap2));
8256 }
8257 
8258 static void perf_event_mmap_output(struct perf_event *event,
8259 				   void *data)
8260 {
8261 	struct perf_mmap_event *mmap_event = data;
8262 	struct perf_output_handle handle;
8263 	struct perf_sample_data sample;
8264 	int size = mmap_event->event_id.header.size;
8265 	u32 type = mmap_event->event_id.header.type;
8266 	bool use_build_id;
8267 	int ret;
8268 
8269 	if (!perf_event_mmap_match(event, data))
8270 		return;
8271 
8272 	if (event->attr.mmap2) {
8273 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
8274 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
8275 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
8276 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
8277 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
8278 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
8279 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
8280 	}
8281 
8282 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
8283 	ret = perf_output_begin(&handle, &sample, event,
8284 				mmap_event->event_id.header.size);
8285 	if (ret)
8286 		goto out;
8287 
8288 	mmap_event->event_id.pid = perf_event_pid(event, current);
8289 	mmap_event->event_id.tid = perf_event_tid(event, current);
8290 
8291 	use_build_id = event->attr.build_id && mmap_event->build_id_size;
8292 
8293 	if (event->attr.mmap2 && use_build_id)
8294 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID;
8295 
8296 	perf_output_put(&handle, mmap_event->event_id);
8297 
8298 	if (event->attr.mmap2) {
8299 		if (use_build_id) {
8300 			u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 };
8301 
8302 			__output_copy(&handle, size, 4);
8303 			__output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX);
8304 		} else {
8305 			perf_output_put(&handle, mmap_event->maj);
8306 			perf_output_put(&handle, mmap_event->min);
8307 			perf_output_put(&handle, mmap_event->ino);
8308 			perf_output_put(&handle, mmap_event->ino_generation);
8309 		}
8310 		perf_output_put(&handle, mmap_event->prot);
8311 		perf_output_put(&handle, mmap_event->flags);
8312 	}
8313 
8314 	__output_copy(&handle, mmap_event->file_name,
8315 				   mmap_event->file_size);
8316 
8317 	perf_event__output_id_sample(event, &handle, &sample);
8318 
8319 	perf_output_end(&handle);
8320 out:
8321 	mmap_event->event_id.header.size = size;
8322 	mmap_event->event_id.header.type = type;
8323 }
8324 
8325 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
8326 {
8327 	struct vm_area_struct *vma = mmap_event->vma;
8328 	struct file *file = vma->vm_file;
8329 	int maj = 0, min = 0;
8330 	u64 ino = 0, gen = 0;
8331 	u32 prot = 0, flags = 0;
8332 	unsigned int size;
8333 	char tmp[16];
8334 	char *buf = NULL;
8335 	char *name;
8336 
8337 	if (vma->vm_flags & VM_READ)
8338 		prot |= PROT_READ;
8339 	if (vma->vm_flags & VM_WRITE)
8340 		prot |= PROT_WRITE;
8341 	if (vma->vm_flags & VM_EXEC)
8342 		prot |= PROT_EXEC;
8343 
8344 	if (vma->vm_flags & VM_MAYSHARE)
8345 		flags = MAP_SHARED;
8346 	else
8347 		flags = MAP_PRIVATE;
8348 
8349 	if (vma->vm_flags & VM_LOCKED)
8350 		flags |= MAP_LOCKED;
8351 	if (is_vm_hugetlb_page(vma))
8352 		flags |= MAP_HUGETLB;
8353 
8354 	if (file) {
8355 		struct inode *inode;
8356 		dev_t dev;
8357 
8358 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
8359 		if (!buf) {
8360 			name = "//enomem";
8361 			goto cpy_name;
8362 		}
8363 		/*
8364 		 * d_path() works from the end of the rb backwards, so we
8365 		 * need to add enough zero bytes after the string to handle
8366 		 * the 64bit alignment we do later.
8367 		 */
8368 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
8369 		if (IS_ERR(name)) {
8370 			name = "//toolong";
8371 			goto cpy_name;
8372 		}
8373 		inode = file_inode(vma->vm_file);
8374 		dev = inode->i_sb->s_dev;
8375 		ino = inode->i_ino;
8376 		gen = inode->i_generation;
8377 		maj = MAJOR(dev);
8378 		min = MINOR(dev);
8379 
8380 		goto got_name;
8381 	} else {
8382 		if (vma->vm_ops && vma->vm_ops->name) {
8383 			name = (char *) vma->vm_ops->name(vma);
8384 			if (name)
8385 				goto cpy_name;
8386 		}
8387 
8388 		name = (char *)arch_vma_name(vma);
8389 		if (name)
8390 			goto cpy_name;
8391 
8392 		if (vma->vm_start <= vma->vm_mm->start_brk &&
8393 				vma->vm_end >= vma->vm_mm->brk) {
8394 			name = "[heap]";
8395 			goto cpy_name;
8396 		}
8397 		if (vma->vm_start <= vma->vm_mm->start_stack &&
8398 				vma->vm_end >= vma->vm_mm->start_stack) {
8399 			name = "[stack]";
8400 			goto cpy_name;
8401 		}
8402 
8403 		name = "//anon";
8404 		goto cpy_name;
8405 	}
8406 
8407 cpy_name:
8408 	strlcpy(tmp, name, sizeof(tmp));
8409 	name = tmp;
8410 got_name:
8411 	/*
8412 	 * Since our buffer works in 8 byte units we need to align our string
8413 	 * size to a multiple of 8. However, we must guarantee the tail end is
8414 	 * zero'd out to avoid leaking random bits to userspace.
8415 	 */
8416 	size = strlen(name)+1;
8417 	while (!IS_ALIGNED(size, sizeof(u64)))
8418 		name[size++] = '\0';
8419 
8420 	mmap_event->file_name = name;
8421 	mmap_event->file_size = size;
8422 	mmap_event->maj = maj;
8423 	mmap_event->min = min;
8424 	mmap_event->ino = ino;
8425 	mmap_event->ino_generation = gen;
8426 	mmap_event->prot = prot;
8427 	mmap_event->flags = flags;
8428 
8429 	if (!(vma->vm_flags & VM_EXEC))
8430 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
8431 
8432 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
8433 
8434 	if (atomic_read(&nr_build_id_events))
8435 		build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size);
8436 
8437 	perf_iterate_sb(perf_event_mmap_output,
8438 		       mmap_event,
8439 		       NULL);
8440 
8441 	kfree(buf);
8442 }
8443 
8444 /*
8445  * Check whether inode and address range match filter criteria.
8446  */
8447 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
8448 				     struct file *file, unsigned long offset,
8449 				     unsigned long size)
8450 {
8451 	/* d_inode(NULL) won't be equal to any mapped user-space file */
8452 	if (!filter->path.dentry)
8453 		return false;
8454 
8455 	if (d_inode(filter->path.dentry) != file_inode(file))
8456 		return false;
8457 
8458 	if (filter->offset > offset + size)
8459 		return false;
8460 
8461 	if (filter->offset + filter->size < offset)
8462 		return false;
8463 
8464 	return true;
8465 }
8466 
8467 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
8468 					struct vm_area_struct *vma,
8469 					struct perf_addr_filter_range *fr)
8470 {
8471 	unsigned long vma_size = vma->vm_end - vma->vm_start;
8472 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8473 	struct file *file = vma->vm_file;
8474 
8475 	if (!perf_addr_filter_match(filter, file, off, vma_size))
8476 		return false;
8477 
8478 	if (filter->offset < off) {
8479 		fr->start = vma->vm_start;
8480 		fr->size = min(vma_size, filter->size - (off - filter->offset));
8481 	} else {
8482 		fr->start = vma->vm_start + filter->offset - off;
8483 		fr->size = min(vma->vm_end - fr->start, filter->size);
8484 	}
8485 
8486 	return true;
8487 }
8488 
8489 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
8490 {
8491 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8492 	struct vm_area_struct *vma = data;
8493 	struct perf_addr_filter *filter;
8494 	unsigned int restart = 0, count = 0;
8495 	unsigned long flags;
8496 
8497 	if (!has_addr_filter(event))
8498 		return;
8499 
8500 	if (!vma->vm_file)
8501 		return;
8502 
8503 	raw_spin_lock_irqsave(&ifh->lock, flags);
8504 	list_for_each_entry(filter, &ifh->list, entry) {
8505 		if (perf_addr_filter_vma_adjust(filter, vma,
8506 						&event->addr_filter_ranges[count]))
8507 			restart++;
8508 
8509 		count++;
8510 	}
8511 
8512 	if (restart)
8513 		event->addr_filters_gen++;
8514 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
8515 
8516 	if (restart)
8517 		perf_event_stop(event, 1);
8518 }
8519 
8520 /*
8521  * Adjust all task's events' filters to the new vma
8522  */
8523 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
8524 {
8525 	struct perf_event_context *ctx;
8526 	int ctxn;
8527 
8528 	/*
8529 	 * Data tracing isn't supported yet and as such there is no need
8530 	 * to keep track of anything that isn't related to executable code:
8531 	 */
8532 	if (!(vma->vm_flags & VM_EXEC))
8533 		return;
8534 
8535 	rcu_read_lock();
8536 	for_each_task_context_nr(ctxn) {
8537 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
8538 		if (!ctx)
8539 			continue;
8540 
8541 		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
8542 	}
8543 	rcu_read_unlock();
8544 }
8545 
8546 void perf_event_mmap(struct vm_area_struct *vma)
8547 {
8548 	struct perf_mmap_event mmap_event;
8549 
8550 	if (!atomic_read(&nr_mmap_events))
8551 		return;
8552 
8553 	mmap_event = (struct perf_mmap_event){
8554 		.vma	= vma,
8555 		/* .file_name */
8556 		/* .file_size */
8557 		.event_id  = {
8558 			.header = {
8559 				.type = PERF_RECORD_MMAP,
8560 				.misc = PERF_RECORD_MISC_USER,
8561 				/* .size */
8562 			},
8563 			/* .pid */
8564 			/* .tid */
8565 			.start  = vma->vm_start,
8566 			.len    = vma->vm_end - vma->vm_start,
8567 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
8568 		},
8569 		/* .maj (attr_mmap2 only) */
8570 		/* .min (attr_mmap2 only) */
8571 		/* .ino (attr_mmap2 only) */
8572 		/* .ino_generation (attr_mmap2 only) */
8573 		/* .prot (attr_mmap2 only) */
8574 		/* .flags (attr_mmap2 only) */
8575 	};
8576 
8577 	perf_addr_filters_adjust(vma);
8578 	perf_event_mmap_event(&mmap_event);
8579 }
8580 
8581 void perf_event_aux_event(struct perf_event *event, unsigned long head,
8582 			  unsigned long size, u64 flags)
8583 {
8584 	struct perf_output_handle handle;
8585 	struct perf_sample_data sample;
8586 	struct perf_aux_event {
8587 		struct perf_event_header	header;
8588 		u64				offset;
8589 		u64				size;
8590 		u64				flags;
8591 	} rec = {
8592 		.header = {
8593 			.type = PERF_RECORD_AUX,
8594 			.misc = 0,
8595 			.size = sizeof(rec),
8596 		},
8597 		.offset		= head,
8598 		.size		= size,
8599 		.flags		= flags,
8600 	};
8601 	int ret;
8602 
8603 	perf_event_header__init_id(&rec.header, &sample, event);
8604 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
8605 
8606 	if (ret)
8607 		return;
8608 
8609 	perf_output_put(&handle, rec);
8610 	perf_event__output_id_sample(event, &handle, &sample);
8611 
8612 	perf_output_end(&handle);
8613 }
8614 
8615 /*
8616  * Lost/dropped samples logging
8617  */
8618 void perf_log_lost_samples(struct perf_event *event, u64 lost)
8619 {
8620 	struct perf_output_handle handle;
8621 	struct perf_sample_data sample;
8622 	int ret;
8623 
8624 	struct {
8625 		struct perf_event_header	header;
8626 		u64				lost;
8627 	} lost_samples_event = {
8628 		.header = {
8629 			.type = PERF_RECORD_LOST_SAMPLES,
8630 			.misc = 0,
8631 			.size = sizeof(lost_samples_event),
8632 		},
8633 		.lost		= lost,
8634 	};
8635 
8636 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
8637 
8638 	ret = perf_output_begin(&handle, &sample, event,
8639 				lost_samples_event.header.size);
8640 	if (ret)
8641 		return;
8642 
8643 	perf_output_put(&handle, lost_samples_event);
8644 	perf_event__output_id_sample(event, &handle, &sample);
8645 	perf_output_end(&handle);
8646 }
8647 
8648 /*
8649  * context_switch tracking
8650  */
8651 
8652 struct perf_switch_event {
8653 	struct task_struct	*task;
8654 	struct task_struct	*next_prev;
8655 
8656 	struct {
8657 		struct perf_event_header	header;
8658 		u32				next_prev_pid;
8659 		u32				next_prev_tid;
8660 	} event_id;
8661 };
8662 
8663 static int perf_event_switch_match(struct perf_event *event)
8664 {
8665 	return event->attr.context_switch;
8666 }
8667 
8668 static void perf_event_switch_output(struct perf_event *event, void *data)
8669 {
8670 	struct perf_switch_event *se = data;
8671 	struct perf_output_handle handle;
8672 	struct perf_sample_data sample;
8673 	int ret;
8674 
8675 	if (!perf_event_switch_match(event))
8676 		return;
8677 
8678 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
8679 	if (event->ctx->task) {
8680 		se->event_id.header.type = PERF_RECORD_SWITCH;
8681 		se->event_id.header.size = sizeof(se->event_id.header);
8682 	} else {
8683 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
8684 		se->event_id.header.size = sizeof(se->event_id);
8685 		se->event_id.next_prev_pid =
8686 					perf_event_pid(event, se->next_prev);
8687 		se->event_id.next_prev_tid =
8688 					perf_event_tid(event, se->next_prev);
8689 	}
8690 
8691 	perf_event_header__init_id(&se->event_id.header, &sample, event);
8692 
8693 	ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
8694 	if (ret)
8695 		return;
8696 
8697 	if (event->ctx->task)
8698 		perf_output_put(&handle, se->event_id.header);
8699 	else
8700 		perf_output_put(&handle, se->event_id);
8701 
8702 	perf_event__output_id_sample(event, &handle, &sample);
8703 
8704 	perf_output_end(&handle);
8705 }
8706 
8707 static void perf_event_switch(struct task_struct *task,
8708 			      struct task_struct *next_prev, bool sched_in)
8709 {
8710 	struct perf_switch_event switch_event;
8711 
8712 	/* N.B. caller checks nr_switch_events != 0 */
8713 
8714 	switch_event = (struct perf_switch_event){
8715 		.task		= task,
8716 		.next_prev	= next_prev,
8717 		.event_id	= {
8718 			.header = {
8719 				/* .type */
8720 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
8721 				/* .size */
8722 			},
8723 			/* .next_prev_pid */
8724 			/* .next_prev_tid */
8725 		},
8726 	};
8727 
8728 	if (!sched_in && task->on_rq) {
8729 		switch_event.event_id.header.misc |=
8730 				PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
8731 	}
8732 
8733 	perf_iterate_sb(perf_event_switch_output, &switch_event, NULL);
8734 }
8735 
8736 /*
8737  * IRQ throttle logging
8738  */
8739 
8740 static void perf_log_throttle(struct perf_event *event, int enable)
8741 {
8742 	struct perf_output_handle handle;
8743 	struct perf_sample_data sample;
8744 	int ret;
8745 
8746 	struct {
8747 		struct perf_event_header	header;
8748 		u64				time;
8749 		u64				id;
8750 		u64				stream_id;
8751 	} throttle_event = {
8752 		.header = {
8753 			.type = PERF_RECORD_THROTTLE,
8754 			.misc = 0,
8755 			.size = sizeof(throttle_event),
8756 		},
8757 		.time		= perf_event_clock(event),
8758 		.id		= primary_event_id(event),
8759 		.stream_id	= event->id,
8760 	};
8761 
8762 	if (enable)
8763 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
8764 
8765 	perf_event_header__init_id(&throttle_event.header, &sample, event);
8766 
8767 	ret = perf_output_begin(&handle, &sample, event,
8768 				throttle_event.header.size);
8769 	if (ret)
8770 		return;
8771 
8772 	perf_output_put(&handle, throttle_event);
8773 	perf_event__output_id_sample(event, &handle, &sample);
8774 	perf_output_end(&handle);
8775 }
8776 
8777 /*
8778  * ksymbol register/unregister tracking
8779  */
8780 
8781 struct perf_ksymbol_event {
8782 	const char	*name;
8783 	int		name_len;
8784 	struct {
8785 		struct perf_event_header        header;
8786 		u64				addr;
8787 		u32				len;
8788 		u16				ksym_type;
8789 		u16				flags;
8790 	} event_id;
8791 };
8792 
8793 static int perf_event_ksymbol_match(struct perf_event *event)
8794 {
8795 	return event->attr.ksymbol;
8796 }
8797 
8798 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
8799 {
8800 	struct perf_ksymbol_event *ksymbol_event = data;
8801 	struct perf_output_handle handle;
8802 	struct perf_sample_data sample;
8803 	int ret;
8804 
8805 	if (!perf_event_ksymbol_match(event))
8806 		return;
8807 
8808 	perf_event_header__init_id(&ksymbol_event->event_id.header,
8809 				   &sample, event);
8810 	ret = perf_output_begin(&handle, &sample, event,
8811 				ksymbol_event->event_id.header.size);
8812 	if (ret)
8813 		return;
8814 
8815 	perf_output_put(&handle, ksymbol_event->event_id);
8816 	__output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
8817 	perf_event__output_id_sample(event, &handle, &sample);
8818 
8819 	perf_output_end(&handle);
8820 }
8821 
8822 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
8823 			const char *sym)
8824 {
8825 	struct perf_ksymbol_event ksymbol_event;
8826 	char name[KSYM_NAME_LEN];
8827 	u16 flags = 0;
8828 	int name_len;
8829 
8830 	if (!atomic_read(&nr_ksymbol_events))
8831 		return;
8832 
8833 	if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
8834 	    ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
8835 		goto err;
8836 
8837 	strlcpy(name, sym, KSYM_NAME_LEN);
8838 	name_len = strlen(name) + 1;
8839 	while (!IS_ALIGNED(name_len, sizeof(u64)))
8840 		name[name_len++] = '\0';
8841 	BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
8842 
8843 	if (unregister)
8844 		flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
8845 
8846 	ksymbol_event = (struct perf_ksymbol_event){
8847 		.name = name,
8848 		.name_len = name_len,
8849 		.event_id = {
8850 			.header = {
8851 				.type = PERF_RECORD_KSYMBOL,
8852 				.size = sizeof(ksymbol_event.event_id) +
8853 					name_len,
8854 			},
8855 			.addr = addr,
8856 			.len = len,
8857 			.ksym_type = ksym_type,
8858 			.flags = flags,
8859 		},
8860 	};
8861 
8862 	perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
8863 	return;
8864 err:
8865 	WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
8866 }
8867 
8868 /*
8869  * bpf program load/unload tracking
8870  */
8871 
8872 struct perf_bpf_event {
8873 	struct bpf_prog	*prog;
8874 	struct {
8875 		struct perf_event_header        header;
8876 		u16				type;
8877 		u16				flags;
8878 		u32				id;
8879 		u8				tag[BPF_TAG_SIZE];
8880 	} event_id;
8881 };
8882 
8883 static int perf_event_bpf_match(struct perf_event *event)
8884 {
8885 	return event->attr.bpf_event;
8886 }
8887 
8888 static void perf_event_bpf_output(struct perf_event *event, void *data)
8889 {
8890 	struct perf_bpf_event *bpf_event = data;
8891 	struct perf_output_handle handle;
8892 	struct perf_sample_data sample;
8893 	int ret;
8894 
8895 	if (!perf_event_bpf_match(event))
8896 		return;
8897 
8898 	perf_event_header__init_id(&bpf_event->event_id.header,
8899 				   &sample, event);
8900 	ret = perf_output_begin(&handle, data, event,
8901 				bpf_event->event_id.header.size);
8902 	if (ret)
8903 		return;
8904 
8905 	perf_output_put(&handle, bpf_event->event_id);
8906 	perf_event__output_id_sample(event, &handle, &sample);
8907 
8908 	perf_output_end(&handle);
8909 }
8910 
8911 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
8912 					 enum perf_bpf_event_type type)
8913 {
8914 	bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
8915 	int i;
8916 
8917 	if (prog->aux->func_cnt == 0) {
8918 		perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
8919 				   (u64)(unsigned long)prog->bpf_func,
8920 				   prog->jited_len, unregister,
8921 				   prog->aux->ksym.name);
8922 	} else {
8923 		for (i = 0; i < prog->aux->func_cnt; i++) {
8924 			struct bpf_prog *subprog = prog->aux->func[i];
8925 
8926 			perf_event_ksymbol(
8927 				PERF_RECORD_KSYMBOL_TYPE_BPF,
8928 				(u64)(unsigned long)subprog->bpf_func,
8929 				subprog->jited_len, unregister,
8930 				prog->aux->ksym.name);
8931 		}
8932 	}
8933 }
8934 
8935 void perf_event_bpf_event(struct bpf_prog *prog,
8936 			  enum perf_bpf_event_type type,
8937 			  u16 flags)
8938 {
8939 	struct perf_bpf_event bpf_event;
8940 
8941 	if (type <= PERF_BPF_EVENT_UNKNOWN ||
8942 	    type >= PERF_BPF_EVENT_MAX)
8943 		return;
8944 
8945 	switch (type) {
8946 	case PERF_BPF_EVENT_PROG_LOAD:
8947 	case PERF_BPF_EVENT_PROG_UNLOAD:
8948 		if (atomic_read(&nr_ksymbol_events))
8949 			perf_event_bpf_emit_ksymbols(prog, type);
8950 		break;
8951 	default:
8952 		break;
8953 	}
8954 
8955 	if (!atomic_read(&nr_bpf_events))
8956 		return;
8957 
8958 	bpf_event = (struct perf_bpf_event){
8959 		.prog = prog,
8960 		.event_id = {
8961 			.header = {
8962 				.type = PERF_RECORD_BPF_EVENT,
8963 				.size = sizeof(bpf_event.event_id),
8964 			},
8965 			.type = type,
8966 			.flags = flags,
8967 			.id = prog->aux->id,
8968 		},
8969 	};
8970 
8971 	BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
8972 
8973 	memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
8974 	perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
8975 }
8976 
8977 struct perf_text_poke_event {
8978 	const void		*old_bytes;
8979 	const void		*new_bytes;
8980 	size_t			pad;
8981 	u16			old_len;
8982 	u16			new_len;
8983 
8984 	struct {
8985 		struct perf_event_header	header;
8986 
8987 		u64				addr;
8988 	} event_id;
8989 };
8990 
8991 static int perf_event_text_poke_match(struct perf_event *event)
8992 {
8993 	return event->attr.text_poke;
8994 }
8995 
8996 static void perf_event_text_poke_output(struct perf_event *event, void *data)
8997 {
8998 	struct perf_text_poke_event *text_poke_event = data;
8999 	struct perf_output_handle handle;
9000 	struct perf_sample_data sample;
9001 	u64 padding = 0;
9002 	int ret;
9003 
9004 	if (!perf_event_text_poke_match(event))
9005 		return;
9006 
9007 	perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
9008 
9009 	ret = perf_output_begin(&handle, &sample, event,
9010 				text_poke_event->event_id.header.size);
9011 	if (ret)
9012 		return;
9013 
9014 	perf_output_put(&handle, text_poke_event->event_id);
9015 	perf_output_put(&handle, text_poke_event->old_len);
9016 	perf_output_put(&handle, text_poke_event->new_len);
9017 
9018 	__output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
9019 	__output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
9020 
9021 	if (text_poke_event->pad)
9022 		__output_copy(&handle, &padding, text_poke_event->pad);
9023 
9024 	perf_event__output_id_sample(event, &handle, &sample);
9025 
9026 	perf_output_end(&handle);
9027 }
9028 
9029 void perf_event_text_poke(const void *addr, const void *old_bytes,
9030 			  size_t old_len, const void *new_bytes, size_t new_len)
9031 {
9032 	struct perf_text_poke_event text_poke_event;
9033 	size_t tot, pad;
9034 
9035 	if (!atomic_read(&nr_text_poke_events))
9036 		return;
9037 
9038 	tot  = sizeof(text_poke_event.old_len) + old_len;
9039 	tot += sizeof(text_poke_event.new_len) + new_len;
9040 	pad  = ALIGN(tot, sizeof(u64)) - tot;
9041 
9042 	text_poke_event = (struct perf_text_poke_event){
9043 		.old_bytes    = old_bytes,
9044 		.new_bytes    = new_bytes,
9045 		.pad          = pad,
9046 		.old_len      = old_len,
9047 		.new_len      = new_len,
9048 		.event_id  = {
9049 			.header = {
9050 				.type = PERF_RECORD_TEXT_POKE,
9051 				.misc = PERF_RECORD_MISC_KERNEL,
9052 				.size = sizeof(text_poke_event.event_id) + tot + pad,
9053 			},
9054 			.addr = (unsigned long)addr,
9055 		},
9056 	};
9057 
9058 	perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
9059 }
9060 
9061 void perf_event_itrace_started(struct perf_event *event)
9062 {
9063 	event->attach_state |= PERF_ATTACH_ITRACE;
9064 }
9065 
9066 static void perf_log_itrace_start(struct perf_event *event)
9067 {
9068 	struct perf_output_handle handle;
9069 	struct perf_sample_data sample;
9070 	struct perf_aux_event {
9071 		struct perf_event_header        header;
9072 		u32				pid;
9073 		u32				tid;
9074 	} rec;
9075 	int ret;
9076 
9077 	if (event->parent)
9078 		event = event->parent;
9079 
9080 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
9081 	    event->attach_state & PERF_ATTACH_ITRACE)
9082 		return;
9083 
9084 	rec.header.type	= PERF_RECORD_ITRACE_START;
9085 	rec.header.misc	= 0;
9086 	rec.header.size	= sizeof(rec);
9087 	rec.pid	= perf_event_pid(event, current);
9088 	rec.tid	= perf_event_tid(event, current);
9089 
9090 	perf_event_header__init_id(&rec.header, &sample, event);
9091 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9092 
9093 	if (ret)
9094 		return;
9095 
9096 	perf_output_put(&handle, rec);
9097 	perf_event__output_id_sample(event, &handle, &sample);
9098 
9099 	perf_output_end(&handle);
9100 }
9101 
9102 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id)
9103 {
9104 	struct perf_output_handle handle;
9105 	struct perf_sample_data sample;
9106 	struct perf_aux_event {
9107 		struct perf_event_header        header;
9108 		u64				hw_id;
9109 	} rec;
9110 	int ret;
9111 
9112 	if (event->parent)
9113 		event = event->parent;
9114 
9115 	rec.header.type	= PERF_RECORD_AUX_OUTPUT_HW_ID;
9116 	rec.header.misc	= 0;
9117 	rec.header.size	= sizeof(rec);
9118 	rec.hw_id	= hw_id;
9119 
9120 	perf_event_header__init_id(&rec.header, &sample, event);
9121 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9122 
9123 	if (ret)
9124 		return;
9125 
9126 	perf_output_put(&handle, rec);
9127 	perf_event__output_id_sample(event, &handle, &sample);
9128 
9129 	perf_output_end(&handle);
9130 }
9131 
9132 static int
9133 __perf_event_account_interrupt(struct perf_event *event, int throttle)
9134 {
9135 	struct hw_perf_event *hwc = &event->hw;
9136 	int ret = 0;
9137 	u64 seq;
9138 
9139 	seq = __this_cpu_read(perf_throttled_seq);
9140 	if (seq != hwc->interrupts_seq) {
9141 		hwc->interrupts_seq = seq;
9142 		hwc->interrupts = 1;
9143 	} else {
9144 		hwc->interrupts++;
9145 		if (unlikely(throttle
9146 			     && hwc->interrupts >= max_samples_per_tick)) {
9147 			__this_cpu_inc(perf_throttled_count);
9148 			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
9149 			hwc->interrupts = MAX_INTERRUPTS;
9150 			perf_log_throttle(event, 0);
9151 			ret = 1;
9152 		}
9153 	}
9154 
9155 	if (event->attr.freq) {
9156 		u64 now = perf_clock();
9157 		s64 delta = now - hwc->freq_time_stamp;
9158 
9159 		hwc->freq_time_stamp = now;
9160 
9161 		if (delta > 0 && delta < 2*TICK_NSEC)
9162 			perf_adjust_period(event, delta, hwc->last_period, true);
9163 	}
9164 
9165 	return ret;
9166 }
9167 
9168 int perf_event_account_interrupt(struct perf_event *event)
9169 {
9170 	return __perf_event_account_interrupt(event, 1);
9171 }
9172 
9173 /*
9174  * Generic event overflow handling, sampling.
9175  */
9176 
9177 static int __perf_event_overflow(struct perf_event *event,
9178 				   int throttle, struct perf_sample_data *data,
9179 				   struct pt_regs *regs)
9180 {
9181 	int events = atomic_read(&event->event_limit);
9182 	int ret = 0;
9183 
9184 	/*
9185 	 * Non-sampling counters might still use the PMI to fold short
9186 	 * hardware counters, ignore those.
9187 	 */
9188 	if (unlikely(!is_sampling_event(event)))
9189 		return 0;
9190 
9191 	ret = __perf_event_account_interrupt(event, throttle);
9192 
9193 	/*
9194 	 * XXX event_limit might not quite work as expected on inherited
9195 	 * events
9196 	 */
9197 
9198 	event->pending_kill = POLL_IN;
9199 	if (events && atomic_dec_and_test(&event->event_limit)) {
9200 		ret = 1;
9201 		event->pending_kill = POLL_HUP;
9202 		event->pending_addr = data->addr;
9203 
9204 		perf_event_disable_inatomic(event);
9205 	}
9206 
9207 	READ_ONCE(event->overflow_handler)(event, data, regs);
9208 
9209 	if (*perf_event_fasync(event) && event->pending_kill) {
9210 		event->pending_wakeup = 1;
9211 		irq_work_queue(&event->pending);
9212 	}
9213 
9214 	return ret;
9215 }
9216 
9217 int perf_event_overflow(struct perf_event *event,
9218 			  struct perf_sample_data *data,
9219 			  struct pt_regs *regs)
9220 {
9221 	return __perf_event_overflow(event, 1, data, regs);
9222 }
9223 
9224 /*
9225  * Generic software event infrastructure
9226  */
9227 
9228 struct swevent_htable {
9229 	struct swevent_hlist		*swevent_hlist;
9230 	struct mutex			hlist_mutex;
9231 	int				hlist_refcount;
9232 
9233 	/* Recursion avoidance in each contexts */
9234 	int				recursion[PERF_NR_CONTEXTS];
9235 };
9236 
9237 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
9238 
9239 /*
9240  * We directly increment event->count and keep a second value in
9241  * event->hw.period_left to count intervals. This period event
9242  * is kept in the range [-sample_period, 0] so that we can use the
9243  * sign as trigger.
9244  */
9245 
9246 u64 perf_swevent_set_period(struct perf_event *event)
9247 {
9248 	struct hw_perf_event *hwc = &event->hw;
9249 	u64 period = hwc->last_period;
9250 	u64 nr, offset;
9251 	s64 old, val;
9252 
9253 	hwc->last_period = hwc->sample_period;
9254 
9255 again:
9256 	old = val = local64_read(&hwc->period_left);
9257 	if (val < 0)
9258 		return 0;
9259 
9260 	nr = div64_u64(period + val, period);
9261 	offset = nr * period;
9262 	val -= offset;
9263 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
9264 		goto again;
9265 
9266 	return nr;
9267 }
9268 
9269 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
9270 				    struct perf_sample_data *data,
9271 				    struct pt_regs *regs)
9272 {
9273 	struct hw_perf_event *hwc = &event->hw;
9274 	int throttle = 0;
9275 
9276 	if (!overflow)
9277 		overflow = perf_swevent_set_period(event);
9278 
9279 	if (hwc->interrupts == MAX_INTERRUPTS)
9280 		return;
9281 
9282 	for (; overflow; overflow--) {
9283 		if (__perf_event_overflow(event, throttle,
9284 					    data, regs)) {
9285 			/*
9286 			 * We inhibit the overflow from happening when
9287 			 * hwc->interrupts == MAX_INTERRUPTS.
9288 			 */
9289 			break;
9290 		}
9291 		throttle = 1;
9292 	}
9293 }
9294 
9295 static void perf_swevent_event(struct perf_event *event, u64 nr,
9296 			       struct perf_sample_data *data,
9297 			       struct pt_regs *regs)
9298 {
9299 	struct hw_perf_event *hwc = &event->hw;
9300 
9301 	local64_add(nr, &event->count);
9302 
9303 	if (!regs)
9304 		return;
9305 
9306 	if (!is_sampling_event(event))
9307 		return;
9308 
9309 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
9310 		data->period = nr;
9311 		return perf_swevent_overflow(event, 1, data, regs);
9312 	} else
9313 		data->period = event->hw.last_period;
9314 
9315 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
9316 		return perf_swevent_overflow(event, 1, data, regs);
9317 
9318 	if (local64_add_negative(nr, &hwc->period_left))
9319 		return;
9320 
9321 	perf_swevent_overflow(event, 0, data, regs);
9322 }
9323 
9324 static int perf_exclude_event(struct perf_event *event,
9325 			      struct pt_regs *regs)
9326 {
9327 	if (event->hw.state & PERF_HES_STOPPED)
9328 		return 1;
9329 
9330 	if (regs) {
9331 		if (event->attr.exclude_user && user_mode(regs))
9332 			return 1;
9333 
9334 		if (event->attr.exclude_kernel && !user_mode(regs))
9335 			return 1;
9336 	}
9337 
9338 	return 0;
9339 }
9340 
9341 static int perf_swevent_match(struct perf_event *event,
9342 				enum perf_type_id type,
9343 				u32 event_id,
9344 				struct perf_sample_data *data,
9345 				struct pt_regs *regs)
9346 {
9347 	if (event->attr.type != type)
9348 		return 0;
9349 
9350 	if (event->attr.config != event_id)
9351 		return 0;
9352 
9353 	if (perf_exclude_event(event, regs))
9354 		return 0;
9355 
9356 	return 1;
9357 }
9358 
9359 static inline u64 swevent_hash(u64 type, u32 event_id)
9360 {
9361 	u64 val = event_id | (type << 32);
9362 
9363 	return hash_64(val, SWEVENT_HLIST_BITS);
9364 }
9365 
9366 static inline struct hlist_head *
9367 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
9368 {
9369 	u64 hash = swevent_hash(type, event_id);
9370 
9371 	return &hlist->heads[hash];
9372 }
9373 
9374 /* For the read side: events when they trigger */
9375 static inline struct hlist_head *
9376 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
9377 {
9378 	struct swevent_hlist *hlist;
9379 
9380 	hlist = rcu_dereference(swhash->swevent_hlist);
9381 	if (!hlist)
9382 		return NULL;
9383 
9384 	return __find_swevent_head(hlist, type, event_id);
9385 }
9386 
9387 /* For the event head insertion and removal in the hlist */
9388 static inline struct hlist_head *
9389 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
9390 {
9391 	struct swevent_hlist *hlist;
9392 	u32 event_id = event->attr.config;
9393 	u64 type = event->attr.type;
9394 
9395 	/*
9396 	 * Event scheduling is always serialized against hlist allocation
9397 	 * and release. Which makes the protected version suitable here.
9398 	 * The context lock guarantees that.
9399 	 */
9400 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
9401 					  lockdep_is_held(&event->ctx->lock));
9402 	if (!hlist)
9403 		return NULL;
9404 
9405 	return __find_swevent_head(hlist, type, event_id);
9406 }
9407 
9408 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
9409 				    u64 nr,
9410 				    struct perf_sample_data *data,
9411 				    struct pt_regs *regs)
9412 {
9413 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9414 	struct perf_event *event;
9415 	struct hlist_head *head;
9416 
9417 	rcu_read_lock();
9418 	head = find_swevent_head_rcu(swhash, type, event_id);
9419 	if (!head)
9420 		goto end;
9421 
9422 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
9423 		if (perf_swevent_match(event, type, event_id, data, regs))
9424 			perf_swevent_event(event, nr, data, regs);
9425 	}
9426 end:
9427 	rcu_read_unlock();
9428 }
9429 
9430 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
9431 
9432 int perf_swevent_get_recursion_context(void)
9433 {
9434 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9435 
9436 	return get_recursion_context(swhash->recursion);
9437 }
9438 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
9439 
9440 void perf_swevent_put_recursion_context(int rctx)
9441 {
9442 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9443 
9444 	put_recursion_context(swhash->recursion, rctx);
9445 }
9446 
9447 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9448 {
9449 	struct perf_sample_data data;
9450 
9451 	if (WARN_ON_ONCE(!regs))
9452 		return;
9453 
9454 	perf_sample_data_init(&data, addr, 0);
9455 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
9456 }
9457 
9458 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9459 {
9460 	int rctx;
9461 
9462 	preempt_disable_notrace();
9463 	rctx = perf_swevent_get_recursion_context();
9464 	if (unlikely(rctx < 0))
9465 		goto fail;
9466 
9467 	___perf_sw_event(event_id, nr, regs, addr);
9468 
9469 	perf_swevent_put_recursion_context(rctx);
9470 fail:
9471 	preempt_enable_notrace();
9472 }
9473 
9474 static void perf_swevent_read(struct perf_event *event)
9475 {
9476 }
9477 
9478 static int perf_swevent_add(struct perf_event *event, int flags)
9479 {
9480 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9481 	struct hw_perf_event *hwc = &event->hw;
9482 	struct hlist_head *head;
9483 
9484 	if (is_sampling_event(event)) {
9485 		hwc->last_period = hwc->sample_period;
9486 		perf_swevent_set_period(event);
9487 	}
9488 
9489 	hwc->state = !(flags & PERF_EF_START);
9490 
9491 	head = find_swevent_head(swhash, event);
9492 	if (WARN_ON_ONCE(!head))
9493 		return -EINVAL;
9494 
9495 	hlist_add_head_rcu(&event->hlist_entry, head);
9496 	perf_event_update_userpage(event);
9497 
9498 	return 0;
9499 }
9500 
9501 static void perf_swevent_del(struct perf_event *event, int flags)
9502 {
9503 	hlist_del_rcu(&event->hlist_entry);
9504 }
9505 
9506 static void perf_swevent_start(struct perf_event *event, int flags)
9507 {
9508 	event->hw.state = 0;
9509 }
9510 
9511 static void perf_swevent_stop(struct perf_event *event, int flags)
9512 {
9513 	event->hw.state = PERF_HES_STOPPED;
9514 }
9515 
9516 /* Deref the hlist from the update side */
9517 static inline struct swevent_hlist *
9518 swevent_hlist_deref(struct swevent_htable *swhash)
9519 {
9520 	return rcu_dereference_protected(swhash->swevent_hlist,
9521 					 lockdep_is_held(&swhash->hlist_mutex));
9522 }
9523 
9524 static void swevent_hlist_release(struct swevent_htable *swhash)
9525 {
9526 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
9527 
9528 	if (!hlist)
9529 		return;
9530 
9531 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
9532 	kfree_rcu(hlist, rcu_head);
9533 }
9534 
9535 static void swevent_hlist_put_cpu(int cpu)
9536 {
9537 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9538 
9539 	mutex_lock(&swhash->hlist_mutex);
9540 
9541 	if (!--swhash->hlist_refcount)
9542 		swevent_hlist_release(swhash);
9543 
9544 	mutex_unlock(&swhash->hlist_mutex);
9545 }
9546 
9547 static void swevent_hlist_put(void)
9548 {
9549 	int cpu;
9550 
9551 	for_each_possible_cpu(cpu)
9552 		swevent_hlist_put_cpu(cpu);
9553 }
9554 
9555 static int swevent_hlist_get_cpu(int cpu)
9556 {
9557 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9558 	int err = 0;
9559 
9560 	mutex_lock(&swhash->hlist_mutex);
9561 	if (!swevent_hlist_deref(swhash) &&
9562 	    cpumask_test_cpu(cpu, perf_online_mask)) {
9563 		struct swevent_hlist *hlist;
9564 
9565 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
9566 		if (!hlist) {
9567 			err = -ENOMEM;
9568 			goto exit;
9569 		}
9570 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
9571 	}
9572 	swhash->hlist_refcount++;
9573 exit:
9574 	mutex_unlock(&swhash->hlist_mutex);
9575 
9576 	return err;
9577 }
9578 
9579 static int swevent_hlist_get(void)
9580 {
9581 	int err, cpu, failed_cpu;
9582 
9583 	mutex_lock(&pmus_lock);
9584 	for_each_possible_cpu(cpu) {
9585 		err = swevent_hlist_get_cpu(cpu);
9586 		if (err) {
9587 			failed_cpu = cpu;
9588 			goto fail;
9589 		}
9590 	}
9591 	mutex_unlock(&pmus_lock);
9592 	return 0;
9593 fail:
9594 	for_each_possible_cpu(cpu) {
9595 		if (cpu == failed_cpu)
9596 			break;
9597 		swevent_hlist_put_cpu(cpu);
9598 	}
9599 	mutex_unlock(&pmus_lock);
9600 	return err;
9601 }
9602 
9603 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
9604 
9605 static void sw_perf_event_destroy(struct perf_event *event)
9606 {
9607 	u64 event_id = event->attr.config;
9608 
9609 	WARN_ON(event->parent);
9610 
9611 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
9612 	swevent_hlist_put();
9613 }
9614 
9615 static int perf_swevent_init(struct perf_event *event)
9616 {
9617 	u64 event_id = event->attr.config;
9618 
9619 	if (event->attr.type != PERF_TYPE_SOFTWARE)
9620 		return -ENOENT;
9621 
9622 	/*
9623 	 * no branch sampling for software events
9624 	 */
9625 	if (has_branch_stack(event))
9626 		return -EOPNOTSUPP;
9627 
9628 	switch (event_id) {
9629 	case PERF_COUNT_SW_CPU_CLOCK:
9630 	case PERF_COUNT_SW_TASK_CLOCK:
9631 		return -ENOENT;
9632 
9633 	default:
9634 		break;
9635 	}
9636 
9637 	if (event_id >= PERF_COUNT_SW_MAX)
9638 		return -ENOENT;
9639 
9640 	if (!event->parent) {
9641 		int err;
9642 
9643 		err = swevent_hlist_get();
9644 		if (err)
9645 			return err;
9646 
9647 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
9648 		event->destroy = sw_perf_event_destroy;
9649 	}
9650 
9651 	return 0;
9652 }
9653 
9654 static struct pmu perf_swevent = {
9655 	.task_ctx_nr	= perf_sw_context,
9656 
9657 	.capabilities	= PERF_PMU_CAP_NO_NMI,
9658 
9659 	.event_init	= perf_swevent_init,
9660 	.add		= perf_swevent_add,
9661 	.del		= perf_swevent_del,
9662 	.start		= perf_swevent_start,
9663 	.stop		= perf_swevent_stop,
9664 	.read		= perf_swevent_read,
9665 };
9666 
9667 #ifdef CONFIG_EVENT_TRACING
9668 
9669 static int perf_tp_filter_match(struct perf_event *event,
9670 				struct perf_sample_data *data)
9671 {
9672 	void *record = data->raw->frag.data;
9673 
9674 	/* only top level events have filters set */
9675 	if (event->parent)
9676 		event = event->parent;
9677 
9678 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
9679 		return 1;
9680 	return 0;
9681 }
9682 
9683 static int perf_tp_event_match(struct perf_event *event,
9684 				struct perf_sample_data *data,
9685 				struct pt_regs *regs)
9686 {
9687 	if (event->hw.state & PERF_HES_STOPPED)
9688 		return 0;
9689 	/*
9690 	 * If exclude_kernel, only trace user-space tracepoints (uprobes)
9691 	 */
9692 	if (event->attr.exclude_kernel && !user_mode(regs))
9693 		return 0;
9694 
9695 	if (!perf_tp_filter_match(event, data))
9696 		return 0;
9697 
9698 	return 1;
9699 }
9700 
9701 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
9702 			       struct trace_event_call *call, u64 count,
9703 			       struct pt_regs *regs, struct hlist_head *head,
9704 			       struct task_struct *task)
9705 {
9706 	if (bpf_prog_array_valid(call)) {
9707 		*(struct pt_regs **)raw_data = regs;
9708 		if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
9709 			perf_swevent_put_recursion_context(rctx);
9710 			return;
9711 		}
9712 	}
9713 	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
9714 		      rctx, task);
9715 }
9716 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
9717 
9718 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
9719 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
9720 		   struct task_struct *task)
9721 {
9722 	struct perf_sample_data data;
9723 	struct perf_event *event;
9724 
9725 	struct perf_raw_record raw = {
9726 		.frag = {
9727 			.size = entry_size,
9728 			.data = record,
9729 		},
9730 	};
9731 
9732 	perf_sample_data_init(&data, 0, 0);
9733 	data.raw = &raw;
9734 
9735 	perf_trace_buf_update(record, event_type);
9736 
9737 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
9738 		if (perf_tp_event_match(event, &data, regs))
9739 			perf_swevent_event(event, count, &data, regs);
9740 	}
9741 
9742 	/*
9743 	 * If we got specified a target task, also iterate its context and
9744 	 * deliver this event there too.
9745 	 */
9746 	if (task && task != current) {
9747 		struct perf_event_context *ctx;
9748 		struct trace_entry *entry = record;
9749 
9750 		rcu_read_lock();
9751 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
9752 		if (!ctx)
9753 			goto unlock;
9754 
9755 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
9756 			if (event->cpu != smp_processor_id())
9757 				continue;
9758 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
9759 				continue;
9760 			if (event->attr.config != entry->type)
9761 				continue;
9762 			/* Cannot deliver synchronous signal to other task. */
9763 			if (event->attr.sigtrap)
9764 				continue;
9765 			if (perf_tp_event_match(event, &data, regs))
9766 				perf_swevent_event(event, count, &data, regs);
9767 		}
9768 unlock:
9769 		rcu_read_unlock();
9770 	}
9771 
9772 	perf_swevent_put_recursion_context(rctx);
9773 }
9774 EXPORT_SYMBOL_GPL(perf_tp_event);
9775 
9776 static void tp_perf_event_destroy(struct perf_event *event)
9777 {
9778 	perf_trace_destroy(event);
9779 }
9780 
9781 static int perf_tp_event_init(struct perf_event *event)
9782 {
9783 	int err;
9784 
9785 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
9786 		return -ENOENT;
9787 
9788 	/*
9789 	 * no branch sampling for tracepoint events
9790 	 */
9791 	if (has_branch_stack(event))
9792 		return -EOPNOTSUPP;
9793 
9794 	err = perf_trace_init(event);
9795 	if (err)
9796 		return err;
9797 
9798 	event->destroy = tp_perf_event_destroy;
9799 
9800 	return 0;
9801 }
9802 
9803 static struct pmu perf_tracepoint = {
9804 	.task_ctx_nr	= perf_sw_context,
9805 
9806 	.event_init	= perf_tp_event_init,
9807 	.add		= perf_trace_add,
9808 	.del		= perf_trace_del,
9809 	.start		= perf_swevent_start,
9810 	.stop		= perf_swevent_stop,
9811 	.read		= perf_swevent_read,
9812 };
9813 
9814 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
9815 /*
9816  * Flags in config, used by dynamic PMU kprobe and uprobe
9817  * The flags should match following PMU_FORMAT_ATTR().
9818  *
9819  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
9820  *                               if not set, create kprobe/uprobe
9821  *
9822  * The following values specify a reference counter (or semaphore in the
9823  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
9824  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
9825  *
9826  * PERF_UPROBE_REF_CTR_OFFSET_BITS	# of bits in config as th offset
9827  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT	# of bits to shift left
9828  */
9829 enum perf_probe_config {
9830 	PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
9831 	PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
9832 	PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
9833 };
9834 
9835 PMU_FORMAT_ATTR(retprobe, "config:0");
9836 #endif
9837 
9838 #ifdef CONFIG_KPROBE_EVENTS
9839 static struct attribute *kprobe_attrs[] = {
9840 	&format_attr_retprobe.attr,
9841 	NULL,
9842 };
9843 
9844 static struct attribute_group kprobe_format_group = {
9845 	.name = "format",
9846 	.attrs = kprobe_attrs,
9847 };
9848 
9849 static const struct attribute_group *kprobe_attr_groups[] = {
9850 	&kprobe_format_group,
9851 	NULL,
9852 };
9853 
9854 static int perf_kprobe_event_init(struct perf_event *event);
9855 static struct pmu perf_kprobe = {
9856 	.task_ctx_nr	= perf_sw_context,
9857 	.event_init	= perf_kprobe_event_init,
9858 	.add		= perf_trace_add,
9859 	.del		= perf_trace_del,
9860 	.start		= perf_swevent_start,
9861 	.stop		= perf_swevent_stop,
9862 	.read		= perf_swevent_read,
9863 	.attr_groups	= kprobe_attr_groups,
9864 };
9865 
9866 static int perf_kprobe_event_init(struct perf_event *event)
9867 {
9868 	int err;
9869 	bool is_retprobe;
9870 
9871 	if (event->attr.type != perf_kprobe.type)
9872 		return -ENOENT;
9873 
9874 	if (!perfmon_capable())
9875 		return -EACCES;
9876 
9877 	/*
9878 	 * no branch sampling for probe events
9879 	 */
9880 	if (has_branch_stack(event))
9881 		return -EOPNOTSUPP;
9882 
9883 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9884 	err = perf_kprobe_init(event, is_retprobe);
9885 	if (err)
9886 		return err;
9887 
9888 	event->destroy = perf_kprobe_destroy;
9889 
9890 	return 0;
9891 }
9892 #endif /* CONFIG_KPROBE_EVENTS */
9893 
9894 #ifdef CONFIG_UPROBE_EVENTS
9895 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
9896 
9897 static struct attribute *uprobe_attrs[] = {
9898 	&format_attr_retprobe.attr,
9899 	&format_attr_ref_ctr_offset.attr,
9900 	NULL,
9901 };
9902 
9903 static struct attribute_group uprobe_format_group = {
9904 	.name = "format",
9905 	.attrs = uprobe_attrs,
9906 };
9907 
9908 static const struct attribute_group *uprobe_attr_groups[] = {
9909 	&uprobe_format_group,
9910 	NULL,
9911 };
9912 
9913 static int perf_uprobe_event_init(struct perf_event *event);
9914 static struct pmu perf_uprobe = {
9915 	.task_ctx_nr	= perf_sw_context,
9916 	.event_init	= perf_uprobe_event_init,
9917 	.add		= perf_trace_add,
9918 	.del		= perf_trace_del,
9919 	.start		= perf_swevent_start,
9920 	.stop		= perf_swevent_stop,
9921 	.read		= perf_swevent_read,
9922 	.attr_groups	= uprobe_attr_groups,
9923 };
9924 
9925 static int perf_uprobe_event_init(struct perf_event *event)
9926 {
9927 	int err;
9928 	unsigned long ref_ctr_offset;
9929 	bool is_retprobe;
9930 
9931 	if (event->attr.type != perf_uprobe.type)
9932 		return -ENOENT;
9933 
9934 	if (!perfmon_capable())
9935 		return -EACCES;
9936 
9937 	/*
9938 	 * no branch sampling for probe events
9939 	 */
9940 	if (has_branch_stack(event))
9941 		return -EOPNOTSUPP;
9942 
9943 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9944 	ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
9945 	err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
9946 	if (err)
9947 		return err;
9948 
9949 	event->destroy = perf_uprobe_destroy;
9950 
9951 	return 0;
9952 }
9953 #endif /* CONFIG_UPROBE_EVENTS */
9954 
9955 static inline void perf_tp_register(void)
9956 {
9957 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
9958 #ifdef CONFIG_KPROBE_EVENTS
9959 	perf_pmu_register(&perf_kprobe, "kprobe", -1);
9960 #endif
9961 #ifdef CONFIG_UPROBE_EVENTS
9962 	perf_pmu_register(&perf_uprobe, "uprobe", -1);
9963 #endif
9964 }
9965 
9966 static void perf_event_free_filter(struct perf_event *event)
9967 {
9968 	ftrace_profile_free_filter(event);
9969 }
9970 
9971 #ifdef CONFIG_BPF_SYSCALL
9972 static void bpf_overflow_handler(struct perf_event *event,
9973 				 struct perf_sample_data *data,
9974 				 struct pt_regs *regs)
9975 {
9976 	struct bpf_perf_event_data_kern ctx = {
9977 		.data = data,
9978 		.event = event,
9979 	};
9980 	struct bpf_prog *prog;
9981 	int ret = 0;
9982 
9983 	ctx.regs = perf_arch_bpf_user_pt_regs(regs);
9984 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
9985 		goto out;
9986 	rcu_read_lock();
9987 	prog = READ_ONCE(event->prog);
9988 	if (prog)
9989 		ret = bpf_prog_run(prog, &ctx);
9990 	rcu_read_unlock();
9991 out:
9992 	__this_cpu_dec(bpf_prog_active);
9993 	if (!ret)
9994 		return;
9995 
9996 	event->orig_overflow_handler(event, data, regs);
9997 }
9998 
9999 static int perf_event_set_bpf_handler(struct perf_event *event,
10000 				      struct bpf_prog *prog,
10001 				      u64 bpf_cookie)
10002 {
10003 	if (event->overflow_handler_context)
10004 		/* hw breakpoint or kernel counter */
10005 		return -EINVAL;
10006 
10007 	if (event->prog)
10008 		return -EEXIST;
10009 
10010 	if (prog->type != BPF_PROG_TYPE_PERF_EVENT)
10011 		return -EINVAL;
10012 
10013 	if (event->attr.precise_ip &&
10014 	    prog->call_get_stack &&
10015 	    (!(event->attr.sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY) ||
10016 	     event->attr.exclude_callchain_kernel ||
10017 	     event->attr.exclude_callchain_user)) {
10018 		/*
10019 		 * On perf_event with precise_ip, calling bpf_get_stack()
10020 		 * may trigger unwinder warnings and occasional crashes.
10021 		 * bpf_get_[stack|stackid] works around this issue by using
10022 		 * callchain attached to perf_sample_data. If the
10023 		 * perf_event does not full (kernel and user) callchain
10024 		 * attached to perf_sample_data, do not allow attaching BPF
10025 		 * program that calls bpf_get_[stack|stackid].
10026 		 */
10027 		return -EPROTO;
10028 	}
10029 
10030 	event->prog = prog;
10031 	event->bpf_cookie = bpf_cookie;
10032 	event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
10033 	WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
10034 	return 0;
10035 }
10036 
10037 static void perf_event_free_bpf_handler(struct perf_event *event)
10038 {
10039 	struct bpf_prog *prog = event->prog;
10040 
10041 	if (!prog)
10042 		return;
10043 
10044 	WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
10045 	event->prog = NULL;
10046 	bpf_prog_put(prog);
10047 }
10048 #else
10049 static int perf_event_set_bpf_handler(struct perf_event *event,
10050 				      struct bpf_prog *prog,
10051 				      u64 bpf_cookie)
10052 {
10053 	return -EOPNOTSUPP;
10054 }
10055 static void perf_event_free_bpf_handler(struct perf_event *event)
10056 {
10057 }
10058 #endif
10059 
10060 /*
10061  * returns true if the event is a tracepoint, or a kprobe/upprobe created
10062  * with perf_event_open()
10063  */
10064 static inline bool perf_event_is_tracing(struct perf_event *event)
10065 {
10066 	if (event->pmu == &perf_tracepoint)
10067 		return true;
10068 #ifdef CONFIG_KPROBE_EVENTS
10069 	if (event->pmu == &perf_kprobe)
10070 		return true;
10071 #endif
10072 #ifdef CONFIG_UPROBE_EVENTS
10073 	if (event->pmu == &perf_uprobe)
10074 		return true;
10075 #endif
10076 	return false;
10077 }
10078 
10079 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10080 			    u64 bpf_cookie)
10081 {
10082 	bool is_kprobe, is_tracepoint, is_syscall_tp;
10083 
10084 	if (!perf_event_is_tracing(event))
10085 		return perf_event_set_bpf_handler(event, prog, bpf_cookie);
10086 
10087 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
10088 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
10089 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
10090 	if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
10091 		/* bpf programs can only be attached to u/kprobe or tracepoint */
10092 		return -EINVAL;
10093 
10094 	if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
10095 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
10096 	    (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT))
10097 		return -EINVAL;
10098 
10099 	/* Kprobe override only works for kprobes, not uprobes. */
10100 	if (prog->kprobe_override &&
10101 	    !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE))
10102 		return -EINVAL;
10103 
10104 	if (is_tracepoint || is_syscall_tp) {
10105 		int off = trace_event_get_offsets(event->tp_event);
10106 
10107 		if (prog->aux->max_ctx_offset > off)
10108 			return -EACCES;
10109 	}
10110 
10111 	return perf_event_attach_bpf_prog(event, prog, bpf_cookie);
10112 }
10113 
10114 void perf_event_free_bpf_prog(struct perf_event *event)
10115 {
10116 	if (!perf_event_is_tracing(event)) {
10117 		perf_event_free_bpf_handler(event);
10118 		return;
10119 	}
10120 	perf_event_detach_bpf_prog(event);
10121 }
10122 
10123 #else
10124 
10125 static inline void perf_tp_register(void)
10126 {
10127 }
10128 
10129 static void perf_event_free_filter(struct perf_event *event)
10130 {
10131 }
10132 
10133 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10134 			    u64 bpf_cookie)
10135 {
10136 	return -ENOENT;
10137 }
10138 
10139 void perf_event_free_bpf_prog(struct perf_event *event)
10140 {
10141 }
10142 #endif /* CONFIG_EVENT_TRACING */
10143 
10144 #ifdef CONFIG_HAVE_HW_BREAKPOINT
10145 void perf_bp_event(struct perf_event *bp, void *data)
10146 {
10147 	struct perf_sample_data sample;
10148 	struct pt_regs *regs = data;
10149 
10150 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
10151 
10152 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
10153 		perf_swevent_event(bp, 1, &sample, regs);
10154 }
10155 #endif
10156 
10157 /*
10158  * Allocate a new address filter
10159  */
10160 static struct perf_addr_filter *
10161 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
10162 {
10163 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
10164 	struct perf_addr_filter *filter;
10165 
10166 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
10167 	if (!filter)
10168 		return NULL;
10169 
10170 	INIT_LIST_HEAD(&filter->entry);
10171 	list_add_tail(&filter->entry, filters);
10172 
10173 	return filter;
10174 }
10175 
10176 static void free_filters_list(struct list_head *filters)
10177 {
10178 	struct perf_addr_filter *filter, *iter;
10179 
10180 	list_for_each_entry_safe(filter, iter, filters, entry) {
10181 		path_put(&filter->path);
10182 		list_del(&filter->entry);
10183 		kfree(filter);
10184 	}
10185 }
10186 
10187 /*
10188  * Free existing address filters and optionally install new ones
10189  */
10190 static void perf_addr_filters_splice(struct perf_event *event,
10191 				     struct list_head *head)
10192 {
10193 	unsigned long flags;
10194 	LIST_HEAD(list);
10195 
10196 	if (!has_addr_filter(event))
10197 		return;
10198 
10199 	/* don't bother with children, they don't have their own filters */
10200 	if (event->parent)
10201 		return;
10202 
10203 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
10204 
10205 	list_splice_init(&event->addr_filters.list, &list);
10206 	if (head)
10207 		list_splice(head, &event->addr_filters.list);
10208 
10209 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
10210 
10211 	free_filters_list(&list);
10212 }
10213 
10214 /*
10215  * Scan through mm's vmas and see if one of them matches the
10216  * @filter; if so, adjust filter's address range.
10217  * Called with mm::mmap_lock down for reading.
10218  */
10219 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
10220 				   struct mm_struct *mm,
10221 				   struct perf_addr_filter_range *fr)
10222 {
10223 	struct vm_area_struct *vma;
10224 
10225 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
10226 		if (!vma->vm_file)
10227 			continue;
10228 
10229 		if (perf_addr_filter_vma_adjust(filter, vma, fr))
10230 			return;
10231 	}
10232 }
10233 
10234 /*
10235  * Update event's address range filters based on the
10236  * task's existing mappings, if any.
10237  */
10238 static void perf_event_addr_filters_apply(struct perf_event *event)
10239 {
10240 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10241 	struct task_struct *task = READ_ONCE(event->ctx->task);
10242 	struct perf_addr_filter *filter;
10243 	struct mm_struct *mm = NULL;
10244 	unsigned int count = 0;
10245 	unsigned long flags;
10246 
10247 	/*
10248 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
10249 	 * will stop on the parent's child_mutex that our caller is also holding
10250 	 */
10251 	if (task == TASK_TOMBSTONE)
10252 		return;
10253 
10254 	if (ifh->nr_file_filters) {
10255 		mm = get_task_mm(task);
10256 		if (!mm)
10257 			goto restart;
10258 
10259 		mmap_read_lock(mm);
10260 	}
10261 
10262 	raw_spin_lock_irqsave(&ifh->lock, flags);
10263 	list_for_each_entry(filter, &ifh->list, entry) {
10264 		if (filter->path.dentry) {
10265 			/*
10266 			 * Adjust base offset if the filter is associated to a
10267 			 * binary that needs to be mapped:
10268 			 */
10269 			event->addr_filter_ranges[count].start = 0;
10270 			event->addr_filter_ranges[count].size = 0;
10271 
10272 			perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
10273 		} else {
10274 			event->addr_filter_ranges[count].start = filter->offset;
10275 			event->addr_filter_ranges[count].size  = filter->size;
10276 		}
10277 
10278 		count++;
10279 	}
10280 
10281 	event->addr_filters_gen++;
10282 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
10283 
10284 	if (ifh->nr_file_filters) {
10285 		mmap_read_unlock(mm);
10286 
10287 		mmput(mm);
10288 	}
10289 
10290 restart:
10291 	perf_event_stop(event, 1);
10292 }
10293 
10294 /*
10295  * Address range filtering: limiting the data to certain
10296  * instruction address ranges. Filters are ioctl()ed to us from
10297  * userspace as ascii strings.
10298  *
10299  * Filter string format:
10300  *
10301  * ACTION RANGE_SPEC
10302  * where ACTION is one of the
10303  *  * "filter": limit the trace to this region
10304  *  * "start": start tracing from this address
10305  *  * "stop": stop tracing at this address/region;
10306  * RANGE_SPEC is
10307  *  * for kernel addresses: <start address>[/<size>]
10308  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
10309  *
10310  * if <size> is not specified or is zero, the range is treated as a single
10311  * address; not valid for ACTION=="filter".
10312  */
10313 enum {
10314 	IF_ACT_NONE = -1,
10315 	IF_ACT_FILTER,
10316 	IF_ACT_START,
10317 	IF_ACT_STOP,
10318 	IF_SRC_FILE,
10319 	IF_SRC_KERNEL,
10320 	IF_SRC_FILEADDR,
10321 	IF_SRC_KERNELADDR,
10322 };
10323 
10324 enum {
10325 	IF_STATE_ACTION = 0,
10326 	IF_STATE_SOURCE,
10327 	IF_STATE_END,
10328 };
10329 
10330 static const match_table_t if_tokens = {
10331 	{ IF_ACT_FILTER,	"filter" },
10332 	{ IF_ACT_START,		"start" },
10333 	{ IF_ACT_STOP,		"stop" },
10334 	{ IF_SRC_FILE,		"%u/%u@%s" },
10335 	{ IF_SRC_KERNEL,	"%u/%u" },
10336 	{ IF_SRC_FILEADDR,	"%u@%s" },
10337 	{ IF_SRC_KERNELADDR,	"%u" },
10338 	{ IF_ACT_NONE,		NULL },
10339 };
10340 
10341 /*
10342  * Address filter string parser
10343  */
10344 static int
10345 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
10346 			     struct list_head *filters)
10347 {
10348 	struct perf_addr_filter *filter = NULL;
10349 	char *start, *orig, *filename = NULL;
10350 	substring_t args[MAX_OPT_ARGS];
10351 	int state = IF_STATE_ACTION, token;
10352 	unsigned int kernel = 0;
10353 	int ret = -EINVAL;
10354 
10355 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
10356 	if (!fstr)
10357 		return -ENOMEM;
10358 
10359 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
10360 		static const enum perf_addr_filter_action_t actions[] = {
10361 			[IF_ACT_FILTER]	= PERF_ADDR_FILTER_ACTION_FILTER,
10362 			[IF_ACT_START]	= PERF_ADDR_FILTER_ACTION_START,
10363 			[IF_ACT_STOP]	= PERF_ADDR_FILTER_ACTION_STOP,
10364 		};
10365 		ret = -EINVAL;
10366 
10367 		if (!*start)
10368 			continue;
10369 
10370 		/* filter definition begins */
10371 		if (state == IF_STATE_ACTION) {
10372 			filter = perf_addr_filter_new(event, filters);
10373 			if (!filter)
10374 				goto fail;
10375 		}
10376 
10377 		token = match_token(start, if_tokens, args);
10378 		switch (token) {
10379 		case IF_ACT_FILTER:
10380 		case IF_ACT_START:
10381 		case IF_ACT_STOP:
10382 			if (state != IF_STATE_ACTION)
10383 				goto fail;
10384 
10385 			filter->action = actions[token];
10386 			state = IF_STATE_SOURCE;
10387 			break;
10388 
10389 		case IF_SRC_KERNELADDR:
10390 		case IF_SRC_KERNEL:
10391 			kernel = 1;
10392 			fallthrough;
10393 
10394 		case IF_SRC_FILEADDR:
10395 		case IF_SRC_FILE:
10396 			if (state != IF_STATE_SOURCE)
10397 				goto fail;
10398 
10399 			*args[0].to = 0;
10400 			ret = kstrtoul(args[0].from, 0, &filter->offset);
10401 			if (ret)
10402 				goto fail;
10403 
10404 			if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
10405 				*args[1].to = 0;
10406 				ret = kstrtoul(args[1].from, 0, &filter->size);
10407 				if (ret)
10408 					goto fail;
10409 			}
10410 
10411 			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
10412 				int fpos = token == IF_SRC_FILE ? 2 : 1;
10413 
10414 				kfree(filename);
10415 				filename = match_strdup(&args[fpos]);
10416 				if (!filename) {
10417 					ret = -ENOMEM;
10418 					goto fail;
10419 				}
10420 			}
10421 
10422 			state = IF_STATE_END;
10423 			break;
10424 
10425 		default:
10426 			goto fail;
10427 		}
10428 
10429 		/*
10430 		 * Filter definition is fully parsed, validate and install it.
10431 		 * Make sure that it doesn't contradict itself or the event's
10432 		 * attribute.
10433 		 */
10434 		if (state == IF_STATE_END) {
10435 			ret = -EINVAL;
10436 			if (kernel && event->attr.exclude_kernel)
10437 				goto fail;
10438 
10439 			/*
10440 			 * ACTION "filter" must have a non-zero length region
10441 			 * specified.
10442 			 */
10443 			if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
10444 			    !filter->size)
10445 				goto fail;
10446 
10447 			if (!kernel) {
10448 				if (!filename)
10449 					goto fail;
10450 
10451 				/*
10452 				 * For now, we only support file-based filters
10453 				 * in per-task events; doing so for CPU-wide
10454 				 * events requires additional context switching
10455 				 * trickery, since same object code will be
10456 				 * mapped at different virtual addresses in
10457 				 * different processes.
10458 				 */
10459 				ret = -EOPNOTSUPP;
10460 				if (!event->ctx->task)
10461 					goto fail;
10462 
10463 				/* look up the path and grab its inode */
10464 				ret = kern_path(filename, LOOKUP_FOLLOW,
10465 						&filter->path);
10466 				if (ret)
10467 					goto fail;
10468 
10469 				ret = -EINVAL;
10470 				if (!filter->path.dentry ||
10471 				    !S_ISREG(d_inode(filter->path.dentry)
10472 					     ->i_mode))
10473 					goto fail;
10474 
10475 				event->addr_filters.nr_file_filters++;
10476 			}
10477 
10478 			/* ready to consume more filters */
10479 			state = IF_STATE_ACTION;
10480 			filter = NULL;
10481 		}
10482 	}
10483 
10484 	if (state != IF_STATE_ACTION)
10485 		goto fail;
10486 
10487 	kfree(filename);
10488 	kfree(orig);
10489 
10490 	return 0;
10491 
10492 fail:
10493 	kfree(filename);
10494 	free_filters_list(filters);
10495 	kfree(orig);
10496 
10497 	return ret;
10498 }
10499 
10500 static int
10501 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
10502 {
10503 	LIST_HEAD(filters);
10504 	int ret;
10505 
10506 	/*
10507 	 * Since this is called in perf_ioctl() path, we're already holding
10508 	 * ctx::mutex.
10509 	 */
10510 	lockdep_assert_held(&event->ctx->mutex);
10511 
10512 	if (WARN_ON_ONCE(event->parent))
10513 		return -EINVAL;
10514 
10515 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
10516 	if (ret)
10517 		goto fail_clear_files;
10518 
10519 	ret = event->pmu->addr_filters_validate(&filters);
10520 	if (ret)
10521 		goto fail_free_filters;
10522 
10523 	/* remove existing filters, if any */
10524 	perf_addr_filters_splice(event, &filters);
10525 
10526 	/* install new filters */
10527 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
10528 
10529 	return ret;
10530 
10531 fail_free_filters:
10532 	free_filters_list(&filters);
10533 
10534 fail_clear_files:
10535 	event->addr_filters.nr_file_filters = 0;
10536 
10537 	return ret;
10538 }
10539 
10540 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
10541 {
10542 	int ret = -EINVAL;
10543 	char *filter_str;
10544 
10545 	filter_str = strndup_user(arg, PAGE_SIZE);
10546 	if (IS_ERR(filter_str))
10547 		return PTR_ERR(filter_str);
10548 
10549 #ifdef CONFIG_EVENT_TRACING
10550 	if (perf_event_is_tracing(event)) {
10551 		struct perf_event_context *ctx = event->ctx;
10552 
10553 		/*
10554 		 * Beware, here be dragons!!
10555 		 *
10556 		 * the tracepoint muck will deadlock against ctx->mutex, but
10557 		 * the tracepoint stuff does not actually need it. So
10558 		 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
10559 		 * already have a reference on ctx.
10560 		 *
10561 		 * This can result in event getting moved to a different ctx,
10562 		 * but that does not affect the tracepoint state.
10563 		 */
10564 		mutex_unlock(&ctx->mutex);
10565 		ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
10566 		mutex_lock(&ctx->mutex);
10567 	} else
10568 #endif
10569 	if (has_addr_filter(event))
10570 		ret = perf_event_set_addr_filter(event, filter_str);
10571 
10572 	kfree(filter_str);
10573 	return ret;
10574 }
10575 
10576 /*
10577  * hrtimer based swevent callback
10578  */
10579 
10580 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
10581 {
10582 	enum hrtimer_restart ret = HRTIMER_RESTART;
10583 	struct perf_sample_data data;
10584 	struct pt_regs *regs;
10585 	struct perf_event *event;
10586 	u64 period;
10587 
10588 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
10589 
10590 	if (event->state != PERF_EVENT_STATE_ACTIVE)
10591 		return HRTIMER_NORESTART;
10592 
10593 	event->pmu->read(event);
10594 
10595 	perf_sample_data_init(&data, 0, event->hw.last_period);
10596 	regs = get_irq_regs();
10597 
10598 	if (regs && !perf_exclude_event(event, regs)) {
10599 		if (!(event->attr.exclude_idle && is_idle_task(current)))
10600 			if (__perf_event_overflow(event, 1, &data, regs))
10601 				ret = HRTIMER_NORESTART;
10602 	}
10603 
10604 	period = max_t(u64, 10000, event->hw.sample_period);
10605 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
10606 
10607 	return ret;
10608 }
10609 
10610 static void perf_swevent_start_hrtimer(struct perf_event *event)
10611 {
10612 	struct hw_perf_event *hwc = &event->hw;
10613 	s64 period;
10614 
10615 	if (!is_sampling_event(event))
10616 		return;
10617 
10618 	period = local64_read(&hwc->period_left);
10619 	if (period) {
10620 		if (period < 0)
10621 			period = 10000;
10622 
10623 		local64_set(&hwc->period_left, 0);
10624 	} else {
10625 		period = max_t(u64, 10000, hwc->sample_period);
10626 	}
10627 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
10628 		      HRTIMER_MODE_REL_PINNED_HARD);
10629 }
10630 
10631 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
10632 {
10633 	struct hw_perf_event *hwc = &event->hw;
10634 
10635 	if (is_sampling_event(event)) {
10636 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
10637 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
10638 
10639 		hrtimer_cancel(&hwc->hrtimer);
10640 	}
10641 }
10642 
10643 static void perf_swevent_init_hrtimer(struct perf_event *event)
10644 {
10645 	struct hw_perf_event *hwc = &event->hw;
10646 
10647 	if (!is_sampling_event(event))
10648 		return;
10649 
10650 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
10651 	hwc->hrtimer.function = perf_swevent_hrtimer;
10652 
10653 	/*
10654 	 * Since hrtimers have a fixed rate, we can do a static freq->period
10655 	 * mapping and avoid the whole period adjust feedback stuff.
10656 	 */
10657 	if (event->attr.freq) {
10658 		long freq = event->attr.sample_freq;
10659 
10660 		event->attr.sample_period = NSEC_PER_SEC / freq;
10661 		hwc->sample_period = event->attr.sample_period;
10662 		local64_set(&hwc->period_left, hwc->sample_period);
10663 		hwc->last_period = hwc->sample_period;
10664 		event->attr.freq = 0;
10665 	}
10666 }
10667 
10668 /*
10669  * Software event: cpu wall time clock
10670  */
10671 
10672 static void cpu_clock_event_update(struct perf_event *event)
10673 {
10674 	s64 prev;
10675 	u64 now;
10676 
10677 	now = local_clock();
10678 	prev = local64_xchg(&event->hw.prev_count, now);
10679 	local64_add(now - prev, &event->count);
10680 }
10681 
10682 static void cpu_clock_event_start(struct perf_event *event, int flags)
10683 {
10684 	local64_set(&event->hw.prev_count, local_clock());
10685 	perf_swevent_start_hrtimer(event);
10686 }
10687 
10688 static void cpu_clock_event_stop(struct perf_event *event, int flags)
10689 {
10690 	perf_swevent_cancel_hrtimer(event);
10691 	cpu_clock_event_update(event);
10692 }
10693 
10694 static int cpu_clock_event_add(struct perf_event *event, int flags)
10695 {
10696 	if (flags & PERF_EF_START)
10697 		cpu_clock_event_start(event, flags);
10698 	perf_event_update_userpage(event);
10699 
10700 	return 0;
10701 }
10702 
10703 static void cpu_clock_event_del(struct perf_event *event, int flags)
10704 {
10705 	cpu_clock_event_stop(event, flags);
10706 }
10707 
10708 static void cpu_clock_event_read(struct perf_event *event)
10709 {
10710 	cpu_clock_event_update(event);
10711 }
10712 
10713 static int cpu_clock_event_init(struct perf_event *event)
10714 {
10715 	if (event->attr.type != PERF_TYPE_SOFTWARE)
10716 		return -ENOENT;
10717 
10718 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
10719 		return -ENOENT;
10720 
10721 	/*
10722 	 * no branch sampling for software events
10723 	 */
10724 	if (has_branch_stack(event))
10725 		return -EOPNOTSUPP;
10726 
10727 	perf_swevent_init_hrtimer(event);
10728 
10729 	return 0;
10730 }
10731 
10732 static struct pmu perf_cpu_clock = {
10733 	.task_ctx_nr	= perf_sw_context,
10734 
10735 	.capabilities	= PERF_PMU_CAP_NO_NMI,
10736 
10737 	.event_init	= cpu_clock_event_init,
10738 	.add		= cpu_clock_event_add,
10739 	.del		= cpu_clock_event_del,
10740 	.start		= cpu_clock_event_start,
10741 	.stop		= cpu_clock_event_stop,
10742 	.read		= cpu_clock_event_read,
10743 };
10744 
10745 /*
10746  * Software event: task time clock
10747  */
10748 
10749 static void task_clock_event_update(struct perf_event *event, u64 now)
10750 {
10751 	u64 prev;
10752 	s64 delta;
10753 
10754 	prev = local64_xchg(&event->hw.prev_count, now);
10755 	delta = now - prev;
10756 	local64_add(delta, &event->count);
10757 }
10758 
10759 static void task_clock_event_start(struct perf_event *event, int flags)
10760 {
10761 	local64_set(&event->hw.prev_count, event->ctx->time);
10762 	perf_swevent_start_hrtimer(event);
10763 }
10764 
10765 static void task_clock_event_stop(struct perf_event *event, int flags)
10766 {
10767 	perf_swevent_cancel_hrtimer(event);
10768 	task_clock_event_update(event, event->ctx->time);
10769 }
10770 
10771 static int task_clock_event_add(struct perf_event *event, int flags)
10772 {
10773 	if (flags & PERF_EF_START)
10774 		task_clock_event_start(event, flags);
10775 	perf_event_update_userpage(event);
10776 
10777 	return 0;
10778 }
10779 
10780 static void task_clock_event_del(struct perf_event *event, int flags)
10781 {
10782 	task_clock_event_stop(event, PERF_EF_UPDATE);
10783 }
10784 
10785 static void task_clock_event_read(struct perf_event *event)
10786 {
10787 	u64 now = perf_clock();
10788 	u64 delta = now - event->ctx->timestamp;
10789 	u64 time = event->ctx->time + delta;
10790 
10791 	task_clock_event_update(event, time);
10792 }
10793 
10794 static int task_clock_event_init(struct perf_event *event)
10795 {
10796 	if (event->attr.type != PERF_TYPE_SOFTWARE)
10797 		return -ENOENT;
10798 
10799 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
10800 		return -ENOENT;
10801 
10802 	/*
10803 	 * no branch sampling for software events
10804 	 */
10805 	if (has_branch_stack(event))
10806 		return -EOPNOTSUPP;
10807 
10808 	perf_swevent_init_hrtimer(event);
10809 
10810 	return 0;
10811 }
10812 
10813 static struct pmu perf_task_clock = {
10814 	.task_ctx_nr	= perf_sw_context,
10815 
10816 	.capabilities	= PERF_PMU_CAP_NO_NMI,
10817 
10818 	.event_init	= task_clock_event_init,
10819 	.add		= task_clock_event_add,
10820 	.del		= task_clock_event_del,
10821 	.start		= task_clock_event_start,
10822 	.stop		= task_clock_event_stop,
10823 	.read		= task_clock_event_read,
10824 };
10825 
10826 static void perf_pmu_nop_void(struct pmu *pmu)
10827 {
10828 }
10829 
10830 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
10831 {
10832 }
10833 
10834 static int perf_pmu_nop_int(struct pmu *pmu)
10835 {
10836 	return 0;
10837 }
10838 
10839 static int perf_event_nop_int(struct perf_event *event, u64 value)
10840 {
10841 	return 0;
10842 }
10843 
10844 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
10845 
10846 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
10847 {
10848 	__this_cpu_write(nop_txn_flags, flags);
10849 
10850 	if (flags & ~PERF_PMU_TXN_ADD)
10851 		return;
10852 
10853 	perf_pmu_disable(pmu);
10854 }
10855 
10856 static int perf_pmu_commit_txn(struct pmu *pmu)
10857 {
10858 	unsigned int flags = __this_cpu_read(nop_txn_flags);
10859 
10860 	__this_cpu_write(nop_txn_flags, 0);
10861 
10862 	if (flags & ~PERF_PMU_TXN_ADD)
10863 		return 0;
10864 
10865 	perf_pmu_enable(pmu);
10866 	return 0;
10867 }
10868 
10869 static void perf_pmu_cancel_txn(struct pmu *pmu)
10870 {
10871 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
10872 
10873 	__this_cpu_write(nop_txn_flags, 0);
10874 
10875 	if (flags & ~PERF_PMU_TXN_ADD)
10876 		return;
10877 
10878 	perf_pmu_enable(pmu);
10879 }
10880 
10881 static int perf_event_idx_default(struct perf_event *event)
10882 {
10883 	return 0;
10884 }
10885 
10886 /*
10887  * Ensures all contexts with the same task_ctx_nr have the same
10888  * pmu_cpu_context too.
10889  */
10890 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
10891 {
10892 	struct pmu *pmu;
10893 
10894 	if (ctxn < 0)
10895 		return NULL;
10896 
10897 	list_for_each_entry(pmu, &pmus, entry) {
10898 		if (pmu->task_ctx_nr == ctxn)
10899 			return pmu->pmu_cpu_context;
10900 	}
10901 
10902 	return NULL;
10903 }
10904 
10905 static void free_pmu_context(struct pmu *pmu)
10906 {
10907 	/*
10908 	 * Static contexts such as perf_sw_context have a global lifetime
10909 	 * and may be shared between different PMUs. Avoid freeing them
10910 	 * when a single PMU is going away.
10911 	 */
10912 	if (pmu->task_ctx_nr > perf_invalid_context)
10913 		return;
10914 
10915 	free_percpu(pmu->pmu_cpu_context);
10916 }
10917 
10918 /*
10919  * Let userspace know that this PMU supports address range filtering:
10920  */
10921 static ssize_t nr_addr_filters_show(struct device *dev,
10922 				    struct device_attribute *attr,
10923 				    char *page)
10924 {
10925 	struct pmu *pmu = dev_get_drvdata(dev);
10926 
10927 	return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
10928 }
10929 DEVICE_ATTR_RO(nr_addr_filters);
10930 
10931 static struct idr pmu_idr;
10932 
10933 static ssize_t
10934 type_show(struct device *dev, struct device_attribute *attr, char *page)
10935 {
10936 	struct pmu *pmu = dev_get_drvdata(dev);
10937 
10938 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
10939 }
10940 static DEVICE_ATTR_RO(type);
10941 
10942 static ssize_t
10943 perf_event_mux_interval_ms_show(struct device *dev,
10944 				struct device_attribute *attr,
10945 				char *page)
10946 {
10947 	struct pmu *pmu = dev_get_drvdata(dev);
10948 
10949 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
10950 }
10951 
10952 static DEFINE_MUTEX(mux_interval_mutex);
10953 
10954 static ssize_t
10955 perf_event_mux_interval_ms_store(struct device *dev,
10956 				 struct device_attribute *attr,
10957 				 const char *buf, size_t count)
10958 {
10959 	struct pmu *pmu = dev_get_drvdata(dev);
10960 	int timer, cpu, ret;
10961 
10962 	ret = kstrtoint(buf, 0, &timer);
10963 	if (ret)
10964 		return ret;
10965 
10966 	if (timer < 1)
10967 		return -EINVAL;
10968 
10969 	/* same value, noting to do */
10970 	if (timer == pmu->hrtimer_interval_ms)
10971 		return count;
10972 
10973 	mutex_lock(&mux_interval_mutex);
10974 	pmu->hrtimer_interval_ms = timer;
10975 
10976 	/* update all cpuctx for this PMU */
10977 	cpus_read_lock();
10978 	for_each_online_cpu(cpu) {
10979 		struct perf_cpu_context *cpuctx;
10980 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10981 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
10982 
10983 		cpu_function_call(cpu,
10984 			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
10985 	}
10986 	cpus_read_unlock();
10987 	mutex_unlock(&mux_interval_mutex);
10988 
10989 	return count;
10990 }
10991 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
10992 
10993 static struct attribute *pmu_dev_attrs[] = {
10994 	&dev_attr_type.attr,
10995 	&dev_attr_perf_event_mux_interval_ms.attr,
10996 	NULL,
10997 };
10998 ATTRIBUTE_GROUPS(pmu_dev);
10999 
11000 static int pmu_bus_running;
11001 static struct bus_type pmu_bus = {
11002 	.name		= "event_source",
11003 	.dev_groups	= pmu_dev_groups,
11004 };
11005 
11006 static void pmu_dev_release(struct device *dev)
11007 {
11008 	kfree(dev);
11009 }
11010 
11011 static int pmu_dev_alloc(struct pmu *pmu)
11012 {
11013 	int ret = -ENOMEM;
11014 
11015 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
11016 	if (!pmu->dev)
11017 		goto out;
11018 
11019 	pmu->dev->groups = pmu->attr_groups;
11020 	device_initialize(pmu->dev);
11021 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
11022 	if (ret)
11023 		goto free_dev;
11024 
11025 	dev_set_drvdata(pmu->dev, pmu);
11026 	pmu->dev->bus = &pmu_bus;
11027 	pmu->dev->release = pmu_dev_release;
11028 	ret = device_add(pmu->dev);
11029 	if (ret)
11030 		goto free_dev;
11031 
11032 	/* For PMUs with address filters, throw in an extra attribute: */
11033 	if (pmu->nr_addr_filters)
11034 		ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
11035 
11036 	if (ret)
11037 		goto del_dev;
11038 
11039 	if (pmu->attr_update)
11040 		ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
11041 
11042 	if (ret)
11043 		goto del_dev;
11044 
11045 out:
11046 	return ret;
11047 
11048 del_dev:
11049 	device_del(pmu->dev);
11050 
11051 free_dev:
11052 	put_device(pmu->dev);
11053 	goto out;
11054 }
11055 
11056 static struct lock_class_key cpuctx_mutex;
11057 static struct lock_class_key cpuctx_lock;
11058 
11059 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
11060 {
11061 	int cpu, ret, max = PERF_TYPE_MAX;
11062 
11063 	mutex_lock(&pmus_lock);
11064 	ret = -ENOMEM;
11065 	pmu->pmu_disable_count = alloc_percpu(int);
11066 	if (!pmu->pmu_disable_count)
11067 		goto unlock;
11068 
11069 	pmu->type = -1;
11070 	if (!name)
11071 		goto skip_type;
11072 	pmu->name = name;
11073 
11074 	if (type != PERF_TYPE_SOFTWARE) {
11075 		if (type >= 0)
11076 			max = type;
11077 
11078 		ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
11079 		if (ret < 0)
11080 			goto free_pdc;
11081 
11082 		WARN_ON(type >= 0 && ret != type);
11083 
11084 		type = ret;
11085 	}
11086 	pmu->type = type;
11087 
11088 	if (pmu_bus_running) {
11089 		ret = pmu_dev_alloc(pmu);
11090 		if (ret)
11091 			goto free_idr;
11092 	}
11093 
11094 skip_type:
11095 	if (pmu->task_ctx_nr == perf_hw_context) {
11096 		static int hw_context_taken = 0;
11097 
11098 		/*
11099 		 * Other than systems with heterogeneous CPUs, it never makes
11100 		 * sense for two PMUs to share perf_hw_context. PMUs which are
11101 		 * uncore must use perf_invalid_context.
11102 		 */
11103 		if (WARN_ON_ONCE(hw_context_taken &&
11104 		    !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
11105 			pmu->task_ctx_nr = perf_invalid_context;
11106 
11107 		hw_context_taken = 1;
11108 	}
11109 
11110 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
11111 	if (pmu->pmu_cpu_context)
11112 		goto got_cpu_context;
11113 
11114 	ret = -ENOMEM;
11115 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
11116 	if (!pmu->pmu_cpu_context)
11117 		goto free_dev;
11118 
11119 	for_each_possible_cpu(cpu) {
11120 		struct perf_cpu_context *cpuctx;
11121 
11122 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11123 		__perf_event_init_context(&cpuctx->ctx);
11124 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
11125 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
11126 		cpuctx->ctx.pmu = pmu;
11127 		cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
11128 
11129 		__perf_mux_hrtimer_init(cpuctx, cpu);
11130 
11131 		cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
11132 		cpuctx->heap = cpuctx->heap_default;
11133 	}
11134 
11135 got_cpu_context:
11136 	if (!pmu->start_txn) {
11137 		if (pmu->pmu_enable) {
11138 			/*
11139 			 * If we have pmu_enable/pmu_disable calls, install
11140 			 * transaction stubs that use that to try and batch
11141 			 * hardware accesses.
11142 			 */
11143 			pmu->start_txn  = perf_pmu_start_txn;
11144 			pmu->commit_txn = perf_pmu_commit_txn;
11145 			pmu->cancel_txn = perf_pmu_cancel_txn;
11146 		} else {
11147 			pmu->start_txn  = perf_pmu_nop_txn;
11148 			pmu->commit_txn = perf_pmu_nop_int;
11149 			pmu->cancel_txn = perf_pmu_nop_void;
11150 		}
11151 	}
11152 
11153 	if (!pmu->pmu_enable) {
11154 		pmu->pmu_enable  = perf_pmu_nop_void;
11155 		pmu->pmu_disable = perf_pmu_nop_void;
11156 	}
11157 
11158 	if (!pmu->check_period)
11159 		pmu->check_period = perf_event_nop_int;
11160 
11161 	if (!pmu->event_idx)
11162 		pmu->event_idx = perf_event_idx_default;
11163 
11164 	/*
11165 	 * Ensure the TYPE_SOFTWARE PMUs are at the head of the list,
11166 	 * since these cannot be in the IDR. This way the linear search
11167 	 * is fast, provided a valid software event is provided.
11168 	 */
11169 	if (type == PERF_TYPE_SOFTWARE || !name)
11170 		list_add_rcu(&pmu->entry, &pmus);
11171 	else
11172 		list_add_tail_rcu(&pmu->entry, &pmus);
11173 
11174 	atomic_set(&pmu->exclusive_cnt, 0);
11175 	ret = 0;
11176 unlock:
11177 	mutex_unlock(&pmus_lock);
11178 
11179 	return ret;
11180 
11181 free_dev:
11182 	device_del(pmu->dev);
11183 	put_device(pmu->dev);
11184 
11185 free_idr:
11186 	if (pmu->type != PERF_TYPE_SOFTWARE)
11187 		idr_remove(&pmu_idr, pmu->type);
11188 
11189 free_pdc:
11190 	free_percpu(pmu->pmu_disable_count);
11191 	goto unlock;
11192 }
11193 EXPORT_SYMBOL_GPL(perf_pmu_register);
11194 
11195 void perf_pmu_unregister(struct pmu *pmu)
11196 {
11197 	mutex_lock(&pmus_lock);
11198 	list_del_rcu(&pmu->entry);
11199 
11200 	/*
11201 	 * We dereference the pmu list under both SRCU and regular RCU, so
11202 	 * synchronize against both of those.
11203 	 */
11204 	synchronize_srcu(&pmus_srcu);
11205 	synchronize_rcu();
11206 
11207 	free_percpu(pmu->pmu_disable_count);
11208 	if (pmu->type != PERF_TYPE_SOFTWARE)
11209 		idr_remove(&pmu_idr, pmu->type);
11210 	if (pmu_bus_running) {
11211 		if (pmu->nr_addr_filters)
11212 			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
11213 		device_del(pmu->dev);
11214 		put_device(pmu->dev);
11215 	}
11216 	free_pmu_context(pmu);
11217 	mutex_unlock(&pmus_lock);
11218 }
11219 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
11220 
11221 static inline bool has_extended_regs(struct perf_event *event)
11222 {
11223 	return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
11224 	       (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
11225 }
11226 
11227 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
11228 {
11229 	struct perf_event_context *ctx = NULL;
11230 	int ret;
11231 
11232 	if (!try_module_get(pmu->module))
11233 		return -ENODEV;
11234 
11235 	/*
11236 	 * A number of pmu->event_init() methods iterate the sibling_list to,
11237 	 * for example, validate if the group fits on the PMU. Therefore,
11238 	 * if this is a sibling event, acquire the ctx->mutex to protect
11239 	 * the sibling_list.
11240 	 */
11241 	if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
11242 		/*
11243 		 * This ctx->mutex can nest when we're called through
11244 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
11245 		 */
11246 		ctx = perf_event_ctx_lock_nested(event->group_leader,
11247 						 SINGLE_DEPTH_NESTING);
11248 		BUG_ON(!ctx);
11249 	}
11250 
11251 	event->pmu = pmu;
11252 	ret = pmu->event_init(event);
11253 
11254 	if (ctx)
11255 		perf_event_ctx_unlock(event->group_leader, ctx);
11256 
11257 	if (!ret) {
11258 		if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
11259 		    has_extended_regs(event))
11260 			ret = -EOPNOTSUPP;
11261 
11262 		if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
11263 		    event_has_any_exclude_flag(event))
11264 			ret = -EINVAL;
11265 
11266 		if (ret && event->destroy)
11267 			event->destroy(event);
11268 	}
11269 
11270 	if (ret)
11271 		module_put(pmu->module);
11272 
11273 	return ret;
11274 }
11275 
11276 static struct pmu *perf_init_event(struct perf_event *event)
11277 {
11278 	bool extended_type = false;
11279 	int idx, type, ret;
11280 	struct pmu *pmu;
11281 
11282 	idx = srcu_read_lock(&pmus_srcu);
11283 
11284 	/* Try parent's PMU first: */
11285 	if (event->parent && event->parent->pmu) {
11286 		pmu = event->parent->pmu;
11287 		ret = perf_try_init_event(pmu, event);
11288 		if (!ret)
11289 			goto unlock;
11290 	}
11291 
11292 	/*
11293 	 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
11294 	 * are often aliases for PERF_TYPE_RAW.
11295 	 */
11296 	type = event->attr.type;
11297 	if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) {
11298 		type = event->attr.config >> PERF_PMU_TYPE_SHIFT;
11299 		if (!type) {
11300 			type = PERF_TYPE_RAW;
11301 		} else {
11302 			extended_type = true;
11303 			event->attr.config &= PERF_HW_EVENT_MASK;
11304 		}
11305 	}
11306 
11307 again:
11308 	rcu_read_lock();
11309 	pmu = idr_find(&pmu_idr, type);
11310 	rcu_read_unlock();
11311 	if (pmu) {
11312 		if (event->attr.type != type && type != PERF_TYPE_RAW &&
11313 		    !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE))
11314 			goto fail;
11315 
11316 		ret = perf_try_init_event(pmu, event);
11317 		if (ret == -ENOENT && event->attr.type != type && !extended_type) {
11318 			type = event->attr.type;
11319 			goto again;
11320 		}
11321 
11322 		if (ret)
11323 			pmu = ERR_PTR(ret);
11324 
11325 		goto unlock;
11326 	}
11327 
11328 	list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
11329 		ret = perf_try_init_event(pmu, event);
11330 		if (!ret)
11331 			goto unlock;
11332 
11333 		if (ret != -ENOENT) {
11334 			pmu = ERR_PTR(ret);
11335 			goto unlock;
11336 		}
11337 	}
11338 fail:
11339 	pmu = ERR_PTR(-ENOENT);
11340 unlock:
11341 	srcu_read_unlock(&pmus_srcu, idx);
11342 
11343 	return pmu;
11344 }
11345 
11346 static void attach_sb_event(struct perf_event *event)
11347 {
11348 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
11349 
11350 	raw_spin_lock(&pel->lock);
11351 	list_add_rcu(&event->sb_list, &pel->list);
11352 	raw_spin_unlock(&pel->lock);
11353 }
11354 
11355 /*
11356  * We keep a list of all !task (and therefore per-cpu) events
11357  * that need to receive side-band records.
11358  *
11359  * This avoids having to scan all the various PMU per-cpu contexts
11360  * looking for them.
11361  */
11362 static void account_pmu_sb_event(struct perf_event *event)
11363 {
11364 	if (is_sb_event(event))
11365 		attach_sb_event(event);
11366 }
11367 
11368 static void account_event_cpu(struct perf_event *event, int cpu)
11369 {
11370 	if (event->parent)
11371 		return;
11372 
11373 	if (is_cgroup_event(event))
11374 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
11375 }
11376 
11377 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
11378 static void account_freq_event_nohz(void)
11379 {
11380 #ifdef CONFIG_NO_HZ_FULL
11381 	/* Lock so we don't race with concurrent unaccount */
11382 	spin_lock(&nr_freq_lock);
11383 	if (atomic_inc_return(&nr_freq_events) == 1)
11384 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
11385 	spin_unlock(&nr_freq_lock);
11386 #endif
11387 }
11388 
11389 static void account_freq_event(void)
11390 {
11391 	if (tick_nohz_full_enabled())
11392 		account_freq_event_nohz();
11393 	else
11394 		atomic_inc(&nr_freq_events);
11395 }
11396 
11397 
11398 static void account_event(struct perf_event *event)
11399 {
11400 	bool inc = false;
11401 
11402 	if (event->parent)
11403 		return;
11404 
11405 	if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
11406 		inc = true;
11407 	if (event->attr.mmap || event->attr.mmap_data)
11408 		atomic_inc(&nr_mmap_events);
11409 	if (event->attr.build_id)
11410 		atomic_inc(&nr_build_id_events);
11411 	if (event->attr.comm)
11412 		atomic_inc(&nr_comm_events);
11413 	if (event->attr.namespaces)
11414 		atomic_inc(&nr_namespaces_events);
11415 	if (event->attr.cgroup)
11416 		atomic_inc(&nr_cgroup_events);
11417 	if (event->attr.task)
11418 		atomic_inc(&nr_task_events);
11419 	if (event->attr.freq)
11420 		account_freq_event();
11421 	if (event->attr.context_switch) {
11422 		atomic_inc(&nr_switch_events);
11423 		inc = true;
11424 	}
11425 	if (has_branch_stack(event))
11426 		inc = true;
11427 	if (is_cgroup_event(event))
11428 		inc = true;
11429 	if (event->attr.ksymbol)
11430 		atomic_inc(&nr_ksymbol_events);
11431 	if (event->attr.bpf_event)
11432 		atomic_inc(&nr_bpf_events);
11433 	if (event->attr.text_poke)
11434 		atomic_inc(&nr_text_poke_events);
11435 
11436 	if (inc) {
11437 		/*
11438 		 * We need the mutex here because static_branch_enable()
11439 		 * must complete *before* the perf_sched_count increment
11440 		 * becomes visible.
11441 		 */
11442 		if (atomic_inc_not_zero(&perf_sched_count))
11443 			goto enabled;
11444 
11445 		mutex_lock(&perf_sched_mutex);
11446 		if (!atomic_read(&perf_sched_count)) {
11447 			static_branch_enable(&perf_sched_events);
11448 			/*
11449 			 * Guarantee that all CPUs observe they key change and
11450 			 * call the perf scheduling hooks before proceeding to
11451 			 * install events that need them.
11452 			 */
11453 			synchronize_rcu();
11454 		}
11455 		/*
11456 		 * Now that we have waited for the sync_sched(), allow further
11457 		 * increments to by-pass the mutex.
11458 		 */
11459 		atomic_inc(&perf_sched_count);
11460 		mutex_unlock(&perf_sched_mutex);
11461 	}
11462 enabled:
11463 
11464 	account_event_cpu(event, event->cpu);
11465 
11466 	account_pmu_sb_event(event);
11467 }
11468 
11469 /*
11470  * Allocate and initialize an event structure
11471  */
11472 static struct perf_event *
11473 perf_event_alloc(struct perf_event_attr *attr, int cpu,
11474 		 struct task_struct *task,
11475 		 struct perf_event *group_leader,
11476 		 struct perf_event *parent_event,
11477 		 perf_overflow_handler_t overflow_handler,
11478 		 void *context, int cgroup_fd)
11479 {
11480 	struct pmu *pmu;
11481 	struct perf_event *event;
11482 	struct hw_perf_event *hwc;
11483 	long err = -EINVAL;
11484 	int node;
11485 
11486 	if ((unsigned)cpu >= nr_cpu_ids) {
11487 		if (!task || cpu != -1)
11488 			return ERR_PTR(-EINVAL);
11489 	}
11490 	if (attr->sigtrap && !task) {
11491 		/* Requires a task: avoid signalling random tasks. */
11492 		return ERR_PTR(-EINVAL);
11493 	}
11494 
11495 	node = (cpu >= 0) ? cpu_to_node(cpu) : -1;
11496 	event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO,
11497 				      node);
11498 	if (!event)
11499 		return ERR_PTR(-ENOMEM);
11500 
11501 	/*
11502 	 * Single events are their own group leaders, with an
11503 	 * empty sibling list:
11504 	 */
11505 	if (!group_leader)
11506 		group_leader = event;
11507 
11508 	mutex_init(&event->child_mutex);
11509 	INIT_LIST_HEAD(&event->child_list);
11510 
11511 	INIT_LIST_HEAD(&event->event_entry);
11512 	INIT_LIST_HEAD(&event->sibling_list);
11513 	INIT_LIST_HEAD(&event->active_list);
11514 	init_event_group(event);
11515 	INIT_LIST_HEAD(&event->rb_entry);
11516 	INIT_LIST_HEAD(&event->active_entry);
11517 	INIT_LIST_HEAD(&event->addr_filters.list);
11518 	INIT_HLIST_NODE(&event->hlist_entry);
11519 
11520 
11521 	init_waitqueue_head(&event->waitq);
11522 	event->pending_disable = -1;
11523 	init_irq_work(&event->pending, perf_pending_event);
11524 
11525 	mutex_init(&event->mmap_mutex);
11526 	raw_spin_lock_init(&event->addr_filters.lock);
11527 
11528 	atomic_long_set(&event->refcount, 1);
11529 	event->cpu		= cpu;
11530 	event->attr		= *attr;
11531 	event->group_leader	= group_leader;
11532 	event->pmu		= NULL;
11533 	event->oncpu		= -1;
11534 
11535 	event->parent		= parent_event;
11536 
11537 	event->ns		= get_pid_ns(task_active_pid_ns(current));
11538 	event->id		= atomic64_inc_return(&perf_event_id);
11539 
11540 	event->state		= PERF_EVENT_STATE_INACTIVE;
11541 
11542 	if (event->attr.sigtrap)
11543 		atomic_set(&event->event_limit, 1);
11544 
11545 	if (task) {
11546 		event->attach_state = PERF_ATTACH_TASK;
11547 		/*
11548 		 * XXX pmu::event_init needs to know what task to account to
11549 		 * and we cannot use the ctx information because we need the
11550 		 * pmu before we get a ctx.
11551 		 */
11552 		event->hw.target = get_task_struct(task);
11553 	}
11554 
11555 	event->clock = &local_clock;
11556 	if (parent_event)
11557 		event->clock = parent_event->clock;
11558 
11559 	if (!overflow_handler && parent_event) {
11560 		overflow_handler = parent_event->overflow_handler;
11561 		context = parent_event->overflow_handler_context;
11562 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
11563 		if (overflow_handler == bpf_overflow_handler) {
11564 			struct bpf_prog *prog = parent_event->prog;
11565 
11566 			bpf_prog_inc(prog);
11567 			event->prog = prog;
11568 			event->orig_overflow_handler =
11569 				parent_event->orig_overflow_handler;
11570 		}
11571 #endif
11572 	}
11573 
11574 	if (overflow_handler) {
11575 		event->overflow_handler	= overflow_handler;
11576 		event->overflow_handler_context = context;
11577 	} else if (is_write_backward(event)){
11578 		event->overflow_handler = perf_event_output_backward;
11579 		event->overflow_handler_context = NULL;
11580 	} else {
11581 		event->overflow_handler = perf_event_output_forward;
11582 		event->overflow_handler_context = NULL;
11583 	}
11584 
11585 	perf_event__state_init(event);
11586 
11587 	pmu = NULL;
11588 
11589 	hwc = &event->hw;
11590 	hwc->sample_period = attr->sample_period;
11591 	if (attr->freq && attr->sample_freq)
11592 		hwc->sample_period = 1;
11593 	hwc->last_period = hwc->sample_period;
11594 
11595 	local64_set(&hwc->period_left, hwc->sample_period);
11596 
11597 	/*
11598 	 * We currently do not support PERF_SAMPLE_READ on inherited events.
11599 	 * See perf_output_read().
11600 	 */
11601 	if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
11602 		goto err_ns;
11603 
11604 	if (!has_branch_stack(event))
11605 		event->attr.branch_sample_type = 0;
11606 
11607 	pmu = perf_init_event(event);
11608 	if (IS_ERR(pmu)) {
11609 		err = PTR_ERR(pmu);
11610 		goto err_ns;
11611 	}
11612 
11613 	/*
11614 	 * Disallow uncore-cgroup events, they don't make sense as the cgroup will
11615 	 * be different on other CPUs in the uncore mask.
11616 	 */
11617 	if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) {
11618 		err = -EINVAL;
11619 		goto err_pmu;
11620 	}
11621 
11622 	if (event->attr.aux_output &&
11623 	    !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
11624 		err = -EOPNOTSUPP;
11625 		goto err_pmu;
11626 	}
11627 
11628 	if (cgroup_fd != -1) {
11629 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
11630 		if (err)
11631 			goto err_pmu;
11632 	}
11633 
11634 	err = exclusive_event_init(event);
11635 	if (err)
11636 		goto err_pmu;
11637 
11638 	if (has_addr_filter(event)) {
11639 		event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
11640 						    sizeof(struct perf_addr_filter_range),
11641 						    GFP_KERNEL);
11642 		if (!event->addr_filter_ranges) {
11643 			err = -ENOMEM;
11644 			goto err_per_task;
11645 		}
11646 
11647 		/*
11648 		 * Clone the parent's vma offsets: they are valid until exec()
11649 		 * even if the mm is not shared with the parent.
11650 		 */
11651 		if (event->parent) {
11652 			struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
11653 
11654 			raw_spin_lock_irq(&ifh->lock);
11655 			memcpy(event->addr_filter_ranges,
11656 			       event->parent->addr_filter_ranges,
11657 			       pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
11658 			raw_spin_unlock_irq(&ifh->lock);
11659 		}
11660 
11661 		/* force hw sync on the address filters */
11662 		event->addr_filters_gen = 1;
11663 	}
11664 
11665 	if (!event->parent) {
11666 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
11667 			err = get_callchain_buffers(attr->sample_max_stack);
11668 			if (err)
11669 				goto err_addr_filters;
11670 		}
11671 	}
11672 
11673 	err = security_perf_event_alloc(event);
11674 	if (err)
11675 		goto err_callchain_buffer;
11676 
11677 	/* symmetric to unaccount_event() in _free_event() */
11678 	account_event(event);
11679 
11680 	return event;
11681 
11682 err_callchain_buffer:
11683 	if (!event->parent) {
11684 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
11685 			put_callchain_buffers();
11686 	}
11687 err_addr_filters:
11688 	kfree(event->addr_filter_ranges);
11689 
11690 err_per_task:
11691 	exclusive_event_destroy(event);
11692 
11693 err_pmu:
11694 	if (is_cgroup_event(event))
11695 		perf_detach_cgroup(event);
11696 	if (event->destroy)
11697 		event->destroy(event);
11698 	module_put(pmu->module);
11699 err_ns:
11700 	if (event->ns)
11701 		put_pid_ns(event->ns);
11702 	if (event->hw.target)
11703 		put_task_struct(event->hw.target);
11704 	kmem_cache_free(perf_event_cache, event);
11705 
11706 	return ERR_PTR(err);
11707 }
11708 
11709 static int perf_copy_attr(struct perf_event_attr __user *uattr,
11710 			  struct perf_event_attr *attr)
11711 {
11712 	u32 size;
11713 	int ret;
11714 
11715 	/* Zero the full structure, so that a short copy will be nice. */
11716 	memset(attr, 0, sizeof(*attr));
11717 
11718 	ret = get_user(size, &uattr->size);
11719 	if (ret)
11720 		return ret;
11721 
11722 	/* ABI compatibility quirk: */
11723 	if (!size)
11724 		size = PERF_ATTR_SIZE_VER0;
11725 	if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
11726 		goto err_size;
11727 
11728 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
11729 	if (ret) {
11730 		if (ret == -E2BIG)
11731 			goto err_size;
11732 		return ret;
11733 	}
11734 
11735 	attr->size = size;
11736 
11737 	if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
11738 		return -EINVAL;
11739 
11740 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
11741 		return -EINVAL;
11742 
11743 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
11744 		return -EINVAL;
11745 
11746 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
11747 		u64 mask = attr->branch_sample_type;
11748 
11749 		/* only using defined bits */
11750 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
11751 			return -EINVAL;
11752 
11753 		/* at least one branch bit must be set */
11754 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
11755 			return -EINVAL;
11756 
11757 		/* propagate priv level, when not set for branch */
11758 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
11759 
11760 			/* exclude_kernel checked on syscall entry */
11761 			if (!attr->exclude_kernel)
11762 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
11763 
11764 			if (!attr->exclude_user)
11765 				mask |= PERF_SAMPLE_BRANCH_USER;
11766 
11767 			if (!attr->exclude_hv)
11768 				mask |= PERF_SAMPLE_BRANCH_HV;
11769 			/*
11770 			 * adjust user setting (for HW filter setup)
11771 			 */
11772 			attr->branch_sample_type = mask;
11773 		}
11774 		/* privileged levels capture (kernel, hv): check permissions */
11775 		if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
11776 			ret = perf_allow_kernel(attr);
11777 			if (ret)
11778 				return ret;
11779 		}
11780 	}
11781 
11782 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
11783 		ret = perf_reg_validate(attr->sample_regs_user);
11784 		if (ret)
11785 			return ret;
11786 	}
11787 
11788 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
11789 		if (!arch_perf_have_user_stack_dump())
11790 			return -ENOSYS;
11791 
11792 		/*
11793 		 * We have __u32 type for the size, but so far
11794 		 * we can only use __u16 as maximum due to the
11795 		 * __u16 sample size limit.
11796 		 */
11797 		if (attr->sample_stack_user >= USHRT_MAX)
11798 			return -EINVAL;
11799 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
11800 			return -EINVAL;
11801 	}
11802 
11803 	if (!attr->sample_max_stack)
11804 		attr->sample_max_stack = sysctl_perf_event_max_stack;
11805 
11806 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
11807 		ret = perf_reg_validate(attr->sample_regs_intr);
11808 
11809 #ifndef CONFIG_CGROUP_PERF
11810 	if (attr->sample_type & PERF_SAMPLE_CGROUP)
11811 		return -EINVAL;
11812 #endif
11813 	if ((attr->sample_type & PERF_SAMPLE_WEIGHT) &&
11814 	    (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT))
11815 		return -EINVAL;
11816 
11817 	if (!attr->inherit && attr->inherit_thread)
11818 		return -EINVAL;
11819 
11820 	if (attr->remove_on_exec && attr->enable_on_exec)
11821 		return -EINVAL;
11822 
11823 	if (attr->sigtrap && !attr->remove_on_exec)
11824 		return -EINVAL;
11825 
11826 out:
11827 	return ret;
11828 
11829 err_size:
11830 	put_user(sizeof(*attr), &uattr->size);
11831 	ret = -E2BIG;
11832 	goto out;
11833 }
11834 
11835 static int
11836 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
11837 {
11838 	struct perf_buffer *rb = NULL;
11839 	int ret = -EINVAL;
11840 
11841 	if (!output_event)
11842 		goto set;
11843 
11844 	/* don't allow circular references */
11845 	if (event == output_event)
11846 		goto out;
11847 
11848 	/*
11849 	 * Don't allow cross-cpu buffers
11850 	 */
11851 	if (output_event->cpu != event->cpu)
11852 		goto out;
11853 
11854 	/*
11855 	 * If its not a per-cpu rb, it must be the same task.
11856 	 */
11857 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
11858 		goto out;
11859 
11860 	/*
11861 	 * Mixing clocks in the same buffer is trouble you don't need.
11862 	 */
11863 	if (output_event->clock != event->clock)
11864 		goto out;
11865 
11866 	/*
11867 	 * Either writing ring buffer from beginning or from end.
11868 	 * Mixing is not allowed.
11869 	 */
11870 	if (is_write_backward(output_event) != is_write_backward(event))
11871 		goto out;
11872 
11873 	/*
11874 	 * If both events generate aux data, they must be on the same PMU
11875 	 */
11876 	if (has_aux(event) && has_aux(output_event) &&
11877 	    event->pmu != output_event->pmu)
11878 		goto out;
11879 
11880 set:
11881 	mutex_lock(&event->mmap_mutex);
11882 	/* Can't redirect output if we've got an active mmap() */
11883 	if (atomic_read(&event->mmap_count))
11884 		goto unlock;
11885 
11886 	if (output_event) {
11887 		/* get the rb we want to redirect to */
11888 		rb = ring_buffer_get(output_event);
11889 		if (!rb)
11890 			goto unlock;
11891 	}
11892 
11893 	ring_buffer_attach(event, rb);
11894 
11895 	ret = 0;
11896 unlock:
11897 	mutex_unlock(&event->mmap_mutex);
11898 
11899 out:
11900 	return ret;
11901 }
11902 
11903 static void mutex_lock_double(struct mutex *a, struct mutex *b)
11904 {
11905 	if (b < a)
11906 		swap(a, b);
11907 
11908 	mutex_lock(a);
11909 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
11910 }
11911 
11912 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
11913 {
11914 	bool nmi_safe = false;
11915 
11916 	switch (clk_id) {
11917 	case CLOCK_MONOTONIC:
11918 		event->clock = &ktime_get_mono_fast_ns;
11919 		nmi_safe = true;
11920 		break;
11921 
11922 	case CLOCK_MONOTONIC_RAW:
11923 		event->clock = &ktime_get_raw_fast_ns;
11924 		nmi_safe = true;
11925 		break;
11926 
11927 	case CLOCK_REALTIME:
11928 		event->clock = &ktime_get_real_ns;
11929 		break;
11930 
11931 	case CLOCK_BOOTTIME:
11932 		event->clock = &ktime_get_boottime_ns;
11933 		break;
11934 
11935 	case CLOCK_TAI:
11936 		event->clock = &ktime_get_clocktai_ns;
11937 		break;
11938 
11939 	default:
11940 		return -EINVAL;
11941 	}
11942 
11943 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
11944 		return -EINVAL;
11945 
11946 	return 0;
11947 }
11948 
11949 /*
11950  * Variation on perf_event_ctx_lock_nested(), except we take two context
11951  * mutexes.
11952  */
11953 static struct perf_event_context *
11954 __perf_event_ctx_lock_double(struct perf_event *group_leader,
11955 			     struct perf_event_context *ctx)
11956 {
11957 	struct perf_event_context *gctx;
11958 
11959 again:
11960 	rcu_read_lock();
11961 	gctx = READ_ONCE(group_leader->ctx);
11962 	if (!refcount_inc_not_zero(&gctx->refcount)) {
11963 		rcu_read_unlock();
11964 		goto again;
11965 	}
11966 	rcu_read_unlock();
11967 
11968 	mutex_lock_double(&gctx->mutex, &ctx->mutex);
11969 
11970 	if (group_leader->ctx != gctx) {
11971 		mutex_unlock(&ctx->mutex);
11972 		mutex_unlock(&gctx->mutex);
11973 		put_ctx(gctx);
11974 		goto again;
11975 	}
11976 
11977 	return gctx;
11978 }
11979 
11980 static bool
11981 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task)
11982 {
11983 	unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS;
11984 	bool is_capable = perfmon_capable();
11985 
11986 	if (attr->sigtrap) {
11987 		/*
11988 		 * perf_event_attr::sigtrap sends signals to the other task.
11989 		 * Require the current task to also have CAP_KILL.
11990 		 */
11991 		rcu_read_lock();
11992 		is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL);
11993 		rcu_read_unlock();
11994 
11995 		/*
11996 		 * If the required capabilities aren't available, checks for
11997 		 * ptrace permissions: upgrade to ATTACH, since sending signals
11998 		 * can effectively change the target task.
11999 		 */
12000 		ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS;
12001 	}
12002 
12003 	/*
12004 	 * Preserve ptrace permission check for backwards compatibility. The
12005 	 * ptrace check also includes checks that the current task and other
12006 	 * task have matching uids, and is therefore not done here explicitly.
12007 	 */
12008 	return is_capable || ptrace_may_access(task, ptrace_mode);
12009 }
12010 
12011 /**
12012  * sys_perf_event_open - open a performance event, associate it to a task/cpu
12013  *
12014  * @attr_uptr:	event_id type attributes for monitoring/sampling
12015  * @pid:		target pid
12016  * @cpu:		target cpu
12017  * @group_fd:		group leader event fd
12018  * @flags:		perf event open flags
12019  */
12020 SYSCALL_DEFINE5(perf_event_open,
12021 		struct perf_event_attr __user *, attr_uptr,
12022 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
12023 {
12024 	struct perf_event *group_leader = NULL, *output_event = NULL;
12025 	struct perf_event *event, *sibling;
12026 	struct perf_event_attr attr;
12027 	struct perf_event_context *ctx, *gctx;
12028 	struct file *event_file = NULL;
12029 	struct fd group = {NULL, 0};
12030 	struct task_struct *task = NULL;
12031 	struct pmu *pmu;
12032 	int event_fd;
12033 	int move_group = 0;
12034 	int err;
12035 	int f_flags = O_RDWR;
12036 	int cgroup_fd = -1;
12037 
12038 	/* for future expandability... */
12039 	if (flags & ~PERF_FLAG_ALL)
12040 		return -EINVAL;
12041 
12042 	/* Do we allow access to perf_event_open(2) ? */
12043 	err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
12044 	if (err)
12045 		return err;
12046 
12047 	err = perf_copy_attr(attr_uptr, &attr);
12048 	if (err)
12049 		return err;
12050 
12051 	if (!attr.exclude_kernel) {
12052 		err = perf_allow_kernel(&attr);
12053 		if (err)
12054 			return err;
12055 	}
12056 
12057 	if (attr.namespaces) {
12058 		if (!perfmon_capable())
12059 			return -EACCES;
12060 	}
12061 
12062 	if (attr.freq) {
12063 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
12064 			return -EINVAL;
12065 	} else {
12066 		if (attr.sample_period & (1ULL << 63))
12067 			return -EINVAL;
12068 	}
12069 
12070 	/* Only privileged users can get physical addresses */
12071 	if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
12072 		err = perf_allow_kernel(&attr);
12073 		if (err)
12074 			return err;
12075 	}
12076 
12077 	/* REGS_INTR can leak data, lockdown must prevent this */
12078 	if (attr.sample_type & PERF_SAMPLE_REGS_INTR) {
12079 		err = security_locked_down(LOCKDOWN_PERF);
12080 		if (err)
12081 			return err;
12082 	}
12083 
12084 	/*
12085 	 * In cgroup mode, the pid argument is used to pass the fd
12086 	 * opened to the cgroup directory in cgroupfs. The cpu argument
12087 	 * designates the cpu on which to monitor threads from that
12088 	 * cgroup.
12089 	 */
12090 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
12091 		return -EINVAL;
12092 
12093 	if (flags & PERF_FLAG_FD_CLOEXEC)
12094 		f_flags |= O_CLOEXEC;
12095 
12096 	event_fd = get_unused_fd_flags(f_flags);
12097 	if (event_fd < 0)
12098 		return event_fd;
12099 
12100 	if (group_fd != -1) {
12101 		err = perf_fget_light(group_fd, &group);
12102 		if (err)
12103 			goto err_fd;
12104 		group_leader = group.file->private_data;
12105 		if (flags & PERF_FLAG_FD_OUTPUT)
12106 			output_event = group_leader;
12107 		if (flags & PERF_FLAG_FD_NO_GROUP)
12108 			group_leader = NULL;
12109 	}
12110 
12111 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
12112 		task = find_lively_task_by_vpid(pid);
12113 		if (IS_ERR(task)) {
12114 			err = PTR_ERR(task);
12115 			goto err_group_fd;
12116 		}
12117 	}
12118 
12119 	if (task && group_leader &&
12120 	    group_leader->attr.inherit != attr.inherit) {
12121 		err = -EINVAL;
12122 		goto err_task;
12123 	}
12124 
12125 	if (flags & PERF_FLAG_PID_CGROUP)
12126 		cgroup_fd = pid;
12127 
12128 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
12129 				 NULL, NULL, cgroup_fd);
12130 	if (IS_ERR(event)) {
12131 		err = PTR_ERR(event);
12132 		goto err_task;
12133 	}
12134 
12135 	if (is_sampling_event(event)) {
12136 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
12137 			err = -EOPNOTSUPP;
12138 			goto err_alloc;
12139 		}
12140 	}
12141 
12142 	/*
12143 	 * Special case software events and allow them to be part of
12144 	 * any hardware group.
12145 	 */
12146 	pmu = event->pmu;
12147 
12148 	if (attr.use_clockid) {
12149 		err = perf_event_set_clock(event, attr.clockid);
12150 		if (err)
12151 			goto err_alloc;
12152 	}
12153 
12154 	if (pmu->task_ctx_nr == perf_sw_context)
12155 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
12156 
12157 	if (group_leader) {
12158 		if (is_software_event(event) &&
12159 		    !in_software_context(group_leader)) {
12160 			/*
12161 			 * If the event is a sw event, but the group_leader
12162 			 * is on hw context.
12163 			 *
12164 			 * Allow the addition of software events to hw
12165 			 * groups, this is safe because software events
12166 			 * never fail to schedule.
12167 			 */
12168 			pmu = group_leader->ctx->pmu;
12169 		} else if (!is_software_event(event) &&
12170 			   is_software_event(group_leader) &&
12171 			   (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12172 			/*
12173 			 * In case the group is a pure software group, and we
12174 			 * try to add a hardware event, move the whole group to
12175 			 * the hardware context.
12176 			 */
12177 			move_group = 1;
12178 		}
12179 	}
12180 
12181 	/*
12182 	 * Get the target context (task or percpu):
12183 	 */
12184 	ctx = find_get_context(pmu, task, event);
12185 	if (IS_ERR(ctx)) {
12186 		err = PTR_ERR(ctx);
12187 		goto err_alloc;
12188 	}
12189 
12190 	/*
12191 	 * Look up the group leader (we will attach this event to it):
12192 	 */
12193 	if (group_leader) {
12194 		err = -EINVAL;
12195 
12196 		/*
12197 		 * Do not allow a recursive hierarchy (this new sibling
12198 		 * becoming part of another group-sibling):
12199 		 */
12200 		if (group_leader->group_leader != group_leader)
12201 			goto err_context;
12202 
12203 		/* All events in a group should have the same clock */
12204 		if (group_leader->clock != event->clock)
12205 			goto err_context;
12206 
12207 		/*
12208 		 * Make sure we're both events for the same CPU;
12209 		 * grouping events for different CPUs is broken; since
12210 		 * you can never concurrently schedule them anyhow.
12211 		 */
12212 		if (group_leader->cpu != event->cpu)
12213 			goto err_context;
12214 
12215 		/*
12216 		 * Make sure we're both on the same task, or both
12217 		 * per-CPU events.
12218 		 */
12219 		if (group_leader->ctx->task != ctx->task)
12220 			goto err_context;
12221 
12222 		/*
12223 		 * Do not allow to attach to a group in a different task
12224 		 * or CPU context. If we're moving SW events, we'll fix
12225 		 * this up later, so allow that.
12226 		 */
12227 		if (!move_group && group_leader->ctx != ctx)
12228 			goto err_context;
12229 
12230 		/*
12231 		 * Only a group leader can be exclusive or pinned
12232 		 */
12233 		if (attr.exclusive || attr.pinned)
12234 			goto err_context;
12235 	}
12236 
12237 	if (output_event) {
12238 		err = perf_event_set_output(event, output_event);
12239 		if (err)
12240 			goto err_context;
12241 	}
12242 
12243 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
12244 					f_flags);
12245 	if (IS_ERR(event_file)) {
12246 		err = PTR_ERR(event_file);
12247 		event_file = NULL;
12248 		goto err_context;
12249 	}
12250 
12251 	if (task) {
12252 		err = down_read_interruptible(&task->signal->exec_update_lock);
12253 		if (err)
12254 			goto err_file;
12255 
12256 		/*
12257 		 * We must hold exec_update_lock across this and any potential
12258 		 * perf_install_in_context() call for this new event to
12259 		 * serialize against exec() altering our credentials (and the
12260 		 * perf_event_exit_task() that could imply).
12261 		 */
12262 		err = -EACCES;
12263 		if (!perf_check_permission(&attr, task))
12264 			goto err_cred;
12265 	}
12266 
12267 	if (move_group) {
12268 		gctx = __perf_event_ctx_lock_double(group_leader, ctx);
12269 
12270 		if (gctx->task == TASK_TOMBSTONE) {
12271 			err = -ESRCH;
12272 			goto err_locked;
12273 		}
12274 
12275 		/*
12276 		 * Check if we raced against another sys_perf_event_open() call
12277 		 * moving the software group underneath us.
12278 		 */
12279 		if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12280 			/*
12281 			 * If someone moved the group out from under us, check
12282 			 * if this new event wound up on the same ctx, if so
12283 			 * its the regular !move_group case, otherwise fail.
12284 			 */
12285 			if (gctx != ctx) {
12286 				err = -EINVAL;
12287 				goto err_locked;
12288 			} else {
12289 				perf_event_ctx_unlock(group_leader, gctx);
12290 				move_group = 0;
12291 			}
12292 		}
12293 
12294 		/*
12295 		 * Failure to create exclusive events returns -EBUSY.
12296 		 */
12297 		err = -EBUSY;
12298 		if (!exclusive_event_installable(group_leader, ctx))
12299 			goto err_locked;
12300 
12301 		for_each_sibling_event(sibling, group_leader) {
12302 			if (!exclusive_event_installable(sibling, ctx))
12303 				goto err_locked;
12304 		}
12305 	} else {
12306 		mutex_lock(&ctx->mutex);
12307 	}
12308 
12309 	if (ctx->task == TASK_TOMBSTONE) {
12310 		err = -ESRCH;
12311 		goto err_locked;
12312 	}
12313 
12314 	if (!perf_event_validate_size(event)) {
12315 		err = -E2BIG;
12316 		goto err_locked;
12317 	}
12318 
12319 	if (!task) {
12320 		/*
12321 		 * Check if the @cpu we're creating an event for is online.
12322 		 *
12323 		 * We use the perf_cpu_context::ctx::mutex to serialize against
12324 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12325 		 */
12326 		struct perf_cpu_context *cpuctx =
12327 			container_of(ctx, struct perf_cpu_context, ctx);
12328 
12329 		if (!cpuctx->online) {
12330 			err = -ENODEV;
12331 			goto err_locked;
12332 		}
12333 	}
12334 
12335 	if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
12336 		err = -EINVAL;
12337 		goto err_locked;
12338 	}
12339 
12340 	/*
12341 	 * Must be under the same ctx::mutex as perf_install_in_context(),
12342 	 * because we need to serialize with concurrent event creation.
12343 	 */
12344 	if (!exclusive_event_installable(event, ctx)) {
12345 		err = -EBUSY;
12346 		goto err_locked;
12347 	}
12348 
12349 	WARN_ON_ONCE(ctx->parent_ctx);
12350 
12351 	/*
12352 	 * This is the point on no return; we cannot fail hereafter. This is
12353 	 * where we start modifying current state.
12354 	 */
12355 
12356 	if (move_group) {
12357 		/*
12358 		 * See perf_event_ctx_lock() for comments on the details
12359 		 * of swizzling perf_event::ctx.
12360 		 */
12361 		perf_remove_from_context(group_leader, 0);
12362 		put_ctx(gctx);
12363 
12364 		for_each_sibling_event(sibling, group_leader) {
12365 			perf_remove_from_context(sibling, 0);
12366 			put_ctx(gctx);
12367 		}
12368 
12369 		/*
12370 		 * Wait for everybody to stop referencing the events through
12371 		 * the old lists, before installing it on new lists.
12372 		 */
12373 		synchronize_rcu();
12374 
12375 		/*
12376 		 * Install the group siblings before the group leader.
12377 		 *
12378 		 * Because a group leader will try and install the entire group
12379 		 * (through the sibling list, which is still in-tact), we can
12380 		 * end up with siblings installed in the wrong context.
12381 		 *
12382 		 * By installing siblings first we NO-OP because they're not
12383 		 * reachable through the group lists.
12384 		 */
12385 		for_each_sibling_event(sibling, group_leader) {
12386 			perf_event__state_init(sibling);
12387 			perf_install_in_context(ctx, sibling, sibling->cpu);
12388 			get_ctx(ctx);
12389 		}
12390 
12391 		/*
12392 		 * Removing from the context ends up with disabled
12393 		 * event. What we want here is event in the initial
12394 		 * startup state, ready to be add into new context.
12395 		 */
12396 		perf_event__state_init(group_leader);
12397 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
12398 		get_ctx(ctx);
12399 	}
12400 
12401 	/*
12402 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
12403 	 * that we're serialized against further additions and before
12404 	 * perf_install_in_context() which is the point the event is active and
12405 	 * can use these values.
12406 	 */
12407 	perf_event__header_size(event);
12408 	perf_event__id_header_size(event);
12409 
12410 	event->owner = current;
12411 
12412 	perf_install_in_context(ctx, event, event->cpu);
12413 	perf_unpin_context(ctx);
12414 
12415 	if (move_group)
12416 		perf_event_ctx_unlock(group_leader, gctx);
12417 	mutex_unlock(&ctx->mutex);
12418 
12419 	if (task) {
12420 		up_read(&task->signal->exec_update_lock);
12421 		put_task_struct(task);
12422 	}
12423 
12424 	mutex_lock(&current->perf_event_mutex);
12425 	list_add_tail(&event->owner_entry, &current->perf_event_list);
12426 	mutex_unlock(&current->perf_event_mutex);
12427 
12428 	/*
12429 	 * Drop the reference on the group_event after placing the
12430 	 * new event on the sibling_list. This ensures destruction
12431 	 * of the group leader will find the pointer to itself in
12432 	 * perf_group_detach().
12433 	 */
12434 	fdput(group);
12435 	fd_install(event_fd, event_file);
12436 	return event_fd;
12437 
12438 err_locked:
12439 	if (move_group)
12440 		perf_event_ctx_unlock(group_leader, gctx);
12441 	mutex_unlock(&ctx->mutex);
12442 err_cred:
12443 	if (task)
12444 		up_read(&task->signal->exec_update_lock);
12445 err_file:
12446 	fput(event_file);
12447 err_context:
12448 	perf_unpin_context(ctx);
12449 	put_ctx(ctx);
12450 err_alloc:
12451 	/*
12452 	 * If event_file is set, the fput() above will have called ->release()
12453 	 * and that will take care of freeing the event.
12454 	 */
12455 	if (!event_file)
12456 		free_event(event);
12457 err_task:
12458 	if (task)
12459 		put_task_struct(task);
12460 err_group_fd:
12461 	fdput(group);
12462 err_fd:
12463 	put_unused_fd(event_fd);
12464 	return err;
12465 }
12466 
12467 /**
12468  * perf_event_create_kernel_counter
12469  *
12470  * @attr: attributes of the counter to create
12471  * @cpu: cpu in which the counter is bound
12472  * @task: task to profile (NULL for percpu)
12473  * @overflow_handler: callback to trigger when we hit the event
12474  * @context: context data could be used in overflow_handler callback
12475  */
12476 struct perf_event *
12477 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
12478 				 struct task_struct *task,
12479 				 perf_overflow_handler_t overflow_handler,
12480 				 void *context)
12481 {
12482 	struct perf_event_context *ctx;
12483 	struct perf_event *event;
12484 	int err;
12485 
12486 	/*
12487 	 * Grouping is not supported for kernel events, neither is 'AUX',
12488 	 * make sure the caller's intentions are adjusted.
12489 	 */
12490 	if (attr->aux_output)
12491 		return ERR_PTR(-EINVAL);
12492 
12493 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
12494 				 overflow_handler, context, -1);
12495 	if (IS_ERR(event)) {
12496 		err = PTR_ERR(event);
12497 		goto err;
12498 	}
12499 
12500 	/* Mark owner so we could distinguish it from user events. */
12501 	event->owner = TASK_TOMBSTONE;
12502 
12503 	/*
12504 	 * Get the target context (task or percpu):
12505 	 */
12506 	ctx = find_get_context(event->pmu, task, event);
12507 	if (IS_ERR(ctx)) {
12508 		err = PTR_ERR(ctx);
12509 		goto err_free;
12510 	}
12511 
12512 	WARN_ON_ONCE(ctx->parent_ctx);
12513 	mutex_lock(&ctx->mutex);
12514 	if (ctx->task == TASK_TOMBSTONE) {
12515 		err = -ESRCH;
12516 		goto err_unlock;
12517 	}
12518 
12519 	if (!task) {
12520 		/*
12521 		 * Check if the @cpu we're creating an event for is online.
12522 		 *
12523 		 * We use the perf_cpu_context::ctx::mutex to serialize against
12524 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12525 		 */
12526 		struct perf_cpu_context *cpuctx =
12527 			container_of(ctx, struct perf_cpu_context, ctx);
12528 		if (!cpuctx->online) {
12529 			err = -ENODEV;
12530 			goto err_unlock;
12531 		}
12532 	}
12533 
12534 	if (!exclusive_event_installable(event, ctx)) {
12535 		err = -EBUSY;
12536 		goto err_unlock;
12537 	}
12538 
12539 	perf_install_in_context(ctx, event, event->cpu);
12540 	perf_unpin_context(ctx);
12541 	mutex_unlock(&ctx->mutex);
12542 
12543 	return event;
12544 
12545 err_unlock:
12546 	mutex_unlock(&ctx->mutex);
12547 	perf_unpin_context(ctx);
12548 	put_ctx(ctx);
12549 err_free:
12550 	free_event(event);
12551 err:
12552 	return ERR_PTR(err);
12553 }
12554 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
12555 
12556 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
12557 {
12558 	struct perf_event_context *src_ctx;
12559 	struct perf_event_context *dst_ctx;
12560 	struct perf_event *event, *tmp;
12561 	LIST_HEAD(events);
12562 
12563 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
12564 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
12565 
12566 	/*
12567 	 * See perf_event_ctx_lock() for comments on the details
12568 	 * of swizzling perf_event::ctx.
12569 	 */
12570 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
12571 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
12572 				 event_entry) {
12573 		perf_remove_from_context(event, 0);
12574 		unaccount_event_cpu(event, src_cpu);
12575 		put_ctx(src_ctx);
12576 		list_add(&event->migrate_entry, &events);
12577 	}
12578 
12579 	/*
12580 	 * Wait for the events to quiesce before re-instating them.
12581 	 */
12582 	synchronize_rcu();
12583 
12584 	/*
12585 	 * Re-instate events in 2 passes.
12586 	 *
12587 	 * Skip over group leaders and only install siblings on this first
12588 	 * pass, siblings will not get enabled without a leader, however a
12589 	 * leader will enable its siblings, even if those are still on the old
12590 	 * context.
12591 	 */
12592 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12593 		if (event->group_leader == event)
12594 			continue;
12595 
12596 		list_del(&event->migrate_entry);
12597 		if (event->state >= PERF_EVENT_STATE_OFF)
12598 			event->state = PERF_EVENT_STATE_INACTIVE;
12599 		account_event_cpu(event, dst_cpu);
12600 		perf_install_in_context(dst_ctx, event, dst_cpu);
12601 		get_ctx(dst_ctx);
12602 	}
12603 
12604 	/*
12605 	 * Once all the siblings are setup properly, install the group leaders
12606 	 * to make it go.
12607 	 */
12608 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12609 		list_del(&event->migrate_entry);
12610 		if (event->state >= PERF_EVENT_STATE_OFF)
12611 			event->state = PERF_EVENT_STATE_INACTIVE;
12612 		account_event_cpu(event, dst_cpu);
12613 		perf_install_in_context(dst_ctx, event, dst_cpu);
12614 		get_ctx(dst_ctx);
12615 	}
12616 	mutex_unlock(&dst_ctx->mutex);
12617 	mutex_unlock(&src_ctx->mutex);
12618 }
12619 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
12620 
12621 static void sync_child_event(struct perf_event *child_event)
12622 {
12623 	struct perf_event *parent_event = child_event->parent;
12624 	u64 child_val;
12625 
12626 	if (child_event->attr.inherit_stat) {
12627 		struct task_struct *task = child_event->ctx->task;
12628 
12629 		if (task && task != TASK_TOMBSTONE)
12630 			perf_event_read_event(child_event, task);
12631 	}
12632 
12633 	child_val = perf_event_count(child_event);
12634 
12635 	/*
12636 	 * Add back the child's count to the parent's count:
12637 	 */
12638 	atomic64_add(child_val, &parent_event->child_count);
12639 	atomic64_add(child_event->total_time_enabled,
12640 		     &parent_event->child_total_time_enabled);
12641 	atomic64_add(child_event->total_time_running,
12642 		     &parent_event->child_total_time_running);
12643 }
12644 
12645 static void
12646 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx)
12647 {
12648 	struct perf_event *parent_event = event->parent;
12649 	unsigned long detach_flags = 0;
12650 
12651 	if (parent_event) {
12652 		/*
12653 		 * Do not destroy the 'original' grouping; because of the
12654 		 * context switch optimization the original events could've
12655 		 * ended up in a random child task.
12656 		 *
12657 		 * If we were to destroy the original group, all group related
12658 		 * operations would cease to function properly after this
12659 		 * random child dies.
12660 		 *
12661 		 * Do destroy all inherited groups, we don't care about those
12662 		 * and being thorough is better.
12663 		 */
12664 		detach_flags = DETACH_GROUP | DETACH_CHILD;
12665 		mutex_lock(&parent_event->child_mutex);
12666 	}
12667 
12668 	perf_remove_from_context(event, detach_flags);
12669 
12670 	raw_spin_lock_irq(&ctx->lock);
12671 	if (event->state > PERF_EVENT_STATE_EXIT)
12672 		perf_event_set_state(event, PERF_EVENT_STATE_EXIT);
12673 	raw_spin_unlock_irq(&ctx->lock);
12674 
12675 	/*
12676 	 * Child events can be freed.
12677 	 */
12678 	if (parent_event) {
12679 		mutex_unlock(&parent_event->child_mutex);
12680 		/*
12681 		 * Kick perf_poll() for is_event_hup();
12682 		 */
12683 		perf_event_wakeup(parent_event);
12684 		free_event(event);
12685 		put_event(parent_event);
12686 		return;
12687 	}
12688 
12689 	/*
12690 	 * Parent events are governed by their filedesc, retain them.
12691 	 */
12692 	perf_event_wakeup(event);
12693 }
12694 
12695 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
12696 {
12697 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
12698 	struct perf_event *child_event, *next;
12699 
12700 	WARN_ON_ONCE(child != current);
12701 
12702 	child_ctx = perf_pin_task_context(child, ctxn);
12703 	if (!child_ctx)
12704 		return;
12705 
12706 	/*
12707 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
12708 	 * ctx::mutex over the entire thing. This serializes against almost
12709 	 * everything that wants to access the ctx.
12710 	 *
12711 	 * The exception is sys_perf_event_open() /
12712 	 * perf_event_create_kernel_count() which does find_get_context()
12713 	 * without ctx::mutex (it cannot because of the move_group double mutex
12714 	 * lock thing). See the comments in perf_install_in_context().
12715 	 */
12716 	mutex_lock(&child_ctx->mutex);
12717 
12718 	/*
12719 	 * In a single ctx::lock section, de-schedule the events and detach the
12720 	 * context from the task such that we cannot ever get it scheduled back
12721 	 * in.
12722 	 */
12723 	raw_spin_lock_irq(&child_ctx->lock);
12724 	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
12725 
12726 	/*
12727 	 * Now that the context is inactive, destroy the task <-> ctx relation
12728 	 * and mark the context dead.
12729 	 */
12730 	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
12731 	put_ctx(child_ctx); /* cannot be last */
12732 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
12733 	put_task_struct(current); /* cannot be last */
12734 
12735 	clone_ctx = unclone_ctx(child_ctx);
12736 	raw_spin_unlock_irq(&child_ctx->lock);
12737 
12738 	if (clone_ctx)
12739 		put_ctx(clone_ctx);
12740 
12741 	/*
12742 	 * Report the task dead after unscheduling the events so that we
12743 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
12744 	 * get a few PERF_RECORD_READ events.
12745 	 */
12746 	perf_event_task(child, child_ctx, 0);
12747 
12748 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
12749 		perf_event_exit_event(child_event, child_ctx);
12750 
12751 	mutex_unlock(&child_ctx->mutex);
12752 
12753 	put_ctx(child_ctx);
12754 }
12755 
12756 /*
12757  * When a child task exits, feed back event values to parent events.
12758  *
12759  * Can be called with exec_update_lock held when called from
12760  * setup_new_exec().
12761  */
12762 void perf_event_exit_task(struct task_struct *child)
12763 {
12764 	struct perf_event *event, *tmp;
12765 	int ctxn;
12766 
12767 	mutex_lock(&child->perf_event_mutex);
12768 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
12769 				 owner_entry) {
12770 		list_del_init(&event->owner_entry);
12771 
12772 		/*
12773 		 * Ensure the list deletion is visible before we clear
12774 		 * the owner, closes a race against perf_release() where
12775 		 * we need to serialize on the owner->perf_event_mutex.
12776 		 */
12777 		smp_store_release(&event->owner, NULL);
12778 	}
12779 	mutex_unlock(&child->perf_event_mutex);
12780 
12781 	for_each_task_context_nr(ctxn)
12782 		perf_event_exit_task_context(child, ctxn);
12783 
12784 	/*
12785 	 * The perf_event_exit_task_context calls perf_event_task
12786 	 * with child's task_ctx, which generates EXIT events for
12787 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
12788 	 * At this point we need to send EXIT events to cpu contexts.
12789 	 */
12790 	perf_event_task(child, NULL, 0);
12791 }
12792 
12793 static void perf_free_event(struct perf_event *event,
12794 			    struct perf_event_context *ctx)
12795 {
12796 	struct perf_event *parent = event->parent;
12797 
12798 	if (WARN_ON_ONCE(!parent))
12799 		return;
12800 
12801 	mutex_lock(&parent->child_mutex);
12802 	list_del_init(&event->child_list);
12803 	mutex_unlock(&parent->child_mutex);
12804 
12805 	put_event(parent);
12806 
12807 	raw_spin_lock_irq(&ctx->lock);
12808 	perf_group_detach(event);
12809 	list_del_event(event, ctx);
12810 	raw_spin_unlock_irq(&ctx->lock);
12811 	free_event(event);
12812 }
12813 
12814 /*
12815  * Free a context as created by inheritance by perf_event_init_task() below,
12816  * used by fork() in case of fail.
12817  *
12818  * Even though the task has never lived, the context and events have been
12819  * exposed through the child_list, so we must take care tearing it all down.
12820  */
12821 void perf_event_free_task(struct task_struct *task)
12822 {
12823 	struct perf_event_context *ctx;
12824 	struct perf_event *event, *tmp;
12825 	int ctxn;
12826 
12827 	for_each_task_context_nr(ctxn) {
12828 		ctx = task->perf_event_ctxp[ctxn];
12829 		if (!ctx)
12830 			continue;
12831 
12832 		mutex_lock(&ctx->mutex);
12833 		raw_spin_lock_irq(&ctx->lock);
12834 		/*
12835 		 * Destroy the task <-> ctx relation and mark the context dead.
12836 		 *
12837 		 * This is important because even though the task hasn't been
12838 		 * exposed yet the context has been (through child_list).
12839 		 */
12840 		RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
12841 		WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
12842 		put_task_struct(task); /* cannot be last */
12843 		raw_spin_unlock_irq(&ctx->lock);
12844 
12845 		list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
12846 			perf_free_event(event, ctx);
12847 
12848 		mutex_unlock(&ctx->mutex);
12849 
12850 		/*
12851 		 * perf_event_release_kernel() could've stolen some of our
12852 		 * child events and still have them on its free_list. In that
12853 		 * case we must wait for these events to have been freed (in
12854 		 * particular all their references to this task must've been
12855 		 * dropped).
12856 		 *
12857 		 * Without this copy_process() will unconditionally free this
12858 		 * task (irrespective of its reference count) and
12859 		 * _free_event()'s put_task_struct(event->hw.target) will be a
12860 		 * use-after-free.
12861 		 *
12862 		 * Wait for all events to drop their context reference.
12863 		 */
12864 		wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
12865 		put_ctx(ctx); /* must be last */
12866 	}
12867 }
12868 
12869 void perf_event_delayed_put(struct task_struct *task)
12870 {
12871 	int ctxn;
12872 
12873 	for_each_task_context_nr(ctxn)
12874 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
12875 }
12876 
12877 struct file *perf_event_get(unsigned int fd)
12878 {
12879 	struct file *file = fget(fd);
12880 	if (!file)
12881 		return ERR_PTR(-EBADF);
12882 
12883 	if (file->f_op != &perf_fops) {
12884 		fput(file);
12885 		return ERR_PTR(-EBADF);
12886 	}
12887 
12888 	return file;
12889 }
12890 
12891 const struct perf_event *perf_get_event(struct file *file)
12892 {
12893 	if (file->f_op != &perf_fops)
12894 		return ERR_PTR(-EINVAL);
12895 
12896 	return file->private_data;
12897 }
12898 
12899 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
12900 {
12901 	if (!event)
12902 		return ERR_PTR(-EINVAL);
12903 
12904 	return &event->attr;
12905 }
12906 
12907 /*
12908  * Inherit an event from parent task to child task.
12909  *
12910  * Returns:
12911  *  - valid pointer on success
12912  *  - NULL for orphaned events
12913  *  - IS_ERR() on error
12914  */
12915 static struct perf_event *
12916 inherit_event(struct perf_event *parent_event,
12917 	      struct task_struct *parent,
12918 	      struct perf_event_context *parent_ctx,
12919 	      struct task_struct *child,
12920 	      struct perf_event *group_leader,
12921 	      struct perf_event_context *child_ctx)
12922 {
12923 	enum perf_event_state parent_state = parent_event->state;
12924 	struct perf_event *child_event;
12925 	unsigned long flags;
12926 
12927 	/*
12928 	 * Instead of creating recursive hierarchies of events,
12929 	 * we link inherited events back to the original parent,
12930 	 * which has a filp for sure, which we use as the reference
12931 	 * count:
12932 	 */
12933 	if (parent_event->parent)
12934 		parent_event = parent_event->parent;
12935 
12936 	child_event = perf_event_alloc(&parent_event->attr,
12937 					   parent_event->cpu,
12938 					   child,
12939 					   group_leader, parent_event,
12940 					   NULL, NULL, -1);
12941 	if (IS_ERR(child_event))
12942 		return child_event;
12943 
12944 
12945 	if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
12946 	    !child_ctx->task_ctx_data) {
12947 		struct pmu *pmu = child_event->pmu;
12948 
12949 		child_ctx->task_ctx_data = alloc_task_ctx_data(pmu);
12950 		if (!child_ctx->task_ctx_data) {
12951 			free_event(child_event);
12952 			return ERR_PTR(-ENOMEM);
12953 		}
12954 	}
12955 
12956 	/*
12957 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
12958 	 * must be under the same lock in order to serialize against
12959 	 * perf_event_release_kernel(), such that either we must observe
12960 	 * is_orphaned_event() or they will observe us on the child_list.
12961 	 */
12962 	mutex_lock(&parent_event->child_mutex);
12963 	if (is_orphaned_event(parent_event) ||
12964 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
12965 		mutex_unlock(&parent_event->child_mutex);
12966 		/* task_ctx_data is freed with child_ctx */
12967 		free_event(child_event);
12968 		return NULL;
12969 	}
12970 
12971 	get_ctx(child_ctx);
12972 
12973 	/*
12974 	 * Make the child state follow the state of the parent event,
12975 	 * not its attr.disabled bit.  We hold the parent's mutex,
12976 	 * so we won't race with perf_event_{en, dis}able_family.
12977 	 */
12978 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
12979 		child_event->state = PERF_EVENT_STATE_INACTIVE;
12980 	else
12981 		child_event->state = PERF_EVENT_STATE_OFF;
12982 
12983 	if (parent_event->attr.freq) {
12984 		u64 sample_period = parent_event->hw.sample_period;
12985 		struct hw_perf_event *hwc = &child_event->hw;
12986 
12987 		hwc->sample_period = sample_period;
12988 		hwc->last_period   = sample_period;
12989 
12990 		local64_set(&hwc->period_left, sample_period);
12991 	}
12992 
12993 	child_event->ctx = child_ctx;
12994 	child_event->overflow_handler = parent_event->overflow_handler;
12995 	child_event->overflow_handler_context
12996 		= parent_event->overflow_handler_context;
12997 
12998 	/*
12999 	 * Precalculate sample_data sizes
13000 	 */
13001 	perf_event__header_size(child_event);
13002 	perf_event__id_header_size(child_event);
13003 
13004 	/*
13005 	 * Link it up in the child's context:
13006 	 */
13007 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
13008 	add_event_to_ctx(child_event, child_ctx);
13009 	child_event->attach_state |= PERF_ATTACH_CHILD;
13010 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
13011 
13012 	/*
13013 	 * Link this into the parent event's child list
13014 	 */
13015 	list_add_tail(&child_event->child_list, &parent_event->child_list);
13016 	mutex_unlock(&parent_event->child_mutex);
13017 
13018 	return child_event;
13019 }
13020 
13021 /*
13022  * Inherits an event group.
13023  *
13024  * This will quietly suppress orphaned events; !inherit_event() is not an error.
13025  * This matches with perf_event_release_kernel() removing all child events.
13026  *
13027  * Returns:
13028  *  - 0 on success
13029  *  - <0 on error
13030  */
13031 static int inherit_group(struct perf_event *parent_event,
13032 	      struct task_struct *parent,
13033 	      struct perf_event_context *parent_ctx,
13034 	      struct task_struct *child,
13035 	      struct perf_event_context *child_ctx)
13036 {
13037 	struct perf_event *leader;
13038 	struct perf_event *sub;
13039 	struct perf_event *child_ctr;
13040 
13041 	leader = inherit_event(parent_event, parent, parent_ctx,
13042 				 child, NULL, child_ctx);
13043 	if (IS_ERR(leader))
13044 		return PTR_ERR(leader);
13045 	/*
13046 	 * @leader can be NULL here because of is_orphaned_event(). In this
13047 	 * case inherit_event() will create individual events, similar to what
13048 	 * perf_group_detach() would do anyway.
13049 	 */
13050 	for_each_sibling_event(sub, parent_event) {
13051 		child_ctr = inherit_event(sub, parent, parent_ctx,
13052 					    child, leader, child_ctx);
13053 		if (IS_ERR(child_ctr))
13054 			return PTR_ERR(child_ctr);
13055 
13056 		if (sub->aux_event == parent_event && child_ctr &&
13057 		    !perf_get_aux_event(child_ctr, leader))
13058 			return -EINVAL;
13059 	}
13060 	return 0;
13061 }
13062 
13063 /*
13064  * Creates the child task context and tries to inherit the event-group.
13065  *
13066  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
13067  * inherited_all set when we 'fail' to inherit an orphaned event; this is
13068  * consistent with perf_event_release_kernel() removing all child events.
13069  *
13070  * Returns:
13071  *  - 0 on success
13072  *  - <0 on error
13073  */
13074 static int
13075 inherit_task_group(struct perf_event *event, struct task_struct *parent,
13076 		   struct perf_event_context *parent_ctx,
13077 		   struct task_struct *child, int ctxn,
13078 		   u64 clone_flags, int *inherited_all)
13079 {
13080 	int ret;
13081 	struct perf_event_context *child_ctx;
13082 
13083 	if (!event->attr.inherit ||
13084 	    (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) ||
13085 	    /* Do not inherit if sigtrap and signal handlers were cleared. */
13086 	    (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) {
13087 		*inherited_all = 0;
13088 		return 0;
13089 	}
13090 
13091 	child_ctx = child->perf_event_ctxp[ctxn];
13092 	if (!child_ctx) {
13093 		/*
13094 		 * This is executed from the parent task context, so
13095 		 * inherit events that have been marked for cloning.
13096 		 * First allocate and initialize a context for the
13097 		 * child.
13098 		 */
13099 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
13100 		if (!child_ctx)
13101 			return -ENOMEM;
13102 
13103 		child->perf_event_ctxp[ctxn] = child_ctx;
13104 	}
13105 
13106 	ret = inherit_group(event, parent, parent_ctx,
13107 			    child, child_ctx);
13108 
13109 	if (ret)
13110 		*inherited_all = 0;
13111 
13112 	return ret;
13113 }
13114 
13115 /*
13116  * Initialize the perf_event context in task_struct
13117  */
13118 static int perf_event_init_context(struct task_struct *child, int ctxn,
13119 				   u64 clone_flags)
13120 {
13121 	struct perf_event_context *child_ctx, *parent_ctx;
13122 	struct perf_event_context *cloned_ctx;
13123 	struct perf_event *event;
13124 	struct task_struct *parent = current;
13125 	int inherited_all = 1;
13126 	unsigned long flags;
13127 	int ret = 0;
13128 
13129 	if (likely(!parent->perf_event_ctxp[ctxn]))
13130 		return 0;
13131 
13132 	/*
13133 	 * If the parent's context is a clone, pin it so it won't get
13134 	 * swapped under us.
13135 	 */
13136 	parent_ctx = perf_pin_task_context(parent, ctxn);
13137 	if (!parent_ctx)
13138 		return 0;
13139 
13140 	/*
13141 	 * No need to check if parent_ctx != NULL here; since we saw
13142 	 * it non-NULL earlier, the only reason for it to become NULL
13143 	 * is if we exit, and since we're currently in the middle of
13144 	 * a fork we can't be exiting at the same time.
13145 	 */
13146 
13147 	/*
13148 	 * Lock the parent list. No need to lock the child - not PID
13149 	 * hashed yet and not running, so nobody can access it.
13150 	 */
13151 	mutex_lock(&parent_ctx->mutex);
13152 
13153 	/*
13154 	 * We dont have to disable NMIs - we are only looking at
13155 	 * the list, not manipulating it:
13156 	 */
13157 	perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
13158 		ret = inherit_task_group(event, parent, parent_ctx,
13159 					 child, ctxn, clone_flags,
13160 					 &inherited_all);
13161 		if (ret)
13162 			goto out_unlock;
13163 	}
13164 
13165 	/*
13166 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
13167 	 * to allocations, but we need to prevent rotation because
13168 	 * rotate_ctx() will change the list from interrupt context.
13169 	 */
13170 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13171 	parent_ctx->rotate_disable = 1;
13172 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13173 
13174 	perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
13175 		ret = inherit_task_group(event, parent, parent_ctx,
13176 					 child, ctxn, clone_flags,
13177 					 &inherited_all);
13178 		if (ret)
13179 			goto out_unlock;
13180 	}
13181 
13182 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13183 	parent_ctx->rotate_disable = 0;
13184 
13185 	child_ctx = child->perf_event_ctxp[ctxn];
13186 
13187 	if (child_ctx && inherited_all) {
13188 		/*
13189 		 * Mark the child context as a clone of the parent
13190 		 * context, or of whatever the parent is a clone of.
13191 		 *
13192 		 * Note that if the parent is a clone, the holding of
13193 		 * parent_ctx->lock avoids it from being uncloned.
13194 		 */
13195 		cloned_ctx = parent_ctx->parent_ctx;
13196 		if (cloned_ctx) {
13197 			child_ctx->parent_ctx = cloned_ctx;
13198 			child_ctx->parent_gen = parent_ctx->parent_gen;
13199 		} else {
13200 			child_ctx->parent_ctx = parent_ctx;
13201 			child_ctx->parent_gen = parent_ctx->generation;
13202 		}
13203 		get_ctx(child_ctx->parent_ctx);
13204 	}
13205 
13206 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13207 out_unlock:
13208 	mutex_unlock(&parent_ctx->mutex);
13209 
13210 	perf_unpin_context(parent_ctx);
13211 	put_ctx(parent_ctx);
13212 
13213 	return ret;
13214 }
13215 
13216 /*
13217  * Initialize the perf_event context in task_struct
13218  */
13219 int perf_event_init_task(struct task_struct *child, u64 clone_flags)
13220 {
13221 	int ctxn, ret;
13222 
13223 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
13224 	mutex_init(&child->perf_event_mutex);
13225 	INIT_LIST_HEAD(&child->perf_event_list);
13226 
13227 	for_each_task_context_nr(ctxn) {
13228 		ret = perf_event_init_context(child, ctxn, clone_flags);
13229 		if (ret) {
13230 			perf_event_free_task(child);
13231 			return ret;
13232 		}
13233 	}
13234 
13235 	return 0;
13236 }
13237 
13238 static void __init perf_event_init_all_cpus(void)
13239 {
13240 	struct swevent_htable *swhash;
13241 	int cpu;
13242 
13243 	zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
13244 
13245 	for_each_possible_cpu(cpu) {
13246 		swhash = &per_cpu(swevent_htable, cpu);
13247 		mutex_init(&swhash->hlist_mutex);
13248 		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
13249 
13250 		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
13251 		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
13252 
13253 #ifdef CONFIG_CGROUP_PERF
13254 		INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
13255 #endif
13256 		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
13257 	}
13258 }
13259 
13260 static void perf_swevent_init_cpu(unsigned int cpu)
13261 {
13262 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
13263 
13264 	mutex_lock(&swhash->hlist_mutex);
13265 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
13266 		struct swevent_hlist *hlist;
13267 
13268 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
13269 		WARN_ON(!hlist);
13270 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
13271 	}
13272 	mutex_unlock(&swhash->hlist_mutex);
13273 }
13274 
13275 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
13276 static void __perf_event_exit_context(void *__info)
13277 {
13278 	struct perf_event_context *ctx = __info;
13279 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
13280 	struct perf_event *event;
13281 
13282 	raw_spin_lock(&ctx->lock);
13283 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
13284 	list_for_each_entry(event, &ctx->event_list, event_entry)
13285 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
13286 	raw_spin_unlock(&ctx->lock);
13287 }
13288 
13289 static void perf_event_exit_cpu_context(int cpu)
13290 {
13291 	struct perf_cpu_context *cpuctx;
13292 	struct perf_event_context *ctx;
13293 	struct pmu *pmu;
13294 
13295 	mutex_lock(&pmus_lock);
13296 	list_for_each_entry(pmu, &pmus, entry) {
13297 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
13298 		ctx = &cpuctx->ctx;
13299 
13300 		mutex_lock(&ctx->mutex);
13301 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
13302 		cpuctx->online = 0;
13303 		mutex_unlock(&ctx->mutex);
13304 	}
13305 	cpumask_clear_cpu(cpu, perf_online_mask);
13306 	mutex_unlock(&pmus_lock);
13307 }
13308 #else
13309 
13310 static void perf_event_exit_cpu_context(int cpu) { }
13311 
13312 #endif
13313 
13314 int perf_event_init_cpu(unsigned int cpu)
13315 {
13316 	struct perf_cpu_context *cpuctx;
13317 	struct perf_event_context *ctx;
13318 	struct pmu *pmu;
13319 
13320 	perf_swevent_init_cpu(cpu);
13321 
13322 	mutex_lock(&pmus_lock);
13323 	cpumask_set_cpu(cpu, perf_online_mask);
13324 	list_for_each_entry(pmu, &pmus, entry) {
13325 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
13326 		ctx = &cpuctx->ctx;
13327 
13328 		mutex_lock(&ctx->mutex);
13329 		cpuctx->online = 1;
13330 		mutex_unlock(&ctx->mutex);
13331 	}
13332 	mutex_unlock(&pmus_lock);
13333 
13334 	return 0;
13335 }
13336 
13337 int perf_event_exit_cpu(unsigned int cpu)
13338 {
13339 	perf_event_exit_cpu_context(cpu);
13340 	return 0;
13341 }
13342 
13343 static int
13344 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
13345 {
13346 	int cpu;
13347 
13348 	for_each_online_cpu(cpu)
13349 		perf_event_exit_cpu(cpu);
13350 
13351 	return NOTIFY_OK;
13352 }
13353 
13354 /*
13355  * Run the perf reboot notifier at the very last possible moment so that
13356  * the generic watchdog code runs as long as possible.
13357  */
13358 static struct notifier_block perf_reboot_notifier = {
13359 	.notifier_call = perf_reboot,
13360 	.priority = INT_MIN,
13361 };
13362 
13363 void __init perf_event_init(void)
13364 {
13365 	int ret;
13366 
13367 	idr_init(&pmu_idr);
13368 
13369 	perf_event_init_all_cpus();
13370 	init_srcu_struct(&pmus_srcu);
13371 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
13372 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
13373 	perf_pmu_register(&perf_task_clock, NULL, -1);
13374 	perf_tp_register();
13375 	perf_event_init_cpu(smp_processor_id());
13376 	register_reboot_notifier(&perf_reboot_notifier);
13377 
13378 	ret = init_hw_breakpoint();
13379 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
13380 
13381 	perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC);
13382 
13383 	/*
13384 	 * Build time assertion that we keep the data_head at the intended
13385 	 * location.  IOW, validation we got the __reserved[] size right.
13386 	 */
13387 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
13388 		     != 1024);
13389 }
13390 
13391 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
13392 			      char *page)
13393 {
13394 	struct perf_pmu_events_attr *pmu_attr =
13395 		container_of(attr, struct perf_pmu_events_attr, attr);
13396 
13397 	if (pmu_attr->event_str)
13398 		return sprintf(page, "%s\n", pmu_attr->event_str);
13399 
13400 	return 0;
13401 }
13402 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
13403 
13404 static int __init perf_event_sysfs_init(void)
13405 {
13406 	struct pmu *pmu;
13407 	int ret;
13408 
13409 	mutex_lock(&pmus_lock);
13410 
13411 	ret = bus_register(&pmu_bus);
13412 	if (ret)
13413 		goto unlock;
13414 
13415 	list_for_each_entry(pmu, &pmus, entry) {
13416 		if (!pmu->name || pmu->type < 0)
13417 			continue;
13418 
13419 		ret = pmu_dev_alloc(pmu);
13420 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
13421 	}
13422 	pmu_bus_running = 1;
13423 	ret = 0;
13424 
13425 unlock:
13426 	mutex_unlock(&pmus_lock);
13427 
13428 	return ret;
13429 }
13430 device_initcall(perf_event_sysfs_init);
13431 
13432 #ifdef CONFIG_CGROUP_PERF
13433 static struct cgroup_subsys_state *
13434 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
13435 {
13436 	struct perf_cgroup *jc;
13437 
13438 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
13439 	if (!jc)
13440 		return ERR_PTR(-ENOMEM);
13441 
13442 	jc->info = alloc_percpu(struct perf_cgroup_info);
13443 	if (!jc->info) {
13444 		kfree(jc);
13445 		return ERR_PTR(-ENOMEM);
13446 	}
13447 
13448 	return &jc->css;
13449 }
13450 
13451 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
13452 {
13453 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
13454 
13455 	free_percpu(jc->info);
13456 	kfree(jc);
13457 }
13458 
13459 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
13460 {
13461 	perf_event_cgroup(css->cgroup);
13462 	return 0;
13463 }
13464 
13465 static int __perf_cgroup_move(void *info)
13466 {
13467 	struct task_struct *task = info;
13468 	rcu_read_lock();
13469 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
13470 	rcu_read_unlock();
13471 	return 0;
13472 }
13473 
13474 static void perf_cgroup_attach(struct cgroup_taskset *tset)
13475 {
13476 	struct task_struct *task;
13477 	struct cgroup_subsys_state *css;
13478 
13479 	cgroup_taskset_for_each(task, css, tset)
13480 		task_function_call(task, __perf_cgroup_move, task);
13481 }
13482 
13483 struct cgroup_subsys perf_event_cgrp_subsys = {
13484 	.css_alloc	= perf_cgroup_css_alloc,
13485 	.css_free	= perf_cgroup_css_free,
13486 	.css_online	= perf_cgroup_css_online,
13487 	.attach		= perf_cgroup_attach,
13488 	/*
13489 	 * Implicitly enable on dfl hierarchy so that perf events can
13490 	 * always be filtered by cgroup2 path as long as perf_event
13491 	 * controller is not mounted on a legacy hierarchy.
13492 	 */
13493 	.implicit_on_dfl = true,
13494 	.threaded	= true,
13495 };
13496 #endif /* CONFIG_CGROUP_PERF */
13497 
13498 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t);
13499