1 /* 2 * Performance events core code: 3 * 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> 7 * Copyright � 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 8 * 9 * For licensing details see kernel-base/COPYING 10 */ 11 12 #include <linux/fs.h> 13 #include <linux/mm.h> 14 #include <linux/cpu.h> 15 #include <linux/smp.h> 16 #include <linux/idr.h> 17 #include <linux/file.h> 18 #include <linux/poll.h> 19 #include <linux/slab.h> 20 #include <linux/hash.h> 21 #include <linux/sysfs.h> 22 #include <linux/dcache.h> 23 #include <linux/percpu.h> 24 #include <linux/ptrace.h> 25 #include <linux/reboot.h> 26 #include <linux/vmstat.h> 27 #include <linux/device.h> 28 #include <linux/vmalloc.h> 29 #include <linux/hardirq.h> 30 #include <linux/rculist.h> 31 #include <linux/uaccess.h> 32 #include <linux/syscalls.h> 33 #include <linux/anon_inodes.h> 34 #include <linux/kernel_stat.h> 35 #include <linux/perf_event.h> 36 #include <linux/ftrace_event.h> 37 #include <linux/hw_breakpoint.h> 38 39 #include "internal.h" 40 41 #include <asm/irq_regs.h> 42 43 struct remote_function_call { 44 struct task_struct *p; 45 int (*func)(void *info); 46 void *info; 47 int ret; 48 }; 49 50 static void remote_function(void *data) 51 { 52 struct remote_function_call *tfc = data; 53 struct task_struct *p = tfc->p; 54 55 if (p) { 56 tfc->ret = -EAGAIN; 57 if (task_cpu(p) != smp_processor_id() || !task_curr(p)) 58 return; 59 } 60 61 tfc->ret = tfc->func(tfc->info); 62 } 63 64 /** 65 * task_function_call - call a function on the cpu on which a task runs 66 * @p: the task to evaluate 67 * @func: the function to be called 68 * @info: the function call argument 69 * 70 * Calls the function @func when the task is currently running. This might 71 * be on the current CPU, which just calls the function directly 72 * 73 * returns: @func return value, or 74 * -ESRCH - when the process isn't running 75 * -EAGAIN - when the process moved away 76 */ 77 static int 78 task_function_call(struct task_struct *p, int (*func) (void *info), void *info) 79 { 80 struct remote_function_call data = { 81 .p = p, 82 .func = func, 83 .info = info, 84 .ret = -ESRCH, /* No such (running) process */ 85 }; 86 87 if (task_curr(p)) 88 smp_call_function_single(task_cpu(p), remote_function, &data, 1); 89 90 return data.ret; 91 } 92 93 /** 94 * cpu_function_call - call a function on the cpu 95 * @func: the function to be called 96 * @info: the function call argument 97 * 98 * Calls the function @func on the remote cpu. 99 * 100 * returns: @func return value or -ENXIO when the cpu is offline 101 */ 102 static int cpu_function_call(int cpu, int (*func) (void *info), void *info) 103 { 104 struct remote_function_call data = { 105 .p = NULL, 106 .func = func, 107 .info = info, 108 .ret = -ENXIO, /* No such CPU */ 109 }; 110 111 smp_call_function_single(cpu, remote_function, &data, 1); 112 113 return data.ret; 114 } 115 116 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 117 PERF_FLAG_FD_OUTPUT |\ 118 PERF_FLAG_PID_CGROUP) 119 120 enum event_type_t { 121 EVENT_FLEXIBLE = 0x1, 122 EVENT_PINNED = 0x2, 123 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 124 }; 125 126 /* 127 * perf_sched_events : >0 events exist 128 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu 129 */ 130 struct jump_label_key perf_sched_events __read_mostly; 131 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); 132 133 static atomic_t nr_mmap_events __read_mostly; 134 static atomic_t nr_comm_events __read_mostly; 135 static atomic_t nr_task_events __read_mostly; 136 137 static LIST_HEAD(pmus); 138 static DEFINE_MUTEX(pmus_lock); 139 static struct srcu_struct pmus_srcu; 140 141 /* 142 * perf event paranoia level: 143 * -1 - not paranoid at all 144 * 0 - disallow raw tracepoint access for unpriv 145 * 1 - disallow cpu events for unpriv 146 * 2 - disallow kernel profiling for unpriv 147 */ 148 int sysctl_perf_event_paranoid __read_mostly = 1; 149 150 /* Minimum for 512 kiB + 1 user control page */ 151 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 152 153 /* 154 * max perf event sample rate 155 */ 156 #define DEFAULT_MAX_SAMPLE_RATE 100000 157 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 158 static int max_samples_per_tick __read_mostly = 159 DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 160 161 int perf_proc_update_handler(struct ctl_table *table, int write, 162 void __user *buffer, size_t *lenp, 163 loff_t *ppos) 164 { 165 int ret = proc_dointvec(table, write, buffer, lenp, ppos); 166 167 if (ret || !write) 168 return ret; 169 170 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 171 172 return 0; 173 } 174 175 static atomic64_t perf_event_id; 176 177 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 178 enum event_type_t event_type); 179 180 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 181 enum event_type_t event_type, 182 struct task_struct *task); 183 184 static void update_context_time(struct perf_event_context *ctx); 185 static u64 perf_event_time(struct perf_event *event); 186 187 void __weak perf_event_print_debug(void) { } 188 189 extern __weak const char *perf_pmu_name(void) 190 { 191 return "pmu"; 192 } 193 194 static inline u64 perf_clock(void) 195 { 196 return local_clock(); 197 } 198 199 static inline struct perf_cpu_context * 200 __get_cpu_context(struct perf_event_context *ctx) 201 { 202 return this_cpu_ptr(ctx->pmu->pmu_cpu_context); 203 } 204 205 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 206 struct perf_event_context *ctx) 207 { 208 raw_spin_lock(&cpuctx->ctx.lock); 209 if (ctx) 210 raw_spin_lock(&ctx->lock); 211 } 212 213 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 214 struct perf_event_context *ctx) 215 { 216 if (ctx) 217 raw_spin_unlock(&ctx->lock); 218 raw_spin_unlock(&cpuctx->ctx.lock); 219 } 220 221 #ifdef CONFIG_CGROUP_PERF 222 223 /* 224 * Must ensure cgroup is pinned (css_get) before calling 225 * this function. In other words, we cannot call this function 226 * if there is no cgroup event for the current CPU context. 227 */ 228 static inline struct perf_cgroup * 229 perf_cgroup_from_task(struct task_struct *task) 230 { 231 return container_of(task_subsys_state(task, perf_subsys_id), 232 struct perf_cgroup, css); 233 } 234 235 static inline bool 236 perf_cgroup_match(struct perf_event *event) 237 { 238 struct perf_event_context *ctx = event->ctx; 239 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 240 241 return !event->cgrp || event->cgrp == cpuctx->cgrp; 242 } 243 244 static inline void perf_get_cgroup(struct perf_event *event) 245 { 246 css_get(&event->cgrp->css); 247 } 248 249 static inline void perf_put_cgroup(struct perf_event *event) 250 { 251 css_put(&event->cgrp->css); 252 } 253 254 static inline void perf_detach_cgroup(struct perf_event *event) 255 { 256 perf_put_cgroup(event); 257 event->cgrp = NULL; 258 } 259 260 static inline int is_cgroup_event(struct perf_event *event) 261 { 262 return event->cgrp != NULL; 263 } 264 265 static inline u64 perf_cgroup_event_time(struct perf_event *event) 266 { 267 struct perf_cgroup_info *t; 268 269 t = per_cpu_ptr(event->cgrp->info, event->cpu); 270 return t->time; 271 } 272 273 static inline void __update_cgrp_time(struct perf_cgroup *cgrp) 274 { 275 struct perf_cgroup_info *info; 276 u64 now; 277 278 now = perf_clock(); 279 280 info = this_cpu_ptr(cgrp->info); 281 282 info->time += now - info->timestamp; 283 info->timestamp = now; 284 } 285 286 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 287 { 288 struct perf_cgroup *cgrp_out = cpuctx->cgrp; 289 if (cgrp_out) 290 __update_cgrp_time(cgrp_out); 291 } 292 293 static inline void update_cgrp_time_from_event(struct perf_event *event) 294 { 295 struct perf_cgroup *cgrp; 296 297 /* 298 * ensure we access cgroup data only when needed and 299 * when we know the cgroup is pinned (css_get) 300 */ 301 if (!is_cgroup_event(event)) 302 return; 303 304 cgrp = perf_cgroup_from_task(current); 305 /* 306 * Do not update time when cgroup is not active 307 */ 308 if (cgrp == event->cgrp) 309 __update_cgrp_time(event->cgrp); 310 } 311 312 static inline void 313 perf_cgroup_set_timestamp(struct task_struct *task, 314 struct perf_event_context *ctx) 315 { 316 struct perf_cgroup *cgrp; 317 struct perf_cgroup_info *info; 318 319 /* 320 * ctx->lock held by caller 321 * ensure we do not access cgroup data 322 * unless we have the cgroup pinned (css_get) 323 */ 324 if (!task || !ctx->nr_cgroups) 325 return; 326 327 cgrp = perf_cgroup_from_task(task); 328 info = this_cpu_ptr(cgrp->info); 329 info->timestamp = ctx->timestamp; 330 } 331 332 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */ 333 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */ 334 335 /* 336 * reschedule events based on the cgroup constraint of task. 337 * 338 * mode SWOUT : schedule out everything 339 * mode SWIN : schedule in based on cgroup for next 340 */ 341 void perf_cgroup_switch(struct task_struct *task, int mode) 342 { 343 struct perf_cpu_context *cpuctx; 344 struct pmu *pmu; 345 unsigned long flags; 346 347 /* 348 * disable interrupts to avoid geting nr_cgroup 349 * changes via __perf_event_disable(). Also 350 * avoids preemption. 351 */ 352 local_irq_save(flags); 353 354 /* 355 * we reschedule only in the presence of cgroup 356 * constrained events. 357 */ 358 rcu_read_lock(); 359 360 list_for_each_entry_rcu(pmu, &pmus, entry) { 361 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 362 363 /* 364 * perf_cgroup_events says at least one 365 * context on this CPU has cgroup events. 366 * 367 * ctx->nr_cgroups reports the number of cgroup 368 * events for a context. 369 */ 370 if (cpuctx->ctx.nr_cgroups > 0) { 371 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 372 perf_pmu_disable(cpuctx->ctx.pmu); 373 374 if (mode & PERF_CGROUP_SWOUT) { 375 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 376 /* 377 * must not be done before ctxswout due 378 * to event_filter_match() in event_sched_out() 379 */ 380 cpuctx->cgrp = NULL; 381 } 382 383 if (mode & PERF_CGROUP_SWIN) { 384 WARN_ON_ONCE(cpuctx->cgrp); 385 /* set cgrp before ctxsw in to 386 * allow event_filter_match() to not 387 * have to pass task around 388 */ 389 cpuctx->cgrp = perf_cgroup_from_task(task); 390 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task); 391 } 392 perf_pmu_enable(cpuctx->ctx.pmu); 393 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 394 } 395 } 396 397 rcu_read_unlock(); 398 399 local_irq_restore(flags); 400 } 401 402 static inline void perf_cgroup_sched_out(struct task_struct *task) 403 { 404 perf_cgroup_switch(task, PERF_CGROUP_SWOUT); 405 } 406 407 static inline void perf_cgroup_sched_in(struct task_struct *task) 408 { 409 perf_cgroup_switch(task, PERF_CGROUP_SWIN); 410 } 411 412 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 413 struct perf_event_attr *attr, 414 struct perf_event *group_leader) 415 { 416 struct perf_cgroup *cgrp; 417 struct cgroup_subsys_state *css; 418 struct file *file; 419 int ret = 0, fput_needed; 420 421 file = fget_light(fd, &fput_needed); 422 if (!file) 423 return -EBADF; 424 425 css = cgroup_css_from_dir(file, perf_subsys_id); 426 if (IS_ERR(css)) { 427 ret = PTR_ERR(css); 428 goto out; 429 } 430 431 cgrp = container_of(css, struct perf_cgroup, css); 432 event->cgrp = cgrp; 433 434 /* must be done before we fput() the file */ 435 perf_get_cgroup(event); 436 437 /* 438 * all events in a group must monitor 439 * the same cgroup because a task belongs 440 * to only one perf cgroup at a time 441 */ 442 if (group_leader && group_leader->cgrp != cgrp) { 443 perf_detach_cgroup(event); 444 ret = -EINVAL; 445 } 446 out: 447 fput_light(file, fput_needed); 448 return ret; 449 } 450 451 static inline void 452 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 453 { 454 struct perf_cgroup_info *t; 455 t = per_cpu_ptr(event->cgrp->info, event->cpu); 456 event->shadow_ctx_time = now - t->timestamp; 457 } 458 459 static inline void 460 perf_cgroup_defer_enabled(struct perf_event *event) 461 { 462 /* 463 * when the current task's perf cgroup does not match 464 * the event's, we need to remember to call the 465 * perf_mark_enable() function the first time a task with 466 * a matching perf cgroup is scheduled in. 467 */ 468 if (is_cgroup_event(event) && !perf_cgroup_match(event)) 469 event->cgrp_defer_enabled = 1; 470 } 471 472 static inline void 473 perf_cgroup_mark_enabled(struct perf_event *event, 474 struct perf_event_context *ctx) 475 { 476 struct perf_event *sub; 477 u64 tstamp = perf_event_time(event); 478 479 if (!event->cgrp_defer_enabled) 480 return; 481 482 event->cgrp_defer_enabled = 0; 483 484 event->tstamp_enabled = tstamp - event->total_time_enabled; 485 list_for_each_entry(sub, &event->sibling_list, group_entry) { 486 if (sub->state >= PERF_EVENT_STATE_INACTIVE) { 487 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 488 sub->cgrp_defer_enabled = 0; 489 } 490 } 491 } 492 #else /* !CONFIG_CGROUP_PERF */ 493 494 static inline bool 495 perf_cgroup_match(struct perf_event *event) 496 { 497 return true; 498 } 499 500 static inline void perf_detach_cgroup(struct perf_event *event) 501 {} 502 503 static inline int is_cgroup_event(struct perf_event *event) 504 { 505 return 0; 506 } 507 508 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event) 509 { 510 return 0; 511 } 512 513 static inline void update_cgrp_time_from_event(struct perf_event *event) 514 { 515 } 516 517 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 518 { 519 } 520 521 static inline void perf_cgroup_sched_out(struct task_struct *task) 522 { 523 } 524 525 static inline void perf_cgroup_sched_in(struct task_struct *task) 526 { 527 } 528 529 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 530 struct perf_event_attr *attr, 531 struct perf_event *group_leader) 532 { 533 return -EINVAL; 534 } 535 536 static inline void 537 perf_cgroup_set_timestamp(struct task_struct *task, 538 struct perf_event_context *ctx) 539 { 540 } 541 542 void 543 perf_cgroup_switch(struct task_struct *task, struct task_struct *next) 544 { 545 } 546 547 static inline void 548 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 549 { 550 } 551 552 static inline u64 perf_cgroup_event_time(struct perf_event *event) 553 { 554 return 0; 555 } 556 557 static inline void 558 perf_cgroup_defer_enabled(struct perf_event *event) 559 { 560 } 561 562 static inline void 563 perf_cgroup_mark_enabled(struct perf_event *event, 564 struct perf_event_context *ctx) 565 { 566 } 567 #endif 568 569 void perf_pmu_disable(struct pmu *pmu) 570 { 571 int *count = this_cpu_ptr(pmu->pmu_disable_count); 572 if (!(*count)++) 573 pmu->pmu_disable(pmu); 574 } 575 576 void perf_pmu_enable(struct pmu *pmu) 577 { 578 int *count = this_cpu_ptr(pmu->pmu_disable_count); 579 if (!--(*count)) 580 pmu->pmu_enable(pmu); 581 } 582 583 static DEFINE_PER_CPU(struct list_head, rotation_list); 584 585 /* 586 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized 587 * because they're strictly cpu affine and rotate_start is called with IRQs 588 * disabled, while rotate_context is called from IRQ context. 589 */ 590 static void perf_pmu_rotate_start(struct pmu *pmu) 591 { 592 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 593 struct list_head *head = &__get_cpu_var(rotation_list); 594 595 WARN_ON(!irqs_disabled()); 596 597 if (list_empty(&cpuctx->rotation_list)) 598 list_add(&cpuctx->rotation_list, head); 599 } 600 601 static void get_ctx(struct perf_event_context *ctx) 602 { 603 WARN_ON(!atomic_inc_not_zero(&ctx->refcount)); 604 } 605 606 static void put_ctx(struct perf_event_context *ctx) 607 { 608 if (atomic_dec_and_test(&ctx->refcount)) { 609 if (ctx->parent_ctx) 610 put_ctx(ctx->parent_ctx); 611 if (ctx->task) 612 put_task_struct(ctx->task); 613 kfree_rcu(ctx, rcu_head); 614 } 615 } 616 617 static void unclone_ctx(struct perf_event_context *ctx) 618 { 619 if (ctx->parent_ctx) { 620 put_ctx(ctx->parent_ctx); 621 ctx->parent_ctx = NULL; 622 } 623 } 624 625 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 626 { 627 /* 628 * only top level events have the pid namespace they were created in 629 */ 630 if (event->parent) 631 event = event->parent; 632 633 return task_tgid_nr_ns(p, event->ns); 634 } 635 636 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 637 { 638 /* 639 * only top level events have the pid namespace they were created in 640 */ 641 if (event->parent) 642 event = event->parent; 643 644 return task_pid_nr_ns(p, event->ns); 645 } 646 647 /* 648 * If we inherit events we want to return the parent event id 649 * to userspace. 650 */ 651 static u64 primary_event_id(struct perf_event *event) 652 { 653 u64 id = event->id; 654 655 if (event->parent) 656 id = event->parent->id; 657 658 return id; 659 } 660 661 /* 662 * Get the perf_event_context for a task and lock it. 663 * This has to cope with with the fact that until it is locked, 664 * the context could get moved to another task. 665 */ 666 static struct perf_event_context * 667 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) 668 { 669 struct perf_event_context *ctx; 670 671 rcu_read_lock(); 672 retry: 673 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); 674 if (ctx) { 675 /* 676 * If this context is a clone of another, it might 677 * get swapped for another underneath us by 678 * perf_event_task_sched_out, though the 679 * rcu_read_lock() protects us from any context 680 * getting freed. Lock the context and check if it 681 * got swapped before we could get the lock, and retry 682 * if so. If we locked the right context, then it 683 * can't get swapped on us any more. 684 */ 685 raw_spin_lock_irqsave(&ctx->lock, *flags); 686 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { 687 raw_spin_unlock_irqrestore(&ctx->lock, *flags); 688 goto retry; 689 } 690 691 if (!atomic_inc_not_zero(&ctx->refcount)) { 692 raw_spin_unlock_irqrestore(&ctx->lock, *flags); 693 ctx = NULL; 694 } 695 } 696 rcu_read_unlock(); 697 return ctx; 698 } 699 700 /* 701 * Get the context for a task and increment its pin_count so it 702 * can't get swapped to another task. This also increments its 703 * reference count so that the context can't get freed. 704 */ 705 static struct perf_event_context * 706 perf_pin_task_context(struct task_struct *task, int ctxn) 707 { 708 struct perf_event_context *ctx; 709 unsigned long flags; 710 711 ctx = perf_lock_task_context(task, ctxn, &flags); 712 if (ctx) { 713 ++ctx->pin_count; 714 raw_spin_unlock_irqrestore(&ctx->lock, flags); 715 } 716 return ctx; 717 } 718 719 static void perf_unpin_context(struct perf_event_context *ctx) 720 { 721 unsigned long flags; 722 723 raw_spin_lock_irqsave(&ctx->lock, flags); 724 --ctx->pin_count; 725 raw_spin_unlock_irqrestore(&ctx->lock, flags); 726 } 727 728 /* 729 * Update the record of the current time in a context. 730 */ 731 static void update_context_time(struct perf_event_context *ctx) 732 { 733 u64 now = perf_clock(); 734 735 ctx->time += now - ctx->timestamp; 736 ctx->timestamp = now; 737 } 738 739 static u64 perf_event_time(struct perf_event *event) 740 { 741 struct perf_event_context *ctx = event->ctx; 742 743 if (is_cgroup_event(event)) 744 return perf_cgroup_event_time(event); 745 746 return ctx ? ctx->time : 0; 747 } 748 749 /* 750 * Update the total_time_enabled and total_time_running fields for a event. 751 * The caller of this function needs to hold the ctx->lock. 752 */ 753 static void update_event_times(struct perf_event *event) 754 { 755 struct perf_event_context *ctx = event->ctx; 756 u64 run_end; 757 758 if (event->state < PERF_EVENT_STATE_INACTIVE || 759 event->group_leader->state < PERF_EVENT_STATE_INACTIVE) 760 return; 761 /* 762 * in cgroup mode, time_enabled represents 763 * the time the event was enabled AND active 764 * tasks were in the monitored cgroup. This is 765 * independent of the activity of the context as 766 * there may be a mix of cgroup and non-cgroup events. 767 * 768 * That is why we treat cgroup events differently 769 * here. 770 */ 771 if (is_cgroup_event(event)) 772 run_end = perf_event_time(event); 773 else if (ctx->is_active) 774 run_end = ctx->time; 775 else 776 run_end = event->tstamp_stopped; 777 778 event->total_time_enabled = run_end - event->tstamp_enabled; 779 780 if (event->state == PERF_EVENT_STATE_INACTIVE) 781 run_end = event->tstamp_stopped; 782 else 783 run_end = perf_event_time(event); 784 785 event->total_time_running = run_end - event->tstamp_running; 786 787 } 788 789 /* 790 * Update total_time_enabled and total_time_running for all events in a group. 791 */ 792 static void update_group_times(struct perf_event *leader) 793 { 794 struct perf_event *event; 795 796 update_event_times(leader); 797 list_for_each_entry(event, &leader->sibling_list, group_entry) 798 update_event_times(event); 799 } 800 801 static struct list_head * 802 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx) 803 { 804 if (event->attr.pinned) 805 return &ctx->pinned_groups; 806 else 807 return &ctx->flexible_groups; 808 } 809 810 /* 811 * Add a event from the lists for its context. 812 * Must be called with ctx->mutex and ctx->lock held. 813 */ 814 static void 815 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 816 { 817 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 818 event->attach_state |= PERF_ATTACH_CONTEXT; 819 820 /* 821 * If we're a stand alone event or group leader, we go to the context 822 * list, group events are kept attached to the group so that 823 * perf_group_detach can, at all times, locate all siblings. 824 */ 825 if (event->group_leader == event) { 826 struct list_head *list; 827 828 if (is_software_event(event)) 829 event->group_flags |= PERF_GROUP_SOFTWARE; 830 831 list = ctx_group_list(event, ctx); 832 list_add_tail(&event->group_entry, list); 833 } 834 835 if (is_cgroup_event(event)) 836 ctx->nr_cgroups++; 837 838 list_add_rcu(&event->event_entry, &ctx->event_list); 839 if (!ctx->nr_events) 840 perf_pmu_rotate_start(ctx->pmu); 841 ctx->nr_events++; 842 if (event->attr.inherit_stat) 843 ctx->nr_stat++; 844 } 845 846 /* 847 * Called at perf_event creation and when events are attached/detached from a 848 * group. 849 */ 850 static void perf_event__read_size(struct perf_event *event) 851 { 852 int entry = sizeof(u64); /* value */ 853 int size = 0; 854 int nr = 1; 855 856 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 857 size += sizeof(u64); 858 859 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 860 size += sizeof(u64); 861 862 if (event->attr.read_format & PERF_FORMAT_ID) 863 entry += sizeof(u64); 864 865 if (event->attr.read_format & PERF_FORMAT_GROUP) { 866 nr += event->group_leader->nr_siblings; 867 size += sizeof(u64); 868 } 869 870 size += entry * nr; 871 event->read_size = size; 872 } 873 874 static void perf_event__header_size(struct perf_event *event) 875 { 876 struct perf_sample_data *data; 877 u64 sample_type = event->attr.sample_type; 878 u16 size = 0; 879 880 perf_event__read_size(event); 881 882 if (sample_type & PERF_SAMPLE_IP) 883 size += sizeof(data->ip); 884 885 if (sample_type & PERF_SAMPLE_ADDR) 886 size += sizeof(data->addr); 887 888 if (sample_type & PERF_SAMPLE_PERIOD) 889 size += sizeof(data->period); 890 891 if (sample_type & PERF_SAMPLE_READ) 892 size += event->read_size; 893 894 event->header_size = size; 895 } 896 897 static void perf_event__id_header_size(struct perf_event *event) 898 { 899 struct perf_sample_data *data; 900 u64 sample_type = event->attr.sample_type; 901 u16 size = 0; 902 903 if (sample_type & PERF_SAMPLE_TID) 904 size += sizeof(data->tid_entry); 905 906 if (sample_type & PERF_SAMPLE_TIME) 907 size += sizeof(data->time); 908 909 if (sample_type & PERF_SAMPLE_ID) 910 size += sizeof(data->id); 911 912 if (sample_type & PERF_SAMPLE_STREAM_ID) 913 size += sizeof(data->stream_id); 914 915 if (sample_type & PERF_SAMPLE_CPU) 916 size += sizeof(data->cpu_entry); 917 918 event->id_header_size = size; 919 } 920 921 static void perf_group_attach(struct perf_event *event) 922 { 923 struct perf_event *group_leader = event->group_leader, *pos; 924 925 /* 926 * We can have double attach due to group movement in perf_event_open. 927 */ 928 if (event->attach_state & PERF_ATTACH_GROUP) 929 return; 930 931 event->attach_state |= PERF_ATTACH_GROUP; 932 933 if (group_leader == event) 934 return; 935 936 if (group_leader->group_flags & PERF_GROUP_SOFTWARE && 937 !is_software_event(event)) 938 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE; 939 940 list_add_tail(&event->group_entry, &group_leader->sibling_list); 941 group_leader->nr_siblings++; 942 943 perf_event__header_size(group_leader); 944 945 list_for_each_entry(pos, &group_leader->sibling_list, group_entry) 946 perf_event__header_size(pos); 947 } 948 949 /* 950 * Remove a event from the lists for its context. 951 * Must be called with ctx->mutex and ctx->lock held. 952 */ 953 static void 954 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 955 { 956 struct perf_cpu_context *cpuctx; 957 /* 958 * We can have double detach due to exit/hot-unplug + close. 959 */ 960 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 961 return; 962 963 event->attach_state &= ~PERF_ATTACH_CONTEXT; 964 965 if (is_cgroup_event(event)) { 966 ctx->nr_cgroups--; 967 cpuctx = __get_cpu_context(ctx); 968 /* 969 * if there are no more cgroup events 970 * then cler cgrp to avoid stale pointer 971 * in update_cgrp_time_from_cpuctx() 972 */ 973 if (!ctx->nr_cgroups) 974 cpuctx->cgrp = NULL; 975 } 976 977 ctx->nr_events--; 978 if (event->attr.inherit_stat) 979 ctx->nr_stat--; 980 981 list_del_rcu(&event->event_entry); 982 983 if (event->group_leader == event) 984 list_del_init(&event->group_entry); 985 986 update_group_times(event); 987 988 /* 989 * If event was in error state, then keep it 990 * that way, otherwise bogus counts will be 991 * returned on read(). The only way to get out 992 * of error state is by explicit re-enabling 993 * of the event 994 */ 995 if (event->state > PERF_EVENT_STATE_OFF) 996 event->state = PERF_EVENT_STATE_OFF; 997 } 998 999 static void perf_group_detach(struct perf_event *event) 1000 { 1001 struct perf_event *sibling, *tmp; 1002 struct list_head *list = NULL; 1003 1004 /* 1005 * We can have double detach due to exit/hot-unplug + close. 1006 */ 1007 if (!(event->attach_state & PERF_ATTACH_GROUP)) 1008 return; 1009 1010 event->attach_state &= ~PERF_ATTACH_GROUP; 1011 1012 /* 1013 * If this is a sibling, remove it from its group. 1014 */ 1015 if (event->group_leader != event) { 1016 list_del_init(&event->group_entry); 1017 event->group_leader->nr_siblings--; 1018 goto out; 1019 } 1020 1021 if (!list_empty(&event->group_entry)) 1022 list = &event->group_entry; 1023 1024 /* 1025 * If this was a group event with sibling events then 1026 * upgrade the siblings to singleton events by adding them 1027 * to whatever list we are on. 1028 */ 1029 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) { 1030 if (list) 1031 list_move_tail(&sibling->group_entry, list); 1032 sibling->group_leader = sibling; 1033 1034 /* Inherit group flags from the previous leader */ 1035 sibling->group_flags = event->group_flags; 1036 } 1037 1038 out: 1039 perf_event__header_size(event->group_leader); 1040 1041 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry) 1042 perf_event__header_size(tmp); 1043 } 1044 1045 static inline int 1046 event_filter_match(struct perf_event *event) 1047 { 1048 return (event->cpu == -1 || event->cpu == smp_processor_id()) 1049 && perf_cgroup_match(event); 1050 } 1051 1052 static void 1053 event_sched_out(struct perf_event *event, 1054 struct perf_cpu_context *cpuctx, 1055 struct perf_event_context *ctx) 1056 { 1057 u64 tstamp = perf_event_time(event); 1058 u64 delta; 1059 /* 1060 * An event which could not be activated because of 1061 * filter mismatch still needs to have its timings 1062 * maintained, otherwise bogus information is return 1063 * via read() for time_enabled, time_running: 1064 */ 1065 if (event->state == PERF_EVENT_STATE_INACTIVE 1066 && !event_filter_match(event)) { 1067 delta = tstamp - event->tstamp_stopped; 1068 event->tstamp_running += delta; 1069 event->tstamp_stopped = tstamp; 1070 } 1071 1072 if (event->state != PERF_EVENT_STATE_ACTIVE) 1073 return; 1074 1075 event->state = PERF_EVENT_STATE_INACTIVE; 1076 if (event->pending_disable) { 1077 event->pending_disable = 0; 1078 event->state = PERF_EVENT_STATE_OFF; 1079 } 1080 event->tstamp_stopped = tstamp; 1081 event->pmu->del(event, 0); 1082 event->oncpu = -1; 1083 1084 if (!is_software_event(event)) 1085 cpuctx->active_oncpu--; 1086 ctx->nr_active--; 1087 if (event->attr.exclusive || !cpuctx->active_oncpu) 1088 cpuctx->exclusive = 0; 1089 } 1090 1091 static void 1092 group_sched_out(struct perf_event *group_event, 1093 struct perf_cpu_context *cpuctx, 1094 struct perf_event_context *ctx) 1095 { 1096 struct perf_event *event; 1097 int state = group_event->state; 1098 1099 event_sched_out(group_event, cpuctx, ctx); 1100 1101 /* 1102 * Schedule out siblings (if any): 1103 */ 1104 list_for_each_entry(event, &group_event->sibling_list, group_entry) 1105 event_sched_out(event, cpuctx, ctx); 1106 1107 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive) 1108 cpuctx->exclusive = 0; 1109 } 1110 1111 /* 1112 * Cross CPU call to remove a performance event 1113 * 1114 * We disable the event on the hardware level first. After that we 1115 * remove it from the context list. 1116 */ 1117 static int __perf_remove_from_context(void *info) 1118 { 1119 struct perf_event *event = info; 1120 struct perf_event_context *ctx = event->ctx; 1121 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1122 1123 raw_spin_lock(&ctx->lock); 1124 event_sched_out(event, cpuctx, ctx); 1125 list_del_event(event, ctx); 1126 if (!ctx->nr_events && cpuctx->task_ctx == ctx) { 1127 ctx->is_active = 0; 1128 cpuctx->task_ctx = NULL; 1129 } 1130 raw_spin_unlock(&ctx->lock); 1131 1132 return 0; 1133 } 1134 1135 1136 /* 1137 * Remove the event from a task's (or a CPU's) list of events. 1138 * 1139 * CPU events are removed with a smp call. For task events we only 1140 * call when the task is on a CPU. 1141 * 1142 * If event->ctx is a cloned context, callers must make sure that 1143 * every task struct that event->ctx->task could possibly point to 1144 * remains valid. This is OK when called from perf_release since 1145 * that only calls us on the top-level context, which can't be a clone. 1146 * When called from perf_event_exit_task, it's OK because the 1147 * context has been detached from its task. 1148 */ 1149 static void perf_remove_from_context(struct perf_event *event) 1150 { 1151 struct perf_event_context *ctx = event->ctx; 1152 struct task_struct *task = ctx->task; 1153 1154 lockdep_assert_held(&ctx->mutex); 1155 1156 if (!task) { 1157 /* 1158 * Per cpu events are removed via an smp call and 1159 * the removal is always successful. 1160 */ 1161 cpu_function_call(event->cpu, __perf_remove_from_context, event); 1162 return; 1163 } 1164 1165 retry: 1166 if (!task_function_call(task, __perf_remove_from_context, event)) 1167 return; 1168 1169 raw_spin_lock_irq(&ctx->lock); 1170 /* 1171 * If we failed to find a running task, but find the context active now 1172 * that we've acquired the ctx->lock, retry. 1173 */ 1174 if (ctx->is_active) { 1175 raw_spin_unlock_irq(&ctx->lock); 1176 goto retry; 1177 } 1178 1179 /* 1180 * Since the task isn't running, its safe to remove the event, us 1181 * holding the ctx->lock ensures the task won't get scheduled in. 1182 */ 1183 list_del_event(event, ctx); 1184 raw_spin_unlock_irq(&ctx->lock); 1185 } 1186 1187 /* 1188 * Cross CPU call to disable a performance event 1189 */ 1190 static int __perf_event_disable(void *info) 1191 { 1192 struct perf_event *event = info; 1193 struct perf_event_context *ctx = event->ctx; 1194 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1195 1196 /* 1197 * If this is a per-task event, need to check whether this 1198 * event's task is the current task on this cpu. 1199 * 1200 * Can trigger due to concurrent perf_event_context_sched_out() 1201 * flipping contexts around. 1202 */ 1203 if (ctx->task && cpuctx->task_ctx != ctx) 1204 return -EINVAL; 1205 1206 raw_spin_lock(&ctx->lock); 1207 1208 /* 1209 * If the event is on, turn it off. 1210 * If it is in error state, leave it in error state. 1211 */ 1212 if (event->state >= PERF_EVENT_STATE_INACTIVE) { 1213 update_context_time(ctx); 1214 update_cgrp_time_from_event(event); 1215 update_group_times(event); 1216 if (event == event->group_leader) 1217 group_sched_out(event, cpuctx, ctx); 1218 else 1219 event_sched_out(event, cpuctx, ctx); 1220 event->state = PERF_EVENT_STATE_OFF; 1221 } 1222 1223 raw_spin_unlock(&ctx->lock); 1224 1225 return 0; 1226 } 1227 1228 /* 1229 * Disable a event. 1230 * 1231 * If event->ctx is a cloned context, callers must make sure that 1232 * every task struct that event->ctx->task could possibly point to 1233 * remains valid. This condition is satisifed when called through 1234 * perf_event_for_each_child or perf_event_for_each because they 1235 * hold the top-level event's child_mutex, so any descendant that 1236 * goes to exit will block in sync_child_event. 1237 * When called from perf_pending_event it's OK because event->ctx 1238 * is the current context on this CPU and preemption is disabled, 1239 * hence we can't get into perf_event_task_sched_out for this context. 1240 */ 1241 void perf_event_disable(struct perf_event *event) 1242 { 1243 struct perf_event_context *ctx = event->ctx; 1244 struct task_struct *task = ctx->task; 1245 1246 if (!task) { 1247 /* 1248 * Disable the event on the cpu that it's on 1249 */ 1250 cpu_function_call(event->cpu, __perf_event_disable, event); 1251 return; 1252 } 1253 1254 retry: 1255 if (!task_function_call(task, __perf_event_disable, event)) 1256 return; 1257 1258 raw_spin_lock_irq(&ctx->lock); 1259 /* 1260 * If the event is still active, we need to retry the cross-call. 1261 */ 1262 if (event->state == PERF_EVENT_STATE_ACTIVE) { 1263 raw_spin_unlock_irq(&ctx->lock); 1264 /* 1265 * Reload the task pointer, it might have been changed by 1266 * a concurrent perf_event_context_sched_out(). 1267 */ 1268 task = ctx->task; 1269 goto retry; 1270 } 1271 1272 /* 1273 * Since we have the lock this context can't be scheduled 1274 * in, so we can change the state safely. 1275 */ 1276 if (event->state == PERF_EVENT_STATE_INACTIVE) { 1277 update_group_times(event); 1278 event->state = PERF_EVENT_STATE_OFF; 1279 } 1280 raw_spin_unlock_irq(&ctx->lock); 1281 } 1282 1283 static void perf_set_shadow_time(struct perf_event *event, 1284 struct perf_event_context *ctx, 1285 u64 tstamp) 1286 { 1287 /* 1288 * use the correct time source for the time snapshot 1289 * 1290 * We could get by without this by leveraging the 1291 * fact that to get to this function, the caller 1292 * has most likely already called update_context_time() 1293 * and update_cgrp_time_xx() and thus both timestamp 1294 * are identical (or very close). Given that tstamp is, 1295 * already adjusted for cgroup, we could say that: 1296 * tstamp - ctx->timestamp 1297 * is equivalent to 1298 * tstamp - cgrp->timestamp. 1299 * 1300 * Then, in perf_output_read(), the calculation would 1301 * work with no changes because: 1302 * - event is guaranteed scheduled in 1303 * - no scheduled out in between 1304 * - thus the timestamp would be the same 1305 * 1306 * But this is a bit hairy. 1307 * 1308 * So instead, we have an explicit cgroup call to remain 1309 * within the time time source all along. We believe it 1310 * is cleaner and simpler to understand. 1311 */ 1312 if (is_cgroup_event(event)) 1313 perf_cgroup_set_shadow_time(event, tstamp); 1314 else 1315 event->shadow_ctx_time = tstamp - ctx->timestamp; 1316 } 1317 1318 #define MAX_INTERRUPTS (~0ULL) 1319 1320 static void perf_log_throttle(struct perf_event *event, int enable); 1321 1322 static int 1323 event_sched_in(struct perf_event *event, 1324 struct perf_cpu_context *cpuctx, 1325 struct perf_event_context *ctx) 1326 { 1327 u64 tstamp = perf_event_time(event); 1328 1329 if (event->state <= PERF_EVENT_STATE_OFF) 1330 return 0; 1331 1332 event->state = PERF_EVENT_STATE_ACTIVE; 1333 event->oncpu = smp_processor_id(); 1334 1335 /* 1336 * Unthrottle events, since we scheduled we might have missed several 1337 * ticks already, also for a heavily scheduling task there is little 1338 * guarantee it'll get a tick in a timely manner. 1339 */ 1340 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 1341 perf_log_throttle(event, 1); 1342 event->hw.interrupts = 0; 1343 } 1344 1345 /* 1346 * The new state must be visible before we turn it on in the hardware: 1347 */ 1348 smp_wmb(); 1349 1350 if (event->pmu->add(event, PERF_EF_START)) { 1351 event->state = PERF_EVENT_STATE_INACTIVE; 1352 event->oncpu = -1; 1353 return -EAGAIN; 1354 } 1355 1356 event->tstamp_running += tstamp - event->tstamp_stopped; 1357 1358 perf_set_shadow_time(event, ctx, tstamp); 1359 1360 if (!is_software_event(event)) 1361 cpuctx->active_oncpu++; 1362 ctx->nr_active++; 1363 1364 if (event->attr.exclusive) 1365 cpuctx->exclusive = 1; 1366 1367 return 0; 1368 } 1369 1370 static int 1371 group_sched_in(struct perf_event *group_event, 1372 struct perf_cpu_context *cpuctx, 1373 struct perf_event_context *ctx) 1374 { 1375 struct perf_event *event, *partial_group = NULL; 1376 struct pmu *pmu = group_event->pmu; 1377 u64 now = ctx->time; 1378 bool simulate = false; 1379 1380 if (group_event->state == PERF_EVENT_STATE_OFF) 1381 return 0; 1382 1383 pmu->start_txn(pmu); 1384 1385 if (event_sched_in(group_event, cpuctx, ctx)) { 1386 pmu->cancel_txn(pmu); 1387 return -EAGAIN; 1388 } 1389 1390 /* 1391 * Schedule in siblings as one group (if any): 1392 */ 1393 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 1394 if (event_sched_in(event, cpuctx, ctx)) { 1395 partial_group = event; 1396 goto group_error; 1397 } 1398 } 1399 1400 if (!pmu->commit_txn(pmu)) 1401 return 0; 1402 1403 group_error: 1404 /* 1405 * Groups can be scheduled in as one unit only, so undo any 1406 * partial group before returning: 1407 * The events up to the failed event are scheduled out normally, 1408 * tstamp_stopped will be updated. 1409 * 1410 * The failed events and the remaining siblings need to have 1411 * their timings updated as if they had gone thru event_sched_in() 1412 * and event_sched_out(). This is required to get consistent timings 1413 * across the group. This also takes care of the case where the group 1414 * could never be scheduled by ensuring tstamp_stopped is set to mark 1415 * the time the event was actually stopped, such that time delta 1416 * calculation in update_event_times() is correct. 1417 */ 1418 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 1419 if (event == partial_group) 1420 simulate = true; 1421 1422 if (simulate) { 1423 event->tstamp_running += now - event->tstamp_stopped; 1424 event->tstamp_stopped = now; 1425 } else { 1426 event_sched_out(event, cpuctx, ctx); 1427 } 1428 } 1429 event_sched_out(group_event, cpuctx, ctx); 1430 1431 pmu->cancel_txn(pmu); 1432 1433 return -EAGAIN; 1434 } 1435 1436 /* 1437 * Work out whether we can put this event group on the CPU now. 1438 */ 1439 static int group_can_go_on(struct perf_event *event, 1440 struct perf_cpu_context *cpuctx, 1441 int can_add_hw) 1442 { 1443 /* 1444 * Groups consisting entirely of software events can always go on. 1445 */ 1446 if (event->group_flags & PERF_GROUP_SOFTWARE) 1447 return 1; 1448 /* 1449 * If an exclusive group is already on, no other hardware 1450 * events can go on. 1451 */ 1452 if (cpuctx->exclusive) 1453 return 0; 1454 /* 1455 * If this group is exclusive and there are already 1456 * events on the CPU, it can't go on. 1457 */ 1458 if (event->attr.exclusive && cpuctx->active_oncpu) 1459 return 0; 1460 /* 1461 * Otherwise, try to add it if all previous groups were able 1462 * to go on. 1463 */ 1464 return can_add_hw; 1465 } 1466 1467 static void add_event_to_ctx(struct perf_event *event, 1468 struct perf_event_context *ctx) 1469 { 1470 u64 tstamp = perf_event_time(event); 1471 1472 list_add_event(event, ctx); 1473 perf_group_attach(event); 1474 event->tstamp_enabled = tstamp; 1475 event->tstamp_running = tstamp; 1476 event->tstamp_stopped = tstamp; 1477 } 1478 1479 static void task_ctx_sched_out(struct perf_event_context *ctx); 1480 static void 1481 ctx_sched_in(struct perf_event_context *ctx, 1482 struct perf_cpu_context *cpuctx, 1483 enum event_type_t event_type, 1484 struct task_struct *task); 1485 1486 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 1487 struct perf_event_context *ctx, 1488 struct task_struct *task) 1489 { 1490 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task); 1491 if (ctx) 1492 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task); 1493 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task); 1494 if (ctx) 1495 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task); 1496 } 1497 1498 /* 1499 * Cross CPU call to install and enable a performance event 1500 * 1501 * Must be called with ctx->mutex held 1502 */ 1503 static int __perf_install_in_context(void *info) 1504 { 1505 struct perf_event *event = info; 1506 struct perf_event_context *ctx = event->ctx; 1507 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1508 struct perf_event_context *task_ctx = cpuctx->task_ctx; 1509 struct task_struct *task = current; 1510 1511 perf_ctx_lock(cpuctx, task_ctx); 1512 perf_pmu_disable(cpuctx->ctx.pmu); 1513 1514 /* 1515 * If there was an active task_ctx schedule it out. 1516 */ 1517 if (task_ctx) 1518 task_ctx_sched_out(task_ctx); 1519 1520 /* 1521 * If the context we're installing events in is not the 1522 * active task_ctx, flip them. 1523 */ 1524 if (ctx->task && task_ctx != ctx) { 1525 if (task_ctx) 1526 raw_spin_unlock(&task_ctx->lock); 1527 raw_spin_lock(&ctx->lock); 1528 task_ctx = ctx; 1529 } 1530 1531 if (task_ctx) { 1532 cpuctx->task_ctx = task_ctx; 1533 task = task_ctx->task; 1534 } 1535 1536 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 1537 1538 update_context_time(ctx); 1539 /* 1540 * update cgrp time only if current cgrp 1541 * matches event->cgrp. Must be done before 1542 * calling add_event_to_ctx() 1543 */ 1544 update_cgrp_time_from_event(event); 1545 1546 add_event_to_ctx(event, ctx); 1547 1548 /* 1549 * Schedule everything back in 1550 */ 1551 perf_event_sched_in(cpuctx, task_ctx, task); 1552 1553 perf_pmu_enable(cpuctx->ctx.pmu); 1554 perf_ctx_unlock(cpuctx, task_ctx); 1555 1556 return 0; 1557 } 1558 1559 /* 1560 * Attach a performance event to a context 1561 * 1562 * First we add the event to the list with the hardware enable bit 1563 * in event->hw_config cleared. 1564 * 1565 * If the event is attached to a task which is on a CPU we use a smp 1566 * call to enable it in the task context. The task might have been 1567 * scheduled away, but we check this in the smp call again. 1568 */ 1569 static void 1570 perf_install_in_context(struct perf_event_context *ctx, 1571 struct perf_event *event, 1572 int cpu) 1573 { 1574 struct task_struct *task = ctx->task; 1575 1576 lockdep_assert_held(&ctx->mutex); 1577 1578 event->ctx = ctx; 1579 1580 if (!task) { 1581 /* 1582 * Per cpu events are installed via an smp call and 1583 * the install is always successful. 1584 */ 1585 cpu_function_call(cpu, __perf_install_in_context, event); 1586 return; 1587 } 1588 1589 retry: 1590 if (!task_function_call(task, __perf_install_in_context, event)) 1591 return; 1592 1593 raw_spin_lock_irq(&ctx->lock); 1594 /* 1595 * If we failed to find a running task, but find the context active now 1596 * that we've acquired the ctx->lock, retry. 1597 */ 1598 if (ctx->is_active) { 1599 raw_spin_unlock_irq(&ctx->lock); 1600 goto retry; 1601 } 1602 1603 /* 1604 * Since the task isn't running, its safe to add the event, us holding 1605 * the ctx->lock ensures the task won't get scheduled in. 1606 */ 1607 add_event_to_ctx(event, ctx); 1608 raw_spin_unlock_irq(&ctx->lock); 1609 } 1610 1611 /* 1612 * Put a event into inactive state and update time fields. 1613 * Enabling the leader of a group effectively enables all 1614 * the group members that aren't explicitly disabled, so we 1615 * have to update their ->tstamp_enabled also. 1616 * Note: this works for group members as well as group leaders 1617 * since the non-leader members' sibling_lists will be empty. 1618 */ 1619 static void __perf_event_mark_enabled(struct perf_event *event, 1620 struct perf_event_context *ctx) 1621 { 1622 struct perf_event *sub; 1623 u64 tstamp = perf_event_time(event); 1624 1625 event->state = PERF_EVENT_STATE_INACTIVE; 1626 event->tstamp_enabled = tstamp - event->total_time_enabled; 1627 list_for_each_entry(sub, &event->sibling_list, group_entry) { 1628 if (sub->state >= PERF_EVENT_STATE_INACTIVE) 1629 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 1630 } 1631 } 1632 1633 /* 1634 * Cross CPU call to enable a performance event 1635 */ 1636 static int __perf_event_enable(void *info) 1637 { 1638 struct perf_event *event = info; 1639 struct perf_event_context *ctx = event->ctx; 1640 struct perf_event *leader = event->group_leader; 1641 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1642 int err; 1643 1644 if (WARN_ON_ONCE(!ctx->is_active)) 1645 return -EINVAL; 1646 1647 raw_spin_lock(&ctx->lock); 1648 update_context_time(ctx); 1649 1650 if (event->state >= PERF_EVENT_STATE_INACTIVE) 1651 goto unlock; 1652 1653 /* 1654 * set current task's cgroup time reference point 1655 */ 1656 perf_cgroup_set_timestamp(current, ctx); 1657 1658 __perf_event_mark_enabled(event, ctx); 1659 1660 if (!event_filter_match(event)) { 1661 if (is_cgroup_event(event)) 1662 perf_cgroup_defer_enabled(event); 1663 goto unlock; 1664 } 1665 1666 /* 1667 * If the event is in a group and isn't the group leader, 1668 * then don't put it on unless the group is on. 1669 */ 1670 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) 1671 goto unlock; 1672 1673 if (!group_can_go_on(event, cpuctx, 1)) { 1674 err = -EEXIST; 1675 } else { 1676 if (event == leader) 1677 err = group_sched_in(event, cpuctx, ctx); 1678 else 1679 err = event_sched_in(event, cpuctx, ctx); 1680 } 1681 1682 if (err) { 1683 /* 1684 * If this event can't go on and it's part of a 1685 * group, then the whole group has to come off. 1686 */ 1687 if (leader != event) 1688 group_sched_out(leader, cpuctx, ctx); 1689 if (leader->attr.pinned) { 1690 update_group_times(leader); 1691 leader->state = PERF_EVENT_STATE_ERROR; 1692 } 1693 } 1694 1695 unlock: 1696 raw_spin_unlock(&ctx->lock); 1697 1698 return 0; 1699 } 1700 1701 /* 1702 * Enable a event. 1703 * 1704 * If event->ctx is a cloned context, callers must make sure that 1705 * every task struct that event->ctx->task could possibly point to 1706 * remains valid. This condition is satisfied when called through 1707 * perf_event_for_each_child or perf_event_for_each as described 1708 * for perf_event_disable. 1709 */ 1710 void perf_event_enable(struct perf_event *event) 1711 { 1712 struct perf_event_context *ctx = event->ctx; 1713 struct task_struct *task = ctx->task; 1714 1715 if (!task) { 1716 /* 1717 * Enable the event on the cpu that it's on 1718 */ 1719 cpu_function_call(event->cpu, __perf_event_enable, event); 1720 return; 1721 } 1722 1723 raw_spin_lock_irq(&ctx->lock); 1724 if (event->state >= PERF_EVENT_STATE_INACTIVE) 1725 goto out; 1726 1727 /* 1728 * If the event is in error state, clear that first. 1729 * That way, if we see the event in error state below, we 1730 * know that it has gone back into error state, as distinct 1731 * from the task having been scheduled away before the 1732 * cross-call arrived. 1733 */ 1734 if (event->state == PERF_EVENT_STATE_ERROR) 1735 event->state = PERF_EVENT_STATE_OFF; 1736 1737 retry: 1738 if (!ctx->is_active) { 1739 __perf_event_mark_enabled(event, ctx); 1740 goto out; 1741 } 1742 1743 raw_spin_unlock_irq(&ctx->lock); 1744 1745 if (!task_function_call(task, __perf_event_enable, event)) 1746 return; 1747 1748 raw_spin_lock_irq(&ctx->lock); 1749 1750 /* 1751 * If the context is active and the event is still off, 1752 * we need to retry the cross-call. 1753 */ 1754 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) { 1755 /* 1756 * task could have been flipped by a concurrent 1757 * perf_event_context_sched_out() 1758 */ 1759 task = ctx->task; 1760 goto retry; 1761 } 1762 1763 out: 1764 raw_spin_unlock_irq(&ctx->lock); 1765 } 1766 1767 int perf_event_refresh(struct perf_event *event, int refresh) 1768 { 1769 /* 1770 * not supported on inherited events 1771 */ 1772 if (event->attr.inherit || !is_sampling_event(event)) 1773 return -EINVAL; 1774 1775 atomic_add(refresh, &event->event_limit); 1776 perf_event_enable(event); 1777 1778 return 0; 1779 } 1780 EXPORT_SYMBOL_GPL(perf_event_refresh); 1781 1782 static void ctx_sched_out(struct perf_event_context *ctx, 1783 struct perf_cpu_context *cpuctx, 1784 enum event_type_t event_type) 1785 { 1786 struct perf_event *event; 1787 int is_active = ctx->is_active; 1788 1789 ctx->is_active &= ~event_type; 1790 if (likely(!ctx->nr_events)) 1791 return; 1792 1793 update_context_time(ctx); 1794 update_cgrp_time_from_cpuctx(cpuctx); 1795 if (!ctx->nr_active) 1796 return; 1797 1798 perf_pmu_disable(ctx->pmu); 1799 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) { 1800 list_for_each_entry(event, &ctx->pinned_groups, group_entry) 1801 group_sched_out(event, cpuctx, ctx); 1802 } 1803 1804 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) { 1805 list_for_each_entry(event, &ctx->flexible_groups, group_entry) 1806 group_sched_out(event, cpuctx, ctx); 1807 } 1808 perf_pmu_enable(ctx->pmu); 1809 } 1810 1811 /* 1812 * Test whether two contexts are equivalent, i.e. whether they 1813 * have both been cloned from the same version of the same context 1814 * and they both have the same number of enabled events. 1815 * If the number of enabled events is the same, then the set 1816 * of enabled events should be the same, because these are both 1817 * inherited contexts, therefore we can't access individual events 1818 * in them directly with an fd; we can only enable/disable all 1819 * events via prctl, or enable/disable all events in a family 1820 * via ioctl, which will have the same effect on both contexts. 1821 */ 1822 static int context_equiv(struct perf_event_context *ctx1, 1823 struct perf_event_context *ctx2) 1824 { 1825 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx 1826 && ctx1->parent_gen == ctx2->parent_gen 1827 && !ctx1->pin_count && !ctx2->pin_count; 1828 } 1829 1830 static void __perf_event_sync_stat(struct perf_event *event, 1831 struct perf_event *next_event) 1832 { 1833 u64 value; 1834 1835 if (!event->attr.inherit_stat) 1836 return; 1837 1838 /* 1839 * Update the event value, we cannot use perf_event_read() 1840 * because we're in the middle of a context switch and have IRQs 1841 * disabled, which upsets smp_call_function_single(), however 1842 * we know the event must be on the current CPU, therefore we 1843 * don't need to use it. 1844 */ 1845 switch (event->state) { 1846 case PERF_EVENT_STATE_ACTIVE: 1847 event->pmu->read(event); 1848 /* fall-through */ 1849 1850 case PERF_EVENT_STATE_INACTIVE: 1851 update_event_times(event); 1852 break; 1853 1854 default: 1855 break; 1856 } 1857 1858 /* 1859 * In order to keep per-task stats reliable we need to flip the event 1860 * values when we flip the contexts. 1861 */ 1862 value = local64_read(&next_event->count); 1863 value = local64_xchg(&event->count, value); 1864 local64_set(&next_event->count, value); 1865 1866 swap(event->total_time_enabled, next_event->total_time_enabled); 1867 swap(event->total_time_running, next_event->total_time_running); 1868 1869 /* 1870 * Since we swizzled the values, update the user visible data too. 1871 */ 1872 perf_event_update_userpage(event); 1873 perf_event_update_userpage(next_event); 1874 } 1875 1876 #define list_next_entry(pos, member) \ 1877 list_entry(pos->member.next, typeof(*pos), member) 1878 1879 static void perf_event_sync_stat(struct perf_event_context *ctx, 1880 struct perf_event_context *next_ctx) 1881 { 1882 struct perf_event *event, *next_event; 1883 1884 if (!ctx->nr_stat) 1885 return; 1886 1887 update_context_time(ctx); 1888 1889 event = list_first_entry(&ctx->event_list, 1890 struct perf_event, event_entry); 1891 1892 next_event = list_first_entry(&next_ctx->event_list, 1893 struct perf_event, event_entry); 1894 1895 while (&event->event_entry != &ctx->event_list && 1896 &next_event->event_entry != &next_ctx->event_list) { 1897 1898 __perf_event_sync_stat(event, next_event); 1899 1900 event = list_next_entry(event, event_entry); 1901 next_event = list_next_entry(next_event, event_entry); 1902 } 1903 } 1904 1905 static void perf_event_context_sched_out(struct task_struct *task, int ctxn, 1906 struct task_struct *next) 1907 { 1908 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; 1909 struct perf_event_context *next_ctx; 1910 struct perf_event_context *parent; 1911 struct perf_cpu_context *cpuctx; 1912 int do_switch = 1; 1913 1914 if (likely(!ctx)) 1915 return; 1916 1917 cpuctx = __get_cpu_context(ctx); 1918 if (!cpuctx->task_ctx) 1919 return; 1920 1921 rcu_read_lock(); 1922 parent = rcu_dereference(ctx->parent_ctx); 1923 next_ctx = next->perf_event_ctxp[ctxn]; 1924 if (parent && next_ctx && 1925 rcu_dereference(next_ctx->parent_ctx) == parent) { 1926 /* 1927 * Looks like the two contexts are clones, so we might be 1928 * able to optimize the context switch. We lock both 1929 * contexts and check that they are clones under the 1930 * lock (including re-checking that neither has been 1931 * uncloned in the meantime). It doesn't matter which 1932 * order we take the locks because no other cpu could 1933 * be trying to lock both of these tasks. 1934 */ 1935 raw_spin_lock(&ctx->lock); 1936 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 1937 if (context_equiv(ctx, next_ctx)) { 1938 /* 1939 * XXX do we need a memory barrier of sorts 1940 * wrt to rcu_dereference() of perf_event_ctxp 1941 */ 1942 task->perf_event_ctxp[ctxn] = next_ctx; 1943 next->perf_event_ctxp[ctxn] = ctx; 1944 ctx->task = next; 1945 next_ctx->task = task; 1946 do_switch = 0; 1947 1948 perf_event_sync_stat(ctx, next_ctx); 1949 } 1950 raw_spin_unlock(&next_ctx->lock); 1951 raw_spin_unlock(&ctx->lock); 1952 } 1953 rcu_read_unlock(); 1954 1955 if (do_switch) { 1956 raw_spin_lock(&ctx->lock); 1957 ctx_sched_out(ctx, cpuctx, EVENT_ALL); 1958 cpuctx->task_ctx = NULL; 1959 raw_spin_unlock(&ctx->lock); 1960 } 1961 } 1962 1963 #define for_each_task_context_nr(ctxn) \ 1964 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) 1965 1966 /* 1967 * Called from scheduler to remove the events of the current task, 1968 * with interrupts disabled. 1969 * 1970 * We stop each event and update the event value in event->count. 1971 * 1972 * This does not protect us against NMI, but disable() 1973 * sets the disabled bit in the control field of event _before_ 1974 * accessing the event control register. If a NMI hits, then it will 1975 * not restart the event. 1976 */ 1977 void __perf_event_task_sched_out(struct task_struct *task, 1978 struct task_struct *next) 1979 { 1980 int ctxn; 1981 1982 for_each_task_context_nr(ctxn) 1983 perf_event_context_sched_out(task, ctxn, next); 1984 1985 /* 1986 * if cgroup events exist on this CPU, then we need 1987 * to check if we have to switch out PMU state. 1988 * cgroup event are system-wide mode only 1989 */ 1990 if (atomic_read(&__get_cpu_var(perf_cgroup_events))) 1991 perf_cgroup_sched_out(task); 1992 } 1993 1994 static void task_ctx_sched_out(struct perf_event_context *ctx) 1995 { 1996 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1997 1998 if (!cpuctx->task_ctx) 1999 return; 2000 2001 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2002 return; 2003 2004 ctx_sched_out(ctx, cpuctx, EVENT_ALL); 2005 cpuctx->task_ctx = NULL; 2006 } 2007 2008 /* 2009 * Called with IRQs disabled 2010 */ 2011 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 2012 enum event_type_t event_type) 2013 { 2014 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); 2015 } 2016 2017 static void 2018 ctx_pinned_sched_in(struct perf_event_context *ctx, 2019 struct perf_cpu_context *cpuctx) 2020 { 2021 struct perf_event *event; 2022 2023 list_for_each_entry(event, &ctx->pinned_groups, group_entry) { 2024 if (event->state <= PERF_EVENT_STATE_OFF) 2025 continue; 2026 if (!event_filter_match(event)) 2027 continue; 2028 2029 /* may need to reset tstamp_enabled */ 2030 if (is_cgroup_event(event)) 2031 perf_cgroup_mark_enabled(event, ctx); 2032 2033 if (group_can_go_on(event, cpuctx, 1)) 2034 group_sched_in(event, cpuctx, ctx); 2035 2036 /* 2037 * If this pinned group hasn't been scheduled, 2038 * put it in error state. 2039 */ 2040 if (event->state == PERF_EVENT_STATE_INACTIVE) { 2041 update_group_times(event); 2042 event->state = PERF_EVENT_STATE_ERROR; 2043 } 2044 } 2045 } 2046 2047 static void 2048 ctx_flexible_sched_in(struct perf_event_context *ctx, 2049 struct perf_cpu_context *cpuctx) 2050 { 2051 struct perf_event *event; 2052 int can_add_hw = 1; 2053 2054 list_for_each_entry(event, &ctx->flexible_groups, group_entry) { 2055 /* Ignore events in OFF or ERROR state */ 2056 if (event->state <= PERF_EVENT_STATE_OFF) 2057 continue; 2058 /* 2059 * Listen to the 'cpu' scheduling filter constraint 2060 * of events: 2061 */ 2062 if (!event_filter_match(event)) 2063 continue; 2064 2065 /* may need to reset tstamp_enabled */ 2066 if (is_cgroup_event(event)) 2067 perf_cgroup_mark_enabled(event, ctx); 2068 2069 if (group_can_go_on(event, cpuctx, can_add_hw)) { 2070 if (group_sched_in(event, cpuctx, ctx)) 2071 can_add_hw = 0; 2072 } 2073 } 2074 } 2075 2076 static void 2077 ctx_sched_in(struct perf_event_context *ctx, 2078 struct perf_cpu_context *cpuctx, 2079 enum event_type_t event_type, 2080 struct task_struct *task) 2081 { 2082 u64 now; 2083 int is_active = ctx->is_active; 2084 2085 ctx->is_active |= event_type; 2086 if (likely(!ctx->nr_events)) 2087 return; 2088 2089 now = perf_clock(); 2090 ctx->timestamp = now; 2091 perf_cgroup_set_timestamp(task, ctx); 2092 /* 2093 * First go through the list and put on any pinned groups 2094 * in order to give them the best chance of going on. 2095 */ 2096 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) 2097 ctx_pinned_sched_in(ctx, cpuctx); 2098 2099 /* Then walk through the lower prio flexible groups */ 2100 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) 2101 ctx_flexible_sched_in(ctx, cpuctx); 2102 } 2103 2104 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 2105 enum event_type_t event_type, 2106 struct task_struct *task) 2107 { 2108 struct perf_event_context *ctx = &cpuctx->ctx; 2109 2110 ctx_sched_in(ctx, cpuctx, event_type, task); 2111 } 2112 2113 static void perf_event_context_sched_in(struct perf_event_context *ctx, 2114 struct task_struct *task) 2115 { 2116 struct perf_cpu_context *cpuctx; 2117 2118 cpuctx = __get_cpu_context(ctx); 2119 if (cpuctx->task_ctx == ctx) 2120 return; 2121 2122 perf_ctx_lock(cpuctx, ctx); 2123 perf_pmu_disable(ctx->pmu); 2124 /* 2125 * We want to keep the following priority order: 2126 * cpu pinned (that don't need to move), task pinned, 2127 * cpu flexible, task flexible. 2128 */ 2129 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2130 2131 perf_event_sched_in(cpuctx, ctx, task); 2132 2133 cpuctx->task_ctx = ctx; 2134 2135 perf_pmu_enable(ctx->pmu); 2136 perf_ctx_unlock(cpuctx, ctx); 2137 2138 /* 2139 * Since these rotations are per-cpu, we need to ensure the 2140 * cpu-context we got scheduled on is actually rotating. 2141 */ 2142 perf_pmu_rotate_start(ctx->pmu); 2143 } 2144 2145 /* 2146 * Called from scheduler to add the events of the current task 2147 * with interrupts disabled. 2148 * 2149 * We restore the event value and then enable it. 2150 * 2151 * This does not protect us against NMI, but enable() 2152 * sets the enabled bit in the control field of event _before_ 2153 * accessing the event control register. If a NMI hits, then it will 2154 * keep the event running. 2155 */ 2156 void __perf_event_task_sched_in(struct task_struct *task) 2157 { 2158 struct perf_event_context *ctx; 2159 int ctxn; 2160 2161 for_each_task_context_nr(ctxn) { 2162 ctx = task->perf_event_ctxp[ctxn]; 2163 if (likely(!ctx)) 2164 continue; 2165 2166 perf_event_context_sched_in(ctx, task); 2167 } 2168 /* 2169 * if cgroup events exist on this CPU, then we need 2170 * to check if we have to switch in PMU state. 2171 * cgroup event are system-wide mode only 2172 */ 2173 if (atomic_read(&__get_cpu_var(perf_cgroup_events))) 2174 perf_cgroup_sched_in(task); 2175 } 2176 2177 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 2178 { 2179 u64 frequency = event->attr.sample_freq; 2180 u64 sec = NSEC_PER_SEC; 2181 u64 divisor, dividend; 2182 2183 int count_fls, nsec_fls, frequency_fls, sec_fls; 2184 2185 count_fls = fls64(count); 2186 nsec_fls = fls64(nsec); 2187 frequency_fls = fls64(frequency); 2188 sec_fls = 30; 2189 2190 /* 2191 * We got @count in @nsec, with a target of sample_freq HZ 2192 * the target period becomes: 2193 * 2194 * @count * 10^9 2195 * period = ------------------- 2196 * @nsec * sample_freq 2197 * 2198 */ 2199 2200 /* 2201 * Reduce accuracy by one bit such that @a and @b converge 2202 * to a similar magnitude. 2203 */ 2204 #define REDUCE_FLS(a, b) \ 2205 do { \ 2206 if (a##_fls > b##_fls) { \ 2207 a >>= 1; \ 2208 a##_fls--; \ 2209 } else { \ 2210 b >>= 1; \ 2211 b##_fls--; \ 2212 } \ 2213 } while (0) 2214 2215 /* 2216 * Reduce accuracy until either term fits in a u64, then proceed with 2217 * the other, so that finally we can do a u64/u64 division. 2218 */ 2219 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 2220 REDUCE_FLS(nsec, frequency); 2221 REDUCE_FLS(sec, count); 2222 } 2223 2224 if (count_fls + sec_fls > 64) { 2225 divisor = nsec * frequency; 2226 2227 while (count_fls + sec_fls > 64) { 2228 REDUCE_FLS(count, sec); 2229 divisor >>= 1; 2230 } 2231 2232 dividend = count * sec; 2233 } else { 2234 dividend = count * sec; 2235 2236 while (nsec_fls + frequency_fls > 64) { 2237 REDUCE_FLS(nsec, frequency); 2238 dividend >>= 1; 2239 } 2240 2241 divisor = nsec * frequency; 2242 } 2243 2244 if (!divisor) 2245 return dividend; 2246 2247 return div64_u64(dividend, divisor); 2248 } 2249 2250 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count) 2251 { 2252 struct hw_perf_event *hwc = &event->hw; 2253 s64 period, sample_period; 2254 s64 delta; 2255 2256 period = perf_calculate_period(event, nsec, count); 2257 2258 delta = (s64)(period - hwc->sample_period); 2259 delta = (delta + 7) / 8; /* low pass filter */ 2260 2261 sample_period = hwc->sample_period + delta; 2262 2263 if (!sample_period) 2264 sample_period = 1; 2265 2266 hwc->sample_period = sample_period; 2267 2268 if (local64_read(&hwc->period_left) > 8*sample_period) { 2269 event->pmu->stop(event, PERF_EF_UPDATE); 2270 local64_set(&hwc->period_left, 0); 2271 event->pmu->start(event, PERF_EF_RELOAD); 2272 } 2273 } 2274 2275 static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period) 2276 { 2277 struct perf_event *event; 2278 struct hw_perf_event *hwc; 2279 u64 interrupts, now; 2280 s64 delta; 2281 2282 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 2283 if (event->state != PERF_EVENT_STATE_ACTIVE) 2284 continue; 2285 2286 if (!event_filter_match(event)) 2287 continue; 2288 2289 hwc = &event->hw; 2290 2291 interrupts = hwc->interrupts; 2292 hwc->interrupts = 0; 2293 2294 /* 2295 * unthrottle events on the tick 2296 */ 2297 if (interrupts == MAX_INTERRUPTS) { 2298 perf_log_throttle(event, 1); 2299 event->pmu->start(event, 0); 2300 } 2301 2302 if (!event->attr.freq || !event->attr.sample_freq) 2303 continue; 2304 2305 event->pmu->read(event); 2306 now = local64_read(&event->count); 2307 delta = now - hwc->freq_count_stamp; 2308 hwc->freq_count_stamp = now; 2309 2310 if (delta > 0) 2311 perf_adjust_period(event, period, delta); 2312 } 2313 } 2314 2315 /* 2316 * Round-robin a context's events: 2317 */ 2318 static void rotate_ctx(struct perf_event_context *ctx) 2319 { 2320 /* 2321 * Rotate the first entry last of non-pinned groups. Rotation might be 2322 * disabled by the inheritance code. 2323 */ 2324 if (!ctx->rotate_disable) 2325 list_rotate_left(&ctx->flexible_groups); 2326 } 2327 2328 /* 2329 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized 2330 * because they're strictly cpu affine and rotate_start is called with IRQs 2331 * disabled, while rotate_context is called from IRQ context. 2332 */ 2333 static void perf_rotate_context(struct perf_cpu_context *cpuctx) 2334 { 2335 u64 interval = (u64)cpuctx->jiffies_interval * TICK_NSEC; 2336 struct perf_event_context *ctx = NULL; 2337 int rotate = 0, remove = 1; 2338 2339 if (cpuctx->ctx.nr_events) { 2340 remove = 0; 2341 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active) 2342 rotate = 1; 2343 } 2344 2345 ctx = cpuctx->task_ctx; 2346 if (ctx && ctx->nr_events) { 2347 remove = 0; 2348 if (ctx->nr_events != ctx->nr_active) 2349 rotate = 1; 2350 } 2351 2352 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 2353 perf_pmu_disable(cpuctx->ctx.pmu); 2354 perf_ctx_adjust_freq(&cpuctx->ctx, interval); 2355 if (ctx) 2356 perf_ctx_adjust_freq(ctx, interval); 2357 2358 if (!rotate) 2359 goto done; 2360 2361 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2362 if (ctx) 2363 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE); 2364 2365 rotate_ctx(&cpuctx->ctx); 2366 if (ctx) 2367 rotate_ctx(ctx); 2368 2369 perf_event_sched_in(cpuctx, ctx, current); 2370 2371 done: 2372 if (remove) 2373 list_del_init(&cpuctx->rotation_list); 2374 2375 perf_pmu_enable(cpuctx->ctx.pmu); 2376 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 2377 } 2378 2379 void perf_event_task_tick(void) 2380 { 2381 struct list_head *head = &__get_cpu_var(rotation_list); 2382 struct perf_cpu_context *cpuctx, *tmp; 2383 2384 WARN_ON(!irqs_disabled()); 2385 2386 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) { 2387 if (cpuctx->jiffies_interval == 1 || 2388 !(jiffies % cpuctx->jiffies_interval)) 2389 perf_rotate_context(cpuctx); 2390 } 2391 } 2392 2393 static int event_enable_on_exec(struct perf_event *event, 2394 struct perf_event_context *ctx) 2395 { 2396 if (!event->attr.enable_on_exec) 2397 return 0; 2398 2399 event->attr.enable_on_exec = 0; 2400 if (event->state >= PERF_EVENT_STATE_INACTIVE) 2401 return 0; 2402 2403 __perf_event_mark_enabled(event, ctx); 2404 2405 return 1; 2406 } 2407 2408 /* 2409 * Enable all of a task's events that have been marked enable-on-exec. 2410 * This expects task == current. 2411 */ 2412 static void perf_event_enable_on_exec(struct perf_event_context *ctx) 2413 { 2414 struct perf_event *event; 2415 unsigned long flags; 2416 int enabled = 0; 2417 int ret; 2418 2419 local_irq_save(flags); 2420 if (!ctx || !ctx->nr_events) 2421 goto out; 2422 2423 /* 2424 * We must ctxsw out cgroup events to avoid conflict 2425 * when invoking perf_task_event_sched_in() later on 2426 * in this function. Otherwise we end up trying to 2427 * ctxswin cgroup events which are already scheduled 2428 * in. 2429 */ 2430 perf_cgroup_sched_out(current); 2431 2432 raw_spin_lock(&ctx->lock); 2433 task_ctx_sched_out(ctx); 2434 2435 list_for_each_entry(event, &ctx->pinned_groups, group_entry) { 2436 ret = event_enable_on_exec(event, ctx); 2437 if (ret) 2438 enabled = 1; 2439 } 2440 2441 list_for_each_entry(event, &ctx->flexible_groups, group_entry) { 2442 ret = event_enable_on_exec(event, ctx); 2443 if (ret) 2444 enabled = 1; 2445 } 2446 2447 /* 2448 * Unclone this context if we enabled any event. 2449 */ 2450 if (enabled) 2451 unclone_ctx(ctx); 2452 2453 raw_spin_unlock(&ctx->lock); 2454 2455 /* 2456 * Also calls ctxswin for cgroup events, if any: 2457 */ 2458 perf_event_context_sched_in(ctx, ctx->task); 2459 out: 2460 local_irq_restore(flags); 2461 } 2462 2463 /* 2464 * Cross CPU call to read the hardware event 2465 */ 2466 static void __perf_event_read(void *info) 2467 { 2468 struct perf_event *event = info; 2469 struct perf_event_context *ctx = event->ctx; 2470 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2471 2472 /* 2473 * If this is a task context, we need to check whether it is 2474 * the current task context of this cpu. If not it has been 2475 * scheduled out before the smp call arrived. In that case 2476 * event->count would have been updated to a recent sample 2477 * when the event was scheduled out. 2478 */ 2479 if (ctx->task && cpuctx->task_ctx != ctx) 2480 return; 2481 2482 raw_spin_lock(&ctx->lock); 2483 if (ctx->is_active) { 2484 update_context_time(ctx); 2485 update_cgrp_time_from_event(event); 2486 } 2487 update_event_times(event); 2488 if (event->state == PERF_EVENT_STATE_ACTIVE) 2489 event->pmu->read(event); 2490 raw_spin_unlock(&ctx->lock); 2491 } 2492 2493 static inline u64 perf_event_count(struct perf_event *event) 2494 { 2495 return local64_read(&event->count) + atomic64_read(&event->child_count); 2496 } 2497 2498 static u64 perf_event_read(struct perf_event *event) 2499 { 2500 /* 2501 * If event is enabled and currently active on a CPU, update the 2502 * value in the event structure: 2503 */ 2504 if (event->state == PERF_EVENT_STATE_ACTIVE) { 2505 smp_call_function_single(event->oncpu, 2506 __perf_event_read, event, 1); 2507 } else if (event->state == PERF_EVENT_STATE_INACTIVE) { 2508 struct perf_event_context *ctx = event->ctx; 2509 unsigned long flags; 2510 2511 raw_spin_lock_irqsave(&ctx->lock, flags); 2512 /* 2513 * may read while context is not active 2514 * (e.g., thread is blocked), in that case 2515 * we cannot update context time 2516 */ 2517 if (ctx->is_active) { 2518 update_context_time(ctx); 2519 update_cgrp_time_from_event(event); 2520 } 2521 update_event_times(event); 2522 raw_spin_unlock_irqrestore(&ctx->lock, flags); 2523 } 2524 2525 return perf_event_count(event); 2526 } 2527 2528 /* 2529 * Callchain support 2530 */ 2531 2532 struct callchain_cpus_entries { 2533 struct rcu_head rcu_head; 2534 struct perf_callchain_entry *cpu_entries[0]; 2535 }; 2536 2537 static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]); 2538 static atomic_t nr_callchain_events; 2539 static DEFINE_MUTEX(callchain_mutex); 2540 struct callchain_cpus_entries *callchain_cpus_entries; 2541 2542 2543 __weak void perf_callchain_kernel(struct perf_callchain_entry *entry, 2544 struct pt_regs *regs) 2545 { 2546 } 2547 2548 __weak void perf_callchain_user(struct perf_callchain_entry *entry, 2549 struct pt_regs *regs) 2550 { 2551 } 2552 2553 static void release_callchain_buffers_rcu(struct rcu_head *head) 2554 { 2555 struct callchain_cpus_entries *entries; 2556 int cpu; 2557 2558 entries = container_of(head, struct callchain_cpus_entries, rcu_head); 2559 2560 for_each_possible_cpu(cpu) 2561 kfree(entries->cpu_entries[cpu]); 2562 2563 kfree(entries); 2564 } 2565 2566 static void release_callchain_buffers(void) 2567 { 2568 struct callchain_cpus_entries *entries; 2569 2570 entries = callchain_cpus_entries; 2571 rcu_assign_pointer(callchain_cpus_entries, NULL); 2572 call_rcu(&entries->rcu_head, release_callchain_buffers_rcu); 2573 } 2574 2575 static int alloc_callchain_buffers(void) 2576 { 2577 int cpu; 2578 int size; 2579 struct callchain_cpus_entries *entries; 2580 2581 /* 2582 * We can't use the percpu allocation API for data that can be 2583 * accessed from NMI. Use a temporary manual per cpu allocation 2584 * until that gets sorted out. 2585 */ 2586 size = offsetof(struct callchain_cpus_entries, cpu_entries[nr_cpu_ids]); 2587 2588 entries = kzalloc(size, GFP_KERNEL); 2589 if (!entries) 2590 return -ENOMEM; 2591 2592 size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS; 2593 2594 for_each_possible_cpu(cpu) { 2595 entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL, 2596 cpu_to_node(cpu)); 2597 if (!entries->cpu_entries[cpu]) 2598 goto fail; 2599 } 2600 2601 rcu_assign_pointer(callchain_cpus_entries, entries); 2602 2603 return 0; 2604 2605 fail: 2606 for_each_possible_cpu(cpu) 2607 kfree(entries->cpu_entries[cpu]); 2608 kfree(entries); 2609 2610 return -ENOMEM; 2611 } 2612 2613 static int get_callchain_buffers(void) 2614 { 2615 int err = 0; 2616 int count; 2617 2618 mutex_lock(&callchain_mutex); 2619 2620 count = atomic_inc_return(&nr_callchain_events); 2621 if (WARN_ON_ONCE(count < 1)) { 2622 err = -EINVAL; 2623 goto exit; 2624 } 2625 2626 if (count > 1) { 2627 /* If the allocation failed, give up */ 2628 if (!callchain_cpus_entries) 2629 err = -ENOMEM; 2630 goto exit; 2631 } 2632 2633 err = alloc_callchain_buffers(); 2634 if (err) 2635 release_callchain_buffers(); 2636 exit: 2637 mutex_unlock(&callchain_mutex); 2638 2639 return err; 2640 } 2641 2642 static void put_callchain_buffers(void) 2643 { 2644 if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) { 2645 release_callchain_buffers(); 2646 mutex_unlock(&callchain_mutex); 2647 } 2648 } 2649 2650 static int get_recursion_context(int *recursion) 2651 { 2652 int rctx; 2653 2654 if (in_nmi()) 2655 rctx = 3; 2656 else if (in_irq()) 2657 rctx = 2; 2658 else if (in_softirq()) 2659 rctx = 1; 2660 else 2661 rctx = 0; 2662 2663 if (recursion[rctx]) 2664 return -1; 2665 2666 recursion[rctx]++; 2667 barrier(); 2668 2669 return rctx; 2670 } 2671 2672 static inline void put_recursion_context(int *recursion, int rctx) 2673 { 2674 barrier(); 2675 recursion[rctx]--; 2676 } 2677 2678 static struct perf_callchain_entry *get_callchain_entry(int *rctx) 2679 { 2680 int cpu; 2681 struct callchain_cpus_entries *entries; 2682 2683 *rctx = get_recursion_context(__get_cpu_var(callchain_recursion)); 2684 if (*rctx == -1) 2685 return NULL; 2686 2687 entries = rcu_dereference(callchain_cpus_entries); 2688 if (!entries) 2689 return NULL; 2690 2691 cpu = smp_processor_id(); 2692 2693 return &entries->cpu_entries[cpu][*rctx]; 2694 } 2695 2696 static void 2697 put_callchain_entry(int rctx) 2698 { 2699 put_recursion_context(__get_cpu_var(callchain_recursion), rctx); 2700 } 2701 2702 static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs) 2703 { 2704 int rctx; 2705 struct perf_callchain_entry *entry; 2706 2707 2708 entry = get_callchain_entry(&rctx); 2709 if (rctx == -1) 2710 return NULL; 2711 2712 if (!entry) 2713 goto exit_put; 2714 2715 entry->nr = 0; 2716 2717 if (!user_mode(regs)) { 2718 perf_callchain_store(entry, PERF_CONTEXT_KERNEL); 2719 perf_callchain_kernel(entry, regs); 2720 if (current->mm) 2721 regs = task_pt_regs(current); 2722 else 2723 regs = NULL; 2724 } 2725 2726 if (regs) { 2727 perf_callchain_store(entry, PERF_CONTEXT_USER); 2728 perf_callchain_user(entry, regs); 2729 } 2730 2731 exit_put: 2732 put_callchain_entry(rctx); 2733 2734 return entry; 2735 } 2736 2737 /* 2738 * Initialize the perf_event context in a task_struct: 2739 */ 2740 static void __perf_event_init_context(struct perf_event_context *ctx) 2741 { 2742 raw_spin_lock_init(&ctx->lock); 2743 mutex_init(&ctx->mutex); 2744 INIT_LIST_HEAD(&ctx->pinned_groups); 2745 INIT_LIST_HEAD(&ctx->flexible_groups); 2746 INIT_LIST_HEAD(&ctx->event_list); 2747 atomic_set(&ctx->refcount, 1); 2748 } 2749 2750 static struct perf_event_context * 2751 alloc_perf_context(struct pmu *pmu, struct task_struct *task) 2752 { 2753 struct perf_event_context *ctx; 2754 2755 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 2756 if (!ctx) 2757 return NULL; 2758 2759 __perf_event_init_context(ctx); 2760 if (task) { 2761 ctx->task = task; 2762 get_task_struct(task); 2763 } 2764 ctx->pmu = pmu; 2765 2766 return ctx; 2767 } 2768 2769 static struct task_struct * 2770 find_lively_task_by_vpid(pid_t vpid) 2771 { 2772 struct task_struct *task; 2773 int err; 2774 2775 rcu_read_lock(); 2776 if (!vpid) 2777 task = current; 2778 else 2779 task = find_task_by_vpid(vpid); 2780 if (task) 2781 get_task_struct(task); 2782 rcu_read_unlock(); 2783 2784 if (!task) 2785 return ERR_PTR(-ESRCH); 2786 2787 /* Reuse ptrace permission checks for now. */ 2788 err = -EACCES; 2789 if (!ptrace_may_access(task, PTRACE_MODE_READ)) 2790 goto errout; 2791 2792 return task; 2793 errout: 2794 put_task_struct(task); 2795 return ERR_PTR(err); 2796 2797 } 2798 2799 /* 2800 * Returns a matching context with refcount and pincount. 2801 */ 2802 static struct perf_event_context * 2803 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu) 2804 { 2805 struct perf_event_context *ctx; 2806 struct perf_cpu_context *cpuctx; 2807 unsigned long flags; 2808 int ctxn, err; 2809 2810 if (!task) { 2811 /* Must be root to operate on a CPU event: */ 2812 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) 2813 return ERR_PTR(-EACCES); 2814 2815 /* 2816 * We could be clever and allow to attach a event to an 2817 * offline CPU and activate it when the CPU comes up, but 2818 * that's for later. 2819 */ 2820 if (!cpu_online(cpu)) 2821 return ERR_PTR(-ENODEV); 2822 2823 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 2824 ctx = &cpuctx->ctx; 2825 get_ctx(ctx); 2826 ++ctx->pin_count; 2827 2828 return ctx; 2829 } 2830 2831 err = -EINVAL; 2832 ctxn = pmu->task_ctx_nr; 2833 if (ctxn < 0) 2834 goto errout; 2835 2836 retry: 2837 ctx = perf_lock_task_context(task, ctxn, &flags); 2838 if (ctx) { 2839 unclone_ctx(ctx); 2840 ++ctx->pin_count; 2841 raw_spin_unlock_irqrestore(&ctx->lock, flags); 2842 } else { 2843 ctx = alloc_perf_context(pmu, task); 2844 err = -ENOMEM; 2845 if (!ctx) 2846 goto errout; 2847 2848 err = 0; 2849 mutex_lock(&task->perf_event_mutex); 2850 /* 2851 * If it has already passed perf_event_exit_task(). 2852 * we must see PF_EXITING, it takes this mutex too. 2853 */ 2854 if (task->flags & PF_EXITING) 2855 err = -ESRCH; 2856 else if (task->perf_event_ctxp[ctxn]) 2857 err = -EAGAIN; 2858 else { 2859 get_ctx(ctx); 2860 ++ctx->pin_count; 2861 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); 2862 } 2863 mutex_unlock(&task->perf_event_mutex); 2864 2865 if (unlikely(err)) { 2866 put_ctx(ctx); 2867 2868 if (err == -EAGAIN) 2869 goto retry; 2870 goto errout; 2871 } 2872 } 2873 2874 return ctx; 2875 2876 errout: 2877 return ERR_PTR(err); 2878 } 2879 2880 static void perf_event_free_filter(struct perf_event *event); 2881 2882 static void free_event_rcu(struct rcu_head *head) 2883 { 2884 struct perf_event *event; 2885 2886 event = container_of(head, struct perf_event, rcu_head); 2887 if (event->ns) 2888 put_pid_ns(event->ns); 2889 perf_event_free_filter(event); 2890 kfree(event); 2891 } 2892 2893 static void ring_buffer_put(struct ring_buffer *rb); 2894 2895 static void free_event(struct perf_event *event) 2896 { 2897 irq_work_sync(&event->pending); 2898 2899 if (!event->parent) { 2900 if (event->attach_state & PERF_ATTACH_TASK) 2901 jump_label_dec(&perf_sched_events); 2902 if (event->attr.mmap || event->attr.mmap_data) 2903 atomic_dec(&nr_mmap_events); 2904 if (event->attr.comm) 2905 atomic_dec(&nr_comm_events); 2906 if (event->attr.task) 2907 atomic_dec(&nr_task_events); 2908 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 2909 put_callchain_buffers(); 2910 if (is_cgroup_event(event)) { 2911 atomic_dec(&per_cpu(perf_cgroup_events, event->cpu)); 2912 jump_label_dec(&perf_sched_events); 2913 } 2914 } 2915 2916 if (event->rb) { 2917 ring_buffer_put(event->rb); 2918 event->rb = NULL; 2919 } 2920 2921 if (is_cgroup_event(event)) 2922 perf_detach_cgroup(event); 2923 2924 if (event->destroy) 2925 event->destroy(event); 2926 2927 if (event->ctx) 2928 put_ctx(event->ctx); 2929 2930 call_rcu(&event->rcu_head, free_event_rcu); 2931 } 2932 2933 int perf_event_release_kernel(struct perf_event *event) 2934 { 2935 struct perf_event_context *ctx = event->ctx; 2936 2937 WARN_ON_ONCE(ctx->parent_ctx); 2938 /* 2939 * There are two ways this annotation is useful: 2940 * 2941 * 1) there is a lock recursion from perf_event_exit_task 2942 * see the comment there. 2943 * 2944 * 2) there is a lock-inversion with mmap_sem through 2945 * perf_event_read_group(), which takes faults while 2946 * holding ctx->mutex, however this is called after 2947 * the last filedesc died, so there is no possibility 2948 * to trigger the AB-BA case. 2949 */ 2950 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING); 2951 raw_spin_lock_irq(&ctx->lock); 2952 perf_group_detach(event); 2953 raw_spin_unlock_irq(&ctx->lock); 2954 perf_remove_from_context(event); 2955 mutex_unlock(&ctx->mutex); 2956 2957 free_event(event); 2958 2959 return 0; 2960 } 2961 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 2962 2963 /* 2964 * Called when the last reference to the file is gone. 2965 */ 2966 static int perf_release(struct inode *inode, struct file *file) 2967 { 2968 struct perf_event *event = file->private_data; 2969 struct task_struct *owner; 2970 2971 file->private_data = NULL; 2972 2973 rcu_read_lock(); 2974 owner = ACCESS_ONCE(event->owner); 2975 /* 2976 * Matches the smp_wmb() in perf_event_exit_task(). If we observe 2977 * !owner it means the list deletion is complete and we can indeed 2978 * free this event, otherwise we need to serialize on 2979 * owner->perf_event_mutex. 2980 */ 2981 smp_read_barrier_depends(); 2982 if (owner) { 2983 /* 2984 * Since delayed_put_task_struct() also drops the last 2985 * task reference we can safely take a new reference 2986 * while holding the rcu_read_lock(). 2987 */ 2988 get_task_struct(owner); 2989 } 2990 rcu_read_unlock(); 2991 2992 if (owner) { 2993 mutex_lock(&owner->perf_event_mutex); 2994 /* 2995 * We have to re-check the event->owner field, if it is cleared 2996 * we raced with perf_event_exit_task(), acquiring the mutex 2997 * ensured they're done, and we can proceed with freeing the 2998 * event. 2999 */ 3000 if (event->owner) 3001 list_del_init(&event->owner_entry); 3002 mutex_unlock(&owner->perf_event_mutex); 3003 put_task_struct(owner); 3004 } 3005 3006 return perf_event_release_kernel(event); 3007 } 3008 3009 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 3010 { 3011 struct perf_event *child; 3012 u64 total = 0; 3013 3014 *enabled = 0; 3015 *running = 0; 3016 3017 mutex_lock(&event->child_mutex); 3018 total += perf_event_read(event); 3019 *enabled += event->total_time_enabled + 3020 atomic64_read(&event->child_total_time_enabled); 3021 *running += event->total_time_running + 3022 atomic64_read(&event->child_total_time_running); 3023 3024 list_for_each_entry(child, &event->child_list, child_list) { 3025 total += perf_event_read(child); 3026 *enabled += child->total_time_enabled; 3027 *running += child->total_time_running; 3028 } 3029 mutex_unlock(&event->child_mutex); 3030 3031 return total; 3032 } 3033 EXPORT_SYMBOL_GPL(perf_event_read_value); 3034 3035 static int perf_event_read_group(struct perf_event *event, 3036 u64 read_format, char __user *buf) 3037 { 3038 struct perf_event *leader = event->group_leader, *sub; 3039 int n = 0, size = 0, ret = -EFAULT; 3040 struct perf_event_context *ctx = leader->ctx; 3041 u64 values[5]; 3042 u64 count, enabled, running; 3043 3044 mutex_lock(&ctx->mutex); 3045 count = perf_event_read_value(leader, &enabled, &running); 3046 3047 values[n++] = 1 + leader->nr_siblings; 3048 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 3049 values[n++] = enabled; 3050 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 3051 values[n++] = running; 3052 values[n++] = count; 3053 if (read_format & PERF_FORMAT_ID) 3054 values[n++] = primary_event_id(leader); 3055 3056 size = n * sizeof(u64); 3057 3058 if (copy_to_user(buf, values, size)) 3059 goto unlock; 3060 3061 ret = size; 3062 3063 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 3064 n = 0; 3065 3066 values[n++] = perf_event_read_value(sub, &enabled, &running); 3067 if (read_format & PERF_FORMAT_ID) 3068 values[n++] = primary_event_id(sub); 3069 3070 size = n * sizeof(u64); 3071 3072 if (copy_to_user(buf + ret, values, size)) { 3073 ret = -EFAULT; 3074 goto unlock; 3075 } 3076 3077 ret += size; 3078 } 3079 unlock: 3080 mutex_unlock(&ctx->mutex); 3081 3082 return ret; 3083 } 3084 3085 static int perf_event_read_one(struct perf_event *event, 3086 u64 read_format, char __user *buf) 3087 { 3088 u64 enabled, running; 3089 u64 values[4]; 3090 int n = 0; 3091 3092 values[n++] = perf_event_read_value(event, &enabled, &running); 3093 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 3094 values[n++] = enabled; 3095 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 3096 values[n++] = running; 3097 if (read_format & PERF_FORMAT_ID) 3098 values[n++] = primary_event_id(event); 3099 3100 if (copy_to_user(buf, values, n * sizeof(u64))) 3101 return -EFAULT; 3102 3103 return n * sizeof(u64); 3104 } 3105 3106 /* 3107 * Read the performance event - simple non blocking version for now 3108 */ 3109 static ssize_t 3110 perf_read_hw(struct perf_event *event, char __user *buf, size_t count) 3111 { 3112 u64 read_format = event->attr.read_format; 3113 int ret; 3114 3115 /* 3116 * Return end-of-file for a read on a event that is in 3117 * error state (i.e. because it was pinned but it couldn't be 3118 * scheduled on to the CPU at some point). 3119 */ 3120 if (event->state == PERF_EVENT_STATE_ERROR) 3121 return 0; 3122 3123 if (count < event->read_size) 3124 return -ENOSPC; 3125 3126 WARN_ON_ONCE(event->ctx->parent_ctx); 3127 if (read_format & PERF_FORMAT_GROUP) 3128 ret = perf_event_read_group(event, read_format, buf); 3129 else 3130 ret = perf_event_read_one(event, read_format, buf); 3131 3132 return ret; 3133 } 3134 3135 static ssize_t 3136 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 3137 { 3138 struct perf_event *event = file->private_data; 3139 3140 return perf_read_hw(event, buf, count); 3141 } 3142 3143 static unsigned int perf_poll(struct file *file, poll_table *wait) 3144 { 3145 struct perf_event *event = file->private_data; 3146 struct ring_buffer *rb; 3147 unsigned int events = POLL_HUP; 3148 3149 rcu_read_lock(); 3150 rb = rcu_dereference(event->rb); 3151 if (rb) 3152 events = atomic_xchg(&rb->poll, 0); 3153 rcu_read_unlock(); 3154 3155 poll_wait(file, &event->waitq, wait); 3156 3157 return events; 3158 } 3159 3160 static void perf_event_reset(struct perf_event *event) 3161 { 3162 (void)perf_event_read(event); 3163 local64_set(&event->count, 0); 3164 perf_event_update_userpage(event); 3165 } 3166 3167 /* 3168 * Holding the top-level event's child_mutex means that any 3169 * descendant process that has inherited this event will block 3170 * in sync_child_event if it goes to exit, thus satisfying the 3171 * task existence requirements of perf_event_enable/disable. 3172 */ 3173 static void perf_event_for_each_child(struct perf_event *event, 3174 void (*func)(struct perf_event *)) 3175 { 3176 struct perf_event *child; 3177 3178 WARN_ON_ONCE(event->ctx->parent_ctx); 3179 mutex_lock(&event->child_mutex); 3180 func(event); 3181 list_for_each_entry(child, &event->child_list, child_list) 3182 func(child); 3183 mutex_unlock(&event->child_mutex); 3184 } 3185 3186 static void perf_event_for_each(struct perf_event *event, 3187 void (*func)(struct perf_event *)) 3188 { 3189 struct perf_event_context *ctx = event->ctx; 3190 struct perf_event *sibling; 3191 3192 WARN_ON_ONCE(ctx->parent_ctx); 3193 mutex_lock(&ctx->mutex); 3194 event = event->group_leader; 3195 3196 perf_event_for_each_child(event, func); 3197 func(event); 3198 list_for_each_entry(sibling, &event->sibling_list, group_entry) 3199 perf_event_for_each_child(event, func); 3200 mutex_unlock(&ctx->mutex); 3201 } 3202 3203 static int perf_event_period(struct perf_event *event, u64 __user *arg) 3204 { 3205 struct perf_event_context *ctx = event->ctx; 3206 int ret = 0; 3207 u64 value; 3208 3209 if (!is_sampling_event(event)) 3210 return -EINVAL; 3211 3212 if (copy_from_user(&value, arg, sizeof(value))) 3213 return -EFAULT; 3214 3215 if (!value) 3216 return -EINVAL; 3217 3218 raw_spin_lock_irq(&ctx->lock); 3219 if (event->attr.freq) { 3220 if (value > sysctl_perf_event_sample_rate) { 3221 ret = -EINVAL; 3222 goto unlock; 3223 } 3224 3225 event->attr.sample_freq = value; 3226 } else { 3227 event->attr.sample_period = value; 3228 event->hw.sample_period = value; 3229 } 3230 unlock: 3231 raw_spin_unlock_irq(&ctx->lock); 3232 3233 return ret; 3234 } 3235 3236 static const struct file_operations perf_fops; 3237 3238 static struct perf_event *perf_fget_light(int fd, int *fput_needed) 3239 { 3240 struct file *file; 3241 3242 file = fget_light(fd, fput_needed); 3243 if (!file) 3244 return ERR_PTR(-EBADF); 3245 3246 if (file->f_op != &perf_fops) { 3247 fput_light(file, *fput_needed); 3248 *fput_needed = 0; 3249 return ERR_PTR(-EBADF); 3250 } 3251 3252 return file->private_data; 3253 } 3254 3255 static int perf_event_set_output(struct perf_event *event, 3256 struct perf_event *output_event); 3257 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 3258 3259 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 3260 { 3261 struct perf_event *event = file->private_data; 3262 void (*func)(struct perf_event *); 3263 u32 flags = arg; 3264 3265 switch (cmd) { 3266 case PERF_EVENT_IOC_ENABLE: 3267 func = perf_event_enable; 3268 break; 3269 case PERF_EVENT_IOC_DISABLE: 3270 func = perf_event_disable; 3271 break; 3272 case PERF_EVENT_IOC_RESET: 3273 func = perf_event_reset; 3274 break; 3275 3276 case PERF_EVENT_IOC_REFRESH: 3277 return perf_event_refresh(event, arg); 3278 3279 case PERF_EVENT_IOC_PERIOD: 3280 return perf_event_period(event, (u64 __user *)arg); 3281 3282 case PERF_EVENT_IOC_SET_OUTPUT: 3283 { 3284 struct perf_event *output_event = NULL; 3285 int fput_needed = 0; 3286 int ret; 3287 3288 if (arg != -1) { 3289 output_event = perf_fget_light(arg, &fput_needed); 3290 if (IS_ERR(output_event)) 3291 return PTR_ERR(output_event); 3292 } 3293 3294 ret = perf_event_set_output(event, output_event); 3295 if (output_event) 3296 fput_light(output_event->filp, fput_needed); 3297 3298 return ret; 3299 } 3300 3301 case PERF_EVENT_IOC_SET_FILTER: 3302 return perf_event_set_filter(event, (void __user *)arg); 3303 3304 default: 3305 return -ENOTTY; 3306 } 3307 3308 if (flags & PERF_IOC_FLAG_GROUP) 3309 perf_event_for_each(event, func); 3310 else 3311 perf_event_for_each_child(event, func); 3312 3313 return 0; 3314 } 3315 3316 int perf_event_task_enable(void) 3317 { 3318 struct perf_event *event; 3319 3320 mutex_lock(¤t->perf_event_mutex); 3321 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) 3322 perf_event_for_each_child(event, perf_event_enable); 3323 mutex_unlock(¤t->perf_event_mutex); 3324 3325 return 0; 3326 } 3327 3328 int perf_event_task_disable(void) 3329 { 3330 struct perf_event *event; 3331 3332 mutex_lock(¤t->perf_event_mutex); 3333 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) 3334 perf_event_for_each_child(event, perf_event_disable); 3335 mutex_unlock(¤t->perf_event_mutex); 3336 3337 return 0; 3338 } 3339 3340 #ifndef PERF_EVENT_INDEX_OFFSET 3341 # define PERF_EVENT_INDEX_OFFSET 0 3342 #endif 3343 3344 static int perf_event_index(struct perf_event *event) 3345 { 3346 if (event->hw.state & PERF_HES_STOPPED) 3347 return 0; 3348 3349 if (event->state != PERF_EVENT_STATE_ACTIVE) 3350 return 0; 3351 3352 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET; 3353 } 3354 3355 static void calc_timer_values(struct perf_event *event, 3356 u64 *running, 3357 u64 *enabled) 3358 { 3359 u64 now, ctx_time; 3360 3361 now = perf_clock(); 3362 ctx_time = event->shadow_ctx_time + now; 3363 *enabled = ctx_time - event->tstamp_enabled; 3364 *running = ctx_time - event->tstamp_running; 3365 } 3366 3367 /* 3368 * Callers need to ensure there can be no nesting of this function, otherwise 3369 * the seqlock logic goes bad. We can not serialize this because the arch 3370 * code calls this from NMI context. 3371 */ 3372 void perf_event_update_userpage(struct perf_event *event) 3373 { 3374 struct perf_event_mmap_page *userpg; 3375 struct ring_buffer *rb; 3376 u64 enabled, running; 3377 3378 rcu_read_lock(); 3379 /* 3380 * compute total_time_enabled, total_time_running 3381 * based on snapshot values taken when the event 3382 * was last scheduled in. 3383 * 3384 * we cannot simply called update_context_time() 3385 * because of locking issue as we can be called in 3386 * NMI context 3387 */ 3388 calc_timer_values(event, &enabled, &running); 3389 rb = rcu_dereference(event->rb); 3390 if (!rb) 3391 goto unlock; 3392 3393 userpg = rb->user_page; 3394 3395 /* 3396 * Disable preemption so as to not let the corresponding user-space 3397 * spin too long if we get preempted. 3398 */ 3399 preempt_disable(); 3400 ++userpg->lock; 3401 barrier(); 3402 userpg->index = perf_event_index(event); 3403 userpg->offset = perf_event_count(event); 3404 if (event->state == PERF_EVENT_STATE_ACTIVE) 3405 userpg->offset -= local64_read(&event->hw.prev_count); 3406 3407 userpg->time_enabled = enabled + 3408 atomic64_read(&event->child_total_time_enabled); 3409 3410 userpg->time_running = running + 3411 atomic64_read(&event->child_total_time_running); 3412 3413 barrier(); 3414 ++userpg->lock; 3415 preempt_enable(); 3416 unlock: 3417 rcu_read_unlock(); 3418 } 3419 3420 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 3421 { 3422 struct perf_event *event = vma->vm_file->private_data; 3423 struct ring_buffer *rb; 3424 int ret = VM_FAULT_SIGBUS; 3425 3426 if (vmf->flags & FAULT_FLAG_MKWRITE) { 3427 if (vmf->pgoff == 0) 3428 ret = 0; 3429 return ret; 3430 } 3431 3432 rcu_read_lock(); 3433 rb = rcu_dereference(event->rb); 3434 if (!rb) 3435 goto unlock; 3436 3437 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 3438 goto unlock; 3439 3440 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 3441 if (!vmf->page) 3442 goto unlock; 3443 3444 get_page(vmf->page); 3445 vmf->page->mapping = vma->vm_file->f_mapping; 3446 vmf->page->index = vmf->pgoff; 3447 3448 ret = 0; 3449 unlock: 3450 rcu_read_unlock(); 3451 3452 return ret; 3453 } 3454 3455 static void rb_free_rcu(struct rcu_head *rcu_head) 3456 { 3457 struct ring_buffer *rb; 3458 3459 rb = container_of(rcu_head, struct ring_buffer, rcu_head); 3460 rb_free(rb); 3461 } 3462 3463 static struct ring_buffer *ring_buffer_get(struct perf_event *event) 3464 { 3465 struct ring_buffer *rb; 3466 3467 rcu_read_lock(); 3468 rb = rcu_dereference(event->rb); 3469 if (rb) { 3470 if (!atomic_inc_not_zero(&rb->refcount)) 3471 rb = NULL; 3472 } 3473 rcu_read_unlock(); 3474 3475 return rb; 3476 } 3477 3478 static void ring_buffer_put(struct ring_buffer *rb) 3479 { 3480 if (!atomic_dec_and_test(&rb->refcount)) 3481 return; 3482 3483 call_rcu(&rb->rcu_head, rb_free_rcu); 3484 } 3485 3486 static void perf_mmap_open(struct vm_area_struct *vma) 3487 { 3488 struct perf_event *event = vma->vm_file->private_data; 3489 3490 atomic_inc(&event->mmap_count); 3491 } 3492 3493 static void perf_mmap_close(struct vm_area_struct *vma) 3494 { 3495 struct perf_event *event = vma->vm_file->private_data; 3496 3497 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) { 3498 unsigned long size = perf_data_size(event->rb); 3499 struct user_struct *user = event->mmap_user; 3500 struct ring_buffer *rb = event->rb; 3501 3502 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm); 3503 vma->vm_mm->locked_vm -= event->mmap_locked; 3504 rcu_assign_pointer(event->rb, NULL); 3505 mutex_unlock(&event->mmap_mutex); 3506 3507 ring_buffer_put(rb); 3508 free_uid(user); 3509 } 3510 } 3511 3512 static const struct vm_operations_struct perf_mmap_vmops = { 3513 .open = perf_mmap_open, 3514 .close = perf_mmap_close, 3515 .fault = perf_mmap_fault, 3516 .page_mkwrite = perf_mmap_fault, 3517 }; 3518 3519 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 3520 { 3521 struct perf_event *event = file->private_data; 3522 unsigned long user_locked, user_lock_limit; 3523 struct user_struct *user = current_user(); 3524 unsigned long locked, lock_limit; 3525 struct ring_buffer *rb; 3526 unsigned long vma_size; 3527 unsigned long nr_pages; 3528 long user_extra, extra; 3529 int ret = 0, flags = 0; 3530 3531 /* 3532 * Don't allow mmap() of inherited per-task counters. This would 3533 * create a performance issue due to all children writing to the 3534 * same rb. 3535 */ 3536 if (event->cpu == -1 && event->attr.inherit) 3537 return -EINVAL; 3538 3539 if (!(vma->vm_flags & VM_SHARED)) 3540 return -EINVAL; 3541 3542 vma_size = vma->vm_end - vma->vm_start; 3543 nr_pages = (vma_size / PAGE_SIZE) - 1; 3544 3545 /* 3546 * If we have rb pages ensure they're a power-of-two number, so we 3547 * can do bitmasks instead of modulo. 3548 */ 3549 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 3550 return -EINVAL; 3551 3552 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 3553 return -EINVAL; 3554 3555 if (vma->vm_pgoff != 0) 3556 return -EINVAL; 3557 3558 WARN_ON_ONCE(event->ctx->parent_ctx); 3559 mutex_lock(&event->mmap_mutex); 3560 if (event->rb) { 3561 if (event->rb->nr_pages == nr_pages) 3562 atomic_inc(&event->rb->refcount); 3563 else 3564 ret = -EINVAL; 3565 goto unlock; 3566 } 3567 3568 user_extra = nr_pages + 1; 3569 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 3570 3571 /* 3572 * Increase the limit linearly with more CPUs: 3573 */ 3574 user_lock_limit *= num_online_cpus(); 3575 3576 user_locked = atomic_long_read(&user->locked_vm) + user_extra; 3577 3578 extra = 0; 3579 if (user_locked > user_lock_limit) 3580 extra = user_locked - user_lock_limit; 3581 3582 lock_limit = rlimit(RLIMIT_MEMLOCK); 3583 lock_limit >>= PAGE_SHIFT; 3584 locked = vma->vm_mm->locked_vm + extra; 3585 3586 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() && 3587 !capable(CAP_IPC_LOCK)) { 3588 ret = -EPERM; 3589 goto unlock; 3590 } 3591 3592 WARN_ON(event->rb); 3593 3594 if (vma->vm_flags & VM_WRITE) 3595 flags |= RING_BUFFER_WRITABLE; 3596 3597 rb = rb_alloc(nr_pages, 3598 event->attr.watermark ? event->attr.wakeup_watermark : 0, 3599 event->cpu, flags); 3600 3601 if (!rb) { 3602 ret = -ENOMEM; 3603 goto unlock; 3604 } 3605 rcu_assign_pointer(event->rb, rb); 3606 3607 atomic_long_add(user_extra, &user->locked_vm); 3608 event->mmap_locked = extra; 3609 event->mmap_user = get_current_user(); 3610 vma->vm_mm->locked_vm += event->mmap_locked; 3611 3612 unlock: 3613 if (!ret) 3614 atomic_inc(&event->mmap_count); 3615 mutex_unlock(&event->mmap_mutex); 3616 3617 vma->vm_flags |= VM_RESERVED; 3618 vma->vm_ops = &perf_mmap_vmops; 3619 3620 return ret; 3621 } 3622 3623 static int perf_fasync(int fd, struct file *filp, int on) 3624 { 3625 struct inode *inode = filp->f_path.dentry->d_inode; 3626 struct perf_event *event = filp->private_data; 3627 int retval; 3628 3629 mutex_lock(&inode->i_mutex); 3630 retval = fasync_helper(fd, filp, on, &event->fasync); 3631 mutex_unlock(&inode->i_mutex); 3632 3633 if (retval < 0) 3634 return retval; 3635 3636 return 0; 3637 } 3638 3639 static const struct file_operations perf_fops = { 3640 .llseek = no_llseek, 3641 .release = perf_release, 3642 .read = perf_read, 3643 .poll = perf_poll, 3644 .unlocked_ioctl = perf_ioctl, 3645 .compat_ioctl = perf_ioctl, 3646 .mmap = perf_mmap, 3647 .fasync = perf_fasync, 3648 }; 3649 3650 /* 3651 * Perf event wakeup 3652 * 3653 * If there's data, ensure we set the poll() state and publish everything 3654 * to user-space before waking everybody up. 3655 */ 3656 3657 void perf_event_wakeup(struct perf_event *event) 3658 { 3659 wake_up_all(&event->waitq); 3660 3661 if (event->pending_kill) { 3662 kill_fasync(&event->fasync, SIGIO, event->pending_kill); 3663 event->pending_kill = 0; 3664 } 3665 } 3666 3667 static void perf_pending_event(struct irq_work *entry) 3668 { 3669 struct perf_event *event = container_of(entry, 3670 struct perf_event, pending); 3671 3672 if (event->pending_disable) { 3673 event->pending_disable = 0; 3674 __perf_event_disable(event); 3675 } 3676 3677 if (event->pending_wakeup) { 3678 event->pending_wakeup = 0; 3679 perf_event_wakeup(event); 3680 } 3681 } 3682 3683 /* 3684 * We assume there is only KVM supporting the callbacks. 3685 * Later on, we might change it to a list if there is 3686 * another virtualization implementation supporting the callbacks. 3687 */ 3688 struct perf_guest_info_callbacks *perf_guest_cbs; 3689 3690 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 3691 { 3692 perf_guest_cbs = cbs; 3693 return 0; 3694 } 3695 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 3696 3697 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 3698 { 3699 perf_guest_cbs = NULL; 3700 return 0; 3701 } 3702 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 3703 3704 static void __perf_event_header__init_id(struct perf_event_header *header, 3705 struct perf_sample_data *data, 3706 struct perf_event *event) 3707 { 3708 u64 sample_type = event->attr.sample_type; 3709 3710 data->type = sample_type; 3711 header->size += event->id_header_size; 3712 3713 if (sample_type & PERF_SAMPLE_TID) { 3714 /* namespace issues */ 3715 data->tid_entry.pid = perf_event_pid(event, current); 3716 data->tid_entry.tid = perf_event_tid(event, current); 3717 } 3718 3719 if (sample_type & PERF_SAMPLE_TIME) 3720 data->time = perf_clock(); 3721 3722 if (sample_type & PERF_SAMPLE_ID) 3723 data->id = primary_event_id(event); 3724 3725 if (sample_type & PERF_SAMPLE_STREAM_ID) 3726 data->stream_id = event->id; 3727 3728 if (sample_type & PERF_SAMPLE_CPU) { 3729 data->cpu_entry.cpu = raw_smp_processor_id(); 3730 data->cpu_entry.reserved = 0; 3731 } 3732 } 3733 3734 void perf_event_header__init_id(struct perf_event_header *header, 3735 struct perf_sample_data *data, 3736 struct perf_event *event) 3737 { 3738 if (event->attr.sample_id_all) 3739 __perf_event_header__init_id(header, data, event); 3740 } 3741 3742 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 3743 struct perf_sample_data *data) 3744 { 3745 u64 sample_type = data->type; 3746 3747 if (sample_type & PERF_SAMPLE_TID) 3748 perf_output_put(handle, data->tid_entry); 3749 3750 if (sample_type & PERF_SAMPLE_TIME) 3751 perf_output_put(handle, data->time); 3752 3753 if (sample_type & PERF_SAMPLE_ID) 3754 perf_output_put(handle, data->id); 3755 3756 if (sample_type & PERF_SAMPLE_STREAM_ID) 3757 perf_output_put(handle, data->stream_id); 3758 3759 if (sample_type & PERF_SAMPLE_CPU) 3760 perf_output_put(handle, data->cpu_entry); 3761 } 3762 3763 void perf_event__output_id_sample(struct perf_event *event, 3764 struct perf_output_handle *handle, 3765 struct perf_sample_data *sample) 3766 { 3767 if (event->attr.sample_id_all) 3768 __perf_event__output_id_sample(handle, sample); 3769 } 3770 3771 static void perf_output_read_one(struct perf_output_handle *handle, 3772 struct perf_event *event, 3773 u64 enabled, u64 running) 3774 { 3775 u64 read_format = event->attr.read_format; 3776 u64 values[4]; 3777 int n = 0; 3778 3779 values[n++] = perf_event_count(event); 3780 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 3781 values[n++] = enabled + 3782 atomic64_read(&event->child_total_time_enabled); 3783 } 3784 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 3785 values[n++] = running + 3786 atomic64_read(&event->child_total_time_running); 3787 } 3788 if (read_format & PERF_FORMAT_ID) 3789 values[n++] = primary_event_id(event); 3790 3791 __output_copy(handle, values, n * sizeof(u64)); 3792 } 3793 3794 /* 3795 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult. 3796 */ 3797 static void perf_output_read_group(struct perf_output_handle *handle, 3798 struct perf_event *event, 3799 u64 enabled, u64 running) 3800 { 3801 struct perf_event *leader = event->group_leader, *sub; 3802 u64 read_format = event->attr.read_format; 3803 u64 values[5]; 3804 int n = 0; 3805 3806 values[n++] = 1 + leader->nr_siblings; 3807 3808 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 3809 values[n++] = enabled; 3810 3811 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 3812 values[n++] = running; 3813 3814 if (leader != event) 3815 leader->pmu->read(leader); 3816 3817 values[n++] = perf_event_count(leader); 3818 if (read_format & PERF_FORMAT_ID) 3819 values[n++] = primary_event_id(leader); 3820 3821 __output_copy(handle, values, n * sizeof(u64)); 3822 3823 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 3824 n = 0; 3825 3826 if (sub != event) 3827 sub->pmu->read(sub); 3828 3829 values[n++] = perf_event_count(sub); 3830 if (read_format & PERF_FORMAT_ID) 3831 values[n++] = primary_event_id(sub); 3832 3833 __output_copy(handle, values, n * sizeof(u64)); 3834 } 3835 } 3836 3837 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 3838 PERF_FORMAT_TOTAL_TIME_RUNNING) 3839 3840 static void perf_output_read(struct perf_output_handle *handle, 3841 struct perf_event *event) 3842 { 3843 u64 enabled = 0, running = 0; 3844 u64 read_format = event->attr.read_format; 3845 3846 /* 3847 * compute total_time_enabled, total_time_running 3848 * based on snapshot values taken when the event 3849 * was last scheduled in. 3850 * 3851 * we cannot simply called update_context_time() 3852 * because of locking issue as we are called in 3853 * NMI context 3854 */ 3855 if (read_format & PERF_FORMAT_TOTAL_TIMES) 3856 calc_timer_values(event, &enabled, &running); 3857 3858 if (event->attr.read_format & PERF_FORMAT_GROUP) 3859 perf_output_read_group(handle, event, enabled, running); 3860 else 3861 perf_output_read_one(handle, event, enabled, running); 3862 } 3863 3864 void perf_output_sample(struct perf_output_handle *handle, 3865 struct perf_event_header *header, 3866 struct perf_sample_data *data, 3867 struct perf_event *event) 3868 { 3869 u64 sample_type = data->type; 3870 3871 perf_output_put(handle, *header); 3872 3873 if (sample_type & PERF_SAMPLE_IP) 3874 perf_output_put(handle, data->ip); 3875 3876 if (sample_type & PERF_SAMPLE_TID) 3877 perf_output_put(handle, data->tid_entry); 3878 3879 if (sample_type & PERF_SAMPLE_TIME) 3880 perf_output_put(handle, data->time); 3881 3882 if (sample_type & PERF_SAMPLE_ADDR) 3883 perf_output_put(handle, data->addr); 3884 3885 if (sample_type & PERF_SAMPLE_ID) 3886 perf_output_put(handle, data->id); 3887 3888 if (sample_type & PERF_SAMPLE_STREAM_ID) 3889 perf_output_put(handle, data->stream_id); 3890 3891 if (sample_type & PERF_SAMPLE_CPU) 3892 perf_output_put(handle, data->cpu_entry); 3893 3894 if (sample_type & PERF_SAMPLE_PERIOD) 3895 perf_output_put(handle, data->period); 3896 3897 if (sample_type & PERF_SAMPLE_READ) 3898 perf_output_read(handle, event); 3899 3900 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 3901 if (data->callchain) { 3902 int size = 1; 3903 3904 if (data->callchain) 3905 size += data->callchain->nr; 3906 3907 size *= sizeof(u64); 3908 3909 __output_copy(handle, data->callchain, size); 3910 } else { 3911 u64 nr = 0; 3912 perf_output_put(handle, nr); 3913 } 3914 } 3915 3916 if (sample_type & PERF_SAMPLE_RAW) { 3917 if (data->raw) { 3918 perf_output_put(handle, data->raw->size); 3919 __output_copy(handle, data->raw->data, 3920 data->raw->size); 3921 } else { 3922 struct { 3923 u32 size; 3924 u32 data; 3925 } raw = { 3926 .size = sizeof(u32), 3927 .data = 0, 3928 }; 3929 perf_output_put(handle, raw); 3930 } 3931 } 3932 3933 if (!event->attr.watermark) { 3934 int wakeup_events = event->attr.wakeup_events; 3935 3936 if (wakeup_events) { 3937 struct ring_buffer *rb = handle->rb; 3938 int events = local_inc_return(&rb->events); 3939 3940 if (events >= wakeup_events) { 3941 local_sub(wakeup_events, &rb->events); 3942 local_inc(&rb->wakeup); 3943 } 3944 } 3945 } 3946 } 3947 3948 void perf_prepare_sample(struct perf_event_header *header, 3949 struct perf_sample_data *data, 3950 struct perf_event *event, 3951 struct pt_regs *regs) 3952 { 3953 u64 sample_type = event->attr.sample_type; 3954 3955 header->type = PERF_RECORD_SAMPLE; 3956 header->size = sizeof(*header) + event->header_size; 3957 3958 header->misc = 0; 3959 header->misc |= perf_misc_flags(regs); 3960 3961 __perf_event_header__init_id(header, data, event); 3962 3963 if (sample_type & PERF_SAMPLE_IP) 3964 data->ip = perf_instruction_pointer(regs); 3965 3966 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 3967 int size = 1; 3968 3969 data->callchain = perf_callchain(regs); 3970 3971 if (data->callchain) 3972 size += data->callchain->nr; 3973 3974 header->size += size * sizeof(u64); 3975 } 3976 3977 if (sample_type & PERF_SAMPLE_RAW) { 3978 int size = sizeof(u32); 3979 3980 if (data->raw) 3981 size += data->raw->size; 3982 else 3983 size += sizeof(u32); 3984 3985 WARN_ON_ONCE(size & (sizeof(u64)-1)); 3986 header->size += size; 3987 } 3988 } 3989 3990 static void perf_event_output(struct perf_event *event, 3991 struct perf_sample_data *data, 3992 struct pt_regs *regs) 3993 { 3994 struct perf_output_handle handle; 3995 struct perf_event_header header; 3996 3997 /* protect the callchain buffers */ 3998 rcu_read_lock(); 3999 4000 perf_prepare_sample(&header, data, event, regs); 4001 4002 if (perf_output_begin(&handle, event, header.size)) 4003 goto exit; 4004 4005 perf_output_sample(&handle, &header, data, event); 4006 4007 perf_output_end(&handle); 4008 4009 exit: 4010 rcu_read_unlock(); 4011 } 4012 4013 /* 4014 * read event_id 4015 */ 4016 4017 struct perf_read_event { 4018 struct perf_event_header header; 4019 4020 u32 pid; 4021 u32 tid; 4022 }; 4023 4024 static void 4025 perf_event_read_event(struct perf_event *event, 4026 struct task_struct *task) 4027 { 4028 struct perf_output_handle handle; 4029 struct perf_sample_data sample; 4030 struct perf_read_event read_event = { 4031 .header = { 4032 .type = PERF_RECORD_READ, 4033 .misc = 0, 4034 .size = sizeof(read_event) + event->read_size, 4035 }, 4036 .pid = perf_event_pid(event, task), 4037 .tid = perf_event_tid(event, task), 4038 }; 4039 int ret; 4040 4041 perf_event_header__init_id(&read_event.header, &sample, event); 4042 ret = perf_output_begin(&handle, event, read_event.header.size); 4043 if (ret) 4044 return; 4045 4046 perf_output_put(&handle, read_event); 4047 perf_output_read(&handle, event); 4048 perf_event__output_id_sample(event, &handle, &sample); 4049 4050 perf_output_end(&handle); 4051 } 4052 4053 /* 4054 * task tracking -- fork/exit 4055 * 4056 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task 4057 */ 4058 4059 struct perf_task_event { 4060 struct task_struct *task; 4061 struct perf_event_context *task_ctx; 4062 4063 struct { 4064 struct perf_event_header header; 4065 4066 u32 pid; 4067 u32 ppid; 4068 u32 tid; 4069 u32 ptid; 4070 u64 time; 4071 } event_id; 4072 }; 4073 4074 static void perf_event_task_output(struct perf_event *event, 4075 struct perf_task_event *task_event) 4076 { 4077 struct perf_output_handle handle; 4078 struct perf_sample_data sample; 4079 struct task_struct *task = task_event->task; 4080 int ret, size = task_event->event_id.header.size; 4081 4082 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 4083 4084 ret = perf_output_begin(&handle, event, 4085 task_event->event_id.header.size); 4086 if (ret) 4087 goto out; 4088 4089 task_event->event_id.pid = perf_event_pid(event, task); 4090 task_event->event_id.ppid = perf_event_pid(event, current); 4091 4092 task_event->event_id.tid = perf_event_tid(event, task); 4093 task_event->event_id.ptid = perf_event_tid(event, current); 4094 4095 perf_output_put(&handle, task_event->event_id); 4096 4097 perf_event__output_id_sample(event, &handle, &sample); 4098 4099 perf_output_end(&handle); 4100 out: 4101 task_event->event_id.header.size = size; 4102 } 4103 4104 static int perf_event_task_match(struct perf_event *event) 4105 { 4106 if (event->state < PERF_EVENT_STATE_INACTIVE) 4107 return 0; 4108 4109 if (!event_filter_match(event)) 4110 return 0; 4111 4112 if (event->attr.comm || event->attr.mmap || 4113 event->attr.mmap_data || event->attr.task) 4114 return 1; 4115 4116 return 0; 4117 } 4118 4119 static void perf_event_task_ctx(struct perf_event_context *ctx, 4120 struct perf_task_event *task_event) 4121 { 4122 struct perf_event *event; 4123 4124 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 4125 if (perf_event_task_match(event)) 4126 perf_event_task_output(event, task_event); 4127 } 4128 } 4129 4130 static void perf_event_task_event(struct perf_task_event *task_event) 4131 { 4132 struct perf_cpu_context *cpuctx; 4133 struct perf_event_context *ctx; 4134 struct pmu *pmu; 4135 int ctxn; 4136 4137 rcu_read_lock(); 4138 list_for_each_entry_rcu(pmu, &pmus, entry) { 4139 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context); 4140 if (cpuctx->active_pmu != pmu) 4141 goto next; 4142 perf_event_task_ctx(&cpuctx->ctx, task_event); 4143 4144 ctx = task_event->task_ctx; 4145 if (!ctx) { 4146 ctxn = pmu->task_ctx_nr; 4147 if (ctxn < 0) 4148 goto next; 4149 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 4150 } 4151 if (ctx) 4152 perf_event_task_ctx(ctx, task_event); 4153 next: 4154 put_cpu_ptr(pmu->pmu_cpu_context); 4155 } 4156 rcu_read_unlock(); 4157 } 4158 4159 static void perf_event_task(struct task_struct *task, 4160 struct perf_event_context *task_ctx, 4161 int new) 4162 { 4163 struct perf_task_event task_event; 4164 4165 if (!atomic_read(&nr_comm_events) && 4166 !atomic_read(&nr_mmap_events) && 4167 !atomic_read(&nr_task_events)) 4168 return; 4169 4170 task_event = (struct perf_task_event){ 4171 .task = task, 4172 .task_ctx = task_ctx, 4173 .event_id = { 4174 .header = { 4175 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 4176 .misc = 0, 4177 .size = sizeof(task_event.event_id), 4178 }, 4179 /* .pid */ 4180 /* .ppid */ 4181 /* .tid */ 4182 /* .ptid */ 4183 .time = perf_clock(), 4184 }, 4185 }; 4186 4187 perf_event_task_event(&task_event); 4188 } 4189 4190 void perf_event_fork(struct task_struct *task) 4191 { 4192 perf_event_task(task, NULL, 1); 4193 } 4194 4195 /* 4196 * comm tracking 4197 */ 4198 4199 struct perf_comm_event { 4200 struct task_struct *task; 4201 char *comm; 4202 int comm_size; 4203 4204 struct { 4205 struct perf_event_header header; 4206 4207 u32 pid; 4208 u32 tid; 4209 } event_id; 4210 }; 4211 4212 static void perf_event_comm_output(struct perf_event *event, 4213 struct perf_comm_event *comm_event) 4214 { 4215 struct perf_output_handle handle; 4216 struct perf_sample_data sample; 4217 int size = comm_event->event_id.header.size; 4218 int ret; 4219 4220 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 4221 ret = perf_output_begin(&handle, event, 4222 comm_event->event_id.header.size); 4223 4224 if (ret) 4225 goto out; 4226 4227 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 4228 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 4229 4230 perf_output_put(&handle, comm_event->event_id); 4231 __output_copy(&handle, comm_event->comm, 4232 comm_event->comm_size); 4233 4234 perf_event__output_id_sample(event, &handle, &sample); 4235 4236 perf_output_end(&handle); 4237 out: 4238 comm_event->event_id.header.size = size; 4239 } 4240 4241 static int perf_event_comm_match(struct perf_event *event) 4242 { 4243 if (event->state < PERF_EVENT_STATE_INACTIVE) 4244 return 0; 4245 4246 if (!event_filter_match(event)) 4247 return 0; 4248 4249 if (event->attr.comm) 4250 return 1; 4251 4252 return 0; 4253 } 4254 4255 static void perf_event_comm_ctx(struct perf_event_context *ctx, 4256 struct perf_comm_event *comm_event) 4257 { 4258 struct perf_event *event; 4259 4260 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 4261 if (perf_event_comm_match(event)) 4262 perf_event_comm_output(event, comm_event); 4263 } 4264 } 4265 4266 static void perf_event_comm_event(struct perf_comm_event *comm_event) 4267 { 4268 struct perf_cpu_context *cpuctx; 4269 struct perf_event_context *ctx; 4270 char comm[TASK_COMM_LEN]; 4271 unsigned int size; 4272 struct pmu *pmu; 4273 int ctxn; 4274 4275 memset(comm, 0, sizeof(comm)); 4276 strlcpy(comm, comm_event->task->comm, sizeof(comm)); 4277 size = ALIGN(strlen(comm)+1, sizeof(u64)); 4278 4279 comm_event->comm = comm; 4280 comm_event->comm_size = size; 4281 4282 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 4283 rcu_read_lock(); 4284 list_for_each_entry_rcu(pmu, &pmus, entry) { 4285 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context); 4286 if (cpuctx->active_pmu != pmu) 4287 goto next; 4288 perf_event_comm_ctx(&cpuctx->ctx, comm_event); 4289 4290 ctxn = pmu->task_ctx_nr; 4291 if (ctxn < 0) 4292 goto next; 4293 4294 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 4295 if (ctx) 4296 perf_event_comm_ctx(ctx, comm_event); 4297 next: 4298 put_cpu_ptr(pmu->pmu_cpu_context); 4299 } 4300 rcu_read_unlock(); 4301 } 4302 4303 void perf_event_comm(struct task_struct *task) 4304 { 4305 struct perf_comm_event comm_event; 4306 struct perf_event_context *ctx; 4307 int ctxn; 4308 4309 for_each_task_context_nr(ctxn) { 4310 ctx = task->perf_event_ctxp[ctxn]; 4311 if (!ctx) 4312 continue; 4313 4314 perf_event_enable_on_exec(ctx); 4315 } 4316 4317 if (!atomic_read(&nr_comm_events)) 4318 return; 4319 4320 comm_event = (struct perf_comm_event){ 4321 .task = task, 4322 /* .comm */ 4323 /* .comm_size */ 4324 .event_id = { 4325 .header = { 4326 .type = PERF_RECORD_COMM, 4327 .misc = 0, 4328 /* .size */ 4329 }, 4330 /* .pid */ 4331 /* .tid */ 4332 }, 4333 }; 4334 4335 perf_event_comm_event(&comm_event); 4336 } 4337 4338 /* 4339 * mmap tracking 4340 */ 4341 4342 struct perf_mmap_event { 4343 struct vm_area_struct *vma; 4344 4345 const char *file_name; 4346 int file_size; 4347 4348 struct { 4349 struct perf_event_header header; 4350 4351 u32 pid; 4352 u32 tid; 4353 u64 start; 4354 u64 len; 4355 u64 pgoff; 4356 } event_id; 4357 }; 4358 4359 static void perf_event_mmap_output(struct perf_event *event, 4360 struct perf_mmap_event *mmap_event) 4361 { 4362 struct perf_output_handle handle; 4363 struct perf_sample_data sample; 4364 int size = mmap_event->event_id.header.size; 4365 int ret; 4366 4367 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 4368 ret = perf_output_begin(&handle, event, 4369 mmap_event->event_id.header.size); 4370 if (ret) 4371 goto out; 4372 4373 mmap_event->event_id.pid = perf_event_pid(event, current); 4374 mmap_event->event_id.tid = perf_event_tid(event, current); 4375 4376 perf_output_put(&handle, mmap_event->event_id); 4377 __output_copy(&handle, mmap_event->file_name, 4378 mmap_event->file_size); 4379 4380 perf_event__output_id_sample(event, &handle, &sample); 4381 4382 perf_output_end(&handle); 4383 out: 4384 mmap_event->event_id.header.size = size; 4385 } 4386 4387 static int perf_event_mmap_match(struct perf_event *event, 4388 struct perf_mmap_event *mmap_event, 4389 int executable) 4390 { 4391 if (event->state < PERF_EVENT_STATE_INACTIVE) 4392 return 0; 4393 4394 if (!event_filter_match(event)) 4395 return 0; 4396 4397 if ((!executable && event->attr.mmap_data) || 4398 (executable && event->attr.mmap)) 4399 return 1; 4400 4401 return 0; 4402 } 4403 4404 static void perf_event_mmap_ctx(struct perf_event_context *ctx, 4405 struct perf_mmap_event *mmap_event, 4406 int executable) 4407 { 4408 struct perf_event *event; 4409 4410 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 4411 if (perf_event_mmap_match(event, mmap_event, executable)) 4412 perf_event_mmap_output(event, mmap_event); 4413 } 4414 } 4415 4416 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 4417 { 4418 struct perf_cpu_context *cpuctx; 4419 struct perf_event_context *ctx; 4420 struct vm_area_struct *vma = mmap_event->vma; 4421 struct file *file = vma->vm_file; 4422 unsigned int size; 4423 char tmp[16]; 4424 char *buf = NULL; 4425 const char *name; 4426 struct pmu *pmu; 4427 int ctxn; 4428 4429 memset(tmp, 0, sizeof(tmp)); 4430 4431 if (file) { 4432 /* 4433 * d_path works from the end of the rb backwards, so we 4434 * need to add enough zero bytes after the string to handle 4435 * the 64bit alignment we do later. 4436 */ 4437 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL); 4438 if (!buf) { 4439 name = strncpy(tmp, "//enomem", sizeof(tmp)); 4440 goto got_name; 4441 } 4442 name = d_path(&file->f_path, buf, PATH_MAX); 4443 if (IS_ERR(name)) { 4444 name = strncpy(tmp, "//toolong", sizeof(tmp)); 4445 goto got_name; 4446 } 4447 } else { 4448 if (arch_vma_name(mmap_event->vma)) { 4449 name = strncpy(tmp, arch_vma_name(mmap_event->vma), 4450 sizeof(tmp)); 4451 goto got_name; 4452 } 4453 4454 if (!vma->vm_mm) { 4455 name = strncpy(tmp, "[vdso]", sizeof(tmp)); 4456 goto got_name; 4457 } else if (vma->vm_start <= vma->vm_mm->start_brk && 4458 vma->vm_end >= vma->vm_mm->brk) { 4459 name = strncpy(tmp, "[heap]", sizeof(tmp)); 4460 goto got_name; 4461 } else if (vma->vm_start <= vma->vm_mm->start_stack && 4462 vma->vm_end >= vma->vm_mm->start_stack) { 4463 name = strncpy(tmp, "[stack]", sizeof(tmp)); 4464 goto got_name; 4465 } 4466 4467 name = strncpy(tmp, "//anon", sizeof(tmp)); 4468 goto got_name; 4469 } 4470 4471 got_name: 4472 size = ALIGN(strlen(name)+1, sizeof(u64)); 4473 4474 mmap_event->file_name = name; 4475 mmap_event->file_size = size; 4476 4477 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 4478 4479 rcu_read_lock(); 4480 list_for_each_entry_rcu(pmu, &pmus, entry) { 4481 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context); 4482 if (cpuctx->active_pmu != pmu) 4483 goto next; 4484 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event, 4485 vma->vm_flags & VM_EXEC); 4486 4487 ctxn = pmu->task_ctx_nr; 4488 if (ctxn < 0) 4489 goto next; 4490 4491 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 4492 if (ctx) { 4493 perf_event_mmap_ctx(ctx, mmap_event, 4494 vma->vm_flags & VM_EXEC); 4495 } 4496 next: 4497 put_cpu_ptr(pmu->pmu_cpu_context); 4498 } 4499 rcu_read_unlock(); 4500 4501 kfree(buf); 4502 } 4503 4504 void perf_event_mmap(struct vm_area_struct *vma) 4505 { 4506 struct perf_mmap_event mmap_event; 4507 4508 if (!atomic_read(&nr_mmap_events)) 4509 return; 4510 4511 mmap_event = (struct perf_mmap_event){ 4512 .vma = vma, 4513 /* .file_name */ 4514 /* .file_size */ 4515 .event_id = { 4516 .header = { 4517 .type = PERF_RECORD_MMAP, 4518 .misc = PERF_RECORD_MISC_USER, 4519 /* .size */ 4520 }, 4521 /* .pid */ 4522 /* .tid */ 4523 .start = vma->vm_start, 4524 .len = vma->vm_end - vma->vm_start, 4525 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 4526 }, 4527 }; 4528 4529 perf_event_mmap_event(&mmap_event); 4530 } 4531 4532 /* 4533 * IRQ throttle logging 4534 */ 4535 4536 static void perf_log_throttle(struct perf_event *event, int enable) 4537 { 4538 struct perf_output_handle handle; 4539 struct perf_sample_data sample; 4540 int ret; 4541 4542 struct { 4543 struct perf_event_header header; 4544 u64 time; 4545 u64 id; 4546 u64 stream_id; 4547 } throttle_event = { 4548 .header = { 4549 .type = PERF_RECORD_THROTTLE, 4550 .misc = 0, 4551 .size = sizeof(throttle_event), 4552 }, 4553 .time = perf_clock(), 4554 .id = primary_event_id(event), 4555 .stream_id = event->id, 4556 }; 4557 4558 if (enable) 4559 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 4560 4561 perf_event_header__init_id(&throttle_event.header, &sample, event); 4562 4563 ret = perf_output_begin(&handle, event, 4564 throttle_event.header.size); 4565 if (ret) 4566 return; 4567 4568 perf_output_put(&handle, throttle_event); 4569 perf_event__output_id_sample(event, &handle, &sample); 4570 perf_output_end(&handle); 4571 } 4572 4573 /* 4574 * Generic event overflow handling, sampling. 4575 */ 4576 4577 static int __perf_event_overflow(struct perf_event *event, 4578 int throttle, struct perf_sample_data *data, 4579 struct pt_regs *regs) 4580 { 4581 int events = atomic_read(&event->event_limit); 4582 struct hw_perf_event *hwc = &event->hw; 4583 int ret = 0; 4584 4585 /* 4586 * Non-sampling counters might still use the PMI to fold short 4587 * hardware counters, ignore those. 4588 */ 4589 if (unlikely(!is_sampling_event(event))) 4590 return 0; 4591 4592 if (unlikely(hwc->interrupts >= max_samples_per_tick)) { 4593 if (throttle) { 4594 hwc->interrupts = MAX_INTERRUPTS; 4595 perf_log_throttle(event, 0); 4596 ret = 1; 4597 } 4598 } else 4599 hwc->interrupts++; 4600 4601 if (event->attr.freq) { 4602 u64 now = perf_clock(); 4603 s64 delta = now - hwc->freq_time_stamp; 4604 4605 hwc->freq_time_stamp = now; 4606 4607 if (delta > 0 && delta < 2*TICK_NSEC) 4608 perf_adjust_period(event, delta, hwc->last_period); 4609 } 4610 4611 /* 4612 * XXX event_limit might not quite work as expected on inherited 4613 * events 4614 */ 4615 4616 event->pending_kill = POLL_IN; 4617 if (events && atomic_dec_and_test(&event->event_limit)) { 4618 ret = 1; 4619 event->pending_kill = POLL_HUP; 4620 event->pending_disable = 1; 4621 irq_work_queue(&event->pending); 4622 } 4623 4624 if (event->overflow_handler) 4625 event->overflow_handler(event, data, regs); 4626 else 4627 perf_event_output(event, data, regs); 4628 4629 if (event->fasync && event->pending_kill) { 4630 event->pending_wakeup = 1; 4631 irq_work_queue(&event->pending); 4632 } 4633 4634 return ret; 4635 } 4636 4637 int perf_event_overflow(struct perf_event *event, 4638 struct perf_sample_data *data, 4639 struct pt_regs *regs) 4640 { 4641 return __perf_event_overflow(event, 1, data, regs); 4642 } 4643 4644 /* 4645 * Generic software event infrastructure 4646 */ 4647 4648 struct swevent_htable { 4649 struct swevent_hlist *swevent_hlist; 4650 struct mutex hlist_mutex; 4651 int hlist_refcount; 4652 4653 /* Recursion avoidance in each contexts */ 4654 int recursion[PERF_NR_CONTEXTS]; 4655 }; 4656 4657 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 4658 4659 /* 4660 * We directly increment event->count and keep a second value in 4661 * event->hw.period_left to count intervals. This period event 4662 * is kept in the range [-sample_period, 0] so that we can use the 4663 * sign as trigger. 4664 */ 4665 4666 static u64 perf_swevent_set_period(struct perf_event *event) 4667 { 4668 struct hw_perf_event *hwc = &event->hw; 4669 u64 period = hwc->last_period; 4670 u64 nr, offset; 4671 s64 old, val; 4672 4673 hwc->last_period = hwc->sample_period; 4674 4675 again: 4676 old = val = local64_read(&hwc->period_left); 4677 if (val < 0) 4678 return 0; 4679 4680 nr = div64_u64(period + val, period); 4681 offset = nr * period; 4682 val -= offset; 4683 if (local64_cmpxchg(&hwc->period_left, old, val) != old) 4684 goto again; 4685 4686 return nr; 4687 } 4688 4689 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 4690 struct perf_sample_data *data, 4691 struct pt_regs *regs) 4692 { 4693 struct hw_perf_event *hwc = &event->hw; 4694 int throttle = 0; 4695 4696 data->period = event->hw.last_period; 4697 if (!overflow) 4698 overflow = perf_swevent_set_period(event); 4699 4700 if (hwc->interrupts == MAX_INTERRUPTS) 4701 return; 4702 4703 for (; overflow; overflow--) { 4704 if (__perf_event_overflow(event, throttle, 4705 data, regs)) { 4706 /* 4707 * We inhibit the overflow from happening when 4708 * hwc->interrupts == MAX_INTERRUPTS. 4709 */ 4710 break; 4711 } 4712 throttle = 1; 4713 } 4714 } 4715 4716 static void perf_swevent_event(struct perf_event *event, u64 nr, 4717 struct perf_sample_data *data, 4718 struct pt_regs *regs) 4719 { 4720 struct hw_perf_event *hwc = &event->hw; 4721 4722 local64_add(nr, &event->count); 4723 4724 if (!regs) 4725 return; 4726 4727 if (!is_sampling_event(event)) 4728 return; 4729 4730 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 4731 return perf_swevent_overflow(event, 1, data, regs); 4732 4733 if (local64_add_negative(nr, &hwc->period_left)) 4734 return; 4735 4736 perf_swevent_overflow(event, 0, data, regs); 4737 } 4738 4739 static int perf_exclude_event(struct perf_event *event, 4740 struct pt_regs *regs) 4741 { 4742 if (event->hw.state & PERF_HES_STOPPED) 4743 return 1; 4744 4745 if (regs) { 4746 if (event->attr.exclude_user && user_mode(regs)) 4747 return 1; 4748 4749 if (event->attr.exclude_kernel && !user_mode(regs)) 4750 return 1; 4751 } 4752 4753 return 0; 4754 } 4755 4756 static int perf_swevent_match(struct perf_event *event, 4757 enum perf_type_id type, 4758 u32 event_id, 4759 struct perf_sample_data *data, 4760 struct pt_regs *regs) 4761 { 4762 if (event->attr.type != type) 4763 return 0; 4764 4765 if (event->attr.config != event_id) 4766 return 0; 4767 4768 if (perf_exclude_event(event, regs)) 4769 return 0; 4770 4771 return 1; 4772 } 4773 4774 static inline u64 swevent_hash(u64 type, u32 event_id) 4775 { 4776 u64 val = event_id | (type << 32); 4777 4778 return hash_64(val, SWEVENT_HLIST_BITS); 4779 } 4780 4781 static inline struct hlist_head * 4782 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 4783 { 4784 u64 hash = swevent_hash(type, event_id); 4785 4786 return &hlist->heads[hash]; 4787 } 4788 4789 /* For the read side: events when they trigger */ 4790 static inline struct hlist_head * 4791 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 4792 { 4793 struct swevent_hlist *hlist; 4794 4795 hlist = rcu_dereference(swhash->swevent_hlist); 4796 if (!hlist) 4797 return NULL; 4798 4799 return __find_swevent_head(hlist, type, event_id); 4800 } 4801 4802 /* For the event head insertion and removal in the hlist */ 4803 static inline struct hlist_head * 4804 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 4805 { 4806 struct swevent_hlist *hlist; 4807 u32 event_id = event->attr.config; 4808 u64 type = event->attr.type; 4809 4810 /* 4811 * Event scheduling is always serialized against hlist allocation 4812 * and release. Which makes the protected version suitable here. 4813 * The context lock guarantees that. 4814 */ 4815 hlist = rcu_dereference_protected(swhash->swevent_hlist, 4816 lockdep_is_held(&event->ctx->lock)); 4817 if (!hlist) 4818 return NULL; 4819 4820 return __find_swevent_head(hlist, type, event_id); 4821 } 4822 4823 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 4824 u64 nr, 4825 struct perf_sample_data *data, 4826 struct pt_regs *regs) 4827 { 4828 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); 4829 struct perf_event *event; 4830 struct hlist_node *node; 4831 struct hlist_head *head; 4832 4833 rcu_read_lock(); 4834 head = find_swevent_head_rcu(swhash, type, event_id); 4835 if (!head) 4836 goto end; 4837 4838 hlist_for_each_entry_rcu(event, node, head, hlist_entry) { 4839 if (perf_swevent_match(event, type, event_id, data, regs)) 4840 perf_swevent_event(event, nr, data, regs); 4841 } 4842 end: 4843 rcu_read_unlock(); 4844 } 4845 4846 int perf_swevent_get_recursion_context(void) 4847 { 4848 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); 4849 4850 return get_recursion_context(swhash->recursion); 4851 } 4852 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 4853 4854 inline void perf_swevent_put_recursion_context(int rctx) 4855 { 4856 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); 4857 4858 put_recursion_context(swhash->recursion, rctx); 4859 } 4860 4861 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 4862 { 4863 struct perf_sample_data data; 4864 int rctx; 4865 4866 preempt_disable_notrace(); 4867 rctx = perf_swevent_get_recursion_context(); 4868 if (rctx < 0) 4869 return; 4870 4871 perf_sample_data_init(&data, addr); 4872 4873 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 4874 4875 perf_swevent_put_recursion_context(rctx); 4876 preempt_enable_notrace(); 4877 } 4878 4879 static void perf_swevent_read(struct perf_event *event) 4880 { 4881 } 4882 4883 static int perf_swevent_add(struct perf_event *event, int flags) 4884 { 4885 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); 4886 struct hw_perf_event *hwc = &event->hw; 4887 struct hlist_head *head; 4888 4889 if (is_sampling_event(event)) { 4890 hwc->last_period = hwc->sample_period; 4891 perf_swevent_set_period(event); 4892 } 4893 4894 hwc->state = !(flags & PERF_EF_START); 4895 4896 head = find_swevent_head(swhash, event); 4897 if (WARN_ON_ONCE(!head)) 4898 return -EINVAL; 4899 4900 hlist_add_head_rcu(&event->hlist_entry, head); 4901 4902 return 0; 4903 } 4904 4905 static void perf_swevent_del(struct perf_event *event, int flags) 4906 { 4907 hlist_del_rcu(&event->hlist_entry); 4908 } 4909 4910 static void perf_swevent_start(struct perf_event *event, int flags) 4911 { 4912 event->hw.state = 0; 4913 } 4914 4915 static void perf_swevent_stop(struct perf_event *event, int flags) 4916 { 4917 event->hw.state = PERF_HES_STOPPED; 4918 } 4919 4920 /* Deref the hlist from the update side */ 4921 static inline struct swevent_hlist * 4922 swevent_hlist_deref(struct swevent_htable *swhash) 4923 { 4924 return rcu_dereference_protected(swhash->swevent_hlist, 4925 lockdep_is_held(&swhash->hlist_mutex)); 4926 } 4927 4928 static void swevent_hlist_release(struct swevent_htable *swhash) 4929 { 4930 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 4931 4932 if (!hlist) 4933 return; 4934 4935 rcu_assign_pointer(swhash->swevent_hlist, NULL); 4936 kfree_rcu(hlist, rcu_head); 4937 } 4938 4939 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu) 4940 { 4941 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 4942 4943 mutex_lock(&swhash->hlist_mutex); 4944 4945 if (!--swhash->hlist_refcount) 4946 swevent_hlist_release(swhash); 4947 4948 mutex_unlock(&swhash->hlist_mutex); 4949 } 4950 4951 static void swevent_hlist_put(struct perf_event *event) 4952 { 4953 int cpu; 4954 4955 if (event->cpu != -1) { 4956 swevent_hlist_put_cpu(event, event->cpu); 4957 return; 4958 } 4959 4960 for_each_possible_cpu(cpu) 4961 swevent_hlist_put_cpu(event, cpu); 4962 } 4963 4964 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu) 4965 { 4966 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 4967 int err = 0; 4968 4969 mutex_lock(&swhash->hlist_mutex); 4970 4971 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) { 4972 struct swevent_hlist *hlist; 4973 4974 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 4975 if (!hlist) { 4976 err = -ENOMEM; 4977 goto exit; 4978 } 4979 rcu_assign_pointer(swhash->swevent_hlist, hlist); 4980 } 4981 swhash->hlist_refcount++; 4982 exit: 4983 mutex_unlock(&swhash->hlist_mutex); 4984 4985 return err; 4986 } 4987 4988 static int swevent_hlist_get(struct perf_event *event) 4989 { 4990 int err; 4991 int cpu, failed_cpu; 4992 4993 if (event->cpu != -1) 4994 return swevent_hlist_get_cpu(event, event->cpu); 4995 4996 get_online_cpus(); 4997 for_each_possible_cpu(cpu) { 4998 err = swevent_hlist_get_cpu(event, cpu); 4999 if (err) { 5000 failed_cpu = cpu; 5001 goto fail; 5002 } 5003 } 5004 put_online_cpus(); 5005 5006 return 0; 5007 fail: 5008 for_each_possible_cpu(cpu) { 5009 if (cpu == failed_cpu) 5010 break; 5011 swevent_hlist_put_cpu(event, cpu); 5012 } 5013 5014 put_online_cpus(); 5015 return err; 5016 } 5017 5018 struct jump_label_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 5019 5020 static void sw_perf_event_destroy(struct perf_event *event) 5021 { 5022 u64 event_id = event->attr.config; 5023 5024 WARN_ON(event->parent); 5025 5026 jump_label_dec(&perf_swevent_enabled[event_id]); 5027 swevent_hlist_put(event); 5028 } 5029 5030 static int perf_swevent_init(struct perf_event *event) 5031 { 5032 int event_id = event->attr.config; 5033 5034 if (event->attr.type != PERF_TYPE_SOFTWARE) 5035 return -ENOENT; 5036 5037 switch (event_id) { 5038 case PERF_COUNT_SW_CPU_CLOCK: 5039 case PERF_COUNT_SW_TASK_CLOCK: 5040 return -ENOENT; 5041 5042 default: 5043 break; 5044 } 5045 5046 if (event_id >= PERF_COUNT_SW_MAX) 5047 return -ENOENT; 5048 5049 if (!event->parent) { 5050 int err; 5051 5052 err = swevent_hlist_get(event); 5053 if (err) 5054 return err; 5055 5056 jump_label_inc(&perf_swevent_enabled[event_id]); 5057 event->destroy = sw_perf_event_destroy; 5058 } 5059 5060 return 0; 5061 } 5062 5063 static struct pmu perf_swevent = { 5064 .task_ctx_nr = perf_sw_context, 5065 5066 .event_init = perf_swevent_init, 5067 .add = perf_swevent_add, 5068 .del = perf_swevent_del, 5069 .start = perf_swevent_start, 5070 .stop = perf_swevent_stop, 5071 .read = perf_swevent_read, 5072 }; 5073 5074 #ifdef CONFIG_EVENT_TRACING 5075 5076 static int perf_tp_filter_match(struct perf_event *event, 5077 struct perf_sample_data *data) 5078 { 5079 void *record = data->raw->data; 5080 5081 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 5082 return 1; 5083 return 0; 5084 } 5085 5086 static int perf_tp_event_match(struct perf_event *event, 5087 struct perf_sample_data *data, 5088 struct pt_regs *regs) 5089 { 5090 if (event->hw.state & PERF_HES_STOPPED) 5091 return 0; 5092 /* 5093 * All tracepoints are from kernel-space. 5094 */ 5095 if (event->attr.exclude_kernel) 5096 return 0; 5097 5098 if (!perf_tp_filter_match(event, data)) 5099 return 0; 5100 5101 return 1; 5102 } 5103 5104 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size, 5105 struct pt_regs *regs, struct hlist_head *head, int rctx) 5106 { 5107 struct perf_sample_data data; 5108 struct perf_event *event; 5109 struct hlist_node *node; 5110 5111 struct perf_raw_record raw = { 5112 .size = entry_size, 5113 .data = record, 5114 }; 5115 5116 perf_sample_data_init(&data, addr); 5117 data.raw = &raw; 5118 5119 hlist_for_each_entry_rcu(event, node, head, hlist_entry) { 5120 if (perf_tp_event_match(event, &data, regs)) 5121 perf_swevent_event(event, count, &data, regs); 5122 } 5123 5124 perf_swevent_put_recursion_context(rctx); 5125 } 5126 EXPORT_SYMBOL_GPL(perf_tp_event); 5127 5128 static void tp_perf_event_destroy(struct perf_event *event) 5129 { 5130 perf_trace_destroy(event); 5131 } 5132 5133 static int perf_tp_event_init(struct perf_event *event) 5134 { 5135 int err; 5136 5137 if (event->attr.type != PERF_TYPE_TRACEPOINT) 5138 return -ENOENT; 5139 5140 err = perf_trace_init(event); 5141 if (err) 5142 return err; 5143 5144 event->destroy = tp_perf_event_destroy; 5145 5146 return 0; 5147 } 5148 5149 static struct pmu perf_tracepoint = { 5150 .task_ctx_nr = perf_sw_context, 5151 5152 .event_init = perf_tp_event_init, 5153 .add = perf_trace_add, 5154 .del = perf_trace_del, 5155 .start = perf_swevent_start, 5156 .stop = perf_swevent_stop, 5157 .read = perf_swevent_read, 5158 }; 5159 5160 static inline void perf_tp_register(void) 5161 { 5162 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 5163 } 5164 5165 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 5166 { 5167 char *filter_str; 5168 int ret; 5169 5170 if (event->attr.type != PERF_TYPE_TRACEPOINT) 5171 return -EINVAL; 5172 5173 filter_str = strndup_user(arg, PAGE_SIZE); 5174 if (IS_ERR(filter_str)) 5175 return PTR_ERR(filter_str); 5176 5177 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 5178 5179 kfree(filter_str); 5180 return ret; 5181 } 5182 5183 static void perf_event_free_filter(struct perf_event *event) 5184 { 5185 ftrace_profile_free_filter(event); 5186 } 5187 5188 #else 5189 5190 static inline void perf_tp_register(void) 5191 { 5192 } 5193 5194 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 5195 { 5196 return -ENOENT; 5197 } 5198 5199 static void perf_event_free_filter(struct perf_event *event) 5200 { 5201 } 5202 5203 #endif /* CONFIG_EVENT_TRACING */ 5204 5205 #ifdef CONFIG_HAVE_HW_BREAKPOINT 5206 void perf_bp_event(struct perf_event *bp, void *data) 5207 { 5208 struct perf_sample_data sample; 5209 struct pt_regs *regs = data; 5210 5211 perf_sample_data_init(&sample, bp->attr.bp_addr); 5212 5213 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 5214 perf_swevent_event(bp, 1, &sample, regs); 5215 } 5216 #endif 5217 5218 /* 5219 * hrtimer based swevent callback 5220 */ 5221 5222 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 5223 { 5224 enum hrtimer_restart ret = HRTIMER_RESTART; 5225 struct perf_sample_data data; 5226 struct pt_regs *regs; 5227 struct perf_event *event; 5228 u64 period; 5229 5230 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 5231 5232 if (event->state != PERF_EVENT_STATE_ACTIVE) 5233 return HRTIMER_NORESTART; 5234 5235 event->pmu->read(event); 5236 5237 perf_sample_data_init(&data, 0); 5238 data.period = event->hw.last_period; 5239 regs = get_irq_regs(); 5240 5241 if (regs && !perf_exclude_event(event, regs)) { 5242 if (!(event->attr.exclude_idle && current->pid == 0)) 5243 if (perf_event_overflow(event, &data, regs)) 5244 ret = HRTIMER_NORESTART; 5245 } 5246 5247 period = max_t(u64, 10000, event->hw.sample_period); 5248 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 5249 5250 return ret; 5251 } 5252 5253 static void perf_swevent_start_hrtimer(struct perf_event *event) 5254 { 5255 struct hw_perf_event *hwc = &event->hw; 5256 s64 period; 5257 5258 if (!is_sampling_event(event)) 5259 return; 5260 5261 period = local64_read(&hwc->period_left); 5262 if (period) { 5263 if (period < 0) 5264 period = 10000; 5265 5266 local64_set(&hwc->period_left, 0); 5267 } else { 5268 period = max_t(u64, 10000, hwc->sample_period); 5269 } 5270 __hrtimer_start_range_ns(&hwc->hrtimer, 5271 ns_to_ktime(period), 0, 5272 HRTIMER_MODE_REL_PINNED, 0); 5273 } 5274 5275 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 5276 { 5277 struct hw_perf_event *hwc = &event->hw; 5278 5279 if (is_sampling_event(event)) { 5280 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 5281 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 5282 5283 hrtimer_cancel(&hwc->hrtimer); 5284 } 5285 } 5286 5287 static void perf_swevent_init_hrtimer(struct perf_event *event) 5288 { 5289 struct hw_perf_event *hwc = &event->hw; 5290 5291 if (!is_sampling_event(event)) 5292 return; 5293 5294 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 5295 hwc->hrtimer.function = perf_swevent_hrtimer; 5296 5297 /* 5298 * Since hrtimers have a fixed rate, we can do a static freq->period 5299 * mapping and avoid the whole period adjust feedback stuff. 5300 */ 5301 if (event->attr.freq) { 5302 long freq = event->attr.sample_freq; 5303 5304 event->attr.sample_period = NSEC_PER_SEC / freq; 5305 hwc->sample_period = event->attr.sample_period; 5306 local64_set(&hwc->period_left, hwc->sample_period); 5307 event->attr.freq = 0; 5308 } 5309 } 5310 5311 /* 5312 * Software event: cpu wall time clock 5313 */ 5314 5315 static void cpu_clock_event_update(struct perf_event *event) 5316 { 5317 s64 prev; 5318 u64 now; 5319 5320 now = local_clock(); 5321 prev = local64_xchg(&event->hw.prev_count, now); 5322 local64_add(now - prev, &event->count); 5323 } 5324 5325 static void cpu_clock_event_start(struct perf_event *event, int flags) 5326 { 5327 local64_set(&event->hw.prev_count, local_clock()); 5328 perf_swevent_start_hrtimer(event); 5329 } 5330 5331 static void cpu_clock_event_stop(struct perf_event *event, int flags) 5332 { 5333 perf_swevent_cancel_hrtimer(event); 5334 cpu_clock_event_update(event); 5335 } 5336 5337 static int cpu_clock_event_add(struct perf_event *event, int flags) 5338 { 5339 if (flags & PERF_EF_START) 5340 cpu_clock_event_start(event, flags); 5341 5342 return 0; 5343 } 5344 5345 static void cpu_clock_event_del(struct perf_event *event, int flags) 5346 { 5347 cpu_clock_event_stop(event, flags); 5348 } 5349 5350 static void cpu_clock_event_read(struct perf_event *event) 5351 { 5352 cpu_clock_event_update(event); 5353 } 5354 5355 static int cpu_clock_event_init(struct perf_event *event) 5356 { 5357 if (event->attr.type != PERF_TYPE_SOFTWARE) 5358 return -ENOENT; 5359 5360 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 5361 return -ENOENT; 5362 5363 perf_swevent_init_hrtimer(event); 5364 5365 return 0; 5366 } 5367 5368 static struct pmu perf_cpu_clock = { 5369 .task_ctx_nr = perf_sw_context, 5370 5371 .event_init = cpu_clock_event_init, 5372 .add = cpu_clock_event_add, 5373 .del = cpu_clock_event_del, 5374 .start = cpu_clock_event_start, 5375 .stop = cpu_clock_event_stop, 5376 .read = cpu_clock_event_read, 5377 }; 5378 5379 /* 5380 * Software event: task time clock 5381 */ 5382 5383 static void task_clock_event_update(struct perf_event *event, u64 now) 5384 { 5385 u64 prev; 5386 s64 delta; 5387 5388 prev = local64_xchg(&event->hw.prev_count, now); 5389 delta = now - prev; 5390 local64_add(delta, &event->count); 5391 } 5392 5393 static void task_clock_event_start(struct perf_event *event, int flags) 5394 { 5395 local64_set(&event->hw.prev_count, event->ctx->time); 5396 perf_swevent_start_hrtimer(event); 5397 } 5398 5399 static void task_clock_event_stop(struct perf_event *event, int flags) 5400 { 5401 perf_swevent_cancel_hrtimer(event); 5402 task_clock_event_update(event, event->ctx->time); 5403 } 5404 5405 static int task_clock_event_add(struct perf_event *event, int flags) 5406 { 5407 if (flags & PERF_EF_START) 5408 task_clock_event_start(event, flags); 5409 5410 return 0; 5411 } 5412 5413 static void task_clock_event_del(struct perf_event *event, int flags) 5414 { 5415 task_clock_event_stop(event, PERF_EF_UPDATE); 5416 } 5417 5418 static void task_clock_event_read(struct perf_event *event) 5419 { 5420 u64 now = perf_clock(); 5421 u64 delta = now - event->ctx->timestamp; 5422 u64 time = event->ctx->time + delta; 5423 5424 task_clock_event_update(event, time); 5425 } 5426 5427 static int task_clock_event_init(struct perf_event *event) 5428 { 5429 if (event->attr.type != PERF_TYPE_SOFTWARE) 5430 return -ENOENT; 5431 5432 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 5433 return -ENOENT; 5434 5435 perf_swevent_init_hrtimer(event); 5436 5437 return 0; 5438 } 5439 5440 static struct pmu perf_task_clock = { 5441 .task_ctx_nr = perf_sw_context, 5442 5443 .event_init = task_clock_event_init, 5444 .add = task_clock_event_add, 5445 .del = task_clock_event_del, 5446 .start = task_clock_event_start, 5447 .stop = task_clock_event_stop, 5448 .read = task_clock_event_read, 5449 }; 5450 5451 static void perf_pmu_nop_void(struct pmu *pmu) 5452 { 5453 } 5454 5455 static int perf_pmu_nop_int(struct pmu *pmu) 5456 { 5457 return 0; 5458 } 5459 5460 static void perf_pmu_start_txn(struct pmu *pmu) 5461 { 5462 perf_pmu_disable(pmu); 5463 } 5464 5465 static int perf_pmu_commit_txn(struct pmu *pmu) 5466 { 5467 perf_pmu_enable(pmu); 5468 return 0; 5469 } 5470 5471 static void perf_pmu_cancel_txn(struct pmu *pmu) 5472 { 5473 perf_pmu_enable(pmu); 5474 } 5475 5476 /* 5477 * Ensures all contexts with the same task_ctx_nr have the same 5478 * pmu_cpu_context too. 5479 */ 5480 static void *find_pmu_context(int ctxn) 5481 { 5482 struct pmu *pmu; 5483 5484 if (ctxn < 0) 5485 return NULL; 5486 5487 list_for_each_entry(pmu, &pmus, entry) { 5488 if (pmu->task_ctx_nr == ctxn) 5489 return pmu->pmu_cpu_context; 5490 } 5491 5492 return NULL; 5493 } 5494 5495 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu) 5496 { 5497 int cpu; 5498 5499 for_each_possible_cpu(cpu) { 5500 struct perf_cpu_context *cpuctx; 5501 5502 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 5503 5504 if (cpuctx->active_pmu == old_pmu) 5505 cpuctx->active_pmu = pmu; 5506 } 5507 } 5508 5509 static void free_pmu_context(struct pmu *pmu) 5510 { 5511 struct pmu *i; 5512 5513 mutex_lock(&pmus_lock); 5514 /* 5515 * Like a real lame refcount. 5516 */ 5517 list_for_each_entry(i, &pmus, entry) { 5518 if (i->pmu_cpu_context == pmu->pmu_cpu_context) { 5519 update_pmu_context(i, pmu); 5520 goto out; 5521 } 5522 } 5523 5524 free_percpu(pmu->pmu_cpu_context); 5525 out: 5526 mutex_unlock(&pmus_lock); 5527 } 5528 static struct idr pmu_idr; 5529 5530 static ssize_t 5531 type_show(struct device *dev, struct device_attribute *attr, char *page) 5532 { 5533 struct pmu *pmu = dev_get_drvdata(dev); 5534 5535 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); 5536 } 5537 5538 static struct device_attribute pmu_dev_attrs[] = { 5539 __ATTR_RO(type), 5540 __ATTR_NULL, 5541 }; 5542 5543 static int pmu_bus_running; 5544 static struct bus_type pmu_bus = { 5545 .name = "event_source", 5546 .dev_attrs = pmu_dev_attrs, 5547 }; 5548 5549 static void pmu_dev_release(struct device *dev) 5550 { 5551 kfree(dev); 5552 } 5553 5554 static int pmu_dev_alloc(struct pmu *pmu) 5555 { 5556 int ret = -ENOMEM; 5557 5558 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 5559 if (!pmu->dev) 5560 goto out; 5561 5562 device_initialize(pmu->dev); 5563 ret = dev_set_name(pmu->dev, "%s", pmu->name); 5564 if (ret) 5565 goto free_dev; 5566 5567 dev_set_drvdata(pmu->dev, pmu); 5568 pmu->dev->bus = &pmu_bus; 5569 pmu->dev->release = pmu_dev_release; 5570 ret = device_add(pmu->dev); 5571 if (ret) 5572 goto free_dev; 5573 5574 out: 5575 return ret; 5576 5577 free_dev: 5578 put_device(pmu->dev); 5579 goto out; 5580 } 5581 5582 static struct lock_class_key cpuctx_mutex; 5583 static struct lock_class_key cpuctx_lock; 5584 5585 int perf_pmu_register(struct pmu *pmu, char *name, int type) 5586 { 5587 int cpu, ret; 5588 5589 mutex_lock(&pmus_lock); 5590 ret = -ENOMEM; 5591 pmu->pmu_disable_count = alloc_percpu(int); 5592 if (!pmu->pmu_disable_count) 5593 goto unlock; 5594 5595 pmu->type = -1; 5596 if (!name) 5597 goto skip_type; 5598 pmu->name = name; 5599 5600 if (type < 0) { 5601 int err = idr_pre_get(&pmu_idr, GFP_KERNEL); 5602 if (!err) 5603 goto free_pdc; 5604 5605 err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type); 5606 if (err) { 5607 ret = err; 5608 goto free_pdc; 5609 } 5610 } 5611 pmu->type = type; 5612 5613 if (pmu_bus_running) { 5614 ret = pmu_dev_alloc(pmu); 5615 if (ret) 5616 goto free_idr; 5617 } 5618 5619 skip_type: 5620 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); 5621 if (pmu->pmu_cpu_context) 5622 goto got_cpu_context; 5623 5624 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); 5625 if (!pmu->pmu_cpu_context) 5626 goto free_dev; 5627 5628 for_each_possible_cpu(cpu) { 5629 struct perf_cpu_context *cpuctx; 5630 5631 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 5632 __perf_event_init_context(&cpuctx->ctx); 5633 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 5634 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 5635 cpuctx->ctx.type = cpu_context; 5636 cpuctx->ctx.pmu = pmu; 5637 cpuctx->jiffies_interval = 1; 5638 INIT_LIST_HEAD(&cpuctx->rotation_list); 5639 cpuctx->active_pmu = pmu; 5640 } 5641 5642 got_cpu_context: 5643 if (!pmu->start_txn) { 5644 if (pmu->pmu_enable) { 5645 /* 5646 * If we have pmu_enable/pmu_disable calls, install 5647 * transaction stubs that use that to try and batch 5648 * hardware accesses. 5649 */ 5650 pmu->start_txn = perf_pmu_start_txn; 5651 pmu->commit_txn = perf_pmu_commit_txn; 5652 pmu->cancel_txn = perf_pmu_cancel_txn; 5653 } else { 5654 pmu->start_txn = perf_pmu_nop_void; 5655 pmu->commit_txn = perf_pmu_nop_int; 5656 pmu->cancel_txn = perf_pmu_nop_void; 5657 } 5658 } 5659 5660 if (!pmu->pmu_enable) { 5661 pmu->pmu_enable = perf_pmu_nop_void; 5662 pmu->pmu_disable = perf_pmu_nop_void; 5663 } 5664 5665 list_add_rcu(&pmu->entry, &pmus); 5666 ret = 0; 5667 unlock: 5668 mutex_unlock(&pmus_lock); 5669 5670 return ret; 5671 5672 free_dev: 5673 device_del(pmu->dev); 5674 put_device(pmu->dev); 5675 5676 free_idr: 5677 if (pmu->type >= PERF_TYPE_MAX) 5678 idr_remove(&pmu_idr, pmu->type); 5679 5680 free_pdc: 5681 free_percpu(pmu->pmu_disable_count); 5682 goto unlock; 5683 } 5684 5685 void perf_pmu_unregister(struct pmu *pmu) 5686 { 5687 mutex_lock(&pmus_lock); 5688 list_del_rcu(&pmu->entry); 5689 mutex_unlock(&pmus_lock); 5690 5691 /* 5692 * We dereference the pmu list under both SRCU and regular RCU, so 5693 * synchronize against both of those. 5694 */ 5695 synchronize_srcu(&pmus_srcu); 5696 synchronize_rcu(); 5697 5698 free_percpu(pmu->pmu_disable_count); 5699 if (pmu->type >= PERF_TYPE_MAX) 5700 idr_remove(&pmu_idr, pmu->type); 5701 device_del(pmu->dev); 5702 put_device(pmu->dev); 5703 free_pmu_context(pmu); 5704 } 5705 5706 struct pmu *perf_init_event(struct perf_event *event) 5707 { 5708 struct pmu *pmu = NULL; 5709 int idx; 5710 int ret; 5711 5712 idx = srcu_read_lock(&pmus_srcu); 5713 5714 rcu_read_lock(); 5715 pmu = idr_find(&pmu_idr, event->attr.type); 5716 rcu_read_unlock(); 5717 if (pmu) { 5718 ret = pmu->event_init(event); 5719 if (ret) 5720 pmu = ERR_PTR(ret); 5721 goto unlock; 5722 } 5723 5724 list_for_each_entry_rcu(pmu, &pmus, entry) { 5725 ret = pmu->event_init(event); 5726 if (!ret) 5727 goto unlock; 5728 5729 if (ret != -ENOENT) { 5730 pmu = ERR_PTR(ret); 5731 goto unlock; 5732 } 5733 } 5734 pmu = ERR_PTR(-ENOENT); 5735 unlock: 5736 srcu_read_unlock(&pmus_srcu, idx); 5737 5738 return pmu; 5739 } 5740 5741 /* 5742 * Allocate and initialize a event structure 5743 */ 5744 static struct perf_event * 5745 perf_event_alloc(struct perf_event_attr *attr, int cpu, 5746 struct task_struct *task, 5747 struct perf_event *group_leader, 5748 struct perf_event *parent_event, 5749 perf_overflow_handler_t overflow_handler, 5750 void *context) 5751 { 5752 struct pmu *pmu; 5753 struct perf_event *event; 5754 struct hw_perf_event *hwc; 5755 long err; 5756 5757 if ((unsigned)cpu >= nr_cpu_ids) { 5758 if (!task || cpu != -1) 5759 return ERR_PTR(-EINVAL); 5760 } 5761 5762 event = kzalloc(sizeof(*event), GFP_KERNEL); 5763 if (!event) 5764 return ERR_PTR(-ENOMEM); 5765 5766 /* 5767 * Single events are their own group leaders, with an 5768 * empty sibling list: 5769 */ 5770 if (!group_leader) 5771 group_leader = event; 5772 5773 mutex_init(&event->child_mutex); 5774 INIT_LIST_HEAD(&event->child_list); 5775 5776 INIT_LIST_HEAD(&event->group_entry); 5777 INIT_LIST_HEAD(&event->event_entry); 5778 INIT_LIST_HEAD(&event->sibling_list); 5779 init_waitqueue_head(&event->waitq); 5780 init_irq_work(&event->pending, perf_pending_event); 5781 5782 mutex_init(&event->mmap_mutex); 5783 5784 event->cpu = cpu; 5785 event->attr = *attr; 5786 event->group_leader = group_leader; 5787 event->pmu = NULL; 5788 event->oncpu = -1; 5789 5790 event->parent = parent_event; 5791 5792 event->ns = get_pid_ns(current->nsproxy->pid_ns); 5793 event->id = atomic64_inc_return(&perf_event_id); 5794 5795 event->state = PERF_EVENT_STATE_INACTIVE; 5796 5797 if (task) { 5798 event->attach_state = PERF_ATTACH_TASK; 5799 #ifdef CONFIG_HAVE_HW_BREAKPOINT 5800 /* 5801 * hw_breakpoint is a bit difficult here.. 5802 */ 5803 if (attr->type == PERF_TYPE_BREAKPOINT) 5804 event->hw.bp_target = task; 5805 #endif 5806 } 5807 5808 if (!overflow_handler && parent_event) { 5809 overflow_handler = parent_event->overflow_handler; 5810 context = parent_event->overflow_handler_context; 5811 } 5812 5813 event->overflow_handler = overflow_handler; 5814 event->overflow_handler_context = context; 5815 5816 if (attr->disabled) 5817 event->state = PERF_EVENT_STATE_OFF; 5818 5819 pmu = NULL; 5820 5821 hwc = &event->hw; 5822 hwc->sample_period = attr->sample_period; 5823 if (attr->freq && attr->sample_freq) 5824 hwc->sample_period = 1; 5825 hwc->last_period = hwc->sample_period; 5826 5827 local64_set(&hwc->period_left, hwc->sample_period); 5828 5829 /* 5830 * we currently do not support PERF_FORMAT_GROUP on inherited events 5831 */ 5832 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP)) 5833 goto done; 5834 5835 pmu = perf_init_event(event); 5836 5837 done: 5838 err = 0; 5839 if (!pmu) 5840 err = -EINVAL; 5841 else if (IS_ERR(pmu)) 5842 err = PTR_ERR(pmu); 5843 5844 if (err) { 5845 if (event->ns) 5846 put_pid_ns(event->ns); 5847 kfree(event); 5848 return ERR_PTR(err); 5849 } 5850 5851 event->pmu = pmu; 5852 5853 if (!event->parent) { 5854 if (event->attach_state & PERF_ATTACH_TASK) 5855 jump_label_inc(&perf_sched_events); 5856 if (event->attr.mmap || event->attr.mmap_data) 5857 atomic_inc(&nr_mmap_events); 5858 if (event->attr.comm) 5859 atomic_inc(&nr_comm_events); 5860 if (event->attr.task) 5861 atomic_inc(&nr_task_events); 5862 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 5863 err = get_callchain_buffers(); 5864 if (err) { 5865 free_event(event); 5866 return ERR_PTR(err); 5867 } 5868 } 5869 } 5870 5871 return event; 5872 } 5873 5874 static int perf_copy_attr(struct perf_event_attr __user *uattr, 5875 struct perf_event_attr *attr) 5876 { 5877 u32 size; 5878 int ret; 5879 5880 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0)) 5881 return -EFAULT; 5882 5883 /* 5884 * zero the full structure, so that a short copy will be nice. 5885 */ 5886 memset(attr, 0, sizeof(*attr)); 5887 5888 ret = get_user(size, &uattr->size); 5889 if (ret) 5890 return ret; 5891 5892 if (size > PAGE_SIZE) /* silly large */ 5893 goto err_size; 5894 5895 if (!size) /* abi compat */ 5896 size = PERF_ATTR_SIZE_VER0; 5897 5898 if (size < PERF_ATTR_SIZE_VER0) 5899 goto err_size; 5900 5901 /* 5902 * If we're handed a bigger struct than we know of, 5903 * ensure all the unknown bits are 0 - i.e. new 5904 * user-space does not rely on any kernel feature 5905 * extensions we dont know about yet. 5906 */ 5907 if (size > sizeof(*attr)) { 5908 unsigned char __user *addr; 5909 unsigned char __user *end; 5910 unsigned char val; 5911 5912 addr = (void __user *)uattr + sizeof(*attr); 5913 end = (void __user *)uattr + size; 5914 5915 for (; addr < end; addr++) { 5916 ret = get_user(val, addr); 5917 if (ret) 5918 return ret; 5919 if (val) 5920 goto err_size; 5921 } 5922 size = sizeof(*attr); 5923 } 5924 5925 ret = copy_from_user(attr, uattr, size); 5926 if (ret) 5927 return -EFAULT; 5928 5929 if (attr->__reserved_1) 5930 return -EINVAL; 5931 5932 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 5933 return -EINVAL; 5934 5935 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 5936 return -EINVAL; 5937 5938 out: 5939 return ret; 5940 5941 err_size: 5942 put_user(sizeof(*attr), &uattr->size); 5943 ret = -E2BIG; 5944 goto out; 5945 } 5946 5947 static int 5948 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 5949 { 5950 struct ring_buffer *rb = NULL, *old_rb = NULL; 5951 int ret = -EINVAL; 5952 5953 if (!output_event) 5954 goto set; 5955 5956 /* don't allow circular references */ 5957 if (event == output_event) 5958 goto out; 5959 5960 /* 5961 * Don't allow cross-cpu buffers 5962 */ 5963 if (output_event->cpu != event->cpu) 5964 goto out; 5965 5966 /* 5967 * If its not a per-cpu rb, it must be the same task. 5968 */ 5969 if (output_event->cpu == -1 && output_event->ctx != event->ctx) 5970 goto out; 5971 5972 set: 5973 mutex_lock(&event->mmap_mutex); 5974 /* Can't redirect output if we've got an active mmap() */ 5975 if (atomic_read(&event->mmap_count)) 5976 goto unlock; 5977 5978 if (output_event) { 5979 /* get the rb we want to redirect to */ 5980 rb = ring_buffer_get(output_event); 5981 if (!rb) 5982 goto unlock; 5983 } 5984 5985 old_rb = event->rb; 5986 rcu_assign_pointer(event->rb, rb); 5987 ret = 0; 5988 unlock: 5989 mutex_unlock(&event->mmap_mutex); 5990 5991 if (old_rb) 5992 ring_buffer_put(old_rb); 5993 out: 5994 return ret; 5995 } 5996 5997 /** 5998 * sys_perf_event_open - open a performance event, associate it to a task/cpu 5999 * 6000 * @attr_uptr: event_id type attributes for monitoring/sampling 6001 * @pid: target pid 6002 * @cpu: target cpu 6003 * @group_fd: group leader event fd 6004 */ 6005 SYSCALL_DEFINE5(perf_event_open, 6006 struct perf_event_attr __user *, attr_uptr, 6007 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 6008 { 6009 struct perf_event *group_leader = NULL, *output_event = NULL; 6010 struct perf_event *event, *sibling; 6011 struct perf_event_attr attr; 6012 struct perf_event_context *ctx; 6013 struct file *event_file = NULL; 6014 struct file *group_file = NULL; 6015 struct task_struct *task = NULL; 6016 struct pmu *pmu; 6017 int event_fd; 6018 int move_group = 0; 6019 int fput_needed = 0; 6020 int err; 6021 6022 /* for future expandability... */ 6023 if (flags & ~PERF_FLAG_ALL) 6024 return -EINVAL; 6025 6026 err = perf_copy_attr(attr_uptr, &attr); 6027 if (err) 6028 return err; 6029 6030 if (!attr.exclude_kernel) { 6031 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 6032 return -EACCES; 6033 } 6034 6035 if (attr.freq) { 6036 if (attr.sample_freq > sysctl_perf_event_sample_rate) 6037 return -EINVAL; 6038 } 6039 6040 /* 6041 * In cgroup mode, the pid argument is used to pass the fd 6042 * opened to the cgroup directory in cgroupfs. The cpu argument 6043 * designates the cpu on which to monitor threads from that 6044 * cgroup. 6045 */ 6046 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 6047 return -EINVAL; 6048 6049 event_fd = get_unused_fd_flags(O_RDWR); 6050 if (event_fd < 0) 6051 return event_fd; 6052 6053 if (group_fd != -1) { 6054 group_leader = perf_fget_light(group_fd, &fput_needed); 6055 if (IS_ERR(group_leader)) { 6056 err = PTR_ERR(group_leader); 6057 goto err_fd; 6058 } 6059 group_file = group_leader->filp; 6060 if (flags & PERF_FLAG_FD_OUTPUT) 6061 output_event = group_leader; 6062 if (flags & PERF_FLAG_FD_NO_GROUP) 6063 group_leader = NULL; 6064 } 6065 6066 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 6067 task = find_lively_task_by_vpid(pid); 6068 if (IS_ERR(task)) { 6069 err = PTR_ERR(task); 6070 goto err_group_fd; 6071 } 6072 } 6073 6074 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 6075 NULL, NULL); 6076 if (IS_ERR(event)) { 6077 err = PTR_ERR(event); 6078 goto err_task; 6079 } 6080 6081 if (flags & PERF_FLAG_PID_CGROUP) { 6082 err = perf_cgroup_connect(pid, event, &attr, group_leader); 6083 if (err) 6084 goto err_alloc; 6085 /* 6086 * one more event: 6087 * - that has cgroup constraint on event->cpu 6088 * - that may need work on context switch 6089 */ 6090 atomic_inc(&per_cpu(perf_cgroup_events, event->cpu)); 6091 jump_label_inc(&perf_sched_events); 6092 } 6093 6094 /* 6095 * Special case software events and allow them to be part of 6096 * any hardware group. 6097 */ 6098 pmu = event->pmu; 6099 6100 if (group_leader && 6101 (is_software_event(event) != is_software_event(group_leader))) { 6102 if (is_software_event(event)) { 6103 /* 6104 * If event and group_leader are not both a software 6105 * event, and event is, then group leader is not. 6106 * 6107 * Allow the addition of software events to !software 6108 * groups, this is safe because software events never 6109 * fail to schedule. 6110 */ 6111 pmu = group_leader->pmu; 6112 } else if (is_software_event(group_leader) && 6113 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) { 6114 /* 6115 * In case the group is a pure software group, and we 6116 * try to add a hardware event, move the whole group to 6117 * the hardware context. 6118 */ 6119 move_group = 1; 6120 } 6121 } 6122 6123 /* 6124 * Get the target context (task or percpu): 6125 */ 6126 ctx = find_get_context(pmu, task, cpu); 6127 if (IS_ERR(ctx)) { 6128 err = PTR_ERR(ctx); 6129 goto err_alloc; 6130 } 6131 6132 if (task) { 6133 put_task_struct(task); 6134 task = NULL; 6135 } 6136 6137 /* 6138 * Look up the group leader (we will attach this event to it): 6139 */ 6140 if (group_leader) { 6141 err = -EINVAL; 6142 6143 /* 6144 * Do not allow a recursive hierarchy (this new sibling 6145 * becoming part of another group-sibling): 6146 */ 6147 if (group_leader->group_leader != group_leader) 6148 goto err_context; 6149 /* 6150 * Do not allow to attach to a group in a different 6151 * task or CPU context: 6152 */ 6153 if (move_group) { 6154 if (group_leader->ctx->type != ctx->type) 6155 goto err_context; 6156 } else { 6157 if (group_leader->ctx != ctx) 6158 goto err_context; 6159 } 6160 6161 /* 6162 * Only a group leader can be exclusive or pinned 6163 */ 6164 if (attr.exclusive || attr.pinned) 6165 goto err_context; 6166 } 6167 6168 if (output_event) { 6169 err = perf_event_set_output(event, output_event); 6170 if (err) 6171 goto err_context; 6172 } 6173 6174 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR); 6175 if (IS_ERR(event_file)) { 6176 err = PTR_ERR(event_file); 6177 goto err_context; 6178 } 6179 6180 if (move_group) { 6181 struct perf_event_context *gctx = group_leader->ctx; 6182 6183 mutex_lock(&gctx->mutex); 6184 perf_remove_from_context(group_leader); 6185 list_for_each_entry(sibling, &group_leader->sibling_list, 6186 group_entry) { 6187 perf_remove_from_context(sibling); 6188 put_ctx(gctx); 6189 } 6190 mutex_unlock(&gctx->mutex); 6191 put_ctx(gctx); 6192 } 6193 6194 event->filp = event_file; 6195 WARN_ON_ONCE(ctx->parent_ctx); 6196 mutex_lock(&ctx->mutex); 6197 6198 if (move_group) { 6199 perf_install_in_context(ctx, group_leader, cpu); 6200 get_ctx(ctx); 6201 list_for_each_entry(sibling, &group_leader->sibling_list, 6202 group_entry) { 6203 perf_install_in_context(ctx, sibling, cpu); 6204 get_ctx(ctx); 6205 } 6206 } 6207 6208 perf_install_in_context(ctx, event, cpu); 6209 ++ctx->generation; 6210 perf_unpin_context(ctx); 6211 mutex_unlock(&ctx->mutex); 6212 6213 event->owner = current; 6214 6215 mutex_lock(¤t->perf_event_mutex); 6216 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 6217 mutex_unlock(¤t->perf_event_mutex); 6218 6219 /* 6220 * Precalculate sample_data sizes 6221 */ 6222 perf_event__header_size(event); 6223 perf_event__id_header_size(event); 6224 6225 /* 6226 * Drop the reference on the group_event after placing the 6227 * new event on the sibling_list. This ensures destruction 6228 * of the group leader will find the pointer to itself in 6229 * perf_group_detach(). 6230 */ 6231 fput_light(group_file, fput_needed); 6232 fd_install(event_fd, event_file); 6233 return event_fd; 6234 6235 err_context: 6236 perf_unpin_context(ctx); 6237 put_ctx(ctx); 6238 err_alloc: 6239 free_event(event); 6240 err_task: 6241 if (task) 6242 put_task_struct(task); 6243 err_group_fd: 6244 fput_light(group_file, fput_needed); 6245 err_fd: 6246 put_unused_fd(event_fd); 6247 return err; 6248 } 6249 6250 /** 6251 * perf_event_create_kernel_counter 6252 * 6253 * @attr: attributes of the counter to create 6254 * @cpu: cpu in which the counter is bound 6255 * @task: task to profile (NULL for percpu) 6256 */ 6257 struct perf_event * 6258 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 6259 struct task_struct *task, 6260 perf_overflow_handler_t overflow_handler, 6261 void *context) 6262 { 6263 struct perf_event_context *ctx; 6264 struct perf_event *event; 6265 int err; 6266 6267 /* 6268 * Get the target context (task or percpu): 6269 */ 6270 6271 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 6272 overflow_handler, context); 6273 if (IS_ERR(event)) { 6274 err = PTR_ERR(event); 6275 goto err; 6276 } 6277 6278 ctx = find_get_context(event->pmu, task, cpu); 6279 if (IS_ERR(ctx)) { 6280 err = PTR_ERR(ctx); 6281 goto err_free; 6282 } 6283 6284 event->filp = NULL; 6285 WARN_ON_ONCE(ctx->parent_ctx); 6286 mutex_lock(&ctx->mutex); 6287 perf_install_in_context(ctx, event, cpu); 6288 ++ctx->generation; 6289 perf_unpin_context(ctx); 6290 mutex_unlock(&ctx->mutex); 6291 6292 return event; 6293 6294 err_free: 6295 free_event(event); 6296 err: 6297 return ERR_PTR(err); 6298 } 6299 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 6300 6301 static void sync_child_event(struct perf_event *child_event, 6302 struct task_struct *child) 6303 { 6304 struct perf_event *parent_event = child_event->parent; 6305 u64 child_val; 6306 6307 if (child_event->attr.inherit_stat) 6308 perf_event_read_event(child_event, child); 6309 6310 child_val = perf_event_count(child_event); 6311 6312 /* 6313 * Add back the child's count to the parent's count: 6314 */ 6315 atomic64_add(child_val, &parent_event->child_count); 6316 atomic64_add(child_event->total_time_enabled, 6317 &parent_event->child_total_time_enabled); 6318 atomic64_add(child_event->total_time_running, 6319 &parent_event->child_total_time_running); 6320 6321 /* 6322 * Remove this event from the parent's list 6323 */ 6324 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 6325 mutex_lock(&parent_event->child_mutex); 6326 list_del_init(&child_event->child_list); 6327 mutex_unlock(&parent_event->child_mutex); 6328 6329 /* 6330 * Release the parent event, if this was the last 6331 * reference to it. 6332 */ 6333 fput(parent_event->filp); 6334 } 6335 6336 static void 6337 __perf_event_exit_task(struct perf_event *child_event, 6338 struct perf_event_context *child_ctx, 6339 struct task_struct *child) 6340 { 6341 if (child_event->parent) { 6342 raw_spin_lock_irq(&child_ctx->lock); 6343 perf_group_detach(child_event); 6344 raw_spin_unlock_irq(&child_ctx->lock); 6345 } 6346 6347 perf_remove_from_context(child_event); 6348 6349 /* 6350 * It can happen that the parent exits first, and has events 6351 * that are still around due to the child reference. These 6352 * events need to be zapped. 6353 */ 6354 if (child_event->parent) { 6355 sync_child_event(child_event, child); 6356 free_event(child_event); 6357 } 6358 } 6359 6360 static void perf_event_exit_task_context(struct task_struct *child, int ctxn) 6361 { 6362 struct perf_event *child_event, *tmp; 6363 struct perf_event_context *child_ctx; 6364 unsigned long flags; 6365 6366 if (likely(!child->perf_event_ctxp[ctxn])) { 6367 perf_event_task(child, NULL, 0); 6368 return; 6369 } 6370 6371 local_irq_save(flags); 6372 /* 6373 * We can't reschedule here because interrupts are disabled, 6374 * and either child is current or it is a task that can't be 6375 * scheduled, so we are now safe from rescheduling changing 6376 * our context. 6377 */ 6378 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]); 6379 6380 /* 6381 * Take the context lock here so that if find_get_context is 6382 * reading child->perf_event_ctxp, we wait until it has 6383 * incremented the context's refcount before we do put_ctx below. 6384 */ 6385 raw_spin_lock(&child_ctx->lock); 6386 task_ctx_sched_out(child_ctx); 6387 child->perf_event_ctxp[ctxn] = NULL; 6388 /* 6389 * If this context is a clone; unclone it so it can't get 6390 * swapped to another process while we're removing all 6391 * the events from it. 6392 */ 6393 unclone_ctx(child_ctx); 6394 update_context_time(child_ctx); 6395 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 6396 6397 /* 6398 * Report the task dead after unscheduling the events so that we 6399 * won't get any samples after PERF_RECORD_EXIT. We can however still 6400 * get a few PERF_RECORD_READ events. 6401 */ 6402 perf_event_task(child, child_ctx, 0); 6403 6404 /* 6405 * We can recurse on the same lock type through: 6406 * 6407 * __perf_event_exit_task() 6408 * sync_child_event() 6409 * fput(parent_event->filp) 6410 * perf_release() 6411 * mutex_lock(&ctx->mutex) 6412 * 6413 * But since its the parent context it won't be the same instance. 6414 */ 6415 mutex_lock(&child_ctx->mutex); 6416 6417 again: 6418 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups, 6419 group_entry) 6420 __perf_event_exit_task(child_event, child_ctx, child); 6421 6422 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups, 6423 group_entry) 6424 __perf_event_exit_task(child_event, child_ctx, child); 6425 6426 /* 6427 * If the last event was a group event, it will have appended all 6428 * its siblings to the list, but we obtained 'tmp' before that which 6429 * will still point to the list head terminating the iteration. 6430 */ 6431 if (!list_empty(&child_ctx->pinned_groups) || 6432 !list_empty(&child_ctx->flexible_groups)) 6433 goto again; 6434 6435 mutex_unlock(&child_ctx->mutex); 6436 6437 put_ctx(child_ctx); 6438 } 6439 6440 /* 6441 * When a child task exits, feed back event values to parent events. 6442 */ 6443 void perf_event_exit_task(struct task_struct *child) 6444 { 6445 struct perf_event *event, *tmp; 6446 int ctxn; 6447 6448 mutex_lock(&child->perf_event_mutex); 6449 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 6450 owner_entry) { 6451 list_del_init(&event->owner_entry); 6452 6453 /* 6454 * Ensure the list deletion is visible before we clear 6455 * the owner, closes a race against perf_release() where 6456 * we need to serialize on the owner->perf_event_mutex. 6457 */ 6458 smp_wmb(); 6459 event->owner = NULL; 6460 } 6461 mutex_unlock(&child->perf_event_mutex); 6462 6463 for_each_task_context_nr(ctxn) 6464 perf_event_exit_task_context(child, ctxn); 6465 } 6466 6467 static void perf_free_event(struct perf_event *event, 6468 struct perf_event_context *ctx) 6469 { 6470 struct perf_event *parent = event->parent; 6471 6472 if (WARN_ON_ONCE(!parent)) 6473 return; 6474 6475 mutex_lock(&parent->child_mutex); 6476 list_del_init(&event->child_list); 6477 mutex_unlock(&parent->child_mutex); 6478 6479 fput(parent->filp); 6480 6481 perf_group_detach(event); 6482 list_del_event(event, ctx); 6483 free_event(event); 6484 } 6485 6486 /* 6487 * free an unexposed, unused context as created by inheritance by 6488 * perf_event_init_task below, used by fork() in case of fail. 6489 */ 6490 void perf_event_free_task(struct task_struct *task) 6491 { 6492 struct perf_event_context *ctx; 6493 struct perf_event *event, *tmp; 6494 int ctxn; 6495 6496 for_each_task_context_nr(ctxn) { 6497 ctx = task->perf_event_ctxp[ctxn]; 6498 if (!ctx) 6499 continue; 6500 6501 mutex_lock(&ctx->mutex); 6502 again: 6503 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, 6504 group_entry) 6505 perf_free_event(event, ctx); 6506 6507 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, 6508 group_entry) 6509 perf_free_event(event, ctx); 6510 6511 if (!list_empty(&ctx->pinned_groups) || 6512 !list_empty(&ctx->flexible_groups)) 6513 goto again; 6514 6515 mutex_unlock(&ctx->mutex); 6516 6517 put_ctx(ctx); 6518 } 6519 } 6520 6521 void perf_event_delayed_put(struct task_struct *task) 6522 { 6523 int ctxn; 6524 6525 for_each_task_context_nr(ctxn) 6526 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); 6527 } 6528 6529 /* 6530 * inherit a event from parent task to child task: 6531 */ 6532 static struct perf_event * 6533 inherit_event(struct perf_event *parent_event, 6534 struct task_struct *parent, 6535 struct perf_event_context *parent_ctx, 6536 struct task_struct *child, 6537 struct perf_event *group_leader, 6538 struct perf_event_context *child_ctx) 6539 { 6540 struct perf_event *child_event; 6541 unsigned long flags; 6542 6543 /* 6544 * Instead of creating recursive hierarchies of events, 6545 * we link inherited events back to the original parent, 6546 * which has a filp for sure, which we use as the reference 6547 * count: 6548 */ 6549 if (parent_event->parent) 6550 parent_event = parent_event->parent; 6551 6552 child_event = perf_event_alloc(&parent_event->attr, 6553 parent_event->cpu, 6554 child, 6555 group_leader, parent_event, 6556 NULL, NULL); 6557 if (IS_ERR(child_event)) 6558 return child_event; 6559 get_ctx(child_ctx); 6560 6561 /* 6562 * Make the child state follow the state of the parent event, 6563 * not its attr.disabled bit. We hold the parent's mutex, 6564 * so we won't race with perf_event_{en, dis}able_family. 6565 */ 6566 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE) 6567 child_event->state = PERF_EVENT_STATE_INACTIVE; 6568 else 6569 child_event->state = PERF_EVENT_STATE_OFF; 6570 6571 if (parent_event->attr.freq) { 6572 u64 sample_period = parent_event->hw.sample_period; 6573 struct hw_perf_event *hwc = &child_event->hw; 6574 6575 hwc->sample_period = sample_period; 6576 hwc->last_period = sample_period; 6577 6578 local64_set(&hwc->period_left, sample_period); 6579 } 6580 6581 child_event->ctx = child_ctx; 6582 child_event->overflow_handler = parent_event->overflow_handler; 6583 child_event->overflow_handler_context 6584 = parent_event->overflow_handler_context; 6585 6586 /* 6587 * Precalculate sample_data sizes 6588 */ 6589 perf_event__header_size(child_event); 6590 perf_event__id_header_size(child_event); 6591 6592 /* 6593 * Link it up in the child's context: 6594 */ 6595 raw_spin_lock_irqsave(&child_ctx->lock, flags); 6596 add_event_to_ctx(child_event, child_ctx); 6597 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 6598 6599 /* 6600 * Get a reference to the parent filp - we will fput it 6601 * when the child event exits. This is safe to do because 6602 * we are in the parent and we know that the filp still 6603 * exists and has a nonzero count: 6604 */ 6605 atomic_long_inc(&parent_event->filp->f_count); 6606 6607 /* 6608 * Link this into the parent event's child list 6609 */ 6610 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 6611 mutex_lock(&parent_event->child_mutex); 6612 list_add_tail(&child_event->child_list, &parent_event->child_list); 6613 mutex_unlock(&parent_event->child_mutex); 6614 6615 return child_event; 6616 } 6617 6618 static int inherit_group(struct perf_event *parent_event, 6619 struct task_struct *parent, 6620 struct perf_event_context *parent_ctx, 6621 struct task_struct *child, 6622 struct perf_event_context *child_ctx) 6623 { 6624 struct perf_event *leader; 6625 struct perf_event *sub; 6626 struct perf_event *child_ctr; 6627 6628 leader = inherit_event(parent_event, parent, parent_ctx, 6629 child, NULL, child_ctx); 6630 if (IS_ERR(leader)) 6631 return PTR_ERR(leader); 6632 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) { 6633 child_ctr = inherit_event(sub, parent, parent_ctx, 6634 child, leader, child_ctx); 6635 if (IS_ERR(child_ctr)) 6636 return PTR_ERR(child_ctr); 6637 } 6638 return 0; 6639 } 6640 6641 static int 6642 inherit_task_group(struct perf_event *event, struct task_struct *parent, 6643 struct perf_event_context *parent_ctx, 6644 struct task_struct *child, int ctxn, 6645 int *inherited_all) 6646 { 6647 int ret; 6648 struct perf_event_context *child_ctx; 6649 6650 if (!event->attr.inherit) { 6651 *inherited_all = 0; 6652 return 0; 6653 } 6654 6655 child_ctx = child->perf_event_ctxp[ctxn]; 6656 if (!child_ctx) { 6657 /* 6658 * This is executed from the parent task context, so 6659 * inherit events that have been marked for cloning. 6660 * First allocate and initialize a context for the 6661 * child. 6662 */ 6663 6664 child_ctx = alloc_perf_context(event->pmu, child); 6665 if (!child_ctx) 6666 return -ENOMEM; 6667 6668 child->perf_event_ctxp[ctxn] = child_ctx; 6669 } 6670 6671 ret = inherit_group(event, parent, parent_ctx, 6672 child, child_ctx); 6673 6674 if (ret) 6675 *inherited_all = 0; 6676 6677 return ret; 6678 } 6679 6680 /* 6681 * Initialize the perf_event context in task_struct 6682 */ 6683 int perf_event_init_context(struct task_struct *child, int ctxn) 6684 { 6685 struct perf_event_context *child_ctx, *parent_ctx; 6686 struct perf_event_context *cloned_ctx; 6687 struct perf_event *event; 6688 struct task_struct *parent = current; 6689 int inherited_all = 1; 6690 unsigned long flags; 6691 int ret = 0; 6692 6693 if (likely(!parent->perf_event_ctxp[ctxn])) 6694 return 0; 6695 6696 /* 6697 * If the parent's context is a clone, pin it so it won't get 6698 * swapped under us. 6699 */ 6700 parent_ctx = perf_pin_task_context(parent, ctxn); 6701 6702 /* 6703 * No need to check if parent_ctx != NULL here; since we saw 6704 * it non-NULL earlier, the only reason for it to become NULL 6705 * is if we exit, and since we're currently in the middle of 6706 * a fork we can't be exiting at the same time. 6707 */ 6708 6709 /* 6710 * Lock the parent list. No need to lock the child - not PID 6711 * hashed yet and not running, so nobody can access it. 6712 */ 6713 mutex_lock(&parent_ctx->mutex); 6714 6715 /* 6716 * We dont have to disable NMIs - we are only looking at 6717 * the list, not manipulating it: 6718 */ 6719 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) { 6720 ret = inherit_task_group(event, parent, parent_ctx, 6721 child, ctxn, &inherited_all); 6722 if (ret) 6723 break; 6724 } 6725 6726 /* 6727 * We can't hold ctx->lock when iterating the ->flexible_group list due 6728 * to allocations, but we need to prevent rotation because 6729 * rotate_ctx() will change the list from interrupt context. 6730 */ 6731 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 6732 parent_ctx->rotate_disable = 1; 6733 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 6734 6735 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) { 6736 ret = inherit_task_group(event, parent, parent_ctx, 6737 child, ctxn, &inherited_all); 6738 if (ret) 6739 break; 6740 } 6741 6742 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 6743 parent_ctx->rotate_disable = 0; 6744 6745 child_ctx = child->perf_event_ctxp[ctxn]; 6746 6747 if (child_ctx && inherited_all) { 6748 /* 6749 * Mark the child context as a clone of the parent 6750 * context, or of whatever the parent is a clone of. 6751 * 6752 * Note that if the parent is a clone, the holding of 6753 * parent_ctx->lock avoids it from being uncloned. 6754 */ 6755 cloned_ctx = parent_ctx->parent_ctx; 6756 if (cloned_ctx) { 6757 child_ctx->parent_ctx = cloned_ctx; 6758 child_ctx->parent_gen = parent_ctx->parent_gen; 6759 } else { 6760 child_ctx->parent_ctx = parent_ctx; 6761 child_ctx->parent_gen = parent_ctx->generation; 6762 } 6763 get_ctx(child_ctx->parent_ctx); 6764 } 6765 6766 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 6767 mutex_unlock(&parent_ctx->mutex); 6768 6769 perf_unpin_context(parent_ctx); 6770 put_ctx(parent_ctx); 6771 6772 return ret; 6773 } 6774 6775 /* 6776 * Initialize the perf_event context in task_struct 6777 */ 6778 int perf_event_init_task(struct task_struct *child) 6779 { 6780 int ctxn, ret; 6781 6782 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); 6783 mutex_init(&child->perf_event_mutex); 6784 INIT_LIST_HEAD(&child->perf_event_list); 6785 6786 for_each_task_context_nr(ctxn) { 6787 ret = perf_event_init_context(child, ctxn); 6788 if (ret) 6789 return ret; 6790 } 6791 6792 return 0; 6793 } 6794 6795 static void __init perf_event_init_all_cpus(void) 6796 { 6797 struct swevent_htable *swhash; 6798 int cpu; 6799 6800 for_each_possible_cpu(cpu) { 6801 swhash = &per_cpu(swevent_htable, cpu); 6802 mutex_init(&swhash->hlist_mutex); 6803 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu)); 6804 } 6805 } 6806 6807 static void __cpuinit perf_event_init_cpu(int cpu) 6808 { 6809 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 6810 6811 mutex_lock(&swhash->hlist_mutex); 6812 if (swhash->hlist_refcount > 0) { 6813 struct swevent_hlist *hlist; 6814 6815 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 6816 WARN_ON(!hlist); 6817 rcu_assign_pointer(swhash->swevent_hlist, hlist); 6818 } 6819 mutex_unlock(&swhash->hlist_mutex); 6820 } 6821 6822 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC 6823 static void perf_pmu_rotate_stop(struct pmu *pmu) 6824 { 6825 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 6826 6827 WARN_ON(!irqs_disabled()); 6828 6829 list_del_init(&cpuctx->rotation_list); 6830 } 6831 6832 static void __perf_event_exit_context(void *__info) 6833 { 6834 struct perf_event_context *ctx = __info; 6835 struct perf_event *event, *tmp; 6836 6837 perf_pmu_rotate_stop(ctx->pmu); 6838 6839 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry) 6840 __perf_remove_from_context(event); 6841 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry) 6842 __perf_remove_from_context(event); 6843 } 6844 6845 static void perf_event_exit_cpu_context(int cpu) 6846 { 6847 struct perf_event_context *ctx; 6848 struct pmu *pmu; 6849 int idx; 6850 6851 idx = srcu_read_lock(&pmus_srcu); 6852 list_for_each_entry_rcu(pmu, &pmus, entry) { 6853 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx; 6854 6855 mutex_lock(&ctx->mutex); 6856 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 6857 mutex_unlock(&ctx->mutex); 6858 } 6859 srcu_read_unlock(&pmus_srcu, idx); 6860 } 6861 6862 static void perf_event_exit_cpu(int cpu) 6863 { 6864 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 6865 6866 mutex_lock(&swhash->hlist_mutex); 6867 swevent_hlist_release(swhash); 6868 mutex_unlock(&swhash->hlist_mutex); 6869 6870 perf_event_exit_cpu_context(cpu); 6871 } 6872 #else 6873 static inline void perf_event_exit_cpu(int cpu) { } 6874 #endif 6875 6876 static int 6877 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 6878 { 6879 int cpu; 6880 6881 for_each_online_cpu(cpu) 6882 perf_event_exit_cpu(cpu); 6883 6884 return NOTIFY_OK; 6885 } 6886 6887 /* 6888 * Run the perf reboot notifier at the very last possible moment so that 6889 * the generic watchdog code runs as long as possible. 6890 */ 6891 static struct notifier_block perf_reboot_notifier = { 6892 .notifier_call = perf_reboot, 6893 .priority = INT_MIN, 6894 }; 6895 6896 static int __cpuinit 6897 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu) 6898 { 6899 unsigned int cpu = (long)hcpu; 6900 6901 switch (action & ~CPU_TASKS_FROZEN) { 6902 6903 case CPU_UP_PREPARE: 6904 case CPU_DOWN_FAILED: 6905 perf_event_init_cpu(cpu); 6906 break; 6907 6908 case CPU_UP_CANCELED: 6909 case CPU_DOWN_PREPARE: 6910 perf_event_exit_cpu(cpu); 6911 break; 6912 6913 default: 6914 break; 6915 } 6916 6917 return NOTIFY_OK; 6918 } 6919 6920 void __init perf_event_init(void) 6921 { 6922 int ret; 6923 6924 idr_init(&pmu_idr); 6925 6926 perf_event_init_all_cpus(); 6927 init_srcu_struct(&pmus_srcu); 6928 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 6929 perf_pmu_register(&perf_cpu_clock, NULL, -1); 6930 perf_pmu_register(&perf_task_clock, NULL, -1); 6931 perf_tp_register(); 6932 perf_cpu_notifier(perf_cpu_notify); 6933 register_reboot_notifier(&perf_reboot_notifier); 6934 6935 ret = init_hw_breakpoint(); 6936 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 6937 } 6938 6939 static int __init perf_event_sysfs_init(void) 6940 { 6941 struct pmu *pmu; 6942 int ret; 6943 6944 mutex_lock(&pmus_lock); 6945 6946 ret = bus_register(&pmu_bus); 6947 if (ret) 6948 goto unlock; 6949 6950 list_for_each_entry(pmu, &pmus, entry) { 6951 if (!pmu->name || pmu->type < 0) 6952 continue; 6953 6954 ret = pmu_dev_alloc(pmu); 6955 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 6956 } 6957 pmu_bus_running = 1; 6958 ret = 0; 6959 6960 unlock: 6961 mutex_unlock(&pmus_lock); 6962 6963 return ret; 6964 } 6965 device_initcall(perf_event_sysfs_init); 6966 6967 #ifdef CONFIG_CGROUP_PERF 6968 static struct cgroup_subsys_state *perf_cgroup_create( 6969 struct cgroup_subsys *ss, struct cgroup *cont) 6970 { 6971 struct perf_cgroup *jc; 6972 6973 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 6974 if (!jc) 6975 return ERR_PTR(-ENOMEM); 6976 6977 jc->info = alloc_percpu(struct perf_cgroup_info); 6978 if (!jc->info) { 6979 kfree(jc); 6980 return ERR_PTR(-ENOMEM); 6981 } 6982 6983 return &jc->css; 6984 } 6985 6986 static void perf_cgroup_destroy(struct cgroup_subsys *ss, 6987 struct cgroup *cont) 6988 { 6989 struct perf_cgroup *jc; 6990 jc = container_of(cgroup_subsys_state(cont, perf_subsys_id), 6991 struct perf_cgroup, css); 6992 free_percpu(jc->info); 6993 kfree(jc); 6994 } 6995 6996 static int __perf_cgroup_move(void *info) 6997 { 6998 struct task_struct *task = info; 6999 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN); 7000 return 0; 7001 } 7002 7003 static void 7004 perf_cgroup_attach_task(struct cgroup *cgrp, struct task_struct *task) 7005 { 7006 task_function_call(task, __perf_cgroup_move, task); 7007 } 7008 7009 static void perf_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp, 7010 struct cgroup *old_cgrp, struct task_struct *task) 7011 { 7012 /* 7013 * cgroup_exit() is called in the copy_process() failure path. 7014 * Ignore this case since the task hasn't ran yet, this avoids 7015 * trying to poke a half freed task state from generic code. 7016 */ 7017 if (!(task->flags & PF_EXITING)) 7018 return; 7019 7020 perf_cgroup_attach_task(cgrp, task); 7021 } 7022 7023 struct cgroup_subsys perf_subsys = { 7024 .name = "perf_event", 7025 .subsys_id = perf_subsys_id, 7026 .create = perf_cgroup_create, 7027 .destroy = perf_cgroup_destroy, 7028 .exit = perf_cgroup_exit, 7029 .attach_task = perf_cgroup_attach_task, 7030 }; 7031 #endif /* CONFIG_CGROUP_PERF */ 7032