xref: /openbmc/linux/kernel/events/core.c (revision 81d67439)
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  �  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11 
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/vmalloc.h>
29 #include <linux/hardirq.h>
30 #include <linux/rculist.h>
31 #include <linux/uaccess.h>
32 #include <linux/syscalls.h>
33 #include <linux/anon_inodes.h>
34 #include <linux/kernel_stat.h>
35 #include <linux/perf_event.h>
36 #include <linux/ftrace_event.h>
37 #include <linux/hw_breakpoint.h>
38 
39 #include "internal.h"
40 
41 #include <asm/irq_regs.h>
42 
43 struct remote_function_call {
44 	struct task_struct	*p;
45 	int			(*func)(void *info);
46 	void			*info;
47 	int			ret;
48 };
49 
50 static void remote_function(void *data)
51 {
52 	struct remote_function_call *tfc = data;
53 	struct task_struct *p = tfc->p;
54 
55 	if (p) {
56 		tfc->ret = -EAGAIN;
57 		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
58 			return;
59 	}
60 
61 	tfc->ret = tfc->func(tfc->info);
62 }
63 
64 /**
65  * task_function_call - call a function on the cpu on which a task runs
66  * @p:		the task to evaluate
67  * @func:	the function to be called
68  * @info:	the function call argument
69  *
70  * Calls the function @func when the task is currently running. This might
71  * be on the current CPU, which just calls the function directly
72  *
73  * returns: @func return value, or
74  *	    -ESRCH  - when the process isn't running
75  *	    -EAGAIN - when the process moved away
76  */
77 static int
78 task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
79 {
80 	struct remote_function_call data = {
81 		.p	= p,
82 		.func	= func,
83 		.info	= info,
84 		.ret	= -ESRCH, /* No such (running) process */
85 	};
86 
87 	if (task_curr(p))
88 		smp_call_function_single(task_cpu(p), remote_function, &data, 1);
89 
90 	return data.ret;
91 }
92 
93 /**
94  * cpu_function_call - call a function on the cpu
95  * @func:	the function to be called
96  * @info:	the function call argument
97  *
98  * Calls the function @func on the remote cpu.
99  *
100  * returns: @func return value or -ENXIO when the cpu is offline
101  */
102 static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
103 {
104 	struct remote_function_call data = {
105 		.p	= NULL,
106 		.func	= func,
107 		.info	= info,
108 		.ret	= -ENXIO, /* No such CPU */
109 	};
110 
111 	smp_call_function_single(cpu, remote_function, &data, 1);
112 
113 	return data.ret;
114 }
115 
116 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
117 		       PERF_FLAG_FD_OUTPUT  |\
118 		       PERF_FLAG_PID_CGROUP)
119 
120 enum event_type_t {
121 	EVENT_FLEXIBLE = 0x1,
122 	EVENT_PINNED = 0x2,
123 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
124 };
125 
126 /*
127  * perf_sched_events : >0 events exist
128  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
129  */
130 struct jump_label_key perf_sched_events __read_mostly;
131 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
132 
133 static atomic_t nr_mmap_events __read_mostly;
134 static atomic_t nr_comm_events __read_mostly;
135 static atomic_t nr_task_events __read_mostly;
136 
137 static LIST_HEAD(pmus);
138 static DEFINE_MUTEX(pmus_lock);
139 static struct srcu_struct pmus_srcu;
140 
141 /*
142  * perf event paranoia level:
143  *  -1 - not paranoid at all
144  *   0 - disallow raw tracepoint access for unpriv
145  *   1 - disallow cpu events for unpriv
146  *   2 - disallow kernel profiling for unpriv
147  */
148 int sysctl_perf_event_paranoid __read_mostly = 1;
149 
150 /* Minimum for 512 kiB + 1 user control page */
151 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
152 
153 /*
154  * max perf event sample rate
155  */
156 #define DEFAULT_MAX_SAMPLE_RATE 100000
157 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
158 static int max_samples_per_tick __read_mostly =
159 	DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
160 
161 int perf_proc_update_handler(struct ctl_table *table, int write,
162 		void __user *buffer, size_t *lenp,
163 		loff_t *ppos)
164 {
165 	int ret = proc_dointvec(table, write, buffer, lenp, ppos);
166 
167 	if (ret || !write)
168 		return ret;
169 
170 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
171 
172 	return 0;
173 }
174 
175 static atomic64_t perf_event_id;
176 
177 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
178 			      enum event_type_t event_type);
179 
180 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
181 			     enum event_type_t event_type,
182 			     struct task_struct *task);
183 
184 static void update_context_time(struct perf_event_context *ctx);
185 static u64 perf_event_time(struct perf_event *event);
186 
187 void __weak perf_event_print_debug(void)	{ }
188 
189 extern __weak const char *perf_pmu_name(void)
190 {
191 	return "pmu";
192 }
193 
194 static inline u64 perf_clock(void)
195 {
196 	return local_clock();
197 }
198 
199 static inline struct perf_cpu_context *
200 __get_cpu_context(struct perf_event_context *ctx)
201 {
202 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
203 }
204 
205 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
206 			  struct perf_event_context *ctx)
207 {
208 	raw_spin_lock(&cpuctx->ctx.lock);
209 	if (ctx)
210 		raw_spin_lock(&ctx->lock);
211 }
212 
213 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
214 			    struct perf_event_context *ctx)
215 {
216 	if (ctx)
217 		raw_spin_unlock(&ctx->lock);
218 	raw_spin_unlock(&cpuctx->ctx.lock);
219 }
220 
221 #ifdef CONFIG_CGROUP_PERF
222 
223 /*
224  * Must ensure cgroup is pinned (css_get) before calling
225  * this function. In other words, we cannot call this function
226  * if there is no cgroup event for the current CPU context.
227  */
228 static inline struct perf_cgroup *
229 perf_cgroup_from_task(struct task_struct *task)
230 {
231 	return container_of(task_subsys_state(task, perf_subsys_id),
232 			struct perf_cgroup, css);
233 }
234 
235 static inline bool
236 perf_cgroup_match(struct perf_event *event)
237 {
238 	struct perf_event_context *ctx = event->ctx;
239 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
240 
241 	return !event->cgrp || event->cgrp == cpuctx->cgrp;
242 }
243 
244 static inline void perf_get_cgroup(struct perf_event *event)
245 {
246 	css_get(&event->cgrp->css);
247 }
248 
249 static inline void perf_put_cgroup(struct perf_event *event)
250 {
251 	css_put(&event->cgrp->css);
252 }
253 
254 static inline void perf_detach_cgroup(struct perf_event *event)
255 {
256 	perf_put_cgroup(event);
257 	event->cgrp = NULL;
258 }
259 
260 static inline int is_cgroup_event(struct perf_event *event)
261 {
262 	return event->cgrp != NULL;
263 }
264 
265 static inline u64 perf_cgroup_event_time(struct perf_event *event)
266 {
267 	struct perf_cgroup_info *t;
268 
269 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
270 	return t->time;
271 }
272 
273 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
274 {
275 	struct perf_cgroup_info *info;
276 	u64 now;
277 
278 	now = perf_clock();
279 
280 	info = this_cpu_ptr(cgrp->info);
281 
282 	info->time += now - info->timestamp;
283 	info->timestamp = now;
284 }
285 
286 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
287 {
288 	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
289 	if (cgrp_out)
290 		__update_cgrp_time(cgrp_out);
291 }
292 
293 static inline void update_cgrp_time_from_event(struct perf_event *event)
294 {
295 	struct perf_cgroup *cgrp;
296 
297 	/*
298 	 * ensure we access cgroup data only when needed and
299 	 * when we know the cgroup is pinned (css_get)
300 	 */
301 	if (!is_cgroup_event(event))
302 		return;
303 
304 	cgrp = perf_cgroup_from_task(current);
305 	/*
306 	 * Do not update time when cgroup is not active
307 	 */
308 	if (cgrp == event->cgrp)
309 		__update_cgrp_time(event->cgrp);
310 }
311 
312 static inline void
313 perf_cgroup_set_timestamp(struct task_struct *task,
314 			  struct perf_event_context *ctx)
315 {
316 	struct perf_cgroup *cgrp;
317 	struct perf_cgroup_info *info;
318 
319 	/*
320 	 * ctx->lock held by caller
321 	 * ensure we do not access cgroup data
322 	 * unless we have the cgroup pinned (css_get)
323 	 */
324 	if (!task || !ctx->nr_cgroups)
325 		return;
326 
327 	cgrp = perf_cgroup_from_task(task);
328 	info = this_cpu_ptr(cgrp->info);
329 	info->timestamp = ctx->timestamp;
330 }
331 
332 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
333 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
334 
335 /*
336  * reschedule events based on the cgroup constraint of task.
337  *
338  * mode SWOUT : schedule out everything
339  * mode SWIN : schedule in based on cgroup for next
340  */
341 void perf_cgroup_switch(struct task_struct *task, int mode)
342 {
343 	struct perf_cpu_context *cpuctx;
344 	struct pmu *pmu;
345 	unsigned long flags;
346 
347 	/*
348 	 * disable interrupts to avoid geting nr_cgroup
349 	 * changes via __perf_event_disable(). Also
350 	 * avoids preemption.
351 	 */
352 	local_irq_save(flags);
353 
354 	/*
355 	 * we reschedule only in the presence of cgroup
356 	 * constrained events.
357 	 */
358 	rcu_read_lock();
359 
360 	list_for_each_entry_rcu(pmu, &pmus, entry) {
361 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
362 
363 		/*
364 		 * perf_cgroup_events says at least one
365 		 * context on this CPU has cgroup events.
366 		 *
367 		 * ctx->nr_cgroups reports the number of cgroup
368 		 * events for a context.
369 		 */
370 		if (cpuctx->ctx.nr_cgroups > 0) {
371 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
372 			perf_pmu_disable(cpuctx->ctx.pmu);
373 
374 			if (mode & PERF_CGROUP_SWOUT) {
375 				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
376 				/*
377 				 * must not be done before ctxswout due
378 				 * to event_filter_match() in event_sched_out()
379 				 */
380 				cpuctx->cgrp = NULL;
381 			}
382 
383 			if (mode & PERF_CGROUP_SWIN) {
384 				WARN_ON_ONCE(cpuctx->cgrp);
385 				/* set cgrp before ctxsw in to
386 				 * allow event_filter_match() to not
387 				 * have to pass task around
388 				 */
389 				cpuctx->cgrp = perf_cgroup_from_task(task);
390 				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
391 			}
392 			perf_pmu_enable(cpuctx->ctx.pmu);
393 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
394 		}
395 	}
396 
397 	rcu_read_unlock();
398 
399 	local_irq_restore(flags);
400 }
401 
402 static inline void perf_cgroup_sched_out(struct task_struct *task)
403 {
404 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
405 }
406 
407 static inline void perf_cgroup_sched_in(struct task_struct *task)
408 {
409 	perf_cgroup_switch(task, PERF_CGROUP_SWIN);
410 }
411 
412 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
413 				      struct perf_event_attr *attr,
414 				      struct perf_event *group_leader)
415 {
416 	struct perf_cgroup *cgrp;
417 	struct cgroup_subsys_state *css;
418 	struct file *file;
419 	int ret = 0, fput_needed;
420 
421 	file = fget_light(fd, &fput_needed);
422 	if (!file)
423 		return -EBADF;
424 
425 	css = cgroup_css_from_dir(file, perf_subsys_id);
426 	if (IS_ERR(css)) {
427 		ret = PTR_ERR(css);
428 		goto out;
429 	}
430 
431 	cgrp = container_of(css, struct perf_cgroup, css);
432 	event->cgrp = cgrp;
433 
434 	/* must be done before we fput() the file */
435 	perf_get_cgroup(event);
436 
437 	/*
438 	 * all events in a group must monitor
439 	 * the same cgroup because a task belongs
440 	 * to only one perf cgroup at a time
441 	 */
442 	if (group_leader && group_leader->cgrp != cgrp) {
443 		perf_detach_cgroup(event);
444 		ret = -EINVAL;
445 	}
446 out:
447 	fput_light(file, fput_needed);
448 	return ret;
449 }
450 
451 static inline void
452 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
453 {
454 	struct perf_cgroup_info *t;
455 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
456 	event->shadow_ctx_time = now - t->timestamp;
457 }
458 
459 static inline void
460 perf_cgroup_defer_enabled(struct perf_event *event)
461 {
462 	/*
463 	 * when the current task's perf cgroup does not match
464 	 * the event's, we need to remember to call the
465 	 * perf_mark_enable() function the first time a task with
466 	 * a matching perf cgroup is scheduled in.
467 	 */
468 	if (is_cgroup_event(event) && !perf_cgroup_match(event))
469 		event->cgrp_defer_enabled = 1;
470 }
471 
472 static inline void
473 perf_cgroup_mark_enabled(struct perf_event *event,
474 			 struct perf_event_context *ctx)
475 {
476 	struct perf_event *sub;
477 	u64 tstamp = perf_event_time(event);
478 
479 	if (!event->cgrp_defer_enabled)
480 		return;
481 
482 	event->cgrp_defer_enabled = 0;
483 
484 	event->tstamp_enabled = tstamp - event->total_time_enabled;
485 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
486 		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
487 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
488 			sub->cgrp_defer_enabled = 0;
489 		}
490 	}
491 }
492 #else /* !CONFIG_CGROUP_PERF */
493 
494 static inline bool
495 perf_cgroup_match(struct perf_event *event)
496 {
497 	return true;
498 }
499 
500 static inline void perf_detach_cgroup(struct perf_event *event)
501 {}
502 
503 static inline int is_cgroup_event(struct perf_event *event)
504 {
505 	return 0;
506 }
507 
508 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
509 {
510 	return 0;
511 }
512 
513 static inline void update_cgrp_time_from_event(struct perf_event *event)
514 {
515 }
516 
517 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
518 {
519 }
520 
521 static inline void perf_cgroup_sched_out(struct task_struct *task)
522 {
523 }
524 
525 static inline void perf_cgroup_sched_in(struct task_struct *task)
526 {
527 }
528 
529 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
530 				      struct perf_event_attr *attr,
531 				      struct perf_event *group_leader)
532 {
533 	return -EINVAL;
534 }
535 
536 static inline void
537 perf_cgroup_set_timestamp(struct task_struct *task,
538 			  struct perf_event_context *ctx)
539 {
540 }
541 
542 void
543 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
544 {
545 }
546 
547 static inline void
548 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
549 {
550 }
551 
552 static inline u64 perf_cgroup_event_time(struct perf_event *event)
553 {
554 	return 0;
555 }
556 
557 static inline void
558 perf_cgroup_defer_enabled(struct perf_event *event)
559 {
560 }
561 
562 static inline void
563 perf_cgroup_mark_enabled(struct perf_event *event,
564 			 struct perf_event_context *ctx)
565 {
566 }
567 #endif
568 
569 void perf_pmu_disable(struct pmu *pmu)
570 {
571 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
572 	if (!(*count)++)
573 		pmu->pmu_disable(pmu);
574 }
575 
576 void perf_pmu_enable(struct pmu *pmu)
577 {
578 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
579 	if (!--(*count))
580 		pmu->pmu_enable(pmu);
581 }
582 
583 static DEFINE_PER_CPU(struct list_head, rotation_list);
584 
585 /*
586  * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
587  * because they're strictly cpu affine and rotate_start is called with IRQs
588  * disabled, while rotate_context is called from IRQ context.
589  */
590 static void perf_pmu_rotate_start(struct pmu *pmu)
591 {
592 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
593 	struct list_head *head = &__get_cpu_var(rotation_list);
594 
595 	WARN_ON(!irqs_disabled());
596 
597 	if (list_empty(&cpuctx->rotation_list))
598 		list_add(&cpuctx->rotation_list, head);
599 }
600 
601 static void get_ctx(struct perf_event_context *ctx)
602 {
603 	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
604 }
605 
606 static void put_ctx(struct perf_event_context *ctx)
607 {
608 	if (atomic_dec_and_test(&ctx->refcount)) {
609 		if (ctx->parent_ctx)
610 			put_ctx(ctx->parent_ctx);
611 		if (ctx->task)
612 			put_task_struct(ctx->task);
613 		kfree_rcu(ctx, rcu_head);
614 	}
615 }
616 
617 static void unclone_ctx(struct perf_event_context *ctx)
618 {
619 	if (ctx->parent_ctx) {
620 		put_ctx(ctx->parent_ctx);
621 		ctx->parent_ctx = NULL;
622 	}
623 }
624 
625 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
626 {
627 	/*
628 	 * only top level events have the pid namespace they were created in
629 	 */
630 	if (event->parent)
631 		event = event->parent;
632 
633 	return task_tgid_nr_ns(p, event->ns);
634 }
635 
636 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
637 {
638 	/*
639 	 * only top level events have the pid namespace they were created in
640 	 */
641 	if (event->parent)
642 		event = event->parent;
643 
644 	return task_pid_nr_ns(p, event->ns);
645 }
646 
647 /*
648  * If we inherit events we want to return the parent event id
649  * to userspace.
650  */
651 static u64 primary_event_id(struct perf_event *event)
652 {
653 	u64 id = event->id;
654 
655 	if (event->parent)
656 		id = event->parent->id;
657 
658 	return id;
659 }
660 
661 /*
662  * Get the perf_event_context for a task and lock it.
663  * This has to cope with with the fact that until it is locked,
664  * the context could get moved to another task.
665  */
666 static struct perf_event_context *
667 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
668 {
669 	struct perf_event_context *ctx;
670 
671 	rcu_read_lock();
672 retry:
673 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
674 	if (ctx) {
675 		/*
676 		 * If this context is a clone of another, it might
677 		 * get swapped for another underneath us by
678 		 * perf_event_task_sched_out, though the
679 		 * rcu_read_lock() protects us from any context
680 		 * getting freed.  Lock the context and check if it
681 		 * got swapped before we could get the lock, and retry
682 		 * if so.  If we locked the right context, then it
683 		 * can't get swapped on us any more.
684 		 */
685 		raw_spin_lock_irqsave(&ctx->lock, *flags);
686 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
687 			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
688 			goto retry;
689 		}
690 
691 		if (!atomic_inc_not_zero(&ctx->refcount)) {
692 			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
693 			ctx = NULL;
694 		}
695 	}
696 	rcu_read_unlock();
697 	return ctx;
698 }
699 
700 /*
701  * Get the context for a task and increment its pin_count so it
702  * can't get swapped to another task.  This also increments its
703  * reference count so that the context can't get freed.
704  */
705 static struct perf_event_context *
706 perf_pin_task_context(struct task_struct *task, int ctxn)
707 {
708 	struct perf_event_context *ctx;
709 	unsigned long flags;
710 
711 	ctx = perf_lock_task_context(task, ctxn, &flags);
712 	if (ctx) {
713 		++ctx->pin_count;
714 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
715 	}
716 	return ctx;
717 }
718 
719 static void perf_unpin_context(struct perf_event_context *ctx)
720 {
721 	unsigned long flags;
722 
723 	raw_spin_lock_irqsave(&ctx->lock, flags);
724 	--ctx->pin_count;
725 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
726 }
727 
728 /*
729  * Update the record of the current time in a context.
730  */
731 static void update_context_time(struct perf_event_context *ctx)
732 {
733 	u64 now = perf_clock();
734 
735 	ctx->time += now - ctx->timestamp;
736 	ctx->timestamp = now;
737 }
738 
739 static u64 perf_event_time(struct perf_event *event)
740 {
741 	struct perf_event_context *ctx = event->ctx;
742 
743 	if (is_cgroup_event(event))
744 		return perf_cgroup_event_time(event);
745 
746 	return ctx ? ctx->time : 0;
747 }
748 
749 /*
750  * Update the total_time_enabled and total_time_running fields for a event.
751  * The caller of this function needs to hold the ctx->lock.
752  */
753 static void update_event_times(struct perf_event *event)
754 {
755 	struct perf_event_context *ctx = event->ctx;
756 	u64 run_end;
757 
758 	if (event->state < PERF_EVENT_STATE_INACTIVE ||
759 	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
760 		return;
761 	/*
762 	 * in cgroup mode, time_enabled represents
763 	 * the time the event was enabled AND active
764 	 * tasks were in the monitored cgroup. This is
765 	 * independent of the activity of the context as
766 	 * there may be a mix of cgroup and non-cgroup events.
767 	 *
768 	 * That is why we treat cgroup events differently
769 	 * here.
770 	 */
771 	if (is_cgroup_event(event))
772 		run_end = perf_event_time(event);
773 	else if (ctx->is_active)
774 		run_end = ctx->time;
775 	else
776 		run_end = event->tstamp_stopped;
777 
778 	event->total_time_enabled = run_end - event->tstamp_enabled;
779 
780 	if (event->state == PERF_EVENT_STATE_INACTIVE)
781 		run_end = event->tstamp_stopped;
782 	else
783 		run_end = perf_event_time(event);
784 
785 	event->total_time_running = run_end - event->tstamp_running;
786 
787 }
788 
789 /*
790  * Update total_time_enabled and total_time_running for all events in a group.
791  */
792 static void update_group_times(struct perf_event *leader)
793 {
794 	struct perf_event *event;
795 
796 	update_event_times(leader);
797 	list_for_each_entry(event, &leader->sibling_list, group_entry)
798 		update_event_times(event);
799 }
800 
801 static struct list_head *
802 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
803 {
804 	if (event->attr.pinned)
805 		return &ctx->pinned_groups;
806 	else
807 		return &ctx->flexible_groups;
808 }
809 
810 /*
811  * Add a event from the lists for its context.
812  * Must be called with ctx->mutex and ctx->lock held.
813  */
814 static void
815 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
816 {
817 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
818 	event->attach_state |= PERF_ATTACH_CONTEXT;
819 
820 	/*
821 	 * If we're a stand alone event or group leader, we go to the context
822 	 * list, group events are kept attached to the group so that
823 	 * perf_group_detach can, at all times, locate all siblings.
824 	 */
825 	if (event->group_leader == event) {
826 		struct list_head *list;
827 
828 		if (is_software_event(event))
829 			event->group_flags |= PERF_GROUP_SOFTWARE;
830 
831 		list = ctx_group_list(event, ctx);
832 		list_add_tail(&event->group_entry, list);
833 	}
834 
835 	if (is_cgroup_event(event))
836 		ctx->nr_cgroups++;
837 
838 	list_add_rcu(&event->event_entry, &ctx->event_list);
839 	if (!ctx->nr_events)
840 		perf_pmu_rotate_start(ctx->pmu);
841 	ctx->nr_events++;
842 	if (event->attr.inherit_stat)
843 		ctx->nr_stat++;
844 }
845 
846 /*
847  * Called at perf_event creation and when events are attached/detached from a
848  * group.
849  */
850 static void perf_event__read_size(struct perf_event *event)
851 {
852 	int entry = sizeof(u64); /* value */
853 	int size = 0;
854 	int nr = 1;
855 
856 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
857 		size += sizeof(u64);
858 
859 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
860 		size += sizeof(u64);
861 
862 	if (event->attr.read_format & PERF_FORMAT_ID)
863 		entry += sizeof(u64);
864 
865 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
866 		nr += event->group_leader->nr_siblings;
867 		size += sizeof(u64);
868 	}
869 
870 	size += entry * nr;
871 	event->read_size = size;
872 }
873 
874 static void perf_event__header_size(struct perf_event *event)
875 {
876 	struct perf_sample_data *data;
877 	u64 sample_type = event->attr.sample_type;
878 	u16 size = 0;
879 
880 	perf_event__read_size(event);
881 
882 	if (sample_type & PERF_SAMPLE_IP)
883 		size += sizeof(data->ip);
884 
885 	if (sample_type & PERF_SAMPLE_ADDR)
886 		size += sizeof(data->addr);
887 
888 	if (sample_type & PERF_SAMPLE_PERIOD)
889 		size += sizeof(data->period);
890 
891 	if (sample_type & PERF_SAMPLE_READ)
892 		size += event->read_size;
893 
894 	event->header_size = size;
895 }
896 
897 static void perf_event__id_header_size(struct perf_event *event)
898 {
899 	struct perf_sample_data *data;
900 	u64 sample_type = event->attr.sample_type;
901 	u16 size = 0;
902 
903 	if (sample_type & PERF_SAMPLE_TID)
904 		size += sizeof(data->tid_entry);
905 
906 	if (sample_type & PERF_SAMPLE_TIME)
907 		size += sizeof(data->time);
908 
909 	if (sample_type & PERF_SAMPLE_ID)
910 		size += sizeof(data->id);
911 
912 	if (sample_type & PERF_SAMPLE_STREAM_ID)
913 		size += sizeof(data->stream_id);
914 
915 	if (sample_type & PERF_SAMPLE_CPU)
916 		size += sizeof(data->cpu_entry);
917 
918 	event->id_header_size = size;
919 }
920 
921 static void perf_group_attach(struct perf_event *event)
922 {
923 	struct perf_event *group_leader = event->group_leader, *pos;
924 
925 	/*
926 	 * We can have double attach due to group movement in perf_event_open.
927 	 */
928 	if (event->attach_state & PERF_ATTACH_GROUP)
929 		return;
930 
931 	event->attach_state |= PERF_ATTACH_GROUP;
932 
933 	if (group_leader == event)
934 		return;
935 
936 	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
937 			!is_software_event(event))
938 		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
939 
940 	list_add_tail(&event->group_entry, &group_leader->sibling_list);
941 	group_leader->nr_siblings++;
942 
943 	perf_event__header_size(group_leader);
944 
945 	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
946 		perf_event__header_size(pos);
947 }
948 
949 /*
950  * Remove a event from the lists for its context.
951  * Must be called with ctx->mutex and ctx->lock held.
952  */
953 static void
954 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
955 {
956 	struct perf_cpu_context *cpuctx;
957 	/*
958 	 * We can have double detach due to exit/hot-unplug + close.
959 	 */
960 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
961 		return;
962 
963 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
964 
965 	if (is_cgroup_event(event)) {
966 		ctx->nr_cgroups--;
967 		cpuctx = __get_cpu_context(ctx);
968 		/*
969 		 * if there are no more cgroup events
970 		 * then cler cgrp to avoid stale pointer
971 		 * in update_cgrp_time_from_cpuctx()
972 		 */
973 		if (!ctx->nr_cgroups)
974 			cpuctx->cgrp = NULL;
975 	}
976 
977 	ctx->nr_events--;
978 	if (event->attr.inherit_stat)
979 		ctx->nr_stat--;
980 
981 	list_del_rcu(&event->event_entry);
982 
983 	if (event->group_leader == event)
984 		list_del_init(&event->group_entry);
985 
986 	update_group_times(event);
987 
988 	/*
989 	 * If event was in error state, then keep it
990 	 * that way, otherwise bogus counts will be
991 	 * returned on read(). The only way to get out
992 	 * of error state is by explicit re-enabling
993 	 * of the event
994 	 */
995 	if (event->state > PERF_EVENT_STATE_OFF)
996 		event->state = PERF_EVENT_STATE_OFF;
997 }
998 
999 static void perf_group_detach(struct perf_event *event)
1000 {
1001 	struct perf_event *sibling, *tmp;
1002 	struct list_head *list = NULL;
1003 
1004 	/*
1005 	 * We can have double detach due to exit/hot-unplug + close.
1006 	 */
1007 	if (!(event->attach_state & PERF_ATTACH_GROUP))
1008 		return;
1009 
1010 	event->attach_state &= ~PERF_ATTACH_GROUP;
1011 
1012 	/*
1013 	 * If this is a sibling, remove it from its group.
1014 	 */
1015 	if (event->group_leader != event) {
1016 		list_del_init(&event->group_entry);
1017 		event->group_leader->nr_siblings--;
1018 		goto out;
1019 	}
1020 
1021 	if (!list_empty(&event->group_entry))
1022 		list = &event->group_entry;
1023 
1024 	/*
1025 	 * If this was a group event with sibling events then
1026 	 * upgrade the siblings to singleton events by adding them
1027 	 * to whatever list we are on.
1028 	 */
1029 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1030 		if (list)
1031 			list_move_tail(&sibling->group_entry, list);
1032 		sibling->group_leader = sibling;
1033 
1034 		/* Inherit group flags from the previous leader */
1035 		sibling->group_flags = event->group_flags;
1036 	}
1037 
1038 out:
1039 	perf_event__header_size(event->group_leader);
1040 
1041 	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1042 		perf_event__header_size(tmp);
1043 }
1044 
1045 static inline int
1046 event_filter_match(struct perf_event *event)
1047 {
1048 	return (event->cpu == -1 || event->cpu == smp_processor_id())
1049 	    && perf_cgroup_match(event);
1050 }
1051 
1052 static void
1053 event_sched_out(struct perf_event *event,
1054 		  struct perf_cpu_context *cpuctx,
1055 		  struct perf_event_context *ctx)
1056 {
1057 	u64 tstamp = perf_event_time(event);
1058 	u64 delta;
1059 	/*
1060 	 * An event which could not be activated because of
1061 	 * filter mismatch still needs to have its timings
1062 	 * maintained, otherwise bogus information is return
1063 	 * via read() for time_enabled, time_running:
1064 	 */
1065 	if (event->state == PERF_EVENT_STATE_INACTIVE
1066 	    && !event_filter_match(event)) {
1067 		delta = tstamp - event->tstamp_stopped;
1068 		event->tstamp_running += delta;
1069 		event->tstamp_stopped = tstamp;
1070 	}
1071 
1072 	if (event->state != PERF_EVENT_STATE_ACTIVE)
1073 		return;
1074 
1075 	event->state = PERF_EVENT_STATE_INACTIVE;
1076 	if (event->pending_disable) {
1077 		event->pending_disable = 0;
1078 		event->state = PERF_EVENT_STATE_OFF;
1079 	}
1080 	event->tstamp_stopped = tstamp;
1081 	event->pmu->del(event, 0);
1082 	event->oncpu = -1;
1083 
1084 	if (!is_software_event(event))
1085 		cpuctx->active_oncpu--;
1086 	ctx->nr_active--;
1087 	if (event->attr.exclusive || !cpuctx->active_oncpu)
1088 		cpuctx->exclusive = 0;
1089 }
1090 
1091 static void
1092 group_sched_out(struct perf_event *group_event,
1093 		struct perf_cpu_context *cpuctx,
1094 		struct perf_event_context *ctx)
1095 {
1096 	struct perf_event *event;
1097 	int state = group_event->state;
1098 
1099 	event_sched_out(group_event, cpuctx, ctx);
1100 
1101 	/*
1102 	 * Schedule out siblings (if any):
1103 	 */
1104 	list_for_each_entry(event, &group_event->sibling_list, group_entry)
1105 		event_sched_out(event, cpuctx, ctx);
1106 
1107 	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1108 		cpuctx->exclusive = 0;
1109 }
1110 
1111 /*
1112  * Cross CPU call to remove a performance event
1113  *
1114  * We disable the event on the hardware level first. After that we
1115  * remove it from the context list.
1116  */
1117 static int __perf_remove_from_context(void *info)
1118 {
1119 	struct perf_event *event = info;
1120 	struct perf_event_context *ctx = event->ctx;
1121 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1122 
1123 	raw_spin_lock(&ctx->lock);
1124 	event_sched_out(event, cpuctx, ctx);
1125 	list_del_event(event, ctx);
1126 	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1127 		ctx->is_active = 0;
1128 		cpuctx->task_ctx = NULL;
1129 	}
1130 	raw_spin_unlock(&ctx->lock);
1131 
1132 	return 0;
1133 }
1134 
1135 
1136 /*
1137  * Remove the event from a task's (or a CPU's) list of events.
1138  *
1139  * CPU events are removed with a smp call. For task events we only
1140  * call when the task is on a CPU.
1141  *
1142  * If event->ctx is a cloned context, callers must make sure that
1143  * every task struct that event->ctx->task could possibly point to
1144  * remains valid.  This is OK when called from perf_release since
1145  * that only calls us on the top-level context, which can't be a clone.
1146  * When called from perf_event_exit_task, it's OK because the
1147  * context has been detached from its task.
1148  */
1149 static void perf_remove_from_context(struct perf_event *event)
1150 {
1151 	struct perf_event_context *ctx = event->ctx;
1152 	struct task_struct *task = ctx->task;
1153 
1154 	lockdep_assert_held(&ctx->mutex);
1155 
1156 	if (!task) {
1157 		/*
1158 		 * Per cpu events are removed via an smp call and
1159 		 * the removal is always successful.
1160 		 */
1161 		cpu_function_call(event->cpu, __perf_remove_from_context, event);
1162 		return;
1163 	}
1164 
1165 retry:
1166 	if (!task_function_call(task, __perf_remove_from_context, event))
1167 		return;
1168 
1169 	raw_spin_lock_irq(&ctx->lock);
1170 	/*
1171 	 * If we failed to find a running task, but find the context active now
1172 	 * that we've acquired the ctx->lock, retry.
1173 	 */
1174 	if (ctx->is_active) {
1175 		raw_spin_unlock_irq(&ctx->lock);
1176 		goto retry;
1177 	}
1178 
1179 	/*
1180 	 * Since the task isn't running, its safe to remove the event, us
1181 	 * holding the ctx->lock ensures the task won't get scheduled in.
1182 	 */
1183 	list_del_event(event, ctx);
1184 	raw_spin_unlock_irq(&ctx->lock);
1185 }
1186 
1187 /*
1188  * Cross CPU call to disable a performance event
1189  */
1190 static int __perf_event_disable(void *info)
1191 {
1192 	struct perf_event *event = info;
1193 	struct perf_event_context *ctx = event->ctx;
1194 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1195 
1196 	/*
1197 	 * If this is a per-task event, need to check whether this
1198 	 * event's task is the current task on this cpu.
1199 	 *
1200 	 * Can trigger due to concurrent perf_event_context_sched_out()
1201 	 * flipping contexts around.
1202 	 */
1203 	if (ctx->task && cpuctx->task_ctx != ctx)
1204 		return -EINVAL;
1205 
1206 	raw_spin_lock(&ctx->lock);
1207 
1208 	/*
1209 	 * If the event is on, turn it off.
1210 	 * If it is in error state, leave it in error state.
1211 	 */
1212 	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1213 		update_context_time(ctx);
1214 		update_cgrp_time_from_event(event);
1215 		update_group_times(event);
1216 		if (event == event->group_leader)
1217 			group_sched_out(event, cpuctx, ctx);
1218 		else
1219 			event_sched_out(event, cpuctx, ctx);
1220 		event->state = PERF_EVENT_STATE_OFF;
1221 	}
1222 
1223 	raw_spin_unlock(&ctx->lock);
1224 
1225 	return 0;
1226 }
1227 
1228 /*
1229  * Disable a event.
1230  *
1231  * If event->ctx is a cloned context, callers must make sure that
1232  * every task struct that event->ctx->task could possibly point to
1233  * remains valid.  This condition is satisifed when called through
1234  * perf_event_for_each_child or perf_event_for_each because they
1235  * hold the top-level event's child_mutex, so any descendant that
1236  * goes to exit will block in sync_child_event.
1237  * When called from perf_pending_event it's OK because event->ctx
1238  * is the current context on this CPU and preemption is disabled,
1239  * hence we can't get into perf_event_task_sched_out for this context.
1240  */
1241 void perf_event_disable(struct perf_event *event)
1242 {
1243 	struct perf_event_context *ctx = event->ctx;
1244 	struct task_struct *task = ctx->task;
1245 
1246 	if (!task) {
1247 		/*
1248 		 * Disable the event on the cpu that it's on
1249 		 */
1250 		cpu_function_call(event->cpu, __perf_event_disable, event);
1251 		return;
1252 	}
1253 
1254 retry:
1255 	if (!task_function_call(task, __perf_event_disable, event))
1256 		return;
1257 
1258 	raw_spin_lock_irq(&ctx->lock);
1259 	/*
1260 	 * If the event is still active, we need to retry the cross-call.
1261 	 */
1262 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1263 		raw_spin_unlock_irq(&ctx->lock);
1264 		/*
1265 		 * Reload the task pointer, it might have been changed by
1266 		 * a concurrent perf_event_context_sched_out().
1267 		 */
1268 		task = ctx->task;
1269 		goto retry;
1270 	}
1271 
1272 	/*
1273 	 * Since we have the lock this context can't be scheduled
1274 	 * in, so we can change the state safely.
1275 	 */
1276 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
1277 		update_group_times(event);
1278 		event->state = PERF_EVENT_STATE_OFF;
1279 	}
1280 	raw_spin_unlock_irq(&ctx->lock);
1281 }
1282 
1283 static void perf_set_shadow_time(struct perf_event *event,
1284 				 struct perf_event_context *ctx,
1285 				 u64 tstamp)
1286 {
1287 	/*
1288 	 * use the correct time source for the time snapshot
1289 	 *
1290 	 * We could get by without this by leveraging the
1291 	 * fact that to get to this function, the caller
1292 	 * has most likely already called update_context_time()
1293 	 * and update_cgrp_time_xx() and thus both timestamp
1294 	 * are identical (or very close). Given that tstamp is,
1295 	 * already adjusted for cgroup, we could say that:
1296 	 *    tstamp - ctx->timestamp
1297 	 * is equivalent to
1298 	 *    tstamp - cgrp->timestamp.
1299 	 *
1300 	 * Then, in perf_output_read(), the calculation would
1301 	 * work with no changes because:
1302 	 * - event is guaranteed scheduled in
1303 	 * - no scheduled out in between
1304 	 * - thus the timestamp would be the same
1305 	 *
1306 	 * But this is a bit hairy.
1307 	 *
1308 	 * So instead, we have an explicit cgroup call to remain
1309 	 * within the time time source all along. We believe it
1310 	 * is cleaner and simpler to understand.
1311 	 */
1312 	if (is_cgroup_event(event))
1313 		perf_cgroup_set_shadow_time(event, tstamp);
1314 	else
1315 		event->shadow_ctx_time = tstamp - ctx->timestamp;
1316 }
1317 
1318 #define MAX_INTERRUPTS (~0ULL)
1319 
1320 static void perf_log_throttle(struct perf_event *event, int enable);
1321 
1322 static int
1323 event_sched_in(struct perf_event *event,
1324 		 struct perf_cpu_context *cpuctx,
1325 		 struct perf_event_context *ctx)
1326 {
1327 	u64 tstamp = perf_event_time(event);
1328 
1329 	if (event->state <= PERF_EVENT_STATE_OFF)
1330 		return 0;
1331 
1332 	event->state = PERF_EVENT_STATE_ACTIVE;
1333 	event->oncpu = smp_processor_id();
1334 
1335 	/*
1336 	 * Unthrottle events, since we scheduled we might have missed several
1337 	 * ticks already, also for a heavily scheduling task there is little
1338 	 * guarantee it'll get a tick in a timely manner.
1339 	 */
1340 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1341 		perf_log_throttle(event, 1);
1342 		event->hw.interrupts = 0;
1343 	}
1344 
1345 	/*
1346 	 * The new state must be visible before we turn it on in the hardware:
1347 	 */
1348 	smp_wmb();
1349 
1350 	if (event->pmu->add(event, PERF_EF_START)) {
1351 		event->state = PERF_EVENT_STATE_INACTIVE;
1352 		event->oncpu = -1;
1353 		return -EAGAIN;
1354 	}
1355 
1356 	event->tstamp_running += tstamp - event->tstamp_stopped;
1357 
1358 	perf_set_shadow_time(event, ctx, tstamp);
1359 
1360 	if (!is_software_event(event))
1361 		cpuctx->active_oncpu++;
1362 	ctx->nr_active++;
1363 
1364 	if (event->attr.exclusive)
1365 		cpuctx->exclusive = 1;
1366 
1367 	return 0;
1368 }
1369 
1370 static int
1371 group_sched_in(struct perf_event *group_event,
1372 	       struct perf_cpu_context *cpuctx,
1373 	       struct perf_event_context *ctx)
1374 {
1375 	struct perf_event *event, *partial_group = NULL;
1376 	struct pmu *pmu = group_event->pmu;
1377 	u64 now = ctx->time;
1378 	bool simulate = false;
1379 
1380 	if (group_event->state == PERF_EVENT_STATE_OFF)
1381 		return 0;
1382 
1383 	pmu->start_txn(pmu);
1384 
1385 	if (event_sched_in(group_event, cpuctx, ctx)) {
1386 		pmu->cancel_txn(pmu);
1387 		return -EAGAIN;
1388 	}
1389 
1390 	/*
1391 	 * Schedule in siblings as one group (if any):
1392 	 */
1393 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1394 		if (event_sched_in(event, cpuctx, ctx)) {
1395 			partial_group = event;
1396 			goto group_error;
1397 		}
1398 	}
1399 
1400 	if (!pmu->commit_txn(pmu))
1401 		return 0;
1402 
1403 group_error:
1404 	/*
1405 	 * Groups can be scheduled in as one unit only, so undo any
1406 	 * partial group before returning:
1407 	 * The events up to the failed event are scheduled out normally,
1408 	 * tstamp_stopped will be updated.
1409 	 *
1410 	 * The failed events and the remaining siblings need to have
1411 	 * their timings updated as if they had gone thru event_sched_in()
1412 	 * and event_sched_out(). This is required to get consistent timings
1413 	 * across the group. This also takes care of the case where the group
1414 	 * could never be scheduled by ensuring tstamp_stopped is set to mark
1415 	 * the time the event was actually stopped, such that time delta
1416 	 * calculation in update_event_times() is correct.
1417 	 */
1418 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1419 		if (event == partial_group)
1420 			simulate = true;
1421 
1422 		if (simulate) {
1423 			event->tstamp_running += now - event->tstamp_stopped;
1424 			event->tstamp_stopped = now;
1425 		} else {
1426 			event_sched_out(event, cpuctx, ctx);
1427 		}
1428 	}
1429 	event_sched_out(group_event, cpuctx, ctx);
1430 
1431 	pmu->cancel_txn(pmu);
1432 
1433 	return -EAGAIN;
1434 }
1435 
1436 /*
1437  * Work out whether we can put this event group on the CPU now.
1438  */
1439 static int group_can_go_on(struct perf_event *event,
1440 			   struct perf_cpu_context *cpuctx,
1441 			   int can_add_hw)
1442 {
1443 	/*
1444 	 * Groups consisting entirely of software events can always go on.
1445 	 */
1446 	if (event->group_flags & PERF_GROUP_SOFTWARE)
1447 		return 1;
1448 	/*
1449 	 * If an exclusive group is already on, no other hardware
1450 	 * events can go on.
1451 	 */
1452 	if (cpuctx->exclusive)
1453 		return 0;
1454 	/*
1455 	 * If this group is exclusive and there are already
1456 	 * events on the CPU, it can't go on.
1457 	 */
1458 	if (event->attr.exclusive && cpuctx->active_oncpu)
1459 		return 0;
1460 	/*
1461 	 * Otherwise, try to add it if all previous groups were able
1462 	 * to go on.
1463 	 */
1464 	return can_add_hw;
1465 }
1466 
1467 static void add_event_to_ctx(struct perf_event *event,
1468 			       struct perf_event_context *ctx)
1469 {
1470 	u64 tstamp = perf_event_time(event);
1471 
1472 	list_add_event(event, ctx);
1473 	perf_group_attach(event);
1474 	event->tstamp_enabled = tstamp;
1475 	event->tstamp_running = tstamp;
1476 	event->tstamp_stopped = tstamp;
1477 }
1478 
1479 static void task_ctx_sched_out(struct perf_event_context *ctx);
1480 static void
1481 ctx_sched_in(struct perf_event_context *ctx,
1482 	     struct perf_cpu_context *cpuctx,
1483 	     enum event_type_t event_type,
1484 	     struct task_struct *task);
1485 
1486 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1487 				struct perf_event_context *ctx,
1488 				struct task_struct *task)
1489 {
1490 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1491 	if (ctx)
1492 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1493 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1494 	if (ctx)
1495 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1496 }
1497 
1498 /*
1499  * Cross CPU call to install and enable a performance event
1500  *
1501  * Must be called with ctx->mutex held
1502  */
1503 static int  __perf_install_in_context(void *info)
1504 {
1505 	struct perf_event *event = info;
1506 	struct perf_event_context *ctx = event->ctx;
1507 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1508 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
1509 	struct task_struct *task = current;
1510 
1511 	perf_ctx_lock(cpuctx, task_ctx);
1512 	perf_pmu_disable(cpuctx->ctx.pmu);
1513 
1514 	/*
1515 	 * If there was an active task_ctx schedule it out.
1516 	 */
1517 	if (task_ctx)
1518 		task_ctx_sched_out(task_ctx);
1519 
1520 	/*
1521 	 * If the context we're installing events in is not the
1522 	 * active task_ctx, flip them.
1523 	 */
1524 	if (ctx->task && task_ctx != ctx) {
1525 		if (task_ctx)
1526 			raw_spin_unlock(&task_ctx->lock);
1527 		raw_spin_lock(&ctx->lock);
1528 		task_ctx = ctx;
1529 	}
1530 
1531 	if (task_ctx) {
1532 		cpuctx->task_ctx = task_ctx;
1533 		task = task_ctx->task;
1534 	}
1535 
1536 	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
1537 
1538 	update_context_time(ctx);
1539 	/*
1540 	 * update cgrp time only if current cgrp
1541 	 * matches event->cgrp. Must be done before
1542 	 * calling add_event_to_ctx()
1543 	 */
1544 	update_cgrp_time_from_event(event);
1545 
1546 	add_event_to_ctx(event, ctx);
1547 
1548 	/*
1549 	 * Schedule everything back in
1550 	 */
1551 	perf_event_sched_in(cpuctx, task_ctx, task);
1552 
1553 	perf_pmu_enable(cpuctx->ctx.pmu);
1554 	perf_ctx_unlock(cpuctx, task_ctx);
1555 
1556 	return 0;
1557 }
1558 
1559 /*
1560  * Attach a performance event to a context
1561  *
1562  * First we add the event to the list with the hardware enable bit
1563  * in event->hw_config cleared.
1564  *
1565  * If the event is attached to a task which is on a CPU we use a smp
1566  * call to enable it in the task context. The task might have been
1567  * scheduled away, but we check this in the smp call again.
1568  */
1569 static void
1570 perf_install_in_context(struct perf_event_context *ctx,
1571 			struct perf_event *event,
1572 			int cpu)
1573 {
1574 	struct task_struct *task = ctx->task;
1575 
1576 	lockdep_assert_held(&ctx->mutex);
1577 
1578 	event->ctx = ctx;
1579 
1580 	if (!task) {
1581 		/*
1582 		 * Per cpu events are installed via an smp call and
1583 		 * the install is always successful.
1584 		 */
1585 		cpu_function_call(cpu, __perf_install_in_context, event);
1586 		return;
1587 	}
1588 
1589 retry:
1590 	if (!task_function_call(task, __perf_install_in_context, event))
1591 		return;
1592 
1593 	raw_spin_lock_irq(&ctx->lock);
1594 	/*
1595 	 * If we failed to find a running task, but find the context active now
1596 	 * that we've acquired the ctx->lock, retry.
1597 	 */
1598 	if (ctx->is_active) {
1599 		raw_spin_unlock_irq(&ctx->lock);
1600 		goto retry;
1601 	}
1602 
1603 	/*
1604 	 * Since the task isn't running, its safe to add the event, us holding
1605 	 * the ctx->lock ensures the task won't get scheduled in.
1606 	 */
1607 	add_event_to_ctx(event, ctx);
1608 	raw_spin_unlock_irq(&ctx->lock);
1609 }
1610 
1611 /*
1612  * Put a event into inactive state and update time fields.
1613  * Enabling the leader of a group effectively enables all
1614  * the group members that aren't explicitly disabled, so we
1615  * have to update their ->tstamp_enabled also.
1616  * Note: this works for group members as well as group leaders
1617  * since the non-leader members' sibling_lists will be empty.
1618  */
1619 static void __perf_event_mark_enabled(struct perf_event *event,
1620 					struct perf_event_context *ctx)
1621 {
1622 	struct perf_event *sub;
1623 	u64 tstamp = perf_event_time(event);
1624 
1625 	event->state = PERF_EVENT_STATE_INACTIVE;
1626 	event->tstamp_enabled = tstamp - event->total_time_enabled;
1627 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
1628 		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1629 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
1630 	}
1631 }
1632 
1633 /*
1634  * Cross CPU call to enable a performance event
1635  */
1636 static int __perf_event_enable(void *info)
1637 {
1638 	struct perf_event *event = info;
1639 	struct perf_event_context *ctx = event->ctx;
1640 	struct perf_event *leader = event->group_leader;
1641 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1642 	int err;
1643 
1644 	if (WARN_ON_ONCE(!ctx->is_active))
1645 		return -EINVAL;
1646 
1647 	raw_spin_lock(&ctx->lock);
1648 	update_context_time(ctx);
1649 
1650 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1651 		goto unlock;
1652 
1653 	/*
1654 	 * set current task's cgroup time reference point
1655 	 */
1656 	perf_cgroup_set_timestamp(current, ctx);
1657 
1658 	__perf_event_mark_enabled(event, ctx);
1659 
1660 	if (!event_filter_match(event)) {
1661 		if (is_cgroup_event(event))
1662 			perf_cgroup_defer_enabled(event);
1663 		goto unlock;
1664 	}
1665 
1666 	/*
1667 	 * If the event is in a group and isn't the group leader,
1668 	 * then don't put it on unless the group is on.
1669 	 */
1670 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1671 		goto unlock;
1672 
1673 	if (!group_can_go_on(event, cpuctx, 1)) {
1674 		err = -EEXIST;
1675 	} else {
1676 		if (event == leader)
1677 			err = group_sched_in(event, cpuctx, ctx);
1678 		else
1679 			err = event_sched_in(event, cpuctx, ctx);
1680 	}
1681 
1682 	if (err) {
1683 		/*
1684 		 * If this event can't go on and it's part of a
1685 		 * group, then the whole group has to come off.
1686 		 */
1687 		if (leader != event)
1688 			group_sched_out(leader, cpuctx, ctx);
1689 		if (leader->attr.pinned) {
1690 			update_group_times(leader);
1691 			leader->state = PERF_EVENT_STATE_ERROR;
1692 		}
1693 	}
1694 
1695 unlock:
1696 	raw_spin_unlock(&ctx->lock);
1697 
1698 	return 0;
1699 }
1700 
1701 /*
1702  * Enable a event.
1703  *
1704  * If event->ctx is a cloned context, callers must make sure that
1705  * every task struct that event->ctx->task could possibly point to
1706  * remains valid.  This condition is satisfied when called through
1707  * perf_event_for_each_child or perf_event_for_each as described
1708  * for perf_event_disable.
1709  */
1710 void perf_event_enable(struct perf_event *event)
1711 {
1712 	struct perf_event_context *ctx = event->ctx;
1713 	struct task_struct *task = ctx->task;
1714 
1715 	if (!task) {
1716 		/*
1717 		 * Enable the event on the cpu that it's on
1718 		 */
1719 		cpu_function_call(event->cpu, __perf_event_enable, event);
1720 		return;
1721 	}
1722 
1723 	raw_spin_lock_irq(&ctx->lock);
1724 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1725 		goto out;
1726 
1727 	/*
1728 	 * If the event is in error state, clear that first.
1729 	 * That way, if we see the event in error state below, we
1730 	 * know that it has gone back into error state, as distinct
1731 	 * from the task having been scheduled away before the
1732 	 * cross-call arrived.
1733 	 */
1734 	if (event->state == PERF_EVENT_STATE_ERROR)
1735 		event->state = PERF_EVENT_STATE_OFF;
1736 
1737 retry:
1738 	if (!ctx->is_active) {
1739 		__perf_event_mark_enabled(event, ctx);
1740 		goto out;
1741 	}
1742 
1743 	raw_spin_unlock_irq(&ctx->lock);
1744 
1745 	if (!task_function_call(task, __perf_event_enable, event))
1746 		return;
1747 
1748 	raw_spin_lock_irq(&ctx->lock);
1749 
1750 	/*
1751 	 * If the context is active and the event is still off,
1752 	 * we need to retry the cross-call.
1753 	 */
1754 	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
1755 		/*
1756 		 * task could have been flipped by a concurrent
1757 		 * perf_event_context_sched_out()
1758 		 */
1759 		task = ctx->task;
1760 		goto retry;
1761 	}
1762 
1763 out:
1764 	raw_spin_unlock_irq(&ctx->lock);
1765 }
1766 
1767 int perf_event_refresh(struct perf_event *event, int refresh)
1768 {
1769 	/*
1770 	 * not supported on inherited events
1771 	 */
1772 	if (event->attr.inherit || !is_sampling_event(event))
1773 		return -EINVAL;
1774 
1775 	atomic_add(refresh, &event->event_limit);
1776 	perf_event_enable(event);
1777 
1778 	return 0;
1779 }
1780 EXPORT_SYMBOL_GPL(perf_event_refresh);
1781 
1782 static void ctx_sched_out(struct perf_event_context *ctx,
1783 			  struct perf_cpu_context *cpuctx,
1784 			  enum event_type_t event_type)
1785 {
1786 	struct perf_event *event;
1787 	int is_active = ctx->is_active;
1788 
1789 	ctx->is_active &= ~event_type;
1790 	if (likely(!ctx->nr_events))
1791 		return;
1792 
1793 	update_context_time(ctx);
1794 	update_cgrp_time_from_cpuctx(cpuctx);
1795 	if (!ctx->nr_active)
1796 		return;
1797 
1798 	perf_pmu_disable(ctx->pmu);
1799 	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
1800 		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1801 			group_sched_out(event, cpuctx, ctx);
1802 	}
1803 
1804 	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
1805 		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1806 			group_sched_out(event, cpuctx, ctx);
1807 	}
1808 	perf_pmu_enable(ctx->pmu);
1809 }
1810 
1811 /*
1812  * Test whether two contexts are equivalent, i.e. whether they
1813  * have both been cloned from the same version of the same context
1814  * and they both have the same number of enabled events.
1815  * If the number of enabled events is the same, then the set
1816  * of enabled events should be the same, because these are both
1817  * inherited contexts, therefore we can't access individual events
1818  * in them directly with an fd; we can only enable/disable all
1819  * events via prctl, or enable/disable all events in a family
1820  * via ioctl, which will have the same effect on both contexts.
1821  */
1822 static int context_equiv(struct perf_event_context *ctx1,
1823 			 struct perf_event_context *ctx2)
1824 {
1825 	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1826 		&& ctx1->parent_gen == ctx2->parent_gen
1827 		&& !ctx1->pin_count && !ctx2->pin_count;
1828 }
1829 
1830 static void __perf_event_sync_stat(struct perf_event *event,
1831 				     struct perf_event *next_event)
1832 {
1833 	u64 value;
1834 
1835 	if (!event->attr.inherit_stat)
1836 		return;
1837 
1838 	/*
1839 	 * Update the event value, we cannot use perf_event_read()
1840 	 * because we're in the middle of a context switch and have IRQs
1841 	 * disabled, which upsets smp_call_function_single(), however
1842 	 * we know the event must be on the current CPU, therefore we
1843 	 * don't need to use it.
1844 	 */
1845 	switch (event->state) {
1846 	case PERF_EVENT_STATE_ACTIVE:
1847 		event->pmu->read(event);
1848 		/* fall-through */
1849 
1850 	case PERF_EVENT_STATE_INACTIVE:
1851 		update_event_times(event);
1852 		break;
1853 
1854 	default:
1855 		break;
1856 	}
1857 
1858 	/*
1859 	 * In order to keep per-task stats reliable we need to flip the event
1860 	 * values when we flip the contexts.
1861 	 */
1862 	value = local64_read(&next_event->count);
1863 	value = local64_xchg(&event->count, value);
1864 	local64_set(&next_event->count, value);
1865 
1866 	swap(event->total_time_enabled, next_event->total_time_enabled);
1867 	swap(event->total_time_running, next_event->total_time_running);
1868 
1869 	/*
1870 	 * Since we swizzled the values, update the user visible data too.
1871 	 */
1872 	perf_event_update_userpage(event);
1873 	perf_event_update_userpage(next_event);
1874 }
1875 
1876 #define list_next_entry(pos, member) \
1877 	list_entry(pos->member.next, typeof(*pos), member)
1878 
1879 static void perf_event_sync_stat(struct perf_event_context *ctx,
1880 				   struct perf_event_context *next_ctx)
1881 {
1882 	struct perf_event *event, *next_event;
1883 
1884 	if (!ctx->nr_stat)
1885 		return;
1886 
1887 	update_context_time(ctx);
1888 
1889 	event = list_first_entry(&ctx->event_list,
1890 				   struct perf_event, event_entry);
1891 
1892 	next_event = list_first_entry(&next_ctx->event_list,
1893 					struct perf_event, event_entry);
1894 
1895 	while (&event->event_entry != &ctx->event_list &&
1896 	       &next_event->event_entry != &next_ctx->event_list) {
1897 
1898 		__perf_event_sync_stat(event, next_event);
1899 
1900 		event = list_next_entry(event, event_entry);
1901 		next_event = list_next_entry(next_event, event_entry);
1902 	}
1903 }
1904 
1905 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
1906 					 struct task_struct *next)
1907 {
1908 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1909 	struct perf_event_context *next_ctx;
1910 	struct perf_event_context *parent;
1911 	struct perf_cpu_context *cpuctx;
1912 	int do_switch = 1;
1913 
1914 	if (likely(!ctx))
1915 		return;
1916 
1917 	cpuctx = __get_cpu_context(ctx);
1918 	if (!cpuctx->task_ctx)
1919 		return;
1920 
1921 	rcu_read_lock();
1922 	parent = rcu_dereference(ctx->parent_ctx);
1923 	next_ctx = next->perf_event_ctxp[ctxn];
1924 	if (parent && next_ctx &&
1925 	    rcu_dereference(next_ctx->parent_ctx) == parent) {
1926 		/*
1927 		 * Looks like the two contexts are clones, so we might be
1928 		 * able to optimize the context switch.  We lock both
1929 		 * contexts and check that they are clones under the
1930 		 * lock (including re-checking that neither has been
1931 		 * uncloned in the meantime).  It doesn't matter which
1932 		 * order we take the locks because no other cpu could
1933 		 * be trying to lock both of these tasks.
1934 		 */
1935 		raw_spin_lock(&ctx->lock);
1936 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1937 		if (context_equiv(ctx, next_ctx)) {
1938 			/*
1939 			 * XXX do we need a memory barrier of sorts
1940 			 * wrt to rcu_dereference() of perf_event_ctxp
1941 			 */
1942 			task->perf_event_ctxp[ctxn] = next_ctx;
1943 			next->perf_event_ctxp[ctxn] = ctx;
1944 			ctx->task = next;
1945 			next_ctx->task = task;
1946 			do_switch = 0;
1947 
1948 			perf_event_sync_stat(ctx, next_ctx);
1949 		}
1950 		raw_spin_unlock(&next_ctx->lock);
1951 		raw_spin_unlock(&ctx->lock);
1952 	}
1953 	rcu_read_unlock();
1954 
1955 	if (do_switch) {
1956 		raw_spin_lock(&ctx->lock);
1957 		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1958 		cpuctx->task_ctx = NULL;
1959 		raw_spin_unlock(&ctx->lock);
1960 	}
1961 }
1962 
1963 #define for_each_task_context_nr(ctxn)					\
1964 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
1965 
1966 /*
1967  * Called from scheduler to remove the events of the current task,
1968  * with interrupts disabled.
1969  *
1970  * We stop each event and update the event value in event->count.
1971  *
1972  * This does not protect us against NMI, but disable()
1973  * sets the disabled bit in the control field of event _before_
1974  * accessing the event control register. If a NMI hits, then it will
1975  * not restart the event.
1976  */
1977 void __perf_event_task_sched_out(struct task_struct *task,
1978 				 struct task_struct *next)
1979 {
1980 	int ctxn;
1981 
1982 	for_each_task_context_nr(ctxn)
1983 		perf_event_context_sched_out(task, ctxn, next);
1984 
1985 	/*
1986 	 * if cgroup events exist on this CPU, then we need
1987 	 * to check if we have to switch out PMU state.
1988 	 * cgroup event are system-wide mode only
1989 	 */
1990 	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
1991 		perf_cgroup_sched_out(task);
1992 }
1993 
1994 static void task_ctx_sched_out(struct perf_event_context *ctx)
1995 {
1996 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1997 
1998 	if (!cpuctx->task_ctx)
1999 		return;
2000 
2001 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2002 		return;
2003 
2004 	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2005 	cpuctx->task_ctx = NULL;
2006 }
2007 
2008 /*
2009  * Called with IRQs disabled
2010  */
2011 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2012 			      enum event_type_t event_type)
2013 {
2014 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2015 }
2016 
2017 static void
2018 ctx_pinned_sched_in(struct perf_event_context *ctx,
2019 		    struct perf_cpu_context *cpuctx)
2020 {
2021 	struct perf_event *event;
2022 
2023 	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2024 		if (event->state <= PERF_EVENT_STATE_OFF)
2025 			continue;
2026 		if (!event_filter_match(event))
2027 			continue;
2028 
2029 		/* may need to reset tstamp_enabled */
2030 		if (is_cgroup_event(event))
2031 			perf_cgroup_mark_enabled(event, ctx);
2032 
2033 		if (group_can_go_on(event, cpuctx, 1))
2034 			group_sched_in(event, cpuctx, ctx);
2035 
2036 		/*
2037 		 * If this pinned group hasn't been scheduled,
2038 		 * put it in error state.
2039 		 */
2040 		if (event->state == PERF_EVENT_STATE_INACTIVE) {
2041 			update_group_times(event);
2042 			event->state = PERF_EVENT_STATE_ERROR;
2043 		}
2044 	}
2045 }
2046 
2047 static void
2048 ctx_flexible_sched_in(struct perf_event_context *ctx,
2049 		      struct perf_cpu_context *cpuctx)
2050 {
2051 	struct perf_event *event;
2052 	int can_add_hw = 1;
2053 
2054 	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2055 		/* Ignore events in OFF or ERROR state */
2056 		if (event->state <= PERF_EVENT_STATE_OFF)
2057 			continue;
2058 		/*
2059 		 * Listen to the 'cpu' scheduling filter constraint
2060 		 * of events:
2061 		 */
2062 		if (!event_filter_match(event))
2063 			continue;
2064 
2065 		/* may need to reset tstamp_enabled */
2066 		if (is_cgroup_event(event))
2067 			perf_cgroup_mark_enabled(event, ctx);
2068 
2069 		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2070 			if (group_sched_in(event, cpuctx, ctx))
2071 				can_add_hw = 0;
2072 		}
2073 	}
2074 }
2075 
2076 static void
2077 ctx_sched_in(struct perf_event_context *ctx,
2078 	     struct perf_cpu_context *cpuctx,
2079 	     enum event_type_t event_type,
2080 	     struct task_struct *task)
2081 {
2082 	u64 now;
2083 	int is_active = ctx->is_active;
2084 
2085 	ctx->is_active |= event_type;
2086 	if (likely(!ctx->nr_events))
2087 		return;
2088 
2089 	now = perf_clock();
2090 	ctx->timestamp = now;
2091 	perf_cgroup_set_timestamp(task, ctx);
2092 	/*
2093 	 * First go through the list and put on any pinned groups
2094 	 * in order to give them the best chance of going on.
2095 	 */
2096 	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2097 		ctx_pinned_sched_in(ctx, cpuctx);
2098 
2099 	/* Then walk through the lower prio flexible groups */
2100 	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2101 		ctx_flexible_sched_in(ctx, cpuctx);
2102 }
2103 
2104 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2105 			     enum event_type_t event_type,
2106 			     struct task_struct *task)
2107 {
2108 	struct perf_event_context *ctx = &cpuctx->ctx;
2109 
2110 	ctx_sched_in(ctx, cpuctx, event_type, task);
2111 }
2112 
2113 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2114 					struct task_struct *task)
2115 {
2116 	struct perf_cpu_context *cpuctx;
2117 
2118 	cpuctx = __get_cpu_context(ctx);
2119 	if (cpuctx->task_ctx == ctx)
2120 		return;
2121 
2122 	perf_ctx_lock(cpuctx, ctx);
2123 	perf_pmu_disable(ctx->pmu);
2124 	/*
2125 	 * We want to keep the following priority order:
2126 	 * cpu pinned (that don't need to move), task pinned,
2127 	 * cpu flexible, task flexible.
2128 	 */
2129 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2130 
2131 	perf_event_sched_in(cpuctx, ctx, task);
2132 
2133 	cpuctx->task_ctx = ctx;
2134 
2135 	perf_pmu_enable(ctx->pmu);
2136 	perf_ctx_unlock(cpuctx, ctx);
2137 
2138 	/*
2139 	 * Since these rotations are per-cpu, we need to ensure the
2140 	 * cpu-context we got scheduled on is actually rotating.
2141 	 */
2142 	perf_pmu_rotate_start(ctx->pmu);
2143 }
2144 
2145 /*
2146  * Called from scheduler to add the events of the current task
2147  * with interrupts disabled.
2148  *
2149  * We restore the event value and then enable it.
2150  *
2151  * This does not protect us against NMI, but enable()
2152  * sets the enabled bit in the control field of event _before_
2153  * accessing the event control register. If a NMI hits, then it will
2154  * keep the event running.
2155  */
2156 void __perf_event_task_sched_in(struct task_struct *task)
2157 {
2158 	struct perf_event_context *ctx;
2159 	int ctxn;
2160 
2161 	for_each_task_context_nr(ctxn) {
2162 		ctx = task->perf_event_ctxp[ctxn];
2163 		if (likely(!ctx))
2164 			continue;
2165 
2166 		perf_event_context_sched_in(ctx, task);
2167 	}
2168 	/*
2169 	 * if cgroup events exist on this CPU, then we need
2170 	 * to check if we have to switch in PMU state.
2171 	 * cgroup event are system-wide mode only
2172 	 */
2173 	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2174 		perf_cgroup_sched_in(task);
2175 }
2176 
2177 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2178 {
2179 	u64 frequency = event->attr.sample_freq;
2180 	u64 sec = NSEC_PER_SEC;
2181 	u64 divisor, dividend;
2182 
2183 	int count_fls, nsec_fls, frequency_fls, sec_fls;
2184 
2185 	count_fls = fls64(count);
2186 	nsec_fls = fls64(nsec);
2187 	frequency_fls = fls64(frequency);
2188 	sec_fls = 30;
2189 
2190 	/*
2191 	 * We got @count in @nsec, with a target of sample_freq HZ
2192 	 * the target period becomes:
2193 	 *
2194 	 *             @count * 10^9
2195 	 * period = -------------------
2196 	 *          @nsec * sample_freq
2197 	 *
2198 	 */
2199 
2200 	/*
2201 	 * Reduce accuracy by one bit such that @a and @b converge
2202 	 * to a similar magnitude.
2203 	 */
2204 #define REDUCE_FLS(a, b)		\
2205 do {					\
2206 	if (a##_fls > b##_fls) {	\
2207 		a >>= 1;		\
2208 		a##_fls--;		\
2209 	} else {			\
2210 		b >>= 1;		\
2211 		b##_fls--;		\
2212 	}				\
2213 } while (0)
2214 
2215 	/*
2216 	 * Reduce accuracy until either term fits in a u64, then proceed with
2217 	 * the other, so that finally we can do a u64/u64 division.
2218 	 */
2219 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2220 		REDUCE_FLS(nsec, frequency);
2221 		REDUCE_FLS(sec, count);
2222 	}
2223 
2224 	if (count_fls + sec_fls > 64) {
2225 		divisor = nsec * frequency;
2226 
2227 		while (count_fls + sec_fls > 64) {
2228 			REDUCE_FLS(count, sec);
2229 			divisor >>= 1;
2230 		}
2231 
2232 		dividend = count * sec;
2233 	} else {
2234 		dividend = count * sec;
2235 
2236 		while (nsec_fls + frequency_fls > 64) {
2237 			REDUCE_FLS(nsec, frequency);
2238 			dividend >>= 1;
2239 		}
2240 
2241 		divisor = nsec * frequency;
2242 	}
2243 
2244 	if (!divisor)
2245 		return dividend;
2246 
2247 	return div64_u64(dividend, divisor);
2248 }
2249 
2250 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
2251 {
2252 	struct hw_perf_event *hwc = &event->hw;
2253 	s64 period, sample_period;
2254 	s64 delta;
2255 
2256 	period = perf_calculate_period(event, nsec, count);
2257 
2258 	delta = (s64)(period - hwc->sample_period);
2259 	delta = (delta + 7) / 8; /* low pass filter */
2260 
2261 	sample_period = hwc->sample_period + delta;
2262 
2263 	if (!sample_period)
2264 		sample_period = 1;
2265 
2266 	hwc->sample_period = sample_period;
2267 
2268 	if (local64_read(&hwc->period_left) > 8*sample_period) {
2269 		event->pmu->stop(event, PERF_EF_UPDATE);
2270 		local64_set(&hwc->period_left, 0);
2271 		event->pmu->start(event, PERF_EF_RELOAD);
2272 	}
2273 }
2274 
2275 static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period)
2276 {
2277 	struct perf_event *event;
2278 	struct hw_perf_event *hwc;
2279 	u64 interrupts, now;
2280 	s64 delta;
2281 
2282 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2283 		if (event->state != PERF_EVENT_STATE_ACTIVE)
2284 			continue;
2285 
2286 		if (!event_filter_match(event))
2287 			continue;
2288 
2289 		hwc = &event->hw;
2290 
2291 		interrupts = hwc->interrupts;
2292 		hwc->interrupts = 0;
2293 
2294 		/*
2295 		 * unthrottle events on the tick
2296 		 */
2297 		if (interrupts == MAX_INTERRUPTS) {
2298 			perf_log_throttle(event, 1);
2299 			event->pmu->start(event, 0);
2300 		}
2301 
2302 		if (!event->attr.freq || !event->attr.sample_freq)
2303 			continue;
2304 
2305 		event->pmu->read(event);
2306 		now = local64_read(&event->count);
2307 		delta = now - hwc->freq_count_stamp;
2308 		hwc->freq_count_stamp = now;
2309 
2310 		if (delta > 0)
2311 			perf_adjust_period(event, period, delta);
2312 	}
2313 }
2314 
2315 /*
2316  * Round-robin a context's events:
2317  */
2318 static void rotate_ctx(struct perf_event_context *ctx)
2319 {
2320 	/*
2321 	 * Rotate the first entry last of non-pinned groups. Rotation might be
2322 	 * disabled by the inheritance code.
2323 	 */
2324 	if (!ctx->rotate_disable)
2325 		list_rotate_left(&ctx->flexible_groups);
2326 }
2327 
2328 /*
2329  * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2330  * because they're strictly cpu affine and rotate_start is called with IRQs
2331  * disabled, while rotate_context is called from IRQ context.
2332  */
2333 static void perf_rotate_context(struct perf_cpu_context *cpuctx)
2334 {
2335 	u64 interval = (u64)cpuctx->jiffies_interval * TICK_NSEC;
2336 	struct perf_event_context *ctx = NULL;
2337 	int rotate = 0, remove = 1;
2338 
2339 	if (cpuctx->ctx.nr_events) {
2340 		remove = 0;
2341 		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2342 			rotate = 1;
2343 	}
2344 
2345 	ctx = cpuctx->task_ctx;
2346 	if (ctx && ctx->nr_events) {
2347 		remove = 0;
2348 		if (ctx->nr_events != ctx->nr_active)
2349 			rotate = 1;
2350 	}
2351 
2352 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2353 	perf_pmu_disable(cpuctx->ctx.pmu);
2354 	perf_ctx_adjust_freq(&cpuctx->ctx, interval);
2355 	if (ctx)
2356 		perf_ctx_adjust_freq(ctx, interval);
2357 
2358 	if (!rotate)
2359 		goto done;
2360 
2361 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2362 	if (ctx)
2363 		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
2364 
2365 	rotate_ctx(&cpuctx->ctx);
2366 	if (ctx)
2367 		rotate_ctx(ctx);
2368 
2369 	perf_event_sched_in(cpuctx, ctx, current);
2370 
2371 done:
2372 	if (remove)
2373 		list_del_init(&cpuctx->rotation_list);
2374 
2375 	perf_pmu_enable(cpuctx->ctx.pmu);
2376 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2377 }
2378 
2379 void perf_event_task_tick(void)
2380 {
2381 	struct list_head *head = &__get_cpu_var(rotation_list);
2382 	struct perf_cpu_context *cpuctx, *tmp;
2383 
2384 	WARN_ON(!irqs_disabled());
2385 
2386 	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2387 		if (cpuctx->jiffies_interval == 1 ||
2388 				!(jiffies % cpuctx->jiffies_interval))
2389 			perf_rotate_context(cpuctx);
2390 	}
2391 }
2392 
2393 static int event_enable_on_exec(struct perf_event *event,
2394 				struct perf_event_context *ctx)
2395 {
2396 	if (!event->attr.enable_on_exec)
2397 		return 0;
2398 
2399 	event->attr.enable_on_exec = 0;
2400 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2401 		return 0;
2402 
2403 	__perf_event_mark_enabled(event, ctx);
2404 
2405 	return 1;
2406 }
2407 
2408 /*
2409  * Enable all of a task's events that have been marked enable-on-exec.
2410  * This expects task == current.
2411  */
2412 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2413 {
2414 	struct perf_event *event;
2415 	unsigned long flags;
2416 	int enabled = 0;
2417 	int ret;
2418 
2419 	local_irq_save(flags);
2420 	if (!ctx || !ctx->nr_events)
2421 		goto out;
2422 
2423 	/*
2424 	 * We must ctxsw out cgroup events to avoid conflict
2425 	 * when invoking perf_task_event_sched_in() later on
2426 	 * in this function. Otherwise we end up trying to
2427 	 * ctxswin cgroup events which are already scheduled
2428 	 * in.
2429 	 */
2430 	perf_cgroup_sched_out(current);
2431 
2432 	raw_spin_lock(&ctx->lock);
2433 	task_ctx_sched_out(ctx);
2434 
2435 	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2436 		ret = event_enable_on_exec(event, ctx);
2437 		if (ret)
2438 			enabled = 1;
2439 	}
2440 
2441 	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2442 		ret = event_enable_on_exec(event, ctx);
2443 		if (ret)
2444 			enabled = 1;
2445 	}
2446 
2447 	/*
2448 	 * Unclone this context if we enabled any event.
2449 	 */
2450 	if (enabled)
2451 		unclone_ctx(ctx);
2452 
2453 	raw_spin_unlock(&ctx->lock);
2454 
2455 	/*
2456 	 * Also calls ctxswin for cgroup events, if any:
2457 	 */
2458 	perf_event_context_sched_in(ctx, ctx->task);
2459 out:
2460 	local_irq_restore(flags);
2461 }
2462 
2463 /*
2464  * Cross CPU call to read the hardware event
2465  */
2466 static void __perf_event_read(void *info)
2467 {
2468 	struct perf_event *event = info;
2469 	struct perf_event_context *ctx = event->ctx;
2470 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2471 
2472 	/*
2473 	 * If this is a task context, we need to check whether it is
2474 	 * the current task context of this cpu.  If not it has been
2475 	 * scheduled out before the smp call arrived.  In that case
2476 	 * event->count would have been updated to a recent sample
2477 	 * when the event was scheduled out.
2478 	 */
2479 	if (ctx->task && cpuctx->task_ctx != ctx)
2480 		return;
2481 
2482 	raw_spin_lock(&ctx->lock);
2483 	if (ctx->is_active) {
2484 		update_context_time(ctx);
2485 		update_cgrp_time_from_event(event);
2486 	}
2487 	update_event_times(event);
2488 	if (event->state == PERF_EVENT_STATE_ACTIVE)
2489 		event->pmu->read(event);
2490 	raw_spin_unlock(&ctx->lock);
2491 }
2492 
2493 static inline u64 perf_event_count(struct perf_event *event)
2494 {
2495 	return local64_read(&event->count) + atomic64_read(&event->child_count);
2496 }
2497 
2498 static u64 perf_event_read(struct perf_event *event)
2499 {
2500 	/*
2501 	 * If event is enabled and currently active on a CPU, update the
2502 	 * value in the event structure:
2503 	 */
2504 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
2505 		smp_call_function_single(event->oncpu,
2506 					 __perf_event_read, event, 1);
2507 	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2508 		struct perf_event_context *ctx = event->ctx;
2509 		unsigned long flags;
2510 
2511 		raw_spin_lock_irqsave(&ctx->lock, flags);
2512 		/*
2513 		 * may read while context is not active
2514 		 * (e.g., thread is blocked), in that case
2515 		 * we cannot update context time
2516 		 */
2517 		if (ctx->is_active) {
2518 			update_context_time(ctx);
2519 			update_cgrp_time_from_event(event);
2520 		}
2521 		update_event_times(event);
2522 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
2523 	}
2524 
2525 	return perf_event_count(event);
2526 }
2527 
2528 /*
2529  * Callchain support
2530  */
2531 
2532 struct callchain_cpus_entries {
2533 	struct rcu_head			rcu_head;
2534 	struct perf_callchain_entry	*cpu_entries[0];
2535 };
2536 
2537 static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
2538 static atomic_t nr_callchain_events;
2539 static DEFINE_MUTEX(callchain_mutex);
2540 struct callchain_cpus_entries *callchain_cpus_entries;
2541 
2542 
2543 __weak void perf_callchain_kernel(struct perf_callchain_entry *entry,
2544 				  struct pt_regs *regs)
2545 {
2546 }
2547 
2548 __weak void perf_callchain_user(struct perf_callchain_entry *entry,
2549 				struct pt_regs *regs)
2550 {
2551 }
2552 
2553 static void release_callchain_buffers_rcu(struct rcu_head *head)
2554 {
2555 	struct callchain_cpus_entries *entries;
2556 	int cpu;
2557 
2558 	entries = container_of(head, struct callchain_cpus_entries, rcu_head);
2559 
2560 	for_each_possible_cpu(cpu)
2561 		kfree(entries->cpu_entries[cpu]);
2562 
2563 	kfree(entries);
2564 }
2565 
2566 static void release_callchain_buffers(void)
2567 {
2568 	struct callchain_cpus_entries *entries;
2569 
2570 	entries = callchain_cpus_entries;
2571 	rcu_assign_pointer(callchain_cpus_entries, NULL);
2572 	call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
2573 }
2574 
2575 static int alloc_callchain_buffers(void)
2576 {
2577 	int cpu;
2578 	int size;
2579 	struct callchain_cpus_entries *entries;
2580 
2581 	/*
2582 	 * We can't use the percpu allocation API for data that can be
2583 	 * accessed from NMI. Use a temporary manual per cpu allocation
2584 	 * until that gets sorted out.
2585 	 */
2586 	size = offsetof(struct callchain_cpus_entries, cpu_entries[nr_cpu_ids]);
2587 
2588 	entries = kzalloc(size, GFP_KERNEL);
2589 	if (!entries)
2590 		return -ENOMEM;
2591 
2592 	size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS;
2593 
2594 	for_each_possible_cpu(cpu) {
2595 		entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
2596 							 cpu_to_node(cpu));
2597 		if (!entries->cpu_entries[cpu])
2598 			goto fail;
2599 	}
2600 
2601 	rcu_assign_pointer(callchain_cpus_entries, entries);
2602 
2603 	return 0;
2604 
2605 fail:
2606 	for_each_possible_cpu(cpu)
2607 		kfree(entries->cpu_entries[cpu]);
2608 	kfree(entries);
2609 
2610 	return -ENOMEM;
2611 }
2612 
2613 static int get_callchain_buffers(void)
2614 {
2615 	int err = 0;
2616 	int count;
2617 
2618 	mutex_lock(&callchain_mutex);
2619 
2620 	count = atomic_inc_return(&nr_callchain_events);
2621 	if (WARN_ON_ONCE(count < 1)) {
2622 		err = -EINVAL;
2623 		goto exit;
2624 	}
2625 
2626 	if (count > 1) {
2627 		/* If the allocation failed, give up */
2628 		if (!callchain_cpus_entries)
2629 			err = -ENOMEM;
2630 		goto exit;
2631 	}
2632 
2633 	err = alloc_callchain_buffers();
2634 	if (err)
2635 		release_callchain_buffers();
2636 exit:
2637 	mutex_unlock(&callchain_mutex);
2638 
2639 	return err;
2640 }
2641 
2642 static void put_callchain_buffers(void)
2643 {
2644 	if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
2645 		release_callchain_buffers();
2646 		mutex_unlock(&callchain_mutex);
2647 	}
2648 }
2649 
2650 static int get_recursion_context(int *recursion)
2651 {
2652 	int rctx;
2653 
2654 	if (in_nmi())
2655 		rctx = 3;
2656 	else if (in_irq())
2657 		rctx = 2;
2658 	else if (in_softirq())
2659 		rctx = 1;
2660 	else
2661 		rctx = 0;
2662 
2663 	if (recursion[rctx])
2664 		return -1;
2665 
2666 	recursion[rctx]++;
2667 	barrier();
2668 
2669 	return rctx;
2670 }
2671 
2672 static inline void put_recursion_context(int *recursion, int rctx)
2673 {
2674 	barrier();
2675 	recursion[rctx]--;
2676 }
2677 
2678 static struct perf_callchain_entry *get_callchain_entry(int *rctx)
2679 {
2680 	int cpu;
2681 	struct callchain_cpus_entries *entries;
2682 
2683 	*rctx = get_recursion_context(__get_cpu_var(callchain_recursion));
2684 	if (*rctx == -1)
2685 		return NULL;
2686 
2687 	entries = rcu_dereference(callchain_cpus_entries);
2688 	if (!entries)
2689 		return NULL;
2690 
2691 	cpu = smp_processor_id();
2692 
2693 	return &entries->cpu_entries[cpu][*rctx];
2694 }
2695 
2696 static void
2697 put_callchain_entry(int rctx)
2698 {
2699 	put_recursion_context(__get_cpu_var(callchain_recursion), rctx);
2700 }
2701 
2702 static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2703 {
2704 	int rctx;
2705 	struct perf_callchain_entry *entry;
2706 
2707 
2708 	entry = get_callchain_entry(&rctx);
2709 	if (rctx == -1)
2710 		return NULL;
2711 
2712 	if (!entry)
2713 		goto exit_put;
2714 
2715 	entry->nr = 0;
2716 
2717 	if (!user_mode(regs)) {
2718 		perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
2719 		perf_callchain_kernel(entry, regs);
2720 		if (current->mm)
2721 			regs = task_pt_regs(current);
2722 		else
2723 			regs = NULL;
2724 	}
2725 
2726 	if (regs) {
2727 		perf_callchain_store(entry, PERF_CONTEXT_USER);
2728 		perf_callchain_user(entry, regs);
2729 	}
2730 
2731 exit_put:
2732 	put_callchain_entry(rctx);
2733 
2734 	return entry;
2735 }
2736 
2737 /*
2738  * Initialize the perf_event context in a task_struct:
2739  */
2740 static void __perf_event_init_context(struct perf_event_context *ctx)
2741 {
2742 	raw_spin_lock_init(&ctx->lock);
2743 	mutex_init(&ctx->mutex);
2744 	INIT_LIST_HEAD(&ctx->pinned_groups);
2745 	INIT_LIST_HEAD(&ctx->flexible_groups);
2746 	INIT_LIST_HEAD(&ctx->event_list);
2747 	atomic_set(&ctx->refcount, 1);
2748 }
2749 
2750 static struct perf_event_context *
2751 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2752 {
2753 	struct perf_event_context *ctx;
2754 
2755 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2756 	if (!ctx)
2757 		return NULL;
2758 
2759 	__perf_event_init_context(ctx);
2760 	if (task) {
2761 		ctx->task = task;
2762 		get_task_struct(task);
2763 	}
2764 	ctx->pmu = pmu;
2765 
2766 	return ctx;
2767 }
2768 
2769 static struct task_struct *
2770 find_lively_task_by_vpid(pid_t vpid)
2771 {
2772 	struct task_struct *task;
2773 	int err;
2774 
2775 	rcu_read_lock();
2776 	if (!vpid)
2777 		task = current;
2778 	else
2779 		task = find_task_by_vpid(vpid);
2780 	if (task)
2781 		get_task_struct(task);
2782 	rcu_read_unlock();
2783 
2784 	if (!task)
2785 		return ERR_PTR(-ESRCH);
2786 
2787 	/* Reuse ptrace permission checks for now. */
2788 	err = -EACCES;
2789 	if (!ptrace_may_access(task, PTRACE_MODE_READ))
2790 		goto errout;
2791 
2792 	return task;
2793 errout:
2794 	put_task_struct(task);
2795 	return ERR_PTR(err);
2796 
2797 }
2798 
2799 /*
2800  * Returns a matching context with refcount and pincount.
2801  */
2802 static struct perf_event_context *
2803 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
2804 {
2805 	struct perf_event_context *ctx;
2806 	struct perf_cpu_context *cpuctx;
2807 	unsigned long flags;
2808 	int ctxn, err;
2809 
2810 	if (!task) {
2811 		/* Must be root to operate on a CPU event: */
2812 		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2813 			return ERR_PTR(-EACCES);
2814 
2815 		/*
2816 		 * We could be clever and allow to attach a event to an
2817 		 * offline CPU and activate it when the CPU comes up, but
2818 		 * that's for later.
2819 		 */
2820 		if (!cpu_online(cpu))
2821 			return ERR_PTR(-ENODEV);
2822 
2823 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2824 		ctx = &cpuctx->ctx;
2825 		get_ctx(ctx);
2826 		++ctx->pin_count;
2827 
2828 		return ctx;
2829 	}
2830 
2831 	err = -EINVAL;
2832 	ctxn = pmu->task_ctx_nr;
2833 	if (ctxn < 0)
2834 		goto errout;
2835 
2836 retry:
2837 	ctx = perf_lock_task_context(task, ctxn, &flags);
2838 	if (ctx) {
2839 		unclone_ctx(ctx);
2840 		++ctx->pin_count;
2841 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
2842 	} else {
2843 		ctx = alloc_perf_context(pmu, task);
2844 		err = -ENOMEM;
2845 		if (!ctx)
2846 			goto errout;
2847 
2848 		err = 0;
2849 		mutex_lock(&task->perf_event_mutex);
2850 		/*
2851 		 * If it has already passed perf_event_exit_task().
2852 		 * we must see PF_EXITING, it takes this mutex too.
2853 		 */
2854 		if (task->flags & PF_EXITING)
2855 			err = -ESRCH;
2856 		else if (task->perf_event_ctxp[ctxn])
2857 			err = -EAGAIN;
2858 		else {
2859 			get_ctx(ctx);
2860 			++ctx->pin_count;
2861 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
2862 		}
2863 		mutex_unlock(&task->perf_event_mutex);
2864 
2865 		if (unlikely(err)) {
2866 			put_ctx(ctx);
2867 
2868 			if (err == -EAGAIN)
2869 				goto retry;
2870 			goto errout;
2871 		}
2872 	}
2873 
2874 	return ctx;
2875 
2876 errout:
2877 	return ERR_PTR(err);
2878 }
2879 
2880 static void perf_event_free_filter(struct perf_event *event);
2881 
2882 static void free_event_rcu(struct rcu_head *head)
2883 {
2884 	struct perf_event *event;
2885 
2886 	event = container_of(head, struct perf_event, rcu_head);
2887 	if (event->ns)
2888 		put_pid_ns(event->ns);
2889 	perf_event_free_filter(event);
2890 	kfree(event);
2891 }
2892 
2893 static void ring_buffer_put(struct ring_buffer *rb);
2894 
2895 static void free_event(struct perf_event *event)
2896 {
2897 	irq_work_sync(&event->pending);
2898 
2899 	if (!event->parent) {
2900 		if (event->attach_state & PERF_ATTACH_TASK)
2901 			jump_label_dec(&perf_sched_events);
2902 		if (event->attr.mmap || event->attr.mmap_data)
2903 			atomic_dec(&nr_mmap_events);
2904 		if (event->attr.comm)
2905 			atomic_dec(&nr_comm_events);
2906 		if (event->attr.task)
2907 			atomic_dec(&nr_task_events);
2908 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
2909 			put_callchain_buffers();
2910 		if (is_cgroup_event(event)) {
2911 			atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
2912 			jump_label_dec(&perf_sched_events);
2913 		}
2914 	}
2915 
2916 	if (event->rb) {
2917 		ring_buffer_put(event->rb);
2918 		event->rb = NULL;
2919 	}
2920 
2921 	if (is_cgroup_event(event))
2922 		perf_detach_cgroup(event);
2923 
2924 	if (event->destroy)
2925 		event->destroy(event);
2926 
2927 	if (event->ctx)
2928 		put_ctx(event->ctx);
2929 
2930 	call_rcu(&event->rcu_head, free_event_rcu);
2931 }
2932 
2933 int perf_event_release_kernel(struct perf_event *event)
2934 {
2935 	struct perf_event_context *ctx = event->ctx;
2936 
2937 	WARN_ON_ONCE(ctx->parent_ctx);
2938 	/*
2939 	 * There are two ways this annotation is useful:
2940 	 *
2941 	 *  1) there is a lock recursion from perf_event_exit_task
2942 	 *     see the comment there.
2943 	 *
2944 	 *  2) there is a lock-inversion with mmap_sem through
2945 	 *     perf_event_read_group(), which takes faults while
2946 	 *     holding ctx->mutex, however this is called after
2947 	 *     the last filedesc died, so there is no possibility
2948 	 *     to trigger the AB-BA case.
2949 	 */
2950 	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2951 	raw_spin_lock_irq(&ctx->lock);
2952 	perf_group_detach(event);
2953 	raw_spin_unlock_irq(&ctx->lock);
2954 	perf_remove_from_context(event);
2955 	mutex_unlock(&ctx->mutex);
2956 
2957 	free_event(event);
2958 
2959 	return 0;
2960 }
2961 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
2962 
2963 /*
2964  * Called when the last reference to the file is gone.
2965  */
2966 static int perf_release(struct inode *inode, struct file *file)
2967 {
2968 	struct perf_event *event = file->private_data;
2969 	struct task_struct *owner;
2970 
2971 	file->private_data = NULL;
2972 
2973 	rcu_read_lock();
2974 	owner = ACCESS_ONCE(event->owner);
2975 	/*
2976 	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
2977 	 * !owner it means the list deletion is complete and we can indeed
2978 	 * free this event, otherwise we need to serialize on
2979 	 * owner->perf_event_mutex.
2980 	 */
2981 	smp_read_barrier_depends();
2982 	if (owner) {
2983 		/*
2984 		 * Since delayed_put_task_struct() also drops the last
2985 		 * task reference we can safely take a new reference
2986 		 * while holding the rcu_read_lock().
2987 		 */
2988 		get_task_struct(owner);
2989 	}
2990 	rcu_read_unlock();
2991 
2992 	if (owner) {
2993 		mutex_lock(&owner->perf_event_mutex);
2994 		/*
2995 		 * We have to re-check the event->owner field, if it is cleared
2996 		 * we raced with perf_event_exit_task(), acquiring the mutex
2997 		 * ensured they're done, and we can proceed with freeing the
2998 		 * event.
2999 		 */
3000 		if (event->owner)
3001 			list_del_init(&event->owner_entry);
3002 		mutex_unlock(&owner->perf_event_mutex);
3003 		put_task_struct(owner);
3004 	}
3005 
3006 	return perf_event_release_kernel(event);
3007 }
3008 
3009 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3010 {
3011 	struct perf_event *child;
3012 	u64 total = 0;
3013 
3014 	*enabled = 0;
3015 	*running = 0;
3016 
3017 	mutex_lock(&event->child_mutex);
3018 	total += perf_event_read(event);
3019 	*enabled += event->total_time_enabled +
3020 			atomic64_read(&event->child_total_time_enabled);
3021 	*running += event->total_time_running +
3022 			atomic64_read(&event->child_total_time_running);
3023 
3024 	list_for_each_entry(child, &event->child_list, child_list) {
3025 		total += perf_event_read(child);
3026 		*enabled += child->total_time_enabled;
3027 		*running += child->total_time_running;
3028 	}
3029 	mutex_unlock(&event->child_mutex);
3030 
3031 	return total;
3032 }
3033 EXPORT_SYMBOL_GPL(perf_event_read_value);
3034 
3035 static int perf_event_read_group(struct perf_event *event,
3036 				   u64 read_format, char __user *buf)
3037 {
3038 	struct perf_event *leader = event->group_leader, *sub;
3039 	int n = 0, size = 0, ret = -EFAULT;
3040 	struct perf_event_context *ctx = leader->ctx;
3041 	u64 values[5];
3042 	u64 count, enabled, running;
3043 
3044 	mutex_lock(&ctx->mutex);
3045 	count = perf_event_read_value(leader, &enabled, &running);
3046 
3047 	values[n++] = 1 + leader->nr_siblings;
3048 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3049 		values[n++] = enabled;
3050 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3051 		values[n++] = running;
3052 	values[n++] = count;
3053 	if (read_format & PERF_FORMAT_ID)
3054 		values[n++] = primary_event_id(leader);
3055 
3056 	size = n * sizeof(u64);
3057 
3058 	if (copy_to_user(buf, values, size))
3059 		goto unlock;
3060 
3061 	ret = size;
3062 
3063 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3064 		n = 0;
3065 
3066 		values[n++] = perf_event_read_value(sub, &enabled, &running);
3067 		if (read_format & PERF_FORMAT_ID)
3068 			values[n++] = primary_event_id(sub);
3069 
3070 		size = n * sizeof(u64);
3071 
3072 		if (copy_to_user(buf + ret, values, size)) {
3073 			ret = -EFAULT;
3074 			goto unlock;
3075 		}
3076 
3077 		ret += size;
3078 	}
3079 unlock:
3080 	mutex_unlock(&ctx->mutex);
3081 
3082 	return ret;
3083 }
3084 
3085 static int perf_event_read_one(struct perf_event *event,
3086 				 u64 read_format, char __user *buf)
3087 {
3088 	u64 enabled, running;
3089 	u64 values[4];
3090 	int n = 0;
3091 
3092 	values[n++] = perf_event_read_value(event, &enabled, &running);
3093 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3094 		values[n++] = enabled;
3095 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3096 		values[n++] = running;
3097 	if (read_format & PERF_FORMAT_ID)
3098 		values[n++] = primary_event_id(event);
3099 
3100 	if (copy_to_user(buf, values, n * sizeof(u64)))
3101 		return -EFAULT;
3102 
3103 	return n * sizeof(u64);
3104 }
3105 
3106 /*
3107  * Read the performance event - simple non blocking version for now
3108  */
3109 static ssize_t
3110 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
3111 {
3112 	u64 read_format = event->attr.read_format;
3113 	int ret;
3114 
3115 	/*
3116 	 * Return end-of-file for a read on a event that is in
3117 	 * error state (i.e. because it was pinned but it couldn't be
3118 	 * scheduled on to the CPU at some point).
3119 	 */
3120 	if (event->state == PERF_EVENT_STATE_ERROR)
3121 		return 0;
3122 
3123 	if (count < event->read_size)
3124 		return -ENOSPC;
3125 
3126 	WARN_ON_ONCE(event->ctx->parent_ctx);
3127 	if (read_format & PERF_FORMAT_GROUP)
3128 		ret = perf_event_read_group(event, read_format, buf);
3129 	else
3130 		ret = perf_event_read_one(event, read_format, buf);
3131 
3132 	return ret;
3133 }
3134 
3135 static ssize_t
3136 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3137 {
3138 	struct perf_event *event = file->private_data;
3139 
3140 	return perf_read_hw(event, buf, count);
3141 }
3142 
3143 static unsigned int perf_poll(struct file *file, poll_table *wait)
3144 {
3145 	struct perf_event *event = file->private_data;
3146 	struct ring_buffer *rb;
3147 	unsigned int events = POLL_HUP;
3148 
3149 	rcu_read_lock();
3150 	rb = rcu_dereference(event->rb);
3151 	if (rb)
3152 		events = atomic_xchg(&rb->poll, 0);
3153 	rcu_read_unlock();
3154 
3155 	poll_wait(file, &event->waitq, wait);
3156 
3157 	return events;
3158 }
3159 
3160 static void perf_event_reset(struct perf_event *event)
3161 {
3162 	(void)perf_event_read(event);
3163 	local64_set(&event->count, 0);
3164 	perf_event_update_userpage(event);
3165 }
3166 
3167 /*
3168  * Holding the top-level event's child_mutex means that any
3169  * descendant process that has inherited this event will block
3170  * in sync_child_event if it goes to exit, thus satisfying the
3171  * task existence requirements of perf_event_enable/disable.
3172  */
3173 static void perf_event_for_each_child(struct perf_event *event,
3174 					void (*func)(struct perf_event *))
3175 {
3176 	struct perf_event *child;
3177 
3178 	WARN_ON_ONCE(event->ctx->parent_ctx);
3179 	mutex_lock(&event->child_mutex);
3180 	func(event);
3181 	list_for_each_entry(child, &event->child_list, child_list)
3182 		func(child);
3183 	mutex_unlock(&event->child_mutex);
3184 }
3185 
3186 static void perf_event_for_each(struct perf_event *event,
3187 				  void (*func)(struct perf_event *))
3188 {
3189 	struct perf_event_context *ctx = event->ctx;
3190 	struct perf_event *sibling;
3191 
3192 	WARN_ON_ONCE(ctx->parent_ctx);
3193 	mutex_lock(&ctx->mutex);
3194 	event = event->group_leader;
3195 
3196 	perf_event_for_each_child(event, func);
3197 	func(event);
3198 	list_for_each_entry(sibling, &event->sibling_list, group_entry)
3199 		perf_event_for_each_child(event, func);
3200 	mutex_unlock(&ctx->mutex);
3201 }
3202 
3203 static int perf_event_period(struct perf_event *event, u64 __user *arg)
3204 {
3205 	struct perf_event_context *ctx = event->ctx;
3206 	int ret = 0;
3207 	u64 value;
3208 
3209 	if (!is_sampling_event(event))
3210 		return -EINVAL;
3211 
3212 	if (copy_from_user(&value, arg, sizeof(value)))
3213 		return -EFAULT;
3214 
3215 	if (!value)
3216 		return -EINVAL;
3217 
3218 	raw_spin_lock_irq(&ctx->lock);
3219 	if (event->attr.freq) {
3220 		if (value > sysctl_perf_event_sample_rate) {
3221 			ret = -EINVAL;
3222 			goto unlock;
3223 		}
3224 
3225 		event->attr.sample_freq = value;
3226 	} else {
3227 		event->attr.sample_period = value;
3228 		event->hw.sample_period = value;
3229 	}
3230 unlock:
3231 	raw_spin_unlock_irq(&ctx->lock);
3232 
3233 	return ret;
3234 }
3235 
3236 static const struct file_operations perf_fops;
3237 
3238 static struct perf_event *perf_fget_light(int fd, int *fput_needed)
3239 {
3240 	struct file *file;
3241 
3242 	file = fget_light(fd, fput_needed);
3243 	if (!file)
3244 		return ERR_PTR(-EBADF);
3245 
3246 	if (file->f_op != &perf_fops) {
3247 		fput_light(file, *fput_needed);
3248 		*fput_needed = 0;
3249 		return ERR_PTR(-EBADF);
3250 	}
3251 
3252 	return file->private_data;
3253 }
3254 
3255 static int perf_event_set_output(struct perf_event *event,
3256 				 struct perf_event *output_event);
3257 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3258 
3259 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3260 {
3261 	struct perf_event *event = file->private_data;
3262 	void (*func)(struct perf_event *);
3263 	u32 flags = arg;
3264 
3265 	switch (cmd) {
3266 	case PERF_EVENT_IOC_ENABLE:
3267 		func = perf_event_enable;
3268 		break;
3269 	case PERF_EVENT_IOC_DISABLE:
3270 		func = perf_event_disable;
3271 		break;
3272 	case PERF_EVENT_IOC_RESET:
3273 		func = perf_event_reset;
3274 		break;
3275 
3276 	case PERF_EVENT_IOC_REFRESH:
3277 		return perf_event_refresh(event, arg);
3278 
3279 	case PERF_EVENT_IOC_PERIOD:
3280 		return perf_event_period(event, (u64 __user *)arg);
3281 
3282 	case PERF_EVENT_IOC_SET_OUTPUT:
3283 	{
3284 		struct perf_event *output_event = NULL;
3285 		int fput_needed = 0;
3286 		int ret;
3287 
3288 		if (arg != -1) {
3289 			output_event = perf_fget_light(arg, &fput_needed);
3290 			if (IS_ERR(output_event))
3291 				return PTR_ERR(output_event);
3292 		}
3293 
3294 		ret = perf_event_set_output(event, output_event);
3295 		if (output_event)
3296 			fput_light(output_event->filp, fput_needed);
3297 
3298 		return ret;
3299 	}
3300 
3301 	case PERF_EVENT_IOC_SET_FILTER:
3302 		return perf_event_set_filter(event, (void __user *)arg);
3303 
3304 	default:
3305 		return -ENOTTY;
3306 	}
3307 
3308 	if (flags & PERF_IOC_FLAG_GROUP)
3309 		perf_event_for_each(event, func);
3310 	else
3311 		perf_event_for_each_child(event, func);
3312 
3313 	return 0;
3314 }
3315 
3316 int perf_event_task_enable(void)
3317 {
3318 	struct perf_event *event;
3319 
3320 	mutex_lock(&current->perf_event_mutex);
3321 	list_for_each_entry(event, &current->perf_event_list, owner_entry)
3322 		perf_event_for_each_child(event, perf_event_enable);
3323 	mutex_unlock(&current->perf_event_mutex);
3324 
3325 	return 0;
3326 }
3327 
3328 int perf_event_task_disable(void)
3329 {
3330 	struct perf_event *event;
3331 
3332 	mutex_lock(&current->perf_event_mutex);
3333 	list_for_each_entry(event, &current->perf_event_list, owner_entry)
3334 		perf_event_for_each_child(event, perf_event_disable);
3335 	mutex_unlock(&current->perf_event_mutex);
3336 
3337 	return 0;
3338 }
3339 
3340 #ifndef PERF_EVENT_INDEX_OFFSET
3341 # define PERF_EVENT_INDEX_OFFSET 0
3342 #endif
3343 
3344 static int perf_event_index(struct perf_event *event)
3345 {
3346 	if (event->hw.state & PERF_HES_STOPPED)
3347 		return 0;
3348 
3349 	if (event->state != PERF_EVENT_STATE_ACTIVE)
3350 		return 0;
3351 
3352 	return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
3353 }
3354 
3355 static void calc_timer_values(struct perf_event *event,
3356 				u64 *running,
3357 				u64 *enabled)
3358 {
3359 	u64 now, ctx_time;
3360 
3361 	now = perf_clock();
3362 	ctx_time = event->shadow_ctx_time + now;
3363 	*enabled = ctx_time - event->tstamp_enabled;
3364 	*running = ctx_time - event->tstamp_running;
3365 }
3366 
3367 /*
3368  * Callers need to ensure there can be no nesting of this function, otherwise
3369  * the seqlock logic goes bad. We can not serialize this because the arch
3370  * code calls this from NMI context.
3371  */
3372 void perf_event_update_userpage(struct perf_event *event)
3373 {
3374 	struct perf_event_mmap_page *userpg;
3375 	struct ring_buffer *rb;
3376 	u64 enabled, running;
3377 
3378 	rcu_read_lock();
3379 	/*
3380 	 * compute total_time_enabled, total_time_running
3381 	 * based on snapshot values taken when the event
3382 	 * was last scheduled in.
3383 	 *
3384 	 * we cannot simply called update_context_time()
3385 	 * because of locking issue as we can be called in
3386 	 * NMI context
3387 	 */
3388 	calc_timer_values(event, &enabled, &running);
3389 	rb = rcu_dereference(event->rb);
3390 	if (!rb)
3391 		goto unlock;
3392 
3393 	userpg = rb->user_page;
3394 
3395 	/*
3396 	 * Disable preemption so as to not let the corresponding user-space
3397 	 * spin too long if we get preempted.
3398 	 */
3399 	preempt_disable();
3400 	++userpg->lock;
3401 	barrier();
3402 	userpg->index = perf_event_index(event);
3403 	userpg->offset = perf_event_count(event);
3404 	if (event->state == PERF_EVENT_STATE_ACTIVE)
3405 		userpg->offset -= local64_read(&event->hw.prev_count);
3406 
3407 	userpg->time_enabled = enabled +
3408 			atomic64_read(&event->child_total_time_enabled);
3409 
3410 	userpg->time_running = running +
3411 			atomic64_read(&event->child_total_time_running);
3412 
3413 	barrier();
3414 	++userpg->lock;
3415 	preempt_enable();
3416 unlock:
3417 	rcu_read_unlock();
3418 }
3419 
3420 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3421 {
3422 	struct perf_event *event = vma->vm_file->private_data;
3423 	struct ring_buffer *rb;
3424 	int ret = VM_FAULT_SIGBUS;
3425 
3426 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
3427 		if (vmf->pgoff == 0)
3428 			ret = 0;
3429 		return ret;
3430 	}
3431 
3432 	rcu_read_lock();
3433 	rb = rcu_dereference(event->rb);
3434 	if (!rb)
3435 		goto unlock;
3436 
3437 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3438 		goto unlock;
3439 
3440 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3441 	if (!vmf->page)
3442 		goto unlock;
3443 
3444 	get_page(vmf->page);
3445 	vmf->page->mapping = vma->vm_file->f_mapping;
3446 	vmf->page->index   = vmf->pgoff;
3447 
3448 	ret = 0;
3449 unlock:
3450 	rcu_read_unlock();
3451 
3452 	return ret;
3453 }
3454 
3455 static void rb_free_rcu(struct rcu_head *rcu_head)
3456 {
3457 	struct ring_buffer *rb;
3458 
3459 	rb = container_of(rcu_head, struct ring_buffer, rcu_head);
3460 	rb_free(rb);
3461 }
3462 
3463 static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3464 {
3465 	struct ring_buffer *rb;
3466 
3467 	rcu_read_lock();
3468 	rb = rcu_dereference(event->rb);
3469 	if (rb) {
3470 		if (!atomic_inc_not_zero(&rb->refcount))
3471 			rb = NULL;
3472 	}
3473 	rcu_read_unlock();
3474 
3475 	return rb;
3476 }
3477 
3478 static void ring_buffer_put(struct ring_buffer *rb)
3479 {
3480 	if (!atomic_dec_and_test(&rb->refcount))
3481 		return;
3482 
3483 	call_rcu(&rb->rcu_head, rb_free_rcu);
3484 }
3485 
3486 static void perf_mmap_open(struct vm_area_struct *vma)
3487 {
3488 	struct perf_event *event = vma->vm_file->private_data;
3489 
3490 	atomic_inc(&event->mmap_count);
3491 }
3492 
3493 static void perf_mmap_close(struct vm_area_struct *vma)
3494 {
3495 	struct perf_event *event = vma->vm_file->private_data;
3496 
3497 	if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
3498 		unsigned long size = perf_data_size(event->rb);
3499 		struct user_struct *user = event->mmap_user;
3500 		struct ring_buffer *rb = event->rb;
3501 
3502 		atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
3503 		vma->vm_mm->locked_vm -= event->mmap_locked;
3504 		rcu_assign_pointer(event->rb, NULL);
3505 		mutex_unlock(&event->mmap_mutex);
3506 
3507 		ring_buffer_put(rb);
3508 		free_uid(user);
3509 	}
3510 }
3511 
3512 static const struct vm_operations_struct perf_mmap_vmops = {
3513 	.open		= perf_mmap_open,
3514 	.close		= perf_mmap_close,
3515 	.fault		= perf_mmap_fault,
3516 	.page_mkwrite	= perf_mmap_fault,
3517 };
3518 
3519 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3520 {
3521 	struct perf_event *event = file->private_data;
3522 	unsigned long user_locked, user_lock_limit;
3523 	struct user_struct *user = current_user();
3524 	unsigned long locked, lock_limit;
3525 	struct ring_buffer *rb;
3526 	unsigned long vma_size;
3527 	unsigned long nr_pages;
3528 	long user_extra, extra;
3529 	int ret = 0, flags = 0;
3530 
3531 	/*
3532 	 * Don't allow mmap() of inherited per-task counters. This would
3533 	 * create a performance issue due to all children writing to the
3534 	 * same rb.
3535 	 */
3536 	if (event->cpu == -1 && event->attr.inherit)
3537 		return -EINVAL;
3538 
3539 	if (!(vma->vm_flags & VM_SHARED))
3540 		return -EINVAL;
3541 
3542 	vma_size = vma->vm_end - vma->vm_start;
3543 	nr_pages = (vma_size / PAGE_SIZE) - 1;
3544 
3545 	/*
3546 	 * If we have rb pages ensure they're a power-of-two number, so we
3547 	 * can do bitmasks instead of modulo.
3548 	 */
3549 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
3550 		return -EINVAL;
3551 
3552 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
3553 		return -EINVAL;
3554 
3555 	if (vma->vm_pgoff != 0)
3556 		return -EINVAL;
3557 
3558 	WARN_ON_ONCE(event->ctx->parent_ctx);
3559 	mutex_lock(&event->mmap_mutex);
3560 	if (event->rb) {
3561 		if (event->rb->nr_pages == nr_pages)
3562 			atomic_inc(&event->rb->refcount);
3563 		else
3564 			ret = -EINVAL;
3565 		goto unlock;
3566 	}
3567 
3568 	user_extra = nr_pages + 1;
3569 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
3570 
3571 	/*
3572 	 * Increase the limit linearly with more CPUs:
3573 	 */
3574 	user_lock_limit *= num_online_cpus();
3575 
3576 	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3577 
3578 	extra = 0;
3579 	if (user_locked > user_lock_limit)
3580 		extra = user_locked - user_lock_limit;
3581 
3582 	lock_limit = rlimit(RLIMIT_MEMLOCK);
3583 	lock_limit >>= PAGE_SHIFT;
3584 	locked = vma->vm_mm->locked_vm + extra;
3585 
3586 	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3587 		!capable(CAP_IPC_LOCK)) {
3588 		ret = -EPERM;
3589 		goto unlock;
3590 	}
3591 
3592 	WARN_ON(event->rb);
3593 
3594 	if (vma->vm_flags & VM_WRITE)
3595 		flags |= RING_BUFFER_WRITABLE;
3596 
3597 	rb = rb_alloc(nr_pages,
3598 		event->attr.watermark ? event->attr.wakeup_watermark : 0,
3599 		event->cpu, flags);
3600 
3601 	if (!rb) {
3602 		ret = -ENOMEM;
3603 		goto unlock;
3604 	}
3605 	rcu_assign_pointer(event->rb, rb);
3606 
3607 	atomic_long_add(user_extra, &user->locked_vm);
3608 	event->mmap_locked = extra;
3609 	event->mmap_user = get_current_user();
3610 	vma->vm_mm->locked_vm += event->mmap_locked;
3611 
3612 unlock:
3613 	if (!ret)
3614 		atomic_inc(&event->mmap_count);
3615 	mutex_unlock(&event->mmap_mutex);
3616 
3617 	vma->vm_flags |= VM_RESERVED;
3618 	vma->vm_ops = &perf_mmap_vmops;
3619 
3620 	return ret;
3621 }
3622 
3623 static int perf_fasync(int fd, struct file *filp, int on)
3624 {
3625 	struct inode *inode = filp->f_path.dentry->d_inode;
3626 	struct perf_event *event = filp->private_data;
3627 	int retval;
3628 
3629 	mutex_lock(&inode->i_mutex);
3630 	retval = fasync_helper(fd, filp, on, &event->fasync);
3631 	mutex_unlock(&inode->i_mutex);
3632 
3633 	if (retval < 0)
3634 		return retval;
3635 
3636 	return 0;
3637 }
3638 
3639 static const struct file_operations perf_fops = {
3640 	.llseek			= no_llseek,
3641 	.release		= perf_release,
3642 	.read			= perf_read,
3643 	.poll			= perf_poll,
3644 	.unlocked_ioctl		= perf_ioctl,
3645 	.compat_ioctl		= perf_ioctl,
3646 	.mmap			= perf_mmap,
3647 	.fasync			= perf_fasync,
3648 };
3649 
3650 /*
3651  * Perf event wakeup
3652  *
3653  * If there's data, ensure we set the poll() state and publish everything
3654  * to user-space before waking everybody up.
3655  */
3656 
3657 void perf_event_wakeup(struct perf_event *event)
3658 {
3659 	wake_up_all(&event->waitq);
3660 
3661 	if (event->pending_kill) {
3662 		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
3663 		event->pending_kill = 0;
3664 	}
3665 }
3666 
3667 static void perf_pending_event(struct irq_work *entry)
3668 {
3669 	struct perf_event *event = container_of(entry,
3670 			struct perf_event, pending);
3671 
3672 	if (event->pending_disable) {
3673 		event->pending_disable = 0;
3674 		__perf_event_disable(event);
3675 	}
3676 
3677 	if (event->pending_wakeup) {
3678 		event->pending_wakeup = 0;
3679 		perf_event_wakeup(event);
3680 	}
3681 }
3682 
3683 /*
3684  * We assume there is only KVM supporting the callbacks.
3685  * Later on, we might change it to a list if there is
3686  * another virtualization implementation supporting the callbacks.
3687  */
3688 struct perf_guest_info_callbacks *perf_guest_cbs;
3689 
3690 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3691 {
3692 	perf_guest_cbs = cbs;
3693 	return 0;
3694 }
3695 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3696 
3697 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3698 {
3699 	perf_guest_cbs = NULL;
3700 	return 0;
3701 }
3702 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3703 
3704 static void __perf_event_header__init_id(struct perf_event_header *header,
3705 					 struct perf_sample_data *data,
3706 					 struct perf_event *event)
3707 {
3708 	u64 sample_type = event->attr.sample_type;
3709 
3710 	data->type = sample_type;
3711 	header->size += event->id_header_size;
3712 
3713 	if (sample_type & PERF_SAMPLE_TID) {
3714 		/* namespace issues */
3715 		data->tid_entry.pid = perf_event_pid(event, current);
3716 		data->tid_entry.tid = perf_event_tid(event, current);
3717 	}
3718 
3719 	if (sample_type & PERF_SAMPLE_TIME)
3720 		data->time = perf_clock();
3721 
3722 	if (sample_type & PERF_SAMPLE_ID)
3723 		data->id = primary_event_id(event);
3724 
3725 	if (sample_type & PERF_SAMPLE_STREAM_ID)
3726 		data->stream_id = event->id;
3727 
3728 	if (sample_type & PERF_SAMPLE_CPU) {
3729 		data->cpu_entry.cpu	 = raw_smp_processor_id();
3730 		data->cpu_entry.reserved = 0;
3731 	}
3732 }
3733 
3734 void perf_event_header__init_id(struct perf_event_header *header,
3735 				struct perf_sample_data *data,
3736 				struct perf_event *event)
3737 {
3738 	if (event->attr.sample_id_all)
3739 		__perf_event_header__init_id(header, data, event);
3740 }
3741 
3742 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
3743 					   struct perf_sample_data *data)
3744 {
3745 	u64 sample_type = data->type;
3746 
3747 	if (sample_type & PERF_SAMPLE_TID)
3748 		perf_output_put(handle, data->tid_entry);
3749 
3750 	if (sample_type & PERF_SAMPLE_TIME)
3751 		perf_output_put(handle, data->time);
3752 
3753 	if (sample_type & PERF_SAMPLE_ID)
3754 		perf_output_put(handle, data->id);
3755 
3756 	if (sample_type & PERF_SAMPLE_STREAM_ID)
3757 		perf_output_put(handle, data->stream_id);
3758 
3759 	if (sample_type & PERF_SAMPLE_CPU)
3760 		perf_output_put(handle, data->cpu_entry);
3761 }
3762 
3763 void perf_event__output_id_sample(struct perf_event *event,
3764 				  struct perf_output_handle *handle,
3765 				  struct perf_sample_data *sample)
3766 {
3767 	if (event->attr.sample_id_all)
3768 		__perf_event__output_id_sample(handle, sample);
3769 }
3770 
3771 static void perf_output_read_one(struct perf_output_handle *handle,
3772 				 struct perf_event *event,
3773 				 u64 enabled, u64 running)
3774 {
3775 	u64 read_format = event->attr.read_format;
3776 	u64 values[4];
3777 	int n = 0;
3778 
3779 	values[n++] = perf_event_count(event);
3780 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3781 		values[n++] = enabled +
3782 			atomic64_read(&event->child_total_time_enabled);
3783 	}
3784 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3785 		values[n++] = running +
3786 			atomic64_read(&event->child_total_time_running);
3787 	}
3788 	if (read_format & PERF_FORMAT_ID)
3789 		values[n++] = primary_event_id(event);
3790 
3791 	__output_copy(handle, values, n * sizeof(u64));
3792 }
3793 
3794 /*
3795  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3796  */
3797 static void perf_output_read_group(struct perf_output_handle *handle,
3798 			    struct perf_event *event,
3799 			    u64 enabled, u64 running)
3800 {
3801 	struct perf_event *leader = event->group_leader, *sub;
3802 	u64 read_format = event->attr.read_format;
3803 	u64 values[5];
3804 	int n = 0;
3805 
3806 	values[n++] = 1 + leader->nr_siblings;
3807 
3808 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3809 		values[n++] = enabled;
3810 
3811 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3812 		values[n++] = running;
3813 
3814 	if (leader != event)
3815 		leader->pmu->read(leader);
3816 
3817 	values[n++] = perf_event_count(leader);
3818 	if (read_format & PERF_FORMAT_ID)
3819 		values[n++] = primary_event_id(leader);
3820 
3821 	__output_copy(handle, values, n * sizeof(u64));
3822 
3823 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3824 		n = 0;
3825 
3826 		if (sub != event)
3827 			sub->pmu->read(sub);
3828 
3829 		values[n++] = perf_event_count(sub);
3830 		if (read_format & PERF_FORMAT_ID)
3831 			values[n++] = primary_event_id(sub);
3832 
3833 		__output_copy(handle, values, n * sizeof(u64));
3834 	}
3835 }
3836 
3837 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
3838 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
3839 
3840 static void perf_output_read(struct perf_output_handle *handle,
3841 			     struct perf_event *event)
3842 {
3843 	u64 enabled = 0, running = 0;
3844 	u64 read_format = event->attr.read_format;
3845 
3846 	/*
3847 	 * compute total_time_enabled, total_time_running
3848 	 * based on snapshot values taken when the event
3849 	 * was last scheduled in.
3850 	 *
3851 	 * we cannot simply called update_context_time()
3852 	 * because of locking issue as we are called in
3853 	 * NMI context
3854 	 */
3855 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
3856 		calc_timer_values(event, &enabled, &running);
3857 
3858 	if (event->attr.read_format & PERF_FORMAT_GROUP)
3859 		perf_output_read_group(handle, event, enabled, running);
3860 	else
3861 		perf_output_read_one(handle, event, enabled, running);
3862 }
3863 
3864 void perf_output_sample(struct perf_output_handle *handle,
3865 			struct perf_event_header *header,
3866 			struct perf_sample_data *data,
3867 			struct perf_event *event)
3868 {
3869 	u64 sample_type = data->type;
3870 
3871 	perf_output_put(handle, *header);
3872 
3873 	if (sample_type & PERF_SAMPLE_IP)
3874 		perf_output_put(handle, data->ip);
3875 
3876 	if (sample_type & PERF_SAMPLE_TID)
3877 		perf_output_put(handle, data->tid_entry);
3878 
3879 	if (sample_type & PERF_SAMPLE_TIME)
3880 		perf_output_put(handle, data->time);
3881 
3882 	if (sample_type & PERF_SAMPLE_ADDR)
3883 		perf_output_put(handle, data->addr);
3884 
3885 	if (sample_type & PERF_SAMPLE_ID)
3886 		perf_output_put(handle, data->id);
3887 
3888 	if (sample_type & PERF_SAMPLE_STREAM_ID)
3889 		perf_output_put(handle, data->stream_id);
3890 
3891 	if (sample_type & PERF_SAMPLE_CPU)
3892 		perf_output_put(handle, data->cpu_entry);
3893 
3894 	if (sample_type & PERF_SAMPLE_PERIOD)
3895 		perf_output_put(handle, data->period);
3896 
3897 	if (sample_type & PERF_SAMPLE_READ)
3898 		perf_output_read(handle, event);
3899 
3900 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3901 		if (data->callchain) {
3902 			int size = 1;
3903 
3904 			if (data->callchain)
3905 				size += data->callchain->nr;
3906 
3907 			size *= sizeof(u64);
3908 
3909 			__output_copy(handle, data->callchain, size);
3910 		} else {
3911 			u64 nr = 0;
3912 			perf_output_put(handle, nr);
3913 		}
3914 	}
3915 
3916 	if (sample_type & PERF_SAMPLE_RAW) {
3917 		if (data->raw) {
3918 			perf_output_put(handle, data->raw->size);
3919 			__output_copy(handle, data->raw->data,
3920 					   data->raw->size);
3921 		} else {
3922 			struct {
3923 				u32	size;
3924 				u32	data;
3925 			} raw = {
3926 				.size = sizeof(u32),
3927 				.data = 0,
3928 			};
3929 			perf_output_put(handle, raw);
3930 		}
3931 	}
3932 
3933 	if (!event->attr.watermark) {
3934 		int wakeup_events = event->attr.wakeup_events;
3935 
3936 		if (wakeup_events) {
3937 			struct ring_buffer *rb = handle->rb;
3938 			int events = local_inc_return(&rb->events);
3939 
3940 			if (events >= wakeup_events) {
3941 				local_sub(wakeup_events, &rb->events);
3942 				local_inc(&rb->wakeup);
3943 			}
3944 		}
3945 	}
3946 }
3947 
3948 void perf_prepare_sample(struct perf_event_header *header,
3949 			 struct perf_sample_data *data,
3950 			 struct perf_event *event,
3951 			 struct pt_regs *regs)
3952 {
3953 	u64 sample_type = event->attr.sample_type;
3954 
3955 	header->type = PERF_RECORD_SAMPLE;
3956 	header->size = sizeof(*header) + event->header_size;
3957 
3958 	header->misc = 0;
3959 	header->misc |= perf_misc_flags(regs);
3960 
3961 	__perf_event_header__init_id(header, data, event);
3962 
3963 	if (sample_type & PERF_SAMPLE_IP)
3964 		data->ip = perf_instruction_pointer(regs);
3965 
3966 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3967 		int size = 1;
3968 
3969 		data->callchain = perf_callchain(regs);
3970 
3971 		if (data->callchain)
3972 			size += data->callchain->nr;
3973 
3974 		header->size += size * sizeof(u64);
3975 	}
3976 
3977 	if (sample_type & PERF_SAMPLE_RAW) {
3978 		int size = sizeof(u32);
3979 
3980 		if (data->raw)
3981 			size += data->raw->size;
3982 		else
3983 			size += sizeof(u32);
3984 
3985 		WARN_ON_ONCE(size & (sizeof(u64)-1));
3986 		header->size += size;
3987 	}
3988 }
3989 
3990 static void perf_event_output(struct perf_event *event,
3991 				struct perf_sample_data *data,
3992 				struct pt_regs *regs)
3993 {
3994 	struct perf_output_handle handle;
3995 	struct perf_event_header header;
3996 
3997 	/* protect the callchain buffers */
3998 	rcu_read_lock();
3999 
4000 	perf_prepare_sample(&header, data, event, regs);
4001 
4002 	if (perf_output_begin(&handle, event, header.size))
4003 		goto exit;
4004 
4005 	perf_output_sample(&handle, &header, data, event);
4006 
4007 	perf_output_end(&handle);
4008 
4009 exit:
4010 	rcu_read_unlock();
4011 }
4012 
4013 /*
4014  * read event_id
4015  */
4016 
4017 struct perf_read_event {
4018 	struct perf_event_header	header;
4019 
4020 	u32				pid;
4021 	u32				tid;
4022 };
4023 
4024 static void
4025 perf_event_read_event(struct perf_event *event,
4026 			struct task_struct *task)
4027 {
4028 	struct perf_output_handle handle;
4029 	struct perf_sample_data sample;
4030 	struct perf_read_event read_event = {
4031 		.header = {
4032 			.type = PERF_RECORD_READ,
4033 			.misc = 0,
4034 			.size = sizeof(read_event) + event->read_size,
4035 		},
4036 		.pid = perf_event_pid(event, task),
4037 		.tid = perf_event_tid(event, task),
4038 	};
4039 	int ret;
4040 
4041 	perf_event_header__init_id(&read_event.header, &sample, event);
4042 	ret = perf_output_begin(&handle, event, read_event.header.size);
4043 	if (ret)
4044 		return;
4045 
4046 	perf_output_put(&handle, read_event);
4047 	perf_output_read(&handle, event);
4048 	perf_event__output_id_sample(event, &handle, &sample);
4049 
4050 	perf_output_end(&handle);
4051 }
4052 
4053 /*
4054  * task tracking -- fork/exit
4055  *
4056  * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
4057  */
4058 
4059 struct perf_task_event {
4060 	struct task_struct		*task;
4061 	struct perf_event_context	*task_ctx;
4062 
4063 	struct {
4064 		struct perf_event_header	header;
4065 
4066 		u32				pid;
4067 		u32				ppid;
4068 		u32				tid;
4069 		u32				ptid;
4070 		u64				time;
4071 	} event_id;
4072 };
4073 
4074 static void perf_event_task_output(struct perf_event *event,
4075 				     struct perf_task_event *task_event)
4076 {
4077 	struct perf_output_handle handle;
4078 	struct perf_sample_data	sample;
4079 	struct task_struct *task = task_event->task;
4080 	int ret, size = task_event->event_id.header.size;
4081 
4082 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
4083 
4084 	ret = perf_output_begin(&handle, event,
4085 				task_event->event_id.header.size);
4086 	if (ret)
4087 		goto out;
4088 
4089 	task_event->event_id.pid = perf_event_pid(event, task);
4090 	task_event->event_id.ppid = perf_event_pid(event, current);
4091 
4092 	task_event->event_id.tid = perf_event_tid(event, task);
4093 	task_event->event_id.ptid = perf_event_tid(event, current);
4094 
4095 	perf_output_put(&handle, task_event->event_id);
4096 
4097 	perf_event__output_id_sample(event, &handle, &sample);
4098 
4099 	perf_output_end(&handle);
4100 out:
4101 	task_event->event_id.header.size = size;
4102 }
4103 
4104 static int perf_event_task_match(struct perf_event *event)
4105 {
4106 	if (event->state < PERF_EVENT_STATE_INACTIVE)
4107 		return 0;
4108 
4109 	if (!event_filter_match(event))
4110 		return 0;
4111 
4112 	if (event->attr.comm || event->attr.mmap ||
4113 	    event->attr.mmap_data || event->attr.task)
4114 		return 1;
4115 
4116 	return 0;
4117 }
4118 
4119 static void perf_event_task_ctx(struct perf_event_context *ctx,
4120 				  struct perf_task_event *task_event)
4121 {
4122 	struct perf_event *event;
4123 
4124 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4125 		if (perf_event_task_match(event))
4126 			perf_event_task_output(event, task_event);
4127 	}
4128 }
4129 
4130 static void perf_event_task_event(struct perf_task_event *task_event)
4131 {
4132 	struct perf_cpu_context *cpuctx;
4133 	struct perf_event_context *ctx;
4134 	struct pmu *pmu;
4135 	int ctxn;
4136 
4137 	rcu_read_lock();
4138 	list_for_each_entry_rcu(pmu, &pmus, entry) {
4139 		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4140 		if (cpuctx->active_pmu != pmu)
4141 			goto next;
4142 		perf_event_task_ctx(&cpuctx->ctx, task_event);
4143 
4144 		ctx = task_event->task_ctx;
4145 		if (!ctx) {
4146 			ctxn = pmu->task_ctx_nr;
4147 			if (ctxn < 0)
4148 				goto next;
4149 			ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4150 		}
4151 		if (ctx)
4152 			perf_event_task_ctx(ctx, task_event);
4153 next:
4154 		put_cpu_ptr(pmu->pmu_cpu_context);
4155 	}
4156 	rcu_read_unlock();
4157 }
4158 
4159 static void perf_event_task(struct task_struct *task,
4160 			      struct perf_event_context *task_ctx,
4161 			      int new)
4162 {
4163 	struct perf_task_event task_event;
4164 
4165 	if (!atomic_read(&nr_comm_events) &&
4166 	    !atomic_read(&nr_mmap_events) &&
4167 	    !atomic_read(&nr_task_events))
4168 		return;
4169 
4170 	task_event = (struct perf_task_event){
4171 		.task	  = task,
4172 		.task_ctx = task_ctx,
4173 		.event_id    = {
4174 			.header = {
4175 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4176 				.misc = 0,
4177 				.size = sizeof(task_event.event_id),
4178 			},
4179 			/* .pid  */
4180 			/* .ppid */
4181 			/* .tid  */
4182 			/* .ptid */
4183 			.time = perf_clock(),
4184 		},
4185 	};
4186 
4187 	perf_event_task_event(&task_event);
4188 }
4189 
4190 void perf_event_fork(struct task_struct *task)
4191 {
4192 	perf_event_task(task, NULL, 1);
4193 }
4194 
4195 /*
4196  * comm tracking
4197  */
4198 
4199 struct perf_comm_event {
4200 	struct task_struct	*task;
4201 	char			*comm;
4202 	int			comm_size;
4203 
4204 	struct {
4205 		struct perf_event_header	header;
4206 
4207 		u32				pid;
4208 		u32				tid;
4209 	} event_id;
4210 };
4211 
4212 static void perf_event_comm_output(struct perf_event *event,
4213 				     struct perf_comm_event *comm_event)
4214 {
4215 	struct perf_output_handle handle;
4216 	struct perf_sample_data sample;
4217 	int size = comm_event->event_id.header.size;
4218 	int ret;
4219 
4220 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
4221 	ret = perf_output_begin(&handle, event,
4222 				comm_event->event_id.header.size);
4223 
4224 	if (ret)
4225 		goto out;
4226 
4227 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
4228 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4229 
4230 	perf_output_put(&handle, comm_event->event_id);
4231 	__output_copy(&handle, comm_event->comm,
4232 				   comm_event->comm_size);
4233 
4234 	perf_event__output_id_sample(event, &handle, &sample);
4235 
4236 	perf_output_end(&handle);
4237 out:
4238 	comm_event->event_id.header.size = size;
4239 }
4240 
4241 static int perf_event_comm_match(struct perf_event *event)
4242 {
4243 	if (event->state < PERF_EVENT_STATE_INACTIVE)
4244 		return 0;
4245 
4246 	if (!event_filter_match(event))
4247 		return 0;
4248 
4249 	if (event->attr.comm)
4250 		return 1;
4251 
4252 	return 0;
4253 }
4254 
4255 static void perf_event_comm_ctx(struct perf_event_context *ctx,
4256 				  struct perf_comm_event *comm_event)
4257 {
4258 	struct perf_event *event;
4259 
4260 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4261 		if (perf_event_comm_match(event))
4262 			perf_event_comm_output(event, comm_event);
4263 	}
4264 }
4265 
4266 static void perf_event_comm_event(struct perf_comm_event *comm_event)
4267 {
4268 	struct perf_cpu_context *cpuctx;
4269 	struct perf_event_context *ctx;
4270 	char comm[TASK_COMM_LEN];
4271 	unsigned int size;
4272 	struct pmu *pmu;
4273 	int ctxn;
4274 
4275 	memset(comm, 0, sizeof(comm));
4276 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
4277 	size = ALIGN(strlen(comm)+1, sizeof(u64));
4278 
4279 	comm_event->comm = comm;
4280 	comm_event->comm_size = size;
4281 
4282 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4283 	rcu_read_lock();
4284 	list_for_each_entry_rcu(pmu, &pmus, entry) {
4285 		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4286 		if (cpuctx->active_pmu != pmu)
4287 			goto next;
4288 		perf_event_comm_ctx(&cpuctx->ctx, comm_event);
4289 
4290 		ctxn = pmu->task_ctx_nr;
4291 		if (ctxn < 0)
4292 			goto next;
4293 
4294 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4295 		if (ctx)
4296 			perf_event_comm_ctx(ctx, comm_event);
4297 next:
4298 		put_cpu_ptr(pmu->pmu_cpu_context);
4299 	}
4300 	rcu_read_unlock();
4301 }
4302 
4303 void perf_event_comm(struct task_struct *task)
4304 {
4305 	struct perf_comm_event comm_event;
4306 	struct perf_event_context *ctx;
4307 	int ctxn;
4308 
4309 	for_each_task_context_nr(ctxn) {
4310 		ctx = task->perf_event_ctxp[ctxn];
4311 		if (!ctx)
4312 			continue;
4313 
4314 		perf_event_enable_on_exec(ctx);
4315 	}
4316 
4317 	if (!atomic_read(&nr_comm_events))
4318 		return;
4319 
4320 	comm_event = (struct perf_comm_event){
4321 		.task	= task,
4322 		/* .comm      */
4323 		/* .comm_size */
4324 		.event_id  = {
4325 			.header = {
4326 				.type = PERF_RECORD_COMM,
4327 				.misc = 0,
4328 				/* .size */
4329 			},
4330 			/* .pid */
4331 			/* .tid */
4332 		},
4333 	};
4334 
4335 	perf_event_comm_event(&comm_event);
4336 }
4337 
4338 /*
4339  * mmap tracking
4340  */
4341 
4342 struct perf_mmap_event {
4343 	struct vm_area_struct	*vma;
4344 
4345 	const char		*file_name;
4346 	int			file_size;
4347 
4348 	struct {
4349 		struct perf_event_header	header;
4350 
4351 		u32				pid;
4352 		u32				tid;
4353 		u64				start;
4354 		u64				len;
4355 		u64				pgoff;
4356 	} event_id;
4357 };
4358 
4359 static void perf_event_mmap_output(struct perf_event *event,
4360 				     struct perf_mmap_event *mmap_event)
4361 {
4362 	struct perf_output_handle handle;
4363 	struct perf_sample_data sample;
4364 	int size = mmap_event->event_id.header.size;
4365 	int ret;
4366 
4367 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
4368 	ret = perf_output_begin(&handle, event,
4369 				mmap_event->event_id.header.size);
4370 	if (ret)
4371 		goto out;
4372 
4373 	mmap_event->event_id.pid = perf_event_pid(event, current);
4374 	mmap_event->event_id.tid = perf_event_tid(event, current);
4375 
4376 	perf_output_put(&handle, mmap_event->event_id);
4377 	__output_copy(&handle, mmap_event->file_name,
4378 				   mmap_event->file_size);
4379 
4380 	perf_event__output_id_sample(event, &handle, &sample);
4381 
4382 	perf_output_end(&handle);
4383 out:
4384 	mmap_event->event_id.header.size = size;
4385 }
4386 
4387 static int perf_event_mmap_match(struct perf_event *event,
4388 				   struct perf_mmap_event *mmap_event,
4389 				   int executable)
4390 {
4391 	if (event->state < PERF_EVENT_STATE_INACTIVE)
4392 		return 0;
4393 
4394 	if (!event_filter_match(event))
4395 		return 0;
4396 
4397 	if ((!executable && event->attr.mmap_data) ||
4398 	    (executable && event->attr.mmap))
4399 		return 1;
4400 
4401 	return 0;
4402 }
4403 
4404 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4405 				  struct perf_mmap_event *mmap_event,
4406 				  int executable)
4407 {
4408 	struct perf_event *event;
4409 
4410 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4411 		if (perf_event_mmap_match(event, mmap_event, executable))
4412 			perf_event_mmap_output(event, mmap_event);
4413 	}
4414 }
4415 
4416 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4417 {
4418 	struct perf_cpu_context *cpuctx;
4419 	struct perf_event_context *ctx;
4420 	struct vm_area_struct *vma = mmap_event->vma;
4421 	struct file *file = vma->vm_file;
4422 	unsigned int size;
4423 	char tmp[16];
4424 	char *buf = NULL;
4425 	const char *name;
4426 	struct pmu *pmu;
4427 	int ctxn;
4428 
4429 	memset(tmp, 0, sizeof(tmp));
4430 
4431 	if (file) {
4432 		/*
4433 		 * d_path works from the end of the rb backwards, so we
4434 		 * need to add enough zero bytes after the string to handle
4435 		 * the 64bit alignment we do later.
4436 		 */
4437 		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4438 		if (!buf) {
4439 			name = strncpy(tmp, "//enomem", sizeof(tmp));
4440 			goto got_name;
4441 		}
4442 		name = d_path(&file->f_path, buf, PATH_MAX);
4443 		if (IS_ERR(name)) {
4444 			name = strncpy(tmp, "//toolong", sizeof(tmp));
4445 			goto got_name;
4446 		}
4447 	} else {
4448 		if (arch_vma_name(mmap_event->vma)) {
4449 			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4450 				       sizeof(tmp));
4451 			goto got_name;
4452 		}
4453 
4454 		if (!vma->vm_mm) {
4455 			name = strncpy(tmp, "[vdso]", sizeof(tmp));
4456 			goto got_name;
4457 		} else if (vma->vm_start <= vma->vm_mm->start_brk &&
4458 				vma->vm_end >= vma->vm_mm->brk) {
4459 			name = strncpy(tmp, "[heap]", sizeof(tmp));
4460 			goto got_name;
4461 		} else if (vma->vm_start <= vma->vm_mm->start_stack &&
4462 				vma->vm_end >= vma->vm_mm->start_stack) {
4463 			name = strncpy(tmp, "[stack]", sizeof(tmp));
4464 			goto got_name;
4465 		}
4466 
4467 		name = strncpy(tmp, "//anon", sizeof(tmp));
4468 		goto got_name;
4469 	}
4470 
4471 got_name:
4472 	size = ALIGN(strlen(name)+1, sizeof(u64));
4473 
4474 	mmap_event->file_name = name;
4475 	mmap_event->file_size = size;
4476 
4477 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4478 
4479 	rcu_read_lock();
4480 	list_for_each_entry_rcu(pmu, &pmus, entry) {
4481 		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4482 		if (cpuctx->active_pmu != pmu)
4483 			goto next;
4484 		perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
4485 					vma->vm_flags & VM_EXEC);
4486 
4487 		ctxn = pmu->task_ctx_nr;
4488 		if (ctxn < 0)
4489 			goto next;
4490 
4491 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4492 		if (ctx) {
4493 			perf_event_mmap_ctx(ctx, mmap_event,
4494 					vma->vm_flags & VM_EXEC);
4495 		}
4496 next:
4497 		put_cpu_ptr(pmu->pmu_cpu_context);
4498 	}
4499 	rcu_read_unlock();
4500 
4501 	kfree(buf);
4502 }
4503 
4504 void perf_event_mmap(struct vm_area_struct *vma)
4505 {
4506 	struct perf_mmap_event mmap_event;
4507 
4508 	if (!atomic_read(&nr_mmap_events))
4509 		return;
4510 
4511 	mmap_event = (struct perf_mmap_event){
4512 		.vma	= vma,
4513 		/* .file_name */
4514 		/* .file_size */
4515 		.event_id  = {
4516 			.header = {
4517 				.type = PERF_RECORD_MMAP,
4518 				.misc = PERF_RECORD_MISC_USER,
4519 				/* .size */
4520 			},
4521 			/* .pid */
4522 			/* .tid */
4523 			.start  = vma->vm_start,
4524 			.len    = vma->vm_end - vma->vm_start,
4525 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
4526 		},
4527 	};
4528 
4529 	perf_event_mmap_event(&mmap_event);
4530 }
4531 
4532 /*
4533  * IRQ throttle logging
4534  */
4535 
4536 static void perf_log_throttle(struct perf_event *event, int enable)
4537 {
4538 	struct perf_output_handle handle;
4539 	struct perf_sample_data sample;
4540 	int ret;
4541 
4542 	struct {
4543 		struct perf_event_header	header;
4544 		u64				time;
4545 		u64				id;
4546 		u64				stream_id;
4547 	} throttle_event = {
4548 		.header = {
4549 			.type = PERF_RECORD_THROTTLE,
4550 			.misc = 0,
4551 			.size = sizeof(throttle_event),
4552 		},
4553 		.time		= perf_clock(),
4554 		.id		= primary_event_id(event),
4555 		.stream_id	= event->id,
4556 	};
4557 
4558 	if (enable)
4559 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4560 
4561 	perf_event_header__init_id(&throttle_event.header, &sample, event);
4562 
4563 	ret = perf_output_begin(&handle, event,
4564 				throttle_event.header.size);
4565 	if (ret)
4566 		return;
4567 
4568 	perf_output_put(&handle, throttle_event);
4569 	perf_event__output_id_sample(event, &handle, &sample);
4570 	perf_output_end(&handle);
4571 }
4572 
4573 /*
4574  * Generic event overflow handling, sampling.
4575  */
4576 
4577 static int __perf_event_overflow(struct perf_event *event,
4578 				   int throttle, struct perf_sample_data *data,
4579 				   struct pt_regs *regs)
4580 {
4581 	int events = atomic_read(&event->event_limit);
4582 	struct hw_perf_event *hwc = &event->hw;
4583 	int ret = 0;
4584 
4585 	/*
4586 	 * Non-sampling counters might still use the PMI to fold short
4587 	 * hardware counters, ignore those.
4588 	 */
4589 	if (unlikely(!is_sampling_event(event)))
4590 		return 0;
4591 
4592 	if (unlikely(hwc->interrupts >= max_samples_per_tick)) {
4593 		if (throttle) {
4594 			hwc->interrupts = MAX_INTERRUPTS;
4595 			perf_log_throttle(event, 0);
4596 			ret = 1;
4597 		}
4598 	} else
4599 		hwc->interrupts++;
4600 
4601 	if (event->attr.freq) {
4602 		u64 now = perf_clock();
4603 		s64 delta = now - hwc->freq_time_stamp;
4604 
4605 		hwc->freq_time_stamp = now;
4606 
4607 		if (delta > 0 && delta < 2*TICK_NSEC)
4608 			perf_adjust_period(event, delta, hwc->last_period);
4609 	}
4610 
4611 	/*
4612 	 * XXX event_limit might not quite work as expected on inherited
4613 	 * events
4614 	 */
4615 
4616 	event->pending_kill = POLL_IN;
4617 	if (events && atomic_dec_and_test(&event->event_limit)) {
4618 		ret = 1;
4619 		event->pending_kill = POLL_HUP;
4620 		event->pending_disable = 1;
4621 		irq_work_queue(&event->pending);
4622 	}
4623 
4624 	if (event->overflow_handler)
4625 		event->overflow_handler(event, data, regs);
4626 	else
4627 		perf_event_output(event, data, regs);
4628 
4629 	if (event->fasync && event->pending_kill) {
4630 		event->pending_wakeup = 1;
4631 		irq_work_queue(&event->pending);
4632 	}
4633 
4634 	return ret;
4635 }
4636 
4637 int perf_event_overflow(struct perf_event *event,
4638 			  struct perf_sample_data *data,
4639 			  struct pt_regs *regs)
4640 {
4641 	return __perf_event_overflow(event, 1, data, regs);
4642 }
4643 
4644 /*
4645  * Generic software event infrastructure
4646  */
4647 
4648 struct swevent_htable {
4649 	struct swevent_hlist		*swevent_hlist;
4650 	struct mutex			hlist_mutex;
4651 	int				hlist_refcount;
4652 
4653 	/* Recursion avoidance in each contexts */
4654 	int				recursion[PERF_NR_CONTEXTS];
4655 };
4656 
4657 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
4658 
4659 /*
4660  * We directly increment event->count and keep a second value in
4661  * event->hw.period_left to count intervals. This period event
4662  * is kept in the range [-sample_period, 0] so that we can use the
4663  * sign as trigger.
4664  */
4665 
4666 static u64 perf_swevent_set_period(struct perf_event *event)
4667 {
4668 	struct hw_perf_event *hwc = &event->hw;
4669 	u64 period = hwc->last_period;
4670 	u64 nr, offset;
4671 	s64 old, val;
4672 
4673 	hwc->last_period = hwc->sample_period;
4674 
4675 again:
4676 	old = val = local64_read(&hwc->period_left);
4677 	if (val < 0)
4678 		return 0;
4679 
4680 	nr = div64_u64(period + val, period);
4681 	offset = nr * period;
4682 	val -= offset;
4683 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4684 		goto again;
4685 
4686 	return nr;
4687 }
4688 
4689 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4690 				    struct perf_sample_data *data,
4691 				    struct pt_regs *regs)
4692 {
4693 	struct hw_perf_event *hwc = &event->hw;
4694 	int throttle = 0;
4695 
4696 	data->period = event->hw.last_period;
4697 	if (!overflow)
4698 		overflow = perf_swevent_set_period(event);
4699 
4700 	if (hwc->interrupts == MAX_INTERRUPTS)
4701 		return;
4702 
4703 	for (; overflow; overflow--) {
4704 		if (__perf_event_overflow(event, throttle,
4705 					    data, regs)) {
4706 			/*
4707 			 * We inhibit the overflow from happening when
4708 			 * hwc->interrupts == MAX_INTERRUPTS.
4709 			 */
4710 			break;
4711 		}
4712 		throttle = 1;
4713 	}
4714 }
4715 
4716 static void perf_swevent_event(struct perf_event *event, u64 nr,
4717 			       struct perf_sample_data *data,
4718 			       struct pt_regs *regs)
4719 {
4720 	struct hw_perf_event *hwc = &event->hw;
4721 
4722 	local64_add(nr, &event->count);
4723 
4724 	if (!regs)
4725 		return;
4726 
4727 	if (!is_sampling_event(event))
4728 		return;
4729 
4730 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4731 		return perf_swevent_overflow(event, 1, data, regs);
4732 
4733 	if (local64_add_negative(nr, &hwc->period_left))
4734 		return;
4735 
4736 	perf_swevent_overflow(event, 0, data, regs);
4737 }
4738 
4739 static int perf_exclude_event(struct perf_event *event,
4740 			      struct pt_regs *regs)
4741 {
4742 	if (event->hw.state & PERF_HES_STOPPED)
4743 		return 1;
4744 
4745 	if (regs) {
4746 		if (event->attr.exclude_user && user_mode(regs))
4747 			return 1;
4748 
4749 		if (event->attr.exclude_kernel && !user_mode(regs))
4750 			return 1;
4751 	}
4752 
4753 	return 0;
4754 }
4755 
4756 static int perf_swevent_match(struct perf_event *event,
4757 				enum perf_type_id type,
4758 				u32 event_id,
4759 				struct perf_sample_data *data,
4760 				struct pt_regs *regs)
4761 {
4762 	if (event->attr.type != type)
4763 		return 0;
4764 
4765 	if (event->attr.config != event_id)
4766 		return 0;
4767 
4768 	if (perf_exclude_event(event, regs))
4769 		return 0;
4770 
4771 	return 1;
4772 }
4773 
4774 static inline u64 swevent_hash(u64 type, u32 event_id)
4775 {
4776 	u64 val = event_id | (type << 32);
4777 
4778 	return hash_64(val, SWEVENT_HLIST_BITS);
4779 }
4780 
4781 static inline struct hlist_head *
4782 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4783 {
4784 	u64 hash = swevent_hash(type, event_id);
4785 
4786 	return &hlist->heads[hash];
4787 }
4788 
4789 /* For the read side: events when they trigger */
4790 static inline struct hlist_head *
4791 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
4792 {
4793 	struct swevent_hlist *hlist;
4794 
4795 	hlist = rcu_dereference(swhash->swevent_hlist);
4796 	if (!hlist)
4797 		return NULL;
4798 
4799 	return __find_swevent_head(hlist, type, event_id);
4800 }
4801 
4802 /* For the event head insertion and removal in the hlist */
4803 static inline struct hlist_head *
4804 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
4805 {
4806 	struct swevent_hlist *hlist;
4807 	u32 event_id = event->attr.config;
4808 	u64 type = event->attr.type;
4809 
4810 	/*
4811 	 * Event scheduling is always serialized against hlist allocation
4812 	 * and release. Which makes the protected version suitable here.
4813 	 * The context lock guarantees that.
4814 	 */
4815 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
4816 					  lockdep_is_held(&event->ctx->lock));
4817 	if (!hlist)
4818 		return NULL;
4819 
4820 	return __find_swevent_head(hlist, type, event_id);
4821 }
4822 
4823 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4824 				    u64 nr,
4825 				    struct perf_sample_data *data,
4826 				    struct pt_regs *regs)
4827 {
4828 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4829 	struct perf_event *event;
4830 	struct hlist_node *node;
4831 	struct hlist_head *head;
4832 
4833 	rcu_read_lock();
4834 	head = find_swevent_head_rcu(swhash, type, event_id);
4835 	if (!head)
4836 		goto end;
4837 
4838 	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4839 		if (perf_swevent_match(event, type, event_id, data, regs))
4840 			perf_swevent_event(event, nr, data, regs);
4841 	}
4842 end:
4843 	rcu_read_unlock();
4844 }
4845 
4846 int perf_swevent_get_recursion_context(void)
4847 {
4848 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4849 
4850 	return get_recursion_context(swhash->recursion);
4851 }
4852 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4853 
4854 inline void perf_swevent_put_recursion_context(int rctx)
4855 {
4856 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4857 
4858 	put_recursion_context(swhash->recursion, rctx);
4859 }
4860 
4861 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
4862 {
4863 	struct perf_sample_data data;
4864 	int rctx;
4865 
4866 	preempt_disable_notrace();
4867 	rctx = perf_swevent_get_recursion_context();
4868 	if (rctx < 0)
4869 		return;
4870 
4871 	perf_sample_data_init(&data, addr);
4872 
4873 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
4874 
4875 	perf_swevent_put_recursion_context(rctx);
4876 	preempt_enable_notrace();
4877 }
4878 
4879 static void perf_swevent_read(struct perf_event *event)
4880 {
4881 }
4882 
4883 static int perf_swevent_add(struct perf_event *event, int flags)
4884 {
4885 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4886 	struct hw_perf_event *hwc = &event->hw;
4887 	struct hlist_head *head;
4888 
4889 	if (is_sampling_event(event)) {
4890 		hwc->last_period = hwc->sample_period;
4891 		perf_swevent_set_period(event);
4892 	}
4893 
4894 	hwc->state = !(flags & PERF_EF_START);
4895 
4896 	head = find_swevent_head(swhash, event);
4897 	if (WARN_ON_ONCE(!head))
4898 		return -EINVAL;
4899 
4900 	hlist_add_head_rcu(&event->hlist_entry, head);
4901 
4902 	return 0;
4903 }
4904 
4905 static void perf_swevent_del(struct perf_event *event, int flags)
4906 {
4907 	hlist_del_rcu(&event->hlist_entry);
4908 }
4909 
4910 static void perf_swevent_start(struct perf_event *event, int flags)
4911 {
4912 	event->hw.state = 0;
4913 }
4914 
4915 static void perf_swevent_stop(struct perf_event *event, int flags)
4916 {
4917 	event->hw.state = PERF_HES_STOPPED;
4918 }
4919 
4920 /* Deref the hlist from the update side */
4921 static inline struct swevent_hlist *
4922 swevent_hlist_deref(struct swevent_htable *swhash)
4923 {
4924 	return rcu_dereference_protected(swhash->swevent_hlist,
4925 					 lockdep_is_held(&swhash->hlist_mutex));
4926 }
4927 
4928 static void swevent_hlist_release(struct swevent_htable *swhash)
4929 {
4930 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
4931 
4932 	if (!hlist)
4933 		return;
4934 
4935 	rcu_assign_pointer(swhash->swevent_hlist, NULL);
4936 	kfree_rcu(hlist, rcu_head);
4937 }
4938 
4939 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
4940 {
4941 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4942 
4943 	mutex_lock(&swhash->hlist_mutex);
4944 
4945 	if (!--swhash->hlist_refcount)
4946 		swevent_hlist_release(swhash);
4947 
4948 	mutex_unlock(&swhash->hlist_mutex);
4949 }
4950 
4951 static void swevent_hlist_put(struct perf_event *event)
4952 {
4953 	int cpu;
4954 
4955 	if (event->cpu != -1) {
4956 		swevent_hlist_put_cpu(event, event->cpu);
4957 		return;
4958 	}
4959 
4960 	for_each_possible_cpu(cpu)
4961 		swevent_hlist_put_cpu(event, cpu);
4962 }
4963 
4964 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
4965 {
4966 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4967 	int err = 0;
4968 
4969 	mutex_lock(&swhash->hlist_mutex);
4970 
4971 	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
4972 		struct swevent_hlist *hlist;
4973 
4974 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
4975 		if (!hlist) {
4976 			err = -ENOMEM;
4977 			goto exit;
4978 		}
4979 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
4980 	}
4981 	swhash->hlist_refcount++;
4982 exit:
4983 	mutex_unlock(&swhash->hlist_mutex);
4984 
4985 	return err;
4986 }
4987 
4988 static int swevent_hlist_get(struct perf_event *event)
4989 {
4990 	int err;
4991 	int cpu, failed_cpu;
4992 
4993 	if (event->cpu != -1)
4994 		return swevent_hlist_get_cpu(event, event->cpu);
4995 
4996 	get_online_cpus();
4997 	for_each_possible_cpu(cpu) {
4998 		err = swevent_hlist_get_cpu(event, cpu);
4999 		if (err) {
5000 			failed_cpu = cpu;
5001 			goto fail;
5002 		}
5003 	}
5004 	put_online_cpus();
5005 
5006 	return 0;
5007 fail:
5008 	for_each_possible_cpu(cpu) {
5009 		if (cpu == failed_cpu)
5010 			break;
5011 		swevent_hlist_put_cpu(event, cpu);
5012 	}
5013 
5014 	put_online_cpus();
5015 	return err;
5016 }
5017 
5018 struct jump_label_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5019 
5020 static void sw_perf_event_destroy(struct perf_event *event)
5021 {
5022 	u64 event_id = event->attr.config;
5023 
5024 	WARN_ON(event->parent);
5025 
5026 	jump_label_dec(&perf_swevent_enabled[event_id]);
5027 	swevent_hlist_put(event);
5028 }
5029 
5030 static int perf_swevent_init(struct perf_event *event)
5031 {
5032 	int event_id = event->attr.config;
5033 
5034 	if (event->attr.type != PERF_TYPE_SOFTWARE)
5035 		return -ENOENT;
5036 
5037 	switch (event_id) {
5038 	case PERF_COUNT_SW_CPU_CLOCK:
5039 	case PERF_COUNT_SW_TASK_CLOCK:
5040 		return -ENOENT;
5041 
5042 	default:
5043 		break;
5044 	}
5045 
5046 	if (event_id >= PERF_COUNT_SW_MAX)
5047 		return -ENOENT;
5048 
5049 	if (!event->parent) {
5050 		int err;
5051 
5052 		err = swevent_hlist_get(event);
5053 		if (err)
5054 			return err;
5055 
5056 		jump_label_inc(&perf_swevent_enabled[event_id]);
5057 		event->destroy = sw_perf_event_destroy;
5058 	}
5059 
5060 	return 0;
5061 }
5062 
5063 static struct pmu perf_swevent = {
5064 	.task_ctx_nr	= perf_sw_context,
5065 
5066 	.event_init	= perf_swevent_init,
5067 	.add		= perf_swevent_add,
5068 	.del		= perf_swevent_del,
5069 	.start		= perf_swevent_start,
5070 	.stop		= perf_swevent_stop,
5071 	.read		= perf_swevent_read,
5072 };
5073 
5074 #ifdef CONFIG_EVENT_TRACING
5075 
5076 static int perf_tp_filter_match(struct perf_event *event,
5077 				struct perf_sample_data *data)
5078 {
5079 	void *record = data->raw->data;
5080 
5081 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
5082 		return 1;
5083 	return 0;
5084 }
5085 
5086 static int perf_tp_event_match(struct perf_event *event,
5087 				struct perf_sample_data *data,
5088 				struct pt_regs *regs)
5089 {
5090 	if (event->hw.state & PERF_HES_STOPPED)
5091 		return 0;
5092 	/*
5093 	 * All tracepoints are from kernel-space.
5094 	 */
5095 	if (event->attr.exclude_kernel)
5096 		return 0;
5097 
5098 	if (!perf_tp_filter_match(event, data))
5099 		return 0;
5100 
5101 	return 1;
5102 }
5103 
5104 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5105 		   struct pt_regs *regs, struct hlist_head *head, int rctx)
5106 {
5107 	struct perf_sample_data data;
5108 	struct perf_event *event;
5109 	struct hlist_node *node;
5110 
5111 	struct perf_raw_record raw = {
5112 		.size = entry_size,
5113 		.data = record,
5114 	};
5115 
5116 	perf_sample_data_init(&data, addr);
5117 	data.raw = &raw;
5118 
5119 	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
5120 		if (perf_tp_event_match(event, &data, regs))
5121 			perf_swevent_event(event, count, &data, regs);
5122 	}
5123 
5124 	perf_swevent_put_recursion_context(rctx);
5125 }
5126 EXPORT_SYMBOL_GPL(perf_tp_event);
5127 
5128 static void tp_perf_event_destroy(struct perf_event *event)
5129 {
5130 	perf_trace_destroy(event);
5131 }
5132 
5133 static int perf_tp_event_init(struct perf_event *event)
5134 {
5135 	int err;
5136 
5137 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
5138 		return -ENOENT;
5139 
5140 	err = perf_trace_init(event);
5141 	if (err)
5142 		return err;
5143 
5144 	event->destroy = tp_perf_event_destroy;
5145 
5146 	return 0;
5147 }
5148 
5149 static struct pmu perf_tracepoint = {
5150 	.task_ctx_nr	= perf_sw_context,
5151 
5152 	.event_init	= perf_tp_event_init,
5153 	.add		= perf_trace_add,
5154 	.del		= perf_trace_del,
5155 	.start		= perf_swevent_start,
5156 	.stop		= perf_swevent_stop,
5157 	.read		= perf_swevent_read,
5158 };
5159 
5160 static inline void perf_tp_register(void)
5161 {
5162 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5163 }
5164 
5165 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5166 {
5167 	char *filter_str;
5168 	int ret;
5169 
5170 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
5171 		return -EINVAL;
5172 
5173 	filter_str = strndup_user(arg, PAGE_SIZE);
5174 	if (IS_ERR(filter_str))
5175 		return PTR_ERR(filter_str);
5176 
5177 	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
5178 
5179 	kfree(filter_str);
5180 	return ret;
5181 }
5182 
5183 static void perf_event_free_filter(struct perf_event *event)
5184 {
5185 	ftrace_profile_free_filter(event);
5186 }
5187 
5188 #else
5189 
5190 static inline void perf_tp_register(void)
5191 {
5192 }
5193 
5194 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5195 {
5196 	return -ENOENT;
5197 }
5198 
5199 static void perf_event_free_filter(struct perf_event *event)
5200 {
5201 }
5202 
5203 #endif /* CONFIG_EVENT_TRACING */
5204 
5205 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5206 void perf_bp_event(struct perf_event *bp, void *data)
5207 {
5208 	struct perf_sample_data sample;
5209 	struct pt_regs *regs = data;
5210 
5211 	perf_sample_data_init(&sample, bp->attr.bp_addr);
5212 
5213 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
5214 		perf_swevent_event(bp, 1, &sample, regs);
5215 }
5216 #endif
5217 
5218 /*
5219  * hrtimer based swevent callback
5220  */
5221 
5222 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5223 {
5224 	enum hrtimer_restart ret = HRTIMER_RESTART;
5225 	struct perf_sample_data data;
5226 	struct pt_regs *regs;
5227 	struct perf_event *event;
5228 	u64 period;
5229 
5230 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
5231 
5232 	if (event->state != PERF_EVENT_STATE_ACTIVE)
5233 		return HRTIMER_NORESTART;
5234 
5235 	event->pmu->read(event);
5236 
5237 	perf_sample_data_init(&data, 0);
5238 	data.period = event->hw.last_period;
5239 	regs = get_irq_regs();
5240 
5241 	if (regs && !perf_exclude_event(event, regs)) {
5242 		if (!(event->attr.exclude_idle && current->pid == 0))
5243 			if (perf_event_overflow(event, &data, regs))
5244 				ret = HRTIMER_NORESTART;
5245 	}
5246 
5247 	period = max_t(u64, 10000, event->hw.sample_period);
5248 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5249 
5250 	return ret;
5251 }
5252 
5253 static void perf_swevent_start_hrtimer(struct perf_event *event)
5254 {
5255 	struct hw_perf_event *hwc = &event->hw;
5256 	s64 period;
5257 
5258 	if (!is_sampling_event(event))
5259 		return;
5260 
5261 	period = local64_read(&hwc->period_left);
5262 	if (period) {
5263 		if (period < 0)
5264 			period = 10000;
5265 
5266 		local64_set(&hwc->period_left, 0);
5267 	} else {
5268 		period = max_t(u64, 10000, hwc->sample_period);
5269 	}
5270 	__hrtimer_start_range_ns(&hwc->hrtimer,
5271 				ns_to_ktime(period), 0,
5272 				HRTIMER_MODE_REL_PINNED, 0);
5273 }
5274 
5275 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5276 {
5277 	struct hw_perf_event *hwc = &event->hw;
5278 
5279 	if (is_sampling_event(event)) {
5280 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
5281 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
5282 
5283 		hrtimer_cancel(&hwc->hrtimer);
5284 	}
5285 }
5286 
5287 static void perf_swevent_init_hrtimer(struct perf_event *event)
5288 {
5289 	struct hw_perf_event *hwc = &event->hw;
5290 
5291 	if (!is_sampling_event(event))
5292 		return;
5293 
5294 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5295 	hwc->hrtimer.function = perf_swevent_hrtimer;
5296 
5297 	/*
5298 	 * Since hrtimers have a fixed rate, we can do a static freq->period
5299 	 * mapping and avoid the whole period adjust feedback stuff.
5300 	 */
5301 	if (event->attr.freq) {
5302 		long freq = event->attr.sample_freq;
5303 
5304 		event->attr.sample_period = NSEC_PER_SEC / freq;
5305 		hwc->sample_period = event->attr.sample_period;
5306 		local64_set(&hwc->period_left, hwc->sample_period);
5307 		event->attr.freq = 0;
5308 	}
5309 }
5310 
5311 /*
5312  * Software event: cpu wall time clock
5313  */
5314 
5315 static void cpu_clock_event_update(struct perf_event *event)
5316 {
5317 	s64 prev;
5318 	u64 now;
5319 
5320 	now = local_clock();
5321 	prev = local64_xchg(&event->hw.prev_count, now);
5322 	local64_add(now - prev, &event->count);
5323 }
5324 
5325 static void cpu_clock_event_start(struct perf_event *event, int flags)
5326 {
5327 	local64_set(&event->hw.prev_count, local_clock());
5328 	perf_swevent_start_hrtimer(event);
5329 }
5330 
5331 static void cpu_clock_event_stop(struct perf_event *event, int flags)
5332 {
5333 	perf_swevent_cancel_hrtimer(event);
5334 	cpu_clock_event_update(event);
5335 }
5336 
5337 static int cpu_clock_event_add(struct perf_event *event, int flags)
5338 {
5339 	if (flags & PERF_EF_START)
5340 		cpu_clock_event_start(event, flags);
5341 
5342 	return 0;
5343 }
5344 
5345 static void cpu_clock_event_del(struct perf_event *event, int flags)
5346 {
5347 	cpu_clock_event_stop(event, flags);
5348 }
5349 
5350 static void cpu_clock_event_read(struct perf_event *event)
5351 {
5352 	cpu_clock_event_update(event);
5353 }
5354 
5355 static int cpu_clock_event_init(struct perf_event *event)
5356 {
5357 	if (event->attr.type != PERF_TYPE_SOFTWARE)
5358 		return -ENOENT;
5359 
5360 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
5361 		return -ENOENT;
5362 
5363 	perf_swevent_init_hrtimer(event);
5364 
5365 	return 0;
5366 }
5367 
5368 static struct pmu perf_cpu_clock = {
5369 	.task_ctx_nr	= perf_sw_context,
5370 
5371 	.event_init	= cpu_clock_event_init,
5372 	.add		= cpu_clock_event_add,
5373 	.del		= cpu_clock_event_del,
5374 	.start		= cpu_clock_event_start,
5375 	.stop		= cpu_clock_event_stop,
5376 	.read		= cpu_clock_event_read,
5377 };
5378 
5379 /*
5380  * Software event: task time clock
5381  */
5382 
5383 static void task_clock_event_update(struct perf_event *event, u64 now)
5384 {
5385 	u64 prev;
5386 	s64 delta;
5387 
5388 	prev = local64_xchg(&event->hw.prev_count, now);
5389 	delta = now - prev;
5390 	local64_add(delta, &event->count);
5391 }
5392 
5393 static void task_clock_event_start(struct perf_event *event, int flags)
5394 {
5395 	local64_set(&event->hw.prev_count, event->ctx->time);
5396 	perf_swevent_start_hrtimer(event);
5397 }
5398 
5399 static void task_clock_event_stop(struct perf_event *event, int flags)
5400 {
5401 	perf_swevent_cancel_hrtimer(event);
5402 	task_clock_event_update(event, event->ctx->time);
5403 }
5404 
5405 static int task_clock_event_add(struct perf_event *event, int flags)
5406 {
5407 	if (flags & PERF_EF_START)
5408 		task_clock_event_start(event, flags);
5409 
5410 	return 0;
5411 }
5412 
5413 static void task_clock_event_del(struct perf_event *event, int flags)
5414 {
5415 	task_clock_event_stop(event, PERF_EF_UPDATE);
5416 }
5417 
5418 static void task_clock_event_read(struct perf_event *event)
5419 {
5420 	u64 now = perf_clock();
5421 	u64 delta = now - event->ctx->timestamp;
5422 	u64 time = event->ctx->time + delta;
5423 
5424 	task_clock_event_update(event, time);
5425 }
5426 
5427 static int task_clock_event_init(struct perf_event *event)
5428 {
5429 	if (event->attr.type != PERF_TYPE_SOFTWARE)
5430 		return -ENOENT;
5431 
5432 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
5433 		return -ENOENT;
5434 
5435 	perf_swevent_init_hrtimer(event);
5436 
5437 	return 0;
5438 }
5439 
5440 static struct pmu perf_task_clock = {
5441 	.task_ctx_nr	= perf_sw_context,
5442 
5443 	.event_init	= task_clock_event_init,
5444 	.add		= task_clock_event_add,
5445 	.del		= task_clock_event_del,
5446 	.start		= task_clock_event_start,
5447 	.stop		= task_clock_event_stop,
5448 	.read		= task_clock_event_read,
5449 };
5450 
5451 static void perf_pmu_nop_void(struct pmu *pmu)
5452 {
5453 }
5454 
5455 static int perf_pmu_nop_int(struct pmu *pmu)
5456 {
5457 	return 0;
5458 }
5459 
5460 static void perf_pmu_start_txn(struct pmu *pmu)
5461 {
5462 	perf_pmu_disable(pmu);
5463 }
5464 
5465 static int perf_pmu_commit_txn(struct pmu *pmu)
5466 {
5467 	perf_pmu_enable(pmu);
5468 	return 0;
5469 }
5470 
5471 static void perf_pmu_cancel_txn(struct pmu *pmu)
5472 {
5473 	perf_pmu_enable(pmu);
5474 }
5475 
5476 /*
5477  * Ensures all contexts with the same task_ctx_nr have the same
5478  * pmu_cpu_context too.
5479  */
5480 static void *find_pmu_context(int ctxn)
5481 {
5482 	struct pmu *pmu;
5483 
5484 	if (ctxn < 0)
5485 		return NULL;
5486 
5487 	list_for_each_entry(pmu, &pmus, entry) {
5488 		if (pmu->task_ctx_nr == ctxn)
5489 			return pmu->pmu_cpu_context;
5490 	}
5491 
5492 	return NULL;
5493 }
5494 
5495 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
5496 {
5497 	int cpu;
5498 
5499 	for_each_possible_cpu(cpu) {
5500 		struct perf_cpu_context *cpuctx;
5501 
5502 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5503 
5504 		if (cpuctx->active_pmu == old_pmu)
5505 			cpuctx->active_pmu = pmu;
5506 	}
5507 }
5508 
5509 static void free_pmu_context(struct pmu *pmu)
5510 {
5511 	struct pmu *i;
5512 
5513 	mutex_lock(&pmus_lock);
5514 	/*
5515 	 * Like a real lame refcount.
5516 	 */
5517 	list_for_each_entry(i, &pmus, entry) {
5518 		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
5519 			update_pmu_context(i, pmu);
5520 			goto out;
5521 		}
5522 	}
5523 
5524 	free_percpu(pmu->pmu_cpu_context);
5525 out:
5526 	mutex_unlock(&pmus_lock);
5527 }
5528 static struct idr pmu_idr;
5529 
5530 static ssize_t
5531 type_show(struct device *dev, struct device_attribute *attr, char *page)
5532 {
5533 	struct pmu *pmu = dev_get_drvdata(dev);
5534 
5535 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
5536 }
5537 
5538 static struct device_attribute pmu_dev_attrs[] = {
5539        __ATTR_RO(type),
5540        __ATTR_NULL,
5541 };
5542 
5543 static int pmu_bus_running;
5544 static struct bus_type pmu_bus = {
5545 	.name		= "event_source",
5546 	.dev_attrs	= pmu_dev_attrs,
5547 };
5548 
5549 static void pmu_dev_release(struct device *dev)
5550 {
5551 	kfree(dev);
5552 }
5553 
5554 static int pmu_dev_alloc(struct pmu *pmu)
5555 {
5556 	int ret = -ENOMEM;
5557 
5558 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
5559 	if (!pmu->dev)
5560 		goto out;
5561 
5562 	device_initialize(pmu->dev);
5563 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
5564 	if (ret)
5565 		goto free_dev;
5566 
5567 	dev_set_drvdata(pmu->dev, pmu);
5568 	pmu->dev->bus = &pmu_bus;
5569 	pmu->dev->release = pmu_dev_release;
5570 	ret = device_add(pmu->dev);
5571 	if (ret)
5572 		goto free_dev;
5573 
5574 out:
5575 	return ret;
5576 
5577 free_dev:
5578 	put_device(pmu->dev);
5579 	goto out;
5580 }
5581 
5582 static struct lock_class_key cpuctx_mutex;
5583 static struct lock_class_key cpuctx_lock;
5584 
5585 int perf_pmu_register(struct pmu *pmu, char *name, int type)
5586 {
5587 	int cpu, ret;
5588 
5589 	mutex_lock(&pmus_lock);
5590 	ret = -ENOMEM;
5591 	pmu->pmu_disable_count = alloc_percpu(int);
5592 	if (!pmu->pmu_disable_count)
5593 		goto unlock;
5594 
5595 	pmu->type = -1;
5596 	if (!name)
5597 		goto skip_type;
5598 	pmu->name = name;
5599 
5600 	if (type < 0) {
5601 		int err = idr_pre_get(&pmu_idr, GFP_KERNEL);
5602 		if (!err)
5603 			goto free_pdc;
5604 
5605 		err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type);
5606 		if (err) {
5607 			ret = err;
5608 			goto free_pdc;
5609 		}
5610 	}
5611 	pmu->type = type;
5612 
5613 	if (pmu_bus_running) {
5614 		ret = pmu_dev_alloc(pmu);
5615 		if (ret)
5616 			goto free_idr;
5617 	}
5618 
5619 skip_type:
5620 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
5621 	if (pmu->pmu_cpu_context)
5622 		goto got_cpu_context;
5623 
5624 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
5625 	if (!pmu->pmu_cpu_context)
5626 		goto free_dev;
5627 
5628 	for_each_possible_cpu(cpu) {
5629 		struct perf_cpu_context *cpuctx;
5630 
5631 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5632 		__perf_event_init_context(&cpuctx->ctx);
5633 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
5634 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
5635 		cpuctx->ctx.type = cpu_context;
5636 		cpuctx->ctx.pmu = pmu;
5637 		cpuctx->jiffies_interval = 1;
5638 		INIT_LIST_HEAD(&cpuctx->rotation_list);
5639 		cpuctx->active_pmu = pmu;
5640 	}
5641 
5642 got_cpu_context:
5643 	if (!pmu->start_txn) {
5644 		if (pmu->pmu_enable) {
5645 			/*
5646 			 * If we have pmu_enable/pmu_disable calls, install
5647 			 * transaction stubs that use that to try and batch
5648 			 * hardware accesses.
5649 			 */
5650 			pmu->start_txn  = perf_pmu_start_txn;
5651 			pmu->commit_txn = perf_pmu_commit_txn;
5652 			pmu->cancel_txn = perf_pmu_cancel_txn;
5653 		} else {
5654 			pmu->start_txn  = perf_pmu_nop_void;
5655 			pmu->commit_txn = perf_pmu_nop_int;
5656 			pmu->cancel_txn = perf_pmu_nop_void;
5657 		}
5658 	}
5659 
5660 	if (!pmu->pmu_enable) {
5661 		pmu->pmu_enable  = perf_pmu_nop_void;
5662 		pmu->pmu_disable = perf_pmu_nop_void;
5663 	}
5664 
5665 	list_add_rcu(&pmu->entry, &pmus);
5666 	ret = 0;
5667 unlock:
5668 	mutex_unlock(&pmus_lock);
5669 
5670 	return ret;
5671 
5672 free_dev:
5673 	device_del(pmu->dev);
5674 	put_device(pmu->dev);
5675 
5676 free_idr:
5677 	if (pmu->type >= PERF_TYPE_MAX)
5678 		idr_remove(&pmu_idr, pmu->type);
5679 
5680 free_pdc:
5681 	free_percpu(pmu->pmu_disable_count);
5682 	goto unlock;
5683 }
5684 
5685 void perf_pmu_unregister(struct pmu *pmu)
5686 {
5687 	mutex_lock(&pmus_lock);
5688 	list_del_rcu(&pmu->entry);
5689 	mutex_unlock(&pmus_lock);
5690 
5691 	/*
5692 	 * We dereference the pmu list under both SRCU and regular RCU, so
5693 	 * synchronize against both of those.
5694 	 */
5695 	synchronize_srcu(&pmus_srcu);
5696 	synchronize_rcu();
5697 
5698 	free_percpu(pmu->pmu_disable_count);
5699 	if (pmu->type >= PERF_TYPE_MAX)
5700 		idr_remove(&pmu_idr, pmu->type);
5701 	device_del(pmu->dev);
5702 	put_device(pmu->dev);
5703 	free_pmu_context(pmu);
5704 }
5705 
5706 struct pmu *perf_init_event(struct perf_event *event)
5707 {
5708 	struct pmu *pmu = NULL;
5709 	int idx;
5710 	int ret;
5711 
5712 	idx = srcu_read_lock(&pmus_srcu);
5713 
5714 	rcu_read_lock();
5715 	pmu = idr_find(&pmu_idr, event->attr.type);
5716 	rcu_read_unlock();
5717 	if (pmu) {
5718 		ret = pmu->event_init(event);
5719 		if (ret)
5720 			pmu = ERR_PTR(ret);
5721 		goto unlock;
5722 	}
5723 
5724 	list_for_each_entry_rcu(pmu, &pmus, entry) {
5725 		ret = pmu->event_init(event);
5726 		if (!ret)
5727 			goto unlock;
5728 
5729 		if (ret != -ENOENT) {
5730 			pmu = ERR_PTR(ret);
5731 			goto unlock;
5732 		}
5733 	}
5734 	pmu = ERR_PTR(-ENOENT);
5735 unlock:
5736 	srcu_read_unlock(&pmus_srcu, idx);
5737 
5738 	return pmu;
5739 }
5740 
5741 /*
5742  * Allocate and initialize a event structure
5743  */
5744 static struct perf_event *
5745 perf_event_alloc(struct perf_event_attr *attr, int cpu,
5746 		 struct task_struct *task,
5747 		 struct perf_event *group_leader,
5748 		 struct perf_event *parent_event,
5749 		 perf_overflow_handler_t overflow_handler,
5750 		 void *context)
5751 {
5752 	struct pmu *pmu;
5753 	struct perf_event *event;
5754 	struct hw_perf_event *hwc;
5755 	long err;
5756 
5757 	if ((unsigned)cpu >= nr_cpu_ids) {
5758 		if (!task || cpu != -1)
5759 			return ERR_PTR(-EINVAL);
5760 	}
5761 
5762 	event = kzalloc(sizeof(*event), GFP_KERNEL);
5763 	if (!event)
5764 		return ERR_PTR(-ENOMEM);
5765 
5766 	/*
5767 	 * Single events are their own group leaders, with an
5768 	 * empty sibling list:
5769 	 */
5770 	if (!group_leader)
5771 		group_leader = event;
5772 
5773 	mutex_init(&event->child_mutex);
5774 	INIT_LIST_HEAD(&event->child_list);
5775 
5776 	INIT_LIST_HEAD(&event->group_entry);
5777 	INIT_LIST_HEAD(&event->event_entry);
5778 	INIT_LIST_HEAD(&event->sibling_list);
5779 	init_waitqueue_head(&event->waitq);
5780 	init_irq_work(&event->pending, perf_pending_event);
5781 
5782 	mutex_init(&event->mmap_mutex);
5783 
5784 	event->cpu		= cpu;
5785 	event->attr		= *attr;
5786 	event->group_leader	= group_leader;
5787 	event->pmu		= NULL;
5788 	event->oncpu		= -1;
5789 
5790 	event->parent		= parent_event;
5791 
5792 	event->ns		= get_pid_ns(current->nsproxy->pid_ns);
5793 	event->id		= atomic64_inc_return(&perf_event_id);
5794 
5795 	event->state		= PERF_EVENT_STATE_INACTIVE;
5796 
5797 	if (task) {
5798 		event->attach_state = PERF_ATTACH_TASK;
5799 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5800 		/*
5801 		 * hw_breakpoint is a bit difficult here..
5802 		 */
5803 		if (attr->type == PERF_TYPE_BREAKPOINT)
5804 			event->hw.bp_target = task;
5805 #endif
5806 	}
5807 
5808 	if (!overflow_handler && parent_event) {
5809 		overflow_handler = parent_event->overflow_handler;
5810 		context = parent_event->overflow_handler_context;
5811 	}
5812 
5813 	event->overflow_handler	= overflow_handler;
5814 	event->overflow_handler_context = context;
5815 
5816 	if (attr->disabled)
5817 		event->state = PERF_EVENT_STATE_OFF;
5818 
5819 	pmu = NULL;
5820 
5821 	hwc = &event->hw;
5822 	hwc->sample_period = attr->sample_period;
5823 	if (attr->freq && attr->sample_freq)
5824 		hwc->sample_period = 1;
5825 	hwc->last_period = hwc->sample_period;
5826 
5827 	local64_set(&hwc->period_left, hwc->sample_period);
5828 
5829 	/*
5830 	 * we currently do not support PERF_FORMAT_GROUP on inherited events
5831 	 */
5832 	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
5833 		goto done;
5834 
5835 	pmu = perf_init_event(event);
5836 
5837 done:
5838 	err = 0;
5839 	if (!pmu)
5840 		err = -EINVAL;
5841 	else if (IS_ERR(pmu))
5842 		err = PTR_ERR(pmu);
5843 
5844 	if (err) {
5845 		if (event->ns)
5846 			put_pid_ns(event->ns);
5847 		kfree(event);
5848 		return ERR_PTR(err);
5849 	}
5850 
5851 	event->pmu = pmu;
5852 
5853 	if (!event->parent) {
5854 		if (event->attach_state & PERF_ATTACH_TASK)
5855 			jump_label_inc(&perf_sched_events);
5856 		if (event->attr.mmap || event->attr.mmap_data)
5857 			atomic_inc(&nr_mmap_events);
5858 		if (event->attr.comm)
5859 			atomic_inc(&nr_comm_events);
5860 		if (event->attr.task)
5861 			atomic_inc(&nr_task_events);
5862 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
5863 			err = get_callchain_buffers();
5864 			if (err) {
5865 				free_event(event);
5866 				return ERR_PTR(err);
5867 			}
5868 		}
5869 	}
5870 
5871 	return event;
5872 }
5873 
5874 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5875 			  struct perf_event_attr *attr)
5876 {
5877 	u32 size;
5878 	int ret;
5879 
5880 	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
5881 		return -EFAULT;
5882 
5883 	/*
5884 	 * zero the full structure, so that a short copy will be nice.
5885 	 */
5886 	memset(attr, 0, sizeof(*attr));
5887 
5888 	ret = get_user(size, &uattr->size);
5889 	if (ret)
5890 		return ret;
5891 
5892 	if (size > PAGE_SIZE)	/* silly large */
5893 		goto err_size;
5894 
5895 	if (!size)		/* abi compat */
5896 		size = PERF_ATTR_SIZE_VER0;
5897 
5898 	if (size < PERF_ATTR_SIZE_VER0)
5899 		goto err_size;
5900 
5901 	/*
5902 	 * If we're handed a bigger struct than we know of,
5903 	 * ensure all the unknown bits are 0 - i.e. new
5904 	 * user-space does not rely on any kernel feature
5905 	 * extensions we dont know about yet.
5906 	 */
5907 	if (size > sizeof(*attr)) {
5908 		unsigned char __user *addr;
5909 		unsigned char __user *end;
5910 		unsigned char val;
5911 
5912 		addr = (void __user *)uattr + sizeof(*attr);
5913 		end  = (void __user *)uattr + size;
5914 
5915 		for (; addr < end; addr++) {
5916 			ret = get_user(val, addr);
5917 			if (ret)
5918 				return ret;
5919 			if (val)
5920 				goto err_size;
5921 		}
5922 		size = sizeof(*attr);
5923 	}
5924 
5925 	ret = copy_from_user(attr, uattr, size);
5926 	if (ret)
5927 		return -EFAULT;
5928 
5929 	if (attr->__reserved_1)
5930 		return -EINVAL;
5931 
5932 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
5933 		return -EINVAL;
5934 
5935 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
5936 		return -EINVAL;
5937 
5938 out:
5939 	return ret;
5940 
5941 err_size:
5942 	put_user(sizeof(*attr), &uattr->size);
5943 	ret = -E2BIG;
5944 	goto out;
5945 }
5946 
5947 static int
5948 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5949 {
5950 	struct ring_buffer *rb = NULL, *old_rb = NULL;
5951 	int ret = -EINVAL;
5952 
5953 	if (!output_event)
5954 		goto set;
5955 
5956 	/* don't allow circular references */
5957 	if (event == output_event)
5958 		goto out;
5959 
5960 	/*
5961 	 * Don't allow cross-cpu buffers
5962 	 */
5963 	if (output_event->cpu != event->cpu)
5964 		goto out;
5965 
5966 	/*
5967 	 * If its not a per-cpu rb, it must be the same task.
5968 	 */
5969 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
5970 		goto out;
5971 
5972 set:
5973 	mutex_lock(&event->mmap_mutex);
5974 	/* Can't redirect output if we've got an active mmap() */
5975 	if (atomic_read(&event->mmap_count))
5976 		goto unlock;
5977 
5978 	if (output_event) {
5979 		/* get the rb we want to redirect to */
5980 		rb = ring_buffer_get(output_event);
5981 		if (!rb)
5982 			goto unlock;
5983 	}
5984 
5985 	old_rb = event->rb;
5986 	rcu_assign_pointer(event->rb, rb);
5987 	ret = 0;
5988 unlock:
5989 	mutex_unlock(&event->mmap_mutex);
5990 
5991 	if (old_rb)
5992 		ring_buffer_put(old_rb);
5993 out:
5994 	return ret;
5995 }
5996 
5997 /**
5998  * sys_perf_event_open - open a performance event, associate it to a task/cpu
5999  *
6000  * @attr_uptr:	event_id type attributes for monitoring/sampling
6001  * @pid:		target pid
6002  * @cpu:		target cpu
6003  * @group_fd:		group leader event fd
6004  */
6005 SYSCALL_DEFINE5(perf_event_open,
6006 		struct perf_event_attr __user *, attr_uptr,
6007 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
6008 {
6009 	struct perf_event *group_leader = NULL, *output_event = NULL;
6010 	struct perf_event *event, *sibling;
6011 	struct perf_event_attr attr;
6012 	struct perf_event_context *ctx;
6013 	struct file *event_file = NULL;
6014 	struct file *group_file = NULL;
6015 	struct task_struct *task = NULL;
6016 	struct pmu *pmu;
6017 	int event_fd;
6018 	int move_group = 0;
6019 	int fput_needed = 0;
6020 	int err;
6021 
6022 	/* for future expandability... */
6023 	if (flags & ~PERF_FLAG_ALL)
6024 		return -EINVAL;
6025 
6026 	err = perf_copy_attr(attr_uptr, &attr);
6027 	if (err)
6028 		return err;
6029 
6030 	if (!attr.exclude_kernel) {
6031 		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6032 			return -EACCES;
6033 	}
6034 
6035 	if (attr.freq) {
6036 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
6037 			return -EINVAL;
6038 	}
6039 
6040 	/*
6041 	 * In cgroup mode, the pid argument is used to pass the fd
6042 	 * opened to the cgroup directory in cgroupfs. The cpu argument
6043 	 * designates the cpu on which to monitor threads from that
6044 	 * cgroup.
6045 	 */
6046 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
6047 		return -EINVAL;
6048 
6049 	event_fd = get_unused_fd_flags(O_RDWR);
6050 	if (event_fd < 0)
6051 		return event_fd;
6052 
6053 	if (group_fd != -1) {
6054 		group_leader = perf_fget_light(group_fd, &fput_needed);
6055 		if (IS_ERR(group_leader)) {
6056 			err = PTR_ERR(group_leader);
6057 			goto err_fd;
6058 		}
6059 		group_file = group_leader->filp;
6060 		if (flags & PERF_FLAG_FD_OUTPUT)
6061 			output_event = group_leader;
6062 		if (flags & PERF_FLAG_FD_NO_GROUP)
6063 			group_leader = NULL;
6064 	}
6065 
6066 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
6067 		task = find_lively_task_by_vpid(pid);
6068 		if (IS_ERR(task)) {
6069 			err = PTR_ERR(task);
6070 			goto err_group_fd;
6071 		}
6072 	}
6073 
6074 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
6075 				 NULL, NULL);
6076 	if (IS_ERR(event)) {
6077 		err = PTR_ERR(event);
6078 		goto err_task;
6079 	}
6080 
6081 	if (flags & PERF_FLAG_PID_CGROUP) {
6082 		err = perf_cgroup_connect(pid, event, &attr, group_leader);
6083 		if (err)
6084 			goto err_alloc;
6085 		/*
6086 		 * one more event:
6087 		 * - that has cgroup constraint on event->cpu
6088 		 * - that may need work on context switch
6089 		 */
6090 		atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
6091 		jump_label_inc(&perf_sched_events);
6092 	}
6093 
6094 	/*
6095 	 * Special case software events and allow them to be part of
6096 	 * any hardware group.
6097 	 */
6098 	pmu = event->pmu;
6099 
6100 	if (group_leader &&
6101 	    (is_software_event(event) != is_software_event(group_leader))) {
6102 		if (is_software_event(event)) {
6103 			/*
6104 			 * If event and group_leader are not both a software
6105 			 * event, and event is, then group leader is not.
6106 			 *
6107 			 * Allow the addition of software events to !software
6108 			 * groups, this is safe because software events never
6109 			 * fail to schedule.
6110 			 */
6111 			pmu = group_leader->pmu;
6112 		} else if (is_software_event(group_leader) &&
6113 			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
6114 			/*
6115 			 * In case the group is a pure software group, and we
6116 			 * try to add a hardware event, move the whole group to
6117 			 * the hardware context.
6118 			 */
6119 			move_group = 1;
6120 		}
6121 	}
6122 
6123 	/*
6124 	 * Get the target context (task or percpu):
6125 	 */
6126 	ctx = find_get_context(pmu, task, cpu);
6127 	if (IS_ERR(ctx)) {
6128 		err = PTR_ERR(ctx);
6129 		goto err_alloc;
6130 	}
6131 
6132 	if (task) {
6133 		put_task_struct(task);
6134 		task = NULL;
6135 	}
6136 
6137 	/*
6138 	 * Look up the group leader (we will attach this event to it):
6139 	 */
6140 	if (group_leader) {
6141 		err = -EINVAL;
6142 
6143 		/*
6144 		 * Do not allow a recursive hierarchy (this new sibling
6145 		 * becoming part of another group-sibling):
6146 		 */
6147 		if (group_leader->group_leader != group_leader)
6148 			goto err_context;
6149 		/*
6150 		 * Do not allow to attach to a group in a different
6151 		 * task or CPU context:
6152 		 */
6153 		if (move_group) {
6154 			if (group_leader->ctx->type != ctx->type)
6155 				goto err_context;
6156 		} else {
6157 			if (group_leader->ctx != ctx)
6158 				goto err_context;
6159 		}
6160 
6161 		/*
6162 		 * Only a group leader can be exclusive or pinned
6163 		 */
6164 		if (attr.exclusive || attr.pinned)
6165 			goto err_context;
6166 	}
6167 
6168 	if (output_event) {
6169 		err = perf_event_set_output(event, output_event);
6170 		if (err)
6171 			goto err_context;
6172 	}
6173 
6174 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
6175 	if (IS_ERR(event_file)) {
6176 		err = PTR_ERR(event_file);
6177 		goto err_context;
6178 	}
6179 
6180 	if (move_group) {
6181 		struct perf_event_context *gctx = group_leader->ctx;
6182 
6183 		mutex_lock(&gctx->mutex);
6184 		perf_remove_from_context(group_leader);
6185 		list_for_each_entry(sibling, &group_leader->sibling_list,
6186 				    group_entry) {
6187 			perf_remove_from_context(sibling);
6188 			put_ctx(gctx);
6189 		}
6190 		mutex_unlock(&gctx->mutex);
6191 		put_ctx(gctx);
6192 	}
6193 
6194 	event->filp = event_file;
6195 	WARN_ON_ONCE(ctx->parent_ctx);
6196 	mutex_lock(&ctx->mutex);
6197 
6198 	if (move_group) {
6199 		perf_install_in_context(ctx, group_leader, cpu);
6200 		get_ctx(ctx);
6201 		list_for_each_entry(sibling, &group_leader->sibling_list,
6202 				    group_entry) {
6203 			perf_install_in_context(ctx, sibling, cpu);
6204 			get_ctx(ctx);
6205 		}
6206 	}
6207 
6208 	perf_install_in_context(ctx, event, cpu);
6209 	++ctx->generation;
6210 	perf_unpin_context(ctx);
6211 	mutex_unlock(&ctx->mutex);
6212 
6213 	event->owner = current;
6214 
6215 	mutex_lock(&current->perf_event_mutex);
6216 	list_add_tail(&event->owner_entry, &current->perf_event_list);
6217 	mutex_unlock(&current->perf_event_mutex);
6218 
6219 	/*
6220 	 * Precalculate sample_data sizes
6221 	 */
6222 	perf_event__header_size(event);
6223 	perf_event__id_header_size(event);
6224 
6225 	/*
6226 	 * Drop the reference on the group_event after placing the
6227 	 * new event on the sibling_list. This ensures destruction
6228 	 * of the group leader will find the pointer to itself in
6229 	 * perf_group_detach().
6230 	 */
6231 	fput_light(group_file, fput_needed);
6232 	fd_install(event_fd, event_file);
6233 	return event_fd;
6234 
6235 err_context:
6236 	perf_unpin_context(ctx);
6237 	put_ctx(ctx);
6238 err_alloc:
6239 	free_event(event);
6240 err_task:
6241 	if (task)
6242 		put_task_struct(task);
6243 err_group_fd:
6244 	fput_light(group_file, fput_needed);
6245 err_fd:
6246 	put_unused_fd(event_fd);
6247 	return err;
6248 }
6249 
6250 /**
6251  * perf_event_create_kernel_counter
6252  *
6253  * @attr: attributes of the counter to create
6254  * @cpu: cpu in which the counter is bound
6255  * @task: task to profile (NULL for percpu)
6256  */
6257 struct perf_event *
6258 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
6259 				 struct task_struct *task,
6260 				 perf_overflow_handler_t overflow_handler,
6261 				 void *context)
6262 {
6263 	struct perf_event_context *ctx;
6264 	struct perf_event *event;
6265 	int err;
6266 
6267 	/*
6268 	 * Get the target context (task or percpu):
6269 	 */
6270 
6271 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
6272 				 overflow_handler, context);
6273 	if (IS_ERR(event)) {
6274 		err = PTR_ERR(event);
6275 		goto err;
6276 	}
6277 
6278 	ctx = find_get_context(event->pmu, task, cpu);
6279 	if (IS_ERR(ctx)) {
6280 		err = PTR_ERR(ctx);
6281 		goto err_free;
6282 	}
6283 
6284 	event->filp = NULL;
6285 	WARN_ON_ONCE(ctx->parent_ctx);
6286 	mutex_lock(&ctx->mutex);
6287 	perf_install_in_context(ctx, event, cpu);
6288 	++ctx->generation;
6289 	perf_unpin_context(ctx);
6290 	mutex_unlock(&ctx->mutex);
6291 
6292 	return event;
6293 
6294 err_free:
6295 	free_event(event);
6296 err:
6297 	return ERR_PTR(err);
6298 }
6299 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
6300 
6301 static void sync_child_event(struct perf_event *child_event,
6302 			       struct task_struct *child)
6303 {
6304 	struct perf_event *parent_event = child_event->parent;
6305 	u64 child_val;
6306 
6307 	if (child_event->attr.inherit_stat)
6308 		perf_event_read_event(child_event, child);
6309 
6310 	child_val = perf_event_count(child_event);
6311 
6312 	/*
6313 	 * Add back the child's count to the parent's count:
6314 	 */
6315 	atomic64_add(child_val, &parent_event->child_count);
6316 	atomic64_add(child_event->total_time_enabled,
6317 		     &parent_event->child_total_time_enabled);
6318 	atomic64_add(child_event->total_time_running,
6319 		     &parent_event->child_total_time_running);
6320 
6321 	/*
6322 	 * Remove this event from the parent's list
6323 	 */
6324 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6325 	mutex_lock(&parent_event->child_mutex);
6326 	list_del_init(&child_event->child_list);
6327 	mutex_unlock(&parent_event->child_mutex);
6328 
6329 	/*
6330 	 * Release the parent event, if this was the last
6331 	 * reference to it.
6332 	 */
6333 	fput(parent_event->filp);
6334 }
6335 
6336 static void
6337 __perf_event_exit_task(struct perf_event *child_event,
6338 			 struct perf_event_context *child_ctx,
6339 			 struct task_struct *child)
6340 {
6341 	if (child_event->parent) {
6342 		raw_spin_lock_irq(&child_ctx->lock);
6343 		perf_group_detach(child_event);
6344 		raw_spin_unlock_irq(&child_ctx->lock);
6345 	}
6346 
6347 	perf_remove_from_context(child_event);
6348 
6349 	/*
6350 	 * It can happen that the parent exits first, and has events
6351 	 * that are still around due to the child reference. These
6352 	 * events need to be zapped.
6353 	 */
6354 	if (child_event->parent) {
6355 		sync_child_event(child_event, child);
6356 		free_event(child_event);
6357 	}
6358 }
6359 
6360 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
6361 {
6362 	struct perf_event *child_event, *tmp;
6363 	struct perf_event_context *child_ctx;
6364 	unsigned long flags;
6365 
6366 	if (likely(!child->perf_event_ctxp[ctxn])) {
6367 		perf_event_task(child, NULL, 0);
6368 		return;
6369 	}
6370 
6371 	local_irq_save(flags);
6372 	/*
6373 	 * We can't reschedule here because interrupts are disabled,
6374 	 * and either child is current or it is a task that can't be
6375 	 * scheduled, so we are now safe from rescheduling changing
6376 	 * our context.
6377 	 */
6378 	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
6379 
6380 	/*
6381 	 * Take the context lock here so that if find_get_context is
6382 	 * reading child->perf_event_ctxp, we wait until it has
6383 	 * incremented the context's refcount before we do put_ctx below.
6384 	 */
6385 	raw_spin_lock(&child_ctx->lock);
6386 	task_ctx_sched_out(child_ctx);
6387 	child->perf_event_ctxp[ctxn] = NULL;
6388 	/*
6389 	 * If this context is a clone; unclone it so it can't get
6390 	 * swapped to another process while we're removing all
6391 	 * the events from it.
6392 	 */
6393 	unclone_ctx(child_ctx);
6394 	update_context_time(child_ctx);
6395 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6396 
6397 	/*
6398 	 * Report the task dead after unscheduling the events so that we
6399 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
6400 	 * get a few PERF_RECORD_READ events.
6401 	 */
6402 	perf_event_task(child, child_ctx, 0);
6403 
6404 	/*
6405 	 * We can recurse on the same lock type through:
6406 	 *
6407 	 *   __perf_event_exit_task()
6408 	 *     sync_child_event()
6409 	 *       fput(parent_event->filp)
6410 	 *         perf_release()
6411 	 *           mutex_lock(&ctx->mutex)
6412 	 *
6413 	 * But since its the parent context it won't be the same instance.
6414 	 */
6415 	mutex_lock(&child_ctx->mutex);
6416 
6417 again:
6418 	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
6419 				 group_entry)
6420 		__perf_event_exit_task(child_event, child_ctx, child);
6421 
6422 	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
6423 				 group_entry)
6424 		__perf_event_exit_task(child_event, child_ctx, child);
6425 
6426 	/*
6427 	 * If the last event was a group event, it will have appended all
6428 	 * its siblings to the list, but we obtained 'tmp' before that which
6429 	 * will still point to the list head terminating the iteration.
6430 	 */
6431 	if (!list_empty(&child_ctx->pinned_groups) ||
6432 	    !list_empty(&child_ctx->flexible_groups))
6433 		goto again;
6434 
6435 	mutex_unlock(&child_ctx->mutex);
6436 
6437 	put_ctx(child_ctx);
6438 }
6439 
6440 /*
6441  * When a child task exits, feed back event values to parent events.
6442  */
6443 void perf_event_exit_task(struct task_struct *child)
6444 {
6445 	struct perf_event *event, *tmp;
6446 	int ctxn;
6447 
6448 	mutex_lock(&child->perf_event_mutex);
6449 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
6450 				 owner_entry) {
6451 		list_del_init(&event->owner_entry);
6452 
6453 		/*
6454 		 * Ensure the list deletion is visible before we clear
6455 		 * the owner, closes a race against perf_release() where
6456 		 * we need to serialize on the owner->perf_event_mutex.
6457 		 */
6458 		smp_wmb();
6459 		event->owner = NULL;
6460 	}
6461 	mutex_unlock(&child->perf_event_mutex);
6462 
6463 	for_each_task_context_nr(ctxn)
6464 		perf_event_exit_task_context(child, ctxn);
6465 }
6466 
6467 static void perf_free_event(struct perf_event *event,
6468 			    struct perf_event_context *ctx)
6469 {
6470 	struct perf_event *parent = event->parent;
6471 
6472 	if (WARN_ON_ONCE(!parent))
6473 		return;
6474 
6475 	mutex_lock(&parent->child_mutex);
6476 	list_del_init(&event->child_list);
6477 	mutex_unlock(&parent->child_mutex);
6478 
6479 	fput(parent->filp);
6480 
6481 	perf_group_detach(event);
6482 	list_del_event(event, ctx);
6483 	free_event(event);
6484 }
6485 
6486 /*
6487  * free an unexposed, unused context as created by inheritance by
6488  * perf_event_init_task below, used by fork() in case of fail.
6489  */
6490 void perf_event_free_task(struct task_struct *task)
6491 {
6492 	struct perf_event_context *ctx;
6493 	struct perf_event *event, *tmp;
6494 	int ctxn;
6495 
6496 	for_each_task_context_nr(ctxn) {
6497 		ctx = task->perf_event_ctxp[ctxn];
6498 		if (!ctx)
6499 			continue;
6500 
6501 		mutex_lock(&ctx->mutex);
6502 again:
6503 		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
6504 				group_entry)
6505 			perf_free_event(event, ctx);
6506 
6507 		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
6508 				group_entry)
6509 			perf_free_event(event, ctx);
6510 
6511 		if (!list_empty(&ctx->pinned_groups) ||
6512 				!list_empty(&ctx->flexible_groups))
6513 			goto again;
6514 
6515 		mutex_unlock(&ctx->mutex);
6516 
6517 		put_ctx(ctx);
6518 	}
6519 }
6520 
6521 void perf_event_delayed_put(struct task_struct *task)
6522 {
6523 	int ctxn;
6524 
6525 	for_each_task_context_nr(ctxn)
6526 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
6527 }
6528 
6529 /*
6530  * inherit a event from parent task to child task:
6531  */
6532 static struct perf_event *
6533 inherit_event(struct perf_event *parent_event,
6534 	      struct task_struct *parent,
6535 	      struct perf_event_context *parent_ctx,
6536 	      struct task_struct *child,
6537 	      struct perf_event *group_leader,
6538 	      struct perf_event_context *child_ctx)
6539 {
6540 	struct perf_event *child_event;
6541 	unsigned long flags;
6542 
6543 	/*
6544 	 * Instead of creating recursive hierarchies of events,
6545 	 * we link inherited events back to the original parent,
6546 	 * which has a filp for sure, which we use as the reference
6547 	 * count:
6548 	 */
6549 	if (parent_event->parent)
6550 		parent_event = parent_event->parent;
6551 
6552 	child_event = perf_event_alloc(&parent_event->attr,
6553 					   parent_event->cpu,
6554 					   child,
6555 					   group_leader, parent_event,
6556 				           NULL, NULL);
6557 	if (IS_ERR(child_event))
6558 		return child_event;
6559 	get_ctx(child_ctx);
6560 
6561 	/*
6562 	 * Make the child state follow the state of the parent event,
6563 	 * not its attr.disabled bit.  We hold the parent's mutex,
6564 	 * so we won't race with perf_event_{en, dis}able_family.
6565 	 */
6566 	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
6567 		child_event->state = PERF_EVENT_STATE_INACTIVE;
6568 	else
6569 		child_event->state = PERF_EVENT_STATE_OFF;
6570 
6571 	if (parent_event->attr.freq) {
6572 		u64 sample_period = parent_event->hw.sample_period;
6573 		struct hw_perf_event *hwc = &child_event->hw;
6574 
6575 		hwc->sample_period = sample_period;
6576 		hwc->last_period   = sample_period;
6577 
6578 		local64_set(&hwc->period_left, sample_period);
6579 	}
6580 
6581 	child_event->ctx = child_ctx;
6582 	child_event->overflow_handler = parent_event->overflow_handler;
6583 	child_event->overflow_handler_context
6584 		= parent_event->overflow_handler_context;
6585 
6586 	/*
6587 	 * Precalculate sample_data sizes
6588 	 */
6589 	perf_event__header_size(child_event);
6590 	perf_event__id_header_size(child_event);
6591 
6592 	/*
6593 	 * Link it up in the child's context:
6594 	 */
6595 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
6596 	add_event_to_ctx(child_event, child_ctx);
6597 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6598 
6599 	/*
6600 	 * Get a reference to the parent filp - we will fput it
6601 	 * when the child event exits. This is safe to do because
6602 	 * we are in the parent and we know that the filp still
6603 	 * exists and has a nonzero count:
6604 	 */
6605 	atomic_long_inc(&parent_event->filp->f_count);
6606 
6607 	/*
6608 	 * Link this into the parent event's child list
6609 	 */
6610 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6611 	mutex_lock(&parent_event->child_mutex);
6612 	list_add_tail(&child_event->child_list, &parent_event->child_list);
6613 	mutex_unlock(&parent_event->child_mutex);
6614 
6615 	return child_event;
6616 }
6617 
6618 static int inherit_group(struct perf_event *parent_event,
6619 	      struct task_struct *parent,
6620 	      struct perf_event_context *parent_ctx,
6621 	      struct task_struct *child,
6622 	      struct perf_event_context *child_ctx)
6623 {
6624 	struct perf_event *leader;
6625 	struct perf_event *sub;
6626 	struct perf_event *child_ctr;
6627 
6628 	leader = inherit_event(parent_event, parent, parent_ctx,
6629 				 child, NULL, child_ctx);
6630 	if (IS_ERR(leader))
6631 		return PTR_ERR(leader);
6632 	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
6633 		child_ctr = inherit_event(sub, parent, parent_ctx,
6634 					    child, leader, child_ctx);
6635 		if (IS_ERR(child_ctr))
6636 			return PTR_ERR(child_ctr);
6637 	}
6638 	return 0;
6639 }
6640 
6641 static int
6642 inherit_task_group(struct perf_event *event, struct task_struct *parent,
6643 		   struct perf_event_context *parent_ctx,
6644 		   struct task_struct *child, int ctxn,
6645 		   int *inherited_all)
6646 {
6647 	int ret;
6648 	struct perf_event_context *child_ctx;
6649 
6650 	if (!event->attr.inherit) {
6651 		*inherited_all = 0;
6652 		return 0;
6653 	}
6654 
6655 	child_ctx = child->perf_event_ctxp[ctxn];
6656 	if (!child_ctx) {
6657 		/*
6658 		 * This is executed from the parent task context, so
6659 		 * inherit events that have been marked for cloning.
6660 		 * First allocate and initialize a context for the
6661 		 * child.
6662 		 */
6663 
6664 		child_ctx = alloc_perf_context(event->pmu, child);
6665 		if (!child_ctx)
6666 			return -ENOMEM;
6667 
6668 		child->perf_event_ctxp[ctxn] = child_ctx;
6669 	}
6670 
6671 	ret = inherit_group(event, parent, parent_ctx,
6672 			    child, child_ctx);
6673 
6674 	if (ret)
6675 		*inherited_all = 0;
6676 
6677 	return ret;
6678 }
6679 
6680 /*
6681  * Initialize the perf_event context in task_struct
6682  */
6683 int perf_event_init_context(struct task_struct *child, int ctxn)
6684 {
6685 	struct perf_event_context *child_ctx, *parent_ctx;
6686 	struct perf_event_context *cloned_ctx;
6687 	struct perf_event *event;
6688 	struct task_struct *parent = current;
6689 	int inherited_all = 1;
6690 	unsigned long flags;
6691 	int ret = 0;
6692 
6693 	if (likely(!parent->perf_event_ctxp[ctxn]))
6694 		return 0;
6695 
6696 	/*
6697 	 * If the parent's context is a clone, pin it so it won't get
6698 	 * swapped under us.
6699 	 */
6700 	parent_ctx = perf_pin_task_context(parent, ctxn);
6701 
6702 	/*
6703 	 * No need to check if parent_ctx != NULL here; since we saw
6704 	 * it non-NULL earlier, the only reason for it to become NULL
6705 	 * is if we exit, and since we're currently in the middle of
6706 	 * a fork we can't be exiting at the same time.
6707 	 */
6708 
6709 	/*
6710 	 * Lock the parent list. No need to lock the child - not PID
6711 	 * hashed yet and not running, so nobody can access it.
6712 	 */
6713 	mutex_lock(&parent_ctx->mutex);
6714 
6715 	/*
6716 	 * We dont have to disable NMIs - we are only looking at
6717 	 * the list, not manipulating it:
6718 	 */
6719 	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
6720 		ret = inherit_task_group(event, parent, parent_ctx,
6721 					 child, ctxn, &inherited_all);
6722 		if (ret)
6723 			break;
6724 	}
6725 
6726 	/*
6727 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
6728 	 * to allocations, but we need to prevent rotation because
6729 	 * rotate_ctx() will change the list from interrupt context.
6730 	 */
6731 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
6732 	parent_ctx->rotate_disable = 1;
6733 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6734 
6735 	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
6736 		ret = inherit_task_group(event, parent, parent_ctx,
6737 					 child, ctxn, &inherited_all);
6738 		if (ret)
6739 			break;
6740 	}
6741 
6742 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
6743 	parent_ctx->rotate_disable = 0;
6744 
6745 	child_ctx = child->perf_event_ctxp[ctxn];
6746 
6747 	if (child_ctx && inherited_all) {
6748 		/*
6749 		 * Mark the child context as a clone of the parent
6750 		 * context, or of whatever the parent is a clone of.
6751 		 *
6752 		 * Note that if the parent is a clone, the holding of
6753 		 * parent_ctx->lock avoids it from being uncloned.
6754 		 */
6755 		cloned_ctx = parent_ctx->parent_ctx;
6756 		if (cloned_ctx) {
6757 			child_ctx->parent_ctx = cloned_ctx;
6758 			child_ctx->parent_gen = parent_ctx->parent_gen;
6759 		} else {
6760 			child_ctx->parent_ctx = parent_ctx;
6761 			child_ctx->parent_gen = parent_ctx->generation;
6762 		}
6763 		get_ctx(child_ctx->parent_ctx);
6764 	}
6765 
6766 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6767 	mutex_unlock(&parent_ctx->mutex);
6768 
6769 	perf_unpin_context(parent_ctx);
6770 	put_ctx(parent_ctx);
6771 
6772 	return ret;
6773 }
6774 
6775 /*
6776  * Initialize the perf_event context in task_struct
6777  */
6778 int perf_event_init_task(struct task_struct *child)
6779 {
6780 	int ctxn, ret;
6781 
6782 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
6783 	mutex_init(&child->perf_event_mutex);
6784 	INIT_LIST_HEAD(&child->perf_event_list);
6785 
6786 	for_each_task_context_nr(ctxn) {
6787 		ret = perf_event_init_context(child, ctxn);
6788 		if (ret)
6789 			return ret;
6790 	}
6791 
6792 	return 0;
6793 }
6794 
6795 static void __init perf_event_init_all_cpus(void)
6796 {
6797 	struct swevent_htable *swhash;
6798 	int cpu;
6799 
6800 	for_each_possible_cpu(cpu) {
6801 		swhash = &per_cpu(swevent_htable, cpu);
6802 		mutex_init(&swhash->hlist_mutex);
6803 		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
6804 	}
6805 }
6806 
6807 static void __cpuinit perf_event_init_cpu(int cpu)
6808 {
6809 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6810 
6811 	mutex_lock(&swhash->hlist_mutex);
6812 	if (swhash->hlist_refcount > 0) {
6813 		struct swevent_hlist *hlist;
6814 
6815 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
6816 		WARN_ON(!hlist);
6817 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
6818 	}
6819 	mutex_unlock(&swhash->hlist_mutex);
6820 }
6821 
6822 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
6823 static void perf_pmu_rotate_stop(struct pmu *pmu)
6824 {
6825 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6826 
6827 	WARN_ON(!irqs_disabled());
6828 
6829 	list_del_init(&cpuctx->rotation_list);
6830 }
6831 
6832 static void __perf_event_exit_context(void *__info)
6833 {
6834 	struct perf_event_context *ctx = __info;
6835 	struct perf_event *event, *tmp;
6836 
6837 	perf_pmu_rotate_stop(ctx->pmu);
6838 
6839 	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
6840 		__perf_remove_from_context(event);
6841 	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
6842 		__perf_remove_from_context(event);
6843 }
6844 
6845 static void perf_event_exit_cpu_context(int cpu)
6846 {
6847 	struct perf_event_context *ctx;
6848 	struct pmu *pmu;
6849 	int idx;
6850 
6851 	idx = srcu_read_lock(&pmus_srcu);
6852 	list_for_each_entry_rcu(pmu, &pmus, entry) {
6853 		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
6854 
6855 		mutex_lock(&ctx->mutex);
6856 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
6857 		mutex_unlock(&ctx->mutex);
6858 	}
6859 	srcu_read_unlock(&pmus_srcu, idx);
6860 }
6861 
6862 static void perf_event_exit_cpu(int cpu)
6863 {
6864 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6865 
6866 	mutex_lock(&swhash->hlist_mutex);
6867 	swevent_hlist_release(swhash);
6868 	mutex_unlock(&swhash->hlist_mutex);
6869 
6870 	perf_event_exit_cpu_context(cpu);
6871 }
6872 #else
6873 static inline void perf_event_exit_cpu(int cpu) { }
6874 #endif
6875 
6876 static int
6877 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
6878 {
6879 	int cpu;
6880 
6881 	for_each_online_cpu(cpu)
6882 		perf_event_exit_cpu(cpu);
6883 
6884 	return NOTIFY_OK;
6885 }
6886 
6887 /*
6888  * Run the perf reboot notifier at the very last possible moment so that
6889  * the generic watchdog code runs as long as possible.
6890  */
6891 static struct notifier_block perf_reboot_notifier = {
6892 	.notifier_call = perf_reboot,
6893 	.priority = INT_MIN,
6894 };
6895 
6896 static int __cpuinit
6897 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
6898 {
6899 	unsigned int cpu = (long)hcpu;
6900 
6901 	switch (action & ~CPU_TASKS_FROZEN) {
6902 
6903 	case CPU_UP_PREPARE:
6904 	case CPU_DOWN_FAILED:
6905 		perf_event_init_cpu(cpu);
6906 		break;
6907 
6908 	case CPU_UP_CANCELED:
6909 	case CPU_DOWN_PREPARE:
6910 		perf_event_exit_cpu(cpu);
6911 		break;
6912 
6913 	default:
6914 		break;
6915 	}
6916 
6917 	return NOTIFY_OK;
6918 }
6919 
6920 void __init perf_event_init(void)
6921 {
6922 	int ret;
6923 
6924 	idr_init(&pmu_idr);
6925 
6926 	perf_event_init_all_cpus();
6927 	init_srcu_struct(&pmus_srcu);
6928 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
6929 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
6930 	perf_pmu_register(&perf_task_clock, NULL, -1);
6931 	perf_tp_register();
6932 	perf_cpu_notifier(perf_cpu_notify);
6933 	register_reboot_notifier(&perf_reboot_notifier);
6934 
6935 	ret = init_hw_breakpoint();
6936 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
6937 }
6938 
6939 static int __init perf_event_sysfs_init(void)
6940 {
6941 	struct pmu *pmu;
6942 	int ret;
6943 
6944 	mutex_lock(&pmus_lock);
6945 
6946 	ret = bus_register(&pmu_bus);
6947 	if (ret)
6948 		goto unlock;
6949 
6950 	list_for_each_entry(pmu, &pmus, entry) {
6951 		if (!pmu->name || pmu->type < 0)
6952 			continue;
6953 
6954 		ret = pmu_dev_alloc(pmu);
6955 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
6956 	}
6957 	pmu_bus_running = 1;
6958 	ret = 0;
6959 
6960 unlock:
6961 	mutex_unlock(&pmus_lock);
6962 
6963 	return ret;
6964 }
6965 device_initcall(perf_event_sysfs_init);
6966 
6967 #ifdef CONFIG_CGROUP_PERF
6968 static struct cgroup_subsys_state *perf_cgroup_create(
6969 	struct cgroup_subsys *ss, struct cgroup *cont)
6970 {
6971 	struct perf_cgroup *jc;
6972 
6973 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
6974 	if (!jc)
6975 		return ERR_PTR(-ENOMEM);
6976 
6977 	jc->info = alloc_percpu(struct perf_cgroup_info);
6978 	if (!jc->info) {
6979 		kfree(jc);
6980 		return ERR_PTR(-ENOMEM);
6981 	}
6982 
6983 	return &jc->css;
6984 }
6985 
6986 static void perf_cgroup_destroy(struct cgroup_subsys *ss,
6987 				struct cgroup *cont)
6988 {
6989 	struct perf_cgroup *jc;
6990 	jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
6991 			  struct perf_cgroup, css);
6992 	free_percpu(jc->info);
6993 	kfree(jc);
6994 }
6995 
6996 static int __perf_cgroup_move(void *info)
6997 {
6998 	struct task_struct *task = info;
6999 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
7000 	return 0;
7001 }
7002 
7003 static void
7004 perf_cgroup_attach_task(struct cgroup *cgrp, struct task_struct *task)
7005 {
7006 	task_function_call(task, __perf_cgroup_move, task);
7007 }
7008 
7009 static void perf_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
7010 		struct cgroup *old_cgrp, struct task_struct *task)
7011 {
7012 	/*
7013 	 * cgroup_exit() is called in the copy_process() failure path.
7014 	 * Ignore this case since the task hasn't ran yet, this avoids
7015 	 * trying to poke a half freed task state from generic code.
7016 	 */
7017 	if (!(task->flags & PF_EXITING))
7018 		return;
7019 
7020 	perf_cgroup_attach_task(cgrp, task);
7021 }
7022 
7023 struct cgroup_subsys perf_subsys = {
7024 	.name		= "perf_event",
7025 	.subsys_id	= perf_subsys_id,
7026 	.create		= perf_cgroup_create,
7027 	.destroy	= perf_cgroup_destroy,
7028 	.exit		= perf_cgroup_exit,
7029 	.attach_task	= perf_cgroup_attach_task,
7030 };
7031 #endif /* CONFIG_CGROUP_PERF */
7032