1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Performance events core code: 4 * 5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 9 */ 10 11 #include <linux/fs.h> 12 #include <linux/mm.h> 13 #include <linux/cpu.h> 14 #include <linux/smp.h> 15 #include <linux/idr.h> 16 #include <linux/file.h> 17 #include <linux/poll.h> 18 #include <linux/slab.h> 19 #include <linux/hash.h> 20 #include <linux/tick.h> 21 #include <linux/sysfs.h> 22 #include <linux/dcache.h> 23 #include <linux/percpu.h> 24 #include <linux/ptrace.h> 25 #include <linux/reboot.h> 26 #include <linux/vmstat.h> 27 #include <linux/device.h> 28 #include <linux/export.h> 29 #include <linux/vmalloc.h> 30 #include <linux/hardirq.h> 31 #include <linux/hugetlb.h> 32 #include <linux/rculist.h> 33 #include <linux/uaccess.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/cgroup.h> 38 #include <linux/perf_event.h> 39 #include <linux/trace_events.h> 40 #include <linux/hw_breakpoint.h> 41 #include <linux/mm_types.h> 42 #include <linux/module.h> 43 #include <linux/mman.h> 44 #include <linux/compat.h> 45 #include <linux/bpf.h> 46 #include <linux/filter.h> 47 #include <linux/namei.h> 48 #include <linux/parser.h> 49 #include <linux/sched/clock.h> 50 #include <linux/sched/mm.h> 51 #include <linux/proc_ns.h> 52 #include <linux/mount.h> 53 #include <linux/min_heap.h> 54 55 #include "internal.h" 56 57 #include <asm/irq_regs.h> 58 59 typedef int (*remote_function_f)(void *); 60 61 struct remote_function_call { 62 struct task_struct *p; 63 remote_function_f func; 64 void *info; 65 int ret; 66 }; 67 68 static void remote_function(void *data) 69 { 70 struct remote_function_call *tfc = data; 71 struct task_struct *p = tfc->p; 72 73 if (p) { 74 /* -EAGAIN */ 75 if (task_cpu(p) != smp_processor_id()) 76 return; 77 78 /* 79 * Now that we're on right CPU with IRQs disabled, we can test 80 * if we hit the right task without races. 81 */ 82 83 tfc->ret = -ESRCH; /* No such (running) process */ 84 if (p != current) 85 return; 86 } 87 88 tfc->ret = tfc->func(tfc->info); 89 } 90 91 /** 92 * task_function_call - call a function on the cpu on which a task runs 93 * @p: the task to evaluate 94 * @func: the function to be called 95 * @info: the function call argument 96 * 97 * Calls the function @func when the task is currently running. This might 98 * be on the current CPU, which just calls the function directly. This will 99 * retry due to any failures in smp_call_function_single(), such as if the 100 * task_cpu() goes offline concurrently. 101 * 102 * returns @func return value or -ESRCH or -ENXIO when the process isn't running 103 */ 104 static int 105 task_function_call(struct task_struct *p, remote_function_f func, void *info) 106 { 107 struct remote_function_call data = { 108 .p = p, 109 .func = func, 110 .info = info, 111 .ret = -EAGAIN, 112 }; 113 int ret; 114 115 for (;;) { 116 ret = smp_call_function_single(task_cpu(p), remote_function, 117 &data, 1); 118 if (!ret) 119 ret = data.ret; 120 121 if (ret != -EAGAIN) 122 break; 123 124 cond_resched(); 125 } 126 127 return ret; 128 } 129 130 /** 131 * cpu_function_call - call a function on the cpu 132 * @func: the function to be called 133 * @info: the function call argument 134 * 135 * Calls the function @func on the remote cpu. 136 * 137 * returns: @func return value or -ENXIO when the cpu is offline 138 */ 139 static int cpu_function_call(int cpu, remote_function_f func, void *info) 140 { 141 struct remote_function_call data = { 142 .p = NULL, 143 .func = func, 144 .info = info, 145 .ret = -ENXIO, /* No such CPU */ 146 }; 147 148 smp_call_function_single(cpu, remote_function, &data, 1); 149 150 return data.ret; 151 } 152 153 static inline struct perf_cpu_context * 154 __get_cpu_context(struct perf_event_context *ctx) 155 { 156 return this_cpu_ptr(ctx->pmu->pmu_cpu_context); 157 } 158 159 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 160 struct perf_event_context *ctx) 161 { 162 raw_spin_lock(&cpuctx->ctx.lock); 163 if (ctx) 164 raw_spin_lock(&ctx->lock); 165 } 166 167 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 168 struct perf_event_context *ctx) 169 { 170 if (ctx) 171 raw_spin_unlock(&ctx->lock); 172 raw_spin_unlock(&cpuctx->ctx.lock); 173 } 174 175 #define TASK_TOMBSTONE ((void *)-1L) 176 177 static bool is_kernel_event(struct perf_event *event) 178 { 179 return READ_ONCE(event->owner) == TASK_TOMBSTONE; 180 } 181 182 /* 183 * On task ctx scheduling... 184 * 185 * When !ctx->nr_events a task context will not be scheduled. This means 186 * we can disable the scheduler hooks (for performance) without leaving 187 * pending task ctx state. 188 * 189 * This however results in two special cases: 190 * 191 * - removing the last event from a task ctx; this is relatively straight 192 * forward and is done in __perf_remove_from_context. 193 * 194 * - adding the first event to a task ctx; this is tricky because we cannot 195 * rely on ctx->is_active and therefore cannot use event_function_call(). 196 * See perf_install_in_context(). 197 * 198 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set. 199 */ 200 201 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *, 202 struct perf_event_context *, void *); 203 204 struct event_function_struct { 205 struct perf_event *event; 206 event_f func; 207 void *data; 208 }; 209 210 static int event_function(void *info) 211 { 212 struct event_function_struct *efs = info; 213 struct perf_event *event = efs->event; 214 struct perf_event_context *ctx = event->ctx; 215 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 216 struct perf_event_context *task_ctx = cpuctx->task_ctx; 217 int ret = 0; 218 219 lockdep_assert_irqs_disabled(); 220 221 perf_ctx_lock(cpuctx, task_ctx); 222 /* 223 * Since we do the IPI call without holding ctx->lock things can have 224 * changed, double check we hit the task we set out to hit. 225 */ 226 if (ctx->task) { 227 if (ctx->task != current) { 228 ret = -ESRCH; 229 goto unlock; 230 } 231 232 /* 233 * We only use event_function_call() on established contexts, 234 * and event_function() is only ever called when active (or 235 * rather, we'll have bailed in task_function_call() or the 236 * above ctx->task != current test), therefore we must have 237 * ctx->is_active here. 238 */ 239 WARN_ON_ONCE(!ctx->is_active); 240 /* 241 * And since we have ctx->is_active, cpuctx->task_ctx must 242 * match. 243 */ 244 WARN_ON_ONCE(task_ctx != ctx); 245 } else { 246 WARN_ON_ONCE(&cpuctx->ctx != ctx); 247 } 248 249 efs->func(event, cpuctx, ctx, efs->data); 250 unlock: 251 perf_ctx_unlock(cpuctx, task_ctx); 252 253 return ret; 254 } 255 256 static void event_function_call(struct perf_event *event, event_f func, void *data) 257 { 258 struct perf_event_context *ctx = event->ctx; 259 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */ 260 struct event_function_struct efs = { 261 .event = event, 262 .func = func, 263 .data = data, 264 }; 265 266 if (!event->parent) { 267 /* 268 * If this is a !child event, we must hold ctx::mutex to 269 * stabilize the the event->ctx relation. See 270 * perf_event_ctx_lock(). 271 */ 272 lockdep_assert_held(&ctx->mutex); 273 } 274 275 if (!task) { 276 cpu_function_call(event->cpu, event_function, &efs); 277 return; 278 } 279 280 if (task == TASK_TOMBSTONE) 281 return; 282 283 again: 284 if (!task_function_call(task, event_function, &efs)) 285 return; 286 287 raw_spin_lock_irq(&ctx->lock); 288 /* 289 * Reload the task pointer, it might have been changed by 290 * a concurrent perf_event_context_sched_out(). 291 */ 292 task = ctx->task; 293 if (task == TASK_TOMBSTONE) { 294 raw_spin_unlock_irq(&ctx->lock); 295 return; 296 } 297 if (ctx->is_active) { 298 raw_spin_unlock_irq(&ctx->lock); 299 goto again; 300 } 301 func(event, NULL, ctx, data); 302 raw_spin_unlock_irq(&ctx->lock); 303 } 304 305 /* 306 * Similar to event_function_call() + event_function(), but hard assumes IRQs 307 * are already disabled and we're on the right CPU. 308 */ 309 static void event_function_local(struct perf_event *event, event_f func, void *data) 310 { 311 struct perf_event_context *ctx = event->ctx; 312 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 313 struct task_struct *task = READ_ONCE(ctx->task); 314 struct perf_event_context *task_ctx = NULL; 315 316 lockdep_assert_irqs_disabled(); 317 318 if (task) { 319 if (task == TASK_TOMBSTONE) 320 return; 321 322 task_ctx = ctx; 323 } 324 325 perf_ctx_lock(cpuctx, task_ctx); 326 327 task = ctx->task; 328 if (task == TASK_TOMBSTONE) 329 goto unlock; 330 331 if (task) { 332 /* 333 * We must be either inactive or active and the right task, 334 * otherwise we're screwed, since we cannot IPI to somewhere 335 * else. 336 */ 337 if (ctx->is_active) { 338 if (WARN_ON_ONCE(task != current)) 339 goto unlock; 340 341 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx)) 342 goto unlock; 343 } 344 } else { 345 WARN_ON_ONCE(&cpuctx->ctx != ctx); 346 } 347 348 func(event, cpuctx, ctx, data); 349 unlock: 350 perf_ctx_unlock(cpuctx, task_ctx); 351 } 352 353 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 354 PERF_FLAG_FD_OUTPUT |\ 355 PERF_FLAG_PID_CGROUP |\ 356 PERF_FLAG_FD_CLOEXEC) 357 358 /* 359 * branch priv levels that need permission checks 360 */ 361 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 362 (PERF_SAMPLE_BRANCH_KERNEL |\ 363 PERF_SAMPLE_BRANCH_HV) 364 365 enum event_type_t { 366 EVENT_FLEXIBLE = 0x1, 367 EVENT_PINNED = 0x2, 368 EVENT_TIME = 0x4, 369 /* see ctx_resched() for details */ 370 EVENT_CPU = 0x8, 371 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 372 }; 373 374 /* 375 * perf_sched_events : >0 events exist 376 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu 377 */ 378 379 static void perf_sched_delayed(struct work_struct *work); 380 DEFINE_STATIC_KEY_FALSE(perf_sched_events); 381 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed); 382 static DEFINE_MUTEX(perf_sched_mutex); 383 static atomic_t perf_sched_count; 384 385 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); 386 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events); 387 388 static atomic_t nr_mmap_events __read_mostly; 389 static atomic_t nr_comm_events __read_mostly; 390 static atomic_t nr_namespaces_events __read_mostly; 391 static atomic_t nr_task_events __read_mostly; 392 static atomic_t nr_freq_events __read_mostly; 393 static atomic_t nr_switch_events __read_mostly; 394 static atomic_t nr_ksymbol_events __read_mostly; 395 static atomic_t nr_bpf_events __read_mostly; 396 static atomic_t nr_cgroup_events __read_mostly; 397 static atomic_t nr_text_poke_events __read_mostly; 398 399 static LIST_HEAD(pmus); 400 static DEFINE_MUTEX(pmus_lock); 401 static struct srcu_struct pmus_srcu; 402 static cpumask_var_t perf_online_mask; 403 404 /* 405 * perf event paranoia level: 406 * -1 - not paranoid at all 407 * 0 - disallow raw tracepoint access for unpriv 408 * 1 - disallow cpu events for unpriv 409 * 2 - disallow kernel profiling for unpriv 410 */ 411 int sysctl_perf_event_paranoid __read_mostly = 2; 412 413 /* Minimum for 512 kiB + 1 user control page */ 414 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 415 416 /* 417 * max perf event sample rate 418 */ 419 #define DEFAULT_MAX_SAMPLE_RATE 100000 420 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 421 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 422 423 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 424 425 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 426 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 427 428 static int perf_sample_allowed_ns __read_mostly = 429 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 430 431 static void update_perf_cpu_limits(void) 432 { 433 u64 tmp = perf_sample_period_ns; 434 435 tmp *= sysctl_perf_cpu_time_max_percent; 436 tmp = div_u64(tmp, 100); 437 if (!tmp) 438 tmp = 1; 439 440 WRITE_ONCE(perf_sample_allowed_ns, tmp); 441 } 442 443 static bool perf_rotate_context(struct perf_cpu_context *cpuctx); 444 445 int perf_proc_update_handler(struct ctl_table *table, int write, 446 void *buffer, size_t *lenp, loff_t *ppos) 447 { 448 int ret; 449 int perf_cpu = sysctl_perf_cpu_time_max_percent; 450 /* 451 * If throttling is disabled don't allow the write: 452 */ 453 if (write && (perf_cpu == 100 || perf_cpu == 0)) 454 return -EINVAL; 455 456 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 457 if (ret || !write) 458 return ret; 459 460 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 461 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 462 update_perf_cpu_limits(); 463 464 return 0; 465 } 466 467 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 468 469 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 470 void *buffer, size_t *lenp, loff_t *ppos) 471 { 472 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 473 474 if (ret || !write) 475 return ret; 476 477 if (sysctl_perf_cpu_time_max_percent == 100 || 478 sysctl_perf_cpu_time_max_percent == 0) { 479 printk(KERN_WARNING 480 "perf: Dynamic interrupt throttling disabled, can hang your system!\n"); 481 WRITE_ONCE(perf_sample_allowed_ns, 0); 482 } else { 483 update_perf_cpu_limits(); 484 } 485 486 return 0; 487 } 488 489 /* 490 * perf samples are done in some very critical code paths (NMIs). 491 * If they take too much CPU time, the system can lock up and not 492 * get any real work done. This will drop the sample rate when 493 * we detect that events are taking too long. 494 */ 495 #define NR_ACCUMULATED_SAMPLES 128 496 static DEFINE_PER_CPU(u64, running_sample_length); 497 498 static u64 __report_avg; 499 static u64 __report_allowed; 500 501 static void perf_duration_warn(struct irq_work *w) 502 { 503 printk_ratelimited(KERN_INFO 504 "perf: interrupt took too long (%lld > %lld), lowering " 505 "kernel.perf_event_max_sample_rate to %d\n", 506 __report_avg, __report_allowed, 507 sysctl_perf_event_sample_rate); 508 } 509 510 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 511 512 void perf_sample_event_took(u64 sample_len_ns) 513 { 514 u64 max_len = READ_ONCE(perf_sample_allowed_ns); 515 u64 running_len; 516 u64 avg_len; 517 u32 max; 518 519 if (max_len == 0) 520 return; 521 522 /* Decay the counter by 1 average sample. */ 523 running_len = __this_cpu_read(running_sample_length); 524 running_len -= running_len/NR_ACCUMULATED_SAMPLES; 525 running_len += sample_len_ns; 526 __this_cpu_write(running_sample_length, running_len); 527 528 /* 529 * Note: this will be biased artifically low until we have 530 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 531 * from having to maintain a count. 532 */ 533 avg_len = running_len/NR_ACCUMULATED_SAMPLES; 534 if (avg_len <= max_len) 535 return; 536 537 __report_avg = avg_len; 538 __report_allowed = max_len; 539 540 /* 541 * Compute a throttle threshold 25% below the current duration. 542 */ 543 avg_len += avg_len / 4; 544 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent; 545 if (avg_len < max) 546 max /= (u32)avg_len; 547 else 548 max = 1; 549 550 WRITE_ONCE(perf_sample_allowed_ns, avg_len); 551 WRITE_ONCE(max_samples_per_tick, max); 552 553 sysctl_perf_event_sample_rate = max * HZ; 554 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 555 556 if (!irq_work_queue(&perf_duration_work)) { 557 early_printk("perf: interrupt took too long (%lld > %lld), lowering " 558 "kernel.perf_event_max_sample_rate to %d\n", 559 __report_avg, __report_allowed, 560 sysctl_perf_event_sample_rate); 561 } 562 } 563 564 static atomic64_t perf_event_id; 565 566 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 567 enum event_type_t event_type); 568 569 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 570 enum event_type_t event_type, 571 struct task_struct *task); 572 573 static void update_context_time(struct perf_event_context *ctx); 574 static u64 perf_event_time(struct perf_event *event); 575 576 void __weak perf_event_print_debug(void) { } 577 578 extern __weak const char *perf_pmu_name(void) 579 { 580 return "pmu"; 581 } 582 583 static inline u64 perf_clock(void) 584 { 585 return local_clock(); 586 } 587 588 static inline u64 perf_event_clock(struct perf_event *event) 589 { 590 return event->clock(); 591 } 592 593 /* 594 * State based event timekeeping... 595 * 596 * The basic idea is to use event->state to determine which (if any) time 597 * fields to increment with the current delta. This means we only need to 598 * update timestamps when we change state or when they are explicitly requested 599 * (read). 600 * 601 * Event groups make things a little more complicated, but not terribly so. The 602 * rules for a group are that if the group leader is OFF the entire group is 603 * OFF, irrespecive of what the group member states are. This results in 604 * __perf_effective_state(). 605 * 606 * A futher ramification is that when a group leader flips between OFF and 607 * !OFF, we need to update all group member times. 608 * 609 * 610 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we 611 * need to make sure the relevant context time is updated before we try and 612 * update our timestamps. 613 */ 614 615 static __always_inline enum perf_event_state 616 __perf_effective_state(struct perf_event *event) 617 { 618 struct perf_event *leader = event->group_leader; 619 620 if (leader->state <= PERF_EVENT_STATE_OFF) 621 return leader->state; 622 623 return event->state; 624 } 625 626 static __always_inline void 627 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running) 628 { 629 enum perf_event_state state = __perf_effective_state(event); 630 u64 delta = now - event->tstamp; 631 632 *enabled = event->total_time_enabled; 633 if (state >= PERF_EVENT_STATE_INACTIVE) 634 *enabled += delta; 635 636 *running = event->total_time_running; 637 if (state >= PERF_EVENT_STATE_ACTIVE) 638 *running += delta; 639 } 640 641 static void perf_event_update_time(struct perf_event *event) 642 { 643 u64 now = perf_event_time(event); 644 645 __perf_update_times(event, now, &event->total_time_enabled, 646 &event->total_time_running); 647 event->tstamp = now; 648 } 649 650 static void perf_event_update_sibling_time(struct perf_event *leader) 651 { 652 struct perf_event *sibling; 653 654 for_each_sibling_event(sibling, leader) 655 perf_event_update_time(sibling); 656 } 657 658 static void 659 perf_event_set_state(struct perf_event *event, enum perf_event_state state) 660 { 661 if (event->state == state) 662 return; 663 664 perf_event_update_time(event); 665 /* 666 * If a group leader gets enabled/disabled all its siblings 667 * are affected too. 668 */ 669 if ((event->state < 0) ^ (state < 0)) 670 perf_event_update_sibling_time(event); 671 672 WRITE_ONCE(event->state, state); 673 } 674 675 #ifdef CONFIG_CGROUP_PERF 676 677 static inline bool 678 perf_cgroup_match(struct perf_event *event) 679 { 680 struct perf_event_context *ctx = event->ctx; 681 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 682 683 /* @event doesn't care about cgroup */ 684 if (!event->cgrp) 685 return true; 686 687 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 688 if (!cpuctx->cgrp) 689 return false; 690 691 /* 692 * Cgroup scoping is recursive. An event enabled for a cgroup is 693 * also enabled for all its descendant cgroups. If @cpuctx's 694 * cgroup is a descendant of @event's (the test covers identity 695 * case), it's a match. 696 */ 697 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 698 event->cgrp->css.cgroup); 699 } 700 701 static inline void perf_detach_cgroup(struct perf_event *event) 702 { 703 css_put(&event->cgrp->css); 704 event->cgrp = NULL; 705 } 706 707 static inline int is_cgroup_event(struct perf_event *event) 708 { 709 return event->cgrp != NULL; 710 } 711 712 static inline u64 perf_cgroup_event_time(struct perf_event *event) 713 { 714 struct perf_cgroup_info *t; 715 716 t = per_cpu_ptr(event->cgrp->info, event->cpu); 717 return t->time; 718 } 719 720 static inline void __update_cgrp_time(struct perf_cgroup *cgrp) 721 { 722 struct perf_cgroup_info *info; 723 u64 now; 724 725 now = perf_clock(); 726 727 info = this_cpu_ptr(cgrp->info); 728 729 info->time += now - info->timestamp; 730 info->timestamp = now; 731 } 732 733 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 734 { 735 struct perf_cgroup *cgrp = cpuctx->cgrp; 736 struct cgroup_subsys_state *css; 737 738 if (cgrp) { 739 for (css = &cgrp->css; css; css = css->parent) { 740 cgrp = container_of(css, struct perf_cgroup, css); 741 __update_cgrp_time(cgrp); 742 } 743 } 744 } 745 746 static inline void update_cgrp_time_from_event(struct perf_event *event) 747 { 748 struct perf_cgroup *cgrp; 749 750 /* 751 * ensure we access cgroup data only when needed and 752 * when we know the cgroup is pinned (css_get) 753 */ 754 if (!is_cgroup_event(event)) 755 return; 756 757 cgrp = perf_cgroup_from_task(current, event->ctx); 758 /* 759 * Do not update time when cgroup is not active 760 */ 761 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup)) 762 __update_cgrp_time(event->cgrp); 763 } 764 765 static inline void 766 perf_cgroup_set_timestamp(struct task_struct *task, 767 struct perf_event_context *ctx) 768 { 769 struct perf_cgroup *cgrp; 770 struct perf_cgroup_info *info; 771 struct cgroup_subsys_state *css; 772 773 /* 774 * ctx->lock held by caller 775 * ensure we do not access cgroup data 776 * unless we have the cgroup pinned (css_get) 777 */ 778 if (!task || !ctx->nr_cgroups) 779 return; 780 781 cgrp = perf_cgroup_from_task(task, ctx); 782 783 for (css = &cgrp->css; css; css = css->parent) { 784 cgrp = container_of(css, struct perf_cgroup, css); 785 info = this_cpu_ptr(cgrp->info); 786 info->timestamp = ctx->timestamp; 787 } 788 } 789 790 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list); 791 792 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */ 793 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */ 794 795 /* 796 * reschedule events based on the cgroup constraint of task. 797 * 798 * mode SWOUT : schedule out everything 799 * mode SWIN : schedule in based on cgroup for next 800 */ 801 static void perf_cgroup_switch(struct task_struct *task, int mode) 802 { 803 struct perf_cpu_context *cpuctx; 804 struct list_head *list; 805 unsigned long flags; 806 807 /* 808 * Disable interrupts and preemption to avoid this CPU's 809 * cgrp_cpuctx_entry to change under us. 810 */ 811 local_irq_save(flags); 812 813 list = this_cpu_ptr(&cgrp_cpuctx_list); 814 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) { 815 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0); 816 817 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 818 perf_pmu_disable(cpuctx->ctx.pmu); 819 820 if (mode & PERF_CGROUP_SWOUT) { 821 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 822 /* 823 * must not be done before ctxswout due 824 * to event_filter_match() in event_sched_out() 825 */ 826 cpuctx->cgrp = NULL; 827 } 828 829 if (mode & PERF_CGROUP_SWIN) { 830 WARN_ON_ONCE(cpuctx->cgrp); 831 /* 832 * set cgrp before ctxsw in to allow 833 * event_filter_match() to not have to pass 834 * task around 835 * we pass the cpuctx->ctx to perf_cgroup_from_task() 836 * because cgorup events are only per-cpu 837 */ 838 cpuctx->cgrp = perf_cgroup_from_task(task, 839 &cpuctx->ctx); 840 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task); 841 } 842 perf_pmu_enable(cpuctx->ctx.pmu); 843 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 844 } 845 846 local_irq_restore(flags); 847 } 848 849 static inline void perf_cgroup_sched_out(struct task_struct *task, 850 struct task_struct *next) 851 { 852 struct perf_cgroup *cgrp1; 853 struct perf_cgroup *cgrp2 = NULL; 854 855 rcu_read_lock(); 856 /* 857 * we come here when we know perf_cgroup_events > 0 858 * we do not need to pass the ctx here because we know 859 * we are holding the rcu lock 860 */ 861 cgrp1 = perf_cgroup_from_task(task, NULL); 862 cgrp2 = perf_cgroup_from_task(next, NULL); 863 864 /* 865 * only schedule out current cgroup events if we know 866 * that we are switching to a different cgroup. Otherwise, 867 * do no touch the cgroup events. 868 */ 869 if (cgrp1 != cgrp2) 870 perf_cgroup_switch(task, PERF_CGROUP_SWOUT); 871 872 rcu_read_unlock(); 873 } 874 875 static inline void perf_cgroup_sched_in(struct task_struct *prev, 876 struct task_struct *task) 877 { 878 struct perf_cgroup *cgrp1; 879 struct perf_cgroup *cgrp2 = NULL; 880 881 rcu_read_lock(); 882 /* 883 * we come here when we know perf_cgroup_events > 0 884 * we do not need to pass the ctx here because we know 885 * we are holding the rcu lock 886 */ 887 cgrp1 = perf_cgroup_from_task(task, NULL); 888 cgrp2 = perf_cgroup_from_task(prev, NULL); 889 890 /* 891 * only need to schedule in cgroup events if we are changing 892 * cgroup during ctxsw. Cgroup events were not scheduled 893 * out of ctxsw out if that was not the case. 894 */ 895 if (cgrp1 != cgrp2) 896 perf_cgroup_switch(task, PERF_CGROUP_SWIN); 897 898 rcu_read_unlock(); 899 } 900 901 static int perf_cgroup_ensure_storage(struct perf_event *event, 902 struct cgroup_subsys_state *css) 903 { 904 struct perf_cpu_context *cpuctx; 905 struct perf_event **storage; 906 int cpu, heap_size, ret = 0; 907 908 /* 909 * Allow storage to have sufficent space for an iterator for each 910 * possibly nested cgroup plus an iterator for events with no cgroup. 911 */ 912 for (heap_size = 1; css; css = css->parent) 913 heap_size++; 914 915 for_each_possible_cpu(cpu) { 916 cpuctx = per_cpu_ptr(event->pmu->pmu_cpu_context, cpu); 917 if (heap_size <= cpuctx->heap_size) 918 continue; 919 920 storage = kmalloc_node(heap_size * sizeof(struct perf_event *), 921 GFP_KERNEL, cpu_to_node(cpu)); 922 if (!storage) { 923 ret = -ENOMEM; 924 break; 925 } 926 927 raw_spin_lock_irq(&cpuctx->ctx.lock); 928 if (cpuctx->heap_size < heap_size) { 929 swap(cpuctx->heap, storage); 930 if (storage == cpuctx->heap_default) 931 storage = NULL; 932 cpuctx->heap_size = heap_size; 933 } 934 raw_spin_unlock_irq(&cpuctx->ctx.lock); 935 936 kfree(storage); 937 } 938 939 return ret; 940 } 941 942 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 943 struct perf_event_attr *attr, 944 struct perf_event *group_leader) 945 { 946 struct perf_cgroup *cgrp; 947 struct cgroup_subsys_state *css; 948 struct fd f = fdget(fd); 949 int ret = 0; 950 951 if (!f.file) 952 return -EBADF; 953 954 css = css_tryget_online_from_dir(f.file->f_path.dentry, 955 &perf_event_cgrp_subsys); 956 if (IS_ERR(css)) { 957 ret = PTR_ERR(css); 958 goto out; 959 } 960 961 ret = perf_cgroup_ensure_storage(event, css); 962 if (ret) 963 goto out; 964 965 cgrp = container_of(css, struct perf_cgroup, css); 966 event->cgrp = cgrp; 967 968 /* 969 * all events in a group must monitor 970 * the same cgroup because a task belongs 971 * to only one perf cgroup at a time 972 */ 973 if (group_leader && group_leader->cgrp != cgrp) { 974 perf_detach_cgroup(event); 975 ret = -EINVAL; 976 } 977 out: 978 fdput(f); 979 return ret; 980 } 981 982 static inline void 983 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 984 { 985 struct perf_cgroup_info *t; 986 t = per_cpu_ptr(event->cgrp->info, event->cpu); 987 event->shadow_ctx_time = now - t->timestamp; 988 } 989 990 static inline void 991 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 992 { 993 struct perf_cpu_context *cpuctx; 994 995 if (!is_cgroup_event(event)) 996 return; 997 998 /* 999 * Because cgroup events are always per-cpu events, 1000 * @ctx == &cpuctx->ctx. 1001 */ 1002 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 1003 1004 /* 1005 * Since setting cpuctx->cgrp is conditional on the current @cgrp 1006 * matching the event's cgroup, we must do this for every new event, 1007 * because if the first would mismatch, the second would not try again 1008 * and we would leave cpuctx->cgrp unset. 1009 */ 1010 if (ctx->is_active && !cpuctx->cgrp) { 1011 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 1012 1013 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup)) 1014 cpuctx->cgrp = cgrp; 1015 } 1016 1017 if (ctx->nr_cgroups++) 1018 return; 1019 1020 list_add(&cpuctx->cgrp_cpuctx_entry, 1021 per_cpu_ptr(&cgrp_cpuctx_list, event->cpu)); 1022 } 1023 1024 static inline void 1025 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 1026 { 1027 struct perf_cpu_context *cpuctx; 1028 1029 if (!is_cgroup_event(event)) 1030 return; 1031 1032 /* 1033 * Because cgroup events are always per-cpu events, 1034 * @ctx == &cpuctx->ctx. 1035 */ 1036 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 1037 1038 if (--ctx->nr_cgroups) 1039 return; 1040 1041 if (ctx->is_active && cpuctx->cgrp) 1042 cpuctx->cgrp = NULL; 1043 1044 list_del(&cpuctx->cgrp_cpuctx_entry); 1045 } 1046 1047 #else /* !CONFIG_CGROUP_PERF */ 1048 1049 static inline bool 1050 perf_cgroup_match(struct perf_event *event) 1051 { 1052 return true; 1053 } 1054 1055 static inline void perf_detach_cgroup(struct perf_event *event) 1056 {} 1057 1058 static inline int is_cgroup_event(struct perf_event *event) 1059 { 1060 return 0; 1061 } 1062 1063 static inline void update_cgrp_time_from_event(struct perf_event *event) 1064 { 1065 } 1066 1067 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 1068 { 1069 } 1070 1071 static inline void perf_cgroup_sched_out(struct task_struct *task, 1072 struct task_struct *next) 1073 { 1074 } 1075 1076 static inline void perf_cgroup_sched_in(struct task_struct *prev, 1077 struct task_struct *task) 1078 { 1079 } 1080 1081 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 1082 struct perf_event_attr *attr, 1083 struct perf_event *group_leader) 1084 { 1085 return -EINVAL; 1086 } 1087 1088 static inline void 1089 perf_cgroup_set_timestamp(struct task_struct *task, 1090 struct perf_event_context *ctx) 1091 { 1092 } 1093 1094 static inline void 1095 perf_cgroup_switch(struct task_struct *task, struct task_struct *next) 1096 { 1097 } 1098 1099 static inline void 1100 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 1101 { 1102 } 1103 1104 static inline u64 perf_cgroup_event_time(struct perf_event *event) 1105 { 1106 return 0; 1107 } 1108 1109 static inline void 1110 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 1111 { 1112 } 1113 1114 static inline void 1115 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 1116 { 1117 } 1118 #endif 1119 1120 /* 1121 * set default to be dependent on timer tick just 1122 * like original code 1123 */ 1124 #define PERF_CPU_HRTIMER (1000 / HZ) 1125 /* 1126 * function must be called with interrupts disabled 1127 */ 1128 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) 1129 { 1130 struct perf_cpu_context *cpuctx; 1131 bool rotations; 1132 1133 lockdep_assert_irqs_disabled(); 1134 1135 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer); 1136 rotations = perf_rotate_context(cpuctx); 1137 1138 raw_spin_lock(&cpuctx->hrtimer_lock); 1139 if (rotations) 1140 hrtimer_forward_now(hr, cpuctx->hrtimer_interval); 1141 else 1142 cpuctx->hrtimer_active = 0; 1143 raw_spin_unlock(&cpuctx->hrtimer_lock); 1144 1145 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; 1146 } 1147 1148 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu) 1149 { 1150 struct hrtimer *timer = &cpuctx->hrtimer; 1151 struct pmu *pmu = cpuctx->ctx.pmu; 1152 u64 interval; 1153 1154 /* no multiplexing needed for SW PMU */ 1155 if (pmu->task_ctx_nr == perf_sw_context) 1156 return; 1157 1158 /* 1159 * check default is sane, if not set then force to 1160 * default interval (1/tick) 1161 */ 1162 interval = pmu->hrtimer_interval_ms; 1163 if (interval < 1) 1164 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 1165 1166 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 1167 1168 raw_spin_lock_init(&cpuctx->hrtimer_lock); 1169 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD); 1170 timer->function = perf_mux_hrtimer_handler; 1171 } 1172 1173 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx) 1174 { 1175 struct hrtimer *timer = &cpuctx->hrtimer; 1176 struct pmu *pmu = cpuctx->ctx.pmu; 1177 unsigned long flags; 1178 1179 /* not for SW PMU */ 1180 if (pmu->task_ctx_nr == perf_sw_context) 1181 return 0; 1182 1183 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags); 1184 if (!cpuctx->hrtimer_active) { 1185 cpuctx->hrtimer_active = 1; 1186 hrtimer_forward_now(timer, cpuctx->hrtimer_interval); 1187 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD); 1188 } 1189 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags); 1190 1191 return 0; 1192 } 1193 1194 void perf_pmu_disable(struct pmu *pmu) 1195 { 1196 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1197 if (!(*count)++) 1198 pmu->pmu_disable(pmu); 1199 } 1200 1201 void perf_pmu_enable(struct pmu *pmu) 1202 { 1203 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1204 if (!--(*count)) 1205 pmu->pmu_enable(pmu); 1206 } 1207 1208 static DEFINE_PER_CPU(struct list_head, active_ctx_list); 1209 1210 /* 1211 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and 1212 * perf_event_task_tick() are fully serialized because they're strictly cpu 1213 * affine and perf_event_ctx{activate,deactivate} are called with IRQs 1214 * disabled, while perf_event_task_tick is called from IRQ context. 1215 */ 1216 static void perf_event_ctx_activate(struct perf_event_context *ctx) 1217 { 1218 struct list_head *head = this_cpu_ptr(&active_ctx_list); 1219 1220 lockdep_assert_irqs_disabled(); 1221 1222 WARN_ON(!list_empty(&ctx->active_ctx_list)); 1223 1224 list_add(&ctx->active_ctx_list, head); 1225 } 1226 1227 static void perf_event_ctx_deactivate(struct perf_event_context *ctx) 1228 { 1229 lockdep_assert_irqs_disabled(); 1230 1231 WARN_ON(list_empty(&ctx->active_ctx_list)); 1232 1233 list_del_init(&ctx->active_ctx_list); 1234 } 1235 1236 static void get_ctx(struct perf_event_context *ctx) 1237 { 1238 refcount_inc(&ctx->refcount); 1239 } 1240 1241 static void *alloc_task_ctx_data(struct pmu *pmu) 1242 { 1243 if (pmu->task_ctx_cache) 1244 return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL); 1245 1246 return NULL; 1247 } 1248 1249 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data) 1250 { 1251 if (pmu->task_ctx_cache && task_ctx_data) 1252 kmem_cache_free(pmu->task_ctx_cache, task_ctx_data); 1253 } 1254 1255 static void free_ctx(struct rcu_head *head) 1256 { 1257 struct perf_event_context *ctx; 1258 1259 ctx = container_of(head, struct perf_event_context, rcu_head); 1260 free_task_ctx_data(ctx->pmu, ctx->task_ctx_data); 1261 kfree(ctx); 1262 } 1263 1264 static void put_ctx(struct perf_event_context *ctx) 1265 { 1266 if (refcount_dec_and_test(&ctx->refcount)) { 1267 if (ctx->parent_ctx) 1268 put_ctx(ctx->parent_ctx); 1269 if (ctx->task && ctx->task != TASK_TOMBSTONE) 1270 put_task_struct(ctx->task); 1271 call_rcu(&ctx->rcu_head, free_ctx); 1272 } 1273 } 1274 1275 /* 1276 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 1277 * perf_pmu_migrate_context() we need some magic. 1278 * 1279 * Those places that change perf_event::ctx will hold both 1280 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 1281 * 1282 * Lock ordering is by mutex address. There are two other sites where 1283 * perf_event_context::mutex nests and those are: 1284 * 1285 * - perf_event_exit_task_context() [ child , 0 ] 1286 * perf_event_exit_event() 1287 * put_event() [ parent, 1 ] 1288 * 1289 * - perf_event_init_context() [ parent, 0 ] 1290 * inherit_task_group() 1291 * inherit_group() 1292 * inherit_event() 1293 * perf_event_alloc() 1294 * perf_init_event() 1295 * perf_try_init_event() [ child , 1 ] 1296 * 1297 * While it appears there is an obvious deadlock here -- the parent and child 1298 * nesting levels are inverted between the two. This is in fact safe because 1299 * life-time rules separate them. That is an exiting task cannot fork, and a 1300 * spawning task cannot (yet) exit. 1301 * 1302 * But remember that that these are parent<->child context relations, and 1303 * migration does not affect children, therefore these two orderings should not 1304 * interact. 1305 * 1306 * The change in perf_event::ctx does not affect children (as claimed above) 1307 * because the sys_perf_event_open() case will install a new event and break 1308 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 1309 * concerned with cpuctx and that doesn't have children. 1310 * 1311 * The places that change perf_event::ctx will issue: 1312 * 1313 * perf_remove_from_context(); 1314 * synchronize_rcu(); 1315 * perf_install_in_context(); 1316 * 1317 * to affect the change. The remove_from_context() + synchronize_rcu() should 1318 * quiesce the event, after which we can install it in the new location. This 1319 * means that only external vectors (perf_fops, prctl) can perturb the event 1320 * while in transit. Therefore all such accessors should also acquire 1321 * perf_event_context::mutex to serialize against this. 1322 * 1323 * However; because event->ctx can change while we're waiting to acquire 1324 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 1325 * function. 1326 * 1327 * Lock order: 1328 * exec_update_mutex 1329 * task_struct::perf_event_mutex 1330 * perf_event_context::mutex 1331 * perf_event::child_mutex; 1332 * perf_event_context::lock 1333 * perf_event::mmap_mutex 1334 * mmap_lock 1335 * perf_addr_filters_head::lock 1336 * 1337 * cpu_hotplug_lock 1338 * pmus_lock 1339 * cpuctx->mutex / perf_event_context::mutex 1340 */ 1341 static struct perf_event_context * 1342 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 1343 { 1344 struct perf_event_context *ctx; 1345 1346 again: 1347 rcu_read_lock(); 1348 ctx = READ_ONCE(event->ctx); 1349 if (!refcount_inc_not_zero(&ctx->refcount)) { 1350 rcu_read_unlock(); 1351 goto again; 1352 } 1353 rcu_read_unlock(); 1354 1355 mutex_lock_nested(&ctx->mutex, nesting); 1356 if (event->ctx != ctx) { 1357 mutex_unlock(&ctx->mutex); 1358 put_ctx(ctx); 1359 goto again; 1360 } 1361 1362 return ctx; 1363 } 1364 1365 static inline struct perf_event_context * 1366 perf_event_ctx_lock(struct perf_event *event) 1367 { 1368 return perf_event_ctx_lock_nested(event, 0); 1369 } 1370 1371 static void perf_event_ctx_unlock(struct perf_event *event, 1372 struct perf_event_context *ctx) 1373 { 1374 mutex_unlock(&ctx->mutex); 1375 put_ctx(ctx); 1376 } 1377 1378 /* 1379 * This must be done under the ctx->lock, such as to serialize against 1380 * context_equiv(), therefore we cannot call put_ctx() since that might end up 1381 * calling scheduler related locks and ctx->lock nests inside those. 1382 */ 1383 static __must_check struct perf_event_context * 1384 unclone_ctx(struct perf_event_context *ctx) 1385 { 1386 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1387 1388 lockdep_assert_held(&ctx->lock); 1389 1390 if (parent_ctx) 1391 ctx->parent_ctx = NULL; 1392 ctx->generation++; 1393 1394 return parent_ctx; 1395 } 1396 1397 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p, 1398 enum pid_type type) 1399 { 1400 u32 nr; 1401 /* 1402 * only top level events have the pid namespace they were created in 1403 */ 1404 if (event->parent) 1405 event = event->parent; 1406 1407 nr = __task_pid_nr_ns(p, type, event->ns); 1408 /* avoid -1 if it is idle thread or runs in another ns */ 1409 if (!nr && !pid_alive(p)) 1410 nr = -1; 1411 return nr; 1412 } 1413 1414 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1415 { 1416 return perf_event_pid_type(event, p, PIDTYPE_TGID); 1417 } 1418 1419 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1420 { 1421 return perf_event_pid_type(event, p, PIDTYPE_PID); 1422 } 1423 1424 /* 1425 * If we inherit events we want to return the parent event id 1426 * to userspace. 1427 */ 1428 static u64 primary_event_id(struct perf_event *event) 1429 { 1430 u64 id = event->id; 1431 1432 if (event->parent) 1433 id = event->parent->id; 1434 1435 return id; 1436 } 1437 1438 /* 1439 * Get the perf_event_context for a task and lock it. 1440 * 1441 * This has to cope with with the fact that until it is locked, 1442 * the context could get moved to another task. 1443 */ 1444 static struct perf_event_context * 1445 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) 1446 { 1447 struct perf_event_context *ctx; 1448 1449 retry: 1450 /* 1451 * One of the few rules of preemptible RCU is that one cannot do 1452 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1453 * part of the read side critical section was irqs-enabled -- see 1454 * rcu_read_unlock_special(). 1455 * 1456 * Since ctx->lock nests under rq->lock we must ensure the entire read 1457 * side critical section has interrupts disabled. 1458 */ 1459 local_irq_save(*flags); 1460 rcu_read_lock(); 1461 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); 1462 if (ctx) { 1463 /* 1464 * If this context is a clone of another, it might 1465 * get swapped for another underneath us by 1466 * perf_event_task_sched_out, though the 1467 * rcu_read_lock() protects us from any context 1468 * getting freed. Lock the context and check if it 1469 * got swapped before we could get the lock, and retry 1470 * if so. If we locked the right context, then it 1471 * can't get swapped on us any more. 1472 */ 1473 raw_spin_lock(&ctx->lock); 1474 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { 1475 raw_spin_unlock(&ctx->lock); 1476 rcu_read_unlock(); 1477 local_irq_restore(*flags); 1478 goto retry; 1479 } 1480 1481 if (ctx->task == TASK_TOMBSTONE || 1482 !refcount_inc_not_zero(&ctx->refcount)) { 1483 raw_spin_unlock(&ctx->lock); 1484 ctx = NULL; 1485 } else { 1486 WARN_ON_ONCE(ctx->task != task); 1487 } 1488 } 1489 rcu_read_unlock(); 1490 if (!ctx) 1491 local_irq_restore(*flags); 1492 return ctx; 1493 } 1494 1495 /* 1496 * Get the context for a task and increment its pin_count so it 1497 * can't get swapped to another task. This also increments its 1498 * reference count so that the context can't get freed. 1499 */ 1500 static struct perf_event_context * 1501 perf_pin_task_context(struct task_struct *task, int ctxn) 1502 { 1503 struct perf_event_context *ctx; 1504 unsigned long flags; 1505 1506 ctx = perf_lock_task_context(task, ctxn, &flags); 1507 if (ctx) { 1508 ++ctx->pin_count; 1509 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1510 } 1511 return ctx; 1512 } 1513 1514 static void perf_unpin_context(struct perf_event_context *ctx) 1515 { 1516 unsigned long flags; 1517 1518 raw_spin_lock_irqsave(&ctx->lock, flags); 1519 --ctx->pin_count; 1520 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1521 } 1522 1523 /* 1524 * Update the record of the current time in a context. 1525 */ 1526 static void update_context_time(struct perf_event_context *ctx) 1527 { 1528 u64 now = perf_clock(); 1529 1530 ctx->time += now - ctx->timestamp; 1531 ctx->timestamp = now; 1532 } 1533 1534 static u64 perf_event_time(struct perf_event *event) 1535 { 1536 struct perf_event_context *ctx = event->ctx; 1537 1538 if (is_cgroup_event(event)) 1539 return perf_cgroup_event_time(event); 1540 1541 return ctx ? ctx->time : 0; 1542 } 1543 1544 static enum event_type_t get_event_type(struct perf_event *event) 1545 { 1546 struct perf_event_context *ctx = event->ctx; 1547 enum event_type_t event_type; 1548 1549 lockdep_assert_held(&ctx->lock); 1550 1551 /* 1552 * It's 'group type', really, because if our group leader is 1553 * pinned, so are we. 1554 */ 1555 if (event->group_leader != event) 1556 event = event->group_leader; 1557 1558 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE; 1559 if (!ctx->task) 1560 event_type |= EVENT_CPU; 1561 1562 return event_type; 1563 } 1564 1565 /* 1566 * Helper function to initialize event group nodes. 1567 */ 1568 static void init_event_group(struct perf_event *event) 1569 { 1570 RB_CLEAR_NODE(&event->group_node); 1571 event->group_index = 0; 1572 } 1573 1574 /* 1575 * Extract pinned or flexible groups from the context 1576 * based on event attrs bits. 1577 */ 1578 static struct perf_event_groups * 1579 get_event_groups(struct perf_event *event, struct perf_event_context *ctx) 1580 { 1581 if (event->attr.pinned) 1582 return &ctx->pinned_groups; 1583 else 1584 return &ctx->flexible_groups; 1585 } 1586 1587 /* 1588 * Helper function to initializes perf_event_group trees. 1589 */ 1590 static void perf_event_groups_init(struct perf_event_groups *groups) 1591 { 1592 groups->tree = RB_ROOT; 1593 groups->index = 0; 1594 } 1595 1596 /* 1597 * Compare function for event groups; 1598 * 1599 * Implements complex key that first sorts by CPU and then by virtual index 1600 * which provides ordering when rotating groups for the same CPU. 1601 */ 1602 static bool 1603 perf_event_groups_less(struct perf_event *left, struct perf_event *right) 1604 { 1605 if (left->cpu < right->cpu) 1606 return true; 1607 if (left->cpu > right->cpu) 1608 return false; 1609 1610 #ifdef CONFIG_CGROUP_PERF 1611 if (left->cgrp != right->cgrp) { 1612 if (!left->cgrp || !left->cgrp->css.cgroup) { 1613 /* 1614 * Left has no cgroup but right does, no cgroups come 1615 * first. 1616 */ 1617 return true; 1618 } 1619 if (!right->cgrp || !right->cgrp->css.cgroup) { 1620 /* 1621 * Right has no cgroup but left does, no cgroups come 1622 * first. 1623 */ 1624 return false; 1625 } 1626 /* Two dissimilar cgroups, order by id. */ 1627 if (left->cgrp->css.cgroup->kn->id < right->cgrp->css.cgroup->kn->id) 1628 return true; 1629 1630 return false; 1631 } 1632 #endif 1633 1634 if (left->group_index < right->group_index) 1635 return true; 1636 if (left->group_index > right->group_index) 1637 return false; 1638 1639 return false; 1640 } 1641 1642 /* 1643 * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for 1644 * key (see perf_event_groups_less). This places it last inside the CPU 1645 * subtree. 1646 */ 1647 static void 1648 perf_event_groups_insert(struct perf_event_groups *groups, 1649 struct perf_event *event) 1650 { 1651 struct perf_event *node_event; 1652 struct rb_node *parent; 1653 struct rb_node **node; 1654 1655 event->group_index = ++groups->index; 1656 1657 node = &groups->tree.rb_node; 1658 parent = *node; 1659 1660 while (*node) { 1661 parent = *node; 1662 node_event = container_of(*node, struct perf_event, group_node); 1663 1664 if (perf_event_groups_less(event, node_event)) 1665 node = &parent->rb_left; 1666 else 1667 node = &parent->rb_right; 1668 } 1669 1670 rb_link_node(&event->group_node, parent, node); 1671 rb_insert_color(&event->group_node, &groups->tree); 1672 } 1673 1674 /* 1675 * Helper function to insert event into the pinned or flexible groups. 1676 */ 1677 static void 1678 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx) 1679 { 1680 struct perf_event_groups *groups; 1681 1682 groups = get_event_groups(event, ctx); 1683 perf_event_groups_insert(groups, event); 1684 } 1685 1686 /* 1687 * Delete a group from a tree. 1688 */ 1689 static void 1690 perf_event_groups_delete(struct perf_event_groups *groups, 1691 struct perf_event *event) 1692 { 1693 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) || 1694 RB_EMPTY_ROOT(&groups->tree)); 1695 1696 rb_erase(&event->group_node, &groups->tree); 1697 init_event_group(event); 1698 } 1699 1700 /* 1701 * Helper function to delete event from its groups. 1702 */ 1703 static void 1704 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx) 1705 { 1706 struct perf_event_groups *groups; 1707 1708 groups = get_event_groups(event, ctx); 1709 perf_event_groups_delete(groups, event); 1710 } 1711 1712 /* 1713 * Get the leftmost event in the cpu/cgroup subtree. 1714 */ 1715 static struct perf_event * 1716 perf_event_groups_first(struct perf_event_groups *groups, int cpu, 1717 struct cgroup *cgrp) 1718 { 1719 struct perf_event *node_event = NULL, *match = NULL; 1720 struct rb_node *node = groups->tree.rb_node; 1721 #ifdef CONFIG_CGROUP_PERF 1722 u64 node_cgrp_id, cgrp_id = 0; 1723 1724 if (cgrp) 1725 cgrp_id = cgrp->kn->id; 1726 #endif 1727 1728 while (node) { 1729 node_event = container_of(node, struct perf_event, group_node); 1730 1731 if (cpu < node_event->cpu) { 1732 node = node->rb_left; 1733 continue; 1734 } 1735 if (cpu > node_event->cpu) { 1736 node = node->rb_right; 1737 continue; 1738 } 1739 #ifdef CONFIG_CGROUP_PERF 1740 node_cgrp_id = 0; 1741 if (node_event->cgrp && node_event->cgrp->css.cgroup) 1742 node_cgrp_id = node_event->cgrp->css.cgroup->kn->id; 1743 1744 if (cgrp_id < node_cgrp_id) { 1745 node = node->rb_left; 1746 continue; 1747 } 1748 if (cgrp_id > node_cgrp_id) { 1749 node = node->rb_right; 1750 continue; 1751 } 1752 #endif 1753 match = node_event; 1754 node = node->rb_left; 1755 } 1756 1757 return match; 1758 } 1759 1760 /* 1761 * Like rb_entry_next_safe() for the @cpu subtree. 1762 */ 1763 static struct perf_event * 1764 perf_event_groups_next(struct perf_event *event) 1765 { 1766 struct perf_event *next; 1767 #ifdef CONFIG_CGROUP_PERF 1768 u64 curr_cgrp_id = 0; 1769 u64 next_cgrp_id = 0; 1770 #endif 1771 1772 next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node); 1773 if (next == NULL || next->cpu != event->cpu) 1774 return NULL; 1775 1776 #ifdef CONFIG_CGROUP_PERF 1777 if (event->cgrp && event->cgrp->css.cgroup) 1778 curr_cgrp_id = event->cgrp->css.cgroup->kn->id; 1779 1780 if (next->cgrp && next->cgrp->css.cgroup) 1781 next_cgrp_id = next->cgrp->css.cgroup->kn->id; 1782 1783 if (curr_cgrp_id != next_cgrp_id) 1784 return NULL; 1785 #endif 1786 return next; 1787 } 1788 1789 /* 1790 * Iterate through the whole groups tree. 1791 */ 1792 #define perf_event_groups_for_each(event, groups) \ 1793 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \ 1794 typeof(*event), group_node); event; \ 1795 event = rb_entry_safe(rb_next(&event->group_node), \ 1796 typeof(*event), group_node)) 1797 1798 /* 1799 * Add an event from the lists for its context. 1800 * Must be called with ctx->mutex and ctx->lock held. 1801 */ 1802 static void 1803 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1804 { 1805 lockdep_assert_held(&ctx->lock); 1806 1807 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1808 event->attach_state |= PERF_ATTACH_CONTEXT; 1809 1810 event->tstamp = perf_event_time(event); 1811 1812 /* 1813 * If we're a stand alone event or group leader, we go to the context 1814 * list, group events are kept attached to the group so that 1815 * perf_group_detach can, at all times, locate all siblings. 1816 */ 1817 if (event->group_leader == event) { 1818 event->group_caps = event->event_caps; 1819 add_event_to_groups(event, ctx); 1820 } 1821 1822 list_add_rcu(&event->event_entry, &ctx->event_list); 1823 ctx->nr_events++; 1824 if (event->attr.inherit_stat) 1825 ctx->nr_stat++; 1826 1827 if (event->state > PERF_EVENT_STATE_OFF) 1828 perf_cgroup_event_enable(event, ctx); 1829 1830 ctx->generation++; 1831 } 1832 1833 /* 1834 * Initialize event state based on the perf_event_attr::disabled. 1835 */ 1836 static inline void perf_event__state_init(struct perf_event *event) 1837 { 1838 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1839 PERF_EVENT_STATE_INACTIVE; 1840 } 1841 1842 static void __perf_event_read_size(struct perf_event *event, int nr_siblings) 1843 { 1844 int entry = sizeof(u64); /* value */ 1845 int size = 0; 1846 int nr = 1; 1847 1848 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1849 size += sizeof(u64); 1850 1851 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1852 size += sizeof(u64); 1853 1854 if (event->attr.read_format & PERF_FORMAT_ID) 1855 entry += sizeof(u64); 1856 1857 if (event->attr.read_format & PERF_FORMAT_GROUP) { 1858 nr += nr_siblings; 1859 size += sizeof(u64); 1860 } 1861 1862 size += entry * nr; 1863 event->read_size = size; 1864 } 1865 1866 static void __perf_event_header_size(struct perf_event *event, u64 sample_type) 1867 { 1868 struct perf_sample_data *data; 1869 u16 size = 0; 1870 1871 if (sample_type & PERF_SAMPLE_IP) 1872 size += sizeof(data->ip); 1873 1874 if (sample_type & PERF_SAMPLE_ADDR) 1875 size += sizeof(data->addr); 1876 1877 if (sample_type & PERF_SAMPLE_PERIOD) 1878 size += sizeof(data->period); 1879 1880 if (sample_type & PERF_SAMPLE_WEIGHT) 1881 size += sizeof(data->weight); 1882 1883 if (sample_type & PERF_SAMPLE_READ) 1884 size += event->read_size; 1885 1886 if (sample_type & PERF_SAMPLE_DATA_SRC) 1887 size += sizeof(data->data_src.val); 1888 1889 if (sample_type & PERF_SAMPLE_TRANSACTION) 1890 size += sizeof(data->txn); 1891 1892 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 1893 size += sizeof(data->phys_addr); 1894 1895 if (sample_type & PERF_SAMPLE_CGROUP) 1896 size += sizeof(data->cgroup); 1897 1898 event->header_size = size; 1899 } 1900 1901 /* 1902 * Called at perf_event creation and when events are attached/detached from a 1903 * group. 1904 */ 1905 static void perf_event__header_size(struct perf_event *event) 1906 { 1907 __perf_event_read_size(event, 1908 event->group_leader->nr_siblings); 1909 __perf_event_header_size(event, event->attr.sample_type); 1910 } 1911 1912 static void perf_event__id_header_size(struct perf_event *event) 1913 { 1914 struct perf_sample_data *data; 1915 u64 sample_type = event->attr.sample_type; 1916 u16 size = 0; 1917 1918 if (sample_type & PERF_SAMPLE_TID) 1919 size += sizeof(data->tid_entry); 1920 1921 if (sample_type & PERF_SAMPLE_TIME) 1922 size += sizeof(data->time); 1923 1924 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1925 size += sizeof(data->id); 1926 1927 if (sample_type & PERF_SAMPLE_ID) 1928 size += sizeof(data->id); 1929 1930 if (sample_type & PERF_SAMPLE_STREAM_ID) 1931 size += sizeof(data->stream_id); 1932 1933 if (sample_type & PERF_SAMPLE_CPU) 1934 size += sizeof(data->cpu_entry); 1935 1936 event->id_header_size = size; 1937 } 1938 1939 static bool perf_event_validate_size(struct perf_event *event) 1940 { 1941 /* 1942 * The values computed here will be over-written when we actually 1943 * attach the event. 1944 */ 1945 __perf_event_read_size(event, event->group_leader->nr_siblings + 1); 1946 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ); 1947 perf_event__id_header_size(event); 1948 1949 /* 1950 * Sum the lot; should not exceed the 64k limit we have on records. 1951 * Conservative limit to allow for callchains and other variable fields. 1952 */ 1953 if (event->read_size + event->header_size + 1954 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024) 1955 return false; 1956 1957 return true; 1958 } 1959 1960 static void perf_group_attach(struct perf_event *event) 1961 { 1962 struct perf_event *group_leader = event->group_leader, *pos; 1963 1964 lockdep_assert_held(&event->ctx->lock); 1965 1966 /* 1967 * We can have double attach due to group movement in perf_event_open. 1968 */ 1969 if (event->attach_state & PERF_ATTACH_GROUP) 1970 return; 1971 1972 event->attach_state |= PERF_ATTACH_GROUP; 1973 1974 if (group_leader == event) 1975 return; 1976 1977 WARN_ON_ONCE(group_leader->ctx != event->ctx); 1978 1979 group_leader->group_caps &= event->event_caps; 1980 1981 list_add_tail(&event->sibling_list, &group_leader->sibling_list); 1982 group_leader->nr_siblings++; 1983 1984 perf_event__header_size(group_leader); 1985 1986 for_each_sibling_event(pos, group_leader) 1987 perf_event__header_size(pos); 1988 } 1989 1990 /* 1991 * Remove an event from the lists for its context. 1992 * Must be called with ctx->mutex and ctx->lock held. 1993 */ 1994 static void 1995 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 1996 { 1997 WARN_ON_ONCE(event->ctx != ctx); 1998 lockdep_assert_held(&ctx->lock); 1999 2000 /* 2001 * We can have double detach due to exit/hot-unplug + close. 2002 */ 2003 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 2004 return; 2005 2006 event->attach_state &= ~PERF_ATTACH_CONTEXT; 2007 2008 ctx->nr_events--; 2009 if (event->attr.inherit_stat) 2010 ctx->nr_stat--; 2011 2012 list_del_rcu(&event->event_entry); 2013 2014 if (event->group_leader == event) 2015 del_event_from_groups(event, ctx); 2016 2017 /* 2018 * If event was in error state, then keep it 2019 * that way, otherwise bogus counts will be 2020 * returned on read(). The only way to get out 2021 * of error state is by explicit re-enabling 2022 * of the event 2023 */ 2024 if (event->state > PERF_EVENT_STATE_OFF) { 2025 perf_cgroup_event_disable(event, ctx); 2026 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2027 } 2028 2029 ctx->generation++; 2030 } 2031 2032 static int 2033 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event) 2034 { 2035 if (!has_aux(aux_event)) 2036 return 0; 2037 2038 if (!event->pmu->aux_output_match) 2039 return 0; 2040 2041 return event->pmu->aux_output_match(aux_event); 2042 } 2043 2044 static void put_event(struct perf_event *event); 2045 static void event_sched_out(struct perf_event *event, 2046 struct perf_cpu_context *cpuctx, 2047 struct perf_event_context *ctx); 2048 2049 static void perf_put_aux_event(struct perf_event *event) 2050 { 2051 struct perf_event_context *ctx = event->ctx; 2052 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2053 struct perf_event *iter; 2054 2055 /* 2056 * If event uses aux_event tear down the link 2057 */ 2058 if (event->aux_event) { 2059 iter = event->aux_event; 2060 event->aux_event = NULL; 2061 put_event(iter); 2062 return; 2063 } 2064 2065 /* 2066 * If the event is an aux_event, tear down all links to 2067 * it from other events. 2068 */ 2069 for_each_sibling_event(iter, event->group_leader) { 2070 if (iter->aux_event != event) 2071 continue; 2072 2073 iter->aux_event = NULL; 2074 put_event(event); 2075 2076 /* 2077 * If it's ACTIVE, schedule it out and put it into ERROR 2078 * state so that we don't try to schedule it again. Note 2079 * that perf_event_enable() will clear the ERROR status. 2080 */ 2081 event_sched_out(iter, cpuctx, ctx); 2082 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 2083 } 2084 } 2085 2086 static bool perf_need_aux_event(struct perf_event *event) 2087 { 2088 return !!event->attr.aux_output || !!event->attr.aux_sample_size; 2089 } 2090 2091 static int perf_get_aux_event(struct perf_event *event, 2092 struct perf_event *group_leader) 2093 { 2094 /* 2095 * Our group leader must be an aux event if we want to be 2096 * an aux_output. This way, the aux event will precede its 2097 * aux_output events in the group, and therefore will always 2098 * schedule first. 2099 */ 2100 if (!group_leader) 2101 return 0; 2102 2103 /* 2104 * aux_output and aux_sample_size are mutually exclusive. 2105 */ 2106 if (event->attr.aux_output && event->attr.aux_sample_size) 2107 return 0; 2108 2109 if (event->attr.aux_output && 2110 !perf_aux_output_match(event, group_leader)) 2111 return 0; 2112 2113 if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux) 2114 return 0; 2115 2116 if (!atomic_long_inc_not_zero(&group_leader->refcount)) 2117 return 0; 2118 2119 /* 2120 * Link aux_outputs to their aux event; this is undone in 2121 * perf_group_detach() by perf_put_aux_event(). When the 2122 * group in torn down, the aux_output events loose their 2123 * link to the aux_event and can't schedule any more. 2124 */ 2125 event->aux_event = group_leader; 2126 2127 return 1; 2128 } 2129 2130 static inline struct list_head *get_event_list(struct perf_event *event) 2131 { 2132 struct perf_event_context *ctx = event->ctx; 2133 return event->attr.pinned ? &ctx->pinned_active : &ctx->flexible_active; 2134 } 2135 2136 /* 2137 * Events that have PERF_EV_CAP_SIBLING require being part of a group and 2138 * cannot exist on their own, schedule them out and move them into the ERROR 2139 * state. Also see _perf_event_enable(), it will not be able to recover 2140 * this ERROR state. 2141 */ 2142 static inline void perf_remove_sibling_event(struct perf_event *event) 2143 { 2144 struct perf_event_context *ctx = event->ctx; 2145 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2146 2147 event_sched_out(event, cpuctx, ctx); 2148 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 2149 } 2150 2151 static void perf_group_detach(struct perf_event *event) 2152 { 2153 struct perf_event *leader = event->group_leader; 2154 struct perf_event *sibling, *tmp; 2155 struct perf_event_context *ctx = event->ctx; 2156 2157 lockdep_assert_held(&ctx->lock); 2158 2159 /* 2160 * We can have double detach due to exit/hot-unplug + close. 2161 */ 2162 if (!(event->attach_state & PERF_ATTACH_GROUP)) 2163 return; 2164 2165 event->attach_state &= ~PERF_ATTACH_GROUP; 2166 2167 perf_put_aux_event(event); 2168 2169 /* 2170 * If this is a sibling, remove it from its group. 2171 */ 2172 if (leader != event) { 2173 list_del_init(&event->sibling_list); 2174 event->group_leader->nr_siblings--; 2175 goto out; 2176 } 2177 2178 /* 2179 * If this was a group event with sibling events then 2180 * upgrade the siblings to singleton events by adding them 2181 * to whatever list we are on. 2182 */ 2183 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) { 2184 2185 if (sibling->event_caps & PERF_EV_CAP_SIBLING) 2186 perf_remove_sibling_event(sibling); 2187 2188 sibling->group_leader = sibling; 2189 list_del_init(&sibling->sibling_list); 2190 2191 /* Inherit group flags from the previous leader */ 2192 sibling->group_caps = event->group_caps; 2193 2194 if (!RB_EMPTY_NODE(&event->group_node)) { 2195 add_event_to_groups(sibling, event->ctx); 2196 2197 if (sibling->state == PERF_EVENT_STATE_ACTIVE) 2198 list_add_tail(&sibling->active_list, get_event_list(sibling)); 2199 } 2200 2201 WARN_ON_ONCE(sibling->ctx != event->ctx); 2202 } 2203 2204 out: 2205 for_each_sibling_event(tmp, leader) 2206 perf_event__header_size(tmp); 2207 2208 perf_event__header_size(leader); 2209 } 2210 2211 static bool is_orphaned_event(struct perf_event *event) 2212 { 2213 return event->state == PERF_EVENT_STATE_DEAD; 2214 } 2215 2216 static inline int __pmu_filter_match(struct perf_event *event) 2217 { 2218 struct pmu *pmu = event->pmu; 2219 return pmu->filter_match ? pmu->filter_match(event) : 1; 2220 } 2221 2222 /* 2223 * Check whether we should attempt to schedule an event group based on 2224 * PMU-specific filtering. An event group can consist of HW and SW events, 2225 * potentially with a SW leader, so we must check all the filters, to 2226 * determine whether a group is schedulable: 2227 */ 2228 static inline int pmu_filter_match(struct perf_event *event) 2229 { 2230 struct perf_event *sibling; 2231 2232 if (!__pmu_filter_match(event)) 2233 return 0; 2234 2235 for_each_sibling_event(sibling, event) { 2236 if (!__pmu_filter_match(sibling)) 2237 return 0; 2238 } 2239 2240 return 1; 2241 } 2242 2243 static inline int 2244 event_filter_match(struct perf_event *event) 2245 { 2246 return (event->cpu == -1 || event->cpu == smp_processor_id()) && 2247 perf_cgroup_match(event) && pmu_filter_match(event); 2248 } 2249 2250 static void 2251 event_sched_out(struct perf_event *event, 2252 struct perf_cpu_context *cpuctx, 2253 struct perf_event_context *ctx) 2254 { 2255 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE; 2256 2257 WARN_ON_ONCE(event->ctx != ctx); 2258 lockdep_assert_held(&ctx->lock); 2259 2260 if (event->state != PERF_EVENT_STATE_ACTIVE) 2261 return; 2262 2263 /* 2264 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but 2265 * we can schedule events _OUT_ individually through things like 2266 * __perf_remove_from_context(). 2267 */ 2268 list_del_init(&event->active_list); 2269 2270 perf_pmu_disable(event->pmu); 2271 2272 event->pmu->del(event, 0); 2273 event->oncpu = -1; 2274 2275 if (READ_ONCE(event->pending_disable) >= 0) { 2276 WRITE_ONCE(event->pending_disable, -1); 2277 perf_cgroup_event_disable(event, ctx); 2278 state = PERF_EVENT_STATE_OFF; 2279 } 2280 perf_event_set_state(event, state); 2281 2282 if (!is_software_event(event)) 2283 cpuctx->active_oncpu--; 2284 if (!--ctx->nr_active) 2285 perf_event_ctx_deactivate(ctx); 2286 if (event->attr.freq && event->attr.sample_freq) 2287 ctx->nr_freq--; 2288 if (event->attr.exclusive || !cpuctx->active_oncpu) 2289 cpuctx->exclusive = 0; 2290 2291 perf_pmu_enable(event->pmu); 2292 } 2293 2294 static void 2295 group_sched_out(struct perf_event *group_event, 2296 struct perf_cpu_context *cpuctx, 2297 struct perf_event_context *ctx) 2298 { 2299 struct perf_event *event; 2300 2301 if (group_event->state != PERF_EVENT_STATE_ACTIVE) 2302 return; 2303 2304 perf_pmu_disable(ctx->pmu); 2305 2306 event_sched_out(group_event, cpuctx, ctx); 2307 2308 /* 2309 * Schedule out siblings (if any): 2310 */ 2311 for_each_sibling_event(event, group_event) 2312 event_sched_out(event, cpuctx, ctx); 2313 2314 perf_pmu_enable(ctx->pmu); 2315 2316 if (group_event->attr.exclusive) 2317 cpuctx->exclusive = 0; 2318 } 2319 2320 #define DETACH_GROUP 0x01UL 2321 2322 /* 2323 * Cross CPU call to remove a performance event 2324 * 2325 * We disable the event on the hardware level first. After that we 2326 * remove it from the context list. 2327 */ 2328 static void 2329 __perf_remove_from_context(struct perf_event *event, 2330 struct perf_cpu_context *cpuctx, 2331 struct perf_event_context *ctx, 2332 void *info) 2333 { 2334 unsigned long flags = (unsigned long)info; 2335 2336 if (ctx->is_active & EVENT_TIME) { 2337 update_context_time(ctx); 2338 update_cgrp_time_from_cpuctx(cpuctx); 2339 } 2340 2341 event_sched_out(event, cpuctx, ctx); 2342 if (flags & DETACH_GROUP) 2343 perf_group_detach(event); 2344 list_del_event(event, ctx); 2345 2346 if (!ctx->nr_events && ctx->is_active) { 2347 ctx->is_active = 0; 2348 ctx->rotate_necessary = 0; 2349 if (ctx->task) { 2350 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2351 cpuctx->task_ctx = NULL; 2352 } 2353 } 2354 } 2355 2356 /* 2357 * Remove the event from a task's (or a CPU's) list of events. 2358 * 2359 * If event->ctx is a cloned context, callers must make sure that 2360 * every task struct that event->ctx->task could possibly point to 2361 * remains valid. This is OK when called from perf_release since 2362 * that only calls us on the top-level context, which can't be a clone. 2363 * When called from perf_event_exit_task, it's OK because the 2364 * context has been detached from its task. 2365 */ 2366 static void perf_remove_from_context(struct perf_event *event, unsigned long flags) 2367 { 2368 struct perf_event_context *ctx = event->ctx; 2369 2370 lockdep_assert_held(&ctx->mutex); 2371 2372 event_function_call(event, __perf_remove_from_context, (void *)flags); 2373 2374 /* 2375 * The above event_function_call() can NO-OP when it hits 2376 * TASK_TOMBSTONE. In that case we must already have been detached 2377 * from the context (by perf_event_exit_event()) but the grouping 2378 * might still be in-tact. 2379 */ 2380 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 2381 if ((flags & DETACH_GROUP) && 2382 (event->attach_state & PERF_ATTACH_GROUP)) { 2383 /* 2384 * Since in that case we cannot possibly be scheduled, simply 2385 * detach now. 2386 */ 2387 raw_spin_lock_irq(&ctx->lock); 2388 perf_group_detach(event); 2389 raw_spin_unlock_irq(&ctx->lock); 2390 } 2391 } 2392 2393 /* 2394 * Cross CPU call to disable a performance event 2395 */ 2396 static void __perf_event_disable(struct perf_event *event, 2397 struct perf_cpu_context *cpuctx, 2398 struct perf_event_context *ctx, 2399 void *info) 2400 { 2401 if (event->state < PERF_EVENT_STATE_INACTIVE) 2402 return; 2403 2404 if (ctx->is_active & EVENT_TIME) { 2405 update_context_time(ctx); 2406 update_cgrp_time_from_event(event); 2407 } 2408 2409 if (event == event->group_leader) 2410 group_sched_out(event, cpuctx, ctx); 2411 else 2412 event_sched_out(event, cpuctx, ctx); 2413 2414 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2415 perf_cgroup_event_disable(event, ctx); 2416 } 2417 2418 /* 2419 * Disable an event. 2420 * 2421 * If event->ctx is a cloned context, callers must make sure that 2422 * every task struct that event->ctx->task could possibly point to 2423 * remains valid. This condition is satisfied when called through 2424 * perf_event_for_each_child or perf_event_for_each because they 2425 * hold the top-level event's child_mutex, so any descendant that 2426 * goes to exit will block in perf_event_exit_event(). 2427 * 2428 * When called from perf_pending_event it's OK because event->ctx 2429 * is the current context on this CPU and preemption is disabled, 2430 * hence we can't get into perf_event_task_sched_out for this context. 2431 */ 2432 static void _perf_event_disable(struct perf_event *event) 2433 { 2434 struct perf_event_context *ctx = event->ctx; 2435 2436 raw_spin_lock_irq(&ctx->lock); 2437 if (event->state <= PERF_EVENT_STATE_OFF) { 2438 raw_spin_unlock_irq(&ctx->lock); 2439 return; 2440 } 2441 raw_spin_unlock_irq(&ctx->lock); 2442 2443 event_function_call(event, __perf_event_disable, NULL); 2444 } 2445 2446 void perf_event_disable_local(struct perf_event *event) 2447 { 2448 event_function_local(event, __perf_event_disable, NULL); 2449 } 2450 2451 /* 2452 * Strictly speaking kernel users cannot create groups and therefore this 2453 * interface does not need the perf_event_ctx_lock() magic. 2454 */ 2455 void perf_event_disable(struct perf_event *event) 2456 { 2457 struct perf_event_context *ctx; 2458 2459 ctx = perf_event_ctx_lock(event); 2460 _perf_event_disable(event); 2461 perf_event_ctx_unlock(event, ctx); 2462 } 2463 EXPORT_SYMBOL_GPL(perf_event_disable); 2464 2465 void perf_event_disable_inatomic(struct perf_event *event) 2466 { 2467 WRITE_ONCE(event->pending_disable, smp_processor_id()); 2468 /* can fail, see perf_pending_event_disable() */ 2469 irq_work_queue(&event->pending); 2470 } 2471 2472 static void perf_set_shadow_time(struct perf_event *event, 2473 struct perf_event_context *ctx) 2474 { 2475 /* 2476 * use the correct time source for the time snapshot 2477 * 2478 * We could get by without this by leveraging the 2479 * fact that to get to this function, the caller 2480 * has most likely already called update_context_time() 2481 * and update_cgrp_time_xx() and thus both timestamp 2482 * are identical (or very close). Given that tstamp is, 2483 * already adjusted for cgroup, we could say that: 2484 * tstamp - ctx->timestamp 2485 * is equivalent to 2486 * tstamp - cgrp->timestamp. 2487 * 2488 * Then, in perf_output_read(), the calculation would 2489 * work with no changes because: 2490 * - event is guaranteed scheduled in 2491 * - no scheduled out in between 2492 * - thus the timestamp would be the same 2493 * 2494 * But this is a bit hairy. 2495 * 2496 * So instead, we have an explicit cgroup call to remain 2497 * within the time time source all along. We believe it 2498 * is cleaner and simpler to understand. 2499 */ 2500 if (is_cgroup_event(event)) 2501 perf_cgroup_set_shadow_time(event, event->tstamp); 2502 else 2503 event->shadow_ctx_time = event->tstamp - ctx->timestamp; 2504 } 2505 2506 #define MAX_INTERRUPTS (~0ULL) 2507 2508 static void perf_log_throttle(struct perf_event *event, int enable); 2509 static void perf_log_itrace_start(struct perf_event *event); 2510 2511 static int 2512 event_sched_in(struct perf_event *event, 2513 struct perf_cpu_context *cpuctx, 2514 struct perf_event_context *ctx) 2515 { 2516 int ret = 0; 2517 2518 WARN_ON_ONCE(event->ctx != ctx); 2519 2520 lockdep_assert_held(&ctx->lock); 2521 2522 if (event->state <= PERF_EVENT_STATE_OFF) 2523 return 0; 2524 2525 WRITE_ONCE(event->oncpu, smp_processor_id()); 2526 /* 2527 * Order event::oncpu write to happen before the ACTIVE state is 2528 * visible. This allows perf_event_{stop,read}() to observe the correct 2529 * ->oncpu if it sees ACTIVE. 2530 */ 2531 smp_wmb(); 2532 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE); 2533 2534 /* 2535 * Unthrottle events, since we scheduled we might have missed several 2536 * ticks already, also for a heavily scheduling task there is little 2537 * guarantee it'll get a tick in a timely manner. 2538 */ 2539 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 2540 perf_log_throttle(event, 1); 2541 event->hw.interrupts = 0; 2542 } 2543 2544 perf_pmu_disable(event->pmu); 2545 2546 perf_set_shadow_time(event, ctx); 2547 2548 perf_log_itrace_start(event); 2549 2550 if (event->pmu->add(event, PERF_EF_START)) { 2551 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2552 event->oncpu = -1; 2553 ret = -EAGAIN; 2554 goto out; 2555 } 2556 2557 if (!is_software_event(event)) 2558 cpuctx->active_oncpu++; 2559 if (!ctx->nr_active++) 2560 perf_event_ctx_activate(ctx); 2561 if (event->attr.freq && event->attr.sample_freq) 2562 ctx->nr_freq++; 2563 2564 if (event->attr.exclusive) 2565 cpuctx->exclusive = 1; 2566 2567 out: 2568 perf_pmu_enable(event->pmu); 2569 2570 return ret; 2571 } 2572 2573 static int 2574 group_sched_in(struct perf_event *group_event, 2575 struct perf_cpu_context *cpuctx, 2576 struct perf_event_context *ctx) 2577 { 2578 struct perf_event *event, *partial_group = NULL; 2579 struct pmu *pmu = ctx->pmu; 2580 2581 if (group_event->state == PERF_EVENT_STATE_OFF) 2582 return 0; 2583 2584 pmu->start_txn(pmu, PERF_PMU_TXN_ADD); 2585 2586 if (event_sched_in(group_event, cpuctx, ctx)) { 2587 pmu->cancel_txn(pmu); 2588 perf_mux_hrtimer_restart(cpuctx); 2589 return -EAGAIN; 2590 } 2591 2592 /* 2593 * Schedule in siblings as one group (if any): 2594 */ 2595 for_each_sibling_event(event, group_event) { 2596 if (event_sched_in(event, cpuctx, ctx)) { 2597 partial_group = event; 2598 goto group_error; 2599 } 2600 } 2601 2602 if (!pmu->commit_txn(pmu)) 2603 return 0; 2604 2605 group_error: 2606 /* 2607 * Groups can be scheduled in as one unit only, so undo any 2608 * partial group before returning: 2609 * The events up to the failed event are scheduled out normally. 2610 */ 2611 for_each_sibling_event(event, group_event) { 2612 if (event == partial_group) 2613 break; 2614 2615 event_sched_out(event, cpuctx, ctx); 2616 } 2617 event_sched_out(group_event, cpuctx, ctx); 2618 2619 pmu->cancel_txn(pmu); 2620 2621 perf_mux_hrtimer_restart(cpuctx); 2622 2623 return -EAGAIN; 2624 } 2625 2626 /* 2627 * Work out whether we can put this event group on the CPU now. 2628 */ 2629 static int group_can_go_on(struct perf_event *event, 2630 struct perf_cpu_context *cpuctx, 2631 int can_add_hw) 2632 { 2633 /* 2634 * Groups consisting entirely of software events can always go on. 2635 */ 2636 if (event->group_caps & PERF_EV_CAP_SOFTWARE) 2637 return 1; 2638 /* 2639 * If an exclusive group is already on, no other hardware 2640 * events can go on. 2641 */ 2642 if (cpuctx->exclusive) 2643 return 0; 2644 /* 2645 * If this group is exclusive and there are already 2646 * events on the CPU, it can't go on. 2647 */ 2648 if (event->attr.exclusive && cpuctx->active_oncpu) 2649 return 0; 2650 /* 2651 * Otherwise, try to add it if all previous groups were able 2652 * to go on. 2653 */ 2654 return can_add_hw; 2655 } 2656 2657 static void add_event_to_ctx(struct perf_event *event, 2658 struct perf_event_context *ctx) 2659 { 2660 list_add_event(event, ctx); 2661 perf_group_attach(event); 2662 } 2663 2664 static void ctx_sched_out(struct perf_event_context *ctx, 2665 struct perf_cpu_context *cpuctx, 2666 enum event_type_t event_type); 2667 static void 2668 ctx_sched_in(struct perf_event_context *ctx, 2669 struct perf_cpu_context *cpuctx, 2670 enum event_type_t event_type, 2671 struct task_struct *task); 2672 2673 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx, 2674 struct perf_event_context *ctx, 2675 enum event_type_t event_type) 2676 { 2677 if (!cpuctx->task_ctx) 2678 return; 2679 2680 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2681 return; 2682 2683 ctx_sched_out(ctx, cpuctx, event_type); 2684 } 2685 2686 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2687 struct perf_event_context *ctx, 2688 struct task_struct *task) 2689 { 2690 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task); 2691 if (ctx) 2692 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task); 2693 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task); 2694 if (ctx) 2695 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task); 2696 } 2697 2698 /* 2699 * We want to maintain the following priority of scheduling: 2700 * - CPU pinned (EVENT_CPU | EVENT_PINNED) 2701 * - task pinned (EVENT_PINNED) 2702 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE) 2703 * - task flexible (EVENT_FLEXIBLE). 2704 * 2705 * In order to avoid unscheduling and scheduling back in everything every 2706 * time an event is added, only do it for the groups of equal priority and 2707 * below. 2708 * 2709 * This can be called after a batch operation on task events, in which case 2710 * event_type is a bit mask of the types of events involved. For CPU events, 2711 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE. 2712 */ 2713 static void ctx_resched(struct perf_cpu_context *cpuctx, 2714 struct perf_event_context *task_ctx, 2715 enum event_type_t event_type) 2716 { 2717 enum event_type_t ctx_event_type; 2718 bool cpu_event = !!(event_type & EVENT_CPU); 2719 2720 /* 2721 * If pinned groups are involved, flexible groups also need to be 2722 * scheduled out. 2723 */ 2724 if (event_type & EVENT_PINNED) 2725 event_type |= EVENT_FLEXIBLE; 2726 2727 ctx_event_type = event_type & EVENT_ALL; 2728 2729 perf_pmu_disable(cpuctx->ctx.pmu); 2730 if (task_ctx) 2731 task_ctx_sched_out(cpuctx, task_ctx, event_type); 2732 2733 /* 2734 * Decide which cpu ctx groups to schedule out based on the types 2735 * of events that caused rescheduling: 2736 * - EVENT_CPU: schedule out corresponding groups; 2737 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups; 2738 * - otherwise, do nothing more. 2739 */ 2740 if (cpu_event) 2741 cpu_ctx_sched_out(cpuctx, ctx_event_type); 2742 else if (ctx_event_type & EVENT_PINNED) 2743 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2744 2745 perf_event_sched_in(cpuctx, task_ctx, current); 2746 perf_pmu_enable(cpuctx->ctx.pmu); 2747 } 2748 2749 void perf_pmu_resched(struct pmu *pmu) 2750 { 2751 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 2752 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2753 2754 perf_ctx_lock(cpuctx, task_ctx); 2755 ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU); 2756 perf_ctx_unlock(cpuctx, task_ctx); 2757 } 2758 2759 /* 2760 * Cross CPU call to install and enable a performance event 2761 * 2762 * Very similar to remote_function() + event_function() but cannot assume that 2763 * things like ctx->is_active and cpuctx->task_ctx are set. 2764 */ 2765 static int __perf_install_in_context(void *info) 2766 { 2767 struct perf_event *event = info; 2768 struct perf_event_context *ctx = event->ctx; 2769 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2770 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2771 bool reprogram = true; 2772 int ret = 0; 2773 2774 raw_spin_lock(&cpuctx->ctx.lock); 2775 if (ctx->task) { 2776 raw_spin_lock(&ctx->lock); 2777 task_ctx = ctx; 2778 2779 reprogram = (ctx->task == current); 2780 2781 /* 2782 * If the task is running, it must be running on this CPU, 2783 * otherwise we cannot reprogram things. 2784 * 2785 * If its not running, we don't care, ctx->lock will 2786 * serialize against it becoming runnable. 2787 */ 2788 if (task_curr(ctx->task) && !reprogram) { 2789 ret = -ESRCH; 2790 goto unlock; 2791 } 2792 2793 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx); 2794 } else if (task_ctx) { 2795 raw_spin_lock(&task_ctx->lock); 2796 } 2797 2798 #ifdef CONFIG_CGROUP_PERF 2799 if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) { 2800 /* 2801 * If the current cgroup doesn't match the event's 2802 * cgroup, we should not try to schedule it. 2803 */ 2804 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 2805 reprogram = cgroup_is_descendant(cgrp->css.cgroup, 2806 event->cgrp->css.cgroup); 2807 } 2808 #endif 2809 2810 if (reprogram) { 2811 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2812 add_event_to_ctx(event, ctx); 2813 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2814 } else { 2815 add_event_to_ctx(event, ctx); 2816 } 2817 2818 unlock: 2819 perf_ctx_unlock(cpuctx, task_ctx); 2820 2821 return ret; 2822 } 2823 2824 static bool exclusive_event_installable(struct perf_event *event, 2825 struct perf_event_context *ctx); 2826 2827 /* 2828 * Attach a performance event to a context. 2829 * 2830 * Very similar to event_function_call, see comment there. 2831 */ 2832 static void 2833 perf_install_in_context(struct perf_event_context *ctx, 2834 struct perf_event *event, 2835 int cpu) 2836 { 2837 struct task_struct *task = READ_ONCE(ctx->task); 2838 2839 lockdep_assert_held(&ctx->mutex); 2840 2841 WARN_ON_ONCE(!exclusive_event_installable(event, ctx)); 2842 2843 if (event->cpu != -1) 2844 event->cpu = cpu; 2845 2846 /* 2847 * Ensures that if we can observe event->ctx, both the event and ctx 2848 * will be 'complete'. See perf_iterate_sb_cpu(). 2849 */ 2850 smp_store_release(&event->ctx, ctx); 2851 2852 /* 2853 * perf_event_attr::disabled events will not run and can be initialized 2854 * without IPI. Except when this is the first event for the context, in 2855 * that case we need the magic of the IPI to set ctx->is_active. 2856 * 2857 * The IOC_ENABLE that is sure to follow the creation of a disabled 2858 * event will issue the IPI and reprogram the hardware. 2859 */ 2860 if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && ctx->nr_events) { 2861 raw_spin_lock_irq(&ctx->lock); 2862 if (ctx->task == TASK_TOMBSTONE) { 2863 raw_spin_unlock_irq(&ctx->lock); 2864 return; 2865 } 2866 add_event_to_ctx(event, ctx); 2867 raw_spin_unlock_irq(&ctx->lock); 2868 return; 2869 } 2870 2871 if (!task) { 2872 cpu_function_call(cpu, __perf_install_in_context, event); 2873 return; 2874 } 2875 2876 /* 2877 * Should not happen, we validate the ctx is still alive before calling. 2878 */ 2879 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) 2880 return; 2881 2882 /* 2883 * Installing events is tricky because we cannot rely on ctx->is_active 2884 * to be set in case this is the nr_events 0 -> 1 transition. 2885 * 2886 * Instead we use task_curr(), which tells us if the task is running. 2887 * However, since we use task_curr() outside of rq::lock, we can race 2888 * against the actual state. This means the result can be wrong. 2889 * 2890 * If we get a false positive, we retry, this is harmless. 2891 * 2892 * If we get a false negative, things are complicated. If we are after 2893 * perf_event_context_sched_in() ctx::lock will serialize us, and the 2894 * value must be correct. If we're before, it doesn't matter since 2895 * perf_event_context_sched_in() will program the counter. 2896 * 2897 * However, this hinges on the remote context switch having observed 2898 * our task->perf_event_ctxp[] store, such that it will in fact take 2899 * ctx::lock in perf_event_context_sched_in(). 2900 * 2901 * We do this by task_function_call(), if the IPI fails to hit the task 2902 * we know any future context switch of task must see the 2903 * perf_event_ctpx[] store. 2904 */ 2905 2906 /* 2907 * This smp_mb() orders the task->perf_event_ctxp[] store with the 2908 * task_cpu() load, such that if the IPI then does not find the task 2909 * running, a future context switch of that task must observe the 2910 * store. 2911 */ 2912 smp_mb(); 2913 again: 2914 if (!task_function_call(task, __perf_install_in_context, event)) 2915 return; 2916 2917 raw_spin_lock_irq(&ctx->lock); 2918 task = ctx->task; 2919 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) { 2920 /* 2921 * Cannot happen because we already checked above (which also 2922 * cannot happen), and we hold ctx->mutex, which serializes us 2923 * against perf_event_exit_task_context(). 2924 */ 2925 raw_spin_unlock_irq(&ctx->lock); 2926 return; 2927 } 2928 /* 2929 * If the task is not running, ctx->lock will avoid it becoming so, 2930 * thus we can safely install the event. 2931 */ 2932 if (task_curr(task)) { 2933 raw_spin_unlock_irq(&ctx->lock); 2934 goto again; 2935 } 2936 add_event_to_ctx(event, ctx); 2937 raw_spin_unlock_irq(&ctx->lock); 2938 } 2939 2940 /* 2941 * Cross CPU call to enable a performance event 2942 */ 2943 static void __perf_event_enable(struct perf_event *event, 2944 struct perf_cpu_context *cpuctx, 2945 struct perf_event_context *ctx, 2946 void *info) 2947 { 2948 struct perf_event *leader = event->group_leader; 2949 struct perf_event_context *task_ctx; 2950 2951 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2952 event->state <= PERF_EVENT_STATE_ERROR) 2953 return; 2954 2955 if (ctx->is_active) 2956 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2957 2958 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2959 perf_cgroup_event_enable(event, ctx); 2960 2961 if (!ctx->is_active) 2962 return; 2963 2964 if (!event_filter_match(event)) { 2965 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2966 return; 2967 } 2968 2969 /* 2970 * If the event is in a group and isn't the group leader, 2971 * then don't put it on unless the group is on. 2972 */ 2973 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) { 2974 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2975 return; 2976 } 2977 2978 task_ctx = cpuctx->task_ctx; 2979 if (ctx->task) 2980 WARN_ON_ONCE(task_ctx != ctx); 2981 2982 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2983 } 2984 2985 /* 2986 * Enable an event. 2987 * 2988 * If event->ctx is a cloned context, callers must make sure that 2989 * every task struct that event->ctx->task could possibly point to 2990 * remains valid. This condition is satisfied when called through 2991 * perf_event_for_each_child or perf_event_for_each as described 2992 * for perf_event_disable. 2993 */ 2994 static void _perf_event_enable(struct perf_event *event) 2995 { 2996 struct perf_event_context *ctx = event->ctx; 2997 2998 raw_spin_lock_irq(&ctx->lock); 2999 if (event->state >= PERF_EVENT_STATE_INACTIVE || 3000 event->state < PERF_EVENT_STATE_ERROR) { 3001 out: 3002 raw_spin_unlock_irq(&ctx->lock); 3003 return; 3004 } 3005 3006 /* 3007 * If the event is in error state, clear that first. 3008 * 3009 * That way, if we see the event in error state below, we know that it 3010 * has gone back into error state, as distinct from the task having 3011 * been scheduled away before the cross-call arrived. 3012 */ 3013 if (event->state == PERF_EVENT_STATE_ERROR) { 3014 /* 3015 * Detached SIBLING events cannot leave ERROR state. 3016 */ 3017 if (event->event_caps & PERF_EV_CAP_SIBLING && 3018 event->group_leader == event) 3019 goto out; 3020 3021 event->state = PERF_EVENT_STATE_OFF; 3022 } 3023 raw_spin_unlock_irq(&ctx->lock); 3024 3025 event_function_call(event, __perf_event_enable, NULL); 3026 } 3027 3028 /* 3029 * See perf_event_disable(); 3030 */ 3031 void perf_event_enable(struct perf_event *event) 3032 { 3033 struct perf_event_context *ctx; 3034 3035 ctx = perf_event_ctx_lock(event); 3036 _perf_event_enable(event); 3037 perf_event_ctx_unlock(event, ctx); 3038 } 3039 EXPORT_SYMBOL_GPL(perf_event_enable); 3040 3041 struct stop_event_data { 3042 struct perf_event *event; 3043 unsigned int restart; 3044 }; 3045 3046 static int __perf_event_stop(void *info) 3047 { 3048 struct stop_event_data *sd = info; 3049 struct perf_event *event = sd->event; 3050 3051 /* if it's already INACTIVE, do nothing */ 3052 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3053 return 0; 3054 3055 /* matches smp_wmb() in event_sched_in() */ 3056 smp_rmb(); 3057 3058 /* 3059 * There is a window with interrupts enabled before we get here, 3060 * so we need to check again lest we try to stop another CPU's event. 3061 */ 3062 if (READ_ONCE(event->oncpu) != smp_processor_id()) 3063 return -EAGAIN; 3064 3065 event->pmu->stop(event, PERF_EF_UPDATE); 3066 3067 /* 3068 * May race with the actual stop (through perf_pmu_output_stop()), 3069 * but it is only used for events with AUX ring buffer, and such 3070 * events will refuse to restart because of rb::aux_mmap_count==0, 3071 * see comments in perf_aux_output_begin(). 3072 * 3073 * Since this is happening on an event-local CPU, no trace is lost 3074 * while restarting. 3075 */ 3076 if (sd->restart) 3077 event->pmu->start(event, 0); 3078 3079 return 0; 3080 } 3081 3082 static int perf_event_stop(struct perf_event *event, int restart) 3083 { 3084 struct stop_event_data sd = { 3085 .event = event, 3086 .restart = restart, 3087 }; 3088 int ret = 0; 3089 3090 do { 3091 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3092 return 0; 3093 3094 /* matches smp_wmb() in event_sched_in() */ 3095 smp_rmb(); 3096 3097 /* 3098 * We only want to restart ACTIVE events, so if the event goes 3099 * inactive here (event->oncpu==-1), there's nothing more to do; 3100 * fall through with ret==-ENXIO. 3101 */ 3102 ret = cpu_function_call(READ_ONCE(event->oncpu), 3103 __perf_event_stop, &sd); 3104 } while (ret == -EAGAIN); 3105 3106 return ret; 3107 } 3108 3109 /* 3110 * In order to contain the amount of racy and tricky in the address filter 3111 * configuration management, it is a two part process: 3112 * 3113 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below, 3114 * we update the addresses of corresponding vmas in 3115 * event::addr_filter_ranges array and bump the event::addr_filters_gen; 3116 * (p2) when an event is scheduled in (pmu::add), it calls 3117 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync() 3118 * if the generation has changed since the previous call. 3119 * 3120 * If (p1) happens while the event is active, we restart it to force (p2). 3121 * 3122 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on 3123 * pre-existing mappings, called once when new filters arrive via SET_FILTER 3124 * ioctl; 3125 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly 3126 * registered mapping, called for every new mmap(), with mm::mmap_lock down 3127 * for reading; 3128 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process 3129 * of exec. 3130 */ 3131 void perf_event_addr_filters_sync(struct perf_event *event) 3132 { 3133 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 3134 3135 if (!has_addr_filter(event)) 3136 return; 3137 3138 raw_spin_lock(&ifh->lock); 3139 if (event->addr_filters_gen != event->hw.addr_filters_gen) { 3140 event->pmu->addr_filters_sync(event); 3141 event->hw.addr_filters_gen = event->addr_filters_gen; 3142 } 3143 raw_spin_unlock(&ifh->lock); 3144 } 3145 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync); 3146 3147 static int _perf_event_refresh(struct perf_event *event, int refresh) 3148 { 3149 /* 3150 * not supported on inherited events 3151 */ 3152 if (event->attr.inherit || !is_sampling_event(event)) 3153 return -EINVAL; 3154 3155 atomic_add(refresh, &event->event_limit); 3156 _perf_event_enable(event); 3157 3158 return 0; 3159 } 3160 3161 /* 3162 * See perf_event_disable() 3163 */ 3164 int perf_event_refresh(struct perf_event *event, int refresh) 3165 { 3166 struct perf_event_context *ctx; 3167 int ret; 3168 3169 ctx = perf_event_ctx_lock(event); 3170 ret = _perf_event_refresh(event, refresh); 3171 perf_event_ctx_unlock(event, ctx); 3172 3173 return ret; 3174 } 3175 EXPORT_SYMBOL_GPL(perf_event_refresh); 3176 3177 static int perf_event_modify_breakpoint(struct perf_event *bp, 3178 struct perf_event_attr *attr) 3179 { 3180 int err; 3181 3182 _perf_event_disable(bp); 3183 3184 err = modify_user_hw_breakpoint_check(bp, attr, true); 3185 3186 if (!bp->attr.disabled) 3187 _perf_event_enable(bp); 3188 3189 return err; 3190 } 3191 3192 static int perf_event_modify_attr(struct perf_event *event, 3193 struct perf_event_attr *attr) 3194 { 3195 if (event->attr.type != attr->type) 3196 return -EINVAL; 3197 3198 switch (event->attr.type) { 3199 case PERF_TYPE_BREAKPOINT: 3200 return perf_event_modify_breakpoint(event, attr); 3201 default: 3202 /* Place holder for future additions. */ 3203 return -EOPNOTSUPP; 3204 } 3205 } 3206 3207 static void ctx_sched_out(struct perf_event_context *ctx, 3208 struct perf_cpu_context *cpuctx, 3209 enum event_type_t event_type) 3210 { 3211 struct perf_event *event, *tmp; 3212 int is_active = ctx->is_active; 3213 3214 lockdep_assert_held(&ctx->lock); 3215 3216 if (likely(!ctx->nr_events)) { 3217 /* 3218 * See __perf_remove_from_context(). 3219 */ 3220 WARN_ON_ONCE(ctx->is_active); 3221 if (ctx->task) 3222 WARN_ON_ONCE(cpuctx->task_ctx); 3223 return; 3224 } 3225 3226 ctx->is_active &= ~event_type; 3227 if (!(ctx->is_active & EVENT_ALL)) 3228 ctx->is_active = 0; 3229 3230 if (ctx->task) { 3231 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3232 if (!ctx->is_active) 3233 cpuctx->task_ctx = NULL; 3234 } 3235 3236 /* 3237 * Always update time if it was set; not only when it changes. 3238 * Otherwise we can 'forget' to update time for any but the last 3239 * context we sched out. For example: 3240 * 3241 * ctx_sched_out(.event_type = EVENT_FLEXIBLE) 3242 * ctx_sched_out(.event_type = EVENT_PINNED) 3243 * 3244 * would only update time for the pinned events. 3245 */ 3246 if (is_active & EVENT_TIME) { 3247 /* update (and stop) ctx time */ 3248 update_context_time(ctx); 3249 update_cgrp_time_from_cpuctx(cpuctx); 3250 } 3251 3252 is_active ^= ctx->is_active; /* changed bits */ 3253 3254 if (!ctx->nr_active || !(is_active & EVENT_ALL)) 3255 return; 3256 3257 perf_pmu_disable(ctx->pmu); 3258 if (is_active & EVENT_PINNED) { 3259 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list) 3260 group_sched_out(event, cpuctx, ctx); 3261 } 3262 3263 if (is_active & EVENT_FLEXIBLE) { 3264 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list) 3265 group_sched_out(event, cpuctx, ctx); 3266 3267 /* 3268 * Since we cleared EVENT_FLEXIBLE, also clear 3269 * rotate_necessary, is will be reset by 3270 * ctx_flexible_sched_in() when needed. 3271 */ 3272 ctx->rotate_necessary = 0; 3273 } 3274 perf_pmu_enable(ctx->pmu); 3275 } 3276 3277 /* 3278 * Test whether two contexts are equivalent, i.e. whether they have both been 3279 * cloned from the same version of the same context. 3280 * 3281 * Equivalence is measured using a generation number in the context that is 3282 * incremented on each modification to it; see unclone_ctx(), list_add_event() 3283 * and list_del_event(). 3284 */ 3285 static int context_equiv(struct perf_event_context *ctx1, 3286 struct perf_event_context *ctx2) 3287 { 3288 lockdep_assert_held(&ctx1->lock); 3289 lockdep_assert_held(&ctx2->lock); 3290 3291 /* Pinning disables the swap optimization */ 3292 if (ctx1->pin_count || ctx2->pin_count) 3293 return 0; 3294 3295 /* If ctx1 is the parent of ctx2 */ 3296 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 3297 return 1; 3298 3299 /* If ctx2 is the parent of ctx1 */ 3300 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 3301 return 1; 3302 3303 /* 3304 * If ctx1 and ctx2 have the same parent; we flatten the parent 3305 * hierarchy, see perf_event_init_context(). 3306 */ 3307 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 3308 ctx1->parent_gen == ctx2->parent_gen) 3309 return 1; 3310 3311 /* Unmatched */ 3312 return 0; 3313 } 3314 3315 static void __perf_event_sync_stat(struct perf_event *event, 3316 struct perf_event *next_event) 3317 { 3318 u64 value; 3319 3320 if (!event->attr.inherit_stat) 3321 return; 3322 3323 /* 3324 * Update the event value, we cannot use perf_event_read() 3325 * because we're in the middle of a context switch and have IRQs 3326 * disabled, which upsets smp_call_function_single(), however 3327 * we know the event must be on the current CPU, therefore we 3328 * don't need to use it. 3329 */ 3330 if (event->state == PERF_EVENT_STATE_ACTIVE) 3331 event->pmu->read(event); 3332 3333 perf_event_update_time(event); 3334 3335 /* 3336 * In order to keep per-task stats reliable we need to flip the event 3337 * values when we flip the contexts. 3338 */ 3339 value = local64_read(&next_event->count); 3340 value = local64_xchg(&event->count, value); 3341 local64_set(&next_event->count, value); 3342 3343 swap(event->total_time_enabled, next_event->total_time_enabled); 3344 swap(event->total_time_running, next_event->total_time_running); 3345 3346 /* 3347 * Since we swizzled the values, update the user visible data too. 3348 */ 3349 perf_event_update_userpage(event); 3350 perf_event_update_userpage(next_event); 3351 } 3352 3353 static void perf_event_sync_stat(struct perf_event_context *ctx, 3354 struct perf_event_context *next_ctx) 3355 { 3356 struct perf_event *event, *next_event; 3357 3358 if (!ctx->nr_stat) 3359 return; 3360 3361 update_context_time(ctx); 3362 3363 event = list_first_entry(&ctx->event_list, 3364 struct perf_event, event_entry); 3365 3366 next_event = list_first_entry(&next_ctx->event_list, 3367 struct perf_event, event_entry); 3368 3369 while (&event->event_entry != &ctx->event_list && 3370 &next_event->event_entry != &next_ctx->event_list) { 3371 3372 __perf_event_sync_stat(event, next_event); 3373 3374 event = list_next_entry(event, event_entry); 3375 next_event = list_next_entry(next_event, event_entry); 3376 } 3377 } 3378 3379 static void perf_event_context_sched_out(struct task_struct *task, int ctxn, 3380 struct task_struct *next) 3381 { 3382 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; 3383 struct perf_event_context *next_ctx; 3384 struct perf_event_context *parent, *next_parent; 3385 struct perf_cpu_context *cpuctx; 3386 int do_switch = 1; 3387 struct pmu *pmu; 3388 3389 if (likely(!ctx)) 3390 return; 3391 3392 pmu = ctx->pmu; 3393 cpuctx = __get_cpu_context(ctx); 3394 if (!cpuctx->task_ctx) 3395 return; 3396 3397 rcu_read_lock(); 3398 next_ctx = next->perf_event_ctxp[ctxn]; 3399 if (!next_ctx) 3400 goto unlock; 3401 3402 parent = rcu_dereference(ctx->parent_ctx); 3403 next_parent = rcu_dereference(next_ctx->parent_ctx); 3404 3405 /* If neither context have a parent context; they cannot be clones. */ 3406 if (!parent && !next_parent) 3407 goto unlock; 3408 3409 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 3410 /* 3411 * Looks like the two contexts are clones, so we might be 3412 * able to optimize the context switch. We lock both 3413 * contexts and check that they are clones under the 3414 * lock (including re-checking that neither has been 3415 * uncloned in the meantime). It doesn't matter which 3416 * order we take the locks because no other cpu could 3417 * be trying to lock both of these tasks. 3418 */ 3419 raw_spin_lock(&ctx->lock); 3420 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 3421 if (context_equiv(ctx, next_ctx)) { 3422 3423 WRITE_ONCE(ctx->task, next); 3424 WRITE_ONCE(next_ctx->task, task); 3425 3426 perf_pmu_disable(pmu); 3427 3428 if (cpuctx->sched_cb_usage && pmu->sched_task) 3429 pmu->sched_task(ctx, false); 3430 3431 /* 3432 * PMU specific parts of task perf context can require 3433 * additional synchronization. As an example of such 3434 * synchronization see implementation details of Intel 3435 * LBR call stack data profiling; 3436 */ 3437 if (pmu->swap_task_ctx) 3438 pmu->swap_task_ctx(ctx, next_ctx); 3439 else 3440 swap(ctx->task_ctx_data, next_ctx->task_ctx_data); 3441 3442 perf_pmu_enable(pmu); 3443 3444 /* 3445 * RCU_INIT_POINTER here is safe because we've not 3446 * modified the ctx and the above modification of 3447 * ctx->task and ctx->task_ctx_data are immaterial 3448 * since those values are always verified under 3449 * ctx->lock which we're now holding. 3450 */ 3451 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx); 3452 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx); 3453 3454 do_switch = 0; 3455 3456 perf_event_sync_stat(ctx, next_ctx); 3457 } 3458 raw_spin_unlock(&next_ctx->lock); 3459 raw_spin_unlock(&ctx->lock); 3460 } 3461 unlock: 3462 rcu_read_unlock(); 3463 3464 if (do_switch) { 3465 raw_spin_lock(&ctx->lock); 3466 perf_pmu_disable(pmu); 3467 3468 if (cpuctx->sched_cb_usage && pmu->sched_task) 3469 pmu->sched_task(ctx, false); 3470 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL); 3471 3472 perf_pmu_enable(pmu); 3473 raw_spin_unlock(&ctx->lock); 3474 } 3475 } 3476 3477 void perf_sched_cb_dec(struct pmu *pmu) 3478 { 3479 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 3480 3481 --cpuctx->sched_cb_usage; 3482 } 3483 3484 3485 void perf_sched_cb_inc(struct pmu *pmu) 3486 { 3487 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 3488 3489 cpuctx->sched_cb_usage++; 3490 } 3491 3492 /* 3493 * This function provides the context switch callback to the lower code 3494 * layer. It is invoked ONLY when the context switch callback is enabled. 3495 * 3496 * This callback is relevant even to per-cpu events; for example multi event 3497 * PEBS requires this to provide PID/TID information. This requires we flush 3498 * all queued PEBS records before we context switch to a new task. 3499 */ 3500 static void __perf_pmu_sched_task(struct perf_cpu_context *cpuctx, bool sched_in) 3501 { 3502 struct pmu *pmu; 3503 3504 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */ 3505 3506 if (WARN_ON_ONCE(!pmu->sched_task)) 3507 return; 3508 3509 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3510 perf_pmu_disable(pmu); 3511 3512 pmu->sched_task(cpuctx->task_ctx, sched_in); 3513 3514 perf_pmu_enable(pmu); 3515 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3516 } 3517 3518 static void perf_event_switch(struct task_struct *task, 3519 struct task_struct *next_prev, bool sched_in); 3520 3521 #define for_each_task_context_nr(ctxn) \ 3522 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) 3523 3524 /* 3525 * Called from scheduler to remove the events of the current task, 3526 * with interrupts disabled. 3527 * 3528 * We stop each event and update the event value in event->count. 3529 * 3530 * This does not protect us against NMI, but disable() 3531 * sets the disabled bit in the control field of event _before_ 3532 * accessing the event control register. If a NMI hits, then it will 3533 * not restart the event. 3534 */ 3535 void __perf_event_task_sched_out(struct task_struct *task, 3536 struct task_struct *next) 3537 { 3538 int ctxn; 3539 3540 if (atomic_read(&nr_switch_events)) 3541 perf_event_switch(task, next, false); 3542 3543 for_each_task_context_nr(ctxn) 3544 perf_event_context_sched_out(task, ctxn, next); 3545 3546 /* 3547 * if cgroup events exist on this CPU, then we need 3548 * to check if we have to switch out PMU state. 3549 * cgroup event are system-wide mode only 3550 */ 3551 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3552 perf_cgroup_sched_out(task, next); 3553 } 3554 3555 /* 3556 * Called with IRQs disabled 3557 */ 3558 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 3559 enum event_type_t event_type) 3560 { 3561 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); 3562 } 3563 3564 static bool perf_less_group_idx(const void *l, const void *r) 3565 { 3566 const struct perf_event *le = *(const struct perf_event **)l; 3567 const struct perf_event *re = *(const struct perf_event **)r; 3568 3569 return le->group_index < re->group_index; 3570 } 3571 3572 static void swap_ptr(void *l, void *r) 3573 { 3574 void **lp = l, **rp = r; 3575 3576 swap(*lp, *rp); 3577 } 3578 3579 static const struct min_heap_callbacks perf_min_heap = { 3580 .elem_size = sizeof(struct perf_event *), 3581 .less = perf_less_group_idx, 3582 .swp = swap_ptr, 3583 }; 3584 3585 static void __heap_add(struct min_heap *heap, struct perf_event *event) 3586 { 3587 struct perf_event **itrs = heap->data; 3588 3589 if (event) { 3590 itrs[heap->nr] = event; 3591 heap->nr++; 3592 } 3593 } 3594 3595 static noinline int visit_groups_merge(struct perf_cpu_context *cpuctx, 3596 struct perf_event_groups *groups, int cpu, 3597 int (*func)(struct perf_event *, void *), 3598 void *data) 3599 { 3600 #ifdef CONFIG_CGROUP_PERF 3601 struct cgroup_subsys_state *css = NULL; 3602 #endif 3603 /* Space for per CPU and/or any CPU event iterators. */ 3604 struct perf_event *itrs[2]; 3605 struct min_heap event_heap; 3606 struct perf_event **evt; 3607 int ret; 3608 3609 if (cpuctx) { 3610 event_heap = (struct min_heap){ 3611 .data = cpuctx->heap, 3612 .nr = 0, 3613 .size = cpuctx->heap_size, 3614 }; 3615 3616 lockdep_assert_held(&cpuctx->ctx.lock); 3617 3618 #ifdef CONFIG_CGROUP_PERF 3619 if (cpuctx->cgrp) 3620 css = &cpuctx->cgrp->css; 3621 #endif 3622 } else { 3623 event_heap = (struct min_heap){ 3624 .data = itrs, 3625 .nr = 0, 3626 .size = ARRAY_SIZE(itrs), 3627 }; 3628 /* Events not within a CPU context may be on any CPU. */ 3629 __heap_add(&event_heap, perf_event_groups_first(groups, -1, NULL)); 3630 } 3631 evt = event_heap.data; 3632 3633 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, NULL)); 3634 3635 #ifdef CONFIG_CGROUP_PERF 3636 for (; css; css = css->parent) 3637 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, css->cgroup)); 3638 #endif 3639 3640 min_heapify_all(&event_heap, &perf_min_heap); 3641 3642 while (event_heap.nr) { 3643 ret = func(*evt, data); 3644 if (ret) 3645 return ret; 3646 3647 *evt = perf_event_groups_next(*evt); 3648 if (*evt) 3649 min_heapify(&event_heap, 0, &perf_min_heap); 3650 else 3651 min_heap_pop(&event_heap, &perf_min_heap); 3652 } 3653 3654 return 0; 3655 } 3656 3657 static int merge_sched_in(struct perf_event *event, void *data) 3658 { 3659 struct perf_event_context *ctx = event->ctx; 3660 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 3661 int *can_add_hw = data; 3662 3663 if (event->state <= PERF_EVENT_STATE_OFF) 3664 return 0; 3665 3666 if (!event_filter_match(event)) 3667 return 0; 3668 3669 if (group_can_go_on(event, cpuctx, *can_add_hw)) { 3670 if (!group_sched_in(event, cpuctx, ctx)) 3671 list_add_tail(&event->active_list, get_event_list(event)); 3672 } 3673 3674 if (event->state == PERF_EVENT_STATE_INACTIVE) { 3675 if (event->attr.pinned) { 3676 perf_cgroup_event_disable(event, ctx); 3677 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 3678 } 3679 3680 *can_add_hw = 0; 3681 ctx->rotate_necessary = 1; 3682 } 3683 3684 return 0; 3685 } 3686 3687 static void 3688 ctx_pinned_sched_in(struct perf_event_context *ctx, 3689 struct perf_cpu_context *cpuctx) 3690 { 3691 int can_add_hw = 1; 3692 3693 if (ctx != &cpuctx->ctx) 3694 cpuctx = NULL; 3695 3696 visit_groups_merge(cpuctx, &ctx->pinned_groups, 3697 smp_processor_id(), 3698 merge_sched_in, &can_add_hw); 3699 } 3700 3701 static void 3702 ctx_flexible_sched_in(struct perf_event_context *ctx, 3703 struct perf_cpu_context *cpuctx) 3704 { 3705 int can_add_hw = 1; 3706 3707 if (ctx != &cpuctx->ctx) 3708 cpuctx = NULL; 3709 3710 visit_groups_merge(cpuctx, &ctx->flexible_groups, 3711 smp_processor_id(), 3712 merge_sched_in, &can_add_hw); 3713 } 3714 3715 static void 3716 ctx_sched_in(struct perf_event_context *ctx, 3717 struct perf_cpu_context *cpuctx, 3718 enum event_type_t event_type, 3719 struct task_struct *task) 3720 { 3721 int is_active = ctx->is_active; 3722 u64 now; 3723 3724 lockdep_assert_held(&ctx->lock); 3725 3726 if (likely(!ctx->nr_events)) 3727 return; 3728 3729 ctx->is_active |= (event_type | EVENT_TIME); 3730 if (ctx->task) { 3731 if (!is_active) 3732 cpuctx->task_ctx = ctx; 3733 else 3734 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3735 } 3736 3737 is_active ^= ctx->is_active; /* changed bits */ 3738 3739 if (is_active & EVENT_TIME) { 3740 /* start ctx time */ 3741 now = perf_clock(); 3742 ctx->timestamp = now; 3743 perf_cgroup_set_timestamp(task, ctx); 3744 } 3745 3746 /* 3747 * First go through the list and put on any pinned groups 3748 * in order to give them the best chance of going on. 3749 */ 3750 if (is_active & EVENT_PINNED) 3751 ctx_pinned_sched_in(ctx, cpuctx); 3752 3753 /* Then walk through the lower prio flexible groups */ 3754 if (is_active & EVENT_FLEXIBLE) 3755 ctx_flexible_sched_in(ctx, cpuctx); 3756 } 3757 3758 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 3759 enum event_type_t event_type, 3760 struct task_struct *task) 3761 { 3762 struct perf_event_context *ctx = &cpuctx->ctx; 3763 3764 ctx_sched_in(ctx, cpuctx, event_type, task); 3765 } 3766 3767 static void perf_event_context_sched_in(struct perf_event_context *ctx, 3768 struct task_struct *task) 3769 { 3770 struct perf_cpu_context *cpuctx; 3771 struct pmu *pmu = ctx->pmu; 3772 3773 cpuctx = __get_cpu_context(ctx); 3774 if (cpuctx->task_ctx == ctx) { 3775 if (cpuctx->sched_cb_usage) 3776 __perf_pmu_sched_task(cpuctx, true); 3777 return; 3778 } 3779 3780 perf_ctx_lock(cpuctx, ctx); 3781 /* 3782 * We must check ctx->nr_events while holding ctx->lock, such 3783 * that we serialize against perf_install_in_context(). 3784 */ 3785 if (!ctx->nr_events) 3786 goto unlock; 3787 3788 perf_pmu_disable(pmu); 3789 /* 3790 * We want to keep the following priority order: 3791 * cpu pinned (that don't need to move), task pinned, 3792 * cpu flexible, task flexible. 3793 * 3794 * However, if task's ctx is not carrying any pinned 3795 * events, no need to flip the cpuctx's events around. 3796 */ 3797 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) 3798 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3799 perf_event_sched_in(cpuctx, ctx, task); 3800 3801 if (cpuctx->sched_cb_usage && pmu->sched_task) 3802 pmu->sched_task(cpuctx->task_ctx, true); 3803 3804 perf_pmu_enable(pmu); 3805 3806 unlock: 3807 perf_ctx_unlock(cpuctx, ctx); 3808 } 3809 3810 /* 3811 * Called from scheduler to add the events of the current task 3812 * with interrupts disabled. 3813 * 3814 * We restore the event value and then enable it. 3815 * 3816 * This does not protect us against NMI, but enable() 3817 * sets the enabled bit in the control field of event _before_ 3818 * accessing the event control register. If a NMI hits, then it will 3819 * keep the event running. 3820 */ 3821 void __perf_event_task_sched_in(struct task_struct *prev, 3822 struct task_struct *task) 3823 { 3824 struct perf_event_context *ctx; 3825 int ctxn; 3826 3827 /* 3828 * If cgroup events exist on this CPU, then we need to check if we have 3829 * to switch in PMU state; cgroup event are system-wide mode only. 3830 * 3831 * Since cgroup events are CPU events, we must schedule these in before 3832 * we schedule in the task events. 3833 */ 3834 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3835 perf_cgroup_sched_in(prev, task); 3836 3837 for_each_task_context_nr(ctxn) { 3838 ctx = task->perf_event_ctxp[ctxn]; 3839 if (likely(!ctx)) 3840 continue; 3841 3842 perf_event_context_sched_in(ctx, task); 3843 } 3844 3845 if (atomic_read(&nr_switch_events)) 3846 perf_event_switch(task, prev, true); 3847 } 3848 3849 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 3850 { 3851 u64 frequency = event->attr.sample_freq; 3852 u64 sec = NSEC_PER_SEC; 3853 u64 divisor, dividend; 3854 3855 int count_fls, nsec_fls, frequency_fls, sec_fls; 3856 3857 count_fls = fls64(count); 3858 nsec_fls = fls64(nsec); 3859 frequency_fls = fls64(frequency); 3860 sec_fls = 30; 3861 3862 /* 3863 * We got @count in @nsec, with a target of sample_freq HZ 3864 * the target period becomes: 3865 * 3866 * @count * 10^9 3867 * period = ------------------- 3868 * @nsec * sample_freq 3869 * 3870 */ 3871 3872 /* 3873 * Reduce accuracy by one bit such that @a and @b converge 3874 * to a similar magnitude. 3875 */ 3876 #define REDUCE_FLS(a, b) \ 3877 do { \ 3878 if (a##_fls > b##_fls) { \ 3879 a >>= 1; \ 3880 a##_fls--; \ 3881 } else { \ 3882 b >>= 1; \ 3883 b##_fls--; \ 3884 } \ 3885 } while (0) 3886 3887 /* 3888 * Reduce accuracy until either term fits in a u64, then proceed with 3889 * the other, so that finally we can do a u64/u64 division. 3890 */ 3891 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 3892 REDUCE_FLS(nsec, frequency); 3893 REDUCE_FLS(sec, count); 3894 } 3895 3896 if (count_fls + sec_fls > 64) { 3897 divisor = nsec * frequency; 3898 3899 while (count_fls + sec_fls > 64) { 3900 REDUCE_FLS(count, sec); 3901 divisor >>= 1; 3902 } 3903 3904 dividend = count * sec; 3905 } else { 3906 dividend = count * sec; 3907 3908 while (nsec_fls + frequency_fls > 64) { 3909 REDUCE_FLS(nsec, frequency); 3910 dividend >>= 1; 3911 } 3912 3913 divisor = nsec * frequency; 3914 } 3915 3916 if (!divisor) 3917 return dividend; 3918 3919 return div64_u64(dividend, divisor); 3920 } 3921 3922 static DEFINE_PER_CPU(int, perf_throttled_count); 3923 static DEFINE_PER_CPU(u64, perf_throttled_seq); 3924 3925 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 3926 { 3927 struct hw_perf_event *hwc = &event->hw; 3928 s64 period, sample_period; 3929 s64 delta; 3930 3931 period = perf_calculate_period(event, nsec, count); 3932 3933 delta = (s64)(period - hwc->sample_period); 3934 delta = (delta + 7) / 8; /* low pass filter */ 3935 3936 sample_period = hwc->sample_period + delta; 3937 3938 if (!sample_period) 3939 sample_period = 1; 3940 3941 hwc->sample_period = sample_period; 3942 3943 if (local64_read(&hwc->period_left) > 8*sample_period) { 3944 if (disable) 3945 event->pmu->stop(event, PERF_EF_UPDATE); 3946 3947 local64_set(&hwc->period_left, 0); 3948 3949 if (disable) 3950 event->pmu->start(event, PERF_EF_RELOAD); 3951 } 3952 } 3953 3954 /* 3955 * combine freq adjustment with unthrottling to avoid two passes over the 3956 * events. At the same time, make sure, having freq events does not change 3957 * the rate of unthrottling as that would introduce bias. 3958 */ 3959 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx, 3960 int needs_unthr) 3961 { 3962 struct perf_event *event; 3963 struct hw_perf_event *hwc; 3964 u64 now, period = TICK_NSEC; 3965 s64 delta; 3966 3967 /* 3968 * only need to iterate over all events iff: 3969 * - context have events in frequency mode (needs freq adjust) 3970 * - there are events to unthrottle on this cpu 3971 */ 3972 if (!(ctx->nr_freq || needs_unthr)) 3973 return; 3974 3975 raw_spin_lock(&ctx->lock); 3976 perf_pmu_disable(ctx->pmu); 3977 3978 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 3979 if (event->state != PERF_EVENT_STATE_ACTIVE) 3980 continue; 3981 3982 if (!event_filter_match(event)) 3983 continue; 3984 3985 perf_pmu_disable(event->pmu); 3986 3987 hwc = &event->hw; 3988 3989 if (hwc->interrupts == MAX_INTERRUPTS) { 3990 hwc->interrupts = 0; 3991 perf_log_throttle(event, 1); 3992 event->pmu->start(event, 0); 3993 } 3994 3995 if (!event->attr.freq || !event->attr.sample_freq) 3996 goto next; 3997 3998 /* 3999 * stop the event and update event->count 4000 */ 4001 event->pmu->stop(event, PERF_EF_UPDATE); 4002 4003 now = local64_read(&event->count); 4004 delta = now - hwc->freq_count_stamp; 4005 hwc->freq_count_stamp = now; 4006 4007 /* 4008 * restart the event 4009 * reload only if value has changed 4010 * we have stopped the event so tell that 4011 * to perf_adjust_period() to avoid stopping it 4012 * twice. 4013 */ 4014 if (delta > 0) 4015 perf_adjust_period(event, period, delta, false); 4016 4017 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 4018 next: 4019 perf_pmu_enable(event->pmu); 4020 } 4021 4022 perf_pmu_enable(ctx->pmu); 4023 raw_spin_unlock(&ctx->lock); 4024 } 4025 4026 /* 4027 * Move @event to the tail of the @ctx's elegible events. 4028 */ 4029 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event) 4030 { 4031 /* 4032 * Rotate the first entry last of non-pinned groups. Rotation might be 4033 * disabled by the inheritance code. 4034 */ 4035 if (ctx->rotate_disable) 4036 return; 4037 4038 perf_event_groups_delete(&ctx->flexible_groups, event); 4039 perf_event_groups_insert(&ctx->flexible_groups, event); 4040 } 4041 4042 /* pick an event from the flexible_groups to rotate */ 4043 static inline struct perf_event * 4044 ctx_event_to_rotate(struct perf_event_context *ctx) 4045 { 4046 struct perf_event *event; 4047 4048 /* pick the first active flexible event */ 4049 event = list_first_entry_or_null(&ctx->flexible_active, 4050 struct perf_event, active_list); 4051 4052 /* if no active flexible event, pick the first event */ 4053 if (!event) { 4054 event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree), 4055 typeof(*event), group_node); 4056 } 4057 4058 /* 4059 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in() 4060 * finds there are unschedulable events, it will set it again. 4061 */ 4062 ctx->rotate_necessary = 0; 4063 4064 return event; 4065 } 4066 4067 static bool perf_rotate_context(struct perf_cpu_context *cpuctx) 4068 { 4069 struct perf_event *cpu_event = NULL, *task_event = NULL; 4070 struct perf_event_context *task_ctx = NULL; 4071 int cpu_rotate, task_rotate; 4072 4073 /* 4074 * Since we run this from IRQ context, nobody can install new 4075 * events, thus the event count values are stable. 4076 */ 4077 4078 cpu_rotate = cpuctx->ctx.rotate_necessary; 4079 task_ctx = cpuctx->task_ctx; 4080 task_rotate = task_ctx ? task_ctx->rotate_necessary : 0; 4081 4082 if (!(cpu_rotate || task_rotate)) 4083 return false; 4084 4085 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 4086 perf_pmu_disable(cpuctx->ctx.pmu); 4087 4088 if (task_rotate) 4089 task_event = ctx_event_to_rotate(task_ctx); 4090 if (cpu_rotate) 4091 cpu_event = ctx_event_to_rotate(&cpuctx->ctx); 4092 4093 /* 4094 * As per the order given at ctx_resched() first 'pop' task flexible 4095 * and then, if needed CPU flexible. 4096 */ 4097 if (task_event || (task_ctx && cpu_event)) 4098 ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE); 4099 if (cpu_event) 4100 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 4101 4102 if (task_event) 4103 rotate_ctx(task_ctx, task_event); 4104 if (cpu_event) 4105 rotate_ctx(&cpuctx->ctx, cpu_event); 4106 4107 perf_event_sched_in(cpuctx, task_ctx, current); 4108 4109 perf_pmu_enable(cpuctx->ctx.pmu); 4110 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 4111 4112 return true; 4113 } 4114 4115 void perf_event_task_tick(void) 4116 { 4117 struct list_head *head = this_cpu_ptr(&active_ctx_list); 4118 struct perf_event_context *ctx, *tmp; 4119 int throttled; 4120 4121 lockdep_assert_irqs_disabled(); 4122 4123 __this_cpu_inc(perf_throttled_seq); 4124 throttled = __this_cpu_xchg(perf_throttled_count, 0); 4125 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 4126 4127 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list) 4128 perf_adjust_freq_unthr_context(ctx, throttled); 4129 } 4130 4131 static int event_enable_on_exec(struct perf_event *event, 4132 struct perf_event_context *ctx) 4133 { 4134 if (!event->attr.enable_on_exec) 4135 return 0; 4136 4137 event->attr.enable_on_exec = 0; 4138 if (event->state >= PERF_EVENT_STATE_INACTIVE) 4139 return 0; 4140 4141 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 4142 4143 return 1; 4144 } 4145 4146 /* 4147 * Enable all of a task's events that have been marked enable-on-exec. 4148 * This expects task == current. 4149 */ 4150 static void perf_event_enable_on_exec(int ctxn) 4151 { 4152 struct perf_event_context *ctx, *clone_ctx = NULL; 4153 enum event_type_t event_type = 0; 4154 struct perf_cpu_context *cpuctx; 4155 struct perf_event *event; 4156 unsigned long flags; 4157 int enabled = 0; 4158 4159 local_irq_save(flags); 4160 ctx = current->perf_event_ctxp[ctxn]; 4161 if (!ctx || !ctx->nr_events) 4162 goto out; 4163 4164 cpuctx = __get_cpu_context(ctx); 4165 perf_ctx_lock(cpuctx, ctx); 4166 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 4167 list_for_each_entry(event, &ctx->event_list, event_entry) { 4168 enabled |= event_enable_on_exec(event, ctx); 4169 event_type |= get_event_type(event); 4170 } 4171 4172 /* 4173 * Unclone and reschedule this context if we enabled any event. 4174 */ 4175 if (enabled) { 4176 clone_ctx = unclone_ctx(ctx); 4177 ctx_resched(cpuctx, ctx, event_type); 4178 } else { 4179 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 4180 } 4181 perf_ctx_unlock(cpuctx, ctx); 4182 4183 out: 4184 local_irq_restore(flags); 4185 4186 if (clone_ctx) 4187 put_ctx(clone_ctx); 4188 } 4189 4190 struct perf_read_data { 4191 struct perf_event *event; 4192 bool group; 4193 int ret; 4194 }; 4195 4196 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu) 4197 { 4198 u16 local_pkg, event_pkg; 4199 4200 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) { 4201 int local_cpu = smp_processor_id(); 4202 4203 event_pkg = topology_physical_package_id(event_cpu); 4204 local_pkg = topology_physical_package_id(local_cpu); 4205 4206 if (event_pkg == local_pkg) 4207 return local_cpu; 4208 } 4209 4210 return event_cpu; 4211 } 4212 4213 /* 4214 * Cross CPU call to read the hardware event 4215 */ 4216 static void __perf_event_read(void *info) 4217 { 4218 struct perf_read_data *data = info; 4219 struct perf_event *sub, *event = data->event; 4220 struct perf_event_context *ctx = event->ctx; 4221 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 4222 struct pmu *pmu = event->pmu; 4223 4224 /* 4225 * If this is a task context, we need to check whether it is 4226 * the current task context of this cpu. If not it has been 4227 * scheduled out before the smp call arrived. In that case 4228 * event->count would have been updated to a recent sample 4229 * when the event was scheduled out. 4230 */ 4231 if (ctx->task && cpuctx->task_ctx != ctx) 4232 return; 4233 4234 raw_spin_lock(&ctx->lock); 4235 if (ctx->is_active & EVENT_TIME) { 4236 update_context_time(ctx); 4237 update_cgrp_time_from_event(event); 4238 } 4239 4240 perf_event_update_time(event); 4241 if (data->group) 4242 perf_event_update_sibling_time(event); 4243 4244 if (event->state != PERF_EVENT_STATE_ACTIVE) 4245 goto unlock; 4246 4247 if (!data->group) { 4248 pmu->read(event); 4249 data->ret = 0; 4250 goto unlock; 4251 } 4252 4253 pmu->start_txn(pmu, PERF_PMU_TXN_READ); 4254 4255 pmu->read(event); 4256 4257 for_each_sibling_event(sub, event) { 4258 if (sub->state == PERF_EVENT_STATE_ACTIVE) { 4259 /* 4260 * Use sibling's PMU rather than @event's since 4261 * sibling could be on different (eg: software) PMU. 4262 */ 4263 sub->pmu->read(sub); 4264 } 4265 } 4266 4267 data->ret = pmu->commit_txn(pmu); 4268 4269 unlock: 4270 raw_spin_unlock(&ctx->lock); 4271 } 4272 4273 static inline u64 perf_event_count(struct perf_event *event) 4274 { 4275 return local64_read(&event->count) + atomic64_read(&event->child_count); 4276 } 4277 4278 /* 4279 * NMI-safe method to read a local event, that is an event that 4280 * is: 4281 * - either for the current task, or for this CPU 4282 * - does not have inherit set, for inherited task events 4283 * will not be local and we cannot read them atomically 4284 * - must not have a pmu::count method 4285 */ 4286 int perf_event_read_local(struct perf_event *event, u64 *value, 4287 u64 *enabled, u64 *running) 4288 { 4289 unsigned long flags; 4290 int ret = 0; 4291 4292 /* 4293 * Disabling interrupts avoids all counter scheduling (context 4294 * switches, timer based rotation and IPIs). 4295 */ 4296 local_irq_save(flags); 4297 4298 /* 4299 * It must not be an event with inherit set, we cannot read 4300 * all child counters from atomic context. 4301 */ 4302 if (event->attr.inherit) { 4303 ret = -EOPNOTSUPP; 4304 goto out; 4305 } 4306 4307 /* If this is a per-task event, it must be for current */ 4308 if ((event->attach_state & PERF_ATTACH_TASK) && 4309 event->hw.target != current) { 4310 ret = -EINVAL; 4311 goto out; 4312 } 4313 4314 /* If this is a per-CPU event, it must be for this CPU */ 4315 if (!(event->attach_state & PERF_ATTACH_TASK) && 4316 event->cpu != smp_processor_id()) { 4317 ret = -EINVAL; 4318 goto out; 4319 } 4320 4321 /* If this is a pinned event it must be running on this CPU */ 4322 if (event->attr.pinned && event->oncpu != smp_processor_id()) { 4323 ret = -EBUSY; 4324 goto out; 4325 } 4326 4327 /* 4328 * If the event is currently on this CPU, its either a per-task event, 4329 * or local to this CPU. Furthermore it means its ACTIVE (otherwise 4330 * oncpu == -1). 4331 */ 4332 if (event->oncpu == smp_processor_id()) 4333 event->pmu->read(event); 4334 4335 *value = local64_read(&event->count); 4336 if (enabled || running) { 4337 u64 now = event->shadow_ctx_time + perf_clock(); 4338 u64 __enabled, __running; 4339 4340 __perf_update_times(event, now, &__enabled, &__running); 4341 if (enabled) 4342 *enabled = __enabled; 4343 if (running) 4344 *running = __running; 4345 } 4346 out: 4347 local_irq_restore(flags); 4348 4349 return ret; 4350 } 4351 4352 static int perf_event_read(struct perf_event *event, bool group) 4353 { 4354 enum perf_event_state state = READ_ONCE(event->state); 4355 int event_cpu, ret = 0; 4356 4357 /* 4358 * If event is enabled and currently active on a CPU, update the 4359 * value in the event structure: 4360 */ 4361 again: 4362 if (state == PERF_EVENT_STATE_ACTIVE) { 4363 struct perf_read_data data; 4364 4365 /* 4366 * Orders the ->state and ->oncpu loads such that if we see 4367 * ACTIVE we must also see the right ->oncpu. 4368 * 4369 * Matches the smp_wmb() from event_sched_in(). 4370 */ 4371 smp_rmb(); 4372 4373 event_cpu = READ_ONCE(event->oncpu); 4374 if ((unsigned)event_cpu >= nr_cpu_ids) 4375 return 0; 4376 4377 data = (struct perf_read_data){ 4378 .event = event, 4379 .group = group, 4380 .ret = 0, 4381 }; 4382 4383 preempt_disable(); 4384 event_cpu = __perf_event_read_cpu(event, event_cpu); 4385 4386 /* 4387 * Purposely ignore the smp_call_function_single() return 4388 * value. 4389 * 4390 * If event_cpu isn't a valid CPU it means the event got 4391 * scheduled out and that will have updated the event count. 4392 * 4393 * Therefore, either way, we'll have an up-to-date event count 4394 * after this. 4395 */ 4396 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1); 4397 preempt_enable(); 4398 ret = data.ret; 4399 4400 } else if (state == PERF_EVENT_STATE_INACTIVE) { 4401 struct perf_event_context *ctx = event->ctx; 4402 unsigned long flags; 4403 4404 raw_spin_lock_irqsave(&ctx->lock, flags); 4405 state = event->state; 4406 if (state != PERF_EVENT_STATE_INACTIVE) { 4407 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4408 goto again; 4409 } 4410 4411 /* 4412 * May read while context is not active (e.g., thread is 4413 * blocked), in that case we cannot update context time 4414 */ 4415 if (ctx->is_active & EVENT_TIME) { 4416 update_context_time(ctx); 4417 update_cgrp_time_from_event(event); 4418 } 4419 4420 perf_event_update_time(event); 4421 if (group) 4422 perf_event_update_sibling_time(event); 4423 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4424 } 4425 4426 return ret; 4427 } 4428 4429 /* 4430 * Initialize the perf_event context in a task_struct: 4431 */ 4432 static void __perf_event_init_context(struct perf_event_context *ctx) 4433 { 4434 raw_spin_lock_init(&ctx->lock); 4435 mutex_init(&ctx->mutex); 4436 INIT_LIST_HEAD(&ctx->active_ctx_list); 4437 perf_event_groups_init(&ctx->pinned_groups); 4438 perf_event_groups_init(&ctx->flexible_groups); 4439 INIT_LIST_HEAD(&ctx->event_list); 4440 INIT_LIST_HEAD(&ctx->pinned_active); 4441 INIT_LIST_HEAD(&ctx->flexible_active); 4442 refcount_set(&ctx->refcount, 1); 4443 } 4444 4445 static struct perf_event_context * 4446 alloc_perf_context(struct pmu *pmu, struct task_struct *task) 4447 { 4448 struct perf_event_context *ctx; 4449 4450 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 4451 if (!ctx) 4452 return NULL; 4453 4454 __perf_event_init_context(ctx); 4455 if (task) 4456 ctx->task = get_task_struct(task); 4457 ctx->pmu = pmu; 4458 4459 return ctx; 4460 } 4461 4462 static struct task_struct * 4463 find_lively_task_by_vpid(pid_t vpid) 4464 { 4465 struct task_struct *task; 4466 4467 rcu_read_lock(); 4468 if (!vpid) 4469 task = current; 4470 else 4471 task = find_task_by_vpid(vpid); 4472 if (task) 4473 get_task_struct(task); 4474 rcu_read_unlock(); 4475 4476 if (!task) 4477 return ERR_PTR(-ESRCH); 4478 4479 return task; 4480 } 4481 4482 /* 4483 * Returns a matching context with refcount and pincount. 4484 */ 4485 static struct perf_event_context * 4486 find_get_context(struct pmu *pmu, struct task_struct *task, 4487 struct perf_event *event) 4488 { 4489 struct perf_event_context *ctx, *clone_ctx = NULL; 4490 struct perf_cpu_context *cpuctx; 4491 void *task_ctx_data = NULL; 4492 unsigned long flags; 4493 int ctxn, err; 4494 int cpu = event->cpu; 4495 4496 if (!task) { 4497 /* Must be root to operate on a CPU event: */ 4498 err = perf_allow_cpu(&event->attr); 4499 if (err) 4500 return ERR_PTR(err); 4501 4502 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 4503 ctx = &cpuctx->ctx; 4504 get_ctx(ctx); 4505 ++ctx->pin_count; 4506 4507 return ctx; 4508 } 4509 4510 err = -EINVAL; 4511 ctxn = pmu->task_ctx_nr; 4512 if (ctxn < 0) 4513 goto errout; 4514 4515 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 4516 task_ctx_data = alloc_task_ctx_data(pmu); 4517 if (!task_ctx_data) { 4518 err = -ENOMEM; 4519 goto errout; 4520 } 4521 } 4522 4523 retry: 4524 ctx = perf_lock_task_context(task, ctxn, &flags); 4525 if (ctx) { 4526 clone_ctx = unclone_ctx(ctx); 4527 ++ctx->pin_count; 4528 4529 if (task_ctx_data && !ctx->task_ctx_data) { 4530 ctx->task_ctx_data = task_ctx_data; 4531 task_ctx_data = NULL; 4532 } 4533 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4534 4535 if (clone_ctx) 4536 put_ctx(clone_ctx); 4537 } else { 4538 ctx = alloc_perf_context(pmu, task); 4539 err = -ENOMEM; 4540 if (!ctx) 4541 goto errout; 4542 4543 if (task_ctx_data) { 4544 ctx->task_ctx_data = task_ctx_data; 4545 task_ctx_data = NULL; 4546 } 4547 4548 err = 0; 4549 mutex_lock(&task->perf_event_mutex); 4550 /* 4551 * If it has already passed perf_event_exit_task(). 4552 * we must see PF_EXITING, it takes this mutex too. 4553 */ 4554 if (task->flags & PF_EXITING) 4555 err = -ESRCH; 4556 else if (task->perf_event_ctxp[ctxn]) 4557 err = -EAGAIN; 4558 else { 4559 get_ctx(ctx); 4560 ++ctx->pin_count; 4561 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); 4562 } 4563 mutex_unlock(&task->perf_event_mutex); 4564 4565 if (unlikely(err)) { 4566 put_ctx(ctx); 4567 4568 if (err == -EAGAIN) 4569 goto retry; 4570 goto errout; 4571 } 4572 } 4573 4574 free_task_ctx_data(pmu, task_ctx_data); 4575 return ctx; 4576 4577 errout: 4578 free_task_ctx_data(pmu, task_ctx_data); 4579 return ERR_PTR(err); 4580 } 4581 4582 static void perf_event_free_filter(struct perf_event *event); 4583 static void perf_event_free_bpf_prog(struct perf_event *event); 4584 4585 static void free_event_rcu(struct rcu_head *head) 4586 { 4587 struct perf_event *event; 4588 4589 event = container_of(head, struct perf_event, rcu_head); 4590 if (event->ns) 4591 put_pid_ns(event->ns); 4592 perf_event_free_filter(event); 4593 kfree(event); 4594 } 4595 4596 static void ring_buffer_attach(struct perf_event *event, 4597 struct perf_buffer *rb); 4598 4599 static void detach_sb_event(struct perf_event *event) 4600 { 4601 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 4602 4603 raw_spin_lock(&pel->lock); 4604 list_del_rcu(&event->sb_list); 4605 raw_spin_unlock(&pel->lock); 4606 } 4607 4608 static bool is_sb_event(struct perf_event *event) 4609 { 4610 struct perf_event_attr *attr = &event->attr; 4611 4612 if (event->parent) 4613 return false; 4614 4615 if (event->attach_state & PERF_ATTACH_TASK) 4616 return false; 4617 4618 if (attr->mmap || attr->mmap_data || attr->mmap2 || 4619 attr->comm || attr->comm_exec || 4620 attr->task || attr->ksymbol || 4621 attr->context_switch || attr->text_poke || 4622 attr->bpf_event) 4623 return true; 4624 return false; 4625 } 4626 4627 static void unaccount_pmu_sb_event(struct perf_event *event) 4628 { 4629 if (is_sb_event(event)) 4630 detach_sb_event(event); 4631 } 4632 4633 static void unaccount_event_cpu(struct perf_event *event, int cpu) 4634 { 4635 if (event->parent) 4636 return; 4637 4638 if (is_cgroup_event(event)) 4639 atomic_dec(&per_cpu(perf_cgroup_events, cpu)); 4640 } 4641 4642 #ifdef CONFIG_NO_HZ_FULL 4643 static DEFINE_SPINLOCK(nr_freq_lock); 4644 #endif 4645 4646 static void unaccount_freq_event_nohz(void) 4647 { 4648 #ifdef CONFIG_NO_HZ_FULL 4649 spin_lock(&nr_freq_lock); 4650 if (atomic_dec_and_test(&nr_freq_events)) 4651 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS); 4652 spin_unlock(&nr_freq_lock); 4653 #endif 4654 } 4655 4656 static void unaccount_freq_event(void) 4657 { 4658 if (tick_nohz_full_enabled()) 4659 unaccount_freq_event_nohz(); 4660 else 4661 atomic_dec(&nr_freq_events); 4662 } 4663 4664 static void unaccount_event(struct perf_event *event) 4665 { 4666 bool dec = false; 4667 4668 if (event->parent) 4669 return; 4670 4671 if (event->attach_state & PERF_ATTACH_TASK) 4672 dec = true; 4673 if (event->attr.mmap || event->attr.mmap_data) 4674 atomic_dec(&nr_mmap_events); 4675 if (event->attr.comm) 4676 atomic_dec(&nr_comm_events); 4677 if (event->attr.namespaces) 4678 atomic_dec(&nr_namespaces_events); 4679 if (event->attr.cgroup) 4680 atomic_dec(&nr_cgroup_events); 4681 if (event->attr.task) 4682 atomic_dec(&nr_task_events); 4683 if (event->attr.freq) 4684 unaccount_freq_event(); 4685 if (event->attr.context_switch) { 4686 dec = true; 4687 atomic_dec(&nr_switch_events); 4688 } 4689 if (is_cgroup_event(event)) 4690 dec = true; 4691 if (has_branch_stack(event)) 4692 dec = true; 4693 if (event->attr.ksymbol) 4694 atomic_dec(&nr_ksymbol_events); 4695 if (event->attr.bpf_event) 4696 atomic_dec(&nr_bpf_events); 4697 if (event->attr.text_poke) 4698 atomic_dec(&nr_text_poke_events); 4699 4700 if (dec) { 4701 if (!atomic_add_unless(&perf_sched_count, -1, 1)) 4702 schedule_delayed_work(&perf_sched_work, HZ); 4703 } 4704 4705 unaccount_event_cpu(event, event->cpu); 4706 4707 unaccount_pmu_sb_event(event); 4708 } 4709 4710 static void perf_sched_delayed(struct work_struct *work) 4711 { 4712 mutex_lock(&perf_sched_mutex); 4713 if (atomic_dec_and_test(&perf_sched_count)) 4714 static_branch_disable(&perf_sched_events); 4715 mutex_unlock(&perf_sched_mutex); 4716 } 4717 4718 /* 4719 * The following implement mutual exclusion of events on "exclusive" pmus 4720 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 4721 * at a time, so we disallow creating events that might conflict, namely: 4722 * 4723 * 1) cpu-wide events in the presence of per-task events, 4724 * 2) per-task events in the presence of cpu-wide events, 4725 * 3) two matching events on the same context. 4726 * 4727 * The former two cases are handled in the allocation path (perf_event_alloc(), 4728 * _free_event()), the latter -- before the first perf_install_in_context(). 4729 */ 4730 static int exclusive_event_init(struct perf_event *event) 4731 { 4732 struct pmu *pmu = event->pmu; 4733 4734 if (!is_exclusive_pmu(pmu)) 4735 return 0; 4736 4737 /* 4738 * Prevent co-existence of per-task and cpu-wide events on the 4739 * same exclusive pmu. 4740 * 4741 * Negative pmu::exclusive_cnt means there are cpu-wide 4742 * events on this "exclusive" pmu, positive means there are 4743 * per-task events. 4744 * 4745 * Since this is called in perf_event_alloc() path, event::ctx 4746 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 4747 * to mean "per-task event", because unlike other attach states it 4748 * never gets cleared. 4749 */ 4750 if (event->attach_state & PERF_ATTACH_TASK) { 4751 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 4752 return -EBUSY; 4753 } else { 4754 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 4755 return -EBUSY; 4756 } 4757 4758 return 0; 4759 } 4760 4761 static void exclusive_event_destroy(struct perf_event *event) 4762 { 4763 struct pmu *pmu = event->pmu; 4764 4765 if (!is_exclusive_pmu(pmu)) 4766 return; 4767 4768 /* see comment in exclusive_event_init() */ 4769 if (event->attach_state & PERF_ATTACH_TASK) 4770 atomic_dec(&pmu->exclusive_cnt); 4771 else 4772 atomic_inc(&pmu->exclusive_cnt); 4773 } 4774 4775 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 4776 { 4777 if ((e1->pmu == e2->pmu) && 4778 (e1->cpu == e2->cpu || 4779 e1->cpu == -1 || 4780 e2->cpu == -1)) 4781 return true; 4782 return false; 4783 } 4784 4785 static bool exclusive_event_installable(struct perf_event *event, 4786 struct perf_event_context *ctx) 4787 { 4788 struct perf_event *iter_event; 4789 struct pmu *pmu = event->pmu; 4790 4791 lockdep_assert_held(&ctx->mutex); 4792 4793 if (!is_exclusive_pmu(pmu)) 4794 return true; 4795 4796 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 4797 if (exclusive_event_match(iter_event, event)) 4798 return false; 4799 } 4800 4801 return true; 4802 } 4803 4804 static void perf_addr_filters_splice(struct perf_event *event, 4805 struct list_head *head); 4806 4807 static void _free_event(struct perf_event *event) 4808 { 4809 irq_work_sync(&event->pending); 4810 4811 unaccount_event(event); 4812 4813 security_perf_event_free(event); 4814 4815 if (event->rb) { 4816 /* 4817 * Can happen when we close an event with re-directed output. 4818 * 4819 * Since we have a 0 refcount, perf_mmap_close() will skip 4820 * over us; possibly making our ring_buffer_put() the last. 4821 */ 4822 mutex_lock(&event->mmap_mutex); 4823 ring_buffer_attach(event, NULL); 4824 mutex_unlock(&event->mmap_mutex); 4825 } 4826 4827 if (is_cgroup_event(event)) 4828 perf_detach_cgroup(event); 4829 4830 if (!event->parent) { 4831 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 4832 put_callchain_buffers(); 4833 } 4834 4835 perf_event_free_bpf_prog(event); 4836 perf_addr_filters_splice(event, NULL); 4837 kfree(event->addr_filter_ranges); 4838 4839 if (event->destroy) 4840 event->destroy(event); 4841 4842 /* 4843 * Must be after ->destroy(), due to uprobe_perf_close() using 4844 * hw.target. 4845 */ 4846 if (event->hw.target) 4847 put_task_struct(event->hw.target); 4848 4849 /* 4850 * perf_event_free_task() relies on put_ctx() being 'last', in particular 4851 * all task references must be cleaned up. 4852 */ 4853 if (event->ctx) 4854 put_ctx(event->ctx); 4855 4856 exclusive_event_destroy(event); 4857 module_put(event->pmu->module); 4858 4859 call_rcu(&event->rcu_head, free_event_rcu); 4860 } 4861 4862 /* 4863 * Used to free events which have a known refcount of 1, such as in error paths 4864 * where the event isn't exposed yet and inherited events. 4865 */ 4866 static void free_event(struct perf_event *event) 4867 { 4868 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 4869 "unexpected event refcount: %ld; ptr=%p\n", 4870 atomic_long_read(&event->refcount), event)) { 4871 /* leak to avoid use-after-free */ 4872 return; 4873 } 4874 4875 _free_event(event); 4876 } 4877 4878 /* 4879 * Remove user event from the owner task. 4880 */ 4881 static void perf_remove_from_owner(struct perf_event *event) 4882 { 4883 struct task_struct *owner; 4884 4885 rcu_read_lock(); 4886 /* 4887 * Matches the smp_store_release() in perf_event_exit_task(). If we 4888 * observe !owner it means the list deletion is complete and we can 4889 * indeed free this event, otherwise we need to serialize on 4890 * owner->perf_event_mutex. 4891 */ 4892 owner = READ_ONCE(event->owner); 4893 if (owner) { 4894 /* 4895 * Since delayed_put_task_struct() also drops the last 4896 * task reference we can safely take a new reference 4897 * while holding the rcu_read_lock(). 4898 */ 4899 get_task_struct(owner); 4900 } 4901 rcu_read_unlock(); 4902 4903 if (owner) { 4904 /* 4905 * If we're here through perf_event_exit_task() we're already 4906 * holding ctx->mutex which would be an inversion wrt. the 4907 * normal lock order. 4908 * 4909 * However we can safely take this lock because its the child 4910 * ctx->mutex. 4911 */ 4912 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 4913 4914 /* 4915 * We have to re-check the event->owner field, if it is cleared 4916 * we raced with perf_event_exit_task(), acquiring the mutex 4917 * ensured they're done, and we can proceed with freeing the 4918 * event. 4919 */ 4920 if (event->owner) { 4921 list_del_init(&event->owner_entry); 4922 smp_store_release(&event->owner, NULL); 4923 } 4924 mutex_unlock(&owner->perf_event_mutex); 4925 put_task_struct(owner); 4926 } 4927 } 4928 4929 static void put_event(struct perf_event *event) 4930 { 4931 if (!atomic_long_dec_and_test(&event->refcount)) 4932 return; 4933 4934 _free_event(event); 4935 } 4936 4937 /* 4938 * Kill an event dead; while event:refcount will preserve the event 4939 * object, it will not preserve its functionality. Once the last 'user' 4940 * gives up the object, we'll destroy the thing. 4941 */ 4942 int perf_event_release_kernel(struct perf_event *event) 4943 { 4944 struct perf_event_context *ctx = event->ctx; 4945 struct perf_event *child, *tmp; 4946 LIST_HEAD(free_list); 4947 4948 /* 4949 * If we got here through err_file: fput(event_file); we will not have 4950 * attached to a context yet. 4951 */ 4952 if (!ctx) { 4953 WARN_ON_ONCE(event->attach_state & 4954 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP)); 4955 goto no_ctx; 4956 } 4957 4958 if (!is_kernel_event(event)) 4959 perf_remove_from_owner(event); 4960 4961 ctx = perf_event_ctx_lock(event); 4962 WARN_ON_ONCE(ctx->parent_ctx); 4963 perf_remove_from_context(event, DETACH_GROUP); 4964 4965 raw_spin_lock_irq(&ctx->lock); 4966 /* 4967 * Mark this event as STATE_DEAD, there is no external reference to it 4968 * anymore. 4969 * 4970 * Anybody acquiring event->child_mutex after the below loop _must_ 4971 * also see this, most importantly inherit_event() which will avoid 4972 * placing more children on the list. 4973 * 4974 * Thus this guarantees that we will in fact observe and kill _ALL_ 4975 * child events. 4976 */ 4977 event->state = PERF_EVENT_STATE_DEAD; 4978 raw_spin_unlock_irq(&ctx->lock); 4979 4980 perf_event_ctx_unlock(event, ctx); 4981 4982 again: 4983 mutex_lock(&event->child_mutex); 4984 list_for_each_entry(child, &event->child_list, child_list) { 4985 4986 /* 4987 * Cannot change, child events are not migrated, see the 4988 * comment with perf_event_ctx_lock_nested(). 4989 */ 4990 ctx = READ_ONCE(child->ctx); 4991 /* 4992 * Since child_mutex nests inside ctx::mutex, we must jump 4993 * through hoops. We start by grabbing a reference on the ctx. 4994 * 4995 * Since the event cannot get freed while we hold the 4996 * child_mutex, the context must also exist and have a !0 4997 * reference count. 4998 */ 4999 get_ctx(ctx); 5000 5001 /* 5002 * Now that we have a ctx ref, we can drop child_mutex, and 5003 * acquire ctx::mutex without fear of it going away. Then we 5004 * can re-acquire child_mutex. 5005 */ 5006 mutex_unlock(&event->child_mutex); 5007 mutex_lock(&ctx->mutex); 5008 mutex_lock(&event->child_mutex); 5009 5010 /* 5011 * Now that we hold ctx::mutex and child_mutex, revalidate our 5012 * state, if child is still the first entry, it didn't get freed 5013 * and we can continue doing so. 5014 */ 5015 tmp = list_first_entry_or_null(&event->child_list, 5016 struct perf_event, child_list); 5017 if (tmp == child) { 5018 perf_remove_from_context(child, DETACH_GROUP); 5019 list_move(&child->child_list, &free_list); 5020 /* 5021 * This matches the refcount bump in inherit_event(); 5022 * this can't be the last reference. 5023 */ 5024 put_event(event); 5025 } 5026 5027 mutex_unlock(&event->child_mutex); 5028 mutex_unlock(&ctx->mutex); 5029 put_ctx(ctx); 5030 goto again; 5031 } 5032 mutex_unlock(&event->child_mutex); 5033 5034 list_for_each_entry_safe(child, tmp, &free_list, child_list) { 5035 void *var = &child->ctx->refcount; 5036 5037 list_del(&child->child_list); 5038 free_event(child); 5039 5040 /* 5041 * Wake any perf_event_free_task() waiting for this event to be 5042 * freed. 5043 */ 5044 smp_mb(); /* pairs with wait_var_event() */ 5045 wake_up_var(var); 5046 } 5047 5048 no_ctx: 5049 put_event(event); /* Must be the 'last' reference */ 5050 return 0; 5051 } 5052 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 5053 5054 /* 5055 * Called when the last reference to the file is gone. 5056 */ 5057 static int perf_release(struct inode *inode, struct file *file) 5058 { 5059 perf_event_release_kernel(file->private_data); 5060 return 0; 5061 } 5062 5063 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5064 { 5065 struct perf_event *child; 5066 u64 total = 0; 5067 5068 *enabled = 0; 5069 *running = 0; 5070 5071 mutex_lock(&event->child_mutex); 5072 5073 (void)perf_event_read(event, false); 5074 total += perf_event_count(event); 5075 5076 *enabled += event->total_time_enabled + 5077 atomic64_read(&event->child_total_time_enabled); 5078 *running += event->total_time_running + 5079 atomic64_read(&event->child_total_time_running); 5080 5081 list_for_each_entry(child, &event->child_list, child_list) { 5082 (void)perf_event_read(child, false); 5083 total += perf_event_count(child); 5084 *enabled += child->total_time_enabled; 5085 *running += child->total_time_running; 5086 } 5087 mutex_unlock(&event->child_mutex); 5088 5089 return total; 5090 } 5091 5092 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5093 { 5094 struct perf_event_context *ctx; 5095 u64 count; 5096 5097 ctx = perf_event_ctx_lock(event); 5098 count = __perf_event_read_value(event, enabled, running); 5099 perf_event_ctx_unlock(event, ctx); 5100 5101 return count; 5102 } 5103 EXPORT_SYMBOL_GPL(perf_event_read_value); 5104 5105 static int __perf_read_group_add(struct perf_event *leader, 5106 u64 read_format, u64 *values) 5107 { 5108 struct perf_event_context *ctx = leader->ctx; 5109 struct perf_event *sub; 5110 unsigned long flags; 5111 int n = 1; /* skip @nr */ 5112 int ret; 5113 5114 ret = perf_event_read(leader, true); 5115 if (ret) 5116 return ret; 5117 5118 raw_spin_lock_irqsave(&ctx->lock, flags); 5119 5120 /* 5121 * Since we co-schedule groups, {enabled,running} times of siblings 5122 * will be identical to those of the leader, so we only publish one 5123 * set. 5124 */ 5125 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 5126 values[n++] += leader->total_time_enabled + 5127 atomic64_read(&leader->child_total_time_enabled); 5128 } 5129 5130 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 5131 values[n++] += leader->total_time_running + 5132 atomic64_read(&leader->child_total_time_running); 5133 } 5134 5135 /* 5136 * Write {count,id} tuples for every sibling. 5137 */ 5138 values[n++] += perf_event_count(leader); 5139 if (read_format & PERF_FORMAT_ID) 5140 values[n++] = primary_event_id(leader); 5141 5142 for_each_sibling_event(sub, leader) { 5143 values[n++] += perf_event_count(sub); 5144 if (read_format & PERF_FORMAT_ID) 5145 values[n++] = primary_event_id(sub); 5146 } 5147 5148 raw_spin_unlock_irqrestore(&ctx->lock, flags); 5149 return 0; 5150 } 5151 5152 static int perf_read_group(struct perf_event *event, 5153 u64 read_format, char __user *buf) 5154 { 5155 struct perf_event *leader = event->group_leader, *child; 5156 struct perf_event_context *ctx = leader->ctx; 5157 int ret; 5158 u64 *values; 5159 5160 lockdep_assert_held(&ctx->mutex); 5161 5162 values = kzalloc(event->read_size, GFP_KERNEL); 5163 if (!values) 5164 return -ENOMEM; 5165 5166 values[0] = 1 + leader->nr_siblings; 5167 5168 /* 5169 * By locking the child_mutex of the leader we effectively 5170 * lock the child list of all siblings.. XXX explain how. 5171 */ 5172 mutex_lock(&leader->child_mutex); 5173 5174 ret = __perf_read_group_add(leader, read_format, values); 5175 if (ret) 5176 goto unlock; 5177 5178 list_for_each_entry(child, &leader->child_list, child_list) { 5179 ret = __perf_read_group_add(child, read_format, values); 5180 if (ret) 5181 goto unlock; 5182 } 5183 5184 mutex_unlock(&leader->child_mutex); 5185 5186 ret = event->read_size; 5187 if (copy_to_user(buf, values, event->read_size)) 5188 ret = -EFAULT; 5189 goto out; 5190 5191 unlock: 5192 mutex_unlock(&leader->child_mutex); 5193 out: 5194 kfree(values); 5195 return ret; 5196 } 5197 5198 static int perf_read_one(struct perf_event *event, 5199 u64 read_format, char __user *buf) 5200 { 5201 u64 enabled, running; 5202 u64 values[4]; 5203 int n = 0; 5204 5205 values[n++] = __perf_event_read_value(event, &enabled, &running); 5206 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 5207 values[n++] = enabled; 5208 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 5209 values[n++] = running; 5210 if (read_format & PERF_FORMAT_ID) 5211 values[n++] = primary_event_id(event); 5212 5213 if (copy_to_user(buf, values, n * sizeof(u64))) 5214 return -EFAULT; 5215 5216 return n * sizeof(u64); 5217 } 5218 5219 static bool is_event_hup(struct perf_event *event) 5220 { 5221 bool no_children; 5222 5223 if (event->state > PERF_EVENT_STATE_EXIT) 5224 return false; 5225 5226 mutex_lock(&event->child_mutex); 5227 no_children = list_empty(&event->child_list); 5228 mutex_unlock(&event->child_mutex); 5229 return no_children; 5230 } 5231 5232 /* 5233 * Read the performance event - simple non blocking version for now 5234 */ 5235 static ssize_t 5236 __perf_read(struct perf_event *event, char __user *buf, size_t count) 5237 { 5238 u64 read_format = event->attr.read_format; 5239 int ret; 5240 5241 /* 5242 * Return end-of-file for a read on an event that is in 5243 * error state (i.e. because it was pinned but it couldn't be 5244 * scheduled on to the CPU at some point). 5245 */ 5246 if (event->state == PERF_EVENT_STATE_ERROR) 5247 return 0; 5248 5249 if (count < event->read_size) 5250 return -ENOSPC; 5251 5252 WARN_ON_ONCE(event->ctx->parent_ctx); 5253 if (read_format & PERF_FORMAT_GROUP) 5254 ret = perf_read_group(event, read_format, buf); 5255 else 5256 ret = perf_read_one(event, read_format, buf); 5257 5258 return ret; 5259 } 5260 5261 static ssize_t 5262 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 5263 { 5264 struct perf_event *event = file->private_data; 5265 struct perf_event_context *ctx; 5266 int ret; 5267 5268 ret = security_perf_event_read(event); 5269 if (ret) 5270 return ret; 5271 5272 ctx = perf_event_ctx_lock(event); 5273 ret = __perf_read(event, buf, count); 5274 perf_event_ctx_unlock(event, ctx); 5275 5276 return ret; 5277 } 5278 5279 static __poll_t perf_poll(struct file *file, poll_table *wait) 5280 { 5281 struct perf_event *event = file->private_data; 5282 struct perf_buffer *rb; 5283 __poll_t events = EPOLLHUP; 5284 5285 poll_wait(file, &event->waitq, wait); 5286 5287 if (is_event_hup(event)) 5288 return events; 5289 5290 /* 5291 * Pin the event->rb by taking event->mmap_mutex; otherwise 5292 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 5293 */ 5294 mutex_lock(&event->mmap_mutex); 5295 rb = event->rb; 5296 if (rb) 5297 events = atomic_xchg(&rb->poll, 0); 5298 mutex_unlock(&event->mmap_mutex); 5299 return events; 5300 } 5301 5302 static void _perf_event_reset(struct perf_event *event) 5303 { 5304 (void)perf_event_read(event, false); 5305 local64_set(&event->count, 0); 5306 perf_event_update_userpage(event); 5307 } 5308 5309 /* Assume it's not an event with inherit set. */ 5310 u64 perf_event_pause(struct perf_event *event, bool reset) 5311 { 5312 struct perf_event_context *ctx; 5313 u64 count; 5314 5315 ctx = perf_event_ctx_lock(event); 5316 WARN_ON_ONCE(event->attr.inherit); 5317 _perf_event_disable(event); 5318 count = local64_read(&event->count); 5319 if (reset) 5320 local64_set(&event->count, 0); 5321 perf_event_ctx_unlock(event, ctx); 5322 5323 return count; 5324 } 5325 EXPORT_SYMBOL_GPL(perf_event_pause); 5326 5327 /* 5328 * Holding the top-level event's child_mutex means that any 5329 * descendant process that has inherited this event will block 5330 * in perf_event_exit_event() if it goes to exit, thus satisfying the 5331 * task existence requirements of perf_event_enable/disable. 5332 */ 5333 static void perf_event_for_each_child(struct perf_event *event, 5334 void (*func)(struct perf_event *)) 5335 { 5336 struct perf_event *child; 5337 5338 WARN_ON_ONCE(event->ctx->parent_ctx); 5339 5340 mutex_lock(&event->child_mutex); 5341 func(event); 5342 list_for_each_entry(child, &event->child_list, child_list) 5343 func(child); 5344 mutex_unlock(&event->child_mutex); 5345 } 5346 5347 static void perf_event_for_each(struct perf_event *event, 5348 void (*func)(struct perf_event *)) 5349 { 5350 struct perf_event_context *ctx = event->ctx; 5351 struct perf_event *sibling; 5352 5353 lockdep_assert_held(&ctx->mutex); 5354 5355 event = event->group_leader; 5356 5357 perf_event_for_each_child(event, func); 5358 for_each_sibling_event(sibling, event) 5359 perf_event_for_each_child(sibling, func); 5360 } 5361 5362 static void __perf_event_period(struct perf_event *event, 5363 struct perf_cpu_context *cpuctx, 5364 struct perf_event_context *ctx, 5365 void *info) 5366 { 5367 u64 value = *((u64 *)info); 5368 bool active; 5369 5370 if (event->attr.freq) { 5371 event->attr.sample_freq = value; 5372 } else { 5373 event->attr.sample_period = value; 5374 event->hw.sample_period = value; 5375 } 5376 5377 active = (event->state == PERF_EVENT_STATE_ACTIVE); 5378 if (active) { 5379 perf_pmu_disable(ctx->pmu); 5380 /* 5381 * We could be throttled; unthrottle now to avoid the tick 5382 * trying to unthrottle while we already re-started the event. 5383 */ 5384 if (event->hw.interrupts == MAX_INTERRUPTS) { 5385 event->hw.interrupts = 0; 5386 perf_log_throttle(event, 1); 5387 } 5388 event->pmu->stop(event, PERF_EF_UPDATE); 5389 } 5390 5391 local64_set(&event->hw.period_left, 0); 5392 5393 if (active) { 5394 event->pmu->start(event, PERF_EF_RELOAD); 5395 perf_pmu_enable(ctx->pmu); 5396 } 5397 } 5398 5399 static int perf_event_check_period(struct perf_event *event, u64 value) 5400 { 5401 return event->pmu->check_period(event, value); 5402 } 5403 5404 static int _perf_event_period(struct perf_event *event, u64 value) 5405 { 5406 if (!is_sampling_event(event)) 5407 return -EINVAL; 5408 5409 if (!value) 5410 return -EINVAL; 5411 5412 if (event->attr.freq && value > sysctl_perf_event_sample_rate) 5413 return -EINVAL; 5414 5415 if (perf_event_check_period(event, value)) 5416 return -EINVAL; 5417 5418 if (!event->attr.freq && (value & (1ULL << 63))) 5419 return -EINVAL; 5420 5421 event_function_call(event, __perf_event_period, &value); 5422 5423 return 0; 5424 } 5425 5426 int perf_event_period(struct perf_event *event, u64 value) 5427 { 5428 struct perf_event_context *ctx; 5429 int ret; 5430 5431 ctx = perf_event_ctx_lock(event); 5432 ret = _perf_event_period(event, value); 5433 perf_event_ctx_unlock(event, ctx); 5434 5435 return ret; 5436 } 5437 EXPORT_SYMBOL_GPL(perf_event_period); 5438 5439 static const struct file_operations perf_fops; 5440 5441 static inline int perf_fget_light(int fd, struct fd *p) 5442 { 5443 struct fd f = fdget(fd); 5444 if (!f.file) 5445 return -EBADF; 5446 5447 if (f.file->f_op != &perf_fops) { 5448 fdput(f); 5449 return -EBADF; 5450 } 5451 *p = f; 5452 return 0; 5453 } 5454 5455 static int perf_event_set_output(struct perf_event *event, 5456 struct perf_event *output_event); 5457 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 5458 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd); 5459 static int perf_copy_attr(struct perf_event_attr __user *uattr, 5460 struct perf_event_attr *attr); 5461 5462 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 5463 { 5464 void (*func)(struct perf_event *); 5465 u32 flags = arg; 5466 5467 switch (cmd) { 5468 case PERF_EVENT_IOC_ENABLE: 5469 func = _perf_event_enable; 5470 break; 5471 case PERF_EVENT_IOC_DISABLE: 5472 func = _perf_event_disable; 5473 break; 5474 case PERF_EVENT_IOC_RESET: 5475 func = _perf_event_reset; 5476 break; 5477 5478 case PERF_EVENT_IOC_REFRESH: 5479 return _perf_event_refresh(event, arg); 5480 5481 case PERF_EVENT_IOC_PERIOD: 5482 { 5483 u64 value; 5484 5485 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value))) 5486 return -EFAULT; 5487 5488 return _perf_event_period(event, value); 5489 } 5490 case PERF_EVENT_IOC_ID: 5491 { 5492 u64 id = primary_event_id(event); 5493 5494 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 5495 return -EFAULT; 5496 return 0; 5497 } 5498 5499 case PERF_EVENT_IOC_SET_OUTPUT: 5500 { 5501 int ret; 5502 if (arg != -1) { 5503 struct perf_event *output_event; 5504 struct fd output; 5505 ret = perf_fget_light(arg, &output); 5506 if (ret) 5507 return ret; 5508 output_event = output.file->private_data; 5509 ret = perf_event_set_output(event, output_event); 5510 fdput(output); 5511 } else { 5512 ret = perf_event_set_output(event, NULL); 5513 } 5514 return ret; 5515 } 5516 5517 case PERF_EVENT_IOC_SET_FILTER: 5518 return perf_event_set_filter(event, (void __user *)arg); 5519 5520 case PERF_EVENT_IOC_SET_BPF: 5521 return perf_event_set_bpf_prog(event, arg); 5522 5523 case PERF_EVENT_IOC_PAUSE_OUTPUT: { 5524 struct perf_buffer *rb; 5525 5526 rcu_read_lock(); 5527 rb = rcu_dereference(event->rb); 5528 if (!rb || !rb->nr_pages) { 5529 rcu_read_unlock(); 5530 return -EINVAL; 5531 } 5532 rb_toggle_paused(rb, !!arg); 5533 rcu_read_unlock(); 5534 return 0; 5535 } 5536 5537 case PERF_EVENT_IOC_QUERY_BPF: 5538 return perf_event_query_prog_array(event, (void __user *)arg); 5539 5540 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: { 5541 struct perf_event_attr new_attr; 5542 int err = perf_copy_attr((struct perf_event_attr __user *)arg, 5543 &new_attr); 5544 5545 if (err) 5546 return err; 5547 5548 return perf_event_modify_attr(event, &new_attr); 5549 } 5550 default: 5551 return -ENOTTY; 5552 } 5553 5554 if (flags & PERF_IOC_FLAG_GROUP) 5555 perf_event_for_each(event, func); 5556 else 5557 perf_event_for_each_child(event, func); 5558 5559 return 0; 5560 } 5561 5562 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5563 { 5564 struct perf_event *event = file->private_data; 5565 struct perf_event_context *ctx; 5566 long ret; 5567 5568 /* Treat ioctl like writes as it is likely a mutating operation. */ 5569 ret = security_perf_event_write(event); 5570 if (ret) 5571 return ret; 5572 5573 ctx = perf_event_ctx_lock(event); 5574 ret = _perf_ioctl(event, cmd, arg); 5575 perf_event_ctx_unlock(event, ctx); 5576 5577 return ret; 5578 } 5579 5580 #ifdef CONFIG_COMPAT 5581 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 5582 unsigned long arg) 5583 { 5584 switch (_IOC_NR(cmd)) { 5585 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 5586 case _IOC_NR(PERF_EVENT_IOC_ID): 5587 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF): 5588 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES): 5589 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 5590 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 5591 cmd &= ~IOCSIZE_MASK; 5592 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 5593 } 5594 break; 5595 } 5596 return perf_ioctl(file, cmd, arg); 5597 } 5598 #else 5599 # define perf_compat_ioctl NULL 5600 #endif 5601 5602 int perf_event_task_enable(void) 5603 { 5604 struct perf_event_context *ctx; 5605 struct perf_event *event; 5606 5607 mutex_lock(¤t->perf_event_mutex); 5608 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 5609 ctx = perf_event_ctx_lock(event); 5610 perf_event_for_each_child(event, _perf_event_enable); 5611 perf_event_ctx_unlock(event, ctx); 5612 } 5613 mutex_unlock(¤t->perf_event_mutex); 5614 5615 return 0; 5616 } 5617 5618 int perf_event_task_disable(void) 5619 { 5620 struct perf_event_context *ctx; 5621 struct perf_event *event; 5622 5623 mutex_lock(¤t->perf_event_mutex); 5624 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 5625 ctx = perf_event_ctx_lock(event); 5626 perf_event_for_each_child(event, _perf_event_disable); 5627 perf_event_ctx_unlock(event, ctx); 5628 } 5629 mutex_unlock(¤t->perf_event_mutex); 5630 5631 return 0; 5632 } 5633 5634 static int perf_event_index(struct perf_event *event) 5635 { 5636 if (event->hw.state & PERF_HES_STOPPED) 5637 return 0; 5638 5639 if (event->state != PERF_EVENT_STATE_ACTIVE) 5640 return 0; 5641 5642 return event->pmu->event_idx(event); 5643 } 5644 5645 static void calc_timer_values(struct perf_event *event, 5646 u64 *now, 5647 u64 *enabled, 5648 u64 *running) 5649 { 5650 u64 ctx_time; 5651 5652 *now = perf_clock(); 5653 ctx_time = event->shadow_ctx_time + *now; 5654 __perf_update_times(event, ctx_time, enabled, running); 5655 } 5656 5657 static void perf_event_init_userpage(struct perf_event *event) 5658 { 5659 struct perf_event_mmap_page *userpg; 5660 struct perf_buffer *rb; 5661 5662 rcu_read_lock(); 5663 rb = rcu_dereference(event->rb); 5664 if (!rb) 5665 goto unlock; 5666 5667 userpg = rb->user_page; 5668 5669 /* Allow new userspace to detect that bit 0 is deprecated */ 5670 userpg->cap_bit0_is_deprecated = 1; 5671 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 5672 userpg->data_offset = PAGE_SIZE; 5673 userpg->data_size = perf_data_size(rb); 5674 5675 unlock: 5676 rcu_read_unlock(); 5677 } 5678 5679 void __weak arch_perf_update_userpage( 5680 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 5681 { 5682 } 5683 5684 /* 5685 * Callers need to ensure there can be no nesting of this function, otherwise 5686 * the seqlock logic goes bad. We can not serialize this because the arch 5687 * code calls this from NMI context. 5688 */ 5689 void perf_event_update_userpage(struct perf_event *event) 5690 { 5691 struct perf_event_mmap_page *userpg; 5692 struct perf_buffer *rb; 5693 u64 enabled, running, now; 5694 5695 rcu_read_lock(); 5696 rb = rcu_dereference(event->rb); 5697 if (!rb) 5698 goto unlock; 5699 5700 /* 5701 * compute total_time_enabled, total_time_running 5702 * based on snapshot values taken when the event 5703 * was last scheduled in. 5704 * 5705 * we cannot simply called update_context_time() 5706 * because of locking issue as we can be called in 5707 * NMI context 5708 */ 5709 calc_timer_values(event, &now, &enabled, &running); 5710 5711 userpg = rb->user_page; 5712 /* 5713 * Disable preemption to guarantee consistent time stamps are stored to 5714 * the user page. 5715 */ 5716 preempt_disable(); 5717 ++userpg->lock; 5718 barrier(); 5719 userpg->index = perf_event_index(event); 5720 userpg->offset = perf_event_count(event); 5721 if (userpg->index) 5722 userpg->offset -= local64_read(&event->hw.prev_count); 5723 5724 userpg->time_enabled = enabled + 5725 atomic64_read(&event->child_total_time_enabled); 5726 5727 userpg->time_running = running + 5728 atomic64_read(&event->child_total_time_running); 5729 5730 arch_perf_update_userpage(event, userpg, now); 5731 5732 barrier(); 5733 ++userpg->lock; 5734 preempt_enable(); 5735 unlock: 5736 rcu_read_unlock(); 5737 } 5738 EXPORT_SYMBOL_GPL(perf_event_update_userpage); 5739 5740 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf) 5741 { 5742 struct perf_event *event = vmf->vma->vm_file->private_data; 5743 struct perf_buffer *rb; 5744 vm_fault_t ret = VM_FAULT_SIGBUS; 5745 5746 if (vmf->flags & FAULT_FLAG_MKWRITE) { 5747 if (vmf->pgoff == 0) 5748 ret = 0; 5749 return ret; 5750 } 5751 5752 rcu_read_lock(); 5753 rb = rcu_dereference(event->rb); 5754 if (!rb) 5755 goto unlock; 5756 5757 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 5758 goto unlock; 5759 5760 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 5761 if (!vmf->page) 5762 goto unlock; 5763 5764 get_page(vmf->page); 5765 vmf->page->mapping = vmf->vma->vm_file->f_mapping; 5766 vmf->page->index = vmf->pgoff; 5767 5768 ret = 0; 5769 unlock: 5770 rcu_read_unlock(); 5771 5772 return ret; 5773 } 5774 5775 static void ring_buffer_attach(struct perf_event *event, 5776 struct perf_buffer *rb) 5777 { 5778 struct perf_buffer *old_rb = NULL; 5779 unsigned long flags; 5780 5781 if (event->rb) { 5782 /* 5783 * Should be impossible, we set this when removing 5784 * event->rb_entry and wait/clear when adding event->rb_entry. 5785 */ 5786 WARN_ON_ONCE(event->rcu_pending); 5787 5788 old_rb = event->rb; 5789 spin_lock_irqsave(&old_rb->event_lock, flags); 5790 list_del_rcu(&event->rb_entry); 5791 spin_unlock_irqrestore(&old_rb->event_lock, flags); 5792 5793 event->rcu_batches = get_state_synchronize_rcu(); 5794 event->rcu_pending = 1; 5795 } 5796 5797 if (rb) { 5798 if (event->rcu_pending) { 5799 cond_synchronize_rcu(event->rcu_batches); 5800 event->rcu_pending = 0; 5801 } 5802 5803 spin_lock_irqsave(&rb->event_lock, flags); 5804 list_add_rcu(&event->rb_entry, &rb->event_list); 5805 spin_unlock_irqrestore(&rb->event_lock, flags); 5806 } 5807 5808 /* 5809 * Avoid racing with perf_mmap_close(AUX): stop the event 5810 * before swizzling the event::rb pointer; if it's getting 5811 * unmapped, its aux_mmap_count will be 0 and it won't 5812 * restart. See the comment in __perf_pmu_output_stop(). 5813 * 5814 * Data will inevitably be lost when set_output is done in 5815 * mid-air, but then again, whoever does it like this is 5816 * not in for the data anyway. 5817 */ 5818 if (has_aux(event)) 5819 perf_event_stop(event, 0); 5820 5821 rcu_assign_pointer(event->rb, rb); 5822 5823 if (old_rb) { 5824 ring_buffer_put(old_rb); 5825 /* 5826 * Since we detached before setting the new rb, so that we 5827 * could attach the new rb, we could have missed a wakeup. 5828 * Provide it now. 5829 */ 5830 wake_up_all(&event->waitq); 5831 } 5832 } 5833 5834 static void ring_buffer_wakeup(struct perf_event *event) 5835 { 5836 struct perf_buffer *rb; 5837 5838 rcu_read_lock(); 5839 rb = rcu_dereference(event->rb); 5840 if (rb) { 5841 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 5842 wake_up_all(&event->waitq); 5843 } 5844 rcu_read_unlock(); 5845 } 5846 5847 struct perf_buffer *ring_buffer_get(struct perf_event *event) 5848 { 5849 struct perf_buffer *rb; 5850 5851 rcu_read_lock(); 5852 rb = rcu_dereference(event->rb); 5853 if (rb) { 5854 if (!refcount_inc_not_zero(&rb->refcount)) 5855 rb = NULL; 5856 } 5857 rcu_read_unlock(); 5858 5859 return rb; 5860 } 5861 5862 void ring_buffer_put(struct perf_buffer *rb) 5863 { 5864 if (!refcount_dec_and_test(&rb->refcount)) 5865 return; 5866 5867 WARN_ON_ONCE(!list_empty(&rb->event_list)); 5868 5869 call_rcu(&rb->rcu_head, rb_free_rcu); 5870 } 5871 5872 static void perf_mmap_open(struct vm_area_struct *vma) 5873 { 5874 struct perf_event *event = vma->vm_file->private_data; 5875 5876 atomic_inc(&event->mmap_count); 5877 atomic_inc(&event->rb->mmap_count); 5878 5879 if (vma->vm_pgoff) 5880 atomic_inc(&event->rb->aux_mmap_count); 5881 5882 if (event->pmu->event_mapped) 5883 event->pmu->event_mapped(event, vma->vm_mm); 5884 } 5885 5886 static void perf_pmu_output_stop(struct perf_event *event); 5887 5888 /* 5889 * A buffer can be mmap()ed multiple times; either directly through the same 5890 * event, or through other events by use of perf_event_set_output(). 5891 * 5892 * In order to undo the VM accounting done by perf_mmap() we need to destroy 5893 * the buffer here, where we still have a VM context. This means we need 5894 * to detach all events redirecting to us. 5895 */ 5896 static void perf_mmap_close(struct vm_area_struct *vma) 5897 { 5898 struct perf_event *event = vma->vm_file->private_data; 5899 struct perf_buffer *rb = ring_buffer_get(event); 5900 struct user_struct *mmap_user = rb->mmap_user; 5901 int mmap_locked = rb->mmap_locked; 5902 unsigned long size = perf_data_size(rb); 5903 bool detach_rest = false; 5904 5905 if (event->pmu->event_unmapped) 5906 event->pmu->event_unmapped(event, vma->vm_mm); 5907 5908 /* 5909 * rb->aux_mmap_count will always drop before rb->mmap_count and 5910 * event->mmap_count, so it is ok to use event->mmap_mutex to 5911 * serialize with perf_mmap here. 5912 */ 5913 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 5914 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) { 5915 /* 5916 * Stop all AUX events that are writing to this buffer, 5917 * so that we can free its AUX pages and corresponding PMU 5918 * data. Note that after rb::aux_mmap_count dropped to zero, 5919 * they won't start any more (see perf_aux_output_begin()). 5920 */ 5921 perf_pmu_output_stop(event); 5922 5923 /* now it's safe to free the pages */ 5924 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm); 5925 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm); 5926 5927 /* this has to be the last one */ 5928 rb_free_aux(rb); 5929 WARN_ON_ONCE(refcount_read(&rb->aux_refcount)); 5930 5931 mutex_unlock(&event->mmap_mutex); 5932 } 5933 5934 if (atomic_dec_and_test(&rb->mmap_count)) 5935 detach_rest = true; 5936 5937 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 5938 goto out_put; 5939 5940 ring_buffer_attach(event, NULL); 5941 mutex_unlock(&event->mmap_mutex); 5942 5943 /* If there's still other mmap()s of this buffer, we're done. */ 5944 if (!detach_rest) 5945 goto out_put; 5946 5947 /* 5948 * No other mmap()s, detach from all other events that might redirect 5949 * into the now unreachable buffer. Somewhat complicated by the 5950 * fact that rb::event_lock otherwise nests inside mmap_mutex. 5951 */ 5952 again: 5953 rcu_read_lock(); 5954 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 5955 if (!atomic_long_inc_not_zero(&event->refcount)) { 5956 /* 5957 * This event is en-route to free_event() which will 5958 * detach it and remove it from the list. 5959 */ 5960 continue; 5961 } 5962 rcu_read_unlock(); 5963 5964 mutex_lock(&event->mmap_mutex); 5965 /* 5966 * Check we didn't race with perf_event_set_output() which can 5967 * swizzle the rb from under us while we were waiting to 5968 * acquire mmap_mutex. 5969 * 5970 * If we find a different rb; ignore this event, a next 5971 * iteration will no longer find it on the list. We have to 5972 * still restart the iteration to make sure we're not now 5973 * iterating the wrong list. 5974 */ 5975 if (event->rb == rb) 5976 ring_buffer_attach(event, NULL); 5977 5978 mutex_unlock(&event->mmap_mutex); 5979 put_event(event); 5980 5981 /* 5982 * Restart the iteration; either we're on the wrong list or 5983 * destroyed its integrity by doing a deletion. 5984 */ 5985 goto again; 5986 } 5987 rcu_read_unlock(); 5988 5989 /* 5990 * It could be there's still a few 0-ref events on the list; they'll 5991 * get cleaned up by free_event() -- they'll also still have their 5992 * ref on the rb and will free it whenever they are done with it. 5993 * 5994 * Aside from that, this buffer is 'fully' detached and unmapped, 5995 * undo the VM accounting. 5996 */ 5997 5998 atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked, 5999 &mmap_user->locked_vm); 6000 atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm); 6001 free_uid(mmap_user); 6002 6003 out_put: 6004 ring_buffer_put(rb); /* could be last */ 6005 } 6006 6007 static const struct vm_operations_struct perf_mmap_vmops = { 6008 .open = perf_mmap_open, 6009 .close = perf_mmap_close, /* non mergeable */ 6010 .fault = perf_mmap_fault, 6011 .page_mkwrite = perf_mmap_fault, 6012 }; 6013 6014 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 6015 { 6016 struct perf_event *event = file->private_data; 6017 unsigned long user_locked, user_lock_limit; 6018 struct user_struct *user = current_user(); 6019 struct perf_buffer *rb = NULL; 6020 unsigned long locked, lock_limit; 6021 unsigned long vma_size; 6022 unsigned long nr_pages; 6023 long user_extra = 0, extra = 0; 6024 int ret = 0, flags = 0; 6025 6026 /* 6027 * Don't allow mmap() of inherited per-task counters. This would 6028 * create a performance issue due to all children writing to the 6029 * same rb. 6030 */ 6031 if (event->cpu == -1 && event->attr.inherit) 6032 return -EINVAL; 6033 6034 if (!(vma->vm_flags & VM_SHARED)) 6035 return -EINVAL; 6036 6037 ret = security_perf_event_read(event); 6038 if (ret) 6039 return ret; 6040 6041 vma_size = vma->vm_end - vma->vm_start; 6042 6043 if (vma->vm_pgoff == 0) { 6044 nr_pages = (vma_size / PAGE_SIZE) - 1; 6045 } else { 6046 /* 6047 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 6048 * mapped, all subsequent mappings should have the same size 6049 * and offset. Must be above the normal perf buffer. 6050 */ 6051 u64 aux_offset, aux_size; 6052 6053 if (!event->rb) 6054 return -EINVAL; 6055 6056 nr_pages = vma_size / PAGE_SIZE; 6057 6058 mutex_lock(&event->mmap_mutex); 6059 ret = -EINVAL; 6060 6061 rb = event->rb; 6062 if (!rb) 6063 goto aux_unlock; 6064 6065 aux_offset = READ_ONCE(rb->user_page->aux_offset); 6066 aux_size = READ_ONCE(rb->user_page->aux_size); 6067 6068 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 6069 goto aux_unlock; 6070 6071 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 6072 goto aux_unlock; 6073 6074 /* already mapped with a different offset */ 6075 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 6076 goto aux_unlock; 6077 6078 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) 6079 goto aux_unlock; 6080 6081 /* already mapped with a different size */ 6082 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 6083 goto aux_unlock; 6084 6085 if (!is_power_of_2(nr_pages)) 6086 goto aux_unlock; 6087 6088 if (!atomic_inc_not_zero(&rb->mmap_count)) 6089 goto aux_unlock; 6090 6091 if (rb_has_aux(rb)) { 6092 atomic_inc(&rb->aux_mmap_count); 6093 ret = 0; 6094 goto unlock; 6095 } 6096 6097 atomic_set(&rb->aux_mmap_count, 1); 6098 user_extra = nr_pages; 6099 6100 goto accounting; 6101 } 6102 6103 /* 6104 * If we have rb pages ensure they're a power-of-two number, so we 6105 * can do bitmasks instead of modulo. 6106 */ 6107 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 6108 return -EINVAL; 6109 6110 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 6111 return -EINVAL; 6112 6113 WARN_ON_ONCE(event->ctx->parent_ctx); 6114 again: 6115 mutex_lock(&event->mmap_mutex); 6116 if (event->rb) { 6117 if (event->rb->nr_pages != nr_pages) { 6118 ret = -EINVAL; 6119 goto unlock; 6120 } 6121 6122 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 6123 /* 6124 * Raced against perf_mmap_close() through 6125 * perf_event_set_output(). Try again, hope for better 6126 * luck. 6127 */ 6128 mutex_unlock(&event->mmap_mutex); 6129 goto again; 6130 } 6131 6132 goto unlock; 6133 } 6134 6135 user_extra = nr_pages + 1; 6136 6137 accounting: 6138 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 6139 6140 /* 6141 * Increase the limit linearly with more CPUs: 6142 */ 6143 user_lock_limit *= num_online_cpus(); 6144 6145 user_locked = atomic_long_read(&user->locked_vm); 6146 6147 /* 6148 * sysctl_perf_event_mlock may have changed, so that 6149 * user->locked_vm > user_lock_limit 6150 */ 6151 if (user_locked > user_lock_limit) 6152 user_locked = user_lock_limit; 6153 user_locked += user_extra; 6154 6155 if (user_locked > user_lock_limit) { 6156 /* 6157 * charge locked_vm until it hits user_lock_limit; 6158 * charge the rest from pinned_vm 6159 */ 6160 extra = user_locked - user_lock_limit; 6161 user_extra -= extra; 6162 } 6163 6164 lock_limit = rlimit(RLIMIT_MEMLOCK); 6165 lock_limit >>= PAGE_SHIFT; 6166 locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra; 6167 6168 if ((locked > lock_limit) && perf_is_paranoid() && 6169 !capable(CAP_IPC_LOCK)) { 6170 ret = -EPERM; 6171 goto unlock; 6172 } 6173 6174 WARN_ON(!rb && event->rb); 6175 6176 if (vma->vm_flags & VM_WRITE) 6177 flags |= RING_BUFFER_WRITABLE; 6178 6179 if (!rb) { 6180 rb = rb_alloc(nr_pages, 6181 event->attr.watermark ? event->attr.wakeup_watermark : 0, 6182 event->cpu, flags); 6183 6184 if (!rb) { 6185 ret = -ENOMEM; 6186 goto unlock; 6187 } 6188 6189 atomic_set(&rb->mmap_count, 1); 6190 rb->mmap_user = get_current_user(); 6191 rb->mmap_locked = extra; 6192 6193 ring_buffer_attach(event, rb); 6194 6195 perf_event_init_userpage(event); 6196 perf_event_update_userpage(event); 6197 } else { 6198 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 6199 event->attr.aux_watermark, flags); 6200 if (!ret) 6201 rb->aux_mmap_locked = extra; 6202 } 6203 6204 unlock: 6205 if (!ret) { 6206 atomic_long_add(user_extra, &user->locked_vm); 6207 atomic64_add(extra, &vma->vm_mm->pinned_vm); 6208 6209 atomic_inc(&event->mmap_count); 6210 } else if (rb) { 6211 atomic_dec(&rb->mmap_count); 6212 } 6213 aux_unlock: 6214 mutex_unlock(&event->mmap_mutex); 6215 6216 /* 6217 * Since pinned accounting is per vm we cannot allow fork() to copy our 6218 * vma. 6219 */ 6220 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP; 6221 vma->vm_ops = &perf_mmap_vmops; 6222 6223 if (event->pmu->event_mapped) 6224 event->pmu->event_mapped(event, vma->vm_mm); 6225 6226 return ret; 6227 } 6228 6229 static int perf_fasync(int fd, struct file *filp, int on) 6230 { 6231 struct inode *inode = file_inode(filp); 6232 struct perf_event *event = filp->private_data; 6233 int retval; 6234 6235 inode_lock(inode); 6236 retval = fasync_helper(fd, filp, on, &event->fasync); 6237 inode_unlock(inode); 6238 6239 if (retval < 0) 6240 return retval; 6241 6242 return 0; 6243 } 6244 6245 static const struct file_operations perf_fops = { 6246 .llseek = no_llseek, 6247 .release = perf_release, 6248 .read = perf_read, 6249 .poll = perf_poll, 6250 .unlocked_ioctl = perf_ioctl, 6251 .compat_ioctl = perf_compat_ioctl, 6252 .mmap = perf_mmap, 6253 .fasync = perf_fasync, 6254 }; 6255 6256 /* 6257 * Perf event wakeup 6258 * 6259 * If there's data, ensure we set the poll() state and publish everything 6260 * to user-space before waking everybody up. 6261 */ 6262 6263 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event) 6264 { 6265 /* only the parent has fasync state */ 6266 if (event->parent) 6267 event = event->parent; 6268 return &event->fasync; 6269 } 6270 6271 void perf_event_wakeup(struct perf_event *event) 6272 { 6273 ring_buffer_wakeup(event); 6274 6275 if (event->pending_kill) { 6276 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); 6277 event->pending_kill = 0; 6278 } 6279 } 6280 6281 static void perf_pending_event_disable(struct perf_event *event) 6282 { 6283 int cpu = READ_ONCE(event->pending_disable); 6284 6285 if (cpu < 0) 6286 return; 6287 6288 if (cpu == smp_processor_id()) { 6289 WRITE_ONCE(event->pending_disable, -1); 6290 perf_event_disable_local(event); 6291 return; 6292 } 6293 6294 /* 6295 * CPU-A CPU-B 6296 * 6297 * perf_event_disable_inatomic() 6298 * @pending_disable = CPU-A; 6299 * irq_work_queue(); 6300 * 6301 * sched-out 6302 * @pending_disable = -1; 6303 * 6304 * sched-in 6305 * perf_event_disable_inatomic() 6306 * @pending_disable = CPU-B; 6307 * irq_work_queue(); // FAILS 6308 * 6309 * irq_work_run() 6310 * perf_pending_event() 6311 * 6312 * But the event runs on CPU-B and wants disabling there. 6313 */ 6314 irq_work_queue_on(&event->pending, cpu); 6315 } 6316 6317 static void perf_pending_event(struct irq_work *entry) 6318 { 6319 struct perf_event *event = container_of(entry, struct perf_event, pending); 6320 int rctx; 6321 6322 rctx = perf_swevent_get_recursion_context(); 6323 /* 6324 * If we 'fail' here, that's OK, it means recursion is already disabled 6325 * and we won't recurse 'further'. 6326 */ 6327 6328 perf_pending_event_disable(event); 6329 6330 if (event->pending_wakeup) { 6331 event->pending_wakeup = 0; 6332 perf_event_wakeup(event); 6333 } 6334 6335 if (rctx >= 0) 6336 perf_swevent_put_recursion_context(rctx); 6337 } 6338 6339 /* 6340 * We assume there is only KVM supporting the callbacks. 6341 * Later on, we might change it to a list if there is 6342 * another virtualization implementation supporting the callbacks. 6343 */ 6344 struct perf_guest_info_callbacks *perf_guest_cbs; 6345 6346 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 6347 { 6348 perf_guest_cbs = cbs; 6349 return 0; 6350 } 6351 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 6352 6353 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 6354 { 6355 perf_guest_cbs = NULL; 6356 return 0; 6357 } 6358 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 6359 6360 static void 6361 perf_output_sample_regs(struct perf_output_handle *handle, 6362 struct pt_regs *regs, u64 mask) 6363 { 6364 int bit; 6365 DECLARE_BITMAP(_mask, 64); 6366 6367 bitmap_from_u64(_mask, mask); 6368 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) { 6369 u64 val; 6370 6371 val = perf_reg_value(regs, bit); 6372 perf_output_put(handle, val); 6373 } 6374 } 6375 6376 static void perf_sample_regs_user(struct perf_regs *regs_user, 6377 struct pt_regs *regs, 6378 struct pt_regs *regs_user_copy) 6379 { 6380 if (user_mode(regs)) { 6381 regs_user->abi = perf_reg_abi(current); 6382 regs_user->regs = regs; 6383 } else if (!(current->flags & PF_KTHREAD)) { 6384 perf_get_regs_user(regs_user, regs, regs_user_copy); 6385 } else { 6386 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 6387 regs_user->regs = NULL; 6388 } 6389 } 6390 6391 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 6392 struct pt_regs *regs) 6393 { 6394 regs_intr->regs = regs; 6395 regs_intr->abi = perf_reg_abi(current); 6396 } 6397 6398 6399 /* 6400 * Get remaining task size from user stack pointer. 6401 * 6402 * It'd be better to take stack vma map and limit this more 6403 * precisely, but there's no way to get it safely under interrupt, 6404 * so using TASK_SIZE as limit. 6405 */ 6406 static u64 perf_ustack_task_size(struct pt_regs *regs) 6407 { 6408 unsigned long addr = perf_user_stack_pointer(regs); 6409 6410 if (!addr || addr >= TASK_SIZE) 6411 return 0; 6412 6413 return TASK_SIZE - addr; 6414 } 6415 6416 static u16 6417 perf_sample_ustack_size(u16 stack_size, u16 header_size, 6418 struct pt_regs *regs) 6419 { 6420 u64 task_size; 6421 6422 /* No regs, no stack pointer, no dump. */ 6423 if (!regs) 6424 return 0; 6425 6426 /* 6427 * Check if we fit in with the requested stack size into the: 6428 * - TASK_SIZE 6429 * If we don't, we limit the size to the TASK_SIZE. 6430 * 6431 * - remaining sample size 6432 * If we don't, we customize the stack size to 6433 * fit in to the remaining sample size. 6434 */ 6435 6436 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 6437 stack_size = min(stack_size, (u16) task_size); 6438 6439 /* Current header size plus static size and dynamic size. */ 6440 header_size += 2 * sizeof(u64); 6441 6442 /* Do we fit in with the current stack dump size? */ 6443 if ((u16) (header_size + stack_size) < header_size) { 6444 /* 6445 * If we overflow the maximum size for the sample, 6446 * we customize the stack dump size to fit in. 6447 */ 6448 stack_size = USHRT_MAX - header_size - sizeof(u64); 6449 stack_size = round_up(stack_size, sizeof(u64)); 6450 } 6451 6452 return stack_size; 6453 } 6454 6455 static void 6456 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 6457 struct pt_regs *regs) 6458 { 6459 /* Case of a kernel thread, nothing to dump */ 6460 if (!regs) { 6461 u64 size = 0; 6462 perf_output_put(handle, size); 6463 } else { 6464 unsigned long sp; 6465 unsigned int rem; 6466 u64 dyn_size; 6467 mm_segment_t fs; 6468 6469 /* 6470 * We dump: 6471 * static size 6472 * - the size requested by user or the best one we can fit 6473 * in to the sample max size 6474 * data 6475 * - user stack dump data 6476 * dynamic size 6477 * - the actual dumped size 6478 */ 6479 6480 /* Static size. */ 6481 perf_output_put(handle, dump_size); 6482 6483 /* Data. */ 6484 sp = perf_user_stack_pointer(regs); 6485 fs = force_uaccess_begin(); 6486 rem = __output_copy_user(handle, (void *) sp, dump_size); 6487 force_uaccess_end(fs); 6488 dyn_size = dump_size - rem; 6489 6490 perf_output_skip(handle, rem); 6491 6492 /* Dynamic size. */ 6493 perf_output_put(handle, dyn_size); 6494 } 6495 } 6496 6497 static unsigned long perf_prepare_sample_aux(struct perf_event *event, 6498 struct perf_sample_data *data, 6499 size_t size) 6500 { 6501 struct perf_event *sampler = event->aux_event; 6502 struct perf_buffer *rb; 6503 6504 data->aux_size = 0; 6505 6506 if (!sampler) 6507 goto out; 6508 6509 if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE)) 6510 goto out; 6511 6512 if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id())) 6513 goto out; 6514 6515 rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler); 6516 if (!rb) 6517 goto out; 6518 6519 /* 6520 * If this is an NMI hit inside sampling code, don't take 6521 * the sample. See also perf_aux_sample_output(). 6522 */ 6523 if (READ_ONCE(rb->aux_in_sampling)) { 6524 data->aux_size = 0; 6525 } else { 6526 size = min_t(size_t, size, perf_aux_size(rb)); 6527 data->aux_size = ALIGN(size, sizeof(u64)); 6528 } 6529 ring_buffer_put(rb); 6530 6531 out: 6532 return data->aux_size; 6533 } 6534 6535 long perf_pmu_snapshot_aux(struct perf_buffer *rb, 6536 struct perf_event *event, 6537 struct perf_output_handle *handle, 6538 unsigned long size) 6539 { 6540 unsigned long flags; 6541 long ret; 6542 6543 /* 6544 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler 6545 * paths. If we start calling them in NMI context, they may race with 6546 * the IRQ ones, that is, for example, re-starting an event that's just 6547 * been stopped, which is why we're using a separate callback that 6548 * doesn't change the event state. 6549 * 6550 * IRQs need to be disabled to prevent IPIs from racing with us. 6551 */ 6552 local_irq_save(flags); 6553 /* 6554 * Guard against NMI hits inside the critical section; 6555 * see also perf_prepare_sample_aux(). 6556 */ 6557 WRITE_ONCE(rb->aux_in_sampling, 1); 6558 barrier(); 6559 6560 ret = event->pmu->snapshot_aux(event, handle, size); 6561 6562 barrier(); 6563 WRITE_ONCE(rb->aux_in_sampling, 0); 6564 local_irq_restore(flags); 6565 6566 return ret; 6567 } 6568 6569 static void perf_aux_sample_output(struct perf_event *event, 6570 struct perf_output_handle *handle, 6571 struct perf_sample_data *data) 6572 { 6573 struct perf_event *sampler = event->aux_event; 6574 struct perf_buffer *rb; 6575 unsigned long pad; 6576 long size; 6577 6578 if (WARN_ON_ONCE(!sampler || !data->aux_size)) 6579 return; 6580 6581 rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler); 6582 if (!rb) 6583 return; 6584 6585 size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size); 6586 6587 /* 6588 * An error here means that perf_output_copy() failed (returned a 6589 * non-zero surplus that it didn't copy), which in its current 6590 * enlightened implementation is not possible. If that changes, we'd 6591 * like to know. 6592 */ 6593 if (WARN_ON_ONCE(size < 0)) 6594 goto out_put; 6595 6596 /* 6597 * The pad comes from ALIGN()ing data->aux_size up to u64 in 6598 * perf_prepare_sample_aux(), so should not be more than that. 6599 */ 6600 pad = data->aux_size - size; 6601 if (WARN_ON_ONCE(pad >= sizeof(u64))) 6602 pad = 8; 6603 6604 if (pad) { 6605 u64 zero = 0; 6606 perf_output_copy(handle, &zero, pad); 6607 } 6608 6609 out_put: 6610 ring_buffer_put(rb); 6611 } 6612 6613 static void __perf_event_header__init_id(struct perf_event_header *header, 6614 struct perf_sample_data *data, 6615 struct perf_event *event) 6616 { 6617 u64 sample_type = event->attr.sample_type; 6618 6619 data->type = sample_type; 6620 header->size += event->id_header_size; 6621 6622 if (sample_type & PERF_SAMPLE_TID) { 6623 /* namespace issues */ 6624 data->tid_entry.pid = perf_event_pid(event, current); 6625 data->tid_entry.tid = perf_event_tid(event, current); 6626 } 6627 6628 if (sample_type & PERF_SAMPLE_TIME) 6629 data->time = perf_event_clock(event); 6630 6631 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 6632 data->id = primary_event_id(event); 6633 6634 if (sample_type & PERF_SAMPLE_STREAM_ID) 6635 data->stream_id = event->id; 6636 6637 if (sample_type & PERF_SAMPLE_CPU) { 6638 data->cpu_entry.cpu = raw_smp_processor_id(); 6639 data->cpu_entry.reserved = 0; 6640 } 6641 } 6642 6643 void perf_event_header__init_id(struct perf_event_header *header, 6644 struct perf_sample_data *data, 6645 struct perf_event *event) 6646 { 6647 if (event->attr.sample_id_all) 6648 __perf_event_header__init_id(header, data, event); 6649 } 6650 6651 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 6652 struct perf_sample_data *data) 6653 { 6654 u64 sample_type = data->type; 6655 6656 if (sample_type & PERF_SAMPLE_TID) 6657 perf_output_put(handle, data->tid_entry); 6658 6659 if (sample_type & PERF_SAMPLE_TIME) 6660 perf_output_put(handle, data->time); 6661 6662 if (sample_type & PERF_SAMPLE_ID) 6663 perf_output_put(handle, data->id); 6664 6665 if (sample_type & PERF_SAMPLE_STREAM_ID) 6666 perf_output_put(handle, data->stream_id); 6667 6668 if (sample_type & PERF_SAMPLE_CPU) 6669 perf_output_put(handle, data->cpu_entry); 6670 6671 if (sample_type & PERF_SAMPLE_IDENTIFIER) 6672 perf_output_put(handle, data->id); 6673 } 6674 6675 void perf_event__output_id_sample(struct perf_event *event, 6676 struct perf_output_handle *handle, 6677 struct perf_sample_data *sample) 6678 { 6679 if (event->attr.sample_id_all) 6680 __perf_event__output_id_sample(handle, sample); 6681 } 6682 6683 static void perf_output_read_one(struct perf_output_handle *handle, 6684 struct perf_event *event, 6685 u64 enabled, u64 running) 6686 { 6687 u64 read_format = event->attr.read_format; 6688 u64 values[4]; 6689 int n = 0; 6690 6691 values[n++] = perf_event_count(event); 6692 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 6693 values[n++] = enabled + 6694 atomic64_read(&event->child_total_time_enabled); 6695 } 6696 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 6697 values[n++] = running + 6698 atomic64_read(&event->child_total_time_running); 6699 } 6700 if (read_format & PERF_FORMAT_ID) 6701 values[n++] = primary_event_id(event); 6702 6703 __output_copy(handle, values, n * sizeof(u64)); 6704 } 6705 6706 static void perf_output_read_group(struct perf_output_handle *handle, 6707 struct perf_event *event, 6708 u64 enabled, u64 running) 6709 { 6710 struct perf_event *leader = event->group_leader, *sub; 6711 u64 read_format = event->attr.read_format; 6712 u64 values[5]; 6713 int n = 0; 6714 6715 values[n++] = 1 + leader->nr_siblings; 6716 6717 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 6718 values[n++] = enabled; 6719 6720 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 6721 values[n++] = running; 6722 6723 if ((leader != event) && 6724 (leader->state == PERF_EVENT_STATE_ACTIVE)) 6725 leader->pmu->read(leader); 6726 6727 values[n++] = perf_event_count(leader); 6728 if (read_format & PERF_FORMAT_ID) 6729 values[n++] = primary_event_id(leader); 6730 6731 __output_copy(handle, values, n * sizeof(u64)); 6732 6733 for_each_sibling_event(sub, leader) { 6734 n = 0; 6735 6736 if ((sub != event) && 6737 (sub->state == PERF_EVENT_STATE_ACTIVE)) 6738 sub->pmu->read(sub); 6739 6740 values[n++] = perf_event_count(sub); 6741 if (read_format & PERF_FORMAT_ID) 6742 values[n++] = primary_event_id(sub); 6743 6744 __output_copy(handle, values, n * sizeof(u64)); 6745 } 6746 } 6747 6748 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 6749 PERF_FORMAT_TOTAL_TIME_RUNNING) 6750 6751 /* 6752 * XXX PERF_SAMPLE_READ vs inherited events seems difficult. 6753 * 6754 * The problem is that its both hard and excessively expensive to iterate the 6755 * child list, not to mention that its impossible to IPI the children running 6756 * on another CPU, from interrupt/NMI context. 6757 */ 6758 static void perf_output_read(struct perf_output_handle *handle, 6759 struct perf_event *event) 6760 { 6761 u64 enabled = 0, running = 0, now; 6762 u64 read_format = event->attr.read_format; 6763 6764 /* 6765 * compute total_time_enabled, total_time_running 6766 * based on snapshot values taken when the event 6767 * was last scheduled in. 6768 * 6769 * we cannot simply called update_context_time() 6770 * because of locking issue as we are called in 6771 * NMI context 6772 */ 6773 if (read_format & PERF_FORMAT_TOTAL_TIMES) 6774 calc_timer_values(event, &now, &enabled, &running); 6775 6776 if (event->attr.read_format & PERF_FORMAT_GROUP) 6777 perf_output_read_group(handle, event, enabled, running); 6778 else 6779 perf_output_read_one(handle, event, enabled, running); 6780 } 6781 6782 static inline bool perf_sample_save_hw_index(struct perf_event *event) 6783 { 6784 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX; 6785 } 6786 6787 void perf_output_sample(struct perf_output_handle *handle, 6788 struct perf_event_header *header, 6789 struct perf_sample_data *data, 6790 struct perf_event *event) 6791 { 6792 u64 sample_type = data->type; 6793 6794 perf_output_put(handle, *header); 6795 6796 if (sample_type & PERF_SAMPLE_IDENTIFIER) 6797 perf_output_put(handle, data->id); 6798 6799 if (sample_type & PERF_SAMPLE_IP) 6800 perf_output_put(handle, data->ip); 6801 6802 if (sample_type & PERF_SAMPLE_TID) 6803 perf_output_put(handle, data->tid_entry); 6804 6805 if (sample_type & PERF_SAMPLE_TIME) 6806 perf_output_put(handle, data->time); 6807 6808 if (sample_type & PERF_SAMPLE_ADDR) 6809 perf_output_put(handle, data->addr); 6810 6811 if (sample_type & PERF_SAMPLE_ID) 6812 perf_output_put(handle, data->id); 6813 6814 if (sample_type & PERF_SAMPLE_STREAM_ID) 6815 perf_output_put(handle, data->stream_id); 6816 6817 if (sample_type & PERF_SAMPLE_CPU) 6818 perf_output_put(handle, data->cpu_entry); 6819 6820 if (sample_type & PERF_SAMPLE_PERIOD) 6821 perf_output_put(handle, data->period); 6822 6823 if (sample_type & PERF_SAMPLE_READ) 6824 perf_output_read(handle, event); 6825 6826 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 6827 int size = 1; 6828 6829 size += data->callchain->nr; 6830 size *= sizeof(u64); 6831 __output_copy(handle, data->callchain, size); 6832 } 6833 6834 if (sample_type & PERF_SAMPLE_RAW) { 6835 struct perf_raw_record *raw = data->raw; 6836 6837 if (raw) { 6838 struct perf_raw_frag *frag = &raw->frag; 6839 6840 perf_output_put(handle, raw->size); 6841 do { 6842 if (frag->copy) { 6843 __output_custom(handle, frag->copy, 6844 frag->data, frag->size); 6845 } else { 6846 __output_copy(handle, frag->data, 6847 frag->size); 6848 } 6849 if (perf_raw_frag_last(frag)) 6850 break; 6851 frag = frag->next; 6852 } while (1); 6853 if (frag->pad) 6854 __output_skip(handle, NULL, frag->pad); 6855 } else { 6856 struct { 6857 u32 size; 6858 u32 data; 6859 } raw = { 6860 .size = sizeof(u32), 6861 .data = 0, 6862 }; 6863 perf_output_put(handle, raw); 6864 } 6865 } 6866 6867 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 6868 if (data->br_stack) { 6869 size_t size; 6870 6871 size = data->br_stack->nr 6872 * sizeof(struct perf_branch_entry); 6873 6874 perf_output_put(handle, data->br_stack->nr); 6875 if (perf_sample_save_hw_index(event)) 6876 perf_output_put(handle, data->br_stack->hw_idx); 6877 perf_output_copy(handle, data->br_stack->entries, size); 6878 } else { 6879 /* 6880 * we always store at least the value of nr 6881 */ 6882 u64 nr = 0; 6883 perf_output_put(handle, nr); 6884 } 6885 } 6886 6887 if (sample_type & PERF_SAMPLE_REGS_USER) { 6888 u64 abi = data->regs_user.abi; 6889 6890 /* 6891 * If there are no regs to dump, notice it through 6892 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 6893 */ 6894 perf_output_put(handle, abi); 6895 6896 if (abi) { 6897 u64 mask = event->attr.sample_regs_user; 6898 perf_output_sample_regs(handle, 6899 data->regs_user.regs, 6900 mask); 6901 } 6902 } 6903 6904 if (sample_type & PERF_SAMPLE_STACK_USER) { 6905 perf_output_sample_ustack(handle, 6906 data->stack_user_size, 6907 data->regs_user.regs); 6908 } 6909 6910 if (sample_type & PERF_SAMPLE_WEIGHT) 6911 perf_output_put(handle, data->weight); 6912 6913 if (sample_type & PERF_SAMPLE_DATA_SRC) 6914 perf_output_put(handle, data->data_src.val); 6915 6916 if (sample_type & PERF_SAMPLE_TRANSACTION) 6917 perf_output_put(handle, data->txn); 6918 6919 if (sample_type & PERF_SAMPLE_REGS_INTR) { 6920 u64 abi = data->regs_intr.abi; 6921 /* 6922 * If there are no regs to dump, notice it through 6923 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 6924 */ 6925 perf_output_put(handle, abi); 6926 6927 if (abi) { 6928 u64 mask = event->attr.sample_regs_intr; 6929 6930 perf_output_sample_regs(handle, 6931 data->regs_intr.regs, 6932 mask); 6933 } 6934 } 6935 6936 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 6937 perf_output_put(handle, data->phys_addr); 6938 6939 if (sample_type & PERF_SAMPLE_CGROUP) 6940 perf_output_put(handle, data->cgroup); 6941 6942 if (sample_type & PERF_SAMPLE_AUX) { 6943 perf_output_put(handle, data->aux_size); 6944 6945 if (data->aux_size) 6946 perf_aux_sample_output(event, handle, data); 6947 } 6948 6949 if (!event->attr.watermark) { 6950 int wakeup_events = event->attr.wakeup_events; 6951 6952 if (wakeup_events) { 6953 struct perf_buffer *rb = handle->rb; 6954 int events = local_inc_return(&rb->events); 6955 6956 if (events >= wakeup_events) { 6957 local_sub(wakeup_events, &rb->events); 6958 local_inc(&rb->wakeup); 6959 } 6960 } 6961 } 6962 } 6963 6964 static u64 perf_virt_to_phys(u64 virt) 6965 { 6966 u64 phys_addr = 0; 6967 struct page *p = NULL; 6968 6969 if (!virt) 6970 return 0; 6971 6972 if (virt >= TASK_SIZE) { 6973 /* If it's vmalloc()d memory, leave phys_addr as 0 */ 6974 if (virt_addr_valid((void *)(uintptr_t)virt) && 6975 !(virt >= VMALLOC_START && virt < VMALLOC_END)) 6976 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt); 6977 } else { 6978 /* 6979 * Walking the pages tables for user address. 6980 * Interrupts are disabled, so it prevents any tear down 6981 * of the page tables. 6982 * Try IRQ-safe get_user_page_fast_only first. 6983 * If failed, leave phys_addr as 0. 6984 */ 6985 if (current->mm != NULL) { 6986 pagefault_disable(); 6987 if (get_user_page_fast_only(virt, 0, &p)) 6988 phys_addr = page_to_phys(p) + virt % PAGE_SIZE; 6989 pagefault_enable(); 6990 } 6991 6992 if (p) 6993 put_page(p); 6994 } 6995 6996 return phys_addr; 6997 } 6998 6999 static struct perf_callchain_entry __empty_callchain = { .nr = 0, }; 7000 7001 struct perf_callchain_entry * 7002 perf_callchain(struct perf_event *event, struct pt_regs *regs) 7003 { 7004 bool kernel = !event->attr.exclude_callchain_kernel; 7005 bool user = !event->attr.exclude_callchain_user; 7006 /* Disallow cross-task user callchains. */ 7007 bool crosstask = event->ctx->task && event->ctx->task != current; 7008 const u32 max_stack = event->attr.sample_max_stack; 7009 struct perf_callchain_entry *callchain; 7010 7011 if (!kernel && !user) 7012 return &__empty_callchain; 7013 7014 callchain = get_perf_callchain(regs, 0, kernel, user, 7015 max_stack, crosstask, true); 7016 return callchain ?: &__empty_callchain; 7017 } 7018 7019 void perf_prepare_sample(struct perf_event_header *header, 7020 struct perf_sample_data *data, 7021 struct perf_event *event, 7022 struct pt_regs *regs) 7023 { 7024 u64 sample_type = event->attr.sample_type; 7025 7026 header->type = PERF_RECORD_SAMPLE; 7027 header->size = sizeof(*header) + event->header_size; 7028 7029 header->misc = 0; 7030 header->misc |= perf_misc_flags(regs); 7031 7032 __perf_event_header__init_id(header, data, event); 7033 7034 if (sample_type & PERF_SAMPLE_IP) 7035 data->ip = perf_instruction_pointer(regs); 7036 7037 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 7038 int size = 1; 7039 7040 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY)) 7041 data->callchain = perf_callchain(event, regs); 7042 7043 size += data->callchain->nr; 7044 7045 header->size += size * sizeof(u64); 7046 } 7047 7048 if (sample_type & PERF_SAMPLE_RAW) { 7049 struct perf_raw_record *raw = data->raw; 7050 int size; 7051 7052 if (raw) { 7053 struct perf_raw_frag *frag = &raw->frag; 7054 u32 sum = 0; 7055 7056 do { 7057 sum += frag->size; 7058 if (perf_raw_frag_last(frag)) 7059 break; 7060 frag = frag->next; 7061 } while (1); 7062 7063 size = round_up(sum + sizeof(u32), sizeof(u64)); 7064 raw->size = size - sizeof(u32); 7065 frag->pad = raw->size - sum; 7066 } else { 7067 size = sizeof(u64); 7068 } 7069 7070 header->size += size; 7071 } 7072 7073 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 7074 int size = sizeof(u64); /* nr */ 7075 if (data->br_stack) { 7076 if (perf_sample_save_hw_index(event)) 7077 size += sizeof(u64); 7078 7079 size += data->br_stack->nr 7080 * sizeof(struct perf_branch_entry); 7081 } 7082 header->size += size; 7083 } 7084 7085 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER)) 7086 perf_sample_regs_user(&data->regs_user, regs, 7087 &data->regs_user_copy); 7088 7089 if (sample_type & PERF_SAMPLE_REGS_USER) { 7090 /* regs dump ABI info */ 7091 int size = sizeof(u64); 7092 7093 if (data->regs_user.regs) { 7094 u64 mask = event->attr.sample_regs_user; 7095 size += hweight64(mask) * sizeof(u64); 7096 } 7097 7098 header->size += size; 7099 } 7100 7101 if (sample_type & PERF_SAMPLE_STACK_USER) { 7102 /* 7103 * Either we need PERF_SAMPLE_STACK_USER bit to be always 7104 * processed as the last one or have additional check added 7105 * in case new sample type is added, because we could eat 7106 * up the rest of the sample size. 7107 */ 7108 u16 stack_size = event->attr.sample_stack_user; 7109 u16 size = sizeof(u64); 7110 7111 stack_size = perf_sample_ustack_size(stack_size, header->size, 7112 data->regs_user.regs); 7113 7114 /* 7115 * If there is something to dump, add space for the dump 7116 * itself and for the field that tells the dynamic size, 7117 * which is how many have been actually dumped. 7118 */ 7119 if (stack_size) 7120 size += sizeof(u64) + stack_size; 7121 7122 data->stack_user_size = stack_size; 7123 header->size += size; 7124 } 7125 7126 if (sample_type & PERF_SAMPLE_REGS_INTR) { 7127 /* regs dump ABI info */ 7128 int size = sizeof(u64); 7129 7130 perf_sample_regs_intr(&data->regs_intr, regs); 7131 7132 if (data->regs_intr.regs) { 7133 u64 mask = event->attr.sample_regs_intr; 7134 7135 size += hweight64(mask) * sizeof(u64); 7136 } 7137 7138 header->size += size; 7139 } 7140 7141 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 7142 data->phys_addr = perf_virt_to_phys(data->addr); 7143 7144 #ifdef CONFIG_CGROUP_PERF 7145 if (sample_type & PERF_SAMPLE_CGROUP) { 7146 struct cgroup *cgrp; 7147 7148 /* protected by RCU */ 7149 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup; 7150 data->cgroup = cgroup_id(cgrp); 7151 } 7152 #endif 7153 7154 if (sample_type & PERF_SAMPLE_AUX) { 7155 u64 size; 7156 7157 header->size += sizeof(u64); /* size */ 7158 7159 /* 7160 * Given the 16bit nature of header::size, an AUX sample can 7161 * easily overflow it, what with all the preceding sample bits. 7162 * Make sure this doesn't happen by using up to U16_MAX bytes 7163 * per sample in total (rounded down to 8 byte boundary). 7164 */ 7165 size = min_t(size_t, U16_MAX - header->size, 7166 event->attr.aux_sample_size); 7167 size = rounddown(size, 8); 7168 size = perf_prepare_sample_aux(event, data, size); 7169 7170 WARN_ON_ONCE(size + header->size > U16_MAX); 7171 header->size += size; 7172 } 7173 /* 7174 * If you're adding more sample types here, you likely need to do 7175 * something about the overflowing header::size, like repurpose the 7176 * lowest 3 bits of size, which should be always zero at the moment. 7177 * This raises a more important question, do we really need 512k sized 7178 * samples and why, so good argumentation is in order for whatever you 7179 * do here next. 7180 */ 7181 WARN_ON_ONCE(header->size & 7); 7182 } 7183 7184 static __always_inline int 7185 __perf_event_output(struct perf_event *event, 7186 struct perf_sample_data *data, 7187 struct pt_regs *regs, 7188 int (*output_begin)(struct perf_output_handle *, 7189 struct perf_event *, 7190 unsigned int)) 7191 { 7192 struct perf_output_handle handle; 7193 struct perf_event_header header; 7194 int err; 7195 7196 /* protect the callchain buffers */ 7197 rcu_read_lock(); 7198 7199 perf_prepare_sample(&header, data, event, regs); 7200 7201 err = output_begin(&handle, event, header.size); 7202 if (err) 7203 goto exit; 7204 7205 perf_output_sample(&handle, &header, data, event); 7206 7207 perf_output_end(&handle); 7208 7209 exit: 7210 rcu_read_unlock(); 7211 return err; 7212 } 7213 7214 void 7215 perf_event_output_forward(struct perf_event *event, 7216 struct perf_sample_data *data, 7217 struct pt_regs *regs) 7218 { 7219 __perf_event_output(event, data, regs, perf_output_begin_forward); 7220 } 7221 7222 void 7223 perf_event_output_backward(struct perf_event *event, 7224 struct perf_sample_data *data, 7225 struct pt_regs *regs) 7226 { 7227 __perf_event_output(event, data, regs, perf_output_begin_backward); 7228 } 7229 7230 int 7231 perf_event_output(struct perf_event *event, 7232 struct perf_sample_data *data, 7233 struct pt_regs *regs) 7234 { 7235 return __perf_event_output(event, data, regs, perf_output_begin); 7236 } 7237 7238 /* 7239 * read event_id 7240 */ 7241 7242 struct perf_read_event { 7243 struct perf_event_header header; 7244 7245 u32 pid; 7246 u32 tid; 7247 }; 7248 7249 static void 7250 perf_event_read_event(struct perf_event *event, 7251 struct task_struct *task) 7252 { 7253 struct perf_output_handle handle; 7254 struct perf_sample_data sample; 7255 struct perf_read_event read_event = { 7256 .header = { 7257 .type = PERF_RECORD_READ, 7258 .misc = 0, 7259 .size = sizeof(read_event) + event->read_size, 7260 }, 7261 .pid = perf_event_pid(event, task), 7262 .tid = perf_event_tid(event, task), 7263 }; 7264 int ret; 7265 7266 perf_event_header__init_id(&read_event.header, &sample, event); 7267 ret = perf_output_begin(&handle, event, read_event.header.size); 7268 if (ret) 7269 return; 7270 7271 perf_output_put(&handle, read_event); 7272 perf_output_read(&handle, event); 7273 perf_event__output_id_sample(event, &handle, &sample); 7274 7275 perf_output_end(&handle); 7276 } 7277 7278 typedef void (perf_iterate_f)(struct perf_event *event, void *data); 7279 7280 static void 7281 perf_iterate_ctx(struct perf_event_context *ctx, 7282 perf_iterate_f output, 7283 void *data, bool all) 7284 { 7285 struct perf_event *event; 7286 7287 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 7288 if (!all) { 7289 if (event->state < PERF_EVENT_STATE_INACTIVE) 7290 continue; 7291 if (!event_filter_match(event)) 7292 continue; 7293 } 7294 7295 output(event, data); 7296 } 7297 } 7298 7299 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data) 7300 { 7301 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events); 7302 struct perf_event *event; 7303 7304 list_for_each_entry_rcu(event, &pel->list, sb_list) { 7305 /* 7306 * Skip events that are not fully formed yet; ensure that 7307 * if we observe event->ctx, both event and ctx will be 7308 * complete enough. See perf_install_in_context(). 7309 */ 7310 if (!smp_load_acquire(&event->ctx)) 7311 continue; 7312 7313 if (event->state < PERF_EVENT_STATE_INACTIVE) 7314 continue; 7315 if (!event_filter_match(event)) 7316 continue; 7317 output(event, data); 7318 } 7319 } 7320 7321 /* 7322 * Iterate all events that need to receive side-band events. 7323 * 7324 * For new callers; ensure that account_pmu_sb_event() includes 7325 * your event, otherwise it might not get delivered. 7326 */ 7327 static void 7328 perf_iterate_sb(perf_iterate_f output, void *data, 7329 struct perf_event_context *task_ctx) 7330 { 7331 struct perf_event_context *ctx; 7332 int ctxn; 7333 7334 rcu_read_lock(); 7335 preempt_disable(); 7336 7337 /* 7338 * If we have task_ctx != NULL we only notify the task context itself. 7339 * The task_ctx is set only for EXIT events before releasing task 7340 * context. 7341 */ 7342 if (task_ctx) { 7343 perf_iterate_ctx(task_ctx, output, data, false); 7344 goto done; 7345 } 7346 7347 perf_iterate_sb_cpu(output, data); 7348 7349 for_each_task_context_nr(ctxn) { 7350 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 7351 if (ctx) 7352 perf_iterate_ctx(ctx, output, data, false); 7353 } 7354 done: 7355 preempt_enable(); 7356 rcu_read_unlock(); 7357 } 7358 7359 /* 7360 * Clear all file-based filters at exec, they'll have to be 7361 * re-instated when/if these objects are mmapped again. 7362 */ 7363 static void perf_event_addr_filters_exec(struct perf_event *event, void *data) 7364 { 7365 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 7366 struct perf_addr_filter *filter; 7367 unsigned int restart = 0, count = 0; 7368 unsigned long flags; 7369 7370 if (!has_addr_filter(event)) 7371 return; 7372 7373 raw_spin_lock_irqsave(&ifh->lock, flags); 7374 list_for_each_entry(filter, &ifh->list, entry) { 7375 if (filter->path.dentry) { 7376 event->addr_filter_ranges[count].start = 0; 7377 event->addr_filter_ranges[count].size = 0; 7378 restart++; 7379 } 7380 7381 count++; 7382 } 7383 7384 if (restart) 7385 event->addr_filters_gen++; 7386 raw_spin_unlock_irqrestore(&ifh->lock, flags); 7387 7388 if (restart) 7389 perf_event_stop(event, 1); 7390 } 7391 7392 void perf_event_exec(void) 7393 { 7394 struct perf_event_context *ctx; 7395 int ctxn; 7396 7397 rcu_read_lock(); 7398 for_each_task_context_nr(ctxn) { 7399 ctx = current->perf_event_ctxp[ctxn]; 7400 if (!ctx) 7401 continue; 7402 7403 perf_event_enable_on_exec(ctxn); 7404 7405 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, 7406 true); 7407 } 7408 rcu_read_unlock(); 7409 } 7410 7411 struct remote_output { 7412 struct perf_buffer *rb; 7413 int err; 7414 }; 7415 7416 static void __perf_event_output_stop(struct perf_event *event, void *data) 7417 { 7418 struct perf_event *parent = event->parent; 7419 struct remote_output *ro = data; 7420 struct perf_buffer *rb = ro->rb; 7421 struct stop_event_data sd = { 7422 .event = event, 7423 }; 7424 7425 if (!has_aux(event)) 7426 return; 7427 7428 if (!parent) 7429 parent = event; 7430 7431 /* 7432 * In case of inheritance, it will be the parent that links to the 7433 * ring-buffer, but it will be the child that's actually using it. 7434 * 7435 * We are using event::rb to determine if the event should be stopped, 7436 * however this may race with ring_buffer_attach() (through set_output), 7437 * which will make us skip the event that actually needs to be stopped. 7438 * So ring_buffer_attach() has to stop an aux event before re-assigning 7439 * its rb pointer. 7440 */ 7441 if (rcu_dereference(parent->rb) == rb) 7442 ro->err = __perf_event_stop(&sd); 7443 } 7444 7445 static int __perf_pmu_output_stop(void *info) 7446 { 7447 struct perf_event *event = info; 7448 struct pmu *pmu = event->ctx->pmu; 7449 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 7450 struct remote_output ro = { 7451 .rb = event->rb, 7452 }; 7453 7454 rcu_read_lock(); 7455 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false); 7456 if (cpuctx->task_ctx) 7457 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop, 7458 &ro, false); 7459 rcu_read_unlock(); 7460 7461 return ro.err; 7462 } 7463 7464 static void perf_pmu_output_stop(struct perf_event *event) 7465 { 7466 struct perf_event *iter; 7467 int err, cpu; 7468 7469 restart: 7470 rcu_read_lock(); 7471 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) { 7472 /* 7473 * For per-CPU events, we need to make sure that neither they 7474 * nor their children are running; for cpu==-1 events it's 7475 * sufficient to stop the event itself if it's active, since 7476 * it can't have children. 7477 */ 7478 cpu = iter->cpu; 7479 if (cpu == -1) 7480 cpu = READ_ONCE(iter->oncpu); 7481 7482 if (cpu == -1) 7483 continue; 7484 7485 err = cpu_function_call(cpu, __perf_pmu_output_stop, event); 7486 if (err == -EAGAIN) { 7487 rcu_read_unlock(); 7488 goto restart; 7489 } 7490 } 7491 rcu_read_unlock(); 7492 } 7493 7494 /* 7495 * task tracking -- fork/exit 7496 * 7497 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 7498 */ 7499 7500 struct perf_task_event { 7501 struct task_struct *task; 7502 struct perf_event_context *task_ctx; 7503 7504 struct { 7505 struct perf_event_header header; 7506 7507 u32 pid; 7508 u32 ppid; 7509 u32 tid; 7510 u32 ptid; 7511 u64 time; 7512 } event_id; 7513 }; 7514 7515 static int perf_event_task_match(struct perf_event *event) 7516 { 7517 return event->attr.comm || event->attr.mmap || 7518 event->attr.mmap2 || event->attr.mmap_data || 7519 event->attr.task; 7520 } 7521 7522 static void perf_event_task_output(struct perf_event *event, 7523 void *data) 7524 { 7525 struct perf_task_event *task_event = data; 7526 struct perf_output_handle handle; 7527 struct perf_sample_data sample; 7528 struct task_struct *task = task_event->task; 7529 int ret, size = task_event->event_id.header.size; 7530 7531 if (!perf_event_task_match(event)) 7532 return; 7533 7534 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 7535 7536 ret = perf_output_begin(&handle, event, 7537 task_event->event_id.header.size); 7538 if (ret) 7539 goto out; 7540 7541 task_event->event_id.pid = perf_event_pid(event, task); 7542 task_event->event_id.tid = perf_event_tid(event, task); 7543 7544 if (task_event->event_id.header.type == PERF_RECORD_EXIT) { 7545 task_event->event_id.ppid = perf_event_pid(event, 7546 task->real_parent); 7547 task_event->event_id.ptid = perf_event_pid(event, 7548 task->real_parent); 7549 } else { /* PERF_RECORD_FORK */ 7550 task_event->event_id.ppid = perf_event_pid(event, current); 7551 task_event->event_id.ptid = perf_event_tid(event, current); 7552 } 7553 7554 task_event->event_id.time = perf_event_clock(event); 7555 7556 perf_output_put(&handle, task_event->event_id); 7557 7558 perf_event__output_id_sample(event, &handle, &sample); 7559 7560 perf_output_end(&handle); 7561 out: 7562 task_event->event_id.header.size = size; 7563 } 7564 7565 static void perf_event_task(struct task_struct *task, 7566 struct perf_event_context *task_ctx, 7567 int new) 7568 { 7569 struct perf_task_event task_event; 7570 7571 if (!atomic_read(&nr_comm_events) && 7572 !atomic_read(&nr_mmap_events) && 7573 !atomic_read(&nr_task_events)) 7574 return; 7575 7576 task_event = (struct perf_task_event){ 7577 .task = task, 7578 .task_ctx = task_ctx, 7579 .event_id = { 7580 .header = { 7581 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 7582 .misc = 0, 7583 .size = sizeof(task_event.event_id), 7584 }, 7585 /* .pid */ 7586 /* .ppid */ 7587 /* .tid */ 7588 /* .ptid */ 7589 /* .time */ 7590 }, 7591 }; 7592 7593 perf_iterate_sb(perf_event_task_output, 7594 &task_event, 7595 task_ctx); 7596 } 7597 7598 void perf_event_fork(struct task_struct *task) 7599 { 7600 perf_event_task(task, NULL, 1); 7601 perf_event_namespaces(task); 7602 } 7603 7604 /* 7605 * comm tracking 7606 */ 7607 7608 struct perf_comm_event { 7609 struct task_struct *task; 7610 char *comm; 7611 int comm_size; 7612 7613 struct { 7614 struct perf_event_header header; 7615 7616 u32 pid; 7617 u32 tid; 7618 } event_id; 7619 }; 7620 7621 static int perf_event_comm_match(struct perf_event *event) 7622 { 7623 return event->attr.comm; 7624 } 7625 7626 static void perf_event_comm_output(struct perf_event *event, 7627 void *data) 7628 { 7629 struct perf_comm_event *comm_event = data; 7630 struct perf_output_handle handle; 7631 struct perf_sample_data sample; 7632 int size = comm_event->event_id.header.size; 7633 int ret; 7634 7635 if (!perf_event_comm_match(event)) 7636 return; 7637 7638 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 7639 ret = perf_output_begin(&handle, event, 7640 comm_event->event_id.header.size); 7641 7642 if (ret) 7643 goto out; 7644 7645 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 7646 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 7647 7648 perf_output_put(&handle, comm_event->event_id); 7649 __output_copy(&handle, comm_event->comm, 7650 comm_event->comm_size); 7651 7652 perf_event__output_id_sample(event, &handle, &sample); 7653 7654 perf_output_end(&handle); 7655 out: 7656 comm_event->event_id.header.size = size; 7657 } 7658 7659 static void perf_event_comm_event(struct perf_comm_event *comm_event) 7660 { 7661 char comm[TASK_COMM_LEN]; 7662 unsigned int size; 7663 7664 memset(comm, 0, sizeof(comm)); 7665 strlcpy(comm, comm_event->task->comm, sizeof(comm)); 7666 size = ALIGN(strlen(comm)+1, sizeof(u64)); 7667 7668 comm_event->comm = comm; 7669 comm_event->comm_size = size; 7670 7671 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 7672 7673 perf_iterate_sb(perf_event_comm_output, 7674 comm_event, 7675 NULL); 7676 } 7677 7678 void perf_event_comm(struct task_struct *task, bool exec) 7679 { 7680 struct perf_comm_event comm_event; 7681 7682 if (!atomic_read(&nr_comm_events)) 7683 return; 7684 7685 comm_event = (struct perf_comm_event){ 7686 .task = task, 7687 /* .comm */ 7688 /* .comm_size */ 7689 .event_id = { 7690 .header = { 7691 .type = PERF_RECORD_COMM, 7692 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 7693 /* .size */ 7694 }, 7695 /* .pid */ 7696 /* .tid */ 7697 }, 7698 }; 7699 7700 perf_event_comm_event(&comm_event); 7701 } 7702 7703 /* 7704 * namespaces tracking 7705 */ 7706 7707 struct perf_namespaces_event { 7708 struct task_struct *task; 7709 7710 struct { 7711 struct perf_event_header header; 7712 7713 u32 pid; 7714 u32 tid; 7715 u64 nr_namespaces; 7716 struct perf_ns_link_info link_info[NR_NAMESPACES]; 7717 } event_id; 7718 }; 7719 7720 static int perf_event_namespaces_match(struct perf_event *event) 7721 { 7722 return event->attr.namespaces; 7723 } 7724 7725 static void perf_event_namespaces_output(struct perf_event *event, 7726 void *data) 7727 { 7728 struct perf_namespaces_event *namespaces_event = data; 7729 struct perf_output_handle handle; 7730 struct perf_sample_data sample; 7731 u16 header_size = namespaces_event->event_id.header.size; 7732 int ret; 7733 7734 if (!perf_event_namespaces_match(event)) 7735 return; 7736 7737 perf_event_header__init_id(&namespaces_event->event_id.header, 7738 &sample, event); 7739 ret = perf_output_begin(&handle, event, 7740 namespaces_event->event_id.header.size); 7741 if (ret) 7742 goto out; 7743 7744 namespaces_event->event_id.pid = perf_event_pid(event, 7745 namespaces_event->task); 7746 namespaces_event->event_id.tid = perf_event_tid(event, 7747 namespaces_event->task); 7748 7749 perf_output_put(&handle, namespaces_event->event_id); 7750 7751 perf_event__output_id_sample(event, &handle, &sample); 7752 7753 perf_output_end(&handle); 7754 out: 7755 namespaces_event->event_id.header.size = header_size; 7756 } 7757 7758 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info, 7759 struct task_struct *task, 7760 const struct proc_ns_operations *ns_ops) 7761 { 7762 struct path ns_path; 7763 struct inode *ns_inode; 7764 int error; 7765 7766 error = ns_get_path(&ns_path, task, ns_ops); 7767 if (!error) { 7768 ns_inode = ns_path.dentry->d_inode; 7769 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev); 7770 ns_link_info->ino = ns_inode->i_ino; 7771 path_put(&ns_path); 7772 } 7773 } 7774 7775 void perf_event_namespaces(struct task_struct *task) 7776 { 7777 struct perf_namespaces_event namespaces_event; 7778 struct perf_ns_link_info *ns_link_info; 7779 7780 if (!atomic_read(&nr_namespaces_events)) 7781 return; 7782 7783 namespaces_event = (struct perf_namespaces_event){ 7784 .task = task, 7785 .event_id = { 7786 .header = { 7787 .type = PERF_RECORD_NAMESPACES, 7788 .misc = 0, 7789 .size = sizeof(namespaces_event.event_id), 7790 }, 7791 /* .pid */ 7792 /* .tid */ 7793 .nr_namespaces = NR_NAMESPACES, 7794 /* .link_info[NR_NAMESPACES] */ 7795 }, 7796 }; 7797 7798 ns_link_info = namespaces_event.event_id.link_info; 7799 7800 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX], 7801 task, &mntns_operations); 7802 7803 #ifdef CONFIG_USER_NS 7804 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX], 7805 task, &userns_operations); 7806 #endif 7807 #ifdef CONFIG_NET_NS 7808 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX], 7809 task, &netns_operations); 7810 #endif 7811 #ifdef CONFIG_UTS_NS 7812 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX], 7813 task, &utsns_operations); 7814 #endif 7815 #ifdef CONFIG_IPC_NS 7816 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX], 7817 task, &ipcns_operations); 7818 #endif 7819 #ifdef CONFIG_PID_NS 7820 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX], 7821 task, &pidns_operations); 7822 #endif 7823 #ifdef CONFIG_CGROUPS 7824 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX], 7825 task, &cgroupns_operations); 7826 #endif 7827 7828 perf_iterate_sb(perf_event_namespaces_output, 7829 &namespaces_event, 7830 NULL); 7831 } 7832 7833 /* 7834 * cgroup tracking 7835 */ 7836 #ifdef CONFIG_CGROUP_PERF 7837 7838 struct perf_cgroup_event { 7839 char *path; 7840 int path_size; 7841 struct { 7842 struct perf_event_header header; 7843 u64 id; 7844 char path[]; 7845 } event_id; 7846 }; 7847 7848 static int perf_event_cgroup_match(struct perf_event *event) 7849 { 7850 return event->attr.cgroup; 7851 } 7852 7853 static void perf_event_cgroup_output(struct perf_event *event, void *data) 7854 { 7855 struct perf_cgroup_event *cgroup_event = data; 7856 struct perf_output_handle handle; 7857 struct perf_sample_data sample; 7858 u16 header_size = cgroup_event->event_id.header.size; 7859 int ret; 7860 7861 if (!perf_event_cgroup_match(event)) 7862 return; 7863 7864 perf_event_header__init_id(&cgroup_event->event_id.header, 7865 &sample, event); 7866 ret = perf_output_begin(&handle, event, 7867 cgroup_event->event_id.header.size); 7868 if (ret) 7869 goto out; 7870 7871 perf_output_put(&handle, cgroup_event->event_id); 7872 __output_copy(&handle, cgroup_event->path, cgroup_event->path_size); 7873 7874 perf_event__output_id_sample(event, &handle, &sample); 7875 7876 perf_output_end(&handle); 7877 out: 7878 cgroup_event->event_id.header.size = header_size; 7879 } 7880 7881 static void perf_event_cgroup(struct cgroup *cgrp) 7882 { 7883 struct perf_cgroup_event cgroup_event; 7884 char path_enomem[16] = "//enomem"; 7885 char *pathname; 7886 size_t size; 7887 7888 if (!atomic_read(&nr_cgroup_events)) 7889 return; 7890 7891 cgroup_event = (struct perf_cgroup_event){ 7892 .event_id = { 7893 .header = { 7894 .type = PERF_RECORD_CGROUP, 7895 .misc = 0, 7896 .size = sizeof(cgroup_event.event_id), 7897 }, 7898 .id = cgroup_id(cgrp), 7899 }, 7900 }; 7901 7902 pathname = kmalloc(PATH_MAX, GFP_KERNEL); 7903 if (pathname == NULL) { 7904 cgroup_event.path = path_enomem; 7905 } else { 7906 /* just to be sure to have enough space for alignment */ 7907 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64)); 7908 cgroup_event.path = pathname; 7909 } 7910 7911 /* 7912 * Since our buffer works in 8 byte units we need to align our string 7913 * size to a multiple of 8. However, we must guarantee the tail end is 7914 * zero'd out to avoid leaking random bits to userspace. 7915 */ 7916 size = strlen(cgroup_event.path) + 1; 7917 while (!IS_ALIGNED(size, sizeof(u64))) 7918 cgroup_event.path[size++] = '\0'; 7919 7920 cgroup_event.event_id.header.size += size; 7921 cgroup_event.path_size = size; 7922 7923 perf_iterate_sb(perf_event_cgroup_output, 7924 &cgroup_event, 7925 NULL); 7926 7927 kfree(pathname); 7928 } 7929 7930 #endif 7931 7932 /* 7933 * mmap tracking 7934 */ 7935 7936 struct perf_mmap_event { 7937 struct vm_area_struct *vma; 7938 7939 const char *file_name; 7940 int file_size; 7941 int maj, min; 7942 u64 ino; 7943 u64 ino_generation; 7944 u32 prot, flags; 7945 7946 struct { 7947 struct perf_event_header header; 7948 7949 u32 pid; 7950 u32 tid; 7951 u64 start; 7952 u64 len; 7953 u64 pgoff; 7954 } event_id; 7955 }; 7956 7957 static int perf_event_mmap_match(struct perf_event *event, 7958 void *data) 7959 { 7960 struct perf_mmap_event *mmap_event = data; 7961 struct vm_area_struct *vma = mmap_event->vma; 7962 int executable = vma->vm_flags & VM_EXEC; 7963 7964 return (!executable && event->attr.mmap_data) || 7965 (executable && (event->attr.mmap || event->attr.mmap2)); 7966 } 7967 7968 static void perf_event_mmap_output(struct perf_event *event, 7969 void *data) 7970 { 7971 struct perf_mmap_event *mmap_event = data; 7972 struct perf_output_handle handle; 7973 struct perf_sample_data sample; 7974 int size = mmap_event->event_id.header.size; 7975 u32 type = mmap_event->event_id.header.type; 7976 int ret; 7977 7978 if (!perf_event_mmap_match(event, data)) 7979 return; 7980 7981 if (event->attr.mmap2) { 7982 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 7983 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 7984 mmap_event->event_id.header.size += sizeof(mmap_event->min); 7985 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 7986 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 7987 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 7988 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 7989 } 7990 7991 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 7992 ret = perf_output_begin(&handle, event, 7993 mmap_event->event_id.header.size); 7994 if (ret) 7995 goto out; 7996 7997 mmap_event->event_id.pid = perf_event_pid(event, current); 7998 mmap_event->event_id.tid = perf_event_tid(event, current); 7999 8000 perf_output_put(&handle, mmap_event->event_id); 8001 8002 if (event->attr.mmap2) { 8003 perf_output_put(&handle, mmap_event->maj); 8004 perf_output_put(&handle, mmap_event->min); 8005 perf_output_put(&handle, mmap_event->ino); 8006 perf_output_put(&handle, mmap_event->ino_generation); 8007 perf_output_put(&handle, mmap_event->prot); 8008 perf_output_put(&handle, mmap_event->flags); 8009 } 8010 8011 __output_copy(&handle, mmap_event->file_name, 8012 mmap_event->file_size); 8013 8014 perf_event__output_id_sample(event, &handle, &sample); 8015 8016 perf_output_end(&handle); 8017 out: 8018 mmap_event->event_id.header.size = size; 8019 mmap_event->event_id.header.type = type; 8020 } 8021 8022 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 8023 { 8024 struct vm_area_struct *vma = mmap_event->vma; 8025 struct file *file = vma->vm_file; 8026 int maj = 0, min = 0; 8027 u64 ino = 0, gen = 0; 8028 u32 prot = 0, flags = 0; 8029 unsigned int size; 8030 char tmp[16]; 8031 char *buf = NULL; 8032 char *name; 8033 8034 if (vma->vm_flags & VM_READ) 8035 prot |= PROT_READ; 8036 if (vma->vm_flags & VM_WRITE) 8037 prot |= PROT_WRITE; 8038 if (vma->vm_flags & VM_EXEC) 8039 prot |= PROT_EXEC; 8040 8041 if (vma->vm_flags & VM_MAYSHARE) 8042 flags = MAP_SHARED; 8043 else 8044 flags = MAP_PRIVATE; 8045 8046 if (vma->vm_flags & VM_DENYWRITE) 8047 flags |= MAP_DENYWRITE; 8048 if (vma->vm_flags & VM_MAYEXEC) 8049 flags |= MAP_EXECUTABLE; 8050 if (vma->vm_flags & VM_LOCKED) 8051 flags |= MAP_LOCKED; 8052 if (is_vm_hugetlb_page(vma)) 8053 flags |= MAP_HUGETLB; 8054 8055 if (file) { 8056 struct inode *inode; 8057 dev_t dev; 8058 8059 buf = kmalloc(PATH_MAX, GFP_KERNEL); 8060 if (!buf) { 8061 name = "//enomem"; 8062 goto cpy_name; 8063 } 8064 /* 8065 * d_path() works from the end of the rb backwards, so we 8066 * need to add enough zero bytes after the string to handle 8067 * the 64bit alignment we do later. 8068 */ 8069 name = file_path(file, buf, PATH_MAX - sizeof(u64)); 8070 if (IS_ERR(name)) { 8071 name = "//toolong"; 8072 goto cpy_name; 8073 } 8074 inode = file_inode(vma->vm_file); 8075 dev = inode->i_sb->s_dev; 8076 ino = inode->i_ino; 8077 gen = inode->i_generation; 8078 maj = MAJOR(dev); 8079 min = MINOR(dev); 8080 8081 goto got_name; 8082 } else { 8083 if (vma->vm_ops && vma->vm_ops->name) { 8084 name = (char *) vma->vm_ops->name(vma); 8085 if (name) 8086 goto cpy_name; 8087 } 8088 8089 name = (char *)arch_vma_name(vma); 8090 if (name) 8091 goto cpy_name; 8092 8093 if (vma->vm_start <= vma->vm_mm->start_brk && 8094 vma->vm_end >= vma->vm_mm->brk) { 8095 name = "[heap]"; 8096 goto cpy_name; 8097 } 8098 if (vma->vm_start <= vma->vm_mm->start_stack && 8099 vma->vm_end >= vma->vm_mm->start_stack) { 8100 name = "[stack]"; 8101 goto cpy_name; 8102 } 8103 8104 name = "//anon"; 8105 goto cpy_name; 8106 } 8107 8108 cpy_name: 8109 strlcpy(tmp, name, sizeof(tmp)); 8110 name = tmp; 8111 got_name: 8112 /* 8113 * Since our buffer works in 8 byte units we need to align our string 8114 * size to a multiple of 8. However, we must guarantee the tail end is 8115 * zero'd out to avoid leaking random bits to userspace. 8116 */ 8117 size = strlen(name)+1; 8118 while (!IS_ALIGNED(size, sizeof(u64))) 8119 name[size++] = '\0'; 8120 8121 mmap_event->file_name = name; 8122 mmap_event->file_size = size; 8123 mmap_event->maj = maj; 8124 mmap_event->min = min; 8125 mmap_event->ino = ino; 8126 mmap_event->ino_generation = gen; 8127 mmap_event->prot = prot; 8128 mmap_event->flags = flags; 8129 8130 if (!(vma->vm_flags & VM_EXEC)) 8131 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 8132 8133 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 8134 8135 perf_iterate_sb(perf_event_mmap_output, 8136 mmap_event, 8137 NULL); 8138 8139 kfree(buf); 8140 } 8141 8142 /* 8143 * Check whether inode and address range match filter criteria. 8144 */ 8145 static bool perf_addr_filter_match(struct perf_addr_filter *filter, 8146 struct file *file, unsigned long offset, 8147 unsigned long size) 8148 { 8149 /* d_inode(NULL) won't be equal to any mapped user-space file */ 8150 if (!filter->path.dentry) 8151 return false; 8152 8153 if (d_inode(filter->path.dentry) != file_inode(file)) 8154 return false; 8155 8156 if (filter->offset > offset + size) 8157 return false; 8158 8159 if (filter->offset + filter->size < offset) 8160 return false; 8161 8162 return true; 8163 } 8164 8165 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter, 8166 struct vm_area_struct *vma, 8167 struct perf_addr_filter_range *fr) 8168 { 8169 unsigned long vma_size = vma->vm_end - vma->vm_start; 8170 unsigned long off = vma->vm_pgoff << PAGE_SHIFT; 8171 struct file *file = vma->vm_file; 8172 8173 if (!perf_addr_filter_match(filter, file, off, vma_size)) 8174 return false; 8175 8176 if (filter->offset < off) { 8177 fr->start = vma->vm_start; 8178 fr->size = min(vma_size, filter->size - (off - filter->offset)); 8179 } else { 8180 fr->start = vma->vm_start + filter->offset - off; 8181 fr->size = min(vma->vm_end - fr->start, filter->size); 8182 } 8183 8184 return true; 8185 } 8186 8187 static void __perf_addr_filters_adjust(struct perf_event *event, void *data) 8188 { 8189 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 8190 struct vm_area_struct *vma = data; 8191 struct perf_addr_filter *filter; 8192 unsigned int restart = 0, count = 0; 8193 unsigned long flags; 8194 8195 if (!has_addr_filter(event)) 8196 return; 8197 8198 if (!vma->vm_file) 8199 return; 8200 8201 raw_spin_lock_irqsave(&ifh->lock, flags); 8202 list_for_each_entry(filter, &ifh->list, entry) { 8203 if (perf_addr_filter_vma_adjust(filter, vma, 8204 &event->addr_filter_ranges[count])) 8205 restart++; 8206 8207 count++; 8208 } 8209 8210 if (restart) 8211 event->addr_filters_gen++; 8212 raw_spin_unlock_irqrestore(&ifh->lock, flags); 8213 8214 if (restart) 8215 perf_event_stop(event, 1); 8216 } 8217 8218 /* 8219 * Adjust all task's events' filters to the new vma 8220 */ 8221 static void perf_addr_filters_adjust(struct vm_area_struct *vma) 8222 { 8223 struct perf_event_context *ctx; 8224 int ctxn; 8225 8226 /* 8227 * Data tracing isn't supported yet and as such there is no need 8228 * to keep track of anything that isn't related to executable code: 8229 */ 8230 if (!(vma->vm_flags & VM_EXEC)) 8231 return; 8232 8233 rcu_read_lock(); 8234 for_each_task_context_nr(ctxn) { 8235 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 8236 if (!ctx) 8237 continue; 8238 8239 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true); 8240 } 8241 rcu_read_unlock(); 8242 } 8243 8244 void perf_event_mmap(struct vm_area_struct *vma) 8245 { 8246 struct perf_mmap_event mmap_event; 8247 8248 if (!atomic_read(&nr_mmap_events)) 8249 return; 8250 8251 mmap_event = (struct perf_mmap_event){ 8252 .vma = vma, 8253 /* .file_name */ 8254 /* .file_size */ 8255 .event_id = { 8256 .header = { 8257 .type = PERF_RECORD_MMAP, 8258 .misc = PERF_RECORD_MISC_USER, 8259 /* .size */ 8260 }, 8261 /* .pid */ 8262 /* .tid */ 8263 .start = vma->vm_start, 8264 .len = vma->vm_end - vma->vm_start, 8265 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 8266 }, 8267 /* .maj (attr_mmap2 only) */ 8268 /* .min (attr_mmap2 only) */ 8269 /* .ino (attr_mmap2 only) */ 8270 /* .ino_generation (attr_mmap2 only) */ 8271 /* .prot (attr_mmap2 only) */ 8272 /* .flags (attr_mmap2 only) */ 8273 }; 8274 8275 perf_addr_filters_adjust(vma); 8276 perf_event_mmap_event(&mmap_event); 8277 } 8278 8279 void perf_event_aux_event(struct perf_event *event, unsigned long head, 8280 unsigned long size, u64 flags) 8281 { 8282 struct perf_output_handle handle; 8283 struct perf_sample_data sample; 8284 struct perf_aux_event { 8285 struct perf_event_header header; 8286 u64 offset; 8287 u64 size; 8288 u64 flags; 8289 } rec = { 8290 .header = { 8291 .type = PERF_RECORD_AUX, 8292 .misc = 0, 8293 .size = sizeof(rec), 8294 }, 8295 .offset = head, 8296 .size = size, 8297 .flags = flags, 8298 }; 8299 int ret; 8300 8301 perf_event_header__init_id(&rec.header, &sample, event); 8302 ret = perf_output_begin(&handle, event, rec.header.size); 8303 8304 if (ret) 8305 return; 8306 8307 perf_output_put(&handle, rec); 8308 perf_event__output_id_sample(event, &handle, &sample); 8309 8310 perf_output_end(&handle); 8311 } 8312 8313 /* 8314 * Lost/dropped samples logging 8315 */ 8316 void perf_log_lost_samples(struct perf_event *event, u64 lost) 8317 { 8318 struct perf_output_handle handle; 8319 struct perf_sample_data sample; 8320 int ret; 8321 8322 struct { 8323 struct perf_event_header header; 8324 u64 lost; 8325 } lost_samples_event = { 8326 .header = { 8327 .type = PERF_RECORD_LOST_SAMPLES, 8328 .misc = 0, 8329 .size = sizeof(lost_samples_event), 8330 }, 8331 .lost = lost, 8332 }; 8333 8334 perf_event_header__init_id(&lost_samples_event.header, &sample, event); 8335 8336 ret = perf_output_begin(&handle, event, 8337 lost_samples_event.header.size); 8338 if (ret) 8339 return; 8340 8341 perf_output_put(&handle, lost_samples_event); 8342 perf_event__output_id_sample(event, &handle, &sample); 8343 perf_output_end(&handle); 8344 } 8345 8346 /* 8347 * context_switch tracking 8348 */ 8349 8350 struct perf_switch_event { 8351 struct task_struct *task; 8352 struct task_struct *next_prev; 8353 8354 struct { 8355 struct perf_event_header header; 8356 u32 next_prev_pid; 8357 u32 next_prev_tid; 8358 } event_id; 8359 }; 8360 8361 static int perf_event_switch_match(struct perf_event *event) 8362 { 8363 return event->attr.context_switch; 8364 } 8365 8366 static void perf_event_switch_output(struct perf_event *event, void *data) 8367 { 8368 struct perf_switch_event *se = data; 8369 struct perf_output_handle handle; 8370 struct perf_sample_data sample; 8371 int ret; 8372 8373 if (!perf_event_switch_match(event)) 8374 return; 8375 8376 /* Only CPU-wide events are allowed to see next/prev pid/tid */ 8377 if (event->ctx->task) { 8378 se->event_id.header.type = PERF_RECORD_SWITCH; 8379 se->event_id.header.size = sizeof(se->event_id.header); 8380 } else { 8381 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE; 8382 se->event_id.header.size = sizeof(se->event_id); 8383 se->event_id.next_prev_pid = 8384 perf_event_pid(event, se->next_prev); 8385 se->event_id.next_prev_tid = 8386 perf_event_tid(event, se->next_prev); 8387 } 8388 8389 perf_event_header__init_id(&se->event_id.header, &sample, event); 8390 8391 ret = perf_output_begin(&handle, event, se->event_id.header.size); 8392 if (ret) 8393 return; 8394 8395 if (event->ctx->task) 8396 perf_output_put(&handle, se->event_id.header); 8397 else 8398 perf_output_put(&handle, se->event_id); 8399 8400 perf_event__output_id_sample(event, &handle, &sample); 8401 8402 perf_output_end(&handle); 8403 } 8404 8405 static void perf_event_switch(struct task_struct *task, 8406 struct task_struct *next_prev, bool sched_in) 8407 { 8408 struct perf_switch_event switch_event; 8409 8410 /* N.B. caller checks nr_switch_events != 0 */ 8411 8412 switch_event = (struct perf_switch_event){ 8413 .task = task, 8414 .next_prev = next_prev, 8415 .event_id = { 8416 .header = { 8417 /* .type */ 8418 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT, 8419 /* .size */ 8420 }, 8421 /* .next_prev_pid */ 8422 /* .next_prev_tid */ 8423 }, 8424 }; 8425 8426 if (!sched_in && task->state == TASK_RUNNING) 8427 switch_event.event_id.header.misc |= 8428 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT; 8429 8430 perf_iterate_sb(perf_event_switch_output, 8431 &switch_event, 8432 NULL); 8433 } 8434 8435 /* 8436 * IRQ throttle logging 8437 */ 8438 8439 static void perf_log_throttle(struct perf_event *event, int enable) 8440 { 8441 struct perf_output_handle handle; 8442 struct perf_sample_data sample; 8443 int ret; 8444 8445 struct { 8446 struct perf_event_header header; 8447 u64 time; 8448 u64 id; 8449 u64 stream_id; 8450 } throttle_event = { 8451 .header = { 8452 .type = PERF_RECORD_THROTTLE, 8453 .misc = 0, 8454 .size = sizeof(throttle_event), 8455 }, 8456 .time = perf_event_clock(event), 8457 .id = primary_event_id(event), 8458 .stream_id = event->id, 8459 }; 8460 8461 if (enable) 8462 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 8463 8464 perf_event_header__init_id(&throttle_event.header, &sample, event); 8465 8466 ret = perf_output_begin(&handle, event, 8467 throttle_event.header.size); 8468 if (ret) 8469 return; 8470 8471 perf_output_put(&handle, throttle_event); 8472 perf_event__output_id_sample(event, &handle, &sample); 8473 perf_output_end(&handle); 8474 } 8475 8476 /* 8477 * ksymbol register/unregister tracking 8478 */ 8479 8480 struct perf_ksymbol_event { 8481 const char *name; 8482 int name_len; 8483 struct { 8484 struct perf_event_header header; 8485 u64 addr; 8486 u32 len; 8487 u16 ksym_type; 8488 u16 flags; 8489 } event_id; 8490 }; 8491 8492 static int perf_event_ksymbol_match(struct perf_event *event) 8493 { 8494 return event->attr.ksymbol; 8495 } 8496 8497 static void perf_event_ksymbol_output(struct perf_event *event, void *data) 8498 { 8499 struct perf_ksymbol_event *ksymbol_event = data; 8500 struct perf_output_handle handle; 8501 struct perf_sample_data sample; 8502 int ret; 8503 8504 if (!perf_event_ksymbol_match(event)) 8505 return; 8506 8507 perf_event_header__init_id(&ksymbol_event->event_id.header, 8508 &sample, event); 8509 ret = perf_output_begin(&handle, event, 8510 ksymbol_event->event_id.header.size); 8511 if (ret) 8512 return; 8513 8514 perf_output_put(&handle, ksymbol_event->event_id); 8515 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len); 8516 perf_event__output_id_sample(event, &handle, &sample); 8517 8518 perf_output_end(&handle); 8519 } 8520 8521 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister, 8522 const char *sym) 8523 { 8524 struct perf_ksymbol_event ksymbol_event; 8525 char name[KSYM_NAME_LEN]; 8526 u16 flags = 0; 8527 int name_len; 8528 8529 if (!atomic_read(&nr_ksymbol_events)) 8530 return; 8531 8532 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX || 8533 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN) 8534 goto err; 8535 8536 strlcpy(name, sym, KSYM_NAME_LEN); 8537 name_len = strlen(name) + 1; 8538 while (!IS_ALIGNED(name_len, sizeof(u64))) 8539 name[name_len++] = '\0'; 8540 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64)); 8541 8542 if (unregister) 8543 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER; 8544 8545 ksymbol_event = (struct perf_ksymbol_event){ 8546 .name = name, 8547 .name_len = name_len, 8548 .event_id = { 8549 .header = { 8550 .type = PERF_RECORD_KSYMBOL, 8551 .size = sizeof(ksymbol_event.event_id) + 8552 name_len, 8553 }, 8554 .addr = addr, 8555 .len = len, 8556 .ksym_type = ksym_type, 8557 .flags = flags, 8558 }, 8559 }; 8560 8561 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL); 8562 return; 8563 err: 8564 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type); 8565 } 8566 8567 /* 8568 * bpf program load/unload tracking 8569 */ 8570 8571 struct perf_bpf_event { 8572 struct bpf_prog *prog; 8573 struct { 8574 struct perf_event_header header; 8575 u16 type; 8576 u16 flags; 8577 u32 id; 8578 u8 tag[BPF_TAG_SIZE]; 8579 } event_id; 8580 }; 8581 8582 static int perf_event_bpf_match(struct perf_event *event) 8583 { 8584 return event->attr.bpf_event; 8585 } 8586 8587 static void perf_event_bpf_output(struct perf_event *event, void *data) 8588 { 8589 struct perf_bpf_event *bpf_event = data; 8590 struct perf_output_handle handle; 8591 struct perf_sample_data sample; 8592 int ret; 8593 8594 if (!perf_event_bpf_match(event)) 8595 return; 8596 8597 perf_event_header__init_id(&bpf_event->event_id.header, 8598 &sample, event); 8599 ret = perf_output_begin(&handle, event, 8600 bpf_event->event_id.header.size); 8601 if (ret) 8602 return; 8603 8604 perf_output_put(&handle, bpf_event->event_id); 8605 perf_event__output_id_sample(event, &handle, &sample); 8606 8607 perf_output_end(&handle); 8608 } 8609 8610 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog, 8611 enum perf_bpf_event_type type) 8612 { 8613 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD; 8614 int i; 8615 8616 if (prog->aux->func_cnt == 0) { 8617 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF, 8618 (u64)(unsigned long)prog->bpf_func, 8619 prog->jited_len, unregister, 8620 prog->aux->ksym.name); 8621 } else { 8622 for (i = 0; i < prog->aux->func_cnt; i++) { 8623 struct bpf_prog *subprog = prog->aux->func[i]; 8624 8625 perf_event_ksymbol( 8626 PERF_RECORD_KSYMBOL_TYPE_BPF, 8627 (u64)(unsigned long)subprog->bpf_func, 8628 subprog->jited_len, unregister, 8629 prog->aux->ksym.name); 8630 } 8631 } 8632 } 8633 8634 void perf_event_bpf_event(struct bpf_prog *prog, 8635 enum perf_bpf_event_type type, 8636 u16 flags) 8637 { 8638 struct perf_bpf_event bpf_event; 8639 8640 if (type <= PERF_BPF_EVENT_UNKNOWN || 8641 type >= PERF_BPF_EVENT_MAX) 8642 return; 8643 8644 switch (type) { 8645 case PERF_BPF_EVENT_PROG_LOAD: 8646 case PERF_BPF_EVENT_PROG_UNLOAD: 8647 if (atomic_read(&nr_ksymbol_events)) 8648 perf_event_bpf_emit_ksymbols(prog, type); 8649 break; 8650 default: 8651 break; 8652 } 8653 8654 if (!atomic_read(&nr_bpf_events)) 8655 return; 8656 8657 bpf_event = (struct perf_bpf_event){ 8658 .prog = prog, 8659 .event_id = { 8660 .header = { 8661 .type = PERF_RECORD_BPF_EVENT, 8662 .size = sizeof(bpf_event.event_id), 8663 }, 8664 .type = type, 8665 .flags = flags, 8666 .id = prog->aux->id, 8667 }, 8668 }; 8669 8670 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64)); 8671 8672 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE); 8673 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL); 8674 } 8675 8676 struct perf_text_poke_event { 8677 const void *old_bytes; 8678 const void *new_bytes; 8679 size_t pad; 8680 u16 old_len; 8681 u16 new_len; 8682 8683 struct { 8684 struct perf_event_header header; 8685 8686 u64 addr; 8687 } event_id; 8688 }; 8689 8690 static int perf_event_text_poke_match(struct perf_event *event) 8691 { 8692 return event->attr.text_poke; 8693 } 8694 8695 static void perf_event_text_poke_output(struct perf_event *event, void *data) 8696 { 8697 struct perf_text_poke_event *text_poke_event = data; 8698 struct perf_output_handle handle; 8699 struct perf_sample_data sample; 8700 u64 padding = 0; 8701 int ret; 8702 8703 if (!perf_event_text_poke_match(event)) 8704 return; 8705 8706 perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event); 8707 8708 ret = perf_output_begin(&handle, event, text_poke_event->event_id.header.size); 8709 if (ret) 8710 return; 8711 8712 perf_output_put(&handle, text_poke_event->event_id); 8713 perf_output_put(&handle, text_poke_event->old_len); 8714 perf_output_put(&handle, text_poke_event->new_len); 8715 8716 __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len); 8717 __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len); 8718 8719 if (text_poke_event->pad) 8720 __output_copy(&handle, &padding, text_poke_event->pad); 8721 8722 perf_event__output_id_sample(event, &handle, &sample); 8723 8724 perf_output_end(&handle); 8725 } 8726 8727 void perf_event_text_poke(const void *addr, const void *old_bytes, 8728 size_t old_len, const void *new_bytes, size_t new_len) 8729 { 8730 struct perf_text_poke_event text_poke_event; 8731 size_t tot, pad; 8732 8733 if (!atomic_read(&nr_text_poke_events)) 8734 return; 8735 8736 tot = sizeof(text_poke_event.old_len) + old_len; 8737 tot += sizeof(text_poke_event.new_len) + new_len; 8738 pad = ALIGN(tot, sizeof(u64)) - tot; 8739 8740 text_poke_event = (struct perf_text_poke_event){ 8741 .old_bytes = old_bytes, 8742 .new_bytes = new_bytes, 8743 .pad = pad, 8744 .old_len = old_len, 8745 .new_len = new_len, 8746 .event_id = { 8747 .header = { 8748 .type = PERF_RECORD_TEXT_POKE, 8749 .misc = PERF_RECORD_MISC_KERNEL, 8750 .size = sizeof(text_poke_event.event_id) + tot + pad, 8751 }, 8752 .addr = (unsigned long)addr, 8753 }, 8754 }; 8755 8756 perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL); 8757 } 8758 8759 void perf_event_itrace_started(struct perf_event *event) 8760 { 8761 event->attach_state |= PERF_ATTACH_ITRACE; 8762 } 8763 8764 static void perf_log_itrace_start(struct perf_event *event) 8765 { 8766 struct perf_output_handle handle; 8767 struct perf_sample_data sample; 8768 struct perf_aux_event { 8769 struct perf_event_header header; 8770 u32 pid; 8771 u32 tid; 8772 } rec; 8773 int ret; 8774 8775 if (event->parent) 8776 event = event->parent; 8777 8778 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || 8779 event->attach_state & PERF_ATTACH_ITRACE) 8780 return; 8781 8782 rec.header.type = PERF_RECORD_ITRACE_START; 8783 rec.header.misc = 0; 8784 rec.header.size = sizeof(rec); 8785 rec.pid = perf_event_pid(event, current); 8786 rec.tid = perf_event_tid(event, current); 8787 8788 perf_event_header__init_id(&rec.header, &sample, event); 8789 ret = perf_output_begin(&handle, event, rec.header.size); 8790 8791 if (ret) 8792 return; 8793 8794 perf_output_put(&handle, rec); 8795 perf_event__output_id_sample(event, &handle, &sample); 8796 8797 perf_output_end(&handle); 8798 } 8799 8800 static int 8801 __perf_event_account_interrupt(struct perf_event *event, int throttle) 8802 { 8803 struct hw_perf_event *hwc = &event->hw; 8804 int ret = 0; 8805 u64 seq; 8806 8807 seq = __this_cpu_read(perf_throttled_seq); 8808 if (seq != hwc->interrupts_seq) { 8809 hwc->interrupts_seq = seq; 8810 hwc->interrupts = 1; 8811 } else { 8812 hwc->interrupts++; 8813 if (unlikely(throttle 8814 && hwc->interrupts >= max_samples_per_tick)) { 8815 __this_cpu_inc(perf_throttled_count); 8816 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 8817 hwc->interrupts = MAX_INTERRUPTS; 8818 perf_log_throttle(event, 0); 8819 ret = 1; 8820 } 8821 } 8822 8823 if (event->attr.freq) { 8824 u64 now = perf_clock(); 8825 s64 delta = now - hwc->freq_time_stamp; 8826 8827 hwc->freq_time_stamp = now; 8828 8829 if (delta > 0 && delta < 2*TICK_NSEC) 8830 perf_adjust_period(event, delta, hwc->last_period, true); 8831 } 8832 8833 return ret; 8834 } 8835 8836 int perf_event_account_interrupt(struct perf_event *event) 8837 { 8838 return __perf_event_account_interrupt(event, 1); 8839 } 8840 8841 /* 8842 * Generic event overflow handling, sampling. 8843 */ 8844 8845 static int __perf_event_overflow(struct perf_event *event, 8846 int throttle, struct perf_sample_data *data, 8847 struct pt_regs *regs) 8848 { 8849 int events = atomic_read(&event->event_limit); 8850 int ret = 0; 8851 8852 /* 8853 * Non-sampling counters might still use the PMI to fold short 8854 * hardware counters, ignore those. 8855 */ 8856 if (unlikely(!is_sampling_event(event))) 8857 return 0; 8858 8859 ret = __perf_event_account_interrupt(event, throttle); 8860 8861 /* 8862 * XXX event_limit might not quite work as expected on inherited 8863 * events 8864 */ 8865 8866 event->pending_kill = POLL_IN; 8867 if (events && atomic_dec_and_test(&event->event_limit)) { 8868 ret = 1; 8869 event->pending_kill = POLL_HUP; 8870 8871 perf_event_disable_inatomic(event); 8872 } 8873 8874 READ_ONCE(event->overflow_handler)(event, data, regs); 8875 8876 if (*perf_event_fasync(event) && event->pending_kill) { 8877 event->pending_wakeup = 1; 8878 irq_work_queue(&event->pending); 8879 } 8880 8881 return ret; 8882 } 8883 8884 int perf_event_overflow(struct perf_event *event, 8885 struct perf_sample_data *data, 8886 struct pt_regs *regs) 8887 { 8888 return __perf_event_overflow(event, 1, data, regs); 8889 } 8890 8891 /* 8892 * Generic software event infrastructure 8893 */ 8894 8895 struct swevent_htable { 8896 struct swevent_hlist *swevent_hlist; 8897 struct mutex hlist_mutex; 8898 int hlist_refcount; 8899 8900 /* Recursion avoidance in each contexts */ 8901 int recursion[PERF_NR_CONTEXTS]; 8902 }; 8903 8904 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 8905 8906 /* 8907 * We directly increment event->count and keep a second value in 8908 * event->hw.period_left to count intervals. This period event 8909 * is kept in the range [-sample_period, 0] so that we can use the 8910 * sign as trigger. 8911 */ 8912 8913 u64 perf_swevent_set_period(struct perf_event *event) 8914 { 8915 struct hw_perf_event *hwc = &event->hw; 8916 u64 period = hwc->last_period; 8917 u64 nr, offset; 8918 s64 old, val; 8919 8920 hwc->last_period = hwc->sample_period; 8921 8922 again: 8923 old = val = local64_read(&hwc->period_left); 8924 if (val < 0) 8925 return 0; 8926 8927 nr = div64_u64(period + val, period); 8928 offset = nr * period; 8929 val -= offset; 8930 if (local64_cmpxchg(&hwc->period_left, old, val) != old) 8931 goto again; 8932 8933 return nr; 8934 } 8935 8936 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 8937 struct perf_sample_data *data, 8938 struct pt_regs *regs) 8939 { 8940 struct hw_perf_event *hwc = &event->hw; 8941 int throttle = 0; 8942 8943 if (!overflow) 8944 overflow = perf_swevent_set_period(event); 8945 8946 if (hwc->interrupts == MAX_INTERRUPTS) 8947 return; 8948 8949 for (; overflow; overflow--) { 8950 if (__perf_event_overflow(event, throttle, 8951 data, regs)) { 8952 /* 8953 * We inhibit the overflow from happening when 8954 * hwc->interrupts == MAX_INTERRUPTS. 8955 */ 8956 break; 8957 } 8958 throttle = 1; 8959 } 8960 } 8961 8962 static void perf_swevent_event(struct perf_event *event, u64 nr, 8963 struct perf_sample_data *data, 8964 struct pt_regs *regs) 8965 { 8966 struct hw_perf_event *hwc = &event->hw; 8967 8968 local64_add(nr, &event->count); 8969 8970 if (!regs) 8971 return; 8972 8973 if (!is_sampling_event(event)) 8974 return; 8975 8976 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 8977 data->period = nr; 8978 return perf_swevent_overflow(event, 1, data, regs); 8979 } else 8980 data->period = event->hw.last_period; 8981 8982 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 8983 return perf_swevent_overflow(event, 1, data, regs); 8984 8985 if (local64_add_negative(nr, &hwc->period_left)) 8986 return; 8987 8988 perf_swevent_overflow(event, 0, data, regs); 8989 } 8990 8991 static int perf_exclude_event(struct perf_event *event, 8992 struct pt_regs *regs) 8993 { 8994 if (event->hw.state & PERF_HES_STOPPED) 8995 return 1; 8996 8997 if (regs) { 8998 if (event->attr.exclude_user && user_mode(regs)) 8999 return 1; 9000 9001 if (event->attr.exclude_kernel && !user_mode(regs)) 9002 return 1; 9003 } 9004 9005 return 0; 9006 } 9007 9008 static int perf_swevent_match(struct perf_event *event, 9009 enum perf_type_id type, 9010 u32 event_id, 9011 struct perf_sample_data *data, 9012 struct pt_regs *regs) 9013 { 9014 if (event->attr.type != type) 9015 return 0; 9016 9017 if (event->attr.config != event_id) 9018 return 0; 9019 9020 if (perf_exclude_event(event, regs)) 9021 return 0; 9022 9023 return 1; 9024 } 9025 9026 static inline u64 swevent_hash(u64 type, u32 event_id) 9027 { 9028 u64 val = event_id | (type << 32); 9029 9030 return hash_64(val, SWEVENT_HLIST_BITS); 9031 } 9032 9033 static inline struct hlist_head * 9034 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 9035 { 9036 u64 hash = swevent_hash(type, event_id); 9037 9038 return &hlist->heads[hash]; 9039 } 9040 9041 /* For the read side: events when they trigger */ 9042 static inline struct hlist_head * 9043 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 9044 { 9045 struct swevent_hlist *hlist; 9046 9047 hlist = rcu_dereference(swhash->swevent_hlist); 9048 if (!hlist) 9049 return NULL; 9050 9051 return __find_swevent_head(hlist, type, event_id); 9052 } 9053 9054 /* For the event head insertion and removal in the hlist */ 9055 static inline struct hlist_head * 9056 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 9057 { 9058 struct swevent_hlist *hlist; 9059 u32 event_id = event->attr.config; 9060 u64 type = event->attr.type; 9061 9062 /* 9063 * Event scheduling is always serialized against hlist allocation 9064 * and release. Which makes the protected version suitable here. 9065 * The context lock guarantees that. 9066 */ 9067 hlist = rcu_dereference_protected(swhash->swevent_hlist, 9068 lockdep_is_held(&event->ctx->lock)); 9069 if (!hlist) 9070 return NULL; 9071 9072 return __find_swevent_head(hlist, type, event_id); 9073 } 9074 9075 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 9076 u64 nr, 9077 struct perf_sample_data *data, 9078 struct pt_regs *regs) 9079 { 9080 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9081 struct perf_event *event; 9082 struct hlist_head *head; 9083 9084 rcu_read_lock(); 9085 head = find_swevent_head_rcu(swhash, type, event_id); 9086 if (!head) 9087 goto end; 9088 9089 hlist_for_each_entry_rcu(event, head, hlist_entry) { 9090 if (perf_swevent_match(event, type, event_id, data, regs)) 9091 perf_swevent_event(event, nr, data, regs); 9092 } 9093 end: 9094 rcu_read_unlock(); 9095 } 9096 9097 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); 9098 9099 int perf_swevent_get_recursion_context(void) 9100 { 9101 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9102 9103 return get_recursion_context(swhash->recursion); 9104 } 9105 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 9106 9107 void perf_swevent_put_recursion_context(int rctx) 9108 { 9109 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9110 9111 put_recursion_context(swhash->recursion, rctx); 9112 } 9113 9114 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 9115 { 9116 struct perf_sample_data data; 9117 9118 if (WARN_ON_ONCE(!regs)) 9119 return; 9120 9121 perf_sample_data_init(&data, addr, 0); 9122 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 9123 } 9124 9125 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 9126 { 9127 int rctx; 9128 9129 preempt_disable_notrace(); 9130 rctx = perf_swevent_get_recursion_context(); 9131 if (unlikely(rctx < 0)) 9132 goto fail; 9133 9134 ___perf_sw_event(event_id, nr, regs, addr); 9135 9136 perf_swevent_put_recursion_context(rctx); 9137 fail: 9138 preempt_enable_notrace(); 9139 } 9140 9141 static void perf_swevent_read(struct perf_event *event) 9142 { 9143 } 9144 9145 static int perf_swevent_add(struct perf_event *event, int flags) 9146 { 9147 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9148 struct hw_perf_event *hwc = &event->hw; 9149 struct hlist_head *head; 9150 9151 if (is_sampling_event(event)) { 9152 hwc->last_period = hwc->sample_period; 9153 perf_swevent_set_period(event); 9154 } 9155 9156 hwc->state = !(flags & PERF_EF_START); 9157 9158 head = find_swevent_head(swhash, event); 9159 if (WARN_ON_ONCE(!head)) 9160 return -EINVAL; 9161 9162 hlist_add_head_rcu(&event->hlist_entry, head); 9163 perf_event_update_userpage(event); 9164 9165 return 0; 9166 } 9167 9168 static void perf_swevent_del(struct perf_event *event, int flags) 9169 { 9170 hlist_del_rcu(&event->hlist_entry); 9171 } 9172 9173 static void perf_swevent_start(struct perf_event *event, int flags) 9174 { 9175 event->hw.state = 0; 9176 } 9177 9178 static void perf_swevent_stop(struct perf_event *event, int flags) 9179 { 9180 event->hw.state = PERF_HES_STOPPED; 9181 } 9182 9183 /* Deref the hlist from the update side */ 9184 static inline struct swevent_hlist * 9185 swevent_hlist_deref(struct swevent_htable *swhash) 9186 { 9187 return rcu_dereference_protected(swhash->swevent_hlist, 9188 lockdep_is_held(&swhash->hlist_mutex)); 9189 } 9190 9191 static void swevent_hlist_release(struct swevent_htable *swhash) 9192 { 9193 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 9194 9195 if (!hlist) 9196 return; 9197 9198 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 9199 kfree_rcu(hlist, rcu_head); 9200 } 9201 9202 static void swevent_hlist_put_cpu(int cpu) 9203 { 9204 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 9205 9206 mutex_lock(&swhash->hlist_mutex); 9207 9208 if (!--swhash->hlist_refcount) 9209 swevent_hlist_release(swhash); 9210 9211 mutex_unlock(&swhash->hlist_mutex); 9212 } 9213 9214 static void swevent_hlist_put(void) 9215 { 9216 int cpu; 9217 9218 for_each_possible_cpu(cpu) 9219 swevent_hlist_put_cpu(cpu); 9220 } 9221 9222 static int swevent_hlist_get_cpu(int cpu) 9223 { 9224 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 9225 int err = 0; 9226 9227 mutex_lock(&swhash->hlist_mutex); 9228 if (!swevent_hlist_deref(swhash) && 9229 cpumask_test_cpu(cpu, perf_online_mask)) { 9230 struct swevent_hlist *hlist; 9231 9232 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 9233 if (!hlist) { 9234 err = -ENOMEM; 9235 goto exit; 9236 } 9237 rcu_assign_pointer(swhash->swevent_hlist, hlist); 9238 } 9239 swhash->hlist_refcount++; 9240 exit: 9241 mutex_unlock(&swhash->hlist_mutex); 9242 9243 return err; 9244 } 9245 9246 static int swevent_hlist_get(void) 9247 { 9248 int err, cpu, failed_cpu; 9249 9250 mutex_lock(&pmus_lock); 9251 for_each_possible_cpu(cpu) { 9252 err = swevent_hlist_get_cpu(cpu); 9253 if (err) { 9254 failed_cpu = cpu; 9255 goto fail; 9256 } 9257 } 9258 mutex_unlock(&pmus_lock); 9259 return 0; 9260 fail: 9261 for_each_possible_cpu(cpu) { 9262 if (cpu == failed_cpu) 9263 break; 9264 swevent_hlist_put_cpu(cpu); 9265 } 9266 mutex_unlock(&pmus_lock); 9267 return err; 9268 } 9269 9270 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 9271 9272 static void sw_perf_event_destroy(struct perf_event *event) 9273 { 9274 u64 event_id = event->attr.config; 9275 9276 WARN_ON(event->parent); 9277 9278 static_key_slow_dec(&perf_swevent_enabled[event_id]); 9279 swevent_hlist_put(); 9280 } 9281 9282 static int perf_swevent_init(struct perf_event *event) 9283 { 9284 u64 event_id = event->attr.config; 9285 9286 if (event->attr.type != PERF_TYPE_SOFTWARE) 9287 return -ENOENT; 9288 9289 /* 9290 * no branch sampling for software events 9291 */ 9292 if (has_branch_stack(event)) 9293 return -EOPNOTSUPP; 9294 9295 switch (event_id) { 9296 case PERF_COUNT_SW_CPU_CLOCK: 9297 case PERF_COUNT_SW_TASK_CLOCK: 9298 return -ENOENT; 9299 9300 default: 9301 break; 9302 } 9303 9304 if (event_id >= PERF_COUNT_SW_MAX) 9305 return -ENOENT; 9306 9307 if (!event->parent) { 9308 int err; 9309 9310 err = swevent_hlist_get(); 9311 if (err) 9312 return err; 9313 9314 static_key_slow_inc(&perf_swevent_enabled[event_id]); 9315 event->destroy = sw_perf_event_destroy; 9316 } 9317 9318 return 0; 9319 } 9320 9321 static struct pmu perf_swevent = { 9322 .task_ctx_nr = perf_sw_context, 9323 9324 .capabilities = PERF_PMU_CAP_NO_NMI, 9325 9326 .event_init = perf_swevent_init, 9327 .add = perf_swevent_add, 9328 .del = perf_swevent_del, 9329 .start = perf_swevent_start, 9330 .stop = perf_swevent_stop, 9331 .read = perf_swevent_read, 9332 }; 9333 9334 #ifdef CONFIG_EVENT_TRACING 9335 9336 static int perf_tp_filter_match(struct perf_event *event, 9337 struct perf_sample_data *data) 9338 { 9339 void *record = data->raw->frag.data; 9340 9341 /* only top level events have filters set */ 9342 if (event->parent) 9343 event = event->parent; 9344 9345 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 9346 return 1; 9347 return 0; 9348 } 9349 9350 static int perf_tp_event_match(struct perf_event *event, 9351 struct perf_sample_data *data, 9352 struct pt_regs *regs) 9353 { 9354 if (event->hw.state & PERF_HES_STOPPED) 9355 return 0; 9356 /* 9357 * If exclude_kernel, only trace user-space tracepoints (uprobes) 9358 */ 9359 if (event->attr.exclude_kernel && !user_mode(regs)) 9360 return 0; 9361 9362 if (!perf_tp_filter_match(event, data)) 9363 return 0; 9364 9365 return 1; 9366 } 9367 9368 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx, 9369 struct trace_event_call *call, u64 count, 9370 struct pt_regs *regs, struct hlist_head *head, 9371 struct task_struct *task) 9372 { 9373 if (bpf_prog_array_valid(call)) { 9374 *(struct pt_regs **)raw_data = regs; 9375 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) { 9376 perf_swevent_put_recursion_context(rctx); 9377 return; 9378 } 9379 } 9380 perf_tp_event(call->event.type, count, raw_data, size, regs, head, 9381 rctx, task); 9382 } 9383 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit); 9384 9385 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size, 9386 struct pt_regs *regs, struct hlist_head *head, int rctx, 9387 struct task_struct *task) 9388 { 9389 struct perf_sample_data data; 9390 struct perf_event *event; 9391 9392 struct perf_raw_record raw = { 9393 .frag = { 9394 .size = entry_size, 9395 .data = record, 9396 }, 9397 }; 9398 9399 perf_sample_data_init(&data, 0, 0); 9400 data.raw = &raw; 9401 9402 perf_trace_buf_update(record, event_type); 9403 9404 hlist_for_each_entry_rcu(event, head, hlist_entry) { 9405 if (perf_tp_event_match(event, &data, regs)) 9406 perf_swevent_event(event, count, &data, regs); 9407 } 9408 9409 /* 9410 * If we got specified a target task, also iterate its context and 9411 * deliver this event there too. 9412 */ 9413 if (task && task != current) { 9414 struct perf_event_context *ctx; 9415 struct trace_entry *entry = record; 9416 9417 rcu_read_lock(); 9418 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]); 9419 if (!ctx) 9420 goto unlock; 9421 9422 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 9423 if (event->cpu != smp_processor_id()) 9424 continue; 9425 if (event->attr.type != PERF_TYPE_TRACEPOINT) 9426 continue; 9427 if (event->attr.config != entry->type) 9428 continue; 9429 if (perf_tp_event_match(event, &data, regs)) 9430 perf_swevent_event(event, count, &data, regs); 9431 } 9432 unlock: 9433 rcu_read_unlock(); 9434 } 9435 9436 perf_swevent_put_recursion_context(rctx); 9437 } 9438 EXPORT_SYMBOL_GPL(perf_tp_event); 9439 9440 static void tp_perf_event_destroy(struct perf_event *event) 9441 { 9442 perf_trace_destroy(event); 9443 } 9444 9445 static int perf_tp_event_init(struct perf_event *event) 9446 { 9447 int err; 9448 9449 if (event->attr.type != PERF_TYPE_TRACEPOINT) 9450 return -ENOENT; 9451 9452 /* 9453 * no branch sampling for tracepoint events 9454 */ 9455 if (has_branch_stack(event)) 9456 return -EOPNOTSUPP; 9457 9458 err = perf_trace_init(event); 9459 if (err) 9460 return err; 9461 9462 event->destroy = tp_perf_event_destroy; 9463 9464 return 0; 9465 } 9466 9467 static struct pmu perf_tracepoint = { 9468 .task_ctx_nr = perf_sw_context, 9469 9470 .event_init = perf_tp_event_init, 9471 .add = perf_trace_add, 9472 .del = perf_trace_del, 9473 .start = perf_swevent_start, 9474 .stop = perf_swevent_stop, 9475 .read = perf_swevent_read, 9476 }; 9477 9478 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS) 9479 /* 9480 * Flags in config, used by dynamic PMU kprobe and uprobe 9481 * The flags should match following PMU_FORMAT_ATTR(). 9482 * 9483 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe 9484 * if not set, create kprobe/uprobe 9485 * 9486 * The following values specify a reference counter (or semaphore in the 9487 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically 9488 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset. 9489 * 9490 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset 9491 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left 9492 */ 9493 enum perf_probe_config { 9494 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */ 9495 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32, 9496 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS, 9497 }; 9498 9499 PMU_FORMAT_ATTR(retprobe, "config:0"); 9500 #endif 9501 9502 #ifdef CONFIG_KPROBE_EVENTS 9503 static struct attribute *kprobe_attrs[] = { 9504 &format_attr_retprobe.attr, 9505 NULL, 9506 }; 9507 9508 static struct attribute_group kprobe_format_group = { 9509 .name = "format", 9510 .attrs = kprobe_attrs, 9511 }; 9512 9513 static const struct attribute_group *kprobe_attr_groups[] = { 9514 &kprobe_format_group, 9515 NULL, 9516 }; 9517 9518 static int perf_kprobe_event_init(struct perf_event *event); 9519 static struct pmu perf_kprobe = { 9520 .task_ctx_nr = perf_sw_context, 9521 .event_init = perf_kprobe_event_init, 9522 .add = perf_trace_add, 9523 .del = perf_trace_del, 9524 .start = perf_swevent_start, 9525 .stop = perf_swevent_stop, 9526 .read = perf_swevent_read, 9527 .attr_groups = kprobe_attr_groups, 9528 }; 9529 9530 static int perf_kprobe_event_init(struct perf_event *event) 9531 { 9532 int err; 9533 bool is_retprobe; 9534 9535 if (event->attr.type != perf_kprobe.type) 9536 return -ENOENT; 9537 9538 if (!perfmon_capable()) 9539 return -EACCES; 9540 9541 /* 9542 * no branch sampling for probe events 9543 */ 9544 if (has_branch_stack(event)) 9545 return -EOPNOTSUPP; 9546 9547 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 9548 err = perf_kprobe_init(event, is_retprobe); 9549 if (err) 9550 return err; 9551 9552 event->destroy = perf_kprobe_destroy; 9553 9554 return 0; 9555 } 9556 #endif /* CONFIG_KPROBE_EVENTS */ 9557 9558 #ifdef CONFIG_UPROBE_EVENTS 9559 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63"); 9560 9561 static struct attribute *uprobe_attrs[] = { 9562 &format_attr_retprobe.attr, 9563 &format_attr_ref_ctr_offset.attr, 9564 NULL, 9565 }; 9566 9567 static struct attribute_group uprobe_format_group = { 9568 .name = "format", 9569 .attrs = uprobe_attrs, 9570 }; 9571 9572 static const struct attribute_group *uprobe_attr_groups[] = { 9573 &uprobe_format_group, 9574 NULL, 9575 }; 9576 9577 static int perf_uprobe_event_init(struct perf_event *event); 9578 static struct pmu perf_uprobe = { 9579 .task_ctx_nr = perf_sw_context, 9580 .event_init = perf_uprobe_event_init, 9581 .add = perf_trace_add, 9582 .del = perf_trace_del, 9583 .start = perf_swevent_start, 9584 .stop = perf_swevent_stop, 9585 .read = perf_swevent_read, 9586 .attr_groups = uprobe_attr_groups, 9587 }; 9588 9589 static int perf_uprobe_event_init(struct perf_event *event) 9590 { 9591 int err; 9592 unsigned long ref_ctr_offset; 9593 bool is_retprobe; 9594 9595 if (event->attr.type != perf_uprobe.type) 9596 return -ENOENT; 9597 9598 if (!perfmon_capable()) 9599 return -EACCES; 9600 9601 /* 9602 * no branch sampling for probe events 9603 */ 9604 if (has_branch_stack(event)) 9605 return -EOPNOTSUPP; 9606 9607 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 9608 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 9609 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe); 9610 if (err) 9611 return err; 9612 9613 event->destroy = perf_uprobe_destroy; 9614 9615 return 0; 9616 } 9617 #endif /* CONFIG_UPROBE_EVENTS */ 9618 9619 static inline void perf_tp_register(void) 9620 { 9621 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 9622 #ifdef CONFIG_KPROBE_EVENTS 9623 perf_pmu_register(&perf_kprobe, "kprobe", -1); 9624 #endif 9625 #ifdef CONFIG_UPROBE_EVENTS 9626 perf_pmu_register(&perf_uprobe, "uprobe", -1); 9627 #endif 9628 } 9629 9630 static void perf_event_free_filter(struct perf_event *event) 9631 { 9632 ftrace_profile_free_filter(event); 9633 } 9634 9635 #ifdef CONFIG_BPF_SYSCALL 9636 static void bpf_overflow_handler(struct perf_event *event, 9637 struct perf_sample_data *data, 9638 struct pt_regs *regs) 9639 { 9640 struct bpf_perf_event_data_kern ctx = { 9641 .data = data, 9642 .event = event, 9643 }; 9644 int ret = 0; 9645 9646 ctx.regs = perf_arch_bpf_user_pt_regs(regs); 9647 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) 9648 goto out; 9649 rcu_read_lock(); 9650 ret = BPF_PROG_RUN(event->prog, &ctx); 9651 rcu_read_unlock(); 9652 out: 9653 __this_cpu_dec(bpf_prog_active); 9654 if (!ret) 9655 return; 9656 9657 event->orig_overflow_handler(event, data, regs); 9658 } 9659 9660 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd) 9661 { 9662 struct bpf_prog *prog; 9663 9664 if (event->overflow_handler_context) 9665 /* hw breakpoint or kernel counter */ 9666 return -EINVAL; 9667 9668 if (event->prog) 9669 return -EEXIST; 9670 9671 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT); 9672 if (IS_ERR(prog)) 9673 return PTR_ERR(prog); 9674 9675 if (event->attr.precise_ip && 9676 prog->call_get_stack && 9677 (!(event->attr.sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY) || 9678 event->attr.exclude_callchain_kernel || 9679 event->attr.exclude_callchain_user)) { 9680 /* 9681 * On perf_event with precise_ip, calling bpf_get_stack() 9682 * may trigger unwinder warnings and occasional crashes. 9683 * bpf_get_[stack|stackid] works around this issue by using 9684 * callchain attached to perf_sample_data. If the 9685 * perf_event does not full (kernel and user) callchain 9686 * attached to perf_sample_data, do not allow attaching BPF 9687 * program that calls bpf_get_[stack|stackid]. 9688 */ 9689 bpf_prog_put(prog); 9690 return -EPROTO; 9691 } 9692 9693 event->prog = prog; 9694 event->orig_overflow_handler = READ_ONCE(event->overflow_handler); 9695 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler); 9696 return 0; 9697 } 9698 9699 static void perf_event_free_bpf_handler(struct perf_event *event) 9700 { 9701 struct bpf_prog *prog = event->prog; 9702 9703 if (!prog) 9704 return; 9705 9706 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler); 9707 event->prog = NULL; 9708 bpf_prog_put(prog); 9709 } 9710 #else 9711 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd) 9712 { 9713 return -EOPNOTSUPP; 9714 } 9715 static void perf_event_free_bpf_handler(struct perf_event *event) 9716 { 9717 } 9718 #endif 9719 9720 /* 9721 * returns true if the event is a tracepoint, or a kprobe/upprobe created 9722 * with perf_event_open() 9723 */ 9724 static inline bool perf_event_is_tracing(struct perf_event *event) 9725 { 9726 if (event->pmu == &perf_tracepoint) 9727 return true; 9728 #ifdef CONFIG_KPROBE_EVENTS 9729 if (event->pmu == &perf_kprobe) 9730 return true; 9731 #endif 9732 #ifdef CONFIG_UPROBE_EVENTS 9733 if (event->pmu == &perf_uprobe) 9734 return true; 9735 #endif 9736 return false; 9737 } 9738 9739 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 9740 { 9741 bool is_kprobe, is_tracepoint, is_syscall_tp; 9742 struct bpf_prog *prog; 9743 int ret; 9744 9745 if (!perf_event_is_tracing(event)) 9746 return perf_event_set_bpf_handler(event, prog_fd); 9747 9748 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE; 9749 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT; 9750 is_syscall_tp = is_syscall_trace_event(event->tp_event); 9751 if (!is_kprobe && !is_tracepoint && !is_syscall_tp) 9752 /* bpf programs can only be attached to u/kprobe or tracepoint */ 9753 return -EINVAL; 9754 9755 prog = bpf_prog_get(prog_fd); 9756 if (IS_ERR(prog)) 9757 return PTR_ERR(prog); 9758 9759 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) || 9760 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) || 9761 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) { 9762 /* valid fd, but invalid bpf program type */ 9763 bpf_prog_put(prog); 9764 return -EINVAL; 9765 } 9766 9767 /* Kprobe override only works for kprobes, not uprobes. */ 9768 if (prog->kprobe_override && 9769 !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) { 9770 bpf_prog_put(prog); 9771 return -EINVAL; 9772 } 9773 9774 if (is_tracepoint || is_syscall_tp) { 9775 int off = trace_event_get_offsets(event->tp_event); 9776 9777 if (prog->aux->max_ctx_offset > off) { 9778 bpf_prog_put(prog); 9779 return -EACCES; 9780 } 9781 } 9782 9783 ret = perf_event_attach_bpf_prog(event, prog); 9784 if (ret) 9785 bpf_prog_put(prog); 9786 return ret; 9787 } 9788 9789 static void perf_event_free_bpf_prog(struct perf_event *event) 9790 { 9791 if (!perf_event_is_tracing(event)) { 9792 perf_event_free_bpf_handler(event); 9793 return; 9794 } 9795 perf_event_detach_bpf_prog(event); 9796 } 9797 9798 #else 9799 9800 static inline void perf_tp_register(void) 9801 { 9802 } 9803 9804 static void perf_event_free_filter(struct perf_event *event) 9805 { 9806 } 9807 9808 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 9809 { 9810 return -ENOENT; 9811 } 9812 9813 static void perf_event_free_bpf_prog(struct perf_event *event) 9814 { 9815 } 9816 #endif /* CONFIG_EVENT_TRACING */ 9817 9818 #ifdef CONFIG_HAVE_HW_BREAKPOINT 9819 void perf_bp_event(struct perf_event *bp, void *data) 9820 { 9821 struct perf_sample_data sample; 9822 struct pt_regs *regs = data; 9823 9824 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 9825 9826 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 9827 perf_swevent_event(bp, 1, &sample, regs); 9828 } 9829 #endif 9830 9831 /* 9832 * Allocate a new address filter 9833 */ 9834 static struct perf_addr_filter * 9835 perf_addr_filter_new(struct perf_event *event, struct list_head *filters) 9836 { 9837 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu); 9838 struct perf_addr_filter *filter; 9839 9840 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node); 9841 if (!filter) 9842 return NULL; 9843 9844 INIT_LIST_HEAD(&filter->entry); 9845 list_add_tail(&filter->entry, filters); 9846 9847 return filter; 9848 } 9849 9850 static void free_filters_list(struct list_head *filters) 9851 { 9852 struct perf_addr_filter *filter, *iter; 9853 9854 list_for_each_entry_safe(filter, iter, filters, entry) { 9855 path_put(&filter->path); 9856 list_del(&filter->entry); 9857 kfree(filter); 9858 } 9859 } 9860 9861 /* 9862 * Free existing address filters and optionally install new ones 9863 */ 9864 static void perf_addr_filters_splice(struct perf_event *event, 9865 struct list_head *head) 9866 { 9867 unsigned long flags; 9868 LIST_HEAD(list); 9869 9870 if (!has_addr_filter(event)) 9871 return; 9872 9873 /* don't bother with children, they don't have their own filters */ 9874 if (event->parent) 9875 return; 9876 9877 raw_spin_lock_irqsave(&event->addr_filters.lock, flags); 9878 9879 list_splice_init(&event->addr_filters.list, &list); 9880 if (head) 9881 list_splice(head, &event->addr_filters.list); 9882 9883 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags); 9884 9885 free_filters_list(&list); 9886 } 9887 9888 /* 9889 * Scan through mm's vmas and see if one of them matches the 9890 * @filter; if so, adjust filter's address range. 9891 * Called with mm::mmap_lock down for reading. 9892 */ 9893 static void perf_addr_filter_apply(struct perf_addr_filter *filter, 9894 struct mm_struct *mm, 9895 struct perf_addr_filter_range *fr) 9896 { 9897 struct vm_area_struct *vma; 9898 9899 for (vma = mm->mmap; vma; vma = vma->vm_next) { 9900 if (!vma->vm_file) 9901 continue; 9902 9903 if (perf_addr_filter_vma_adjust(filter, vma, fr)) 9904 return; 9905 } 9906 } 9907 9908 /* 9909 * Update event's address range filters based on the 9910 * task's existing mappings, if any. 9911 */ 9912 static void perf_event_addr_filters_apply(struct perf_event *event) 9913 { 9914 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 9915 struct task_struct *task = READ_ONCE(event->ctx->task); 9916 struct perf_addr_filter *filter; 9917 struct mm_struct *mm = NULL; 9918 unsigned int count = 0; 9919 unsigned long flags; 9920 9921 /* 9922 * We may observe TASK_TOMBSTONE, which means that the event tear-down 9923 * will stop on the parent's child_mutex that our caller is also holding 9924 */ 9925 if (task == TASK_TOMBSTONE) 9926 return; 9927 9928 if (ifh->nr_file_filters) { 9929 mm = get_task_mm(event->ctx->task); 9930 if (!mm) 9931 goto restart; 9932 9933 mmap_read_lock(mm); 9934 } 9935 9936 raw_spin_lock_irqsave(&ifh->lock, flags); 9937 list_for_each_entry(filter, &ifh->list, entry) { 9938 if (filter->path.dentry) { 9939 /* 9940 * Adjust base offset if the filter is associated to a 9941 * binary that needs to be mapped: 9942 */ 9943 event->addr_filter_ranges[count].start = 0; 9944 event->addr_filter_ranges[count].size = 0; 9945 9946 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]); 9947 } else { 9948 event->addr_filter_ranges[count].start = filter->offset; 9949 event->addr_filter_ranges[count].size = filter->size; 9950 } 9951 9952 count++; 9953 } 9954 9955 event->addr_filters_gen++; 9956 raw_spin_unlock_irqrestore(&ifh->lock, flags); 9957 9958 if (ifh->nr_file_filters) { 9959 mmap_read_unlock(mm); 9960 9961 mmput(mm); 9962 } 9963 9964 restart: 9965 perf_event_stop(event, 1); 9966 } 9967 9968 /* 9969 * Address range filtering: limiting the data to certain 9970 * instruction address ranges. Filters are ioctl()ed to us from 9971 * userspace as ascii strings. 9972 * 9973 * Filter string format: 9974 * 9975 * ACTION RANGE_SPEC 9976 * where ACTION is one of the 9977 * * "filter": limit the trace to this region 9978 * * "start": start tracing from this address 9979 * * "stop": stop tracing at this address/region; 9980 * RANGE_SPEC is 9981 * * for kernel addresses: <start address>[/<size>] 9982 * * for object files: <start address>[/<size>]@</path/to/object/file> 9983 * 9984 * if <size> is not specified or is zero, the range is treated as a single 9985 * address; not valid for ACTION=="filter". 9986 */ 9987 enum { 9988 IF_ACT_NONE = -1, 9989 IF_ACT_FILTER, 9990 IF_ACT_START, 9991 IF_ACT_STOP, 9992 IF_SRC_FILE, 9993 IF_SRC_KERNEL, 9994 IF_SRC_FILEADDR, 9995 IF_SRC_KERNELADDR, 9996 }; 9997 9998 enum { 9999 IF_STATE_ACTION = 0, 10000 IF_STATE_SOURCE, 10001 IF_STATE_END, 10002 }; 10003 10004 static const match_table_t if_tokens = { 10005 { IF_ACT_FILTER, "filter" }, 10006 { IF_ACT_START, "start" }, 10007 { IF_ACT_STOP, "stop" }, 10008 { IF_SRC_FILE, "%u/%u@%s" }, 10009 { IF_SRC_KERNEL, "%u/%u" }, 10010 { IF_SRC_FILEADDR, "%u@%s" }, 10011 { IF_SRC_KERNELADDR, "%u" }, 10012 { IF_ACT_NONE, NULL }, 10013 }; 10014 10015 /* 10016 * Address filter string parser 10017 */ 10018 static int 10019 perf_event_parse_addr_filter(struct perf_event *event, char *fstr, 10020 struct list_head *filters) 10021 { 10022 struct perf_addr_filter *filter = NULL; 10023 char *start, *orig, *filename = NULL; 10024 substring_t args[MAX_OPT_ARGS]; 10025 int state = IF_STATE_ACTION, token; 10026 unsigned int kernel = 0; 10027 int ret = -EINVAL; 10028 10029 orig = fstr = kstrdup(fstr, GFP_KERNEL); 10030 if (!fstr) 10031 return -ENOMEM; 10032 10033 while ((start = strsep(&fstr, " ,\n")) != NULL) { 10034 static const enum perf_addr_filter_action_t actions[] = { 10035 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER, 10036 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START, 10037 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP, 10038 }; 10039 ret = -EINVAL; 10040 10041 if (!*start) 10042 continue; 10043 10044 /* filter definition begins */ 10045 if (state == IF_STATE_ACTION) { 10046 filter = perf_addr_filter_new(event, filters); 10047 if (!filter) 10048 goto fail; 10049 } 10050 10051 token = match_token(start, if_tokens, args); 10052 switch (token) { 10053 case IF_ACT_FILTER: 10054 case IF_ACT_START: 10055 case IF_ACT_STOP: 10056 if (state != IF_STATE_ACTION) 10057 goto fail; 10058 10059 filter->action = actions[token]; 10060 state = IF_STATE_SOURCE; 10061 break; 10062 10063 case IF_SRC_KERNELADDR: 10064 case IF_SRC_KERNEL: 10065 kernel = 1; 10066 fallthrough; 10067 10068 case IF_SRC_FILEADDR: 10069 case IF_SRC_FILE: 10070 if (state != IF_STATE_SOURCE) 10071 goto fail; 10072 10073 *args[0].to = 0; 10074 ret = kstrtoul(args[0].from, 0, &filter->offset); 10075 if (ret) 10076 goto fail; 10077 10078 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) { 10079 *args[1].to = 0; 10080 ret = kstrtoul(args[1].from, 0, &filter->size); 10081 if (ret) 10082 goto fail; 10083 } 10084 10085 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) { 10086 int fpos = token == IF_SRC_FILE ? 2 : 1; 10087 10088 filename = match_strdup(&args[fpos]); 10089 if (!filename) { 10090 ret = -ENOMEM; 10091 goto fail; 10092 } 10093 } 10094 10095 state = IF_STATE_END; 10096 break; 10097 10098 default: 10099 goto fail; 10100 } 10101 10102 /* 10103 * Filter definition is fully parsed, validate and install it. 10104 * Make sure that it doesn't contradict itself or the event's 10105 * attribute. 10106 */ 10107 if (state == IF_STATE_END) { 10108 ret = -EINVAL; 10109 if (kernel && event->attr.exclude_kernel) 10110 goto fail; 10111 10112 /* 10113 * ACTION "filter" must have a non-zero length region 10114 * specified. 10115 */ 10116 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER && 10117 !filter->size) 10118 goto fail; 10119 10120 if (!kernel) { 10121 if (!filename) 10122 goto fail; 10123 10124 /* 10125 * For now, we only support file-based filters 10126 * in per-task events; doing so for CPU-wide 10127 * events requires additional context switching 10128 * trickery, since same object code will be 10129 * mapped at different virtual addresses in 10130 * different processes. 10131 */ 10132 ret = -EOPNOTSUPP; 10133 if (!event->ctx->task) 10134 goto fail_free_name; 10135 10136 /* look up the path and grab its inode */ 10137 ret = kern_path(filename, LOOKUP_FOLLOW, 10138 &filter->path); 10139 if (ret) 10140 goto fail_free_name; 10141 10142 kfree(filename); 10143 filename = NULL; 10144 10145 ret = -EINVAL; 10146 if (!filter->path.dentry || 10147 !S_ISREG(d_inode(filter->path.dentry) 10148 ->i_mode)) 10149 goto fail; 10150 10151 event->addr_filters.nr_file_filters++; 10152 } 10153 10154 /* ready to consume more filters */ 10155 state = IF_STATE_ACTION; 10156 filter = NULL; 10157 } 10158 } 10159 10160 if (state != IF_STATE_ACTION) 10161 goto fail; 10162 10163 kfree(orig); 10164 10165 return 0; 10166 10167 fail_free_name: 10168 kfree(filename); 10169 fail: 10170 free_filters_list(filters); 10171 kfree(orig); 10172 10173 return ret; 10174 } 10175 10176 static int 10177 perf_event_set_addr_filter(struct perf_event *event, char *filter_str) 10178 { 10179 LIST_HEAD(filters); 10180 int ret; 10181 10182 /* 10183 * Since this is called in perf_ioctl() path, we're already holding 10184 * ctx::mutex. 10185 */ 10186 lockdep_assert_held(&event->ctx->mutex); 10187 10188 if (WARN_ON_ONCE(event->parent)) 10189 return -EINVAL; 10190 10191 ret = perf_event_parse_addr_filter(event, filter_str, &filters); 10192 if (ret) 10193 goto fail_clear_files; 10194 10195 ret = event->pmu->addr_filters_validate(&filters); 10196 if (ret) 10197 goto fail_free_filters; 10198 10199 /* remove existing filters, if any */ 10200 perf_addr_filters_splice(event, &filters); 10201 10202 /* install new filters */ 10203 perf_event_for_each_child(event, perf_event_addr_filters_apply); 10204 10205 return ret; 10206 10207 fail_free_filters: 10208 free_filters_list(&filters); 10209 10210 fail_clear_files: 10211 event->addr_filters.nr_file_filters = 0; 10212 10213 return ret; 10214 } 10215 10216 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 10217 { 10218 int ret = -EINVAL; 10219 char *filter_str; 10220 10221 filter_str = strndup_user(arg, PAGE_SIZE); 10222 if (IS_ERR(filter_str)) 10223 return PTR_ERR(filter_str); 10224 10225 #ifdef CONFIG_EVENT_TRACING 10226 if (perf_event_is_tracing(event)) { 10227 struct perf_event_context *ctx = event->ctx; 10228 10229 /* 10230 * Beware, here be dragons!! 10231 * 10232 * the tracepoint muck will deadlock against ctx->mutex, but 10233 * the tracepoint stuff does not actually need it. So 10234 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we 10235 * already have a reference on ctx. 10236 * 10237 * This can result in event getting moved to a different ctx, 10238 * but that does not affect the tracepoint state. 10239 */ 10240 mutex_unlock(&ctx->mutex); 10241 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 10242 mutex_lock(&ctx->mutex); 10243 } else 10244 #endif 10245 if (has_addr_filter(event)) 10246 ret = perf_event_set_addr_filter(event, filter_str); 10247 10248 kfree(filter_str); 10249 return ret; 10250 } 10251 10252 /* 10253 * hrtimer based swevent callback 10254 */ 10255 10256 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 10257 { 10258 enum hrtimer_restart ret = HRTIMER_RESTART; 10259 struct perf_sample_data data; 10260 struct pt_regs *regs; 10261 struct perf_event *event; 10262 u64 period; 10263 10264 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 10265 10266 if (event->state != PERF_EVENT_STATE_ACTIVE) 10267 return HRTIMER_NORESTART; 10268 10269 event->pmu->read(event); 10270 10271 perf_sample_data_init(&data, 0, event->hw.last_period); 10272 regs = get_irq_regs(); 10273 10274 if (regs && !perf_exclude_event(event, regs)) { 10275 if (!(event->attr.exclude_idle && is_idle_task(current))) 10276 if (__perf_event_overflow(event, 1, &data, regs)) 10277 ret = HRTIMER_NORESTART; 10278 } 10279 10280 period = max_t(u64, 10000, event->hw.sample_period); 10281 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 10282 10283 return ret; 10284 } 10285 10286 static void perf_swevent_start_hrtimer(struct perf_event *event) 10287 { 10288 struct hw_perf_event *hwc = &event->hw; 10289 s64 period; 10290 10291 if (!is_sampling_event(event)) 10292 return; 10293 10294 period = local64_read(&hwc->period_left); 10295 if (period) { 10296 if (period < 0) 10297 period = 10000; 10298 10299 local64_set(&hwc->period_left, 0); 10300 } else { 10301 period = max_t(u64, 10000, hwc->sample_period); 10302 } 10303 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), 10304 HRTIMER_MODE_REL_PINNED_HARD); 10305 } 10306 10307 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 10308 { 10309 struct hw_perf_event *hwc = &event->hw; 10310 10311 if (is_sampling_event(event)) { 10312 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 10313 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 10314 10315 hrtimer_cancel(&hwc->hrtimer); 10316 } 10317 } 10318 10319 static void perf_swevent_init_hrtimer(struct perf_event *event) 10320 { 10321 struct hw_perf_event *hwc = &event->hw; 10322 10323 if (!is_sampling_event(event)) 10324 return; 10325 10326 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 10327 hwc->hrtimer.function = perf_swevent_hrtimer; 10328 10329 /* 10330 * Since hrtimers have a fixed rate, we can do a static freq->period 10331 * mapping and avoid the whole period adjust feedback stuff. 10332 */ 10333 if (event->attr.freq) { 10334 long freq = event->attr.sample_freq; 10335 10336 event->attr.sample_period = NSEC_PER_SEC / freq; 10337 hwc->sample_period = event->attr.sample_period; 10338 local64_set(&hwc->period_left, hwc->sample_period); 10339 hwc->last_period = hwc->sample_period; 10340 event->attr.freq = 0; 10341 } 10342 } 10343 10344 /* 10345 * Software event: cpu wall time clock 10346 */ 10347 10348 static void cpu_clock_event_update(struct perf_event *event) 10349 { 10350 s64 prev; 10351 u64 now; 10352 10353 now = local_clock(); 10354 prev = local64_xchg(&event->hw.prev_count, now); 10355 local64_add(now - prev, &event->count); 10356 } 10357 10358 static void cpu_clock_event_start(struct perf_event *event, int flags) 10359 { 10360 local64_set(&event->hw.prev_count, local_clock()); 10361 perf_swevent_start_hrtimer(event); 10362 } 10363 10364 static void cpu_clock_event_stop(struct perf_event *event, int flags) 10365 { 10366 perf_swevent_cancel_hrtimer(event); 10367 cpu_clock_event_update(event); 10368 } 10369 10370 static int cpu_clock_event_add(struct perf_event *event, int flags) 10371 { 10372 if (flags & PERF_EF_START) 10373 cpu_clock_event_start(event, flags); 10374 perf_event_update_userpage(event); 10375 10376 return 0; 10377 } 10378 10379 static void cpu_clock_event_del(struct perf_event *event, int flags) 10380 { 10381 cpu_clock_event_stop(event, flags); 10382 } 10383 10384 static void cpu_clock_event_read(struct perf_event *event) 10385 { 10386 cpu_clock_event_update(event); 10387 } 10388 10389 static int cpu_clock_event_init(struct perf_event *event) 10390 { 10391 if (event->attr.type != PERF_TYPE_SOFTWARE) 10392 return -ENOENT; 10393 10394 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 10395 return -ENOENT; 10396 10397 /* 10398 * no branch sampling for software events 10399 */ 10400 if (has_branch_stack(event)) 10401 return -EOPNOTSUPP; 10402 10403 perf_swevent_init_hrtimer(event); 10404 10405 return 0; 10406 } 10407 10408 static struct pmu perf_cpu_clock = { 10409 .task_ctx_nr = perf_sw_context, 10410 10411 .capabilities = PERF_PMU_CAP_NO_NMI, 10412 10413 .event_init = cpu_clock_event_init, 10414 .add = cpu_clock_event_add, 10415 .del = cpu_clock_event_del, 10416 .start = cpu_clock_event_start, 10417 .stop = cpu_clock_event_stop, 10418 .read = cpu_clock_event_read, 10419 }; 10420 10421 /* 10422 * Software event: task time clock 10423 */ 10424 10425 static void task_clock_event_update(struct perf_event *event, u64 now) 10426 { 10427 u64 prev; 10428 s64 delta; 10429 10430 prev = local64_xchg(&event->hw.prev_count, now); 10431 delta = now - prev; 10432 local64_add(delta, &event->count); 10433 } 10434 10435 static void task_clock_event_start(struct perf_event *event, int flags) 10436 { 10437 local64_set(&event->hw.prev_count, event->ctx->time); 10438 perf_swevent_start_hrtimer(event); 10439 } 10440 10441 static void task_clock_event_stop(struct perf_event *event, int flags) 10442 { 10443 perf_swevent_cancel_hrtimer(event); 10444 task_clock_event_update(event, event->ctx->time); 10445 } 10446 10447 static int task_clock_event_add(struct perf_event *event, int flags) 10448 { 10449 if (flags & PERF_EF_START) 10450 task_clock_event_start(event, flags); 10451 perf_event_update_userpage(event); 10452 10453 return 0; 10454 } 10455 10456 static void task_clock_event_del(struct perf_event *event, int flags) 10457 { 10458 task_clock_event_stop(event, PERF_EF_UPDATE); 10459 } 10460 10461 static void task_clock_event_read(struct perf_event *event) 10462 { 10463 u64 now = perf_clock(); 10464 u64 delta = now - event->ctx->timestamp; 10465 u64 time = event->ctx->time + delta; 10466 10467 task_clock_event_update(event, time); 10468 } 10469 10470 static int task_clock_event_init(struct perf_event *event) 10471 { 10472 if (event->attr.type != PERF_TYPE_SOFTWARE) 10473 return -ENOENT; 10474 10475 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 10476 return -ENOENT; 10477 10478 /* 10479 * no branch sampling for software events 10480 */ 10481 if (has_branch_stack(event)) 10482 return -EOPNOTSUPP; 10483 10484 perf_swevent_init_hrtimer(event); 10485 10486 return 0; 10487 } 10488 10489 static struct pmu perf_task_clock = { 10490 .task_ctx_nr = perf_sw_context, 10491 10492 .capabilities = PERF_PMU_CAP_NO_NMI, 10493 10494 .event_init = task_clock_event_init, 10495 .add = task_clock_event_add, 10496 .del = task_clock_event_del, 10497 .start = task_clock_event_start, 10498 .stop = task_clock_event_stop, 10499 .read = task_clock_event_read, 10500 }; 10501 10502 static void perf_pmu_nop_void(struct pmu *pmu) 10503 { 10504 } 10505 10506 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags) 10507 { 10508 } 10509 10510 static int perf_pmu_nop_int(struct pmu *pmu) 10511 { 10512 return 0; 10513 } 10514 10515 static int perf_event_nop_int(struct perf_event *event, u64 value) 10516 { 10517 return 0; 10518 } 10519 10520 static DEFINE_PER_CPU(unsigned int, nop_txn_flags); 10521 10522 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags) 10523 { 10524 __this_cpu_write(nop_txn_flags, flags); 10525 10526 if (flags & ~PERF_PMU_TXN_ADD) 10527 return; 10528 10529 perf_pmu_disable(pmu); 10530 } 10531 10532 static int perf_pmu_commit_txn(struct pmu *pmu) 10533 { 10534 unsigned int flags = __this_cpu_read(nop_txn_flags); 10535 10536 __this_cpu_write(nop_txn_flags, 0); 10537 10538 if (flags & ~PERF_PMU_TXN_ADD) 10539 return 0; 10540 10541 perf_pmu_enable(pmu); 10542 return 0; 10543 } 10544 10545 static void perf_pmu_cancel_txn(struct pmu *pmu) 10546 { 10547 unsigned int flags = __this_cpu_read(nop_txn_flags); 10548 10549 __this_cpu_write(nop_txn_flags, 0); 10550 10551 if (flags & ~PERF_PMU_TXN_ADD) 10552 return; 10553 10554 perf_pmu_enable(pmu); 10555 } 10556 10557 static int perf_event_idx_default(struct perf_event *event) 10558 { 10559 return 0; 10560 } 10561 10562 /* 10563 * Ensures all contexts with the same task_ctx_nr have the same 10564 * pmu_cpu_context too. 10565 */ 10566 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn) 10567 { 10568 struct pmu *pmu; 10569 10570 if (ctxn < 0) 10571 return NULL; 10572 10573 list_for_each_entry(pmu, &pmus, entry) { 10574 if (pmu->task_ctx_nr == ctxn) 10575 return pmu->pmu_cpu_context; 10576 } 10577 10578 return NULL; 10579 } 10580 10581 static void free_pmu_context(struct pmu *pmu) 10582 { 10583 /* 10584 * Static contexts such as perf_sw_context have a global lifetime 10585 * and may be shared between different PMUs. Avoid freeing them 10586 * when a single PMU is going away. 10587 */ 10588 if (pmu->task_ctx_nr > perf_invalid_context) 10589 return; 10590 10591 free_percpu(pmu->pmu_cpu_context); 10592 } 10593 10594 /* 10595 * Let userspace know that this PMU supports address range filtering: 10596 */ 10597 static ssize_t nr_addr_filters_show(struct device *dev, 10598 struct device_attribute *attr, 10599 char *page) 10600 { 10601 struct pmu *pmu = dev_get_drvdata(dev); 10602 10603 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters); 10604 } 10605 DEVICE_ATTR_RO(nr_addr_filters); 10606 10607 static struct idr pmu_idr; 10608 10609 static ssize_t 10610 type_show(struct device *dev, struct device_attribute *attr, char *page) 10611 { 10612 struct pmu *pmu = dev_get_drvdata(dev); 10613 10614 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); 10615 } 10616 static DEVICE_ATTR_RO(type); 10617 10618 static ssize_t 10619 perf_event_mux_interval_ms_show(struct device *dev, 10620 struct device_attribute *attr, 10621 char *page) 10622 { 10623 struct pmu *pmu = dev_get_drvdata(dev); 10624 10625 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms); 10626 } 10627 10628 static DEFINE_MUTEX(mux_interval_mutex); 10629 10630 static ssize_t 10631 perf_event_mux_interval_ms_store(struct device *dev, 10632 struct device_attribute *attr, 10633 const char *buf, size_t count) 10634 { 10635 struct pmu *pmu = dev_get_drvdata(dev); 10636 int timer, cpu, ret; 10637 10638 ret = kstrtoint(buf, 0, &timer); 10639 if (ret) 10640 return ret; 10641 10642 if (timer < 1) 10643 return -EINVAL; 10644 10645 /* same value, noting to do */ 10646 if (timer == pmu->hrtimer_interval_ms) 10647 return count; 10648 10649 mutex_lock(&mux_interval_mutex); 10650 pmu->hrtimer_interval_ms = timer; 10651 10652 /* update all cpuctx for this PMU */ 10653 cpus_read_lock(); 10654 for_each_online_cpu(cpu) { 10655 struct perf_cpu_context *cpuctx; 10656 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 10657 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 10658 10659 cpu_function_call(cpu, 10660 (remote_function_f)perf_mux_hrtimer_restart, cpuctx); 10661 } 10662 cpus_read_unlock(); 10663 mutex_unlock(&mux_interval_mutex); 10664 10665 return count; 10666 } 10667 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 10668 10669 static struct attribute *pmu_dev_attrs[] = { 10670 &dev_attr_type.attr, 10671 &dev_attr_perf_event_mux_interval_ms.attr, 10672 NULL, 10673 }; 10674 ATTRIBUTE_GROUPS(pmu_dev); 10675 10676 static int pmu_bus_running; 10677 static struct bus_type pmu_bus = { 10678 .name = "event_source", 10679 .dev_groups = pmu_dev_groups, 10680 }; 10681 10682 static void pmu_dev_release(struct device *dev) 10683 { 10684 kfree(dev); 10685 } 10686 10687 static int pmu_dev_alloc(struct pmu *pmu) 10688 { 10689 int ret = -ENOMEM; 10690 10691 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 10692 if (!pmu->dev) 10693 goto out; 10694 10695 pmu->dev->groups = pmu->attr_groups; 10696 device_initialize(pmu->dev); 10697 ret = dev_set_name(pmu->dev, "%s", pmu->name); 10698 if (ret) 10699 goto free_dev; 10700 10701 dev_set_drvdata(pmu->dev, pmu); 10702 pmu->dev->bus = &pmu_bus; 10703 pmu->dev->release = pmu_dev_release; 10704 ret = device_add(pmu->dev); 10705 if (ret) 10706 goto free_dev; 10707 10708 /* For PMUs with address filters, throw in an extra attribute: */ 10709 if (pmu->nr_addr_filters) 10710 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters); 10711 10712 if (ret) 10713 goto del_dev; 10714 10715 if (pmu->attr_update) 10716 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update); 10717 10718 if (ret) 10719 goto del_dev; 10720 10721 out: 10722 return ret; 10723 10724 del_dev: 10725 device_del(pmu->dev); 10726 10727 free_dev: 10728 put_device(pmu->dev); 10729 goto out; 10730 } 10731 10732 static struct lock_class_key cpuctx_mutex; 10733 static struct lock_class_key cpuctx_lock; 10734 10735 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 10736 { 10737 int cpu, ret, max = PERF_TYPE_MAX; 10738 10739 mutex_lock(&pmus_lock); 10740 ret = -ENOMEM; 10741 pmu->pmu_disable_count = alloc_percpu(int); 10742 if (!pmu->pmu_disable_count) 10743 goto unlock; 10744 10745 pmu->type = -1; 10746 if (!name) 10747 goto skip_type; 10748 pmu->name = name; 10749 10750 if (type != PERF_TYPE_SOFTWARE) { 10751 if (type >= 0) 10752 max = type; 10753 10754 ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL); 10755 if (ret < 0) 10756 goto free_pdc; 10757 10758 WARN_ON(type >= 0 && ret != type); 10759 10760 type = ret; 10761 } 10762 pmu->type = type; 10763 10764 if (pmu_bus_running) { 10765 ret = pmu_dev_alloc(pmu); 10766 if (ret) 10767 goto free_idr; 10768 } 10769 10770 skip_type: 10771 if (pmu->task_ctx_nr == perf_hw_context) { 10772 static int hw_context_taken = 0; 10773 10774 /* 10775 * Other than systems with heterogeneous CPUs, it never makes 10776 * sense for two PMUs to share perf_hw_context. PMUs which are 10777 * uncore must use perf_invalid_context. 10778 */ 10779 if (WARN_ON_ONCE(hw_context_taken && 10780 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS))) 10781 pmu->task_ctx_nr = perf_invalid_context; 10782 10783 hw_context_taken = 1; 10784 } 10785 10786 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); 10787 if (pmu->pmu_cpu_context) 10788 goto got_cpu_context; 10789 10790 ret = -ENOMEM; 10791 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); 10792 if (!pmu->pmu_cpu_context) 10793 goto free_dev; 10794 10795 for_each_possible_cpu(cpu) { 10796 struct perf_cpu_context *cpuctx; 10797 10798 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 10799 __perf_event_init_context(&cpuctx->ctx); 10800 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 10801 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 10802 cpuctx->ctx.pmu = pmu; 10803 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask); 10804 10805 __perf_mux_hrtimer_init(cpuctx, cpu); 10806 10807 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default); 10808 cpuctx->heap = cpuctx->heap_default; 10809 } 10810 10811 got_cpu_context: 10812 if (!pmu->start_txn) { 10813 if (pmu->pmu_enable) { 10814 /* 10815 * If we have pmu_enable/pmu_disable calls, install 10816 * transaction stubs that use that to try and batch 10817 * hardware accesses. 10818 */ 10819 pmu->start_txn = perf_pmu_start_txn; 10820 pmu->commit_txn = perf_pmu_commit_txn; 10821 pmu->cancel_txn = perf_pmu_cancel_txn; 10822 } else { 10823 pmu->start_txn = perf_pmu_nop_txn; 10824 pmu->commit_txn = perf_pmu_nop_int; 10825 pmu->cancel_txn = perf_pmu_nop_void; 10826 } 10827 } 10828 10829 if (!pmu->pmu_enable) { 10830 pmu->pmu_enable = perf_pmu_nop_void; 10831 pmu->pmu_disable = perf_pmu_nop_void; 10832 } 10833 10834 if (!pmu->check_period) 10835 pmu->check_period = perf_event_nop_int; 10836 10837 if (!pmu->event_idx) 10838 pmu->event_idx = perf_event_idx_default; 10839 10840 /* 10841 * Ensure the TYPE_SOFTWARE PMUs are at the head of the list, 10842 * since these cannot be in the IDR. This way the linear search 10843 * is fast, provided a valid software event is provided. 10844 */ 10845 if (type == PERF_TYPE_SOFTWARE || !name) 10846 list_add_rcu(&pmu->entry, &pmus); 10847 else 10848 list_add_tail_rcu(&pmu->entry, &pmus); 10849 10850 atomic_set(&pmu->exclusive_cnt, 0); 10851 ret = 0; 10852 unlock: 10853 mutex_unlock(&pmus_lock); 10854 10855 return ret; 10856 10857 free_dev: 10858 device_del(pmu->dev); 10859 put_device(pmu->dev); 10860 10861 free_idr: 10862 if (pmu->type != PERF_TYPE_SOFTWARE) 10863 idr_remove(&pmu_idr, pmu->type); 10864 10865 free_pdc: 10866 free_percpu(pmu->pmu_disable_count); 10867 goto unlock; 10868 } 10869 EXPORT_SYMBOL_GPL(perf_pmu_register); 10870 10871 void perf_pmu_unregister(struct pmu *pmu) 10872 { 10873 mutex_lock(&pmus_lock); 10874 list_del_rcu(&pmu->entry); 10875 10876 /* 10877 * We dereference the pmu list under both SRCU and regular RCU, so 10878 * synchronize against both of those. 10879 */ 10880 synchronize_srcu(&pmus_srcu); 10881 synchronize_rcu(); 10882 10883 free_percpu(pmu->pmu_disable_count); 10884 if (pmu->type != PERF_TYPE_SOFTWARE) 10885 idr_remove(&pmu_idr, pmu->type); 10886 if (pmu_bus_running) { 10887 if (pmu->nr_addr_filters) 10888 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters); 10889 device_del(pmu->dev); 10890 put_device(pmu->dev); 10891 } 10892 free_pmu_context(pmu); 10893 mutex_unlock(&pmus_lock); 10894 } 10895 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 10896 10897 static inline bool has_extended_regs(struct perf_event *event) 10898 { 10899 return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) || 10900 (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK); 10901 } 10902 10903 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) 10904 { 10905 struct perf_event_context *ctx = NULL; 10906 int ret; 10907 10908 if (!try_module_get(pmu->module)) 10909 return -ENODEV; 10910 10911 /* 10912 * A number of pmu->event_init() methods iterate the sibling_list to, 10913 * for example, validate if the group fits on the PMU. Therefore, 10914 * if this is a sibling event, acquire the ctx->mutex to protect 10915 * the sibling_list. 10916 */ 10917 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) { 10918 /* 10919 * This ctx->mutex can nest when we're called through 10920 * inheritance. See the perf_event_ctx_lock_nested() comment. 10921 */ 10922 ctx = perf_event_ctx_lock_nested(event->group_leader, 10923 SINGLE_DEPTH_NESTING); 10924 BUG_ON(!ctx); 10925 } 10926 10927 event->pmu = pmu; 10928 ret = pmu->event_init(event); 10929 10930 if (ctx) 10931 perf_event_ctx_unlock(event->group_leader, ctx); 10932 10933 if (!ret) { 10934 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) && 10935 has_extended_regs(event)) 10936 ret = -EOPNOTSUPP; 10937 10938 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE && 10939 event_has_any_exclude_flag(event)) 10940 ret = -EINVAL; 10941 10942 if (ret && event->destroy) 10943 event->destroy(event); 10944 } 10945 10946 if (ret) 10947 module_put(pmu->module); 10948 10949 return ret; 10950 } 10951 10952 static struct pmu *perf_init_event(struct perf_event *event) 10953 { 10954 int idx, type, ret; 10955 struct pmu *pmu; 10956 10957 idx = srcu_read_lock(&pmus_srcu); 10958 10959 /* Try parent's PMU first: */ 10960 if (event->parent && event->parent->pmu) { 10961 pmu = event->parent->pmu; 10962 ret = perf_try_init_event(pmu, event); 10963 if (!ret) 10964 goto unlock; 10965 } 10966 10967 /* 10968 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE 10969 * are often aliases for PERF_TYPE_RAW. 10970 */ 10971 type = event->attr.type; 10972 if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) 10973 type = PERF_TYPE_RAW; 10974 10975 again: 10976 rcu_read_lock(); 10977 pmu = idr_find(&pmu_idr, type); 10978 rcu_read_unlock(); 10979 if (pmu) { 10980 ret = perf_try_init_event(pmu, event); 10981 if (ret == -ENOENT && event->attr.type != type) { 10982 type = event->attr.type; 10983 goto again; 10984 } 10985 10986 if (ret) 10987 pmu = ERR_PTR(ret); 10988 10989 goto unlock; 10990 } 10991 10992 list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) { 10993 ret = perf_try_init_event(pmu, event); 10994 if (!ret) 10995 goto unlock; 10996 10997 if (ret != -ENOENT) { 10998 pmu = ERR_PTR(ret); 10999 goto unlock; 11000 } 11001 } 11002 pmu = ERR_PTR(-ENOENT); 11003 unlock: 11004 srcu_read_unlock(&pmus_srcu, idx); 11005 11006 return pmu; 11007 } 11008 11009 static void attach_sb_event(struct perf_event *event) 11010 { 11011 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 11012 11013 raw_spin_lock(&pel->lock); 11014 list_add_rcu(&event->sb_list, &pel->list); 11015 raw_spin_unlock(&pel->lock); 11016 } 11017 11018 /* 11019 * We keep a list of all !task (and therefore per-cpu) events 11020 * that need to receive side-band records. 11021 * 11022 * This avoids having to scan all the various PMU per-cpu contexts 11023 * looking for them. 11024 */ 11025 static void account_pmu_sb_event(struct perf_event *event) 11026 { 11027 if (is_sb_event(event)) 11028 attach_sb_event(event); 11029 } 11030 11031 static void account_event_cpu(struct perf_event *event, int cpu) 11032 { 11033 if (event->parent) 11034 return; 11035 11036 if (is_cgroup_event(event)) 11037 atomic_inc(&per_cpu(perf_cgroup_events, cpu)); 11038 } 11039 11040 /* Freq events need the tick to stay alive (see perf_event_task_tick). */ 11041 static void account_freq_event_nohz(void) 11042 { 11043 #ifdef CONFIG_NO_HZ_FULL 11044 /* Lock so we don't race with concurrent unaccount */ 11045 spin_lock(&nr_freq_lock); 11046 if (atomic_inc_return(&nr_freq_events) == 1) 11047 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS); 11048 spin_unlock(&nr_freq_lock); 11049 #endif 11050 } 11051 11052 static void account_freq_event(void) 11053 { 11054 if (tick_nohz_full_enabled()) 11055 account_freq_event_nohz(); 11056 else 11057 atomic_inc(&nr_freq_events); 11058 } 11059 11060 11061 static void account_event(struct perf_event *event) 11062 { 11063 bool inc = false; 11064 11065 if (event->parent) 11066 return; 11067 11068 if (event->attach_state & PERF_ATTACH_TASK) 11069 inc = true; 11070 if (event->attr.mmap || event->attr.mmap_data) 11071 atomic_inc(&nr_mmap_events); 11072 if (event->attr.comm) 11073 atomic_inc(&nr_comm_events); 11074 if (event->attr.namespaces) 11075 atomic_inc(&nr_namespaces_events); 11076 if (event->attr.cgroup) 11077 atomic_inc(&nr_cgroup_events); 11078 if (event->attr.task) 11079 atomic_inc(&nr_task_events); 11080 if (event->attr.freq) 11081 account_freq_event(); 11082 if (event->attr.context_switch) { 11083 atomic_inc(&nr_switch_events); 11084 inc = true; 11085 } 11086 if (has_branch_stack(event)) 11087 inc = true; 11088 if (is_cgroup_event(event)) 11089 inc = true; 11090 if (event->attr.ksymbol) 11091 atomic_inc(&nr_ksymbol_events); 11092 if (event->attr.bpf_event) 11093 atomic_inc(&nr_bpf_events); 11094 if (event->attr.text_poke) 11095 atomic_inc(&nr_text_poke_events); 11096 11097 if (inc) { 11098 /* 11099 * We need the mutex here because static_branch_enable() 11100 * must complete *before* the perf_sched_count increment 11101 * becomes visible. 11102 */ 11103 if (atomic_inc_not_zero(&perf_sched_count)) 11104 goto enabled; 11105 11106 mutex_lock(&perf_sched_mutex); 11107 if (!atomic_read(&perf_sched_count)) { 11108 static_branch_enable(&perf_sched_events); 11109 /* 11110 * Guarantee that all CPUs observe they key change and 11111 * call the perf scheduling hooks before proceeding to 11112 * install events that need them. 11113 */ 11114 synchronize_rcu(); 11115 } 11116 /* 11117 * Now that we have waited for the sync_sched(), allow further 11118 * increments to by-pass the mutex. 11119 */ 11120 atomic_inc(&perf_sched_count); 11121 mutex_unlock(&perf_sched_mutex); 11122 } 11123 enabled: 11124 11125 account_event_cpu(event, event->cpu); 11126 11127 account_pmu_sb_event(event); 11128 } 11129 11130 /* 11131 * Allocate and initialize an event structure 11132 */ 11133 static struct perf_event * 11134 perf_event_alloc(struct perf_event_attr *attr, int cpu, 11135 struct task_struct *task, 11136 struct perf_event *group_leader, 11137 struct perf_event *parent_event, 11138 perf_overflow_handler_t overflow_handler, 11139 void *context, int cgroup_fd) 11140 { 11141 struct pmu *pmu; 11142 struct perf_event *event; 11143 struct hw_perf_event *hwc; 11144 long err = -EINVAL; 11145 11146 if ((unsigned)cpu >= nr_cpu_ids) { 11147 if (!task || cpu != -1) 11148 return ERR_PTR(-EINVAL); 11149 } 11150 11151 event = kzalloc(sizeof(*event), GFP_KERNEL); 11152 if (!event) 11153 return ERR_PTR(-ENOMEM); 11154 11155 /* 11156 * Single events are their own group leaders, with an 11157 * empty sibling list: 11158 */ 11159 if (!group_leader) 11160 group_leader = event; 11161 11162 mutex_init(&event->child_mutex); 11163 INIT_LIST_HEAD(&event->child_list); 11164 11165 INIT_LIST_HEAD(&event->event_entry); 11166 INIT_LIST_HEAD(&event->sibling_list); 11167 INIT_LIST_HEAD(&event->active_list); 11168 init_event_group(event); 11169 INIT_LIST_HEAD(&event->rb_entry); 11170 INIT_LIST_HEAD(&event->active_entry); 11171 INIT_LIST_HEAD(&event->addr_filters.list); 11172 INIT_HLIST_NODE(&event->hlist_entry); 11173 11174 11175 init_waitqueue_head(&event->waitq); 11176 event->pending_disable = -1; 11177 init_irq_work(&event->pending, perf_pending_event); 11178 11179 mutex_init(&event->mmap_mutex); 11180 raw_spin_lock_init(&event->addr_filters.lock); 11181 11182 atomic_long_set(&event->refcount, 1); 11183 event->cpu = cpu; 11184 event->attr = *attr; 11185 event->group_leader = group_leader; 11186 event->pmu = NULL; 11187 event->oncpu = -1; 11188 11189 event->parent = parent_event; 11190 11191 event->ns = get_pid_ns(task_active_pid_ns(current)); 11192 event->id = atomic64_inc_return(&perf_event_id); 11193 11194 event->state = PERF_EVENT_STATE_INACTIVE; 11195 11196 if (task) { 11197 event->attach_state = PERF_ATTACH_TASK; 11198 /* 11199 * XXX pmu::event_init needs to know what task to account to 11200 * and we cannot use the ctx information because we need the 11201 * pmu before we get a ctx. 11202 */ 11203 event->hw.target = get_task_struct(task); 11204 } 11205 11206 event->clock = &local_clock; 11207 if (parent_event) 11208 event->clock = parent_event->clock; 11209 11210 if (!overflow_handler && parent_event) { 11211 overflow_handler = parent_event->overflow_handler; 11212 context = parent_event->overflow_handler_context; 11213 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING) 11214 if (overflow_handler == bpf_overflow_handler) { 11215 struct bpf_prog *prog = parent_event->prog; 11216 11217 bpf_prog_inc(prog); 11218 event->prog = prog; 11219 event->orig_overflow_handler = 11220 parent_event->orig_overflow_handler; 11221 } 11222 #endif 11223 } 11224 11225 if (overflow_handler) { 11226 event->overflow_handler = overflow_handler; 11227 event->overflow_handler_context = context; 11228 } else if (is_write_backward(event)){ 11229 event->overflow_handler = perf_event_output_backward; 11230 event->overflow_handler_context = NULL; 11231 } else { 11232 event->overflow_handler = perf_event_output_forward; 11233 event->overflow_handler_context = NULL; 11234 } 11235 11236 perf_event__state_init(event); 11237 11238 pmu = NULL; 11239 11240 hwc = &event->hw; 11241 hwc->sample_period = attr->sample_period; 11242 if (attr->freq && attr->sample_freq) 11243 hwc->sample_period = 1; 11244 hwc->last_period = hwc->sample_period; 11245 11246 local64_set(&hwc->period_left, hwc->sample_period); 11247 11248 /* 11249 * We currently do not support PERF_SAMPLE_READ on inherited events. 11250 * See perf_output_read(). 11251 */ 11252 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ)) 11253 goto err_ns; 11254 11255 if (!has_branch_stack(event)) 11256 event->attr.branch_sample_type = 0; 11257 11258 pmu = perf_init_event(event); 11259 if (IS_ERR(pmu)) { 11260 err = PTR_ERR(pmu); 11261 goto err_ns; 11262 } 11263 11264 /* 11265 * Disallow uncore-cgroup events, they don't make sense as the cgroup will 11266 * be different on other CPUs in the uncore mask. 11267 */ 11268 if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) { 11269 err = -EINVAL; 11270 goto err_pmu; 11271 } 11272 11273 if (event->attr.aux_output && 11274 !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) { 11275 err = -EOPNOTSUPP; 11276 goto err_pmu; 11277 } 11278 11279 if (cgroup_fd != -1) { 11280 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); 11281 if (err) 11282 goto err_pmu; 11283 } 11284 11285 err = exclusive_event_init(event); 11286 if (err) 11287 goto err_pmu; 11288 11289 if (has_addr_filter(event)) { 11290 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters, 11291 sizeof(struct perf_addr_filter_range), 11292 GFP_KERNEL); 11293 if (!event->addr_filter_ranges) { 11294 err = -ENOMEM; 11295 goto err_per_task; 11296 } 11297 11298 /* 11299 * Clone the parent's vma offsets: they are valid until exec() 11300 * even if the mm is not shared with the parent. 11301 */ 11302 if (event->parent) { 11303 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 11304 11305 raw_spin_lock_irq(&ifh->lock); 11306 memcpy(event->addr_filter_ranges, 11307 event->parent->addr_filter_ranges, 11308 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range)); 11309 raw_spin_unlock_irq(&ifh->lock); 11310 } 11311 11312 /* force hw sync on the address filters */ 11313 event->addr_filters_gen = 1; 11314 } 11315 11316 if (!event->parent) { 11317 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 11318 err = get_callchain_buffers(attr->sample_max_stack); 11319 if (err) 11320 goto err_addr_filters; 11321 } 11322 } 11323 11324 err = security_perf_event_alloc(event); 11325 if (err) 11326 goto err_callchain_buffer; 11327 11328 /* symmetric to unaccount_event() in _free_event() */ 11329 account_event(event); 11330 11331 return event; 11332 11333 err_callchain_buffer: 11334 if (!event->parent) { 11335 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 11336 put_callchain_buffers(); 11337 } 11338 err_addr_filters: 11339 kfree(event->addr_filter_ranges); 11340 11341 err_per_task: 11342 exclusive_event_destroy(event); 11343 11344 err_pmu: 11345 if (is_cgroup_event(event)) 11346 perf_detach_cgroup(event); 11347 if (event->destroy) 11348 event->destroy(event); 11349 module_put(pmu->module); 11350 err_ns: 11351 if (event->ns) 11352 put_pid_ns(event->ns); 11353 if (event->hw.target) 11354 put_task_struct(event->hw.target); 11355 kfree(event); 11356 11357 return ERR_PTR(err); 11358 } 11359 11360 static int perf_copy_attr(struct perf_event_attr __user *uattr, 11361 struct perf_event_attr *attr) 11362 { 11363 u32 size; 11364 int ret; 11365 11366 /* Zero the full structure, so that a short copy will be nice. */ 11367 memset(attr, 0, sizeof(*attr)); 11368 11369 ret = get_user(size, &uattr->size); 11370 if (ret) 11371 return ret; 11372 11373 /* ABI compatibility quirk: */ 11374 if (!size) 11375 size = PERF_ATTR_SIZE_VER0; 11376 if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE) 11377 goto err_size; 11378 11379 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); 11380 if (ret) { 11381 if (ret == -E2BIG) 11382 goto err_size; 11383 return ret; 11384 } 11385 11386 attr->size = size; 11387 11388 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) 11389 return -EINVAL; 11390 11391 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 11392 return -EINVAL; 11393 11394 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 11395 return -EINVAL; 11396 11397 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 11398 u64 mask = attr->branch_sample_type; 11399 11400 /* only using defined bits */ 11401 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 11402 return -EINVAL; 11403 11404 /* at least one branch bit must be set */ 11405 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 11406 return -EINVAL; 11407 11408 /* propagate priv level, when not set for branch */ 11409 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 11410 11411 /* exclude_kernel checked on syscall entry */ 11412 if (!attr->exclude_kernel) 11413 mask |= PERF_SAMPLE_BRANCH_KERNEL; 11414 11415 if (!attr->exclude_user) 11416 mask |= PERF_SAMPLE_BRANCH_USER; 11417 11418 if (!attr->exclude_hv) 11419 mask |= PERF_SAMPLE_BRANCH_HV; 11420 /* 11421 * adjust user setting (for HW filter setup) 11422 */ 11423 attr->branch_sample_type = mask; 11424 } 11425 /* privileged levels capture (kernel, hv): check permissions */ 11426 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) { 11427 ret = perf_allow_kernel(attr); 11428 if (ret) 11429 return ret; 11430 } 11431 } 11432 11433 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 11434 ret = perf_reg_validate(attr->sample_regs_user); 11435 if (ret) 11436 return ret; 11437 } 11438 11439 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 11440 if (!arch_perf_have_user_stack_dump()) 11441 return -ENOSYS; 11442 11443 /* 11444 * We have __u32 type for the size, but so far 11445 * we can only use __u16 as maximum due to the 11446 * __u16 sample size limit. 11447 */ 11448 if (attr->sample_stack_user >= USHRT_MAX) 11449 return -EINVAL; 11450 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 11451 return -EINVAL; 11452 } 11453 11454 if (!attr->sample_max_stack) 11455 attr->sample_max_stack = sysctl_perf_event_max_stack; 11456 11457 if (attr->sample_type & PERF_SAMPLE_REGS_INTR) 11458 ret = perf_reg_validate(attr->sample_regs_intr); 11459 11460 #ifndef CONFIG_CGROUP_PERF 11461 if (attr->sample_type & PERF_SAMPLE_CGROUP) 11462 return -EINVAL; 11463 #endif 11464 11465 out: 11466 return ret; 11467 11468 err_size: 11469 put_user(sizeof(*attr), &uattr->size); 11470 ret = -E2BIG; 11471 goto out; 11472 } 11473 11474 static int 11475 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 11476 { 11477 struct perf_buffer *rb = NULL; 11478 int ret = -EINVAL; 11479 11480 if (!output_event) 11481 goto set; 11482 11483 /* don't allow circular references */ 11484 if (event == output_event) 11485 goto out; 11486 11487 /* 11488 * Don't allow cross-cpu buffers 11489 */ 11490 if (output_event->cpu != event->cpu) 11491 goto out; 11492 11493 /* 11494 * If its not a per-cpu rb, it must be the same task. 11495 */ 11496 if (output_event->cpu == -1 && output_event->ctx != event->ctx) 11497 goto out; 11498 11499 /* 11500 * Mixing clocks in the same buffer is trouble you don't need. 11501 */ 11502 if (output_event->clock != event->clock) 11503 goto out; 11504 11505 /* 11506 * Either writing ring buffer from beginning or from end. 11507 * Mixing is not allowed. 11508 */ 11509 if (is_write_backward(output_event) != is_write_backward(event)) 11510 goto out; 11511 11512 /* 11513 * If both events generate aux data, they must be on the same PMU 11514 */ 11515 if (has_aux(event) && has_aux(output_event) && 11516 event->pmu != output_event->pmu) 11517 goto out; 11518 11519 set: 11520 mutex_lock(&event->mmap_mutex); 11521 /* Can't redirect output if we've got an active mmap() */ 11522 if (atomic_read(&event->mmap_count)) 11523 goto unlock; 11524 11525 if (output_event) { 11526 /* get the rb we want to redirect to */ 11527 rb = ring_buffer_get(output_event); 11528 if (!rb) 11529 goto unlock; 11530 } 11531 11532 ring_buffer_attach(event, rb); 11533 11534 ret = 0; 11535 unlock: 11536 mutex_unlock(&event->mmap_mutex); 11537 11538 out: 11539 return ret; 11540 } 11541 11542 static void mutex_lock_double(struct mutex *a, struct mutex *b) 11543 { 11544 if (b < a) 11545 swap(a, b); 11546 11547 mutex_lock(a); 11548 mutex_lock_nested(b, SINGLE_DEPTH_NESTING); 11549 } 11550 11551 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) 11552 { 11553 bool nmi_safe = false; 11554 11555 switch (clk_id) { 11556 case CLOCK_MONOTONIC: 11557 event->clock = &ktime_get_mono_fast_ns; 11558 nmi_safe = true; 11559 break; 11560 11561 case CLOCK_MONOTONIC_RAW: 11562 event->clock = &ktime_get_raw_fast_ns; 11563 nmi_safe = true; 11564 break; 11565 11566 case CLOCK_REALTIME: 11567 event->clock = &ktime_get_real_ns; 11568 break; 11569 11570 case CLOCK_BOOTTIME: 11571 event->clock = &ktime_get_boottime_ns; 11572 break; 11573 11574 case CLOCK_TAI: 11575 event->clock = &ktime_get_clocktai_ns; 11576 break; 11577 11578 default: 11579 return -EINVAL; 11580 } 11581 11582 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) 11583 return -EINVAL; 11584 11585 return 0; 11586 } 11587 11588 /* 11589 * Variation on perf_event_ctx_lock_nested(), except we take two context 11590 * mutexes. 11591 */ 11592 static struct perf_event_context * 11593 __perf_event_ctx_lock_double(struct perf_event *group_leader, 11594 struct perf_event_context *ctx) 11595 { 11596 struct perf_event_context *gctx; 11597 11598 again: 11599 rcu_read_lock(); 11600 gctx = READ_ONCE(group_leader->ctx); 11601 if (!refcount_inc_not_zero(&gctx->refcount)) { 11602 rcu_read_unlock(); 11603 goto again; 11604 } 11605 rcu_read_unlock(); 11606 11607 mutex_lock_double(&gctx->mutex, &ctx->mutex); 11608 11609 if (group_leader->ctx != gctx) { 11610 mutex_unlock(&ctx->mutex); 11611 mutex_unlock(&gctx->mutex); 11612 put_ctx(gctx); 11613 goto again; 11614 } 11615 11616 return gctx; 11617 } 11618 11619 /** 11620 * sys_perf_event_open - open a performance event, associate it to a task/cpu 11621 * 11622 * @attr_uptr: event_id type attributes for monitoring/sampling 11623 * @pid: target pid 11624 * @cpu: target cpu 11625 * @group_fd: group leader event fd 11626 */ 11627 SYSCALL_DEFINE5(perf_event_open, 11628 struct perf_event_attr __user *, attr_uptr, 11629 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 11630 { 11631 struct perf_event *group_leader = NULL, *output_event = NULL; 11632 struct perf_event *event, *sibling; 11633 struct perf_event_attr attr; 11634 struct perf_event_context *ctx, *gctx; 11635 struct file *event_file = NULL; 11636 struct fd group = {NULL, 0}; 11637 struct task_struct *task = NULL; 11638 struct pmu *pmu; 11639 int event_fd; 11640 int move_group = 0; 11641 int err; 11642 int f_flags = O_RDWR; 11643 int cgroup_fd = -1; 11644 11645 /* for future expandability... */ 11646 if (flags & ~PERF_FLAG_ALL) 11647 return -EINVAL; 11648 11649 /* Do we allow access to perf_event_open(2) ? */ 11650 err = security_perf_event_open(&attr, PERF_SECURITY_OPEN); 11651 if (err) 11652 return err; 11653 11654 err = perf_copy_attr(attr_uptr, &attr); 11655 if (err) 11656 return err; 11657 11658 if (!attr.exclude_kernel) { 11659 err = perf_allow_kernel(&attr); 11660 if (err) 11661 return err; 11662 } 11663 11664 if (attr.namespaces) { 11665 if (!perfmon_capable()) 11666 return -EACCES; 11667 } 11668 11669 if (attr.freq) { 11670 if (attr.sample_freq > sysctl_perf_event_sample_rate) 11671 return -EINVAL; 11672 } else { 11673 if (attr.sample_period & (1ULL << 63)) 11674 return -EINVAL; 11675 } 11676 11677 /* Only privileged users can get physical addresses */ 11678 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) { 11679 err = perf_allow_kernel(&attr); 11680 if (err) 11681 return err; 11682 } 11683 11684 err = security_locked_down(LOCKDOWN_PERF); 11685 if (err && (attr.sample_type & PERF_SAMPLE_REGS_INTR)) 11686 /* REGS_INTR can leak data, lockdown must prevent this */ 11687 return err; 11688 11689 err = 0; 11690 11691 /* 11692 * In cgroup mode, the pid argument is used to pass the fd 11693 * opened to the cgroup directory in cgroupfs. The cpu argument 11694 * designates the cpu on which to monitor threads from that 11695 * cgroup. 11696 */ 11697 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 11698 return -EINVAL; 11699 11700 if (flags & PERF_FLAG_FD_CLOEXEC) 11701 f_flags |= O_CLOEXEC; 11702 11703 event_fd = get_unused_fd_flags(f_flags); 11704 if (event_fd < 0) 11705 return event_fd; 11706 11707 if (group_fd != -1) { 11708 err = perf_fget_light(group_fd, &group); 11709 if (err) 11710 goto err_fd; 11711 group_leader = group.file->private_data; 11712 if (flags & PERF_FLAG_FD_OUTPUT) 11713 output_event = group_leader; 11714 if (flags & PERF_FLAG_FD_NO_GROUP) 11715 group_leader = NULL; 11716 } 11717 11718 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 11719 task = find_lively_task_by_vpid(pid); 11720 if (IS_ERR(task)) { 11721 err = PTR_ERR(task); 11722 goto err_group_fd; 11723 } 11724 } 11725 11726 if (task && group_leader && 11727 group_leader->attr.inherit != attr.inherit) { 11728 err = -EINVAL; 11729 goto err_task; 11730 } 11731 11732 if (task) { 11733 err = mutex_lock_interruptible(&task->signal->exec_update_mutex); 11734 if (err) 11735 goto err_task; 11736 11737 /* 11738 * Preserve ptrace permission check for backwards compatibility. 11739 * 11740 * We must hold exec_update_mutex across this and any potential 11741 * perf_install_in_context() call for this new event to 11742 * serialize against exec() altering our credentials (and the 11743 * perf_event_exit_task() that could imply). 11744 */ 11745 err = -EACCES; 11746 if (!perfmon_capable() && !ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) 11747 goto err_cred; 11748 } 11749 11750 if (flags & PERF_FLAG_PID_CGROUP) 11751 cgroup_fd = pid; 11752 11753 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 11754 NULL, NULL, cgroup_fd); 11755 if (IS_ERR(event)) { 11756 err = PTR_ERR(event); 11757 goto err_cred; 11758 } 11759 11760 if (is_sampling_event(event)) { 11761 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 11762 err = -EOPNOTSUPP; 11763 goto err_alloc; 11764 } 11765 } 11766 11767 /* 11768 * Special case software events and allow them to be part of 11769 * any hardware group. 11770 */ 11771 pmu = event->pmu; 11772 11773 if (attr.use_clockid) { 11774 err = perf_event_set_clock(event, attr.clockid); 11775 if (err) 11776 goto err_alloc; 11777 } 11778 11779 if (pmu->task_ctx_nr == perf_sw_context) 11780 event->event_caps |= PERF_EV_CAP_SOFTWARE; 11781 11782 if (group_leader) { 11783 if (is_software_event(event) && 11784 !in_software_context(group_leader)) { 11785 /* 11786 * If the event is a sw event, but the group_leader 11787 * is on hw context. 11788 * 11789 * Allow the addition of software events to hw 11790 * groups, this is safe because software events 11791 * never fail to schedule. 11792 */ 11793 pmu = group_leader->ctx->pmu; 11794 } else if (!is_software_event(event) && 11795 is_software_event(group_leader) && 11796 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 11797 /* 11798 * In case the group is a pure software group, and we 11799 * try to add a hardware event, move the whole group to 11800 * the hardware context. 11801 */ 11802 move_group = 1; 11803 } 11804 } 11805 11806 /* 11807 * Get the target context (task or percpu): 11808 */ 11809 ctx = find_get_context(pmu, task, event); 11810 if (IS_ERR(ctx)) { 11811 err = PTR_ERR(ctx); 11812 goto err_alloc; 11813 } 11814 11815 /* 11816 * Look up the group leader (we will attach this event to it): 11817 */ 11818 if (group_leader) { 11819 err = -EINVAL; 11820 11821 /* 11822 * Do not allow a recursive hierarchy (this new sibling 11823 * becoming part of another group-sibling): 11824 */ 11825 if (group_leader->group_leader != group_leader) 11826 goto err_context; 11827 11828 /* All events in a group should have the same clock */ 11829 if (group_leader->clock != event->clock) 11830 goto err_context; 11831 11832 /* 11833 * Make sure we're both events for the same CPU; 11834 * grouping events for different CPUs is broken; since 11835 * you can never concurrently schedule them anyhow. 11836 */ 11837 if (group_leader->cpu != event->cpu) 11838 goto err_context; 11839 11840 /* 11841 * Make sure we're both on the same task, or both 11842 * per-CPU events. 11843 */ 11844 if (group_leader->ctx->task != ctx->task) 11845 goto err_context; 11846 11847 /* 11848 * Do not allow to attach to a group in a different task 11849 * or CPU context. If we're moving SW events, we'll fix 11850 * this up later, so allow that. 11851 */ 11852 if (!move_group && group_leader->ctx != ctx) 11853 goto err_context; 11854 11855 /* 11856 * Only a group leader can be exclusive or pinned 11857 */ 11858 if (attr.exclusive || attr.pinned) 11859 goto err_context; 11860 } 11861 11862 if (output_event) { 11863 err = perf_event_set_output(event, output_event); 11864 if (err) 11865 goto err_context; 11866 } 11867 11868 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, 11869 f_flags); 11870 if (IS_ERR(event_file)) { 11871 err = PTR_ERR(event_file); 11872 event_file = NULL; 11873 goto err_context; 11874 } 11875 11876 if (move_group) { 11877 gctx = __perf_event_ctx_lock_double(group_leader, ctx); 11878 11879 if (gctx->task == TASK_TOMBSTONE) { 11880 err = -ESRCH; 11881 goto err_locked; 11882 } 11883 11884 /* 11885 * Check if we raced against another sys_perf_event_open() call 11886 * moving the software group underneath us. 11887 */ 11888 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 11889 /* 11890 * If someone moved the group out from under us, check 11891 * if this new event wound up on the same ctx, if so 11892 * its the regular !move_group case, otherwise fail. 11893 */ 11894 if (gctx != ctx) { 11895 err = -EINVAL; 11896 goto err_locked; 11897 } else { 11898 perf_event_ctx_unlock(group_leader, gctx); 11899 move_group = 0; 11900 } 11901 } 11902 11903 /* 11904 * Failure to create exclusive events returns -EBUSY. 11905 */ 11906 err = -EBUSY; 11907 if (!exclusive_event_installable(group_leader, ctx)) 11908 goto err_locked; 11909 11910 for_each_sibling_event(sibling, group_leader) { 11911 if (!exclusive_event_installable(sibling, ctx)) 11912 goto err_locked; 11913 } 11914 } else { 11915 mutex_lock(&ctx->mutex); 11916 } 11917 11918 if (ctx->task == TASK_TOMBSTONE) { 11919 err = -ESRCH; 11920 goto err_locked; 11921 } 11922 11923 if (!perf_event_validate_size(event)) { 11924 err = -E2BIG; 11925 goto err_locked; 11926 } 11927 11928 if (!task) { 11929 /* 11930 * Check if the @cpu we're creating an event for is online. 11931 * 11932 * We use the perf_cpu_context::ctx::mutex to serialize against 11933 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 11934 */ 11935 struct perf_cpu_context *cpuctx = 11936 container_of(ctx, struct perf_cpu_context, ctx); 11937 11938 if (!cpuctx->online) { 11939 err = -ENODEV; 11940 goto err_locked; 11941 } 11942 } 11943 11944 if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) { 11945 err = -EINVAL; 11946 goto err_locked; 11947 } 11948 11949 /* 11950 * Must be under the same ctx::mutex as perf_install_in_context(), 11951 * because we need to serialize with concurrent event creation. 11952 */ 11953 if (!exclusive_event_installable(event, ctx)) { 11954 err = -EBUSY; 11955 goto err_locked; 11956 } 11957 11958 WARN_ON_ONCE(ctx->parent_ctx); 11959 11960 /* 11961 * This is the point on no return; we cannot fail hereafter. This is 11962 * where we start modifying current state. 11963 */ 11964 11965 if (move_group) { 11966 /* 11967 * See perf_event_ctx_lock() for comments on the details 11968 * of swizzling perf_event::ctx. 11969 */ 11970 perf_remove_from_context(group_leader, 0); 11971 put_ctx(gctx); 11972 11973 for_each_sibling_event(sibling, group_leader) { 11974 perf_remove_from_context(sibling, 0); 11975 put_ctx(gctx); 11976 } 11977 11978 /* 11979 * Wait for everybody to stop referencing the events through 11980 * the old lists, before installing it on new lists. 11981 */ 11982 synchronize_rcu(); 11983 11984 /* 11985 * Install the group siblings before the group leader. 11986 * 11987 * Because a group leader will try and install the entire group 11988 * (through the sibling list, which is still in-tact), we can 11989 * end up with siblings installed in the wrong context. 11990 * 11991 * By installing siblings first we NO-OP because they're not 11992 * reachable through the group lists. 11993 */ 11994 for_each_sibling_event(sibling, group_leader) { 11995 perf_event__state_init(sibling); 11996 perf_install_in_context(ctx, sibling, sibling->cpu); 11997 get_ctx(ctx); 11998 } 11999 12000 /* 12001 * Removing from the context ends up with disabled 12002 * event. What we want here is event in the initial 12003 * startup state, ready to be add into new context. 12004 */ 12005 perf_event__state_init(group_leader); 12006 perf_install_in_context(ctx, group_leader, group_leader->cpu); 12007 get_ctx(ctx); 12008 } 12009 12010 /* 12011 * Precalculate sample_data sizes; do while holding ctx::mutex such 12012 * that we're serialized against further additions and before 12013 * perf_install_in_context() which is the point the event is active and 12014 * can use these values. 12015 */ 12016 perf_event__header_size(event); 12017 perf_event__id_header_size(event); 12018 12019 event->owner = current; 12020 12021 perf_install_in_context(ctx, event, event->cpu); 12022 perf_unpin_context(ctx); 12023 12024 if (move_group) 12025 perf_event_ctx_unlock(group_leader, gctx); 12026 mutex_unlock(&ctx->mutex); 12027 12028 if (task) { 12029 mutex_unlock(&task->signal->exec_update_mutex); 12030 put_task_struct(task); 12031 } 12032 12033 mutex_lock(¤t->perf_event_mutex); 12034 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 12035 mutex_unlock(¤t->perf_event_mutex); 12036 12037 /* 12038 * Drop the reference on the group_event after placing the 12039 * new event on the sibling_list. This ensures destruction 12040 * of the group leader will find the pointer to itself in 12041 * perf_group_detach(). 12042 */ 12043 fdput(group); 12044 fd_install(event_fd, event_file); 12045 return event_fd; 12046 12047 err_locked: 12048 if (move_group) 12049 perf_event_ctx_unlock(group_leader, gctx); 12050 mutex_unlock(&ctx->mutex); 12051 /* err_file: */ 12052 fput(event_file); 12053 err_context: 12054 perf_unpin_context(ctx); 12055 put_ctx(ctx); 12056 err_alloc: 12057 /* 12058 * If event_file is set, the fput() above will have called ->release() 12059 * and that will take care of freeing the event. 12060 */ 12061 if (!event_file) 12062 free_event(event); 12063 err_cred: 12064 if (task) 12065 mutex_unlock(&task->signal->exec_update_mutex); 12066 err_task: 12067 if (task) 12068 put_task_struct(task); 12069 err_group_fd: 12070 fdput(group); 12071 err_fd: 12072 put_unused_fd(event_fd); 12073 return err; 12074 } 12075 12076 /** 12077 * perf_event_create_kernel_counter 12078 * 12079 * @attr: attributes of the counter to create 12080 * @cpu: cpu in which the counter is bound 12081 * @task: task to profile (NULL for percpu) 12082 */ 12083 struct perf_event * 12084 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 12085 struct task_struct *task, 12086 perf_overflow_handler_t overflow_handler, 12087 void *context) 12088 { 12089 struct perf_event_context *ctx; 12090 struct perf_event *event; 12091 int err; 12092 12093 /* 12094 * Grouping is not supported for kernel events, neither is 'AUX', 12095 * make sure the caller's intentions are adjusted. 12096 */ 12097 if (attr->aux_output) 12098 return ERR_PTR(-EINVAL); 12099 12100 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 12101 overflow_handler, context, -1); 12102 if (IS_ERR(event)) { 12103 err = PTR_ERR(event); 12104 goto err; 12105 } 12106 12107 /* Mark owner so we could distinguish it from user events. */ 12108 event->owner = TASK_TOMBSTONE; 12109 12110 /* 12111 * Get the target context (task or percpu): 12112 */ 12113 ctx = find_get_context(event->pmu, task, event); 12114 if (IS_ERR(ctx)) { 12115 err = PTR_ERR(ctx); 12116 goto err_free; 12117 } 12118 12119 WARN_ON_ONCE(ctx->parent_ctx); 12120 mutex_lock(&ctx->mutex); 12121 if (ctx->task == TASK_TOMBSTONE) { 12122 err = -ESRCH; 12123 goto err_unlock; 12124 } 12125 12126 if (!task) { 12127 /* 12128 * Check if the @cpu we're creating an event for is online. 12129 * 12130 * We use the perf_cpu_context::ctx::mutex to serialize against 12131 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 12132 */ 12133 struct perf_cpu_context *cpuctx = 12134 container_of(ctx, struct perf_cpu_context, ctx); 12135 if (!cpuctx->online) { 12136 err = -ENODEV; 12137 goto err_unlock; 12138 } 12139 } 12140 12141 if (!exclusive_event_installable(event, ctx)) { 12142 err = -EBUSY; 12143 goto err_unlock; 12144 } 12145 12146 perf_install_in_context(ctx, event, event->cpu); 12147 perf_unpin_context(ctx); 12148 mutex_unlock(&ctx->mutex); 12149 12150 return event; 12151 12152 err_unlock: 12153 mutex_unlock(&ctx->mutex); 12154 perf_unpin_context(ctx); 12155 put_ctx(ctx); 12156 err_free: 12157 free_event(event); 12158 err: 12159 return ERR_PTR(err); 12160 } 12161 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 12162 12163 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 12164 { 12165 struct perf_event_context *src_ctx; 12166 struct perf_event_context *dst_ctx; 12167 struct perf_event *event, *tmp; 12168 LIST_HEAD(events); 12169 12170 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx; 12171 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx; 12172 12173 /* 12174 * See perf_event_ctx_lock() for comments on the details 12175 * of swizzling perf_event::ctx. 12176 */ 12177 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); 12178 list_for_each_entry_safe(event, tmp, &src_ctx->event_list, 12179 event_entry) { 12180 perf_remove_from_context(event, 0); 12181 unaccount_event_cpu(event, src_cpu); 12182 put_ctx(src_ctx); 12183 list_add(&event->migrate_entry, &events); 12184 } 12185 12186 /* 12187 * Wait for the events to quiesce before re-instating them. 12188 */ 12189 synchronize_rcu(); 12190 12191 /* 12192 * Re-instate events in 2 passes. 12193 * 12194 * Skip over group leaders and only install siblings on this first 12195 * pass, siblings will not get enabled without a leader, however a 12196 * leader will enable its siblings, even if those are still on the old 12197 * context. 12198 */ 12199 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 12200 if (event->group_leader == event) 12201 continue; 12202 12203 list_del(&event->migrate_entry); 12204 if (event->state >= PERF_EVENT_STATE_OFF) 12205 event->state = PERF_EVENT_STATE_INACTIVE; 12206 account_event_cpu(event, dst_cpu); 12207 perf_install_in_context(dst_ctx, event, dst_cpu); 12208 get_ctx(dst_ctx); 12209 } 12210 12211 /* 12212 * Once all the siblings are setup properly, install the group leaders 12213 * to make it go. 12214 */ 12215 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 12216 list_del(&event->migrate_entry); 12217 if (event->state >= PERF_EVENT_STATE_OFF) 12218 event->state = PERF_EVENT_STATE_INACTIVE; 12219 account_event_cpu(event, dst_cpu); 12220 perf_install_in_context(dst_ctx, event, dst_cpu); 12221 get_ctx(dst_ctx); 12222 } 12223 mutex_unlock(&dst_ctx->mutex); 12224 mutex_unlock(&src_ctx->mutex); 12225 } 12226 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 12227 12228 static void sync_child_event(struct perf_event *child_event, 12229 struct task_struct *child) 12230 { 12231 struct perf_event *parent_event = child_event->parent; 12232 u64 child_val; 12233 12234 if (child_event->attr.inherit_stat) 12235 perf_event_read_event(child_event, child); 12236 12237 child_val = perf_event_count(child_event); 12238 12239 /* 12240 * Add back the child's count to the parent's count: 12241 */ 12242 atomic64_add(child_val, &parent_event->child_count); 12243 atomic64_add(child_event->total_time_enabled, 12244 &parent_event->child_total_time_enabled); 12245 atomic64_add(child_event->total_time_running, 12246 &parent_event->child_total_time_running); 12247 } 12248 12249 static void 12250 perf_event_exit_event(struct perf_event *child_event, 12251 struct perf_event_context *child_ctx, 12252 struct task_struct *child) 12253 { 12254 struct perf_event *parent_event = child_event->parent; 12255 12256 /* 12257 * Do not destroy the 'original' grouping; because of the context 12258 * switch optimization the original events could've ended up in a 12259 * random child task. 12260 * 12261 * If we were to destroy the original group, all group related 12262 * operations would cease to function properly after this random 12263 * child dies. 12264 * 12265 * Do destroy all inherited groups, we don't care about those 12266 * and being thorough is better. 12267 */ 12268 raw_spin_lock_irq(&child_ctx->lock); 12269 WARN_ON_ONCE(child_ctx->is_active); 12270 12271 if (parent_event) 12272 perf_group_detach(child_event); 12273 list_del_event(child_event, child_ctx); 12274 perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */ 12275 raw_spin_unlock_irq(&child_ctx->lock); 12276 12277 /* 12278 * Parent events are governed by their filedesc, retain them. 12279 */ 12280 if (!parent_event) { 12281 perf_event_wakeup(child_event); 12282 return; 12283 } 12284 /* 12285 * Child events can be cleaned up. 12286 */ 12287 12288 sync_child_event(child_event, child); 12289 12290 /* 12291 * Remove this event from the parent's list 12292 */ 12293 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 12294 mutex_lock(&parent_event->child_mutex); 12295 list_del_init(&child_event->child_list); 12296 mutex_unlock(&parent_event->child_mutex); 12297 12298 /* 12299 * Kick perf_poll() for is_event_hup(). 12300 */ 12301 perf_event_wakeup(parent_event); 12302 free_event(child_event); 12303 put_event(parent_event); 12304 } 12305 12306 static void perf_event_exit_task_context(struct task_struct *child, int ctxn) 12307 { 12308 struct perf_event_context *child_ctx, *clone_ctx = NULL; 12309 struct perf_event *child_event, *next; 12310 12311 WARN_ON_ONCE(child != current); 12312 12313 child_ctx = perf_pin_task_context(child, ctxn); 12314 if (!child_ctx) 12315 return; 12316 12317 /* 12318 * In order to reduce the amount of tricky in ctx tear-down, we hold 12319 * ctx::mutex over the entire thing. This serializes against almost 12320 * everything that wants to access the ctx. 12321 * 12322 * The exception is sys_perf_event_open() / 12323 * perf_event_create_kernel_count() which does find_get_context() 12324 * without ctx::mutex (it cannot because of the move_group double mutex 12325 * lock thing). See the comments in perf_install_in_context(). 12326 */ 12327 mutex_lock(&child_ctx->mutex); 12328 12329 /* 12330 * In a single ctx::lock section, de-schedule the events and detach the 12331 * context from the task such that we cannot ever get it scheduled back 12332 * in. 12333 */ 12334 raw_spin_lock_irq(&child_ctx->lock); 12335 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL); 12336 12337 /* 12338 * Now that the context is inactive, destroy the task <-> ctx relation 12339 * and mark the context dead. 12340 */ 12341 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL); 12342 put_ctx(child_ctx); /* cannot be last */ 12343 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE); 12344 put_task_struct(current); /* cannot be last */ 12345 12346 clone_ctx = unclone_ctx(child_ctx); 12347 raw_spin_unlock_irq(&child_ctx->lock); 12348 12349 if (clone_ctx) 12350 put_ctx(clone_ctx); 12351 12352 /* 12353 * Report the task dead after unscheduling the events so that we 12354 * won't get any samples after PERF_RECORD_EXIT. We can however still 12355 * get a few PERF_RECORD_READ events. 12356 */ 12357 perf_event_task(child, child_ctx, 0); 12358 12359 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) 12360 perf_event_exit_event(child_event, child_ctx, child); 12361 12362 mutex_unlock(&child_ctx->mutex); 12363 12364 put_ctx(child_ctx); 12365 } 12366 12367 /* 12368 * When a child task exits, feed back event values to parent events. 12369 * 12370 * Can be called with exec_update_mutex held when called from 12371 * setup_new_exec(). 12372 */ 12373 void perf_event_exit_task(struct task_struct *child) 12374 { 12375 struct perf_event *event, *tmp; 12376 int ctxn; 12377 12378 mutex_lock(&child->perf_event_mutex); 12379 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 12380 owner_entry) { 12381 list_del_init(&event->owner_entry); 12382 12383 /* 12384 * Ensure the list deletion is visible before we clear 12385 * the owner, closes a race against perf_release() where 12386 * we need to serialize on the owner->perf_event_mutex. 12387 */ 12388 smp_store_release(&event->owner, NULL); 12389 } 12390 mutex_unlock(&child->perf_event_mutex); 12391 12392 for_each_task_context_nr(ctxn) 12393 perf_event_exit_task_context(child, ctxn); 12394 12395 /* 12396 * The perf_event_exit_task_context calls perf_event_task 12397 * with child's task_ctx, which generates EXIT events for 12398 * child contexts and sets child->perf_event_ctxp[] to NULL. 12399 * At this point we need to send EXIT events to cpu contexts. 12400 */ 12401 perf_event_task(child, NULL, 0); 12402 } 12403 12404 static void perf_free_event(struct perf_event *event, 12405 struct perf_event_context *ctx) 12406 { 12407 struct perf_event *parent = event->parent; 12408 12409 if (WARN_ON_ONCE(!parent)) 12410 return; 12411 12412 mutex_lock(&parent->child_mutex); 12413 list_del_init(&event->child_list); 12414 mutex_unlock(&parent->child_mutex); 12415 12416 put_event(parent); 12417 12418 raw_spin_lock_irq(&ctx->lock); 12419 perf_group_detach(event); 12420 list_del_event(event, ctx); 12421 raw_spin_unlock_irq(&ctx->lock); 12422 free_event(event); 12423 } 12424 12425 /* 12426 * Free a context as created by inheritance by perf_event_init_task() below, 12427 * used by fork() in case of fail. 12428 * 12429 * Even though the task has never lived, the context and events have been 12430 * exposed through the child_list, so we must take care tearing it all down. 12431 */ 12432 void perf_event_free_task(struct task_struct *task) 12433 { 12434 struct perf_event_context *ctx; 12435 struct perf_event *event, *tmp; 12436 int ctxn; 12437 12438 for_each_task_context_nr(ctxn) { 12439 ctx = task->perf_event_ctxp[ctxn]; 12440 if (!ctx) 12441 continue; 12442 12443 mutex_lock(&ctx->mutex); 12444 raw_spin_lock_irq(&ctx->lock); 12445 /* 12446 * Destroy the task <-> ctx relation and mark the context dead. 12447 * 12448 * This is important because even though the task hasn't been 12449 * exposed yet the context has been (through child_list). 12450 */ 12451 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL); 12452 WRITE_ONCE(ctx->task, TASK_TOMBSTONE); 12453 put_task_struct(task); /* cannot be last */ 12454 raw_spin_unlock_irq(&ctx->lock); 12455 12456 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) 12457 perf_free_event(event, ctx); 12458 12459 mutex_unlock(&ctx->mutex); 12460 12461 /* 12462 * perf_event_release_kernel() could've stolen some of our 12463 * child events and still have them on its free_list. In that 12464 * case we must wait for these events to have been freed (in 12465 * particular all their references to this task must've been 12466 * dropped). 12467 * 12468 * Without this copy_process() will unconditionally free this 12469 * task (irrespective of its reference count) and 12470 * _free_event()'s put_task_struct(event->hw.target) will be a 12471 * use-after-free. 12472 * 12473 * Wait for all events to drop their context reference. 12474 */ 12475 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1); 12476 put_ctx(ctx); /* must be last */ 12477 } 12478 } 12479 12480 void perf_event_delayed_put(struct task_struct *task) 12481 { 12482 int ctxn; 12483 12484 for_each_task_context_nr(ctxn) 12485 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); 12486 } 12487 12488 struct file *perf_event_get(unsigned int fd) 12489 { 12490 struct file *file = fget(fd); 12491 if (!file) 12492 return ERR_PTR(-EBADF); 12493 12494 if (file->f_op != &perf_fops) { 12495 fput(file); 12496 return ERR_PTR(-EBADF); 12497 } 12498 12499 return file; 12500 } 12501 12502 const struct perf_event *perf_get_event(struct file *file) 12503 { 12504 if (file->f_op != &perf_fops) 12505 return ERR_PTR(-EINVAL); 12506 12507 return file->private_data; 12508 } 12509 12510 const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 12511 { 12512 if (!event) 12513 return ERR_PTR(-EINVAL); 12514 12515 return &event->attr; 12516 } 12517 12518 /* 12519 * Inherit an event from parent task to child task. 12520 * 12521 * Returns: 12522 * - valid pointer on success 12523 * - NULL for orphaned events 12524 * - IS_ERR() on error 12525 */ 12526 static struct perf_event * 12527 inherit_event(struct perf_event *parent_event, 12528 struct task_struct *parent, 12529 struct perf_event_context *parent_ctx, 12530 struct task_struct *child, 12531 struct perf_event *group_leader, 12532 struct perf_event_context *child_ctx) 12533 { 12534 enum perf_event_state parent_state = parent_event->state; 12535 struct perf_event *child_event; 12536 unsigned long flags; 12537 12538 /* 12539 * Instead of creating recursive hierarchies of events, 12540 * we link inherited events back to the original parent, 12541 * which has a filp for sure, which we use as the reference 12542 * count: 12543 */ 12544 if (parent_event->parent) 12545 parent_event = parent_event->parent; 12546 12547 child_event = perf_event_alloc(&parent_event->attr, 12548 parent_event->cpu, 12549 child, 12550 group_leader, parent_event, 12551 NULL, NULL, -1); 12552 if (IS_ERR(child_event)) 12553 return child_event; 12554 12555 12556 if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) && 12557 !child_ctx->task_ctx_data) { 12558 struct pmu *pmu = child_event->pmu; 12559 12560 child_ctx->task_ctx_data = alloc_task_ctx_data(pmu); 12561 if (!child_ctx->task_ctx_data) { 12562 free_event(child_event); 12563 return ERR_PTR(-ENOMEM); 12564 } 12565 } 12566 12567 /* 12568 * is_orphaned_event() and list_add_tail(&parent_event->child_list) 12569 * must be under the same lock in order to serialize against 12570 * perf_event_release_kernel(), such that either we must observe 12571 * is_orphaned_event() or they will observe us on the child_list. 12572 */ 12573 mutex_lock(&parent_event->child_mutex); 12574 if (is_orphaned_event(parent_event) || 12575 !atomic_long_inc_not_zero(&parent_event->refcount)) { 12576 mutex_unlock(&parent_event->child_mutex); 12577 /* task_ctx_data is freed with child_ctx */ 12578 free_event(child_event); 12579 return NULL; 12580 } 12581 12582 get_ctx(child_ctx); 12583 12584 /* 12585 * Make the child state follow the state of the parent event, 12586 * not its attr.disabled bit. We hold the parent's mutex, 12587 * so we won't race with perf_event_{en, dis}able_family. 12588 */ 12589 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 12590 child_event->state = PERF_EVENT_STATE_INACTIVE; 12591 else 12592 child_event->state = PERF_EVENT_STATE_OFF; 12593 12594 if (parent_event->attr.freq) { 12595 u64 sample_period = parent_event->hw.sample_period; 12596 struct hw_perf_event *hwc = &child_event->hw; 12597 12598 hwc->sample_period = sample_period; 12599 hwc->last_period = sample_period; 12600 12601 local64_set(&hwc->period_left, sample_period); 12602 } 12603 12604 child_event->ctx = child_ctx; 12605 child_event->overflow_handler = parent_event->overflow_handler; 12606 child_event->overflow_handler_context 12607 = parent_event->overflow_handler_context; 12608 12609 /* 12610 * Precalculate sample_data sizes 12611 */ 12612 perf_event__header_size(child_event); 12613 perf_event__id_header_size(child_event); 12614 12615 /* 12616 * Link it up in the child's context: 12617 */ 12618 raw_spin_lock_irqsave(&child_ctx->lock, flags); 12619 add_event_to_ctx(child_event, child_ctx); 12620 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 12621 12622 /* 12623 * Link this into the parent event's child list 12624 */ 12625 list_add_tail(&child_event->child_list, &parent_event->child_list); 12626 mutex_unlock(&parent_event->child_mutex); 12627 12628 return child_event; 12629 } 12630 12631 /* 12632 * Inherits an event group. 12633 * 12634 * This will quietly suppress orphaned events; !inherit_event() is not an error. 12635 * This matches with perf_event_release_kernel() removing all child events. 12636 * 12637 * Returns: 12638 * - 0 on success 12639 * - <0 on error 12640 */ 12641 static int inherit_group(struct perf_event *parent_event, 12642 struct task_struct *parent, 12643 struct perf_event_context *parent_ctx, 12644 struct task_struct *child, 12645 struct perf_event_context *child_ctx) 12646 { 12647 struct perf_event *leader; 12648 struct perf_event *sub; 12649 struct perf_event *child_ctr; 12650 12651 leader = inherit_event(parent_event, parent, parent_ctx, 12652 child, NULL, child_ctx); 12653 if (IS_ERR(leader)) 12654 return PTR_ERR(leader); 12655 /* 12656 * @leader can be NULL here because of is_orphaned_event(). In this 12657 * case inherit_event() will create individual events, similar to what 12658 * perf_group_detach() would do anyway. 12659 */ 12660 for_each_sibling_event(sub, parent_event) { 12661 child_ctr = inherit_event(sub, parent, parent_ctx, 12662 child, leader, child_ctx); 12663 if (IS_ERR(child_ctr)) 12664 return PTR_ERR(child_ctr); 12665 12666 if (sub->aux_event == parent_event && child_ctr && 12667 !perf_get_aux_event(child_ctr, leader)) 12668 return -EINVAL; 12669 } 12670 return 0; 12671 } 12672 12673 /* 12674 * Creates the child task context and tries to inherit the event-group. 12675 * 12676 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave 12677 * inherited_all set when we 'fail' to inherit an orphaned event; this is 12678 * consistent with perf_event_release_kernel() removing all child events. 12679 * 12680 * Returns: 12681 * - 0 on success 12682 * - <0 on error 12683 */ 12684 static int 12685 inherit_task_group(struct perf_event *event, struct task_struct *parent, 12686 struct perf_event_context *parent_ctx, 12687 struct task_struct *child, int ctxn, 12688 int *inherited_all) 12689 { 12690 int ret; 12691 struct perf_event_context *child_ctx; 12692 12693 if (!event->attr.inherit) { 12694 *inherited_all = 0; 12695 return 0; 12696 } 12697 12698 child_ctx = child->perf_event_ctxp[ctxn]; 12699 if (!child_ctx) { 12700 /* 12701 * This is executed from the parent task context, so 12702 * inherit events that have been marked for cloning. 12703 * First allocate and initialize a context for the 12704 * child. 12705 */ 12706 child_ctx = alloc_perf_context(parent_ctx->pmu, child); 12707 if (!child_ctx) 12708 return -ENOMEM; 12709 12710 child->perf_event_ctxp[ctxn] = child_ctx; 12711 } 12712 12713 ret = inherit_group(event, parent, parent_ctx, 12714 child, child_ctx); 12715 12716 if (ret) 12717 *inherited_all = 0; 12718 12719 return ret; 12720 } 12721 12722 /* 12723 * Initialize the perf_event context in task_struct 12724 */ 12725 static int perf_event_init_context(struct task_struct *child, int ctxn) 12726 { 12727 struct perf_event_context *child_ctx, *parent_ctx; 12728 struct perf_event_context *cloned_ctx; 12729 struct perf_event *event; 12730 struct task_struct *parent = current; 12731 int inherited_all = 1; 12732 unsigned long flags; 12733 int ret = 0; 12734 12735 if (likely(!parent->perf_event_ctxp[ctxn])) 12736 return 0; 12737 12738 /* 12739 * If the parent's context is a clone, pin it so it won't get 12740 * swapped under us. 12741 */ 12742 parent_ctx = perf_pin_task_context(parent, ctxn); 12743 if (!parent_ctx) 12744 return 0; 12745 12746 /* 12747 * No need to check if parent_ctx != NULL here; since we saw 12748 * it non-NULL earlier, the only reason for it to become NULL 12749 * is if we exit, and since we're currently in the middle of 12750 * a fork we can't be exiting at the same time. 12751 */ 12752 12753 /* 12754 * Lock the parent list. No need to lock the child - not PID 12755 * hashed yet and not running, so nobody can access it. 12756 */ 12757 mutex_lock(&parent_ctx->mutex); 12758 12759 /* 12760 * We dont have to disable NMIs - we are only looking at 12761 * the list, not manipulating it: 12762 */ 12763 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) { 12764 ret = inherit_task_group(event, parent, parent_ctx, 12765 child, ctxn, &inherited_all); 12766 if (ret) 12767 goto out_unlock; 12768 } 12769 12770 /* 12771 * We can't hold ctx->lock when iterating the ->flexible_group list due 12772 * to allocations, but we need to prevent rotation because 12773 * rotate_ctx() will change the list from interrupt context. 12774 */ 12775 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 12776 parent_ctx->rotate_disable = 1; 12777 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 12778 12779 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) { 12780 ret = inherit_task_group(event, parent, parent_ctx, 12781 child, ctxn, &inherited_all); 12782 if (ret) 12783 goto out_unlock; 12784 } 12785 12786 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 12787 parent_ctx->rotate_disable = 0; 12788 12789 child_ctx = child->perf_event_ctxp[ctxn]; 12790 12791 if (child_ctx && inherited_all) { 12792 /* 12793 * Mark the child context as a clone of the parent 12794 * context, or of whatever the parent is a clone of. 12795 * 12796 * Note that if the parent is a clone, the holding of 12797 * parent_ctx->lock avoids it from being uncloned. 12798 */ 12799 cloned_ctx = parent_ctx->parent_ctx; 12800 if (cloned_ctx) { 12801 child_ctx->parent_ctx = cloned_ctx; 12802 child_ctx->parent_gen = parent_ctx->parent_gen; 12803 } else { 12804 child_ctx->parent_ctx = parent_ctx; 12805 child_ctx->parent_gen = parent_ctx->generation; 12806 } 12807 get_ctx(child_ctx->parent_ctx); 12808 } 12809 12810 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 12811 out_unlock: 12812 mutex_unlock(&parent_ctx->mutex); 12813 12814 perf_unpin_context(parent_ctx); 12815 put_ctx(parent_ctx); 12816 12817 return ret; 12818 } 12819 12820 /* 12821 * Initialize the perf_event context in task_struct 12822 */ 12823 int perf_event_init_task(struct task_struct *child) 12824 { 12825 int ctxn, ret; 12826 12827 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); 12828 mutex_init(&child->perf_event_mutex); 12829 INIT_LIST_HEAD(&child->perf_event_list); 12830 12831 for_each_task_context_nr(ctxn) { 12832 ret = perf_event_init_context(child, ctxn); 12833 if (ret) { 12834 perf_event_free_task(child); 12835 return ret; 12836 } 12837 } 12838 12839 return 0; 12840 } 12841 12842 static void __init perf_event_init_all_cpus(void) 12843 { 12844 struct swevent_htable *swhash; 12845 int cpu; 12846 12847 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL); 12848 12849 for_each_possible_cpu(cpu) { 12850 swhash = &per_cpu(swevent_htable, cpu); 12851 mutex_init(&swhash->hlist_mutex); 12852 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu)); 12853 12854 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu)); 12855 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu)); 12856 12857 #ifdef CONFIG_CGROUP_PERF 12858 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu)); 12859 #endif 12860 } 12861 } 12862 12863 static void perf_swevent_init_cpu(unsigned int cpu) 12864 { 12865 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 12866 12867 mutex_lock(&swhash->hlist_mutex); 12868 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) { 12869 struct swevent_hlist *hlist; 12870 12871 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 12872 WARN_ON(!hlist); 12873 rcu_assign_pointer(swhash->swevent_hlist, hlist); 12874 } 12875 mutex_unlock(&swhash->hlist_mutex); 12876 } 12877 12878 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE 12879 static void __perf_event_exit_context(void *__info) 12880 { 12881 struct perf_event_context *ctx = __info; 12882 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 12883 struct perf_event *event; 12884 12885 raw_spin_lock(&ctx->lock); 12886 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 12887 list_for_each_entry(event, &ctx->event_list, event_entry) 12888 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP); 12889 raw_spin_unlock(&ctx->lock); 12890 } 12891 12892 static void perf_event_exit_cpu_context(int cpu) 12893 { 12894 struct perf_cpu_context *cpuctx; 12895 struct perf_event_context *ctx; 12896 struct pmu *pmu; 12897 12898 mutex_lock(&pmus_lock); 12899 list_for_each_entry(pmu, &pmus, entry) { 12900 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 12901 ctx = &cpuctx->ctx; 12902 12903 mutex_lock(&ctx->mutex); 12904 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 12905 cpuctx->online = 0; 12906 mutex_unlock(&ctx->mutex); 12907 } 12908 cpumask_clear_cpu(cpu, perf_online_mask); 12909 mutex_unlock(&pmus_lock); 12910 } 12911 #else 12912 12913 static void perf_event_exit_cpu_context(int cpu) { } 12914 12915 #endif 12916 12917 int perf_event_init_cpu(unsigned int cpu) 12918 { 12919 struct perf_cpu_context *cpuctx; 12920 struct perf_event_context *ctx; 12921 struct pmu *pmu; 12922 12923 perf_swevent_init_cpu(cpu); 12924 12925 mutex_lock(&pmus_lock); 12926 cpumask_set_cpu(cpu, perf_online_mask); 12927 list_for_each_entry(pmu, &pmus, entry) { 12928 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 12929 ctx = &cpuctx->ctx; 12930 12931 mutex_lock(&ctx->mutex); 12932 cpuctx->online = 1; 12933 mutex_unlock(&ctx->mutex); 12934 } 12935 mutex_unlock(&pmus_lock); 12936 12937 return 0; 12938 } 12939 12940 int perf_event_exit_cpu(unsigned int cpu) 12941 { 12942 perf_event_exit_cpu_context(cpu); 12943 return 0; 12944 } 12945 12946 static int 12947 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 12948 { 12949 int cpu; 12950 12951 for_each_online_cpu(cpu) 12952 perf_event_exit_cpu(cpu); 12953 12954 return NOTIFY_OK; 12955 } 12956 12957 /* 12958 * Run the perf reboot notifier at the very last possible moment so that 12959 * the generic watchdog code runs as long as possible. 12960 */ 12961 static struct notifier_block perf_reboot_notifier = { 12962 .notifier_call = perf_reboot, 12963 .priority = INT_MIN, 12964 }; 12965 12966 void __init perf_event_init(void) 12967 { 12968 int ret; 12969 12970 idr_init(&pmu_idr); 12971 12972 perf_event_init_all_cpus(); 12973 init_srcu_struct(&pmus_srcu); 12974 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 12975 perf_pmu_register(&perf_cpu_clock, NULL, -1); 12976 perf_pmu_register(&perf_task_clock, NULL, -1); 12977 perf_tp_register(); 12978 perf_event_init_cpu(smp_processor_id()); 12979 register_reboot_notifier(&perf_reboot_notifier); 12980 12981 ret = init_hw_breakpoint(); 12982 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 12983 12984 /* 12985 * Build time assertion that we keep the data_head at the intended 12986 * location. IOW, validation we got the __reserved[] size right. 12987 */ 12988 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 12989 != 1024); 12990 } 12991 12992 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 12993 char *page) 12994 { 12995 struct perf_pmu_events_attr *pmu_attr = 12996 container_of(attr, struct perf_pmu_events_attr, attr); 12997 12998 if (pmu_attr->event_str) 12999 return sprintf(page, "%s\n", pmu_attr->event_str); 13000 13001 return 0; 13002 } 13003 EXPORT_SYMBOL_GPL(perf_event_sysfs_show); 13004 13005 static int __init perf_event_sysfs_init(void) 13006 { 13007 struct pmu *pmu; 13008 int ret; 13009 13010 mutex_lock(&pmus_lock); 13011 13012 ret = bus_register(&pmu_bus); 13013 if (ret) 13014 goto unlock; 13015 13016 list_for_each_entry(pmu, &pmus, entry) { 13017 if (!pmu->name || pmu->type < 0) 13018 continue; 13019 13020 ret = pmu_dev_alloc(pmu); 13021 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 13022 } 13023 pmu_bus_running = 1; 13024 ret = 0; 13025 13026 unlock: 13027 mutex_unlock(&pmus_lock); 13028 13029 return ret; 13030 } 13031 device_initcall(perf_event_sysfs_init); 13032 13033 #ifdef CONFIG_CGROUP_PERF 13034 static struct cgroup_subsys_state * 13035 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 13036 { 13037 struct perf_cgroup *jc; 13038 13039 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 13040 if (!jc) 13041 return ERR_PTR(-ENOMEM); 13042 13043 jc->info = alloc_percpu(struct perf_cgroup_info); 13044 if (!jc->info) { 13045 kfree(jc); 13046 return ERR_PTR(-ENOMEM); 13047 } 13048 13049 return &jc->css; 13050 } 13051 13052 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 13053 { 13054 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 13055 13056 free_percpu(jc->info); 13057 kfree(jc); 13058 } 13059 13060 static int perf_cgroup_css_online(struct cgroup_subsys_state *css) 13061 { 13062 perf_event_cgroup(css->cgroup); 13063 return 0; 13064 } 13065 13066 static int __perf_cgroup_move(void *info) 13067 { 13068 struct task_struct *task = info; 13069 rcu_read_lock(); 13070 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN); 13071 rcu_read_unlock(); 13072 return 0; 13073 } 13074 13075 static void perf_cgroup_attach(struct cgroup_taskset *tset) 13076 { 13077 struct task_struct *task; 13078 struct cgroup_subsys_state *css; 13079 13080 cgroup_taskset_for_each(task, css, tset) 13081 task_function_call(task, __perf_cgroup_move, task); 13082 } 13083 13084 struct cgroup_subsys perf_event_cgrp_subsys = { 13085 .css_alloc = perf_cgroup_css_alloc, 13086 .css_free = perf_cgroup_css_free, 13087 .css_online = perf_cgroup_css_online, 13088 .attach = perf_cgroup_attach, 13089 /* 13090 * Implicitly enable on dfl hierarchy so that perf events can 13091 * always be filtered by cgroup2 path as long as perf_event 13092 * controller is not mounted on a legacy hierarchy. 13093 */ 13094 .implicit_on_dfl = true, 13095 .threaded = true, 13096 }; 13097 #endif /* CONFIG_CGROUP_PERF */ 13098