xref: /openbmc/linux/kernel/events/core.c (revision 7ec6b431)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10 
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/rculist.h>
32 #include <linux/uaccess.h>
33 #include <linux/syscalls.h>
34 #include <linux/anon_inodes.h>
35 #include <linux/kernel_stat.h>
36 #include <linux/cgroup.h>
37 #include <linux/perf_event.h>
38 #include <linux/trace_events.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/mm_types.h>
41 #include <linux/module.h>
42 #include <linux/mman.h>
43 #include <linux/compat.h>
44 #include <linux/bpf.h>
45 #include <linux/filter.h>
46 #include <linux/namei.h>
47 #include <linux/parser.h>
48 #include <linux/sched/clock.h>
49 #include <linux/sched/mm.h>
50 #include <linux/proc_ns.h>
51 #include <linux/mount.h>
52 
53 #include "internal.h"
54 
55 #include <asm/irq_regs.h>
56 
57 typedef int (*remote_function_f)(void *);
58 
59 struct remote_function_call {
60 	struct task_struct	*p;
61 	remote_function_f	func;
62 	void			*info;
63 	int			ret;
64 };
65 
66 static void remote_function(void *data)
67 {
68 	struct remote_function_call *tfc = data;
69 	struct task_struct *p = tfc->p;
70 
71 	if (p) {
72 		/* -EAGAIN */
73 		if (task_cpu(p) != smp_processor_id())
74 			return;
75 
76 		/*
77 		 * Now that we're on right CPU with IRQs disabled, we can test
78 		 * if we hit the right task without races.
79 		 */
80 
81 		tfc->ret = -ESRCH; /* No such (running) process */
82 		if (p != current)
83 			return;
84 	}
85 
86 	tfc->ret = tfc->func(tfc->info);
87 }
88 
89 /**
90  * task_function_call - call a function on the cpu on which a task runs
91  * @p:		the task to evaluate
92  * @func:	the function to be called
93  * @info:	the function call argument
94  *
95  * Calls the function @func when the task is currently running. This might
96  * be on the current CPU, which just calls the function directly
97  *
98  * returns: @func return value, or
99  *	    -ESRCH  - when the process isn't running
100  *	    -EAGAIN - when the process moved away
101  */
102 static int
103 task_function_call(struct task_struct *p, remote_function_f func, void *info)
104 {
105 	struct remote_function_call data = {
106 		.p	= p,
107 		.func	= func,
108 		.info	= info,
109 		.ret	= -EAGAIN,
110 	};
111 	int ret;
112 
113 	do {
114 		ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
115 		if (!ret)
116 			ret = data.ret;
117 	} while (ret == -EAGAIN);
118 
119 	return ret;
120 }
121 
122 /**
123  * cpu_function_call - call a function on the cpu
124  * @func:	the function to be called
125  * @info:	the function call argument
126  *
127  * Calls the function @func on the remote cpu.
128  *
129  * returns: @func return value or -ENXIO when the cpu is offline
130  */
131 static int cpu_function_call(int cpu, remote_function_f func, void *info)
132 {
133 	struct remote_function_call data = {
134 		.p	= NULL,
135 		.func	= func,
136 		.info	= info,
137 		.ret	= -ENXIO, /* No such CPU */
138 	};
139 
140 	smp_call_function_single(cpu, remote_function, &data, 1);
141 
142 	return data.ret;
143 }
144 
145 static inline struct perf_cpu_context *
146 __get_cpu_context(struct perf_event_context *ctx)
147 {
148 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
149 }
150 
151 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
152 			  struct perf_event_context *ctx)
153 {
154 	raw_spin_lock(&cpuctx->ctx.lock);
155 	if (ctx)
156 		raw_spin_lock(&ctx->lock);
157 }
158 
159 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
160 			    struct perf_event_context *ctx)
161 {
162 	if (ctx)
163 		raw_spin_unlock(&ctx->lock);
164 	raw_spin_unlock(&cpuctx->ctx.lock);
165 }
166 
167 #define TASK_TOMBSTONE ((void *)-1L)
168 
169 static bool is_kernel_event(struct perf_event *event)
170 {
171 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
172 }
173 
174 /*
175  * On task ctx scheduling...
176  *
177  * When !ctx->nr_events a task context will not be scheduled. This means
178  * we can disable the scheduler hooks (for performance) without leaving
179  * pending task ctx state.
180  *
181  * This however results in two special cases:
182  *
183  *  - removing the last event from a task ctx; this is relatively straight
184  *    forward and is done in __perf_remove_from_context.
185  *
186  *  - adding the first event to a task ctx; this is tricky because we cannot
187  *    rely on ctx->is_active and therefore cannot use event_function_call().
188  *    See perf_install_in_context().
189  *
190  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
191  */
192 
193 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
194 			struct perf_event_context *, void *);
195 
196 struct event_function_struct {
197 	struct perf_event *event;
198 	event_f func;
199 	void *data;
200 };
201 
202 static int event_function(void *info)
203 {
204 	struct event_function_struct *efs = info;
205 	struct perf_event *event = efs->event;
206 	struct perf_event_context *ctx = event->ctx;
207 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
208 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
209 	int ret = 0;
210 
211 	lockdep_assert_irqs_disabled();
212 
213 	perf_ctx_lock(cpuctx, task_ctx);
214 	/*
215 	 * Since we do the IPI call without holding ctx->lock things can have
216 	 * changed, double check we hit the task we set out to hit.
217 	 */
218 	if (ctx->task) {
219 		if (ctx->task != current) {
220 			ret = -ESRCH;
221 			goto unlock;
222 		}
223 
224 		/*
225 		 * We only use event_function_call() on established contexts,
226 		 * and event_function() is only ever called when active (or
227 		 * rather, we'll have bailed in task_function_call() or the
228 		 * above ctx->task != current test), therefore we must have
229 		 * ctx->is_active here.
230 		 */
231 		WARN_ON_ONCE(!ctx->is_active);
232 		/*
233 		 * And since we have ctx->is_active, cpuctx->task_ctx must
234 		 * match.
235 		 */
236 		WARN_ON_ONCE(task_ctx != ctx);
237 	} else {
238 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
239 	}
240 
241 	efs->func(event, cpuctx, ctx, efs->data);
242 unlock:
243 	perf_ctx_unlock(cpuctx, task_ctx);
244 
245 	return ret;
246 }
247 
248 static void event_function_call(struct perf_event *event, event_f func, void *data)
249 {
250 	struct perf_event_context *ctx = event->ctx;
251 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
252 	struct event_function_struct efs = {
253 		.event = event,
254 		.func = func,
255 		.data = data,
256 	};
257 
258 	if (!event->parent) {
259 		/*
260 		 * If this is a !child event, we must hold ctx::mutex to
261 		 * stabilize the the event->ctx relation. See
262 		 * perf_event_ctx_lock().
263 		 */
264 		lockdep_assert_held(&ctx->mutex);
265 	}
266 
267 	if (!task) {
268 		cpu_function_call(event->cpu, event_function, &efs);
269 		return;
270 	}
271 
272 	if (task == TASK_TOMBSTONE)
273 		return;
274 
275 again:
276 	if (!task_function_call(task, event_function, &efs))
277 		return;
278 
279 	raw_spin_lock_irq(&ctx->lock);
280 	/*
281 	 * Reload the task pointer, it might have been changed by
282 	 * a concurrent perf_event_context_sched_out().
283 	 */
284 	task = ctx->task;
285 	if (task == TASK_TOMBSTONE) {
286 		raw_spin_unlock_irq(&ctx->lock);
287 		return;
288 	}
289 	if (ctx->is_active) {
290 		raw_spin_unlock_irq(&ctx->lock);
291 		goto again;
292 	}
293 	func(event, NULL, ctx, data);
294 	raw_spin_unlock_irq(&ctx->lock);
295 }
296 
297 /*
298  * Similar to event_function_call() + event_function(), but hard assumes IRQs
299  * are already disabled and we're on the right CPU.
300  */
301 static void event_function_local(struct perf_event *event, event_f func, void *data)
302 {
303 	struct perf_event_context *ctx = event->ctx;
304 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
305 	struct task_struct *task = READ_ONCE(ctx->task);
306 	struct perf_event_context *task_ctx = NULL;
307 
308 	lockdep_assert_irqs_disabled();
309 
310 	if (task) {
311 		if (task == TASK_TOMBSTONE)
312 			return;
313 
314 		task_ctx = ctx;
315 	}
316 
317 	perf_ctx_lock(cpuctx, task_ctx);
318 
319 	task = ctx->task;
320 	if (task == TASK_TOMBSTONE)
321 		goto unlock;
322 
323 	if (task) {
324 		/*
325 		 * We must be either inactive or active and the right task,
326 		 * otherwise we're screwed, since we cannot IPI to somewhere
327 		 * else.
328 		 */
329 		if (ctx->is_active) {
330 			if (WARN_ON_ONCE(task != current))
331 				goto unlock;
332 
333 			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
334 				goto unlock;
335 		}
336 	} else {
337 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
338 	}
339 
340 	func(event, cpuctx, ctx, data);
341 unlock:
342 	perf_ctx_unlock(cpuctx, task_ctx);
343 }
344 
345 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
346 		       PERF_FLAG_FD_OUTPUT  |\
347 		       PERF_FLAG_PID_CGROUP |\
348 		       PERF_FLAG_FD_CLOEXEC)
349 
350 /*
351  * branch priv levels that need permission checks
352  */
353 #define PERF_SAMPLE_BRANCH_PERM_PLM \
354 	(PERF_SAMPLE_BRANCH_KERNEL |\
355 	 PERF_SAMPLE_BRANCH_HV)
356 
357 enum event_type_t {
358 	EVENT_FLEXIBLE = 0x1,
359 	EVENT_PINNED = 0x2,
360 	EVENT_TIME = 0x4,
361 	/* see ctx_resched() for details */
362 	EVENT_CPU = 0x8,
363 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
364 };
365 
366 /*
367  * perf_sched_events : >0 events exist
368  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
369  */
370 
371 static void perf_sched_delayed(struct work_struct *work);
372 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
373 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
374 static DEFINE_MUTEX(perf_sched_mutex);
375 static atomic_t perf_sched_count;
376 
377 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
378 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
379 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
380 
381 static atomic_t nr_mmap_events __read_mostly;
382 static atomic_t nr_comm_events __read_mostly;
383 static atomic_t nr_namespaces_events __read_mostly;
384 static atomic_t nr_task_events __read_mostly;
385 static atomic_t nr_freq_events __read_mostly;
386 static atomic_t nr_switch_events __read_mostly;
387 static atomic_t nr_ksymbol_events __read_mostly;
388 static atomic_t nr_bpf_events __read_mostly;
389 
390 static LIST_HEAD(pmus);
391 static DEFINE_MUTEX(pmus_lock);
392 static struct srcu_struct pmus_srcu;
393 static cpumask_var_t perf_online_mask;
394 
395 /*
396  * perf event paranoia level:
397  *  -1 - not paranoid at all
398  *   0 - disallow raw tracepoint access for unpriv
399  *   1 - disallow cpu events for unpriv
400  *   2 - disallow kernel profiling for unpriv
401  */
402 int sysctl_perf_event_paranoid __read_mostly = 2;
403 
404 /* Minimum for 512 kiB + 1 user control page */
405 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
406 
407 /*
408  * max perf event sample rate
409  */
410 #define DEFAULT_MAX_SAMPLE_RATE		100000
411 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
412 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
413 
414 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
415 
416 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
417 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
418 
419 static int perf_sample_allowed_ns __read_mostly =
420 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
421 
422 static void update_perf_cpu_limits(void)
423 {
424 	u64 tmp = perf_sample_period_ns;
425 
426 	tmp *= sysctl_perf_cpu_time_max_percent;
427 	tmp = div_u64(tmp, 100);
428 	if (!tmp)
429 		tmp = 1;
430 
431 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
432 }
433 
434 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
435 
436 int perf_proc_update_handler(struct ctl_table *table, int write,
437 		void __user *buffer, size_t *lenp,
438 		loff_t *ppos)
439 {
440 	int ret;
441 	int perf_cpu = sysctl_perf_cpu_time_max_percent;
442 	/*
443 	 * If throttling is disabled don't allow the write:
444 	 */
445 	if (write && (perf_cpu == 100 || perf_cpu == 0))
446 		return -EINVAL;
447 
448 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
449 	if (ret || !write)
450 		return ret;
451 
452 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
453 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
454 	update_perf_cpu_limits();
455 
456 	return 0;
457 }
458 
459 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
460 
461 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
462 				void __user *buffer, size_t *lenp,
463 				loff_t *ppos)
464 {
465 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
466 
467 	if (ret || !write)
468 		return ret;
469 
470 	if (sysctl_perf_cpu_time_max_percent == 100 ||
471 	    sysctl_perf_cpu_time_max_percent == 0) {
472 		printk(KERN_WARNING
473 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
474 		WRITE_ONCE(perf_sample_allowed_ns, 0);
475 	} else {
476 		update_perf_cpu_limits();
477 	}
478 
479 	return 0;
480 }
481 
482 /*
483  * perf samples are done in some very critical code paths (NMIs).
484  * If they take too much CPU time, the system can lock up and not
485  * get any real work done.  This will drop the sample rate when
486  * we detect that events are taking too long.
487  */
488 #define NR_ACCUMULATED_SAMPLES 128
489 static DEFINE_PER_CPU(u64, running_sample_length);
490 
491 static u64 __report_avg;
492 static u64 __report_allowed;
493 
494 static void perf_duration_warn(struct irq_work *w)
495 {
496 	printk_ratelimited(KERN_INFO
497 		"perf: interrupt took too long (%lld > %lld), lowering "
498 		"kernel.perf_event_max_sample_rate to %d\n",
499 		__report_avg, __report_allowed,
500 		sysctl_perf_event_sample_rate);
501 }
502 
503 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
504 
505 void perf_sample_event_took(u64 sample_len_ns)
506 {
507 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
508 	u64 running_len;
509 	u64 avg_len;
510 	u32 max;
511 
512 	if (max_len == 0)
513 		return;
514 
515 	/* Decay the counter by 1 average sample. */
516 	running_len = __this_cpu_read(running_sample_length);
517 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
518 	running_len += sample_len_ns;
519 	__this_cpu_write(running_sample_length, running_len);
520 
521 	/*
522 	 * Note: this will be biased artifically low until we have
523 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
524 	 * from having to maintain a count.
525 	 */
526 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
527 	if (avg_len <= max_len)
528 		return;
529 
530 	__report_avg = avg_len;
531 	__report_allowed = max_len;
532 
533 	/*
534 	 * Compute a throttle threshold 25% below the current duration.
535 	 */
536 	avg_len += avg_len / 4;
537 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
538 	if (avg_len < max)
539 		max /= (u32)avg_len;
540 	else
541 		max = 1;
542 
543 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
544 	WRITE_ONCE(max_samples_per_tick, max);
545 
546 	sysctl_perf_event_sample_rate = max * HZ;
547 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
548 
549 	if (!irq_work_queue(&perf_duration_work)) {
550 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
551 			     "kernel.perf_event_max_sample_rate to %d\n",
552 			     __report_avg, __report_allowed,
553 			     sysctl_perf_event_sample_rate);
554 	}
555 }
556 
557 static atomic64_t perf_event_id;
558 
559 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
560 			      enum event_type_t event_type);
561 
562 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
563 			     enum event_type_t event_type,
564 			     struct task_struct *task);
565 
566 static void update_context_time(struct perf_event_context *ctx);
567 static u64 perf_event_time(struct perf_event *event);
568 
569 void __weak perf_event_print_debug(void)	{ }
570 
571 extern __weak const char *perf_pmu_name(void)
572 {
573 	return "pmu";
574 }
575 
576 static inline u64 perf_clock(void)
577 {
578 	return local_clock();
579 }
580 
581 static inline u64 perf_event_clock(struct perf_event *event)
582 {
583 	return event->clock();
584 }
585 
586 /*
587  * State based event timekeeping...
588  *
589  * The basic idea is to use event->state to determine which (if any) time
590  * fields to increment with the current delta. This means we only need to
591  * update timestamps when we change state or when they are explicitly requested
592  * (read).
593  *
594  * Event groups make things a little more complicated, but not terribly so. The
595  * rules for a group are that if the group leader is OFF the entire group is
596  * OFF, irrespecive of what the group member states are. This results in
597  * __perf_effective_state().
598  *
599  * A futher ramification is that when a group leader flips between OFF and
600  * !OFF, we need to update all group member times.
601  *
602  *
603  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
604  * need to make sure the relevant context time is updated before we try and
605  * update our timestamps.
606  */
607 
608 static __always_inline enum perf_event_state
609 __perf_effective_state(struct perf_event *event)
610 {
611 	struct perf_event *leader = event->group_leader;
612 
613 	if (leader->state <= PERF_EVENT_STATE_OFF)
614 		return leader->state;
615 
616 	return event->state;
617 }
618 
619 static __always_inline void
620 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
621 {
622 	enum perf_event_state state = __perf_effective_state(event);
623 	u64 delta = now - event->tstamp;
624 
625 	*enabled = event->total_time_enabled;
626 	if (state >= PERF_EVENT_STATE_INACTIVE)
627 		*enabled += delta;
628 
629 	*running = event->total_time_running;
630 	if (state >= PERF_EVENT_STATE_ACTIVE)
631 		*running += delta;
632 }
633 
634 static void perf_event_update_time(struct perf_event *event)
635 {
636 	u64 now = perf_event_time(event);
637 
638 	__perf_update_times(event, now, &event->total_time_enabled,
639 					&event->total_time_running);
640 	event->tstamp = now;
641 }
642 
643 static void perf_event_update_sibling_time(struct perf_event *leader)
644 {
645 	struct perf_event *sibling;
646 
647 	for_each_sibling_event(sibling, leader)
648 		perf_event_update_time(sibling);
649 }
650 
651 static void
652 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
653 {
654 	if (event->state == state)
655 		return;
656 
657 	perf_event_update_time(event);
658 	/*
659 	 * If a group leader gets enabled/disabled all its siblings
660 	 * are affected too.
661 	 */
662 	if ((event->state < 0) ^ (state < 0))
663 		perf_event_update_sibling_time(event);
664 
665 	WRITE_ONCE(event->state, state);
666 }
667 
668 #ifdef CONFIG_CGROUP_PERF
669 
670 static inline bool
671 perf_cgroup_match(struct perf_event *event)
672 {
673 	struct perf_event_context *ctx = event->ctx;
674 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
675 
676 	/* @event doesn't care about cgroup */
677 	if (!event->cgrp)
678 		return true;
679 
680 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
681 	if (!cpuctx->cgrp)
682 		return false;
683 
684 	/*
685 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
686 	 * also enabled for all its descendant cgroups.  If @cpuctx's
687 	 * cgroup is a descendant of @event's (the test covers identity
688 	 * case), it's a match.
689 	 */
690 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
691 				    event->cgrp->css.cgroup);
692 }
693 
694 static inline void perf_detach_cgroup(struct perf_event *event)
695 {
696 	css_put(&event->cgrp->css);
697 	event->cgrp = NULL;
698 }
699 
700 static inline int is_cgroup_event(struct perf_event *event)
701 {
702 	return event->cgrp != NULL;
703 }
704 
705 static inline u64 perf_cgroup_event_time(struct perf_event *event)
706 {
707 	struct perf_cgroup_info *t;
708 
709 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
710 	return t->time;
711 }
712 
713 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
714 {
715 	struct perf_cgroup_info *info;
716 	u64 now;
717 
718 	now = perf_clock();
719 
720 	info = this_cpu_ptr(cgrp->info);
721 
722 	info->time += now - info->timestamp;
723 	info->timestamp = now;
724 }
725 
726 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
727 {
728 	struct perf_cgroup *cgrp = cpuctx->cgrp;
729 	struct cgroup_subsys_state *css;
730 
731 	if (cgrp) {
732 		for (css = &cgrp->css; css; css = css->parent) {
733 			cgrp = container_of(css, struct perf_cgroup, css);
734 			__update_cgrp_time(cgrp);
735 		}
736 	}
737 }
738 
739 static inline void update_cgrp_time_from_event(struct perf_event *event)
740 {
741 	struct perf_cgroup *cgrp;
742 
743 	/*
744 	 * ensure we access cgroup data only when needed and
745 	 * when we know the cgroup is pinned (css_get)
746 	 */
747 	if (!is_cgroup_event(event))
748 		return;
749 
750 	cgrp = perf_cgroup_from_task(current, event->ctx);
751 	/*
752 	 * Do not update time when cgroup is not active
753 	 */
754 	if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
755 		__update_cgrp_time(event->cgrp);
756 }
757 
758 static inline void
759 perf_cgroup_set_timestamp(struct task_struct *task,
760 			  struct perf_event_context *ctx)
761 {
762 	struct perf_cgroup *cgrp;
763 	struct perf_cgroup_info *info;
764 	struct cgroup_subsys_state *css;
765 
766 	/*
767 	 * ctx->lock held by caller
768 	 * ensure we do not access cgroup data
769 	 * unless we have the cgroup pinned (css_get)
770 	 */
771 	if (!task || !ctx->nr_cgroups)
772 		return;
773 
774 	cgrp = perf_cgroup_from_task(task, ctx);
775 
776 	for (css = &cgrp->css; css; css = css->parent) {
777 		cgrp = container_of(css, struct perf_cgroup, css);
778 		info = this_cpu_ptr(cgrp->info);
779 		info->timestamp = ctx->timestamp;
780 	}
781 }
782 
783 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
784 
785 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
786 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
787 
788 /*
789  * reschedule events based on the cgroup constraint of task.
790  *
791  * mode SWOUT : schedule out everything
792  * mode SWIN : schedule in based on cgroup for next
793  */
794 static void perf_cgroup_switch(struct task_struct *task, int mode)
795 {
796 	struct perf_cpu_context *cpuctx;
797 	struct list_head *list;
798 	unsigned long flags;
799 
800 	/*
801 	 * Disable interrupts and preemption to avoid this CPU's
802 	 * cgrp_cpuctx_entry to change under us.
803 	 */
804 	local_irq_save(flags);
805 
806 	list = this_cpu_ptr(&cgrp_cpuctx_list);
807 	list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
808 		WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
809 
810 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
811 		perf_pmu_disable(cpuctx->ctx.pmu);
812 
813 		if (mode & PERF_CGROUP_SWOUT) {
814 			cpu_ctx_sched_out(cpuctx, EVENT_ALL);
815 			/*
816 			 * must not be done before ctxswout due
817 			 * to event_filter_match() in event_sched_out()
818 			 */
819 			cpuctx->cgrp = NULL;
820 		}
821 
822 		if (mode & PERF_CGROUP_SWIN) {
823 			WARN_ON_ONCE(cpuctx->cgrp);
824 			/*
825 			 * set cgrp before ctxsw in to allow
826 			 * event_filter_match() to not have to pass
827 			 * task around
828 			 * we pass the cpuctx->ctx to perf_cgroup_from_task()
829 			 * because cgorup events are only per-cpu
830 			 */
831 			cpuctx->cgrp = perf_cgroup_from_task(task,
832 							     &cpuctx->ctx);
833 			cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
834 		}
835 		perf_pmu_enable(cpuctx->ctx.pmu);
836 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
837 	}
838 
839 	local_irq_restore(flags);
840 }
841 
842 static inline void perf_cgroup_sched_out(struct task_struct *task,
843 					 struct task_struct *next)
844 {
845 	struct perf_cgroup *cgrp1;
846 	struct perf_cgroup *cgrp2 = NULL;
847 
848 	rcu_read_lock();
849 	/*
850 	 * we come here when we know perf_cgroup_events > 0
851 	 * we do not need to pass the ctx here because we know
852 	 * we are holding the rcu lock
853 	 */
854 	cgrp1 = perf_cgroup_from_task(task, NULL);
855 	cgrp2 = perf_cgroup_from_task(next, NULL);
856 
857 	/*
858 	 * only schedule out current cgroup events if we know
859 	 * that we are switching to a different cgroup. Otherwise,
860 	 * do no touch the cgroup events.
861 	 */
862 	if (cgrp1 != cgrp2)
863 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
864 
865 	rcu_read_unlock();
866 }
867 
868 static inline void perf_cgroup_sched_in(struct task_struct *prev,
869 					struct task_struct *task)
870 {
871 	struct perf_cgroup *cgrp1;
872 	struct perf_cgroup *cgrp2 = NULL;
873 
874 	rcu_read_lock();
875 	/*
876 	 * we come here when we know perf_cgroup_events > 0
877 	 * we do not need to pass the ctx here because we know
878 	 * we are holding the rcu lock
879 	 */
880 	cgrp1 = perf_cgroup_from_task(task, NULL);
881 	cgrp2 = perf_cgroup_from_task(prev, NULL);
882 
883 	/*
884 	 * only need to schedule in cgroup events if we are changing
885 	 * cgroup during ctxsw. Cgroup events were not scheduled
886 	 * out of ctxsw out if that was not the case.
887 	 */
888 	if (cgrp1 != cgrp2)
889 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
890 
891 	rcu_read_unlock();
892 }
893 
894 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
895 				      struct perf_event_attr *attr,
896 				      struct perf_event *group_leader)
897 {
898 	struct perf_cgroup *cgrp;
899 	struct cgroup_subsys_state *css;
900 	struct fd f = fdget(fd);
901 	int ret = 0;
902 
903 	if (!f.file)
904 		return -EBADF;
905 
906 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
907 					 &perf_event_cgrp_subsys);
908 	if (IS_ERR(css)) {
909 		ret = PTR_ERR(css);
910 		goto out;
911 	}
912 
913 	cgrp = container_of(css, struct perf_cgroup, css);
914 	event->cgrp = cgrp;
915 
916 	/*
917 	 * all events in a group must monitor
918 	 * the same cgroup because a task belongs
919 	 * to only one perf cgroup at a time
920 	 */
921 	if (group_leader && group_leader->cgrp != cgrp) {
922 		perf_detach_cgroup(event);
923 		ret = -EINVAL;
924 	}
925 out:
926 	fdput(f);
927 	return ret;
928 }
929 
930 static inline void
931 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
932 {
933 	struct perf_cgroup_info *t;
934 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
935 	event->shadow_ctx_time = now - t->timestamp;
936 }
937 
938 /*
939  * Update cpuctx->cgrp so that it is set when first cgroup event is added and
940  * cleared when last cgroup event is removed.
941  */
942 static inline void
943 list_update_cgroup_event(struct perf_event *event,
944 			 struct perf_event_context *ctx, bool add)
945 {
946 	struct perf_cpu_context *cpuctx;
947 	struct list_head *cpuctx_entry;
948 
949 	if (!is_cgroup_event(event))
950 		return;
951 
952 	/*
953 	 * Because cgroup events are always per-cpu events,
954 	 * this will always be called from the right CPU.
955 	 */
956 	cpuctx = __get_cpu_context(ctx);
957 
958 	/*
959 	 * Since setting cpuctx->cgrp is conditional on the current @cgrp
960 	 * matching the event's cgroup, we must do this for every new event,
961 	 * because if the first would mismatch, the second would not try again
962 	 * and we would leave cpuctx->cgrp unset.
963 	 */
964 	if (add && !cpuctx->cgrp) {
965 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
966 
967 		if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
968 			cpuctx->cgrp = cgrp;
969 	}
970 
971 	if (add && ctx->nr_cgroups++)
972 		return;
973 	else if (!add && --ctx->nr_cgroups)
974 		return;
975 
976 	/* no cgroup running */
977 	if (!add)
978 		cpuctx->cgrp = NULL;
979 
980 	cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
981 	if (add)
982 		list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
983 	else
984 		list_del(cpuctx_entry);
985 }
986 
987 #else /* !CONFIG_CGROUP_PERF */
988 
989 static inline bool
990 perf_cgroup_match(struct perf_event *event)
991 {
992 	return true;
993 }
994 
995 static inline void perf_detach_cgroup(struct perf_event *event)
996 {}
997 
998 static inline int is_cgroup_event(struct perf_event *event)
999 {
1000 	return 0;
1001 }
1002 
1003 static inline void update_cgrp_time_from_event(struct perf_event *event)
1004 {
1005 }
1006 
1007 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1008 {
1009 }
1010 
1011 static inline void perf_cgroup_sched_out(struct task_struct *task,
1012 					 struct task_struct *next)
1013 {
1014 }
1015 
1016 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1017 					struct task_struct *task)
1018 {
1019 }
1020 
1021 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1022 				      struct perf_event_attr *attr,
1023 				      struct perf_event *group_leader)
1024 {
1025 	return -EINVAL;
1026 }
1027 
1028 static inline void
1029 perf_cgroup_set_timestamp(struct task_struct *task,
1030 			  struct perf_event_context *ctx)
1031 {
1032 }
1033 
1034 static inline void
1035 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1036 {
1037 }
1038 
1039 static inline void
1040 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1041 {
1042 }
1043 
1044 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1045 {
1046 	return 0;
1047 }
1048 
1049 static inline void
1050 list_update_cgroup_event(struct perf_event *event,
1051 			 struct perf_event_context *ctx, bool add)
1052 {
1053 }
1054 
1055 #endif
1056 
1057 /*
1058  * set default to be dependent on timer tick just
1059  * like original code
1060  */
1061 #define PERF_CPU_HRTIMER (1000 / HZ)
1062 /*
1063  * function must be called with interrupts disabled
1064  */
1065 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1066 {
1067 	struct perf_cpu_context *cpuctx;
1068 	bool rotations;
1069 
1070 	lockdep_assert_irqs_disabled();
1071 
1072 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1073 	rotations = perf_rotate_context(cpuctx);
1074 
1075 	raw_spin_lock(&cpuctx->hrtimer_lock);
1076 	if (rotations)
1077 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1078 	else
1079 		cpuctx->hrtimer_active = 0;
1080 	raw_spin_unlock(&cpuctx->hrtimer_lock);
1081 
1082 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1083 }
1084 
1085 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1086 {
1087 	struct hrtimer *timer = &cpuctx->hrtimer;
1088 	struct pmu *pmu = cpuctx->ctx.pmu;
1089 	u64 interval;
1090 
1091 	/* no multiplexing needed for SW PMU */
1092 	if (pmu->task_ctx_nr == perf_sw_context)
1093 		return;
1094 
1095 	/*
1096 	 * check default is sane, if not set then force to
1097 	 * default interval (1/tick)
1098 	 */
1099 	interval = pmu->hrtimer_interval_ms;
1100 	if (interval < 1)
1101 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1102 
1103 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1104 
1105 	raw_spin_lock_init(&cpuctx->hrtimer_lock);
1106 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1107 	timer->function = perf_mux_hrtimer_handler;
1108 }
1109 
1110 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1111 {
1112 	struct hrtimer *timer = &cpuctx->hrtimer;
1113 	struct pmu *pmu = cpuctx->ctx.pmu;
1114 	unsigned long flags;
1115 
1116 	/* not for SW PMU */
1117 	if (pmu->task_ctx_nr == perf_sw_context)
1118 		return 0;
1119 
1120 	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1121 	if (!cpuctx->hrtimer_active) {
1122 		cpuctx->hrtimer_active = 1;
1123 		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1124 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1125 	}
1126 	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1127 
1128 	return 0;
1129 }
1130 
1131 void perf_pmu_disable(struct pmu *pmu)
1132 {
1133 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1134 	if (!(*count)++)
1135 		pmu->pmu_disable(pmu);
1136 }
1137 
1138 void perf_pmu_enable(struct pmu *pmu)
1139 {
1140 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1141 	if (!--(*count))
1142 		pmu->pmu_enable(pmu);
1143 }
1144 
1145 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1146 
1147 /*
1148  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1149  * perf_event_task_tick() are fully serialized because they're strictly cpu
1150  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1151  * disabled, while perf_event_task_tick is called from IRQ context.
1152  */
1153 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1154 {
1155 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
1156 
1157 	lockdep_assert_irqs_disabled();
1158 
1159 	WARN_ON(!list_empty(&ctx->active_ctx_list));
1160 
1161 	list_add(&ctx->active_ctx_list, head);
1162 }
1163 
1164 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1165 {
1166 	lockdep_assert_irqs_disabled();
1167 
1168 	WARN_ON(list_empty(&ctx->active_ctx_list));
1169 
1170 	list_del_init(&ctx->active_ctx_list);
1171 }
1172 
1173 static void get_ctx(struct perf_event_context *ctx)
1174 {
1175 	refcount_inc(&ctx->refcount);
1176 }
1177 
1178 static void free_ctx(struct rcu_head *head)
1179 {
1180 	struct perf_event_context *ctx;
1181 
1182 	ctx = container_of(head, struct perf_event_context, rcu_head);
1183 	kfree(ctx->task_ctx_data);
1184 	kfree(ctx);
1185 }
1186 
1187 static void put_ctx(struct perf_event_context *ctx)
1188 {
1189 	if (refcount_dec_and_test(&ctx->refcount)) {
1190 		if (ctx->parent_ctx)
1191 			put_ctx(ctx->parent_ctx);
1192 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1193 			put_task_struct(ctx->task);
1194 		call_rcu(&ctx->rcu_head, free_ctx);
1195 	}
1196 }
1197 
1198 /*
1199  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1200  * perf_pmu_migrate_context() we need some magic.
1201  *
1202  * Those places that change perf_event::ctx will hold both
1203  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1204  *
1205  * Lock ordering is by mutex address. There are two other sites where
1206  * perf_event_context::mutex nests and those are:
1207  *
1208  *  - perf_event_exit_task_context()	[ child , 0 ]
1209  *      perf_event_exit_event()
1210  *        put_event()			[ parent, 1 ]
1211  *
1212  *  - perf_event_init_context()		[ parent, 0 ]
1213  *      inherit_task_group()
1214  *        inherit_group()
1215  *          inherit_event()
1216  *            perf_event_alloc()
1217  *              perf_init_event()
1218  *                perf_try_init_event()	[ child , 1 ]
1219  *
1220  * While it appears there is an obvious deadlock here -- the parent and child
1221  * nesting levels are inverted between the two. This is in fact safe because
1222  * life-time rules separate them. That is an exiting task cannot fork, and a
1223  * spawning task cannot (yet) exit.
1224  *
1225  * But remember that that these are parent<->child context relations, and
1226  * migration does not affect children, therefore these two orderings should not
1227  * interact.
1228  *
1229  * The change in perf_event::ctx does not affect children (as claimed above)
1230  * because the sys_perf_event_open() case will install a new event and break
1231  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1232  * concerned with cpuctx and that doesn't have children.
1233  *
1234  * The places that change perf_event::ctx will issue:
1235  *
1236  *   perf_remove_from_context();
1237  *   synchronize_rcu();
1238  *   perf_install_in_context();
1239  *
1240  * to affect the change. The remove_from_context() + synchronize_rcu() should
1241  * quiesce the event, after which we can install it in the new location. This
1242  * means that only external vectors (perf_fops, prctl) can perturb the event
1243  * while in transit. Therefore all such accessors should also acquire
1244  * perf_event_context::mutex to serialize against this.
1245  *
1246  * However; because event->ctx can change while we're waiting to acquire
1247  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1248  * function.
1249  *
1250  * Lock order:
1251  *    cred_guard_mutex
1252  *	task_struct::perf_event_mutex
1253  *	  perf_event_context::mutex
1254  *	    perf_event::child_mutex;
1255  *	      perf_event_context::lock
1256  *	    perf_event::mmap_mutex
1257  *	    mmap_sem
1258  *	      perf_addr_filters_head::lock
1259  *
1260  *    cpu_hotplug_lock
1261  *      pmus_lock
1262  *	  cpuctx->mutex / perf_event_context::mutex
1263  */
1264 static struct perf_event_context *
1265 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1266 {
1267 	struct perf_event_context *ctx;
1268 
1269 again:
1270 	rcu_read_lock();
1271 	ctx = READ_ONCE(event->ctx);
1272 	if (!refcount_inc_not_zero(&ctx->refcount)) {
1273 		rcu_read_unlock();
1274 		goto again;
1275 	}
1276 	rcu_read_unlock();
1277 
1278 	mutex_lock_nested(&ctx->mutex, nesting);
1279 	if (event->ctx != ctx) {
1280 		mutex_unlock(&ctx->mutex);
1281 		put_ctx(ctx);
1282 		goto again;
1283 	}
1284 
1285 	return ctx;
1286 }
1287 
1288 static inline struct perf_event_context *
1289 perf_event_ctx_lock(struct perf_event *event)
1290 {
1291 	return perf_event_ctx_lock_nested(event, 0);
1292 }
1293 
1294 static void perf_event_ctx_unlock(struct perf_event *event,
1295 				  struct perf_event_context *ctx)
1296 {
1297 	mutex_unlock(&ctx->mutex);
1298 	put_ctx(ctx);
1299 }
1300 
1301 /*
1302  * This must be done under the ctx->lock, such as to serialize against
1303  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1304  * calling scheduler related locks and ctx->lock nests inside those.
1305  */
1306 static __must_check struct perf_event_context *
1307 unclone_ctx(struct perf_event_context *ctx)
1308 {
1309 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1310 
1311 	lockdep_assert_held(&ctx->lock);
1312 
1313 	if (parent_ctx)
1314 		ctx->parent_ctx = NULL;
1315 	ctx->generation++;
1316 
1317 	return parent_ctx;
1318 }
1319 
1320 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1321 				enum pid_type type)
1322 {
1323 	u32 nr;
1324 	/*
1325 	 * only top level events have the pid namespace they were created in
1326 	 */
1327 	if (event->parent)
1328 		event = event->parent;
1329 
1330 	nr = __task_pid_nr_ns(p, type, event->ns);
1331 	/* avoid -1 if it is idle thread or runs in another ns */
1332 	if (!nr && !pid_alive(p))
1333 		nr = -1;
1334 	return nr;
1335 }
1336 
1337 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1338 {
1339 	return perf_event_pid_type(event, p, PIDTYPE_TGID);
1340 }
1341 
1342 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1343 {
1344 	return perf_event_pid_type(event, p, PIDTYPE_PID);
1345 }
1346 
1347 /*
1348  * If we inherit events we want to return the parent event id
1349  * to userspace.
1350  */
1351 static u64 primary_event_id(struct perf_event *event)
1352 {
1353 	u64 id = event->id;
1354 
1355 	if (event->parent)
1356 		id = event->parent->id;
1357 
1358 	return id;
1359 }
1360 
1361 /*
1362  * Get the perf_event_context for a task and lock it.
1363  *
1364  * This has to cope with with the fact that until it is locked,
1365  * the context could get moved to another task.
1366  */
1367 static struct perf_event_context *
1368 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1369 {
1370 	struct perf_event_context *ctx;
1371 
1372 retry:
1373 	/*
1374 	 * One of the few rules of preemptible RCU is that one cannot do
1375 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1376 	 * part of the read side critical section was irqs-enabled -- see
1377 	 * rcu_read_unlock_special().
1378 	 *
1379 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1380 	 * side critical section has interrupts disabled.
1381 	 */
1382 	local_irq_save(*flags);
1383 	rcu_read_lock();
1384 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1385 	if (ctx) {
1386 		/*
1387 		 * If this context is a clone of another, it might
1388 		 * get swapped for another underneath us by
1389 		 * perf_event_task_sched_out, though the
1390 		 * rcu_read_lock() protects us from any context
1391 		 * getting freed.  Lock the context and check if it
1392 		 * got swapped before we could get the lock, and retry
1393 		 * if so.  If we locked the right context, then it
1394 		 * can't get swapped on us any more.
1395 		 */
1396 		raw_spin_lock(&ctx->lock);
1397 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1398 			raw_spin_unlock(&ctx->lock);
1399 			rcu_read_unlock();
1400 			local_irq_restore(*flags);
1401 			goto retry;
1402 		}
1403 
1404 		if (ctx->task == TASK_TOMBSTONE ||
1405 		    !refcount_inc_not_zero(&ctx->refcount)) {
1406 			raw_spin_unlock(&ctx->lock);
1407 			ctx = NULL;
1408 		} else {
1409 			WARN_ON_ONCE(ctx->task != task);
1410 		}
1411 	}
1412 	rcu_read_unlock();
1413 	if (!ctx)
1414 		local_irq_restore(*flags);
1415 	return ctx;
1416 }
1417 
1418 /*
1419  * Get the context for a task and increment its pin_count so it
1420  * can't get swapped to another task.  This also increments its
1421  * reference count so that the context can't get freed.
1422  */
1423 static struct perf_event_context *
1424 perf_pin_task_context(struct task_struct *task, int ctxn)
1425 {
1426 	struct perf_event_context *ctx;
1427 	unsigned long flags;
1428 
1429 	ctx = perf_lock_task_context(task, ctxn, &flags);
1430 	if (ctx) {
1431 		++ctx->pin_count;
1432 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1433 	}
1434 	return ctx;
1435 }
1436 
1437 static void perf_unpin_context(struct perf_event_context *ctx)
1438 {
1439 	unsigned long flags;
1440 
1441 	raw_spin_lock_irqsave(&ctx->lock, flags);
1442 	--ctx->pin_count;
1443 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1444 }
1445 
1446 /*
1447  * Update the record of the current time in a context.
1448  */
1449 static void update_context_time(struct perf_event_context *ctx)
1450 {
1451 	u64 now = perf_clock();
1452 
1453 	ctx->time += now - ctx->timestamp;
1454 	ctx->timestamp = now;
1455 }
1456 
1457 static u64 perf_event_time(struct perf_event *event)
1458 {
1459 	struct perf_event_context *ctx = event->ctx;
1460 
1461 	if (is_cgroup_event(event))
1462 		return perf_cgroup_event_time(event);
1463 
1464 	return ctx ? ctx->time : 0;
1465 }
1466 
1467 static enum event_type_t get_event_type(struct perf_event *event)
1468 {
1469 	struct perf_event_context *ctx = event->ctx;
1470 	enum event_type_t event_type;
1471 
1472 	lockdep_assert_held(&ctx->lock);
1473 
1474 	/*
1475 	 * It's 'group type', really, because if our group leader is
1476 	 * pinned, so are we.
1477 	 */
1478 	if (event->group_leader != event)
1479 		event = event->group_leader;
1480 
1481 	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1482 	if (!ctx->task)
1483 		event_type |= EVENT_CPU;
1484 
1485 	return event_type;
1486 }
1487 
1488 /*
1489  * Helper function to initialize event group nodes.
1490  */
1491 static void init_event_group(struct perf_event *event)
1492 {
1493 	RB_CLEAR_NODE(&event->group_node);
1494 	event->group_index = 0;
1495 }
1496 
1497 /*
1498  * Extract pinned or flexible groups from the context
1499  * based on event attrs bits.
1500  */
1501 static struct perf_event_groups *
1502 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1503 {
1504 	if (event->attr.pinned)
1505 		return &ctx->pinned_groups;
1506 	else
1507 		return &ctx->flexible_groups;
1508 }
1509 
1510 /*
1511  * Helper function to initializes perf_event_group trees.
1512  */
1513 static void perf_event_groups_init(struct perf_event_groups *groups)
1514 {
1515 	groups->tree = RB_ROOT;
1516 	groups->index = 0;
1517 }
1518 
1519 /*
1520  * Compare function for event groups;
1521  *
1522  * Implements complex key that first sorts by CPU and then by virtual index
1523  * which provides ordering when rotating groups for the same CPU.
1524  */
1525 static bool
1526 perf_event_groups_less(struct perf_event *left, struct perf_event *right)
1527 {
1528 	if (left->cpu < right->cpu)
1529 		return true;
1530 	if (left->cpu > right->cpu)
1531 		return false;
1532 
1533 	if (left->group_index < right->group_index)
1534 		return true;
1535 	if (left->group_index > right->group_index)
1536 		return false;
1537 
1538 	return false;
1539 }
1540 
1541 /*
1542  * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1543  * key (see perf_event_groups_less). This places it last inside the CPU
1544  * subtree.
1545  */
1546 static void
1547 perf_event_groups_insert(struct perf_event_groups *groups,
1548 			 struct perf_event *event)
1549 {
1550 	struct perf_event *node_event;
1551 	struct rb_node *parent;
1552 	struct rb_node **node;
1553 
1554 	event->group_index = ++groups->index;
1555 
1556 	node = &groups->tree.rb_node;
1557 	parent = *node;
1558 
1559 	while (*node) {
1560 		parent = *node;
1561 		node_event = container_of(*node, struct perf_event, group_node);
1562 
1563 		if (perf_event_groups_less(event, node_event))
1564 			node = &parent->rb_left;
1565 		else
1566 			node = &parent->rb_right;
1567 	}
1568 
1569 	rb_link_node(&event->group_node, parent, node);
1570 	rb_insert_color(&event->group_node, &groups->tree);
1571 }
1572 
1573 /*
1574  * Helper function to insert event into the pinned or flexible groups.
1575  */
1576 static void
1577 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1578 {
1579 	struct perf_event_groups *groups;
1580 
1581 	groups = get_event_groups(event, ctx);
1582 	perf_event_groups_insert(groups, event);
1583 }
1584 
1585 /*
1586  * Delete a group from a tree.
1587  */
1588 static void
1589 perf_event_groups_delete(struct perf_event_groups *groups,
1590 			 struct perf_event *event)
1591 {
1592 	WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1593 		     RB_EMPTY_ROOT(&groups->tree));
1594 
1595 	rb_erase(&event->group_node, &groups->tree);
1596 	init_event_group(event);
1597 }
1598 
1599 /*
1600  * Helper function to delete event from its groups.
1601  */
1602 static void
1603 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1604 {
1605 	struct perf_event_groups *groups;
1606 
1607 	groups = get_event_groups(event, ctx);
1608 	perf_event_groups_delete(groups, event);
1609 }
1610 
1611 /*
1612  * Get the leftmost event in the @cpu subtree.
1613  */
1614 static struct perf_event *
1615 perf_event_groups_first(struct perf_event_groups *groups, int cpu)
1616 {
1617 	struct perf_event *node_event = NULL, *match = NULL;
1618 	struct rb_node *node = groups->tree.rb_node;
1619 
1620 	while (node) {
1621 		node_event = container_of(node, struct perf_event, group_node);
1622 
1623 		if (cpu < node_event->cpu) {
1624 			node = node->rb_left;
1625 		} else if (cpu > node_event->cpu) {
1626 			node = node->rb_right;
1627 		} else {
1628 			match = node_event;
1629 			node = node->rb_left;
1630 		}
1631 	}
1632 
1633 	return match;
1634 }
1635 
1636 /*
1637  * Like rb_entry_next_safe() for the @cpu subtree.
1638  */
1639 static struct perf_event *
1640 perf_event_groups_next(struct perf_event *event)
1641 {
1642 	struct perf_event *next;
1643 
1644 	next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node);
1645 	if (next && next->cpu == event->cpu)
1646 		return next;
1647 
1648 	return NULL;
1649 }
1650 
1651 /*
1652  * Iterate through the whole groups tree.
1653  */
1654 #define perf_event_groups_for_each(event, groups)			\
1655 	for (event = rb_entry_safe(rb_first(&((groups)->tree)),		\
1656 				typeof(*event), group_node); event;	\
1657 		event = rb_entry_safe(rb_next(&event->group_node),	\
1658 				typeof(*event), group_node))
1659 
1660 /*
1661  * Add an event from the lists for its context.
1662  * Must be called with ctx->mutex and ctx->lock held.
1663  */
1664 static void
1665 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1666 {
1667 	lockdep_assert_held(&ctx->lock);
1668 
1669 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1670 	event->attach_state |= PERF_ATTACH_CONTEXT;
1671 
1672 	event->tstamp = perf_event_time(event);
1673 
1674 	/*
1675 	 * If we're a stand alone event or group leader, we go to the context
1676 	 * list, group events are kept attached to the group so that
1677 	 * perf_group_detach can, at all times, locate all siblings.
1678 	 */
1679 	if (event->group_leader == event) {
1680 		event->group_caps = event->event_caps;
1681 		add_event_to_groups(event, ctx);
1682 	}
1683 
1684 	list_update_cgroup_event(event, ctx, true);
1685 
1686 	list_add_rcu(&event->event_entry, &ctx->event_list);
1687 	ctx->nr_events++;
1688 	if (event->attr.inherit_stat)
1689 		ctx->nr_stat++;
1690 
1691 	ctx->generation++;
1692 }
1693 
1694 /*
1695  * Initialize event state based on the perf_event_attr::disabled.
1696  */
1697 static inline void perf_event__state_init(struct perf_event *event)
1698 {
1699 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1700 					      PERF_EVENT_STATE_INACTIVE;
1701 }
1702 
1703 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1704 {
1705 	int entry = sizeof(u64); /* value */
1706 	int size = 0;
1707 	int nr = 1;
1708 
1709 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1710 		size += sizeof(u64);
1711 
1712 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1713 		size += sizeof(u64);
1714 
1715 	if (event->attr.read_format & PERF_FORMAT_ID)
1716 		entry += sizeof(u64);
1717 
1718 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1719 		nr += nr_siblings;
1720 		size += sizeof(u64);
1721 	}
1722 
1723 	size += entry * nr;
1724 	event->read_size = size;
1725 }
1726 
1727 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1728 {
1729 	struct perf_sample_data *data;
1730 	u16 size = 0;
1731 
1732 	if (sample_type & PERF_SAMPLE_IP)
1733 		size += sizeof(data->ip);
1734 
1735 	if (sample_type & PERF_SAMPLE_ADDR)
1736 		size += sizeof(data->addr);
1737 
1738 	if (sample_type & PERF_SAMPLE_PERIOD)
1739 		size += sizeof(data->period);
1740 
1741 	if (sample_type & PERF_SAMPLE_WEIGHT)
1742 		size += sizeof(data->weight);
1743 
1744 	if (sample_type & PERF_SAMPLE_READ)
1745 		size += event->read_size;
1746 
1747 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1748 		size += sizeof(data->data_src.val);
1749 
1750 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1751 		size += sizeof(data->txn);
1752 
1753 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1754 		size += sizeof(data->phys_addr);
1755 
1756 	event->header_size = size;
1757 }
1758 
1759 /*
1760  * Called at perf_event creation and when events are attached/detached from a
1761  * group.
1762  */
1763 static void perf_event__header_size(struct perf_event *event)
1764 {
1765 	__perf_event_read_size(event,
1766 			       event->group_leader->nr_siblings);
1767 	__perf_event_header_size(event, event->attr.sample_type);
1768 }
1769 
1770 static void perf_event__id_header_size(struct perf_event *event)
1771 {
1772 	struct perf_sample_data *data;
1773 	u64 sample_type = event->attr.sample_type;
1774 	u16 size = 0;
1775 
1776 	if (sample_type & PERF_SAMPLE_TID)
1777 		size += sizeof(data->tid_entry);
1778 
1779 	if (sample_type & PERF_SAMPLE_TIME)
1780 		size += sizeof(data->time);
1781 
1782 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1783 		size += sizeof(data->id);
1784 
1785 	if (sample_type & PERF_SAMPLE_ID)
1786 		size += sizeof(data->id);
1787 
1788 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1789 		size += sizeof(data->stream_id);
1790 
1791 	if (sample_type & PERF_SAMPLE_CPU)
1792 		size += sizeof(data->cpu_entry);
1793 
1794 	event->id_header_size = size;
1795 }
1796 
1797 static bool perf_event_validate_size(struct perf_event *event)
1798 {
1799 	/*
1800 	 * The values computed here will be over-written when we actually
1801 	 * attach the event.
1802 	 */
1803 	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1804 	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1805 	perf_event__id_header_size(event);
1806 
1807 	/*
1808 	 * Sum the lot; should not exceed the 64k limit we have on records.
1809 	 * Conservative limit to allow for callchains and other variable fields.
1810 	 */
1811 	if (event->read_size + event->header_size +
1812 	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1813 		return false;
1814 
1815 	return true;
1816 }
1817 
1818 static void perf_group_attach(struct perf_event *event)
1819 {
1820 	struct perf_event *group_leader = event->group_leader, *pos;
1821 
1822 	lockdep_assert_held(&event->ctx->lock);
1823 
1824 	/*
1825 	 * We can have double attach due to group movement in perf_event_open.
1826 	 */
1827 	if (event->attach_state & PERF_ATTACH_GROUP)
1828 		return;
1829 
1830 	event->attach_state |= PERF_ATTACH_GROUP;
1831 
1832 	if (group_leader == event)
1833 		return;
1834 
1835 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1836 
1837 	group_leader->group_caps &= event->event_caps;
1838 
1839 	list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1840 	group_leader->nr_siblings++;
1841 
1842 	perf_event__header_size(group_leader);
1843 
1844 	for_each_sibling_event(pos, group_leader)
1845 		perf_event__header_size(pos);
1846 }
1847 
1848 /*
1849  * Remove an event from the lists for its context.
1850  * Must be called with ctx->mutex and ctx->lock held.
1851  */
1852 static void
1853 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1854 {
1855 	WARN_ON_ONCE(event->ctx != ctx);
1856 	lockdep_assert_held(&ctx->lock);
1857 
1858 	/*
1859 	 * We can have double detach due to exit/hot-unplug + close.
1860 	 */
1861 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1862 		return;
1863 
1864 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1865 
1866 	list_update_cgroup_event(event, ctx, false);
1867 
1868 	ctx->nr_events--;
1869 	if (event->attr.inherit_stat)
1870 		ctx->nr_stat--;
1871 
1872 	list_del_rcu(&event->event_entry);
1873 
1874 	if (event->group_leader == event)
1875 		del_event_from_groups(event, ctx);
1876 
1877 	/*
1878 	 * If event was in error state, then keep it
1879 	 * that way, otherwise bogus counts will be
1880 	 * returned on read(). The only way to get out
1881 	 * of error state is by explicit re-enabling
1882 	 * of the event
1883 	 */
1884 	if (event->state > PERF_EVENT_STATE_OFF)
1885 		perf_event_set_state(event, PERF_EVENT_STATE_OFF);
1886 
1887 	ctx->generation++;
1888 }
1889 
1890 static int
1891 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
1892 {
1893 	if (!has_aux(aux_event))
1894 		return 0;
1895 
1896 	if (!event->pmu->aux_output_match)
1897 		return 0;
1898 
1899 	return event->pmu->aux_output_match(aux_event);
1900 }
1901 
1902 static void put_event(struct perf_event *event);
1903 static void event_sched_out(struct perf_event *event,
1904 			    struct perf_cpu_context *cpuctx,
1905 			    struct perf_event_context *ctx);
1906 
1907 static void perf_put_aux_event(struct perf_event *event)
1908 {
1909 	struct perf_event_context *ctx = event->ctx;
1910 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1911 	struct perf_event *iter;
1912 
1913 	/*
1914 	 * If event uses aux_event tear down the link
1915 	 */
1916 	if (event->aux_event) {
1917 		iter = event->aux_event;
1918 		event->aux_event = NULL;
1919 		put_event(iter);
1920 		return;
1921 	}
1922 
1923 	/*
1924 	 * If the event is an aux_event, tear down all links to
1925 	 * it from other events.
1926 	 */
1927 	for_each_sibling_event(iter, event->group_leader) {
1928 		if (iter->aux_event != event)
1929 			continue;
1930 
1931 		iter->aux_event = NULL;
1932 		put_event(event);
1933 
1934 		/*
1935 		 * If it's ACTIVE, schedule it out and put it into ERROR
1936 		 * state so that we don't try to schedule it again. Note
1937 		 * that perf_event_enable() will clear the ERROR status.
1938 		 */
1939 		event_sched_out(iter, cpuctx, ctx);
1940 		perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
1941 	}
1942 }
1943 
1944 static bool perf_need_aux_event(struct perf_event *event)
1945 {
1946 	return !!event->attr.aux_output || !!event->attr.aux_sample_size;
1947 }
1948 
1949 static int perf_get_aux_event(struct perf_event *event,
1950 			      struct perf_event *group_leader)
1951 {
1952 	/*
1953 	 * Our group leader must be an aux event if we want to be
1954 	 * an aux_output. This way, the aux event will precede its
1955 	 * aux_output events in the group, and therefore will always
1956 	 * schedule first.
1957 	 */
1958 	if (!group_leader)
1959 		return 0;
1960 
1961 	/*
1962 	 * aux_output and aux_sample_size are mutually exclusive.
1963 	 */
1964 	if (event->attr.aux_output && event->attr.aux_sample_size)
1965 		return 0;
1966 
1967 	if (event->attr.aux_output &&
1968 	    !perf_aux_output_match(event, group_leader))
1969 		return 0;
1970 
1971 	if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
1972 		return 0;
1973 
1974 	if (!atomic_long_inc_not_zero(&group_leader->refcount))
1975 		return 0;
1976 
1977 	/*
1978 	 * Link aux_outputs to their aux event; this is undone in
1979 	 * perf_group_detach() by perf_put_aux_event(). When the
1980 	 * group in torn down, the aux_output events loose their
1981 	 * link to the aux_event and can't schedule any more.
1982 	 */
1983 	event->aux_event = group_leader;
1984 
1985 	return 1;
1986 }
1987 
1988 static void perf_group_detach(struct perf_event *event)
1989 {
1990 	struct perf_event *sibling, *tmp;
1991 	struct perf_event_context *ctx = event->ctx;
1992 
1993 	lockdep_assert_held(&ctx->lock);
1994 
1995 	/*
1996 	 * We can have double detach due to exit/hot-unplug + close.
1997 	 */
1998 	if (!(event->attach_state & PERF_ATTACH_GROUP))
1999 		return;
2000 
2001 	event->attach_state &= ~PERF_ATTACH_GROUP;
2002 
2003 	perf_put_aux_event(event);
2004 
2005 	/*
2006 	 * If this is a sibling, remove it from its group.
2007 	 */
2008 	if (event->group_leader != event) {
2009 		list_del_init(&event->sibling_list);
2010 		event->group_leader->nr_siblings--;
2011 		goto out;
2012 	}
2013 
2014 	/*
2015 	 * If this was a group event with sibling events then
2016 	 * upgrade the siblings to singleton events by adding them
2017 	 * to whatever list we are on.
2018 	 */
2019 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2020 
2021 		sibling->group_leader = sibling;
2022 		list_del_init(&sibling->sibling_list);
2023 
2024 		/* Inherit group flags from the previous leader */
2025 		sibling->group_caps = event->group_caps;
2026 
2027 		if (!RB_EMPTY_NODE(&event->group_node)) {
2028 			add_event_to_groups(sibling, event->ctx);
2029 
2030 			if (sibling->state == PERF_EVENT_STATE_ACTIVE) {
2031 				struct list_head *list = sibling->attr.pinned ?
2032 					&ctx->pinned_active : &ctx->flexible_active;
2033 
2034 				list_add_tail(&sibling->active_list, list);
2035 			}
2036 		}
2037 
2038 		WARN_ON_ONCE(sibling->ctx != event->ctx);
2039 	}
2040 
2041 out:
2042 	perf_event__header_size(event->group_leader);
2043 
2044 	for_each_sibling_event(tmp, event->group_leader)
2045 		perf_event__header_size(tmp);
2046 }
2047 
2048 static bool is_orphaned_event(struct perf_event *event)
2049 {
2050 	return event->state == PERF_EVENT_STATE_DEAD;
2051 }
2052 
2053 static inline int __pmu_filter_match(struct perf_event *event)
2054 {
2055 	struct pmu *pmu = event->pmu;
2056 	return pmu->filter_match ? pmu->filter_match(event) : 1;
2057 }
2058 
2059 /*
2060  * Check whether we should attempt to schedule an event group based on
2061  * PMU-specific filtering. An event group can consist of HW and SW events,
2062  * potentially with a SW leader, so we must check all the filters, to
2063  * determine whether a group is schedulable:
2064  */
2065 static inline int pmu_filter_match(struct perf_event *event)
2066 {
2067 	struct perf_event *sibling;
2068 
2069 	if (!__pmu_filter_match(event))
2070 		return 0;
2071 
2072 	for_each_sibling_event(sibling, event) {
2073 		if (!__pmu_filter_match(sibling))
2074 			return 0;
2075 	}
2076 
2077 	return 1;
2078 }
2079 
2080 static inline int
2081 event_filter_match(struct perf_event *event)
2082 {
2083 	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2084 	       perf_cgroup_match(event) && pmu_filter_match(event);
2085 }
2086 
2087 static void
2088 event_sched_out(struct perf_event *event,
2089 		  struct perf_cpu_context *cpuctx,
2090 		  struct perf_event_context *ctx)
2091 {
2092 	enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2093 
2094 	WARN_ON_ONCE(event->ctx != ctx);
2095 	lockdep_assert_held(&ctx->lock);
2096 
2097 	if (event->state != PERF_EVENT_STATE_ACTIVE)
2098 		return;
2099 
2100 	/*
2101 	 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2102 	 * we can schedule events _OUT_ individually through things like
2103 	 * __perf_remove_from_context().
2104 	 */
2105 	list_del_init(&event->active_list);
2106 
2107 	perf_pmu_disable(event->pmu);
2108 
2109 	event->pmu->del(event, 0);
2110 	event->oncpu = -1;
2111 
2112 	if (READ_ONCE(event->pending_disable) >= 0) {
2113 		WRITE_ONCE(event->pending_disable, -1);
2114 		state = PERF_EVENT_STATE_OFF;
2115 	}
2116 	perf_event_set_state(event, state);
2117 
2118 	if (!is_software_event(event))
2119 		cpuctx->active_oncpu--;
2120 	if (!--ctx->nr_active)
2121 		perf_event_ctx_deactivate(ctx);
2122 	if (event->attr.freq && event->attr.sample_freq)
2123 		ctx->nr_freq--;
2124 	if (event->attr.exclusive || !cpuctx->active_oncpu)
2125 		cpuctx->exclusive = 0;
2126 
2127 	perf_pmu_enable(event->pmu);
2128 }
2129 
2130 static void
2131 group_sched_out(struct perf_event *group_event,
2132 		struct perf_cpu_context *cpuctx,
2133 		struct perf_event_context *ctx)
2134 {
2135 	struct perf_event *event;
2136 
2137 	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2138 		return;
2139 
2140 	perf_pmu_disable(ctx->pmu);
2141 
2142 	event_sched_out(group_event, cpuctx, ctx);
2143 
2144 	/*
2145 	 * Schedule out siblings (if any):
2146 	 */
2147 	for_each_sibling_event(event, group_event)
2148 		event_sched_out(event, cpuctx, ctx);
2149 
2150 	perf_pmu_enable(ctx->pmu);
2151 
2152 	if (group_event->attr.exclusive)
2153 		cpuctx->exclusive = 0;
2154 }
2155 
2156 #define DETACH_GROUP	0x01UL
2157 
2158 /*
2159  * Cross CPU call to remove a performance event
2160  *
2161  * We disable the event on the hardware level first. After that we
2162  * remove it from the context list.
2163  */
2164 static void
2165 __perf_remove_from_context(struct perf_event *event,
2166 			   struct perf_cpu_context *cpuctx,
2167 			   struct perf_event_context *ctx,
2168 			   void *info)
2169 {
2170 	unsigned long flags = (unsigned long)info;
2171 
2172 	if (ctx->is_active & EVENT_TIME) {
2173 		update_context_time(ctx);
2174 		update_cgrp_time_from_cpuctx(cpuctx);
2175 	}
2176 
2177 	event_sched_out(event, cpuctx, ctx);
2178 	if (flags & DETACH_GROUP)
2179 		perf_group_detach(event);
2180 	list_del_event(event, ctx);
2181 
2182 	if (!ctx->nr_events && ctx->is_active) {
2183 		ctx->is_active = 0;
2184 		if (ctx->task) {
2185 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2186 			cpuctx->task_ctx = NULL;
2187 		}
2188 	}
2189 }
2190 
2191 /*
2192  * Remove the event from a task's (or a CPU's) list of events.
2193  *
2194  * If event->ctx is a cloned context, callers must make sure that
2195  * every task struct that event->ctx->task could possibly point to
2196  * remains valid.  This is OK when called from perf_release since
2197  * that only calls us on the top-level context, which can't be a clone.
2198  * When called from perf_event_exit_task, it's OK because the
2199  * context has been detached from its task.
2200  */
2201 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2202 {
2203 	struct perf_event_context *ctx = event->ctx;
2204 
2205 	lockdep_assert_held(&ctx->mutex);
2206 
2207 	event_function_call(event, __perf_remove_from_context, (void *)flags);
2208 
2209 	/*
2210 	 * The above event_function_call() can NO-OP when it hits
2211 	 * TASK_TOMBSTONE. In that case we must already have been detached
2212 	 * from the context (by perf_event_exit_event()) but the grouping
2213 	 * might still be in-tact.
2214 	 */
2215 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
2216 	if ((flags & DETACH_GROUP) &&
2217 	    (event->attach_state & PERF_ATTACH_GROUP)) {
2218 		/*
2219 		 * Since in that case we cannot possibly be scheduled, simply
2220 		 * detach now.
2221 		 */
2222 		raw_spin_lock_irq(&ctx->lock);
2223 		perf_group_detach(event);
2224 		raw_spin_unlock_irq(&ctx->lock);
2225 	}
2226 }
2227 
2228 /*
2229  * Cross CPU call to disable a performance event
2230  */
2231 static void __perf_event_disable(struct perf_event *event,
2232 				 struct perf_cpu_context *cpuctx,
2233 				 struct perf_event_context *ctx,
2234 				 void *info)
2235 {
2236 	if (event->state < PERF_EVENT_STATE_INACTIVE)
2237 		return;
2238 
2239 	if (ctx->is_active & EVENT_TIME) {
2240 		update_context_time(ctx);
2241 		update_cgrp_time_from_event(event);
2242 	}
2243 
2244 	if (event == event->group_leader)
2245 		group_sched_out(event, cpuctx, ctx);
2246 	else
2247 		event_sched_out(event, cpuctx, ctx);
2248 
2249 	perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2250 }
2251 
2252 /*
2253  * Disable an event.
2254  *
2255  * If event->ctx is a cloned context, callers must make sure that
2256  * every task struct that event->ctx->task could possibly point to
2257  * remains valid.  This condition is satisfied when called through
2258  * perf_event_for_each_child or perf_event_for_each because they
2259  * hold the top-level event's child_mutex, so any descendant that
2260  * goes to exit will block in perf_event_exit_event().
2261  *
2262  * When called from perf_pending_event it's OK because event->ctx
2263  * is the current context on this CPU and preemption is disabled,
2264  * hence we can't get into perf_event_task_sched_out for this context.
2265  */
2266 static void _perf_event_disable(struct perf_event *event)
2267 {
2268 	struct perf_event_context *ctx = event->ctx;
2269 
2270 	raw_spin_lock_irq(&ctx->lock);
2271 	if (event->state <= PERF_EVENT_STATE_OFF) {
2272 		raw_spin_unlock_irq(&ctx->lock);
2273 		return;
2274 	}
2275 	raw_spin_unlock_irq(&ctx->lock);
2276 
2277 	event_function_call(event, __perf_event_disable, NULL);
2278 }
2279 
2280 void perf_event_disable_local(struct perf_event *event)
2281 {
2282 	event_function_local(event, __perf_event_disable, NULL);
2283 }
2284 
2285 /*
2286  * Strictly speaking kernel users cannot create groups and therefore this
2287  * interface does not need the perf_event_ctx_lock() magic.
2288  */
2289 void perf_event_disable(struct perf_event *event)
2290 {
2291 	struct perf_event_context *ctx;
2292 
2293 	ctx = perf_event_ctx_lock(event);
2294 	_perf_event_disable(event);
2295 	perf_event_ctx_unlock(event, ctx);
2296 }
2297 EXPORT_SYMBOL_GPL(perf_event_disable);
2298 
2299 void perf_event_disable_inatomic(struct perf_event *event)
2300 {
2301 	WRITE_ONCE(event->pending_disable, smp_processor_id());
2302 	/* can fail, see perf_pending_event_disable() */
2303 	irq_work_queue(&event->pending);
2304 }
2305 
2306 static void perf_set_shadow_time(struct perf_event *event,
2307 				 struct perf_event_context *ctx)
2308 {
2309 	/*
2310 	 * use the correct time source for the time snapshot
2311 	 *
2312 	 * We could get by without this by leveraging the
2313 	 * fact that to get to this function, the caller
2314 	 * has most likely already called update_context_time()
2315 	 * and update_cgrp_time_xx() and thus both timestamp
2316 	 * are identical (or very close). Given that tstamp is,
2317 	 * already adjusted for cgroup, we could say that:
2318 	 *    tstamp - ctx->timestamp
2319 	 * is equivalent to
2320 	 *    tstamp - cgrp->timestamp.
2321 	 *
2322 	 * Then, in perf_output_read(), the calculation would
2323 	 * work with no changes because:
2324 	 * - event is guaranteed scheduled in
2325 	 * - no scheduled out in between
2326 	 * - thus the timestamp would be the same
2327 	 *
2328 	 * But this is a bit hairy.
2329 	 *
2330 	 * So instead, we have an explicit cgroup call to remain
2331 	 * within the time time source all along. We believe it
2332 	 * is cleaner and simpler to understand.
2333 	 */
2334 	if (is_cgroup_event(event))
2335 		perf_cgroup_set_shadow_time(event, event->tstamp);
2336 	else
2337 		event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2338 }
2339 
2340 #define MAX_INTERRUPTS (~0ULL)
2341 
2342 static void perf_log_throttle(struct perf_event *event, int enable);
2343 static void perf_log_itrace_start(struct perf_event *event);
2344 
2345 static int
2346 event_sched_in(struct perf_event *event,
2347 		 struct perf_cpu_context *cpuctx,
2348 		 struct perf_event_context *ctx)
2349 {
2350 	int ret = 0;
2351 
2352 	lockdep_assert_held(&ctx->lock);
2353 
2354 	if (event->state <= PERF_EVENT_STATE_OFF)
2355 		return 0;
2356 
2357 	WRITE_ONCE(event->oncpu, smp_processor_id());
2358 	/*
2359 	 * Order event::oncpu write to happen before the ACTIVE state is
2360 	 * visible. This allows perf_event_{stop,read}() to observe the correct
2361 	 * ->oncpu if it sees ACTIVE.
2362 	 */
2363 	smp_wmb();
2364 	perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2365 
2366 	/*
2367 	 * Unthrottle events, since we scheduled we might have missed several
2368 	 * ticks already, also for a heavily scheduling task there is little
2369 	 * guarantee it'll get a tick in a timely manner.
2370 	 */
2371 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2372 		perf_log_throttle(event, 1);
2373 		event->hw.interrupts = 0;
2374 	}
2375 
2376 	perf_pmu_disable(event->pmu);
2377 
2378 	perf_set_shadow_time(event, ctx);
2379 
2380 	perf_log_itrace_start(event);
2381 
2382 	if (event->pmu->add(event, PERF_EF_START)) {
2383 		perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2384 		event->oncpu = -1;
2385 		ret = -EAGAIN;
2386 		goto out;
2387 	}
2388 
2389 	if (!is_software_event(event))
2390 		cpuctx->active_oncpu++;
2391 	if (!ctx->nr_active++)
2392 		perf_event_ctx_activate(ctx);
2393 	if (event->attr.freq && event->attr.sample_freq)
2394 		ctx->nr_freq++;
2395 
2396 	if (event->attr.exclusive)
2397 		cpuctx->exclusive = 1;
2398 
2399 out:
2400 	perf_pmu_enable(event->pmu);
2401 
2402 	return ret;
2403 }
2404 
2405 static int
2406 group_sched_in(struct perf_event *group_event,
2407 	       struct perf_cpu_context *cpuctx,
2408 	       struct perf_event_context *ctx)
2409 {
2410 	struct perf_event *event, *partial_group = NULL;
2411 	struct pmu *pmu = ctx->pmu;
2412 
2413 	if (group_event->state == PERF_EVENT_STATE_OFF)
2414 		return 0;
2415 
2416 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2417 
2418 	if (event_sched_in(group_event, cpuctx, ctx)) {
2419 		pmu->cancel_txn(pmu);
2420 		perf_mux_hrtimer_restart(cpuctx);
2421 		return -EAGAIN;
2422 	}
2423 
2424 	/*
2425 	 * Schedule in siblings as one group (if any):
2426 	 */
2427 	for_each_sibling_event(event, group_event) {
2428 		if (event_sched_in(event, cpuctx, ctx)) {
2429 			partial_group = event;
2430 			goto group_error;
2431 		}
2432 	}
2433 
2434 	if (!pmu->commit_txn(pmu))
2435 		return 0;
2436 
2437 group_error:
2438 	/*
2439 	 * Groups can be scheduled in as one unit only, so undo any
2440 	 * partial group before returning:
2441 	 * The events up to the failed event are scheduled out normally.
2442 	 */
2443 	for_each_sibling_event(event, group_event) {
2444 		if (event == partial_group)
2445 			break;
2446 
2447 		event_sched_out(event, cpuctx, ctx);
2448 	}
2449 	event_sched_out(group_event, cpuctx, ctx);
2450 
2451 	pmu->cancel_txn(pmu);
2452 
2453 	perf_mux_hrtimer_restart(cpuctx);
2454 
2455 	return -EAGAIN;
2456 }
2457 
2458 /*
2459  * Work out whether we can put this event group on the CPU now.
2460  */
2461 static int group_can_go_on(struct perf_event *event,
2462 			   struct perf_cpu_context *cpuctx,
2463 			   int can_add_hw)
2464 {
2465 	/*
2466 	 * Groups consisting entirely of software events can always go on.
2467 	 */
2468 	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2469 		return 1;
2470 	/*
2471 	 * If an exclusive group is already on, no other hardware
2472 	 * events can go on.
2473 	 */
2474 	if (cpuctx->exclusive)
2475 		return 0;
2476 	/*
2477 	 * If this group is exclusive and there are already
2478 	 * events on the CPU, it can't go on.
2479 	 */
2480 	if (event->attr.exclusive && cpuctx->active_oncpu)
2481 		return 0;
2482 	/*
2483 	 * Otherwise, try to add it if all previous groups were able
2484 	 * to go on.
2485 	 */
2486 	return can_add_hw;
2487 }
2488 
2489 static void add_event_to_ctx(struct perf_event *event,
2490 			       struct perf_event_context *ctx)
2491 {
2492 	list_add_event(event, ctx);
2493 	perf_group_attach(event);
2494 }
2495 
2496 static void ctx_sched_out(struct perf_event_context *ctx,
2497 			  struct perf_cpu_context *cpuctx,
2498 			  enum event_type_t event_type);
2499 static void
2500 ctx_sched_in(struct perf_event_context *ctx,
2501 	     struct perf_cpu_context *cpuctx,
2502 	     enum event_type_t event_type,
2503 	     struct task_struct *task);
2504 
2505 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2506 			       struct perf_event_context *ctx,
2507 			       enum event_type_t event_type)
2508 {
2509 	if (!cpuctx->task_ctx)
2510 		return;
2511 
2512 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2513 		return;
2514 
2515 	ctx_sched_out(ctx, cpuctx, event_type);
2516 }
2517 
2518 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2519 				struct perf_event_context *ctx,
2520 				struct task_struct *task)
2521 {
2522 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2523 	if (ctx)
2524 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2525 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2526 	if (ctx)
2527 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2528 }
2529 
2530 /*
2531  * We want to maintain the following priority of scheduling:
2532  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2533  *  - task pinned (EVENT_PINNED)
2534  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2535  *  - task flexible (EVENT_FLEXIBLE).
2536  *
2537  * In order to avoid unscheduling and scheduling back in everything every
2538  * time an event is added, only do it for the groups of equal priority and
2539  * below.
2540  *
2541  * This can be called after a batch operation on task events, in which case
2542  * event_type is a bit mask of the types of events involved. For CPU events,
2543  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2544  */
2545 static void ctx_resched(struct perf_cpu_context *cpuctx,
2546 			struct perf_event_context *task_ctx,
2547 			enum event_type_t event_type)
2548 {
2549 	enum event_type_t ctx_event_type;
2550 	bool cpu_event = !!(event_type & EVENT_CPU);
2551 
2552 	/*
2553 	 * If pinned groups are involved, flexible groups also need to be
2554 	 * scheduled out.
2555 	 */
2556 	if (event_type & EVENT_PINNED)
2557 		event_type |= EVENT_FLEXIBLE;
2558 
2559 	ctx_event_type = event_type & EVENT_ALL;
2560 
2561 	perf_pmu_disable(cpuctx->ctx.pmu);
2562 	if (task_ctx)
2563 		task_ctx_sched_out(cpuctx, task_ctx, event_type);
2564 
2565 	/*
2566 	 * Decide which cpu ctx groups to schedule out based on the types
2567 	 * of events that caused rescheduling:
2568 	 *  - EVENT_CPU: schedule out corresponding groups;
2569 	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2570 	 *  - otherwise, do nothing more.
2571 	 */
2572 	if (cpu_event)
2573 		cpu_ctx_sched_out(cpuctx, ctx_event_type);
2574 	else if (ctx_event_type & EVENT_PINNED)
2575 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2576 
2577 	perf_event_sched_in(cpuctx, task_ctx, current);
2578 	perf_pmu_enable(cpuctx->ctx.pmu);
2579 }
2580 
2581 void perf_pmu_resched(struct pmu *pmu)
2582 {
2583 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2584 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2585 
2586 	perf_ctx_lock(cpuctx, task_ctx);
2587 	ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2588 	perf_ctx_unlock(cpuctx, task_ctx);
2589 }
2590 
2591 /*
2592  * Cross CPU call to install and enable a performance event
2593  *
2594  * Very similar to remote_function() + event_function() but cannot assume that
2595  * things like ctx->is_active and cpuctx->task_ctx are set.
2596  */
2597 static int  __perf_install_in_context(void *info)
2598 {
2599 	struct perf_event *event = info;
2600 	struct perf_event_context *ctx = event->ctx;
2601 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2602 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2603 	bool reprogram = true;
2604 	int ret = 0;
2605 
2606 	raw_spin_lock(&cpuctx->ctx.lock);
2607 	if (ctx->task) {
2608 		raw_spin_lock(&ctx->lock);
2609 		task_ctx = ctx;
2610 
2611 		reprogram = (ctx->task == current);
2612 
2613 		/*
2614 		 * If the task is running, it must be running on this CPU,
2615 		 * otherwise we cannot reprogram things.
2616 		 *
2617 		 * If its not running, we don't care, ctx->lock will
2618 		 * serialize against it becoming runnable.
2619 		 */
2620 		if (task_curr(ctx->task) && !reprogram) {
2621 			ret = -ESRCH;
2622 			goto unlock;
2623 		}
2624 
2625 		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2626 	} else if (task_ctx) {
2627 		raw_spin_lock(&task_ctx->lock);
2628 	}
2629 
2630 #ifdef CONFIG_CGROUP_PERF
2631 	if (is_cgroup_event(event)) {
2632 		/*
2633 		 * If the current cgroup doesn't match the event's
2634 		 * cgroup, we should not try to schedule it.
2635 		 */
2636 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2637 		reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2638 					event->cgrp->css.cgroup);
2639 	}
2640 #endif
2641 
2642 	if (reprogram) {
2643 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2644 		add_event_to_ctx(event, ctx);
2645 		ctx_resched(cpuctx, task_ctx, get_event_type(event));
2646 	} else {
2647 		add_event_to_ctx(event, ctx);
2648 	}
2649 
2650 unlock:
2651 	perf_ctx_unlock(cpuctx, task_ctx);
2652 
2653 	return ret;
2654 }
2655 
2656 static bool exclusive_event_installable(struct perf_event *event,
2657 					struct perf_event_context *ctx);
2658 
2659 /*
2660  * Attach a performance event to a context.
2661  *
2662  * Very similar to event_function_call, see comment there.
2663  */
2664 static void
2665 perf_install_in_context(struct perf_event_context *ctx,
2666 			struct perf_event *event,
2667 			int cpu)
2668 {
2669 	struct task_struct *task = READ_ONCE(ctx->task);
2670 
2671 	lockdep_assert_held(&ctx->mutex);
2672 
2673 	WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2674 
2675 	if (event->cpu != -1)
2676 		event->cpu = cpu;
2677 
2678 	/*
2679 	 * Ensures that if we can observe event->ctx, both the event and ctx
2680 	 * will be 'complete'. See perf_iterate_sb_cpu().
2681 	 */
2682 	smp_store_release(&event->ctx, ctx);
2683 
2684 	/*
2685 	 * perf_event_attr::disabled events will not run and can be initialized
2686 	 * without IPI. Except when this is the first event for the context, in
2687 	 * that case we need the magic of the IPI to set ctx->is_active.
2688 	 *
2689 	 * The IOC_ENABLE that is sure to follow the creation of a disabled
2690 	 * event will issue the IPI and reprogram the hardware.
2691 	 */
2692 	if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && ctx->nr_events) {
2693 		raw_spin_lock_irq(&ctx->lock);
2694 		if (ctx->task == TASK_TOMBSTONE) {
2695 			raw_spin_unlock_irq(&ctx->lock);
2696 			return;
2697 		}
2698 		add_event_to_ctx(event, ctx);
2699 		raw_spin_unlock_irq(&ctx->lock);
2700 		return;
2701 	}
2702 
2703 	if (!task) {
2704 		cpu_function_call(cpu, __perf_install_in_context, event);
2705 		return;
2706 	}
2707 
2708 	/*
2709 	 * Should not happen, we validate the ctx is still alive before calling.
2710 	 */
2711 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2712 		return;
2713 
2714 	/*
2715 	 * Installing events is tricky because we cannot rely on ctx->is_active
2716 	 * to be set in case this is the nr_events 0 -> 1 transition.
2717 	 *
2718 	 * Instead we use task_curr(), which tells us if the task is running.
2719 	 * However, since we use task_curr() outside of rq::lock, we can race
2720 	 * against the actual state. This means the result can be wrong.
2721 	 *
2722 	 * If we get a false positive, we retry, this is harmless.
2723 	 *
2724 	 * If we get a false negative, things are complicated. If we are after
2725 	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2726 	 * value must be correct. If we're before, it doesn't matter since
2727 	 * perf_event_context_sched_in() will program the counter.
2728 	 *
2729 	 * However, this hinges on the remote context switch having observed
2730 	 * our task->perf_event_ctxp[] store, such that it will in fact take
2731 	 * ctx::lock in perf_event_context_sched_in().
2732 	 *
2733 	 * We do this by task_function_call(), if the IPI fails to hit the task
2734 	 * we know any future context switch of task must see the
2735 	 * perf_event_ctpx[] store.
2736 	 */
2737 
2738 	/*
2739 	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2740 	 * task_cpu() load, such that if the IPI then does not find the task
2741 	 * running, a future context switch of that task must observe the
2742 	 * store.
2743 	 */
2744 	smp_mb();
2745 again:
2746 	if (!task_function_call(task, __perf_install_in_context, event))
2747 		return;
2748 
2749 	raw_spin_lock_irq(&ctx->lock);
2750 	task = ctx->task;
2751 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2752 		/*
2753 		 * Cannot happen because we already checked above (which also
2754 		 * cannot happen), and we hold ctx->mutex, which serializes us
2755 		 * against perf_event_exit_task_context().
2756 		 */
2757 		raw_spin_unlock_irq(&ctx->lock);
2758 		return;
2759 	}
2760 	/*
2761 	 * If the task is not running, ctx->lock will avoid it becoming so,
2762 	 * thus we can safely install the event.
2763 	 */
2764 	if (task_curr(task)) {
2765 		raw_spin_unlock_irq(&ctx->lock);
2766 		goto again;
2767 	}
2768 	add_event_to_ctx(event, ctx);
2769 	raw_spin_unlock_irq(&ctx->lock);
2770 }
2771 
2772 /*
2773  * Cross CPU call to enable a performance event
2774  */
2775 static void __perf_event_enable(struct perf_event *event,
2776 				struct perf_cpu_context *cpuctx,
2777 				struct perf_event_context *ctx,
2778 				void *info)
2779 {
2780 	struct perf_event *leader = event->group_leader;
2781 	struct perf_event_context *task_ctx;
2782 
2783 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2784 	    event->state <= PERF_EVENT_STATE_ERROR)
2785 		return;
2786 
2787 	if (ctx->is_active)
2788 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2789 
2790 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2791 
2792 	if (!ctx->is_active)
2793 		return;
2794 
2795 	if (!event_filter_match(event)) {
2796 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2797 		return;
2798 	}
2799 
2800 	/*
2801 	 * If the event is in a group and isn't the group leader,
2802 	 * then don't put it on unless the group is on.
2803 	 */
2804 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2805 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2806 		return;
2807 	}
2808 
2809 	task_ctx = cpuctx->task_ctx;
2810 	if (ctx->task)
2811 		WARN_ON_ONCE(task_ctx != ctx);
2812 
2813 	ctx_resched(cpuctx, task_ctx, get_event_type(event));
2814 }
2815 
2816 /*
2817  * Enable an event.
2818  *
2819  * If event->ctx is a cloned context, callers must make sure that
2820  * every task struct that event->ctx->task could possibly point to
2821  * remains valid.  This condition is satisfied when called through
2822  * perf_event_for_each_child or perf_event_for_each as described
2823  * for perf_event_disable.
2824  */
2825 static void _perf_event_enable(struct perf_event *event)
2826 {
2827 	struct perf_event_context *ctx = event->ctx;
2828 
2829 	raw_spin_lock_irq(&ctx->lock);
2830 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2831 	    event->state <  PERF_EVENT_STATE_ERROR) {
2832 		raw_spin_unlock_irq(&ctx->lock);
2833 		return;
2834 	}
2835 
2836 	/*
2837 	 * If the event is in error state, clear that first.
2838 	 *
2839 	 * That way, if we see the event in error state below, we know that it
2840 	 * has gone back into error state, as distinct from the task having
2841 	 * been scheduled away before the cross-call arrived.
2842 	 */
2843 	if (event->state == PERF_EVENT_STATE_ERROR)
2844 		event->state = PERF_EVENT_STATE_OFF;
2845 	raw_spin_unlock_irq(&ctx->lock);
2846 
2847 	event_function_call(event, __perf_event_enable, NULL);
2848 }
2849 
2850 /*
2851  * See perf_event_disable();
2852  */
2853 void perf_event_enable(struct perf_event *event)
2854 {
2855 	struct perf_event_context *ctx;
2856 
2857 	ctx = perf_event_ctx_lock(event);
2858 	_perf_event_enable(event);
2859 	perf_event_ctx_unlock(event, ctx);
2860 }
2861 EXPORT_SYMBOL_GPL(perf_event_enable);
2862 
2863 struct stop_event_data {
2864 	struct perf_event	*event;
2865 	unsigned int		restart;
2866 };
2867 
2868 static int __perf_event_stop(void *info)
2869 {
2870 	struct stop_event_data *sd = info;
2871 	struct perf_event *event = sd->event;
2872 
2873 	/* if it's already INACTIVE, do nothing */
2874 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2875 		return 0;
2876 
2877 	/* matches smp_wmb() in event_sched_in() */
2878 	smp_rmb();
2879 
2880 	/*
2881 	 * There is a window with interrupts enabled before we get here,
2882 	 * so we need to check again lest we try to stop another CPU's event.
2883 	 */
2884 	if (READ_ONCE(event->oncpu) != smp_processor_id())
2885 		return -EAGAIN;
2886 
2887 	event->pmu->stop(event, PERF_EF_UPDATE);
2888 
2889 	/*
2890 	 * May race with the actual stop (through perf_pmu_output_stop()),
2891 	 * but it is only used for events with AUX ring buffer, and such
2892 	 * events will refuse to restart because of rb::aux_mmap_count==0,
2893 	 * see comments in perf_aux_output_begin().
2894 	 *
2895 	 * Since this is happening on an event-local CPU, no trace is lost
2896 	 * while restarting.
2897 	 */
2898 	if (sd->restart)
2899 		event->pmu->start(event, 0);
2900 
2901 	return 0;
2902 }
2903 
2904 static int perf_event_stop(struct perf_event *event, int restart)
2905 {
2906 	struct stop_event_data sd = {
2907 		.event		= event,
2908 		.restart	= restart,
2909 	};
2910 	int ret = 0;
2911 
2912 	do {
2913 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2914 			return 0;
2915 
2916 		/* matches smp_wmb() in event_sched_in() */
2917 		smp_rmb();
2918 
2919 		/*
2920 		 * We only want to restart ACTIVE events, so if the event goes
2921 		 * inactive here (event->oncpu==-1), there's nothing more to do;
2922 		 * fall through with ret==-ENXIO.
2923 		 */
2924 		ret = cpu_function_call(READ_ONCE(event->oncpu),
2925 					__perf_event_stop, &sd);
2926 	} while (ret == -EAGAIN);
2927 
2928 	return ret;
2929 }
2930 
2931 /*
2932  * In order to contain the amount of racy and tricky in the address filter
2933  * configuration management, it is a two part process:
2934  *
2935  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2936  *      we update the addresses of corresponding vmas in
2937  *	event::addr_filter_ranges array and bump the event::addr_filters_gen;
2938  * (p2) when an event is scheduled in (pmu::add), it calls
2939  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2940  *      if the generation has changed since the previous call.
2941  *
2942  * If (p1) happens while the event is active, we restart it to force (p2).
2943  *
2944  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2945  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2946  *     ioctl;
2947  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2948  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2949  *     for reading;
2950  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2951  *     of exec.
2952  */
2953 void perf_event_addr_filters_sync(struct perf_event *event)
2954 {
2955 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2956 
2957 	if (!has_addr_filter(event))
2958 		return;
2959 
2960 	raw_spin_lock(&ifh->lock);
2961 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2962 		event->pmu->addr_filters_sync(event);
2963 		event->hw.addr_filters_gen = event->addr_filters_gen;
2964 	}
2965 	raw_spin_unlock(&ifh->lock);
2966 }
2967 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2968 
2969 static int _perf_event_refresh(struct perf_event *event, int refresh)
2970 {
2971 	/*
2972 	 * not supported on inherited events
2973 	 */
2974 	if (event->attr.inherit || !is_sampling_event(event))
2975 		return -EINVAL;
2976 
2977 	atomic_add(refresh, &event->event_limit);
2978 	_perf_event_enable(event);
2979 
2980 	return 0;
2981 }
2982 
2983 /*
2984  * See perf_event_disable()
2985  */
2986 int perf_event_refresh(struct perf_event *event, int refresh)
2987 {
2988 	struct perf_event_context *ctx;
2989 	int ret;
2990 
2991 	ctx = perf_event_ctx_lock(event);
2992 	ret = _perf_event_refresh(event, refresh);
2993 	perf_event_ctx_unlock(event, ctx);
2994 
2995 	return ret;
2996 }
2997 EXPORT_SYMBOL_GPL(perf_event_refresh);
2998 
2999 static int perf_event_modify_breakpoint(struct perf_event *bp,
3000 					 struct perf_event_attr *attr)
3001 {
3002 	int err;
3003 
3004 	_perf_event_disable(bp);
3005 
3006 	err = modify_user_hw_breakpoint_check(bp, attr, true);
3007 
3008 	if (!bp->attr.disabled)
3009 		_perf_event_enable(bp);
3010 
3011 	return err;
3012 }
3013 
3014 static int perf_event_modify_attr(struct perf_event *event,
3015 				  struct perf_event_attr *attr)
3016 {
3017 	if (event->attr.type != attr->type)
3018 		return -EINVAL;
3019 
3020 	switch (event->attr.type) {
3021 	case PERF_TYPE_BREAKPOINT:
3022 		return perf_event_modify_breakpoint(event, attr);
3023 	default:
3024 		/* Place holder for future additions. */
3025 		return -EOPNOTSUPP;
3026 	}
3027 }
3028 
3029 static void ctx_sched_out(struct perf_event_context *ctx,
3030 			  struct perf_cpu_context *cpuctx,
3031 			  enum event_type_t event_type)
3032 {
3033 	struct perf_event *event, *tmp;
3034 	int is_active = ctx->is_active;
3035 
3036 	lockdep_assert_held(&ctx->lock);
3037 
3038 	if (likely(!ctx->nr_events)) {
3039 		/*
3040 		 * See __perf_remove_from_context().
3041 		 */
3042 		WARN_ON_ONCE(ctx->is_active);
3043 		if (ctx->task)
3044 			WARN_ON_ONCE(cpuctx->task_ctx);
3045 		return;
3046 	}
3047 
3048 	ctx->is_active &= ~event_type;
3049 	if (!(ctx->is_active & EVENT_ALL))
3050 		ctx->is_active = 0;
3051 
3052 	if (ctx->task) {
3053 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3054 		if (!ctx->is_active)
3055 			cpuctx->task_ctx = NULL;
3056 	}
3057 
3058 	/*
3059 	 * Always update time if it was set; not only when it changes.
3060 	 * Otherwise we can 'forget' to update time for any but the last
3061 	 * context we sched out. For example:
3062 	 *
3063 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3064 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
3065 	 *
3066 	 * would only update time for the pinned events.
3067 	 */
3068 	if (is_active & EVENT_TIME) {
3069 		/* update (and stop) ctx time */
3070 		update_context_time(ctx);
3071 		update_cgrp_time_from_cpuctx(cpuctx);
3072 	}
3073 
3074 	is_active ^= ctx->is_active; /* changed bits */
3075 
3076 	if (!ctx->nr_active || !(is_active & EVENT_ALL))
3077 		return;
3078 
3079 	/*
3080 	 * If we had been multiplexing, no rotations are necessary, now no events
3081 	 * are active.
3082 	 */
3083 	ctx->rotate_necessary = 0;
3084 
3085 	perf_pmu_disable(ctx->pmu);
3086 	if (is_active & EVENT_PINNED) {
3087 		list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
3088 			group_sched_out(event, cpuctx, ctx);
3089 	}
3090 
3091 	if (is_active & EVENT_FLEXIBLE) {
3092 		list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
3093 			group_sched_out(event, cpuctx, ctx);
3094 	}
3095 	perf_pmu_enable(ctx->pmu);
3096 }
3097 
3098 /*
3099  * Test whether two contexts are equivalent, i.e. whether they have both been
3100  * cloned from the same version of the same context.
3101  *
3102  * Equivalence is measured using a generation number in the context that is
3103  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3104  * and list_del_event().
3105  */
3106 static int context_equiv(struct perf_event_context *ctx1,
3107 			 struct perf_event_context *ctx2)
3108 {
3109 	lockdep_assert_held(&ctx1->lock);
3110 	lockdep_assert_held(&ctx2->lock);
3111 
3112 	/* Pinning disables the swap optimization */
3113 	if (ctx1->pin_count || ctx2->pin_count)
3114 		return 0;
3115 
3116 	/* If ctx1 is the parent of ctx2 */
3117 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3118 		return 1;
3119 
3120 	/* If ctx2 is the parent of ctx1 */
3121 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3122 		return 1;
3123 
3124 	/*
3125 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
3126 	 * hierarchy, see perf_event_init_context().
3127 	 */
3128 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3129 			ctx1->parent_gen == ctx2->parent_gen)
3130 		return 1;
3131 
3132 	/* Unmatched */
3133 	return 0;
3134 }
3135 
3136 static void __perf_event_sync_stat(struct perf_event *event,
3137 				     struct perf_event *next_event)
3138 {
3139 	u64 value;
3140 
3141 	if (!event->attr.inherit_stat)
3142 		return;
3143 
3144 	/*
3145 	 * Update the event value, we cannot use perf_event_read()
3146 	 * because we're in the middle of a context switch and have IRQs
3147 	 * disabled, which upsets smp_call_function_single(), however
3148 	 * we know the event must be on the current CPU, therefore we
3149 	 * don't need to use it.
3150 	 */
3151 	if (event->state == PERF_EVENT_STATE_ACTIVE)
3152 		event->pmu->read(event);
3153 
3154 	perf_event_update_time(event);
3155 
3156 	/*
3157 	 * In order to keep per-task stats reliable we need to flip the event
3158 	 * values when we flip the contexts.
3159 	 */
3160 	value = local64_read(&next_event->count);
3161 	value = local64_xchg(&event->count, value);
3162 	local64_set(&next_event->count, value);
3163 
3164 	swap(event->total_time_enabled, next_event->total_time_enabled);
3165 	swap(event->total_time_running, next_event->total_time_running);
3166 
3167 	/*
3168 	 * Since we swizzled the values, update the user visible data too.
3169 	 */
3170 	perf_event_update_userpage(event);
3171 	perf_event_update_userpage(next_event);
3172 }
3173 
3174 static void perf_event_sync_stat(struct perf_event_context *ctx,
3175 				   struct perf_event_context *next_ctx)
3176 {
3177 	struct perf_event *event, *next_event;
3178 
3179 	if (!ctx->nr_stat)
3180 		return;
3181 
3182 	update_context_time(ctx);
3183 
3184 	event = list_first_entry(&ctx->event_list,
3185 				   struct perf_event, event_entry);
3186 
3187 	next_event = list_first_entry(&next_ctx->event_list,
3188 					struct perf_event, event_entry);
3189 
3190 	while (&event->event_entry != &ctx->event_list &&
3191 	       &next_event->event_entry != &next_ctx->event_list) {
3192 
3193 		__perf_event_sync_stat(event, next_event);
3194 
3195 		event = list_next_entry(event, event_entry);
3196 		next_event = list_next_entry(next_event, event_entry);
3197 	}
3198 }
3199 
3200 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3201 					 struct task_struct *next)
3202 {
3203 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3204 	struct perf_event_context *next_ctx;
3205 	struct perf_event_context *parent, *next_parent;
3206 	struct perf_cpu_context *cpuctx;
3207 	int do_switch = 1;
3208 
3209 	if (likely(!ctx))
3210 		return;
3211 
3212 	cpuctx = __get_cpu_context(ctx);
3213 	if (!cpuctx->task_ctx)
3214 		return;
3215 
3216 	rcu_read_lock();
3217 	next_ctx = next->perf_event_ctxp[ctxn];
3218 	if (!next_ctx)
3219 		goto unlock;
3220 
3221 	parent = rcu_dereference(ctx->parent_ctx);
3222 	next_parent = rcu_dereference(next_ctx->parent_ctx);
3223 
3224 	/* If neither context have a parent context; they cannot be clones. */
3225 	if (!parent && !next_parent)
3226 		goto unlock;
3227 
3228 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3229 		/*
3230 		 * Looks like the two contexts are clones, so we might be
3231 		 * able to optimize the context switch.  We lock both
3232 		 * contexts and check that they are clones under the
3233 		 * lock (including re-checking that neither has been
3234 		 * uncloned in the meantime).  It doesn't matter which
3235 		 * order we take the locks because no other cpu could
3236 		 * be trying to lock both of these tasks.
3237 		 */
3238 		raw_spin_lock(&ctx->lock);
3239 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3240 		if (context_equiv(ctx, next_ctx)) {
3241 			struct pmu *pmu = ctx->pmu;
3242 
3243 			WRITE_ONCE(ctx->task, next);
3244 			WRITE_ONCE(next_ctx->task, task);
3245 
3246 			/*
3247 			 * PMU specific parts of task perf context can require
3248 			 * additional synchronization. As an example of such
3249 			 * synchronization see implementation details of Intel
3250 			 * LBR call stack data profiling;
3251 			 */
3252 			if (pmu->swap_task_ctx)
3253 				pmu->swap_task_ctx(ctx, next_ctx);
3254 			else
3255 				swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3256 
3257 			/*
3258 			 * RCU_INIT_POINTER here is safe because we've not
3259 			 * modified the ctx and the above modification of
3260 			 * ctx->task and ctx->task_ctx_data are immaterial
3261 			 * since those values are always verified under
3262 			 * ctx->lock which we're now holding.
3263 			 */
3264 			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3265 			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3266 
3267 			do_switch = 0;
3268 
3269 			perf_event_sync_stat(ctx, next_ctx);
3270 		}
3271 		raw_spin_unlock(&next_ctx->lock);
3272 		raw_spin_unlock(&ctx->lock);
3273 	}
3274 unlock:
3275 	rcu_read_unlock();
3276 
3277 	if (do_switch) {
3278 		raw_spin_lock(&ctx->lock);
3279 		task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3280 		raw_spin_unlock(&ctx->lock);
3281 	}
3282 }
3283 
3284 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3285 
3286 void perf_sched_cb_dec(struct pmu *pmu)
3287 {
3288 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3289 
3290 	this_cpu_dec(perf_sched_cb_usages);
3291 
3292 	if (!--cpuctx->sched_cb_usage)
3293 		list_del(&cpuctx->sched_cb_entry);
3294 }
3295 
3296 
3297 void perf_sched_cb_inc(struct pmu *pmu)
3298 {
3299 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3300 
3301 	if (!cpuctx->sched_cb_usage++)
3302 		list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3303 
3304 	this_cpu_inc(perf_sched_cb_usages);
3305 }
3306 
3307 /*
3308  * This function provides the context switch callback to the lower code
3309  * layer. It is invoked ONLY when the context switch callback is enabled.
3310  *
3311  * This callback is relevant even to per-cpu events; for example multi event
3312  * PEBS requires this to provide PID/TID information. This requires we flush
3313  * all queued PEBS records before we context switch to a new task.
3314  */
3315 static void perf_pmu_sched_task(struct task_struct *prev,
3316 				struct task_struct *next,
3317 				bool sched_in)
3318 {
3319 	struct perf_cpu_context *cpuctx;
3320 	struct pmu *pmu;
3321 
3322 	if (prev == next)
3323 		return;
3324 
3325 	list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3326 		pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3327 
3328 		if (WARN_ON_ONCE(!pmu->sched_task))
3329 			continue;
3330 
3331 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3332 		perf_pmu_disable(pmu);
3333 
3334 		pmu->sched_task(cpuctx->task_ctx, sched_in);
3335 
3336 		perf_pmu_enable(pmu);
3337 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3338 	}
3339 }
3340 
3341 static void perf_event_switch(struct task_struct *task,
3342 			      struct task_struct *next_prev, bool sched_in);
3343 
3344 #define for_each_task_context_nr(ctxn)					\
3345 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3346 
3347 /*
3348  * Called from scheduler to remove the events of the current task,
3349  * with interrupts disabled.
3350  *
3351  * We stop each event and update the event value in event->count.
3352  *
3353  * This does not protect us against NMI, but disable()
3354  * sets the disabled bit in the control field of event _before_
3355  * accessing the event control register. If a NMI hits, then it will
3356  * not restart the event.
3357  */
3358 void __perf_event_task_sched_out(struct task_struct *task,
3359 				 struct task_struct *next)
3360 {
3361 	int ctxn;
3362 
3363 	if (__this_cpu_read(perf_sched_cb_usages))
3364 		perf_pmu_sched_task(task, next, false);
3365 
3366 	if (atomic_read(&nr_switch_events))
3367 		perf_event_switch(task, next, false);
3368 
3369 	for_each_task_context_nr(ctxn)
3370 		perf_event_context_sched_out(task, ctxn, next);
3371 
3372 	/*
3373 	 * if cgroup events exist on this CPU, then we need
3374 	 * to check if we have to switch out PMU state.
3375 	 * cgroup event are system-wide mode only
3376 	 */
3377 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3378 		perf_cgroup_sched_out(task, next);
3379 }
3380 
3381 /*
3382  * Called with IRQs disabled
3383  */
3384 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3385 			      enum event_type_t event_type)
3386 {
3387 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3388 }
3389 
3390 static int visit_groups_merge(struct perf_event_groups *groups, int cpu,
3391 			      int (*func)(struct perf_event *, void *), void *data)
3392 {
3393 	struct perf_event **evt, *evt1, *evt2;
3394 	int ret;
3395 
3396 	evt1 = perf_event_groups_first(groups, -1);
3397 	evt2 = perf_event_groups_first(groups, cpu);
3398 
3399 	while (evt1 || evt2) {
3400 		if (evt1 && evt2) {
3401 			if (evt1->group_index < evt2->group_index)
3402 				evt = &evt1;
3403 			else
3404 				evt = &evt2;
3405 		} else if (evt1) {
3406 			evt = &evt1;
3407 		} else {
3408 			evt = &evt2;
3409 		}
3410 
3411 		ret = func(*evt, data);
3412 		if (ret)
3413 			return ret;
3414 
3415 		*evt = perf_event_groups_next(*evt);
3416 	}
3417 
3418 	return 0;
3419 }
3420 
3421 struct sched_in_data {
3422 	struct perf_event_context *ctx;
3423 	struct perf_cpu_context *cpuctx;
3424 	int can_add_hw;
3425 };
3426 
3427 static int pinned_sched_in(struct perf_event *event, void *data)
3428 {
3429 	struct sched_in_data *sid = data;
3430 
3431 	if (event->state <= PERF_EVENT_STATE_OFF)
3432 		return 0;
3433 
3434 	if (!event_filter_match(event))
3435 		return 0;
3436 
3437 	if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3438 		if (!group_sched_in(event, sid->cpuctx, sid->ctx))
3439 			list_add_tail(&event->active_list, &sid->ctx->pinned_active);
3440 	}
3441 
3442 	/*
3443 	 * If this pinned group hasn't been scheduled,
3444 	 * put it in error state.
3445 	 */
3446 	if (event->state == PERF_EVENT_STATE_INACTIVE)
3447 		perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3448 
3449 	return 0;
3450 }
3451 
3452 static int flexible_sched_in(struct perf_event *event, void *data)
3453 {
3454 	struct sched_in_data *sid = data;
3455 
3456 	if (event->state <= PERF_EVENT_STATE_OFF)
3457 		return 0;
3458 
3459 	if (!event_filter_match(event))
3460 		return 0;
3461 
3462 	if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3463 		int ret = group_sched_in(event, sid->cpuctx, sid->ctx);
3464 		if (ret) {
3465 			sid->can_add_hw = 0;
3466 			sid->ctx->rotate_necessary = 1;
3467 			return 0;
3468 		}
3469 		list_add_tail(&event->active_list, &sid->ctx->flexible_active);
3470 	}
3471 
3472 	return 0;
3473 }
3474 
3475 static void
3476 ctx_pinned_sched_in(struct perf_event_context *ctx,
3477 		    struct perf_cpu_context *cpuctx)
3478 {
3479 	struct sched_in_data sid = {
3480 		.ctx = ctx,
3481 		.cpuctx = cpuctx,
3482 		.can_add_hw = 1,
3483 	};
3484 
3485 	visit_groups_merge(&ctx->pinned_groups,
3486 			   smp_processor_id(),
3487 			   pinned_sched_in, &sid);
3488 }
3489 
3490 static void
3491 ctx_flexible_sched_in(struct perf_event_context *ctx,
3492 		      struct perf_cpu_context *cpuctx)
3493 {
3494 	struct sched_in_data sid = {
3495 		.ctx = ctx,
3496 		.cpuctx = cpuctx,
3497 		.can_add_hw = 1,
3498 	};
3499 
3500 	visit_groups_merge(&ctx->flexible_groups,
3501 			   smp_processor_id(),
3502 			   flexible_sched_in, &sid);
3503 }
3504 
3505 static void
3506 ctx_sched_in(struct perf_event_context *ctx,
3507 	     struct perf_cpu_context *cpuctx,
3508 	     enum event_type_t event_type,
3509 	     struct task_struct *task)
3510 {
3511 	int is_active = ctx->is_active;
3512 	u64 now;
3513 
3514 	lockdep_assert_held(&ctx->lock);
3515 
3516 	if (likely(!ctx->nr_events))
3517 		return;
3518 
3519 	ctx->is_active |= (event_type | EVENT_TIME);
3520 	if (ctx->task) {
3521 		if (!is_active)
3522 			cpuctx->task_ctx = ctx;
3523 		else
3524 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3525 	}
3526 
3527 	is_active ^= ctx->is_active; /* changed bits */
3528 
3529 	if (is_active & EVENT_TIME) {
3530 		/* start ctx time */
3531 		now = perf_clock();
3532 		ctx->timestamp = now;
3533 		perf_cgroup_set_timestamp(task, ctx);
3534 	}
3535 
3536 	/*
3537 	 * First go through the list and put on any pinned groups
3538 	 * in order to give them the best chance of going on.
3539 	 */
3540 	if (is_active & EVENT_PINNED)
3541 		ctx_pinned_sched_in(ctx, cpuctx);
3542 
3543 	/* Then walk through the lower prio flexible groups */
3544 	if (is_active & EVENT_FLEXIBLE)
3545 		ctx_flexible_sched_in(ctx, cpuctx);
3546 }
3547 
3548 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3549 			     enum event_type_t event_type,
3550 			     struct task_struct *task)
3551 {
3552 	struct perf_event_context *ctx = &cpuctx->ctx;
3553 
3554 	ctx_sched_in(ctx, cpuctx, event_type, task);
3555 }
3556 
3557 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3558 					struct task_struct *task)
3559 {
3560 	struct perf_cpu_context *cpuctx;
3561 
3562 	cpuctx = __get_cpu_context(ctx);
3563 	if (cpuctx->task_ctx == ctx)
3564 		return;
3565 
3566 	perf_ctx_lock(cpuctx, ctx);
3567 	/*
3568 	 * We must check ctx->nr_events while holding ctx->lock, such
3569 	 * that we serialize against perf_install_in_context().
3570 	 */
3571 	if (!ctx->nr_events)
3572 		goto unlock;
3573 
3574 	perf_pmu_disable(ctx->pmu);
3575 	/*
3576 	 * We want to keep the following priority order:
3577 	 * cpu pinned (that don't need to move), task pinned,
3578 	 * cpu flexible, task flexible.
3579 	 *
3580 	 * However, if task's ctx is not carrying any pinned
3581 	 * events, no need to flip the cpuctx's events around.
3582 	 */
3583 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3584 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3585 	perf_event_sched_in(cpuctx, ctx, task);
3586 	perf_pmu_enable(ctx->pmu);
3587 
3588 unlock:
3589 	perf_ctx_unlock(cpuctx, ctx);
3590 }
3591 
3592 /*
3593  * Called from scheduler to add the events of the current task
3594  * with interrupts disabled.
3595  *
3596  * We restore the event value and then enable it.
3597  *
3598  * This does not protect us against NMI, but enable()
3599  * sets the enabled bit in the control field of event _before_
3600  * accessing the event control register. If a NMI hits, then it will
3601  * keep the event running.
3602  */
3603 void __perf_event_task_sched_in(struct task_struct *prev,
3604 				struct task_struct *task)
3605 {
3606 	struct perf_event_context *ctx;
3607 	int ctxn;
3608 
3609 	/*
3610 	 * If cgroup events exist on this CPU, then we need to check if we have
3611 	 * to switch in PMU state; cgroup event are system-wide mode only.
3612 	 *
3613 	 * Since cgroup events are CPU events, we must schedule these in before
3614 	 * we schedule in the task events.
3615 	 */
3616 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3617 		perf_cgroup_sched_in(prev, task);
3618 
3619 	for_each_task_context_nr(ctxn) {
3620 		ctx = task->perf_event_ctxp[ctxn];
3621 		if (likely(!ctx))
3622 			continue;
3623 
3624 		perf_event_context_sched_in(ctx, task);
3625 	}
3626 
3627 	if (atomic_read(&nr_switch_events))
3628 		perf_event_switch(task, prev, true);
3629 
3630 	if (__this_cpu_read(perf_sched_cb_usages))
3631 		perf_pmu_sched_task(prev, task, true);
3632 }
3633 
3634 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3635 {
3636 	u64 frequency = event->attr.sample_freq;
3637 	u64 sec = NSEC_PER_SEC;
3638 	u64 divisor, dividend;
3639 
3640 	int count_fls, nsec_fls, frequency_fls, sec_fls;
3641 
3642 	count_fls = fls64(count);
3643 	nsec_fls = fls64(nsec);
3644 	frequency_fls = fls64(frequency);
3645 	sec_fls = 30;
3646 
3647 	/*
3648 	 * We got @count in @nsec, with a target of sample_freq HZ
3649 	 * the target period becomes:
3650 	 *
3651 	 *             @count * 10^9
3652 	 * period = -------------------
3653 	 *          @nsec * sample_freq
3654 	 *
3655 	 */
3656 
3657 	/*
3658 	 * Reduce accuracy by one bit such that @a and @b converge
3659 	 * to a similar magnitude.
3660 	 */
3661 #define REDUCE_FLS(a, b)		\
3662 do {					\
3663 	if (a##_fls > b##_fls) {	\
3664 		a >>= 1;		\
3665 		a##_fls--;		\
3666 	} else {			\
3667 		b >>= 1;		\
3668 		b##_fls--;		\
3669 	}				\
3670 } while (0)
3671 
3672 	/*
3673 	 * Reduce accuracy until either term fits in a u64, then proceed with
3674 	 * the other, so that finally we can do a u64/u64 division.
3675 	 */
3676 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3677 		REDUCE_FLS(nsec, frequency);
3678 		REDUCE_FLS(sec, count);
3679 	}
3680 
3681 	if (count_fls + sec_fls > 64) {
3682 		divisor = nsec * frequency;
3683 
3684 		while (count_fls + sec_fls > 64) {
3685 			REDUCE_FLS(count, sec);
3686 			divisor >>= 1;
3687 		}
3688 
3689 		dividend = count * sec;
3690 	} else {
3691 		dividend = count * sec;
3692 
3693 		while (nsec_fls + frequency_fls > 64) {
3694 			REDUCE_FLS(nsec, frequency);
3695 			dividend >>= 1;
3696 		}
3697 
3698 		divisor = nsec * frequency;
3699 	}
3700 
3701 	if (!divisor)
3702 		return dividend;
3703 
3704 	return div64_u64(dividend, divisor);
3705 }
3706 
3707 static DEFINE_PER_CPU(int, perf_throttled_count);
3708 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3709 
3710 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3711 {
3712 	struct hw_perf_event *hwc = &event->hw;
3713 	s64 period, sample_period;
3714 	s64 delta;
3715 
3716 	period = perf_calculate_period(event, nsec, count);
3717 
3718 	delta = (s64)(period - hwc->sample_period);
3719 	delta = (delta + 7) / 8; /* low pass filter */
3720 
3721 	sample_period = hwc->sample_period + delta;
3722 
3723 	if (!sample_period)
3724 		sample_period = 1;
3725 
3726 	hwc->sample_period = sample_period;
3727 
3728 	if (local64_read(&hwc->period_left) > 8*sample_period) {
3729 		if (disable)
3730 			event->pmu->stop(event, PERF_EF_UPDATE);
3731 
3732 		local64_set(&hwc->period_left, 0);
3733 
3734 		if (disable)
3735 			event->pmu->start(event, PERF_EF_RELOAD);
3736 	}
3737 }
3738 
3739 /*
3740  * combine freq adjustment with unthrottling to avoid two passes over the
3741  * events. At the same time, make sure, having freq events does not change
3742  * the rate of unthrottling as that would introduce bias.
3743  */
3744 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3745 					   int needs_unthr)
3746 {
3747 	struct perf_event *event;
3748 	struct hw_perf_event *hwc;
3749 	u64 now, period = TICK_NSEC;
3750 	s64 delta;
3751 
3752 	/*
3753 	 * only need to iterate over all events iff:
3754 	 * - context have events in frequency mode (needs freq adjust)
3755 	 * - there are events to unthrottle on this cpu
3756 	 */
3757 	if (!(ctx->nr_freq || needs_unthr))
3758 		return;
3759 
3760 	raw_spin_lock(&ctx->lock);
3761 	perf_pmu_disable(ctx->pmu);
3762 
3763 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3764 		if (event->state != PERF_EVENT_STATE_ACTIVE)
3765 			continue;
3766 
3767 		if (!event_filter_match(event))
3768 			continue;
3769 
3770 		perf_pmu_disable(event->pmu);
3771 
3772 		hwc = &event->hw;
3773 
3774 		if (hwc->interrupts == MAX_INTERRUPTS) {
3775 			hwc->interrupts = 0;
3776 			perf_log_throttle(event, 1);
3777 			event->pmu->start(event, 0);
3778 		}
3779 
3780 		if (!event->attr.freq || !event->attr.sample_freq)
3781 			goto next;
3782 
3783 		/*
3784 		 * stop the event and update event->count
3785 		 */
3786 		event->pmu->stop(event, PERF_EF_UPDATE);
3787 
3788 		now = local64_read(&event->count);
3789 		delta = now - hwc->freq_count_stamp;
3790 		hwc->freq_count_stamp = now;
3791 
3792 		/*
3793 		 * restart the event
3794 		 * reload only if value has changed
3795 		 * we have stopped the event so tell that
3796 		 * to perf_adjust_period() to avoid stopping it
3797 		 * twice.
3798 		 */
3799 		if (delta > 0)
3800 			perf_adjust_period(event, period, delta, false);
3801 
3802 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3803 	next:
3804 		perf_pmu_enable(event->pmu);
3805 	}
3806 
3807 	perf_pmu_enable(ctx->pmu);
3808 	raw_spin_unlock(&ctx->lock);
3809 }
3810 
3811 /*
3812  * Move @event to the tail of the @ctx's elegible events.
3813  */
3814 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
3815 {
3816 	/*
3817 	 * Rotate the first entry last of non-pinned groups. Rotation might be
3818 	 * disabled by the inheritance code.
3819 	 */
3820 	if (ctx->rotate_disable)
3821 		return;
3822 
3823 	perf_event_groups_delete(&ctx->flexible_groups, event);
3824 	perf_event_groups_insert(&ctx->flexible_groups, event);
3825 }
3826 
3827 /* pick an event from the flexible_groups to rotate */
3828 static inline struct perf_event *
3829 ctx_event_to_rotate(struct perf_event_context *ctx)
3830 {
3831 	struct perf_event *event;
3832 
3833 	/* pick the first active flexible event */
3834 	event = list_first_entry_or_null(&ctx->flexible_active,
3835 					 struct perf_event, active_list);
3836 
3837 	/* if no active flexible event, pick the first event */
3838 	if (!event) {
3839 		event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree),
3840 				      typeof(*event), group_node);
3841 	}
3842 
3843 	return event;
3844 }
3845 
3846 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
3847 {
3848 	struct perf_event *cpu_event = NULL, *task_event = NULL;
3849 	struct perf_event_context *task_ctx = NULL;
3850 	int cpu_rotate, task_rotate;
3851 
3852 	/*
3853 	 * Since we run this from IRQ context, nobody can install new
3854 	 * events, thus the event count values are stable.
3855 	 */
3856 
3857 	cpu_rotate = cpuctx->ctx.rotate_necessary;
3858 	task_ctx = cpuctx->task_ctx;
3859 	task_rotate = task_ctx ? task_ctx->rotate_necessary : 0;
3860 
3861 	if (!(cpu_rotate || task_rotate))
3862 		return false;
3863 
3864 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3865 	perf_pmu_disable(cpuctx->ctx.pmu);
3866 
3867 	if (task_rotate)
3868 		task_event = ctx_event_to_rotate(task_ctx);
3869 	if (cpu_rotate)
3870 		cpu_event = ctx_event_to_rotate(&cpuctx->ctx);
3871 
3872 	/*
3873 	 * As per the order given at ctx_resched() first 'pop' task flexible
3874 	 * and then, if needed CPU flexible.
3875 	 */
3876 	if (task_event || (task_ctx && cpu_event))
3877 		ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE);
3878 	if (cpu_event)
3879 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3880 
3881 	if (task_event)
3882 		rotate_ctx(task_ctx, task_event);
3883 	if (cpu_event)
3884 		rotate_ctx(&cpuctx->ctx, cpu_event);
3885 
3886 	perf_event_sched_in(cpuctx, task_ctx, current);
3887 
3888 	perf_pmu_enable(cpuctx->ctx.pmu);
3889 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3890 
3891 	return true;
3892 }
3893 
3894 void perf_event_task_tick(void)
3895 {
3896 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
3897 	struct perf_event_context *ctx, *tmp;
3898 	int throttled;
3899 
3900 	lockdep_assert_irqs_disabled();
3901 
3902 	__this_cpu_inc(perf_throttled_seq);
3903 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
3904 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3905 
3906 	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3907 		perf_adjust_freq_unthr_context(ctx, throttled);
3908 }
3909 
3910 static int event_enable_on_exec(struct perf_event *event,
3911 				struct perf_event_context *ctx)
3912 {
3913 	if (!event->attr.enable_on_exec)
3914 		return 0;
3915 
3916 	event->attr.enable_on_exec = 0;
3917 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
3918 		return 0;
3919 
3920 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
3921 
3922 	return 1;
3923 }
3924 
3925 /*
3926  * Enable all of a task's events that have been marked enable-on-exec.
3927  * This expects task == current.
3928  */
3929 static void perf_event_enable_on_exec(int ctxn)
3930 {
3931 	struct perf_event_context *ctx, *clone_ctx = NULL;
3932 	enum event_type_t event_type = 0;
3933 	struct perf_cpu_context *cpuctx;
3934 	struct perf_event *event;
3935 	unsigned long flags;
3936 	int enabled = 0;
3937 
3938 	local_irq_save(flags);
3939 	ctx = current->perf_event_ctxp[ctxn];
3940 	if (!ctx || !ctx->nr_events)
3941 		goto out;
3942 
3943 	cpuctx = __get_cpu_context(ctx);
3944 	perf_ctx_lock(cpuctx, ctx);
3945 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3946 	list_for_each_entry(event, &ctx->event_list, event_entry) {
3947 		enabled |= event_enable_on_exec(event, ctx);
3948 		event_type |= get_event_type(event);
3949 	}
3950 
3951 	/*
3952 	 * Unclone and reschedule this context if we enabled any event.
3953 	 */
3954 	if (enabled) {
3955 		clone_ctx = unclone_ctx(ctx);
3956 		ctx_resched(cpuctx, ctx, event_type);
3957 	} else {
3958 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3959 	}
3960 	perf_ctx_unlock(cpuctx, ctx);
3961 
3962 out:
3963 	local_irq_restore(flags);
3964 
3965 	if (clone_ctx)
3966 		put_ctx(clone_ctx);
3967 }
3968 
3969 struct perf_read_data {
3970 	struct perf_event *event;
3971 	bool group;
3972 	int ret;
3973 };
3974 
3975 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3976 {
3977 	u16 local_pkg, event_pkg;
3978 
3979 	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3980 		int local_cpu = smp_processor_id();
3981 
3982 		event_pkg = topology_physical_package_id(event_cpu);
3983 		local_pkg = topology_physical_package_id(local_cpu);
3984 
3985 		if (event_pkg == local_pkg)
3986 			return local_cpu;
3987 	}
3988 
3989 	return event_cpu;
3990 }
3991 
3992 /*
3993  * Cross CPU call to read the hardware event
3994  */
3995 static void __perf_event_read(void *info)
3996 {
3997 	struct perf_read_data *data = info;
3998 	struct perf_event *sub, *event = data->event;
3999 	struct perf_event_context *ctx = event->ctx;
4000 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4001 	struct pmu *pmu = event->pmu;
4002 
4003 	/*
4004 	 * If this is a task context, we need to check whether it is
4005 	 * the current task context of this cpu.  If not it has been
4006 	 * scheduled out before the smp call arrived.  In that case
4007 	 * event->count would have been updated to a recent sample
4008 	 * when the event was scheduled out.
4009 	 */
4010 	if (ctx->task && cpuctx->task_ctx != ctx)
4011 		return;
4012 
4013 	raw_spin_lock(&ctx->lock);
4014 	if (ctx->is_active & EVENT_TIME) {
4015 		update_context_time(ctx);
4016 		update_cgrp_time_from_event(event);
4017 	}
4018 
4019 	perf_event_update_time(event);
4020 	if (data->group)
4021 		perf_event_update_sibling_time(event);
4022 
4023 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4024 		goto unlock;
4025 
4026 	if (!data->group) {
4027 		pmu->read(event);
4028 		data->ret = 0;
4029 		goto unlock;
4030 	}
4031 
4032 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4033 
4034 	pmu->read(event);
4035 
4036 	for_each_sibling_event(sub, event) {
4037 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4038 			/*
4039 			 * Use sibling's PMU rather than @event's since
4040 			 * sibling could be on different (eg: software) PMU.
4041 			 */
4042 			sub->pmu->read(sub);
4043 		}
4044 	}
4045 
4046 	data->ret = pmu->commit_txn(pmu);
4047 
4048 unlock:
4049 	raw_spin_unlock(&ctx->lock);
4050 }
4051 
4052 static inline u64 perf_event_count(struct perf_event *event)
4053 {
4054 	return local64_read(&event->count) + atomic64_read(&event->child_count);
4055 }
4056 
4057 /*
4058  * NMI-safe method to read a local event, that is an event that
4059  * is:
4060  *   - either for the current task, or for this CPU
4061  *   - does not have inherit set, for inherited task events
4062  *     will not be local and we cannot read them atomically
4063  *   - must not have a pmu::count method
4064  */
4065 int perf_event_read_local(struct perf_event *event, u64 *value,
4066 			  u64 *enabled, u64 *running)
4067 {
4068 	unsigned long flags;
4069 	int ret = 0;
4070 
4071 	/*
4072 	 * Disabling interrupts avoids all counter scheduling (context
4073 	 * switches, timer based rotation and IPIs).
4074 	 */
4075 	local_irq_save(flags);
4076 
4077 	/*
4078 	 * It must not be an event with inherit set, we cannot read
4079 	 * all child counters from atomic context.
4080 	 */
4081 	if (event->attr.inherit) {
4082 		ret = -EOPNOTSUPP;
4083 		goto out;
4084 	}
4085 
4086 	/* If this is a per-task event, it must be for current */
4087 	if ((event->attach_state & PERF_ATTACH_TASK) &&
4088 	    event->hw.target != current) {
4089 		ret = -EINVAL;
4090 		goto out;
4091 	}
4092 
4093 	/* If this is a per-CPU event, it must be for this CPU */
4094 	if (!(event->attach_state & PERF_ATTACH_TASK) &&
4095 	    event->cpu != smp_processor_id()) {
4096 		ret = -EINVAL;
4097 		goto out;
4098 	}
4099 
4100 	/* If this is a pinned event it must be running on this CPU */
4101 	if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4102 		ret = -EBUSY;
4103 		goto out;
4104 	}
4105 
4106 	/*
4107 	 * If the event is currently on this CPU, its either a per-task event,
4108 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4109 	 * oncpu == -1).
4110 	 */
4111 	if (event->oncpu == smp_processor_id())
4112 		event->pmu->read(event);
4113 
4114 	*value = local64_read(&event->count);
4115 	if (enabled || running) {
4116 		u64 now = event->shadow_ctx_time + perf_clock();
4117 		u64 __enabled, __running;
4118 
4119 		__perf_update_times(event, now, &__enabled, &__running);
4120 		if (enabled)
4121 			*enabled = __enabled;
4122 		if (running)
4123 			*running = __running;
4124 	}
4125 out:
4126 	local_irq_restore(flags);
4127 
4128 	return ret;
4129 }
4130 
4131 static int perf_event_read(struct perf_event *event, bool group)
4132 {
4133 	enum perf_event_state state = READ_ONCE(event->state);
4134 	int event_cpu, ret = 0;
4135 
4136 	/*
4137 	 * If event is enabled and currently active on a CPU, update the
4138 	 * value in the event structure:
4139 	 */
4140 again:
4141 	if (state == PERF_EVENT_STATE_ACTIVE) {
4142 		struct perf_read_data data;
4143 
4144 		/*
4145 		 * Orders the ->state and ->oncpu loads such that if we see
4146 		 * ACTIVE we must also see the right ->oncpu.
4147 		 *
4148 		 * Matches the smp_wmb() from event_sched_in().
4149 		 */
4150 		smp_rmb();
4151 
4152 		event_cpu = READ_ONCE(event->oncpu);
4153 		if ((unsigned)event_cpu >= nr_cpu_ids)
4154 			return 0;
4155 
4156 		data = (struct perf_read_data){
4157 			.event = event,
4158 			.group = group,
4159 			.ret = 0,
4160 		};
4161 
4162 		preempt_disable();
4163 		event_cpu = __perf_event_read_cpu(event, event_cpu);
4164 
4165 		/*
4166 		 * Purposely ignore the smp_call_function_single() return
4167 		 * value.
4168 		 *
4169 		 * If event_cpu isn't a valid CPU it means the event got
4170 		 * scheduled out and that will have updated the event count.
4171 		 *
4172 		 * Therefore, either way, we'll have an up-to-date event count
4173 		 * after this.
4174 		 */
4175 		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4176 		preempt_enable();
4177 		ret = data.ret;
4178 
4179 	} else if (state == PERF_EVENT_STATE_INACTIVE) {
4180 		struct perf_event_context *ctx = event->ctx;
4181 		unsigned long flags;
4182 
4183 		raw_spin_lock_irqsave(&ctx->lock, flags);
4184 		state = event->state;
4185 		if (state != PERF_EVENT_STATE_INACTIVE) {
4186 			raw_spin_unlock_irqrestore(&ctx->lock, flags);
4187 			goto again;
4188 		}
4189 
4190 		/*
4191 		 * May read while context is not active (e.g., thread is
4192 		 * blocked), in that case we cannot update context time
4193 		 */
4194 		if (ctx->is_active & EVENT_TIME) {
4195 			update_context_time(ctx);
4196 			update_cgrp_time_from_event(event);
4197 		}
4198 
4199 		perf_event_update_time(event);
4200 		if (group)
4201 			perf_event_update_sibling_time(event);
4202 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4203 	}
4204 
4205 	return ret;
4206 }
4207 
4208 /*
4209  * Initialize the perf_event context in a task_struct:
4210  */
4211 static void __perf_event_init_context(struct perf_event_context *ctx)
4212 {
4213 	raw_spin_lock_init(&ctx->lock);
4214 	mutex_init(&ctx->mutex);
4215 	INIT_LIST_HEAD(&ctx->active_ctx_list);
4216 	perf_event_groups_init(&ctx->pinned_groups);
4217 	perf_event_groups_init(&ctx->flexible_groups);
4218 	INIT_LIST_HEAD(&ctx->event_list);
4219 	INIT_LIST_HEAD(&ctx->pinned_active);
4220 	INIT_LIST_HEAD(&ctx->flexible_active);
4221 	refcount_set(&ctx->refcount, 1);
4222 }
4223 
4224 static struct perf_event_context *
4225 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4226 {
4227 	struct perf_event_context *ctx;
4228 
4229 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4230 	if (!ctx)
4231 		return NULL;
4232 
4233 	__perf_event_init_context(ctx);
4234 	if (task)
4235 		ctx->task = get_task_struct(task);
4236 	ctx->pmu = pmu;
4237 
4238 	return ctx;
4239 }
4240 
4241 static struct task_struct *
4242 find_lively_task_by_vpid(pid_t vpid)
4243 {
4244 	struct task_struct *task;
4245 
4246 	rcu_read_lock();
4247 	if (!vpid)
4248 		task = current;
4249 	else
4250 		task = find_task_by_vpid(vpid);
4251 	if (task)
4252 		get_task_struct(task);
4253 	rcu_read_unlock();
4254 
4255 	if (!task)
4256 		return ERR_PTR(-ESRCH);
4257 
4258 	return task;
4259 }
4260 
4261 /*
4262  * Returns a matching context with refcount and pincount.
4263  */
4264 static struct perf_event_context *
4265 find_get_context(struct pmu *pmu, struct task_struct *task,
4266 		struct perf_event *event)
4267 {
4268 	struct perf_event_context *ctx, *clone_ctx = NULL;
4269 	struct perf_cpu_context *cpuctx;
4270 	void *task_ctx_data = NULL;
4271 	unsigned long flags;
4272 	int ctxn, err;
4273 	int cpu = event->cpu;
4274 
4275 	if (!task) {
4276 		/* Must be root to operate on a CPU event: */
4277 		err = perf_allow_cpu(&event->attr);
4278 		if (err)
4279 			return ERR_PTR(err);
4280 
4281 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4282 		ctx = &cpuctx->ctx;
4283 		get_ctx(ctx);
4284 		++ctx->pin_count;
4285 
4286 		return ctx;
4287 	}
4288 
4289 	err = -EINVAL;
4290 	ctxn = pmu->task_ctx_nr;
4291 	if (ctxn < 0)
4292 		goto errout;
4293 
4294 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4295 		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
4296 		if (!task_ctx_data) {
4297 			err = -ENOMEM;
4298 			goto errout;
4299 		}
4300 	}
4301 
4302 retry:
4303 	ctx = perf_lock_task_context(task, ctxn, &flags);
4304 	if (ctx) {
4305 		clone_ctx = unclone_ctx(ctx);
4306 		++ctx->pin_count;
4307 
4308 		if (task_ctx_data && !ctx->task_ctx_data) {
4309 			ctx->task_ctx_data = task_ctx_data;
4310 			task_ctx_data = NULL;
4311 		}
4312 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4313 
4314 		if (clone_ctx)
4315 			put_ctx(clone_ctx);
4316 	} else {
4317 		ctx = alloc_perf_context(pmu, task);
4318 		err = -ENOMEM;
4319 		if (!ctx)
4320 			goto errout;
4321 
4322 		if (task_ctx_data) {
4323 			ctx->task_ctx_data = task_ctx_data;
4324 			task_ctx_data = NULL;
4325 		}
4326 
4327 		err = 0;
4328 		mutex_lock(&task->perf_event_mutex);
4329 		/*
4330 		 * If it has already passed perf_event_exit_task().
4331 		 * we must see PF_EXITING, it takes this mutex too.
4332 		 */
4333 		if (task->flags & PF_EXITING)
4334 			err = -ESRCH;
4335 		else if (task->perf_event_ctxp[ctxn])
4336 			err = -EAGAIN;
4337 		else {
4338 			get_ctx(ctx);
4339 			++ctx->pin_count;
4340 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4341 		}
4342 		mutex_unlock(&task->perf_event_mutex);
4343 
4344 		if (unlikely(err)) {
4345 			put_ctx(ctx);
4346 
4347 			if (err == -EAGAIN)
4348 				goto retry;
4349 			goto errout;
4350 		}
4351 	}
4352 
4353 	kfree(task_ctx_data);
4354 	return ctx;
4355 
4356 errout:
4357 	kfree(task_ctx_data);
4358 	return ERR_PTR(err);
4359 }
4360 
4361 static void perf_event_free_filter(struct perf_event *event);
4362 static void perf_event_free_bpf_prog(struct perf_event *event);
4363 
4364 static void free_event_rcu(struct rcu_head *head)
4365 {
4366 	struct perf_event *event;
4367 
4368 	event = container_of(head, struct perf_event, rcu_head);
4369 	if (event->ns)
4370 		put_pid_ns(event->ns);
4371 	perf_event_free_filter(event);
4372 	kfree(event);
4373 }
4374 
4375 static void ring_buffer_attach(struct perf_event *event,
4376 			       struct ring_buffer *rb);
4377 
4378 static void detach_sb_event(struct perf_event *event)
4379 {
4380 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4381 
4382 	raw_spin_lock(&pel->lock);
4383 	list_del_rcu(&event->sb_list);
4384 	raw_spin_unlock(&pel->lock);
4385 }
4386 
4387 static bool is_sb_event(struct perf_event *event)
4388 {
4389 	struct perf_event_attr *attr = &event->attr;
4390 
4391 	if (event->parent)
4392 		return false;
4393 
4394 	if (event->attach_state & PERF_ATTACH_TASK)
4395 		return false;
4396 
4397 	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4398 	    attr->comm || attr->comm_exec ||
4399 	    attr->task || attr->ksymbol ||
4400 	    attr->context_switch ||
4401 	    attr->bpf_event)
4402 		return true;
4403 	return false;
4404 }
4405 
4406 static void unaccount_pmu_sb_event(struct perf_event *event)
4407 {
4408 	if (is_sb_event(event))
4409 		detach_sb_event(event);
4410 }
4411 
4412 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4413 {
4414 	if (event->parent)
4415 		return;
4416 
4417 	if (is_cgroup_event(event))
4418 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4419 }
4420 
4421 #ifdef CONFIG_NO_HZ_FULL
4422 static DEFINE_SPINLOCK(nr_freq_lock);
4423 #endif
4424 
4425 static void unaccount_freq_event_nohz(void)
4426 {
4427 #ifdef CONFIG_NO_HZ_FULL
4428 	spin_lock(&nr_freq_lock);
4429 	if (atomic_dec_and_test(&nr_freq_events))
4430 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4431 	spin_unlock(&nr_freq_lock);
4432 #endif
4433 }
4434 
4435 static void unaccount_freq_event(void)
4436 {
4437 	if (tick_nohz_full_enabled())
4438 		unaccount_freq_event_nohz();
4439 	else
4440 		atomic_dec(&nr_freq_events);
4441 }
4442 
4443 static void unaccount_event(struct perf_event *event)
4444 {
4445 	bool dec = false;
4446 
4447 	if (event->parent)
4448 		return;
4449 
4450 	if (event->attach_state & PERF_ATTACH_TASK)
4451 		dec = true;
4452 	if (event->attr.mmap || event->attr.mmap_data)
4453 		atomic_dec(&nr_mmap_events);
4454 	if (event->attr.comm)
4455 		atomic_dec(&nr_comm_events);
4456 	if (event->attr.namespaces)
4457 		atomic_dec(&nr_namespaces_events);
4458 	if (event->attr.task)
4459 		atomic_dec(&nr_task_events);
4460 	if (event->attr.freq)
4461 		unaccount_freq_event();
4462 	if (event->attr.context_switch) {
4463 		dec = true;
4464 		atomic_dec(&nr_switch_events);
4465 	}
4466 	if (is_cgroup_event(event))
4467 		dec = true;
4468 	if (has_branch_stack(event))
4469 		dec = true;
4470 	if (event->attr.ksymbol)
4471 		atomic_dec(&nr_ksymbol_events);
4472 	if (event->attr.bpf_event)
4473 		atomic_dec(&nr_bpf_events);
4474 
4475 	if (dec) {
4476 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
4477 			schedule_delayed_work(&perf_sched_work, HZ);
4478 	}
4479 
4480 	unaccount_event_cpu(event, event->cpu);
4481 
4482 	unaccount_pmu_sb_event(event);
4483 }
4484 
4485 static void perf_sched_delayed(struct work_struct *work)
4486 {
4487 	mutex_lock(&perf_sched_mutex);
4488 	if (atomic_dec_and_test(&perf_sched_count))
4489 		static_branch_disable(&perf_sched_events);
4490 	mutex_unlock(&perf_sched_mutex);
4491 }
4492 
4493 /*
4494  * The following implement mutual exclusion of events on "exclusive" pmus
4495  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4496  * at a time, so we disallow creating events that might conflict, namely:
4497  *
4498  *  1) cpu-wide events in the presence of per-task events,
4499  *  2) per-task events in the presence of cpu-wide events,
4500  *  3) two matching events on the same context.
4501  *
4502  * The former two cases are handled in the allocation path (perf_event_alloc(),
4503  * _free_event()), the latter -- before the first perf_install_in_context().
4504  */
4505 static int exclusive_event_init(struct perf_event *event)
4506 {
4507 	struct pmu *pmu = event->pmu;
4508 
4509 	if (!is_exclusive_pmu(pmu))
4510 		return 0;
4511 
4512 	/*
4513 	 * Prevent co-existence of per-task and cpu-wide events on the
4514 	 * same exclusive pmu.
4515 	 *
4516 	 * Negative pmu::exclusive_cnt means there are cpu-wide
4517 	 * events on this "exclusive" pmu, positive means there are
4518 	 * per-task events.
4519 	 *
4520 	 * Since this is called in perf_event_alloc() path, event::ctx
4521 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4522 	 * to mean "per-task event", because unlike other attach states it
4523 	 * never gets cleared.
4524 	 */
4525 	if (event->attach_state & PERF_ATTACH_TASK) {
4526 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4527 			return -EBUSY;
4528 	} else {
4529 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4530 			return -EBUSY;
4531 	}
4532 
4533 	return 0;
4534 }
4535 
4536 static void exclusive_event_destroy(struct perf_event *event)
4537 {
4538 	struct pmu *pmu = event->pmu;
4539 
4540 	if (!is_exclusive_pmu(pmu))
4541 		return;
4542 
4543 	/* see comment in exclusive_event_init() */
4544 	if (event->attach_state & PERF_ATTACH_TASK)
4545 		atomic_dec(&pmu->exclusive_cnt);
4546 	else
4547 		atomic_inc(&pmu->exclusive_cnt);
4548 }
4549 
4550 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4551 {
4552 	if ((e1->pmu == e2->pmu) &&
4553 	    (e1->cpu == e2->cpu ||
4554 	     e1->cpu == -1 ||
4555 	     e2->cpu == -1))
4556 		return true;
4557 	return false;
4558 }
4559 
4560 static bool exclusive_event_installable(struct perf_event *event,
4561 					struct perf_event_context *ctx)
4562 {
4563 	struct perf_event *iter_event;
4564 	struct pmu *pmu = event->pmu;
4565 
4566 	lockdep_assert_held(&ctx->mutex);
4567 
4568 	if (!is_exclusive_pmu(pmu))
4569 		return true;
4570 
4571 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4572 		if (exclusive_event_match(iter_event, event))
4573 			return false;
4574 	}
4575 
4576 	return true;
4577 }
4578 
4579 static void perf_addr_filters_splice(struct perf_event *event,
4580 				       struct list_head *head);
4581 
4582 static void _free_event(struct perf_event *event)
4583 {
4584 	irq_work_sync(&event->pending);
4585 
4586 	unaccount_event(event);
4587 
4588 	security_perf_event_free(event);
4589 
4590 	if (event->rb) {
4591 		/*
4592 		 * Can happen when we close an event with re-directed output.
4593 		 *
4594 		 * Since we have a 0 refcount, perf_mmap_close() will skip
4595 		 * over us; possibly making our ring_buffer_put() the last.
4596 		 */
4597 		mutex_lock(&event->mmap_mutex);
4598 		ring_buffer_attach(event, NULL);
4599 		mutex_unlock(&event->mmap_mutex);
4600 	}
4601 
4602 	if (is_cgroup_event(event))
4603 		perf_detach_cgroup(event);
4604 
4605 	if (!event->parent) {
4606 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4607 			put_callchain_buffers();
4608 	}
4609 
4610 	perf_event_free_bpf_prog(event);
4611 	perf_addr_filters_splice(event, NULL);
4612 	kfree(event->addr_filter_ranges);
4613 
4614 	if (event->destroy)
4615 		event->destroy(event);
4616 
4617 	/*
4618 	 * Must be after ->destroy(), due to uprobe_perf_close() using
4619 	 * hw.target.
4620 	 */
4621 	if (event->hw.target)
4622 		put_task_struct(event->hw.target);
4623 
4624 	/*
4625 	 * perf_event_free_task() relies on put_ctx() being 'last', in particular
4626 	 * all task references must be cleaned up.
4627 	 */
4628 	if (event->ctx)
4629 		put_ctx(event->ctx);
4630 
4631 	exclusive_event_destroy(event);
4632 	module_put(event->pmu->module);
4633 
4634 	call_rcu(&event->rcu_head, free_event_rcu);
4635 }
4636 
4637 /*
4638  * Used to free events which have a known refcount of 1, such as in error paths
4639  * where the event isn't exposed yet and inherited events.
4640  */
4641 static void free_event(struct perf_event *event)
4642 {
4643 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4644 				"unexpected event refcount: %ld; ptr=%p\n",
4645 				atomic_long_read(&event->refcount), event)) {
4646 		/* leak to avoid use-after-free */
4647 		return;
4648 	}
4649 
4650 	_free_event(event);
4651 }
4652 
4653 /*
4654  * Remove user event from the owner task.
4655  */
4656 static void perf_remove_from_owner(struct perf_event *event)
4657 {
4658 	struct task_struct *owner;
4659 
4660 	rcu_read_lock();
4661 	/*
4662 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
4663 	 * observe !owner it means the list deletion is complete and we can
4664 	 * indeed free this event, otherwise we need to serialize on
4665 	 * owner->perf_event_mutex.
4666 	 */
4667 	owner = READ_ONCE(event->owner);
4668 	if (owner) {
4669 		/*
4670 		 * Since delayed_put_task_struct() also drops the last
4671 		 * task reference we can safely take a new reference
4672 		 * while holding the rcu_read_lock().
4673 		 */
4674 		get_task_struct(owner);
4675 	}
4676 	rcu_read_unlock();
4677 
4678 	if (owner) {
4679 		/*
4680 		 * If we're here through perf_event_exit_task() we're already
4681 		 * holding ctx->mutex which would be an inversion wrt. the
4682 		 * normal lock order.
4683 		 *
4684 		 * However we can safely take this lock because its the child
4685 		 * ctx->mutex.
4686 		 */
4687 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4688 
4689 		/*
4690 		 * We have to re-check the event->owner field, if it is cleared
4691 		 * we raced with perf_event_exit_task(), acquiring the mutex
4692 		 * ensured they're done, and we can proceed with freeing the
4693 		 * event.
4694 		 */
4695 		if (event->owner) {
4696 			list_del_init(&event->owner_entry);
4697 			smp_store_release(&event->owner, NULL);
4698 		}
4699 		mutex_unlock(&owner->perf_event_mutex);
4700 		put_task_struct(owner);
4701 	}
4702 }
4703 
4704 static void put_event(struct perf_event *event)
4705 {
4706 	if (!atomic_long_dec_and_test(&event->refcount))
4707 		return;
4708 
4709 	_free_event(event);
4710 }
4711 
4712 /*
4713  * Kill an event dead; while event:refcount will preserve the event
4714  * object, it will not preserve its functionality. Once the last 'user'
4715  * gives up the object, we'll destroy the thing.
4716  */
4717 int perf_event_release_kernel(struct perf_event *event)
4718 {
4719 	struct perf_event_context *ctx = event->ctx;
4720 	struct perf_event *child, *tmp;
4721 	LIST_HEAD(free_list);
4722 
4723 	/*
4724 	 * If we got here through err_file: fput(event_file); we will not have
4725 	 * attached to a context yet.
4726 	 */
4727 	if (!ctx) {
4728 		WARN_ON_ONCE(event->attach_state &
4729 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4730 		goto no_ctx;
4731 	}
4732 
4733 	if (!is_kernel_event(event))
4734 		perf_remove_from_owner(event);
4735 
4736 	ctx = perf_event_ctx_lock(event);
4737 	WARN_ON_ONCE(ctx->parent_ctx);
4738 	perf_remove_from_context(event, DETACH_GROUP);
4739 
4740 	raw_spin_lock_irq(&ctx->lock);
4741 	/*
4742 	 * Mark this event as STATE_DEAD, there is no external reference to it
4743 	 * anymore.
4744 	 *
4745 	 * Anybody acquiring event->child_mutex after the below loop _must_
4746 	 * also see this, most importantly inherit_event() which will avoid
4747 	 * placing more children on the list.
4748 	 *
4749 	 * Thus this guarantees that we will in fact observe and kill _ALL_
4750 	 * child events.
4751 	 */
4752 	event->state = PERF_EVENT_STATE_DEAD;
4753 	raw_spin_unlock_irq(&ctx->lock);
4754 
4755 	perf_event_ctx_unlock(event, ctx);
4756 
4757 again:
4758 	mutex_lock(&event->child_mutex);
4759 	list_for_each_entry(child, &event->child_list, child_list) {
4760 
4761 		/*
4762 		 * Cannot change, child events are not migrated, see the
4763 		 * comment with perf_event_ctx_lock_nested().
4764 		 */
4765 		ctx = READ_ONCE(child->ctx);
4766 		/*
4767 		 * Since child_mutex nests inside ctx::mutex, we must jump
4768 		 * through hoops. We start by grabbing a reference on the ctx.
4769 		 *
4770 		 * Since the event cannot get freed while we hold the
4771 		 * child_mutex, the context must also exist and have a !0
4772 		 * reference count.
4773 		 */
4774 		get_ctx(ctx);
4775 
4776 		/*
4777 		 * Now that we have a ctx ref, we can drop child_mutex, and
4778 		 * acquire ctx::mutex without fear of it going away. Then we
4779 		 * can re-acquire child_mutex.
4780 		 */
4781 		mutex_unlock(&event->child_mutex);
4782 		mutex_lock(&ctx->mutex);
4783 		mutex_lock(&event->child_mutex);
4784 
4785 		/*
4786 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
4787 		 * state, if child is still the first entry, it didn't get freed
4788 		 * and we can continue doing so.
4789 		 */
4790 		tmp = list_first_entry_or_null(&event->child_list,
4791 					       struct perf_event, child_list);
4792 		if (tmp == child) {
4793 			perf_remove_from_context(child, DETACH_GROUP);
4794 			list_move(&child->child_list, &free_list);
4795 			/*
4796 			 * This matches the refcount bump in inherit_event();
4797 			 * this can't be the last reference.
4798 			 */
4799 			put_event(event);
4800 		}
4801 
4802 		mutex_unlock(&event->child_mutex);
4803 		mutex_unlock(&ctx->mutex);
4804 		put_ctx(ctx);
4805 		goto again;
4806 	}
4807 	mutex_unlock(&event->child_mutex);
4808 
4809 	list_for_each_entry_safe(child, tmp, &free_list, child_list) {
4810 		void *var = &child->ctx->refcount;
4811 
4812 		list_del(&child->child_list);
4813 		free_event(child);
4814 
4815 		/*
4816 		 * Wake any perf_event_free_task() waiting for this event to be
4817 		 * freed.
4818 		 */
4819 		smp_mb(); /* pairs with wait_var_event() */
4820 		wake_up_var(var);
4821 	}
4822 
4823 no_ctx:
4824 	put_event(event); /* Must be the 'last' reference */
4825 	return 0;
4826 }
4827 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4828 
4829 /*
4830  * Called when the last reference to the file is gone.
4831  */
4832 static int perf_release(struct inode *inode, struct file *file)
4833 {
4834 	perf_event_release_kernel(file->private_data);
4835 	return 0;
4836 }
4837 
4838 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4839 {
4840 	struct perf_event *child;
4841 	u64 total = 0;
4842 
4843 	*enabled = 0;
4844 	*running = 0;
4845 
4846 	mutex_lock(&event->child_mutex);
4847 
4848 	(void)perf_event_read(event, false);
4849 	total += perf_event_count(event);
4850 
4851 	*enabled += event->total_time_enabled +
4852 			atomic64_read(&event->child_total_time_enabled);
4853 	*running += event->total_time_running +
4854 			atomic64_read(&event->child_total_time_running);
4855 
4856 	list_for_each_entry(child, &event->child_list, child_list) {
4857 		(void)perf_event_read(child, false);
4858 		total += perf_event_count(child);
4859 		*enabled += child->total_time_enabled;
4860 		*running += child->total_time_running;
4861 	}
4862 	mutex_unlock(&event->child_mutex);
4863 
4864 	return total;
4865 }
4866 
4867 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4868 {
4869 	struct perf_event_context *ctx;
4870 	u64 count;
4871 
4872 	ctx = perf_event_ctx_lock(event);
4873 	count = __perf_event_read_value(event, enabled, running);
4874 	perf_event_ctx_unlock(event, ctx);
4875 
4876 	return count;
4877 }
4878 EXPORT_SYMBOL_GPL(perf_event_read_value);
4879 
4880 static int __perf_read_group_add(struct perf_event *leader,
4881 					u64 read_format, u64 *values)
4882 {
4883 	struct perf_event_context *ctx = leader->ctx;
4884 	struct perf_event *sub;
4885 	unsigned long flags;
4886 	int n = 1; /* skip @nr */
4887 	int ret;
4888 
4889 	ret = perf_event_read(leader, true);
4890 	if (ret)
4891 		return ret;
4892 
4893 	raw_spin_lock_irqsave(&ctx->lock, flags);
4894 
4895 	/*
4896 	 * Since we co-schedule groups, {enabled,running} times of siblings
4897 	 * will be identical to those of the leader, so we only publish one
4898 	 * set.
4899 	 */
4900 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4901 		values[n++] += leader->total_time_enabled +
4902 			atomic64_read(&leader->child_total_time_enabled);
4903 	}
4904 
4905 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4906 		values[n++] += leader->total_time_running +
4907 			atomic64_read(&leader->child_total_time_running);
4908 	}
4909 
4910 	/*
4911 	 * Write {count,id} tuples for every sibling.
4912 	 */
4913 	values[n++] += perf_event_count(leader);
4914 	if (read_format & PERF_FORMAT_ID)
4915 		values[n++] = primary_event_id(leader);
4916 
4917 	for_each_sibling_event(sub, leader) {
4918 		values[n++] += perf_event_count(sub);
4919 		if (read_format & PERF_FORMAT_ID)
4920 			values[n++] = primary_event_id(sub);
4921 	}
4922 
4923 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
4924 	return 0;
4925 }
4926 
4927 static int perf_read_group(struct perf_event *event,
4928 				   u64 read_format, char __user *buf)
4929 {
4930 	struct perf_event *leader = event->group_leader, *child;
4931 	struct perf_event_context *ctx = leader->ctx;
4932 	int ret;
4933 	u64 *values;
4934 
4935 	lockdep_assert_held(&ctx->mutex);
4936 
4937 	values = kzalloc(event->read_size, GFP_KERNEL);
4938 	if (!values)
4939 		return -ENOMEM;
4940 
4941 	values[0] = 1 + leader->nr_siblings;
4942 
4943 	/*
4944 	 * By locking the child_mutex of the leader we effectively
4945 	 * lock the child list of all siblings.. XXX explain how.
4946 	 */
4947 	mutex_lock(&leader->child_mutex);
4948 
4949 	ret = __perf_read_group_add(leader, read_format, values);
4950 	if (ret)
4951 		goto unlock;
4952 
4953 	list_for_each_entry(child, &leader->child_list, child_list) {
4954 		ret = __perf_read_group_add(child, read_format, values);
4955 		if (ret)
4956 			goto unlock;
4957 	}
4958 
4959 	mutex_unlock(&leader->child_mutex);
4960 
4961 	ret = event->read_size;
4962 	if (copy_to_user(buf, values, event->read_size))
4963 		ret = -EFAULT;
4964 	goto out;
4965 
4966 unlock:
4967 	mutex_unlock(&leader->child_mutex);
4968 out:
4969 	kfree(values);
4970 	return ret;
4971 }
4972 
4973 static int perf_read_one(struct perf_event *event,
4974 				 u64 read_format, char __user *buf)
4975 {
4976 	u64 enabled, running;
4977 	u64 values[4];
4978 	int n = 0;
4979 
4980 	values[n++] = __perf_event_read_value(event, &enabled, &running);
4981 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4982 		values[n++] = enabled;
4983 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4984 		values[n++] = running;
4985 	if (read_format & PERF_FORMAT_ID)
4986 		values[n++] = primary_event_id(event);
4987 
4988 	if (copy_to_user(buf, values, n * sizeof(u64)))
4989 		return -EFAULT;
4990 
4991 	return n * sizeof(u64);
4992 }
4993 
4994 static bool is_event_hup(struct perf_event *event)
4995 {
4996 	bool no_children;
4997 
4998 	if (event->state > PERF_EVENT_STATE_EXIT)
4999 		return false;
5000 
5001 	mutex_lock(&event->child_mutex);
5002 	no_children = list_empty(&event->child_list);
5003 	mutex_unlock(&event->child_mutex);
5004 	return no_children;
5005 }
5006 
5007 /*
5008  * Read the performance event - simple non blocking version for now
5009  */
5010 static ssize_t
5011 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5012 {
5013 	u64 read_format = event->attr.read_format;
5014 	int ret;
5015 
5016 	/*
5017 	 * Return end-of-file for a read on an event that is in
5018 	 * error state (i.e. because it was pinned but it couldn't be
5019 	 * scheduled on to the CPU at some point).
5020 	 */
5021 	if (event->state == PERF_EVENT_STATE_ERROR)
5022 		return 0;
5023 
5024 	if (count < event->read_size)
5025 		return -ENOSPC;
5026 
5027 	WARN_ON_ONCE(event->ctx->parent_ctx);
5028 	if (read_format & PERF_FORMAT_GROUP)
5029 		ret = perf_read_group(event, read_format, buf);
5030 	else
5031 		ret = perf_read_one(event, read_format, buf);
5032 
5033 	return ret;
5034 }
5035 
5036 static ssize_t
5037 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5038 {
5039 	struct perf_event *event = file->private_data;
5040 	struct perf_event_context *ctx;
5041 	int ret;
5042 
5043 	ret = security_perf_event_read(event);
5044 	if (ret)
5045 		return ret;
5046 
5047 	ctx = perf_event_ctx_lock(event);
5048 	ret = __perf_read(event, buf, count);
5049 	perf_event_ctx_unlock(event, ctx);
5050 
5051 	return ret;
5052 }
5053 
5054 static __poll_t perf_poll(struct file *file, poll_table *wait)
5055 {
5056 	struct perf_event *event = file->private_data;
5057 	struct ring_buffer *rb;
5058 	__poll_t events = EPOLLHUP;
5059 
5060 	poll_wait(file, &event->waitq, wait);
5061 
5062 	if (is_event_hup(event))
5063 		return events;
5064 
5065 	/*
5066 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
5067 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5068 	 */
5069 	mutex_lock(&event->mmap_mutex);
5070 	rb = event->rb;
5071 	if (rb)
5072 		events = atomic_xchg(&rb->poll, 0);
5073 	mutex_unlock(&event->mmap_mutex);
5074 	return events;
5075 }
5076 
5077 static void _perf_event_reset(struct perf_event *event)
5078 {
5079 	(void)perf_event_read(event, false);
5080 	local64_set(&event->count, 0);
5081 	perf_event_update_userpage(event);
5082 }
5083 
5084 /* Assume it's not an event with inherit set. */
5085 u64 perf_event_pause(struct perf_event *event, bool reset)
5086 {
5087 	struct perf_event_context *ctx;
5088 	u64 count;
5089 
5090 	ctx = perf_event_ctx_lock(event);
5091 	WARN_ON_ONCE(event->attr.inherit);
5092 	_perf_event_disable(event);
5093 	count = local64_read(&event->count);
5094 	if (reset)
5095 		local64_set(&event->count, 0);
5096 	perf_event_ctx_unlock(event, ctx);
5097 
5098 	return count;
5099 }
5100 EXPORT_SYMBOL_GPL(perf_event_pause);
5101 
5102 /*
5103  * Holding the top-level event's child_mutex means that any
5104  * descendant process that has inherited this event will block
5105  * in perf_event_exit_event() if it goes to exit, thus satisfying the
5106  * task existence requirements of perf_event_enable/disable.
5107  */
5108 static void perf_event_for_each_child(struct perf_event *event,
5109 					void (*func)(struct perf_event *))
5110 {
5111 	struct perf_event *child;
5112 
5113 	WARN_ON_ONCE(event->ctx->parent_ctx);
5114 
5115 	mutex_lock(&event->child_mutex);
5116 	func(event);
5117 	list_for_each_entry(child, &event->child_list, child_list)
5118 		func(child);
5119 	mutex_unlock(&event->child_mutex);
5120 }
5121 
5122 static void perf_event_for_each(struct perf_event *event,
5123 				  void (*func)(struct perf_event *))
5124 {
5125 	struct perf_event_context *ctx = event->ctx;
5126 	struct perf_event *sibling;
5127 
5128 	lockdep_assert_held(&ctx->mutex);
5129 
5130 	event = event->group_leader;
5131 
5132 	perf_event_for_each_child(event, func);
5133 	for_each_sibling_event(sibling, event)
5134 		perf_event_for_each_child(sibling, func);
5135 }
5136 
5137 static void __perf_event_period(struct perf_event *event,
5138 				struct perf_cpu_context *cpuctx,
5139 				struct perf_event_context *ctx,
5140 				void *info)
5141 {
5142 	u64 value = *((u64 *)info);
5143 	bool active;
5144 
5145 	if (event->attr.freq) {
5146 		event->attr.sample_freq = value;
5147 	} else {
5148 		event->attr.sample_period = value;
5149 		event->hw.sample_period = value;
5150 	}
5151 
5152 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
5153 	if (active) {
5154 		perf_pmu_disable(ctx->pmu);
5155 		/*
5156 		 * We could be throttled; unthrottle now to avoid the tick
5157 		 * trying to unthrottle while we already re-started the event.
5158 		 */
5159 		if (event->hw.interrupts == MAX_INTERRUPTS) {
5160 			event->hw.interrupts = 0;
5161 			perf_log_throttle(event, 1);
5162 		}
5163 		event->pmu->stop(event, PERF_EF_UPDATE);
5164 	}
5165 
5166 	local64_set(&event->hw.period_left, 0);
5167 
5168 	if (active) {
5169 		event->pmu->start(event, PERF_EF_RELOAD);
5170 		perf_pmu_enable(ctx->pmu);
5171 	}
5172 }
5173 
5174 static int perf_event_check_period(struct perf_event *event, u64 value)
5175 {
5176 	return event->pmu->check_period(event, value);
5177 }
5178 
5179 static int _perf_event_period(struct perf_event *event, u64 value)
5180 {
5181 	if (!is_sampling_event(event))
5182 		return -EINVAL;
5183 
5184 	if (!value)
5185 		return -EINVAL;
5186 
5187 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5188 		return -EINVAL;
5189 
5190 	if (perf_event_check_period(event, value))
5191 		return -EINVAL;
5192 
5193 	if (!event->attr.freq && (value & (1ULL << 63)))
5194 		return -EINVAL;
5195 
5196 	event_function_call(event, __perf_event_period, &value);
5197 
5198 	return 0;
5199 }
5200 
5201 int perf_event_period(struct perf_event *event, u64 value)
5202 {
5203 	struct perf_event_context *ctx;
5204 	int ret;
5205 
5206 	ctx = perf_event_ctx_lock(event);
5207 	ret = _perf_event_period(event, value);
5208 	perf_event_ctx_unlock(event, ctx);
5209 
5210 	return ret;
5211 }
5212 EXPORT_SYMBOL_GPL(perf_event_period);
5213 
5214 static const struct file_operations perf_fops;
5215 
5216 static inline int perf_fget_light(int fd, struct fd *p)
5217 {
5218 	struct fd f = fdget(fd);
5219 	if (!f.file)
5220 		return -EBADF;
5221 
5222 	if (f.file->f_op != &perf_fops) {
5223 		fdput(f);
5224 		return -EBADF;
5225 	}
5226 	*p = f;
5227 	return 0;
5228 }
5229 
5230 static int perf_event_set_output(struct perf_event *event,
5231 				 struct perf_event *output_event);
5232 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5233 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
5234 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5235 			  struct perf_event_attr *attr);
5236 
5237 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5238 {
5239 	void (*func)(struct perf_event *);
5240 	u32 flags = arg;
5241 
5242 	switch (cmd) {
5243 	case PERF_EVENT_IOC_ENABLE:
5244 		func = _perf_event_enable;
5245 		break;
5246 	case PERF_EVENT_IOC_DISABLE:
5247 		func = _perf_event_disable;
5248 		break;
5249 	case PERF_EVENT_IOC_RESET:
5250 		func = _perf_event_reset;
5251 		break;
5252 
5253 	case PERF_EVENT_IOC_REFRESH:
5254 		return _perf_event_refresh(event, arg);
5255 
5256 	case PERF_EVENT_IOC_PERIOD:
5257 	{
5258 		u64 value;
5259 
5260 		if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5261 			return -EFAULT;
5262 
5263 		return _perf_event_period(event, value);
5264 	}
5265 	case PERF_EVENT_IOC_ID:
5266 	{
5267 		u64 id = primary_event_id(event);
5268 
5269 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5270 			return -EFAULT;
5271 		return 0;
5272 	}
5273 
5274 	case PERF_EVENT_IOC_SET_OUTPUT:
5275 	{
5276 		int ret;
5277 		if (arg != -1) {
5278 			struct perf_event *output_event;
5279 			struct fd output;
5280 			ret = perf_fget_light(arg, &output);
5281 			if (ret)
5282 				return ret;
5283 			output_event = output.file->private_data;
5284 			ret = perf_event_set_output(event, output_event);
5285 			fdput(output);
5286 		} else {
5287 			ret = perf_event_set_output(event, NULL);
5288 		}
5289 		return ret;
5290 	}
5291 
5292 	case PERF_EVENT_IOC_SET_FILTER:
5293 		return perf_event_set_filter(event, (void __user *)arg);
5294 
5295 	case PERF_EVENT_IOC_SET_BPF:
5296 		return perf_event_set_bpf_prog(event, arg);
5297 
5298 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5299 		struct ring_buffer *rb;
5300 
5301 		rcu_read_lock();
5302 		rb = rcu_dereference(event->rb);
5303 		if (!rb || !rb->nr_pages) {
5304 			rcu_read_unlock();
5305 			return -EINVAL;
5306 		}
5307 		rb_toggle_paused(rb, !!arg);
5308 		rcu_read_unlock();
5309 		return 0;
5310 	}
5311 
5312 	case PERF_EVENT_IOC_QUERY_BPF:
5313 		return perf_event_query_prog_array(event, (void __user *)arg);
5314 
5315 	case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5316 		struct perf_event_attr new_attr;
5317 		int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5318 					 &new_attr);
5319 
5320 		if (err)
5321 			return err;
5322 
5323 		return perf_event_modify_attr(event,  &new_attr);
5324 	}
5325 	default:
5326 		return -ENOTTY;
5327 	}
5328 
5329 	if (flags & PERF_IOC_FLAG_GROUP)
5330 		perf_event_for_each(event, func);
5331 	else
5332 		perf_event_for_each_child(event, func);
5333 
5334 	return 0;
5335 }
5336 
5337 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5338 {
5339 	struct perf_event *event = file->private_data;
5340 	struct perf_event_context *ctx;
5341 	long ret;
5342 
5343 	/* Treat ioctl like writes as it is likely a mutating operation. */
5344 	ret = security_perf_event_write(event);
5345 	if (ret)
5346 		return ret;
5347 
5348 	ctx = perf_event_ctx_lock(event);
5349 	ret = _perf_ioctl(event, cmd, arg);
5350 	perf_event_ctx_unlock(event, ctx);
5351 
5352 	return ret;
5353 }
5354 
5355 #ifdef CONFIG_COMPAT
5356 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5357 				unsigned long arg)
5358 {
5359 	switch (_IOC_NR(cmd)) {
5360 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5361 	case _IOC_NR(PERF_EVENT_IOC_ID):
5362 	case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5363 	case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5364 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5365 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5366 			cmd &= ~IOCSIZE_MASK;
5367 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5368 		}
5369 		break;
5370 	}
5371 	return perf_ioctl(file, cmd, arg);
5372 }
5373 #else
5374 # define perf_compat_ioctl NULL
5375 #endif
5376 
5377 int perf_event_task_enable(void)
5378 {
5379 	struct perf_event_context *ctx;
5380 	struct perf_event *event;
5381 
5382 	mutex_lock(&current->perf_event_mutex);
5383 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5384 		ctx = perf_event_ctx_lock(event);
5385 		perf_event_for_each_child(event, _perf_event_enable);
5386 		perf_event_ctx_unlock(event, ctx);
5387 	}
5388 	mutex_unlock(&current->perf_event_mutex);
5389 
5390 	return 0;
5391 }
5392 
5393 int perf_event_task_disable(void)
5394 {
5395 	struct perf_event_context *ctx;
5396 	struct perf_event *event;
5397 
5398 	mutex_lock(&current->perf_event_mutex);
5399 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5400 		ctx = perf_event_ctx_lock(event);
5401 		perf_event_for_each_child(event, _perf_event_disable);
5402 		perf_event_ctx_unlock(event, ctx);
5403 	}
5404 	mutex_unlock(&current->perf_event_mutex);
5405 
5406 	return 0;
5407 }
5408 
5409 static int perf_event_index(struct perf_event *event)
5410 {
5411 	if (event->hw.state & PERF_HES_STOPPED)
5412 		return 0;
5413 
5414 	if (event->state != PERF_EVENT_STATE_ACTIVE)
5415 		return 0;
5416 
5417 	return event->pmu->event_idx(event);
5418 }
5419 
5420 static void calc_timer_values(struct perf_event *event,
5421 				u64 *now,
5422 				u64 *enabled,
5423 				u64 *running)
5424 {
5425 	u64 ctx_time;
5426 
5427 	*now = perf_clock();
5428 	ctx_time = event->shadow_ctx_time + *now;
5429 	__perf_update_times(event, ctx_time, enabled, running);
5430 }
5431 
5432 static void perf_event_init_userpage(struct perf_event *event)
5433 {
5434 	struct perf_event_mmap_page *userpg;
5435 	struct ring_buffer *rb;
5436 
5437 	rcu_read_lock();
5438 	rb = rcu_dereference(event->rb);
5439 	if (!rb)
5440 		goto unlock;
5441 
5442 	userpg = rb->user_page;
5443 
5444 	/* Allow new userspace to detect that bit 0 is deprecated */
5445 	userpg->cap_bit0_is_deprecated = 1;
5446 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5447 	userpg->data_offset = PAGE_SIZE;
5448 	userpg->data_size = perf_data_size(rb);
5449 
5450 unlock:
5451 	rcu_read_unlock();
5452 }
5453 
5454 void __weak arch_perf_update_userpage(
5455 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5456 {
5457 }
5458 
5459 /*
5460  * Callers need to ensure there can be no nesting of this function, otherwise
5461  * the seqlock logic goes bad. We can not serialize this because the arch
5462  * code calls this from NMI context.
5463  */
5464 void perf_event_update_userpage(struct perf_event *event)
5465 {
5466 	struct perf_event_mmap_page *userpg;
5467 	struct ring_buffer *rb;
5468 	u64 enabled, running, now;
5469 
5470 	rcu_read_lock();
5471 	rb = rcu_dereference(event->rb);
5472 	if (!rb)
5473 		goto unlock;
5474 
5475 	/*
5476 	 * compute total_time_enabled, total_time_running
5477 	 * based on snapshot values taken when the event
5478 	 * was last scheduled in.
5479 	 *
5480 	 * we cannot simply called update_context_time()
5481 	 * because of locking issue as we can be called in
5482 	 * NMI context
5483 	 */
5484 	calc_timer_values(event, &now, &enabled, &running);
5485 
5486 	userpg = rb->user_page;
5487 	/*
5488 	 * Disable preemption to guarantee consistent time stamps are stored to
5489 	 * the user page.
5490 	 */
5491 	preempt_disable();
5492 	++userpg->lock;
5493 	barrier();
5494 	userpg->index = perf_event_index(event);
5495 	userpg->offset = perf_event_count(event);
5496 	if (userpg->index)
5497 		userpg->offset -= local64_read(&event->hw.prev_count);
5498 
5499 	userpg->time_enabled = enabled +
5500 			atomic64_read(&event->child_total_time_enabled);
5501 
5502 	userpg->time_running = running +
5503 			atomic64_read(&event->child_total_time_running);
5504 
5505 	arch_perf_update_userpage(event, userpg, now);
5506 
5507 	barrier();
5508 	++userpg->lock;
5509 	preempt_enable();
5510 unlock:
5511 	rcu_read_unlock();
5512 }
5513 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5514 
5515 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
5516 {
5517 	struct perf_event *event = vmf->vma->vm_file->private_data;
5518 	struct ring_buffer *rb;
5519 	vm_fault_t ret = VM_FAULT_SIGBUS;
5520 
5521 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
5522 		if (vmf->pgoff == 0)
5523 			ret = 0;
5524 		return ret;
5525 	}
5526 
5527 	rcu_read_lock();
5528 	rb = rcu_dereference(event->rb);
5529 	if (!rb)
5530 		goto unlock;
5531 
5532 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5533 		goto unlock;
5534 
5535 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5536 	if (!vmf->page)
5537 		goto unlock;
5538 
5539 	get_page(vmf->page);
5540 	vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5541 	vmf->page->index   = vmf->pgoff;
5542 
5543 	ret = 0;
5544 unlock:
5545 	rcu_read_unlock();
5546 
5547 	return ret;
5548 }
5549 
5550 static void ring_buffer_attach(struct perf_event *event,
5551 			       struct ring_buffer *rb)
5552 {
5553 	struct ring_buffer *old_rb = NULL;
5554 	unsigned long flags;
5555 
5556 	if (event->rb) {
5557 		/*
5558 		 * Should be impossible, we set this when removing
5559 		 * event->rb_entry and wait/clear when adding event->rb_entry.
5560 		 */
5561 		WARN_ON_ONCE(event->rcu_pending);
5562 
5563 		old_rb = event->rb;
5564 		spin_lock_irqsave(&old_rb->event_lock, flags);
5565 		list_del_rcu(&event->rb_entry);
5566 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
5567 
5568 		event->rcu_batches = get_state_synchronize_rcu();
5569 		event->rcu_pending = 1;
5570 	}
5571 
5572 	if (rb) {
5573 		if (event->rcu_pending) {
5574 			cond_synchronize_rcu(event->rcu_batches);
5575 			event->rcu_pending = 0;
5576 		}
5577 
5578 		spin_lock_irqsave(&rb->event_lock, flags);
5579 		list_add_rcu(&event->rb_entry, &rb->event_list);
5580 		spin_unlock_irqrestore(&rb->event_lock, flags);
5581 	}
5582 
5583 	/*
5584 	 * Avoid racing with perf_mmap_close(AUX): stop the event
5585 	 * before swizzling the event::rb pointer; if it's getting
5586 	 * unmapped, its aux_mmap_count will be 0 and it won't
5587 	 * restart. See the comment in __perf_pmu_output_stop().
5588 	 *
5589 	 * Data will inevitably be lost when set_output is done in
5590 	 * mid-air, but then again, whoever does it like this is
5591 	 * not in for the data anyway.
5592 	 */
5593 	if (has_aux(event))
5594 		perf_event_stop(event, 0);
5595 
5596 	rcu_assign_pointer(event->rb, rb);
5597 
5598 	if (old_rb) {
5599 		ring_buffer_put(old_rb);
5600 		/*
5601 		 * Since we detached before setting the new rb, so that we
5602 		 * could attach the new rb, we could have missed a wakeup.
5603 		 * Provide it now.
5604 		 */
5605 		wake_up_all(&event->waitq);
5606 	}
5607 }
5608 
5609 static void ring_buffer_wakeup(struct perf_event *event)
5610 {
5611 	struct ring_buffer *rb;
5612 
5613 	rcu_read_lock();
5614 	rb = rcu_dereference(event->rb);
5615 	if (rb) {
5616 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5617 			wake_up_all(&event->waitq);
5618 	}
5619 	rcu_read_unlock();
5620 }
5621 
5622 struct ring_buffer *ring_buffer_get(struct perf_event *event)
5623 {
5624 	struct ring_buffer *rb;
5625 
5626 	rcu_read_lock();
5627 	rb = rcu_dereference(event->rb);
5628 	if (rb) {
5629 		if (!refcount_inc_not_zero(&rb->refcount))
5630 			rb = NULL;
5631 	}
5632 	rcu_read_unlock();
5633 
5634 	return rb;
5635 }
5636 
5637 void ring_buffer_put(struct ring_buffer *rb)
5638 {
5639 	if (!refcount_dec_and_test(&rb->refcount))
5640 		return;
5641 
5642 	WARN_ON_ONCE(!list_empty(&rb->event_list));
5643 
5644 	call_rcu(&rb->rcu_head, rb_free_rcu);
5645 }
5646 
5647 static void perf_mmap_open(struct vm_area_struct *vma)
5648 {
5649 	struct perf_event *event = vma->vm_file->private_data;
5650 
5651 	atomic_inc(&event->mmap_count);
5652 	atomic_inc(&event->rb->mmap_count);
5653 
5654 	if (vma->vm_pgoff)
5655 		atomic_inc(&event->rb->aux_mmap_count);
5656 
5657 	if (event->pmu->event_mapped)
5658 		event->pmu->event_mapped(event, vma->vm_mm);
5659 }
5660 
5661 static void perf_pmu_output_stop(struct perf_event *event);
5662 
5663 /*
5664  * A buffer can be mmap()ed multiple times; either directly through the same
5665  * event, or through other events by use of perf_event_set_output().
5666  *
5667  * In order to undo the VM accounting done by perf_mmap() we need to destroy
5668  * the buffer here, where we still have a VM context. This means we need
5669  * to detach all events redirecting to us.
5670  */
5671 static void perf_mmap_close(struct vm_area_struct *vma)
5672 {
5673 	struct perf_event *event = vma->vm_file->private_data;
5674 
5675 	struct ring_buffer *rb = ring_buffer_get(event);
5676 	struct user_struct *mmap_user = rb->mmap_user;
5677 	int mmap_locked = rb->mmap_locked;
5678 	unsigned long size = perf_data_size(rb);
5679 
5680 	if (event->pmu->event_unmapped)
5681 		event->pmu->event_unmapped(event, vma->vm_mm);
5682 
5683 	/*
5684 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
5685 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
5686 	 * serialize with perf_mmap here.
5687 	 */
5688 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5689 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5690 		/*
5691 		 * Stop all AUX events that are writing to this buffer,
5692 		 * so that we can free its AUX pages and corresponding PMU
5693 		 * data. Note that after rb::aux_mmap_count dropped to zero,
5694 		 * they won't start any more (see perf_aux_output_begin()).
5695 		 */
5696 		perf_pmu_output_stop(event);
5697 
5698 		/* now it's safe to free the pages */
5699 		atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
5700 		atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
5701 
5702 		/* this has to be the last one */
5703 		rb_free_aux(rb);
5704 		WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
5705 
5706 		mutex_unlock(&event->mmap_mutex);
5707 	}
5708 
5709 	atomic_dec(&rb->mmap_count);
5710 
5711 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5712 		goto out_put;
5713 
5714 	ring_buffer_attach(event, NULL);
5715 	mutex_unlock(&event->mmap_mutex);
5716 
5717 	/* If there's still other mmap()s of this buffer, we're done. */
5718 	if (atomic_read(&rb->mmap_count))
5719 		goto out_put;
5720 
5721 	/*
5722 	 * No other mmap()s, detach from all other events that might redirect
5723 	 * into the now unreachable buffer. Somewhat complicated by the
5724 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5725 	 */
5726 again:
5727 	rcu_read_lock();
5728 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5729 		if (!atomic_long_inc_not_zero(&event->refcount)) {
5730 			/*
5731 			 * This event is en-route to free_event() which will
5732 			 * detach it and remove it from the list.
5733 			 */
5734 			continue;
5735 		}
5736 		rcu_read_unlock();
5737 
5738 		mutex_lock(&event->mmap_mutex);
5739 		/*
5740 		 * Check we didn't race with perf_event_set_output() which can
5741 		 * swizzle the rb from under us while we were waiting to
5742 		 * acquire mmap_mutex.
5743 		 *
5744 		 * If we find a different rb; ignore this event, a next
5745 		 * iteration will no longer find it on the list. We have to
5746 		 * still restart the iteration to make sure we're not now
5747 		 * iterating the wrong list.
5748 		 */
5749 		if (event->rb == rb)
5750 			ring_buffer_attach(event, NULL);
5751 
5752 		mutex_unlock(&event->mmap_mutex);
5753 		put_event(event);
5754 
5755 		/*
5756 		 * Restart the iteration; either we're on the wrong list or
5757 		 * destroyed its integrity by doing a deletion.
5758 		 */
5759 		goto again;
5760 	}
5761 	rcu_read_unlock();
5762 
5763 	/*
5764 	 * It could be there's still a few 0-ref events on the list; they'll
5765 	 * get cleaned up by free_event() -- they'll also still have their
5766 	 * ref on the rb and will free it whenever they are done with it.
5767 	 *
5768 	 * Aside from that, this buffer is 'fully' detached and unmapped,
5769 	 * undo the VM accounting.
5770 	 */
5771 
5772 	atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
5773 			&mmap_user->locked_vm);
5774 	atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
5775 	free_uid(mmap_user);
5776 
5777 out_put:
5778 	ring_buffer_put(rb); /* could be last */
5779 }
5780 
5781 static const struct vm_operations_struct perf_mmap_vmops = {
5782 	.open		= perf_mmap_open,
5783 	.close		= perf_mmap_close, /* non mergeable */
5784 	.fault		= perf_mmap_fault,
5785 	.page_mkwrite	= perf_mmap_fault,
5786 };
5787 
5788 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5789 {
5790 	struct perf_event *event = file->private_data;
5791 	unsigned long user_locked, user_lock_limit;
5792 	struct user_struct *user = current_user();
5793 	unsigned long locked, lock_limit;
5794 	struct ring_buffer *rb = NULL;
5795 	unsigned long vma_size;
5796 	unsigned long nr_pages;
5797 	long user_extra = 0, extra = 0;
5798 	int ret = 0, flags = 0;
5799 
5800 	/*
5801 	 * Don't allow mmap() of inherited per-task counters. This would
5802 	 * create a performance issue due to all children writing to the
5803 	 * same rb.
5804 	 */
5805 	if (event->cpu == -1 && event->attr.inherit)
5806 		return -EINVAL;
5807 
5808 	if (!(vma->vm_flags & VM_SHARED))
5809 		return -EINVAL;
5810 
5811 	ret = security_perf_event_read(event);
5812 	if (ret)
5813 		return ret;
5814 
5815 	vma_size = vma->vm_end - vma->vm_start;
5816 
5817 	if (vma->vm_pgoff == 0) {
5818 		nr_pages = (vma_size / PAGE_SIZE) - 1;
5819 	} else {
5820 		/*
5821 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5822 		 * mapped, all subsequent mappings should have the same size
5823 		 * and offset. Must be above the normal perf buffer.
5824 		 */
5825 		u64 aux_offset, aux_size;
5826 
5827 		if (!event->rb)
5828 			return -EINVAL;
5829 
5830 		nr_pages = vma_size / PAGE_SIZE;
5831 
5832 		mutex_lock(&event->mmap_mutex);
5833 		ret = -EINVAL;
5834 
5835 		rb = event->rb;
5836 		if (!rb)
5837 			goto aux_unlock;
5838 
5839 		aux_offset = READ_ONCE(rb->user_page->aux_offset);
5840 		aux_size = READ_ONCE(rb->user_page->aux_size);
5841 
5842 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5843 			goto aux_unlock;
5844 
5845 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5846 			goto aux_unlock;
5847 
5848 		/* already mapped with a different offset */
5849 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5850 			goto aux_unlock;
5851 
5852 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5853 			goto aux_unlock;
5854 
5855 		/* already mapped with a different size */
5856 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5857 			goto aux_unlock;
5858 
5859 		if (!is_power_of_2(nr_pages))
5860 			goto aux_unlock;
5861 
5862 		if (!atomic_inc_not_zero(&rb->mmap_count))
5863 			goto aux_unlock;
5864 
5865 		if (rb_has_aux(rb)) {
5866 			atomic_inc(&rb->aux_mmap_count);
5867 			ret = 0;
5868 			goto unlock;
5869 		}
5870 
5871 		atomic_set(&rb->aux_mmap_count, 1);
5872 		user_extra = nr_pages;
5873 
5874 		goto accounting;
5875 	}
5876 
5877 	/*
5878 	 * If we have rb pages ensure they're a power-of-two number, so we
5879 	 * can do bitmasks instead of modulo.
5880 	 */
5881 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
5882 		return -EINVAL;
5883 
5884 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
5885 		return -EINVAL;
5886 
5887 	WARN_ON_ONCE(event->ctx->parent_ctx);
5888 again:
5889 	mutex_lock(&event->mmap_mutex);
5890 	if (event->rb) {
5891 		if (event->rb->nr_pages != nr_pages) {
5892 			ret = -EINVAL;
5893 			goto unlock;
5894 		}
5895 
5896 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5897 			/*
5898 			 * Raced against perf_mmap_close() through
5899 			 * perf_event_set_output(). Try again, hope for better
5900 			 * luck.
5901 			 */
5902 			mutex_unlock(&event->mmap_mutex);
5903 			goto again;
5904 		}
5905 
5906 		goto unlock;
5907 	}
5908 
5909 	user_extra = nr_pages + 1;
5910 
5911 accounting:
5912 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5913 
5914 	/*
5915 	 * Increase the limit linearly with more CPUs:
5916 	 */
5917 	user_lock_limit *= num_online_cpus();
5918 
5919 	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5920 
5921 	if (user_locked > user_lock_limit) {
5922 		/*
5923 		 * charge locked_vm until it hits user_lock_limit;
5924 		 * charge the rest from pinned_vm
5925 		 */
5926 		extra = user_locked - user_lock_limit;
5927 		user_extra -= extra;
5928 	}
5929 
5930 	lock_limit = rlimit(RLIMIT_MEMLOCK);
5931 	lock_limit >>= PAGE_SHIFT;
5932 	locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
5933 
5934 	if ((locked > lock_limit) && perf_is_paranoid() &&
5935 		!capable(CAP_IPC_LOCK)) {
5936 		ret = -EPERM;
5937 		goto unlock;
5938 	}
5939 
5940 	WARN_ON(!rb && event->rb);
5941 
5942 	if (vma->vm_flags & VM_WRITE)
5943 		flags |= RING_BUFFER_WRITABLE;
5944 
5945 	if (!rb) {
5946 		rb = rb_alloc(nr_pages,
5947 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
5948 			      event->cpu, flags);
5949 
5950 		if (!rb) {
5951 			ret = -ENOMEM;
5952 			goto unlock;
5953 		}
5954 
5955 		atomic_set(&rb->mmap_count, 1);
5956 		rb->mmap_user = get_current_user();
5957 		rb->mmap_locked = extra;
5958 
5959 		ring_buffer_attach(event, rb);
5960 
5961 		perf_event_init_userpage(event);
5962 		perf_event_update_userpage(event);
5963 	} else {
5964 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5965 				   event->attr.aux_watermark, flags);
5966 		if (!ret)
5967 			rb->aux_mmap_locked = extra;
5968 	}
5969 
5970 unlock:
5971 	if (!ret) {
5972 		atomic_long_add(user_extra, &user->locked_vm);
5973 		atomic64_add(extra, &vma->vm_mm->pinned_vm);
5974 
5975 		atomic_inc(&event->mmap_count);
5976 	} else if (rb) {
5977 		atomic_dec(&rb->mmap_count);
5978 	}
5979 aux_unlock:
5980 	mutex_unlock(&event->mmap_mutex);
5981 
5982 	/*
5983 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
5984 	 * vma.
5985 	 */
5986 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5987 	vma->vm_ops = &perf_mmap_vmops;
5988 
5989 	if (event->pmu->event_mapped)
5990 		event->pmu->event_mapped(event, vma->vm_mm);
5991 
5992 	return ret;
5993 }
5994 
5995 static int perf_fasync(int fd, struct file *filp, int on)
5996 {
5997 	struct inode *inode = file_inode(filp);
5998 	struct perf_event *event = filp->private_data;
5999 	int retval;
6000 
6001 	inode_lock(inode);
6002 	retval = fasync_helper(fd, filp, on, &event->fasync);
6003 	inode_unlock(inode);
6004 
6005 	if (retval < 0)
6006 		return retval;
6007 
6008 	return 0;
6009 }
6010 
6011 static const struct file_operations perf_fops = {
6012 	.llseek			= no_llseek,
6013 	.release		= perf_release,
6014 	.read			= perf_read,
6015 	.poll			= perf_poll,
6016 	.unlocked_ioctl		= perf_ioctl,
6017 	.compat_ioctl		= perf_compat_ioctl,
6018 	.mmap			= perf_mmap,
6019 	.fasync			= perf_fasync,
6020 };
6021 
6022 /*
6023  * Perf event wakeup
6024  *
6025  * If there's data, ensure we set the poll() state and publish everything
6026  * to user-space before waking everybody up.
6027  */
6028 
6029 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
6030 {
6031 	/* only the parent has fasync state */
6032 	if (event->parent)
6033 		event = event->parent;
6034 	return &event->fasync;
6035 }
6036 
6037 void perf_event_wakeup(struct perf_event *event)
6038 {
6039 	ring_buffer_wakeup(event);
6040 
6041 	if (event->pending_kill) {
6042 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6043 		event->pending_kill = 0;
6044 	}
6045 }
6046 
6047 static void perf_pending_event_disable(struct perf_event *event)
6048 {
6049 	int cpu = READ_ONCE(event->pending_disable);
6050 
6051 	if (cpu < 0)
6052 		return;
6053 
6054 	if (cpu == smp_processor_id()) {
6055 		WRITE_ONCE(event->pending_disable, -1);
6056 		perf_event_disable_local(event);
6057 		return;
6058 	}
6059 
6060 	/*
6061 	 *  CPU-A			CPU-B
6062 	 *
6063 	 *  perf_event_disable_inatomic()
6064 	 *    @pending_disable = CPU-A;
6065 	 *    irq_work_queue();
6066 	 *
6067 	 *  sched-out
6068 	 *    @pending_disable = -1;
6069 	 *
6070 	 *				sched-in
6071 	 *				perf_event_disable_inatomic()
6072 	 *				  @pending_disable = CPU-B;
6073 	 *				  irq_work_queue(); // FAILS
6074 	 *
6075 	 *  irq_work_run()
6076 	 *    perf_pending_event()
6077 	 *
6078 	 * But the event runs on CPU-B and wants disabling there.
6079 	 */
6080 	irq_work_queue_on(&event->pending, cpu);
6081 }
6082 
6083 static void perf_pending_event(struct irq_work *entry)
6084 {
6085 	struct perf_event *event = container_of(entry, struct perf_event, pending);
6086 	int rctx;
6087 
6088 	rctx = perf_swevent_get_recursion_context();
6089 	/*
6090 	 * If we 'fail' here, that's OK, it means recursion is already disabled
6091 	 * and we won't recurse 'further'.
6092 	 */
6093 
6094 	perf_pending_event_disable(event);
6095 
6096 	if (event->pending_wakeup) {
6097 		event->pending_wakeup = 0;
6098 		perf_event_wakeup(event);
6099 	}
6100 
6101 	if (rctx >= 0)
6102 		perf_swevent_put_recursion_context(rctx);
6103 }
6104 
6105 /*
6106  * We assume there is only KVM supporting the callbacks.
6107  * Later on, we might change it to a list if there is
6108  * another virtualization implementation supporting the callbacks.
6109  */
6110 struct perf_guest_info_callbacks *perf_guest_cbs;
6111 
6112 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6113 {
6114 	perf_guest_cbs = cbs;
6115 	return 0;
6116 }
6117 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6118 
6119 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6120 {
6121 	perf_guest_cbs = NULL;
6122 	return 0;
6123 }
6124 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6125 
6126 static void
6127 perf_output_sample_regs(struct perf_output_handle *handle,
6128 			struct pt_regs *regs, u64 mask)
6129 {
6130 	int bit;
6131 	DECLARE_BITMAP(_mask, 64);
6132 
6133 	bitmap_from_u64(_mask, mask);
6134 	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6135 		u64 val;
6136 
6137 		val = perf_reg_value(regs, bit);
6138 		perf_output_put(handle, val);
6139 	}
6140 }
6141 
6142 static void perf_sample_regs_user(struct perf_regs *regs_user,
6143 				  struct pt_regs *regs,
6144 				  struct pt_regs *regs_user_copy)
6145 {
6146 	if (user_mode(regs)) {
6147 		regs_user->abi = perf_reg_abi(current);
6148 		regs_user->regs = regs;
6149 	} else if (!(current->flags & PF_KTHREAD)) {
6150 		perf_get_regs_user(regs_user, regs, regs_user_copy);
6151 	} else {
6152 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6153 		regs_user->regs = NULL;
6154 	}
6155 }
6156 
6157 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6158 				  struct pt_regs *regs)
6159 {
6160 	regs_intr->regs = regs;
6161 	regs_intr->abi  = perf_reg_abi(current);
6162 }
6163 
6164 
6165 /*
6166  * Get remaining task size from user stack pointer.
6167  *
6168  * It'd be better to take stack vma map and limit this more
6169  * precisely, but there's no way to get it safely under interrupt,
6170  * so using TASK_SIZE as limit.
6171  */
6172 static u64 perf_ustack_task_size(struct pt_regs *regs)
6173 {
6174 	unsigned long addr = perf_user_stack_pointer(regs);
6175 
6176 	if (!addr || addr >= TASK_SIZE)
6177 		return 0;
6178 
6179 	return TASK_SIZE - addr;
6180 }
6181 
6182 static u16
6183 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6184 			struct pt_regs *regs)
6185 {
6186 	u64 task_size;
6187 
6188 	/* No regs, no stack pointer, no dump. */
6189 	if (!regs)
6190 		return 0;
6191 
6192 	/*
6193 	 * Check if we fit in with the requested stack size into the:
6194 	 * - TASK_SIZE
6195 	 *   If we don't, we limit the size to the TASK_SIZE.
6196 	 *
6197 	 * - remaining sample size
6198 	 *   If we don't, we customize the stack size to
6199 	 *   fit in to the remaining sample size.
6200 	 */
6201 
6202 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6203 	stack_size = min(stack_size, (u16) task_size);
6204 
6205 	/* Current header size plus static size and dynamic size. */
6206 	header_size += 2 * sizeof(u64);
6207 
6208 	/* Do we fit in with the current stack dump size? */
6209 	if ((u16) (header_size + stack_size) < header_size) {
6210 		/*
6211 		 * If we overflow the maximum size for the sample,
6212 		 * we customize the stack dump size to fit in.
6213 		 */
6214 		stack_size = USHRT_MAX - header_size - sizeof(u64);
6215 		stack_size = round_up(stack_size, sizeof(u64));
6216 	}
6217 
6218 	return stack_size;
6219 }
6220 
6221 static void
6222 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6223 			  struct pt_regs *regs)
6224 {
6225 	/* Case of a kernel thread, nothing to dump */
6226 	if (!regs) {
6227 		u64 size = 0;
6228 		perf_output_put(handle, size);
6229 	} else {
6230 		unsigned long sp;
6231 		unsigned int rem;
6232 		u64 dyn_size;
6233 		mm_segment_t fs;
6234 
6235 		/*
6236 		 * We dump:
6237 		 * static size
6238 		 *   - the size requested by user or the best one we can fit
6239 		 *     in to the sample max size
6240 		 * data
6241 		 *   - user stack dump data
6242 		 * dynamic size
6243 		 *   - the actual dumped size
6244 		 */
6245 
6246 		/* Static size. */
6247 		perf_output_put(handle, dump_size);
6248 
6249 		/* Data. */
6250 		sp = perf_user_stack_pointer(regs);
6251 		fs = get_fs();
6252 		set_fs(USER_DS);
6253 		rem = __output_copy_user(handle, (void *) sp, dump_size);
6254 		set_fs(fs);
6255 		dyn_size = dump_size - rem;
6256 
6257 		perf_output_skip(handle, rem);
6258 
6259 		/* Dynamic size. */
6260 		perf_output_put(handle, dyn_size);
6261 	}
6262 }
6263 
6264 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
6265 					  struct perf_sample_data *data,
6266 					  size_t size)
6267 {
6268 	struct perf_event *sampler = event->aux_event;
6269 	struct ring_buffer *rb;
6270 
6271 	data->aux_size = 0;
6272 
6273 	if (!sampler)
6274 		goto out;
6275 
6276 	if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
6277 		goto out;
6278 
6279 	if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
6280 		goto out;
6281 
6282 	rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6283 	if (!rb)
6284 		goto out;
6285 
6286 	/*
6287 	 * If this is an NMI hit inside sampling code, don't take
6288 	 * the sample. See also perf_aux_sample_output().
6289 	 */
6290 	if (READ_ONCE(rb->aux_in_sampling)) {
6291 		data->aux_size = 0;
6292 	} else {
6293 		size = min_t(size_t, size, perf_aux_size(rb));
6294 		data->aux_size = ALIGN(size, sizeof(u64));
6295 	}
6296 	ring_buffer_put(rb);
6297 
6298 out:
6299 	return data->aux_size;
6300 }
6301 
6302 long perf_pmu_snapshot_aux(struct ring_buffer *rb,
6303 			   struct perf_event *event,
6304 			   struct perf_output_handle *handle,
6305 			   unsigned long size)
6306 {
6307 	unsigned long flags;
6308 	long ret;
6309 
6310 	/*
6311 	 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
6312 	 * paths. If we start calling them in NMI context, they may race with
6313 	 * the IRQ ones, that is, for example, re-starting an event that's just
6314 	 * been stopped, which is why we're using a separate callback that
6315 	 * doesn't change the event state.
6316 	 *
6317 	 * IRQs need to be disabled to prevent IPIs from racing with us.
6318 	 */
6319 	local_irq_save(flags);
6320 	/*
6321 	 * Guard against NMI hits inside the critical section;
6322 	 * see also perf_prepare_sample_aux().
6323 	 */
6324 	WRITE_ONCE(rb->aux_in_sampling, 1);
6325 	barrier();
6326 
6327 	ret = event->pmu->snapshot_aux(event, handle, size);
6328 
6329 	barrier();
6330 	WRITE_ONCE(rb->aux_in_sampling, 0);
6331 	local_irq_restore(flags);
6332 
6333 	return ret;
6334 }
6335 
6336 static void perf_aux_sample_output(struct perf_event *event,
6337 				   struct perf_output_handle *handle,
6338 				   struct perf_sample_data *data)
6339 {
6340 	struct perf_event *sampler = event->aux_event;
6341 	unsigned long pad;
6342 	struct ring_buffer *rb;
6343 	long size;
6344 
6345 	if (WARN_ON_ONCE(!sampler || !data->aux_size))
6346 		return;
6347 
6348 	rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6349 	if (!rb)
6350 		return;
6351 
6352 	size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
6353 
6354 	/*
6355 	 * An error here means that perf_output_copy() failed (returned a
6356 	 * non-zero surplus that it didn't copy), which in its current
6357 	 * enlightened implementation is not possible. If that changes, we'd
6358 	 * like to know.
6359 	 */
6360 	if (WARN_ON_ONCE(size < 0))
6361 		goto out_put;
6362 
6363 	/*
6364 	 * The pad comes from ALIGN()ing data->aux_size up to u64 in
6365 	 * perf_prepare_sample_aux(), so should not be more than that.
6366 	 */
6367 	pad = data->aux_size - size;
6368 	if (WARN_ON_ONCE(pad >= sizeof(u64)))
6369 		pad = 8;
6370 
6371 	if (pad) {
6372 		u64 zero = 0;
6373 		perf_output_copy(handle, &zero, pad);
6374 	}
6375 
6376 out_put:
6377 	ring_buffer_put(rb);
6378 }
6379 
6380 static void __perf_event_header__init_id(struct perf_event_header *header,
6381 					 struct perf_sample_data *data,
6382 					 struct perf_event *event)
6383 {
6384 	u64 sample_type = event->attr.sample_type;
6385 
6386 	data->type = sample_type;
6387 	header->size += event->id_header_size;
6388 
6389 	if (sample_type & PERF_SAMPLE_TID) {
6390 		/* namespace issues */
6391 		data->tid_entry.pid = perf_event_pid(event, current);
6392 		data->tid_entry.tid = perf_event_tid(event, current);
6393 	}
6394 
6395 	if (sample_type & PERF_SAMPLE_TIME)
6396 		data->time = perf_event_clock(event);
6397 
6398 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6399 		data->id = primary_event_id(event);
6400 
6401 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6402 		data->stream_id = event->id;
6403 
6404 	if (sample_type & PERF_SAMPLE_CPU) {
6405 		data->cpu_entry.cpu	 = raw_smp_processor_id();
6406 		data->cpu_entry.reserved = 0;
6407 	}
6408 }
6409 
6410 void perf_event_header__init_id(struct perf_event_header *header,
6411 				struct perf_sample_data *data,
6412 				struct perf_event *event)
6413 {
6414 	if (event->attr.sample_id_all)
6415 		__perf_event_header__init_id(header, data, event);
6416 }
6417 
6418 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6419 					   struct perf_sample_data *data)
6420 {
6421 	u64 sample_type = data->type;
6422 
6423 	if (sample_type & PERF_SAMPLE_TID)
6424 		perf_output_put(handle, data->tid_entry);
6425 
6426 	if (sample_type & PERF_SAMPLE_TIME)
6427 		perf_output_put(handle, data->time);
6428 
6429 	if (sample_type & PERF_SAMPLE_ID)
6430 		perf_output_put(handle, data->id);
6431 
6432 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6433 		perf_output_put(handle, data->stream_id);
6434 
6435 	if (sample_type & PERF_SAMPLE_CPU)
6436 		perf_output_put(handle, data->cpu_entry);
6437 
6438 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
6439 		perf_output_put(handle, data->id);
6440 }
6441 
6442 void perf_event__output_id_sample(struct perf_event *event,
6443 				  struct perf_output_handle *handle,
6444 				  struct perf_sample_data *sample)
6445 {
6446 	if (event->attr.sample_id_all)
6447 		__perf_event__output_id_sample(handle, sample);
6448 }
6449 
6450 static void perf_output_read_one(struct perf_output_handle *handle,
6451 				 struct perf_event *event,
6452 				 u64 enabled, u64 running)
6453 {
6454 	u64 read_format = event->attr.read_format;
6455 	u64 values[4];
6456 	int n = 0;
6457 
6458 	values[n++] = perf_event_count(event);
6459 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6460 		values[n++] = enabled +
6461 			atomic64_read(&event->child_total_time_enabled);
6462 	}
6463 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6464 		values[n++] = running +
6465 			atomic64_read(&event->child_total_time_running);
6466 	}
6467 	if (read_format & PERF_FORMAT_ID)
6468 		values[n++] = primary_event_id(event);
6469 
6470 	__output_copy(handle, values, n * sizeof(u64));
6471 }
6472 
6473 static void perf_output_read_group(struct perf_output_handle *handle,
6474 			    struct perf_event *event,
6475 			    u64 enabled, u64 running)
6476 {
6477 	struct perf_event *leader = event->group_leader, *sub;
6478 	u64 read_format = event->attr.read_format;
6479 	u64 values[5];
6480 	int n = 0;
6481 
6482 	values[n++] = 1 + leader->nr_siblings;
6483 
6484 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6485 		values[n++] = enabled;
6486 
6487 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6488 		values[n++] = running;
6489 
6490 	if ((leader != event) &&
6491 	    (leader->state == PERF_EVENT_STATE_ACTIVE))
6492 		leader->pmu->read(leader);
6493 
6494 	values[n++] = perf_event_count(leader);
6495 	if (read_format & PERF_FORMAT_ID)
6496 		values[n++] = primary_event_id(leader);
6497 
6498 	__output_copy(handle, values, n * sizeof(u64));
6499 
6500 	for_each_sibling_event(sub, leader) {
6501 		n = 0;
6502 
6503 		if ((sub != event) &&
6504 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
6505 			sub->pmu->read(sub);
6506 
6507 		values[n++] = perf_event_count(sub);
6508 		if (read_format & PERF_FORMAT_ID)
6509 			values[n++] = primary_event_id(sub);
6510 
6511 		__output_copy(handle, values, n * sizeof(u64));
6512 	}
6513 }
6514 
6515 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6516 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
6517 
6518 /*
6519  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6520  *
6521  * The problem is that its both hard and excessively expensive to iterate the
6522  * child list, not to mention that its impossible to IPI the children running
6523  * on another CPU, from interrupt/NMI context.
6524  */
6525 static void perf_output_read(struct perf_output_handle *handle,
6526 			     struct perf_event *event)
6527 {
6528 	u64 enabled = 0, running = 0, now;
6529 	u64 read_format = event->attr.read_format;
6530 
6531 	/*
6532 	 * compute total_time_enabled, total_time_running
6533 	 * based on snapshot values taken when the event
6534 	 * was last scheduled in.
6535 	 *
6536 	 * we cannot simply called update_context_time()
6537 	 * because of locking issue as we are called in
6538 	 * NMI context
6539 	 */
6540 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
6541 		calc_timer_values(event, &now, &enabled, &running);
6542 
6543 	if (event->attr.read_format & PERF_FORMAT_GROUP)
6544 		perf_output_read_group(handle, event, enabled, running);
6545 	else
6546 		perf_output_read_one(handle, event, enabled, running);
6547 }
6548 
6549 void perf_output_sample(struct perf_output_handle *handle,
6550 			struct perf_event_header *header,
6551 			struct perf_sample_data *data,
6552 			struct perf_event *event)
6553 {
6554 	u64 sample_type = data->type;
6555 
6556 	perf_output_put(handle, *header);
6557 
6558 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
6559 		perf_output_put(handle, data->id);
6560 
6561 	if (sample_type & PERF_SAMPLE_IP)
6562 		perf_output_put(handle, data->ip);
6563 
6564 	if (sample_type & PERF_SAMPLE_TID)
6565 		perf_output_put(handle, data->tid_entry);
6566 
6567 	if (sample_type & PERF_SAMPLE_TIME)
6568 		perf_output_put(handle, data->time);
6569 
6570 	if (sample_type & PERF_SAMPLE_ADDR)
6571 		perf_output_put(handle, data->addr);
6572 
6573 	if (sample_type & PERF_SAMPLE_ID)
6574 		perf_output_put(handle, data->id);
6575 
6576 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6577 		perf_output_put(handle, data->stream_id);
6578 
6579 	if (sample_type & PERF_SAMPLE_CPU)
6580 		perf_output_put(handle, data->cpu_entry);
6581 
6582 	if (sample_type & PERF_SAMPLE_PERIOD)
6583 		perf_output_put(handle, data->period);
6584 
6585 	if (sample_type & PERF_SAMPLE_READ)
6586 		perf_output_read(handle, event);
6587 
6588 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6589 		int size = 1;
6590 
6591 		size += data->callchain->nr;
6592 		size *= sizeof(u64);
6593 		__output_copy(handle, data->callchain, size);
6594 	}
6595 
6596 	if (sample_type & PERF_SAMPLE_RAW) {
6597 		struct perf_raw_record *raw = data->raw;
6598 
6599 		if (raw) {
6600 			struct perf_raw_frag *frag = &raw->frag;
6601 
6602 			perf_output_put(handle, raw->size);
6603 			do {
6604 				if (frag->copy) {
6605 					__output_custom(handle, frag->copy,
6606 							frag->data, frag->size);
6607 				} else {
6608 					__output_copy(handle, frag->data,
6609 						      frag->size);
6610 				}
6611 				if (perf_raw_frag_last(frag))
6612 					break;
6613 				frag = frag->next;
6614 			} while (1);
6615 			if (frag->pad)
6616 				__output_skip(handle, NULL, frag->pad);
6617 		} else {
6618 			struct {
6619 				u32	size;
6620 				u32	data;
6621 			} raw = {
6622 				.size = sizeof(u32),
6623 				.data = 0,
6624 			};
6625 			perf_output_put(handle, raw);
6626 		}
6627 	}
6628 
6629 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6630 		if (data->br_stack) {
6631 			size_t size;
6632 
6633 			size = data->br_stack->nr
6634 			     * sizeof(struct perf_branch_entry);
6635 
6636 			perf_output_put(handle, data->br_stack->nr);
6637 			perf_output_copy(handle, data->br_stack->entries, size);
6638 		} else {
6639 			/*
6640 			 * we always store at least the value of nr
6641 			 */
6642 			u64 nr = 0;
6643 			perf_output_put(handle, nr);
6644 		}
6645 	}
6646 
6647 	if (sample_type & PERF_SAMPLE_REGS_USER) {
6648 		u64 abi = data->regs_user.abi;
6649 
6650 		/*
6651 		 * If there are no regs to dump, notice it through
6652 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6653 		 */
6654 		perf_output_put(handle, abi);
6655 
6656 		if (abi) {
6657 			u64 mask = event->attr.sample_regs_user;
6658 			perf_output_sample_regs(handle,
6659 						data->regs_user.regs,
6660 						mask);
6661 		}
6662 	}
6663 
6664 	if (sample_type & PERF_SAMPLE_STACK_USER) {
6665 		perf_output_sample_ustack(handle,
6666 					  data->stack_user_size,
6667 					  data->regs_user.regs);
6668 	}
6669 
6670 	if (sample_type & PERF_SAMPLE_WEIGHT)
6671 		perf_output_put(handle, data->weight);
6672 
6673 	if (sample_type & PERF_SAMPLE_DATA_SRC)
6674 		perf_output_put(handle, data->data_src.val);
6675 
6676 	if (sample_type & PERF_SAMPLE_TRANSACTION)
6677 		perf_output_put(handle, data->txn);
6678 
6679 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
6680 		u64 abi = data->regs_intr.abi;
6681 		/*
6682 		 * If there are no regs to dump, notice it through
6683 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6684 		 */
6685 		perf_output_put(handle, abi);
6686 
6687 		if (abi) {
6688 			u64 mask = event->attr.sample_regs_intr;
6689 
6690 			perf_output_sample_regs(handle,
6691 						data->regs_intr.regs,
6692 						mask);
6693 		}
6694 	}
6695 
6696 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6697 		perf_output_put(handle, data->phys_addr);
6698 
6699 	if (sample_type & PERF_SAMPLE_AUX) {
6700 		perf_output_put(handle, data->aux_size);
6701 
6702 		if (data->aux_size)
6703 			perf_aux_sample_output(event, handle, data);
6704 	}
6705 
6706 	if (!event->attr.watermark) {
6707 		int wakeup_events = event->attr.wakeup_events;
6708 
6709 		if (wakeup_events) {
6710 			struct ring_buffer *rb = handle->rb;
6711 			int events = local_inc_return(&rb->events);
6712 
6713 			if (events >= wakeup_events) {
6714 				local_sub(wakeup_events, &rb->events);
6715 				local_inc(&rb->wakeup);
6716 			}
6717 		}
6718 	}
6719 }
6720 
6721 static u64 perf_virt_to_phys(u64 virt)
6722 {
6723 	u64 phys_addr = 0;
6724 	struct page *p = NULL;
6725 
6726 	if (!virt)
6727 		return 0;
6728 
6729 	if (virt >= TASK_SIZE) {
6730 		/* If it's vmalloc()d memory, leave phys_addr as 0 */
6731 		if (virt_addr_valid((void *)(uintptr_t)virt) &&
6732 		    !(virt >= VMALLOC_START && virt < VMALLOC_END))
6733 			phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6734 	} else {
6735 		/*
6736 		 * Walking the pages tables for user address.
6737 		 * Interrupts are disabled, so it prevents any tear down
6738 		 * of the page tables.
6739 		 * Try IRQ-safe __get_user_pages_fast first.
6740 		 * If failed, leave phys_addr as 0.
6741 		 */
6742 		if ((current->mm != NULL) &&
6743 		    (__get_user_pages_fast(virt, 1, 0, &p) == 1))
6744 			phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6745 
6746 		if (p)
6747 			put_page(p);
6748 	}
6749 
6750 	return phys_addr;
6751 }
6752 
6753 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
6754 
6755 struct perf_callchain_entry *
6756 perf_callchain(struct perf_event *event, struct pt_regs *regs)
6757 {
6758 	bool kernel = !event->attr.exclude_callchain_kernel;
6759 	bool user   = !event->attr.exclude_callchain_user;
6760 	/* Disallow cross-task user callchains. */
6761 	bool crosstask = event->ctx->task && event->ctx->task != current;
6762 	const u32 max_stack = event->attr.sample_max_stack;
6763 	struct perf_callchain_entry *callchain;
6764 
6765 	if (!kernel && !user)
6766 		return &__empty_callchain;
6767 
6768 	callchain = get_perf_callchain(regs, 0, kernel, user,
6769 				       max_stack, crosstask, true);
6770 	return callchain ?: &__empty_callchain;
6771 }
6772 
6773 void perf_prepare_sample(struct perf_event_header *header,
6774 			 struct perf_sample_data *data,
6775 			 struct perf_event *event,
6776 			 struct pt_regs *regs)
6777 {
6778 	u64 sample_type = event->attr.sample_type;
6779 
6780 	header->type = PERF_RECORD_SAMPLE;
6781 	header->size = sizeof(*header) + event->header_size;
6782 
6783 	header->misc = 0;
6784 	header->misc |= perf_misc_flags(regs);
6785 
6786 	__perf_event_header__init_id(header, data, event);
6787 
6788 	if (sample_type & PERF_SAMPLE_IP)
6789 		data->ip = perf_instruction_pointer(regs);
6790 
6791 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6792 		int size = 1;
6793 
6794 		if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
6795 			data->callchain = perf_callchain(event, regs);
6796 
6797 		size += data->callchain->nr;
6798 
6799 		header->size += size * sizeof(u64);
6800 	}
6801 
6802 	if (sample_type & PERF_SAMPLE_RAW) {
6803 		struct perf_raw_record *raw = data->raw;
6804 		int size;
6805 
6806 		if (raw) {
6807 			struct perf_raw_frag *frag = &raw->frag;
6808 			u32 sum = 0;
6809 
6810 			do {
6811 				sum += frag->size;
6812 				if (perf_raw_frag_last(frag))
6813 					break;
6814 				frag = frag->next;
6815 			} while (1);
6816 
6817 			size = round_up(sum + sizeof(u32), sizeof(u64));
6818 			raw->size = size - sizeof(u32);
6819 			frag->pad = raw->size - sum;
6820 		} else {
6821 			size = sizeof(u64);
6822 		}
6823 
6824 		header->size += size;
6825 	}
6826 
6827 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6828 		int size = sizeof(u64); /* nr */
6829 		if (data->br_stack) {
6830 			size += data->br_stack->nr
6831 			      * sizeof(struct perf_branch_entry);
6832 		}
6833 		header->size += size;
6834 	}
6835 
6836 	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6837 		perf_sample_regs_user(&data->regs_user, regs,
6838 				      &data->regs_user_copy);
6839 
6840 	if (sample_type & PERF_SAMPLE_REGS_USER) {
6841 		/* regs dump ABI info */
6842 		int size = sizeof(u64);
6843 
6844 		if (data->regs_user.regs) {
6845 			u64 mask = event->attr.sample_regs_user;
6846 			size += hweight64(mask) * sizeof(u64);
6847 		}
6848 
6849 		header->size += size;
6850 	}
6851 
6852 	if (sample_type & PERF_SAMPLE_STACK_USER) {
6853 		/*
6854 		 * Either we need PERF_SAMPLE_STACK_USER bit to be always
6855 		 * processed as the last one or have additional check added
6856 		 * in case new sample type is added, because we could eat
6857 		 * up the rest of the sample size.
6858 		 */
6859 		u16 stack_size = event->attr.sample_stack_user;
6860 		u16 size = sizeof(u64);
6861 
6862 		stack_size = perf_sample_ustack_size(stack_size, header->size,
6863 						     data->regs_user.regs);
6864 
6865 		/*
6866 		 * If there is something to dump, add space for the dump
6867 		 * itself and for the field that tells the dynamic size,
6868 		 * which is how many have been actually dumped.
6869 		 */
6870 		if (stack_size)
6871 			size += sizeof(u64) + stack_size;
6872 
6873 		data->stack_user_size = stack_size;
6874 		header->size += size;
6875 	}
6876 
6877 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
6878 		/* regs dump ABI info */
6879 		int size = sizeof(u64);
6880 
6881 		perf_sample_regs_intr(&data->regs_intr, regs);
6882 
6883 		if (data->regs_intr.regs) {
6884 			u64 mask = event->attr.sample_regs_intr;
6885 
6886 			size += hweight64(mask) * sizeof(u64);
6887 		}
6888 
6889 		header->size += size;
6890 	}
6891 
6892 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6893 		data->phys_addr = perf_virt_to_phys(data->addr);
6894 
6895 	if (sample_type & PERF_SAMPLE_AUX) {
6896 		u64 size;
6897 
6898 		header->size += sizeof(u64); /* size */
6899 
6900 		/*
6901 		 * Given the 16bit nature of header::size, an AUX sample can
6902 		 * easily overflow it, what with all the preceding sample bits.
6903 		 * Make sure this doesn't happen by using up to U16_MAX bytes
6904 		 * per sample in total (rounded down to 8 byte boundary).
6905 		 */
6906 		size = min_t(size_t, U16_MAX - header->size,
6907 			     event->attr.aux_sample_size);
6908 		size = rounddown(size, 8);
6909 		size = perf_prepare_sample_aux(event, data, size);
6910 
6911 		WARN_ON_ONCE(size + header->size > U16_MAX);
6912 		header->size += size;
6913 	}
6914 	/*
6915 	 * If you're adding more sample types here, you likely need to do
6916 	 * something about the overflowing header::size, like repurpose the
6917 	 * lowest 3 bits of size, which should be always zero at the moment.
6918 	 * This raises a more important question, do we really need 512k sized
6919 	 * samples and why, so good argumentation is in order for whatever you
6920 	 * do here next.
6921 	 */
6922 	WARN_ON_ONCE(header->size & 7);
6923 }
6924 
6925 static __always_inline int
6926 __perf_event_output(struct perf_event *event,
6927 		    struct perf_sample_data *data,
6928 		    struct pt_regs *regs,
6929 		    int (*output_begin)(struct perf_output_handle *,
6930 					struct perf_event *,
6931 					unsigned int))
6932 {
6933 	struct perf_output_handle handle;
6934 	struct perf_event_header header;
6935 	int err;
6936 
6937 	/* protect the callchain buffers */
6938 	rcu_read_lock();
6939 
6940 	perf_prepare_sample(&header, data, event, regs);
6941 
6942 	err = output_begin(&handle, event, header.size);
6943 	if (err)
6944 		goto exit;
6945 
6946 	perf_output_sample(&handle, &header, data, event);
6947 
6948 	perf_output_end(&handle);
6949 
6950 exit:
6951 	rcu_read_unlock();
6952 	return err;
6953 }
6954 
6955 void
6956 perf_event_output_forward(struct perf_event *event,
6957 			 struct perf_sample_data *data,
6958 			 struct pt_regs *regs)
6959 {
6960 	__perf_event_output(event, data, regs, perf_output_begin_forward);
6961 }
6962 
6963 void
6964 perf_event_output_backward(struct perf_event *event,
6965 			   struct perf_sample_data *data,
6966 			   struct pt_regs *regs)
6967 {
6968 	__perf_event_output(event, data, regs, perf_output_begin_backward);
6969 }
6970 
6971 int
6972 perf_event_output(struct perf_event *event,
6973 		  struct perf_sample_data *data,
6974 		  struct pt_regs *regs)
6975 {
6976 	return __perf_event_output(event, data, regs, perf_output_begin);
6977 }
6978 
6979 /*
6980  * read event_id
6981  */
6982 
6983 struct perf_read_event {
6984 	struct perf_event_header	header;
6985 
6986 	u32				pid;
6987 	u32				tid;
6988 };
6989 
6990 static void
6991 perf_event_read_event(struct perf_event *event,
6992 			struct task_struct *task)
6993 {
6994 	struct perf_output_handle handle;
6995 	struct perf_sample_data sample;
6996 	struct perf_read_event read_event = {
6997 		.header = {
6998 			.type = PERF_RECORD_READ,
6999 			.misc = 0,
7000 			.size = sizeof(read_event) + event->read_size,
7001 		},
7002 		.pid = perf_event_pid(event, task),
7003 		.tid = perf_event_tid(event, task),
7004 	};
7005 	int ret;
7006 
7007 	perf_event_header__init_id(&read_event.header, &sample, event);
7008 	ret = perf_output_begin(&handle, event, read_event.header.size);
7009 	if (ret)
7010 		return;
7011 
7012 	perf_output_put(&handle, read_event);
7013 	perf_output_read(&handle, event);
7014 	perf_event__output_id_sample(event, &handle, &sample);
7015 
7016 	perf_output_end(&handle);
7017 }
7018 
7019 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
7020 
7021 static void
7022 perf_iterate_ctx(struct perf_event_context *ctx,
7023 		   perf_iterate_f output,
7024 		   void *data, bool all)
7025 {
7026 	struct perf_event *event;
7027 
7028 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7029 		if (!all) {
7030 			if (event->state < PERF_EVENT_STATE_INACTIVE)
7031 				continue;
7032 			if (!event_filter_match(event))
7033 				continue;
7034 		}
7035 
7036 		output(event, data);
7037 	}
7038 }
7039 
7040 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
7041 {
7042 	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
7043 	struct perf_event *event;
7044 
7045 	list_for_each_entry_rcu(event, &pel->list, sb_list) {
7046 		/*
7047 		 * Skip events that are not fully formed yet; ensure that
7048 		 * if we observe event->ctx, both event and ctx will be
7049 		 * complete enough. See perf_install_in_context().
7050 		 */
7051 		if (!smp_load_acquire(&event->ctx))
7052 			continue;
7053 
7054 		if (event->state < PERF_EVENT_STATE_INACTIVE)
7055 			continue;
7056 		if (!event_filter_match(event))
7057 			continue;
7058 		output(event, data);
7059 	}
7060 }
7061 
7062 /*
7063  * Iterate all events that need to receive side-band events.
7064  *
7065  * For new callers; ensure that account_pmu_sb_event() includes
7066  * your event, otherwise it might not get delivered.
7067  */
7068 static void
7069 perf_iterate_sb(perf_iterate_f output, void *data,
7070 	       struct perf_event_context *task_ctx)
7071 {
7072 	struct perf_event_context *ctx;
7073 	int ctxn;
7074 
7075 	rcu_read_lock();
7076 	preempt_disable();
7077 
7078 	/*
7079 	 * If we have task_ctx != NULL we only notify the task context itself.
7080 	 * The task_ctx is set only for EXIT events before releasing task
7081 	 * context.
7082 	 */
7083 	if (task_ctx) {
7084 		perf_iterate_ctx(task_ctx, output, data, false);
7085 		goto done;
7086 	}
7087 
7088 	perf_iterate_sb_cpu(output, data);
7089 
7090 	for_each_task_context_nr(ctxn) {
7091 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7092 		if (ctx)
7093 			perf_iterate_ctx(ctx, output, data, false);
7094 	}
7095 done:
7096 	preempt_enable();
7097 	rcu_read_unlock();
7098 }
7099 
7100 /*
7101  * Clear all file-based filters at exec, they'll have to be
7102  * re-instated when/if these objects are mmapped again.
7103  */
7104 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
7105 {
7106 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7107 	struct perf_addr_filter *filter;
7108 	unsigned int restart = 0, count = 0;
7109 	unsigned long flags;
7110 
7111 	if (!has_addr_filter(event))
7112 		return;
7113 
7114 	raw_spin_lock_irqsave(&ifh->lock, flags);
7115 	list_for_each_entry(filter, &ifh->list, entry) {
7116 		if (filter->path.dentry) {
7117 			event->addr_filter_ranges[count].start = 0;
7118 			event->addr_filter_ranges[count].size = 0;
7119 			restart++;
7120 		}
7121 
7122 		count++;
7123 	}
7124 
7125 	if (restart)
7126 		event->addr_filters_gen++;
7127 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
7128 
7129 	if (restart)
7130 		perf_event_stop(event, 1);
7131 }
7132 
7133 void perf_event_exec(void)
7134 {
7135 	struct perf_event_context *ctx;
7136 	int ctxn;
7137 
7138 	rcu_read_lock();
7139 	for_each_task_context_nr(ctxn) {
7140 		ctx = current->perf_event_ctxp[ctxn];
7141 		if (!ctx)
7142 			continue;
7143 
7144 		perf_event_enable_on_exec(ctxn);
7145 
7146 		perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
7147 				   true);
7148 	}
7149 	rcu_read_unlock();
7150 }
7151 
7152 struct remote_output {
7153 	struct ring_buffer	*rb;
7154 	int			err;
7155 };
7156 
7157 static void __perf_event_output_stop(struct perf_event *event, void *data)
7158 {
7159 	struct perf_event *parent = event->parent;
7160 	struct remote_output *ro = data;
7161 	struct ring_buffer *rb = ro->rb;
7162 	struct stop_event_data sd = {
7163 		.event	= event,
7164 	};
7165 
7166 	if (!has_aux(event))
7167 		return;
7168 
7169 	if (!parent)
7170 		parent = event;
7171 
7172 	/*
7173 	 * In case of inheritance, it will be the parent that links to the
7174 	 * ring-buffer, but it will be the child that's actually using it.
7175 	 *
7176 	 * We are using event::rb to determine if the event should be stopped,
7177 	 * however this may race with ring_buffer_attach() (through set_output),
7178 	 * which will make us skip the event that actually needs to be stopped.
7179 	 * So ring_buffer_attach() has to stop an aux event before re-assigning
7180 	 * its rb pointer.
7181 	 */
7182 	if (rcu_dereference(parent->rb) == rb)
7183 		ro->err = __perf_event_stop(&sd);
7184 }
7185 
7186 static int __perf_pmu_output_stop(void *info)
7187 {
7188 	struct perf_event *event = info;
7189 	struct pmu *pmu = event->ctx->pmu;
7190 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7191 	struct remote_output ro = {
7192 		.rb	= event->rb,
7193 	};
7194 
7195 	rcu_read_lock();
7196 	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
7197 	if (cpuctx->task_ctx)
7198 		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
7199 				   &ro, false);
7200 	rcu_read_unlock();
7201 
7202 	return ro.err;
7203 }
7204 
7205 static void perf_pmu_output_stop(struct perf_event *event)
7206 {
7207 	struct perf_event *iter;
7208 	int err, cpu;
7209 
7210 restart:
7211 	rcu_read_lock();
7212 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
7213 		/*
7214 		 * For per-CPU events, we need to make sure that neither they
7215 		 * nor their children are running; for cpu==-1 events it's
7216 		 * sufficient to stop the event itself if it's active, since
7217 		 * it can't have children.
7218 		 */
7219 		cpu = iter->cpu;
7220 		if (cpu == -1)
7221 			cpu = READ_ONCE(iter->oncpu);
7222 
7223 		if (cpu == -1)
7224 			continue;
7225 
7226 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
7227 		if (err == -EAGAIN) {
7228 			rcu_read_unlock();
7229 			goto restart;
7230 		}
7231 	}
7232 	rcu_read_unlock();
7233 }
7234 
7235 /*
7236  * task tracking -- fork/exit
7237  *
7238  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
7239  */
7240 
7241 struct perf_task_event {
7242 	struct task_struct		*task;
7243 	struct perf_event_context	*task_ctx;
7244 
7245 	struct {
7246 		struct perf_event_header	header;
7247 
7248 		u32				pid;
7249 		u32				ppid;
7250 		u32				tid;
7251 		u32				ptid;
7252 		u64				time;
7253 	} event_id;
7254 };
7255 
7256 static int perf_event_task_match(struct perf_event *event)
7257 {
7258 	return event->attr.comm  || event->attr.mmap ||
7259 	       event->attr.mmap2 || event->attr.mmap_data ||
7260 	       event->attr.task;
7261 }
7262 
7263 static void perf_event_task_output(struct perf_event *event,
7264 				   void *data)
7265 {
7266 	struct perf_task_event *task_event = data;
7267 	struct perf_output_handle handle;
7268 	struct perf_sample_data	sample;
7269 	struct task_struct *task = task_event->task;
7270 	int ret, size = task_event->event_id.header.size;
7271 
7272 	if (!perf_event_task_match(event))
7273 		return;
7274 
7275 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
7276 
7277 	ret = perf_output_begin(&handle, event,
7278 				task_event->event_id.header.size);
7279 	if (ret)
7280 		goto out;
7281 
7282 	task_event->event_id.pid = perf_event_pid(event, task);
7283 	task_event->event_id.ppid = perf_event_pid(event, current);
7284 
7285 	task_event->event_id.tid = perf_event_tid(event, task);
7286 	task_event->event_id.ptid = perf_event_tid(event, current);
7287 
7288 	task_event->event_id.time = perf_event_clock(event);
7289 
7290 	perf_output_put(&handle, task_event->event_id);
7291 
7292 	perf_event__output_id_sample(event, &handle, &sample);
7293 
7294 	perf_output_end(&handle);
7295 out:
7296 	task_event->event_id.header.size = size;
7297 }
7298 
7299 static void perf_event_task(struct task_struct *task,
7300 			      struct perf_event_context *task_ctx,
7301 			      int new)
7302 {
7303 	struct perf_task_event task_event;
7304 
7305 	if (!atomic_read(&nr_comm_events) &&
7306 	    !atomic_read(&nr_mmap_events) &&
7307 	    !atomic_read(&nr_task_events))
7308 		return;
7309 
7310 	task_event = (struct perf_task_event){
7311 		.task	  = task,
7312 		.task_ctx = task_ctx,
7313 		.event_id    = {
7314 			.header = {
7315 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
7316 				.misc = 0,
7317 				.size = sizeof(task_event.event_id),
7318 			},
7319 			/* .pid  */
7320 			/* .ppid */
7321 			/* .tid  */
7322 			/* .ptid */
7323 			/* .time */
7324 		},
7325 	};
7326 
7327 	perf_iterate_sb(perf_event_task_output,
7328 		       &task_event,
7329 		       task_ctx);
7330 }
7331 
7332 void perf_event_fork(struct task_struct *task)
7333 {
7334 	perf_event_task(task, NULL, 1);
7335 	perf_event_namespaces(task);
7336 }
7337 
7338 /*
7339  * comm tracking
7340  */
7341 
7342 struct perf_comm_event {
7343 	struct task_struct	*task;
7344 	char			*comm;
7345 	int			comm_size;
7346 
7347 	struct {
7348 		struct perf_event_header	header;
7349 
7350 		u32				pid;
7351 		u32				tid;
7352 	} event_id;
7353 };
7354 
7355 static int perf_event_comm_match(struct perf_event *event)
7356 {
7357 	return event->attr.comm;
7358 }
7359 
7360 static void perf_event_comm_output(struct perf_event *event,
7361 				   void *data)
7362 {
7363 	struct perf_comm_event *comm_event = data;
7364 	struct perf_output_handle handle;
7365 	struct perf_sample_data sample;
7366 	int size = comm_event->event_id.header.size;
7367 	int ret;
7368 
7369 	if (!perf_event_comm_match(event))
7370 		return;
7371 
7372 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
7373 	ret = perf_output_begin(&handle, event,
7374 				comm_event->event_id.header.size);
7375 
7376 	if (ret)
7377 		goto out;
7378 
7379 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
7380 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
7381 
7382 	perf_output_put(&handle, comm_event->event_id);
7383 	__output_copy(&handle, comm_event->comm,
7384 				   comm_event->comm_size);
7385 
7386 	perf_event__output_id_sample(event, &handle, &sample);
7387 
7388 	perf_output_end(&handle);
7389 out:
7390 	comm_event->event_id.header.size = size;
7391 }
7392 
7393 static void perf_event_comm_event(struct perf_comm_event *comm_event)
7394 {
7395 	char comm[TASK_COMM_LEN];
7396 	unsigned int size;
7397 
7398 	memset(comm, 0, sizeof(comm));
7399 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
7400 	size = ALIGN(strlen(comm)+1, sizeof(u64));
7401 
7402 	comm_event->comm = comm;
7403 	comm_event->comm_size = size;
7404 
7405 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
7406 
7407 	perf_iterate_sb(perf_event_comm_output,
7408 		       comm_event,
7409 		       NULL);
7410 }
7411 
7412 void perf_event_comm(struct task_struct *task, bool exec)
7413 {
7414 	struct perf_comm_event comm_event;
7415 
7416 	if (!atomic_read(&nr_comm_events))
7417 		return;
7418 
7419 	comm_event = (struct perf_comm_event){
7420 		.task	= task,
7421 		/* .comm      */
7422 		/* .comm_size */
7423 		.event_id  = {
7424 			.header = {
7425 				.type = PERF_RECORD_COMM,
7426 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
7427 				/* .size */
7428 			},
7429 			/* .pid */
7430 			/* .tid */
7431 		},
7432 	};
7433 
7434 	perf_event_comm_event(&comm_event);
7435 }
7436 
7437 /*
7438  * namespaces tracking
7439  */
7440 
7441 struct perf_namespaces_event {
7442 	struct task_struct		*task;
7443 
7444 	struct {
7445 		struct perf_event_header	header;
7446 
7447 		u32				pid;
7448 		u32				tid;
7449 		u64				nr_namespaces;
7450 		struct perf_ns_link_info	link_info[NR_NAMESPACES];
7451 	} event_id;
7452 };
7453 
7454 static int perf_event_namespaces_match(struct perf_event *event)
7455 {
7456 	return event->attr.namespaces;
7457 }
7458 
7459 static void perf_event_namespaces_output(struct perf_event *event,
7460 					 void *data)
7461 {
7462 	struct perf_namespaces_event *namespaces_event = data;
7463 	struct perf_output_handle handle;
7464 	struct perf_sample_data sample;
7465 	u16 header_size = namespaces_event->event_id.header.size;
7466 	int ret;
7467 
7468 	if (!perf_event_namespaces_match(event))
7469 		return;
7470 
7471 	perf_event_header__init_id(&namespaces_event->event_id.header,
7472 				   &sample, event);
7473 	ret = perf_output_begin(&handle, event,
7474 				namespaces_event->event_id.header.size);
7475 	if (ret)
7476 		goto out;
7477 
7478 	namespaces_event->event_id.pid = perf_event_pid(event,
7479 							namespaces_event->task);
7480 	namespaces_event->event_id.tid = perf_event_tid(event,
7481 							namespaces_event->task);
7482 
7483 	perf_output_put(&handle, namespaces_event->event_id);
7484 
7485 	perf_event__output_id_sample(event, &handle, &sample);
7486 
7487 	perf_output_end(&handle);
7488 out:
7489 	namespaces_event->event_id.header.size = header_size;
7490 }
7491 
7492 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
7493 				   struct task_struct *task,
7494 				   const struct proc_ns_operations *ns_ops)
7495 {
7496 	struct path ns_path;
7497 	struct inode *ns_inode;
7498 	void *error;
7499 
7500 	error = ns_get_path(&ns_path, task, ns_ops);
7501 	if (!error) {
7502 		ns_inode = ns_path.dentry->d_inode;
7503 		ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
7504 		ns_link_info->ino = ns_inode->i_ino;
7505 		path_put(&ns_path);
7506 	}
7507 }
7508 
7509 void perf_event_namespaces(struct task_struct *task)
7510 {
7511 	struct perf_namespaces_event namespaces_event;
7512 	struct perf_ns_link_info *ns_link_info;
7513 
7514 	if (!atomic_read(&nr_namespaces_events))
7515 		return;
7516 
7517 	namespaces_event = (struct perf_namespaces_event){
7518 		.task	= task,
7519 		.event_id  = {
7520 			.header = {
7521 				.type = PERF_RECORD_NAMESPACES,
7522 				.misc = 0,
7523 				.size = sizeof(namespaces_event.event_id),
7524 			},
7525 			/* .pid */
7526 			/* .tid */
7527 			.nr_namespaces = NR_NAMESPACES,
7528 			/* .link_info[NR_NAMESPACES] */
7529 		},
7530 	};
7531 
7532 	ns_link_info = namespaces_event.event_id.link_info;
7533 
7534 	perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
7535 			       task, &mntns_operations);
7536 
7537 #ifdef CONFIG_USER_NS
7538 	perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
7539 			       task, &userns_operations);
7540 #endif
7541 #ifdef CONFIG_NET_NS
7542 	perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
7543 			       task, &netns_operations);
7544 #endif
7545 #ifdef CONFIG_UTS_NS
7546 	perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
7547 			       task, &utsns_operations);
7548 #endif
7549 #ifdef CONFIG_IPC_NS
7550 	perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
7551 			       task, &ipcns_operations);
7552 #endif
7553 #ifdef CONFIG_PID_NS
7554 	perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
7555 			       task, &pidns_operations);
7556 #endif
7557 #ifdef CONFIG_CGROUPS
7558 	perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
7559 			       task, &cgroupns_operations);
7560 #endif
7561 
7562 	perf_iterate_sb(perf_event_namespaces_output,
7563 			&namespaces_event,
7564 			NULL);
7565 }
7566 
7567 /*
7568  * mmap tracking
7569  */
7570 
7571 struct perf_mmap_event {
7572 	struct vm_area_struct	*vma;
7573 
7574 	const char		*file_name;
7575 	int			file_size;
7576 	int			maj, min;
7577 	u64			ino;
7578 	u64			ino_generation;
7579 	u32			prot, flags;
7580 
7581 	struct {
7582 		struct perf_event_header	header;
7583 
7584 		u32				pid;
7585 		u32				tid;
7586 		u64				start;
7587 		u64				len;
7588 		u64				pgoff;
7589 	} event_id;
7590 };
7591 
7592 static int perf_event_mmap_match(struct perf_event *event,
7593 				 void *data)
7594 {
7595 	struct perf_mmap_event *mmap_event = data;
7596 	struct vm_area_struct *vma = mmap_event->vma;
7597 	int executable = vma->vm_flags & VM_EXEC;
7598 
7599 	return (!executable && event->attr.mmap_data) ||
7600 	       (executable && (event->attr.mmap || event->attr.mmap2));
7601 }
7602 
7603 static void perf_event_mmap_output(struct perf_event *event,
7604 				   void *data)
7605 {
7606 	struct perf_mmap_event *mmap_event = data;
7607 	struct perf_output_handle handle;
7608 	struct perf_sample_data sample;
7609 	int size = mmap_event->event_id.header.size;
7610 	u32 type = mmap_event->event_id.header.type;
7611 	int ret;
7612 
7613 	if (!perf_event_mmap_match(event, data))
7614 		return;
7615 
7616 	if (event->attr.mmap2) {
7617 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
7618 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
7619 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
7620 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
7621 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
7622 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
7623 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
7624 	}
7625 
7626 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
7627 	ret = perf_output_begin(&handle, event,
7628 				mmap_event->event_id.header.size);
7629 	if (ret)
7630 		goto out;
7631 
7632 	mmap_event->event_id.pid = perf_event_pid(event, current);
7633 	mmap_event->event_id.tid = perf_event_tid(event, current);
7634 
7635 	perf_output_put(&handle, mmap_event->event_id);
7636 
7637 	if (event->attr.mmap2) {
7638 		perf_output_put(&handle, mmap_event->maj);
7639 		perf_output_put(&handle, mmap_event->min);
7640 		perf_output_put(&handle, mmap_event->ino);
7641 		perf_output_put(&handle, mmap_event->ino_generation);
7642 		perf_output_put(&handle, mmap_event->prot);
7643 		perf_output_put(&handle, mmap_event->flags);
7644 	}
7645 
7646 	__output_copy(&handle, mmap_event->file_name,
7647 				   mmap_event->file_size);
7648 
7649 	perf_event__output_id_sample(event, &handle, &sample);
7650 
7651 	perf_output_end(&handle);
7652 out:
7653 	mmap_event->event_id.header.size = size;
7654 	mmap_event->event_id.header.type = type;
7655 }
7656 
7657 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
7658 {
7659 	struct vm_area_struct *vma = mmap_event->vma;
7660 	struct file *file = vma->vm_file;
7661 	int maj = 0, min = 0;
7662 	u64 ino = 0, gen = 0;
7663 	u32 prot = 0, flags = 0;
7664 	unsigned int size;
7665 	char tmp[16];
7666 	char *buf = NULL;
7667 	char *name;
7668 
7669 	if (vma->vm_flags & VM_READ)
7670 		prot |= PROT_READ;
7671 	if (vma->vm_flags & VM_WRITE)
7672 		prot |= PROT_WRITE;
7673 	if (vma->vm_flags & VM_EXEC)
7674 		prot |= PROT_EXEC;
7675 
7676 	if (vma->vm_flags & VM_MAYSHARE)
7677 		flags = MAP_SHARED;
7678 	else
7679 		flags = MAP_PRIVATE;
7680 
7681 	if (vma->vm_flags & VM_DENYWRITE)
7682 		flags |= MAP_DENYWRITE;
7683 	if (vma->vm_flags & VM_MAYEXEC)
7684 		flags |= MAP_EXECUTABLE;
7685 	if (vma->vm_flags & VM_LOCKED)
7686 		flags |= MAP_LOCKED;
7687 	if (vma->vm_flags & VM_HUGETLB)
7688 		flags |= MAP_HUGETLB;
7689 
7690 	if (file) {
7691 		struct inode *inode;
7692 		dev_t dev;
7693 
7694 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
7695 		if (!buf) {
7696 			name = "//enomem";
7697 			goto cpy_name;
7698 		}
7699 		/*
7700 		 * d_path() works from the end of the rb backwards, so we
7701 		 * need to add enough zero bytes after the string to handle
7702 		 * the 64bit alignment we do later.
7703 		 */
7704 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
7705 		if (IS_ERR(name)) {
7706 			name = "//toolong";
7707 			goto cpy_name;
7708 		}
7709 		inode = file_inode(vma->vm_file);
7710 		dev = inode->i_sb->s_dev;
7711 		ino = inode->i_ino;
7712 		gen = inode->i_generation;
7713 		maj = MAJOR(dev);
7714 		min = MINOR(dev);
7715 
7716 		goto got_name;
7717 	} else {
7718 		if (vma->vm_ops && vma->vm_ops->name) {
7719 			name = (char *) vma->vm_ops->name(vma);
7720 			if (name)
7721 				goto cpy_name;
7722 		}
7723 
7724 		name = (char *)arch_vma_name(vma);
7725 		if (name)
7726 			goto cpy_name;
7727 
7728 		if (vma->vm_start <= vma->vm_mm->start_brk &&
7729 				vma->vm_end >= vma->vm_mm->brk) {
7730 			name = "[heap]";
7731 			goto cpy_name;
7732 		}
7733 		if (vma->vm_start <= vma->vm_mm->start_stack &&
7734 				vma->vm_end >= vma->vm_mm->start_stack) {
7735 			name = "[stack]";
7736 			goto cpy_name;
7737 		}
7738 
7739 		name = "//anon";
7740 		goto cpy_name;
7741 	}
7742 
7743 cpy_name:
7744 	strlcpy(tmp, name, sizeof(tmp));
7745 	name = tmp;
7746 got_name:
7747 	/*
7748 	 * Since our buffer works in 8 byte units we need to align our string
7749 	 * size to a multiple of 8. However, we must guarantee the tail end is
7750 	 * zero'd out to avoid leaking random bits to userspace.
7751 	 */
7752 	size = strlen(name)+1;
7753 	while (!IS_ALIGNED(size, sizeof(u64)))
7754 		name[size++] = '\0';
7755 
7756 	mmap_event->file_name = name;
7757 	mmap_event->file_size = size;
7758 	mmap_event->maj = maj;
7759 	mmap_event->min = min;
7760 	mmap_event->ino = ino;
7761 	mmap_event->ino_generation = gen;
7762 	mmap_event->prot = prot;
7763 	mmap_event->flags = flags;
7764 
7765 	if (!(vma->vm_flags & VM_EXEC))
7766 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
7767 
7768 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
7769 
7770 	perf_iterate_sb(perf_event_mmap_output,
7771 		       mmap_event,
7772 		       NULL);
7773 
7774 	kfree(buf);
7775 }
7776 
7777 /*
7778  * Check whether inode and address range match filter criteria.
7779  */
7780 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
7781 				     struct file *file, unsigned long offset,
7782 				     unsigned long size)
7783 {
7784 	/* d_inode(NULL) won't be equal to any mapped user-space file */
7785 	if (!filter->path.dentry)
7786 		return false;
7787 
7788 	if (d_inode(filter->path.dentry) != file_inode(file))
7789 		return false;
7790 
7791 	if (filter->offset > offset + size)
7792 		return false;
7793 
7794 	if (filter->offset + filter->size < offset)
7795 		return false;
7796 
7797 	return true;
7798 }
7799 
7800 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
7801 					struct vm_area_struct *vma,
7802 					struct perf_addr_filter_range *fr)
7803 {
7804 	unsigned long vma_size = vma->vm_end - vma->vm_start;
7805 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
7806 	struct file *file = vma->vm_file;
7807 
7808 	if (!perf_addr_filter_match(filter, file, off, vma_size))
7809 		return false;
7810 
7811 	if (filter->offset < off) {
7812 		fr->start = vma->vm_start;
7813 		fr->size = min(vma_size, filter->size - (off - filter->offset));
7814 	} else {
7815 		fr->start = vma->vm_start + filter->offset - off;
7816 		fr->size = min(vma->vm_end - fr->start, filter->size);
7817 	}
7818 
7819 	return true;
7820 }
7821 
7822 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
7823 {
7824 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7825 	struct vm_area_struct *vma = data;
7826 	struct perf_addr_filter *filter;
7827 	unsigned int restart = 0, count = 0;
7828 	unsigned long flags;
7829 
7830 	if (!has_addr_filter(event))
7831 		return;
7832 
7833 	if (!vma->vm_file)
7834 		return;
7835 
7836 	raw_spin_lock_irqsave(&ifh->lock, flags);
7837 	list_for_each_entry(filter, &ifh->list, entry) {
7838 		if (perf_addr_filter_vma_adjust(filter, vma,
7839 						&event->addr_filter_ranges[count]))
7840 			restart++;
7841 
7842 		count++;
7843 	}
7844 
7845 	if (restart)
7846 		event->addr_filters_gen++;
7847 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
7848 
7849 	if (restart)
7850 		perf_event_stop(event, 1);
7851 }
7852 
7853 /*
7854  * Adjust all task's events' filters to the new vma
7855  */
7856 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7857 {
7858 	struct perf_event_context *ctx;
7859 	int ctxn;
7860 
7861 	/*
7862 	 * Data tracing isn't supported yet and as such there is no need
7863 	 * to keep track of anything that isn't related to executable code:
7864 	 */
7865 	if (!(vma->vm_flags & VM_EXEC))
7866 		return;
7867 
7868 	rcu_read_lock();
7869 	for_each_task_context_nr(ctxn) {
7870 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7871 		if (!ctx)
7872 			continue;
7873 
7874 		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7875 	}
7876 	rcu_read_unlock();
7877 }
7878 
7879 void perf_event_mmap(struct vm_area_struct *vma)
7880 {
7881 	struct perf_mmap_event mmap_event;
7882 
7883 	if (!atomic_read(&nr_mmap_events))
7884 		return;
7885 
7886 	mmap_event = (struct perf_mmap_event){
7887 		.vma	= vma,
7888 		/* .file_name */
7889 		/* .file_size */
7890 		.event_id  = {
7891 			.header = {
7892 				.type = PERF_RECORD_MMAP,
7893 				.misc = PERF_RECORD_MISC_USER,
7894 				/* .size */
7895 			},
7896 			/* .pid */
7897 			/* .tid */
7898 			.start  = vma->vm_start,
7899 			.len    = vma->vm_end - vma->vm_start,
7900 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
7901 		},
7902 		/* .maj (attr_mmap2 only) */
7903 		/* .min (attr_mmap2 only) */
7904 		/* .ino (attr_mmap2 only) */
7905 		/* .ino_generation (attr_mmap2 only) */
7906 		/* .prot (attr_mmap2 only) */
7907 		/* .flags (attr_mmap2 only) */
7908 	};
7909 
7910 	perf_addr_filters_adjust(vma);
7911 	perf_event_mmap_event(&mmap_event);
7912 }
7913 
7914 void perf_event_aux_event(struct perf_event *event, unsigned long head,
7915 			  unsigned long size, u64 flags)
7916 {
7917 	struct perf_output_handle handle;
7918 	struct perf_sample_data sample;
7919 	struct perf_aux_event {
7920 		struct perf_event_header	header;
7921 		u64				offset;
7922 		u64				size;
7923 		u64				flags;
7924 	} rec = {
7925 		.header = {
7926 			.type = PERF_RECORD_AUX,
7927 			.misc = 0,
7928 			.size = sizeof(rec),
7929 		},
7930 		.offset		= head,
7931 		.size		= size,
7932 		.flags		= flags,
7933 	};
7934 	int ret;
7935 
7936 	perf_event_header__init_id(&rec.header, &sample, event);
7937 	ret = perf_output_begin(&handle, event, rec.header.size);
7938 
7939 	if (ret)
7940 		return;
7941 
7942 	perf_output_put(&handle, rec);
7943 	perf_event__output_id_sample(event, &handle, &sample);
7944 
7945 	perf_output_end(&handle);
7946 }
7947 
7948 /*
7949  * Lost/dropped samples logging
7950  */
7951 void perf_log_lost_samples(struct perf_event *event, u64 lost)
7952 {
7953 	struct perf_output_handle handle;
7954 	struct perf_sample_data sample;
7955 	int ret;
7956 
7957 	struct {
7958 		struct perf_event_header	header;
7959 		u64				lost;
7960 	} lost_samples_event = {
7961 		.header = {
7962 			.type = PERF_RECORD_LOST_SAMPLES,
7963 			.misc = 0,
7964 			.size = sizeof(lost_samples_event),
7965 		},
7966 		.lost		= lost,
7967 	};
7968 
7969 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7970 
7971 	ret = perf_output_begin(&handle, event,
7972 				lost_samples_event.header.size);
7973 	if (ret)
7974 		return;
7975 
7976 	perf_output_put(&handle, lost_samples_event);
7977 	perf_event__output_id_sample(event, &handle, &sample);
7978 	perf_output_end(&handle);
7979 }
7980 
7981 /*
7982  * context_switch tracking
7983  */
7984 
7985 struct perf_switch_event {
7986 	struct task_struct	*task;
7987 	struct task_struct	*next_prev;
7988 
7989 	struct {
7990 		struct perf_event_header	header;
7991 		u32				next_prev_pid;
7992 		u32				next_prev_tid;
7993 	} event_id;
7994 };
7995 
7996 static int perf_event_switch_match(struct perf_event *event)
7997 {
7998 	return event->attr.context_switch;
7999 }
8000 
8001 static void perf_event_switch_output(struct perf_event *event, void *data)
8002 {
8003 	struct perf_switch_event *se = data;
8004 	struct perf_output_handle handle;
8005 	struct perf_sample_data sample;
8006 	int ret;
8007 
8008 	if (!perf_event_switch_match(event))
8009 		return;
8010 
8011 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
8012 	if (event->ctx->task) {
8013 		se->event_id.header.type = PERF_RECORD_SWITCH;
8014 		se->event_id.header.size = sizeof(se->event_id.header);
8015 	} else {
8016 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
8017 		se->event_id.header.size = sizeof(se->event_id);
8018 		se->event_id.next_prev_pid =
8019 					perf_event_pid(event, se->next_prev);
8020 		se->event_id.next_prev_tid =
8021 					perf_event_tid(event, se->next_prev);
8022 	}
8023 
8024 	perf_event_header__init_id(&se->event_id.header, &sample, event);
8025 
8026 	ret = perf_output_begin(&handle, event, se->event_id.header.size);
8027 	if (ret)
8028 		return;
8029 
8030 	if (event->ctx->task)
8031 		perf_output_put(&handle, se->event_id.header);
8032 	else
8033 		perf_output_put(&handle, se->event_id);
8034 
8035 	perf_event__output_id_sample(event, &handle, &sample);
8036 
8037 	perf_output_end(&handle);
8038 }
8039 
8040 static void perf_event_switch(struct task_struct *task,
8041 			      struct task_struct *next_prev, bool sched_in)
8042 {
8043 	struct perf_switch_event switch_event;
8044 
8045 	/* N.B. caller checks nr_switch_events != 0 */
8046 
8047 	switch_event = (struct perf_switch_event){
8048 		.task		= task,
8049 		.next_prev	= next_prev,
8050 		.event_id	= {
8051 			.header = {
8052 				/* .type */
8053 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
8054 				/* .size */
8055 			},
8056 			/* .next_prev_pid */
8057 			/* .next_prev_tid */
8058 		},
8059 	};
8060 
8061 	if (!sched_in && task->state == TASK_RUNNING)
8062 		switch_event.event_id.header.misc |=
8063 				PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
8064 
8065 	perf_iterate_sb(perf_event_switch_output,
8066 		       &switch_event,
8067 		       NULL);
8068 }
8069 
8070 /*
8071  * IRQ throttle logging
8072  */
8073 
8074 static void perf_log_throttle(struct perf_event *event, int enable)
8075 {
8076 	struct perf_output_handle handle;
8077 	struct perf_sample_data sample;
8078 	int ret;
8079 
8080 	struct {
8081 		struct perf_event_header	header;
8082 		u64				time;
8083 		u64				id;
8084 		u64				stream_id;
8085 	} throttle_event = {
8086 		.header = {
8087 			.type = PERF_RECORD_THROTTLE,
8088 			.misc = 0,
8089 			.size = sizeof(throttle_event),
8090 		},
8091 		.time		= perf_event_clock(event),
8092 		.id		= primary_event_id(event),
8093 		.stream_id	= event->id,
8094 	};
8095 
8096 	if (enable)
8097 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
8098 
8099 	perf_event_header__init_id(&throttle_event.header, &sample, event);
8100 
8101 	ret = perf_output_begin(&handle, event,
8102 				throttle_event.header.size);
8103 	if (ret)
8104 		return;
8105 
8106 	perf_output_put(&handle, throttle_event);
8107 	perf_event__output_id_sample(event, &handle, &sample);
8108 	perf_output_end(&handle);
8109 }
8110 
8111 /*
8112  * ksymbol register/unregister tracking
8113  */
8114 
8115 struct perf_ksymbol_event {
8116 	const char	*name;
8117 	int		name_len;
8118 	struct {
8119 		struct perf_event_header        header;
8120 		u64				addr;
8121 		u32				len;
8122 		u16				ksym_type;
8123 		u16				flags;
8124 	} event_id;
8125 };
8126 
8127 static int perf_event_ksymbol_match(struct perf_event *event)
8128 {
8129 	return event->attr.ksymbol;
8130 }
8131 
8132 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
8133 {
8134 	struct perf_ksymbol_event *ksymbol_event = data;
8135 	struct perf_output_handle handle;
8136 	struct perf_sample_data sample;
8137 	int ret;
8138 
8139 	if (!perf_event_ksymbol_match(event))
8140 		return;
8141 
8142 	perf_event_header__init_id(&ksymbol_event->event_id.header,
8143 				   &sample, event);
8144 	ret = perf_output_begin(&handle, event,
8145 				ksymbol_event->event_id.header.size);
8146 	if (ret)
8147 		return;
8148 
8149 	perf_output_put(&handle, ksymbol_event->event_id);
8150 	__output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
8151 	perf_event__output_id_sample(event, &handle, &sample);
8152 
8153 	perf_output_end(&handle);
8154 }
8155 
8156 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
8157 			const char *sym)
8158 {
8159 	struct perf_ksymbol_event ksymbol_event;
8160 	char name[KSYM_NAME_LEN];
8161 	u16 flags = 0;
8162 	int name_len;
8163 
8164 	if (!atomic_read(&nr_ksymbol_events))
8165 		return;
8166 
8167 	if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
8168 	    ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
8169 		goto err;
8170 
8171 	strlcpy(name, sym, KSYM_NAME_LEN);
8172 	name_len = strlen(name) + 1;
8173 	while (!IS_ALIGNED(name_len, sizeof(u64)))
8174 		name[name_len++] = '\0';
8175 	BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
8176 
8177 	if (unregister)
8178 		flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
8179 
8180 	ksymbol_event = (struct perf_ksymbol_event){
8181 		.name = name,
8182 		.name_len = name_len,
8183 		.event_id = {
8184 			.header = {
8185 				.type = PERF_RECORD_KSYMBOL,
8186 				.size = sizeof(ksymbol_event.event_id) +
8187 					name_len,
8188 			},
8189 			.addr = addr,
8190 			.len = len,
8191 			.ksym_type = ksym_type,
8192 			.flags = flags,
8193 		},
8194 	};
8195 
8196 	perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
8197 	return;
8198 err:
8199 	WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
8200 }
8201 
8202 /*
8203  * bpf program load/unload tracking
8204  */
8205 
8206 struct perf_bpf_event {
8207 	struct bpf_prog	*prog;
8208 	struct {
8209 		struct perf_event_header        header;
8210 		u16				type;
8211 		u16				flags;
8212 		u32				id;
8213 		u8				tag[BPF_TAG_SIZE];
8214 	} event_id;
8215 };
8216 
8217 static int perf_event_bpf_match(struct perf_event *event)
8218 {
8219 	return event->attr.bpf_event;
8220 }
8221 
8222 static void perf_event_bpf_output(struct perf_event *event, void *data)
8223 {
8224 	struct perf_bpf_event *bpf_event = data;
8225 	struct perf_output_handle handle;
8226 	struct perf_sample_data sample;
8227 	int ret;
8228 
8229 	if (!perf_event_bpf_match(event))
8230 		return;
8231 
8232 	perf_event_header__init_id(&bpf_event->event_id.header,
8233 				   &sample, event);
8234 	ret = perf_output_begin(&handle, event,
8235 				bpf_event->event_id.header.size);
8236 	if (ret)
8237 		return;
8238 
8239 	perf_output_put(&handle, bpf_event->event_id);
8240 	perf_event__output_id_sample(event, &handle, &sample);
8241 
8242 	perf_output_end(&handle);
8243 }
8244 
8245 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
8246 					 enum perf_bpf_event_type type)
8247 {
8248 	bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
8249 	char sym[KSYM_NAME_LEN];
8250 	int i;
8251 
8252 	if (prog->aux->func_cnt == 0) {
8253 		bpf_get_prog_name(prog, sym);
8254 		perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
8255 				   (u64)(unsigned long)prog->bpf_func,
8256 				   prog->jited_len, unregister, sym);
8257 	} else {
8258 		for (i = 0; i < prog->aux->func_cnt; i++) {
8259 			struct bpf_prog *subprog = prog->aux->func[i];
8260 
8261 			bpf_get_prog_name(subprog, sym);
8262 			perf_event_ksymbol(
8263 				PERF_RECORD_KSYMBOL_TYPE_BPF,
8264 				(u64)(unsigned long)subprog->bpf_func,
8265 				subprog->jited_len, unregister, sym);
8266 		}
8267 	}
8268 }
8269 
8270 void perf_event_bpf_event(struct bpf_prog *prog,
8271 			  enum perf_bpf_event_type type,
8272 			  u16 flags)
8273 {
8274 	struct perf_bpf_event bpf_event;
8275 
8276 	if (type <= PERF_BPF_EVENT_UNKNOWN ||
8277 	    type >= PERF_BPF_EVENT_MAX)
8278 		return;
8279 
8280 	switch (type) {
8281 	case PERF_BPF_EVENT_PROG_LOAD:
8282 	case PERF_BPF_EVENT_PROG_UNLOAD:
8283 		if (atomic_read(&nr_ksymbol_events))
8284 			perf_event_bpf_emit_ksymbols(prog, type);
8285 		break;
8286 	default:
8287 		break;
8288 	}
8289 
8290 	if (!atomic_read(&nr_bpf_events))
8291 		return;
8292 
8293 	bpf_event = (struct perf_bpf_event){
8294 		.prog = prog,
8295 		.event_id = {
8296 			.header = {
8297 				.type = PERF_RECORD_BPF_EVENT,
8298 				.size = sizeof(bpf_event.event_id),
8299 			},
8300 			.type = type,
8301 			.flags = flags,
8302 			.id = prog->aux->id,
8303 		},
8304 	};
8305 
8306 	BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
8307 
8308 	memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
8309 	perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
8310 }
8311 
8312 void perf_event_itrace_started(struct perf_event *event)
8313 {
8314 	event->attach_state |= PERF_ATTACH_ITRACE;
8315 }
8316 
8317 static void perf_log_itrace_start(struct perf_event *event)
8318 {
8319 	struct perf_output_handle handle;
8320 	struct perf_sample_data sample;
8321 	struct perf_aux_event {
8322 		struct perf_event_header        header;
8323 		u32				pid;
8324 		u32				tid;
8325 	} rec;
8326 	int ret;
8327 
8328 	if (event->parent)
8329 		event = event->parent;
8330 
8331 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
8332 	    event->attach_state & PERF_ATTACH_ITRACE)
8333 		return;
8334 
8335 	rec.header.type	= PERF_RECORD_ITRACE_START;
8336 	rec.header.misc	= 0;
8337 	rec.header.size	= sizeof(rec);
8338 	rec.pid	= perf_event_pid(event, current);
8339 	rec.tid	= perf_event_tid(event, current);
8340 
8341 	perf_event_header__init_id(&rec.header, &sample, event);
8342 	ret = perf_output_begin(&handle, event, rec.header.size);
8343 
8344 	if (ret)
8345 		return;
8346 
8347 	perf_output_put(&handle, rec);
8348 	perf_event__output_id_sample(event, &handle, &sample);
8349 
8350 	perf_output_end(&handle);
8351 }
8352 
8353 static int
8354 __perf_event_account_interrupt(struct perf_event *event, int throttle)
8355 {
8356 	struct hw_perf_event *hwc = &event->hw;
8357 	int ret = 0;
8358 	u64 seq;
8359 
8360 	seq = __this_cpu_read(perf_throttled_seq);
8361 	if (seq != hwc->interrupts_seq) {
8362 		hwc->interrupts_seq = seq;
8363 		hwc->interrupts = 1;
8364 	} else {
8365 		hwc->interrupts++;
8366 		if (unlikely(throttle
8367 			     && hwc->interrupts >= max_samples_per_tick)) {
8368 			__this_cpu_inc(perf_throttled_count);
8369 			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
8370 			hwc->interrupts = MAX_INTERRUPTS;
8371 			perf_log_throttle(event, 0);
8372 			ret = 1;
8373 		}
8374 	}
8375 
8376 	if (event->attr.freq) {
8377 		u64 now = perf_clock();
8378 		s64 delta = now - hwc->freq_time_stamp;
8379 
8380 		hwc->freq_time_stamp = now;
8381 
8382 		if (delta > 0 && delta < 2*TICK_NSEC)
8383 			perf_adjust_period(event, delta, hwc->last_period, true);
8384 	}
8385 
8386 	return ret;
8387 }
8388 
8389 int perf_event_account_interrupt(struct perf_event *event)
8390 {
8391 	return __perf_event_account_interrupt(event, 1);
8392 }
8393 
8394 /*
8395  * Generic event overflow handling, sampling.
8396  */
8397 
8398 static int __perf_event_overflow(struct perf_event *event,
8399 				   int throttle, struct perf_sample_data *data,
8400 				   struct pt_regs *regs)
8401 {
8402 	int events = atomic_read(&event->event_limit);
8403 	int ret = 0;
8404 
8405 	/*
8406 	 * Non-sampling counters might still use the PMI to fold short
8407 	 * hardware counters, ignore those.
8408 	 */
8409 	if (unlikely(!is_sampling_event(event)))
8410 		return 0;
8411 
8412 	ret = __perf_event_account_interrupt(event, throttle);
8413 
8414 	/*
8415 	 * XXX event_limit might not quite work as expected on inherited
8416 	 * events
8417 	 */
8418 
8419 	event->pending_kill = POLL_IN;
8420 	if (events && atomic_dec_and_test(&event->event_limit)) {
8421 		ret = 1;
8422 		event->pending_kill = POLL_HUP;
8423 
8424 		perf_event_disable_inatomic(event);
8425 	}
8426 
8427 	READ_ONCE(event->overflow_handler)(event, data, regs);
8428 
8429 	if (*perf_event_fasync(event) && event->pending_kill) {
8430 		event->pending_wakeup = 1;
8431 		irq_work_queue(&event->pending);
8432 	}
8433 
8434 	return ret;
8435 }
8436 
8437 int perf_event_overflow(struct perf_event *event,
8438 			  struct perf_sample_data *data,
8439 			  struct pt_regs *regs)
8440 {
8441 	return __perf_event_overflow(event, 1, data, regs);
8442 }
8443 
8444 /*
8445  * Generic software event infrastructure
8446  */
8447 
8448 struct swevent_htable {
8449 	struct swevent_hlist		*swevent_hlist;
8450 	struct mutex			hlist_mutex;
8451 	int				hlist_refcount;
8452 
8453 	/* Recursion avoidance in each contexts */
8454 	int				recursion[PERF_NR_CONTEXTS];
8455 };
8456 
8457 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
8458 
8459 /*
8460  * We directly increment event->count and keep a second value in
8461  * event->hw.period_left to count intervals. This period event
8462  * is kept in the range [-sample_period, 0] so that we can use the
8463  * sign as trigger.
8464  */
8465 
8466 u64 perf_swevent_set_period(struct perf_event *event)
8467 {
8468 	struct hw_perf_event *hwc = &event->hw;
8469 	u64 period = hwc->last_period;
8470 	u64 nr, offset;
8471 	s64 old, val;
8472 
8473 	hwc->last_period = hwc->sample_period;
8474 
8475 again:
8476 	old = val = local64_read(&hwc->period_left);
8477 	if (val < 0)
8478 		return 0;
8479 
8480 	nr = div64_u64(period + val, period);
8481 	offset = nr * period;
8482 	val -= offset;
8483 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
8484 		goto again;
8485 
8486 	return nr;
8487 }
8488 
8489 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
8490 				    struct perf_sample_data *data,
8491 				    struct pt_regs *regs)
8492 {
8493 	struct hw_perf_event *hwc = &event->hw;
8494 	int throttle = 0;
8495 
8496 	if (!overflow)
8497 		overflow = perf_swevent_set_period(event);
8498 
8499 	if (hwc->interrupts == MAX_INTERRUPTS)
8500 		return;
8501 
8502 	for (; overflow; overflow--) {
8503 		if (__perf_event_overflow(event, throttle,
8504 					    data, regs)) {
8505 			/*
8506 			 * We inhibit the overflow from happening when
8507 			 * hwc->interrupts == MAX_INTERRUPTS.
8508 			 */
8509 			break;
8510 		}
8511 		throttle = 1;
8512 	}
8513 }
8514 
8515 static void perf_swevent_event(struct perf_event *event, u64 nr,
8516 			       struct perf_sample_data *data,
8517 			       struct pt_regs *regs)
8518 {
8519 	struct hw_perf_event *hwc = &event->hw;
8520 
8521 	local64_add(nr, &event->count);
8522 
8523 	if (!regs)
8524 		return;
8525 
8526 	if (!is_sampling_event(event))
8527 		return;
8528 
8529 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
8530 		data->period = nr;
8531 		return perf_swevent_overflow(event, 1, data, regs);
8532 	} else
8533 		data->period = event->hw.last_period;
8534 
8535 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
8536 		return perf_swevent_overflow(event, 1, data, regs);
8537 
8538 	if (local64_add_negative(nr, &hwc->period_left))
8539 		return;
8540 
8541 	perf_swevent_overflow(event, 0, data, regs);
8542 }
8543 
8544 static int perf_exclude_event(struct perf_event *event,
8545 			      struct pt_regs *regs)
8546 {
8547 	if (event->hw.state & PERF_HES_STOPPED)
8548 		return 1;
8549 
8550 	if (regs) {
8551 		if (event->attr.exclude_user && user_mode(regs))
8552 			return 1;
8553 
8554 		if (event->attr.exclude_kernel && !user_mode(regs))
8555 			return 1;
8556 	}
8557 
8558 	return 0;
8559 }
8560 
8561 static int perf_swevent_match(struct perf_event *event,
8562 				enum perf_type_id type,
8563 				u32 event_id,
8564 				struct perf_sample_data *data,
8565 				struct pt_regs *regs)
8566 {
8567 	if (event->attr.type != type)
8568 		return 0;
8569 
8570 	if (event->attr.config != event_id)
8571 		return 0;
8572 
8573 	if (perf_exclude_event(event, regs))
8574 		return 0;
8575 
8576 	return 1;
8577 }
8578 
8579 static inline u64 swevent_hash(u64 type, u32 event_id)
8580 {
8581 	u64 val = event_id | (type << 32);
8582 
8583 	return hash_64(val, SWEVENT_HLIST_BITS);
8584 }
8585 
8586 static inline struct hlist_head *
8587 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
8588 {
8589 	u64 hash = swevent_hash(type, event_id);
8590 
8591 	return &hlist->heads[hash];
8592 }
8593 
8594 /* For the read side: events when they trigger */
8595 static inline struct hlist_head *
8596 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
8597 {
8598 	struct swevent_hlist *hlist;
8599 
8600 	hlist = rcu_dereference(swhash->swevent_hlist);
8601 	if (!hlist)
8602 		return NULL;
8603 
8604 	return __find_swevent_head(hlist, type, event_id);
8605 }
8606 
8607 /* For the event head insertion and removal in the hlist */
8608 static inline struct hlist_head *
8609 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
8610 {
8611 	struct swevent_hlist *hlist;
8612 	u32 event_id = event->attr.config;
8613 	u64 type = event->attr.type;
8614 
8615 	/*
8616 	 * Event scheduling is always serialized against hlist allocation
8617 	 * and release. Which makes the protected version suitable here.
8618 	 * The context lock guarantees that.
8619 	 */
8620 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
8621 					  lockdep_is_held(&event->ctx->lock));
8622 	if (!hlist)
8623 		return NULL;
8624 
8625 	return __find_swevent_head(hlist, type, event_id);
8626 }
8627 
8628 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
8629 				    u64 nr,
8630 				    struct perf_sample_data *data,
8631 				    struct pt_regs *regs)
8632 {
8633 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8634 	struct perf_event *event;
8635 	struct hlist_head *head;
8636 
8637 	rcu_read_lock();
8638 	head = find_swevent_head_rcu(swhash, type, event_id);
8639 	if (!head)
8640 		goto end;
8641 
8642 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
8643 		if (perf_swevent_match(event, type, event_id, data, regs))
8644 			perf_swevent_event(event, nr, data, regs);
8645 	}
8646 end:
8647 	rcu_read_unlock();
8648 }
8649 
8650 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
8651 
8652 int perf_swevent_get_recursion_context(void)
8653 {
8654 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8655 
8656 	return get_recursion_context(swhash->recursion);
8657 }
8658 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
8659 
8660 void perf_swevent_put_recursion_context(int rctx)
8661 {
8662 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8663 
8664 	put_recursion_context(swhash->recursion, rctx);
8665 }
8666 
8667 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8668 {
8669 	struct perf_sample_data data;
8670 
8671 	if (WARN_ON_ONCE(!regs))
8672 		return;
8673 
8674 	perf_sample_data_init(&data, addr, 0);
8675 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
8676 }
8677 
8678 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8679 {
8680 	int rctx;
8681 
8682 	preempt_disable_notrace();
8683 	rctx = perf_swevent_get_recursion_context();
8684 	if (unlikely(rctx < 0))
8685 		goto fail;
8686 
8687 	___perf_sw_event(event_id, nr, regs, addr);
8688 
8689 	perf_swevent_put_recursion_context(rctx);
8690 fail:
8691 	preempt_enable_notrace();
8692 }
8693 
8694 static void perf_swevent_read(struct perf_event *event)
8695 {
8696 }
8697 
8698 static int perf_swevent_add(struct perf_event *event, int flags)
8699 {
8700 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8701 	struct hw_perf_event *hwc = &event->hw;
8702 	struct hlist_head *head;
8703 
8704 	if (is_sampling_event(event)) {
8705 		hwc->last_period = hwc->sample_period;
8706 		perf_swevent_set_period(event);
8707 	}
8708 
8709 	hwc->state = !(flags & PERF_EF_START);
8710 
8711 	head = find_swevent_head(swhash, event);
8712 	if (WARN_ON_ONCE(!head))
8713 		return -EINVAL;
8714 
8715 	hlist_add_head_rcu(&event->hlist_entry, head);
8716 	perf_event_update_userpage(event);
8717 
8718 	return 0;
8719 }
8720 
8721 static void perf_swevent_del(struct perf_event *event, int flags)
8722 {
8723 	hlist_del_rcu(&event->hlist_entry);
8724 }
8725 
8726 static void perf_swevent_start(struct perf_event *event, int flags)
8727 {
8728 	event->hw.state = 0;
8729 }
8730 
8731 static void perf_swevent_stop(struct perf_event *event, int flags)
8732 {
8733 	event->hw.state = PERF_HES_STOPPED;
8734 }
8735 
8736 /* Deref the hlist from the update side */
8737 static inline struct swevent_hlist *
8738 swevent_hlist_deref(struct swevent_htable *swhash)
8739 {
8740 	return rcu_dereference_protected(swhash->swevent_hlist,
8741 					 lockdep_is_held(&swhash->hlist_mutex));
8742 }
8743 
8744 static void swevent_hlist_release(struct swevent_htable *swhash)
8745 {
8746 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
8747 
8748 	if (!hlist)
8749 		return;
8750 
8751 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
8752 	kfree_rcu(hlist, rcu_head);
8753 }
8754 
8755 static void swevent_hlist_put_cpu(int cpu)
8756 {
8757 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8758 
8759 	mutex_lock(&swhash->hlist_mutex);
8760 
8761 	if (!--swhash->hlist_refcount)
8762 		swevent_hlist_release(swhash);
8763 
8764 	mutex_unlock(&swhash->hlist_mutex);
8765 }
8766 
8767 static void swevent_hlist_put(void)
8768 {
8769 	int cpu;
8770 
8771 	for_each_possible_cpu(cpu)
8772 		swevent_hlist_put_cpu(cpu);
8773 }
8774 
8775 static int swevent_hlist_get_cpu(int cpu)
8776 {
8777 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8778 	int err = 0;
8779 
8780 	mutex_lock(&swhash->hlist_mutex);
8781 	if (!swevent_hlist_deref(swhash) &&
8782 	    cpumask_test_cpu(cpu, perf_online_mask)) {
8783 		struct swevent_hlist *hlist;
8784 
8785 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
8786 		if (!hlist) {
8787 			err = -ENOMEM;
8788 			goto exit;
8789 		}
8790 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
8791 	}
8792 	swhash->hlist_refcount++;
8793 exit:
8794 	mutex_unlock(&swhash->hlist_mutex);
8795 
8796 	return err;
8797 }
8798 
8799 static int swevent_hlist_get(void)
8800 {
8801 	int err, cpu, failed_cpu;
8802 
8803 	mutex_lock(&pmus_lock);
8804 	for_each_possible_cpu(cpu) {
8805 		err = swevent_hlist_get_cpu(cpu);
8806 		if (err) {
8807 			failed_cpu = cpu;
8808 			goto fail;
8809 		}
8810 	}
8811 	mutex_unlock(&pmus_lock);
8812 	return 0;
8813 fail:
8814 	for_each_possible_cpu(cpu) {
8815 		if (cpu == failed_cpu)
8816 			break;
8817 		swevent_hlist_put_cpu(cpu);
8818 	}
8819 	mutex_unlock(&pmus_lock);
8820 	return err;
8821 }
8822 
8823 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
8824 
8825 static void sw_perf_event_destroy(struct perf_event *event)
8826 {
8827 	u64 event_id = event->attr.config;
8828 
8829 	WARN_ON(event->parent);
8830 
8831 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
8832 	swevent_hlist_put();
8833 }
8834 
8835 static int perf_swevent_init(struct perf_event *event)
8836 {
8837 	u64 event_id = event->attr.config;
8838 
8839 	if (event->attr.type != PERF_TYPE_SOFTWARE)
8840 		return -ENOENT;
8841 
8842 	/*
8843 	 * no branch sampling for software events
8844 	 */
8845 	if (has_branch_stack(event))
8846 		return -EOPNOTSUPP;
8847 
8848 	switch (event_id) {
8849 	case PERF_COUNT_SW_CPU_CLOCK:
8850 	case PERF_COUNT_SW_TASK_CLOCK:
8851 		return -ENOENT;
8852 
8853 	default:
8854 		break;
8855 	}
8856 
8857 	if (event_id >= PERF_COUNT_SW_MAX)
8858 		return -ENOENT;
8859 
8860 	if (!event->parent) {
8861 		int err;
8862 
8863 		err = swevent_hlist_get();
8864 		if (err)
8865 			return err;
8866 
8867 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
8868 		event->destroy = sw_perf_event_destroy;
8869 	}
8870 
8871 	return 0;
8872 }
8873 
8874 static struct pmu perf_swevent = {
8875 	.task_ctx_nr	= perf_sw_context,
8876 
8877 	.capabilities	= PERF_PMU_CAP_NO_NMI,
8878 
8879 	.event_init	= perf_swevent_init,
8880 	.add		= perf_swevent_add,
8881 	.del		= perf_swevent_del,
8882 	.start		= perf_swevent_start,
8883 	.stop		= perf_swevent_stop,
8884 	.read		= perf_swevent_read,
8885 };
8886 
8887 #ifdef CONFIG_EVENT_TRACING
8888 
8889 static int perf_tp_filter_match(struct perf_event *event,
8890 				struct perf_sample_data *data)
8891 {
8892 	void *record = data->raw->frag.data;
8893 
8894 	/* only top level events have filters set */
8895 	if (event->parent)
8896 		event = event->parent;
8897 
8898 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
8899 		return 1;
8900 	return 0;
8901 }
8902 
8903 static int perf_tp_event_match(struct perf_event *event,
8904 				struct perf_sample_data *data,
8905 				struct pt_regs *regs)
8906 {
8907 	if (event->hw.state & PERF_HES_STOPPED)
8908 		return 0;
8909 	/*
8910 	 * If exclude_kernel, only trace user-space tracepoints (uprobes)
8911 	 */
8912 	if (event->attr.exclude_kernel && !user_mode(regs))
8913 		return 0;
8914 
8915 	if (!perf_tp_filter_match(event, data))
8916 		return 0;
8917 
8918 	return 1;
8919 }
8920 
8921 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
8922 			       struct trace_event_call *call, u64 count,
8923 			       struct pt_regs *regs, struct hlist_head *head,
8924 			       struct task_struct *task)
8925 {
8926 	if (bpf_prog_array_valid(call)) {
8927 		*(struct pt_regs **)raw_data = regs;
8928 		if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
8929 			perf_swevent_put_recursion_context(rctx);
8930 			return;
8931 		}
8932 	}
8933 	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
8934 		      rctx, task);
8935 }
8936 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
8937 
8938 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
8939 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
8940 		   struct task_struct *task)
8941 {
8942 	struct perf_sample_data data;
8943 	struct perf_event *event;
8944 
8945 	struct perf_raw_record raw = {
8946 		.frag = {
8947 			.size = entry_size,
8948 			.data = record,
8949 		},
8950 	};
8951 
8952 	perf_sample_data_init(&data, 0, 0);
8953 	data.raw = &raw;
8954 
8955 	perf_trace_buf_update(record, event_type);
8956 
8957 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
8958 		if (perf_tp_event_match(event, &data, regs))
8959 			perf_swevent_event(event, count, &data, regs);
8960 	}
8961 
8962 	/*
8963 	 * If we got specified a target task, also iterate its context and
8964 	 * deliver this event there too.
8965 	 */
8966 	if (task && task != current) {
8967 		struct perf_event_context *ctx;
8968 		struct trace_entry *entry = record;
8969 
8970 		rcu_read_lock();
8971 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
8972 		if (!ctx)
8973 			goto unlock;
8974 
8975 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
8976 			if (event->cpu != smp_processor_id())
8977 				continue;
8978 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
8979 				continue;
8980 			if (event->attr.config != entry->type)
8981 				continue;
8982 			if (perf_tp_event_match(event, &data, regs))
8983 				perf_swevent_event(event, count, &data, regs);
8984 		}
8985 unlock:
8986 		rcu_read_unlock();
8987 	}
8988 
8989 	perf_swevent_put_recursion_context(rctx);
8990 }
8991 EXPORT_SYMBOL_GPL(perf_tp_event);
8992 
8993 static void tp_perf_event_destroy(struct perf_event *event)
8994 {
8995 	perf_trace_destroy(event);
8996 }
8997 
8998 static int perf_tp_event_init(struct perf_event *event)
8999 {
9000 	int err;
9001 
9002 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
9003 		return -ENOENT;
9004 
9005 	/*
9006 	 * no branch sampling for tracepoint events
9007 	 */
9008 	if (has_branch_stack(event))
9009 		return -EOPNOTSUPP;
9010 
9011 	err = perf_trace_init(event);
9012 	if (err)
9013 		return err;
9014 
9015 	event->destroy = tp_perf_event_destroy;
9016 
9017 	return 0;
9018 }
9019 
9020 static struct pmu perf_tracepoint = {
9021 	.task_ctx_nr	= perf_sw_context,
9022 
9023 	.event_init	= perf_tp_event_init,
9024 	.add		= perf_trace_add,
9025 	.del		= perf_trace_del,
9026 	.start		= perf_swevent_start,
9027 	.stop		= perf_swevent_stop,
9028 	.read		= perf_swevent_read,
9029 };
9030 
9031 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
9032 /*
9033  * Flags in config, used by dynamic PMU kprobe and uprobe
9034  * The flags should match following PMU_FORMAT_ATTR().
9035  *
9036  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
9037  *                               if not set, create kprobe/uprobe
9038  *
9039  * The following values specify a reference counter (or semaphore in the
9040  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
9041  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
9042  *
9043  * PERF_UPROBE_REF_CTR_OFFSET_BITS	# of bits in config as th offset
9044  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT	# of bits to shift left
9045  */
9046 enum perf_probe_config {
9047 	PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
9048 	PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
9049 	PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
9050 };
9051 
9052 PMU_FORMAT_ATTR(retprobe, "config:0");
9053 #endif
9054 
9055 #ifdef CONFIG_KPROBE_EVENTS
9056 static struct attribute *kprobe_attrs[] = {
9057 	&format_attr_retprobe.attr,
9058 	NULL,
9059 };
9060 
9061 static struct attribute_group kprobe_format_group = {
9062 	.name = "format",
9063 	.attrs = kprobe_attrs,
9064 };
9065 
9066 static const struct attribute_group *kprobe_attr_groups[] = {
9067 	&kprobe_format_group,
9068 	NULL,
9069 };
9070 
9071 static int perf_kprobe_event_init(struct perf_event *event);
9072 static struct pmu perf_kprobe = {
9073 	.task_ctx_nr	= perf_sw_context,
9074 	.event_init	= perf_kprobe_event_init,
9075 	.add		= perf_trace_add,
9076 	.del		= perf_trace_del,
9077 	.start		= perf_swevent_start,
9078 	.stop		= perf_swevent_stop,
9079 	.read		= perf_swevent_read,
9080 	.attr_groups	= kprobe_attr_groups,
9081 };
9082 
9083 static int perf_kprobe_event_init(struct perf_event *event)
9084 {
9085 	int err;
9086 	bool is_retprobe;
9087 
9088 	if (event->attr.type != perf_kprobe.type)
9089 		return -ENOENT;
9090 
9091 	if (!capable(CAP_SYS_ADMIN))
9092 		return -EACCES;
9093 
9094 	/*
9095 	 * no branch sampling for probe events
9096 	 */
9097 	if (has_branch_stack(event))
9098 		return -EOPNOTSUPP;
9099 
9100 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9101 	err = perf_kprobe_init(event, is_retprobe);
9102 	if (err)
9103 		return err;
9104 
9105 	event->destroy = perf_kprobe_destroy;
9106 
9107 	return 0;
9108 }
9109 #endif /* CONFIG_KPROBE_EVENTS */
9110 
9111 #ifdef CONFIG_UPROBE_EVENTS
9112 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
9113 
9114 static struct attribute *uprobe_attrs[] = {
9115 	&format_attr_retprobe.attr,
9116 	&format_attr_ref_ctr_offset.attr,
9117 	NULL,
9118 };
9119 
9120 static struct attribute_group uprobe_format_group = {
9121 	.name = "format",
9122 	.attrs = uprobe_attrs,
9123 };
9124 
9125 static const struct attribute_group *uprobe_attr_groups[] = {
9126 	&uprobe_format_group,
9127 	NULL,
9128 };
9129 
9130 static int perf_uprobe_event_init(struct perf_event *event);
9131 static struct pmu perf_uprobe = {
9132 	.task_ctx_nr	= perf_sw_context,
9133 	.event_init	= perf_uprobe_event_init,
9134 	.add		= perf_trace_add,
9135 	.del		= perf_trace_del,
9136 	.start		= perf_swevent_start,
9137 	.stop		= perf_swevent_stop,
9138 	.read		= perf_swevent_read,
9139 	.attr_groups	= uprobe_attr_groups,
9140 };
9141 
9142 static int perf_uprobe_event_init(struct perf_event *event)
9143 {
9144 	int err;
9145 	unsigned long ref_ctr_offset;
9146 	bool is_retprobe;
9147 
9148 	if (event->attr.type != perf_uprobe.type)
9149 		return -ENOENT;
9150 
9151 	if (!capable(CAP_SYS_ADMIN))
9152 		return -EACCES;
9153 
9154 	/*
9155 	 * no branch sampling for probe events
9156 	 */
9157 	if (has_branch_stack(event))
9158 		return -EOPNOTSUPP;
9159 
9160 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9161 	ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
9162 	err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
9163 	if (err)
9164 		return err;
9165 
9166 	event->destroy = perf_uprobe_destroy;
9167 
9168 	return 0;
9169 }
9170 #endif /* CONFIG_UPROBE_EVENTS */
9171 
9172 static inline void perf_tp_register(void)
9173 {
9174 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
9175 #ifdef CONFIG_KPROBE_EVENTS
9176 	perf_pmu_register(&perf_kprobe, "kprobe", -1);
9177 #endif
9178 #ifdef CONFIG_UPROBE_EVENTS
9179 	perf_pmu_register(&perf_uprobe, "uprobe", -1);
9180 #endif
9181 }
9182 
9183 static void perf_event_free_filter(struct perf_event *event)
9184 {
9185 	ftrace_profile_free_filter(event);
9186 }
9187 
9188 #ifdef CONFIG_BPF_SYSCALL
9189 static void bpf_overflow_handler(struct perf_event *event,
9190 				 struct perf_sample_data *data,
9191 				 struct pt_regs *regs)
9192 {
9193 	struct bpf_perf_event_data_kern ctx = {
9194 		.data = data,
9195 		.event = event,
9196 	};
9197 	int ret = 0;
9198 
9199 	ctx.regs = perf_arch_bpf_user_pt_regs(regs);
9200 	preempt_disable();
9201 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
9202 		goto out;
9203 	rcu_read_lock();
9204 	ret = BPF_PROG_RUN(event->prog, &ctx);
9205 	rcu_read_unlock();
9206 out:
9207 	__this_cpu_dec(bpf_prog_active);
9208 	preempt_enable();
9209 	if (!ret)
9210 		return;
9211 
9212 	event->orig_overflow_handler(event, data, regs);
9213 }
9214 
9215 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9216 {
9217 	struct bpf_prog *prog;
9218 
9219 	if (event->overflow_handler_context)
9220 		/* hw breakpoint or kernel counter */
9221 		return -EINVAL;
9222 
9223 	if (event->prog)
9224 		return -EEXIST;
9225 
9226 	prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
9227 	if (IS_ERR(prog))
9228 		return PTR_ERR(prog);
9229 
9230 	event->prog = prog;
9231 	event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
9232 	WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
9233 	return 0;
9234 }
9235 
9236 static void perf_event_free_bpf_handler(struct perf_event *event)
9237 {
9238 	struct bpf_prog *prog = event->prog;
9239 
9240 	if (!prog)
9241 		return;
9242 
9243 	WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
9244 	event->prog = NULL;
9245 	bpf_prog_put(prog);
9246 }
9247 #else
9248 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9249 {
9250 	return -EOPNOTSUPP;
9251 }
9252 static void perf_event_free_bpf_handler(struct perf_event *event)
9253 {
9254 }
9255 #endif
9256 
9257 /*
9258  * returns true if the event is a tracepoint, or a kprobe/upprobe created
9259  * with perf_event_open()
9260  */
9261 static inline bool perf_event_is_tracing(struct perf_event *event)
9262 {
9263 	if (event->pmu == &perf_tracepoint)
9264 		return true;
9265 #ifdef CONFIG_KPROBE_EVENTS
9266 	if (event->pmu == &perf_kprobe)
9267 		return true;
9268 #endif
9269 #ifdef CONFIG_UPROBE_EVENTS
9270 	if (event->pmu == &perf_uprobe)
9271 		return true;
9272 #endif
9273 	return false;
9274 }
9275 
9276 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
9277 {
9278 	bool is_kprobe, is_tracepoint, is_syscall_tp;
9279 	struct bpf_prog *prog;
9280 	int ret;
9281 
9282 	if (!perf_event_is_tracing(event))
9283 		return perf_event_set_bpf_handler(event, prog_fd);
9284 
9285 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
9286 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
9287 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
9288 	if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
9289 		/* bpf programs can only be attached to u/kprobe or tracepoint */
9290 		return -EINVAL;
9291 
9292 	prog = bpf_prog_get(prog_fd);
9293 	if (IS_ERR(prog))
9294 		return PTR_ERR(prog);
9295 
9296 	if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
9297 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
9298 	    (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
9299 		/* valid fd, but invalid bpf program type */
9300 		bpf_prog_put(prog);
9301 		return -EINVAL;
9302 	}
9303 
9304 	/* Kprobe override only works for kprobes, not uprobes. */
9305 	if (prog->kprobe_override &&
9306 	    !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
9307 		bpf_prog_put(prog);
9308 		return -EINVAL;
9309 	}
9310 
9311 	if (is_tracepoint || is_syscall_tp) {
9312 		int off = trace_event_get_offsets(event->tp_event);
9313 
9314 		if (prog->aux->max_ctx_offset > off) {
9315 			bpf_prog_put(prog);
9316 			return -EACCES;
9317 		}
9318 	}
9319 
9320 	ret = perf_event_attach_bpf_prog(event, prog);
9321 	if (ret)
9322 		bpf_prog_put(prog);
9323 	return ret;
9324 }
9325 
9326 static void perf_event_free_bpf_prog(struct perf_event *event)
9327 {
9328 	if (!perf_event_is_tracing(event)) {
9329 		perf_event_free_bpf_handler(event);
9330 		return;
9331 	}
9332 	perf_event_detach_bpf_prog(event);
9333 }
9334 
9335 #else
9336 
9337 static inline void perf_tp_register(void)
9338 {
9339 }
9340 
9341 static void perf_event_free_filter(struct perf_event *event)
9342 {
9343 }
9344 
9345 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
9346 {
9347 	return -ENOENT;
9348 }
9349 
9350 static void perf_event_free_bpf_prog(struct perf_event *event)
9351 {
9352 }
9353 #endif /* CONFIG_EVENT_TRACING */
9354 
9355 #ifdef CONFIG_HAVE_HW_BREAKPOINT
9356 void perf_bp_event(struct perf_event *bp, void *data)
9357 {
9358 	struct perf_sample_data sample;
9359 	struct pt_regs *regs = data;
9360 
9361 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
9362 
9363 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
9364 		perf_swevent_event(bp, 1, &sample, regs);
9365 }
9366 #endif
9367 
9368 /*
9369  * Allocate a new address filter
9370  */
9371 static struct perf_addr_filter *
9372 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
9373 {
9374 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
9375 	struct perf_addr_filter *filter;
9376 
9377 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
9378 	if (!filter)
9379 		return NULL;
9380 
9381 	INIT_LIST_HEAD(&filter->entry);
9382 	list_add_tail(&filter->entry, filters);
9383 
9384 	return filter;
9385 }
9386 
9387 static void free_filters_list(struct list_head *filters)
9388 {
9389 	struct perf_addr_filter *filter, *iter;
9390 
9391 	list_for_each_entry_safe(filter, iter, filters, entry) {
9392 		path_put(&filter->path);
9393 		list_del(&filter->entry);
9394 		kfree(filter);
9395 	}
9396 }
9397 
9398 /*
9399  * Free existing address filters and optionally install new ones
9400  */
9401 static void perf_addr_filters_splice(struct perf_event *event,
9402 				     struct list_head *head)
9403 {
9404 	unsigned long flags;
9405 	LIST_HEAD(list);
9406 
9407 	if (!has_addr_filter(event))
9408 		return;
9409 
9410 	/* don't bother with children, they don't have their own filters */
9411 	if (event->parent)
9412 		return;
9413 
9414 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
9415 
9416 	list_splice_init(&event->addr_filters.list, &list);
9417 	if (head)
9418 		list_splice(head, &event->addr_filters.list);
9419 
9420 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
9421 
9422 	free_filters_list(&list);
9423 }
9424 
9425 /*
9426  * Scan through mm's vmas and see if one of them matches the
9427  * @filter; if so, adjust filter's address range.
9428  * Called with mm::mmap_sem down for reading.
9429  */
9430 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
9431 				   struct mm_struct *mm,
9432 				   struct perf_addr_filter_range *fr)
9433 {
9434 	struct vm_area_struct *vma;
9435 
9436 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
9437 		if (!vma->vm_file)
9438 			continue;
9439 
9440 		if (perf_addr_filter_vma_adjust(filter, vma, fr))
9441 			return;
9442 	}
9443 }
9444 
9445 /*
9446  * Update event's address range filters based on the
9447  * task's existing mappings, if any.
9448  */
9449 static void perf_event_addr_filters_apply(struct perf_event *event)
9450 {
9451 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
9452 	struct task_struct *task = READ_ONCE(event->ctx->task);
9453 	struct perf_addr_filter *filter;
9454 	struct mm_struct *mm = NULL;
9455 	unsigned int count = 0;
9456 	unsigned long flags;
9457 
9458 	/*
9459 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
9460 	 * will stop on the parent's child_mutex that our caller is also holding
9461 	 */
9462 	if (task == TASK_TOMBSTONE)
9463 		return;
9464 
9465 	if (ifh->nr_file_filters) {
9466 		mm = get_task_mm(event->ctx->task);
9467 		if (!mm)
9468 			goto restart;
9469 
9470 		down_read(&mm->mmap_sem);
9471 	}
9472 
9473 	raw_spin_lock_irqsave(&ifh->lock, flags);
9474 	list_for_each_entry(filter, &ifh->list, entry) {
9475 		if (filter->path.dentry) {
9476 			/*
9477 			 * Adjust base offset if the filter is associated to a
9478 			 * binary that needs to be mapped:
9479 			 */
9480 			event->addr_filter_ranges[count].start = 0;
9481 			event->addr_filter_ranges[count].size = 0;
9482 
9483 			perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
9484 		} else {
9485 			event->addr_filter_ranges[count].start = filter->offset;
9486 			event->addr_filter_ranges[count].size  = filter->size;
9487 		}
9488 
9489 		count++;
9490 	}
9491 
9492 	event->addr_filters_gen++;
9493 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
9494 
9495 	if (ifh->nr_file_filters) {
9496 		up_read(&mm->mmap_sem);
9497 
9498 		mmput(mm);
9499 	}
9500 
9501 restart:
9502 	perf_event_stop(event, 1);
9503 }
9504 
9505 /*
9506  * Address range filtering: limiting the data to certain
9507  * instruction address ranges. Filters are ioctl()ed to us from
9508  * userspace as ascii strings.
9509  *
9510  * Filter string format:
9511  *
9512  * ACTION RANGE_SPEC
9513  * where ACTION is one of the
9514  *  * "filter": limit the trace to this region
9515  *  * "start": start tracing from this address
9516  *  * "stop": stop tracing at this address/region;
9517  * RANGE_SPEC is
9518  *  * for kernel addresses: <start address>[/<size>]
9519  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
9520  *
9521  * if <size> is not specified or is zero, the range is treated as a single
9522  * address; not valid for ACTION=="filter".
9523  */
9524 enum {
9525 	IF_ACT_NONE = -1,
9526 	IF_ACT_FILTER,
9527 	IF_ACT_START,
9528 	IF_ACT_STOP,
9529 	IF_SRC_FILE,
9530 	IF_SRC_KERNEL,
9531 	IF_SRC_FILEADDR,
9532 	IF_SRC_KERNELADDR,
9533 };
9534 
9535 enum {
9536 	IF_STATE_ACTION = 0,
9537 	IF_STATE_SOURCE,
9538 	IF_STATE_END,
9539 };
9540 
9541 static const match_table_t if_tokens = {
9542 	{ IF_ACT_FILTER,	"filter" },
9543 	{ IF_ACT_START,		"start" },
9544 	{ IF_ACT_STOP,		"stop" },
9545 	{ IF_SRC_FILE,		"%u/%u@%s" },
9546 	{ IF_SRC_KERNEL,	"%u/%u" },
9547 	{ IF_SRC_FILEADDR,	"%u@%s" },
9548 	{ IF_SRC_KERNELADDR,	"%u" },
9549 	{ IF_ACT_NONE,		NULL },
9550 };
9551 
9552 /*
9553  * Address filter string parser
9554  */
9555 static int
9556 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
9557 			     struct list_head *filters)
9558 {
9559 	struct perf_addr_filter *filter = NULL;
9560 	char *start, *orig, *filename = NULL;
9561 	substring_t args[MAX_OPT_ARGS];
9562 	int state = IF_STATE_ACTION, token;
9563 	unsigned int kernel = 0;
9564 	int ret = -EINVAL;
9565 
9566 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
9567 	if (!fstr)
9568 		return -ENOMEM;
9569 
9570 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
9571 		static const enum perf_addr_filter_action_t actions[] = {
9572 			[IF_ACT_FILTER]	= PERF_ADDR_FILTER_ACTION_FILTER,
9573 			[IF_ACT_START]	= PERF_ADDR_FILTER_ACTION_START,
9574 			[IF_ACT_STOP]	= PERF_ADDR_FILTER_ACTION_STOP,
9575 		};
9576 		ret = -EINVAL;
9577 
9578 		if (!*start)
9579 			continue;
9580 
9581 		/* filter definition begins */
9582 		if (state == IF_STATE_ACTION) {
9583 			filter = perf_addr_filter_new(event, filters);
9584 			if (!filter)
9585 				goto fail;
9586 		}
9587 
9588 		token = match_token(start, if_tokens, args);
9589 		switch (token) {
9590 		case IF_ACT_FILTER:
9591 		case IF_ACT_START:
9592 		case IF_ACT_STOP:
9593 			if (state != IF_STATE_ACTION)
9594 				goto fail;
9595 
9596 			filter->action = actions[token];
9597 			state = IF_STATE_SOURCE;
9598 			break;
9599 
9600 		case IF_SRC_KERNELADDR:
9601 		case IF_SRC_KERNEL:
9602 			kernel = 1;
9603 			/* fall through */
9604 
9605 		case IF_SRC_FILEADDR:
9606 		case IF_SRC_FILE:
9607 			if (state != IF_STATE_SOURCE)
9608 				goto fail;
9609 
9610 			*args[0].to = 0;
9611 			ret = kstrtoul(args[0].from, 0, &filter->offset);
9612 			if (ret)
9613 				goto fail;
9614 
9615 			if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
9616 				*args[1].to = 0;
9617 				ret = kstrtoul(args[1].from, 0, &filter->size);
9618 				if (ret)
9619 					goto fail;
9620 			}
9621 
9622 			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
9623 				int fpos = token == IF_SRC_FILE ? 2 : 1;
9624 
9625 				filename = match_strdup(&args[fpos]);
9626 				if (!filename) {
9627 					ret = -ENOMEM;
9628 					goto fail;
9629 				}
9630 			}
9631 
9632 			state = IF_STATE_END;
9633 			break;
9634 
9635 		default:
9636 			goto fail;
9637 		}
9638 
9639 		/*
9640 		 * Filter definition is fully parsed, validate and install it.
9641 		 * Make sure that it doesn't contradict itself or the event's
9642 		 * attribute.
9643 		 */
9644 		if (state == IF_STATE_END) {
9645 			ret = -EINVAL;
9646 			if (kernel && event->attr.exclude_kernel)
9647 				goto fail;
9648 
9649 			/*
9650 			 * ACTION "filter" must have a non-zero length region
9651 			 * specified.
9652 			 */
9653 			if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
9654 			    !filter->size)
9655 				goto fail;
9656 
9657 			if (!kernel) {
9658 				if (!filename)
9659 					goto fail;
9660 
9661 				/*
9662 				 * For now, we only support file-based filters
9663 				 * in per-task events; doing so for CPU-wide
9664 				 * events requires additional context switching
9665 				 * trickery, since same object code will be
9666 				 * mapped at different virtual addresses in
9667 				 * different processes.
9668 				 */
9669 				ret = -EOPNOTSUPP;
9670 				if (!event->ctx->task)
9671 					goto fail_free_name;
9672 
9673 				/* look up the path and grab its inode */
9674 				ret = kern_path(filename, LOOKUP_FOLLOW,
9675 						&filter->path);
9676 				if (ret)
9677 					goto fail_free_name;
9678 
9679 				kfree(filename);
9680 				filename = NULL;
9681 
9682 				ret = -EINVAL;
9683 				if (!filter->path.dentry ||
9684 				    !S_ISREG(d_inode(filter->path.dentry)
9685 					     ->i_mode))
9686 					goto fail;
9687 
9688 				event->addr_filters.nr_file_filters++;
9689 			}
9690 
9691 			/* ready to consume more filters */
9692 			state = IF_STATE_ACTION;
9693 			filter = NULL;
9694 		}
9695 	}
9696 
9697 	if (state != IF_STATE_ACTION)
9698 		goto fail;
9699 
9700 	kfree(orig);
9701 
9702 	return 0;
9703 
9704 fail_free_name:
9705 	kfree(filename);
9706 fail:
9707 	free_filters_list(filters);
9708 	kfree(orig);
9709 
9710 	return ret;
9711 }
9712 
9713 static int
9714 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
9715 {
9716 	LIST_HEAD(filters);
9717 	int ret;
9718 
9719 	/*
9720 	 * Since this is called in perf_ioctl() path, we're already holding
9721 	 * ctx::mutex.
9722 	 */
9723 	lockdep_assert_held(&event->ctx->mutex);
9724 
9725 	if (WARN_ON_ONCE(event->parent))
9726 		return -EINVAL;
9727 
9728 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
9729 	if (ret)
9730 		goto fail_clear_files;
9731 
9732 	ret = event->pmu->addr_filters_validate(&filters);
9733 	if (ret)
9734 		goto fail_free_filters;
9735 
9736 	/* remove existing filters, if any */
9737 	perf_addr_filters_splice(event, &filters);
9738 
9739 	/* install new filters */
9740 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
9741 
9742 	return ret;
9743 
9744 fail_free_filters:
9745 	free_filters_list(&filters);
9746 
9747 fail_clear_files:
9748 	event->addr_filters.nr_file_filters = 0;
9749 
9750 	return ret;
9751 }
9752 
9753 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
9754 {
9755 	int ret = -EINVAL;
9756 	char *filter_str;
9757 
9758 	filter_str = strndup_user(arg, PAGE_SIZE);
9759 	if (IS_ERR(filter_str))
9760 		return PTR_ERR(filter_str);
9761 
9762 #ifdef CONFIG_EVENT_TRACING
9763 	if (perf_event_is_tracing(event)) {
9764 		struct perf_event_context *ctx = event->ctx;
9765 
9766 		/*
9767 		 * Beware, here be dragons!!
9768 		 *
9769 		 * the tracepoint muck will deadlock against ctx->mutex, but
9770 		 * the tracepoint stuff does not actually need it. So
9771 		 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
9772 		 * already have a reference on ctx.
9773 		 *
9774 		 * This can result in event getting moved to a different ctx,
9775 		 * but that does not affect the tracepoint state.
9776 		 */
9777 		mutex_unlock(&ctx->mutex);
9778 		ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
9779 		mutex_lock(&ctx->mutex);
9780 	} else
9781 #endif
9782 	if (has_addr_filter(event))
9783 		ret = perf_event_set_addr_filter(event, filter_str);
9784 
9785 	kfree(filter_str);
9786 	return ret;
9787 }
9788 
9789 /*
9790  * hrtimer based swevent callback
9791  */
9792 
9793 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
9794 {
9795 	enum hrtimer_restart ret = HRTIMER_RESTART;
9796 	struct perf_sample_data data;
9797 	struct pt_regs *regs;
9798 	struct perf_event *event;
9799 	u64 period;
9800 
9801 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
9802 
9803 	if (event->state != PERF_EVENT_STATE_ACTIVE)
9804 		return HRTIMER_NORESTART;
9805 
9806 	event->pmu->read(event);
9807 
9808 	perf_sample_data_init(&data, 0, event->hw.last_period);
9809 	regs = get_irq_regs();
9810 
9811 	if (regs && !perf_exclude_event(event, regs)) {
9812 		if (!(event->attr.exclude_idle && is_idle_task(current)))
9813 			if (__perf_event_overflow(event, 1, &data, regs))
9814 				ret = HRTIMER_NORESTART;
9815 	}
9816 
9817 	period = max_t(u64, 10000, event->hw.sample_period);
9818 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
9819 
9820 	return ret;
9821 }
9822 
9823 static void perf_swevent_start_hrtimer(struct perf_event *event)
9824 {
9825 	struct hw_perf_event *hwc = &event->hw;
9826 	s64 period;
9827 
9828 	if (!is_sampling_event(event))
9829 		return;
9830 
9831 	period = local64_read(&hwc->period_left);
9832 	if (period) {
9833 		if (period < 0)
9834 			period = 10000;
9835 
9836 		local64_set(&hwc->period_left, 0);
9837 	} else {
9838 		period = max_t(u64, 10000, hwc->sample_period);
9839 	}
9840 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
9841 		      HRTIMER_MODE_REL_PINNED_HARD);
9842 }
9843 
9844 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
9845 {
9846 	struct hw_perf_event *hwc = &event->hw;
9847 
9848 	if (is_sampling_event(event)) {
9849 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
9850 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
9851 
9852 		hrtimer_cancel(&hwc->hrtimer);
9853 	}
9854 }
9855 
9856 static void perf_swevent_init_hrtimer(struct perf_event *event)
9857 {
9858 	struct hw_perf_event *hwc = &event->hw;
9859 
9860 	if (!is_sampling_event(event))
9861 		return;
9862 
9863 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
9864 	hwc->hrtimer.function = perf_swevent_hrtimer;
9865 
9866 	/*
9867 	 * Since hrtimers have a fixed rate, we can do a static freq->period
9868 	 * mapping and avoid the whole period adjust feedback stuff.
9869 	 */
9870 	if (event->attr.freq) {
9871 		long freq = event->attr.sample_freq;
9872 
9873 		event->attr.sample_period = NSEC_PER_SEC / freq;
9874 		hwc->sample_period = event->attr.sample_period;
9875 		local64_set(&hwc->period_left, hwc->sample_period);
9876 		hwc->last_period = hwc->sample_period;
9877 		event->attr.freq = 0;
9878 	}
9879 }
9880 
9881 /*
9882  * Software event: cpu wall time clock
9883  */
9884 
9885 static void cpu_clock_event_update(struct perf_event *event)
9886 {
9887 	s64 prev;
9888 	u64 now;
9889 
9890 	now = local_clock();
9891 	prev = local64_xchg(&event->hw.prev_count, now);
9892 	local64_add(now - prev, &event->count);
9893 }
9894 
9895 static void cpu_clock_event_start(struct perf_event *event, int flags)
9896 {
9897 	local64_set(&event->hw.prev_count, local_clock());
9898 	perf_swevent_start_hrtimer(event);
9899 }
9900 
9901 static void cpu_clock_event_stop(struct perf_event *event, int flags)
9902 {
9903 	perf_swevent_cancel_hrtimer(event);
9904 	cpu_clock_event_update(event);
9905 }
9906 
9907 static int cpu_clock_event_add(struct perf_event *event, int flags)
9908 {
9909 	if (flags & PERF_EF_START)
9910 		cpu_clock_event_start(event, flags);
9911 	perf_event_update_userpage(event);
9912 
9913 	return 0;
9914 }
9915 
9916 static void cpu_clock_event_del(struct perf_event *event, int flags)
9917 {
9918 	cpu_clock_event_stop(event, flags);
9919 }
9920 
9921 static void cpu_clock_event_read(struct perf_event *event)
9922 {
9923 	cpu_clock_event_update(event);
9924 }
9925 
9926 static int cpu_clock_event_init(struct perf_event *event)
9927 {
9928 	if (event->attr.type != PERF_TYPE_SOFTWARE)
9929 		return -ENOENT;
9930 
9931 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
9932 		return -ENOENT;
9933 
9934 	/*
9935 	 * no branch sampling for software events
9936 	 */
9937 	if (has_branch_stack(event))
9938 		return -EOPNOTSUPP;
9939 
9940 	perf_swevent_init_hrtimer(event);
9941 
9942 	return 0;
9943 }
9944 
9945 static struct pmu perf_cpu_clock = {
9946 	.task_ctx_nr	= perf_sw_context,
9947 
9948 	.capabilities	= PERF_PMU_CAP_NO_NMI,
9949 
9950 	.event_init	= cpu_clock_event_init,
9951 	.add		= cpu_clock_event_add,
9952 	.del		= cpu_clock_event_del,
9953 	.start		= cpu_clock_event_start,
9954 	.stop		= cpu_clock_event_stop,
9955 	.read		= cpu_clock_event_read,
9956 };
9957 
9958 /*
9959  * Software event: task time clock
9960  */
9961 
9962 static void task_clock_event_update(struct perf_event *event, u64 now)
9963 {
9964 	u64 prev;
9965 	s64 delta;
9966 
9967 	prev = local64_xchg(&event->hw.prev_count, now);
9968 	delta = now - prev;
9969 	local64_add(delta, &event->count);
9970 }
9971 
9972 static void task_clock_event_start(struct perf_event *event, int flags)
9973 {
9974 	local64_set(&event->hw.prev_count, event->ctx->time);
9975 	perf_swevent_start_hrtimer(event);
9976 }
9977 
9978 static void task_clock_event_stop(struct perf_event *event, int flags)
9979 {
9980 	perf_swevent_cancel_hrtimer(event);
9981 	task_clock_event_update(event, event->ctx->time);
9982 }
9983 
9984 static int task_clock_event_add(struct perf_event *event, int flags)
9985 {
9986 	if (flags & PERF_EF_START)
9987 		task_clock_event_start(event, flags);
9988 	perf_event_update_userpage(event);
9989 
9990 	return 0;
9991 }
9992 
9993 static void task_clock_event_del(struct perf_event *event, int flags)
9994 {
9995 	task_clock_event_stop(event, PERF_EF_UPDATE);
9996 }
9997 
9998 static void task_clock_event_read(struct perf_event *event)
9999 {
10000 	u64 now = perf_clock();
10001 	u64 delta = now - event->ctx->timestamp;
10002 	u64 time = event->ctx->time + delta;
10003 
10004 	task_clock_event_update(event, time);
10005 }
10006 
10007 static int task_clock_event_init(struct perf_event *event)
10008 {
10009 	if (event->attr.type != PERF_TYPE_SOFTWARE)
10010 		return -ENOENT;
10011 
10012 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
10013 		return -ENOENT;
10014 
10015 	/*
10016 	 * no branch sampling for software events
10017 	 */
10018 	if (has_branch_stack(event))
10019 		return -EOPNOTSUPP;
10020 
10021 	perf_swevent_init_hrtimer(event);
10022 
10023 	return 0;
10024 }
10025 
10026 static struct pmu perf_task_clock = {
10027 	.task_ctx_nr	= perf_sw_context,
10028 
10029 	.capabilities	= PERF_PMU_CAP_NO_NMI,
10030 
10031 	.event_init	= task_clock_event_init,
10032 	.add		= task_clock_event_add,
10033 	.del		= task_clock_event_del,
10034 	.start		= task_clock_event_start,
10035 	.stop		= task_clock_event_stop,
10036 	.read		= task_clock_event_read,
10037 };
10038 
10039 static void perf_pmu_nop_void(struct pmu *pmu)
10040 {
10041 }
10042 
10043 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
10044 {
10045 }
10046 
10047 static int perf_pmu_nop_int(struct pmu *pmu)
10048 {
10049 	return 0;
10050 }
10051 
10052 static int perf_event_nop_int(struct perf_event *event, u64 value)
10053 {
10054 	return 0;
10055 }
10056 
10057 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
10058 
10059 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
10060 {
10061 	__this_cpu_write(nop_txn_flags, flags);
10062 
10063 	if (flags & ~PERF_PMU_TXN_ADD)
10064 		return;
10065 
10066 	perf_pmu_disable(pmu);
10067 }
10068 
10069 static int perf_pmu_commit_txn(struct pmu *pmu)
10070 {
10071 	unsigned int flags = __this_cpu_read(nop_txn_flags);
10072 
10073 	__this_cpu_write(nop_txn_flags, 0);
10074 
10075 	if (flags & ~PERF_PMU_TXN_ADD)
10076 		return 0;
10077 
10078 	perf_pmu_enable(pmu);
10079 	return 0;
10080 }
10081 
10082 static void perf_pmu_cancel_txn(struct pmu *pmu)
10083 {
10084 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
10085 
10086 	__this_cpu_write(nop_txn_flags, 0);
10087 
10088 	if (flags & ~PERF_PMU_TXN_ADD)
10089 		return;
10090 
10091 	perf_pmu_enable(pmu);
10092 }
10093 
10094 static int perf_event_idx_default(struct perf_event *event)
10095 {
10096 	return 0;
10097 }
10098 
10099 /*
10100  * Ensures all contexts with the same task_ctx_nr have the same
10101  * pmu_cpu_context too.
10102  */
10103 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
10104 {
10105 	struct pmu *pmu;
10106 
10107 	if (ctxn < 0)
10108 		return NULL;
10109 
10110 	list_for_each_entry(pmu, &pmus, entry) {
10111 		if (pmu->task_ctx_nr == ctxn)
10112 			return pmu->pmu_cpu_context;
10113 	}
10114 
10115 	return NULL;
10116 }
10117 
10118 static void free_pmu_context(struct pmu *pmu)
10119 {
10120 	/*
10121 	 * Static contexts such as perf_sw_context have a global lifetime
10122 	 * and may be shared between different PMUs. Avoid freeing them
10123 	 * when a single PMU is going away.
10124 	 */
10125 	if (pmu->task_ctx_nr > perf_invalid_context)
10126 		return;
10127 
10128 	free_percpu(pmu->pmu_cpu_context);
10129 }
10130 
10131 /*
10132  * Let userspace know that this PMU supports address range filtering:
10133  */
10134 static ssize_t nr_addr_filters_show(struct device *dev,
10135 				    struct device_attribute *attr,
10136 				    char *page)
10137 {
10138 	struct pmu *pmu = dev_get_drvdata(dev);
10139 
10140 	return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
10141 }
10142 DEVICE_ATTR_RO(nr_addr_filters);
10143 
10144 static struct idr pmu_idr;
10145 
10146 static ssize_t
10147 type_show(struct device *dev, struct device_attribute *attr, char *page)
10148 {
10149 	struct pmu *pmu = dev_get_drvdata(dev);
10150 
10151 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
10152 }
10153 static DEVICE_ATTR_RO(type);
10154 
10155 static ssize_t
10156 perf_event_mux_interval_ms_show(struct device *dev,
10157 				struct device_attribute *attr,
10158 				char *page)
10159 {
10160 	struct pmu *pmu = dev_get_drvdata(dev);
10161 
10162 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
10163 }
10164 
10165 static DEFINE_MUTEX(mux_interval_mutex);
10166 
10167 static ssize_t
10168 perf_event_mux_interval_ms_store(struct device *dev,
10169 				 struct device_attribute *attr,
10170 				 const char *buf, size_t count)
10171 {
10172 	struct pmu *pmu = dev_get_drvdata(dev);
10173 	int timer, cpu, ret;
10174 
10175 	ret = kstrtoint(buf, 0, &timer);
10176 	if (ret)
10177 		return ret;
10178 
10179 	if (timer < 1)
10180 		return -EINVAL;
10181 
10182 	/* same value, noting to do */
10183 	if (timer == pmu->hrtimer_interval_ms)
10184 		return count;
10185 
10186 	mutex_lock(&mux_interval_mutex);
10187 	pmu->hrtimer_interval_ms = timer;
10188 
10189 	/* update all cpuctx for this PMU */
10190 	cpus_read_lock();
10191 	for_each_online_cpu(cpu) {
10192 		struct perf_cpu_context *cpuctx;
10193 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10194 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
10195 
10196 		cpu_function_call(cpu,
10197 			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
10198 	}
10199 	cpus_read_unlock();
10200 	mutex_unlock(&mux_interval_mutex);
10201 
10202 	return count;
10203 }
10204 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
10205 
10206 static struct attribute *pmu_dev_attrs[] = {
10207 	&dev_attr_type.attr,
10208 	&dev_attr_perf_event_mux_interval_ms.attr,
10209 	NULL,
10210 };
10211 ATTRIBUTE_GROUPS(pmu_dev);
10212 
10213 static int pmu_bus_running;
10214 static struct bus_type pmu_bus = {
10215 	.name		= "event_source",
10216 	.dev_groups	= pmu_dev_groups,
10217 };
10218 
10219 static void pmu_dev_release(struct device *dev)
10220 {
10221 	kfree(dev);
10222 }
10223 
10224 static int pmu_dev_alloc(struct pmu *pmu)
10225 {
10226 	int ret = -ENOMEM;
10227 
10228 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
10229 	if (!pmu->dev)
10230 		goto out;
10231 
10232 	pmu->dev->groups = pmu->attr_groups;
10233 	device_initialize(pmu->dev);
10234 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
10235 	if (ret)
10236 		goto free_dev;
10237 
10238 	dev_set_drvdata(pmu->dev, pmu);
10239 	pmu->dev->bus = &pmu_bus;
10240 	pmu->dev->release = pmu_dev_release;
10241 	ret = device_add(pmu->dev);
10242 	if (ret)
10243 		goto free_dev;
10244 
10245 	/* For PMUs with address filters, throw in an extra attribute: */
10246 	if (pmu->nr_addr_filters)
10247 		ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
10248 
10249 	if (ret)
10250 		goto del_dev;
10251 
10252 	if (pmu->attr_update)
10253 		ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
10254 
10255 	if (ret)
10256 		goto del_dev;
10257 
10258 out:
10259 	return ret;
10260 
10261 del_dev:
10262 	device_del(pmu->dev);
10263 
10264 free_dev:
10265 	put_device(pmu->dev);
10266 	goto out;
10267 }
10268 
10269 static struct lock_class_key cpuctx_mutex;
10270 static struct lock_class_key cpuctx_lock;
10271 
10272 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
10273 {
10274 	int cpu, ret, max = PERF_TYPE_MAX;
10275 
10276 	mutex_lock(&pmus_lock);
10277 	ret = -ENOMEM;
10278 	pmu->pmu_disable_count = alloc_percpu(int);
10279 	if (!pmu->pmu_disable_count)
10280 		goto unlock;
10281 
10282 	pmu->type = -1;
10283 	if (!name)
10284 		goto skip_type;
10285 	pmu->name = name;
10286 
10287 	if (type != PERF_TYPE_SOFTWARE) {
10288 		if (type >= 0)
10289 			max = type;
10290 
10291 		ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
10292 		if (ret < 0)
10293 			goto free_pdc;
10294 
10295 		WARN_ON(type >= 0 && ret != type);
10296 
10297 		type = ret;
10298 	}
10299 	pmu->type = type;
10300 
10301 	if (pmu_bus_running) {
10302 		ret = pmu_dev_alloc(pmu);
10303 		if (ret)
10304 			goto free_idr;
10305 	}
10306 
10307 skip_type:
10308 	if (pmu->task_ctx_nr == perf_hw_context) {
10309 		static int hw_context_taken = 0;
10310 
10311 		/*
10312 		 * Other than systems with heterogeneous CPUs, it never makes
10313 		 * sense for two PMUs to share perf_hw_context. PMUs which are
10314 		 * uncore must use perf_invalid_context.
10315 		 */
10316 		if (WARN_ON_ONCE(hw_context_taken &&
10317 		    !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
10318 			pmu->task_ctx_nr = perf_invalid_context;
10319 
10320 		hw_context_taken = 1;
10321 	}
10322 
10323 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
10324 	if (pmu->pmu_cpu_context)
10325 		goto got_cpu_context;
10326 
10327 	ret = -ENOMEM;
10328 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
10329 	if (!pmu->pmu_cpu_context)
10330 		goto free_dev;
10331 
10332 	for_each_possible_cpu(cpu) {
10333 		struct perf_cpu_context *cpuctx;
10334 
10335 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10336 		__perf_event_init_context(&cpuctx->ctx);
10337 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
10338 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
10339 		cpuctx->ctx.pmu = pmu;
10340 		cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
10341 
10342 		__perf_mux_hrtimer_init(cpuctx, cpu);
10343 	}
10344 
10345 got_cpu_context:
10346 	if (!pmu->start_txn) {
10347 		if (pmu->pmu_enable) {
10348 			/*
10349 			 * If we have pmu_enable/pmu_disable calls, install
10350 			 * transaction stubs that use that to try and batch
10351 			 * hardware accesses.
10352 			 */
10353 			pmu->start_txn  = perf_pmu_start_txn;
10354 			pmu->commit_txn = perf_pmu_commit_txn;
10355 			pmu->cancel_txn = perf_pmu_cancel_txn;
10356 		} else {
10357 			pmu->start_txn  = perf_pmu_nop_txn;
10358 			pmu->commit_txn = perf_pmu_nop_int;
10359 			pmu->cancel_txn = perf_pmu_nop_void;
10360 		}
10361 	}
10362 
10363 	if (!pmu->pmu_enable) {
10364 		pmu->pmu_enable  = perf_pmu_nop_void;
10365 		pmu->pmu_disable = perf_pmu_nop_void;
10366 	}
10367 
10368 	if (!pmu->check_period)
10369 		pmu->check_period = perf_event_nop_int;
10370 
10371 	if (!pmu->event_idx)
10372 		pmu->event_idx = perf_event_idx_default;
10373 
10374 	/*
10375 	 * Ensure the TYPE_SOFTWARE PMUs are at the head of the list,
10376 	 * since these cannot be in the IDR. This way the linear search
10377 	 * is fast, provided a valid software event is provided.
10378 	 */
10379 	if (type == PERF_TYPE_SOFTWARE || !name)
10380 		list_add_rcu(&pmu->entry, &pmus);
10381 	else
10382 		list_add_tail_rcu(&pmu->entry, &pmus);
10383 
10384 	atomic_set(&pmu->exclusive_cnt, 0);
10385 	ret = 0;
10386 unlock:
10387 	mutex_unlock(&pmus_lock);
10388 
10389 	return ret;
10390 
10391 free_dev:
10392 	device_del(pmu->dev);
10393 	put_device(pmu->dev);
10394 
10395 free_idr:
10396 	if (pmu->type != PERF_TYPE_SOFTWARE)
10397 		idr_remove(&pmu_idr, pmu->type);
10398 
10399 free_pdc:
10400 	free_percpu(pmu->pmu_disable_count);
10401 	goto unlock;
10402 }
10403 EXPORT_SYMBOL_GPL(perf_pmu_register);
10404 
10405 void perf_pmu_unregister(struct pmu *pmu)
10406 {
10407 	mutex_lock(&pmus_lock);
10408 	list_del_rcu(&pmu->entry);
10409 
10410 	/*
10411 	 * We dereference the pmu list under both SRCU and regular RCU, so
10412 	 * synchronize against both of those.
10413 	 */
10414 	synchronize_srcu(&pmus_srcu);
10415 	synchronize_rcu();
10416 
10417 	free_percpu(pmu->pmu_disable_count);
10418 	if (pmu->type != PERF_TYPE_SOFTWARE)
10419 		idr_remove(&pmu_idr, pmu->type);
10420 	if (pmu_bus_running) {
10421 		if (pmu->nr_addr_filters)
10422 			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
10423 		device_del(pmu->dev);
10424 		put_device(pmu->dev);
10425 	}
10426 	free_pmu_context(pmu);
10427 	mutex_unlock(&pmus_lock);
10428 }
10429 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
10430 
10431 static inline bool has_extended_regs(struct perf_event *event)
10432 {
10433 	return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
10434 	       (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
10435 }
10436 
10437 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
10438 {
10439 	struct perf_event_context *ctx = NULL;
10440 	int ret;
10441 
10442 	if (!try_module_get(pmu->module))
10443 		return -ENODEV;
10444 
10445 	/*
10446 	 * A number of pmu->event_init() methods iterate the sibling_list to,
10447 	 * for example, validate if the group fits on the PMU. Therefore,
10448 	 * if this is a sibling event, acquire the ctx->mutex to protect
10449 	 * the sibling_list.
10450 	 */
10451 	if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
10452 		/*
10453 		 * This ctx->mutex can nest when we're called through
10454 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
10455 		 */
10456 		ctx = perf_event_ctx_lock_nested(event->group_leader,
10457 						 SINGLE_DEPTH_NESTING);
10458 		BUG_ON(!ctx);
10459 	}
10460 
10461 	event->pmu = pmu;
10462 	ret = pmu->event_init(event);
10463 
10464 	if (ctx)
10465 		perf_event_ctx_unlock(event->group_leader, ctx);
10466 
10467 	if (!ret) {
10468 		if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
10469 		    has_extended_regs(event))
10470 			ret = -EOPNOTSUPP;
10471 
10472 		if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
10473 		    event_has_any_exclude_flag(event))
10474 			ret = -EINVAL;
10475 
10476 		if (ret && event->destroy)
10477 			event->destroy(event);
10478 	}
10479 
10480 	if (ret)
10481 		module_put(pmu->module);
10482 
10483 	return ret;
10484 }
10485 
10486 static struct pmu *perf_init_event(struct perf_event *event)
10487 {
10488 	int idx, type, ret;
10489 	struct pmu *pmu;
10490 
10491 	idx = srcu_read_lock(&pmus_srcu);
10492 
10493 	/* Try parent's PMU first: */
10494 	if (event->parent && event->parent->pmu) {
10495 		pmu = event->parent->pmu;
10496 		ret = perf_try_init_event(pmu, event);
10497 		if (!ret)
10498 			goto unlock;
10499 	}
10500 
10501 	/*
10502 	 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
10503 	 * are often aliases for PERF_TYPE_RAW.
10504 	 */
10505 	type = event->attr.type;
10506 	if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE)
10507 		type = PERF_TYPE_RAW;
10508 
10509 again:
10510 	rcu_read_lock();
10511 	pmu = idr_find(&pmu_idr, type);
10512 	rcu_read_unlock();
10513 	if (pmu) {
10514 		ret = perf_try_init_event(pmu, event);
10515 		if (ret == -ENOENT && event->attr.type != type) {
10516 			type = event->attr.type;
10517 			goto again;
10518 		}
10519 
10520 		if (ret)
10521 			pmu = ERR_PTR(ret);
10522 
10523 		goto unlock;
10524 	}
10525 
10526 	list_for_each_entry_rcu(pmu, &pmus, entry) {
10527 		ret = perf_try_init_event(pmu, event);
10528 		if (!ret)
10529 			goto unlock;
10530 
10531 		if (ret != -ENOENT) {
10532 			pmu = ERR_PTR(ret);
10533 			goto unlock;
10534 		}
10535 	}
10536 	pmu = ERR_PTR(-ENOENT);
10537 unlock:
10538 	srcu_read_unlock(&pmus_srcu, idx);
10539 
10540 	return pmu;
10541 }
10542 
10543 static void attach_sb_event(struct perf_event *event)
10544 {
10545 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
10546 
10547 	raw_spin_lock(&pel->lock);
10548 	list_add_rcu(&event->sb_list, &pel->list);
10549 	raw_spin_unlock(&pel->lock);
10550 }
10551 
10552 /*
10553  * We keep a list of all !task (and therefore per-cpu) events
10554  * that need to receive side-band records.
10555  *
10556  * This avoids having to scan all the various PMU per-cpu contexts
10557  * looking for them.
10558  */
10559 static void account_pmu_sb_event(struct perf_event *event)
10560 {
10561 	if (is_sb_event(event))
10562 		attach_sb_event(event);
10563 }
10564 
10565 static void account_event_cpu(struct perf_event *event, int cpu)
10566 {
10567 	if (event->parent)
10568 		return;
10569 
10570 	if (is_cgroup_event(event))
10571 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
10572 }
10573 
10574 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
10575 static void account_freq_event_nohz(void)
10576 {
10577 #ifdef CONFIG_NO_HZ_FULL
10578 	/* Lock so we don't race with concurrent unaccount */
10579 	spin_lock(&nr_freq_lock);
10580 	if (atomic_inc_return(&nr_freq_events) == 1)
10581 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
10582 	spin_unlock(&nr_freq_lock);
10583 #endif
10584 }
10585 
10586 static void account_freq_event(void)
10587 {
10588 	if (tick_nohz_full_enabled())
10589 		account_freq_event_nohz();
10590 	else
10591 		atomic_inc(&nr_freq_events);
10592 }
10593 
10594 
10595 static void account_event(struct perf_event *event)
10596 {
10597 	bool inc = false;
10598 
10599 	if (event->parent)
10600 		return;
10601 
10602 	if (event->attach_state & PERF_ATTACH_TASK)
10603 		inc = true;
10604 	if (event->attr.mmap || event->attr.mmap_data)
10605 		atomic_inc(&nr_mmap_events);
10606 	if (event->attr.comm)
10607 		atomic_inc(&nr_comm_events);
10608 	if (event->attr.namespaces)
10609 		atomic_inc(&nr_namespaces_events);
10610 	if (event->attr.task)
10611 		atomic_inc(&nr_task_events);
10612 	if (event->attr.freq)
10613 		account_freq_event();
10614 	if (event->attr.context_switch) {
10615 		atomic_inc(&nr_switch_events);
10616 		inc = true;
10617 	}
10618 	if (has_branch_stack(event))
10619 		inc = true;
10620 	if (is_cgroup_event(event))
10621 		inc = true;
10622 	if (event->attr.ksymbol)
10623 		atomic_inc(&nr_ksymbol_events);
10624 	if (event->attr.bpf_event)
10625 		atomic_inc(&nr_bpf_events);
10626 
10627 	if (inc) {
10628 		/*
10629 		 * We need the mutex here because static_branch_enable()
10630 		 * must complete *before* the perf_sched_count increment
10631 		 * becomes visible.
10632 		 */
10633 		if (atomic_inc_not_zero(&perf_sched_count))
10634 			goto enabled;
10635 
10636 		mutex_lock(&perf_sched_mutex);
10637 		if (!atomic_read(&perf_sched_count)) {
10638 			static_branch_enable(&perf_sched_events);
10639 			/*
10640 			 * Guarantee that all CPUs observe they key change and
10641 			 * call the perf scheduling hooks before proceeding to
10642 			 * install events that need them.
10643 			 */
10644 			synchronize_rcu();
10645 		}
10646 		/*
10647 		 * Now that we have waited for the sync_sched(), allow further
10648 		 * increments to by-pass the mutex.
10649 		 */
10650 		atomic_inc(&perf_sched_count);
10651 		mutex_unlock(&perf_sched_mutex);
10652 	}
10653 enabled:
10654 
10655 	account_event_cpu(event, event->cpu);
10656 
10657 	account_pmu_sb_event(event);
10658 }
10659 
10660 /*
10661  * Allocate and initialize an event structure
10662  */
10663 static struct perf_event *
10664 perf_event_alloc(struct perf_event_attr *attr, int cpu,
10665 		 struct task_struct *task,
10666 		 struct perf_event *group_leader,
10667 		 struct perf_event *parent_event,
10668 		 perf_overflow_handler_t overflow_handler,
10669 		 void *context, int cgroup_fd)
10670 {
10671 	struct pmu *pmu;
10672 	struct perf_event *event;
10673 	struct hw_perf_event *hwc;
10674 	long err = -EINVAL;
10675 
10676 	if ((unsigned)cpu >= nr_cpu_ids) {
10677 		if (!task || cpu != -1)
10678 			return ERR_PTR(-EINVAL);
10679 	}
10680 
10681 	event = kzalloc(sizeof(*event), GFP_KERNEL);
10682 	if (!event)
10683 		return ERR_PTR(-ENOMEM);
10684 
10685 	/*
10686 	 * Single events are their own group leaders, with an
10687 	 * empty sibling list:
10688 	 */
10689 	if (!group_leader)
10690 		group_leader = event;
10691 
10692 	mutex_init(&event->child_mutex);
10693 	INIT_LIST_HEAD(&event->child_list);
10694 
10695 	INIT_LIST_HEAD(&event->event_entry);
10696 	INIT_LIST_HEAD(&event->sibling_list);
10697 	INIT_LIST_HEAD(&event->active_list);
10698 	init_event_group(event);
10699 	INIT_LIST_HEAD(&event->rb_entry);
10700 	INIT_LIST_HEAD(&event->active_entry);
10701 	INIT_LIST_HEAD(&event->addr_filters.list);
10702 	INIT_HLIST_NODE(&event->hlist_entry);
10703 
10704 
10705 	init_waitqueue_head(&event->waitq);
10706 	event->pending_disable = -1;
10707 	init_irq_work(&event->pending, perf_pending_event);
10708 
10709 	mutex_init(&event->mmap_mutex);
10710 	raw_spin_lock_init(&event->addr_filters.lock);
10711 
10712 	atomic_long_set(&event->refcount, 1);
10713 	event->cpu		= cpu;
10714 	event->attr		= *attr;
10715 	event->group_leader	= group_leader;
10716 	event->pmu		= NULL;
10717 	event->oncpu		= -1;
10718 
10719 	event->parent		= parent_event;
10720 
10721 	event->ns		= get_pid_ns(task_active_pid_ns(current));
10722 	event->id		= atomic64_inc_return(&perf_event_id);
10723 
10724 	event->state		= PERF_EVENT_STATE_INACTIVE;
10725 
10726 	if (task) {
10727 		event->attach_state = PERF_ATTACH_TASK;
10728 		/*
10729 		 * XXX pmu::event_init needs to know what task to account to
10730 		 * and we cannot use the ctx information because we need the
10731 		 * pmu before we get a ctx.
10732 		 */
10733 		event->hw.target = get_task_struct(task);
10734 	}
10735 
10736 	event->clock = &local_clock;
10737 	if (parent_event)
10738 		event->clock = parent_event->clock;
10739 
10740 	if (!overflow_handler && parent_event) {
10741 		overflow_handler = parent_event->overflow_handler;
10742 		context = parent_event->overflow_handler_context;
10743 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
10744 		if (overflow_handler == bpf_overflow_handler) {
10745 			struct bpf_prog *prog = parent_event->prog;
10746 
10747 			bpf_prog_inc(prog);
10748 			event->prog = prog;
10749 			event->orig_overflow_handler =
10750 				parent_event->orig_overflow_handler;
10751 		}
10752 #endif
10753 	}
10754 
10755 	if (overflow_handler) {
10756 		event->overflow_handler	= overflow_handler;
10757 		event->overflow_handler_context = context;
10758 	} else if (is_write_backward(event)){
10759 		event->overflow_handler = perf_event_output_backward;
10760 		event->overflow_handler_context = NULL;
10761 	} else {
10762 		event->overflow_handler = perf_event_output_forward;
10763 		event->overflow_handler_context = NULL;
10764 	}
10765 
10766 	perf_event__state_init(event);
10767 
10768 	pmu = NULL;
10769 
10770 	hwc = &event->hw;
10771 	hwc->sample_period = attr->sample_period;
10772 	if (attr->freq && attr->sample_freq)
10773 		hwc->sample_period = 1;
10774 	hwc->last_period = hwc->sample_period;
10775 
10776 	local64_set(&hwc->period_left, hwc->sample_period);
10777 
10778 	/*
10779 	 * We currently do not support PERF_SAMPLE_READ on inherited events.
10780 	 * See perf_output_read().
10781 	 */
10782 	if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
10783 		goto err_ns;
10784 
10785 	if (!has_branch_stack(event))
10786 		event->attr.branch_sample_type = 0;
10787 
10788 	if (cgroup_fd != -1) {
10789 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
10790 		if (err)
10791 			goto err_ns;
10792 	}
10793 
10794 	pmu = perf_init_event(event);
10795 	if (IS_ERR(pmu)) {
10796 		err = PTR_ERR(pmu);
10797 		goto err_ns;
10798 	}
10799 
10800 	/*
10801 	 * Disallow uncore-cgroup events, they don't make sense as the cgroup will
10802 	 * be different on other CPUs in the uncore mask.
10803 	 */
10804 	if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) {
10805 		err = -EINVAL;
10806 		goto err_pmu;
10807 	}
10808 
10809 	if (event->attr.aux_output &&
10810 	    !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
10811 		err = -EOPNOTSUPP;
10812 		goto err_pmu;
10813 	}
10814 
10815 	err = exclusive_event_init(event);
10816 	if (err)
10817 		goto err_pmu;
10818 
10819 	if (has_addr_filter(event)) {
10820 		event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
10821 						    sizeof(struct perf_addr_filter_range),
10822 						    GFP_KERNEL);
10823 		if (!event->addr_filter_ranges) {
10824 			err = -ENOMEM;
10825 			goto err_per_task;
10826 		}
10827 
10828 		/*
10829 		 * Clone the parent's vma offsets: they are valid until exec()
10830 		 * even if the mm is not shared with the parent.
10831 		 */
10832 		if (event->parent) {
10833 			struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10834 
10835 			raw_spin_lock_irq(&ifh->lock);
10836 			memcpy(event->addr_filter_ranges,
10837 			       event->parent->addr_filter_ranges,
10838 			       pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
10839 			raw_spin_unlock_irq(&ifh->lock);
10840 		}
10841 
10842 		/* force hw sync on the address filters */
10843 		event->addr_filters_gen = 1;
10844 	}
10845 
10846 	if (!event->parent) {
10847 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
10848 			err = get_callchain_buffers(attr->sample_max_stack);
10849 			if (err)
10850 				goto err_addr_filters;
10851 		}
10852 	}
10853 
10854 	err = security_perf_event_alloc(event);
10855 	if (err)
10856 		goto err_callchain_buffer;
10857 
10858 	/* symmetric to unaccount_event() in _free_event() */
10859 	account_event(event);
10860 
10861 	return event;
10862 
10863 err_callchain_buffer:
10864 	if (!event->parent) {
10865 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
10866 			put_callchain_buffers();
10867 	}
10868 err_addr_filters:
10869 	kfree(event->addr_filter_ranges);
10870 
10871 err_per_task:
10872 	exclusive_event_destroy(event);
10873 
10874 err_pmu:
10875 	if (event->destroy)
10876 		event->destroy(event);
10877 	module_put(pmu->module);
10878 err_ns:
10879 	if (is_cgroup_event(event))
10880 		perf_detach_cgroup(event);
10881 	if (event->ns)
10882 		put_pid_ns(event->ns);
10883 	if (event->hw.target)
10884 		put_task_struct(event->hw.target);
10885 	kfree(event);
10886 
10887 	return ERR_PTR(err);
10888 }
10889 
10890 static int perf_copy_attr(struct perf_event_attr __user *uattr,
10891 			  struct perf_event_attr *attr)
10892 {
10893 	u32 size;
10894 	int ret;
10895 
10896 	/* Zero the full structure, so that a short copy will be nice. */
10897 	memset(attr, 0, sizeof(*attr));
10898 
10899 	ret = get_user(size, &uattr->size);
10900 	if (ret)
10901 		return ret;
10902 
10903 	/* ABI compatibility quirk: */
10904 	if (!size)
10905 		size = PERF_ATTR_SIZE_VER0;
10906 	if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
10907 		goto err_size;
10908 
10909 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
10910 	if (ret) {
10911 		if (ret == -E2BIG)
10912 			goto err_size;
10913 		return ret;
10914 	}
10915 
10916 	attr->size = size;
10917 
10918 	if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
10919 		return -EINVAL;
10920 
10921 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
10922 		return -EINVAL;
10923 
10924 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
10925 		return -EINVAL;
10926 
10927 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
10928 		u64 mask = attr->branch_sample_type;
10929 
10930 		/* only using defined bits */
10931 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
10932 			return -EINVAL;
10933 
10934 		/* at least one branch bit must be set */
10935 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
10936 			return -EINVAL;
10937 
10938 		/* propagate priv level, when not set for branch */
10939 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
10940 
10941 			/* exclude_kernel checked on syscall entry */
10942 			if (!attr->exclude_kernel)
10943 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
10944 
10945 			if (!attr->exclude_user)
10946 				mask |= PERF_SAMPLE_BRANCH_USER;
10947 
10948 			if (!attr->exclude_hv)
10949 				mask |= PERF_SAMPLE_BRANCH_HV;
10950 			/*
10951 			 * adjust user setting (for HW filter setup)
10952 			 */
10953 			attr->branch_sample_type = mask;
10954 		}
10955 		/* privileged levels capture (kernel, hv): check permissions */
10956 		if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
10957 			ret = perf_allow_kernel(attr);
10958 			if (ret)
10959 				return ret;
10960 		}
10961 	}
10962 
10963 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
10964 		ret = perf_reg_validate(attr->sample_regs_user);
10965 		if (ret)
10966 			return ret;
10967 	}
10968 
10969 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
10970 		if (!arch_perf_have_user_stack_dump())
10971 			return -ENOSYS;
10972 
10973 		/*
10974 		 * We have __u32 type for the size, but so far
10975 		 * we can only use __u16 as maximum due to the
10976 		 * __u16 sample size limit.
10977 		 */
10978 		if (attr->sample_stack_user >= USHRT_MAX)
10979 			return -EINVAL;
10980 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
10981 			return -EINVAL;
10982 	}
10983 
10984 	if (!attr->sample_max_stack)
10985 		attr->sample_max_stack = sysctl_perf_event_max_stack;
10986 
10987 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
10988 		ret = perf_reg_validate(attr->sample_regs_intr);
10989 out:
10990 	return ret;
10991 
10992 err_size:
10993 	put_user(sizeof(*attr), &uattr->size);
10994 	ret = -E2BIG;
10995 	goto out;
10996 }
10997 
10998 static int
10999 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
11000 {
11001 	struct ring_buffer *rb = NULL;
11002 	int ret = -EINVAL;
11003 
11004 	if (!output_event)
11005 		goto set;
11006 
11007 	/* don't allow circular references */
11008 	if (event == output_event)
11009 		goto out;
11010 
11011 	/*
11012 	 * Don't allow cross-cpu buffers
11013 	 */
11014 	if (output_event->cpu != event->cpu)
11015 		goto out;
11016 
11017 	/*
11018 	 * If its not a per-cpu rb, it must be the same task.
11019 	 */
11020 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
11021 		goto out;
11022 
11023 	/*
11024 	 * Mixing clocks in the same buffer is trouble you don't need.
11025 	 */
11026 	if (output_event->clock != event->clock)
11027 		goto out;
11028 
11029 	/*
11030 	 * Either writing ring buffer from beginning or from end.
11031 	 * Mixing is not allowed.
11032 	 */
11033 	if (is_write_backward(output_event) != is_write_backward(event))
11034 		goto out;
11035 
11036 	/*
11037 	 * If both events generate aux data, they must be on the same PMU
11038 	 */
11039 	if (has_aux(event) && has_aux(output_event) &&
11040 	    event->pmu != output_event->pmu)
11041 		goto out;
11042 
11043 set:
11044 	mutex_lock(&event->mmap_mutex);
11045 	/* Can't redirect output if we've got an active mmap() */
11046 	if (atomic_read(&event->mmap_count))
11047 		goto unlock;
11048 
11049 	if (output_event) {
11050 		/* get the rb we want to redirect to */
11051 		rb = ring_buffer_get(output_event);
11052 		if (!rb)
11053 			goto unlock;
11054 	}
11055 
11056 	ring_buffer_attach(event, rb);
11057 
11058 	ret = 0;
11059 unlock:
11060 	mutex_unlock(&event->mmap_mutex);
11061 
11062 out:
11063 	return ret;
11064 }
11065 
11066 static void mutex_lock_double(struct mutex *a, struct mutex *b)
11067 {
11068 	if (b < a)
11069 		swap(a, b);
11070 
11071 	mutex_lock(a);
11072 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
11073 }
11074 
11075 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
11076 {
11077 	bool nmi_safe = false;
11078 
11079 	switch (clk_id) {
11080 	case CLOCK_MONOTONIC:
11081 		event->clock = &ktime_get_mono_fast_ns;
11082 		nmi_safe = true;
11083 		break;
11084 
11085 	case CLOCK_MONOTONIC_RAW:
11086 		event->clock = &ktime_get_raw_fast_ns;
11087 		nmi_safe = true;
11088 		break;
11089 
11090 	case CLOCK_REALTIME:
11091 		event->clock = &ktime_get_real_ns;
11092 		break;
11093 
11094 	case CLOCK_BOOTTIME:
11095 		event->clock = &ktime_get_boottime_ns;
11096 		break;
11097 
11098 	case CLOCK_TAI:
11099 		event->clock = &ktime_get_clocktai_ns;
11100 		break;
11101 
11102 	default:
11103 		return -EINVAL;
11104 	}
11105 
11106 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
11107 		return -EINVAL;
11108 
11109 	return 0;
11110 }
11111 
11112 /*
11113  * Variation on perf_event_ctx_lock_nested(), except we take two context
11114  * mutexes.
11115  */
11116 static struct perf_event_context *
11117 __perf_event_ctx_lock_double(struct perf_event *group_leader,
11118 			     struct perf_event_context *ctx)
11119 {
11120 	struct perf_event_context *gctx;
11121 
11122 again:
11123 	rcu_read_lock();
11124 	gctx = READ_ONCE(group_leader->ctx);
11125 	if (!refcount_inc_not_zero(&gctx->refcount)) {
11126 		rcu_read_unlock();
11127 		goto again;
11128 	}
11129 	rcu_read_unlock();
11130 
11131 	mutex_lock_double(&gctx->mutex, &ctx->mutex);
11132 
11133 	if (group_leader->ctx != gctx) {
11134 		mutex_unlock(&ctx->mutex);
11135 		mutex_unlock(&gctx->mutex);
11136 		put_ctx(gctx);
11137 		goto again;
11138 	}
11139 
11140 	return gctx;
11141 }
11142 
11143 /**
11144  * sys_perf_event_open - open a performance event, associate it to a task/cpu
11145  *
11146  * @attr_uptr:	event_id type attributes for monitoring/sampling
11147  * @pid:		target pid
11148  * @cpu:		target cpu
11149  * @group_fd:		group leader event fd
11150  */
11151 SYSCALL_DEFINE5(perf_event_open,
11152 		struct perf_event_attr __user *, attr_uptr,
11153 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
11154 {
11155 	struct perf_event *group_leader = NULL, *output_event = NULL;
11156 	struct perf_event *event, *sibling;
11157 	struct perf_event_attr attr;
11158 	struct perf_event_context *ctx, *uninitialized_var(gctx);
11159 	struct file *event_file = NULL;
11160 	struct fd group = {NULL, 0};
11161 	struct task_struct *task = NULL;
11162 	struct pmu *pmu;
11163 	int event_fd;
11164 	int move_group = 0;
11165 	int err;
11166 	int f_flags = O_RDWR;
11167 	int cgroup_fd = -1;
11168 
11169 	/* for future expandability... */
11170 	if (flags & ~PERF_FLAG_ALL)
11171 		return -EINVAL;
11172 
11173 	/* Do we allow access to perf_event_open(2) ? */
11174 	err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
11175 	if (err)
11176 		return err;
11177 
11178 	err = perf_copy_attr(attr_uptr, &attr);
11179 	if (err)
11180 		return err;
11181 
11182 	if (!attr.exclude_kernel) {
11183 		err = perf_allow_kernel(&attr);
11184 		if (err)
11185 			return err;
11186 	}
11187 
11188 	if (attr.namespaces) {
11189 		if (!capable(CAP_SYS_ADMIN))
11190 			return -EACCES;
11191 	}
11192 
11193 	if (attr.freq) {
11194 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
11195 			return -EINVAL;
11196 	} else {
11197 		if (attr.sample_period & (1ULL << 63))
11198 			return -EINVAL;
11199 	}
11200 
11201 	/* Only privileged users can get physical addresses */
11202 	if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
11203 		err = perf_allow_kernel(&attr);
11204 		if (err)
11205 			return err;
11206 	}
11207 
11208 	err = security_locked_down(LOCKDOWN_PERF);
11209 	if (err && (attr.sample_type & PERF_SAMPLE_REGS_INTR))
11210 		/* REGS_INTR can leak data, lockdown must prevent this */
11211 		return err;
11212 
11213 	err = 0;
11214 
11215 	/*
11216 	 * In cgroup mode, the pid argument is used to pass the fd
11217 	 * opened to the cgroup directory in cgroupfs. The cpu argument
11218 	 * designates the cpu on which to monitor threads from that
11219 	 * cgroup.
11220 	 */
11221 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
11222 		return -EINVAL;
11223 
11224 	if (flags & PERF_FLAG_FD_CLOEXEC)
11225 		f_flags |= O_CLOEXEC;
11226 
11227 	event_fd = get_unused_fd_flags(f_flags);
11228 	if (event_fd < 0)
11229 		return event_fd;
11230 
11231 	if (group_fd != -1) {
11232 		err = perf_fget_light(group_fd, &group);
11233 		if (err)
11234 			goto err_fd;
11235 		group_leader = group.file->private_data;
11236 		if (flags & PERF_FLAG_FD_OUTPUT)
11237 			output_event = group_leader;
11238 		if (flags & PERF_FLAG_FD_NO_GROUP)
11239 			group_leader = NULL;
11240 	}
11241 
11242 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
11243 		task = find_lively_task_by_vpid(pid);
11244 		if (IS_ERR(task)) {
11245 			err = PTR_ERR(task);
11246 			goto err_group_fd;
11247 		}
11248 	}
11249 
11250 	if (task && group_leader &&
11251 	    group_leader->attr.inherit != attr.inherit) {
11252 		err = -EINVAL;
11253 		goto err_task;
11254 	}
11255 
11256 	if (task) {
11257 		err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
11258 		if (err)
11259 			goto err_task;
11260 
11261 		/*
11262 		 * Reuse ptrace permission checks for now.
11263 		 *
11264 		 * We must hold cred_guard_mutex across this and any potential
11265 		 * perf_install_in_context() call for this new event to
11266 		 * serialize against exec() altering our credentials (and the
11267 		 * perf_event_exit_task() that could imply).
11268 		 */
11269 		err = -EACCES;
11270 		if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
11271 			goto err_cred;
11272 	}
11273 
11274 	if (flags & PERF_FLAG_PID_CGROUP)
11275 		cgroup_fd = pid;
11276 
11277 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
11278 				 NULL, NULL, cgroup_fd);
11279 	if (IS_ERR(event)) {
11280 		err = PTR_ERR(event);
11281 		goto err_cred;
11282 	}
11283 
11284 	if (is_sampling_event(event)) {
11285 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
11286 			err = -EOPNOTSUPP;
11287 			goto err_alloc;
11288 		}
11289 	}
11290 
11291 	/*
11292 	 * Special case software events and allow them to be part of
11293 	 * any hardware group.
11294 	 */
11295 	pmu = event->pmu;
11296 
11297 	if (attr.use_clockid) {
11298 		err = perf_event_set_clock(event, attr.clockid);
11299 		if (err)
11300 			goto err_alloc;
11301 	}
11302 
11303 	if (pmu->task_ctx_nr == perf_sw_context)
11304 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
11305 
11306 	if (group_leader) {
11307 		if (is_software_event(event) &&
11308 		    !in_software_context(group_leader)) {
11309 			/*
11310 			 * If the event is a sw event, but the group_leader
11311 			 * is on hw context.
11312 			 *
11313 			 * Allow the addition of software events to hw
11314 			 * groups, this is safe because software events
11315 			 * never fail to schedule.
11316 			 */
11317 			pmu = group_leader->ctx->pmu;
11318 		} else if (!is_software_event(event) &&
11319 			   is_software_event(group_leader) &&
11320 			   (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
11321 			/*
11322 			 * In case the group is a pure software group, and we
11323 			 * try to add a hardware event, move the whole group to
11324 			 * the hardware context.
11325 			 */
11326 			move_group = 1;
11327 		}
11328 	}
11329 
11330 	/*
11331 	 * Get the target context (task or percpu):
11332 	 */
11333 	ctx = find_get_context(pmu, task, event);
11334 	if (IS_ERR(ctx)) {
11335 		err = PTR_ERR(ctx);
11336 		goto err_alloc;
11337 	}
11338 
11339 	/*
11340 	 * Look up the group leader (we will attach this event to it):
11341 	 */
11342 	if (group_leader) {
11343 		err = -EINVAL;
11344 
11345 		/*
11346 		 * Do not allow a recursive hierarchy (this new sibling
11347 		 * becoming part of another group-sibling):
11348 		 */
11349 		if (group_leader->group_leader != group_leader)
11350 			goto err_context;
11351 
11352 		/* All events in a group should have the same clock */
11353 		if (group_leader->clock != event->clock)
11354 			goto err_context;
11355 
11356 		/*
11357 		 * Make sure we're both events for the same CPU;
11358 		 * grouping events for different CPUs is broken; since
11359 		 * you can never concurrently schedule them anyhow.
11360 		 */
11361 		if (group_leader->cpu != event->cpu)
11362 			goto err_context;
11363 
11364 		/*
11365 		 * Make sure we're both on the same task, or both
11366 		 * per-CPU events.
11367 		 */
11368 		if (group_leader->ctx->task != ctx->task)
11369 			goto err_context;
11370 
11371 		/*
11372 		 * Do not allow to attach to a group in a different task
11373 		 * or CPU context. If we're moving SW events, we'll fix
11374 		 * this up later, so allow that.
11375 		 */
11376 		if (!move_group && group_leader->ctx != ctx)
11377 			goto err_context;
11378 
11379 		/*
11380 		 * Only a group leader can be exclusive or pinned
11381 		 */
11382 		if (attr.exclusive || attr.pinned)
11383 			goto err_context;
11384 	}
11385 
11386 	if (output_event) {
11387 		err = perf_event_set_output(event, output_event);
11388 		if (err)
11389 			goto err_context;
11390 	}
11391 
11392 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
11393 					f_flags);
11394 	if (IS_ERR(event_file)) {
11395 		err = PTR_ERR(event_file);
11396 		event_file = NULL;
11397 		goto err_context;
11398 	}
11399 
11400 	if (move_group) {
11401 		gctx = __perf_event_ctx_lock_double(group_leader, ctx);
11402 
11403 		if (gctx->task == TASK_TOMBSTONE) {
11404 			err = -ESRCH;
11405 			goto err_locked;
11406 		}
11407 
11408 		/*
11409 		 * Check if we raced against another sys_perf_event_open() call
11410 		 * moving the software group underneath us.
11411 		 */
11412 		if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
11413 			/*
11414 			 * If someone moved the group out from under us, check
11415 			 * if this new event wound up on the same ctx, if so
11416 			 * its the regular !move_group case, otherwise fail.
11417 			 */
11418 			if (gctx != ctx) {
11419 				err = -EINVAL;
11420 				goto err_locked;
11421 			} else {
11422 				perf_event_ctx_unlock(group_leader, gctx);
11423 				move_group = 0;
11424 			}
11425 		}
11426 
11427 		/*
11428 		 * Failure to create exclusive events returns -EBUSY.
11429 		 */
11430 		err = -EBUSY;
11431 		if (!exclusive_event_installable(group_leader, ctx))
11432 			goto err_locked;
11433 
11434 		for_each_sibling_event(sibling, group_leader) {
11435 			if (!exclusive_event_installable(sibling, ctx))
11436 				goto err_locked;
11437 		}
11438 	} else {
11439 		mutex_lock(&ctx->mutex);
11440 	}
11441 
11442 	if (ctx->task == TASK_TOMBSTONE) {
11443 		err = -ESRCH;
11444 		goto err_locked;
11445 	}
11446 
11447 	if (!perf_event_validate_size(event)) {
11448 		err = -E2BIG;
11449 		goto err_locked;
11450 	}
11451 
11452 	if (!task) {
11453 		/*
11454 		 * Check if the @cpu we're creating an event for is online.
11455 		 *
11456 		 * We use the perf_cpu_context::ctx::mutex to serialize against
11457 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11458 		 */
11459 		struct perf_cpu_context *cpuctx =
11460 			container_of(ctx, struct perf_cpu_context, ctx);
11461 
11462 		if (!cpuctx->online) {
11463 			err = -ENODEV;
11464 			goto err_locked;
11465 		}
11466 	}
11467 
11468 	if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader))
11469 		goto err_locked;
11470 
11471 	/*
11472 	 * Must be under the same ctx::mutex as perf_install_in_context(),
11473 	 * because we need to serialize with concurrent event creation.
11474 	 */
11475 	if (!exclusive_event_installable(event, ctx)) {
11476 		err = -EBUSY;
11477 		goto err_locked;
11478 	}
11479 
11480 	WARN_ON_ONCE(ctx->parent_ctx);
11481 
11482 	/*
11483 	 * This is the point on no return; we cannot fail hereafter. This is
11484 	 * where we start modifying current state.
11485 	 */
11486 
11487 	if (move_group) {
11488 		/*
11489 		 * See perf_event_ctx_lock() for comments on the details
11490 		 * of swizzling perf_event::ctx.
11491 		 */
11492 		perf_remove_from_context(group_leader, 0);
11493 		put_ctx(gctx);
11494 
11495 		for_each_sibling_event(sibling, group_leader) {
11496 			perf_remove_from_context(sibling, 0);
11497 			put_ctx(gctx);
11498 		}
11499 
11500 		/*
11501 		 * Wait for everybody to stop referencing the events through
11502 		 * the old lists, before installing it on new lists.
11503 		 */
11504 		synchronize_rcu();
11505 
11506 		/*
11507 		 * Install the group siblings before the group leader.
11508 		 *
11509 		 * Because a group leader will try and install the entire group
11510 		 * (through the sibling list, which is still in-tact), we can
11511 		 * end up with siblings installed in the wrong context.
11512 		 *
11513 		 * By installing siblings first we NO-OP because they're not
11514 		 * reachable through the group lists.
11515 		 */
11516 		for_each_sibling_event(sibling, group_leader) {
11517 			perf_event__state_init(sibling);
11518 			perf_install_in_context(ctx, sibling, sibling->cpu);
11519 			get_ctx(ctx);
11520 		}
11521 
11522 		/*
11523 		 * Removing from the context ends up with disabled
11524 		 * event. What we want here is event in the initial
11525 		 * startup state, ready to be add into new context.
11526 		 */
11527 		perf_event__state_init(group_leader);
11528 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
11529 		get_ctx(ctx);
11530 	}
11531 
11532 	/*
11533 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
11534 	 * that we're serialized against further additions and before
11535 	 * perf_install_in_context() which is the point the event is active and
11536 	 * can use these values.
11537 	 */
11538 	perf_event__header_size(event);
11539 	perf_event__id_header_size(event);
11540 
11541 	event->owner = current;
11542 
11543 	perf_install_in_context(ctx, event, event->cpu);
11544 	perf_unpin_context(ctx);
11545 
11546 	if (move_group)
11547 		perf_event_ctx_unlock(group_leader, gctx);
11548 	mutex_unlock(&ctx->mutex);
11549 
11550 	if (task) {
11551 		mutex_unlock(&task->signal->cred_guard_mutex);
11552 		put_task_struct(task);
11553 	}
11554 
11555 	mutex_lock(&current->perf_event_mutex);
11556 	list_add_tail(&event->owner_entry, &current->perf_event_list);
11557 	mutex_unlock(&current->perf_event_mutex);
11558 
11559 	/*
11560 	 * Drop the reference on the group_event after placing the
11561 	 * new event on the sibling_list. This ensures destruction
11562 	 * of the group leader will find the pointer to itself in
11563 	 * perf_group_detach().
11564 	 */
11565 	fdput(group);
11566 	fd_install(event_fd, event_file);
11567 	return event_fd;
11568 
11569 err_locked:
11570 	if (move_group)
11571 		perf_event_ctx_unlock(group_leader, gctx);
11572 	mutex_unlock(&ctx->mutex);
11573 /* err_file: */
11574 	fput(event_file);
11575 err_context:
11576 	perf_unpin_context(ctx);
11577 	put_ctx(ctx);
11578 err_alloc:
11579 	/*
11580 	 * If event_file is set, the fput() above will have called ->release()
11581 	 * and that will take care of freeing the event.
11582 	 */
11583 	if (!event_file)
11584 		free_event(event);
11585 err_cred:
11586 	if (task)
11587 		mutex_unlock(&task->signal->cred_guard_mutex);
11588 err_task:
11589 	if (task)
11590 		put_task_struct(task);
11591 err_group_fd:
11592 	fdput(group);
11593 err_fd:
11594 	put_unused_fd(event_fd);
11595 	return err;
11596 }
11597 
11598 /**
11599  * perf_event_create_kernel_counter
11600  *
11601  * @attr: attributes of the counter to create
11602  * @cpu: cpu in which the counter is bound
11603  * @task: task to profile (NULL for percpu)
11604  */
11605 struct perf_event *
11606 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
11607 				 struct task_struct *task,
11608 				 perf_overflow_handler_t overflow_handler,
11609 				 void *context)
11610 {
11611 	struct perf_event_context *ctx;
11612 	struct perf_event *event;
11613 	int err;
11614 
11615 	/*
11616 	 * Grouping is not supported for kernel events, neither is 'AUX',
11617 	 * make sure the caller's intentions are adjusted.
11618 	 */
11619 	if (attr->aux_output)
11620 		return ERR_PTR(-EINVAL);
11621 
11622 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
11623 				 overflow_handler, context, -1);
11624 	if (IS_ERR(event)) {
11625 		err = PTR_ERR(event);
11626 		goto err;
11627 	}
11628 
11629 	/* Mark owner so we could distinguish it from user events. */
11630 	event->owner = TASK_TOMBSTONE;
11631 
11632 	/*
11633 	 * Get the target context (task or percpu):
11634 	 */
11635 	ctx = find_get_context(event->pmu, task, event);
11636 	if (IS_ERR(ctx)) {
11637 		err = PTR_ERR(ctx);
11638 		goto err_free;
11639 	}
11640 
11641 	WARN_ON_ONCE(ctx->parent_ctx);
11642 	mutex_lock(&ctx->mutex);
11643 	if (ctx->task == TASK_TOMBSTONE) {
11644 		err = -ESRCH;
11645 		goto err_unlock;
11646 	}
11647 
11648 	if (!task) {
11649 		/*
11650 		 * Check if the @cpu we're creating an event for is online.
11651 		 *
11652 		 * We use the perf_cpu_context::ctx::mutex to serialize against
11653 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11654 		 */
11655 		struct perf_cpu_context *cpuctx =
11656 			container_of(ctx, struct perf_cpu_context, ctx);
11657 		if (!cpuctx->online) {
11658 			err = -ENODEV;
11659 			goto err_unlock;
11660 		}
11661 	}
11662 
11663 	if (!exclusive_event_installable(event, ctx)) {
11664 		err = -EBUSY;
11665 		goto err_unlock;
11666 	}
11667 
11668 	perf_install_in_context(ctx, event, event->cpu);
11669 	perf_unpin_context(ctx);
11670 	mutex_unlock(&ctx->mutex);
11671 
11672 	return event;
11673 
11674 err_unlock:
11675 	mutex_unlock(&ctx->mutex);
11676 	perf_unpin_context(ctx);
11677 	put_ctx(ctx);
11678 err_free:
11679 	free_event(event);
11680 err:
11681 	return ERR_PTR(err);
11682 }
11683 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
11684 
11685 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
11686 {
11687 	struct perf_event_context *src_ctx;
11688 	struct perf_event_context *dst_ctx;
11689 	struct perf_event *event, *tmp;
11690 	LIST_HEAD(events);
11691 
11692 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
11693 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
11694 
11695 	/*
11696 	 * See perf_event_ctx_lock() for comments on the details
11697 	 * of swizzling perf_event::ctx.
11698 	 */
11699 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
11700 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
11701 				 event_entry) {
11702 		perf_remove_from_context(event, 0);
11703 		unaccount_event_cpu(event, src_cpu);
11704 		put_ctx(src_ctx);
11705 		list_add(&event->migrate_entry, &events);
11706 	}
11707 
11708 	/*
11709 	 * Wait for the events to quiesce before re-instating them.
11710 	 */
11711 	synchronize_rcu();
11712 
11713 	/*
11714 	 * Re-instate events in 2 passes.
11715 	 *
11716 	 * Skip over group leaders and only install siblings on this first
11717 	 * pass, siblings will not get enabled without a leader, however a
11718 	 * leader will enable its siblings, even if those are still on the old
11719 	 * context.
11720 	 */
11721 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
11722 		if (event->group_leader == event)
11723 			continue;
11724 
11725 		list_del(&event->migrate_entry);
11726 		if (event->state >= PERF_EVENT_STATE_OFF)
11727 			event->state = PERF_EVENT_STATE_INACTIVE;
11728 		account_event_cpu(event, dst_cpu);
11729 		perf_install_in_context(dst_ctx, event, dst_cpu);
11730 		get_ctx(dst_ctx);
11731 	}
11732 
11733 	/*
11734 	 * Once all the siblings are setup properly, install the group leaders
11735 	 * to make it go.
11736 	 */
11737 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
11738 		list_del(&event->migrate_entry);
11739 		if (event->state >= PERF_EVENT_STATE_OFF)
11740 			event->state = PERF_EVENT_STATE_INACTIVE;
11741 		account_event_cpu(event, dst_cpu);
11742 		perf_install_in_context(dst_ctx, event, dst_cpu);
11743 		get_ctx(dst_ctx);
11744 	}
11745 	mutex_unlock(&dst_ctx->mutex);
11746 	mutex_unlock(&src_ctx->mutex);
11747 }
11748 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
11749 
11750 static void sync_child_event(struct perf_event *child_event,
11751 			       struct task_struct *child)
11752 {
11753 	struct perf_event *parent_event = child_event->parent;
11754 	u64 child_val;
11755 
11756 	if (child_event->attr.inherit_stat)
11757 		perf_event_read_event(child_event, child);
11758 
11759 	child_val = perf_event_count(child_event);
11760 
11761 	/*
11762 	 * Add back the child's count to the parent's count:
11763 	 */
11764 	atomic64_add(child_val, &parent_event->child_count);
11765 	atomic64_add(child_event->total_time_enabled,
11766 		     &parent_event->child_total_time_enabled);
11767 	atomic64_add(child_event->total_time_running,
11768 		     &parent_event->child_total_time_running);
11769 }
11770 
11771 static void
11772 perf_event_exit_event(struct perf_event *child_event,
11773 		      struct perf_event_context *child_ctx,
11774 		      struct task_struct *child)
11775 {
11776 	struct perf_event *parent_event = child_event->parent;
11777 
11778 	/*
11779 	 * Do not destroy the 'original' grouping; because of the context
11780 	 * switch optimization the original events could've ended up in a
11781 	 * random child task.
11782 	 *
11783 	 * If we were to destroy the original group, all group related
11784 	 * operations would cease to function properly after this random
11785 	 * child dies.
11786 	 *
11787 	 * Do destroy all inherited groups, we don't care about those
11788 	 * and being thorough is better.
11789 	 */
11790 	raw_spin_lock_irq(&child_ctx->lock);
11791 	WARN_ON_ONCE(child_ctx->is_active);
11792 
11793 	if (parent_event)
11794 		perf_group_detach(child_event);
11795 	list_del_event(child_event, child_ctx);
11796 	perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
11797 	raw_spin_unlock_irq(&child_ctx->lock);
11798 
11799 	/*
11800 	 * Parent events are governed by their filedesc, retain them.
11801 	 */
11802 	if (!parent_event) {
11803 		perf_event_wakeup(child_event);
11804 		return;
11805 	}
11806 	/*
11807 	 * Child events can be cleaned up.
11808 	 */
11809 
11810 	sync_child_event(child_event, child);
11811 
11812 	/*
11813 	 * Remove this event from the parent's list
11814 	 */
11815 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
11816 	mutex_lock(&parent_event->child_mutex);
11817 	list_del_init(&child_event->child_list);
11818 	mutex_unlock(&parent_event->child_mutex);
11819 
11820 	/*
11821 	 * Kick perf_poll() for is_event_hup().
11822 	 */
11823 	perf_event_wakeup(parent_event);
11824 	free_event(child_event);
11825 	put_event(parent_event);
11826 }
11827 
11828 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
11829 {
11830 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
11831 	struct perf_event *child_event, *next;
11832 
11833 	WARN_ON_ONCE(child != current);
11834 
11835 	child_ctx = perf_pin_task_context(child, ctxn);
11836 	if (!child_ctx)
11837 		return;
11838 
11839 	/*
11840 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
11841 	 * ctx::mutex over the entire thing. This serializes against almost
11842 	 * everything that wants to access the ctx.
11843 	 *
11844 	 * The exception is sys_perf_event_open() /
11845 	 * perf_event_create_kernel_count() which does find_get_context()
11846 	 * without ctx::mutex (it cannot because of the move_group double mutex
11847 	 * lock thing). See the comments in perf_install_in_context().
11848 	 */
11849 	mutex_lock(&child_ctx->mutex);
11850 
11851 	/*
11852 	 * In a single ctx::lock section, de-schedule the events and detach the
11853 	 * context from the task such that we cannot ever get it scheduled back
11854 	 * in.
11855 	 */
11856 	raw_spin_lock_irq(&child_ctx->lock);
11857 	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
11858 
11859 	/*
11860 	 * Now that the context is inactive, destroy the task <-> ctx relation
11861 	 * and mark the context dead.
11862 	 */
11863 	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
11864 	put_ctx(child_ctx); /* cannot be last */
11865 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
11866 	put_task_struct(current); /* cannot be last */
11867 
11868 	clone_ctx = unclone_ctx(child_ctx);
11869 	raw_spin_unlock_irq(&child_ctx->lock);
11870 
11871 	if (clone_ctx)
11872 		put_ctx(clone_ctx);
11873 
11874 	/*
11875 	 * Report the task dead after unscheduling the events so that we
11876 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
11877 	 * get a few PERF_RECORD_READ events.
11878 	 */
11879 	perf_event_task(child, child_ctx, 0);
11880 
11881 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
11882 		perf_event_exit_event(child_event, child_ctx, child);
11883 
11884 	mutex_unlock(&child_ctx->mutex);
11885 
11886 	put_ctx(child_ctx);
11887 }
11888 
11889 /*
11890  * When a child task exits, feed back event values to parent events.
11891  *
11892  * Can be called with cred_guard_mutex held when called from
11893  * install_exec_creds().
11894  */
11895 void perf_event_exit_task(struct task_struct *child)
11896 {
11897 	struct perf_event *event, *tmp;
11898 	int ctxn;
11899 
11900 	mutex_lock(&child->perf_event_mutex);
11901 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
11902 				 owner_entry) {
11903 		list_del_init(&event->owner_entry);
11904 
11905 		/*
11906 		 * Ensure the list deletion is visible before we clear
11907 		 * the owner, closes a race against perf_release() where
11908 		 * we need to serialize on the owner->perf_event_mutex.
11909 		 */
11910 		smp_store_release(&event->owner, NULL);
11911 	}
11912 	mutex_unlock(&child->perf_event_mutex);
11913 
11914 	for_each_task_context_nr(ctxn)
11915 		perf_event_exit_task_context(child, ctxn);
11916 
11917 	/*
11918 	 * The perf_event_exit_task_context calls perf_event_task
11919 	 * with child's task_ctx, which generates EXIT events for
11920 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
11921 	 * At this point we need to send EXIT events to cpu contexts.
11922 	 */
11923 	perf_event_task(child, NULL, 0);
11924 }
11925 
11926 static void perf_free_event(struct perf_event *event,
11927 			    struct perf_event_context *ctx)
11928 {
11929 	struct perf_event *parent = event->parent;
11930 
11931 	if (WARN_ON_ONCE(!parent))
11932 		return;
11933 
11934 	mutex_lock(&parent->child_mutex);
11935 	list_del_init(&event->child_list);
11936 	mutex_unlock(&parent->child_mutex);
11937 
11938 	put_event(parent);
11939 
11940 	raw_spin_lock_irq(&ctx->lock);
11941 	perf_group_detach(event);
11942 	list_del_event(event, ctx);
11943 	raw_spin_unlock_irq(&ctx->lock);
11944 	free_event(event);
11945 }
11946 
11947 /*
11948  * Free a context as created by inheritance by perf_event_init_task() below,
11949  * used by fork() in case of fail.
11950  *
11951  * Even though the task has never lived, the context and events have been
11952  * exposed through the child_list, so we must take care tearing it all down.
11953  */
11954 void perf_event_free_task(struct task_struct *task)
11955 {
11956 	struct perf_event_context *ctx;
11957 	struct perf_event *event, *tmp;
11958 	int ctxn;
11959 
11960 	for_each_task_context_nr(ctxn) {
11961 		ctx = task->perf_event_ctxp[ctxn];
11962 		if (!ctx)
11963 			continue;
11964 
11965 		mutex_lock(&ctx->mutex);
11966 		raw_spin_lock_irq(&ctx->lock);
11967 		/*
11968 		 * Destroy the task <-> ctx relation and mark the context dead.
11969 		 *
11970 		 * This is important because even though the task hasn't been
11971 		 * exposed yet the context has been (through child_list).
11972 		 */
11973 		RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
11974 		WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
11975 		put_task_struct(task); /* cannot be last */
11976 		raw_spin_unlock_irq(&ctx->lock);
11977 
11978 		list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
11979 			perf_free_event(event, ctx);
11980 
11981 		mutex_unlock(&ctx->mutex);
11982 
11983 		/*
11984 		 * perf_event_release_kernel() could've stolen some of our
11985 		 * child events and still have them on its free_list. In that
11986 		 * case we must wait for these events to have been freed (in
11987 		 * particular all their references to this task must've been
11988 		 * dropped).
11989 		 *
11990 		 * Without this copy_process() will unconditionally free this
11991 		 * task (irrespective of its reference count) and
11992 		 * _free_event()'s put_task_struct(event->hw.target) will be a
11993 		 * use-after-free.
11994 		 *
11995 		 * Wait for all events to drop their context reference.
11996 		 */
11997 		wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
11998 		put_ctx(ctx); /* must be last */
11999 	}
12000 }
12001 
12002 void perf_event_delayed_put(struct task_struct *task)
12003 {
12004 	int ctxn;
12005 
12006 	for_each_task_context_nr(ctxn)
12007 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
12008 }
12009 
12010 struct file *perf_event_get(unsigned int fd)
12011 {
12012 	struct file *file = fget(fd);
12013 	if (!file)
12014 		return ERR_PTR(-EBADF);
12015 
12016 	if (file->f_op != &perf_fops) {
12017 		fput(file);
12018 		return ERR_PTR(-EBADF);
12019 	}
12020 
12021 	return file;
12022 }
12023 
12024 const struct perf_event *perf_get_event(struct file *file)
12025 {
12026 	if (file->f_op != &perf_fops)
12027 		return ERR_PTR(-EINVAL);
12028 
12029 	return file->private_data;
12030 }
12031 
12032 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
12033 {
12034 	if (!event)
12035 		return ERR_PTR(-EINVAL);
12036 
12037 	return &event->attr;
12038 }
12039 
12040 /*
12041  * Inherit an event from parent task to child task.
12042  *
12043  * Returns:
12044  *  - valid pointer on success
12045  *  - NULL for orphaned events
12046  *  - IS_ERR() on error
12047  */
12048 static struct perf_event *
12049 inherit_event(struct perf_event *parent_event,
12050 	      struct task_struct *parent,
12051 	      struct perf_event_context *parent_ctx,
12052 	      struct task_struct *child,
12053 	      struct perf_event *group_leader,
12054 	      struct perf_event_context *child_ctx)
12055 {
12056 	enum perf_event_state parent_state = parent_event->state;
12057 	struct perf_event *child_event;
12058 	unsigned long flags;
12059 
12060 	/*
12061 	 * Instead of creating recursive hierarchies of events,
12062 	 * we link inherited events back to the original parent,
12063 	 * which has a filp for sure, which we use as the reference
12064 	 * count:
12065 	 */
12066 	if (parent_event->parent)
12067 		parent_event = parent_event->parent;
12068 
12069 	child_event = perf_event_alloc(&parent_event->attr,
12070 					   parent_event->cpu,
12071 					   child,
12072 					   group_leader, parent_event,
12073 					   NULL, NULL, -1);
12074 	if (IS_ERR(child_event))
12075 		return child_event;
12076 
12077 
12078 	if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
12079 	    !child_ctx->task_ctx_data) {
12080 		struct pmu *pmu = child_event->pmu;
12081 
12082 		child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size,
12083 						   GFP_KERNEL);
12084 		if (!child_ctx->task_ctx_data) {
12085 			free_event(child_event);
12086 			return ERR_PTR(-ENOMEM);
12087 		}
12088 	}
12089 
12090 	/*
12091 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
12092 	 * must be under the same lock in order to serialize against
12093 	 * perf_event_release_kernel(), such that either we must observe
12094 	 * is_orphaned_event() or they will observe us on the child_list.
12095 	 */
12096 	mutex_lock(&parent_event->child_mutex);
12097 	if (is_orphaned_event(parent_event) ||
12098 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
12099 		mutex_unlock(&parent_event->child_mutex);
12100 		/* task_ctx_data is freed with child_ctx */
12101 		free_event(child_event);
12102 		return NULL;
12103 	}
12104 
12105 	get_ctx(child_ctx);
12106 
12107 	/*
12108 	 * Make the child state follow the state of the parent event,
12109 	 * not its attr.disabled bit.  We hold the parent's mutex,
12110 	 * so we won't race with perf_event_{en, dis}able_family.
12111 	 */
12112 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
12113 		child_event->state = PERF_EVENT_STATE_INACTIVE;
12114 	else
12115 		child_event->state = PERF_EVENT_STATE_OFF;
12116 
12117 	if (parent_event->attr.freq) {
12118 		u64 sample_period = parent_event->hw.sample_period;
12119 		struct hw_perf_event *hwc = &child_event->hw;
12120 
12121 		hwc->sample_period = sample_period;
12122 		hwc->last_period   = sample_period;
12123 
12124 		local64_set(&hwc->period_left, sample_period);
12125 	}
12126 
12127 	child_event->ctx = child_ctx;
12128 	child_event->overflow_handler = parent_event->overflow_handler;
12129 	child_event->overflow_handler_context
12130 		= parent_event->overflow_handler_context;
12131 
12132 	/*
12133 	 * Precalculate sample_data sizes
12134 	 */
12135 	perf_event__header_size(child_event);
12136 	perf_event__id_header_size(child_event);
12137 
12138 	/*
12139 	 * Link it up in the child's context:
12140 	 */
12141 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
12142 	add_event_to_ctx(child_event, child_ctx);
12143 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
12144 
12145 	/*
12146 	 * Link this into the parent event's child list
12147 	 */
12148 	list_add_tail(&child_event->child_list, &parent_event->child_list);
12149 	mutex_unlock(&parent_event->child_mutex);
12150 
12151 	return child_event;
12152 }
12153 
12154 /*
12155  * Inherits an event group.
12156  *
12157  * This will quietly suppress orphaned events; !inherit_event() is not an error.
12158  * This matches with perf_event_release_kernel() removing all child events.
12159  *
12160  * Returns:
12161  *  - 0 on success
12162  *  - <0 on error
12163  */
12164 static int inherit_group(struct perf_event *parent_event,
12165 	      struct task_struct *parent,
12166 	      struct perf_event_context *parent_ctx,
12167 	      struct task_struct *child,
12168 	      struct perf_event_context *child_ctx)
12169 {
12170 	struct perf_event *leader;
12171 	struct perf_event *sub;
12172 	struct perf_event *child_ctr;
12173 
12174 	leader = inherit_event(parent_event, parent, parent_ctx,
12175 				 child, NULL, child_ctx);
12176 	if (IS_ERR(leader))
12177 		return PTR_ERR(leader);
12178 	/*
12179 	 * @leader can be NULL here because of is_orphaned_event(). In this
12180 	 * case inherit_event() will create individual events, similar to what
12181 	 * perf_group_detach() would do anyway.
12182 	 */
12183 	for_each_sibling_event(sub, parent_event) {
12184 		child_ctr = inherit_event(sub, parent, parent_ctx,
12185 					    child, leader, child_ctx);
12186 		if (IS_ERR(child_ctr))
12187 			return PTR_ERR(child_ctr);
12188 
12189 		if (sub->aux_event == parent_event && child_ctr &&
12190 		    !perf_get_aux_event(child_ctr, leader))
12191 			return -EINVAL;
12192 	}
12193 	return 0;
12194 }
12195 
12196 /*
12197  * Creates the child task context and tries to inherit the event-group.
12198  *
12199  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
12200  * inherited_all set when we 'fail' to inherit an orphaned event; this is
12201  * consistent with perf_event_release_kernel() removing all child events.
12202  *
12203  * Returns:
12204  *  - 0 on success
12205  *  - <0 on error
12206  */
12207 static int
12208 inherit_task_group(struct perf_event *event, struct task_struct *parent,
12209 		   struct perf_event_context *parent_ctx,
12210 		   struct task_struct *child, int ctxn,
12211 		   int *inherited_all)
12212 {
12213 	int ret;
12214 	struct perf_event_context *child_ctx;
12215 
12216 	if (!event->attr.inherit) {
12217 		*inherited_all = 0;
12218 		return 0;
12219 	}
12220 
12221 	child_ctx = child->perf_event_ctxp[ctxn];
12222 	if (!child_ctx) {
12223 		/*
12224 		 * This is executed from the parent task context, so
12225 		 * inherit events that have been marked for cloning.
12226 		 * First allocate and initialize a context for the
12227 		 * child.
12228 		 */
12229 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
12230 		if (!child_ctx)
12231 			return -ENOMEM;
12232 
12233 		child->perf_event_ctxp[ctxn] = child_ctx;
12234 	}
12235 
12236 	ret = inherit_group(event, parent, parent_ctx,
12237 			    child, child_ctx);
12238 
12239 	if (ret)
12240 		*inherited_all = 0;
12241 
12242 	return ret;
12243 }
12244 
12245 /*
12246  * Initialize the perf_event context in task_struct
12247  */
12248 static int perf_event_init_context(struct task_struct *child, int ctxn)
12249 {
12250 	struct perf_event_context *child_ctx, *parent_ctx;
12251 	struct perf_event_context *cloned_ctx;
12252 	struct perf_event *event;
12253 	struct task_struct *parent = current;
12254 	int inherited_all = 1;
12255 	unsigned long flags;
12256 	int ret = 0;
12257 
12258 	if (likely(!parent->perf_event_ctxp[ctxn]))
12259 		return 0;
12260 
12261 	/*
12262 	 * If the parent's context is a clone, pin it so it won't get
12263 	 * swapped under us.
12264 	 */
12265 	parent_ctx = perf_pin_task_context(parent, ctxn);
12266 	if (!parent_ctx)
12267 		return 0;
12268 
12269 	/*
12270 	 * No need to check if parent_ctx != NULL here; since we saw
12271 	 * it non-NULL earlier, the only reason for it to become NULL
12272 	 * is if we exit, and since we're currently in the middle of
12273 	 * a fork we can't be exiting at the same time.
12274 	 */
12275 
12276 	/*
12277 	 * Lock the parent list. No need to lock the child - not PID
12278 	 * hashed yet and not running, so nobody can access it.
12279 	 */
12280 	mutex_lock(&parent_ctx->mutex);
12281 
12282 	/*
12283 	 * We dont have to disable NMIs - we are only looking at
12284 	 * the list, not manipulating it:
12285 	 */
12286 	perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
12287 		ret = inherit_task_group(event, parent, parent_ctx,
12288 					 child, ctxn, &inherited_all);
12289 		if (ret)
12290 			goto out_unlock;
12291 	}
12292 
12293 	/*
12294 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
12295 	 * to allocations, but we need to prevent rotation because
12296 	 * rotate_ctx() will change the list from interrupt context.
12297 	 */
12298 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
12299 	parent_ctx->rotate_disable = 1;
12300 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
12301 
12302 	perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
12303 		ret = inherit_task_group(event, parent, parent_ctx,
12304 					 child, ctxn, &inherited_all);
12305 		if (ret)
12306 			goto out_unlock;
12307 	}
12308 
12309 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
12310 	parent_ctx->rotate_disable = 0;
12311 
12312 	child_ctx = child->perf_event_ctxp[ctxn];
12313 
12314 	if (child_ctx && inherited_all) {
12315 		/*
12316 		 * Mark the child context as a clone of the parent
12317 		 * context, or of whatever the parent is a clone of.
12318 		 *
12319 		 * Note that if the parent is a clone, the holding of
12320 		 * parent_ctx->lock avoids it from being uncloned.
12321 		 */
12322 		cloned_ctx = parent_ctx->parent_ctx;
12323 		if (cloned_ctx) {
12324 			child_ctx->parent_ctx = cloned_ctx;
12325 			child_ctx->parent_gen = parent_ctx->parent_gen;
12326 		} else {
12327 			child_ctx->parent_ctx = parent_ctx;
12328 			child_ctx->parent_gen = parent_ctx->generation;
12329 		}
12330 		get_ctx(child_ctx->parent_ctx);
12331 	}
12332 
12333 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
12334 out_unlock:
12335 	mutex_unlock(&parent_ctx->mutex);
12336 
12337 	perf_unpin_context(parent_ctx);
12338 	put_ctx(parent_ctx);
12339 
12340 	return ret;
12341 }
12342 
12343 /*
12344  * Initialize the perf_event context in task_struct
12345  */
12346 int perf_event_init_task(struct task_struct *child)
12347 {
12348 	int ctxn, ret;
12349 
12350 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
12351 	mutex_init(&child->perf_event_mutex);
12352 	INIT_LIST_HEAD(&child->perf_event_list);
12353 
12354 	for_each_task_context_nr(ctxn) {
12355 		ret = perf_event_init_context(child, ctxn);
12356 		if (ret) {
12357 			perf_event_free_task(child);
12358 			return ret;
12359 		}
12360 	}
12361 
12362 	return 0;
12363 }
12364 
12365 static void __init perf_event_init_all_cpus(void)
12366 {
12367 	struct swevent_htable *swhash;
12368 	int cpu;
12369 
12370 	zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
12371 
12372 	for_each_possible_cpu(cpu) {
12373 		swhash = &per_cpu(swevent_htable, cpu);
12374 		mutex_init(&swhash->hlist_mutex);
12375 		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
12376 
12377 		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
12378 		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
12379 
12380 #ifdef CONFIG_CGROUP_PERF
12381 		INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
12382 #endif
12383 		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
12384 	}
12385 }
12386 
12387 static void perf_swevent_init_cpu(unsigned int cpu)
12388 {
12389 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
12390 
12391 	mutex_lock(&swhash->hlist_mutex);
12392 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
12393 		struct swevent_hlist *hlist;
12394 
12395 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
12396 		WARN_ON(!hlist);
12397 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
12398 	}
12399 	mutex_unlock(&swhash->hlist_mutex);
12400 }
12401 
12402 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
12403 static void __perf_event_exit_context(void *__info)
12404 {
12405 	struct perf_event_context *ctx = __info;
12406 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
12407 	struct perf_event *event;
12408 
12409 	raw_spin_lock(&ctx->lock);
12410 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
12411 	list_for_each_entry(event, &ctx->event_list, event_entry)
12412 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
12413 	raw_spin_unlock(&ctx->lock);
12414 }
12415 
12416 static void perf_event_exit_cpu_context(int cpu)
12417 {
12418 	struct perf_cpu_context *cpuctx;
12419 	struct perf_event_context *ctx;
12420 	struct pmu *pmu;
12421 
12422 	mutex_lock(&pmus_lock);
12423 	list_for_each_entry(pmu, &pmus, entry) {
12424 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
12425 		ctx = &cpuctx->ctx;
12426 
12427 		mutex_lock(&ctx->mutex);
12428 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
12429 		cpuctx->online = 0;
12430 		mutex_unlock(&ctx->mutex);
12431 	}
12432 	cpumask_clear_cpu(cpu, perf_online_mask);
12433 	mutex_unlock(&pmus_lock);
12434 }
12435 #else
12436 
12437 static void perf_event_exit_cpu_context(int cpu) { }
12438 
12439 #endif
12440 
12441 int perf_event_init_cpu(unsigned int cpu)
12442 {
12443 	struct perf_cpu_context *cpuctx;
12444 	struct perf_event_context *ctx;
12445 	struct pmu *pmu;
12446 
12447 	perf_swevent_init_cpu(cpu);
12448 
12449 	mutex_lock(&pmus_lock);
12450 	cpumask_set_cpu(cpu, perf_online_mask);
12451 	list_for_each_entry(pmu, &pmus, entry) {
12452 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
12453 		ctx = &cpuctx->ctx;
12454 
12455 		mutex_lock(&ctx->mutex);
12456 		cpuctx->online = 1;
12457 		mutex_unlock(&ctx->mutex);
12458 	}
12459 	mutex_unlock(&pmus_lock);
12460 
12461 	return 0;
12462 }
12463 
12464 int perf_event_exit_cpu(unsigned int cpu)
12465 {
12466 	perf_event_exit_cpu_context(cpu);
12467 	return 0;
12468 }
12469 
12470 static int
12471 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
12472 {
12473 	int cpu;
12474 
12475 	for_each_online_cpu(cpu)
12476 		perf_event_exit_cpu(cpu);
12477 
12478 	return NOTIFY_OK;
12479 }
12480 
12481 /*
12482  * Run the perf reboot notifier at the very last possible moment so that
12483  * the generic watchdog code runs as long as possible.
12484  */
12485 static struct notifier_block perf_reboot_notifier = {
12486 	.notifier_call = perf_reboot,
12487 	.priority = INT_MIN,
12488 };
12489 
12490 void __init perf_event_init(void)
12491 {
12492 	int ret;
12493 
12494 	idr_init(&pmu_idr);
12495 
12496 	perf_event_init_all_cpus();
12497 	init_srcu_struct(&pmus_srcu);
12498 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
12499 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
12500 	perf_pmu_register(&perf_task_clock, NULL, -1);
12501 	perf_tp_register();
12502 	perf_event_init_cpu(smp_processor_id());
12503 	register_reboot_notifier(&perf_reboot_notifier);
12504 
12505 	ret = init_hw_breakpoint();
12506 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
12507 
12508 	/*
12509 	 * Build time assertion that we keep the data_head at the intended
12510 	 * location.  IOW, validation we got the __reserved[] size right.
12511 	 */
12512 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
12513 		     != 1024);
12514 }
12515 
12516 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
12517 			      char *page)
12518 {
12519 	struct perf_pmu_events_attr *pmu_attr =
12520 		container_of(attr, struct perf_pmu_events_attr, attr);
12521 
12522 	if (pmu_attr->event_str)
12523 		return sprintf(page, "%s\n", pmu_attr->event_str);
12524 
12525 	return 0;
12526 }
12527 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
12528 
12529 static int __init perf_event_sysfs_init(void)
12530 {
12531 	struct pmu *pmu;
12532 	int ret;
12533 
12534 	mutex_lock(&pmus_lock);
12535 
12536 	ret = bus_register(&pmu_bus);
12537 	if (ret)
12538 		goto unlock;
12539 
12540 	list_for_each_entry(pmu, &pmus, entry) {
12541 		if (!pmu->name || pmu->type < 0)
12542 			continue;
12543 
12544 		ret = pmu_dev_alloc(pmu);
12545 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
12546 	}
12547 	pmu_bus_running = 1;
12548 	ret = 0;
12549 
12550 unlock:
12551 	mutex_unlock(&pmus_lock);
12552 
12553 	return ret;
12554 }
12555 device_initcall(perf_event_sysfs_init);
12556 
12557 #ifdef CONFIG_CGROUP_PERF
12558 static struct cgroup_subsys_state *
12559 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
12560 {
12561 	struct perf_cgroup *jc;
12562 
12563 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
12564 	if (!jc)
12565 		return ERR_PTR(-ENOMEM);
12566 
12567 	jc->info = alloc_percpu(struct perf_cgroup_info);
12568 	if (!jc->info) {
12569 		kfree(jc);
12570 		return ERR_PTR(-ENOMEM);
12571 	}
12572 
12573 	return &jc->css;
12574 }
12575 
12576 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
12577 {
12578 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
12579 
12580 	free_percpu(jc->info);
12581 	kfree(jc);
12582 }
12583 
12584 static int __perf_cgroup_move(void *info)
12585 {
12586 	struct task_struct *task = info;
12587 	rcu_read_lock();
12588 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
12589 	rcu_read_unlock();
12590 	return 0;
12591 }
12592 
12593 static void perf_cgroup_attach(struct cgroup_taskset *tset)
12594 {
12595 	struct task_struct *task;
12596 	struct cgroup_subsys_state *css;
12597 
12598 	cgroup_taskset_for_each(task, css, tset)
12599 		task_function_call(task, __perf_cgroup_move, task);
12600 }
12601 
12602 struct cgroup_subsys perf_event_cgrp_subsys = {
12603 	.css_alloc	= perf_cgroup_css_alloc,
12604 	.css_free	= perf_cgroup_css_free,
12605 	.attach		= perf_cgroup_attach,
12606 	/*
12607 	 * Implicitly enable on dfl hierarchy so that perf events can
12608 	 * always be filtered by cgroup2 path as long as perf_event
12609 	 * controller is not mounted on a legacy hierarchy.
12610 	 */
12611 	.implicit_on_dfl = true,
12612 	.threaded	= true,
12613 };
12614 #endif /* CONFIG_CGROUP_PERF */
12615